DEC-11-NIZA-D

PDP-11

DEVICE DRIVER PACKAGE

MARCH 1971

COPYRIGHT (© . 1971 BY DIGITAL EQUIPMENT CORPORATION

THIS DOCUMENT IS FOR INFORMATION PURPOSES
ONLY AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

o

CHAPTER 2.
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2
2.2.1
2.2.2

CHAPTER 3.
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.2
3.3

APPENDIX A
A.l
A.2
A.3
A.3.1
A.3.2
A.3.3
A.3.4
A.3.5
A.4

CONTENTS

INTRODUCTION

DRIVER FORMAT

Structure
Driver Interface Table
Set-up Routines
Interrupt Servicing
Error Handling

Interface to the Driver

Control Interface

Interrupt Interface

STAND-ALONE USAGE

Driver Assembled with Program
Setting Interrupt Vector
Parameter Table for Driver Call
Calling the Driver
User Registers
Return from Driver
Irrecoverable Errors
General Comment

Drivers Assembled Separately

Device-independent Usage

I-O0 DRIVERS WITHIN THE DISK OPERATING
Driver Structure
Monitor Calling
Driver Routines
TRANSFER
Interrupt Servicing
OPEN
CLOSE
SPECIAL

Drivers for Terminals

iii

SYSTEM

A-1
A-1
A-2
A-4
A-4
A-4
A-5
A-7
A-7
A-7

CHAPTER 1

Subroutines to handle I/O transfers between a PDP-11 and each of its
peripheral devices are developed as required for use within the Disk
Operating System {(DOS). These subroutines are made available within
an I/0 Utilities Package for the benefit of PDP-11 users who have con-
figurations unable to support DOS or who wish to run programs outside
DOS control.

All the subroutines associated with one peripheral device togeth-
er form an entity which is known as a Driver. The purpose of this docu-
ment is to provide a general description of a driver and to show how
it may be used in a stand-alone environment. The unigue properties of
each driver are discussed in separate documents issued as supplements
to this one. The I/0 Utilities Package for any system is determined by
the peripherals of that system. Thus the full documentation for a
particular package consists of this document and the applicable supple-
ments.

Within this document, Chapter 2 consists of an outline of the es-
tablished driver structure and its interface to the program using it.
Chapter 3 then illustrates how a stand-aione program can match this
interface 1in order tb make immediate use of each driver as supplied
within the package. For the benefit of those users who reguire a more
detailed description of the driver format, perhaps so that they can
write their own drivers for other unsupported devices in a similar
fashion, the standard specification for DOS driver has been attached
as Appendix A. It is assumed that the reader is familiar with the
basic hardware concepts of the PDP-11 as described in the PDP-11 Hand-
book and with the Paper Tape Software as described in the Programming
Handbook (DEC-ll—GGPB—D).

CHAPTER 2

DRIVER FORMAT

2.1 Structure

The basic principle of all drivers under the DOS Monitor is that they
must present a common interface to the routines using them in order to
provide for device-independent operation. The subroutines are
structured to meet this end. Moreover, the driver may be loaded any-
where in memory under Monitor control. Its code must always, there-

fore, be position-independent.

The detailed description of a driver is found in Appendix A. This

chapter is concerned with driver interfaces.

2.1.1 Driver Interface Table

The first section of each driver consists of a table which contains,

in a standard format, information on the nature and capabilities of the
device it represents and entry pointers to each of its subroutines.

The calling program may then use this table as required, regardless of

the device being called.

2.1.2 Setup Routines

Each driver is expected to handle its device under the PDP-11 interrupt
system. When called by a program, therefore, a driver subroutine mere-
ly initiates the action required by setting the device hardware regis-
ters appropriately. It then returns to the calling program by a stan-

dard subroutine exit.

The main setup routine prepares for a data transfer to or from the
device, using parameters supplied by the calling program. Normally,
blocks of data will be moved at each transfer. The driver will only
return control to the program when the whole block has been actioned or

when it is unable to continue because there is no more data available.

The driver may also contain subroutines by which the calling
program may request start-up or shut-down action, such as leader or
trailer code at a paper-tape punch, or some special function provided
by the device hardware (or a software simulation of that for some

similar device), e.g., "rewind" of a magnetic tape (or DECtape) .
g

2.1.3 Interrupt Servieing

The nature of the driver routine to service device interrupts is

particularly dependent upon the extent of the hardware provisions of
the device for controlling transfers. In general, the driver deter-
mines the cause of the interrupt and checks whether the last action
was performed correctly or was prevented by somé error condition. If
more device action is needed to satisfy the program, the driver again
initiates that action and takes a normal interrupt exit. If the
program request has been fully met, control is returned to the program
at an address supplied at the time of the call.

2.1.4 Error Handling

Device errors may be handled in two ways. There are some errors for
which recovery can be programmed; the driver will, if appropriate,
attempt this itself (as in the case of parity or timing failure on a
bulk-storage device) or will recall the program with the error con-
dition flagged (as at the end of a physical paper tape). Other errors
will normally require action externally, perhaps by an operator. For
the latter, the driver calls a common error‘handler based on location

34 (IOT call) with supporting information on the processor stack.

2.2 Interface to the Driver

2.2.1 Control Interface

The principal link between a calling program and any driver subroutine
is the first word of the driver table. In order to provide the con-
trol parameters for a device operation, the calling program prepares

a list in a standardized form and places a pointer to the list in the
driver link. The called driver then uses the pointer to access the
parameters. If the driver need then return status information, it may

again place this in the list area via the link-word.

The first word of the driver also may act as an indicator in that
while it remains @, the driver is not already busy upon some task,
whereas when the word contains a list-pointer, the driver is assumed
to be busy. Since most drivers can only support one job at a time, the

link-word state can be significant.

2.2.2 Interrupt Interface

Although the driver will always expect to use the interrupt system, it
does not itself ensure that its interrupt vector in the memory area
below 400 has been set up correctly; the Monitor under DCS takes care
of this. However, the Driver Table contains the necessary information

to allow the vector to be set correctly.

2-2

CHAPTER 3

STAND-ALONE USAGE

Because each driver is designed for operation within the device-
independent framework of DOS Monitor, it may be similarly used in
other applications. Possible methods will be discussed later. How-
ever, since the easiest way to use the driver is to assemble it with

the program requiring it, this will be described first.

3.1 Driver Assembled with Program

3.1.1 Setting Interrupt Vector

As noted in Section 2.2.2, the calling program must first correctly
set the device transfer vector within memory locations 0-377. The
address of the driver's interrupt entry point can be identified on
the source listing by the symbolic name which appears as the content
of the Driver Table Byte, DRIVER+5. The priority level at which the
driver expects to process the interrupt is at byte DRIVER+6. For a

program which can use position-dependent code, the setup sequence

may be:

MoV #DVRINT, VECTOR ;SET INT. ADDRESS

MOVB DRIVER+6, VECTOR+2 ; SET PRIORITY

CLRB VECTOR+3 ; CLEAR UPPER STATUS BYTE
(where the Driver Table shows at DRIVER +5: .BYTE DVRINT-DRIVER).

If the program must be position-independent, it may take advan-
tage of the fact that the Interrupt Entry address is actually stored
as an offset from the start of the driver, as illustrated above. In

this case, a sample sequence might be:

MOV PC,R1 ;GET DRIVER START

ADD #DRIVER-.,R1

MOV #VECTOR,R2 ;i...& VECTOR ADDRESSED

CLR @R2 ;SET INT. ADDRESS

MOVB 5(R1),@R2 ;...AS START ADDRESS+OFFSET
ADD R1, (R2)+

CLR @R2 ; SET PRIORITY

MOVB 6(R1),@R2

3.1.2 Parameter Table for Driver Call

For any call to the driver, the program must provide the list of

3-1

control arguments mentioned in Section 2.2.1. This list must adhere

in general to the following format:'

[SPECIAL FUNCTION CODE]?

[BLOCK NO.]?

STARTING MEMORY ADDRESS FOR TRANSFER

NO. OF WORDS to be transferred (2's complement)

STATUS CONTROL showing in Bits:
g-2: Function (octally 2=WRITE, 4=READ)"
8-10¢: Unit (if Device can consist of several, e.g., DECtape)
11: Direction for DECtape travel (f = Forward)

ADDRESS for RETURN ON COMPLETION

[RESERVED FOR DRIVER USE]’

The list itself may be assembled into the required format if its
content will not varv. The driver may return information in the area
as described in a later paragraph; however, this will not corrupt the
program data and it is removed by the driver before it begins its

next operation.

On the other hand, most programs will probably wish to use the
same area for the lists for several tasks or even between different
drivers. In this case, the program must contain the necessary routine
to set up the list for each task before making the driver call, per-
haps as illustrated in the next paragraph. It must be noted, however,
that the driver may wish to refer to the list again when it is re-
called by an interrupt or to return information to the calling program.
Therefore, the list must not be changed until any driver has completed
a function requested; for concurrent operations, different list areas

must be provided.

3.1.3 Calling the Driver

To enable the driver to access the parameter list, the program must

set the first word of the driver to an address six bytes less than that

'Tn some cases, it may be further extended as discussed in later para-
graphs.

’Required only if Driver is being called for Special Function.
3Required only if the Device is bulk storage (e.g., Disk or DECtape).

*Most devices transfer words regardless of their content, i.e. ASCII
or Binary. Some devices, e.g., Card Reader, may be handled different-
ly for the two modes; for these, Bit # must also be set to indicate
ASCII=@, Binary=l. (In these cases, the driver always produces or
accepts ASCII even though the device itself uses some other code.)

*This word may be omitted if the device is bulk storage {(see below).

of the word containing MEMORY START ADDRESS. It may then call the

driver subroutine required directly by a normal JSR PC,xxxx call.

As an example, the following position-independent code might
appear in a program which wishes to read Blocks #18@-183 backward
from DECtape Unit into a buffer starting at address BUFFER:

MOV PC,RM ;GET TABLE ADDRESS
ADD #TABLE+12-.,R{
MOV PC,QRP ;GET & STORE...
ADD #RETURN~-. , @RM ;...RETURN ADDRESS
MOV #5404, - (R@) ;SET READ REV. UNIT 3
MOV #-1824.,-(RP) ;4 BLOCKS REQUIRED
MOV PC,-(R@) ;GET & STORE
ADD #BUFFER-. ,@R{ ; .. .BUFFER ADDRESS
MOV #1@3,-R@) ; START BLOCK
CMP -(R@) ,-(RE) ; SUBTRACT 4 FROM POINTER
MOV R@,DT ;SET DRIVER LINK
. JSR PC,DT.TFR ;GOTO TRANSFER ROUTINE
WAIT: . ; RETURNS HERE WHEN
RETURN: ° i ...TRANSFER UNDERWAY
. ; RETURNS HERE WHEN
: ;... TRANSFER COMPLETE
TABLE: .WORD @ ;LIST AREA SET
.WORD @ ;...BY ABOVE SEQUENCE
.WORD @
.WORD @
.WORD @

3.1.4 User Registers

During its setup operations for the function requested, the driver
assumes that Processor Registers @-5 are freely available for its
purpose. If their contents are of value, the program must save them

before the driver is called.

While servicing intermediate interrupts, the driver may need to
save or restore these registers. It expects to have available two
subroutines for the purpose (provided by the Monitor under DOS)

It accesses them via addresses in memory locations 44 (SAVE) and 46

(RESTORE) using the sequence:

MOV @#44,-(SP) ;OR 'MOV @#46,-(5P)
JSR R5,@(SP) +

The program must, therefore, contain these subroutines. They

might, for example, be as follows:

SAVE: MOV R4,-(SP) ; SAVE R@-4
MOV R3,-(SP) ;...R5 SAVED BY CALL
MoV R2,-(SP)
MOV R1,-(SP)
MOV Rf, - (SP)

MOV R5,PC ;EXIT TO CALLER
RESTOR: INC (SP)+ ; FORGET CALL R5
MOV (spP)+,RM ; RESTORE R@-4

MOV (sP)+,R1
MOV (SP)+,R2
MOV (sp)+,R3
MOV (sP)+,R4
RTS R5 ;R5 RESET ON EXIT

It must also ensure that their start addresses are set into the cor-

rect locations.
At its final interrupt, the driver always saves the contents of
Registers @-5 before returning control to the calling program comple-

tion return.

3.1.5 Returns from Driver

As shown in the example in section 3.1.3, the driver returns control
to the calling program immediately after the JSR as soon as it has set
the device in motion. The program may then wait or carry out some
alternative operations until the driver signals completion by return-
ing at the address supplied, i.e., RETURN above. Prior to this, the
program should not attempt to access the data being read in, or to

refill a buffer being written out.

