
DOS/BATCH
Linker (LINK)

Programmer's Manual

DEC-ll- ULKAkA-D

FOR THE DOS/BATCH OPERATING SYSTEM

Monitor Version Vf{19

August 1973

For additional copies, order No. DEC-ll-ULKAA-A-D from Digital Equipment
Corporation, Software Distribution Center, Maynard, Massachusetts 01754.

Your attention is invited to the last two pages
of this document. The "How to Obtain Software
Information" page tells you how to keep up-to-
date with DEC's software. The "Reader's Comments"
page, when filled out and mailed, is beneficial to
both you and DEC; all comments received are acknow­
ledged and considered when documenting subsequent
manuals.

Copyright (§)1973 by Digital Equipment Corporation

Associated documents:

DOS/BATCH Monitor
Progran~er's Manual, DEC-II-OMPMA-A-D

DOS/BATCH User's Guide, DEC-II-OBUGA-A-D

DOS/BATCH Assembler (MACRO-II)
progran~er's Manual, DEC-II-LASMA-A-D

DOS/BATCH FORTRAN Compiler and Object Time System
programmer's Manual, DEC-II-LFRTA-A-D

DOS/BATCH System Manager's Guide, DEC-II-OSMGA-A-D

DOS/BATCH File Utility Package (PIP)
programmer's Manual, DEC-II-UPPAA-A-D

DOS/BATCH Debugging Program (ODT-IIR)
Programmer's Manual, DEC-II-UDEBA-A-D

DOS/BATCH Librarian (LIBR)
Prograrr~er's Manual, DEC-II-ULBAA-A-D

DOS/BATCH Text Editor (EDIT-II)
prograrr~er's Manual, DEC-II-UEDAA-A-D

DOS/BATCH File Compare Program (FILCOM)
Programmer's Manual, DEC-II-UFCAA-A-D

DOS/BATCH File Dump Program (FILDMP)
programmer's Manual, DEC-II-UFLDA-A-D

DOS/BATCH Verification Program (VERIFY)
programmer's Manual, DEC-II-UVERA-A-D

DOS/BATCH Disk Initializer (DSKINT)
programmer's Manual, DEC-II-UDKIA-A-D

'rrademarks of Digital Equipment Corporation include:

DEC

DIGITAL (logo)

DECtape

UNIBUS

PDP-II

COMTEX-ll

RSTS-ll

RSX-ll

ii

PREFACE

This document describes the features and operations of the LINK-II

Linker, a system program for the PDP-II DOS/BATCH Monitor System. The

reader is expected to be familiar with the DOS/BATCH Monitor, Macro-II

Assembler, and PIP progranls, as described in their respective documents

listed on the previous page~

DOCUMENTATION CONVENTIONS

As shown in the examples herein, command strings are

typed in response to the underlined ~ and ~ and #

characters.

All cOrnnland strings are terminated with the RETURN key.

NOTE

The software described in this manual

is furnished to purchaser under a li­

cense for use on a single computer

system and can be copied (with inclu­

sion of DEC's copyright notice) only

for use in such system, except as may

otherwise be provided in writing by DEC.

This document is for information pur­

poses and is subject to change without

notice.

DEC assumes no responsibility for the

use or reliability of its software on

equipment which is not supplied by DEC.

iii

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1
1.1
1.2

2
2.1
2.2
2.2.1
2.2.2
2.3

3
3.1
3.2
3.2.1
3.2.1.1
3.2.1.2
3.2.1.3
3.2.1.4
3.2.1.5
3.2.1.6
3.2.1.7
3.2.1.8
3.2.1.9
3.2.1.10
3.2.1.11
3.2.1.12
3.2.1.13
3.2.1.14
3.2.1.15
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.2

4
4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.3
4.4
4.5
4.6
4.7

TABLE OF CONTENTS

INTRODUCTION TO LINK
Global Symbols
Re1inking Link

INPUT AND OUTPUT
Input Modules
Output Module
Absou1te Loader
Transfer Address
Load Map

OPERATING PROCEDURES
Loading
Command String
Switches
Top and Bottom Switches
Concantenation Switch
ODT Switch
Transfer Address Switch
End Switch
Library Switch
Go switch
Overlay Mapping Description Switch
Options Switch
Include/Exclude Switches
Long/Short Map Switches
Global Cross-Reference Switch
Contiguous Output Switch
Program Section Sequencing Switch
General Notes on Switches
Library Searches
User Libraries
Monitor Library
Sample LINKS
FORTRAN
Assembly Language
OVerlays
Programming Notes and Cautions
Programming Notes
Cautions

OVERLAYS
Terminology
Overlay Description Language
The .ROOT Directive
The .NAME Directive
The .FCTR Directive
The .PSECT Directive
The .END Directive
Autoload Operator Asterisk
ODL Usage Specifications
Example of Overlaid Program Build
Manual Load Overlays from FORTRAN
FORTRAN Format Conversions and I/O Routines

v

1-1
1-2
1-2

2-1
2-1
2-1
2-1
2-2
2-2

3-1
3-1
3-1
3-3
3-3
3-4
3-4
3-4
3-5
3-5
3-5
3-5
3-5
3-6
3-6
3-6
3-7
3-7
3-7
3-8
3-8
3-8
3-9
3-9
3-9
3-9
3-10
3-10
3-11

4-1
4-2
4-3
4-5
4-7
4-7
4-8
4-10
4-10
4-11
4-11
4-12
4-13

CHAPTER 5
5.1
5.1.1
5.1.2
5.2
5.2.1
5.2.2
5.2.2.1
5.2.2.2
5.2.2.3
5.2.2.4
5.2.2.5
5.2.2.6
5.2.3
5.3
5.4

CHAPTER 6
6.1
6.2

CHAPTER 7
7.1
7.1.1
7.1.2
7.2
7.3

CHAPTER 8
8.0
8.1
8.2
8.3
8.4

APPENDIX A

APPENDIX B
B.l
B.l.l
B.l.2
B.l.3
B.l.4
B.l.5
B.l.6
B.l.7
B.2
B.3
B.4
B.4.l
B.4.2
B.4.3
B.4.4
B.4.5
B.4.6
B.4.7
B.4.8
B.4.9

PROGRAM MEMORY ORGANIZATION
Allocation for a Non-OVerlaid Program
Read/Write Code (and Data) (R/W)
Read-only Code (and Data) (R-O)
Allocation for an Overlaid Program
Root Segment Allocation
The Segment Tables
Status
Relative Disk Address Of Overlay Segment
Load Address Of Segment
Length of Segment
LINK Fields
Segment Name
Autoload Vectors
Overlay Memory Allocation
Overall Memory Organization

RUNTIME OVERLAY SUPPORT
Manual Load
Autoload

MEMORY ALLOCATION
Memory Allocation Procedures
Allocating Root Segment Memory
Allocating Overlay Segment Memory
Memory Allocation Map
LINK Tree Walk Algorithm

LINKING OPTIONS
Optional Input
Absolute Patch (ABSPAT)
Extend Control Section (EXTSCT)
Global Symbol Definition (GBLDEF)
Global Patch (GBLPAT)

ERROR HANDLING

LINK INPUT DATA FORMATS
Global Symbol Directory
Module Name
Control Section Name
Internal Symbol Name
Transfer Address
Global Symbol Name
Program Section Name
Program Version Identification
End of Global Symbol Directory
Text Information
Relocation Directory
Internal Relocation
Global Relocation
Internal Displaced Relocation
Global Displaced Relocation
Global Additive Relocation,
Global Additive Displaced Relocation
Location Counter Definition
Location Counter Modification
Program Limits

vi

5-1
5-1
5-1
5-1
5-1
5-1
5-2
5-3
5-3
5-3
5-3
5-3
5-4
5-4
5-5
5-5

6-1
6-1
6-2

7-1
7-1
7-1
7-2
7-2
7-2

8-1
8-1
8-2
8-3
8-4
8-4

A-I

B-1
B-2
B-4
B-4
B-5
B-5
B-6
B-7
B-9
B-9
B-9
B-lO
B-12
B-13
B-13
B-14
B-14
B-15
B-15
B-16
B-16

B. 4 .10
B.4.ll
B.4.l2
B.4.l3
B.5
B.6

APPENDIX C
C.l
C.2
C.3
C.4

APPENDIX 0

APPENDIX E

APPENDIX F
F.2

F.3
F.4
F.4.l
F.4.2
F.S
F.S.l

F.5.2
F.6
F.7
F.7.l
F.7.2
F.7.3
F.7.4

APPENDIX G

APPENDIX

\

INDEX

G.l
G.l.l
G.l.2
G.2

H
H.l
H.l.l
H.l.2
H.2
H.2.2
H.2.3
H.2.4
H.2.5
H.3
H.4

P-Section Relocation
P-Section Displaced Relocation
P-Section Additive Relocation
P-Section Additive Displaced Relocation
Internal Symbol Directory
End of Module

PROGRAM LOAD MODULE FILE STRUCTURE
The Header
The Root Segment
Overlay Segments
Non-Overlaid Program File Structures

COMPATABILITY OF LINK-ll AND THE
RSX-llD TASK BUILDER

RESERVED SYMBOLS AND SPECIAL FILES

LINKING OVERLAYS USING "CALL LINK" FORMS
Communication Among Resident and Overlay
Routines
LINK, the Run-Time Overlay Supervisor
Calling an Overlay File
OVerlay Transfer Paths
Search For Overlay Files
Operating Procedures
Creating the Core Resident Module of
an Overlay System
Creating the Overlay Files
Error Procedures and Messages
Assembly Language Overlays
Global Declarations
Stack Usage
Register Usage
COMMON Communication

.ASECTS, .CSECTS, AND .PSECTS
Program section Directives
.PSECT Directive
Creating Program Sections
.ASECT and .CSECT Directives

LOAD MAP EXAMPLES
Map Listing
Map Header
Segment Descriptions
Attributes and Statistics
Read-Only Memory Limits
ODT Transfer Address
Program Transfer Address
Identification
Control Section Allocation Synopsis
File Contents

vii

B-16
B-17
B-18
B-18
B-19
B-19

C-l
C-l
C-4
C-4
C-4

0-1

E-l

F-l

F-l
F-l
F-2
F-3
F-4
F-5

F-5
F-6
F-7
F-8
F-9
F-9
F-9
F-10

G-l
G-l
G-l
G-3
G-5

H-l
H-l
H-l
U-l
H-l
H-l
H-l
H-2
H-2
H-2
H-2

CHAPTER 1

INTRODUCTION TO LINK

The PDP-II Disk Operating System (DOS/BATCH) software includes the
Linker Proqram (LINK), which is a system program for linking and
relocating user programs assembled by an assembler or generated by a
compiler running under DOS/BATCH. LINK enables the user to assemble
separately his main progra~ and various subprograms without assigning
an absolute address for each segment at assembly time.

LINK processes the binary output (object module) of an assembly as
follows:

Relocates each object module and assigns absolute addresses.

Links the modules by correlating global symbols defined in one
module and referenced in other modules.

Produces a load map, which displays the assigned absolute
addresses.

Creates a load module that can be loaded subsequently (by the
Monitor or the Absolute Loader) and executed.

The advantages of LINK include:

The source program can be divided into sections (usually
subroutines) and assembled separately. If an error is discovered
in one section, only that section needs to be reassembled. LINK
can then link the newly reassembled object module with other
object modules already existing_ Similarly, a general-purpose
module can be asse~bled and used within several different main
programs.

Absolute addresses need not be assigned at assembly time; LINK
automatically assigns them. This prevents programs from
arbitrarily overlaying each other, and also allows subroutines to
change size, thereby influencing the placement of other routines
but not affecting their operation.

Separate assemblies allow the total number of symbols to exceed
the number allowed in a single assembly.

Internal symbols (which are not global) need not be unique among
object modules. Thus, naming rules are required for global
symbols only, as when different programmers prepare separate
subroutines for a single run-time system.

Subroutines may be provided for general use in object module form
to be linked into the user's program.

LINK requires at least a PDP-II capable of running DOS/BATCH with a
disk and a keyboard. DECtape, high-speed paper tape reader and punch,
a line printer and extra memory can be used if available. A line
printer provides a fast display device for the load map listing.

1-1

1.1 GLOBAL SYl1BOLS

Global symbols provide the links, or communication, between object
modules. SYMbols that are not glohal are called internal symbols. If
a global symbol is defined (as a label or by direct assignment) in an
object module, it is called an entry symbol and other object modules
can reference it. If the global symbol is not defined in the object
module, it is an external symbol and is assumed to be defined (as an
entry symbol) in some other object module.

As LINK reads the object modules it keeps track of all global symbol
definitions and references. It then modifies instructions and/or data
that reference the global syr.1bols.

1.2 RELINKING LINK

LINK is provided as a system program with the DOS/BATCH Operating
System. Procedures that enable you to relink LINK using the LINK
object modules can be found in the DOS/BATCH System Manager's Guide.
The resulting LINK program assumes a top of memory corresponding to
the system configuration; this can be overridden using the T (top) or
B (bottom) switches (see section 3.2.1.1).

The top address assumed by LINK is:

077460 for 16K
117460 for 20K
137460 for 24K
157460 for 28K

1-2

CHAPTER 2

INPUT ANO OUTPUT

2.1 INPUT HOOULES

Input to LINK is one or more object modules, which can be output from
the DOS Assembler, FORTRAN compiler, or other system program.

On its first pass through a module, LINK reads the object module to
gather enough information so that absolute addresses can be assigned
to all relocatable sections and all globals can be assigned absolute
values. This information appears in the global symbol directory (GSO)
of the object module.

On its second pass, LINK reads all of each object module and produces
a load module and link map. The data gathered during the first pass
is used to guide the relocation and linking process of the second
pass.

2.2 OUTPUT BOOULE

The normal output of LINK is a load module, which can be loaded and
run by the OOS/BATCH Monitor. A load module consists of formatted
binary blocks of absolute load addresses and object data as specified
for the Absolute Loader and the Monitor Loader. The first few words
of data will be the communications directory (COMO), and will have an
absolute load address equal to the lO\<Test relocated address of the
program (see Appendix C).

LINK can also produce a contiguous format file (see Appendix C);
format consists of an actual core image of the user program.
format is used mainly in the production of overlaid programs
Chapter 4).

2.2.1 Absolute Loader

this
This
(see

As described above, a communications directory (COMO) is included at
the beginning of a load module. If the COMO is loaded by the Absolute
Loader, it will be overlaid by normal code in the program, since the
data in the COMO is not needed by the Absolute Loader. This
overlaying of the COHO by the relocated program allm.vs the Absolute
Loader to handle load modules with a COHD. However, a problem arises
if a load module is to be loaded by the Absolute Loader and either of
the following conditions exists:

1. The object Modules used to construct the load module contain
no relocatable code, or

2. The total size of the relocatable code is less than the size
of the COHD.

2-1

In either case, there would not ~e enough relocatable code to overlay
the COMO, which means that the COHO will load into parts of core not
intended by the user to be altered. LINK will select the COMO's load
address such that the COMO will be against the current top of the area
being linked (see T switch in Section 3.2). If the top is very low,
LINK will not allow the COHO to be loaded below address 0; it will
load it up from o.

2.2.2 Program Transfer Address

If a transfer address is not specified by a switch, it is assumed by
LINK to be the first even transfer address encountered in the object
input.. Thus, if four object modules are linked together and if the
first and second have a .ENO statement without a transfer address, the
third an .END A, and the fourth an .END B, the transfer address used
would. be A of module three.

2.3 LOAD MAP

The load map produced by LINK provides several types of information
concerning the organization of the load module. The map begins with
the load module filename and extension, time and date of creation,
followed by the transfer address and the low and high limits of the
relocatable code. At this point is placed a synopsis of Program
Section arrangement describing the placement of each Program Section
relat.i ve to the other. Then there is a section of the map for each
oject. module included in the linking process. Each of these sections
begins with the module's name, identification if specified via the
assembler .IDENT assembly directive, and the filename from which the
module was obtained, followed by a list of the control sections and
their entry points. For each control section, the base of the section
(its low address, the top of the Section (its high address), and its
size (in bytes) are printed to the right of the section name (enclosed
in angle brackets). Following each Section name is an alphabet~cally
ordered list of entry points and their addresses. The load map is
concluded with a list of undefined symbols for each object module.

Note that modules are loaded such that the first specified in the
command string to LINK is lowest in memory.

Appendix H describes load map formats in detail.

Note that an existing map file is deleted from a device before a new
map file of the same na.me and extension is ouput to the device.

2-2

CHAPTER 3

OPERATING PROCEDURES

3.1 LOADING

LINK can be loaded into core from the disk by typing the following
Monitor command •

• RUN LINK <CR>

NOTE

In the examples, typing the RETURN, LINE FEED, and
SPACE keys are shown as <CR>, <LF>, and <SPACE>,
respectively. Also, in the examples, program
printout is underlined: user-typed input is not.

When LINK is loaded and ready to accept the user's command, it prints
the following lines:

LINK Vxx (where xx is the LINK version-number)
!.

The user can now type a command string as described below.

3.2 COMMAND STRING

Commands are typed in response to the number sign, i, printed by LINK.
The format of the command string adheres to the requirements of the
DOS Command String Interpreter (CSI), as explained in the Disk
Operating System Monitor Programmer's Handbook.

The Linker's file specifications must appear in the following order:

!load module, load map, symbol table < object modules <CR>

A null specification field signifies that the associated output is not
desired. A complete file specification contains the following
information:

dev:filnam.ext[uic]/sl:v/s2:v ••• /sn:v

The default values for each output s~cification are noted below.

dev filnam ext uic

Load Module * ** LDA This user
Map Output * none MAP This user
Object Module * none OBJ This user
Symbol Table * none STB This user

*system device (SY:) or last device specified on this side of the
< symbol
**the filename from the first input specification

3-1

If a syntax error is detected in a command string, LINK prints the
command on the teleprinter up to and including the character in error,
followed by a question mark, and then a line beginning with the input
request character #. The user must re-type the entire command
correctly.

If a command string to LINK requires more than one l-ine at the
keyboard (for example, when using the /IN or /EX switches), switch
values can be continued on from one to three succeeding lines by
typing a colon (:) at the end of each line to be continued. The colon
can be used only to continue a series of switch values; the individual
values cannot be broken up over two lines. See section 3.2.1.10 for
an example of the proper usage of the colon to continue command
strings.

Optionally, command input can be taken from a file. Such a file is
called an "indirect command file", and can be specified anywhere in
the command input stream. Normally, input is accepted from the
keyboard; when a keyboard corrunand line begins with an @ character, the
subsequent characters are assumed to specify an indirect file.

Example:

@ INDIR.FIL

where: INDIR. FIL is a DOS/BATCH filename and extension, causes commands
to be obtained from the file INDIR.FIL.

NOTE

No file extension default exists for indirect
files.

Upon encountering an indirect file, LINK stacks the current command
file specification (i.e., the keyboard or another indirect file) and
opens the specified indirect file. Commands are then read from the
file until

1. another indirect file is specified, or

2. the end-of-file is reached.

Upon reaching end-of-file, the current command file is closed, and the
next file (the one on the top of the file stack) is unstacked.
Subsequent command lines are then read from this file until

1. another indirect file is specified, or

2. the end-of-file is reached.

LINK allows five such nested levels of indirect files. This should be
adequate for most applications, but can be changed, if desired,
through an assembly option.

The use of indirect command files relieves the user of the burden of
typing repetitive commands at the keyboard, and makes possible

3-2

batching of commands.

3.2.1 Switches

The command switches associated with LINK are:

Input switches

/T Top
/B Bottom
/00 ODT
ICC Concatenated File
/TR Transfer Address
/E End
/L Library
/GO Go
/MP Overlay Mapping Description
/0 Options
/IN Include
/EX Exclude

Map Switches

/LG Long map
ISH Short map
/CR Global Cross-Reference

Load Module Output Switches

/CO Contiguous
/SQ Control Section sequencing

The mnemonic representing each s\'litch is always preceded by the slash
symbol.

If a value is specified for a switch that does not require a value,
the specified value is ignored.

3.2.1.1 Top and Bottom Switches

The T and B switches are used to control the placement or relocation
of the object program. When neither switch is specified, LINK will
link 'the object programs at the top of available core, i.e.,
immediately below the Absolute and Bootstrap Loaders.

The T switch (top) can be specified with any of the input file
specifications. It must be in the following format:

/T:n

Where n is an unsigned octal number which defines the address of the
object program.

The B switch (bottom) is specified in the same manner as the T switch.
It must be in the following format:

/B:n

3-3

where n is an unsigned octal number which defines the bottom address
of the object program.

If more than one T or B switch is specified during the creation of a
load module, the value of the last T or B switch specificati.on is
used. When the load module creation is either finished or aborted,
the default top value reverts to its original value, i.e., the top of
core of the installation.

