
MACRO·11 ASSEMBLER
PROGRAMMER'S

MANUAL

MACRO-II ASSEMBLER

PROGRAMMER'S MANUAL

Macro Assembly Language

and

Relocatable Assembler

for the

Disk Operating System

June 1972

SOFTWARE SUPPORT CATEGORY

DEC-ll-OMACA-A-D

The software described in this document
is supported by DEC unter category I,
def ined on page iii of this document.

For additional copies, order No. DEC-ll-OMACA-A-D from Digital
Equipment Corporation, Software Distribution Center, Building
1-2, Maynard, Massachusetts, 01754

DIGITAL EQUIPMENT CORPORATION~ MAYNARD~ MASSACHUSETTS

First Printing,
Second Printing,

April 1972
June 1972

Your attention is invited to the last two pages
of this document. The "How to Obtain Software
Information" page tells you how to keep up-to-date
with DEC's software. The "Reader's Comments" page
when filled in and mailed, is beneficial to both
you and DEC; any comments received are acknowledged
and are considered when documenting subsequent manuals.

Copyright ~1972 by Digital Equipment Corporation.

This document is for information purposes only,
and is subject to change without notice.

Associated Documents:

PDP-ll/20 Processor Handbook 112.01071.1855

PDP-ll/45 Processor Handbook 112.01071.1876

PDP-II Peripherals and Interfacing Handbook
112.01071.1854

PDP-II Disk Operating System Monitor
Programmer's Handbook, DEC-II-MWDB-D

PDP-II Batch User's Guide, DEC-II-OBUDA-A-D

PDP-II Edit-II Text Editor
Programmer's Manual, DEC-II-EEDA-D

PDP-II ODT-IIR Debugging Program
Programmer's Manual, DEC-II-OODA-D

PDP-II PIP, File Utility Package,
Programmer's Manual, DEC-II-PIDB-D

PDP-II Link-II Linker and Libr-ll Librarian
Programmer's Manual, DEC-II-ZLDB-D

The following are trademarks of
Digital Equipment Corporation

DEC

DIGITAL (logo)

UNIBUS

DECtape

PDP-II

COMTEX-ll

RSTS-ll

RSX-ll

PREFACE

This manual describes the PDP-II MACRO-II Assembler and

Assembly Language. It also describes, in brief, how to program

the PDP-II computer. It is recommended that the reader have with

him copies of the PDP-II Processor Handbook an~ optionally, the

PDP-II Peripherals and Interfacing Handbook. References are made

to these documents throughout this document (although this document

does stand complete by itself, the additional material provides

further details). The user is also advised to obtain a PDP-II

pocket Instruction List card for easy reference. (These items

can be obtained from the DEC Software Distribution Center.)

MACRO-II operates under the PDP-II DOS (Disk Operating System)

Monitor and the PDP-II BATCH Monitor.

Some notable features of MACRO-II are:

1. Program and command string control of assembly
functions.

2. Device and file name specifications for input and
output files

3. Error listing on command output device

4. Double buffered and concurrent I/O

5. Alphabetized, formatted symbol table listing

6. Relocatable object modules

7. Global symbols for linking between object modules

8. Conditional assembly directives

9. Program sectioning directives

10. User defined macros

11. Comprehensive set of system macros

12. Extensive listing control

13. Symbolic cross referencing.

iii

SOFTWARE SUPPORT CATEGORIES

Digital Equipment Corporation (DEC) makes available four categories of software. These
categories reflect the types of support a customer may expect from DEC for a specified software
product. DEC reserves the right to change the category of a software product at any time.
The four categories are as follows:

CATEGORY
Software Products Supported at no Charge

This classification includes current versions of monitors, programming languages, and
support programs provided by DEC. DEC will provide installation (when applicable), advisory,
and remedial support at no charge. These services are limited to original purchasers of DEC
computer systems who have the requisite DEC equipment and software products.

At the option of DEC, a software product may be recategorized from Category I to
Category II for a particular customer if the software product has been modified by the customer
or a third party.

CATEGORY II
Software Products that Receive Support for a Fee

This category includes prior versions of Category I programs and all other programs avail­
able from DEC for which support is given. Programming assistance (additional support), as
available, will be provided on these DEC programs and non-DEC programs when used in con­
junction with these DEC programs and equipment supplied by DEC.

CATE GORY III
Pre-Release Software

DEC may elect to release certain software products to customers in order to faci! itate
final testing and/or customer familiarization. In this event, DEC will limit the use of such
pre-release software to internal, non-competitive appl ications. Category III software is only
supported by DEC where this support is consistent with evaluation of the software product.
While DEC will be grateful for the reporting of any criticism and suggestions pertaining to a
pre-release, there exists no commitment to respond to these reports.

CATEGORY IV
Non-Supported Software

This category includes all programs for which no support is given.

iv

CONTENTS

PART I

INTRODUCTION TO MACRO-11

CHAPTER 1 FUNDAMENTALS OF PROGRAMMING THE PDP-11

1.1 MODULAR PROGRAMMING

1.1.1

1.1.2

1.1.3

1.2

1.3

1.4

1.5

1.6

1.6.1

1.6.2

1.7

Commenting PDP-11 Assembly Language
Programs

Localized Register Usage

Conditional Assemblies

POSITION INDEPENDENT CODE (PIC)

REENTRANT CODE

PREFERRED ADDRESSING MODES

PARAMETER ASSIGNMENTS

SPACE VS. TIMING TRADEOFFS

Trap Handler

Register Increment

CONDITIONAL BRANCH INSTRUCTIONS

CHAPTER 2 SOURCE PROGRAM FORMAT

2.1 STATEMENT FORMAT

2.1.1

2.1.2

2.1.3

2.1.4

2.2

Label Field

Operator Field

Operand Field

Comment Field

FORMAT CONTROL

PART II

DETAILS ON PROGRAMMING IN MACRO-11

CHAPTER 3 SYMBOLS AND EXPRESSIONS

3.1

3.1.1

3.1.2

3.1.3

3.2

3.2.1

3.2.2

CHARACTER SET

Separating and Delimiting Characters

Illegal Characters

Operator Characters

MACRO-II SYMBOLS

Permanent Symbols

User-Defined and MACRO symbols

v

1-1

1-2

1-4

1-4

1-6

1-11

1-11

1-12

1-13

1-13

1-13

1-13

2-1

2-2

2-3

2-4

2-4

2-5

3-1

3-2

3-3

3-3

3-5

3-5

3-5

3.3 DIRECT ASSIGNMENT

3.4 REGISTER SYMBOLS

3.5 LOCAL SYMBOLS

3.6 ASSEMBLY LOCATION COUNTER

3.7 NUMBERS

3.8 TERMS

3.9 EXPRESSIONS

CHAPTER 4 RELOCATION AND LINKING

CHAPTER 5 ADDRESSING MODES

5.1 REGISTER MODE

5.2 REGISTER DEFERRED MODE

5.3 AUTOINCREMENT MODE

5.4 AUTO INCREMENT DEFERRED MODE

5.5 AUTODECREMENT MODE

5.6 AUTODECREMENT DEFERRED MODE

5.7 INDEX MODE

5.8 INDEX DEFERRED MODE

5.9 IMMEDIATE MODE

5.10 ABSOLUTE MODE

5.11 RELATIVE MODE

5.12 RELATIVE DEFERRED MODE

5.13 TABLE OF MODE FORMS AND CODES

5.14 BRANCH INSTRUCTION ADDRESSING

PART III

MACRO-II ASSEMBLER DIRECTIVES

CHAPTER 6 GENERAL ASSEMBLER DIRECTIVES

6.1

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

6.1.6

6.2

6.3

6.3.1

6.3.2

6.3.3

LISTING CONTROL DIRECTIVES

.LIST and .NLIST

Page Headings

. TITLE

.SBTTL

.IDENT

Page Ejection

FUNCTIONS: .ENABL AND .DSABL DIRECTIVES

DATA STORAGE DIRECTIVES

. BYTE

. WORD

ASCII Conversion of One or Two Characters

vi

3-7

3-8

3-9

3-12

3-13

3-14

3-15

4-1

5-2

5-2

5-2

5-3

5-3

5-3

5-4

5-4

5-4

5-5

5-5

5-6

5-6

5-7

6-1

6-1

6-7

6-7

6-10

6-10

6-12

6-13

6-15

6-15

6-16

6-17

6.3.4

6.3.5

6.3.6

6.4

6.4.1

6.4.2

6.5

6.5.1

6.5.2

6.5.3

6.6

6.6.1

6.6.2

6.7

6.7.1

6.7.2

6.8

6.9

6.10

6.11

6.11.1

6.11.2

6.11.3

.ASCII

.ASCIZ

.RAD5,0'

RADIX CONTROL

• RADIX

Temporary Radix Control:

LOCATION COUNTER CONTROL

• EVEN

.ODD

.BLKB and .BLKW

NUMERIC CONTROL

.FLT2 and .FLT4

tD, to, and tB

Temporary Numeric Control: tF and tc

TERMINATING DIRECTIVES

.END

.EOT

PROGRAM BOUNDARIES DIRECTIVE

PROGRAM SECTION DIRECTIVES

SYMBOL CONTROL: .GLOBL

CONDITIONAL ASSEMBLY DIRECTIVES

Subconditionals

Immediate Conditionals

PAL-IIR Conditional Assembly Directives

MACRO DIRECTIVES CHAPTER 7

7.1
7.1.1

7.1.2

7.1.3

7.1.4

7.2

7.3

7.3.1

7.3.2

7.3.3

7.3.4

7.3.5

7.3.6

7.4

7.5

7.6

7.7

7.8

MACRO DEFINITION

. MACRO

.ENDM

.MEXIT

MACRO Definition Formatting

MACRO CALLS

ARGUMENTS TO MACRO CALLS AND DEFINITIONS

Macro Nesting

Special Characters

Numeric Arguments Passed as Symbols

Number of Arguments

Automatically Created Symbols

Concatenation

.NARG, .NCHR, AND .NTYPE

.ERROR and .PRINT

INDEFINITE REPEAT BLOCK: .IRP AND .IRPC

REPEAT BLOCK: .REPT

MACRO LIBRARIES: . MCALL

vii

6-19

6-20

6-20

6-22

6-22

6-22

6-24

6-24

6-24

6-25

6-26

6-27

6-28

6-30

6-30

6-30

6-31

6-32

6-35

6-37

6-38

6-39

6-40

7-1

7-1
7-2

7-2

7-3

7-3

7-4

7-5

7-7

7-7

7-8

7-9

7-10

7-11

7-13

7-14

7-17

7-18

PART IV

OPERATING PROCEDURES

CHAPTER 8

8.1

8.2

8.3

8.4

OPERATING PROCEDURES

LOADING MACRO-II

COMMAND INPUT STRING

SWITCH OPTIONS

CREF, CROSS-REFERENCE TABLE GENERATION

APPENDIX A

A.l

A.2

MACRO-II CHARACTER SETS

ASCII CHARACTER SET

RADIX-5~ CHARACTER SET

APPENDIX B

B.l

B.2

MACRO-II ASSEMBLY LANGUAGE AND ASSEMBLER

SPECIAL CHARACTERS

B.3

B.3.1

B.3.2

B.3.3

B.3.4

B.3.5

B.3.6

B.3.7

B.3.8

B.3.9

B.3.10

B.3.11

B.3.12

B.3.13

B.3.14

B.4

ADDRESS MODE SYNTAX

INSTRUCTIONS

Double-Operand Instructions

Single-Operand Instructions

Operate Instructions

Trap Instructions

Branch Instructions

Register Instructions

Register-Offset

Subroutine Return

Source-Register

Floating-Point Source Double Register

Source - Double Register

Double Register - Destination

Number

Priority

ASSEMBLER DIRECTIVES

APPENDIX C PERMANENT SYMBOL TABLE

APPENDIX D

APPENDIX E

E.l

E.2

INDEX

LISTING OF SYSMAC.SML (SYSTEM MACRO FILE)

ERROR MESSAGE SUMMARY

MACRO-II ERROR CODES

SYSTEM ERROR MESSAGES

viii

8-1

8-1

8-3

8-3

A-I

A-4

B-1

B-2

B-3

B-4

B-5

B-7

B-9

B-9

B-I0

B-I0

B-I0

B-ll

B-l1

B-12

B-13

B-13

B-14

B-14

C-l

D-l

E'-l

E-2

CHAPTER 1

FUNDAMENTALS OF PROGRAMMING THE PDP-ll

This Chapter presents some fundamental software concepts es­

sential to efficient assembly language programming of the PDP-ll

computer. A description of the hardware components of the PDP-ll

family can be found in the two DEC paperback handbooks:

PDP-ll Processor Handbook (11/20 or 11/45 edition)

PDP-ll Peripherals and Interfacing Handbook

No attempt is made in this document to describe the PDP-ll

hardware or the function of the various PDP-ll instructions. The

reader is advised to become familiar with this material before pro­

ceeding.

The new PDP-ll programmer is advised to read this Chapter

before reading further in this manual. The concepts in this

Chapter will create a conceptual matrix within which explanations

of the language fit. Since these are the techniques found to work

best with the PDP-ll and are used in PDP-ll system programs, it is

advisable to be considering them from the very start of your PDP-ll

programming experience.

1.1 MODULAR PROGRAMMING

The PDP-ll family of computers lend themselves most easily

to a modular system of programming. In such a system the program­

mer must envision the entire program and break it down into con­

stituent subroutines. This will provide for the best use of the

PDP-II hardware (as will become clearer later in this Chapter),

as well as resulting in programs which are more easily modified

than those coded with straight-line coding techniques.

To this end, flowcharting of the entire system is best per­

formed prior to coding rather than during or after the coding

effort. The programmer is then able to attack small bits of the

1-1

program at anyone time. Subroutines of approximately one or two

pages are considered desirable.

Modular programming practices maximize the usefulness of an

installation's resources. Programmed modules can be used in other

programs or systems where similar or identical functions are re­

quired without the overhead of redundant development. Software

modules devloped as functional entities are more likely to be

free of serious logical errors as a result of the original pro­

gramming effort. Confidence in such modules allows for easy crea­

tion of later systems incorporating proven pieces.

Modular development provides for ease of use and modification

rather than simplifying the original development. Some pains must

be taken to ensure correct modular system development, but the

benefits of standardization to the generations of maintenance pro­

grammers which deal with a given system are many. (See also the

notes under Commenting Assembly Language Programs.)

Modular development forces an awareness of the final system.

Ideally, this should cause all components of the system to be

considered from the very beginning of the development effort

rather than patched into a partially-developed system.

It is assumed that the human mind can best work with limited

pieces of information at anyone time, combining the results of

the individual functions to encompass the entire program in steps.

PDP-II assembly language programming best follows a tree-like

structure with the top of the tree being the final results and

the base being the smallest component functions. (The Assembler

itself is a tree structure and is briefly described in Figure 1-1.)

1.1.1 Commenting PDP-II Assembly Language Programs

When programming in a modular fashion, it is desirable to

heavily comment the beginning of each subroutine, telling what

that routine does: its inputs, outputs, and register usage.

Since subroutines are short and encompass only one operation

it is not necessary to tell how the subroutine functions, but only

1-2

Conunand
String

Interpreter

Assembler

Figure 1-1 Problem Oriented Tree-Structure

1-3

what it does. The how should be documented only when the procedure

is not obvious to the reader. This enables any later inspection

of the subroutine to disclose the maximum amount of useful informa­

tion to the reader.

1.1.2 Localized Register Usage

A useful technique in writing subroutines is to save all regis­

ters upon entering a subroutine and restore them prior to leaving

the subroutine. This allows the programmer unrestricted use of the

PDP-II registers, including the program stack, during a subroutine.

Use of registers avoids two and three-word addressing instruc­

tions. The code in Figure 1-2 compares the use of registers with

symbolic addressing. Register use is faster and requires less stor­

age space than symbolic addressing.

1.1.3 Conditional Assemblies

Conditional assemblies are valuable in macro definitions. The

expansion of a macro can be altered during assembly as a result of

specific arguments passed and their use in conditionals. For example,

a macro can be written to handle a given data item differently, de­

pending upon the value of the item. Only a single algorithm need be

expanded with each macro call. (Conditionals are described in detail

in Section 6.11.)

Conditional assemblies can also be used to generate versions of

a program from a single source. This is usually done as a result of

one or more symbols being either defined or undefined. Conditional

assemblies are preferred to the creation of a multiplicity of

sources. This principle is followed in the creation of PDP-II system

programs for the following reasons:

a. Maintenance of a single source program is easier,
and guarantees that a change in one version of the
program, which may affect other versions, is re­
flected automatically in all possible versions.

1-4

,- .TFT
~ ep2P6e lPSt CALL 2"-1 ,wOVE ~ C~A~Ar:TFF(

~ 0t'2"'64 P!0~3'S Bf';T I'! ,LOC'lP IF t'!T ZF.R{"
A 0(12~6~ P014~2 BfQ 1~! ,FN'" TF ZFRt:} ,.

e(12~'p 1.1.1S 2L"e Mnv~ ·nHn,Rt'! ,TF~MT~ATf"lR, FlAC'1< LP POT~TE~ "" e 0P2P" ~2t'e21 CMP Rl'-,i¥M'T.MAY ,F.NI"l r.F TVPr::?
'.7'6"'3 ., 0P2('11'6 HH45~ BLOS 22! , YES

e ep2!0p. C"1C"14f MnV FH,.(SP' J~f.~f.~eFR Rr::Ar PCTt\Tf.~
~ 0P21e2 C"le7(:111 M("IV M~eARG,R'.

P!02e~4'
10 t?2,e~ P0fi'~1 TST (~1 ,.
11 "211'" Pl"2~3 MC'lV R~,~~ , AN" WRT'TF por~TER

12 (12'12 P0~4C'e NFG R~ ,ASSU~F MAC~O
13 V 2114 P!2~'2' C~P M~B,.y",~MT.~Ae ,TRUE?

P0::?e~6'
'.7,e~:!

14 1'2122 l!'!et4P2 BFQ 1~! , "F~, U~E IT
15 (12'24 pl~'~e Mnv M~e{"N'T,R~ ,~ET A~r; t..tU~AFR

C'l021Z:56'
1e (1213!:'1 "'1C"3('2 U'$ t Mnv R~,s:;l2 '~f5E'T WRT'Tf POT~TfP

17 t'2132 13$1 CALL 2"-$,~ovE ~ eYTF
18 fl2!3~ ~033'e Br,T 1~! ,LorI' IF p ~17.
19 £'2140' r'H~'4p2 BLT 14$,FNrl 1F LFSS THA~ ZFF~r
20 t' 2',42 C'l0~3pe OFC RP ,ARF ~E T"'E~E VE T?
~ 1 172'44 "03371 BGT 1'$, ~a

22 V214~ 105742 1451 TST~ .rR2) ,YES, P.A(I(UP P (":r~! T f. R
23 P215~ t?12~~1 MClV C~P,+,R' '~fSET PEAD Pr'lI~TF.R

24 9215~ ('I0l7742 AP 1t1$,fNI'l OF APGL~F.NT ~Uf'STITLTI"'~'
25
26 t'2U54 ""1('1(;7 19$1 MOV FH ,~S~MRP ,FN,., OF LTNF., SA\lF POYNTER

1'J",?e42 ,
2' P216(:'1 pt5~'67 A1S --tC'.MF. ,lCFLAG ,FLAG A~ ~ACR~ ~)(PA~STON

1?10l7417e
P0(l12'e'

28 V2UH5 010(1726 BP 9~
29
:!e (121'" Pl3""1 2f)1$t ATT --pp~a"1,R1 J~AeRr, E ~!" OF FL,rCI<?

~0(1e1'
~1 C'2174 OI01e17~ B~JE 2', ! , t\!O

~2 P211lS OI1f'11?1 Mr.'IV .. PP~B CR1.' ,R1 ,YES, P (} I "-I T Tr ~'E)t'T ~LarK

'77'~e
~:5 P220~ pt0~7"1 TST (~1 , + J~OVF PAST lt~1<

~·4 P 22e4 1i12P227 2 ,. $1 C~P R".~rN~UF+~Rr.LFN 'r'lVPRFLC\.\?
('101,744'

:3e 172211' '014014 SLOS 23$, NO
~6 ~2~12 ERRnR L JVE~, FlA~ FRPCII!
~, (1222~ '0~742 T5TR .. rR~) , ANr" ~OVE prI~.!"FR e,ACI<
:38 C'222~ ~1~t22 2~$' MOV8 (~1'.,(~2'. ,WOVE CIo!A~ tNTO Lr~~ ~UFFFR

~9 P222d RFTURN
40
~ 1 P222~ 2"!' CALL E~O~.AAC ,rLI"lSF. ~ArRn

42 P22:3~ fJ'0P167 JMp 1~

17'~2~
411:3 .FNnr:
44
4!!i

Figure 1-2 Segment of POp-II Code
Showing 1, 2, and 3-word Instructions

1-5

b. Distribution of a single source program allows a
customer or individual user to tailor a system to
his configuration and needs, and continue to up­
date the system as the hardware environment or
programming requirements change.

c. As in the case of maintenance, the debugging and
checkout phase of a single program (even one con­
taining many separate modules) is easier than the
testing of several distinct versions of the same
basic program.

1.2 POSITION INDEPENDENT CODE (PIC)

NOTE

As this Section is quite detailed, it may be
bypassed in the initial reading of the manual.

The output of MACRO-II (and PAL-llR) assemblies is a relo­

catable object module. This module, under DOS, is linked (with

Link-II) to a specified address prior to being executed.

Once linked, a program can generally be loaded and executed

only at the address specified at link time. This is because the

Linker has had to make adjustments in some lines to reflect the

absolute area of core (locations) in which the program is to run.

It is possible to write a source program than can

be loaded and run in any section of core. Such a program is

said to consist of position independent code. The construction

of position independent code is dependent upon the correct usage

of PDP-II addressing modes. (Addressing modes are described in

detail in Chapter 5. The remainder of this Section assumes the

reader is familiar with the various addressing modes.)

All addressing modes involving only register references are

position independent. These modes are as follows:

R
@R
(R)+

@(R)+
-(R)

@-(R)

register mode
deferred register mode
autoincrement mode
deferred autoincrement mode
autodecrement mode
deferred autodecrement mode

When using these addressing modes, position independence is guaran­

teed providing the contents of the registers have been supplied

such that they are not dependent upon a particular core location.

1-6

The relative addressing modes are generally position indepen­

dent. These modes are as follows:

A
@A

relative mode
relative deferred mode

Relative modes are not position independent when A is an ab­

solute address (that is, a non-relocatable address) and is refer­

enced from a relocatable module.

Index modes can be either position independent or nonposition

independent, according to their usage in the program. These modes

are:

X(R)
@X(R)

index mode
index deferred mode

Where the base, X, is position independent, the reference is also

position independent. For example:

MOV 2(SP),R~
N=4
MOV N(SP),R~
CLR ADDR(Rl)

;POSITION INDEPENDENT

;POSITION INDEPENDENT
iNONPOSITION INDEPENDENT

Caution must be exercised in the uSe of index modes in position

independent code.

Immediate mode can also be either position independent or

not, according to its usage. Immediate mode references are for­

matted as follows:

#N immediate mode

Where an absolute number or a symbol defined by an absolute direct

assignment replaces N, the code is position independent. Where a

label replaces N, the code is nonposition independent. (That is,

immediate mode references are position independent only where N

is an absolute value.)

Absolute mode addressing is unlikely to be position inde­

pendent and should be avoided when coding position independently.

Absolute mode addressing references are formatted as follows:

@#A absolute mode

Since this mode is used to obtain the contents of a specific core

address, it violates the intentions of position independent code.

1-7

Such a reference is position independent if A is an absolute address.

position independent code is used in writing programs such as

device drivers and utility routines which are most useful when

they can be brought into any available core space. Figure 1-3 and

Figure 1-4 show pieces of device driver code; one of which is posi­

tion independent and the other is not.

iDVRINT -- ADDRESS OF DEVICE DRIVER INTERRUPT SERVICE
iVECTOR -- ABSOLUTE ADDRESS OF DEVICE INTERRUPT VECTOR
iDRIVER -- START ADDRESS OF DEVICE ORIVER
MOV #DVRINT, VECTOR iSET INTERRUPT ADDRESS
MOVB DRIVER+6,VECTOR+2 iSET PRIORITY
CLRB VECTOR+3 ;CLEAR UPPER STATUS BYTE

MOV
ADD
MOV
CLR
MOVB
ADD
CLR
MOVB

Figure 1-3 Non-Position Independent Code

PC,Rl
#DRIVER-.,Rl
#VECTOR,R2
@R2
5 (Rl) , @R2
Rl, (R2)+
@R2
6(Rl),@R2

iGET DRIVER START

i ••• & VECTOR ADDRESSES
iSET INTERRUPT ADDRESS
i ... AS START ADDRESS+OFFSET

iSET PRIORITY

Figure 1-4 Position Independent Code

In both examples it is assumed that the program calling the device

driver has correctly initialized its interrupt vector (VECTOR)

within absolute memory locations ~-377. The interrupt entry point

offset is in byte DRIVER+5. (The contents of the Driver Table

shows at DRIVER+5: .BYTE DVRINT-DRIVER.) The priority level is

at byte DRIVER+6.

In the first example, the interrupt address is directly in­

serted into the absolute address of VECTOR. Neither of these ad­

dressing modes are position independent.

The instruction to initialize the driver priority level uses

1-8

an offset from the beginning of the driver code to the priority

value and places that value into the absolute address VECTOR+2

(which is not position independent). The final operation clearing

the absolute address VECTOR+3 is also not position independent.

In the position independent code, operations are performed

in registers wherever possible. The process of initializing re­

gisters is carefully planned to be position independent. For ex­

ample: the first two instructions obtain the starting address of

the driver. The current PC value is loaded into Rl, and the off­

set from the start of the driver to the current location is added to

that value. Each of these operations is position independent. The

immediate mode value of VECTOR is loaded into R2; which places

the absolute address of the transfer vector into a register for

later use. The transfer vector is then cleared, and the offset

from the driver starting address is loaded into the vector. The

starting address of the driver is then added into the vector, giv­

ing the desired entry point to the driver. (This is equivalent

to the first statement in Figure 1-3.) Since R2 has been updated

to point to VECTOR+2, that location is then cleared and the priority

level inserted into the appropriate byte.

The position independent code demonstrates a principle of

PDP-II coding practice, which was discussed earlier; that is, the

programmer is advised to work primarily with register addressing

modes wherever possible, relying on the setup mechanism to deter­

mine position independence.

The MACRO-II Assembler provides the user with a way of check­

ing the position independence of his code. In an assembly listing,

MACRO-II inserts a ' character following the contents of any word

which requires the Linker to perform an operation. In some cases

this character indicates a nonposition independent instruction,

in other cases, it merely draws the user's attention to the use of

a symbol which mayor may not be position independent. ~Ihe cases

which cause a ' character in the assembly listing are as follows:

a. Absolute mode symbolic references are flagged with an
, character when the reference is not position inde­
pendent. References are not flagged when they are
position independent (i.e., absolute). For example:

MOV @#ADDR,Rl iPIC ONLY IF ADDR IS ABSOLUTE.

1-9

b. Index mode and index deferred mode references are
flagged with an ' character when the base is a
symbolic label address (relocatable rather than
an absolute value). For example:

MOV ADDR(Rl),RS
MOV @ADDR(Rl),RS

iNON-PIC IF ADDR IS RELOCATABLE.
iNON-PIC IF ADDR IS RELOCATABLE.

c. Relative mode and relative deferred mode are flag­
ged with an ' character when the address specified
is a global symbol. For example:

MOV GLBl,Rl
MOV @GLBl,Rl

;PIC WHEN GLBI IS A GLOBAL SYMBOL.
iPIC WHEN GLBI IS A GLOBAL SYMBOL.

If the symbol is absolute, the reference is flagged
and is not position independent.

d. Immediate mode references to symbolic labels are
always flagged with an ' character.

MOV #3,R~ iALWAYS POSITION INDEPENDENT.
MOV #ADDR,Rl ;NON-PIC WHEN ADDR IS RELOCATABLE.

Examples of assembly listings contining the ' character are

shown below:

211'44 EP-;OP21 tr:N~ /"IF P6S~ ,
2 .IF t-.nF xr.RFF
~ 1711744 Pl~'''2 ~("IV Cr:;FPNT,~:? ,ANV rf;FF I t-,! PRrG~ES5?

~0C'142'
~ e117!5t'1 P014P2 BFQ @~ , ~'o
e e1175' CALL Cr:;Fr~J' JVE~, eli~~ A "Jr" rLrSF=' ~UFFFR
e 2' 1751i e" , .FNr'C".
e e11'~~ t'C:'J~'~' T~T FH~"Yp ,.ANV CeJfrT OliTPL T1

1'0(1642'
~ e1176' 1'01.4'3 BFQ 1. , t-,l t)

1'" 1176~ CALI OPJrMP JVE~, C I.I~" 11
11 1177P Pl~7Fi7 Mr'lV NPLItT"6,AIIO'YP ,~r:T F~r

f"0"~!,6
O'elpe42'

12 1177f' CALL Rl.crMP I~U~P IT
13 .IF ~rF)(FOAB~
14 1.2Pl'a' t'3~7Fi7 BTT __ F C. AI!~S, EI'IM A SI(,A8~ t"L TPI'T?

!"0C1eC12
"0(:'124'

15 12"'1" P01e,~ fH,'E 1 ~ ~O

16 12 01 1' 1'1,.7t'e M('\V OPJr::NT,Rt7
C'0P536'

, 7 !2l'1~ "ttl,~e ~rtv E~.C\!EC"'f.Ii, rR", ... J~ET Ffo..,., VfrTf"IR
~0C''''44'

18 12(:'122 PtC'~~1 ~('\V ~~,r8JPNT

"',,","53f t

19 !2P'21'i CALL Qp:lJr~p

2~ .FNrH':
21 12~J2 '0~7fii' 1 ~ , T~T~ LtTPL+2 ,ANV LI~TT~r; rUTFUT?

~171"546'
22 12~JtI ~014i'4 . AF'Q if! , ~'O

~~ 12"'4~ (')3~7~i' 8TT 4HCt5V~,LrMASI('~Y~RtL T6PLE SI;~FRFS~IrN'
p!4C'~O'e

C'",,,1,e'

1-10

24 12C"4~ P01\Cl7e Bt-IE 1~~ , vE"~

25 12~51?1 ('}.efel'i7 CI, R LPprNT ,FOF)CF ~IE\AI PAGE
P01i'e1e'

~~ '2l"5.d ('}.0~e~7 ct, R Rf.:'L L PI')
P0t?e"S'

~1 121'6!!' ('}.1~7('\2 2~t M"V ~LIH3LF,R'
f'l015de'

~e 12P164 3', NFXT S~tiROL ,GET T~F ~EWT S~~pnL

~9 1,2""4 t"0H~lIIje BE'Q 2rl! , td, ~f"IRF

~~ " 2~7~ Rf'0Ut\P , I' N P A e I< THE 5 V M r:'I C t,
~ 1 121, e2 "1~7~3 ~r.'IV ""F.t-.!"P2T,R~

011'334'
~2 121el'i CALI E~DF2~

~3 !21,12 C'1~7!'11 Mnv ~~OI"'E,R1. ,POTNT TO ~nnf FtTS
('I0t'rz('}.6'

~4 ! 211 ~ ('}.3~71, t 8TT ~rEFFLG,(Pl'
(')\0I?e1~

~5 1212~ P014('}.3 BFQ 4~

~6 12124 CALL SfTI.t.Re
~, 12'3('1 "0C'4('}.4 8P t5~
~B
~Q 12132 t't'7~t 4~1 M('\V ""~TAR5,Pt

1.3 REENTRANT CODE

Both the interrupt handling hardware and the subroutine call

instructions (JSR, RTS, EMT, and TRAP) facilitate writing reentrant

code for the PDP-II. Reentrant code allows a single copy of a

given subroutine or program to be shared by more than one process

or task. This reduces the amount of core needed for multi-task ap­

plications such as the concurrent servicing of peripheral devices.

On the PDP-ll, reentrant code depends upon the stack for

storage of temporary data values and the current processing status.

Presence of information in the stack is not affected by the chang­

ing of operational control from one task to another. Control is

always able to return to complete an operation which was begun

earlier but not completed.

l~4 PREFERRED ADDRESSING MODES

Addressing modes are described in detail in Chapter 5. Basic­

ally, the PDP-II programmer has eight types of register addressing

and four types of addressing through the PC register. Those opera­

tions involving general register addressing take one word of core

storage, while symbolic addressing can cost up to three words.

