| o1l L@d,@“

(
|

disk operating system monitor
programmer’s handbook

DEC-11-SERA-D

PDP-11

DISK OPERATING SYSTEM

MONITOR

PROGRAMMER 'S HANDBOOK

For additional copies, order No. DEC-11-SERA-D from Digital Egquipment
Corporation, Direct Mail, Bldg.

6A-3, Maynard, Massachusetts 01754

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

First Printing, February 1971

Your attention is invited to the last two pages

of this document. The "How to Obtain Software
Information" page tells you how to keep up-to-

date with DEC's software. The "Reader's Comments"
page, when filled in and mailed, is beneficial to
both you and DEC; all comments received are acknow-
ledged and are considered when documenting subse-
quent documents.

‘Copyright @ 1971 by Digital Equipment Corporation.

This document is for information purposes only,
and describes the first release of the Disk
Operating System Monitor. It is subject to
change without notice.

Associated Documents:

PDP-11 PAL-11R Assembler,
Programmer's Manual, DEC-11-ASDA-D

PDP-11 Edit-11l Text Editor,
Programmer's Manual, DEC-11-EDDA-D

PDP-11 ODT-11R Debugging Program,
Programmer's Manual, DEC-~11-0ODDA-D

PDP-11 Link-11 Linker,
Programmer's Manual, DEC-11-LLDA-D

PDP-11 PIP, File Utility Package,
Programmer's Manual, DEC-11-PIPA-D

The following are trademarks of
Digital Equipment Corporation.

DEC PDP

FLIP CHIP FOCAL
DIGITAL (logo) COMPUTER LAB
UNIBUS OMNIBUS

ii

PREFACE

This document contains a comprehensive description of the PDP-11 Disk
Operating System Monitor. The document is written for the PDP-11 pro-
grammer -- it assumes familiarity with the contents of the PDP-11
Handbook 1971 and the PAL-11R Assembler (see document number DEC-11-
ASDA-D). Previous experience with monitor or executive systems would

be helpful, but is not necessary.
The document is separated into three chapters:

Chapter 1 is an introduction to the DOS Monitor,
and provides general information about the disk operating system.

Chapter 2 describes the programmed requests that are
available to the programmer through the Monitor. This chapter
also explains the concepts and operation of each programmed re-
quest.

Chapter 3 describes the keyboard commands available
to the system operator through the Monitor; concepts and operation

of each command is also explained.

The entire document is summarized in the appendixes.

Appendixes D (Monitor Commands) and E (Monitor Programmed Requests)
should prove to be invaluable to the DOS -user. :

The PDP-11 Disk Operating System software consist of,
in addition to the DOS Monitor:

PAL-11R Assembler

Edit-11 Text Editor
ODT-11R Debugging Program
PIP, File Utility Package
Link-11 Linker

iii

CONTENTS

Page
CHAPTER 1 INTRODUCTION 1-1
1.1 THE DOS MONITOR 1-1
1.2 MONITOR CORE ORGANIZATION 1-4
1.3 HARDWARE CONFIGURATIONS 1-5
1.4 MONITOR MESSAGES 1-6
1.5 HOW TO START THE MONITOR 1-6
1.6 A GUIDE TO THIS HANDBOOK 1-7
1.6.1 Terminology 1-7
1.6.2 Standards for Tables
CHAPTER 2 PROGRAMMED MONITOR REQUESTS 2-1
2.1 INTRODUCTION 2-1
2.2 TYPES OF PROGRAMMED MONITOR REQUESTS 2-3
2.2.1 Requests for Input/Output and 2-3
Related Services
2.2.1.1 READ/WRITE Level Requests 2-4
2.2.1.2 BLOCK Level Requests 2-7
2.2.1.3 TRAN Level Requests 2-9
2.2.2 Requests for Directory Management 2-11
Services
2.2.3 Requests for Miscellaneous 2-11
Services
DEVICE INDEPENDENCE 2-11
SWAPPING ROUTINES INTO CORE 2-12
MONITOR RESTRICTIONS ON THE 2-13
PROGRAMMER
2.6 DEFINITION OF REQUESTS FOR INPUT/ 2-14
OUTPUT SERVICES
2.6.1 READ/WRITE Level Requests 2-14
2.6.1.1. JINIT 2-15
2.6.1.2 .RLSE 2-16
2.6.1.3 .OPEN 2-17
2.6.1.4 .CLOSE 2=-21
2.6.1.5 .READ 2-22
2.6.1.7 JWAIT 2-24
2.6.1.8 .WAITR 2-25
2.6.2 BLOCK Level Requests 2-25
2.6.2.1 .BLOCK 2-25
2.6.3 TRAN Level Requests 2-27

iv

2.6.3.1
2.6.4

[

2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.7.6
2.8

2.8.3.4
2.8.3.5
2.8.3.6
2.8.4
2.8.4.1

2 O A 9
Lo Oe “ta

2.8.4.3
2.8.4.4
2.8.4.5
2.8.4.6
2.8.5

2.8.5.1
2.8.5.2

CONTENTS (Continued)

. TRAN

Requests for Input/Output Related
Services

.SPEC

STAT

DEFINITIONS OF REQUESTS OF DIRECTORY
MANAGEMENT SERVICES

-ALLOC
.DELET
. RENAM
.APPND
-.LOOK
.KEEP

DEFINITIONS OF REQUESTS FOR
MISCELLANEOUS SERVICES

Requests to Return Control to Monitor
.EXIT

Regquests to Set Monitor Parameters
. TRAP

.GTUIC
Requests to Perform Conversions
.RADPK

MNMANMTID
o DU LD

.D2BIN
.BIN2D
.02BIN
.BIN20O

Requests for Interfacing to the
Command String Interpreter

.CsI1
.CS8I2

2-32
2-33
2-34
2-35
2-36
2-37

I\

|
w
~J

CHAPTER

2.8.5.3
2.8.5.4
2.8.5.5
2.8.5.6
2.8.5.7
2.8.5.8
2.8.5.9
2.8.5.10
2.9
2.10
2.11

3

3.1
3.2
3.3
3.3.1

3.3.1.1
3.3.1.2
3.3.2

3.3.2.1
3.3.2.2
3.3.2.3
3.3.2.4
3.3.3

3.3.3.1
3.3.3.2
3.3.3.3
3.3.4

3.3.4.1
3.3.4.2
3.3.4.3
3.3.5

3.3.5.1
3.3.5.2
3.3.5.3

CONTENTS (Continued)

The Link Block
The Filename Block
The File Protection Codes
The Line Buffer Header
The Status Byte
The Transfer Modes
The BLOCK Block
The TRAN Block
PROGRAMMING TIPS
MONITOR MESSAGES
EXAMPLE PROGRAMS

OPERATOR COMMANDS

THE OPERATOR KEYBOARD INTERFACE
COMMUNICATING THROUGH THE KEYBOARD
MONITOR COMMANDS

Commands to Allocate System
Resources

The Assign Command
The OTher Command

Commands to Manipulate
Core Images

The RUn Command

The GEt Command

The DUmp Command

The SAve Command
Commands to Start a Program

The BEgin Command

The COntinue Command

The REstart Command
Commands to Stop a Program

The STop Command

The WAit Command

The KI1l Command

Commands to Exchange Information
With the System

The DAte Command
The TIme Command
The Login Command

vi

2-52
2-53
2-55
2-56
2-57
2-59
2-62
2-63
2-64
2-65
2-69

CONTENTS (Continued)}

Page
3.3.5.4 The MOdify Command 3-12
3.3.5.5 The FInish Command 3-13
3.3.6 Miscellaneous 3-13
3.3.6.1 The ECho Command 3-13
3.3.6.2 The PRint Command 3-13
3.3.6.3 The ENd Command 3-13
3.3.6.4 The ODt Command 3-14
3.4 THE COMMAND STRING INTERPRETER (CSI) 3-14
3.4.1 CSI Command Format 3-14
3.4.2 CSI Command Example 3-18
APPENDIX A PHYSICAL DEVICE NAMES A-1
APPENDIX B EMT CODES B-1
APPENDIX C SUBSIDIARY ROUTINE ASSIGNMENTS c-1
APPENDIX D SUMMARY OF MONITOR COMMANDS D-1
APPENDIX E SUMMARY OF MONITOR PROGRAMMED E-1
_ REQUESTS
APPENDIX F DEVICE DRIVERS F-1
APPENDIX G GLOSSARY AND ABBREVIATIONS G-1

vii

CHAPTER 1

INTRODUCTION

1.1 THE DOS MONITOR

The PDP-11 Disk Operating System (DOS) Monitor supports the PDP-1l user
throughout the development and execution of his program by:

e providing convenient access to system programs and utilities
such as the DOS assembler, debugger, editor, file utility

package, etc.;

) performing input/output transfers on three different levels,
ranging from direct access of device drivers to full format-

ting capabilities;

° handling secondary storage management with two different

kinds of file structure.

System programs and utilities can be called into core from the
disk or DECtape with Monitor commands issued from the keyboard. This
feature eliminates the need to manipulate numerous paper tapes, and

provides the user with an efficient and convenient programming tool.

All input/output (I/0) transfers are handled by the Monitor in any
of three user selected levels called READ/WRITE, BLOCK, and TRAN.
READ/WRITE is a file structured, formatted level of I/O in which the
user can specify any one of nine modes. BLOCK is a file structured,
random access I/O level with no formatting. TRAN does basic I/O opera-
tions at the device driver level. All I/0 is concurrent and interrupt

driven.

The file system on secondary storage uses two types of file
structures: linked and contiguous. Linked files can grow serially
and have no logical limit on their size. (Contiguous files must have
their length specified but can be randomly accessed by BLOCK level I/0
requests. Files can be deleted or created at any time, and are referred
to by name. Table 1-1 summarizes the features and benefits of the

Monitor.

The user communicates with the Monitor in two ways: through pro-
grammed instructions called requests, and through keyboard instructions
called commands.

TABLE 1-1

PDP-11 DOS MONITOR FEATURES AND BENEFITS

Feature

Benefits to User

Files are catalogued in multi-
level file directories.

Files are referred to by
name.

Files can grow serially.

Files can be as large as the
storage device can accept.

File storage is allocated dy-
namically from any bulk-stor-
age device.

Monitor subroutines can be
swapped into core when needed.
Routines need not permanently
tie up an area of core.

Monitor subroutines can be
made permanently core resi-
dent either before or during
run time.

The Monitor is divided into
logical modules.

All 1I/0 is interrupt driven.

No file naming conflicts among
users.

Files do not have to be remem-
bered by number.

Files can be created even when
their final size is not known.

No logical limit on the size of
files.

Files can be deleted or created
even at run time for greater
storage efficiency.

Much more efficient use of core
space for user programs. Free
core expands and contracts as
Monitor subroutines are used.
Space can be reclaimed for user
Programs. The user can determine
which Monitor subroutines will
be in core, and when.

The user can tailor the Monitor
for his particular needs.

The user can easily and cheaply
use the logical pieces of the
Monitor for his own needs. The
user can also easily add his own
specialized drivers to the system
by following a simple set of
rules, and still use the rest

of the Monitor with these drivers.

Such specialized equipment as
communications modems and A/D
converters which must be inter-
rupt driven can be run through
the Monitor. Several I/0 calls
can be handled concurrently.

(continued on next page)

Table 1-1 {continued)

Feature Benefits to User

Device independence Specific devices can be speci-
fied by the user in his progran,
and any device can be substitu-
ted by him when his program is
keing run.

Devices are assigned to User may reassign a device which
Datasets. is used for one purpose, (Dataset)
without changing its assignment
for all other purposes (Datasets).

Programmed requests are macros which are assembled into the
user's program and through which the programmer specifies the opera-
tion to be performed. Some programmed requests are used to access
input/output transfer facilities, and to specify where the data is.
where it is going, and what format it is in. In these cases the Mon-
itor will take care of bringing drivers in from disk, performing
the data transfer, and notifying the user of the status of the trans-
fer. Other requests access Monitor facilities to query system vari-
ables such as time of day, date, and system status, and to specify

special functions to devices.

Keyboard commands enable the operator to load and run programs,

1 ~A A
load or dump 4 t tar

t

ata to or from core, s rams at
specific addresses, modify the contents of memory registers, and
retrieve system information such as time of day, date, and system

status.

Programs supported under the DOS,and hence accessible through
the Monitor, are listed in Table 1-2.

TABLE 1-2, THE DOS SYSTEM PROGRAMS,

System Program
PAL-~11R Assembler

Edit-11 Text Editor
ODT~-11R Debugging Program
PIP, File Utility Package

Link~-11 Program Linker

1. 2 MONITOR CORE QORGANIZATION

Core is divided into:

Document Number

DEC=-11-ASDA-D
DEC-11-EDDA~D
DEC-11-0ODDA-D
DEC-11-PIPA-D
DEC-11~LLDA-D

a user area where user programs and buffers are located;

the stack, where parameters are stored temporarily during

the transfer of control between routines;

the free core or buffer area which is divided into l6-word

blocks assigned by the Monitor for temporary tables, for

device drivers called in from disk, and for data-buffering

between devices and user programs;

the resident Monitor itself which includes all permanently

resident routines and tables;

the interrupt vectors.

Figure 1-1 shows a map of core as organized by the Monitor.

1.3 HARDWARE CONFI

XX7776

USER AREA

STACK

= e e = e e o me e —

Free Core
(Buffer Area)

RESIDENT
MONITOR :
|
{400
Interrupt ;
H
i
Vectors l
‘ 000000

Figure 1-1. The Monitor Core Map.

GURATIONS

The smallest configurations adequate to run the PDP-11 DOS Monitor

are:

Configuration A:

Configuration B:

PDP-11/20 with 8K of core
ASR-33 Teletype terminal

RC1l1l disk controller

RS64, 64K fixed head disk drive
TCll DECtape controller

TU56 dual DECtape transport
BM792~-YB Bootstrap Loader

o e

PDP-11/20 with 8K of core

KSR-33 Teletype

RF11 disk controller

RS11, 256K fixed head disk drive
PCll high-speed paper tape reader/
punch

BM792-YB Bootstrap Loader

el

—

e
I
w

1.4 MONITOR MESSAGES

Monitor messages are stored on the disk. When a message-producing
situation (such as a system error) occurs, the Monitor calls the
correct message into core and prints it on the teleprinter.

There are four types of Monitor messages:

Informational

Action required by the operator
Warning to the operator

Fatal.

These message types are identified with the letters I, A, W and F
respectively. If the system disk should fail and the error message
‘cannot be brought into core, the Monitor halts.

Monitor messages are described in detail in Section 2-10.
The user may also store messages on the disk and call the ap-
propriate Monitor routines to print them. The procedure for doing

this is covered in Section D.

1.5 HOW TO START THE MONITOR

The monitor is loaded into core from disk by performing the follow-

ing procedure:

1. Place the address of the ROM Bootstrap Loader into the
switches (773100)

2. Depress Load Address switch

3. Place the address of the word count register for the disk

"upon which the monitor resides (usually 177462 for RF/FS11)
4, Depress START switch.

The monitor will be loaded into core and identify itself by

printing:

MONITOR Vxxxx

1-6

on the teleprinter, were VxxxxX represents the version number of the
Monitor being used. The Monitor is now ready to accept on operator
command. (see Chapter 3).

1.6 A GUIDE TO THIS HANDBOOK

1.6.1 Terminology

The reader should understand the following terms as they apply to the
Disk Operating System. An expanded glossary, with abbreviations, can
be found in Appendix G.

A dataset is a logical collection of data which is treated as an en-
tity by a program. For example:

) All or part of a file on a file-structured device.
e A paper tape in a paper tape reader.
° Three physically different files which together constitute

the source input to the assembler.

A device is any PDP-11 peripheral supported by the Monitor.

A device controller may support one or more device units.

A file is a phusical collection of data which resides on a directory
device and is referenced through its name. A file consists of one or

more blocks on a directory device.

A block is a broup of adjacent words of a specified size; it is the
smallest addressable segment. If the blocks comprising a file are ad-
jacent to each other, the file is said to be contiguous; if the
blocks of the file are not adjacent, the file is said to be linked.

o *
A line is a string of ASCII characters which is terminated by a LINE
FEED, VERTICAL TAB, or FORM FEED.

File Structure refers to the manner in which files are organized.

Specifically, each of a user's files is given a unique name by the
user. Each user on a file-structured device is assigned a User File
Directory (UFD) in which each of his files is listed by name and lo-
cation. Each UFD is then listed in a Master File Directory (MFD)

which is unique to a specific device unit.

*
ASCII stands for American Standard Code for Information Interchange.

Bulk storage devices containing directories are called directory de-

vices or file-structured devices. Devices such as paper tape equipment

*
and the Teletype, which cannot support a file structure, are called
non-directory devices or non-file-structured devices.

1.6.2 Standards for Tables

A table is a collection of data stored in sequential memory locations.
Figure 1-2 shows how a typical table is represented in this manual.
This table is two words long, and is referenced by the symbolic ad-
dress TABL:. The first entry is at location TABL and contains ENTRY

A, which might be coded as .WORD AYE in the user's program. The second
word of the table, at address TABL+2, is divided into two bytes. The
low order byte (address TABL+2) contains ENTRY B, and the high order
byte (address TABL+3) contains ENTRY C. They might be written into a
program as .BYTE BEE,CEE.

a) Representation in manual:

TABL: ENTRY A

ENTRY C ENTRY B

b) Representation in program listing:

TABL: .WORD AYE ;ENTRY A
.BYTE BEE,CEE ;ENTRY B,ENTRY C

1.6.3 Standards for Numbers
Unless otherwise stated, all numbers in the text and examples are in

octal.

*
Teletype is a registered trademark of the Teletype Corporation.

CHAPTER 2

PROGRAMMED MONITOR REQUESTS

2.1 INTRODUCTION

The user program calls for the services of the Monitor through programmed
requests. These requests are macro calls which are assembled into the
user program and interpreted at execution time by the Monitor. A pro-
grammed request consists of a one-word instruction followed, when approp-

riate, by one or more arguments. For example:
.WAIT LNKBLK

is a programmed request called .WAIT followed by an argument LNKBLK.
The macro or request is expanded at assembly time by the DOS Assembler
into a sequence of instructions which trap to and pass the arguments to
the appropriate Monitor routine to carry out the specified function.
The assembly language expansion for .WAIT LNKBLK is:

MOV #LNKBLK,- (SP)

EMT 1

The user may code a request in his program as either a macro call

(o]
=
oY)
n
rt
fon
1]

egquivalent assembly language program.

The request arguments are parameters or addresses of tables which
contain the parameters of the request. These tables are also part of
the user program, and are described in detail in Figures 2-5 to 2-12.
Restrictions on argument names are found in the appropriate PDP-11

Assembler manual.

Services which the Monitor makes available to the user through

Yy armad vacriiacdo e br\ ~ 3 e A g ~ s eI -
PeVYYLaluiTu L CTYHUT O LD LQli AT CLLADSOS L LLTU Llllu LIl CCT YLUUWUP O .

requests for input/output and related services

requests for directory management services

requests for miscellaneous services

Table 2-1 summarizes the programmed requests available under the

Monitor. They are described in general in Section 2.2.

TABLE 2-1, SUMMARY OF MONITOR REQUESTS.,

Mnemonic

Purpose

Requests for Input/Output and related services:

« INIT

«RLSE

« OPENX
«CLOSE

+.READ

«WRITE

«WAIT

« WATTR

« BLOCK

«TRAN

«SPEC
«STAT

Requests for

Associates a dataset with a device driver and sets
up the initial linkage.

Removes the linkage between a device driver and a
dataset, and releases the driver.

Opens a dataset.
Closes a dataset.

Transfers data from a device to a user's line
buffer.

Transfers data from a user's line buffer to a
device.

Waits for completion of any action on a dataset.

Checks for completion of any action on a dataset,
and provides a transfer address for a busy return,

Transfers one block of a file between a device and
a Monitor buffer,

Transfers data by absolute device block address
between a device and a user buffer,

Performs special device functions.

Obtains device characteristics.

Directory Management services:

«ALLOC
«DELET
+RENAM
«APPND

« LOOK

+«KEEP

Requests for

Allocates a contiguous file,
Deletes a file,

Renames a file,

Appends one linked file to another,

Searches the directory for a particular filename
and returns information about the file.

Protects a file against automatic deletion on
Finish.

Miscellaneous services:

+EXIT
« TRAP

+RSTRT

Returns control to the Monitor,
Sets interrupt vector for the TRAP instruction.
Sets the address used by the REstart command.

(continued on next page)

Mnemonic Purpose

binary word,

' +«BIN2D ' Converts one binary word into five decimal ASCII
i i characters,
: +02BIN Converts six octal ASCII characters into one binary
| word.
: +BIN20 Converts one binary word into six octal ASCII
i characters,
i
i .CSI1 Condenses a command string and checks for proper
! syntax,
«CSI2 Interprets one command string dataset specification.

+CORE Obtains address of highest word in core memory.

« MONR Obtgins address of first word above the resident
Monitor.

+«MONF Obtains address of first word .above the Monitor's
highest allocated free core buffer.

+DATE Obtains the date.

« TIME Obtains the time of day.

«GTUIC Gets current UIC.

+RADPK Packs three ASCII characters into one Radix-50 word.

