DEC-11-OMONA-A-D

Disk Operating System Monitor
Programmer’s Handbook

PDP-11

OPERATING SYSTEM MONITOR

]
Hi
w0
=

PROGRAMMER' S HANDBOOK

Monitor Version V@8-g§2

October 1972

SOFTWARE SUPPORT CATEGORY

The software described in this document
is supported by DEC under Category I,
as defined on page iv of this document.

For additional copies, order No. DEC-11-OMONA-A-D from DEC,

Software Distribution Services, Maynard, Mass. 01754

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

First Printing, May 1971
Revised, August 1971
Revised, February 1972
Revised, October 1972

Your attention is invited to the last two
pages of this document. The "How to Obtain
Software Information" page tells you how to
keep up-to-date with DEC's gsoftware. The
"Reader's Comments" page, when filled in

and mailed, is beneficial to both you and

DEC; all comments received are acknowledged
and are considered when documenting subsequent
documents.

Copyright (:) 1971, 1972 by Digital Equipment Corporation

NOTE

The material in this manual is for information
purposes and is subject to change without notice.
DEC assumes no responsibility for the use or
reliability of its software on equipment which
is not supplied by DEC.

Associated Documents:

PDP-11 FORTRAN 1V
Programmer's Manual, DEC-11-LFIVA-A-D

PDP-11 MACRO-11 Assembler,
Programmer's Manual, DEC-11-OMACA-A-D

PDP-11 Edit-1ll Text Editor,
Programmer's Manual, DEC-11-EEDA-A

PDP-11 ODT-11R Debugging Program,
Programmer's Manual, DEC-11-OODA-D

PDP-11 Link-~1l Linker and Libr-11 Librarian
Programmer's Manual, DEC-11-ULLMA-A-D

PDP-11 PIP, File Utility Package,
Programmer's Manual, DEC-11-UPUPA-A-D

The following are trademarks of
Digital Equipment Corporation.

DEC PDP

FLIP CHIP FOCAL
DIGITAL (logo) COMPUTER LAB
UNIBUS OMNIBUS

ii

PREFACE

This document contains a comprehensive description of the PDP=11 Disk Operating System
Monitor. The document is written for the PDP=11 programmer == it assumes familiarity with
the contents of the PDP-11 Handbook 1971 and the MACRO=-11 Assembler (see document
number DEC-11-OMACA-A-D). Previous experience with monitor or executive systems

would be helpful.

The document is separated info three chapters: Chapter 1 is an introduction to the DOS
Monitor, and provides general information about the disk operating system. Chapter 2
describes the keyboard commands availabie to the system operator through the Monitor;
concepts and operation of each command are also explained. Chapter 3 describes the pro-
grammed requests that are available to the programmer through the Monitor. This chapter
also explains the concepts and operation of each programmed request. The entire document
is summarized in the appendices. Appendices D (Monitor Commands) and E (Monitor

Programmed Requests) should prove to be invaluable to the DOS user.

In addition to the DOS Monitor, the PDP~11 Disk Operating System Software includes:

FORTRAN |V

MACRO-11 Assembler
Edit-11 Text Editor
ODT-11R Debugging Program
PIP, File Utility Package
Link-11 Linker

Libr=11 Librarian

SOFTWARE SUPPORT CATEGORIES

Digital Equipment Corporation (DEC) makes available four categories of software. These
categories reflect the types of support a customer may expect from DEC for a specified software
product. DEC reserves the right to change the category of a software product at any time.

The four categories are as follows:

CATEGORY |
Software Products Supported at no Charge

This classification includes current versions of monitors, programming languages, and
support programs provided by DEC. DEC will provide installation (when applicable), advisory,
and remedial support at no charge. These services are limited to original purchasers of DEC
computer systems who have the requisite DEC equipment and software products.

At the option of DEC, a software product may be recategorized from Category 1 to
Category 1l for a particular customer if the software product has been modified by the customer
or a third party.

CATEGORY 1
Software Products that Receive Support for a Fee

This category includes prior versions of Category | programs and all other programs avail-
able from DEC for which support is given. Programming assistance (additional support), as
available, will be provided on these DEC programs and non-DEC programs when used in con-
junction with these DEC programs and equipment supplied by DEC .

CATEGORY 111
Pre-Release Software

DEC may elect to release certain software products to customers in order to facilitate
final testing and/or customer familiarization. In this event, DEC will limit the use of such
pre-release software to internal, non-competitive applications. Category Il software is only
supported by DEC where this support is consistent with evaluation of the software product.
While DEC will be grateful for the reporting of any criticism and suggestions pertaining to a
pre-release, there exists no commitment to respond to these reports.

CATEGORY 1V
Non-Supported Software

This category includes all programs for which no support is given

CONTENTS

Page
CHAPTER 1 INTRODUCTION

1.1 THE DOS MONITOR 1-1
1.2 MONITOR CORE ORGANIZATION 1-4
1.3 HARDWARE CONFIGURATIONS 1-6
1.4 MONITOR MESSAGE 1-6
1.5 STARTING THE MONITOR 1-7
1.6 A GUIDE TO THIS HANDBOOK 1-8
1.6.1 Terminology 1-8
1.6.2 Standards for Tables 1-9
1.6.3 Standards for Numbers 1-10

CHAPTER 2 MONITOR KEYBOARD COMMANDS

2.1 INTRODUCTION 2-1
2.1.1 Monitor Commands by Function 2-2
2.1.2 When Monitor Commands are Legal 2-3
2.2 MONITOR MODE AND USER MODE 2-4
2.3 COMMAND STRING INTERPRETER (CSI; 2-5
2.4 USER IDENTIFICATION CODE (UIC) 2-5
2.5 FILENAMES AND FILENAME EXTENSIONS 2-6
2.6 SPECIAL KEYBOARD CHARACTERS 2-7
2.6.1 The RETURN Key 2-7
2.6.2 The RUBOUT Key 2-7
2.6.3 The CTRL/C Keys 2-7
2.6.4 The CTRL/U Keys 2-8
2.6.5 The Semicolon Key 2-8
2.6.6 The ESCAPE Key 2-9
2.6.7 How Keyboard Characters are Processed 2-9
2.7 GETTING ON THE SYSTEM 2-10
2.8 MONITOR KEYBOARD COMMANDS 2-11
2.8.1 The ASSIGN Command 2-13
2.8.2 The BEGIN Command 2-14
2.8.3 The CONTINUE Command 2-18
2.8.4 The DATE Command 2-19
2.8.5 The DUMP Command 2-20
2.8.6 The ECHO Command 2-21
2.8.7 The END Command 2-22
2.8.8 The FINISH Command 2-23
2.8.9 The GET Command 2-24
2.8.10 The KILL Command 2-25
2.8.11 The LOGIN Command 2-26
2.8.12 The MODIFY Command 2-27
2.8.13 The ODT Command 2-29
2.8.14 The PRINT Command 2-30
2.8.15 The RESTART Command 2-31

CHAPTER

2.8.16 The RUN Command

2.8.17 The SAVE Command

2.8.18 The STOP Command

2.8.19 Tne TIME Command

2.8.20 The WAIT Command

3 PROGRAMMED REQUESTS

3.1 INTRODUCTION

3.2 TYPES OF PROGRAMMED REQUESTS

3.2.1 Requests for Input/Output and Related

Services

READ or WRITE Level Requests

RECORD Level Requests

BLOCK Level Requests

TRAN Level Requests

Requests for Directory Management Services
Requests for Miscellaneous Services

DEVICE INDEPENDENCE
SWAPPING ROUTINES INTO CORE
MONITOR RESTRICTIONS ON THE PROGRAMMER

REQUEST FOR INPUT/OUTPUT SERVICES
. INIT
«RLSE
.OPEN
.CLOSE
. READ
.WRITE
.RECRD
.BLOCK
. TRAN
.WAIT
.WAITR
.SPEC
.STAT

REQUESTS FOR DIRECTORY MANAGEMENT SERVICES
.ALLOC

.DELET

. RENAM

.APPND

. LOOK

-.KEEP

REQUESTS FOR MISCELLANEOUS SERVICES

Load a Program or an Overlay

- RUN

Request to Return Control to the Monitor
.EXIT

Requests to Set Monitor Parameters

. TRAP

. RSTRT

Requests to Obtain Monitor Parameters
.CORE

...
e e
WN R
.

BSW NP

. « e e
HFHRFRPRPOVWONOUIS WNE
wWNhHO

« o o
OO MWOMW NN~ Jd~N~ o000 oy T i W NN N
. “«

.
.
AU WN

]

=

WWWWWWwWwWwWwww WWwWwLwWwwWww WWwwwwwuwwuwwuwww W w w wwwwww
. . . . hdbathabatiudhagi . . .
N R

B WWWNDNERERF

[

-

vi

Page

2-32
2~34
2-36
2-37
2-38

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
INDEX

WWWWWWLWWWWwWwwwWwwwwwwwwww

WWLWWWwWwWwwwwwwww ww

® e & & & 4 2 e &+ e 2 v & &€ e 2 e e »
Q0 00 CO 0O ©O 00 00 QO 00 00 00 CO GO CO OO 00 0O 00 €O 00 O

.

. .
CWOWLOLWYWYWWLVWYWVOVWVLWOWOWWOWWYWW

== D R I < I w B @ T« B 4

2 20w 4 H

O

« s vt e e & s e+ & e

L]

VU UTUTUT U UT UL s D D D D b

.
[s)}e))

e s s s s s+ e * & o =
WONOUTEWWWN NN

. e e e s

« v e w .
HHEFRFIEWOWONO U WN
B WN O

. . .
U WIN

N =

g

.
N

b

.MONR

. MONF

.DATE

. TIME

. CVTDT

.GTUIC

.SYSDV

.GTPLA

.STPLA

.GTCIL

.GTSTK

.STSTK

.STFPU

Requests to Perform Conversions
. RADPK

. RADUP

.D2BIN

.BIN2D

.02BIN

.BIN20O

Requests for Interfacing with the
Command String Interpreter
.CsI1

.CS1I2

USER PROGRAM TABLES AND CONTROL BLOCKS
The Link Block

The Filename Block
Error Condition Codes
The File Protection Co
The Line Buffer Header
The Transfer Modes

The Status Byte

The RECORD Block

The BLOCK Block

The TRAN Block

The Special Functions Block
The RUN Block

The Function Word

Qi o~
O

PHYSICAL DEVICE NAMES

EMT CODES

SUBSIDIARY ROUTINES AND OVERLAYS
SUMMARY OF MONITOR COMMANDS

SUMMARY OF MONITOR PROGRAMMED REQUESTS
SUMMARY OF DOS ERROR MESSAGES

LISTING OF SYSMAC.SML (SYSTEM MACRO FILE)

PERIPHERAL DEVICES

COMMAND STRING INTERPRETER
SPECIAL I/C FUNCTIONS
EXAMPLE PROGRAMS

CONVERSION TABLES

CHARACTER CODES

GLOSSARY AND ABBREVIATIONS
RESERVED FILENAME EXTENSIONS

vii

FYReT
T L

o
.

CHAPTER 1
INTRODUCTION

1.1 THE DOS MONITOR

The PDP-11 Disk Operating System (DOS) Monitor is a powerful,
keyboard-oriented, program development system designed for use on
PDP-11 computers. The DOS Monitor facilitates use of a wide range
of peripherals available for use with the PDP-11.

The DOS Monitor supports the PDP-1l user throughout the de-
velopment and execution of his program by:

[providing convenient access to system programs
and utilities such as the FORTRAN Compiler?,
the MACRO-1l Assembler!, a Linker, a debugging
package, an Editor, a file utility package,
etc.;

® performing input/output transfers at four dif-
ferent levels, ranging from direct access of
device drivers to full formatting capabilities,
while providing the convenience of complete
device independence;

® providing a file system for management of
secondary storage; and

) providing a versatile set of keyboard commands
for use in controlling the flow of programs.

System programs and utilities can be called into core from
disk, DECtape or magtape with Monitor commands issued directly
at the keyboard. This feature eliminates the need to manipulate

"
i
convenient programming tool.

DOS gives the user program the capability of complete device
independence. Programs can be written without concern for specific
I/0 devices. When the program is run, the user can select the
most effective or convenient I/0 device available for the function
to be performed. In addition, if the system configuration is
altered, many programs can take advantage of the new configuration

without being rewritten. Logical names can be assigned to devices

=
© Available only on 12K or larger systems. The 8K assembler does not
support macros.

[

within the system enabling symbolic referencing of any device. No
concern need be given to I/0 buffer size within the user program

vet the user can alternatively retain direct control of I/O buffers.

All input/output (I/0) transfers are handled by the Monitor in
any of three user-selected levels called READ/WRITE, RECORD/BLOCK,
and TRAN. READ/WRITE is a formatted level of I/0 in which the user
can specify any one of nine options. RECORD/BLOCK is a file-structured,
random-access I/0 level with no formatting. TRAN does basic I/O
operations at the device driver level. All I/O is concurrent and

interrupt driven.

The file system on secondary storage uses two types of files:
linked and contiguous. Linked files can grow serially and have no
logical limit on their size. Contiguous files must have their
lengths declared before use but can be randomly accessed by RECORD
or BLOCK level I/O requests. All blocks in a contiguous file are
physically adjacent, while blocks in a linked file are typically
not adjacent (the first word of each block contains the address of
the next block). Files can be deleted or created at any time, and
are referenced by name. Table 1-1 summarizes the features and
benefits of the DOS Monitor.

The user communicates with the Monitor in two ways: through
keyboard instructions called commands, and through programmed

instructions called requests.

Keyboard commands enable the user to load and run programs;
assign I/0 devices or files; start or restart programs at specific
addresses; modify the contents of memory locations; retrieve system
information such as time of day and date; and dump core. Users
with more than 8K of memory! can utilize programmed requests,
which are macros assembled into the user's program and through
which the user specifies the operation to be performed by the
Monitor. Some programmed requests are used to access input/output
transfer facilities, and to specify where the data is, where it is
going, and what format it is in. 1In these cases the Monitor will
take care of bringing drivers in from disk, performing the data

transfer, and notifying the user of the status of the transfer.

18K users must include the code generated by such an assembly (the
assembly language expansion shown in Appendix E and in the explana-
tion of each programmed request in Chapter 3) in their programs to
utilize the Monitor functions. See the MACRO manual
(DEC-11-OMACA-A-D) for other differences in the 8K Assembler.

1-2

Table 1-1

PDP-11 DOS Monitor Features and Benefits

Feature

Files are catalogued in multi-
level file directories.

Files are referred to by name.

Files can grow serially.

Files can be as large as the
storage device can accept.

File storage is allocated dynam-
ically on any bulk-storage
device.

Monitor subroutines can be
swapped into core when needed.
Routines need not permanently
tie up an area of core.

Monitor subroutines can be
made permanently core resi-
dent before or during run
time.

The Monitor is divided into
logical modules.

All 1I/0 is interrupt-driven.

Device independence.

Devices are assigned to one
or more datasets.

Benefits to User

No file naming conflicts among
users.

Files do not have to be remem-
bered by number.

Files can be created even when
their final size is not known.

No logical limit on the size of
files.

Files can be deleted or created
even at run time for maximum
storage efficiency.

Much more efficient use of core
space for user programs. Free
core expands and contracts as
Monitor subroutines are used.
Space can be reclaimed for user
programs. The user can deter-
mine which Monitor subroutines
will be in core, and when.

The user can tailor the Monitor
for his particular needs.

The user can easily and effi-
ciently use the logical pieces
of the Monitor for his own needs.
He can also easily add his own
specialized drivers to the sys-
tem by following a simple set

of rules, and still use the

rest of the Monitor with these
drivers.

Such specialized equipment as
communications modems and A/D
converters which must be inter-
rupt driven can be run under the
Monitor. Several I/0 calls can
be handled concurrently.

Any device can be specified by
the user in his program, and
another device can be substituted
by him when his program is being
run.

The user may reassign a device
which is used for one purpose
(dataset) without changing its
assignment for all other purposes
(datasets).

1-3

Other redquests access Monitor facilities to query system variables

such as time of day, date, and system status, and to specify special

functions for devices.

Programs supported by DOS, and hence accessible through the

Monitor, are listed in Table 1-2.

Table 1-2

Principal DOS System Programs

System Program

FORTRAN IV

MACRO-11 Assembler

EDIT-11 Text Editor

ODT-11R Debugging Program

PIP, File Utility Package

Link-11 Linker and Libr-1l1 Librarian

1.2 MONITOR CORE ORGANIZATION

Core memory is divided into:

Document Number

DEC-11-LFIVA=-A-D
DEC-11-OMACA-A-D
DEC-11-EEDA-D
DEC-11-00DA-D
DEC-11-UPUPA-A-D
DEC-11-ULLMA-A-D

° a user area where user programs are located;

® the stack where parameters are stored temde
rarily during the transfer of control between
routines;

® the free core or buffer area which is divided

into l6-word blocks assigned by the Monitor
for temporary tables, for Monitor routines
called in from disk, and for data buffering
between devices and user programs;

° the resident Monitor itself which includes
all permanently resident routines and tables;

® The interrupt vectors.

FPigure 1-1 is a map of core as organized by the Monitor.

The DOS Monitor dynamically acquires and releases core on the

basis of system requirements.,

xx77768

000000

Free Core

Device Assignment Table
Generated After Load Time

Monitor Buffers
(Data Buffers, Data Control
Blocks, Drivers, etc.)

Device Assignment Table
Generated Before Start of Program

Monitor Routines Resident
for Program Duration

Device Assignment Table
Generated Before Load Time

Permanently Resident Monitor
and Vectors

Top of Core (.CORE)

Base of User (.GTPLA)
Programs

Top of Full (.MONF)
Monitor

Top of Resident
Monitor (.MONR)

Figure 1-1 The Monitor Core Map

1-5

1.3 HARDWARE CONFIGURATIONS

Many minimum hardware configurations for use by the disk opera-
ting system may be derived by choosing one item from each of the

five following sets.

° PDP-11 System Building Block with 900 nsec. Core Memory
and a Terminal (DECwriter [LA30], Alphanumeric CRT
[VT05-B], or Teletype! [LT331).

] Cabinets and all Mounting Hardware.
e Bootstrap Loader (BM792-YB or MR-11).
e Choice of Disks (Control Logic Included)

64K word Fixed Head Disk (RS64/RC11l)
256K word Fixed Head Disk (RF11/RS11)
1.2 word Interchangeable Cartridge Disk (RK0O5/RK1l1)

14 Choice of Tape Devices (Control Logic Included)
Dual Drive DECtape (TU56/TC1ll)

7- or 9-track Industry Standard Magnetic Tape (TU1l0/TM11)
High~-Speed Paper Tape Reader/Punch (PCll)

Specific details are available from a sales representative. Note

that 12K of core is required with the RK disk and DECtape is required
with the RC disk.

1.4 MONITOR MESSAGE

When a message-producing situation (such as a system error)
occurs, an error code and an additional word of information are dis-

played on the teleprinter. There are five types of messages:

Informational

Action required by the operator
Warning to the operator

Fatal

System Program error

The type of message is identified by being preceded by the letter
I, A, W, F or S respectively. If the system disk should fail and
the error message cannot be brought into core, the Monitor halts.

Monitor messages are described in detail in Appendix F.

lTeletype is a registered trademark of the Teletype Corporation.

1-6

1.5 ©STARTING THE MON

ITOR

The Monitor is c¢

alled into core from disk by performing the

following procedure for systems with the BM792YB:

1. If the system device is an RK1ll Disk, turn WRITE

ENABLE off;

~ AT e TR T

4 M/TRIADT TN ocsd & 1 L TIRT T S S e .
L. HBOVE DAL/ BiNabliy SWiITCl ¢ aald pOSITilii;

3. Load the pro

4. Depress LOAD

5. Load the swi
177462

177486
177459

cessor switch register with 1731@4;
ADDRESS processor switch;
tch register with,

if the system device is RF11 disk,

if the system device is RK11l disk,
if the system device is RC11 disk;

6. Move HALT/ENABLE processor switch to ENABLE position;

7. Depress START processor switch.

With the MR11l Bootstrap Loader, the procedure is:

1. Load the pro

1731¢8¢
173119

cessor switch register with:

if the Monitor storage device is RF11l disk,
if the Monitor storage device is RK1l1l disk,

2. Move HALT/ENABLE switch to HALT position;

3. Move HALT/ENABLE switch to ENABLE position;

4. Depress LOAD

ADDRESS processor switch;

5. Depress START processor switch.

i MO LLLD Wil 4

DOS Vxx

on the teleprinter, where Vxx represents the version number of the

Monitor being used.

command (see Chapter

The Monitor is now ready to accept an operator
2).

1.6 A GUIDE TO THIS HANDBOOK

1.6.1 Terminology

The reader should understand the following terms as they apply
to the PDP-11 Disk Operating System. An expanded Glossary, with
abbreviations, can be found in Appendix I.

A dataset is a logical collection of data which is treated as
an entity by a program. Typically, the items in a dataset have
a realtionship to each other which simultaneously binds them to-
gether and distinguishes them from items in other datasets. For
example, the records in the Object dataset produced by the assembler
are clearly related to each other and are clearly distinct from the
listing dataset produced by the same assembler. A parameter file
and a source file, when presented successively to the assembler,

might be viewed as a single dataset, however.

Typically, each dataset is associated with exactly one link
block (see section 3.8.6.1), although a link block can be associ-
ated (successively, not simultaneously) with more than one dataset.
For example, when the assembler finishes processing one dataset
and returns for another command, the new input will constitute a

new dataset, but the same link block will be used.

Examples of datasets are:

° all or part of a file on a file-structured
device;

[) one or more paper tapes in a paper tape reader;

° a deck of cards, terminated by an EOF card;

° three lines of keyboard data, a disk file,

and a paper tape; which are read in sequence
by the assembler and are viewed as the source
input dataset.

A device is any PDP-11 peripheral supported by the Monitor.

A device controller can support one or more device units.

A file is a physical collection of data which resides on a
directory device (e.g., disk or DECtape) and is referenced by its

name. A file occupies one or more blocks on a directory device.

On a directory device it is possible to store data by name, rather

than simply physical location; it is also called a file-structured

device.

Bulk storage devices containing directories are called direc-

tory devices or file-structured devices. Devices such as paper

tape equipment and the teleprinter, which cannot support a file

at+misstisra =7
STIUTCLULT,;, &L

[{}

devices.

A block is a group of adjacent words of a specified size on
a device; it is the smallest system-addressable segment on the
device. If the blocks comprising a file are physically adjacent
to each other, the file is said to be contiguous; if the blocks
of the file are not physically adjacent, the file is said to be
linked.

A line is a string of ASCII! characters which is terminated by
a LINE FEED, FORM FEED or VERTICAL TAB.

File structure refers to the manner in which files are organ-

ized. Specifically, each of a user's files is given a unigue name
by the user. Each user on a file-structured device is assigned a
User File Directory (UFD) in which each of his files is listed by

name and location. Each UFD is then listed in a Master File Direc-

tory (MFD) which is unique to a specific device unit.

1.6.2 Standards for Tables

A table is a collection of data stored in sequential memory
locations. A typical table as represented in this manual is shown
below. This table is two words long, and is referenced by the sym-
bolic address TABL:. The first entry is at location TABL and con-
tains ENTRY A, which might be coded as .WORD AYE in the user's pro-
gram. The second word of the table, at address TABL+2, is divided
into two bytes. The low-order byte (address TABL+2) contains ENTRY
B, and the high-order byte (address TABL+3) contains ENTRY C. They
might be written into a program as .BYTE BEE,CEE.

!ASCII represents American Standard Code for Information Interchange.

a) Representation in manual

ENTRY A

TABL: ENTRY C ENTRY B

b) Representation in program listing:

TABL: .WORD AYE ;ENTRY A
.BYTE BEE,CEE ;ENTRY B, ENTRY C

Note that the first byte specified is stored at the rightmost avail-
able byte.

1l.6.3 Standards for Numbers

Unless otherwise stated, all numbers in the text and examples
are in octal form.

CHAPTER 2
MONITOR KEYBOARD COMMANDS

2.1 INTRODUCTION

fmmm Y nm » .

1§ System (POS5) Monitor

shiows how the Disk Operating 8y
looks to the user as he sits at the terminal (i.e., the Teletype,
DECwriter, etc.). The user is communicating with the DOS Monitor

while running system, utility, and user programs.

Since DOS is an interactive operating system, the primary input
and output device is the user's terminal or teleprinter (keyboard
and printer). Through the terminal keyboard, the user can communi-

cate with

) the Monitor,

e a system or utility program (Macro, PIP, Editor,
etc,), or

) a user program written to run under DOS.
The terminal printer is used to record user input and system output.

In communicating with the Monitor, the keyboard is used as a
control device to allocate system resources, move programs into
core, start and stop programs, and exchange information with the
system. Data from the keyboard may be transferred to a buffer in
the user program or it may be processed immediately by the DOS
Command String Interpreter (CSI) as explained in Appendix I. In
this Chapter, the CSI is described only as it applies to the format-

ting of Monitor keyboard commands.

When the system is ready for input from the keyboard, a
single character is printed on the teleprinter. The following con-
ventions apply:

Character Meaning

$ The system is idle, waiting for a Monitor com-
mand.

&N
W
x
<

. The Monitor is waiting to continue or abort a Q}
task. #}]

N
A system, utility, or user's program requests . @;

a command through the CSE;_____—*’__/J,__,—‘—

* A system program redquests direct input, i.e.,
not through the CSI.

In this Chapter, we are concerned only with the $ and . characters.
The # and * characters are explained in the individual system and
utility programmer's manuals.

The $ and . indicate that the Monitor is waiting for a keyboard
command from the user. Note, however, that some commands may be
issued only to a $ and some only to a ., and that each command has
different limitations; these are discussed with each command in
Section 2.8.

2.1.1 Monitor Commands by Function

A number of keyboard commands are provided for communication
with the DOS Monitor. These commands are briefly identified by
function in Table 2-1 and are fully described in Section 2.8.

Table 2-1

Monitor Commands by Function

Function Command
Establish identity of user LOGIN
Terminate a session before leaving the system FINISH
Enter or retrieve date DATE
Enter or retrieve the time-of-day TIME
Load and execute a program RUN
Load a program GET
Start a program which has been loaded BEGIN
Resume a program that is waiting for user action CONTINUE

(continued on next page)

Table 2-1 (Cont'd)

Monitor Commands by Function

Function Command

Assign an I/0 device or a file at run-time ASSIGN
Inspect or modify individual memory locations MODIFY
Save a program in core for later use SAVE
Dump memory data on the teleprinter DUMP
Suppress or resume echoing of keyboard input ECHO
Suppress or resume teleprinter output PRINT

Start the program just loaded at its ODT entry point ODT

Stop a program STOP
Suspend a program WAIT
Restart a program that has been running RESTART
Terminate a keyboard or paper tape dataset END

2.1.2 When Monitor Commands are Legal

Each command performs a specific function, is legal to use
under specific conditions, and often alters the state of the system,
as shown in the following table.

Command Legal When: State Induced
ASSIGN any time no change

BEGIN program loaded and stopped program running
CONTINUE program loaded and waiting program running
DATE any time no change

DUMP any time no change

ECHO program running no change

(continued on next page)

Command Legal When: State Induced

END program running no change

FINISH no program loaded logged out

GET no program loaded program loaded and stopped
KILL program loaded program stopped and unloaded
LOGIN not logged in logged in

MODIFY any time no change

ODT program loaded and stopped program running under ODT
PRINT program running no change

RESTART program loaded and stopped/waiting program running

RUN no program loaded program loaded and running
SAVE program loaded and stopped no change

STOP program running program stopped

TIME any time no change

WAIT program running program waiting

A program is loaded if you have typed RUN or GET but not KILL,
and as long as the program has not executed a .EXIT call (see Chap-
ter 3).

A program is running if you have typed RUN or if it has been
loaded and you have typed BEGIN, CONTINUE, RESTART, or ODT.

A program is loaded and stopped if GET but not BEGIN was typed,

if it was running and a STOP was typed, or after issuing a fatal

error message (see Appendix F).
A program is waiting if it was running and you typed CTRL/C
followed by WAIT, or after the system issues an action error message

(see Appendix F).

A program is stopped and unloaded (from core) if you have

typed KILL or if the program issued an .EXIT call (see Chapter 3).

2.2 MONITOR MODE AND USER MODE

From the user's point of view, his terminal is in either
Monitor mode or user mode. In Monitor mode, each line the user
types is sent to the Monitor's Command String Interpreter (CSI).
The execution of certain commands places the terminal in user mode.
When the terminal is in user mode, it becomes simply an input/
output (I/0) device for that user. In addition, user programs use
the terminal for two purposes: to accept user command strings (user

mode) or as a direct I/0 device (data mode).

2.3 COMMAND STRING INTERPRETER (CSI)

When the terminal is in Monitor mode the user communicates
with the Monitor's Command String Interpreter (CSI). The commands
described in this Chapter are processed by the CSI (see Appendix I).

The CSI makes several checks before processing commands from

the user. For example, if a user who has not logged in types a
command that requires him to be logged in, the system responds with
the message:

ILL CMD!
meaning the command was illegal and was not executed. The commands
discussed in this Chapter require that the user be logged in except
where explicitly stated otherwise. When a command is issued that
requires the job to use more core than is available,; the system re-
sponds with the message:

NO CORE!
and the user's command is not executed.

All Monitor messages are shown in Appendix F.

2.4 USER IDENTIFICATION CODE (UIC)

Each user of the system is normally assigned a User Identifi-
cation Code (UIC) by the system or installation manager. The UIC
is first used when logging in to the system, as explained in Sec-
tion 2.7. The format of the UIC is:

nnn,nnn

where nnn represents a string of two or three octal digits, from
11 to 376 (@#-1@ and 377 are reserved for the system). The value
to the left of the comma represents the user-group number, while
the value to the right represents the user's number within the

group.

For example:
67,123
specifies user group 67 and user number 123.
NOTE
Except when logging in, the UIC is always de-
limited by the left and right square brackets,

as shown in the examples of various commands
in this Chapter.

2.5 FILENAMES AND FILENAME EXTENSIONS

User program files are named with a certain convention, much
the same as a person is named. For example, the first name is
the filename and the second name is the filename extension. By

convention, the filename and extension are separated by a period.
For example:

GEORGE.DOE

could be a legal filename and extension. Note that the filename and

extension cannot have embedded blanks (spaces) because a space will be
interpreted as a delimiter,

Filenames can consist of from one to six alphanumerics; all

after the sixth are ignored. The filename extension can consist

of from one to three alphanumerics. The extension is generally

used to indicate the type of information in the file. For example:

File Could be:
MAIN.F4 a FORTRAN file named MAIN
SAMPLE . MAC a Macro source file named SAMPLE
TEST1.TMP a temporary file named TEST1
NAME.REL a relocatable binary file named NAME

A list of standard extensions are shown in Appendix O

User program files are identified by the filename.extension

and the UIC. Thus, different users may use the same filename.exten-

sion, and as long as they are created under different UIC's the
files would remain distinct and separate.

2.6 SPECIAL KEYBOARD CHARACTERS

There are several special keyboard characters recognized by
the Monitor's CSI that cause specific functions to be performed.
These keyboard characters are explained below.

2.6.1. The RETURN Key

The RETURN key is used to terminate a keyboard command and
to advance the teleprinter paper one line. Typing the RETURN key
produces a carriage return and line feed action on the teleprinter.

As charactexs are typed, they are transferred into a buffer
where they are stored until the RETURN key (or another special
keyboard character(s)) is typed. When the RETURN key is typed,
the data on that line is transferred to and processed by the CSI.

All legal command strings are terminated by the RETURN key.

2.6.2 The RUBOUT Key

The RUBOUT key is used to correct typing errors. Typing the
RUBOUT key once causes the last character typed to be deleted;
typing it twice causes the last two characters to be deleted; etc.
The Monitor prints the deleted characters delimited by backslashes.
For example, if you meant to type ASSIGN but typed ASIS instead,
the error could be corrected by typing two RUBOUTs and then the
correct characters. The printout would be:

ASIS\ SI \ SIGN

Notice that the deleted characters are shown in reverse order,
i.e., in the order in which they are deleted.

2.6.3 The CTRL/C Keys

The CTRL/C key combination is typed by holding down the CTRL
key while typing the C key. When CTRL/C is typed, the Monitor is

alerted to accept a command from the keyboard. CTRL/C is echoed
on the teleprinter as 4C, carriage return, line feed, and period.

CTRL/C interrupts teleprinter output or keyboard input in a
user program. Monitor action on a CTRL/C is not taken until any
current Monitor command is completed because the keyboard interrupt
is turned off. However, except for DUMP and MODIFY, it appears to

the user that action on a CTRL/C is immediate.

CTRL/C puts the Monitor in listening mode only. If it is
desired to stop the function of the operating program, the STOP
commané should be used.

If a second CTRL/C is typed before the RETURN key terminating
a command, the input so far will be erased, a fresh +C will be

printed, and the Monitor will await a new command.

2.6.4 The CTRL/U Keys

The CTRL/U key combination is typed by holding down the CTRL
key while typing the U key. When CTRL/U is typed, the line on
which it is typed is deleted; the system responds with a carriage
return and line feed so that the line (command) may be typed again.

CTRL/U is echoed on the teleprinter as +U, carriage return,

and line feed.

2.6.5 The Semicolon Key

When the Monitor is in listening mode (i.e., following a
CTRL/C), the semicolon (;) key causes subsequent characters on the
line to be treated as a comment. It effectively puts the keyboard
off-line so that all characters following the semicolon are printed

on the teleprinter but no Monitor action is taken.

2.6.6 The ESCAPE Key

The ESCAPE key (ASCII @33 octal) may be used to pass special
keyboard characters to a running user program. When the CSI de-
tects the ESC key it passes the next character directly to the
user program. The use of this feature is under programmer control.

2.6.7 How Keyboard Characters are Processed

As characters are typed they are stored in the keyboard buffer
(about 85 characters capacity) pending termination of the line with
a RETURN, CTRL/C, or CTRL/U, which transfers the line of characters
to the Monitor buffer.

When a RUBOUT is processed, it remains in the keyboard buffer
and the character which it deletes is replaced with another RUBOUT.
Since RUBOUTs are not removed until the line is transferred to the
user, the capacity of the keyboard buffer may be exceeded if the
sum of normal characters plus RUBOUTs is greater than 85. When
this occurs, only RETURN, CTRL/C, or CTRL/U is accepted; all other
characters are discarded and not echoed. This is done to maintain
economy of core and to ensure that characters such as CTRL/C and
CTRL/U can be processed correctly, even when they appear at the
end of a very long line.

CTRL/C and CTRL/U characters are processed immediately.

2.7 GETTING ON THE SYSTEM

In order to gain access to the system, the user must log in
with the LOGIN command (see section 2.8.11). First, ensure that
the terminal is connected to the system (see Appendix H). The
LOGIN command is issued in response to the Monitor's $. If none
exist on the teleprinter paper, type the RETURN key and a $ will
be printed by the Monitor; if not, a new Monitor must be loaded
as described in the Batch/DOS-11 System Manager's Guide.

In response to $, the user should issue the LOGIN command
with his User Identification Code (UIC) (see section 2.4). For

example:

$LOGIN 204,208
DATE:-28-0CT-72
TIME:-1@:41:16
$

NOTE

In the examples, underscoring is used to designate
system printout, whereas user input is not under-
scored.

In response to the LOGIN command, the Monitor prints the cur-
rent calendar date and time-of-day followed by the $, indicating
that the system is ready for a Monitor command from the user.

Only one user can be logged in at a time. The LOGIN command
will be rejected when it is given before the previous user has
logged out with the FINISH command.

2.8 MONITOR KEYBOARD COMMANDS

A keyboard command to the Monitor consists of two parts: a
command name and possibly one or more command arguments. A com-
mand name is a string of two or more letters; all letters after
the first two and up to a command name delimiter (space or comma)

are ignored.

Monitor keyboard commands are typed in response to a dollar
sign ($) or a period (.), which is printed by the system. Gener-
ally speaking, the $ indicates that the Monitor is waiting for a
new task, and the . indicates that the Monitor is waiting to con-
tinue or abort a previously assumed task.

Although the commands are arranged in alphabetical order for
ease of reference, they can be divided into functional groups for
ease of learning. These groups with their associated commands

are as follows:

e Command to allocate system resources:
ASSIGN

® Commands to manipulate core images:
RUN GET
DUMP SAVE

e Commands to start a program:
BEGIN CONTINUE
RESTART

® Commands to stop a program:
STOP WAIT
KILL

° Commands to exchange information with the system:
DATE TIME
LOGIN MODIFY
FINISH

e Miscellaneous commands:
ECHO PRINT
END oDT

The following conventions apply to all Monitor commands:

® All commands are terminated with the RETURN key.

) The command name is separated from its argu-
ment (dataset specifier, etc.) with a space.

° All characters in a command are interpreted by
the CSI; thus, no embedded blanks are allowed.

® The UIC is always enclosed within square brackets,
[], except when used with the LOGIN command.

The proper format for each command is given in the discussion
of each command in this section. The following conventions apply

to the command formats shown in this section.

Y Brackets [] are used to enclose optional elements

™ Braces { } are used to indicate that a choice must
be made from the enclosed elements

° The symbol A indicates that a space must appear there.
e dev: refers to a device mnemonic (see Appendix A).
° dataset specifier may be represented by any portion

of the expression:

dev:filename.ext, [uic]

where
dev: is a legal device mnemonic and
colon
filename is a filename of up to six alpha-
numerics
.ext is a period and filename extension
of up to three alphanumerics
[uic] is the user's identification code
in the form:
[group no., user no.]
3 logical name is the name given by the user to the

dataset in Link Block word LNKBLK+2 (see Chapter 3).

If for any reason a command cannot be executed satisfactorily,
an appropriate message will be printed on the teleprinter and the

command will be ignored. These messages are shown in Appendix F.

ASSIGN

2.8.1 The ASSIGN Command

Format:

AS[SIGN]Adev: [dataset specifier, logical name]

Purgose H

This command assigns a physical device (and a filename when
the device is file-structured) to the dataset identified by "logical
name". The format of "dataset specifier" is:

filenam.ext[uic]

which designates the name, extension, and uic, if any, to be as-

signed to the file.

Any filename specified for a nonfile-structured device is

ignored.

Note that a device is assigned to a dataset, and that reas-

signing it for one dataset does not reassign it for all datasets.

The ASSIGN command overrides any assignment made in the pro-
gram's internal control blocks (Link and Filename Blocks). The
ABSIGN command is not needed if the program makes its own provi-
sions for obtaining this information; e.g., by specifying defaults
in its control blocks or by requesting a command string, as is done

with the # symbol in the DOS system programs.

An ASSIGN with no argument releases (deassign) all ASSIGNments
previously made by the current user, i.e., since the last LOGIN

command

The ASSIGN command can be given at any time the Monitor is

in core. Consider the following:

If ASSIGN is given before a program is loaded, the
device assignment will remain in effect until an-
other ASSIGN is given with the same logical name
or with no arguments, or until the Monitor itself
is reloaded. ASSIGN, given at this time, enables
the user to specify an assignment which will apply
to several programs.