1-11

For example:

MOV A,B
MOV Rfl,Rl

iTHREE WORDS OF STORAGE
iONE WORD OF STORAGE

The user is advised to perform as many operations as possible

with register addressing modes, and use the remaining addressing

modes to preset the registers for an operation. This technique

saves space and time over the course of a program.

1.S PARAMETER ASSIGNMENTS

Parameter assignments should be used to enable a program to

be easily followed through the use of a symbolic cross reference

(CREF listing). For example:

SYM=42

MOV #SYM,Rf'J

Another standard PDP-II convention is to name the general registers

as follows:

Rfl
Rl
R2
R3
R4
RS
SP
PC

%fl
%1
%2
%3
%4
%S
%6
%7

(processor stack pointer)
(program counter)

The PDP-ll/4S floating-point accumulators are named by convention

as follows:
AC~ %~
ACI %1
AC2 %2
AC3 %3
AC4 %4
ACS %S

Use of these standard symbols makes examination of another pro­

grammer's code much easier than the use of random symbolic names

or constants which do not appear on CREF listings.

NOTE

Where a register reference is made in a 2-bit field
within a floating-point instruction, AC~ through
AC3 may be referenced. In such instructions the
6-bit source or destination field can be filled with
addressing modes 1 through 7 which reference the pro­
cessor registers R~ through R7 or addressing mode ~
which references floating-point registers AC~ through
ACS.

1-12

1.6 SPACE VS. TIMING TRADEOFFS

On the PDP-II, as on all computers, some techniques lead to

savings in storage space and others lead to decreased execution

time. Only the individual user can determine which is the best

combination of the two for his application. It is the purpose of

this Section to describe several means of conserving core storage

and/or saving time.

1.6.1 Trap Handler

The use of the trap handler and a dispatch table conserve

core requirements in subroutine calling, but can lead to a decrease

in execution speed due to indirect transfer of control.

To illustrate, a subroutine call can be made in either of the fol­

lowing ways:

1.6.2

1. A JSR instruction which generally requires two PDP-II words:

JSR R5,SUBA

but is direct and fast.

2. A TRAP instruction which requires one PDP-II word:

TRAP N

but is indirect and slower. The TRAP handler must use

N to index through a dispatch table of subroutine ad­

dresses and then JMP to the Nth subroutine in the table.

Register Increment

The operation:

CMPB (R,fl) +, (R,fl) +

is preferable to;

TST (R,fl)+

to increment R,fl by 2, especially where the initial contents of R,fl

may be odd, but is slower.

1.7 CONDITIONAL BRANCH INSTRUCTIONS

When using the PDP-II conditional branch instructions, it is

imperative that the correct choice be made between the signed and

the unsigned branches.

1-13

SIGNED

BGE
BLT
BGT
BLE

UNSIGNED

BHIS (BCC)
BLO
BHI
BLOS (BCS)

A common pitfall is to use a signed branch (e.g., BGT) when com­

paring two memory addresses. A problem occurs when the two ad­

dresses have opposite signs; that is, one address goes across the

16K (l~~~~~8) bound. This type of coding error usually appears as

a result of re-linking at different addresses and/or a change in

size of the program.

1-14

CHAPTER 2

SOURCE PROGRAM FORMAT

A source program is composed of a sequence of source lines,

where each line contains a single assembly language statement.

Each line is terminated by either a line feed or a vertical tab

character (which increments the line count by 1) or a form feed

character (which increments both the line count and page count

by 1).

Since Edit-II automatically appends a line feed to every car­

riage return character, the user need not concern himself with the

statement terminator. However, a carriage return character not

followed by a statement terminator generates an error flag. A

legal statement terminator not immediately preceded by a carriage

return causes the Assembler to insert a carriage return character

for listing purposes.

An assembly language line can contain up to l32l~ characters

(exclusive of the statement terminator). Beyond this limit, ex­

cess characters are ignored and generate an error flag.

2.1 STATEMENT FORMAT

A statement can contain up to four fields which are identi­

fied by order of appearance and by specified terminating characters.

The general format of a MACRO-II assembly language statement is:

label: operator operand ; comments

The label and comment fields are optional_ The operator and oper­

and fields are interdependent; either may be omitted depending

upon the contents of the other.

The Assembler interprets and processes these statements one

by one, generating one or more binary instructions or data words

or performing an assembly process. A statement must contain one

of these fields and may contain all four types. (Blank lines are

legal.)

2-1

Some statements have one operand, for example:

CLR R~

while others have two, for example:

MOV #344,R2

An assembly language statement must be complete on one source line.

No continuation lines are allowed. (If a continuation is attempted

with a line feed under Edit-II the Assembler interprets this as the

statement terminator.)

MACRO-II source statements are formatted with Edit-II such

that use of the TAB character causes the statement fields to be

aligned. For example:

2.1.1

Label
Field

MASK=-l,0
REGEXP:

REGTST:

REGERR:
REGERX:

Operator
Field

ABSEXP
BIT
BEQ
ERROR
MOV
BIC
BR

Label Field

Operand
Field

#MASK,VALUE
REGERX
R
#DEFFLGiREGFLG,MODE
#MASK,VALUE
ABSERX

Comment
Field

iREGISTER EXPRESSION
iMUST BE ABSOLUTE
i3 BITS?
iYES, OK
iNO, ERROR

A label is a user-defined symbol which is assigned the value

of the current location counter and entered into the user-defined

symbol table. The value of the label may be either absolute or

relocatable, depending on whether the location counter value is

currently absolute or relocatable. In the latter case, the abso­

lute value of the symbol is assigned by Link-II, i.e., the stated

relocatable value plus the relocation constant.

A label is a symbolic means of referring to a specific loca­

tion within a program. If present, a label always occurs first

in a statement and must be terminated by a colon. For example,

if the current location is absolute 1~~8' the statement:

ABCD: MOV A, B

assigns the value 1~~8 to the label ABCD. Subsequent reference to

ABCD references location 1~~8. In this example if the location

2-2

counter were relocatable, the final value of ABCD would be 1~~8+K,

where K is the location of the beginning of the relocatable section

in which the label ABCD appears.

More than one label may appear within a single label field;

each label within the field has the same value. For example, if

the current location counter is 1~~8' the multiple labels in the

statement:

ABC: $DD: A7.7: MOV A,B

cause each of the three labels ABC, $DD, and A7.7 to be equated

to the value 1~~8. (By convention, $ and. characters are reserved

for use in system software symbols.)

The first six characters of a label are significant. An er­

ror code is generated if more than one label share the same first

six characters.

A symbol used as a label may not be redefined within the user

program. An attempt to redefine a label results in an error

flag in the assembly listing.

2.1.2 Operator Field

An operator field follows the label field in a statement, and

may contain a macro call, an instruction mnemonic, or an assembler

directive. The operator may be preceded by none, one or more labels

and may be followed by one or more operands and/or a comment.

Leading and trailing spaces and tabs are ignored.

When the operator is a macro call, the Assembler inserts the

appropriate code to expand the macro. When the operator is an

instruction mnemonic, it specifies the instruction to be generated

and the action to be performed on any operand(s) which follow.

When the operator is an Assembler directive, it specifies a certain

function or action to be performed during assembly.

An operator is legally terminated by a space, tab, or any

non-alphanumeric character (symbol component).

2-3

Consider the following examples

MOV A,B
MOV@A,B

(space terminates the operator MOV)
(@ terminates the operator MOV)

When the statement line does not contain an operand or comment,

the operator is terminated by a carriage return followed by a line

feed, vertical tab or form feed character.

A blank operator field is interpreted as a .WORD assembler

directive (See Section 6.3.2).

2.1.3 Operand Field

An operand is that part of a statement which is manipulated

by the operator. Operands may be expressions, numbers, or sym­

bolic or macro arguments (within the context of the operation) .

When multiple operands appear within a statement, each is separated

from the next by one of the following characters: comma, tab, space

or paired angle brackets around one or more operands (see Section

3~1.1). An operand may be preceded by an operator, label or other

operand and followed by a comment.

The operand field is terminated by a semicolon when followed

by a comment, or by a statement terminator when the operand com­

pletes the statement. For example:

LABEL: MOV A,B iCOMMENT

The space between MOV and A terminates the operator field and be­

gins the operand field; a comma separates the operands A and B;

a semicolon terminates the operand field and begins the comment

field.

2.1.4 Comment Field

The comment field is optional and may contain any ASCII char­

acters except null, rubout, carriage return, line feed, vertical

tab or form feed. All other characters, even special characters

with a defined usage, are ignored by the Assembler when appearing

in the comment field.

2-4

The comment field may be preceded by one, any, none or all of the

other three field types. Comments must begin with the selnicolon

character and end with a statement terminator.

Comments do not affect assembly processing or program execu­

tion, but are useful in source listings for later analysis, debug­

ging, or documentation purposes.

2.2 FORMAT CONTROL

Horizontal or line formatting of the source program is con­

trolled by the space and tab characters. These characters have no

effect on the assembly process unless they are embedded within a

symbol, number, or ASCII text; or unless they are used as the opera­

tor field terminator. Thus, these characters can be used to pro­

vide an orderly source program. A statement can be written:

LABEL:MOV(SP)+,TAGiPOP VALUE OFF STACK

or, using formatting characters, it can be written:

LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK

which is easier to read in the context of a source progranl listing.

Vertical formatting, i.e., page size, is controlled by the

form feed character. A page of n lines is created by inserting a

form feed (type the CTRL/FORM keys on the keyboard) after the nth

line. (See also Section 6.1.6 for a description of page formatting

with respect to macros and Section 6.1.3 for a description of assem­

bly listing output.)

2-5

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This Chapter describes the various components of legal MACRO-II

expressions: the Assembler character set, symbol construction,

numbers, operators, terms and expressions.

3.1 CHARACTER SET

The following characters are legal in MACRO-II source programs:

a. The letters A through Z. Both upper and lower case
letters are acceptable, although, upon input, lower
case letters are converted to upper case letters.
Lower case letters can only be output by sending
their ASCII values to the output device. This con­
version is not true for .ASCII, .ASCIZ, I (single
quote) or " (double quote) statements if .ENABL LC
is in effect.

b. The digits ~ through 9.

c. The characters • (period or dot) and $ (dollar sign)
which are reserved for use in system program symbols.

d. The following special characters:

Character Designation Function

formatting character carriage return
line feed)
form feed·
vertical tab

%
tab
space

@

(
.)

<

>

+

*
/
&

"

t

\

colon
equal sign
percent sign

number sign
at sign
left parenthesis
right parenthesis
comma
semi-colon
left angle bracket

right angle bracket

plus sign

minus sign

asterisk
slash
ampersand
exclamation
double quote
single quote
up arrow

backslash
3-1

source statement terminators

label terminator
direct assignment indicator
register term indicator
item or field terminator
item or field terminator
immediate expression indicator
deferred addressing indicator
initial register indicator
terminal register indicator
operand field separator
comment field indicator
initial argument or expression
indicator
terminal argument or expression
indicator
arithmetic addition operator or
au to increment indica tor ..
arithmetic subtraction operator
or auto decrement indicator
arithmetic mUltiplication operator
arithmetic division operator
logical AND operator
logical inclusive OR operator
double ASCII character indicator
single ASCII character indicator
universal unary operator, argu­
ment indicator
macro numeric argument indicator

3.1.1 Separating and Delimiting Characters

Reference is made in the remainder of the manual to legal

separating characters and legal argument delimiters. These

terms are defined below in Tables 3-1 and 3-2.

Character

space

Character

< ••• >

t\ ... \

TABLE 3-1

Legal Separating Characters

Definition

one or more spaces
and/or tabs

comma

Usage

A space is a legal separator
only for argument operands.
Spaces within expressions
are ignored (see Section 3.8).

A comma is a legal separator
for both expressions and
argument operands.

TABLE 3-2

Legal Delimiting Characters

Definition

paired angle brackets

Up arrow construction
where the up arrow
character is followed
by an argument brack­
eted by any paired
printing characters.

Usage

Paired angle brackets are used
to enclose an argument, parti­
cularly when that argument
contains separating characters.
Paired angle brackets may be
used anywhere in a program to
enclose an expression for
treatment as a term.

This construction is equivalent
in function to the paired angle
brackets and is generally used
only where the argument con­
tains angle brackets.

Where argument delimiting characters are used, they must bracket

the first (and, optionally, any following) argument{s). The charac­

ter < and the characters t', where' is any printing character, can

be considered unary operators which cannot be immediately preceded

by another argument. For example:

.MACRO TEM <AB>C

3-2

indicates a macro definition with two arguments, while

.MACRO TEL C<AB>

has only one argument. The closing >, or matching character where

the up arrow construction is used, acts as a separator. The opening

argument delimiter does not act as an argument separator.

Angle brackets can be nested as follows:

<AC>

which reduces to:

AC

and which is considered to be one argument in both forms.

3.1.2 Illegal Characters

A character can be illegal in one of two ways:

a. A character which is not recognized as an element
of the MACRO-II character set is always an illegal
character and causes immediate termination of the
current line at that point, plus the output of an
error flag in the assembly listing. For example:

LABEL+*A: MOV A,B

Since the backarrow is not a recognized character,
the entire line is treated as a:

.WORD LABEL

statement and is flagged in the listing.

b. A legal MACRO-II character may be illegal in con­
text. Such a character generates a Q error on
the assembly listing.

3.1.3 Operator Characters

Legal unary operators under MACRO-II are as follows:

unary
Operator

+

EXElanation

plus sign +A

ExamEle

(positive value of A,
valent to A)

equi-

minus sign -A (negative, 2's complement,
value of A)

3-3

unary
Operator

t

Explanation

up arrow, univer­
sal unary operator
(this usage is de­
scribed in greater
detail in Sections
6.4.2 and 6.6.2).

Example

tF3.~ (interprets 3.~ as a
one word floating-point
number)

tC24 (interprets the one's
complement value of 24 8)

tD127 (interprets 127 as a deci­
mal number)

t034 (interprets 34 as an
octal number)

tBll~~~lll (interprets 11000111 as a
binary value)

The unary operators as described above can be used adjacent to each

other in a term. For example:

-%5
tCt012

Legal binary operators under MACRO-II are as follows:

Binary
°12erator

+

*
I
&

Explanation

addition

subtraction

multiplication

division

logical AND

A+B

A-B

Example

A*B (16-b~t product returned)

AlB (16-bit quotient returned)

A&B

logical inclusive OR AlB

All binary operators have the same priority. Items can be grouped

for evaluation within an expression by enclosure in angle brackets.

Terms in angle brackets are evaluated first, and remaining opera­

tions are performed left to right. For example:

• WORD 1+2*3
• WORD 1+<2*3>

iIS 11 OCTAL
iIS 7 OCTAL

3-4

3.2 MACRO-II SYMBOLS

There are three types of symbols: permanent, user-defined and

macro. MACRO-II maintains three types of symbol tables: the

Permanent Symbol Table (PST), the User Symbol Table (UST) and the

Macro Symbol Table (MST). The PST contains all the permanent symbols

and is part of the MACRO-II Assembler load module. The UST and MST

are constructed as the source program is assembled; user-defined

symbols are added to the table as they are encountered.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (Appen­

dix BJ) and assembler directives (Chapters 6 and 7, Appendix B).

These symbols are a permanent part of the Assembler and need not be

defined before being used in the source program.

3.2.2 User-Defined and MACRO Symbols

User-defined symbols are those used as labels (Section 2.1.1)

or defined by direct assignment (Section 3.3). These symbols are

added to the User Symbol Table as they are encountered during the

first pass of the assembly. Macro symbols are those symbols used

as macro names (Section 7.1). These symbols are added to the Macro

Symbol Table as they are encountered during the assembly.

User-defined and macro symbols can be composed of alphanumeric

characters, dollar signs, and periods only; any other character

is illegal.

The $ and • characters are reserved for system software sym­

bols (e.g., • READ, a system macro) and should not be inserted in

user-defined or macro symbols.

The following rules apply to the creation of user-defined and

macro symbols:

a. The first character must not be a number.

b. Each symbol must be unique within the first
six characters.

c. A symbol can be written with more than six legal
characters, but the seventh and subsequent char­
acters are only checked for legality, and are not
otherwise recognized by the Assembler.

3-5

d. Spaces, tabs, and illegal characters must not be
embedded within a symbol.

The value of a symbol depends upon its use in the program. A symbol

in the operator field may be anyone of the three symbol types. To

determine the value of the symbol, the Assembler searches the three

symbol tables in the following order:

a. Macro Symbol Table

b. Permanent Symbol Table

c. User-Defined Symbol Table

A symbol found in the operand field is sought in the

a. User-Defined Symbol Table

b. Permanent Symbol Table

in that order. The Assembler never expects to find a macro name in

an operand field.

These search orders allow redefinition of Permanent Symbol

Table entries as user-defined or macro symbols. The same name can

also be assigned to both a macro and a label.

User-defined symbols are either internal or external (global).

All user-defined symbols are internal unless explicitly defined as

being global with the .GLOBL directive (see Section 6.10).

Global symbols provide links between object modules. A global

symbol which is defined as a label is generally called an entry

point (to a section of code). Such symbols are referenced from

other object modules to transfer control throughout the load module

(which may be composed of a number of object modules) •

Since MACRO-II provides program sectioning capabilities (Sec­

tion 6.9), two types of internal symbols must be considered:

a. symbols that belong to the current program section;
and

b. symbols that belong to other program sections.

3-6

In both cases, the symbol must be defined within the current as­

sembly; the significance of the distinction is critical in evalu­

ating expressions involving type (b) above (see Section 3.9).

3.3 DIRECT ASSIGNMENT

A direct assignment statement associates a symbol with a

value. When a direct assignment statement defines a symbol for

the first time, that symbol is entered into the user symbol table

and the specified value is associated with it. A symbol may be

redefined by assigning a new value to a previously defined symbol.

The latest assigned value replaces any previous value assigned

to a symbol.

The general format for a direct assignment statement is:

symbol = expression

Symbols take on the relocatable or absolute attribute of

their defining expression. However, if the defining expression

is global, the symbol is not global unless explicitly defined as

such in a .GLOBL directive (see Section 6.10).

For example:

A = 1 iTHE SYMBOL A IS EQUATED TO THE VALUE 1.

B ='A-l&MASKLOW iTHE SYMBOL B IS EQUATED TO THE VALUE OF
iTHE EXPRESSION

C: D = 3 iTHE SYMBOL D IS EQUATED TO 3.

E: MOV #l,ABLE iLABELS C AND E ARE EQUATED TO THE
iLOCATION OF THE MOV COMMAND

The following conventions apply to direct assignment state­

ments:

a. An equal sign (=) must separate the symbol from the
expression defining the symbol value.

b. A direct assignment statement is usually placed in
the operator field and may be preceded by a label
and followed by a comment.

c. Only one symbol can be defined by anyone direct
assignment statement.

d. Only one level of forward referencing is allowed.

3-7

Example of two levels of forward referencing (illegal):

x Y

Y Z

Z 1

X and Yare both undefined throughout pass 1. X is

undefined throughout pass 2 and causes a U error flag in

the assembly listing.

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-ll are numbered ~

through 7 and can be expressed in the source program as:

%~
%1

%7

where the digit indicating the specific register can be replaced

by any legal term which can be evaluated during the first assembly

pass. Use of such register designations does not result in any

indication of register usage within the CREF listing.

It is recommended that the programmer create and use symbolic

names for all register references. A register symbol is defined

in a direct assignment statement, among the first statements in

the program. The defining expression of a register symbol must be

absolute. For example:

!1~C'ep~

('}I1lIC'eC' 1
(}I~H?V!"2

"0Q'e('}l~
rlllJl'el'A
('}I0pe"'~
('}I01'1Z('}It;
p~l'epe

('}I0C'1ZC"i'
('}I0pet'JIi'

R~·!(~

R 1 .• ~ 1
R'I:II~2
R~.X3

R4.r.A
R~·r.5
Rf..xe
sp·%e
pr·r.7
R7·'X7

'PF~I~TFR OFFTNTTrC~

3-8

The symbolic names assigned to the registers in the example above

are the conventional names used in all PDP-II system programs.

Since these names are fairly mnemonic, it is suggested the user

follow this convention. Registers 6 and 7 are given special names

because of their special functions, while registers ~ through 5 are

given similar names to denote their status as general purpose regis­

ters.

All register symbols must be defined before they are refer­

enced. A forward reference to a register symbol is flagged as an

error.

Although its use is not noted in CREF listings, the % character

can be used with any term or expression to specify a register. (A

register expression less than ~ or greater than 7 is flagged with

an R error code.) For example:

CLR %3+1

is equivalent to

CLR %4

and clears the contents of register 4, while

CLR 4

clears the contents of memory address 4.

In certain cases a register can be referenced without the

use of a register symbol or register expression; these cases are

recognized through the context of the statement. An example is

shown below:

JSR 5,SUBR ;FIRST OPERAND FIELD MUST ALWAYS BE A REGISTER

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels

within a given range. Use of local symbols can achieve a consider­

able savings in core space within the user symbol table. Core cost

is one word for each local symbol in each local symbol block, as

3-9

compared with four words of storage for each label stored in the

User Symbol Table.

Local symbols provide a convenient means of generating labels

for branch instructions, etc. Use of local symbols reduces the

possibility of multiply-defined symbols within a user program and

separates entry point symbols from local references. Local symbols,

then, are not referenced from other object moudles or even from

outside their local symbol block.

Local symbols are of the form n$ where n is a decimal integer

from 1 to 127, inclusive, and can only be used on word boundaries.

Local symbols include:

1$
27$
59$

1.04$

within a local symbol block, local symbols can be defined and

referenced. However, a local symbol cannot be referenced outside

the block in which it is defined. There is no conflict with

labels of the same name in other local symbol blocks.

Local symbols 64$ through 127$ can be generated automatically

as a feature of the macro processor (see Section 7.3.5 for further

details). When using local symbols the user is advised to first

use the range from 1$ to 63$.

A local symbol block is delimited in one of the following ways:

a. The range of a single local symbol block can consist
of those statements between two normally constructed
symbolic labels. (Note that a statement of the form

LABEL=.

is a direct assignment, does not create a label in
the strict sense, and does not delimit a local range.)

b. The range of a local symbol block is terminated
upon encountering a .CSECT directive.

c. The range of a single local symbol block can be
delimited with the .ENABL LSB and the first sym­
bolic label or .CSECT directive following the
.DSABL LSB directives. The default for LSB is off.

For examples of local symbols and local symbol blocks, see

Figure 3-3.
3-10

Line Octal
Number Expansion Source Code Comments

1 .~BTTL SfCTOR fNTTTALIZATlt"IN
2
3 t'!0V011e l .CSfCT I~Pl:RE ,tMPUwE STORA~E AFiEA
41 0fe~0~ I~PURF:
iii:
~ t'0I'i'e~el .eSfCT It.lPFA~ Jf'~LFAI1(EI" FArlo! PASS
e ep00e~ rMPF'ASI , "'0pe~el .rSfCT IMPLIN ,rlFAREr'I FArM Ltt\f
e 0"0",ep IMPLI~!I

s
1C~ ~0"'2~el .r.SfCT xr'TFlR(; ,F'Rr:G~AM HHTTAlIZATrCN CODE
11 v.0~ee xeTPFH';,
12 Ve00t'1 t'1~71?0 MOV Nt~"URE,R'"

~0t?0!lel

1:3 '0'041 9!0~H~2e t ~ I CLR c~e, .. "'~LFA~ ft-1F'URE A~EA
14 f0P:el5 1.'1227012 CMP ~I~PTt'lP,R'"

0I0PlZd0'
15 V0012 HHJ74 B~I If

w 16
I 17 0I0"'eCl!~' .rSfe' X(TFAS .PASS ! ~j r T! AL r l6,. TOt--· rO"E 1-1

1-1 18 l'0C'!00 Xr.TPA5,
19 V0P0Cl' "1~1ti!0 MC'V ~T~r;PAS,R'"

t'l001e"e'
2C1! P0~041 p,,~e2V 1!1 CLR (~e, ... Jt"~LfA~ rtJPU~E PART
21 '0P26 "'2~7"e CMP I¥IMPTrtP,RO!

P0vede'
22 V0"1~ HHJ74 81-11 l'
~3
~4 p~H"0"e ' .eSfe" xelLI"'! ,Llt-JE P"!ITIALfZ.6T!Ot-.i CO"E
~5 fJ0010t." xert HH
~6 V00eQ! p U~7t:)e MI.:V NTMPl..tN,R~

P0P0O'e'
27 pe~e41 t'0~e2e ! ~ I ClR CJ:(2, ..
~8 '-'0"'06 C'l227t7'e c~p NI~PT(jP,R~

Q10f1e4e'
29 "0012 10'374 8i00i I I!
~0
31 P0tJ!l?O'e' .t.SE(;T Ml~F.D ,t.'-!}(Ee ~O!"'f SFCTCP

Figure 3-3

Assembly Source Listing of MACRO-II Code Showing Local Symbol Blocks

The maximum offset of a local symbol from the base of its

local symbol blocks is 128 decimal words. Symbols beyond this

range are flagged with an A error code.

3.6 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location

counter. When used in the operand field of an instruction, it

represents the address of the first word of the instruction. When

used in the operand field of an assembler directive, it represents

the address of the current byte or word. For example:

A: MOV #.,R~ I' REFERS TO LOCATION A,
iI.E., THE ADDRESS OF THE
iMOV INSTRUCTION.

(# is explained in Section 5.9).

At the beginning of each assembly pass, the Assembler clears

the location counter. Normally, consecutive memory locations are

assigned to each byte of object data generated. However, the

location where the object data is stored may be changed by a

direct assignment altering the location counter:

.=expression

Similar to other symbols, the location counter symbol has a

mode associated with it, either absolute or relocatable. However,

the mode cannot be external. The existing mode of the location

counter cannot be changed by using a defining expression of a

different mode.

The mode of the location counter symbol can be changed by

the use of the .ASECT or .CSECT directive as explained in Section

6.9.

The expression defining the location counter must not contain

forward references or symbols that vary from one pass to another.

3-12

Examples:

.ASECT

.=5~~

FIRST: MOV .+l~,COUNT

• =52~

SECOND: MOV .,INDEX

• CSECT

.=.+2~

THIRD: . WORD ~

iSET LOCATION COUNTER TO ABSOLUTE
i5~~

iTHE LABEL FIRST HAS THE VALUE 5~~(S)
i.+l~ EQUALS 5l~(S}. THE CONTENTS OF
iTHE LOCATION 5lg(S) WILL BE DEPOSITED
iIN LOCATION COUNT •

iTHE ASSEMBLY LOCATION COUNTER NOW
iHAS A VALUE OF ABSOLUTE 52~(S).

iTHE LABEL SECOND HAS THE VALUE 52~(S)
iTHE CONTENTS OF LOCATION 52~(8}, THAT
iIS, THE BINARY CODE FOR THE INSTRUC­
iTION ITSELF, WILL BE DEPOSITED IN
iLOCATION INDEX •

iSET LOCATION COUNTER TO RELOCATABLE
i2~ OF THE UNNAMED PROGRAM SECTION •

iTHE LABEL THIRD HAS THE VALUE OF
iRELOCATABLE 2~.

Storage area may be reserved by advancing the location counter.

For example, if the current value of the location counter is 1000,

the direct assignment statement

.=.+l~~

reserves 100S bytes of storage space in the program. The next

instruction is stored at 1100.

3.7 NUMBERS

The MACRO-II Assembler assumes all numbers in the source pro­

gram are to be interpreted in octal radix unless otherwise speci­

fied. The assumed radix can be altered with the .RADIX directive

(see Section 6.4.1) or individual numbers can be treated as being

of decimal, binary, or octal radix (see Section 6.4.2).

3-13

Octal numbers consist of the digits ~ through 7 only. A

number not specified as a decimal number and containing an 8 or 9

is flagged with an N error code and treated as a decimal number.

Negative numbers are preceded by a minus sign (the Assembler

translates them into two's complement form). Positive numbers may

be preceded by a plus sign, although this is not required.

A number which is too large to fit into 16 bits (177777<n)

is truncated from the left and flagged with a T error code in the

assembly listing.

Numbers are always considered absolute quantities (that is,

not relocatable) .

The single-word floating-point numbers which can be generated

with the tF operator (see Section 6.4.2) are stored in the follow­

ing format:

15 14 7 6

sign bit

,
8-bit exponent 7-bit mantissa

Refer to PDP-ll/45 Processor Handbook for details of the floating­

point format.

3.8 TERMS

A term is a component of an expression. A term may be one of

the following:

a. A number, as defined in Section 3.7, whose l6-bit
value is used.

b. A symbol, as defined earlier in the Chapter. Symbols
are interpreted according to the following hierarchy:

1. a period causes the value of the current
location counter to be used

2. a permanent symbol whose basic value is
used and whose arguments (if any) are
ignored,

3. an undefined symbol is assigned a value of
zero and inserted in the user-defined symbol table.

3-14

c. An ASCII conversion using either an apostrophe followed
by a single ASCII character or a double quote followed
by two ASCII characters which results in a word con­
taining the 7-bit ASCII value of the character(s). (This
construction is explained in greater detail in Section
6.3.3.)

d. A term may also be an expression or term enclosed in
angle brackets. Any quantity enclosed in angle brackets
is evaluated before the remainder of the expression in
which it is found. Angle brackets are used to alter the
left to right evaluation of expressions (to differentiate
between A*B+C and A*~+C» or to apply a unary operator
to an entire expression (- ~+B>, for example).

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by binary

operators and which reduce to a 16-bit value. The operands of a

.BYTE directive (see Section 6.3.1) are evaluated as word expressions

before truncation to the low-order eight bits. Prior to truncation,

the high-order byte must be zero or all ones (when byte value is

negative, the sign bit is propagated). The evaluation of an expres­

sion includes the evaluation of the mode of the resultant expression;

that is, absolute, relocatable or external. Expression modes are

defined further below.

Expressions are evaluated left to right with no operator hier­

archy rules except that unary operators take precedence over binary

operators. A term preceded by a unary operator can be considered

as containing that unary operator. (Terms are evaluated, where

necessary, before their use in expressions.) Multiple unary opera­

tors are valid and are treated as follows:

-+-A

is equivalent to:

-<+<-A»

3-15

A missing term, expression or external symbol is interpreted

as a zero. A missing operator is interpreted as +. A Q error flag

is generated for each missing term or operator. For example:

TAG LA 177777

is evaluated as

TAG LA+177777

with a Q error flag on the assembly listing line.

The value of an external expression is the value of the abso­

lute part of the expression; e.g., EXT+A has a value of A. This

is modified by the Linker to become EXT+A.

Expressions, when evaluated, are either absolute, re1ocatab1e,

or external. For the programmer writing position-independent code,

the distinction is important.

~. An expression is absolute if its value is fixed.
An express10n whose terms are numbers and ASCII
conversions will have an absolute value. A re-
locatable expression minus a re1ocatab1e term, where both
items belong to the same program section, is also absolute.

b. An expression is relocatab1e if its value is fixed
relative to a base address but will have an offset
value added when linked. Expressions whose terms
contain labels defined in relocatab1e sections and
periods (in re1ocatab1e sections) will have a re­
locatable value.

c. An expression is external (or global) if its value
is only partially defined during assembly and is
completed at link time. An expression whose terms
contain a global symbol not defined in the current
program is an external expression. External expres­
sions have re10catable values at execution time if
the global symbol is defined as being re1ocatab1e or
absolute if the global symbol is defined as absolute.

3-16

CHAPTER 4

RELOCATION AND LINKING

The output of the MACRO-II Assembler is an object module which

must be processed by Link-II before loading and execution. (See

PDP-II Link-II Linker and Libr-ll Librarian Programmer's Manual for

details.) The Linker essentially fixes (i.e., makes absolute) the

values of external or relocatable symbols and turns the object

module into a load module.

To enable the Linker to fix the value of an expression, the

Assembler issues certain directives to the Linker together with

required parameters. In the case of relocatable expressions, the

Linker adds the base of the associated relocatable section (the

location in memory of relocatable ~) to the value of the relocatable

expression provided by the Assembler. In the case of an external

expression, the value of the external term in the expression is

determined by the Linker (since the external symbol must be defined

in one of the other object modules which are being linked together)

and adds it to the value of the external expression provided by the

Assembler.