+RADUP Unpacks one Radix-50 word into three ASCII characters.,

+D2BIN Converts five decimal ASCII characters into one

2.2 TYPES OF PROGRAMMED MONITOR REQUESTS

2.2.1 Requests for Input/Output and Related Services

is an area set up by the user in his program, into which he (or the
Monitor) places data for output (or input). The line buffer may be
preceded by the line buffer header, in which the user specifies the

size and location of the line buffer and the mode (format) of the data.

All user I/O is handled by programmed requests, which provide
three different levels of transfer:

) READ/WRITE
[] BLOCK
® TRAN

Each level uses a sequence of requests to complete the transfer. Note
the distinction between READ/WRITE, BLOCK, and TRAN as names of trans-
fer levels, and .READ, .WRITE, .BLOCK, and .TRAN as specific requests
within these levels.

Requests for I/0 related services perform special device functions
(such as rewinding a tape) and obtain device characteristics from device
status words.

2,.2.1.1 READ/WRITE Level Requests -- This is the level at which the
Monitor performs most of its services for the user. It is the most
commonly used level of transfer. Among its users are the DOS Assembler

and Edit-11 Text Editor programs, which input one line of ASCII charac-

ters at a time.

The READ/WRITE user can specify nine different modes of transfer,
in two categories: ASCII and Binary. Each mode is presented briefly
here; more details are in Section 2.6.1 and Figure 2-10.

ASCII Modes: Formatted ASCII Parity - Special
Formatted ASCII Parity - Normal
Formatted ASCII Nonparity - Special
Formatted ASCII Nonparity - Normal
Unformatted ASCII Parity - Normal
Unformatted ASCII Nonparity - Special

Binary Modes: Formatted Binary - Special
Formatted Binary - Normal
Unformatted Binary - Normal

1. Formatted and Unformatted Modes: Data in formatted ASCII
modes is assumed by the Monitor to be in strings of ASCII characters
terminated by LINE FEED, FORM FEED, or vertical TAB. DOS Assembler
source programs use the formatted ASCII mode. In these modes, the

Monitor manages all device-dependent conversions such as converting

a TAB character to spaces when it is output to the line printer.

Data in unformatted ASCII modes is also assumed to be in strings
of ASCII characters, but the Monitor does not check for terminators or
make device-dependent conversions.

2. ASCII Parity and Nonparity Modes: In ASCII nonparity modes,

7-bit ASCII characters are transferred.
In formatted ASCII parity modes, even parity is generated in the
8th bit and is checked during the transfer. In unformatted ASCII par-

ity mode, 8 bits are transferred, but no parity is generated or checked.

3. ©Normal and Special Modes: All normal modes are compatible

with their counterparts in the PDP-11 I/0 Executive (IOX). Special modes
provide additional facilities to these normal modes.

4. Formatted and Unformatted Binary Modes: Data in formatted

binary modes is transferred in 8-bit bytes as read from the device.
The Monitor makes no assumptions about the nature of the data, but cal-
culates and verifies a checksum and byte-count. The binary output of

the DOS Assembler is in a formatted binary mode.

Unformatted binary mode is the same as formatted binary except

that no checksum or count is calculated or verified.

To implement a READ/WRITE transfer, the programmer follows the
sequence of requests shown in Figure 2-1lb. First, the programmer initial-
izes the device to the dataset with the .INIT request. The argument of
this request is the address of a table called the Link Block. Entries
in this table specify the device involved in the approaching transfer
so that the Monitor may eventually establish a link between that device
and the dataset. The Link Block is described in detail in Figure 2-5.

The .INIT calls the appropriate device driver into the free core buffer
area, if it is not already there.

Following the .INIT request, the programmer opens a dataset with
on 4

r
. . . .
an .OPENx reguest. This need be done only if the device bein

a directory. However, it is advisable to use an .OPENx even for a non-
directory device to preserve the device independence of the program,
i.e., the programmer may want to assign the transfer to a directory de-
vice later. The argument of this request is the symbolic address of a
table called the Filename Block (Figure 2-6). Entries in this table
specify the dataset involved in the transfer.

There are several ways that a dataset can be opened. It can be

opened for input, for output, for update, or for extension. The last
letter of the .OPENx request specifies which type of open desired a

2-5

USER PROGRAM

USERS LINE
BUFFER
-READT l.WRITE .
+ WRITE
MONITOR BUFFER I; a{ DEVICE
—

«READ

Figure 2-la, The Transfer Path,

« INIT LNKBLK

+OPENI LNKBLK,FILBLK 3FOR OUTPUT, REPLACE .OPENI
3 WITH .OPENO
— +READ LNKBLK,BUFHDR $FOR OUTPUT, REPLACE .READ
3 WITH .WRITE
«WAIT LNKBLK $COULD BE REPLACED BY .WAITR

(Process Data)

No

End
Of Data
?

Yes
+CLOSE LNKBLK

«RLSE LNKBLK

LNKBLK 3 (entries)
FILBLK13 (entries) Tables in User's Program
BUFHDR 3 (entries)

Figure 2-1b, Sequence of Requests for READ/WRITE.

Figure 2-1, .READ/.WRITE Input/Output Transfers.

a .WRITE {(for output) follow the .OPENx. Either
request causes transfer to take place between the line buffer and the

:
Via a

m

Aavrs ~
arguments of either request are the address of the Link Block for the
dataset and the address of the Line Buffer Header (Figure 2-8). The
Line Buffer Header specifies the area in the user's core area to or from

which the dataset is to be transferred.

.READ or .WRITE are followed by .WAIT, which tests for the comple-
tion of the last transfer, and passes control to the next instruction.
Typically, what follows a .WAIT on an input is a subroutine to process
the portion of data just input. When the process has been completed,
the program checks to see if it wants another portion of data; if it
does, the program transfers control back to the .READ request and the
process is repeated. If the data has all been transferred, the .CLOSE
request follows to complete any pending action, update any directories
affected, and release to free core any buffer space the Monitor has al-
located from free core. Finally, action on the dataset is formally
terminated with the .RLSE request, which dissociates the device from
the dataset, and releases the driver. Releasing the driver frees core
provided there is no other claim to the driver from another dataset.

A 1 A -

2.2.1.2 BLOCK Level Reqguests -- BLOCK requests provide for random access

of blocks in files stored in directory devices such as the disk or DEC-
tape. An example of a BLOCK user program is a Payroll Update Program
which stores information about all employees on one file, with a set
number of blocks assigned to each employee.

At this level, data is transmitted between a specified block of
the file and the Monitor Buffer (Figure 2-2a). The user program may
directly access the data in the Monitor buffer, or may move it to his own
area for further processing. BLOCK level requests require the use of
the .INIT, .RLSE, .OPEN and .CLOSE regquests, as in the READ/WRITE level

requests.

To implement a BLOCK transfer, the programmer follows the sequence
of requests shown in Figure 2-2b. Notice that the transfer must be
inited, opened, waited, closed, and released following the same rules
as the READ/WRITE level. The .BLOCK request has the address of the
link block and the BLOCK block for its arguments. The BLOCK block
specifies the block within the file that is to be transferred.

USER PROGRAM * Transfers between the
Monitor*s buffer and the
user's buffer are the
user'’s responsibility.

POSSIBLE
USER BUFFER

A

* *

« BLOCK _OUTPUT
MONITOR BUFFER [DEVICE
« BLOCK INPUT

Figure 2-2a. The Transfer Path,

« INIT LNKBLK
«OPENU LNKBLK, FILBLK
«BLOCK LNKBLK, BLKBLK 3INPUT DESIRED BLOCK

«WAIT LNKBLK sCOULD BE REPLACED BY .WAITR

(Process Data) sUPDATE DATA

l

« BLOCK LNKBLK, BLKBLK $WRITE UPDATED BLOCK
+WAIT LNKBLK
+CLOSE LNKBLK

.RLSE LNKBLK

LNKBLK 1 (entries)
FILBLK? (entries) Tables in User Program
BLKBLK: . (entries)

Figure 2-2b, The Sequence of Requests For ,BLOCK.,

Figure 2-2, ,BLOCK Input/Output Transfers.

2-8

2.2.1.3 TRAN Level Requests -- A TRAN level request is a basic input/

output operation at the device driver level. Bulk storage devices are
accessed by absolute block number without regard to file structure. For
this reason, the user should be very careful not to destroy any files on
the device on which he is performing TRAN level requests. He should al-
locate a contiguous file on the device for his purposes.

Data is transferred directly between the device and the user's line
buffer (Figure 2-3a) with no formatting performed. TRAN level requests

are generally used in two situations:

) when the file structure does not allow the desired opera-
tion (for example, PIP uses TRAN to read a directory block)

°® when the user cannot afford the overhead of doing transfers
by a READ/WRITE process, and the data is of a fixed format.
(For example, a program to process data arriving at random
intervals from an A/D converter might first dump the input
data onto the disk via a .TRAN request as it arrives, and
then read it back later for processing when time permits.)

To implement a TRAN transfer, the programmer follows the sequence of re-
gquests shown in Figure 2-3b. Notice that the transfer must be INITed
and .RLSE'd, but is not .OPENed or .CLOSEd. The .TRAN request has the
address of the TRAN Control Block as its argument. This block contains
entries which specify the core starting address of the user's line buf-
fer, the device block address, the number of words to be transferred,
and the function to be performed. TRAN is therefore a device dependent
request. A summary of the transfer levels which can be used on the

various types of datasets is shown in Table 2-2.
TABLE 2-2., TRANSFER LEVELS FOR TYPES OF DATASETS.

Type of Dataset

Type of Linked Contiguous Non-File-Structured
Transfer File File Device
READ/WRITE Yes Yes Yes B
BLOCK Yes

TRAN | * “* B Yes

Yes indicates that the given transfer level will work on the
given type of dataset,
* indicates that TRAN may be used on a file structured de-
vice if the warnings mentioned earlier are observed.

USER PROGRAM

USER BUFFER

MONITOR BUFFER DEVICE

Figure 2-3a., The Transfer Path,

« INIT LNKBLK

«ALLOC LNKBLK,FILBLK,N sMAKE SPACE AVAILABLE FOR TRAN

« TRAN LNKBLK, TRNBLK

«WAIT LNKBLK 3WOULD BE REPLACED BY .WAITR

(Process Data)

+RLSE LNKBLK

LNKBLK: {entries)

FILBLK: (entries) Tables and parameters
Nt (entries) in User Program
TRNBLK 3 (entries)

Figure 2-3b. The Sequence of Requests For .TRAN,

Figure 2-3, ,TRAN Input/Output Transfers

2.2.2 Requests for Directory Management Services

Directory management requests are used to enter file names into direc-
tories, search for files, update file names, and protect files against
deletion.

2.2.3 Requests for Miscellaneous Services

Requests for miscellaneous services include:

) Requests to return control to the Monitor from a running
program.
° Requests to set Monitor parameters such as the TRAP vector

or a program's restart address.

e Requests to obtain Monitor parameters such as the size of
core, the size of the Monitor, the data, the time, and the
current user's UIC.

° Requests to perform conversions between ASCII and Radax-50
packed ASCII, binary and ASCII decimal, and binary and
ASCII octal.

° Requests to access the Command String Interpreter.

2.3 DEVICE INDEPENDENCE

Ordinarily, a programmer specifies input/output devices as he writes
the program. However, there are circumstances when he will want to

change the device specification when his program is run. For example:

° A device that the user specified when he wrote his program
is not in operation at run time, but an alternate device
is available.

#. The programmer does. not. know .the configuration of the sys-
tem for which he is writing, or does not wish to specify
it (i.e., he is writing a general purpose package).

The Monitor allows the programmer to write programs which are device
independent in that the programmer can, but need not always, specify a

device in his program. These facilities are:

° " The programmer may specify a device for each dataset via
a Link Block when he writes his program.

° A programmer can assign or reassign a device for a dataset
through the keyboard with the ASsign command (Section 3.3.1.1)
at run time. This command sets up a table entry in the Moni-
tor which effectively overrides any entries in the Link
Block.

Note of course that the substituted devices must be compatible. For
example, the user may initially specify a BLOCK transfer from disk and
later change the assignment to input from DECtape instead. But he can-
not later specify paper tape reader as the input device, since BLOCK
level requests do not apply to non-file structured devices.

It is important to note that a device is assigned in a program
to a dataset logical name and that reassigning a device at run time for
one dataset logical name does not reassign that device for all dataset
logical names to which it was originally assigned.

The only transfer request which is not device independent is .TRAN.

2.4 SWAPPING ROUTINES INTO CORE

Except for a small, permanently resident kernel, the Monitor routines
which process most programmed requests are potentially swappable. They
are normally disk resident and are swapped into core by the Monitor only
when needed. The user may, however, specify that one or more of these
potentially swappable routines be made permanently core resident or core
resident just for the duration of his program's run. Making a potential-
ly swappable routine core resident ties up core space, but speeds up
operation on the associated request. The user may, for example, be col-
lecting data via a .TRAN request in a real-time environment. In such a
case, even the short time needed to swap in the .TRAN request processor
could cause him to lose data.

Potentially swappable routines are listed in Appendix E.

° Routines may be made permanently core resident in the Moni-
tor by specifying the appropriate GLOBAL NAME at system
generation time.

° Routines may be made resident for the duration of a program's
run by declaring the appropriate GLOBAL NAME (as specified
in the definition of each request in Sections 2.6 through
2.8) in a .GLOBL assembler directive in the program. For
example, to make the .READ processor'resident while program
FROP is being run, the following directive would be included
in the program FROP:

+«GLOBL RWN.

2-12

In the absence of either of the above specifications for a
routine, the Monitor will swap in that routine whenever it

is requested.

2.5 MONITOR RESTRICTIONS ON THE PROGRAMMER

In return for the services provided by the Monitor, the programmer must

honor some restrictions:

The programmer should not use either the EMT or the IOT in-

structions for communication within his program.

It is recommended that the user does not raise his interrupt
priority level above 3, since it might lock out a device

that is currently trying to do input/output.

HALTS are not recommended. If a HALT is executed during

an 1I/0 operation most devices will stop, and only recovery
from the console (pressing the CONTINUE switch on the con-
sole} will be effective (recovery from the keyboard will

not be immediately possible, since a HALT inhibits the key-
board interrupt). Some devices, such as DECtape, will not
see the HALT and will continue moving, will lose their posi-
tions over the block under transfer, and may even run tape
off the reel.

The RESET instruction should not be used because it forces
a hardware reset, clearing all buffers and flags and dis-
abling all interrupts, including the keyboard's. Since all
I/0 is interrupt driven, RESET will disable the system.

The user must be careful to avoid penetrating the Monitor
when he is using the stack. The stack is set by the run
time loader 3just below the lowest -address of the-program
loaded. The Monitor checks to see that the stack is not
overflowing each time it honors a request. The user can

relocate the stack pointer and claim more space as follows:

a. He can determine where the pointer is currently
and where the current top of Monitor is located,
then move the stack pointer down the correct
amount.

b. He can ask the Monitor for buffer space via the general
utilities {see PDP-11 DOS Monitor, System Programmer's
Manual) .

The user should be aware that certain instructions, such

as .INIT, may change the amount of available free core, since

they may call in drivers and establish data blocks. Such

2-13

requests effect the results of the MONR or MONF requests.

) Certain requests return data to the user on the stack. The
user must clear the stack himself before the stack is used
again. The Monitor clears the stack after it honors re-
quests that do not return data to the user on the stack.

° The user should not use GLOBAL names that are currently used
by the Monitor. All these names are listed in Appendix E.

2.6 DEFINITION OF REQUESTS FOR INPUT/OUTPUT SERVICES

Each request has one or more arguments which are addresses of tables in
the user's program. The tables specify the variables of the request.
Table entries are explained in detail in Figures 2-5 to 2-12 at the end
of this section.

2.6.1 READ/WRITE Level Requests

This is the level at which the Monitor performs most of its services for
the user. The user can specify nine different modes of transfer, in

two categories; ASCII and Binary. Each mode is discussed here, and is
presented in detail in Figure 2-10.

ASCII Modes: Formatted ASCII Parity - Special
Formatted ASCII Parity - Normal
Formatted ASCII Nonparity - Special
Formatted ASCII Nonparity - Normal
Unformatted ASCII Parity - Normal
Unformatted ASCII Nonparity - Normal

Binary Modes: Formatted Binary - Special
Formatted Binary - Normal
Unformatted Binary - Normal

1. Formatted and Unformatted Modes:

Data in formatted ASCII modes is assumed by the Monitor to be in
strings of 7- or 8-bit ASCII characters terminated by LINE FEED,
FORM FEED or vertical TAB. PAL-11R Assembler source programs are
in a formatted ASCII mode. In these modes, the Monitor manages
all device-dependent conversions at the driver level. For example,
LINE FEED is supplied after RETURN in character strings from key-
board terminals.

Data in unformatted ASCII modes is also assumed to be in strings

of 7- or 8-bit ASCII characters. Checks for terminators and device-
dependent conversion are not performed by the Monitor, thus allow-
ing the user to handle all characters in his own way .

2, ASCII Parity and Nonparity Modes:

- e —

In formatted ASCII parity modes, even parity is generated in the
8th bit and is checked during the transfer. In unformatted ASCII
parity mode, 8 bits are transferred, but no parity is generated

or ‘checked.
3. Normal and Special Modes:

Special modes provide additional Monitor facilities over and above
normal modes; normal modes are compatible with the PDP-11 I/0 Exe-
cutive (IOX).

4. PFormatted and Unformatted Binary Modes:

Data in formatted binary modes is transferred in 8-bit bytes as
read from the device. The Monitor makes no assumptions about the
nature of the data. A checksum is calculated during a WRITE re-
quest and transmitted with the data, as well as a count of the
number of bytes. The checksum is verified during a READ. The bi-
nary output of the PAL-11R Assembler, for example, is in a for-

matted binary mode.

Unformatted binary mode is the same as formatted binary except

that no checksum or count is calculated or verified.

2.6.1.1 L.INIT

Associate or initialize a dataset with a device driver and set up the

initial linkage between them.

Macro Call: -INIT LNKBLK

where LNKBLK is the address of the link block.

2-15

Assembly Language

Expansion:
MOV #LNKBLK,=- (SP)
EMT 6
Global Name: INR.
Description: Assigns a device to a dataset and makes sure that the

appropriate driver exists and is in core. If the driver is not in core,
it is swapped in. The device assigned is that specified in the associ-
ated Link Block, unless assignment has been made with the ASsign com-
mand. After the Init has been completed, control is returned to the
user at the instruction following the assembly language expansion. The
argument is removed from the stack.

Rules: The user must set up a Link Block of the format shown
in Figure 2-5 in his program for each dataset to be INITed. Another
-INIT on a dataset for which no .RLSE has been given will effectively
be a .RLSE followed by an .INIT except that no form of close will be
performed.

Errors: A non-fatal error message, number A@@3, is printed on

the teleprinter if no assignment has been made through the ASsign com-
mand, and the DEFAULT DEVICE is either not specified in the Link Block
or has been specified illegally (i.e., no such device on the system).

The user may type in an assignment (ASsign) and type CO (continue)

to resume operation.

Control is transferred to the address specified by the
Link Block if at any time during an operation there is not enough space
in free core for the necessary drivers, buffers or tables. If no ad-
dress (i.e., a zero) is specified in the Link Block's ERROR RETURN AD-
DRESS, then a fatal error, number F@@7, is printed and the program stops.

Example: (see .RLSE).
LXamplée:

2.6.1.2 .RLSE

Remove the linkage between a device driver and a dataset, and release
the driver. ‘

Macro Call: .RLSE LNKBLK

where LNKBLK is the address of the link block previously INITed.

Assembly Language
Expansion:

MOV #LNKBLX,- (SP)

EMT 7
Global Name: RLS.
Description: Dissociates the device from the dataset and releases

the dataset's claim to the driver. Releasing the driver frees core pro-

vided no other dataset has claimed the driver.

Rules: The device to be released must have previously been
INITed to the dataset.

If the dataset has been opened on a directory device,

it must be closed before the device is released.

After the release has been completed, control is re-
turned to the user at the instruction following the assembly language

expansion; the argument is removed from the stack.

Errors: If the dataset has been .OPENed to a file structured
device, a .RLSE not preceded by a .CLOSE will be treated as a fatal er-
ror, F00S5.

Example:
L.INIT LNK1 ; ASSOCIATE A DATASET WITH A DEVICE
.RLSE LNK1
.WORD ERR1 ; ERROR RETURN ADDRESS
LNK1: .WORD g s POINTER FOR MONITOR
.RAD58 /DSI/ ; LOGICAL NAME OF DATASET
.BYTE 1,8 ;DEVICE SPECIFIED, UNIT
.RADS@ /KB/ s SPECIFY KEYBOARD
ERR1: ERROR
PROCESSING
2.6.1.3 .OPEN

Prepares .INITed device for usage and makes a named file available if

the device is directory oriented.

Macro Call: .OPENx LNKBLK, FILBLK

Where x identifies type of OPEN.

for update

for output

for extension

for input

for contiguous create

LNKBLK = address of Link Block
FILBLK = address of Filename Block

AHEHOC

Assembly Language
Expansion:

MOVB #CODE,FILBLK-2 ;MOVE "HOW OPEN"
;CODE TO FILENAME BLOCK
MOV #FILBLK,- (SP)
MOV #LNKBLK,- (SP)
EMT 16

Where CODE indicates the type of OPENxX request

OPENO
OPENT
OPENU
OPENC
OPENE

{1 A I 1 I

WHH&ND
w

Global Name: OPN. (See Appendix C for subsidiary routines.)

