DEC-11-OMACA-A-D

MACRO-11 ASSEMBLER
PROGRAMMER’S
MANUAL

MACRO-11 ASSEMBLER
PROGRAMMER'S MANUAL

Macro Assembly Language
and

Relocatable Assembler
for the

Disk Operating System

June 1972

SOFTWARE SUPPORT CATEGORY

The software described in this document
1s supported by DEC unter category I,
defined on page iii of this document.

For additional copies, order No. DEC~11-OMACA-A-D from Digital
Equipment Corporation, Software Distribution Center, Building
1-2, Maynard, Massachusetts, 01754

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS

First Printing, April 1972
Second Printing, June 1972

Your attention is invited to the last two pages

of this document. The "How to Obtain Software
Information" page tells you how to keep up-to-date
with DEC's software. The "Reader's Comments" page
when filled in and mailed, is beneficial to both

you and DEC; any comments received are acknowledged
and are considered when documenting subsequent manuals,

Copyright.<::)l972 by Digital Equipment Corporation.

This document is for information purposes only,
and is subject to change without notice.

Associated Documents:

PDP-11/20 Processor Handbook 112.01071.1855
PDP-11/45 Processor Handbook 112.01071.1876

PDP-11 Peripherals and Interfacing Handbook
112.01071.1854

PDP-11 Disk Operating System Monitor
Programmer's Handbook, DEC-11-MWDB-D

PDP-11 Batch User's Guide, DEC-11-OBUDA-A-D

PDP~11 Edit=-1l1 Text Editor
Programmer's Manual, DEC-11-EEDA-D

PDP-11 ODT-11lR Debugging Program
Programmer's Manual, DEC-11-OODA-D

PDP-11 PIP, File Utility Package,
Programmer's Manual, DEC-11-PIDB-D

PDP-11 Link-11 Linker and Libr-11 Librarian
Programmer's Manual, DEC-11-ZLDB-D

The following are trademarks of
Digital Equipment Corporation

DEC PDP-11
DIGITAL (logo) COMTEX-11
UNIBUS RSTS~11

DECtape RSX-11

PREFACE

This manual describes the PDP-11 MACRO-11 Assembler and
Assembly Language. It also describes, in brief, how to program
the PDP-11 computer. It is recommended that the reader have with
him copies of the PDP-11l Processor Handbook and, optionally, the

PDP-11 Peripherals and Interfacing Handbook. References are made

to these documents throughout this document (although this document
does stand complete by itself, the additional material provides
further details). The user is also advised to obtain a PDP-11
pocket Instruction List card for easy reference. (These items

can be obtained from the DEC Software Distribution Center.)

MACRO-11 operates under the PDP-11 DOS (Disk Operating System)
Monitor and the PDP-11 BATCH Monitor.

Some notable features of MACRO-11 are:
l. Program and command string control of assembly
functions.

2. Device and file name specifications for input and
output files

3. Error listing on command output device
4. Double buffered and concurrent I/0
5. Alphabetized, formatted symbol table listing
6. Relocatable object modules
7. Global symbols for linking between object modules
8. Conditional assembly directives
9. Program sectioning directives
10. User defined macros
11. Comprehensive set of system macros
12, Extensive listing control
13, Symbolic cross referencing.

iii

SOFTWARE SUPPORT CATEGORIES

Digital Equipment Corporation (DEC) makes available four categories of software. These
categories reflect the types of support a customer may expect from DEC for a specified software
product. DEC reserves the right to change the category of a software product at any time.

The four categories are as follows:

CATEGORY |
Software Products Supported at no Charge

This classification includes current versions of monitors, programming languages, and
support programs provided by DEC. DEC will provide installation (when applicable), advisory,
and remedial support at no charge. These services are limited to original purchasers of DEC
computer systems who have the requisite DEC equipment and software products.

At the option of DEC, a software product may be recategorized from Category | to
Category 1l for a particular customer if the software product has been modified by the customer
or a third party .

CATEGORY 1l
Software Products that Receive Support for a Fee

This category includes prior versions of Category | programs and all other programs avail-
able from DEC for which support is given. Programming assistance (additional support), as
available, will be provided on these DEC programs and non-DEC programs when used in con-
junction with these DEC programs and equipment supplied by DEC .

CATEGORY I}
Pre-Release Software

DEC may elect to release certain software products to customers in order to facilitate
final testing and/or customer familiarization. In this event, DEC will limit the use of such
pre-release software to internal, non-competitive applications. Category Il software is only
supported by DEC where this support is consistent with evaluation of the software product.
While DEC will be grateful for the reporting of any criticism and suggestions pertaining to a
pre-release, there exists no commitment to respond to these reports.

CATEGORY IV
Non=-Supported Software

This category includes all programs for which no support is given

iv

CHAPTER

CHAPTER

CHAPTER

CONTENTS

PART I

INTRODUCTION TO MACRO-11

1 FUNDAMENTALS OF PROGRAMMING THE PDP-11

1.1
1.1.1

1.1.2
1.1.3
1.2
1.3
1.4
1.5
1.6
l.6.1
1.6.2
1.7

MODULAR PROGRAMMING

Commenting PDP-11 Assembly Language
Programs

Localized Register Usage
Conditional Assemblies

POSITION INDEPENDENT CODE (PIC)
REENTRANT CODE

PREFERRED ADDRESSING MODES
PARAMETER ASSIGNMENTS

SPACE VS, TIMING TRADEOFFS

Trap Handler

Register Increment

CONDITIONAL BRANCH INSTRUCTIONS

2 SOURCE PROGRAM FORMAT

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2

STATEMENT FORMAT
Label Field
Operator Field
Operand Field
Comment Field
FORMAT CONTROL

PART II

DETAILS ON PROGRAMMING IN MACRO-11

3 SYMBOLS AND EXPRESSIONS

3.1

3.1.1
3.1.2
3.1.3
3.2

3.2.1
3.2.2

CHARACTER SET

Separating and Delimiting Characters
Illegal Characters

Operator Characters

MACRO-11 SYMBOLS

Permanent Symbols

User-Defined and MACRO symbols

1-11
1-11
1-12
1-13
1-13
1-13
1-13

CHAPTER

CHAPTER

CHAPTER

DIRECT ASSIGNMENT
REGISTER SYMBOLS

LOCAL SYMBOLS

ASSEMBLY LOCATION COUNTER

NUMBERS
TERMS

EXPRESSIONS

4 RELOCATION AND LINKING

5 ADDRESSING MODES

5.9

5.10
5.11
5.12
5.13
5.14

REGISTER MODE

REGISTER DEFERRED MODE
AUTOINCREMENT MODE
AUTOINCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT DEFERRED MODE

INDEX MODE

INDEX DEFERRED MODE

IMMEDIATE MODE

ABSOLUTE MODE

RELATIVE MODE

RELATIVE DEFERRED MODE

TABLE OF MODE FORMS AND CODES
BRANCH INSTRUCTION ADDRESSING

PART IIT

MACRO~-11 ASSEMBLER DIRECTIVES

6 GENERAL ASSEMBLER DIRECTIVES
LISTING CONTROL DIRECTIVES
.LIST and .NLIST

Page Headings

6.1

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.2

6.3

6.3.1
6.3.2
6.3.3

.TITLE
.SBTTL
. IDENT

Page Ejection

FUNCTIONS:

.ENABL AND .DSABL DIRECTIVES

DATA STORAGE DIRECTIVES

.BYTE
.WORD

ASCII Conversion of One or Two Characters

vi

3-7
3-8
3-9
3-12
3-13
3-14
3-15

6-1

6-7

6-7

6-10
6-10
6-12
6-13
6-15
6-15
6-16
6-17

CHAPTER

6.3.4
6.3.5
6.3.6
6.4
6.4.1
6.4.2
6.5
6.5.1
6.5.2
6.5.3
6.6
6.6.1
6.6.2
6.7
6.7.1
6.7.2
6.8
6.9
6.10
6.11
6.11.1
6.11.2
6.11.3

.ASCIT

.ASCIZ

.RADS Y

RADIX CONTROL

.RADIX

Temporary Radix Control: 4D, 40, and 4B
LOCATION COUNTER CONTROL

.EVEN

.ODD

.BLKB and .BLKW

NUMERIC CONTROL

.FLT2 and .FLT4

Temporary Numeric Control: 4F and 4C
TERMINATING DIRECTIVES

. END

.EOT

PROGRAM BOUNDARIES DIRECTIVE

PROGRAM SECTION DIRECTIVES

SYMBOL CONTROL: .GLOBL

CONDITIONAL ASSEMBLY DIRECTIVES
Subconditionals

Immediate Conditionals

PAL-11R Conditional Assembly Directives

7 MACRO DIRECTIVES

7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.4
7.5
7.6
7.7
7.8

MACRO DEFINITION

.MACRO

. ENDM

.MEXIT

MACRO Definition Formatting

MACRO CALLS

ARGUMENTS TO MACRO CALLS AND DEFINITIONS
Macro Nesting

Special Characters

Numeric Arguments Passed as Symbols
Number of Arguments

Automatically Created Symbols
Concatenation

+NARG, .NCHR, AND .NTYPE

-ERROR and .PRINT

INDEFINITE REPEAT BLOCK: .IRP AND .IRPC
REPEAT BLOCK: . REPT

MACRO LIBRARIES: .MCALL

vii

6-19
6-20
6-20
6-22
6-22
6-22
6-24
6-24
6-24
6-25
6-26
6-27
6-28
6-30
6-30
6-30
6-31
6-32
6-35
6-37
6-38
6-39
6-40

~J
]
=

\l\l\l\ll\l\l\l\l
1
N U Www N N

N NN
1 i 1 1
O oo

7-10
7-11
7-13
7-14
7-17
7-18

CHAPTER 8
8
8
8
8

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

PART IV

OPERATING PROCEDURES

OPERATING PROCEDURES

.1
.2
.3
.4

LOADING MACRO-11

COMMAND INPUT STRING

SWITCH OPTIONS

CREF, CROSS-REFERENCE TABLE GENERATION

A AMACRO—ll CHARACTER SETS

A.l
A.2

ASCITI CHARACTER SET
RADIX-5@ CHARACTER SET

B MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER

B.1l
B.2
B.3
B.3.1
B.3.2
B.3.3
B.3.4
B.3.5
B.3.6
B.3.7
B.3.8
B.3.9
B.3.10
B.3.11
B.3.12
B.3.13
B.3.14
B.4

SPECIAL CHARACTERS

ADDRESS MODE SYNTAX
INSTRUCTIONS

Double-Operand Instructions
Single-Operand Instructions
Operate Instructions

Trap Instructions

Branch Instructions

Register Instructions
Register-Offset

Subroutine Return
Source-Register
Floating-Point Source Double Register
Source - Double Register
Double Register - Destination
Number

Priority

ASSEMBLER DIRECTIVES

C PERMANENT SYMBOL TABLE

D LISTING OF SYSMAC.SML (SYSTEM MACRO FILE)

E ERROR MESSAGE SUMMARY

MACRO-11 ERROR CODES
SYSTEM ERROR MESSAGES

viii

A-1
A-4

B-1
B-2
B-3
B-4
B-5
B-7
B-9
B-9
B-10
B-10
B-10
B-11
B-11
B-12
B-13
B-13
B-14
B-14

E-1
E-2

CHAPTER 1

FUNDAMENTALS OF PROGRAMMING THE PDP-11

This Chapter presents some fundamental software concepts es-
- sential to efficient assembly language programming of the PDP-11
computer. A description of the hardware components of the PDP-11
family can be found in the two DEC paperback handbooks:

PDP-11 Processor Handbook (11/20 or 11/45 edition)
PDP-11 Peripherals and Interfacing Handbook

No attempt is made in this document to describe the PDP-11
hardware or the function of the various PDP-11 instructions. The
reader is advised to become familiar with this material before pro-

ceeding.

The new PDP-1l1 programmer is advised to read this Chapter
before reading further in this manual. The concepts in this
Chapter will create a conceptual matrix within which explanations
of the language fit. Since these are the techniques found to work
best with the PDP~1l and are used in PDP-1ll system programs, it is
advisable to be considering them from the very start of your PDP-11

programming experience.

1.1 MODULAR PROGRAMMING

The PDP-11 family of computers lend themselves most easily
to a modular system of programming. In such a system the program-
mer must envision the entire program and break it down into con-
stituent subroutines. This will provide for the best use of the
PDP-11 hardware (as will become clearer later in this Chapter),
as well as resulting in programs which are more easily modified
than those coded with straight-line coding techniques.

To this end, flowcharting of the entire system is best per-
formed prior to coding rather than during or after the coding
effort. The programmer is then able to attack small bits of the

program at any one time. Subroutines of approximately one or two
pages are considered desirable.

Modular programming practices maximize the usefulness of an
installation's resources. Programmed modules can be used in other
programs or systems where similar or identical functions are re-
quired without the overhead of redundant development. Software
modules devloped as functional entities are more likely to be
free of serious logical errors as a result of the original pro-
gramming effort. Confidence in such modules allows for easy crea-

tion of later systems incorporating proven pieces.

Modular development provides for ease of use and modification
rather than simplifying the original development. Some pains must
be taken to ensure correct modular system development, but the
benefits of standardization to the generations of maintenance pro-
grammers which deal with a given system are many. (See also the
notes under Commenting Assembly Language Programs.)

Modular development forces an awareness of the final system.
Ideally, this should cause all components of the system to be
considered from the very beginning of the development effort

rather than patched into a partially-developed system.

It is assumed that the human mind can best work with limited
pieces of information at any one time, combining the results of
the individual functions to encompass the entire program in steps.
PDP-11 assembly language programming best follows a tree-like
structure with the top of the tree being the final results and
the base being the smallest component functions. (The Assembler
itself is a tree structure and is briefly described in Figure 1-1.)

1.1.1 Commenting PDP-11 Assembly Language Programs

When programming in a modular fashion, it is desirable to
heavily comment the beginning of each subroutine, telling what

that routine does: its inputs, outputs, and register usage.

Since subroutines are short and encompass only one operation

it is not necessary to tell how the subroutine functions, but only

Assembler

L

Command Source E%g:iy(
String Program Processing isting,
Interpreter Input Symbol Table
Output
Line
| Operator Terminator
Instruction Assembler Macro
Mnemonic Directives Processor

Figure 1-1 Problem Oriented Tree-Structure

1-3

what it does. The how should be documented only when the procedure
is not obvious to the reader. This enables any later inspection
of the subroutine to disclose the maximum amount of useful informa-

tion to the reader.

1.1.2 Localized Register Usage

A useful technique in writing subroutines is to save all regis-
ters upon entering a subroutine and restore them prior to leaving
the subroutine. This allows the programmer unrestricted use of the
PDP-11 registers, including the program stack, during a subroutine.

Use of registers avoids two and three-word addressing instruc-
tions. The code in Figure 1-2 compares the use of registers with
symbolic addressing. Register use is faster and requires less stor-
age space than symbolic addressing.

1.1.3 Conditional Assemblies

Conditional assemblies are valuable in macro definitions. The
expansion of a macro can be altered during assembly as a result of
specific arguments passed and their use in conditionals. For example,
a macro can be written to handle a given data item differently, de-
pending upon the value of the item. Only a single algorithm need be.
expanded with each macro call. (Conditionals are described in detail
in Section 6.11.)

Conditional assemblies can also be used to generate versions of
a program from a single source. This is usually done as a result of
one or more symbols being either defined or undefined. Conditional
assemblies are preferred to the creation of a multiplicity of
sources. This principle is followed in the creation of PDP-11 system
programs for the following reasons:

a. Maintenance of a single source program is easier,
and guarantees that a change in one version of the
program, which may affect other versions, is re-
flected automatically in all possible versions.

A AN -

N

10
11
12
13

gea2eée
goar6a
go2R66
gean7e
peanz2

geanzé
gee1en
gr21e?2

p21e6
P11
p2112
2114

v2122
g2124

p2137
p2132
02136
g2142
P2142
p2144
02146
re18e
ve182

re154

2167

PR166
ra2170

p2174
PR176

vaeae?
p22ce

2210
ge?12
r2227
ne22?
v2224

2226
02232

1728
P@E337E
nR1432
11420¢
n20e27
1776023
104453
P1rL4€
7218704
rp2e34
2p5724
r1p203
PPRATE
P26727
PR2¢26
177623
pe14e2
P16700
LRI
rir3e2

1281
13%¢
nER37E
pE2402
PAEING
rA3I7A
196742
rL260Y
raevae

1481

PLP167 1908
raogd2!
762767
rprace
rpegle!
PRP726

n3z7¢1 2081
reegs7
fp1e0l
PLEL2Y
177760
PRE721
Par227 218t
rR1744!
101404

128742
112122 2351

22%¢
rRPL67
177326

ZIFT
CALL
BGT
BF @
MOVR
cMP

BLOS
MOV
Moy

TST
Moy
NFG
cMP

BFQ
Moy

MOV
caLt
BGT
BLT
DEC
BGY
TaTR
MOV
BR

MOV

BTS

BR
BT

BMNE
MoV

TST
cMp

BLOS
ERROR
TSTR
MOVR
RETURN

CALL
JMP

JFNDE

Figure 1-2

208

1rs

108
~(92)IRG
RQ,#MT,MAY

228
Ri,=(SP)
MEBARG,RY

(RiY+

RZ2,RJ

R?
MERTYP , 4MT MAC

128
MEBECNT,RQ

RX,R2
2rg

138

148

RP

128
w(R2)
(SPY+,R
i g

RY ,¥SRMRP

WLCLME,LCFLAG

9s
HPPVMAmY , R

218
»BFMB(R1) ,RY

IMOVE A CHARACTFR

jLOCP IF AT ZERC

sFNR TF ZFRO

$TERMTNATPR, RACK L'P POTNTER
$ENR OF TYPE?

' YES
1REMENBFR RFAR PCINTER

3 AND WRTTF POTNTER
$ASSUME MACRO
P TRUE?

3 YES, LeE I7
PRET ARG NUMRER

JRESET WRTTF POTNTER

JMOVE A BYTF

JLOCP 1IF PN?

JFND TF LFSS THAN ZFRC

$ARF WE THERE YET?

) NO

$YES, BACK LP PCINTER

JRPFSET READ POINTER

JFND OF ARGUMENT SURSTITLTION

tFND OF LTINF, SAVF POINTER

JFLAG AS MACRC EXPANSTON

JMACRC, EMD OF RLOCK?

} o NO
tYES, FOINT TC NEXT RLOCK

(FiY+ IMOVE FAST | INK
RZ,#%L.INRUF+QRECLFN JNVFRFLCW?

238 $ NOC

L tYES, FLAG FRROF

w(R2) } AND MOVE PLINTFR RACK

(RLY+, (R2Y4+

ENDMAC
18

PMOVE CHAR TNTOD {_INF RUFFFR

1CLMSE MACRN

Segment of PDP-11 Code
Showing 1, 2, and 3-word Instructions

b. Distribution of a single source program allows a
customer or individual user to tailor a system to
his configuration and needs, and continue to up-
date the system as the hardware environment or
programming requirements change.

c. As in the case of maintenance, the debugging and
checkout phase of a single program (even one con-
taining many separate modules) is easier than the
testing of several distinct versions of the same
basic program.

1.2 POSITION INDEPENDENT CODE (PIC)

NOTE

As this Sgction is quite detailed, it may be
bypassed in the initial reading of the manual.

The output of MACRO-1l1l (and PAL-1lR) assemblies is a relo-
catable object module. This module, under DOS, is linked (with
Link-11) to a specified address prior to being executed.

Once linked, a program can generally be loaded and executed
only at the address specified at link time. This is because the
Linker has had to make adjustments in some lines to reflect the
absolute area of core (locations) in which the program is to run.

It is possible to write a source program than can
be loaded and run in any section of core. Such a program is
said to consist of position independent code. The construction
of position independent code is dependent upon the correct usage
of PDP-11 addressing modes. (Addressing modes are described in
detail in Chapter 5. The remainder of this Section assumes the
reader is familiar with the various addressing modes.)

All addressing modes involving only register references are
position independent. These modes are as follows:

R register mode

@r deferred register mode

(R)+ autoincrement mode
@(R)+ deferred autoincrement mode
-(R) autodecrement mode
@- (Rr) deferred autodecrement mode

When using these addressing modes, position independence is guaran-
teed providing the contents of the registers have been supplied
such that they are not dependent upon a particular core location.

The relative addressing modes are generally position indepen-
dent. These modes are as follows:

A relative mode
@A relative deferred mode

Relative modes are not position independent when A is an ab-
solute address (that is, a non-relocatable address) and is refer-
enced from a relocatable module.

Index modes can be either position independent or nonposition
independent, according to their usage in the program. These modes
are:

X (R) index mode
@X (R) index deferred mode

Where the base, X, is position independent, the reference is also

position independent. For example:

MOV 2(SsP),R@ ;POSITION INDEPENDENT

N=4

MOV N(SP),Rg@ ;POSITION INDEPENDENT
CLR ADDR(R1) ;NONPOSITION INDEPENDENT

Caution must be exercised in the use of index modes in position

independent code.

Immediate mode can also be either position independent or
not, according to its usage. Immediate mode references are for-
matted as follows:

#N immediate mode

Where an absolute number or a symbol defined by an absolute direct
assignment replaces N, the code is position independent. Where a

label replaces N, the code is nonposition independent. (That is,

immediate mode references are position independent only where N

is an absolute value.)

Absolute mode addressing is unlikely to be position inde-
pendent and should be avoided when coding position independently.
Absolute mode addressing references are formatted as follows:

Q#A absolute mode

Since this mode is used to obtain the contents of a specific core

address, it violates the intentions of position independent code.

Such a reference is position independent if A is an absolute address.

Position independent code is used in writing programs such as
device drivers and utility routines which are most useful when
they can be brought into any available core space. Figure 1-3 and
Figure 1-4 show pieces of device driver code; one of which is posi-
tion independent and the other is not.

; DVRINT -- ADDRESS OF DEVICE DRIVER INTERRUPT SERVICE
;VECTOR -~ ABSOLUTE ADDRESS OF DEVICE INTERRUPT VECTOR
;DRIVER —-- START ADDRESS OF DEVICE DRIVER

MOV #DVRINT, VECTOR ;SET INTERRUPT ADDRESS
MOVB DRIVER+6,VECTOR+2 ;SET PRIORITY
CLRB VECTOR+3 ;CLEAR UPPER STATUS BYTE

Figure 1-3 Non-Position Independent Code

MOV PC,R1 ;GET DRIVER START

ADD #DRIVER-.,R1

MOV #VECTOR, R2 ;...& VECTOR ADDRESSES

CLR @R2 ;SET INTERRUPT ADDRESS

MOVB 5(R1) ,@R2 ;...AS START ADDRESS+OFFSET
ADD R1, (R2)+

CLR @R2 ;SET PRIORITY

MOVB 6 (R1) ,@R2

Figure 1-4 Position Independent Code

In both examples it is assumed that the program calling the device
driver has correctly initialized its interrupt vector (VECTOR)
within absolute memory locations @¢-377. The interrupt entry point
offset is in byte DRIVER+5. (The contents of the Driver Table
shows at DRIVER+5: .BYTE DVRINT-DRIVER.) The priority level is
at byte DRIVER+6.

In the first example, the interrupt address is directly in-
serted into the absolute address of VECTOR. Neither of these ad-

dreséing modes are position independent.

The instruction to initialize the driver priority level uses

an offset from the beginning of the driver code to the priority
value and places that value into the absolute address VECTOR+2
(which is not position independent). The final operation clearing

the absolute address VECTOR+3 is also not position independent.

In the position independent code, operations are performed
in registers wherever possible. The process of initializing re-
gisters is carefully planned to be position independent. For ex-
ample: the first two instructions obtain the starting address of
the driver. The current PC value is loaded into R1l, and the off-
set from the start of the driver to the current location is added to
that value. Each of these operations is position independent. The
immediate mode value of VECTOR is loaded into R2; which places
the absolute address of the transfer vector into a register for
later use. The transfer vector is then cleared, and the offset
from the driver starting address is loaded into the vector. The
starting address of the driver is then added into the vector, giv-
ing the desired entry point to the driver. (This is equivalent
to the first statement in Figure 1-3.) Since R2 has been updated
to point to VECTOR+2, that location is then cleared and the priority

level inserted into the appropriate byte.

The position independent code demonstrates a principle of
PDP-11 coding practice, which was discussed earlier; that is, the
programmer is advised to work primarily with register addressing
modes wherever possible, relying on the setup mechanism to deter-

mine position independence.

The MACRO-11 Assembler provides the user with a way of check-
ing the position independence of his code. 1In an assembly listing,
MACRO~11 inserts a ' character following the contents of any word
which requires the Linker to perform an operation. In some cases
this character indicates a nonposition independent instruction,
in other cases, it merely draws the user's attention to the use of
a symbol which may or may not be position independent. The cases
which cause a ' character in the assembly listing are as follows:

a. Absolute mode symbolic references are flagged with an

' character when the reference is not position inde-

pendent. References are not flagged when they are
position independent (i.e., absolute). For example:

MOV @#ADDR,R1 ;PIC ONLY IF ADDR IS ABSOLUTE.

Examples of assembly listings contining the ' character

Index mode and index deferred mode references are

flagged with an '

character when the base is a

symbolic label address (relocatable rather than

an absolute value).

MOV ADDR(R1),R5
MOV @ADDR(R1) ,R5

For example:

;NON-PIC IF ADDR IS RELOCATABLE.
;NON-PIC IF ADDR IS RELOCATABLE.

Relative mode and relative deferred mode are flag-
character when the address specified
is a global symbol. For example:

ged with an '

MOV GLB1,R1

MOV @GLB1,Rl
If the symbol is absolute,

;PIC WHEN GLB1 IS A GLOBAL SYMBOL.
;PIC WHEN GLBl1 IS A GLOBAL SYMBOL.

and is not position independent.

the reference is flagged

Immediate mode references to symbolic labels are
always flagged with an ' character.

MOV #3,R@

;ALWAYS POSITION INDEPENDENT.

MOV #ADDR,R1 ;NON-PIC WHEN ADDR IS RELOCATABLE.

shown below:

€al N) s

Lo -3~ s ¢ BN .S

e
1

. Yy

214744
?11744
21175@
211752
21175¢
147586
e14762
11764
1177¢
1477¢
12002
12212
120712
12016
12022
{enee
12032

1203¢
1epare

EnDP21

rLE702
rar14z!
PR140E

881

rAR7 K7
rgegaz!
P1423

Pi12767
(A A]
rPpEd2!

n327R7
racer2
rRae124!
ratese
rie70Q
r@es36!
viLe72e
PAce44!
pLoes?
Ppe53€!

105767 1%
PRAPELE!
ra1474
PIZTE7
paepeq
rari1e!

«1F NDF
MOV

BFQ
call

FANRC
TST

BFQ
caLL
MAy

CALL
+IF NPF
BTT

BNE
MOV
Mav
MOV
caLlL

FNEC
T&TR

" RFQ

BYT

XCRFF
CRFPNT ,R?

8s
CRERMP
BLKTYP
14

ORJIPMP
WRLKT?6,RI KTYP

RLCMMP
XFCaARS
wFC ARS,EMMASK

1%

OPJFENT,RP
EMNDVEC K, FROY 4
RZ,CBIPNT
ORJIPMP

LLTRL+2

158
WLC,SYM, | FMASQK

are

IFNR PF PaASR 2
$ANY CRFF IN PRPGRESS?

1 MO

PYES, LUMP ANP fLCOSF RUFFFR

$ANY CRJECT QUTRLY?

1 ND

PYER, CUMP TT
$SEY FAR

sPUMP TT

JABS CLTPUT?

LY

$RET FAM VECTIR

JANY LIBTTAG FUTFUT?

t NO
JSYMREL TARLE SUPPRFSSICN?

24 1204F Q170 BME 16¢ 1 VYES

28 (2060 0@EEQRY CLR LFPENT $FORCF NEW PAGE
speeie!

26 12054 apReE7 CLR RECLLPD JSET FCR SYMRMI TABLFE
raeere!

27 12060 012702 2% MOy #LINBLUF,R® PPOTNT TR STORACF
fe154¢!

28 12p64 isy NEXT SYMROL IGET ThRF NEXT SYVROL

29 12074 PR1456 BFQ 208 3 ND MORF

20 12076 REAUNP SUNPACK THE SYMRCL

21 12102 r12703 MOV WENPP2T.RY
?122341

32 12126 CALL EADP2ZR

33 12112 p1270y MNy WMOPE,RY $POTNT TO MODF RITS
roreee!

4 12116 0327114 RYT WEEFFLG, (R sPEFINEDR?
reee1e

35 42122 0p1403 BER 4s Y

6 12124 CALL SFTWRE

27 12130 ¢Rp4nd BR 6¢

2R

39 412132 pi270q 4% Moy #ETARS,RY

1.3 REENTRANT CODE

Both the interrupt handling hardware and the subroutine call
instructions (JSR, RTS, EMT, and TRAP) facilitate writing reentrant
code for the PDP-1l.
given subroutine or program to be shared by more than one process

Reentrant code allows a single copy of a
or task. This reduces the amount of core needed for multi-task &ap-
plications such as the concurrent servicing of peripheral devices.

