Ve

DEC-11-LASMA-A-D

DOS/BATCH
Assembler (MACRO)

Programmer’s Manual

FOR THE DOS/BATCH OPERATING SYSTEM

Monitor Version V@9

August 1973

For additional copies, order No. DEC-11-LASMA-A-D from Digital Equipment
Corporation, Software Distribution Center, Maynard, Massachusetts @gl754.

Your attention is invited to the last two pages of
this document. The "How to Obtain Software
Information" page tells you how to keep up-to-date
with DEC's software. The "Reader's Comments" page
when filled in and mailed, is beneficial to both
you and DEC; any comments received are
acknowledged and are considered when documenting
subsequent manuals.

Copyright (:>l973 by Digital Equipment Corporation

Associated Documents:

DOS/BATCH Monitor
Programmer's Manual, DEC-11-OMPMA=-A-D

DOS/BATCH User's Guide, DEC=-11-OBUGA=-A-D

DOS/BATCH FORTRAN Compiler and Object Time System
Programmer's Manual, DEC-11-LFRTA=-A-D

DOS/BATCH System Manager's Guide, DEC-11-OSMGA=-A-D

DOS/BATCH File Utility Package (PIP)
Programmer's Manual, DEC-11-UPPAA-A-D

DOS/BATCH Debugging Program (ODT-11R)
Programmer's Manual, DEC-11-UDEBA-A-D

DOS/BATCH Linker (LINK)
Programmer's Manual, DEC=-11-ULKAA-A-D

DOS/BATCH Librarian (LIBR)
Programmer's Manual, DEC-11-ULBAA-A-D

DOS/BATCH Text Editor (EDIT-11)
Programmer's Manual, DEC-11-UEDAA-A-D

DOS/BATCH File Compare Program (FILCOM)
Programmer's Manual, DEC=11-UFCAA-A-D

DOS/BATCH File Dump Program (FILDMP)
Programmer's Manual, DEC=-11-UFLDA-A-D

DOS/BATCH Verification Program (VERIFY)
Programmer's Manual, DEC=11-UVERA-A-D

DOS/BATCH Disk Initializer (DSKINT)
Programmer's Manual, DEC=-11-UDKIA=-A-D

Trademarks of Digital Equipment Corporation include:

DEC PDP-11
DIGITAL (logo) COMTEX-11
DECtape RSTS-11
UNIBUS RSX-11

ii

PREFACE
This manual describes the PDP-11 MACRO-1ll Assembler and Assembly
Language, It is recommended that the reader refer to the PDP-1l
Processor Handbook and, optionally, the PDP=1l1 Peripherals and
Interfacing Handbook. References are made to these handbooks
throughout this document (although +this document is complete by
itself, the additional material provides further details). The user
is also advised to obtain a PDP-1l1l Pocket Instruction List card for
easy reference. (These items can be obtained from the Software
Distribution Center.)
MACRO-11 operates under the PDP-1ll DOS/BATCH Monitor.
Some notable features of MACRO-11 are:

1. Program and command string control of assembly functions;

2. Device and filename specifications for input and output
files;

3. Error listing on command output device;

4. Alphabetized, formatted symbol table listing;

5. Relocatable object modules;

6. Global symbols for linking between object modules;
7. Conditional assembly directives;

8. Program sectioning directives;

9. User-defined macros;

10. Comprehensive set of system macros; and

11l. Extensive listing control,.

NOTE

The software described in this manual

is furnished to purchaser under a li-
cense for use on a single computer
system and can be copied (with inclu-
sion of DEC's copyright notice) only
for use in such system, except as may
otherwise be provided in writing by DEC,

This document is for information pur-
poses and is subject to change without
notice.

DEC assumes no responsibility for the
use or reliability of its software on
equipment which is not supplied by DEC.

iii

CONTENTS

CHAPTER 1 EFFECTIVE USE OF ASSEMBLY LANGUAGE PROGRAMMING

1.1 STANDARDS AND CONVENTIONS
1.2 POSITION-INDEPENDENT CODE (PIC)

CHAPTER 2 SOURCE PROGRAM FORMAT

2.1 STATEMENT FORMAT
2.1.1 Label Field
2.1.2 Operator Field
2.1.3 Operand Field
2.1.4 Comment Field

2.2 FORMAT CONTROL

CHAPTER 3 SYMBOLS AND EXPRESSIONS

3.1 CHARACTER SET

3.1.1 Separating and Delimiting Characters
3.1.2 1Illegal Characters

3.1.3 Operator Characters

MACRO SYMBOLS

3.2.1 Permanent Symbols

3.2.2 User-Defined and Macro Symbols
DIRECT ASSIGNMENT

REGISTER SYMBOLS

LOCAL SYMBOLS

ASSEMBLY LOCATION COUNTER

NUMBERS

TERMS

EXPRESSIONS

w
.
[3%}

Wwwwwww

LCoJoaoudw

CHAPTER 4 RELOCATION AND LINKING
CHAPTER 5 ADDRESSING MODES

REGISTER MODE

REGISTER DEFERRED MODE
AUTOINCREMENT MODE
AUTOINCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT MODE

INDEX MODE

INDEX DEFERRED MODE

IMMEDIATE MODE

ABSOLUTE MODE

1 RELATIVE MODE

RELATIVE DEFERRED MODE

TABLE OF MODE FORMS AND CODES
5.14 BRANCH INSTRUCTION ADDRESSING

HEREWOVOTOUL & WM

=

(G EOEGREORORG NGRSV RS RGNS

o
b

e
W

CHAPTER 6 GENERAL ASSEMBLER DIRECTIVES

6.1 LISTING CONTROL DIRECTIVES
6.1.1 .LIST and .NLIST
6.1.2 Page Headings
6.1.3 .TITLE

=
1

1
e

ol

\S]
1 |)
WROWOI~Jo Ut Ul [l S hWwwhH =

DMDNONNNNDN
| U

w
| |

wwwwc?:wwww

W
=

[I T T O A | |
NOAOUTUEBEWWWWDNDNE

vtunonuutuuutuutn o n
|

aooo o
1 [
0o HR

CHAPTER 1
EFFECTIVE USE OF ASSEMBLY LANGUAGE PROGRAMMING

This Chapter presents a brief overview of some fundamental software
concepts essential to efficient assembly language programming of the
PDP-11 family of computers. A description of the hardware components
of the PDP-11 family can be found in the two DEC paperback handbooks:

PDP-11 Processor Handbook (11/40 or 11/45 edition)
PDP-11 Peripherals and Interfacing Handbook

No attempt is made in this document to describe the PDP~1ll hardware or
the function of the wvarious PDP-1ll1l instructions. The reader is
advised to become familiar with this material before proceeding,

1.1 STANDARDS AND CONVENTIONS

Because assembly 1level programming deals directly with the host
hardware, greater care must be taken .in specifying programming
standards and conventions if code written by different groups is to be
easily interchanged. The payoff achievable from strict adherence to
standards can be considerable. When a set of standards guides the
entire programming process, the total programming effort becomes
easier to

plan;
comprehend;
test;
modify; and
convert,

Even though standards must take into consideration local installation
requirements, many components of the programming process have
universal applicability. Appendix E contains a set of recommended
programming standards. It is a minimal set found to be practical and
useful. Users adhering to these standards in coding their own
software will reap the Dbenefits of interchangeability, and tend to
develop work-sharing arrangements mutually rewarding to DIGITAL and
the user.

1.2 POSITION-INDEPENDENT CODE (PIC)

The output of a MACRO-11l assembly is a relocatable object module.
LINK can bind one or more modules together and create an executable
task.

Once built, a program can generally be loaded and executed only at the
address specified at LINK time, This is because LINK has had to make
adjustments in some codes to reflect the memory locations in which the
program is to run.

Al

CHAPTER 2
SOURCE PROGRAM FORMAT

A source program is composed of a sequence of source lines, where each
line contains a single assembly language statement.,

An assembly language line can contain up to 132(decimal) characters.
Beyond this limit an I/O error is generated.

2.1 STATEMENT FORMAT
A statement can contain up to four fields which are identified by
order of appearance and by specified terminating characters. The
general format of a MACRO-1ll assembly language statement is:
label: operator operand ;comments
The label and comment fields are optional. The operator and operand
fields are interdependent; either may be omitted depending upon the
contents of the other.
The Assembler interprets and processes these statements one by one,
generating one or more binary instructions or data words, or
performing an assembly process. A statement must contain one of these
fields and may contain all four types. (Blank lines are legal.)
Some statements have one operand, for example:

CLR RO
while others have two, for example:

MoV #344 ,R2

An assembly language statement must be complete on one source line.
No continuation lines are allowed.

MACRO-11 source statements may be formatted such that use of the TAB
character causes the statement fields to be aligned. The standards
used are:

Label -~ column 1;

Operator - column 9;

Operand(s) = column 17;

Comments - column 33,
For example:

REGTST: BIT #MASK ,VALUE ;3 BITS?

2.1l.1 Label Field

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user-defined symbol
table. The value of the label may be either absolute or relocatable,
depending on whether the location counter value is currently absolute
or relocatable. In the latter case, the absolute value of the symbol
is assigned by LINK; i.e., the stated relocatable value plus a the
relocation bias, calculated by LINK.,

A Xabel is a symbolic means of referring to a specific location within
a program. If present, a label always occurs first in a statement and
must be terminated by a colon. For example, if the current location
is absolute 100 (octal), the statement:

ABCD: MOV A,B

assigns the value 100 (octal) to the label ABCD. Subsequent references
to ABCD reference location 100(octal). In this example if the
location counter were relocatable, the final value of ABCD would be
100 (octal)+K, where K is the 1location of the beginning of the
relocatable section in which the label ABCD appears.

A double colon defines the label as global and is accessible to
independently assembled modules; thus:

ABCD:: MOV A,B

establishes ABCD as a global symbol.

More than one label may appear within a single label field; each label
within the field has the same value. For example, if the current
location counter is 100 (octal), the multiple labels in the statement:

ABC: SDD: A7.7: Mov A,B

cause each of the three labels ABC, $DD, and A7.7 to be equated to the
value 100 (octal). The legal label characters are:

A -2
0 -9

$

(By convention, $ and . characters are reserved for wuse in system
software symbols.,) .

The first six characters of a label are significant. An error message
is generated if two or more 1labels share the same first six
characters,

A symbol used as a label may not be redefined within the user program.
An attempt to redefine a label results in an error flag (M) in the
assembly listing,

2.1.2 Operator Field

An operator field follows the label field in a statement, and may
contain a macro call, an instruction mnemonic, or an assembler
directive, The operator may be preceded by none, one or more labels
and may be followed by one or more operands and/or a comment. Leading
and trailing spaces and tabs are ignored.

When the operator is a macro call, the Assembler inserts the
appropriate code to expand the macro. When the operator is an
instruction mnemonic, it specifies the intruction to be generated and
the action to be performed on any operand(s) which follow. When the
operator is an assembler directive, it specifies a certain function or
action to be performed during assembly.

An operator is legally terminated by a space, tab, or any
non-alphanumeric character (symbol component).

Consider the following examples

MOV A,B ;space terminates the operator MOV
MOV @A,B ;@ terminates the operator MOV

A blank operator field is interpreted as a .WORD assembler directive
(See section 6.3.2).

2.1.3 Operand Field

An operand is that part of a statement which is manipulated by the
operator. Operands may be expressions, numbers, or symbolic or macro
arguments (within the context of the operation). When multiple
operands appear within a statement, each is separated from the next by
one of the following characters: comma, tab, space, or paired angle
brackets around one or more operands (see section 3,1.1). An operand
may be preceded by an operator, label, or other operand and followed
by another operand or a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a statement terminator when the operand completes the
statement. For example:

LABEL: MOV A,B ; COMMENT

The tab between MOV and A terminates the operator field and begins the
operand field; a comma separates the operands A and B; a semicolon
terminates the operand field and begins the comment field.

2.1.4 Comment Field

The comment field is optional and may contain any ASCII characters
except null, rubout, carriage return, line feed, vertical tab or form
feed. All other characters, even special characters with a defined
use, are ignored by the Assembler when appearing in the comment field.

The comment field may be preceded by one, any, none or all of the
other three field types. Comments must begin with the semicolon
character.

Comments do not affect assembly processing or program execution, but
are useful in source 1listings for later analysis, debugging, or
documentation purposes.

2.2 FORMAT CONTROL

Horizontal or line formatting of the source program is controlled by
the space and tab characters. These characters have no effect on the
assembly process unless they are embedded within a symbol, number, or
ASCII text; or unless they are used as the operator field terminator,
Thus, these characters can be used to provide an orderly source
program, A statement should be formatted to conform to the DOS/BATCH
standard,

LABEL: MOV (SP) +,TAG; POP VALUE OFF STACK*
LABEL: MOV (SP) +,TAG ;POP VALUE OFF STACK¥*
(See section 6.1.6 for a description of page formatting with respect

to macros, and section 6.1.3 for a description of assembly listing
output.)

*Appendix E details code formatting standards used in all DOS/BATCH
Monitor software.

CHAPTER 3
SYMBOLS AND EXPRESSIONS
This Chapter describes the various components of legal MACRO-11

expressions; the Assembler character set, symbol construction,
numbers, operators, terms, and expressions.

3.1 CHARACTER SET
The following characters are legal in MACRO-1l source programs:

1. The letters A through 2. Both upper and lower case letters
are acceptable, although, upon input, lower case letters are
converted to upper case letters, Lower case letters can only
be output by sending their ASCII values to the output device.

This conversion is not true for .ASCII, .ASCIZ, ' (single
quote) or " (double quote) statements if .ENABL LC is in
effect.

2, The digits 0 through 9.

3. The characters . (period or dot) and § (dollar sign) which
are reserved for use in system program symbols.

4., The following special characters:

Character

Il o
Ji o

Designation

double colon
double equal sign

colon

equal sign
percent sign

tab

space

number sign

at sign

left parenthesis
right parenthesis
comma

semicolon

left angle bracket

right angle bracket

plus sign

minus sign

asterisk

slash
ampersand
exclamation

double quote

single quote

Function
Either the double colon or
double equal sign may be used
to define a symbol as a global
symbol (refer to section
6.10).
label terminator
direct assignment indicator
register term indicator
item or field terminator
item or field terminator
immediate expression indicator
deferred addressing indicator
initial register indicator
terminal register indicator
operand field separator

comment field indicator

initial argument or expression
indicator

terminal argument or
expression indicator

arithmetic addition operator
or autoincrement indicator

arithmetic subtraction
operator or autodecrement
indicator

arithmetic multiplication
operator

arithmetic division operator
logical AND operator

logical inclusive OR operator

double ASCII character
indicator
single ASCII character
indicator

up arrow or
circumflex

backslash

universal unary operator,
argument indicator

macro numeric argument
indicator

3.1.1 Separating and Delimiting Characters

Reference is made in the remainder of the manual to legal separating
characters and 1legal argument delimiters. These terms are defined
below in Tables 3-1 and 3-2,

Table 3-1
Legal Separating Characters
Character Definition ' Usage
space one Oor more spaces A space is a legal separator
and/or tabs only for argqument operands.,

Spaces within expressions are
ignored (see section 3.8).

’ comma A comma is a legal separator
for both expressions and
arguments,

Table 3-2
Legal Delimiting Characters

Character Definition Usage

<ene” paired angle brackets Paired angle brackets are used
to enclose an argument,
particularly when that
argument contains separating
characters. Paired angle

brackets may be used anywhere
in a program to enclose an
expression for treatment as a

term,
AN Up arrow construction This construction is
where the up arrow equivalent in function to
character is followed the paired angle brackets
by an argument and is generally used only
bracketed by any paired where the argument contains
printing characters. angle brackets.

Where argument delimiting characters are used, they must bracket the
first (and, optionally, any following) argument(s). The character <
and the characters *x, where x 1is any printing character, can be
considered unary operators which cannot be immediately preceded by
another argument. For example:

« MACRO TEM <AB”>C
indicates a macro definition with two arguments, while

«MACRO TEL C<AB>

has only one argument. The closing , or matching character where the
up arrow construction is used, acts as a separator. The opening
argument delimiter does not act as an argument separator.
Angle brackets can be nested as follows:

<AC>
which reduces to:

AC

and which is considered to be one argument in both forms.

3.1.2 Illeqal Characters
A character can be illegal in one of two ways:

1. A character which is not recognized as an element of the
MACRO-11 character set is always an illegal character and
causes immediate termination of the current 1line at that
point, plus the output of an error flag (I) in the assembly
listing. For example:

LABEL«*A: MOV A,B

Since the backarrow is not a recognized character, the entire
line is treated as a:

« WORD LABEL
statement and is flagged in the listing.

2. A legal MACRO-1l1l character may be illegal in context., Such a
character generates a Q error on the assembly listing.

3.1.3 Operator Characters

Legal unary operators under MACRO-11l are as follows:

Unary

Operator Explanation Example

+ plus sign +A (positive value of A,
equivalent to A)

- minus sign -A (negative 2's complement
value of A)

4 up arrow, universal +F3.0 (interprets 3.0 as a

unary operator l~word floating-point

number)

(this usage is described in greater detail in sections 6.4.2
and 6.6.2).,

$4C24 (interprets the 1's
complement value of
24 (octal); 18, not 24)
4D127 (interprets 127 as a
decimal number)
+034 (interprets 34 as an
octal number)
+B11000111 (interprets 11000111 as a
binary value)
The unary operators as described above can be used adjacent to each
other in a term. For example:
-%5
+c4+012
Legal binary operators under MACRO-11l are as follows:
Binary
Operator Explanation Example
+ addition A+B
- subtraction A=-B
* multiplication A*B (1l6=-bit product returned)
/ division A/B (16-~bit quotient returned)
& logical AND A&B
! logical inclusive OR AlB

All binary operators have the same priority. Items can be grouped for

evaluation within an expression by enclosure in angle brackets.

Terms

in angle brackets are evaluated first, and remaining operations are

performed left to right. For example:

+«WORD 1+2%*3 ;IS 11 OCTAL
« WORD 1+<2*3> ;IS 7 OCTAL

3.2 MACRO-~1l1l SYMBOLS

There are three types of symbols: permanent, user-defined and
MACRO~11 maintains three types of symbol tables: the Permanent
Table (PST), the User Symbol Table (UST), and the Macro Symbol
(MST) . The PST contains all the permanent symbols and is part
MACRO-11 Asembler load module, The UST and MST are constructed
source program is assembled; user-defined symbols are added
table as they are encountered.

macro.
Symbol
Table
of the
as the
to the

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics and assembler
directives (Chapter 6 and 7, Appendix B). These symbols are a
permanent part of the Assembler and need not be defined before being
used in the source program. ‘

3.2.2 User-Defined and Macro Symbols

User-defined symbols are those wused as 1labels (section 2.,1,1) or
defined by direct assignment (section 3.3). These symbols are added
to the User Symbol Table as they are encountered during the first pass
of the assembly. Macro symbols are those symbols used as macro names
(section 7.1). These symbols are added to the Macro Symbol Table as
they are encountered during the assembly.

User-defined and macro symbols can be composed of alphanumeric
characters, dollar signs, and periods only; any other character is
illegal.

The $ and . characters are reserved for system software symbols
(e.g., READS$, a system macro) and should not be inserted as a
user-defined or macro symbol.

The following rules apply to the creation of user-defined and macro
symbols:

1. The first character must not be a number (except in the case
of local symbols, see section 3.5).

2. Each symbol must be unique within the first six characters,

3. A symbol can be written with more then six legal characters,
but the seventh and subsequent characters are only checked
for legality, and are not otherwise recognized by the
Assembler,

4, Spaces, tabs, and illegal characters must not be embedded
within a symbol.

The value of a symbol depends upon its use in the program. A symbol
in the operator field may be any one of the three symbol types. To
determine the value of the symbol, the Assembler searches the three
symbol. tables in the following order:

1. Macro Symbol Table

2, Permanent Symbol Table

3. User-Defined Symbol Table
A symbol found in the operand field is sought in the

1. User-Defined Symbol Table

2, Permanent Symbol Table

in that order., The Assembler never expects to find a macro name in an
operand field.

These search orders allow redefinition of Permanent Symbol Table
entries as user~defined or macro symbols. The same name can also be
assigned to both a macro and a label.

User-defined symbols are either internal or external (global). aAll
user-defined symbols are internal unless they remain undefined
internally or unless explicitly defined as being global with the
.GLOBL directive or by the double-colon, or double-equal sign (see
Section 6.10),

Global symbols provide links between object modules., A global symbol
which 1is defined as a label is generally called an entry point (to a
section of code). Such symbols are referenced from other object
modules to transfer control throughout the load module (which may be
composed of a number of object modules).

Since MACRO-11l provides program sectioning capabilities (section 6.9),
two types of internal symbols must be considered:

1. Symbols that belong to the current program section; and
2. Symbhols that belong to other program sections.

In both cases, the symbol must be defined within the current assembly;
the significance of the distinction is critical in evaluating
expressions involving type (2) above (see section 3.9).

3.3 DIRECT ASSIGNMENT

A direct assignment statement associates a symbol with a value. When
a direct assignment statement defines a symbol for the first time,
that symbol is entered into the user symbol table. A symbol may be
redefined by assigning a new value to a previously defined symbol.
The latest assigned value replaces any previous value assigned to a
symhol.

The general format for a direct assignment statement is:
symbol = expression
or
symbol == expression
which also defines symbol as a global definition.
Symbols take on the relocatable or absolute attribute of their
defining expression. However, if the defining expression is global,

the symbol is not global unless explicitly defined as such in a .GLOBL
directive, by a label delimited by a double colon or by the double
equal sign (see section 6.10). Global references in an expression
assigned to a symbol are illegal, and are flagged with an A error
flagqg.

For example:

A=1 sTHE SYMBOL A IS EQUATED TO THE
. s VALUE 1.,
B = 'A-1§MASKLOW s THE SYMBOL B IS EQUATED TO THE
s VALUE OF THE EXPRESSION
C: D=3 sTHE SYMBOL D IS EQUATED TO 3.
E: MOV #1,ABLE ;LABELS C AND E ARE EQUATED TO THE

s LOCATION OF THE MOV COMMAND
The following conventions apply to direct assignment statements:

1. An equal sign (=) or double equal (==) must separate the
symbol from the expression defining the symbol value.

2, A direct assignment statement is usually placed in the 1label
field and may be followed by a comment,

‘3. Only one symbol can be defined in a single direct assignment
statement.

4, Only one level of forward referencing is allowed.

Example of two levels of forward referencing (illegal):

X=X
Y=12
zZ=1

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-11l are numbered 0 through 7 and
can be expressed in the source program as:

%0
31

87

where the digit indicating the specific register can be replaced by
any legal term which can be evaluated during the first assembly pass.

It is recommended that the programmer use symbolic names for all
register references. Unless the L,DSABL REG statement has been
encountered, the definitions as shown in the following example are
defined by default, or, a register symbol may be defined in a direct
assignment statement, among the first statements in the program. The
defining expression of a register symbol must be absolute. For
example:

¢T-¢€

Line Octal
Number Expansion Source Code Comments
1 «SBTTL SFCTOR TINTTTALIZATINAN
2
b raeeee! .CSFCT IMPLRF s IMPI'FE SYQRAGF AKF&A
4 gegeee IMPLURF ¢
g reeeee! JCSFCT IMPFAS ICLFAREDN FACH PASS
é gogoee TMPPAR)
7 revece! JCSFCT IMPLIN JPLFAREPM FACM LINE
€ peoree IMPLING
S
ie ngeere!. JCSFCY XPTERG FPROGRAM TNTTTALTZATION CODF
11 epeee XPTPRE Y
12 ecoreer pri270@ MOV HIMPURE ,R?
rpegog!
13 cered r@Re2e 1%t CLR (F2Y+ JPLFAR TMPURE AREA
14 cgres ;22709 CMP WIMPTPP,R?
rpeeée’
15 cer12 121374 RHT 1¢
16
17 raeeee! «CSFCT XCTFAS PPASS IMITYALTZATTION FCORE
18 ppeQe XFTPASY
10 cprer ri270Q MOV HIMPRAS,R™
reeeeg!?
20 oQrgd 0Q%p2p 1% CIR (R2Y e sCLFAR TMPURF PARY
€1 roveés 922770 cMP WIMPTOP,R?
raogagp!
22 0pr12 121374 BHI 1
23
z4 raeeoe! JLSFCT XPTLIN pLINE INTTTALTZATICN CONE
z% rcoeer XCTLING
26 reeer pPi12700 MPY WIMFLIN,R?
rgeeee!
27 opogd poke2e 1% CIR (RE)Ye
ZR ppoes p2270¢0 CMP #TMPTNAP,R2
raeeag!
29 re21? 121374 BRI 18
A
3 paveoe! FSECT MIXED sMIYER MQOPF SFCYCPR
Figure 3-3

Assembly Source Listing of MACRO-11 Code Showing Local Symbol Blocks

[

3.6 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. When
used in the operand field of an instruction, it represents the address
of the first word of the instruction. When used in the operand field
of an assembler directive, it represents the address of the current
byte or word. For example:
A: MOV #.,RO s REFERS TO LOCATION A,
;I.E., THE ADDRESS OF THE
s MOV INSTRUCTION.

(# is explained in section 5.9.)

At the beginning of each assembly pass, the Assembler clears the
location counter. Normally, consecutive memory locations are assigned
to each byte of object data generated. However, the location where
the object data is stored may be changed by a direct assignment
altering the location counter:

N

.=expression

Similar to other symbols, the 1location counter symbol has a mode
associated with it, either absolute or relocatable, However, the mode
cannot be external. The existing mode of the location counter cannot
be changed by using a defining expression of a different mode.

The mode of the location counter symbol can be changed by the use of
the .ASECT,.CSECT or .PSECT directives as explained in section 6.9.

The expression defining the location counter must not contain forward
references or symbols that vary from one pass to another.

Examples:

+«ASECT

.=500 :SET LOCATION COUNTER TO
;ABSOLUTE 500

FIRST: MOV «+10,COUNT ;THE LABEL FIRST HAS THE VALUE
7500 (OCTAL)
;.+10 EQUALS 510 (OCTAL). THE
;CONTENTS OF THE LOCATION
;510 (OCTAL) WILL BE DEPOSITED
s IN LOCATION COUNT,

.=520 ; THE ASSEMBLY LOCATION COUNTER
sNOW HAS A VALUE OF
;ABSOLUTE 520 (OCTAL) .

SECOND: MOV « » INDEX ;THE LABEL SECOND HAS THE

s VALUE 520 (OCTAL)

; THE CONTENTS OF LOCATION

:520 (OCTAL) , THAT IS, THE BINARY
;CODE FOR THE INSTRUCTION

; ITSELF, WILL BE DEPOSITED IN

; LOCATION INDEX,

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by binary
operators and which reduce to a 16-bit value. The operands of a .BYTE
directive (see section 6.3.1) are evaluated as word expressions before
truncation to the low-order eight bits., Prior to truncation, the
high-order byte must be zero or all ones (when byte value is negative,
the sign bit is propagated). The evaluation of an expression includes
the evaluation of the mode of the resultant expression; that is,
absolute, relocatable or external. Expression modes are further
defined below.

Expressions are evaluated left to right with no operator hierarchy
rules except that unary operators take precedence over binary
operators. A term preceded by a unary operator can be considered as
containing that unary operator, (Terms are evaluated, where
necessary, before their use in expressions.) Multiple unary operators
are valid and are treated as follows:

-+=A
is equivalent to:
—- R =AS>

A missing term, expression, or external symbol 1is interpreted as a
Zero. A missing operator is interpreted as +. A Q error flaqg is
generated for each missing term or operator. For example (here TAG is
OR'ed with LA +177777):

TAG | LA 177777
is evaluated as
TAG ! LA+177777
with a Q error flag on the assembly listing line.