The program routine beginning at address RETURN will vary accord-
ing to the device in use. 1In general, the driver has given control to
the routine for one of two reasons, namely, the function has been
satisfactorily performed, or it cannot be carried out due to some hard-
ware failure with which the driver is unable to cope, though the
program may. If the latter, the driver uses the STATUS word in the
program list to show the cause:

Bit 15

=1 indicates that a device parity or timing failure
has occurred and the driver has not been able to
overcome this, perhaps after several attempts.
Bit 14 = 1 shows that the end of the data available has been

reached.

The driver places in R@ the content of its first word as a

pointer to the list concerned.

In addition, the driver may have transferred only some of the data

reguired.—In this case, it will show, in the RESERVED word of the

qr

program list, a negative count of the words not transferred in addition
to setting Bit 14 of the STATUS. As mentioned in the note in Section
3.1.2, this applies only to non-bulk storage devices. The drivers for
DECtape or Disks!always endeavor to complete the full transfer, even
beyond a parity failure, or they take more drastic action (see Section
3.1.6).

It is thus the responsibility of the program RETURN routine to
check the information supplied by the driver in order to verify that
the transfer was satisfactory and to handle the error situations

accordingly.

In addition, the routine must contain a sequence to take care
of the Processor Stack, Registers, etc. As noted earlier, the driver
takes the completion return address after an interrupt and has saved
Registers 0-5 on the stack above the Interrupt Return Address and
Status. The program routine should, therefore, contain some sequence
to restore the processor to its state prior to such interrupt, e.qg.,

using the same Restore subroutine illustrated earlier:

MoV @#46,-(SP) ; CALL REGISTER RESTORE
JSR R5,@(SP)+

RTI ; RETURN TO INTERRUPTED PROG.

3.1.6 Irrecoverable Errors

All hardware errors other than those noted in the previous paragraph
are more serious in that they cannot normally be overcome by the
program or the driver on its behalf. Some of these could be due to
an operator fault, such as an omission to turn a paper tape reader on
or to set the correct unit number on a DECtape transport. Once the
operator has rectified the problem, the program could continue.

Other errors, however, will require hardware repair or even software
repair, e.g., if the program asks for Block 2000 on a device having

a maximum of 1000. In general, all these errors will result in the
driver placing identifying information on the processor stack and

calling IOT to produce a trap through location 34.

'This includes RF1l Disk: although this is basically word-oriented, it
is assumed to be subdivided into 64-word blocks.

3-5

Under DOS, the Monitor provides a routine which prints a tele-
printer message when this occurs. In a stand-alone environment, the
program using the driver must itself contain the routine to handle
the trap (unless the user wishes to modify the driver error exits
before assembly). The handler format will depend upon the program.
Should it wish to take advantage of the information supplied by the

driver, the format is as follows:

(SP) : Return Address

2(SP}: Return Status Stored by IOT Call

4(SP) : Trror No. Code generally unique to driver

5(sp) : Error Type Code: 1 = Recoverable after Operatoxr Action
3 = No recovery

6{SP) : Additional Informa- such as content of Driver,

tion control Register, Driver Identitv,

etc.

As a rule, the driver will expect a return follcwing the IOCT
call in the case of errors in Type 1 but will contain no provision

following a return from Type 3.

3.1.7 General Comment

The source language of each driver has been written for use with the
DOS version of the Assembler which requires certain statements which
will not be accepted by the Papér Tape Software PAL-11A, in particu-
lax: .TITLE &% .GLORL. These should be edited out before the socurce
is used. Similarly, an entry in the driver table gives the device
name as .RAPSf 'DT' to obtain a specially packed format used inter-
nally by DOS. If the user still wishes to keep the name, for instance
for identification purposes as discussed in section 3.3, .RADS5SYJ
might easily be changed to .ASCII without detrimental effect, or it
can he replaced with .WORD # .

3.2 Drivers Assembled Separately

Rather than assemble the driver with every program requiring its
availability, the user may wish to hold it in binary form and attach
it to the program only when loaded. This is readily possible; the
only requirement is that the star: address of the driver should be

known or can be determined by the program.

The example in section 3.1.2 showed that the Interrupt Servicing
routine can be accessed through an offset stored in the Driver Table.
The same technique can be used to call the setup subroutines, as

these also have corresponding offgsets in the Table, as follows:

DRIVER+7 Open'*

+11 Close!
+12 Special Functions'®

The problem, of course, is the start address. There is always
the cbvious solution, that of assembling the driver at a fixed loca-
tion so that each program using it can immediately reference the
location chosen. This, however, ceases to be convenient when the
program itself has to avoid the area given to the driver. A more
general method is to relocate the driver as dictated by the program
using it, thus taking advantage of the position-independent nature of
the driver. The Absolute Loader, described in the Paper Tape Soft-
ware Handbook (DEC-11-GGPB-D), Chapter 6, provides the capability of
continuing a load from.the point at which it ended. Using this
facility to enter the driver immediately after the program, the pro-
gram itself might contain the following code to call the subroutine

to perform the transfer illustrated in section 3.1.3:

MOV PC,R1 ;GET DRIVER START ADDRESS
ADD #PRGEND-. ,R1

MOV PC,Rf ;GET TABLE ADDRESS

ADD #TABLE+12-.,Rf ;& SET UP AS SHOWN

. ;...IN SECTION 3.1.3

CMP -(RZ) ,-(R@) ; FINAL POINTER ADJUSTMENT
MOV R@,@R1 ; STORE IN DRIVER LINK
CLR -(sp) ;GET BYTE SHOWING...
MOVB 1g(R1l) ,@SP ; ...TRANSFER OFFSET
ADD {sP)+,R1 ; COMPUTE ADDRESS
JSR PC,@R1 ;GO TO DRIVER
PRGEND:
.END

This technique may be extended to cover situations in which
several drivers are used by the same program, provided that it takes
account of the size of each driver (this being already known because
of prior assembly) and that the drivers themselves are always loaded

in the same order.

For example, to access the second driver, the above sequence

would be modified to:

'If the routine is not provided, these are #.

MOV PC,R1 ;GET DRIVER 1 ADDRESS
ADD #PRGEND-. ,R1
ADD #DVRLSZ,R1 ;STEP TO DRIVER 2
DVRLSZ=
PRGEND:
.END

An alternative method may be to use the Relocatable Assembler
PAL-11S in association with the Linker program LINK-11S, both of which
through the DECUS Library. The start address of each
Any calling program need, therefore,
.GLOBL DT.

are available
driver is identified as a global.
merely include a corresponding .GLOBL statement, e.g.,

3.3 Device-independent Usage

As mentioned earlier, the drivers are designed for use in a device-
independent environment, i.e., one in which a calling program need not
know in advance which driver has been associated with a table for a
particular execution run. One application of this type might be to
allow line-printer output to be diverted to some other output medium
because the line-printer itself is currently not available. Another
might be to provide a general program to analyze data samples although
these on one occasion might come directly from an Analog to Digital
converter and on another be stored on a DECtape, because the sampling
rate was too high to allow immediate evaluation.

As a rule, programs of this type should be written to cater for all
the facilities that any one device might offer, but not necessarily all

the program should ask for start-up procedures

of them. For instance,

because it may sometime use a paper tape punch which provides them,

even though it may normally use DECtape which does not. As noted in

section 2.1.1, the driver table contains an indication of its capabili-
ties to cater for this situation. The program can thus examine the
appropriate item before calling the driver to perform some action. As
an example, the code to request start-up procedures might be (assuming

Rff already set to List Address):

MOV #DVRADD, R1 ;GET DRIVER ADDRESS

TSTB 2 (R1) ;BIT 7 SHOWS...

BPI, NOOPEN ;...OPEN ROUTINE PRESENT
MOV R@Z,@R1 ; STORE TABLE ADDRESS
CLRB -(SP) ;BUILD ADDRESS

MOVB 7(R1),@SP i ...OF THIS ROUTINE

ADD (sP)+,R1

JSR PC,CR1 ;...& GO TO IT
; FOLLOWED POSSIBLY 3Y

: PROCESSING
NOOPEN : ; RETURN TO COMMON OPERATION

Similarly, the indicators show whether the device is capable of
performing input or output or both, whether it can handle ASCII data
or Binary data, whether it is a bulk storage device capable of support-
ing a directory structure or is a terminal-type device requiriﬁg
special treatment and so on. Other table entries show the device
name as identification and how many words it might normally expect
to transfer at a time (in 16-word units). All of the information may
readily be examined by the calling program, thus cenabling the use

perhaps of a common call sequence for any 1/0 coperation, as for

example:
MOV #DVRADR, RS ; SET DRIVER START
JSR R5, IOSUB : ;CALL SET UP SiB
BR WAIT ; SKIP TARLE FOLLOWING ON RETURN
.WORD 10 ; TRANSFZR RLQUIRED
.WORD 103) ;BLOCK NO.
.WORD BUFFER ; BUFFER ADDRESS
.WORD -256. ;WORD COUNT
.WORD 4g4 ;READ FROM UNIT 1
.WORD RETURN ;EXIT ON COMPLETION
.WORD ¢ ; RESERVED
WAIT: ; CONTINUE HERE...
. ;WHILE TRANSFER IN PROGRESS
IOSUB: MoV @SP,RM ;PICK UP DRIVER ADDR
MOV R5,R1 ; SET POINTER TO LIST
TST (R1) + ;BUMP TO COLLECT CONTENT
. ; ROUTINE CHECKS ON DEVICE..

. ;« .CAPABILITY USING R1
. ;..TO ACCESS LIST &
. ;+..RE THE DRIVER TABLE

. ;IF O.K...
MOV @R1,R1 ;GET ROUTINE OFFSET
ADD RH,R1

CLR -(SP) ;USE IT TO 3UILD
MOVB @R1,@SP ;...ENTRY POINT
ADD R@,@sp

JSR PC,@(Sp)+ ; CALL DRIVER

RTS R5 "3EXIT TO CALLFR

The calling program, or a subroutine of the type just illustrated,
may also wish to take advantage of a further feature menticned earlier:

the fact that when a driver is already occupied its first word must be

non-zero. The driver itself does not clear this word except in
special cases shown in the description for the driver concerned. If
the program itself always ensures that it is set to zero between
driver tasks, this word forms a suitable Driver-busy flag. Under DOS,
in fact, the program parameter list is extended to allow additional
words to provide linkage between lists as a queue of which the list

indicated in the driver first word is the first link.

The preceding paragraphs are intended merely to indicate
possible ways of incorporating the drivers available into the type of
environment for which they were designed. The user will probably
find others. However, he should read carefully the more detailed
description of the driver structure in Appendix A and the individual

driver specifications before determining the final form of his program.

In particular, one general word of warning is appropriate here.
Although most drivers normally set up an operation and then wait for
an interruot to produce a completion state, there are some cases in
which the driver can finish its required task without an interrupt,
e.g., "opening" a paper-tape reader involves only a check on its
status. Moreover, where "Special Functions" are concerned, the
driver routine may determine from the code indicated that the function
is not applicable in its case and will, therefore, have nothing to do.
In those cases, the driver clears the intermediate return address from
the processor stack and takes the completion return immediately.
Special problems may arise, however, if the driver concerned may be
covering several tasks, any of which may cause a queue for the
driver's services under DOS. To overcome these problems, the driver
expects to be able to refer to flags outside the scope of the list
described so far. This may mean that a program using such a driver
may also need to extend the list range to cover this possibility.

Extreme care will then be needed.

APPENDIX A

- I-0 DRIVERS WITHIN THE DISK OPERATING SYSTEM

The principal function of an I/0 driver is to satisfy the requirement
of a Monitor processing routine for the transfer of a block of data in
a standard format to or from the device it represents. This will in-
volve both setting up the device hardware registers to cause the trans-
fer and its control under the interrupt scheme of PDP-11, making due
allowance for peculiar device characteristics (e.g., conversion to or

from ASCII if some special code is used).

It may also include routines for handling device start-up or
shut-down such as punching leader or trailer, and for making available
to the user certain special features of the device, such as rewind

of magtape.

A.l1 Driver Structure

In order to provide a common interface to the monitor, all drivers

must begin with a table of identifying information as follows:

DVR: BUSY FLAG (initially @)
FACILITY INDICATOR (expanded below)
Offset to Standard Buffer Size
Interrupt Routine* in 1l6-word Units.
Offset to Priority for
OPEN Routine * Interrupt Service
Offset to Offset to
CLOSE Routine * Transfer Routine *
Space Offset to
Special Functions¥*
DEV NAME (Packed Radix-5§)

Offsets marked * will enable calling routine to
indicate routine required. They will be con-
sidered as an unsigned value to be added to the
start address of the driver. This may mean that
with a 256 maximum, the instruction referenced
by the offset will be JMP or BR (routine).