All instructions that are to be modified (as described in

the previous paragraph) are marked with an apostrophe in the assem­

bly listing (see also Section 1.2). Thus the binary text output

looks as follows:

CLR EXTERNAL(5)

CLR EXTERNAL+6(5)

CLR RELOCATABLE(5)

4-1

iVALUE OF EXTERNAL SYMBOL
jASSEMBLED ZEROj WILL BE
jMODIFIED BY THE LINKER.

jTHE ABSOLUTE PORTION OF THE
iEXPRESSION (~~~~~6) IS ADDED
jBY THE LINKER TO THE VALUE
jOF THE EXTERNAL SYMBOL

jASSUMING WE ARE IN THE ABSOLUTE
iSECTION AND THE VALUE OF
jRELOCATABLE IS RELOCATABLE 4~

CHAPTER 5

ADDRESSING MODES

The program counter (PC, register 7 of the eight general reg­

isters) always contains the address of the next word to be fetched;

i.e., the address of the next instruction to be executed, or the

second or third word of the current instruction.

In order to understand how the address modes operate and how

they assemble, the action of the program counter must be understood.

The key rule is:

Whenever the processor implicitly uses the program counter

to fetch a word from memory, the program counter is

automatically incremented by two after the fetch.

That is, when an instruction is fetched, the PC is incremented

by two, so that it is pointing to the next word in memorYi and, if

an instruction uses indexing (Sections 5.7, 5.8 and 5.11) the pro­

cessor uses the program counter to fetch the base from memory.

Hence, using the rule above, the PC increments by two, and now

points to the next word.

The following conventions are used in this Section:

a. Let E be any expression as defined in Chapter 3.

b. Let R be a register expression. This is any expres­
sion containing a term preceded by a % character or
a symbol previously equated to such a term.

Examples:

Rfl %fl
Rl = Rfl+l
R2 = 1+%1

iGENERAL REGISTER fl
iGENERAL REGISTER 1
iGENERAL REGISTER 2

c. Let ER be a register expression or an expression in
the range ~ to 7 inclusive.

d. Let A be a general address specification which pro­
duces a 6-bit mode address field as described in
Sections 3.1 and 3.2 of the PDP-II Processor
Handbook (both 11/2~ and 11/45 versions).

5-1

The addressing specifications, A, can be explained in terms

of E, R, and ER as defined above. Each is illustrated with the

single operand instruction CLR or double operand instruction MOV.

5.1 REGISTER MODE

The register contains the operand.

Format for A: R

Examples: R~=%~
CLR R~

iDEFINE R~ AS REGISTER ~
;CLEAR REGISTER ~

5.2 REGISTER DEFERRED MODE

The register contains the address of the operand.

Format for A: @R or (ER)

Examples: CLR @Rl
CLR (1)

5.3 AUTOINCREMENT MODE

iBOTH INSTRUCTIONS CLEAR
iTHE WORD AT THE ADDRESS
;CONTAINED IN REGISTER 1

The contents of the register are incremented immediately after

being used as the address of the operand. (See note below.)

Format for A:

Examples:

(ER)+

CLR (R~)+
CLR (R~+3)+
CLR (2)+

NOTE

iEACH INSTRUCTION CLEARS
iTHE WORD AT THE ADDRESS
;CONTAINED IN THE SPECIFIED
;REGISTER AND INCREMENTS
;THAT REGISTER'S CONTENTS
iBY TWO

Both JMP and JSR instructions using non-deferred
autoincrement mode, autoincrement the register
before its use on the PDP-ll/2~ (but not on the
PDP-ll/45 or 11/~5}. In double operand
instructions of the addressing form %R,(R)+ or
%R,-(R) where the source and destination registers
are the same, the source operand is evaluated
as the autoincremented or autodecremented value;
but the destination register, at the time it is
used, still contains the originally intended ef­
fective address. In the following two examples,
as executed on the PDP-II/20, R~ originally con­
tains l~~.

5-2

MOV R~, (~)+ iTHE QUANTITY 1~2 IS MOVED
iTO LOCATION l~~

MOV R~,-(~) iTHE QUANTITY 76 IS MOVED
iTO LOCATION 76

The use of these forms should be avoided as they
are not compatible with the PDP-ll/~5 and 11/45.

A Z error code is printed with each instruction which is n01t compatible

among all members of the PDP-II family. This is merely a warning code.

5.4 AUTOINCREMENT DEFERRED MODE

The register contains the pointer to the address of the oper­

and. The contents of the register are incremented after being

used.

Format for A: @(ER)+

Example: CLR @(3)+

5.5 AUTODECREMENT MODE

iCONTENTS OF REGISTER 3 POINT
iTO ADDRESS OF WORD TO BE
iCLEARED BEFORE BEING INCRE­
iMENTED BY TWO

The contents of the register are decremented before being used

as the address of the operand (see note under autoincrement mode) .

Format for A: -(ER)

Examples: CLR -(R~)
CLR -(R~+3)
CLR -(2)

5.6 AUTODECREMENT DEFERRED MODE

iDECREMENT CONTENTS OF REGISTERS
i~, 3, AND 2 BY TWO BEFORE USING
iAS ADDRESSES OF WORDS TO BE
iCLEARED

The contents of the register are decremented before being used

as the pointer to the address of the operand.

5-3

Format for A: @-(ER)

Example: CLR @-(2)

5.7 INDEX MODE

iDECREMENT CONTENTS OF REGISTER
i2 BY TWO BEFORE USING AS POINTER
iTO ADDRESS OF WORD TO BE CLEARED.

The value of an expression E is stored as the second or third

word of the instruction. The effective address is calculated as

the value of E plus the contents of register ER. The value E is cal­

led the base.

Format for-A: E(ER)

Examples: CLR X+2 (Rl)

CLR -2 (3)

5.8 INDEX DEFERRED MODE

iEFFECTIVE ADDRESS IS X+2 PLUS
iTHE CONTENTS OF REGISTER 1.
iEFFECTIVE ADDRESS IS -2 PLUS
iTHE CONTENTS OF REGISTER 3.

An expression plus the contents of a register gives the pointer

to the address of the operand.

Format for A: @E(ER)

Example: CLR @14(4)

5.9 IMMEDIATE MODE

iIF REGISTER 4 HOLDS l~~ AND
iLOCATION 114 HOLDS 2~~~,
iLOCATION 2~~~ IS CLEARED.

The immediate mode allows the operand itself to be stored as

the second or third word of the instruction. It is a$sembled as

an autoincrement of register 7, the PC.

Format for A: #E

Examples: MOV #l~~, R~
MOV #X, R~

iMOVE AN OCTAL l~~ TO REGISTER ~
iMOVE THE VALUE OF SYMBOL X TO
iREGISTER ~

The operation of this mode is explained as follows:

The statement MOV #1~~,R3 assembles as two words. These are:

5-4

Just before this instruction is fetched and executed, the PC

points to the first word of the instruction. The processor fetches

the first word and increments the PC by two. The source operand

mode is 27 (autoincrement the PC). Thus the PC is used as a pointer

to fetch the operand (the second word of the instruction) before

being incremented by two, to point to the next instruction.

5.10 ABSOLUTE MODE

Absolute mode is the equivalent of immediate mode deferred.

@#E specifies an absolute address which is stored in the second or

third word of the instruction. Absolute mode is assembled as an

auto increment deferred of register 7, the PC.

5.11

Format for A: @#E

Examples:

RELATIVE MODE

MOV @#l~~,R~ iMOVE THE VALUE OF THE CONTENTS
iOF LOCATION l~~ TO REGISTER ~.

CLR @#X ;CLEAR THE CONTENTS OF THE
iLOCATION WHOSE ADDRESS IS X.

Relative mode is the normal mode for memory references.

Format for A: E

Examples: CLR l~~
MOV X,Y

iCLEAR LOCATION l~~.
iMOVE CONTENTS OF LOCATION X
iTO LOCATION Y.

Relative mode is assembled as index mode, using register 7, the PC,

as the index register. The base of the address calculation, which

is stored in the second or third word of the instruction, is not

the address of the operand (as in index mode), but the number

which, when added tr the PC, becomes the address of the operand.

Thus, the base is X-PC, which is called an offset. The operation

is explained as follows:

If the statement MOV 1~~,R3 is assembled at absolute location

2~ the assembled code is:

Location 2~:

Location 22:

~ 1 6 7 ~ 3

~ ~ ~ ~ 5 4

5-5

The processor fetches the MOV instruction and adds two to the PC

so that it points to location 22. The source operand mode is 67;

that is, indexed by the PC. To pick up the base, the processor

fetches the word pointed to by the PC and adds two to the PC. The

PC now points to location 24. To calculate the address of the

source operand, the base is added to the designated register. That

is, BASE+PC=54+24=1~~, the operand address.

Since the Assembler considers "." as the address of the first

word of the instruction, an equivalent index mode statement would

be:

MOV 1~~-.-4(PC),R3

This mode is called relative because the operand address is cal­

culated relative to the current PC. The base is the distance or

offset (in bytes) between the operand and the current PC. If the

operator and its operand are moved in memory so that the distance

between the operator and data remains constant, the instruction

will operate correctly anywhere in core.

5.12 RELATIVE DEFERRED MODE

Relative deferred mode is similar to relative mode, except

that the expression, E, is used as the pointer to the address of

the operand.

5.13

Format for A: @E

Example: MOV @X,R~ iMOVE THE CONTENTS OF THE
iLOCATION WHOSE ADDRESS IS IN
iX INTO REGISTER ~.

TABLE OF MODE FORMS AND CODES

Each instruction takes at least one word. Operands of the

first six forms listed below, do not increase the length of an

instruction. Each operand in one of the other modes, however, in­

creases the instruction length by one word.

5-6

Form Mode Meaning

R ~n Register mode
@R or (ER) In Register deferred mode
(ER) + 2n Autoincrement mode
@(ER)+ 3n Autoincrement deferred mode
- (ER) 4n Autodecrement mode
@- (ER) 5n Autodecrement deferred mode

where n is the register number.

Any of the following forms adds one word to the instruction

length:

Form

E (ER)
@E(ER)
#E
@#E
E
@E

Mode

6n
7n
27
37
67
77

Meaning

Index mode
Index deferred mode
Immediate mode
Absolute memory reference mode
Relative mode
Relative deferred reference mode

where n is the register number. Note that in the last four forms,

register 7 (the PC) is referenced.

5.14

NOTE

An alternate form for @R is (ER). However, the
form @(ER) is equivalent to @~(ER).

The form @#E differs from the form E in that the
second or third word of the instruction contains
the absolute address of the operand rather than
the relative distance between the operand and
the PC. Thus, the instruction CLR @#l~~ clears
absolute location l~~ even if the instruction is
moved from the point at which it was assembled.
See the description of the .ENABLE AMA function
in Section 6.2, which directs the assembly of all
relative mode addresses as absolute mode addresses.

BRANCH INSTRUCTION ADDRESSING

The branch instructions are one word instructions. The high

byte contains the op code and the low byte contains an 8-bit signed

offset (7 bits plus sign) which specifies the branch address rela­

tive to the PC. The hardware calculates the branch address as

follows:

a. Extend the sign of the offset through bits 8-15.

b. Multiply the result by 2. This creates a word offset
rather than a byte offset.

c. Add the result to the PC to form the final branch
address.

5-7

The Assembler performs the reverse operation to form the byte

offset from the specified address. Remember that when the offset

is added to the PC, the PC is pointing to the word following the

branch instruction; hence the factor -2 in the calculation.

Byte offset = (E-PC)/2 truncated to eight bits.

Since PC = .+2, we have

Byte offset = (E-.-2)/2 truncated to eight bits.

NOTE

It is illegal to branch to a location specified
as an external symbol, or to a relocatable sym­
bol from within an absolute section, or to an
absolute symbol or a relocatable symbol of an­
other program section from within a relocatable
section.

The EMT and TRAP instructions do not use the low-order byte

of the word. This allows information to be transferred to the

trap handlers in the low-order byte. If EMT or TRAP is followed

by an expression, the value is put into the low-order byte of the

word. However, if the expression is too big (>377 8) it is trun­

cated to eight bits and a T error flag is generated.

5-8

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

6.1 LISTING CONTROL DIRECTIVES

6.1.1 .LIST and .NLIST

Listing options can be specified in the text of a MACRO-II

program through the .LIST and .NLIST directives. These are of

the form:

where:

.LIST arg

.NLIST arg

arg represents one or more optional arguments.

When used without arguments, the listing directives alter

the listing level count. The listing level count causes the

listing to be suppressed when it is negative. The count is

initialized to zero, incremented for each .LIST and decremented

for each .NLIST. For example:

• MACRO LTEST ;LIST TEST
; A -THIS LINE SHOULD LIST

.NLIST
;B-THIS LINE SHOULD NOT LIST

.NLIST
iC-THIS LINE SHOULD NOT LIST

.LIST
; D -THIS LINE SHOULD NOT LIST (LEVEL NOT BACK TO

.LIST
;E THIS LINE SHOULD LIST (LEVEL BACK TO ZERO)

.ENDM

LTEST

iA-THIS LINE SHOULD LIST
.NLIST
.LIST

;CALL THE MACRO

;E -THIS LIST SHOULD LIST (LEVEL BACK TO ZERO)

The primary purpose of the level count is to allow macro

expansions to be selectively listed and yet exit with the level

returned to the status current during the macro call.

6-1

ZERO)

The use of arguments with the listing directives does not

affect the level count; however, use of .LIST and .NLIST can

be used to override the current listing control. For example:

.MACRO XX

.LIST
X=.
.NLIST

.ENDM

.NLIST ME
XX
.LIST
X=.

iLIST NEXT LINE

;00 NOT LIST REMAINDER
;OF MACRO EXPANSION

;00 NOT LIST MACRO EXPANSIONS

;LIST NEXT LINE

Allowable arguments for use with the listing directives are

as follows (these arguments can be used singly or in combina­

tion:

Argument Default

SEQ list

LaC list

BIN list

BEX list

SRC list

COM list

MD list

MC list

Function

Controls the listing of source line
sequence numbers. Error flags are
normally printed on the line preced­
ing the questionable source state­
ment.

Controls the listing of the location
counter (this field would not normally
be suppressed).

Controls the listing of generated binary
code.

Controls listing of binary extensions;
that is, those locations and binary
contents beyond the first binary word
(per source statement). This is a sub-
set of the BIN argument.

Controls the listing of the source code.

Controls the listing of comments. This
is a subset of the SRC argument and can
be used to reduce listing time and/or
space where comments are unnecessary.

Controls listing of macro definitions
and repeat range expansions.

Controls listing of macro calls and
repeat range expansions.

6-2

Argument

ME

MEB

CND

LD

TOC

TTM

SYM

Default

no list

no list

list

no list

list

Teletype
mode

list

Function

Controls listing of macro expansions.

Controls listing of macro expansion
binary code. A .LIST MEB causes only
those macro expansion statements
producing binary code to be listed.
This is a subset of the ME argument.

Controls the listing of unsatisfied
conditions and all .IF and .ENDC
statements. This argument permits
conditional assemblies to be listed
without including unsatisfied code.

Control listing of all listing
directives having no arguments (those
used to alter the listing level
count) •

Control listing of table of contents
on pass 1 of the assembly (see Section
6.1.4 describing the .SBTTL directive).
The full assembly listing is printed
during pass 1 of the assembly.

Controls listing output format. The
TTM argument (the default case)
causes output lines to be truncated to
72 characters. Binary code is printed
with the binary extensions below the
first binary word. The alternative
(.NLIST TTM) to Teletype mode is line
printer mode, which is shown in
Figure 6-1.

Controls the listing of the symbol table
for the assembly.

An example of an assembly listing as sent to a 132 column line

printer is shown in Figure 6-1. Notice that binary extensions for

statements generating more than one word are spread horizontally on

the source line. An example of an assembly listing as sent to a

teleprinter is shown in Figure 6-2. Notice that binary extensions

for statements genera:ing more than one word are printed on subsequent

lines.

The listing options can also be specified through switches on

the listing file specification in the command string to the MACRO-II

Assembler. These switches are:

/LI:arg

/NL:arg

6-3

MACRO V:~ (~.s A, 1 24.,MAY·72
ASSlMSLER PrUjFER

1 0~j1766

2 001766
3 ZZlt712 0l67:?~ 000~:?01
4 001776 ~(..114221

5 0212i:1~0 ro00~7 00~022~
6 0J20~4 ('I127f.i 17 7777
7 0212Z112 005067 00321121
8 l'J2~16 7!215067 0012!~201
9 ~32022 705,2167 0~"~el161

let ftZ,2,J26 2215767 2'00~001
11 Z32032 7!2J140.2
12 1IJ212~34 005067 tiHH'J0t01
13 (~CJJ 2 ~J 4.J 01,:::'7212 ~01712~
14 e:~2044 710267 Q"~:0~12~
15 2212050 ~12767 ~Zl21,1~1
17 C;12115'l 005767 2' eJ Ql " eJ ~H
18 2J2J62 ('011 4 5

0"1 21 2J2~64 '21671)1 2022141
I 22 ZV2070 00:U.66 01:>0

24 032072 01,27C1 0007561
25 002~76
26 e~2121'" ~~r;267 12!0eJZ12~
27 002111!' 116720 0e10753~
28 e.\?Ic11 4 7'3::>7~0 000047
29 e0212~~ i'014~~3

30 C02122
31 CZ21~('~ 10611'0
32 0:121 ~: 103014
33 0Z21~4 iiJS6767 0021006'
~4 e0214~ 0010'7'3

MACRO V003A.l 26-MAY·72 00;06 PAGE 28

GETL.INI JGET AN INPUT klNE
SAVREG

1$, ~OV FFCNT,Rk' ,ANY RESERVED FF~S?

8EQ 31$ I Nll
ADD R0,PAGNUM J' VES, UPDA'fE PAGE NUMBER

0000261 MOV #w1,PAGEXT
CLR L I NNIJM ; HJl T NEW CREF SEQUENCE
CL.R FFCNT
CLR SEQEt-.!D
TST PASS
8EQ 31$
CLR ~PPCNT

31$: MOV #l.IN8UF,R2
MOV R2,LCBEGL ,SEAT UP 8EGINNING

0wHH'14' MOV #L I NEND ,L,.CEND~ . AND END OF ~INE MARKERS ,
TST SM~CNT J 1 N SYSTEM MACRO?
~NE 40$, vrs. SPECIA~
~OV t1SBMRP t R1 'AS~UME MACRO IN PROGRESS
eNE 1i1$ J8RA~JCH IF' SO
MOV 1tSRC8UF,R1
,WAIT #SRCI..NK
INC LINNUH
~OVB SRCHDR+3,R2' JGET CODE BVTE
BIT #~47,R0 ,ANVTHING BAD?
SEQ 32$ J N~
ERROR L ;YE~f ERROR

32$; FiO\..8 RJ .t:0F?
5P~ 2$ J NO

00e1"04~ 5IS CSISAV,ENDF'I..G
8NE 34$

Example of MACRO-II Line Printer Listing
(132 column line printer)

FIGURE 6-1

MACk~ V~0JA,1 24-MAY-72
A5St./"lbL.f.to< f~UPt:.R

1 ~w17ob
2 lc.1Vd 700
~ ft)l(llllg:

4 1d017/b
0 0~jic:~j~H~

6 ~i()~liJVj4

7 eivj2vjl~

8 ~)0~v,llb

g ~vJ~~.1it2

h1 (12 Ir! 2 ti

11 0t!0J2
12 V1~~.,)4

13 ~~~J40

14 i/j2\rJ-""

1:) V) ~ v.d) VJ

10
11 Vl2v]06

itS 1(,;2~jot:
ly
21t:'l
21 i1"k,04

22 1-1 Ci! 1(01 vl
2J
24 J.I~~d2

20 If) ~ ~.Jl6
20 l!.,cl·J4

27 i~)~11~1

2~ 1/1211'"

29 ~,1 ~ 1 "b
30 V)~12~

31 v'c:1J~
32 'c1;'O 3~
3'; 0~1"04

34 ~21~2

G~, 'I L. 11'4 :

SA YRt".G
~ilt:)/~j!{J 1~'; vir,; V
0Wjv.0~\!) ,
\(1 k' 14~ II) bti~

[,1bptt'o7 ADI)
If., i{'! Vi VJ ~ 2 ,
k1l2/f7 I"QV
177/71
v' ~i v) vo) 2 [) ,
v., kd'H)ti l Cl...~
lQv:jV'~)12'
005~)bJ CL.k
vH;) 11 ~I 2 i[1 ,

v)y'J!)vJbl t.I..R
~0v,~j 10'
~n) ~ J t,:. 7 l S"I
k; vJ ~j 10 k~ v;1 ,

v.n~; 1 ~rt\ 2 dElII
\(,Jv.lol(Jo;l LI...I-t
Vl01,11~lli1."

v,l 21 \12 Jl~: 1"1 () V

~1\l)l/UP
~5lL~,,~7 110V
k; ~: ~'1 VI 1 ;. ,
v.:1121~1 MOV
l!~211t:l'
v1Vi 1/1 v,j 1 ,q ,

.11" NOr
'(i"iOl~7 1 S 1
~~l/j"\!;!!) ,

k'~lit.i:) I::'Nt:.
• Er~I)C
.If' NDf

It 1t51 v.il 1"1 (J v
Vil(,l/r.t; 1 4 '

ki011~iO t'Nt.

.1FTr
It) 1 ~I yl ~ MUV
klkl~17bo ,

,iOiAIT
V'lilbi:?~l Ir,jC
H?I{Iv,ll~ ,

116/~:Vi r'10~ d
~'; \(1 ~) Ie,;,) ,
I(JJ';./~;~ tHT
VII(.j ~j ~I t:i'
k1 \,,~ 1 4 (1' \) bf;;Gi

fR!-;QR
1 (J ti 1 'VI ~:J ~2;b: ~QI..r3
1 ~k'JI.;; 14 LPL.
~J ':) ti 76/ t"l~
~J~) \11 V,:,I I(J I' ,

V k~ ~l Vi ~'J 4 ,
1()~;q~J0~ bNI;.

~ F'eNI , Rf(1

;;1~

R It! , P Arj N I.J 11

#-l,I"'AGt;XT

L.!Nf'-IUf"1

~"I- C f';/T

~t:.L,JEN()

PAS5

31$
I,.fJPCf'tT

~H" 1 N b I",J!" , r< 2

1o<2,LI,,;f:icGI..

~ I.. 1 N t. t~ D , L. r.: E NUl.-

XSf"!k
sr"'I..CNT

40~

XI"1AC~O
M~bi'1r(P,t-<J.

1\(':1;

#~RCtjUf', ~ 1

USkCI..NI\
L.l N NU t·l

SI'<Cr!iJR+J, k!.1

4\647,~1O

J25l
L.
Ril
2;-P
c.:i).L~AV,t.NDFL.r.,

J4;h

IGtT AN !N~UT LINE

lANV ~ES~RV~O FF'S?

, NO
1ytS, UPUA1E PAGE NUM8ER

IINIT N~~ C~EF SEQUENCE

'S~AT u~ 8tGINNING

ANU END Of L.INE MARKERS

;r~ SYST~M MAC~Q?

IASSUME MACRO IN PROGri~SS

;1:3"'ANCH IF' SO

IGeT CQl)~ bYTE

, NU
, ycS, t~f<OI'<

1t':.vr"?
, NO

Example of Page Heading from MACRO-ll Teletype Listing
(same format as for 80 column line printer).

FIGURE 6-2

6-5

where: arg is anyone or more of the arguments defined
in the .LIST and .NLIST directives.

NOTE

Where no listing file specification is indicated,
any errors encountered are printed on the tele­
printer. Where the /NL switch is used with no
argument, the errors and symbol table are output
to the device and/or file specified. Use of the
switches /NL and /NL:SYM cause the errors only
to be sent to the file and/or device specified.

Each argument used with a listing switch is preceded by a colon.

Use of these switches overrides the enabling or disabling of

the equivalent listing option in the source. Default listing

controls can be specified by the user within his source and over­

ridden, where necessary, by switch options at assembly time. For

example:

!OBJFIL,KB:/NL:BEX:COM/LI:SRC<DF:SRCFIL

This command string suppresses the listing of binary exten­

sions and source comments and ignores all listing directives with

the arguments BEX, COM, and SRC. (The object file is sent to the

system device and the listing and symbol table to the teleprinter.)

!OBJFIL,LP:/LI<DTI:ABC

causes ~mCRO-II to ignore all .LIST and .NLIST directives without

arguments. This command string causes the listing of any source

code which would have otherwise been suppressed. (The object file

is sent to the system device; the source listing and symbol table

are sent to the line printer.)

!OBJFIL,SYM/NL<ABC

causes MACRO-II to produce only an object file and a symbol table

listing. The assembly listing is completely suppressed by the /NL

switch. (The object file and symbol table file are sent to the

system device.)

6-6

Line Seq. Loc. Binary Field
Nos. Field Binary Extension Field Source Field Comment Field

1 .NLIST TTt~ ;START OFF IN LP MODE
2 .LIST ME :LIST MACRC) EXPANSIONS
3
4 .MACRO LSTM.t.C ARG ;LISTING ARGUMENT TEST
5 ,NLIST ARG
6 ,WORn, 1,2,3,4 ; CaMMEr~ T
1 .LIST ARG
e .ENOM
9

10 kH?J0k'HlJI2I LSTMAC SEQ .SEQENCr:- NUMBERS
.NLIST SEQ

121001210121 000001 0~H?ll2liJ2 0001211213 .WORO 1,2,3,4 ;COMME~T
0001211216 0001211214

.LIST SEQ
11
12 12100010 LSTMAC LOC ;LOCATlor" COUNTER

.NLIST LaC
12100001 001Z1002 (2l000~3 .WORD 1,2,3,4 ;COMMENT
01210004

m .LIST LOC I
...J 13

14 1Z112I012l20 LSTM.4C BIN ; B p.iARV
.NLIST BIN

0021020 .WOR:; 1,2,3,4 :COMME~T

.LIST BIN
15
16 0001213121 lSTMAC SRC ;SOLJRCE

121001213121 000001 0.0012l~2 IZIkHHHJ3
121012112136 tiH?J12I004

.LIST SRC
11
18 12100040 LSTMAC COM ; CO~~MEN~

,NlIST COM
0001214121 00e1001 001210212 00210213 .WORli 1,2,3,4
00'11046 1210121004

.LIST CO~~

19
2121 0121005121 LSTMAC 8EX ; 8 I i'JA RY F X T E: ~,] S I 0 ~.~ LINt:S

.NLIS"T 8EX
012101215121 0121.001211 0012112132 00121.01213 .WORD 1,2,3.4 ;COM~EI\;~

Line
Seq. Loc.
Nos. Field

21
22
23 021060 000kH?J1

0~062 2100002
~~064 000003
0~066 000004

24
25 eI~H~'r2!

00070 2100001

26
27
28

0'\ 29 I
(X)

\1002101

Binary Field
Binary Extension Field

.LtST

.WORJ

LSTMAr.
.NlIST
,WaRj
.LIST

TTM
1,2,3,4

<CC~I, SEX>
COM,BEX
:',2,3,4
COM,BEX

Source Field

.lIS'" 'lEX

;TRv A88REVILTED FORM
; COW-1E:tI. T

.NlIST TTM

.END

Comment Field

6.1.2 Page Headings

The MACRO-II Assembler outputs each page in the format shown

in Figure 6-2 (Teletype listing). On the first line of each list­

ing page the Assembler prints (from right to left):

a. title taken from .TITLE directive

b. assembler version identification

c. date

d. time-of-day

e. page number

The second line of each listing page contains the subtitle text

specified in the last encountered .SBTTL directive.

6.1.3 . TITLE

The .TITLE directive is used to assign a name to the object

module. The name is the first symbol following the directive

and must be six Radix-50 characters or less (any characters beyond

the first six are ignored. Non Radix-50 characters are not accep­

table. For example:

.TITLE PROG TO PERFORM DAILY ACCOUNTING

causes the object module of the assembled program to be named PROG

(this name is distinguished from the filename of the object module

specified in the command string to the Assembler). The name of

the object module appears in the Linker load map,and on the listing~

If there is no .TITLE statement, the default name assigned

to the first object module is

.MAIN.

The first tab or space following the .TITLE directive is not

considered part of the object module name or header text, although

subsequent tabs and spaces are significant.

If there is more than one .TITLE directive, the last .TITLE

directive in the program conveys the name of the object module.

6-9

6.1.4 .SBTTL

The .SBTTL directive is used to provide the elements for a printed

table of contents of the assembly listing. The text following the

directive is printed as the second line of each of the following

assembly listing pages until the next occurrence of a .SBTTL directive.

For example:

.SBTTL CONDITIONAL ASSEMBLIES

The text

CONDITIONAL ASSEMBLIES

is printed as the second line of each of the following assembly

listing pages.

During pass 1 of the assembly process, MACRO-II automatically

prints a table of contents for the listing containing the line sequence

number and text of each .SBTTL directive in the program. Such a

table of contents is inhibited by specifying the /NL:TOC switch option

to the assembly listing file specification (or an .NLIST TOC directive

within the source). For example:

!OBJFIL,LISTM/NL:TOC<SRCFIL

In this case the table of contents normally generated prior to the

assembly listing is inhibited.

An example of the table of contents is shown in Figure 6-3. Note

that the first word of the subtitle heading is not limited to six

characters since it is not a module name.