Description: In general an .OPENx request causes the Monitor to al-

locate a data buffer and to make other necessary preparations for trans-
ferring to a dataset to or from a device. More specifically:

-OPENU opens a previously created contiguous file for input and output
by .BLOCK.

+OPENO creates a new linked file, and prepares it to receive output.
-OPENE opens a previously created linked file to make it longer.

-OPENI opens a previously created linked or contiguous file for input
to the computer. It normally precedes all .READ operations.

-OPENC opens a previously created contiguous file for output from the
computer.

After the open request has been processed, control is
returned to the user at the instruction following the assembly language
expansion; the arguments are removed from the stack. At this time, how-
ever, the device concerned may still be completing operations required
by the request.

A summary of transfer requests which may legally
follow OPEN requests is illustrated in Table 2-3.

TABLE 2-3, TRANSFER REQUESTS WHICH MAY FOLLOW OPEN REQUESTS.

Linked File Contiguous File
Input | Output Input Output File
Already
+READ | .WRITE | .READ | .BLOCK | WRITE [.BLOCK Exist?
YES YES must
+« OPENO YES must not
+OPENE YES must
« OPENI YES YES YES must
+«OPENC YES mast
Rules: General Rules for All .OPENx Requests

a. The user must set up a Filename Block in his program (Figure
2-6). If the dataset is a file, the Filename Block must contain
a legal file name. A file name consists of up to six characters
(A-2Z, §-9); the first character cannot be a digit (#-9). If the
dataset is not a file, the Filename Block need not contain any
FILENAME or EXTENSION entries.

b. All datasets must have been INITed before they are OPENed.

c. For datasets on directory devices, the User Identification
Code (UIC) in the Filename Block (if specified) must be in the
directory of the device. If the UIC is not specified, the user
must-have logged in with a UIC that appears o8 the device.

. The .OPENx request must not violate the protect code of the
ile.

e. If a dataset is OPENed for any output, it cannot be OPENed
again until it has been CLOSEd.

Rules for .OPENO

a. On a directory device, the .OPENO request is applicable only
on outputs to a linked file or a non-directory device.

b. The .OPENO request creates a linked file on a directory de-
vice; hence, the file referenced in the corresponding Filename
Block cannot exist prior to the .OPENO request.

c. The .OPENO request will return an error if the directory is
full.

Rules for .OPENI

a. .OPENI may be used for inputs from contiguous or linked files,
or non-directory devices.

b. The file referenced in the corresponding Filename Block must
exist on the directory.

c. If a file is open for input (OPENI), it cannot be OPENed for
output, but it can be OPENed for extension or update.

d. At any one time, a file can be opened for input a maximum

of 62lo or 768 times.

Rules for .OPENU, .OPENE and .OPENC

a. The file must exist and cannot currently be opened for output.

b. The file cannot currently be opened by .OPENU, .OPENE or
.OPENC.

c. A contiguous file cannot be opened for extension.

d. A linked file cannot be opened with .OPENC, which is appli-
cable only to contiguous files.

Errors: If any of the preceding rules are violated, the Moni-
tor places an error code in the STATUS byte of the Filename Block (see
Table 2-4), and transfers control to the pointer in the ERROR RETURN
ADDRESS of the Filename Block. If this address is 0, a fatal error
message is printed on the console. Fatal error messages are listed

in Section 2.10.

Example: (See .CLOSE)

Macro Call: .CLOSE LNKBLK

where LNKBLK is the address of the Link Block.

Assembly Language

Expansion:

MOV #LNKBLK,-(SP)

EMT 17
Global Name: CLs. (See Appendix C for subsidiary routines.)
Description: The close reqguest indicates to the Monitor that no

more I/0O requests will be made on the dataset. Close completes any out-
standing processing on the dataset, updates any directories affected by
the processing, and releases to free core any buffer space established
for the processing. For example, if .CLOSE had been preceded by an
.CPENE request tc a file, the added portion is linked fo the file, the
directory entry for the file is updated to acknowledge the added portion,
and the File Information Block (FIB) is released to free core. After
the close request has been completed, control is returned to the user

at the instruction following the assembly language expansion; the argu-
ment is removed from the stack. As with OPEN, some appropriate device

action may still be in progress at this point.

Rules: The dataset tc be closed must have previously been

opened if it was a file on a directory device.

As with .OPENx, a .CLOSE is not required if the data-

set is not a file, but it is strongly recommended.

Errors: Dataset Not Inited - Fatal Error F@g@@; Device Parity

Error - Fatal Error F@17.

Example: Open for input a dataset named IMP, which is a file
PROG1.BIN on DECtape unit 3. After the data transfer is complete, close
the file.

.IN?T SET1

.OPENI SET1,FILEl ;OPEN SET1 FOR INPUT

(Input is performed here)
(continued on next page)

.CLOSE SET1,FILEl ;CLOSE SET1

.RLSE SET1

.WORD ERRI1
SET1: .WORD f
.RADS® /IMP/

.BYTE 1,3

.RADSg /DT/

.WORD ERF1 ;ADDR OF ERROR RTN

.WORD ¢ ;MONITOR PUTS HOW-OPEN HERE
FILEl: .RADS# /PRO/ ;FILE NAME

.RAD5@ /G1/

.RAD5@ /BIN/ ; EXTENSION

.BYTE PROG,PROJ ;USER ID CODE

.BYTE 177 ;PROTECT CODE
2.6.1.5 -READ

Read from device.

Macro Call: .READ LNKBLK,BUFHDR

where LNKBLK is the address of the link block, and BUFHDR is the address
of the line buffer header.

Assembly Language

Expansion:
MOV #BUFHDR, - (SP)
MOV #LNKBLK,- (SP)
EMT 4
Global Name: RWN.
Description: The .READ request transfers the data specified in

the line buffer header from the device to his line buffer. The trans-
fer is done via a buffer in the Monitor, into which an entire device
block is read, and from which the desired data is transferred to the
user's line buffer. (If the datakrequested traverses a device block
boundary, then a second device block is read.) After any I/0 transfer
has been started, control is returned to the user at the next instruc-

tion, with the arguments removed from the stack.

Rules: If the device is file structured, the .READ request
must be preceded by an .OPENI.

The user must provide in his program a line buffer

and line buffer header (See Figure 2-8).

Further actions on the dataset by the Monitor will be
automatically postponed until the .READ processing has completed. The
user program should, however, perform a .WAIT or .WAITR to ensure proper
completion of transfer before attempting to use the data in the line buf-

fer.

Errors: Specification of a transfer mode which is inapprop-
riate for the device assigned to the dataset, and attempting to .READ
from a .WRITE to a file-structured device for which no file has been
.OPENed or the type of.OPEN is incorrect. These will be treated as

fatal and will result in a F01l0 message.

Example: (See .WRITE.)

2.6.1.6 .WRITE

Write on a device.

Macro Call: .WRITE LNKBLK,BUFHDR

where LNKBLK is the address of the link block, and BUFHDR is the address

of the line buffer header.

Assembly Language

Expansion:
MOV #BUFHDR, - (SP)
MOV #LNKBLK,- (SP)
EMT 2
Global Name: RWN.
Description: The .WRITE request initiates the transfer cf data

from the user's line buffer to the device assigned. The data is first
transferred to a buffer in the Monitor, where it is accumulated until a
buffer of suitable length for the device is filled. The data in the
Monitor buffer is then transferred to the appropriate device block, and
any data remaining in the user's line buffer 1s moved to the (emptied)
Monitor buffer. After any I/0 transfer to the device has been started,
control is returned to the user at the next sequential instruction.

The arguments are removed from the stack upon return.

Rules: If the requested device is file structured, the data-
set must have been opened by an .OPENO or .OPENE for a linked file, or
.OPENC for a contiguous file.

The user must provide a line buffer and its header
in his program (Figure 2-8).

Further actions on the dataset by the Monitor after
.WRITE will be automatically postponed until the .WRITE processing has
been completed. Before refilling the line buffer, however, the user
program should perform a .WAIT or .WAITR to insure proper completion of
the transfer.

Errors: See .READ for errors.

2.6.1.7 JWAIT

Wait for completion of process on dataset.

Macro Call: WAIT LNKBLK

where LNKBLK is the address of the link block.

Assembly Language

Expansion:
MOV #LNKBLK, - (SP)
EMT 1
Global Name: (Routine is permanently core resident.)
Description: -WAIT tests for completion of the last requested ac-

tion on the dataset represented by the referenced link block. If the
action is complete, (that is, if the request has completed all its ac-
tion), control is returned to the user at the next sequential instruc-
tion following the assembly language expansion. Otherwise, the Monitor
retains control until the action is complete. A .WAIT or .WAITR should
be used to ensure the integrity of data transferred to or from a line
buffer. The argument is removed from the stack.

Rules: The dataset must be inited.
Errors: If the dataset is not inited, a fatal error occurs

and F000 is printed to the teleprinter.

Macro Call: .WAITR LNKRBLK,ADDR

where LNKBLK is the address of the link block, and ADDR is the address

to which control is transferred if the processing is not complete.

Assembly Language

Expansion:
MOV #ADDR, - (SP)
MOV #LNKBLK, - (SP)
EMT §
Global Name: (Permanently Core Resident.)
Description: .WAITR tests for completion of the last reguested

action on the specified dataset. If all actions are completed, control
is transferred back to the user at the next sequential instruction fol-
lowing the assembly language expansion. If all actions are not complete,
control is given to the instruction at location ADDR. The arguments are
removed from the stack. It is the user's responsibility to return to
the .WAITR to check again.

Rules: The user should use a .WAIT or a .WAITR request to
assure the completion of data transfer to the user line buffer before
processing the data in the buffer, or moving data into it. The dataset

must be inited.

Errors: If the dataset is not Inited, this is a fatal error,
and the message F000 is printed on the teleprinter.

2.6.2 BLOCK Level Reguests

BLOCK requests provide for the random access to the blocks of files
stored on the disk or DECtape. In this mode, data is transmitted to or
from a specified block in a file with no formatting performed. Trans-
fers take place between the device block and the Monitor buffer. The
user is responsible for transferring the block to and from his own area.
BLOCK level requests require the use of the .INIT, .RLSE, .OPEN and
.CLOSE requests discussed earlier.

2.6.2.1 .BLOCK

Transfer one block of a file.

Macro Call: .BLOCK LNKBLK, BLKBLK
where LNKBLK is the address of the link block, and BLKBLK is the ad-
dress of the BLOCK block (see Figure 2-11).

Assembly Language

Expansion: MOV #BLKBLK, - (SP)

MOV #LNKBLK, - (SP)

EMT 11
Global Name: BLO. (See Appendix C for subsidiary routines.)
Description: This request allows for random, relative block ac-

cess to contiguous files. The user must specify one of three functions
in the Block called: INPUT, GET, and OUTPUT. After the transfer has
started, control is returned to the user at the instruction following
the assembly language expansion with arguments removed from the stack.
INPUT: During an INPUT request, the requested block of

the requested file is read into a Monitor buffer, and the user is giv-
en in the BLOCK block (see Figure 2-11) the address of the buffer and
the physical length of the block transferred.

GET: During a GET request the Monitor gives the user the
address and Length of a buffer within the Monitor that he can fill for
subsequent output. The user must be careful that he does not over-run
the buffer.

OUTPUT: During an OUTPUT request, the buffer assigned is
written on the device in the requested relative position of the re-
quested file.

‘Rules: The associated file must be opened by .OPENI for
input or .OPENU for input or output.

Access to linked files or non-directory devices is
illegal.

The user must set up the BLOCK block in his program
according to the format of Figure 2-11.

Errors: Error processing causes a return to the user as
usual, with the type of error indicated in the FUNCTION/STATUS word

of the BLOCK block. The user should perform

TSTB BLKBLK+1l
BNE ERROR

2-26

after a .WAIT to ensure that his request was error free.

2.6.2 TRAN Level Reguests

TRAN requests provide for random access to any device. Bulk storage
or directory devices are accessed by absolute block without regard to
the directory structure. For this reason, the user should be very care-
ful not to destroy the file structure of a directory device to which
he is requesting TRAN level transfers. Data is transferred directly

between the device and the user line buffer. No formatting is performed.

TRAN requests require the use of the .INIT and .RLSE requests,

discussed earlier.

2.6.3.1 .TRAN

Transfer absolute block.

Macro Call: . TRAN LNKBLK,TRNBLK

where LNKBLK is the address of the link block, and TRNBLK is the address
of the TRAN block.

Assembly Language

Expansion:
MOV #TRNBLK, - (SP)
MOV #LNKBLK,- (SP)
EMT 10
Global Name: TRA.
Description: .TRAN performs a direct transfer of data, by absolute

block on the device, between the device and the user's area in core
memory. No Monitor buffering or formatting occurs. After the transfer
has started, control is returned to the user at the instruction follow-
ing the assembly language expansion. The arguments are removed from
the stack. The user is warned that .TRAN provides no protection for

files on a directory-oriented device.

Rules: .TRAN must be preceded by an .INIT request on the
associated dataset.

For each .TRAN regquest, the user must provide a

transfer control block, as shown in Figure 2-12.

Further actions on the dataset by the Monitor will
be automatically postponed until the .TRAN processing has been completed.
The user program should perform a .WAIT or .WAITR to ensure proper com-
pletion of the transfer before attempting to reference any location in
the data buffer.

If file structured data shares the same device as
the block(s) referenced by the .TRAN request, it is recommended that
the user first allocate a contiguous file for .TRAN usage.

Errors: An invalid function code in the transfer control
block will result in an error diagnostic message on the teleprinter at
run time.

Errors in the transfer will be shown in the function/
status word of the TRAN block; the last word of the block will be set
to show how many data words have not been actioned.

Example: Transfer 2008 words of data from DECtape Unit 3,
starting at block 1008 to core starting at location 40008.

-INIT TAPEl

.TRAN TAPE 1,BIN4yg

+RLSE TAPE 1

.WORD ERR 1
TAPE 1: .WORD @
.RAD5SgZ /TPl/
.BYTE 1,3
.RADS@ /DT/
BIN4g: .WORD 1g¢ ; STARTING BLOCK #
.WORD 4890 ;STARTING ADDRESS IN CORE
.WORD 289 ;NUMBER OF WORDS
.WORD 4 ; INPUT
.WORD @ ;FOR MONITOR USE
2.6.4 Requests for Input/Output Related Services
2.6.4.1 .SPEC
Special functions.
Macro Call: .SPEC LNKBLK,CODE

where LNKBLK is the address of the link block, and CODE is the special
function code.

Assembly Language
Expansion:

MOV #CODE, - (SP)
MOV #LNKBLK,- (SP)

EMT 12
Global Name: SPC.
Desgcription: This request is used to specify a special function

action to a device, such as rewind magnetic tape. The code identifies
the special function. Available codes are listed below. If a SPEC
request is made to a device which has no special function, then an im-
mediate return is made showing that the function has been completed.
After the request has been started, control is returned to the user at
the instruction following the assembly language expansion. The stack

is cleared.

Rules: The dataset must be inited.

Errors: Fatal Error FO000 is returned if the dataset has not

been inited.

2.6.4.2 .STAT
Obtain device status.
Macro Call: .STAT LNKBLK

where LNKBLK is the address of the link block.

Assembly Language
Expansion:

MOV #LNXBLX, - (SP)

EMT 13
Global Name: STT.
Description: Determine for the user the characteristics of the

device specified in the link block. After the request has been com-
pleted, control is returned to the user at the instruction following
the assembly language expansion. This request returns to the user with

the following information at the top of the stack:

SP Driver Facilities Word

SP+2|Device Name
SP+4|Device Standard Buffer Size

2-29

where DRIVER FACILITIES WORD has the following format:

DEVICE NAME is the Radix-50 packed ASCII standard
mnemonic for the device (Appendix 2).

Device Standard BUFFER SIZE is the block size on a
blocked device or an appropriate grouping size on a character device.

Rules: The dataset must be inited. The user must clear the
stack upon return.

15(14 13|12 (11} 10 91 8 7 6 |5]| 4 3 2 1 0

"4
spares

l=device is
directory
structured,

l=device will support multi-
dataset activity

l=device will handle output
l=device is DECtape l=device will handle input
l=device is a terminal~ — l=device will handle
lxdriver has an OPEN entry binary data

lx=driver has a CLOSE entry —“‘1=i§g%§ed:§;1 handle
l=driver has a special function entry

2.7 DEFINITIONS OF REQUESTS OF DIRECTORY MANAGEMENT SERVICES
2.7.1 .ALLOC

Allocate (create a contiguous file).

Macro Call: +ALLOC LNKBLK,FILBLK,N

where LNKBLK is the address of the link block, FILBLK is the address
of the filename block, and N is the number of 64-word segments re-

quested.

Assembly Language
Expansion:

MOV #N,-(SP)

MOV #FILBLK, - (SP)
MOV #FLKBLK,~ (SP)
EMT 15

2-30

Global Name: ALO. (See Appendix C for subsidiary routines.)

Description: Searches the device for a free area equal to N 64-
word segments, and creates a contiguous file in the area if it is found,
by making an appropriate entry in the User File Directory. (Linked
files are created by an .OPENC request.) Search begins at the high

end of the device. The number of blocks allocated will be the minimum

number required to satisfy N segments, i.e.,

iy
E

where B is the number of segments per block. For example, if N=9 for
DECtape, and

_ 256 _ Nj_1{9]_
B = iz = 4 therefore, IB’_I4I— 3

After the reguest has been completed, control is returned to the user
at the instruction following the assembly language expansion. The

segments are removed from the stack.

Rules: Must be preceded by an .INIT request on the dataset.

A filename block must be set up by the user in his program.

Errors: Control is returned either to the ERROR RETURN

.
______ in

the filename block if it is specified, or to the console

for an error message if it is not. Possible errors resulting from
.ALLOC are:

Error Code Returned Error Message

Error Condition To Filename Block On Default
Dataset Not Inited None F0O0O
Device Not Ready None AQ02
File-Bxists o 2 o P24
Illegal File Name 15 F024
UIC Not In Directory 13 F024
Directory Full 12 F024
Example: Create a contiguous file of length 1024lo words on

DECtape unit 4. ©Name the file FREQ.DAT.

.ALLOC FRQ,FREQIN, 20

.WORD ERR1
FRQ: .WORD 0
.RAD50 /DTA/
.BYTE 1,4
.RAD50 /DT/

(continued on next page)

(continued from preceding page)

.WORD ERR2
FREQUIN: .RAD50 /FRE/
.RAD50 /Q/
.RAD50 /DAT/
.WORD UIC,PROT1

ERRI1: ;TO HERE IF NO BUFFER AVAILABLE
; FOR DRIVER
ERR2: ;TO HERE IF NOT ENOUGH CONTIGUOUS

; BLOCKS ON DEVICE

2.7.2 .DELET

Delete a file.

Macro Call: .DELET LNKBLK,FILBLK

where LNKBLK is address of link block, and FILBLK is address of file-
name block.

Assembly Language
Expansion:

MOV #FILBLK, - (SP)
MOV #LNKBLK, - (SP)

EMT 21
Global Name: DEL. (See Appendix C for subsidiary routines.)
Description: Deletes from directory oriented device the file

named in the filename block. After the request has been completed,
control is returned to the user at the instruction following the assem-
bly language expansion. The arguments are removed from the stack.

Rules: .DELET operates on both contiguous and linked files.
If the file has been opened, it must be closed before it is deleted.

Errors: Control is returned either to the error return
address in the filename block if it is specified, or to the console
for an error message if it is not. Possible errors resulting from
.DELET are:

Error Code Returned Error Message

Error Condition To Filename Block On Default

Dataset Not Inited None F00O
Device Not Ready None AQ02
Non-existent File 2 F024
Protect Code Violate 6 F024
File Is Open 14 F024

2.7.2 .RENAM

Rename a file.

Macro Call: .RENAM LNKBLK,OLDNAM,NEWNAM

where LNKBLK is the address of the link block, OLDNAM is the address
of the filename block representing the file, and NEWNAM is the address

of the filename block containing the new information.

Assembly Language

Expansion:

MOV #NEWNAM, - (SP)

MOV #OLDNAM, - (SP)

MOV #LNKBLK, - (SP)

EMT 20
Global Name: REN. (See Appendix C for subsidiary routines.)
Description: Allows the user to change the name and protection

code of a file. After the request has been completed, control is re-
turned to the user at the instruction following the assembly language

expansion. The arguments are removed from the stack.

Rules: Dataset must be Inited, and file must not be opened.
The user must specify two filename blocks; one contains the name and
protection code of the file as it presently is before the .RENAM re-
guest, and the other contains the name and protection code of the file
as it should be after the .RENAM request. The two file names must be
different. To change just the protection for a file, two .RENAMs
must be requested.

The user must be authorized to access the file.
The new file name must not already exist, and the new file name must
be legal.

The old file must exist.

