PART 2

DOS/BATCH CONCEPTS AND CAPABILITIES






PART 2
CHAPTER 1
o . INTRODUCTION

1.1 FUNCTIONS OF AN OPERATING SYSTEM

An operating system exists to fulfill the following functions:

l. Organize a collection of hardware into a consistent and coherent
whole so that it can be used for the development and running of
programs. '

2. Assist users and their programs to make maximum use of the
' hardware with minimal programming effort by providing software
to supplement and enhance the hardware facilities available.

1.2 DESIGN CRITERIA -

An operating system must be designed to perform the functions specified above
in accordance with the féllowing criteria:

1. Most efficient use of resources, especially memory,

2. Maximum speed, and

3. Maximum ease of use.
These criteria vary in priority depending upon the kind of work that the operating
system is to handle. For example, for an on-line real-time data acquisition
application, speed is paramount. For large-scale commercial processing the main
consideration is likely to be maximum throughput and efficiency; the speed at which

'

each job is processed would not be critical.
1.3 THE ROLE OF DOS/BATCH

‘'DOS/BATCH has been designed to manage resources efficiently ana to be easy to use.
It is suitable both for regular production work and, by reason of its data storage
facilities and debugging aids, for program development. However, while it pro-
vidés~a response time fast enough for most requirements, it is not intended for use

in on-line real-time data acquisition applications.

1.3.1 Batch Operation

The single-user interactive system is probably the most inefficient use of resources.
A command which can be executed in a thousandth of a second may take several seconds

to typé.

2-1




DOS/BATCH batch facilities permit large numbers of programs or jobs to be prepared
off-line on paper tape or punched cards, and then read and run in quick succession.
Programs or jobs which are to be run more than once can be stored on and read from
disk or tape even more efficiently. Batch operation is described in Section
2-6.3.2 and Part 4.

1.4 AREAS OF ACTIVITY

The DOS/BATCH Monitor carries out the functions described in Section 2-1.1 in three

main areas of activity:

1. Two groups of services to running programs.

a. The handling of input and output. This is one of the primary functions
of a Monitor. Chapter 2-2 shows that the user is given the opportunity
to request as much or as little assistance as he needs. Normally
‘he need not consider the devices the programwill actually use when it
is executed.

b. Other program services. These include loading the program, assisting
in data manipulation within the program, and supplying system
information. The utility routines which provide these services
are described in Chapter 2-5.

2. Storing and retrieving sets of data on magnetic media. DOS/BATCH uses a
system of named files; a single user can manipulate sets of data easily
and conveniently, or several users may store data on one medium without
conflict.

3. Management of memory. The Monitor must efficiently handle the competing
i demands of programs, data buffers, and Monitor routines for space in
memory. In particular, the Monitor itself must be designed so that it
occupies only a small part of available memory, leaving the remainder
frée for user programs and data buffers. The manner in which DOS/BATCH
accomplishes this is described in Chapter 2-4.

The activities listed above must be performed as far as possible independently of
the user’and his program. The success of the Monitor's memory management activities
can be measured in part by the extent to which the user is unaware of them. However,
the user mavaish to intervene, or at least keep himself informed in the other areas,
since he must give the initial request for each Monitor action, such as the per-
formance of input or output or the creation of a file. Therefore, the means must

be provided for Monitor user communication.

Under DOS/BATCH the user can communicate with the Monitor at two levels - from
within his program by means of a FORTRAN statement or MACRO program request, and
through a comprehensive keyboard command language. The Monitor communicates with

the user by means of predefined standard responses and error messages.



1.5 PROGRAM DEVELOPMENT

' -
DOS/BATCH is particularly vaiuable as an énvironment in which programs may be
developed. . This is because of the convenience‘afforded by the file system, and
because of the system prograﬁs which are provided to assist in this function. These

facilities are described in Chapter 2-7.
1.6 SYSTEM GENERATION AND ADAPTABILITY

An operating system should be easy to set up, both‘initiaily and on a regular
basis, easy to tailor to the particular configurdtion upon which it is used, and
"easy to modify. The manner in which DOS/BATCH satisfies these requirements is

_described in Chap;ér 2-8.




PART 2
CHAPTER 2
INPUT AND OUTPUT

A considerable quantity of code is inevitably required to effect input and output

of data to and from a program - typically much more than is required to process it.
While there are as many ways of processing as there are programs, the number of ways
in which input and output can be performed is limited, Clearly, it is desirable that
programs should be relieved of the need to handle the details of inéut and output
operations. This chapter describes the way in which the DOS/BATCH Mohitor manages

data input and output on behalf of user programs.

2.1 DEVICES SUPPORTED

DOS/BATCH supports the following media and devices for data input and output:

1. For both input and output:
a. Magnetic disks (of various kinds),
b. DECtape (three-quarter inch tape on 3.9 inch diameter reels),
c. Magnetic tape (7- and 9~track) (industry-standaid half inch tape),
4. Magnetic tape cassettes,
e. Paper tape, and

£. Keyboard terminals (of various kinds).
2. For input only:

Punched cards.
3. For Output only:

Line printers (of various capabilities).

A list of the actual devices currently supported appears in Appendix H.
2.2 OBJECTIVES

The DOS/BATCH input and output facilities have been designed to achieve the following

objectives:

1. Device independence,
Variety‘of access methods,
3. Memory economy, and

4. Program efficiency.

These objectives are discussed in the following sections.

24



2.2.1 Device Independence

Whenever possible input and output operations should have a standard interface with
the program, so that program coding is not dependent on device characteristics.

Devices may then be changed without any effect on the program.

In addition, it should be poss%ble to make device specification at run time; or,

alternatively, override the program's device specification.
2.2.2 Variety of Access Methods

The two principal methods of access to data, namely sequential acéess and random
access, should be fully supported. The transfer of bofﬁ binary data and coded
character strings should be possible. Data formatting and parity checking should

be available if required.
2.2.3 Memory Economy

Because of the quantity of code required to effect input and output, and the large
number of peripheral devices supported, the part of the Monitor that handles input
and output will inevitably be laxrge. Therefore, a modular design is essential, so

that at any one time only those paits which are required neéd be in memory.
2.2.4 Program Efficiency -

The Monitor should be able to service an input or output request while the program
continues processing, and even service a second inputvor output request before the

previous one has been completed.
2.3 DATA

Data may exist as a series of holes punched on cards or paper tape; it may be held
on magnetic storage devices; it may be input by pressing the keys on a keyboard;
and it may be output in the form of printed characters on paper or a screen.
However, if the objectives of device independence and interchangeability are to be
attained, the Monitor must not treat these forms of data differently, and the user
must not be forced to think of them as intrinsically different.

2.3.1 Data Definition

The first step towards device independence under DOS/BATCH is definition of sets of

data in terms of datasets and files.




2.3.1.1 Datasets

A dataset is a -logical grouping of data identified by a single name or specifier. It

can contain part or all of one or more physical units of data.

For example, data punched on a paper tape which is loaded into a paper tape reader
may be identified by the device name PR:. When it is, so identified, it is being

treated as a unit and therefore constitutes a dataset.

It should be noted that the term "dataset" has no absolute or permanent. ﬁeaning.

A grouping of data becomes a datasef only when it is specified as a.unit.
2.3.1.2 Files

One of the chief advantages of magnetic media (disk, DECtape, magnetic tape and
cassettes) is their great capacity. Only rarely does a user wish to handle data in
units big enough to fill such a medium. Normally he wishes to store on the medium
a number of sets of data, each of which he wishes to treat as a unit. In other

words, it is necessary to be ablé to identify several datasets on one medium.

DOS/BATCH facilities provide for attaching a name to a set of data when it is
transferred to a magnetic storage medium. Such a named set of data is known as

a file.

Filenames are attached to sets of data for convenience, because it is expected that
the user will subsequently wish to treat the same set of data as a unit - that is,

a dataset. A filename, like a device name, is a means.of identifying a set of data,
and when it is so used the contents of the file constitutg a dataset. However,
this-is not to say that a file is a dataset. As mentioned previously, the term
"dataset" has meaning only when a set of data (which may be a file) is actually
specified. Indeed, the identification of a set of data as a file does nothing

to preciude that data from being included subsequently in a larger dataset, nor,

in certain cases, to preclude the specification of smaller datasets within that

file.

It is possible, for example, to specify that the whole contents of a medium, including
all the files held on it, be transferred to another medium. If this is done the
complete contents of the medium is, for the purpose of that trahsfer; a single

dataset.



Parts of files may also be specified; that is, datasets may be subsets of files. A
library is a type of file which is specifically designed so that either the whole

or previously specified parts may be specified as datasets.

2.3.1.3 Device Names

A device name specifies a device and consists of a standard two-letter mnemonic code,
optionally followed by a digit, and terminated by a colon. If there is more than
one unit of the same kind of device, the digit is used to differentiate between them.

Examples of device names are:

DT1: The DECtape unit numbered 1.

MTO: or MT: The magnetic tape unit numbered O, or the only
magnetic tape unit.

The omission of the digit has the same effect as specifying 0.