If ASSIGN is given after a program is loaded and
before it has started running (i.e., after a GET
command) , the assignment will remain in effect as
long as the program is in core, or until another
ASSIGNment is performed. When the program disap-
pears (by an .EXIT request or a KILL command), the
assignment is released.

ASSIGN may also be given after a program is running.
For example, as a recovery from an

AQ@3 (device not ready)

message, the user would do an ASSIGN followed by
a CONTINUE. The assignment will remain in effect
as long as the program is in core, or until the
programmer reassigns the dataset, or until he re-
starts the program with a BEGIN command.

Doing an ASSIGN in this manner is provided for
such emergency situations, but is not recommended
as standard practice because it causes an extra
buffer to be allocated from free core, and it will
be effective only if the program has not already
INITed the dataset to some other device.

BEGIN

2.8.2 The BEGIN Command

Format:

BE[GIN]A [address]

PurEose:

The BEGIN command starts the execution of an already loaded
program at the stated address. If no address is specified, the normal
start address will be used. This command is valid only if a program
is already in core.

BEGIN is used after a GET, a STOP, or following a fatal error
condition. The GET command followed by a BEGIN command is equiva-
lent to a RUN command. If given after a program has been started,
a BEGIN will restore core to the state which existed immediately
after the program was loaded. It will rename all core allocations
to buffers, device drivers, and assignments made dynamically, and
the stack will be cleared before control is passed back to the pro-
gram. If any files are under creation at this time, they will be
deleted (see section 2.8.15).

To start a program at its normal start address, type:

BE

To start a program at absolute address 3446, type:

BEA3446

After a Program Crash:

The BEGIN Command is provided not only as a means of starting
a program loaded by GET but also to enable the user to try again
after a program crash, hopefully with a clean slate. At the time
of the crash, the program may already have opened but not closed
output files and the subsequent request to reopen after a restart
could then lead to other failure because these files now exist., To
prevent this, the BEGIN processor tries to delete the files, but not
by the normal Monitor process since this could mean writing out bit-
maps which are currently in core and must be suspect because of the
crash. Instead, it merely removes the names of the files from the
appropriate device directory, and if these are on disk, unlinks any
blocks so far allocated; for safety it does not touch the bit-maps
already stored on the device. In almost all cases, this procedure

suffices. However, the following implications should be noted.

1. This automatic deletion by BEGIN will not suit a
user who has already amassed considerable data in
one of his output files and cannot replace it if
he starts over., In this case, KILLing the program
to save his data under a different filename might
be a more appropriate action. However, he should
then realize that he might be transmitting the ef-
fects of his program failure to the device concerned.

2., It is possible that by the time of the crash the
program may have produced a fairly long file. On
a DECtape for which there is only one bit-map, this
is no problem. A disk, however, requires several
bit-maps and the allocation of some of the blocks
for the file may already be permanently recorded
because the appropriate bit-map has been filled and
has been replaced in core by another. Since BEGIN
does not change the maps, these blocks will not be
freed for further use. A series of situations such
as this can, after a time, result in the disk becom-
ing full even though the known files are not seen to
occupy the whole capacity. The user should in this
case consider whether or not he should chance disk-
corruption and use KILL rather than BEGIN, The user
can then delete the file by using PIP-11l to avoid the
build-up of the nonavailable blocks described.

Some programs cannot be restarted with BEGIN (i.e.,
after having been started, they cannot be restarted
with BEGIN.) A FORTRAN program is an example. In
general, a program must be self-initialized if BEGIN
is to be used in this way. Also. since the Monitor
will try to clean up core and delete files, reBEGIN-
ning a program which was badly out of control may
lead to undesirable results. Thus, use BEGIN only
if there is no other alternative.

CONTINUE

2.8.3 The CONTINUE Command

Format:
CO[NTINUE]
Purpose:
This command is used after a WAIT command or a recoverable error

condition (operator action message) to resume program operation. at
the point where it was interrupted.

CONTINUE is valid only if a program is already in core.

DATE

2.8.4 The DATE Command

Format:

DA[TE]A [date]

Purgose:

The DATE command may be used to obtain the current calendar
date and to enter a date value from the keyboard; the date is

printed in the dd-mmm-yy format.

To obtain the current calendar date, simply type the DATE
command followed by the RETURN key. For example:

$DATE
20-0CT-72
$

The current calendar date is entered by the system or installation
manager, and need not be reentered except when loading a new DOS

Monitor.

To enter a date value from the keyboard, type the DATE
command, the desired date value, and then the RETURN key.

For example:
$DATE 4 dd-mmm-yy

putting the desired date value in place of dd-mmm-yy. The entered
date value is returned in response to subsequent DATE commands
until another date is given. If the desired date value 1is

an invalid date, e.g., 42-BOB-Al, subsequent responses to DATE
will be meaningless, e.g., gF-XXX-YY.

DATE is valid at any time.

DUMP

2.8.5 The DUMP Command

Format:

DU [MP1ALP: 0] , Startgaddr [,end addr]

PurEose:

The DUMP command is used to print on the Line Printer an abso-
lute copy of the contents of the specified core area, formatted in

octal. The core image is not altered.

The argument O specifies the dump to be output from core. An

O is assumed on default, but the comma is required.

The argument # is assumed if no "start address" is specified
and the highest word in core is assumed if no "end address" is speci-
fied.

DUMP is valid at any time. If given while a program is run-
ning, the operation of the program will be suspended for the time
required to effect the dump.

The syntax of the DUMP command was chosen to facilitate later
expansion and flexibility of the command.

ECHO

2.8.6 The ECHO Command

Format:

EC[HO]

Purgose H

The ECHO command may be used to suppress and restore keyboard
echo, i.e., characters typed by the user will not appear on the
terminal printer. A subsequent ECHO command turns the echo feature
on again. The teleprinter as an output device for the program or
the Monitor is not affected by this command.

ECHO is valid only when a program is running in core and using

the keyboard as an input device.

END

2.8.7 The END Command

Format:
KB
EN[D] A pT

Purpose:

The END command is used to terminate using the console as an
input device, i.e., the keyboard or low-speed paper tape reader.
The command tells the Monitor "there is no more input from the
device". The command effectively generates an end-of-file (EOF)
from the keyboard.

When no device is specified in the command, KB is assumed.

The following actions are required with this command

1. Type CTRL/C to obtain the Monitor's attention.
Since the console is being used for program input
(data mode), the Monitor is not expecting a com-
mand.

2., Issue the END command (with appropriate argument).

3. Type the RETURN key twice; yes, two RETURNs. The
two RETURNs are required to return to the Monitor.

For example: (wheretC = CTRL/C, and (CR) = RETURN)

+C
-END,KB (CR) (CR)

END is valid only when the console is being used as an input
device.

2-22

FINISH

2.8.8 The FINISH Command

Basyrmat s
SOoLia T .

FI[NISH]

Purgose:

The FINISH command informs the Monitor that the current user
is leaving the system. The Monitor deletes all files which are
not protected against automatic deletion on FINISH (see Section
3.9.2.2), and a new copy of the resident Monitor is "booted" into

core.

FINISH is valid only when no user program is in core. There-
fore, unless the last character on the teleprinter is a $, the
user should precede a FINISH with CTRL/C followed by KILL. For
example, the printout might be:

+C

LKILL

SFINISH
TIME:-16:42:00

MONITOR V@8-@2
$

In response to a FINISH, the Monitor prints the time and then the
newly booted Monitor identifies itself. The system is now ready

for a user to log in.

GET

2.8.9 The GET Command

Format:

GE[T] A dataset specifier

Purgose:

The GET command loads the specified file from the specified
device. When a device is not specified, the system device is as-
sumed.

GET is valid only when no program is in core.

The user should use a BEGIN or ODT command to commence exe-

cution.

KILL

2.8.10 The KILL Command

Tt -

L UG T e
e

KI[11l]

PurEose H

The KILL command stops the execution of the current program
after closing all open files and completing any outstanding I/0.
It then removes the program from core by returning control to

the Monitor.

KILL is valid only when a program is in core.

To resume operations, the user must reload the program or
load another with RUN or GET.

LOGIN

2.8.11 The LOGIN Command

Format:
LO[GIN]Auic

Purpose:

The LOGIN command enables a user to gain access to the system.
LOGIN requires a UIC as its argument (see section 2.4). The UIC
indicates which directory (of several possible), on each file-
structured device, will be directly available to the user.

Here the UIC is not enclosed within the square brackets; its
format is simply
nnn,nnn

specifying group, user numbers respectively.

LOGIN is valid only when there is no program lcaded in core
and provided no user has logged in and not logged out (FINISHed).

2-26

MODIFY

2.8.12 The MODIFY Command

Format:

MO[DIFY] A octal address

octal address/contents: [new contents]
Purpose:

This command allows the user to display and make changes to the
contents of the absolute memory location specified by "octal address"
in the command line. When the RETURN key is typed at the end of the
command line, the system responds by printing the contents of that
address. At this point, the user can type one of the following

((CR) = RETURN key; (LF) = LINE FEED key):

(CR) will leave the contents unmodified.
new contents (CR) will change contents to new contents.
(LF) will take similar action as CR and

then automatically print the contents
of the next memory location.

To change the contents of location 40000:

$MODIFYA40000 (CR)
40000/16406: 10406 (CR)

Then to examine the contents of 40000:

$MO240000 (CR)
40000/10406: (CR)

To examine the contents of locations 40000 and 40002, the sequence

would be:

$M0A40000 (CR)
40000/104060: (LF)
40002/000003:

Entry of an address outside the available core memory as part
of the original MODIFY command will cause an error, and the command

will be rejected.

MODIFY is valid at any time.

oDT

2.8.13 The ODT Command

Format:

PurEose:

The ODT command starts the execution of the ODT-11R Debugging
Program. The argument specifies which ODT start address is to be

used:

Argument Starts at Action
(none) START+@ Clears ODT breakpoint table with-
out resetting breakpoints.

R START+2 Clears ODT breakpoint table after
replacing old instructions at
breakpoints.

K START+4 Leaves breakpoints exactly as
they are.

This command begins execution at the ODT entry point of the
user's load module. The user must have linked ODT-11R with his
program and must have identified his program to the Linker with
the /0D switch.

To reset all breakpoint locations at their former instruc-

tions and restart ODT, the user would type:

.ODAR

ODT is valid only when ODT-11lR is linked to a program and

both are in core.

PRINT

2.8.14 The PRINT Command

Format:

PR[INT]

Purgose:

The PRINT command may be used to suppress and restore tele-
printer printing when the printer is used as an output device to
a user program. A subsequent PRINT command turns the printing
feature on again.

PRINT is valid only when a program is running in core and is
using the teleprinter as an output device.

RESTART

2.8.15 The RESTART Command

Format:

RE[START] Aladdress]

Purpose:

The RESTART command permits a program to be restarted. As shown,
the user may optionally supply an address at which the program is to
be restarted. If no address is specified, the address set by the
.RESTART programmed request is assumed if a .RSTRT request has
been issued by the program (see Section 3.8.3.2).

If neither address is specified, the command is rejected.

RESTART is valid only when a program is already in core.

Before the program is restarted, the stack is cleared, any
current I/0 is stopped, and all internal busy states are removed.

Buffers and device drivers set up for I/0O operations will, how-
ever, remain linked to the program for future use.

RUN

2.8.16 The RUN Command

Format:
RU[N] Adataset specifier
Purpose:

The RUN command loads into core the specified program from the
specified device and starts its execution at the normal start ad-
dress. RUN is equivalent to a GET command followed by a BEGIN com-
mand.

The dataset specifier is of the form:

dev:filenam.ext[uic]
When no device is specified, the system device (disk) is assumed.

The sequence in which the Monitor performs its search for the
specified program depends on the existence and type of filename ex-

tension and on the UIC. Various forms of the RUN command are shown
below with the search sequence performed by the Monitor.

[] RUNAFILE
Attempt 1 -- FILE.LDA [current uic]
Attempt 2 -- FILE.LDA [1,1]
Attempt 3 -- FILE [current uic]
Attempt 4 -- FILE [1,1]

[] RUNAFILE .EXT
Attempt 1 -- FILE.EXT [current uic]

Attempt 2 -- FILE.EXT [1,1]

® RUNAFILE[x,x]
Attempt 1 -- FILE.LDA [x,x]
Attempt 2 -- FILE [x,x]

° RUNAFILE.EXT{x,x]

Attempt 1 -- FILE.EXT [x,x]

If all attempts fail to find the file, a NO FILE message is printed

on the teleprinter.

Searching for the LDA extension first exploits the fact that
both the Linker and the SAVE command produce LDA extensions, unless

the user specifies otherwise.

RUN is valid only when there is no program in core.

SAVE

2.8.17 The SAVE Command

Format:

SA[VE]A [dataset specifier][/RA:low:high]

Purgose:

The SAVE command writes the program in core onto the device in
loader format. The core image is not altered. SAVE is valid only
when a program is in core but not running, i.e., immediately after
loading with a GET command or after being halted by either a STOP

command or a fatal error.

'If no dataset specifier is given, the SAVE processor will
automatically set up a file called SAVE.LDA on the system disk
after it has deleted any current file of the same name. If the
user wishes to retain the current file, he must first rename it
using PIP-11. If the dataset specifier is given, the file named
must not already exist or the command will be rejected. System
disk is assumed by default if the dataset specifier contains only
a filename. When the filename is specified, the extension should
also be specified.

Normally it is expected that the user will only wish to save
his program area. If this is the case, the range need not be
given and the new file will begin from the program's low limit and
extend to the top of core. If any other area is to be saved, the
user should include the following at the end of the command:

/RA:1low:high

where /RA is the range switch, and low and high define the limits
required (each being valid octal word-bound addresses). The saved

image will be preceded by the same communication information as
that for the original program lcaded, except that any information
about the resident EMT modules will be lost.

The SAVE processor will endeavor to get an extra 256-word
buffer in order to satisfy the command. If this request cannot
be granted because of insufficient free core, the command will
be rejected. The user is therefore advised to use this facility

only after he has released any datasets currently established.

Once the SAVE command has been syntactically wverified, any
errors will be handled by the SAVE processor, which will print

a relevant message and return to Monitor listening mode:

DEVICE FULL End of output medium reached

FILE ERROR xxx File structures error as indi-
cated by xxx = file status byte

STOP

2.8.18 The STOP Command

Format:

ST[OP]

Purpose:

This is an emergency command to stop the program and to
abort any I/0 in progress (by doing a hardware reset). The pro-
gram may be resumed with either the BEGIN or RESTART command.

STOP is valid only if a program is in core.

STOP differs from KILL in that KILL terminates the program
in an orderly manner and removes the program from core.

TIME

2.8.19 The TIME Command

Format:

TI[ME]A[time]

The TIME command may be used to obtain the current time-of-
day and to enter a time value from the keyboard. The time

is printed in the following format.
hh:mm:ss
meaning hours:minutes:seconds.

To obtain the current time-of-day, simply type the TIME
command followed by the RETURN key. For example:

$TIME
10:43:27
$

The current time-of-day is entered by the system or installation
manager, and need not be reentered except when loading a new DOS
Monitor.

To enter a time value from the keyboard,
the desired time value, and then the RETURN key.
For example:

$TIME A hh:mm:ss
putting the desired time value in place of hh:mm:ss. The entered
time value is returned in response to subsequent TIME commands

until another time value is given.

TIME is valid at any time.

WAIT

2.8.20 The WAIT Command

Format:

WA[IT]

Purpose:

The WAIT command suspends the current program and allows any
I/0 in progress to finish. The program may be resumed with either
the CONTINUE or RESTART command.

WAIT is valid only if a program is in core.

CHAPTER 3
PROGRAMMED REQUESTS

3.1 INTRODUCTION

The Monitor provides a number of services which are available

to any user or system program. The most prominent of these are
input/output (I/0) services. Other services include directory manage-
ment, retrieval and modification of system parameters, various con-
version routines, and a command string interpreter. The I/O services
provide for linkage to device drivers, access to files in the file
structure, and transfer of data to or from each device.

The user program calls for the services of the Monitor through
programmed requests. Programmed requests are macro calls! which are
assembled into the user program and interpreted by the Monitor at
execution time. A programmed request consists of a macro call

followed, when appropriate, by one or more arguments. For example:
.WAIT #LNKBLK

is a programmed request called .WAIT followed by an argument #LNKBLK,
The macro request is expanded at assembly time by the MACRO Assembler!
into a sequence of instructions which trap tc and pass the arguments
to the appropriate Monitor service routine to carry out the specified
function. The assembly language expansion for .WAIT #LNKBLK is:

MOV #LNKBLK, - (SP)

EMT 1

Toc use the macro call, it is necessary to tell the assembler

that you want the system definition for the macro. This is accom-

plished via the .MCALL assembler directive (Macro-11 Assembler Pro-
grammer's Manual), e.g.,

which must appear in the source prior to the first use of .WAIT. When
.MCALL is encountered, the MACRO Assembler will get the definition of
.WAIT from the system macro file (SYSMAC.SML) which is searched for,
first in the current user's disk area, then under user identification
code [1,1}].

The system macros will accept most addressing modes as arguments.
They will detect and announce potentially troublesome (e.g. X(SP))
or unlikely (e.g. SP) modes to protect the user.

lyusers with less than 12K of core cannot run MACRO and consequently
must include the assembly language expansion of the programmed re-
quest in their programs instead of the request itself.

3-1

All legal addressing modes will appear without alteration in
the expansion. Since the monitor expects the address of the Link
Block on top of the stack at .WAIT time, any of the following macro
calls might be appropriate:

.WAIT #LNKBLK

.WAIT R@ ; ADDRESS OF LNKBLK
;IS IN REGISTER Rf
.WAIT POINTR ; ADDRESS OF LNKBLK IS

; IN MEMORY LOCATION POINTR

Refer to the MACRO-11 Assembler Programmer's Manual (Order
Number DEC-11-OMACA-A-D) for further details.

The programmed request arguments are parameters or addresses of
tables which contain the parameters of the request. These tables
are part of the user program, and are described in detail in
Figures 3-6 to 3-18.

3.2 TYPES OF PROGRAMMED REQUESTS

Services which the Monitor makes available to the user through

programmed requests- can be classified intoc three groups:

requests for input/output and related services
requests for directory management services

requests for miscellaneous services

Table 3-1 summarizes the programmed requests available under the
Monitor. Detailed descriptions of each request can be found in

the sections cited in Table 3-1.

Table 3-1
Summary of Monitor Requests

L

Mnemonic Purpose Section
Requests for Input/Output and Related Services:
+INIT Associates a dataset with a device driver and 3.6.1
sets up the initial linkage,
+«RLSE Removes the linkage between a device driver and 3.6.2
a dataset, and releases the driver,
« OPEN Opens a dataset, 3.6.3
.CLOSE Closes a dataset., 3.6.4
«READ Transfers data from a device to a user's line 3.6.5
buffer,
+WRITE Transfers data from a user's line buffer to a 3.6.6
device,
«RECRD Transfers one logical record of a file between 3.6.7
a device and a user buffer.
« BLOCK Transfers one physical block of a file between 3.6.8
device and a Monitor buffer,
« TRAN Transfers data between a device and a user 3.6.9
buffer, independent of any file structure.
<WAIT Waits for completion of any action on a dataset, 3.6.,10
+WAITR Checks for completion of any action on a dataset, 3.6.11
and provides a transfer address for a busy return,
«SPEC Performs special device functions. 3.6.12
«STAT Obtains device characteristics. 3.,6.13
Requests for Directory Management Services:
+ALLOC Allocates a contiguous file, 3.7.1
.DELET Deletes a file. 3.7.2
« RENAM Renames a file, Changes a protection code. 3.7.3
«APPND Appends one linked file to another. 3.7.4
« LOOK Searches the directory for a particular filename 3.7.5
and returns information about the file.
+KEEP Protects a file against automatic deletion on 3.7.6
FINISHing.
Requests for Miscellaneous Services:
« RUN Loads programs and overlays., 3.8.1.1
«EXIT Returns control to the Monitor. 3.8.2.1

{Continued on

next page)

Table 3-1
summary of Monitor Requests (Cont,)

Mnemonic Purpose Section
« TRAP Sets interrupt vector for the TRAP instruction, 3.8.3.1
«RSTRT Sets the address used by the RESTART command. 3.8.3.2
+CORE Obtains address of highest word in core memory. 3.8.4.1
« MONR Obtains address of first word above the 3.8.4.2
resident Monitor.
+«MONF Obtains address of first word above the 3.8.4.3
Monitor's highest allocated free core buffer,
+«DATE Obtains the date. 3.8.4.4
.TIME Obtains the time of day. 3.8.4.5
+CVTDT Converts internal date or time to ASCII. 3.8.4.6
+GTUIC Gets current UIC, 3.8.4.7 ¢
|
«SYSDV Gets Radix-50 name of the system device. 3.8.4.8 |
+GTPLA Gets the current program load address. 3.8.4.9 |
.STPLA Sets the program low address, 3.8.4.10;
«GTCIL Gets the base disk address of the CIL. 3.8.4.11
«GTSTK Gets the current stack base address. 3.8.4.12
«STSTK Sets the current stack base address, 3.8.4.13
. STFPU Sets the floating point exception vector. 3.8.4.14
« RADPK Packs three ASCII characters into one Radix-50 3.8.5.1
word.
« RADUP Unpacks one Radix-50 word into three ASCIY 3.8,5.2
characters,
«D2BIN Converts five decimal ASCIT characters into 3.8.5.3
one binary word,
«BIN2D Converts one binary word into five decimal 3.8.,5.4
ASCII characters.,
+02BIN Converts six octal ASCII characters into one 3.8.5.5
binary word.
«BIN20 Converts one binary word into six octal ASCII 3.8.5.€
characters,
.CSI1 Condenses a command string and checks for 3.8.6.1
proper syntax.
.CSI2 Interprets one command string dataset specifi- 3.8.6.2

cation,

3.2.1 Requests for Input/Output and Related Services
All user I/0 is handled by programmed requests, which provide

three different levels of transfer:

e READ or WRITE
e RECORD or BLOCK
e TRAN

Each level uses a sequence of requests to complete the transfer.
Note the distinction between READ/WRITE, RECORD/BLOCK, and TRAN as
names of transfer levels, and .READ, .WRITE, .RECRD, .BLOCK, and

.TRAN as specific programmed reguests within these levels.

Requests for I/0 related services perform special device
functions (such as rewinding a tape) and obtain device character-

istics from device status words.

Each request related to I/O services is described in Section 3.6.

3.2.1.1 READ or WRITE Level Requests =~ Most input and output

is done at this level. Processing is sequential, in that each read
or write is applied to the next record or line in the file. Records
may be in either ASCII or binary mode, and a number of formats are
handled by the monitor. Records may also be of variable length:
ASCII records usually contain line terminators while formatted binary

records contain byte counts.

READ or WRITE I/O under the Monitor consists of transferring
the contents of a dataset between a device and a line buffer via a
buffer in the Monitor (Figure 3-la). A line buffer is an area set
up by the user in his program, into which he (or the Monitor) places
data for output (or input). The line buffer is usually preceded
by the line buffer header, in which the user specifies the size and

location of the line buffer and the mode (format) of the data.

USER PROGRAM

USERS LINE
BUFFER

.READ -WRITE

-WRITE

MONITOR BUFFER | (DEVICE
< /

-READ

Figure 3-la The Transfer Path

- INIT #LNKBLK

MOV #FILBLK,R@
;FOR OUTPUT, REPLACE .OPENI
.OPENI #LNKBLK,R@ i WITH .OPENO
;ADDRESS OF FILBLK IS IN Rg

——> .READ $LNKBLK, # BUFHDR ;FOR OUTPUT, REPLACE .READ
; WITH .WRITE
.WRITE #LNKBLK ; COULD BE REPLACED BY .WAITR

(Process Data)

.CLOSE #LNKBLK
.RLSE #LNKBLK

LNKBLK: (entries)
FILBLK: (entries) Tables in User's Program
BUFHDR: (entries)

Figure 3-1b Sequence of Requests for READ/WRITE

Figure 3-1 .READ/.WRITE Input/Output Transfers

3-7

When using READ or WRITE one can specify nine different modes
of transfer, in two categories: ASCII and Binary. Details are
presented in Section 3.6.1 and Figure 3-11.

ASCII Modes: Formatted ASCII Parity - Special
Formatted ASCII Parity — Normal
Formatted ASCII Nonparity - Special
Formatted ASCII Nonparity - Normal
Unformatted ASCII Parity - Normal
Unformatted ASCII Nonparity - Normal

Binary Modes: Formatted Binary - Special
Formatted Binary =- Normal

Unformatted Binary - Normal

To implement a READ or WRITE transfer, the programmer follows
the sequence of requests shown in Figure 3-1b. First, the
programmer associates the device with the dataset via the .INIT
request. The argument of this request is the address of a table
called the Link Block. Entries in this table specify the device
involved in the approaching transfer so that the Monitor may
eventually establish a link between that device and the dataset.
The Link Block is described in detail in Figure 3-6. The .INIT
request loads the appropriate device driver into the Monitor's

free core area, if it is not already there.

Following the .INIT request, the programmer opens a dataset with
an .OPENx request. This need be done only if the device being used
is a file-structured device. However, it is advisable to use an
.OPENx even for a non-file-structured device to preserve the device
independence of the program, since it may be desirable to assign
the transfer to a file-structured device later. The arguments of
this request are the address of the Link Block and a register into
which the user has moved the address of a table called the Filename
Block (Figure 3-7). Entries in this table describe the file

involved in the transfer.

A dataset can be opened for input, for output, for update, or
for extension. The last letter of the .OPENx request specifies

which type of open is desired.

A .READ (for input) or a .WRITE (for output) follows the .OPENX.
Either request causes a transfer to take place between the line
buffer and the device via a buffer allocated by the Monitor in

its free core area. The arguments of either request are the address

of the Link Block for the dataset and the address of the Line Buffer
Header (Figure 3.9). The Line Buffer Header specifies the area

in the user's core area to or from which the data is to be trans-
ferred. During the transfer, the Monitor formats the data according
to the transfer mode and formatting characters in the data itself.

In most modes, terminating characters indicate the end of a line.

-READ or .WRITE 1is followed by .WAIT, which tests for the
completion of the last transfer, and passes control to the next
instruction when the transfer is complete. Typically, what follows
a .WAIT on an input is a subroutine to process the portion of data
just read. When the process has been completed, the program checks
to see if there is more data; if there is, the program transfers
control back to the .READ request and the process is repeated. If
h been transferred, the .CLOSE regquest follows to
complete any pending action, update any directories affected, and
release to free core any buffer space the Monitor has allocated from
free core for this dataset. Finally, action on the dataset is
formally terminated with the .RLSE request, which disassociates the
device from the dataset, and releases the driver. Releasing the
driver frees core provided there is no other claim to the driver

from another dataset.

3-9

3.2.1.2 RECORD Level Requests - The Record Level request is

used for random access to the records in a file. A program which
uses Read or Write Level requests can only read or write the next
record in the dataset being processed. When Record Level requests

are used, the program always has access to any record in the file.

Record Level requests may be used only with file-structured
devices and only with contiguous files (not with linked files).
Each of the records in the file must contain the same numbers of
bytes. No formatting is done and no line terminating characters
are needed. The length of a record is independent of the block
size of the device (may be the same or smaller or larger; neither
record length nor block size need divide the other, but processing
may be faster if this is arranged, since it can reduce the number
of multi-block transfers).

Some consideration must be given to the manner in which a
Record Level file is created. Perhaps the most common way to create
such a file is by doing an .OPENC (after the file has been allocated)

and using the .WRITE request to enter data. Unformatted ASCII and
unformatted binary are the suggested transfer modes, since they

do not require te;minators and do not perform formatting; recall
that all records must be the same length. When such a file is
.CLOSED, a logical end-of-file is established following the last
record written. Subsequent processing of the file by .READ

or .RECRD will be confined to the area just written. At some
later time, the file may be opened for extension (.OPENE) and more
data can be written (.WRITE), provided the original space allocated
to the file is sufficient to contain it. A second way to create a
Record Level file is to start with .OPENU (again the file must have
been allocated previously) and to use .RECRD to do the writing. 1In
this mode, the logical end-of-file corresponds to the end of the
allocated area). Note alsc that, unless the program writes in every

record of the file, that some records will be left with meaningless
contents.

Before issuing Record Level requests, the program must issue
an .INIT request to associate the dataset with a file-structured

device. It must then open the dataset; .OPEN is not optional as

with .READ and .WRITE. The dataset may be opened in two ways:

USER PROGRAM

.RECRD output

< -.RECRD input

USER BUFFER

DEVICE

INIT # LNKBLX ; INIT THE DATASET
MOV #FILBLK,RL
.OPENU #LNKBLK,R1 ; OPEN THE FILE
—» . RECRD #LNKBLK, #RECBLK ; INPUT THE RECORD
Request next _WAIT #LNKBLK
record for
update if (Process Data)

more
.RECRD #LNKBLK, # RECBLK ; OUTPUT THE RECORD
LWAIT #LNKBLK

Yeg“ﬂ;;a>

No
.CLOSE #LNKBLK ;CLOSE THE FILE
.RLSE #LNKBLK ;RELEASE THE DATASET

LNKBLK:
FILBLK: Tables in User Program

REORNRT W »
AE-DLle)

Figure 3-2b Sequence of Requests for .RECRD

Figure 3-2 .RECRD Input/Output Transfers.

@ OPENU =~ This mode is used if the program will write
in the dataset. Reading is also permitted.
In fact, quite often the program will read a
record, update it, and write it back.

e OPENI - This mode is used if no writing will be done.
Only reading will be permitted.

The dataset may then be processed using .RECRD requests. If
updating is being done, there will generally be two such requests
in each cycle. Otherwise, there will be only one. Each .RECRD
request should be followed by a .WAIT (or .WAITR) request. When
processing is completed, a .CLOSE request should be issued to
ensure that the last record is actually written to the device (for
output) and that the directory is updated (if necessary). A .RLSE
regquest is also required, so that the driver can be removed from
core (if not still in use by another dataset). The .RECRD request
has a Link Block and a Record Block as arguments. The Record
Block specifies function (input/output), buffer address, record

length, and record number (see Figure 3-12).

3.2.1.3. BLOCK Level Requests - The Block Level request is
used for random access to the physical blocks in a file. The

Block Level is similar to the Record Level. However, at the
Block Level, each request always reads or writes exactly one
physical block of data instead of a user-defined quantity of data,
as is true at the Record Level. 1In addition, data transfer is to
and from a buffer provided by the monitor, rather than a buffer
provided by the user. The user may do his processing in the
monitor buffer or he may transfer data to his own area. As with
Record Level requests, Block Level requests may be used only with
file-structured devices and only with linked files (netwith
contiguous files). V

- PR
g

To implemené a BLOCK transfer, the programmer follows the
sequence of requests shown in Figure 3-3b. Notice that the transfer
must use .INIT, .OPEN, .WAIT, .CLOSE and .RLSE following the same
rules as the READ or WRITE level. The .BLOCK request has the
address of the Link Block and the BLOCK block for its arguments.

The BLOCK block specifies the function (INPUT, GET, or OUTPUT),
the relative number of the block being transferred to or from, the
Monitor buffer address (supplied by the Monitor), and the length of
the Monitor buffer (supplied by the Monitor). See section 3.6.8.

USER PROGRAM *Transfers between the
Monitor's buffer and the
user's buffer are optional
and must be done by the

POSSIBLE user.
USER BUFFER
N
i *
N
.BLOCK QUTPQE(
MONITOR BUFFER T DEVICE)
‘.BLOCK INPUT -
Figure 3-3a The Transfer Path

LINIT # LNKBLK

MOV #FILBLK,R1

.OPENU #LNKBLK,R1
—> . BLOCK #LNKBLK, #BLKBLK

.WAIT #LNKBLK

(Process Data)

-BLOCK #LNKBLK, #BLKBLK

.WAIT #LNKBLK
Yes <1EIE=')~
No
.CLOSE #LNKBLK
.RLSE #LNKBLK
LNKBLK: (entries)
FILBLK: (entries)
BLXBLK: (entries)

Figure 3-3b

; INPUT DESIRED BLOCK

; COULD BE REPLACED BY .WAITR
;UPDATE DATA

;WRITE UPDATED BLOCK

The Sequence of Regquests For .BLOCK

Figure 3-3

.BLOCK Input/Output Transfers

3.2.1.4 TRAN Level Requests - A TRAN level request is a basic

input/output operation. No services are provided for the user other
than to pass his request to the appropriate driver. .TRAN ignores
any file-structure on the device. .TRAN does not operate within a
particular file as do .READ, .WRITE, .RECRD, and .BLOCK; hence no
.OPEN or .CLOSE is used. Because .TRAN does not respect file

structures, the user is strongly cautioned against using it with

file-structured devices, since he can easily do irreparable damage
to information on such a device. Omitting the dataset name from the

Link Block will prevent a file-structured device from being assigned.

Data is transferred directly between the device and a buffer

provided by the user (Figure 3-4a), with no formatting performed.

.TRAN is generally used in 2 situations:
1. When the file structure does not allow the desired
operation (e.g., PIP uses .TRAN to read a directory

block for the directory listing operation).
2. When one does not need or cannot afford the over-

head of doing READ/WRITE processing on a non-file
structured device (e.g, a program to read data
arriving at random intervals from an A/D converter
might use .TRAN to read the data and .BLOCK to
buffer the data on a disk for processing as time

permits.

To implement a TRAN transfer, the programmer follows the sequence
of requests shown in Figure 3-4b. Notice that the transfer must
use .INIT and .RLSE, but must not use .OPEN or .CLOSE. The .TRAN
request has the address of the TRAN Control Block (TRNBLK) as its
argument. This block contains entries which specify the core
starting address of the user's buffer, the device block address,
the number of words to be transferred, and the function to be

performed. TRAN is therefore a device dependent request.
Table 3-2

Transfer Levels for Types of Datasets

Type of Data

Type of Linked Contiguous Nonfile-Structured
Transfer File File Device
READ/WRITE Yes Yes Yes
RECORD No Yes No
BLOCK No Yes No
TRAN * * Yes

* jindicates that TRAN may be used on a file-structured
device if the warnings mentioned are observed. Usage
in these cases is not advised.

3-14

USER PROGRAM

.TRAN output

USER BUFFER
.TRAN input

Figure 3-4a The Transfer Path

.INIT #LNKB,I:'_K — ;\,,,a::‘o‘y“ -, X

(———).TRAN #LNKBLK, #TRNBLK
-WAIT #LNKBLK ;COULD BE REPLACED BY .WAITR

' (Process Data)

Yes ¢

No
.RLSE #LNKBLK

LNKBLK: (entries)
Tables and parameters

TRNBLK: (entries) in User Program

Figure 3-4b The Sequence of Requests For .TRAN

Figure 3-4 .TRAN Input/Output Transfers

3.2.2 Requests for Directory Management Sexrvices

Directory management requests are used to enter filenames into
directories, search for files, update filenames, and protect files
against deletion.

Each directory management request is described in Section 3.7.

3.2.3 Requests for Miscellaneous Services

Requests for miscellaneous services include:
® Requests to Load programs and overlays.

® Requests to return control from a running program to
the Monitor.

® Requests to set Monitor parameters such as the TRAP
vector or a program's restart address.

® Requests to obtain Monitor parameters such as the size
of the Monitor, the date, the time, and the current
user's UIC.

® Requests to perform conversions between ASCII and
Radix-50 packed ASCII, binary and ASCII decimal, and
binary and ASCII octal.

® Requests to access the Command String Interpreter.

Each miscellaneous service request is described in Section 3.8.

3.3 DEVICE INDEPENDENCE
It is generally preferable to write programs so that each

dataset may be associated with the widest possible variety of
devices. This makes it easier to move a program from one configura-
tion to another. It also makes it possible to use the program with
a variety of different media. For example, the Assembler accepts
input from disk, paper tape, DECtape, and other devices.

The monitor makes it relatively easy to achieve this objective.
Most I/0 operations are completely device independent (i.e., no
special actions by the user are required to accommodate the opera-
tion to the device, specifically .READ, .WRITE, .OPEN, .CLOSE,
.WAIT, .WAITR, .INIT, and .RLSE. In addition, .RECRD and .BLOCK re-
guire only that the device be file structured. Only .TRAN and .SPEC
are typically device dependent.

In all cases, no device is associated with a dataset until an
.INIT request is made. The device name may be specified in any
of the following ways:
e the programmer may specify the name in his Link Block;

e the program can obtain a device name by requesting the
user to enter a command string (section 3.8.6);this will
override any device specified in the Link Block;

3-16

e the user can use the ASSIGN command (see Chapter 2)

to associate a device (and file name) with the data-
set, this option overrides both preceding options.

Note that when a command string is solicited by the program, it will
always override the link block specification, no matter what is
entered. However, when ASSIGN is not solicited but is entered

at the operator's discretion, it will override the Link Block

only when specified. In the latter case, it is best to supply

a default in the Link Block.

Note that the substituted devices must be compatible. For
example, the user may initially specify a BLOCK transfer from disk
and later change the assignment to input from DECtape instead.
But, he cannot later specify a paper tape reader as the input
device, since BLOCK level requests do not apply to nonfile-
structured devices.

It is important to note that a device is assigned in a program
to a dataset logical name and that reassigning a device at run
time for one dataset logical name does not reassign that device
for all dataset logical names to which it was originally assigned.

The only transfer requests which are not device independent
are .TRAN and .SPEC.

3.4 SWAPPING ROUTINES INTO CORE

Except for a small, permanently resident portion, the Monitor
routines which process most programmed requests are potentially
swappable. They are normally disk resident and are swapped into
core by the Monitor only when needed. The user may, however,
specify that one or more of these potentially swappable routines
be made permanently core resident or core resident only for the

duration of his program's run.

Making a potentially swappable routine core resident ties up
core space, but speeds up operation on the associated request. The
user may, for example, be collecting data via a .TRAN request in a
real-time environment. In such a case, even the short time needed

to swap in the .TRAN request processor could cause him to lose data.

Any routine which services a programmed request (other than
.READ or .WRITE) may be made core resident by one of the following
methods:

® Routines may be made permanently core resident at
Monitor Generation time (see the DOS System
Manager's Guide).

3

i

17

Routines may be made core resident for the duration
of a program's run by declaring the appropriate
global name (as specified in the definition of each
request in Sections 3.6 through 3.8) in a .GLOBL
assembler directive in the user program. For example,
to make the .'MRAXT processor resident while program
FROP is being run, the following directive would be
included in program FROP:

.GLOBL TRA

Device drivers are swapped into the Monitor's free core area

on an .INIT call and are freed from core on the occurrence of a
.RLSE, provided no other dataset is INITed to that device.

3.5 MONITOR RESTRICTIONS ON THE PROGRAMMER

In return for the services provided by the Monitor, the

programmer must honor certain restrictions:

The programmer should not use either the EMT or the
IOT instructions for communication within his program.

It is recommended that the user not raise his
interrupt priority level above 3, since it might
lock out a device that is currently trying to do
input/output.