Bits in the Facility Indicator Word define the device for moni-

tor reference:

SPECIAL STRUCTURES GENERAL STRUCTURE

IR

A — —~ — A A A A
File- % Unused ‘ Multi
Structured User
. " 3 alll
Device DEC- DZiigén OutPut
tape (or Device
51mlla;é{) Contains OPEN Input Device
reversible Contains CLOSE
Contains SPECIAL ™ Binary Device

ASCII Device

The table should be extended as follows if the device is file-

structured:

BLOCK USED AS MASTER FILE DIRECTORY

POINTER TO BIT-MAP IN MEMORY Unit #

Similar Bit~Map
Pointers for
Multi-unit

T e~~~ Z Devices

S TN TN e

The driver routines to set up the transfer and control it under
interrupt, and possibly for OPEN, CLOSE, and SPECIAL, follow the
table. Their detailed operation will be described later.

A.2 Monitor Calling

When a Monitor I/O processing routine needs to call the driver, it

first sets up the parameters for the driver operation in relevant

words of the appropriate DDB!, as follows:

XYZ: - (User Call Address)
SPECIAL FUNCTION CQODE (User Line Address)
DEVICE BLOCK NUMBER

MEMORY START ADDRESS

WORD COUNT (2's Complement)
TRANSFER FUNCTIONS (expanded below)
COMPLETION RETURN ADDRESS

(DRIVER WORD~-COUNT RETURN) Set to

P s

T — e~ —————
S

"Dataset Data Block - in full, a l6-word table which provides the main
source of communication between the Monitor drivers and a particular set
of data being processed on behalf of a using program.

A=2

The relevant content of the Transfer Function word is as follows:

TT Echo Control

NERREREREREMNEE

e

Used by Driver DECtape A =ASCII
to indicate reverse =Binary
Hardware Parity DEVICE

Fail ; ONIT Transfer OUT

Transfer IN

Provided that the Facility Indicator in the Driver Table de-
scribed above shows that the driver is capable of satisfying the re-
quest, both from the point of view of direction and mode and of the
service regquired, the Monitor routine places in Register @ the relative
byte address of the entry in the Driver Table containing the offset to
the routine to be used (e.g., for the Transfer routine, this would be
1¢). It then calls the Driver Queue Manager, using JSR PC,S.CDB.

The Driver Queue Manager ensures that the driver is free to
accept the request, by reference to the Busy Flag (Word ¢ of the
driver table). 1If this contains @, the Queue Manager inserts the
address of the DDB from Register @ and jumps to the start of the
routine in the driver using Register 1 content to evaluate the address
required. If the driver is already occupied, the new request is
placed in a queue linking the appropriate DDB's for datasets waiting
for the driver's services. It is taken from the queue when the driver
completes its current task. (This is done by a recall to the Queue

Manager from the routine just serviced, using JSR PC,S.CDQ.)

On entry to the Driver Routine, therefore, the address following
the Monitor routine call remains as the "top" element of the processor
stack. It can be used by the driver in order to make an immediate
return to the Monitor (having initiated the function requested), using
RTS PC. It should also be noted that the Monitor routine will have
saved register contents if it needs them after the device action. The

driver may thus freely use the registers for its own operations.

When the driver has completely satisfied the Monitor request,
it should return control to the Monitor using the address set into
the DDB. On such return, Register @ must be set to contain the
address of the DDB just serviced and since the return will normally
follow hardware interrupt, Registers @-5 at the interrupt must be

stored on top of the stack.

A.3 Driver Routines

A.3.1 TRANSFER

The sole purpose of the TRANSFER routine is to set the device in
motion. As indicated above, the information needed to load the hard-
ware registers is available in the DDB, whose address is contained in
the first word of the driver. Conversion of the stored values is,

of course, the function of the routine. It must also enable the
interrupt; however, it need not take any action to set the interrupt
vectors as these will have been preset by the Monitor when the driver
is brought into core. Having then given the device GO, an immediate

return to the calling processor should be made by RTS PC.

A.3.2 Interrupt Servicing

The form of this routine depends upon the nature of the device. In
mest drivers it will fall into two parts, one for handling the term-
ination of a normal transfer and the other to deal with reported

error conditions.

For devices which are word or byte-oriented, the routine must
provide for individual word or byte transfers, with appropriate
treatment of certain characters (e.g., TAB or Null) and for their
conversion between ASCII or binary and any special device coding
scheme, until either the word count in the DDB is satisfied or an
error prevents this. On these devices, the most likely cause for
such error is the detection of the end of the physical medium; its
treatment will vary according to whether the device is providing
input or accepting output. The calling program will usually need to
take action in the former case and the driver should merely indicate
the error by returning the unexpired portion of the word count in
DDB Word 7 on exit to the Monitor. Output End of Data, however,
will, in general, require operator action. To obtain this, the
driver should call the Error Diagnostic Print routine within the

Monitor by:

MOV DEVNAM, - (SP) ; SHOW DEVICE NAME
MoV #402,0(SP) ; SHOW DEVICE NOT READY
I0T ;CALL E.D.P.

On the assumption that the operator will reset the device for further
output and request continuation, the driver must follow the above se-
guence with a Branch or Jump to produce the desired resumption of the

transfer.

Normal transfer handling on blocked devices (or those like Rrll
Disk which are treated as such) is probably simpler since the hardware
takes care of individual words or bytes and the interrupt only occurs
on completion. Errors may arise from many more causes, and their
handling is, as a result, much more complex and device dependent. In
general, those which indicate definite hardware malfunctions must
lead to the situation in which the operator must be informed by
diagnostic message and the only recourse after rectification will be

to start the program over.

At the other end of the scale there are errors which the driver
itself can attempt to overcome by restarting the transfer - device
parity failure on input is a common example. If a retrial, or
several, still does not enable a satisfactory conclusion, the driver
should normally allow programmed recovery and merely indicate the
error by Bit 17 of DDB word 5. Nevertheless, because the program may
wish to process the data despite the error, the driver should attempt
to transfer the whole block requested if this has not already been
effected. Between these two extremes, the remaining forms of error

must be processed according to the type of recovery deemed desirable.

Whether the routine uses processor registers for its operation
or not will naturally depend on considerations of the core space saved
against the time taken to save the user's content. However, on
completion (or error return) to the Monitor, as indicated in an earlier
paragraph, the calling routine expects the top of the stack to contain
the contents of all Registers @-5 and Register @ to be set to the
address of the DDB just serviced. The drive must, therefore, provide

for this.

A.3.3 OPEN

This routine need be provided only for those devices for which some

hardware initialization is required by the user. It should not

normally appear in drivers for devices used in a file-oriented manner.
Its presence must be indicated by the appropriate bit (Bit 7) in the
driver table Facility Indicator.

The routine itself may vary according to the transfer direction
of the device. For output devices, the probable action required is
the transmission of appropriate data, e.g., CR/LF at a keyboard
terminal, form~feed at a printer, or null characters as punched leader
code, and for this a return interrupt is expected. The OPEN routine
should then be somewhat similar to that for TRANSFER in that it merely
sets the device going and makes an interim return via RTS PC, waiting
until completion of the whole transmission before taking the final

return address in the DDB.

On the other hand, an input OPEN will likely consist of just a
check on the readiness of the device to provide data when requested.
In this case, the desired function can be effected without any interrupt
wait. The routine should, therefore, take the completion return immed-
iately. Nevertheless, it must ensure that the saved PC value on top
of the stack from the call to S.CDB is appropriately removed before
exit. In the case of drivers which can only service one dataset at a
time (i.e., Bit @ of their Facility Pattern word is set to @) and can
never, therefore, be queued, it will be sufficient merely to use
TST (SP)+ to effect this. A multi-user driver, however, must allow for
the possibility that it may be recalled to perform some new task al-
ready waiting in a queue. This is shown by the byte at DDB-3 being
non-g. In this case, the intermediate return to the routine originally
requesting the new task has already been made directly by S.CDB. The
address now on top of the stack is the return to the routine, whose
task the driver has just completed and which has called S.CDQ to
dequeue the driver. This return must be taken when the first routine
has performed its Completion Return processing. Moreover, this first

routine expects to exit as from an interrupt. When a driver is recalled

from a queue, it must simulate this interrupt. A possible seguence
might be:

MOV DRIVER, R# ;PICK UP DDB ADDRESS

MOV (SP)+,R5 ; SAVE INTERIM RETURN

TSTB -3(RE) ; COME FROM QUEUE?

BEQ EXIT

MoV @#177776,-(SP) ;IF SO, STORE STATUS

MOV R5,-(SP) ;5 ...& RETURN

SUB #14,SP ; DUMMY SAVE REGS

EXIT: JIMP @14 (Rf)

A,3.4 CLOSE

As with OPEN, this routine should provide for the possibility of some

form of hardware shut down such as the punching of trailer code and
is not necessary for file-structured devices. Moreover, it is likely
to be a requirement for output devices only. If it is provided,

Driver Table Facility Indicator (Bit 6) must be set.

Again, the probable form is initialization of the hardware action
required, with immediate return via RTS PC and eventual completion

return via the DDB~-stored address.

A.3.5 SPECIAL

This routine may be included if either the device itself contains the
hardware to perform some special function or there is a need for
software simulation of such hardware on other devices, e.g., tape
rewind. It should not be provided otherwise. Its presence must be

indicated by Bit 5 of the Facility Indicator.

The function itself is stored by the Monitor as a code in the
DDB as shown earlier. When called, the driver routine must determine
whether such function is appropriate in its case. If not, the
completion return should be taken immediately with prior stack clear-
ance, as discussed under OPEN. For a recognized function, the
necessary routine must be provided. Again, its exit method will

depend upon the necessity for an interrupt wait or otherwise.

A.4 Drivers for Terminals

The rate of input from terminal devices is normally dictated externally
by the operator, rather than being program-driven; moreover, for both
input and output, the amount of data to be transferred on each

occasion may be a varying value, i.e., a line rather than a block of
standard size. Furthermore, there may be problems with the conflict
between echo of input during output. As a result, drivers for such

devices will demand special treatment.

Normal output operation, i.e., .WRITE by the program, is handled
by the Monitor Processor. On recognizing that the device being used is
a terminal, as shown by Bit 8 of the facility indicator, this routine
always causes a driver transfer at the end of the user line, even
though the internal buffer has not been filled. The driver, however,

is given the whole of a standard buffer, padded as necessary with

nulls. Provided the driver can ignore these, the effect is that of

just a line of output.

Input control on the other hand, must remain driver responsibil-
ity. Overcoming the rate problem will, in most cases, require circu-
lar buffering within the driver until demanded by the Monitor. At
this point, transfer of data already in should occur. If this is
sufficient to fill the monitor buffer, the driver can await the next
request before further transfer onward. If insufficient, it should
operate as any other device and use subsequent interrupts to continue
to satisfy the Monitor request. It must, nevertheless, stop any
transfer at the end of a line in normal operation. In order to allow
the Monitor to continue, the driver must simulate the filling of the
buffer by null padding (of no consequence, since terminals are by
nature character-based). (Normal operation, of course, means response
to user .READ's and is indicated by the size of the buffer to be
filled, namely the driver stancdard. Should the user be requesting
.TRANS, the buffer size will vary from the standard in all likelihood
and the driver may then assume he requires operation as a normal

device -- complete buffer fill-up before return.)

Where input echo is a further complexity, there will doubtless
be other requirements. If the echo is made immediately after the
input, it may be desirable to have a second buffer to cacer for the
likely situation that the echo will not exactly match its origin.
On the other hand, if the echo is held for any length of time, perhaps
to provide correct relations between program-driven output and the
echo, the second buffer could be too expensive. A larger input buffer
and routines to allow for several outputs to one input character while
sitting on that character might be more convenient. The conflict
between such echo and program-driven output will require controlled

switching within the driver input and output handlers.

DEC-11-RITA-D

PDP-11
TC11 DECTAPE DRIVER

MARCH 1971
SUPPLEMENT TO:
PDP-11 DESVICE DRIVER PACKAGE
EC-11-NIZA-D

COPYRIGHT (© 1971 BY DIGITAL EQUIPMENT CORPORATION

THIS DOCUMENT IS FOR INFORMATION PURPOSES
ONLY AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

|
i

oo

| PRDGRAM
LIBRARY

DRIVER for TCll DECtape Control

The principal function of the TCll Driver is to transfer data between
the hardware control and a memory area specified by a calling Monitor
routine on behalf of a user program. The number of words transferred,
the DECtape transport, the absolute starting block on the tape, and
the direction of tape travel in each case are all determined by the

calling routine.