The value of an external expression is the value of the ahsolute part
of the expression; e.q,, EXTERNAL+A has a value of A. This is
modified by LINK to become EXTERNAL+A,

Expressions, when evaluated, are either absolute, relocatable, or
external. For the programmer writing position-independent code, the
distinction is important.

l. An expression is absolute if its value is fixed. An
expression whose terms are numbers and ASCII conversions will
have an absolute value. A relocatable expression minus a
relocatable term, where both items belong to the same program
section, is also absolute.

2. An expression is relocatable if its value is fixed relative
to a base address but will have an offset value added at Task
Build time. Expressions whose terms contain 1labels defined
in relocatable sections and periods, (in relocatable
sections) will have a relocatable value,

An expression is external (or global) if its wvalue is only
partially defined during assembly and its definition is
completed at LINK linking time. An expression whose terms
contain a global symbol not defined in the current program is
an external expression, External expressions have
relocatable values at execution time, if the global symbol is
defined as being relocatable; or absolute, if the global
symbol is defined as absolute.

CHAPTER 4
RELOCATION AND LINKING

The output of the MACRO-1l Asembler is an object module which must be
processed by LINK before loading and execution. (See DOS/BATCH Linker
(LINK) Programmer's Manual for details.) LINK essentially fixes (i.e.,
makes absolute) the values of external or relocatable symbols and
turns the object module into a load module.

To enable the the Linker Program to fix the value of an expression,
the Assembler issues certain directives to LINK, together with
required parameters. In the case of relocatable expressions, LINK
adds the base of the associated relocatable section (the location in
memory of relocatable 0) to the value of the relocatable expression
provided by the Assembler. In the case of an external expression, the
value of the external term in the expression is determined by LINK
(since the external symbol must be defined in one of the other object
modules which are being linked together) and adds it to the value of
the external expression provided by the Assembler.

All instructions that are to be modified (as described in the previous
paragraph) are marked with an apostrophe in the assembly listing (see
also section 1l.2). Thus, the binary text output looks 1like the
following:

005065 CLR EXTERNAL (5)
000000 :VALUE OF EXTERNAL SYMBOL
;s ASSEMBLED ZERO; WILL BE
s MODIFIED BY LINK.
005065 CLR EXTERNAL+6 (5) ;THE ABSOLUTE PORTION OF THE
000006 ;EXPRESSION (000006) IS ADDED
:BY LINK TO THE VALUE
3OF THE EXTERNAL SYMBOL
005065 CLR RELOCATABLE (5) ;ASSUMING WE ARE IN A
+ RELOCATABLE
000040" ;SECTION AND THE VALUE OF

;s RELOCATABLE SYMBOL IS RELOCATABLE 40
;s LINK WILL ADD
s THE RELOCATION BIAS TO 40

CHAPTER 5
ADDRESSING MODES

The program counter (PC, register 7 of the eight general registers)
always contains the address of the next word to be fetched; i.e., the
address of the next instruction to be executed, or the second or third
word of the current instruction.

In order to understand how the address modes operate and how they

assemble, the action of the program counter must be understood. The
key rule is:

Whenever the processor implicitly uses the program counter
to fetch a word from memory, the program counter is
automatically incremented by two after the fetch.

That is, when an instruction is fetched, the PC is incremented by two,
so that it is pointing to the next word in memory; and, if an
instruction uses indexing (sections 5.7, 5.9 and 5.11), the processor
uses the program counter to fetch the base from memory. Hence, using
the rule above, the PC increments by two, and now points to the next
word.

l. Let E be any expression as defined in Chapter 3.
2. Let R be a register expression. This is any expression

containing a term preceded by a % character or a symbol
previously equated to such a term,

Examples:

RO=%0 ;s GENERAL REGISTER 0
R1=RO+1 ;s GENERAL REGISTER 1
R2=1+%1 s GENERAL REGISTER 2

3. Let ER be a register expression or an expression in the range
0 to 7 inclusive.

4., Let A be a general address specification which produces a
6=bit mode address field as described in sections 3.1 and 3.2
of the PDP-11 Processor Handbook (both 11/40 and 11/45
versions).
The addressing specification, A, can be explained in terms of
E, R, and ER as defined above. Each is illustrated with the

single operand instruction CLR or double operand instruction
MoV,

5.1 REGISTER MODE
The register contains the operand.
Format for A: R

Examples:

RO=%0 ;DEFINE RO AS REGISTER 0

CLR RO sCLEAR REGISTER 0

5.2 REGISTER DEFERRED MODE
The register contains the address of the operand.

Format for A: @R or (ER)

Examples:
CLR @R1 ;BOTH INSTRUCTIONS CLEAR
CLR (R1) ;sTHE WORD AT THE ADDRESS

;s CONTAINED IN REGISTER 1

5.3 AUTOINCREMENT MODE

The contents of the register are incremented immediately after
used as the address of the operand. (See note below.)

Format for A: (ER) +

Examples:

CLR (RO) + ; EACH INSTRUCTION CLEARS
CLR (RO+3) + ;s THE WORD AT THE ADDRESS
CLR (R2) + ; CONTAINED IN THE SPECIFIED

sREGISTER AND INCREMENTS
; THAT REGISTER'S CONTENTS

; BY TWO

*kkNOTE***

Both JMP and JSR instructions using non-deferred

autoincrement mode, autoincrement the

register

before its use on the PDP-11/20 (but not on the

PDP-11/45 or 11/05). In double operand
instructions of the addressing form Rn or Rn,-(Rn)
where the source and destination registers are the
same, the source operand is evaluated as the
autoincremented or autodecremented wvalue; but the
destination register, at the time it is used,
still contains the originally intended effective
address. In the following two examples, as
executed on the PDP-11/20, RO originally contains
100.

MoV RO, (RO) + s THE QUANTITY 102 IS MOVED

;TO LOCATION 100

MOV RO, - (RO) ; THE QUANTITY 76 IS MOVED

; TO LOCATION 76

The use of these forms should be avoided as they
are not compatible with the PDP-11/05 and 11/45,

being

A Z error cnde 1is printed with each instruction which is not
compatible among all members of the PDP-1ll family. This is merely a
warning code,

5.4 AUTOINCREMENT DEFERRED MODE

The register contains the pointer to the address of the operand. The
contents of the register are incremented after being used,

Format for A: @(ER) +

Example:
CLR Q(R3)+ ;s CONTENTS OF REGISTER 3 POINT
;TO ADDRESS OF WORD TO BE
;CLEARED BEFORE BEING
: INCREMENTED BY TWO

5.5 AUTODECREMENT MODE

The contents of the register are decremented before being used as the
address of the operand (see note under autoincrement mode).

Format for A: -(ER)
Examples:
CLR - (RO) sDECREMENT CONTENTS OF
;s REGISTERS
CLR - (RO+3) :0, 3 AND 2 BY TWO BEFORE
; USING THEM
CLR -(R2) +AS ADDRESSES OF A WORD TO BE
;s CLEARED,

5.6 AUTODECREMENT DEFERRED MODE

The contents of the register are decremented before being used as the
pointer to the address of the operand.

Format for A: @~ (ER)

Example:
CLR @~ (R2) s DECREMENT CONTENTS OF
s REGISTER 2 BY TWO BEFORE
s USING AS POINTER
s TO ADDRESS OF WORD TO BE
:CLEARED,

5.7 INDEX MODE

The value of an expression E is stored as the second or third word of
the instruction. The effective address is calculated as the value of
E plus the contents of register ER. The value E is called the base.

Format for A: E(ER)

Examples:
CLR X+2 (R1) sEFFECTIVE ADDRESS IS X+2 PLUS
;THE CONTENTS OF REGISTER 1.
CLR -2 (R3) ;EFFECTIVE ADDRESS IS =2 PLUS

; THE CONTENTS OF REGISTER 3.

5.8 INDEX DEFERRED MODE
An expression plus the contents of a register gives the pointer to the
address of the operand.
Format for A: QE(ER)
Example:
CLR @114 {R4) ;IF REGISTER 4 HOLDS 100 AND

; LOCATION 214 HOLDS 2000,
;LOCATION 2000 IS CLEARED,

5.9 IMMEDIATE MODE

The immediate mode allows the operand itself to be stored as the
second or third word of the instruction. It is assembled as an
autoincrement of register 7, the PC.

Format for A: #E

Examples:

MOV #100,R0 s MOVE AN OCTAL 100 TO REGISTER
;0
’

MoV #X, RO ;MOVE THE VALUE OF SYMBOL X TO

sREGISTER 0

The operation of this mode is explained as follows:
The statement MOV #100,R3 assembles as two words. These are:

0127203

000100
Just before this instruction is fetched and executed, the PC points to
the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode is 27
(autoincrement the PC). Thus, the PC is used as a pointer to fetch

the operand (the second word of the instruction) before being
incremented by two, to point to the next instruction.

RN W N

5.10 ABSOLUTE MODE

Absolute mode is the equivalent of immediate mode deferred. Q#E
specifies an absolute address which is stored in the second or third
word of the instruction. Absolute mode 1is assembled as an
autoincrement deferred of register 7, the PC,

Format for A: Q#E

Examples:

Mov @#100,R0 ;MOVE THE VALUE OF THE

;s CONTENTS

sOF LOCATION 100 TO REGISTER RO.
CLR e#X ;CLEAR THE CONTENTS OF THE

;s LOCATION WHOSE ADDRESS IS X.

5.11 RELATIVE MODE
Relative mode is the normal mode for memory references,
Format for A: E

Examples:
CLR 100 ;CLEAR LOCATION 100.
MOV X, Y ;s MOVE CONTENTS OF LOCATION X
; TO LOCATION Y,

Relative mode is assembled as index mode, using register 7, the PC, as
the index register. The base of the address calculation, which is
stored in the second or third word of the instruction, is not the
address of the operand (as in index mode), but the number which, when
added to the PC, becomes the address of the operand. Thus, the base
is X=-PC, which is called an offset. The operation is explained as
follows:

If the statement MOV 100,R3 is assembled at absolute location 20, the
assembled code is:

Location 20:

016703
Location 22: 0000SG54
The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22, The source operand mode is 67; that
is, indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC. The PC now points
to location 24, To calculate the address of the source operand, the
base is added to the designated register. That is, BASE+PC=54+424=100,

the operand address.

Since the Assembler considers "." as the address of the first word of
the instruction, an equivalent index mode statement would be:

MOV 100~.-4(PC) ,R3
This mode is called relative because the operand address is calculated

relative to the current PC, The base is the distance or offset (in
bytes) between the operand and the current PC, If the operator and

its operand are moved in memory so that the distance between the
operator and data remains constant, the instruction will operate
correctly anywhere in core.

5.12 RELATIVE DEFERRED MODE

Relative deferred mode is similar to relative mode, except that the
expression, E, is used as the pointer to the address of the operand.

Format for A: QE

Example:
MOV Qx,R0 ;s MOVE THE CONTENTS OF THE
; LOCATION WHOSE ADDRESS IS IN
s X INTO REGISTER 0.

5.13 TABLE OF MODE FORMS AND CODES

Each instruction takes at least one word. Operands of the first six
forms listed below do not increase the length of an instruction. Each
operand in one of the other modes, however, increases the instruction
length by one word.

Form Mode Meaning

R On Register mode

@R or (ER) 1n Register deferred mode

(ER) + 2n Autoincrement mode

@ (ER) + 3n Autoincrement deferred mode
- (ER) 4n Autodecrement mode

@- (ER) 5n Autodecrement deferred mode

where n is the register number.

Any of the following forms adds one word to the instruction length:

Form Mode Meaning

E (ER) 6n Index mode

QE(ER) n Index deferred mode

#E 27 Immediate mode

Q#E 37 Absolute memory reference mode

E 67 Relative mode

@E 77 Relative deferred reference mode

where n is the register number. Note that in the 1last four forms,
register 7 (the PC) is referenced.

*RKNOTE***

An alternate form for @R is (ER)., However, the
form @(ER) is equivalent to @O (ER).

The form @#E differs from the form E in that the
second or third word of the instruction contains
the absolute address of the operand rather than
the relative distance between the operand and the
PC. Thus, the instruction CLR Q@#100 clears
absolute location 100 even if the instruction is
moved from the point at which it was assembled.
See the description of the .ENABLE AMA function in
section 6.2, which directs the assembly of all
relative mode addresses as absolute mode
addresses,

5.14 BRANCH INSTRUCTION ADDRESSING
The branch instructions are 1l-word instructions, The high byte
contains the op code and the low bvte contains an 8-bit signed offset
(seven bits plus sign) which specifies the branch address relative to
the PC, The hardware calculates the branch address as follows:

1. Extend the sian of the offset through bits 8-15.

2, Multiply the result by 2., This creates a word offset rather
than a byte offset.

3. Add the result to the PC to form the final branch address.
The Assembler performs the reverse operation to form the byte offset
from the specified address. Remember that when the offset is added to
the PC, the PC 1is pointing to the word following the branch
instruction; hence the factor -2 in the calculation.
Byte offset = (E-PC)/2 truncated to eight bits.

Since PC = ,+2, we have

Byte offset = (E-.-2)/2 truncated to eight bits.

*kXNOTE** %

It is illegal to branch to a location specified as
an external symbol, or to a relocatable symbol
from within an absolute section, or to an absolute
symbol or a relocatable symbol or another program
section from within a relocatable section.

The EMT and TRAP instructions do not use the low-order byte of the
word. This allows information to be transferred to the trap handlers
in the low-order byte. If EMT or TRAP is followed by an expression,
the value is put into the low-orcder byte of the word. However, if the
expression is too big (377 (octal)) it is truncated to eight bits and
a T error flag is generated.

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES
6.1 LISTING CONTROL DIRECTIVES

6,1.1 .LIST and . NLIST

Listing options can be specified in the text of a MACRO-11 program
through the .LIST and ,NLIST directives. These are of the form:

+LIST arg
NLIST arg

where: arg represents one or more optional arguments.

When used without arguments, the listing directives alter the 1listing
level count, The listing 1level count causes the 1listing to be
suppressed when it is negative. The count is initialized to zero,
incremented for each .LIST and decremented for each .NLIST. For
example:

.MACRO LTEST ; LIST TEST
; A-THIS LINE SHOULD LIST
+NLIST
; B-THIS LINE SHOULD NOT LIST
+NLIST
; C-THIS LINE SHOULD NOT LIST
« LIST -
; D=THIS LINE SHOULD NOT LIST (LEVEL NOT BACK TO ZERO)
JLIST
; E-THIS LINE SHOULD LIST (LEVEL BACK TO ZERO)
. ENDM
"LTEST ;CALL THE MACRO
; A-THIS LINE SHOULD LIST
«NLIST
+LIST

E-THIS LIST SHOULD LIST (LEVEL BACK TO ZERO)

-

The primary purpose of the level count is to allow macro expansions to
be selectively 1listed and vet exit with the level returned to the
status current during the macro call.

The use of arguments with the listing directives does not affect the
level count; however, use of .LIST and .NLIST can be used to override

the current listing control.

«MACRO XX

+«LIST

.NLIST

«ENDM
+NLIST ME
XX

+«LIST

For example:

;LIST NEXT LINE

;DO NOT LIST REMAINDER

s OF MACRO EXPANSION

;DO NOT LIST MACRO EXPANSIONS

;LIST NEXT LINE

Allowable arguments for use with the listing directives are as follows
(these arguments can be used singly or in combination)

Argument Default

SEQ

]—J(x:

list

list

Function

Controls the 1listing of source 1line
sequence numbers. Error flags are
normally printed on the 1line preceding
the questionable source statement.

Controls the 1listing of the location
counter (this field would not normally
be suppressed).

Arqgument

BIN

BEX

MD

MC

CND

LD

TOC

TTM

SYM

Default

list

list

list

list

list

list

no list

no list

list

no list

list

Console
mode

list

Function

Controls the listing of generated binary
code.

Controls listing of binary extensions;
that 1is, those 1locations and binary
contents beyond the first binary word
(per source statement). This is a
subset of the BIN argument.

Controls the listing of the source code.

Controls the listing of cormments. This
is a subset of the SRC argument and can
be used to reduce listing time and/or
space where comments are unnecessary.

Controls listing of macro definitions
and repeat range expansions.

Controls 1listina of macro calls and
repeat range expansions.

Controls listing of macro expansions.

Controls 1listing of macro expansion
binarv code. A LIST - MEB causes only
those macro expansion statements
producing binarv code to be listed.
This is a subset of the ME arqument.

Controls the 1listing of unsatisfied
conditions and all .IF and LENDC
statements, This arqument permits
conditional assemblies to bhe listed
without including unsatisfied code.

Control listina of all listing
directives having no arguments (those
used to alter the listing level count).

Control listinag of table of contents on
pass 1 of the assembly (see section
6.1.4 describing the .SBTTL directive).
The full assembly listing is printed
during pass 1 of the assembly.

Control listina output format. The

TTM arqument (the default case) causes
output 1lines to be truncated to 72
characters. Binary code is printed with
the binary extensions below the first
binary word. The alternative (.NLIST
TTM) to Teletype mode is line printer
mode, which is shown in Fiqure 6-1.

Controls the listing of the symbol table
for the assembly.

An example of an assembly listing as sent to a 132-column line printer
is shown in Figure 6-1, Notice that binary extensions for statements
generating more than one word are spread horizontally on the source
line. An example of an assembly listing as sent to a teleprinter is
shown in Figure 6-2, Notice that binary extensions for statements
generating more than one word are printed on subsequent lines.

The listing options can also be specified through switches on the
listing file specification in the command string to the MACRO-11l
Assembler. These switches are

/LI:arg
/NL:arg

where: arg is any one or more of the arguments defined
in the .LIST and .NLIST directive.

MACRO

V503Aé1 24uMAYe7?2

ASSEMBLER PRM

31766
PP1766
pg1772
201776
222p20
Pp2p04
p22pee
222p46
232922
2p2926
np2p32
0g2p34
2920492
PB2y44

202950

Pp22%8
po2pe2
202064
2820792
po2p72
292076
092134
202110
PP2144
2p212%
Pp2122
2@213¢2
292132
P02134
2p214%

046700
701420
06087
212767
0e5067
285067
WETLY,
205767
201422
805067
242702
210267
012767
285767
001145
816701
201166
812703

205267
116720
832720
201423

106120
102214
856767
201223

po2p20!

poog22l
177777

gpope2!
ppop20!
oe0016¢
po0000!

202040/
goL712!
202012!
202416/
2202001

geonLat

pg224141
oo07561
googy2!

z2Ra783/
2gQ47

ppodpel pEoRD4!

poBo26/

GETLINI
SAVREG
MOV
BEQ
ADD
MOV
CLR
CLR
CLR
TST
BEQ
CLR
MOV
MOV
MOV
TST
BNE
MOV .
BNE
MOV
JHATT
INC
MQOVB
BIT

1%

3181

ERRQR
ROLB
BPL
BIS
BNE

32%4

MACRO VOB3A,4 26eMAY=72 PQ1I06 PAGE 28

FFCNT RO
31§

RO, PAGNUM
#=31 ,PAGEXY
L INNUM
FFCNT
SEQEND

PASS

31%

LPPCNT

#L INBUF,R2
R2)LCBEGL
#LINEND,LGENDL
SMLCNT

40%
MSBMRP,R1
16%
#SRCBYF, Ry
#SRCLNK

L INNUM
SRCHOR+3, RO
#047,R0

32%

L

R@

2%
CSISAV,ENDFLG
34%

JGET AN INPUT LINE
JANY RESERVED FF/S?
J NO
JYES,
$INIT NEW CREF SEQUENCE

UPDATE PAGE NUMBER

}SEAT UP BEGINNING

} AND END OF LINE MARKERS
JIN SYSTEM MACRO?

(YES, SPECIA|

JASSUME MAGCRO IN PROGRESS
1BRANCH IF SO

$GET CODE BYTE
JANYTHING BAD?
1. NO

IYES,
JEOF?
J NO

ERRQR

Example of MACRO-11 Line Printer Listing
(132 column line printer)

FIGURE 6-1

6.1.2 Page Headings

The MACRO-11 Assembler outputs each page in the format shown in Figure
6=2 (Teletype 1listing). On the first line of each listing page the
Assembler prints (from left to right):

1. Title taken from ,TITLE directive
2, Assembler version identification
3. Date

4, Time-of~-day

5. Page number

The second line of each 1listing page contains the subtitle text
specified in the last encountered .SBTTL directive.

6.1.3 .TITLE

The .TITLE directive is used to assign a name to the object module.
The name is the first symbol following the directive and must be six
Radix=50 characters or less (any characters beyond the first six are

ignored) . Non Radix~50 characters are not acceptable. For example:

.TITLE PROG TO PERFORM DAILY ACCOUNTING

causes the object module of the assembled program to be named PROG
(this name 1is distinguished from the filename of the object module
specified in the command string to the Assembler). The name of the
object module appears in the LINK load map and on the listing.

If there is no .TITLE statement, the default name assigned to the
object module is :

«MAIN,

The first tab or space following the L.TITLE directive is not
considered part of the object module name or header text, although
subsequent tabs and spaces are significant.

If there is more than one .TITLE directive, the last .TITLE directive
in the program conveys the name of the object module,

6.1.4 .SBTTL

The .SBTTL directive is used to provide the elements for a printed
table of contents of the assembly listing. The text following the
directive is printed as the second 1line of each of the following
assembly listing pages until the next occurrence of a .SBTTL
directive. For example:

+« SBTTL CONDITIONAL ASSEMBLIES

The text:

CONDITIONAL ASSEMBLIES

is printed as the second 1line of each of the following assembly
listing pages.

During pass 1 of the assembly process, MACRO-1l automatically prints a
table of contents for the listing containing the line sequence number
and text of each .SBTTL directive in the program. Such a table of
contents is inhibited by specifying the /NL:TOC switch option to the
assembly listing file specification (or a .NLIST TOC directive within
the source). For example:

#OBJFIL,LISTM/NL:TOC=SRCFIL

In this case the table of contents normally generated prior to the
assembly listing is inhibited.

An example of the table of contents is shown in Figure 6-3., Note that
the first word of the subtitle heading is not 1limited to six
characters since it is not a module name.

6.1.5 .IDENT

The .IDENT directive provides another means of 1labeling the object
module produced as a result of a MACRO-11l assembly. In addition to
the name assigned to the object module with the ,TITLE directive, a
character string (up to six characters, treated like a RAD50 string)
can be specified between paired delimiters. For example:

.IDENT /VOO5A/

Table 6-1
Functions: Symbolic Arguments
Argument Default Function

ABS disable Enabling of this function produces
absolute binary output; i.e., input
to the Paper Tape Software System
Absolute Loader.

AMA disable Enabling of this function directs
the assembly of all relative
addresses (address mode 67) as
absolute addresses (address mode
37). This switch is useful during
the debugging phase of program

development,

CDR disable The statement L(ENABL CDR causes
source columns 73 and greater to be
treated as comment, This

accommodates sequence numbers in
card columns 72-80.

FPT disable Enabling of this function causes
floating point truncation, rather
than rounding, as is otherwise
performed. .DSABL FPT returns to
floating point rounding mode.

LC disable Enabling of this function causes
the Assembler to accept lower case
ASCII input instead of converting
it to upper case.

LSB disable Enable or disable a 1local symbol
block. While a local symbol block
is normally entered by encountering
a new symbolic 1label or .PSECT
directive, .ENABL LSB forces a
local symbol block which is not
terminated until a label or .PSECT
directive following the .DSABL LSB
statement is encountered. (Refer
to Figure 6-4.)

PNC enable The statement .DSABL PNC inhibits
binary output until an ,ENABL PNC
is encountered.

TABLE 6-1 (Cont'd)
Argument Default Function

REG enable The statement ,DSABL REG inhibits
the default register definitions.
That is, until .DSABL REG is seen,
the following code is implied as
being present:

RO=%0
R1=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

The .ENABL REG statement may be
used to re=-enable these
definitions. Such use is not
recommended.

GBL enable The statement .DSABL GBL inhibits
attempts to resolve references
which remain undefined at the end
of pass 1, as being global
references.

An incorrect argument causes the directive containing it to be flagged
as an error.

Once a program has been written using these functions, or not using
them, the functions can be controlled through switches specified in
the command string to the MACRO-11l Assembler. These switches are:

/EN:arg
/DS:arg

where: arg is any of the arguments defined for the .ENABL and
.DSABL directives,

Use of these switches overrides the enabling or disabling of all
occurrences of that argument in the program. They are used in the
same manner as /LI, /NL, but in general apply mainly to source files.

¥T1-9

N2 0N U BN

ARUAR

'

@A

ANY6H3R
27dk36

RN

ArdAUL
PRrusse
AN AHY
APLEbS
Arldnb?
ArU4666
A?24672
ArdeT4d
argzor
Rru7ou
aau7a
o2 Xt]
nA4712
2ALT YA
PrdT22
P?d72e
AraT I
224734
Q74736
AruT U

 QrdTae

ArAd744
perarsn

rru7s?
RAL7S6
AraTe
pou7Ted
PCUTHE
era772
2raTTU
Lal st
@e5206
@rs712
ATEC L6

eesSren
pArS*24
aAPSr3n
PA5632
RAOSC36
AASC LG

226767
aatara

225246

?PR527
arragd
12716

A32713
pp1ren
MeTon®
naz7ee
25270
2514607
232713
priup?
p42713

a58713%
216714
ArRuULe

n32713
pe1uve
226714
Ar1a¢3
126712
a214es

n52713%

greary

amp4a0]

ans726

g16767

paanp2’

arQ272

aeeran

27212
2PRn26°
ere33y
prar1?
zrgo2n

A72%122

zege3e”

prarpe
Qr2e30°

nAJE27"

2298204

prpepn’

LABEL:

naper24°

JENABL
cHp

BFGQ

»TF NDF
caLt
+FNDC
SSRCH
CRFINEF

LABELF?: SFTXPR

1238

arerie”

Figure 6-4

CLR
GFTNB
cuwp
ANE
My

GETNR

BIT
FMNE
MoV
RIC
RIS
BYS
RIT
REQ
RIC

BIS
MOV
BR

RIT
REQ
CMP
RNE
CMPR
BFG
ERROR
RIS
IMSERT
SETPF@
BR

ERROR
BR
TST
SETNB
MOV
BRJIMP

+SABL

s LAREL PROCESSOR

LSE
SYMROL,RSPDOT +PERIOND?
4 + VYES, ERROR
XEDLSR
LSBSET tFLAG START OF NEW LOCAL SYMBOL BLOCK
sNO, SEARCH THE SYMBOL TARLE
1SET EXPRESSION REGISTERS
=(SP) sCLFAR GLOBAL FLAG
tGET NEXT NON BLANK
R5,#CH,CCL s ANOTHER COLON?
178§ s IF NE NO
#GLRFL G, (SP) +SET GLOBAL FLAG
sGFT NEXT NON RLANK
yREF LABEL
#DEFFLE, (R3) s ALREADY DEFINED?
1% s YES
CLCFGS,RA ¢NO, GET CURRENT LOCATION CHARACTERISTIC
#377=<RELFLG>,RP sCLEAR ALL BUT RELOCATION FLAG
KNEFFLGILBLFLG,RD sFLAG AS LABEL
(SP),RQ s INCLUDE PREVIOUS FLAGS FROM ABOVE
aDFGFLG, (R3) sDEFALULTED GLOBAL FROM REFERENCE?
2r% tIF EQ NO

#DFGFILGIGLBFLG, (R3)3CLEAR DEFAULT GLOBAL FLAGS
+REF LLABEL

RA, (R3) $SET MODE
CL.CLOC, (R4) ; AND CURRENT LOCATION
3¢ \ s INSERT
HLELFLG, (R3) ;DEFINED, AS LABEL?
2% 3 NO, INVALID
CLCLOC, (R4) :HAS ANYBODY MOVED?
2% 1 YES
CLCSEC, (R2) ;SAME SECTOR?
3% : YES, OK
P 1NO, FLAG ERROR
#:DFFLG, (R3) }FLAG AS MULTIPLY DEFINED
s INSERT/UPDATE
}BE SURE TO PRINT LOCATION FIELD
5%
9
6% sNO NEED TO POP STACK
(SP)+ tCLEAN STACK

$SET NONBLANK
CHRPNT,LBLEND sMARK END OF LABEL
STMMT s TRY FOR MORE

LsB

Example of .ENABL, .DSABL Directives

6.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
following directives and assembly characters:

+«BYTE
«WORD
'

+ASCII
«ASCIZ
+«RAD50
+B
4D
to

These facilities are explained in the following sections.