HALTS are not recommended. If a HALT is executed
during an I/0 operation, most devices will stop,

and only recovery from the console (pressing the
CONTinue switch on the console) will be effective
(recovery from the keyboard will not be immediately
possible, since a HALT inhibits the keyboard
interrupt). Some devices, such as DECtape, will not
see the HALT and will continue moving, will lose
their positions over the block under transfer, and
may even run the tape off the reel.

The RESET instruction should not be used because it
forces a hardware reset; clearing all buffer registers,
and status flags and disabling all interrupts, includ-
ing keyboard interrupts. Since all I/O is interrupt
driven, RESET will disable the system.

The user must not penetrate the Monitor when he is
using the stack. The stack is set by the RUN time
loader just below the lowest address of the program
loaded. The Monitor checks to see that the stack is
not overflowing each time it honors a request.

The user may allocate temporary storage areas on
the stack by simply subtracting the size of the
area needed from the current stack pointer value.
When doing so, he should use a .MONF (Section 3.8.4.3) to
determine the highest address being used by the
Monitor. It is generally wise to leave some space
for future Monitor expansion (as a consequence of
programmed requests) and for stack extension (as a
consequence of subroutine calls, Monitor reguests,
device interrupts, etc.). Consult Figure 3-5 for
more information about monitor core usage.

The user

should be aware that certain requests,

such as .INIT, may change the amount of available
free core, since the instructions may call in drivers
and establish data blocks. Such requests affect the
result of MONF requests.

Certain requests return data to the user on the stack.

The user
stack is
after it
the user

The user

must clear the stack himself before the
used again. The Monitor clears the stack
honors requests that do not return data to
on the stack.

should not use global names that are

listed in Appendix E.

The Link

pointer in the Link Block is set by the

Monitor and must not be altered by the user.

INIT

3.6 REQUEST FOR INPUT/OUTPUT SERVICES

3.6.1 .INIT - Associate a dataset with a device driver and set up

the initial linkage.

Macro Call: .INIT #LNKBLK
where LNKBLK is the address of the Link Block.

Assembly Language Expansion:
MOV #LNKBLK,-(SP)

EMT 6
Global Name: INR
Description: Assigns a device to a dataset and assures that the

appropriate driver exists and is in core. If the driver is not in
core, it is loaded. The device assigned is that specified in the
associated Link Block, unless assignment has been made to the logical
name specified in the Link Block with the ASSIGN command or via the
Command String Interpreter. After the .INIT has been completed,
control is returned to the user at the instruction following the

assembly language expansion. The argument is removed from the stack.

Rules: The user must set up within his program a Link Block
of the format explained in section 3.9.1 for each dataset to be
INITed. A dataset which has been .INITed should be .RLSEd prior to
any further .INIT request for any Link Block.

Errors: A nonfatal error message, A003, is printed on the
teleprinter if no assignment has been made through the ASSIGN command ,
and the DEFAULT DEVICE is either not specified in the Link Block or
has been specified illegally (i.e., no such device on the system).
The user may type in an assignment (ASSIGN) and give the CONTINUE
console command to resume operation.

Control is transferred to the address specified by the error
return address in the Link Block if at any time during an operation
there is not enough space in free core for the necessary drivers,
buffers, or tables. If no address (i.e., a zero) is specified in the
Link Block's ERROR RETURN ADDRESS, a fatal (F007) error is printed

and the program stops.

Example: (see .RLSE).

3-20

.RLSE

3.6.2 .RLSE - Remove the linkage between a device driver and a data-
set and release the driver.

Macro Call: .RLSE #LNKBLK
where LNKBLK is the address of the Link Block previously INITed.

Assembly Language Expansion:
MOV #LNKBLK, - (SP)

EMT 7
Global Name: RLS
Description: Dissociates the device from the dataset and releases

the dataset's claim to the driver. Releasing the driver frees core
provided no other dataset has claimed the driver, and provided that

the driver is not permanently core resident.

Rules: The device to be released must have been previously
INITed to the dataset.

If the dataset has been OPENed on a directory device, it must be
CLOSEd before the device is released. On a nondirectory device, a
.RLSE will ensure that any data remaining in the Monitor buffer for
output is dispatched to the device and will return any buffer still
associated with the dataset to free core.

After the release has been completed, control is returned to the
user at the instruction following the assembly language expansion;
the argument is removed from the stack.

Errors: If the dataset has been OPENed to a file-structured
device, a .RLSE not preceded by a .CLOSE will be treated as a fatal
error, F005. A .RLSE error (F005) may also occur if the link pointer
in the Link Block is invalid, indicating probable corruption of the

Monitor or its control blocks.

Example: .

. INIT #LNK1 ;ASSOCIATE A DATASET WITH A DEVICE

.

.RLSE #LNK1

.WORD ERR1 ; ERROR RETURN ADDRESS
LNK1: .WORD 0 ; POINTER FOR MONITOR
.RAD50 /DSI/ ; LOGICAL NAME OF DATASET
.BYTE 1,0 ;DEVICE SPECIFIED, UNIT
.RAD50 /KB/ ; SPECIFY KEYBOARD
ERR1: ; ERROR PROCESSING LOGIC

.OPEN

3.6.3 .OPEN - Prepare a device (which has been .INITed) for data
transfer and associate the dataset with a file (if the device is file-

structured).

Macro Call: .OPEN #LNKBLK,#FILBLK
This form assumes that the File Block contains a code indicating how
the file is to be opened (see Description below).

Assembly Language Expansion:

MOV #FILBLK,-(SP)
MOV #LNKBLK, - (SP)
EMT 16

Alternate Form of Macro Call:
.OPENx #LNKBLK,Rn

where Rn is a register containing the address of the File Block and

x indicates the type of .OPEN (see Description below).

Assembly Language Expansion:

MOVB #CODE, -2 (Rn) (see Description below)
MOV Rn,-(SP)

MOV #LNKBLK, - (SP)

EMT 16

Global Name: OPN (See Appendix C for subsidiary routines.)

Description: When used, .OPEN follows .INIT or .CLOSE (if more than
one file is to be opened on the same dataset). When the device being
used is file-structured, .OPEN associates a specific file with the
dataset. .OPEN also acquires a data buffer and prepares the device

or the file for the ensuing data transfers. See Appendix C for details
about specific .OPEN actions for particular devices. .OPEN has five
forms; the desired form may be specified by inserting the proper

HOW OPEN code in the File Block (see Figure 3-7) or by selecting one

of the alternate forms of the Macro Call. The different .OPEN forms
are described below:

HOW OPEN
Form Code Description
. OPENU 1 opens a previously created contiguous file
for input and output by .RECRD or .BLOCK
request; .OPENU is rejected if the device
is not file-structured.
.OPENO 2 a. creates a new linked file and prepares

it for output via .WRITE; the file
must not already exist.

b. prepares a nonfile-structured device
for output via .WRITE (see Appendix C).

.QPEN (cont)
HOW OPEN

Form Code Description

.OPENE 3 opens a previously created linked or con-
tiguous file to make it longer via .WRITE;
note that a contiguous file may only be
extended within the area already allocated;
although additional blocks may be added to
a linked file, no additional blocks may be
added to a contiguous file (see .CLOSE);
.OPENE is treated like .QOPENQ if the device

is not file-structured.

.OPENI 4 a. opens a previously created linked or
contiguous file for input via .READ,
.RECRD, or .BLOCK.
b. prepares a nonfile-structured device
for input via .READ (see Appendix C).

.OPENC 13 opens a previously created contiguous file
‘ for output via .WRITE; when a contiguous
S file is first opened for writing (via
.WRITE), .OPENC must be used; subsequent
opens for output (via .WRITE) must be
.OPENE's; .OPENC is treated like .OPENO
if the device is not file-structured.

At this point, the user should note the difference between linked
files and contiqguous files. A linked file has records allocated to it
one at a time, as they are needed. Each record in the file contains
a pointer to its successor, the User File Directory (UFD) points to
the first record. Because records are allocated as needed, the user
need not concern himself at all with the size of the file nor with the
allocation of any records. Furthermore, a linked file can easily be
extended in the future. However, because records are scattered about
on the disk and because the system must read all intermediate records
to move from one record to another (forward only), linked files can
only be used for sequential processing (.READ or .WRITE).

A contiguous file has 21l of its records allocated at once in a

contiguous area of the disk which is reserved for the file. Since any
record in the file can easily be located relative to the first record
in the file, random (or direct) access (.RECRD or .BLOCK) is possible
in addition to sequential access. However, it is now necessary to
know in advance how much space will be needed, since no more space can
be added later. Since this may be difficult, one often has to guess
and space is often wasted. ©Note, however, that a contiguous file can
be extended within the space already allocated, i.e., if the area was
not filled when the file was first written (or extended), more data
can be added. Because the user is responsible for determining the
size of a contiguous file, he is required to allocate it before open-
ing it (compare .OPENC and .OPENO). This may be done with PIP, using
the ALLOCATE command or with the .ALLOC programmed request.

3-23

.OPEN (cont)

After the open request has been processed, control is returned to

the user at the instruction following the assembly language expansion;

the arguments are removed from the stack.

At this time,

however, the

device concerned may still be completing operations required by the

request. A summary of transfer requests which may legally follow

.OPEN requests is illustrated in Table 3-3.

Table 3-3

Transfer Requests Which May Follow Open Requests

Linked File Contiguous File
Input Outpq; Input OCutput File
.RECRD .RECRD Already
Open ~ .READ [.WRITE |.READ |.BLOCK | .WRITE | .BLOCK Exist ?
. OPENU Yes Yes Must
.OPENO Yes Must Not
.OPENE Yes Must
.OPENI Yes Yes Yes Must
.OPENC Yes Must
Rules: a. General Rules for All .OPENx Requests - The user must

set up a Filename Block in his program (see Figure 3-7).

dataset is a file,

name (see Section

will be specified by an .ASsign or

If the

the Filename Block must contain a legal file-

2.3).

If the dataset is not a file, or if it

via the Command String

Interpreter, the Filename Block need not contain any FILENAME or

EXTENSION entries.

All datasets must have been INITed before they are OPENed.

The .OPEN must be applicable to the type of device (e.g.,
to the line printer is illegal).

For datasets on directory devices,
Code (UIC) in the Filename Block (if specified) must be in the
If the UIC is not specified, the user

directory of the device.

.OPENI

the User Identification

must have logged in with a UIC that appears on the device.

The .OPENx request must not violate the protect code of the

file.

If a dataset is opened for any output,

again until it has been closed.

3-24

it cannot be opened

.OPEN (cont)

b. Rules for .OPENO - The .0OPENO request is applicable

only for outputs to nonfile-structured devices or to a linked

file on a file-structured device. It is not applicable to con-
tiguous files.

The .OPENO request creates a linked file on a directory device;

d in the corregnonding Filename Rlaock

cannot exist prior to the .0OPENO request.
The .OPENO request will return an error if the disk is
full.

c. Rules for .OPENI - .OPENI may be used for inputs from
contiguous or linked files, or nondirectory devices.

The file referenced in the corresponding Filename Block must
exist in the directory.

If a file is open for input (.OPENI), it cannot be opened for
output, but it may be opened for extension or update.

At any one time, a file can be opened for input to a maximum

of 62,, or 76, datasets.

8
d. Rules for .OPENU, OPENE, and .OPENC - The file must

exist and cannot currently be opened for output.

The file cannot currently be opened by another .OPENU, .OPENE,
or .OPENC.

A contiguous file can be opened for extension, provided that
the area already allocated to the file does not need to be en-
larged, which is not possible.

A linked file cannot be opened with .OPENC, which is appli-

cable only to contiguous files.

Errors: If any of the preceding rules are violated, the Monitor
places an error code in the STATUS byte of the Filename Block (see
Table 3-7) and transfers control via the pointer in the ERROR RETURN
ADDRESS of the Filename Block. If this address is 0, a fatal error

message is printed on the teleprinter. Fatal error messages are

iisted in Appendix F.

Example: (See .CLOSE)

.CLOSE

3.6.4 .CLOSE - Close a dataset.

Macro Call: .CLOSE #LNKBLK
where LNKBLK is the address of the Link Block (see Figure 3-7).

Assembly Language Expansion:
MOV #LNKBLK, - (SP)

EMT 17
Global Name: CLS (See Appendix C for subsidiary routines.)
Description: The .CLOSE request indicates to the Monitor that no

more I/0 requests will be made on the dataset. .CLOSE completes any
outstanding processing on the dataset (e.g., on output, it writes the
last buffer; on extension, it links the extension to the old file;
etc.), updates any directories affected by the processing, and re-
leases to free core any buffer space established for the processing.
When a file which has been opened for output is closed, the last block
written and the last byte written are recorded in the directory to
indicate end-of-data. This eliminates the need to pad out blocks with
nulls and allows the written data within a contiguous file to be
extended at a later time.

After the .CLOSE request has been completed, control is returned
to the user at the instruction following the assembly language expan-
sion; the argument is removed from the stack. As with .OPEN, some
appropriate device action may still be in progress at this point (see

Appendix C).

Rules: The dataset to be closed must have previously been
opened if it was a file on a file-structured device.
As with .OPENx, a .CLOSE is not required if the dataset is not

a file, but it is strongly recommended in order to maintain device
independence.

Errors: Dataset Not Inited - Fatal Error F000;
Device Parity Error - Fatal Error F01l7

All error messages are explained in Appendix F.

.CLOSE {cont)

Example: Open for input a dataset named IMP, which is file

PROG1.BIN on DECtape unit 3.

close the file.

.INIT #SET1

After the data transfer is complete,

.OPEN #SET1,#FILE1l ;OPEN SET1 FOR INPUT (OPEN CODE

(Input is
Performed
Here)
.CLéSE #SET1
.RLSE #SET1
.WORD ERR1

SET1: .WORD O
.RAD5Q /IMP/
BYTE 1,3
.RAD50 /DT/
.WORD ERF1
.WORD 4

FILEL: .RAD50 /PRO/
.RAD50 /Gl/
.RAD50 /BIN
.BYTE PROG,PROJ
.BYTE 177
.EVEN

ERR1:

ERF1:

;IS IN FILE BLOCK)

;DATASET NAME

; PHYSICAL DEVICE NAME

; ADDR OF ERROR RTN
;OPEN FOR INPUT
; FILENAME

; EXTENSION

;HERE FOR .INIT, .OPENI, .CLOSE,
;OR .RLSE ERRORS (DEVICE)

;HERE FOR .OPENI ERRORS
; (DATA FILE)

3=-27

.READ

3.6.5 L.READ - Read the next record in the dataset.

Macro Call: .READ #LNKBLK, # BUFHDR
where LNKBLK is the address of the Link Block, end BUFHDR is the ad-
dress of the line buffer header.

Assembly Language Expansion:
MOV #BUFHDR, - (SP)
MOV #LNKBLK, -~ (SP)
EMT 4

Global Name: RWN (Routine is permanently core resident).

-

Description: The .READ request transfers the data from the device to
the user's line buffer as specified in the line buffer header. The
transfer is done via a buffer in the Monitor, into which an entire
device block is read, and from which the desired data is transferred

to the user's line buffer. Each read causes the user to receive the
next record in the data set. Block boundaries are ignored and new
blocks are read as needed. After any I/O transfer has been started,
control is returned to the user at the next instruction, with the argu-
ments removed from the stack.

Refer to Section 3.9.3.2 for more details on transfer modes.

Rules: If the device is file structured, the .READ request

must be preceded by an .OPENI. The user must provide in his pro-

gram a line buffer and line buffer header (see Figure 3~9). Further
actions on the dataset by the Monitor will be automatically postponed
until the .READ processing has completed. The user program should,
however, perform a .WAIT or .WAITR to ensure proper completion of trans-
fer before attempting to use the data in the line buffer. Otherwise,

he might find that he is processing before the data he wants has ar-
rived.

Errors: Specification of a transfer mode which is inappropriate
for the device assigned to the dataset, attempting to .READ from or
.WRITE to a file-structured device for which no file has been .OPENed
or for which the type of .OPEN is incorrect will be treated as fatal
errors and will result in a F010 message.

Note: A dataset can only support transfers in one direction at
one time, i.e., READ only or WRITE only. If the same device is to be

used for both operations, spearate datasets must be used for each.

.WRITE

3.6.6 .WRITE - Write the next record in the dataset.

Macro Call: .WRITE #LNKBLK,#BUFHDR
where LNKBLK is the address of the Link Block, and BUFHDR is the ad-

dress of the line buffer header.

Assembly Language Expansion:
MOV #BUFHDR, - (SP)
MOV #LNKBLK,- (SP)

EMT 2
Global Name: RWN (Routine is permanently core resident).
Description: The .WRITE request initiates the transfer of data from

the user'’s line buffer to the device assigned. The data is first
transferred to a buffer in the Monitor, where it is accumulated until
a buffer of suitable length for the device is filled.! The data in the
Monitor buffer is then transferred to the next device block, and any
data remaining in the user's line buffer is moved to the (now emptied)
Monitor buffer. After any I1I/0 transfer to the device has been started,
control is returned to the user at the next sequential instruction.
The arguments are removed from the stack upon return.

Refer to Section 3.9.3.2 for more details on transfer modes
and the like.

Rules: If the requested device is file structured, the dataset
must have been opened by an .OPENO or .OPENE for a linked file, or
.OPENC for a contiguous file. The user must provide a line buffer and
its header in his program (Figure 3-9).

Further actions on the dataset by the Monitor after .WRITE will
be automatically postponed until the .WRITE processing has been com-
pleted. Before refilling the line buffer, however, the user program
should perform a .WAIT or .WAITR to ensure proper completion of the
transfer. Otherwise, it might store new data on top of data which has

not yet been written.

Errors: See .READ for errors.

lFor terminal devices, data transfer also occurs when a line
terminator is seen (see Section 3.9.3.2).

3-29

.RECRD

3.6.7 .RECRD - Read or write a specific record in a file.

Macro Call: .RECRD #LNKBLK, #RECBLK
where LNKBLK is the address of the Link Block, and RECBLK is the
address of the Record Block (see Figure 3-12).

Assembly Language Expansion:

MOV #RECBLK, - (SP)
MOV #LNKBLK,- (SP)

EMT 25
Global Name: REC
Description: The .RECRD request causes a specific record to be

transferred to (or from) the user's record buffer. Each record in
the file may be individually addressed, and the user is not restricted
to reading or writing the next record. Data transfer is by way of a
buffer in the Monitor which will contain exactly one physical block
of information. There is no rule concerning the relative sizes of
records and blocks; however, efficiency may be improved if one is a
multiple of the other. The Record Block specifies record number
(starting at @), buffer address and length, and transfer direction
(read or write). .RECRD requests require the use of the .INIT, .RLSE,
.OPEN, .CLOSE, and .WAIT (or .WAITR) requests. After the transfer
has started, control is returned to the user at the instruction
following the assembly language expansion with arguments removed from
the stack.

Rules: The requested device must be file-structured and the
file must be contiguous.

The user must set up a Record Block in his program and must pro-
vide a buffer.

All records must have the same length.

The user should perform a .WAIT or .WAITR to ensure that proces-
sing has completed.

The associated file must have been opened with .OPENU or .OPENI.

Errors: An error causes a return to the user with the type
of error indicated in the FUNCTION/STATUS word of the RECORD BLOCK.
The user should perform the following test after his request to ensure
that the request completed normally.

TSTB RECBLK+1

BNE ERROR

.BLOCK

3.6.8 .BLOCK - Read or write a specific block in a file.

Macro Call: .BLOCK #LNKBLK, #BLKXBLK
where LNKBLK is the address of the Link Block, and BLKBLK is the ad-
dress of the BLOCK block (see Figure 3-13).

Assembly Language Expansion:

MOV #BLKBLK, - (SP)
MOV #LNKBLK, - (SP)
EMT 11

Global Name: BLO

Description: BLOCK requests provide for random access to the
blocks of files stored on disk or DECtape.

In this mode, data is transmitted to or from a specified block
in a file with no formatting performed. Transfers take place between
the device block and a Monitor buffer. The user may process the
data in the Monitor buffer or he may transfer the block to and from
his own area. BLOCK requests require the use or the .INIT, .OPEN,
.CLOSE and .WAIT (or .WAITR) requests.

The user must specify one of three functions in the BLOCK block:
INPUT, GET, or OUTPUT (see Figure 3-13). After the transfer has
started, control is returned to the user at the instruction following
the assembly language expansion with arguments removed from the stack.

INPUT: During an INPUT request, the requested block of the

requested file is read into a Monitor buffer, and the
user is given in the BLOCK block (see Figure 3-11)

the address of the buffer and the physical length of
the block transferred.

GET: During a GET request, the Monitor returns in the BLOCK
Block the address and length of a buffer within the
Monitor that he can fill for subsequent output. Only
one GET is required for each time the file is OPENed
and CLOSEd (i.e., once a buffer has been located,; it

may be used repeatedly). The user must assure that
he does not over-run the buffer. This request is un-
necessary if an INPUT request has occurred.

OUTPUT: During an OQUTPUT request, the contents of the buffer
assigned is written on the device in the requested
relative position in the requested file.

Rules: The associated file must be opened by .OPENI for input
or .OPENU for input or output.
¥ Access to linked files or nondirectory devices is illegal.
The user must set up the BLOCK block in his program according to
the format of Figure 3-13.

.BLOCK (cont)

Errors: Error processing causes a normal return to the user,
with the type of error indicated in the FUNCTION/STATUS word of the
BLOCK bilock. The user should perform

TSTB BLKBLK+1

BNE ERROR

after a .WAIT to assure that his request was error free.

3-32

.TRAN

3.6.9 .TRAN - Read or write the specified block (file-structured

device) or the next block (non-file-structured device).

Macro Call: .TRAN #LNKBLK, #TRNBLK
where LNKBLK is the address of the Link Block, and TRNBLK is the ad-
dress of the TRAN block (see Figure 3-14).

Assembly Language Expansion:

MOV #TRNBLK, - (SP)
MOV $#LNKBLK, - (SP)

EMT 10
Global Name: TRA
Description: .TRAN provides nearly direct access to the device on

which the dataset resides. No file processing is done and any file
structure is ignored. Therefore, writing with .TRAN on a file-
structured device is especially risky and many lead to the corruption
of all data on the device. If .BLOCK request can be used instead of
.TRAN, it is recommended. Each .TRAN will transfer one or more blocks,
depending upon the word count in the TRAN Block. Blocks on file-
structured devices are referenced by absolute block number, while blocks
on non-file-structured devices are processed in sequence. .INIT, .RLSE
and .WAIT (or .WAITR) must be used. .OPEN and .CLOSE must not.

After the transfer has started, control is returned to the user at the
instruction following the assembly language expansion. The arguments

are removed from the stack.

Rules: .TRAN must be preceded by an .INIT request on the as-
sociated dataset. .OPEN must not be used. For each .TRAN request,
the user must provide a transfer control block, as shown in Figure
3-12. Further actions on the dataset by the Monitor will be automati-
cally postponed until the .TRAN processing has been completed. The
user program should perform a .WAIT or .WAITR to ensure proper com-
pletion of the transfer before attempting to reference any location

in the data buffer.

Errors: An invalid function code in the transfer control block
will result in an error diagnostic message on the teleprinter at run
time.

Errors in the transfer will be shown in the FUNCTION/STATUS word
of the TRAN block; the last word of the block will be set to show

how many data words have not been transferred.

.TRAN (cont)

Example: Transfer 2008 words of data from DECtape unit 3,

starting at block 1008 to core starting at location BUFFER.

.INIT #TAPEl

.TRAN #TAPEl, #BIN40

.RLSE #TAPE1

.WORD ERR1
TAPEl: .WORD 0
.RAD50 /TPLl/
.BYTE 1,3
.RAD50 /DT/
BIN40: .WORD 100 ; STARTING BLOCK #
.WORD BUFFER ; STARTING ADDRESS IN CORE
.WORD 200 ; NUMBER OF WORDS
.WORD 4 ; INPUT
.WORD 0 ;FOR MONITOR USE
ERRL: ;ERROR ROUTINE FOR DECTAPE

BUFFER: .WORD 0
BUFEND: .BLKW 200

WAIT

3.6.10 .WAIT - Wait for completion of process on dataset.

Macro Call: .WAIT #LNKBLK
where INKBLK is the address of the Link Block (see Figure 3-6).

Assembly Language Expansion:

MATT LTNTDTY — /aoD)

Ea.vv I AN DD dai Ao

EMT 1
Global Name: (Routine is embedded in the resident Monitor.)
Description: .WAIT tests for completion of the last requested action

on the dataset represented by the referenced Link Block. If the action
is complete (that is, if the request has completed all its action),
control is returned to the user at the next sequential instruction
following the assembly language expansion; otherwise, the Meonitor re-
tains control until the action is complete. A .WAIT or .WAITR should
be used to ensure the integrity of data transferred to or from a line

buffer. The argument is removed from the stack.

Rules: The dataset must be INITed.

Errors: If the dataset is not INITed, a fatal error occurs and

F000 is printed on the teleprinter.

.WAITR

3.6.11 .WAITR - Check for completion of processing on dataset and

return or transfer.

Macro Call: .WAITR #LNKBLK, #ADDR
where LNKBLK is the address of the Link Block, and ADDR is the address

to which control is transferred if the processing is not complete.

Assembly Language Expansion:

MOV #ADDR, - (SP)
MOV #LNKBLK, - (SP)

EMT 0
Global Name: (Routine is imbedded in the resident Monitor.)
Description: .WAITR tests for completion of the last requested

action on the specified dataset. If all actions are complete, control
is returned to the user at the next sequential instruction following
the assembly language expansion. If all actions are not complete,
control is given to the instruction at location ADDR. The arguments
are removed from the stack. It is the user's responsibility to return
to the .WAITR to check égain.

Rules: The user should use a .WAIT or a .WAITR request to
assure the completion of data transfer to the user's line buffer be-
fore processing the data in the buffer, or moving data into it. The
dataset must be INITed.

Errors: If the dataset is not INITed, a fatal error occurs
and F000 is printed on the teleprinter.

.SPEC

3.6.12 .SPEC - Special functions.

Macro Call: .SPEC #LNKBLK, # SPCARG
where LNKBLK is the address of the Link Block, and SPCARG may be
either a special function code or the address of a special function

block containing the code (see Figure 3-15), depending upon the
function.
Assembly Language Expansion:

MOV #SPCARG, - (SP)
MOV #LNKBLK,- (SP)

EMT 12
Global Name: SPC
Description: This request is used to specify a special function

(action) to a device, such as rewind magnetic tape. A code identifies
the function and must be in the range 0-255;,. When the function
requires no supporting data, the code itself is the first parameter

to be placed upon the processor stack in the assembly language call
sequence. However, if the user must supply additional information

or if the function exvects to return data to the user, the code

is passed within a special function block and the address of the
block is the call parameter. The format of this block is shown in
Figure 3-15.

If a .SPEC request is made to a device which has no special
function code, an immediate return is made showing that the function
has been complete. After the request has been started, control is
returned to the user at the instruction following the assembly lan-

guage expansion. The stack is cleared.
Rules: The dataset must be INITed.

Errors: Fatal error F000 is returned if the dataset has not
been INITed.

R

o

STAT
3.6.13 .STAT - Obtain device status.

Macro Call: .STAT #LNKBLK
where LNKBLK is the address of the Link Block.

Assembly Language Expansion:
MOV #LNKBLK,- (SP)

EMT 13
Global Name: STT
Description: Determine for the user the characteristics of the

device specified in the Link Block. After the request has been com-
pleted, control is returned to the user at the instruction following
the assembly language expansion. This request returns to the user

with the following information at the top of the stack.

SP Driver Facilities Word

SP+2 Device Name (Packed Radix-50)

SP+4 Device Standard Buffer
Size (in words)

where Driver Facilities Word has the following format;

15114 1131211] 10 9 8 7 6 5 4 3 2 1 0
Nspare \ spare /C/i;::::::;,/”
= device is directo device will support multi-
structured dataset activity
= device is DECtape L1 = device will handle output
= device is sequential magnetic tap lm] = device will handle input
= system disk driver 1 = device will handle binary data
= device has multiple units under ——1 = device will handle ASCII data
one controller ——1 = driver has a special function
= device is a terminal entry
= driver has an OPEN entry 1 = driver has a CLOSE entry

Device Name is the Radix-50 packed ASCII standard mnemonic for the
device (Appendix A); and, Device Standard Buffer Size is the block
size (in words) on a blocked device or an appropriate grouping size

on a character device.

Rules: The dataset must be INITed. The user must clear the

stack upon return.

.ALLOC

3.7 REQUESTS FOR DIRECTORY MANAGEMENT SERVICES

3.7.1 .ALLOC - Allocate (create a contiguous file).

Macro Call: <ALLOC #LNKBLK,#FILBLK, #N
where INKBLK is the address of the Link Block, FILBLK is the address

of the Filename Block, and N is the number of 64-word segments re-
quested.

Assembly Language Expansion:

MOV #N,=-(SP) or MOV #N+18886%,- (SP)
MOV #FILBLK,-(SP)
MOV #LNKBLK,- (SP)

EMT 15
Global Name: ALO (See Appendix C for subsidiary routines.)
Description: Searches the device for a free area equal to N 64-

word segments, and creates a contiguous file in the area if it is
found, by making an appropriate entry in the User File Directory (UFD).
If the sign bit (bit 15) of N is set, the UFD pointer will point to
the beginning of the allocated area thereby indicating that the file
is empty. This enables partial filling of the file space and later
extension of the file. If the sign bit of N is not set, the UFD
pointer will point to the end of the allocated area and thereby indi-
cate that the file area is full and may not later be extended.
(Linked files are created by an .OPENO request.) Search begins at
the high end of the device. The number of blocks allocated will be
the minimum number required to contain N segments, i.e.,

G
where B is the number of 64-word segments per block. For example, if
N=9 and the device specified is DECtape, then B=——- = 4. Therefore,

N 9 64
E*= 7= 3, and 3 blocks will be allocated.

After the request has been completed, control is returned to the
user at the instruction following the assembly language expansion.
The arguments are removed from the stack, and the top word of the
stack will be set to -1 to indicate the successful completion cof the
request, or to the largest number of segments currently available if
this is less than the called request. The value will be meaningless

if the call cannot be met by reason of any other error.

WALLOC (cont)

Rules: Must be preceded by an .INIT request on the dataset.
A Filename Block must be set up by the user in his program.

Errors: Control is returned either to the ERROR RETURN ADDRESS
in the Filename Block if it is specified, or to the teleprinter for
an error message if it is not. Possible errors are shown below:

Error Code Returned Error Message

Error Condition To Filename Block On_Default
Device Not Ready - A002
Dataset Not INITed - F0O0O
File Exists 2 F024
Directory Full 12 ‘ F024
UIC Not In Directory 13 F024
Illegal Filename 15 F024

If the error address in the Filename Block is taken, the top word of
the stack is meaningless.

Example: Create a contiguous file of four 25610 word blocks
on DECtape unit 4. Name the file FREQ.DAT.

.ALLOC #FRQ,#FREQIN,#20
INC @sp
BNE NOROOM

.

.WORD ERR1
FRQ: .WORD 0
.RAD50 /DTA/
.BYTE 1,4
.RAD50 /DT/

.WORD ERR2

.WORD 0
FREQIN: .RAD50 /FRE/
.RAD50 /Q/

.RAD50 /DAT/
. WORD UIC,PROT1

ERR1: ;TO HERE IF NO BUFFER AVAILABLE

. ;FOR DRIVER
ERR2: : ;TO HERE IF FILE STRUCTURED ERROR
NOROOM: ;TO HERE IF NOT ENOUGH CONTIGUOUS

s BLOCKS ON DEVICE

.DELET

3.7.2 .DELET - Delete a file.

Macro Call: .DELET #LNKBLK, #FILBLK
where LNKBLK is the address of the Link Block, and FILBLK is the ad-
dress of the Filename Block.

Assembly Language Expansion:

MOV #FILBLK, - (SP)
MOV #LNKBLK,- (SP)

EMT 21
Global Name: DEL (See Appendix C for subsidiary routines.)
Description: Deletes from directory-oriented device the file named

in the Filename Block. After the reguest has been completed, control
is returned to the user at the instruction following the assembly

language expansion. The arguments are removed from the stack.

Rules: .DELET operates on both contiguous and linked files.
If the file has been OPENed, it must be CLOSEd before it is deleted.

Errors: Control is returned either to the ERROR RETURN ADDRESS

in the Filename Block if it is specified, or to the teleprinter for an

=]

error message if it is not. Possible errors are shown below:

Error Code Returned Error Message

Error Condition To Filename Block On Default
Device Not Ready - A002
Dataset Not INITed -= FOOO
Nonexistent File 2 F024
Protect Code Violation 6 F024
File Is Open 14 F024

3-41

.RENAM

3.7.3 .RENAM - Rename a file. Change protection code.

Macro Call: .RENAM #LNKBLK, #OLDNAM, #NEWNAM
where LNKBLK is the address of the Link Block, OLDNAM is the address of
the Filename Block representing the file, and NEWNAM is the address of

the Filename Block containing the new information.

Assembly Language Expansion:

MOV #NEWNAM, - (SP)
MOV #OLDNAM, - (SP)
MOV #INKBLK, - (SP)

EMT 20
Global Name: REN (See Appendix C for subsidiary routines.)
Description: Allows the user to change the name and protection code

(see Section 3.8.6.3) of a file. After the request has been completed,
control is returned to the user at the instruction following the assem-

bly language expansion. The arguments are removed from the stack.

Rules: Dataset must be INITed, and file must not be OPENed.
The user must specify two Filename Blocks: one contains the name and
protection code of the file as it presently is before the .RENAM re-
quest, and the other contains the name and protection code of the file
as it should be after the .RENAM request. The two filenames must be
different. To change just the protection for a file, two .RENAMs must
be requested.

The new filename must not already exist, and the new filename

must be legal. The old file must exist.

NOTE
Renaming a file assigned from the keyboard to the
dataset will effectively be a NOP.
Errors: Control is returned either to the ERROR RETURN ADDRESS
in the offending Filename Block if it is specified and applicable, or
to the Monitor for an error message if it is not. Possible errors

are shown below:

Error Code Returned Error Message

Error Condition To Filename Block On Default
Dataset Not INITed - F0O0O0
File Exists (new name) 2 F024
File Nonexistent (old file) 2 F024
Protection Violation 6 F024
File Is Open 14 F024
Illegal Filename 15 F024

.APPND
3.7.4 .APPND - Append one linked file to another.

Macro Call: .APPND #LNKBLK, #FIRST, # SECOND

where LNKBLK is the address of the Link Block, FIRST is the address of
the Filename Block for the first file (file to be appended to), and
SECOND is the address of the Filename Block for the second file (file

to be appended). .
Assembly Language Expansion:

MOV #SECOND, - (SP)

MOV #FIRST,-(SP)
MOV #LNKBLK, - (SP)

EMT 22
Global Name: APP (See Appendix C for subsidiary routines.)
Description: Makes one linked file out of two by appending the

SECOND to the FIRST. The directory entry of the SECOND file is
deleted. When the redquest is completed, control is returned to the
user at the instruction following the assembly language expansion.
The arguments are removed from the stack. No attempt is made to pack

the two files together, the physical blocks are merely linked together.

Errors: Control is returned either to the ERROR RETURN ADDRESS
in the offending Filename Block if it is specified, or to the tele-
printer for an error message if it is not. Possible errors are

shown below:

Error Code Returned Exrror Message

Error Condition To Filename Block On Default
Device Not Ready - AQ02
Dataset Not INITed -= FO00O
First File Nonexistent 2 F024
Contiguous File 5 F024
Protect Code Violated 6 F024
File Opened 14 F024

NOTE

Since the last block of a file is typically not
full, there will be a gap (null characters) in
the new file at the junction point. This causes

no problem in ASCII files but might cause
confusion in binary files.

3-43

.LOOK

3.7.5 .LOOK - Search the device directory for a specified filename.

Macro Call: .LOOK #LNKBLK,#FILBLKI[,1]
where INKBLK is the address of the Link Block, and FILBLK is the
address of the Filename Block.

Assembly Language Expansion:

a. If the optional argument is not specified:

MOV #FILBLK, - (SP)
MOV # LNKBLK,- (SP)
EMT 14

b. If the optional argument is specified:
MOV #FILBLK,-(SP)

CLR - (SP)

MOV #LNKBLK, - (SP)

EMT 14
Global Name: DIR (See Appendix C for subsidiary routines.)
Description: The primary purpose of this routine is to search

through a specified directory for a specified file and return with the
current parameters of the file. However, this routine can also be
used to indicate (bits 0-3) the permissible functions for a nondirec-
tory device (i.e., input, output, update, etc.). By specifying the
optional argument, the user indicates whether he requires two or
three parameters be returned.

The device to be searched is specified in the Link Block, and the
file is specified in the Filename Block. The request returns to the
user with the top elements of the stack as follows

2 Arg. Call 3 Arg. Call

START BLOCK SP
OF BLOCKS SP SP+2
INDICATOR WORD SP+2 SP+4

where # OF BLOCKS is the number of blocks in the file, and the
INDICATOR WORD 1is coded as follows:

Bit 0=1 .OPENC allowed
Bit 1=1 .OPENI allowed
Bit 2=1 .OPENE allowed
Bit 3=1 .OPENU allowed
Bit 4=0 File is not in use
4=1 File is being used by another dataset
Bit 5=1 Dataset already has a file open
(no search has been performed)
Bit 6=0 File is linked
6=1 File is contiguous
Bit 7=0 File nonexistent (OPENO allowed)
7=1 File exists or .OPENO not allowed
Bits 8-15 Protection Code

3-44

After the request has been completed, control is returned to the
user at the instruction following the assembly expansion. The stack
must be cleared by the user. If a file is protected against READ

access, it will be signaled as nonexistent.

Rules: The dataset must be INITed.

Errors: Control is returned either to the ERROR RETURN ADDRESS
in the Filename Block if it is specified, or to the teleprinter for an

error message if it is not. Possible errors are shown below:

Error Code Returned

Error Condition To Filename Block Error Message
Device Not Ready -- AQ02
A File Is Open On 14 F024
Requesting Dataset
Illegal Filename 15 024

Ncte that it is possible tc .LCCXK for a file and be told that it
does not exist. A subsequent attempt to open the nonexistent file
may lead to an OPEN error (code=2). Hence, it may be more efficient

to simply attempt the .OPEN and check for an error (see Section 3.6.3).

3-45

.KEEP

3.7.6 .KEEP - Protect file from automatic deletion.

Macro Call: .KEEP #LNKBLK, #FILBLK
where FILBLK is the address of the Filename Block of the file to be
protected and LNKBLK is the address of the Link Block.

Assembly Language Expansion:

MOV #FILBLK, - {(SP)
MOV #LNKBLK, - (SP)

EMT 24
Global Name: PRO
Description: Protects the named file from being deleted by the
Monitor upon a FInish Keyboard command (see Chapter 2). It does this by

setting bit 7 of the PROTECT byte in the Filename Block. Automatic
deletion upon FInish is not currently implemented.