Errors: Control is returned either to the error return ad-

dress in the offending filename block if it is specified and applicable,
or to the Monitor for an error message if it is not. Possible errors
resulting from .RENAM are:

ERROR CODE
. RETURNED TO ERROR MESSAGE
ERROR CONDITION FILENAME BLOCK ON DEFAULT
File Exists (New Name) 2 F024
File Does Not Exist (0ld File)?2 F024
Dataset Not Inited None F00O0
File Is Open 14 F024
Protection Violation 6 F024
Illegal File Name 15 F024

2.7.4 L.APPEND

Append one linked file onto another.

Macro Call: .APPEND LNKBLK,FIRST,SECOND

where LNKBLK is the address of the link block, FIRST is the address of
the filename block for the first file, and SECOND is the address of the
filename block for the second file.

Assembly Language

Expansion:

MOV #SECOND,-(SP)

MOV #FIRST,-(SP)

MOV #LNKBLK,- (SP)

EMT 2
Global Name: APP (see Appendix C for subsidiary routines.)
Description: Makes one linked file out of two by appending the

SECOND to the FIRST. The directory entry of the SECOND file is deleted.

When the request is completed, control is returned to the user at the
instruction following the assembly language expansion. The arguments
are removed from the stack. No attempt is made to pack the two files

together, the physical blocks are merely linked together.

Errors: Control is returned either to the error return ad-

dress in the offending filename block if it is specified, or to the
console for an error message if it is not. Possible errors resulting
from .APPEND are:

ERROR CODE

RETURNED TO ERROR MESSAGE
ERROR CONDITION FILENAME BLOCK ON DEFAULT
Dataset Not Inited None F00O
FIRST FILE NONEXISTENT 2 F024
CONTIGUOUS FILE 5 F024
Device Not Ready None A002
Protect Code Violated 6 F024
File Opened 14 F024

2.7.5 .JLOOK

Searches the directory for a particular filename.

Macro Call: .LOOK LNKBLK,FILBLK

where LNKBLK is the address of the link block, and FILBLK is the address
of the filename block.

Assembly Language

Expansion: MOV #FILBLK, = (8P}

MOV #LNKBLK,- (SP)

EMT 14
Global Name: DIR. (See Appendix C for subsidiary routines.)
Description: The primary purpose of this routine is to search

through a specified directory for a specified file and return with the
current parameters of the file. However, this routine will also be used

to return the characteristics of a non-directory device.

The device searched is specified through the link block,
and the file through the filename block. The request returns to the user
with the top two elements of the stack as follows -

Length SP

Indicator Word SP+2

where Length is the number of blocks in the file in binary, and the
Indicator Word is encoded as follows:

bit g=1 . es OPENC allowed
bit 1=1 e OPENI allowed
bit 2=1 - OPENE allowed
bit 3=1 e OPENU allowed
bit 4=g . file is closed
=1 ces file is open
bit 5 is @
bit 6=g8 e file is linked
=1 e file is contiguous
bit 7=4 e file does not exist (OPENO allowed)
=1 e file exists
bits 15-8 . protection code

After the request has been completed, control is re-
turned to the user at the instruction following the assembly language
expansion. The stack must be cleared by the user.

Rules: The dataset must be Inited.

Errors: Control is returned either to the error return ad-

dress in the filename block if it is specified, or to the console for
an error message if it is not. Possible errors resulting from .LOOK
are:

ERROR CODE

RETURNED TO
ERROR CONDITION FILENAME BLOCK ERROR MESSAGE
Dataset Not Inited None F000
Device Not Ready None AQ002
File Is Open 14 F024

Illegal File Name 15 F024

2.7.6 .KEEP

Protect file from automatic deletion.

Macro Call: .KEEP LNKBLK,FILBLK

where FILBLK is the address of the filename block of the file to be pro-
tected.

Assembly Language

Expansion: MOV #FILBLK, - (SP)
MOV #LNKBLK, - (SP)
EMT 24

Global Name:

PRO.

Description: Protects the named file from being deleted by the

monitor upon a FInish command {Section 2.3.5.5). It does this by set-
ting bit 7 of the PROTECT byte in the filename block.

2.8 DEFINITION OF REQUESTS FOR MISCELLANEQUS SERVICES

2.8.1 Requests to Return Control to the Monitor

2.8.1.1 L.EXIT

Exit from program to Monitor.

Macro Call: LEXIT

Assembly Language

Expansion: EMT 60
Global Name: XIT.
Description: This is the last executed statement of a user's pro-

gram. It returns control to the Monitor, insures that all of the pro-
gram's data files have been closed and, in general, prepares for the

next keyboard request. After the exit, all Monitor buffer space reserved
for the program, such as Device Assignment Tables (DAT), are returned to

free core.

2.8.2 Regquests to Set Monitor Parameters

In addition to the above programmed requests, the user has some utility
and conversion routines which he accesses via the EMT levels 41 and 42
instruction. The user communicates his request to the monitor by push-

ing the necessary parameters and an identifier code onto the stack.

2.8.2.1 .TRAP

Sets interrupt vector for the trap instruction.

Macro Call: . TRAP STATUS,ADDR

where ADDR is the address for trap, STATUS is the desired status for
the trap.

Assembly Languadge
Expansion:

MOV #ADDR, - (SP)
MOV #STATUS, - (SP)
MOV #1,-(spP)

EMT 41

Global Name: GUT.

Description: Sets the STATUS and ADDR into trap vector 34. Con-
trol is returned to the user at the instruction following the assembly

language expansion, after the request is completed. The stack is cleared.
The user may then use the TRAP instruction.

2.8.2.2 L.RSTRT

Sets address used by the restart command.

Macro Call: .RSTRT ADDR

where ADDR is the restart address.

Assembly Language
Expansion:

MOV #ADDR, - (SP)
MOV #2,-(SP)

EMT 41
Global Name: GUT.
Description: Sets the address where the program should restart in

response to the keyboard command REstart. This is the default address
in the absence of an address in the REstart operator command. After the
request is completed, control is returned to the user at the instruction
following the assembly language expansion. The stack is cleared.

2.8.3 Requests to Obtain Monitor Parameters

2.8.3.1 .CORE

Obtains address of the highest word in core memory.

Macro Call: . CORE

Assembly Language

Expansion:
MOV #100,~(SP) ; CODE
EMT 41
Global Name: GUT.
Description: Determines the address of the highest word in core

memory (core size minus 2) and returns it to the top of the stack. For
an 8K machine, it would return 37776. The user must clear the stack.

2-38

2.8.3.2 . MONR

Obtains the address of the first word above the Monitor.
Macro Call: .MONR

Assembly Language

Expansion:
MOV #101,-(SP)
EMT 41
Global Name: GUT.
Description: Determines the first word above the top of the cur-

rently resident Monitor (see Figure 2-4) and returns it to the user at
the top of the stack. Control is returned to the user at the instruction
following the assembly language expansion after the request is completed.

The user must clear the stack.

2.8.3.3 .MONF

Obtain the address of the first word above the Monitor's highest allo-

cated free core buffer.

Macro Call: .MONF

Assembly Language

Expansion:
MOV #102,-(SP)
EMT 41
Global Name: GUT.
Description: The address of the first word above total Monitor area

(see Figure 2-4) including the buffer and transient areas current at the
time of the request, is returned to the user at the top of the stack.
After the request is completed, control is returned to the user at the in-

struction following the assembly language expansion.
The user must clear the stack.
Rules: Since buffers are allocated by the Monitor in its

processing of certain requests, .MONF should be placed in the program
at the point where the information is actually required.

xx7776g <« Top of Core

<« Base of User
Programs

&« Top of Full
Monitor

Device Assignment Table
Generated After Load Time

Monitor Buffers
(Data Buffers, Data Control
Blocks, Drivers, etc.)

«Top of Resident
Monitor

Device Assignment Table
Generated Before Start of
Program

Monitor Routines Resident
For Program Duration

Device Assignment Table
Generated Before Load Time

Permanently Resident Monitor
and Vectors

000000

Figure 2-4, Core Map of Resident Monitor and Full Monitor.

Macro Call: .DATE

Assembly Language

Expansion:
MOV $103,-(8P)
EMT 41
Global Name: GUT.
Description: The current date word is returned to the user at the

top of the stack. The user must clear the stack. The date format is

Julian—70,00010.

2.8.3.5 .TIME

Obtain time of day.

Macro Call: . TIME

Assembly Language

Expansion:
RAMNI7Z L1Nn A fan)y
MUV #lU&,~ ({Oor)
EMT 41
Global Name: GUT.
Description: The two current time words are returned to the user

at the top of the stack.

LOW ORDER TIME IN TICS PC
HIGH ORDER TIME PC+2
where a TIC is 1/60 of a second (1/50 second for 50 cycle lines). The

words are 15-bit unsigned numbers. The user must clear the stack.

2.8.3.6 .GTUIC

Get current UIC.

Macro Call: .GTUIC

Assembly Language
Expansion:

MOV #105,-(SP) ; CODE
EMT 41
Global Name: GUT.
Description: The current user's UIC is returned to the user at the

top of the stack. The user must clear the stack.

2.8.4. Reguests to Perform Conversions

2.8.4.1 .RADPK

Pack three ASCII characters into one RADIX-50 word.

Macro Call: .RADPK ADDR

where ADDR is the address of the first byte in the 3-byte string of
ASCII characters to be converted.

Assembly Language
Expansion:

MOV #ADDR,- (SP)

MOV #0,-(SP) ;MOVE CALL CODE ONTO STACK
EMT 42
Global Name: CVT.
Description: The string of 7 or 8-bit ASCII characters in three

consecutive bytes starting at ADDR is converted to RADIX-50 packed ASCII
using the algorithm in Appendix D. The packed value is returned on the
top of the stack, followed by the address of the byte following the last
character converted.

Rules: ADDR may be set at any byte address (need not be at
word boundary).

The stack must be cleared by the user after the Moni-
tor returns control.

Errors: The conversion will be stopped if an error condition
is encountered, and the user will be informed of the type of error via
the condition codes in the Processor Status register:

N-bit set means an illegal call code (greater than
5) was used.

2-42

C-bit set means that an ASCII byte was used which
was outside the valid RADIX-50 set. (See Appendix D.)

In the latter case, the returned value will be left-
justified and correct up to the last valid byte. The address returned
will be that of the first invalid byte. No conversion will follow re-

f an N error.

Q
@]
Q
=]
'.J
ot
=
]
=]
(o]

If there were no errors encountered during the con-

version, the condition codes will be cleared, €.9., DT:=DT :

Example: Pack a string of 30lO ASCII characters, starting at
UNPBUF, into a buffer starting at PAKBUF.

MOV #PAKBUF, R3 ;SET UP POINTER TO PACK-BUFFER
MoV #UNPBUF, - (SP) ; +RADPK UNBUF
NEXT: MOV #8,-(SP)
EMT 42
BCS ERRC ; INVLID ASCII CODE ENCOUNTERED
MOV (sP)+, (R3) + ;MOV PACKED VALUE TO BUFFER
CMP R3, #PAKBUF+12 ;END OF STRING?
BNE NEXT 7 NO
TST (sP)+ ;YES--REMOVE POINTER FROM STACK

Note that this example takes advantage of the fact
that the Monitor returns to the stack the address of the byte which fol-
lows the last character converted.

2.8.4.2 .RADUP

Unpack one RADIX-50 word into three ASCII characters.

Macro Call: .RADUP ADDR, WORD
where ADDR is the pointer to the buffer into which the unpacked bytes
+~ LA

- ~
are placed.

Assembly Language

Expansion:
MOV #WORD,=(SP)
MOV #ADDR,-(SP)
MOV #1,-(SP) ;MOVE CALL CODE ONTO STACK
EMT 42
Global Name: CVT.
Description: WORD is converted into a string of 7-bit ASCII charac-

ters which are placed left-justified with trailing spaces in three con-

2-43

secutive bytes starting at location ADDR. The stack is returned cleared.

Errors: The conversion will be stopped if an error condition
is encountered. The user will be informed of the type of error via the
condition codes in the Processor Status register:

N-bit set means a call code greater than 5 was used.

No conversion has been attempted as a result.

C-bit set means that (a) a value of WORD was outside
the valid RADIX-50 set, i.e., 174777, (see Appendix D); (b) a RADIX-50
byte value was found to be 35, which is currently not used.

Nevertheless, three bytes will be returned, with a
: as the first of the three for error type (a), and any of the three
a / for error type (b).

If the conversion is satisfactory, the condition
codes are cleared.

2.8.4.3 .D2BIN

Convert five decimal ASCII characters into one binary word.

Macro Call: .D2BIN ADDR

where ADDR is the address of the first byte in the 5-byte string of

decimal characters to be converted (can be on byte- or word-boundary).

Assembly Language

Expansion:
MOV #ADDR, - (SP)
MOV #2,-(SP) ;MOVE CALL CODE ONTO STACK
EMT 42
Global Name: CVT.
Description: The 5-byte string of 7- or 8-bit ASCII characters

which start at ADDR are converted into their binary equivalent. The con-
verted value is returned to the top of the stack, right justified, fol-
lowed by the address of the byte which follows the last character con-
verted. The largest decimal number that can be converted is 65,535
(216—1). The user must clear the stack.

Errors: The conversion will be stopped if an error condition

2-44

is encountered. The user will be informed of the type of error via the

condition codes in the Processor Status register.

N-bit set means a call code greater than 5 was used
(no conversion). C-bit set means that a byte was not a digit. V-bit
set means that the decimal number was too large.

The returned value will be correct up to the last
valid byte. The address returned will be that of the invalid byte. If

the conversion is satisfactory, the condition codes will be cleared.

2.8.4.4 .BIN2D

Convert one binary word to five decimal ASCII characters.

Macro Call: .BIN2D ADDR,WQRD

where WORD is the number to be converted, and ADDR is the address of

the buffer where the characters are to be placed.

Assembly Language

Expansion:
MOV #WORD,- (SP)
MOV #ADDR,-(SP)
MOV #3,-(SP) ; MOVE CALL CODE ONTO STACK
EMT 42
Global Name: CVT.
Description: WORD is converted into a string of five decimal

7-bit ASCII characters which are placed into consecutive bytes starting
at location ADDR. They are right justified with leading zeros. The
stack is cleared.

Errors: The conversion will be stopped if

an error condition

is encountered. The user will be informed of the type of error via the

condition codes in the processor status register:

N-bit set means a call code greater than 5 was used.

If the conversion was satisfactory, the condition

codes are cleared.

2.8.4.5 .02BIN

Convert six octal ASCII characters to one binary word.

Macro Call: .02BIN ADDR

where ADDR is the address of the first byte in the 6-byte string of oc-
tal characters to be converted.

Assembly Language

Expansion:
MOV #ALDR, - (SP)
MOV #4,-(SP) sMOVE CALL CORT ONTO STACK
EMT 42
igbal Name: CVT.
Descriptiorn: The 6-byte string of octal 7- or 8-bit ASCII charac-

ters which start at ADDR are converted into the binary number equivalent.
The converted value is returned to the top of the stack, right justified,
followed by the address of the byte which follows the last character
converted. The largest octal number which can be converted is 177777.
The ctack must be cleared by the user.

Errors: The conversion will be stopped if an error condition
18 encountersd, and the user will be informed of the type of error via
e contiticon codes in the Processor Status register.

N~bit set means that a call code greater than 5 was
used, Cr-bit set means that a byte was not a digit. V-bit set means
that the ¢ctal number was too large, i.e., the first byte of six was
greater than 1.

If the conversion has been satisfactory, the condi-
tion codes are cleared. In either case, the returned value will be cor-
rect up to the last valid byte. The returned address will be that of
the first invalid hyte.

2.8.4.6 .BIN20

Convert one binary word to six octal ASCII characters.

Macroc Call:s .BIN20 ADDR,WORD

where WGRD is the binary number to be converted, and ADDR is the address
of the buffer inte which the six octal ASCII characters are to be placed.

Asszmbly Language
Exzansion:

or—

MOV #WORD,- (SP)
MOV #ADDR,- (SP)
MOV #5,~-(SP)

EMT 42
2-46

Global Name: CVT.

Description: The WORD is converted into a 6-byte string of octal

7-bit ASCII characters, right justified with leading zeros, which are
placed into the buffer addressed by ADDR. The stack is cleared.

Yrors: The conversion will be stopped if an error condition
is encountered, and the user will be informed of the type of error via
the condition codes in the processor status register:

N-bit set means a call code greater than 5 was used.

If the conversion was satisfactory, the condition

codes are cleared.

2.8.5 Requests for Interfacing to the Command String Interpreter

A user program may obtain I/0 device specifications via keyboard input
at run time by calling the Command String Interpreter (CSI) Monitor
routine. This is the same routine used by many system programs; it
accepts keyboard input at program run time in the format presented in
Section 3.4.1.

The CSI is called in two parts, by two different re-
quests: .CSI1 and .CSI2. .CSI1 condenses the command string and checks
for syntactical errors. .CSI2 sets the appropriate link block and file-
name block parameters for each dataset specification in the command
string. Each command string requires one .CSI1 request for the entire
command string,and one .CSI2 request for each dataset specifier in the

command string.

The user must first set up a line buffer in his pro-
gram and read in the command string. Then he does a .CSI1l, which con-
denses the string by eliminating spaces, horizontal TABs, nulls, and
RUBOUTs, sets pointers in a table to be referenced by .CSI2, and checks
the command string for syntactical errors. If there are no errors, the
.CSI2 request may be given once for each device that the user expects
to find in the command string. .CSI2 sets up the appropriate link
block and filename parameter according to the device name, file name,

extension, UIC, and switch entries in the command string.

2.8.5.1 .CSI1

Condense command string and check syntax.

2-47

Format: .CSI1 CMDBUF

where CMDBUF is the address of the command string buffer.

Assembly Language

Expansion:
MOV #CMDBUF, - (SP)
EMT 56
Global Name: CSX.
Description: Collapses the command string by removing spaces,

horizontal TABs, nulls, and RUBOUTs, and checks the entire command
string for syntactical errors. Control is returned to the user with a
0 at the top of the stack if the syntax was acceptable, or with the
address (in the command string line buffer) of the data byte where the
scan encountered the first error.

Rules: The .CSI2 reguest must be preceded by a .CSI1l re-
quest, because .CSI2 assumes it is getting a syntactically correct com-
mand; more than one CSI2 request can follow a single .CSI1 request.

The user must set up a line buffer and read in the
command string before doing CSI1.

It is the user's responsibility to print a # on the
teleprinter to inform the operator that a CSI format is expected (Sec-
tion 3.1).

The user must set up a seven-word command buffer
header in his program immediately preceding the header of the line buf-
fer into which the command is to be read. The user is not required at
this time to set up anything in the command buffer header prior to call-
ing .CSIl; it will be used as a work-and-communication area by the
Monitor routines processing the .CSI1 and .CSI2 requests.

The user must clear the stack upon return from the
Monitor. 1If the top of the stack # 0, (i.e., if there was a syntax
error), then .CSI2 must not be called.

Example: (See .CSI2.)

2.8.5.2 .CsI2

Interpret one dataset specification of command string.

2-48

Format: .CSI2 CS2BLK

Assembly Language
Expansion:

MOV #CS2BLK,- (SP)

EMT 57
Global Name: CSM.
Description: Gets the next input or output dataset specification

from the command string, and sets the PHYSICAL DEVICE NAME entry in the
link block, the FILENAME, EXTENSION, and UIC entries in the filename
block, and any switch entries in an extension of the link block.

Rules: Before calling .CSI2, the user must:

° Call CSI1 to condense the command string and check it for

syntax errors. There must have been no syntax errors.

° Set up a CSI control block as follows:

CSIBLK: POINTER TO CMDBUF
POINTER TO LNKBLK
POINTER TO FILBLK

where: POINTER TO CMDBUF is the address of the 7-word buffer preceding

the command string line buffer header.

POINTER TO LNKBLK is the address of the link block of the data-

set whose specification is being reguested.

U UL

dataset whose specification is being requested (currently, CSI allows

just one file per dataset specification).

° Set the first word of CMDBUF to either 0 or 2. 0 means
"get next input dataset specification", and 2 means "get the next out-
put dataset specification". <CSI2 does not check the validity of the
code word.

[Initialize the NUMBER OF WORDS TO FOLLOW entry in the
link block to contain the number of words to follow. This must be at
least one, because CSI2 will alter the following word, i.e., the PHYSICAL
DEVICE NAME word. CSI2 does not check the validity of this byte.

2-49

The user may specify any number from 1 to 25510 in this location. &all
words in excess of 1 are used for switch space (see the interface with
respect to switches, described below).

Upon return from the .CSI2 request, the Monitor will
have provided the following information:

[The top of the stack contains either:

(a) 0, which means the dataset specification requested has
been obtained, and there are still more dataset specifications of the
type requested (i.e., input or output); or

- (b) 1, which means the dataset specification requested has
been obtained, and there are no further dataset specifications of the
type requested; or

(¢) 2, which means (a), but this particular dataset specifica-
tion included more switches than would fit in the space provided; or

(d) 3, which means (b), but this particular dataset specifica-
tion included more switches that would fit in the space provided.