3.2.1.2 Concatenate Switch

The CC switch is used to indicate that
example, by PIP or the FORTRAN compiler)
object modules. This switch may be used
specification. Its format is:

ICC

This switch does not have a value.

3.2.1.3 ODT Switch

the file was formed (for
as a concatenation of several

only with an input file

The 00 switch is used to link ODT with your object modules. It
identifies the associated input file as ODT for Transfer address
purposes. /00 appearing by itself in an input file specification is
equivalent to

SY:ODT.OBJ[l,l]/OD

3.2.1.4 Transfer Address Switch

The TR switch can appear with any input file specification. It can be
used with no value, or with an octal number or global symbol as its
value.

When the TR switch has no value, it indicates that LINK should take
the transfer address (even or odd) of the first object module in the
file that has the /TH appended to it as the transfer address of the
load module. Its format is:

/TR

~'lhen an octal nunber is specified as its val ue, it indicates that. the
value is the transfer address of the load module. Its format is:

/TR:n

When it has a global symbol as its value, it indicates that the value
of the global symbol is the transfer address of the load module. Its
format is:

/'rR:xxxxxx

3-4

When the specified value is a nonexistent symbol or address, the
transfer address is set to 1, and an error message is issued.

3.2.1.5 End Switch

The E switch should appear with the last input file specification. It
indicates the end of input. Its format is:

IE

The IE switch should not be used with IGO.

3.2.1.6 Library Switch

The L switch is optionally used to indicate that the file is a
library. It can appear in an input file specification only if the
specification specifies a library. The L switch does not require a
value. Its format is:

IL
Note that this switch is not
libraries in LINK. This
with the old linker.

3.2.1.7 Go Switch

necessary for correct functioning of
switch is supplied'only for compatibility

The IGO switch should appear with the last input file specification
when used. It indicates two things:

1. The end of input (in lieu of IE), and

2. When linking is complete, the load module is to be loaded and
executed.

The GO switch should not be used with IE.

3.2.1.8 Overlay Mapping Description Switch

The IMP switch is used to specify that the file is an ASCII overlay
description file as described in Chapter 4. No value is allowed on
the switch. When specified, there must not be any other input files
specified in this command string or any other input switches other
than IE.

3-5

3.2.1.9 Options Switch

The /0 switch is used in lieu of the /E switch to specify that the
link options are required. The link options are described in detail
in Chapter 8.

3.2.1.10 Include/Exclude Switches

The /IN and /EX switches are used on library files to cause the
inclusion or exclusion of specific library modules. For example, the
file specification

FTNLIB/IN:$PSHOl

guarantees that when the library file FTNLIB is searched, the routine
named $PSHOl within the library is linked. Conversely, the /EX switch
guarantees that the specified module(s) are not loaded from the
library. A typical specification might be

LIBRY/IN:ABC:OEF/EX:QKQ

which, when encountered, guarantees that ABO and OEF will be loaded
from the library file LIBRY and QKQ will not be loaded.

If, for instance, the modules ABCTMP, OEFTMP, FILTMP, OATTMP, TSTTMP,
and XPROPR (residing in a library named SPEC. LIB) are to be linked
with a file named MASTER.OBJ, and the result is to be placed in a file
named MASTER. LOA, the following command string can be used:

!MASTER<SPEC.LIB/IN:ABCTMP:OEFTMP:FILTMP:OATTMP:
!TSTTMP:XPROPR,MASTER.OBJ/E

Note the use of the colon (:) at the end of the first line of the
command string; this serves to continue the switch value list from
line 1 to line 2.

The lIN and /EX switches have no effect if specified for non-library
files.

3.2.1.11 Long/Short Map Switches

The /LG switch is specified on the map file to cause the long map form
to be produced. In addition to the normal entry points, a long map
also prints out any external globals referenced by a module.

The ISH switch is specified to cause the short map to be printed. The
short~ map consists only of the heading, program size description, and
section allocation synopsis.

The /LG and ISH switches are mutually exclusive.

3.2.1.12 Global Cross-Reference Switch

The /CR switch is specified on the map file to cause a global
cross-reference table to be produced on the map device when the link

3-6

is complete. See Appendix H for an example of a global
cross-reference table. The /CR switch can be used with the /LG or ISH
switches if desired.

3.2.1.13 Contiguous Output Switch

The /CO switch is used for a load module output file to specify that
the file is to be contiguous, with an output format similar to that
produced by the CILUS program (core- image file). When overlaid
programs are generated by LINK, use of the /CO switch is automatically
forced, since overlaid programs require a contiguous file.

The /CO switch can also be used with a value specifying that the
contiguous file generated is to be built for a device with a block
size that does not correspond to the block size of the output device
actually used. For example, if LINK is run with load module output
placed on an RFll disk, the contiguous file produced will be formatted
into 64-word blocks. Thus, the file produced will run only on disks
with 64-word block sizes. If it is desired to produce a file on a
64-word block device to run on a 256-word block device, it can be done
by specifying /CO:256 on the load module file specification to
correctly generate the file.

Thus the /CO:n switch (where n must be a mUltiple of 64) can be used
to allow contiguous output files to be generated on devices with block
sizes other than that of the actual otitput device.

NOTE

A contiguous file generated by LINK will run
correctly only on those devices with a block size
equal to that for which the file was generated; a
file generated for 256-word blocks will not run on
a 64-word block device, and vice versa.

3.2.1.14 Program Section Sequencing Switch

Normally, program sections (.CSECT's and .PSECT's) are placed in
memory in alphabetical order. The /SQ switch is used when it is
desired to place program sections in memory in order of declaration
(i.e., in the order they are encountered by LINK). The /SQ switch is
useful mainly for programs that depend upon .CSECT ordering as
implemented by previous versions of the Linker program.

3.2.1.15 General Notes on Switches

If a switch appears by itself as a specification (e.g., , ,ICC), it
takes the default device and a null file name. Thus, the linking
process will be aborted if the default device is file structured. The
/00 switch is the only exception (see section 3.2.1.3).

3-7

3.3 LIBRARY SEARCHES

3.3.1 User Libraries

Object; modules from the specified user libraries built by LINK will be
relocated selectively and linked. The object modules in the Libraries
must be ordered; only forward references are allowed.

The libraries are specified to LINK like any other input file.

For example, the user could type the following command string to the
Linkelr:

!TASK01.LDA,LP:<r1AIN.OBJ,MEASUR.LIB/E

Program MAIN.OBJ would be read in from the disk as the first
file. Any undefined symbols generated by program MAIN.OBJ
satisfied by the library MEASUR.LIB specified in the second
file. The load module, TASKOl.LDA would be put on the disk,
load map would go to the line printer.

input
can be
input
and a

As described in section 3.2.1.6, the
library file specification. This
compatibility with the old linker,
processing of the library.

/L switch
switch is

and does

can be used in a
provided only for
not affect proper

3.3. 2~ Monitor Library

At the end of pass 1, the Monitor library is searched for Monitor
routines (EMT's) which were declared as globals in the user program.
Satisfying these globals mean that the Linker passes the EHT trap
numbe!r of the found routines (in the COMD) to the Monitor so that at
load time the requested routines are made resident with the user
program. Making El1T's core resident in a resident section can be
accomplished by defining the appropriate EMT as a global before
assenilily with the .GLOBL assembly directive. Example:

.GLOBL FOP.,LUK.,CKX.

Refer to Appendix C of the DOS Monitor Programmer's Manual for a
description of globals associated with various EMT requests. Making a
potentially swappable EMT routine core resident uses core space but
saves swapping time for the routine. This tradeoff usually becomes
important when an often-used subroutine uses one or more monitor
functions that would normally be non-resident. For instance, this
problem might arise from simultaneous use of the Block I/O routine and
convE!rsion routines within the same program.

The user libraries are searched first and the Monitor library is
searched if any globals remain undefined.

3-8

NOTE

Although some undefined globals may be satisfied
at the monitor level, they continue to be flagged
as undefined globals. A message will be printed
on the user's terminal stating that there are
undefined globals, and a similar message is given
in the load map listing. HO\rJever, any undefined
globals satisfied at the Monitor level are flagged
in the LINK map undefined summary, with "**"
follmving the name. See Appendix H for an
example.

3.4 SAMPLE LINKS

3 • 4 • I FORTRAN

User is logged in under user identification code (UIC) of 200,200.

He wishes to link a FORTRruJ program (FORTI.OBJ) to the FORTRAN library
(FTNLIB) which is on the systen disk under UIC 1,1. He wants a load
map printed on the line printer. Input COMes from and output goes to
the disk.

The command string is:

~FORTI,LP:<FORTl,FTNLIB/E

(The default input extension is ODJ. Since both files FORTI and
FTNLIB had the extension OBJ there was no need to put this information
in the command strings.)

3.4.2 Assembly Language

User is logged in under UIC 200,200. He has a DECtape, but he has no
line printer at his installation. He wants his outputs, load module
(LOAD. LOA) and load map (LOAD.rmp) on DECtape and his inputs to come
from disk. (He has seven input files all with extension OBJ.)

The command strings are:

jlDTl:LOAD,LOAD<INl,IN2,IN3
.i.IN4,IN5,IN6,IN7/E

(Note that LINK accepts multiple command lines.) On the DECtape the
load module has the extension LOA and the load map has extension MAP.

3.4.3 Overlays

User is logged in under UIC 200,200. He has an ODL file (OVerlay
Description Language -- See Chapter 4) named BUILD.ODL that describes

3-9

his overlaid program. He wishes to place the load module on the disk
and the listing on the line printer.

The command string is:

!ABC,LP:<BUILO.OOL/MP/E

3.5 PROGRAMMING NOTES AND CAUTIONS

3.5.1 Programming Notes

1. No switch (except /00) can appear alone in an input
specification (i.e., /E is illegal, filename /E is legal).

2. There are several ways to link 00T-1IR.
follow.

Three examples

a. SY:<TEST,/OO/E

(The 00 switch is set)

allows the Monitor command BE to start the test program,
and the Monitor command 00 to start OOT (assuming in both
cases that the Monitor command GET TEST precedes).

b. OUTFIL<ODT,TEST/E

(no 00 switch)

allows BE to begin OOT. The command OOT will have no
effect.

c. SY: <OOT/E

allows OOT to be run by itself with the RUN command.

3. When using the /00 switch:

default device as usual, system residence
(SY:)
default filename OOT
default extension as usual, OBJ
secondary UIC 1,1

disk

If OOT.OBJ is on either the system or user disk area, the
input file specification for OOT in the CSI reduces to:

/00

for example:

<TEST,/OD

4. The /00 and /TR switches are mutually exclusive.

3-10

3.5.2 Cautions

If the user means to type:

PP:,LP:<PR:/E

but accidentally types:

PP:,LP<PR:/E

the load map (an ASCII file) will be punched on the paper tape
followed by the load module (a binary file). The Linker will not
detect the error since the erroneous string is a legal one (i.e.,
output file LP.MAP to default device, PP:), thus the load module
cannot be loaded (since there is an ASCII file in front of it).

There is a fair amount of blank tape between the load map and the load
module, so either separate them or relink with the correct command
string.

3-11

CHAPTER 4

OVERLAYS

An overlay capability is very important in computer systems such as
DOS/BATCH where the size of programs is apt to be larger than the
amount of the memory available. OVerlay support is an integral part
of the design of LINK. The only difference, as far as LINK is
concerned, between a normal link and an overlaid link is the fact that
the former contains only one segment.

Overlays are defined in terms of a simple tree structure via a special
Overlay Description Language (OOL) that is interpreted by LINK. The
trunk of the tree is termed the root segment and always remains in
memory. The branches of the tree represent overlay segments which may
overlay each other.

Figure 4-1 illustrates a typical overlay structure. "A" is the root
segment and "B", "C", "0", "E", and "F" are overlay segments.

! !
1 1
1 B!
1 1
! !
1 !

1 !
! 1
IA!
1 I
! !

1 1
I Cl
I 1

1 ! 1 1 I 1
! I lEI 1 !
! ! ! 1 ! F 1
101 ! 1 I !

1 1 !
I 1
I 1

Figure 4-1 - Overlay Task Structure

A path is defined as a route that is traced from the root when
following a series of branches to an outermost branch of the tree. In
the above figure A-B, A-C-O, A-C-E, and A-C-F represent all possible
paths.

Overlays may call other overlays if they occur on a common path. Thus
in figure 4-1, the root segment may call overlays B, C, 0, E, and F.
On the calls to 0, E, or F the overlay C is also normally loaded.
This is termed "path loading" and occurs whenever a call is made from
one segment to another segment that is more than one branch level up
the tree (away from the trunk). Overlay C may call 0, E, or F but B
cannot call C, 0, E, or F nor can C, 0, E, or F call B.

4-1

Two methods are provided for loading overlay segments into memory.
The first method is by an explicit call to the library routine LOAD to
load a named segment. This is termed Manual-Load. Before a
manual-load request is honored, LINK marks out-of-core all segments up
the tree which emanate from the overlay control point where the
request is to be loaded. The manual-load is then initiated and
control is returned to the caller. The issuer of a manual-load
request may, at his option, have the load performed either
synchronously or asynchronously with program execution. Upon
successful loading the calling routine may then call entry points in
the named segment via normal subroutine or transfer of control
instructions. When using manual-load, path loading is not performed:
i.e. " only the segment specified in the LOAD call is loaded into
memory_

The second method of loading overlay segments is termed Autoload (also
known as load-on-call or LOCAL). Autoload occurs whenever a transfer
of control instruction is executed that references an autoload entry
point in another segment that is further up the tree on a common path.
Autoload causes the automatic loading of an overlay segment and
subsequent transfer of control to the called entry point in a manner
that is completely transparent to the caller. Unlike manual-load,
path loading is performed on autoload calls.

Both methods of loading overlay segments have different merits that
warrant their support. Autoload has the advantage of being completely
transparent* while manual-load requires slightly less memory.
Autoload allows a program to be separated into segments without
reprogramming while manual-load requires explicit calls to load
overlay segments.

The actual loading
.TRAN request in
sequence need take
the core image.
single disk access

4.1 TERMINOLOGY

of all overlay segments is accomplished via the
the DOS Monitor. No extensive file open/read/close
place since the Monitor knows the disk address of

The loading of an overlay segment thus requires a
and can be very fast.

AUTOLOAD - The process of automatically loading an overlay segment and
subsequently transfering control to a called entry point in a
manner that is completely transparent to the caller. Also known
as load-on-call or LOCAL. -

AUTOLOAD ENTRY POINT - An entry point that has been defined such that
a transfer of control to the entry point will cause the segment
in which it is defined to be automatically loaded if it is not
already in memory.

ENTRY POINT - A symbol defined in a source representation of a program
and subsequently accessible to independently translated modules

*However, condition codes are not passed on an autoload call.

4-2

via the binding mechanism provided in the LINK. All such symbols
must be established as globals.

LOAD-ON-CALL - See Autoload.

LOCAL - See Autoload.

MANUAL-LOAD - An explicit call to the library routine LOAD to load a
named segment into memory.

PATH - A route that is traced when following a series of branches in
an overlay structure.

PATH UP - The routes traced when following all paths from a branch
segment away from the trunk to the outermost branches that lie on
a common path.

PATH DOWN - The route traced when following a path from a branch
segment toward the trunk.

ROOT SEGMENT - A group of modules and/or program sections that occupy
memory simultaneously and are never overwritten. Every program
has one and one only root segment (i.e., even a single segment
program is considered to have a root segment).

SEGMENT - A group of modules and/or program sections that occupy
memory simultaneously and may be loaded via a single call to the
Executive.

4.2 Overlay Description Language

An Overlay Description Lanquage (ODL) is provided to describe overlay
structures. Rather than being a part of the command language itself,
which would make it very complex, these descriptions are always read
from a separate file.

An overlay description file is specified by including the /MP switch
on the first input file specification (see section 3.2.1.8). This
file contains all the object module input file specifications in
addition to the overlay description. The /MP switch must appear on
the first input file specification (ignored elsewhere) and no other
input specifications to ODL may be given subsequently. Option input
is accepted in the normal manner.

Example:

IMAGE ,MAP ,SYMBOL<OVERL/MP/E

specifies that the file OVERL contains a description of the overlaid
program to be built.

The Overlay Description Language is composed of a number of directives
that are used to describe the overlay structure.

In its role as the builder of tree-structured programs, LINK
interprets and carries out the directives provided by the Overlay
Description Language (ODL). Its inputs are directives written in ODL,

4-3

and object files produced by language translators. Its output is an
overlaid program suitable for execution under DOS.

Object files result from a source to object transformation by a
language translator. ~rhese object files consist of storage allocated
under the three section types: .ASECT, .CSECT, and .PSECT. Individual
files may contain unresolved global references which LINK attempts to
resolve during the linking process.

OOL consists of directives which specify a function, and operands,
which are either filenames, name strings reducible to filenames, or
names appearing in PSECT directives. LINK uses the name-strings to
locatte or create object modules which are built into the overlays.

OOL provides for:

* Identification of the Root Segment

* Building overlays

* Naming overlays

* Strict placement within the overlay structure of globally
referenced memory

* Establishing overlay control points

* Declaring autoload entry points

* Five directives:

• ROOT

• NAME

• FCTR

• PSEC'1', AND

.END

* and four operators:

"_"

II II ,
concatenation

overlay:

"(", It)" overlay control point, and

"*" autoload

The directives and operators acting on name strings provide the
seman.tics specified above.

The directives have the following general format

LABEL: .DIREC OPRNDS

4-4

Where:

LABEL is an alphanumeric label.

DlREC is the directive name.

OPRND is/are optional operands.

4.2.1 The .ROOT Directive

The .ROOT directive completely specifies the program tree structure
and has the following format:

LABEL: .ROOT OPRNDS

The optional LABEL field, if present, is ignored.

The permissible operands of a .ROOT directive are

1. Filenames of the form:

DEV:FILE.EXT[UIC]/SW

2. A name which appears in a .NAME directive

3. The label on a .FCTRdirective

4. The name in a .PSECT directive

These operands are operated on by four operators.

"_" The concatenation operator (minus sign). A binary operator
that specifies that its operands are to occupy memory
simultaneously, which means, of course, they are part
of a path.

" " , The overlay operator (comma). A binary operator whose
operands occupy memory starting at the same base
address (a node in an overlay tree). Of course,
segments that occupy the same memory are not on a
path, and, indeed, overlay one another.

"(", ")" The overlay control point operator (parentheses). With
an exception to be noted, a control point at which an
overlay is to begin (the points x and y in Figure
4-2) are implied by enclosing operands in
parentheses.

A fourth operator, "*", will be discussed after an example reinforces
the use of .ROOT and the "_", "," and "(", ")" operators.

Actually, we now know enough of the ODL to describe to LINK a
substantial percentage of the overlay structures that occur in
practice. Consider the structure of Figure 4-2.

4-5

1 1
IAI

1 1
IB! I----x
! 1 I

1 I 1 1
1 1 101 I-----y
ICI I II
! ! --------------
1 ! 1 1 1 1

! 1 IF!
! E 1 ! 1
I !
! !

FIGURE 4-2 - SAMPLE STRUCTURE

Figure 4-2 consists of six object files to be linked together by LINK.
We now want to specify the input required by LINK to construct the
program of Figure 4-2, To simplify the explanation establish the
structures below the branch point, X, as the leftbranch and
rightbranch. Now we can describe Figure 4-2 as

.ROOT A-B-(leftbranch, rightbranch)

This statement instructs LINK to concatenate A and B, form a branch
point, and cause the leftbranch and rightbranch to occupy memory
starting at the same base address. (If the leftbranch is in memory,
the rightbranch cannot be, and vice-versa.)

We can represent the leftbranch as,

c

and the right branch as,

D-(E,F)

specifying the concatenation of 0 with E and F~ E and F overlay each
other.

Thus c:omplete OOL specification of Figure 4-2 is:

• ROOT A-B- (C,O- (E,F»

Using this brief exar.lple as an aid to familiarizing the reader wi.th
the overlay language we can now complete -its specification.
Specifically, the

4-6

• NAME ,

• FCTR,

.PSECT, and

.END

Directives, and the

"." operator

4.2.2 The .NAME Directive

Declare an alphanumeric name that may subsequently be used in a .RooT
or .FCTR directive to define the name of a segment.

Normally a segment is named according to the first file or P-section
that is included in the segment, it is recognized that this may not be
adequate in some cases and therefore this directive may be used to
explicitly declare a segment name.

Directive syntax:

.NAME SNAME

Where:

.NAME is the directive NAME.

SNAME is an alphanumeric NAME of 1 to 6 characters.
(A-Z,l-9,$)

NOTE

If a label is present it is ignored. SNAME must
be unique with respect to file names, P-section
names, and other segment names that are declared
in the description file.

If in Figure 4-2, we wanted to name the root segment in Figure 4-2,
JIM, the directives:

.NAME JIM

.ROOT JIM-A-B-(C,D-(E,F»

would create a root segment with the name JIM.

