
DEC-II-NIZA-D

PDP - 1 1

D E V ICE D R I V E R PAC K AGE

MARCH 1971

COPYRIGHT ©. 1971 BY DIGITAL EQUIPft1ErH CORPORATION

THIS DOCUMENT IS FOR INFORMATION PURPOSES
ONLY AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

~
PROGRAM
UBRARV

CHAPTER 1.

CHAPTER 2.

2.1

2.1.1

2.1.2

2.1.3

2.1.4

2.2

2.2.1

2.2.2

CHAPTER 3.

3.1

3.1.1

3.1.2

3.1.3

3.1.4

3.l.S

3.1.6

3.1.7

3.2

3.3

APPENDIX A

A.l

A.2

A.3

A.3.l

A.3.2

A.3.3

A. 3.4

A.3.S

A.4

CONTENTS

INTRODUCTION

DRIVER FORMAT

Structure

Driver Interface Table

Set-up Routines

Interrupt Servicing

Error Handling

Interface to the Driver

Control Interface

Interrupt Interface

STAND-ALONE USAGE

Driver Assembled with Program

Setting Interrupt Vector

Parameter Table for Driver Call

Calling the Driver

User Registers

Return from Driver

Irrecoverable Errors

General Comment

Drivers Assembled Separately

Device-independent Usage

1-0 DRIVERS WITHIN THE DISK OPERATING SYSTEM

Driver Structure

Monitor Calling

Driver Routines

TRANSFER

Interrupt Servicing

OPEN

CLOSE

SPECIAL

Drivers for Terminals

iii

.Rage.

1-1

2-1

2-1

2-1

2-1

2-1

2-2

2-2

2-2

2-2

3-1

3-1

3-1

3-1

3-2

3-3

3-4

3-S

3-6

3-6

3-8

A-I

A-I

A-2

A-4

A-4

A-4

A-S

A-7

A-7

A-7

CHAPTER I

Subroutines to handle I/O transfers between a PDP-II and each of its

peripheral devices are developed as required for use within the Disk

Operating System (DOS). These subroutines are made available within

an I/O utilities Package for the benefit of PDP-ll users who have con­

figurations unable to support DOS or who wish to run programs outside

DOS control.

All the subroutines associated with one peripheral device togeth­

er form an entity which is known as a Driver. The purpose of this docu­

ment is to provide a general description of a driver and to show how

it may be used in a stand-alone environment. The unique properties of

each driver are discussed in separate documents issued as supplements

to this one. The I/O utilities Package for any system is determined by

the peripherals of that system. Thus the full documentation for a

particular package consists of this document and the applicable supple­

ments.

Within this document, Chapter 2 consists of an outline of the es­

tablished driver structure and its interface to the program using it.

Chapter 3 then illustrates how a stand-alone program can match this

interface in order to make immediate use of each driver as supplied

within the package. For the benefit of those users who require a more

detailed description of the driver format, perhaps so that they can

write their own drivers for other unsupported devices in a similar

fashion, the standard specification for DOS driver has been attached

as Appendix A. It is assumed that the reader is familiar with the

basic hardware concepts of the PDP-II as described in the PDP-II Hand­

book and with the Paper Tape Software as described in the Programming

Handbook (DEC-II-GGPB-D).

%%%%%%

1-1

CHAPTER 2

DRIVER FORMAT

2.1 Structure

The basic principle of all drivers under the DOS Monitor is that they

must present a common interface to the routines using them in order to

provide for device-independent operation. The subroutines are

structured to meet this end. Moreover, the driver may be loaded any­

where in memory under Monitor control. Its code must always, there­

fore, be position-independent.

The detailed description of a driver is found in Appendix A. This

chapter is concerned with driver interfaces.

2.1.1 Driver Interface Table

The first section of each driver consists of a table which contains,

in a standard format, information on the nature and capabilities of the

device it represents and entry pointers to each of its subroutines.

The calling program may then use this table as required, regardless of

the device being called.

2.1.2 Setup Routines

Each driver is expected to handle its device under the PDP-II interrupt

system. When called by a program, therefore, a driver subroutine mere­

ly initiates the action required by setting the device hardware regis­

ters appropriately. It then returns to the calling program by a stan­

dard subroutine exit.

The main setup routine prepares for a data transfer to or from the

device, using parameters supplied by the calling program. Normally,

blocks of data will be moved at each transfer. The driver will only

return control to the program when the whole block has been actioned or

when it is unable to continue because there is no more data available.

The driver may also contain subroutines by which the calling

program may request start-up or shut-down action, such as leader or

trailer code at a paper-tape punch, or some special function provided

by the device hardware (or a software simulation of that for some

similar device), e.g., "rewind" of a magnetic tape (or DECtape).

2.1.3 Interrupt Servicing

The nature of the driver routine to service device interrupts is

2-1

particularly dependent upon the extent of the hardware provisions of

the device for controlling transfers. In general, the driver deter­

mines the cause of the interrupt and checks whether the last action

was performed correctly or was prevented by some error condition. If

more device action is needed to satisfy the program, the driver again

initiates that action and takes a normal interrupt exit. If the

program request has been fully met, control is returned to the program

at an address supplied at the time of the call.

2.1.4 Error Handling

Device errors may be handled in two ways. There are some errors for

which recovery can be programmed; the driver will, if appropriate,

attempt this itself (as in the case of parity or timing failure on a

bulk-storage device) or will recall the program with the error con­

dition flagged (as at the end of a physical paper tape). Other errors

will normally require action externally, perhaps by an operator. For

the latter, the driver calls a common error handler based on location

34 (lOT call) with supporting information on the processor stack.

2.2 Interface to the Driver

2.2.1 Control Interface

The principal link between a calling program and any driver subroutine

is the first word of the driver table. In order to provide the con­

trol parameters for a device operation, the calling program prepares

a list in a standardized form and places a pointer to the list in the

driver link. The called driver then uses the pointer to access the

parameters. If the driver need then return status information, it may

again place this in the list area via the link-word.

The first word of the driver also may act as an indicator in that

while it remains ~, the driver is not already busy upon some task,

whereas when the word contains a list-pointer, the driver is assumed

to be busy. Since most drivers can only support one job at a time, the

link-word state can be significant.

2.2.2 Interrupt Interface

Although the driver will always expect to use the interrupt system, it

does not itself ensure that its interrupt vector in the memory area

below 400 has been set up correctly; the Monitor under DOS takes care

of this. However, the Driver Table contains the necessary information

to allow the vector to be set correctly.

2-2

CHAPTER 3

STAND-ALONE USAGE

Because each driver is designed for operation within the device­

independent framework of DOS Monitor, it may be similarly used in

other applications. Pos~ible methods will be discussed later. How­

ever, since the easiest way to use the driver is to assemble it with

the program requiring it, this will be described first.

3.1 Driver Assembled with Program

3.1.1 Setting Interrupt Vector

As noted in Section 2.2.2, the calling program must first correctly

set the device transfer vector within memory locations 0-377. The

address of the driver's interrupt entry point can be identified on

the source listing by the symbolic name which appears as the content

of the Driver Table Byte, DRIVER+5. The priority level at which the

driver expects to process the interrupt is at byte DRIVER+6. For a

program which can use position-dependent code, the setup sequence

may be:

MOV
MOVB
CLRB

#DVRINT, VECTOR
DRIVER+6, VECTOR+2
VECTOR+3

iSET INT. ADDRESS
iSET PRIORITY
iCLEAR UPPER STATUS BYTE

(where the Driver Table shows at DRIVER +5: .BYTE DVRINT~DRIVER).

If the program must be position-independent, it may take advan­

tage of the fact that the Interrupt Entry address is actually stored

as an offset from the start of the driver, as illustrated above. In

this case, a sample sequence might be:

MOV
ADD
MOV
CLR
MOVB
ADD
CLR
MOVB

pe,RI
#DRIVER-. , Rl
#VECTOR,R2
@R2
5 (Rl) ,@R2
Rl, (R2) +
@R2
6(Rl),@R2

iGET DRIVER START

i ••• & VECTOR ADDRESSED
iSET INT. ADDRESS
i ••• AS START ADDRESS+OFFSET

iSET PRIORITY

3.1.2 Parameter Table for Driver Call

For any call to the driver, the program must provide the list of

3-1

control arguments mentioned in section 2.2.1. This list must adhere

in general to the following format: 1

[SPECIAL FUNCTION CODE]2
[BLOCK NO.] 3
STARTING MEMORY ADDRESS FOR TRANSFER
NO. OF WORDS to be transferred (2's complement)
STATUS CONTROL showing in Bits:

~-2: Function (octally 2=WRITE, 4=READ) 4
8-1~: Unit (if Device can consist of several, e.g., DECtape)
11: Direction for DECtape travel (~ = Forward)

ADDRESS for RETURN ON COMPLETION
[RESERVED FOR DRIVER USE]5

The list itself may be assembled into the required format if its

content will not vary. The driver may return information in the area

as described in a later paragraph; however, this will not corrupt the

program data and it is removed by the driver before it begins its

next operation.

On the other hand, most programs will probably wish to use the

same area for the lists for several tasks or even between different

drivers. In this case, the program must contain the necessary routine

to set up the list for each task before making the driver call, per­

haps as illustrated in the next paragraph. It must be noted, however,

that the driver may wish to refer to the list again when it is re­

called by an interrupt or to return information to the calling program.

Therefore, the list must not be changed until any driver has completed

a function requested; for concurrent operations, different list areas

must be provided.

3.1.3 Calling the Driver

To enable the driver to access the parameter list, the program must

set the first word of the driver to an address six bytes less than that

lIn some cases, it may be further extended as discussed in later para­
graphs.

2Required only if Driver is being called for Special Function.

3Required only if the Device is bulk storage (e.g., Disk or DECtape).

4Mos t devices transfer words regardless of their content, i.e. ASCII
or Binary. Some devices, e.g., Card Reader, may be handled different­
ly for the two modes; for these, Bit ~ must also be set to indicate
ASCII~~, Binary=l. (In these cases, the driver always produces or
accepts ASCII even though the device itself uses some other code.)

5This word may be omitted if the device is bulk storage (see below) .

3-2

of the word containing MEMORY START ADDRESS. It may then call the

driver subroutine required directly by a normal JSR PC,xxxx call.

As an example, the following position-independent code might

appear in a program which wishes to read Blocks #1¢¢-1¢3 backward

from DECtape Unit into a buffer starting at address BUFFER:

MOV
ADD
MOV
ADD
MOV
MOV
MOV
ADD
MOV
CMP
MOV
JSR

WAIT: .

RETURN:

PC,R~
#TABLE+12-.,R~
PC,@R~
#RETURN-. , @Rf}
5 4~ 4 , - (R~)
-1.0 2 4 • , = (R~)
PC,-(R~)
#BUFFER-. , @R~
1)J3, -R~)
- (R~) ,- (R~)
R~,DT
PC,DT.TFR

TABLE: . WORD ~
. WORD)J
.WORD ~
.WORD ~
.WORD ~

3.1.4 User Registers

iGET TABLE ADDRESS

i GET & STORE .••
i .•. RETURN ADDRESS
i SET READ REV. UNIT 3
i 4 BLOCKS REQUIRED
iGET & STORE
i .•. BUFFER ADDRESS
i START BLOCK
iSUBTRACT 4 FROM POINTER
iSET DRIVER LINK
iGOTO TRANSFER ROUTINE
iRETURNS HERE WHEN
i ••• TRANSFER UNDERWAY
i RETURNS HERE WHEN
i ••• TRANSFER COMPLETE
iLIST AREA SET
i ••• BY ABOVE SEQUENCE

During its setup operations for the function requested, the driver

assumes that Processor Registers ~-5 are freely available for its

purpose. If their contents are of value, the program must save them

before the driver is called.

While servicing intermediate interrupts, the driver may need to

save or restore these registers. It expects to have available two

subroutines for the purpose (provided by the Monitor under DOS)

It accesses them via addresses in memory locations 44 (SAVE) and 46

(RESTORE) using the sequence:

MOV
JSR

@#44,-(SP)
R5,@(SP)+

iOR 'MOV @#46,-(SP)

The program must, therefore, contain these subroutines. They

might, for example, be as follows:

3- 3

SAVE: HOV
MOV
MOV
MOV
MOV
MOV

RESTOR: INC
MOV
MOV
MOV
MOV
MOV
RTS

R4,-(SP)
R3,-(SP)
R2,-(SP)
Rl,-(SP)
R,0,-(SP)
RS,PC

(SP)+
(SP) +, R,0
(SP)+,Rl
(SP)+,R2
(SP)+,R3
(SP)+,R4

RS

iSAVE R,0-4
; ... RS SAVED BY CALL

iEXIT TO CALLER

iFORGET CALL RS
; RESTORE R,0-4

iRS RESET ON EXIT

It must also ensure that their start addresses are set into the cor­

rect locations.

At its final interrupt, the driver always saves the contents of

Registers ,0-S before returning control to the calling program comple­

tion return.

3.1.S Returns from Driver

As shown in the example in section 3.1.3, the driver returns control

to the calling program immediately after the JSR as soon as it has set

the device in motion. The program may then wait or carry out some

alternative operations until the driver signals completion by return­

ing at the address supplied, i.e., RETURN above. Prior to this, the

program should not attempt to access the data being read in, or to

refill a buffer being written out.

The program routine beginning at address RETURN will vary accord­

ing to the device in use. In general, the driver has given control to

the routine for one of two reasons, namely, the function has been

satisfactorily performed, or it cannot be carried out due to some hard­

ware failure with which the driver is unable to cope, though the

program may. If the latter, the driver uses the STATUS word in the

program list to show the cause:

Bit IS = 1

Bit 14 1

indicates that a device parity or timing failure
has occurred and the driver has not been able to
overcome this, perhaps after several attempts.

shows that the end of the data available has been
reached.

The driver places in R,0 the content of its first word as a

pointer to the list concerned.

3-4

In addition, the driver may have transferred only some of the data

------'rFce~q·+-uli_re_Ei__._ In this case, it \·lill sho,,', in the RESERVED-word of the

program list, a negative count of the words not transferred in addition

to setting Bit 14 of the STATUS. As mentioned in the note in Section

3.1.2, this applies only to non-bulk storage devices. The drivers for

DECtape or Disks1always endeavor to complete the full transfer, even

beyond a parity failure, or they take more drastic action (see ·Section

3.1.6) .

It is thus the responsibility of the program RETURN routine to

check the information supplied by the driver in order to verify that

the transfer was satisfactory and to handle the error situations

accordingly.

In addition, the routine must contain a sequence to take care

of the Processor Stack, Registers, etc. As noted earlier, the driver

takes the completion return address after an interrupt and has saved

Registers 0-5 on the stack above the Interrupt Return Address and

Status. The program routine should, therefore, contain some sequence

to restore the processor to its state prior to such interrupt, e.g.,

using the same Restore subroutine illustrated earlier:

MOV
JSR

RTI

@#46,-(SP)
R5,@(SP)+

3.1.6 Irrecoverable Errors

iCALL REGISTER RESTORE

iRETURN TO INTERRUPTED PROG.