On the PDP-11, reentrant code depends upon the stack for
storage of temporary data values and the current processing status.
Presence of information in the stack is not affected by the chang-
ing of operational control from one task to another. Control is
always able to return to complete an operation which was begun

earlier but not completed.

1.4 PREFERRED ADDRESSING MODES

Addressing modes are described in detail in Chapter 5. Basic-
ally, the PDP-11 programmer has eight types of register addressing
and four types of addressing through the PC register. Those opera-
tions involving general register addressing take one word of core

storage, while symbolic addressing can cost up to three woxrds.

SrAN

For example:

MOV A,B ; THREE WORDS OF STORAGE
MOV R@,R1 ;ONE WORD OF STORAGE
The user is advised to perform as many operations as possible
with register addressing modes, and use the remaining addressing
modes to preset the registers for an operation. This technique
saves space and time over the course of a program.

1.5 PARAMETER ASSIGNMENTS

Parameter assignments should be used to enable a program to
be easily followed through the use of a symbolic cross reference
(CREF listing). For example:

SYM=42

MOV #SYM, R@

Another standard PDP-11 convention is to name the general registers

as follows:

RY = %@

Rl = 31

R2 = %2

R3 = %3

R4 = 34

R5 = %5

SP = %6 (processor stack pointer)
PC = %7 (program counter)

The PDP-11/45 floating-point accumulators are named by convention

as follows:

ACP = 3§
ACl = 3l
AC2 = %2
AC3 = %3
AC4 = %4
AC5 = &5

Use of these standard symbols makes examination of another pro-
grammer's code much easier than the use of random symbolic names

or constants which do not appear on CREF listings.
NOTE

Where a register reference is made in a 2-bit field
within a floating-point instruction, AC# through

AC3 may be referenced. 1In such instructions the
6-bit source or destination field can be filled with
addressing modes 1 through 7 which reference the pro-
cessor registers R@ through R7 or addressing mode #
which references floating-point registers AC@ through
ACS.

1.6 SPACE VS. TIMING TRADEOFFS

On the PDP-11, as on all computers, some techniques lead to
savings in storage space and others lead to decreased execution
time. Only the individual user can determine which is the best
combination of the two for his application. It is the purpose of
this Section to describe several means of conserving core storage
and/or saving time.

1.6.1 Trap Handler

The use of the trap handler and a dispatch table conserve
core requirements in subroutine calling, but can lead to a decrease
in execution speed due to indirect transfer of control.
To illustrate, a subroutine call can be made in either of the fol-
lowing ways:

1. A JSR instruction which generally requires two PDP-11 words:
JSR R5,SUBA

but is direct and fast.

2, A TRAP instruction which requires one PDP-11 word:
TRAP N
but is indirect and slower. The TRAP handler must use
N to index through a dispatch table of subroutine ad-
dresses and then JMP to the Nth subroutine in the table.

1.6.2 Register Increment

The operation:
CMPB (Rf@)+, (R@)+

is preferable to;
TST (R@)+

to increment RP by 2, especially where the initial contents of Rf
may be odd, but is slower.

1.7 CONDITIONAL BRANCH INSTRUCTIONS

When using the PDP-11 conditional branch instructions, it is
imperative that the correct choice be made between the signed and
the unsigned branches.

SIGNED UNSIGNED

BGE BHIS (BCC)
BLT BLO
BGT BHI
BLE BLOS (BCS)

A common pitfall is to use a signed branch (e.g., BGT) when com-
paring two memory addresses. A problem occurs when the two ad-
dresses have opposite signs; that is, one address goes across the
16K (1ﬂﬂ¢¢ﬂ8) bound. This type of coding error usually appears as
a result of re-linking at different addresses and/or a change in
size of the program.

1-14

CHAPTER 2

SOURCE PROGRAM FORMAT

A source program is composed of a sequence of source lines,
where each line contains a single assembly language statement.
Each line is terminated by either a line feed or a vertical tab
character (which increments the line count by 1) or a form feed
character (which increments both the line count and page count
by 1).

Since Edit-1l automatically appends a line feed to every car-
riage return character, the user need not concern himself with the
statement terminator. However, a carriage return character not
followed by a statement terminator generates an error flag. A
legal statement terminator not immediately preceded by a carriage
return causes the Assembler to insert a carriage return character
for listing purposes.

An assembly language line can contain up to l321¢ characters

(exclusive of the statement terminator). Beyond this limit, ex-

cess characters are ignored and generate an error flag.

2.1 STATEMENT FORMAT

A statement can contain up to four fields which are identi-
fied by order of appearance and by specified terminating characters.
The general format of a MACRO-1l1l assembly language statement is:

label: operator operand ; comments

The label and comment fields are optional. The operator and oper-
and fields are interdependent; either may be omitted depending
upon the contents of the other.

The Assembler interprets and processes these statements one
by one, generating one or more binary instructions or data words
or performing an assembly process. A statement must contain one
of these fields and may contain all four types. (Blank lines are
legal.)

Some statements have one operand, for example:
CLR R@
while others have two, for example:
MOV #344,R2

An assembly language statement must be complete on one source line.
No continuation lines are allowed. (If a continuation is attempted
with a line feed under Edit~1l the Assembler interprets this as the
statement terminator.)

MACRO-11 source statements are formatted with Edit-11 such
that use of the TAB character causes the statement fields to be

aligned. For example:

Label Operator Operand Comment
Field Field Field Field
MASK=-1f
REGEXP: ; REGISTER EXPRESSION

ABSEXP ;MUST BE ABSOLUTE
REGTST: BIT #MASK,VALUE ;3 BITS?

BEQ REGERX :YES, OK
REGERR: ERROR R ;NO, ERROR
REGERX: MOV #DEFFLG {REGFLG,MODE

BIC #MASK,VALUE

BR ABSERX

2.1.1 Label Field

A label is a user-defined symbol which is assigned the value
of the current location counter and entered into the user—defined
symbol table. The value of the label may be either absolute or
relocatable, depending on whether the location counter value is
currently absolute or relocatable. In the latter case, the abso-
lute value of the symbol is assigned by Link-11, i.e., the stated

relocatable value plus the relocation constant.

A label is a symbolic means of referring to a specific loca-
tion within a program. If present, a label always occurs first
in a statement and must be terminated by a colon. For example,
if the current location is absolute lﬁﬂs, the statement:

ABCD: MOV A,B

assigns the value lﬁQS to the label ABCD. Subsequent reference to
ABCD references location lﬂﬂs. In this example if the location

counter were relocatable, the final value of ABCD would be 1Q¢8+K,
where K is the location of the beginning of the relocatable section
in which the label ABCD appears.

More than one label may appear within a single label field;
each label within the field has the same value. For example, if
the current location counter is lQQS, the multiple labels in the
statement:

ABC: $DD: A7.7: MOV A,B

cause each of the three labels ABC, $DD, and A7.7 to be equated
to the value 1ﬂﬂ8. (By convention, $§ and . characters are reserved

for use in system software symbols.)

The first six characters of a label are significant. An er-
ror code is generated if more than one label share the same first
six characters.

A symbol used as a label may not be redefined within the user

program. An attempt to redefine a label results in an error
flag in the assembly listing.

2.1.2 Operator Field

An operator field follows the label field in a statement, and
may contain a macro call, an instruction mnemonic, or an assembler
directive. The operator may be preceded by none, one or more labels
and may be followed by one or more operands and/or a comment.
Leading and trailing spaces and tabs are ignored.

When the operator is a macro call, the Assembler inserts the
appropriate code to expand the macro. When the operator is an
instruction mnemonic, it specifies the instruction to be generated
and the action to be performed on any operand (s) which follow.

When the operator is an Assembler directive, it specifies a certain

function or action to be performed during assembly.

An operator is legally terminated by a space, tab, or any

non~alphanumeric character (symbol component).

Consider the following examples

MOV A,B (space terminates the operator MOV)
MOV@A,B (@ terminates the operator MOV)

When the statement line does not contain an operand or comment,
the operator is terminated by a carriage return followed by a line

feed, vertical tab or form feed character.

A blank operator field is interpreted as a .WORD assembler

directive (See Section 6.3.2).

2.1.3 Operand Field

An operand is that part of a statement which is manipulated
by the operator. Operands may be expressions, numbers, or sym-
bolic or macro arguments (within the context of the operation).
When multiple operands appear within a statement, each is separated
from the next by one of the following characters: comma, tab, space
or paired angle brackets around one or more operands (see Section
3.1.1). An operand may be preceded by an operator, label or other

operand and followed by a comment.

The operand field is terminated by a semicolon when followed
by a comment, or by a statement terminator when the operand com-

pletes the statement. For example:
LABEL: MOV A,B ; COMMENT

The space between MOV and A terminates the operator field and be-
gins the operand field; a comma separates the operands A and B;

a semicolon terminates the operand field and begins the comment
field.

2.1.4 Comment Field

The comment field is optional and may contain any ASCII char-
acters except null, rubout, carriage return, line feed, vertical
tab or form feed. All other characters, even special characters
with a defined usage, are ignored by the Assembler when appearing

in the comment field.

The comment field may be preceded by one, any, none or all of the
other three field types. Comments must begin with the semicolon

character and end with a statement terminator.
Comments do not affect assembly processing or program execu-

tion, but are useful in source listings for later analysis, debug-

ging, or documentation purposes.

2.2 FORMAT CONTROL

Horizontal or line formatting of the source program is con-
trolled by the space and tab characters. These characters have no
effect on the assembly process unless they are embedded within a
symbol, number, or ASCII text; or unless they are used as the opera-
tor field terminator. Thus, these characters can be used to pro-

vide an orderly source program. A statement can be written:
LABEL:MOV (SP) +, TAG; POP VALUE OFF STACK

or, using formatting characters, it can be written:
LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK

which is easier to read in the context of a source program listing.

Vertical formatting, i.e., page size, is controlled by the
form feed character. A page of n lines is created by inserting a
form feed (type the CTRL/FORM keys on the keyboard) after the nth
line. (See also Section 6.1.6 for a description of page formatting
with respect to macros and Section 6.1.3 for a description of assem-

bly listing output.)

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This Chapter describes the various components of legal MACRO-11

expressions: the Assembler character set, symbol construction,

numbers, operators, terms and expressions.

3.1 CHARACTER SET

The following characters are legal in MACRO-1l1l source programs:

a. The letters A through Z. Both upper and lower case
letters are acceptable, although, upon input, lower
case letters are converted to upper case letters.
Lower case letters can only be output by sending
their ASCII values to the output device. This con-
version is not true for .ASCII, .ASCIZ, ' (single
quote) or " (double quote) statements if .ENABL LC
is in effect.
. The digits @ through 9.
c. The characters . (period or dot) and $ (dollar sign)
which are reserved for use in system program symbols.
d. The following special characters:
Character Designation Function
carriage return formatting character
line feed
form feed - :} source statement terminators
vertical tab
: colon label terminator
= equal sign direct assignment indicator
% percent sign register term indicator
tab item or field terminator
space item or field terminator
number sign immediate expression indicator
@ at sign deferred addressing indicator
(left parenthesis initial register indicator
) right parenthesis terminal register indicator
’ comma operand field separator
H semi=-colon comment field indicator
< left angle bracket initial ‘argument or expression
indicator
> right angle bracket terminal argument or expression
indicator
+ plus sign arithmetic addition operator or
auto increment indicator .
- minus sign arithmetic subtraction operator
or auto decrement indicator
* asterisk arithmetic multiplication operator
/ slash arithmetic division operator
& ampersand logical AND operator
! exclamation logical inclusive OR operator
" double quote double ASCII character indicator
! single gquote single ASCII character indicator
4 up arrow universal unary operator, argu-
ment indicator
\ backslash macro numeric argument indicator

3.1.1 Separating and Delimiting Characters

Reference is made in the remainder of the manual to legal
separating characters and legal argument delimiters. These

terms are defined below in Tables 3-1 and 3-2.

TABLE 3-1

Legal Separating Characters

Character Definition Usage
space one Or more spaces A space is a legal separator
and/or tabs only for argument operands.

Spaces within expressions
are ignored (see Section 3.8).

R comma A comma is a legal separator
for both expressions and
argument operands.

TABLE 3-2

Legal Delimiting Characters

Character Definition Usage
<ove> paired angle brackets Paired angle brackets are used

to enclose an argument, parti-
cularly when that argument
contains separating characters.
Paired angle brackets may be
used anywhere in a program to
enclose an expression for
treatment as a term.

MNee o\ Up arrow construction This construction is equivalent
where the up arrow in function to the paired angle
character is followed brackets and is generally used
by an argument brack- only where the argument con-
eted by any paired tains angle brackets.
printing characters.

Where argument delimiting characters are used, they must bracket
the first (and, optionally, any following) argument(s). The charac-
ter < and the characters 4\, where \ is any printing character, can
be considered unary operators which cannot be immediately preceded

by another argument. For example:

.MACRO TEM <AB>C

indicates a macro definition with two arguments, while

.MACRO TEL C<AB>

has only one argument. The closing >, or matching character where
the up arrow construction is used, acts as a separator. The opening

argument delimiter does not act as an argument separator.

Angle brackets can be nested as follows:

<AC>
which reduces to:

AC

and which is considered to be one argument in both forms.

3.1.2 1Illegal Characters

A character can be illegal in one of two ways:

a. A character which is not recognized as an element
of the MACRO-11 character set is always an illegal
character and causes immediate termination of the
current line at that point, plus the output of an
error flag in the assembly listing. For example:

LABEL+«*A: MOV A,B

Since the backarrow is not a recognized character,
the entire line is treated as a:

.WORD LABEL
statement and is flagged in the listing.
b. A legal MACRO-1l character may be illegal in con-

text. Such a character generates a Q error on
the assembly listing.

3.1.3 Operator Characters

Legal unary operators under MACRO-11 are as follows:

Unary .
Operator Explanation Example
+ plus sign +A (positive value of A, equi-

valent to A)

- minus sign -A (negative, 2's complement,
value of A)

Unary

Operator Explanation Example
4 up arrow, univer- +F3.9 (interprets 3.4 as a
sal unary operator one word floating-point
(this usage is de- number)
scribed in greater
detail in Sections +C24 (interprets the one's
6.4.2 and 6.6.2). complement value of 248)

+D1l27 (interprets 127 as a deci-
mal number)

+034 (interprets 34 as an
octal number)

+B11g@@g111 (interprets 11000111 as a
binary value)

The unary operators as described above can be used adjacent to each

other in a term. For example:

~%5
+Ct+012

Legal binary operators under MACRO-11l are as follows:

Binary

Operator Explanation Example
+ addition A+B
- subtraction A-B
* multiplication A*B (1l6-bit product returned)
/ division A/B (16-bit quotient returned)
& logical AND A&B
! logical inclusive OR A!B

All binary operators have the same priority. Items can be grouped
for evaluation within an expression by enclosure in angle brackets.
Terms in angle brackets are evaluated first, and remaining opera-
tions are performed left to right. For example:

.WORD 1+2*3 ;IS 11 OCTAL
.WORD 1+<2%*3> +IS 7 OCTAL

3.2 MACRO-11 SYMBOLS

There are three types of symbols: permanent, user-defined and
macro. MACRO-11l maintains three types of symbol tables: the
Permanent Symbol Table (PST), the User Symbol Table (UST) and the
Macro Symbol Table (MST). The PST contains all the permanent symbols
and is part of the MACRO-11 Assembler load module. The UST and MST
are constructed as the source program is assembled; user—-defined
symbols are added to the table as they are encountered.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (Appen-
dix B3) and assembler directives (Chapters 6 and 7, Appendix B).
These symbols are a permanent part of the Assembler and need not be

defined before being used in the source program.

3.2.2 User-Defined and MACRO Symbols

User-defined symbols are those used as labels (Section 2.1.1)
or defined by direct assignment (Section 3.3). These symbols are
added to the User Symbol Table as they are encountered during the
first pass of the assembly. Macro symbols are those symbols used
as macro names (Section 7.1l). These symbols are added to the Macro
Symbol Table as they are encountered during the assembly.

User-defined and macro symbols can be composed of alphanumeric
characters, dollar signs, and periods only; any other character

is illegal.

The § and . characters are reserved for system software sym-
bols (e.g., .READ, a system macro) and should not be inserted in

user-defined or macro symbols.

The following rules apply to the creation of user-defined and

macro symbols:

a. The first character must not be a number.

b. Each symbol must be unique within the first
six characters.

¢. A symbol can be written with more than six legal
characters, but the seventh and subsequent char-
acters are only checked for legality, and are not
otherwise recognized by the Assembler.

3-5

d. Spaces, tabs, and illegal characters must not be
embedded within a symbol.

The value of a symbol depends upon its use in the program. A symbol
in the operator field may be any one of the three symbol types. To

determine the value of the symbol, the Assembler searches the three

symbol tables in the following order:

a. Macro Symbol Table
b. Permanent Symbol Table
c. User-Defined Symbol Table

A symbol found in the operand field is sought in the

a. User-Defined Symbol Table
b. Permanent Symbol Table

in that order. The Assembler never expects to find a macro name in
an operand field.

These search orders allow redefinition of Permanent Symbol
Table entries as user-defined or macro symbols. The same name can
also be assigned to both a macro and a label.

User~defined symbols are either internal or external (global).
All user-defined symbols are internal unless explicitly defined as
being global with the .GLOBL directive (see Section 6.10).

Global symbols provide links between object modules. A global
symbol which is defined as a label is generally called an entry
point (to a section of code). Such symbols are referenced from
other object modules to transfer control throughout the load module
(which may be composed of a number of object modules).

Since MACRO-11l provides program sectioning capabilities (Sec-
tion 6.9), two types of internal symbols must be considered:

a. symbols that belong to the current program section;
and

b. symbols that belong to other program sections.

In both cases, the symbol must be defined within the current as-
sembly; the significance of the distinction is critical in evalu-
ating expressions involving type (b) above (see Section 3.9).

3.3 DIRECT ASSIGNMENT

A direct assignment statement associates a symbol with a
value. When a direct assignment statement defines a symbol for
the first time, that symbol is entered into the user symbol table
and the specified value is associated with it. A symbol may be
redefined by assigning a new value to a previously defined symbol.
The latest assigned value replaces any previous value assigned
to a symbol.

The general format for a direct assignment statement is:
symbol = expression
Symbols take on the relocatable or absolute attribute of
their defining expression. However, if the defining expression
is global, the symbol is not global unless explicitly defined as

such in a .GLOBL directive (see Section 6.10).

For example:

A =1 ;THE SYMBOL A IS EQUATED TO THE VALUE 1.
B ='A-1&MASKLOW ;THE SYMBOL B IS EQUATED TO THE VALUE OF
; THE EXPRESSION
C: D=3 ; THE SYMBOL D IS EQUATED TO 3.
E: MOV #1,ABLE ;LABELS C AND E ARE EQUATED TO THE

; LOCATION OF THE MOV COMMAND

The following conventions apply to direct assignment state-
ments:
a. An equal sign (=) must separate the symbol from the
expression defining the symbol value.
b. A direct assignment statement is usually placed in
the operator field and may be preceded by a label

and followed by a comment.

c. Only one symbol can be defined by any one direct
assignment statement.

d. Only one level of forward referencing is allowed.

3-7

Example of two levels of forward referencing (illegal):

X=X
Y =12
7 =

X and Y are both undefined throughout pass 1. X is

undefined throughout pass 2 and causes a U error flag in
the assembly listing.

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-11 are numbered @

through 7 and can be expressed in the source program as:

134
$1

%7

where the digit indicating the specific register can be replaced
by any legal term which can be evaluated during the first assembly
pass. Use of such register designations does not result in any
indication of register usage within the CREF listing.

It is recommended that the programmer create and use symbolic
names for all register references. A register symbol is defined
in a direct assignment statement, among the first statements in
the program. The defining expression of a register symbol must be
absolute. For example:

[

* raeeee RPraY%e IPFRISTFR DFFINTITICN
1@ rogeeey Rim%4¢
11 fpeeez R2=2%2
12 egeeed R3=%3
13 raeerd Ra=%4
14 rAPQPE RERY%E
15 opeePE RERYE
16 rRegreE SP=Y%6
17 raeee? pra%yz
{18 rgeeeyz R7?7=%7
19

The symbolic names assigned to the registers in the example above
are the conventional names used in all PDP-11 system programs.

Since these names are fairly mnemonic, it is suggested the user
follow this convention. Registers 6 and 7 are given special names
because of their special functions, while registers @ through 5 are
given similar names to denote their status as general purpose regis-

ters.
All register symbols must be defined before they are refer-
enced. A forward reference to a register symbol is flagged as an
error.
Although its use is not noted in CREF listings, the % character
can be used with any term or expression to specify a register. (A
register expression less than @ or greater than 7 is flagged with
an R error code.) For example:
CLR %3+1

is equivalent to
CLR %4

and clears the contents of register 4, while
CLR 4

clears the contents of memory address 4.

In certain cases a register can be referenced without the
use of a register symbol or register expression; these cases are
recognized through the context of the statement. An example is

shown below:

JSR 5,SUBR ;FIRST OPERAND FIELD MUST ALWAYS BE A REGISTER

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels
within a given range. Use of local symbols can achieve a consider-
able savings in core space within the user symbol table. Core cost
is one word for each local symbol in each local symbol block, as

compared with four words of storage for each label stored in the
User Symbol Table.

Local symbols provide a convenient means of generating labels
for branch instructions, etc. Use of local symbols reduces the
possibility of multiply-defined symbols within a user program and
separates entry point symbols from local references. Local symbols,
then, are not referenced from other object moudles or even from
outside their local symbol block.

Local symbols are of the form n$ where n is a decimal integer
from 1 to 127, inclusive, and can only be used on word boundaries.
Local symbols include:

1s
278
598
1948

Within a local symbol block, local symbols can be defined and
referenced. However, a local symbol cannot be referenced outside
the block in which it is defined. There is no conflict with
labels of the same name in other local symbol blocks.

Local symbols 64$ thraough 127§ can be generated automatically
as a feature of the macro processor (see Section 7.3.5 for further
details). When using local symbols the user is advised to first
use the range from 1$ to 638$.

A local symbol block is delimited in one of the following ways:

a. The range of a single local symbol block can consist
of those statements between two normally constructed
symbolic labels. (Note that a statement of the form

LABEL=.
is a direct assignment, does not create a label in
the strict sense, and does not delimit a local range.)
b. The range of a local symbol block is terminated
upon encountering a .CSECT directive.

c. The range of a single local symbol block can be
delimited with the .ENABL LSB and the first sym-
bolic label or .CSECT directive following the
.DSABL LSB directives. The default for LSB is off.

For examples of local symbols and local symbol blocks, see

Figure 3-3,
3-10

11-¢

Line

Octal

Number Expansion

WO NN NN GERAY -

[T TN Y
AP e Y

eeegeen
goooee
georen
veege
ceee?

veeegd
eaees

gaei?
reeee
ceren

cgned
ceeeeé

TYIT;
TYIL
reeen

reeed
eeaegs

egei2

Source Code
SECTOR TINTTTALIZATINON

«SBTTL
ogeeop! «CSFCT
IMPLRFE ¢
vereee! JCSFCT
IMPPASY
roeeee! :CSFCT
IMPLINY
fgeeng! «CSFCT
XCTPREGS
ri2700 MOV

raeeng!
rQse2e 1%¢ CLR
22700 CMP
ageede!?

191374 BHI
rgeeee! .CSFCT
XCTPASY
rie7ee MoV

raegog!
PORQ2P 1%1 CLR
p2270¢ CMP
raeede!

121374 BHI
caeeeg! «CSFCT
XCTLINGS

pizzree MCy
rgrpoe!

pace2e 151 CLR
na27ee CMP
rapgde!

101374 BWI
rgeere! .CSECTY

IMPURE
IVPFEAS

IMPLIN

XCTPRG
KIMPURE,R2

(REYs
HIMPTOP,RM

1f
XCTFAS
WIMFPAS,R2

(R2Y+
#TMPTOP RO

18
XCTLIN
HTMELTN,RO

(R
#IMPTOP,RO

1%

MIXED
Figure 3-3

Comments

$ IMPURE STORAGE AREA
JCLFARED FACH PASS

JCLFARER FACH LINE

PPROGRAM INITTALIZATION CRDE

1CLFAR TMPURE AREA

IPASS INTTIALYZATION CORE

JCLFAR TMPURE PARY

pLINE INITTIALTZATICN CORE

JMIXER MQORE SFCTCR

Assembly Source Listing of MACRO-11l Code Showing Local Symbol Blocks

The maximum offset of a local symbol from the base of its
local symbol blocks is 128 decimal words. Symbols beyond this

range are flagged with an A error code.

3.6 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location
counter. When used in the operand field of an instruction, it
represents the address of the first word of the instruction. When
used in the operand field of an assembler directive, it represents

the address of the current byte or word. For example:

A: MOV #.,Rf ;. REFERS TO LOCATION A,
;I.E., THE ADDRESS OF THE
; MOV INSTRUCTION.

(# is explained in Section 5.9).

At the beginning of each assembly pass, the Assembler clears
the location counter. Normally, consecutive memory locations are
assigned to each byte of object data generated. However, the
location where the object data is stored may be changed by a

direct assignment altering the location counter:
.=expression

Similar to other symbols, the location counter symbol has a
mode associated with it, either absolute or relocatable. However,
the mode cannot be external. The existing mode of the location
counter cannot be changed by using a defining expression of a
different mode.

The mode of the location counter symbol can be changed by
the use of the .ASECT or .CSECT directive as explained in Section
6.9.

The expression defining the location counter must not contain
forward references or symbols that vary from one pass to another.

Examples:

;SET LOCATION COUNTER TO ABSOLUTE

; THE LABEL FIRST HAS THE VALUE 50@(8)
;.+1¢ EQUALS 51@(8). THE CONTENTS OF

; THE LOCATION 51¢(8) WILL BE DEPOSITED
;IN LOCATION COUNT.

; THE ASSEMBLY LOCATION COUNTER NOW
;HAS A VALUE OF ABSOLUTE 52@(8).

; THE LABEL SECOND HAS THE VALUE 520 (8)
;THE CONTENTS OF LOCATION 52@(8), THAT
;IS, THE BINARY CODE FOR THE INSTRUC-
;TION ITSELF, WILL BE DEPOSITED IN

; LOCATION INDEX.

;SET LOCATION COUNTER TO RELOCATABLE
;2¢ OF THE UNNAMED PROGRAM SECTION.

.ASECT

=509

;500
FIRST: MOV .+1§,COUNT
.=520
SECOND: MOV .,INDEX
.CSECT

=420

THIRD: .WORD ¢

; THE LABEL THIRD HAS THE VALUE OF
7 RELOCATABLE 24.

Storage area may be reserved by
For example, if the current value of

the direct assignment statement
=10

reserves 1008 bytes of storage space
instruction is stored at 1100.

3.7 NUMBERS

The MACRO-11 Assembler assumes
gram are to be interpreted in octal
fied.

The assumed radix can be altered with the

advancing the location counter.
the location counter is 1000,

in the program. The next

all numbers in the source pro-
radix unless otherwise speci-
.RADIX directive

(see Section 6.4.1) or individual numbers can be treated as being

of decimal, binary, or octal radix (see Section 6.4.2).

Octal numbers consist of the digits @ through 7 only. A
number not specified as a decimal number and containing an 8 or 9
is flagged with an N error code and treated as a decimal number.

Negative numbers are preceded by a minus sign (the Assembler
translates them into two's complement form). Positive numbers may
be preceded by a plus sign, although this is not required.

A number which is too large to fit into 16 bits (177777 <n)
is truncated from the left and flagged with a T error code in the
assembly listing.

Numbers are always considered absolute quantities (that is,
not relocatable).

The single-word floating-point numbers which can be generated
with the 4F operator (see Section 6.4.2) are stored in the follow-
ing format:

15 14 7 6 J]

4

sign bit 8-bit exponent 7-bit mantissa

Refer to PDP-11/45 Processor Handbook for details of the floating-
point format.

3.8 TERMS

A term is a component of an expression. A term may be one of
the following:

a. A number, as defined in Section 3.7, whose 16-bit
value is used.

b. A symbol, as defined earlier in the Chapter. Symbols
are interpreted according to the following hierarchy:

1. a period causes the value of the current
location counter to be used

2. a permanent symbol whose basic value is
used and whose arguments (if any) are
ignored,

3. an undefined symbol is assigned a value of
zero and inserted in the user-defined symbol table.

c. An ASCII conversion using either an apostrophe followed
by a single ASCII character or a double quote followed
by two ASCII characters which results in a word con-
taining the 7-bit ASCII value of the character(s). (This
construction is explained in greater detail in Section
6.3.3.)

d. A term may also be an expression or term enclosed in
angle brackets. Any quantity enclosed in angle brackets
is evaluated before the remainder of the expression in
which it is found. Angle brackets are used to alter the
left to right evaluation of expressions (to differentiate
between A*B+C and A* B+C>) or to apply a unary operator
to an entire expression (- <A+B>, for example).

