
DEC-ll-ASDB-D

PAL - 1 1 R ASS E M B L E R

PRO G RAM MER'S MANUAL

Program Assembly Language

and

Relocatable Assembler

for the

Disk Operating System

For additional copies, order No. DEC-ll-ASDB-D, from Digital Equip­

ment Corporation, Direct Mail, Bldg. 1-1, Maynard, Mass. 01754

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

First Printing, February 1971
Revised, May 1971

Your attention is invited to the last
two pages of this document. The "How
to Obtain Software Information" page
tells you how to keep up-to-date with
DEC's software. The "Reader's Comments"
page, when filled in and mailed, is ben­
eficial to both you and DEC; any comments
received are acknowledged and are con~
sidered when documenting subsequent manuals.

Copyright @ 1971 by Digital Equipment Corporation.

This document is for information
purposes only, and is subject to
change without notice.

Associated Documents:

PDP-II Disk Operating System Monitor,
Programmer's Handbook, DEC-ll-MWDA-D

PDP-II Edit-II Text Editor,
Programmer's Manual, DEC-ll-EEDA-D

PDP-II ODT-llR Debugging Program,
Programmer's Manual, DEC-ll-OODA-D

PDP-II PIP, File Utility Package,
Programmer's Manual, DEC-ll-PIDA-D

PDP-II Link-II Linker and Libr-ll Librarian,
Programmer's Manual, DEC-ll-ZLDA-D

PDP-II FORTRAN IV,
Programmer's Manual, DEC-ll-KFDA-D

The following are trademarks of

Digital Equipment Corporation:

DEC PDP

FLIP CHIP

DIGITAL (logo)

UNIBUS

ii

FOCAL

COMPUTER LAB

OMNIBUS

PRE F ACE

This manual describes PAL-IIR, the Assembly Language

and Assembler for the PDP-II Disk Operating System. Thus,

familiarity with the DOS Monitor (see PDP-II Disk Operating

System Monitor, Programmerrs Handbook, DEC-II-MWDA-D) is

assumed.

The manual explains how to write PAL-IIR source pro­

grams and how to assemble them into object modules. All

facets of the assembly language are explained and illus­

trated with many examples, and the manual concludes with

assembling procedures.

In explaining how to write PAL-IIR source programs,

it is necessary, especially at the outset, to make fre­

quent forward references. Therefore ,. we recommend that

you first read through the entire manual to get a "feel"

for the language, and then reread the manual for a complete

understanding of the language and assembling procedures.

In addition to the PAL-IIR Assembler, the Disk

Operating System software includes:

DOS-Monitor
Edit-II Text Editor
ODT-IIR Debugging Program
PIP, File Utility Package
Link-II Linker
Libr-ll Librarian
FORTRAN IV

iii

CON TEN T S

CHAPTER 1 INTRODUCTION 1-1

CHAPTER 2 STATEMENTS 2-1

2.1 CHARACTER SET 2-1

2.2 LABEL 2-2

2.3 OPERATOR 2-3

2.4 OPERAND 2-3

2.5 COMMENTS 2-4-

2.6 FORMAT CONTROL 2-4

CHAPTER 3 SYMBOLS 3-1

3.1 PERMANENT SYMBOLS 3-1

3.2 USER-DEFINED SYMBOLS 3-1

3.3 DIRECT ASSIGNMENT 3-2

3.4 REGISTER SYMBOLS 3-3

CHAPTER 4 EXPRESSIONS 4-1

4.1 NUMBERS 4-1

4.2 ARITHMETIC AND LOGICAL OPERATORS 4-2

4.3 ASCII CONVERSION 4-2

4.4 MODE OF EXPRESSIONS 4-3

CHAPTER 5 ASSEMBLY LOCATION COUNTER 5-1

CHAPTER 6 RELOCATION AND LINKING 6-1

CHAPTER 7 ADDRESSING - 7-1

7.1 REGISTER MODE 7-2

7.2 DEFERRED REGISTER MODE 7-2

7.3 AUTOINCREMENT MODE 7-2

7.4 DEFERRED AUTOINCREMENT MODE 7-3

7.5 AUTODECREMENT MODE 7-3

7.6 DEFERRED AUTODECREMENT MODE 7-3

7.7 INDEX MODE 7-4

v

Page

7.8 DEFERRED INDEX MODE 7-4

7.9 IMMEDIATE MODE AND DEFERRED IMMEDIATE 7-4
(ABSOLUTE) MODE

7.10 RELATIVE AND DEFERRED RELATIVE MODES 7-S

7.11 TABLE OF MODE FORMS AND CODES 7-6

7.12 INSTRUCTION FORMS 7-7

CHAPTER 8 ASSEMBLER DIRECTIVES 8-1

8.1 .TITLE 8-1

8.2 .GLOBL 8-1

8.3 PROGRAM SECTION DIRECTIVES 8-2

8.4 .EOT 8-S

8.S . EVEN 8-S

8.6 .END 8-S

8.7 . WORD 8-S

a.8 .BYTE 8-7

8.9 .ASCII 8-7

8 . 10 . RAD SO 8 - 8
8.11 . LIMIT 8-9

8.12 CONDITIONAL ASSEMBLY DIRECTIVES 8-9

CHAPTER 9 OPERATING PROCEDURES 9-1

9.1 LOADING PAL-IIR 9-1

9.2 INITIAL DIALOGUE 9-1

9.3 ASSEMBLY DIALOGUE 9-6

9.4 ASSEMBLY LISTING 9-7

9.S OBJECT MODULE OUTPUT 9-R

9.S.1 Global Symbol Directory 9-8

9.S.2 Text Block 9-9

9.S.3 Relocation Directory 9-9

CHAPTER 10 ERROR CODES 10-1

APPENDIX A ASCII CHARACTER SET A-I

APPENDIX B PAL-IIR ASSEMBLY LANGUAGE AND B-1
ASSEMBLER

B.l TERMINATORS B-1

B.2 ADDRESS MODE SYNTAX B-2

B.3 INSTRUCTIONS B-3

vi

APPENDIX C

B.3.1

B.3.2

B.3.3

B.3.4

B.3.S

B.3.6

B.3.7

B.3.8

B.4

B.S

Double Operand Instructions

Single Operand Instructions

Rotate/Shift

Operate Instructions

Trap Instructions

Branch Instructions

Subroutine Call

Subroutine Return

ASSEMBLER DIRECTIVES

ERROR CODES

LINKING PAL-IIR AND ITS OVERLAY
BUILDER, AND CONSTRUCTING THE
RUN TIME SYSTEM

vii

Page

B-4

B-4

B-S

B-6

B-7

B-7

B-8

B-8

B-8

B-9

C-l

CHAPTER 1

INTRODUCTION

PAL-IIR (Program Assembly Language for the PDP-II, Relocatable

Version) operates under the Disk Operating System (DOS). PAL-IIR

enables you to write source (symbolic) programs using letters,

numbers, and symbols which are meaningful to you. The source

programs, generated either on-line using the Text Editor Edit-II

(see PDP-II Edit-II Text Editor, Programmer's Manual, DEC-II-EEDA-D

for details), or off-line are then assembled into object modules

which are processed by the PDP-II Linker, Link-II. Link-II produces

a load module which is loaded by the monitor command RUN for execu­

tion. Object modules may contain absolute and/or relocatable code,

and separately assembled object modules may be linked with global

symbols. The object module is produced after two passes through the

Assembler. A complete octal/symbolic listing of the assembled program

may also be obtained. This listing is especially useful for documenta­

tion and debugging purposes.

Some notable features of PAL-IIR are:

1. Selective assembly pass functions

2. Device and file name specification for pass functions

3. Error listing on command output device

4. Double buffered and concurrent I/O

5. Alphabetized, formatted symbol table listing

6. Relocatable object modules

7. Global symbols for linking between object modules

8. Conditional assembly directives

9. Program sectioning directives

The following discussion of the PAL-IIR Assembly Language

assumes that you have read the PDP-II Handbook 1971, with emphasis

on those sections which deal with the PDP-II instruction set, formats,

and timings -- a thorough knowledge of these is vital to efficient

assembly language programming.

1-1

CHAP~ER 2

STATEMENTS

A source program is composed of a sequence of statements, where each

statement is on a single line. The statement is terminated by a

carriage ret~rn character and must be immediately followed by either

a line feed or form feed character. Should a carriage return char­

acter be present and not ?e followed by a line feed or form feed,

the Assembler will generate a Q error (Chapter 10), and that portion

of the line following the carriage return will be ignored. Since

the carriage return is a required statement terminator, a line feed

or form feed not immediately preceded by a carriage return will haVE

one inserted by the Assembler.

It should be noted that, if the Edit-II Text Editor is being

used to create the source program, a typed carriage return (RETURN

key) automatically generates a line feed character.

A statement may be composed of up to four fields which are

identified by their order of appearance and by specified terminating

characters as explained below and summarized in Appendix B. The

four fields are:

Label Operator Operand Comment

The label and comment fields are optional. The operator and

operand fields are interdependent, i.e., either may be omitted

depending upon the contents of the other.

2.1 CHARACTER SET

A PAL-llR source program is composed of symbols, numbers, expres­

sions, symbolic instructions, assembler directives, argument sepa­

rators, and line terminators written using the following ASCII l

characters.

1. The letters A through Z. (Upper and lower case letters
are acceptable, although upon input, lower case letters
will be converted to upper case letters.)

lASCII stands for American Standard Code for Information Interchange.

2-1

2. The numbers ° through 9.

3. The characters . and $ (these characters are reserved for
systems use).

4. The separating or terminating symbols:

% # @

carriage return

2.2 LABEL

tab

II

space

+ &

line feed form feed

A label is a user-defined symbol (Chapter 3) which is assigned the

value of the current location counter. This value may be either

absolute or relocatable, depending on whether the location counter

value is absolute or relocatable. In the latter case, the final

absolute value is assigned by the Linker, i.e., the value plus the

relocation constant. A label is a symbolic means of referring to a

specific location within a program. If present, a label always

occurs first in a statement and must be terminated by a colon. For

example, if the current location is absolute 100S' the statement:

ABCD: MOV A,B

will assign the value 100S to the label ABCD so that subsequent

reference to ABCD will be to location lOOse In the above example

if the location counter were relocatable, the final value of ABCD

would be 100S+K, where K is the location of the beginning of the

relocatable section in which the label ABCD appears. More than one

label may appear within a single label field; each label within the

field will have the same value. For example, if the current location

counter is 100, multiple labels in the statement:

ABC: $DD: A7.7: MOV A,B

will equate each of the three labels ABC, $DD, and A7.7 with the

value lOOse ($ and. are reserved for system software.)

The error code M (multiple definition of a symbol) will be gen­

erated during assembly if two or more labels have the same first six

characters.

2-2

.2.3 OPERATOR

An operator follows the label field iri a statement, and may be an

instruction mnemonic or an assembler directive (Appendix B). When

it is an instruction mnemonic, it specifies what action is to be

performed on any operand(s) which follows it. When it is an assem­

bler directive, it specifies a certain function or action to be

performed during assembly.

The operator may be preceded only by one or more labels and may

be followed by one or more operands and/or a comment. An operator

is legally terminated by a space, tab, or any of the following

characters:

+ @ " % &

line feed form feed carriage return

The use of each character above will be explained.

Consider the following examples:

Mov+IA,B

MOV@A,B

+1 (TAB) terminates operator MOV

@ terminates operator MOV

When the operator stands alone without an operand or comment,

it is terminated by a carriage return followed by a line feed or

form feed character.

2.4 OPERAND

An operand is that part of a statement which is operated on by the

operator -- an instruction mnemonic or assembler directive.

Operands may be symbols, expressions, or numbers. When multiple

operands appear within a statement, each is separated from the next

by a comma. An operand may be preceded by an operator and/or label,

and followed by a comment.

The operand field is terminated by a semicolon when followed by

a comment, or by a carriage return followed by a line feed or form

feed character when the operand ends the statement. For example:

2-3

LABEL: MOV GEORGE,BOB ;THIS IS A COMMENT

where the space between MOV and GEORGE terminated the operator field

and began the operand field; the comma separated the operands GEORGE

and BOB; the semicolon terminated the operand field and began the

comment.

2.5 COMMENTS

The comment field is optional and may contain any ASCII character

except null, rubout, carriage return, line feed, or form feed. All

other characters, even those with special significance, are ignored

by the Assembler when used in the comment field.

The comment field may be preceded by none, any, or all of the

other three fields. It must begin with the semicolon and end with a

carriage return followed by a line feed or form feed character. For

example:

LABEL: CLR HERE ;THIS IS A $1.00 COMMENT

Comments do not affect assembly processing or program execution,

but they are useful in program listings for later analysis, checkout,

or documentation purposes.