6.1.5 .IDENT

The .IDENT directive provides another means of labeling the

object module produced as a result of a MACRO-II assembly. In

addition to the name assigned to the object module with the .TITLE

directive, a character string (up to six characters, treated like a

RAD5~ string) can be specified between paired delimiters. For example:

.IDENT /V~~5A/

6-10

MAC~O v~03A,1 2d~MAY·7~

TA6~t up ~U~l~NTS

0""
7""

lit!""
14-
it>""
20-
3t:)""
4~""
4\-
4~-

0\1-
01-
5~-
6a-
7~'"
74-
7';J-
7;;-
79-
dv.l-
ijS-
Y2-
Y,j-
99-

1103-
1109-
114-
110'"
l~o-

1
1
1
1
1
t
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

SE~TU~ 1~lT1ALIZATION
bUbkUuT1 N E CAL~ OEFINITtUNS
tJAi'<"Mf:.Ttt<S
ROI..L. 1,;t:.rIN1TIONS
P~~G~AM l~lTIA~IZATIUN
.AS;)tMtH.t.k P~iJPi;.~

SlATtMt:.~T P~UCES5Q~
AS~lij~Mt:.Nr PRUCES~UR
UP cuut:. ~RUCt~~OR
t:.~~Ri;.S~lON TO ~Uut~RVL~ CONVtRSION~
CQut "OLL bTONAijt
I)!KE:.CrlvtS