3.8 REQUESTS FOR MISCELLANEOUS SERVICES -RUN

3.8.1 Load a Program or an Overlay

3.8.1.1

-RUN

Macro Call: .RUN #RUNBLK

where RUNBLK is the address of the user's Run Block (see Figure 3-16).
Assembly Language Expansion:

MOV #RUNBLK,- (SP) :PUSH ADDRESS OF THE RUN BLOCK
EMT 65 ;ONTO THE STACK

Global Name: RUN

Description: The RUN request may be used to load an entire program

or a program overlay. It has several options, among which are:

load a program or load an overlay - when an overlay is
loaded, the existing program environment is not disturbed;
one section of the program is simply replaced by another.
When a new program is loaded, the old program and its
effects (except for data on the stack) are purged from
core, and the new program takes over; for example, FORTRAN
can use the RUN request to load LINK and LINK can use it
to load and execute the user's program;
load a core image or a load module;
return of control:

instruction following .RUN;

transfer address of load module or core image;

transfer address plus offset (word F);

alternate return address (word G);
stack movement:

leave as is;

move the stack down if it would otherwise be destroyed
by the entity being loaded;

load address:
as specified in file,

as specified by user.

The RUN request requires the following control blocks:

Run Block: A variable length control block whose address is

passed on the stack. It contains a function word
and various optional parameters. It is described
in Section 3.9.8.

Link Block: The standard Link Block (section 3.9.1). It de-

scribes the device from which the entity is to be
loaded. It is required unless bit 15 of the function
word in the Run Block is 1.

.RUN (cont)

File Block: The standard File Block (section 3.9.2). It de-
scribes the file from which the entity is to be
loaded: either an .ILDA file or a CIL. It is
required unless bit 15 of the function word
in the Run Block is 1.

The Link Block should not be .INITed, nor should the File Block be
.OPENed, when .RUN is called. RUN will perform .OPEN, .CLOSE, .INIT
and .RLSE processing. The lookup sequence is as follows:

First an extension of LDA is attempted, then no extension,

unless an extension is specified, in which case it alone
is used;

For each extension, the current UIC, then [1,1] is tried,

unless a UIC is specified, in which case it alone is used;
The .RUN request always removes the Run Block address from the stack.
If bit g is @, the following information will be returned upon the

stack:

(8P) - transfer address of loaded module,
2(sP) - size of loaded module in bytes,
4 (SP) -~ low address of loaded module.

Aside from this, the stack is not disturbed, although it may be moved.
This means that the stack may be used for passing arguments.

Rules: The Link Block should not be .INITed.
The File Block should not be .OPENed.

If an overlay is being loaded, it must not extend
above the bottom of the resident program section,
nor below the top of the Monitor.

If a new program is to be loaded, all datasets used
by the current program must be RLSEd.

The user must be sure that his stack is not inadvert-
ently destroyed.

When options are requested through the function word,
the appropriate supporting data must be present in
the Run Block.

If the stack might be moved, it must not contain
absolute pointers to locations within the stack.
For example:

MOV SP,R@
MOV Rf@,-(SP)

produces a stack which should not be moved. The
user can assure that such a stack will not be moved
by setting bit 1 of the Function word in the RUN
Block to @ (see Section 3.9.8).

Errors: Errors F007, FO0l12, F021, F022, F024, F045, FO054, F274, F276,
and F277 are all possible. All but F007 and F021 are nonfatal, pro-
vided that an error return is provided in the File Block (see Table 3-4).

3-48

EXIT

3.8.2 Reguest to Return Control to the Monitor

3.8.2.1 L.EXIT - Exit from a user program to Monitor.
Macro Call: . EXIT

Assembly Language Expansion:

EMT 60
Global Name: XIT
Description: This is the last statement executed in a user's pro-

gram. It returns control to the Monitor, assures that all of the pro-
gram's data files have been closed and, in general, prepares for the
next keyboard request. After the exit, all Monitor buffer space re-
served for the program, such as Device Assignment Tables (DAT) estab-

lished during program execution, are returned to free core.

3-49

.TRAP

3.8.3 Requests to Set Monitor Parameters

In addition to the above programmed requests, the user can provide
the Monitor with data to be stored in Monitor Tables or can request
information on the content of those tables via the EMT level 41 in-
struction. The user communicates his request to the Monitor by pushing
the necessary parameters and an identifier code onto the stack. If the
code is outside the ranges of those currently established, a fatal
error (F002) will result.

3.8.3.1 .TRAP - Set interrupt vector for the trap instruction.
Macro Call: .TRAP #STATUS, #ADDR

where STATUS is the desired status for the trap, and ADDR is the
address for the trap.

Assembly Language Expansion:

MOV #ADDR,- (SP)
MOV $#STATUS,- (SP)

MOV #1,-(SP) ;1 1is the identifier code for .TRAP
EMT 41

Global Name: GUT

Description: Sets the STATUS and ADDR into trap vector 34. After

the request is completed, control is returned to the user at the in-
struction following the assembly language expansion. The stack is

cleared. The user may then use the trap instruction.

Rules: STATUS must be a valid Status Byte.
ADDR must specify an address within the user's core area.

Errors: If an invalid code is specified, a fatal (F@@2) error
will result.

.RSTRT

3.8.3.2 L.RSTRT - Set the default address for use by the REstart
keyboard command.
Macro Call: .RSTRT #ADDR

where ADDR is the restart address.

Assembly Language Expansion:
MOV #ADDR,-(SP)

MOV #2,-(SP) ;2 is the identifier code for .RSTRT
EMT 41

Global Name: GUT

Description: Sets the address where the program should restart in

response to the keyboard command REstart. This is the assumed address
in the absence of an address in the REstart command. It can be reset
as often as requested by the program. After the request is completed,
control is returned to the user at the instruction following the

assembly language expansion. The stack is cleared.

Rules: ADDR must be an address within the user's core area.

.CORE

3.8.4 Requests to Obtain Monitor Parameters

3.8.4.1 .CORE - Obtain address of the highest word in core memory.
Macro Call: .CORE

Assembly Language Expansion:

MOV #100,-(SP) ; CODE
EMT 41
Global Name: GUT
Description: Determines the address of the highest word in core

memory (core size minus 2) and returns it on the top of the stack.
For an 8K machine, it would return 37776. The user must clear the
stack.

Errors: No errors are possible.

.MONR
3.8.4.2 .MONR - Obtain the address of the first word not within
the resident Monitor.
Macro Call: .MONR

Assembly Language Expansion:

MOV #101.-(SP)
EMT 41
Global Name: GUT
Description: Determines the first word above the top of the cur-

rently resident Monitor (see Figure 3-5) and returns it to the user
at the top of the stack. This value does not reflect any area
allocated by the Monitor for control blocks, device drivers, data
buffers, etc. (see .MONF, Section 3.8.4.3). After the request is
completed, control is returned to the user at the instruction follow-

ing the assembly language expansion. The user must clear the stack.

Errors: No errors are possible.

3-53

.MONF

3.8.4.3 .MONF - Obtain the address of the first word above the
Monitor's highest allocated free core buffer.

Macro Call: .MONF

Assembly Language Expansion:
MOV #102,-(SP)

EMT 41
Global Name: GUT
Description: The address of the first word above total Monitor area

(see Figure 3-5), including the buffer and transient areas current at
the time of the request, is returned to the user at the top of the stack.
After the request is completed, control is returned to the user at the
instruction following the assembly language expansion. The user must
clear the stack.

Rules: Since buffers are allocated by the Monitor in its
processing of certain requests, .MONF should be placed in the program

at the point where the information is actually required.

xx7776g <—Top of Core (.CORE)

<«— Base of User (.GTPLA)
Programs

«— Top of Full Monitor (.MONF)

Device Assignment Table
Generated After Load Time

Monitor Buffers
(Data Buffers, Data Control
Blocks, Drivers, etc.) Top of Resident Monitor (.MONR)
-

Device Assignment Table
Generated Before Start of Program

Monitor Routines Resident
For Program Duration

Device Assignment Table
Generated Before Load Time

Permanently Resident Monitor
and Vectors

000000

Figure 3-5 Core Map of Resident Monitor and Full Monitor.

3-54

.DATE
3.8.4.4 .DATE - Obtain current date.
Macro Call: .DATE

Assembly Language Expansion:
MOV #103,-(SP)

EMT 41
Global Name: GUT
Description: The current date word is returned to the user at the

top of the stack. The user must clear the stack. The date format is

a binary number equal to Julian-70,000 If the user requires the

10°
ASCII representation of the date, he should use the .CVIDT request

(see 3.8.4.6).

Errors: No errors are possible.

3-55

.TIME

3.8.4.5 .TIME - Obtain current time of day.
Macro Call: .TIME

Assembly Language Expansion:
MOV #104,-(SP)

EMT 41
Global Name: GUT
Description: The two current time words are returned to the user

at the top of the stack.

SP: LOW-ORDER TIME IN TICKS
SP+2: HIGH-ORDER TIME

where a TICK is 1/60 of a second (1/50 second for 50-cycle lines).
The words are 15-bit unsigned numbers. The user must clear the
stack. See the CVTDT request for how to obtain the ASCII repre-

sentation of current time value.

Errors: No errors are possible.

.CVTDT

3.8.4.6 .CVIDT - Convert binary representation of date or time to
ASCII character string.

Macro Call: .CVTDT #CODE, #ADDR[,VALUE]

where CODE identifies the conversion to be done;

CODE = g Current date as stored by monitor,
CODE = 1 Current time as stored by monitor,
CODE = 2 Date supplied as VALUE,

CODE = 3 Time supplied as VALUE (and VALUE+2)

ADDR is the address of the first byte of the user buffer into which
the ASCII string is to be stored, and VALUE is the address of user
supplied Date or Time (used with CODEs 2 and 3 only).

Assembly Language Expansion:

MOV VALUE+2,-(SP): Code 3 only
MOV VALUE,-(SP); Codes 2 and 3 only
MOV $#ADDR, - (SP)
MOV #CODE, - (SP)
EMT 66
Global Name: CDT
Description: This request converts either a date or a time from

internal (binary) representation into an ASCII string suitable

for display. The user may specify that the current system value

(of date or time) is to be used for conversion or he may supply

his own value. The string returned has the format of the Date and
Time returned by the Keyboard DATE and TIME commands (see Chapter 2).
Upon return, the call arguments have been removed from the stack and
condition codes N, Z and V are cleared to #.

Rules: 1. The buffer area supplied by the user program (starting
at ADDR) must provide sufficient room for the text
returned as no check is made. Nine bytes are required
for Date, eight bytes are required for Time.

2, User-supplied VALUEs for Date or Time must comply
with the internal storage format of those values, that
is:

a. Date; 1 word containing (year-19768)*184# + day
of the year (Julian).
b. Time; 2 unsigned integer words for high-order

and low-order time in clock ticks.

.CVTDT (cont)

Errors: 1. Specification of an illegal CODE (i.e., > 3) causes
fatal error message:
FP34 Call address

2. If the currently stored Date or Time is out of range
(i.e., Date > 366 (Modulo 1@@¢@) or Time > 47:59:59), an
operator action message

A@ll CODE(f = Date, 1 = Time)
is printed. The operator should enter the desired
value via the appropriate DAte or TIme keyboard
command and type COntinue to proceed. If 23:59:59:
< Time < 48:00:00, Date is incremented and Time is
reduced by 24:00:00.

3. If a user supplied Date or Time is out of range as
above, the conversion routine will return without
attempting conversion and the condition code V will
be set to 1. Thus the program should follow the
.CVTDT request with the check:

BVS (error routine).

.GTUIC

3.8.4.7 .GTUIC - Get the current user's UIC.

Macro Call: .GTUIC

Assembly Language Expansion:

MOV #105,-(8P) ; CODE
EMT 41
Global Name: GUT
Description: The current user's UIC is returned at the

top of the stack. The user must clear the stack.

Errors: No errors are possible.

.SYSDV

3.8.4.8 .SYSDV - Get name of the system device.
Macro Call: . SYSDV

Assembly Language Expansion:
MOV #106,- (SP)

EMT 41
Global Name: GUT
Description: The name of the system device in Radix-50 notation is

returned to the user at the top of the stack.

Errors: No errors are possible.

3

60

.GTPLA

3.8.4.9 .GTPLA - Return the current program low address.

Macro Call: .GTPLA

Assembly Language Expansion:

CLR - (SP)
MOV #5,-(SP)
EMT 41
Global Name: GUT
Description: The program low address is the address of the first

(lowest) word of the current program. In the case of a program with
overlays, the PLA is the address of the first word of the resident
section. PLA is established when the keyboard RUN command is executed
or when the .RUN request is used to load a new program (not an over-
lay, e.g., when MACRO calls CREF, which then replaces MACRO). Because
the .RUN processor will not load an overlay which extends above this
address, the PLA is also called the Protection Boundary.

-GTPLA allows the user to retrieve this value (see Figure 3-5),

which is returned to the top of the stack. .STPLA allows the user to
set it.

Rules: The user must clear the stack.

Errors: No errors are possible.

3-61

.STPLA

3.8.4.10 .STPLA - Set the program low address.

Macro Call: .STPLA #ADDR

where ADDR is the desired new program low address.

Assembly Language Expansijion:

MOV #ADDR, - (SP)
MOV #5,-(SP)

EMT 41
Global Name: GUT
Description: This request allows the user to establish a new pro-

gram low address. This is done if the user wants part of his resident
code overlayed or if he wants to reserve additional space between his
resident code and his overlays. Consult the .GTPLA description for
more details.

The old program low address (or a zero) will be returned on top

of the stack upon return from this macro call.

Rules: The user is required to clear the returned address
from the stack.

Errors: The address returned on top of the stack will be zero
when the call is unsuccessful. This occurs when the address is out-

side of available memory.

3-62

.GTCIL

3.8.4.11 .GTCIL - Return the address of the first block of the
Monitor core image library (CIL).

Macro Call: .GTCIL

Assembly Language Expansion:

MOV #111,-(SP)

EMT 41
Global Name: GUT
Description: This request returns the address of the first block

of the Monitor core image library to the top of the stack.

Rules: The user is required to clear the disk address returned

on th

Errors: No errors are possible.

3

63

.GTSTK

3.8.4.12 .GTSTK - Return the current stack base entry.
Macro Call: .GTSTK

Assembly Language Expansion:

CLR -(SP)
MOV #4,-(SP)
EMT 41
Global Name: GUT
Description: The stack base is the highest core address used for

stack storage plus two. A RUN Keyboard command clears the stack and sets
the stack base address to the program low address. A user .RUN request
does not clear the stack (to allow inter-program communication via the
stack) but the stack may be relocated. This request may be used to
determine the stack base. Following the request the current stack

base entry is returned on top of the stack.

Rules: The user is required to clear the returned value from
the stack.
Errors: No errors are possible.

3-64

.STSTK

3.8.4.13 .STSTK - Modify the stack base entry.
Macro Call: .STSTK #ADDR

where ADDR is the desired new stack base address entry.

Assembly Language Expansion:

MOV #ADDR, - (SP)
MOV #4,-(SP)

EMT 41
Global Name: GUT
Description: This request is used when the stack is to be relocated.

It does not relocate the stack, but it does record its new base (the
address of the word immediately above the stack; see section 3.8.4.12),
and it returns the old stack base on the stack. EXTREME CAUTION should
be used when moving the stack; it is not recommended as a standard
procedure. Note that the .RUN request may be used to move the stack

when that is appropriate.

Rules: The user must clear the old base value from the stack
when control is returned.

The user is responsible for moving the stack.

Caution should be used when moving the stack, since the new and
old stack areas may overlap and since Monitor interrupt routines may

use the stack while it is being moved. Let:

SBl = o0ld stack base (returned on stack)

SB2 = new stack base (supplied by user)

SPl = old stack pointer (current value of SP)
SP2 = new stack pointer (SB2 - SBl + SP1l)

First, set SP=min (SP1,SP2) to protect against interrupts. Then if
SB1< SB2, move the stack starting from the base (SBl1 to SB2), If
SB1>SB2, move the stack starting from the top (SPl to SP2). This
strategy prevents the stack from being corrupted during the move
(since the two stack areas might overlap). Finally, set SP to SP2.

Errors: If the new stack base ADDR is outside available memory
or inside the Monitor, the request is not honored and a zero is re-

turned on the stack.

3-65

.STFPU . STFPU

3.8.4.14 L.STFPU - 1Initialize the floating-point exception vector.
Macro Call: .STFPU #PSW, #ADDR

Assembly Language Expansion:

MOV #ADDR, -(SP) :ADDRESS OF EXCEPTION ROUTINE
MOV #PSW,-(SP) ; PROGRAM STATUS WORD FOR
; EXCEPTION RTN
MOV #3,-(SP) ; REQUEST CODE
EMT 41
Global Name: GUT
Description: This request initializes the exception interrupt

vector for the floating-point processor on the PDP-~11/40 or PDP-11/45.
Any floating-point exception for which interrupt is enabled will cause
a trap to location ADDR with a new program status word of PSW. The

interrupt vector is at location 2448.

Rules: None.

Errors: None.

3-66

.RADPK

3.8.5 Requests to Perform Conversions

Using the EMT level 42 instruction the user can request data
conversions between binary and some external form such as decimal
ASCII or Radix-50. He communicates his request by pushing the nec-

_essary parameters and an identifier code onto the stack. If a code
outside the range of those currently established is specified, a
fatal error (F034) will result.

3.8.5.1 .RADPK - Pack three ASCII characters into one Radix-50 word.

Macro Call: .RADPK #ADDR

Assembly Language Expansion:
MOV #ADDR, - (SP)

CLR - (SP) ;MOVE CALL CODE ONTO STACK
EMT 42
Global Name: CvT
Description: The string of 7- or 8-bit ASCII characters in three

consecutive bytes starting at ADDR is converted to Radix-50 packed
ASCII using the algorithm shown below. The packed value is returned
on the top of the stack, followed by the address of the byte follow-
ing the last character converted. The user must clear the stack.
Radix-50 is used by the Monitor to store in one word three
characters for half a filename or an extension or other three-
character sets of data.
Because the characters allowed within names (e.g., filenames
or extensions, assembler symbols, etc.) are restricted to letters,

digits, and a few special characters, it is possible to store three

where Cl’ CZ’ and C3 are the three characters converted from their

original ASCII value to the value shown in the following table.

3-67

.RADPK (cont)

ASCII Value Radix~50 Value
Space 40 0
A-Z 101-132 1-32
S 44 33
56 34
unused 35
0-9 60-71 36-47

The maximum value for three characters is thus:
47 x 502 + 47 x 50 + 47 = 174777

The Radix-50 representation for various peripheral devices is
shown below:

Radix-50
Mnemonic Device Equivalence
CR Card Reader (CR1ll) 012620
DC RC11 Disk 014570
DF RF11 Disk 014760
DK (A,B) RK11l Disk 015270(+1,2)
DT(A) DECtape (TC1l1) 016040 (+1)
KB ASR-33 Keyboard/Printer 042420
Lp Line Printer (LP1l) 046600
MT Magtape (TM11) 052140
PP High-Speed Paper Tape Punch 063200
PR High-Speed Paper Tape Reader 063320
PT ASR-33 Paper Tape Device 063440
NOTES: a. Device mnemonics may be three letters on some systems.

The third letter is assigned if there is more than one
controller. For example:

DTA for DECtape controller A
DTB for DECtape controller B

b. The device name may be followed by an octal number to
identify a particular unit when the controller has
several device units associated with it. For example:

DT1 for unit 1 under a single DECtape control
DTAl for unit 1 under controller A in a multi-
controller situation.
Errors: The conversion will be stopped if an error condition
is encountered, and the user will be informed of the type of error
via the condition codes in the Processor Status register:

C-bit set means that an ASCII byte outside the wvalid
Radix~-50 set was encountered.

The value returned will be left-justified and correct up to the last
valid byte, e.g., DT: = DT :. The address returned will be that of
the first invalid byte.

3-68

.RADPK (continued)

If no errors were encountered during the conversion, the con-

dition codes will be cleared.

Example: Pack a string of 3010 ASCII characters, starting at
UNPBUF, into a buffer starting at PAKBUF.

MOV #PAKBUF,R3 ;SET UP POINTER TO PACK BUFFER
MOV #UNPBUF, - (SP) ; .RADPK UNBUF
NEXT: CLR - (SP)
EMT 42
BCS ERRC ; INVALID ASCII CODE ENCOUNTERED
MOV (SP)+, (R3)+ ;MOV PACKED VALUE TO BUFFER
CMP R3, #PAKBUF+12 ;END OF STRING?
BNE NEXT ;NO
TST (SP)+ :YES - REMOVE POINTER FROM STACK

Note that this example takes advantage of the fact that the Monitor
returns on the stack the address of the byte which follows the last

character converted.

3-69

.RADUP

3.8.5.2 L.RADUP =~ Unpack one Radix-50 word into three ASCII characters.
Macro Call: .RADUP #ADDR,WORD

where ADDR is the address of the first of three bytes into which the
unpacked characters are to be placed, and WORD is the Radix-50 word
to be converted.

Assembly Language Expansion:

MOV WORD, - (SP)
MOV #ADDR, - (SP)

MOV #1,-(SP) ;MOVE CALL CODE ONTO STACK
EMT 42
Global Name: CcvT
Description: WORD is converted into a string of 7-bit ASCII char-

actors which are placed left-justified with trailing spaces in three
consecutive bytes starting at location ADDR. The stack is cleared.
See section 3.8.5.1 for a definition of Radix-50.

Errors: If an error is encountered, the user will be informed
via the condition codes in the Processor Status register.

C-bit set means: a. a value of WORD was outside the valid
Radix-50 set, i.e., >I174777 (see
Section 3.8.5.1).

b. a Radix-50 byte value was found to be
35, which is currently not used.

Nevertheless, three bytes will be returned with a : as the first of
the three for error type (a), and a / for any of the three bytes for
error type (b).

If the conversion is satisfactory, the condition codes are

cleared.

.D2BIN

3.8.5.3 .D2BIN - Convert five decimal ASCII characters into one
binary word.

Macro Call: .D2BIN #ADDR
where ADDR is the address of the first byte in the 5-byte string of
decimal characters to be converted.

Assembly Language Expansion:
MOV #ADDR, - (SP)

MOV #2,-(SP) ;MOVE CALL CODE ONTO STACK
EMT 42

Global Name: CcvT

Description: The 5-byte string of 7- or

-bit decimal ASCII
alent. The converted value is returned to the top of the stack,
right-justified, followed by the address of the byte which follows
the last character converted. The largest decimal number that can be

converted is 65,535 (216—1). The user must clear the stack.

Errors: The conversion will be stopped if an error condition
is encountered. The user will be informed of the type of error via
the condition codes in the Processor Status register.

C-bit set means that a byte was not a decimal digit.
V-bit set means that the decimal number was too large,
i.e., greater than 65535.

The value returned will be correct up to the last valid byte. The
address returned will be that of the invalid byte. If the conversion
is satisfactory, the condition codes will be cleared.

.BIN2D

3.8.5.4 .BIN2D - Convert one binary word into five decimal ASCII
characters.
Macro Call: .BIN2D #ADDR,WORD

where ADDR is the address of the first byte of the buffer where the
characters are to be placed, and WORD is the number to be converted.

Assembly Language Expansion:

MOV WORD, - (SP)
MOV #ADDR, - (SP)

MOV #3,-(SP) ;MOVE CALL CODE ONTO STACK
EMT 42

Global Name: CcvT

Description: WORD is converted into a string of five decimal

7-bit ASCII characters which are placed into consecutive bytes start-
ing at location ADDR. They are right-justified with leading zeros.
The stack is cleared.

Errors: No errors are possible.

.02BIN

3.8.5.5 L.02BIN = Convert six octal ASCII characters into one
binary word.

Macro Call: .02BIN #ADDR
where ADDR is the address of the first byte in the 6-byte string of
octal characters to be converted.

Assembly Language Expansion:
MOV #ADDR, - (SP)

MOV #4,-(SP) ;MOVE CALL CODE ONTO STACK
EMT 42

Global Name: CcvT

Description: The 6-byte string of 7- or 8-bit octal ASCII char-

acters which starts at ADDR is converted into the binary number
equivalent, The converted value is returned to the top of the stack,
right—-justified, followed by the address of the byte which follows
the last character converted. The largest octal number which can be
converted is 177777. The stack must be cleared by the user.

Exrors: The conversion will be stopped if an error condition
is encountered, and the user will be informed of the type of error
via the condition codes in the Processor Status register:

C-bit set means that a byte was not an octal digit.
V-bit set means that the octal number was too large,
i.e., the first byte was greater than 1.

If the conversion has been satisfactory, the condition codes are
cleared. Following C- or V-bit errors, the value returned will be
correct up to the last valid byte. The address returned will be that
of the first invalid byte.

.BIN20

3.8.5.6 .BIN20 - Convert one binary word into six octal ASCII
characters.
Macro Call: .BIN20 #ADDR,WORD

where ADDR is the address of the first byte of the buffer into which
the six octal ASCII characters are to be placed, and WORD is the

binary number to be converted.

Assembly Language Expansion:

MOV WORD, - (SP)
MOV #ADDR, - (SP)
MOV #5,- (SP)

EMT 42
Global Name: CvT
Description: The WORD is converted into a 6-byte string of 7-bit

octal ASCII characters, right-justified with leading zeros, which is
placed into the buffer addressed by ADDR. The stack is cleared.

Errors: No errors are possible.

3.8.6 Reguests for Interfacing with the Command String Interpreter

A user program may obtain dataset specifications via keyboard
input at run time by calling the Command String Interpreter (CSI)
routine. This routine is used by many system programs; it accepts
keyboard input at program run time in the format presented in
Appendix H.

The CSI is called in two parts, by two different requests:

.CSI1 condenses the command string and checks for

syntactical errors.

.CSI2 sets the appropriate Link Block and Filename
Block parameters for each dataset specification
in the command string.

Each command string requires one .CSI1 request for the entire command
string, and one CSI2 request for each dataset specifier in the

command string.

The user must first set up a line buffer in his program and
read in the command string. Then he does a .CSIl, which condenses
the string by eliminating spaces, horizontal TABs, nulls, and RUBOUTs,
sets pointers in a table to be referenced by .CSI2, and checks the
command string for syntactical errors. If there are no errors, the
.C8I2 request may be given once for each dataset specification that
the user expects to find in the command string. .CSI2 fills in the
appropriate Link Block and Filename Block parameters according to the
device name, filename, extension, UIC, and switch entries in the

command string.

.CSl1

3.8.6.1 .CSI1 -~ Condense command string and check syntax.

Macro Call: .CSI1 #CMDBUF
where CMDBUF is the address of the command buffer header described
under "Rules" below.

Assembly Language Expansion:
MOV #CMDBUF, - (SP)

EMT 56
Global Name: csx
Description: Condenses the command string by removing spaces,

horizontal TABs, nulls, and RUBOUTs, and checks the entire command
string for syntactical errors. Control is returned to the user with
a 0 at the top of the stack if the syntax is acceptable, or with the
address (in the command string line buffer) of the data byte at which
the scan terminated because the first error was encountered.

Rules: The .CSI2 request must be preceded by a .CSI1l request,
because .CSI2 assumes it will get a syntactically correct command;
more than one .CSI2 request can follow a single .CSI1 request.
The user must set up a line buffer and read in the command string
before doing .CSI1. Command Strings must not be read in dump mode.
It is the user's responsibility to print a # on the teleprinter
to inform the operator that a CSI format is expected (Section 2.1).
If VERTICAL TAB is used as the terminator, the # will be typed
immediately without a carriage return or line feed.

The user must set up a seven-word command buffer header in his
program immediately preceding the header of the line buffer into whicn
the command is to be read. The user is not regquired at this time to
set up anything in the command buffer header prior to calling .CSI1;
it will be used as a work-and-communication area by the Monitor
routines which process the .CSIl and .CSI2 requests.

The user must clear the stack upon return from the Monitor. If
the top of the stack # 0 (i.e., if there was a syntax error), .CSI2
must not be called.

Bxample: See .(CSI2, Section 3.8.6.2.
brampile

3~76

.CSI12

3.8.6.2 .CSI2 - Interpret one dataset specification of a command
string.

MacrokCall: .CSI2 #CSIBLK

Assembly Language Expansion:

MOV #CSIBLK, - (SP)
EMT §7

Global Name: CSM

Description: Gets the next input or output dataset specification
from the command string, and sets the PHYSICAL DEVICE NAME entry in

e T 3anle 1T Al g TT T A A W MEAT @ TANT A 11T dmam a +1 ™mal
he Link Block, the FILENAME, EXTENSION, and UIC entries in the Fil

t

e==
name Block, and any switch entries in an extension of the Link Block.

Rules: Before calling .CSI2, the user must:

® Call .CSIl1 to condense the command string and check it for
syntax errors. There must have been no syntax errors.

@ Set up a CSI control block as follows:

CSIBLK: POINTER TO CMDBUF
POINTER TO LNKBLK
POINTER TO FILBLK

where POINTER TO CMDBUF is the address of the 7-word work
area preceding the command string line buffer header;

POINTER TO LNKBLK is the address of the Link Block of the
dataset whose specification is being requested; and

POINTER TO FILBLK is the address of the Filename Block of
the dataset whose specification is being requested
(currently, CSI allows only one file per dataset specifi-
cation).

° Set the first word (Code Word) of CMDBUF to either 0 or 2.
0 means "get next input dataset specification", and 2 means
"get the next output dataset specification". .CSI2 does not
check the validity of the code word.

° Initialize the NUMBER OF WORDS TQO FOLLOW entry in the Link
Block to contain the number of words to follow. This must
be at least one, because .CSI2 will alter the following
word, i.e., the PHYSICAL DEVICE NAME word. .CSI2 does not
check the validity of this byte.

The user may specify any number from 1 to 25574 in this
location. All words in excess of 1 are used for switch
space (see the interface with respect to switches, de-
scribed below).

3-77

.CSI2 (cont)

Upon return from the .CSI2 request, the Monitor will have provided the

following information:

° The top of the stack contains two items of information.
Bits 1-0 have the following meaning:

a. 0, which means the dataset specification requested has
been obtained, and there are still more dataset
specifications of the type requested (i.e., input
or output); or

b. 1, which means the dataset specification requested has
been obtained, and there are no further dataset
specifications of the type requested; or

c. 2, which means (a), but this particular dataset specifi-
cation included more switches than would fit in the
space provided; or

c. 3, which means (b), but this particular dataset specifi-
cation included more switches than would fit in the
space provided.

If there are no more dataset specifications and the user
requests one anyway, a null specification will be returned.

Bit 2, when set to one, indicates that the device name in
the Link Block is a default supplied by the system (see
Section 3.4.1).

° With respect to values returned in the Link Block (Figure 3-6):

If the PHYSICAL DEVICE NAME word is zero, the user does not
wish this particular output (input) dataset to be generated
(read); i.e., this entry was omitted when the command
string was typed. If not zero, the PHYSICAL DEVICE NAME and
UNIT NUMBER are appropriately set to the device and unit
specified in the command string.

e Immediately following the PHYSICAL DEVICE NAME word in the
Link Block are the switches specified in the command string.
The interface for each switch is shown in the switch block
below. These switch blocks are written in the area provided
by the programmer in the Link Block. Note that the number
of words to follow in the switch block is not the same
quantity as is specified in the LINK Block.

NUMBER OF WORDS TO FOLLOW
POINTER TO FIRST CHARACTER OF Vn
POINTER TO FIRST CHARACTER OF Vn-1

.

POINTER TO FIRST CHARACTER OF V1
W (ASCII) | s(ascII) ; for /SW

Remark:

.CSI2 {(cont)

If NUMBER OF WORDS TO FOLLOW is zero, there are no more
switches. Note that the pointers are in reverse order.

After the value pointers are the ASCII bytes which contain

the first two characters of the switch. The first character
is in the low byte, and the second is in the high byte. If
the name of the switch contains only one character, the

ASCII representation of that character will be in the low
byte, and the high byte will contain a zero. Note that if

the NUMBER OF WORDS TO FOLLOW is not zero, it is the number of
values +1. For example, if the switch /SWITCH:$51Z:AB is o

stored in memory beginning at location 1000 as:
1000 1001 1002 1003 1004 1005 1006

/ S W I T C H
1007 1010 1011 1012 1013 1014 1015
: S 1 2 : A B

then the completed interface appears as:

3

1014

1010
127=w | 123=5

With respect to the values returned in the Filename
Block (Figure 3-7):

a. The FILENAME occupies the two words at FILBLK and
FILBLK+2. If the Monitor returns zero at FILBLK, no
filename was specified in the dataset specification;
if it returns 52g at FILBLK, * was specified as the
filename. Otherwise, the Monitor returns at FILBLK
and FILBLK+2 the first six characters of the filename
specified, in Radix-50 packed ASCIT.

b. The EXTENSION occupies the word at FILBLK+4. If the
Monitor returns zero at FILBLK+4, no extension was
specified; if it returns 52,5, * was specified. Other-
wise, the Monitor returns the first three characters of
the extension specified, in Radix-50 packed ASCII.

c. The USER IDENTIFICATION CODE occupies the word at
FILBLK+6. If the Monitor returns zero at FILBLK+6, no
UIC was specified in the dataset specification (the I/0O
processors will assume the UIC of this user). If a UIC
was typed in, the Monitor will set this word appropriately.
The Monitor returns 377, in the high- or low-order byte
of this word if * was specified in either of those positions.

The user may restart at the beginning of the input data-
set or output dataset side of the command string simply
by recalling .CSI1 and issuing a 0 or 2 code, respec-
tively. ©Note that he may not restart one without re-
starting the other.

There is no error checking with respect to magnitude

when the UNIT or UIC values are converted from octal ASCII to binary.

LINK Block

3.9 USER PROGRAM TABLES AND CONTROL BLOCKS

3.9.1 The Link Block (used for all input/output and directory requests)

LNKBLK:

ERROR RETURN ADDRESS

000000 LINK POINTER (for Monitor use only)

LOGICAL NAME OF DATASET -~ Radix=50 Packed ASCII

UNIT NUMBER NUMBER OF WORDS TO FOLLOW

PHYSICAL DEVICE NAME -- Radix=50 Packed ASCII

Figure 3-6 The Link Block

Each dataset in a user's program must have a Link Block associated

with it. Entries in the Link Block which must be specified by the

user can be written into his program or set by the program itself

before the dataset is INITed. Each entry is explained below.

Address

LNKBLK-2

LNKBLK

LNKBLK+2

LNKBLK+4

Name

ERROR RETURN
ADDRESS

LINK POINTER

LOGICAL NAME
OF DATASET

NUMBER OF
WORDS TO
FOLLOW

Function

This entry must be set by the user to
contain the address where he wants to trans-
fer control in the event that any request
associated with this dataset fails to
obtain required buffer space from the

the Monitor. If no address is speci-

fied here, such an error will be treated

as fatal. This address may be changed

by the user's program at any time.

This location must be set to zero by
the user and must not be modified by
him. The Monitor places a linking ad-
dress here when the dataset is INITed.
Before INITing a dataset, the Monitor
tests this pointer for zero. If it is
not zero, the Monitor assumes that the
dataset was already INITed.

The user can specify a name for the dataset
in this entry. This name, which must be
unique, is used to associate the dataset
with a device which is specified by an
ASSIGN from the keyboard. The name is
stored in Radix~50 packed ASCII by the
.RAD50 assembler directive. This speci-
fication is optional, but if it is omitted,
the ASSIGN command cannot be used.

This byte contains the count of the number
of words to follow in the Link Block. The
user should set it to a 0 if he does not
specify any PHYSICAL DEVICE NAME in the

3-80

Address

LNKBLK+5

LNKBLK+6

LNKBLK+8
through
LNKBLK+n

Name

UNIT NUMBER

PHYSICAL
DEVICE NAME

OPTIONAL
DATA

.LNKBLK (cont)
Function

next word, or to a 1 if he does. Values
greater than 1 may be used if the Com-
mand String Interpreter is to be called.

This code specifies the unit number of the
device linked to the dataset. For example,
the TC1ll Controller (DECtape) can drive up
to eight tape drives (units), numbered

0-7.

If the user specified 1 or greater in byte
LNKBLK+4, he may specify here the standard
name (Appendix A) for the device associated
with the dataset in Radix-50 format. If no
name is specified here, the user must specify
LOGICAL NAME OF DATASET and perform an
ASsign command before he runs his program.
If physical device name is specified

both here and in an ASSIGN command, the
device specified in the ASSIGN command
overrides the value given here.

Present only if LNKBLK+4 is greater than 1.
It is used to pass additional information
such as switch information when using the
Command String Interpreter or Resident

EMT information when using .RUN, via the
Link Block.

FILENAME Block

3.9.2 The Filename Block - Each file associated with a dataset

must be described by the user in a Filename Block. If a dataset is
not a file, the Filename Block must still be used (if .OPEN is used)
but FILENAME, EXTENSION, AND PROTECT need not be specified. The file-

name Block is used by OPEN and all directory management requests.

ERROR RETURN ADDRESS
ERROR CODE HOW CPEN
FILBLK:
FILE NAME
FILE NAME
EXTENSION
USER ID CODE
(spare) PROTECT CODE
Figure 3-7 The Filename Block
Address Name Function
FILBLK-4 ERROR RETURN ADDRESS The user must specify here the

address to which he wants the
Monitor to return control if one
of the errors in Table 3-4 occurs
during an operation involving the
file. If no address is specified
here, any such error will be trea-
ted as a fatal error.

3.9.2.1 Error Condition Codes (FILBLK-1)

Table 3-4

Filename Block Error Conditions

Error Code

In File- Faulting
name Block Request Cause Remedy

00 .OPENC An attempt was made
.OPENE to open a dataset
.OPENI that was previously
.OPENO opened.
.OPENU

01 unused

(continued on next page)

Error Code

Table 3-4 (Cont)

Filename Block Error Conditions

In File- Faulting
name Block Request Cause Remedy
02 OPENO An attempt was made If name of file was
to open a file correct, delete the
which already file (with PIP) or
exists. change file name.
.OPENC An attempt was made
-OPENE to open a file
.OPENI for input, exten-
.OPENU sion, or update
which is currently
opened for output,
or which does not
exist.
- RUN The file specified
was already OPENed
for output, or the
file does not exist.
03 .OPENC An attempt was made Close file.
.OPENE to open a file which
.OPENT has already been
.OPENU opened the maximum
number of times
(768). - 7
04 .OPENC An .OPENC, .OPENE, .CLOSE the previous
.OPENE or .OPENU attempt open.
.OPENU was made to open a
file which has al-
ready been opened
for either .OPENC,
.OPENE, or .OPENU.
05 .OPENE Illegal request to
a contiguous file.
06 .OPENC An attempt was made Resolve access pro-
.OPENE to access a file blem with owner of
.OPENI which the protection the file.
.OPENO code prohibits.
.OPENU
.RUN
07 .OPENC Illegal OPEN re-
guest to a contigu-
ous file.
11 .OPENC File opened for Close offending file.
.OPENE output or extension
.OPENO is already on cur-
.OPENU rent DECtape unit.
12 .ALLOC Directory full (DT). Mount another DEC-
.OPENO tape.

(Continued on next page)

Error Code

Table 3-4 (Cont)

Filename Block Error Conditions

In File- Faulting
name Block Request Cause Remedy

13 .ALLOC The UIC was not Enter UIC via PIP.
entered into the
device MFD.