2.6 FORMAT CONTROL

Formatting of the source program is controlled by the space and tab

characters. They have no effect on the assembling process of the

source program unless they are embedded within a symbol, number, or

ASCII text; or are used as the operator field terminator. Thus, they

can be used to provide a neat, readable program. A statement can be

written:

LABEL:MOV(SP)+,TAG;POP VALUE· OFF STACK

or, using formatting characters, it can be written:

LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK

which is much easier to read.

Page size is controlled by the form feed character. A page of n

lines is created by inserting a form feed (CTRL/FORM keys on the key­

board) after the nth line. If no form feed is present, a page is termi­

nated after 56 lines.

2-4

CHAPTER 3

SYMBOLS

There are two types of symbols: permanent and user-defined. There

are two symbol tables: the Permanent Symbol Table (PST) and the User

Symbol Table (UST). The PST contains all the permanent symbols and

is part of the Assembler's load module. The UST is constructed as

the source program is assembled; user-defined symbols are added to

the table as they are encountered.

3.1 PERMANENT SYMBOLS

Permanent symbols consist of the instruction mnemonics (Appendix B.3)

and assembler directives (Chapter 8). These symbols are a permanent

part of the Assembler and need not be defined before being used in

the source program.

3.2 USER-DEFINED SYMBOLS

User-defined symbols are those defined as labels (Section 2.2) or by

direct assignment (Section 3.3). These symbols are added to the

User Symbol Table as they are encountered during the first pass of

the assembly. They can be composed of alphanumeric characters,

dollar signs, and periods only; any other character is illegal and,

if used, will result in the error message I (Chapter 10). (Again, $

and. are reserved for system software.) The following rules also apply

to user-defined symbols:

1. The first character must not be a number.

2. Each symbol must be unique within the first six characters.

3. A symbol may be written with more than six legal characters
but the seventh and subsequent characters are only checked
for legality, and are not otherwise recognized by the
Assembler.

4. Spaces and tabs must not be embedded within a symbol.

A user-defined symbol may duplicate a permanent symbol. The

value associated with a permanent symbol that is also user-defined

depends upon its use:

1. A permanent symbol encountered in the operator field is

3-1

associated with its corresponding machine op-code.

2. If a permanent symbol in the operand field is also user­
defined, its user-defined value is associated with the
symbol. If the symbol is not found to be user-defined,
then the corresponding machine op-code absolute value is
associated with the symbol.

User-defined symbols are ei ther internal or global.· All

symbols are internal unless they are explicitly defined as global

with the .GLOBL assembler directive (Section 8.2).

Global symbols are used to provide links between object modules.

A global symbol which is defined (as a label or direct assignment) in

a program is called an entry symbol or entry point. Such symbols may

be referred to from other object modules or assemblies. A global

symbol which is not defined in the current assembly is called an exter­

nal symbol. Some other assembly must define the same symbol as an

entry point.

Since PAL-llR provides program sectioning capabilities (Section

8.3), two types of internal symbols must be considered:

1. a symbol that belongs to the current program section;

2. a symbol that belongs to any of the other program sections.

In both cases, the symbol must be defined within the current assembly;

the significance of the distinction is critical in evaluating expres­

sions involving type 2. above (Section 4.4).

3.3 DIRECT ASSIGNMENT

A direct assignment statement associates a symbol with a value.

When a direct assignment statement defines a symbol for the first

time, that symbol is entered into the Assembler's symbol table and

the specified value is associated with it. A symbol may be rede­

fined by assigning a new value to a previously defined symbol. The

newly assigned value will replace the previous value assigned to

the symbol.

The symbol takes on the relocatable or absolute attribute of the

defining expression. However, if the defining expression is global,

the defined symbol will not be global unless previously defined as such

(Chapter 4).

3-2

The general format for a direct assignment statement is:

symbol = expression

The following conventions apply:

1. An equal sign (=) must separate the symbol from the
expression defining the symbol.

2. A direct assignment statement may be preceded by a label
and may be followed by a comment.

3. Only one symbol can be defined by anyone direct assignment
statement.

4. Only one level of forward referencing is allowed.

Example of two levels of forward referencing (illegal):

x Y

Y Z

Z 1

X and Yare both undefined throughout pass 1 and will be listed on

the command output device as such at the end of that pass. X is

undefined throughout pass 2, and will cause a U error message.

Examples:

A 1 ;THE SYMBOL A IS EQUATED WITH THE VALUE 1.

B 'A-l&MASKLOW iTHE SYMBOL B IS EQUATED WITH THE EXPRES­

; SION' S VALUE

c: D = 3

E: MOV #l,ABLE

3.4 REGISTER SYMBOLS

;THE SYMBOL D IS EQUATED WITH 3. THE

;LABELS C AND E ARE EQUATED WITH THE

iNUMERICAL MEMORY ADDRESS OF THE MOV

; COMMAND.

The eight general registers of the PDP-II are numbered 0 through 7.

These registers may be referenced by use of a register symbol; that

is, a symbolic name for a register. A register symbol is defined

by means of a direct assignment, where the defining expression·con­

tains at least one term preceded by a % or at least one term previ­

ously defined as a register symbol. In addition, the defining

3-3

expression of a register symbol must be absolute. For example:

R~=%~

R3=R~+3

R4=1+%3

THERE=%2

;DEFINE R~ AS REGISTER ~

;DEFINE R3 AS REGISTER 3

;DEFINE R4 AS REGISTER 4

;DEFINE THERE AS REGISTER 2

It is important to note that all register symbols must be

defined before they are referenced. A forward reference to a

register symbol will generally cause phase errors (Chapter 10).

The % may be used in any expression thereby indicating a

reference to a register. Such an expression is a register expres­

sion. Thus, the statement:

CLR %6

will clear register 6 while the statement:

CLR 6

will clear the word at memory address 6. In certain cases a register

can be referenced without the use of a register symbol or register

expression. These cases are recognized through the context of the

statement and are thoroughly explained in Sections 7.11 and 7.12.

Two obvious examples of this are:

JSR 5,SUBR

CLR X(2)

;THE FIRST OPERAND FIELD MUST ALWAYS BE

;A REGISTER.

iANY EXPRESSION ENCLOSED IN () MUST BE

iA REGISTER. IN THIS CASE, INDEX REGIS­

;TER 2.

3-4

CHAPTER 4

EXPRESSIONS

Arithmetic and logical operators (see Section 4.2) may be used to form

expressions. A term of an expression may be a permanent symbol, a user­

defined symbol (which may be absolute, relocatable, or global), a num­

ber, ASCII data, or the present value of the assembly location counter

represented by the period. Expressions are evaluated from left to

right. Parenthetical grouping is not allowed.

Expressions are evaluated as word quantities. The operands

of a .BYTE directive (Section 8.8) are evaluated as word expressions

before truncation to the low-order eight bits. The evaluation of

an expression includes the evaluation of the mode of the resultant

expressioni that is, absolute, relocatable or external. The defini­

tion of the modes of expression are given below in Section 4.4.

A missing term, expression or external symbol will be interpreted

as O. A missing operator will be interpreted as +. The error code Q

(Questionable syntax) will be generated for a missing operator. For

example:

A + -100 iOPERAND MISSING

will be evaluated as A + a - 100, and:

TAG LA 177777 iOPERATOR MISSING

will be evaluated as TAG LA+177777.

The value of an external expression will be the value of the

absolute part of the expressioni e.g., EXT+A will have a value of A.

This will be modified by the Linker to become EXT+A.

4.1 NUMBERS

The Assembler accepts both octal and decimal numbers. Octal numbers

consist of the digits a through 7 only. Decimal numbers consist of

the digits a through 9 followed by a decimal point. If a number

4-1

contains an 8 or 9 and is not followed by a decimal point, the N

error code (Chapter 10) will be printed and the number will be

interpreted as decimal. Negative numbers may be expressed as a

number preceded by a minus sign rather than in a two's complement

form. Positive numbers may be preceded by a plus sign although

this is not required.

If a number is too large to fit into 16 bits, the number is

truncated from the left. In the assembly listing the statement will

be flagged with a Truncation (T) error. Numbers are always consid­

ered to be absolute quantities (that is, not relocatable).

4.2 ARITHMETIC AND LOGICAL OPERATORS

The arithmetic operators are:

+ indicates addition or a positive number

indicates subtraction or a negative number

The logical operators are:

& indicates the logical AND operation

indicates the logical inclusive OR operation

AND OR

~ & ~ ~ ~ ~ ~

~ & 1 ~ ~ 1 = 1

1 & ~ ~ 1 ~ 1

1 & 1 1 1 1 1

4.3 ASCII CONVERSION

When preceded by an apostrophe, any ASCII character (except null,

rubout,carriage return, line feed, or form feed) is assigned the

7-bit ASCII value of the character (Appendix A). For example:

'A

is assigned the value 1018 .

4-2

When preceded by a quotation mark, two ASCII characters (not

in6luding null, rubout, carriage return, line feed, or form feed)

are assigned the 7-bit ASCII values of each of the characters to be

used. Each 7-bit value is stored in an 8-bit byte and the bytes

are combined to form a word. For example "AB will store the ASCII

value of A in the low-order (even) byte and the value of B in the

high-order (odd) byte:

B's value

high-order byte I

I
I

low-order byte

I 1 2 I I ~
,-A--..,...--A--. ,-A'-----,\(,.------A-----,~
~ l~~ ~~l ~~l ~~~
~ '-v--J '--y-J ~

~ 4 I l ~

or AB=,0411~1

ASCII text is always absolute.

4.4 MODE OF EXPRESSIONS

:A's value

The mode of an expression may be absolute, relocatable in the current

program section, relocatable in another program section, or external

as defined below.

A term of an expression is absolute, relocatable (current section

or other section), or external, correspondingly as its definer .(i;. e. ,

number, symbol, etc.) is absolute, relocatable (current or other), or

external. Numbers, permanent symbols, and generated data are always

treated as absolute.

An absolute expression is defined as:

1. Absolute term preceded optionally by a single plus or
minus sign or

2. Relocatable expression minus a relocatable term where both
items belong to the same program section or

3. Absolute expression followed by an operator followed by
an absolute expression.

A relocatable (current or other program section) expression is

defined as:

4-3

1. Relocatable term, or

2. Relocatable expression followed by an arithmetic operator
followed by an absolute expression, or

3. Absolute expression followed by a plus operator followed
by a relocatable expression.

An external expression is defined as:

1. External term, or

2. External expression followed by an arithmetic operator
followed by an absolute term, or

3. Absolute expression followed by a plus operator followed
by an external expression.

In the following examples:

ABS is an absolute symbol

RELC is a relocatable symbol in current program section

RELO is a relocatable symbol in non-current program section

EXT is an external symbol

Examples:

Legal Expressions

iEXTERNAL

EXT
EXT -ABS
ABS +EXT

EXPRESSIONS

iRELOCATABLE EXPRESSION

RELC
RELC+ABS
ABS+RELC
RELC+RELC-RELC
RELO
RELO-ABS
ABS+RELO
RELO+RELO-RELO
RELO-RELO+RELO

iABSOLUTE EXPRESSION
RELC-RELC
RELO-RELO
ABS+RELC-RELC&ABS
ABS+RELO-RELO!ABS

4-4

Illegal Expressions

EXT+RELC
EXT+RELO
RELC+RELC
RELO+RELO
ABS-RELC
RELC-RELO
RELO-EXT
RELO!RELO
RELC&RELC

CHAPTER 5

ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter.

When used in the operand field of an instruction, it represents the

address of the first word of the instruction. When used in the

operand field of an assembler directive, it represents the address of

the current byte or word. For example:

A: MOV #.,R~ ,. REFERS TO LOCATION A,

;I.E., THE ADDRESS OF THE

;MOV INSTRUCTION.

(# is explained in Section 7.9).

At the beginning of each assembly pass, the Ass~mbler clears the

location counter. Normally, consecutive memory locations are

assigned to each byte of object data generated. However, the location

where the object data is stored may be changed by a direct assignment

altering the location counter:

.=expression

Similar to other symbols, the location counter symbol . has a

mode associated with it. However, the mode cannot be external.

Neither can one change the existing mode of the location counter by

using a defining expression of a different mode.

The mode of the location counter symbol can be changed by the

use of the .ASECT or .CSECT directive as explained in Section 8.3.

The expression defining the location counter must not contain

forward references or symbols that vary from one pass to another.

Examples:

.ASECT

.=5~~ ;SET LOCATION COUNTER TO ABSOLUTE

;500

5-1

FIRST:

.=520

SECOND:

. CSECT

.=.+20

THIRD:

MOV .+lO,COUNT

MOV . ,INDEX

. WORD 0

iTHE LABEL FIRST HAS THE VALUE 5008
i.+lO EQUALS 510 8 " THE CONTENTS OF

iTHE LOCATION 510
8

WILL BE DEPOSITED

iIN LOCATION COUNT.

iTHE ASSEMBLY LOCATION COUNTER NOW

iHAS A VALUE OF ABSOLUTE 520
8

•

iTHE LABEL SECOND HAS THE VALUE 520
8

•

iTHE CONTENTS OF LOCATION 520 8 , THAT

iIS, THE BINARY CODE FOR THE INSTRUC­

iTION ITSELF, WILL BE DEPOSITED IN

i LOCATION INDEX .

iSET LOCATION COUNTER TO RELOCATABLE

i20 OF THE UNNAMED PROGRAM SECTION .

iTHE LABEL THIRD HAS THE VALUE OF

i RELOCATABLE 20.