uATA.~tNtKAT~NG UIRECrlvES
CliNlJITlor~Al..S

I..IST JoNI,", C;O'" ll"/O~
~~'b~/USAti~ fUNCT1U~~
CRu5~ R~~EkENCE HANU~ERS
L 11) T lr. C. STu r F
K~YbUARO H~NULt~~
~~~tCl CUDL MA~o~tkS 
t... loT J. N G U I) T P l" T 
1/1.1 tiUt-t-t:RS 
EX~HtbSlO~ EVAL~ATUR 
ft.kM t'VAl..uAru~ 

SVMbUL/CHARACTtR HANULER~ 
i'<O~L. HANUl..t:.R5 
r(r.i..?lSltR S'l'DRA(,7t. 
l"iA~t(U ~1ANOt...~RS 

f"lN 

Table of Contents text is taken from the text of each 
.SBTTL directive. The associated numbers are the page 
and line sequence numbers of the .SBTTL directives. 

Figure 6-3 Assembly Listing Table of Contents 

6-11 



The character string: 

VJJ{t15A 

is converted to Radix-5JJ notation and output to the global symbol 

directory of the object module. 

This symbol can optionally be included in the load map listings 

output by the Linker. 

When more than one .IDENT directive is found in a given pro­

gram, the last .IDENT found determines the symbol which is passed 

as part of the object module identification. 

6.1.6 Page Ejection 

There are several means of obtaining a page eject in a 

MACRO-II assembly listing: 

a. After a line count of 58 lines, MACRO-II automatically 
performs a page eject to skip over page perforations 
on line printer paper and to formulate Teletype output 
into pages. 

b. A form feed character used as a line terminator (or 
as the only character on a line) causes a page eject. 
Used within a macro definition a form feed character 
causes a page eject. A page eject is not performed 
when the macro is invoked. 

c. More commonly, the .PAGE directive is used within 
the source code to perform a page eject at that point. 
The format of this directive is 

. PAGE 

This directive takes no arguments and causes a skip 
to the top of the next page. 

Used within a macro definition, the .PAGE is ignored, 
but the page eject is performed at each invocation of 
that macro. 

6-12 



6.2 FUNCTIONS: .ENABL AND .DSABL DIRECTIVES 

Several functions are provided by MACRO-II through the .ENABL 

and .DSABL directives. These directives use three-character symbolic 

arguments to designate the desired function; and are of the forms: 

where: 

.ENABL arg 

.DSABL arg 

arg is one of the legal symbolic arguments 
defined below. 

The following table describes the symbolic arguments and their associ­

ated functions in the MACRO-II language: 

Symbolic Argument Function 

ABS Enabling of this function produces absolute 
binary output; i.e., input to the Paper Tape 
Software System Absolute Loader (with a .BIN 
extension instead of .OBJ). The default case 
is .DSABL ABS; i.e., input to Link-II. 

AMA Enabling of this function directs the assembly 
of all relative addresses (address mode 67) as 
absolute addresses (address mode 37). This 
switch is useful during the debugging phase of 
program development. 

CDR The statement .ENABL CDR causes source columns 
73 and greater to be treated as comment. This 
accommodates sequence numbers in card columns 
72-80. 

FPT Enabling of this function causes floating point 
truncation, rather than rounding, as is other­
wise performed. .DSABL FPT returns to floating 
point rounding mode. 

LC Enabling of this function causes the Assembler 
to accept lower case ASCII input instead of 
converting it to upper case. 

LSB Enable or disable a local symbol block. While 
a local symbol block is normally entered by 
encountering a new symbolic label or .CSECT 
directive, .ENABL LSB forces a local symbol 
block which is not terminated until a label or 
.CSECT directive following the .DSABL LSB 
statement is encountered. The default case 
is .DSABL LSB. 

PNC The statement .DSABL PNC inhibits binary out­
put until an .ENABL PNC is encountered. The 
default case is .ENABL PNC. 

An incorrect argument causes the directive containing it to be 

flagged as an error. 

6-13 



Once a program has been written using these functions, or not 

using them, the functions can be controlled through switches 

specified in the command string to the MACRO-II Assembler. These 

switches are: 

where: 

/EN:arg 
/DS:arg 

arg is any of the arguments defined for the .ENABL 
and .DSABL directives. 

Use of these switches overrides the enabling or disabling of all 

occurrences of that argument in the program. 

6-14 



6.3 DATA STORAGE DIRECTIVES 

A wide range of data and data types can be generated with the 

following directives and assembly characters: 

. BYTE 

. WORD 

" 
.ASCII 
.ASCIZ 
.RAD5~ 
tB 
tD 
to 

These facilities are explained in the following Sections. 

6.3.1 • BYTE 

The .BYTE directive is used to generate successive bytes of 

data. The directive is of the form: 

.BYTE exp 

• BYTE expl,exp2, ..• 

iWHICH STORES THE OCTAL EQUIVALENT 
iOF THE EXPRESSION exp IN THE NEXT 
iBYTE • 

iWHICH STORES THE OCTAL EQUIVALENTS 
iOF THE LIST OF EXPRESSIONS IN SUC­
iCESSIVE BYTES. 

where a legal expression must have an absolute value (or contain a 

reference to an external symbol) and must result in 8 bits or less 

of data. The l6-bit value of the expression must have a high-order 

byte (which is truncated) that is either all zeros or all ones. 

Each operand expression is stored in a byte of the object program. 

Multiple operands are separated by commas and stored in successive 

bytes. For example: 

SAM=5 
.=4l~ 
.BYTE tD48,SAM i~6~ (OCTAL EQUIVALENT OF 48 DECIMAL) 

iIS STORED IN LOCATION 4l~, ~~5 IS 
iSTORED IN LOCATION 411. 

If the high-order byte of the expression equates to a value other 

than ~ or -1, it is truncated to the low-order 8 bits and flagged 

with a T error code. If the expression is relocatable, an A-type 

warning flag is given. 

6-15 



At link time it is likely that relocation will result in an expres­

sion of more than 8 bits, in which case, the Linker prints an error 

code. For example: 

A: 
. BYTE 23 

.BYTE A 

. GLOBL X 
X=3 
. BYTE X 

;STORES OCTAL 23 IN NEXT BYTE • 

;RELOCATABLE VALUE CAUSES AN "A" 
; ERROR FLAG • 

;STORES 3 IN NEXT BYTE • 

In the case where X is defined in another program: 

.GLOBL X 

.BYTE X ;PRODUCES A "w" FLAG 
;SINCE THE STATEMENT IS NOT 
iACCEPTABLE IF X IS A LABEL. 

If an operand following the .BYTE directive is null, it is 

interpreted as a zero. For example: 

.=42~ 

.BYTE" ;ZEROES ARE STORED IN BYTES 42~, 421, AND 422. 

6.3.2 . WORD 

The .WORD directive is used to generate successive words of 

data. The directive is of the form: 

.WORD exp ;WHICH STORES THE OCTAL EQUIVALENT 
iOF THE EXPRESSION exp IN THE NEXT 
; WORD • 

. WORD exp1,exp2, ... ;WHICH STORES THE OCTAL EQUIVALENTS OF 
iTHE LIST OF EXPRESSIONS IN SUCCESSIVE 
;WORDS. 

where a legal expression must result in 16 bits or less of data. 

Each operand expression is stored in a word of the object program. 

Multiple operands are separated by commas and stored in successive 

words. For example: 

SAL=~ 
.=5~~ 
.WORD 177535,.+4,SAL ;STORES 177535, 5~6, AND ~ IN 

;WORDS 5~~, 5~2, AND 5~4. 

6-16 



If an expression equates to a value of more than 16 bits, it 

is truncated and flagged with a T error code. 

If an operand following the .WORD directive is null, it is 

interpreted as zero. For example: 

.=5~~ 
• WORD ,5, ;STORES ~, 5, and ~ in LOCATIONS 5~~ 

;5~2, and 5~4. 

A blank operator field (any operator not recognized as a macro 

call, op-code, directive or semicolon) is interpreted as an implicit 

.WORD directive. Use of this convention is discouraged. The first 

term of the first expression in the operand field must not be an in­

struction mnemonic or assembler directive unless preceded by a + or -

operator. For example: 

.=44~ 
LABEL: +MOV,LABEL 

;THE OP-CODE FOR MOV, WHICH IS ~l~~~~, 
;IS STORED ON LOCATION 44~. 
;44~ IS STORED IN LOCATION 442. 

Note that the default .WORD directive occurs whenever there is a 

leading arithmetic or logical operator, or whenever a leading symbol 

is encountered which is not recognized as a macro call, an instruction 

mnemonic or assembler directive. Therefore, if an instruction mnemonic, 

macro call or assembler directive is misspelled, the .WORD directive 

is assumed and errors will result. Assume that MOV is spelled incor­

rectly as MOR: 

MOR A,B 

Two error codes result: Q occurs because an expression operator is 

missing between MOR and A, and a U occurs if MOR is undefined. Two 

words are then generated: one for MOR A and one for B. 

6.3.3 ASCII Conversion of One or Two Characters 

The ' and " characters are used to generate text character within 

the source text. A single apostrophe followed by a character results 

ina word in which the 7-bit ASCII representation of the character is 

placed in the low-order byte and zero is placed in the high-order byte. 

For example: 

6-17 



MOV # 'A,R~ 

results in the following 16 bits being moved into R~: 

l~l j 15 8 7 

t 
octal ASCII value of A 

The I character is never followed by a carriage return, null, rubout, 

line feed or form feed. (For another use of the I character, see 

Section 7.3.6.) 

STMNT: 
GETSYM 
BEQ 
CMPB 
BEQ 
CMPB 
BEQ 

4$ 
@CHRPNT , # I : 

LABEL 
@CHRPNT,#'= 
ASGMT 

iCOLON DELIMITS LABEL FIELD. 

iEQUAL DELIMITS 
iASSIGNMENT PARAMETER. 

A double quote followed by two characters results in a word 

in which the 7-bit ASCII representations of the two characters are 

placed. For example: 

MOV #" AB, R~ 

results in the following word being moved into R~: 

15 8 7 

1~2 l~l , , 
octal ASCII value of B octal ASCII value of A 

The " character is never followed by a carriage return, null, rub­

out, line feed or form feed. For example: 

iDEVICE NAME TABLE 

DEVNAM: . WORD "DF ;RF DISK 
. WORD "DK iRK DISK 
. WORD "DP ;RP DISK 

DEVNKB: . WORD "KB iTTY KEYBOARD 
• WORD "DT ;DECTAPE 
. WORD "LP iLINE PRINTER 
. WORD "PR iPAPER TAPE READER 
• WORD "PP iPAPER TAPE PUNCH 
. WORD "CR iCARD READER 
• WORD "MT iMAGTAPE 
. WORD ~ ;TABLE'S END 

6-18 



6.3. 4 • ASCII 

The .ASCII directive translates character strings into their 

7-bit ASCII equivalents for use in the source program. The format 

of the .ASCII directive is as follows: 

.ASCII /character string/ 

where: character string is a string of any acceptable printing ASCII 
characters. The string may not include null 
(blank) characters, rubout, return, line 
feed,vertical tab, or form feed. Nonprinting 
characters can be expressed in digits of the 
current radix and delimited by angle brackets. 
(Any legal, defined expression is allowed be-

/ / 

tween angle brackets.) 

these are delimiting characters and may be 
any printing characters other than i < and 
characters and any character within the 
string. 

As an example: 

A: .ASCII /HELLO/ iSTORES ASCII REPRESENTATION OF THE 
:LETTERS H,E,L,L,O IN CONSECUTIVE BYTES • 

• ASCII /ABC/<15><12>/DEF/ 
;STORES A,B,C,15,12,D,E,F IN CONSECUTIVE 
iBYTES. 

• ASCII /<AB>/ i STORES < ,A, B, > IN CONSECUTIVE BYTES . 

The; and = characters are not illegal delimiting characters, but 

qre preempted by their significance as a comment indicator and assign­

ment operator, respectively. For other than the first group, semi­

colons are treated as beginning a comment field. For example: 

Example 

.ASCII iABC i /DEF / 

.ASCII /ABC/;DEF; 

.ASCII /ABC/=DEF= 

.ASCII =DEF= 

ASCII string 
Generated 

ABC D E F 

ABC 

ABC D E F 

6-19 

Notes 

Acceptable, but not recommended 
procedure. 

iDEFi is treated as a comment 
and ignored. 

Acceptable, but not recommended 
procedure. 

The assignment 
.ASCII=DEF 

is performed and a Q error gen­
erated upon encountering the 
second =. 



6 . 3 • 5 • ASC I Z 

The .ASCIZ directive is equivalent to the .ASCII directive with 

a zero byte automatically inserted as the final character of the 

string. For example: 

When a list or text string has been created with a .ASCIZ 
directive, a search for the null character can determine 
the end of the list. For example: 

HOV #HELLO,RI 
MOV #LINBUF,R2 

X: MOVB (RI)+, (R2)+ 
BNE X 

HELLO: .ASCIZ <CR><LF>/MACRO-II V~~IA/<CR><LF> ;INTRO MESSAGE 

6.3.6 .RAD5,0 

The .RAD5~ directive allows the user the capability to handle 

symbols in Radix-50 coded form (this form is sometimes referred 

to as MOD40 and is used in PDP-II system programs). Radix-50 form 

allows three characters to be packed into sixteen bits; therefore, 

any 6-character symbol can be held in two words. The form of the 

directive is: 

.RAD5~ 

where: I I 

string 

Istringl 

delimiters can be any printing characters other 
than the =, <, and; characters. 

is a list of the characters to be converted 
(three characters per word) and which may 
consist of the characters A through Z, ~ through 
9, dollar ($), dot (.) and space ( ). If there 
are fewer than three characters (or if the last 
set is fewer than three characters) they are 
considered to be left justified and trailing 
spaces are assumed. Illegal nonprinting 
characters are replaced with a ? character and 
cause an I error flag to be set. Illegal 
printing characters set the Q error flag. 

The trailing delimiter may be a carriage return, semicolon, or 

matching delimiter. For example: 

.RAD5~ 

.RAD5~ 

.RAD5~ 

.RAD5~ 

IABC 
IABI 
II 
IABCDI 

iPACK ABC INTO ONE WORD. 
iPACK AB (SPACE) INTO ONE WORD. 
iPACK 3 SPACES INTO ONE WORD. 
iPACK ABC INTO FIRST WORD AND 
iD SPACE SPACE INTO SECOND WORD. 

6-20 



Each character is translated into its Radix-50 equivalent as indi­

cated in the following table: 

Character 

(space) 
A-Z 

$ 

~-9 

Radix-5~ Equivalent (octal) 

~ 
1-32 

33 
34 

36-47 

Note that another character could be defined for code 35, which is 

currently unused. 

The Radix-50 equivalents for characters 1 through 3 (Cl,C2,C3) 

are combined as follows: 

Radix 50 value ((Cl*5~)+C2)*5~+C3 

For example: 

Radix-50 value of ABC is ((1*5~)+2)*5~+3 or 3223 

See Appendix A for a table to quickly determine Radix-50 equi­

valents. 

Use of angle brackets is encouraged in the .ASCII, .ASCIZ, and 

.RAD5~ statements whenever leaving the text string to insert special 

codes. For example: 

.ASCII <l~l> ;EQUIVALENT TO .ASCII/AI 

.RAD5~ /AB/<35> ;STORES 3255 IN NEXT WORD 

CHRl=l 
CHR2=2 
CHR3=3 

. 
. RAD5~<CHRl><CHR2><CHR3> ;EQUIVALENT TO .RAD5~/ABC/ 

6-21 



6.4 RADIX CONTROL 

6.4.1 . RADIX 

Numbers used in a MACRO-II source program are initially con­

sidered to be octal numbers. However, the programmer has the 

option of declaring the following radices: 

2, 4, 8, l~ 

This is done via the .RADIX directive, of the form: 

.RADIX n 

where: n is one of the acceptable radices. 

The argument to the .RADIX directive is always interpreted in 

decimal radix. Following any radix directive, that radix is the 

assumed base for any number specified until the following .RADIX 

directive. 

The default radix at the start of each program, and the argu­

ment assumed if none is specified, is 8 (octal). For example: 

.RADIX l~ ;BEGINS SECTION OF CODE WITH DECIMAL RADIX 

• RADIX ;REVERTS TO OCTAL RADIX 

In general it is recommended that macro definitions not con­

tain or rely on radix settings from the .RADIX directive. The 

temporary radix control characters should be used within a macro 

definition. (to, to, and tB are described in the following Sec­

tion.) A given radix is valid throughout a program until changed. 

Where a possible conflict exists within a macro definition or in 

possible future uses of that code module, it is suggested that the 

user specify values using the temporary radix controls. 

6.4.2 Temporary Radix Control: to, to, and tB 

Once the user has specified a radix for a section of code, or 

has determined to use the default octal radix he may discover a 

number of cases where an alternate radix is more convenient 

6-22 



(particularly within macro definitions). For example, the cre­

ation of a mask word might best be done in the binary radix. 

MACRO-II has three unary operators to provide a single 

interpretation in a given radix within another radix as follows: 

tDx (x is treated as being in decimal radix) 

tox (x is treated as being in octal radix) 

tBx (x is treated as being in binary radix) 

For example: 

tD123 
to 47 
tB ~~~~ll~l 
to<A+3> 

Notice that while the up arrow and radix specification characters 

may not be separated, the radix operator can be physically separated 

from the number by spaces or tabs for formatting purposes. Where a 

term or expression is to be interpreted in another radix, it should 

be enclosed in angle brackets. 

These numeric quantities may be used any place where a 

numeric value is legal. 

PAL-llR contains a feature, which is maintained for compatibility 

in MACRO-II, allowing a temporary radix change from octal to decimal 

by specifying a decimal radix number with a "decimal point". For 

example: 

1~f1. 

1376. 

128. 

(144 8 ) 

(254 f1 8 ) 

(2f1~8) 

6-23 



6.5 LOCATION COUNTER CONTROL 

The four directives which control movement of the location 

counter are .EVEN and .000 which move the counter a maximum of one 

byte, and .BLKB and .BLKW which allow the user to specify blocks of 

a given number of bytes or words to be skipped in the assembly. 

6.5.1 . EVEN 

The .EVEN directive ensures that the assembly location counter 

contains an even memory address by adding one if the current ad­

dress is odd. If the assembly location counter is even, no action 

is taken. Any operands following a .EVEN directive are ignored. 

The .EVEN directive is used as follows: 

6.5.2 .000 

.ASCIZ /THIS IS A TEST/ 

. EVEN 

. WORD XYZ 

iASSURES NEXT STATEMENT 

iBEGINS ON A HORD BOUNDARY . 

The .000 directive ensures that the assembly location counter 

is odd by adding one if it is even. For example: 

iCODE TO MOVE DATA FROM AN INPUT LINE 
iTO A BUFFER 

N=5 

.000 

.BYTE 
BUFF: .BLKW 

MOV 
MOV 
MOVB 

AGAIN: MOVB 
BEQ 
DEC 
BNE 

CLRB 
DONE: 

LINE: .ASCIZ 

N*2 
N 

#BUFF, R2 
#LINE,Rl 
-1 (R2) ,R~ 
(Rl)+, (R2)+ 
DONE 
R~ 
AGAIN 

- (R2) 

/TEXT/ 

iBUFFER HAS 5 WORDS 

iCOUNT=2N BYTES 
iRESERVE BUFFER OF N WORDS 

iADDRESS OF EMPTY BUFFER IN R2 
:ADDRESS OF INPUT LINE IS IN Rl 
iGET COUNT STORED IN BUFF-l IN R~ 
iMOVE BYTE FROM LINE INTO BUFFER 
iWAS NULL CHARACTER SEEN? 
iDECREMENT COUN'l' 
iNOT = ~, GET NEXT CHARACTER 

iOUT OF ROOM IN BUFFER, CLEAR LAST 
iWORD 

6-24 



1 
~ 
J 
A 
e 
e 
1 
e 
S 
1~ 
11 
12 
1:! 
14 
1~ 
Ie 
17 

In this case, .000 is used to place the buffer byte count in 

the byte preceding the buffer, as follows: 

COUNT BUFF-2 

BUFF 

6.5.3 .BLKB and .BLKW 

Blocks of storage can be reserved using the .BLKB and .BLKW 

directives. .BLKB is used to reserve byte blocks and .BLKW reserves 

word blocks. The two directives are of the form: 

where: 

.BLKB exp 

.BLKW exp 

exp is the number of bytes or words to reserve. If 
no argument is present, 1 is the assumed default 
value. Any legal expression which is completely 
defined at assembly time and produces an absolute 
number is legal. 

For example: 

"'0"'0~e' 

0'0O!Elt'. PASS. 

et/0t'1l2J;'. 5VMBOli 
~'0Ve6 MODEl 
e'0P12J8 FLAGS, 
0"0021 SFCTORI 
0V0Plt.'J VALUE, 

P0P12 RFLLVlt 

(70~2~ c:tCt\A~s 
(70024 ClCFG~1 

'''''''25 CLC~E!".I 
V0P!26 CI.CLOCI 
V0,P-3P CLC~A~I 

,CSfeT 

,PI..I(~ 

.F.4L,KW 

.~L,Ke 

.RL,KB 

.~L.KW 

.PL,K\t. 

.PLK~ 

.PI..I<W 

.PLKe 

.~LK8 
,PLKlt; 
.PLI(~ 

2 

1 
t 
1 
t 
2 

2 
t 
1 
1 
1 

The .BLKB directive has the same effect as 

.=.+exp 

'~'E)(T GROUP MUST ~TAV T""GFTf.!ER 
, ~ v ~ 8 r'l .A r c: U M l' LA TOR 

,FLAG I?"T~ 
,SVNeCL/EWPRE~S!C~ TVPE 
JfXPRFSSI(,,~ VALl'F. 

but is easier to interpret in the context of source code. 

6-25 



6.6 NUMERIC CONTROL 

Several directives are available to provide software comple­

ments to the floating-point hardware on the PDP-II. 

A floating-point number is represented by a string of decimal 

digits. The string (which can be a single digit in length) may 

optionally contain a decimal point, and may be followed by an op­

tional exponent indicator: in the form of the letter E and a 

signed decimal exponent. The list of number representations below 

contains seven distinct, valid representations of the same floating­

point number: 

3 
3. 
3.~ 
3.~E~ 
3E~ 
.3EI 
3~~E-2 

As can be quickly inferred, the list could be extended indef­

initely (e.g., 3~~~E-3, .~3E2, etc.). A leading plus sign is 

ignored (e.g., +3.~ is considered to be 3.~). Leading minus signs 

complement the sign bit. No other operators are allowed (e.g., 

3.~+N is illegal). 

Floating-point number representations are only valid in the 

contexts described in the remainder of this Section. 

Floating-point numbers are normally rounded. That is, when a 

floating-point number exceeds the limits of the field in which it 

is to be stored, the high-order excess bit is added to the low-order 

retained bit. For example, if the number were to be stored in a 

2-word field, but more than 32 bits were needed for its value, the 

highest bit carried out of the field would be added to the least 

significant position. In order to enable floating-point truncation, 

the .ENABL FPT directive is used and .DSABL FPT is used to return 

to floating-point rounding (see Section 6.2). 

6-26 



6.6.1 .FLT2 and .FLT4 

Like the .WORD directive, the two floating-point storage direc­

tives cause their arguments to be stored in-line with the source 

program. These two directives are of the form: 

where: 

.FLT2 argl,arg2, •.• 

. FLT4 argl,arg2, ••• 

argl,arg2, ••• represents one or more floating point 
numbers separated by commas • 

• FLT2 causes two words of storage to be generated for each 

argument while .FLT4 generates four words of storage. 

The following code was assembled with the 4-word floating­

point math package: 

017J6010' 037314 146314 146314 ATOF'TS: .FLT4 1.E"1 ;1121.-1 
0121612116' 146:515 
flJ06021211 036443 153412 el36560 .F'LT4 1.E-2 :1121.·2 
01216026' 121727 
01216030' 034721 133427 05434Z .F'LT4 1.E.,.4 ;1121.-4 
006036' 014545 
00612140' 031453 146167 121106 04 .F'LT4 1.E,,8 : llt'h.8 
006046' 06121717 
01216050' 12122,46 112624 13731214 ,F'LT4 1.E""16 ;10 ... 16 
121121612156' 046741 
ell2I 6121 60 , 005511 13121436 126505 .FLTA 1.Err32 ; llc'h -32 
1211216066' 034625 

6-27 



6.6.2 Temporary Numeric Control: tF and tc 

Like the temporary radix control operators, operators are 

available to specify either a one-word floating-point number 

(tF) or the one's complement of a one-word number (tC). For 

example: 

FL3.7: tF3.7 

creates a one-word floating-point number at location FL3.7 con­

taining the value 3.7 as follows: 

15 14 7 6 

~ifn I~S~I ________ e_x __ p_o_n_e_n_t ____________ ~ _______ m_a_n_t_1_'S __ S_a ____ --J 

This one-word floating-point number is the first word of 

the 2- or 4-word floating-point number format shown in the 

PDP-II Processor Handbook, and the statement: 

CMP15l: tC15l 

stores the one's complement of 151 in the current radix (assume current 

radix is octal) as follows: 

15 

177626 I 
Since these control operators are unary operators, their arguments 

may be terms, and the operators may be expressed recursively. For 

example: 

tF<1.2E3> 
tCtD25 or tC3l or 177746 

The term created by the unary operator and its argument is then a 

term which can be used by itself or in an expression. For example: 

tC2+6 

6-28 



is equivalent to: 

<tC2>+6 or 177775+6 or 

For this reason, the use of angle brackets is advised. Expressions 

used as terms, or arguments of a unary operator must be explicitly 

grouped. 

An example of the importance of ordering with respect to unary 

operators is shown below: 

tFl.,0 
tF-l.,0 

-tFl.,0 
-tF-l.,0 

,02,04,0,0 
12,04,0,0 

1574,0,0 
,0574,0,0 

The argument to the tF operator must not be an expression and 

should be of the same format as arguments to the .FLT2 and .FLT4 

directives (see Section 6.6.1). 

6-29 



6.7 TERMINATING DIRECTIVES 

6.7.1 .END 

The .END directive indicates the physical end of 

the source program. The .END directive is of the form: 

.END exp 

where: exp is an optional argument which, if present, 
indicates the program entry point, i.e., 
the transfer address. 

When the load module is loaded, program execution begins at the 

transfer address indicated by the .END exp directive. In a runtime 

system (the load module output of the Linker) an .END exp statement 

should terminate the first object module and .END statements should 

terminate any other object modules. 

At the conclusion of the first assembly pass, upon encountering 

the END statement, MACRO-II prints: 

END OF PASS 1 

and attempts to reread the source file(s) to perform pass 2. If 

the source file is on a disk, DECtape, or magtape device no further 

operator action is necessary. If the source file is on paper tape 

an A~~2 message is printed; the user is expected to reposition the 

tape in the reader and type CO (for CONTINUE). 

6.7.2 .EOT 

Under the Disk Operating System, the .EOT directive is ignored. 

The physical End-Of-Tape allows several physically separate tapes 

to be assembled as one program. 

6-30 



6.8 PROGRAM BOUNDARIES DIRECTIVE: .LIMIT 

A program often wishes to know the boundaries of the load 

module's relocatable code. The .LIMIT directive reserves two 

words into which the Linker puts the low and high addresses of 

the relocated code. The low address (inserted into the first 

word) is the address of the first byte of code. The high ad­

dress is the address of the first free byte following the relo­

cated code. These addresses are always even since all reloca­

table sections are loaded at even addresses. (If a relocatable 

section consists of an odd number of bytes, the Linker adds one 

to the size to make it even.) 

6-31 



6.9 PROGRAM SECTION DIRECTIVES 

. ASECT 

.CSECT 

.CSECT symbol 

The Assembler provides for 255
10 

program sections: an abso­

lute section declared by .ASECT, an unnamed relocatable program 

section declared by .CSECT, and 253
10 

named relocatable program 

sections declared by .CSECT symbol, where symbol is any legal 

symbolic name. These directives allow the user to: 

1. Create his program (object module) in sections: 

The Assembler maintains separate location counters 

for each section. This allows the user to write statements 

which are not physically contiguous but will be loaded con­

tiguously. The following examples will clarify this: 

.CSECT 
A: ~ 
B: ~ 
C: ~ 
ST: CLR A 

CLR B 
CLR C 
.ASECT 
.=4 
.WORD .+2,HALT 
.CSECT 

INC A 
BR ST 
.END 

;START THE UNNAMED RELOCATABLE SECTION 
iASSEMBLED AT RELOCATABLE ~, 

RELOCATABLE 2 AND 
RELOCATABLE 4, 

;ASSEMBLE CODE AT 
RELOCATABLE ADDRESS 
6 THROUGH 21 

;START THE ABSOLUTE SECTION 
iASSEMBLE CODE AT 
iABSOLUTE 4 THROUGH 7, 
;RESUME THE UNNAMED RELOCATABLE 

SECTION 
iASSEMBLE CODE AT 

RELOCATABLE 22 THROUGH 27, 

The first appearance of .CSECT or .ASECT assumes the loca­

tion counter is at relocatable or absolute zero, respect­

ively. The scope of each directive extends until a directive 

to the contrary is given. Further occurrences of the same 

.CSECT or .ASECT resume assembling where the section was 

left off. 

6-32 



.CSECT 
A: ~ 
B: ~ 
C: ~ 

.CSECT 
X: ~ 
Y: ~ 

.CSECT 
D: ~ 

.END 

COMI 

COM2 

COMI 

;DECLARE SECTION COMI 
;ASSEMBLED AT RELOCATABLE ~. 
;ASSEMBLED AT RELOCATABLE 2. 
;ASSEMBLED AT RELOCATABLE 4. 
;DECLARE SECTION COM2 
;ASSEMBLED AT RELOCATABLE ~. 
;ASSEMBLED AT RELOCATABLE 2. 
;RETURN TO COMI 
;ASSEMBLED AT RELOCATABLE 6. 

The Assembler automatically begins assembling at reloca­

table zero of the unnamed .CSECT if not instructed other­

wise; that is, the first statement of an assembly is an 

implied .CSECT. 

All labels in an absolute section are absolute; all 

labels in a relocatable section are relocatable. The 

location counter symbol, ".", is relocatable or absolute 

when referenced in a relocatable or absolute section, 

respectively. Undefined internal symbols are assigned 

the value of relocatable or absolute zero in a relocatable 

or absolute section, respectively. Any labels appearing 

on a .ASECT or .CSECT statement are assigned the value of 

the location counter before the .ASECT or .CSECT takes 

effect. Thus, if the first statement of a program is: 

A: .ASECT 

then A is assigned to relocatable zero and is associated 

with the unnamed relocatable section (because the Assembler 

implicitly begins assembly in the unnamed relocatable sec­

tion) . 

Since it is not known at assembly time where the pro­

gram sections are to be loaded, all references between 

sections in a single assembly are translated by the Assembler 

to references relative to the base of that section. The 

Assembler provides the Linker with the necessary information 

to resolve the linkage. Note that this is not necessary 

when making a reference to an absolute section (the Assembler 

knows all load addresses of an absolute section). 

6-33 



Examples: 

A: 

Y: 
X: 

.ASECT 

.=l~~~ 
CLR X 

JMP Y 

.CSECT 
MOV R~,RI 
JMP A 
HALT 
~ 
.END 

;ASSEMBLED AS CLR BASE OF UNNAMED 
RELOCATABLE SECTION + l~ 

;ASSEMBLED AS JMP BASE OF UNNAMED 
RELOCATABLE SECTION + 6 

;ASSEMBLED AS JMP l~~~ 

In the above example the references to X and Y were 

translated into references relative to the base of the 

unnamed relocatable section. 

2. Share code and/or data between object modules (separate 
assembles) : 

Named relocatable program sections operate as FORTRAN 

labeled COMMON; that is, sections of the same name from 

different assemblies are all loaded at the same location 

by Link-II. The unnamed relocatable section is the ex­

ception to this as all unnamed relocatable sections are 

loaded in unique areas by Link-II. 

Note that there is no conflict between internal 

symbolic names and program section names; that is, it is 

legal to use the same symbolic name for both purposes. 

In fact, considering FORTRAN again, this is a necessity 

to accommodate the FORTRAN statement: 

COMMON /X/A,B,C,X 

where the symbol X represents the base of this program 

section and also the fourth element of this program 

section. 

Also, there is no conflict between program section 

names and .GLOBL names. In FORTRAN language, COMMON 

block names and SUBROUTINE names may be the same. 

6-34 



6.10 SYMBOL CONTROL: .GLOBL 

The Assembler produces a relocatable object module and a 

listing file containing the assembly listing and symbol table. 

Link-II joins separately assembled object modules into a single 

load module. Object modules are relocated as a function of the 

specified base of the load module. The object modules (where 

there are more than one) are linked via common global symbols, 

such that a global symbol in one module (either defined by 

direct assignment or as a label) can be referenced from another 

module. 

A global symbol must be specified in a .GLOBL directive. 

The form of the .GLOBL directive is: 

where: 

.GLOBL syml,sym2, •.. 

syml,sym2, .•. are legal symbolic names, separated by 
commas or spaces where more than one 
symbol is specified. 

Symbols appearing in a .GLOBL directive are either defined 

within the current program or are external symbols in which case 

they are defined in another program which is to be linked with 

the current program, by Link-II, prior to execution. 

A .GLOBL directive line may contain a label in the label 

field and comments in the comment field. 

At the end of assembly pass 1, MACRO-II has determined 

whether a given global symbol is defined within the program or 

is expected to be an external symbol. All internal symbols to 

a given program, then. must be defined by the end of pass 1. 

iDEFINE A SUBROUTINE WITH 2 ENTRY POINTS WHICH CALLS AN 
EXTERNAL SUBROUTINE 

.CSECT iDECLARE THE CONTROL SECTION 

.GLOBL A,B,C iDECLARE A, B, C AS GLOBALS 
A: MOV @(R5)+,R,0 iENTRY A DEFINED 

MOV #X,Rl 
X: JSR PC, C i CALL EXTERNAL SUBROUTINE C 

RTS R5 iEXIT 
B: MOV @(R5)+,Rl iDEFINE ENTRY B 

CLR Rl 
BR X 

6-35 



In the example on the previous page, A and B are entry symbols 

(entry points), C is an external symbol and X is an internal 

symbol. 

A global symbol is defined only when it appears in a .GLOBL 

directive. A symbol is not considered a global symbol if it is 

assigned the value of a global expression in a direct assignment 

statement. 

References to external symbols can appear in the operand 

field of an instruction or assembler directive in the form of 

a direct reference, i.e.: 

CLR 
. WORD 
CLR 

EXT 
EXT 
@EXT 

or a direct reference plus or minus a constant, i.e.: 

A=6 
CLR 
. WORD 
CLR 

EXT+A 
EXT-2 
@EXT+A 

An external symbol cannot be used in the evaluation of a direct 

assignment expression. A global symbol defined within the program 

can be used in the evaluation of a direct assignment statement. 

6-36 



6.11 CONDITIONAL ASSEMBLY DIRECTIVES 

Conditional assembly directives provide the programmer with 

the capability to conditionally include or ignore blocks of source 

code in the assembly process. This technique is used extensively 

to allow several variations of a program to be generated from the 