° With respect to the link block (Figure 2-5):

(a) If the PHYSICAL DEVICE NAME word is 0, the user does
not wish this particular output (input) dataset to be generated (read);
i.e., this entry was omitted when the command string was typed in. If
not zero, the PHYSICAL DEVICE NAME and UNIT NUMBER are appropriately
set to the device and unit specified in the command string.

e Immediately following the PHYSICAL DEVICE NAME word in the
link block are the switches specified in the command string. The in-
terface for each switch is as follows:

NUMBER OF WORDS TO FOLLOW

POINTER TO FIRST CHARACTER OF Vn

POINTER TO FIRST CHARACTER OF Vn-l

POINTER TO FIRST CHARACTER OF V1

W(ASCII) S(ASCII)

Assuming the
BER OF WORDS TO FOLLOW is 0

pointers are in reverse order. After the value pointers is a word which

witch was /SWITCH:V1:V2...Vn. If NUM-

n

, there are no more switches. Note that the

contains the first two characters of the switch in ASCII. The first
character is in the low byte, and the second is in the high byte. If

the name of the switch only contains one character, the ASCII representa-
tion of that character will be in the low byte, and the high byte will
contain a zero. Note that if the number of words to follow is not zero,
it is the number of values +1.

For example, if the switch /SWITCH;$12:AB is stored

in memory beginning at location 1000 as

l
1980 1gg¢ 1pp2 1pp3 1gp4 1g85 1046

/ S W I T c H
1887 1419 1911 1912 1413 1914 1915
: S 1 2 : A B

then the completed interface appears as:

3
1g1a
1710

127]123

° With respect to the filename block (Figure 2-6):

(a) Recall that the FILE NAME occupies the two words at
FILBLK and FILBLK+2. If the Monitor returns zero at FILBLK, no FILE
NAME was specified in the dataset specification. £ the Monitor returns
528 at FILBLK, * was specified as the FILE NAME. Otherwise, the Monitor
returns at FILBLK and FILBLK+2 the first six characters of FILE NAME,

in RADIX-50 packed ASCII.

(b) Recall that EXTENSION occupies the word at FILBLK+4. If
the Monitor returns zero at FILBLK+4, no EXTENSION was specified; if it

returns 52 then * was specified; otherwise, the Monitor returns the

8[
first three characters of the extension specified, in RADIX-50 packed

ASCII.

(c} Recall that the USER IDENTIFICATION CODE occupies the
word at FILBLK+6. If the Monitor returns zero at FILBLK+6, no UIC was
specified in the dataset specification(the I/0 processors will assume
the UIC of this user). If a UIC was typed in, the Monitor will set this
word appropriated. The Monitor returns 3778 in either high- or low-

order byte of this word if * was specified.

2-51

The user may restart at the beginning of the input dataset or output
dataset side of the command string simply by re-calling .CSI1 and is-
suing a 0 or 2 code, respectively. Note that he may not restart one
without restarting the other, unless he saves and restores the approp-
riate information from CMDBUF.

Remark: There is no error checking with respect to magni-
tude when the UNIT or UIC values are converted from octal ASCII teo bi~
nary.

2.8.5.3 The Link Block

ERROR RETURN ADDRESS

@@99dF LINK POINTER (for Monitor use only)

LOGICAL NAME OF DATASET -- Radix-50 Packed ASCII

UNIT NUMBER NUMBER OF WORDS TO FOLLOW

PHYSICAL DEVICE NAME -- Radix-50 Packed ASCII

Figure 2-5, The Link Block.

Each dataset in a user's program must have a link
block associated with it. Entries in the link block which must be speci-
fied by the user can be written into his program or set by the program
itself before the dataset is inited. Each entry is explained below.

ADDRESS NAME FUNCTION
LNKBLK-2 ERROR RETURN ADDRESS This entry must be set by the user

to contain the address where he

wants control transferred in the
event that any request which is associated with this dataset fails to
obtain required buffer space from the Monitor. TIf no address is speci-
fied here, such an error will be treated as fatal. This address may be
changed by the user's program at any time.

LNKBLK LINK POINTER This location must be set to zero
by the user and must not be modi-
fied by him. The Monitor places

a linking address herewhen the dataset is inited. Before initing a

dataset, the Monitor tests this pointer for zero. If it is not zero,

the Monitor assumes that the dataset was already inited.

LNKBLK+2 LOGICAL NAME OF DATASET The user can specify a name for the
dataset in this entry. This is
the name that will be used if the
ASsign command is to be called after the program is loaded. If this is
possible, the name must be unique from that for other datasets. The

2-52

ADDRESS NAME FUNCTION

name is stored in RADIX~-50 packed ASCII by the .RAD50 assembler direc-
tive.

LNKBLK+3 NUMBER OF WORDS This byte contains the count of
TO FOLLOW the number of words to follow in
the link block. The user should
set it to a 0 if he does not specify any PHYSICAL DEVICE NAME in the
next word, or to a 1 if he does. Values greater than 1 may be used
if the Command String Interpreter is to be called.

LNKBLK+4 UNIT NUMBER This code specifies the unit num-
ber of the device linked to the
dataset. For example, the control

type TCll (DECtape) can drive up to eight tape drives (units), numbered

0-7.

LNKBLK+6 PHYSICAL DEVICE NAME If the user specified a 1 at
LNKBLK+3, he must specify here the
standard name (Appendix A) for the

device associated with the dataset. If no name is specified here, the

user must specify a LOGICAL NAME OF DATASET and perform an ASsign com-
mand before he runs his program.

2.8.5.4 The filename Block

ERROR RETURN ADDRESS

ERRCR CODE HOW OPEN
FILBLK: FILE NAME
FILE NAME
EXTENSION

USER ID CODE

(spare) PROTECT CODE

Figure 2-6. The Filename Block.

Each file associated with a dataset must be
described by the user in a filename block. If a dataset is not a file,
the filename block must still be used, but FILE NAME, EXTENSION, and
PROTECT need not be specified. Each entry is explained below.

ADDRESS NAME FUNCTION

FILBLK-4 ERROR RETURN ADDRESS The user must specify here the ad-
dress to which he wants the Monitor
to return control if one of the

errors in Section 2.10 occurs during an operation involving the file.

If no address is specified here, any such error will be treated as a

fatal error.

2-53

TABLE 2-4.

FILENAME BLOCK ERROR CONDITIONS.

Error Code

In File- Faulting »
name Block | Request Cause Remedy
g .OPENC | An attempt was made to open
.OPENE dataset that was previously
.OPENI opened.
.OPENO
.OPENU
g1 unused
g2 .OPENO An attempt was made to .OPENO Delete the file
a file which already exists. (with PIP) or
OPENC An attempt was made to open a change file name.
: file for input, extension for
.OPENE s s
update which is currently
.OPENI f
opened for output, or which
.OPENU a)
oes not exist.
g3 .OPENC An attempt was made to open Close file.
.OPENE a file which has already
.OPENI been opened the maximum
.OPENU | number of times (76g).
g4 .OPENC An .OPENC, .OPENE, or .OPENU .CLOSE the pre-
.OPENE attempt was made to open a vious open.
.OPENU file which has already been
opened for either .OPENC,
.OPENE, or .OPENU.
g5 .OPENE Illegal request to a con-
tiguous file.
g6 .OPENC An attempt was made to access
.OPENE a file which the protection
.OPENI code prohibits.
.OPENO
.OPENU
a7 unused
19 .OPENC Illegal OPEN request to a
contiguous file.
11 .OPENC File OPENed for output or Close offending
.OPENE extension is already on file.
.OPENO current DECtape unit.
.OPENU
12 .ALLOC Directory full (DT). Mount another
.OPENO DECtape.
13 .ALLOC The UIC was not entered into Enter UIC via
.OPENO the device MFD. PIP.
14 .APPND An attempt was made to per- Wait until file
.DELET form an illegal operation on is closed.
.RENAM | an opened file.
15 .ALLOC An attempt was made to create Change file name.
.OPENO a file with an illegal file

name.

ADDRESS NAME FUNCTION

FILBLK -2 HOW OPEN This is set when the .0OPENx macro
requests assembly language expan-
sion is executed. It tells the

Monitor which kind of open is being requested: .OPENU=1, .OPENO=2,

.OPENE=3, .QOPENI=4, .OPENC=13.

"ILBLK-1 ERROR CODE This entry should not be set by
the user. It will be set by the
Monitor to indicate the type of
error (Section 2.10) which occurred.

FILBLK+0 FILE NAME This two-word entry must be speci-
FILBLK+2 . fied by the user if this dataset,

or portion thereof, is a file. It
is the name of the file, in RADIX-50 packed ASCII.

FILBLK+4 EXTENSION This entry must be specified if the
file named in the previous entry
has an extension. It is RADIX-50 packed ASCII.

FILBLK+10 PROTECT CODE The user may enter his USER ID CODE
here in octal:

GROUP NUMBER USER'S NUMBER

High-Order Byte Low-Order Byte

If no entry is specified here, the current user's UIC is assumed.

2.8.5.5 The File Protection Codes

7 6 5 4 3 2 1 g

[7\ FIN]

Owner User Group All Others

Owner cannot write on or delete the
file, This is a safeguard to prevent
inadvertent deletion or over-writing,
Protect the file from automatic
deletion on FInish,

L}
[
1]

Owner: Bit 6

Bit 7 =

1}
—
"

User Group and All Others:

Function
Code | Delete Write Read Run
g yes yes yes yes
1 yes yes yes
2 or 3 yes yes
4 or 5 yes
6 or 7

Figure 2-7. File Protection Codes, (continued)

2-55

Note: yes indicates that the operation is allowed. .
For example, if a file belongs to user [23,10],
a protection code of 3 will allow user [12!4]
to read or run but not delete or write on it.

Figure 2-7, File Protection Codes. (concluded)

2.8.5.6 The Line Buffer Header

MAXIMUM BYTE COUNT

STATUS MODE

ACTUAL BYTE COUNT

POINTER (Dump Mode only)

Figure 2-8, Line Buffer Header.

Each element of the Line Buffer Header table
is explained.

ADDRESS NAME FUNCTION

BUFHDR MAXIMUM BYTE COUNT The count shows the size of the
buffer, in bytes. It must be
specified here by the user on all INPUT operations.

BUFHDR+1 MODE The user specifies here the mode
of the transfer. All modes are
listed and explained in Figure 2-10.

BUFHDR+2 STATUS The Monitor will place in this
byte the status of the transfer
when control is returned to the
user. Figure 2-9 lists each bit and its meaning. Errors encountered
executing an I/O transfer will be flagged in this byte. The user should
always check its content after each transfer completes.

BUFHDR+4 ACTUAL BYTE COUNT This count controls the number of

bytes to be transferred on OUTPUT.
It must be initialized by the user before any output transfer from the
line buffer. After any transfer in or out, it will show how many bytes
have been transmitted (or in some modes [g.u.] would have been trans-
ferred had some error not been detected).

BUFHDR+6 POINTER (DUMP MODE) If bit 2 of MODE is 1, the user

specifies here the starting address
of the line buffer. TIf bit 2 of MODE is 0, the line buffer header is
only three words in length, and must immediately precede the line buf-
fer itself.

2-56

2.8.5.7 The Status Byte

7 6 5 4 3 2 1 7z
=11
End of medium A
(EOM) or
End of file
(EOF)

Device parity
flag

Figure 2-9.

Spare

TL—-Invalid line error

e Checksum error

Character parity error or

illegal binary format

Status Format.

The function of each status format bit is explained below.

BIT MODE
ALL
J/ FORMATTED
(INVALID ASCII NORMAL
LINE) (parity or

non-parity)

FORMATTED
ASCII SPECIAL
(parity or
non-parity)

REQUEST

.READ/WRITE

.READ

.WRITE

.READ

.WRITE

CONDITION

Appropriate BYTE COUNT=0 at
call.

The MAXIMUM BYTE COUNT was
reached before a line termi-
nator was seen. (Last byte
has been overlaid until the
terminator has been reached.)

The last byte was not a ter-
minator.

The MAXIMUM BYTE COUNT was
reached before a line termi-
nator was seen (excess data
has not yet been read).

The ACTUAL BYTE COUNT was
reached before any termina-
tor was seen.

BIT

1
(CHECK-
SUM
ERROR)

2
(PARITY
FORMAT)

(IL-
LEGAL
BINARY
FORMAT)

(EOM/
EQOF) .

5
(DEVICE
PARITY)

MODE

FORMATTED BINARY
NORMAL

FORMATTED BINARY

SPECIAL

FORMATTED BINARY

FORMATTED ASCII
PARITY NORMAL
OR SPECIAL

FORMATTED BINARY

ALL MODES

ALL MODES

REQUEST

+«READ

« READ

- READ

-READ

-READ

- READ
or
-WRITE

.READ
or
.WRITE

CONDITION

The MAXIMUM BYTE was reached
before the count stored with
the data. (The last bvte has
been overlaid in order to veri-
fy the checksum,)

The MAXIMUM BYTE COUNT was
reached before the count stored
with the data. (The excess
data still remains to be read
and checksum has not been veri-
fied.)

There was a discrepancy be-
tween the checksum accumulated
during the .READ, and that
stored with the incoming data.

A character was read which
had odd parity. The eighth
bit of the illegal character
is delivered set to a 1.

This bit is set if a line

processed in a binary mode
does not have a 001 in the
first word.

An input device cannot supply
any more data or an output
device cannot accommodate more.
i.e., the disk has no more
storage space, or the paper
tape reader has run out of
paper tape.

A hardware error has been de-
tected on a bulk storage de-
vice. This could be either

a parity error or a timing
error. The driver will al-
ready have tried to READ or
WRITE 8 or 9 times before
setting this bit. (This flag
is intended as a warning that
the data in this line or some
subsequent line still using
data from the same device
block may be invalid. It will
be returned for each trans-
fer call using the same
block.)

7 6 5 4 3 2 1 '
n ———— A A A
spares TL_O = ASCII
1 = Binary
L_O = Formatted
1 = Unformatted
0 = No Operation
1 = Dump
Set to 1 to)
suppress automatic , 0 = Parity
echo on a terminal 1 = No Parity
(keyboard) device. ;
| 0 = Normal
1 = Special
Figure 2-10. The Mode Byte,
1. Formatted ASCII Normal -- Data in this mode is assumed by the Moni-
tor to be in strings of 7-bit ASCII characters terminated by LINE FEED,

FORM FEED, or VERTICAL TAB.

READ: The line buffer is filled until either a terminator is seen
or the number of bytes transferred becomes equal to the MAXIMUM BYTE
COUNT. If the MAXIMUM BYTE COUNT is reached before the terminator is
seen, the invalid line error bit in the Status Register of the buffer
header is set, and each remainin: character through to the terminator

is read into the last byte of the line buffer, i.e., the surplus bytes

are thrown away. After the transfer, the actual byte count eguals the
number of bytes read (including the excess). RUBOUTs and NULLs are

discarded. The terminator is transferred.

WRITE: The line buffer is output until the number of bytes trans-
ferred equals the ACTUAL BYTE COUNT. If the last character is not a
terminator, an invalid line error bitis set in the STATUS BYTE of the

buffer header. Previous terminators are output as normal characters.

TABs are followed by RUBOUTs, FORM FEEDs are followed by
NULLs.

The READ/WRITE processor hands the data over to the device
driver specified, and each driver will convert the information to meet
its specific needs. Appendix F summarizes the characteristics of the

drivers.

2. Formatted ASCII Special --

READ: The same as formatted ASCII normal with one exception: if
the MAXIMUM BYTE COUNT is reached before the terminator, the transfer

is stopped. The remaining characters are not overlaid, but are retained

for transfer at the reset .READ. The invalid line error will be re-
turned in the Status byte and ACTUAL BYTE COUNT will equal MAXIMUM.

WRITE: The same as formatted ASCII normal with this exception:
the line buffer is output until the first terminator; the ACTUAL BYTE
COUNT will stop the transfer if it is reached before the terminator
is seen. In this case, the invalid line error bit is set into the
STATUS BYTE. Note that in this mode only one line of data can be out-
put at once, but its byte count need not be exact, provided this is
greater than the actual.

3. Formatted Binary Normal --

READ: This is an 8-bit transfer. Words 2 and 4, STATUS, MODE,
and ACTUAL BYTE COUNT always accompany the data during formatted binary
transfers. The counts are adjusted by the Monitor to include the extra
words.On input, the line buffer is filled until the number of characters
transferred equals the ACTUAL BYTE COUNT read, or the MAXIMUM BYTE COUNT.
If the MAXIMUM is reached before the ACTUAL, an invalid line error oc-
curs, and the remaining bytes are overlaid into the last byte, until
the checksum is verified. After the transfer, the ACTUAL BYTE COUNT

contains the actual number of bytes read (including the excess).

WRITE: This is an 8-bit transfer. Words 2 and 4 of the line buf-
fer are output until the number of characters transferred equal the
ACTUAL BYTE COUNT and a checksum accumulated. The Checksum is output
at the end.

4. Formatted Binary Special --

READ: The line buffer is filled until the number of characters
transferred equals the ACTUAL BYTE COUNT read. If the MAXIMUM COUNT

is reached before the ACTUAL, the remainder of the line is retained by
the Monitor. The MAXIMUM number is transferred to the line buffer and
the ACTUAL BYTE COUNT is set to the full input count, rather than the
number of bytes actually transferred. The invalid line error will be
set in the Status Byte. The user can compare the MAXIMAL COUNT with
the ACTUAL, determine how much data remains, and recover it by an un-

formatted Binary read (allowing 1 extra byte for the checksum).

WRITE: Identical to formatted binary normal.

5. Unformatted ASCII Normal or Special -- This mode is available to

the user who wants to do his own formatting. Seven bits are transferred;

the eighth is always set to zero. NULLs are discarded.
READ: Transfer stops when the number of bytes transferred reaches
the MAXIMUM BYTE COUNT. ©Nulls are discarded but all other characters

are treated as valid.

WRITE: All characters are transferred. The transfer stops when
the ACTUAL BYTE COUNT is reached.

6. Unformatted Binary Normal or Special -- This mode is identical to

unformatted ASCITI except that eight bits are transferred on

both in

and output. No checksum is calculated.

7. Formatted ASCII Parity -- Identical to formatted ASCII (Special or

Normal) except that even parity is generated in the eighth bit on OUTPUT
and checked on INPUT.

8. Unformatted ASCII Parity -- Identical to unformatted ASCII (Special

or Normal) except that eight bits are transferred instead of seven. No

ity generating or checking is performed.

9. Dump Modes -- All modes can be specified as DUMP, which means that
the word after the ACTUAL BYTE COUNT is considered to be a pointer to
the beginning of the data rather than the beginning of the data proper.

2.8.5.9 The BLOCK Block

BLKBLK:

FUNCTION

BLOCK NUMBER

MEMORY BUFFER ADDRESS

LENGTH

Figure 2-11,

The BLOCK Block.

ADDRESS NAME _FUNCTION
BLKBLK FUNCTION/STATUS User specifies here the function to be
performed, and the Monitor returns to
the user with the appropriate status
bits set.
Bit Bit = 1 means:
flo function is GET
u
n 1 function is OUTPUT
€<
t
; 2 function is INPUT
n N
(3=-9) spares (ignored by Monitor)
~
e |18 file is linked, or device
r is not file structured
r
o
r |11 block number does not exist
in file, i.e., it is greater
s than the file length.
‘)
a
t 112 file not open
u
s |13 protect code violation
14 end of data error
15 device parity error
BLKBLK+2 BLOCK NUMBER Requested block number to be transferred
relative to the beginning of the file.
First block of file is fg.
BLKBLK+4 Memory Buffer The address and length of the Monitor
Address buffer given by the Monitor on an INPUT
or GET function.
BLKBLK+6 Length

2-62

2.8.5.10 The TRAN Block

TRNBLK:

DEVICE BLCCK NUMBER

MEMORY START ADDRESS

WORD COUNT

FUNCTION

NUMBER OF WORDS NOT TRANSFERRED

Figure 2-12,

The TRAN Block.

The user musti set up a TRAN block for each

.TRAN in his programn.

ADDRESS NAME
TRNBLK DEVICE BLOCK
NUMBER

_FUNCTION

User specifies here the absolute block
number of the device, at which the trans-
fer is to begin. 1If it is not a bulk
storage device, specify block 0.

TRNBLK+2 MEMORY START
ADDRESS

User specifies here the core memory ad-
dress at which the dataset transfer is
to begin.

TRNBLK+4 WORD COUNT

User specifies here the total number of
16-bit words to be transferred.

TRNBLK+6 FUNCTION/STATUS

*
Must be specified by user.

Bit: Bit = 1 means:

0 spare
1 Write = 1%
2 Read = 1*
3 N
4
5 Reserved for Monitor's use
6 >
7
8
9
10
11 DECtape direction*
0 = forward
1 = reverse

{(continued on next page)

_ADDRESS _NAME FUNCTION
12
13 spare
14 end of medium*
15 recoverable device*
error such as parity
or timing.
TRNBLK+10 NUMBER OF WORDS User leaves this entry blank. If an
NOT TRANSFERRED EOM occurs during the transfer, the
Monitor will place in this entry the
number of words not transferred.

2.9 PROGRAMMING TIPS

Swapping time can be kept to a minimum by placing like requests together
in the coding. For example, method 1, below, will require the .INIT
and the .OPEN processors to be swapped in only once each. However,
method 2 requires that each be swapped in three times. The exception

of course occurs if either are made core resident.

Method 1 Method 2
LINIT A LINIT A
.INIT B .OPEN A
.INIT C .INIT B

. .OPENO B
.OPENI A .
.OPENO B .INIT C
.OPENO C .