All hardware errors other than those noted in the previous paragraph

are more serious in that they cannot normally be overcome by the

program or the driver on its behalf. Some of these could be due to

an operator fault, such as an omission to turn a paper tape reader on

or to set the correct unit number on a DECtape transport. Once the

operator has rectified the problem, the program could continue.

Other errors, however, will require hardware repair or even software

repair, e.g., if the program asks for Block 2000 on a device having

a maximum of 1000. In general, all these errors will result in the

driver placing identifying information on the processor stack and

calling lOT to produce a trap through location 34.

IThis includes RFll Disk: although this is basically word-oriented, it
is assumed to be subdivided into 64-word blocks.

3-5

Under DOS, the Monitor provides a routine which prints a tele­

printer message when this oc~urs. In a stand-alone environment, the

program using the driver must itself contain the routine to handle

the trap (unless the user wishes to modify the driver error exits

before assembly). The handler format will depend upon the program.

Should it wish to take advantage of the information supplied by the

driver, the format is as follows:

(SP) :
2 (SP) :
4 (SF) :
5 (SP) :

6 (SP) :

Return Address)
Return Status
:Srror No. Code
Error Type Code:

Additional Informa­
tion

Stored by rOT Call

generally unique to driver
1 = Recoverable after Operator Action
3 =: No recovery
such as content of Driver,
control Register, Driver Identitv,
etc.

As a rule, the driver will expect a return following the lOT

call in the case of errors in Type 1 but will contain no provision

following a return from Type 3.

3.1.7 General Comment

The source language of each driver has been written for use with the

DOS version of the Assembler which requires certain statements which

will not be accepted by the Paper Tape Software PAL-llA, in particu­

lar: . TITLE ~ . GLOBL. These should be edited out before the source

is URAd. Similarly, an entry in the driver -table gives -the device

name as .~~~5~ 'DT' to obtain a specially packed format used inter­

nally by DOS. If the user still wishes to keep the name, for instance

for identification purposes as discussed in section 3.3, .RAD5.0'

might easily be changed to .ASCII without detrimental effect, or it

can he replaced "",d. th . WORD .0' •

3.2 Drivers Assembled Separa-tely

Rather than assemble the driver with every program requiring its

availability, the user may wish to hold it in binary form and attach

it to the program only when loaded. This is readily possible; the

only requirement is that the star~ address of the driver should be

known or can be determined by the program.

The example in section 3~1.2 showed that the Interrupt Servicing

routine can be accessed through an offset stored in the Driver Table.

The same technique can be used to call the setup subroutines, as

these also have corresponding offsets in the Table, as follows:

3-6

Open 1

Transfer_
Close 1

DRnlER+7
-----±lO­

+11
+12 Special Functions 1

The problem, of course, is the start address. There is always

the obvious solution, that of assembling the driver at a fixed loca­

tion so that each program using it can immediately reference the

location chosen. This, however, ceases to be convenient when the

program itself has to avoid the area given to the driver. A more

general method is to relocate the driver as dictated by the program

using it, thus taking advantage of the position-independent nature of

the driver. The Absolute Loader, described in the Paper Tape Soft­

ware Handbook (DEC-II-GGPB-D), Chapter 6, provides the capability of

continuing a load from the point at which it ended. Using this

facility to enter the driver immediately after the program, the pro­

gram itself might contain the following code to call the subroutine

to perform the transfer illustrated in section 3.1.3:

PRGEND:

MOV
ADD
MOV
ADD

CMP
MOV
CLR
MOVB
ADD
JSR

.END

PC,Rl
#PRGEND-. , Rl
PC,R,0
#TABLE+12-.,R.0

- (R,0) , - (R.0)
R,0,@Rl
-(SP)
1.0 (Rl) ,@SP
{SP)+,Rl
PC, @Rl

iGET DRIVER START ADDRESS

;GET TABLE ADDRESS
i& SET UP AS SHOWN
i ••• IN SECTION 3.1.3

iFINAL POINTER ADJUSTMENT
;STORE IN DRIVER LINK
;GET BYTE SHOWING ...
i ... TRANSFER OFFSET
iCOMPUTE ADDRESS
iGO TO DRIVER

This technique may be extended to cover situations in which

several drivers are used by the same program, provided that it takes

account of the size of each driver (this being already known because

of prior assembly) and that the drivers themselves are always loaded

in the same order.

For example, to access the second driver, the above sequence

would be modified to:

lIf the routine is not provided, these are .0.

3-7

MOV
ADD
ADD

DVRlsz=
PRGEND:

.END

PC,RI
#PRGEND-. ,Rl
#DVRISZ, Rl

iGET DRIVER 1 ADDRESS

iSTEP TO DRIVER 2

An alternative method may be to use the Relocatable Assembler

PAL-lIS in association with the Linker program LINK-lIS, both of which

are available through the DECUS Library. The start address of each

driver is identified as a global. Any calling program need, therefore,

merely include a corresponding .GLOBL statement, e.g., .GLOBL DT.

3.3 Device-independent Usage

As mentioned earlier, the drivers are designed for use in a device­

independent environment, i.e., one in which a calling program need not

know in advance which driver has been associated with a table for a

particular execution run. One application of this type might be to

allow line-printer output to be diverted to some other output medium

because the line-printer itself is currently not available. Another

might be to provide a general program to analyze data samples although

these on one occasion might come directly from an Analog to Digital

converter and on another be stored on a DECtape, because the sampling

rate was too high to allow immediate evaluation.

As a rule, programs of this type should be written to cater for all

the facilities that anyone device might offer, but not necessarily all

of them. For instance, the program should ask for start-up procedures

because it may sometime use a paper tape punch which provides them,

even though it may normally use DECtape which does not. As noted in

section 2.1.1, the driver table contains an indication of its capabili­

ties to cater for this situation. The program can thus examine the

appropriate item before calling the driver to perform some action. As

an example, the code to request start-up procedures might be (assuming

R~ already set to List Address) :

MOV
TSTB
BPL
MOV
CLRB
MOVB
ADD

#DVRADD,Rl
2 (Rl)

NOOPEN
R~, @Rl
- (SP)
7(Rl) ,@SP
(SP)+,Rl

;GET DRIVER ADDRESS
;BIT 7 SHOWS ...
j ••• OPEN ROUTINE PRESENT
iSTORE TABLE ADDRESS
iBUILD ADDRESS
; .~.OF THIS ROUTINE

3-8

JSR PC,eRI

NOOPEN:

i ••• & GO TO IT
iFOLLOWED POSSIBLY 3Y

-lWA_LT_Al'.J'hL COJ-l:t'_~~':['I OK __ _
; PROCESS ING
iRETURN TO COMMON OPERATION

Similarly, the indicators show whether the device is capable of

performing input or output or both, whether it can handle ASCII data

or Binary data, whether it is a bulk storage device capable of support­

ing a directory structure or is a terminal-type device requiring

special treatment and so on. Other table entries show the device

name as identification and how many words it might normally expect

to transfer at a time (in 16-word units). All of the information may

readily be examined by the calling program, thus enabling the use

perhaps of a common call sequence for any I/O operation, as for

example:

WAIT:

IOSUB:

MOV
JSR
BR
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD

MOV
MOV
TST

MOV
ADD
CLR
MOVB
ADD
JSR
RTS

DVRADR, R5
R5, IOSUB
WAIT
l~
1~3
BUFFER
-256 .
4~4
RETURN
~ ,

@SP,R~
R5 ,RI
(RI)+

@Rl,Rl
R~,RI
- (SP)
@RI,@SP
R~, @SP
PC,@(Sp)+
R5

i SET DRIVER STi\RT
i CALL SET V? S rm
i SKIP TA?L? FOLLm<JING ON RETURN
jTRANSF3R Rr.QUlRED
iBLOCK N0.
iBUFFER ADDRESS
iWORD COUNT
iREAD FROM UNIT I
iEXIT ON COMPL~TION
iRESERVED
i CONTINUE HERE: ...
iWHILE TRANSFER IN PROGRESS

jPICK UP DRI?ER ADDR
iSET POINTER TO LIST
i BUMP TO COLLECT CONTE~JT
iROUTINE CHECKS ON DEVICE ..
i •• CAPABII,ITY USING RI
i •• TO ACCESS LIST &
i •• R~ THE DRIVER TABLE
i IF O. K •••
;GET ROUTINE OFFSET

JUSE IT TO DUlL!)
i ... ENTRY POINT

iCALL DRIV:2:R
jEXIT TO CALL?R

The calling program, or a subroutine of the type just illustrated,

may also wish to take advantage of a further fe~ture mentioned earlier:

the fact that when a driver is already occupied its fi~st word must be

3-9

non-zero. The driver itself does not clear this word except in

special cases shown in the description for the driver concerned. If

the program itself always ensures that it is set to zero between

driver tasks, this word forms a suitable Driver-busy flag. Under DOS,

in fact, the program parameter list is extended to allow additional

words to provide linkage between lists as a queue of which the list

indicated in the driver first word is the first link.

The preceding paragraphs are intended merely to indicate

possible ways of incorporating the drivers available into the type of

environment for which they were designed. The user will probably

find others. However, he should read carefully the more detailed

descript.ion of the driver structure i n l~.ppendix A and the individual

driver specifications before determining the final form of his program.

In particular, one general word of warning is appropriate here.

Although most drivers normally set up an operation and then wait for

an interru~t to produce a completion state, there are some cases in

which the driver can finish its required task without an interrupt,

e.g., "opening" a paper-tape reader involves only a check on its

status. Moreover, where "Special Functions" are concerned, the

driver routine may determine from the code indicated that the function

is not applicable in its case and will, therefore, have nothing to do.

In those cases, the driver clears the intermediate return address from

the processor stack and takes the completion return immediately.

Special problems may arise, however, if the driver concerned may be

covering several tasks, any of which may cause a queue for the

driver's services under DOS. To overcome these problems, the driver

expects to be able to refer to flags outside the scope of the list

described so far. This may mean that a program using such a driver

may also need to extend the list range to cover this possibility.

Extreme care will then be needed.

3-10

APPENDIX A

-- ----------I-O DRIVERS WITHIN THE -DISK OPERATING SYS*IiEM

The principal function of an I/O driver is to satisfy the requirement

of a Monitor processing routine for the transfer of a block of data in

a standard format to or from the device it represents. This will in­

volve both setting up the device hardware registers to cause the trans­

fer and its control under the interrupt scheme of PDP-II, making due

allowance for peculiar device characteristics (e.g., conversion to or

from ASCII if some special code is used).

It may also include routines for handling device start-up or

shut-down such as punching leader or trailer, and for making available

to the user certain special features of the device, such as rewind

of magtape.

A.I Driver Structure

In order to provide a common interface to the monitor, all drivers

must begin with a table of identifying information as follows:

DVR: BUSY FLAG (initially ~)

FACILITY INDICATOR (expanded below)

Offset to Standard Buffer Size
Interrupt Routine* in 16-word Units.

offset to Priority for
OPEN Routine * Interrupt Service

Offset to Offset to
CLOSE Routine * Transfer Routine *

Space Offset to
Special Functions*

DEV NAME (Packed Radix-5~)

Offsets marked * will enable calling routine to
indicate routine required. They will be con­
sidered as an unsigned value to be added to the
start address of the driver. This may mean that
with a 256 maximum, the instruction referenced
by the offset will be JMP or BR (routine).

Bits in the Facility Indicator Word define the device for moni­

tor reference:

A-I

SPECIAL STRUCTURES GENERAL STRUCTURE

I I
File- t j' \
structured

Device DEC­
tape (or
similarly
reversible)

Unu~d .J IJ
"Terminal"
Device

Contains OPEN

contains CLOSE ----~

contains SPECIAL-

User

Output
Device

Input Device

Binary Device

ASCII Device

The table should be extended as follows if the device is file-

structured:

BLOCK USED AS MASTER FILE DIRECTORY

POINTER TO BIT-MAP IN MEMORY Unit ~

}

Similar Bit-Map
Pointers for
Multi-unit
Devices

The driver routines to set up the transfer and control it under

interrupt, and possibly for OPEN, CLOSE, and SPECIAL, follow the

table. Their detailed operation will be described later.

A.2 Monitor Calling

When a Monitor I/O processing routine needs to call the driver, it

first sets up the parameters for the driver operation in relevant

words of the appropriate DDBl, as follows:

~. -----
XYZ: -

SPECIAL FUNCTION CODE

DEVICE BLOCK NUMBER.

MEMORY START ADDRESS

WORD COUNT (2's Complement)

TRANSFER FUNCTIONS (expanded below)

COMPLETION RETURN ADDRESS

(DRIVER WORD-COUNT RETURN) Set to ~

,...---------------------_._---

(User Call Address)

(User Line Address)

IDataset Data Block - in full, a 16-word table which provides the main
source of communication between the Monitor drivers and a particular set
of data being processed on behalf of a using program.

A-2

The relevant content of the Transfer Function word is as follows:

+ Used by Driver
to indicate
Hardware Parit~
Fail

I ,I (
,~

DECtape •
reverse I

DEVICE
UNIT

TT Echo Control

i t t{.0=A~CII I l=Blnary

I Transfer OUT

Transfer IN

Provided that the Facility Indicator in the Driver Table de­

scribed above shows that the driver is capable of satisfying the re­

quest, both from the point of view of direction and mode and of the

service required, the Monitor routine places in Register ~ the relative

byte address of the entry in the Driver Table containing the offset to

the routine to be used (e.g., for the Transfer routine, this would be

1.0). It then calls the Driver Queue Manager, using JSR PC,S.CDB.

The Driver Queue Manager ensures that the driver is free to

accept the request, by reference to the Busy Flag (Word .0 of the

driver table) . If this contains .0, the Queue Manager inserts the

address of the DDB from Register .0 and jumps to the start of the

routine in the driver using Register 1 content to evaluate the address

required. If the driv~r is already occupied, the new request is

placed in a queue linking the appropriate DDB's for datasets waiting

for the driver's services. It is taken from the queue when the driver

completes its current task. (This is done by a recall to the Queue

Manager from the routine just serviced, using JSR PC,S.CDQ.)

On entry to the Driver Routine, therefore, the address following

the Monitor routine call remains as the "top" element of the processor

stack. It can be used by the driver in order to make an immediate

return to the Monitor (having initiated the function requested), using

RTS PC. It should also be noted that the Monitor routine will have

saved register contents if it needs them after the device action. The

driver may thus freely use the registers for its own operations.

A-3

When the driver has completely satisfied the Monitor request,

it should return control to the Monitor using the address set into

the DDB. On such return, Register ~ must be set to contain the

address of the DDB just serviced and since the return will normally

follow hardware interrupt, Registers ~-5 at the interrupt must be

stored on top of the stack.