2.3.1.4 Filenames and Filename Extensions .
A filename consists of up to six letters and digits; with the restriction that the
first character must be a letter. It may be followed by a filename extension,

which consists of up to three letters or diéits, separated from the filename by a
period. Filenames and extensions in general are chosen by the user, but in many cases

the system supplies a standard extension.
Examples of filenames:

INDAT1

A174.001
PROGL.MAC .
PROG1.0BJ
PROGL.LDA

The last three examples illustrate one use of standard extensions. All three files
hold the same program, PROGl, but each is in a different form. PROGL.MAC is the
source program, written in the PDP-11 assembly language MACRO; PROGL.0BJ

is the same program after assembly (known as an object module); and PROGLl.LDA is

the same program in a form that is réady to be loaded and run (a load module). Thgse
extensions are added to the filenames automaticaliy when the files“are created unless

other extensions are specified by the user.



The first steps, then, towards device independence under DOS/BATCH are the concept

of a dataset and the ability to define a dataset by means of a device name alone or,
on devices which support files, by a device name coupled with a filename. For
example, the same set of data, copied from a non-magnetic device to a magnetic device,
can be specified by a device name and filename (example: DT:INDAT) as a dataset

for output.
2.3.2 Dataset Specification Methods

Datasets may be defined by the user at two levels - from within the program or at

run-time, or both.
The methods for dataset definition are:

1. sSpecify the device (and file, if applicable) as a dataset within the
program at the time of writing.

2. Issue a call from within the program inviting the user to specify devices
(and files) at run~time via the Command String Interpreter.

3. Give a dataset a name within the program which is then associated with an
actual device (and file) at run-time by means of the ASSIGN command.

4. Give the dataset a name and specify an actual device (and file). The
latter is effective for any run for which no ASSIGN command is issued for
the dataset; however, an ASSIGN command overrides the dataset specification
in the program. It also overrides any values obtained through the Command
Strirdg Interpreter. :

The DOS/BATCH data specification facilities provide great flexibility and compléte

device independence and interchangeability.
2.3.2.1 Within-program Data Specification

Dataset specification from within the program is effected by control blocks which

are known as link blocké and filename blocks.

Link Blocks. For input and output to be device-independent, input or output

réquests in the program must not directly refer to a device and/or file. Instead,
for each dataset which is to be accessed by his program the user sets up in the
program a control block known as a link block, which must contain either the name
(and number, if applicable) of the device to or from which the dataset is to be
transferred, or a name chosen by the user for the dataset, or both. This information
may be written inés the program or set by the program itself before the dataset is
first accessed. All ihput and output requests in the program then épecify not the
dataset concerned but the address of the link block which has been set ﬁp for that
dataset. Thgrefore if the dataset is Changed, only the contents of the link block

need be altered or overridden.



Filename Blocks. If the dataset associated with an input or output request is a

file, a device name and a filename must be specified. The filename of the file
specified as a dataset is held in another control block in the program, known as

a filename block.

The filename block is not needed if the dataset is not a file; however, if device
independence is required, a filename block must be included in anticipation of a
possible later change to a file-supporting device.

~

2,3.2.2 The Command String Interpreter (CSI)

DOS/BATCH provides a method of defining datasets at run-time, without regard to
specifid input and output devices. This method is implemented by means of the
Command String Interpreter, a Monitor routine that parsee and validates dataset

specifications and passes them to the calling routine.

Tﬁe system program that calls the CSI should display the character #. This is an

invitation to the user to enter a standard "command string".

A standard command string consists basically of one or more output dataset speci-
fications followed by zero or more input dataset specifications, each consisting
of a device name alone (for media which do not support files) or a device name

and a filename, as described earlier, The point where output datasets end and
input datasets begin is identified by a left angle;brécket (<); otherwise datasets
are separated by commas. The CSI checks the syntax of the datasets in the command
string. '

If any check is not satisfied, the CSI rejects the command string; the program
should display another #, perhaps breceded by an explanaéory message. If the
checks are satisfied, the CSI passes a portion of the command string to the

program for insertion in its link and filename blocks.

NOTE

Further information or instructions may be given to the
program by switches., A switch consists of a character
string whose meaning is known to the program, preceded
by a slash (/), which identifies it to the Command

. String Interpreter as a switch. Switches, when speci-
fied, must follow the dataset specifier. See Appendix J
for a list of switches and their uses.

2-9



2.3.2.3 The ASSIGN Command

A program written for specific input and output devices may subsequently be required
to run using different devices. It would be inefficient to use the CSI, which
requires input from the command source for every run, just to ensure agaihst such

a possibility.

DOS/BATCH therefore allows the user to override at run-time the input and output
datasets specified in the link blocks, by means of the run-time command ASSIGN.

The format of this command is:
AS[SIGN] dataset specification,logical name

where "dataset specification" is the device name of the device (and, if applicable,
the filename of the file) that constitutes the input or output dataset; and
"logical name" is the name that identifies the dataset in the link block in the

program. For example:
AS DTl:NEWDAT,JFM

This command assigns the file NEWDAT on DECtape unit 1 to the dataset named JFM

in the program's link block.
Similarly, the command:
AS MTO:BINOUT,1

assigns the file BINOUT on the magnetic tape unit numbered O to channel i of a
FORTRAN program. '

The ASSIGN command can also be used to override a dataset specified via the CSI if,

for example, a mistake has been made in the command string.

If the input or output dataset is identified by a logical name in the link block,
no details of the actual device or file need be included in the program. However,

it is recommended that default values be supplied.
NOTE

If no "logical name" for the dataset has been included
in the link block, run-time device assignment by means
of the ASSIGN command cannot be accomplished.



2.4 TYPES OF TRANSFER

N -

DOS/BATCH supports the following different input and output requirements:

1. Sequential transfer, to process records one at a time in the
order in which they are stored.

2. Random access; to process records (or physical blocks) in random
order. '

3. Bulk transfer: to transfer large quantitie§ of data without regard
to record or file boundaries. )

- 2.4.1 Sequential Transfer

This is the normal type of transfer and Ehe one for which the DOS/BATCH Monitor
provides the most support. The user simply issues a request to read or write a
record (in the MACRO Assembly Language the relevant program requests are .READ
and .WRITE) and the Monitor transfers the next record between the device and the

program's buffer (whose size is device-independent) via a buffer within the Monitor.

2.4.1.1 Transfer Modes

In sequential processing the Monitor performs transfers in one of several different
ways, as specified by the user. The options available depend on whether the data
is binary or ASCII.

1. Formatting. Data can be transferred without formatting, or can be
formatted in one of the following ways:
a. Binaryﬁdata can be transferred in predeEermined numbers of bytes.
b. ASCII data can be transferred until either a predetermined byte
count is reached or a terminator is encountered.

2. Parity. Either of two modes is available for ASCII transfers:

a. No parity generation or checking, or

b. Generation of even parity on output and checking on input.

2.4.2 Random Access

The user.can access records or physical blocks within a file held on disk or

DECtape in random order. Disk and DECtape are the. only devices in which the location
of a }ile and its constituent blocks is heid in a d}rectory - see Seétion 2-3.3.4.1.
The relevant program requests in the MACRO Assembly Language are .RECRD, which
transfers a iecord of a size specified by the usér, and .BLOCK, which transfers

ohe physical block, the size of which is device-dependént and not subject to user

control.

2-11



Since speed is normally important in random access applications, only one transfer
is performed, between the device and the Monitor's data buffer. The user may

process the data in that buffer or transfer it to or from his own buffer.

NOTE

Random access is supported for contiguous files only,
since they are the only kind of file in which the
address of a block or record in a file can be calcu~
lated from the start address of the file held in the
directory.

2.4.3 Bulk Transfer

As in the case of reading in overlays, large quantities of data can be transferred
to or from memory quickly, without examining it or performing any formatting. The

MACRO Assembly Language program request for this operation is .TRAN.

Care should be taken with this method of transfer, since it bypasses the file

protection provisions described in Section 2-3.4.2.2.
2.5 DESIGN OF INPUT AND OUTPUT ROUTINES
2.5.1 Modularity

Since the management of the transfer of data between the processor and peripheral
devices is a major function of an operating system, the total size of the routines
dedicated to this task is necessarily large. If~they were all held simultaneously
in memory, the amount of space that they would occupy would seriously degrade the
system. Consequently, the input’ and output routines should consist of independent

modules which can be swapped into memory when required.

In the design of the DOS/BATCH input and output routines, two important facts

have been recognized:

1. A particular input/output device may be used infrequently, and
most devices are not used at all by any one program.

2. Device independence-.can best be assured if all input and output
requests of one kind use the same routine right up to the point
where the actual device becomes involved. .

Accordingly routines controlling input and output functions have been carefully

separated into two groups of modules as follows:

2-12



“ -

1. Routihes that control common input and output functions whose §erformance
is not concerned with the actual device used.
a. The .READ/.WRITE processor
b. The .BLOCK processor,
‘c. The +RECRD prdcessor,
4. The .TRAN processor, and_

e. The special function processor.