As required by the standard Monitor-driver interface for all de-
vices in general and, as DECtape will be handled as such, for file-
structured devices in particular, the first part of the driver consists

of two consecutive tables:

a) Table of descriptors and pointers to routines included.

b) File-structured usage data

All data transfers utilize the normal read/write capability of
the PDP-11 NPR facility. The driver contains a set-up sequence to
initiate a search for the requisite start block and routines then to
handle interrupts for continuation of such search and, if this is

successful, the subsequent data transfer specified.

As a file-structured device, the opening and closing of files
are the responsibility of the Monitor file management routines. There

are therefore no OPEN or CLOSE routines.

Also, no routine to handle SPECIAL FUNCTIONS is currently pro-
vided. This could be added later if it is found desirable to simulate
the normal operation of some similar device, e.g., rewind as for Mag-
netic Tape.

1. 1Initial Tables

Relevant entries for this driver are as follows:

WORD @: = g initially-set to address of DDB for dataset being ser-
viced when busy, by calling routine.
WORD 1l: = Facility Pattern = 140037 signifying:

a) File-structured Device
b) DECtape (or similar reversible medium)

c) Capable of Input or Output in either ASCII or Binary
on more than one dataset at a time.

WORD 2: = a) Standard Buffer Size = 16 X l6-word units (i.e., 1
standard DECtape block).

b) Offset to Interrupt Service routine.

WORD 3: = a) Priority for Interrupt Service = 7
b) @ [No OPEN routine included]

WORD 4: = a) Offset to TRANSFER Set-up routine
b) @ [No CLOSE routine included}

WORD 5: = @ [No SPEC FUNC routine presently]
WORD 6: = Name 'DT' in RADIX 50 format.
WORD 7: = Start Block of Directory Structure = 100

WORDS 1g-17: = Reserved for pointers to in-core Bit Maps for each of
8 transports supportable by TCll.

2. Processing Routines

2.1 Transfer Set-up

A Monitor routine effectively calls for transfer set-up by JSR PC, XXXX
where XXXX is the start address evaluated from the offset in WORD 4 of
the table. The address of the DDB containing relevant parameters will
be stored in WORD @ of the table.

The set-up routine will first set a counter for the number of re-
turns to be made in the event of parity or timing failures in tape
operations (8-9). Using the given DDB address, it then extracts the

following information and actions it as shown:

(1) Block No. (DDB+4) - two copies are stored internally as con-
trols during Start Block search as detailed below.

(ii) Word Count & Memory Address (DDB+6 & 10) - these are stored
immediately in the TCll WC & BA registers for use
as soon as the Start Block has been found.

(iii) Function (DDB+12) - the requirement for Read or Write is con-
verted from the standard Monitor specification (4
or 2) into the corresponding DECtape value (4 or
14) and stored internally until completion of block
search.

(iv) Tape Unit & Motion (DDB+13). The bits showing these are as-
sociated with the DECtape Search function [3] and
are set into the TCll Control Register to initiate
the search for the start block.

]

The set-up routine also sets two switches appropriately:

a) In any transfer, two types of interrupt may occur; the

first at each block encountered during the search for
the start specified; the second thereafter arising when
the transfer has been completed. The switch is initial-
ly set for the first type.

b) The tape is started in the eventual transfer direction.
Turn-around, however, may be necessary if the tape is
badly positioned. The second switch is set initially
to reflect the start direction in order to provide ade-
guate control during such turn-around.

The driver then sets the TC1l Control Register for the search, and
restores control to the calling Monitor routine, via RTS PC, to await

its first interrupt.
As permitted by the General Driver Spec, the set-up routine makes
full use of the processor registers, without saving or restoring their

original content.

2.2 Interrupt Servicing - Search Mode

Provided that a tape block-mark is encountered without error, the

search interrupt servicing routine compares the number found (from

TCll Data Register) with one copy of that for the regquired block,

stored internally by SET-up. If the comparison shows that current tape-
motion will eventually lead to the required block, the routine exits
immediately and waits for a subsequent interrupt to show that the

transfer may begin.

If tape-motion is in the wrong direction, the routine resets the
TCll Control register to produce tape turn-around on exit. A second
turn-around will now be essential for a transfer in the require direc-
tion. The routine therefore modifies, appropriately, by 2 the copy of
the block number required used in the comparison. This factor is pro-
vided so the tape is sufficiently positioned beyond the block required
to ensure that it will be up to speed at the right point after the sec-
ond turn. For example, in order to transfer Block 100 forward, the

first turn will seek Block 76 in reverse.

An equal comparison might then result after a single turn-around.
The block number found is, therefore, checked against the second, un-
modified, stored value. If not equal, a turn-around has occurred: the
TCll is reset for the second time and the first stored number is re-

stored to its original value. When both stored values and the block

found are all equal, the correct tape travel is assumed and the trans
fer is effected by moving the stored function into the TCll control
(byte only to avoid hardware delay imposition). The interrupt switch

is changed to show that the operation is now in Transfer Mode.

In the event of an error in Search Mode, the TCll Test Register
is examined. If this shows that the cause is "End Zone Reached", the
turn-around procedure is again effected, since such a condition is
initially the same as being, for example, at Block 102 when 100 is
wanted forwards. All other hardware-reported errors are treated as

discussed in a subsequent paragraph.

Another type of error mav occur but this can only be detected by
software, i.e., a failure to find the block either because its number
on the tape is corrupted or the one required is outside the range of
the tape. For both situations the tape might rock endlessly owing to
the turn-around algorithm. The search interrupt processor therefore
counts the number of times a turn is effected. It gives up at the
sixth attempt and requests printing of an F@1l6 message with the fail-

ing Block Number as evidence.

To avoid unnecessary time wastage in the storage and retrieval
of their contents, the normal search interrupt processing does not

use processor registers.

2.3 Interrupt Servicing - Transfer Mode

The normal cause of an interrupt in transfer mode is the satisfactory
completion of the whole of the data transfer specified. The driver
must then recall the monitor routine which requested the transfer.
Because this routine may have surrendered control to the user program
during the period of the search and transfer operations, the driver
must assume such is the case and save all register contents before
setting Rf to the DDB address from its WORD @ and taking the completion
return set into DDB+14.

The interrupt may also occur if an error is determined by examina-
tion of the TCll Test Register. In Transfer Mode, two types of errors
specifically processed are Party or Timing Failure. Following either
of these, the servicing routine restarts the whole process over from
the original block search until at least 8 attempts to produce a satis-
factory transfer have been made. If these all fail, the routine re-

turns a flag indicating the error in Bit 15 of the relevant DDB+12.

It checks, however, whether the failure occurred at an intermediate
block of a transfer involving several blocks. If such is the case, it

__endeavorg to provide a satisfactory transfer of the remaining blocks.

it then recalls the monitor at the completion return address.

Of the other types of error, transfer mode servicing also handles
Non-existent Memory and End Zone. Both of these conditions are assumed
to be the result of a programming error and cause printing of a fatal

error message F@15 with User Call Address as evidence.

2.4 Recoverable Errors

In both Search and Transfer modes, for errors not especially noted, a
general routine is used to request printing of a diagnostic message
requesting operator action. SEL and ILO errors are assumed to indicate
a "Device Not Ready" state for which the device name (DT) is support-
ing evidence for the message 'A@@2'. For the rest, and Mark Track
Errors in particular, which might be resolved by changing tapes -- the
message 'A@@3' is printed with the TCll Test Register content as
evidence. For all these errors, the operator might request program
resumption by a Monitor "Continue" command. The driver restarts the

whole search and transfer process if this occurs.

3. Implementation

a. Comments on the driver listing show general methods of imple-
mentation. It should be noted, however, that in several in-
stances, in-line code is modified. In particular, the two
switches mentioned under "Setup" are variable Branch Instruc-
tions and the internal storage of data has already been in-
dicated. This means first that the driver is not reentrant -
an unlikely requirement when one control may only service the
transport at a time, even though eight may be attached to it.
In the second place, the driver, as written is not immediately
usable in a ROM.

b. The priority level for interrupt servicing should also be
mentioned. The hardware level is 6; the initial software:
level, however, is set at 7. This is to ensure that there
will be no delay due to any other interrupt in the critical
case in which the required block number has been found and a
change of function from Search to Read or Write must occur
within 400 msecs. The interrupt routines themselves lower
the level to 6, if the critical case is not being actioned.
This will mean that other interrupts may be delayed up to
50 msecs. in the worst case, the critical one.

c. A further minor point of interest is that the tape is always
stopped at the end of each transfer (or when an error occurs
to prevent this) in order to maintain correct tape position-
ing. A program STOP request is issued to effect this in all
cases, even though the hardware may be set up to provide for
it. However, resetting the TCll Status Register for this
purpose ‘can remove error conditions. The content of this
register is, therefore, examined (or is saved for later
examination) before the STOP command is given.

4. Program Listing

A complete

2e@nan N e

ARy An? 237
vrured 3y
A2 a4 v 2vi
GEpR A 3le
GAATAR Jap
AAGR7 G
AR pag
FARI B pRAg
npnga PRy
IR W L
GagIta AApay
LPATLAR LY
WO@RA27A M Ay

AFLP 2P
HEANZa
DPKEA2R
AU 3a
A0E732
APAAIE
RIPEKTS

"py AR
-ﬁ\w:"?.ﬂ'w
:‘&é{.’,g.’.\k.
AF AP
AGCL A
N e

BT T U]
L RE

RGO
Agfpay
reren2
AGOGRY
ApApAg
005
ARMEnE
WAy

d0uNe7 Ay1747
AGN444
A1AT7 3
177730
%2771
17734¢
apReEtLL
mp2p2p
1122487
ApAAY
ag12¢11
*12p41]
16567
P24
1167587
10166
7166
112773
1pALP g

BRdR44
GRUASP
Wowh4q
HRYABAR
AEPRER
LY
et iRmHhR
Jrgaze

Bpa7A

200102

assembly listing of the driver follows.

:COPYRIAHT 1971, NIGITAL FUIIOMENT CGRP,, MAYYADD, MASS,

s VERSTON MUMBER?® Vet A
LTITLE - DT

:
«5GLOBL DT

sNECTAPE DRIVER VFRSINN 1 23 JULY 72

H PRESEMTLY CONTATINS ANLY ROUTIME FAR TRAMSFER

s ATANDARD DNIVER TARLE:

0T o HORD 2 sBUSY FLAG (DPB ANDR
«3YTE 37,3u tFACTILITY INDICATOR
«BYTE 1A, 18TDh RUFF SIZF/16,
«3YTE DT, InuTmD] sPOINTFR T INT SVCE
«3YTE 340 $INT SVCF PRINRITY
3YTE 2 tDESPATCH TARLE +eaa
« IYTE DT, TFR=DT TesoFNR TIANSFER ONLY!
SRYTE A
«3YTE b 1 SPARE

DT MAV: (RADSE InT!

) « 407D DT, MIR sFIXEN YFD RLNCK

«INRD Ay FaRy2,0,7,4,8 $POINTERS FOR RATT MAP ACCESS

tREGISTER 2S8TGMMEATS:

RM=%¢

13%1

R2=Y%2

R3=%3

R4=2%4

R53%5

SP=%g

PC=%7

+SET tIP TIAMSFER:

DT TFPI MaV ePC,DT . RTC

2T, PRI ¥V T, R
WY #DT.CHA,RL
CLR a1
c1p (RP)+, (R2)+
HY (REY+,DTLRRT
MOV (R2)+,0R1
MOV (R@Y+s=(RY)

DT.PR2: CLRR DT INT
MaY DT.PRO,NT,,BLK
MRy #1pm,R3

3SET RETRY COUNT

tGET ADDRESS NF DOB ,,,

% OF HWR BLOCK

’..I

$SKTP UJSER LINE IN DDR
$SAVE BLOCK NN FOR LATER

$SET READY MEMORY ARDR
Jese % WORD COUNT
}SET INT'RUPT SW, TD SRCH

§SET ALK CTRL FOR SRCMH

sUSED IY YEXT SEGUEMCE

YHEN BlSY)

AT AR

apg1en
G122
124
A1 26
A1 32
AR 36
At ar
wep1d?
¢UhE1d4hR
304157

PSR BT

4Un15A
Srulae”

Lt 162
AL GA
$Ap17N
,_i;a.&,] 78R
LEAZen
AFA222

4210

“hg214

LrE21e

ern222

AAPDIR

APE232
AP 34

AGER4T
2242

209246
267252
anp256

ACBPER

M 034a7

ey

74271¢
17344
2E231¢
131617
Ag147%2
ne2716
Al
1116467
Ayh144
111716
RUGRER
n314827
ARAC A
ST R]
pH2Ad
112367
W23
112641
07

5737
177342
17473
13767
17735¢
AR T
AWy43e
1e7426
Trugay
142737
A Ay
177776
176227
AROLEAE
Apngte
143817
"12748
by
112746
pegee
16RAT
177747
183473
ApRahb
Appy g
reR416
1026567
AP 2%
62637
177342
1vh187
177723
1nhg3y7
177342

ApBRTZ

MV R3,NDT,TAC PSET TURN ARQUND CANUNT
Y8R G 3P GE T NI B IRECT IO R RN

BYC #170341,88F sCLEAR PSS, GARBAGE

BIS . R3, 98P $4DD IN INT EwB BIT

BITH 83p,8PC tWRITE READ?