A.3 Driver Routines

A.3.l TRANSFER

The sole purpose of the TRANSFER routine is to set the device in

motion. As indicated above, the information needed to load the hard­

ware registers is available in the DDB, whose address is contained in

the first word of the driver. Conversion of the stored values is,

of course, the function of the routine. It must also enable the

interrupt; however, it need not take any action to set the interrupt

vectors as these will have been preset by the Monitor when the driver

is brought into core. Having then given the device GO, an immediate

return to the calling processor should be made by RTS PC.

A.3.2 Interrupt Servicing

The form of this routine depends upon the nature of the device. In

most drivers it will fall into two parts, one for handling the term­

ination of a normal transfer and the other to deal with reported

error conditions.

For devices which are word or byte-oriented, the routine must

provide for individual word or byte transfers, with appropriate

treatment of certain characters (e.g., TAB or Null) and for their

conversion between ASCII or binary and any special device coding

scheme, until either the word count in the DDB is satisfied or an

error prevents this. On these devices, the most likely cause for

such error is the detection of the end of the physical medium; its

treatment will vary according to whether the device is providing

input or accepting output. The calling program will usually need to

take action in the former case and the driver should merely indicate

the error by returning the unexpired portion of the word count in

DDB Word 7 on exit to the Monitor. Output End of Data, however,

will, in general, require operator action. To obtain this, the

driver should call the Error Diagnostic Print routine within the

Monitor by:

A-4

MOV DEVNAM,-(SP) iSHOW DEVICE NAME
MOV #4~2,O(SP) iSHOW DEVICE NOT READY
IOT iCALL E.D.P.

----------- ----- --- -- ----------

On the assumption that the operator will reset the device for further

output and request continuation, the driver must follow the above se­

quence with a Branch or Jump to produce the desired resumption of the

transfer.

Normal transfer handling on blocked devices (or those like R~ll

Disk which are treated as such) is probably simpler since the hardware

takes care of individual words or bytes and the interrupt only occurs

on completion. Errors may arise from many more causes, and their

handling is, as a result, much more complex and device dependent. In

general, those which indicate definite hardware malfunctions must

lead to the situation in which the operator must be informed by

diagnostic message and the only recourse after rectification will be

to start the program over.

At the other end of the scale there are errors which the driver

itself can attempt to overcome by restarting the transfer - device

parity failure on input is a cornmon example. If a retrial, or

several, still does not enable a satisfactory conclusion, the driver

should normally allow programmed recovery and merely indicate the

error by Bit 17 of DDB word 5. Nevertheless, because the program may

wish to process the data despite the error, the driver should attempt

to transfer the whole block requested if this has not already been

effected. Between these two extremes, the remaining forms of error

must be processed according to the type of recovery deemed desirable.

Whether the routine uses processor registers for its operation

or not will naturally depend on considerations of the core space saved

against the time taken to save the user's content. However, on

completion (or error return) to the Monitor, as indicated in an earlier

paragraph, the calling routine expects the top of the stack to contain

the contents of all Registers ~-5 and Register ~ to be set to the

address of the DDB just serviced. The drive must, therefore, provide

for this.

A. 3.3 OPEN

This routine need be provided only for those devices for which some

hardware initialization is req~ired by the user. It should not

A-5

normally appear in drivers for devices used in a file-oriented manner.

Its presence must be indicated by the appropriate bit (Bit 7) in the

driver table Facility Indicator.

The routine itself may vary according to the transfer direction

of the device. For output devices, the probable action required is

the transmission of appropriate data, e.g., CR/LF at a keyboard

terminal, form-feed at a printer, or null characters as punched leader

code, and for this a return interrupt is expected. The OPEN routine

should then be somewhat similar to that for TRANSFER in that it merely

sets the device going and makes an interim return via RTS PC, waiting

until completion of the whole transmission before taking the final

~eturn add~ess in the DDE.

On the other hand, an input OPEN will likely consist of just a

check on the readiness of the device to provide data when requested.

In this case, the desired function can be effected without any interrupt

wait. The routine should, therefore, take the completion return immed­

iately. Nevertheless, it must ensure that the saved PC value on top

of the stack from the call to S.CDB is appropriately removed before

exit. In the case of drivers which can only service one dataset at a

time (i.e., Bit ~ of their Facility Pattern word is set to ~) and can

never, therefore, be queued, it will be sufficient merely to use

TST (SP)+ to effect this. A multi-user driver, however, must allow for

the possibility that it may be recalled to perform some new task al­

ready waiting in a queue. This is shown by the byte at DDB-3 being

non-~. In this case, the intermediate return to the routine originally

requesting the new task has already been made directly by S.CDB. The

address now on top of the stack is the return to the routine, whose

task the driver has just completed and which has called S.CDQ to

dequeue the driver. This return must be taken when the first routine

has performed its Completion Return processing. Moreover, this first

routine expects to exit as from an interrupt. When a driver is recalled

from a queue, it must simulate this interrupt. A possible sequence

might be:

EXIT:

MOV
MOV
TSTB
BEQ
MOV
MOV
SUB
JMP

DRIVER, R~
(SP)+,R5
-3(R~)
EXIT
@#177776,-(SP)
R5,-(SP)
#14,SP
@14(R~)

jPICK UP DDB ADDRESS
jSAVE INTERIM RETURN
iCOME FROM QUEUE?

iIF SO, STORE STATUS
i ••• & RETURN
;DUMMY SAVE REGS

A-6

A.3.4 CLOSE

As with OPEN, this routine should provide for the possibility of some

form of hardware--shut-down such as the punching of trailer code and

is not necessary for file-structured devices.

to be a requirement for output devices only.

Driver Table Facility Indicator (Bit 6) must

Moreover, it is likely

If it is provided,

be set.

Again, the probable form is initialization of the hardware action

required, with immediate return via RTS PC and eventual completion

return via the DDB-stored address.

A.3.5 SPECIAL

This routine may be included if either the device itself contains the

hardware to perform some special function or there is a need for

software simulation of such hardware on other devices, e.g., tape

rewind. It should not be provided otherwise. Its presence must be

indicated by Bit 5 of the Facility Indicator.

The function itself is stored by the Monitor as a code in the

DDB as shown earlier. When called, the driver routine must determine

whether such function is appropriate in its case. If not, the

completion return should be taken immediately with prior stack clear­

ance, as discussed under OPEN. For a recognized function, the

necessary routine must be provided. Again, its exit method will

depend upon the necessity for an interrupt wait or otherwise.

A.4 Drivers for Terminals

The rate of input from terminal devices is normally dictated externally

by the operator, rather than being program-driven; moreover, for both

input and output, the amount of data to be transferred on each

occasion may be a varying value, i.e., a line rather than a block of

standard size. Furthermore, there may be problems with the conflict

between echo of input during output. As a result, drivers for such

devices will demand special treatment.

Normal output operation, i.e., .WRITE by the program, is handled

by the Monitor Processor. On recognizing that the device being used is

a terminal, as shown by Bit 8 of the facility indicator, this routine

always causes a driver transfer at the end of the user line, even

though the internal buffer has not been filled. The driver, however,

is given the whole of a standard buffer, padded as necessary with

A-7

nulls. Provided the driver can ignore these, the effect is that of

just a line of output.

Input control on the other hand, must remain driver responsibil­

ity. Overcoming the rate problem will, in most cases, require circu­

lar buffering within the driver until demanded by the Monitor. At

this point, transfer of data already in should occur. If this is

sufficient to fill the monitor buffer, the driver can await the next

request before further transfer onward. If insufficient, it should

operate as any other device and use subsequent interrupts to continue

to satisfy the Monitor request. It must, nevertheless, stop any

transfer at the end of a line in normal operation. In order to allow

the Monitor to continue, the driver must simulate the filling of the

buffer by null padding (of no consequence, since terminals are by

nature charQcter-based). (Normal operation, of course, means response

to user .READ's and is indicated by the size of the buffer to be

filled, namely the driver standard. Should the user be requesting

. TRANS , the buffer size will varv from the standard in all likelihood

and the driver may then assume he requires operation as a normal

device -- complete buffer fill-up before return.)

Where input echo is a further complexity, there will doubtless

be other requirements. If the echo is made immediately after the

input, it may be desirable to have a second buffer to cacer for the

likely situation that the echo will not exactly match its origin.

On the other hand, if the echo is held for any length of time, perhaps

to provide correct relations between program-driven output and the

echo, the second buffer could be too expensive. A larger input buffer

and routines to allow for several outputs to one input character while

sitting on that character might be more convenient. The conflict

between such echo and program-driven output will require controlled

switching within the driver input and output handlers.

A-8

DEC-II-RITA-D

PDP-II

Tell DECTAPE DRIVER

MARCH 1971

SUPPLEMENT TO:

PDP-II D~VICE DRIVER PACKAGE

DEC-II-NIZA-D

COPYRI GHT © 1971 BY Dl GITAl EQUI PME:'~T CORPORATION

THIS DOCUMENT IS FOR INFOR~ATION PURPOSES
ONLY AND IS SUBJECT TO CHANGE WITHOUT NOTICE,

~.'" L~1i
PROGRAM
c..IBRARV

, ,
i
l

DRIVER for TCII DECtape Control

The principal function of the TCll Driver is to transfer data between

the hardware control and a memory area specified by a calling Monitor

routine on behalf of a user program. The number of words transferred,

the DECtape transport, the absolute starting block on the tape, and

the direction of tape travel in each case are all determined by the

calling routine.

As required by the standard Monitor-driver interface for all de­

vices in general and, as DECtape will be handled as such, for file­

structured devices in particular, the first part of the driver consists

of two consecutive tables:

a) Table of descriptors and pointers to routines included.

b) File-structured usage data

All data transfers utilize the normal read/write capability of

the PDP-II NPR facility. The driver contains a set-up sequence to

initiate a search for the requisite start block and routines then to

handle interrupts for continuation of such search and, if this is

successful, the subsequent data transfer specified.

As a file-structured device, the opening and closing of files

are the responsibility of the Monitor file management routines. There

are therefore no OPEN or CLOSE routines.

Also, no routine to handle SPECIAL FUNCTIONS is currently pro­

vided. This could be added later if it is found desirable to simulate

the normal operation of some similar device, e.g., rewind as for Mag­

netic Tape.

1. Initial Tables

Relevant entries for this driver are as follows:

WORD ~:

WORD 1:

~ initially-set to address of DDB for dataset being ser­
viced when busy, by calling routine.

Facility Pattern = 140037 signifying:

a) File-structured Device
b) DECtape (or similar reversible medium)

1

WORD 2:

WORD 3:

WORD 4:

WORD 5:

c) Capable of Input or Output in either ASCII or Binary
on more than one dataset at a time.

a) Standard Buffer Size = 16 X l6-word units (i.e., 1
standard DECtape block).

b) Offset to Interrupt Service routine.

a) Priority for Interrupt Service = 7

b} ¢ [No OPEN routine included]

a) Offset to TRANSFER Set-up routine

b) ~ [NO CLOSE routine included]

~ [NO SPEC FUNC routine presently]

WORD 6: Name 'DT' in RADIX 50 format.

WORD 7: Start Block of Directory Structure = 100

WORDS 1¢-17: Reserved for pointers to in-core Bit Maps for each of
8 transports supportable by TCll.

2. Processing Routines

2.1 Transfer Set-up

A Monitor routine effectively calls for transfer set-up by JSR PC, XXXX

where XXX X is the start address evaluated from the offset in WORD 4 of

the table. The address of the DDB containing relevant parameters will

be stored in WORD ~ of the table.

The set-up routine will first set a counter for the number of re­

turns to be made in the event of parity or timing failures in tape

operations (8-9). Using the given DDB address, it then extracts the

following information and actions it as shown:

(i) Block No. (DDB+4) - two copies are stored internally as con-

(ii)

(iii)

trols during Start Block search as detailed below.

Word Count & Memory Address (DDB+6 & 10) - these are stored
immediately in the TCll WC & BA registers for use
as soon as the Start Block has been found.

Function (DDB+12) - the requirement for Read or Write is con­
verted from the standard Monitor specification (4
or 2) into the corresponding DEC tape value (4 or
14) and stored internally until completion of block
search.

(iv) Tape Unit & Motion {DDB+13}. The bits showing these are as-
sociated with the DECtape Search function [3J and
are set into the TCll Control Register to initiate
the search for the start block.

2

The set-up routine also sets two switches appropriately:

______ al ____ I.n_QJJy ___ tx_a_I"' ... s_f_e_r~_t.w_o __ t-y£.e_s __ o'£ ___ i.n_t_e_rLllP-t_.may_o_C.C.llr.+-~ __ -----­
first at each block encountered during the search for
the start specified; the second thereafter arising when
the transfer has been completed. The switch is initial-
ly set for the first type.

b) The tape is st'arted in the eventual transfer direction.
Turn-around, however, may be necessary if the tape is
badly positioned. The second switch is set initially
to reflect the start direction in order to provide ade­
quate control during such turn-around.

The driver then sets the TCII Control Register for the search, and

restores control to the calling Monitor routine, via RTS PC, to await

its first interrupt.

As permitted by the General Driver Spec, the set-up routine makes

full use of the processor registers, without saving or restoring their

original content.

2.2 Interrupt Servicing - Search Mode

Provided that a tape block-mark is encountered without error, the

search interrupt servicing routine compares the number found (from

TCll Data Register) with one copy of that for the required block,

stored internally by SET-up. If the comparison shows that current tape­

motion will eventually lead to the required block, the routine exits

immediately and waits for a subsequent interrupt to show that the

transfer may begin.

If tape-motion is in the wrong direction, the routine resets the

TCll Control register to produce tape turn-around on exit. A second

turn-around will now be essential for a transfer in the require direc­

tion. The routine therefore modifies, appropriately, by 2 the copy of

the block number required used in the comparison. This factor is pro­

vided so the tape is sufficiently positioned beyond the block required

to ensure that it will be up to speed at the right point after the sec­

ond turn. For example, in order to transfer Block 100 forward, the

first turn will seek Block 76 in reverse.

An equal comparison might then result after a single turn-around.

The block number found is, therefore, checked against the second, un­

modified, stored value. If not equal, a turn-around has occurred: the

TCll is reset for the second time and the first stored number is re­

stored to its original value. When both stored values and the block

3

found are all equal, the correct tape travel is assumed and the trans

fer is effected by moving the stored function into the Tell control

(byte only to avoid hardware delay imposition). The interrupt switch

is changed to show that the operation is now in Transfer Mode.

In the event of an error in Search Mode, the Tell Test Register

is examined. If this shows that the cause is "End Zone Reached", the

turn-around procedure is again effected, since such a condition is

initially the same as being, for example, at Block 102 when 100 is

wanted forwards. All other hardware-reported errors are treated as

discussed in a subsequent paragraph.