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by binary
operators and which reduce to a 16-bit value. The operands of a
.BYTE directive (see Section 6.3.1l) are evaluated as word expressions
before truncation to the low-order eight bits. Prior to truncation,
the high-order byte must be zero or all ones (when byte value is
negative, the sign bit is propagated). The evaluation of an expres-
sion includes the evaluation of the mode of the resultant expression;
that is, absolute, relocatable or external. Expression modes are
defined further below.

Expressions are evaluated left to right with no operator hier-
archy rules except that unary operators take precedence over binary
operators. A term preceded by a unary operator can be considered
as containing that unary operator. (Terms are evaluated, where
necessary, before their use in expressions.) Multiple unary opera-
tors are valid and are treated as follows:

-+-A

is equivalent to:

—<+<=A>>

A missing term, expression or external symbol is interpreted
as a zero. A missing operator is interpreted as +. A Q error flag

is generated for each missing term or operator. For example:

TAG ! LA 177777

is evaluated as

TAG ! LA+177777

with a Q error flag on the assembly listing line.

The value of an external expression is the value of the abso-
lute part of the expression; e.g., EXT+A has a value of A. This
is modified by the Linker to become EXT+A.

Expressions, when evaluated, are either absolute, relocatable,
or external, For the programmer writing position-independent code,
the distinction is important.

&. An expression is absolute if its value is fixed.
An expression whose terms are numbers and ASCII
conversions will have an absolute value. A re-
locatable expression minus a relocatable term, where both
items belong to the same program section, is also absolute.

b. An expression is . relocatable if its value is fixed
relative to a base address but will have an offset
value added when linked. Expressions whose terms
contain labels defined in relocatable sections and
periods (in relocatable sections) will have a re-
locatable value.

c. An expression is external (or global) if its value
is only partially defined during assembly and is
completed at link time. An expression whose terms
contain a global symbol not defined in the current
program is an external expression. External expres-
sions have relocatable values at execution time if
the global symbol is defined as being relocatable or
absolute if the global symbol is defined as absolute.

CHAPTER 4

RELOCATION AND LINKING

The output of the MACRO-11] Assembler is an object module which

must be processed by Link-1l1 before loading and execution. (See

PDP-11 Link-11 Linker and Eibr-11 Librarian Programmer's Manual for

details.) The Linker essentially fixes (i.e., makes absolute) the
values of external or relocatable symbols and turns the object

module into a load module.

To enable the Linker to fix the value of an expression, the
Assembler issues certain directives to the Linker together with
required parameters. In the case of relocatable expressions, the
Linker adds the base of the associated relocatable section (the
location in memory of relocatable @) to the value of the relocatable
expression provided by the Assembler. In the case of an external
expression, the value of the external term in the expression is
determined by the Linker (since the external symbol must be defined
in one of the other object modules which are being linked together)
and adds it to the value of the external expression provided by the
Assembler.

All instructions that are to be modified (as described in
the previous paragraph) are marked with an apostrophe in the assem-
bly listing (see also Section 1.2). Thus the binary text output
looks as follows:

gg5965 CLR EXTERNAL (5)

i el ;VALUE OF EXTERNAL SYMBOL
;ASSEMBLED ZERO; WILL BE
;MODIFIED BY THE LINKER.

P95865 CLR EXTERNAL+6 (5) ; THE ABSOLUTE PORTION OF THE

apggre’ ;EXPRESSION (@@@@@6) IS ADDED
;BY THE LINKER TO THE VALUE
;OF THE EXTERNAL SYMBOL

095065 CLR RELOCATABLE (5) ;ASSUMING WE ARE IN THE ABSOLUTE
agpgap: ;SECTION AND THE VALUE OF
;RELOCATABLE IS RELOCATABLE 40

CHAPTER 5

ADDRESSING MODES

The program counter (PC, register 7 of the eight general reg-
isters) always contains the address of the next word to be fetched;
i.e., the address of the next instruction to be executed, or the

second or third word of the current instruction.

In order to understand how the address modes operate and how
they assemble, the action of the program counter must be understood.
The key rule is:

Whenever the processor implicitly uses the program counter

to fetch a word from memory, the program counter is

automatically incremented by two after the fetch.

That is, when an instruction is fetched, the PC is incremented
by two, so that it is pointing to the next word in memory; and, if
an instruction uses indexing (Sections 5.7, 5.8 and 5.11) the pro-
cessor uses the program counter to fetch the base from memory.
Hence, using the rule above, the PC increments by two, and now
points to the next word.

The following conventions are used in this Section?

a. Let E be any expression as defined in Chapter 3.

b. Let R be a register expression. This is any expres-
sion containing a term preceded by a % character or
a symbol previously equated to such a term.

Examples:
R = %0 ; GENERAL REGISTER §
Rl = R@+1 ; GENERAL REGISTER 1
R2 = 1+%1 ; GENERAL REGISTER 2

c. Let ER be a register expression or an expression in
the range @ to 7 inclusive.

d. Let A be a general address specification which pro-
duces a 6-bit mode address field as described in
Sections 3.1 and 3.2 of the PDP-1ll Processor
Handbook (both 11/2¢ and 11/45 versions).

The addressing specifications, A, can be explained in terms
of E, R, and ER as defined above. Each is illustrated with the
single operand instruction CLR or double operand instruction MOV.

5.1 REGISTER MODE

The register contains the operand.

Format for A: R

Examples: RP=%Q ;DEFINE R@ AS REGISTER
CLR Rf ;CLEAR REGISTER ¢

5.2 REGISTER DEFERRED MODE

The register contains the address of the operand.

Format for A: @R or (ER)

Examples: CLR @R1 ;BOTH INSTRUCTIONS CLEAR
CLR (1) ; THE WORD AT THE ADDRESS
; CONTAINED IN REGISTER 1

5.3 AUTOINCREMENT MODE

The contents of the register are incremented immediately after
being used as the address of the operand. (See note below.)

Format for A: (ER) +

Examples: CLR (R@)+ ;EACH INSTRUCTION CLEARS
CLR (R@+3)+ ;THE WORD AT THE ADDRESS
CLR (2)+ ;CONTAINED IN THE SPECIFIED

;REGISTER AND INCREMENTS
; THAT REGISTER'S CONTENTS
; BY TWO

NOTE

Both JMP and JSR instructions using non-deferred
autoincrement mode, autoincrement the register
before its use on the PDP-11/2¢ (but not on the
PDP-11/45 or 11/¢5). 1In double operand
instructions of the addressing form %R, (R)+ or
%R,- (R) where the source and destination registers
are the same, the source operand is evaluated

as the autoincremented or autodecremented value;
but the destination register, at the time it is
used, still contains the originally intended ef-

fective address. In the following two examples,
as executed on the PDP-11/20, R@ originally con-
tains 10¢.

MOV R@, (@) + ; THE QUANTITY 1@¢2 IS MOVED
; TO LOCATION 1¢¢

MOV R@,-(9) ; THE QUANTITY 76 IS MOVED
; TO LOCATION 76
The use of these forms should be avoided as they
are not compatible with the PDP-11/#5 and 11/45.

A Z error code is printed with each instruction which is not compatible

among all members of the PDP-11l family. This is merely a warning code.

5.4 AUTOINCREMENT DEFERRED MODE

The register contains the pointer to the address of the oper-
and. The contents of the register are incremented after being

used.

Format for A: @(ER)+

Example: CLR @(3)+ ; CONTENTS OF REGISTER 3 POINT
; TO ADDRESS OF WORD TO BE
;CLEARED BEFORE BEING INCRE-
;MENTED BY TWO

5.5 AUTODECREMENT MODE

The contents of the register are decremented before being used
as the address of the operand (see note under autoincrement mode).

Format for A: =~ (ER)

Examples: CLR - (Rf) ; DECREMENT CONTENTS OF REGISTERS
CLR - (R@#+3) ;9, 3, AND 2 BY TWO BEFORE USING
CLR -(2) ;AS ADDRESSES OF WORDS TO BE

; CLEARED

5.6 AUTODECREMENT DEFERRED MODE

The contents of the register are decremented before being used

as the pointer to the address of the operand.

Format for A: @-(ER)

Example: CLR @-(2) ;DECREMENT CONTENTS OF REGISTER
;2 BY TWO BEFORE USING AS POINTER
;TO ADDRESS OF WORD TO BE CLEARED,

5.7 INDEX MODE

The value of an expression E is stored as the second or third
word of the instruction. The effective address is calculated as
the value of E plus the contents of register ER. The value E is cal-
led the base.

Format for-A: E(ER)

Examples: CLR X+2(R1) ;EFFECTIVE ADDRESS IS X+2 PLUS
; THE CONTENTS OF REGISTER 1.
CLR -2(3) ;EFFECTIVE ADDRESS IS -2 PLUS

;THE CONTENTS OF REGISTER 3,

5.8 INDEX DEFERRED MODE

An expression plus the contents of a register gives the pointer
to the address of the operand.

Format for A: @QE(ER)

Example: CLR @14 (4) ; IF REGISTER 4 HOLDS 1¢@ AND
;LOCATION 114 HOLDS 2000,
; LOCATION 20@¢ IS CLEARED.

5.9 IMMEDIATE MODE

The immediate mode allows the operand itself to be stored as
the second or third word of the instruction. It is assembled as
an autoincrement of register 7, the PC.

Format for A: #E

Examples: MOV #1@@, R§ ;MOVE AN OCTAL 1@¢ TO REGISTER §
MOV #X, R@ ;MOVE THE VALUE OF SYMBOL X TO
;REGISTER @

The operation of this mode is explained as follows:

The statement MOV #10@,R3 assembles as two words. These are:

g127¢3
2991090

Just before this instruction is fetched and executed, the PC
points to the first word of the instruction. The processor fetches
the first word and increments the PC by two. The source operand
mode is 27 (autoincrement the PC). Thus the PC is used as a pointer
to fetch the operand (the second word of the instruction) before
being incremented by two, to point to the next instruction.

5.10 ABSOLUTE MODE

Absolute mode is the equivalent of immediate mode deferred.
@#E specifies an absolute address which is stored in the second or
third word of the instruction. Absolute mode is assembled as an

autoincrement deferred of register 7, the PC.

Format for A: @Q#E

Examples : MOV @#1¢¢,R§ ;MOVE THE VALUE OF THE CONTENTS
;OF LOCATION 1¢¢ TO REGISTER f#.
CLR @#X ;CLEAR THE CONTENTS OF THE

; LOCATION WHOSE ADDRESS IS X.

5.11 RELATIVE MODE

Relative mode is the normal mode for memory references.

Format for A: E
Examples: CLR 100 ;CLEAR LOCATION 104,
MOV X,Y ;MOVE CONTENTS OF LOCATION X
;TO LOCATION Y.

Relative mode is assembled as index mode, using register 7, the PC,
as the index register. The base of the address calculation, which
is stored in the second or third word of the instruction, is not
the address of the operand (as in index mode), but the number
which, when added tr the PC, becomes the address of the operand.
Thus, the base is X-PC, which is called an offset. The operation
is explained as follows:

If the statement MOV 1@@,R3 is assembled at absolute location
20, the assembled code is:

Location 2§: 916 7¢3
Location 22: Qg o954

The processor fetches the MOV instruction and adds two to the PC

so that it points to location 22. The source operand mode is 67;
that is, indexed by the PC. To pick up the base, the processor
fetches the word pointed to by the PC and adds two to the PC. The
PC now points to location 24. To calculate the address of the
source operand, the base is added to the designated register. That
is, BASE+PC=54+24=10¢@, the operand address.

Since the Assembler considers "." as the address of the first
word of the instruction, an eguivalent index mode statement would
be:

MOV 1¢@-.-4(PC),R3

This mode is called relative because the operand address is cal-
culated relative to the current PC. The base is the distance or
offset (in bytes) between the operand and the current PC. If the
operator and its operand are moved in memory so that the distance
between the operator and data remains constant, the instruction

will operate correctly anywhere in core.

5.12 RELATIVE DEFERRED MODE

Relative deferred mode is similar to relative mode, except
that the expression, E, is used as the pointer to the address of
the operand.

Format for A: @QE

Example: MOV @X,Rg@ ;MOVE THE CONTENTS OF THE
; LOCATION WHOSE ADDRESS IS IN
;X INTO REGISTER (.

5.13 TABLE OF MODE FORMS AND CODES

Each instruction takes at least one word. Operands of the
first six forms listed below, do not increase the length of an
instruction. Each operand in one of the other modes, however, in-

creases the instruction length by one word.

Form Mode Meaning

R gn Register mode

@R or (ER) 1n Register deferred mode

(ER) + 2n Autoincrement mode

@ (ER) + 3n Autoincrement deferred mode
- (ER) 4n Autodecrement mode

@- (ER) 5n Autodecrement deferred mode

where n is the register number.

Any of the following forms adds one word to the instruction

length:
Form Mode Meaning

E (ER) 6n " Index mode

@E (ER) 7n Index deferred mode

#E 27 Immediate mode

Q#E 37 Absolute memory reference mode

E 67 Relative mode

QE 77 Relative deferred reference mode

where n is the register number. Note that in the last four forms,

register

7 (the PC) is referenced.

NOTE

An alternate form for @R is (ER). However, the
form @(ER) is equivalent to @@ (ER).

The form @#E differs from the form E in that the
second or third word of the instruction contains
the absolute address of the operand rather than

the relative distance between the operand and

the PC. Thus, the instruction CLR @#1@Q clears
absolute location 1@@ even if the instruction is
moved from the point at which it was assembled.

See the description of the .ENABLE AMA function

in Section 6.2, which directs the assembly of all
relative mode addresses as absolute mode addresses.

5.14 BRANCH INSTRUCTION ADDRESSING

The

branch instructions are one word instructions. The high

byte contains the op code and the low byte contains an 8-bit signed

offset (7 bits plus sign) which specifies the branch address rela-

tive to the PC. The hardware calculates the branch address as

follows:

Extend the sign of the offset through bits 8-15.

Multiply the result by 2. This creates a word offset
rather than a byte offset.

Add the result to the PC to form the final branch
address.

The Assembler performs the reverse operation to form the byte
offset from the specified address. Remember that when the offset
is added to the PC, the PC is pointing to the word following the
branch instruction; hence the factor -2 in the calculation.

Byte offset = (E-PC)/2 truncated to eight bits.

Since PC = .+2, we have

Byte offset = (E-.-2)/2 truncated to eight bits.

NOTE

It is illegal to branch to a location specified
as an external symbol, or to a relocatable sym-
bol from within an absolute section, or to an
absolute symbol or a relocatable symbol of an-
other program section from within a relocatable

section.

The EMT and TRAP instructions do not use the low-order byte
of the word. This allows information to be transferred to the
trap handlers in the low-order byte. If EMT or TRAP is followed
by an expression, the value is put into the low-order byte of the
word. However, if the expression is too big (>3778) it is trun-
cated to eight bits and a T error flag is generated.

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

6.1 LISTING CONTROL DIRECTIVES

6.1.1 .LIST and .NLIST

Listing options can be specified in the text of a MACRO-11
program through the .LIST and .NLIST directives. These are of

the form:
LIST arg
.NLIST arg
where: arg represents one or more optional arguments.

When used without arguments, the listing directives alter
the listing level count. The listing level count causes the
listing to be suppressed when it is negative. The count is
initialized to zero, incremented for each .LIST and decremented
for each .NLIST. For example:

.MACRO LTEST ;LIST TEST
7A-THIS LINE SHOULD LIST
.NLIST
;B-THIS LINE SHOULD NOT LIST
.NLIST
;C-THIS LINE SHOULD NOT LIST
«LIST
;D-THIS LINE SHOULD NOT LIST (LEVEL NOT BACK TO ZERO)
.LIST
;E«THIS LINE SHOULD LIST (LEVEL BACK TO ZERO)
. ENDM
LTEST ;CALL THE MACRO
;A-THIS LINE SHOULD LIST
.NLIST
LLIST

;E -THIS LIST SHOULD LIST (LEVEL BACK TO ZERO)

The primary purpose of the level count is to allow macro
expansions to be selectively listed and yet exit with the level

returned to the status current during the macro call.

The use of arguments with the listing directives does not

affect the level count; however, use of .LIST and .NLIST can

be used to override the current listing control. For example:

.MACRO XX

.LIST
X=.
.NLIST

. ENDM

.NLIST ME

XX
.LIST
X=.

;LIST NEXT LINE

;DO NOT LIST REMAINDER
;OF MACRO EXPANSION

;DO NOT LIST MACRO EXPANSIONS

;LIST NEXT LINE

Allowable arguments for use with the listing directives are
as follows (these arguments can be used singly or in combina-

tion:
Argument Default
SEQ list
LOC list
BIN list
BEX list
SRC list
COM list
MD list
MC list

Function

Controls the listing of source line
sequence numbers. Error flags are
normally printed on the line preced-
ing the questionable source state-
ment.

Controls the listing of the location
counter (this field would not normally
be suppressed).

Controls the listing of generated binary
code.

Controls listing of binary extensions;
that is, those locations and binary
contents beyond the first binary word
(per source statement). This is a sub-
set of the BIN argument.

Controls the listing of the source code.

Controls the listing of comments. This
is a subset of the SRC argument and can
be used to reduce listing time and/or
space where comments are unnecessary.

Controls listing of macro definitions
and repeat range expansions.

Controls listing of macro calls and
repeat range expansions.

Argument Default Function
ME no list Controls listing of macro expansions.

MEB no list Controls listing of macro expansion
binary code. A .LIST MEB causes only
those macro expansion statements
producing binary code to be listed.
This is a subset of the ME argument.

CND list Controls the listing of unsatisfied
conditions and all .IF and .ENDC
statements. This argument permits
conditional assemblies to be listed
without including unsatisfied code.

LD no list Control listing of all listing
directives having no arguments (those
used to alter the listing level
count) .

TOC list Control listing of table of contents
on pass 1 of the assembly (see Section
6.1.4 describing the .SBTTL directive).
The full assembly listing is printed
during pass 1 of the assembly.

TTM Teletype Controls listing output format. The
mode TTM argument (the default case)

causes output lines to be truncated to
72 characters. Binary code is printed
with the binary extensions below the
first binary word. The alternative
(.NLIST TTM) to Teletype mode is line
printer mode, which is shown in
Figure 6-1.

SYM list Controls the listing of the symbol table
for the assembly.

An example of an assembly listing as sent to a 132 column line
printer is shown in Figure 6-1. Notice that binary extensions for
statements generating more than one word are spread horizontally on
the source line. An example of an assembly listing as sent to a
teleprinter is shown in Figure 6-2. Notice that binary extensions
for statements genera:ing more than one word are printed on subsedquent

lines.

The listing options can also be specified through switches on
the listing file specification in the command string to the MACRO-11
Assembler. These switches are:

/LI:arg
/NL:arg

MACROQ

O NI AW N

VABSA, 1 24-MAY«T72
ASSEMBLER PROFER

241766
23176¢€
221772
L1776
222976
232274
222412
232416
23222
212226
232832
22234
BA2342
222444
232850
232255
232262
2224564
z222p79
222372
892274
232104
222114
222114
Zo2i2v
ge2i2z
252130
28243z
222134
222140

fLé720
711422
Co2767
?12767
795067
Z225gh7
FAsp67
Z25767
721422
295367
712722
212267
212767
7205767
F91145
7216771
rPLL66
712771

Aa5267
116728
73272¢
ev1423

126122
1g22g14
756767
2419723

pp2228!

930822
177777

2022124
2200204
2922161
230200/

220226¢

2200104
2017124
ageay2!
2221164
o020}

£eoos et

zp2214!
ge756!
2o0z124

gpars3?
gaeea7

7p2306¢ pLOQR4!¢

GETLINI
SAVREG
MOV
BEQ
ADD
MOV
CLR
CLR
CLR
TST
REQ
CLR
MOV
MOV
MOV
TST
BNE
MOV
BNE
MQV
(WALT
INC
'QVB
BIT
BEQ
ERROR
ROLB
BPL
B1S
RNE

1%,

31%:

32%;

MACRO V2B3A,1 26~MAY=72 02i1Q6 PAGE 28

FFCNT,RB
31%

R2, PAGNUM
#wl,PAGEXT
LINNUM

FFCNT

SEJEND

PASS

31%

LPPCNT
#LINBUF,R2
R2,LCBEGL
#LINEND, LCENDL
SMLCNT

4gs

MSBMRP ,R1

108
#SRCBUF, R
#SRCLNK
LINNUM
SRCHDR+3, R
#247,R0

32%

L

R2

2%
CSISAVENDFLG
343

JGET AN INPUT LINE

1 ANY RESERVED FF’S?
i NO
{YES, UPDATE PAGE NUMBER

3 INIT NEW CREF SEQUENCE

1SEAT UP BEGINNING

i AND END OF | INE MARKERS
3IN SYSTEM MACRO?

i YFS, SPECIAL

JASSUME MACRO IN PROGRESS
1BRANCH IF SO

3GET CODE BYTE
JANYTHING BAD?
i NO
JYES,
JEOF?
7 NO

ERRQR

Example of MACRO-1l1l Line Printer Listing
(132 column line printer)

FIGURE 6-1

MA

Crob

ASSEMBLER PRUPLR

1
2
3

8%

11
14

13
14
19
16
17
18

19
29

22
23
24

25
2o
27
s
29
KYY
31
42
39

34

dpl706
ulz7Re
walz/e

wal77s
VALl

Pylyad

Gudinle
Uuenle
nieneéz

pRpey

neud
neyvd

deudip
Heued

weedy

NEudH

w2w°2

veh s
vevwl v
wewl? 2

new/e
nWélva

wella
neglla
ﬂalag.
wley
weldy

4d1d¢
walaa

wel&ae

GETLEnS

wle/dy 1§
Voelivgy !
ity 42
nende?s
YA
wigle7
177777
veipuzal
vihae?
wape e
i E.171-%)
vgiab 2
vehut?/
wdpalo!
vws?7e’
Bhplbgo!
klﬁ.‘ldma
pudsvn’
vl !
wla7vd 310
w1712
Wivge7
Pluwuld!
wlz/78}
weglioet
vy an

YA XS
TAY VYA
52 W Ee]

vleul
Vikigd)al
whllen

wiag/ vl
WigiZ ho!

viuhde7
Pupwie!
1167 ¢y
gl B3
G2/ v
wupkial?
il Ae S

10614
lvwiléd
aba/e/
dovbnnl
kw4t
guled

Vpeda,l 24a=mAY=72

SAVREG
MOV

bEiy
ADU

mav

CLr
CLK
CLK
T8

BEU
CLk

MGV
nov

mGyv

2 iF WODF

181

BNk
wENRC
«IF NDF
MOy

HNE
W IFTF
mav

QNAIT
Ing

move
BiT
BEG
ERROR
ROLA

LPL
[

bNE

MALRY VIRU3A,1 25«MAYm/2 wpidl PAGE 28

FFONT,RU

$is
Rw;PAGNUM

C#ml,PAGEXT

L LNUM
Frgnd
SEWEND
Pass

314
LPRCNT

#LINDUGF ,R2

K2, LWBEGE
alLlinthD, LCENDL,
X3p|,

SMLCNT

4

XMACHK(
MSBMKP, Kl

1w
#HORCOUF, Ry

HSRCBNA
LLNiuHM
SHREMVE+3 KA
#UA7 P RY

32%

L

R4

29
COL8AV, ENDFLD

$4H

FGET AN INPUT LINE
FANY RESERVED FF'357?

P NO

FYES, UPUATE PAGE NUMBER

FINIT NEW GREF SEWQUENCE

FSEAT UyP BEGINNING

i AND END OF LINE MARKERS

FIN SYSTEM MACKO?

i YES, OPECIAL

JASSUME MAGRO In PROGRESS

FBRANCH LF 80

FGET COLE WYTE
FANYTHING BAD?

I NU
1YES,
FECF?
}OND

ERROR

Example of Page Heading from MACRO-11l Teletype Listing
(same format as for 80 column line printer).

FIGURE 6-2

6-5

where: arg is any one or more of the arguments defined
in the .LIST and .NLIST directives.

NOTE

Where no listing file specification is indicated,
any errors encountered are printed on the tele-
printer. Where the /NL switch is used with no
argument, the errors and symbol table are output
to the device and/or file specified. Use of the
switches /NL and /NL:SYM cause the errors only
to be sent to the file and/or device specified.

Each argument used with a listing switch is preceded by a colon.

Use of these switches overrides the enabling or disabling of
the equivalent listing option in the source. Default listing
controls can be specified by the user within his source and over-
ridden, where necessary, by switch options at assembly time. For

example:
#OBJFIL,KB:/NL:BEX:COM/LI:SRC<DF:SRCFIL

This command string suppresses the listing of binary exten-
sions and source comments and ignores all listing directives with
the arguments BEX, COM, and SRC. (The object file is sent to the
system device and the listing and symbol table to the teleprinter.)

#$0OBJFIL,LP:/LI<DT1:ABC

causes MACRO-11 to ignore all .LIST and .NLIST directives without
arguments. This command string causes the listing of any source

code which would have otherwise been suppressed. (The object file
is sent to the system device; the source listing and symbol table

are sent to the line printer.)
#OBJFIL,SYM/NL<ABC

causes MACRO-1l1l to produce only an object file and a symbol table
listing. The assembly listing is completely suppressed by the /NL
switch. (The object file and symbol table file are sent to the
system device.)

Line Seq.

Nos.

Loc.

RO B~ NN

[N

11
12

13
14

15
16

17
18

19
2@

Field

gacpee
P20000
222006
008010
Co0001
AUP24
202020

poeo29

eBee3g
pEeB30
AoBE36
pooo4n
aa0g4Q
ApaB46
pEeas50

PeEa50

Binary Field
Binary Extension Field

olol bkl
p22p04

290902

2o0p21
padgoée

cRAp21
gaApa4

202093

2eq022

020033

NLIST

«WOR)

BCE032

270022

2ecaRs2

pEzaes

NLIST
.WORD

BIN

1,2,3,4

2ooe03

¢eagd3

220203

Source Field
NLIST TTM
JLIST ME
.MACRO LSTHAC
NLIST ARG
, WORN 1,2,3,4
LIST ARG
LSTMAC SEQ
LNLIST SEQ
uNORD 1)203!4
LLIST SEQ
L STMAC LoC
1.oC
1:2,3,4
LIST Loc
LSTMAC BIN
s COMMENT
LLIST BIN
LLSTMAC SRC
LLIST SRC
1 STMAC COM
NLIST oM
.WORN 102,3.4
LLIST CoM
LSTMAC REX
LNLIST BEX
+WORD 102,254

Comment Field

sSTART GFF IN [P MODE
sLIST MACRO EXPANSIONS

ARG SLISTING ARGUMENT TEST

JCOMMENT

3 SEQENCY NUMBERS

s COMMENT

sLOCATION CQUNTER

JCOMMENT

sBINARY

s SOURCE

s COMMENT

(BINARY EXTEINSION LINES

s COMMENT

Line

Seq. Loc.
Nos. Field
21
22
23 PrgeCc 290001
pap62 CTRDA2
eRg64 PPQ2O3
grgee 000224
24
25 97272
goe7e 200204
26
27
28
29

Binary Field

Binary Extension Field

JL1sT
JHORD

LSTMar
WORD
,LIST

TTM
142,34

<COM,BEX>
COM,BEX
112:3,4

COM,BEX

Source Field

LLIST BEX

; TRY ABBREV]:TED FORM
s COMMENT

sCUMBINATION TEST

NLIST TTM

LEND

Comment Field

EXPANDET

LISTING

6.1.2 Page Headings

The MACRO-11 Assembler outputs each page in the format shown
in Figure 6-2 (Teletype listing). On the first line of each list-
ing page the Assembler prints (from right to left):

a. title taken from .TITLE directive
b. assembler version identification
c. date

d. time-of-day

e. page number

The second line of each listing page contains the subtitle text
specified in the last encountered .SBTTL directive.

6.1.3 .TITLE

The .TITLE directive is used to assign a name to the object
module. The name is the first symbol following the directive
and must be six Radix-50 characters or less (any characters beyond
the first six are ignored. Non Radix-50 characters are not accep-
table. For example:
.TITLE PROG TO PERFORM DAILY ACCOUNTING

causes the object module of the assembled program to be named PROG

(this name is distinguished from the filename of the object module

specified in the command string to the Assembler). The name of

the object module appears in the Linker load mapand on the listing.

If there is no .TITLE statement, the default name assigned
to the first object module is

.MAIN.
The first tab or space following the .TITLE directive is not
considered part of the object module name or header text, although

subsequent tabs and spaces are significant.

If there is more than one .TITLE directive, the last .TITLE
directive in the program conveys the name of the object module.

6.1.4 .SBTTL

The .SBTTL directive is used to provide the elements for a printed
table of contents of the assembly listing. The text following the
directive is printed as the second line of each of the following
assembly listing pages until the next occurrence of a .SBTTL directive.