.OPENO C

Core can be used more efficiently if datasets which are to be used
the longest (i.e., .RLSEd last) are .INITed fifst. Such action is effi-
cient because free core is allocated from the bottom, and if the more
permanent routings are allocated first (i.e., at the bottom) then larger
areas of free core will become available as less permanent routines are
released from the top.

cient than method 2.

Thus, method 1 below is potentially more effi-

Method 1 Method 2

.INIT C LINIT A

. .INIT B

. .INIT C
.INIT B .

.
-
.

*
These bits are cleared before TRAN is carried out.

2-64

Method 1 Method 2
JINIT A -RLSE A
. .RLSE B
.RLSE A .
.RLSE B .
. .RLSE C
.RLSE C

.READ and .WRITE were designed to be used for sequential access to
a linked file, but are legal for both linked and contiguous files.
-
Since .EXIT will cause the user's program to be effectively wiped
out, if the programmer wishes his program to remain in core after it
has finished (e.g., for debugging or for immediate re-use), he might,

instead of.EXIT, use something like
BR .

The operator can then specify the next action by recalling the Monitor

via a command at the keyboard (see Section 3.2).

In some cases the WAIT or WAITR instructions are not needed. This
situation is called an Implied WAIT, and occurs because the Monitor
will only process one action on a dataset at a time. For example, if

a program is written:

.READ LNK1,BUF1l

.

-« READ LNK1,BUF2.

the second READ becomes an implied WAIT for the first; since the Moni-
tor will not start the second until the first is finished with the
dataset. This implies that when control returns to the user after the
second READ, he may safely assume the data transferred by the first can
now be processed. Similarly, if two different datasets reference one
device in common, action on the second dataset will not proceed until

action on the first is complete.

2.10 MONITOR MESSAGES

Monitor messages are typed on the teleprinter in the following format:

CNNN XXXXXX

2-65

where C is on of four letters identifying the type of message:

Informational

Action required by the operator
Warning to the operator

Fatal error

HEPH

where NNNN is the message number, and XXXXXX gives appropriate addition-
al information. Informational and Warning messages are printed and the
program continues.

Action messages are printed and the program is suspended. The
Monitor expe!ks the operator to take some action such as "continue the
program" (type COntinue), or "kill the program" (type KIll).

Fatal error messages are printed if possible, and the program is
suspended. The Monitor will not allow the operator to continue the
program, but expects to see either a BEgin, REstart or KI1l command.

If a fatal error is a system disk failure, and the error message cannot
be printed; the central processorhalts. This is the only time that a
halt occurs in the Monitor.

If the error has been caused by a stack overflow, the stack pointer
is reset before the message is printed. Monitor's error messages are

listed below.

The following are action messages:

Error Additional

Message Information Remarks

AQO0l USER CALL ADDRESS Disk address error

A002 DEVICE NAME (RADS50) Device not ready

AQ03 LINK BLOCK ADDR. No Device or Illegal
Device or INIT

A00¢ USER CALL ADDRESS DECtape error. Command CO

will retry the operation.

The féllowing are fatal error messages:

Error Additional

Message Information Remarks
F000 Request Address Dataset not Inited
FOOl Request Address Stack overflow

Error

Message

F002
F003
F00S5

F006

F007

F010

FO012
F014

FO015

F021
F022
F023

F024

F025

F026

F342

Additional
Information

Request Address

Request Address

Reguest Address

Request Address

Request Address

Request Address

Request Address

Request Address

Request Address

Request Address

Device (RAD50)

Irrelevant

Irrelevant

Program Size

Reguest Address

Device

Request Address

Remarks

Invalid .TRAN function

.RLSE error (no .CLOSE after
.OPEN on file structured de-
vice)

Device full (new file cannot
be .OPENed)

No buffer space

Illegal .READ/.WRITE (in-
correct mode for device or
file not OPENed correctly)

Illegal open (unused code or
type unsuitable for device)

Invalid open (no program
return provided for failure)

Bit map failure (device error
on trying to read bit map)

DECtape error (nonexistent
memory addressed or end-zone
reached dummy transfer)

File structures device parity
error

Too many datasets using low
speed paper tape (a maximum of
one for each direction is al-
lowed) .

Program Loader read failure
Pregram Loader format error
(program is not in absolute

load format).

Program too large for core
available.

Illegal file structures opera-
tion, e.g., Delete or Rename
of an open file.

Master Directory full (when
attempting to add UIC).

Disk transfer failure.

Error trap.

Error Additional

Message Information Remarks

F344 Reserved instruction trap.

F346 Trace trap.

F350 Power fail trap.

F352 Trap instruction trap.

F356 Unexpected device
interrupt.

2-68

2.11

EXAMPLE PROGRAMS

The following are assembled listings of two simple programs written in

and assembled using PAL-11R.

programmed requests,

Example Program #1l1

dndeln

aaraRy
Aadavk

anavple
Badplé

aave2e

Aaup2s
2avpes

‘Aadade

L EYIRT]
gaopda

AnRpdas

Arapda
200232

220056
paaesn

CLELLY
agenss

AavBn72
aavwn’4

2219

ane2104
eneids

AARAea
@zadnm]
22602
207003
22ndea
papapd
aepars
arnadal
poan@ts
PpANAYL2
pApRLY
ageinyz

P12746'BFGINS
papdy2
124808
a127461
200324
1A4016
a1a74é
Y] KT Y]
212746
a2pd12
104018
n127451
PR 3%E
P1oa7as!
poadod
1R4¥16
p12746!
222370
B1o746)
pRrdL2
1rega
a127a2a
Runiza
2R5820 LNOP1t
pep@an7:?
a0pdn2
123774
p12748!
2An3t12
1padnl
A127 a6
eRpis2
A127 461
2080324
104024
P127a61
200324

The programs contain many of the Monitor's

JPROGRAM WHICW TYPES A MESSAGE ON THE TELETPE wHILE
JACCEPYING A MESSAGF FROM THE KeYROARD, PROGRAM REPEATS

RA=%Q
RiE%Y
R2®%2
R3=%3
Rasy4
R5a%5
SPuEY6h
PCmy7
3.]
LFui2
HTaldq
ERQOR=127

MoV

EMT
MOV

EMT
MOV

MQV

EMT
MOV

MOV

EMT
MOV

MQV

EmMT
MOV

CLR
CMpP

BLO
MOV

EMT
MOV

MOV

EMT
MOV

B NK],=(SP)

8
ﬁLNK?.-(SPJ

6
@FILL,=(8P)

#LNK],=(SP)

16
#FIL2,=(S5P)

#_NKZ,=(SP)

16
#M8G1,=(5P)

NK1,*(SP)

2
#LIR1+6,Rn

(R2)+
RR, 8L IA1%RR,

LOOPY
HLNKL, = (SP)

1
®#LIBY,=(SP)

#LNK2,=(5P)

4
BLNKZ, = (SP)

JINIT LNK1

FINTT Lnk2

INPEN FOR JUTPUT

JOPEN FOR INPUT

FWRITE THE MESSAGE

}SET THE BUFFER PNINTER

JICLEAR THE ANDRESS ANN INCREMENT
$END NOF BUFFER?

iNG, GO RaCK & CONTINIE CLEARING
JYES,CONTINYE

INQ,READ LNK2,L131

TwaAlY

2-69

228112 104001 EMT

2a0ile 132787 BITB #EROR,_IR{+3 JANY ERRORS?
poele”?
p00243
20122 201046 BNE ERR3J IYES,GO TO THE ERROREY ANDRESS
2003124 212748 MOV ®NK],=(SP) INO, .CLOSE LKy
em342
922132 10407 EMT 27
230132 a12746¢ MOV ¥ NK2,=(SP) J,CLLOSE LNK2
222324
2908136 104@17 EMT 17
P0014p 212746 MOV LNKL,=(SP) 7.RLSE LNKI
2ep3y2
deB14s 104007 EMT 7
200148 212748 MOV #_NK2,=(SP) I ,RLSE [NKXZ2
200324
ane152 104@07 EMT 7
200154 poelis? JMP BEGIN
177624
ERR11
ERR21
ERR3
P3169 1040682 EMT s0@] EXIT ON ANY ERROR
200162 2opi2d LIBis +wORD 80, FMAY RYTE COUNT
PRA164 2nd «BYTE 2,0 IFORMATTED ASCII
2p016S 0e2
2@e16s conera «WORD @ JACTYUAL RYTE COUNT
pged1@ v3,480, JRESERVE THE RUFFER SPACE
200310 ngaiez! «WORD ERR1 1ERROR RETURN ADDRESS
082312 20e000 LNKiT «WORD @ JPOINTEFR
ee2314 p1av2? «RADSA /DSY/ TLOGICAL NAME
2q03is dot «BYTE 1,9 JUNIT @
29231 800
200322 p4a2422 »RADSD /KB/ JKEYBDARD
222322 220is0! 2+ ORD ERR2 FERRDR RETURN ANDRESS
208324 200200 LNK21 +WORD @ ’
200326 218230 wRADS® /NS2/
230332 201 «BYTE 1,0
200833 209
200332 242429 +RADSR2 /KB/ IKEYBQARD
200334 2000p0 «WORD @ 36O TO FATAL ERROR MESSAGE
22033s 202 +BYTE 2,0 J1GPEN FOR CGUTPUT

290337 vo0
ea234p gogeee FILiY +WORD 2,0,2,@9,2 FNO NaME, EXT, ulfc, DR PRNTECT
230343 0oo200Q
292344 2000022

2=-70

200348
CETREL

200352
902354
ae035s
202356
202360
020362
200384
22368

20037
26372
20e373
229374
200378
onoy?y
202400
fR0n40y
Q00402
PaeaRdy
Pa0404
BR04¢5
200408
Boe40?
Qe04ln
2eRely
erR412
aneai3
2pR414
Po241s
pBe4als
on0al?
22422
LEYY Y S
230422
220423
200424
200428
Q0V428
Pad427
Po0ad2
200434
CLPRY]
PaV433
200434
300435
222438
220437
20R44p
gadady
2a0442
200443
000444

geponad
akadoa

2200023
Va4
220

agaven

aaa¥02
papoad
papRne
gepep?

P22212
28
eed

een2es
213
812
211
240
123
122
198
14
113
240
122
117
125
127
119
114
131
pad
124
117
nad
131
117
128
i22
04l
114
iii
124
124
114
ie3
42
1r2
147
131
Q40
@15
212

FiLet

MsGyl

«40RD
«BYTE

+ 4ORD

«WORD
«BYTE

« 40RD
«BYTE

2 160 Tn FATAL ERROR
4,2 JOPEN FOR INPUT
@,7%,2,8,2 INO NAME, EXT, ult, 0R PROT

212 FMAXY RYTE COUNTS

2,2 SFNRMATTED a8CII
MSGENNwMSGlwA $ACTUAL BYTE COUNT
CRyLF,HT

«ASCII / 8PEAK ROUGHLY TO YOUR LITTLE Bay /

«8YTE

CR.,LF,HT,

2-71

(3
=8

~
[

¥
L

2304458
Padads
nd4ay
220430
2p0asy
PeQa8%2
eadasy
2004584
on2ads
ea045s
ad4%y
024682
Aoeasy
ea0as2
20R483
Pu2464
PP0dbs
220456
Andasy
2904740
9047y
00472
QaV473
237474
2nvars
aava’s
aava’?
A2052
I 1:3:1"31
220502
230593
PAR5%4
220548
2AB%AS
Bpausdy
anusio
2351ty
2a0512
aavsiy
ET.LEW
204513
238518
Y.L} %/
208523
ao082y
ApN%22
apes23
200324
oAa52s
onesas
2pasay
220853
220534
200532
LI RR
LY

211
?na
Q40
1o}
116
ind
han
{n2
in§
{a1
124
Baq

111
113

1192
ies
249
{23
118
108
128
132
128
123
B42
21%
e12
211
Qa2
110
1as
Wa2
117
116
{14
131
Y
in4d
117
108
123
Pan
111
124
240
124
117
aa0
imt

aASCII /7 AND BEAT HIM WHEN HE SNEEZ2ES /

«BYTE CR,LF,HT

«ASCIT 7 HE OMLY DNDES IT TO ANNOY /

PaR538
aansds
@aesdy
ABN540
Ppusdy
ppE542
230842
npQs4d
AAus4as
ApBR 4R
enesdy
paesdy
020554
a2au552
UEL LR
Ana594
229555
BAABDE
anunsd7
220567
AAU5E6Y
2a0582
APu563
A20%64
230565
LD LT
paasey
230572
28571
2008872
246573
2n8574
apns7s
A30876
Vo577
ANVARAR
WRLEAY
pRpB6R2

REGIN
ERR
FIL1

LNk2
MSG1
Ri
R4

123
175
Qag
110
{05
Xy
143
116
117
127
123
g4
111
{24
b4
124
ips
1a4
123
153
123
Qaw
gy
12
PRGER3
geptne

MSGENDE,

arpunl

ARAAAPR CR
ERR?

WaR18rR
apisaer F
s Apdpl2
PpR324R

2 Apleaar

131
LUOPY
PeR37 2R pC
s4ppded) R2
1X2ndnad RS

oBYTE LR,LF,HY

JASCII / BECAUSE HE KNUXS IT TEASES /

+BYTE CR,LF

+EVEN

END

g 2202158
PAALBPAR
BAAIDER
HAYIOPR
PAARDERR

z%aaen07

RYANA2RD2

s%A2AAA25

ILe

2-73

FRO® 2 VAA147
ERR3 AALLBRR
T 2 patnly
LNk 222312R
MSGENLD = 22ARAZR
-] 8L AARAD
R SY2AAANAY
sk YR AARDR

Example Program #2

2adedn

2nonR4
dudpds

2eeal2
200014

223022
229022

Andazs
deeade

200034

?20d042
Apdads
pooad2
eadads

202082
222964

2a0n7e
220p72

229878

200102
0n@194

CLETARY)
LIRS Y]

panadoan
220006
pendn?
QApPAyS
200012
Pemdyt
Qopdand
Pendp2
aenin?
A4p002
aenin7

! PROGRAM T DUPLICATE & PAPER TAPRE
] URING TRAN=_LEVE[L REQUESTS

PI27461BEGINT

200418
104008
n12746!
ARE43Q
144006
2127481
P0a346
104008
Bio746!
p0e372
124008
rOS267
pan21a
p1e7e7
"I WY
20n3ad
P0ses?
202348
p2asa87
2on3ta
2127461
PoR248
12746
P20348
124802
2127461
Q2p348
104004
812746
72a3ss
n127461
aendy2
1040224
p12746!
200372
1249301
132787
gocio?
p00241¢

START!

RAsY®

SPeX6

PCeax?

CReys

LFui2

AL B

Rpagaa 1TRANBLOCK FUMETTON CONE FOR ,READ
wReQ? pTRANBLOCK FUNCTION CODE FOR ,wRITE
Gsln? 1ASCII G

EQLmdqR2n JTRANBLOCK FUNCTION/STATUSaEND
EROR=187

MOV 8| NK{,=(SP) PLINIT LNK1Q

EMT &
MOV & NK2,=(SP) PJINIT IINK2

EMT 6§
MOV RLNK3,=(5P) PINIT LNK3J

EMT 6
MOV # NK4,=(SP) PJINIT LNK4

EMT &
CLR FLAGHY 12ERD END FLAG

MOV %109, ,BLK1+d PINITIALIZE BUFFER SIZE

CLR BUF{+§ FJINTTIALTZE INPUT BUFFER
CLR BUF1+10 JINITIALIZE INPUT RUFFER

MOV #MSGY,=(SP) 1 ,WRITE LMK3,M56G1

MOV #_NK3, «(S§P) I

EMT 2

MOV B NK3,=(SP) TWAIT LLNK3

EMT

MOV #RUF1,=(SpP) 1. READ LNK4,BUFY

MOV R NK4,=(SP)

EMT &
MOV B NK4,=(SP) T WaIT | NK4

EMT 1§
BITS &EROR,RUF{+3

2-74

220120 201250 BNE ERRS

dav122 122787 CMPR #G,RUFL*s IG?
a02in?
2234
anaida 209337 BNE START IND
200132 112767 Ln0OPRYI MOVB #RD,RL«1l+H JYES,SET LiP REAN
papdnd
20p2832
and1d4a @12746! MOV #BLX1,=(SP) PLTRAN LNKL,BLK)
20042
Aavi1d44 212748 MOV & NKL,=(§P)
20m416
APA192 144219 EMT 12
Anad192 2127451 MOV ¥ NK1,=(5P) PewalT LAKY
PRRALS
ABN196 184901 EMT 1
AaR162 432767 BIT #F0D,RLK1+8 JTEST FUNCTION FOR EDD
24pdny
A6p222
27241668 22146 BEQ LOOPW
2ad172 16K7R87 ENDMI SitR RLK1+10,BLKI*2 TRESET WARNCOUMT T FINal,
AAn218
2rn2y
H RUFFER'S SIZE
QaBLI7& 212767 MOV &y ,FLAGY ISET EON=F AG
adpapl
ANRiagd
AAA2P4 112767 LrOPWY MOVR #wR,BLK1+$ ISET LUP wRITE
nener2
200176
PaR212 212746 MOV HBLXY,=(5P) PLTRAN |MKD,BLKY
popdn2
A008218 0127451 MOV B NK2,=(5P)
20430
Pnv222 1040213 EMT 12
RAR22& Pl274s! MOV 8 NK2,=(SP) PaNATT LNK?
admd43a
200232 104001 EMT 1§
288232 pus787 TST FLAG! JEND NOF DaTA?
200008
200238 AR1274 BNE START JYES,START OVER
BR6242 ABMRT7 34 BR LOOPR FNDs GET MORE
ERR1
ERRD1
ERR3I
ERNA!
ERRS
ERRAL
ErRR7
PR242 1044807 EMT 68 JEXYT ON ANY ERROR
@pR244 22p02eA FLAGL! JWORD 2 11s»EQN RECEIVED Qv REaDN
230246 APPR67 MSGYLL wORD 55,
Anv250 202 +BYTE 2,0
ag@25¢ a2
220292 zonde? «WORD 55,
@aea%4 215 «BYTE CR,LF,HT

pRA235
en225s
2286297
20262
20m261
200282
apu26s
220264
290285
2a0268
2pa267
2pe27n
2R0271¢
200272
2p@273
an0274
anpRa27%
829278

220277

20332
an2341
ap0322
LT Y)
202304
AADIABS
d0R306
AT
avldle
ana3l
wav3l2
naRd3ly
Aekdla
2ne315
ARVILS
anu3ly
poeN2an
2an321
AA0322
Paed23
Apvd2a
AaR32s
22V326
2ee3e7
Apv3In
2Ana3dy
aan3d2
ELRRRY
2nR3d4
“au3ds
] D]
Bad3d7
PAB3aen
224034
PARI42

dnB344 pAn2421

a12
g1l
114
117
101
1¢4
Bap
124
inl
122
ins
Baa
111
118
124
117
Baa
122
in%
in1
124
125
122
vs
012
ayL
199
125
123
112
Aqa
a2
244
d4d
in7
a54
Bpan
113
122
Qa2
b4d
240
127
112
1093
116
Aa0
122
ins
101
ipd
131
215
ay2
2@an3ad

«ASCII /LOAD TAPE INTQ READER/

«BYTE CR,LF

aki

+ASCII /PUSH

+BYTE CR,LF

«EVEN
«WORD ERR3

2=76

G,

LR

WHEN READY/

PeR348
pne3da
ApA3B2
22aR353
dnddxda
2pR3bs
AaR3dp
200361
200362

AaR37n
LR]
220374
LR
Ann3?7
Aodsdp
gm@402
Bavadsa
320426
padaia
pan4dl?
220414
2a24Ls
gpdaea
A0Rag2
AaR423
Q20428
LELY VL
BR0432
AnB432
200434
2p0Vads
@2R43e

BESIN
BUF2
EON
ERR2
ERps
FLAGY

LNK3
LOOPwW
RO
STARY

2RR2e2 LNK3I
p18227

ani

wpa
gdz42¢
zapae4

épad

ea2
aREdrd
gard7a
220374
pupR4a2!
2RpapA LNKAL
nievng7

2el

2@a
nded2d
223202 RILKYS
Y Y Y LA

BuF12

222002
200029
gnm242!
2208273 LaK13
2316031

upd

220
rsx32a2
pan42)
PYAAND L NK2S
r18232

apy

23
e632e
nepbrd
PeaUny

BLF2?

20028pR
20 4anR
pavpdn
WAB242R
ArR2422
200244R
204n12
2PYIAER
2pA2A4R
Anvnda
2PER3IAR

+W0ORD 2
«RADS52 /DSY/
«BYTE 1,0

«RADSQ KB/
«W0RD 4
«BYTE &,4

dNRD 4
sBe%d

»EVEN

«wDRD ERR4
«HORD P
«RADKG /DSY1/
«BYTE 1,2

+FADBR /XB/
«WORD @
«w0ORD BUF2
«w0ORD 120,
-ﬂUQO @
«WORD @
«w0RD ERRJY
+WORD 2
«RADERZ /sDS3/
2«BYTE 1,2

2RADSKZ /PR/
2»WDRD ERR2
+WORD @
+RADSA /DS84/
+BYTE 1.2

«RADBA /PP/
32,4100,
o END

BlLx4
R
EROR |
ERRJ
ERRE
[
Lhx]

PARADADR
70718
IERN N
ARa249R ERR4
2Pra242R FRR7
arayvz WY
APAL1RR LNK2
LNK& AANI7 2R LOnPR
M8G1 AARDAER PC

R@ sXARARAR sP

wR T pAA@Ad2 R

AUF {
ENTM
ERRY

2AAIIBR
PANY TR
AABP42R
PRAA242R
2AN242R
2 AAdNL
PpAZA3CR
R2AAIIZR
EURAARRAY
SYANALAK
2 2AACA4R

CHAPTER 3

OPERATOR COMMANDS

3.1 THE OPERATOR KEYBOARD INTERFACE

Through the operator keyboard, the user can communicate with

e the Monitor
) a program the user wrote to run under the Monitor
e a DOS system program (Assembler, PIP, Editor, etc.)