BEQ e th t(READ O, K, ALRDY}kdkix

ADD #17,35pP 1 IF SN GET RECTARE EQUIV,

“IV8 0 B8P, DT FKC $SAVF FIINC FOR LLATER

AL &PC, £8P $RESET FUNC T SRCH (INT FRR])

ASL k3 s (NOW CONTAINS 22A) awkkx

BIT sSSP, 400 st TRAVE|, FNRRARD?

BAE Y . '

I+c R3 s IF 8N R3 NOW 241 8 80 ,,,

ANV R R3,NT,.SSK $MAKING RPL QR RBM1 AS RFQD

#IY (3R +,=(R1) $8ET NECTAPE COMTROL

RT3 PC sRETURN T2 CALLER FOR NOMW

skxkkkx CARF USED 48 LTTERAL Ry PRFVIOUS INSTRIUCTION!}!

s TYTERRUPT AERVICE (A) = SFARMH T4 PRNRESZS:

3T ,81P:

T3¥

IT SSuE =1

3T, Tet:

DT TAC=, =

DT.TAZ:

ospT, CCM

DT,8€PR

eALT COT,NT KON
DT ,BED

0T, 8xY

g4, 22177775
#3

DT RER
#4¢0G,=(8P)
#2,=(5p)

DT .88

DT, TA2
2(5P)

2SP
(SPY+,DT,8R2

(IPY+, @#DT,CCH
DT,S9K

p#DT, CCM

sCHECK QRTATUS

s TF ERRNOR
s CHFCW

GO INVESTIGATF
RLACK FOIIND

:IF ONE REGD, GO ACTION
sRET TO RIOCK THTS WAY?
3(ROL TF TRAVEL BACKWARD)
$DROP P2TARTTY

s HOW “MANY TURNS?

tIF A CAN'T FIND RLICK
$ATHEQWISE MUST TURY ARNLIND
s ASSUME TRAVEL HOwW Fuh
sCHECX DIRECTION

$IF FuWD OMIT
EIF B;'”)p

NEXT
REVERSFE EVFRYTHIMG

tALLO® 2 BLKS FOR 28D TilRA
s$SWITCH STATUS

$RESET NIR Sw (C AIT REVERSES)
sCONTINUE SEARCH

JAATT NEXT RLACK

$3LICK FOUIND = CHECW TRAVEL CNRRECT:
VG264 422727 9T ,BFh: CHP B, 00 3 TRAVFL AS ONRIGINALLY STORFN?
AP g .
o .
';5’2&6 DT.RR“:.-4
MRZTE DT, OCKE, =2

HeR72 "¢y 1343 BMNE nT,val tIF NOT MUST TURN AGATHN
EEd274 \wREART 14cH 0T, INT tRESET INT'RUPT SW FOR TFPR
A]
Ferpl3an 112737 MOVA #2,84D7,00H4 $MOVE TM CORRECT FUNC
1epoe
177342
I3 AT FRPE, =4
avplpE pr763 BR DT RXT Tese % GO SET UNDERWAY
s TNTEPRIWT SEEVICFE (B) = TRANSFER COMPLETE (?2):
AoLALr TErarp DT INT: H2 o2 $INTFORUPT SWITCH ...
A0W312 P73 A3 pr.siIe tFOR SRCH CNMES HFRE]
P14 142737 RTCA edp, 04177774 sNRAD POTIARTITY
PR Ay
177778
Girg, 322 13746 My BFY,R5AV,=(3P) AN T?ANMSFER COMPLETE ,,..
Wl 4s
Jep 326 1246836 JSK RE,&(53P)» $SAVE SER REGISTERS
Ai w337 AT M My DT, RA 3GET DDA ADDR
177444
¢34 "12721 MOy ENT.COM,RY ;GET STATUS ADDR
177342
Zpi34n 212773 MY B1A,R3 $SET MAGIC COHNSTANT
\:ﬂ{‘f] -
Ay ¥a4 WpR71Y 13T 871 sFRROR LAUSE TINTIRUPT?
Adp3AE 10?a8) G411 nT,TER sTF 89 50 R SEFR »HY
A0pI5n 110311 MAVA Ri,aR} $NTHEPWISE STOP TAPE .,
PRAZHD A1EpA7 IT TXT: v 14(R2),PC Toann 2 TEKF (CAMPLFTE RETHN

et la

$SEARMH ERNE = GFTFRYMINE CAUSE:

APEIBA 2087237 OT,8EP: T3T #4DT,TS8T TN END ZONE?
17734¢
200362 1B 7A7 3111 DT,.TAL 1NL,M, MFAMS THRN ARODUND
264 1427137 BICH gapr,et1777764 sNEOP PRINRTITY
g ag
177776
EPe372 {3746 My $4Y RIAV,=(8R) tSAVE ALL USER REGS,
WRr44
Avrp37A WAB36 RETY R3,8(3F)+
ATEAR® 277 L ANT.TRT,RY JGFT JECTAPE STATHS
177 34¢
LOEAVA 511146 DTLFEXT: =V 82],=(8P) $SET 0P TA TELL LSER
I AGE B1PT746 4Ny #DTIRE,=(SP)
Grrang
aPEAL? m3R721 RTYT £147237, (R1)+ $ease ASSUMING Hed FAILURF
114pg
ARA416 P1478 BEG DT,STP Teeas IF SEL QR ILD
AppA2n 212716 My EDT NRE,88P sDIBGNNRE TAPE FAULT NIFF,
Ap?ang
ANpd24 16766 MOV DT HAM, 2(5P) Taeas 48 NNT RFADY
177364
Ml
A0AA32 112711 IT,8TP1 ©NVH #10,8RY 1STOP TAPE IN CASE

RIEcl (B

$GO T DIAG PRINT

$ON RECNVERY, SFT UP RETRY .

JPESTORE USER RFGS

3.es 2 HOPE FAR BETTER. THINGS!

$GIVE BLOCK NO, AS EVIDENCE

$GET COMTRIDOL ADDRESS

tTAPF FATILURE/DPERATDR FAULT?

tIF SO PRINT & WAIT RECOVERY
1ERD ZOME/N,E 47

$IF 82 TREAT AS FATAL
tRETRTIEN 8-9 TIMES A|RDY?

PIF HOT TRY AGAIN ,.4.
$NTHERWTSE SIGNAL FRROR

< 3$5TOP TAPE TN CASE

1eesBUT CHK ALL WARNS PANFI

$IF SN THAT'!'S IT!

$GO TO =0RD COJYNT IN ODB
fees % USF TO DFTERMINE ,,,
teee NI, OF BLOCKS DONE
;CHECK PRFSENT TRAVEL
tADJUST N2, ACCORDINGLY
sMODIFY SEARCH START BLNCK
Tees & RETRY COUNT

3160 SET UP NEW START

& WAIT RESULTS!

]
Fe o

:GIVE CALL &S EVIDEMCE
tPRINT DIAGNQSIS

P ERL IRy 117 '
shndgr 104767 AT RXT: J8K Pe,PT.PRY
177409
Ahh444 N1377h0 MOy au#y ,RRES,FB
Ayl 46
sipdSm DEds1d JS8R R5,eR5
ANGAED prgAg RTI
$RLACK MOT FOUND TN SEARCH:
APA454 (18746 DT 8FRs MOV DT 4RCK,=(SP)
17761
nngaan 012746 MY #DT . BRE;=(82)
LIS WS RS
200464 2127931 May #NTL.COM,R1
177342
SPRATE REAZARP 8= DT,87P
s TRANSFER ERRNRY
498472 *32741 OT,TeR: BIT #34022,=(F1)
A3ApAY
BAPATR AG1342 LRI NTLEXT
AEASE™ N32721 BIT #1674%5, (F1)+
18782y . :
APUBRL Nglyp27 BNE DT.FER
sRECOVERABLE ERRQORS (TIMING QR PARITY):
ARLICE ApE3I27 ASL PR
AgPpeg
APBELE DT ,RTC=,=2
wEgBs12 13352 , BCC . DT,RXT
tpns14 P8P7h¢ SR #10007%0,12(21)
1672y
OERE12 :
205822 110321 MOVR RI,(R1)+
AipnB24 AR 22 MOy 1(R1),R2
NpRpaY
JRBRAT g1 71 BEW DT, TXT
40UR32 16P32¢ AND R3, R
162602 SR (RAY+,R2
Apnang S4AR g2
A Qg 131321 BITH RI, (K1)+
d0p8d42 rp14dng HEQ Y
2RNSR44 mph4aQ NEG R?
dRRR46 PEPR2E7T ADD R2,DT.BRQ
177514
HRRRH2 CgRpéy CLR DTLRTC
177732
42HB86 Npd767 JAR PC,DT.PR2
177348
QrRn62 PR73p "2 DT RXT+4
tFATAL FRRQRS « END ZOMF MR NANFXISTENT 9YEMQRY?
Pruhed 11¢46 DT FER: May #Pp,=(8P)
vPUSBA 212746 MY #DT.FRE,»(SP)
1415
AFVR72 Aunz17 B nT,STP

SMISCFLLAHENURDFFINTITIONS
44 Y JRSAV=L4 :
AP V,RRES=46

.&-2[‘31'1;:, DT.!:nglm L]

177346 DT, TST=17734¢
177342 DT.CC¥=177342
177346 OT,.Car=177346
17735¢ DT.COTe177350
ARPAT2 DT MEFs4B?

ApM4 A4 DT IRE=404

1415 DT, FRF=1418

AW1416 0T BRF=1416

Aprpay L FND

REGRET FRACFS

nT PAEPRPRG NT.RCK & AR@270R nT, BFF APAAKAR
DT EBFD Frir2643 NT.BRE 3 @njd16 nT,RRE = 71@266R
DTLCRA = 177346 NT,COM = 177347 AT, CDT = 17735%
DT.OIR = poplyw "TLEXYT ARRLR4AR nT,FER AARR64R
DT.FRE = B71415 PTLFRE & A7p3a2R NT,INT A22319R
DT.IRE = g7c4e4 HTaNAM NP1 4R NTL NRE = 84n4p2
DT.PRL ¢7E"7d4R DYLPR2 ANEATAR AT,RTC = A72517R
DT.RXT POrA4FR rT.SER 2A2356R NT.SIP AT162R
DT.SSw = #Pe2u1 nT.8TP A 4I2R nT,SXT AAPHER
DT.TAC 5 ¢™e212R TT.TAL 2202 R NT.TA2 37A242R
DT.TER arpd72R PT.TFR ANpr4nR NT,TST = 177347
DT.TYT EPE392R FC BUANROART7 Ry SYANRAIRA
R1 AYRPE AL R2 :%;;11{2‘5‘9‘,2 R3 =YRAAART
R4 SYURME G4 kY 2YARRN2S 3P T aAANRARE
V,PRFS & 27014k Ve NSAV B AA0044 . = 2AG574R

10

DEC-11-R1DA-D

POP-11

RF11 DISK DRIVER

MARCH 1971
SUPPLEMENT TO:

PDP-11 DEVICE DRIVER PACKAGE
DEC-11-NIZA-D

COPYRIGHT © 1971 BY DIGITAL EQUIPMENT CORPORATION

THIS DOCUMENT IS FOR INFORMATION PURPOSES
ONLY AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

PJEEiEiAnn

RF11 DISK DRIVER

The RF11l Disk Driver consists of routines to initiate block transfers
of data to or from the disk and to handle interrupts arising from com-

pletion or through failure.

It does not include OPEN & CLOSE processors. As a file-structured
device, these will be unnecessary owing to the form of the Monitor
file-manangement system. SPECIAL FUNCTION processing is also omitted.
If it is found necessary to simulate the hardware function of a similar

device, the necesSary routine could be added later.

This driver is part of the permanently resident Monitor when the
RF1ll is the system disk.