2. Routines called device drivers that control physical devices.

2.5.2 Reentrancy

One of the stated objectives of the design of input and output handling was. that

the program should be able to continue, while an inpuf or output request is being
serviced. This offers no problem until another input or output ‘request is reached -
which is quite likely to happen before the ser&icing of the previous request has
been'completed. This problem has been overcome under DOS/BATCH because the common
input and output routines are reentrant; that is, the processing of subsequent

input or output requests can start before the previous one has been completed.

2-13

T



PART 2
CHAPTER 3
DATA STORAGE

The term "data storage", as used in this chapter, is defined as the process by which
information is placed on a medium in machine-retrievable form for subsequent use

on the same or another system.

This chapter describes the facilities, additional to the basic input and output
facilities described in Chapter 2-2, which the DOS/BATCH Monitor provides for data

storage.
3.1 MEDIA

The first requirement of any storage medium is reliability. Other desirable

characteristics are:

1. High capacity,

2 High speeds of access and transfer,
3. Portability, and '
4

Low cost.

No one medium can combine all these four characteristics to the highest degree,

since some of them are mutually incompatible.

DOS/BATCH supports four magnetic media: disk (both fixed and interchangeable),
DECtape, standard magnetic tape and cassettes. Paper tape input and output devices

may also be used to store data, though no special support is provided.

The relative strengths of each medium are shown in the following table, in which

the devices are ranked from 1 (strongést) to 5 in respect of each characteristic:

Disk DECtape Magtape Cassette Papertape
Access Speed 1 2 3 4 5
Transfer rate ) 1 3 2 4 5
Capacity - 2 3 1 4 5

2-14



The relative portability of each medium depends on the amount of data involved.
Each medium except fixed disk is portable, and is likely to be most convenient

for transporting data which cannot be contained on a smaller medium.

Cost comparisons must take into account both the medium itself and the devices
needed. .
The exact access and transfer speeds and capacities of actual devices are given

in Appendix H.
3.2 OBJECTIVES

The Monitor's objectives in providing support for data storage are threefold:
1. To make the best use of the strengths of each medium.

2. To simplify the use of the storage media such that the user
. should be able to handle his own data easily, and be unaware
of and unaffected by other users.

3. To extend the concept of device independence to include
interchangeability of data between devices and media (as far
as possible).

’

3.3 MAGNETIC MEDIA

Data storage under DOS/BATCH is supported primarily by magnetic media, namely
disk, DECtape, magtape, and cassette tape. The main advantagés of magnetic media
over non-magnetic media are the much higher transfer speeds and the facf that an
equivalent amount of data can be stored in far less space. Consequently, magnetic

media are also known as bulk storage media.
3.3.1 Differences between Media

Becaﬁse standard magnetic tape (including cassette tape) is not as flexible a medium
as disk or DECtape, not all of the services provided by the Monitor for the

latter media can be implemented on the former. Moreover, those services that are
provided on all media are in fact implemented quite differently on disk and DECtape
on the one hand, and on standard magnetic tape and cassettes on the other.

However, the user interface has been so deéigned that as far as possible, the user

may treat all media alike.

2-15



3.3.1.1 Hardware Constraints

On disk and DECtape the recording head can be positioned exactly over any spot
regquired. To take aavantage of this ability, data is divided into blocks, and each
block of data is placed in a predetermined position whose address is recorded.

This arrangement has the following main benefits:

kY
1. Random access to any specified block is made possible,

2. Individual blocks can be overwritten without fear of adjacent
blocks being corrupted, and

3. On disk, more than one file can be open simultaneously, and blocks
can be accessed from each in turn.

On standard magnetic tape and cassettes, however, such precision is not possible,
and no addressing mechanism can be implemented. Instead, records are separated
by variable lengths of blank tape. This "inter-record gap" is the only means by
which the end of one record and the beginning of the next can be recogﬁized.
Switching from reading (required to locate a record) to writing in the middle of

a file, is likely to corrupt the inter-record gap, and is therefore not recommended.
3.3.1.2 Monitor Provisions

Because individual records on magnetic tape and cassette cannot be altered, it is
not possible to maintain on the medium a directory which is updated every time a
file is created, deleted or otherwise altered. It is possible to record the file-
name and other information in a header label which precedes the file. When an
attempt is made to access a file, a search of the tape must be made. to ascertain
whether the file exists, whether it belongs to the user, and/or whether he is per-
mitted to access it. A request for a "directory" listing necessitates a similar

search.

On disk and DECtape however, all this information and the address at which the file
is held, can be held centrally on the medium in a directory, which can be updated

as the information changes. Directories are described in Section 2-3.6.1.

NOTE

For those procedures which are applicable to all

devices, a standard interface is presented to the

user. For example, if he requests a "directory"

listing of a magnetic tape (although it has no direc-
tory), a search of all the files on it are listed in

the same format as the listing of a disk's directory. -

Services provided on all magnetic media are described in Section 2-3.4, and services

available on disk and DECtape only are described in Section 2-3.5.

2-16



3.4 SERVICES PROVIDED ON ALL MAGNETIC MEDIA

As described in Section 2-2.3.1.2, sets of data are held on maénetic media as files

identified by user-chosen names.
3.4.1 User Separation

In order that bulk storage media be fully utilized, it is important not only that
eéch user be able to store several sets of data on one medium, but also that more
than one user should be able to use the same medium for data storage. For this ‘
to be practicable, each user should be able to choose filenames freely, without
risk of confusion if he duplicates names chosen by another user; and each user's

files should be protected from other users.
3.4.1.1 User Identification Codes (UIC)"

Every user must have an assigned User Identification Code (UIC) by which to identify
himself when he logs onto the system. The Monitor, unless otherwise directed,
automatically associates every file that the user creates with his UIC. (On magnetic
tape the UIC is recorded in the file header label; on disk each UIC has its own
directory, into which the names of all filesncreated by the user are entered - see
Sectioh 2-3.6.1.) Therefore, if more than one user uses the same filename, each
file of the sahe name is uniquely identified by its UIC. When a user attempts to
access an existing file, the Monitor searches for a file of the name specified and
having the same UIC as tﬁat under which the user is logged in (unless otherwise
specified). Any other files of the same name are ignored. Similarly, if a user
requests a list of existing files to be output, only those having his UIC are listed

(again, unless otherwise specified).

Therefore, the user need not concern himself with other users' files - in fact, he
need not be aware of their existence. On the other hand, a user can access a file
belonging to another user by specifying that user's UIC with the filename, subject

‘to the restrictions mentioned in the next section.

A User Identification Code consists of two octal numbers, each in the range 1 to 376,

separated by a comma and enclosed in square brackets. For example:

[130,27]



This format is fully explained in Part 3. However it is mentioned here because of
the way the first number can be used in connection with File Protection Codes,

which are described in the next section.
NOTE

l. A small number of UICs have special roles. 1In
particular UIC [1,1] is associated with system
files, including system programs (which are
described in Section 2-4.6.2).

2. On DECtape partial user separation is provided,
as described in Section 2-3.6.1.1.

3.4.1.2 File Protection

The system of User Identification Codes makes it possible for a user to operate as
if his own files and the system's files were the only ones on the system. However,
when a user needs to access another user's files, he can specify the file by

adding that user's UIC to the filename. .

This raises questions of file security and privacy. Some users may not wish their
files to be accessed by others. Some may wish only certain of their files to be
so accessible. It may be desirable that some files be accessible to other users
for reading or running but not for writing or deletion. For that matter, a user
might wish to prevent himself from inadvertently overwriting or deleting one of

his own files.

DOS/BATCH provides file security and privacy by means of File Protection Codes.
Each file's record in the user's directory (or, on magnetic tape, in the file's
header label) includes a binary Protection Code, in which each group of bits set

prohibits a certain class of user from certain kinds of access.

Four kinds of access are identified, namely running, reading, writing and deletion.

The following classes of user are identified:

1. The owner.

2. The user group. This is defined as all users in whose User Identification
Code the first number is the same as in the UIC of the owner,

3. All other users.

2-18



‘For the second and third ciasses of user specified above, it is possible to prohibit,

by means of the File Protection Codes, any of the following combinations of access:

a. Deletion,
b. Deletion and writing,
c. Deletion, writing and reading,

d. All kinds of access.

The owner can prohibit himself from the second combination above, that is, deletion

and writing.
NOTE.

These facilities do not provide absolute protection -for
a user's files, since no password mechanism exists and
it is therefore possible to log in under another user's
UIC. Also the .TRAN Program Request (see Section
2-2.4.3) ignores all control information including

file protection codes. However protection is provided
against inadvertent access to user's files by normal
‘access methods. '

3.5 SERVICES PROVIDED ON DISK AND DECTAPE
3.5.1 Directories

Directories are the means whereby a file can be accessed without a search of the
medium being necessary. They are held on the same medium as the files which they
reference, and are of two kinds, namely User File Directories and Master File

Directories.
3.5.1.1 User File Directories (UFD)

A User File Directory is a list of a user's files. The directory entry for each
file contains the file's filename, location and protection code - in other words,

any information which is about the file but not part of it.