Another type of error may occur but this can only be detected by

software, i.e., a failure to find the block either because its number

on the tape is corrupted or the one required is outside the range of

the tape. For both situations the tape might rock endlessly owing to

the turn-around algorithm. The search interrupt processor therefore

counts the number of times a turn is effected. It gives up at the

sixth attempt and requests printing of an F~16 message with the fail­

ing Block Number as evidence.

To avoid unnecessary time wastage in the storage and retrieval

of their contents, the normal search interrupt processing does not

use processor registers.

2.3 Interrupt Servicing - Transfer Mode

The normal cause of an interrupt in transfer mode is the satisfactory

completion of the whole of the data transfer specified. The driver

must then recall the monitor routine which requested the transfer.

Because this routine may have surrendered control to the user program

during the period of the search and transfer operations, the driver

must assume such is the case and save all register contents before

setting R~ to the DDB address from its WORD ~ and taking the completion

return set into DDB+14.

The interrupt may also occur if an error is determined by examina­

tion of the Tell Test Register. In Transfer Mode, two types of errors

specifically processed are Party or Timing Failure. Following either

of these, the servicing routine restarts the whole process over from

the original block search until at least 8 attempts to produce a satis­

factory transfer have been made. If these all fail, the routine re­

turns a flag indicating the error in Bit 15 of the relevant DDB+12.

4

It checks, however, whether the failure occurred at an intermediate

block of a transfer involving several blocks. If such is the case, it

endeavors to provide a sat; sfacto~~Cl_ns:ter of __ the Le~_~tj,._ni~_b_Lo_ck_s_,,---_______ _

It then recalls the monitor at the completion return address.

Of the other types of error, transfer mode servicing also handles

Non-existent Memory and End Zone. Both of these conditions are assumed

to be the result of a programming error and cause printing of a fatal

error message F~15 with User Call Address as evidence.

2.4 Recoverable Errors

In both Search and Transfer modes, for errors not especially noted, a

general routine is used to request printing of a diagnostic message

requesting operator action. SEL and ILO errors are assumed to indicate

a "Device Not Ready" state for which the device name (DT) is support­

ing evidence for the message 'A~~21. For the rest, and Mark Track

Errors in particular, which might be resolved by changing tapes -- the

message 'A~~31 is printed with the TCII Test Register content as

evidence. For all these errors, the operator might request program

resumption by a Monitor "Continue" command. The driver restarts the

whole search and transfer process if this occurs.

3. Implementation

a. Comments on the driver listing show general methods of imple­
mentation. It should be noted, however, that in several in­
stances, in-line code is modified. In particular, ,the two
switches mentioned under "Setup" are variable Branc~ Instruc­
tions and the internal storage of data has already been in­
dicated. This means first that the driver is not reentrant -
an unlikely requirement when one control may only service the
transport at a time, even though eight may be attached to it.
In the second place, the driver, as written is not immediately
usable in a ROM.

b. The priority level for interrupt servicing should also be
mentioned. The hardware level is 6; the initial software
level, however, is set at 7. This is to ensure that there
will be no delay due to any other interrupt in the critical
case in which the required block number has- been found and a
change of function from Search to Read or Write must occur
within 400 msecs. The interrupt routines themselves lower
the level to 6, if the critical case is not being actioned.
This will mean that other interrupts may be delayed up to
50 msecs. in the worst case, the critical one.

c. A further minor point of interest is that the tape is always
stopped at the end of each transfer (or when an error occurs
to prevent this) in order to maintain correct tape position­
ing. A program STOP request is issued to effect this in all
cases ,even though the hardware m_ay be set l.lP to provicie for
it. However, resetting the TCII Status Register for this
purpose can remove error conditions. The content of this
register is, therefore, examined (or is saved for later
examination) befo~e the STOP command is given.

5

4. Program Listing
A complete assembly listing of the driver follows.

:COpyQII'~Hr 1971, '1tr.ITAL F(J JIP~j::"NT CO~p., w.AV·J~QD, ~A~S,

: V f::: q S TO'" '·1 I.! \1 8 F R : V I')! 0 t A

.rITLf-' Df

.GL'1HL Of
,nE~TAPf nRIVFR vFR~IJ~ 1 21 JULV 70

P~E~F~TLY cnNTArNR 0NLY RnUTI~E F~R TQAMSFEQ
:
:~TANrARD D~IVER TABLE:

? '7' 0 'it [V ~ ~ (' ~ Li: ')1(.'1 J T : • '>J 0 R 0 0
~~~·~0? 037 .iYTE j7,J~~ 
~ii" 01. k,i:~ 3 \!tI? 

... ) ~:. r', :l (, ~ :, 1 t' 
~i i-' 0 ;"') ~-l ~ 3 d 0 
;j ~:' ~F'" [! 7 ~: q k1 
t.l00 r'lP l".4e 
:i:W0!:'111 rOle 
:'H'0-:-\1~ v,'-4V 
II r: ;c ,il 1 ~ '-, /I k' 
~'i 0 0' 1 4 ~ 1 foi V 4 ~> 
lO'W~l~ r;f~'(I'l"l\V 

.. M.I k: (~ 2 '" "'1 ~ ~ Y"~ k: 
,;)// ~ 'II 2 ? " VI ~ y' ~ 0 
!I r '!h? 2 t1 .~, V !'1 ~, ~ ~, 

;,) 0 k; ., 2 ,:. 1 \0 (!i .... ,~ ~, 

\'~ 0 \(1 113 ~ ~ f' r 1'1 I~ \(1 

M'0"'.32 "0/:" 1~'· 

,/)0t1 1 jd 'H; "k' "k' 
Ii.! r. ~ ,~ ,,~ F .~ ;'! (' ~: ... , y) 

J T • ~I A'~: 

~H~ 0 ;·~4 f7 

!:!Hll(1~44 

;;'H~i(j~5? 

~1 (h' O! 5 <1 
(1r,.1ki'i15~ 

i,':~~~1~61~ 

~1~'k; vHjl1 

~)r'i{)i·~6fi 

')~'~~"'77 

;;;;~""~7 .d 

(;(;' io:l t ~~ 

~;t k'. c· ~ :t l{ ~ r~ :: ~ 0 
n ~, n " ,A, 1 . .( 1. :I 'Yo 1 
Hd~~'~~2 i<~="-'2 

t~ilC?·,,:i!3 ~:3=~3 

:":4 0 ~ ~~ ;:~ 4 ~ 4 = % 4 
~'V['l,V'''5 ~5:1Y.5 
'~~)("L:!"1!6 SPlln:6 
,., v' (;' '" l? 7 p C = 'Y. 7 

:~ET LIP 
~117~7 DT.TFPz 
;~ k: r,~ 4" 4 
1;' 1 ~7(~1{) i)T .PR1: 
t7771~1 
~1271~1 

1773 4 0 
"l\f\~~·11 
r:!2~020 

'12e~7 
~v:;!12I?12 

(~ 12t'111 
-112v' 41 
t ~5~: 57 ;,)T.PR2: 
"~02 t 4 
:;'1 F:t 7 '57 
·'1~r.;1f;6 

'~0fJ 166 
~~1~7'''3 
""~?o~1i?0 

.4YTE 

.9YTE:. 

.~YTE 

• '3Y TE 
,lYT[ 
.~YTE 

.9YTE 

.:;YTE 

.~Ar5r 

.4QPD 
•.• j 0 p. D 

1 Fi " 
OT.J;4T .. D·' 
34Vi 
~ 

DT,TF9·I)T 
.:~ 

,,~ 

~.1 

t 11 T I 
DT.r,zt~ 

:1,0,0,0,0~;(\,!Ii,~ 

T~~A\tSF"EP: 

W)V CtPC,QT.RTC 

''1 ')v DT,Ra 

,-I i') v #DT"C8A,Rl 

CLR ~~1 
C1P CQ0)+,(Q0,+ 
IT1 ,") V (P0)+,DT.RR1 

1"1;)'1 (~~J)+,(IlRl 

j'11V (Q"-1)+,.(R1) 
CLRB DT.INT 

v, ,"') V DT.FlRrJ,r)T.BCK 

'·1 "1 V tiu~r",Q3 

6 

:BUSV FLAG (t)"B AJ')D~ :,~HEN 8!JSV) 
rF"ACILITV INOTCAT~R 

,~TD R,'JFF SIZF.:/1~. 
,POI~TFR TO I~T SVCE 
JINT SVCF PQlnRTTY 
,DESPATCH TARLE •••• 
' ••• Fn~ T~ANSFE~ O~LY! 

, F ! ')( E f) ,,-; F !) P L I') C K 
:POINTEQS FOR ATT ~AP ACCES' 

J SET qETRV COIJNT 

rGET ADDRESS nF DOB ..... 
: •• , & ~F HWR SLOCK 

,SKTP UqER LINE IN nOB 
,SAVE BLOCK NO FOR LATER 

:SET QEAOV ~~ F.'~ OR Y AnOR ••• 
: ... & !I.)O~D COU~JT 

JSET I!~T' RUPT sw. TO SRCH 

rSE.T ~LK CTRL FOR Sf?CH 

: IJSED 1.'1,) ··.IEXT SEQ!JE~ICE 



,.~ [' ~" 1 ~,;, 11 r:- .~ ~ 7 
1 r f~ 1 ~ 0 

1'1')V R1,nr.TAC 

~)j.-F! \:~ .• ~..--i, '---'1--"~I-----'l~Hl--i-1--<-,~:--,14-b----'~~~--~, _ ( 5 I) ) 

~0~11~ ~~2716 BTC #170341,'~P 
, 7 i~ J ~ 1 

M~ ~J 1 2 f\ ,-" e r,: j t t 
.:Hh·1 2:? 131 f 1 7 
.. H~~:j 1. 24 ;;~0 t 4:-2 
\;H;i~j 12""':",'27 t 6 

.~ ~ (~v12 

vFhl1 3:? 111657 
:1~' !?14 4 

"HHr. ,. j " 1 1 1 7 1 f.. 
;~H~ \:.) ~ 4 r. ~ « f, 3 r,., :3 
(:1 ~~ k,' 1. 4 , ," :3 , f:,:? 7 

:.\f~dr:~~' 

~; '1~) 1. 4 f., "l', 1 V ':'11 
;.)C'1~1!j"" 1 05203 
~J C' l~) 1 5? 1. 1 t1o".5 0 7 

"(:;(,\~, 2 j 

HIS 
H I l~\ 
br::a 
A~O 

.10vB 
A5L 
BIT 

H ~JF 
I 'JC 
rFWI3 

.R3,"SP 
.Sp,CtPC 
.+n 
4t?,~SP 

~PC,~SP 

RJ 
~SP, #4(A[)I~ 

.+4 
RJ 
R,~,r')T.SSw 

,~fT i,~ nl~Er"TIO'1 8; Flmc 
:CLEAo ~OSS. GAQSAGE 

:_DD IN I~T E~A elT 
: [oj R 1 T F: q f" D ? 
:(RFA~ ~.K. ALRDY1***** 
rIF S~ GET DE~TAPE ~QUlv. 

,RESET FUNC T~ SPC~ (INT FN~) 

;(NCW C0NTAINS 20~r***** 
rTRA.Vr:L FI1R~A,r~D? 

:IF sn q3 NOW 2~1 & sn ••• 
,MAKI~G APL OQ ~~t AS RFQD 

ZH ,,11 5 ~ rll 2 0 4 1 
{' !!~ ~J 1 6;;a ,~ c~ ~~ 2 ;" 7 

N1V Cqpl+,-(Wtl ,SET ~ECTAPE CO~TROL 
RTS ~c J~ETUQN TJ CALL~R FOR N~W 

r /l ~ F t J ~ E n ~ S L T T F R A L ~ Y D R f V 1 ('l U S 1 \I S T P. i jeT I u ~11 1 I 

:r:-4Tr,~R!IFT ~f~\ITC~ (A) - ~FUH~H j-,j PR!"H~~SS: 

~'.!,f, 0 1 6 ~ '1 ~', ~ 7 3 7 
1,77342 

::',\\~In 6'" 1 i(f:1i47J 

J T • 31 P : T ',n 1(1 ~ () T • C C ~4 : C HE C j( ~ TAT II S 

~1J OT.SEP :T~ EgR0R Gn TNVESTIGATf 
It ~~ \::; 1 7 r_ 1 ? ~ 7 n 7 C'1P o~nT.C("lT,I"T.RPQ rr:HFC It QL'1CK F'Otl~," 

17735t, 
~l ~' rll l i 7 ., 

!':~kI1 7~~K' 4 32 t-}'::',J 
~0A?vn 1~~4?6 H~l 

~r~201 JT.SS~=.·t 

0V0'~' 142737 )T.T61: ~rc~ 

177776 
t) ~ \ ~:l ? 1 :" 1;.' (- 2 , 7 

'),0nl"~~' 

A ""~n ,-'. , 

~~~2'2 JT.TAC=.-2 
~0~~1~ 1!~517 S~S
~~0'1~ ~12746 ~lV

'~(,~ 4 (" r" ~

~'h:1?2~ ~1?746

'Ff1rO:2
0~"k.'!??F 1 \t<~v.~7

177747
l '" k· ? 3 ;> h: ~ 4 '1 3
!/W t::' ? 3 ~ :'~ ~~ ~ a 6 6

''; v'i:~~' '~~

~r:s
~i F: G

/'![;V:::!4° "~f:f'416 /'~r:.:G

?; ~'\ 0 ~ 4 ? l f) ? 6 6 7 i) T • T A?: S ' J B
~'~,~pr'?k

0~~'4F ~6?637 A~D

177342
J0~2~2 1~~1~7 R0LR

1,77723
;~ ~\ 02 ti 6 1\t152] 7 0 T • S X T: 1. r J C R

177342
RTI

!) r • g.;- D
!)T.~xT

OT.~1r::R
#40 0 tj,-(SP)

OT.TA2
2(SP)

osp
C::;P)+,OT .P,p',

7

:IF O~E REQD, Ga ACTlnN
: r,fT T() ~UJCk' TI.IP:; WAY?
,(8~L TF T~AV~L 84CK~ARO)
:r'lpr,p P'JT1RTTV.

,IF ~ caN'T ~t~n RL'CK
: I'1THEQ ItJ I ~E '-1US T T !J~'.I 4 RntY'!D

~CHECI(~IRECTtO~J

:IF FWD O~IT NEXT
:IF 8~O. REVEqS~ EVFRYTHl~G

: ALLO'" ? SLKS FOP 2"'0 TURh

~;1L,1CK FOINr) - rHF:Ck' TRAVf-I. Cr"lPQEr.l~
k~ :: .• 0 ~ 6 11 ., '; '2 7 '27 J T • 11 F n: C ~ P It ~.., , Ii:";

"01i1~1 :,~\!