For example:

.SBTTL CONDITIONAL ASSEMBLIES
The text

CONDITIONAL ASSEMBLIES

is printed as the second line of each of the following assembly

listing pages.

During pass 1 of the assembly process, MACRO-11 automatically
prints a table of contents for the listing containing the line sequence
number and text of each .SBTTL directive in the program. Such a
table of contents is inhibited by specifying the /NL:TOC switch option
to the assembly listing file specification (or an .NLIST TOC directive
within the source). For example:

#OBJFIL, LISTM/NL:TOC<SRCFIL

In this case the table of contents normally generated prior to the
assembly listing is inhibited.

An example of the table of contents is shown in Figure 6-3. Note
that the first word of the subtitle heading is not limited to six

characters since it is not a module name.
6.1.5 . IDENT

The .IDENT directive provides another means of labeling the
object module produced as a result of a MACRO-11l assembly. In
addition to the name assigned to the object module with the .TITLE
directive, a character string (up to six characters, treated like a
RADS5# string) can be specified between paired delimiters. For example:

.IDENT /V@g@5a/

MACRO
TaBLE

am
7=
18-
14=
16
2bm
Jgm
4=
4=
an=
Sy=
Di=
Sam
Ha-
7¢m
74=
75=
75=
79=
Buyw
Bam
g42=
PRLY
QQam
103=-
19m
114~
116m-
1986=

VUnda,l 24=mAY=72 HACRY VEW3A,1l 25=MAY=72 ¥pid)
UF LUNTENTS

SEGTUR INIVIALIZATION
SUBRUUTINE CALL DEFINITIUNS
PARAMETERS
ROl LEFINITIONS
PruGRAM IN[TIALLIZATIUN
AZoEMplen PRUPER
STATEMENT PROUCESSOR
AGD[GNMENT PRUCESSUR
OF CUUE PRUCESSOR
EXPRESSION TO LUDE~RULL CONVERSIONS
GCuue rULL STORABE
UireCTIvVeS

UATA=GENEHATING DIRECTIVES
cunplTionaLs
LISTINDG CONTROL
EnABL/ZDSABL FUNCTLIUND
CRUSS REFERENCE HMANDWLERS
LISTLING STUFF
KEYBUARD HanNULERYS
UBJECT CUDE RANDLERS
LISTING QUTPUT
Is0 BUFFLRS
EXPRENSIUN EVALUATUR
TERM EVALUATOR
SYMUL/CHARACTER HANVU[ERD
KOl HANDLERS
KELISTER STORADLE
HAWRU MANDLERS
PIN

b PR b S R el ek ed Gk ed b b Jeb feb ok fed b R B eh b ek feb e Jeh G G jen

Table of Contents text is taken from the text of each
.SBTTL directive. The associated numbers are the page
and line sequence numbers of the .SBTTL directives.

Figure 6-3 Assembly Listing Table of Contents

6-11

The character string:
Vg@gsa

is converted to Radix~-5@ notation and output to the global symbol
directory of the object module.

This symbol can optionally be included in the load map listings
output by the Linker.

When more than one .IDENT directive is found in a given pro-
gram, the last .IDENT found determines the symbol which is passed

as part of the object module identification.

6.1.6 Page Ejection

There are several means of obtaining a page eject in a
MACRO-11 assembly listing:

a. After a line count of 58 lines, MACRO-11 automatically
performs a page eject to skip over page perforations
on line printer paper and to formulate Teletype output
into pages.

b. A form feed character used as a line terminator (or
as the only character on a line) causes a page eject.
Used within a macro definition a form feed character
causes a page eject. A page eject is not performed
when the macro is invoked.

c. More commonly, the .PAGE directive is used within
the source code to perform a page eject at that point.
The format of this directive is
.PAGE

This directive takes no arguments and causes a skip
to the top of the next page.

Used within a macro definition, the .PAGE is ignored,

but the page eject is performed at each invocation of
that macro.

6-12

6.2 FUNCTIONS: .ENABL AND .DSABL DIRECTIVES

Several functions are provided by MACRO-11 through the .ENABL
and .DSABL directives. These directives use three-character symbolic
arguments to designate the desired function; and are of the forms:

.ENABL arg
.DSABL arg

where: arg is one of the legal symbolic arguments
defined below.

The following table describes the symbolic arguments and their associ-
ated functions in the MACRO-11 language:

Symbolic Argument Function

ABS Enabling of this function produces absolute
binary output; i.e., input to the Paper Tape
Software System Absolute Loader (with a .BIN
extension instead of .0OBJ). The default case
is .DSABL ABS; i.e., input to Link-11.

AMA Enabling of this function directs the assembly
of all relative addresses (address mode 67) as
absolute addresses (address mode 37). This
switch is useful during the debugging phase of
program development.

CDR The statement .ENABL CDR causes source columns
73 and greater to be treated as comment. This

accommodates sequence numbers in card columns
72-80.

FPT Enabling of this function causes floating point
truncation, rather than rounding, as is other-
wise performed. .DSABL FPT returns to floating
point rounding mode.

LC Enabling of this function causes the Assembler
to accept lower case ASCII input instead of
converting it to upper case.

LSB Enable or disable a local symbol block. While
a local symbol block is normally entered by
encountering a new symbolic label or .CSECT
directive, .ENABL LSB forces a local symbol
block which is not terminated until a label or
.CSECT directive following the .DSABL LSB
statement is encountered. The default case
is .DSABL LSB.

PNC The statement .DSABL PNC inhibits binary out-

put until an .ENABL PNC is encountered. The
default case is .ENABL PNC.

An incorrect argument causes the directive containing it to be

flagged as an error.

6-13

Once a program has been written using these functions, or not
using them, the functions can be controlled through switches
specified in the command string to the MACRO-11 Assembler., These

switches are:

/EN:arg
/DS:arg

where: arg is any of the arguments defined for the .ENABL
and .DSABL directives.

Use of these switches overrides the enabling or disabling of all

occurrences of that argument in the program.

6.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
following directives and assembly characters:

.BYTE
.WORD
)

.ASCII
.ASCIZ
.RADS5#
+B
4D
+0

These facilities are explained in the following Sections.
6.3.1 .BYTE

The .BYTE directive is used to generate successive bytes of
data. The directive is of the form:

.BYTE exp sWHICH STORES THE OCTAL EQUIVALENT
;OF THE EXPRESSION exp IN THE NEXT
;s BYTE.,

.BYTE expl,exp2,... ;WHICH STORES THE OCTAL EQUIVALENTS

;OF THE LIST OF EXPRESSIONS IN SUC-
;CESSIVE BYTES.

where a legal expression must have an absolute value (or contain a
reference to an external symbol) and must result in 8 bits or less
of data. The 16-bit value of the expression must have a high-order
byte (which is truncated) that is either all zeros or all ones.
Each operand expression is stored in a byte of the object program.
Multiple operands are separated by commas and stored in successive

bytes. For example:

SAM=5
.=41g
.BYTE 4D48,SAM ;ﬂGﬂ (OCTAL EQUIVALENT OF 48 DECIMAL)
;IS STORED IN LOCATION 41§, @@5 IS
s STORED IN LOCATION 411,

If the high-order byte of the expression equates to a value other
than @ or -1, it is truncated to the low-order 8 bits and flagged
with a T error code. If the expression is relocatable, an A-type

warning flag is given.

At link time it is likely that relocation will result in an expres-
sion of more than 8 bits, in which case, the Linker prints an error

code. For example:

.BYTE 23 ; STORES OCTAL 23 IN NEXT BYTE.
A
.BYTE A ;s RELOCATABLE VALUE CAUSES AN "A"
s ERROR FLAG,
.GLOBL X
X=3
.BYTE X ;STORES 3 IN NEXT BYTE,.

In the case where X is defined in another program:

.GLOBL X

.BYTE X ; PRODUCES A "W" FLAG
; SINCE THE STATEMENT IS NOT
;ACCEPTABLE IF X IS A LABEL.

If an operand following the .BYTE directive is null, it is

interpreted as a zero. For example:

=428
.BYTE ,, ; ZEROES ARE STORED IN BYTES 428, 421, AND 422.

6.3.2 .WORD

The .WORD directive is used to generate successive words of

data. The directive is of the form:

.WORD exp ;WHICH STORES THE OCTAL EQUIVALENT
;OF THE EXPRESSION exp IN THE NEXT
; WORD,

.WORD expl,exp2,... ;WHICH STORES THE OCTAL EQUIVALENTS OF
;THE LIST OF EXPRESSIONS IN SUCCESSIVE
7 WORDS.

where a legal expression must result in 16 bits or less of data.
Each operand expression is stored in a word of the object program.
Multiple operands are separated by commas and stored in successive

words. For example:

SAL=0

=500

.WORD 177535, .+4,SAL ;STORES 177535, 586, AND # IN
;WORDS 5¢@, 582, AND 5#44.

6-16

If an expression equates to a value of more than 16 bits, it
is truncated and flagged with a T error code.

If an operand following the .WORD directive is null, it is

interpreted as zero. For example:

.=50p
.WORD ,5, ;STORES @, 5, and § in LOCATIONS 5044
;582, and 5@4.

A blank operator field (any operator not recognized as a macro
call, op-code, directive or semicolon) is interpreted as an implicit
.WORD directive. Use of this convention is discouraged. The first
term of the first expression in the operand field must not be an in-
struction mnemonic or assembler directive unless preceded by a + or -
operator. For example:

.=440 ;THE OP-CODE FOR MOV, WHICH IS g1@ggg,
LABEL: +MOV,LABEL ;IS STORED ON LOCATION 444.
;448 IS STORED IN LOCATION 442.

Note that the default .WORD directive occurs whenever there is a
leading arithmetic or logical operator, or whenever a leading symbol
is encountered which is not recognized as a macro call, an instruction

mnemonic or assembler directive. Therefore, if an instruction mnemonic,

macro call or assembler directive is misspelled, the .WORD directive

is assumed and errors will result. Assume that MOV is spelled incor-

rectly as MOR:

MOR A,B
Two error codes result: Q occurs because an expression operator is
missing between MOR and A, and a U occurs if MOR is undefined. Two

words are then generated: one for MOR A and one for B.

6.3.3 ASCII Conversion of One or Two Characters

The ' and " characters are used to generate text character within
the source text. A single apostrophe followed by a character results
in-a word in which the 7-bit ASCII representation of the character is
placed in the low-order byte and zero is placed in the high-order byte.

For example:

MOV #'A,RM
results in the following 16 bits being moved into Rf:

15 8 7 g

[g | 191 |

octal ASCII value of A

The ' character is never followed by a carriage return, null, rubout,

line feed or form feed. (For another use of the ' character, see
Section 7.3.6.)
STMNT:

GETSYM

BEQ 48

CMPB @CHRPNT, #"': ; COLON DELIMITS LABEL FIELD.

BEQ LABEL

CMPB @CHRPNT, #'= ; EQUAL DELIMITS

BEQ ASGMT ;ASSIGNMENT PARAMETER.

A double quote followed by two characters results in a word

in which the 7-bit ASCII representations of the two characters are

placed. For example:
MOV #" AB,Rf@
results in the following word being moved into R@:

15 8 7 ")
| 192 | 191 |

octal ASCII value of B octal ASCII value of A

The " character is never followed by a carriage return, null,

out, line feed or form feed. For example:

; DEVICE NAME TABLE

DEVNAM: .WORD "DF ;RF DISK
.WORD "DK ;RK DISK
. WORD "DP ;RP DISK

DEVNKB: .WORD "KB ; TTY KEYBOARD
.WORD "DT ; DECTAPE
«WORD "LP ; LINE PRINTER
. WORD "PR ; PAPER TAPE READER
. WORD "PP ; PAPER TAPE PUNCH
«WORD "CR ; CARD READER
. WORD "MT ; MAGTAPE
. WORD 2 ; TABLE'S END

rub-

6.3.4 ASCII

The .ASCII directive translates character strings into their
7-bit ASCII equivalents for use in the source program. The format

of the .ASCII directive is as follows:

.ASCII /character string/

character string is a string of any acceptable printing ASCII
characters. The string may not include null
(blank) characters, rubout, return, line
feed, vertical tab, or form feed. Nonprinting
characters can be expressed in digits of the
current radix and delimited by angle brackets.
(Any legal, defined expression is allowed be-
tween angle brackets.)

where:

/ / these are delimiting characters and may be
any printing characters other than ; < and =
characters and any character within the
string.

As an example:
A .ASCII /HELLO/ ;STORES ASCII REPRESENTATION OF THE

; LETTERS H,E,L,L,0 IN CONSECUTIVE BYTES.

.ASCII /ABC/<15><12>/DEF/
: STORES A,B,C,15,12,D,E,F IN CONSECUTIVE

7 BYTES.

.ASCII /<AB>/ ; STORES <,A,B, > IN CONSECUTLVE BYTES.

The ; and = characters are not illegal delimiting characters, but
are preempted by their significance as a comment indicator and assign-
ment operator, respectively. For other than the first group, semi-
colons are treated as beginning a comment field. For example:

ASCII string

Example Generated Notes

.ASCII ;ABC;/DEF/ ABCDETF Acceptable, but not recommended
procedure.

.ASCII /ABC/;DEF; A BC ;DEF; is treated as a comment
and ignored.

.ASCII /ABC/=DEF= ABCDETF Acceptable, but not recommended
procedure.

.ASCII =DEF= The assignment

.ASCII=DEF

is performed and a Q error gen-
erated upon encountering the
second =.

6-19

6.3.5 .ASCIZ

The .ASCIZ directive is equivalent to the .ASCII directive with

a zero byte automatically inserted as the final character of the

string. For example:

When a list or

text string has been created with a .ASCIZ

directive, a search for the null character can determine

the end of the

list. For example:

MOV #HELLO,R1
MOV #LINBUF,R2
X: MOVB (R1)+, (R2)+

BNE X

HELLO: .ASCIZ

6.3.6 .RADSf

<CR><LF>/MACRO-11 V@F1lA/<CR><LF> ;INTRO MESSAGE

The .RAD58 directive allows the user the capability to handle

symbols in Radix-50

coded form (this form is sometimes referred

to as MOD40 and is used in PDP-11 system programs). Radix-50 form

allows three characters to be packed into sixteen bits; therefore,

any 6-character symbol can be held in two words. The form of the

directive is:

.RADS#

where: / /

string

/string/

delimiters can be any printing characters other
than the =, <, and ; characters.

is a list of the characters to be converted
(three characters per word) and which may
consist of the characters A through Z, # through
9, dollar ($), dot (.) and space (). If there
are fewer than three characters (or if the last
set is fewer than three characters) they are
considered to be left justified and trailing
spaces are assumed. Illegal nonprinting
characters are replaced with a ? character and
cause an I error flag to be set. Illegal
printing characters set the Q error flag.

The trailing delimiter may be a carriage return, semicolon, or

matching delimiter.

For example:

.RAD5# /ABC ;PACK ABC INTO ONE WORD.
.RAD5@ /AB/ :PACK AB (SPACE) INTO ONE WORD.
.RAD5Z // ;PACK 3 SPACES INTO ONE WORD.

.RADS5g /ABCD/ ;PACK ABC INTO FIRST WORD AND

;D SPACE SPACE INTO SECOND WORD.
6-20

Each character is translated into its Radix—-50 equivalent as indi-
cated in the following table:

Character Radix-5@ Equivalent (octal)
(space) g
A-7 1-32
$ 33
. 34
g-9 36-47

Note that another character could be defined for code 35, which is

currently unused.
The Radix~50 equivalents for characters 1 through 3 (Cl1,C2,C3)
are combined as follows:

Radix 50 value = ((C1l*5f)+C2)*50+C3

For example:

Radix-50 value of ABC is ((1*58)+2)*58+3 or 3223

See Appendix A for a table to quickly determine Radix-50 equi-

valents.

Use of angle brackets is encouraged in the .ASCII, .ASCIZ, and
.RADSfJ statements whenever leaving the text string to insert special

codes. For example:

LASCII <1g1> ; EQUIVALENT TO .ASCII/A/

.RADS# /AB/<35> ;STORES 3255 IN NEXT WORD

CHR1=1

CHR2=2

CHR3=3 -

.RA65ﬂ<CHRl><CHR2><CHR3> ; EQUIVALENT TO .RADS5@/ABC/

6.4 RADIX CONTROL

6.4.1 .RADIX
Numbers used in a MACRO-11l source program are initially con-
sidered to be octal numbers. However, the programmer has the
option of declaring the following radices:
2, 4, 8, 1¢
This is done via the .RADIX directive, of the form:
.RADIX n

where: n is one of the acceptable radices,

The argument to the .RADIX directive is always interpreted in

decimal radix. Following any radix directive, that radix is the

assumed base for any number specified until the following ,RADIX

directive.

The default radix at the start of each program, and the argu-

ment assumed if none is specified, is 8 (octal). For example:

.RADIX 1¢ ; BEGINS SECTION OF CODE WITH DECIMAL RADIX

.RADIX ; REVERTS TO OCTAL RADIX

In general it is recommended that macro definitions not con-
tain or rely on radix settings from the ,RADIX directive. The
temporary radix control characters should be used within a macro
definition. (4D, 40, and 4B are described in the following Sec-
tion.) A given radix is valid throughout a program until changed.
Where a possible conflict exists within a macro definition or in
possible future uses of that code module, it is suggested that the
user specify values using the temporary radix controls.

6.4.2 Temporary Radix Control: 4D, 40, and 4B

Once the user has specified a radix for a section of code, or
has determined to use the default octal radix he may discover a
number of cases where an alternate radix is more convenient

(particularly within macro definitions). For example, the cre-

ation of a mask word might best be done in the binary radix.

MACRO-11 has three unary operators to provide a single
interpretation in a given radix within another radix as follows:

+Dx (x is treated as being in decimal radix)
+0ox (x is treated as being in octal radix)
+Bx (x is treated as being in binary radix)

For example:

+D123
10 47

+B AEIg1I1IE1
+0<A+3>

Notice that while the up arrow and radix specification characters

may not be separated, the radix operator can be physically separated
from the number by spaces or tabs for formatting purposes. Where a
term or expression is to be interpreted in another radix, it should

be enclosed in angle brackets.

These numeric quantities may be used any place where a
numeric value is legal.

PAL-11R contains a feature, which is maintained for compatibility
in MACRO-11l, allowing a temporary radix change from octal to decimal
by specifying a decimal radix number with a "decimal point". For
example:

199, (144y)

1376. (2540)
128. (2004)

6-23

6.5 LOCATION COUNTER CONTROL

The four directives which control movement of the location

counter are .EVEN and .0ODD which move the counter a maximum of one
byte, and .BLKB and .BLKW which allow the user to specify blocks of

a given number of bytes or words to be skipped in the assembly.

6.5.1 L.EVEN

The .EVEN directive ensures that the assembly location counter

contains an even memory address by adding one if the current ad-

dress is odd.

is taken.

If the assembly location counter is even, no action

Any operands following a .EVEN directive are ignored.

The .EVEN directive is used as follows:

.ASCIZ /THIS IS A TEST/

.EVEN

.WORD XYZ

6.5.2 .0DD

;ASSURES NEXT STATEMENT
;BEGINS ON A VWORD BOUNDARY.

The .0ODD directive ensures that the assembly location counter

is odd by adding one if it is even.

For example:

;CODE TO MOVE DATA FROM AN INPUT LINE

; TO A BUFFER
N=5

-
.

.0ODD
.BYTE
«.BLKW

MOV
MOV
MOVB
MOVB
BEQ
DEC
BNE

CLRB

BUFF:

AGAIN:

DONE:

LINE: .ASCIZ

N*2

#BUFF, R2
#LINE, R1
-1(R2),R@
(R1)+, (R2)+
DONE

RY

AGAIN

-(R2)

/TEXT/

;BUFFER HAS 5 WORDS

; COUNT=2N BYTES
; RESERVE BUFFER OF N WORDS

;ADDRESS OF EMPTY BUFFER IN R2
:ADDRESS OF INPUT LINE IS IN R1
;GET COUNT STORED IN BUFF-1 IN Rf#
;MOVE BYTE FROM LINE INTO BUFFER
;WAS NULL CHARACTER SEEN?

; DECREMENT COUNT

;NOT = @, GET NEXT CHARACTER

;OUT OF ROOM IN BUFFER, CLEAR LAST
s WORD

WO AR B LN e

- e s pm e e 3
NRADGNraSR

In this case, .ODD is used to place the buffer byte count in

the byte preceding the buffer, as follows:

6.5.3

COUNT :}:Sistgt; BUFF-2

BUFF

.BLKB and .BLKW

Blocks of storage can be reserved using the .BLKB and .BLKW
directives. .BLKB is used to reserve byte blocks and .BLKW reserves
word blocks. The two directives are of the form:

where:

.BLKB exp
+BLKW exp
exp is the number of bytes or words to reserve. IE

no argument is present, 1 is the assumed default
value. Any legal expression which is completely
defined at assembly time and produces an absolute
number is legal.

For example:

ecaree

gogog?
eeeeee
geaeeé
eveeey
gearie
414 ¥

veeae
veez4
eee2s
veRe6
P73

naegae! .CSFCT IMPURF

PASST RLKwW
PNEXT GROUP MUST STAY TAGFTHER

SYMBROLt ,BLKW 2 PRYMBOL ACCUMLLATOR
MODE ¢
FLAGS: LRLKR | pFLAG BTTS
S8FCTOR: ,RLKR 1 JSYMBCRL /JEYPRESSICN TYPE
VALUE® PRLKW 1 pFXPRESSINN VALLE
RELLVLE PLKW 1

JPLKW 2 PENR CF GROLPFD DRATA
CLENAME BLKR 2 pCURRENT | CCATICN COUNTFR SYMROL
CLCFG8SY RLKR 1
CIL.CSECs ,RLKE 1
cLCLO0C: ,RLKW 1
CLCMAXS ,RLKw 1

The .BLKB directive has the same effect as

but is

.=.+exp

easier to interpret in the context of source code.

6-25

6.6 NUMERIC CONTROL

Several directives are available to provide software comple-
ments to the floating-point hardware on the PDP-11.

A floating-point number is represented by a string of decimal
digits. The string (which can be a single digit in length) may
optionally contain a decimal point, and may be followed by an op-
tional exponent indicator; in the form of the letter E and a
signed decimal exponent. The list of number representations below
contains seven distinct, valid representations of the same floating-

point number:

3.

3.9
3.9E0
3E8
.3E1
3@PE-2

As can be quickly inferred, the list could be extended indef-
initely (e.g., 3@@g@gE-3, .@3E2, etc.). A leading plus sign is
ignored (e.g., +3.f is considered to be 3.f8). Leading minus signs
complement the sign bit. No other operators are allowed (e.g.,
3.8+N is illegal).

Floating-point number representations are only valid in the
contexts described in the remainder of this Section.

Floating-point numbers are normally rounded. That is, when a
floating-point number exceeds the limits of the field in which it
is to be stored, the high-order excess bit is added to the low-order
retained bit. For example, if the number were to be stored in a
2-word field, but more than 32 bits were needed for its value, the
highest bit carried out of the field would be added to the least
significant position. 1In order to enable floating-point truncation,
the .ENABL FPT directive is used and .DSABL FPT is used to return
to floating-point rounding (see Section 6.2).

6.6.1 .FLT2 and .FLT4

Like the

program. These two directives

.FLT2
.FLT4

where: argl,arg2,...

.WORD directive,
tives cause their arguments to

argl,arg2,..

argl,arg2,...

the two floating-point storage direc-

be stored in-line with the source

are of the form:

represents one or more floating point

numbers separated by commas.

.FLT2 causes two words of storage to be generated for each

argument while .FLT4 generates four words of storage.

The following code was assembled with the 4-word floating-

point math package:

206010 237314
PR6QLEY 146315
NQ60201 B36443
goep26' 121727
206030 23472)
PR6B36 P14545
Boepad 031453
pp6p46r 060717
op6RS0t 022746
Pu6L56 N46741
apepep 2gSs17
QpeR66" 034625

1463514
153442
133427
146167
112624
130436

146314
236560
B54342
210604
137304
126505

ATOFTB:

JFLT4
JFlLTé
FLTA
FLT4
FLT4
FLTé

l.E=1
1+E=2
1.Es4
1.E=8
1.E~16
1,Er32

11femy
1102
110t =4
;10t=8
112+-16
1409032

6.6.2 Temporary Numeric Control: +F and 4C

Like the temporary radix control operators, operators are
available to specify either a one-word floating-point number
(+F) or the one's complement of a one-word number (#C). For

example:

FL3.7: +F3.7

creates a one-word floating-point number at location FL3.7 con-
taining the value 3.7 as follows:

15 14 7 6 ']

sign
bit S exponent mantissa

This one-word floating-point number is the first word of
the 2- or 4-word floating-point number format shown in the
PDP-11 Processor Handbook, and the statement:

CMP151: +C151

stores the one's complement of 151 in the current radix (assume current
radix is octal) as follows:

15 g

177626

Since these control operators are unary operators, their arguments
may be terms, and the operators may be expressed recursively. For

example:

AF<1.2E3>
+C+D25 or +C31 or 177746

The term created by the unary operator and its argument is then a
term which can be used by itself or in an expression. For example:

+C2+6

is equivalent to:

<4+C2>+6 or 177775+6 or qoooa3

For this reason, the use of angle brackets is advised. Expressions
used as terms, or arguments of a unary operator must be explicitly

grouped.

An example of the importance of ordering with respect to unary
operators is shown below:

AF1. 0 = pg2gagg
AF-1.8 = 120499
-AFl.0 = 157499
-AF-1.9 = g#57499

The argument to the 4F operator must not be an expression and
should be of the same format as arguments to the .FLT2 and .FLT4

directives (see Section 6.6.1l).

6.7 TERMINATING DIRECTIVES

6.7.1 L.END

The .END directive indicates the physical end of
the source program. The .END directive is of the form:

.END exp

where: exp is an optional argument which, if present,
indicates the program entry point, i.e.,
the transfer address.

When the load module is loaded, program execution begins at the
transfer address indicated by the .END exp directive. 1In a runtime
system (the load module output of the Linker) an .END exp statement
should terminate the first object module and .END statements should
terminate any other object modules.

At the conclusion of the first assembly pass, upon encountering
the END statement, MACRO-1l prints:

END OF PASS 1

and attempts to reread the source file(s) to perform pass 2. If
the source file is on a disk, DECtape, or magtape device no further
operator action is necessary. If the source file is on paper tape
an A@@2 message is printed; the user is expected to reposition the
tape in the reader and type CO (for CONTINUE).

6.7.2 L.EOT
Under the Disk Operating System, the .EOT directive is ignored.

The physical End-Of-Tape allows several physically separate tapes
to be assembled as one program.

6.8 PROGRAM BOUNDARIES DIRECTIVE: ,LIMIT

A program often
module's relocatable
words into which the
the relocated code.
word) is the address
dress is the address

wishes to know the boundaries of the load
code., The .LIMIT directive reserves two
Linker puts the low and high addresses of
The low address (inserted into the first
of the first byte of code. The high ad-
of the first free byte following the relo-

cated code. These addresses are always even since all reloca-

table sections are loaded at even addresses. (If a relocatable

section consists of an odd number of bytes, the Linker adds one
to the size to make it even.)

6.9 PROGRAM SECTION DIRECTIVES

«ASECT
.CSECT
.CSECT symbol

The Assembler provides for 25510 program sections: an abso-
lute section declared by .ASECT, an unnamed relocatable program
section declared by .CSECT, and 25310
sections declared by .CSECT symbol, where symbol is any legal
symbolic name. These directives allow the user to:

named relocatable program

l. Create his program (object module) in sections:

The Assembler maintains separate location counters
for each section. This allows the user to write statements
which are not physically contiguous but will be loaded con-
tiguously. The following examples will clarify this:

.CSECT ; START THE UNNAMED RELOCATABLE SECTION
A: 2 ;ASSEMBLED AT RELOCATABLE 4,
:) ; RELOCATABLE 2 AND
C: 2 H RELOCATABLE 4,
ST: CLR A ;ASSEMBLE CODE AT
CLR B ; RELOCATABLE ADDRESS
CIR C ; 6 THROUGH 21
JASECT ; START THE ABSOLUTE SECTION
.=4 ; ASSEMBLE CODE AT
.WORD .+2,HALT ;ABSOLUTE 4 THROUGH 7,
.CSECT ; RESUME THE UNNAMED RELOCATABLE
; SECTION
INC A ;ASSEMBLE CODE AT
BR ST ; RELOCATABLE 22 THROUGH 27,
. END

The first appearance of .CSECT or .ASECT assumes the loca-
tion counter is at relocatable or absolute zero, respect-
ively. The scope of each directive extends until a directive
to the contrary is given. Further occurrences of the same
.CSECT or .ASECT resume assembling where the section was
left off.

6-32

CSECT CoOM1 ; DECLARE SECTION COM1

A: /] ; ASSEMBLED AT RELOCATABLE #.

B: g ;ASSEMBLED AT RELOCATABLE 2.