The driver is in two parts: 1) a table providing the interface
between the driver and the Monitor, and 2) the routines to service the

calls for disk operations.

1l. Driver Table

The Driver Table (DF) occupies the first nine words of the driver. It
complies with the standards specified for all Monitor-driver interfac-
ing in general, and for file-structured devices in particular. The

descriptive elements of the table are set up as follows:

a) Facilities available: Multi-dataset handling on a
= 100037 single unit.

Input & output in ASCII or
binary.
File-structured with no limit
to the number of files that
may be in creation at one time.

b) Standard buffer size: 64

c) Interrupt vector address: 204

d) Interrupt servicing

priority: 5
e) Device name DF
f} Directory start block: 1

g) No. of bit map pointers: 1

2. Service Routines

The driver contains two routines: Set-up Transfer and Service Inter-

rupt.

2.1 Set~up Transfer (DF.TFR)

This routine first initializes a counter which is used to control the
number of retries in the event of parity or timing failure. Using the
address of the DDB for the dataset it is servicing (és supplied by the
calliﬁg routine in the first word of ‘the driver table), it then col-
lects control data from the DDB and transmits it to the hardware regis-
ters for the RF1ll, beginning at 377460.

Two of the i1tems invclved require special processing before out-

ward transmission; the rest are moved directly.

1. The driver block number set into the DDB must be con-
verted to meet the platter and word structure of RFl1l.
All the platters currently under one control are con-
sidered as a single continuous surface. As a result,
the most significant bits of the block number repre-
sent the appropriate platter number and the remainder
the word starting the block. The required conversion
is therefore merely multiplication of the block number
by 64 across 21 bits.

2. The function bits contained in the DDB automatically
produce the required transfer operation. To them,
however, must be added the INT ENB & GO bits (combined
value 101) needed to set the RF1l Control Register
correctly for the transfer operation to begin.

On completion of the set-up, control is returned to the calling
Monitor routine via the interim return address stored on top of the

stack by the calling sequence.

2.2 1Interrupt Service (DF.INT)

The RF1l control causes a priority-5 interrupt either on satisfactory
completion of the transfer or because an error has been detected.
Having saved the processor registers on the stack, the servicing rou-
tine must determine which of these events has occurred by examination
of bit 15 of the Control Status Register. On transfer completion, it
collects *the address of the DDB it is servicing from the first word of
the driver table and uses it to return to the completion address set
in the DDB. At this exit, Rf is set to the DDB address, 2s required

by the established convention.

An error may be one of the several types as indicated by further

bits of the Control Status or Extended Status registers. The servic-

ing routine, however, is concerned with only two categories: -

(1) Errors which can be handled internally

Parity or timing failures may be eliminated on a second or later at-
tempt. For the sake of simplicity, a retry is initiated by restarting
the transfer from the beginning again rather than from the point at
which the error was detected. If finally the eighth attempt produces
no satisfactory‘result, the processing routine sets Bit 15 of Word
DDB+12 to show the failure. It then checks if any words still remain
to be transferred beyond the’failing one. If so, it attempts to re-
sume the transfer from this point. If this is successful, it then
takes the normal completion exit. Further failure, however, is
treated as fatal.

(2) Errors which must be rectified (if at all) by the operator

All other failures cause an exit to the Error diagnostic print routine,
with DSK ERROR F026 as the message and the contents of the Control
Status register as evidence. Write lock-out or non-resident disk

may be the result of an operator fault. The operator may be able to
correct this and resume program execution by the appropriate keyboard
command. Such action will probably be impossible in the case of a
non-existent memory error, and other errors classified as 'HARD' in the

RF1l Specification or after persistent parity or timing failures.

(3) Program Listing

A complete assembly listing of the driver follows.

dparan
AEPIAD
ARPART

)

gty 3
RESRERE)
ﬁgﬁﬂlﬂ
tpengn

dver2z
202k
SILERY.

BhRA3R
SPEN4R

2run4a
AEN AR
420750
RGN

AleNH4
NEange
ARANY >
ApnAy2

ARpA7A
arel1as

WA P
reepl
AEMpEA2
LR
AR
NgApAs
AL AG
A AIORT

A A ARG
¢ 37
et
(AR
172
2%
[I
2
v
¢re
P

HyA7 AL

ety

Nty

117487
)‘ﬂ‘-,l 12
111737
177461
M1E77%
177742
hpagae
7127 42
177472
111723
712(724
AU R3AG
176173
123375
ﬂlk’}34‘2
T2p42
r1epde
*PeM
142774
177476
17142

rereaz

sCOPYRTEHT 1971,

NIRTITal

FRIRMENT FN0RP,,

MAYNAID, 4ASS,

SYSTEM lISAGE

H 3TAWD=ALOME DRIVEFR EXDA“DEE FROY THAT USFN A8 A

CONTATNS SET (P § TRANSFFER ROJTTINES ONLY

sCUFRENT DDRBR ADDRESS (2 IF IDLE)
JSTAMDARD FACTLITY TNDICATOR
t(NORMAL R FILE=RASED)

tSTANDARR BUFFER SI7E/16

tT,Ve COMTENT

sPRIORITY FOR T,V,

sDESPATOH TABLE

s 3HNWS TF2 RT* NNLY

1SPARF

sMED aLnCK
sRENUTRED FOR RIT MAF INFD

s ZERQD RFTRY COAUNT
tCLEAR DISK TN CASE NF ERRNR
sGET DD? ADDRESS

$RUMP POINTER TH BLACK NO,
1SET HaR POTNTER

1SET UP BLNCK CANVERSTON
tGET ALNCK NUMBER (*kkxkk)
1CONVERT TN wWORNS

$3ET P DISK AODRESS & FXT,

tMOVE IN #W{RD CNUNT
1% MEMQRY ADDRESS
$GET FUNCTION

tADD INT ENR R G0
$REMOVE OTHER GARBAGE (akkdex)

LN]

s AEMD TN CONTROL

$VERSTOM “IMBFR: veeta
LTITLE DF
DISk DRIVE® (RF11)
KESIDFNT “GNITOR ROUTTNE FOR
RA=Y
Ri=z%l
R2a%2
Ri=%3
M4=%4
RE5=%5
SP=%6§
PC=%7
LGLNBL DF
sTARLF AF STAMDARDS AND POTHTERS
3F 3 oHoRp 0 ‘
LIYTE 37
f3YTE 200
LAYTE 4
JAYTE DF IHTNF
SAYTE 2140
SIYTE 3
RYTE OF TFRaNF
«BYTE e
YTE 2
eHYTE @
DF,MAME (RADBT DY
. 1URD DF,NIR
JBn 4
P TRANSFFR 1T TIATE
DF TFRS ™9V @PC,DF,RTC
OF.%PT: Qv #9C,8#DF.LCSHY
MY DF,R2
CHp (R4, (RE)+
MY #NF,DC08+12,Q2
MaVY aPC, B3
MY (R2)+,R4
ASL R4
RILR R3
RCC o=d
MY R3,=(R2)
MOV RA,=(R2)
MY (RE)+,r=(R2)
LY. (R?2)4,=(R2)
My (REY+,R1
BISR aPC, R
BIC #177472,R1
MY Rl1,~(R2)
RTS PC

s(xAxrkx)

- CARFIIL}

USED

TRETURN TO MANMITOR FOR NOU

AS LLITERAL 8Y PREVINUS INSTRUCTION

sTNTERRIRPT SERVICE : '
;20182 43746 OF.INT: MOV 0#S,RSAV,~(SP) 3SAVE RFGISTERS

a4
Axel1ah 204536 J3K RS, 6(8R)+
gopty™ 1277] MOV #1F NS, R 1FRENY CA'TSE INTERRUPT?
177462
arpiia N12i72 MV (Ri)+,R2
APKEI1R 102474 B4 DF ,FRR :YES = G0 FIND CAUSF
ATR120 21R7 A MY nF,RA :GET ND] ADDRFSS
177654 _
Aual2d4 A1REA7 OF XIT: 40V 14(RA),PC sRETURN MANTTOR

e 4

;ERROR ROITINF g

204130 32742 DHFERF: BIT #11089,R2 $PARITY OR MISSFED?
211636

are134 21423 BEQ DF . OFF

AV 13R P2R327 NF L AGMS ASL HA :YES » RETRIED A TIMFS?

AMREAR
1,148 DF,RTCE =2

arg142 123436 BCS NDF,PER :IF SO FORCE COMTINUE
144 AATA7 J3R PC,DF.RPT $OTHERWISE TRY AGATH
177656 “‘ :
APBIG™ N{3746 OF RFf; MAy 248 ,RIES, = (SPY RESTIRE SAVEN REGS,
AAE A6 :
ABQ1R4 AR J3R RE,8(SP)+
drp188 Agupae RTI 2eae & EXIT FOR NOW
ARNL AT AR27AL DF PER: RIS #1002, 12¢(RAY $RETURN PARITY FATL FLAG
1A AD
RIS
Arg1h6 ST TRT 2y sALREADY AT BLOCK END?
SUR17% 17845 REY DFGX1T sTF SO FXIT NOW
20172 HpR7A7 TST DF,RTC sOTHERWTSE CHECK TIF 2MD TIME
1777 4¢
DPGLTR Ap1472 BER DF . OFF $IF 3N =0 POINT IN “QRE
anE2ms W hpay I-C =-(RY1) sCOMTINGE DISK TRANSFFR
LEADRD HRNT7AZ HR NF REC Tees VIA COMMON EXIT
1FRAIGP 1S MNT IMMEDTATELY RFCAVFRARLE:
Ap244 M14146 DFNFFE 4V ~(FE1),=(SP) sDISK STATUS IS EVIDFMCE
are295 12746 My 4DF LENO, = (8P) $SET P ERROR NN,
Pu142€
ARR212 Ppapnd InT $60 TO DIAG, PRT,
sPDEFIMITIONGS
AAMe44 3,R8AV=44
FRAE A6 3,.RRES=4D
17788 IF DCB2177460
aNfE2y IF . DIR=Y
191426 JF FNDE1426
rRey « END
EIPET FRREGRS
DF CARP R0k 18 NF,AGN AR IBR DF,DCS = 177467
DF.OTR = ¢0E2it NFLEHD = 201426 nF ERF 242132R
DF IMT vRRIE2R NE MAM ANBr14R NF NOFF AAA294R
DFLPEK ERC162R PF.REC pARLI52R nF L RPT HADA26R
DFLRTC = 2Mi14PR NF.TFR ARPA22R NF.XIT AARL124R
RC FUPCEAGT RA %2329 21 sLARAANY
R2 =%y e 142 R3 27320703 P4 2%A7 2904
RS =YEP RS s =LANGRA6 S,RRES = 2723746

S.RSAV = §Mpig4a . = 3214R

DEC-11-RIHA-D

PDP-11

PC11/PC@5 HIGH-SPEED PAPER TAPE READER/PUNCH DRIVERS

MARCH 1971

SUPPLEMENT TO:
PDP-1]1 DEVICE DRIVER PACKAGE
DEC-11-N1ZA-D

COPYRIGHT (@© 1971 BY DIGITAL EQUIPMENT CORPORATION

THIS DOCUMENT IS FOR INFORMATION PURPOSES
AND IS SUBJECT TO CHANGE WITHOUT NOTICE

SecTIoN |

PCll HIGH-SPEED PAPER TAPE READER DRIVER

The paper tape reader driver provides the device dependent I/O func-
tions for the PDP-1l paper tape reader. To allow the common I/0 pro-
cessor to be device independent, the paper tape reader driver is a
block processor. Any size block may be processed by the driver, but
to provide the most efficient operation the standard buffer size is

32 words. The driver code is position independent.

1.1 DESCRIPTION

The paper tape reader driver consists of two sections: the standard

driver header and the driver body.

The driver header gives the following information about the paper

tape driver:

1. Capabilities
a. Single user
b. Input only device
c. ASCII and BINARY both may be handled
d. Non-file structured
2. 32 word standard buffer size
3. Interrupt entry address and priority (4)

4. Dispatch table containing entry addresses for:

a. Open
b. Transfer

5. 1Internal word count and buffer address
The driver body contains the code to perform the three paper tape
reader functions: opening, reading (transfer), and interrupt servic-

ing.

1.2 OPEN

The OPEN function for the paper tape reader exists to give the user a
means to ensure the reader is ready for operation (i.e., contains tape,
is turned on, etc.). The OPEN routine tests the tape reader status
register for an error indication. If such exists, an A002 message

(Device Not Ready) is printed to the operator. The check is repeated

following a return from the Diagnostic Print routine indicating that

the operator has requested continuation. Because no interrupt is neces-
sary to make this check, the routine merely removes the interim return
address stored on the top of the processor stack by the calling sequence
and takes the completion exit immediately (since this driver is for
single-use only, there can be no queue for its services, hence it need

take no action to cater for a queue situation).