14 .APPND An attempt was made Wait until file is

.DELET to perform an closed.
.RENAM illegal operation
on an opened file.
15 .ALLOC An attempt was made Change file name.
.OPENO to create a file
with an illegal
file name.

16 .RUN All datasets were Release all datasets
not released prior which were INITed.
to issuing the re-
qguest.

17 .RUN Load module format File must be linked
error. into a load module.

20 . RUN Specified CIL entry Add proper entry to
not found. CIL or use correct

name.

21 .RUN No transfer address Check for END state-
or illegal trans- ment in source pro-
fer address. gram, or use correct

/TR when linking.
22 .RUN Stack base entry in Probably a program
the System Vector error.
Table (SVT) is
below the Stack
Pointer. Stack can-
not be moved as
requested in the
call.
23 .RUN Module is outside Relink to within

the boundaries
of the allowable
load area.

boundaries. Ensure
that resident portion
of program is not
being overlayed.

Address

FILBLK-2

FILBLX+0
FILBLK+2

FILBLK+4

FILBLK+6

FILBLK+10

Name

HOW OPEN

FILE NAME

USER I.D. CODE

PROTECT
CODE

Function

This is set when the .OPENx macro's
assembly language expansion is executed.
It tells the Monitor which kind of open
is being requested: .OPENU=1l, .OPENO=2,
.OPENE=3, .OPENI=4, .QPENC=13.

This entry should not be set by the user.

It will be set by the Monitor to indicate
the type of error (Table 3-4) which
occurred. It will be cleared of any
previous condition at each .OPEN call.

This two-word entry must be specified by
the user if this dataset, or a portion
thereof, is a file. It is the name of
the file, in packed Radix-50 format.

This entry must be specified if the file
named in the previous entry has an ex-
tension. It is in packed Radix-50 format.

The user may enter his USIR ID CODE here
in octal:

GROUP NUMBER USER'S NUMBER

High-Order Byte Low-Order Byte

If no entry is specified here, the
current user's UIC is assumed.

The user may specify here the protection
to be given to the file at its creation
or renaming (see following paragraph).
If 0, a default protection 233 will be
allotted.

3-85

3.9.2.2

The File Protection Codes

Owner User Group

All Others

Owner: Bit 6

1

Bit 7

1]
o

Figure 3-8

file.

on FInish.

Owner cannot write on or delete the
This is a safeguard to prevent
inadvertent deletion or over-writing.

Protect the file from automatic deletion

File Protection Codes

User Group and All Others

Function
Code Delete | Write |Read | Run
0 yes yes yes | yes
1 yes yes | yes
2 or 3 yes | yes
4 or 5 yes
6 or 7

Note; yes indicates that the operation is allowed.
example, if a file belongs to user [23,10], a pro-
tection code of 3 will allow user [1l2,4] to read or

run but not delete or write on it.

Figure 3-8

File Protection Codes

3.9.3 The Line Buffer Header - (used by READ and WRITE regquests)

BUFEDR : MAXIMUM BYTE COUNT
STATUS MODE
ACTUAL BYTE COUNT
CINTER {Dump Mode only)

Figure 3-9 Line Buffer Header

Each element of the line buffer header table is as follows:

Address Name Function
BUFHDR MAXIMUM BYTE The count shows the size of the buffer,
COUNT in bytes. It must be specified here by

the user on all INPUT operations.

BUFHDR+2 MODE The user specifies here the mode of the
transfer. All modes are listed and ex-
plained in Figure 3-190.

BUFHDR+3 STATUS The Monitor will place in this byte the
status of the transfer when control is
returned to the user. Figure 3-11 lists
each bit and its meaning. Errors encoun-
tered executing an I/0 transfer will be
flagged in this byte. The user should
always check its content after each trans-
fer completes.

BUFHDR+4 ACTUAL BYTE This count controls the number of bytes to
COUNT be transferred on OUTPUT. It must be
initialized by the user before any output
transfer from the line buffer. After any
transfer in or out, it will show how
many bytes have been transmitted (or in
some modes, see Section 3.6, would have
been transferred had some error not been

detected).
BUFHDR+6 POINTER If bit 2 of MODE is 1, the user specifies
(dump mode) here the starting address of the line

buffer. If bit 2 of MODE is 0, the line
buffer header is only three words in length,
and must immediately precede the line
buffer itself. (Section 3.9.6 Note 9.)

NOTE

The Monitor will return control to the program
if a device transfer is needed to satisfy a READ
or WRITE request. During this time, the header
words will be used to store data relevant to the
operation underway. The user should not, there-
fore, attempt to change this content until it is
evident that the transfer has been completely
effected, e.g., after a .WAIT return.

7 6 5 4 3 2 1 0

¥) 4 4 4
Spare L 0 = ASCII
1 = Binary
‘ 0 = Formatted
Reserved 1 = Unformatted
Set to 1 fo suppress for 0 = Data follows Header
automatic echo on RSX 1 = Dump
a terminal (keyboard) 0 = No Parity
device. 1 = Parity (indirect)
0 = Normai
1 = Special
Figure 3-10 The Mode Byte
3.9.3.1 The Transfer Modes - The user can specify ASCII or binary

data in nine different modes of transfer:

ASCII Modes: Formatted ASCII Parity - Special

Formatted ASCII Parity - Normal

Formatted ASCII Nonparity - Special
Formatted ASCII Nonparity - Normal

Unformatted ASCII Parity - Special
Unformatted ASCII Nonparity - Normal

Binary Modes: Formatted Binary - Special

Formatted Binary - Normal

Unformatted Binary - Normal

Formatted ASCII Normal - Data in this mode is assumed by

the Monitor to be in strings of 7-bit ASCII characters termi-
nated by LINE FEED, FORM FEED, or VERTICAL TAB.

READ:

WRITE:

The line buffer is filled until either a terminator
is seen or the number of bytes transferred becomes
equal to the MAXIMUM BYTE COUNT. If the MAXIMUM
BYTE COUNT is reached before the terminator is
seen, the invalid line error bit in the Status
Register of the buffer header is set, and each re-
maining character through to the terminator is read
into the last byte of the line buffer, i.e., the
surplus bytes are overlayed. After the transfer,
the actual byte count is set to the number of bytes
read (including the excess). RUBOUTs and NULLs are
discarded. The terminator is transferred. LINE
FEED is supplied after RETURN.

The line buffer is output until the number of bytes
transferred equals the ACTUAL BYTE COUNT. If the
last character is not a terminator, the invalid line
error bit is set in the STATUS BYTE of the buffer
header. Previous terminators are output as normal
characters.

For non file-structured devices, TABs are automatically followed
by RUBOUTs; FORM FEEDs are automatically followed by NULLs.

The READ/WRITE processor passes data to the device driver
specified, and each driver will convert the information to
meet its specific needs. Appendix G summarizes the charac-
teristics of the device drivers. Normally, output is deferred
until the current buffer is full or until a .CLOSE or .RLSE
occurs. However, for terminal devices, the buffer is written
when a line terminator is seen. VERTICAL TAB plays a special
role here, since it is a terminator but does not cause a
carriage return -or paper motion.

2. Formatted ASCII Special -

READ: The same as formatted ASCII normal with this ex-
ception: if the MAXIMUM BYTE COUNT is reached be-
fore the terminator, the transfer is stopped.

The remaining characters are not overlaid, but are
retained for transfer at the next .READ. An invalid
line error will be returned in the STATUS BYTE, and
ACTUAL BYTE COUNT will equal MAXIMUM.

WRITE: The same as formatted ASCII normal with this excep-
tion: the line buffer is output until the first
terminator; the ACTUAL BYTE COUNT will stop the
transfer if it is reached before the terminator is
seen. In this case, the invalid line error bit is
set in the STATUS BYTE. Note that in this mode only
one line of data can be output at once, but its
byte count need not be exactly specified, provided
it is not greater than the ACTUAL BYTE COUNT.

3. Formatted Binary Normal -

READ: This is an 8-bit transfer. Words 2 and 3, STATUS/

- MODE, and ACTUAL BYTE COUNT always accompany
the data during formatted binary transfers. The
counts are adjusted by the Monitor to include the
extra words. On input, the line buffer is filled
until the number of characters transferred equals
the ACTUAL BYTE COUNT read, or the MAXIMUM BYTE
COUNT. If the MAXIMUM is reached before the ACTUAL,
an invalid line error occurs and the remaining
bytes are overlaid into the last byte until the
checksum is verified. After the transfer, the
ACTUAL BYTE COUNT contains the actual number of data
bytes read (including the excess).

WRITE: This is an 8-bit transfer. Words 2 and 3 of the
line buffer header are output, and data is trans-
ferred until the number of characters transferred
is equal to the ACTUAL BYTE COUNT; then a checksum
is calculated. The checksum is output at the end.
The byte count is adjusted to reflect the presence
of words 2 and 3 from the line buffer header.

READ: The line buffer is filled until the number of charac-
ters transferred equals the ACTUAL BYTE COUNT read.
If the MAXIMUM COUNT is reached before the ACTUAL,

the remainder of the line is retained by the Monitor.
The MAXIMUM BYTE COUNT is transferred to the line

3-89

buffer and the ACTUAL BYTE COUNT is set to the full
input count, rather than to the number of bytes
actually transferred. The invalid line error will
be set in the STATUS BYTE. The user can compare
the MAXIMUM COUNT with the ACTUAL, determine how'much
data remains, and recover it by an unformatted binary
read (allowing 1 extra byte for the checksum).

WRITE: Identical to formatted binary normal

Unformatted ASCII Normal or Special - This mode is available

to the user who wants to do his own formatting. Seven bits
are transferred; the eighth is always set to zero. NULLs
are discarded.

READ: Transfer stops when the number of bytes transferred
reaches the MAXIMUM BYTE COUNT. Nulls are discarded
but all other characters are treated as valid.

WRITE: All characters are transferred. The transfer stops
when the ACTUAL BYTE COUNT is reached.

Unformatted Binary Normal or Special - This mode is identi-

cal to unformatted ASCII except that eight bits are transferred

on both input and output and nulls are not discarded. No
checksum is calculated.

Formatted ASCII Parity = Identical to formatted ASCII
(Special or Normal) except that even parity is generated in
the eighth bit on OUTPUT; during INPUT it will be checked.
Valid characters will be passed to the user as 7 bits;
invalid characters will be marked by bit 8 = 1, and will
cause the setting of the parity error bit in the STATUS BYTE.

Unformatted ASCII Parity - 1Identical to unformatted ASCII
(Special or Normal) except that eight bits are transferred
instead of seven. No parity generating or checking is per-
formed.

Indirect Modes - All modes can be specified as indirect,
which means that the word after the ACTUAL BYTE COUNT is
considered to be a pointer to the beginning of the data
rather than the beginning of the data proper. (Section
3.9.4.) This is referred to as DUMP mode.

3.9.3.2 The Status Byte

The function o

Bit

0
(INVALID
LINE)

1
(CHECKSUM
ERROR)

0

End of medium

(EOM) or
End of file
(EOF)
mgméa}gx#ﬂ~m
tiag

L1

!—TInvalid line error

l L— Checksum error

“—— Character parity error or
illegal binary format

Figure 3-11 Status Byte Format

Mode

FORMATTED
ASCII NORMAL
(parity or
non-parity)

.READ

-WRITE

FORMATTED
ASCTI
SPECIAL
(parity or
non-parity)

.READ

.WRITE

FORMATTED
BINARY
NORMAL

.READ

FORMATTED
BINARY
SPECIAL

-READ

ALL .READ
UNFORMATTED
MODES

FORMATTED .READ

BINARY

Request
ALL .READ/WRITE

f each status format bit is explained below.

Condition

Appropriate BYTE COUNT = 0

at call.

The MAXIMUM BYTE COUNT ran

out before a line terminator
was seen. (Last byte has

been overlaid until the termi-
nator has been reached.)

The last byte was not a
terminator.

The MAXIMUM BYTE COUNT was
reached before a line
terminator was seen (excess
data has not yet been read).

The ACTUAL BYTE COUNT was
reached before any terminator
was seen.

The MAXIMUM BYTE ran out
before the count stored with
the data. (The last byte
has been overlaid in order
to verify the checksum.)

The MAXIMUM BYTE COUNT was
reached before the count
stored with the data. (The
excess data still remains to
be read and checksum has

not been verified.)

BYTE COUNT = the actual number
of bytes transferred. The
reason BYTE COUNT < MAXIMUM
BYTE COUNT is that an EOF or
EOM has been encountered before
the buffer was full. Bit 6
will also be set.

There was a discrepancy be-
tween the checksum accumulated
during the .READ, and that
stored with the incoming data.

2
(PARITY
FORMAT)

2
(ILLEGAL

BINARY

FORMAT)

6
(EOM/EOF)

5
(DEVICE
PARITY)

FORMATTED
ASCII PARITY
NORMAL OR
SPECIAL

FORMATTED

BINARY

ALL MODES

ALL MODES

.READ

-READ

.READ or
.WRITE

.READ or
.WRITE

A character was read which had
odd parity. The eighth bit of
the illegal character delivered
is set to a 1. The transfer
continues. If this bit is set
the user need only check each
character returned during proc-
essing of the buffer for bit 8
set to locate the character re-
turned with wrong parity.

This bit is set if a line proc-
essed in a binary mode does not
have a 001 in the first word.
The first word is ignored, i.e.,
no data is returned to the buf-
fer. Subsequent reads access
successive lines and return
error bits or data as appro-
priate.

An input device cannot supply
any more data or an output de-
vice cannot accommodate more,
i.e., the disk has no more
storage space, or the paper
tape reader has run out of
paper tape. No data is re-
turned on .READs unless bit f#
is also set (see bit g). On
.WRITEs an unspecified por-
tion of the buffer may have been
written (enough data to fill a
partially filled monitor buffer
may have been transferred to
the buffer and written before
the EOM or EOF was detected).
Subsequent requests return to
user with this bit set.

A hardware error has been de-
tected on a bulk storage device.
This could be either a parity
error or a timing error. The
driver will already have tried
to READ or WRITE 8 or 9 times
before setting this bit. (This
flag is a warning that the data
in this line or some subsequent
line still using data from the
same device block may be invalid.
It will be returned for each
transfer call using the same
block.)

RECORD Block

3.9.4 The RECORD Block

RECBLK: | FUNCTION / STATUS
BUFFER_ADDRESS
RECORD LENGTH ,
HI ORDER, RECORD § _
L0 ORDER, RECORD 4 |

Figure 3-12 The Record Block

ADDRESS FUNCTION
RECBLK FUNCTION / STATUS WORD
BIT

g - Not used
1 - Record Output - Set by user

7 - A T
2 - Record Input - Set by user

3-8 - Not used
(Following bits set by Monitor)

9 - Illegal Function
19 -~ File is linked or device is not File structured.
11 - Record requested lies outside the file.
12 - File not OPEN
13 - Protect code violation, Incorrect Open
14 - Not used
15 - Device parity error

The user may set only bits 1 or 2; error bits are set
by the Monitor, and should be tested for by the user
upon return from the request. The error bits are
cleared by the Monitor when a .RECRD request is issued
and are set as appropriate upon return from the Monitor.

RECBLK+2 BUFFER ADDRESS

The address of the user's buffer. The buffer must
be large enough to contain a record of the length
indicated in the next word, as the Monitor assumes that
sufficient space is available and will overlay data
stored below a buffer of insufficient length.

RECBLK+4 RECORD LENGTH

The number of bytes of a Record. This value, which
must remain the same for all records in the file, is
supplied by the user.

RECBLK+6 High Order - Record Number
RECBLK+14 Low Order - Record Number

This entry identifies the record to be read or
written. Two words are provided in anticipation of
files with more than 65,536 records.

First Record of File is number f.

3-93

BLOCK Block

3.9.5 The BLOCK Block -

(used by BLOCK regquest only)

BLKBLK:

FUNCTION/STATUS

BLOCK NUMBER

MEMORY BUFFER ADDRESS

LENGTH

Figure 3-13 The BLOCK Block

Address Name Function

BLKBLK FUNCTION/STATUS User specifies here the function to be
performed, and the Monitor returns to
the user with the appropriate status bits
set.
Bit Bit = 1 means:
f 0 function is GET
u
n
c 1 function is OUTPUT
t
i
o 2 function is INPUT
n

3-8 reserved
e illegal function
i 10 file is linked, or device 1is
° not file structured
r 11 block number does not exist
in file, i.e., it is greater
than the file length

: 12 file not open
a 13 protect code violation
E 14 end of data error
s 15 device parity error

BLKBLK+2 BLOCK NUMBER Requested block number to be transferred
relative to the beginning of the file.
First block of file is 0.

BLKBLK+4 MEMORY BUFFER The address of the buffer (supplied

ADDRESS by the Monitor on INPUT or GET func-

tions).

BLKBLK+6 LENGTH The length of the buffer in words.

BLKBLK+6 is set by the Monitor on
INPUT or GET functions.

3-94

3.9.6

The TRAN Block (used by TRAN request only)

TRNBLK: DEVICE BLOCK NUMBER

MEMORY START ADDRESS

POSITIVE WORD COUNT

TRAN Block

FIHINCTTON/CM
TUNC I ITOUN /o1

NUMBER OF WORDS NOT TRANSFERRED

Figure 3-14

The TRAN Block

The user must set up a TRAN block for each .TRAN in his program.

Address Name Function
TRNBLK DEVICE BLOCK User specifies here the absolute block num-
NUMBER ber of the device, at which the transfer is
to begin. Block g is the first block on
bulk storage devices. If it is not a bulk
storage device, specify block 4.
TRNBLK+2 BUFFER User specifies here the core memory address
ADDRESS at which the data transfer is to begin.
TRNBLK+4 WORD COUNT User specifies here the total number of
16-bit words to be transferred. Word
count may be more or less than block
size.
TRNBLK+6 FUNCTION/STATUS Bit Bit Meaning
0 Binary = 1, as opposed
to ASCII = 0
1 Write = 1%
2 Read = 1%
3
4
5
g Reserved for Monitor's use
8
9
10
11 DECtape direction*
0 = forward
1 = reverse
12 Reserved for RSX-11
13 Invalid call (improper
function/no word count) **
14 End of medium**

*Must be specified by user.

**This bit is cleared by the Monitor upon .TRAN request issue and is
set as appropriate upon return.

3-95

Address Name Function

Bit Bit = 1 means:

15 Recoverable device error
(such as parity, timing, or
record length)#*=*

TRNBLK+10 NUMBER OF User leaves this entry blank. If an
WORDS NOT EOM occurs during the transfer, the
TRANSFERRED Monitor will place in this entry the

number of words not transferred.

**This bit is cleared by the Monitor upon .TRAN request issue and is
set as appropriate upon return.

3-96

Special Functions Block

3.9.7 The Special Functions Block (used for SPEC request only)

WORDS TO FOLLOW

SPCBLK:

CODE

Figure 3-15

ADDITIONAL DATA

Where a special function requires supporting data the user must set

up a Special Functions Block in his program.

Address Name Function

SPCBLK CODE The user identifies the function here by
inserting the appropriate code in the
range 0—25510.

SPCBLK+1 WORDS TO The size of each Special Functions

FOLLOW Block is dependent upon the Function.

The user shows here how many more
words belong to the particular block.

SPCBLK+2 - The user places in these words data to

. be passed to the function processor or

the function processor will return here

such items as status information, etc.
The format in each case is determined
by the function.

See Appendix J for a description of the special functions which may

be performed for each device.

3-97

.RUN Block

3.9.8 The RUN Block

The RUN Block is used exclusively with the .RUN request. It is
a variable length control block containing a function word and several
parameter words. The function word is always present; any of the
parameter words may be omitted, depending upon the settings of the

function word.

NOTE

Omitting a parameter word does not mean setting
it to zero, but rather leaving it out. Hence,
no parameter word occupies a set position in the
RUN Block and the block itself is of variable
length. For reference, all words but the func-
tion word are referred to by a letter, not by a

number.

Word* Parameter Present If:

1 FUNCTION WORD always

A FILE BLOCK POINTER Bit 15=0

B LINK BILOCK POINTER Bit 15=0

C NAME Bit 15=1 or Bit 13=1
D NAME Bit 15=1 or Bit 13=1
E LOAD ADDRESS Bit 3=1

F TRANSFER ADDRESS OFFSET Bit 4=1

G RETURN ADDRESS Bit 5=1

* Words A through G are so designated because any of
them might be omitted under certain conditions.

Figure 3-16 The RUN Block

Address Name Function

RUNBLK FUNCTION User specifies here the function to be per-
formed (see below).

RUNBLK+A FILE BLOCK Address of the File Block describing the file
which contains the load module or core image
to be loaded.

RUNBLK+B LINK BLOCK Address of the Link Block which describes
the device from which the entity is to be
loaded. Sufficient room must be provided in
the Link Block to contain the EMT numbers of
all Monitor modules which are to be loaded
(these are contained in the load module, if
there are any).

3-98

Address Name Function

RUNBLK+C NAME Two Radix-50 words containing either the name

and RUNBLK+D of the specific core image to be loaded from
a CIL (bit 13=1) or the name of the file to
be loaded if no File Block was given
(bit 15=1).

RUNBLK+E LOAD ADDRESS Specifies an address at which the entity is
to be loaded, without regard to the load ad-
dress in the load module or CIL. The entity
should be position independent.

RUNBLK+F TRANSFER Specifies a value to be added to the transfer

ADDRESS address obtained from the load module or CIL.
OFFSET Provides for alternate entry points to the
module.

RUNBLK+G TRANSFER Specifies an address to which control must be

ADDRESS passed when loading is completed. This

address may or may not be in the loaded entity.

3.9.8.1 The Function Word

Bit 2

15

14 {13 {12 Reserved for s1a |3]2]1]o0

Expansion
\\\\\\\ __F_/

Reserved for Monitor

Load Module/Core Image

Overlay/Program

File Block, Link Block
Present/Not Present

Return Address-
Transfer Address Offset —

Load Address

Stack Movement

Argument Return and
Transfer of Control

Figure 3-17 The Function Word

Argument Return and Transfer of Control

Indicates control is to be returned to the instruction
following the .RUN request after completing the requested
actions, unless bit 5=1. Regardless of the setting of bit 5,
the load module's transfer address, size in bytes, and low
address will be on top of the stack when bit g=g (see
Section 3.8.1.1).

Indicates control is to be switched to the transfer address
of the loaded module after completion of the load, unless
bit 5=1. Regardless of the setting of bit 5, no information
is returned on the stack when bit @=1, but information may
be passed by the call to the loaded module either on the
stack or in the general registers.

3-99

Bit 1

Stack Movement

Indicates that the stack is not to be moved from its pres-

Indicates that stack relocation may be necessary and that
bit 2 of this word must be tested to determine under what
conditions relocation will be necessary.

Indicates that the stack is to be unconditionally moved to
the area directly below the module to be loaded. In this
position the stack base entry in the System Vector Table
(SVT) will be the same as the low address of the loaded

Indicates that the stack is to be conditionally moved,
based on the relative positions of the stack base and low
address of the module to be loaded. TIf the stack base
entry in the SVT is higher than the low address of the
module to be loaded, then the stack should be relocated as
described above. If the stack base entry in the SVT is
lower in core or equal to the low address of the module to
be loaded, then the stack will not be relocated.

Indicates that no optional load address is specified in the
RUN Block. The load address information in the load

Indicates that the address specified in the RUN Block is
to be used as the load address for the requested module.
This entry overrides the load module information.

Indicates that no offset from the module's transfer address

Indicates that the user desires an offset, specified in
the RUN Block, to be added to the loaded module's transfer
address. This offset is added to the transfer address
regardless of the setting of bit 0 of the action word.

Indicates that no alternate return address is included in
the RUN Block. Return of control will thus be determined

Indicates that an alternate return address has been speci-
fied in the RUN Block and that this address will receive
control instead of the address following the .RUN request
or the transfer address of the load module. The setting
of bit 0 will still determine whether information will be

=g
ent position under any condition.
=1
Bit 2 Movemeqt Condition
=g
module.
=1
Bit 3 Load Address
=p
module will be used.
=1
Bit 4 Transfer Address Offset
=g Indl ;
is included in the RUN Block.
=1
Bit 5 Return Address
=g
by the setting of bit 0.
=1
returned on the stack.
Bit 12 Reserved for Monitor
This bit should always be zero.
Bit 13 Load Module/Core Image
=§

Indicates that the entity being loaded is a load module.
If the file identified by the File Block is a CIL, the
first member of the CIL will be loaded.

3-100

Bit 13 (continued)

=1

Bit 14
=g

=1

Bit 15
=p

=1

Indicates that the entity to be loaded is a member of Core
Image Library. The File Block identifies the CIL, while
words 4 and 5 of the RUN Block contain the name of the

CIL member.

Overlay/Program

Indicates that an overlay is being loaded. Since this is

-—a-continuation of the current program, datasets may be left

open across this call. The overlay may not extend above -
the low address of the resident module, nor may it extend
below the top of the Monitor area. System control tables
are not refreshed as a consequence of this call. No addi-
tional Monitor modules may be made resident.

Indicates that a new program is being loaded. This is as

if a new program were being RUN from the keyboard. Although
all datasets must be released by the program which called
RUN, RUN itself will do several things to refresh the
environment. This includes releasing Monitor modules made
resident by the previous program, undoing dataset assign-
ments made specifically for the previous program, loading
any Monitor modules which should be resident for this pro-
gram, and changing any program-related values in the SVT.

File Block, Link Block

Indicates that a Link Block and a File Block pointer are
in the RUN Block.

Indicates that the caller has provided a short form of the
RUN Block; the short form contains only a function word
and a six-character filename. The Link Block and File
Block are created by the .RUN request itself. The entity
to be loaded must be either in the current user's area

or in the {1,1] UIC area and must have an extension of

LDA or null. All other function bits are ignored. The load
module or core image (first member of CIL) is loaded at

its normal load address, as if it were an overlay, and
receives control at its normal transfer address. The stack
is not moved.

The following flowchart illustrates the effects of the various

function word bits and their interrelationships.

3-101

Short BITS

Ye

Form 13,3,4
Requests 5=17?
No
Yes |LOAD ADDRESS IS
AS SPECIFIED IN
WORD E OF RUNBLK
No

LOAD ADDRESS IS
AS SPECIFIED IN
| THE LOAD MODULE

J COMD

y

LOAD CIL MEMBER

OR LOAD MODULE AS
SPECIFIED IN WORDS
C, D AND B OF THE

RUNBLK

No

[[LOAD FIRST CIL

FATAL ERROR
F382

Yes
or

No

Load new module

*Word A of the RUNBLK speci-
fies a Core Image Library or
Load Module to be loaded or

is unspecified. If it is un-
specified, words C and D speci-
fy a Load Module and bit 13
must be set. If it is speci-
fied and bit 13 is set, words
C and D specify a CIL member
of the CIL specified in word

MEMBER OR LOAD A.
MODULE AS SPECI-
FIED IN WORDS A
Stack Movement
MOVE STACK
TO BELOW

LOADED MODULE

TRANSFER ADDR
INSTRUCTION
FOLLOWING .RUN
REQUEST

!

SET CA = TO
TRANSFER ADDR
SPECIFIED IN
LOAD MODULE IN

i
®

3-102

Load new module

ADD OFFSET
SPECIFIED IN
WORD F OF
RUNBLK TO CA

Y

SET TRANSFER

G OF RUNBLK

ADDR = TO WORD

]

SET TRANSFER
ADDRESS TO
Cca

Overlay

No

Program

No

RETURN TO CMI
FOR BEGIN OR
REESTART

BIT @ No

RETURN TO KB:
FOR BEGIN,
REESTART OR Of

(SP)

=TRANSFER AD.

SP}+2 .=MODULE SIZE
KSP)+4 =PROGRAM LO

ADDRESS

'

RETURN TO CALH
ICULATED TRANS-
[FER ADDRESS

3-103

APPENDIX A
PHYSICAL DEVICE NAMES

Mnemonic Device
DC RC11 Disk 014570
DF RF11 Disk 014760
DK RK1l1l Disk 015270

DT DECtape (TC1l) - 016040
KB ASR=22 Kevboard /Telatyps 042420
LP Line Printer (LP1l1) 046600
MT Magtape (TM11) 052140
PP High-Speed Paper Tape Punch 063200
PR High-Speed Paper Tape Reader 063320
PT ASR-33 Paper Tape Device 063440
CR Card Reader (CR11) 012620
SY System Residence Device 075250

(bC, DF, or DK)

a. Device mnemonics may be three letters on a particular
system. The third letter is assigned if there is more
than one controller, e.g.:

DTA for DECtape controller "A"
DTB for DECtape controller "B"

b. The device name may be followed by an octal number to
identify a particular unit when the controller has
several device units associated with it, e.g.:

DT1 indicates unit 1 under a single DECtape
control.

DTAl indicates unit 1 under controller A in
a multicontrol situation.

The Radix-50 equivalence is derived in accordance with the
following formula:

2
C1 X 508 + C2 X 508 + C3

where Cpn is a character (legal characters are space A-Z,
$, period, and 1-9, These characters are assigned values
from @ (for space) through 475 (for 9).

The following program may be used to print the octal repre-
sentation of any 3-character set Radix-~5@ equivalence. To
exit type an illegal character.

APPENDIX B

EMT CODES
EMT Programmed Described
Code Request on Page
0 .WAITR 3-36
1 .WAIT 3-35
2 .WRITE 3-29
3 2
4 . READ 3-28
5 2
6 JINIT 3-20
7 .RLSE 3-21
10 . TRAN 3-33
11 . BLOCK 3-31
12 .SPEC 3-37
13 .STAT 3-38
14 .LOOK 3-44
15 .ALLOC 3-39
16 .OPENX 3-22
17 .CLOSE 3-22
20 .RENAM 3-26
21 .DELET 3-41
22 .APPND 3-43
24 .KEEP 3-46
25 .RECRD 3-30
26-27 2
30-31 !
32 Diagnostic Print
33-35 1
36-37 2
40 !
41 General Utilities 3-50,-66
42 General Conversions 3-67,-74
43-55 !
56,57 Command String Interpreter 3-76,77
60 LEXIT 3-49
61-63 !
64 1
65 .RUN 3-47
66 .CVTDT 3-57
67 2
33-76 f (70, reserved for Multi-User Operation)
100-117 (reserved for Cormmunications Executive, COMTEX-11}
120-137 (reserved for Real-Time Monitor, RSX-11)
140-167 (reserved for user-implemented routines)

lReserved for Monitor internal communication.

2Reserved for future Monitor expansion.

APPENDIX C
SUBSIDIARY ROUTINES AND OVERLAYS

With the exception of .READ/.WRITE and .WAIT, all Monitor code
for performing programmed requests is potentially non-resident. Since
non-resident modules are limited to a size of 256 words (the size of

the swap buffer) and since many common functions are required, many
of the programmed request modules must make use of subsidiary routines.
The table given below can be used in two ways:

° when assessing the number of disk accesses required
to satisfy a request, the table shows how many mod-
ules (in addition to the primary module) may be
loaded;

) when making certain functions resident, one must
not only make the primary module resident, but
must also make resident each of the subsidiary
modules which may be called. For example, if one
wants all .OPENI processing routines (except for
magtape) resident, he would put the following assembler
directive in his program:

.GLOBL OPN,FOP,LUK,CKX

The following summary explains the codes used in the table.

(blank) = subsidiary routine is never called

X = subsidiary routine is called only when a
file-structured device is referenced

L = subsidiary routine is called only when a
linked file is referenced

C = subsidiary routine is called only when a
contiguous file is referenced

D = subsidiary routine is called only when
DECtape is referenced

M = gsubsidiary routine is called only if

magtape is referenced

Name of Subsidiary Routine
o S Lo g
o 2 [¢} o 0 [0] [] +H
Bal QO ~ Ol [o) A 1~ -
4 | =] m ~|a O~ o oA m o
SEN] 0 - Dy A= m - O K 9]
O - - o N QO] [O £ 5
=] ® =] (o} 2 ES TR N] 0 Uik OO
QT £} ~ T P gl B4 Sl 3 nio O 3T Qo 0|y N 3]
%o v VO O V|V OjMm VIO Ol Wl & 0olg diz g Q [0}
= comxmmmuoi gl0 3|0 ol ojo J|lo P P gl o o]
= O[O |0 AN O P o= Ojo V]l ~H]l O OIP QO O © @
> iy e HPH O A0 O HELS VO HO A O GBI Q] O Q
gg OO AU MO | AU i P10 <l A Pl A0 S= O] A -
S 5 s lslalglsis|slslz]lgly L lo | |N
— N &) m m = Q [T} B (=] [a]
[CN Request 8 [E 3 | O O 9] (=) [a] 54 % = H 1
RWN |. READ/WRITE'® X
OPN |.OPENU X X M
OPN |.oPENO® X X X M
OPN |.OPENE X X M
OPN |.OPENT" X X M
OPN |.OPENC X X
cLs |.cLose" X
ALO [.ALLOC X x| x
DEL |.DELET X x|z]c
REN |. RENAM X X
APP |.APEND X X)
DIR |.LOOK X X
PRO |.KEEP X X
RUN |. RUN" X x| x X M|X|x
INR | INIT®
RLS |.RLSE"

1Always resident.
2Should never be made resident.

3The .OPENO module requires a second section if a dataset other than CMO
is being opened on the device assigned to CMO.

“The .RUN EMT calls the following routines:

<INIT

.OPENI (once for each combination of filename and UIC)
.LDR (three sections if LDA file; two if CIL file)
.LD2

.CLOSE (once for each .OPENI)

.RLSE

SThe .INIT module has two sections, but the second has no name. It is
resident automatically if .INIT is resident.

APPENDIX D
SUMMARY OF MONITOR COMMANDS

Command Usage

Commands to Allocate System Resources

ACCLrS A -) . 1 1 . . . i 1 .
ASSIG Assign a physical device to a logical device name

Commands to Manipulate Core Images

RUN Load and begin a program

GET Load o program

DUMP Write a specified core area onto a device as a core
image

SAVE Write a program onto a device in loader format

Commands to Start a Program

BEGIN Start execution of a program
CONTINUE Resume execution of a halted program
RESTART Restart execution of a previously operating program

Commands to Stop a Program

STOP Halt the current program, including any 1/O in pro-
gress

WAIT Halt current program after finishing any 1/O in progress

KILL Halt the current program, finish any 1/O in progress,
close all open files, and pass control back to the Mon-
itor

Commands to Exchange Information with the System

DATE Fetch/Specify date

TIME Fetch/Specify time
(continued on next page)
Optional characters are underlined. If any optional character appears, all must appear.

D-1

Command Usage

Commands to Exchange Information with the System (Cont)

LOGIN Enter User Identification Code
MODIFY Modify contents of memory location
FINISH Log off system

Miscellaneous Commands

ECHO Disable/enable keyboard echo to user program
PRINT Disable/enable teleprinter output from user program
END End input from a device

OoDT Begin operation of Octal Debugger (ODT)

Optional characters are underlined. If any optional character appears, all must appear.