Rules which are common to all users of the operator keyboard under DOS

are described in Section 3.2.

In communicating with the Monitor, the keyboard is used as a control
device to allocate system resources, move programs into core, start and
stop programs, and exchange information with the system. Commands which
the user can type are summarized in Appendix D and described in detail
in Section 3.3.

n communicating with

1 COINNRII L Catlin

For use

.-l
v
n
w
t
0]
3

the operator keyboard functions as a normal input device; the data from
the keyboard may be transferred to a buffer in the program, or it may be
preprocessed by a special routine called the Command String interpreter
(CSI) described in Section 3.4.

When the system requests input from the keyboard, a single charac-
ter is printed on the teleprinter:
er Meaning
$ The system is idle and will remain idle await-

ing an operator command.

. The Monitor has acknowledged a CTRL/C typed by
the operator and is in listening mode, ready
to accept a message from the operator.

A system program or user's program requests
an operator reply through the CSI.

* A system program requests an input message
directly (i.e., not through CSI).

3.2 COMMUNICATING THROUGH THE KEYBOARD

Since the Monitor and any program operating under it must share the key-
board, the user must specify whether a given keyboard input is intended

for the Monitor or for the operating program:

) All characters following a CTRL/C (typed by holding down
the CTRL key while typing the C key) through the next
RETURN are interpreted as Monitor commands and are

passed to the Monitor for execution.

° All other characters are assumed to be intended for
the operating program, provided one is currently in
core and the keyboard device has been associated with
one of its datasets. In this case, the characters
will be buffered until required by the program. The
characters will be ignored if no program has been
loaded or if it is not using the keyboard as one of

its data media.

Certain keys on the keyboard have special functions. These are
listed in Table 3-1.

3.3 MONITOR COMMANDS

A command to the Monitor consists of two parts: a command name and pos-
sibly one or more command arguments. A command name is a string of two
or more characters; all characters after the first two, and up to a de-
limiter, are ignored. The command formats are given in this section.

The following conventions apply:

® Brackets [] are used to enclose elements of the
command which are optional, i.e., they may appear
or not appear depending on the desired Monitor re-
action.

° Braces { } are used to indicate that a choice must

be made from the enclosed information.

° A comma , indicates that either one comma and/or

a space must appear in that position.

SPECTIAL KEYBOARD FUNCTIONS

Keyboard
Key Function

RETURN Pressing RETURN terminates an operator com-
mand to the Monitor or a line of input to
a system or user program. RETURN is gener-
ated on the teleprinter as a carriage return
and LINE FEED.

RUBOUT This key permits the correction of typing

errors. Pressing RUBOUT once causes the
last character typed to be deleted. RUBOUT
does not delete characters past the previous
line terminator.l If the last character of
a Command has already been deleted, a RUBOUT
will echo as RETURN, LINE-FEED, and the user
must type CTRL/C to input the command anew.
A RUBOUT given in the same circumstance
within a line of program input will produce

no response.

The Monitor prints the deleted characters
delimited by backslashes. For example, if
one were typing .APPEND and typed .APPAM
instead, the error can be corrected by typing
two RUBOUTS and then the correct letters.

The typeout would be:
APPAM\ MA\ END
Notice that the deleted characters are shown

in reverse order, i.e., in the order in which

they are deleted.

1l = a line terminator is a LINE FEED,

FORM FEED, or VERTICAL TAB.

{continued on next page)

TABLE 3.1 (Cont'd)

Keyboard
Key Function
CTRL/C ’ When the CTRL key and C key are pressed,

the Monitor is alerted to accept a com-
mand from the keybocard. CTRL/C is echoed
as 4C RETURN LINE FEED period.

The operator can then type in a command
to the Monitor; while the command is
being typed, the interrupted program con-
tinues running normally (except that any
output to the teleprinter is interrupted
until the command is terminated by the
RETURN key.

CTRL/C will interrupt teleprinter output
or keyboard input in a user program. How-
ever, Monitor action on a CTRL/C is not
taken until any current Monitor command

is completed because the keyboard inter-
rupt is turned "off"). Except for DUmp
and MOdify, however, it appears to the
user that action on a CTRL/C is immediate.

CTRL/C puts the Monitor in listening mode
only. If it is desired to stop the func-
tion of the operating program, the STop
command (Section 3.3.4.1) should be used.

If a second CTRL/C is typed before the

RETURN terminating a Command, the input
so far will be erased, a fresh +C RETURN
LINE FEED period will be printed and the

Monitor will await a new command.

(continued on next page)

Table 3-1 (Cont'd)

Keyboard ~
Key Function
CTRL/U CTRL/U is used if the user has completely

mistyped the current line and wishes to
start it over (CTRL/U deletes the entire
line back to the last line terminator).
When given in a Command, it will echo as
4U RETURN LINE-FEED and the user must type
CTRL/C to enter the command anew. CTRL/U
given within a line of program input will
merely echo as 1U. CTRL/U may also be
used to stop the printing of the current
line of program output provided that no
other input characters are still awaiting
processing by the program. In this usage,

it will not be echoed.

; causes all characters up to the line
terminator within a command string to be
treated as comments. It effectively puts
the keyboard off-line -- all characters
following are echoed, but no Monitor ac-
tion is taken. If a ; appears on a line and
no 4C has been issued, it is passed to

the user program's buffer like any octher

character.
{(concluded)

j

(Section 3.3. Continued from page 3-2.)

) DEVICE NAME refers to a physical device name
as listed in Appendix A.

° DATASET SPECIFIED may be represented by any

portion of the expression:

DEV:FILENAM.EXT, [UIC]

where

DEV: is a physical device name as
listed in Appendix and is
followed by a colon.

FILENAM is a file name of up to 6
characters.

. EXT is a period followed by a file-
name extension of up to 3 charac-
ters.

UIC is the user's identification

code in the form
Group No., User No.

) LOGICAL NAME is the name given to the Dataset
by the user in link block word LNKBLK +2.

NOTE: To distinguish in the examples between the echo
from an operator command on the teleprinter and
the Monitor's solicited response, the Monitor's

response will be underlined.

RETURN is represented by ,) and is echoed by
the Monitor as RETURN LINEFEED.

NOTE: An invalid command causes the error message
BAD CMD - IGNORED

to be typed on the teleprinter, and the com-

mand is ignored.

3.3.1 Commands to Allocate System Resources

3.3.1.1 The ASsign Command

AS[SIGN] [,DATASET SPECIFIER,LOGICAL NAME]

The ASsign command assigns a physical device (and, when the device is
file structured, a file name) to the dataset specified by LOGICAL NAME.
The ASsign command overrides any assignment made in the dataset's link
block. If no FILE NAME is specified in the DATASET SPECIFIER, then the
file name in the associated filename block is used. Any FILE NAME speci-

fied for a non-file-structured device is ignored.

Note that a device is assigned to a dataset, and that reassigning it for

one dataset does not reassign it for all datasets.

The ASsign command can be given at any time the Monitor is in core:

° If ASsign is given before a program is loaded,
the device assignment will remain in effect
until another ASsign is given with no argu-
ments, or until the Monitor itself is reloaded.
ASsign given at this time enables the user
to specify the same assignment for a suite

of programs to be run.

° If ASsign is given after a program is loaded,
(i.e., after a GEt command), the assignment
will remain in effect as long as the program
is in core, or until the programmer performs
a re—assignment. As -zoon as -the orogram dis-—
appears (by an .EXIT request or a KI1ll command),

the assignment is released.

° ASsign may also be given after a program is

running. For example, as recovery from a

A003 message (Device not available)

the user would do an ASsign followed by COn-
tinue. The assignment will remain in effect
as long as the program is in core, until the
programmer re-assigns, or restarts the program

by a BEgin command.

3-7

Doing an ASsign at this time is provided
for such emergency situations, but is not
recommended as standard practice because
it causes an extra buffer to be allocated
from free core and it will only be effect-
ive if the program has not already INITed
the dataset to some other device.

For example, to assign DECtape file FREQ.BIN to dataset FRQ:

>

C

+AS DT:FREQ.BIN,FRQ

3.3.1.2 The OTher Command

OT [HER] ,DATASET SPECIFIER

The stated DATASET is made the Monitor command device. The keyboard
may recover control as command device with 4C from its keyboard or by
command OTher KB from the other device. OTher is valid only when no
program is running. This command may be used to provide a form of batch-

processing, for example.

3.3.2 Commands to Manipulate Core Images

3.3.2.1 The RUn Command

RU [N],DATASET SPECIFIER

The RUn command loads the specified program from the specified device
and starts its execution at the normal start address. The RUn command
is equivalent to a GEt command followed by a BEgin command. RUn is
valid only when there is no program already loaded.

e If a READ error occurs during the loading of
the program, a fatal error message F021 XXXXXX
is printed.

(] If RUn calls a program which is not in the
proper form (i.e., is not in formatted binary
or does not have a start address), it produces
a fatal error and the following message is
printed:

Fg22 XXXXXX

° If the program to be loaded is too large for the
available core, the fatal error message F023
[PROGRAM SIZE] is printed. Recovery from all
these errors will be by way of a KI1ll command.

3.3.2.2 The GEt Command

GE[T],DATASET SPECIFIER

The GEt command loads the specified dataset from the specified device.
GEt is valid only when there is no dataset already loaded. Error re-
porting will be the same as for RUn. The user should use a BEgin com-

mand to commence execution.

3.3.2.3 The DUmp Command

DU [MP] ,DEVICE NAME: f,{?}} [,{STARg ADDR} [, END ADDR]]

This command writes an absolute copy of the specified core area to or
from a fixed area on the specified device. I in the second argument
specifies dump to core, and O specifies a dump from core. The core
image is not altered. An O is assumed on default. @ is assumed if

no START ADDRESS is specified, and the highest word in memory is as-
sumed if no END ADDRESS is specified. DUmp is valid at any time; if
given while a program is running, it will merely suspend operations for
the time taken to effect the dump.

3.3.2.4 The SAve Command

SA[VE]

SAve writes the pfogrémwin core on fﬁe sYéﬁéﬁ‘diék”iﬁ iogdér format.
The core image is not altered. SAve is valid only when a program is
in core but i

The file which is created is always named SAVE.BIN, on dataset SAV,
device DF. Before this file is created the Monitor deletes any file in
the user's area on the disk with the same name. Thus, if it is desired
to retain the saved file for any length of time, it should be renamed

or copied to another area and given a new name, by means of PIP.

The SAVE file may be directed to any device other than DF by AS-
SIGNning the dataset SAV to the desired device.

The segment of corewhich is saved starts at the initial program load
address and ends with the last word in memory. The saved image will be
preceded by the same communication information as that for the original

program loaded.

3.3.3 Commands to Start a Program

3.3.3.1 The BEgin Command

BE [GIN] [,ADDRESS]

The BEgin command starts the execution of a program at the stated ad-
dress. If no address is specified, the address used will be the normal
start address. This command is valid only if a program is already in
core. BEgin is used after a GEt, a STop, or following a fatal error
condition. The GEt command followed by a BEgin command is equivalent
to a RUn command. If given after a program has been started, a BEgin
will clear all core allocations to a buffer, devices and assignments
made dynamically and the stack will be cleared before control is passed

back to the program.

To start a program at its normal start address, type

BE

To start a program at location 3446, type

BE, 3446

3.3.3.2 The COntinue Command

CO [NTINUE]
This command is used after a WAit or a recoverable error condition
(operator action message) to resume program operation at the point where

it was interrupted. It is valid only if a program is already in core.

3.3.3.3 The REstart Command

RE [START] [, ADDRESS]

This command restarts the program at the given address. If ADDRESS
is not specified, the address set by the .RESTART programmed request
(Section 2.8.2.2) is assumed. If neither address is specified, the
command 1s rejected.

REstart is valid only if a program is already in core. Befcre
the resumption of operations, the stack will be cleared; any current
I/0 will be stopped and all internal busy states will be removed. How-
ever, buffers and drives set up for I/0 operations will remain linked

to the program for further usage.

3.3.4 Commands to Stop a Program

3.3.4.1 The STop Command

ST [OP]
This is an emergency command to stop the program, and kill any I/O in
progress (by doing a hardware reset). The program may be resumed with

either BEgin or REstart. STop is valid only if a program is in core.

3.3.4.2 The WAit Command

WA[IT]
This command suspends the current program and finishes any I/0 in pro-
gress. Program can be resumed with a COntinue or a REstart command.

WAit is valid only if a program is in core.

3.3.4.3 The KI1ll Command

KI[LL]

This command stops the execution of the current program, after closing
all open files and completingany outstanding I/0, and removes the pro-
gram from core by returning control to the Monitor. It is wvalid only
when a program is in core. The user must reload the program or load

™

another by RUn or GEt, to resume operations.

3.3.5 Commands to Exchange Information With the System

3.3.5.1 The DAte Command

DA[TE] [,DAY]

This command sets the Monitor's date-word to the date specified in DAY,
or if DAY is not specified, it prints the date previously specified.
DAte is valid any time. (It should be noted that the date-word will
not be updated internally; the operator must reset it daily if such
information is needed.) DAY is specified in Julian, i.e., 71026 for
January 26, 1971

3

11

3.3.5.2 The TIme Command

TI[ME] [, TIME]

Sets the time of day entry in the Monitor to the TIME if TIME is speci-
fied, otherwise types the present content of the time of day. The for-
mat of TIME is:

HH:MM:SS

where HH = hours
MM = minutes
SS = seconds

The TIme command is valid at any time.

3.3.5.3 The LOgin Command

LO[GIN],UIC
This command allows the user to give his user identification code to
the Monitor. It is a valid command only when there is no program loaded

in core and provided no other user has logged in and not FInished.

3.3.5.4 The MOdify Command

MO[DIFY],OCTAL ADDRESS

OCTAL ADDRESS/CONTENTS: NEW CONTENTS

This command allows the user to make changes in the contents of the
absolute memory location specified by OCTAL ADDRESS. After RETURN is
typed at the end of the first line, the system responds by typing the
CONTENTS of that address. At this point, the user can type one of the
following () denotes the RETURN key):

Jd will leave the CONTENTS
: unmodified
NEW CONTENTS J) will change CONTENTS to

NEW CONTENTS

This command is valid at any time. To change the contents of
location 440¢Q:
+C

~11040000)
$40000/164060: 1040600

3-12

Then to examine the contents of 4@g@g:

ic
-11040000)
$40000/104060:)

3.3.5.5 The FInish Command

FI[NISH]

This command informs the Monitor that the current user is leaving the
system. This command is valid only when no user program is in core.

The Monitor deletes all files which do not have bit 7 on the protect

byte (Figure 2-11) set. This byte can be set at the file's creation,
or by the .KEEP programmed request (Section 2.7.6).

3.3.6 Miscellaneous Commands

3.3.6.1 The ECho Command

EC[HO]

This command suppresses teleprinter echo from the keyboard input to a
user program. A subseguent ECho command turns the echo on again. The
teleprinter as an output device for the program or the Monitor is not
affected.

This command is valid only when a program is running in core and

using the keyboard as a device.

3.3.6.2 The PRint Command

DPRITINT]

This command suppresses teleprinter printing when the teleprinter is
used as an output device to a user program. A subsequent PRint command
turns the printing on again. PRint is valid only when a program is

running in core and is using the teleprinter as a device.

3.3.6.3 The ENd Command
KB
o1, {55}]

This command tells the Monitor "there is no more input from device KB

(or PT)". 1t effectively generates an End-of-File from the keyboard
(KB) or paper tape reader (PT). If no argument is specified, KB is

assumed.

'

ENd is valid only when a program is running in core.

3.3.6.4 The ODt Command
oni71 1,{§}

This command starts the execution of the ODT-11R Debugger Program. The
argument specifies which ODT start-address is used:

(No argument) starts at START +§ (clear ODT break-
point table without
resetting break-
points)

R starts at START +2 (clears ODT break-
point table after
replacing old in-
structions at break-
points.

K starts at START +4 (leaves breakpoints
exactly as they are)

For example, to reset all breakpoint locations to their former in-
structions and restart ODT:

-
(@]

5

D,R

ODT is valid only when ODT is linked to a program and both are in

core.

3.4 THE COMMAND STRING INTERPRETER (CSI)

The one common format for input and output dataset specifications to a
system program i1s provided through a single Monitor routine, the Com~-

mand String Interpreter. This routine preprocesses the specification

for whatever system program it was called by.

The CSI may also be called by a user's program. The user's soft-

ware interface with CSI is described in Section 2.8.5.

3.4.1 (CSI Command Format

Whenever a system program requests input through the CSI, a # will be
printed on the teleprinter and the program will wait for the operator's
reply. A command under CSI consists of one or more output dataset speci-
fications, followed by <, followed by one or more input dataset speci-

fications. Spaces, horizontal TABs, and nulls may appear anywhere

in the string and are ignored. A command is terminated by a FORM

FEED, LINE FEED, or VERTICAL TAB. If RETURN appears within a command,
the character which immediately follows must be a space, horizontal tab,
null, RUBOUT or one of the command terminators; otherwise, an error

will result.

< need not occur. If it does, at least one input file specification
must appear. Only one < per command is allowed. Commands may not be

continued from line to line.

A dataset speéification muist be delimited by a comma. If no items
at all appear before the comma, then this is interpreted as "this parti-
cular positional field will not be used". For example, suppose a pro-

gram requires three (output) data specifications. Then the syntax:
Dataset Specification,,Dataset Specification
indicates that the second (output) Dataset will not be generated.

Each dataset specification is a field which describes a dataset.
It generally contains information as to where to find the dataset, the
file name and extension if the dataset is a file, the user identifica=-
tion code associated with the file, and one or more switches which re-
guest various actions to be performed. A dataset specification contain-

ing all of the above elements would appear as:

where DEV = The device sgécification whHith consists of one or more
letters, with a maximum of three, followed by a cclen.
The letters identify the device and the digits identi-
fy the unit. Units must be given in octal. The colon
delimits this field. Only physical names as listed in
Appendix A may be specified. For example, DTAl: is
the correct specification for DECtape, controller A,

unit 1.

If no digits appear, then unit @ is assumed. If the de-
vice specification itself does not appear, then the cur-
rent device is defaulted to the device last specified,

if there is one; otherwise, it is defaulted to disk (DF) .

FILNAM

«EXT

[UIC]

Defaults do not carry across the < , i.e., from
output to input. -

The file name specification, consisting of one or more
letters or digits, or exactly one asterisk. The first
six letters or digits specify the name. All letters
and digits in excess of six are ignored.

The file name need not appear. No system-wide deafult
file name is assumed.

The extension specification which consists of a period,
followed by one or more letters or digits, or followed
by exactly one asterisk. The first three letters or
digits specify the extension. All letters or digits
in excess of three are ignored.

The extension need not appear. No system~wide default
extension is assumed.

The asterisk is used to specify "all". For example:

*.EXT specifies all files with extension . EXT,
FIL.* specifies all files with name FIL, and
k% specifies all files and all extensions.

The User Identification Code (UIC) specification
which consists of a left square bracket, followed by
one or more octal digits or exactly one asterisk,
followed by a comma, followed by one or more octal
digits or exactly one asterisk, followed by a right
square bracket. The field to the left of the comma
specifies the user within the group. Both fields
must be given in octal. The largest useable octal
number is 376 in both cases (0 is invalid). For
example, [12,136] is the correct specification for
user number 136 of user group 12.

As in FILNAM and .EXT, the asterisk specifies "all".
For example:

[*,136] specifies all users whose
number is 136

[12,*] specifies all members of user
group 12, and

[*,*] specifies all users.

The user identification code need not appear; in which

s t

-

- 1a o~ -~ maaT ~ a A~ s L3 = E RPN - <
case the default e identification entered by the
d.

o

ser currently entering the comman

/SWm:V1l:...:Vm = A switch specification which consists of a slash (/),
followed by one or more letters or digits, and option-
ally followed by one or more value specifications. A
value specification is initially delimited by a colon.
The value itself can be null, ir consists of one or
more letters, digits, periods, or dollar signs. Other

characters are illegal. The digits 8 and 9 are legal.

For examples: /DATE: 12:20:69 might be a switch to
enter December 20, 1969 in a date field.

/DATE: 12::69 might enter December,
1969 in a date field.

Switches need not appear. If a switch does appear,
then it need not contain more than one letter or digit

after the slash. For example
/S and /SWITCH2 are both legal.

The first two characters after the slash uniquely iden-

tify the switch. For example:
/S is treated as if it were /S null.
/SWITCH1 and /SWITCH2 are both treated

as /SW.

Table 3-2 summarizes the legal command syntax.