Before a user can create a file of his own, his User Identification dee must have
been associated with a UFD. The association of a UIC with a UFD is a function of
the system program PIP, which is described in Part 12. For bo;h disk and DECtape,
the user simply enters his UIC onto the medium by supplying the appropriate command
string to PIP. However the association of UICs with UFDs is implemented differently
- on disk and on DECtape. ‘ ‘ )

2-19



1. On disk, a new UFD is created for each user. Each UFD is given a name
which consists of the UIC under which the user logged in. All files
subsequently created under that UIC are entered in the UFD of the same
name unless otherwise specified. Complete user separation is thus
achieved.

2. On DECtape user separation can be readily achieved physically, by each
user having his own DECtape. The need for the Monitor to separate users
on one DECtape is not sufficient to outweigh the overheads involved.
Therefore each DECtape has only one UFD, which is shared by all users
who -enter their UICs onto the medium. All files on the DECtape are
treated as belonging equally to all such users, but are protected in
the usual way from other users.

When a user specifies an existing file, unless he also specifies a UIC different
from one under which he logged in, the Monitor will in most cases search only the
UFD with which his UIC is associated. (If the file specified is to be run, the
system UFD [1,1] is also searched.) )

3.5.1.2 Master File Directories (MFD)

The locations of the UFDs on the medium and the names of the UICs with which they
are associated are held in a Master File Directory (MFD), which the Monitor uses
to implement the procedures described above. Thus on each medium there is a two-

level directory structure, as illustrated in Figure 2-1.

—>
- User 1
Files
User 1
r—— File - >
: Directory
..__.»
Master User 2 User 2
File B File Files
Director Director
>4 Y -
. User 3
L File '
Directory _ User 3
B Files
. =
L v-——_’
Figure 2-1

Disk Directory Structure

2-20



3.5.2 Types of File

To support the different kinds of input and output processing, two types of files are

provided on disk and DECtape, namely contiguous files and linked files.

3.5.2.1 cContiguous Files

The most straightforward kind of file is one on which the data is recorded on
consecutive blocks until the file is complete. Since the blocks are physically

adjacent, such a -file is known as a contiguous file.

Contiguous files are ideally suited to random access (through .RECRD or -BLOCK -

see Section 2-2.4.2). In random processing the addresé of an item of data to which
access is required has no necessary relationship to that of the last item accessed.
Therefore, in order that aﬁy item can be reached invminimal time, irrespective ‘

of the current position of the medium, it is essential that the absolute address
of»the‘item can be readily determined from a relative value supplied by the user.
‘This requirement is satisfied by the use of an area of physically contiguous blocks
on the medium. The calculation of the actual block required is simple provided

that the start block of the area is known, and provided that the itemé being accessed
are of the same length. Restricting operations on the file to a compact area on

the medium also affords optimal access, particularly on moving-head disks because of
the:reduced need for head-positioning and on DECtape because of its inherent linear
nature. This advantage is reduced if other files on the same medium are being

accessed simultaneously.

To create a contiguous file on any medium, a contiguous area large enough for the
file must be available. The user requests the space when creating the file and
must theréfore know, or guess, .the size of the file before it has bheen written.
Once the contiguous file area has been established it cannot be extended, since
there is no guarantee that the fequisite adjacent blocks are available; nor can
such files be joined together unless they happen to be adjacent to each other. A
user request for either operation is rejected by the Monitor. However, the user of
contiguous'files is not limited to random access. If he opens the file properly,
he can process his data sequentially by .READ or .WRITE. The Monitor ensures that

such operaﬁions are effected only within the preset file-bounds.

Contiguous files are convenient for bulk transfer (more than one block) by means of

.TRAN. The Monitor itself transfers contiguous files in this way.



3.5.2.2 Linked Files

Normal data transfer is sequentiél, implemented by means of the program .requests
.READ and .WRITE. For this kind of access the user does not need to know the size
of his files in advance, but he does need the ability to extend or concatenate
files. 'Therefore the DOS/BATCH Monitor supports another kind of file on disk and
DECtape, called a linked file. When reading a 1inkgd file; the Monitor does not
assume that the next logical block in the file is the next physical block on the
medium (although it may be). Instead each block contains a word, known as the
link-word, in which the address of the next block is held. This word is not seen

by the user.

A 4-block interval (known as the "interleave factor") is left between blocks on
DECtape in order to provide ample space for the tape to stop and restart before

the next block required reaches the recording head. For hardwareyefficiency when
writing a linked file on DECtape the Monitor normally spaces the blocks of the

file a constant number of blocks apart; on disk consecutive blocks are used. In
either case, if the next intended block is alread; in use the Monitor simply finds
another one, and records its address in the link-word of the previous block in the
usual way. Therefore, there is no restriction on the file's size other than the total

capacity of the medium.

A file can be extended, or two files can be concatenated, without any movement

of data. The Monitor simply places the address of the beginning of the extension,
or file to be appended, in the link-word of the last block of the existing (first)
file.

Linked files are not designed for random access since the only means by which this
can be effected is by a perhaps lengthy search along the links of the.file for

the required block. The random-access requests .RECRD and .BLOCK are therefore
illegal for linked files, as noted in Section 2-2.4.2.

3.5.2.3 Mixing Contiguous and Linked Files

Linked and contiguous files may share the same medium; however, some conflict in

block availability eventually occurs, even though the medium may not actually be filled.
To delay this as long as possible, linked files are set up at the front of the

medium or low-address end, and contigquous files are given space starting from the
high-address end. If the conflict does occur, as evidenced by a failure to find
sufficient space for a new contiguous file, the user must either delete some of

his other files or transcribe them in order to utilize more fully any smaller

disconnected gaps between used blocks.

2-22



3.5.3 Verifying Directories with VERIFY

' «
Although reasonable precautibns are taken, efficiency of normal operation precludes
a system of absolute file security. Therefore for reasons outside the control of
the Monitor (e.g., erroneous use of .TRAN by an incompletely tested user program,
or a system failure which p;ecludes the writing of critical information held in
memory) corruption of the file structure can occur. To protect the user against

a proliferation of errors, the system program VERIFY is provided.

Normaliy VERIFY confirms that the file structure is self-consistent. If dis-

crepancies are found, however, VERIFY reports the following:

1. Lost blocks }blocks shown to be used but not allocated to one file).
2. Blocks allocated to more than one file.

3. Actual and recorded lengths f files.

Facilities are provided for restoring the self-consistency of the file structure.

See Part 14 for more detailed information on VERIFY.
3.6 SERVICES PROVIDED ON MAGNETIC TAPE

Although magtape is not considered a file structured device, certain structure and
label processing features have been implemented to enable creation and retrieval

of multiple files on a magtape.

Files on magtape cpnsiSt of a 7-word label record which contains identification
information including user prxotection via UIC's which is followed by sequential

data records bounded by an end-of-file record.

Special system requests are available which permit the user to position a magtape
on line. These requests include: ‘

1, skip Records - forward space over the requested number of records. -

2. Rewind - rewind the magtape to the beginning of tape.

\

3. Set Buffer Size - allows the user to specify a record size different
from the system default.

3.7 SERVICES PROVIDED ON CASéETTE

Cassette support is in general implemented in the same way as for magnetic tapé;
~ that is, the filename is held in a header label. However, there is no user

_separation on cassettes.

2-23



3.7.1 Multi-volume Files

On cassette an option is available whereby if the end of tape ig reached while a
file is being written, the file may be continutd on one or more additional cassettes.

Multi-volume files may be read only in the order .in which they are written.
3.8 NON-MAGNETIC MEDIA
3.8.1 Paper Tape

The only non-magnetic medium foi which both input and output devices are available
under DOS/BATCH, and which can be used for the storage in retrievable form of
computer-produced data, is paper tape. This ihexpensive medium is suitable for the
storage of small sets of infrequently used data, or as a backup medium if the
installation has no magnetic tape devices. However, compared to magnetic media,
paper tape is bulky and slow, and repositioning of the recording head is not
possible. In addition, it requires more physical handling and two separate
devices for input and output. No facilities other than those described in chapter_

2-2 are provided by DOS/BATCH for data storage on paper tape. -
3.8.2 Punched Cards
DOS/BATCH supports input from, but not output to, punched cards. This medium is
therefore suitable for holding data prepared off-line, particularly batch streams
(see Section 2-6.3.2.4), since cards can be inserted, removed and rearranged as
required.

3.9 SUMMARY OF FACILITIES ON EACH MEDIUM

The facilities supported on each medium are summarized in the following table:

Punched

Disk DECtape Magtape Cassgtte Papertape | Cards
Named files b4 x X X
User separation x partial X
Sequential access X X x
ﬁulk transfer x X X x
Random access b4 X
Extendible files x X

2-24



3.10 MEDIUM INTERCHANGEABILITY

As described in Section 2-2.3.1.1, the DOS/BATCH input and output routines are
device-independent. This is also true of,the'file—processing routines. A

corollary of this is thét sets of data, once output, are also medium-interchangeable -
that is, they méy be transferred freely from one medium to another. (This inter-
changeability is naturally subject to the provision that the destination medium

has sufficient space and can support the type of file being transferred.)
3.10.1 Manipulating Data with PIP

PIP (Peripheral Interchange Program) is a system program (see Part 12) which

performs the following operations:

1. Copy a dataset to any medium.
2. Concatenate two or more datasets held on any media into a single dataset on
any medium.