6.3.1 L.BYTE

The .BYTE directive is used to generate successive bytes of data. The
directive is of the form:

«BYTE exp ;WHICH STORES THE OCTAL :
;EQUIVALENT OF THE EXPRESSION
;EXP IN THE NEXT BYTE.

.BYTE expl,exp2,... ;WHICH STORES THE OCTAL
;EQUIVALENTS OF THE LIST OF
;EXPRESSIONS IN SUCCESSIVE BYTES.

A legal expression must have an absolute value (or contain a reference
to an external symbol) and must result in eight bits or less of data.
The 1l6-bit value of the expression must have a high-order byte (which
is truncated) that is either all zeros or all ones. Each operand
expression is stored in a byte of the object program. Multiple
operands are separated by commas and stored in successive bytes, For
example:

SAM=5
.=410
.BYTE 4D48,SAM ;060 (OCTAL EQUIVALENT OF 48
;DECIMAL) IS STORED IN LOCATION
;410, 005, IS STORED IN
;LOCATION 411.

If the high-order byte of the expression equates to a value other than
0 or -1, it is truncated to the low-order eight bits and flagged with
a T error code. If the expression is relocatable, an A-type warning

flag is given,

At Link time it is likely that relocation will result in an expression
of more than eight bits, in which case, LINK prints a truncation error
message. For example:

+BYTE 23 ; STORES OCTAL 23 IN NEXT BYTE.

A
«BYTE A sRELOCATABLE VALUE CAUSES AN "A"“
sERROR FLAG,
«GLOBL X
X=3
«BYTE X sSTORES 3 IN NEXT BYTE.

If an operand following the .BYTE directive is null, it is interpreted
as a zero. For example:

.=420
<BYTE ,, ;s ZEROS ARE STORED IN BYTES 420, 421,
sAND 422,

6.3.2 LWORD

The .WORD directive is used to generate successive words of data. The
directive is of the form:

« WORD EXP sWHICH STORES THE OCTAL
;EQUIVALENT OF THE EXPRESSION
;EXP IN THE NEXT WORD.

.WORD expl,exp2,... ;WHICH STORES THE OCTAL
: ;EQUIVALENTS OF THE LIST OF
;EXPRESSTIONS IN SUCCESSIVE
;WORDS.

A legal expression must result in 16 bits or less of data. Each
operand expression is stored in a word of the object program,
Multiple operands are separated by commas and stored in successive
words. For example:

SAL=0

.=500 :

« WORD 177535,.+4,SAL ;STORES 177535, 506 AND 0 IN
;WORDS 500, 502 AND 504,

If an expression equates to a value of more than 16 bits, it is
truncated and flagged with a T error code.

If an operand following the .WORD directive is null, it is interpreted
as zero. For example:

«=500
«WORD 5, 3STORES 0, 5, and 0 in LOCATIONS
;500, 502, and 504.

A blank operator field (any operator not recognized as a macro call,
op-code, directive or semicolon) is interpreted as an implicit .WORD
directive. Use of this convention is discouraged because it may not
be the default case in future PDP-~11l Assemblers. The first term of
the first expression in the operand field must not be an instruction
mnemonic or assembler directive unless preceded by a + or - operator.
For example:

.=440 ; THE OP-CODE FOR MOV, WHICH
;IS 010000, IS STORED ON
LABEL: +MOV,LABEL ; LOCATION 440, 440 IS
; STORED IN LOCATION 442,

Note that the default .WORD directive occurs whenever there is a
leading arithmetic or logical operator, or whenever a leading symbol
is encountered which is not recognized as a macro call, an instruction
mnemonic or assembler directive, Therefore, if an instruction
mnemonic, macro call or assembler directive is misspelled, the WORD
directive 1is assumed and errors will result. Assume that MOV is
spelled incorrectly as MOR:

MOR A,B

Two error codes result: Q occurs because an expression operator is
missing between MOR and A, and a U occurs if MOR is undefined. The U
error occurs only if GBL is disabled and MOR is undefined, else MOR is
classed as a global. Two words are then generated; one for MOR A and
one for B,

6.3.3 ASCII Conversion of One or Two Characters
The ' and " characters are used to generate text characters within the
source text. A single apostrophe followed by a character results in a
word in which the 7-bit ASCII representation of the character is
placed in the low-order byte and zero is placed in the high-order
byte. For example:

MOV #'A,RO

results in the following 16 bits being moved into RO:

octal ASCII value of A

STMNT :
GETSYM
BEQ 43
CMPB Q@QCHRPNT , #"': ;COLON DELIMITS LABEL FIELD.
BEQ LABEL
CMPB @QCHRPNT, #'= ; EQUAL DELIMITS
BEQ ASGMT ;sASSIGNMENT PARAMETER,

A double quote followed by two characters results in a word in which
the 7-bit ASCII representations of the two characters are placed in
the word. For example:

MOV #"AB,R0O
results in the following word being moved into RO:
102 ! 101!
e e
! -=-=octal ASCII of A
-=-octal ASCII of B
sCEVICE NAME TABLE
DEVNAM: .WORD "DF s RF DISK
- WORD "DK ;RK DISK
« WORD 'pp ;RP DISK
DEVNKB: .WORD "KB ;s TTY KEYBOARD
« WORD "pT ;DECTAPE
. JORD "Lp ; LINE PRINTER
«WORD "PR s PAPER TAPE READER
«WORD "pp ;s PAPER TAPE PUNCH
. WORD "CR sCARD READER
« WIORD "MT ;s MAGTAPE
. WORD 0 sTABLE'S END
6.3.4 JASCIT
The .ASCII directive translates character strings into their 7-bit

ASCII

equivalents

for wuse in the source program. The format of the

.ASCII directive is as follows:

«ASCII

where:

As an example:

A: «ASCIT

«ASCII

character string

/character string/

is a string of any acceptable printable
ASCII characters, The string may not
include null (blank) characters, rubout,
return, line feed, vertical tab, or form
feed. Nonprinting characters can be
expressed in digits of the current radix
and delimited by angle brackets. (Any
legal, defined expression 1is allowed
between angle brackets.)

/ these are delimiting characters and may
be any printing characters other than ;
< and = characters and any character
within the string.

/HELLO/ ;s STORES ASCII REPRESENTATION OF
;THE LETTERS H.E.L.L.O IN
;s CONSECUTIVE BYTES,.
/ABC/<15><12>/DEF/

; STORES A,B,C,15,12,D,E,F IN
; CONSECUTIVE BYTES.

«ASCII /<AB>/ 7 STORES <,A,B,> IN CONSECUTIVE
;s BYTES,

The ; :and = characters are not illegal delimiting characters, but are
preempted by their significance as a comment indicator and assignment
operator, respectively. For other than the first group, semicolons
are treated as beginning a comment field. For example:

.ASCII ;ABC;/DEF/ ;STORES A,B,C,D,E,F
;NOT RECOMMENDED PRACTICE

.ASCII /ABC/;DEF; ;STORES A,B,C. DEF TREATED
;AS A COMMENT

WASCII /ABC/=DEF= ;SAME AS CASE 1

.ASCII =DEF= ; THE ASSIGNMENT

; .ASCII=DEF

; IS PERFORMED AND A Q ERROR GENERATED
s UPON ENCOUNTERING

; THE SECOND =.

6.3.5 JASCIZ

The .ASCIZ directive is equivalent to the ,ASCII directive with a zero
byte automatically inserted as the final character of the string., For
example:

When a list or text string has been created with a
+ASCIZ directive, a search for the null character
can determine the end of the list. For example:

MOV $HELLO,R1
MOV #LINBUF ,R2

Xz MOVB (R1)+, (R2) +
BNE X

.

HELLO: LASCIZ <CR><LF>/MACRO-11 V00lA/<CR><LF> ;INTRO MESSAGE

6.3.6 .RAD50

The .RAD50 directive allows the user the capability to handle symbols
in Radix-50 coded form (this form is sometimes referred to as MOD40
and is used in PDP-1ll system programs). Radix=50 form allows three
characters to be packed into sixteen bits; therefore, any 6-character
symbol can be held in two words. The form of the directive is:

«RADS0 /string/

where: / / delimiters can be any printing
characters other than the =, <, and ;
characters.
string is a list of the characters to be

converted (three characters per word)
and which may consist of the characters
A through 2, 0 through 9, dollar ($),
dot (.) and space (). If there are
fewer than three characters (or if the
last set is fewer than three characters)
they are considered to be left justified
and trailing spaces are assumed.

Illegal nonprinting characters are
replaced with a ? character and cause an
I error flag to be set. 1Illegal
printing characters set the Q error
flagqg.

The trailing delimiter may be a semicolon, or matching delimiter. For
example:

.RAD50 /ABC/ ;s PACK ABC INTO ONE WORD.
.RAD50 /AB/ ;sPACK AB (SPACE) INTO ONE WORD,
.RAD50 /ABCD/ sPACK ABC INTO FIRST WORD AND

;D SPACE SPACE INTO SECOND WORD.

Each character is translated into its Radix-50 equivalent as indicated
in the following table:

Character Radix=-50 Equivalent (octal)
(space) 1]

A-Z 1-32

$ 33

- 34

0-9 36-47

The character code for 35 is currently undefined.

The Radix-50 equivalents for characters 1 through 3 (Cl1,C2,C3) are
combined as follows:

Radix 50 wvalue = ((C*50)+C2)*50+C3
For example:
Radix=50 value of ABC is ((1*50)+2)*50+3 or 3223
See Appendix A for a table of Radix-50 equivalents.
Use of angle brackets is encouraged in the .ASCII, .ASCIZ, and .RAD50

statements whenever leaving the text string to insert special codes.
For example:

.ASCII <101> ;EQUIVALENT TO .ASCII/A/
.RAD50 /AB/<35> ;STORES 3255 IN NEXT WORD
CHR1=1

CHR2=2
CHR3=3

-

«RAD50 <CHR1><CHR2><CHR3>
;EQUIVALENT TO .RADS50/ABC/

6.4 RADIX CONTROL

6.4.1 .RADIX
Numbers used in a MACRO-11 source program are initially considered to
be octal numbers. However, the programmer has the option of declaring
the following radices:

2, 4, 8, 10
This is done via the .RADIX directive, of the form:

«RADIX n
where: n is one of the acceptable radices,
The argument to the .RADIX directive is always interpreted in decimal
radix. Following any radix directive, that radix is the assumed base

for any number specified until the following .RADIX directive.

The default radix at the start of each program, and the argument
assumed if none is specified, is 8 (i.e., octal)., For example:

.RADIX 10 :BEGINS SECTION OF CODE WITH
; DECIMAL
;RADIX

RADIX ;REVERTS TO OCTAL RADIX

In general it is recommended that macro definitions not contain or
rely on radix settings from the .RADIX directive. The temporary radix
control characters should be used within a macro definition. (4D, 40,
and +B are described in the following section.) A given radix is valid
S5dughout a program until changed. Where a possible conflict exists
within a macro definition or in possible future uses of that code
module, it is suggested +that the user specify wvalues using the
+emporary radix controls (see below).

COUNT BUFF=-2

BUFF

6.5.3 .BLKB and .BLKW

Blocks of storage can be reserved using the ,BLKB and +BLKW
directives. .BLKB is used to reserve byte blocks and .BLKW reserves
word blocks. The two directives are of the form:

.BLKB exp
« BLKW exp
where: exp is the number of bytes or words to reserve. If no

argument is present, 1 1is the assumed default
value. Any legal expression which is completely
defined at assembly time and produces an absolute
number is legal. Using these directives without
arguments is not recommended.

For example:

1 000000" .CSECT IMPURFE

2

3 000000 PASS: « BLKW

4 ;NEXT GROUP MUST STAY TOGETHER
5 000002 SYMBOL: .BLKW 2 ; SYMBOL ACCUMULATOR

6 000006 MODE:

7 000006 FLAGS: .BLKB 1 ;FLAG BITS

8 000007 SECTOR: .BLKB 1 ;s SYMBOL/EXPRESSION TYPE

9 000010 VALUE: .BLKW 1 ;s EXPRESSION VALUE

10 00012 RELLVL: .BLKW 1

11 « BLKW 2 sEND OF GROUPED DATA

12

13 00020 CLCNAM: .BLKW 2 ;CURRENT LOCATION COUNTER SYMBOL
14 00024 CLCFGS: ,BLKB 1

15 00025 CLCSEC: .BLKB 1

16 00026 CLCLOC: .BLKW 1

17 00030 CLCMAX: ,BLKW 1

The .BLKB directive has the same effect as:
.= .texp

but is easier to interpret in the context of source code.

6.6 NUMERIC CONTROL

Several directives are available to simplify the use of
the floating-point hardware on the PDP-1l1l,

A floating-point number is represented by a string of decimal
digits. The string (which can be a single digit in length)
may optionally contain a decimal point, and may be

followed by an optional exponent indicator

in the form

of the letter E and a signed decimal exponent. The list

of number representations below contains seven distinct,
valid representations of the same floating=point number:

As can be quickly inferred, the list could be extended indefinitely
(e.g., 3000E-3, .03E2, etc.). A leading plus sign is ignored (e.g.,
+3.0 is considered to be 3.0). A leading minus sign complements the
sign bit. No other operators are allowed (e.g., 3.0+N is illegal).

Floating=-point number representatiohs are valid only in the contexts
described in the remainder of this section.

Floating-point numbers are normally rounded. That is, when a
floating~point number exceeds the limits of the field in which it is
to be stored, the high-~order excess bit is added to the low-order
retained bit. For example, if the number is to be stored in a 2-word
field, but more than 32 bits are needed for its value, the highest bit
carried out of the field is added to the least significant position.
The ,ENABL FPT directive is used to enable floating=-point truncation,
and .DSABL FPT is used to return to floating=point rounding (see
section 6.2).

6.6.1 ,FLT2 and .FLT4

Like the .WORD directive, the two floating=-point storage directives
cause their arguments to be stored in-line with the source program.
These two directives are of the form:

+FLT2 argl,arg2,...
+FLT4 argl,arg2,...

where: argl,arg2,... represent one or more floating point numbers
separated by commas.

.FLT2 causes two words of storage to be generated for each argument,
while .FLT4 generates four words of storage,

6.9 PROGRAM SECTION DIRECTIVES

6.9.1 .PSECT Directive

Program sections are defined by the .PSECT directive, which is
formatted as:

.PSECT [NAME] {,RO/RW] [,I/D] [,GBL/LCL] [,ABS/REL] [,CON/OVR] [,HGH/LOW]

The brackets ([]) are for purposes of illustrating optional
parameters, and are not included in the parameter specifications. The
slash (/) indicates that a choice is to be made between the

parameters. The program section attribute parameters are summarized
in Table 6-2.

Table 6-2

.PSECT Directive Parameters

Parameter Default Meaning
NAME Blank Program section name, in Radix=50
format, specified as one to six

characters. If omitted, a comma must
appear in the first parameters position.

RO/RW RW Program section access mode;

RO=Read Only
RW=Read/Write

I/D I Program section type;

I=Instruction
D=Data

GBL/LCL LCL The scope of the program section, as
interpreted by LINK; '

GBL=Global
LCL=Local

ABS/REL REL Defines relocation of the program
section;

ABS=Absolute (no relocation)
REL=Relocatable (a relocation bias
is required)
CON/OVR OVR Program section allocation;

CON=Concatenated
OVR=0verlaid

HGH/LOW Low Program section memory type;

HGH=High-speed
LOW=Core

%k KNOTE * % *
The HGH/LOW attribute is currently ignored by LINK,

The only parameter that is position-dependent 1is NAME, If it is
omitted, a comma must be used in its place. For example,

.PSECT ,RO

This example shows a PSECT with a blank name and the Read Only access
parameter. Defaults are used for the remaining parameters.

LINK interprets the .PSECT directive's parameters as follows:

RO/RW Defines the type of access to the program section
permitted which is; Read Only, or Read/Write.

1/D Allows LINK to differentiate global symbols that are
entry points (I) from global symbols that are data
values (D).
GBL/LCﬁ Defines the scope of a program section. A global
i program section's scope crosses segment (overlay)
boundaries; a local program section's scope is within a
single segment. In single-segment programs, the
GBL/LCL parameter is ignored.

ABS/REL When ABS is specified, the program section is absolute.
No relocation is necessary (i.e., the program section
is assembled starting at absolute virtual 0). When REL
is specified, a relocation bias is calculated by LINK,
and added to all references in the section.

CON/OVR CON causes LINK to collect all allocation references to
the program section from different modules and
concatenate them to form the total allocation for the
program section. OVR indicates that all allocation
references to the program section overlay one another.
Thus, the total allocation of the program section is
determined by the largest request made by a module that
references it.

Once the attributes of a named ,PSECT are declared in a module, the
MACRO-11 Assembler assumes that this .PSECT's attributes hold for all
subsequent declarations of the named .PSECT in the same module. Thus,
the attributes may be declared once, and later ,PSECT's with the same
name will have the same attributes, when specified within the same
module,

The Assembler provides for 255(10) program sections: One absolute
section, one blank relocatable section, and 253(10) named relocatable
sections are permitted. The .PSECT directive enables the user to:

location by LINK All other program sections (those with the attribute
CON) are concatenated. :

Note that there is no conflict between internal symbolic names and
program section names; that is, it is legal to use the same symbolic
name for both purposes. In fact, considering FORTRAN again, this is
necessary to accommodate the FORTRAN statement:

COMMON /X/A,B,C,X

where the symbol X represents the base of this program section and
also the fourth element of this program section.

Program section names should not duplicate .GLOBL names. In FORTRAN
language, COMMON block names and SUBROUTINE names should not be the
same.

6.9.2 L(ASECT and .CSECT Directives

DOS/BATCH assembly lanqguage programs use the +PSECT directive
exclusively, as it affords all the capabilities of the .ASECT and
.CSECT directives defined for other PDP-11 assemblers. The Macro
Assembler will accept .ASECT and .CSECT but assembles them as if they
were .PSECT's with the default attributes 1listed below. Also,
compatibility exists between non-DOS/BATCH MACRO-11 programs and LINK,
because LINK recognizes .ASECT and .CSECT directives that appear in
such programs. LINK accepts these directives £from non=-DOS/BATCH
programs, and assiagns default values as shown in Tahle 6-3.

Table 6-3

Non-DOS/BATCH Program Section Defaults

Attribute Default Value

JASECT .CSECT (named) .CSECT
Name ARS name Blank
Access RW RW RW
Type I I I
Scope GBL GBL LCL
Relocation ABS REL REL
Allocation OVR OVR CON
Memory LOW LOW LOW

The allowable syntactical forms of .ASECT and .CSECT are:

+ASECT
.CSECT
.CSECT symbol

Note that
LCSECT JIM
is identical to

.PSECT JIM,GBL,0OVR

6.10 SYMBOL CONTROL: .GLOBL

The Assembler produces a relocatable object module and a listing file
containing the assembly 1listing and symbol table. LINK Jjoins
separately assembled object modules into a single load module. Object
modules are relocated as a function of the specified base of the load
module., The object modules (where there are more than one) are linked
via global symhols, such that a global symhol in one module (either
defined by direct assignment or as a label) can be referenced from
another module.

A globhal symbol may be specified in a .GLOBRL directive.

In addition, symbols referenced but not defined within a module are
assumed to bhe global references. The .GLOBRL directive is provided to
reference (and provide linkage to) symhols not otherwise referenced
within a module. Tor example, one might include a .GLOBL directive to
cause linkage to a library. When defininag a globhal definition, the
.GLOBL A,B,C directive is equivalent to

A==value (or A::value)
B==value (or B::value)
==value (or C::value)

The form of the .GLORL directive is:

+ GLOBL syml,sym2,...
where: syml,sym2,... are leagal svmbolic names, separated by commas
or spaces where more than one symbol is
specified.

Symbols appearing in a .GLOBL directive are either defined within the
current program or are external symbhols, in which case they are
defined in another program which is to be 1linked with the current
program by LINK prior to execution.

A .GLOBL directive line may contain a label in the 1label field and
comments in the comment field.

At the end of assembly pass 1, MACRO-11l has determined whether a given
global symbol is defined within the program or is expected to be an
external symbol., All internal symbols to a given program, then, must
be defined by the end of pass 1 or they will be assumed to be global
references (see ,ENABL, .DSABL of globals in section 6.1.6).

For example:

.IF DF SYMl & SYM2

-ENDC

assembles if both SYM1 and SYM2 are defined.

6.11.1 Subconditionals
Subconditionals may be placed within conditional blocks to indicate:
1. Assembly of an alternate body of code when the condition of
the block indicates that the code within the block is not to
be assembled.
2. Assembly of a non-contiquous body of code within the
conditional block depending upon the result of the
conditional test to enter the bhlock.

3. Unconditional assembly of a body of code within a conditional
block.

There are three subhconditional directives, as follows:

Subconditional Function
Directives
+IFF The code following this statement up to the next

subconditional or end of the conditional block is
included in the program providina the value of the
condition tested upon entering the conditional
block was false.

« IFT The code following this statement up to the next
subconditional or end of the conditional hlock is
included in the program providing the value of the
condition tested upon entering the conditional
block was true.

. IFTF The code following this statement up to the next
subconditional or the end of the conditional block
is included in the program regardless of the value
of the condition tested wupon entering the
conditional block.

The implied argument of the subconditionals is the value of the
condition upon entering the conditional block. Subconditionals are
used within outer level conditional blocks. Suhconditionals are
ignored within nested, unsatisfied conditional blocks.

For example:

.IF DF SYM ;sASSEMBLE BLOCK IF SYM IS DEFINED

+IFF
. 7sASSEMBLE THE FOLLOWING CODE ONLY IF
- ;SYM IS UNDEFINED,

+IFT ;ASSEMBLE THE FOLLOWING CODE ONLY IF
. ;s SYM IS DEFINED,

+IFTF " s ASSEMBLE THE FOLLOWING CODE
. ;s UNCONDITIONALLY,

+« ENDC

.IF DF X sASSEMBLY TESTS FALSE

+IF DF Y ;s TESTS FALSE

+LFF s NESTED CONDITIONAL
. s IGNORED

+IFT s NOT SEEN

+ENDC

+ENDC

However,

+IF DF X ;s TESTS TRUE

.IF DF Y ;s TESTS FALSE

+IFF + IS ASSEMBLED

+IFT ;s NOT ASSEMBLED

-ENDC

« ENDC

6.11.2 Immediate Conditionals

An immediate conditional directive is a means of writing a 1l~-line
conditional block. In this form, no .ENDC statement is required and
the condition is completely expressed on the 1line containing the
conditional directive. Immediate conditions are of the form:

.IIF cond, arg, statement

+ENDM name
where:

name is an optional argument, being the name of the
macro terminated by the statement.

For example:

« ENDM (terminates the current macro definition)

+.ENDM ABS (terminates the definition of the macro ABS)
If specified, the symbolic name in the .ENDM statement must correspond
to that in the matching .MACRO statement. Otherwise the statement is
flagged and processing continues. Specification of the macro name in
the LENDM statement permits the Assembler to detect missing .ENDM
statements or improperly nested macro definitions.

The .ENDM statemént may contain a comment field, but must not contain
a label.

An example of a macro definition is shown below:

«.MACRO TYPMSG MESSGF ; TYPE A MESSAGE

JSR R5,TYPMSG
«WORD MESSGE
. ENDM

7.1.3 .MEXIT

In order to implement alternate exit points from a macro (particularly
nested macros), the .MEXIT directive is provided. .MEXIT terminates
the current macro as though an .ENDM directive were encountered. Use
of .MEXIT bypasses the complications of conditional nesting and
alternate paths. For example:

.MACRO ALTR N,A,B

.IF EQ,N " $START CONDITIONAL BLOCK

MEXIT ;EXIT FROM MACRO DURING CONDITIONAL
; BLOCK

.ENDC ;END CONDITIONAL BLOCK

.ENDM ;NORMAL, END OF MACRO

In an assembly where N=0, the ,MEXIT directive terminates the macro
expansion.

Where macros are nested, a .MEXIT causes an exit to the next higher
level. A .MEXIT encountered outside a macro definition is flagged as
an error. '

7.1.4 MACRO Definition Formatting

A form feed character used as the only character on a 1line causes a
page eject, Used within a macro definition, a form feed character
causes a page eject. A page eject is not performed when the macro is
invoked.

Used within a macro definition, the ,PAGE directive is ignored, but a
page eject is performed at invocation of that macro.

7.2 MACRO CALLS

A macro must be defined prior to its first reference. Macro calls are
of the general form:

label: name, real arguments
where: label represents an optional statement label.
name represents the name of the macro specified in the

«MACRO directive preceding the macro definition.

represents any legal separator (comma, space, or
tab) . No separator is necessary where there are
no real arguments,

real are those symbols, expressions, and values
arguments which replace the dummy arguments in +the .MACRO
statement. Where more than one argument is used,

they are separated by any legal separator.

Where a macro name is the same as a user label, the appearance of the
symbol in the operation field designates a macro call, and the
occurrence of the symbol in the operand field designates a label
reference., For example:

ABS: MOV @RO,R1 sABS IS USED AS LABEL
BR ABS ;ABS IS CONSIDERED A LABEL
ABS #4 ,ENT ,LAR ;s CALL MACRO ABS WITH 3 ARGUMENTS:

Arguments to the macro call are treated as character strings whose
usage is determined by the macro definition.

7.3 ARGUMENTS TO MACRO CALLS AND DEFINITIONS

Arguments within a macro definition or macro call are separated from
other arguments by any of the separating characters described in
Section 3.1.1.

For example:

.MACRO REN A,B,C
REN ALPHA,BETA,<C1,C2>

Arguments which contain separating characters are enclosed in paired
angle Dbrackets., An up-arrow construction is provided to allow angle
brackets to be passed as arguments. Bracketed arguments are seldom
used in a macro definition, but are more likely in a macro call. For
example:

REN <MOV X,Y>,#44,WEV ’
This call would cause the entire statement:

MOV X,Y
to replace all occurrences of the symhol A in the macro definition.
Real arguments within a macro call are considered to be character
strings and are treated as a single entity until their use in the
macro expansion,

The up=-arrow construction could have been used in the above macro call
as follows:

REN +/MOV X,Y/,#44,WEV
which is equivalent to:
REN <MOV X,Y>,#44,WEV

Since spaces are ignored preceding an argument, they can be used to
increase legibility of bracketed contructions,

The form:
REN #44 ,WEV+/MOV X,Y/

however, contains only two arguments: #44 and WEV4+/MOV X,Y/ (see
section 3.1.1) because 4+ is a unary operator.

7.3.1 Macro Nesting

Macro nesting (nested macro calls), where the expansion of one macro
includes a call to another macro, causes one set of angle brackets to
be removed from an argument with each nesting level. The depth of
nesting allowed is dependent upon the amount of core space used by the
program being assembled. To pass an argument containing legal

argument delimiters to nested macros, the argument should be enclosed
in one set of angle brackets for each 1level of nesting, as shown
below:

«MACRO LEVEL1 DUM1,DUM2
LEVEL2 DUM1

LEVEL2 DUM2

-ENDM

+MACRO LEVEL2 DUM3
DUM3

ADD #10,R0

MOV RO, (R1)+

+« ENDM

A call to the LEVEL1 macro:
LEVELl <<MOV X,R0>>,<<CLR RO>>

causes the following expansion:

MOV X,R0

ADD #10,R0
MOV RO, (R1) +
CLR RO

ADD #10,R0
MOV RO, (R1) +

where macro definitions are nested (that is, a macro definition is
entirely contained within the definition of another macro) the inner
definition is not defined as a callable macro until the outer macro
has been called and expanded. For example:

.MACRO LV1 A,B

.