1.3 TRANSFER

The TRANSFER entry initializes the driver and initiates the read of the
first character. Initialization consists of storing the byte count
(2 * Word Count) and buffer address from the calling DDB into the driver

header positions reserved for them, and enabling the reader interrupt.

1.4 INTERRUPT SERVICE

Interrupt servicing is the heart of the paper tape reader driver. The

following flow chart gives a detailed explanation of this function.

Enter from
Interrupt

Sharacter

Indicate Error Store Character
to Caller by Non- in Buffer

Zero, Incomplete
Count

Disable : Updaté Count
Interrupt and Current
Buffer
€ Address
Save

Registers Return from
Interrupt
Take Complete
Return

It should be particularly noted that an error during interrupt ser-

vicing signifying "Reader Off" or "Out of Tape" is considered an "End of

Data" and is treated accordingly.

1.5 Program Listing

A complete assembly listing of the driver follows.

ananQpe
pragraz
prep3
¢ru7pd
ArPAPS
L0326
ana"az
e N
apuoty
pRpgn1p
B3
gre14
grumtiek
gapn2n

prpa22
2RRA2KR
prun3?
2PE34
2ppe4n
BPU46
TV ELY
PAa"56
20u62

grp64

QCA72

NEeCAG
AQRENY

CApeeR2

ApALn3
LY
Agrp AL
PAPEA6
AGAEA7

npARAP
234
A
cn2
56
24@
17¢@
£2%
g
i
A
76332¢
APAGAG
apRE Ay

167 A¢
177752
P4
A1y
ap63T4
2107467
177756
216067
ApAYME
177752
728273/
ppryag
177565¢
agnragaz

aps737
177554
1hPala

113777

177652
177726
ApB257
177722

sCOPYPIGHT 1971, DIGITAL FGUIOMENT £nRP,, MAYNARD, MASS,

yNCURRENT ODEB AR @

H

e e e Ge e e

3 .SAVE BUFFER ADDRESS. ..

FACILITIES .INDICATOR .

STAMDARD BUFFER SIZE £ 16, .

INTERRLUPT ADDRESS

 PRIORITY 4 INTERRURT. ...

DISPATCH OPEN

TRANSFER (IN) NP

CLOSE
SPECIAL FUNCTICNS .

INTERNAL COUNT
STORE NEXT ADDRESS ..

GET DOH
PRESESVE USER COUNT

BYTE COUNT

4161,04PR,CSR 3 ENARLE INTERRUPT

- SRETURN ..
QWING INTERRUPT

ROUTINE

y TFST FOR ERROR

YES

9H#PR,BUF,8STOADD..g STORE CHARACTER . . .

s VERST(ON NUMBFR® V2E@1A
3 PAPFR TAPE PEADER DRIVER (PR)
- +TITLE PR .
»GLOBL PR
RA=%D
Ri=¥%1
28%2
3=2%3
R4=z%4
RS=%5
3P=s%6
PC=%7
1 . PREAMBLE
PR3 « 40RD a
«3YTE PRLEP
«3YTE 7
L3YTE 2 _.
LAYTE PR,INTAPR
. «RYTE 2230
+RYTE PR, OPNaPR
«3YTE PR.TFR=PR
SAYTE A
JAYTE 2 . .
«RYTE 5] 3 DiiMmy
PR NaMs RADSE 'PR!
INTCMT: L 40ORD A
3TQALR: L40RD 2.
¢ MAIM DRIVER
s BEGIN TRANSFFR .
PR TFR: MNV PR, RQ
My 13(R2), R4
ASL R4
MOV R4, INTCNT
MaV . BLRAYLSTOLOD
RTS
. L RTS.. PC .. —
1 THE PR 1S DRIVE® RY THE FNLL
H . . . -
PR,INT: T8T s4PR,C8R
B PR,ERR ’
HOVEe
INC 3TOADD

} UPDATE

gegn7
20010
219
ane11
20211

ara12
ap21e

. aeg1e2
eep13

a0v13
vhald

0Le14
arpt14

a5

 grets
2016

- peo16
2cel7
eu17
onn17
200229

2en20

. gageea

INTCNT

..PR,BP..
PR,DIS

PRWFRT

PRJOPN
PR.TFR
R2

RB

z pRR2E6R

INTENT

6 7nph2R7 IHC 1 POINTERS
127714 . . . e .
2 AR1424 BEG PR ,DNE
4 252737 B1S K1@1,8HPR,C3R ¢ ENARLE - SR
pemLay
177558 . . B —
2 meop#2 RTI t AND RETURN
s PR.ERR® . . . — - . e
4 213746 PR,DNF: MOV 2HPPR ,SAV,=(35P) 3 SET UP JSR
. 2pfpd4 . . - o . . -
n AE4aR36 JSR RS,e(SP)+
2 185e37 PR,DIS: CLRB P#PR,CSR t. DISABLE INTERRUPT -
177550
6 216700 My PR,R@ s DDB ADDRESS. . e e e e
177€46
2 n16721 Moy INTCNT,RY .3 .REMAINING COUNT . e .
177660
6 21425 BEQ .. PR,FRT . .3 NONE . . o —
? 1627721 518 #G,R1 1 ROUNDED TO WORDS (AND TEAR)
ApNeNH . . . st e
4 ap62aL ASR R1
6 O1ni6¢ MOV CR1,16(RrRO) . t RETURN RESULT TO CALLER--. -
A¢Rp16
2 BReL7¢ PRLFRT: JMP e14(R?) 3 COMPLETION RETURN —
#pApl1 4
R 3 OPEN ROUTINE: . . _— .. . SO
6 216746 PR,OPR: MOy PR,NAM,=(8P) t ADDITTONAL INFOQ
177632 . e .. = -
2 112746 MmNy HAR2, = (SP) JNOT READY =~ 1,2 ERR MSG
npravg . . . I R
6 AQ@r74 InT
A Bgs737 PR.JOPNY TST. 84pPR,CSR .3 TAPE . READY. e e —
17755k
4 1p077¢ BMI PR,OPR .3.ND } o _ _n
& 205726 TST (3P)+ pCLFAR CALL FROM STACK K
2 16720 MOV PR,RA $GET NDR ADDRESS . e -
177574
4900762 BR PR,FRT. wBeesee & TAKE COMPLETE RETN.. . .
’ .
177552 PR,BUF=1775582 -
17755¢ PR,C8§R=177552
Ap*234 PR,BP=234 _
aApPpdd PR,SAVEdd
ApREn] +END
ERRORS . e - o i i s e
RAPAL6R PC s%aaQau7 PR AAAABARG
» APpR34 . .. PR.BUF. = {72552 . . PR,CSR.x 177558 _ . —
pAZI22R PR.DNE 23p114R PRLERR ARB114R
LROE152R. PRJINT BAAASER PRONAM . Q70214R.
BRE170R PR.OPR 24Q156R PR,SAV = 37p744
. BOQRAR2R. . _._ RO ___ m%0200Q00 . _ _. R1_. .._=%202001. . B —
»%pAgRE2 R3 =L3%p003 Rd =2AANAAQ4
vR@ApAed B8P =XAARPQA6 . ___ . STOADD. _ ABA20R. ..o —

SecTion [I

PCg5 HIGH-SPEED PAPER TAPE PUNCH DRIVER

The paper tape punch driver supplies the basic device dependent operat-
ing functions for the PDP-11 paper tape punch. To facilitate the de-
vice dependent operation of the I/0 common routines, the paper tape

punch driver procesées blocks of data to be punched. The driver will
process any size block (as given in the DDB) but for efficient opera-

tion a default (standard) block size of 32 words has been chosen.

The paper tape reader driver provides open, close, transfer, and
interrupt servicing functions. The open and close functions cause the
paper tape punch to punch two fanfolds of blank leader and trailer
tape respectively. The transfer function causes the punching of the
given block of data. Since the PDP-11 paper tape punch punches one
character at a time, the interrupt servicing function provides the ac-

tual control of the punch for each of the other functions.

2.1 DESCRIPTION

The paper tape punch driver consists of two distinct parts: the stand-

ard driver table and the driver body.
The driver table contains the following information:
1. Facilities indicator - The facilities provided
by the paper tape punch driver are:
a) Single User
b) Output only
¢} ASCII or Binary format
d) Non-file Structured
2. 32 word standard buffer size
3. Run at priority 4
4. Internal information
a) Trailer Indicator

b) Internal byte count
c) Internal (byte) buffer address

The code for the paper tape driver is organized as follows. The
open, close, and transfer routines perform their initialization pro-

cesses and control is transferred to the interrupt service routine for

actual control of the data transfer.

The initialization processes con-

sist of setting the internal byte count, the beginning buffer address,

and the trailer indicator (# implies open/close.in process, 1 otherwise).

The interrupt servicing routine is then called. Leader/trailer punch-

ing and actual transfer punching differ only in that the internal buf-

fer address always points to a zero in the former case, and this point-

er is incremented through the block in the later case. Upon total

completion of the requested operation, the DDB completion return is

taken; the DDB intermediate return occurs immediately upon initiation

of the punching of the initial byte.

At each interrupt the detection

of an error (Punch Out of Tape) results in a request for an A002 mess-

age at the console (Device Not Ready).

If a return from the Diagnostic

Print routine occurs, indicating an operator request to continue, the

function is again resumed.

2.2 Program Listing

- A complete assembly listing of the driver follows.

“Qag@mg

ap2edl
apAea2

.20Re23

gepfge.
aQeoma?

200203 .

epgrpes
220205
peerob
apu2a7
apeaLan

apgail

aeppo12

22p213 .

sepmtd
2007316
2aaa2n

. Pagage.

aAgran4
29225
202096
22022

ae2p00
332

pez
274
200
. 286
624

eeg

1COPYRIGHT 1971, PIGITAL EQUIPMENT CORP,, MAYNARD, MASS,
vieron i, EUL STy TATEARE.

«TITLE
+GLOBL
RAmZQ
RizXi -
R23%2
RIBX3. .
Rd=X4

. R5n%5

1 PAPER
g PREAM
PP:.

.26 .

BAg
....peg
n6322¢
2g2p91
2z2020
289¢38

PPFPTL.

PP NAMS
PPCT:

’

.+ WORD.

- «BYIE

§P2%5
PCRYZ.

TAPE PUMCH DRI

BLE

«BYTE
«BYTE.
«BYTE

«BYTE

-28YTE ..

«BYTE
«BYTE.
+AYTE

WRAD5A
PP.TRLL .

«MO0RD _
«WORD

.sWORD.. .

-8

PP
PP

vesia

VER (PP)

7, B - 3 CURRENT . DEB- QR B
;p,ep t FACILITIES
2y 32 4oRD STD BUFFER
LPPLINTePP. 3. TRANSFER ADDRESS — e
2n@ $ STATUS .
PP,ORPN=PP 3§ RELAYIVE ADDRESSES FOR OPEN . . .
PP,TFRePP g TRANSFER
PPLCLSePP. . . .y LLOSE . o
2,0 t SPF & SPARE
.|b§r”w.m”mm,nw.","_m--_N_MWMNM“m_____
A .. 3 TRAYLFR INDOCATOR = B . .
"} t INTERNAL COUNT :
& i 3 CURRENT_BUFFER POINTER B

aran24

prAaA3e

BPoaA3a

208742
20044

20pAsaR

AngAse
pEpnRen

p0R266
papa7a
200100

peg1a2

200106
202110

2rgi14

aep122

ga2126
aep13n

208134

oent42
2144

3 DRIVER 80DY

AL677A0 PP TFR: MNY

177758
mi6@h7
ARARRE
177764

216324

ApnrR1R
npH3Nd
A1A467
177758
112767
apeay
1777446
11646
213766
127776
NEARaE2
213737
ApAR76
177776
ng5737

177554

167434

SHMAv L

MOV

AL
MV

MOVE

PP UEME MOV

MOV

Moy

PP,INT: TST

Az8767 .

177712

np5267
177724
117737
177722
177656
125767
177672
201422
ap5267

177666

mE2737

2gr1ae6.

177554
ageeaz
7213767

. 2pR@44

ang152

200158
ggaie2.

. BB0166
erp172
A2e176

.pap2ee

anp204

1pep22
244537
ARRRRG

ne85237 .. .

177554

216700,

177612
2ee172
2prel4
212746
ne32ne

712746

Apr4ae2

appaaq

Aan733

AL1416. .

. T818

BMT

- 78T

BEQ .
NG

MOVR

. BEQ

PP,DNEs HNV

NG

PP,NOI: BTS

RTI.