source program. 

The general form of a conditional block is as follows: 

.IF cond,argurnent(s) 

.ENDC 

iSTART CONDITIONAL BLOCK 
iRANGE OF CONDITIONAL 
iBLOCK 
iEND CONDITIONAL BLOCK 

where: cond is a condition which must be met if the block 
is to be included in the assembly. These con­
ditions are defined below. 

argurnent(s) are a function of the condition to be tested. 

range is the body of code which is included in the 
assembly or ignored depending upon whether 
the condition is met. 

The following are the allowable conditions: 

Conditions 

POSITIVE COMPLEMENT ARGUMENTS ASSEMBLE BLOCK IF 
EQ 

GT 

LT 

DF 

B 

NE expression 

LE expression 

GE expression 

NDF symbolic 
argument 

NB macro-type 
argument 

expression=~ (or ~~) 

expression>~ (or ~~) 

expression<~ (or ~~) 

symbol is defined 
(or undefined) 

argument is blank 
(or nonblank) 

IDN DIF two marco-type 
arguments separated 
by a comma 

arguments identical 
(or different) 

Z 

G 

NZ 

L 

expression 

expression 

NOTE 

same as EQ/NE 

same as GT/LE 

A macro-type argument is enclosed in angle brackets or 
within an up-arrow construction (as described in 
Section 7.3.1). For example: 

<A,B,C> 
t/124/ 

6-37 



For example: 

.IF EQ ALPHA+l ;ASSEMBLE IF ALPHA+l=~ 

.ENOC 

Within the conditions DF and NDF the following two operators are 

allowed to group symbolic arguments: 

& logical AND operator 

logical inclusive OR operator 

For example: 
.IF OF SYMl & SYM2 

.ENOC 

assembles if both SYMl and SYM2 are defined. 

6.11.1 Subconditionals 

Subconditionals may be placed within conditional blocks to 

indicate: 

a. assembly of an alternate body of code when the condition of 
the block indicates that the code within the block is not 
to be assembled. 

b. assembly of ·a non-contiguous body of code within the condi­
tional block depending upon the result of the conditional 
test to enter the block. 

c. unconditional assembly of a body of code within a condi­
tional block. 

There are three subconditional directives, as follows: 

Subconditional 

.IFF 

.1FT 

.1FTF 

Function 

The code following this statement up to 
the next subconditional or end of the 
conditional block is included in the 
program providing the value of the con­
dition tested upon entering the condi­
tional block was false. 

The code following this statement up to 
the next subconditional or end of the 
conditional block is included in the pro­
gram providing the value of the condition 
tested upon entering the conditional block 
was true. 

The code following this statement up to 
the next subconditional or the end of the 
conditional block is included in the pro­
gram regardless of the value of the con­
dition tested upon entering the condi­
tional block. 

The implied argument of the subconditionals is the value of the 

condition upon entering the conditional block. Subconditionals are 

used within outer level conditional blocks. Subconditionals are 

ignored within nested, unsatisfied conditional blocks. 

6-38 



For example: 

.IF DF 

.IFF 

• IFT 

• IFTF 

. ENDC 

.IF DF 

.IF DF 

.IFF 

• IFT 

.ENDC 

.ENDC 

However, 

.IF DF 

.IF DF 

.IFF 

.IFT 

.ENDC 

.ENDC 

SYM 

x 
Y 

x 
Y 

iASSEMBLE BLOCK IF SYM IS DEFINED 

iASSEMBLE THE FOLLOWING CODE ONLY IF 
iSYM IS UNDEFINED • 

;ASSEMBLE THE FOLLOWING CODE ONLY IF 
iSYM IS DEFINED • 

iASSEMBLE THE FOLLOWING CODE 
iUNCONDITIONALLY . 

iASSEMBLY TESTS FALSE 
iTESTS FALSE 
iNESTED CONDITIONAL 
; IGNORED 

iNOT SEEN 

iTESTS TRUE 
iTESTS FALSE 
iIS ASSEMBLED 

iNOT ASSEMBLED 

6.11.2 Immediate Conditionals 

An immediate condiitonal directive is a means of writing a 

one-line conditional block. In this £orm, no .ENDC statement is 

required and the condition is completely expressed on the line 

containing the conditional directive. Immediate conditions are 

of the form: 

6-39 



where: 

.IIF cond, arg, statement 

cond 

arg 

is one of the legal conditions defined for 
conditional blocks in Section 6.11. 

is the argument associated with the condi­
tion specified, that is, either an expres­
sion, symbol, or macro-type argument, as 
described in Section 6.11. 

statement is the statement to be executed if the 
condition is met. 

For example: 

.IIF DF FOO,BEQ ALPHA 

this statement generates the code 

BEQ ALPHA 

if the symbol FOO is defined. 

A label must not be placed in the label field of the .IIF 

statement. 

line: 

Any necessary labels may be placed on the previous 

LABEL: 
.IIF DF FPP,BEQ ALPHA 

or included as part of the conditional statement: 

.IIF DF FOO,LABEL: BEQ ALPHA 

6.11.3 PAL-IIR Conditional Assembly Directives 

In order to maintain compatibility with programs developed 

under PAL-IIR, the following conditionals remain permissible 

under MACRO-ll. It is advisable that future programs be developed 

using the format for MACRO-ll conditional assembly directives. 

6-40 



Directive Arguments Assemble Block if 

.IFZ or .IFEQ expression expression=.0 

.IFNZ or .IFNE expression expression~.0 

.IFL or .IFLT expression expression<.0 

.IFG or .IFGT expression expression>.0 

.IFLE expression expressionS0' 

.IFGE expression expression~ 

.IFDF logical expression expression is true (defined) 

.IFNDF logical expression expression is false (undefined) 

The rules governing the usage of these directives are now 

the same as for the MACRO-ll conditional assembly directives pre­

viously described. Conditional assembly blocks must end with 

the .ENDC directive and are limited to a nesting depth of 16 10 
levels (instead of the 127

10 
levels allowed under PAL-llR) . 

6-41 





CHAPTER 7 

MACRO DIRECTIVES 

7.1 MACRO DEFINITION 

It is often convenient in assembly language programming to 

generate a recurring coding sequence with a single statement. 

In order to do this, the desired coding sequence is first defined 

with dummy arguments as a macro. Once a macro has been defined, 

a single statement calling the macro by name with a list of real 

arguments (replacing the corresponding dummy arguments in the 

definition) generates the correct sequence or expansion. 

7.1.1 • MACRO 

The first statement of a macro definition must be a .MACRO 

directive. The .MACRO directive is of the form: 

where: 

.t1ACRO name, dummy argument list 

name 

dummy 
argument 
list 

is the name of the macro. This name is any 
legal symbol. The name chosen may be used as 
a label elsewhere in the program. 

represents any legal separator (generally a 
comma or space). 

zero, one, or more legal symbols which may 
appear anywhere in the body of the macro 
definition, even as a label. These symbols 
can be used elsewhere in the user program 
with no conflicts of definition. Where more 
than one dummy argument is used, they are 
separated by any legal separator (generally 
a comma). 

A comment may follow the dummy argument list in a statement con­

taining a .MACRO directive. For example: 

.MACRO ABS A,B ;DEFINE MACRO ABS WITH TWO ARGUMENTS 

A label must not appear on a .MACRO statement. Labels are 

sometimes used on macro calls, but serve no function when attached 

to .MACRO statements. 

7-1 



7.1.2 .ENDM 

The final statement of every macro definition must be an 

.ENDM directive of the form: 

where: 

.ENDM name 

name is an optional argument, being the name of the 
macro terminated by the statement. 

For example: 

.ENDM (terminates the current macro definition) 

.ENDM ABS (terminates the definition of the macro ABS) 

If specified, the symbolic name in the .ENDM statement must 

correspond to that in the matching .MACRO statement. Otherwise 

the statement is flagged and processing continues. Specification 

of the macro name in the .ENDM statement permits the Assembler to 

detect missing .ENDM statements or improperly nested macro defini­

tions. 

The ENDM statement may contain a comment field, but must not 

contain a label. 

An example of a macro definition is shown below: 

.MACRO TYPMSG MESSGE iTYPE A MESSAGE 
JSR R5,TYPMSG 
.WORD MESSGE 
.ENDM 

7.1.3 .MEXIT 

In order to implement alternate exit points from a macro 

(particularly nested macros), the .MEXIT directive is provided . 

. MEXIT terminates the current macro as though an .ENDM directive 

were encountered. Use of .MEXIT bypasses the complications of 

7-2 



conditional nesting and alternate paths. For example: 

.MACRO ALTR N,A,B 

.IF EQ,N iSTART CONDITIONAL BLOCK 

.MEXIT 

.ENDC 

.ENDM 

iEXIT FROM MACRO DURING CONDITIONAL BLOCK 
iEND CONDITIONAL BLOCK 

iNORMAL END OF MACRO 

In an assembly where N=~, the .MEXIT directive terminates the macro 

expansion. 

Where macros are nested, a .MEXIT causes an exit to the next 

higher level. A .MEXIT encountered outside a macro definition is 

flagged as an error. 

7.1.4 MACRO Definition Formatting 

A form feed character used as a line terminator on a MACRO-II 

source statement, (or as the only character on a line) causes a 

page eject. Used within a macro definition, a form feed character 

causes a page eject. A page eject is not performed when the macro 

is invoked. 

Used within a macro definition, the .PAGE directive is ignored, 

but a page eject is performed at invocation of that macro. 

7.2 MACRO CALLS 

A macro must be defined prior to its first reference. Macro 

calls are of the general form: 

label: name, real arguments 

where: label 

n~e 

represents an optional statement label. 

represents the n~e of the macro specified 
in the .MACRO directive preceding the macro 
definition. 

7-3 



represents any legal separator (comma, 
space, or tab). No separator is necessary 
where there are no real arguments. 

real 
arguments 

are those symbols, expressions, and values 
which replace the dummy arguments in the 
.MACRO statement. Where more than one 
argument is used, they are separated by 
any legal separator. 

Where a macro name is the same as a user label, the appearance of 

the symbol in the operation field designates a macro call, and the 

occurrence of the symbol in the operand field designates a label 

reference. For example: 

ABS: MOV @R~,Rl iABS IS USED AS LABEL 

BR ABS iABS IS CONSIDERED A LABEL 

ABS #4,ENT,LAR iCALL MACRO ABS WITH 3 ARGUMENTS 

Arguments to the macro call are treated as character strings whose 

usage is determined by the macro definition. 

7.3 ARGUMENTS TO MACRO CALLS AND DEFINITIONS 

Arguments within a macro definition or macro call are separated 

from other arguments by any of the separating characters described 

in Section 3.1.1. 

For example: 

.MACRO REN A,B,C 

REN ALPHA,BETA,<Cl,C2> 

Arguments which contain separating characters are enclosed in paired 

angle brackets. An up-arrow construction is provided to allow 

angle brackets to be passed as arguments. Bracketed arguments are 

7-4 



seldom used in a macro definition, but are more likely in a 

macro call. For example: 

REN <MOV X,Y>#44,WEV 

This call would cause the entire statement: 

MOV X,Y 

to replace all occurrences of the symbol A in the macro definition. 

Real arguments within a macro call are considered to be character 

strings and are treated as a single entity until their use in the 

macro expansion. 

The up-arrow construction could have been used in the above 

macro call as follows: 

REN t/MOV X,y/,#44,WEV 

which is equivalent to: 

REN <MOV X,Y>,#44,WEV 

Since spaces are ignored preceding an argument, they can be used 

to increase legibility of bracketed constructions. 

The form: 

REN #44,WEVt/MOV X,y/ 

however, contains only two arguments: #44 and WEVt/MOV X,Y/ (see 

section 3.1.1) because t is a unary operator. 

7.3.1 Macro Nesting 

Macro nesting (nested macro calls), where the expansion of one 

macro includes a call to another macro, caus"es one set of angle brackets 

7-5 



to be removed from an argument with each nesting level. The depth of 

nesting allowed is dependent upon the amount of core space used by 

the program. To pass an argument containing legal argument delimiters 

to nested macros, the argument should be enclosed in one set of angle 

brackets for each level of nesting, as shown below: 

• MACRO 
LEVEL2 
LEVEL 2 
.ENDM 

LEVELl 
DUMI 
DUM2 

DUMI,DUM2 

.MACRO LEVEL2 DUM3 
DUM3 
ADD #1.'1,R.'1 
MOV R.'1, (RI) + 
.ENDM 

A call to the LEVELl macro: 

LEVELl «MOV x,R.'1»,«CLR R.'1» 

causes the following expansion: 

MOV X,R~ 
ADD #1.'1,R.'1 
MOV R~, (RI) + 
CLR R.'1 
ADD #1.'1,R.'1 
MOV R.'1, (RI) + 

where macro definitions are nested (that is, a macro definition is 

entirely contained within the definition of another macro) the inner 

definition is not defined as a callable macro until the outer macro 

has been called and expanded. For example: 

.MACRO LVI A,B 

.MACRO LV2 A 

.ENDM 

.ENDM 

The LV2 macro cannot be called by name until after the first call 

to the LVI macro. Likewise, any macro defined within the LV2 macro 

definition cannot be referenced directly until LV2 has been called. 

7-6 



7.3.2 Special Characters 

Arguments may include special characters without enclosing 

the argument in a bracket construction if that argument does not 

contain spaces, tabs, semi-colons, or commas. For example: 

.MACRO PUSH ARG 
HOV ARG, - (SP) 
.ENDM 

PUSH X+3 (%2) 

generates the following code: 

MOV X+3(%2) ,-(SP) 

7.3.3 Numeric Arguments Passed as Symbols 

When passing macro arguments, a useful capability is to pass 

a symbol which can be treated by the macro as a numeric string. 

An argument preceded by the unary operator backslash (") is treated 

as a number in the current radix. The ASCII characters represent­

ing the number are inserted in the macro expansion; their function 

is defined in context. For example: 

AlB: 

B=~ 
. MACRO 
CNT 
B=B+I 
.ENDM 
. MACRO 
. WORD 
.ENDM 

INC A,B 
A, 'B 
CNT A,B 

INC X,C 

The macro call would expand to: 

X~: . WORD 

A subsequent identical call to the same macro would generate: 

Xl: . WORD 

7-7 



and so on for later calls. The two macros are necessary because 

the dummy value of B cannot be updated in the CNT macro. In the 

CNT macro, the number passed is treated as a string argument. 

(Where the value of the real argument is ~, a single ~ character 

is passed to the macro expansion.) 

The number being passed can also be used to make source 

listings somewhat clearer. For example, versions of programs 

created through conditional assembly of a single source can 

identify themselves as follows: 

.MACRO IDT SYM 

.IDENT /SYM/ 

.ENDM 

.MACRO OUT ARG 
IDT ~~5A'ARG 
.ENDM 

OUT \ID 

The above macro call expands to 

.IDENT /~~5AXX/ 

iASSUME THAT THE SYMBOL ID TAKES 
iON A UNIQUE 2 DIGIT VALUE FOR 
iEACH POSSIBLE CONDITIONAL ASSEMBLY 
iOF THE PROGRAM 

iWHERE ~~5A IS THE UPDATE 
iVERSION OF THE PROGRAM 
iAND ARG INDICATES THE 
iCONDITIONAL ASSEMBLY VERSION. 

where XX is the conditional value of ID. 

Two macros are necessary since the text delimiting characters in 

the .IDENT statement would inhibit the concatenation of a dummy 

argument. 

7.3.4 Number of Arguments 

If more arguments appear in the macro call than in the macro 

definition, the excess arguments are ignored. If fewer arguments 

appear in the macro call than in the definition, missing arguments 

are assumed to be null (consist of no characters). The conditional 

directives .IFB and .IFNB can be used within the macro to detect 

unnecessary arguments. 

A macro can be defined with no arguments. 

7-8 



7.3.5 Automatically Created Symbols 

MACRO-ll can be made to create symbols of the form n$ where 

n is a decimal integer number such that 64~n~127. Created symbols 

are always local symbols between 64$ and 127$. (For a description 

of local symbols, see Section 3.5.) Such local symbols are created 

by the Assembler in numerical order, i.e.: 

64$ 
65$ 

126$ 
127$ 

Created symbols are particularly useful where a label is required 

in the expanded macro. Such a label must otherwise be explicitly' 

stated as an argument with each macro call or the same label is 

generated with each expansion (resulting in a multiply-defined 

label). Unless a label is referenced from outside the macro, 

there is no reason for the programmer to be concerned with that label. 

The range of these local symbols extends between two explicit 

labels. Each new explicit label causes a new local symbol block 

to be initialized. 

The macro processor creates a local symbol on each call of a 

macro whose definition contains a dummy argument preceded by the ? 

character. For example: 

B: 

. MACRO 
TST 
BEQ 
ADD 

.ENDM 

ALPHA 
A 
B 
#5,A 

A,?B 

Local symbols are generated only where the real argument of the 

macro call is either null or missing. If a real argument is 

specified in the macro call, the generation of a local symbol is 

inhibited and normal replacement is performed. Consider the fol­

lowing expansions of the macro ALPHA above. 

7-9 



GENERATE A LOCAL SYMBOL FOR MISSING ARGUMENT: 

64$: 

ALPHA %1 
TST %1 
BEQ 64$ 
ADD #5,%1 

DO NOT GENERATE A LOCAL SYMBOL: 

XYZ: 

ALPHA %2,XYZ 
TST %2 
BEQ XYZ 
ADD #5,%2 

These Assembler-generated symbols are restricted to the first 

sixteen (decimal) arguments of a macro definition. 

7.3.6 Concatenation 

The apostrophe or single quote character (I) operates as a 

legal separating character in macro definitions. An I character 

which precedes and/or follows a dummy argument in a macro defini­

tion is removed and the substitution of the real argument occurs 

at that point. For example: 

.MACRO DEF A,B,C 
AlB: .ASCIZ /C/ 

. WORD I I A I I I B 

.ENDM 

When this macro is called: 

DEF X,Y,<MACRO-ll> 

it expands as follows: 

XY: .ASCIZ /MACRO-ll/ 
.WORD IXIy 

In the macro definition, the scan terminates upon finding the 

first I character. Since A is a dummy argument, the I is removed. 

The scan resumes with B, notes B as another dummy argument and 

concatenates the two dummy arguments. The third dummy argument is 

noted as going into the operand of the .ASCIZ directive. On the 

7-10 



next line (this is not a useful example, but one for purely il­

lustrative purposes) the argument to .WORD is seen as follows: 

The scan begins with a 'character. Since it is neither preceded 

nor followed by a dummy argument, the ' character remains in the 

macro definition. The scan then encounters the second ' charac­

ter which is followed by a dummy argument and is discarded. The 

scan of the argument A terminated upon encountering the second' 

which is also discarded since it follows a dummy argument. The 

next ' character is neither preceded nor followed by a dummy 

argument and remains in the macro expansion. The last ' charac­

ter is followed by another dummy argument and is discarded. 

(Note that the five ' characters were necessary to generate two 

, characters in the macro expansion.) 

Within nested macro definitions, multiple single quotes can 

be used, with one quote removed at each level of macro nesting. 

7.4 .NARG, .NCHR, AND.NTYPE 

These three directives allow the user to obtain the number of 

arguments in a macro call (.NARG), the number of characters in an 

argument (.NCHR), or the addressing mode of an argument (.NTYPE). 

Use of these directives permits selecti~e modifications of a macro 

depending upon the nature of the arguments passed. 

The .NARG directive enables the macro being expanded to 

determine the number of arguments supplied in the macro call, 

and is of the form: 

label: 

where: label 

symbol 

.NARG symbol 

is an optional statement label 

is any legal symbol whose value is equated 
to the number of arguments in the macro call 
currently being expanded. The symbol can be 
used by itself or in expressions. 

This directive can occur only within a macro definition. 

7-11 



The .NCHR directive enables a program to determine the 

number of characters in a character string, and is of the form: 

where: 

label: • NCHR symbol, <character string> 

label is an optional statement label 

symbol is any legal symbol which is equated to the 
number of characters in the specified char­
acter string. The symbol is separated from 
the character string argument by any legal 
separator. 

<character string> is a string of printing characters which should 
only be enclosed in angle brackets if it con­
tains a legal separator. A semi-colon also 
terminates the character string. 

This directive can occur anywhere in a MACRO-II program. 

The .NTYPE directive enables the macro being expanded to 

determine the addressing mode of any argument, and is of the 

form: 

label: 

where: label 

symbol 

arg 

.NTYPE symbol, arg 

is an optional statement label 

is any legal symbol, the low order 6-bits 
of which is equated to the 6-bit addressing 
mode of the argument. The symbol is separ­
ated from the argument by a legal separator. 
This symbol can be used by itself or in ex­
pressions. 

is any legal macro argument (dummy argument) 
as defined in Section 7.3. 

This directive can occur only within a macro definition. An 

example of .NTYPE usage in a macro definition is shown below: 

• MACRO 
.NTYPE 
.IF 
MOV 
.IFF 
MOV 
• EN DC 
.ENDM 

SAVE ARG 
SYM,ARG 
EQ,SYM&7,0' 
ARG,TEMP 

#ARG,TEMP 

iREGlSTER MODE 

iNON-REGISTER MODE 

7-12 



7.5 .ERROR and .PRINT 

The .ERROR directive is used to output messages to the command 

output device during assembly pass 2. A common use is to provide 

diagnostic announcements of a rejected or erroneous macro call. The 

form of the .ERROR directive is as follows: 

label: 

where: label 

expr 

text 

.ERROR expr;text 

is an optional statement label 

is an optional legal expression whose value 
is output to the command device when the 
.ERROR directive is encountered. Where 
expr is not specified, the text only is 
output to the command device. 

denotes the beginning of the text string 
to be output. 

is the string to be output to the command 
device. The text string is terminated by 
a line terminator. 

Upon encountering a .ERROR directive anywhere in a MACRO-II program, 

the Assembler outputs a single line containing: 

a. the sequence number of the . ERROR directive line, 

b. the current value of the location counter, 

c. the value of the expression if one is specified, and, 

d. the text string specified. 

For example: 

.ERROR A;UNACCEPTABLE MACRO ARGUMENT 

causes a line similar to the following to be output: 

512 5642 ~~~~76 iUNACCEPTABLE MACRO ARGUMENT 

This message is being used to indicate an inability of the subject 

macro to cope with the argument A which is detected as being indexed 

deferred addressing mode (mode 7~) with the stack pointer (%6) used 

as the index register. 

The line is flagged on the assembly listing with a P error code. 

The .PRINT directive is identical to .ERROR except that it is 

not flagged with a P error code. 

7-13 



7.6 INDEFINITE REPEAT BLOCK: . IRP AND . IRPC 

An indefinite repeat block is a structure very similar to 

a macro definition. An indefinite repeat is essentially a macro 

definition which has only one dummy argument and is expanded once 

for every real argument supplied. An indefinite repeat block is 

coded in-line with its expansion rather than being referenced by 

name as a macro is referenced. An indefinite repeat block is of 

the form: 

label: 

where: label 

arg 

<real argument> 

range 

.IRP arg,<real arguments> 

(range of the indefinite repeat) 

.ENDM 

is an optional statement label. A label may 
not appear on any .IRP statement within an-
other macro definition,repeat range or indef­
inite repeat range/or on any .ENDM statement. 

is a dummy argument which is successively 
replaced with the real arguments in the 
.IRP statement. 

is a list of arguments to be used in the ex­
pansion of the indefinite repeat range and 
enclosed in angle-brackets. Each real argu­
ment is a string of zero or more characters 
or a list of real arguments (enclosed in 
angle brackets). The real arguments are 
separated by commas. 

is the block of code to be repeated once for 
each real argument in the list. The range 
may contain macro definitions, repeat ranges, 
or other indefinite repeat ranges. Note that 
only created symbols should be used as labels 
within an indefinite repeat range. 

An indefinite repeat block can occur either within or outside 

macro definitions, repeat ranges, or indefinite repeat ranges. 

The rules for creating an indefinite repeat block are the same 

as for the creation of a macro definition (for example, the .MEXIT 

statement is allowed in an indefinite repeat block). Indefinite 

repeat arguments follow the same rules as macro arguments. 

7-14 



1 .TITI..E lRPTST 
2 .l.lST MIJ,MI;..,ME 

3 • Me AI..l. .PARA~1 

4 0000{(J0 .PARAM 
rHH1ld0~ ~0'''l\tl0 
0~0VJ01 Rl'~I\Ol 
/(Jlth!iIU02 R2 1 "I\02 
id 10 0 0 i{pj H3'''''03 
00v.n.J0~ R4 1 ""U4 
"'~01d1tlt> R5·,,"U5 
~0kl~·0e RtlJ1X"Oe 
0001Oe7 R7'''''07 
1(J001.106 Sp·,,"06 
0V"HHH:17 PC'''''07 
17777tS PSWI"Ol,'7'6 
177:5710 SWH."0177570 

5 iHHtJ000 12112/00 MQV ~TA8I.E,R~ 

'tHd ftH.i e; d , 
6 
7 .IRP X,oCtqS,C,O,E,F. 
8 
9 MOV X, C Ria, ... 
10 
11 .e:NOM 

01d~04 01672~ MOV A,(RIa,+ 
f{H!Ilt.l~32 

00010 ~1~721!1 /"lOV e,(RIO)+ 
0idy,V.l30 

1210014 ~16720 MOV C,(Rk'). 
0kl0~126 

0002ra 01672~ MOV 0, (Ria, ... 
0~01a24 

00024 ~1672\1 MOV E,(RIc'I)+ 

~0~1'122 

01t3ft130 k'Jlb72~ MOV F,(~iGlj+ 

~0~0~0 

Figure 7-1 

.IRP and .IRPC Example 

7-15 



12 
13 .IPiPC X,AS{;OEfI 

14 
15 ,ASCII /X/ 

10 
17 .t:.NOM 

~JIt,;0~4 1~1 .ASCII IAI 

01!J(.:1~O 1 v~ 2 .A~Cll Idl 

¥1~Vl~6 1 ~~ ~ ,ASCII ICI 

0~~.$1 1 ~; &1 .4;)CII 101 

01(H1 4 y' l~S .ASCII It I 

~H1041 lv,b ,AbClI IFI 

18 
U~ 
20 ~~~42 't1 4 11v;1 AI .\jjO~O ,I A8 
21 ~004il 041 !'.1;..\2 ~I ,!NQtOll) ,,~C 

22 ~~~'1:1"6 iJ4~lro3 t.:: .NU~O "CU 
23 t'H'!0b~ ~42~v4 Os .~OqD "WE 
24 VjlOt,02 ~)4Jh:ti t:'.1 .~u~O IIt:.F 
2:;) 0VJvl:5.a Iii ilJ tsv' 6 r I • vd,Ho(l) ""Go 
26 \()~((j~6 TAtiL.EI ,BLl\w t3 
27 
2tJ ~j ill Vi ilJ (( 1 • EN!.) 

Figure 7-1, Continued 

.IRP and .IRPC Example 

7-16 



A second type of indefinite repeat block is available which 

handles character substitution rather than argument substitution. 

The .IRPC directive is used as follows: 

label: .IRPC arg,string 

(range of indefinite repeat) 

.ENDM 

On each iteration of the indefinite repeat range, the dummy argu­

ment (arg) assumes the value of each successive character in the 

string. Terminators for the string are: space, comma, tab, 

carriage return, line feed, and semi-colon. 

7.7 REPEAT BLOCK: .REPT 

Occasionally it is useful to duplicate a block of code a 

number of times in line with other source code. This is per­

formed by creating a repeat block of the form: 

label: 

where: label 

expr 

range 

.REPT expr 

(range of repeat block) 

.ENDM iOR .ENDR 

is an optional statement label. The .ENDR or 
.ENDM directive may not have a label. A .REPT 
statement occurring within another repeat block, 
indefinite repeat block, or macro definition may 
not have a label associated with it. 

is any legal expression controlling the number of 
times the block of code is assembled. Where 
expr<~, the range of the repeat block is not 
asseiUbled. 

is the block of code to be repeated expr number 
of times. The range may contain macro definitions, 
indefinite repeat ranges, or other repeat ranges. 
Note that no statements within a repeat range can 
have a label. 

7- 17 



The last statement in a repeat block can be an .ENDM or .ENDR 

statement. The .ENDR statement is provided for compatibility 

with previous assemblers. 

The .MEXIT statement is also legal within the range of a 

repeat block. 

7.8 MACRO LIBRARIES: . MCALL 

All macro definitions must occur prior to their referencing 

within the user program. MACRO-II provides a selection mechanism 

for the programmer to indicate in advance those system macro defini­

tions required by his program. 

The .MCALL directive is used to specify the names of all system 

macro definitions not defined in the current program but required 

by the program. The .MCALL directive must appear before the first 

occurrence of a macro call for an externally defined macro. The 

.MCALL directive is of the form: 

where 

.MCALL argl,arg2, ... 

argl,arg2, ... are the names of the macro definitions 
required in the current program. 

When this directive is encountered, MACRO-II searches the system 

library files to find the requested definition(s). The system library 

file, SYSMAC.SML, is first sought under the current user's UIC on the 

system device where, if found, the Assembler takes the definition for 

all requested macros. If all macro requests have not been satisfied, 

or if SYSMAC.SML does not exist under the current UIC, the Assembler 

searches for the file SYSMAC;SML under [1,1] on the system device. 

See Appendix D for a listing of the system macro file (SYSMAC.SML) 

stored under [1,1] on the system device. 

7~8 



CHAPTER 8 

OPERATING PROCEDURES 

The MACRO-II Assembler assembles one or more ASCII source files 

containing MACRO-II statements into a single relocatable binary 

object file. The output of the Assembler consists of a binary object 

file and an assembly listing followed by the symbol table listing. 

A CREF (cross reference) listing can be specified as part of the 

assembly output by means of a switch option. 

8.1 LOADING MACRO-II 

MACRO-II is loaded with the Disk Monitor RUN command as follows: 

iRUN MACRO 

(Characters printed by the system are underlined to differentiate 

them from characters typed by the user.) The Assembler responds 

by identifying itself and its version number, followed by a # char­

acter to indicate readiness to accept a command input string: 

MACRO V~~lA 

! 

8.2 COMMAND INPUT STRING 

In response to the # printed by the Assembler, the user types 

the output file specification(s), followed by a left angle bracket, 

followed by the input file specification(s): 

!object,listing<sourcel,source2, ••. ,sourceN 

where: object is the binary object file 

listing is the assembly listing file containing the assembly 
listing and symbol table and, optionally, a separate 
CREF listing file can be appended to the assembly 
listing or output as a separate file. 

sourcel,source2, 
••. ,sourceN 

are the ASCII source files containing the 
MACRO-II source program(s). No limit is 
set on the number of source input files, 
except as the Assembler is limited by the 
size of the user-defined and macro symbol 
tables. 

8-1 



If an error is made in typing the command string, typing the 

RUBOUT key erases the immediately preceding character. Repeated 

typing of the RUBOUT key erases one character for each RUBOUT up 

to the beginning of the line. Typing CTRL/U erases the entire 

line. 

A null specification in any of the file fields signifies 

that the associated input or output file is not desired. Each 

file specification contains the following information (and follows 

the standard DOS conventions for file specifications): 

dev:filenam.ext[uic]/option:arg 

One or more switch options can be specified with each file speci­

fication to provide the Assembler with information about that file. 

The switch options are described in Section 8.3. 

A syntactical error detected in the command string causes the 

Assembler to output the command string up to and including the 

point where the error was detected, followed by a ? character. 

The Assembler then reprints the # character and waits for a new 

command string to be entered. The following command string semanti­

cal errors are detected: 

Error 

Illegal switch 
Too many switches 
Illegal switch value 
Too many switch values 

Too many output file specifications 

Input file missing 

Error Code 

S203 

S204 

S206 

The default value for each file specification is noted below: 

dev filnam ext uic 

object system last source .OBJ current 
device file name 

listing device used last source .LST current 
for object file name 
output 

CREF system last source .CRF current 
intermediate device file name 

sourcel system . MAC 
device . PAL current 

.null 

8-2 



source2 

sourceN 

system 
macro 
file 

dev filnam 

device used 
for source 1 
(last source 
file specified) 

system device SYSMAC 

ext 

• MAC 
.PAL 
.null 

.SML 

uic 

current 

current 
[1,1] 

8.3 SWITCH OPTIONS 

There are four types of switch options: listing options, func­

tions, CREF specifications, and pass assembly controls. The listing 

options are described in detail in Section 6.1.1. The function options 

are described in detail in Section 6.2. Rather than repeat this in­

formation here, the reader is advised to turn to these sections or the 

summary contained in Appendix B. The switch options are specified in 

the form: 

Specification Function 

/LI 
/LI:arg 
/NL: 
/NL:arg 

/EN:arg 
/DS:arg 

/CRF 
/CRF:arg 

/PA:l 
/PA:2 

} 
) 
} 

Listing control 

Function Control 

Produce cross reference table 

Assemble file during Pass 1 only 
Assemble file during Pass 2 only 

Switch options specified on the output side apply to both the 