~ (' ,"~' ? ~~

~~:;"2f.6

"'C~("27C

~~ v ~j ? 7 ? ~~' 1 :3 .1 3
.'·:~:'1:":?7t1 t0~2"7

~vc';{l~

0'·· .. 'O.~;;; ~ 1 1 '? 7 ~~ 7
.~ I P0~k'
1.77.342
~i\r3;?2

i)T " q R r = • -1
,)T.ClCK=.-2

h~,IE

1'4CH

.)T.FRI')=.-~

DT,TAl
OT.IHT

,TRAVFL A~ nRTG1NALLV STORFn?

: r F tJ '} T ' .. 111 S T T l.I ~ ~ A r,A TN
;RE5ET INT'RUPT SW FOR TFP

:~OVE I~ CO~RECT FUNC

'~~~1?7n3 8R OT.RXT J ••• & ~O SfT UNCER~AY
J T '\l T E P R : I P T ~ E P VIC F on - Fo? h ~tc; F F ~ COM P LET F. (?):

~iZJA4~~L)T. INT: H~ 2 : JNTFtlQUPT ~~rTrH ••••
· ... ~'r~7?~i
~. t1?7~7

R~ DT.~IP ,FOP S~CH C~MF.S HFREI
~IC~ ~~0,~#177776 :nRCPp~I~RITV

'1;;'" I! .,., ~',

177770
0P\l; .. "i2? -"137<16

~~; C'~' .j 4

i! il; Vi '2f~ i-:~ t1 ~<H) .. T ~R

.) ;:- ¥:r:~ 3 .. : it 1 f:. 7 1 \I" "11 V
1774611

/ ~. ,) 1:3 .1 r~ 1 ? 7 7 1 'A ., V

1. 77 ~~42
o Vi l:13 4 ~ !~ 1 ? 7"" 3 W.I v

1~'(~rl~;'

0r~~4d 'V~711 1ST
.i1.:j ~, 14 ~. 1~' r;>. .4 'i 1 h 'n
M' (H !, r~ 1 1 r' J 1 1 'i1 V R
~':··t.~~' :~1;;i{·A7 .)T"TXT: :~.hl

.I~,? I: 14

R'1,t'(:1P)+
DT,P.O

$'~ 1
f)T.TF.R
RJ,,.Rl
11(RiJ),PC

~ ~ EAR r: H E'~ R n K • 0 F T F P '''' PI f C" I J ~ f !

:~AVE U~EQ RF.~I~TE'R~
: GET 'f)~3 ~DDR

:SET ~AGrC CO~STANT

" " .

;ERROq ~AUSE T~TIRUPT?

:r~ 51 ~0 , SEE ~YV

:nT~fO~ts~ srnp ThPE •••
J • •• ~ T 4 K F. r: n r>1 P L r: T r: RET ~i

,~~l ,:" 15 r .~ i.: '5 7 ~ 7 ,H. g EO: T:; T l' dDT. T S T , TN E ~.J') l n ~J F.?
1773<1~

/!~i,:..q6? u:' r~ 7·'1
i(1 (. : t' 16 A 1 4? 7 ~ 7

.~ ~.~ (-\ £ -1'~
177776

d,"~)~72 ~1174t-

;~ V V.! ~ 7 6 ~ v.. ,1 5 3 6
/) :~ f::: ,1. ~'I r.o. .~ 1 ::? 7 ~11 1

; 77.j4~·
I:' l~ lil ·1 k:; ~ 'i 1 1 1 ,16
i)(~ £j .4 ~ F ~'1;::» 7 4 6

i;, "r~ 4 ~14
.J 9 ((. <,11? ~-".3 2 7 21

'114V"~e'
~~ 1'. k" 4 1 r ',.\ ~ 1 4'" b
,? ~H:l -12 ;~ ;~ 1 :>. 7 1 6

r~i(:o.4~2

,H·' ~} 4 2 4 ~ 1 F:, 7 F. b
17731)4
.~ k(~.~ ~', ~l, 2

l(~0-13? 11 ?711
.~ ~: '" (' , 'j

)T.F){T;

,,) T • S TP;

j'n

£HCI-i

MI1V

J,,~

t-.!'lV

"~JV

11" v

BTf

8F.r~
r1:1V

iA!)V

HrtV.,

DT.TAl
#~~J,tJH17777~

~I1V.RSAV,·C~P1

R';,'(SP)+
#nT.T~T,Rl

"Ql,-CSP)
#DT.IRE.,-(SP)

1 4 r~ 0 ~'" C R 1) +

DT.~np

#OT.NRF.:,@SP

I) T • ri bo. "" , ? (~ P ,

#t%",Rl

8

:Q.K. '1~ PIS T' JR'J AR!1lmD
,!)P(,,!P POTl'1i:HTV

:SAVE Al.L USER ~EGS.

,OFT 'Er;Tfl.Pf STA1'lS

f~E.T UP T0 TEl..L USEP

. At)SUMTNt; H_1&j FA!L!JRF ~
, IF SEL nR ILO
,"I4G\IO~E TAPE F.A.tJL T !"IIF'F.

, ... AS Nf')T RfAr)V

,STI"lP rAPE IN CASE

l~~1~3~ :;e?v;"4 III :GO T1 ~IAG PRINT
"j !l,jLd 4J" ~~'t. ~.·L6"l _':tT ___ R;(J~J_'llL ____ ~_f'_r--l-D~.EJll __ . - --f--Ij-~"'-¥f..-a¥-#---S[~-~i:~"'Uf-~

1774':";"'1
o r,~ ~i1. 4 .<1 , 1 :3 7 ,1 b

~v.;rh df
t: ih:) 45'" ",,,~t1td:,

~~~2i~5' 1(f;~k'~2 

o r' :'1 '.I ;; A (? 1 ~ 7 -1 t5 
t, 7761 i\'.' 

;;,'-l046(' ~1274b 
~014t6 

;aC!l04(j4 ~127~1 

177342 
,,0~:17!' ~eJ'7A0 

"00472 i~3~7dl 
!~3d0iW 

00t"17~ :A~' 1342 
000&;0(:\ ~327'1 

lrt'ld~~ 
:tWVl/:H~4 (~e 1027 

~~\t.~lt:cse~ r.-kH5327 
'~IL t"Wi'lr 
(lI(1:!'\5 t 0 

vH-1\;)512 1 ~~13'52 
:j V!i~ ~ 14 :)5:?7f)~ 

10r.(;~~ 
(~e, r~, 12 

l (~\';' 'i 22 t 1(,1';21 
,~.H~ ,,, ~ 2 A ~161'?2 

('lk'~f·!ii 1 
.H'0;;;,H~ ..... '0171. ~. 

;)"'11;j':;3~ '''6t>3~~ 
~H~0~34 1fl20:12 
~~l-\tl~3" -~C~3~2 

0.N1~4i' 13~321 

'000542 ~e'14~1 

01{W"'44 ~~:5402 

iHH154f3 (AE ""267 
1 77514 

000552 ~e5e~7 
1 '/7732 

&e~1!:556 "'04767 
t77;'H"6 

~)r!l)C;6~ '~~;~7~e 

~Wf1564 '11 H-.d6 
t;~~ifi6f; ~12746 

'~t::'41b 
~~?~11057?. '''v,q71 7 

JqR R~,ftR5 

k'TI 
: QLOCk ~'f)T FOl'Nnr I'J SEARC~: 

)T.9fQ: M1V DT.RC~,-(SP' 

fT~4~~FER Epp0R: 
JT.TtR: BIT ~34~00,~(Pl) 

b 'JE' 
MIT 

DT,EXT 
#lv.r~4r~~" (Pt)+ 

:P~~TOR~ USER RfGS 

J ••• \ HOPE FnR BETTER,tHINGS! 

,GIVE 8LOCK NO, AS EVIDENCE 

,GET CONTQOL ADDRESS 

,TAPF FAILURE/OPfQATOR FAULT? 

_IF SO PRINT & WAIT R~C~VERV 
J END 70"'E/N. E. M'? 

B~E DT,FER rIF S, TREAT AS FATAL 
JRECOV~oAqLE ERRORS (TI~rNG OR PARITY): 

AqL #~ ,RETPIEn ~-9 TI~ES 4L~DV? 

,)T .:~TC=.-2 
tiCC 
RIS 

[)T,RXT 
#10(~0'::l0, l~UHn 

JIF NOT TRY 4r,A11\1 •••• 
,~THFoWTSE qIG~AL ERROR 

. ,STOP TAPE t~ CASE ~11\J ~ 

MI1V 
R3,(Rl)+ 
1(R1),P2 J ••• AlIT CHK ALL lA:"R~S OC,..iF 1 

8F.:G: 
A1D 
S I1 8 

Dr.TXT 
R.3, R0 
C~~)+,R~ 

.+4 

rTF sn THAT'S ITI 
,GO TO ~ORO CnJNT IN OOB 
: ••• ~, !IS~ TO Or:TERMP"E 
, ••• NO. OF BLDC~S DONE 
:CHFCK PRFSE~T TRAvfL 
:ADJUST Nn. ACCORDINGLY 

••• 
8IT~ 
8EQ 
NEG 
It. f)D 

R ;" 
R2,DT.BRQ :~ODl~Y SEARCH START BLOCK 

elf< DT.RTe : ••• 8. RETRV COU~T 

JSR PC,DT.PR2 rGO SET UP NE~ START 

R~ OT,RXT+4 : ••• & ~AITRESULTSl 
1F~TAl FRRORS • E~D ZON~ nR NnNAFXISTENT ~EMOqYJ 
DT.FER: ~OV ,Q0,-(SP) :GIVE CALL AS EvraENCE 

~QV #~T.FRE,·(SP) ,PRINT nIAGNOSIS 

9 



"IT 
DT .. 6FO 
[iT.t~A 

DT.DTR 
DT.F~E 

DT.P~E. 
Ol.P~l 
DT.RXT 
DT.S~'" 
01. r AC 
DT.lEI-< 
Dr.T'LT 
Rl 
R4 
V.~RFS 

, ~1 IS C F L I. AJ E 1:'10 ~ D F" F r N TTl (1~! S ! 
"0 !,~ r .14 V. R ~ A V = ~ 4 
~(if.'·~'1t V.~~ES=d6 

Ae~l~~ DT.01 P =10' 
177J40 OT.TST=t77340 
177342 DT.CCM=177342 
J77346 OT.C~~='77J46 
t77j5~ DT.CDT.1713b0 
~0~4~2 1T.~Rf=A0~ 
~0r4~4 DT.rRE=~04 

~?14t5 ~T.FRF=1~15 
101416 uT.~~r=14'6 

" " f1 0 ? ? :< G rq • BCJc" = ::~ '-"02 7~1 R 
~7f'v264.~ I)T.Br~E ;; ~1\~ 1416 

= 177j4h ~r.ccl\.' • 177~4~ 
II E:~~~"lI1H' r'T .EYT ~:~f;'A.404R 
:: tiI~1415 ~'T .F~Q I: r,'t:\v.3;il2~ 

= e " r .41l4 r· T • ~J A M 1J'~~t" 14 R 
~: .. ~;r'44~ 1'1"( • P p.;.? :·F·'~1PI7 ~ K 
V "'~" 4 4P ~ r,T .SER W10356R 

;: 9' i>V', ~01 ~ r.T.STP i.i'~v.43?R 
II ~J·v.212~ r.T.TAl t"02~1~R 

Il, r~ k' -.1 7 ? .~ r·T.rF~ ~1'~ 0 r' 4 r~ R 

0~l3tl2~ PC =:,{li1i"'(i'0~7 
• -I. k' r~ ~,:, ;~ t, 1 P2 :a ~ ~,1 :~ 0 ~' ~i 2 
:I 'I. e r,' ~' ~ 0 4 f..' ;, =%0';1000C:; 

= r~:"A("'46 \ .• ;.) S t. V II ~"l~ r' 4 4 

10 

"'T.r.F.:P ~?1/1.154R 

f'lT.ARQ = ~J026~R 
"'1.(I)T :: 17715/1 
nT.FER ~?J0564R 

'1T.1"'T 0~t'3JC1R 

nT.NQf :I 0,1~ 4 "2 
~T.RTC = 'V:~051 ?lR 

'T.SIP ~'~~162R 

"'T.5XT "'~Vl2~6~ 

r.H • TA2 (Fn242R 
nT.T,cq ~ t77j4~ 

Re' .V.~~flI0')()!~ 

~3 = ~ ~~~ liHi'l 2' :3 
SP = X ,,~'~ ~LH16 

= '?,:AI7)514R 



PDP-II 

RFl1 DISK DRIVER 

MARCH 1971 
SUPPLEMENT TO: 

PDP-II DEVICE DRIVER PACKAGE 

DEC-I1-NIZA-D 

DEC-II-RIDA-D 

COPYRIGHT © 1971 BY DIGITAL EQUIpr1Er~T CORPORATlor~ 

THIS DOCUMENT IS FOR INFORMATION PURPOSES 
ONLY AND IS SUBJECT TO CHANGE WITHOUT NOTICE. 

~ 
PROGRAM 
LIBRARY 





RFll DISK DRIVER 

The RFll Disk Driver consists of routines to initiate block transfers 

of data to or from the disk and to handle interrupts arising from com­

pletion or through failure. 

It does not include OPEN & CLOSE processors. As a file-structured 

device, these will be unnecessary owing to the form of the Monitor 

file-mana~gement system. SPECIAL FUNCTION processing is also omitted. 

If it is found necessary to simulate the hardware function of a similar 

device, the necessary routine could be added later. 

This driver is part of the permanently resident Monitor when the 

RFll is the system disk. 

The driver is in two parts: 1) a table providing the interface 

between the driver and the Monitor, and 2) the routines to service the 

calls for disk operations. 

1. Driver Table 

The Driver Table (DF) occupies the first nine words of the drivere It 

complies with the standards specified for all Monitor-driver interfac­

ing in general, and for file-structured devices in particular. The 

descriptive elements of the table are set up as follows: 

a) Facilities available: 
= 100037 

Multi-dataset handling on a 
single unit. 

Input & output in ASCII or 
binary. 

File-structured with no limit 
to the number of files that 
may be in creation at one time. 

b) Standard buffer size: 64 

c) Interrupt vector address: 204 

d) Interrupt servicing 
priority: 5 

e) Device name DF 

f} Directory start block: 1 

g) No. of bit map pointers: 1 

1 



2. Service Routines 

The driver contains two routines: Set-up Transfer and Service Inter­

rupt. 

2.1 Set-up Transfer (DF.TFR) 

This routine first initializes a counter which is used to control the 

number of retries in the event of parity or timing failure. Using the 

address, of the DDB for the dataset it is servicing (as supplied by the 

calling routine in the first word of -the driver table), it then col­

lects control data from the DDB and transmits it to the hardware regis­

ters for the RFll, beginning at 377460. 

Two of ,the items involved require special processing before out­

ward transmission; the rest are moved directly. 

1. The driver block number set into the DDB must be con­
verted to meet the platter and word structure of RFll. 
All the platters currently under one control are con­
sidered as a single continuous surface. As a result, 
the most sig~ificant bits of the block number repre­
sent the appropriate platter number and the remainder 
the word starting the block. The required conversion 
is therefore merely multiplication of the block number 
by 64 across 21 bits. 

2. The function bits contained in the DDB automatically 
produce the required transfer operation. To them, 
however, must be added the INT ENB & GO bits (combined 
value 101) needed to set the RFll Control Register 
correctly for the transfer operation to begin. 

On completion of the set-up, control is returned to the calling 

Monitor routine via the interim return address stored on top of the 

stack by the calling sequence. 

2.2 Interrupt Service (DF.INT) 

The RFll control causes a priority-5 interrupt either on satisfactory 

completion of the transfer or because an error has been detected. 

Having saved the processor registers on the stack, the servicing rou­

tine must determine which of these events has occurred by examination 

of bit 15 of the Control Status Register. On transfer completion, it 

collects the address of the DDB it is servicing from the first word of 

the driver table and uses it to return to the completion address set 

in the DDB. At-this exit, R~ is set to the DDB address, as required 

by the established c~nvention. 

2 



An error may be one of the several types as indicated by further 

bits of the Control Status or Extended Status registers. The servic-

_~ --~~in4- rOJ J tine ,_hnweJlEI-I-_is~DnC_erned_j}'it~nl¥-_t'WD __ ~gorie£n~ _________ _ 

(1) Errors which can be handled internally 

Parity or timing failures may be eliminated on a second or later at­

tempt. For the sake of simplicity, a retry is initiated by restarting 

the transfer from the beginning again rather than from the point at 

which the error was detected. If finally the eighth attempt produces 

no satisfactory result, the processing routine sets Bit 15 of Word 

DDB+12 to show the failure. It then checks if any words still remain 

to be transferred beyond the failing one. If so, it attempts to re­

sume the transfer from this point. If this is successful, it then 

takes the normal completion exit. Further failure, however, is 

treated as fatal. 

(2) Errors which must be rectified (if at all) by the operator 

All other failures cause an exit to the Error diagnostic print routine, 

with DSK ERROR F026 as the message and the contents of the Control 

Status register as evidence. Write lock-out or non-resident disk 

may be the result of an operator fault. The operator may be able to 

correct this and resume program execution by the appropriate keyboard 

command. Such action will probably be impossible in the case of a 

non-existent memory error l and other errors classified as 'HARD' in the 

RFll Specification or after persistent parity or timing failures. 

(3) Program Listing 

A complete assembly listing of the driver follows. 

3 



-~ Ii Ok:?! K;' 

-:~e C\W~ 1 
'~r~e{.l!2 

-~ (~n vF.-I j 

'l ~.' r,~ i I.~ 4 
""!f'!1W:~5 

: V r.: to> S T 0 ~,i • I U'~ R F hi : 

.rlTL~ OF 
:nIS~ D~IVE~ (RF11) 

. , 
R c", = y. ~~ 
~1=Y.l 
R211 9{2 
i·n=o/..j 
'~4=~4 
~!)=%5 

S T A !.I D. A L 0 'I F. f) P. TV f:: w F::)( P A 'I D r: r· F ~ (1 '.~ T HAT U c:; F r) A S A 
k F. S I f) F ill T '-1 (! t,! .I TOR R 0 ' I T Tl'd~: F' 0 ~ S Y B T E M 1I ~ A G t 

cnNTArN~ ~fr liP 8, TRA"-ISF'Fq POIJTTNES O'lLV 

• r ,~ (: '/ b S P :; 01. 0 
'~~ !10~7 PC=o/,7 

\::jrW;ll~!"" 

;'1 VI il '1 \' ? 
M~0'~V:l~ 
'il ('I V:i ., ii ,j 
~. t ¥)., 0 f-, 
£1 (: ~i ,.., ~J I; 
; ; (" i/ ~ /17 
/' I;:~ i~' 1 1 ~.~ 
'jrl~:"~11 

".~ ~1.;) ., 1 ? 
•. ~ ,. ~ ... :- 1 :1 
"It I.I 11/1 

'~" ~. 0 " 1 F­

" p ~., '1 2 r~ 

(\ c .... r~ V' :~ ~_; 
~' 'i 7 
2"0 
v', a 
1 ~. 2 
2.(1 ~; 
~., ,,~, 

~? 2. 
k~ ~, 

i') ;~~ \:' 

i~ 1,17 ~l: 
'~ ~. rr ~' ,~ 1 
-, [' " ~': f.. ~ 

'tl17~7 

• ~,d' 112 
111.737 
177461 
~1 67 Y ;' 

1777 4 2 
~) (~0 ~..3 F .~ 2 2 ~; 2 ~~ 
"?~"4r,' ':'12712 

177472 
?:1?tl(~4/1 1. 11/ ;"'3 
,~j f k:1 1 4 ~ "? 1 2 C ,7\ 4 
,(\~~O'~5~ ,-'v ~::F'4 
{.~ ~~ 0 (~ b ? h' " 1" 3 
>l00?b4 1f~375 

~'tW~Bfi "lf~342 
'0 f' I-:l ":, A I;) ""1 ~4d2 
",H~ ~~ ,.. 6 2 fH 21/.;.~ 2 
\iWitJ:16A ')120-12 
~)v~~1~6~ ~'12t)~ 1 
~j ('! W~ 7 r 1 eq 7'/' 1. 
:ilqIW:q? \.4?7r~1 

177470 
Vlv1~~"17" 11'''1112 
,:1(.' ¥~ 1 0 ," .. ~: r ;; ,~ 7 

• (;UJRI OF" 
: T A ~ L F n F S T A ~! I) A R f' S AtJ (') P n J .,' T!=' I-? ~ 
')F: .··JOP,D (~ ,CUPRE~JT !)D~ AD{)J:.lF.S~ (~, IF IDl.F.) 

.~YT~ 31 1~TAN~ARD FACTLTTY TNntcATO~ 

.~ Y T E 2 ' , ,~ : (N 0 R -,14 t. & F I L E .. 8 A SED 1 

.~YTE 4 :qTAN~Apn AUFFEP ~T7t/16 

• g Y T E 01=' • P!T • ~ F : T • V. C 0 "J T E ~ T 
.~yrf 22~ ~PRrO~ITY FOR T.V. 
.~YTE 1 :DESPlT~H TABLE 
• .; Y T E. I) ~ • T F Q - I') F ~ ~ H n W S T F q R 1'J f) ~ I.. V 
• >-1 Y TE ~~ 
.~YTE. ;. 
.'nTf v; 

i) F • 'I A ~ : • c~ A r) 5 ~.i! I r~ F ' 
.-jOP!) DF.I":IR 
• "I(JP['! /J 

: f i,Ud'J ~ F !=' ~ l' ITT J ~ T F. 
DF.TFR: ~JV 'PC,DF.QTr 

i)F.·~Pi: ~~'J \H ~;;tC,~f1QF.rC'3+1 

~i·lV DF, Q::;l 

C"iP PW't, eR0)+ 
~"V lii)F.l)rS+lt>,~2 

i"'·' V., ~PC~fr3 
h;)V C~0)+d(4 

ASL Rtl 
R'1L~ Q3 
Rr.C ",-4 
"~i1 V R3,-C R2) 
t'I:'lV R-1,-(R21 
M:) V (1~1)+, ... (R2) 
p·11V (R0)+,-(P2) 
M'1v (!H~)+,Rl 

8151=1 ",Pc,Rl 
HIe #177470,Rt 

:"'lH' qLr'JCi{ 
f Q f ~ In R E" n F n R R I T M h P pJ F ('l 

:Gt:T DD9 ~DDRF.S~ 

JRU~P P0I~TER TO BL~CK NO, 
,~f.T i-I • .jq POYlHEQ 

:SET IJP RLnr:K cnNVE.~stO"! 

,GET '3LOCK NW~BF'R (******, 
,CONVERT TO W8QnS 

:9ET IJP DISK A0nRF.S~ & F=:XT. 

,MOVE I~ ~ORO cnUNT ••• 
:& ~E~ORY 'DDQE~S 
: GET F U ~~ C T ION 
,AD" I~T ENA ~ GO 
,RE~OVE OTHER GARBAGE (******, 

M1V Rl,-(R2) :SENO Tn CONTROL 
RTS PC ,RETUqN TO ~n~ITnq F'OQ NOW 

; (* .. * * * *) - CAR f 1 1 1! I) 5 E (l AS '- I T ERA L gyP REV I t1 U SIN S T Rue T I 0 ~ J 

4 



: ! i'JT F. Q R I I P T 5 E P V J C E 
j~010' ~1~746 JF.I~T: M~V 'ffS.RSAV,.(~P] ,SAVE RFGISTE~S 

·~,?~tJ'" :'04036 
:j;/r;.;11"" '1?7'~'1 

1774 n0 
J0Lq 1.1 "121)12 
~H~ k! , 1 F '- ('- C' 4 :~ 4 
~ (1. (:i1 2 Ii' .~ 1 f, r~ 'I.: 

177654 

J9~ R5,~(~P)+ 
- - ---~-~-I -----# ~ f." • Des, R 1 

W')v (Q1).,R? 

tHl OF.FRR 
!;I~lV DF, RC1 

; fR~OP. ~o IT PlF": 
110 0 1 3 ~ 'i 3 2 7:·' 2) F • E R ~: Ii IT;; 11 ('\ 0 0 , R 2 

.:"1 B: iii kJ 
0~01J~ ~01423 bE~ OF.OFF 
~0~'3~ ~V~3~7 0F.AG~: ~qL #~ 