Global Macro Call Assembly Language
Mnemonic Function (see notes) Expansion (see notes) Refer to Page

.ALLOC Allocate a Contiguous File .ALLOC #LNKBLK,#FILBLK, #N MOV #N,-(SP) 3-39
MOV #FILBLK,-(SP)
MOV #LNKBLK,=-(SP)
EMT 15

«APPND Append to a Linked File .APPND #LNKBLK,#FIRST, #SECOND MOV #SECOND, - (SP) 3-43
MOV #FIRST,- (SP)
MOV #LNKBLK,- (SP)
EMT 22

.BIN2D Convert Binary to Decimal ASCII| .BIN2D #ADDR,WORD MOV WORD, - (SP) 3~-72
MOV #ADDR, - (SP)
MOV #3,-(SP)
EMT 42

1-d

.BIN20 Convert Binary to Octal ASCII .BIN20 #ADDR,WORD MOV WORD,- (SP) 3-74
MOV #ADDR, - (SP)
MOV #5,-(SP)
EMT 42

«BLOCK Transfer a Block .BLOCK #LNKBLK, #BLKXBLK MOV #BLKBLK,- (SP) 3-31
MOV #LNKBLK,- (SP)
EMT 11

.CLOSE Close a Dataset .CLOSE #LNKBLK MOV #LNKBLK,- (SP) 3-26
EMT 17

.CORE Obtain Core Size .CORE MOV #100,-(SP) 3-52
EMT 41

.CsIl CSI Interface - part 1 .CSI1 #CMDBUF MOV #CMDBUF, - (SP) 3-76
EMT 56

.CSs12 CSI Interface - part 2 .CSI2 #CSIBLK MOV #CSIBLK,- (SP) 3-77
EMT 57

S1S3ND3H AIWWVHOOHd HOLINOW 40 AHVIWNNNS

3 XIAN3ddV

Global Macro Call Assembly Language
Mnemonic Function (see notes) Expansion (see notes) Refer to Page
.CVTDT Convert Binary Date or Time to .CVTDT #CODE,#ADDR[,VALUE] If Code = 3 3-57
ASCII character string VALUE is an optional argu- MOV VALUE+2,-(SP)
ment specified with Codes 1f Code = 2 or 3
2 and 3 only.
MOV VALUE, - (SP)
All codes
MOV #ADDR,- (SP)
MOV #CODE,~ (SP)
EMT 66
.DATE Obtain Date .DATE MOV #103,-(SP) 3-55
EMT 41
.DELET Delete a File .DELET #LNKBLK,#FILBLK MOV #FILBLK, - (SP) 3-41
MOV #LNKBLK,- (SP)
EMT 21
.D2BIN Convert Decimal ASCII to Binary .D2BIN #ADDR MOV #ADDR,- (SP) 3-71
MOV #2,-(SP)
EMT 42
.EXIT Exit to Monitor .EXIT EMT 60 3-49
.GTCIL Get disk address of Core Image .GTCIL MOV #111,-(SP) 3-63
library EMT 41
.GTUIC Get Current UIC .GTUIC MOV #105,~(SP) 3-59
EMT 41
.GTPLA Get Program Low Address .GTPLA CLR -(SP) 3-61
MOV #5,=(SP)
EMT 41
.GTSTK Get the Stack Base Address .GTSTK CLR -(SP) 3-64
MOV #4,-(SP)
EMT 41

Global
Mnemonic

Function

Macro Call
(see notes)

Assembly Language
Expansion (see notes)

efer to Page

. INIT

Initialize a Dataset

+INIT #LNKBLK

MOV
EMT

#LNKBLK , - (SP)
6

3-20

.KEEP

Protect a Fiie

.LOOK

.KEEP #LNKBLK,#FILBLK

MOV
MOV
EMT

#FILBLK, - (SP)
#LNKBLK, - (SP)
24

3-46

Directory Search

.LOOK #LNKBLK,#FILBLK[,1]

,1 is an optional argument

MOV
MoV
EMT

or when optional argu-
ment is specified:

MoV
CLR
MOV
EMT

#FILBLK,- (SP)
#LNKBLK, - (SP)
14

$FILBLK,- (SP)
-(sP)
#LNKBLK, - (SP)
14

3-44

. MONF

Obtain Full Monitor Size

«MONF

MOV
EMT

#102,~(SP)
41

3-54

. MONR

Obtain Size of Resident
Monitor

. MONR

MOV
EMT

#101,-(spP)
41

.OPEN

Open a Détaset

.OPEN #LNKBLK, #FILBLK

MOV
MOV
EMT

#FILBLK, - (SP)
#LNKBLK , - (SP)
16

. OPENx

Open a Dataset

.OPENx #LNKBLK,R

MoV
MoV
MOV
EMT

#CODE , -2 (R)
Rr" (SP)
#LNKBLK, - (SP)
16

CODE=1 for .OPENU

2 for .OPENO
3 for .OPENE
4 for .OPENI
13 for .OPENC

Global
Mnemonic

Function

Macro Call
(see notes)

Assembly Language
Expansion (see notes)

Refer to Page

.02BIN

Convert Octal ASCII to Binary

.02BIN #ADDR

MOV
MOV
EMT

#ADDR, - (SP)
#4,- (SP)
42

-RADPK

Radix-50 ASCII Pack

.RADPK #ADDR

MOV
CLR
EMT

#ADDR, - (SP)
-(SP)
42

. RADUP

Radix~50 ASCII Unpack

.RADUP #ADDR,WORD

MoV
MOV
MOV
EMT

WORD, - (SP)
#ADDR, - (SP)
#1,-(SP)

42

Read from Device

.READ #LNKBLK, #BUFHDR

MoV
MOV
EMT

#BUFHDR, - (SP)
#LNKBLK, - (SP)
4

.RECRD

Read or Write a Specified
Record in a File

.RECRD #LNKBLK, #RECBLK

MOV
MOV
EMT

#RECBLK, - (SP)
#LNKBLK , - (SP)
25

- RENAM

Rename a File

.RENAM #ILNKBLK, #OLDNAM, #NEWNAM

MOV
MOV

EMT

#NEWNAM, - (SP)
#OLDNAM, - (SP)
#LNKBLK , - (SP)
20

.RLSE

Release a Dataset

.RLSE #LNKBLK

MOV
EMT

#LNKBLK, - (SP)
7

.RSTRT

Set REstart address

.RSTRT #ADDR

MOV
MOV
EMT

#ADDR,~ (SP)
#2,-(SP)
41

- RUN

Load a program or Overlay

.RUN #RUNBLK

MOV
EMT

#RUNBLK, - (SP)
65

.SPEC

Special Function

.SPEC #LNKBLK, #SPCARG

MOV
MoV
EMT

#SPCARG, - (SP)
#LNKBLX, - (SP)
12

Global ‘ Macro Call Assembly Language
Mnemonic Function (see notes) Expansion (see notes) Refer to Page

.STAT Obtain Device Status | .STAT #LNKBLK MOV #LNKBLK,-(SP) 3-38
EMT 13

.STPLA Set Program Low Address .STPLA #ADDR MOV #ADDR,- (SP) 3-62
MOV #5,-(SP)
EMT 41

<STFPU Initialize the Floating Paint .STFPU #PSW, #ADDR MOV #ADDR,- (SP) 3-66
exception vector (11/45) MOV #PSW, - (SP)
MOV #3,-(SP)
EMT 41

.STSTK Set the Stack Base Address .STSTK #ADDR MOV #ADDR,-(SP) 3-65
MOV #4,-(SP)
EMT 41

.SYSDV Obtain System Device Name .SYSDV MOV #106,-(SP) 3-60
EMT 41

.TIME Obtain Time of Day . TIME MOV #104,~(SP) 3~-56
EMT 41

. TRAN Transfer Absolute Block .TRAN #LNKBLK, #TRNBLK MOV #TRNBLK, - (SP) 3-33
MOV #LNKBLK,- (SP)
EMT 10

. TRAP Set TRAP Vector .TRAP #STATUS, #ADDR MOV #ADDR, - (SP) 3-50
MOV #STATUS, - (SP)
MOV #1,-(SP)

EMT 41

+WAIT Wait for Completion +WAIT #LNKBLK MOV #LNKBLK,- (SP) 3-35
EMT 1

.WAITR Wait for Completion; Return ‘ . WAITR #LNKBLK, #ADDR MOV #ADDR, - (SP) [3~-36
to ADDR MOV #LNKBLK, -~ (SP) i
EMT O

<WRITE Write on a Device .WRITE #LNKBLK, #BUFHDR MOV #BUFHDR, - (SP) 3-29
MOV #LNKBLK, - (SP)
EMT 2

NOTES: ADDR a memory address

BLKBLK address of BLOCK Block

BUFHDR address of Line Buffer Header

CMDBUF address of Command String Buffer

CSIBLK address of Command String Interpreter Control Block

FILBLK address of Filename Block

FIRST address of Filename Block of file which is to be appended to
LNKBLK address of Link Block

N number of 64-word segments requested

NEWNAM address of Filename Block containing the file's new name

OLDNAM address of Filename Block containing the file's old name

PSW program status word for an exception routine

R register from R@ through R5 containing address of Filename Block
RECBLK address of RECORD Block

SECOND address of Filename Block of file which is appended

SP Stack Pointer (register R6)

SPCARG code for Special Function or Address of Special Function Block as determined by Function called.

TRNBLK address of TRAN Block

APPENDIX F
SUMMARY OF DOS ERROR MESSAGES

Following is a complete summary of all error messages which
can appear when using the DOS Monitor and system programs.

F.1l Keyboard Command Messages

If a command cannot be executed satisfactorily, an appropriate

message will be printed at the teleprinter and the command will be

ignored. The message will be one of the folilowing.
Message Meaning
ILL CMD! Command requested does not exist
INV CMD! Command cannot be accepted at this time (e.g.,
KILL with no program to kill)
SYN ERR! Syntax of command is faulty
ILL DEV! The device specified is illegal
NO FILE! File specified does not exist or cannot be loaded

by the RUN processor.

ILL ADR! Address is illegal (not on word-bound or
in core)

NO CORE! Insufficient core capacity to execute command
(SAVE)

F.2 Error Messages

Error messages are printed on the teleprinter in the following
format.

CNNN XXXXXX
where C is one of five letters identifying the type of message:

Information

Action required by the operator
Warning to the operator

Fatal error

System program error

whHs»H

NNN is the message number; and XXXXXX gives appropriate additional
information. Information, Warning, and System program messages
are printed and the program continues.

Action messages are printed and the program is suspended. The
Monitor expects the operator to take some action such as "continue
the program" (type CONTINUE), or "kill the program" (type KILL).

Fatal error messages are printed if possible, and the program
is suspended. The Monitor will not allow the operator to CONTINUE
the program, but expects to see either a BEGIN, RESTART or KILIL
command. If a fatal error is a system disk failure and the error
message cannot be printed, the central processor halts. This is the
only time that a halt occurs in the Monitor.

F.2.1 Action Message

Action messages are printed and the program is suspended. The
Monitor expects the operator to take some action such as "continue the
program" (type CONTINUE), or "kill the program" (type KILL).

CODE/ISSUER ADDITIONAL INFORMATION/MEANING
Agg1 User Call Address

DOS Disk address error.
ApB2 Device (RAD5f)

DOS Device not ready. For example,

the desired device/unit may be
off-line or it may not be
write-enabled. For DECtape or
magtape, the proper unit may
not have been selected. Make
the device ready and type CO.

AG@A3 Link Block Address

DOS The Link Block contains either
an illegal device code or no
device code at all. Use the
MODIFY command to display the
contents of Link Block+2,
which is the dataset name
(RAD58), and then use the AS-
SIGN command to assign a de-
vice and/or file; type CO when

ready.
Ag@4 User Call Address
DOS DECtape error. Try adjusting
the tape; type CO to retry the
operation.
APB5 Pause Number
oTs A PAUSE was encountered in a
FORTRAN program, Type CO to
continue.
Afgde Correct Module Name
LINK Paper tape loaded out of order

on Pass 2 of Linker. Load cor-
rect module and type CO to con-
tinue.

AQQ7 Call Address
DOS The name of the output file
being created on magtape is the
same as that of an existing file.
Type CO to write over the old
file or mount another tape and
then type CO.

AgLY g
DOS A parity error occurred when
trying to open a file on magtape.
Type CO to continue searching.
If the file being sought has a
parity error in its label, it
cannot be found.

CODE/ISSUER

AplL
DOS

Ap43
PIP

ApSpH
BATCH

A35f8
DOS

ADDITIONAL INFORMATION/MEANING

= Date is Bad, 1 = Time is Bad
System date or time is not
valid. Re-enter date or time
via the consoie keyboard and
type CO to continue.

Status Register

Magtape error. After having
made 15 entries on a WRITE or
WRITE EOF, the operation is
still unsuccessful. Type CO to
ignore the error and proceed, or
type KI to stop the program and
start over with a good tape.

Disk Pack Block Number
This is the block that is bad;
issued by the RP1ll pack initiali-
zer to provide a list of bad
blocks and to permit job termi-
nation if too many are bad. Type
CO if number of bad blocks thus
far is tolerable.

Batch Stream Wait.
Type CO to continue.

Power has come up following a
power failure. Any I/0 in
progress has been lost, but
information in core and in the
registers has been retained.
If you wish to continue, type
CO. Note, however, that if
I/0 was in progress, the
driver (s) may have been left
in a state which will not per-
mit your program to be con-
tinued.

F.2.2 Information Messages

Information messages are printed and the program generally

continues.

CODE/ISSUER

I350
oTs

I351
FORTRN

1352
FORTRN

I353
0TS

I354
PIP

ADDITIONAL INFORMATION/MEANING

STOP Number
A STOP statement was executed
in a FORTRAN program.

More errors of a specified type
occurred than were allowed.
The program is terminated.

Address of DEVTB Entry
The logical device specified is
not available, (See FORTRAN
device table, DEVTB, for a
layout.)

Error Class Number
No logging device. The command
input device was in use when a
run-time diagnostic message was
to be issued. Because of a device
conflict the normal message could
not be issued.

Illegal response to CONFIRM;
when attempting to zero an
RK1l disk cartridge. The disk
was not zeroed. Legal respon-
ses are:

H for high-density disks (RK@3/85)
L for low-density disk (RK@2).

F.2.3 Warning Messages

Warning messages are printed and the program generally continues.

CODE/ISSUER ADDITIONAL INFORMATION/MEANING

wgga2 Device Name (RADS5f)
Device time out.

W@43 Block Number

Mism oo mrmremas soh 4T A nm o
LLQloild CIXCr winiiic UoLily

-TRAN to zero the disk.
W1lgl Number of Task Called
RSX Task called by number not present

or call number illegal. Request
ignored.

W1lg2 Addr. in Call Sequence
RSX Delay units not correct in call
start. Request ignored.

W1lg3 Addr. in Call Sequence
RSX Delay time too large in call
start. Request ignored.

wlg4d Addr. in Call Sequence
RSX No time slot available. Request
ignored.

W1g85 Current Run-Time
RSX A level 1 task has exceeded its
maximum run time. Task continued.
wlge
RSX Illegal or unrecognized console
command. Command ignored.

W1g7 Report Number
RSX Illegal system report number in
system command. Command
ignored.

W1llg Addr. in Call Sequence
RSX Attempted to start a background
task while the background is busy.
Request ignored.

Wlll Addr. in Call Sequence
RSX Attempted to clock a background
task. Regquest ignored.

Wil2
RSX Symbolic task name not found.
Request ignored.

W1l13
RSX Command syntax error. Command
ignored.

W1ll4 Addr. in Call Sequence
RSX Illegal clock (call TRNON) time.
Request ignored.

W38 B, Module Name
LINK Non-unique object module detected
in first pass. Second and sub-
sequent occurrences of the module
are ignored.

F-5

CODE/ISSUER

W3g1

w3g2

W3g3

w3g4

W3g85

wW3g6

w37

W3lg

W31l

W31l2

W31l3

LINK

LINK

EDIT

EDIT

EDIT

EDIT

EDIT

EDIT

EDIT

EDIT

EDIT

ADDITIONAL INFORMATION/MEANING

of Byte Error
Byte relocation error. Linker
automatically continues.

g, Symbol and Module Names

Multiple definitions of global
symbol. Second definition is
ignored and linking continues.

Buffer overflow. Overflow of
one of the following Editor
buffers:

Command Input Buffer

Save Buffer

Page Buffer

Macro overflow. The command
string as stored in the Save
Buffer was too long to execute,
when requested to do so by an
EM (Execute Macro) command.

Recursive macro. The command
string as stored in the Save
Buffer contains an EM command.

Empty Save Buffer. An EM or U
(Unsave) command was issued with
nothing in the Save Buffer.

Search failure. The nth occur-
rence of the search object was
not found in the available test.

Unsave failure. Insufficient
room to copy the contents of
the Save Buffer into the Page
Buffer at dot.

End-of-data detected. The end of
the input file or the end of the
input medium was reached during
the last read of text into the
Page Buffer, last page read was
last in the file.

Illegal line feed. A line feed
character was encountered in the
command string.

Illegal negative argument. A
negative argument was used with a
command that does not accept
negative arguments.

CODE/ISSUER ADDITIONAL INFORMATION/MEANING

W31l4
EDIT Arguments not permitted. The
command specified does not
permit any argument with it.

W315

-———EDEP-— —Illegal argument:— The given—
argument was not acceptable to
the specified command.

W3leé
EDIT Illegal text string.

W317
EDIT Illegal command. The Editor was
unable to execute the specified
command. The command may be an
illegal character, one that is

Al s ™NTM_17 "7 ~ arm A A
not an EDIT-11 command charac

w32¢
EDIT Page Buffer almost full. The
Page Buffer was within 128
characters of being full. Write
out part or all of the Page
Buffer and then delete from the
Buffer the part that was written.

w321
EDIT File closed. An attempt to Read
from or Write to a primary file
after an EF (End-of-File) command
was issued.

W322 - g
LINK Undefined global symbols in load
module. Linking continues.

W323
RSX Illegal size of named .CSECT or
illegal entry in named .CSECT or
task's named .CSECT size too
large.

W324
RSX Too many entries in tasks named
.CSECT.

W325
RSX Illegal priority specification in
real-time header.

W358 Number of Failures
RSX Powerfail interrupt occurred.

W352 Disk Error Code
RSX Disk error detected by RSX.

Codes are:

transmission error

illegal error

undefined file

illegal file, i.e., linked

block of file out of range

co~NoyutWw

F.2.4 Fatal Messages

Fatal error messages are printed, if possible, and the program
is suspended. The Monitor will not allow the operator to continue the
program, but eventually expects to see a BEGIN, RESTART or KILL com-
mand. If a fatal error is a system disk failure and the error message
cannot be printed, the central processor halts. This is the only time
that a halt occurs in the Monitor.

CODE/ISSUER ADDITIONAL INFORMATION/MEANING
Fogpg Request Address
DOS Dataset not INITed. Program

must issue .INIT before any
other requests to a dataset.

Fgg1l Request Address o

DOS Stack overflow. Once loaded, a
program requires additional space
for its stack, buffers and control
blocks. These are allocated as
they are needed. Reduce the size
of the program. If the error has
been caused by a stack overflow,
the stack pointer is reset by
bytes before the message is printed.
This allows the monitor to proceed
(since it needs the stack) and leaves
the top of the stack intact (though
not pointed to by SP). (See F.2.)

Fgg2 Request Address
DOS Invalid EMT call. The EMT code
issued by the program has not been
assigned.

FPO3 Request Address
DOS Invalid .TRAN function or .TRAN
to an open file.
Fgg4 Error Code
DOS Incorrect OPEN on industry com-

patible magnetic tape. Caused

by program error or improperly

assigning devices via datasets.

Defined error code values:

- another file currently opened
on tape,

1 - attempt to READ or WRITE to
unopened file.

FA@s5 Request Address
DOS +RLSE error. If a file has been
OPENed, it must be CLOSEd before
a .RLSE can be issued.

Fgge Request Address

DOS Device full. No more space exists
on the device being referenced by
the request. For a file-
structured device, use PIP to
look at the number of free blocks
and delete any files which are not
needed.

F@@7 Request Address
DOS No buffer space available. In-
sufficient space for completion
of required operation. Reduce
program size or close open files.

F-8

CODE/ISSUER

F@1@
DOS

Fp11

Fgl4
DOs

Fg15
DOS

Fgle

Fg17
DOS

F@2g
DOsS

Fg21
DOs

F@22
DOS

ADDITIONAL INFORMATION/MEANING

Request Address
Illegal .READ/.WRITE. Incor-
rect mode for device or file
not opened correctly.

Request Address
———1Illegal OPEN. OPEN code is not
used or is unsuitable for device.

Request Address
File access violation. You are
trying to OPEN a file that cannot
be opened for the requested
purpose. See Table 1 below for
details. Assure that the name of
the file requested was correct.

Request Address

1 +viring A raad
Device error on trying to read

bit map. The system cannot
proceed if it cannot read the
bit map. New files cannot be
created on the device nor can
0ld files be extended. Existing
files may be copied to a backup
medium for recovery.

Request Address
DECtape error. Nonexistent memory
addressed or end-zone reached
during transfer.

Block Number
DECtape search failure. Block
requested cannot be found.

Device (RADS5#)
Parity error on file-structured
device.

Irrelevant
Too many datasets using low-speed
paper tape. A maximum of one
each for input or output is al-
lowed. Restart your job and use
the ASSIGN command to reassign
the excess datasets.

Irrelevant
Checksum error or device parity
error while typing to load a pro-
gram. Type KILL then try again.
If that doesn't work, try re-
linking the program. Try recreating
the file. If the error persists,
hardware may be faulty. CcCall
field service.

Irrelevant
An attempt was made to load for
execution a dataset which is not
formated binary or which has no
start address. Typically this
means that the dataset being loaded
is not a load module.

F-9

CODE/ISSUER ADDITIONAL INFORMATION/MEANING

F@23 Program Size
DOS Program too large for core
available. Try to overlay the
program or make it smaller.

F@g24 Request Address
DOS File access violation. You are
trying to perform an operation
that violates the monitor's
user and file protection scheme.
See Table 1 below for details.
Resolve access problems with owner.

F@25 Device (RAD5H)
PIP Master directory full when at-
tempting to add UIC. No more
UIC's can be added.

F@26 Disk Control Status Register
DOS Disk (RF1ll or RCll) transfer
failure. Hardware error or
persistent parity failure.

Fg27 Error Register

DOS Disk (RK1ll) transfer failure.
F@3g Error Class, Number

0TS FORTRAN system error. An

illegal call to the FORTRAN
Error Processor was made.

F@31 Addr. of Log Device
OTS No more room on FORTRAN logging
deivce, or illegal end-of-file
was encountered while a FORTRAN
READ was in progress.

F@32 Status Register

DOS Magtape hardware error.
Fg33 Special Function Block Address

DOS Invalid special function block.
F@34 Call Address

DOS The call code passed to a conver-

sion request was invalid, e.g.,
5 means binary-to-octal, but 63
is not defined.

F@35 Block Number

DB Illegal block number (RK11l).
Fg36 Lowest Slot Used by Tasks

RSX No slot available.
F@37 Lowest Slot used by Tasks

Illegal slot specified.

Fg49 Low Address of Task Code

RSX Attempted to overlay the execu-

tive for another task.

CODE/ISSUER

Fg4l
RSX

Fga2
DOS

DOS

Fg58

F@51
BATCH

F@g52
BATCH

F@gs53
BATCH

F@54
DOS

F@55
BATCH

Flgg
RSX

ADDITIONAL INFORMATION/MEANING

Load address of Binary Block
Attempted to load outside
limits defined in the command.

Error Register
Disk (RP11l) transfer failure.

Block Number
Illegal block number (RP11l).

24—

Error in command string passed by
a Compiler via the .RUN reguest.

Reguest Address
The RUN EMT cannot find the
requested entry in the speci-
fied core image library. Add
proper entry to CIL or use
correct name.

Request Address
Illegal I/0 to batch stream.
Either an illegal mode (e.g.,
unformatted binary when not
in "OWN" mode) or a byte
count less than 83, on formatted
read.

Request Address
Too many successive read errors
or EOF's while reading the
batch stream.

PC
Illegal Open to one of the
Batch Datasets. OPENO and
OPENI are the only legal
OPEN's and OPENO (OPENI) to
an input (output) dataset
is also illegal.

PC
Illegal request to the BATCH
stream flush EMT. Request
code must be @, 1, or 2.

Address of DDB
An attempt was made to load a
new program via the RUN request
(EMT) before releasing all of
the datasets INITed by the
current program. Correct the
program by releasing all INITed
datasets before the RUN request
is issued.

PC
The time limit for the current
job has expired. The current
job has been aborted.

Address in Call Sequence
Insufficient arguments in call
sequence or in console command.

CODE/ISSUER

F249

F274

F275

F276

F277

F308

F391

F382

DOS

DOS

OTS

DOS

DOS

FORTRN

FORTRN

DOS

ADDITIONAL INFORMATION/MEANING

Irrelevant

An attempt was made to allocate
a contiguous file, but not
enough contiguous blocks are
free.

Irrelevant

The stack base address has not
properly set. Thus the stack
could not be moved by the RUN
EMT as requested.- This is
probably a program error. The
.STSTK request may be used to
set the stack base prior to
issuing the .RUN request.

Incorrect argument to link
subroutine.

Request Address

The transfer address of the
program or overlay to be loaded
(by the RUN or GET commands or
by the .RUN request) was not
specified or is not legal.
Specify a transfer address in
your source program (END state-
ment) or correct the /TR spec-
ification in your linking pro-
cedure.

Request Address

The program or overlay could not
be loaded because it was outside
the legal load area (on top of
the Monitor or the main program
or outside actual memory). Re-
link the program to conform to
allowable boundries. Assure

that the section being improperly
loaded does not overlay the
resident portion of your program.

FORTRAN Compiler overlays cannot
be executed. FORTRN.OVR may be
nonexistent or improperly con-
structed. -

No output file specified for
the "/GO" options.

Action Word.

Illegal options requested in short
form of RUNAEMT.

CODE/ISSUER

F34g
DOS

F342
DOS

F344
DOS

F346
DOS

F352
DOS

F356
DOS

ADDITIONAL INFORMATION/MEANING

PC at Time of IOT

The DOS error routine was called
with an invalid error code.

This might happen if the program
branched into a data area

since the integer 4 would be
—executed—as an I6T instructiocn
(the error routine is called via
an IOT).

Contents of PC
Error trap. Probably caused by a
reference to a byte boundary or
to nonexistent memory or to a
nonexistent device. Could also
be caused as a consequence of
the stack pointer being below
4p% or by executing JIMP or
JSR with register mode destina-
tion.

Contents of PC
Reserved instruction trap. The
instruction just executed is
not a valid PDP-11 instruction.
Perhaps you jumped to a point
outside your program or perhaps
you have stored information over
an instruction.

Contents of PC
Trace trap. Bit 4 of the Proc-
essor Status Register is on.
Look for traps in the PDP-11
Processor Handbook.

Contents of PC
Trap Instruction trap. A trap
instruction was issued by your
program and you did not previ-
ously specify a trap address with
the .TRAP request.

Contents of PC
Unexpected device interrupt.
Either a new device has been
added to your system without
initializing the interrupt vec-
tor or a hardware failure has
occurred.

Table F-1
Recovery from Fgl2 or F@24 File Access Violations

CONDITION ACTION
Are you logged in? LOgin
Is your UIC entered? Enter it with PIP.
Are you attempting to create a file Run PIP and DELETE
which already exists?
Does the Input file you are accessing Use PIP with /BR or /DI
exist? switch to check
Are you attempting to delete a non- Use PIP with /BR or /DI
existent file? switch to check
Are you attempting to delete a locked Run PIP and UNlock

file? (The command to delete is cor-
rect, and the file exists.)

Are you attempting to access another Ask PIP to list the user's

user's file illegally? directory and see if an
access error results

F.2.5 System Program Messages

System program messages are printed and the program continues.
This class of error may be issued by a variety of system programs.
If an ISSUER is specified, the error is unique to the indicated
program. See the appropriate program manual for greater detail.

CODE/ISSUER ADDITIONAL INFORMATION/MEANING

Sggl
FORTRN FORTRAN Compiler has exhausted
symbol table space during the
assembly phase of compilation.

s204 2

Too many .CSECT directives.

5291 2
Conditionals nested too deeply.

s2g2 Error Status Byte. Dev: file, ext.
EOD or device error on .WRITE
or .READ; the disk may have
filled up.

S203 Relative address of error call
Illegal switch, or too many
switches, or illegal switch
value, or switch value not
given, or switch in output field.

S2g4 Relative address of error call

Too many or too few output files.
S285]

Too many or too few input files.
S286 Relative address of error call

No input files specified.

F-14

CODE/ISSUER

s2p7

5219

s211

5212

5213

S214

5215

S2lé6

S217

s22p

5223

5225

5226

ADDITIONAL INFORMATION/MEANING

Error Status Byte

g .

EOD or device error on .TRAN.

dev:file.ext
Unrecognized symbol table entry
in indicated file.

dev:file.ext

Arn DTN Af +£hea ~sdis7ron Fila »ofora
AL~ O Tl givVel 1i.l8 Igicg

ences a global name which cannot
be found in the symbol table.

dev:file.ext

An RLD of the given file contains
a location counter modification
command which is not last.

dev:file.ext
Object module does not start with
a GSD in the indicated fil

a 1ln the indicated €.

dev:file.ext

The first entry in the module is
not the module name of the indi-
cated file.

dev:file.ext

An RLD of the given file refer-
ences a section name which cannot
be found.

The TRA specification references
a nonexistent module name.

Relative address at error call.

Insufficient core.

An internal jump table index is
out of range.

No more room for CSI input buffer
or Monitor's file manager routine,
or Monitor's library search buf-
fer.

Program too large or top too low
(program has been linked below
zero in memory).

An open angle bracket, <, is pre-
sent in a line other than the
first.

15

o
i

CODE/ISSUER

5227

S238

5231

5232

5233

5234

5235

5236

5237

S248

s241

5242

5243

5244

5245

5246

5247

ADDITIONAL INFORMATION/MEANING

Error Code

Illegal file combinations due to
name conflicts. Defined error
codes are:

1 No Primary File (PRI) output,
2 Secondary File (SEC)
input = SEC output,
3 SEC input = PRI output,
4 PRI input = SEC output,
5 PRI input = SEC input,
6 PRI output = SEC output.

Error Status Byte

Error on.BLOCK I/0.

Illegal command, file-structured
device required.

No more than one action switch
permitted.

Specified UIC not found in MFD.

Null filename of "*" given
where filename required.

No files found in UFD.

Operation applicable to DECtape
only.

File not found during file re-
covery operation.

No space for file allocate.
MFD is full.

Meaningless command, no action
taken.

An open angle bracket, < , is not
present in the first line.

Already past requested position.

Object module not found, could be
out of order.

Illegal library format.

Listing requested, but unable to
read output library from speci-
fied output device.

F-16

CODE/ISSUER ADDITIONAL INFORMATION/MEANING

S2548 g
Core library symbol table not
specified first or consecutively.
S251 ji
No files found for "*" request.
8252 2
Filename given when none al-
lowed.
S253 Jo]
Linker error.
S254 [/}
It is illegal to zero the system
resident disk.
S255 J
Match found in third of later
binary block in a paper tape
library.
S256 yol

Illegal input device.

S257 File Block Error Code, dev:file.ext
Illegal file operation. For
example, protect code does nct
allow transfer of file; UIC dif-
ferent from Login UIC, thus
making certain "wildcard" opera-
tions illegal. The operation in
question is not performed.

S2648 J/

Same device needed for input and
output in fast copy operation

S262 g
Record size too big for buffer.

5263 File Number
File record sizes do not agree
on verify, "/v".

5264 yi]
Conflict in standard file name
extension which determines
mode of transfer. Use expli-
cits to resolve.

S265 2

Operation attempted on device
which is not legal for non-
privileged user, for example,
/PK PIP switch attempted by

a user not logged in under [1,1].

APPENDIX G

LISTING OF SYSMAC.SML (SYSTEM MACRO FILE)

3 PTP=11 TR SYSTFM MACROS ~ VEAR
JMAPRM L FARAM
F2zxarg
Fievafy
RZr%al2
R3e%al3
Rdun%al4
FEsYAMS
RAzYAlH
R72%a0?
EPx%AlS
FCa%anyz
FShean17777&
SWRsaANI77570
JFNRY
JMAPRE L TINTT LBLEK
LMCALL L AMPDF
LAMPDF LBICK
EMT <ACF>
"FNRV
LMAPRN RLSE ,IBICK
LMCALL JAMODF
JAMPRCE LI BLCK
EMT <aC7>
JENRK
JMAFRA L PLASF L LBLEK
JMCALL LAMPRDE
LAMEDE I BLCK
FMT «al{7>
FNPM
MACRN READ LLBLEK,,LRLFF
MCALL LAMDDF
AMPDF L BLFF
JAMPRF I BLCK
EMT <«AC4>
JENRM

G-1

JMACRM JWRYTF ,LBLEK,,LRLFF
WMCALL L AMODF

JAMPEF (L BUFF

LAMEDF (LRLCK

EMT <AlZ>

2FNPM

LMACRA L PPFNM LBLEK, ,FRLEK
LMCALL ,CQRE, ,0PFN

LCOPRE LFBILOK,<cAn2>

LOPFA LI BLCK,,FRLCK

JFNPYV

WMAPRE ,CPFNY L BLCW, ,FRLFK
LMCALL LPORE, ,OPFN

JSIORE FRLCK,<And>

JOPFN LBl CK, FRLCK

FNRW

JMACRE LCPENE: L LBLCK,, FRLEK
MCALL .PORE, ,MPEN

LCCRE JFRILCK,calt{>

JOPFN . BLEK, FRLCK

LENPV

JMAPRA L OPFNE L1 BLCK, FRLCK
JMEALL LCORE, ,OPEN

LFOPE +FBILCK,<aAN13>

+PPFA .| BLCK, ,FRLCK

NPV

JMACRR ,FPENF | BLCK, ,FRLCK
LMCALL LPONE, ,OPEN

LCORE LFBICK,<An3>

JPPEN JdBLCK, FRLEK

JENRM

MACRR ,MPFN LLBLEK, FRLCK
JMCALL JAMRDF

AMRCE ,FBLCK

LAMPDF LI RLCK

EMT <AC16>

JENPY

JMACRA L WATT JLBLCK

JMCALL L AMNDF

JAMPDF (LBLCK

EMT <alll>

JFNRV

JMAERM ,WATTR LI BLCK,,ARCR

LMCALL ,AMODF

JAMPDF L ADPRR

JAMPDF ,LBLCK

EMT «<aQ2>

JENRM

LMACRN RLCEW L1 BLCK, ,BRLCK
JMCALL LAMODF

JAMPDE RRILCK

JAMPRE L1BLCK

EMT <ACt1>

FNEM

JMAPKER L TRAN JRBLEK,UTELEK
JHCAL! JAMADF

JAMPRF L TRICK

JAMPDF I RICK

FMT <ACHIP>

JFHRM

LMACRNM L 8PFC) BILCK, SARE
LMOALL JAMODF

JAMADF L SARG
LAMODFE LLBICX I
FMT <afizs

SENPM

JMACRM L STAT L RLCK
MO LAMODF
JAMRRF L1 BICK
EMT <af13>»

JENRW

MAPRD LALICE JLBLOK, ,FRLIOK, N
JMCALL JAMCDF

JAMPRE N

LANMCDF JFRICK

JAMECF 1 RICK

FMT <ariB>

JENAM

LMACKER L PFIET LLBlLCK, ,FRLCK
LMCALL L AMEDF

,AMﬂCF JFRLCK

JAMPRF I RICK

EMT <AQD1>

JENPY

JMACRN REMAW JJBLCK, OFF, AFR
MECALL L AMCDF

LAMPRE L MFR

JAMPDFE L CFR

JAMPRE I RLCK

EMT <aAQ22>

JFNPM

JVAPRM JAPENR LRICW, 1FB, OFR
JMOBLL JBEMRRF

AMCQRF L PFR

JAMPDF J1FR

JAMEEF I RICK

EMT <AlZ22>

JFNEM

JMACKRD oK JLRILCK, ,FRLEK, NP
MOALL JAMODFE

JAMPDFE L FRICK

JTIF MR, ,CP,CIR =f8F)

LAMPRE I RICK

FMT <alfitd>

NP

JMACRA L KEFP JLBICK, FRLIK
MEOALL L AMNDF

JAMPDF FRICK

LAMEARE (I RLCOK

EMT <af2d>

NPV

JMACRM FXTT
FVFT <ACER>
FHNPM

"WACRA ,TRAP «STLS,,4DPR
WMCALL LAMODF

JAMPRPE ADRR

LAMCORE ,STUS

MOy #a01,=(SP)
EMT <affdi>
WFNPM

JMACRA STFPU ,STLS, ,ADRR
MEALL L, AMEDE
(AMARF (ADPR
JAMCCF L, STUS

MOV #Aa03,»(8P)
EMT <aAfdy>
LENPN

JMACRA LRECRE LI BLCK, ,RPLCK
JMCALL LAMCDF

JAMPCF LRRICK

JAMPRE L BLCK

EMT <a0?5>

JFNPM

JMAPRA PUMP oLOW, HIGF, ,CRE
MCAL! «AMCDE

JAMERE L OW

JAMPACF JKIGH

JAMELF «CDF

EMT <aC£E4>

LENPW

JMACRR _RSTRT , ADDR
JMCALL JAMODE
LAMCDF LADNR

MOV wAN2s»(SP)
EMT <apdi>
LJFNRM

MAPREA L PORE

Mry WADLRP , = (8P
FMT <aQd4>»
FNPK

JMARRA MONR

MAyY waQ121,=(8P)
FMT <ad4i>

JFNRM

JMAPEA L MONF

MPeY WAR1E2,=(SP)
EMT «<aldY>

NPV

JMAPRR PATE

MOV #AD123,=(8P)
FMT <afdi>

LJFNPN

G-4

JHAPRA TIME

ISRy NAQIZA,=(3P)
EMT <aAfdl>
JFNPN

JMAPRE ATHIC

MOV HADIEFR,«(8P)
EMY <aPdi>
JENFR

JMAFPRM SYSNDV

MOV #ADIPF, = (8P)
FMT <afdi>
JFNPY

JMACRM L RARPK ,ADPR
MoaLt «AMEDF
JAMPCF L ADRR

CLR - (3P}
EMT «<aCd2>»
JFNEM

JMAPKA JFARLP L ADDR, W

JMCALL LAMCDF
JAMRRE _WRP
LAMPDE ADRR

MOy 204, = (8P
EVMT <aCd2>
JFNPY

LMAFRA ,N2RIN L ADDR
JMCALE JAMPDF
JAMPRE _ADRR

MY #a02,=(SP)
EMT <at42>
JENRV

JUACRM L BTA2DN ADNR,

MOALL L AMPRF
JAMARFE WRP
LAMPDRFE LADRRR

vey ¥aQ3, = (5P
EMT <aC42>

JFNRNM

JMAPKN P2RIN JADNR
JMCALL ,AMAODF

JAMOLDF JADPR

MOV Wan4d,=(SP)
FMT <card2>

FNPV

JMAPRA LRIN2M ADDPR,

JMECALL JAMPDF
JAMRDF L KRDP
LAMPRE ADRR

MY HALK,w(SP)
FNMT <aCd2>
JENRW

RE

RP

‘RE

JMAPRR P81 LCMNRF
JHCALE (AMADF

AMPRF FMRRF

EMT <arFé>

LENPM

JHAPRN L FST2 L3R K

JMEALL JAMPDF
JAMPRFE CSRLK
EMT <aACE7>
JENPM

JPACRM PTEVT L ADDR

JMCALL L rVIDY
LPVIRT %an?,, ARDR
JFNPK

JMACKP JTMEVT JADPR
JMCALL L,eVTDT

JLENTRT #a0Y, L ARDR
JENPM

JMAPRD PVTDT LCDF, (APDR, VALY, vAL?

MCALL L AMPDF
TF NR,LVAL?
JAMPRFE L VAL2
JFNPC

JTF NR, L VALY
JAMPDF L VALY
JFNFC

JAMCDRF LADPR
JAMEORF (CDF
FMT <aFb>
JFNPM

JMAFPRA GTPLA

CILR »(SP)

MOV WAnS,=(SP)
EMT <aC41>

JENP M

JMAPRA L STPLA L ADPR
:'MCALL JAMOCF
JAMPRE _ADRR

My #aNR,(2P)
EMT <apdl>
JFNPWV

JMAPRE L BTC]

MRy #HAN111,=(8P)
EMT <ACdi>
FNPM

JMACRR JCTSTK

CIR =(SP)

MOV #aNd,= (8P
EMT «ardi>

JENPY

JMAPRA L STSTK LADPR
MCALT L AMODF
JAMPRFE L ADNR

MEY MAlA, (8P
EMT <Andl>»
JFNPK
Yol - - TN JPNR K
MOALL LAMCRE
JAMPDF PNRy K
FMT <AlFR>
TFMR
_PAPRG JFLLUSK . CF
LHCALL LAMCDF
JAMPRF L PDF
FMT <alF7>
JENRM
3} THE MACRO ,AMODF ACCEPTS ANF ARGLMENT AND
3 OAS A FLMCTIPN OF THF ADPRFSSING MPDE NF
i TRE ARGUMFAT GFMNERATES THF APPRCFRIATF
FoMOV TR =(g2),
} ATDRESS MCRFS THAT ARF TROLRLFSTMF (F,6.
}OX(SP)) PR LN TIKFLY (FE,G, SPY WILL RFSULY
3 IN A LERRFE TP CME TNCLUDTIAR THF
t VALLE NF THE ADRPRFSS MORE ¢F G, X(SF)
? 18 FREFRFSFATEP AS 2PQCPKA), ThF ARGLMENT TTSFLF
$ AND THF TFXT "ARDRESSTNG MPARF IiLFGAL AS SYSTFN
P OMACRD APGIMENTY,
5
MAFRE AMPRFE ARG
SFsuang
MTYEF L8YM, ARG PL,EYMAARPRFSS MMRF
JIF LF, 8YM=aArS
MAY ARG, = (8P) }RC TM RSR
JMEYTIT
LFARC
JTF FN, SYMRAP7CaANYP
JTF LF, ,8YMRAP7wAlS
MY JARA = (8P) 38RP TN eng
MEYTT
LFARC
JFNPC
JF FR, SYMRAFEPaQ2P
MY «ARG o= (SP) TRV (RTYI TP 18T (R7Ye
JMEXTT ? RN ,A4ADPR
LFNRC
.TF E-ﬁ,,SYMRAI‘*dﬂ'-A(]d?
WTF LF, ,SYMRAP7=ANS
¥Ry JARG, = (8P) 1161 (RA) Tr 18] mfRR)
JMEXTT FISYX(RA) Tr (@)X (RK)
JFNRC
JFNRE
LTF EN, ,SYMRAFPAT7=ANAT
MOy ARG, = (8SP) $ARPR AND 8ADRNPR
.“EYIT
LENPC

ns we e we

LFRECR ,SYM 1,ARG ADDRESSING MOPF TLLFGAL
LPRINT $1AS SYSTEM MACRD ARGUMENT
JFNRM

THE MACRD) FCRE SFTS U'P THE FYLFBICCK
WTTH THF wCW PPFN CODF),

TRE ADQRESS CF THF FTIILFRLOCK MUeT

BF TN A RFGISTER (R? YO RX)

JAPRA L rORE FRLK, M
LMTYPF 8YM, FR|K

WTF LF s, SYMaaArH

MAYR W, N,=A02 (. FRLK) JRC Tr RS

MEXIY

FNRC

LFRRCP ,SYM 1,FFPLK ADPRFSSING MPRF TLLERAL
LORTAT IFCR ,APEN FILE RLOCK

LFNRYV

APPENDIX H
PERIPHERAL DEVICES

H.1 OPERATING THE TELETYPE

—.— The ASR-33 Teletype is the basic input/output device for PDP-11
computers. It consists of a printer, keyboard, paper tape reader,
and paper tape punch, all of which can be used either on-line under
program control or off-line. The Teletype controls (Figure H-1)

are described as they apply to the operation of the computer.