+.MACRO 1LV2Z2 A

+« ENDM
« ENDM

The LV2 macro cannot be called by name until after the first call to
the LV1 nmacro. Likewise, any macro defined within the LV2 macro
definition cannot be referenced directly until LV2 has been called.

7.3.2 Special Characters

Arguments may include special characters without enclosing the
argument in a bracket construction if that argument does not contain
spaces, tabs, semicolons, or commas. For example:

.MACRO PUSH ARG
MOV ARG, - (SP)
. ENDM

PUSH X+3(%2)
generates the following code:

MoV X+3(%2) ,~(SP)

7.3.3 Numeric Arguments Passed as Symbols

When passing macro arguments, a useful capability is to pass a symbol
which can be treated by the macro as a numeric string. An argument
preceded by the unary operator backslash (\) is treated as a number in
the current radix. The ASCII characters representing the number are
ingserted in the macrc expansion; their function is defined in context.
For example:

B=0

.MACRO INC A,B

CNT A, \B

N=N+1

.ENDM

.MACRO CON A,B
A'B .WORD

.ENDM

INC X,C

The macro call would expand to:

X0: « WORD 4

A subsequent identical call to the same macro would generate:
X1: «WORD 4

and so on for later calls. The two macros are necessary because the
dummy value of B cannot be updated in the CNT macro. In the CNT
macro, the number passed is treated as a string argument. (Where the
value of the real argument is 0, a single 0 character is passed to the
macro expansion.)

The numbher being passed can also be used to make source 1listings
somewhat clearer. For example, versions of programs created through
conditional assembly of a single source can identify themselves as
follows:

+MACRO IDT SYM ;ASSUME THAT THE SYMBOL ID TAKES

.IDENT /SYM/ sON A UNIQUE 2-DIGIT VALUE FOR
.ENDM ;EACH POSSIBLE CONDITIONAL ASSEMBLY
.MACRO OUT ARG ;OF THE PROGRAM
IDT 005A'ARG .
.ENDM .

. sWHERE 005A IS THE UPDATE
ouT \ID :VERSION OF THE PROGRAM

;AND ARG INDICATES THE
; CONDITIONAL ASSEMBLY VERSION,

The above macro call expands to
.IDENT /005AXX/
where XX is the conditional value of 1ID.

Two macros are necessary since the text delimiting characters in the
.IDENT statement would inhibit the concatenation of a dummy argument.

7.3.4 Number of Arguments

If more arguments appear in the macro call than in the macro
definition, the excess arguments ‘are ignored. If fewer arguments
appear in the macro call than in the definition, missing arguments are
assumed to be null (consist of no characters). The conditional
directives .IF B and .IF NB can be used within the macro to detect
unnecessary arguments.

A macro can be defined with no arguments.

7.3.5 Automatically Created Symbols

MACRO-11l can create symbols of the form n$ where n 1is a decimal
integer number such that 64<n<127, Created symbols are always local
symhols between 64$ and 127$. (For a description of 1local symhols,
see Section 3.5.) Such local symbols are created by the Assembler in
~numerical order, i.e.:

645
65$%

1268
1278

Created symbols are particularly useful where a label is required in
the expanded macro. Such a label must otherwise be explicitly stated
as an argument with each macro call or the same label is generated
with each expansion (resulting in a multiply-defined label). Unless a
label is referenced from outside the macro, there is no reason for the
programmer to be concerned with that labhel,

The symbol is separated from the character string
argument by any legal separator.

<character string> 1is a string of printing characters which should
only be enclosed in angle brackets if it contains
a legal separator. A semicolon also terminates
the character string.

The .NCHR directive can occur anywhere in a MACRO-1l program.

The .NTYPE directive enables the macro being expanded to determine the
addressing mode of any argument, and is of the form:

label: .NTYPE symbol, arg
where: label is an optional statement label

symbol is any legal symbol, the value of which is equated
to the 6-bit addressing mode of the argument. The
symbol is separated from the argqument by a 1legal
separator, This symbol can be used by itself or
in expressions,

arg is any legal macro argument (dummy argument) as
defined in section 7.3.

The .NTYPE directive can occur only within a macro definition. An
example of .NTYPE usage in a macro definition is shown below:

«MACRO SAVE ARG
.NTYPE SYM,ARG

.IF EQ,SYM&70 -

MoV ARG, TEMP s REGISTER MODE
«IFF .
MoV #ARG,TEMP s NON-REGISTER MODE
+«ENDC

+ENDM

7.5 .ERROR and .PRINT

The .ERROR directive is used to output messages to the command output
device during assembly pass 2. A common use is to provide diagnostic
announcements of a rejected or erroneous macro call. The form of the
.ERROR directive is as follows:

label: .ERROR expr;text
where label is an optional statement label

expr is an optional legal expression whose value is
output to the command device when the .ERROR
directive 1is encountered. Where expr is not
gpecified, the text only is output to the command
device.

denotes the beginning of the text string to be
output.

~e

text is the string to be output to the command device.

Upon encountering an .ERROR directive anywhere in a MACRO-1l1] program,
the Assembler outputs a single line containing:

l. The sequence number of the .ERROR directive line;
2., The current value of the location counter;
3. The value of the expression if one is specified; and,
4, The text string specified,
For example:
+« ERROR A; UNACCEPTABLE MACRO ARGUMENT
causes a line similar to the following to be output:
Seq# l.c. A value Text
512 5642 000076 ;s UNACCEPTABLE MACRO ARGUMENT
This message is being used to indicate an inability of the subject
macro to cope with the argument A which is detected as being indexed
deferred addressing mode (mode 7) with the stack pointer (%6) used as
the index register,

The line is flagged on the assembly listing with a P error code.

The .PRINT directive is identical to .ERROR except that it 1is not
flagged with a P error code.

7.6 INDEFINITE REPEAT BLOCK: ,IRP AND ,IRPC

An indefinite repeat block is a structure very similar to a macro
definition. An indefinite repeat is essentially a macro definition
which has only one dummy argument and is expanded once for every real
argument supplied. An indefinite repeat block is coded in=line with
its expansion rather than being referenced by name as a macro is
referenced., An indefinite repeat block is of the form:

label: LIRP arg,<real arguments>

(range of the indefinite repeat)

« ENDM

where: label is an optional statement label., A label may not
appear on any .IRP statement within another macro
definition, repeat range or indefinite repeat
range, or on any .ENDM statement.

arqg is a dummy arqument which is successively replaced
with the real arguments in the .IRP statement,

<real arqument> is a list of arguments to be used in the expansion
of the indefinite repeat range and enclosed in
angle=hrackets. Each real argument is a string of
zZero or more characters or a 1list of real
arguments (enclosed in angle brackets). The real
arguments are separated by commas.

range is the block of code to be repeated once for each
real argument in the list. The range may contain
macro definitions, repeat ranges, or other
indefinite repeat ranges. Note that only created
symbols should be used as ‘labels within an
indefinite repeat range.

An indefinite repeat block can occur either within or outside macro
definitions, repeat ranges, or indefinite repeat ranges. The rules
for creating an indefinite repeat block are the same as for the
creation of a macro definition (for example, the .MEXIT statement is
allowed in an indefinite repeat block). Indefinite repeat arguments
follow the same rules that apply to macro arguments.

d00owD

LT

[-~

oVLb4

venlo

eenid

pevep

weoed4

Qupdp

Powvuvow
poevel
bowipe
pueded
Yonuoe
woguud
pvopune
pepue?
woevns
pepup’?
177726
17787¢
012729
wlpuB6!?

wie7gy9
vovude

Bi1672¢
Y YRY

V16729
oBne26

16729
Bpu2s

wi6729
wonvae

pilo720
vowveon

Ro®xXADQ
RiW%A01
R28%A02
RI®XA0I
Ram%AU4
RE®XADS
RA®XA06
R78%A07
SPuxA06
PCeXA0?7

«TITLE
oLI8T
«MCALL
o PARAM

PSWEADLT7776
SWRBADL77579

m»ov

o [RP

MoV

«ENDM

MOV

KOV

MoV

moyv

MoV

MQv

Figure 7-1

.IRP and .IRPC Example

IRPTST
MDD, ML, ME
«PARAM

HTABLE,RU

Xr€ArByCrD,E,F>

X.(Rﬂ)¢

Ay (RD)»

By (RU)»

Cr(RY)»

Dy (RU) =

Es (RU)+

Fi(Ré)e

A second type of indefinite repeat block is available which handles
character substitution rather than argument substitution., The ,IRPC
directive is used as follows:

label: JIRPC arg,string

(range of indefinite repeat)

.ENDM

On each iteration of the indefinite repeat range, the dummy argument
(arg) assumes the value of each successive character in the string.

7.7 REPEAT BLOCK: .REPT

Occasionally it is useful to duplicate a block of code a number of
times in line with other source code. This is performed by creating a
repeat block of the form:

.label: ,REPT expr

(range of repeat block)

-

. ENDM ;OR .ENDR

where: label is an optional statement label. The JENDR or
.ENDM directive may not have a lahel. A .REPT
statement occurring within another repeat block,
indefinite repeat block, or macro definition may
not have a label associated with it.

expr is any legal expression controlling the number of
times the block of code 1is assembled. Where
expr =0, the range of the repeat block 1is not

assembled,
range is the block of code to be repeated expr number of
times, The range may contain macro definitions,

indefinite repeat ranges, or other repeat ranges.
Note that no statements within a repeat range can
have a label.

The last statement in a repeat block can be an .ENDM or LENDR
statement, The JENDR statement is provided for compatibility with
previous assemblers.

The .MEXIT statement is also legal within the range of a repeat block.

7.8 MACRO LIBRARIES: ,MCALL

All macro definitions must occur prior to their referencing within the
user program, MACRO-11 provides a selection mechanism for the
programmer to indicate in advance those system macro definitions
required by his program.

The .MCALL directive is used to specify the names of all system macro
definitions not defined in the current program but required by the
program. The .MCALL directive must appear before the first occurrence
of a macro call for an externally defined macro. The .MCALL directive
is of the form:

.MCALL argl,arg2,...

where argl,arg2,... are the names of the macro definitions
required in the current program,

When this directive is encountered, MACRO-11l] searches the system
library SYSMAC,.SML to find the requested definition(s).

CHAPTER 8
OPERATING PROCEDURES
The MACRO-1ll Asembler assembles one or more ASCII source files
containing MACRO-11l statements into a single relocatabhle binary object
file. The output of the Assembler consists of a binary object file
and an assembly listing followed by the symbol table listing. A CREF

(cross reference) listing can be specified as part of the assembly
output by means of a switch option.

8.1 LOADING MACRO-11l
MACRO-11 is loaded with the Disk Monitor RUN command as follows:

SRUN MACRO
(Characters printed by the system are underlined to differentiate them
from characters typed by the user.) The Assembler responds by
identifying itself and its version number, followed by a # character
to indicate readiness to accept a command input string:

MACRO Vxxx

#

8.2 COMMAND INPUT STRING

In response to the # printed by the Assembler, the user types the
output file specification(s), followed by a 1left angle bracket,
followed by the input file specification(s):

#object,listing<sourcel, source2,...,sourceN

where:

object is the binary object file

listing is the assembly listing file containing the
assembly listing and symbol table and,
optionally, a separate CRF listing file can be
appended to the assembly listing or output as
a separate file,

sourcel, source2, are the ASCII source files containing the

« e s pSOUrceN MACRO=11l source program(s). No limit is set

on the number of source input files, except as
the Assembler is limited by the size of the
user-defined and macro symhnl tables,

If an error is made in typing the command string, typing the RUBOUT
key erases the immediately preceding character. Repeated typing of
the RUBOUT key erases one character for each RUBOUT up to the
beginning of the line., Typing CTRL/U erases the entire line,

A null specification in any of the file fields signifies that the
associated input or output file is not desired. Each file
specification contains the following - information (and follows the
standard DOS conventions for file specifications): i

dev:filnam.ext [uic] /option:arg

One or more switch options can be specified with each file
specification to provide the Assembler with information about that
file. The switch options are described in Section 8.3.

A syntactical error detected in the command string causes the
Assembler to output the command string up to and including the point
where the error was detected, followed by a ? character. The
Assembler then reprints the # character and waits for a new command
string to be entered. The following command string errors are
detected:

Error Error Message
Illegal switch
Too many switches ILLEGAL SWITCH
Illegal switch value
Too many switch values

Too many output file specifications TOO MANY OUTPUT FILES

No input file specification INPUT FILE MISSING

The default value for each file specification is noted bhelow:

dev filnam ext uic
object system last source .0OBJ current
device file name
listing device used last source .LST current
for object file name
output
CREF system last source .CRF current
intermediate device file name
sourcel system - «MAC
device .PAL current
.null
source2 device used - «MAC current
. for sourcel .PAL
. (last source .null
sourceN file specified)
system - system SYSMAC «SML current
macro device [1,1]

file

8.3 SWITCH OPTIONS

There are four types of switch options: 1listing options, functions,
CREF sgpecifications, and pass assembly controls. The listing options
are described in detail in Section 6.1.1. The function options are
described in detail in Section 6.2. Rather than repeat this
information here, the reader is advised to turn to these sections or
the summary contained in Appendix B. The switch options are specified
in the form:

Specification \ Function
/LI
/LI:arg Listing Control
/NL:
/NL:arg
/EN:arg Function Control
/DS:arg
/CRF Produce cross reference table
/CRF:arg
/PA:1l Assemble file during Pass 1 only
/PA:2 Assemble file during Pass 2 only

Switch options specified on the output side apply to both the object
and 1listing files. Switch options specified on the input side apply
to the particular file which the switch follows and all subsequent
files.

8.4 CREF, CROSS-REFERENCE TABLE GENERATION

A cross-reference listing of all or a subset of all symbols used in
the source program can be obtained by a call to the CREF routine,
CREF can be used in two ways:

a. CREF can be called automatically following an assembly. In order
to do this, the /CRF switch is specified following the assembly
listing file specification. For example:

#,LP:/CRF<FILEl,FILE2

This cormmand string sends the assembly listing (FILE2.LST) to the
line printer. An intermediate CREF file is created and
temporarily stored on the system device (FILE2.CRF) under the
current UIC. The CREF routine takes this intermediate file,
generates a CREF listing and routes that 1listing to the 1line
printer. (The CRFF listing is appended to the file FILE2,LST.)
The CREF intermediate file is then deleted; there is no way to
preserve this file when CREF is being called automatically.

b. If no CREF listing is desired immediately, the intermediate CREF
file can bhe saved on the system device; the CREF listing can be
generated at a later date. In order to preserve the intermediate
CREF file, the MACRO command string is given as follows:

#,LP: /CRF:NG<FILEl,FILE2

This command string sends the assembly listing (FILE2,LST) to the
line printer. The CREF intermediate file (FILE2.CRF) is sent to
the system device under the current UIC, (The :NG argument is a
mnemonic for "No Go" to CREF; i.e., no automatic transfer to the
CREF routine following the output of the assemhly 1listing.)

In order to generate the CREF listing, the CREF routine is run
and given a command string indicating the input file
specification(s) and a single output file specification. For
example:

SRU CREF
CREF v001Aa
#$LP:<FILE2,CRF

In this case the intermediate file created automatically in the
example above is processed to obhtain a CREF listing which is then
sent to the line printer, The CREF intermediate file is then
automatically deleted. If it is desired +to preserve the
intermediate file, the command string should be given as:

#LP:<FILE2,CRF/SA

Unless the /SA switch is specified, the default case is always to
delete the CREF intermediate file.

The CREF listing is organized into one to five sections, each 1listing
a different type of symbol. The sections are as follows:

Section Type Argument
user-defined symbols tE
macro symbolic names M

permanent symbols (instructions,

directives) :P
.CSECT symbolic names :C
error codes : :E

Where no arguments are specified following the /CRF switch, all of the
above sections except the permanent symbols are cross referenced.
However, then any one argument is specified (other than :NG), no other
default sections are assumed or provided. For example, in order to
obtain a CREF listing for all five section types, the following switch
option specification is used:

/CRF:S:M:P:C:E

The order in which the agruments are specified does not affect the
order of their output, which is as listed above.

Figure 8-1 contains a segment of source code and Figure 8-~2 contains a
segment of a CREF listing with some references to the code in Figure
8-1,

In the CREF listing, each cross-referenced symhol is printed in the
left-hand column, followed by a list of the page-line numbers of the
locations in which that symbol appears. A # character following a
page-line number indicates the point at which the associated symbol is
defined. An @ character disignates a page-line number at which the
contents of that symbol are altered.

MACRO Vxxx
OBJECT CODE HANDLERS

012026
012026
012026 004767
174240
5 012032 005767
000000°*
6 012036 001142
7 012040
8 012040 005767
001416’
9 012044 001517
10 12046 012767
000001
000542"'
11 12054
12054 004767
001542
12 12060 012701
000050"
13 12064 016702
000 540"

ENDP:

oW N

14 12070
12070 004767
000660
15 12074 005046
16 12076 012667 10S$:
000006
17 12102
12102 012700
000010
12106 004767
005400
18 12112 001450
19 12114 016746
000006
20 12120 012701
000006
21 12124 011105
22 12126 042705
000377
23 12132 000305
24 12134 042711
177737
25 12140 052721
000410
26 12144 010521
27 12146 001401
28 12150 011141
29 12152 005067 11S:
000006"
30 12156 012701 12s:
000002"
31 12162
12162 004767

17-JUL-73

+«SBTTL
CALL
JSR
TST
BNE
ENTOVR
TST
BEQ
MOV
CALL
JSR
MoV
MOV

CALL
JSR

CLR
MOV

NEXT
MoV

JSR

BEQ
MoV

MOV

MOV
BIC

SWAB
BIC

BIS
MOV
BEQO
MoV
CLR
MOV

CALL
JSR

MACRO VxXx

17-JUL-73 19:09 PAGE72

OBJECT CODE HANDLERS

SETMAX
PC,SETMAX

PASS
ENDP2
4
OBJLNK

308

#BLKTO1,BLKTYP

OBJINI
PC,0OBJINI

#PRGTTL,R1
RLDPNT,R2

GSDDMP
PC ,GSDDMP

- (SP)
(sP) +,ROLUPD

SECROL
#SECROL,RO

PC,NEXT

208
ROLUPD , = (SP)

#MODE ,R1

(rR1) ,R5
#377,R5

R5

#=-1~<RELFLG>, (R1)

#<GSDTO01l>+DEFFLG. (R1)+ ;SET TO TYPE 1, DEFINED

R5, (R1) +
118

(R1) ,—-(R1)
ROLUPD

#SYMBOL,R1

GSDDMP
PC ,GSDDMP

;END OF PASS HANDLER

;PASS ONE?
;BRANCH IF PASS 2
; PASS ONE, ANY OBJECT?

NO
SET BLOCK TYPl 1

.
’
-
’

s INIT THE POINTERS

s SET "FROM" INDEX

s AND "TO" INDEX
;OUTPUT GSD BLOCK

; INIT FOR SECTOR SCAN
;s SET SCAN MARKER

s GET THE NEXT SECTOR

s BRANCH IF THROUGH
; SAVE MARKER

; SAVE SECTOR
; ISOLATE IT

; AND PLACE IN RIGHT

;ASSURE ABS

OOPS !

REL, SET MAX
;SET FOR INNER SCAN

. we

;OUTPUT THIS BLOCK

sCLEAR ALL BUT REL BIT

X

32

33

34

35

36

37

38

39

40

12166
12166

12172
12176
12200
12206
12210

12214
12216

000566
138
012700
000000
004767
005314
001737
032767
000100
000006"
001767
126705
000007"
001364
042767

177627

12224

12232

ENDMAC
ENDP
ENDP1IM
ENDP2

MDFFLG
MEXIT
MODE

MOVBYT
MPDP
MPUSH
MSBARG
MSBBLK
MSBCNT
MSBEND
MSBMRP

000006'
052767
002000
000006
000751

27-40
23-23
73-16
72- 6

12~ 74
116~ 1#
14- 64
45- 6@
72-384
116-34¢@
18- 5
109-42
109-26
27- 9
121- 4
27-15
121- 9
25-19

: NEXT SYMBOL
MOV #SYMBOL, RO
JSR PC,NEXT
BEQ 108
BIT #GLBFLG, MODE
BEQ 138
CMPB SECTOR,R5
BNE 133
BIC
BIS #GSDT04 ,MODE
BR 128
Figure 8-1
Assembly Listing
109-33#
72- 3%
72-22#%
74- 1%
35-28 92- 8 92~24
11l6-414#
22-29@ 34-12 35-17@
48-16Q 58-384 64-23
72-39@ 74-34 75-37
18- 9 28-44 74-41
121-17%
110-48 121- 1%
121-18 121-404#
121-28 121-36#%
109-33 116~ 6 121-41%
121-28 121-43%
27-25@ 110-49@ 121-42%
Figure 8-2

sFETCH THE NEXT SYMBOL

s FINISHED WITH THIS GUY
; GLOBAL?

NO

i
:YES, PROPER SECTOR?

; NO
#=1-<DEFFLG!RELFLG!GLBFLG>,MODE ;CLEAR MOST

; SET TYPE 4

;OUTPUT IT

36-12
70-10
86- 8

83-11

37- 4
72-20
91-20@

83-20

Excerpts from CREF Listing to Accompany Figure 8-1,
Note particularly the CREF references for ENDP,
ENDP2, and MODE.

8-7

40-43
72=34
106~27

108-194#

8.5 ERROR MESSAGES

The MACRO-1l Assembler outputs the following messages when one of the
related errors is detected.

COMMAND I/O ERROR
ILLEGAL SWITCH

INPUT FILE MISSING
INSUFFICIENT MEMORY TO COMPLETE ASSEMBLY

I/0 ERROR ON OUTPUT FILE
OPEN FAILURE ON INPUT FILE
OPEN FAILURE ON OUTPUT FILE
OUTPUT DEVICE FULL

TOO MANY OUTPUT FILES

The error messages are self-explanatory.

ASCII Character Set

EVEN
PARITY
BIT

(=] O (=] [[oad O (=N MO o = (=] [nd o

[

7-BIT
OCTAL
CODE

000
001

002
003
004
005
006

007
010

011
012

013
014
015
016
017

020
021

022

023
024

025
026

027

APPENDIX A

CHARACTER

NUL
SOH

STX
ETX
EOT

ENQ

‘ACK

BEL
BS

HT
LF

FF

CR

ST

DLE
DC1

DC2

DC3

DC4

NAK
SYN

ETB

MACRO~11 Character Sets

REMARKS

Null, tape feed, CONTROL/SHIFT/P.
Start of heading: also SOM, start
of message, CONTROL/A.

Start of text; also EOA, end of
address, CONTROL/B.

End of text; also EOM, end of
message, CONTROL/C.

End of transmission (END); shuts
off TWX machines, CONTROL/D,
Enquiry (ENQRY) ; also WRU,
CONTROIL/E.

Acknowledge; also RU, CONTROL/F.
Rings the bell. CONTROL/G.
Backspace; also FEO, format
effector. backspaces some
machines, CONTROL/H.

Horizontal tab. CONTROL/I.

Line feed or Line space (new line);
advances paper to next line,
duplicated by CONTROL/J.

Vertical tab (VTAB). CONTROL/K.
Form Feed to top of next page
(PAGE). CONTROL/L,

Carriage return to beginning of
line. duplicated by CONTROL/M.
shift out; changes ribbon color to
red, CONTROL/N.

shift in; changes ribbon color to
black. CONTROL/O.

Data link escape. CONTROL/B (DCO).
Device control 1, turns transmitter
(READER) on, CONTROL/Q (X ON).
Device control 2, turns punch or
auxiliary on. CONTROL/R (TAPE, AUX
ON) .

Device control 3, turns transmitter
(READER) off, CONTROL/S (X OFF).
Device control 4, turns punch or
auxiliary off., CONTROL/T (AUX
OFF) .

Negative acknowledge; also ERR,
ERROR, CONTROL/U,

Synchronous file (SYNC) .
CONTROL/V,

End of transmission block; also

A.2 RADIX-50 CHARACTER SET

Character
space

A-2Z

$

unused

0-9

ASCII Octal Equivalent

40
101-132
44
56

60-71

The maximum Radix-50 value is, thus,

47*50%*24+47*50+47=174777

Radix-50 Equivalent
0
1-32
33
34
35
36=-47

The following table provides a convenient means of translating between

the ASCII character

set and its Radix-50 equivalents., For example,

given the ASCII string X2B, the Radix-50 equivalent is (arithmetic is

performed in octal):

X=113000
2=002400
B=000002
X2B=115402

Single Char,
or
First Char.

003100
006200
011300
014400
017500
022600
025700
031000
034100
037200
042300
045400
050500
053600
056700
062000
065100
070200
073300
076400
101500
104600
107700
113000
116100
121200
124300
127400
132500
135600
140700
144000
147100
152200
155300
160400
163500
166600
171700

w:n~:mnn¢-wbopac>go MNRMIIAHNYWOYWOZRRUHIQHAHNODQ WD
[
o

Second
Character

wwﬂmwawwwog-msmxz<cemwom023beH:mmmuowv
0
ol

000050
000120
000170
000240
000310
000360
000430
000500
000550
000620
000670
000740
001010
001060
001130
001200
001250
001320
001370
001440
001510
001560
001630
001700
001750
002020
002070
002140
002210
002260
002330
002400
002450
002520
002570
002640
002710
002760
003030

Third
Character

w

VONOUMIBDWNHROSs MNKXSI A NYOWOZZHNRGUHIIQEHEBOAQAW

000001
00000 2
000003
000004
000005
000006
000007
000010
000011
000012
000013
000014
000015
000016
000017
000020
000021
000022
000023
000024
000025
000026
000027
000030
000031
000032
000033
000034
000035
000036
000037
000040
000041
000042
000043
000044
000045
000046
000047

-

APPENDIX B

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER

B.l SPECIAL CHARACTERS
Character

vertical tab

]
tab

space

(comma)

e N A D

- zeaN ¥

(apostrophe)

S >V A

Function

Source line terminator
Label terminator
Direct assignment indicator

-Register term indicator

Item terminator

Field terminator

Item terminator

Field terminator

Immediate expression indicator
Deferred addressing indicator
Initial register indicator
Terminal register indicator
Operand field separator

Comment field indicator

Arithmetic addition operator or
increment indicator

Arithmetic subtraction operator or
decrement indicator

Arithmetic multiplication operator
Arithmetic division operator '
Logical AND operator

Logical OR operator

Double ASCII character indicator
Single ASCII character indicator
Assembly location counter

Initial argument indicator
Terminal argument indicator
Universal unary operator

Argument indicator

MACRO numeric argument indicator

auto

auto

B.2 ADDRESS MODE SYNTAX

n is an integer between 0 and 7
register expression, E is an

representing
expression,

a register. R is a
ER is either a register

expression or an expression in the range 0 to 7.

Address Address
Mode Mode

Format Name Number Meaning

R Register On ‘Register R contains the
operand. R 1is a register
expression.

@R or Deferred Register In Register R contains the

(ER) operand address.

(ER) + Autoincrement 2n The contents of the register
specified by ER are
incremented after being used
as the address of the operand.

@ (ER) + Deferred Auto- 3n ER contains the pointer to

increment the address of the operand.
ER is incremented after use.

- (ER) Autodecrement 4n The contents of register ER
are decremented before being
used as the address of the
operand.

@~ (ER) Deferred Auto- 5n The contents of register

decrement ER are decremented before
being used as the pointer to
the address of the operand.

E(ER) Index 6n E plus the contents of the
register specified, ER, is the
address of the operand.