~~~11~ )F.RTC=.-? 

J FRP(lQ ct\'rsr: TNTEP~UPT?

:YES • ~o Fl~n CAUSF
:GET !')D~ ADDR€SS

,PARITY OR MISSED?

d0014~ 1~3~~b ~cs OF. P£R J r F 51) FORCE COt,JT t ~~!JE
~~014d ~~d7~7 JqR

177656
0r015° n137~6 0~.RFr: M0Y

':'(0.[: ~o

,wkn~a ~k;I'lt>~6 J'iR
JV0156 ~e~~02 RTI
~~01~n ~b?7A0 OF.PER: Hts

1 ~~ ~ ~~'1 i:1:

':""~\('i 12
.~>, t' 0 1 6 f-, :, V c.;, 7 1 1
"~~017"" "~~:17~~

ilr'0' 7') :Ar,;~7&;.,7

;'Jf?{.J 17F:
;~'J/?l~''j.

LHi'~12{~?

1777·1 ;:
:~~q 412
~v:;;;?41

'~C:':11~2

T~T

hE·.J
T~T

t,EQ
I ,·~C
Ht?

i'r~,i:?"d
~lP~~?~;)~

: r= R ~ G PIS ~l '1 T
~1~146 JF.nFF: ~lV
~12746 ~'v

?;'!\'''~~~44 S.~SAV=1I4

~e~f46 3.R~~S.46

177~~0 IF.~C~='77460
~nn~'?l)F'.r)1~=1

~014?e)F.fNn.14?6
~~?0~1 .EN~

OF in0~0r~~ r'f.AG"'J
Df.OTR = ~~i1k,:~ki1 r'lf .E'IO
D F • 1 "T \I~ 0\ ~I , v' 2~ !iF. r..IAM
Df.PI:R f;J~F16l?!R f!F.REC
DF.~TC I: enrt4~~ IjF.TFR
PC :%eC"f.'·~kJ7 R{1

R 2 = y.l{ Ii ~<" 0 2 ~j

R t) = ~ 0 f" It J~ k:' ~ ~p

S.i<SAV = ~;~~V''},44 •

PC,OF.RPT ,nTHERWISE TRV AG4I~

t ••• & ~XIT FOR NO~
1 '1 (:II 0 :~ 0 , 1 2 (~ 0) : R F T URN PAR I T Y F' A 1: L F L A(~

~~1

DF.XIT
[)F.RTC

1ALPE~DV AT ~LOCK E~D?
fIF Sf) FX1T N"J;;J
fOT~EqwTSE CHECK IF 2ND TI~E

DF.OFF ,IF SO ~o POt~T IN ~ORE
- (R ,.) J C 0 ~ iT! !l.J if ED! S I(T R A \I ~ F I=' R

DF.~EC I ••• VI' COM~n~ EXIT
I~~~CTATElY RFC'Vr=RARtE~

-CR1l,.eSp) :DISK STATUS IS ~VIDFNCE
~)F.f~O,.(SU) :SET UP ERROR Nn,

~~013r,R nF.DCS II 177460
I: 2l~ 1426 nF.E.RR ~~013~R

,~"'Ivll''' 14R r')F.OFF .~~ ~:i'l2~4R

0:'~015~R nF.RPl W~0;'~26R

,:'F~0~2?R I')F'.XIT ;,P40124R
=%0'~000r;, ~1 .Xa~~~01

=~;'Fi\0f'!!i)3 ~4 .~1'~r"~'4
=%~"HH'Ii36 ~.RFtES :; ~~ill~46

• ;J;H~214R

5

DEC-11-RIHA-D

PDP - 1 1

PCII/PC05 HIGH-SPEED PAPER TAPE READER/PUNCH DRIVERS

MARCH 1971

SUPPLEMENT TO:

PDP-II DEVICE DRIVER PACKAGE

DEC-11-NIZA-D

COPYRIGHT © 1971 BY DI GITAL EQUIPMENT CORPORATION

THIS DOCUMENT IS FOR INFORMATION PURPOSES
AND IS SUBJECT TO CHANGE WITHOUT NOTICE

SECTION I

PCll HIGH-SPEED PAPER TAPE READER DRIVER

The paper tape reader driver provides the device dependent I/O func­

tions for the PDP-II paper tape reader. To allow the common I/O pro­

cessor to be device independent, the paper tape reader driver is a

block processor. Any size block may be processed by the driver, but

to provide the most efficient operation Lhe standard buffer size is

32 words. The driver code is position independent.

1.1 DESCRIPTION

The paper tape reader driver consists of two sections: the standard

driver header and the driver body.

The driver header gives the following information about the paper

tape driver:

1. Capabilities

a. Single user
b. Input only device
c. ASCII and BINARY both may be handled
d. Non-file structured

2. 32 word standard buffer size

3. Interrupt entry address and priority (4)

4. Dispatch table containing entry addresses for:

a. Open
b. Transfer

5. Internal word count and buffer address

The driver body contains the code to perform the three paper tape

reader functions: opening, reading (transfer), and interrupt servic­

ing.

1.2 OPEN

The OPEN function for the paper tape reader exists to give the user a

means to ensure the reader is ready for operation (i.e., contains tape,

is turned on, etc.). The OPEN routine tests the tape reader status

register for an error indication. If such exists, an A002 message

(Device Not Ready) is printed to the operator. The check is repeated

1

following a return from the Diagnostic Print routine indicating that

the operator has requested continuation. Because no interrupt is neces­

sary to make this check, the routine merely removes the interim return

address stored on the top of the processor stack by the calling sequence

and takes the completion exit immediately (since this driver is for

single-use only, there can be no queue for its services, hence it need

take no action to cater for a queue situation).