object and listing files. Switch options specified on the input 

side apply to the particular file which the switch follows and all 

subsequent files. 

8.4 CREF, CROSS-REFERENCE TABLE GENERATION 

A cross reference listing of all or a subset of all symbols used 

in the source program can be obtained by a call to the CREF routine. 

CREF can be used in two ways: 

a. CREF can be called automatically following an assembly. 
In order to do this, the /CRF switch is specified fol­
lowing the assembly listing file specification. For 
example: 

!,LP:/CRF<FILEl,FILE2 

This command string sends the assembly listing (FILE2.LST) 
to the line printer. An intermediate CREF file is created 

8-3 



and temporarily stored on the system device 
(FILE2.CRF) under the current UIC. The CREF 
routine takes this intermediate file, generates 
a CREF listing and routes that listing to the 
line printer. (The CREF listing is appended 
to the file FILE2.LST.) The CREF intermediate 
file is then deleted; there is no way to pre­
serve this file when CREF is being called auto­
matically. 

b. If no CREF listing is desired immediately, the 
intermediate CREF file can be saved on the sys­
tem device~ and the CREF listing can be gener­
ated at a later date. In order to preserve the 
intermediate CREF file, the MACRO command string 
is given as follows: 

!,LP:/CRF:NG<FILEl,FILE2 

This command string sends the assembly listing 
(FILE2.LST) to the line printer. The CREF in­
termediate file (FILE2.CRF) is sent to the 
system device under the current UIC. (The :NG 
argument is a mnemonic for "No Go" to CREF; 
i.e., no automatic transfer to the CREF rou­
tine following the output of the assembly 
listing.) 

In order to generate the CREF listing, the 
CREF routine is run and given a command string 
indicating the input file specification{s) and 
a single output file specification. For 
example: 

$RU CREF 
CREF V~~lA 
#LP: <FILE2 .CRF 

In this case the intermediate file created 
automatically in the example above is pro­
cessed to obtain a CREF listing which is then 
sent to the line printer. The CREF inter­
mediate file is then automatically deleted. 
If it is desired to preserve the intermediate 
file, the command string should be given as: 

!LP:<FILE2.CRF/SA 

Unless the /SA switch is specified, the default 
case is always to delete the CREF intermediate 
file. 

The CREF listing is organized into one to five sections, each 

listing a different type of symbol. The sections are as follows: 

Section Type 

user-defined symbols 

macro symbolic names 

permanent symbols (instructions, 
directives) 

8-4 

Argument 

:S 

:M 

:P 



Section Type 

.CSECT symbolic names 

error codes 

Argument 

:C 

:E 

Where no arguments are specified following the /CRF switch, all 

of the above sections except the permanent symbols are cross refer­

enced. However, when anyone argument is specified (other than :NG), 

no other default sections are assumed or provided. For example, in 

order to obtain a CREF listing for all five section types, the fol­

lowing switch option specification is used: 

/CRF:S:M:P:C:E 

The order in which the arguments are specified does not affect the 

order of their output, whi6h is as listed above. 

Figure 8-1 contains a segment of source code and Figure 8-2 

contains a segment of a CREF listing with some references to the 

code in Figure 8-1. Notice the appearance of the @ and # characters 

in the CREF listing. An @ character appears in the CREF listing 

wherever a destructive reference has been made to that symbol (i.e., 

the contents of that symbol have been altered at that point). A # 

character appears in the CREF listing wherever a symbol is defined. 

8-5 



M.C~U Y0~1 1,.APR.12 
us", E CT C ( 1)1::. H A~OL.e:~ S 

1 
2 
~ (J12026 t;;NI)PI 
4 1d12026 

k112026 0'IJ4767 
17424~ 

:3 ~1~0~2 005767 
000'lt~1(J' 

t) ~1t!0J6 0~1142 
7 If.Il1t04'" 
tt 1fJ12~40 ~h15761 

0VJ1416' 
~ ~1;.!~4' "'01!j17 
1~ 12046 012107 

0000P11 
!2I00t'142, 

11 1~1b~' 
120 :>-4 0'IJ4157 

9iv,11042 
1~ 1~00e Vl12101 

1iI\10051ll' 
13 1~~O4 016/02 

"'\dVl:;41(J' 
14 12010 

12(1)70 0104767 
VlIfJVld51C1 

15 12074 ~1051l146 

16 1t!01f' 012007 1V1$: 
0IllVl~~ol 

17 Ull~2 
1,,1102 Vl1270tc) 

~0~idl~ 

till"'!) 01fJ4167 
o ()54V11!,1 

18 12112 QI"'1451ll 
19 1~114 016140 

~lllt'lIll0t)' 

20 12120 t"12701 
0\~~00ti' 

21 1~124 011121:5 
22 1~126 f1I4270!) 

etlL1;i'1J77 
23 1~lJ2 ~i.10J~5 
24 121J4 042/11 

177'37 
25 1214(ll Vlo2721 

Vltr!JVl41 10 
26 12144 iJllQ1:521 
27 12146 1AII:I1401 
28 121:)121 011141 
29 liH:»2 ~~5001 1 til 

0V.1..,~c;,!j· 

30 121~6 ~12'1!11 1~$1 
~i:10id02' 

31 12102 
lc!lo~ ~",.d'67 

0I00::i66 

.SdTTL uBJECT C~Of HANOLERS 

CAL.L SETM~X 
JSR PC,SET~AX 

rST 

dNt 
C;NfOVR 
rST 

dEw 
i'10V 

MOv 

!;AL.L 
JS~ 

CL~ 
;'10 ~ 

PASS 

E.NtJP2 
4 
08JL.NI( 

301 
"BL.Kr"'1,~LKTYP 

OBJIII,II 
PC,OdJINI 

I(LOPNT,R2 

GSOOMP 
PC,GSOOMP 

.(:)P) 
(SP) ... ,~OLUPO 

SECROL 
"SEC~OL., ~0 

JSI( ~C,NE)(T 

MOV 
dIe 

2\'15 
Io(OL.UPO,·CSP) 

,ENO OF PASS HANDLER 

'PASS ONE' 

,8RANCH IF PASS 2 

'PASS ONE, ANY 08JECT' 

, NO 
,SET BL.OCK TYP1 1 

,IN1T THE POINTERS 

'SET "FROM" INDEX 

ANO "TO" INDEX 

,OUTPUT GSD BLOCK 

,INIT FOR SECTOR SCAN 
,'iET SCAN MARKER 

,GET THe NEXT SECTOR 

'8~A~CH IF THROUGH 
,SAVe: MARKER 

'~AVE SECTOR 
,ISOl.ATE IT 

SWAB ~~ , ANO PLACE IN ~IG~T 
dIe ~-l-c~ELFLG>,(Rt) ,CLEAR ALL aUT REL BIT 

~IS ~<~SOT~l>.~EFFLG,(~l'''' ,SET TO TYPE 1, OEFINED 

.10 V 
dEy 
MOv 
CL~ 

1o?5, (~t). 
11~ 
(RI),-C R1) 
~OL.UPO 

~soo,..,p 

PC,GSOOMP 

Figure 8-1 

Assembly Listing 

8-6 

, ASSIJMf ARS 
OOPSl 

, HEL, SET MAX 
,SET ~QR IN~ER SCAN 

,OUTPUT THIS BLOCK 



MA~Ru ~0~1 17-A~R-7~ 
OHJE~T CuDf rlAN0~~RS 

32 12106 13il 
1~1d6 el1270~ 

0V)\A~(ih1 

12112 flJ1J4/67 
~~5~14 

33 121/6 ~~01737 
34 1221t)0 032767 

0;a0100 
'(li[J~>A06 , 

~5 122"'6 001761 
~6 t22H\ lc61Ql~ 

~t)~'41~7 ' 
~7 tlt214 vt~lJ64 
J9 1~21b 042.107 

177-j2/ 
~it.?0t10o' 

J9 t ~2c4 1~':;)2767 
1II~20L~~ 

~~0'Jl"'ti ' 
4"1 122Je? ~hH"'51 

JS~ 

dElJ 
dlf 

:SYMROL 
.SYM~OL.,~0 

~C,NEXT 

10$ 
.Gl.BFI..G,MOOE 

13$ 
SECTt,}R,Rt> 

;FETCH THE NEXT SYMBOL 

, FINISHED WITH TMIS GUV 
,GL.OBAL' 

, NO 
'YES, PROPER SECTOR' 

13$ , NO 
#-1-<OEFFLG1REL.FLG1GL8FLG>,MODE ,CLEAR ~OST 

,SET TYPE 4 

'OUTPUT IT 

Figure 8 .... 1 (Cont •. ) Assembly Listing 

tNU'1AC 
C;".IU? 
t:.NIJP1M 
ENLJ?~ 

MDt-'Fl..G 
MExlr 
r1ui..)E 

MOV~,{T 

MP\J~ 
r1 P uS!'1 
MSr;A~G 
1'1$ t)"~L.. K 
("SiJCNT 
11St.H~>~n 
r1«;d""~P 

27-4'" h'9-3~Jt 
2J .. ~3 72- .jtt 

7.3"'10 73-22-
7J. .. f) 74- 11:1 

12- 74 j~-?'8 92- R ~~·24 
11 f) .. llf l1'i-41t:t 

14- d~ ~2-2~' 34-12 3~-17f1 36·1~ 31 .. 4 
4e;,- (j~ 4~"'" US- 58-38' 54"",23 10"101 72-:?,0 
72·,H3-tt 12-39~ 74-34 15-37 86- Fi 91-20' 

110·j4" 
10- :) le. g 26·44 14-41 83-11 83-20 

10Y-42 \21.-1:!~ 

lv'l~-~5 11~·/o 121" 1" 
2/- 9 12', .. 18 121-40. 

121- 4 Ul1 .. 2c:s 1~1-36. 
27""'1'j 1~9-33 110- S 12t"",41tf 

121- ~ 121"2«:5 121-43. 
,-j-19 27-25' 11"'-4Qf t~1·42. 

Figure 8-2 

Excerpts from CREF Listing to Accompany Figure 8-1. 

Note particularly the CREF references for ENDP, 

ENDP2, and MODE. 

8-7 

40-43' 
72 .. 34 
1~6"27 

108-19" 





APPENDIX A 

MACRO-11 CHARACTER SETS 

A.1 ASCII CHARACTER SET 

EVEN 
PARITY 
BIT 

[0 
1 

1 

1 

fl 

fl 
1 
1 

1 
fl 

1 

1 

1 

1 

1 
fl 

7-BIT 
OCTAL 
CODE 

fl[Ofl 
[0[01 

[Ofl2 

[0[03 

flfl4 

[Ofl5 

flfl6 
flfl7 
fl1fl 

[011 
fl12 

[013 
,014 

[015 

,016 

[017 

,02fl 
[021 

[022 

,023 

[024 

fl25 

,026 
fl27 

CHARACTER 

NUL 
SOH 

STX 

ETX 

EOT 

ENQ 

ACK 
BEL 
BS 

HT 
LF 

VT 
FF 

CR 

SO 

SI 

DLE 
DC1 

DC2 

DC3 

DC4 

NAK 

SYN 
ETB 

REMARKS 

NULL, TAPE FEED, CONTROL/SHIFT/P. 
START OF HEADING; ALSO SOM, START 
OF MESSAGE, CONTROL/A. 
START OF TEXT; ALSO EOA, END OF 
ADDRESS, CONTROL/B. 
END OF TEXT; ALSO EOM, END OF 
MESSAGE, CONTROL/C. 
END OF TRANSMISSION (END); SHUTS 
OFF Tt'vX MACHINES, CONTROL/D. 
ENQUIRY (ENQRY); ALSO WRU, 
CONTROL/E. 
ACKNOWLEDGE; ALSO RU r CONTROL/F. 
RINGS THE BELL. CONTROL/G. 
BACKSPACE; ALSO FEO, FORMAT 
EFFECTOR. BACKSPACES SOME 
MACHINES, CONTROL/H. 
HORIZONTAL TAB. CONTROL/I. 
LINE FEED OR LINE SPACE (NEW LINE) ; 
ADVANCES PAPER TO NEXT LINE, DUPLI­
CATED BY CONTROL/J. 
VERTICAL TAB (VTAB). CONTROL/K. 
FORM FEED TO TOP OF NEXT PAGE 
(PAGE). CONTROL/L. 
CARRIAGE RETURN TO BEGINNING OF 
LINE. DUPLICATED BY CONTROL/M. 
SHIFT OUT; CHANGES RIBBON COLOR TO 
RED. CONTROL/N. 
SHIFT IN; CHANGES RIBBON COLOR TO 
BLACK. CONTROL/O. 
DATA LINK ESCAPE. CONTROL/B (DCfl). 
DEVICE CONTROL 1, TURNS TRANSMITTER 
(READER) ON, CONTROL/Q (X ON). 
DEVICE CONTROL 2, TURNS PUNCH OR 
AUXILIARY ON. CONTROL/R (TAPE, 
AUX ON) . 
DEVICE CONTROL 3, TURNS TRANSMITTER 
(READER) OFF, CONTROL/S (X OFF). 
DEVICE CONTROL 4, TURNS PUNCH OR 
AUXILIARY OFF. CONTROL/T (AUX OFF) . 
NEGATIVE ACKNO-VvLEDGE; ALSO ERR, 
ERROR. CONTROL/U. 
SYNCHRONOUS FILE (SYNC). COHTROL/V. 
END OF TRANSHISSION BLOCK; ALSO LEM, 
LOGICAL END OF MEDIUM. CONTROL/W. 

A-1 



EVEN 7-BIT 
PARITY OCTAL 
BIT CODE CHARACTER REMARKS 

~ ~3~ CAN CANCEL (CAHCL) . CONTROL/X. 
1 ~31 EM END OF MEDIUM. CONTROL/Yo 
1 ~32 SUB SUBSTITUTE. CONTROL/Z. 
~ ~33 ESC ESCAPE. CONTROL/SHIFT/K. 
1 ~34 FS FILE SEPARATOR. CONTROL/SHIFT/L. 
~ ~35 GS GROUP SEPARATOR. CONTROL/SHIFT/M. 
~ ~36 RS RECORD SEPARATOR. CONTROL/SHIFT/N. 
1 ~37 US UNIT SEPARATOR. CONTROL/SHIFT/O. 
1 ~4~ SP SPACE. 
~ ~41 
~ ~42 " 
1 ~43 # 
~ ~44 $ 
1 ~45 % 
1 ~46 & 

~ ~47 ACCENT ACUTE OR APOSTROPHE. 
~ ~5~ ( 
1 ~51 ) 
1 ~52 * 
~ ~53 + 
1 ~54 
~ ~55 
~ ~56 
1 ~57 / 
~ ~6~ ~ 
1 ~61 1 
1 ~62 2 
~ ~63 3 
1 ~64 4 
~ ~65 5 
~ ~66 6 
1 ~67 7 
1 ~7~ 8 
~ ~71 9 
~ ~72 
1 ~73 
~ ~74 < 
1 ~75 
1 ~76 > 
~ ~77 ? 
1 1~~ @ 

~ l~l A 
fJ IfJ2 B 
1 IfJ3 C 
fJ IfJ4 D 
1 1~5 E 
1 1~6 F 
~ 1~7 G 
fJ ll~ H 
1 III I 
1 112 J 
~ 113 K 
1 114 L 
~ 115 M 
fJ 116 N 
1 117 0 

A-2 



EVEN 7-BIT 
PARITY OCTAL 
BIT CODE CHARACTER REMARKS 

f1 12f1 P 
1 121 Q 
1 122 R 
f1 123 S 
1 124 T 
f1 125 U 
f1 126 V 
1 127 W 
1 13f1 X 
f1 131 Y 
f1 132 Z 
1 133 [ SHIFT/K. 
f1 134 ""- SHIFT/L. 
1 135 ] SHIFT/M. 
1 136 t * 
f1 137 +- ** 
f1 14f1 ACCENT GRAVE 

1 141 a 
1 142 b 
f1 143 c 
1 144 d 
f1 145 e 
f1 146 f 
1 147 g 
1 15f1 h 
f1 151 i 
f1 152 j 
1 153 k 
f1 154 1 
1 155 m 
1 156 n 
f1 157 a 
1 16f1 P 
f1 161 q 
f1 162 r 
1 163 s 
f1 164 t 
1 165 u 
1 166 v 
f1 167 w 
f1 17f1 x 
1 171 Y 
1 172 z 

f1 173 { 
1 174 i f1 175 THIS CODE GENERATED BY ALT MODE. 
fl 176 THIS CODE GENERATED BY PREFIX KEY 

(IF PRESENT) 
1 177 DEL DELETE, RUB OUT. 

* t appears as on some machines. 

** +- appears as (underscore) on some machines. 

A-3 



A.2 RADIX-5,0' CHARACTER SET 

Character 

space 

A-Z 

$ 

unused 

.0'-9 

ASCII Octal Equivalent 

4.0' 

1.0'1 - 132 

44 

56 

60 - 71 

The maximum Radix-5,0' value is, thus, 

47*5.0'2 + 47*5.0' + 47 = 174777 

Radix-5,0' Equivalent 

1 - 32 

33 

34 

35 

36 - 47 

The following table provides a convenient means of translating 

between the ASCII character set and its Radix-5,0' equivalents. 

For example, given the ASCII string X2B, the Radix-5,0' equivalent 

is (arithmetic is performed in octal) : 

X2B 

X 

2 

B 

113.0'.0'.0' 

.0'.0'24.0'.0' 
,0'flfI,0'fl2 

1154f12 

A-4 



Single Char. 
or Second Third 

First Char. Character Character 

A ~~3l~~ A ~~~~5~ A ~~~~~l 
B ~~62~~ B ~~~12~ B ~~~~~2 
C ~113~~ C ~~~17~ C ~~~~~3 
D ~144~~ D ~~~24~ D ~~~~~4 
E ~175~~ E ~~~3l~ E ~~~~~5 
F ~226~~ F ~~~36~ F ~~~~~6 
G ~257~~ G ~~~43~ G ~~~~~7 
II ~3l~~~ H ~~~5~~ H ~~~~l~ 
I ~34l~~ I ~~~55fD I ~~~~ll 
J ~372~fD J ~~~62~ J ~~~~12 
K ~423~~ K ~fD~67~ K ~~~~13 
L ~454~~ L ~~~74~ L fD~~~14 
M ~5~5~fD M fD~l~lfD M fD~~~15 
N ~536~~ N ~~1~6~ N ~~~~16 
0 fD567~~ 0 ~~113~ 0 ~~~~17 
p ~62~~~ p ~~12fD~ p ~~~~2~ 
Q ~65l~~ Q ~~125~ Q ~~fD~2l 
R ~7~2~~ R ~~132~ R ~~~~22 
S ~733~~ S fDfD137~ S ~~~~23 
T ~764~~ T ~~144~ T ~~~fD24 
U 1~15~~ U ~~15lfD U ~~~~25 
V 1~46~~ V ~~156~ V fD~~~26 
W lfD77~~ W ~~163~ W ~~~~27 
X l13~~!1 X fDfD17fD~ X ~~~~3~ 
y l16l~fD y fD~175~ y ~~~~3l 
Z l2l2~~ Z ~fD2~2~ Z ~~~~32 
$ l243~~ $ ~fD2~7~ $ ~flfl~33 . l274~~ . fD~2l4fD . ~~~fD34 

unused l325~fl unused ~~22l~ unused ~~~~35 
~ l356~~ ~ ~~226~ fD fD~~~36 
1 l4~7flfD 1 ~~233~ 1 ~~~~37 
2 l44~~~ 2 ~~24~~ 2 fD~fD~4~ 
3 l47lfD~ 3 ~~245~ 3 ~~fD~4l 
4 l522~,0 4 fl~252~ 4 fDfD~~42 
5 l553~~ 5 ~~257~ 5 fD~~fl43 
6 l6~4~~ 6 ~~264~ 6 ~~fl~44 
7 l635~~ 7 ~~27l~ 7 ~~~~45 
8 l666~~ 8 ~~276~ 8 fD~~~46 
9 l7l7~~ 9 flfD3~3~ 9 ~~~~47 

A-5 





APPENDIX B 

MACRO-ll ASSEMBLY LANGUAGE AND ASSEMBLER 

B.l SPECIAL CHARACTERS 

Character 

form feed 

line feed 

carriage return 

vertical tab 

% 

tab 

space 

# 
@ 

( 

+ 

* 
/ 
& 

" 

< 

> 

t 

\ 

(comma) 

(apostrophe) 

Function 

Source line terminator 

Source line terminator 

Formatting character 

Source line terminator 

Label terminator 

Direct assignment indicator 

Register term indicator 

Item terminator 
Field terminator 

Item terminator 
Field terminator 

Immediate expression indicator 

Deferred addressing indicator 

Initial register indicator 

Terminal register indicator 

Operand field separator 

Comment field indicator 

Arithmetic addition operator 
or auto increment indicator 

Arithmetic subtraction operator 
or auto decrement indicator 

Arithmetic multiplication operator 

Arithmetic division operator 

Logical AND operator 

Logical OR operator 

Double ASCII character indicator 

Single ASCII character indicator 

Assembly location counter 

Initial argument indicator 

Terminal argument indicator 

Universal unary operator 
Argument indicator 

MACRO numeric argument indicator 

B-1 



B.2 ADDRESS MODE SYNTAX 

.n is an integer between 0 and 7 representing a register. R is a 

register expression, E is an expression, ER is either a register 

expression or an expression in the range 0 to 7. 

Format 

R 

Address 
Mode 
Name 

Register 

@R or (ER) Deferred Register 

(ER)+ Autoincrement 

@(ER)+ Deferred Auto­
increment 

-(ER) Autodecrement 

@- (ER) 

E (ER) 

@E (ER) 

#E 

@#E 

E 

@E 

Deferred Auto­
decrement 

Index 

Deferred Index 

Immediate 

Absolute 

Relative 

Deferred Relative 

Address 
Mode 
Number 

On 

In 

2n 

3n 

4n 

Sn 

6n 

7n 

27 

37 

67 

77 

B .... 2 

Meaning 

Register R contains the op­
erand. R is a register ex­
pression. 

Register R contains the op­
erand address. 

The contents of the regis­
ter specified by ER are In­
cremented after being used as 
the address of the operand. 

ER contains the pointer to 
the address of the operand. 
ER is incremented after use. 

The contents of register ER 
are decremented before being 
used as the address of the 
operand. 

The contents of register ER 
are decremented before being 
used as the pointer to the 
address of the operand. 

E plus the contents of the 
register specified, ER, is 
the address of the operand. 

E added to ER gives the point­
er to the address of the oper­
and. 

E is the operand 

E is the address of the oper­
and. 

E is the address of the oper­
and. 

E is the pointer to the ad­
dress of the operand. 



B.3 INSTRUCTIONS 

The instructions which follow are grouped according to the operands 

they take and the bit patterns of their op-codes. 

In the instruction type format specification, the following symbols 

are used: 

OP 
R 
E 
ER 

AC 
A 

Instruction mnemonic 
Register expression 
Expression 
Register expression or expression 
~<ER<7 
Floating point register expression 
General address specification 

In the representation of op-codes, the following symbols are used: 

SS Source operand specified by a 6-bit address mode. 

DD Destination operand specified by a 6-bit address mode. 

XX 8-bit offset to a location (branch instructions). 

R Integer between 0 and 7 representing a general register. 

Symbols used in the description of instruction operations are: 

SE Source Effective address 
FSE Floating Source Effective Address 
DE Destination Effective address 
FDE Floatinq Destination Effective Address 
I I Absolut~ value of 
() Contents of 

+ Becomes 

The condition codes in the processor status word (PS) are 

affected by the instructions. These condition codes are represented 

as follows: 

N 

Z 

V 

C 

~egative bit: 

Zero bit: 

oVerflow bit: 

~arry bit: 

set if the result is negative 

set if the result is zero 

set if the operation caused an overflow 

set if the operation caused a carry 

B-3 



In the representation of the instruction's effect on the 

condition codes, the following symbols are used: 

* Conditionally set 

Not affected 

o Cleared 

1 Set 

To set conditionally means to use the instruction's result to 

determine the state of the -code (see the PDP-II Processor Handbook). 

Logical operations are represented by the following symbols: 

Inclusive OR 

CD Exclusive OR 

& AND 

(used over a symbol) NOT (i.e., l's complement) 

B.3.l Double-OEerand Instructions 

Instruction type format: Op A,A Status Word 
Condition Codes 

Op-Code Mnemonic Stands for Operation N Z V C 

OlSSDD MOV MOVe (SE)-+DE * * 0 
11SSDD MOVB MOVe Byte 

02SSDD CMP CoMPare (SE) - (DE) * * * * l2SSDD Cr1PB CoMPare Byte 

03SSDD BIT BIt Test (SE)&(DE) * * 0 
l3SSDD BITB BIt Test Byte 

04SSDD BIC BIt Clear (SE)&(DE)-+DE * * 0 
l4SSDD BICB BIt Clear Byte 

OSSSDD BIS BIt Set (SE) ! (DE) -+DE * * 0 
lSSSDD BISB BIt Set Byte 

06SSDD ADD ADD (SE)+(DE)-+DE * * * * l6SSDD SUB SUBtract (DE)-(SE)-+ E * * * * 

B-4 



B.3.2 Sin~1e-OEerand Instructions 

Instruction type format: Op A Status Word 
Condition Codes 

°E-Code Hnemonic Stands for Operation N Z V C 

005000 CLR CLear ~+OE 0 1 0 0 
105000 CLRB CLear Byte 

005100 COM COMplement (OE)+OE * * 0 1 
105100 COMB COMplement Byte 

005200 INC INCrement (OE)+1+0E * * * 
10520D INCB INCrement Byte 

0053DD DEC DECrement (OE)-1+ DE * * * 
10530D DECB OECrement Byte 

005400 NEG NEGate (OE)+l+ DE * * * * 
105400 NEGB NEGate Byte 

00550D AOC AOd Carry (OE)+(C)+ OE * * * * 
10550D ADCB AOd Carry Byte 

005600 SBC SuBtract Carry (OE)-(C)+ DE * * * * 
1056DO SBCB SuBtract Carry Byte 

005700 TST TeST (OE)-~+ OE * * 0 0 
1057DO TSTB TeST Byte 

c 18 

fj 0060DD ROR ROtate Right ro-: I 
* * * * 

106000 RORB ROtate Right even or odd byte 
* * * * 

Byte ~ ==ob 

0061DO ROL ROtate Left cD <-I h * * * * 
even or odd byte 

1061DO ROLB ROtate Left ,-0 +-l h * * * * 
Byte 

c 10 14 I 0 

006200 ASR Arithmetic 0 f ~Sl Sb * * * * 
Shift Right 0 

106200 ASRB Arithmetic even or odd byte 
* * * * 

~ fN1 Sn Shift Right 
Byte 

c 

~f;; ~: 0063DD ASL Arithmetic * * * * ~ZO 

Shift Left 

even or odd byte 
106300 ASLB Arithmetic ~p::1 ~~o * * * * 

Shift Left 
Byte 

B-5 



Op-Code Mnemonic Stands for Operation N Z V C 

000100 JMP JuMP OE-+ PC 

000300 SWAB SWAp Bytes ~ e 7 0 * * 0 0 
0 I I 

~ 

The following instructions are available on the POP-ll/45 only: 

006500 MFPI Move From Previ- * * 0 
ous Instruction 
space 

106500 MFPO Move from * * 0 
Previous See Chapter 6 
Oata space in POP-llL45 

Processor 
006600 MTPI Move To Handbook * * 0 

Previous 
Instruction 
space 

106600 MTPO Move To * * 0 
Previous 
Oata space 

170100 LOFPS Load FPP Pro- (OE)-+ FPS 
gram Status 

006700 SXT Sign eXTend ~-+ OE if N bit * 
clear 

-1-+ OE if N bit 
is set FN FZ FV FC 

070700 NEGO NEGate Oouble -(FOE) -+ FOE * * 0 0 

070700 NEGF NEGate Floating -(FOE) -+ FOE * * 0 0 

170200 STFPS STore Floating 
Point processor See Chapter 7 
program Status in POP-11/45 

Processor 
170300 STST STore floating Handbook 

point processor 
STatus 

170400 CLRO CLeaR Oouble f1-+ FOE 0 1 0 0 

170400 CLRF CLeaR Floating ~-+ FOE 0 1 0 0 

170500 TSTO TeST Oouble (FOE)-~-+FOE * * 0 0 

170500 TSTF TeST Floating (FOE) -~-+FOE * * 0 0 

B-6 



FN FZ FV FC 

1706DD ABSD make ABSolute IFDEI+FDE 0 * 0 0 

l706DD ABSF 
Double 
make ABSolute IFDEI+,FDE 0 * 0 0 
Floating 

B.3.3 Operate Instructions 

Instruction Type format: Op 

°E-Code Mnemonic Stands for °Eeration N Z V C 

000000 HALT HALT The computer 
stops all 
functions. 

0000001 WAIT WAIT The computer 
stops and waits 
for an interrupt. 

0000002 RTI ReTurn from The PC and PS * * * * 
Interrupt are popped off 

the SP stack: 

«SP»+ PC 
(SP)+2+ SP 
«SP»+ PS 
(SP)+2+ SP 

RTI is also used 
to return from 
a trap. 

000005 RESET RESET Returns all I/O 
devices to power-
on status. 

000241 CLC CLear Carry bit ~+ C 0 

000261 SEC SEt Carry bit 1+ C 1 

000242 CLV CLear oVerflow ~+ V 0 
bit 

000262 SEV SEt oVerflow 1+ V 1 
bit 

000244 CLZ CLear Zero bit ~+ Z 0 

000264 SEZ SEt Zero bit 1+ Z 1 

000250 CLN CLear Negative ~+ N 0 
bit 

000270 SEN SEt Negative 1+ N 1 
bit 

000243 Clear OVerflow ~+ V 0 0 
and Carry bits ~+ C 

000254 CNZ Clear Negative ~+ N 0 0 
and Zero bits 0+ Z 

B-7 



000257 CCC 

000277 SCC 

000240 NOP 

Clear all 
Condition 
Codes 

Set all Con­
dition Codes 

No OPeration 

1+ N 
1+ Z 
1+ V 
1+ C 

o 

1 

o 

1 

o o 

1 1 

The following instructions are available on the PDP-ll/45 only: 

Op-Code Mnemonic 

170000 CFCC 

000006 RTT 

170011 SETD 

170001 SETF 

170002 SETI 

170012 SETL 

Stands for 

Copy Floating 
Condition 
Codes 

ReTurn from 
inTerrupt 

SET Double 
floating mode 

SET Floating 
mode 

SET Integer 
mode 

SET Long integer 
mode 

B-8 

Operation ~ FZ 

Copy FPP con­
dition codes 
into CPU con­
dition codes. 

Same as RTI 
instruction but 
inhibi,ts trace 
trap 

FPP set to 
double pre­
cision mode 

FPP set to 
single pre­
cision mode 

FPP set for 
integer data 
(16 bits) 

* 

* 

FPP set for long -
integer data 
(32 bits) 

* 

* 

FV Fe -
* * 

* * 



B.3.4 Trap Instructions 

Instruction type format: Op or Op E where 0 < E < 3778 
*OP (only) 

Status Word 
Condition Codes 

Op-Code Mnemonic Stands for Operation N Z V C 

*000003 

*000004 

104000-
104377 

104400-
104777 

BPT 

lOT 

EMT 

TRAP 

BreakPoint 
Trap 

Input/Output 
Trap 

EMulator Trap 

TRAP 

Trap to loca­
tion 14. This 
is used to call 
ODT. 

* 

Trap to location * 
20. This is 
used to call lOX. 

Trap to location * 
30. This is used 
to call system 
programs. 

Trap to location * 
34. This is used 
to call any rou­
tine desired by 
the programmer. 

* 

* 

* 

* 

* * 

* * 

* * 

* * 

B.3.5 Branch Instructions 

Instruction type format: Op E where -128 10 < (E-.-2)/2 2 12710 

Op-Code Mnemonic 

0004XX BR 

OOlOXX BNE 

0014XX BEQ 

0020XX BGE 

0024XX BLT 

0030XX BGT 

0034XX BLE 

1000XX BPL 

l004XX BMI 

1010XX BHI 

1014XX BLOS 

1020XX BVC 

1024XX BVS 

Stands for 
Condition to be met if 

branch is to occur 

BRanch always 

Branch if Not Equal (to zero) 

Branch if EQal (to zero) 

Branch if Greater than or Equal 
(to zero) 

Branch if Less Than (zero) 

Branch if Greater Than (zero) 

Branch if Less than or Equal 
(to zero) 

Branch if PLus 

Branch if MInus 

Branch if HIgher 

Branch if LOwer or Same 

Branch if oVerflow Clear 

Branch if oVerflow Set 

B-9 

Z=O 

Z=l 

N <D v=o 

N CD V=l 

Z! (N 0 V)=o 

Z !.. (N CD V) =1 

N=O 

N=l 

C Z=O 

C Z=l 

V=O 

V=l 



Condition to be met if 
OI2-Code Mnemonic Stands for branch is to occur 

I030XX BCC Branch if Carry Clear {or C=O 
(or BHIS) Branch if Higher or Same) 

I034XX BCS Branch if Carry Set {or C=l 
(or BLO) Branch if LOwer) 

B.3.6 Register Destination 

Instruction type format: OP ER~A 

0I2-Code Mnemonic Stands for Operation 

Status Word 
Condition Codes 

N Z V C 

004RDD JSR Jump to 
SubRoutine 

Push register 
on the SP stack, 
put the PC in the 
register: 

DE+ TEMP (TEHP= 
temporary storage 
register internal 
to processor.) 

{SP)-2+ SP 
(REG)+ (SP) 
(PC)+ REG 
(TEMP)+ PC 

The following instruction is available only on the PDP-II/45: 

074RDD XOR eXclusive OR 

B.3.7 Register-Offset 

Instruction type format: OP R,E 

0I2-Code Mnemonic Stands for 

077RDD SOB Subtract One 
and Branch 

B.3.8 Subroutine Return 

Instruction type format: Op ER 

Op-Code Mnemonic Stands for 

00020R RTS ReTurn from 
Subroutine 

B-IO 

(R) 0 DE+ DE 

0I2eration 

(R)-I+R 
PC-{2*DE)+ PC 

Operation 

Put register in 
PC and pop old 
contents from SP 
stack into 
register 

* * 

N Z 

N Z 

o 

V C 

V C 



B.3.9 Source-Register 

The following instructions are available on the PDP-ll/45 only: 

Instruction type format: 

0]2-Code Mnemonic Stands 

Op A,R 

for Operation 

Status Word 
Condition Codes 

N Z V C 

071RSS DIV 

070RSS MUL 

072RSS ASH 

073RSS ASHC 

DIVide 

MULtiply 

Arithmetic 
SHift 

Arithmetic 
SHift 
Combined 

R, Rvl/ (SRC)-+ R, Rvl * 
R* (SRC) -+ R, Rvl * 
R is shifted accord- * 
ing to low-order 
6-bits of source 

or 

R,Rvl are shifted 
according to low­
order 6 bits of 
source 

* 

R: ~......JIYf I"--_~ ___ --'-,-I I I I I 

R+l: ..,J!I T~-~-----l"~ 0 
or 

B.3.l0 Floating-Point Source Double Register 

* * 

* o 

* * 

* * 

The following instructions are available on the PDP-ll/45 only: 

* 

* 

* 

* 

Instruction type format: Op A,AC Status Word Floating 
Condition Codes 

Op-Code Mnemonic Stands for °Eeration FN ~ FV FC 

l72(AC)SS ADDD ADD Double (FSE) +AC-+ AC * * * 0 

l72(AC)SS ADDF ADD Floating (FSE) +AC-+ AC * * * 0 

l73(AC+4)SS CMPD CoMPare (FSE) -AC * * 0 0 
Double 

l73(AC+4)SS CMPF CoMPare (FSE) -AC * * 0 0 
Floating 

174 (AC+4)SS DIVD DIVide AC/(FSE) -+ AC * * * 0 
Double 

174 (AC+4)SS DIVF DIVide AC/(FSE} -+ AC * * * 0 
Floating 

177 (AC+4)SS LDCDF LoaD and Con- (FSE) -+ AC * * * 0 
from Double 
to Floating 

B-ll 



Status Word Floating 
Condition Codes 

Op-Code Mnemonic Stands for Operation FN FZ FV FC 

l77(AC+4)SS LDCFD LoaD and Con- (FSE) + AC 
vert from 
Floating to 
Double 

LoaD Double (FSE) -+ AC 172 (AC+4)SS LDD 

l72(AC+4)SS LDF LoaD Floating (FSE) -+ AC 

l7l(AC+4)SS MODD Multiply and AC*(FSE) -+ AC,ACI 
integerize 
double 

l7l(AC+4)SS MODF Multiply and AC*(FSE) -+ AC 
integerize 
floating-point 

l7l(AC)SS 

l7l(AC)SS 

l73(AC)SS 

l73(AC)SS 

MULD MULtiply 
Double 

MULF MULtiply 
Floating 

SUBD SUBtract 
Double 

SUBF SUBtract 
Floating 

B.3.ll Source - Double Register 

AC* (FSE) -+ AC 

AC* (FSE) -+ AC 

(FSE) -AC-+ AC 

(FSE) -AC-+ AC 

* * * o 

* * o o 

* * o o 

* * * o 

* * * o 

* * * o 

* * * o 

* * * o 

* * * o 

The following instructions are available on the PDP-ll/45 only: 

Instruction type format: Op A,AC 

Op-Code Mnemonic Stands for Operation 

l77(AC)SS 

l77(AC)SS 

l77(AC)SS 

177 (AC)SS 

LDCID LoaD and Con- (SE) -+ AC 
vert Integer 
to Double 

LDCIF LoaD and Con- (SE) -+ AC 
vert Integer 
to Floating 

LDCLD LoaD and Con- (SE) -+ AC 
vert Long 
integer to 
Double 

LDCLF LoaD and Con- (SE) -+ AC 
vert Long In-
teger to 
Floating 

l76(AC+4)SS LDEXP LoaD EXPonent (SE) +2~~/-+ AC 

B-12 

Status Word 
Condition Codes 
EN FZ FV FC 

* * * o 

* * * o 

* * * o 

* * * o 

* * o o 



B.3.12 Double Register - Destination 

The following instructions are available on the PDP-ll/45 only: 

Instruction type format: Op AC,A 

Op-Code Mnemonic Stands for Operation 

176 (AC)DD 

l76(AC)DD 

STCFD STore, Con­
vert from 
Floating to 
Double 

STCDF STore, Con­
vert from 
Double to 
Floating 

AC+ FDE 

AC+ FDE 

l75(AC+4)DD STCDI 1 STore, Con- AC+ FDE 
vert from 
Double to 
Integer 

175{AC+4)DD STCDL 1 STore, Con- AC+ FDE 
vert from 
Double to 
Long integer 

175(AC+4)DD STCFI 1 STore, Con- AC+ FDE 
vert from 
Floating to 
Integer 

175(AC+4)DD STCFL l STore, Con- AC+ FDE 
vert from 

174 (AC)DD 

174 (AC)DD 

175(AC)DD 

Floating to 
Long integer 

STD STore Double AC+ FDE 

STF STore AC+ FDE 
Floating 

STEXp 1 STore 
EXPonent 

AC EXP-2.0.0+ DE 

B.3.13 Number 

Status Word 
Condition Codes 
FN FZ FV FC 

* * * o 

* * * o 

* * o * 

* * o * 

* * o * 

* * o * 

* * o o 

The following instruction is available on the PDP-ll/45 only: 
Status Word 

Condition Codes 
Op-Code Mnemonic Stands for Operation N Z V C 

0064NN MARK MARK Stack cleanup on 
return from sub­
routine. 

lThese instructions set both the floating-point and processor condition 
codes as indicated. 

B-13 



B.3.14 Priority 

The following instruction is available on the PDP-ll/45 only. 
Status Word 

Condition Codes 
Op-Code Mnemonic Stands for Operation N Z V C 

00023N SPL Set Priority N+ PC(bits 7-5) 
Level 

B.4 ASSEMBLER DIRECTIVES 

Form 

" 

tBn 

tCn 

tDn 

tFn 

tOn 

. ASCII string 

. ASCIZ string 

Operation 

A single quote character 
(apostrophe) followed by 
one ASCII character gener­
ates a word containing the 
7-bit ASCII representation 
of the character in the low­
order byte and zero in the 
high-order byte. 

A double quote character fol­
lowed by two ASCII characters 
generates a word containing 
the 7-bit ASCII representation 
of the two characters. 

Temporary radix control; 
causes the number n to be . 
treated as a binary number. 

Creates a word containing the 
one's complement of n. 

Temporary radix control; causes 
the number n to be treated as 
a decimal number. 

Creates a one-word floating 
point quantity to represent n. 

Temporary radix control; causes 
the number n to be treated as 
an octal number . 

Generates a block of data con­
taining the ASCII equivalent 
of the character string(enclosed 
in delimiting characters) one 
character per byte . 

Generates a block of data con­
taining the ASCII equivalent of 
the character string (enclosed 
in delimiting characters) one 
character per byte with a zero 
byte following the specified 
string. 

B-14 

Described in 
Manual Section 

6.3.3 

6.3.3 

6.4.2 

6.6.2 

6.4.2 

6.6.2 

6.4.2 

6.3.4 

6.3.5 



Form 

.ASECT 

.BLKB exp 

.BLKW exp 

. BYTE expl,exp2, ... 

. CSECT symbol 

. CSECT 

.DSABL arg 

.ENABL arg 

.END 

. END exp 

.ENDC 

.ENDM 

.ENDM symbol 

.EOT 

.ERROR exptstring 

. EVEN 

. FLT2 argl,arg2, •.. 

. FLT4 argl,arg2, ..• 

. GLOBL syml,sym2, ... 

Operation 
Described in 

Manual Section 

Begin or resume absolute sec­
tion. 

Reserves a block of storage 
space exp bytes long. 

Reserves a block of storage 
space exp words long • 

Generates successive bytes of 
data containing the octal equiva­
lent of the expression(s) speci­
fied . 

Begin or resume named or 
unnamed relocatable section . 

Disables the assembler function 
specified by the argument. 

Provides the assembler func­
tion specified by the argu­
ment. 

Indicates the physical 
end of source program • 
An optional argument specifies 
the transfer address. 

Indicates the end of a condi­
tion block. 

Indicates the end of the cur­
rent repeat block, indefinite 
repeat block, or macro. The 
optional symbol, if used, must 
be identical to the macro name. 

Ignored. Indicates End-of­
Tape which is detected auto­
matically by the hardware. 

Causes a text string to be output 
to the command device containing 
the optional expression specified 
and the indicated text string . 

Ensures that the assembly 
location counter contains 
an even address by adding 1 if 
it is odd . 

Generates successive two-word 
floating-point equivalents for 
the floating-point numbers speci­
fied as arguments . 

Generates successive four-word 
floating-point equivalents for 
the floating-point numbers speci­
fied as arguments . 

Defines the symbol(s) specified 
as global symbol(s). 

B-lS 

6.9 

6.5.3 

6.5.3 

6.3.1 

6.9 

6.2 

6.2 

6.7.1 

6.11 

7.1.2 

6.7.2 

7.5 

6.5.1 

6.6.1 

6.6.1 

6.10 



Described in 
Form operation Manual Section 

.IDENT symbol Provides a means of labeling 6.1.5 
the object module with the pro-
gram version number. The symbol 
is the version number between 
paired delimiting characters. 

.IF cond,argl,arg2, ••• Begins a conditional block of 
source code which is included 
in the assembly only if the 
stated condition is met with 
respect to the argument(s) speci­
fied. 

.IFF Appears only within a con­
ditional block and indicates 
the beginning of a section of 
code to be assembled if the 
condition tested false • 

. IFT Appears only within a condi­
tional block and indicates 
the beginning of a section of 
code to be assembled if the 
condition tested true . 

• IFTF Appears only within a condi­
tional block and indicates the 
beginning of a section of code 
to be unconditionally assembled. 

.IIF cond,arg,statement Acts as a one-line conditional 
block where the condition is 
tested for the argument speci­
fied. The statement is assembled 
only if the condition tests true • 

6.11 

6.11.1 

6.11.1 

6.11.1 

6.11.2 

• IRP sym, <argl ,arg2, ..• > Indicates the beginning of an 7.6 

.IRPC syrn,string 

.LIMIT 

indefinite repeat block in 
which the symbol specified is 
replaced with successive ele-
ments of the real argument list 
(which is enclosed in angle 
brackets) . 

Indicates the beginning of an 
indefinite repeat block in 
which the symbol specified takes 
on the value of successive char­
acters in the character string. 

Reserves two words into which 
the Linker inserts the low and 
high addresses of the relocated 
code. 

B-16 

7.6 

6.8 



Described in 
Form Operation Manual Section 

.LIST 

.LIST arg 
Without an argument, .LIST 6.1.1 
increments the listing level 
count by 1. With an argument, 
.LIST does not alter the list-
ing level count but formats 
the assembly listing accord-
ing to the argument specified. 