4.2.3 The .FCTR Directive

The factor (.FCTR) directive has the same format as • ROOT:

LABEL: .FCTR OPRNDS

4-7

Its operands are the same as for ROOT. Unlike .ROOT the LABEL field
is required. The .FCTR directive formalizes the pedagogical
convenience we used earlier in presenting the development of the .ROOT
directive used to describe the overlay structure of Figure 4-2.
Recall that a factoring occurred by using the terms leftbranch and
rightbranch. Using .FCTR this becomes a capability of the ODL itself.

Thus--

:LEFTBR:
:RUTBR:

.FCTR C

.FCTR D-(E,F)
• ROOT A-B- (LEFTBR, RIITBR)

will describe to LINK the same overlay structure as--

.ROOT A-B-(C,D-(E,F»

When expanding the .ROOT statement

• ROOT A-B- (LEFTBR, RHTBR)

LINK will substitute the expressions equated in the .FCTR directives
for LEFTBR and RHTBR •

• FCTR is a notational convenience for simplifying the process of
representing complex overlay structures to LINK.

4.2.4 The .PSECT Directive

Often segments within an overlay structure have a requirement to
access common storage. LINK allocates storage for referenced sections
within the section in which it is defined (local reference) or in the
branch on its path closest to the root (global reference). For
example, if in Figure 4-3

! !
! B!
! !

! !
!A!
! 1

! !
!C!
1 !
! 1

Figure 4-3 - Simple Global Reference

A, B, and C each reference a global storage area, D, then LINK will
allocate storage in A. If, however, only B, and C reference a global
storage area, D, then LINK will allocate storage in both Band C, a
default decision, which mayor may not coincide with the programmers
wishes. It is the function of the .PSECT directive to permit the
programmer to explici t.ly place the global area, overriding LINK's
default.

4-8

.PSECT declares an alphanumeric P-section (program section) name that
may be subsequently used in a .ROOT or .FCTR directive explicity
placing a P-section in an overlay segment. A declared P-section may
be placed anywhere in the overlay structure that is not ambiguous
(i.e. not on a common path that already contains the specified
P-section in another segment).* All actual references to the P-section
from object modules mURt have exactly the same attributes as declared
in the directive.

A good example of the use of this directive is the placement of a
FORTRru~ common area close to the root segment so that a number of
branch segments that are not on a common path may share and
communicate via the area. In this case, if the explicit placement
were left out, the common area would be allocated in each branch
segment and not shared.

Directive syntax:

.PSECT SNAME [,ATl,AT2, ••• ,ATn]

Where:

.PSECT is the directive name.

SNAME is an alphanumeric control section
name. (A-Z, 1-9 , $)

ATl through ATn are optional control section attributes.

P-section attributes are specified exactly as they are for the .PSECT
directive under HACRO-ll. These attributes include:

RO or Rt1 specify the access mode of the P-SECTION.
read only and RW read/write.

RO means

I or D specify the type of P-section. I means instruction and D
data.**

GEL or LCL specify the scope over which the P-section is
considered by LINK. GBL means global and the
P-section will be considered across segment (overlay)
boundaries. LCL means local and the P-section is
considered only within the segment in which it is
defined. If a single segment program is produced GBL
and LCL have no effect on the core allocation in LINK
(i.e. only one segment to consider P-sections over).

ABS or REL specify
absolute

relocation of the P-section.
and no relocation is necessary.

ABS means
REL means

*The ambiquity is not detected in the ODL syntax check, but at the
point where a reference to an ambiguous section is encountered during
file processing.

**Not to be confused with the I and 0 space hardware on the PDP 11/45.

4-9

relocatable and a relocation bias must be added to
all references to the P-section.

CON or OVR specify the allocation of the P-section. CON means
that all allocation references to the P-section are
concatenated to form the total allocation of the
P-section. OVR means that all allocation references
to the P-section from different modules overlay each
other~ The total allocation of the P-section is the
largest request made by the individual modules that
reference it.

HGH or LOW specify the speed of the memory that the P-section is
to be loaded into. HGH means high speed and LOW
means core.

NOTE

'1~he HGH/LOW attribute is currently ignored by
r,INK.

Default attributes are applied to all .PSECT directives. These
attributes may be subsequently overriden by an explicit attribute
specification. The default attributes are:

•. PSECT name, RW, I ,LCL , REL ,CON, LOW

4.2.5 The .END Directive

Declare the end of the overlay description file.

This directive is mandatory and must appear at the logical end of each
overlay description file.

Directive syntax:

"END

Where:

.• END is the directive name.

NOTE

If a label or operands are present they are
ignored.

4.3 AUTOLOAD OPERATOR ASTERISK (*)

The asterisk (*) is a unary operator that specifies its operand as
autoloadable. Any transfer of control to an entry point in a
P-sec,tion with an II I" attribute will cause the segment in which the
operand resides to be loaded unless the segment already exists in
memory. If an "*" occurs on an open parenthesis "(", every operand
within the parenthesis and its matching close parenthesis, ")", will

4-10

have the autoload attribute. The "*" operator applies only to
P-sections with the "I" attribute.

As applied to specific operand types the "*" operator acts as follows:

1. For section names the section is made autoload.

2. For the name in a .NA1'-1E directive all the components in the
segment to which the name applies are made autoload.

3. For name labeling a .FCTR statement, "*" applies to the first
irreducible component of the factor. If the entire factor list
is enclosed in parentheses, every file in the factor is made
autoload.

4. For a Filename all components of the file are made autoload.

4.4 ODL USAGE SPECIFICATIONS

1. The directives may appear in the input file in any order, with
the exception of .END which must always terminate the file.

2. Every ODL Task description must have one, and only one .ROOT
directive.

3. A lqbel must appear in a .FCTR directive

4. Labels in a .ROOT directive are ignored.

5. Redundant pairs of parentheses are permitted for notational
clarity, but will not cause additional overlay control points.

6. A .FCTR directive label and SNAMEs must not contain periods.

4.5 EXAMPLE OF OVERLAID PROGRAM BUILD USING LINK

Given the following tree structure description of the desired overlay:

! MAIN 1

/ \

SEGl 1 SEG4 1 1 SEGS 1

SEG2

1
! SEG3
L ______ l

A file can be created with a name such as DESCR.ODL which will contain
the ODL task description:

4 -11

SEG123:
ROOT:

• FCTR
• ROOT
.END

SEG1.OBJ-SEG2.0BJ/CC-SEG3.0BJ[27,63]/CC
l1AIN .OBJ- (SEG123 ,SEG4. ODJ, SEG5 .OBJ)

END:

Then, when the following command strinq is type to LINK, the overlay
load module will be named 11AIN. LDA and the load map will be printed on
the line printer.

1RUN LINK
LINK Vxx
~1AIN,LP:<DESCR.ODL/MP/E

4.6 MANUAL LOAD OVERLAYS FROH FORTRAN

The following is an example of a synchronous overlay load using the
FORTRru~ callable routine LOAD(see section 6.1). The program requests
that the overlay segment GAUSS (which contains the subroutine RANDOM)
be loaded into core. Control will not be returned to the program
until the load operation is complete. IERR is checked to assure that
the segment ''las successfully loaded, then the program transfers
control to a routine contained in the overlay segment that was just
loaded ..

.
Iln ITEST. EQ. 0) GO TO 990
CALL LOAD('GAUSS' ,l,IERR)
IF(IERR.NE.O) GO TO 500
Cl~L RANDOM (A, B, ITEST ,2)

The following is an example of an asynchronous overlay load. The
program requests that the segment PRINT (which contains the subroutine
ALPHIO) be loaded into core. The ENCODE operation following the CALL
LOAD will be executed while the overlay is being loaded. Then the
program performs a CALL WAIT to assure that the load operation is
complete before transfering control to a routine in the overlaid
segmen1:.

Cl\LL LOAD ('PRINT' , 0, IERR)
ENCODE(490,lOO,ALPHA) (VECT(I) ,1=1,70)

100 FORMAT (7017)
CALL NAIT
IF(IERR.NE.0) GO TO 500
CALL ALPHIO(ALPHA,70)

4-12

· 4. 7 FORTRAN FORHAT CONVERSIONS AND I/O ROUTINES

Any format conversion not needed in a FORTRAN resident section but
required by overlay sections must be forcibly loaded into the resident
section.

This can be accomplished in any of three ways:

1. Declare the appropriate globals in an assembly language
routine.

2. Insert dummy FORMAT statements in the resident main program
for all format conversions that are required in the overlays
but not in the resident section.

3. Specify in the root segment link the appropriate module names
needed (through the /IN switch). Table 4-1 contains a
detailed list of these names.

For example, assume I and L format conversions are needed for READ and
I and E format conversions are needed for WRITE. An assembly language
routine such as the following could be written:

.TITLE DUMMY

.GLOBL $LCI,$ICI,$ICO,$OCO

.END

where $LCI performs the L conversions for READ, $ICI performs the I
conversions for READ, $ICO performs the I conversions for WRITE, and
$DCO performs the E conversions for WRITE.

An alternate mode involves dummy FORMAT statements supplied in the
resident main program to force linking of these routines. (If this is
done, a message may be printed at compile time indicating that there
is non-executable code in the program.

For example:

100

101

1000

LOGICAL L
GO TO 1000
READ (6,100) I,L
FORMAT (Il,Ll)
WRITE (6,101), I,E
FORMAT (Il,E6.0)

CONTINUE

Another alternative is use of the /IN switch as follows:

XXXLIB/IN:$LCI:$ICI:$DCI

where XXXLIB is the library specified in the ODL command file, and
$LCI,$ICI, and $DCI are module names associated with the required
globals (see Table 4-1).

Including global references in an
specifying module names with the

4-13

assembly language routine (or
/IN switch) causes only the four

format conversion packages to be linked to the resident program
section. Inserting dummy FORMAT and Input/Output statements causes
the resident to carry the overhead of the four format conversion
packages plus the FORTRAN READ/tvRITE processor, FORMAT scanner, and
associated routines.

Two other possibilities are either to perform all I/O in the resident
program, or to perform all I/O in the overlay section. If there is no
I/O in the resident section, each overlay includes only those modules
needed to satisfy its own I/O requirements.

If those format conversion routines which are needed in the overlays
and not required in the resident section are not forcibly loaded into
the resident section, the FORTRMJ system causes the linking of dummy
routines. Global requests in the overlay files are then linked to the
resident dummy routines and at execution time result in the fatal
error message:

FORT008000 LINKAGE ERROR (MISSING FORMAT CONVERSION ROUTINE)

If it is essential to minimize the amount of memory used by the
resident section, the technique of forced loading of modules by means
of an assembly language routine or the /IN switch is recommended. The
assembly language rou·tine does not force all routines in the I/O
package into the resident section, but rather causes the loading of
some modules which would otherwise be blocked. The reSUlting resident
section may be smaller than that produced by the inclusion of the
dummy FORTRMJ statements shown above.

Table 4-1 is useful in building overlay systems. If any module not
needed by the resident is required in an overlay, then the
corresponding global must be declared in the resident section.

4-14

Globals
in
Package

$DCO
$ECO
$FCO
$GCO

$ICO
$OCO

$LCO

$DCI
$RCI

$ICI
$OCI

$LCI

Table 4-1

ForMat Conversion Packages and I/O Routines

Hodule
Nan€.'! Function Pe rformed

$DCO Output Conversions 0, E, F, G

$ICO Output Conversions, I, 0

$LCO Output Conversion L

$DCI Input conversions 0, E, F, G

$ICI Input conversion I, 0

$LCI Input conversion L

*Includes certain associated modules.

4-15

Length of
Package in
Decimal t1ords*

469

93

31

384

85

31

CHAPTER 5

PROGRAM MEMORY ORGANIZATION I

5.1 ALLOCATION FOR A NON-OVERLAID PROGRAM

A non-overlaid program is allocated to memory as shown in Figure 5-1.

--------------------------------- high memory

CODE
R-O

CODE
R/W

1-------------------------------1 low memory

Figure 5-2 - Non-Overlaid Program

5.1.1 Read/Write Code (and Data) (R/W)

The program's read/write code and data are placed in the lowest memory
allocated.

5.1.2 Read-Only Code (and Data) (R-O)

If the program has a read-only portion, LINK places it immediately
above the "area occupied by the read/write code.

5.2 ALLOCATION FOR AN OVERLAID PROGRAM

5.2.1 Root Segment Allocation

The allocation of real memory to the root segment is shown in Figure
5-2.

5-1

--------------------------------- high memory

CODE (R-O)

AUTOLOAD VECTORS

SEGMENT TABLES

CODE (R/W)

1------------------------------- low memory

Figure 5-2 - Root Segment OVerlaid Program

Code (R/W) and Code (R-O) are the same as for non-overlaid programs,
and we will describe only the Segment Tables and Autoload vectors.

5.2.2 The Segment Tables

Each segment in an overlay structure has a lO-word Segment Descriptor
formatted as shown in Figure 5-3.

RESERVED STATUS

RELATIVE DISK ADDR.
'---------------------------------

LOAD ADDRESS

LENGTH IN BYTES

LINK UP

LINK DOWN

LINK NEXT

LINK PREVIOUS

SEGMENT

NAME

Figure 5-3 - Segment Descriptor

5-2

5.2.2.1 Status:

o specifies the segment is in-core, 1 specifies not-in-core. The bit
is used during path loading to eliminate unnecessary disk accesses.

5.2.2.2 Relative Disk Address of the Overlay Segment:

A program image occupies a contiguous disk area. Each overlay segment
begins at a block boundary and this index is a relative block number
from the start of the program disk image. This word enables loading
of segments with a single disk access.

5.2.2.3· Load Address of The Segment:

The program relative address where this segment is to be loaded.

5.2.2.4 Length of the Segment:

The number of bytes in the segment; this number is used to constuct
the disk read.

5.2.2.5 Link Fields

The function of the link fields is to permit, given the address of any
descriptor, finding a path to the root and to develop from any segment
the path to any other segment (if it exists) up the tree.

Link up:

A poinber to a Segment Descriptor away from the root. Such a segment
emanates from an overlay control point which starts at the base of
this descriptor. Since many segments may emanate from an overlay
control point, this pointer does not point to a unique successor. In
figure 5-4 the segment descriptor for the root segment may point to B
C, or D depending on how the LINK algorithm makes its link-up pointer
selection; once made, however, it is never altered.

5-3

1 !
! 1
!B!
! !

1 1
1 !
1 !
1 C 1

!
1 1
1 !

! !
tA!
! !
! !

1 !
! !
! Dl
! !
! 1
! 1

! ! 1 1
! E! 1 F!
1 1 ! 1

! !

Figure 5-4 - Link Paths

Link Down:

'A pointer to a segment nearer the root which is the immediate
predecessor of the segment described by this descriptor. This pointer
is always unique since paths moving toward the root always have unique
predecessors.

Link Next and Link Previous

All segments emanating from an overlay control point are circularly
linked forward and backward. This facilitates the search needed to
mark in core segments out of core when they are overlayed. In Figure
5-4, B, C, and D are circularly linked as are E, and F. A has null
link-next and link-previous pointers.

5.2.2.6 Segment Name

The six character (max) RAD50 representation of the segment name.

5.2.3 Autoload Vectors

Autoload vectors appear in every segment which references autoload
entry points in segments farther away from the root than the'
referencing segment. Segments which reference autoload entry points
toward the root are resolved directly. Autoload entry points occur in
the segment making an autoload transfer. A discussion of the format
of the. autoload vector and the autoload machinery is discussed in
Chapter 6, Run Time Support.

5-4

5.3 OVERLAY MEMORY ALLOCATION

Every overlay in'a program has an allocation as shown in
The construction of segments is identical to the
structure discussed in Section 5.2.

--------------------------------- high memory
CODE
(R-O)

AUTOLOAD VECTORS

!
!~------------------------------!'

CODE
(READ /WRITE)

--------------------------------- low memory

Figure 5-5 - Overlay Segment

5.4 OVERALL MEMORY ORGANIZATION

Figure 5-5.
root segment

Figure 5-6 shows the overall memory allocation of an overlaid program
running under DOS/BATCH.

BOOTSTRAP AND ABSOLUTE LOADER

OVERLAY AREA

ROOT SEGMENT AS
DESCRIBED IN SECTION 5.2

USER PROGRAM STACK

UNUSED MEMORY

DOS/BATCH BUFFER POOL

DOS/BATCH MONITOR

Figure 5-6
Overall Memory Allocation

5-5

high memory

low memory

Note that the size of the overlay area is just large enough to
accommodate the largest possible combination of overlays that could
exist simultaneously in memory.

5-6

CHAPTER 6

RUN TIME OVERLAY SUPPORT

Two methods of calling overlays exist in DOS/BATCH:

1. Manual Load, and

2. Autoload.

6.1 MANUAL LOAD

Manual load is initiated by a call to the LOAD routine. LOAD can
operate either synchronously or asynchronously with program execution,
and does not path load. LO~D marks as out-of-core any segment
currently in-core and not along the path leading to the requested
segment.

Calling Sequence: In FORTRAN, LOAD is referenced as shown below.

where

CALL LOAD ('strnam',sync,error)

strnam is a 1- to 6-character ASCII name. If strnam is less
than six characters long, it must be terminated by a
blank or null character.

sync is a value set to I for a synchronous load, or to 0 for
an asynchronous load. In a synchronous load, the
requested segment is already in memory when control is
returned to the program after the call. In an
asynchronous load, the input transfer is initiated by
the call; segMent loading may proceed concurrently with
the execution of the program issuing the call.

NOTE

When using asynchronous calls, the user
must insure that the desired overlay is
in memory before referencinq values
within the overlay or jumping to an
entry point within the overlay. By
usinq "CALL HAlT" the user can insure
that the overlay transfer is complete
before control is returned to the
progran.

error is a value returned to the calling program. If error
is 0, no errors have occurred in the CALL LOAD. If
error is non-zero, the requested segment has not been
loaded (for example, if a nonexistent segment has been
specified or a permanent read error has occurred).

6-1

The equivalent assembler calls for LOAD and wait are shown below.

JSR RS,LOAD ;CALL LOAD
BR .+8. ;SKIP AROUND PARAHETERS
• HORD strnam :ADDIlliSS OF STRING NAHE
.l'lORD sync iADDRESS OF SYNCHRONOUS

i FLAG ~'10RD

• t'lORD error iADDRESS OF ERROR FLAG WORD

JSR RS,Wl\IT ;WAIT FOR COHPLET ION
BR • +~~

6.2 AUTOLOAD

During program creation from ODL, LINK records all auto-load entry
points referenced by a segment. References toward the root are
resolved absolutely. Those away frOM the root are replaced by a jump
into the autoload vector table built by LINK for the segment. The
autoload vector table consists of one entry per unique autoload entry
point referenced by the segment. Each entry in the autoload vector
table consists of one instruction and a three-word descriptor as shown
in Figure 6-1.

JSR PC,,$AUTO

ADDR: CALLED SEGMENT DESCRIPTOR

CUHRENT SEGMENT DESCRIPTOR

ENTRY POINT ADDRESS

Figure 6-1 Autoload Vector Entry

The jump into the autoload vector table is made to transfer to the
entry in the table describing the required autoload entry point.

$AUTO is a library routine which carries out the autoload process.
$AUTO checks if the requested segment is in core (low order byte of
the segment descriptor status word), and if it is in-core transfers to
it. If the requested segment is not in core, $AUTO initiates a
pre-emption scan, followed by a path load.

The function of the
segments currently
call.

pre-emption scan is to mark out-of-core all
in core that will be overlayed by the autoload

The path loading results in loading every segment along the path from
the caller to the callee.

Both t.he pre-emption scan and path loading use a tree-walk techinique
similar to that described in section 7.3.

For examples of autoload and manual load usage see sections 4.5 and
4.6

6-2

CHAPTER 7

l'-1EHORY ALLOCATION

The allocation of memory occurs at the start of pass 2 of LINK. In
the previous pass, LINK has established the memory requirements and
attributes of every P-section in the program. It has also built the
segment tables which completely define the structure described by the
ODL, and has stored con~ands it must act upon during memory
allocation. Using P-section memory requirements, P-section
attributes, segment tables, autoload vector lists, and the command
list, LINK can proceed to allocate memory.

7.1 MEMORY ALLOCATION PROCEDURES

7.1.1 Allocating Root Segment Memory

LINK begins by allocating the Read/Write portion of the root segment.
It proceeds algorithmically as follows:

1. Allocate in alphabetical order all read/write P-sections of the
root segment, accumulatinq the total memory required as the
allocation proceeds. This implies that if in ODL a user
described the root as

A-C-B

The actual allocation and placement would be as though he had
specified

A-B-C

The placement of every P-section is clearly shown
listing produced by LIHK. After a P-section is
check is made of the extension list (created
commands) described in Chapter 8 and if a command
this P-section it is extended:

on the map
processed, a
from EXTSCT
is found for

1. If the CON attribute for the P-section is set, or

2. If the OVR attribute is
currently allocated to
request.

set and insufficient storage is
the' P-section to cover its extend

Also, the processing of a P-section will result in proper
boundary aliqnment. Presently the assembler only supports
word alignment, but when it supports alignment requests to
any specified boundary, LINK will place the P-section on the
requested b9undary, incrementinq the virtual location counter
appropriately.