Storage area may be reserved by advancing the location counter.

For example, if the current value of the location counter is 1000,

the direct assignment statement

.=.+100

will reserve 100 8 bytes of storage space in the program. The next

instruction will be stored at 1100.

5-2

CHAPTER 6

RELOCATION AND LINKING

The output of the relocatable assembler is an object module which

must be processed by the Link-II Linker before loading and execution.

(See PDP-II Link-II Linker, Prog~arnrner's Manual, DEC-II-ZLDA-D for

details.) The Linker essentially fixes (i.e., makes absolute)

the values of external or relocatable symbols and creates another

module (load module) which contains the binary data to be loaded and

executed.

To enable the Linker to fix the value of an expression, the

Assembler issues certain directives to the Linker together with the

required parameters. In the case of relocatable expressions the

Linker adds the base of the associated relocatable section (the

location in memory of relocatable 0) to the value of the relocatable

expression provided by the Assembler. In the case of an external

expression the value of the external term in the expression is

determined by the Linker (since the external symbol must be defined

in one of the other object modules which are being linked together)

and adds it to the value of the external expression provided by the

assembler.

All instructions that are to be modified as described above will

be marked by an apostrophe in the assembly listing. Thus the

binary text output will look as follows for the given examples:

005065' CLR EXTERNAL (5)

000000

005065' CLR EXTERNAL+6(5)

000006

005065' CLR RELOCATABLE(5)
000040

iVALUE OF EXTERNAL SYMBOL

iASSEMBLED ZEROi WILL BE

iMODIFIED BY THE LINKER.

i THE ABSOLUTE PORTION OF THE

iEXPRESSION (000006) IS ADDED

iBY THE LINKER TO THE VALUE

iOF THE EXTERNAL SYMBOL

iASSUMING WE ARE IN THE ABSOLUTE

iSECTION AND THE VALUE OF RELOCAT­

iABLE IS RELOCATABLE 40.

6-1

CHAPTER 7

ADDRESSING

The program counter (register 7 of the eight general registers)

always contains the address of the next word to be fetched; i.e.,

the address of the next instruction to be executed, or the second or

third word of the current instruction.

In order to understand how the address modes operate and how

they assemble, the action of the program counter must be understood.

The key rule is:

Whenever the processor implicitly uses the program counter

to fetch a word from memory, the program counter is

automatically incremented by two after the fetch.

That is, when an instruction is fetched, the PC is incremented

by two, so that it is pointing to the next word in wemory; and, if

an instruction uses indexing (Sections 7.7, 7.8 and 7.10) the pro­

cessor uses the program counter to fetch the base from memory. Hence,

using the rule above, the PC increments by two, and now points to the

next word.

The following conventions are used in this section.

a. Let E be any expression as defined in Chapter 4.

b. Let R be a register expression. This is any expression
containing a term preceded by a % character or a symbol
previously equated to such a term.

Examples:

R~ = %~
Rl = R~+l
R2 = 1+%1

; GENERAL REGISTER 0
;GENERAL REGISTER 1
;GENERAL REGISTER 2

c. Let ER be a register expression or an expression in
the range 0 to 7 inclusive.

d. Let A be a general address specification which produces
a 6-bit mode address field as described in Section I,
Chapter 2 of the PDP-II Handbook 1971.

7-1

The addressing specifications, A, may now be explained in terms

of E, R, and ER as defined above. Each will be illustrated with the

single operand instruction CLR or double operand instruction MOV.

7.1 REGISTER MODE

The register contains the operand.

Format:

Example:

R

RO=%O

CLR RO

7.2 DEFERRED REGISTER MODE

iDEFINE RO AS REGISTER 0

jCLEAR REGISTER 0

The register contains the address of the operand.

Format:

Example:

@R or (ER)

CLR @Rl

or

CLR (1)

7.3 AUTO INCREMENT MODE

iCLEAR THE WORD AT THE

;ADDRESS CONTAINED IN

i REGISTER 1

The contents of the regi3ter are incremented immediately after being

used as the address of the operand. (See note in Section 7.5)

Format:

Examples:

(ER)+

CLR (RO)+

CLR (RO+3)+

CLR (2)+

iCLEAR WORDS AT ADDRESSES CON­

iTAINED IN REGISTERS 0, 3 AND 2

iAND INCREMENT REGISTER CONTENTS

iBY TWO.

NOTE

Both JMP and JSR instructions using non-deferred
autoincrement mode, autoinorement the register
before its use.

7-2

In double operand instructions of the addressing
form %R, (R)+ or %R,-(R) where the source and des­
tination registers are the same, the source oper­
and is evaluated as the autoincremented or auto­
decremented valuei but the destination register,
at the time it is used, still contains the origi­
nally intended effective address. For example, if
Register 0 contains 100, the following occurs:

MOV RO, (0)+ iThe quantity 102 is moved
ito location 100

MOV RO,-(O) iThe quantity 76 is moved
ito location 76.

The use of these forms should be avoided, as they
are not guaranteed to remain in future PDP-II's.

7.4 DEFERRED AUTOINCREMENT MODE

The register contains the pointer to the address of the operand. The

contents of the register are incremented after being used.

Format:

Example:

@ (ER) +
CLR. @(3)+

7.5 AUTODECREMENT MODE

iCONTENTS OF REGISTER 3 POINT TO

iADDRESS OF WORD TO BE CLEARED

i BEFORE BEING INCREMENTED BY TWO.

The contents of the register are decremented before being used as

the address of the operand (see note at top of page) •

Forma t: - (ER)

Examples: CLR -(RO)

CLR (RO+3)

CLR -(2)

7.6 DEFERRED AUTODECREMENT MODE

iDECREMENT CONTENTS OF REGISTERS

iO, 3, AND 2 BY TWO BEFORE USING

iAS ADDRESSES OF WORDS TO BE

i CLEARED.

The contents of the register are decremented before being used as

the pointer to the address of the operand.

Format: @-(ER)

Example: CLR @-(2) iDECREMENT CONTENTS OF REG. 2 BY

iTWO BEFORE USING AS POINTER TO

iADDRESS OF WORD TO BE CLEARED.

7-3

7.7 INDEX MODE

Format: E (ER)

The value of an expression E is stored as the second or third word

of the instruction. The effective address is calculated as the value

of E plus the contents of register ER. The value E is called the

base.

Examples:

CLR X+2 (Rl)

CLR -2 (3)

7.8 DEFERRED INDEX MODE

iEFFECTIVE ADDRESS IS X+2 PLUS

;THE CONTENTS OF REGISTER 1.

iEFFECTIVE ADDRESS IS -2 PLUS

iTHE CONTENTS OF REGISTER 3.

An expression plus the contents of a register gives the pointer to

the address of the operand.

Format: @E(ER)

Example: CLR @14(4) iIF REGISTER 4 HOLDS 100, AND

;LOCATION 114 HOLDS 2000, LOC.

;2000 IS CLEARED.

7.9 IMMEDIATE MODE AND DEFERRED IMMEDIATE (ABSOLUTE) MODE

The immediate mode allows the operand itself to be stored as the

second or third word of the instruction. It is assembled as an

autoincrement of register 7, the PC.

Format: #E

Examples:

MOV #100, RO

MOV iX, RO

iMOVE AN OCTAL 100 TO REGISTER 0

;MOVE THE VALUE OF SYMBOL X TO

; REGISTER O.

7-4

The operation of this mode ~s explained as follows:

The statement MOV #100,R3 assembles as two words. These are:

o 1 2 703

o 0 0 100

Just before this instruction is fetched and executed, the PC

points to the first word of the instruction. The processor fetches

the first word and increments the PC by two. The source operand

mode is 27 (autoincrement the PC). Thus the PC is used as a pointer

to fetch the operand (the second word of the instruction) before

being incremented by two, to point to the next instruction.

If the #E is preceded by @, E specifies an absolute address.

7.10 RELATIVE AND DEFERRED RELATIVE MODES

Relative mode is the normal mode for memory references.

Format: E

Examples:

CLR 100

MOV X,Y

iCLEAR LOCATION 100

iMOVE CONTENTS OF LOCATION X TO

iLOCATION y.

This mode is assembled as Index mode, using 7, the PC, as the

register. The base of the address calculation, which is stored

in the second or third word of the instruction, is not the address

of the operand. Rather, it is the number which, when added to the

PC, becomes the address of the operand. Thus, the base is X-PC.

The operation is explained as follows:

If the statement MOV lOO,R3 is assembled at absolute location

20 then the assembled code is:

Location 20:

Location 22

o 1 6 7 0 3

000 0 5 4

7-5

The processor fetches the MOV instruction and adds two to the PC

so that it points to location 22. The source operand mode is 67;

that is, indexed by the PC. To pick up the base, the processor

fetches the word pointed to by the PC and adds two to the PC.

The PC now points to location 24. To calculate the address of the

source operand, the base is added to the designated register. That

is, BASE+PC=54+24=lOO, the operand address.

Since the Assembler considers "." as the address of the first

word of the instruction, an equivalent statement would be

MOV lOO-o-4(PC) ,R3

This mode is called relative because the operand address is calcu­

lated relative to the current PC. The base is the distance (in

bytes) between the operand and the current PC. If the operator and

its operand are moved in memory so that the distance between the

operator and data remains constant, the instruction will operate

correctly.

If E is preceded by @, the expression's value is the pointer

to the address of the operand.

7.11 TABLE OF MODE FORMS AND CODES

Each instruction takes at least one word. Operands of the first

six forms listed below, do not increase the length of an instruc­

tion. Each operand in one of the other modes, however, increases

the instruction length by one word.

Form

R
@R or (ER)
(ER) +
@(ER)+
- (ER)
@-(ER)

Mode

On
In
2n
3n
4n
5n

Meaning

Register
Register deferred
Autoincrement
Autoincrement deferred
Autodecrement
Autodecrement deferred

None of the above forms increases the instruction length.

7-6

E (ER) 6n Index
@E(ER) 7n Index deferred
#E 27 Immediate
@#E 37 Absolute memory reference
E 67 Relative
@E 77 Relative deferred reference

Any of the above forms adds a word to the instruction length.

NOTES
1. An alternate form for @R is (ER). However, the

form @(ER) is equivalent to @O(ER).

2. The form @#E differs from the form E in that
the second or third word of the instruction
contains the absolute address of the operand
rather than the relative distance between the
o~erand and the pc. Thus, the instruction CLR @#100
w~ll clear location 100 even if the instruction is
moved from the point at which it was assembled.

7.12 INSTRUCTION FORMS

The instruction mnemonics are given in Appendix B. This section

defines the number and nature of the operand fields for these

instructions.

In the table that follows, let R, E, and ER represent expres­

sions as defined on page 7-1, and let A be a 6-bit address speci­

fication of anyone of the forms:

E
R
(ER) +
- (ER)
E(ER)
#E

@E
@R or (R)
@(ER)+
@- (ER)
@E (ER)
@#E

Table 2.1 Instruction Operand Fields

Instruction Form Exam121e

Double Operand Op A,A MOV (R6)+,@Y

Single Operand Op A CLR - (R2)

Operate Op HALT

Branch Op E BR X+2 .

BLO .-4

where -1282(E-.-2)/2~12710

Subroutine Call JSR ER,A JSR PC,SUBR

Subroutine Return RTS ER RTS PC

EMT/TRAP Op or OP E EMT

where °2E23778 EMT 31

7-7

The branch instructions are one word instructions. The high

byte contains the op code and the low byte contains an 8-bit signed

offset (7 bits plus sign) which.specifies the branch address rela­

tive to the pc. The hardware calculates the branch address as fol­

lows:

a) Extend the sign of the offset through bits 8-15.

b) Multiply the result by 2. This creates a word
offset rather than a byte offset.

c) Add the result to the PC to form the final branch
address.

The Assembler performs the reverse operation to form the

byte offset from the specified address. Remember that when the

offset is added to the PC, the PC is pointing to the word follow­

ing the branch instruction; hence the factor -2 in the calculation.

Byte offset (E-PC)/2 truncated to eight bits.

Since PC .+2, we have

Byte offset = (E-.-2)/2 truncated to eight bits.

NOTE

It is illegal to branch to a location specified
as an external symbol, or to a 'relocatable symbol
when within an absolute section, or to an absolute
symbol or a relocatable symbol of another program
section when within a relocatable section.