3. On disk and DECtape:

a. Associate a User Identificatidn Code with a User File Directory,
b. List User File Directories,

‘c. Delete a file or files,

d. Rename a file,

e.; Change a file's protection code.

4, On magnetic tape and cassette, print directory-type listings of a
user's files.

3.10.2 Conversion from EBCDIC with EBASCI

Data held in the Extended Binary Coded Decimal Interchange Code (EBCDIC), which is
not normally supported by DOS, may be converted into ASCII by means of the system
program EBASCI. EBASCI accepts data in EBCDIC format held on magnetic tape and

converts it into ASCII. Output may be to any suitable device.

Magnetic tape with ANSI standard labels or with no labels are accepted. The in-
-clusion of carriage return and line feed characters after each logical record is

at the option of the user. See Part 1l6.



PART 2
CHAPTER 4
MEMORY MANAGEMENT

One of the chief functions of an operating system is the management of memory. It
is not practical to attach to the processor enough memory to hold all the code,
including the operating system itself, that may be needed to.run any job. For
this reason; a disk is an essential part of the DOS/BATCH Operating System. During
operation, the disk can hold code, particularly parts of the operating system
itself, until that code is required. The code can then be quickly transferred

into memory. The part of a disk that is used in this way is known as "secondary

storage".
The overall objective of memory management is to make maximum memory space available
to the user's program and data, by designing and managing the other occupants of

memory so that the minimum possible space in memory need be set aside for them.

The operating system should manage with maximum efficiency both the available

memory and the transfer of code to and from secondary storage.
4.1 MEMORY OCCUPANTS

The following are the potential occupants of memory for which space must be

provided:
1. Running programs, originating from:
a. The user
b. The system.
2. Incoming and outgoing data.

3. The stack (see Section 2~4.5.1).
4. The Monitor itself.

5. Drivers for input and output devices. These are part of the Monitor,
but their memory occupancy is organized differently from that of other
parts. ’

Under the DOS/BATCH Monitor items 3 to 5 of the above list typically occupy less
than 4K words of memory; the remainder is available to user (or system) programs

and data.

2-26



4.2 MEMORY MANAGEMENT CRITERIA

The methods used by the Monitor to save space vary in detail for each occupant

of memory, but the following are the main criteria which apply throughout:
-

1. Frequently used code should be held in main memory, and less
frequently used code on secondary storage.

2. Code held on secondary storage should not be allocated space in
memory until it is needed, and the space should be freed again
as soon as the code occupying it has fulfilled its function.

3. The user should‘be able, both when the system is generated and
in his program, to specify code that is to be held in memory.

4. Swapping between secondary storage and memory, though necessary,
should be kept to a minimum; maximum use should be made of available
memoxry. In particular, it is important to avoid having small
pockets of unused memory which are wasted.

4.3 OVERALL STRATEGY

Of the potential occupants of memory, three must be held there for the duration
of a program's run - namely, the program, the stack, and the Resident Monitor

(see Section 2-4.4.2). The area required for the Resident Monitor remains fixed
in size once it has been loaded; the size of the user's program may change during
execution. These two components are therefore placed at opposite ends of memory.
The Resident Monitof, since it must be loaded first, and because it requires access
to hardware vectors, is placed at the bottom (that»is,‘starting at address 0),

and the user's program (or system progféh - see Section 2-4.6.2) at the top.

This leaves a single area which is available to the stack and other potential
occupants of memory. Since the presence of these other occupants is controlled
by the Monitor_in accordance with the dynamic requirements of the running program,

this central area is referred to in this manual as "dynamic memory".

These three main areas of memory are illustrated in Figure 2-2. The rest of this

chapter describes the way in which these areas are managed by the Monitor.

2-27



Program Area

Resident Monitor

Figure 2-2

Main Areas of Memory

4.4 THE MONITOR AREA

Of all the potential occupants of memory, the Monitor itself is one of the largest
and most complex. The amount of memory that the Monitor occupies and the manner

in which it organizes its occupancy are critical to the overall performance of the

system.
4,4.1 Monitor Modularity

To achieve economy of memory usage the Monitor has been constructed as a set of
separate modules,'each of which has a specific function. Most of these modules
are not held permanently in memory, but are held on secondary storage and overlaid
into memory when required. This concept is the key to the design, and the success,
of the DOS/BATCH dperating System. (This is reflected in the first part of its

name, "Disk-based Operating System".)

This modularity has two great advantages from the production point of view. Groups
of modules can be written and tested independently, making for greater reliability,
and future extensions to any one module or the addition of new modules need not

affect the others. The user benefits in both cases.

2-28



.

The following subsections describe how the criteria listed in Section 2-4.2

have been applied to the Monitor modules.
4.4.2. The Resident Monitor

That part of the Monitor which remains permanently in memory is known as the

Resident Monitor.
4.4.2.1 The Minimum Resident Monitor
As a minimum the Resident Monitor consists of the following:

1. Modules that control other modules or the system in general,
2. Monitor tables,

3. The system device driver, which must be resident to handle the
swapping of other modules from the system device,

4. The keyboard listener, which handles interrupts from the keyboard,
which may occur at any time,

5. The .READ/.WRITE processor (See Section 2-2.5.1),
6. Interrupt Qectors,

7. Swap buffers, which hold disk-resident Monitor modules (with some minor
exceptions) when they are overlaid into memory. These two are:

a. The main swap buffer,
b. The keyboard swap buffer.

- 8. The clock handler (if a clock is present).

All the above satisfy the criterion of frequency of use. The layout of the minimum

Resident Monitor is illustrated in Figure 2-3.

- 2-29



Dynamic Memory Area

Modules Resident
for Program Run

Dynamic Memory Area
Modules Added

when System
Generated

Minimum

Resident Monitor
Minimum

Resident Monitor

MINIMUM EXTENDED

Figure 2-3

The Resident Monitor

4.4.2.2 Extending the Resident Monitor

The only advantage of having Monitor modules non-resident is memory economy; at an
installation with a larger than average amount of memory it may be preferable to
have more Monitor modules in memory and so save overlaying time. Even on an
installation with an average amount of memory, if a particular module is required
very freqﬁently by most users it might be worthwhile to include that module in the
Resident Monitor. Therefore provision is made for the inclusion of additional

. modules when the system is generated (see Section 2-8.3.1). This is not, however,

permitted for device drivers (see Section 2-4.4.4.2).
4.4.2.3 Making a Module Resident at Run Time

Alternatively, if an individual user requires a particular module to be resident
throughout the running of a particular program, he may indicate his requirement
as a global reference in the program. If the module specified is not already
permanently resident, it is added by the Program Loader to the end of the Monitor,

and is not removed until the program has finished its run.

2-30



Programs.which include such a requirement may be run on any system, because these
Monitor modules are not added until run-time. However, this facility should not be
used unnecessarily, since the size of the dynamic memory area is correspondingly
'reauced. The>location of modules resident for a é&ogram run is illustrated in

Figure 2-3.
4.4.3 Non-resident Monitor Modules

The secret of the success of the Monitor in providing so many services and yet
occupying only a minimal portion of memory is that most Monitor modules are not -
resident in memor& but are held on secondary éforage until needed. With the
exception of device drivers, whose management is discussed in Section 2-4.4.4.2,
non-resident modules, when they are needed, are placed in one of the two swap
buffers within the Resident Monitors. Modules in this category are the common
input and output routines described in Section 2-2.5.1, the keyboard service

routines, and the utility routines described in Chapter 2-5.
4.4.3.1 The System Device

To prevent the actual process of transfer from seriously degrading the system, non-
reéident modules should be held on a medium that allows both fast access to the
module required and fast transfer of the module into memory. Disk has both the
fastest access speed and the highest transfer rates. The non-resident Monitor
modules, together with copies of the resident modules, are normally held on this
medium. The Monitor may be held on any type of disk (see Appendix H), but in

multi-disk programs the Monitor must be held on the unit numbered O.

The device selected to hold the Monitor is khown as the "system device" or the
"system disk". The system device also stores program data in the ordinary way
(see Chépter 2-5). 1In fact if it is the only disk on the installation, it will be

heavily used for this purpose.
The system device is handled differently from other devices in the following ways:

1. Its driver is permanently resident in memory. This is necessary to
' access non-resident Monitor modules, but it also has the advantage
that access times are reduced, not only for the system device but
for every other device of the same type, since an initial transfer
of the driver itself is obviated.

2. System device transfers take priority over others, since they may
be required to control others.



3. A file held on the system device may be specified by its filename
alone because the default value for a device name (see Section 2-2.3.1.3)
is the system device. Not only does this save time - it also provides
device independence because dataset specifications need not be changed
if the system device is changed (this is particularly helpful for batch
streams - see Section 2-6.3.2).