3. LINK now checks if it is building an overlaid program, and,
if it is, it allocates the storaqe for the Segment Tables.

7-1

4. Finally, any storage needed to hold autoload entry points
referred to up-the-tree by the root segment are allocated.

7.1.2 Allocating Overlay Segment Hemory

The procedure follows closely the allocation of Read/write storage in
the root, with the following exceptions:

1. If an overlay segment contains read-only P-sections, these
sections are processed after the read/write sections of the same
segment. Within each of the attribute types (read/write and
read-only) allocation is alphabetical. If LINK encounters a
read-only section in an overlay segment, it will issue a
diagnostic and continue to process the read-only section as if it
were read/write.

2. No Segment Tables are produced for overlay segments

3. Allocation for an overlay segment starts at address+l of the
bottom of the segment pointed to by the link-down of the segment
being processed.

All memory allocation for a program described by ODL is now complete.

7.2 MEMORY ALLOCATION MAP

The listing of the memory map produced by LINK consists of a heading
followed by detailed descriptions of each segment in the program. The
data on each segment includes:

1. The statistics and attributes for each section.

2. The memory limits of every P-section in every segment.

3. File descriptions of the files used to build the program, and

4. Undefined references by file.

The segment description begins with the root segment, which begins on
the same page as the heading. The overlay segments each star1: on a
new page and their order is determined by a tree walk algorithm used
in a. number of contexts wi thin LINK. See Appendix H for a detailed
map description and example.

7 • 3 LINK TREE t-lALK ALGORITHM

In the map listing, LINK displays segment descriptions in a path order
which results from a tree walk; the result of the walk is the segment
list which appears following the root segment name on the heading
page. The tree walk algorithm proceeds as follows:

1. After displaying the root segment's description, take the
link-up.

7-2

la. If a link-up exists,

THEN

lb. Display its description, try the next link-up, and return to la.

ELSE

lc. Try a link-next.

If an un-processed link-next is found

THEN

Go-To lb.

ELSE

Try a link-down. If the link down is the root

THEN

Terminate the Walk.

ELSE

Go-To lc.

Using this algorithm, Figure 13, and the ODL description:

LEFTBR .FCTR B-(C,D,E)
RHTBR .FCTR F-(G,H)

• ROOT A- (LEFTBR, RHTBR)

Then LINK will walk the tree (thus producing segment descriptions) in
the following order

A (root)
B (link-up)
C (link-up)
D (link-next)
E (link-next)
B (link-down) :not re-displayed
F (link-next)
G (link-up)
H (link-next)
F (link-down):not re-displayed
A (link-down) :not re-displayed

Note that the link-down is taken as the first filename in the ODL
description following a new overlay control point.

7-3

! 1 ! 1
! 1 101
! C! I !
! !
! !

! !
! Bl
! 1

! !
1 !
lEI
1 1

! 1
!AI
! I

! 1
I 1
IF!
! !
1 1

! ! 1 1
1 GIl!
! ! 1 HI

1 1
! 1

F.i9ure 13 Tree Walk

7-4

CHAPTER 8

LINKING OPTIONS

8.0 OPTIONAL INPUT

Options input is accepted by LINK if the first command string was
terminated by </0>. This input specifies options that are to be
selected for the program being built.

Input is solicited with a line of

ENTER OPTIONS:

followed by a line containing a leading hash mark.

Each option is specified by a keyword followed by one or more
parameters. After each line of option input is processed, the next
line is solicited with another hash mark.

The options input is terminated with the /E specification in the same
manner as normal LINK commands.

Optional input lines have the following general format:

KW = P (l , l) : P (l, 2) : ••• : P (l , N) : P (2 , l) : P (2 ,2) ! KW=P (l , l) ••• ; COMHENT

Where

KVl =

<=> =

P(l,l) P(l,2) P(2,2) =

an alphanumeric keyword identifier of 1
to 6 characters

a delimiter that delineates the keyword
identifier from its parameters

parameter values that are specified for
the option. The construction P(N,M) is
used for illustration purposes only and
signifies the M(th) parameter of the
N(th) set of parameters. The general
format allmvs mul tiple sets of
parameters for a single keyword. Actual
parameters are specified as alphanumeric
characters and/or octal/decimal numbers.

<:> = a deliniter that separates parameter values

< " > a delimiter that separates multiple sets of paraITleters.

< ! > a delimiter that separates mUltiple keyword identifiers on
a single line.

<; > a delimiter indicating that a comment follows.

8-1

NOTE

At the end of a line an implied <;> is always
performed. Thus, optional specifications must
always fit on a single line.

Blank characters and horizontal tabs are ignored and may appear
anywhere.

A brief description of each keyword option is given below followed by
the keyword syntax. Parameter values are defined using the following
abbreviations:

DEVNAM = a two character alphabetic device name followed by a
one or two digit unit number

NANE = an alphanumeric name of 1 to 6 characters, using the
RAD50 character set. (A-Z, 1-9, $ and .)

NOTE

Octal and decimal numbers may contain a sign
(i.e., + or -).

certain options require that global symbols or P-sections be defined
in the: object modules that are loaded into the program image. If the
appropriate definitions are not found, the corresponding option input
is treated as a no operation (i.e., it is not performed, and the user
is not notified).

8.1 ABSOLUTE PATCH (ABSPAT)

This allows the user to declare a series of absolute patch values in a
segment.

An absolute address is t:aken as the base address of where the patches
are to be applied. All patch values must lie within the segment or a
load address error is generated.

Keyword syntax:

ABSPAT = SGNAf.t: PADDR: VALUE : VALUE : ••• :VALUE

where:

SGNAM =

PADDR =

the name of the segment in which the patches
are to be applied

the absolute patch address

8-2

Default:

None.

Example:

VALUE = patch values.

NOTE

Three parameters are required by this command. A
maximum of eight values (ten parameters total) can
be specified.

Declare a series of patches in segment PAY startirtg at the absolute
address 100:

ABSPAT = PAY:lOO:-l:5:6

NOTE

Patch values are stored in consecutive locations
as a byte string. Each patch value requires two
bytes.

8.2 EXTEND CONTROL SECTION (EXTSCT)

Extend the length of a P-section.

If the P-sectionhas the attribute CON then the section is extended by
the specified length. If the attribute is OVR, the section is assured
to be at least as large as the specified length. The extension occurs
when the specified name is encountered in an input object file. If no
such name is encountered, no extension occurs. .

Keyword syntax:

where:

Default:

None.

Example:

EXTSCT = CNAME:LENGTH

CNAME =
LENGTH =

control section name

length to extend the P-section in bytes
(octal).

Declare the P-sections ONE and TWO to both be eligible for extension
by a length of 50 and 100 bytes, respectively.

8-3

EXTSCT=ONE:50,TWO:lOO

8.3 GLOBAL SYMBOL DEFINITION (GBLDEF)

Declare the definition of a global symbol.

The symbol definition is considered absolute. The symbol is entered
in the root segment symbol table.

Keyword syntax:

GBLDEF = SNAME:VALUE

where:

SNAME = global symbol name

VALUE = absolute value (octal) to be assigned to the symbol.

Default:

None.

Example:

Declare the symbol SMART to have a value of 152525.

GBLDEF = SMART:152525

8. 4 G.LOBAL PATCH (GBLP A'r)

Declare a series of patch values in a segment that are relative to a
global symbol within a segment.

The value of the global symbol is taken as the base address of where
the patches are to be applied. All patches must be within the segment
or a load address error is generated.

Keyword syntax:

GBLPAT = SGNAM:SNAME:VALUE:VALUE: ••• :VALUE

or

GBLPAT = SGNAM:SNAME+OFFSET:VALUE :VALUE: ••• : VALUE

or

GBLPAT = SGNAM:SNAME-OFFSET:VALUE:VALUE: ••• :VALUE

where:

SGNAM = the name of the segment in which the patches
are to be applied

8-4

Default:

None.

Example:

SNAHE =

OFFSET =

VALUE =

global symbol name

relative offset
symbol to where
applied

(octal)
patch

patch values (octal)

NOTE

from the
values are

This command requires at least one patch value and
can include a maximum of eight patch values.

global
to be

Declare a series of patches in the segment TELTAL relative to the
global symbol PATCH.

GBLPAT = TELTAL:PATCH+lO:l77406:l77344

NOTE

Patch values are stored in consecutive locations
as a byte string. Each patch value requires two
bytes.

8-5

APPENDIX A

ERROR HANDLING

The following error diagnostics are issued by LINK:

PRENATURE EOF COMHAND INPUT FILE

An end-of-file condition was encountered when LINK was expecting
additional command input.

COMMAND SYNTAX ERROR

The command string last issued to LINK was not a valid command.
It must be re-entered correctly.

REQUIRED INPUT FILE MISSING

At least one input file must be specified to LINK.

ILLEGAL SWITCH filnam.ext

The switch(es) specified for the file filnam.ext cannot be
recognized or processed correctly.

NO DYNAHIC STORAGE AVAILABLE

LINK has no more memory available to complete a link. The link
can be re-executed only if the memory requirement for linking is
reduced.

U@U COMMAND FILE SYNTAX ERROR

An indirect command file has been incorrectly specified. The
string following the @ character was not recognized.

INDIRECT FILE OPEN FA.ILURE

An indirect file that has been specified cannot be found.

A-l

INDIRECT COMMAND SYNTAX ERROR

An indirect
Probably, no
character.

command line has been specified incorrectly.
fi.le name has been specified following the @

INDIRECT FILE DEPTH EXCEEDED

An attempt has been made to nest more than five indirect files.

I/O FAILURE ON INPUT FILE filnam.ext

LINK cannot correctly read data from the file filenam.ext.

OPEN FAILURE ON FILE filnam.ext

LINK cannot find a specified file filnam.ext

SEARCH STACK OVERFLOW ON SEGMENT segnam

Too many overlay levels have been specified. Overlays must not
be nested to a depth greater than 16 levels.

PASS CTRL STACK OVERFLOt'l ON SEGMENT segnam

Too many overlay levels have been specified. Overlays must not
be nested to a depth greater than 16 levels.

FILE filnam.ext HAS ILLEGAL FORMAT

The file filnam.ext does not have the correct format for LINK.

MODULE modnam AMBIGUOUSLY DEFINES CTRL SECT secnam

LINK has found two or more P-section descriptions in the same
segment whose attributes are not identical.

MODULE modnam MULTIPLY DEFINES CTRL SECT secnan

The P-section (secnam) described in a module (modnam) is not the
original definition.

A-2

MODULE modnam ILLEGALLY DEFINES XFR ADDRESS transf

A transfer address (transf) is incorrectly defined in a
(modnam). Possibly, trasf was specified within an
segment.

CTRL SECTION secnam HAS OVERFLOWED

The control section secnam has overflowed machine
boundaries. No segment can exceed 32K words.

MODULE modnam AMBIGUOUSLY DEFINES SYMBOL symnam

module
overlay

address

The module modnam has defined a reference (symnam) that has been
previously defined. Such a reference cannot be uniquely
resolved.

MODULE modnam MULTIPLY DEFINES SYMBOL symnam

Two definitions for the same symbol (symnam) have occurred on the
same path within a module (modnam).

SEGMENT segnam HAS RO CONTROL SECTION

Overlay segment segnam contains an RO control section. RO
control sections can be specified for root segments only.

SEG segnam HAS ADDR OVERFLOW-ALLOCATION DELETED

The program has attempted to allocate more than 32K words within
an overlay segment (segnam). This results in deletion of the
program image file~ a map is produced, but the program image file
is not.

ALLOCATION FAILURE ON FILE filnam.ext

There was not sufficient space on the disk to allocate the output
file (filnarn.ext) contiguously.

I-O ERROR ON OUTPUT FILE filnam.ext

An unrecoverable output error has occurred
filnam.ext.

A-3

on "the file

LOAD ADDR OUT OF RANGE IN MODULE modnam

An address has been specified within a segment of the module
modnam that does not fall within the range specified for the
segment.

TRUNCATION ERROR IN MODULE modnam

A byte value specified as relocatable in the
exceeded 8 bits after relocation bias was added.
eight bits are loaded into the byte.

cnt UNDEFINED SYMBOLS

module modnam
The low-order

Undefined symbols have been encountered during a link. The value
cnt specifies the number of undefined symbols.

INVALID KEYWORD IDENTIFIER keynam

The name keynam has been specified and is not a legal options
keyword. (See Chapter 8 for legal options~)

OPTION SYNTAX ERROR

The format of an option command is incorrect.

TOO MANY PARAMETERS

Too many parameters have been specified with an options ke~~ord.

ILLEGAL MULTIPLE PARAr.1ETER SETS

The specified option allows only one parameter set: more have
been specified.

INSUFFICIENT PARAMETERS

Not enough parameters have been supplied for
specified.

A-4

the option

OVERLAY DIRECTIVE HAS NO OPERANDS

An overlay directive has been supplied without operands. The
only directive that allows no operands is the .END directive.

ILLEGAL OVERLAY DIRECTIVE

An unrecognizable overlay directive has been encountered

OVERLAY DIRECTIVE SYNTAX ERROR

An overlay directive has been specified in an incorrect format.

ROOT SEGMENT IS MULTIPLY DEFINED

One .ROOT command (and no more than one) must be specified per
program. This program has defined more than one .ROOT command.

LABEL OR NAME IS MULTIPLY DEFINED

A label or name has been defined more than once in an overlay
description. This is illegal; labels and names must be uniquely
defined.

NO ROOT SEG~mNT SPECIFIED

An overlaid program does not have a root segment specified. This
is illegal; overlaid programs must spcify a root segment.

BLANK CONTROL SECTION NAME IS NOT LEGAL

A .PSECT command has specified a blank name. This is illegal;
all .PSECT commands, when used, must specify non- blank names.

ILLEGAL CONTROL SECTION ATTRIBUTE

An unrecognizable .PSECT attribute has been encountered.

ILLEGAL OVERLAY DESCRIPTION OPERATOR

An illegal ODL operator has been encountered.

A-5

TOO 11ANY NESTED .ROOT-.FCTR DIRECTIVES

An attempt has been made to nest .FCTR statements to a depth
greater than 32 levels.

TOO MANY PARENTHESIS LEVELS

An attempt has been made to nest parentheses to a depth greater
than 32 levels in an overlay description.

UNBALANCED PARENTHESIS

An overlay description contains mismatched parentheses (e.g$' an
odd number of parentheses).

ILLEGAL IB OR IT SWITCH VALUE value

The IB or IT switch value specified (value) was not a 1- to
6-digit octal constant.

ILLEGAL ITR SWITCH VALUE value

The ITR s't-litch value specified (value) was one of the follo"Ting:
(I) an odd number, (2) an undefined symbol, or (3-) an
out-of-range symbol.

ILLEGAL ICO VALUE PARAMETER value

The ICO switch value specified (value) was not a decimal number
that is an integral mUltiple of 64.

HISSING IB OR IT SWITCH VALUE

A IB or IT switch has been specified without a value. The IB and
IT switches, when specified, must have an associated value.

A-6

APPENDIX B

LINK INPUT DATA FORMATS

An object module is the fundamental unit of input to LINK.

Object modules are created by any of the standard language
processors (i.e. MACRO-ll, FORTRAN, etc.) or LINK itself (symbol
definition file). The librarian provides the capability to combine a
number of object modules together into a single library file.

An object module consists of variable length records of information
that describe the contents of the module. Six record (or block) types
are included in the object language. These records guide LINK in the
translation of the object language into a task image.

The six record types are:

Type 1 - Declare Global Symbol Directory (GSD)

Type 2 - End of Global Symbol Directory

Type 3 - Text Information (TXT)

Type 4 - Relocation Directory (RLD)

Type 5 - Internal Symbol Directory (ISD)

Type 6 - End of Module

Each object module must consist of at least five of the record types.
The one record type that is not mandatory is the internal symbol
directory. The appearance of the various record types in an object
module follows a defined format.

An object module must begin with a declare GSD record and end with a
end of module record. Additional declare GSD records may occur
anywhere in the file but before an end of GSD record. An end of GSD
record must appear before the end of module record. At least one
relocation directory record must appear before the first text
information record Additional relocation directory and text
information records may appear anywhere in the file. The internal
symbol directory records may appear anywhere in the file between the
initial declare GSD and end of module records.

Object module records are variable length and are identified by a
record type code in the first word of the record. The format of
additional information in the record is dependent upon the record
type.

B-1

GSD

RLD

GSD

TXT

TXT

RLD

GSD

END GSD

ISO

ISO

TXT

TXT

TXT

END MODULE

GENERAL OBJECT MODULE FORMAT

B.l GLOBAL SYMBOL DIru~CTORY

Initial GSD

Initial Relocation Directory

Additional GSD

Text Information

Text Information

Relocation Directory

Additional GSD

End of GSD

Internal Symbol Directory

Internal Symbol Directory

Text Information

Text Information

Text Information

END OF MODULE

Global symbol directory records contain all the information necessary
to assign virtual addresses to global symbols and to allocate the
virtual memory required by a program.

GSD records are the only records processed in the first pass and
therefore significant time can be saved if all GSD records are placed
at the beginning of a module (i.e., less of the file must be read in
phase 3).

GSD records contain 7 types of entries:

B-2

Type 0 - Module Name

Type 1 - Control Section Name

Type 2 - Internal Symbol Name

Type 3 - Transfer Address

Type 4 - Global Symbol Name

Type 5 - Program section Name

Type 6 - Program Version Identification

Each type of entry is represented by four words in the GSD record.
The first two words contain six RAD50 characters. The third word
contains a flag byte and the entry type identification. The fourth
word contains additional information about the entry.

o

TYPE

RAD50
NAME

VALUE

1

FLAGS

---~-----------------------------RAD50
NAME

----------------------~----------TYPE

TYPE

VALUE

RAD50
NAME

VALUE

FLAGS

FLAGS

----------------~~-----------~~~

TYPE

RAD50
NAME

VALUE

GSD RECORD
AND

FLAGS

ENTRY FORMATS

B-3

B.l.l. Module Name

The module name entry declares the name of the object module.
name need not be unique with respect to other object modules
modules are identified by file not module name) but only one
declaration may occur in any given object module.

o

MODULE
NAME

o

o

MODULE NAME ENTRY FORMAT

B.l.2 Control Section Name

The
(i .e.
such

control sections, which include ASECTs, blank-CSECTS, and named-CSECTs
are obviated in DOS by PSECTs. For compatibility, LINK processes
ASECTs and both forms of CSECTs. Section B.l.6 details the entry
gener.ated for for a PSECT statement. In terms of a PSECT statement we
can define ASECT and CSECT statements as follows:

For a blank CSECT:

.PSECT ,LCL,REL,CON,RW,I,LOW

For a named CSECT:

'. PSECT name, GBL, REL ,OVR, RW, I ,LOW

And for an ASECT:

.. PSECT. ABS.,GBL,ABS,I,OVR,RW,LOW

ASECTs and CSECTs are processed by LINK as PSECTs with the fixed
attributes defined above. For a complete description of PSECT
processing see B.l.6. The entry generated for a control section is
shown in the Figure below.

B-4

CONTROL SECTION

NAME

1 IGNORED

MAXIMUM LENGTH

CONTROL SECTION NAME ENTRY FORMAT

B.l.3 Internal Symbol Name

The internal symbol name entry declares the name of an internal symbol
(with respect to the module). LINK does not yet support internal
symbol tables 1 therefore the detailed format of this entry is not
defined. If an internal symbol entry is encountered while reading the
GSD, it is merely ignored.

2

SYl1BOL
NAME

UNDEFINED

o

INTERNAL SYHBOL NAHE ENTRY FORMAT

B.l.4 Transfer Address

The transfer address entry declares the transfer address of a module
relativ~ to a P-section. The first two words of the entry define the
name of the P-section and the fourth word the relative offset from the
beginning of that P-section. If no transfer address is declared in a
module, a transfer address entry must either not be included in the
GSD or a transfer address of 000001 relative to the default absolute
P-section (. ABS.) must be specified.

B-S

3

S:CCTION
NAME

OFFSET

o

THANSFE R ADDRESS ENTRY FaRHAT

NOTE

If the P-section is absolute, then OFFSET is the
actual transfer address if not 000001.

B.l.S Global Symbol Nane

The global symbol name entry declares either a global reference or
definition. All definition entries must appear after the declaration
of the P-section under which they are defined and before the
delcaration of another P-section. Global references may appear
anywhere within the GSD.