The EMT and TRAP instructions do not use the low-order byte

of the word. This allows information to be transferred to the

trap handlers in the low-order byte. If EMT or TRAP is followed by

an expression, the value is put into the low-order byte of the word.

However, if the expression is too big (>377 8) it is truncated to

eight bits and a Truncation (T) error occurs.

7-8

CHAPTER 8

ASSEMBLER DIRECTIVES

Assembler directives (sometimes called pseudo-ops) direct the

assembly process and may generate data.

Assembler directives may be preceded by a label and followed

by a comment. The assembler directive occupies the operator field.

Only one directive may be placed in anyone statement. One or more

operands may occupy the operand field or it may be void -- allow­

able operands vary from directive to directive.

8.1 .TITLE

The .TITLE directive is used to name the object module. The

name assigned is the first symbol following the directive. If there

is no .TITLE statement the default name assigned is ".MAIN.". If

there is more than one .TITLE directive, only the last one encountered

is operative.

8.2 .GLOBL

The • GLOBL directive is used ·to declare a symbol as being global,

This is the mechanism by which separately assembled object modules com­

municate with one another. It may be an entry symbol in which case

it is defined in the program or it may be an external symbol in which

case it should be defined in another program which will be linked

with this program by Link-II.

The form of the .GLOBL directive is

. GLOBL NAMA,NAMB, ... ;NAMN

NOTE

A symbol cannot be declared global by assigning it
to a global expression in a direct assignment state­
ment.

8-1

8.3 PROGRAM SECTION DIRECTIVES

.ASECT

.CSECT

.CSECT symbol

The Assembler provides for 25510 program sections: an absolute

section declared by .ASECT, an unnamed relocatable program sec­

tion declared by .CSECT, and 25310 named relocatable program sec­

tions declared by .CSECT symbol, where symbol is any legal symbolic

name. These directives allow the user to:

1. Create his program (object module) in sections:

The Assembler maintains separate location counters for

each section. This allows the user to write statements which

are not physically contiguous but will be loaded contiguously.

The following examples will clarify this:

.CSECT
A: 0
B: 0
C: 0
ST: CLR A

CLR B
CLR C
.ASECT
.=4
.WORD .+2,HALT
.CSECT

INC A
BR ST
.END

The'first appearance of

;START THE UNNAMED RELOCATABLE SECTION
iASSEMBLED AT RELOCATABLE 0,

RELOCATABLE 2 AND
RELOCATABLE 4,

iASSEMBLE CODE AT
RELOCATABLE ADDRESS
6 THROUGH 21

iSTART THE ABSOLUTE SECTION
iASSEMBLE CODE AT
iABSOLUTE 4 THROUGH 7,
;RESUME THE UNNAMED RELOCATABLE

SECTION
iASSEMBLE CODE AT

RELOCATABLE 22 THROUGH 27,

.CSECT or .ASECT assumes the location

counter is at relocatable or absolute zero, respectively. The

scope of each directive extends until a directive to the con­

trary is given. Further occurrences of the same .CSECT or

.ASECT resume assemblying where the section was left off.

8-2

.CSECT COMI iDECLARE SECTION COMI
A: 0 ;ASSEMBLED AT RELOCATABLE 0,
B: 0 iASSEMBLED AT RELOCATABLE 2,
C: 0 iASSEMBLED AT RELOCATABLE 4,

.CSECT COM2 iDECLARE SECTION COM2
X: 0 iASSEMBLED AT RELOCATABLE 0,
Y: 0 iASSEMBLED AT RELOCATABLE 2,

.CSECT COMI iRETURN TO COMI
D: 0 iASSEMBLED AT RELOCATABLE 6,

.END

The Assembler automatically begins assemblying at relocatable

zero of the unnamed .CSECT if not instructed otherwisei that

is, the first statement of an assembly is an implied .CSECT.

All labels in an absolute section are absolute; all

labels in a relocatable section are relocatable. The location

counter symbol, ".", is relocatable or absolute when refer-

enced in a relocatable or absolute section, respectively.

Undefined internal symbols are assigned the value of relocat­

able or absolute zero in a relocatable or absolute section,

respectively. Any labels appearing on a .ASECT or .CSECT state­

ment are assigned the value of the location counter before the

.ASECT or .CSECT takes effect. Thus, if the first statement of a

program is:

A: .ASECT

Then A is assigned to relocatable zero and is associated with

the unnamed relocatable section (because the Assembler im­

plicitly begins assembly in the unnamed relocatable section).

Since it is not known at assembly time where the program

sections are to be loaded, all references between sections in a

single assembly are translated by the Assembler to references

relative to the base of that section. The Assembler provides

the Linker with the necessary information to resolve the linkage.

8-3

Note that this is not necessary when making a reference to an

absolute section (the Assembler knows all load addresses of an

absolute section).

A:

Y:
X:

Examples:

.ASECT

.=1000
CLR X

JMP Y

.CSECT
MOV RO,Rl
JMP A
HALT
o
.END

iASSEMBLED AS CLR BASE OF UNNAMED
RELOCATABLE SECTION + 10

iASSEMBLED AS JMP BASE OF UNNAMED
RELOCATABLE SECTION + 6

;ASSEMBLED AS JMP 1000

In the above example the references to X and Y were trans­

lated into references relative to the base of the unnamed

relocatable section.

2. Share code and/or data between object modules (separate as­

semblies) :

Named relocatable program sections operate as Fortran

labeled COMMON; that is, sections of the same name from dif­

ferent assemblies are all loaded at the same location by

Link-II. The unnamed relocatable section is the exception to

this as "all unnamed relocatable sections are loaded in unique

areas by Link-II.

Note that there is no conflict between internal sym­

bolic names and program section names; that is, it is legal

to use the same symbolic name for both purposes. In fact,

considering Fortran again, this is a necessity to accommo­

date the Fortran statement

COMMON /X/A,B,C,X

Where the symbol X represents the base of this program section

and also the 4th element of this program section.

8-4

Also, there is no conflict between program section names and

.GLOBL names. In FORTRAN language, COMMON block names and SUB­

ROUTINE names may be the same.

8.4 .EOT

Under the Disk Operating System, the .EOT directive is effectively

ignored. The physical ~nd Qf !ape itself allows several physically

separate tapes to be assembled as one program. The last tape should

be terminated by a .END directive; however, in its absence, the TAPES

command string switch (Section 9.3) may be used.

8.5 . EVEN

The .EVEN directive ensures that the assembly location counter is

even by adding one if it is odd. Any operands following a • EVEN

directive will be ignored.

8.6 .END

The .END directive indicates the physical end of the source pro­

gram. The .END directive may .be followed by only one operand, an

expression indicating the program's transfer address.

At load time, the load module will be loaded and program ex­

ecution will begin at the transfer address indicated by the .END

directive. If the address is not specified, the loader will halt

after reading in the load module.

8.7 . WORD

The .WORD assembler directive may have one or more operands,

separated by commas. Each operand is stored in a word of the ob­

ject program. If there is more than one operand, they are stored

in successive words. The operands may be any legally formed expres­

sion. For example:

8-5

·=1420

SAL=O

.WORD l77535,.+4,SAL iSTORED IN WORDS 1420, 1422, AND
;1424 WILL BE 177535, 1426, AND O.

Values exceeding 16 bits will be truncated from the left to

word length.

A .WORD directive followed by one or more void operands sep­

arated by commas will store zeros for the void operands. For ex­

ample,

.=1430

. WORD ,5,
iZERa, FIVE, AND ZERO ARE STORED
iIN WORDS 1430, 1432, AND 1434 .

An operator field left blank will be interpreted as the .WORD

directive if the operand field contains one or more expressions.

The first term of the first expression in the operand field must

not be an instruction mnemonic or assembler directive unless pre­

ceded by a +, -, or one of the logical operators, ! or &. For

example,

.=440

LABEL: +MOV,LABEL

iTHE OP-CODE FOR MOV, WHICH
IS 010000,

iIS STORED IN LOCATION 440. 440 IS
STORED IN LOCATION 442.

Note that the default .WORD will occur whenever there is a

leading arithmetic or logical operator, or whenever a leading sym­

bol is encountered which is not recognized as an instruction

mnemonic or assembler directive. Therefore, if an instruction

mnemonic or assembler directive is misspelled, the .WORD directive

is assumed and errors will result. Assume that MOV is spelled incor­

rectly as MaR:

MaR A,B

Two error codes can result: Q will occur because an expression

operator is missing between MaR and A, and a U will occur if MaR ~s un­

defined. Two words will be generated: one for MaR A and one for B.

8-6

8.8 • BYTE

The .BYTE assembler directive may have one or more operands separ­

ated by commas. Each operand is stored in a byte of the object

program. If multiple operands are specified, they are stored in

successive bytes. The operands may be any legally formed expression

with a result of 8 bits or less. For example:

SAM=5 iSTORED IN LOCATION 410 WILL BE
.=410 i060 (THE OCTAL EQUIVALENT OF 48) .
. BYTE 48.,SAM iIN 411 WILL BE 005.

If the expression has a result of more than 8 bi ts, it w-ill be

truncated to its low-order 8 bits and will be flagged as a Terror.

If an operand after the .BYTE directive is left void, it will be

interpreted as zero. For example:

.=420

. BYTE , ,
iZERO WILL BE STORED IN
iBYTES 420, 421 and 422 .

If the expression is relocatable, a warning flag, A, will be given,

since at link time it is very likely that the relocation will result

in an expression of more than 8 bits.

8.9 .ASCII

The .ASCII directive translates strings of ASCII characters into

their 7-bit ASCII codes, with the exception of null, rubout, car­

riage return, line feed, and form feed. The text to be translated

is delimited by a character at the beginning and the end of the

text. The delimiting character may be any printing ASCII character

except colon and equal sign and those used in the text string.

The 7-bit ASCII code generated for each character will be stored

in successive bytes of the object program. For example:

.=500

.ASCII

.ASCII

/YES/

/5+3/2/

iTHE ASCII CODE FOR "Y" WILL BE
iSTORED IN 500, THE CODE FOR "E"
;IN 501, THE CODE FOR "s" IN 502.

;THE DELIMITING CHARACTER OCCURS
;AMONG THE OPERANDS. THE ASCII
iCODES FOR "5", "+", AND "3" ARE
;STORED IN BYTES 503,504, AND
;505. 2/ IS NOT ASSEMBLED.

'rhe .ASCII directive may be terminated by any legal terminator.

8-7

8.10 .RAD50

PDP-II systems programs often handle symbols in a specially coded

form called RADIX 50 (this form is sometimes referred to as

MOD40). This form allows 3 characters to be packed into 16

bits; therefore, any 6-character symbol can be held in two words. The

form of the directive is:

.RAD50 ICCCI

The single operand is of the form IccCI where the slash (the delimiter)

can be any printable character except for and The de-

limiters enclose the characters to be converted which may be

A through Z, 0 through 9, dollar ($), dot (.) and space ().

If there are fewer than 3 characters they are considered to be

left justified and trailing spaces are assumed.

Examples:

.RAD50

.RAD50

.RAD50

IABCI
IABI
II

iPACK ABC INTO ONE WORD
iPACK AB (SPACE) INTO ONE WORD
iPACK 3 SPACES INTO ONE WORD

The packing algorithm is as follows:

A. Each character is translated into its RADIX 50 equivalent as

indicated in the following table:

Character RADIX 50 Eguivalent (octal)

(space) 0

A-Z 1-32

$ 33

34

0-9 36-47

Note that another character could be defined for code 35.

B. The RADIX 50 equivalents for characters 1 through 3 (Cl,C2,C3)

are combined as follows:

RESULT=«Cl*50)+C2)*50+C3

8-8

8.11 .LIMIT

A program often wishes to know the boundaries of the load module's

relocatable code. The .LIMIT directive generates two words into

which the Linker puts the low and high addresses of the reloGated

code. The low add.ress (inserted into the first word) is the address

of the first· byte of code. The high address is the address of the

first free byte following the relocated code. These addresses will

always be even since all relocatable sections are loaded at even

addresses and if a relocatable section consists of an odd number

of bytes the Linker adds one to the size to make it even.

8.12 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives provide the programmer with

the capability to conditionally include or not include portions of

his source code in the assembly process. In what follows, E denotes

an expression and SCI) denotes a symbol. The conditonal directives

are:

.IFZ E IF E=O

.IFNZ E IF E~O

.IFL E IF E<O

.IFLE E IF E<O

.IFG E IF E>O

.IFGE E IF E>O

.IFDF S (1) [! , &] S (2) [! , &] .:-. [! , &] S (N) (! =OR, &=AND)

.IFNDF S (1) [! , &] S (2) [! ,&] ..• [! , &] S (N)

If the condition is met, all statements up to the matching .F.NDC are

assembled. Otherwise, the statements are ignored until the matching

.ENDC is detected.