TABLE 3-2, .CSI COMMAND STRING SYNTAX RULES,

Item Item Immediately Following
Which
Last Termi-
Appeared ’ DEV: FILNAM | ,EXT | UIC | /SWITCH | < nator
blankl * * * E * * E E

R * * * E * * E2 E2
DEV: * E * E * * * *
FILNAM * , E E * * * * *
«EXT * E E E * * * *
uIC * E E E E * * *
/SWITCH * E E E E * * *

* * * E * * E E

Legend: E indicates error.
* indicates legal,

Notes: 1 The next item encountered is the first item in the
command string.
2 This is an error because the following command is
meaningless, e.g.,

.{terminator

For example, a device specification immediately followed by an extension
specification is an error, whereas a file name specification immediately
followed by a comma is legal.

3.4.2 CSI Command Example

An example of a complete command and its interpretation is:
Fl.E1,,DTAl:F2.E2/S: 1<F3.E3[11,123],DTB:F4.E4/ABC,F5.E5
which is interpreted as:
The first position output dataset is to be a file named F1l and
will have extension El. It is to be put on disk unit §, and catalogues

under the ID of the user who entered the command. No switches are as-

sociated with this dataset.

3-18

The second positional output dataset will not be generated.

The third positional output dataset is to be in a file named F2
and will have extension E2. It is to be put on the DECtape which is
mounted on unit 1 of controller A. This file is to be catalogued under
the ID of the user who entered the command. The action indicated by

switch S is to be performed assuming value 1 on this dataset.

The fourth and subsequent positional output dataset will not be
generated.

The first positional input dataset is a file named F3, and its
extension is E3. It can be found on disk unit @, catalogued under the
user number 123 of user graip 11. No switches are associated with this
dataset.

The second positional input dataset is a file named F4 and its
extension is E4. It can be found on the DECtape currently mounted on
controller B, unit #. Associate the ID of the user who entered the
command with this dataset. Perform the action indicated by switch AB

(not ABC) on this dataset. No values are associated with the switch.

The third positional input dataset is a file named F5 and its ex-
tension is E5. It can be found on the DECtape currently mounted on
controller B, unit #. Associate the ID of the user who entered the com-

mand with this dataset. No switches are associated with this dataset.
The fourth and subsequent input datasets are not required.
A command of the following form:
Dataset Specification, < Dataset Specification

terminator

could be interpreted to mean "do not generate the second and subseguent

datasets", but this is accomplished by:

Dataset Specification < Dataset Specification
terminator

as well.

3-19

MNEMONIC

DC
DF
DK
DT
KB
LP
PP
PR
PT

NOTE:

APPENDIX A

PHYSICAL DEVICE NAMES

DEVICE

RC11 Disk

RF11 Disk

RK11l Disk

DECtape (DT11)

ASR-33 Keyboard/Teletype
Line Printer (LP11)

High Speed Paper Tape Punch
High Speed Paper Tape Reader
ASR-33 Paper Tape Device

Device mnemonics may be three characters on a particular
system. The third character is generally assigned if there

is more than one controller, e.g.:

DTA for DECtape controller "A"
DTB for DECtape controller "B"

APPENDIX B

EMT CODES

Code Usage
g .WAITR
1 JWAIT
2 .WRITE
3 * %

4 ' .READ
5 * %

6 . INIT
7 -RLSE
10 . TRAN
11 .BLOCK
12 .SPEC
13 .STAT
14 .LOOK
15 .ALLOC
16 .OPENx
17 .CLOSE
20 - RENAM
21 .DELET
22 .APPND

23 * %

24 . KEEP

25-27 L R%

30-31 *

32 Diagnostic Print

* Reserved for Monitor internal communication

*% Reserved for future Monitor expansion

APPENDIX B (Cont'd)

EMT CODES

Code Usage

33,34 *

35-37 **

40 *

41 General Utilities

42 General Conversions

43-55 *

56,57 Command String Interpreter

60 : EXIT

61,62 *

63-77 * %

100-117 (reserved for Communications
Executive, COMTEX-11)

120-137 (reserved for Real Time Monitor,
RSX-11)

140-167 (reserved for user-implemented
routines)

* Reserved for Monitor internal communication

** Reserved for future Monitor expansion

APPENDIX C

The routines associated with the GLOBAL NAMES specified below are
called by the REQUEST processor as indicated:

(blank) = subsidiary routine is never called

X = subsidiary routine is called when and
only when a file structured device is
referenced

L = subsidiary routine is called when and
only when a linked file is referenced

C = subsidiary routine is called when and
only when a contiguous file is refer-
enced

D = subsidiary routine is called when and

only when DECtape is referenced

For example, if a user wants all .OPENI processing routines core resi-

dent, he would put the following assembler directive in his program:

- GLOBL OPN. ,FOP.,LUK. ,CKX.

Global Name
'Request
. READ/WRITE X
. OPENU X X X
. OPENO X X |x X X
. OPENE X X |X |X X
.OPENI X X X
.OPENC X X X
. CLOSE X
.ALLOC X X | X
. DELET X X|Llc
. RENAM X X
.APPND X X D
. LOOK X X
4___‘_“EP . . R S “X x

APPENDIX D

SUMMARY OF MONITOR COMMANDS

Command Usage

Commands to Allocate System Resources

ASsign Assign a physical device to a logical device
name
OTher Pass Monitor control to another device

Commands to Manipulate Core Images

RUn Load and begin a program
GEt Load a program
DUmp Write a specified core area onto a device

in absolute binary

SAve Write a program onto a device in loader
format

Commands to Start a Program

BEgin Starts execution of a program
COntinue Resumes execution of a halted program
REstart Restarts execution of a previously operat-

ing program

Commands to Stop a Program

STop Halt the current program, including any I/0
in progress

WALt Halts current program after finishing any
I/0 in progress

KI1ll Halts the current program, finishes any

I/0 in progress, closes all open files,
and passes control back to the Monitor.

Commands to Exchange Information with the System

DAte Fetch/Specify date
TIme Fetch/Specify time
LOgin Enter User Identification Code

Command

MOdi fy

FInish

Miscellaneous Commands
ECho

PRint

ENd

oDt

Us age

Modify contents of memory location

Log off system

Disable/enable keyboard echo to user program

Disable/enable Teleprinter output from user
program

End input from a device

Begin operation of Octal Debugger (ODT)

Mnemonic

.ALLOC

.APPND

.BIN2D

.BIN20

. BLOCK

.CLOSE

".CORE

.CSI1

.C8I2

Function

Allocate a Contiguous
File

Append to a Linked
File

Convert Binary to
Decimal ASCII

Convert Binary to

Transfer a Block

Close a Dataset

Obtain Core Size

CSI Interface -
part 1

CSI Interface -
part 2

Macro Call
(See notes)

.ALLOC LNKBLK,FILBLK,N

.APPND

.BIN2D

.BIN20

.BLOCK

.CLOSE

.CORE

LNKBLK,FIRST,SECOND

ADDR,WORD

ADDR,WORD

LNKBLK,BLKBLK

LNKBLK

.CSI1 CMDBUF

.CSI2 CSIBLK

Assembly Language

Expansion
(See notes)

MOV
MOV
MOV
EMT

MOV
MOV
MOV
EMT

MOV
MOV
MOV
EMT

MOV
MOV
MOV
EMT

MOV
MOV
EMT

MOV
EMT

MOV
EMT

MOV
EMT

MOV
EMT

#Nl—(SP)
#FILBLK,- (SP)
#LNKBLK,- {SP)
15

#SECOND, - (SP)
#FIRST,- (SP)
#LNKBLK,- (SP)
22

#WORD, - (SP)
#ADDR, - (SP)
#31" (SP)

42

#WORD, - (SP)
#ADDR, - (SP)
#51—(SP))
42

#BLKBLK , - (SP)
#LNKBLK, - (SP)
11

#LNKBLK, - (SP)
17

#lﬂﬁ,—(sp)

41
#CMDBUF , - (SP)
56

#CSIBLK,- (SP)
57

Refer
to
Page

2-34

2-45

SLSINDHTY TINWYEOOEd JOLINOW 40 A¥VHWS

¥ XIONIddv

(A

Mnemonic

.DATE

-.DELET

.D2BIN

. EXIT
.GTUIC
. INIT

. KEEP

.LOOK

.MONF
.MONR

. OPENx

Function

Obtain Date

Delete a File

Convert Decimal ASCII
to Binary

Exit to Monitor

Get Current UIC
Initialize a Dataset
Protect a File

Directory Search

Obtain full Monitor
size

Obtain size of
resident Monitor

Open a Dataset

Macro Call

.DATE

.DELET LNKBLK,FILBLK
.D2BIN ADDR

.EXIT

.GTUIC

. INIT LNKBLK

.KEEP LNKBLK,FILBLK

.LOOK LNKBLK,FILBLK

- MONF
.MONR

.OPENx LNKBLK,FILBLK

Assembly Language

Expansion

MOV
EMT

MOV
MOV
EMT

MOV
MOV
EMT

EMT

MOV
EMT

MoV
EMT

MOV
MOV
EMT

MOV
MOV
EMT

MOV
EMT

MOV
EMT

MOV
MOV
MOV
EMT

#193,-(SP)
41

#FILBLK,- (SP)
#LNKBLK, - (SP)
21

#ADDR, - (SP)
#21_(SP)
42

60
#lgSI“(SP)
41

#LNKBLK, - (SP)
6

#FILBLK, - (SP)
#LNKBLK, - (SP)
24

#FILBLK, - (SP)
#LNKBLK, - (SP)
14

#142,-(SP)
41

#141,-(SP)
41

#CODE, FILBLK-2
#FILBLK, - (SP)
#LNKBLK, -~ (SP)
16

Refer
to
Page

A |

Mnemonic

.02BIN

. RADPK

- RADUP

- READ

. RENAM

.RLSE

«RSTRT

.SPEC

Function

Convert Octal ASCIT
to Binary

RADIX~-50 ASCII Pack

RADIX-50 ASCII
Unpack

Read from Device
Rename a file
Release a Dataset
Set REstart address

Special Function

Macro Call

.D2BIN ADDR

. RADPK ADDR

.RADUP ADDR,

.READ LNKBLK,BUFHDR

.RENAM LNKBLEK,OLDNAM, NEWNAM

-.RLSE LNKBLK

.RSTRT ADDR

.SPEC LNKBLK,CODE

Assembly Language

Expansion

(CODE =

MOV
MOV
EMT

MOV
MOV
EMT

MOV
MOV
MOV
EMT

MOV
MOV
EMT

MOV
MOV
MOV
EMT

MOV
EMT

MOV
MOV
EMT

MOV
MOV
EMT

for .OPENI
for .OPENC

1

#ADDR, - (SP)
#4,-(sP)
42

#ADDR, - (SP)
#ﬂ,—(SP)
42

#WORD, - (SP)
#ADDR, - (SP)
#11_(SP)

42

#BUFHDR, - (SP)
#LNKBLK, - (SP)
4

#NEWNAM, - (SP)
#OLDNAM, - (SP)
#LNKBLK, - (SP)
29

#LNKBLK,~- (SP)
7

#ADDR, - (SP)
#21-(SP)
41

#Code,- (SP)
#LNKBLK, - (SP)
12

1 for .OPENU
2 for .OPENO
3 for .OPENE
4
3

Refer
to
Page

g

Mnemonic

- STAT

. TIME

- TRAN

. TRAP

.WAIT

.WAITR

.WRITE

NOTES :

Function

Obtain Device Status

Obtain Time of Day

Transfer absolute

block

Set TRAP vector

Wait for Completion

Wait for Completion;
Return to ADDR

Write on a Device

ADDR
BLKBLK
BUFHDR
CMDBUF
CSIBLK
FILBLK
FIRST

Macro Call

.STAT LNKBLK

. TIME

.TRAN LNKBLK,TRNBLK

. TRAP STATUS,ADDR

.WAIT LNKBLK

.WAITR LNKBLK,ADDR

.WRITE LNKBLK,BUFHDR

a memory address

address
address
address
address
address

address

of
of
of
of
of
of

BLOCK Block
Line Buffer Header
Command String Buffer

Assembly Language

Expansion

MOV
EMT

MOV
EMT

MoV
MOV
EMT

MOV
MOV
MOV
EMT

MOV
EMT

MoV
MOV
EMT

MOV
MOV
EMT

#LNKBLK,- (SP)
13

#1094 ,- (SP)
41

#TRNBLK, - (SP)
#LNKBLK, - (SP)
1p

#ADDR, - (SP)
#STATUS, - (SP)
#ll— (SP)

41

#LNKBLK, - (SP)
1

#ADDR, - (SP)
#LNKBLK, - (SP)
g

#BUFHDR, - (SP)
#LNKBLK, - (SP)
2

Command String Interpreter Control Block

Filename Block

Filename Block of file which is appended to

Refer
to
Page

2-29
2-57

2-41

G=d

NOTES:

(Cont'd)

LNKBLK
N
NEWNAM
OLDNAM
SECOND
Sp
TRNBLK

address of Link Block

number: of 64-word segments requested

address of Filename Block containing the file's new name
address of Filename Block containing the file's old name
address of Filename Block of file which is appended
Stack Pointer (register R6)

address of TRAN Block

APPENDIX F

DEVICE DRIVER

Device drivers are classified by the types of devices they serve. There

are:
) Terminal devices such as keyboards or displays that
interface directly tc human operators.

e Bulk storage devices such as disks or DECtapes which
are usually file or directory structured.

° Others

Terminal Device Drivers

Drivers for terminal devices are usually the most complex because:

° People are unpredictable and demanding. they re-
quire flexibility and understanding.

° Terminals are usually inexpensive and depend on
software to perform what other devices manage with
hardware.

A terminal driver must be designed to respond not only to valid commands
from the knowledgeable programmer, but also to a variety of errors from
less experienced people Such a driver must give the operator the op-
portunity to correct any mistakes he may discover as he uses the device,
must not depend on any particular time between inputs, and cannot re-
quire a particular length of input. Rather, a terminal must accept com-
ﬁaﬁéé te iéﬁofé charéétefs‘br lines at the leiéufe of the bperafor, of
whatever length he so desires, subject only to the limitation of the

driver's buffer.

The ASR-33 Teleprinter Driver

The Keyboard

When an operator enters data from the keyboard, the data is stored in
a buffer within the driver until requested by the program. As the data
is processed for transfer to the program, it is echoed back to the tele-
printer. While the datais in the buffer, it can be added to, deleted.
or Modified by the operator. Once passed to the Monitor, the data can-
not be directly changed. Xeyboard keys which are recognized as special

functions by the driver are:

RUBOUT

CTRL /U

RETURN

TAB

*ESC

The Teleprinter

TAB

RUBOUT

which erases the preceding character from the buffer
and echoes deleted characters between \....\

which deletes the current line and echoes as 1U

which places a carriage return followed by a line feed
into the buffer, and echoes the same to the teleprinter

is simply echoed as spaces up to the next stop posi-
tion. The TAB code is placed into the buffer.

which notifies the Monitor that it is not to take ac-
tion on the next character. This allows the program-—
mer to pass to the user program or systems program a
code which is normally interpreted by the monitor in

a special way. For example, ESC CTRL C will not cause
the Monitor to expect a command. Similarly, preced-
ing CTRL U by ESC will remove its erasing facility.

is replaced with spaces up to the next stop position

is discarded

*
On some Teletypes, this appears as ALTMOD.

APPENDIX G

GLOSSARY AND ABBREVIATICNS

Bit map

Buffer

Buffer Use Table

Contiguous file

Core Bit Map

Core image

CsI
DAT

Dataset

DDB

Default device

Driver, device

Fatal error

File

A table describing the availability of
space. Each bit in the table indicates
the state (occupied or free) or one
segment of storage, for example a
block on a bulk storage device.

A storage area.

A bit map in the permanently resident
monitor, which describes the availa-
bility of buffers in the free core
area.

A file consisting of physically con-
tiguous blocks on a bulk storage de-
vice.

That portion of a Permanent Bit Map
which happens to be in core. Not to
be confused with the Buffer Use Table.

A copy of what a program or other data
would look like if it were in core.

Command String Interpreter.
Device Assignment Table.

A logical collection of data which is
treated as an entity by a program.

Dataset Data Block.

The device specified in the linkblock
of a dataset, and which is used for
I/0 operations on that dataset if
there is no other device assigned in
a DAT entry for the dataset.

The minimal routine which controls
physical hardware activities on a per-
ipheral device. The device driver is
the interface between a device and

the common, device-independent I/0 code
in the monitor.

An error from which a user's program
cannot recover.

A physical collection of data which

resides on a directory-structured de-
vice and is referenced through its name.

G-1

FBM File Bit Map - A device-resident bit
map with bits flagged for for the
blocks used for a single file. Used
on DECtape to aid in the deletion pro-

cess.
FIB File Information Block
File structure The manner in which files are organ-

ized on a bulk storage device. Each

of the files of a user is referenced
through an entry in that user's User
File Directory. Each User File Direc-
tory on the device is, in turn, refer-
enced through an entry in the Master
File Directory.

Interleave factor The optimal minimum distance, measured
in number of physical device blocks,
between logically adjacent blocks of
a linked file. Presently it is four
on all PDP-11 bulk storage devices.
For example, if physical block N is
assigned to block 1 of a linked file,
then physical block N+4 would be the
closest device block that could be
assigned to block 2 of that file.

Julian Date A 5-digit (decimal) numerical repre-
sentation of the date, in which the
two high-order digits give the year
(1900=00, 1999=99) and the three low-
order digits give the day within the
year (January 1 = 001, December 31
= 365 (366 for leap year)). For example,
January 28, 1971 is represented as

71028.
KSB Keyboard Swap Buffer
Linked file A file consisting of a set of blocks

within which an ordering is specified
through the use of a link word imbedded
within each block.

Linker A systems program which creates a load
module to be loaded into core memory.
The linker relocates and links inter-
nal and external symbols to provide
communication between independently
assembled programs.

Load Module The output of the linker. A program
in absolute binary form (a core image)
ready for loading and executing on a
PDP-11.

MFD Master File Directory

MRT
MSB

Object Module

Operatoer

Parity bit

PBM

Radix-50 packed

ASCIT

SAM
SAL

Swapping

Table

UFD
UIC

User

User program

Monitor Residency Table
Monitor Swap Buffer

The relocatable binary output of an
assembler or compiler.
A user communicating di

cati r 1
Monitor through the keyboard

ectly with the

A binary digit appended to an array of
bits to make the sum of all the bit
values always odd or always even.

Permanent Bit Map - A bit map which
describes the availability of space
on a DECtape or disk. It resides on
the device it describes, and can be
read into core in segments, called
Core Bit Maps, for reference or updat-
ing.

A format in which 3 ASCII characters
(from a subset of all ASCII charac-
ters) are packed into a single 16-bit
word.

Swap Area Manager

A friend of SAM.

The movement of programs or program
sections from secondary storage to

core.

A collection of data in a form suitable
for ready reference.

User File Directory.

User Identification Code

The person who is using the Monitor.
He may use the Monitor as an opera-

tor, or via a program.

Any program written by a user to run
under the Monitor.

HOW TO OBTAIN SCFTWARE INFORMATION

Announcements for new and revised software, as well as programming
notes, software problems, and documentation corrections are published
by Software Information Service in the following newsletters.

Digital Software News for the PDP=-8 & PDP-12
Digital Software News for the PDP=11
Digital Software News for the PDP-9/15 Family

These newsletters contain information applicable to software available
from Digital's Program Library., Articles in Digital Software News up-
date the cumulative Software Performance Summary which is contained
in each basic kit of system software for new computers. To assure that
the monthly Digital Software News is sent to the appropriate software
contact at your installation, please check with the Software Special-
ist or Sales Engineer at your nearest Digital office.

Questions or problems concerning DEC software should be reported to
the Software Specialist. In cases where no Software Specialist is avail-
able, please send o Software Performance Report form with details of
the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms which are available without charge from the Program
Library, should be fully filled out and accompanied by Teletype output
as well as listings or tapes of the user program to facilitate a complete
investigation. An answer will be sent to the individual and appropriate
topics of general interest will be printed in the newsletter.

New and revised software and manuals, Software Performance Report
forms, and software price lists are available from the Program Library.
When ordering, include the document number and a brief description of
the program or manval requested, Revisions of programs and documents
will be announced in the newsletters., Direct all inquiries and requests
to: ’

Program Library

Digital Equipment Corporation
146 Main Street, Bldg. 1-2
Maynard, Massachusetts 01754

Digital Equipment Computer Users Society (DECUS) maintains a user
library and publishes o catalog of programs as well as the DECUSCOPE
magazine for its members and non-members who request it., For further
information please write to:

DECUS '

Digital Equipment Corporation
146 Main Street, Bidg. 3-5
Maynard, Massachusetts 01754

PDP-11 Disk Operating System Monitor
Programmer®s Handbook

DEC=11=SERA-D

February 1971

READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of

this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and read-
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position. Date:
Name: Organization:
Street: Department:

City: .State: Zip or Country

——————————————— — FoldHere - - - - - - - - - — — — — — — — — — — —

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

dlilgliltiall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

Postage will be paid by:

digital equipment corporation

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	F-01
	F-02
	G-01
	G-02
	G-03
	G-04
	replyA
	replyB
	replyC
	replyD
	xBack