The first two words of the entry define the name of the global symbol.
The flag byte declares the attributes of the symbol and the fourth
word the value of the symbol relative to the P-section under which it
is defined.

The flag byte of the symbol declaration entry has the following bit
assignments.

Bits 0 - 2 - Not used.

Bit 3 - Definition

a = Global symbol references.

1 = Global symbol defintion.

Bit 4 - Not used

Bit S - Relocation

(I = Absolue symbol value.

J. Relative symbol value

Bit 6 - 7 - Not used.

B-6

4

SYHBOL
NAME

VALUE

FLAGS

GLOBAL SYMBOL NAME ENTRY FORMAT

B.l.6 Program Section Name

The P-section name entry declares the name of a P-section and its
maximum length in the module. It also declares the attributes of the
P-section via the flag byte.

GSD records must be constructed such that once a P-section name has
been declared all global symbol definitions that pertain to that
P-section must appear before another P-section name is declared.
Global symbols are declared via symbol declaration entries. Thus the
normal format is a P-section name followed by zero or more symbol
declarations followed by another P-section name followed by zero or
more symbol declarations and so on.

The flag byte of the P-section entry has the following bit
assignments:

Bit 0 - Memory Speed

0 = P-section is to occupy lm-1 speed (core) memory.

1 = P-section is to occupy high speed (i.e. MOS/Bipolar) memory.

Bit 1 - Library P-section (not used by LINK)

o = Normal P-section.

1 = Relocatable P-section that references a core resident library
or common block.

Bit 2 - Allocation

o = P-section references are to be concatenated with other
references to the same P-section to form the total
memory allocated to the section.

1 = P-section references are to be overlaid. The total memory
allocated to the P-section is the largest request
made by individual references to the same P-section.

Bit 3 - Not used but reserved.

B-7

Bit 4 - Access

o = P-section has read/,,,,ri te access.

1 - P-section has read only access.

Bit 5 - Relocation

o = P-section is absolute and requires no relocation.

1 = P-section is relocatahle and references to the control
section must have a relocation bias added before they
become absolute.

Bit 6 - Scope

o = The scope of the P-section is local. References to the same
P-section will be collected only within the segment
in which the P-section is defined.

1 = The scope of the P-section is global. References to the
P-section are collected across segment boundries.
The segment in which a global P-section is allocated
storage is either determined by the first module that
defines the P-section on a path or direct placement
of a P-section in a segment via the segment
description map.

Bit 7 - Type

a The P-section contains instruction (I) references.

1 The P-section contains data (D) references.

5

P-SECTION
NAME

MAX LEUGTH

FLAGS

P-SECTION NA~rn ENTRY FORMAT

NOTE

The length of all absolute sections is zero.

B-8

B.l.7 Program Version Identification

The program version identification entry declares the version of the
module. LINK saves the version identification of the first module
that defines a nonblank version. This identification is then included
on the memory allocation map and is written in the label block of the
task iJY\age file.

The first two words of the entry contains the version identification.
The flag byte and fourth words are not used and contain no meaningful
information.

6

SYHBOL
NAME

o

o

PROGRA}l VERSION IDENTIFICATION
ENTRY FORMAT

B.2 END OF GLOBAL SYMBOL DIRECTORY

The end of global symbol directory record declares that no other GSD
records are contained further on in the file. Exactly one end of GSD
record must appear in every object module and is one word in length.

o 2

END OF GSD RECORD FORMAT

B.3 TEXT INFORMATION

The text information record contains a byte string of information that
is to be written directly into the task image file. The record
consists of a load address followed by the byte string.

Text records may contain words and/or bytes of information whose final
contents are yet to be determined. This information will be bound by
a relocation directory record that immediately follows the text record
(see B.4 below). If the text record does not need modification, then
no relocation directory record is needed. Thus multiple text records
may appear in sequence before a relocation directory record.

The load address of the text record is specified as an offset from the
current P-section base. At least one relocation directory record must

B-9

precede the first text record.
current P-section.

This directory must declare the,

LINK writes a text record directly into the program image file and
computes the value of the load address minus four. This value is
stored in anticipation of a subsequent relocation directory that
modifies words and/or bytes that are contained in the text record.
When added to a relocation directory displacement byte, this value
yields the address of the word and/or byte to be modified in the task
image.

o 3

LOAD ADDRESS

TEXT TEXT

.. TEXT

II II

.. ..

.. ..
II II

.. TEXT

TEXT TEXT

TEXT INFORMATION RECORD FORMAT

B.4 RELOCATION DIRECTORY

Reloca1:ion directory records contain the information necessary to
relocate and link a preceeding text information record. Every module
must have at least one relocation directory record that precedes the
first text information record. The first record does not modify a
preceeding text record, but rather it defines the current P-section
and location. Relocation directory records contain 13 types of
entries. These entries are classified as relocation or location
modification entries. rfhe following type of entries are defined:

B-10

Type 1 - Internal Relocation

Type 2 - Global Relocation

Type 3 - Internal Displaced Relocation

Type 4 - Global Displaced Relocation

Type 5 - Global Additive Relocation

Type 6 - Global Additive Displaced Relocation

Type 7 - Location Counter Definition

Type 10 - Location Counter Modification

Type 11 - Program Limits

Type 12 - P-Section Relocation

Type 13 - Not used

Type 14 - P-Section Displaced Relocation

Type 15 - P-Section Additive Relocation

Type 16 - P-Section Additive Displaced Relocation

Each type of entry is represented by a command byte (specifies type or
entry and word/byte modification» followed by a displacement byte
followed by the information required for the particular type of entry.
The displacement byte, when added to the value calculated from the
load address of the previous text information record, (see B.3 above)
yields the virtual address in the image that is to be modified. The
command byte of each entry has the following bit assignments.

Bits 0 - 6 Specify the type of entry. Potentially 128 command types
may be specified although only 13 are implemented.

Bit - 7 Modification

o = The command modifies an entire word.

1 = The command modifies only one byte. LINK checks for
truncation errors 1n byte modification commands. If
truncation is detected (i.e. the modification value
has a magnitude greater than 255), then an error is
produced.

B-11

o 4

DISP CMD

INFO INFO

n INFO

" "

" II

" n

" n

II "

" "

CMD "
INFO DISP

n INFO

" ..
" ..
" n

" "
DISP CMD

INFO INFO

INFO INFO

INFO INFO

RELOCATION DIRECTORY RECORD FORMAT

B.4.l Internal Relocation

This type of entry relocates a direct pointer to an address within a
module. The current P-section base address is added to a specified
constant and the result is written into the task image file at the
calculated address (i.e. displacement byte added to value calculated
from the load address of the previous text block).

B-12

Example:

A: MOV #A,RO

or

• WORD A

DISP 1 B 1 1

CONSTANT

INTERNAL RELOCATION COMMAND FORMAT

B.4.2 Global Relocation

This type of entry relocates a direct pointer to a global symbol. The
definition of the global symbol is obtained and the result is written
into the task image file at the calculated address.

Example:

MOV #GLOBAL,RO

• WORD

or

GLOBAL

DISP ! B!

SYMBOL
NAME

GLOBAL RELOCATION

2

B.4.3 Internal Displaced Relocation

This type of entry relocates a relative reference to an absolute
address from within a relocatable control section. The address plus 2
that the relocated value is to be written into is subtracted from the
specified constant. The result is then written into the task image
file at the calculated address.

CLR 177550

or

MOV l77550.RO

DISP I B! 3

CONSTANT

INTERNAL DISPLACED RELOCATION

B.4.4 Global Displaced Relocation

This type of entry relocates a relative reference to global symbol.
The definition of the global symbol is obtained and the address plus 2
that t.he relocated value is to be written into is subtracted from the
defini.tion value. This value is then written into the task image file
at the calculated address.

Exampl.e:

CLR GLOBAL

or

MOV GLOBAL,RO

DISP ! BI

SYMBOL
NAME

4

GLOBAL DISPI,ACED RELOCATION

B.4.5 Global Additive Relocation

This type of entry relocates a direct pointer to a global symbol with
an additive constant. The definition of the global symbol is
obtained, the specified constant is added, and the resultant value is
then written into the task image file at the calculated address.

Example:

MOV #GLOBAL+2,RO

or

• WORD GLOBAL-4

B-14

DISP 1 B!

SYMBOL
NAME

CONSTANT

5

GLOBAL ADDITIVE RELOCATION

B.4.6 Global Additive Displaced Relocation

This type of entry relocates a relative reference to a global symbol
with an additive constant. The definition of the global symbol is
obtained and the specified constant is added to the definition value.
The address plus 2 that·the relocated value is to be written into is
subtracted from the resultant additive value. The resultant value is
then written into the task image file at the calculated address.

Example:

CLR GLOBAL+2

or

MOV GLOBAL-5,RO

DISP 1 B!

SYMBOL
NAME

CONSTANT

6

GLOBAL ADDITIVE DISPLACED RELOCATION

B.4.7 Location Counter Definition

This type of entry declares a current P-section and location counter
value. The control base is stored as the current control section and
the current control section base is added to the specified constant
and stored as the current location counter value.

B-lS

o ! Bl

SECTION
NAME

CONSTANT

7

LOCATION COUNTER DEFINITION

B.4.8 Location Counter Modification

This type of entry modifies the current location counter. The current
P-sect:ion base is added to the specified constant and the result is
stored as the current location counter.

Example:

.=.+N

or

.BLKB N

o ! B! 10

CONSTANT

LOCATION COUNTER MODIFICATION

B.4.9 Program Limits

This 1:ype of entry is generated by the • LIMIT assembler directive.
The lowest and highest virtual addresses allocated to the task are
obtained and written into the task image file at the calculated
address and at the calculated address plus 2 respectively.

Example:

.LIMIT

DISP 1 B 1 11

PROGRAM LIMITS

B-16

B.4.l0 P-Section Relocation

This type of entry relocates a direct pointer to the beginning address
of another P-section (other than the P-section in which the reference
is made) within a module. The current base address of the specified
P-section is obtained and written into the task image file at the
calculated address.

Example:

B:
.PSECT A

PSECT
MOV

or

C
tB,RO

.WORD B

DISP 1 Bl

SECTION
NAME

12

P-SECTION RELOCATION

B.4.ll P-Section Displaced Relocation

This type of entry relocates a relative reference to the beginning
address of another P-section within a module. The current base
address of the specified P-section is obtained and the address plus 2
that the relocated value is to be written into is subtracted from the
base value. This value is then written into the task image file at
the calculated address.

Example:

.PSECT A
B:

.PSECT C
MOV B,RO

B-17

DISP 1 B!

SECTION
NAME

14

P-SECTION DISPLACED RELOCATION

B.4.12 P-Section Additive Relocation

The type of entry relocates a direct pointer to an address in another
P-section within a module. The current base address of the specified
P-section is obtained and added to the specified constant. The result
is written into the task image file at the calculated address.

Example:

B:

C:

.PSECT A

PSECT
MOV
MOV

or

• WORD
• WORD

D
#B+lO ,RO
#C,RO

B+lO
C

DISP 1 B!

SECTION
NAME

CONSTANT

15

P-SECTION ADDITIVE RELOCATION

B.4~13 P-section Additive Displaced Relocation

This type of entry relocates a relative reference to address in
another P-section within a module. The current base address of the
spec::ified P-section .is obtained and added to the specified constant.
The address plus 2 that the relocated value is to be written into is

B-18

subtracted from the resultant additive value. This value is then
written into the task image file at the calculated address.

Example:

B:

C:

.PSECT A

.PSECT D

MOV B+10,RO
MOV C,RO

DISP 1 B!

SECTION
NAME

CONSTANT

16

P-SECTION ADDITIVE DISPLACED
RELOCATION

B.5 INTERNAL SYMBOL DIRECTORY

Internal symbol directory records declare definitions of symbols that
are local to a module. This feature is not supported by LINK and
therefore a detailed record format is not specified. If LINK
encounters this type of record, it will ignore it.

o

NOT
SPECIFIED

5

INTERNAL SYMBOL DIRECTORY RECORD FORMAT

B.6 END OF MODULE

The end of module record declares the end of an object module.
Exactly one end of module record must appear in one object module and
is one word in length.

B-19

o 6

END OF MODULE RECORD FORMAT

B-20

APPENDIX C

PROGRAM LOAD MODULE FILE STRUCTURE

An Overlay image as it is recorded on disk appears in Figure
C-l (pertinent boundaries are shm'ln).

C.l THE HEADER

! OVERLAY SEGMENT 1
------------------------------------BLOCK BOUNDARY
! OVERLAY SEGMENT
------------------------------------BLOCK BOUNDARY

!
ROOT SEGMENT 1

(READ-ONLY SECTION) 1
1

PROGRAM ROOT SEGMENT
(READ/WRITE SECTION) 1 ---RELATIVE

1/ 0

1 HEADER 1
----------------------------------START OF FILE

Figure C-l' Overlay Disk Format

The overlay header consists of two parts:

1. Core Image Descriptor

2. Communications Directory (COMO)

The core image descriptor is similar to a CIL line as produced by
CILUS, except that certain items not needed by LINK are left out. The
COMO describes the characteristics of the root segment so that it can
be loaded and run using the DOS/BATCH RUN command.

C-l

The core image descriptor has the following format:

1

BYTE COUNT

BLOCK LOAD POINT

BLOCK SIZE=lO CIL LINE=3

TIME OF CREATION

DATE OF CREATION

BLOCK SIZE OF BYTES PER BLOCK

NUMBER OF IMAGES = 1

NUMBER OF BYTES IN HEADER CORE

CHECKSUM

o
o
o
o

The COMO has the following format:

C-2

HEADER WORD

HEADER WORD=l

COMO BYTE COUNT

BLOCK LOAD POINT

WORDS TO FOLLOW=l4 GENERAL INFORMATION=l

PROGRAM LOAD POINT

PROGRAM SIZE IN BYTES

PROGRAM TRANSFER ADDRESS

ODT TRANSFER ADDRESS

FIRST RELATIVE BLOCK OF CORE IMAGE

PROGRAM NAME IN RADIX-50

.IDENT OF PROGRAM IN RADIX-50

TIME OF CREATION

DATE OF CREATION

WORDS TO FOLLOW EMT CALLS RES.=2

DOS/BATCH EMT NUMBERS CORRESPONDING TO MON­
ITOR ROUTINES TO BE MADE RESIDENT

END OF COMD=O

CHECKSUM

r.-3

C.2 THE ROOT SEGMENT

The root segment is written as a contiguous number of blocks starting
after the header.

C.3 OVERLAY SEGMENTS

Every overlay segment begins on a block boundary and is always
read/write. The relative block number for the segment is placed in
the segment table making it possible to load any overlay segment with
a single read. Note that a given overlay segment occupies as many
contiguous disk blocks as it needs to supply is space requests the
maximum size for any segment, including the root, is 32K words.

C.4 NON-OVERLAID PROGRAM FILE STRUCTURES

The file structure of a non-overlaid program normally consists of a
formatted binary file beginning with a header whose COMO is similar to
that described in section C.l, with the following exceptions:

1. "FIRST RELATIVE BLOCK OF IMAGE" entry is not included.

2. Byte count is correspondingly smaller.

The end of a non-overlaid program indicated by a formatted binary line
with a byte count of 6. This line is the transfer address block.

If the /CO switch is used to produce a non-overlaid program, the file
image will be as shown in Figure C.l, except for the omission of
overlay segments.

C-4

APPENDIX D

COMPATIBILITY OF LINK-ll AND THE RSX-IID TASK BUILDER

LINK is not completely compatible with other PDP-ll linkers (e.g., the
old LINK-ll). Rather than define compatible areas, the following
known incompatibilities exist.

Command language. The command language is basically that of
DOS/BATCH, but some keyword options are different, and
the overlay description language is new.

Memory allocation. The allocation of memory is in accordance
with the enhanced P-section capability or~ginally
developed for RSX-IID. This allocation 1S not
compatible in the handling of the blank P-sections.
Named .PSECT's or .CSECT's are not interspersed in the
blank .PSECT.

P-section names. P-section names are not treated as global
symbols. Thus global symbols may have the same name as
control sections without conflict.

Symbol table. The STB symbol table. file format is not file
formats compatible. The \ STB files created under the
old Linker cannot be used with LINK.

Tapes switch. The /TA (tapes) switch is not implemented in LINK.
If multisection paper tapes are to be linked, they must
be specified individually; alternatively, they can .be
copied to the disk in advance using the PIP program.

Overlay switch. The /OV (overlay) switch is not implemented in
LINK. See Appendix F for information on building
overlays using the "CALL LINK" format.

Order of .PSECT's and .CSECT's. .PSECT's and .CSECT's are placed
in memory in alphabetic order, not in order of
declaration as in the old Linker. See Section
3.2.1.14.

Undefined globals switch. The /U (undefined globals) switch is
not implemented in LINK. New map capabilities make it
obsolete.

Map output. LINK map output is completely different from that of
the old Linker (see Chapter 3 and Appendix H).

Error messages. All LINK error messages are incompatible with
those issued by the old Linker. LINK error messages
are textual rather than numeric (see Appendix A).

Library format. The LINK library format is slightly different
from that of the old Linker. Use of old-format
libraries with LINK causes map listing errors: however,
new library formats are compatible with the old Linker.

D-l

Word boundaries. LINK does not automatically round addresses to
a word boundary at the end of a module. If a module
ends on an odd boundary, the following module will
start on an odd boundary.

D-2

APPENDIX E

RESERVED SYMBOLS AND SPECIAL FILES

1. The symbol .NSTBL is reserved by LINK. Special handling occurs
when the definition of this name is encountered in a program.
Definition of this global symbol causes the word pointed to by
this symbol to be modified with a value calculated by LINK. The
value placed in this location is the address of the segment
description tables. Note that this modification occurs only when
the number of segments is greater than one.

2. If a global CREF is desired, the file GLOB.TMP is generated by
LINK. After the global CREF is listed, GLOB.TMP is deleted. If
a file named GLOB.TMP already exists when a CREF is specified,
that file is deleted.

3. Overlay run-time support uses the following global symbols, which
should not be accessed in any way by the user.

$AUTO
$MARKS
$RDSEG
$RETA
$SAVAL
$$WAIT

E-l

APPENDIX F

LINKING OVERLAYS USING NCALL LINK" FORMS

The "CALL LINK" capability, which was available with older versions of
the Linker program, is still usable under LINK to maintain
compatibility. However, the new LINK AUTOLOAD (LOCAL) overlays are
much faster and generally require less memory overhead. The new
overlay structures are described in Chapter 4. The contents of this
appendix, in general, are not applicable to overlay structures
described in Chapter 4.

Note that this Appendix does not describe AUTOLOAD or manual load
overlays. The "CALL LINK" overlay capability is not compatible with
those forms, and is not recommended in any case.

The run time supervisor (which is linked to the resident section of
the user program) of the "CALL LINK" overlay facility is the
subroutine LINK in the FORTRAN library, version V020A or later.

The resident portion of the run-time supervisor requires approximately
150(10) words. However, the Monitor requires an additional 768(10)
words for buffers and approximately 150(10) words for the overlay
stack at the time the overlay is loaded.

"CALL LINK" OVerlays communicate through blank or labeled COMMON in
the resident area or through the contents of general registers RO
through R4 and the stack. Overlay files can use any core resident
routines (user generated or acquired from a Library).

F.2 COMMUNICATION AMONG RESIDENT AND OVERLAY ROUTINES

Overlays and the resident section communicate through blank and
labeled COMMON areas (.CSECT's for assembly language programs) in the
core resident area. Data can also be passed between overlays from
assembly language programs in the general registers RO through R4 and
the stack.

F.3 LINK, THE RUN-TIME OVERLAY SUPERVISOR

The subroutine LINK is the run-time overlay supervisor. It has three
entry points: LINK, RETURN and RUN (for RUN, see Section F.12).

The subroutine LINK performs the following functions for the user when
entered at LINK:

a. Initializes the traceback or~g~n to the new overlay file to
allow FORTRAN error tracking via the traceback feature.

b. If called from the resident section saves general registers
RO through R5 and saves the return address to the resident
section for use with the next CALL RETURN.

F-l

c. Brings the overlay file (designated by the argument to CALL
LINK) into core and moves the stack below the new overlay
file.

The subroutine LINK performs the following functions for the user when
entered at RETURN:

a. restores general registers RO through R5.

b. transfers control following the last CALL LINK executed from
the resident section.

The LINK subroutine contains the global declaration:

.GLOBL $OTSV

where: $OTSV is the pointer to the FORTRAN impure area. This fo-rces
the impure area into the core resident section so that user I/Ocanbe
continued across overlays.

F.4 CALLING AN OVERLAY FILE

The resident section and overlay files are entered into the system as
load modules. An overlay is requested by a

CALL LINK (. A')

statement, where A is the file specification of the overlay file to be
called into core. All overlays are entered through their main
program, not through any subroutines.