In the above, .IFDF and .IFNDF mean "if defined" and "if un­

defined" respectively. The scan is left to right, no parentheses

permitted.

Example:

.IFDF S!T&U

.IFNDF T&U!S

Means assemble if either S or T is defined
and U is defined

Means assemble if both T and U are undefined
or if S is undefined

8-9

General Remarks:

An errored or null expression takes the default value 0 for

purposes of the conditional test. An error in syntax, e.g.,

a terminator other than i, 1, &, or CR results in the undefined

situation for .IFDF and .IFNDF, as does an errored or null symbol.

All conditionals must end with the .ENDC directive. Anything in

the operand field of .ENDC is ignored. Nesting is permitted

up to a depth of 127 10 • Labels are permitted on conditional

directives, but the scan is purely left to right. For example:

.IFZ 1
A: . ENDC

A is ignored.

A: • IFZ 1

. EN DC

A is entered in the symbol table.

If an .END is encountered while inside a satisfied conditional,

a Q flag will appear, but the .END directive will still be pro­

cessed normally. If more .ENDC's appear than are required, Q flags

appear on the extras.

8-10

CHAPTER 9

OPERATING PROCEDURES

The Assembler enables you to assemble into a relocatable binary

file (object module) an ASCII source containing PAL-IIR statements.

To do this, two or three passes are necessary. On the first pass,

the Assembler creates a table of user-defined symbols and their

associated values, and a list of undefined symbols is printed on

the command output device. On subsequent passes the Assembler assem­

bles the program and produces the outputs specified during the ini­

tial dialogue (Section 9.2). The Assembler initiates the dialogue

immediately after being loaded and after the last pass of an assem­

bly.

9.1 LOADING PAL-IIR

PAL-IIR is loaded via the Disk Monitor command RUN. For example:

RUN PALIIR

9.2 INITIAL DIALOGUE

When the Assembler is ready to accept the user's command string, it

outputs the following lines to the command device:

PALIIR V002A

The user must now type his command string on the same line as the

•
If an error is made in typing at any time, typing the RUBOUT

key will erase the immediately preceding character if it is on the

current line. Typing CTRL/U will erase the entire line.

The format of the command string adheres to the requirements

of the Disk Operating System's (DOS) Command String Interpreter

(CSI). The Assembler's file specifications must appear in the

following order:

9-1

Binary, Listing, Symbol Table < Source 1, Source 2

A null specification field signifies that the associated input or out­

put type is not desired. Each specification contains the following

information:

dev:filnam.ext[uic]/PASS:value/TAPES:value

If a syntactical error is dete'cted in the command strin.g, the

Assembler will output the command string up to and including the point

where the error was detected followed by the character "?". The

Assembler will then output # ag~in, and the user must retype his

entire command.

The following command string semantic errors will be detected:

1. Illegal switch
Too many switches
Illegal switch value
Too many switch values

2. Too many output file specifications

3. Too many input file specifications

4. Input file missing

Error Code

S203

S204

S205

S206

After outputting the appropriate error code, the Assembler will

output # again and the user must retype his entire command.

The default value for each specification is noted below:

DEV FILNAM EXT UIC ~ TAPES

Source 1 DFO None PAL This User All Passes*** 1

Source 2 DFO* None PAL This User All Passes 1

Binary DFO Same as OBJ This User 2
Source**
FILNAM

Listing DFO* Same as LST This User 2
Source**
FILNAM

Symbols DFO* Same as SYM This User End of Pass 1
Source**
FILNAM

* Or last device specified on this side of the <.

** The default FILNAM is Source 2's if this field is present; o'ther­
wise, Source lis is used.

*** If /PASS:n (where 0 <n <4) is in the Source 1 field, this file
will only be accessed during pass 1. This is useful for param­
eter assignments associated with conditional assemblies.

9-2

Source 1 and Source 2 cannot both be associated with the same unit file

device such as the paper tape reader. This will result in a Monitor

error.

The TAPES 'swi tch is recognized in the two input fields of

PAL-IIR's command string; it is ignored in the output fields. The

value associated with the switch specifies the maximum decimal num-

ber of tapes* that will be processed from the designated device.

The .END assembly directive always terminates an assembly pass; how­

ever, if it is missing, the maximum tape count will effect

termination. In the latter case, the error line count output by the

Assembler is incremented by one to warn the user of the omission. The

default number of tapes is 1. The following examples should clarify the

usages of the TAPES switch.

1. #PP:,LP:,LP:<PR:/TAPES:5

All passes of the assembly will terminate either when a) the

.END directive is encountered or b) five tapes have been in­

put from the reader.

2. #PP:,LP:<PR:

All passes of the assembly will terminate when one tape has

been input from the reader.

3. #PP:<PR:/PASS:l/TAPES:2,DTl:FILE

Two parameter tapes will be input from the reader during

pass 1 only. All passes of the assembly will terminate

either when a) the .END directive is encountered or b) the

source file FILE.PAL has been input from DTI.

4. #PP:<DTl:PARAM/PASS:1,PR:/TA:4

One parameter file, PARAM.PAL, will be input from DTI during

pass 1 only. All passes of the assembly will terminate

either when a) the .END directive is encountered or b) four

tapes have been input from the reader.

* This switch is most applicable to non-file oriented device~ such as
the paper tape reader. However, it would cause the same ~~le on
DECtape to be processed the specified number of times dur~ng each
pass.

9-3

The 37 switch is recognized in all the fields of PAL-IIR's command

string. Its presence directs the Assembler to assemble all relative

addresses (address mode 67) as absolute addresses (address mode 37).

e.g., CLR ADDR normally assembles as

~~5~67
N --

where N is the offset between ADDR and
the current pc.

When the 37 switch has been encountered in the
command string

CLR ADDR assembles as

~~5~37
ADD~

just as if the source code read

CLR @#ADDR

This switch is useful during the debugging phase of program devel­

opment as it facilitates tracing through assembly listings. Note that

when the 37 switch is used, position independent coding is not possible.

The following example command string shows the 37 switch specifi­

cation

#PP:,LP:/37<DTl:FILE

Note that DOS only allows one output file to be open on a DECtape

at a time. The Assembler loosens this restriction by:

1. Providing the PASS switch, for example:

#DTAl:,DTAl:/PASS:3<TEST

This command causes the input file TEST. PAL on DFO to be

assembled with binary output, TEST.OB~ to DTAI during

pass 2 and listing output, TEST.LS~ to DTAI during pass 3.

2. Closing files and releasing datasets l as soon as possible,

for example:

#,DTAI:,DTAl:/PASS:2<TEST

I The releasing of datasets has the additional advantage that all
drivers and buffers do not have to be core resident during the
entire assembly.

9-4

This command causes the input file TEST. PAL on DFO to be

assembled with no binary outout, listing output, TEST.LST

to DTAl during pass 2 and symbol table output, TEST.SYM to

DTAI at the end of pass 2.

The symbol table is output alphabetically, three symbols per

line. Each symbol is output in the following format:

SYMBOL :% _ _ _ _ _ _ R G

If direct ~ \ v '] assignment~ value

If register tf
relocatable

'--y----/

L. oCSECT ID

If oGLOBL

If the symbol is undefined, six asterisks replace its value.

The identifying characters indicate the class of the symbol; that

is, whether it is a label, direct assignment, register symbol,

relocatable, absolute, or global.

The .CSECT 10 field is left blank for .ASECT symbols and un­

named .CSECT symbols as they can be identified by the absence or

presence of the R, respectively.

Symbols belonging to named .CSECT's have the IO's 002 through

376
8

associated with them, where the nth named .CSECT encountered

will have the 10 n+l.

Immediately following the symbol table listing will be a listing

of the .CSECT names, their sizes in bytes, and their corresponding ID's.

There will be one entry per line in the following format:

FIRST

SECOND

When no outputs are omitted and the default passes are in

effect, the Assembler performs as follows:

9-5

PASS 1:

PASS 2:

Assembler creates a table of user-defined symbols and

their associated values to be used in assembling the

source to object program. Undefined symbols (not in­

cluding external .GLOBL's) are listed on the command

output device at the end of the pass. The symbol

table is also output at this time.

Assembler outputs the object module, and the listing

file which includes the pass error line count (in

octal), and prints the pass error line count on the

command output device.

9.3 ASSEMBLY DIALOGUE

During assembly, the Assembler may output various messages to the

command device. The message may be:

1. informative,

2. request for operator action, or

3. terminal.

The operator may also initiate a message. For example, CTRL/C and

RESTART at any time, to stor the assembly process and restart the

initial dialogue as mentioned in the previous section.

At the end of each pass (except the last) when the .END

assembly directive is encountered, END is output to the command

device. For file structured input devices, the next pass is auto­

matically begun. For non-file structured input devices, e.g., paper

tape reader, the Disk Operating System will announce that the reader

must be reloaded prior to continuing:

A002
$

063320

A002 denotes device not ready, and

063320 is the radix 50 notation for PRo

After the user has reloaded the reader, he should type

CTRL/C (tC) on the command input device. When the monitor acknow­

ledges with the character . , the user should type the monitor

command CONTINUE.

9-6

This continuing from device-not-ready is also applicable when .EOT

is encountered during multiple tape assemblies and when any I/O

device requires servicing for such purposes as:

a. line printer paper

b. write enable DECtape

c. tape for punch.

The ·following terminal errors are printed on the command device.

An attempt is made to close all output files and delete the binary

file, if open. The Assembler then outputs # and waits for further

commands:

S200

S20l

S202

S207

RESTART capability:

more than 376 8 .CSECT's

more than 1778 nested conditionals

binary or listing file structured device full
or input command string too long

input .TRAN error on Assembler's overlay file

The assembly may be aborted at any time by typing CTRL/C followed by

either the Monitor command RESTART or the Monitor command BEGIN on the

command device. All open output files will be closed and released.

If the binary file was open, it is deleted. The Assembler will output

and wait for the next command string. It does this automatically at

the normal completion of an assembly.

9.4 ASSEMBLY LISTING

The PAL-llR Assembler produces a side-by-side assembly listing of

symbolic source statements, their octal equivalents, assigned

addresses, and error codes, as follows:

EELLLLLL·OOOOOOASSS .•.•••. S
000000
000000

The E's represent the error field. The L's represent the address.

The O's represent the object data in octal. The SiS represent the

source statement. The A represents an apostrophe which indicates

that either the second, third, or both words of the instruction are

to be modified by the Linker.

9-7

The above represent a three-word statement. The second and

third words of the statement are listed under the command word.

No addresses precede the second and third words since the address

order is sequential.

The third line is omitted for a two-word statement; both

second and third lines are omitted for a one-word statement.

For a.BYTE directive, the object data field is three octal

digits.

For a direct assignment statement, the value of the defining

expression is given in the object code field although it is not

actually part of the code of the object program.

The .ASECT and .CSECT directives cause the current value of

the appropriate location counter (absolute or relocatable) to be

printed.

Each page of the listing is headed by a page number (octal).

9.5 OBJECT MODULE OUTPUT

The output of the Assembler during the binary object pass is an

object module which is meaningful only to the Linker. What fol­

lows gives an overview of what the object module contains and at

what stage each part of it is produced.

The binary object module consists of three main types of data

block:

9.~.1

a)

b)

c)

Global symbol directory

Text blocks

Relocation Directory

Global Symbol Directory

(GSD)

(TXT)

(RLD)

As the name suggests, the Global Symbol Directory (GSD) contains

a list of all global symbols (entry points and externals) with

all entry points associated with the program section symbol in

which they reside. Each symbol is in RADIX 50 form and contains

9-8

mode information and relative addresses for entry points, and section

sizes for program section names. The name of the object module is

also in the GSD.

The GSD is created at the start of the binary object pass.

9.5.2. Text Block

The text blocks consist entirely of the binary object data as

shown in the listing. The operands are in the unmodified form.

9.5.3 Relocation Directory

The Relocation Directory (RLD) blocks consist of directives to

the Linker which may reference the text block preceding it. These

directives control the relocation and linking process.

Text and RLD blocks are constructed during the binary object

pass. Outputting of each block is done whenever either the Text

or RLD buffer is full and whenever the location counter needs

to be modified.

9-9

CHAPTER 10

ERROR CODES

The error codes printed beside the octal and symbolic code in

the assembly listing have the following meanings:

Error Code

A

B

D

I

L

M

N

P

Q

R

T

U

Meaning

Addressing error. An address within the in­
struction is incorrect. Also may indicate a
relocation error.

Bounding error. Instructions or word data are
being assembled at an odd address in .memory.
The location counter is updated by +1.

Doubly-defined symbol referenced. Reference
was made to a symbol which is defined more
than once.

Illegal character detected. Illegal characters
which are also non-printing are replaced by a
? on the listing.

Line buffer overflow. Extra characters on a
line (more than 72 10) are ignored.