C: ') ;ASSEMBLED AT RELOCATABLE 4.
.CSECT COM2 ;DECLARE SECTION COM2

X: J4] ; ASSEMBLED AT RELOCATABLE f.

Y: g ;ASSEMBLED AT RELOCATABLE 2.
.CSECT CoOM1 ;RETURN TO COM1

D: g ; ASSEMBLED AT RELOCATABLE 6.

.END

The Assembler automatically begins assembling at reloca-
table zero of the unnamed .CSECT if not instructed other-
wise; that is, the first statement of an assembly is an
implied .CSECT.

All labels in an absolute section are absolute; all
labels in a relocatable section are relocatable. The
location counter symbol, ".", is relocatable or absolute
when referenced in a relocatable or absolute section,
respectively. Undefined internal symbols are assigned
the value of relocatable or absolute zero in a relocatable
or absolute section, respectively. Any labels appearing
on a .ASECT or .CSECT statement are assigned the value of
the location counter before the .ASECT or .CSECT takes
effect. Thus, if the first statement of a program is:

A: .ASECT

then A is assigned to relocatable zero and is associated
with the unnamed relocatable section (because the Assembler
implicitly begins assembly in the unnamed relocatable sec-
tion).

Since it is not known at assembly time where the pro-
gram sections are to be loaded, all references between
sections in a single assembly are translated by the Assembler
to references relative to the base of that section. The
Assembler provides the Linker with the necessary information
to resolve the linkage. Note that this is not necessary
when making a reference to an absolute section (the Assembler

knows all load addresses of an absolute section).

Examples:

ASECT
=1000
A CLR X s ASSEMBLED AS CLR BASE OF UNNAMED
H RELOCATABLE SECTION + 18
JMP Y ;s ASSEMBLED AS JMP BASE OF UNNAMED
H RELOCATABLE SECTION + 6
.CSECT
MOV R@,R1
JMP A ;ASSEMBLED AS JMP 100¢
Y: HALT
X: 2
.END

In the above example the references to X and Y were
translated into references relative to the base of the

unnamed relocatable section.

Share code and/or data between object modules (separate
assembles):

Named relocatable program sections operate as FORTRAN
labeled COMMON; that is, sections of the same name from
different assemblies are all loaded at the same location
by Link-11. The unnamed relocatable section is the ex-
ception to this as all unnamed relocatable sections are
loaded in unique areas by Link-11.

Note that there is no conflict between internal
symbolic names and program section names; that is, it is
legal to use the same symbolic name for both purposes.
In fact, considering FORTRAN again, this is a necessity
to accommodate the FORTRAN statement:

COMMON /X/A,B,C,X

where the symbol X represents the base of this program
section and also the fourth element of this program

section.

Also, there is no conflict between program section
names and .GLOBL names. In FORTRAN language, COMMON
block names and SUBROUTINE names may be the same.

6.10 SYMBOL CONTROL: .GLOBL

The Assembler produces a relocatable object module and a
listing file containing the assembly listing and symbol table.
Link~1l joins separately assembled object modules into a single
load module. Object modules are relocated as a function of the
specified base of the load module. The object modules (where
there are more than one) are linked via common global symbols,
such that a global symbol in one module (either defined by
direct assignment or as a label) can be referenced from another

module.

A global symbol must be specified in a .GLOBL directive.
The form of the .GLOBL directive is:

.GLOBL syml,sym2,...

where: syml,sym2,... are legal symbolic names, separated by
commas or spaces where more than one
symbol is specified.

Symbols appearing in a .GLOBL directive are either defined
within the current program or are external symbols in which case
they are defined in another program which is to be linked with
the current program, by Link-11, prior to execution.

A .GLOBL directive line may contain a label in the label
field and comments in the comment field.

At the end of assembly pass 1, MACRO-11l has determined
whether a given global symbol is defined within the program or
is expected to be an external symbol. All internal symbols to
a given program, then, must be defined by the end of pass 1.

;DEFINE A SUBROUTINE WITH 2 ENTRY POINTS WHICH CALLS AN
; EXTERNAL SUBROUTINE

.CSECT ;DECLARE THE CONTROL SECTION
.GLOBL A,B,C ;DECLARE A, B, C AS GLOBALS
Az MOV @(R5)+,RM ;ENTRY A DEFINED
MOV #X,R1
X: JSR PC,C ;CALL EXTERNAL SUBROUTINE C
RTS R5 EXIT
B: MOV @(R5)+,R1 ;DEFINE ENTRY B
CLR Rl
BR X

6—-35

In the example on the previous page, A and B are entry symbols
(entry points), C is an external symbol and X is an internal

symbol.

A global symbol is defined only when it appears in a .GLOBL
directive. A symbol is not considered a global symbol if it is
assigned the value of a global expression in a direct assignment

statement.

References to external symbols can appear in the operand
field of an instruction or assembler directive in the form of

a direct reference, i.e.:

CLR EXT
.WORD EXT
CLR @EXT

or a direct reference plus or minus a constant, i.e.:

A=6

CLR EXT+A

.WORD EXT-2

CLR QEXT+A

An external symbol cannot be used in the evaluation of a direct

assignment expression. A global symbol defined within the program

can be used in the evaluation of a direct assignment statement.

6-36

6.11 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives provide the programmer with
the capability to conditionally include or ignore blocks of source

code in the assembly process.

This technique is used extensively

to allow several variations of a program to be generated from the

source program.

The general form of a conditional block is as follows:

.IF cond,argument (s)

«.ENDC

where: cond

; START CONDITIONAL BLOCK

;s RANGE OF CONDITIONAL

; BLOCK

; END CONDITIONAL BLOCK

ditions are defined below.

argument (s)

range

is a condition which must be met if the block
is to be included in the assembly.

These con-—

are a function of the condition to be tested.

is the body of code which is included in the

assembly or ignored depending upon whether
the condition is met.

The following are the allowable conditions:

Conditions
POSITIVE COMPLEMENT ARGUMENTS ASSEMBLE BLOCK IF
EQ NE | expression expression=@ (or ##)
GT LE expression expression>@ (or <)
LT GE expression expression<f (or >#)
DF NDF symbolic symbol is defined
argument (or undefined)
B NB macro-type argument is blank
argument (or nonblank)
IDN DIF two marco-type arguments identical
arguments separated | (or different)
by a comma
Z NZ expression same as EQ/NFE
L expression same as GT/LE
NOTE

A_magro-type argument is enclosed in angle brackets or
within an up-arrow construction (as described in

Section 7.3.1

).

For example:

<A,B,C>
+/124/

6-37

For example:
.IF EQ ALPHA+1 ;ASSEMBLE IF ALPHA+1l={

.ENDC

Within the conditions DF and NDF the following two operators are
allowed to group symbolic arguments:

& logical AND operator
! logical inclusive OR operator

For example:
.IF DF SYM1l & SyM2

.ENDC
assembles if both SYM1 and SYM2 are defined.

6.11.1 Subconditionals

Subconditionals may be placed within conditional blocks to
indicate:

a. assembly of an alternate body of code when the condition of
the block indicates that the code within the block is not
to be assembled.

b. assembly of -a non-contiguous body of code within the condi-
tional block depending upon the result of the conditional
test to enter the block.

¢c. unconditional assembly of a body of code within a condi-
tional block.

There are three subconditional directives, as follows:

Subconditional Function

.IFF The code following this statement up to
the next subconditional or end of the
conditional block is included in the
program providing the value of the con-
dition tested upon entering the condi-
tional block was false.

LIFT The code following this statement up to
the next subconditional or end of the
conditional block is included in the pro-
gram providing the value of the condition
tested upon entering the conditional block
was true.

.IFTF The code following this statement up to
the next subconditional or the end of the
conditional block is included in the pro-
gram regardless of the value of the con-
dition tested upon entering the condi-
tional block.

The implied argument of the subconditionals is the value of the
condition upon entering the conditional block. Subconditionals are
used within outer level conditional blocks. Subconditionals are

ignored within nested, unsatisfied conditional blocks.

6-38

For example:

.IF DF SYM ; ASSEMBLE BLOCK IF SYM IS DEFINED

. IFF
. ;ASSEMBLE THE FOLLOWING CODE ONLY IF
. ;SYM IS UNDEFINED.

LIFT ;ASSEMBLE THE FOLLOWING CODE ONLY IF
. ;SYM IS DEFINED.

. IFTF ;ASSEMBLE THE FOLLOWING CODE
. ; UNCONDITIONALLY.

.ENDC

.IF DF X ;ASSEMBLY TESTS FALSE

.IF DF Y ; TESTS FALSE

. IFF s NESTED CONDITIONAL
. . , IGNORED

LIFT s NOT SEEN

.ENDC

.ENDC

However,

.IF DF X s TESTS TRUE

.IF DF Y ; TESTS FALSE

. IFF ;IS ASSEMBLED

.IFT ; NOT ASSEMBLED

. ENDC

.ENDC

6.11.2 Immediate Conditionals

An immediate condiitonal directive is a means of writing a
one-line conditional block. 1In this form, no .ENDC statement is
required and the condition is completely expressed on the line
containing the conditional directive. Immediate conditions are

of the form:

6-39

.IJIF cond, arg, statement
where: cond is one of the legal conditions defined for
conditional blocks in Section 6.11.

arg is the argument associated with the condi-
tion specified, that is, either an expres-
sion, symbol, or macro-type argument, as
described in Section 6.11.

statement is the statement to be executed if the
condition is met.
For example:
.IIF DF FOO,BEQ ALPHA
this statement generates the code
BEQ ALPHA
if the symbol FOO is defined.
A label must not be placed in the label field of the .IIF
statement. Any necessary labels may be placed on the previous

line:

LABEL:
.ITF DF FPP,BEQ ALPHA

or included as part of the conditional statement:
.IIF DF FOO, LABEL: BEQ ALPHA

6.11.3 PAL-11R Conditional Assembly Directives

In order to maintain compatibility with programs developed
under PAL-11R, the following conditionals remain permissible
under MACRO-11. It is advisable that future programs be developed
using the format for MACRO-11 conditional assembly directives.

Directive Arguments Assemble Block if

.IFZ or .IFEQ expression expression=g

.IFNZ or .IFNE expression expression#gd

.IFL or .IFLT expression expression<g

.IFG or .IFGT expression expression>g

LIFLE expression expression<f

.IFGE expression expression>g

. IFDF logical expression expression is true (defined)

. IFNDF logical expression Jexpression is false (undefined)

The rules governing the usage of these directives are now

the same as for the MACRO~1l conditional assembly directives pre-

viously described.
the .ENDC directive and are limited to a nesting depth of 16

levels (instead of the 127 levels allowed under PAL-11R).

10

41

o)}
}

Conditional assembly blocks must end with

10

CHAPTER 7

MACRO DIRECTIVES

7.1 MACRO DEFINITION

It is often convenient in assembly language programming to
generate a recurring coding sequence with a single statement.
In order to do this, the desired coding sequence is first defined
with dummy arguments as a macro. Once a macro has been defined,
a single statement calling the macro by name with a list of real
arguments (replacing the corresponding dummy arguments in the
definition) generates the correct sequence or expansion.

7.1.1 .MACRO

The first statement of a macro definition must be a .MACRO
directive. The .MACRO directive is of the form:

.MACRO name, dummy argument list

where:
name is the name of the macro. This name is any
legal symbol. The name chosen may be used as
a label elsewhere in the program.

’ represents any legal separator (generally a
comma or space).

dummy zero, one, or more legal symbols which may

argument appear anywhere in the body of the macro

list definition, even as a label. These symbols

can be used elsewhere in the user program
with no conflicts of definition. Where more
than one dummy argument is used, they are
separated by any legal separator (generally
a comma) .

A comment may follow the dummy argument list in a statement con-
taining a .MACRO directive. For example:

.MACRO ABS A,B ;DEFINE MACRO ABS WITH TWO ARGUMENTS

A label must not appear on a .MACRO statement. Labels are
sometimes used on macro calls, but serve no function when attached
to .MACRO statements.

7.1.2 .ENDM

The final statement of every macro definition must be an
.ENDM directive of the form:

.ENDM name

where:
name is an optional argument, being the name of the
macro terminated by the statement.

For example:
. ENDM (terminates the current macro definition)

.ENDM ABS (terminates the definition of the macro ABS)

If specified, the symbolic name in the .ENDM statement must
correspond to that in the matching .MACRO statement. Otherwise
the statement is flagged and processing continues. Specification
of the macro name in the .ENDM statement permits the Assembler to
detect missing .ENDM statements or improperly nested macro defini-

tions.

The ENDM statement may contain a comment field, but must not

contain a label.

An example of a macro definition is shown below:

.MACRO TYPMSG MESSGE ;TYPE A MESSAGE
JSR R5, TYPMSG

.WORD MESSGE

.ENDM

7.1.3 .MEXIT

In order to implement alternate exit points from a macro
(particularly nested macros), the .MEXIT directive is provided.
.MEXIT terminates the current macro as though an .ENDM directive
were encountered. Use of .MEXIT bypasses the complications of

conditional nesting and alternate paths. For example:

.MACRO ALTR N,A,B

.IF EQ,N 7 START CONDITIONAL BLOCK

.MEXIT ;EXIT FROM MACRO DURING CONDITIONAL BLOCK
.ENDC ;END CONDITIONAL BLOCK

.ENDM ;NORMAL END OF MACRO

In an assembly where N=@, the .MEXIT directive terminates the macro

expansion.
Where macros are nested, a .MEXIT causes an exit to the next
higher level. A .MEXIT encountered outside a macro definition is

flagged as an error.

7.1.4 MACRO Definition Formatting

A form feed character used as a line terminator on a MACRO-11
source statement, (or as the only character on a line) causes a
page eject. Used within a macro definition, a form feed character
causes a page eject. A page eject is not performed when the macro

is invoked.

Used within a macro definition, the .PAGE directive is ignored,

but a page eject is performed at invocation of that macro.

7.2 MACRO CALLS

A macro must be defined prior to its first reference. Macro

calls are of the general form:

label: name, real arguments

where: label represents an optional statement label.
name represents the name of the macro specified
in the .MACRO directive preceding the macro
definition.

represents any legal separator (comma,
space, or tab). No separator is necessary
where there are no real arguments.

real are those symbols, expressions, and values

arguments which replace the dummy arguments in the
.MACRO statement. Where more than one
argument is used, they are separated by
any legal separator.

Where a macro name is the same as a user label, the appearance of
the symbol in the operation field designates a macro call, and the
occurrence of the symbol in the operand field designates a label

reference. For example:

ABS: MOV @R@,R1 ;ABS IS USED AS LABEL
BR ABS ;ABS IS CONSIDERED A LABEL

ABS #4,ENT,LAR ;CALL MACRO ABS WITH 3 ARGUMENTS

Arguments to the macro call are treated as character strings whose

usage is determined by the macro definition.

7.3 ARGUMENTS TO MACRO CALLS AND DEFINITIONS

Arguments within a macro definition or macro call are separated
from other arguments by any of the separating characters described
in Section 3.1.1.

For example:

.MACRO REN A,B,C

REN ALPHA,BETA,<C1,C2>

Arguments which contain separating characters are enclosed in paired
angle brackets. An up-arrow construction is provided to allow

angle brackets to be passed as arguments. Bracketed arguments are

seldom used in a macro definition, but are more likely in a
macro call. For example:

REN <MOV X,¥Y>#44,WEV
This call would cause the entire statement:

MOV X,Y
to replace all occurrences of the symbol A in the macro definition.
Real arguments within a macro call are considered to be character
strings and are treated as a single entity until their use in the

macro expansion.

The up-arrow construction could have been used in the above
macro call as follows:

REN 4/MOV X,Y/,#44,WEV
which is equivalent to:
REN <MOV X,Y>,#44,WEV

Since spaces are ignored preceding an argument, they can be used
to increase legibility of bracketed constructions.

The form:
REN #44,WEV+/MOV X,Y/

however, contains only two arguments: #44 and WEV 4/MOV X,Y/ (see
section 3.1.1) because 4 is a unary operator.

7.3.1 Macro Nesting

Macro nesting (nested macro calls), where the expansion of one
macro includes a call to another macro, causes one set of angle brackets

to be removed from an argument with each nesting level. The depth of

nesting allowed is dependent upon the amount of core space used by

the program. To pass an argument containing legal argument delimiters
to nested macros, the argument should be enclosed in one set of angle

brackets for each level of nesting, as shown below:

.MACRO LEVEL1l DUM1l,DUM2
LEVEL2 DUM1
LEVEL2 DUM2

. ENDM

.MACRO LEVEL2 DUM3
DUM3

ADD #1¢,R@

MOV Rf, (R1)+

. ENDM

A call to the LEVELl macro:
LEVEL1 <<MOV X,R@>>,<<CLR R@g>>
causes the following expansion:

MOV X,Rf
ADD #1#,Rf@
MOV R@, (R1)+
CLR Rf

ADD #1§,Rf§
MOV Rf, (R1)+

where macro definitions are nested (that is, a macro definition is
entirely contained within the definition of another macro) the inner
definition is not defined as a callable macro until the outer macro

has been called and expanded. For example:

.MACRO LV1 A,B

.MACRO LV2 A

. ENDM
. ENDM

The LV2 macro cannot be called by name until after the first call
to the LV1 macro. Likewise, any macro defined within the LV2 macro

definition cannot be referenced directly until LV2 has been called.

7.3.2 Special Characters

Arguments may include special characters without enclosing
the argument in a bracket construction if that argument does not

contain spaces, tabs, semi-colons, or commas. For example:

.MACRO PUSH ARG
MOV ARG, - (SP)
. ENDM

PUSH X+3(%2)
generates the following code:
MOV X+3(%2) ,-(SP)

7.3.3 Numeric Arguments Passed as Symbols

When passing macro arguments, a useful capability is to pass
a symbol which can be treated by the macro as a numeric string.
An argument preceded by the unary operator backslash (\) is treated
as a number in the current radix. The ASCII characters represent-
ing the number are inserted in the macro expansion; their function
is defined in context. For example:

B=g

.MACRO INC A,B

CNT A, \B

B=B+1

.ENDM

.MACRO CNT A,B
A'B: .WORD

. ENDM

INC X,C
The macro call would expand to:
X@: .WORD
A subsequent identical call to the same macro would generate:

X1: .WORD

and so on for later calls. The two macros are necessary because
the dummy value of B cannot be updated in the CNT macro. In the
CNT macro, the number passed is treated as a string argument.

(Where the value of the real argument is @, a single @ character

is passed to the macro expansion.)

The number being passed can also be used to make source
listings somewhat clearer. For example, versions of programs
created through conditional assembly of a single source can
identify themselves as follows:

.MACRO IDT SYM ;ASSUME THAT THE SYMBOL ID TAKES
. IDENT /SYM/ ;ON A UNIQUE 2 DIGIT VALUE FOR
.ENDM ; EACH POSSIBLE CONDITIONAL ASSEMBLY
+MACRO OUT ARG ; OF THE PROGRAM
IDT @@5A'ARG .
. ENDM .
. ;WHERE @@5A IS THE UPDATE
ouT \ID ; VERSION OF THE PROGRAM

;AND ARG INDICATES THE
; CONDITIONAL ASSEMBLY VERSION.

The above macro call expands to
.IDENT /@@5AXX/
where XX is the conditional value of ID.
TWO macros are necessary since the text delimiting characters in
the .IDENT statement would inhibit the concatenation of a dummy

argument.

7.3.4 Number of Arguments

If more arguments appear in the macro call than in the macro
definition, the excess arguments are ignored. If fewer arguments
appear in the macro call than in the definition, missing arguments
are assumed to be null (consist of no characters). The conditional
directives .IFB and .IFNB can be used within the macro to detect

unnecessary arguments.

A macro can be defined with no arguments.

7.3.5 Automatically Created Symbols

MACRO-11 can be made to create symbols of the form n$ where
n is a decimal integer number such that 64<n<127. Created symbols
are always local symbols between 64$ and 127$%. (For a description
of local symbols, see Section 3.5.) Such local symbols are created
by the Assembler in numerical order, i.e.:

64%
658

.

1268
1278

Created symbols are particularly useful where a label is required
in the expanded macro. Such a label must otherwise be explicitly’
stated as an argument with each macro call or the same label is
generated with each expansion (resulting in a multiply-defined
label). Unless a label is referenced from outside the macro,

there is no reason for the programmer to be concerned with that label.

The range of these local symbols extends between two ekplicit
labels. Each new explicit label causes a new local symbol block
to be initialized.

The macro processor creates a local symbol on each call of a
macro whose definition contains a dummy argument preceded by the ?
character. For example:

.MACRO ALPHA A,7?B

TST A

BEQ B

ADD #5,A
B:

.ENDM

Local symbols are generated only where the real argument of the
macro call is either null or missing. If a real argument is
specified in the macro call, the generation of a local symbol is
inhibited and normal replacement is performed. Consider the fol-
lowing expansions of the macro ALPHA above.

GENERATE A LOCAL SYMBOL FOR MISSING ARGUMENT:

ALPHA %1
TST g1
BEQ 645

ADD #5,%1
64S:

DO NOT GENERATE A LOCAL SYMBOL:

ALPHA %2,XYZ

TST %2

BEQ XYZ

ADD #5,%2
XYZ:

These Assembler-generated symbols are restricted to the first

sixteen (decimal) arguments of a macro definition.

7.3.6 Concatenation

The apostrophe or single quote character (') operates as a
legal separating character in macro definitions. An ' character
which precedes and/or follows a dummy argument in a macro defini-
tion is removed and the substitution of the real argument occurs

at that point. For example:

.MACRO DEF A,B,C
A'B: ASCIZ /C/

.WORD ''A'''B

. ENDM

When this macro is called:

DEF X,Y,<MACRO-11>

it expands as follows:

XY: .ASCIZ /MACRO-11/
.WORD 'X'Y

In the macro definition, the scan terminates upon finding the
first ' character. Since A is a dummy argument, the ' is removed.
The scan resumes with B, notes B as another dummy argument and
concatenates the two dummy arguments. The third dummy argument is

noted as going into the operand of the .ASCIZ directive. On the

next line (this is not a useful example, but one for purely il-
lustrative purposes) the argument to .WORD is seen as follows:
The scan begins with a ' character. Since it is neither preceded
nor followed by a dummy argument, the ' character remains in the
macro definition. The scan then encounters the second ' charac-
ter which is followed by a dummy argument and is discarded. The
scan of theargument A terminated upon encountering the second '
which is also discarded since it follows a dummy argument. The
next ' character is neither preceded nor followed by a dummy
argument and remains in the macro expansion. The last ' charac-
ter is followed by another dummy argument and is discarded.
(Note that the five ' characters were necessary to generate two

' characters in the macro expansion.)

Within nested macro definitions, multiple single quotes can

be used, with one quote removed at each level of macro nesting.

7.4 .NARG, .NCHR, AND ,NTYPE

These three directives allow the user to obtain the number of
arguments in a macro call (.NARG), the number of characters in an
argument (.NCHR), or the addressing mode of an argument (.NTYPE).
Use of these directives permits selective modifications of a macro

depending upon the nature of the arguments passed.

The .NARG directive enables the macro being expanded to
determine the number of arguments supplied in the macro call,

and is of the form:

label: .NARG symbol
where: label is an optional statement label
symbol is any legal symbol whose value is equated

to the number of arguments in the macro call
currently being expanded. The symbol can be
used by itself or in expressions.

This directive can occur only within a macro definition.

The .NCHR directive enables a program to determine the

number of characters in a character string, and is of the form:
label: .NCHR symbol, <character string>

where: label is an optional statement label

symbol is any legal symbol which is equated to the
number of characters in the specified char-
acter string. The symbol is separated from
the character string argument by any legal
separator.

<character string> 1is a string of printing characters which should
only be enclosed in angle brackets if it con-
tains a legal separator. A semi-colon also
terminates the character string.

This directive can occur anywhere in a MACRO-11l program.

The .NTYPE directive enables the macro being expanded to
determine the addressing mode of any argument, and is of the
form:

label: .NTYPE symbol, arg

where: label is an optional statement label

symbol is any legal symbol, the low order 6-bits
of which is equated to the 6-bit addressing
mode of the argument. The symbol is separ-
ated from the argument by a legal separator.
This symbol can be used by itself or in ex-
pressions.

arg is any legal macro argument (dummy argument)

as defined in Section 7.3.

This directive can occur only within a macro definition. An

example of ,NTYPE usage in a macro definition is shown below:

.MACRO SAVE ARG

.NTYPE SYM,ARG

.IF EQ,SYM&79

MOV ARG, TEMP ; REGISTER MODE

. IFF

Mov #ARG, TEMP ; NON-REGISTER MODE
.ENDC

. ENDM

7.5 .ERROR and .PRINT

The .ERROR directive is used to output messages to the command
output device during assembly pass 2. A common use is to provide
diagnostic announcements of a rejected or erroneous macro call. The
form of the .ERROR directive is as follows:

label: .ERROR expr;text
where: label is an optional statement label
expr is an optional legal expression whose value

is output to the command device when the
.ERROR directive is encountered. Where

expr is not specified, the text only is

output to the command device.

denotes the beginning of the text string
to be output.

~e

text is the string to be output to the command
device. The text string is terminated by
a line terminator.

Upon encountering a .ERROR directive anywhere in a MACRO-11l program,
the Assembler outputs a single line containing:

a. the sequence number of the .ERROR directive line,

b. the current value of the location counter,

c. the value of the expression if one is specified, and,
d. the text string specified.

For example:
.ERROR A;UNACCEPTABLE MACRO ARGUMENT
causes a line similar to the following to be output:

512 5642 p@e@76 ;UNACCEPTABLE MACRO ARGUMENT

This message is being used to indicate an inability of the subject
macro to cope with the argument A which is detected as being indexed
deferred addressing mode (mode 7f) with the stack pointer (%6) used
as the index register.

The line is flagged on the assembly listing with a P error code.

The .PRINT directive is identical to .ERROR except that it is
not flagged with a P error code.

7.6 INDEFINITE REPEAT BLOCK: .IRP AND .IRPC

An indefinite repeat block is a structure very similar to
a macro definition. An indefinite repeat is essentially a macro
definition which has only one dummy argument and is expanded once
for every real argument supplied. An indefinite repeat block is
coded in-line with its expansion rather than being referenced by

name as a macro is referenced. An indefinite repeat block is of

the form:
label: .IRP arg,<real arguments>
(range of the indefinite repeat)
. ENDM
where: label is an optional statement label. A label may

not appear on any .IRP statement within an-

other macro definition, repeat range or indef-
inite repeat range,or on any .ENDM statement.

arg is a dummy argument which is successively
replaced with the real arguments in the
.IRP statement.

<real argument> is a list of arguments to be used in the ex-
pansion of the indefinite repeat range and
enclosed in angle-brackets. Each real argu-
ment is a string of zero or more characters
or a list of real arguments (enclosed in
angle brackets). The real arguments are
separated by commas.

range is the block of code to be repeated once for
each real argument in the list. The range
may contain macro definitions, repeat ranges,
or other indefinite repeat ranges. Note that
only created symbols should be used as labels
within an indefinite repeat range.

An indefinite repeat block can occur either within or outside
macro definitions, repeat ranges, or indefinite repeat ranges.

The rules for creating an indefinite repeat block are the same

as for the creation of a macro definition (for example, the .MEXIT
statement is allowed in an indefinite repeat block). Indefinite

repeat arguments follow the same rules as macro arguments.

-

«TITLE IRPTST
«LIST MU ML, ME
«MCALL LPARAM
ARBRLe «PARAM
PRrveY Re®%a0
puopuel RL®#%AQL
LG nR RewXaD2
a6rvud RI®XALI
pBnEye R4RY%ADA
pupved REBXAQSE
Yapuus REWLAQDG
RRRUE7 R7®%A07
YRRYEE SPRYAQSE
PRQgUE7 PCRYAD7
177776 PSHEAQLY7776
177570 SwREADL7757¢ :
VOdRRY vl2/e9 Moy BTABLE,RV

wdpube
o [RP Xe%ApBpLrD E)F>
MOV X, (REY+
«ENDM
QVD0g V16720 MOV Ay (RE)#
pouy3e
wevly 616720 MoV By (RU)*
bpade
papld pl6729 MOV Cor (R) ¥
pppe2é
pUp2n Dl672¢ MOy Dr(RUEG)»
vwonpwegs
wope4 wlezza M@V Es (RU)*
papuze
pupde wie?7zo0 Mov Fo(rid)+
Yowuzge
Figure 7-1

.IRP and .IRPC Example

7-15

18
19
20
21
22
23
24
25
R6
27
28

« IRPC X ABGDEF

«ASCII /x/

dENDM
wkgYa led WASCIL /A/
nunss e «ASCII /d/
nupds 13 «ASCII /Cv
und7 ivd «ADCII /s0V/
BBl ied 2ASCII /E/
Anuéy 1v8 o ASCIL /F/
auuez va1lel At «WORD "AR
Buoped pa1huy By WURD L1
Avuad gdzglud C3 p HURD "co
AARdY vé2ovd DI «nURD YOE
PUPD2 wHadled B3 s WURD "EF
Aaluda HAZHLE P aWURD Ll xe
VdGoE TABLES BLxw (-]

vyl «END

Figure 7-1, Continued

«IRP and .IRPC Example

A second type of indefinite repeat block is available which
handles character substitution rather than argument substitution.