4.4.4 Input and Output Routines and Device Drivers

The functions of input and output routines and device drivers are described in
Chapter 2-2. This section describes how the occupancy of memory by drivers and
other input and output routines is managed. Although drivers are Monitor modules
they are discussed here separately because their memory occupancy is handled

differently from that of other modules.
4.4.4.1 Common Input and Output Routines

The input and output routines which effect the different kinds of data transfer are
listed in Section 2-2.5.1 Each routine is used_for all transfers of the appro-
p;iate kind irrespective of the physical device involved - that is, the routines are
common to all devices for which they are used. Of these common routines, the
.READ/.WRITE processor, which is the largest and most commonly used, is held
permanently in memory as part of the Resident Monitor. The other input and output
routines are handled like -other non-resident Monitor modules; that is, they are

held on the system device and overlaid into the main swap buffer within the Resident

Monitor when required (see Section 2-4.4.3).
NOTE

Input/output routines are likely to be heavily used. The
reentrancy mentioned in Section 2-2.5.2 carries the advantage
that processing of a second input and output request can start
before the previous one has been completed, without duplication
of routines being necessary. This assists considerably in memory
economy. .

4,4,4.2 Device Drivers

The system device driver is held as part of the Resident Monitor, occupying,
typically, about 15@ decimal words., Device drivers other than the system
device driver are held on secondary storage until required, when they are
transferred to an area set up in dynamic memory as described in Section 2-4.5.2.
Since the drivers consist only of code related to that particular device, and
do notfcpntain code duplicated in other drivers, their size is kept to a minimum;

hence the areas reserved for them donot need to be very large..

2-32



NOTE

Unlike other Monitor modules, device drivers may not be -
incorporated in the Resident Monitor when the system is
generated, as described in Section 2-4.4.2.2, nor can
they be made part of the Resident Monitor for the dura-
tion of a program in the way described in Section
2-4.4.2.3. However, this is not a practical restriction
since a driver may be called into memory from within the
program for any length of time required (see Section
2-4.5.2).

4.5 THE DYNAMIC MEMORY AREA

The area between the user's program and the Resident Monitor is referred to as

"dynamic memory"

Space is allocated in the dynamic memory area for the following:

“ 1. The stack, ) ) )
2, Incoming and outgoing data (I/O buffers),
3. Device drivers, R

4. Temporary Monitor tables.

Of the above occupants of the dynamic memory area one, the stacﬁ, is resident for

the duration of a brogram’s run but is variable in size. The others though indi-
vidually fixed in size, are ;esidént only temporarily; hence their collective

k size is variabie. The method used to make the best use of dynamic memory, and

avoid the creation of useless “"pockets", is illustrated in Figure 2-4.

2-33



Program Area

Stack

Area Available
for Data Buffers,
Device Drivers,
and Other
Monitor Components

Resident Monitor

Figure 2-4

The Dynamic Memory Area

The stack is placed at the top of dynamic memory, next to the user's program, where
it can expand downwards. Allocation of space for the other occupants begins at
the bottom of dynamic memory, just above the Resident Monitor, and proceeds upwards,

so that there is only one area of unused memory.
NOTE

To save space in the Monitor's internal tables the total
area available for data buffers and device drivers is
limited to half the memory area. However, since it is
unusual for a program to require Monitor dynamic storage
larger than the program itself, this is unlikely to be a
practical restriction. -

&

2-34



\

4.5.1 The Stack

- Next to the user program is an area of memory known as the "stack", for the temporary
storage of data - in particular, data which is to be transferred between two

routines within the program, or between the program and a Monitor routine.

The stack functionally has characteristics similar to those of a stack of physical
objects. As many items of data as required may be added to or removed from the

stack, but only at the top.

The advantage of this arrangement is that it is necessary for the Monitor to hold
only one address for the stack - that of the item currently at the top. This
address is held in a register known as the Stack Pointer (SP). The address of an

item lower in the stack may be calculated by counting the number of intervening

items.
NOTE

The terms "top" and "base" when applied to the stack are
used as they would be in an analogous stack of physical
objects; that is, the "base" is the stationary end and
the "top" is the end to and from which items may be moved.
The terms "top" and "base" in this context are not

~ connected with the relative positions of the two ends
of the stack in memory. In fact, the base of the stack
is adjacent to the program area, and the stack expands

_ downwards - that is, each item added has a lower address
than the previous one.

4.5.2 The Data Buffer and Device Driver Area

Space in the dynamic memory area for data buffers and device drivers is allocated

and released in the following manner:

1. When the program indicates that a series of transfers is about to
take place, the Monitor allocates space from dynamic memory for the
driver, a data buffer, and any necessary control blocks. The
amount of space required is known to the Monitor.

2. When the program notifies the Monitor that no more transfers are
required, the sections allocated are released and so become available
for use on another occasion.

2-35



It should be noted that buffers and drivers are not reshuffled when the lower parts
of dynamic memory are released, because of the overheads that would be involved,
and because all references to.them Qould then have to be indirect. The user can
minimize the creation of unused pockets by issuing requests for routines which
cause memory allocation in the opposite order to that in which the space will be

released.
4.5.3 Temporary Monitor Tables

Certain temporary Monitor tables which control data transfer operations are also

allocated space in the Dynamic Memory Area when required.
4.6 THE PROGRAM AREA

The ultimate objective of the management,. of gpe Monitor-occupied area and the
dynamic memory area, is that as much of the computer's memory as possible should be
available t0 user programs.

4.6.1 User Programs

The user program is loaded by default into the top of memory. The Monitor places

no restriction on the way the program uses this area, but naturally there is a limit
to the size of thé program. This limit is the total amount of memory less the
amount occupied by the Resident Mdnitor, and a reasonable allowance for dynamic

memory.
4.6.1.1 Overlaid Programs

The limit to the size of the user program that can be heldlin memory at one time
can be overcome by the technique of overlaying. In principle this technique is
the same as that applied by the Monitor to its own overlaid modules as described
in Section 2-4.4.1. To make use of overlays it is necessary to observe a set of
rules (described in Part 9) when referencing parts of the program that might be
overlaid. The overlays are then created by the system program LINK in accordance

with the user's instructions (see Section 2-7.2.3).

4.6.2 System Programs

Chapters 2-2 and 2-3 described the services provided to running programs by the
DOS/BATCH Monitor. These services are built into the Monitor-in fact, the Monitor

may be regarded as a collection of run-time services.



Non-run-time services such as data copying between devices and program development
are provided through system programs. To perform specific frequently required
services, system programs are provided in - ready-to-use form which are available to

all users.

The provision of such services by means of system programs rather than as an

integral part of the Monitor has the follow1ng advantages:

1. Memory management. System programs can occupy the program area in
memory and be handled like user programs.

2. Selectivity. Only those system programs actually required need be
included in the system. Others may be added as required, without
modification of the Monitor.

3. Flexibility in development. System programs may be improved, and
new ones introduced, without disturbance to the system as a whole.

System programs operate in the same way as user programs. That is, they occupy the
top of memory and interact with the Monitor as user programs do. They are often
modular in structure and may make use of the technique of overlaying.

[

4.6.3 The Transient Monitor

One of the baéic functions 6f the Monitor is the loading of programs (both user
and system programs). As suggested in Section 2-5.1, 1oading a program involves a
number of ancillary activities - for example, the stack must be moved. Some of
. these activities must, and others may be performed before the actual loading of‘
- the program as a whole takés place. Similarly after a program is unloaded it is

neéessary to restore memory to a state in which it is ready for another program.

There is no need for the routines which carry out these activities to use the
swap buffers one after another when the whole of the program area is available

for their use.

The routines which occupy the program area when no program is loaded are known
collectively as the Transient Monitor. The Transient Monitor performs the

following functions when a program (user or system originated) is to be loaded:

1. Restores memory after program unloading.
2. Accepts operator instructions.
3. Implements those operator commands, which, by definition, operate

when there is no program in memory.

4. On receipt of an appropriate command, carries out preparations for the
loading of the next program.

2-37



PART 2
CHAPTER 5
UTILITY ROUTINES

Although the actual processing of data, as distinct from its input and output is
the domaip of the program, there are some procedures which are common to many
programs; it is desirable that the program should be relieved of handling the

details of such procedures.
5.1 PROGRAM LOADING AND UNLOADING
The loading routines perform the following functions:

1. Check that the dataset specified as a program or overlay exists
and is accessible to the user.

2. Load into memory any Monitor modules required to be resident
(see Section 2-4.4.2). :

3. Prepare the stack and the rest of memory to receive the program.

4. Load the program.

S. If required, run the program.
When a program is removed from memory, Monitor routines release any dynamic memory
(see Section 2-4.5.2) which was acquired on behalf of the program, and restore any

necessary system control data.

5.2 CHARACTER CONVERSION

A number of conversion services are provided by the Conversion Utilities Packags.
5.2.1 ASCII/Binary Conversion

Numeric data is normally entered into the computer either for arithmetic processing

“
or for storage, or both.
Arithmetic operations are performed in binary (which is also the most economical

form for storage) but input and output are more convenient in either octal or

decimal numbers, in the form of ASCII characters.