1.3 TRANSFER

The TRANSFER entry initializes the driver and initiates the read of the

first character. Initialization consists of storing the byte count

(2 * Word Count) and buffer address from the calling DDB into the driver

header positions reserved for them, and enabling the reader interrupt.

1.4 INTERRUPT SERVICE

Interrupt servicing is the heart of the paper tape reader driver. The

following flow chart gives a detailed explanation of this function.

Indicate Error
to Caller by Non­
Zero, Incomplete
Count

Update Count
and Current
Buffer
Address

It should be particularly noted that an error during interrupt ser­

vicing signifying "Reader Off" or "Out of Tape" is considered an "End of

Data" and is treated accordingly.

2

1.5 Program Listing

A complete assembly listing of the driver follows.

J PAPFR TAPE PEAD~R O~!VE~ CP~)

.TITLf PR

.GLObL PR
~0(?~~~0 Reh;X0
'~0('/!e-01 ~1="1
:1~C'~<~2 ;~211!%2

~091t.~:.3 ~3:11%3
0fl"'0~4 R4=%4
"'~H'l000 ~5="5
"'0 rJ 006 SP:;:%6
r"eli\~<'~7 PC::%7

: . PREA~BLE
0m~~0r ~0~0~0 PRJ .• ~ORD
0~0~02 234 .qYTE
000'03 000 .~YTE
0?0~0. (m2 .~YTE
\1r~H0!, ~'56 • ~VTE
0~~~~6 2~~ .• ~YTE
000107 170 .~VTE
0~~'1~ ~22 .1YTE
00~Pl1 ~1f ~qVTE
00~~1~ 0?~ .qVTE
070"11 V~0 .~YTE
E0e~14 0633'0 pq.~A~: .~AD50
0~U11A ~~~0~~ INTeNT: .~ORD

3T04[1'"": • '!o~D
, M A pi n R I II E R

" PR.EP
Ii!
2 __ ..
p~.r"JT"'''R
2~0,._

P~,OPN-PR
PR,TFR .. PR
o
It'
I(}

'PRI
o
0.

, BEGIN iRANSFFR

~~0n!3'
0IiH?,'~34

~ 16 7 .~~.
177752
~1f\1.(~4

t~[10k11 '"
~06314
~l!i1467

17775b
~16067
0!~VlV;1i\6

1777r:;2
!?52731
o f4 r.~l (" 1
17755v

PR.TFR: MDV PR,R0

ASL
MDV

8tS

11(RQI),~4

R4
K4,INTC~T

_. 6 CR~)I-S.jQAon

,DCURQE~T oncs nR 0
, FACIl.ITIES .. IN.OICA10Q ---

J STANDARD BUFFER SIZE--1-1S.
J INT~RPUPT ADDRESS
J...PR lOR I TV 4U~TERRU.P.T ---­
, DISPATCH OPEN

_ r T RA 'J S FER (I N)
CL.O~E

• SPECIAL FUNCTIONS

J Il,JTF:R~AL COUNT
: STORE NEXT ADDRESS--

, GfT nr,r;

PRESEOVE USER CQU~T

BYTE COUNT

, Et.JAqLE tNTERRUPT

e1e)~,-154 r.1rrt2~7. RTS.. PC .. .J,.RE.r.URN ..
, T~E PR IS DRIVEN RY T~E FOLLowING I~TeRRUPT RnUTINE
J

000~5~ ~~5731 PR,INT: T3T J TPST FOR ERROQ
177o!'~1

~00~62 10Pa14 B~I PR.ERR , YFS
o ,1 It: ~~ 6 4 11:5 7 l; WW 9 ., '#PR .. BUF~J'STQADD" J,S TORE __ .CHA-RACTER

177552
177726

0N;,'i\7~ '-':'1052~1 r '\Ie STOAOD UPD4TE
177722

3

0V,,,,"76 ~052f17 I i'~C
11.7714

0~~102 f;\014~41 BEQ
fd.00 11£14 !a52737 6.IS

ClI001P""1
177550

000112 0I0@002 RTI
'- . PR.ERRr

000114 (:'I137d6 PR.DNF: MOV
~0e044

000120 ~e4536 JSR
~00122 .105037 PR.DIS: CLR8

177550
0001.25 0_1~70flr MOV

177f.d6
0~H1132 ~16701 MOV

177660
00k1136 '"1{:H4'J.15 BEQ.
~00140 1.627~1 SUB

~~~"'~6 

liH:;0144 00621~ 1 ASR 
0(7~H 46 .C11 [;'I16~ MOV 

OH?;P,~ 16 
00lr1152 r"e0170 PRe FRT: J"1P 

000014 
J OPEN ROUTINE: 

000156 ~16746 PQ.OPP: :-1nv 
177632 

0~01. 62 c~1~746 M11V 
.0001402 

0~0166 ~0~v.,?41 rrn 
"~017~ ~057:l7 P.R.OP~I T~T._ 

177b5~ 
00~174 1(1 I? 7 7~\ 8'11 
0~0178 ~0f'7?6 T(}T 
0r0?~@ ~167~0 MOV 

177574 
a00~04 JHH"762 BR 

J 
177552 PR.BUF z 17l552 
177550 PR.CS~.'7"55(1 
~~1(~234 PR.BP a 234 
~re'V'.44 PR.SAV.A4 

010 N3 t7I 1 .END 

'HH~e0~ ERROPS 

INTeNT 

PR.I)NE 
IH01 #-'#P-R.C.SR 

O#PP.SAV,.(SP, 

R5,f(SP)+ 
'*PRtlCSR 

PR,Rfd 

INTCNT,Rl 

PR.FRT .. 
.S,R1 

Rl 
. Rl, 16 (IHD 

CD14CR0) 

PR,NAM,_(~P' 

#4e:?',I1/(SP) 

-#PP.CSR 

PR.OPR 
(SP)+ 
PR,R0 

PR.FRT 

POINTERS 

AN!) RETURN 

, SFT UP JSR 

,.DISABLE INTfRRUPT 

OtiS A-OO·RE.SS 

.J REMAININGCO-UNT 

, NONE 
ROUNOED TO WnROS (AND TElR' 

t RETURN RESUL. T TO. CAL.L·eR-·· 

J COMPLETION RETURN 

ADDIT!ONAL INFO 

,NOT READY ~ I,? ERR ~SG 

-.. _ ,TAPE. READY .•. 

._ , .. NO 
,CLFAQ CALL FRO~ STACK 
~GET DDB ADDRESS 

INTC~T 0~0~16~ PC aZ0~0~07 ~R 0~000~RG 
- _.P.R .. 6P .. !._~_e'."2J4 __ .. _____ PR.BllE ... J. lL11552 PR .. ~SfL .. 17.7-5.50-.--. 

PR.DtS 0~e122R PR.DNE 0a01t4R PR.ERR ~~0114R 
"F'.R .. F. RT ~ __ ..00.0152R..._ .. _.~. PR.llU 0!!M55R._. ___ , _ PR....Ji.A.M.. 0~0al-4.R. 
PR.OPN 0P017RR PR.OPR 0~0156R oR.SAV = 0~0~44 
PR .. TFR ... ___ .a~e022.R_ .. ___ F0. __ ;1;%000.0.00 Rl-.-.--.X2~000-1---.-
R2 .~00~~02 RJ =~000~03 R4 .~~~~004 
R5 !X,0.~.~~e·5. ______ ._.SP. ________ ="~1!l0~06 3.T-OAD.D----.. 0:1-09.2!21R- . 

• 0pe,206R 

4 



SECTION II 

PC~5 HIGH-SPEED PAPER TAPE PUNCH DRIVER 

The paper tape punch driver supplies the basic device dependent operat­

ing functions for the PDP-II paper tape punch. To facilitate the de­

vice dependent operation of the I/O common routines, the paper tape 

punch driver processes blocks of data to be punched. The driver will 

process any size block (as given in the DDB) but for efficient opera­

tion a default (standard) block size of 32 words has been chosen. 

The paper tape reader driver provides open, close, transfer, and 

interrupt servicing functions. The open and close functions cause the 

paper tape punch to punch two fanfolds of blank leader and trailer 

tape respectively. The transfer function causes the punching of the 

given block of data. Since the PDP-II paper tape punch punches one 

character at a time, the interrupt servicing function provides the ac­

tual control of the punch for each of the other functions. 

2.1 DESCRIPTION 

The paper tape punch driver consists of two distinct parts: the stand­

ard driver table and the driver body. 

The driver table contains the following information: 

1. Facilities indicator - The facilities provided 
by the paper tape punch driver are: 

a) Single User 
b) Output only 
c) ASCII or Binary format 
d) Non-file Structured 

2. 32 word standard buffer size 

3. Run at priority 4 

4. Internal information 

a) Trailer Indicator 
b) Internal byte count 
c) Internal (byte) buffer address 

The code for the paper tape driver is organized as follows. The 

open, close, and transfer routines perform their initialization pro­

cesses and control is transferred to the interrupt service routine for 

5 



actual control of the data transfer. The initialization processes con­

sist of setting the internal byte count, the beginning buffer address, 

and the trailer indicator (ft1 implies open/close in process, 1 otherwise). 

The interrupt servicing routine is then called. Leader/trailer punch­

ing and actual transfer punching differ only in that the internal buf­

fer address always points to a zero in the former case, and this point­

er is incremented through the block in the later case. Upon total 

completion of the requested operation, the DDB completion return is 

taken; the DDB intermediate return occurs immediately upon initiation 

of the punching of the initial byte. At each interrupt the detection 

of an error (Punch Out of Tape) result,S in a request for an A002 mess­

age at the console (Device Not Ready). If a return from the Diagnostic 

Print routine occurs, indicating an operator request to continue, the 

function is again resumed. 

2.2 Program Listing 

A complete assembly listing of the driver follows. 

0I0P0Q10 
~00001 

"'~~0~2 
_ 01~~003 
"'0P0~4 
'~00005 
0I0Q10~6 

3000!1l7 

000"'00. iUH2'0~.e 
0~0"'0~ 332 
. 000et03. 0~0 
0~H?J~06 002 
0,00~05 ,,014 
000005 2C!10 
¥H'I~~07 .2.06. 
0"'0~1Q1 024 
000.()Jl1 ._ 2et.6 
0"'01?112 000 
0.016"-13 .., 02',0 
000~ld 12153200 
000~.16 .. r!00.001 
00121"2'" 000000 
00.0t?122 ~i!0000 

:COPyRIGHT 1971, DIGITAL EQUIPMENT CORP., MAYNA~D, MASS. 

JVERsro!l./ 'JU"1BfR, 

.TITI.E pp 

.GL.OBL pp 
Ra-X0 

V~01A 

R 1 itX-1- _. 
R211~2 

_ .-. _R.3 •. l3. -
R4.~4 

R5aX5 
SP.~6 
PC-X? 

J P4PER TAPE PUNCH 
J.. P RE..U1 at.. E . , 
Pp •. ..',~ORO 

.BYTE 
- .BYTE ... 

.BYTE 
• BY_1E 
,BYTE 

- .• 9Y1E. 
.~YTE 
.BYIE. 
.8YTE 

.-.0 
PP.BP 
.0 . 
2 

.. PP .1iiT..P.P. 
2~0 
PP. Q.PN.Pp 
PP,TFR.,PP 

_PP .. CLS_"PP .. 
0,21 

_. ,-CU~a£Al+-- -DC.e--.o~ 3-. - .. - .. ----.---.-. -----.- . __ .­
, FACILITIES 

, 32 WORD STO BUFFER 
, .-.~" - .J,,- T.UMUEA--A..D.OReSS-_' __ M ______ .. ' ._--

, STATUS 
f -RtLAlllLE--A o.o.RESSE-S-'.01L.Q.fU!~_ .. _____ ... _ .. 
, TRA~SFER 

.. J ...t.L.D.SE.-- -'- .. - .- ---.-- .. ----.---- --_ .. _ ...... _._ 
, SPF & SPARE 

''''',- ... -,'~ ~.-~. _ .... _- -. ~ '.'-' .-.. _.,' ... "-_._",,..., ---_ ...... __ . __ .. __ .... _ .. _ .. -_ .. _ .. _ ...... -_._-----------
pP,NAMa ,RAD50 'PP' 
PP. YRl.L ..• .J~.ORO _ . -1 -J-.-..I.RllL£R .. -l.&O.Q.UT-OJL."--L-.-__ .. 
PPCTa .~ORD 21 , INTER~AL. COUNT . 
PPFPTi ..... WO~D ...... 0. . ___ ..... __ ._. __ . - ... -J--..cllRJ1E-~!.-B.UF.F-ER ... .e..ol.ti!.E1L _____ _ 

6 



00002t1 ~167?10 

177750 
0(il~~3? ~16067 

010 i'il I?HlI 6 
177754 

00.0.036 .. " 160lil4 
!1e~010 

~00~42 ~e53~4 
0~0t:l144 "'t(i'l467 

177750 
0~005(i! 112767 

~0!2'0~1 
177740 

000\J156 fH1646 
0etCiH~6r;, ~13766 

177776 
~~(;\e02 

~00.066 z'J137.37 
OlP~070 

17777.6 
00091711 ri'05737 

177554 

J DRIVER BUIlY 
PP,TFR: Mr1V 

. MOV .. 

ASL 
M1V 

PP. UE"l: MOV 
MOV 

t10\L 

6(R~),PPFPT 

.1 QI (R0J ,.R4 

R~ . 
R4,PPCT 

#l,PP.T~L 

GET CURRENT ODe 

, G~T BUFFER POINTE~ 

." ... ---J. ... ER.E.SER'J£.w'Of:W--COJJ~.----- ------.. -.- ....... ----

- - '--t..O-NV£R.T roa. YTES 
ANO SAVE 

, RESET TO TF~ 

(SP l, ... C-SP' . , . S.I~ULA.TE .. !NTER.-RUgT -. -.... - .----
'#ST,ATS,2(~P) 1 FRnM JSR PC,XXX 

.O#P? • .vCT, fliSt .• .6..tS.--

CI#PP.CSR J PUNCH OUT OF PAPER OR OFF 

---~ 

00010(1 HH~434 

00fZl.H12 ~05.767 .. 
177712 

00~1k:)t'21E141fi. 

0~011~ ~~5267 
1777~~ 

;'010114 117737 
.177702 
177b56 

00J3122 le-57.57 
17767rt 

s·u 
T S. l-

SEQ 
PJC 

TSTB 

0~0126 0014~2 BE~ 
00013~ 005267 I~C 

. " 177666.. .., ...... . 
000t3A ~52737 pP.Not: BIS 

0e~H~~ 

177554 
0013142 ~00002 ..... RT1. 
0~~144 ?13767 PP.ON~: M~V 

~000~"4. 
,,,,,"0002 

P~.ERR 
..P.p..c.:r 

.PP'lI Dbtf. 
FPCT 

YES 

, .. -4l..-R-EA-nY F-INISmO ... ""-'-.--' --.-------- --.---- ... --­
, COUNT TIofIS nN.E 

'PPFPT,.#Pp.a~G f MOVE CHARACTER TO PUNCH 

P.P ..J-Rl 

. PP .. NOI 
PPF'PT 

--- J.---lFUIUa -OlL-~-O--. --.------.-.----.-.. - --- ---

--, .-.l'RA.I.J..E.R. . .----- ----.... --.. "---'--"-- - _. ---.-
, NEXT ~OORESS OF aUF • 

, E ~1 A Bl,E t NTERRIIPT 

-- ... -.-.,--..R.ft.UR.N.. . . -. ---- .-. ------.--.-- -----.- ... -.----. 
.~pp.SAV,.+10 ,SAVE REGS FOR RETURN 

0001 52 ~~"5J7 
0l0~0~0 

e~e 1S .. 6. !?I0503.7 
177554 

"_" J3R . _' R5,.flHL_ ._. 

..... C LR .. ' .. -'-.#PP-. c.s.R .---. -- .. - .. J-- -DlS.A..8.l..E- -llJ1:.eR.RU.P.T---------------- .. _ .. __ . __ 

000162. 1:'1157t7'0., P.P..JGN.L J10Y_._ 
177612 

~ 0 0.1 6 6 ~ e e' 17.0 
"'~H'1014 

'14.(R0.). -" .-- - -.J-.-COMP-UllO-blJlVUlUL - .. _.-- _. ______ -_-... _ 

0~017.2 01Z14,6 1?P-• .fRR.l._.MQY _ -. ___ .J#6J..2..aa,L~C.S1?). ___ ~ DEvICE .J~.4.M£" .. __ . __________ ._. ____ . _____ _ 
V1632riJ0 

_~@01 76 . .tH.27A6 __ .. _____ ,MDY ... _ 
0~fi\402 

.. 0@0202._~~~0~4. _. __ .. __ .. __ l.O_T. .. . -' ---.---J.--.1!Ol-.1tUD"¥---.-.--.--.. -.----- ..... ---._-
000204 ~0~733 BR PP.INT 

PP.QPNI _ 

7 

,; 



- . 

00020~ 105067 PP.CLS: CLR8 
17 761:!4. . .... -_. 

PP.TRL , INDICATE TRA.ILER OPERATIO~ 

~00212 01~767 HOV PC,PPFPT 
17760A._ 

~~0216 ~6~757 ADD *PP.TRL-.,P.PFPT J SET BUFADDR 
1776l?1.0 .. 
177576 

000224 ~127.57 __ M.OV_ 
177524 
1.77566 

0~0232 ~0n71'1 BR 

PC 
_ PPFP.T._ 
PP.CLS 

177776 
.00t.:t07.6 
177554 
1]7556 
"'0Q1e44 
_qZ~JJ2 

c;,0?162 
_ .. {10~0\U 

5T.AT5 a 177776 
.PP. .•. UT.16 . -
PP. CSFh 177554 
PP.B.RGII!.177556 .. 
PP.S,AV.44 
EP....J3P_=-.J32_ --. 
PP.SPF'aPP.IGN 

_ .EI'lD. 

.~0~0007 PP 3~0000RG 
_¥H~0~22R ____ -- ., pp .8P -•. -0~0.3.32 
e~02e6R PP.CSR = 177554 
00e t72R ~_ _ PP .. I.GN _ 210016.2;.- .. --
0~0014R PP.NOI 0~0134R 

, NORMAL FROM HERE ON 

--- .'--- -.---

pper 0!'10020R 
1:!-P.-.-8AG-... - 17~.5-56 .. --.. --... ------- ---- --- ---­
pP.ONE 0~0144R 

. Ji!f?.....IJU... .0!l.0A7-~ -_ .. _ .... - -----... -., ------.-----
PP.OPN 0~020eR 

.. PP.ERR 
PP.NAM 
PP.SAVt. 
PP.TRL 
R.kl. 

0~0044_ ._ pp .aPF • 0~01.621i -... PP-.-l-F-R. --.000.~-2-4·R-·- - -------------.---.-- --
e~0~16R PP.UEN ~~0056R PP.VCT ;: Pl0}0~76 

~%12'1?I0~~H3 .... Rl _ . aX000.0.al-- .-92- .. - - --.a.U~~e.2_ .. - - --- ... -. --------_____ -.-
R3 .~0~0003 P4 =~0~0004 ~5 .~(1!12I0Q105 
SP _ •. xe~~H~06 .S T .. A.18 1- .. 111.1.1.6..... _ ... ' ........ _ .. , ___. __ ,0.m.~ .. ----- _ .. ______ . __ . _____ . 

8 



DEC-II-R2DA-D 

PDP-II 

RKII DISK DRIVER 

OCTOBER 1971 

SUPPLEMENT TO: 

PDP-II DEVICE DRIVER PACKAGE 
DEC-II-NIZA-D 

COPYRIGHT ~ 1971 BY DIGITAL EQUIPMENT CORPORATION 

THIS DOCUMENT IS FOR INFORMATION PURPOSES 
ONLY AND IS SUBJECT TO CHANGE WITHOUT NOTICE. 

~ 
PROGRAM 
LIBRARY 





RKll DISK DRIVER 

The RKll Disk Driver consists of routines which initiate block trans­

fers of data to or from a disk cartridge and which handle interrupts 

arising from normal completion or errors. 

Special functions, OPEN and CLOSE processing, are not necessary 

and thus not supported. Advance seeks are not supported in this 

initial release for several reasons, among which are: 

• The majority of the DOS installations which utilize the 
RK have only one unit, so the extra code in the driver 
(approximately 25~l~ words) would be detrimental in 
most cases. 

No DOS system programs do their I/O ln a manner 
would reap huge benefits by seeking ahead. 

• The Monitor would have to be altered to inform the RK 
driver before a Bus Init is issued. 

The driver should be assembled at each installation where 

(a) the RK is the system residence disk, or 

(b) low density drives are present. 

If the RK is the system residence disk, then define SYSDV at 

assembly time. If low density drives are present, then proceed as 

follows: 

(a) If all drives are low density, then define LOWDEN at 
assembly time. 

(b) If there is a mixture of high and low density drives, 
then define MIXED at assembly time and define CONFIG 
as fol,lows: 

Imagine CONFIG as an 8 bit field, the rightmost 
bit of which corresponds to unit~. If a bit in 
a given position is-one (1), then that particular 
drive is low density. For example, CONFIG=12(8) 
[~~~~1~1~(2) J indicates that units 1 and 3 are 
low density. 

LOWDEN and MIXED should not be simultaneously defined. If they 

are, MIXED is ignored, i.e., the assembly proceeds as if LOWDEN is 

defined and MIXED is undefined. If MIXED is defined, but CONFIG is 

not, an assembly error will result, viz., a "u" flag on the line 

labeled DENIND. 

1 



issued was not a drive reset (see below), the completion return 

(@(DDB+14) is taken. If it is an error situation, then an attempt 

to re-try will be made if the error was one of 

(1) any "soft" error, 

(2) seek incomplete, 

(3) read timing error, 

(4) data late, or 

(5) seek error 

All other error conditions result in a fatal error message. In 

addition, if the word count is not zero after eight re-tries, a fatal 

error message is issued. Otherwise, a parity error is returned. 

NOTE 

Errors (2), (3), (4), and (5) above are among the 
"hard" errors. A control reset must be issued in 
order to continue. Additionally, a drive reset must 
be issued in order to continue after a seek incom­
plete. Thus, if the last function issued was a 
drive reset, the re-try logic is called. 

4. Program Listing 

A listing follows, conditionalized for 

(a) the RK not being the system residence disk, and 

(bl all drives being high density. 

3 



0~00041 ~~621i'1 ASR 
0~0~5A ~1d'HW 1 Ii(OR 
00"'V!69J iilVitHlrl wOR 
~H~0062 ~0e~~1 RQf.( 
0~0~64 e2?02V'1 r;"'IP 
0~0Gi~e e'12\!'1~2 MOV 

.IFDF 

.IFNOF 
MOV 
• '~ORO 
ASL 
DEC 
Slit: 
Bce 
AS!.. 
,ENOC 
,ENDC 
,IFO' 
ASL. 
tENOC 