The argument of the overlay call is enclosed in single quotes since
the Linker relies on' a terminating null character inserted by the
FORTRAN Compiler at the end of such a string. The maximum length of
the argument is 25 decimal bytes (stored one character per byte).

The call can be written as follows:

CALL LINK ('dev:file.ext')

Due to the OOS default conventions, the call can normally be expressed
as:

CALL LINK ('file')

with the system disk (SY:) the assumed device and .LOA the assumed
extension for a load module.

Whenever the statement:

CALL RETURN

is encountered, control transfers to the instruction following the
last CALL LINK executed from the resident section.

The first CALL LINK statement is issued from somewhere in the core
resident section of the user program, bringing into core the first
overlay file. Subsequent CALL LINK statements can be issued from them

F-2

main programs in the various overlays. Each CALL LINK brings into
core the specified overlay file.

CALL LINK can be issued from anywhere in the core resident section
(main program or subroutines). CALL LINK and CALL RETURN can be
issued only from the main program in an overlay and not from a
subroutine within an overlay.

There are four allowable control paths between resident and overlay
load modules.

a. resident to overlay via CALL LINK

b. overlay to overlay via CALL LINK

c. overlay to resident via CALL RETURN

d. overlay utilizing resident subroutines

Figure F-l illustrates these transfer paths.

Core Residency
Map

RESIDENT
MAIN

RESIDENT
SUBROUTINES

OVERLAY
AREA

~

R
a ...

... c ~

l:d
.... d

l...IIIf

c Overlay Files

t.... b ... OVERLAY 1
MAIN

Subroutines

I

OVERLAY 2

MAIN

Subroutines

the letters a through d correspond to the control paths
described in the text above.

Figure F-l

TRANSFER PATHS BETWEEN RESIDENT AND OVERLAY PROGRAMS

F.4.l Overlay Transfer Paths

CALL LINK may be issued from anywhere in the resident section.
However, in an overlay, CALL LINK and CALL RETURN can be issued only
from the main program.

F-3

Resident subroutines can be called from anywhere in an overlay file
(main program or subroutine). However, there is a restriction that an
overlay must not call any resident routine which contains (or calls
another routine which contains) a CALL LINK.

Violation of these control path restrictions causes the overlay system
to be corrupted, resulting in stack overflow or incorrect subroutine
returns.

F.4.2 Search for Overlay Files

Depending upon the format of the overlay file specification, a CALL
LINK statement searches for the overlay file under several possible,
alternate, file specifications.

Where only the overlay filename was specified, for example:

CALL LINK('FILE')

the search for the overlay file proceeds as follows:

(1.) FILE.LOA, current UIC
(2.) FILE.LOA, 1,1 UIC
(3.) FILE, no extension, current UIC
(4.) FILE, no extension, 1,1 UIC

Where a filename and extension are specified for the overlay file, for
example:

CALL LINK('FILE.EXT')

the search for the overlay file proceeds as follows

(1.) FILE.EXT, current UIC
(2.) FILE.EXT, 1,1 UIC

Where a UIe is specified and a file extension is not, for example~

CALL LINK('FILE[X,X] ')

the search for the overlay file proceeds as follows:

(1.) FILE.LOA, X,X UIC

(2.) FILE, no extension, X,X UIC

where a complete file specification is given, only one attempt is made
to find the file. For example:

CALL LINK('FlLE.EXT[X,X]')

is searched under:

fl.) FILE. EXT, X, X UIe

If the search has failed, the DOS Monitor prints the message:

F-4

FOl2 XXXXXX

where the additional information word contains the request address
(which is within the run-time supervisor).

F.5 OPERATING PROCEDURES

In order to create an overlay system, the FORTRAN main program and
various overlay files are separately compiled and linked using LINK.
One command string is passed to LINK for the main program and each
overlay file. The overlays are built using the symbol table file
created by the main. For example:

$RU LINK
LINK VOl
~RES,LP:,SY:RES<RES,FTNLIB/E
~OVLl,LP:<RES.STB,OVLl,FTNLIB/E
#OVLl,LP:<RES.STB,OVL2,FTNLIB/E

F.5.l Creating the Core Resident Module of an Overlay System

The format of the Linker command string which defines the core
resident section is as follows:

dev:RES,dev:MAP,dev:ST<dev:RES, ••• subroutines,FTNLIB/E

where:

dev:RES

dev:MAP

dev:ST

dev:RES

FTNLIB

/E

is the file specification for the user's core
resident section load module.

is the load map of the resident program,
which is an optional output file.

is the global symbol table of the resident
program module ..

is the file specification for the user's core
resident main program.

the FORTRAN Library contains the
facility supervisor and other
routines which must be linked to the
resident section.

overlay
Library
user's

indicates the end of the command string to
the Linker. This is followed by the RETURN
key.

Following the command string describing the resident module are the
command strings describing the overlay files. The format of these
command strings is as follows:

F-5

dev:OVER,dev:MAP<dev:ST,dev:OVERl, ••• subroutines,FTNLIB/E

where:

dev:OVER

dev:MAP

dev:ST

dev:OVERl

FTNLIB

/E

is the file specification for the overlay
load module. This specification must
correspond exactly to the one used as the
argument to CALL LINK when this overlay is
wanted.

is the load map of the overlay, which is an
optional output file.

input global symbol table of the resident
load module created above.

is the file specification for the overlay
main program.

the FORTRAN Library must be linked to each
overlay.

indicates the end of the command string to
the Linker. This is followed by the RETURN
key.

Notice that in the command strings describing the resident and overlay
files the FORTRAN Library, FTNLIB, is linked to each load module.

Since the default device for load modules is always the system device
and the default extension is .LDA, the load module file specification
can be simplified for both resident and overlay file creation as
follows:

REs,dev:MAP,dev:ST<dev:RES, ••• subroutines,FTNLIB/E

OVER,dev:MAP<dev;ST,dev:OVERl, ••• subroutines,FTNLIB/E

F.S.2 Creating the Overlay Files

The top of the overlay files is automatically set to the location
directly below the bottom of the resident section. The /T:n switch
can be used to change the default top linkage, if desired. The top of
the overlay must never be set to a location above the bottom of the
resident section.

In the example shown in Section F.S the resident symbol table is
discarded after the overlay system is linked. If the user can foresee
additions or changes in the overlay files, he should save the resident
symbol. table so that future changes can be made without relinking the
entire overlay system. For example:

F-6

~RU LINK
LINK Vxx
lRES,LP:,SY:RES<RES,FTNLIB/E
#OVLI,LP:<RES.STB,OVLI,FTNLIB/E
IOVL2,LP:<RES.STB,OVL2,FTNLIB/E

The first command string to the Linker causes the resident section
symbol table (SY:RES.STB) to be maintained on the system disk. This
symbol table file contains the global symbol of the resident section
and the bottom address of the resident.

To relink a changed version of OVL2, the following command sequence is
used:

$RU LINK
LINK. Yxx.. (xx is the version number)
~OVL2,LP:<RES.STB,OV2NEW,FTNLIB/E

Notice that in the example above, the symbol table of the resident
section is the first input file specification for each overlay file
and the FORTRAN Library, FTNLIB, is linked to the overlay.

Note, too, that the output filename cannot be altered since it is
referenced in a call statement as OVL2 from either the resident and/or
OVLI.

F.6 ERROR PROCEDURES AND MESSAGES

Error handling during the creation of the overlay system is performed
by LINK. At run time there are four DOS fatal errors which are
concerned with the "CALL LINK" overlay facility. These are as
follows:

Error Code

F275 xxxxxx

F276 xxxxxx

F277 xxxxxx

Explanation

An argument to the LINK subroutine
syntacticaly incorrect or too long.

is

Transfer address of the overlay file was not
specified. For FORTRAN overlays, no main
program was included in the overlay file.

Overlay file could not be brought into core
because it would overlay the resident
section. This is the only error condition
which generates the F277 code.

xxxxxx is the additional information word which contains the address
in the user code following the offending CALL LINK.

After an F275 error message (where the additional information is the
address following the offending CALL LINK), identify the offending

F-7

CALL LINK and search for one of the following error conditions in the
argument of CALL LINK:

a. syntactically incorrect file specification,

b. multiple file specifications,

c. illegal switch specifications, or

d. file specification longer than 25 decimal characters.

When the error is isolated, correct it. Reassemble or recompile the
object module in which the error occurred. If the error occurred in
the resident section, relink the entire overlay system. If the error
occurr~~d in an overlay file, then relink only the particular overlay
file with the aid of the Core Library symbol table of the resident
section and the FORTRAN Library.

After a F276 error message, determine the offending CALL LINK
F275. If the overlay file is a FORTRAN program the error was
caused by not including a main program in the overlay file.
overlay file was composed of assembly language modules, then
was caused by not specifying a transfer address. Follow
instructions described wlder F275.

as for
probably
If the

the error
relinking

After an F277 error message, determine the offending CALL LINK as for
F275. This error results when the overlay would have overlaid part of
the resident section. To correct the error condition, the offending
overlay must be relinked with a top of (low limit of the resident -2).
See relinking insructions under F275. (This error does not occur if
the correct symbol table (.STB) file is being used since the symbol
table :file includes a pointer to the bottom of the resident section.)

F.7 ASSEMBLY LANGUAGE OVERLAYS

The creation of the overlay system (resident and overlay load modules)
is the same for assembly language programs as for FORTRAN programs.

The assembly language calling sequence for the LINK subroutine is as
follows (the standard FORTRAN calling sequence) :

NAME:

.GLOBL LINK
R5=%5
JSR R5,LINK
BR .+4
.WORD NAME

1 RETURN ADORE 5S
1POINTER TO ARGUMENT

.ASCIZ /DEV:FILE/ 1ARGUMENT
~ASCII CHARACTER STRING OF OVERLAY

• EVEN 1LOAD MODULE FILE SPECIFICATION &
~TERMINATING NULL BYTE

The assembly language calling sequence to return to the resident
program is as follows (the standard FORTRAN calling sequence):

F-8

.GLOBL RETURN
JSR R5,RETURN
BR .+2

F.7.l Global Declarations

In all assembly language programs that call LINK or RETURN, the
symbols LINK and RETURN must be declared as globals.

.GLOBL LINK, RETURN ;EXTERNAL REFERENCES

F.7.2 Stack Usage

Assembly language resident code should not reset the stack at
execution time to be at a lower address than set by the Monitor at
loading time. The Monitor considers the stack as starting at the
address set at loading time and ending at the contents of register 6
and uses this information to first decide if the stack must be moved
and then to move it below an incoming overlay.

The stack should not be addressed absolutely (e.g., pointers to the
stack should not be stored on the stack itself).

Exit from an overlay should be made only through the main program of
that overlay, otherwise the return addresses from any nested routines
are lost on the stack. (See Section 6.5.l.)

While executing FORTRAN programs, the stack is only used to store the
return addresses from nested subroutines. (The latest entry on the
stack is the old contents of register 5 and the return address to the
last subroutine call is in register 5.)

with these restrictions in mind, the stack can be used by the assembly
language program.

F.7.3 Register Usage

Before exiting from the resident program to an overlay, general
registers RO through R5 are saved by the LINK subroutine. On
reentering the resident program from an overlay, registers RO through
R5 are restored by the RETURN subroutine.

The register contents are not disturbed by LINK; therefore, arguments
can be passed between overlays through the registers RO - R4.

With these points in mind, the general registers can be used by the
assembly language program.

F-9

F.7.4 COMMON Communication

COMMON communication between a FORTRAN main program and an assembly
language subroutine is shown below. In the example, the variable I of
blank COMMON is input through the keyboard. First the two low order
bits then the five low order bits of I are cleared by the mask in
variable M of labeled COMMON through the assembly language subroutine
MASK.

Note that two words
language subroutine
storage allocation.

are allocated for integers in the assembly
MASK in order to be compatible with FORTRAN

The following is the FOR'l'RAN main program:

5
1
C
C

2

C
C

3
C
C

4

COMMON I,J
COMMON /X/L,M
WRITE (6,1)
FORMAT(lH ,7H INPUT)
INPUT VARIABLE I OF BLANK COMMON
FROM KEYBOARD

READ (6 ,2) I
FORMAT (15)

PREPARE THE MASK FOR
THE TWO LOW ORDER BITS
M=3
CALL MASK
WRITE (6 , 3) I
FORMAT(lH ,2HI=,I5)
PREPARE THE MASK FOR BITS
o THRU 4 (3l (10) = 37 (8».
M=31
CALL MASK
WRITE(6,4) I
FORMAT(lH ,2HI=,I5)
GO TO 5
END

The assembly language subroutine MASK follows:

F-IO

.TITLE MASK

.GLOBL MASK

;CLEAR THE,1ST POSITION OF BLANK
;COMMON BY THE MASK OF THE 2ND POSITION
; OF NAMED COMMON, X.
MASK:

RS=%S
.CSECT .$$$$.
S=.+O
T=.+4
.=.+10
.CSECT X
A=.+O
B=.+4
.=.+10
.CSECT
BTC B,S
RTS RS
.END

F-ll

APPENDIX G

. ASECTS, .CSECTS, AND .PSECTS

G.l PROGRAM SECTION DIRECTIVES

G.l.l .PSECT Directive

Program sections are defined by the .PSECT directive, which is
formatted as:

• PSECT [NAME] [,RO/RW] [, I/OJ [,GBL/LCL] [,ABS/REL) [,CON/OVR] [,HGH/LOW]

The brackets ([l) are for purposes of illustrating optional
parameters, and are not included in the parameter specifications. The
slash (/) indicates that a choice is to be made between the
parameters. The program section attribute parameters are summarized
in Table G-l.

Parameter

NAME

RO/RW

I/D

GBL/LCL

ABS/REL

Table G-l

.PSECT Directive Parameters

Default

Blank

RW

I

LCL

REL

Meaning

Program section name, in Radix-50
format, specified as one to six
characters. If omitted, a comma must
appear in the first parameters position.

Program section access mode~

RO=Read Only
RW=Re ad/Wr i te

Program section type~

I=Instruction
D=Oata

The scope of the program section, as
interpreted by LINK~

GBL=Global
LCL=Local

Defines relocation
section~

of the program

ABS=Absolute (no relocation)
REL=Relocatable (a relocation bias

is required)

G-l

CON/OVR OVR

HGH/LOW LOW

Program section allocation;

CON=Concatenated
OVR=OVerlaid

Program section memory type;

HGH=High-speed
LOW=Core

(Note:HGH/LOW is not supported in the
current DOS/BATCH release.)

The only parameter that is position-dependent is NAME.
omitted, a comma must be used in its place. For example,

If it is

.PSECT ,RO

This example shows a PSECT with a blank name and the Read Only access
parameter. Defaults are used for the remaining parameters.

LINK interprets the .PSECT directive's parameters as follows:

RO/RW

I/O

GBL/LCL

ABS/REL

CON/OVR

HGH/LOW

Defines the type of access to the program section
permitted which is; Read Only, or Read/Write.

Allows LINK to differentiate global symbols that are
entry points (I) from global symbols that are data
values (D).

Defines the scope of a program section. A global
program section's scope crosses segment (overlay)
boundaries; a local program section's scope is within a
single segment. In single-segment programs, the
GBL/LCL parameter is ignored.

When ASS is specified, the program section is absolute.
No relocation is necessary (i.e., the program section
is assembled starting at absolute 0). When REL is
specified, a relocation bias is calculated by LINK, and
added to all references in the section.

CON causes LINK to collect all allocation references to
the program section from different modules and
concatenate them to form the total allocation for the
program section. OVR indicates that all allocation
references to the program section overlay one another.
Thus, the total allocation of the program section is
determined by the largest request made by a module that
references it.

In future releases of DOS/BATCH, the user may be able
to specify the kind of memory used to store the .PSECT
(high or low speed); Currently, this parameter is
ignored.

G-2

Once the attributes of a named .PSECT are declared in a module, the
MACRO Assembler assumes that this .PSECT's attributes hold for all
subsequent declarations·of the named .PSECT in the same module. Thus,
the attributes may be declared once, and later .PSECT's with the same
name will have the same attributes, when specified within the same
module.

The Assembler provides for 255(10) program sections: One absolute
section, one blank relocatable section, and 253(10) named relocatable
sections are permitted. The .PSECT directive enables the user to:

1. Create his program (object module) in sections; and,

2. Share code and data.

For each program section specified or implied, the Assembler maintains
the following information:

1. section name;

2. Contents of the program counter;

3. Maximum program counter value encountered; and,

4. section attributes, (the six .PSECT attributes).

G.l.2 Creating Program Sections

A given program section is defined completely upon its first
reference. Thereafter, the section can be referenced by completely
specifying the section attributes or by specifying the name only. For
example, a section can be specified as:

.PSECT ALPHA,ABS,OVR

and later referenced as:

.PSECT ALPHA

By maintaining separate location counters for each section, the
Assembler allows the user to write statements which are not physically
contiguous but are loaded contiguously, as shown in the following
example:

A:
B:
C:
ST:

.PSECT
• WORD
• WORD
• WORD
CLR A
CLR B
CLR C
.PSECT
.=4
• WORD
.PSECT

SECl,REL
o
o
o

SECA,ABS

.+2,HALT
SECI

;START A RELOCATABLE SECTION NAMED
;SECI ASSEMBLED AT RELOCATABLE 0,
;RELOCATABLE 2 AND
;RELOCATABLE 4,
;ASSEMBLE CODE AT
;RELOCATABLE ADDRESSES
;6 THROUGH 21
;START AN ABSOLUTE SECTION NAMED SECA
; ASSEt>1BLE CODE AT
iABSOLUTE 4 THROUGH 7,
i RESUME THE RELOCATABLE SECTION

G-3

INC A
DR ST
.END

;ASSEMBLE CODE AT
:RELOCATABLE 22 THROUGH 27

The first appearance of a .PSECT directive with a given name assumes
the location counter is at relocatable or absolute zero. The scope of
each directive extends until a directive beginning a different section
is given. Further occurrences of a section name in a subsequent
.PSECT statement resume assembling where the section previously ended.

.PSECT COMl,REL :DECLARE RELOCATABLE SECTION COMl
A: • WORD 0 ;ASSEMDLED AT RELOCATABLE 0,
B: • WORD 0 :ASSEMBLED AT RELOCATABLE 2,
C: • WORD 0 :ASSEMBLED AT RELOCATABLE 4,

.PSECT COM2,REL ; DECLARE RELOCATABLE SECTION COM2
X: • WORD 0 ;ASSEMBLED AT RELOCATABLE 0
Y: • WORD 0 :ASSEMBLED AT RELOCATABLE 2,

.PSECT COMl ; RETURN TO COMl
D: • WORD 0 ;ASSEMBLED AT RELOCATABLE 6,

.END

All labels in an absolute section are absolute: all labels in a
relocatable section are relocatable. The location counter symbol,
".", is relocatable or absolute when referenced in a relocatable or
absolute section, respectively. An undefined internal symbol is a
global reference. It essentially has no attributes except global
reference. Any labels appearing on a .PSECT (or .ASECT or .CSECT)
statement are assigned the value of the location counter before the
.PSECT (or other) directive takes effect. Thus, if the first
statement of a program is:

A: .PSECT ALT,REL

then A is assigned to relocatable zero and is associated with the
relocatable section ALT.

Since it is not known at assembly time where the program sections are
to be loaded, all references between sections in a single assembly are
translated by the Assembler to references relative to the base of that
section. The Assembler provides LINK with the necessary information
to resolve the linkage.

Note that this is not necessary when making a reference to an absolute
section (the Assembler knows all load addresses of an absolute
section).

In the following example, references to X and Yare translated into
references relative to the base of the relocatable section SEN •

• PSECT ENT,ABS
.=1000

A: CLR X :ASSEMBLED AS CLR BASE OF
;RELOCATABLE SECTION + 10

JMP Y ;ASSEMBLED AS JMP BASE OF
:RELOCATABLE SECTION + 6

.PSECT SEN ,REL
MOV RO ,Rl
JHP A :ASSEMBLED AS JMP 1000

Y: HALT

G-4

X: WORD
.END

o

Code or Data Sharing

Named relocatable program sections with the attribute OVR operate as
FORTRAN labeled COMMON; that is, sections of the same name with the
attribute OVR from different assemblies are all loaded at the same
location by LINK. All other program sections (those with the
attribute CON) are concatenated.

Note that there is no conflict between internal symbolic names and
program section names; that is, it is legal to use the same symbolic
name for both purposes. In fact, considering FORTRAN again, this is
necessary to accommodate the FORTRAN statement:

COMMON /X/A,B,C,X

where the symbol X represents the base of this program section and
also the fourth element of this program section.

Program section names should not duplicate .GLOBL names. In FORTRAN
language, COMMON block names and SUBROUTINE names should not be the
same.