The .IRPC directive is used as follows:

label: .IRPC arg,string

(range of indefinite repeat)

.

. ENDM

On each iteration of the indefinite repeat range, the dummy argu-
ment (arg) assumes the value of each successive character in the
string. Terminators for the string are: space, comma, tab,

carriage return, line feed, and semi-colon.

7.7 REPEAT BLOCK: .REPT

Occasionally it is useful to duplicate a block of code a
number of times in line with other source code. This is per-
formed by creating a repeat block of the form:

label: .REPT expr

(iange of repeat block)

. ENDM 7OR .ENDR

where: label is an opticnal statement label. The .ENDR or
.ENDM directive may not have a label. A .REPT
statement occurring within another repeat block,
indefinite repeat block, or macro definition may
not have a label associated with it.

expr is any legal expression controlling the number of
times the block of code is assembled. Where
expr<f@, the range of the repeat block is not
assembled.

range is the block of code to be repeated expr number
of times. The range may contain macro definitions,
indefinite repeat ranges, or other repeat ranges.
Note that no statements within a repeat range can
have a label.

The last statement in a repeat block can be an .ENDM or .ENDR
statement. The .ENDR statement is provided for compatibility

with previous assemblers.

The .MEXIT statement is also legal within the range of a
repeat block.

7.8 MACRO LIBRARIES: .MCALL

All macro definitions must occur prior to their referencing
within the user program. MACRO-1ll provides a selection mechanism
for the programmer to indicate in advance those system macro defini-

tions required by his program.

The .MCALL directive is used to specify the names of all system
macro definitions not defined in the current program but required
by the program. The .MCALL directive must appear before the first
occurrence of a macro call for an externally defined macro. The
.MCALL directive is of the form:

.MCALL argl,arg2,...

where argl,arg2,... are the names of the macro definitions
required in the current program.

When this directive is encountered, MACRO-11 searches the system
library files to find the requested definition(s). The system library
file, SYSMAC.SML, is first sought under the current user's UIC on the
system device where, if found, the Assembler takes the definition for
all requested macros. If all macro requests have not been satisfied,
or if SYSMAC.SML does not exist under the current UIC, the Assembler
searches for the file SYSMAC:SML under [1,1] on the system device.

See Appendix D for a listing of the system macro file (SYSMAC.SML)

stored under [1,1] on the system device.

7-18

CHAPTER 8

OPERATING PROCEDURES

The MACRO-11 Assembler assembles one or more ASCII source files
containing MACRO-11 statements into a single relocatable binary
object file. The output of the Assembler consists of a binary object
file and an assembly listing followed by the symbol table listing.

A CREF (cross reference) listing can be specified as part of the

assembly output by means of a switch option.

8.1 LOADING MACRO-11

MACRO-11 is loaded with the Disk Monitor RUN command as follows:

$RUN MACRO

(Characters printed by the system are underlined to differentiate
them from characters typed by the user.) The Assembler responds

by identifying itself and its version number, followed by a # char-
acter to indicate readiness to accept a command input string:

MACRO Vg@gla

#

8.2 COMMAND INPUT STRING

In response to the # printed by the Assembler, the user types
the output file specification(s), followed by a left angle bracket,
followed by the input file specification(s):

#object,listing<sourcel,source2,...,sourceN

where: object is the binary object file

listing 1is the assembly listing file containing the assembly
listing and symbol table and, optionally, a separate
CREF listing file can be appended to the assembly
listing or output as a separate file.

sourcel,source2, are the ASCII source files containing the

. ..,80urceN MACRO-11 source program(s). No limit is
set on the number of source input files,
except as the Assembler is limited by the
size of the user-defined and macro symbol

tables.

8-1

If an error is made in typing the command string, typing the
RUBOUT key erases the immediately preceding character. Repeated
typing of the RUBOUT key erases one character for each RUBOUT up
to the beginning of the line. Typing CTRL/U erases the entire

line.

A null specification in any of the file fields signifies
that the associated input or output file is not desired. Each
file specification contains the following information (and follows

the standard DOS conventions for file specifications):
dev:filenam.ext[uic]/option:arg

One or more switch options can be specified with each file speci-
fication to provide the Assembler with information about that file.

The switch options are described in Section 8.3.

A syntactical error detected in the command string causes the
Assembler to output the command string up to and including the
point where the error was detected, followed by a ? character.
The Assembler then reprints the # character and waits for a new
command string to be entered. The following command string semanti-

cal errors are detected:

Error Error Code

Illegal switch 5203
Too many switches

Illegal switch value

Too many switch values

Too many output file specifications 5204
Input file missing S206

The default value for each file specification is noted below:

dev f£ilnam ext uic
object system last source .OBJ current
device file name
listing device used last source .LST current
for object file name
output
CREF system last source .CRF current
intermediate device file name
sourcel system - .MAC
device .PAL current
.null

dev filnam ext uic

source2 device used - .MAC current
. for sourcel .PAL
° (last source .null
sourceN ¢i1o gspecified)
system system device SYSMAC . SML current
macro [1,1]
file

8.3 SWITCH OPTIONS

There are four types of switch options: 1listing options, func-
tions, CREF specifications, and pass assembly controls. The listing
options are described in detail in Section 6.1.1. The function options
are described in detail in Section 6.2. Rather than repeat this in-
formation here, the reader is advised to turn to these sections or the
summary contained in Appendix B. The switch options are specified in
the form:

Specification Function
/LI
/LI:arg .
NL: Listing control
/NL:arg
/EN:arg .
/DS :arg Function Control
/CRF Produce cross reference table
/CRF:arg
/PA:l Assemble file during Pass 1 only
/PA:2 Assemble file during Pass 2 only

Switch options specified on the output side apply to both the
object and listing files. Switch options specified on the input
side apply to the particular file which the switch follows and all
subsequent files.

8.4 CREF, CROSS-REFERENCE TABLE GENERATION

A cross reference listing of all or a subset of all symbols used
in the source program can be obtained by a call to the CREF routine.
CREF can be used in two ways:

a. CREF can be called automatically following an assembly.
In order to do this, the /CRF switch is specified fol-
lowing the assembly listing file specification. For
example:

#,LP: /CRF<FILEL,FILE2

This command string sends the assembly listing (FILE2.LST)
to the line printer. An intermediate CREF file is created

8-3

and temporarily stored on the system device
(FILE2.CRF) under the current UIC. The CREF
routine takes this intermediate file, generates
a CREF listing and routes that listing to the
line printer. (The CREF listing is appended

to the file FILE2.LST.) The CREF intermediate
file is then deleted; there is no way to pre-
serve this file when CREF is being called auto-
matically.

b. If no CREF listing is desired immediately, the
intermediate CREF file can be saved on the sys-
tem device} and the CREF listing can be gener-
ated at a later date. In order to preserve the
intermediate CREF file, the MACRO command string
is given as follows:

#,LP:/CRF:NG<FILEl,FILE2

This command string sends the assembly listing
(FILE2.LST) to the line printer. The CREF in-
termediate file (FILE2.CRF) is sent to the
system device under the current UIC. (The :NG
argument is a mnemonic for "No Go" to CREF;
i.e., no automatic transfer to the CREF rou-
tine following the output of the assembly
listing.)

In order to generate the CREF listing, the
CREF routine is run and given a command string
indicating the input file specification(s) and
a single output file specification. For

example:
$RU CREF
CREF V@gla

FLP:<FILEZ.CRF

In this case the intermediate file created
automatically in the example above is pro-
cessed to obtain a CREF listing which is then
sent to the line printer. The CREF inter-
mediate file is then automatically deleted.
If it is desired to preserve the intermediate
file, the command string should be given as:

ﬁLP:<FILE2.CRF/SA
Unless the /SA switch is specified, the default

case is always to delete the CREF intermediate
file.

The CREF listing is organized into one to five sections, each

listing a different type of symbol. The sections are as follows:

Section Type Argument
user-defined symbols :S
macro symbolic names M

permanent symbols (instructions,
directives) :P

Section Type Argument
.CSECT symbolic names :C

error codes :E

Where no arguments are specified following the /CRF switch, all

of the above sections except the permanent symbols are cross refer-

enced. However, when any one argument is specified (other than :NG),
no other default sections are assumed or provided. For example, in
order to obtain a CREF listing for all five section types, the fol-

lowing switch option specification is used:
/CRF:S:M:P:C:E

The order in which the arguments are specified does not affect the
order of their output, which is as listed above.

Figure 8-1 contains a segment of source code and Figure 8-2
contains a segment of a CREF listing with some references to the
code in Figure 8-1. Notice the appearance of the @ and # characters
in the CREF listing. An @ character appears in the CREF listing
wherever a destructive reference has been made to that symbol (i.e.,
the contents of that symbol have been altered at that point). A #
character appears in the CREF listing wherever a symbol is defined.

MACRU vagl 17=APRm?72
UBJECT CUDE HANDLERS
i «Se8TTL
2
3 alz2ags ENDP?
4 912026 CALL
412826 204767 JSR
174242
5 v12032 Qus8767 TST
Aapyap!?
6 212036 w1142 oNE
7 algddp ENTOVR
8 wiz2van B4us8767 Isr
2114167
9 vi204d Gp1517 BEQ
14 12046 012767 MoV
Apogn)
pPnsaz
11 12954 CALL
12054 044767 JSR
nY1542
12 120060 ni2721 M0v
ngarasar
13 127204 16742 Mty
L EEY L
14 12¢7¢ CALL
12072 244767 JSr
a1
15 12074 2uS5046 CLR
18 12076 912567 1ass M0V
AyAYua!
17 12142 NEXT
12192 #1274¢ a0y
AdniglY
12196 @ua767 J 8w
Naddng
18 12112 pyl145y BEy
19 12114 816746 M0V
Agnyas!
20 12120 n1274y M0y
AQRPAG!
21 12124 711133 Moy
22 12126 Ma2725 sIC
nand77
23 12132 219395 SwaAR
24 12134 0427141 aIg
177737
25 12140 w2721 41s
naRaty
26 12144 231032} A0V
27 12146 4Ay14a4 BEy
28 121959 211141 MOov
29 12192 2985467 1132 CLr
ApAdAs!
32 12156 212791 12%¢ MOV
Aandn2!
31 12102 CALL
12162 %y4ay67 JSH
rYA5686

MACRQ v@aaal

17=APR=72 19309 PAGE 72

UBJECT CUDE HANDLERS

SETMAX
PC,SETHMAX

PASS

ENVUP2

4

DBJLNK

308
#BLKTAL,8LKTYP
OBJINI
PC,y0D3JINI
APRGTTL,R]
RLOPNT,R2

G3POMP
PC,GS0QMR

- (5P)
(SP)+,ROLUPD

SECROL
#SECROL,R2

PCyNEXT

208
ROLUPD, = (SP)

RMODE, R

(R1),RS
#377,RS8

RS

e]meRELFLEY>, (R1)

ReGSPDTAL»+VEFFLEG, (R1)+

R5p (Rl)"
11%
(R1),=(R1)
ROLUPD

#8YM30L,R1

GS0DMP
PC,GSDLMP

Figure 8-1

Assembly Listing

8-6

f1END OF PASS HANDLER

PPASS ONE?
JARANCH IF PASS 2

1PASS QNE, ANY OBJECT?

!} NO
PSET BLOCK TYP)L |
JTINIT THE POINTERS

ISET "FROM" INDEX

7 AND "TOM" INDEX

JOUTPUT GSD BLOCK
FINIT FOR SECTOR SCAN
J1SET SCAN MARKER

JIGET THE NEXT SECTOR

JBRANCH IF THROUGH
FSAVE MARKER

FSAVE SECTQR
FTSOLATE IT

P AND PLACE IN RIGHT

PSET TO TYPE 1,

TASSUME ARS
i 00PS|

? REL, SET MAX
PSET FOR INNER SCAN

JOUTPUT THIS BLOCK

JCLEAR ALL BUT REL BIT

32
33
34
35
38
37
a8
39

44

MACRU vaul 17=APR=72 MACRY VAQRAL (7=APR=72 19109 PAGE 72
UBJECT Cube AAaNDLFRS
12106 132 NEXT SYMROL iFETCH THE NEXT SYMBOL
12106 21270y May #SYMRQL ,R2
Apngdg
12172 nya/67 J8R PC,NEXT
245314
12176 da1737 LAY 12% ! FINISHED WITH THIS GUY
122u0 032767 gl #GLBFLG,MODE IGLOBAL?
200129
NpAague
12296 2u1767 HEJ 138 ? NO
12216 12879 CMPB SECTOR,RYS JYES, PROPER SECTOR?
Agrange
12214 Myp1364 4NE 138 7 NOD
12216 ?;szg; $1IcC R 1=<DEFFLGLIRELFLGIGLBFLG>», MODE JCLEAR MOST
32
PR
12224 1H2767 9IS #GSDTA4, MOOE 1SET TYPE 4
na2a4a9
Ayidaang!
122382 @yn735) BR 12% 10UTPUT IT
Figure 8~1 (Cont.) Assembly Listing
ENDAAC 27=44 1Ym3yn
ENPP 23m=23 72= 3%
ENOP LM 74=106 73m22#
ENpP2 72= A 74m= 10
MOFFLG 12= 71 dhe28 Q2= B P2=24
mEXIT 1lo= 18 11fie=dq418
MOUE 14= o4 22=290 34=12 I5=17€ 36=12 37= 4 A2mda3e
dnm 6P 49=iGe® Ng=386 54m23 7dwiQ 72m20 72=34
72=589 72=390¢ 74=34 75=37 Ao~ B 91m208 (06=27
1lo=34a
MavayYT {ag= 5 18= 9 2d=~44 JThA=d) Bidm1d 83=20 108=19¥
MPY® LYY 121=17%
MPUSH 1A= 28 112=23 121» 1w
MSBARG 2/= 9 121~14 12140k
MSoHdLk 121= 4 12128 121=~364
MSHCNT 27=14 109=33 1i6» 6 121=41%
MAYEND 20= 9 12128 121=43#
MSgnP 2519 27=25€ 11p=496 121=42%

Figure 8-2

Excerpts from CREF Listing to Accompany Figure 8-1.
Note particularly the CREF references for ENDP,
ENDP2, and MODE.

APPENDIX A

MACRO-11 CHARACTER SETS

A.1 ASCII CHARACTER SET

EVEN 7-BIT

PARITY OCTAL

BIT CODE CHARACTER
g a9 NUL
1 291 SOl
1 go2 STX
@ g93 ETX
1 g4 EOT
9 995 ENQ
1] g6 ACK
1 @97 BEL
1 g1y BS
'] g11 HT
*) g12 LF
1 713 vT
o] g14 FF
1 @15 CR
1 g16 SO
] 217 ST
1 220 DLE
o] #21 DCl
1] @22 DC2
1 #23 DC3
g @24 DC4
1 #25 NAK
1 g26 SYN
@ 227 ETB

REMARKS

NULL, TAPE FEED, CONTROL/SHIFT/P.
START OF HEADING: ALSO SOM, START
OF MESSAGE, CONTROL/A.

START OF TEXT; ALSO EOA, END OF
ADDRESS, CONTROL/B.

END OF TEXT; ALSO EOM, END OF
MESSAGE, CONTROL/C.

END OF TRANSMISSION (END); SHUTS
OFF TWX MACHINES, CONTROL/D.
ENOUIRY (ENQRY); ALSO WRU,
CONTROL/E.

ACKNOWLEDGE; ALSO RU, CONTROL/F.
RINGS THE BELL. CONTROL/G.
BACKSPACE; ALSO FEO, FORMAT
EFFECTOR. BACKSPACES SOME
MACHINES, CONTROL/H.

HORIZONTAL TAB. CONTROL/I.

LINE FEED OR LINE SPACL (NEW LINE);
ADVANCES PAPER TO NEXT LINE, DUPLI-
CATED BY CONTROL/J.

VERTICAL TAB (VTAB). CONTROL/K.
FORM FEED TO TOP OF NEXT PAGE
(PAGE) . CONTROL/L.

CARRIAGE RETURN TO BEGINNING OF
LINE. DUPLICATED BY CONTROL/M.
SHIFT OUT; CHANGES RIBBON COLOR TO
RED. CONTROL/N.

SHIFT IN; CHANGES RIBBON COLOR TO
BLACK. CONTROL/O.

DATA LINK ESCAPE. CONTROL/B (DCQ).
DEVICE CONTROL 1, TURNS TRANSMITTER
(READER) ON, CONTROL/Q (X ON).
DEVICE CONTROL 2, TURNS PUNCH OR
AUXILIARY ON. CONTROL/R (TAPE,

AUX ON) .

DEVICE CONTROL 3, TURNS TRANSMITTER
(READER) OFF, CONTROL/S (X OFF).
DEVICE CONTROL 4, TURNS PUNCH OR
AUXILIARY OFF. CONTROL/T (AUX OFF).
NEGATIVE ACKNOWLEDGE; ALSO ERR,
ERROR. CONTROL/U.

SYNCHRONOUS FILE (SYNC). CONTROL/V.
END OF TRANSMISSION BLOCK; ALSO LEM,
LOGICAL END OF MEDIUM. CONTROL/W.

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS

g3g CAN CANCEL (CANCL). CONTROL/X.

g31 EM END OF MEDIUM. CONTROL/Y.

g32 SUB SUBSTITUTE. CONTROL/Z.

733 ESC ESCAPE. CONTROL/SHIFT/K.

934 FS FILE SEPARATOR. CONTROL/SHIFT/L.
935 Gs GROUP SEPARATOR. CONTROL/SHIFT/M.
236 RS RECORD SEPARATOR. CONTROL/SHIFT/N.
#37 Us UNIT SEPARATOR. CONTROL/SHIFT/O.
gag Sp SPACE.

741 '

g42
743
ga4
g45
g46
747
@50
751
g52
g53
g54
@55
756
757
geg
g61
762
963
964
965
966
767
279
971
972
973
974
975
976
977
109
191
192
193
104
195
106
197
119
111
112
113
114
115
116
117

ACCENT ACUTE OR APOSTROPHE.

IS 4+ %~~~ =@ d0 3k

(SR SRR SESS 5 Tl S Rah SR SRR SRl e SRR SR SR LR SR SRS TR SRR SR SRR SRR S SE TR SRR SR SR e R R T
e DONAAUTRWNH®RN "

OZRPRUHEQHAHODQWP®Y VI A

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS

129
121
122
123
124
125
126
127
139
131
132
SHIFT/K.
SHIFT/L.
SHIFT/M.
*

* %
ACCENT GRAVE

vh = /N KE<ScHD IO W

165
166
167
17¢
171
172

'_I

ol

5
NMRXEAdcdRQTOBSERAUFTARMDLQTW

173
174
175 THIS CODE GENERATED BY ALT MODE.
176 THIS CODE GENERATED BY PREFIX KEY
(IF PRESENT)

177 DEL DELETE, RUB OUT.

ety

F SRR HFrewRrretreewr R reaerreaEerKF- S HFFeRFREREEFeREREeR
I—l
>
~

* 4+ appears as " on some machines.

** <+ appears as _ (underscore) on some machines.

A.2 RADIX-50 CHARACTER SET

Character ASCII Octal Equivalent Radix-5f@ Equivalent
space 40 2

A-7Z 191 - 132 1 - 32

$ 44 33

. 56 34

unused 35

7-9 60 - 71 36 - 47

The maximum Radix-5¢ value is, thus,
47%*592 + 47*50 + 47 = 174777

The following table provides a convenient means of translating
between the ASCII character set and its Radix-5@ equivalents.
For example, given the ASCII string X2B, the Radix-5¢ equivalent

is (arithmetic is performed in octal):

X = 113999
2 = Qg@2499
B =_g0opog2

X2B = 115492

Single Char.
or Second Third
First Char. Character Character
A po31p9 A 200058 A gegegl
B gg6299 B popL20 B 2000902
C 211399 c gegL79 C g00993
D grLaApy D 2p0249 D 9034
E 917509 E gp@319 E 299205
F g226090 F 999368 F 209096
G 225799 G Pp@a3g G P97
H 231000 31 poa599 H ge0010
I 934199 I 292558 I 200911
J 23720¢ J 290620 J 900912
K @42300 K 200670 K gPe@1L3
L gA5400 L geg749 L g00p14
M 2505099 M PPLpLY M 299915
N 253609 N gg1g6g N 290016
0 256790 0 gP113g 0 299@17
P 262900 P 991209 P poea2g
0 265109 0 991259 Q 209921
R 270200 R gpi32g R gpep22
S 2733029 S 991379 S gog@23
T 276400 T ge1449 T gogg24
U 191509 U g@1s1g U 299325
v 104600 A% g@1560 v po9@26
W 197700 W P2P1630 W geea27
X 113099 X gp1799 X 900039
Y 116100 Y 291750 Y gagFA31
Z 121290 Z gp2029 Z gpgP32
$ 124300 $ 2p297¢ $ 2000933
. 127400 . g@214¢0 . goo@p34
unused 132500 unused g@2210 unused gPe@E3s
'} 135600 g gp226¢ g pePI36
1 149700 1 @@2330 1 Qe@P37
2 144000 2 992400 2 goepay
3 147199 3 dpg2450 3 QogEal
4 152209 4 g@2529 4 gogga2
5 155399 5 g@3257¢ 5 gegeas
6 lL6gagQ 6 g@2640 6 ggapas
7 163500 7 g@2710 7 gegaas
8 166699 8 982760 8 goggac
9 171799 9 d@3030 9 goeEaT

APPENDIX B
MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER

B.1 SPECIAL CHARACTERS

Character Function

form feed Source line terminator
line feed Source line terminator
carriage return Formatting character
vertical tab Source line terminator

: Label terminator
= Direct assignment indicator
% Register term indicator

tab Item terminator
Field terminator

space Item terminator
Field terminator

Immediate expression indicator
Deferred addressing indicator
Initial register indicator

~ o~ ® &k

Terminal register indicator
, (comma) Operand field separator
; Comment field indicator

+ Arithmetic addition operator
or auto increment indicator

Arithmetic subtraction operator
or auto decrement indicator

* Arithmetic multiplication operator
/ Arithmetic division operator

& Logical AND operatoxr

! Logical OR operator

Double ASCII character indicator

' (apostrophe) Single ASCII character indicator

. Assembly location counter

Initial argument indicator
Terminal argument indicator

> Vv A

Universal unary operator
Argument indicator

7~

MACRO numeric argument indicator

B.2 ADDRESS MODE SYNTAX

n is an integer between 0 and 7 representing a register.

R is a

register expression, E is an expression, ER is either a register

expression or an expression in the range 0 to 7.

Format

R

@R or (ER)

(ER) +

@ (ER) +

- (ER)

@- (ER)

E(ER)

@QE (ER)

#E

@#E

@E

Address
Mode
Name

Register

Deferred Register

Autoincrement

Deferred Auto-
increment

Autodecrement

Deferred Auto-
decrement

Index

Deferred Index

Immediate

Absolute

Relative

Deferred Relative

Address
Mode

Number

On

1n

2n

3n

4n

5n

6n

n

27

37

67

77

Meaning

Register R contains the op-
erand. R is a register ex-
pression.

Register R contains the op-
erand address.

The contents of the regis-
ter specified by ER are in-
cremented after being used as
the address of the operand.

ER contains the pointer to
the address of the operand.
ER is incremented after use.

The contents of register ER
are decremented before being
used as the address of the
operand.

The contents of register ER
are decremented before being
used as the pointer to the
address of the operand.

E plus the contents of the
register specified, ER, is
the address of the operand.

E added to ER gives the point-
er to the address of the oper-
and.

E is the operand

E is the address of the oper-
and.

E is the address of the oper-
and.

E is the pointer to the ad-
dress of the operand.

B.3 INSTRUCTIONS

The instructions which follow are grouped according to the operands

they take and the bit patterns of their op-codes.

In the instruction type format specification, the following symbols

are used:

Instruction mnemonic

Register expression

Expression

Register expression or expression
P<ERL7

Floating point register expression
General address specification

In the representation of op-codes, the following symbols are used:

SS
DD
XX

R

Symbols used

SE
FSE
DE
FDE

0

Source operand specified by a 6-bit address mode.
Destination operand specified by a 6-bit address mode.
8-bit offset to a location (branch instructions).

Integer between 0 and 7 representing a general register.

in the description of instruction operations are:

Source Effective address

Floating Source Effective Address
Destination Effective address

Floating Destination Effective Address
Absolute value of

Contents of

Becomes

The condition codes in the processor status word (PS) are

affected by the instructions. These condition codes are represented

as follows:

N Negative bit: set if the result is negative

Z Zero bit: set if the result is zero

v oVerflow bit: set if the operation caused an overflow
C Carry bit: set if the operation caused a carry

In the representation of the instruction's effect on the

condition codes,

the following symbols are used:

Conditionally set
Not affected

Cleared

Set

To set conditionally means to use the instruction's result to
determine the state of the code (see the PDP-11 Processor Handbook) .

Logical operations are represented by the following symbols:

Inclusive OR

Exclusive OR

AND

(used over a symbol) NOT (i.e., l's complement)

B.3.1 Double-Operand Instructions

Instruction type format: Op A,A

Op-Code Mnemonic Stands for
018sDD MOV MOVe

11ssDD MOVB MOVe Byte
028SDD CMP CoMPare
12SSDD CMPB CoMPare Byte
0338SDD BIT BIt Test
13SSDD BITB BIt Test Byte
04SSDD BIC BIt Clear
14SSDD BICB BIt Clear Byte
05SSDD BIS BIt Set
158SDD BISB BIt Set Byte
06SSDD ADD ADD

16SSDD SUB SUBtract

Status Word
Condition Codes

Operation N Z V ¢C

(SE) +DE * x g -
(SE) - (DE) * * * *
(SE) & (DE) * x0 -
(SE) & (DE) >DE * x 0 -
(SE) ! (DE)>DE * * 0 -
(SE) + (DE) ~DE LA A
(DE) - (SE)+ E * ok k%

B.3.2

Single-Operand Instructions

Instruction type format: Op A
Op-Code Mnemonic Stands for Operation
0050DD CLR CLear g~DE
1050DD CLRB CLear Byte
0051DD COM COMplement (DE) +DE
1051DD COMB COMplement Byte
0052DD INC INCrement (DE) +1-DE
1052DD INCB INCrement Byte
0053DD DEC DECrement (DE)-1~+ DE
1053DD DECB DECrement Byte
0054DD NEG NEGate (DE) +1+ DE
1054DD NEGB NEGate Byte
0055DD ADC ADd Carry (DE)+(C)~> DE
1055DD ADCB ADd Carry Byte
0056DD SBC SuBtract Carry (DE) - (C)~ DE
1056DD SBCB SuBtract Carry Byte
0057DD TST TeST (DE)-g~ DE
1057DD TSTB TeST Byte
c 18 []
0060DD ROR ROtate Right O 2
1060DD RORB ROtate Right even or odd byte
Byte = M)
0061DD ROL ROtate Left [0 < |
even or odd byte
1061DD ROLB ROtate Left O «C 1
Byte
0062DD ASR Arithmetic 0 [.
shift Right o O 1]
1062DD ASRB Arithmetic 5 CoonOFf odd byte
Shift Right SN —~
Byte [O 0
.) 0 [T]
0063DD ASL Arithmetic o+ O ZZe
Shift Left
. . even or odd byte
1063DD ASLB Arithmetic O OJId mm
Shift Left =+ ¢
Byte

B-5

Status Word
Condition Codes
N

4

v

¢

Op-Code Mnemonic Stands for Operation N
0001DD JMP JuMP DE+ PC -
0003DD SWAB SWAp Bytes O = J 2 o *
[
The following instructions are available on the PDP-11/45
N
0065DD MFPI Move From Previ- *
ous Instruction
space
1065DD MFPD Move from *
Previous See Chapter 6
Data space in PDP-11/45
Processor
0066DD MTPI Move To Handbook *
Previous
Instruction
space
1066DD MTPD Move To *
Previous
Data spa
a pace J
1701DD LDFPS Load FPP Pro- (DE)~ FPS -
gram Status
0067DD SXT Sign eXTend g~ DE if N bit -
clear
-1+ DE if N bit
is set FN
0707DD NEGD NEGate Double ~(FDE) -~ FDE *
0707DD NEGF NEGate Floating -(FDE) + FDE *
1702DD STFPS STore Floating -
Point processor See Chapter 7
program Status in pPpp-11/45
Processor
1703DD STST STore floating Handbook -
point processor
STatus
1704DD CLRD CLeaR Double g~ FDE 0
1704DD CLRF CLeaR Floating g~ FDE 0
1705DD TSTD TeST Double (FDE) -@-~+FDE *
1705DD TSTF TeST Floating (FDE) -@~+FDE *

|
1<
Q2

1706DD

1706DD

B.3.3

ABSD

ABSF

make ABSolute
Double

make ABSolute
Floating

Operate Instructions

Instruction Type format: Op

Op—-Code Mnemonic Stands for

000000 HALT HALT

0000001 WAIT WAIT

0000002 RTI ReTurn from
Interrupt

000005 RESET RESET

000241 CLC CLear Carry bit

000261 SEC SEt Carry bit

000242 CLV CLear oVerflow
bit

000262 SEV SEt oVerflow
bit

000244 CLZ CLear Zero bit

000264 SEZ SEt Zero bit

000250 CLN CLear Negative
bit

000270 SEN SEt Negative
bit

000243 Clear OVerflow
and Carry bits

000254 CNz Clear Negative

and Zero bits

B-7

| FDE | #FDE

| FDE | +FDE

Operation

The computer
stops all
functions.