~~~~7~ ~2~221 eMF 
el11 JP!'!I

0~0~7A 1~341~ Bl,.O
0~007~ ~14~45 MOV
0~0'0~ ~1214~ MOV

~~14~5
0~~104 ~0047~ SR
~~~1~6 ~b~201 OKIN101 AOD 
0~~11~ ~~62~2 A5R 
00~112 0~62~c ASR 
~~~114 ~b~4~2 AOO 
~00116 ~1~2~4 D~lN20' MO~
00121120 042704 ale

1777f1JrJ
0~~1241 ~4~4~2 BIC
0~0126 0~lJ~1 B~E
0~013~ ~2~421 c~p

~0",,014
0~~1J4 ~~~4~2 Bl,.T
0~~lJ6 06~104 ADO

0l'1tH 4 2
~ri\~144

~",01!5~
~CIlv!1~2
0~k'1!)4
\21(1 \'11 ~15
0Vl016",
~VJflltb2

0~Qi"'rJ\4

06~4?1

"'127~4
171412
~ 1 r~ 114
Vl12044
Vl12~441

~12\IJc>l1

1517~1
~427i!11
17746\11
~1~1414

~~fI12~7

ADD
MOV

~ov
MOil
MOV
MOv'
8188
IHe

MOV
HTS
.... ** •••

~1
Rl
~1

R1
(R0'., CR~''''
(R0)+,R2
MIXED
L..owOE~
CPC,·,R~
CONro'IG
R3
R4
.-4
.+4
R2

L.OWC)EN
R2

DKIN2Q1
_(ROI),-C R61
.14Jb,·cRe~

OI<f:.R2~
R2."1
R2
R2
R4,R2
R2,R4
.-1711e0,R4

R4,R2
OI<INl¥­
~4; .. 12.

R 1 ,.IR 4
(RQI)·,.(~A'
C~0]+,.(R4'
(R0,·,Rl
'PC,k1
• 11'4~0,Hl

'L..tFT-JUSTIF'I UNIT

IUI\lIT ~o~ AS DESIRED
'POINTF.~ ooe.SLOCK

,G[!;T DENSITy PATT!RN

,MOVf APP~OP. TO UNIT

'IF l,.Ow DENSITY ••• ,AOJUST BL,Oe!< NO.

,IS e~OCK WITMIN BOUNDS'

,'tEa. BRANCH
,OUTPUT Il,.~[G.~ e~nCK NUMBER
,AND '0:55

"" AFTER 8VSDv CMK
'ADO IN VAl,.IO QUOTIENT
,AOJ ~EMAINOE~ FOR DIV 8V 12

,DIvIDE Bv 16 • SAVE R!~AINOER

'E~TRACT QUOTIENT •••
, •• , IF ANY euI~O R!SUl,.T
'CHEC~ ~EMA!NOE~

'I~ RETwEEN 12 , 15 .,.
'." CAUSE SURFACE INeR.

,PUT SfCToR INTn REST

,SET UP OISK ADDRESS
,SfT UP MEMORV AOOR!SS
,SET UP WoRO COU~T
,PUT IN T~E FuNCTION
,g~T I.D.E. AND GO BITS
'C~E'R GA~~AGE •••••••

Rl,.(R4, ,SEND FUNCTION TO CONTROL
PC
USED AS ~ITERAl,. BY T~E PMFYIOUS INSTRUCTION

5

0~0310 ~12115 O!(M!RI ~OIJ .1,.Re 'CLEA~ T"1E CO~Tr~OL
~ ()!r!V'~ 1

0~i3314 H'1!511~ Ol(~FHHU TST!! ,~e ,OONE VET,
00031e 1ViVl"16 B~1. OKl-lilf00 'NO • L.OOP
01i'1~J21i'1 ~327el elr 4f100~,R1 ,IS IT sEE'K INCOMPLETE'

0 Cil lV1P(;l)
00032. CI''''l'~~ BEQ Ow. ... R0e 'NO · BRANCI-!
0~0326 "'1('416~ HOII Rl,4(~3) ,REPL.ACE ORIVE " VI Cil00rJ1 4
0tJJi.!I3J2 il12/1~ MOV -U15"R5 ,SET UP FOR DRIvE RESET

~0~115

00~338 ~f1~7"~ SR OI<ER~0 ,TAKE INTf~I'" EXIT
00034\11 ~321V12 OKHR051 BIT 4fl1.00,R2 JCAN IlIE POSSIBL.v GO ON'

~114~~
PlQI~~44 1i'101~34 fiNE DKER00 ,yES • a~UNCIol

Idi1'rJ3'e ~~27V'2 8tT .ii!0000,R2 lIS IT ".RITe: L.OCI< OUT?
02t'A1d~~

0~~352 0"'1742 SEQ OKER1! ,NO • BRANCI-I
0~~354 ~11i'1l'l46 p.10V RI2I,.CR6) ,SAVE BUSy FI.AG
01lJ~3eJe ~1~74" r10V nI<NAM,-cRel 'OUTPUT NAME

177432
0vH~3t:J2 Q!1~145 MOV • 4I 02,-CFl8l 'Af',jO A0Q12

~~~4~2 

If'hH"3b6 01()~737 BR OKER21?1 , ... & GO PRlr-,T 
0~t'II~Q!1 • rNo 

I)K tH"~0;t1C11RG DI<ER~ 00~232R OKER00 011102;JeR 
DI<ERt({J ~HH1244R OKER1!5 0002150A OK!R20 000266R 
Ol(ER25 ~.H1027 'R OKER30 0Q10J00R OK~eR 0012131011'1 
OI(I'1IoiV'\1!l 0~1tl3141R DK~R05 00034raR OKINT 00017211t 
OKI"IH' ~("12l1~eR 01(1"'20 000118R OKNAM 000P!141'1 
OKREPT ~Qle240R OKRTR'1 ~0012J44H 01<5TR1 000040R 
OKlJ!lT VJ0~22eR PC .1000001 PS • 171'"8 
RI<8A • 17741~ RI<.CS , 171404 R!<OA • 1,1412 
RK.DIR • ill CIIl~ t~ ~ 1 RKOS • 1114klP.! RKER 1 11'402 
RKwC • 1714V16 R~ IX00000p! lit 1 IX000"'01 
R2 ·X~V.vH~~2 R3 'X0PJ0~0:! ". 'X~00",ra4 
~5 'X~"'~~~~ Rei 'XvH~0~0~ S.RSAV 1 •••••• G 
S.~ll • ....... G V.RS.V 1 1/!100",.4I. V.JeIT • 01.'109142 

• ~"'1t137C11R 

7 