G.2 .ASECT and .CSECT Directives

DOS/BATCH assembly language programs may use the .PSECT directive
exclusively, as it affords all the capabilities of the .ASECT and
.CSECT directives defined for other PDP-ll assemblers. The DOS/BATCH
Macro Assembler will accept .ASECT and .CSECT but assembles them as if
they were .PSECT's with the default attributes listed below. Also,
compatibility exists between old object programs and the LINK, because
LINK recognizes .ASECT and .CSECT directives that appear in such
programs. LINK accepts these directives from such object programs,
and assigns default values as shown in Table G-2.

Table G-2

Non-RSX-llD Program Section Defaults

Attribute Default Value
.ASECT .CSECT (named) .CSECT

Name ABS name Blank

Access RW RW RW

Type I I I

Scope GEL GBL LCL

Relocation ABS REL REL

G-5

Allocation OVR OVR

Memory LOW LOW

The allowable syntactical forms of .ASECT and .CSECT are:

Note that

• ASECT
.CSECT
.CSECT symbol

.CSECT JIM

is identical to

.PSECT JIM,GBL,OVR

G-6

CON

LOW

APPENDIX H

LOAD MAP EXAMPLES

H.l MAP LISTING

The Map has a header followed by segment descriptions.

H.l.l Map Header

The header consists of the following display: (lower case entries are
self-explanatory variables filled in at runtime)

FILE file-name MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON date
AT time LINK VERSION ver-number

H.l.2 Segment Descriptions

Segment descriptions have four subsections

1. Attributes and Statistics I-Short
2. Control Section Allocation Synopsis-- Map
3. File Contents
4. Undefined References

Segment title lines appear as:

***SEG: segname

H.2 ATTRIBUTES AND STATISTICS

I-Long
! Map
1

LINK prints out the following data on segments. Only those items
which apply to the segment being described will appear on the map.

H.2.l Read/Write Memory Limits. Displayed as:

R/W MEM LIMITS: start end length

The addresses define
segments R/W section.

the virtual storage allocated to the
The end address is an inclusive address.

H-1

APPENDIX H

LOAD MAP EXAMPLES

H.l MAP LISTING

The Map has a header followed by segment descriptions.

H.l.l Map Header

The header consists of the following display: (lower case entries are
self-explanatory variables filled in at runtime)

FILE file-name MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON date
AT time LINK VERSION ver-number

H.l.2 Segment Descriptions

Segment descriptions have four subsections

1. Attributes and Statistics I-Short
2. Control Section Allocation Synopsis-- Map
3. File Contents
4. Undefined References

Segment title lines appear as:

***SEG: segname

H.2 ATTRIBUTES AND STATISTICS

I-Long
! Map

LINK prints out the following data on segments. Only those items
which apply to the segment being described will appear on the map.

H.2.l Read/Write Memory Limits. Displayed as:

R/W MEM LIMITS: start end length

The addresses define
segments R/W section.

the virtual storage allocated to the
The end address is an inclusive address.

H-l

H.2.2 Read-Only Memory Limits. Displayed as:

R-O MEM LIMITS: start end length

'This entry can occur only for the root segment.

H.2.3 ODT Transfer Address. Displayed as:

ODT XFR ADDRESS: address

H.2.4 Program Transfer Address. Displayed as:

PRG XFR ADDRESS: address

H.2.5 Identification D.isplayed as:

IDENTIFICATION name

The name is derived from the first non-blank .IDENT entry encounted
during the processing of the segment's object files.

H.3 CONTROL SECTION ALLOCATION SYNOPSIS

The Control Section Allocation Synopsis lists all the p-sections
compr1s1ng the segment. The sections are listed in alphabetical
order. In segments other than the root, the read-only attribute is
not honored. LINK processes R/W sections, then R-O sections, but
declares any R-O Section R/W.

For each section encoun'tered in building the segment LINK displays:

name: start end length.

Blank control sections are given the name
• BLK.

and collated lowest in the sort sequence. Absolute control sections
are given the name • ABS.

Note that neither of these names is a legal assembler section name and
thus cannot be user-generated.

H.4 FILE CONTENTS

This section of the map identifies by file every p-section contributed
to the segment. And for each p-section it lists every global symbol
defined in the section. The section begins with the display line:

***TITLE: t-name IDENT: i-name FILE: file-name

B-2

Where:

file-name = The name of the file specified in the ODL description of
the Task.

t-name = The name of the first non-blank .TITLE
entry encountered in module. If a file contains n
modules then a complete FILE sections is displayed for
each module.

i-name = The name of the first non-blank .IDENT
entry encountered in this file.

Following the TITLE line, each section in the file, displayed in the
order they were encountered, appear as:

name: start end length

Following a section identifier is a list of global symbols in the
form:

name address

If the address is relocatable, -R is appended to the address.

If an undefined reference is encountered, the following line is
displayed.

»»»»»»UNDEFINED REFERENCE: name

These undefined references will appear interspersed with the global
symbol definitions.

UNDEFINED REFERENCES.

This section is headed by:

UNDEFINED REFERENCES

This section separator is followed by an alphabetical list of all
undefined symbols found in the segment. This list contains all
undefined references that appeared in the FILES section.

At the end of this section the number of octal bytes used by LINK to
complete the load, and the number of octal bytes remaining unused by
LINK appear as:

SPACE USED xxxxxx SPACE FREE xxxxxx

The load map shown below was generated by the following LINK command
string:

CILUS3,LP:/LG/CR<CILUS.ODL/MP/E

H-3

r:- I L E C t L U S '5 • I .• r! h M F M n R Y A '- L n r: A T T n N "", A P
T H T S A 1.I.Jl C !t T I ('l1-.J l.J A S f') (HJ E (1 N ? 7 - J LJ r~ - 7 3
AT 03~07:2q LINK VE~~IO~ V01-~2

*** ~Of)T ~F.~: r.ILlJS

R/W MFM LtMtT~: 142770 152651 ~07662
TDFNTIFICATI0N : 71
PR~ ~FQ AnDPESS: 1~?770.

PROGRAM SECTION ALLnCAfrON ~YNOPSTS:

<. RLK .• >I lIJ2771 15~?65 "rA7?76
<COMM("lN>~ lC:;~266 15?423 It; '" !,11 '36
<. .ARS.>: (?I~00(1~J vH~ ~ 0 (10 OC1~~fiH~

*** TITLE: CILUS rriEI--JT: 71 FILE: CUSP

<. ARS.>: ~ ~ ((. ~H!I(iI r,'::?I:? r· ?I 0 0~~~r?!J?!~

CLSICF ******-~ C{)MDEC ******-~ EDCOM
HOKRnT ****** .. X ,_ 0 A I) ******-x P1
~1 VI ~~ ~, ? ~~ 1 52 L~ r 020.,

<. 8LI<.>: l!J 2 7 7 v~ lLJ77'~1 ~~Clq712

r.IL 1 fJ,3~?' - R r. I L ~H)Y 1l13LJ06-R C1LRLP
CIlFr, 1.LllH136-R rIlFLR 1 /1LJ32r.-R C TI. PW
r:ITtvlP 1·'!34 7~ .. R CITMPl 1LJ3,?~-P CrTPFA
r.LSRLS 147174 .. tJ C'1\)BI.!F IIJLl"'3~-R cnf.1RUF
r.o~nLK 1 (4372~ .. R COt-.1J11 1/~L!(.IbA-R COMP;
r.npYr)S 1. !l5336 .. R fRlF 1 !~ S 1 /.j 2- R CSItS
I"lELFTL 1471J~HI-R I) 0 S f1 S ll.l7!J Ll LJ .. I-? I"losn~

FNDf'v40D 1L1S656-R FORpr~p 1474SlJ ... [.(GETl3UF
r. N F 8 ~ ~j td631? ... P G~jLRKS 1 fJ6h7;'-P. Gt':6l.lr~L

'T'NSMOf) 14b01Ll .. R LASC"1D 146616-P. LCl.FG
l CLnT lLJ 3 4 f-l LI .. P L.ClTMP lLJ516d .. R l.IST
Mt-.IEXCR 1 lJ6174-P MPREr.P. 1461Qb .. R NCICJL
~'ALH1F(llJ7656 ... r~ ~:6i.lRFS 1476S"! .. P t\i61J2S6
nCTLRS 147646-P. n~'iS Gf1 t45156-R P'JAHE
PRTrr l!.13564-R P~TNTh lLl5<?lLl0-~ PR PH F
P~NTF 1 Ll 5 l~ ~" 2 - R R F '" ~1 F ,_ lLl7,02-R SAVRG
~ECr:J 1!J3h13-R S[GRLP 147674l-i:i' SFGlIN
~YSLRS 1 LI 3'J 6 f, .. I~ T FP \lFR 1(JIJ37(J-~ TT"'E
TMPFL lLJ4?!l6 .. Q TTYOUT 1I1S~~Ll2 ... R \A!t:?NING

<cnMMO~I> ~ 15?266 15?423 ~9(il1.36

.lIR

******-x
0001001

l /J763L1",R
lLJ76?6-R
1LJLJ2f>Ll .. R
1 Ll46t)4 ... R
tlJ,3Ll6 ... R
tLJ33~2 .. R
lLJ7Ll42 .. R
lLlCi416- R
14671LJ,.R
1 LlllV1~6 .. P.
l£13lJ~? ... q
l£176S(~ .. R

1!J7bhd-R
1.Ll6?~2 .. q
1LJSP12 .. Q
14S212 .. R
1.476hf:. .. R
147640 ... R
1.4113';r, ... R

*** TITLF: C1Lln F I '- f: C 1.1 S P • l I R

EDIT ******-x
P2 (~W 0(~0~~

C H.E ~<JD 147h6L!"'R
C 1'_ t 143:H6"R
CITPLK 1 1.1 LJi/160-R
C (HH) ri K 1.1.1 (1'212- R
rOHns 1Ll3351J-R
(SIOS 1 (J:~ 3LJ'~"R
r.OSNr3 t 47 /.1 46-R
(;rVRIJF 1 !J5S7~-R
rnSIZE 1 !~ 7652-R
LCLFL l/JIJ23~~-R

MFTRCR 146?24-R
~! I.) L. !~ L L t IJ 6 7 6 [,~ .. R
'!6/J 6 /.1 14766'1-R
PRCQ'H'! 1 /n~ 1 LI-R
P R ~JT A 1IJS(!'"391-R
SCCO·,1r) 1 ·:nS4f3 .. R
SF r; t~ n 1/47 7 QH~ ... R
TLCLOT l!J 3il5 h-R

G f T P t, F * * * * * * .. X G t V R IJ F * * * * * 'It .. X S A V R r. * * * * * 'It .. X 1.oJ L' "i I ~,! G * * * '* * * ~ X

<. BLK~>: la77~? 151b~5 0~17~a

RLnpl)Y
r:LSr')CF
OP F. \'
RFPLCF
WTC!

151452-P
151372-R
15l'51~-R
1477~2 .. Q
1 !'.,'ilh?h-P

CLEAR lS1SLJ? .. R
FLMCr lSI?122~-R

PLMLCI lC;~'74 .. R
TR t'dH N t 5 H~3lJ-R

H-4

('LOSE t~U30. .. P.
PH C F t 5 1 2, \~ .. t:?
R f" ell 5 0 6 " ;1- R
TPAt>.iOT 151042-R

CLSTr:F 151~72-R
I t\1 n (F 1 ') 1 i? 3 4 ... R
QFI..IJ(':r lr:;1.1h~"R

l'j F !~ L C F 1 c; 0 1. 1 6 ... R

<COMMON>: lS?266 15?a23 0?0136

*** TITLF: q;Al.ITO TI!F:t'JT: 03 FILE: CUSP .LY8

$MARKS ******-X $RDSFG ******-X $SAVAL ******-X $$WAIT ******-X

$AUT!"' 1 ~lhf?6 .. R

FILE: CUSP .LIB

<. BLK~>: 1~1716 15?C07 0~0~72

$MARKS 1S1716-R

*** TITL~~ ~PDSEG InFNT: 03 FILE: CUSP .LIB

.TRA~ ******-x
> > > > > > > > > > > > l! t\: [) F F I t--! F f) REF r::- q F ~J c: E: T R A •

<. BLK.>: 152~10 15??h5 0~02S6

~RDSF~ 152~3h-P ~SAVAl 1521a0-R $$WAIT 152202-R

TRA. **

R / ItJ M F. t-1 L H111 S: 1 '3 "- f.- C; 2 1 5 h 73 r:; (;3 0 a 0 6 a

PROGRAM SECTION ALLOCATION SYNOPSIS:

*** TJTLF: co~nEC TrENT! 7~ FILE: cusp .LIA

H-5

r.!LFG ******-x CILFLR ******-)(CILl ******-x
C T TPlY ******-x CMrH3UF ******-x C rn·HjUF ****** ... '1
r.nt-mLK ******-x ((WIN ******-x cnpv()s 'Ic;*****-x
rSII~ ******-x f"lELFlL ******-x !)OSr)S ******-)(
f')OS~Jr ****** ... x FDPPPP ******-x GF:TRliF ******-x
tr.LFL ******-x LCI OT ******-x LCL.TMP ******-x
~JlILALL ******-'1 0.CIL.~S ****",*-x (") M S r.~' ******-x
PRNTA ****** x DRNTF ******-x PENMFL ***·*** .. X
~ c c rH~(1 ****** .. X 8YSLR~ ******-x TFRMER ****** .. X
TMPFI ******-x ~Ip~! I p..jG ****** ... X

< • B L!<' • >: 1 S 2 f. 5 2 1. I:j f.. 7 .~ 5 0914 0 6 lJ

COMDFC 1'i?65?-R

* * * ~ F G! F: f') cor,

* * * T TTL F: ~: n r. n \.

r. n!~'-·I. IF ,***+**-x COt--~T~'1

F~J!')H0.r:· ******-x T :.: c; t·W f)
PQNTA ******-'1 ;:lQ:-';TF

5AVR~ ******-v S 1

<. 13LK.>~ 1r.:;C6S2 1r::,7..f:..77 0(~ 1

FTLE: (USP .LIR

******-x
******-;:
******-x
'******-x

.~ 2~

H-6

COt-QS
p~,.IAMr

p 1

****** ... X
******-x
******-x

52 ******-'1.

CTTMP
COMn~~K

CRI...F
[)OSFFI
LCLFG
LIST
PRe o~ D
SAVP.
TLCL T

C0.',10s
PR PHr:
Pc

****** ... x
******-x
****** .. x
******-x
*,t****-)(
******-x
******-x
******-x
******-x

******-x
*·** ... ·** .. x
*·***** .. x

*** TTTLF: EDTT T()E~JT: 7r1i FILE: CUSP .LI~

<. AR5.>: r 0 71 ,~\(~ \I' ~~0r(il(1 ~H"\1:i'vhA.

RL!')Rf"ly ******-x r: It.Pl,P ******-x CTLFND *****'*-'X
f.ITMP ******-x C I n.lp 1 ******-x CTTJ.>Ff3 ******-x
CL!JSF ******-x CLSICF ****.* .. X CQLF ******-x
I':IELFIL ****** .. x FU~C r ******-x F~I!)HOO ******-'1..
r,TV~:1F" ******-x G~"F R L ~! ******-x G~il.~3KS *****.-x
HHCF ******-'/. T t\IS tv! n!) ******-x LA~CMO **1I***"'X
LIST ******-x 'iFIRCR *****'*'-'X ~-HJfXCR **'Ie***-X
f\iCTCTL 'Ic**.***-X r; b {j ~.! E C ****** ... x De!LRS ******-x
p ~~ A ,,,1 F" ******-x q,: f IJMr) ******-x PPTCI 1*****"''1,
P1 ******-x RFRLeF ******-x SAVRG ******-1..
SEr.cr *,+,:****-x ~i r r;[H p *****,*-x SFGLT~'J ******-x
s 1 ****** ... X ~2 ******-'1. TFR~lr:R *****·Jr."X
TLClnT ******-y \.j P i\j I"; r; *'k***'*-X

<. ~t.K.>: 1 S26~~? 157L!57 (lJPl!hrf-l

FnTT 1 ~~?i)S2 .. R

<CO"-1t-1(,Hh! '. '32266 15?1J?3 vH~~ 136

*** SFr,: L,(1AD

*** TIT! F: L~M'\ ~TI.f': CUSP .lTR

RI.I)R!")Y ****** ... x
CIltt\lF ******-x
CLSICF **1.'***-'1.
r; N F F1 L '" ******-x
TNtCF ******-'1.
N64"JFC ****** ... '/.
ncIl. 8S ******-x
r:U:N~FL ******-x
TIIJE ******-'1.

ClL
C TL 1
(L SR t S
G~,U;KS

L:\SCf,jr)

~.; 611 ~ F S
PLMf..fr
QFqi_CF

i,o.) F '\ L r. F

****** .. X
******-x
***** x
****i.'", ... x
*****~ ... x
*****,*-X
***'*-Io.*-x
****'1*-)(
*****'Jc:-X

H-7

rI!~!)Y ****** ... X
[I,fAR ******-x
Ft., !v1 C t * * * * * * - '{
(~ ~; 6 lH1l * * .' * * * - X
l.CLDT ******-x
".i6L!2Sf-l ****** ... \(
PRCOMD ******-'{
SAVRG **'****-'1.

C T I,~ I "-JF:':
CLEAP
CSIO~
GFTRIH:
Tr)SI?F"
LCl,nr
~1PPECR

ptyu::r
PRt",lTh.
SCCO~f)

S E r, ~,l n
TIHE

r r', F '.:1"1

CU)SF

****1*-X
******-x
******-x
******-x
******"'X
******-x
******-x
****** ... x
******-x
******-x
******-x
******-x

-**-X
***-Ic:*k-X

G I \j ! ~ I I 1-- * * * '4' k * .. X
IDSIlFk*****-X
~,j C 1 C I L
'.; 6 IJ t) ~!

PRTCI
T (~~ 11F R

******-x
****** ... x
******-x
******-x

*** lJTLF: qnjo(Co\(lT T')f~JT: 7n FILE: CUSP .LIP

ClL * ****-'/. pncF' ******-'1. "HSTRT ******-x r"(rLr~s ******-x
~rMf\1 ~ : ****** .. >i. i.?CST~T ******-x RFC5TRT ****** ... x ~KSTRT *,.****-X
RPSTQT '1r*****"X SlIVHR ******-)(SAVRG ******-x TC~TRT ******-X
T F Q \~F i' ****** .. '/. r t< fl, ~.! r'I T ****Jl-.-X

FTLE: CIJSP .L IR

FILe! C!JSP .LI~

FILE': CIJSP .LIR

* '* * TIT L ~: D r ~ ~, (": T FTLE: C't1~P .L111

<. RtK.>: 1S.,~·C:;2 1t;1-t2S1 '1r:1i/12C"r;'l

*** TTTI.F: TCRC'l[lT FILE: CIJSP .LTR

*** TITLF: ~T~Qnr FIl.E: cusP .lTR

H-8

S Y M 8 0 L "'1 n ') I ,II. f P F F F. r.t F. ~.J C F S - - - .. -

RLr"Rr'lV
CIL
CII.8DY
C I LRI P
CtI..F"H')
CILFG
r 11_ F L Fl
CIII~IE

r III
rITMP
rrTtvlP1
C rTpn~
CITPLK
r:LFAI-(
rLOSF
rL<;rCF
rLSOrF
rLSRI.5
CMDRUF
COM8t1F
COMDRf<'
rOMDFC
r:Ot-1DI K
rOMlf\J
COMts
"'OI~(J~

r:OPYf)f.:.
CR\.F
CSTI~

CSTOS
nElFII_
nOSPs
nOSFR
DOSNP
[DrOM
FDIT
FLMCI
FNnMClf)
FORPRP
r: E T R 1. 1 F
GIV811F
r,NFBl~'

f';NI.RKS
r:Nh4RL
HOKBQT
IDSI7f
TNTCF'
INOCF
INSMnl)
LASC~"r)

I CL FG
L.CLFL
LClrn
t CI. r""p
I 1ST
LOhD
MFIRCR

CTlIO tJ.
CTL.US tJ.

r. It" u~:; #
.rII.US '#
CIUJS it
(TLli$ #
rnllS :u
r:TLI,It:; #.
C T I., u~ #
C II,US '#
rTLLlS '#
CIl.US #
eILliS #
r T!. I 0 'f+

CTLlO t:t

CTLJ(l 'Ii

CILlr1 tI.

r Jll:<'; #
(111)$ fi.

eILUS ti
(JUIS ij

(ICUS
r TI.. L! S tt
rlLll<5 d

r;IL!!~ ti
(TLUS of

rTLI!S ii

fTL.us tt
C T I i I ~ ti

r: It.!. I S #

Clt"U~ Ii
C I I,. U:~ it

C ILl's tI.
rJtus t!
C T 1,_Uc;
C II I.JS
CPIn u
C J fl. 1 S tI
CILUS tJ

C nrn
CILTr)
en.l!S #

rTLl'" t:
r Tl..lJS t
C I Lt,I;;
(lUIS tJ

C P. If) 'It.