The computer

stops and waits

12

for an interrupt.

The PC and PS
are popped off
the SP stack:

((sP))~ PC
(SP)+2+> sP
((SP))~ PS
(sP)+2+ SP

*

RTI is also used

to return from
a trap.

Returns all I/O

devices to power-

on status.

=
¥
< < 0O 0

=
¥
=2

ﬂ-—»
@

g+
a4~

NZ 0O<

|

1<

1Q

000257

000277

000240

cccC

ScC

NOP

Clear all
Condition
Codes

Set all Con-
dition Codes

No OPeration

g+
g2+
ﬂ+
g~

1+
1-
1+
1+

NSNS

ogNZ

The following instructions are available on the PDP-11/45 only:

Op-Code Mnemonic Stands for

170000 CFCC Copy Floating
Condition
Codes

000006 RTT ReTurn from
inTerrupt

170011 SETD SET Double
floating mode

170001 SETF SET Floating
mode

170002 SETI SET Integer
mode

170012 SETL SET Long integer

mode

Operation

Copy FPP con-
dition codes

into CPU con-
dition codes.

Same as RTI

instruction but

inhibits trace
trap

FPP set to
double pre-
cision mode

FPP set to
single pre-
cision mode

FPP set for
integer data
(16 bits)

FPP set for long

integer data
(32 bits)

EN EZ EV
L I T
* % %

B.3.4 Trap Instructions

Instruction type format: Op or Op E yhere 0 < E < 377

*OP (only) 8
Status Word
Condition Codes
Op-Code Mnemonic Stands for Operation N Z v c
*000003 BPT BreakPoint Trap to loca- * * * *
Trap tion 14. This
is used to call
ODT.
*000004 I0T Input/Output Trap to location * * * *
Trap 20. This is
used to call IOX.
104000- EMT EMulator Trap Trap to location * * * *
104377 30. This is used
to call system
programs.
104400- TRAP TRAP Trap to location * * * *
104777 34. This is used

to call any rou-
tine desired by
the programmer.

B.3.5 Branch Instructions

Instruction type format: Op E where —128lo < (E-.-2)/2 < 12710

Condition to be met if

Op-Code Mnemonic Stands for branch is to occur
0004XxX BR BRanch always
0010XX BNE Branch if Not Egqual (to zero) Z=0
0014XX BEQ Branch if EQal (to zero) zZ=1
0020XX BGE Branch if Greater than or Equal N (:) V=0
(to zero)
0024XX BLT Branch if Less Than (zero) N QO v=1
0030XxX BGT Branch 1f Greater Than (zero) 21 (N (:) V)=0
0034XX BLE Branch if Less than or Equal zie (N (D V=1
(to zero)
1000XX BPL Branch if PLus N=0
1004x%X BMI Branch if MInus N=1
1010XX BHI Branch if HIgher c ! z=0
1014%XX BLOS Branch if LOwer or Same c ! z=1
1020XX BVC Branch if oVerflow Clear V=0
1024XX BVS Branch if oVerflow Set V=1

Condition to be met if

Op-Code Mnemonic Stands for branch is to occur
1030xXX BCC Branch if Carry Clear (or Cc=0
(or BHIS) Branch if Higher or Same)
1034xX BCS Branch if Carry Set (or Cc=1
(or BLO) Branch if LOwer)
B.3.6 Register Destination
Instruction type format: OP ER,A
Status Word
Condition Codes
Op-Code Mnemonic Stands for Operation N zZ VvV C
004RDD JSR Jump to Push register - - - -
SubRoutine on the SP stack,

put the PC in the
register:

DE~ TEMP (TEMP=
temporary storage
register internal
to processor.)

(sp)-2+ SP
(REG)~> (SP)
(PC)~ REG

(TEMP) »~ PC

The following instruction is available only on the PDP-11/45:

074RDD XOR eXclusive OR
B.3.7 Register-Offset
Instruction type format: OP R,E
Op-Code Mnemonic Stands for
077RDD SOB Subtract One
and Branch
B.3.8 Subroutine Return
Instruction type format: Op ER
Op-Code Mnemonic Stands for
00020R RTS ReTurn from

Subroutine

(R) () DE»DE * * o -

N
1<
10

Operation N

(R)-1-R - - - -
PC-(2*DE)~ PC

|z
|9
@]

Operation

Put register in
PC and pop old
contents from SP
stack into
register

1<

B.3.9

Source—-Register

The following instructions are available on the PDP-11/45 only:

Instruction type format: Op A,R Status Word
Condition Codes
Op-Code Mnemonic Stands for Operation N Z V ¢C
071RSS DIV DIVide R,Rvl/ (SRC)» R,Rvl * * * *
070RSS MUL MULtiply R* (SRC) +R,Rvl * * 0 *
072RSS ASH Arithmetic R is shifted accord- * * * *
SHift ing to low-order
6-bits of source
T — gl
™
or
O<«lT=—— | =0
073RSS ASHC Arithmetic R,Rvl are shifted * * * *
SHift according to low-
Combined order 6 bits of
source
r: P ——= 1]
v
Rel: [——> -
or
R: [J=] e — [}
r A
R+1: 1 - le— ¢
B.3.10 Floating-Point Source Double Register

The following instructions are available on the PDP-11/45 only:

Instruction type format: Op A,AC Status Word Floating
Condition Codes

Op-Code Mnemonic Stands for Operation EN FZ2 EV EC

172 (AC)SS ADDD ADD Double - (FSE) +AC+ AC * * b 0

172 (AC)SsS ADDF ADD Floating (FSE) +AC> AC * * * 0

173 (AC+4)SS CMPD CoMPare (FSE) -AC * * 0 0
Double

173 (AC+4)SS CMPF CoMPare (FSE) -AC * * 0 0
Floating

174 (AC+4)SS DIVD DIVide AC/(FSE) = AC * * * 0
Double

174 (AC+4)sS DIVF DIVide AC/(FSE) -+ AC * * * 0
Floating

177 (AC+4)SS LDCDF LoaD and Con- (FSE) =+ AC * x xQ

from Double
to Floating

Status Word Floating
Condition Codes
Op-Code Mnemonic Stands for Operation FN FZ FV FC

177 (AC+4)SS LDCFD LoaD and Con- (FSE) -+ AC * * * 0
vert from
Floating to

Double
172 (AC+4)SS LDD LoaD Double (FSE) - AC * * 0 0
172 (AC+4)SS LDF LoaD Floating (FSE) =+ AC * * 0 0
171 (AC+4)SS MODD Multiply and AC*(FSE) - AC,ACl * * %
integerize
double
171 (AC+4)SS MODF Multiply and AC*(FSE) - AC * * * 0
integerize

floating-point

171 (AC)ss MULD MULtiply AC*(FSE) - AC * * * 0
Double

171 (AC)SS MULF MULtiply AC*(FSE) -+ AC * * * 0
Floating

173 (AC)Ss SUBD SUBtract (FSE) =-AC~ AC * * * 0
Double

173(AC)SS SUBF SUBtract (FSE) -AC+ AC * * % 0
Floating

B.3.11 Source - Double Register

The following instructions are available on the PDP-11/45 only:

Instruction type format: op A,AC
Status Word
Condition Codes

Op-Code Mnemonic Stands for Operation N FZ FV FC
177 (AC)SS LDCID LoaD and Con- (SE) * AC * * * 0

vert Integer

to Double
177 (AC)SS LDCIF LoaD and Con- (SE) —+ AC * * * 0

vert Integer
to Floating

177 (AC)SS LDCLD LoaD and Con- (SE) » AC * * * 0
vert Long
integer to

Double
177 (AC)SS LDCLF LoaD and Con- (SE) - AC * * * 0
vert Long In-
teger to
Floating
176 (AC+4)SS LDEXP LoaD EXPonent (SE) +2@@/+ AC * * 0 0

B.3.12 Double Register - Destination

The following instructions are available on the PDP-11/45 only:

Instruction type format: Op AC,A
Status Word
Condition Codes

Op-Code Mnemonic Stands for Operation FN FZ FV FC
176 (AC)DD STCFD STore, Con- AC~ FDE * * * 0

vert from
Floating to
Double

176 (AC)DD STCDF STore, Con- AC~ FDE * * * 0
vert from
Double to
Floating

175 (AC+4)DD STCDI' STore, Con- AC-+ FDE ¥ %k 0 %
vert from
Double to
Integer

175(AC+4)DD STCDL' STore, Con- AC~> FDE *x x 0 %
vert from
Double to
Long integer

175 (AC+4)DD STCFI' STore, Con- AC+ FDE * x 0 x
vert from
Floating to
Integer

175 (AC+4)DD STCFL' STore, Con- AC+ FDE * %0 %
vert from
Floating to
Long integer

174 (AC)DD STD STore Double AC~ FDE - - - -

174 (AC)DD STF STore AC+ FDE - - - -
Floating

175(AC)DD STEXP! STore AC EXP-2¢@+ DE x % 0 0
EXPonent

B.3.13 Number

The following instruction is available on the PDP-11/45 only.
Status Word
Condition Codes

Op-Code Mnemonic Stands for Operation N z Vv ¢C
0064NN MARK MARK Stack cleanup on - - - -
return from sub-
routine.

!These instructions set both the floating-point and processor condition
codes as indicated.

B-13

B.3.14 Priority

The following instruction is available on the PDP-11/45 only.
Status Word
Condition Codes

Op-Code Mnemonic Stands for Operation N z2 VvV C
00023N SPL Set Priority N- PC(bits 7-5) - - - -
Level

B.4 ASSEMBLER DIRECTIVES

Described in

Form Operation Manual Section
! A single quote character 6.3.3

(apostrophe) followed by

one ASCII character gener-
ates a word containing the
7-bit ASCII representation
of the character in the low-
order byte and zero in the
high-order byte.

A double quote character fol- 6.3.3
lowed by two ASCII characters

generates a word containing

the 7-bit ASCII representation

of the two characters.

+Bn Temporary radix control; 6.4.2
causes the number n to be .
treated as a binary number.

4Cn Creates a word containing the 6.6.2
one's complement of n.

4Dn Temporary radix control; causes 6.4.2
the number n to be treated as
a decimal number.

+Fn Creates a one-word floating 6.6.2
point quantity to represent n.

+0n Temporary radix control; causes 6.4.2
the number n to be treated as
an octal number.

.ASCII string Generates a block of data con- 6.3.4
taining the ASCII equivalent
of the character string(enclosed
in delimiting characters) one
character per byte.

.ASCIZ string Generates a block of data con- 6.3.5
taining the ASCII equivalent of
the character string (enclosed
in delimiting characters) one
character per byte with a zero
byte following the specified
string.

B-14

Form

LASECT

.BLKB exp

.BLKW exp

.BYTE expl,exp2,...

.CSECT symbol
.CSECT

.DSABL arg

.ENABL arg

.END
.END exp

.ENDC

. ENDM
.ENDM symbol

.EOT

.ERROR exp,string

.EVEN

JFLT2 argl,arg2,...

.FLT4 argl,arg2,...

.GLOBL syml,sym2,...

Described in
Operation Manual Section

Begin or resume absolute sec-
tion.

Reserves a block of storage
space exp bytes long.

Reserves a block of storage
space exp words long.

Generates successive bytes of
data containing the octal equiva-
lent of the expression(s) speci-
fied.

Begin or resume named or
unnamed relocatable section.

Disables the assembler function
specified by the argument.

Provides the assembler func-
tion specified by the argu-
ment.

Indicates the physical

end of source program.

An optional argument specifies
the transfer address.

Indicates the end of a condi-
tion block.

Indicates the end of the cur-
rent repeat block, indefinite
repeat block, or macro. The
optional symbol, if used, must
be identical to the macro name.

Ignored. Indicates End-of-
Tape which is detected auto-
matically by the hardware.

Causes a text string to be output
to the command device containing
the optional expression specified
and the indicated text string.

Ensures that the assembly
location counter contains

an even address by adding 1 if
it is odd.

Generates successive two-word
floating-point equivalents for
the floating-point numbers speci-
fied as arguments.

Generates successive four-word
floating-point equivalents for
the floating-point numbers speci-
fied as arguments.

Defines the symbol(s) specified
as global symbol(s).

B-15

6.10

Form

.IDENT symbol

.IF cond,argl,arg2,...

.IFF

LIFT

.IFTF

.IIF cond,arg,statement

.IRP sym,<argl,arg2,...

.IRPC sym,string

+LIMIT

Described in

Operation Manual Section
Provides a means of labeling 6.1.5

the object module with the pro-
gram version number. The symbol

is the
paired

Begins
source
in the
stated

version number between
delimiting characters.

a conditional block of 6.11
code which is included

assembly only if the

condition is met with

respect to the argument (s) speci-

fied.

Appears only within a con- 6.11.1
ditional block and indicates

the beginning of a section of

code to be assembled if the

condition tested false.

Appears only within a condi- 6.11.1

tional

block and indicates

the beginning of a section of
code to be assembled if the
condition tested true.

Appears only within a condi- 6.11.1

tional

block and indicates the

beginning of a section of code
to be unconditionally assembled.

Acts as a one~line conditional 6.11.2
block where the condition is

tested
fied.

for the argument speci-
The statement is assembled

only if the condition tests true.

Indicates the beginning of an 7.6
indefinite repeat block in

which the symbol specified is

replaced with successive ele-

ments of the real argument list

(which

is enclosed in angle

brackets) .

Indicates the beginning of an 7.6
indefinite repeat block in
which the symbol specified takes

on the
acters

value of successive char-
in the character string.

Reserves two words into which 6.8
the Linker inserts the low and
high addresses of the relocated

code.

Described in

Form Operation Manual Section
LLIST Without an argument, .LIST 6.1.1
.LIST arg increments the listing level

count by 1. With an argument,
.LIST does not alter the list-
ing level count but formats
the assembly listing accord-
ing to the argument specified.

.MACRO sym,argl,arg2,...Indicates the start of a macro
named sym containing the dummy
arguments specified.

+MEXIT Causes an exit from the cur-
rent macro or indefinite repeat
block.

.NARG symbol Appears only within a macro

definition and eguates the
specified symbol to the number
of arguments in the macro call
currently being expanded.

.NCHR sym,string Can appear anywhere in a source
program; equates the symbol
specified to the number of
characters in the string (en-
closed in delimiting characters).

.NLIST Without an argument, .NLIST de-

.NLIST arg crements the listing level
count by 1. With an argument,
.NLIST deletes the portion of
the listing indicated by the
argument.

.NTYPE sym,arg Appears only in a macro defini-
tion and equates the low-order
six bits of the symbol specified
to the six-bit addressing mode
of the argument.

.ODD Ensures that the assembly loca-
tion counter contains an odd
address by adding 1 if it is

even,

.PAGE Causes the assembly listing to
skip to the top of the next
page.

.PRINT exp,string Causes a text string to be out-

put to the command device con-
taining the optional expression
specified and the indicated text

string.

.RADIX n Alters the current program radix
to n, where n can be 2, 4, 8, or
1ig.

B-17

7.4

6.1.1

Form

.RAD5S@ string

-.REPT exp

.SBTTL string

.TITLE string

.WORD expl,exp2,...

Described in

Operation Manual Section
Generates a block of data con- 6.3.6

taining the Radix-50 equivalent
of the character string (enclosed
in delimiting characters).

Begins a repeat block. Causes 7.7
the section of code up to the

next .ENDM or .ENDR to be re-

peated exp times.

Causes the string to be printed 6.1.4
as part of the assembly listing

page header. The string part of

each .SBTTL directive is collected

into a table of contents at the

beginning of the assembly listing.

Assigns the first symbolic name 6.1.3
in the string to the object mod-

ule and causes the string to ap-

pear on each page of the assembly

listing. One .TITLE directive

should be issued per programn.

Generates successive words of 6.3.2
data containing the octal

equivalent of the expression(s)

specified.

APPENDIX C

PERMANENT SYMBOL TABLE

pPSsT PERMANENT SYMRQL TABLE MACRD VAQ4A DAGE 1§

1 .TITLE PST PFRMANENT SYMROL TABLE

2

3 ’ COPYRIGHT 1972 DIGTITAL EQUIPMENT CORPORATION
4

5 LD +CSECT PSTSEC

6

7 «GLOBL PSTBAS, PSTTOP 1LIMITS

8 «GLOBL WRDSYM $POINTER TO ,WORD

]

10 220270 DRis 220 IDESTRUCTIVE REFERENCE IN FTIRST
1; nEA1AY DR2w 109 $DESTRUCTIVE REFERENCE IN SFCOND
i

13 +GLOBL. DFLGEV, DFLGBM, DFLECND, DFLMAC, DFLSMC
14

16 nPAP2@ DFLGEVs 020 tDIRECTIVE REMUIRES EVEN |LOCATIO
16 neAE19 DFLGBMa 210 1DIRECTIVE USES BYTE MONE
17 2p0P04 DFLCNDE P4 tCONDITIONAL DIRECTIVE
18 AQA@A2 DFLMACS 202 §JMACRO DIRECTIVE

19 nEApMy1 DFLSMCs @21 PMCALL

20

21

22 «1IF DF x45, XFLTGx @

23 «1IF DF XMACRO, XSMCAL= @

24

25 +MACRO OQPCDEF NAME, CLASS, VALUF, FLAGS, COND
26 «IF NBR <COND>

27 «IF DF COND

28 JMEXIT

29 LENDC

30 «ENDC

31 JRADS® /NAME/

32 «BYTE FLAGS+0

33 «GLOBL OPCL'CLASS

34 WBYTE 270+0PCL'CLASS

35 «WORD VALUE

36 2« ENDM

37

38 «MACRO DIRDEF NAME, FILLAGS, COND

39 .1F NR <COND>

49 «I1F DF COND

41 JMEXIT

42 +ENDC

43 LENDC

44 #GLOBL NAME

48 JRADSA / INAME/

46 «BYTE FLAGS+@®

47 LAYTE @

48 JWORD NAMF

49 . ENDM

50

51 npAgn PSTRASS 1RASE

PS8

e O D NONAE W

[N
n

13

-
-

T

oZemoR
praaym
pagn29n
anea3n
eean4n
peRAsa
gaaasn
aeaaze
eooian
g1y
eg120
fp132
PR140m
Ap152
PR1LER
ap17a
pp2go
20240
pg22a
pp232
nR240
20250
nRA269
ne2702
Ba3pan
22310
PR320
2@330
20347
NE3sA
02360
na3’n
gadpoe
pR4LP
aR420
po43n
aQ440
go4se
Y1
rgayze
Q8@
LY
aes20
pes53n
ro540
20550
ao%5se9

PERMANENT SYMBOL TABLE

OPCDEF
OPCDEF
OPCDEF
QPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
QPCDEF
QPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCODEF
OPCODEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
QPCDEF
OPCDEF
OPCDEF
OPCDEF
QPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCREF

MACRO VAB4A

<ARSD
<ABSF
<ADC
<ADCB
<ADD
<ADDD
<ADDF
<ASH
<ASHC
<ASL
<A8LB
<ASR
<ASRB
<RCC
<RCS
<REQ
<RGE
<RBGT
<BHY
<AHIS
<RIC
<RICB
<RIS
<RISR
<RIT
<R1TB
<8 F
<RLD
<RBLOS
<ALT
<BMTY
<RBNE
<RP|,
<RPT
<8R
<RV
<RVS
<CCcC
<CFCC(
«CLC
<CLN
<CLR
<CLRB
<CLRD
<CLRF
<CLV
<CL?

>y
>
>
>
>,
>,
>
>
>y
>y
>y
>y
>y
>,
>,
>,
>,
>,
>,
>y
>,
>,
>
>y

PAGE 2

o1,
21,
21,
ey,
n2,
11,
14,
29,
29,
21,
21,
a1,
21,
24,
04,
na,
pe,
n4,
04,
pa,
02,
02,
07,
82,
g2,
P2,
n4,
R4,
g4,
g4,
04,
B4,
g4,
en,
o4,
04,
faa,
2,
2a,
e,
2a,

170604,
1706800,
nassan,
125509,
28092002,
172009,
172009,
az29e7,
arienn,
aae3nN,
136329,
AR&229,
1262a7,
193003,
123409,
ga1499,
anz2009,
AA3n2a,
121009,
1a30an,
P4pRog,
{40000,
psonea,
15p000,
a3lgooa,
13n200,
an34aam,
103400,
1714093,
eA2400,
1204003,
pajoan,
jap0a09,
AARA23,
popapa,
1A20a02,
1924020,
ona257,
t7ea09,
anga4i,
ang2s5a,
75029,
1250002,
170400,
1703429,
aap242,
anp244,

DR1,
DR1,
DR1
DR
DR2
OR2,
DR2,
DR2,
DR2,
DRI
DR}
DRI
DR1

DR2
pR2
DR2
DRrR2

DRY
DR1
DRI,
DR1,

X45
X45

X45
X45
X45
Xa5

xa%

X45

X45
X45

Pa

OWENOOEWEN»

T

e20570
0ePepn
220810
000620
ee0830
200840
200650
P0pa6N
200870
ea790
eg710
pp720
Pa730
PB740
20750
PB760
pp7 7R
pLagn
P1210
#1720
21030
21040
21260
21060
21070
21100
71110
21120
21130
P1140
P1150
01160
nL17a2
21200
21210
21220
01230
91240
01250
R1260
#1270
21300
PL1310
21320
21330
#1340
21350
21360
21370

PERMANENT SYMBOL TABLE

OPCDEF
OPCDEF
OPCDEF
OPCDEF
QPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
DPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
QPCDEF
OPCDEF
QPCDEF
OPCDEF
OPCDEF
0PCDEF
OPCOEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
DPCDEF
OPCDEF
OPCDEF
OPCDEF
0PCDEF
OPCDEF
QPCDEF
OPCDEF

MACRO VQAQ@4aA

<CMP
<CMPRB
<CMPD
<CMPF
<CNZ
<COM
<COMB
<NEC
<DECB
<NV
<DIVD
<DIVF
<EMT
<HALT
<INC
<INCB
<I0T

< JMP
<.I18R
<LDCDF
<LDCFD
<L.DCID
<LDCIF
<.DCLD
<|.DCLF
<.DD
<L .DEXP
<L.DF
<L.DFPS
<L.D3C
<L.buR
<MARK
<MFPD
<MFPY
<MaDD
<MODF
<MOV
<MOVB
<MTPD
SMTPI
<MUL,
<MULD
<MULF
<NEG
<NEGR
<NEGD
<NEGF
<NOP
«RESET

PAGE 3

22,
a2z,
11,

11,
aa,

21,
01,
a1,
21,
a7,
11,
14,
06,
o,
oL,
24,
ne,
oL,
2%,
11,
11,
14,
14,
14,
14,
11,
14,
11,
a1,
na,
oz,
12,
21,
a1,
it,
11,
92,
B2,
21,
a1,
arz,
11,
11,
as,
a1,
2y,
21,
722,
an,

pr0004%,
1209792,
173409,
1734009,
nan254,
pasIaA,
125100,
pas3ad,
195349,
aziona,
174409,
174400,
{94004,
223004,
Ans224a,
195209,
anaeaa,
ana1Qa,
2049003,
{77400,
1774002,
177209,
\770@92,
177000,
177909,
172409,
176400,
{72409,
1701022,
1799204,
170723,
ANBARD,
126509,
AA6500,
171400,
171499,
niograg,
112909,
16690,
aA6627,
aranav,
171000,
1719@9,
Ans4a9,
105409,
179700,
179722,
anaQ249,
a2nnas,

DR}
DR
DR}
DR1
DR2,
DR2,
DR2,

DR}
DR

DR

DR2,
PR2,
DR2,
DR2,
DR2,
DR2,
DR2,
DR2,
DRrR2,

- ® ® W=

NR2,
pR2,
DR2
DR2
pRi,
DRY,
DR2,
DRrR2,
DR2,
DR
DR
DRY,
DRY,

X458
X45

45
X45
X485

X45
X45
X4a5
Y45
45
X455
X45
X45
X485
X45
X45
X485
X45
X485
X45%
X45
Y45

xa5
X485
X45
X45
X455

X45
X4%

Ps

OO NS WA -

-

P N
DN ADWN

LSRRG
LR o

T

anidp0
an1419
gntdan
2n1430
geidan
PA1450
ge1460
Pe1470
201590
P1810
P1820
71530
71540
21550
1567
@a1570
niagN
#1610
P1620
01630
716840
A1a50
n1667
1670
71790
nL719
p172m
nyL7 30
#1740
A1750
aL760
p1770
p2nan
n2a10
p2a20
p2n30
v2n4n
n20sn
P2060
p2nze
p2100
2112
nai2n
f2130
#2140
n2150

PERMANENT SYMROL TABRLF

OPCDEF
OPCNEF
OPCDEF
OPCNEF
QPCDEF
OPLCDEF
OPCDEF
QPCDEF
OPCDEF
QPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCNEF
OPCREF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCNREF
OPCREF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCNEF
OPCDEF
OPCDEF
OPCDEF
QPCDEF
OPCDEF
OPCDEF
OPCDEF
OPCNEF
OPCDEF
OPCDEF
OPCDEF
ORCDEF
DPCDEF
OPCNEF
OPCDEF
OPCDEF
OPCDEF
OPCNEF

MACRO VAR4A

<ROL
<ROLB
<ROR
<RORB
<RTI
<RTS
<RTT
<8RC
<3BCB
<ScC
<SEC
<SEN
<SETD
<8ETF
<3FTI
<SETL
<SEV
<3E7
<30R
<8Pl
<8TAQ
<STRQ2
<STCDF
<3TCDY
<3TCDL
<3TCFD
<STCF1I
<3TCFL
<STh
<STEXP
<STF
<3TFPS
<8TRQ
<STST
<SUR
<3URD
<3URF
<SWAR
<38XT
<TRAP
<TST
<T8THB
<T8TD
<TS8TF
<WATIT
<X0OR

>,
>
>y
>,
>y
>
>,

PAGE 4

a1,
21,
21,
21,
pa,
23,
e,
a1,
a1,
e,
o2,
a2,
ga,
Qea,
a2,
g,
e,
na,
2R,
13,
oa,
g,
12,
12,
12,
12,
12,
12,
12,
12,
12,
a1,
an,
21,
a2,
11,
11,
at,
at,
26,
a1,
a1,
n,
e,
2a,
s,

AN6109,
126122,
An69294,
176000,
aAnRe?2,
anp2e9,
AAAAAE,
NASEQ%A,
125609,
ArA277,
Arp261,
20279,
170011,
170204,
17gan2,
170012,
nAR262,
AA@A264,
77230,
nAR230,
170205,
1700028,
176002,
1754017,
1754043,
1762292,
1754212,
175492,
174007,
1750202,
174009,
174209,
170027,
170304,
18p0aa,
173009,
173000,
a92g3aa,
QA6700,
1A440n,
pas7an,
1a57a9,
17a52m,
179504,
argaal,
A74207,

DR1
DRY
DR1
DR

DR{

DR1
DR1

- . w w

DR,

’
DR2,
DR2,
DR2,
DR2,
DR2,
DR2,
DR2,
pR2,
DR2,
DRY,

DRy,
DR2
DR2,
DR2,
DR
DR1,

DR2,

X45

X45
X45
X45
x45

X485

X45

X485
X485

X485

PS

DO NONE NN -

[N
-

A A A R e e e
O ONICDBDWN

(SR
-

nn
[&F

T

gaz16a
202170
202290
202212
pp2227
en2230
0e2240
202257
ope26?”
p2270
n23gm
p2340
@a232n
22330
p2340
a2350
nalen
023707
p24p0
2410
pedan
n2430
n244n

i 92450

n2460
n24792
p50n
nes1o
p2520
p2530
paes4n
passn
nasen
nz287a
n26a0
p2610
pa62e
n2637
n264n
n2650
n266n

PERMANENT SYMROL TABLE

DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRNEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRNEF
DIRDEF
DIRDEF

MACRD VAR4A

<ASCIT>,
<ASCIZ>,
<ASECT»
<R KB »
<BLKW »,
<BRYTE »,
<CSECT>
<NSABL>
<FNABL>»
<END »
<ENDC >,
<ENDM »,
<ENDR »,
<FQT >
<ERRQOR>»
<FVEN >
<FLT2 »,
<FLT4 >,
<GLOBL>»
<IDENT»
<1F >
<IFDF %
<IFFQ »»
<IFF »,
<IFG >
<IFGE >,
<TFGT >,
<IFL >,
<IFLE >
<TFLT »,
<IFNDF>,
<IFNE >,
<IFNZ »,
<IFT »,
<IFTF >,
<IFZ >,
<IIF »
<IRP >,
<IRPC >,
<L IMIT>,
<LIST »