Multiple definition of a label. A label was
encountered which was equivalent (in the first
six characters) to a previously encountered
label.

Number containing 8 or 9 has decimal point
missing.

Phase error. A label's definition or value
varies from one pass to another.

Questionable syntax. There are missing argu­
ments or the instruction scan was not completed
or a carriage return was not immediately fol­
lowed by a line feed or form feed.

Register-type error. An invalid use of or ref­
erence to a register has been made.

Truncation error. A number generated more than
16 bits of significance or an expression gen­
erated more than 8 bits of significance during
the use of the .BYTE directive.

Undefined symbol. An undefined symbol was en­
countered during the evaluation of an expres­
sion. Relative to the expression, the unde­
fined symbol is assigned a value of zero.

10-1

EVEN
PARITY
BIT

f1
1

1

1

~
~
1
1

1
91

1

1

1

1

1
~

JJ
1
1
~
1

7-BIT
OCTAL
CODE

JJ~JJ
JJ911

JJJJ2

JJJJ3

91JJ4

91~5
91~6
JJJJ7
JJ1JJ

9111
JJ12

JJ13
JJ14

9115

JJ16

JJ17

912JJ
JJ21

JJ22

JJ23

~24

9125

9126
9127

JJ391
9131
9132
9133
9134

APPENDIX A

ASCII CHARACTER SET

CHARACTER

NUL
SOH

STX

ETX

EOT

ENQ
ACK
BEL
BS

HT
LF

VT
FF

CR

SO

SI

DLE
DC1

DC2

DC3

DC4

NAK

SYN
ETB

CAN
EM
SUB
ESC
FS

REMARKS

NULL, TAPE FEED, CONTROL SHIFT P.
START OF HEADING; ALSO SOM, START OF MESSAGE,
CONTROL A.
START OF TEXT; ALSO EOA, END OF ADDRESS,
CONTROL B.
END OF TEXT; ALSO EOM, END OF MESSAGE, CON­
TROL C.
END OF TRANSMISSION (END); SHUTS OFF TWX
MACHINES, CONTROL D.
ENQUIRY (ENQRY); ALSO WRU, CONTROL E.
ACKNOWLEDGE; ALSO RU, CONTROL F.
RINGS THE BELL. CONTROL G.
BACKSPACE; ALSO FEO, FORMAT EFFECTOR. BACK­
SPACES SOME MACHINES, CONTROL H.
HORIZONTAL TAB. CONTROL I.
LINE FEED OR LINE SPACE (NEW LINE); ADVANCES
PAPER TO NEXT LINE, DUP~ICATED BY CONTROL J.
VERTICAL TAB (VTAB). CONTROL K.
FORM FEED TO TOP OF NEXT PAGE (PAGE). CON­
TROL L.
CARRIAGE RETURN TO BEGINNING OF LINE. DUPLI­
CATED BY CONTROL M.
SHIFT OUT; CHANGES RIBBON COLOR TO RED. CON­
'TROL N.
SHIFT IN; CHANGES RIBBON COLOR TO BLACK.
CONTROL O.
DATA LINK ESCAPE. CONTROL P (DCJJ).
DEVICE CONTROL 1, TURNS TRANSMITTER (READER)
ON, CONTROL Q (X ON) .
DEVICE CONTROL 2, TURNS PUNCH OR AUXILIARY
ON. CONTROL R (TAPE, AUX ON) .
DEVICE CONTROL 3, TURNS TRANSMITTER (READER)
OFF, CONTROL S (X OFF) .
DEVICE CONTROL 4, TURNS PUNCH OR AUXILIARY
OFF. CONTROL T (~, AUX OFF) .
NEGATIVE ACKNOWLEDGE; ALSO ERR, ERROR. CON­
TROL U.
SYNCHRONOUS IDLE (SYNC). CONTROL V.
END OF TRANSMISSION BLOCK; ALSO LEM,LOGICAL
END OF MEDIUM. CONTROL W.
CANCEL (CANCL). CONTROL X.
END OF MEDIUM. CONTROL Y.
SUBSTITUTE. CONTROL Z.
ESCAPE. PREFIX. CONTROL SHIFT K.
FILE SEPARATOR. CONTROL SHIFT L.

A-1

EVEN 7-BIT
PARITY OCTAL

BIT CODE CHARACTER

0 167 w
0 170 x
1 171 Y
1 172 z
0 173 {
1 174 I

A-4

APPENDIX B

PAL-llA ASSEMBLY LANGUAGE AND ASSEMBLER

B.l SPECIAL CHAR~CTERS

Character

form feed

line feed

carriage return

%

tab

space

@

+

&

"

Function

Source line terminator

Source line terminator

Source statement terminator

Label terminator

Direct assignment indicator

Register term indicator

I tern termina tor
Field terminator

Item terminator
Field terminator

Immediate expression indicator

Deferred addressing indicator

Initial register indicator

Terminal register indicator

Operand field separator

Comment field indicator

Arithmetic addition operator

Arithmetic subtraction operator

Logical AND operator

Logical OR operator

Double ASCII character indicator

Single ASCII character indicator

Assembly location counter

B-1

B.2 ADDRESS MODE SYNTAX

n is an integer between 0 and 7 representing a register. R is a register

expression, E is an expression, ER is either a register expression or an

expression in the range 0 to 7.

Format

R

@R or (ER)

(ER)+

@(ER)+

- (ER)

@- (ER)

E (ER)

@E(ER)

#E

@#E

E

@E

Address
Mode
Name

Register

Deferred Register

Autoincrement

Deferred Auto­
increment

Autodecrement

Deferred Auto­
decrement

Index

Deferred Index

Immediate

Absolute

Relative

Deferred Relative

Address
Mode
Number

On

In

2n

3n

4n

5n

6n

7n

27

37

67

77

B-2

Meaning

Register R contains the op­
erand. R is a register ex­
pression.

Register R contains the op­
erand address.

The contents of the regis­
ter specified by ER are in­
cremented after being used
as the address-of the oper­
and.

ER contains the pointer to
the address of the operand.
ER is incremented after use.

The contents of register ER
are decremented before being
used as the address of the
operand.

The contents of register ER
are decremented before being
used as the pointer to the
address of the operand.

E plus the contents of the
register specified, ER, is
the address of the operand.

E added to ER gives the point­
er to the address of the oper­
and.

E is the operand.

E is the address of the oper­
and.

E is the address of the oper­
and.

E is the pointer to the ad­
dress of the operand.

B.3 INSTRUCTIONS

The instructions which follow are grouped according to the operands they

take and the bit patterns of their op-codes.

In the representation of op-codes, the following symbols are used:

SS

DD

xx

R

Source operand specified by a 6-bit address
mode.

Destination operand specified by a 6-bit ad­
dress mode.

8-bit offset to a location (branch instruc­
tions)

Integer between 0 and 7 representing a general
register.

Symbols used in the description of instruction operations are:

SE Source Effective address

DE Destination Effective address

() Contents of

Becomes

The condition codes in the processor status word (PS) are affected by

the instructions. These condition codes are represented as follows:

N !!egative bit: set if the result is negative

z Zero bit: set if the result is zero

v oVerflow bit: set if the operation caused an overflow

c £arry bit: set if the operation caused a carry

In the representation of the instruction's effect on the condition

codes, the following symbols are used:

* Conditionally set

Not affected

o Cleared

1 Set

B-3

To set conditionally means to use the instruction's result to deter­

mine the state of the code (see the PDP-ll Handbook).

Logical operations are represented by the following symbols:

Inclusive OR

Exclusive OR

& AND

(used over a symbol) NOT (i.e., lIs complement)

B.3.l Double-Operand Instructions Op A,A
Status Word

Condition Codes
°E-Code Mnemonic Stands for °Eeration N Z V C

OlSSDD MOV MOVe (SE)-)-(DE) * * 0
11SSDD MOVB MOVe Byte

02SSDD CMP CoMPare (SE)-(DE) * * * *
l2SSDD CMPB CoMPare Byte

03SSDD BIT BIt Test (SE) & (DE) * * 0
13SSDD BITB BIt Test Byte

04SSDD BIC BIt Clear (Si) & (DE) -)- (DE) * * 0
l4SSDD BICB BIt Clear Byte

05SSDD BIS BIt Set (SE) ! (DE) -)- (DE) * * 0
l5SSDD BISB BIt Set Byte

06SSDD ADD ADD (SE)+(DE)-)-(DE) * * * *
l6SSDD SUB SUBtract (DE)-(SE)-)-(DE) * * * *

B.3.2 Single-Operand Instructions Op A
Status Word

Condition Codes
°E-Code Mhemonic Stands for °Eeration N Z V C

0050DD CLR CLeaR ~-)-(DE) 0 1 0 0
1050DD CLRB CLeaR Byte

0051DD COM COMplement (DE)-)-(DE) * * 0 1
1051DD COMB COMplement Byte

0052DD INC INCrement (DE)+l-)-(DE) * * *
1052DD INCB INCrement Byte

0053DD DEC DECrement (DE)-l-)-(DE) * * *
1053DD DECB DECrement Byte

0054DD NEG NEGate (DE)+l-)-(DE) * * * *
1054DD NEGB NEGate Byte

B-4

Status Word
Condition Codes

°E-Code Mh~moni,g Stands for °Eeration N f V C

0055DD ADC ADd Carry (DE)+(C)-+(DE) * * * *
lO55DD ADCB ADd Carry Byte

0056DD SBC SuBtract Carry (DE) - (C)-+ (DE) * * * *
lO56DD SBCB SuBtract Carry Byte

0057DD TST TeST (DE) -~-+ (DE) * * 0 0
lO57DD TSTB TeST Byte

B.3.3 Rotate/Shift Instructions Op A
Status Word

Condition Codes
°E-Code Mhemonic Stands for °Eeration N Z V C

0060DD ROR ROtate Right c 18

h ~ I * * * *
lO60DD RORB ROtate Right even or odd byte

Byte r? h * * * *

0061DD ROL ROtate Left
cD~ h * * * *

lO61DD ROLB ROtate Left even or odd byte
Byte cD ~ ;;;;;oJJ * * * *

0062DD ASR Arithmetic c Ie 14 I 0

Shift Right 0 ~ ~'b * * * * 0

lO62DD ASRB Arithmetic even or odd byte
Shift Right 0 t~j Sh * * * * Byte 0

0063DD ASL Arithmetic
c

~f:: I~ Shift Left
* * *

~o

*

lO63DD ASLB Ari thme·tic even or odd byte
Shift Left ~E::I : ~o * * * * Byte

OOOIDD JMP JuMP DE-+(PC)

0OO3DD SWAB SWAp Bytes
1& • 7 0

0 I I I * * 0 0
t l'

B-5

B.3.4 0Eerate Instructions Op
Status Word

Condition Codes
°E-Code Mnemonic Stands for °Eeration N Z Y C

000000 HALT HALT The computer stops all
functions.

000001 WAIT WAIT The computer stops and
and waits fot' an inter-
rupt.

000002 RTI ReTurn The PC and PS are popped * * * *
from off the SP stack:
Inter-
rupt { (S P)) -+ (PC)

(SP) +2-+ (SP)
((SP)) -+ CPS)
(SP)+2-+(SP)

RTI is also used to re-
turn from a trap.

000005 RESET RESET Returns all I/O devices
to power-on state.

Condition Code. OperateS

°E-Code Mhemonic Stands for

000241 CLC CLear Carry bit in PS.

000261 SEC SEt Carry bit.

000242 CLV CLear oVerflow bit.

000262 SEV SEt oVerflow bit.

000244 CLZ CLear Zero bit.

000264 SEZ SEt Zero bit.

000250 CLN CLear Negative bit.

000270 SEN SEt Negative bit.

000254 CNZ CLear Negative and Zero bits.

000257 CCC Clear all Condition Codes

000277 SCC Set all Condition Codes.

000240 NOP No OPeration.

B-6

B.3.5 Trap Instructions Op or Op E where 05..E5..3778
*Op (only)

Status Word
Condition Codes

Op-Code Mnemonic Stands for °Eeration N Z V C

*000003 (none) (breakpoint Trap to location 14. This * * * *
trap) is used to call OOT.

*000004 lOT Input/Out- Trap to location 20. This * * * *
put. Trap is used to call lOX.

104000- EMT EMulator Trap to location 30. This * * * *
104377 Trap is used to call system pro-

grams.