2-38



Routines are therefore provided to perform the following conversions:

1. Binary to decimal ASCII.
2. Binary to octal ASCII.
3. Decimal ASCII to binary.
4. Octal ASCII to binary.

5.2.2 Radix~-50 Packed Character Storage

A large portion -of non-arithmetic data consists of syﬁbolic names, such as filenames.
ASCII code is stored one character per byte or two chafacters per word. However,
because symbolic names are formed from a restricted group of 39 characters (letters,
digits, space, period, dollar sign) it is possible to store such names three
charaéters to a word. . Conversion in each direction is performed by the Radix-50

Pack and Unpack routines by means of a single algebraic formula.
5.3 SYSTEM INFORMATION

. , / » 7 .
The Monitor holds a large amount of information about the state of the system. The
General Utilities Package consists of routines whereby the user may either access
this information or supply additional information to the Monitor.

Routines are provided to set any of the following to values specified by the user:

1. The stack base addresy,

2.» Certain system vectors.
Roﬁ%ines are provided to ascertain the current value of the following:
1. The stack baée address.

2. Certain system vectors.

3. The total amount of memory available.

4. = The amount of memory occupied by the Monitor.

5. The amount of memofy occupied by the Monitor and its buffers.
6. The name of the system device (see Section 2-4.4.3.1).

7. The User Identification Code under which the program is running

(see Section 2-3.4.2.1). »
8. _ The date (internal or ASCII representation) .

9. The time (internal or ASCII representation).

2-39



5.4 FILE MANAGEMENT

Routines are provided to perform the following file management

1.
2.
3.
4.

5.

Find a file and supply information about it.
Change the name or protectibn code of a file.
Append one file to another.

Delete a file.

Allocate a contiguous file.

2-40

functions:



PART 2
CHAPTER 6
USER CONTROL

The previous chapters have described DOS/BATCH Monitor input and output, data

storage and other services to the program, and memory management. An implicit

requirement of all management activities is that they be conducted in accordance

with the user's needs and wishes. This chapter describes user-Monitor communication.

.

6.1 COMMUNICATION BETWEEN USER AND MONITOR

The user can issue instructions to the Moqitor at either or both of two levels,

by the following means:

1.

Instructions from within a program written in‘FORTRAN or the MACRO
Assembly Language.

a. FORTRAN statements. A FORTRAN statement that specifies a channel

number, for example

WRITE (5,1)

has the'effect of sending output to the line printer (which is
assigned to channel 5 unless overruled by an ASSIGN command -
see Section 2-2.3.2.3). For further details see Part 7.

MACRO Program Requests. The MACRO Assembly Language contains
more than forty Program Requests which may be issued from within
the program to make use of Monitor services in® any of the areas
of activity described in the previous four chapters. For further
details see Part 6. '

Run-time Commands. A comprehensive command language permits the user
to communicate his requirements at run-time by means of commands
issued either interactively from the console keyboard, or in the form
of a batch stream from any input device. . )

The Monitor can communicate with the user to inform him of the effect of the commands

.he has issued or of program events. In general, expected events are signalled by

standard responses which invite the next input, whereas unexpected events are

reported by means of error messages. These responses are described in Section

2-6 .4.

6.2 MACRO PROGRAM REQUESTS

A program written in the MACRO Assembly Language can issue a Program Request to

call on the followihg Monitor services.

2f4l



1. Input and output services. These consist of the data transfer operations
and the suspension of processing pending completion of transfer.

2. File management services such as providing information about existing
files, opening, closing, deleting, concatenating or renaming files, or
allocating contiguous files.

3. Memory management services such as reporting the size of memory, pro-
viding the addresses of the current occupants of memory, or changing
‘the stack base address or program load address.

4. Processing services such as setting vectors or the program restart
address, loading a program or overlay, converting binary or Radix-50
values to ASCII characters (or vice versa), or supplying the date
or time.

MACRO Program Requests consist of up to five letters or digits preceded by a
period - for example .OPEN, .CSI2. They are described in full in Part 3.

6.3 RUN-TIME COMMANDS

The user can call on a large range of Monitor services at run time, by means of a

comprehensive command language.

Run-time commands can be issued either singly from the keyboard or in batches from
any suipable input device. 1In the former case the process is interactive, in that
the user awaits the Monitor's response to one command before issuing the next; in

the latter case the sequence of commands is predetermined, and when the Monitor has

completed the action initiated by one command it reads and implements the next.

The commands are easy-to-remember plain English words and to save time and avoid
errors, only the first two letters of each command need be typed. (Indeed the
Monitor does not examine any subsequent letters.) 1In the case of the RUN command,

either RU or even R alone is accepted.

Many of the Monitor actions which the user may wish to initiate will be the
same irrespective of the -command source, and therefore, a large part of the
Command Language may be used from either input source. However, since batch
operation uses a superset of the keyboard language, two modes of operation are

described separately.



6.3.1 Interactive Operation

Since programs under development will often behave in unexpected ways, interactive
operation allows the user to adapt his actions to deal with what does happen. This
may also be true when he is using standard programs, for example PIP, to perform

tasks for which no established procedures exist.

DOS/BATCH, controlled interactively from the keyboard, is ideally suited to such
applications. The command language can be used to respond constructively to any
event, expected or unexpected. Coﬁmands are included to load, suspend, continue,
stop, restart, alter and save user programs, run system programs, assign and
release datasets, and control the user's relationship with the system. These

commands are fully described in Part 3.

6.3.2 Batch Operation

The chief disadvantage of interactive operation is the low speed at which a user

can type his input. This limitation can be overcome by means of the batch facilities
which are provided by the DOS/BATCH Monitor (and after which the Monitor is partly

named) .

6.3.2.1 Applications

Batch operation offers outstanding advantages for two distinct'applications.

One applicatioﬁ is for a large number of users - for example students for whom

there is not sufficient time to run programs in turn from the keyboard. Each usér
prepares his cqmmands as a batch stream off-line on punched cards or paper tape.
Each stream is then run by means of a single command from the keyboard in a fraction
of the time required for on-line typing. Batch operation greatly increases machine
utilization.

The other application is for repeated use of thé same command sequence. The commands
may be made up into a batch stream stored in a file like any other data, and used
and reused és often as required. Initial input may be off-line or at the keyhoard
‘by means of the editor. 1In either case the saving, in terms of machine and operator
time and the avoidance of errors, is such that batch operation may'be regarded as

indispensable for regular production runs.

2-43



6.3.2.2 Implementation.
Batch operation is implemented in two complementary ways.

First, many of the same commands that are issued from the keyboard may be stored on
any medium and issued subsequently from an input device. The keyboard commands
unsuitable for batch use are discussed later.

-

Second, special batch commands are provided, which:

1. Manage batch operations. These commands are described in Section
2-6.3.2.5.

2, Perform standard functions, such as compiling, linking and running
programs and copying, listing and deleting datasets, which would
otherwise require one or more system programs to be explicitly run
and supplied with command strings. Commands in this class are known
as "concise commands". They are described in Section 2-6.3.2.6.

6.3.2.3 Input Media

A batch of commands may be set up on any medium for which an input device is
available. Which medium is most suitable depends on the purpose for which batch
operation is being used. The commands may be prepared off-line on punched cards
or paper tape; alternatively they may be entered from.the keyboard into a file

by means of the editor and the file may be stored on any suitable magnetic medium;
or, thirdly, both methods can be combined; that is, the batch stream can be pre-

pared off-line and copied into a file by means of PIP.

6.3.2.4 Batch Streams

A batch stream consists of a string of commands held on any suitable medium. Such

a batch stream may be specified as a dataset.

Most of the keyboard commands can be included in a batch stream. However, the
usefulness of certain commands depends on their being used interactively. 1In
particular, several keyboard coﬁmands deal with error conditions; these commands
range from CONTINUE, which ¢rders the program to resume after an interruption,

to ODT, which initiates the ODT on-line debugging program. Such commands are‘
inappropriate for a batch stream and, if included, are either ignored or reported

as errors depending on the command.

2-44



" The KILL command, which removes a program frém memory, is largely redundant in a
batch stream because commands that might follow a KILL are 1mp1emented to auto-
matically kill a completed program as well as perform thelr own functlons. This
principle of providing the means for economizing on commands is further extended

by the provision of "concise" commands, which are described in Section 2-6.3.2.6.
6.3.2.5 Batch Mode

The BATCH command BATCH, 1nstructs the 51ng1e keyboard Monitor to read a specified

dataset and obey the commands contalned in it. For example:
' $BATCH JOBRUN.BAT([7,4],LP:

specifies that the file JOBRUN.BAT, owned by user 7,4, is to be run as a batch
stream, and that the .commands in the batch stream, as well as any error messages,

should be printed at the line printer.

When the Monitor obeys a BATCH command it is said to enter batch mode, and user

“ control is exerted from the batch stream. However, a batch stream still must
recognize keyboard commands. An example is the use of the CONTINUE command to
resume processing after a peripheral has been made available by the operator. The

operator must be able to interrupt execution of the batch stream at any time.