PAGE 5

DFLGRM
DFLGRM

DFLGEY
DFLGRM

DFLECND
DFLMAC, XMACRO
DFLMAC, XMACRD

DFLGEV, XFLTG
DFLGEV, XFLTG

DFLEND
DFLECND
DFLEND
DFLEND
DFLEND
OFLEND
DFLECND
DFLEND
DFLECND
DFLCND
DFLCND
DFLCND
DFLEND
DFLCND
DFLEND
DFLEND

DFILMAC, XMACRO
DFLMAC, XMACRD
DFLGEV

PS

WO NS WA -

. s a b s s s
A UN -

17

T

enz2670
pn27p0
gaz71e
an2720
gaz273n
2027402
@275
2e2760
ee277@
n3npn
p3age
f3nan
Aa3a3n
A3INAR
a3nsa
p3nsn
p3aze
n3ipe
a3ioo

2 B3140

PST
SYMBOL 7

AS
BL
cs
DF
DR
EN
EN
ER
FL
IF
IF
IF

IFLT

IF
IF
IR

MACR
MEXIT

NL

CII =
KB =
ECT =
LGEVam
{ »
ABL
DM

ROR
T4

F
GT

NZ
z
PC

IST =

0PCLOAAw
OPCLO3=
0PCLO6x

oP
oP
PA
Ps
RE
TI

PS

CLOO=
CLi?s
GE =
TTOP
M]
TLE =

ARS.
TSEC

PERMANENT SYMROL TARLF

aApREaAl

WRDSYMs

PSTTOP:

DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRNEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF

DIRDEF

»END

PERMANENT SYMROL TABLFE

ARLE

hhkdh kR
¥ 3k ok ok ok
dokkkokh
pAQage
gnp20@
Yook ok ok &
"ok ek o
Wl ek ok R
o % & K e ok
% okok ok ok k
&gk ok ke
%k ok kN
&k v de ok h
e e o e %o Kk
ge % ok ke K
¥ e o ok ke
e o ek ok o
e e ok ¥ & K
W ok ok ok ok
e e e ok
Aok ok R
ok ok ok k
ek & ok ok
%k ok k& ok
% % ok % ok K
AA311ARG
kkkkd G
kkkkkk G

DOV DOIIOTNDODNINODDNOHD HOOD

eage@E9
aNEn@n
2n3119

ERRORS PETECTED!
FREE CORE: 1699
»LP1/CRF<PSY, 04aA

g2

aga
gl
na2

("

1. WORDS

ASCIZ =
BLKW =
DFLCNDs=
DFLMACs
DR2 =
END

ENDR
EVEN
GLOBL
IFDF
IFG

IFL

IFNDF
IFT

IIF

LIMIT
MACRD
NARG
NTYPE =
OPCL@1=
OPCLQ4=
OPCLA7 =
OPCLiOm
OPCL13s
PRINT =
RADIX
REPT
WORD

MACRO VAR4A

<MACR >
<MACRO>
<MCALL>
<HEXIT>
<NARG >
<NCHR »
<NLIST>
<NTYPE>»
<NbD »
<PAGE »>
<PRINT>
<RADIX>»
<RADEA»
<REM »
<REPT »
<«3BTTL>
<TITLE>

<WORD »

MACRO VMAdA

e e de e
ok ok ke
popaad
arenn2
pAPLAR
Kok ko ke
ko dok &
ok Aok Kk ok
ko e ke k
Ak Akxh
Kk ke ke ok
oK Kok ke
ke ke ok K
& kK ke
ok ok ok
k% ek A
e ek e e
ook Kok K
o ok e o e
% K k ok ke
Wk &
K ok kK
ok ek e
e Ak ke k
LR L)
ek ke ok
&k kK ok K
dodeok ok K

14
[
»

’

»

’

G
G

G

DD

@D

DDV DODDODHDDODDDODIIDDOHD

’
’

PAGE 6

DFLMAC,
DFLMAC,
DFLSMC,
’
'

’

’

DFLGEV
DFLMAC,

DFLGEV

XMACRND
XMACRO
XMACRN
XMACRO
XMACRD
XMACRO

XMACRNO

XMACRO

$TOP LIMIT

PAGE 6+

ASECT =
BYTF =
DFL.GRM=
DFLSMCs=
DSARL =
ENDC

EQT

FLT?2

IDENT
IFEQ
IFGF
IFLE

IFNF

IFTF
IRP

LIST
MCALL
NCHR

ono »
OPCLA2=
OPCLOASE
OPCLAR=
OPCLil=
OPCL{4=
PSTRAS
RADSQ =
SATTL =
WRDSYM

Rkhdektk
Fekhokhk
A20019
aA3A01
e kokok
ko
o’k oAk
ek ok kok ok
¥ i e ok ke
Rk ok dek ok
Rk ek d
#e ok ke ok e
dekkkekH
* ok dedekok
ook ek ke
ok o ek
¥ e o ek ok
ok ok ok
g ok ke ok ok
Kk dok Kk
¥k A ke
*kkdekk
%k ok
*k ok ok &
ANAAAARG
Hhkkkk G
khkkkh G
923120RG

QDD DDIDDDDDODDDIIODDDDHDODDDODD D

ae2

e

APPENDIX D

LISTING OF SYSMAC.SML

(SYSTEM MACRO FILE)

PNP=11 DOS SYSTEM MACROS vVaa3a
sCOPYPIfHT 1972 DIGITAL EQUIPMENT CORPORATINN

) JUNE ¢,

«MACRDO ,PARAM

RA=E%XANQ

R1imXAO}

R2=%A0D2

R3I=%AN3

R4=%A04

R58%ANS

RE6WXANG

R78%A07

SPeXANS

PCe%aA0?

PSWsAN177776

SWRwAN177570
+ENDM
+MACRO LINIT
«MCALL LAMNDE
«AMODE ,LBLCK
EMT «<AQ6>
«ENDM

MACRO RLSE
JMCALL LAMODE
« AMODE LBLCK
EMT «<AQ7>

+ ENDM

«MACRO ,CILOSF
«MCALL LAMODE
«AMODE ,LBLCK
EMT «A017>
«ENDM

«MACRO _READ
LMCALL .AMODE
+AMODE LBUFF
«AMODE LBLCK
EMT «<aQ4>

» ENDM

1972,

«LBLCK

o.BLCK

+LBLCK

«LBLCK, ,LBUFF

MACRO LWRITE LLBLCK, LRUFF
+MCALL (AMODE

LAMODE ,LBUFF

. AMDDE ,LBLCK

EMT «<AQ2>

«ENDM

JMACRO ,0OPENO ,LBLCK, ,FBLCK
MCALL LCODE, ,OPEN

LCODE ,FBLCK,<AN2>

LOPEN LALCK,.FBLCK

+ENDM

«MACRO OPENT ,LLBLCK, , FRLCK
JMCALL LCODE,,OPEN

.CODE FBLCK, <AN4>

«ENDM

«MACRD ,OPENL ,LBLCK, , FBLCK
«CODE «FBLCK, <ANL>

» OPEN LBLCK, .FRLCK

+ENDM

.MACRO ,OPENC LLBLCK, . FRLCK
«MCALL ,CODE,.NPEN

+CODE +FBLCK,<AD13>

« OPEN .LBLCK, .FRLCK

«ENDM

«MACRO LQPENE LI.BLCK, FRLCK
~MCALL LCODE,,0PEN

.CODE +FBLCK,<AN3>

«OPEN +LBLCK, .,FRLCK

«ENDM

LMACRO JOPEN L LBLCK, .,FALCK
LMCALL ,AMODE

LAMODE ,FBLCK

JAMODE ,LBLCK

EMT <A016>

JENDM

JMACRO _WAIT «LBLCK
JMCALL ,AMODF

JAMODE LBLCK

EMT <AQi>

«ENDM

+MACRO LWAITR ,L1.BLCK,,ADDR
«MCALL ,AMODF

«AMODE LADDR

+AMODE LBLCK

EMT «AQA>»

«ENDM

.MACRO BRLOCK LLBLCK, BRLCK
ZMCALL LAMODF

JAMODE ,BRBLCK

<AMODE ,LBLCK

EMT <AQ11>

<ENDM

MACRO ,TRAN ,LBLCK,,TBLCK
WMCALL ,AMODE

+AMODE ,TBLCK

.AMODE ,LBLCK

EMT <A012>

+ENDM

.MACRO ,SPEC ,LBLCK,,.SARG
«MCALL ,AMODE

LAMODE ,SARG

LAMODE ,LBLCK

EMT <AQ12>

LENDM

JMACRO ,STAT +LBLCK
2MCALL JAMODE

+AMODE ,LBLCK

EMT <AD13>

+ENDM

«MACRO JALLOC sLBLCK, JFBLCK,s N
«MCALL LAMODE

+AMODE N

«AMODE FBLCK

«AMODE ,LBLCK

EMT «<AQ15>

«ENDM

«MACRO ,DELET ,LLBLCK,,FRLCK
+MCALL LAMODE

«AMODE ,FBLCK

+AMODE ,LBLCK

EMT «<aQ2i>

+ENDM

«MACRO ,RENAM 1 BLCK,,OFRB, NFB
«MCALL LAMODE

+AMODE ,NFB

«AMODE ,OFB

»AMODE ,LBLCK

EMT «<AQ22>

«ENDM

~MACRO _APPEND ,LBLCK,,.1FB,.2FRB
«MCALL LAMODE

+AMODE ,2F8

+AMODE L1FB

«AMODE ,LBLCK

EMT «aD2>»

«ENDM

+MCALL LAMODE

JAMODE ,FBLCK

»1IF NB, ,OP,CLR =(SP)
«AMODE ,LBLCK

EMT «<AD14>

» ENDM

MACRO KEEP o LBLCK, ,FRLCK
+MCALL AMODDE

+AMODE FBLCK

«AMODE LBLCK

EMT «AQ24>

«ENDM

+MACRO EXIT
EMT <ap60>
+ENDM

«MACRO ,TRAP +3TUS, . ADDR
~MCALL (AMODE
« AMODE _ADDR
+AMODE ,STUS

MOV #A01,=(SP)
EMT <Apdi>
+ENDM

«MACRO ,8TFPU ,8TUS,,ADDR
«MCALL ,AMODE
«AMODE LADDR

«AMODE ,8TUS

MOV #A03,=(8SP)
EMT <AQ41>

2 ENDM

«MACRO _RECRD ,LLBLCK,,RALCK
«MCALL L AMODE

«AMODE ,RBLCK

«AMODE ,LBLCK

EMT <AD25>

«ENDM

LMACRO ,DUMP ,LOW,.HIGH,.CDE
JMCALL ,AMODE

«AMODE ,LOW

AMODE ,HIGH

«AMODE ,CDE

EMT «<AD84>

~ENDM

.MACRO ,RSTRT ,ADDR
CMCALL ,AMODF
.AMODE ,ADDR

MoV 4A02,=(8P)
EMT «<AQ4i>

«ENDM

+MACRO L,CORE

Moy #A0100,=(3P)
EMT <AQ41>

«ENDM

+MACRO LMONR

MoV #A0101,=(SP)
EMT «<AQ4i>

+ENDM

+MACRO MONF

Mayv #A0102,=(SP)
EMT «<AQ41>

+« ENDM

«MACRO DATE

MoV #A0103,=(8P)
EMT <aQd4i>

«ENDM

MACRO ,TIME

MoV #A0104,-(S3P)
EMT «<AQé4i1>»

«ENDM

«MACRO ,GTUIC

Moy #A0105,=(3P)
EMT «<AQd1>

«ENDM

«MACRO ,8YS8DV

Moy #a0106,~(SP)
EMT «<aQdi>

« ENDM

+MACRO ,RADPK ,ADDR
«MCALL LAMODE
«AMODE _ADDR

CLR ={SP)
EMT <AQ42>
«ENDM

+MACRO ,RADUP L ADDR,,WRD
«MCALL ,AMDDE

«AMODE ,WRD

+AMODE ,ADDR

Moy #A01,»(SP)
EMT <AQ42>
+ ENDM

«MACRO ,D2BIN LADDR
JMCALL LAMODE
+AMODE ADDR

Moy #A02,=(SP)
EMT <AQ42>»
« ENDM

«MACRO ,BIN2D ,ADDR. ,WRD
«MCALL ,AMODE

«AMODE ,WRD

«AMDDE ,ADDR

MOV #A03,=(SP)
EMT «Aa042>
+ ENDM

«MACRO ,02BIN LADDR
«MCALL ,AMODE
«AMODE _ADDR

MOV #AD4,=(8P)
EMT «<AQ42>
+ENDM

«MACRO ,BIN20 ,ADDR,,WRD
«MCALL ,AMODE

«AMODE _WRD

«AMODE L ADDR

Moy #A05,~(SP)
EMT «ap42>
iENDM

«MACRO ,CS81¢ «CMDBF
+MCALL LAMODE

«AMODE _CMDBF

EMT «AD56>

o ENDM

+MACRO ,CS8I2 +CSBLK
«MCALL LAMODF

«AMODE LCSBLK

EMT «<AQS57>

« ENDM

«MACROD ,DTCVT ,ADDR
SMCALL LCVTDY

«CVTDY #A0@, .ADDR

« ENDM

+MACRD ,TMCVT ,ADDR
JMCALL ,CVTDY

£CVTDT #401,.APDR
LENDM

«MACRO ,CVTDT ,LCDE,.ADDR,,VALL,,VAL2
JMCALL ,AMODE

o IF NB, . VAL2
.AMODE ,VAL2
«ENDC

. IF NB, VALY
LAMODE ,VAL1
LENDC

.AMODE ,ADDR
.AMODE ,CDE

EMT «<AQ66>

«ENDM

«MACRO ,GTPLA

CLR = (SP)

MOV #a05,=(SP)
EMT <AQ41>»

« ENDM

«MACRO ,STPLA LADDR
+MCALL ,AMODE
.AMODE _ADDR

MOy #A05,=(SP)
EMT «<AQd41>

+ENDM

+MACRO ,GTCIL

MoV #A0107,=(8P)
EMT <apd1>

«ENDM

«MACRO ,GTSTK

CLR = (SP)

MOV #AD4,=(3P)
EMT «<AD4{>

«ENDM

«MACRO ,STSTK ,ADDR
«MCALL LAMODE
«AMODE LADDR

Mov #A04,~=(3P)
EMT <AD41>»
+ ENDM

+MACRD ,RUN «RNBLK
2MCALL ,AMODE

+AMODE ,RNBLK

EMT <AD65>

«ENDM

+MACRO ,FLUSH LCDE
«MCALL ,AMODE
«AMODE ,CDE

EMT <AQ67>
» ENDM
3y THE MACRO ,AMODE ACCEPTS ONE ARGUMENT AND
3 AS A FUNCTION OF THE ADDRESSING MODE OF
3 THE ARGUMENT GENERATES THE APPROPRIATE
p MOV TO =(SP),
y} ADDRESS MODES THAT ARE TROUBLESOME (E,.G,
y X(SP)) OR UNLIKELY (E.G. SP) WILL RESULT
y IN A LERROR TO CMD INCLUDING THE
y VALUE OF THE ADDRESS MODE (E,G, X(8P)
s I8 REPRESENTED AS 0Q@066), THE ARGUMENT ITSFLF
3y AND THE TEXT "ADDRESSING MODE ILLFGAL AS SYSTEM
y MACRO ARGUMENT",
'
.MACRO ,AMODE ARG
SPrXANG
«NTYPE ,8YM, ARG 1. 3YMBADDRESS MNDE,
gIF LE’ .SYM.AOS
MoV + ARG, =(8P) 1R@ TO RS
JMEXIT
+ENDC

LIF EQ,,SYMRAD70=A01D

WIF LE, ,SYMRAO7=AN6

MOV +ARG, = ($P) 1ORA TO #P6
MEXIT

LENDC

JENDC

«IF EQ,,8YMRADGOwAQ20

MoV +ARG,= (8P) s el (ROY+ TO [01(R7)+
JMEXIT § EN,8ADDR

+ENDC

o IF EQ, ,3YMRAD4A=AD4D

oIF LE,).SYMRAQ7=ADS

May « ARG, = (8P) s(01=(RA) TO reI1=(RS)
ZMEXIT s [8IX(RA) TO TOIX(RSE)
«ENDC

«ENDC

o IF EQ, SYMRANGE7=AQ67

mMav «ARG, = (SP) 1 ADDR AND @ADDR
«MEXIT

«ENDC

- .. W e

«ERROR ,8YM 1. ARG ADDRESSING MORE ILLEGAL
«PRINT 1AS SYSTEM MACRO ARGUMENT,
«ENDM

THE MACRO ,CODE SETS UP THE FILEBLOCK
WITH THE HOW OPEN CODE,

THE ADDRESS OF THE FILERLOCK MUST

BE TN A REGISTER (R@ TO RS5)

«MACRO ,CODE 2 FBLK, N
«NTYPE ,8YM, ,FRLK

«IF LE, .8YM=aANS
MOVA #.N,eAD2(.FBLK) jR@ TO RS

CMEXIT
LENDC

LERROR ,SYM 3 FBLK ADDRESSING MODE TLLEGAL
«PRINT $FOR ,OPEN FILE BLOCK

»ENDM

E.1l

APPENDIX E

ERROR MESSAGE SUMMARY

MACRO-11 ERROR CODES

MACRO-11 error codes are printed following a field of six

asterisk characters and on the line preceeding the source line

containing the error. For example:

26 @g236 @@gEP2' .WORD RELI+REL2

The addition of two relocatable symbols is flagged as an A error.

Error Code

A

Meaning

Addressing error. An address within the instruc-
tion is incorrect. Also may indicate a relocation
error.

Bounding error. Instructions or word data are
being assembled at an odd address in memory. The
location counter is updated by +1.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive not found. (A listing is generated.)

Illegal character detected. Illegal characters
which are also non-printing are replaced by a ?
on the listing. The character is then ignored.

Line buffer overflow, i.e., input line greater
than 132 characters. Extra characters on a line,
(more than 721ﬂ) are ignored.

Multiple definition of a label. A label was en-
countered which was equivalent (in the first six
characters) to a previously encountered label.

Number containing 8 or 9 has decimal point missing.
Opcode error. Directive out of context.

Phase error. A label's definition of value varies
from one pass to another.

Questionable syntax. There are missing arguments
or the instruction scan was not completed or a
carriage return was not immediately followed by

a line feed or form feed.

Register-type error. An invalid use of or refer-
ence to a register has been made.

Error Code Meaning

E.2

T

Truncation error. A number generated more than
16 bits of significance or an expression genera-
ted more than 8 bits of significance during the
use of the .BYTE directive.

Undefined symbol. An undefined symbol was en-
countered during the evaluation of an expression.
Relative to the expression, the undefined symbol
is assigned a value of zero.

Instruction which is not compatible among all
members of the PDP-11 family (11/15, 11/2¢,
11/45).

SYSTEM ERROR MESSAGES

Exrror Code Meaning
5217 Insufficient core space.
s2@2 Binary or listing device full.
S293 Illegal switch

Too many switches
Illegal switch value
Too many switch values
S2p44 Too many output file specifications

sS246 No source files specified.

E-2

INDEX

Absolute
5-5
Absolute
Absolute
6-13
Absolute program section, 6-33
Addressing modes, 5-1,5-7
branch instructions, 5-7
position independent, 1-6
preferred, 1l-11
syntax summary, B-2
Angle brackets, 7-4,7-5,7-7
Apostrophe
ASCII conversion, 6-17
concatenation operator, 7-10
in system symbols, 1-9, 1~10
Linker supplied, 4-1
Argument
concatenation, 7-10
delimiters, 3-2
macro, 7-4
ASCII character set, A-1
ASCII conversions
character string, 6-19
one character, 6-17
two characters, 6-17
.ASCII directive, 6-19
.ASCIZ directive, 6-20
.ASECT directive, 6-32, 6-33
Assembler directive summary, B~-14
Assembler functions, 6-13
Assembly listing, see listing
Automatically created symbols, 7-9

addressing mode, 1-7, 1-9,
address mode function, 6-13
binary output function,

Background material references, 1l-1

Backslash character, 7-7

Binary extension listing control,
6-2

Binary listing control, 6-2

Binary output enable/disable
function, 6-13

Binary radix number, 6-23

Blank lines in assembly listing, 2-1

Block storage directives, 6-25

.BLKB directive, 6-25

.BLKW directive, 6-25

Branch instruction addressing,
5-7, B-9

.BYTE directive 6-15

Calls to macros, 7-3
Character set, 3-1
Comments, 1l-2

comment field, 2-4

listing control, 6-2

Command string, 8-1
errors in, 8-2

Common data areas, 6-34

Complement (one's) operator, 6-28

Concatenation operator, 7-10

Conditional assemblies, 1-4, 6-37
immediate conditionals, 6-39
PAL-11R conditionals, 6-40
subconditionals, 6-38

Conditional block listing control,
6-3

Conditional branches,

Conventions,
addressing modes, 1-11
conditional branches, 1-13
parameter assignments, 1-12,3-8
space vs, timing, 1-13
stack usage, 1-3

CREF, 8-3

Cross reference table (CREF),

.CSECT directive, 6-32

1-13

8-3

Data storage directives, 6-15

Decimal radix number, 6-23

Default file specifications, 8-2

Delimiting characters, 3-2

Direct assignment, 3-7, 6-36

Directive summary, B-14

Dispatch table, 1-13

Dollar sign ($) character, 2-3, 3-1,
3-5, 3-10

Dot (.)character,
3-12
as decimal point, 6-23

Double operand instructions, B-4

Double register-destination
instructions, B-13

2-3, 3-1, 3-5,

/DS, 8-3

.DSABL directive, 6-13
Edit-11, 2-1, 2-2, 2-5, 6-12
EMT, 5-8

/EN, 8-3

.ENABL directive, 6-13
.END directive, 6-30

.ENDC directive, 6-37
.ENDM directive, 7-2, 7-16
.ENDR directive, 7-18

.EOT directive, 6-30

Error codes, E-1

.ERROR directive, 7-13
Error message summary, E-1

.EVEN directive, 6-24

Expressions, 3-15
absolute, 3-16
relocatable, 3-16

external, 3-16

File specifications, 8-2
Flowcharting, 1-1
Floating point
function, 6-13
number operator (+F), 6-28
numbers, 6-26
source-double register instruc-
tions, B-11
FLT2 directive, 6-27
.FLT4 directive, 6-27
Format control of source program,
2=5
Forward references,
defining location counter, 3-12
in direct assignments, 3-7
Functions, assembler, 6-13
Global symbols, 3-6, 6-34, 6-35
+.GLOBL directive, 6-35

.IDENT directive, 6-10

.IF directive, 6-37

.IFF directive, 6-38

.IFT directive, 6-38

.IFTF directive, 6-38

.IIF directive, 6-40

Illegal character, 3-3

Immediate addressing mode, 1-7,
1-10, 5-4

Immediate conditionals, 6-39

Indefinite repeat blocks, 7-14

Index addressing modes, 1-7, 1-10,
5-4

Instruction summary, B-3

.IRP directive, 7-14

.IRPC directive, 7-17

Labels, 6-~32, 7-1
label field, 2-2

/LI, 8-3

.LIMIT directive, 6-31

Line printer assembly listing
control, 6-3

Link~11, 1-9, 6-13, 6-33, 6-35
apostrophe, 4-1
label assignments, 2-2

.LIST directive, 6-~1

Lisitng,
apostrophe, 1-9, 4-1
blank lines, 2-1
control, 6-1

Macros,
arguments,
calls, 7-3
definition, 7-1
formatting definition, 7-3
nesting, 7-5
terminating, 7-2

Macro arguments,
automatically created local

symbols, 7-9
concatenation of, 7-10
delimiters, 7-4, 7-5
determining addressing modes,7-1
determining number of characters
in, 7-11
determining number of, 7-11
numeric arguments passed as
symbols, 7-7

Macro call and expansion listing
control, 6-2

Macro definitions, 7-1
listing control, 6-2

.MACRO directive, 7-1

Macro expansion
binary listing control,
listing control, 6-3

Macro libraries, 7-18

Macro symbols, 3-5, 3-6

.MCALL directive, 7-18

MEXIT directive, 7-2, 7-18

Modular programming, 1-1

7-4, 7-8

6-3

.NARG directive,
.NCHR directive,
/NL, 8-3

«NLIST directive, 6~1

.NTYPE directive, 7-11

Numeric control, 6-26

Numeric string symbols, 7-7
Number instruction (MARK), B-13
Numbers, 3-15

Number sign (#) character, 3-12

7-11
7-11

Octal radix, 3-13
number operator (40), 6-23
.0ODD directive, 6-24
One's complement number operator
(+c), 6-28
Operand field, 2-4

control of listing directives,6-~30perate instructions, B-=7

Table of Contents, 6-3

Loading MACRO-11, 8-1

Local register usage, 1-4

Local symbol block function, 6-~13

Local symbols, 3-~9, 7-9

Location counter, 3-12, 6-32, 6-33
control, 6-24
listing control, 6-2

Lower case ASCII input function,
6-13

Operating procedures, 8-1
Operator characters,
+, 3-3

r

e\ * |

. % W N~

Operator field, 2-3

X=-2

.PAGE directive, 6-12, 7-3 Symbol table listing control, 6-3

Page ejection, 6-12, 7-3 Symbols,

Page format, 6-12 automatically created, 7-9

Page headings, 6-7 evaluation of, 3-14, 3-6

Period, see Dot global, 3-6, 6-34, 6-35

Permanent symbols, 3-5, 3-6 local, 3-9, 7-9

Permanent symbol table listing, C-1 macro, 3-5

PIC, see Postion independent code numeric strings, 7-7

Position independent code, 1-6 permanent, 3-5, 3-6, C-1

.PRINT directive, 7-13 program section names, 6-34

Priority instruction, B-14 user-defined, 3-5, 3-6, 3-7

Program sections, 3-6 SYSMAC.SML file, 7-18
directives, 6-32 listing of, D~l1

System error messages, E-2

Q errors, 3-3

Quote (") character, 6-17 Tab character, 2-2
Teletype mode listing control, 6-3
Temporary radix control, 6-22, 6-28

Radix control, 6-22 Terms, 3-14
temporary, 6-28 Terminating characters, 2-3, 2-4
.RADIX directive 6-22 .TITLE directive, 6-7
RADIX-50 character set, A-4 Trap handler, 1-13, 5-8
.RAD50 directive, 6-20 Trap instructions, B-9

Recursive code, 1-11
Reentrant code, 1-11

Register addressing modes, 1-6, Undefined symbols, 6-33
5-2, 5-3 Up arrow (4) character, 6-22, 6-28,
storage savings on, 1-11, 1-12 7-5

Register destination instructions, User-defined symbols, 3-5, 3-6, 3-7
B-10
Register increment operation, 1-13
Register offset instructions, B-10
Register symbols, 3-8 .WORD directive, 6-16
Register usage, 1-4, 1-9
Relative addressing modes, 1-7,
1-10, 5-5, 5-6 Z error code, 5-3
Relocatable program sections, 6-32,
6-34
Relocation of code, 4-1
Repeat blocks, 7-17
«REPT directive, 7-17

«SBTTL directive, 6-10

Sections, see Program sections

Separating characters, 3-2

SEQ argument to .LIST/.NLIST, 6-2

Sequence number listing control,6-2

Single operand instructions, B-5

Source listing control, 6-2

Source-double register instructions,
B-12

Source register instructions, B-1l1l

Special character summary, B-1

Statement format, 2-1

Statement terminators, 2-1

Stack usage, 1-3

Subconditionals, 6-38

Subroutines, 1l-1

Subroutine return instruction, B-10

Switch options, 6-6, 8-3

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes,
software problems, and documentation corrections are published by Software
Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-I2
Digital Software News for the PDP-II
Digital Software News for the PDP-9/15 Family

These newsletters contain information applicable to software available from
Digital's Program Library, Articles in Digital Software News update the
cumulative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
Software News is sent to the appropriate software contact at your installation,
please check with the Software Specialist or Sales Engineer at your nearest
Digital office.

Questions or problems concerning Digital's Software should be reported to
the Software Specialist. In cases where no Software Specialist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms which are provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to facilitate a complete investigation. An answer will be sent to the
individual and appropriate topics of general interest will be printed in the
newsletter.

Orders for new and revised software and manuals, additional Software Per-
formance Report forms, and software price lists should be directed to the
nearest Digital Field office or representative. U.S.A. customers may order
directly from the Program Library in Maynard. When ordering, include the
code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to:

DECUS

Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

———————————————— FoldHere - - - ——-— — == = = = — — = = = — — —

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

dlilgliltlall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

Postage will be paid by:

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	X-01
	X-02
	X-03
	replyA
	replyB