.MACRO sym,argl,arg2, ••• Indicates the start of a macro 
named sym containing the dummy 
arguments specified. 

.MEXIT 

.NARG symbol 

. NCHR syrn,string 

.NLIST 

.NLIST arg 

.NTYPE sym,arg 

.ODD 

• PAGE 

.PRINT exp,string 

.RADIX n 

Causes an exit from the cur­
rent macro or indefinite repeat 
block. 

Appears only within a macro 
definition and equates the 
specified symbol to the number 
of arguments in the macro call 
currently being expanded . 

Can appear anywhere in a source 
program; equates the symbol 
specified to the number of 
characters in the string (en­
closed in delimiting characters). 

Without an argument, .NLIST de­
crements the listing level 
count by 1. With an argument, 
.NLIST deletes the portion of 
the listing indicated by the 
argument. 

Appears 'Only in a macro defini.­
tion and equates the low-order 
six bits of the symbol specified 
to the six-bit addressing mode 
of the argument. 

Ensures that the assembly loca­
tion counter contains an odd 
address by adding 1 if it is 
even. 

Causes the assembly listing to 
skip to the top of the next 
page. 

Causes a text string to be out­
put to the command device con­
taining the optional expression 
specified and the indicated text 
string. 

Alters the current program radix 
to n, where n can be 2, 4, 8, or 
1~. 

B-17 

7.1.1 

7.1.3 

7.4 

7.4 

6.1.1 

7.4 

6 .• 5.1 

6.1.6 

7.5 

6.4.1 



Form 

.RAD5,0' string 

.REPT exp 

.SBTTL string 

.TITLE string 

.WORD expl,exp2, ... 

Operation 
Described in 

Manual Section 

Generates a block of data con­
taining the Radix-50 equivalent 
of the character string (enclosed 
in delimiting characters) . 

Begins a repeat block. Causes 
the section of code up to the 
next .ENDM or .ENDR to be re­
peated exp times. 

Causes the string to be printed 
as part of the assembly listing 
page header. The string part of 
each .SBTTL directive is collected 
into a table of contents at the 
beginning of the assembly listing. 

Assigns the first symbolic name 
in the string to the object mod­
ule and causes the string to ap­
pear on each page of the assembly 
listing. One .TITLE directive 
should be issued per program. 

Generates successive words of 
data containing the octal 
equivalent of the expression(s) 
specified. 

B-18 

6.3.6 

7.7 

6.1.4 

6.1.3 

6.3.2 



APPENDIX C 

PERMANENT SYMBO~ TABLE 

PST P~R~ANENT SYMf:\QL TABLE MACRO V~04A oAGE 1 

1 
2 
3 
4 
5 
6 ., 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
2e 
27 
28 
29 
30 
31 
32 
33 
34 
35 
:56 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 00"'0'" 

0100000.' 

0100200 DR1-
00011"'0 OR2-

.TITLE PST 

COPVRIGHT 1972 DIGtTAL EQUIPMENT CORPO~ATION 

.CSECT PSTSEC 

,GLOBL PSTBAS, PST TOP 'LIMITS 
.GLOBL WROSVM ,POtNTE~ TO .WORD 

2~0 
10121 

,GLOBt 

,OEST~UCTIVE ~EFERENCE TN FIR~T 
,DESTRUCTIVE REFERENCE IN SECnND 

OFLGEV, DFLGBM, DFLCNO, OFLMAC, DFL~~C 

"'000221 DFl,GEV- 2120 
010021121 OFl,GBM. 010 
~0"'004 OFl,CND- 0014 
02101002 DFl,MAC- 0012 
"'2100"'1 OFl,SMC- 0~1 

'DI~EeTTVE REQUIRES EVEN LOCATIO 
,OIPECT!VE USES BVTE MonF 
,CONDITIONAL OIREeTIVE 
,MACRO I')IRECTIVE 
,MCALL 

PST8ASI 

.tIF OF X45, XFLTG- 0 

.tIF OF XMACRO, XSMCAL- '" 

.MACRO 

.IF NB 

.IF DF 

.~EXIT 
,ENI)C 
.ENDC 
.RADS"" 
.BVTE 
,Gl,OBL 
.BVTE 
,WORD 
.ENDM 

.MACRO 

.IF NR 

.IF OF 

.MEXIT 

.ENOC 

.ENOC 
" GLOBl 
,RA050 
.RVTE 
.~YTE 
.WORD 
.ENOM 

OPCDEF NAME, 
<CONO> 
CON" 

INA. MEl 
FLAGS+0 
OPCL'CL~SS 
2~0+0PCL'CLAS9 
VALUE 

OIRI')EF NAME, 
<CONO> 
CONO 

NAME 
I.'NAMEI 
FL~GS+0 
o 
NAMF 

C-l 

CLA~S, 

.BASE 

VALUE', FLAGS, 

CONP 



PST P~RMANENT SVM~OL TABLE M4CRO VC'J0&tA PAGE 2 

1 0PH.'I"'0~ O~COEF cA~~O 
"" 

211, 110600, ORt, X45 
2 0~0P.ll'" OPCOEF cABSF >, 01, 1""'60!'1" oRl, )(45 
3 0"'002'" OPCOEF <ADC >, 01, 9I~5500, o~t 
4 000r;,JD! O~CoEF cAOCS >, 01, 1~5500, O~t 
5 000C'14'" O~CDEF CAD" >, 02, '!HS0000, D~2 
6 00QH"5OJ OPCOEF cAO[')O >, 11, t'200~, O~2, )(45 
7 000A6P OPCOEF CADOF )0, 11, 1'212100, O~2, )(45 
B 000P.l7'" OPCOEF cASH )0, 0C), 0'2C'1I21~, O~2, )(45 
9 "0"1.0'" OPCr'>EF cASHe >, 09, 013"'00, O~2, )(45 
10 001.1'" OPCOEF <ASL >, 01, 0!?1630!(t, ORI 
11 0012'" OPCOEF <ASLB >, 01, 10630~, oR1 
12 001.3'" OPCOEF <4SR >, 01, ~a620OJ, "~1 
13 0211.4'" OPCOEF CA,S~8 >, 01, t0620~, ORt 
14 t'l0UH" OPCOEF cace: >, 04, 1 "J3OJ0('J, 
15 021t6'" OPCf)EF CRCS >, 04, 103400, 
16 001'''' Ol'CI)EF <~EQ >, 0.4, m!?l1400, 
17 0020t11 OPCOEF c~Gf >, 04, 00120121t'1, 
18 "'021'" OPCDEF CBGT >, 04, 001300~, 

19 0022'" Ol'COEF cF3Ht >, 04, 1~100t'1, 
20. 0023'" OPCOEF cAHts >, 04, It'1300('1, 
21 0024P' OPCOEF ceIC >, 212, 040.000, O~2 
22 00251"J OPCDEF cBlee >, 1212, 14CiH'J01?1 , (,)Q2 
23 0026~ OPCOE' cBI~ >, 0':, 050000, OR2 
24 00270 OPCOEF -cAIse >, 02, 15000t'1, D~2 
25 0030t'1 OPCOEF -CBIT >, 1212, 0301210"-1, 
26 00310 OPCDEF c8tTB >, 1212, lJ000P1, 
27 00320 OPCOEF <qlF. >, 04, 003400, 
28 00330 OPCOEF CAL" >, 04, 1"'3400, 
29 00~4t'1 O~COEF c~LOS >, ed, lClJ1400, 
30 003t5'" OPCDEF c~lT >, 04, 002400, 
31 ~H1'36~ Ol'CDEF <AM! >, 04, 10041210, 
32 C'l03,A OPCOEF <BNE >, 04, 001000, 
33 0041"", OPCDEF cAPL )0, 04, 1000001, 
34 0041£'1 OPCDEF cBPT >, "0, 0C'10"'03, )(45 
35 00420'1 OPCOEF C~R >, 04, 001'1'41210, 
36 00d3A Ol'CDEF <qvr. >, 04, 1~200~, 
37 0044'" OPCD!F CAV~ >, 0 4 , 1~2401'1, 

38 0045P. OPCDEF cCCC >, 00, 0"'0:!57, 
39 00d6C1! OPCDEF CCFCC >, 00, 1'000~, X4!5 
40 ",,,410 OPCDEF <eLC >, 0"', 0~024t, 
41 0"~HH" OPCOEF cClN >, 00, 0C11"'!HI, 
42 "'0!510 OOCDEF -ceLR >, 01, 0"'5000), D~t 
43 A052P Ol'CDEF -Cel~B >, 1211, 107500"1, "~1 
44 0053~ OPCDEF <CL~O >, 01, 1'121400, O~t, X45 
45 00540 OPCDEF CCL~F >, 01, 170400, OR t, )(45 
46 0055'" OPCDEF celV >, 0"', 000242, 
47 00~e0 OPCOEF ceLl >, 0"', 0"0244, 

C-2 



PST PERMANENT SYMBOL TABLE MAC~O VPl04,., oAGE 3 

1 I2Im0!1'" Ol'CDEF <eMP >, 02, 121200121"', 
2 000e0P1 OPCDEF <C~PB >, 02, 120t'10~, 

3 0006191 OPCDEF <CMPD >, 11, l'340H~, X4!15 
44 1210062121 OPCOEF <CMPF >, 11, 17340t'!, )(45 
5 00083~ OPCDEF <eNZ >, 00, 001212504, 
6 000~40 OPCDEF <COM >, 01, "'015100, OR1 
'1 000615'" OPCDEF <COMB >, 01, 1051001, D~l 

8 00086tl1 OPCD!F <r')EC >, 1211, 0121530"" O~l 
9 0210(5711'1 OPCDEF <OEtS >, 01, 10530?1, D~l 

10 21070'" OPCDEF <"IV >, 0" 0'101Z1Q1, DR2, X45 
11 00'1~ OPCDEF <I')!VD >, 11, 17440"1, DR2, )(4!5 

12 0121'20 OPCDEF <"tVF )0, 11, 11440"1, DR2, )t45 
13 0013'" OPCDE' <EMT >, 06, 1t'!4!iJ00, 
14 0014'" OPCDEF ClolALT )0, 1210, 00012100, 
15 00750 OPtD!F <INC >, 01, 0"'520~, [HH 
Ie 00160 OPCD!F <!NCS >, 1211, 10520~, O~1 

l' ~0"'" OPCO!F <lOT >, 00, 12100004, 
18 01(,IJ0t'J OPtD!F <JMP >, 01, 0t'1010C'1, 
19 01010 OPCDEF <.rSR >, 05, 0OJ400P1, OR! 
20 01020 OPCD!F <LocoF >, 1 t , 1'740"",, DR2, )(4!5 
21 01"'31.'1 OpeDEF <LDCFO :lIl, 11, 11740~, DR2, X45 
22 2111:'14'" OpeD!F <LotIO >, 14, 1,77000, DR2, X45 
23 01(7)5'" OPCOEF <LDCIF >, 14, 177"'0&'1, OR2, )(45 
24 0106171 OPCDEF <l.OCLD >, 14, 17700t?1, D~2, )(45 
25 ~101'" OPtDEF eLeCL' >, lA, 117",0OJ, OR2, )(45 

26 0110'" opeDEF <LOO >, 11, 17240"1, OR2, X4~ 

27 01111.'1 OPCDEF <LDEXP >, 14, 116400, OR2, )(45 
28 0112L'1 OpeDEF <LOF >, 11, 11240t1l, DR2, )(45 
20 01130 OPCDEF CLeFP! >, 01, 170t0~, X45 
30 9.11140 OPCOEF <Lose >, 00, 110(7)04, )t4!5 
31 0105t'1 Of'CDEF <LDlH~ >, ((\0, 170~QJ3, X4!5 
32 0116C'J OpeD[F CMARK >, 1~, 0D1640"', )(45 
33 011'0 OPCDEF CMFPD >, 01, \06500, X45 
34 0120'" OPCOEF eMF"! >, 01, 006500, , X45 
35 0121C" OPCDEF <MODO >, 11, 1'14"'''', OQ2, )(45 

36 012291 OPCDEF eMODF >, 11, 17140~, O~2, )(4!5 
37 0"1230 OPtD!F <MOV >, 02, 0t0t'100, OR2 
38 0124'" OPtD!F <MOVe >, 02, 1100001, OR2 
39 0125'" opeDEF <MTPO >, 01., 106600, D~l, X.45 
40 01260 OPCD!F eMT"! >, 01, 00660r." DRt, )(45 
41 01210 OPCDE' <MUL >, 07, 0'''A0L'1, OR2, ){45 
42 01300 OPCDEF <MUl,D >, 11, 1'1"'0~, DR2, ){45 
43 013U" OpeDEF CMULF >, 11, 171010"', O~2. )(4!5 

44 0132~ OPCDEF <NEG >, 01, 0~540~, ORt 
45 01~3m OPCDEF <NEGB >, 01, 101540'.1, ORt 
46 01340 OPCDEF cNEGO >, 01, 1'070~, OR!, )(45 
11,7 01350 OPCDEF <NEGF >, CH, 11010t'1, DRt, )(45 
48 01'36('1 OPCDEF <NOP >, 0121, 0l?10240, 
49 0137~ OPtDEF cRESET >, 0~, 000005, 

C-3 



PST Pr:Rt04.A~ENT SVMROL TAl3lF t.1ACPO VA04A F'Ar,E 4 

1 0"'140~ OpcnEF d~OL >, 01, 001620"1, D~l 
2 001 4 1t?1 OPCDEF eROLS >, 01, t~61t21~, D~l 
3 00142('1 OPCDEF e~op >, 01, 0"'6~tlJt'I, D~l 
4 0"'143'" OPCDEF eJ:?QRB )0, 01, 1"6000, OR1 
f5 00144t'1 OPCDEF <PTY >, 0('.1, 0A0Q.102, 
6 00145t'1 opcnEF eRTS >, 03, tiH~02001 , OQ1 
7 001460 OPCDEF eRTT >, 00, 000C'1t:'J6, Xd!5 
8 0eJ147r:'l opcnEF e~9C >, 0t, 0"'!560t'!, DRt 
9 001~0'" OPCI')EF <~BCB >, 01, 1t'1560('), DR1 
10 "'l~H' Ol'cnEF <sec >, 00, "'t."0277, 
11 "'lR2C'1 OPCDEF eSEC >, 0('1, 0(')10.261, 
12 01531.'1 Ol'CDEF <SEN >, 0~, 0~027t'1, 
13 01~4'" OPCDEF eSETD >, 0~, 170.011, X.d5 
14 ~1!'1i5'" Ol'CDEF e~FTF >, 00, 110001, )(45 
15 0156'" OPcnEF eSETl >, 0"', 170002, X45 
16 01R7'" OPCDEF eSETl >, 001 , 1'''J'''12, )(45 
17 l'Il~0(!'1 OPCDEF c~E'V >, 0"', 00'10~62, 
18 01B1'" OpenEF eSEZ >, 

"''''' \?Il"J0~64, 
19 t?l11520 OPCDEF eSO~ >, 0A, "'770~0, DRt, X45 
20 01~3~ OPcnEF eSPL >, 13, "'('!I0~3"', )(45 
21 01~4(}! OPCOEF <STA0 >, 00, 170005, X45 
22 01~5C'1 OPCOEF <STB0 >, 0!:'1, 170"'06, , )(45 
23 I(!le6~ opcnEF e~TCDF >, 12, 1760",01, OQ2, )(45 
24 rtJ1~71'-1 OPCDEF <ST~OI >, 12, 115400'1, D~2, )(45 
25 PI 1'01'1 Ol'CDEF <STCDL >, 12, 175400, DR2, X45 
26 01'10 oPcnEF <STr:Fr:> >, 12, 17e00~, OR2, )(45 
27 01721'1 opeOEF <STeFl >, I'., t7540~, D~2, )(45 
28 PI 173t'1 OPCDEF <STCFL >, 12, 11540~, DQ2, )(45 
29 0114~ OPCDEF <STI"> >, 12, t'40!0~, D~2, ){45 
30 L'll'51'1 OPCDEF <ST~XP >, 12, 1750001, D~2, )(45 
31 01760 oPcnEF eSTF >, 1~, 1140001, DR2, )(45 
32 "'177'" OPCDEF <STFPS >, 01, 17020~, DR1, )(45 
33 020100 OPCDEF eSTQ0 >, 0 01 , 110 01 01, X45 
34 "'2010 OPCDEF e~TST >, 01. 11030"', DJ:?I, ){45 
35 02"-'2'" oPcnEF <~UR >, 02, 160t'JQH'l, DJ:?2 
36 02013'" OPCDEF eSU!='O )0, 11, t1300t'J, [)~2, X45 
37 02014'" openEF eSURF >, 11 , t'3t'1001, DQ2, )l45 
38 02"'50 opeDEF <SWAB >, "'1, 000300, D~l 
39 02~6'" openEF e9){T >, 01, 0067001, DRt, )(~5 

40 "'2~7'" OPCDEF eTRAP >, 06, 1~440t'1, 
41 P.l21001 opcnEF eTST >, 01, 0~51001, 
42 02tlO! opcnEF <T5TB )0, 01, lC'151001, 
423 01212'" opcnEF eTSTD >, 01, 1705k'''', )(45 
44 02130 OPCOEF eTSTF >, o t , 1105001, X45 
45 "'214'" openEF eWAYT )0, 0C'J, 0~0~01, 

46 0I2t5t'! OPCI')EF e)tOP >, 05, 0'4l?J001, OR2, )(45 

C-4 



PST PERMANENT SYMAOL TABLF- MACRO VOI0.4A "AGE 5 

1 ({J~2t61'" OIRDEF <ASCII>, OFLGBM 
2 00217'" OtRDEF <ASCIZ>, DFLG8 M 

3 00220'" DtRDEF <ASECT> 
4 0022101 DIROEF <BlKB )0 

5 0022201 OIROEF <BLKW >, DFLGEV 
6 00223~ OIROEF <'3YTE >. OFLGAM 
7 00224('1 DIRDEF <CSECT> 
8 002250 OIROEF <"SABL> 
9 00226~ DIROEF <F.NABL> 
10 C?l22701 OtRDEF <END > 
11 L'l230P1 O!RDEF <EN"C )0, DFLr.:NI) 
12 "'2~1C11 DJRDEF <EN OM >, DFLMAC, XMACRO 
13 023201 DtRDEF < P.:N I')R >, DFLMA!:. XMACRI') 
14 02330 DtROEF <EOT > 
15 02~40 DtRDEF <E~ROR> 
16 023501 DIRDEF <F.VE'N > 
17 1712361'1 DIRDEF <FLT2 )0, DFLGEV, XFLTG 
18 0237t'1 DtRDEF <FLT4 )0, DFLGEV, )(FLTG 
19 Pl24001 OIROEF <GLOBL)o 
20 0241~ DIRDEF <IDENT> 
21 0242'" DIROEF <!F )0, OFLCN" 
22 Pl243'" DIROEF <IF"F )0, DFLCNO 
23 012440 OIRDEF <IFF-Q >, DFtt';ND 
24 02450 OIRDEF <IFF )0, DFLCNO 
25 (;'124601 DtRDEF <IFG )0, OPLCND 
26 1.'12,47171 DtROEF <!FGE >, DFLrND 
27 P1250C11 OIRDEF <IFGT >, OFLr.:NI) 
28 02!51'-" DIROEF <IF"L >, OFLeND 
29 02'520 DIRDEF <IFLE >, DFLCNI) 
30 02530 OIRDEF <tFLT >, OFLeN!) 
31 02540 DIRDEF <IFNDF>, DFLCNO 
32 0255'" DtRDEf cIFNE >, DFLeN'" 
33 02!1S6t)1 DtRDEF <IFNZ >, OFLt":NI) 
34 02570 DIRDEF <1FT >, DFLCNI) 
35 02600 OIROEF <!FTF >, OFLeN!) 
36 0261'" DIRDEF <IFZ >, OFLeN!') 
37 l'J2~2(:11 DIRDEF <tIF > 
38 026312' DIRDEF <tRP )0, DFlMAC, X~AeRO 

39 02~4P1 DIRDEF <tRPC >, DFLMAC, XMACRlj 
40 PJ211)5C'1 DIROEF <LIMIT>, OFLGEV 
41 "'2e60 OIRDEF IICLIST > 

C-5 



PST PF.RMANENT SVMROL TABLe-' MAC~O Vt'J04A ~Ar,E 6 

1 0C?1267'" OIRDEF <MACIol >, DFLMAC, )(MAC~" 
2 00210171 DIRI)EF <fo.1AC~O>, OFLMAC, )(~ACRO 
3 00211'" DIRDEF e"1CALl>, DFLSMC:, XMACRn 
4 0V'1272t'1 OIROEF et~E)(IT> , X"1ACRn 
5 00273'" DtRDEF <NARG > , XMACRn 
6 002140 OIROEF <NCHR > , XMACRn 
7 00275A DIRI')EF eNLIST> 
8 021276'" DIROEF <NTVPE> , Xfo.1ACRn 
9 00217'" DIRI')EF <001') > 
10 03C'10!'1 OIROEF <PAGE ,. 
11 17131'11'" DIRI')EF <PRINT> 
12 "'3~20 OIRDEF' cRAI')IX> 
13 031'131'1 DtlolDEF <RAf')S0>, DFLGEV 
14 "'304'" OIRDEF <REM > 
15 A3t:'15("1 DIROEF cREPT ,., OFlMAC, )(M~C:RO 
16 0301601 DIROEF cSBTTl> 
17 0307171 DIRDEF cTITLE'> 
18 03t0P.! WRDSYMI 
19 0310'" OIROEF <WORD >, DFlGEV 
20 
21 
2~ 0311'" PSTTOPI ,TOP LIMIT 
23 
24 ~0"'001 .EN!) 

PST PFRMANENT SVMROL TARLF MACRO Vt'l04A ~AGE 6+ 
SYMBOL TARLE 

ASCII • *****-* G ASCll • ****** G ASECT -****-** r, 
BlKS - ****** G BLKW • ****** r, BYTE II ****** G 
CSECT II ***-**-* G OFLCN!,)- 0~0C'104 G DFLG6 M - 0iHHHtII G 
DFLGEV- 0~0020 G DFLMAC- o I'IV'I 0 C?l2 G DFlS~C- 21"'0001 G 
OR1 - 0~0200 D~2 - 00101010 D~AAL • ****** G 
ENABL - ****** G E~D - ****** r; fNOC • ****** G 
ENDM • ****** G ENDR • ****** G fOT - ****** G 
ERROR - ****** G EVEN - ****** G FLT2 - ****** G 
FLT4 • ****** G GLORL - ****** G I"ENT - ****** G 
IF - ****** G IFDF • ****** G IFE"Q • ****** G 
IFF - ****** C; IFG - ****** G IFGf • ****** r, 
IFGT • ****** G IFL • ****** G IFLE - ****** G 
IFLT • ****** G IFNOF II ****** r, IFNF - ****** G 
IFNZ - ****** G 1FT • ****** G IFTF - ****** Ii 
IFZ • ****** G IIF - ****** G I~P - ****** t,; 
IRPC -****** G LtMtT - ****** G LIST - ****** G 
MACR • ***.** G MACRO - ****** G MCALL • ****** G 
MEXIT • ****** G NARG - ****** G NCH~ - ****** G 
NLIST • ****** G NTVPE • ****** G 01)0 • ****** G 
OPCL00l- ****** G OPCL01- ****** G OPCL02. ****** G 
OPCL03- ****** G OPCL04- ****** G OPCL0!5. ****** G 
OPCL06- ****** G OPCL07. ****** G OPCL0~. ****** G 
OPCL0g- ****** G OPCL1~· ****** G OpeL1t- ****** r; 
OPCL12. ****** G OPCL13- ****** G OPC:L14. ****** G 
PAGE: • ****** G PQINT - ****** t:; PST~4S 001Q1C'!001Rr; 0102 
PSTTOp 0~3110RG "'02 RADIX • ****** G RAD50 • ****** G 
REM - ****** G REPT - ****** G S~TTL • ****** G 
TYTLE - ****** G WORD - ****** G WRI)SYt.4 0~3tOlt'lRG 0I~2 

• APS. 001017100 ~0C'! 

00100100 0101 
PSTSEr'.: 0~3tlOi ClJ02 

ERROR~ r'lfTECTEDI 0 
FREE eO~E' 16991. WO~DS 

C-6 ,LPI/eRF<PST. 17I 4A 



APPENDIX D 

LISTING OF SYSMAC.SML 

(SYSTEM MACRO FILE) 

, P~P.l1 DOS SYSTEM MACROS V0~3A 
,COPYRlr,HT 1972 DIGITAL E~UIPMENT CORPORATI~N , 

R0.~An0 

r:U·~~~l 
R2.~An2 
R3·);~n3 
R4.';A04 
R5"~A05 
R6.~An6 

R7"~An7 
SP.~ArH) 

JUNE 1, 1972. 

PC.""'~' 
PSW.M')177776 
SWR·An17757~ 

.ENOM 
,MACRO .INIT .LBLCK 
.MCALL .AMOOE 
.AMODE .LBLCI( 
EMT cA06> 
.ENOM 

.MACR~ .RLSE .LBLCK 
,MCALL .AMODE 
.AMODE .L8LCK 
EMT cA07> 
.ENOM 

.MACRO ,CLOSF .LBLCI( 

.MCALL ,At.10DE 
,AMODE .L8LCK 
EMT <AOI7> 
.ENOM 

.MACRO .READ .LBLCI(,.LRUFF 

.MCALL .AMOOE 

.AMODE .LBUFF 
• M10DE • L8LCI< 
EMT <"'04> 
.ENOM 

D-1 



.UACRO ,WRITE' .L8LCI("L~UFF 

.MCALL ,AMODE 

.AMODE .LBlJFF 

.AMCDt .LBLCK 
EMT 4(A02> 
.ENDM 

f)'1ACRO 
.MCALL 
,CODE 
.OPEN 
.EN"~ 

.OP~NC .LBLCK,.F~LCK 

.COOE,.nPEN 

.FBLCK,CA"2> 

.LBLCK,.F8L.CK 

.MACRO 
,MCALL 
.CODE 
.OPEN 
.ENnM 

.OPEN! .LBLCK,.F~LCK 

.CODE,.CPEN 
• FIiLCK, <M)4> 
.LBLCK,.F~L.CK 

.f.1ACRO 

.MCALL 

.CODE 

.OPfN 

.OF'ENU .LBLCK,.F8LCK 

.CO"E,.np~N 

.FNDM 

• FBL.CK , <"I'll> 
,LBLCK,.FRLCK 

.MACRO 

.MCALL 
,CODE 
.OPE~ 

.EN[')M 

.OPENt: .L8LCK,.F~LCK 

.CODE,.OPF.:N 

.FBlCK,CA01J> 

.LBlCK,.FALCK 

.MACRO 

.MCALL 

.CODE 

.CPEN 

.ENDM 

,OPENE .LBLCK,.FALCK 
.COOE"nPEN 
.FBL.CIt,<A03> 
.L8LCI(,.FQLCK 

.MACRO .OPEN .L8LCK,.F~LCK 
,MCALL ,AMOOI: 
.A~ODE .FBLCK 
.AMODE .LBLCK 
EMT <"016> 
.ENDM 

.MACR~ .WAIT .LBLCK 

.MCALL .~MODF: 

.AMODE .LBLCK 
EMT <"01> 
.ENDM 

.MAt:RO .WAITR ,I.BLCK, .AnOR 
• MCALL • AMI")DF 
.AMODE .AO"R 
.AMOOE .LBLCK 
EMT <40"'> 
,ENDP-1 

,MACRO ,ALOCK .LBLCK,.BALr.K 
.MCALL .AMODF 
,AP-10DE .RelCK 
.AMODE ,L8LCK 
EMT <A011> 
,FNDM 

D-2 



.MACRO ,TRAN 

.MCALL ,AMOOE 
,AMOOE ,TBLCK 
.AMOOE .LBLCK 
EMT c"010> 
.ENDM 

.~ueRO .SPEC 
,MeALL .AMODE 
.AMt'lOE .SARG 
.AMOOE .L8LCI< 
EMT c A OI2> 
.ENDM 

,MACRO .STAT 
.MCALL .AMOOE 
.AMOOE .l-BLCK 
EMT cA013> 
.ENDM 

.MACRO .ALLOC 

.MCALL .AMOOE 
• AMOOE • N 
.AMODf .F:BLCK 
.AMOOe: .LBLCI< 
EMT cA015> 
.ENOM 

.MAeRO .DELET 
• MC ALL •. AMOOE 
.AMODE .FBLCI< 
.AMODF .LBLCK 
EMT <A021> 
.ENDM 

.MACRO .RENAM 
• MCALL • Mt400E 
,AMODE ,NFB 
• Af!40DE .OFB 
.AMODE .LBLCK 
EMT cA020> 
.EN""" 

.MACRO .APPEND 

.MC"LL .AM-OOE: 
,AMODE .2FB 
.AMOOE ,IFB 
."MODf ,LBLCK 
EMT cA02> 
.ENDM 

.MACRO .LOOK 

.MCALL .AMODE 

."MODE ,FBLCK 

.ttF NB •• OP,CLR 

.AMODE .LBLCK 
EMT c"014> 
.ENDM 

.MACRO .I<EEP 

.MCALL .AMODE 

.AMODE ,FBlCK 

.AMODE .LBLCK 
EMT <"024> 
.ENDM 

.LBLCK,.Tl3ltl< 

.LBLCK,.SARG 

,L6LCI< 

.LBLCK,.FBLCK •• N 

.LBLCK,.FBLCI< 

,LBLCI<,.OFe,.NFB 

.LBLCK,.lFB,.2FB 

",esp) 

.LBLCK,.F6LCI( 

D-3 



.~ACRO ,EXIT 
E"iT c Aoe0> 
,ENDM 

.MACRO ,TRAP ,STUS,.ADDR 
,MCAll • A'MODE 
,AMODE .ADOR 
,AMODE ,STUS 
MOV .~Ol,·(SP) 
EMT CAOAtlit 
,ENOM 

,MACRO ,STFPU .STUS,.ADDR 
.MCAll .AMODE 
,AMODf ,ADOR 
•• MODE ,STUS 
HOV .A03,-CSP) 
EMT c AOA1> 
.ENOM 

.~ACRO .RECRD ,L8LCK,.R~lCK 
,HCALl ,AMODE 
,AMODE .~BLCK 
.AMODE ,LBLCK 
£"4T cA025> 
.EN"M 

,M.CRO .DUMP ,LOW,.HIGH"COE 
.MCAlL .AMODE 
,UH1DE .LOW 
,AMOOE ,HIGH 
.AMODE .CDF.: 
EMT CA0f54> 
.EN"M 

.MACRO ,RSTRT ,ADOR 

.HeALL .AMODF 
• Art100E • AODR 
MOV #Ao~,·e~p) 
EMT C A OA1)! 
.f!NOM 

.MACRO ,CORE 
MOV *A0100,-eSp) 
EMT cAOA1> 
.ENDM 

.MACRO ,MONR 
MOV .Aotel,-eSp) 
EMT CAOA1> 
.ENDM 

• MACRO • MONF 
MOV #A010',-(SP) 
EMT CAOA1> 
.ENDM 

.MACRO ,DATE 
MOV .A0103,-(SP) 
EMT c A OA1> 
.ENOM 

0-4 



.MACRO .TIME 
MOV *A0104,-CSP) 
EMT CA041)' 
.ENDM 

,MACRO ,GTUIC 
MOV *A0105,-(8P) 
EMT ":A041> 
.ENDM 

.MACRO .SYSDV 
MOV *A010e,-(SP) 
EMT c"O'l~ 
.ENDM 

.MACRO .RADPK ,ADOR 

.MeALL .AMOD! 

.AMODE .~ODR 
CLR .(5P) 
EM,. cA042)' 
.ENDM 

.MACRO .RADUP .ADDR,.WRD 

.MCALL .AHODr:: 
• AMOOe: ,WRD 
,AMOOE ,AODR 
MOV *A01,-(8P) 
EMT I( A042), 
.ENDM 

,MACRO .D281N ,AODR 
,HeALL .AMOOF 
.AMOOE ,AODR 
MOV *A02,-(SP) 
EMT cA042> 
,ENDM 

.MACPO .BIN20 .ADDR •• WRO 
,MCALL ,AMODE 
,AMOOE .WRD 
.AMOOE ,lODR 
MOV *"03,-(SP) 
EMT ":A042> 
.ENDM 

,MACRO ,02BIN .AODR 
• HeALL • AMODE 
,AMOD! .ADDR 
MOV *"04 •• e8P' 
!MT ."042)0 
.ENDM 

.MACRO .81N20 ,ADOR"WRD 

.HCALL .AMODE 

.AMOOE .WRD 

.AMODE .AOOR 
MOV *"05,-(8P) 
EMT 4I( A 042> 
.ENDM 

D-5 



·MACRO .CSII .CMDBF 
,~CALL .AMOOE 
.At<400E ,CMOBF 
EMT <"056> 
.ENDM 

,MA~RO ,CSI2 ,CSRll< 
.MCALL .AMOOF 
.AMOOE .CSBLK 
EMT <"057> 
,ENDM 

.MACRO 

.MCALL 
,CVTDT 
.F-NDM 

,MACRO 
.MCALL 
.CVTor 
.ENDM 

.DTeVT .ADDR 

.cvro) 
*"00,.ADoR 

.TMCVT .AoDR 
,CVTO' 
*"Ol,'.A"DR 

.MACRO ,CVTO' ,CDE,.ADDR,.V.Ll,.VAL2 
,MCALL .AMOOE 
.IF Nri,.VAL2 
.AMOoE .VAL2 
.ENOC 
,IF NS,.VAL! 
.AMODE .VALl 
,ENr')C 
,AMODE .ADOR 
,AMOoE .CO! 
EMT <"066> 
,ENOM 

• MACRO • GTI'LA 
ClR .. CSP) 
MOV #,,05,-C5P) 
EMT <"041> 
,F-NOM 

.MACRO .STpLA ,AOOR 

.MCALL .AMODE 

.AMOoE ,ACOR 
Mnv *"05,-C8P) 
EMT <"041> 
.ENDM 

.MACRO .GTeIL 
MOV #"0101,-(91') 
EMT <"041> 
.ENDM 

.MACRO .GTSTI< 
elR ",(SP) 
MOV ."04,-eSp) 
EMT <"041> 
,END,., 

.MACRO 

.MCALL 

.AMODE 

.STSTI< 

.AMOOF: 

.AODR 

.ADDR 

0-6 



MOV *A04,-(SP) 
E~T CA04t> 
.ENDM 

.MACRO .~UN .~N8l~ 

.HeAlL .AMODE 

.AMODE ,RNBLK 
EMT CA065> 
.ENDM 

.MACRO ,FLUSH ,COE 

.MCALL ,AMODF 

.AM'ODE .CDP: 
EMT CA067> 
,ENDM 

, THE M4tRO .AMODE ACCEPTS ONE ARGUMENT AND 
, AS A FUNCTION OF THE ADDRESSING MODE nF 
, THE ARGUMENT GENERATES THE APPROPRIAT~ 
, MOV.TO w(SP) .. 
, AOD~ESS MODES THAT ARE TROUBLESOME (E.G, 
, XCS~)' OR UNLIKELY ~E.G. SP) WILL RESULT 
, IN A .ERROR TO CHO INCLUDING THE 
, VALUE OF THE ADDRESS MOOE (E,G .. XCSP) 
, IS RE~RF.SENTEO AS 000066), THE ARGUMENT ITS~lF 
, AND THE TEXT "AODRESSING MODE ILLFGAL AS ~ygTFM 
, MACRO A~GUMENT". , 

,MACRO .AMODE .ARG 

.NTYPE .SYM,.ARG 

.IF LE,.SYM.A05 
MOV .ARG,-(SP) 
,HEX!T 
.ENOC 

.tF EQ"SYM&A070-A010 

.IF LE"SYM&A07-A06 
MOV .ARG,·C~P) 
.MEXIT 
.ENOC 
.ENOt 

.rF EQ,.SYM&A060.A020 
MOV .ARG,w(SP) 
.MEX!T 
.ENOt 

.IF EQ,.SYM&A040 wA040 

.tF LE,.SYM&A07.A05 
MOV .ARG,w(SP) 
.HEX!T 
.ENDC 
.ENDC 

.tF EQ,.SYM&An67.A067 
HOV .ARG,-(5P) 
.MEXIT 
.ENDt 

, r., (R0'. TO r., (R7). 
, *N,-*ADDR 

,r".CR0) TO r"-CR5) 
'['1X(R0) TO r"XCR5) 

D-7 



·ERROR .SYM 
,PRtNT 
.ENDM 

•• ARG ADD~ESStN~ MOOF ILLEGAL 
,AS SYSTEM MAeRO ARGUMENT, 

, THE MAC~O .CODE SETS UP THE FtLEBLOCK 
, WITH THE HOW OPEN CODE. 
, THE AnORESS OF THE FILEqLOCK ~UST 
• BE TN A REGISTER (R~ TO Re) 

.MACRO .CODE .FBLK •• N 

.NTYPE .SYM,.F~LK 

.IF LE,.SYM·A~e 
MOV~ *,N,.A02(.FBL~) ,Q0 TO R! 
,MEXIT 
.ENDC 

.ERROR .SYM 
,PRINT 
.ENDM 

,.FRLK ADDRES~I~G MOD~ ILLEGAL 
,FOR ,OPEN FILE BLOCK 

0-8 



APPENDIX E 

ERROR MESSAGE SUMMARY 

E.l MACRO-II ERROR CODES 

MACRO-II error codes are printed following a field of six 

asterisk characters and on the line preceeding the source line 

containing the error. For example: 

******A 
26 ~~236 ~~~~~2' .WORD REL1+REL2 

The addition of two relocatable symbols is flagged as an A error. 

Error Code 

A 

B 

D 

E 

I 

L 

M 

N 

o 

P 

Q 

R 

Addressing error. 
tion is incorrect. 
error. 

Meaning 

An address within the ins truc­
Also may indicate a relocation 

Bounding error. Instructions or word data are 
being assembled at an odd address in memory. The 
location counter is updated by +1. 

Doubly-defined symbol referenced. Reference was 
made to a symbol which is defined more than once. 

End directive not found. (A listing is generated.) 

Illegal character detected. Illegal characters 
which are also non-printing are replaced by a ? 
on the listing. The character is then ignored. 

Line buffer overflow, i.e., input line greater 
than 132 characters. Extra characters on a line, 
(more than 72 1_) are ignored. 

Multiple definition of a label. A label was en­
countered which was equivalent (in the first six 
characters) to a previously encountered label. 

Number containing 8 or 9 has decimal point missing. 

Q.pcode error. Directive out of context. 

Phase error. A label's definition of value varies 
from one pass to another. 

Questionable syntax. There are missing arguments 
or the instruction scan was not completed or a 
carriage return was not immediately followed by 
a line feed or form feed. 

Register-type error. An invalid use of or refer­
ence to a register has been made. 

E-l 



Error Code 

T 

U 

z 

Meaning 

Truncation error. A number generated more than 
16 bits of significance or an expression genera­
ted more than 8 bits of significance during the 
use of the .BYTE directive. 

Undefined symbol. An undefined symbol was en­
countered during the evaluation of an expression. 
Relative to the expression, the undefined symbol 
is assigned a value of zero. 

Instruction which is not compatible among all 
members of the PDP-II family (11/15, 11/2~, 
11/45) . 

E.2 SYSTEM ERROR MESSAGES 

Error Code 

S2l7 

S2~2 

S2~3 

S2,04 

S2~6 

Meaning 

Insufficient cote space. 

Binary or listing device full. 

Illegal switch 
Too many switches 
Illegal switch value 
Too many switch values 

Too many output file specifications 

No source files specified. 

E-2 



INDEX 

Absolute addressing mode, 1-7, 1-9, 
5-5 

Absolute address mode function, 6-13 
Absolute binary output function, 

6-13 
Absolute program section, 6-33 
Addressing modes, 5-1,5-7 

branch instructions, 5-7 
position independent, 1-6 
preferred, 1-11 
syntax summary, B-2 

Angle brackets, 7-4,7-5,7-7 
Apostrophe 

ASCII conversion, 6-17 
concatenation operator, 7-10 
in system symbols, 1-9, 1-10 
Linker supplied, 4-1 

Argument 
concatenation, 7-10 
delimiters, 3~2 

macro, 7-4 
ASCII character set, A-l 
ASCII conversions 

character string, 6-19 
one character, 6-17 
two characters, 6-17 

.ASCII directive, 6-19 

.ASCIZ directive, 6-20 

.ASECT directive, 6-32, 6-33 
Assembler directive summary, B-14 
Assembler functions, 6-13 
Assembly listing, see listing 
Automatically created symbols, 7-9 

Background material references, 1-1 
Backslash character, 7-7 
Binary extension listing control, 

6-2 
Binary listing control, 6-2 
Binary output enable/disable 

function, 6-13 
Binary radix number, 6-23 
Blank lines in assembly listing, 2-1 
Block storage directives, 6-25 
.BLKB directive, 6-25 
.BLKW directive, 6-25 
Branch instruction addressing, 

5-7, B-9 
.BYTE directive 6-15 

Calls to macros, 7-3 
Character set, 3-1 
Comments, 1-2 

comment field, 2-4 
listing control, 6-2 

Command string, 8-1 
errors in, 8-2 

Common data areas, 6-34 
Complement (one's) operator, 6-28 
Concatenation operator, 7-10 
Conditional assemblies, 1-4, 6-37 

immediate conditionals, 6-39 
PAL-llR conditionals, 6-40 
subconditionals, 6-38 

Conditional block listing control, 
6-3 

Conditional branches, 1-13 
Conventions, 

addressing modes, 1-11 
conditional branches, 1-13 
parameter assignments, 1-12,3-8 
space vs. timing, 1-13 
stack usage, 1-3 

CREF, 8-3 
Cross reference table (CREF), 8-3 
.CSECT directive, 6-32 

Data storage directives, 6-15 
Decimal radix number, 6-23 
Default file specifications, 8-2 
Delimiting characters, 3-2 
Direct assignment, 3-7, 6-36 
Directive summary, B-14 
Dispatch table, 1-13 
Dollar sign ($) character, 2-3, 3-1, 

3-5, 3-10 
Dot (.)character, 2-3, 3-1, 3-5, 

3-12 
as decimal point, 6-23 

Double operand instructions, B-4 
Double register-destination 

instructions, B-13 
/DS, 8-3 
.DSABL directive, 6-13 

Edit-ll, 2-1, 2-2, 2-5, 6-12 
EMT, 5-8 
/EN, 8-3 
.ENABL directive, 6-13 
.END directive, 6-30 
.ENDC directive, 6-37 
.ENDM directive, 7-2, 7-16 
.ENDR directive, 7-18 
.EOT directive, 6-30 
Error codes, E-l 
.ERROR directive, 7-13 
Error message summary, E-l 
.EVEN directive, 6-24 
Expressions, 3-15 

absolute, 3-16 
relocatable, 3-16 
external, 3-16 

X-l 



File specifications, 8-2 
Flowcharting, 1-1 
Floating point 

function, 6-13 
number operator (tF), 6-28 
numbers, 6-26 

Macros, 
arguments, 7-4, 7-8 
calls, 7-3 
definition, 7-1 
formatting definition, 7-3 
nesting, 7-5 

source-double register instruc- terminating, 7-2 
tions, B-ll 

.FLT2 directive, 6-27 

.FLT4 directive, 6-27 
Format control of source program, 

2-5 
Forward references, 

defining location counter, 3-12 
in direct assignments, 3-7 

Functions, assembler, 6-13 
Global symbols, 3-6, 6-34, 6-35 
.GLOBL directive, 6-35 

.IOENT directive, 6-10 

.IF directive, 6-37 

.IFF directive, 6-38 

.IFT directive, 6-38 

.IFTF directive, 6-38 

.IIF directive, 6-40 
Illegal character, 3-3 
Immediate addressing mode, 1-7, 

1-10, 5-4 
Immediate conditionals, 6-39 
Indefinite repeat blocks, 7-14 
Index addressing modes, 1-7, 1-10, 

5-4 
Instruction summary, B-3 
.IRP directive, 7-14 
.IRPC directive, 7-17 

Labels, 6-32, 7-1 
label field, 2-2 

ILl, 8-3 
.LIMIT directive, 6-31 
Line printer assembly listing 

control, 6-3 
Link-II, 1-9, 6-13, 6-33, 6-35 

apostrophe, 4-1 
label assignments, 2-2 

.LIST directive, 6-1 
Lisitng, 

apostrophe, 1-9, 4-1 
blank lines, 2-1 

Macro arguments, 
automatically created local 

symbols, 7-9 
concatenation of, 7-10 
delimiters, 7-4, 7-5 
determining addressing modes,7-l 
determining number of characters 

in, 7-11 
determining number of, 7-11 
numeric arguments passed as 

symbols, 7-7 
Macro call and expansion listing 

control, 6-2 
Macro definitions, 7-1 

listing control, 6-2 
.MACRO directive, 7-1 
Macro expansion 

binary listing control, 6-3 
listing control, 6-3 

Macro libraries, 7-18 
Macro symbols, 3-5, 3-6 
.MCALL directive, 7-18 
.MEXIT directive, 7-2, 7-18 
Modular programming, 1-1 

.NARG directive, 7-11 

.NCHR directive, 7-11 
INL, 8-3 
.NLIST directive, 6-1 
.NTYPE directive, 7-11 
Numeric control, 6-26 
Numeric string symbols, 7-7 
Number instruction (MARK), B-13 
Numbers, 3-15 
Number sign (#) character, 3-12 

Octal radix, 3-13 
number operator (to), 6-23 

.000 directive, 6-24 
One's complement number operator 

(tC), 6-28 
control, 6-1 
control of listing 
Table of Contents, 

Operand field, 2-4 
directives,6-30perate instructions, B-7 
6-3 Operating procedures, 8-1 

Loading MACRO-II, 8-1 
Local register usage, 1-4 
Local symbol block function, 6-13 
Local symbols, 3-9, 7-9 
Location counter, 3-12, 6-32, 6-33 

control, 6-24 
listing control, 6-2 

Lower case ASCII input function, 
6-13 

Operator characters, 
+, 3-3 

, 3-3 
*, 3-4 
I, 3-4 
&, 3-4 
!, 3-4 
t, 3-4 

Operator field, 2-3 

X-2 



.PAGE directive, 6-12, 7-3 
Page ejection, 6-12, 7-3 
Page format, 6-12 
Page headings, 6-7 
Period, see Dot 
Permanent symbols, 3-5, 3-6 
Permanent symbol table listing, C-l 
PIC, see Postion independent code 
Position independent code, 1-6 
.PRINT directive, 7-13 
Priority instruction, B-14 
Program sections, 3-6 

directives, 6-32 

Q errors, 3-3 
Quote (") character, 6-17 

Radix control, 6-22 
temporary, 6-28 

.RADIX directive 6-22 
RADIX-50 character set, A-4 
.RAD50 directive, 6-20 
Recursive code, 1-11 
Reentrant code, 1-11 
Register addressing modes, 1-6, 

5-2, 5-3 
storage savings on, 1-11, 1-12 

Reqister destination instructions, 
B-10 

Register increment operation, 1-13 
Register offset instructions, B-10 
Register symbols, 3-8 
Register usage, 1-4, 1-9 
Relative addressing modes, 1-7, 

1-10, 5-5, 5-6 
Relocatable program sections, 6-32, 

6-34 
Relocation of code, 4-1 
Repeat blocks, 7-17 
.REPT directive, 7-17 

.SBTTL directive, 6-10 
Sections, see Program sections 
Separating characters, 3-2 
SEQ argument to .LIST/.NLIST, 6-2 
Sequence number listing control,6-2 
Single operand instructions, B-5 
Source listing control, 6-2 
Source-double register instructions, 

B-12 
Source register instructions, B-ll 
Special character summary, B-1 
Statement format, 2-1 
Statement terminators, 2-1 
Stack usage, 1-3 
Subconditionals, 6-38 
Subroutines, 1-1 
Subroutine return instruction, B-10 
Switch options, 6-6, 8-3 

Symbol table listing control, 6-3 
Symbols, 

automatically created, 7-9 
evaluation of, 3-14, 3-6 
global, 3-6, 6-34, 6-35 
local, 3-9, 7-9 
macro, 3-5 
numeric strings, 7-7 
permanent, 3-5, 3-6, C-l 
program section names, 6-34 
user-defined, 3-5, 3-6, 3-7 

SYSMAC.SML file, 7-18 
listing of, 0-1 

System error messages, E-2 

Tab character, 2-2 
Teletype mode listing control, 6-3 
Temporary radix control, 6-22, 6-28 
Terms, 3-14 
Terminating characters, 2-3, 2-4 
.TITLE directive, 6-7 
Trap handler, 1-13, 5-8 
Trap instructions, B-9 

Undefined symbols, 6-33 
Up arrow (t) character, 6-22, 6-28, 

7-5 
User-defined symbols, 3-5, 3-6, 3-7 

.WORD directive, 6-16 

Z error code, 5-3 

X-3 



HOW TO OBTAIN SOFTWARE INFORMATION 

Announcements for new and revised software, as well as programming notes, 
software problems, and documentation corrections are published by Software 
Information Service in the following newsletters. 

Digital Software News for the PDP-8 & PDP-12 
Digital Software News for the PDP-II 
Digital Software News for the PDP-9/15 Family 

These newsletters contain information applicable to software available from 
Digital's Program Library, Articles in Digital Software News update the 
cumulative Software Performance Summary which is contained in each basic 
kit of system software for new computers. To assure that the monthly Digital 
Software News is sent to the appropriate software contact at your installation, 
please check with the Software Specialist or Sales Engineer at your nearest 
Digital office. 

Questions or problems concerning Digital's Software should be reported to 
the Software Specialist. In cases where no Software Specialist is available, 
please send a Software Performance Report form with details of the problem to: 

Software Information Service 
Digital Equipment Corporation 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 

These forms which are provided in the software kit should be fully filled out 
and accompanied by teletype output as well as listings or tapes of the user 
program to facilitate a complete investigation. An answer will be sent to the 
individua I and appropriate topics of genera I interest wi II be printed in the 
newsletter. 

Orders for new and revised software and manuals, additional Software Per­
formance Report forms, and software price lists should be directed to the 
nearest Digital Field office or representative. U.S.A. customers may order 
directly from the Procrnm Library in Maynard. When ordering, include the 
code number and a brief description of the software requested. 

Digital Equipment Computer Users Society (DECUS) maintains a user library 
and publishes a catalog of programs as well as the DECUSCOPE magazine 
for its members and non-members who request it. For further information 
please write to: 

DECUS 
Digital Equipment Corporation 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 



- - - - - - - - - - - - - - - - Fold Here - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATl-S 

Postage will be paid by: 

mamaama 
Digital Equipment Corporation 
Software Information Services 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD, MASS. 


	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	X-01
	X-02
	X-03
	replyA
	replyB