CILJr' '#
ClUJ S t;

CTlUS #
(~LUS t:.
(TLUS ti

r. T t.. t,) S :1,

r:TLiJS t1

rIU:~ #

r:TLU~
(Tu!e; t!.

Hf)KBOT
InA. [l
r:: r', 1 ,.
P: IT
r::ntiDF C
c rr,I,DEC
Ft.~ T T
r: n ivi n [r.
(n t/ rl F C
FnJT
Ff"'T.T
Cn~nfC

njTT
FnIT
CTLUS

Lr~Hi

[(HAnEr:

CtiM[)[C
cn~lrH:C

C r: ~,\ r:' F C i:i
(n r."i,) [' r:
c. ('l ~1 D f r:
rl)(O~1

F r> C n ~"
r:f"lt~lirr

r: ["o'1[,[C

r n r,~ r r c
Frl r T
r:: c: 'If D F C
r C'qf:C
r r~q)r-C
rrH,'r;rc
r-r;c(":v t!

Fr, I T I:t

FT T T
FnCO~l

r NiliFr
(TUIS -H

rJUJS tJ.

Er' l T
FI"'TT
t n.6 r;
Hr~I..:RnTt4

r-rlT
rf'IT

rr.rcw
Fr"IIT
r r~·q)FC
C n~'1DEC
Cn~1f)EC

cr,rjDFC
r:: (l :.~ f) F C
,nAD #

FTlTT

LOAD

UHf)
LnAD
FDIT

L,(1hD

',.OAO
FDTT

Ff)TT

ForT

L.OAn
Er)TT

r. n'H) Er:
I'='D1T
LnAD
L(,),6.0

LOAr)
HOKf30T

E8IT
LOA!)

EDIT

EDIT

H-9

L(1AD

rrnT
LOA!')

LOAf)

LOAf)

~NF}(rO rHYS tt F·-r)TT
MPREr"? rTf ! IS ti. F'l"'lT
~T~TPT ~-InKr.l(lT t'~TRnGT~

~,ICTcrL r I' iJ~ a Ff")TT LnAD
NdL~1 L rp i..'S it rrr-.'DEC
".I6L1NFr C Ill.S 'Ii FrqT LnAD
Nb(j~F~ r T L I i~ t:f. I. GtD
,.1 b L1? 5 h C I '_l.! S 'It. LnAf)
,..IbLJ c L1 r T I i.IS # LnAn
nC:TL~S (T L li~ tJ. r.nM[)fC FOIT HC'lK80T L('1AO
rn"'~G"" r TU!~ tJ. C \0 i>iDEC
nPF ~J r T ,_ J r; t/.

PL"1LCT (11. Tn tJ Pr.IT 1_ n A I)
PNAMF C IU!e::: #. F.r.cc~ EaIT
PRCQt-.1" r ILL! S t:I. rn~'lDEC E!:'IT LOAn
PRTer r 1 L I:C; '# FDIT LOAf)
PRJNTA r.TI_~JS 1:1. I=:"I"1T
PRYf'.JTF (IlIIS # I:rJCO:-'1
P~HIT A CII..!JS '!i r n tv: r~ 1= r. Er)COM
PRNTF crUiS tt r:(lMCiEC [DCOt..,
Pl C J LIJS # E f) C O"'~ En!T
p2 Clt.lIC) tJ l:::r)cC- M
RCM['IIJI HGI,qHiT Ln6.L' it

PC~T~T H!"1Kf~(1T RCRQC'lTr1
RDCI r H. I i) tt
RELOCT r T'- F) ti

PEW-1Ft. rILUS # CO~DEC LOAf)
QFP.L.CF rILrr) # FI')TT UJAn
PF~TPT Hi"'! ;.<r; 0 T PFRO~lTtt

PK5TPT I-ln'.:i~0T PKROCT#
RPS1PT I-l f) 1<, I:; n T QPr<CQTrl
C)AVHR HnKl-:'n; LOA!} It

C:;AVqr, C T!_ 10 CTLUS t: (n~J.I")FC FDeOM ErIT HO~R()T LOAf)
~crnHr) (: tU.I~ U (' (1H r f r. fDIT
~ErCT r. T Li,e:; it f.:DIT
~Er;Rl p C I'- liS tt ~f")TT

~ f r, L P! C T '_I,IS :.t FDrT
~EGf'.ln r I I, liS n ~i)r.T

SYSLRS [TlUS t:f. C0~DFC

~1 r: I I.,!) S tJ F n C C),·1 ErrT
C:;2 r.TL!)S Ii Ff')CQ'A F'DIT
TCSTPT H n 1<: f.-\ (\ T Trr3(10T#
TF.:PMF"r;;I r: J Ii..: S tt Cr:~·'Dfr EnIT HOKBOT lOb,!)
Tl~E C T L 1)5 IJ I=r.TT LOAf)
TLClOT CHi.IS tf. r:G"'~;)EC E'nIT
TMPFL rI'_ljS f1 CCP-1[)EC
T ~ A"! T ~J (! t. I G ti

TRAN('lT CTLIO ti HOKBI')T

TRA. cto["lSF:G
TTVOUT r T '-L'<:: fj

1.-1 F~ lC F r T I .. p., #. I_OA D
I.tJRf'.II NG r.ILTO r:: I U) S ti rOM!)F.:C F:nIr
WTCI r: Lt, T rl '!'J,

1;AUTO ~ Ai.-'T n tf

~MA~KC:; ~AI.!TO .., ~~ ~ P. k' 5 ~
~ROSFG $,HiT0 ~Df')SF(;d

q:SdVAL ~hUTn 'j:~:r)Sf(;ti

If, $1.1 ,6 IT It, ~! I T('1 'tPI)SFGtt

H-IO

@ Character, 3-2

Absolute Patch ABSPAT, 8-2
ABSPAT,

Absolute Patch, 8-2
Additive Displaced

Relocation,
Global, B-lS
P-Section, B-17

Additive Relocation,
Global, B-14

P-Section, B-17
Address,

Disk, S-3
Load, S-3
ODT Transfer, H-2
Program Transfer, 2-2,

H-2
Transfer, B-S

Address Switch,
Transfer, 3-3

Algorithm,
LINK Tree Walk, 7-2

.ASECT Directive, G-S
Assembly Language Overlays,

F-8
Assembly Language Sample

Links, 3-9
Asterisk,

Autoload Operator, 4-10
Asynchronous Load, 4-2
Attributes, H-l
Autoload, 6-2, 4-2
Autoload Operator Asterisk,

4-10
Autoload Vectors, S-4

jB, 3-3
Bottom Switch, 3-3

CALL LINK, F-l
CALL LINK Error Messages,

F-7
CALL LOAD, 6-1
CALL RETURN, F- 2
JCC, 3-3
JCO, 3-7
COMD,

Communica.tions Directory,
2-1

Command Files,
Indirect, 3-2
Nested Indirect, 3-2

Command String, 3-1
Command String Interpreter

CSI,
DQS/BATCH, 3-1

INDEX

COMMON Communication, F-IO
Communications Directory

COMO, 2-1
Concatenation Switch, 3-3
Contiguous Output Switch,

3-7
Control Section Allocation,

B-2
Control Section Name, B-4
Core Resident Module, F-S
JCR, 3-6
Cross-Reference Switch,

Global, 3-6
.CSECT Directive, G-S
CSI,

DOS/BATCH COlTlll1.and String
Interpreter, 3':1

Defaults,
Output Specification, 3-1

Diagnostics,
~rror, A-I

Directive,
.ASECT, G-S
.CSECT, G-S
.END, 4-10
• NAME , 4-7
.PSECT, 4-8, G-l
• ROOT, 4-S

Directives, 4-4
Directives,

Program Section, G-l
Directory,

Internal Symbol, B-19
Relocation, B-IO

Directory COHD,
Communications, 2-1

Directory GSD,
End of Global Symbol, n-9
Global Symbol, 2-1, B-2

Disk Address, S-3
Displaced Relocation,

Global, B-14
Global Auditive, n-IS
Internal, B-13
P-Section, B-17
p-section Additive, B-17

DOS/BATCH Command String
Interpreter CSI, 3-1

Dovln,
Link, S-4
Path, 4-3

jE, 3-S
.END Directive, 4-10
End of Global Symbol

Directory GSD, n-9
End of Module, 0-19
End Switch, 3-S

X-I

Entry Point, 4-2
Error Diagnostics, A-l
Error HaneU in9, A-I
Error Hessages,

CALL LINK, F-7
/EX, 3-6
Exclude S\-1i tch, 3-6
Extended Control Section

EXTSCT, 8-3
EXTSCT,

Extended Control Section,
8-3

.FCTR, 4-7
Fields,

Link, 5-3
File Contents, H-2
File Names,

Reserved, E-l
File Search,

Overlay, F-4
File Structure,

Load Bodule, C-l
Non-Overlaid Program, C-4

Files,
Indirect Cornnand, 3-2
Nested Indirect Command,

3-2
Overlay, F-6

Format,
LINK Input Data, B-1

Format Conversions and I/O
Routines,

FORTRAN, 4-13
F'ORTRAN Fornat Conversions

and I/O Routines, 4-13
FORTRAN Hanual Load

Overlays, 4-12
FORTRAN Sample Links, 3-9

GBLDEF,
Global SYMbol Definition,

8-4
GBLPAT,

Global Patch, 8-4
Global Additive Displaced

Relocation, D-15
Global Additive Relocation,

B-14
Global Cross-Reference

Sv·li tch, 3-6
Global Declarations, F-9
Global displaced

Relocation, B-14
Global Patch GBLPAT, 8-4
Global Relocation, B-13
Global Symbol Definition

GBLDEF, 8-4
Global Symbol Directory GSD,

2-1, B-2

Global Symbol Directory GSD,
End of, B-9

Global Symbol Name, B-6
Global Symbols, 1-2
Global displaced

Relocation, B-14
/GO, 3-5
Go Switch, 3-5
GSD,

End of Global Symbol
Directory, B-9

Global Symbol Directory,
2-1, B-2

Header, C-l
Header,

Hap, B-1

Identification, H-2
Identification,

Program Version, B-9
/IN, 3-6
Include Switch, 3-6
Indirect Command Files, 3-2
Indirect Command Files,

Nested, 3-2
Input to LINK, 2-1
Internal Displaced

Relocation, B-13
Internal Relocation, B-12
Internal Symbol Directory,

B-19
Internal Symbol Name, B-5

/L, 3-5
/LG, 3-6
Library,

Monitor, 3-8
User, 3-8

Library Searches, 3-8
Library Switch, 3-5
Lind ts,

Program, B-16
LINK,

CALL, F-l
Input to, 2-1
Output of, 2-1
Relinking, 1-2

Link Down, 5-4
LINK Error Messages,

CALL, F-7
Link Fields, 5-3
LINK Input Data Format, B-1
Link Next, 5-4
Link Previous, 5-4
LINK Tree Walk Algorithm,

7-2
Link Up, 5-3
Links,

X-2

Assembly Language Sample,
3-9

FORTRAN Sample, 3-9

Listing,
Map, H-l

LOAD,
CALL, 6-1

Load,
Asynchronous, 4-2
Manual, 4-3, 6-1
Synchronous, 4-2

Load Address, 5-3
Load Map, 2-2
Load Module File Structure,

C-l
Load Module Output Switches,

3-3
Load-on-Call, 4-3
Location Counter Definition,

B-15
Location Counter

Modification, B-16
Long Map Switch, 3-6

Manual Load, 4-3, 6-1
Manual Load Overlays,

FORTRAN, 4-12
Map,

Load, 2-2
Memory Allocation, 7-2

Map Header, H-l
Map Listing, H-l
Map Switch,

Long, 3-6
Short, 3-6

Map Switches, 3-3
/r.-ro, 3-5
Memory,

Overlay Segment, 7-2
Read-Only, H-l
Read/Write, 11-1
Root Segment, 7-1

Memory Allocation, 7-1
Memory Allocation,

OVerlay, 5-5
Memory Allocation Map, 7-2
Memory organization, 5-5
Memory Organization,

Program, 5-1
Messages,

CALL LINK Error, F-7
Module,

Core Resident, F-5
End of, B-19

Module File Structure,
Load, C-l

Module Name, B-4
Honitor Library, 3-8

.NAME Directive, 4-7
Nested Indirect Command

Files, 3-2

Next,
Link, 5-4

Non-Overlaid Program, 5-1
Non-Overlaid Program File

Structure, C-4

/0, 3-5
/00, 3-3
ODL,

Overlay Description
Language, 4-1, 4-3

ODL Usage, 4-11
ODT Switch, 3-3
ODT Transfer Address, H-2
Operating Procedures, 3-1,

F-5
Operators, 4-5
Optional Input, 8-1
Options Switch, 3-5
Output of LINK, 2-1
Output Specification

Defaults, 3-1
Overlaid Program, 5-1
OVerlay, 5-5
Overlay Description

Language ODL, 4-1, 4-3
Overlay File Search, F-4
Overlay Files, F-6
Overlay Mapping Description

Switch, 3-5
Overlay Nemory Allocation,

5-5
Overlay Segment, C-4
Overlay Segment Memory, 7-2
Overlay Support,

Run Time, 6-1
Overlay Task Structure, 4-1
Overlay Transfer Path, F-3
OVerlays, 4-1, 3-9
Overlays,

Assembly Language, F-8
FORTRAN Manual Load, 4-12

P-Section Additive
Displaced Relocation,

B-17
P-Section Additive

Relocation, B-17
p-section Displaced

Relocation, B-17
p-section Relocation, B-16
Patch ABSPAT,

Absolute, 8-2
Patch GBLPAT,

Global, 8-4
Path, 4-3
Path Dovln, 4-3
Path Up, 4-3
Previous,

Link, 5-4

X-3

Program Limits, B-16
Program Memory organization,

:;-1
Program section Directives,

G-l
Program Section Name, B-7
Program Sequencing Switch,

3-7
Program Transfer Address,

~!-2, H-2
Program Version

Identification, B-9
.PSECT Directive, 4-8, G-l

Read·-only Code, 5-1
Read-Only Memory, H-l
Read/Write Code, 5-1
Read/Write Hemory, H-l
References,

Undefined, H-3
Register Usage, F-9
Relinking LINK, 1-2
Relocation,

Global, B-13
Global Additive, B-14
Global Additive Displaced,

B-15
Global displaced,B-14
Internal, B-12
Internal Displaced, B-13
P-Section, B-16
P-Section Additive, B-17
P-Section Additive

Displaced, B-17
P-Section Displaced, B-17

Relocation Directory, B-lO
Reserved File Names, E-l
Reserved Symbols, E-l
Resident Module,

Core, F-5
RETURN ,

CALL, F-2
.ROOT Directive, 4-5
Root Segment, 4-1, 4-3, C-4
Root Segment Memory, 7-1
RSX-IlD-Task Builder, D-l
Run Time Overlay Support,

6-1

Sample Links,
Assembly Language, 3-9
FORTRAN, 3-9

Searches,
Library, 3-8

Section Allocation,
Control, H-2

Section EXTSCT,
Extended Control, 8-3

section Name,
Control, B-4
Program, B-7

Segment,
Overlay, C-4
Root, 4-1, 4-3, C-4

Segment Descriptions, H-l
Segment Memory,

Overlay, 7-2
Root, 7-1

Segment Name, 5-4
Segment Tables, 5-2
Sequencing Switch,

Program, 3-7
/SH, 3-6
Short Map Switch, 3-6
/SQ, 3-7
Stack Usage, F-9
Statistics, B-1
Structure,

Overlay Task, 4-1
Switch,

Bottom, 3-3
Concatenation, 3-3
Contiguous Output, 3-7
End, 3-5
Exclude, 3-6
Global Cross-Reference,

3-6
Go, 3-5
Include, 3-6
Library, 3-5
Long Hap, 3-6
ODT, 3-3
Options, 3-5
Overlay Mapping

Description, 3-5
Program Sequencing, 3-7
Short Map, 3-6
Top, 3-3
Transfer Address, 3-3

Switches, 3-3
Switches,

Load Module Output, 3-3
Hap, 3-3

Symbol Definition GBLDEF,
Global, 8-4

Symbol Directory,
Internal, B-19

Symbol Directory GSD,
End of Global, B-9
Global, 2-1, B-2

Symbol Name,
Global, B-6
Internal, B-5

Symbols,
Global, 1-2
Reserved, E-l

Synchronous Load, 4-2

/T, 3-3

X-4

Tables,
Segment, 5-2

Task Builder,
RSX-llO, 0-1

Task Structure,
Overlay, 4-1

Text Information, B-9
Top Switch, 3-3
/TR, 3-3
Transfer Address, B-5
Transfer Address,

OOT, H-2
Program, 2-2, H-2

Transfer Address Switch,
3-3

Transfer Path,
Overlay, F-3

Undefined References, H-3
Up,

Link, 5-3
path, 4-3

Usage,
OOL, 4-11

User Library, 3-8

Version Identification,
Program, B-9

x-s

HOW TO OBTAIN SOFTHARE INFORNATION

Announcements for new and revised sofbV'are, as well as programming
notes, software problems, and documentation corrections, are published
by Software Information Service in the following newsletters.

DIGITAL Software Ne"V's for the PDP-8 and PDP-12
DIGITAL Software News for the PDP-II
DIGITAL Software News for 18-bit Computers

These newsletters contain information applicable to software available
from DIGITAL'S Software Distribution Center. Articles in DIGITAL
Software News update the cumulative Software Performance Summary which
is included in each basic kit of system software for new computers.
To assure that the monthly DIGITAL Software News is sent to the
appropriate sofbvare contact at your installation, please check with
the Software Specialist or Sales Engineer at your nearest DIGITAL
office.

Questions or problems concerning DIGITAL'S software should be reported
to the Software Specialist. If no Software Specialist is available,
please send a Software Performance Report form with details of the
problems to:

Digital Equipment Corporation
Software Information Service
Software Engineering and Services
Maynard, Massachusetts 01754

These forms, which are provided in the software kit, should be fully
completed and accompanied by terminal output as well as listings or
tapes of the user program to facilitate a complete investigation. An
answer will be sent to the individual, and appropriate topics of
general interest will be printed in the newsletter.

Orders for new and revised software manuals, additional Software
Performance Report forms, and software price lists should be directed
to the nearest DIGITAL field office or representative. USA customers
may order directly from the Software Distribution Center in Maynard.
~Vhen ordering, include the code number and a brief description of the
software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user
library and publishes a catalog of programs as well as the DECUSCOPE
magazine for its members and non-members who request it. For further
information, please write to:

Digital Equipment Corporation
DECUS
Software Engineering and Services
Maynard, Massachusetts 01754

READER'S COMMENTS

DOS/BATCH Linker (LINK)
Programmer's Manual
DEC-ll-ULKAA-A-D

Digi tal Equipment Corporation maintains a continuous effort to improve
the quality and usefulness of its pUblications. To do this effectively
we need user feedback--your critical evaluation of this document.

Did you find errors in this document? If so, please specify by page.

How can this document be improved?

How does this document compare with other technical documents you
have read?

Job Title __ Date: __________________ __

Name: __________________________________ Organization: ______________________ __

Street: ________________________________ Department: ________________________ __

City: State: Zip or Country ------------------------ ------------ -------------

------.--------------------------------------.------- "Fold Here --

.-------------------------------------- 1)0 Not Tear - Fold Ilere and Staple ---

JESS REPLY MAIL
)STAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

c will be paid by:

Di~ital Equipment Corporation
Software Inforll11ation Service
Software Engineering and Services
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

H.2.2 Read-Only Memory Limits. Displayed as:

R-O MEM LIMITS: start end length

This entry can occur only for the root segment.

H.2.3 ODT Transfer Address. Displayed as:

ODT XFR ADDRESS: address

H.2.4 Program Transfer Address. Displayed as:

PRG XFR ADDRESS: address

H.2.S Identification Displayed as:

IDENTIFICATION name

The name is derived from the first non-blank .IDENT entry encounted
during the processing of the segment's object files.

H.3 CONTROL SECTION ALLOCATION SYNOPSIS

The Control Section Allocation Synopsis lists all the p-sections
compr1s1ng the segment. The sections are listed in alphabetical
order. In segments other than the root, the read-only attribute is
not honored. LINK processes R/W sections, then R-O sections, but
declares any R-O Section R/W.

For each section encountered in building the segment LINK displays:

name: start end length.

Blank control sections are given the name
• BLK.

and collated lowest in the sort sequence. Absolute control sections
are given the name • ABS.

Note that neither of these names is a legal assembler section name and
thus cannot be user-generated.

H.4 FILE CONTENTS

This section of the map identifies by file every p-section contributed
to the segment. And for each p-section it lists every global symbol
defined in the section. The section begins with the display line:

***TITLE: t-name IDENT: i-name FILE: file-name

B-2