#E Immediate 27 E is the operand.

Q#E Absolute 37 E is the address of the
operand,

E Relative 67 E 1is the address of the
operand.

@E Deferred Relative 77 E is the pointer to the

address of the operand.

B.3 ASSEMBLER DIRECTIVES

Form

4+Bn

4Cn

4Dn

+Fn

40n

«ASCII string

.ASCIZ string

.ASECT

+BLKB exp

+BLKW exp

Described in
Manual Section

6.3.3

6.3.3

6.9
6.5.3

Operation
A single quote character
(apostrophe) followed by one ASCII
character generates a word

containing the 7-bit ASCII
representation of the character in
the low-order byte and zero in the
high=order byte.

A double quote character followed
by two ASCII characters generates a
word containing the 7-bit ASCII
representation of the two
characters.

Temporary radix control; causes the
number n to be treated as a binary
number,

Creates a word containing the one's
complement of n,

Temporary radix control; causes the
number n to be treated as a decimal
number.

Creates a one-word floating point
quantity to represent n.

Temporary radix control; causes the
number n to be treated as an octal
number.

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters) one
character per byte.

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters) one
character per byte with a zero byte
following the specified string.

Begin or resume absolute section.

Reserves a block of storage space
exp bytes long.

Reserves a block of storage space
exp words long.

.BYTE expl,exp2,..

.CSECT symbol
.DSABL arg
.ENABL arg

.END
.END exp
« ENDC

- ENDM
«ENDM symbol

+EOT

.ERROR exp,string

.FLT2 argl,arg2,..
.FLT4 argl,arqg2,..

«GLOBL syml,sym2,..

.IDENT symbol

6.6.1

Generates successive bytes of data
containing the octal equivalent of
the expression(s) specified.

Begin or resume named or unnamed
relocatable section,

Disables the assembler function
specified by the argument.
Provides the assembler function

specified by the rgument.

Indicates the physical end of
source program, An optional
argument specifies the transfer
address.,

Indicates the end of a condition
block.

Indicates the end of the

current repeat block, indefinite
repeat block, or macro. The
optional symbol, if used, must be
identical to the macro name.

Ignored. Indicates End-of-Tape
which is detected automatically by
the hardware.

Causes a text string to be output
to the command device containing
the optional expression specified
and the indicated text string.

Ensures that the assembly location
counter contains an even address by
adding 1 if it is odd.

Generates successive two-word
floating=-point equivalents for the
floating=-point numbers specified as
arguments,

Generates successive four-word
floating=-point equivalents for the
floating~=point numbers specified as
arguments.

Defines the symbol(s) specified as
global symbol(s).

Provides a means of 1labeling the
object module with the program
version number. The symbol is the
version number between paired
delimiting characters.

«IF cond,argl,
arg2, ...

«IFF

«IFT

+« IFTF

+IFF cond,agg,~
statement -

+IRP sym,
<argl,arg2,...>

.IRPC sym,string

+« LIMIT

. LIST
+LIST arg

+MACRO sym,argl,
arg2,...

6.11

6.11.1

6.11.1

6.11.1

6.11.2

7.6

7.1.1

Begins a conditional block
of source code which is included in
the assembly only if the stated
condition is met with respect to
the argument(s) specified.

Appears only within a conditional
block and indicates the beginning
of a section of code to be
assembled if the condition tested
false.

Appears only within a conditional
block and indicates the beginning
of a section of code to be
assembled if the condition tested
true,

Appears only within a conditional
block and indicates the beginning
of a section of code to be
unconditionally assembled.

Acts as a one-line conditional
block where the condition is tested
for the argument specified. The
statement is assembled only if the
condition tests true.

Indicates the beginning of an
indefinite repeat block in which
the symbol specified is replaced
with successive elements of the
real argument list (which is
enclosed in angle brackets).

Indicates the beginning of an
indefinite repeat block in which
the symbol specified takes on the
value of successive characters in
the character string.

Reserves two words into which the
Task Builder inserts the ow and
high addresses of the relocated
code.

Without an argument, .LIST
increments the listing level count
by 1. With an argument, .LIST does
not alter the listing level count
but formats the assembly listing
according ‘to the argument
gspecified.

Indicates the start of a _
macro named sym containing the
dummy arguments specified. :

« MEXIT

.NARG symbol

.NCHR sym,string

«NLIST
+NLIST arg

.NTYPE sym,arg

. ODD

«PAGE

+«PSECT

.PRINT exp,string

.RADIX n

.RAD50 string

«REPT exp

7.4

Causes an exit from the current
macro or indefinite repeat hlock.

Appears only within a macro
definition and equates the
specified symbol to the number of
arguments in the macro call
currently being expanded.

Can appear anywhere in a source
program; equates the symbol
specified to the number of
characters in the string (enclosed
in delimiting characters).

Without an argument, .NLIST
decrements the listing level count
by 1. wWith an argument, .NLIST
deletes the portion of the 1listing
indicated by the argument.

Appears only in a macro definition
and equates the low-order six bits
of the symbol specified to the
six=bit addressing mode of the
argument,

Ensures that the assembly location
counter contains an odd address by
adding 1 if it is even.

Causes the assembly listing to skip
to the top of the next page.

Begin or resume a program section,

Causes a text string to be output
to the command device containing
the optional expression specified
and the indicated text string,

Alters the current program radix to
n, where n can be 2, 4, 8, or 10.

Generates a block = of data
containing the Radix~50 equivalent
of the character string (enclosed
in delimiting characters).

Begins a repeat block. Causes the
section of code up to the next
.ENDM or .ENDR to be repeated exp
times.

«SBTTL string

.TITLE string

.WORD expl,exp2,..

Causes the string to be printed as
part of the assembly listing page
header. The string part of each
+«SBTTL directive is collected into
a table of contents at the
beginning of the assembly listing.

Assigns the first symbolic name in
the string to the object module and
causes the string to appear on each
page of the assembly listing., One
+TITLE directive should be issued
per program,

Generates successive words of data
containing the octal equivalent of
the expression(s) specified.

APPENDIX C

PERMANENT SYMBOL TABLE (PST)

The Permanent Symbol Table (PST) defines values for each symbol that
is automatically recognized by MACRO. The symbols defined include

op~codes and macro-calls, A listing of the Permanent Symbol Table
forms the balance of this Appendix.

D.1 MACRO-11 ERROR

APPENDIX D

ERROR MESSAGE SUMMARY

CODES

MACRO-11 error codes are printed following a field of six asterisk

characters and on
error. For example:

T TTIN
26 00236

The addition of two
Error Code

A

the line preceding the source line containing the

000002" .WORD REL1+REL2
relocatable symbols is flagged as an A error.
Meaning

Addressing error. An address within the
instruction is incorrect. Also may indicate a
relocation error.

Bounding error. Instructions or word data are
being assembled at an odd address in memory. The
location counter is updated by +1.

Doubly~defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive not found. (A listing is
generated.)

Illegal character detected. Illegal characters
which are also non-printing are replaced by a ? on
the listing., The character is then ignored.

Line buffer overflow, i.e., input 1line greater
than 132 characters. Extra characters on a line,
(more than 72(10)) are ignored.

Multiple definition of a label. A label was
encountered which was equivalent (in the first six
characters) to a previously encountered label.

Number containing 8 or 9 has decimal point
missing.

Opcode error. Directive out of context.

Phase error. A label's definition of value waries
from one pass to another. A P error code also
appears if a .ERROR directive is assembled.

Questional syntax. There are missing arguments or
the instruction scan was not completed or a
carriage return was not immediately followed by a
line feed or form feed.

Register-type error, An invalid use of or
reference to a register has been made.

Truncation error. A number generated more than 16
bits of significance or an expression generated
more than 8 bits of significance during the use of
the .BYTE directive.

Undefined symbol, An undefined symbol was
encountered during the evaluation of an
expression. Relative to the expression, the
undefined symbol is assigned a value of zero.

Instruction which is not compatible among all
members of the PDP-1l1 family (11/15, 11/20,
11/45),

APPENDIX E

RECOMMENDED PROGRAMMING STANDARDS

INTRODUCTION

Standards eliminate variablility and the requirement to make a
decision; they need not be optimal, Much of the difficulty in
establishing standards stems from the notion that they should be
optimal (but everyone has differing opinions regarding the optimality
criteria). For the DOS/BATCH group, standards represent an agreement
on certain aspects of the programming process.

This Appendix represents a minimal beginning, pointing toward an
engineering discipline for software development, All DIGITAL and user
programmers are encouraged to participate actively in its continuing
evolution through suggestions for improvement.

E.1 LINE FORMAT

All source lines shall consist of from one to a maximum of 80
characters. Assembly language code 1lines shall have the following
format:

1. Label Field - if present the label shall start at tab stop 0
(column 1).

2. Operation field - the operation field shall start at tab stop
1 (column 9).

3., Operand field - the operand field shall start at tab stop 2
(column 17),

4, Comments field - the comments field shall start at tab stop 4
(column 33) and may continue to column 80,

Comment lines that are included in the code body shall be delimited by
a line containing only a leading semicolon. The comment itself
contains a leading semicolon and starts in column 3, Indents shall be
1 tab.

If the operand field extends beyond Tab Stop 4 (column 33) simply
leave a space and start the comment. Comments which apply to an
instruction but require continuation should always line up with the
character position which started the comment,

E.2 COMMENTS

Comment all coding to convey the global role of an instruction and not
simply a literal translation of the instruction into English., 1In
general this will consist of a comment per 1line of code. If a
particularly difficult, obscure, or elegant instruction sequence is

used, a paragraph of comments shall immediately precede that section
of code.

Preface text describing formats, algorithms, program-local variables,
etc. will be delimited by the character sequence ;+ at the start of
the text and ;- at the end. The comment will start in column 3,

For example:

i+

The invert routine accepts

~

; a list of random numbers and
; applies the Kolmogorov algorithm

; to alphabetize them,

Target labels for branches that exist solely for positional reference
will use local labels of the form

<num S

Use of non-local labels is restricted, within reason, to those cases
where reference to the code occurs external to the code.
Local-labeling is formatted such that the numbers proceed sequentially
down the page and from page to page.

E.4 PROGRAM MODULES

E.4.1 General Comments on Programs

In DOS/BATCH, a program provides a single distinct function. No
limits exist on size, but the single function limitation should make
modules larger than 1K a rarity. Since DOS/BATCH may eventually
exploit the virtual memory capacity of the 11/40 and 11/45, programs
should make every attempt to maintain a dense reference locus (don't
promiscuously branch over page boundaries or over a large ahsolute
address distance).

All code is read-only. Code and data areas are distinct and each
contains explanatory text. Read-only data should be segregated from
read-write data.

E.4.2 The Module Preface

Program modules adhere to a strict format. This format adds to the
readability and understandability of the module. The following
sections are included in each module:

For the Code Section:
1. A .TITLE statement that specifies the name of the module.

2. A .PSECT statement that defines the program section in which
the module resides. If a module contains more than one
routine, subtitles may be used.

3. A copyright statement, and the disclaimer.

"Digital Equipment Corporation assumes no
responsibility for the use or reliability of its
software on equipment which 1is not supplied by
Digital Equipment Corporation."

4, The version number of the file.
Note: Items 1-5 must appear on the same page. The PDP-11
version number standard is described in Section 9.0.

AN

10.

11.

12,

13,

14,

15.

E.4.3
Rules

1.

2.

The name of the principal author and the date on which the
module was first created.

The name of each modifying author and the date of
modification, name and modification dates appear one per line
and in chronological order.

A brief statement of the function of the module.

A list of the definitions of all equated local symbols used
in the module. These definitions appear one per line and in
alphabetical order.

All local Macro definitions, preferably in alphabetical order
by name.

All local data. The data should indicate

a. Description of each element (type, size, etc.)
b. Organization (functional, alpha, adjacent, etc.,)
c. Adjacency requirements

A list of the inputs expected by the module, This includes
the calling sequence, condition code settings, and global
data settings.

A list of the outputs produced as a result of entering this
module, These include delivered results, condition code
settings, but not side effects. (A1l these outputs are
visible to the caller.)

A list of all effects (including side effects) produced as a
result of entering this module. Effects include alterations
in the state of the system not explicitly expected in the
calling sequence, or those not visible to the caller.

A more detailed definition of the function of the module.

The module code.

Formatting the Module Preface

The first five items appear on the same page and will not
have explicit headings.

Titles start at the 1left margin*; descriptive text is
indented 1 tab position.

Items 7-14 will have headings which start at the left margin,
preceded and followed by blank lines. Items which do not

*The left margin consists of a ; a space then the heading, so the
text of the heading begins in column 3.

E.5.0 FORMATTING STANDARDS

E.5.1 Program Flow

Programs will be organized on the listing such that they flow down the
page, even at the cost of an extra branch or jump.

1
-__-_: _____
7\
// \
----------- TEST \m= e e e
! \ /\ !
_______ —— \ / - o
! ! \/ ! !
! BBB ! I AAA 1
] [1 !
"_-_-:_--- ____: _____
! ————————— '
! ! ! !
--------- ! COMMON = wmeccc—e=

shall appear on the listing as:

TST
BNE BBB

P2VV. & S

ecs s s
sse v 0o

B CMN

BBBteeeooso

CMN:...-.--

Rather than:

TST
BE BBB
AAA:...‘...

CMN:......-

BBB:.esoosoe
B CMN
E.5.2 Common E

A common exit a
flow chart

will appear on

xits

ppears

the as:

as the last code

sequence on the

listing.

The

PRl:oooo'to

LRI N Y)

B EXIT

PR2:00--0.-

ssso0 s e

B EXIT

PR3%vecocsns

B EXIT

PR4:...olo¢

EXIT:
And not as

PRl::I...."

ee s s oo

seceeececoe

EXI'P:QQQ-QQQ

LIS S I)

PRZ:?...oooo

B EXIT

PR3:0000000

seeneceoe

B EXIT

PR4=...-..0

B EXIT

E.5.3 Code with Interrupts Inhibited

Code that is executed with interrupts inhibited shall be flagged by a
three semi~colon (;;;) comment delimiter.

EXEC INTERRUPT

~e

««ERTZ: ; ENABLE BY RETURNING
; BY SYSTEM SUBROUTINES,
BIS #000340,PSEXP :3; INHIBIT INTERRUPTS
BIT #000340,+2(SP) ;;; C
BEQ 10s 712 O
RTT xR M
33 M
R E
Y N
IR R T
Y S

E.6 PROGRAM SOURCE FILES

Source creation and maintenance shall be done in base levels. A base
level is defined as a point at which the program source files have
been frozen. From the freeze point to the next base level,
corrections will not be made directly to the base level itself.
Rather a file of corrections shall be accumulated for each file in the
base level. Whenever an updated source file is desired, the
correction file will be applied to the base file,

The accumulation of corrections shall proceed until a logical breaking
point has occurred (i.e. a milestone or significant implementation
point has been reached). At this time all accumulated corrections
shall be applied to the previous base level to create a new base
level. Correction files will then be started anew for the new base
level.

E.7 FORBIDDEN INSTRUCTION USAGE

1. The use of instructions or index words as 1literals of the
previous instruction. For example:

MoV @PC,Register
BIC Src,Dst

uses the bit clear instruction as a literal. This may seem
to be a very "neat" way to save a word but what about
maintaining a program using this trick? To compound the
pathology, it will not execute properly if I/D space is
enabled on the 11/45, In this case @PC is a D bank
reference,

2, The use of the MOV instruction instead of a JMP instruction
to transfer program control to another location. For
example:

MOV #ALPHA ,PC

transfers control to location ALPHA. Besides taking 1longer
to execute (2.3 microseconds for MOV vs. 1.2 for JMP) the
use of MOV instead of JMP makes it nearly impossible to pick
up someone else's program and tell where transfers of control
take place. What if one would like to get a jump trace of
the execution of a program (anybody every hear of a move
trace?)? As a more general issue, perhaps even other
operations such as ADD and SUB from PC should be discouraged.
Possibly one or two words can be saved by using these
operations but how many occurrences are there?

3. The seemingly "neat" use of all single word instructions
where a one double-word instruction could be used and would
execute faster. Consider the following instruction sequence:

CMP -(R1), (-R1)
cMP -(R1l), -(RLl)

The intent of this instruction sequence is to subtract 8 from
register Rl (not to set condition codes). This can be
accomplished in approximately 1/3 the time via a SUB
instruction (9.4 vs. 3.8 microseconds) at no additional cost
in memory space. Another question here is also, what if Rl
is odd? SUB always wins since it will always execute properly
and is always faster!

E.8 RECOMMENDED CODING PRACTICE

E.8.1 Conditional Branches

When using the PDP-11 conditional branch instructions, it is
imperative that the correct choice be made between the signed and the
unsigned branches.

Signed Unsigned
BGE BHIS (BCC)
BLT BI1O
BGT BIIT
BLE BLOS (BCS)

A common pitfall is to use a signed branch (e.g. BGT) when comparing
two memory addresses. All goes well until the two addresses have
opposite signs; that is, one of them goes across the 16K (100000(8))
bound. This type of coding error usually shows itself as a result of
re-linking at different addresses and/or a change in size of the
program,

E.9 PDP-1l1l VERSION NUMBER STANDARD

This is the PDP-11 Version Number Standard. It applies to all
modules, parameter files, complete programs, and libraries which are
written or caused to be written, as part of the PDP-11 Software
Development effort. It is used to provide unique identification of
all released, pre-released, and in-house software.

It is limited in that, as currently specified, only six characters of
identification are used. Future implementations of the Macro
Assembler, Task Builder, and Librarian should provide for at least
nine characters, and possibly twelve, It is expected that this
standard will be enhanced as the need arises.

Version Identifier = <form> <version> <edit> <patch>

<form Used to identify a particular form of a module or
program, where applicable, as in the case of

LINK=-11l, One alphabetic character, if used, and
null (i.e., a binary 0) if not used.

<version> Used to identify the release, or generation, of a
program. Two decimal digits, starting at 00, and
incremented at the discretion of the project in
order to reflect what, in their opinion, is a
major change,

<edit> Used to identify the level to which a particular
release, or generation, of a program or module has
been edited. An edit is defined to be an
alteration to the source form, Two decimal
digits, beginning at 01, and incremented with each
edit; null if no edits.

<patch> Used to identify the level to which a particular
release, or generation, of a program or module has
been patched. A patch is defined as an alteration
to a binary form. One alphabetic character,
starting at B, and running sequentially toward Z,
each time a set of patches is released; null if no
patches.

These fields are interrelated. When <version> is changed, then
<patch> and <edit> must be reset to nulls. It is intended that when

<edit> is incremented, then <patch> will be re-set to null, because
the various bugs have been fixed.

E.9.1 Displaying the Version Identifier
The visible output of the version identifier should appear as:
Key <letter> <«form> <version> = <edit> <patch>,

where the following Key Letters have been identified:

A released or frozen version
X in-house experimental version
Y field test, pre-release, or in-house release version

Note that 'X' corresponds roughly to individual support, 'Y' to group
support, and 'V' to company support.

The dash which separates <version> from <edit> is used only if <edit>
and/or «patch> is not null. When a version identifier is displayed as
part of program identification, then the format is:

Program
<spaces>c<key-letters><«forms<version>-<edit><patchs>
Name

Examples:
PIP X03
LINK VB04-C
MACRO Y05-01

E.9.2 Use of the Version Number in the Program

All sources must contain the version number in an JIDENT directive.
For programs (or libraries) which consist of more than one module,
each individual module will follow this version number standard. The
version number of the program or library is not necessarily related to
the version numbers of the constituent modules; it is perfectly
reasonable, for example, that the first version of a new FORTRAN
library, V00, contain an existing SIN routine, say V05-01.

Parameter files are also required to contain the version number in an
.IDENT directive. Because the assembler records the last ,IDENT seen,
parameter files must precede the program,

Entities which consist of a collection of modules or programs, e.d.,
the FORTRAN Library, will have an identification module in the first
position, An identification module exists solely to provide
identification, and normally consists of something like:

;0TS IDENTIFICATION
.TITLE FTNLIB
.IDENT /003010/
.END

APPENDIX F

WRITING POSITION-INDEPENDENT CODE - A TUTORIAL

It is possible to write a source program that can be loaded and run in
any section of virtual memory. Such a program is said to consist of
position-independent code. The construction of position independent
code 1is dependent upon the proper usage of PDP-11l addressing modes.
(Addressing modes are described in detail in Chapter 5. The remainder
of this Appendix assumes the reader is familiar with the various
addressing modes.)

All addressing modes involving only register references are
position-independent. These modes are as follows:

R register mode

@Rr deferred register mode

(R) + autoincrement mode
@(R)+ deferred autoincrement mode
-(R) autodecrement mode

@=(R) deferred autodecrement mode

When using these addressing modes, position-independence is guaranteed
providing the contents of the registers have been supplied such that
they are not dependent upon a particular core location,

The relative addressing modes are generally position independent.
These modes are as follows:

A relative mode
@a relative deferred mode

Relative modes are not position-independent when A is an absolute
address (that is, a non-relocatable address) which is referenced from
a relocatable module.

Index modes can be either position~independent or
nonposition-independent, according to their use in the program, These
modes are:

X (R) index mode
@X (R) index deferred mode

If the base, X, is position-independent, the reference 1is also
position-independent. For example:

MOV 2 (SP) ,RO ; POSITION-INDEPENDENT
N=4 :

MOV N (SP) , RO : POSTTION-INDEPENDENT
CLR ADDR(R1) : NONPOSITION-INDEPENDENT

Caution must be exercised in the wuse of index modes in position
independent code.

Immediate mode can also be either position-independent or not,
according to its wusage. Immediate mode references are formatted as

Examples of assembly listings contining the

If the symbol is absolute, the reference is

not position-independent.

Immediate mode
flagged with an '

MOV #3,RO

MOV #ADDR,R1

shown below:

e
i1

P11744
P11744
1178
¢11752
e1175¢6
711786
?11762
11764
1177¢
1177¢
12002
12042
12742
12046
12022
12026
12032

12036
12040

ENDP21?

PlLeyee
TV
rR1402

g%

PER7E7
rgrbaz!
PR1423

P12767
rarce?6
rapcdz!

r32767
raeer?2
rari24!
ratete
[BV YA,
P@aPS536!
r1E72¢Q
roeegdq!
rLoeR7
PrRr536!

105767 181
PRrE46!
PR1474
r32767
r4eeap
epetie!

«IF NDF
MoV

BFQ
caLl

JENDE
TeT

BFQ
CaLl
MAYV

CALL
+IF KNPF
BYT

BNE
MOV
MOV
MAY
CALL
LFNDE
TSTR

RFQ
BT

references
character.

to

XCREF
CRFPNT,R2

gs
CRFPANMP
BILKTYP
s

ORJPMP
WP LKTP?6,BI KTYP

RLOPMP
XFDABS
#FC ,ARS,ERMASK

18

ORJPNT,RE
ENCVEC+K, (RO Y
R2,CBIPNT
CRJIPMP

LLTRL#2

158
“LC,SYM,LPMASK

symbolic

flagged and is

labels are always

;ALWAYS POSITION-INDEPENDENT,
;NON-PIC WHEN ADDR IS RELOCATABLE.,

' character are

1FNR OF PASS 2
JANY CRFF IN PRFGRESS?

1 NO

sYES, CUMP ANP FLCSF RUFFFR

$ANY CBJEELT OUTPLY?

) NO

JYES, CUMP TIT
JSET FAPR

gPUMP IT

JARS CLTPUT?

) MO

$SET FADP VECTPR

JANY LISTING CUTPUT?

3} NO
pSYMBCL TARLE SUPPRFSSICN?

INDEX

Absolute expression, 3-16 Command input string, 8-1
Absolute mode, 5-~5, F-1 Comment field, 2-4, E-3
Addressing branch instructions, 5-7 Comments, programming standard
Addressing modes, 5-1, 7-9 for, E-3
Address mode syntax, B-2 Compatibility, 5-2, 6-32, 6-38, 7-15
Angle brackets (<>), 6-21, 6-26 Concatenation, 7-8
in arguments, 7-4 Conditional assembly directives, 6-34
nesting, 3-5 Conditional nesting, 7-2
Apostrophe character ('), 4-1, Continuation lines, 2-1
6-17, 7-8 Creating program sections, 6-30
Arguments, dummy, 7-9 .CSECT directive, 6-31, 6-32
Arguments in macro call, 7-4, 7-9
number of, 7-7 4D (decimal radix), 6-22
Arguments to macro definitions, 7-4 Data sharing, 6-32
ASCII character set, A-1 Data storage directives, 6-15
ASCII conversion of one or two Decimal point, 6-22
characters, 6-17 Decimal radix, 6-22
.ASCII directive, 6-18 Default value for file
ASCII input, lower case, 6-13 specifications, 8-1
LASCIZ directive, 6-19 Delimiting characters, 3-4, 6-18,
.ASECT directive, 6-31, 6-32 6-20
Assembler directives, 2-3, 6-1 Direct assignment statement, 3-8
summary, B-3 Directives
Assembly listing example, 8-5 assembler, 2-3
line printer example, 6-4 assembler, summary, B-3
Teletype example, 6-5 conditional assembly, 6-34
"Assembly listing table of contents, data storage, 6-15
6-9, 6-11 error, 7-10
Autodecrement deferred mode, 5-3 function, 6-12
Autodecrement mode, 5-3 general assembler, 6-1
Autoincrement deferred mode, 5-3 immediate conditional, 6-37
Autoincrement mode, 5-2 indefinite repeat block, 7-11
Automatically created symbols, 7-7 listing control, 6-1
v location counter control, 6-22
4B (binary radix), 6-22 } macro, 7-1
Blank operator field, 2-3, 6-16 MACRO libraries, 7-15
.BLKB directive, 6-24 numeric control, 6-25
.BLKW.- directive, 6-24 PAL-11R conditional assembly, 6-38
Branch instruction addressing, 5-7 print, 7-11
.BYTE directive, 6-15 program boundaries, 6-27
. program section, 6-28
+C operator, 6-26 radix control, 6-21
Calls, macro, 7-3 repeat block, 6-15
Character conversion, ASCII, 6-17 subconditional control, 6-36
Character sets, 3-1, 3-2 symbol control, 6-33
ASCII, A-1 terminating, 6-27
RADIX-50, A-4 Directives summary, B-3
Characters Dollar character ($), 2-3, 3-7
delimiting, 3-4, 6-18 Dot character (.), 2-3, 3-7, 3-13
illegal, 3-5 Double colon (::), 2-2
in arguments, 7-5 Double equal sign (==), 3-9
operator, 3-5 .DSABL directive, 6-12
separating, 3-4 example, 6-14
special MACRO-11, B-1 Dummy arguments, 7-9
Code sharing, 6-32
Codes, table of mode forms and .ENABL directive, 6-12
codes, 5-6 example, 6-14
Coding practice recommended in .ENDC directive, 6-34
programming, E-14 .END directive, 6-27
Colon (:), 6-6 .ENDM directive, 7-1
double (::), 2-2 .ENDM statement, 7-14

X-1

.ENDR statement, 7-14
.EOT directive, 6-27
Equal sign (=), 3-9

double equal sign (==), 3-9
.ERROR directive, 7-10
Error in command syntax, 8
Error messages, assembler,
Error message summary, D-1
.EVEN directive, 6-23
Exiting (programming standards
for), E-9
Expressions,

-1
8-7

3-15

External expression, 3-16
External symbols, 3-18
+F operator, 6-26
Fields
comment, 2-4
label, 2-2
operand, 2-3

operator, 2-3
programming standards for,
Floating point numbers, 6-25
Floating point storage directives,

6-25
Floating point truncation,
LFLT2 directive, 6=25
.FLT4 directive, 6-25
Format control, 2-4
Formatting standards in

programming, E-10
FORTRAN language names, 6-32
Forward referencing, 3-8
Functions, enable/disable,