OFF

REL.

ON

START -
STOP -
FREE -

|

i

OFF
tine O Locar

Figure H-1 ASR-33 Teletype Console

H.l.1 Power Controls

LINE - The Teletype is energized and connected to the
computer as an input/output device, under
computer control.

OFF - The Teletype is de-energized.
LOCAL - The Teletype is energized for off-line opera-
tion.

H.1.2 Printer

The printer provides a typed copy of input and output at 10

characters per second, maximum.

H.1l.3 Kezboard

The Teletype keyboard is similar to a typewriter keyboard.
However, certain operational functions are shown on the upper part
of some of the kevtops. These functions are activated by holding
down the CTRL key while depressing the desired key. For example,
when using the Text Editor, CTRL/U causes the current line of text
to be ignored.

Although the left and right square brackets are not visible on
the keyboard keytops, they are shown in Figure H-2 and are generated
by typing SHIFT/K and SHIFT/M, respectively. The ALT MODE key is
identified as ESC (ESCape) on some keyboards.

QOOOOOLOOLOOG
BOOOROHLLOLOO®®
EO0OOOOLOOOOO®O®
SJejelelolelololelelelO)

[)

SPACE

Figure H-2 ASR~33 Teletype Keyboard

H.l.4. Paper Tape Reader

The paper tape reader is used to read data punched on eight-
channel perforated paper tape at a rate of 10 characters per sec-
ond, maximum. The reader controls are shown in Figure H-1 and
described below.

START Activates the reader; reader sprocket wheel
is engaged and operative.

STOP Deactivates the reader; reader sprocket wheel
is engaged but not operative.

FREE Deactivates the reader; reader sprocket wheel
is disengaged.

The following procedure describes how to properly position
paper tape in the low-speed reader.

a. Raise the tape retainer cover.
b. Set reader control to FREE.
c. Position the leader portion of the tape over the read

pens with the sprocket {feed) holes over the sprocket
(feed) wheel and with the arrow on the tape (printed
or cut) pointing outward.

d. Close the tape retainer cover.
e. Make sure that the tape moves freely.
f. Set reader control to START, and the tape will be read.

H.1.,5 Paper Tape Punch

The paper tape punch is used to perforate eight-channel
rolled oiled paper tape at a maximum rate of 10 characters per
second. The punch controls are shown in Figure H-1 and described

below.
RELease Disengages the tape to allow tape
removal or loading.
B.SP Backspaces the tape one space for each
firm depression of the B.SP button.
ON (LOCK ON) Activates the punch.
OFF (UNLOCK) Deactivates the punch.

Blank leader/trailer tape is generated by:

. Turning the TTY switch to LOCAL

Turning the low speed punch on (depress ON button)
Typing the HERE IS key

Turning the low speed punch off (depress OFF button)
Turning the TTY switch to LINE.

. »

oW N
.

H.2 OPERATING THE HIGH-SPEED PAPER TAPE READER AND PUNCH UNITS

A high-speed paper tape reader and punch unit is pictured in
Figure H-3 and descriptions of the reader and punch units follow.

H.2.1 Reader Unit

The high~-speed paper tape reader is used to read data from
eight-channel fan-folded (non-oiled) perforated paper tape photo-
electrically at a maximum rate of 300 characters per second.
Primary power is applied to the reader when the computer POWER
switch is turned on. The reader is under program control. How-
ever, tape can be advanced past the photoelectric sensors without
causing input by pressing the reader FEED button.

H.2.2 Punch Unit

The high-speed paper tape punch is used to record computer
output on eight-channel fan-folded paper tape at a maximum rate of
50 characters per second. All characters are punched under program
control from the computer. Blank tape (feed holes only, no data)
may be produced by pressing the FEED button. Primary power is
available to the punch when the computer POWER switch is turned on.

X
Tape retainer
///l cover control
O/ PUNCH
e o 3 FEED
READER
3 ON LINE
/ T3+ — Feeo
| St
i 7
PAPER TAPE OFF LINE

Figure H-3 High-Speed Paper Tape Reader/Punch
Paper tape is loaded into the reader as explained below.

1. Raise tape retainer cover.

2. Put tape into right-hand bin with channel one of the
tape toward the rear of the bin.

3. Place several folds of blank tape through the reader
and into the left-hand bin.

4, Place the tape over the reader head with feed holes
engaged in the teeth of the sprocket wheel.

5, Close the tape retainer cover.

6. Depress the tape feed button until the leader tape is
over the reader head.

CAUTION

Oiled paper tape should not be used in
the high-speed reader or punch - oil
collects dust and dirt which can cause
reader or punch errors.

H.3 THE LP1l1 LINE PRINTER

The LPll is a line printer with 80 column capacity, capable of
printing more than 300 lines per minute at a full 80 columns, and
more than 1100 lines per minute at 20 columns. The print rate is
dependent upon the data and the number of columns tc be printed.

Characters are loaded into the printer memory via the Line
Printer Buffer (LPB) serially. When the memory becomes full (20
characters) the characters are automatically printed. This
continues until the 80 columns have been printed or a carriage
return, line feed, or form feed character is recognized.

H.3.1 Printer Control Panel

Figure H-4 illustrates the printer control panel on which are
mounted three indicator lights and three toggle switches.

M -

ON LINE

@ 6 ©

TOP PAPER OFF LINE
OF STEP
FORM

Figure H-4 Line Printer Control Panel

H-5

Operation of the lights and switches is as follows:

POWER light Glows red to indicate main power
switch (located inside cabinet) is
at ON position and power is available
to the printer.

READY light Glows white, shortly after the POWER
light goes on to indicate that in-
ternal components have reached
synchronous state and the printer
is ready to operate.

ON LINE light Glows white to indicate that ON LINE/
OFF LINE toggle switch is in ON LINE
position.

TOP OF FORM switch This switch is tipped toward the

front of the cabinet to roll up the
form to the top of the succeeding
page. It is spring-returned to
center position, and produces a
single top-of-form operation each
time it is actuated. The switch

is effective only when the printer
is off line.

PAPER STEP switch Operates similarly to TOP OF FORM
but produces a single line step
each time it is actuated. It is
only effective with printer off line.

ON LINE/OFF LINE switch This two-position toggle switch is
spring-returned to center. When
momentarily positioned at ON LINE
it logically connects the printer
to the computer and causes the ON
LINE light to glow. Positioned
momentarily at OFF.LINE, the logical
connection to the computer is broken,
the ON LINE light goes off, and the
TOP OF FORM and PAPER STEP switches
are enabled.

H.3.2 Maintenance Panel

The maintenance panel contains controls used for the line
printer's initial set-up and maintenance. It is accessible only
by opening the front cabinet door, located beneath the control panel.

This panel contains three switches, and three indicators.

1. Main AC power switch;
2. PRINT INHIBIT switch - must be off (down) to enable printing;

3. DRUM GATE indicator - if 1lit, drum gate not properly

locked;

4, PAPER FAULT - if 1it, check for no paper, or torn paper;
5. PRINT INHIBIT indicator - if 1lit, turn PRINT INHIBIT

switch off;

6. MASTER CLEAR switch - spring-loaded to off (down); if
~- toggled to on (up), resets printer logic, turns off

READY and ONLINE indicators.

H.3.3 Adjustment Controls

Controls are provided as listed in Table H-1.

Table H-1

Adjustment Controls

Control

Location

Function

Drum gate latch

Tractor paper width
adjustment

Tractor horizontal
tension adjustment

COPIES CONTROL lever

Paper vertical ad-
justment control

Top-of-form in-
dicators

Gearshift type knob near
right-hand side of main-
tenance panel.

Setscrew at far right of
tractor pressure plate
behind drum gate.

Next to left side of
tractor paper width
adjustment.

Extreme upper right-hand
corner of cabinet just
above drum gate hinge.

Knob at upper left of
cabinet, directly above
right-hand side of
maintenance panel

Red arrows visible when
drum gate is swung open
one on each side of
paper directly below
tractor pressure plates

Unlocks drum gate
which can then be
swung open for access
to components on back.

Adjusts right tractor
for various paper
widths; left tractor
is factory adjusted.

Adjusts horizontal
tension of paper.

Adjusts the distance
between hammer bank
and character drum
for different numbers
of printed copies.
Settings are: 1-2,
3-4 and 5-6.

Adjusts vertical
alignment of printing
so that it prints on
lined paper. Can be
adjusted to plus or
minus one line and
may be adjusted while
the printer is in
operation.

Aligns paper during
loading.

H.3.4 Loading Paper

10.

11.

Follow the steps listed below to load paper into the printer.

Procedure

Open front door of cabinet to gain access to maintenance
panel and turn main AC power switch on. Verify that con-
trol panel POWER indicator lights.

Lift control panel TOP OF FORM switch and release to move
tractors to correct loading position.

Open the drum gate by moving the drum gate latch knob to the
left and up. Swing drum gate open.

Adjust right-hand tractor paper width adjustment for proper
paper width. This is accomplished by loosening the set
screw on the 8@-column model or by using the easy release
mechanism on the 12@ column model. Make certain that the
right-hand tractor is tightened in place after it is
adjusted.

Open spring-loaded pressure plates on both tractors.

Load paper so that a perforation is pointed to by the two
red arrows (top-of-form indicators). Paper should lie
smoothly between tractors without wrinklingor tearing the
feed holes.

Close spring-loaded pressure plates on both tractors.

Adjust the COPIES CONTROL lever to the proper number for
the number of copies to be made. For example, set to 1-2
for single forms, set to 5-6 for six-part forms.

Close drum gate and lock into position with drum gate
latch. After approximately 1@ seconds the control panel
READY indicator should light. If it does not, check to see
if any error is indicated. An error is indicated if one of
the following lights is on: DRUM GATE, PAPER FAULT, or
PRINT INHIBIT.

Lift TOP OF FORM switch several times to ensure paper is
feeding properly.

Set system to on-~line mode by lifting ON LINE/OFF LINE
switch and verifying that ON LINE indicator lights. At
this point, printed matter can be aligned with the paper
lines by rotating the paper vertical adjustment knob.

For further details on the LPll, refer to the LPll Line Printer

Manual, DEC-11-ODLPA-A-D.

H.4 THE TUl0 MAGTAPE DRIVE

The TU1l0 is a magnetic tape drive which may be a 7- or 9-track
unit and which will record data in densities of 200, 556 or 800 bits

per inch.

Figure H-5 shows the magnetic tape drive control panel and its
schematic representation. Table H-2 shows the meaning assigned to
each indicator light and Table H-3 explains the function of each switch.

E
TorF | — ON LINE
OFF
i] el
PWR ON ON-LINE START
PWR OFF OFF-LINE STOP OFF LINE
LOAD FWD
— REW 0
UNIT
BR REL SELECT REV
UNIT
CP-0093 SELECT
Figure H-5 Magnetic Tape Drive Control Panel

Table H-2
Status Indicators

Indicator Procedure

PWR Indicates that power is being supplied to the drive unit.

OFF-LINE Indicates local operation by the control box.

LOAD Indicates that the vacuum system has been enabled and
the unit is prepared to accept on-line or off-line commands.

SEL Indicates the tape transport has been selected by the con-
troller (program).

RDY Indicates that the drive is ready to accept requests for
operation (provided the SEL light is also lit).

WRT Indicates that the program has initiated a write opera-
tion in the tape transport.

LD PT Indicates that the tape mounted on this unit is at its
Load point (BOT marker is being sensed). REW command is
disabled.

FWD Indicates that a forward command has been issued.

END PT Indicates that the tape mounted on this unit is at its
end point (EOT marker is being sensed). FWD command is
disabled.

REV Indicates that a reverse command has been issued.

FILE PROT Indicates that the tape may not be written on (No Write
ring in tape reel).

REW Indicates that a rewind command has been issued.

Table H-3
Switch Functions
Switch Function

PWR ON/OFF Controls power to the drive.
ONLINE/OFFLINE Transfers drive control to processor

(ON LINE) or enables local control box

control by operator (OFF LINE).
START/STOP Initiates or terminates tape movement.

LOAD/BR REL

UNIT SELECT

FWD/REW/REV

LOAD position causes tape to be drawn
into vacuum columns.

Center position applies reel motion
brakes.

BR REL position releases reel motion
brakes.

Assigns a logical unit number (zero
through seven) to this drive.

Selects tape motion direction to be con-
trolled by START/STOP switch. FWD posi-
tion indicates transfer to take-up reel
until EOT (end of tape) marker is sensed,
REV position indicates transfer to file
reel wuntil BOT (beginning of tape) marker
is sensed, REW position indicates transfer
as in REV at a higher tape speed; when the
tape stops at BOT, depressing the start
switch again causes tape to unload.

H-10

H.4.1 Operating Procedures

H.4.1.1 Loading and Threading Tape - Use the following procedure to

mount and thread the tape:

Step

1

10

Procedure
Apply power to the transport by depressing PWR ON

Ensure the LOAD/BR REL switch is in the center position
(this applies the brakes). '

Place a write enable ring in the groove on the file
reel if data is to be written on the tape.

Ensure there is no ring in the groove if data on the
tape is not to be erased or written over.

Mount the file reel onto the lower hub with the groove
facing towards the back. Ensure that the reel is
firmly seated against the flange of the hub.

Install the take-up reel (top) as described in Step 4.
Place LOAD/BR REL switch to the BR REL position.

Unwind tape from the file reel and thread the tape
over the tape guides and head assembly as shown in
Figure H-6.

Wind about five turns of tape onto the take-up reel.

Set the LOAD/BR REL switch to the LOAD position to
draw tape into the vacuum columns.

Select FWD and press START to advance the tape to
Load Point. When the BOT marker is sensed, tape

motion stops, the FWD indicator goes out, and the
LOAD PT indicator comes on.

NOTE

If tape motion continues for more than 10 seconds,
press STOP, select REV (reverse) and press START.
The tape should move to the BOT marker (Load Point)
before stopping.

H-11

H.4.1.2 Unloading Tape - To unload the tape proceed as follows:

Step Procedure

1 Press OFF-LINE switch if the transport has been
operating in the on-line mode.

2 Press STOP switch and select REW.

3 Press START switch. The tape should rewind until
the BOT marker is reached.

4 Press the LOAD/BR REL switch to release the brakes.

5 Gently hand wind the file reel in a counterclockwise
direction until all of the tape is wound onto the
reel.

CAUTION

When handwinding the tape, do not jerk the reel.
This can stretch or compress the tape which could
cause irreparable damage.

6 Remove the file reel from the hub assembly.

TAPE GUIDE
. POSITIVE
TAPE TENSION
HOLDS TAPE AGANST
/< caPSTAN

TRANSPORT WILL
AUTOMATICALLY

SHUT
(FAIL= SAFE CONDITION}

R/W ERASE HEAD ASSEMBLY

TAPE WL BE SUPPLIED TO
COLUMN (TAXE =UP

NOTE. TAPE 1S AUTOMATICALLY

AEEL TURNED OFF) DRAWN INTO VAGUUM_COLUMMNS
VNEN LDAD/BA REL SWITCH
15 SET TO LOAD POSITION
TAPE GUIDE
LEFT VACUUM cov.u»mﬂ\ Q-

FILE REEL
TURNED ON

TAPE WiLL 8E EXTRACTEQ | |
FROM_COLUMN ———
(TAKE-UP REEL TURNED ON)

TRANSPORT WiLL
AUTOMATICALLY

N\
.
SHUT DOWN ~—— B
(FAIL-SAFE_ CONDITION} N\ ;
\ s

VACUUM CHAMBER PORT

(TO VACUUM MOTOR) \

Figure H-6 Tape Transport Mechanism

H-12

H.4.1.3 Restart After Power Failure - In the event of a power

failure, the DECmagtape automatically shuts down and tape motion
stops without damage to the tape. Return of power is indicated when
the PWR indicator lights. To restart the transport proceed as
follows:

"3_22* “Procedure
1 Press the LOAD/BR REL switch to release the brakes.
2 Manually wind the reels to take up any slack in the
tape.
3 Set the LOAD/BR REL switch to the LOAD position to

draw tape into the vacuum columns.

4 Set ON-LINE/OFF-LINE switch to the desired position
and continue operation.

H.4.1.4 Restart After Fail-Safe - If the tape loop in either buffer
column exceeds the limits shown in Figure H-6, the vacuum system

automatically shuts down and tape motion stops without damage to the
tape. When this fail-safe condition occurs, the DECmagtape does not
respond to on-line or off-line commands. To restart the transport,
perform Steps 1 through 4 in Paragraph H.4.1.3.

H.4.1.5 ~ Tape Handling - Observe the following precautions when

handling magnetic tape:

a. Always handle a tape reel by the hub hole; squeezing the
reel flanges can cause damage to the tape edges when winding
or unwinding tape.

b. ©Never touch the portion of tape between the BOT and EOT
markers, Oils from fingers attract dust and dirt. Do not
allow the end of the tape to drag on the floor.

c. Never use a contaminated reel of tape. This spreads dirt to
clean tape reels and can affect tape transport operation.

d. Always store tape reels inside their containers. Keep
empty containers closed so dust and dirt cannot get inside.

e. Inspect tapes, reels, and containers for dust and dirt.
Replace take-up reels that are old or damaged.

f. Do not smoke near the transport or tape storage area.
Tobacco smoke and ash are especially damaging to tape.

g. Do not place the DECmagtape near a line printer or other
device that produces paper dust.

h. Clean the tape path frequently as described in Paragraph
5.2.1.

H-13

H.5 THE TCll DECTAPE DRIVE

Figure H-7 pictures the TCll DECtape drive unit. Table H-4
shows the meaning of each indicator lamp and Table H-5 shows the

function of each switch.

Figure H-7 TCll DECtape Drive

To mount a DECtape on the TCll:

1. Move the LOCAL/REMOTE/OFF switch to the OFF position.

2. Mount a DECtape by centering it over the left band hub
and pushing it firmly onto the spring loaded hub.

3. Wind sufficient tape to wrap around the recording head
guides and the empty DECtape reel which should be mounted
on the right hand hub.

4. Take up a few inches to tape on the right hand hub by hand.

5. Move the LOCAL/REMOTE/OFF switch to LOCAL position.

6. Depress the DECtape motion switch to the LOAD position
until about 6 feet of tape are on the right hand hub.

Depress the WRITE PROTECT switch or write enable as
appropriate.

Assure that the unit number showing for this drive does
not show on any other drive.

Move the LOCAL/OFF/REMOTE switch to the remote position.

To dismount a DECtape from the TCll:

1.

Move the LOCAL/OFF/REMOTE switch to the LOCAL position.

Depress the tape motion switch in the rewind direction (<)
until all the tape is on the left hand reel.

Move LOCAL/OFF/REMOTE switch to OFF position.

Pull the DECtape reel from the left hand hub.

H-15

APPENDIX |
COMMAND STRING INTERPRETER

AT §f

I.1 SYSTEM PROGRAM/USER PROGRAM COMMAND STRINGS (S S

There is a single, general format for all system program
command strings. ALl system programs use it, and any user program
may also do so. These command strings are all processed by a
Monitor routine, the Command String Interpreter (CSI) which is in
Section 3.8.6. Any program expecting such a command first types
on the console to indicate the fact to the operator. The general
format is

Pl -Yel -

where "ds-spec" represents a dataset specifier (described in the
next section), brackets indicate optional items, and elipsis (...)
indicates that the preceding item may appear zero or more times.
Items preceding the < (if any) describe output datasets; those
which follow describe input datasets.

I.2 CSI COMMAND FORMAT

Whenever a system program requests input through the CSI, a
will be printed on the teleprinter (exception, ODT-11R prints an
*) and the program will wait for the operator's reply. A CSI command
may consist of one or more output dataset specifications, followed
by <, followed by one or more input dataset specifications.
Spaces, horizontal TABs, and nulls may appear anywhere in the
string and are ignored. A command is terminated by typing the
RETURN key, which causes both carriage return and line feed char-
acters to be passed to the program. The line-feed character
terminates the input. < need not occur. If it does, at least one
input file specification must appear. Only one < per command is
allowed. Commands can not be continued from line to line.

A dataset specification must be delimited by a comma. If no
items appear before the comma, it is interpreted as "this particular
positional field will not be used". For example, suppose a program
requires three (output) data specifications. Then the syntax:

Dataset Specification,,Dataset Specification

indicates that the second (output) dataset specified will not be
generated.

Each dataset specification is a field which describes a data-
set. It generally contains information as to where to find the
dataset, the file name and extension if the dataset is a file, the
user identification code associated with the file, and one or more
switches which request various actions to be performed. A dataset
specification containing all of the above elements would appear as:

dev:fllnam.ext[ulc]/swlzvlz...:vn/swzzvlz...:vn,

where: dev = The device specification consisting of two or three
letters (and often an octal digit) terminated by a
colon. The letters identify the device and the digit
identifies the unit. Units must be given in octal.
The colon delimits this field with one exception:;
only physical names as listed in Appendix A may be
specified. For example, DTAl: is the correct speci-
fication for DECtape, controller A, unit 1. The
exception is SY: which is a generic name for the
system residence device (e.g., on an RK system SY:
is equivalent to DK:). If no digit appears, unit 0
is assumed. If the device specification itself does
not appear, the device is assumed to be the device
last specified, on the current side of the <, if
there is one; otherwise, the system disk (SY:) unit 0
is assumed.

Assumptions (defaults) do not carry across the <, i.e.,
from output to input.

The file name specification consists of one or more
letters or digits, or exactly one asterisk. The
first six letters or digits specify the name. The
first character must be a letter. All letters and
digits in excess of six are ignored.

filnam

The file name need not appear if the device is not
file-structured or if the program can supply a name.

.ext = The extension specification consists of a period,
followed by one or more letters or digits, or followed
by exactly one asterisk. The first three letters or
digits specify the extension. All letters or digits
in excess of three are ignored.

The extension need not appear.

The asterisk is used to specify "all". For example:
* _EXT specifies all files with extension .EXT,

FIL.* specifies all files with name FIL, and
* * gpecifies all files and all extensions.

[uic] = The User Identification Code (UIC) specification
consists of a left square bracket, followed by one or
more octal digits or exactly one asterisk, followed
by a comma, followed by one or more octal digits or
exactly one asterisk, followed by a right sguare

T T E?EFFEF‘*‘Tﬁ:‘fié1a‘fj‘?ﬁ“T‘ff"f*fﬁé‘tﬁﬁﬁi‘gﬁéc1f*és
the user's group and the field to the right of the
comma specifies the user within the group. Both
fields must be given in octal, and the largest valid
octal number is 376 in both cases (0 is invalid).

For example, [12,136] is the correct specification
for user number 136 of user group 12.

NOTE
The left and right square brackets are not
visible on some keyboard keys; however, they

may be typed using SHIFT/K and SHIFT/M,
respectively.

As in filnam and .ext, the asterisk specifies "all".
For example:

[*,136] specifies all users whose number is 136
[12,*] specifies all members of user group 12, and
[*,*] specifies all users.

The user identification code need not appear, in which
case the default is the identification entered with
the LOGIN command.

t,..:vV. = A switch specification consists of a slash (/),
followed by one or more letters or digits, and
optionally followed by one or more value specifica-
tions. A value specification is initially delimited
by a colon. The value itself can be null, or consist
of one or more letters, digits, periods, or dollar
signs. Other characters are illegal. The digits 8
and 9 are legal.

/sw:v

For examples: /DATE:12.,20.69 might be a switch to
enter December 20, 1969 in a date field.

/DATE:12::69 might enter December, 1969 in a date
field.

Switches need not appear. If a switch does appear,
it need not contain more than one letter or digit
after the slash. For example:

/S and /SWITCH2 are both legal.

The first two characters after the slash uniquely
identify the switch. For example:

/S is treated as if it were /S null.
/SWITCH1 and /SWITCH2 are both treated as /SW.

Table I-1 summarizes the legal command syntax.

I-3

Table I-1

.CSI Command String Syntax Rules

Item Which Item Immediately Following
Last Appeared

, DEV: FILNAM .EXT UIC /SWITCH < Terminator *
blank! * * * E * * * * *
’ * * * B * * * * *
DEV : * E * B * * * * *
FILNAM * E E * * * * * g2
.EXT * E E B * * * * E
uIC * E E E E * * * E
/SWITCH * E E E E * * * E
< * * * E * * E E *

Legend: E indicates error. * indicates legal.
1The next item encountered is the first item in the command string.

2 x g legal following FILNAM.

For example, a device specification immediately followed by an exten-
sion specification is an error, whereas a file name specification
immediately followed by a comma is legal. Note that a /SWITCH
specification is always legal even alone. In such a case, the system
device SY: and a null filename are assumed.

I.3 CSI COMMAND EXAMPLE

An example of a complete command is:

Fl1.El1l,,DTAl:F2.E2/S:1<F3.E3[11,123] ,DTB:F4.E4/ABC,F5.E5

which is interpreted as explained below.

a. The first positional output dataset is to be a file named
Fl and will have extension El. It is to be put on disk unit 0,
and catalogued under the ID of the user who entered the command.
No switches are associated with this dataset.

b. The second positional output dataset will not be generated.

c¢. The third positional output dataset is to be in a file named
F2 and will have extension E2. It is to be put on the
DECtape which is mounted on unit 1 of controller A. This
file is to be catalogued under the ID of the user who entered
the command. The action indicated by switch S with value 1 is
to be performed on this dataset.

I-4

The fourth and subsequent positional output dataset will not
be generated.

The first positional input dataset is a file named F3, and
its extension is E3. It can be found on disk unit 0, cata-
logued under the user number 123 of user group 11. No
switches are associated with this dataset.

The second positional input dataset is a file named F4, and
its extension is E4. It can be found on the DECtape currently
mounted on controller B, unit 0. Associate the ID of the user
who entered the command with this dataset. Perform the action
indicated by switch AB (not ABC) on this dataset. No values
are associated with the switch.

The third positional input dataset is a file named F5 and its
extension is E5. It can be found on the DECtape currently
mounted on controller B, unit 0. Associate the ID of the
user who entered the command with this dataset. No switches
are associated with this dataset.

The fourth and subsequent input datasets are not required.

I-5

APPENDIX J
SPECIAL 1/0 FUNCTIONS

Certain I/O functions are sufficiently device-dependent that they
are beyond the scope of the File System. The .SPEC request (see

Section 3.6.12) is provided as a means of accommodating such functions.

o g, e L,

DA arnecial Finetrinn romioctk roriid e P I T
222 TRROTION Yregu B TSUuUiIesS T QLIGUIRIIT , WIlilil iUST ~T SoiTaelrl

a2 8NDef

a code in the range 0-255 or a pointer to a special function block.
When a special function block is used, it must contain a code.

In general, special function codes will have similar meanings
from device to device. When a code has no meaning for a device, it
is treated as a no-op. Currently, special functions are defined

=T er fou- Propapa.

J.1 MAGTAPE FUNCTIONS

J.1.1 Special Function Block

The magtape driver requires a special function block to perform
the special function requests. The following is the calling sequence
for magtape special functions and the special function block format:

.SPEC #LNKBLK, #SFBLK

SFBLK: .BYTE Special function code
.BYTE Words to follow (must be 3 or larger)
.WORD Tape unit status (returned by driver)
.WORD User specified count or control information
.WORD Residue count (returned by driver)

J.1.2 Functions

Code Function
1 Offline (rewind and unload)
2 Write End-of-File
3 Rewind
4 Skip Record (s)
5 Backspace Record(s)
6 Set Density and Parity
7 Obtain Status

J.1.2.1 OFFLINE (Rewind and Unload) - function Code 1

This request causes the magtape to be rewound to the beginning-
of-tape (BOT) marker and SELECT REMOTE status to go off. If the
last command to the driver for this device was a WRITE, three EOF's
are written before rewinding. Thus, this function could cause data
to be lost if it is issued before a CLOSE during READ/WRITE processing.

J.1.2.2 WRITE END-OF-FILE - function Code 2

This request writes an end-of-file (EOF) record on magtape. It
may cause data to be lost as described under OFFLINE.

J.1.2.3 REWIND - function Code 3

The REWIND request performs the same function as OFFLINE except
that the SELECT REMOTE status does not go off.

J.1.2.4 SKIP RECORD(S) - function Code 4

Skips forward over the requested number of records (SFBLK+4)
until either the SKIP count is exhausted or until an EOF record is
encountered, in which case the EOF is spaced over and counted, but
the operation terminates and a residue count (SFBLK+6) is returned
(if any).

J.1.2.5 BACKSPACE RECORD(S) - function Code 5

This request skips backwards over the requested number of rec-
ords until either the SKIP count is exhausted or an EOF or the BOT
marker is encountered. If an EOF is encountered it is spaced over
and counted, but the operation terminates and a residue count is
returned (if any). If the BOT marker is encountered, it is not
skipped or counted. Instead, the operation is terminated and a
residue count is returned.

J.1l.2.6 SET DENSITY AND PARITY - function Code 6

This request is ignored for 9-track tapes; it sets density and
parity as follows for 7-track tapes:

DENSITY (SFBLEK+5) PARITY (SFRBLK+4)

@ = 209 BPT g = oDD
1 = 556 BPI 1 = EVEN
2 = 8¢¢ BPI

3 = 800 BPI Dump Mode

‘he default density and parity are 8%p BPI Dump Mode, ODD. in

E

[

this mode, one byte from core is represented as two bytes on 7-track
magtape. Changing from this default causes one byte from core to

be represented by one byte on tape with a loss of the two high order
bits (6-7) of the byte.

J.1.2.7 TAPE UNIT STATUS - function Code 7

This request returns the current status of the tape unit in
SFBLK+2 in the following form:

Bits Content

g -2 Last command was:

OFFLINE

READ

WRITE

WRITE EOF

REWIND

SKIP RECORD
BACKSPACE RECORD

AU WN R

3 -6 Unused.

7 1 TAPE AFTER EOF (BEFORE EOF IF LAST
COMMAND WAS BACKSPACE)

i

1 = TAPE AT BOT MARKER
1 = TAPE AFTER EOT MARKER
19 1 = WRITE LOCK ON
11 PARITY:
g = oDD
1 = EVEN (DEFAULT = ODD)
12 g = 9 TRACK
1 = 7 TRACK
13 - 14 DENSITY:
¢ = 2¢¢ BPI
1 = 556 BPI
2 = 890¢ BPI
3 = 8¢¥ BPI DUMP MODE
15 1 = LAST COMMAND CAUSED ERROR

Tape unit status is returned in SFBLK+2 for all special functions.

APPENDIX K
PROGRAMS

The two following example program listings illustrate
methods for utilizing DOS monitor services. Note that the

assembly language expansions of the programmed requests

are used. Users with less than 12K of core should code
their programs as illustrated and assemble the resultant
code with the 8K assembler. Users with 12K of core or more
may replace the assembly language expansion code with ap-

propriate programmed requests and assemble with MACRO-11l.

Example Program #1

anapdn

pARMAY
Aadaves

aaaenl2
wurdpl4

ande2n

Aavp24
pa0p2s

Radadp

' FPT R
Bnopdn

20044

AAenada
An06@aN2

ABUa96
AA0Q067

apepba
2A34A686

d4vn72
andn7 4

anvida

232124
2AV1dK

ARRARA
P2Adm]
@anup2
200803
22nded
20e0ap5
AAPARE6
ARaIN7
2a0815
207412
papayl
Ad0in7

@12746'BFEGINS
PApS12
124004
P12746"
A0nI24
1A4BRE
Al127 460
napdan
212746
nwapd12
19340116
Ate’7as
"R LY
21274860
popdod
194816
n1a2746"
Aa0379
12746
Aned12
114002
aL27aay
wanlzda
7ASQ2a LnDPL:
p2paa7
a2p3ng
193774
wig7481
Pandy2
124021
212746
202162
P127461
pepI24
174¥n4
p1o7a6t
VIER X

JPROGRAM AHICKH TYSES a MESSAGE ON THE TELETPF wHILE
JACCEPTING A MESSAGF FROM THE KEYROARD, PRUGRAM REPEATS

RAZL®A
R1s%}
R2m%2
R3z%3
Ras%4
RS=%5
SPE¥6
PC2%7
Ce=1s
LFs12
HTmil
EROR=®1IA7

MOV

EMT
MOV

EMT
MOV

MoV

EMT
May

alvid

EMT
MOV

MOV

HUNK]1,=(SP)

[
B NK2,=(SP)

8
#FILL,=(5P)

H#UNKY , = (5P)

16
#FIL2,=(SP)

#LNK2,=(SP)

16
#HSG1, = (S5P)

BLNK1 = (SP)

EMT 2

MOV

CLR
CMP

BLO
KOV

EnT
MgV

MOV

EmT
MOV

4#L.181+6,Rn

(RY+
RA,#L181+RD,

LOOPY
BLNK],=(SP)

1
2L IB1,={53F)

BLNK2,=(SP)

4
HLNK2,=(5P)

FINIT LNkt

FINIT LnK2

JNPEN FNR QUTPUT

JOPEN FOR INPUT

FWRITE THFE MFR8AGE

ISET THE RUFFER PRINTER

ICLEAR THE ANDRESS AND [NCREMENT
SEND 0OF BUFFER?

iND, S0 BACK & CONTINGE CLEARING
IYESCONTINUE

IND,READ LNK2,i 131

TwAlT

A34112 104801 EMT

2a0114 1327687 BITR ®#EROR,LIR{+3 TANY ERRORS?
avetin’
apnRagd
200122 Bp1ULS BNE ERRJ IYES, GO TO THE ERRODR&3Z ADDNRESS
2008124 12748 MOV #LNK§,=(SFY INO, CLOSE LANx}
2An312
Aad130 164017 EMT §7
2p4132 212746 MOV # NK2.=(8SpY F_CLOSE [NK3
PRzE324
dp0136 104017 EMT 17
2aR14p p12746! MOV B NKL,=(SP) 7,.RLSE Nki
aapd12
ARNL44 104607 EMT 7
A00146 2127467 MOV #| NK2,=(SP) J,RLSE | NK2
papdz4
An0152 124307 EMT 7
220154 20p167 JuP REGIN
177624
ERR1?
FRR2S
ERR3L
220169 1242830 EMT 6@ 7 EXIT ON ANY ERRQOR
240162 anpipd LTBYS SwlORD AR, FMAX RYTE COUNT
280164 229 «BYTE 2,2 FFORMATTED ASCTI
23¢165 den
Anv166 200807 +NORD 2 1ACTUAL RYTE COUNT
poe3Le eSe*BA, JRESERVE THE ARUFFER SPACE
Qau3ly @aaled? «¥0ORD ERRY TERROR RETURN ADDRESS
202312 A023p2 LNKYE eWORD @ JPOINTER
222314 a1rR27 «RADKG /DSY/ FLOGICAL NAME
A2031ls any «BYTE 1,0 TUNTT @
Ax8317 VY]
Aa0322 242424 WRANS2 /KB/ IKEYBOARD
AAd322 222160 « VORD ERR? JTERRDR RETURN ANDRESS
2pA324 P2RADA LNK2! «N0RD @
200326 ri1&L32 «RADHA /DB2/
2243372 anl +BYTE 1,9
202331 229
An0332 742429 «RADSP /KB/ IKEYBQARD
Apv3da 200402 «40RD @ 360 Tn FATA| FRROR MESSAGE
Anv338 An2 «BYTE 2,0 IGPEN FOR CUTPUT

ane3dy dea
P0d34p ndpled FILY? «AGRD 0,0,2,@,0 INO NAMF, EXT, «IC, OR RRNTEQT
232342 panapn
374344 ppeved

APA34SE
BRUdd

220352
Je03da
Aan3s8s
222396
Ane36a
AABaA62
@AN364
Ap0386sH

220370
240372
228373
aan3a
AnA37s
PRy
224487
2ava40y
anvaed?
PADARY
duada
AAv44s
NAa4vs
Pa0aay
aovaln
221414
neg4l2
Anaal3
Apv4ala
3n2415
Apaal6
Annaly
AAA427
Aas 421
ZiA0422
AAB423
ARN424
Ponazh
deaazs
AARL27
Aaladp
AABAdY
AAad2
danady
A2 454
AAaads
Quu4ds
230437
AAvada
dnvady
PRraad2
an0ady
A2U444

NEpAAA
WaAnRA

2ApARA

4p4

200
napend
papad
pagdpa
PARARA
aRpueA

pon21a
Apn
dea
pan2erd
215
¢12
211
2
123
122
ind
g
113
244
122
117
125%
in7
112
114
131
“ad
124
117
A4a
131
117
125
122
nag
114
i1l
124
124
114
125
P42
122
117
131
Aaa
w1s
n12

FiL2s

Mghyl

160 Tp FATAL ERROR
INPEN FOR INPYT

WORD @
+BYTE 4,

=

+H40RD B,B,a,9,a N0 NAME, EXT, ult, 02 PROTECT

JWORD 210 FMAY AYTE ColuTs
«BYTE 9,2 IFNRMATTED ASRCTI
s HDRD MSGEND=MSGle=§ saCTUAL BYTE COUNT

BYTE CR,LF,HT

«ASCII /7 SPEAK ROUGHLY TO YnuR LITTILE Bay /

+BYTE CR,LF,MT,

230445
AUa448
apvady
22245
2p0ady
220452
andady
ETEEY
@ARr4Ss
Anndases
AndAgsy
Aadabp
AN 46y
And a6z
2an463
Q2464
BAu 465
A0 466
AnvaGy
2R047q
A4y
AQPAa72
BAav4473
B20474
AAVATS
Aa0478
anvalz
220507
A38804
228582
220883
ApYsag
daésds
AAu528
Arusdy
aarsio
242511
Aavs5i2
AWa513
anvsla
ARUN1S
E L RN
202817
L L PE]
224521
npns22
AARK23
200524
goaasas
pARs28
A24527
L L IE]
wlesdy
Ax08%2
LT LL IR
Aa08d4

a1
ana
a4
121
114
124
Baa
in2
in8
121
124
nap
112
111
118
342
127
114
175
115
a4a
112
125
B4
123
118
ins
1728
132
ie5
123
Qa2
215
212
211
242
1102
125
haa
117
116
114
131