- J3R

PPLIGNL. MOXY

BPLERR: MAV. . _ .

S CLR L

JME.

MY oL
e 3T

BR

PRLOPNSY . . .

PPLINT

S ——3 NOT READY .

PP, RO s GET CURRENT DODB
6(RA),PPFPT t GET BUFFER POINTER

12(RD) +R4 . ..___3 PRESERVE WORD _COUNT.. —_— :
R4 _ _1_CONVERT T0 BYTES .. — 0 . . ¢
R4, PPCT 3 AND SAVE
#1,PP,TRL ~ y RESET To TFR
(3P),»(SP) c Lt SIMULATE INTERRUPT . o
04ST, ATS,2(SP) 1 FRAM JSR PC,XXX

8PP, VCT,e#ST,ATS. . . .3 RUN UNDER._PUNCH STATUS - ——
84PP,CSR "y PUNCH OUT OF PAPER DR OFF a

L e
PP, ERR } YES .

BRCT .. e e e i e et e e+
LPPLDNE. 3. ALREADY FINISHED
PPCT 1 COUNT THIS ANE
GPPFPT,8#PP,BRG 1 MOVE CHARACTER T0 PUNCH
PP, TRL 3 TRAILER OR.NO- oo
CPPLNOT . TRAILER. o
PPFPT s NEXT ADDRESS OF BUF,

" 410%,04PP,CSR) ENABLE INTERRUPT T
R Cee __,__R.EI!J-R—N S e e e B
OHPP,SAV, +1@ 3 SAVE REGS FNR RETURN 2

RS,880 e

_@HPP,.CSR . _.3 DISABLE INTERRUPT I
PPLRA._. . __.__...3 CURRENT DDA f

3
214CR?) _ .. _ . __3 COMPLETION RETURN _ . o ___._

#63200,=(8P).. _ _3SHOK DEVICE NAME __ . .
#402,=(SP) . _._ 1 PRINT {=2 ERBR M3G <

8PP206 105067 PP,CLS: CLRB PP, TRL 'y INDICATE TRAILER OPERATION
. 177604 . . e e) .
209212 210767 MOV PC,PPFPT
o A776BA. ... e o
208216 262767 ADD PP, TRL—.,PPFPT 3 SET BUFADDR
L 177870 U
177576
@pp224 712767 . MOV, _#177524,PPCT __ 3 Z FOLDS TRAILER . — oo .
177524
_ 177866 R o
20232 7p071Y BR PPLUEN 3 NORMAL FROM HFRE oN

177776 ST.ATS=177776
POPETE PPOVETEZE - . o e e e
177554 PP,CSR=177554
177556 PP,BRG®177556 . . O
npepd44 PP,SAVR4Y
22332 PPLBP2332. . ..
Agr162 PP,SPFaPP,IGN
200021 .. WEND. . e

BOZPAR. ERRORS .ot ot o e b s e s e

PC a%ARAAR7 PP 270000RG PPCY AABA29R
.PPFPT. R2p722R _ __. .PP.BP =.228332 PP BRG = {72856 —
PP,CLS CP2R2E6R PP,CSR = 177554 PP,DNE 070144R ‘
.PPLERR . B22L172R.. . .PP.IGN _Q208162R.. . PRLINT RAR474R.. ...
PP.NAM RAE714R PP NOT 272134R PP, OPN 27Q206R
PP.3AV.® 2?0244 ... _PP.SPF = 2082162R PP,TFR. _.Q2R224R _
PP, TRL ZAQAL6R PP, UEN 232A56R PP, VCT = RAQ376
R2. gxpPp2ed . Rl . =ax@feg@l . ..R2 . . aXQ2@282
R3 =%@20203 R4 =Xae0a4 RS =%000005
SP . . =%eRa?e6 ST.ATS 8.172776 . .. e e B DABRI4R.

DEC-11-R2DA-D

PDP-11

RK11 DISK DRIVER

OCTOBER 1971

SUPPLEMENT TO:
PDP-11 DEVICE DRIVER PACKAGE
DEC-11-NIZA-D

COPYRIGHT (:) 1971 BY DIGITAL EQUIPMENT CORPORATION

THIS DOCUMENT IS FOR INFORMATION PURPOSES
ONLY AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

PiigﬁiAhﬂ

RK11l DISK DRIVER

The RK11 Disk Driver consists of routines which initiate block trans-
fers of data to or from a disk cartridge and which handle interrupts

arising from normal completion or errors.

Special functions, OPEN and CLOSE processing, are not necessary
and thus not supported. Advance seeks are not supported in this

initial release for several reasons, among which are:

° The majority of the DOS installations which utilize the
RK have only one unit, so the extra code in the driver
(approximately 25¢lg words) would be detrimental in
most cases.

No DCS system programs do their I/0 in a manner which
would reap huge benefits by seeking ahead.

° The Monitor would have to be altered to inform the RK
driver before a Bus Init is issued.

The driver should be assembled at each installation where

(a) the RK is the system residence disk, or

(b) 1low density drives are present.

If the RK is the system residence disk, then define SYSDV at
assembly time. ' If low density drives are present, then proceed as

follows:

(a) If all drives are low density, then define LOWDEN at
assembly time.

(b) If there is a mixture of high and low density drives,
then define MIXED at assembly time and define CONFIG
as follows:

Imagine CONFIG as an 8 bit field, the rightmost
bit of which corresponds to unit @. If a bit in
a given position is one (1), then that particular
drive is low density. For example, CONFIG=12(8)
[PpdPg1@128(2)] indicates that units 1 and 3 are
low density.

LOWDEN and MIXED should not be simultaneously defined. If they
are, MIXED is ignored, i.e., the assembly proceeds as if LOWDEN is
defined and MIXED is undefined. If MIXED is defined, but CONFIG is
not, an assembly error will result, viz., a "U" flag on the line
labeled DENIND.

issued was not a drive reset (see below), the completion return

(@ (DDB+14)) is taken. If it is an error situation, then an attempt

to re-try will be made if the error was one of

(1)
(2)
(3)
(4)
(5)

any "soft" error,
seek incomplete,
read timing error,
data late, or

seek error

All other error conditions result in a fatal error message. In

addition, if the word count is not zero after eight re-tries, a fatal

error message is issued. Otherwise, a parity error is returned.

NOTE

Errors (2), (3), (4), and (5) above are among the
"hard" errors. A control reset must be issued in
order to continue. Additionally, a drive reset must
be issued in order to continue after a seek incom-
plete. Thus, if the last function issued was a
drive reset, the re-try logic is called.

4. Program Listing

A listing follows, conditionalized for

(a)
(b}

the RK not being the system residence disk, and
all drives being high density.

2a0uda
gnonbe
doundn
puenba
An2064
QuAn6E

Arnala

@rAaT 4
an0@7e
AADI0n

[V EY.X
VETSRL)
A0E1in
aevtil2
wnn1la
LT BT
an01de

poni2a
ano126
2201302

Bon1da
BAav1d6

200142
LR Y]

"EVEEL]
Bun12
auiB154
LEEER-L]
22160
ANE162

QAN 66
wnn17a

gz6201
prukdel
wedey
L Td B!
e22222
wlevn2

nemga7
211309
103419
P14v46
n1274%
nN1435
noVATA
n6p2v1
w222
Q06202
AbRbin2
nin2ea
paz2704
177762
neMan2
FYERLY4
naraz?
nRro14
pA2an2
62784
phRBna
pondct
712774
177412
wim114
nigedq
piguda
n12vmy
15171
pa7 ol
177460
?lnlad
pangn7

DxINiQt

DKINZOY

A8k
ROR
ROR
ROK
CHP
MOV
« IFDF
« IFNDF
MOV
s 40RD
ASL
DEC
BGE
BcC
ASL

a4 3

+ ENDC
«ENDC
o IFDF
ASL

«ENDC

CMp

BLD
MoV
MOV

BR

ADD
ASR
ASR
ADD
MOV
81C

B1C
BNE
Cup

BLT
ADD

ADD
MoV

rov
Moy
Mmov
MOV
CRE-T.]
BIC

MOV
RTS

R

R

Ri

R
(RAY*, (RA)+
(RO)*,R2
MIXED
LOWDEN
(PCY*,R3
CONFIG
R3

R4

L

.+d

R2

LOwWnEN
R2

R2,44800,.

DKINZD
e (RA),=(R6)
#1435, « (RS}

DKERZD
R2,R1

R2

R2

R4,RE
R2,R4
4177760,R4

R4,RQ
DKINlp
R4, 4810,

o6
#d,R4

R4,R1
MRKDA,R4

Ri,8R4
(RA)*,=(R4)
(Re)*,e(R4)
(R2)*+,R1
oPC, Ky
¥177480,R1

R1,=(R4)
PG

JILEFT=JUSTIFY UNIT

JUNIT NOW AS DESIRED
JPOINTER DDB+BLOCK

JGET DENSITY PATTERN

JMOVE APPROP, TO UNIT

PIF LOw DENSITY ..,
$ADJUST BLOCK No,

118 BLOCK WITWIN BOUNDS?

JYES = BRANCH
JOUTPUT ILLEGAL BLOCK NUMBER
JAND FO33

Tose AFTER 8YSDY CHK
1A0D IN VALID GQUOTIENT
JADJ REMAINDER FOR DIV BY 12

JDIVIDE By 16 = SAVE REMAINDER

JEXTRACT GUOTIENT san
Joeo IF ANY BUILD RESULT
1OHECK REMAINDER

11F BETWEEN 12 & 15 .44
J.s. CAUSE SURFACE INCR,

JPUT SECTOR INTN REST
1SET UP

JSET UP
18ET UP

DISK ADDRESS
MEMORY ADDRESS
WORD COUNT

JPUT IN THE FUNCTION
JSET I.D.E. AND GO BITS
JCLEAR GARBAGE escveww

1SEND FUNCTION TD CONTROL

=vwxvem USED AS LITERAL BY THE PRFVIOUS INSTRUCTION

2n2312

Gua3ié
Qun3le
200320

2pn324
AAv326

398332

Pou3ds
ARB3I4n

Npu3de
WIn34€

Pne352
PAn354
Apv3Ne

LEVELY

PuBdng

gavovn

DK
DKERY @
DKER2S
L LY
DKINI®
OKREPT
DKxiT
RXBA
RKOIR
RKwC
R2

RS
S.x17

712748
Qoo
175713
{63786
n3z27¢1
gninea
pa14p8
A1p163%
pApanad
4127158
Pan118
PEr7RA
n32702
F114r2
PR1L334
wiap7e2
nenunn
201742
2100486
PL&7 4R
177432
?12746
PpUPén2
Dop? 37
uwonazy

DxMER?

Ox™Roas

OKHROS5S

ERRORS

IRERANRG
BWRU244R
2nv27 AR
PRY3L AR
ARELIBR
npez24eR
APUR26R

8 177412

" ApRY

5 177406

sLerapug

S%APPRAS

& wurewy (5

. APUITAR

MoV

1878
BPL
817

BEQ
MOV

MOV

BR
BIY

BNE
BIT

BEQ
MOV
MOV

MgV

BR
«END

DKERP
DKERYS
DKER3Q
DK=R3S
DKINn2R
DKRTRY
4
RKCS
RKNS
R@

RS

RE
V.R8AV

#1,08Rn

erg
DKHRU®
#1008 ,R}

DKHROS
R1,4(R5)

#115,8R5

DKERJQ
#1160p,R2

DKERDQ
#200@0,R2

DKERLS
R2,=(R6)
NKNAM, = (R6)

#4902« {RE)
DKERQnD

222232R
e2p26aR
P2QIAPR
P02340R
202116R
P0PQ44R
8%000007
s 177404
s {774Up
2XQ00000
"X2NPA0Y
BX20Q000R
» 200pd4

ICLEAR THE CONTROL

$DONE YET?
IND e« LOOP
118 IT SEEK INCOMPLETE?

INO =« BRANCH
JREPLACE NDRIVE #

$SET UuP FOR DRIVE RESET

JTAKE INTERIM ExIY
ICAN WE POSSIBLY GO ON?

JYES = RRANCH
JI8 1T #RITE LOCK OUT?

ING o BRANCH
1SAVE BUSY PLAG
JOUTPUT NAME

1AND ADQ2

Jae, & GO PRINT
DKER2Q PAR2IBR
DKER20 PnU266R
DKHER 22831aR
DKINT paBL7 2R
DKNAM PA0Q14R
NKSTRT 2200409R
PS R 177778
RXNA m 177482
RKER » 177402
R "XPp00014
R4 sXpQonad
Q,R8AV & wwteen
VoXIT & 2pl@42