6-13

E-3

6-13

6-12,

.GLOBL directive, 6-32
Global expression, 3-16
Global symbols, 2-2, 3-8

.IDENT directive, 6-10

.IF directive, 6-34

.IFF directive, 6-36

IFT directive, 6-36

.IFTF directive, 6-36

Immediate mode, 5-4, F-1
Indefinite repeat block directive,

7-11
example, 7-13
Index mode, 5-3, F-1

Index mode deferred, 5-4
Instructions forbidden in
programming, E-13

Instruction mnemonic, 2-3

Internal symbecls, 3-8

.IRPC directive, 7-14
example,. 7-13

.IRP directive, 7-11
example, 7-13

Label field, 2-2, E-3

Labels, 3-=7
in expanded macro, 7-7
programming standards for,
.LIMIT directive, 6-26
Line formatting, 2-4
programming standard for, E-3
Line printer listing example, 6-5
Linking, 4-1

E-5

Listing control directives, 6-1
arguments, 6-2

Listing
example of line printer, 6-4
example of Teletype, 6-5
suppression of, 6-1

Listing level count, 6-1

Listing switches, 6-3, 6-6

Loading MACRO-11l, 8-1

Local symbols, 3-10

Location counter, 3-13, 6-22

MACRO-11 symbols, 3-6

Macro calls, 2-3, 7-3
arguments, 7-4

Macro definition formatting, 7-3

Macro definitions, nested, 7-9

Macro definitions, separating
characters, 7-8

.MACRO directive, 7-1
Macro directives, 7-1
MACRO libraries, 7-15
Macro nesting, 7-3, 7-4
.MCALL directive, 7-15
.MEXIT directive, 7-2
MEXIT statement, 7-14
Mnemonic, instruction, 2-3

MoD40, ,6-19
Mode forms and codes, table of,

Modes of address, 5-1, F-1
absolute, 5-5
autodecrement, 5-3
autodecrement deferred, 5-3
autoincrement, 5-2
autoincrement deferred, 5-3
examples, F-4
immediate, 5-4
index, 5-3
index deferred, 5-4
register, 5-1
register deferred, 5-2
relative, 5-5
relative deferred, 5-6

Modularity (standards for

programming), E-6

Naming standards, E-4

.NARG directive, 7-9

.NCHAR directive, 7-10

Negative numbers, 3-14

Nested
angle brackets, 3-5
conditional blocks, 6-36

5-6

Nested (cont.)

macros, 7-3

macro calls, 7-4

macro definitions, 7-9
Nesting, conditional, 7-2
Nesting under PAL-11R, 6-38
Number of arguments in macro call,

7-9

Number of characters in argument, 7-9

Numbers, 3-14
Numeric arguments as symbols, 7-6
Numeric control, 6-25

temporary, 6-26
.NTYPE directive,
Null operand, 6-16

7-10

40 (octal radix), 6-22
Octal numbers, 3-14

.ODD directive, 6-23
Operand field, 2-3, E-3
Operand, null, 6-16
Operating procedures, 8-1
Operation field, E-3
Operator characters, 3-5
Operator field, 2-3

blank, 6-16
Operator priority, 3-6
Operators

binary, 3-6
unary, 3-5

.PAGE directive, 6-12, 7-3
Page ejection, 6-12, 7-3
Page headings, 6-9
PAL-11R conditional assembly
directives, 6-38
assembly switch options, 8-3
PDP-11 Version number standard,
Percent character (%), 3-10

Period character (.), 2-3, 3-7, 3-12
Permanent Symbol Table (PST), 3-7,
c-1

Position~independent code (PIC), 1-1

writing of, F-1

.PRINT directive, 7-11

Processor priority (programming
standards for), E-4

Program boundaries directive,

Program counter, 5-1

Programming standards, E-1

Program modules (standards for
programming), E-6

Program section creation, 6-10

Program source files (programming
standards), E-13

.PSECT directive, 6-28

PST see Permanent symbol table

6-27

Question mark character (?), 7-8
Quote characters

double ("), 6-17

single ('), 6-17, 7-8

E-15

Radix control, 6-21

temporary, 6-22
.RAD50 directive, 6-19
.RADIX directive, 6=-21
RADIX-50 character set, A-4
Radix of source program numbers, 3-14
Register deferred mode, 5-2
Register mode, 5-1
Register names (programming

standards for), E-4

Register symbols, 3-9
Relative addressing modes, F-1
Relative deferred mode, 5-5
Relative mode, 5-5

Relocatable expression, 3-16
Relocation, 2-2, 4-1

Repeat block directive, 7-14
.REPT directive, 7-14

Rounding of numbers, 6-13, 6-25

Separating characters, 3-4
in macro definitions, 7-8
Sharing, code or data, 6-32
Single quote character, 7-8
Single-word floating-point numbers,
3-14
Space character, 2-4, 7-4
Special characters in arguments,
7-5
Stack overflow, 8-8
Standards, RSX-11D, E-1
Standard symbolics in programming,
E-5
Statement format, 2-1
Subconditional directives, 6-36
Summary of assembler directives,B-3
Summary of error messages, D-1
Suppression of listing, 6-1
Switches
enable/disable,
listing, 6-3
Switch options, 8-3
Symbol control directive,
Symbolic function arguments,
Symbols, 3-2
external, 3-8
global, 3-8
local, 3-10
internal, 3-8
macro-defined, 3-7
permanent, 3-7
register, 3-9
undefined, 3-15
user, 3-7
Symbols created automatically, 7-7
Symbol table, 3-7
Syntax, address mode, B-2
Syntax error, 8-3
System software symbols, 3-7

6-14

6-33
6-13

Tab character, 2-1, 2-4
Table of contents of assembly
listing, 6-9, 6-11

Teletype listing example, 6=5
Temporary numeric control, 6-26
Temporary radix control, 6-22
Terminating directives, 6-27
Terminator, 2-3

Terms, 3-15

.TITLE directive, 6=9
Truncation of floating point
numbers, 3-14, 6-13, 6-25

Unary operators, 3-5
Undefined symbol, 3-15
Up~arrow

construction, 7-4

operators, 6-26

specification characters, 6-22
User-defined Symbol Table, 3-7
Version numbers in programs, E-16
.WORD directive, 2-3, 6-17

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming
notes, software problems, and documentation corrections, are published
by Software Information Service in the following newsletters. .

DIGITAL Software News for the PDP-8 and PDP-12
DIGITAL Software News for the PDP-11
DIGITAL Software News for 18-bit Computers

These newsletters contain information applicable to software available
from DIGITAL'S Software Distribution Center. Articles in DIGITAL
Software News update the cumulative Software Performance Summary which
is included in each basic kit of system software for new computers.
To assure that the monthly DIGITAL Software News 1is sent to the
appropriate software contact at your installation, please check with
the Software Specialist or Sales Engineer at your nearest DIGITAL
office.

Questions or problems concerning DIGITAL'S software should be reported
to the Software Specialist. If no Software Specialist is available,
please send a Software Performance Report form with details of the
problems to:

Digital Equipment Corporation
Software Information Service
Software Engineering and Services
Maynard, Massachusetts 01754

These forms, which are provided in the software kit, should be fully
completed and accompanied by terminal output as well as listings or
tapes of the user program to facilitate a complete investigation. An
answer will be sent to the individual, and appropriate topics of
general interest will be printed in the newsletter.

Orders for new and revised software manuals, additional Software
Performance Report forms, and software price lists should be directed
to the nearest DIGITAL field office or representative. USA customers
may order directly from the Software Distribution Center in Maynard.
When ordering, include the code number and a brief description of the
software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user
library and publishes a catalog of programs as well as the DECUSCOPE
magazine for its members and non-members who request it. For further
information, please write to:

Digital Equipment Corporation
DECUS

Software Engineering and Services
Maynard, Massachusetts 01754

DOS/BATCH
Assembler (MACRO)
Programmer's Manual
DEC-11-LASMA-A-D

READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve
the quality and usefulness of its publications. To do this effectively
we need user feedback--your critical evaluation of this document.

Did you find errors in this document? If so, please specify by page.

How can this document be improved?

How does this document compare with other technical documents you
have read?

Job Title Date:
Name: Organization:
Street: Department:

City: State: Zip or Country

Fold Here

Do Not Tear - Fold Here and Staple

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

Digital Equipment Corporation
Software Information Service
Software Engincering and Services
Maynard, Massachusetts 01754

CONTENTS

CHAPTER 1 EFFECTIVE USE OF ASSEMBLY LANGUAGE PROGRAMMING

1.1 STANDARDS AND CONVENTIONS
1.2 POSITION-INDEPENDENT CODE (PIC)

CHAPTER 2 SOURCE PROGRAM FORMAT

2.1 STATEMENT FORMAT
2.1.1 Label Field

2.1.2 Operator Field

2.1.3 Operand Field

2.1.4 Comment Field
2.2 FORMAT CONTROL

CHAPTER 3 SYMBOLS AND EXPRESSIONS

3.1 CHARACTER SET

3.1.1 Separating and Delimiting Characters
3.1.2 1Illegal Characters

3.1.3 Operator Characters

MACRO SYMBOLS

3.2.1 Permanent Symbols

3.2.2 User-Defined and Macro Symbols
DIRECT ASSIGNMENT

REGISTER SYMBOLS

LOCAL SYMBOLS

ASSEMBLY LOCATION COUNTER

NUMBERS

TERMS

EXPRESSIONS

w
3]

WWwwwwww
.«
YoNoudw

CHAPTER 4 RELOCATION AND LINKING
CHAPTER 5 ADDRESSING MODES

REGISTER MODE
REGISTER DEFERRED MODE
AUTOINCREMENT MODE
AUTOINCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT MODE
INDEX MODE
INDEX DEFERRED MODE
IMMEDIATE MODE
ABSOLUTE MODE
1 RELATIVE MODE
RELATIVE DEFERRED MODE
5.13 TABLE OF MODE FORMS AND CODES
5.14 BRANCH INSTRUCTION ADDRESSING

FHRYO~NOUIdWND -

e s o e o

v onm

.
[
[\

CHAPTER 6 GENERAL ASSEMBLER DIRECTIVES

6.1 LISTING CONTROL DIRECTIVES

6.1.1 .LIST and .NLIST
6.1.2 Page Headings
6.1.3 .TITLE

1
=

i
i

[\S}
I 1

k})NNNNN
|
S dwwN e [l [l g

w
|
[

l'uywc»uaﬁ:wnuu;w
1

wwwww
1
R
QUL WRWO M-I~ U S

g s
(.
=

U'lU'lU1U'IU1U'lU'lUl'IU'101UIU'IU1(J1
NSOt B wwwWww NN

(23}
I |

AT O
I
oo

6.1.4 .SBTTL 6-8
6.1.5 L(IDENT 6-9
6.1.6 Page Ejection 6-11

6.2 FUNCTIONS: .ENABL AND .DSABL DIRECTIVES 6-11
6.3 DATA STORAGE DIRECTIVES 6-15
6.3.1 .BYTE 6-15
6.3.2 .WORD 6-16
6.3.3 ASCII Conversion of One or Two Characters 6-17
6.3.4 .ASCII 6-18
6.3.5 L.ASCIZ 6-19
6.3.6 .RAD3f@ 6-19

6.4 RADIX CONTROL 6-21
6.4.1 .RADIX 6-21
6.4.2 Temporary Radix Control:+D, 40, and 4B 6-22

6.5 LOCATION COUNTER CONTROL 6-22
6.5.1 .EVEN 6-23
6.5.2 .0DD 6-23
6.5.3 .BLKB and .BLKW 6-24

6.6 NUMERIC CONTROL 6-25
6.6.1 .FLT2 and .FLT4 6-25
6.6.2 Temporary Numeric Control: 4F and 4C 6-26

6.7 TERMINATING DIRECTIVES 6-27
6.7.1 .END 6-27
6.7.2 .EOT 6-27

6.8 PROGRAM BOUNDARIES DIRECTIVES: .LIMIT 6-27
6.9 PROGRAM SECTION DIRECTIVES 6-28
6.9.1 .PSECT Directives 6-28
6.9.1.1 Creating Program Sections 6-30

6.9.2 .ASECT and .CSECT Directives 6-32
6.1 SYMBOL CONTROL: .GLOBL 6-33
6.11 CONDITIONAL ASSEMBLY DIRECTIVES 6-34
6.11.1 Subconditionals 6-36
6.11.2 Immediate Conditionals 6-37
6.11.3 PAL-11R Conditional Assembly Directives 6-38
CHAPTER 7 MACRO DIRECTIVES 7-1
7.1 MACRO DEFINITION 7-1
7.1.1 .MACRO 7-1
7.1.2 .ENDM 7-1
7.1.3 .(MEXIT 7-2
7.1.4 MACRO Definition Format 7-3

7.2 MACRO CALLS . 7-3
7.3 ARGUMENTS TO MACRO CALLS AND DEFINITIONS 7-4
7.3.1 Macro Nesting 7-4
7.3.2 Special Characters 7-5
7.3.3 Numeric Arguments Passed as Symbols 7-6
7.3.4 Number of Arguments 7-7
7.3.5 Automatically Created Symbols 7-7
7.3.6 Concatenation 7-8

7.4 .NARG, .NCHR, AND .NTYPE 7-9
7.5 JERROR AND .PRINT 7-1¢
7.6 INDEFINITE REPEAT BLOCK: .IRP AND .IRPC 7-11
7.7 REPEAT BLOCK: .REPT 7-14
7.8 MACRO LIBRARIES: .MCALL 7-15

vi

CHAPTER

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

INDEX

8 OPERATING PROCEDURES

LOADING MACRO-11

COMMAND INPUT STRING

SWITCH OPTIONS

CREF, CROSS-REFERENCE TABLE GENERATION
ERROR MESSAGES

A

B
C
D

MACRO-11 CHARACTER SETS
MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER
PERMANENT SYMBOL TABLE

ERROR MESSAGE SUMMARY

.RECOMMENDED PROGRAMMING STANDARDS

WRITING POSITION-INDEPENDENT CODE -
A TUTORIAL

vii

For example:

A=1 ;THE SYMBOL A IS EQUATED TO THE
. ;s VALUE 1,
B = 'A-1&MASKLOW ;THE SYMBOL B IS EQUATED TO THE
; VALUE OF THE EXPRESSION
C: D=3 ;THE SYMBOL D IS EQUATED TO 3.
E: MOV $#1,ABLE ; LABELS C AND E ARE EQUATED TO THE

;s LOCATION OF THE MOV COMMAND
The following conventions apply to direct assignment statements:

1. An equal sign (=) or double equal (== must separate the
symbol from the expression defining the symbol value.

2., A direct assignment statement is usually placed in the 1label
field and may be followed by a comment.

3. Only one symbol can be defined in a single direct assignment
statement.

4, Only one level of forward referencing is allowed.

Example of two levels of forward referencing (illegal):

X=X
Y =12
2 =1

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-11l are numbered 0 through 7 and
can be expressed in the source program as:

%0
%l

L]

%7

where the digit indicating the specific register can be replaced by
any legal term which can be evaluated during the first assembly pass.

It is recommended that the programmer use symbolic names for all
register references. Unless the .DSABL REG statement has been
encountered, the definitions as shown in the following example are
defined by default, or, a register symbol may be defined in .a direct
assignment statement, among the first statements in the program. The
defining expression of a register symbol must be absolute. For
example:

RO=%0
R1=%1
R2=%2
R3=2%3
R4=%2
R5=%5
SP=%6
PC=%7

+RE

The user can reassign the register

The symbolic names assigned to the

the conventional names used in
these names are mnemonic, it is
convention. Note that registers

because of their special functions.

All register symbols must be define

GISTER DEFINITION

expressions, if he wishes,

registers in the example above are
all PDP-11 system programs. Since
suggested the user follow this
6 and 7 are given special names

d before they are referenced. A

forward reference to a register symbol is flagged as an error.

The % character may be used with an
register. (A register expressio
flagged with an R error code.) For

CLR $3+1
is equivalent to

CLR %4

y term or expression to specify a
n less than 0 or greater than 7 is
example:

and clears the contents of register 4, while

CLR 4

clears the contents of memory addre

3.5 LOCAL SYMBOLS

Local symbols are specially formatt
given range,

Local symbols provide a convenient
branch instructions, etc. Us

possibility of multiply-defined symbols
symbols from local references.

separates entry point
may not be referenced from other ob
their 1local symbol block. The
block appear shortly.

Local symbols are of the form n$ where n is a decimal integer

ss 4,

ed symbols used as labels within a
means of generating labels for
e of local symbols reduces the

within user program and
Local symbols
ject modules or even from outside

rules for delimiting a local symbol

a

from 1

to 65535, inclusive, and can only be used on word boundaries (i.e., at

even addresses).

1$
278
598
104s

Local symbols include:

0 10 A 00 ORI 0 ot 4 N OIS EA s

Within a 1local symbol block, 1local symbols can be defined and
referenced. However, a local symbol cannot be referenced outside the
block in which it is defined. There is no conflict with labels of the
same name in other local symbol blocks.

Local symbols 645 throgh 1278 can be dgenerated automatically as a
feature of the macro processor (see section 7.3.5 for further
details). When using local symbols the user is advised to first use
the range from 1$ to 63$, or the range from 128% to 655358,

A local symbol block is delimited in one of the following ways:
1. The range of a single local symbol block can consist of those
statements between two normally constructed symbolic labels.
(Note that a statement of the form
LABEL=,

is a direct assignment, does not create a label in the strict
sense, and does not delimit a local range.)

2. The range of a local symbol block is always terminated upon
encountering a .PSECT, .CSECT, or .ASECT directive.

3. The range of a single local symbol block can be delimited
with LENABL LSB and the first symbolic label or .PSECT,
.CSECT, or .ASECT directive following .DSABL LSB directive,
The default for LSB is off.

For examples of local symbols and local symbol blocks, see Figure 3-3.

¢T-¢

Line Octal
Number Expansion Source Code Comments
i‘ «SBTTL SFCTOR INTTYALIZATIAN
'
3 fgeeee! «CSFCT IMPURF PIMPURE SYORAGE ARFA
4 pogoee IMPURF?
g roreee! 2C8FCT IVPEAS sCLFAREN FACH PASS
& geenrere IMPPASY
? roeeoe! JCSFCT IMPLIN JCLFARED FACM LINE
g grerer IMPLINY
S
1e rgrece! FSFCT XFTFRG 1PArGRAY TNYTTALTZATION CCOF
11 cpeee XFYPRE:
12 opre® pi270g MoV WIMPURE ,R®
pgreog!
13 ppogd 2@8Re2e (8¢ CLR (R2Y+ JCLFAR TMPURE AFRES
14 coPes m227p cMP NIMPTPP,R?
raeg4ae!
15 e@012 124374 BRI i$
16
17 roreee? LCSFCT XCTFAS J1PASS IMTTIALYTZATTION CCRE
i8 ppope XFTPAS)
19 eoree o4270¢ MOV WIMFPAS,R®
raeegeg!
2% 0QrQa rPo%e2e 1%t CIR (REY< JCLFAR TMPURF PARTY
21 roees p2270¢ CMP BIMPTIAP,R?
raoeag:t
22 QP12 121374 RHT 18
23
24 rarere!t JOSFET XPTLIN pLINE INTTYALYTZATICN CODE
z% ogeer XCTLING
26 veeer o12700 MeV WTMELYN,R?
rargee!
27 veres roEeR2e 1%t CLR (REYs
ZR ppprghk p2270p CMP WIMPTRP,RM
raegae!
2% p@Ri? 121374 BHI 18
h]4
31 renpre! JSECT MIXED sMIYEPR MORE SFCTCPR
Figure 3-3

Assembly Source Listing of MACRO-11 Code Showing Local Symbol Blocks

3.6 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. When
used in the operand field of an instruction, it represents the address
of the first word of the instruction. When used in the operand field
of an assembler directive, it represents the address of the current
byte or word. For example:
A: MoV $#.,RO s« REFERS TO LOCATION A,
;I.E., THE ADDRESS OF THE
; MOV INSTRUCTION.

(# is explained in section 5.9.)

At the beginning of each assembly pass, the Assembler clears the
location counter, Normally, consecutive memory locations are assigned
to each byte of object data generated. However, the location where
the object data is stored may be changed by a direct assignment
altering the location counter:

N

.=expression

Similar to other symbols, the location counter symbol has a mode
associated with it, either absolute or relocatable. However, the mode
cannot be external. The existing mode of the location counter cannot
be changed by using a defining expression of a different mode.

The mode of the location counter symbhol can be changed by the use of
the .ASECT,.CSECT or .PSECT directives as explained in section 6.9.

The expression defining the location counter must not contain forward
references or symbols that wvary from one pass to another.

Examples:

«ASECT

.=500 ;SET LOCATION COUNTER TO
s ABSOLUTE 500

FIRST: MOV «+10,COUNT ;THE LABEL FIRST HAS THE VALUE
;500 (OCTAL)
;.+10 EQUALS 510 (OCTAL)., THE
sCONTENTS OF THE LOCATION
3510 (OCTAL) WILL BE DEPOSITED
; IN LOCATION COUNT,

.=520 ; THE ASSEMBLY LOCATION COUNTER
;NOW HAS A VALUE OF
sABSOLUTE 520 (OCTAL).

SECOND: MOV . » INDEX ; THE LABEL SECOND HAS THE

;s VALUE 520 (OCTAL)

; THE CONTENTS OF LOCATION

;520 (OCTAL) , THAT IS, THE BINARY
;CODE FOR THE INSTRUCTION

; ITSELF, WILL BE DEPOSITED IN

s LOCATION INDEX.,

« PSECT

«=.+20 s+ SET LOCATION COUNTER TO
s RELOCATABLE 20 OF THE
;s UNNAMED PROGRAM SECTION.,

THIRD: .WORD 0 s THE LABEL THIRD HAS THE
; VALUE OF RELOCATABLE 20,

Storage area may be reserved by advancing the location counter, For
example, if the current value of the location counter is 1000, the
direct assignment statements:

O=Q +40
; or

«BLKB 40
; or

.BLKW 20

reserve 40(octal) bytes of storage space in the program. The next
instruction is stored at 1100, (The .BLKB and .BLKW directives are
recommended as the preferred ways to reserve space. Refer to section
6.5.30)

3.7 NUMBERS

The MACRO-1ll Assembler assumes all numbers in the source program are
to be interpreted in octal radix unless otherwise specified. The
assumed radix can be altered with the .RADIX directive (see section
6.4.1) or individual numbers can be treated as being of decimal,
binary, or octal radix (see section 6.4.2).

Octal numbers consist of the digits 0 through 7 only. A number not
specified as a decimal number and containing an 8 or 9 is flagged with
an N error code and treated as a decimal number.

Negative numbers are preceded by a minus sign (the Assembler
translates them into two's complement form). Positive numbers may be
preceded by a plus sign, although this is not required.

A number which is too large to fit into 16 bits (177777<n) 1is
truncated from the 1left and flagged with a T error code in the
assembly listing.

Numbers are always considered absolute guantities (that 1is, not
relocatable).

Single-word floating=-point numbers may be generated with the +F
operator (see section 6.6.2) and are stored in the following format:

Refer to PDP-11/45 Processor Handbook for details of the
floating-point format.

3.8 TERMS

A term is a component of an expression. A term may be one of the
following:

1. A number, as defined in section 3.7, whose 1l6-bit value is
used,

2, A symbol, as defined earlier in the Chapter. Symbols are
interpreted according to the following hierarchy:

a. A period causes the value of the current location counter
to be used.

b. A permanent symbol's basic value is wused but its
arguments (if any) are ignored;

c. An undefined symbol is assigned a value of zero and
inserted in the user-defined symbol table as an undefined
global reference, 1If the ,L,DSABL GBL directive is in
effect, +the automatic global reference default function
is inhibited, in which case the symbol is not-defined as
a global reference. It is simply undefined. Refer to
section 6.2,

3. An ASCII conversion using either an apostrophe followed by a
single ASCII character, or a double quote followed by two
ASCII characters, which results in a word containing the
7-bit ASCII value of the character(s). (This construction is
explained in greater detail in section 6.3.3.)

4, A term may also be an expression or term enclosed in angle
brackets. Any quantity enclosed in angle brackets is
evaluated before the remainder of the expression in which it
is found. Angle brackets are used to alter the left-to-right
evaluation of expressions (to differentiate between A*B+C and
A* B+C) or to apply a unary operator to an entire expression
(- A+B , for example).

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by binary
operators and which reduce to a 16-bit value. The operands of a .BYTE
directive (see section 6.3.1) are evaluated as word expressions before
truncation to the low-order eight bits, Prior to truncation, the
high-order byte must be zero or all ones (when byte value is negative,
the sign bit is propagated). The evaluation of an expression includes
the evaluation of the mode of the resultant expression; that is,
absolute, relocatable or external. Expression modes are further
defined below.

Expressions are evaluated left to right with no operator hierarchy
rules except that unary operators take precedence over binary
operators. A term preceded by a unary operator can be considered as
containing that unary operator. (Terms are evaluated, where
necessary, before their use in expressions.) Multiple unary operators
are valid and are treated as follows:

-+=A
is equivalent to:
=< A< =A>>

A missing term, expression, or external symbol is interpreted as a
zZero. A missing operator is interpreted as +. A Q error flag is
generated for each missing term or operator. For example (here TAG is
OR'ed with LA +177777):

TAG ! LA 177777

is evaluated as
TAG ! LA+177777

with a Q error flag on the assembly listing line.
The value of an external expression is the value of the absolute part
of the expression; e.g., EXTERNAL+A has a value of A. This is
modified by LINK to become EXTERNAL+A.

Expressions, when evaluated, are either absolute, relocatable, or
external. For the programmer writing position-independent code, the
distinction is important.

l. An expression is absolute if its wvalue 1is fixed. An
expression whose terms are numbers and ASCII conversions will
have an absolute value. A relocatable expression minus a
relocatable term, where both items helong to the same program
section, is also absolute.

2. An expression is relocatable if its value is fixed relative
to a base address but will have an offset value added at Task
Build time. Expressions whose terms contain 1labels defined
in relocatable sections and periods, (in relocatable
sections) will have a relocatable value.

«ASCII <101> ;EQUIVALENT TO .ASCII/A/
.RAD50 /AB/<35> sSTORES 3255 IN NEXT WORD
CHR1=1

CHR2=2
CHR3=3

.RAD50 <CHR1><CHR2><CHR3>
;EQUIVALENT TO ,RAD50/ABC/

6.4 RADIX CONTROL

6.4.1 .RADIX
Numbers used in a MACRO-11l source program are initially considered to
be octal numbers. However, the programmer has the option of declaring
the following radices:

2, 4, 8, 10
This is done via the .RADIX directive, of the form:

+.RADIX n
where: n is one of the acceptable radices.
The argument to the .RADIX directive is always interpreted in decimal
radix. Following any radix directive, that radix is the assumed base

for any number specified until the following ,RADIX directive.

The default radix at the start of each program, and the argument
assumed if none is specified, is 8 (i.e., octal). For example:

.RADIX 10 : BEGINS SECTION OF CODE WITH
sDECIMAL
; RADIX

"«RADIX s REVERTS TO OCTAL RADIX

In general it is recommended that macro definitions not contain or
rely on radix settings from the .RADIX directive. The temporary radix
control characters should be used within a macro definition. (4D, 40,
and +B are described in the following section.) A given radix is valid
S5dughout a program until changed. Where a possible conflict exists
within a macro definition or .in possible future uses of that code
module, it is suggested that the user specify wvalues using the
+emporary radix controls (see below).

6.4.2 Temporary Radix Control: 4D, 40, and +B

Once the user has specified a radix for a section of code, or has
determined to use the default octal radix, he may discover a number of
cases where an alternate radix is more convenient (particularly within.
macro definitions). For example, the creation of a mask word might
best be done in the binary radix.