242

ing
117
1u8
123
Aaa
114
i24
hAan
124
117
had
it

s4SCIT / AND REAT HIM WHEN ME SNEEZFS /

«BYTE CR,LF,HT

«ASCII ¢ HE OMLY DOES IT TO aAnNOY /

L EL]
pansds
BAES37
200549
gausay
epesap
200543
AABS4d
20545
#A0546
Ppes4yz
PaRs5%2
B20551
238552
A20593
aaes8a
BRiU5Ss
pavshe
20557
232563
2906561
238562
200563
A08564
AAAS6S
uRases
Apassy
A20570
20087
200572
220573
2pa574
Aans?s
Apes78
CETLYS
ARNBAR
wauesvy
ARrEE@2

BEGIN
ERR}
FILL
LF
LNK2
MSG1
Ri

R4

{18
118
117
134
248
@y
w12
211
Daa
102
129
193
101
125
123
in8
Baid
110
1n5
242
113
116
117
127
123
B4
111
124
449
{24
105%
10t
123
1nsS
123
Aan
a5
w12

+BYTE

CRyLF,HT

oASCII s BECAUSE HE KNOWS IT TEASES /

«BYTE

PP@623 MSGEND=,

popbe e

adpvpl

anAnaAnR
WRR16¢R
Apdlder
3 Apdele
PpR3I24R
ArR370R
XUAPARY)
TXonenas
9 APBEALR

+EVEN
«END

CR
ERR2
FIL2
L8}
LUOPY
PC

R2

R3

CRILF

B 322418
PAN162R
VERELL]
ARP162R
nAa258R

siQaine7

BxAN2702

Q0825

ERDR s pAd1A7
ERRI 2381 62R
WY 3 pavply
LN« dA0312R
MSGEND s BadsA3R
RA BYBAARAD
R3 EE2AANA]J
Sk aYRAAPDRR

Example Program

Anapap

210and4
dnvpis

Apdat2
Andald

328022
aundaz2

Andazs
dnved

Apdada

3a0042
424046
L PEF
pagads

210962
270084

2p2a70
222072

LRI

2anR1a2
200124

auuyla
an0112

2and04

220826

pendny
apaLs
200912
aematt
pegund
22nAn2
nanie?
247003
agela7
7127461
aepdLs
124008
a127 481
A0n43a
144026
2127461
200346
124006
aypras:!
napdr?2
12442868
paSYE7
ramgLa
212767
avmlgs
2apd344
2058687
wardLs
225887
?ap314
2127461
Pnp246
BL27 461
222348
124002
2127461
202345
124001
12748
LIEREY
w12746!
arpdze
104004
ata7as!
ARR372
174901
132787
paeia’
240241

} PROGRAM T2 DUPLICATE A PAPER TAPE

RA=AA

--SP=¥X6

FCaxy
CRELS
LF=12

AR DRI
RDz24
WR=2A2
Gsia?
EQLadap20
EROR=107

BEGINE MOV
EmY
MOV

EMT
MOV

EmT

MQv

EMT

STARTY CLR

MDY #10Q,,BLK1+4

CLR
CLR
MOV
MOV

EmT
MOV

EMT
MOV

MOV

EMT
Mav

EMT

HLNKL,=(SP)

6
R NK2,=(5P)

]
BLNK3, = (SP)

1
#LNK4,=(SP)

&
FLAGY

BUF1+6

BUF1+12
#MSGL,=(5P)
#LNK3,

2
#LNK3, = (5P)

i
&RIIF],=(SP)

HLNK4, = [SP)

4
HUNK4, = (SP)

1

USING TRAN=LEVEL REQUESTS

s TRANBLOCK FUMCTTON CODE FOR
pTRANBLOCK FUNCTION CODE FOR

«READ
«HWRITE

}ASCII G
sTRANBLOCK FUNCTION/STATUSSEND

TLINIT LNKY
PoINIT LNK2
FINIT LNK3J
PJINIT

LNK4

12ERD END FLAG

PINITIALIZE BUFFER SIZE

FINITIALIZE INPUT BUFFER

PINITIALIZE INPUT BUFFER

PWWRITE LMK3,M861

=(sP)

BITH RERQR,RUF{+d

H

JowALT NK3

) JREAD | NK4,BUF}

J L WATIT | NK4

Q24120 n@1250 BNE ERRS

apv122 122767 CMPR BG,BUF|+6 167
anzin7
. 203234
PAALIA 281337 BNE START N0
AnR132 112767 |LnOFRY MQOVB HRD,BLK1+68 JYES,SET UP READ
pAaadpn4
20n259
And14n 2127467 MOV #BLK1,=(5P) PL.TRAN | NK1,BLKY
LT
200144 212746 MOV #LNKY,=(S5P)
A0n416
2001992 1944014 EMT 12
29192 4127461 MOV R NK1,=(5P) FoWATT | NKY
PdRndL8
AgN195 144901 EMT 1§
AaR162 432767 BIT #EDD,RLK1+6 1TEST FUNCTION FOR END
e4npvnn
A0p222
AnB156 22146 BEQ LODPW
Q@172 (6R787 ENDMI SUB BRLK{#12,BLKi*4 JRESET WARDCOUNT T FINAL
ARR2L8
Qa2
! BUFFER'S SIZE
AnodL176 212767 MOV &Y ,FLAGYH FSET EQDwFLAG
a0puaY
@andad
34A244 112767 LoOPWE MOVB auwR,BL K148 18ET UP wRITE
PAnQp2
wanlzs
270212 0127461 MOV 3BLK1,=(SP) PJTRAN | [MK2,BLK)
p0ndn2
2308218 012746 MOV B NK2,=(5P)
A2R43Q
220222 104210 EMT 12
20224 212746 MOV & NK2,=(SP) FaWNATIT LNK2
220432
290232 104uny EMT 1
220232 POS767 TST FLAGY TEND OF DATA?
pendes
200256 AR1274 BNE START YYES,START QOVER
AaU249 202734 BR LOOPR pNDy GET MORE
ERRY1?
ERRD1
ERRIS
ERM4S
ERRSS
ERRGS
ErRE71
206242 194060 EMT 6@ JEXTIT ON ANY ERROR
@p0244 200Ce2 FLAGLS JWORD 2 P1S>EQN RECEIVED ON READ
BA0248 20367 MSGLY ,wORD 55,
auv2de daa «BYTE 2,02
Pe251 ena
Aa2%2 200967 o WORD 55,
ea@254 415 +BYTE CR,F,HT

ARY295
apveds
226297
Ape260
200281
222262
aAxd263
FEV T
2208285
200266
ape267
2pe27a
288271y
ap0z7?2
2nd273
wnv274
2a027%
204278
aae277
AABIAY
ARd30 4
A2r03d2
ApR3V3
200304
ARBILS
2003086
PLAYY
pae3in
FTY.KIR]
duvdi2
2ue313
TRV
P22315
ABVALS
20A317
#oae32n
dan321
2av3ep
Pa06323
dpv324
"Y1
LAY
200327
Apdido
ana3d
220332
N28333
aaa3d4
LR)
BAVII6
Q40337
238340
22834}
2nu3ae2

200344 pPn2a2!

Ay2
d1l
114
117
11
14
Ban
izd
121
122
ia8
@aa
111
118
124
117
g
122
129
121
{24
125
122
w8
012
a1l
104
128
123
112
haa
dad
A4
Bad
107
454
Ban
123
ige
@42
Y]
249
127
112
103
116
A40
122
ins
101
124
131
415
ay2
28n344

+ASCII /L0AD TAPE INTOD READER/

+BYTE CRyLF,HT

oASCII /PUSH

W BYTE CR,LF

LEVEN
«N0RD ERRJ

5,

LR

WHEN READY/

PAR348
CEVRLL
ARR3d2
220353
204354
2a03d6
LEURY.T
20036}
Ba0362

FEVRYA
apu372
Bn0374
Quu3’e
AnRs77
PRd4d2
pnR402
Ravad4
200426
22¢al12
pav4l2
230414
202416
PRd4eln
200422
Aad423
220428
f0a428
220439
BnRad2
202434
ANV ads
AR43¢

REGIN
BUFZ
EOD
ERR2
ERRY
FLAGY

LNKD
LOOPW
RD
START

genREa LNK3T
p16&427

apd

apa
¢d42429
2An2n4

2na

202
ppQR4
aAp3y7a
aapdza
pup242!
AApdPA | NKA4S
nieaz7

any

apa
napand
202222 BLK1}
anpdan?
Aaniad
202200
2000029
2An242!
22923 | NK§S
2516031

wal

290
763320
QRAE242"
PAAAND |LNK2E
*18232

Pol

agn
263222
pagbed
repdnl

BLF1LS

BUF2

A0220R
ond4aanR
Ppatpdn
Bab242R
ApR249R
0Q0244R
2pael2
2n0I4ER
2pd244R
Arvpd s
AQURIAR

«WORD @
«RADSA /DSY/
«BYTE 1,0

«RADSA /KB/
o+ #ORD 4
«BYTE 2,2

«WORD 4
sZevd

+»EVEN

«W0ORD ERR4

» NORD ©
«RADSO /DSL/
«BYTE 1,2

+RADSB /KB/
«W0RD @
«w0ORD BUF2
«W0ORD 120,
«w0RD 0@
«W0ORD @
+#0ORD ERRY
«WORD @
+RADS3 /DS3/
»BYTE 1,0

1 RADSD /PR/
+WORD ERR2
«+w0URD 2
«RADSQA /sDS8S4/
+HBYTE 1,0

»RADBQ /PP/
B 4100,
«END

BLX{
cR "
ERDOR]
ERRY
ERRS
G M

LNK1

AANABRR
ARANLS
paa1d7
ARA242R ERRA
aRrNgda2R ERR7
puaiL07 uT
PAAL16R LNK2
LNK4 ANA372R LOnPR
mSG1 AAN24KR PC

RO FRAAANDL sP

Wi s pr@ndR .

8UF1
ENDM
ERR1

PAR3ISBR
2ARL70R
AUn242R
PANP42R
AAN242R
s Andal
eALadnR
2ABLI2R
2U0ANAAY
SEPANDAE
8 22A644R

APPENDIX M
CHARACTER CODES

N.1l CARD CODES
CARD CODES
(ANSI X3.26—-1970)
Zone | 12 12 | 12 12 12 |12
11 11 {11 11 11
0 0 0 0 0
Digit 9 9 9 9 9 9
& 1— 10 lspace { I }
1 AlY |/ 1 a i |~ SOH| DC1
2 B |[K |S]|2 b tk |s STX | DC2 SYN
3 CIL |T|3 c t ETX| DC3
4 D M|U|4 d |m |u
5 E [N |[V]S5 e |n |v HT LF
6 F IO [W|6 f lo iw BS | ETB
7 G |P |X|7 g |p |x DEL ESC | EOT
8 |(H QY8 h g |y CAN
9 1 IR1Z;9 i |r |z
8-1 grave EM NUL |DLE
82 |[|1 j\|:
83 |. %S |, |# VT
84 [< |* |%|@ FF |FS DC4
85 1 D _I CR |GS | ENQ |NAK
86 |+ |; I>]= SO |RS | ACK
87 |V (T~ SI US | BEL |SUB
' NOTES
To determine the card punch for a particular character, locate the character
in the table and read the corresponding zone punch and then digit punch.
For example, the card punch for a % is 0-8-4.
To obtain the character corresponding to a particular card punch, locate the
junction of the zone punch and the digit punch. For example, the character
E corresponding to the card punch 12-11-9ist.
i Siots that do not contain characters represent card punches for which there
i are no ASCII equivalents.

M.2 ASCII CHARACTER SET

ASCII CHARACTER SET
ASCII-1968 (ANSI X3.4—-1968)

To obtain octal or decimal ASCII representation of a character, add the row value
to the column value.

Column
Value
Rom 000 {008 | 016 | 024 | 032 {040 |048 | 056 |064 | 072 | 080 |088 | 096 |104 |112] 120 } decimal ASCII
Value 000 {010] 020 | 030 | 040 |050 |060| 070|100 | 110|120 |130| 140 {150 |160| 170 } octal ASCII
0 |NUL|BS |DLE [CAN|space| ([0 |8 | @ |H [P | X |gave|h | P | x
1 SOH |HT |DC1 |EM | ! y {1]9 |aA QY| a |ila]| v
2 STX |LF |DC2 |suB| » | * | 2 B|JT |[R|Z]| b |j |r] =
3 |emx|vrlpes |esc|# |+ |3 |; |c|x|s |t|ec |x|s]|{
4 |EOT|FF|DC4|FS | $ |, |4 |<|D|L |T |\ | a |1 |t |
5 ENQ|CR [NAK|GS | % |- |5s|=|E|M|U|1 | e |m]|u }
6 ACK [SO [SYN |RS | & 6 |>|F(N|VID|f |n|v|E0O
7 BEL {SI [ETB |US |apos | / |7 |2 |G |O | W [©D| g [o |w]| DEL

Differences in the ASCII Standard
Octal (ASCII 1963) ASCII 1968

136 t -~ (circumflex)
137 “« _ (underline)
176 ESC ~
NUL NULL DLE DATA LINK ESCAPE (1P)
SOH START OF HEADING (1A) DC1 DEVICE CONTROL 1 (1Q)
STX START OF TEXT (1B) DC2 DEVICE CONTROL 2 (1R)
ETX END OF TEXT (tC) DC3 DEVICE CONTROL 3 (1S)
EOT END OF TRANSMISSION (1D) DC4 DEVICE CONTROL 4 (STOP) (1T)
ENQ ENQUIRY (1E) NAK NEGATIVE ACKNOWLEDGE (1U)
ACK ACKNOWLEDGE (1F) SYN SYNCHRONOUS IDLE (tV)
BEL BELL (1G) ETB END OF TRANSMISSION BLOCK (tW)
BS BACKSPACE (1H) CAN CANCEL (1X)
HT HORIZ. TABULATION (1) EM END OF MEDIUM (1Y)
LF LINE FEED (1) SUB SUBSTITUTE (12)
VT VERT. TABULATION (1K) ESC ESCAPE (1])
FF FORM FEED (1L) FS FILE SEPARATOR (1))
CR CARRIAGE RETURN (1M) GS GROUP SEPARATOR (1])
SO SHIFT OUT (1N) RS RECORD SEPARATOR (t1)
SI SHIFT IN (10) Us UNIT SEPARATOR (1<)

DEL DELETE (RUBOUT)

The tx character is produced by depressing the CTRL key and at the same time depressing the x character
key.

NOTES

Teleprinters manufactured by Teletype Corporation, Skokie, Illinois, have used codes 175 (ALT) and

176 for ESC. Programs may forgo the use of } (175) and ~ (176) in order to use these codes as ESC on
older teleprinters.

ASCII is a seven bit character code with an optional odd parity bit (200) added for many devices. Pro-
grams normally use just seven bits internally; the 200 bit is either stripped or added so the program will
operate with either parity or non-parity generating devices.

ISO Recommendation R646 and CCITT Recommendation V.3 (International Alphabet No. 5) is identi-

cal to ASCII except that number sign (043) is represented as £ instead of # and certain characters are
reserved for national use.

ABRS
A/D
ADC
ADRS
ASCII

ASL
ASR

BAR
BBSY
BCC
BCS
BEQ
BG
BGE
BGT
BHI
BHIS
BIC
BIS
BIT
Bit Map

BLE
BLOS
BLT
BMI
BNE
BPL
BR

APPENDIX N

GLOSSARY AND ABBREVIATIONS

Absalute
Analog-to~digital

Add Carry

Address

American Standard Code for Information Interchange
Arithmetic Shift Left
Arithmetic Shift Right
Automatic Send/Receive
Byte

Bus Address Register

Bus Busy

Branch if carry clear
Branch if carry set
Branch if equal

Bus Grant

Branch if greater or equal
Branch if greater than
Branch if higher

Branch if higher or same
Bit Clear

Bit Set

Bit Test

A table describing the availability of space. Each bit in the
table indicates the state (occupied or free) of one segment of
storage, for example a block on a bulk storage device.

Branch if less or equal
Branch if lower or same
Branch if less than
Branch if minus

Branch if not equal
Branch if plus

Branch

BRD
BRX
BSP
BSR

BSY
Buffer
Buffer Use Table

BvC
BVS
CBR
CiL
CILUS
CLC
CLK
CLN
CLR
CLv
CLZ
CMP
CNPR
CNTL
COM
COND
CONS
CONT

Contiguous File
Core Bit Map
Core Image

CP
Csli
CSR

Bus Register Data
Bus Request
Back Space

Bus Shift Register
Back Space Record

Busy
A storage area,

A bit map in the permanently resident monitor, which describes
the availability of buffers in the free core area.

Branch if overflow clear
Branch if overflow set
Console Bus Request

Core Image Library

Core Image Library Update & Save Program
Clear Carry

Clock

Clear Negative

Clear

Clear Overflow

Clear Zero

Compare

Console Nonprocessor Request
Control

Complement

Condition

Console

Contents
Continue

A file consisting of physically contiguous blocks on a bulk
storage device,

That portion of a Permanent Bit Map which happens to be in
core. Not to be confused with the Buffer Use Table.

A copy of what a program or other data would look like if
it were in core,

Central Processor
Command String Interpreter

Control and Status Register

DATI
DATIP
DATO
DATOB
DBR
DCDR
DDB

DE
DEC

Default Device

DEL
DEP
DEPF

Device Driver

DIV

DSEL
DST
DsSX

ENB
EOD
EOF
EOM
ERR

Data
Digital-to-analog
Device Address Register

Device Assignment Table. Confains the specifications from
ASSIGN commands.

A logical collection of data which is treated as an entity by
a program. For a more detailed description see Section 1.6.1.

Data In

Data In, Pause
Data Out

Data Out, Byte
Data Buffer Register
Decoder

Dataset Data Block., Contains Monitor control information
for a dotoset,

Destination effective address

Decrement
™e ., "~ 3 s P~ e
Digital Equipment Corporation

The device specified in the Link Block of a dataset, and which
is used for /O operations on that dataset if there is no other
device assigned in a DAT entry for the dataset.

Delay
Deposit
Deposit Flag

The minimal routine which controls physical hardware
activities on a peripheral device. The device driver is the
interface between a device and the common, device-
independent 1/O code in the monitor.

Divide

Direct Memory Access
Device Select
Destination

Display, X-deflection Register

Emulator Trap
Enable
End-of-data
End-of-file
End-of-medium

Error

EX External

EXAM Examine

EXAMF Examine Flag

EXEC Execute

EXR External Reset

F Flag (part of signal name)

Fatal Error An error from which a user's program cannot recover.

FBM File Bit Map - A device-resident bit map with bits flagged for

the blocks used for a single file. Used on DECtape to aid in
the deletion process,

FCTN Function

FIB File Information Block. Contains (in core) information from
the UFD and other sources when a file is open.

File A physical collection of data which resides on a directory-
structured device and is referenced through its name.

FILO First in, last out

FLG Flag

GEN Generator

INC Increment
Increase

INCF Increment Flag

IND Indicator

INDIVR Integer Divide Routine

INH Inhibit

INIT Initialize

INST Instruction

Interleave Factor The optimal minimum distance, measured in number of

physical device blocks, between logically adjacent blocks
of a linked file. Presently it is four on all PDP-11 bulk
storage devices. For example, if physical block N is
assigned to block 1 of a linked file, then physical block
N+4 would be the closest device block that could be
assigned to block 2 of that file.

INTR Interrupt

INTRF Interrupt Flag

I/O Input/Output

10T Input/Output Trap

10X
IR
IRD
ISR

JMP
JSR

Julian Date

KSB

LIFO
Linked File

Linker

LKS
Load Module

LOC
LP

LSB
LSBY

1cn
Low

MA
MAR
MBR
MEM
MFD

ML
MOV

Input/Output Executive Routine
Instruction Register
Instruction Register Decoder

Instruction Shift Register

Jump
Jump to subroutine

A 5-digit (decimal) numerical representation of the date, in
which the two high-order digits give the year (1900=00,
1999=99) and the three low-order digits give the day

within the year (January 1 =001, December 31 = 365

(366 for leap year)). For example, January 28, 1971

is represented as 71028,

Keyboard Swap Buffer. The non-resident routines which
process keyboard commands are brought into the keyboard
swap buffer,

Last In, First Out

A file consisting of a set of blocks within which an ordering
is specified through the use of a link word imbedded within
each block.

A systems program which creates a load module to be loaded
into core memory. The linker relocates and links internal and
external symbols to provide communication between independ-
ently assembled programs.

Line time clock status register

The output of the linker. A program in absolute binary
form ready for loading and executing on a PDP-11.

Location
Line Printer

Least Significant Bit
Least Significant Byte

Memory Address
Memory Address Register
Memory Buffer Register
Memory

Master File Directory. Contains the names and locations of
all UFDs on a file-structured device,

Memory Location

Move

MRT

MSB
MSB

MSBY
MSD
MSEL
MSYN

ND
NEG
NOR
NPG
NPR
NPRF
NS

Object Module
oDT
op

Operator

OPR
oTS

PA
PAL
Parity Bit

PB
PBM

PC
PD
PDP
PERIF

Monitor Residency Table, Contains the address (on disk
or in core) of all non-resident Monitor modules.

Most Significant Bit

Monitor Swap Buffer. The non-resident routines which process
requests to the Monitor are brought into the main swap buffer,

Most Significant Byte
Most Significant Digit
Memory Select

Master Sync

Negative Driver

Negate

Normalize

Nonprocessor Grant
Nonprocessor Request
Nonprocessor Request Flag

Negative Switch

The relocatable binary output of an assembler or compiler.
Octal Debugging Technique

Operate
Operation

A user communicating directly with the Monitor through the
keyboard.

Operator

Operand - _
OBIET Tim€ Sy§L7&m

Parity Available
Program Assembly Language

A binary digit appended to an array of bits to make the
sum of all the bit values always odd or always even,

Parity Bit

Permanent Bit Map = A bit map which describes the avail-
ability of space on a DECtape or disk. It resides on the
device it describes, and can be read into core in segments,
called Core Bit Maps, for reference or updating.

Program Counter
Positive Driver
Programmed Data Processor

Peripheral

PGM
PP
PPB
PPS
PR

PROC
PRS
PS

PTR
PTS
PUN

Radix~50 packed ASCII

RD
RDR
REG
REL
RES
ROL
ROM
ROR
R/S
RTI
RTS

R/WSR

SACK
SAL
SAM
SBC
SC

SE

Program

Paper Tape Punch

Paper Tape Punch Buffer Register
Paper Tape Punch Status Register
Paper Tape Reader

Paner Tape Reader Buffer Reqister

ape Reader Buffer Re
Processor
Paper Tape Reader Status Register

Processor Status
Positive Switch

Priority Transfer
Paper Tape Software System
Punch

A format in which 3 ASCII characters (from a subset of all
ASCII characters) are packed into a single 16-bit word.

Read

Reader

Register

Release

Reset

Rotate Left

Read-only Memory
Rotate Right
Rotate/Shift

Return from Interrupt
Return from Subroutine
Read/Write
Read/Write Shift Register

Single

Selection Acknowledge
A friend of SAM,

Swap Area Manager
Subtract Carry

Single Cycle

Source Effective Address

SEC
SEL
SEN
SEV
SEX
SEZ
SI

SP

SR
SRC
SSYN
ST
STPM
STR
SUB
SVC
SVT
SWAB
Swapping

TA

Table
TEMP
TK
TKB
TKS
TP
TPS
TRT
TSC
TST

UFD

uIC

Set Carry

Select

Set Negative

Set Overflow
Sign Extend

Set Zero

Single Instruction

Stack Pointer
Spare

Switch Register
Source

Slave Sync

Start

Set Trap Marker
Strobe

Subtract

Service

System Vector Table
Swap Byte

The movement of programs or program sections from
secondary storage to core.

Trap Address
Track Address

A collection of data in a form suitable for ready reference.
Temporary

Teletype Keyboard

Teletype Keyboard Buffer Register

Teletype Keyboard Status Register

Teletype Printer

Teletype Printer Status Register

Trace Trap

Timing State Control

Test

User File Directory. Contains the names and locations of
all files created under a UIC. (See MFD.)

User ldentification Code. A code which associates a user
with one of the UFDs on a device.

N-8

User
User Program
UTR

VEC

WwC
WCR

XDR
XRCG
XWCG

YDR
YRCG
YWCG

The person who is using the Monitor. He may use the
Monitor as an operator, or via a program.

Any program written by a user to run under the Monitor.,

User Trap
Vector

Word Count
Word Count Register

X=line Driver
X-line Read Control Group
X-line Write Control Group

Y-line Driver
Y-line Read Control Group
Y-line Write Conirol Group

APPENDIX O
FILENAME EXTENSIONS

Extension Attribute
ALG ALOGL source file
BAS BASIC source file
BAK Backup file
BLI BLISS source file
CBL COBOL source file
CIF Core Image File
CIL Core Image Library
CMD Command file
CRF Input to cross-referencing program
DAT DATA file for FORTRAN job
DDT Reserved for DDT
DGN Diagnostic message file
FTN FORTRAN source file
FCL FOCAL source list
LBO Library of object modules (other types of
libraries may also be implemented)
LCL Linked core image library
LDA Load module,; Absolute
LDR Load module, Relocatable
LOG Logging file
LSP LISP source file
LST Listing file
MAC MACRO assembler source file
MAP MAP file
MFD Master file directory
OBJ Object module
OPR Program generation information
OVR Overlay
PAL PAL assembler source file
PL1 PL/1 source file
RNO Reserved for RUNOFF program
ROL Reserved for ROLLIN program
RPG RPG source file
SNO SNOBOL source file
SPC SPEC format text
STB Symbol Table (Link-11 output)
SYM File of symbols
SYS System management
TMP Temporary scratch file
UFD User File Directory

Abbreviations, N-1
Access,
direct, 3-33
random, 3-31
.ALLOC request, 3-39
.APPND request, 3-43
ASCII to binary conversior
3-71, 3-73
ASCII mode transfer,
ASR-33 Teletype, H-1
Assembler directive,
.GLOBL, 3-18
.GLOBL OPN, C-1
.MCALL, 3-1
ASSIGN command, 2-13, 2-14
Assignment, device, 2-13,
Automatic deletion, 3-46

-

¥

3-88

3-17

BEGIN command, 2-15,
after crash, 2-16
.BIN2D request, 3-72
Binary to ASCII conversion,

3-74
Binary

2-16, 2-17

3-72,
mode transfer, 3-88
.BIN20 request, 3-73
BLKBLK (BLOCK block),
BLOCK level I/0, 1-2
.BLOCK request, 3-31,
Block,
contiguous, 1-9
file, 3-47, 3-101
linked, 1-9, 3-8,
run, 3-47
Buffer area, 1-4
Buffer,
keyboard, 2-9
line, 3-6
BUFHDR (Line Buffer Header),

3-94
3-33

3-47, 3-101

3-87

Card punch character codes, M-1
Changing protection code, 3-42
Character codes,
ASCII, M-2
punch card, M-1
Character deletion, 2-7
Characters,
special keyboard, 2-7, 2-8
teleprinter input, 2-2
CIL (Core Image Library), 3-63
.CLOSE request, 3-26
Command conventions,
Commands,
all?ffte system resources,
2_
exchange information with sys-
tem, 2-11

2-12

.CORE request,
Core Image Library (CIL), 3-63
Core map,
Core organization,
Crash, program/system, 2-16
CSI (see Command String Interpreter)
.CSI1 request,
.CSI2 request,
CTRL/C keys, 2-7

INDEX

keyboard, 1-2, 2-10, 2-11, 3-11,

3-51
legal, 2-3
manipulate core images, 2-11
miscellaneous, 2-11
start program, 2-11
stop program, 2-11

ASSIGN, 2-13, 2-14
BEGIN, 2-14 through 2-17
after program crash, 2-16
CONTINUE, 2-18
DATE, 2-19
DUMP, 2-20
ECHO, 2-21
END, 2-22
FINISH, 2-23
GET, 2-24
KILL, 2-25
LOGIN, 2-10,
MODIFY, 2-27
opT, 2-29
PRINT, 2-30
RESTART, 2-31,
RUN, 2-32
SAVE, 2-34
STOP, 2-36
TIME, 2-37
WAIT, 2-38
Commands listed by functions, 2-2
Command String Interpreter (CSI),
2-1, 2-5, 3-75 through 3-79,
interfacing with, 3-75
Comments, 2-8
Completion of processing, 3-36
Contiguous file, 1-9, 3-23, 3-30,
creation, 3-39
Contiguous block, 1-9
CONTINUE command, 2-18
Controller, device, 1-8
Conventions, command format, 2-12
Conversion,
ASCII to binary, 3-71, 3-73
binary to ASCII, 3-72, 3-74
date/time from binary to ASCII,
3-57
Radix-50,

n-1

2-26

3-51

3-67

Conversion table,

mathematical, L-12
octal-decimal, L-1
3-42

1-5
1-4

3-76
3-77

I-1

Current user's UIC request, 3-59 File,
.CVTDT request, 3-57 deletion, 3-41
directories, 1-3
protection, 3-42
Data mode, 2-4 protection codes, 3-86
T structure, 1-9
Dataset, 1-8 R
. _ Filename Block, 3-82
specifier, 2-12 Fil 2-6 3-42
DATE command, 2-19 ilenames, 2=b, 5=
extension, 2-6

Date conversion binary to ASCII,
3-57
.DATE request,
bebugging, 2-29
DECtape Drive TCll, H-14
.DELET request, 3-41
Deletion,
automatic, 3-46
of characters,
of file, 3-41
of line, 2-8
Device,
assignment, 2-13,
controller, 1-8
directory, 1-9
driver level, 1-2
independence, 1-1, 3-8, 3-16
mnemonics, 2-12, 3-68, A-1
name request, 3-60
Devices,
file-structured, 1-9,
non-file structured,
peripheral, H-1
Direct access, 3-33
Directory, device, 1-9
.D2BIN request, 3-71
$ symbol, 2-10
DUMP command,

3-55

2-1

3-17

3-30
1-9

2-20

ECHO command, 2-21

Echo, keyboard, 2-21

EMT instructions, 3-18

EMT codes, summary, B-1

END command, 2-22

Equivalence, Radix-50, A-1

Error conditions, file name block,
3-83 through 3-86

Error messages, 1-6

summary, F-1

Example programs, K-1

Exception interrupt vector, 3-66

Execution start, 2-15

.EXIT request, 3-49

FILBLK (File Block), 3-82

File (definition), 1-8
contiguous, 1-9, 3-23,
linked, 1-9, 3-23, 3-43

File block, 3-47, 3-101
parameter, 3-75

3-30

reserved extension, 0-1
search for specified, 3-44
File-structured device, 1-9
FINISH command, 2-23
Floating~point exception vector,
3-66
Format conventions for commands,
Formatted level 1I/0, 1-2
Free core, 1l-4
Functions, 2-2, 2-3
special I/0, J-1
Function Word, 3-99

GET command, 2-24
Getting on the system, 2-10
Global name restriction, 3-19
Global names
ALO, 3-39
APP, 3-43
BLO, 3-31
CDT, 3-57
CLS, 3-26
csM, 3-77
CsX, 3-76
cvT, 3-67,
DEL, 3-41
DIR, 3-44
GUT, 3-50 through 3-56,
through 3-66
INR, 3-20
OPN, 3-22
PRO, 3-46
REC, 3-30
REN, 3-42
RLS, 3~21
RUN, 3-47
RWN, 3-28,
SpC, 3-37
STT, 3-38
TRA, 3-33
XIT, 3-49
.GLOBL assembler directive, 3-18
.GLOBL OPN assembler directive,
Glossary, N-1
.GTCIL request,
.GTPLA request,
.GTSTK request,
.GTUIC request,

3-70 through 3-74

3-59

3-29

3-63
3-61
3-64
3-59

2-12

Cc-1

Hardware configurations, 1-6 Monitor, 1l-1

Header, Line Buffer, 3-9, 3-87 command conventions, 2-12
commands by function, 2-2
core organization, 1-4

.INIT request, 3-20 messages, 1-6

Interrupt priority level, 3-18 mode, 2-4

Interrupt vectors, 1-4 parameters, 3-50, 3-52

I/0 functions, special, J-1 requests, summary of, 3-4, 3-5,
I/0 levels, formatted, 1-2 E-1

I/0 services, 3-1 restrictions, 3-18

IOT instructions, 3-18

Names,
logical, 1-1

.KEEP request, 3-46 physical device, A-1
Keyboard, Non-file structured device, 1-9

buffer, 2-9

character processing, 2-9

commands, 1-2, 2-11 .02BIN request, 3-73

echo, 2-21 ODT command, 2-29
KILL command, 2-25 .OPN request, 3-22

.OPENx request, 3-22 through 3-26
Organization, core, 1l-4
Overlay/Program, 3-101

Legal commands, Monitor, 2-3 Overlays and subsidiary routines,

Level of transfer, 3-6 c-1

Levels of 1/0, 1-2

Line, (definition of), 1-9

Line Buffer Header, 3-6, 3-9, 3-87 paper tape reader/punch, H-3

Line deletion, 2-8 Parameters,

Link Block, 1-9, 3-8, 3-47, 3-80, File Block, 3-75
3-101 Link Block, 3-75

parameters, 3-75 Monitor, 3-50, 3-52

Link pointer, 3-19 Peripheral devices, H-1

Linked file, 1-9, 3-23, 3-43 Radix-50 representation, 3-68

Listing of SYSMAC.SML (system Physical device names, A-1
macro file), G-1 Pointer, link, 3-19

LNKBLK (Link Block), 3-80 PRINT command, 2-30

Load address, 3-100 Processing,

Load module/core image, 3-100 completion of, 3-36

Logical names, 1-1, 2-12 keyboard character, 2-9

LOGIN command, 2-10, 2-26 Program crash, 2-16

.LOOK request, 3-44 Program low address (PLA), 3-61

LP1ll Line Printer, H-5 Program status, 2-4

Program Status Word (PSW), 3-66
Programmed requests, 1-2, 3-1,

3-3, 3-6
Magtape Drive, TUl0, H-9 summary, E-1
Master File Directory (MFD), 1-9 Programmer restrictions, 3-18
.MCALL assembler directive, 3-1 PROTECT byte, 3-46
Messages, error, 1l-6 Protection boundary, 3-61
summary, F-1 Protection code change, 3-42
MFD (Master File Directory), 1-9 PSW (program status word), 3-66
Mnemonics, device, 3-68 .
summary, A-1
Mode Byte, 3"'88. Radix_so’
Modes of operation, 2-4 conversion to packed ASCII, 3-67
Mode of transfer, 3-8, 3-28 equivalence, A-1 '
MODIFY command, 2-27 representation for peripheral
.MONF request, 3-54 devices, 3-68
.MONR request, 3-53 unpacked, 3-70

.RADPK request, 3-67 Summary,

.RADUP request, 3-70 of EMT codes, B-1
Random access, Monitor commands, D-1

to file records, 3-10, 3-31 Monitor requests, 3-4

to I/0 level, 1-2 Swapping routines into core, 3-17
.READ regquest, 3-28 .SYSDV request, 3-60
READ or WRITE level requests, 3-6 System, see specific subject
RECBLK (Recoxrd Block), 3-93 SYSMAC.SML (system macro file),
RECORD level I/0O, 1-2 3-1

REcord level requests, 3-10
.RECRD request, 3-30

.RENAM request, 3-42 Table standards, 1-9
Requests, TCll DECtape Drive, H-14
block level, 3-12 Teleprinter input characters, 2-2
Monitor code for, C-1 Teletype, ASR-33, H-1
programmed, 1-2, 3-3, 3-6 Terminology, 1-8
READ/WRITE level, 3-6 .TIME redguest, 3-56
RECORD level, 3-10 TIME command, 2-37
summary of, 3-4, 3-5, E-1 Time conversion, binary to ASCII,
TRAN level, 3-14 3-57
RESET instruction, 3-18 .TRAN request, 3-33
Restart address, 3-51 TRAN Block (TRNBLK), 3-95
RESTART command, 2-31, 3-51 TRAN level requests, 3-14
Restrictions, Transfer Address offset, 3-100
global name, 3-19 Transfer levels, 1-2, 3-6
programmer, 3-18 Transfer modes, 3-28, 3-88
Return address, 3-100 ASCII/binary, 3-8
.RLSE request, 3-21 .TRAP request, 3-50
.RSTRT request, 3-51 TRNBLK (TRAN Block), 3-95
RUBOUT, 2-9 TUl0 Magtape Drive, H-9

RUN command, 2-32
.RUN request, 3-47
RUNBLK (RUN Block), 3-98 User area, 1l-4
Run block, 3-47 User File Directory (UFD), 1-9
User Identification Code (UIC), 2-5
current user UIC request, 3-59

SAVE command, 2-34 User Mode, 2-4

Search for a specified filename,
3-44
Services, 1/0, 3-1
SPCBLK (Special Function Block),
3-97
.SPEC request, 3-37
Special Functions Block (SPCBLK),
3-97
Special keyboard characters. 2-7
Square bracket ([]) usage
commands, 2-12
Stack, 1-4
base, 3-64, 3-65
movement, 3-100
storage areas, 3-18
Start execution, 2-15
Starting Monitor, 1-7
.STAT request, 3-38
Status Byte, 3-91
.STFPU request, 3-66
STOP command, 2-8, 2-36
Storage areas on the stack, 3-18
.STPLA request, 3-62
.STSTK request, 3-65
Subsidiary routines and overlays,
c-1

Vector, floating-point exception,
3-66

WAIT command, 2-38

.WAIT request, 3-35
.WAITR request, 3-36
.WRITE request, 3-29

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes,
software problems, and documentation corrections are published by Software
Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-|2
Digital Software News for the PDP-II
Digitai Software News for the PDP-9/15 Famiiy

These newsletters contain information applicable to software available from
Digital's Program Library, Articles in Digital Software News update the
cumulative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
Software News is sent to the appropriate software contact at your installation,
please check with the Software Specialist or Sales Engineer at your nearest
Digital office.

Questions or problems concerning Digital's Software should be reported to
the Software Specialist. In cases where no Software Specialist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms which are provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to facilitate a complete investigation. An answer will be sent to the
individual and appropriate topics of general interest will be printed in the
newsletter.

Orders for new and revised software and manuals, additional Software Per-
formance Report forms, and software price lists should be directed to the
nearest Digital Field office or representative. U.S.A. customers may order
directly from the Prearam Library in Maynard. When ordering, include the
code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to:

DECUS

Digital Equipment Corporation
146 Main Street, Bldg. 3-4
Maynard, Massachusetts 01754

N Avadbsme Cuadam

PDP-11 Disk Opcx.atlug systen
Monitor Programmer's Handbook
DEC-11-OMONA-A-D

October 1972

READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of

this manual.

Please comment on this manual's completeness, accuracy. organization, usability and read-

ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position. Date:
Name: Organization:
Street: Department:

City: State: Zip or Country

——————————————— — Fold Here — - — — - -

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

dlilgliltiall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS 01754

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	J-01
	J-02
	J-03
	J-04
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-08
	K-09
	K-10
	M-01
	M-02
	M-03
	M-04
	N-01
	N-02
	N-03
	N-04
	N-05
	N-06
	N-07
	N-08
	N-09
	N-10
	O-01
	O-02
	X-01
	X-02
	X-03
	X-04
	replyA
	replyB
	replyC
	replyD
	xBack