104400 TRAP TRAP Trap to location 34. This * * * * 104777 is used to call any routine
desired by the programmer.

B.3.6 Branch Instructions Op E where-12810~(E-·-2)/25..12710

Condition to be met if
°E-Code Mnemonic Stands for branch is to occur

0004XX BR BRanch always

OOlOXX BNE Branch if Not Equal Z=O
(to zero)

0014XX BEQ B:ranch if EQual (to Z=l
zero)

0020XX BGE Branch if Greater than N(DV=O
or Equal (to zero)

0024XX BLT Branch if Less Than N CD V=l
(zero)

0030XX BGT Branch if Greater·Than Z! (NCDV) =0
(zero)

0034XX BLE Branch if Less than or Z! (NCDV) =1
Equal (to zero)

1000XX BPL Branch if PLus N=O

1004XX BMI Branch if MInus N=l

1010XX BHI Branch if HIgher C Z 0

1014XX BLOS Branch if LOwer or Same C Z 1

1020XX BVC Branch if oVerflow Clear V=O

1024XX BVS Branch if oVerflow Set V=l

1030XX BCC (or Branch if Carry Clear c=o
BHIS) (or Branch if HIgher or

Same)
C=l lO34XX BCS (or Branch if Carry Set (or

BLO) Branch if LOwer)

B-7

B.3.7 Subroutine Call Op ER, A

Op-Code Mnemonic Stands for Operation

004RDD JSR Jump to SubRoutine Push register on the SP stack,
put the PC in the register:

DE+(TEMP) - a temporary storage
register internal
to processor.

(SP) -2+ (SP)
(RE G) + ((S P))
(PC}+(REG)
(TEMP) + (PC)

B.3.8 Subroutine Return Op ER

00020R RTS ReTurn from
Subroutine

rut register in PC and pop old
contents from SP stack into
register.

B.4 ASSEMBLER DIRECTIVES

Mnemonic

.EOT

. EVEN

.END

. WORD

. BYTE

.ASCII

. TITLE

. ASECT

.CSECT

. LIMIT

. GLOBL

. RAD50

Operand

none

none

E

E, E, ...
E, E, ...

E, E, ...

jxxx ... xj

name

none

name

none

Stands for Operation

End Of Tape Indicates the physical end of
the source input medium

EVEN Insures that the assembly loca­
tion counter is even by adding
I if it is odd.

END Indicates the physical end of

WORD
(the void
operator)

BYTE

ASCII

TITLE

Absolute
SECTion

Control
SECTion

LIMIT

the program and optionally speci­
fies the transfer address (E).

Generates words of data
Generates words of data

Generates bytes of data

Generates 7-bit ASCII characters
for text enclosed by delimiters.

Generates a name for the object
module .
Initiates the Absolute section.

Initiates and identifies Relocat­
able Program section (section is
unnamed if no operand) .

Generates two words containing
the low and high limits of the
relocatable section .

name,name, ... Specifies each name to be a
global symbol. GLOBaL

jXXXj RADix 50 Generates the RADIX 50 representa­
tion of the ASCII characters in
delimiters.

B-8

Mnemonic

.IFZ

.IFNZ

.IFL

.IFLE

.IFG

.IFGE

.IFDF

.IFNDF

.ENDC

Operand

E

E

E

E

E

E

name

name

none

B.5 ERROR CODES

Error Code

A

B

D

I

Stands For

IF E=O

IF E~O

IF E<O

IF E<O

IF E>O

IF E>O

IF name
DeFined

IF name
uNDeFined

END of
Conditional

Meaning

Operation

Assemble what follows up to
the terminating .ENDC if the
expression E is o.

Assemble what follows up to
the terminating .ENDC, if the
expression E is not o.

Assemble what follows up to
the terminating .ENDC, if the
expression E is less than O.

Assemble what follows up to
the terminating .ENDC, if the
expression E is less than or
equal to o.

Assemble what follows up to
the terminating .ENDC, if the
expression Eis greater than O.

Assemble what follows up to
the terminating .ENDC, if the
expression E is greater than
or equal to O.

Assemble what follows up to
the terminating .ENDC if the
symbol name is defined.

Assemble what follows up to
the terminating .ENDC if the
symbol name is undefined.

Terminates the range of· a con­
ditional directive.

Addressing error. An address within the in­
struction is incorrect. Also includes relo­
l"'!ation errors.

Bounding error. Instructions or word data a~
being assembled at an odd address in memory.

Doubly-defined symbol referenced. Reference
was made to a symbol which is defined more
than once.

Illegal character detected. Illegal charac­
ters which are also non-printing are re­
placed by a ? on the listing.

B-9

Error Code

L

M

N

P

Q

R

T

U

Meaning

Line buffer overflow. All extra characters
beyond 72 are ignored.

Multiple definition of a label. A label was
encountered which was equivalent (in the
first six characters) to a previously en­
countered label.

Number containing an 8 or 9 was not termina­
ted by a decimal point.

Phase error. A label's definition or value
varies from one pass to another.

Questionable syntax. There are missing argu­
ments or the instruction scan was not complet­
ed, or a carriage return was not followed by
a linefeed or form feed.

Register-type error. An invalid use of or
reference to a register has been made.

Truncation error. More than the allotted
number of bits were input so the leftmost
bits were truncated. T error does not occur
for the result of an expression.

Undefined symbol. An undefined symbol was en­
countered during the evaluation of an ex­
pression. Relative to the expression, the
undefined symbol is assigned a value of zero.

B-IO

APPENDIX C

LINKING PA~-llR AND ITS OVERLAY BUILDER
AND CONSTRUCTING THE RUN TIME SYSTEM

At assembly time, the Assembler exists as:

1. a load module of its core resident portion, and

2. N non-resident overlays in a contiguous file.

The Assembler package is delivered to the customer as three (3)

object modules:

1. the Assembler (PALllR)

2. the Permanent Symbol Table (PALSYM)

3. the Overlay Builder (OVRBLD)

Two links must be built from these object modules:

1. the Assembler and the Permanent Symbol Table

2. the Overlay Builder

It is imperative that both links have exactly the same TOP

specified at link time.

The load module of the Overlay Builder must now be executed via

the Monitor command RUN. It will produce a contiguous file,

PALLllR.OVR, on DF~l with User Identification Code [l,lJ. Monitor

commands CTRL/C BEGIN or CTRL/C RESTART will abort the build process

and automatically begin it again. When the building is done, control

will return to the monitor.

The load module of the Assembler/Permanent Symbol Table may now

be executed via the monitor command RUN. This run requires the

presence of the overlay file, PALllR.OVR, on the overlay device DF~l.

with User Identification Code [l,lJ.

Overlay Size and Makeup

The size of each overlay on the overlay device and the size of the

IThe file· specifier and device may be changed with the Monitor command
ASSIGN on logical dataset·OVR prior to issuing the RUN command.

C-l

overlay area in core is currently 512 decimal words. This size was

chosen after examination of the segmentable sections of th,e Assembler

and their relationships to each other.

There are currently five overlays:

OVERLAY #1
Assembler Initialization
CSI Interface
CTRL/C RESTART handler

OVERLAY #2
.CSECT assembler directive
.ASECT" "
.GLOBL" "
.TITLE" "
.LIMIT" "
GSD (Global Symbol Directory) Output
Linear Search Routine (used by .CSECT and

GSD Output routine)
OVERLAY #3

.END assembler directive
Conditional assembler directives
Symbol Table Lister

OVERLAY #4
.ASCII assembler directive
.BYTE
.RAD5,0
.WORD

"
"
"

"
"
"

Direct Assignment processor
PASS Initialization

OVERLAY #5
GET INPUT LINE ROUTINE
STATEMENT EVALUATOR
LABEL FIELD PROCESSOR
INSTRUCTION PROCESSORS
PHYSICAL END OF INPUT (EOD) PROCESSOR

Programming Hints for the User

The user can organize his source code to cut down on the number of

overlay transfers needed to accomplish his assembly.

He should gather all his executable code into one area because

once OVERLAY #5 is loaded into core to process source lines restricted

to labels and instructions it will remain in core until one of the

following occurs:

1. an assembly directive is encountered

e. g. , .WORD
.CSECT

2. a non-instruction line defaults to .WORD

e. g. , ADDR

C-2

3. a direct assignment statement is encountered

e. g. , A=l~~
.=.+6~

4. the end of a pass of the assembly process

Linking the Assembler and the Permanent Symbol Table

The load module of the Assembler and the Permanent Symbol Table should

be given the file name:

PALllR

PALSYM must be the first object module input to the Linker and PALllR

the second. This order allows for assembly time core utilization as

illustrated by the memory map on the following page.

C-3

Ordered to permit{
binary searching.
(4 words/entry)

Not ordered (4
words/entry) {
Ordered to permit{
binary searching.
(4 words/entry)

DOS checks ___
for STACK
Overflow

ASSEMBLER
(Object Module 2)

PALllR
~----------.------~ PERBOT

Permanent
Symbols

(Object Module 1)
PALSYM
Unnamed

Control Section

- Control -
Sections

User
Symbols

1
increas ing
order

PERTOP

tion or a user symbol
CONTOP entry is made the

I increasing User Symbols ~re ad-
t order justed downwards.

~~--------------~ USRTOP

}

When a Control Sec-

t-----r-------I~ The bottom of the stack is
STACK

DOS non­
resident area

Disk
Operating
System

o

set-up after initialization
of all 1st pass I/O devices
and opening of all 1st pass
files so that the non-resi­
dent requirements are known.
At the end of pass 1, the
bottom of the stack is set
to just below the fixed sym­
bol table. This is done
prior to initializing and
opening 2nd pass datasets.
If the user symbol table
were to collide with the

bottom of the stack, the stack is moved down in core in an attempt
to continue the assembly. This may result in a STACK overflow
condition.

The format of the Permanent Symbol Table (PST) is described
below to assist users who wish to add and/or delete symbols.

The PST is a separate object module which is loaded to reside
immediately below the assembler in core memory. Once assembled,
it is fixed in size; however, it may be edited, assembled, and
linked to suit the specific needs of customers.

The PST is bounded by the internal global symbols SYMTBB and
SYMTBT, where the former is the highest address of the PST
and the latter is the address of the 1st word below the PST.

The PST is ordered (to permit binary searching) with the small­
est symbol (in Radix50 packed notation) high in core and the
largest symbol (in Radix50 packed notation) low in core.

Radix50 character representation:

C-4

A thru Z
$

1 thru 32 respectively
33
34

o thru 9 36 thru 47 respectively

Radix50 packed notation:

1st packed triad CHAR1*50*50+CHAR2*50+CHAR3
2nd packed triad = CHAR4*50*50+CHAR5*50+CHAR6

Each entry is 4 words with the lowest word containing the
1st packed triad. The next lowest containing the 2nd packed
triad. The next lowest containing the value (which for
assembler directives is an external global to be linked to
the appropriate processor in PAL-IIR) and the highest word
containing the flags in the low byte and the control section
ID (which is always 0 for PST entries) in the high byte.

Internal global symbols:
.GLOBL SYMTBB, SYMTBT

External global symbols:
.GLOBLASCII, ASECT, BYTE, CSECT, END
.GLOBT ENDC, EOT, EVEN, GLOBL, IFDF
.GLOBL IFG, IFGE, IFL, IFLE, IFNDF
.GLOBL IFNZ, IFZ, LIMIT, RAD50
.GLOBL TITLE, WORD

Flags:
ASMDIR=lO

BYTFLG=l

Instruction Class:

Bit 3 being on in the flag
Byte indicates that this PST
entry is an assembler directive.
Bit 0 being on in the .flag
Byte indicates that this PST
entry is byte enabled. This
allows one entry to satisfy
searches for word and byte
instructions. E.G. the entry
'MOV', because bit 0 is on,
will satisfy ·searches for
'MOV' or 'MOVB'

Bits 4-7 of the flag byte designate the
type of instruction to provide dispatch
information to PAL-IIR.

SCLASO=O
SCI.ASI=20
SCLAS2=40
SCLAS3=60
SCLAS4=IOO
SCLAS5=120
SCLAS6=140

Operate group
Unary group
Binary group
RTS
Branch group
JSR
TRAP group

C-5

A listing of the Permanent Symbol Table follows.