MACRO-11 has three unary operators to provide a single interpretation
in a given radix within another radix as follows:

*Dx (x is treated as being in decimal radix)
+0x (x is treated as being octal radix)
4Bx (x is treated as being binary radix)

e e
95

For example:

+p123

t0 47

+B 00001101
+0<a+3>

Notice that while the up arrow and radix specification characters may
not be separated, the radix operator can be physically separated from
the number by spaces or tabs for formatting purposes. Where a term or
expression is to be interpreted in another radix, it should be
enclosed in angle brackets.

These numeric quantities may be used any place where a numeric value
is legal.

PAL~11R contains a feature, which is maintained for compatibility in
MACRO-11, allowing a temporary radix change from octal to decimal by
specifying a decimal radix number with a "decimal point", For
example:

100. (144(8))
1376. (2540(8))
128. (200(8))

6.5 LOCATION COUNTER CONTROL

The four directives which control movement of the location counter are
.EVEN and .0DD, which move the counter a maximum of one bhyte, and
.BLKB and .BLKW, which allow the user to specify blocks of a given
number of hytes or words to be skipped in the assembly.

6.5.1 .EVEN

The .EVEN directive ensures that the assembly 1location counter
containg an even memory address by adding one if the current address
is odd. If the assembly location counter is even, no action is taken.
Any operands following an .EVEN directive are ignored.

The .EVEN directive is used as follows:

.ASCIZ /THIS IS A TEST/

.EVEN ;ASSURES NEXT STATEMENT
;BEGINS ON A WORD BOUNDARY.

.WORD XYZ

6.5.2 .0DD

The .0ODD directive ensures that the assembly location counter is odd
by adding one if it is even. For example:

; CODE TO MOVE DATA FROM AN INPUT LINE
s TO A BUFFER

N=5 s BUFFER HAS 5 WORDS
.ODD
+BYTE N*2 ;s COUNT=2N BYTES
BUFF: « BLKW N ;sRESERVE BUFFER OF N WORDS
MOV #BUFF ,R2 ;ADDRESS OF EMPTY BUFFER IN R2
MoV #LINE,R1 sADDRESS OF INPUT LINE IS IN Rl
MOVB -1(r2) ,RO ;GET COUNT STORED IN BUFF-1 IN RO
AGAIN: MOVB (R1)+, (R2) + s MOVE BYTE FROM LINE INTO BUFFER
BEQ DONE sWAS NULL CHARACTER SEEN?
DEC RO s DECREMENT COUNT
BNE AGAIN sNO = 0, GET NEXT CHARACTER
CLRB =-(R2) ;OUT OF ROOM IN BUFFER, CLEAR LAST
DONE : sWORD

LINE: .ASCIZ /TEXT/

In this case, .0ODD is used to place the buffer byte count in the byte
preceding the buffer, as follows:

COUNT BUFF~-2

BUFF

6.5.3 .BLKB and .BLKW

Blocks of storage can be reserved using the J.BLKB and +BLKW
directives. .BLKB is used to reserve byte blocks and .BLKW reserves
word blocks. The two directives are of the form:

.BLKB exp
« BLKW exp
where: exp is the number of bytes or words to reserve. If no

argument is present, 1 is the assumed default
value. Any legal expression which is completely
defined at assembly time and produces an absolute
number is legal. Using these directives without
arguments is not recommended.

For example:

1 000000° .CSECT IMPURF

2

3 000000 PASS: « BLKW

4 ;NEXT GROUP MUST STAY TOGETHER
5 000002 SYMBOL: .BLKW 2 ; SYMBOL ACCUMULATOR

6 000006 MODE:

7 000006 FLAGS: .BLKB 1 ;FLAG BITS

8 000007 SECTOR: .BLKB 1 ; SYMBOL/EXPRESSION TYPE

9 000010 VALUE: .BLKW 1 ; EXPRESSION VALUE

10 00012 RELLVL: .BLKW 1l

11 +« BLKW 2 ;END OF GROUPED DATA

12

13 00020 CLCNAM: .BLKW 2 sCURRENT LOCATION COUNTER SYMBOL
14 00024 CLCFGS: .BLKB 1

15 00025 CLCSEC: .BLKB 1

16 00026 CLCLOC: .BLKW 1

17 00030 CLCMAX: ,BLEKW 1

The .BLKB directive has the same effect as:
.=.+exp

but is easier to interpret in the context of source code.

6.6 NUMERIC CONTROL

Several directives are available to simplify the use of
the floating=-point hardware on the PDP-11.,

A floating=-point number is represented by a string of decimal
digits. The string (which can be a single digit in length)
may optionally contain a decimal point, and may be

followed by an optional exponent indicator

in the form

of the letter E and a signed decimal exponent. The list

of number representations below contains seven distinct,
valid representations of the same floating-point number:

3
3.

3.0
3.0E0
3E0
.3E1
300E-2

As can be quickly inferred, the list could be extended indefinitely
(e.g., 3000E-3, ,03E2, etc.). A leading plus sign is ignored (e.g.,
+3,0 is considered to be 3.0). A leading minus sign complements the
sign bit. No other operators are allowed (e.g., 3.0+N is illegal).

Floating-point number representations are valid only in the contexts
described in the remainder of this section.,

Floating-point numbers are normally rounded. That is, when a
floating-point number exceeds the limits of the field in which it is
to be stored, the high-order excess bit is added to the low-order
retained bit. For example, if the number is to be stored in a 2-word
field, but more than 32 bits are needed for its value, the highest bit
carried out of the field is added to the least significant position.
The .ENABL FPT directive is used to enable floating-point truncation,
and .DSABL FPT is used to return to floating-point rounding (see
section 6.2).

6.6.1 LFLT2 and ,FLT4

Like the .WORD directive, the two floating-point storage directives
cause their arguments to be stored in-line with the source program.
These two directives are of the form:

+FLT2 argl,arg2,...
FLT4 argl, argz goee

where: argl,arg2,... represent one or more floating point numbers
separated by commas.

.FLT2 causes two words of storage to be generated for each argument,
while .FLT4 generates four words of storage.

6.6.2 Temporary Numeric Control: +4F and #C

Like the temporary radix control operators, operators are available to
specify either a l-word floating=point number (4F) or the 1l's

complement of a l-word number (#C). The +F operator can only be useéd
within an instruction operand expression. +C can be used in any
expression. For example:

FL3,7: MOV #1F3.7,R0

creates a l-word floating=-point number at location FL3.7+2 containing
the value 3.7 formatted as follows:

0
=
=
5]
5]
t
=
]
2]
%

;-—Mantissa (bits 0-6)

re bs bem

-~-Exponent (bits 7-14)

e e b e Ve

--=-Sign (bit 15)
This l-word floating-point number is the first word of the 2- or
4-word floating-point number format shown in the PDP-11l Processor
Handbook, and the statement:

CMP151: .WORD +C151

stores the 1's complement of 151 in the current radix (assume current
racdlix is octal) as follows (177626 shown in binary)

17 7 6 2 6
Since these control operators are unary operators, their arguments may
be terms, and the operators may be expressed recursively. For
example:

4+F<1.2E3>
+C<D25> or +C31 or 177746

The term created by the unary operator and its argument is then a term
which can be used by itself or in an expression. For example:

+C2+6
is equivalent to:
<4C2>+6 or 17777546 or 000003
For this reason, the use of angle brackets is advised. Expressions

used as terms or arquments of a unary operator must be explicitly
grouped.

An example of the importance of ordering with respect to unary
operators is shown below:

+F1l.0 - 020400
+F=1.0 - 120400
-4+F1l.0 = 157400
-+F=-1,0 = 057400

The argument of the +F operator must not be an expression and must be
of the same format as arguments to the FLT2 and .FLT4 directives (see
section 6.6.1).

AN

6.7 TERMINATING DIRECTIVES

6.7.1 .END

The .END directive indicates the physical end of the source program.
The .END directive is of the form:

+« END exp

where: exp is an optional argument which, if present,
indicates the program entry point, i.e., the
transfer address.

When the load module is loaded, program execution begins at the
transfer address indicated by the ,END exp directive. In a runtime
system (the load module output of LINK) an .END exp statement should
terminate the first object module and .END statements should terminate
any other object modules.

6.7.2 LJEOT

Under the DOS/BATCH Monitor, the .EOT directive is ignored.

6.8 PROGRAM BOUNDARIES DIRECTIVE: ,LIMIT

It is often important to know the boundaries of the load module's
relocatable code. The .LIMIT directive reserves two words into which
LINK puts the low and high addresses of the relocated code. The low
address (inserted into the first word) is the address of the first
byte of code. The high address is the address of the first free byte
following the relocated code. These addresses are always even since
all relocatable sections are loaded at even addresses. (If a
relocatable section consists of an odd number of bytes, LINK adds one
to the size to make it even.,)

6.9 PROGRAM SECTION DIRECTIVES

6.9.1 L.PSECT Directive

Program sections are defined by the LPSECT directive, which is
formatted as:

.PSECT [NAME] [,RO/RW][,I/D][,GBL/LCL] [,ABS/REL] [,CON/OVR] [,HGH/LOW]

The brackets ([]) are for purposes of illustrating optional
parameters, and are not included in the parameter specifications. The
slash (/) indicates that a choice is to be made between the
parameters., The program section attribute parameters are summarized
in Table 6-2.

Table 6-2
.PSECT Directive Parameters
Parameter Default Meaning
NAME Blank Program section name, in Radix=50
format, specified as one to six
characters. If omitted, a comma must
appear in the first parameters position.

RO/RW RW Program section access mode;

RO=Read Only
RiI=Read/Write

1/D I Program section type;
I=Instruction
D=Data
GBL/LCL LCL The scope of the program section, as

interpreted by LINK;

GBL=Globhal
IL.CL=Local

ABS/REL REL Defines relocation of the program
section;

ABS=Absolute (no relocation)
REL=Relocatable (a relocation bias
is required)

CON/OVR OVR Program section allocation;

CON=Concatenated
OVR=0verlaid

HGH/LOW Low Program section memory type;

HGH=High=-speed
LOW=Core

* R RNOTE***
The HGH/LOW attribute is currently ignored by LINK,

The only parameter that is position-dependent is NAME, If it is
omitted, a comma must be used in its place. For example,

.PSECT ,RO

This example shows a PSECT with a blank name and the Read Only access
parameter. Defaults are used for the remaining parameters.

LINK interprets the .PSECT directive's parameters as follows:

RO/RW Defines the type of access to the program section
permitted which is; Read Only, or Read/Write.

I/D Allows LINK to differentiate global symbols that are
entry points (I) from global symbols that are data
values (D).

{
GBL/LCﬁ Defines the scope of a program section. A global
4 program section's scope crosses segment (overlay)
boundaries; a local program section's scope is within a
single segment, In single=-segment programs, the
GBL/LCL parameter is ignored.

ABS/REL When ABS is specified, the program section is absolute.
No relocation is necessary (i.e., the program section
is assembled starting at absolute virtual 0). When REL
is specified, a relocation bias is calculated by LINK,
and added to all references in the section.

CON/OVR CON causes LINK to collect all allocation references to
the program section from different modules and
concatenate them to form the total allocation for the
program section. OVR indicates that all allocation
references to the program section overlay one another.
Thus, the total allocation of the program section is
determined by the largest request made by a module that
references it.

Once the attributes of a named .PSECT are declared in a module, the
MACRO-11 Assembler assumes that this .PSECT's attributes hold for all
subsequent declarations of the named .PSECT in the same module. Thus,
the attributes may be declared once, and later ,PSECT's with the same
‘name will have the same attributes, when specified within the same
module. “

The Assembler provides for 255(10) program sections: One absolute
section, one blank relocatable section, and 253(10) named relocatable
sections are permitted. The ,PSECT directive enables the user to:

l. Create his program (object module) in sections; and,
2. Share code and data.

For each program section specified or implied, the Assembler maintains
the following information:

1. Section name;
2. Contents of the program counter;
3. Maximum program counter value encountered; and,

4. Section attributes, (the six .PSECT attributes).

6.9.1.1 Creating Program Sections

A given program section 1is defined completely upon its first
reference, Thereafter, the section can be referenced by completely
specifying the section attributes or by specifying the name only. For
example, a section can be specified as:

+PSECT ALPHA ,ABS,OVR
and later referenced as:

«PSECT ALPHA
By maintaining separate 1location counters for each section, the
Assembler allows the user to write statements which are not physically

contiguous but are loaded contiguously, as shown in the following
example:

.PSECT SEC1,REL ; START A RELOCATABLE SECTION NAMED
A: « WORD 0 ;SEC1 ASSEMBLED AT RELOCATABLE 0,
B: « WORD 0 ;s RELOCATABLE 2 AND
C: « WORD 0 ;s RELOCATABLE 4,
ST: CLR A $ASSEMBLE CODE AT

CLR B ; RELOCATABLE ADDRESSES

CLR C ;6 THROUGH 21

.PSECT SECA,ABS ; START AN ABSOLUTE SECTION NAMED SECA
=4 ;ASSEMBLE CODE AT

« WORD .+2 ,HALT ;ABSOLUTE 4 THROUGH 7,

.PSECT SEC1 ;RESUME THE RELOCATABLE SECTION

INC A sASSEMBLE CODE AT

BR ST ; RELOCATABLE 22 THROUGH 27

«END

The first appearance of a .PSECT directive with a given name assumes
the location counter is at relocatable or absolute zero. The scope of
each directive extends until a directive beginning a different section
is given. Further occurrences of a section name in a subsequent
.PSECT statement resume assembling where the section previously ended.

.PSECT COMl,REL s DECLARE RELOCATABLE SECTION COM1

As «WORD 0 sASSEMBLED AT RELOCATABLE 0,

B: «WORD 0 ;ASSEMBLED AT RELOCATABLE 2,

C: « WORD 0 ;ASSEMBLED AT RELOCATABLE 4,
.PSECT COM2,REL ;DECLARE RELOCATABLE SECTION COM2

Xz «WORD 0 ;ASSEMBLED AT RELOCATABLE 0

Y: « WORD 0 ;ASSEMBLED AT RELOCATABLE 2,
.PSECT COMl sRETURN TO COM1

D: « WORD 0 sASSEMBLED AT RELOCATABLE 6,
«END

All labels in an absolute section are absolute; all labels in a
relocatable section are relocatabhle. The location counter symbol,
", ", is relocatable or absolute when referenced in a relocatable or
absolute section, respectively. An undefined internal symhol is a
global reference. It essentially has no attributes except global
reference. Any labels appearing on a .PSECT (or .ASECT or .CSECT)
statement are assigned the value of the location counter before the
.PSECT (or other) directive takes effect. Thus, if the first
statement of a program is:

A: .PSECT ALT,REL

then A is assigned to relocatable zero and 1is associated with the
relocatable section ALT.

Since it is not known at assembly time where the program sections are
to be loaded, all references between sections in a single assembly are
translated by the Assembler to references relative to the base of that
section, The Assembler provides LINK with the necessary information
to resolve the linkage.

Note that this is not necessary when making a reference to an absolute
section (the Assembler knows all load addresses of an absolute
section).

In the following example, references to X and Y are translated into
references relative to the base of the relocatable section SEN,

.PSECT ENT,ABS

.=1000
Az CLR X ;ASSEMBLED AS CLR BASE OF
;s RELOCATABLE SECTION + 10
JMP Y sASSEMBLED AS JMP BASE OF
s RELOCATABLE SECTION + 6
.PSECT SEN,REL
MOV RO,R1
JMP A s ASSEMBLED AS JMP 1000
Y: HALT
Xz WORD 0
+END

Code or Data Sharing

Named relocatahle program sections with the attribute OVR operate as
FORTRAN labeled COMMON; that is, sections of the same name with the
attribute OVR from different assemblies are all loaded at the same

location by LINK All other program sections (those with the attribute
CON) are concatenated.

Note that there is no conflict between internal symbolic names and
program section names; that is, it is legal to use the same symbolic
name for both purposes. In fact, considering FORTRAN again, this is
necessary to accommodate the FORTRAN statement:

COMMON /X/A,B,C,X

where the symbol X represents the base of this program section and
also the fourth element of this program section.

Program section names should not duplicate .GLOBL names. In FORTRAN
language, COMMON block names and SUBROUTINE names should not be the
same.

6.9.2 JASECT and .CSECT Directives

DOS/BATCH assembly language programs use the +.PSECT directive
exclusively, as it affords all the capabilities of the .ASECT and
.CSECT directives defined for other PDP-1l1 assemblers. The Macro
Assembler will accept .ASECT and .CSECT but assemhles them as if they
were LPSECT's with the default attributes 1listed below. Also,
compatibility exists between non-DOS/BATCH MACRO-11l programs and LINK,
because LINK recognizes .ASECT and .CSECT directives that appear in
such programs. LINK accepts these directives from non-DOS/BATCH
programs, and assigns default values as shown in Table 6-3.

Table 6-3

Non-DOS/BATCH Program Section Defaults

Attribute Default Value

ASECT «CSECT (named) .CSECT
Name ABS name Blank
Access RW RW RW
Type I I I
Scope GBL GBL LCL
Relocation ABS REL REL
Allocation OVR OVR CON
Memory LOwW Low LOW

The allowable syntactical forms of .ASECT and .CSECT are:

+ASECT
.CSECT
.CSECT symbol

Note that
.CSECT JIM
is identical to

.PSECT JIM,GBL,OVR

6.10 SYMBOL CONTROL: .GLOBL

The Assembler produces a relocatable object module and a listing file
containing the assembly 1listing and symbhol table, LINK Jjoins
separately assembled object modules into a single load module. Object
modules are relocated as a function of the specified base of the load
module. The object modules (where there are more than one) are linked
via globhal symbols, such that a global symhbol in one module (either
defined by direct assignment or as a lahel) can be referenced from
another module.

A globhal symbol may be specified in a .GLOBL directive,

In addition, symbols referenced bhut not defined within a module are
assumed to bhe global references. The ,GLOBL directive is provided to
reference (and provide linkage to) symbols not otherwise referenced
within a module. For example, one might include a .GLOBL directive to
cause linkaqge to a library. UVWhen defining a globhal definition, the
.GLOBL A,B,C directive 1is equivalent to

A==value (or A::value)
B==value (or B::value)
C==value (or C::value)

The form of the .GLODRL directive is:

. GLOBL syml,sym2,...
where: syml,sym2,... are leacal symbolic names, separated by commas
or spaces where more than one symbol is
specified.

symbols appearinag in a .GLOBL directive are either defined within the
current program or are external symbols, in which case they are
defined in another program which is to be 1linked with the current
program by LINK prior to execution,

A .GLOBL directive line may contain a label in the label field and
comments in the comment field.

At the end of assembly pass 1, MACRO-11 has determined whether a given
globhal symhol is defined within the program or is expected to be an
external symbol. All internal symbols to a given program, then, must
be defined by the end of pass 1 or they will be assumed to be global
references (see .ENABL, .DSABL of globals in section 6.,1.6).

DEFINE A SUBROUTINE WITH 2 ENTRY POINTS WHICH CALLS AN
EXTERNAL SUBROUTINE

. we

+« PSECT ;DECLARE THE PROGRAM SECTION
.GLOBL A,C ;DEFINE A,C AS GLOBALS

Az: MOV @(R5)+,R0O ;ENTRY A DEFINED
Mov #X,R1

Xz JSR PC,C ;CALL EXTERNAL SUBROUTINE C
RTS R5 ;EXIT

B:: MOV +(R5)+,R1 ;DEFINE ENTRY B
CLR R1
BR X

In the example ahove, A and B are entry symhols (B is defined as
globhal via double colon convention), C is an external symbol and X is
an internal symbol.

References to external symhols can appear in the operand field of an
instruction or assembler directive in the form of a direct reference,
i.e.:

CLR EXT
.WORD EXT
CLR @EXT

or a direct reference plus or minus a constant, i.e.:

A=6
CLR EXT+A
. YIORD EXT=2
CLR AEXT+A

An external symbhol cannot be wused in the evaluation of a direct
assignment expression. A globhal symhol defined within the program can
be used in the evaluation of a direct assignment statement,

6.11 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assemhly directives provide the programmer with the
capability to conditionally include or ignore blocks or source code in
the assemhly process, This technique is used to allow several
variations of a program to be generated from the source program,

The general form of a conditional block is as follows:

+IF cond,araument (s) ;START CONDITIONAL BLOCK
. s RANGE OF CONDITIONAL
. ; BLOCK
« ENDC ;END CONDITIONAL BLOCK
where cond is a condition which must be met if the block is

to be included in the assembly. These conditions
are defined helow.

argument (s) are a function of the condition to be tested.

range is the body of code which is included in the
assembly or ionored depending upon whether the
condition is met.

The following are the allowable conditions:

Conditions
POSITIVE COMPLEMENT ARGUMENTS ASSEMBLE BLOCK IF
EQ NE expression expression=0 (or 0)
GT LE ' expression expression>: (or <0)
LT GE expression expression<0 (or >0)
DF NDF symbolic symbol is defined
argument (or undefined)
B NB macro-type argument is blank
argument (or nonblank)
IDN DIF two macro-type arguments identical
arguments separated (or different)
by a comma
Z NZ expression same as EQ/NE
G L expression same as GT/LE

*RRNOTE® **

A macro=-type argument is
enclosed in angle brackets or
within an up-arrow
construction (as described in
Section 7.3.1). For example:

<A,B,C
+/124/
For example:
.IF EQ ALPHA+1 ;ASSEMBLE IF ALPHA+1=0

+ENDC

Within the conditions DF and NDF the following two operators are
allowed to group symholic arquments:

& logical AND operator

! logical inclusive OR operator

For example:

.IF DF SYM1 & SYM2

-ENDC

assembles if both SYM1 and SYM2 are defined.

6.11.1 Subconditionals
Subconditionals may be placed within conditional bhlocks to indicate:
1. Assembly of an alternate body of code when the condition of
the block indicates that the code within the block is not to
be assembled.
2. Assembly of a non-contigquous body of code within the
conditional block depending upon the result of the
conditional test to enter the block.

3. Unconditional assembly of a body of code within a conditional
block.

There are three subconditional directives, as follows:

Subconditional Function
Directives
+IFF The code following this statement up to the next

subconditional or end of the conditional block is
included in the program providinag the value of the
condition tested wupon entering the conditional
block was false.

. IFT The code following this statement up to the next
subconditional oxr end of the conditional hlock is
included in the program providing the value of the
condition tested upon entering the conditional
block was true.

. IFTF The code following this statement up to the next
subconditional or the end of the conditional block
is included in the program regardless of the value
of the condition tested upon entering the
conditional block.

The implied argument of the subconditionals is the wvalue of the
condition upon entering the conditional block. Subconditionals are
used within outer level conditional blocks. Suhbconditionals are
ignored within nested, unsatisfied conditional blocks.

For example:

.IF DF SYM ;sASSEMBLE BLOCK IF SYM IS DEFINED

«IFF
. #ASSEMBLE THE FOLLOWING CODE ONLY IF
. 3 SYM IS UNDEFINED,

. IFT sASSEMBLE THE FOLLOWING CODE ONLY IF
. 3+ SYM IS DEFINED.

« IFTF ;sASSEMBLE THE FOLLOWING CODE
. ; UNCONDITIONALLY,

« ENDC

.JF DF X sASSEMBLY TESTS FALSE

.IF DF Y ;s TESTS FALSE

. ILFF s NESTED CONDITIONAL
. s IGNORED

+IFT s NOT SEEN

«ENDC

+« ENDC

However,

+IF DF X ;s TESTS TRUE

+IF DF Y s TESTS FALSE

+IFF s+ IS ASSEMBLED

JIFT s NOT ASSEMBLED

+ENDC

+« ENDC

6.11.2 Immediate Conditionals

An immediate conditional directive is a means of writing a 1l-line
conditional block. In this form, no .ENDC statement is required and
the condition is completely expressed on the 1line containing the
conditional directive., Immediate conditions are of the form:

.IIF cond, arg, statement

where: cond is one of the 1legal conditions defined for
conditional blocks in section 6.11.

arqg is the arqument associated with the conditional
specified, that is, either an expression, symbol,
or macro-type arqument, as described in section

6.11,
statement is the statement to be assembled if the condition
is met.
For example:
.IIF DF FOO BEQ ALPHA

this statement generates the code
BEQ ALPHA
if the symbol FOO is defined.

A label must not be placed in the lahel field of the .IIF statement.
Any necessary labhels may be placed on the previous line:

LABEL:
LITF DF F00,BEQ) ALPHA

. IIF DF FOO, LABEL: BEQ ALPHA

6.11.3 PAL-11R Conditional Assembly Directives

In order to maintain compatibility with proagrams developed under
PAL~11R, the following conditionals remain permissible under MACRO-11.
It is advisable that future programs be developed using the format for
MACRO-11 conditional assembhly directives.

NDirective Arguments Assemble Block if
.IFZ or .IFEQ expression expression=0
.IFNZ or.IFNE expression expression not equal 0
.IFL or .IFLT expression expression<0
.IFG or ,IFGT expression expression> 0
.IFLE expression exnression is < or =0
.IDF logical exnression expression is true (defined)
. IFNDF logical expression expression is false (undefined)

The rules governing the usage of these directives are now the same as
for the MACRO-11 conditional asserbly directives previously described.
Conditional assembly blocks must end with the .ENDC directive and are
limited to a nesting depth of 16(10) levels (instead of the 127(10)
levels allowed under PAL-11R).

CHAPTER 7

MACRO DIRECTIVES

7.1 MACRO DEFINITION

It is often convenient in assemhly language programming to generate a
recurring coding sequence with a single statement., 1In order to do
this, the desired coding sequence 1is first defined with dummy
arguments as a macro. Once a macro has been defined, a single
statement calling the macro bv name with a 1list of real arguments
(replacing the corresponding dummv -arguments in the definition)
generates the correct sequence or expansion.

7.1.1 .MACRO

The first statement of a macro definition must be a .MACRO directive.
The .MACRO directive 1is of the form:

«MACRO name, dummy argument list
where:
name is the name of the macro. This name is any legal
symbol. The name chosen may be used as a label

elsewhere in the program.

' represents any legal separator (generally a comma
or space).

dummy zero, one, or more legal symbols which may

argument appear anywhere in the body of the macro

list definition, even as a labhel, These symbols can bhe
used elsewhere in the user program with no
conflicts of definition. Where more than one

dummy argument is used, they are separated by any
legal separator (generally a comma).

A comment may follow the durmy argument list in a statement containing
a .MACRO directive. For example:

.MACRO ABS,A,B s DEFINE MACRO ABS WITH TWO ARGUMENTS
A label must not appear on a .MACRO statement. Labels are sometimes

used on macro calls, but serve no function when attached to .MACRO
statements.,

7.1.2 .ENDM

The final statement of every macro definition must be an (ENDM
directive of the form:

+ENDM name
where:

name is an optional argqument, being the name of the
macro terminated by the statement.

For example:

- ENDM (terminates the current macro definition)

.ENDM ABS (terminates the definition of the macro ABS)
If specified, the symbolic name in the .ENDM statement must correspond
to that in the matching .MACRO statement. Otherwise the statement is
flagged and processing continues. Specification of the macro name in
the LENDM statement permits the Assembler to detect missing .ENDM
statements or improperly nested macro definitions.

The .ENDM statement may contain a comment field, but must not contain
a label.

An example of a macro definition is shown below:

«MACRO TYPMSG MESSGFE ;TYPE A MESSAGE

JSR R5,TYPMSG
«WORD MESSGE
« ENDM

7.1.3 JMEXIT

In order to implement alternate exit points from a macro (particularly
nested macros), the .MEXIT directive is provided. .MEXIT terminates
the current macro as though an .ENDM directive were encountered. Use
of .MEXIT bypasses the complications of conditional nesting and
alternate paths. For example:

«MACRO ALTR N,A,B

.IF EQ,N " ;START CONDITIONAI BLOCK

«MEXIT sEXIT FROM MACRO DURING CONDITIONAL
7 BLOCK

+ENDC ;END CONDITIONAL BLOCK

« ENDM ;NORMAL END OF MACRO

In an assembly where N=0, the .MEXIT directive terminates the macro
expansion.

+MACRO IDT SYM ;ASSUME THAT THE SYMBOL ID TAKES

.IDENT /SYM/ ;ON A UNIQUE 2~DIGIT VALUE FOR
.ENDM ;EACH POSSIBLE CONDITIONAL ASSEMBLY
«MACRO OUT ARG ;OF THE PROGRAM
IoT 005A'ARG .
- ENDM .

. ;WHERE 0O05A IS THE UPDATE
ouT \ID ;VERSION OF THE PROGRAM

;AND ARG INDICATES THE
; CONDITIONAL ASSEMBLY VERSION,

The above macro call expands to
.IDENT /005AXX/
where XX is the conditional value of ID.

Two macros are necessary since the text delimiting characters in the
.IDENT statement would inhibit the concatenation of a dummy argument.,

7.3.4 Number of Arguments

If more arguments appear in the macro call than in the macro
definition, the excess arguments "are ignored. If fewer arguments
appear in the macro call than in the definition, missing arguments are
assumed to be null (consist of no characters). The conditional
directives .IF B and .IF NB can be used within the macro to detect
unnecessary arguments.

A macro can be defined with no arguments,

7.3.5 Automatically Created Symbols

MACRO=-11 can create symbols of the form n$ where n is a decimal
integer number such that 64<n<127. Created symbols are always local
symbols between 64$ and 127$. (For a description of 1local symbhols,
see Section 3.5.) Such local symbols are created by the Assembler in
~numerical order, i.e.:

645
65$

1268
127§

Created symbols are particularly useful where a label is required in
the expanded macro. Such a label must otherwise be explicitly stated
as an argument with each macro call or the same 1label is generated
with each expansion (resulting in a multiply-defined label). Unless a
label is referenced from outside the macro, there is no reason for the
programmer to be concerned with that label,

7-7

The range of these local symhols extends between two explicit labels.
Each new explicit label causes a new 1local symbol block to be
initialized.

The macro processor creates a local symbol on each call of a macro
whose definition contains a dummy argument preceded by the ? (question
mark) character. For example:

.MACRO ALPHA, 3A,?B

TST A

BEQ B

ADD #5,A
B:

+ENDM

Local symbols are generated only where the real argument of the macro
call is either null or missing, If a real argument is specified in
the macro call, the generation of a 1local symbol 1is inhibited and
normal replacement is performed. Consider the following expansions of
the macro ALPHA above.

Generate a local symbol for missing argument:

ALPHA 31
TST 1
BEQ 648
ADD #5,%1

64S:
do not generate a local symbol:

ALPHA %2,XYZ

TST %2
BEQ XY7%
ADD #5,%2

XYZ:

These Assembler-generated symbhols are restricted to the first 16
(decimal) arguments of a macro definition.

7.3.6 Concatenation

The apostrophe or single quote character (') operates as a legal
separating character in macro definitions. An ' character which
precedes and/or follows a dummy arqument in a macro definition is
removed and the substitution of the real argument occurs at that
point. For example:

.MACRO DEF A,B,C

A'B: «ASCIZ /C/
+«WORD ''A'Y'B
+«ENDM

When this macro is called:

DEF X,Y¥,<MACRO-11:

it expands as follows:

XY: .ASCIZ /MACRO-11/
JWORD 'X'Y

In the macro definition, the scan terminates upon finding the first !
character. Since A is a dummy argument, the ' is removed. The scan
resumes with B, notes B as another dummy argument and concatenates the
two dummy arguments. The third dummy argument is noted as going into
the operand of the .ASCIZ directive. On the next line (this is not a
useful example, but one for purely illustrative purposes) the argument
to .WORD is seen as follows: The scan begins with a ' character.
Since it is neither preceded nor followed by a dummy argument, the '
character remains in the macro definition. The scan then encounters
the second ' character which is followed by a dummy argument and is
discarded. The scan of the argument A terminated upon encountering
the second ' which is also discarded since it follows a dummy
argument., The next ' character is neither preceded nor followed by a
dummy argument and remains in the macro expansion. The last '
character is followed by another dummy argument and is discarded.
(Note that the five ' characters were necessary to generate two '
characters in the macro expansion.)

Within nested macro definitions, multiple single quotes can be used,
with one quote removed at each level of macro nesting.

7.4 .NARG, .NCHR, AND ,NTYPE

These three directives allow +the user to obtain the number of
arguments in a macro call (.NARG), the number of characters in an
argument (.NCHR), or the addressing mode of an argument (.NTYPE). Use
of these directives permits selective modifications of a macro
depending upon the nature of the arguments passed.

The .NARG directive enables the macro being expanded to determine the
number of arguments supplied in the macro call, and is of the form:

label: .NARG symhol
where: label is an optional statement label
symbol is any legal symbol whose value is equated to the
- number of arquments in the macro call currently
being expanded. The symbol can he used by itself
or in expressions.,

The .NARG directive can occur only within a macro definition,

The ,NCHR directive enables a program to determine the number of
characters in a character string, and is of the form:

label: . NCHR symbol, <character string>
where: label is an optional statement label

symbol is any legal symbol which is equated to the number
of characters in the specified character string.

The symbol is separated from the character string
argument by any legal separator.

<character string> 1is a string of printing characters which should
only be enclosed in angle brackets if it contains
a legal separator. A semicolon also terminates
the character string.

The .NCHR directive can occur anywhere in a MACRO-1l program,

The .NTYPE directive enables the macro being expanded to determine the
addressing mode of any argument, and is of the form:

label: .NTYPE symbol, arg
where: label is an optional statement label

symbol is any legal symbol, the value of which is equated
to the 6-bit addressing mode of the argument. The
symbol 1s separated from the argument by a legal
separator, This symbol can be used by itself or
in expressions,

arg is any legal macro argument (dummy argument) as
defined in section 7.3.

The .NTYPE directive can occur only within a macro definition, An
example of NTYPE usage in a macro definition is shown below:

.MACRO SAVE ARG
.NTYPE SYM,ARG

.IF EQ,SYM&70. -

MOV ARG, TEMP ;REGISTER MODE
+IFF .
MOV #ARG , TEMP s NON-REGISTER MODE
« ENDC

- ENDM

7.5 JERROR and .PRINT

The .ERROR directive is used to output messages to the command output
device during assembly pass 2. A common use is to provide diagnostic
announcements of a rejected or erroneous macro call. The form of the
.ERROR directive is as follows:

label: LERROR expr;text
where label is an optional statement label

expr is an optional legal expression whose value is
output to the command device when the ,ERROR
directive is encountered. Where expr is not
specified, the text only is output to the command
device.

denotes the beginning of the text string to be
output,

-

ASCII Character Set

EVEN
PARITY
BIT

o+ o [ad = o+ oo H O o | ol (=] = = o

[«

)

7-BIT
OCTAL
CODE

000
001

002
003
004
005
006

007
010

011
012

013
014
015
0l6
017

020
021

022

023
024

025
026
027

APPENDIX A

CHARACTER

NUL
SOH

STX
ETX
EOT
ENQ
ACK

BEL
BS

HT
LF

vT
FP

CR

SI

DLE
DC1

DC2

DC3

DC4

NAK
SYN

ETB

MACRO~-11 Character Sets

REMARKS

Null, tape feed, CONTROL/SHIFT/P.
Start of heading: also SOM, start
of message, CONTROL/A.

Start of text; also EOA, end of
address, CONTROL/B.

End of text; also EOM, end of
message, CONTROL/C.

End of transmission (END); shuts
off TWX machines, CONTROL/D.
Enquiry (ENQRY) ; also WRU,
CONTROL/E.

Acknowledge; also RU, CONTROL/F.
Rings the bell. CONTROL/G.
Backspace; also FEO, format
effector. backspaces some
machines, CONTROL/H.

Horizontal tab. CONTROL/I.

Line feed or Line space (new line);
advances paper to next line,
duplicated by CONTROL/J.

Vertical tab (VTAB). CONTROL/K.
Form Feed to top of next page
(PAGE). CONTROL/L,

Carriage return to beginning of
line. duplicated by CONTROL/M.
Shift out; changes ribbon color to
red. CONTROL/N,

Shift in; changes ribbon color to
black. CONTROL/O.

Data link escape. CONTROL/B (DCO).
Device control 1, turns transmitter
(READER) on, CONTROL/Q (X ON).
Device control 2, turns punch or
auxiliary on. CONTROL/R (TAPE, AUX
ON) .

Device control 3, turns transmitter
(READER) off, CONTROL/S (X OFF).
Device control 4, turns punch or
auxiliary off. CONTROL/T (AUX
OFF) .

Negative acknowledge; also ERR,
ERROR. CONTROL/U,

Synchronous file (SYNC) .
CONTROL/V,

End of transmission block; also

OOCOHOHMROOHFHOROOHHOMMFOHOOHMHOOHOHNROHOOMHMOHFOCOHMHOHOOHNMMNOOHOMRHO

114
115
116
117
120

CAN
EM

ESC

axmat
nnnn

0
d

IS 4+ ¥~~~ = P2 To=m

HOZIHMHRUHIODTQHAEBODAQDI Y@ VI AN o OOJOUNTH WNFON

LEM, logical end of medium,
CONTROL/W.

Cancel (CANCL). CONTROL/X.

End of medium. CONTROL/Y.
Substitute, CONTROL/Z.

Escape. CONTROL/SHIFT/K.

File separator. CONTROL/SHIFT/L.
Group separator, CONTROL/SHIFT/M.
Record separator., CONTROL/SHIFT/N.
Unit separator. CONTROL/SHIFT/O.
Space.

Accent acute or apostrophe.

121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140

SHIFT/K.
SHIFT/L.
SHIFT/M,

*

%* %

Accent grave.

atPFr S AN EICHNEO

141
142
143
144

(]
o,
(¥,]

NN uRQUWOSE RAUKTQHDO QDY

175 This code generated by ALTMODE,

176 THIS CODE GENERATED BY PREFIX KEY
(IF PRESENT)

177 DEL Delete, Rubout,

v OOHOHMROOHHOKROOHOHROHOONRHOOHOKHH OOMHOHFOOHHOOKNO M
H
wn
o

* 4 appears as A on some machines,

** « appears as _ (underscore) on some machines.

A.2 RADIX-50 CHARACTER SET

Character ASCII Octal Equivalent Radix-50 Equivalent
space 40 0

A-2 101-132 1-32

$ 44 33

. 56 34

unused 35

0-9 60-71 36=-47

The maximum Radix-50 value is, thus,
47*50*%%24+47*%50+47=174777

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,
given the ASCII string X2B, the Radix-50 equivalent is (arithmetic is
performed in octal):

X=113000
2=002400
B=000002
X2B=115402

E.2 COMMENTS

Comment all coding to convey the global role of an instruction and not
simply a literal translation of the instruction into English., 1In
‘general this will consist of a comment per 1line of code. If a
particularly difficult, obscure, or elegant instruction sequence is

used, a paragraph of comments shall immediately precede that section
of code.

Preface text describing formats, algorithms, program-local variables,
etc, will be delimited by the character sequence ;+ at the start of
the text and ;- at the end. The comment will start in column 3.

For example:

i+

The invert routine accepts

-

; a list of random numbers and
; applies the Kolmogorov algorithm

; to alphabetize them,

E.3 NAMING STANDARDS

E.3.1 Register Standards

E.3.1.1 General Purpose Registers

Only the following names are permitted as register names; and may not
be used for any other purpose:

RO=%0 sREG 0

Rl1=%1 sREG 1

R2=%2 +REG 2

R3=%3 s REG 3

R4=%4 ;REG 4

R5=%5 , sREG 5

SP=%6 ;STACK POINTER (REG 6)
PC=%7 s PROGRAM COUNTER (REG 7)

E.3.1.2 Hardware Registers

These registers must be named identically with the hardware
definition. For example, PS and SWR.

E.3.1.3 Device Registers
These are symbolically named identically to the hardware notation,

For example, the control status register for the RK disk is RKCS.
Only this symbolic names may be used to refer to this register.

E.3.2 Processor Priority

Testing or altering the processor priority is done using the symbols
PRO, PRl, PR2,PR7

which are equated to their corresponding priority bit pattern.

Use of SPL is permitted only by showing cause and then its generation
occurs via a macro call,

E.3.3 Other Symbols

Frequently-used bit patterns such as CR and LF will be made
conventional symbolics on an as~needed basis.

E.3.4 Using the Standard Symbolics
The register standards will be defined within the assembler. All

other standard symbols will appear in a file and will be linked prior
to program execution,

E.3.5 Labels

E.3.5.1 Global Labels

Global labels should be easily recognized by their format. The
following standards apply and completely define symbol standards for
DOS/BATCH.

<letter> 2:=A/B/C/.e./Y/%

<digit> :¢=0/1/.../8/9

<alpha=num> s:=<letter>/<digit>

<doll-or-dot> =8/, -

<char> s :=calpha-num>/<doll-or-dot>

<number> t:={1=-5]<digit>*

<non-glbl=-sym> s :=<letter> [0~5] <char>

<glbl=1bl> st :=<doll-or-dots> [0-5] <char>

<glbl-offset> s s=<letter><doll-or-dot> [1-4]<char>
<glbl=bit=ptrn> s :=<letters><alpha-num-><doll-or-dot> [1-3]<char>
<local-sym> : :=<number, $**

where

non-glbl=sym are non-global symbols,

glbl-1bl are global labels (addresses).
glbl=-offset are global offsets (absolute quantities).
glbl=bit=ptrn are global bit patterns.

*The notation [n-m] indicates the number of repetitions permitted for
the immediately following non-terminal.

**number is in the range O<number<65535,

E.3.5.2 Program-local Labels

Self-relative address arithmetic (.+n) 1is ahsolutely forbidden in
bhbranch instructions, and should be used only where absolutely
essential elsewhere., Indeed no implication of adjacency is permitted
without showing cause. Non-symbolic absolute references are also
forbidden.

Target labels for branches that exist solely for positional reference
will use local labels of the form

<num> $:

Use of non-local labels is restricted, within reason, to those cases
where reference to the code occurs external to the code.
Local-labeling is formatted such that the numbers proceed sequentially
down the page and from page to page.

E.4 PROGRAM MODULES

E.4.1 General Comments on Programs

In NDOS/BATCH, a program provides a single distinct function. No
limits exist on size, but the single function limitation should make
modules larger than 1K a rarity. Since DOS/BATCH may eventually
-exploit the wvirtual memory capacity of the 11/40 and 11/45, programs
should make every attempt to maintain a dense reference locus (don't
promiscuously branch over page boundaries or over a large absolute
address distance).

All code is read-only. Code and data areas are distinct and each
contains explanatory text. Read=-only data should be segregated from
read-write data.

E.4.2 The Module Preface

Program modules adhere to a strict format. This format adds to the
readability and understandability of the module. The following
sections are included in each module: .

For the Code Section:
1. A .TITLE statement that specifies the name of the module.

2. A .PSECT statement that defines the program section in which
the module resides. If a module contains more than one
routine, subtitles may be used.

3. A copyright statement, and the disclaimer.

"Digital Equipment Corporation assumes no
responsibility for the use or reliability of its
software on equipment which is not supplied by
Digital Equipment Corporation."

4, The version number of the file,
Note: Items 1-5 must appear on the same page. The PDP-11
version number standard is described in Section 9,0,

10.

11.

12,

13.

14.

15.

E.4.3
Rules

l.

2.

The name of the principal author and the date on which the
module was first created.

The name of each modifying author and the date of
modification, name and modification dates appear one per line
and in chronological order.

A brief statement of the function of the module.

A list of the definitions of all equated local symbols used
in the module. These definitions appear one per line and in
alphabetical order.

All local Macro definitions, preferably in alphabetical order
by name,

All local data. The data should indicate

a. Description of each element (type, size, etc.)
b. Organization (functional, alpha, adjacent, etc.)
c. Adjacency requirements

A list of the inputs expected by the module. This includes
the calling sequence, condition code settings, and global
data settings.

A list of the outputs produced as a result of entering this
module, These include delivered results, condition code
settings, but not side effects. (All these outputs are
visible to the caller.)

A list of all effects (including side effects) produced as a
result of entering this module. Effects include alterations
in the state of the system not explicitly expected in the
calling sequence, or those not visible to the caller.

A more detailed definition of the function of the module.

The module code.

Formatting the Module Preface

The first five items appear on the same page and will not
have explicit headings.

Titles start at the left margin*; descriptive text is
indented 1 tab position.

Items 7-14 will have headings which start at the left margin,
preceded and followed by blank lines. 1Items which do not

*The left margin consists of a ; a space then the heading, so the
text of the heading begins in column 3.

apply may be omitted.

A template for the module preface follows.

Template.

FILE~EXAMPL.S01

WO MO NG NE NG NG W NE W NE NE VG NG NE WS WO Ve NG Ve W WG WS NE e NE e Ne W6 N Ne we e N N6 we We we “wo

E.

E.

.TITLE
«PSECT KERNEL

COPYRIGHT 1972, DIGITAL ...
VERSION VO001lA
JOE PASCUSNIK 1/1/72
MODIFICATIONS

RICHARD DOE

FIX SPR 3477 1/21/72

ADD PAGE CHANGE LOGIC 1/22/72

MODULE FUNCTION

EQUATED SYMBOLS

LOCAL MACROS

LOCAL DATA

INPUTS

OUTPUTS
EFFECTS

MODULE FUNCTION-DETAILS

MODULE CODE

4,3 Modularity

4.3.1 Introduction

No other characteristic has more

success of a system than does modularity.

impact on

the

ultimate

engineering

Modularity for DOS/BATCH

consists of the application of the uni-function philosophy described
in section 4.1 and a set of calling and return conventions universally
adhered to.

E.4.3.2 Calling Conventions (Inter-Module)
Transfer of Control

Macros will exist for call and return. The actual transfer will be
via a JSR PC instruction. For the register save routine, a
JSR Rn,SAVE will be permitted.

Register Conventions

On entry, except for result registers, a subroutine, mimimally, saves
all registers it intends +to alter, and on exit it restores these
registers. (State preservation is assumed across calls.)

Argument Passing

Any registers may be used, but their use should follow a coherent
pattern. For example, 1f passing three arguments pass them in RO, Rl
and R2 rather than RO, R2, R5., Saving and restoring occurs in one
place.

E.4,3,3 Exiting

All subroutine exits occur through a single RTS PC.

E.4.3.4 1Intra Module Calling Conventions

Designer optional, but consistency favors a calling sequence identical
to that of the inter module sequence.

E.4.3.5 Success/Failure Indication

The C bit will be used to return success/failure indicator, where
success equals 0, and failure equals 1. The volatile registers can be
used to return values or additional success/failure data.

FE.4.3.6 Module Checking Routines

Modules have the responsiblity of verifying the validity of arguments
passed to them., The design of a module's calling sequence should aim
at minimizing the validity checks by minimizing invalid combinations.
Programmers can add test code to perform additional checks during
shakedown. All code should aim at discovering an error as close (in
terms of instruction executions) to its occurrence as possible.

E.5.0 FORMATTING STANDARDS

E.5.1 Program Flow

Programs will be organized on the listing such that they flow down the
page, even at the cost of an extra branch or jump.

A\
/ \
P \/TEST /\--—----------'
e it o \ / emeeeemaaaa
! BBB ! ! AAA !
! ! ! !
T T
! —————————— !
!] !]
---------- ! COMMON !=w=—m—————-

shall appear on the listing as:

TsT
BNE BBB
ARA: v eeeasncs

B CMN

BBBfeeooosoo

Cm::......'

APPENDIX F

WRITING POSITION-INDEPENDENT CODE - A TUTORIAL

It is possible to write a source program that can be loaded and run in
any section of virtual memory. Such a program is said to consist of
position-independent code., The construction of position independent
code 1is dependent upon the proper usage of PDP-11l addressing modes.
(Addressing modes are described in detail in Chapter 5. The remainder
of this Appendix assumes the reader is familiar with the various
addressing modes.)

All addressing modes involving only register references are
position=-independent, These modes are as follows:

R register mode

@r deferred register mode

(R) + autoincrement mode
Q(R) + deferred autoincrement mode
=(R) autodecrement mode

@=(R) deferred autodecrement mode

When using these addressing modes, position-independence is guaranteed
providing the contents of the registers have been supplied such that
they are not dependent upon a particular core location.

The relative addressing modes are generally position independent.
These modes are as follows:

A relative mode
QA relative deferred mode

Relative modes are not position-independent when A is an absolute
address (that is, a non-relocatable address) which is referenced from
a relocatable module.,

Index modes can be either position-independent or
nonposition—~independent, according to their use in the program. These
modes are:

X (R) index mode
@X(R) index deferred mode

If the base, X, is position~independent, the reference is also
position-independent. For example:

MOV 2(spP) ,RO ;POSITION-INDEPENDENT
N=4 .

MOV N(SP) ,RO ; POSITION-INDEPENDENT
CLR ADDR(R1) s NONPOSITION-INDEPENDENT

Caution must be exercised in the use of index modes in position
independent code.

Immediate mode can also be either position~-independent or not,
according to its usage. Immediate mode references are formatted as

follows:
#N immediate mode

Where an absolute number or a symbol defined by an absolute direct
assignment replaces N, the code is position independent. Where a
label replaces N, the code is nonposition~independent. (That is,
immediate mode references are position-independent only where N is an
absolute value.)

Absolute mode addressing is unlikely to be position-independent and
should be avoided when coding position-independently. Absolute mode
addressing references are formatted as follows:

Q#A ahsolute mode

Since this mode is used to obtain the contents of a specific core
address, it violates the intentions of position-independent code,

Such a reference is position-independent if A is an absolute address.

Position-independent code is used in writing programs such as device
drivers and utility routines which are most useful when they can be
brought into any available core space. Figure F-1 and Figure F-2 show
pieces of device driver code; one of which is position-independent and
one of which is not.

; DVRINT -- ADDRESS OF DEVICE DRIVER INTERRUPT SERVICE
; VECTOR -- ABSOLUTE ADDRESS OF DEVICE INTERRUPT VECTOR
; DRIVER -- START ADDRESS OF DEVICE DRIVER

MOV #DVRINT ,VECTOR ;SET INTERRUPT ADDRESS
MOVB DRIVER+6 ,VECTOR+2 ;SET PRIORITY
CLRB VECTOR+3 ;CLEAR UPPER STATUS BYTE

Figure F-1 Non-Position Independent Code

MoV PC,R1 sGET DRIVER START

ADD #DRIVER=-. ,R1l

MOV #VECTOR,R2 7+ee+¢& VECTOR ADDRESSES

CLR @Rr2 ;SET INTERRUPT ADDRESS

MOVB 5(R1) ,@R2 ?+..AS START ADDRESS+OFFSET
ADD R1l, (R2)+

CLR @R2 ;SET PRIORITY

MOVB 6 (R1l) ,@R2
Figure F-2 Position Independent Code

In both examples it is assumed that the program calling the device
driver has correctly initialized its interrupt vector (VECTOR) within
absolute memory locations 0-377. The interrupt entry point offset is
in byte DRIVER+5. (The contents of the Driver Table shows at
DRIVER+5: .BYTE DVRINT,DRIVER.) The priority level is at byte
DRIVER+6,

In the first example, the interrupt address is directly inserted into
the absolute address of VECTOR. Neither of these addressing modes is
position-independent.

The instruction to initialize the driver priority level uses an offset
from the beginning of the driver code to the priority value and places
that wvalue into the absolute address VECTOR+2 (which is not
position-independent). The final operation clearing the absolute
address VECTOR+3 is also not position-independent.

In the position-independent code, operations are performed in
registers wherever possible. The process of initializing registers is
carefully planned to be position-independent., For example: the first
two instructions obtain the starting address of the driver. The
current PC value is loaded into Rl, and the offset from the start of
the driver to the current location is added to that value, Each of
these operations is position-independent. The immediate mode value of
VECTOR is 1loaded into R2; which places the absolute address of the
transfer vector into a register for later use. The transfer vector is
then cleared, and the offset for the driver starting address is loaded
into the vector., The starting address of the driver is then added
into the vector, giving the desired entry point to the driver. (This
is equivalent to the first statement in Figure F~1l,) Since R2 has been
updated to point to VECTOR+2, that location is then cleared and the
priority level inserted into the appropriate byte.

The position-independent code demonstrates a principle of PDP-11
coding practice, which was discussed earlier; that is, the programmer
is advised to work primarily with register addressing modes wherever
possible, relying on the setup mechanism to determine
position-independence,

The MACRO-1ll Assembler provides the user with a way of checking the
position-independence of the code. In an assembly listing, MACRO-11l
inserts a ' character following the contents of any word which
requires the Task Builder to perform a operation. In some cases this
character indicates a nonposition-independent instruction, in other
cases, it merely draws the user's attention to the use of a symbol
which may or may not be position~independent. The cases which cause a
' character in the assembly listing are as follows:

1. Absolute mode symbolic references are flagged with an !
character when the reference 1is not position-independent.
References are not flagged when they are position-independent
(i.e., absolute). For example:

MOV @#ADDR,R1 ;PIC ONLY IF ADDR IS ABSOLUTE.

2, Index mode and index deferred mode references are flagged
with an ' character when the base is a symbolic label address
(relocatable rather than an absolute wvalue). For example:

MOV ADDR(R1) ,R5S ;NON=-PIC IF ADDR IS RELOCATABLE,
MOV @ADDR(R1) ,RS ;NON~-PIC IF ADDR IS RELOCATABLE.

3. Relative mode and relative deferred mode are flagged with an
' character when the address specified is a global symbol.
For example:

MOV GLB1,R1 ;PIC WHEN GLBl1 IS A GLOBAL SYMBOL.
MOV @GLB1,R1l ;PIC WHEN GLBlL IS A GLOBAL SYMBOL.

Examples of assembly listings contining the

If the symbol is absolute, the reference is

not position=-independent.

Immediate mode

references

to

flagged with an ' character.

MOV #3,R0

MOV #ADDR,R1

shown below:

A N) +=

[I Ne e BE -N

1
10
11

12
13
14

15
16
17

{8

211744
211744
g1175@
211752
e1175€
P14786
g11762
11764
11770
1177¢
12002
12010
12712
12046
12022
12026
12732

12036
12042

EnDP21t

r1e&y02
rgr1ag!
rp1dez

8%

PrER7E7
rers5a2!
721423

?12767
raceré
reptd2!

P32767
roree2
r@er124!
ro1eLe
rLE7OQ
PAP 536!
r1€72¢
rareaq:
PLrRA7
PRO536!

18%767 181
raes4s!
PR1474
32767
r4eeee
epeite!

«IF ADF
MOV

BFQ
caLL

JFNDC
TE&T

BFQ
cAaLl
MAY

CALL
«IF NPF
BYTY

BNE
MOV
MOV
MOV
CALL
JFNDe
TSTR

BFQ
BYT

XCREF
CRFPNT,R2

as
CRFRMP
BLKTYP
1

ORJPMR
#PLKTPE6,BI KTYP

RLEPMP
XFDARS
4FC, ARG, ENMASK

18

ORJPNT,RE
EMCVECH6, (R)«
RZ,CBIPNT
0RJRMP

LLTRL+2

{£8
“LC,SYM,LrMASK

symbolic

flagged and 1is

labels are always

sALWAYS POSITION-INDEPENDENT,
;NON=-PIC WHEN ADDR IS RELOCATABLE.

' character are

tFNR OF PASS ?
s ANY CRFF IN PRPGRESS?

1 N0

sYES, CUMP ANPM FLOSF RUFFFR

$ANY CBJECT QUTPLY?
[N

sYES&, CUMP TT

J8ETY FAP

sPUMP TIT

3ABS CLTPUT?

) MO

$SEY FAD VECTMR

JANY LISTING PUTPUT?

[] NO
P SYMBOL TARLE SU'PPRESSIAN?