.EVEN
SYMT8T: ,WORD 0 .1ST REGISTE~ BELOW PST,

,WORD 131247 J .WORD
.WORD 070440
.WORD WORD
.WORD ASMDIR

.WORO 131051 J .TITLE
,WORD 077345
.WORD TITLE
.WORD ASMOIR

.WORD 130721 J .RA05e1
,WORD 017226
.WORD RA050
.WORD ASMDIR

.WORD 130351 J .LIMIT
,WORD 051274
.WORD LIMIT
.WORD ASMDIR

.WORD 130156 J ,IF'~

.WORD 121200

.WORO IFf.
,wORn ASMDIR

,WORD 130156 J • I FNt
.wORD 0~5620
.WORD IFN~
.WORO ASMOIR

.WORD 130156 J .IFNDF'
,WORD 054046
,WORD IFNQF"
.WORD ASMDIR

.v"ORO 130156 J • I FLE

.WORn 0457H"

.WORO IFLE

.WORD ASMOIR

,wORD 130156 J .I FL
.WORD 045400
.wORD I F'L
,WOQO ASMDIR

.WORD 130156 J ,IF"GE
,WORD 026210
,WORO IFGE
.WORn ASMDIR

.WORD 13?'156 J • I rG

.WORn 025700

.\AlORD IF"G

.wOF\O AS~OlR

C-6

.WORD
• \fJORD
• WORO
.WORD

,WORD
.WORD
.WORD
.WORD

.wORD
,WORD
.WORD
.wORn

.WORi)

.WORO
• WOF~D
.wORD

.wORn

.WORD
, ~IORC
,~ORn

,WORD
.WORD
.WORD
• WOFW

• WORe.:
,WORD
• \AJOR[l
.WORD

.WORD
• WO~<D
• \'<JOi~D
• It-!oRD

• WOf~D
• i';O~D
• wor~o
• WOF~D

.wORD

.WORn

.\"iORI)

.WORD

.WORD

.\NORD
,WORD
• WOFH)

.WORD

.wORD

.i-iORD
,WORn

130156
014760
I FOF .
ASMDIR

130044
057034
GL08L
AS~1D I R

127736
020,60
EVEN
ASMD rr~

127727
07640~
EOT
ASMOIR

127726
014570
ENoe
ASMDIR

127'726
0144210
END
ASMrJIR

12761 . .3
017714
C5ECT
ASMDIR

127551
0 7 6710
BYTE
ASMDIR

12747J
017714
ASECT
AS~1fJ I R

3.27473
r~12061
ASC I I
ASHDIR

107761
07640f~
0000«'1
SCLASb

100014
21

005700
SCLAS1+8 YTFLG

C-7

J .IF'OF'

J ,GLOBL

.EVEN

J ,EaT

, ,E~DC

J .Et.,jD

J .CSECT

.8YTE

.ASECT

J ,ASCII

J WA I T

IT,T

.WORD 077721 JTRAP

.WOqO ~6200.0

.WORD 104400

.WORD SCLAS6

,WORn "'75131 iSWAB
,WORD 006200
.WORD 000300
,WORI') SCLASl

.WORD 075012 JSUB

.WORD 0
,WORD 160000
,WORD SCLAS2

.WORD 073642 JSEt

.WORO 0
,WORD 000264
.WORD SCLAS0

.WORD 073636 JSEV

.WORD 0

.WORD 000262
,wORD SCLAS0

,WORD 073626 .SEN
.WORD 0
.WORD 000270
,WORD SCLAS0

.WORD 073613 .SEC

.WORD 0
,WORD 000261
.WORD SCLAS0

.WORD 073473 .sec

.WORD 0

.WORD 000277
,WORD SCLAS0

.WORD 073423 .sec

.WORD " .WORD 005600
,WORD SCLAS1+BYTF'LG

.WORD 071663 aRTS

.WORD " .WORD 000200

.WORD SCLAS3

.WORO 071651 J RT I
,WORD " ,WORD 000002
,WORD SCLAS0

.WORD 071352 ,ROR

.WORD ~

.WORD 0062100
,WORD SCLAS1+BVTrLG

c-8

.WORD 071344 JROL

.WORD 0
,WORD 0121610121
,WORD SCI...AS1+BVTF'LG

.WORD 070533 JRESET

.WORD 021140
,WORD 0001210.5
.WORD SCLAS0

'. IN ORO 05475121 'NOP
.wORD 0
,WORD 000240
,WORD SCLAS0

,WORD 054117 ,NEG
.WORD el
.wORD 0121540121
,WORD SCLAS1+BVTF'LG

.wORD 051656 ,MOV

.WORD 0

.WORD 01012100

.WORD SCLAS2+8VTF'LG

,WORD 040612 'JSR
.WORD 0
.wORD 004000
.WORD SCLAS5

,WORD 040230 JJMP
,WORD 0
.WORO 000100
.WORO SCLASl

.WORD 035254 J 10 'f

.WORD 0

.WORD 000004

.WORD SCLAS0

.~ORD 035163 IINC

.WORD 0
,WORD 01215200
,WORD SCLAS1+BVTF'LG

.WORD 9)31064 JrlALT

.wORD 076400

.WORD 0
• wOf~D SCl,.AS0

• WORt) 020534 J[,MT
.WORD 0
.WORD 104000
.WORD SCLAS6

.WORD 314713 :DEC

.WORD 0

.WORD 005300

.WORD SCLAS1+BYTFLG

C-9

• vJORI1 (~12445 .COM
,WORG 0
.~nRr: eHC 51 k~ 0
• WOFHJ SCLAS1+8YTFlG

.wO~D ~12412 JCN~

.WORD 0
,wORD ~00254
.WORD SCLAS0

.WORD el1233~ JCMP

.WORD 0
• v4QRD ~2000e
,WORD SClAS2+8YTF"LG

,WORD ;;,12272 Jell!
.l.\OR[J 0
,WORD 00Q1244
, WORr; SCLAS~

,WORD (112266 ;CLV
.WORD ~

• WOR.u 000242
, wORL~ SCLAS0.

,WORD 012262 ,CLR
,wORD ~
.wORn 0~5~00
.~ORD SCLAS1+BYTF"LG

.wORD 012256 JCLN

.WORO 0

.WOR['l ~00250

.WORD SCLAS0

.WORD 012243 JCLC

.WORD 0

.WORD 000241

.WORD SClAS0

.WORD ~11473 JCCC

.WORD 0

.WORD 000257

.WORD SCLASeJ

,WORD 010003 J8VS
.WORD 13
,WO~D 102400
.WORD SCLAS4

.WORD 007763 IBVC

.WORD 0
,WORD 121221021
.WORO SClAS4

.WORD er~7520 JaR
,WORD 0
.WORD 000400
,WORD SCLAS4

C-IO

,WORD 007414 ,aPL
.WORD 0
.WORD 112l0~HH1
.WORD SCl..AS4

,wORD 007265 iBNE
.WORD 0
.WORD 001000
,WORD SCLAS4

,WORD 0"7221 J 8M t
.WORO 0
.WORD 100400
.wORD SCLAS4

.WORD 007164 JeLT

.WORD ;;1

• w'ORD 002400
.WORD SCLA54

.WoRD 0~7157 J8L.OS
• lA:OiHJ ;~73300

• w 0 ~~ D 101400
.wORD SCLAS4

• \>JO~O 0071S7 ;8LO
• wor~D ;:~

.WORD 103400

.WORD SCLAS4

• \oJORO (~07145 ;8LE
.WORD 0
,WORD 0034(.~.2l

• WOt~D SCLAS4

.wORD 006774 J 8 IT

.WORD 0

.WORn G,30000

.WOHD SCLAS2+8 VTFLG

.WOq[) 006'773 .BIS

.If.iORD '" • ~JORD 050000
• It.! or~ D SCLAS2+8YTF'"LG

.WORD 006753 lEn c
• wor~D /j

,WORD 0400~0

• WO~~D SCLAS2+HYTFLG

, ! .. JORD Li:l06711 .8H15
• WO!~D 0733:30
• \t-JoRD 10300~

• I,..J OR c: SCLA~54

• \.JOR[) 006"111 ; RH I
.WORD ;~

.WORD 10H100

.WORD SCLAS4

C-ll

J
J

.iAlfJqD
• WOFH)
• WOf~O
• \AI or~ D

.~jor-?IJ

.wORD

.~;OH[1

• wOf~ D

,WORD
.WORD
• wORt)
,WORI)

, vJOk r;

• ~!ORD
, ~OfiD
,WOlin

, wOR~)
,WORD
• Itwr~[l
,\.tIOP[J

,WORD
, wOf~D
.~ORD
.WORn

.WORn

.WI')R[)
,\AlORD
.WOR[)

,WORD
.WORD
.WORD
.WOpo

.WORD
,WORD
,WORD
.WORD

J
SYMTBB=.-2

.ENO

,,1030::1\0
SCLAS4

006635

~10 2 0 (0 0
SCLAS4

~10 6531
11
001400
SCLAS4

0064J3
o
103400
SCLAS4

006373
o
t~:3000
SCLAS4

0~4512

0062V"0
SCLAt;1+8YTFLG

004514

" ~'06300
SCLAS1+8YTFLG

003344
o
060;01"0
SCLAS2

003343
o
005500
SCLAS1+8YTFLG

C-12

JBGT

JBGE

J8[Q

J8CS

;8CC

JASR

JASL

JADD

JADe:

lHIGHEST ADDRESS OF PST,

INDEX

Absolute symbol, see Symbols
Address modes, 7-2
Addressing, 7-1
ASCII conversion, 4-2, 8-7
Assembler directives, 8-1, 9-6
Assembly location counter, 2-2,

4-1, 5-1, 7-6, 7-7, 8-2, 8-5
Assembly passes, 5-1, 9-1, 9-6
Assignment, direct, 3-2, 9-8

Boolean operators, 4-2

Character set, 2-1
Command string, 9-1

default condition, 9-2
errors, 9-2
format, 9-1
switches, 9-3

Comment field, 2-4, 8-1

Datasets, ,9-4
Decimal specification, 4-1
Direct assignment, 3-2, 5-1, 9-8
Dot, 2-2, 4-1, 5-1, 7-6, 7-7,

8-2, 8-5

Entry point symbol, see Symbols
Errors, 2-1, 2-2, 3-1, 3-4, 4-2,

8-6, 9-7
codes for, 10-1
command string, 9-2
keyboard, 9-1

Expressions, 4-1
External symbol, see Symbols

Fields, statement, 2-1, 4-1, 5-1
7-7, 8-1, 8-5

Formatting, 2-4

Global symbols, see Symbols

Instruction formats, 7-7
Internal symbols, see Symbols

Labels, 2-2, 8-1, 8-3
Listing, 9-7
Load module, 1-1, 6-1, 8-5
Loading, 9-1
Location counter, 2-2, 4-1, 5-1,

7-6, 7-7, 8-2, 8-5

X-I

Logical operators, 4-2

Modes, addres~, 7-2

Numerical representation, 4-1

Object module, 1-1, 6-1, 8-1,
9-1, 9-8

Offsets,
branch, 7-8
relative mode, 7-5

Operand field (also see Address
modes), 2-3, 4-1, 5-1, 7-7
8-1, 8-5, 8-10

Operating procedures, 9-1
Operator field, 2~3, 4-1, 8-1
Operators, arithmetic and

logical, 4-2

Pages, 2-4
Paper tape reader, 9-6
Passes, assembly, 5-1, 9-1, 9-6
Permanent symbols, see Symbols
Program Counter (PC), 7-1, 7-4,

7-8
Pseudo-ops, see Assembler

directives

Register symbols, see Symbols
Registers, general, 3-3, 7-1
Relocatable symbol, see Symbols
Restarting, 9-7

Starting, 9-1
Symbol tables, 3-1, 8-10, 9-1,

9-5
Symbols, 3-1, 6-1, 8-1

absolute, 3-2, 4-3, 6-1, 7-8
direct assignment, 3-2, 5-1,9-8
entry point, 3-2, 8-1
external, 3-2, 4-3, 5-1, 6-1,

7-8, 8-1
global, 1-1, 3-2, 4-1, 8-1,

9-8
internal, 3-2, 8-4
labels, 2-2, 8-1, 8-3
permanent, 3-1, 4-1, 4-3
register, 3-3
relocatable, 3-2, 4-1, 4-3,

6-1, 7-8
user-defined, 3-1, 9-1

Terminators, 2-1, 2-3, 8-10

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes,
software problems, and documentation corrections are published by Software
Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-12
Digital Software News for the PDP-II
Digital Software News for the PDP-9/15 Family

These newsletters contain information appl icable to software avai lable from
Digitalis Program Library, Articles in Digital Software News update the
cumulative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
Software News is sent to the appropriate software contact at your insta Ilation,
please check with the Software Specialist or Sales Engineer at your nearest
D igita I office.

Questions or problems concerning Digital's Software should be reported to
the Software Specialist. In cases where no Software Specialist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Ma in Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms which are provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to facilitate a complete investigation. An answer will be sent to the
individual and appropriate topics of general interest will be printed in the
newsletter.

Orders for new and revised software and manuals, additional Software Per­
formance Report forms, and software price I ists should be directed to the
nearest Digital Field office or representative. U.S.A. customers may order
directly from the Pro~rom Library in Maynard. When ordering, include the
code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to:

DECUS
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

READER'S

PDP-ll PAL-llR Assembler
Programmer's Manual

DEC-ll.--AS DB - D
May 1971

COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of
this manual.

Please comment on this manual's completeness, accuracy. organization, usability and read­
ability.

Did you find errors in this manual? If so, specify by page.

How can th is manua I be improved?

Other comments?

Please state your position. Date: -------------------------------------- -------------
Name: Organization: --------------------------------- -------------------------
Street: Department: --------------------------------- --------------------------
City: ________________ State: _________________ Zip or Country ________ __

- - - - - - - - - - - - ~ - - - Fold Here -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STAT~S

Postage will be paid by:

momoama
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD. MASS.