Other commands are provided specifically for the management of'bdtch processing.
The command CHANGE, when inclﬁded in the batch stream, enables a subsidiary batch
stream to be read and run. This ability to run two levels of batch stream is
important. It can be used, for example, by creatingia master,batcﬁ stream con-
sisting entirely of CHANGE commands each of which runs another batch stream, the

whole run being initiated by a single BATCH command from the keyboard.
6.3.2.6 Concise Commands

t 4

Concise commands combine the effects of more than one standard command, Or of a
command to run a system program and a command string supplied to that program.
They thus form a higher level command language.

For example, the following concise command:

$CPY DT1:FILEA TO PP:

replaces the following sequence:

2-45



$RUN PIP
#PP:<DT1:FILEA

Either of the above causes the file FILEA held on DECtape unit 1 to be output on
paper tape. '

Similarly the following concise command:
$EX[ECUTE]
replaces the sequence:

$RUN FORTRAN
#MYPROG, LP: <BI : /GO

Either of the above causes the FORTRAN program MYPROG held in the batch stream
(BI:) to be compiled, linked and run, and a listing of the source program to be

printed on the line printer.
Concise commands are described in Part 4.
6.4 MONITOR REPORTING

To exercise control effectively the user must be well informed about the progress
of his job. -

6.4.1 Interactive Reporting
6.4.1.1 Normal Responses

The simplest way in which the Monitor reports progress during interactive operation
is by means of "ready" signals. A "ready" signal is output at the Keyboard device
to inform‘the user that processing has ceased, and to invite further input. 1In
order to provide further guidance to the user, different "ready" signals are used

to indicate different situations, as follows:

$ A command is -required. Either the previous command has been
unsuccessfully implemented or an error has occurred and corrective
action is required. In. the latter case the $ is preceded by an
error message.

Processing has been interrupted by the user from the keyboard and that

a command either to resume or to kill the program is expected.
(This signal is normally output only when a program is loaded.)

2-46



# The system program invites a command string ‘to be processed by the
Command String Interpreter. (It is recommended that user programs
should follow the same convention.) -

The program expects command input to the program other than a command

string. For example, the system program EDIT uses it to invite editing
commands.

6.4.1.2 Error Messages

If an event occurs that the user did not intend, he wants to know what has gone

wrong. Therefore the Monitor provides two kinds of error messages:

l. Command error messages are output when a command cannot be imple-
mented, and indicaté the reason. Examples are:

Message Meaning

INV CMD! . Invalid command
NO FILE - The file cannot be found, or cannot be
loaded.

2. Coded messages identify error conditions arising during the execution
of a command or program. :

Each message begins with a letter to indicate the class of error.

Action required by the operator.
Fatal error. The program has been terminated.
Informative message only.

System program error.

T 0 H = w‘

Warning to the operator.

@

The initial letter is followed by a three-digit code which identifies
the error; see Appendix K. Additional information may also be
included in the message.

Also, system programs issue messages, many of them self-explanatory.

6.4.2 Batch Reporfing

Errors arising from commands in a batch stream are printed at the keyboard in the
normal way. The user may specify in the BATCH command that a log, considting of each
~line of the BATCH stream and any error messages generated, be output to any device.

In this way progress can be monitored and any error messages can be seen in context.

2-47



PART 2
- CHAPTER 7
PROGRAM DEVELOPMENT

The services provided by the DOS/BATCH Monitor itself and by the system program PIP
provide ample support for the running of established programs. However, the devel-
opment of a program is much more complex than its subsequent running, and the sup-
port required from the operating system during this process is correspondingly

much greater.

In most cases a user program is not running when the services needed for program
development are required. Such services are therefore provided through system

programs.
7.1 INPUT OF SOURCE PROGRAMS

Source code written in FORTRAN or the MACRO Assembly Language may be put into the

computer in either of two ways, as described in the following subsections.
7.1.1 Direct Input through EDIT

Source code may be inserted directly into a file from the keyboard, and then checked

and corrected by means of the system program EDIT.

EDIT is a general purpose text editor with a straightforward powerfpl editing
language, Facilities are provided for inserting, deleting or altering one or
more characters or lines of text. The required point in the text may be located
by means of line and/or character counts or string searches. Sections of one or
more lines may be moved or duplicated. An editing command’ or-a string of commands
may be stored and executed either a predetermined number of times, or until the

end of the file is reached. See Part 8 for more details.,

NOTE
EDIT is suitable not only for programs but for any
text, including documents. The text of this manual,
for example, was initially punched onto paper tape,
and then revised by means of EDIT.

2-48



7.1.2 Offline Preparation

Source code may be prepared off-line on punched cards or paper tape, and copied

onto a magnetic storage device’by means of the system program PIP (see Part 12).

It may then be edited, as described above.

7.2 COMPILATIbN, ASSEMBLY AND LINKING

Under DOS/BATCH a source program is converted into runnable machine code in two

distinct stages: *

1.

1 3

Individual segments of source program are converted into object
code.  This process is known as compilation for high-level.
languages such as FORTRAN, and assembly for assembly languages
such as MACRO. The resulting modules are called object modules.

These individual modules, which may have been compiled or assembled
at different times, are then combined to form a new module

through a process known as linking. The resulting module is ready
to be loaded and run, and is called a load module.

The two-stage conversion has the following advantages:

Segments of programs can be compiled or assembled independently.
(Small segments are easier to comprehend and to maintain.)

Standard routines can be held in libraries as object modules and
linked into the program after compilation or assembly.

Program segments can be written in different languages.

NOTE

Filename exteénsions (see Section 2-2,3.1.4) identify
the source program, object module, and load module
states of a program. The Monitor supplies the
following standard extensions to distinguish the
different states of a program.

FTN FORTRAN source file
MAC MACRO source file
OBJ Object module

LDA Load module

Thus, for example, when assembling the module COMPAR,
the user can refer to both the input and the output
files as COMPAR, while the assembler processes them
as COMPAR.MAC and COMPAR.OBJ, respectively.

2-49



7.2.1 FORTRAN IV Compilation

The DOS/BATCH FORTRAN IV Compiler fulfills all the requirements laid down by the
American National Standards Institute (ANSI) for FORTRAN in 1966. Programs written
on other systems in accordance with this standard can therefore be éun under
DOS/BATCH. See Part 7.

7.2.1.1 Extensions .

DOS/BATCH FORTRAN offers certain features not specified in the ANSI standard, in

particular the following:

1. Octal data type.

2. The following mixed mode arithmetic expressions:

a. Real with integer,
b. Double precision with integer,

c. Complex with integer.

3. Random access data transfer (define file).

4. In-core ASCII/binary conversion (encode/decode)
7.2.1.2 Optimization

At the user's option, code can be optimized to take advantage of the processor on
which the program is to run and to make the best use of the extended integer
arithmetic and floating point hardware if they are available. - If the user does not
choose to optimize his code, he may elect to have additional run-time error-

checking performed.

Optimization can achieve significant improvements in running speeds for both
floating-point and non-floating-point computation - in some cases run time may be
halved. »

7.2.2 MACRO Assembly

For those cases in which it is desirable to work élosely with the instruction set
of the PDP-11 and where a compiler is not to be used, DOS/BATCH provides a powerful
assembler, called MACRO. As its name suggests, MACRO provides extensive'macro
facilities (see Part 6). A comprehensive set of system—défined macros is available,

and in addition the user may define his own macros. At the user's option, segments



of code may have either absolute or relative addfésses; in the latter case relocation
is undertaken by LINK. Other important'features are a full set of conditional

assembly directives and a cross-reference capability.
7.2.3 Linking with LINK

The system program LINK links program segments to each other when they have been
successfully compiled or assembled, and at the same time, if required, incorporates

routines held in a library.
Link performs the following functions:

1. Relocates each object module and assigns absolute addresses.

2. Links the modules by correlating global symbols defined in one
module and referenced in other modules.

3. Implements an overlay structure defined by the user.
4. Produces a load map which displays the absolute addresses assigned.
5. Creates a load module which can be loaded and run.

6. Writes the load module as a dataset rather than putting it in memory.
This allows it to be used more than once.

7. Provides a cross-reference listing for globals.
For more specific information, see Part 9.
7.2.3.1 Lihking Overlaid Programs
In order to decide on an overlay structure it is necessary to know which segments
are required in memory simultaneously. This is difficult if the program has not been
written. Under DOS/BATCH the overlay structure need not be declared until the
program is linked. A particular advantage of this is that if the overlay structure
first chosen turns out to be unsatisfactory, a different structure may be tried

without changing the program.

At the user's option overlays may be loaded explicitly by the program (manual

loading) or automatically when called by the program (load on call).

An example of an overlay structure is given in Figure 2-5.°

2-51



Lxousy

Time

Figure 2-5

Example of an Overlay Structure




7.2.4 Library Building with LIBR

Programs may be assembled or compiled in separate segments as described in the
previous section, but it is not always efficient to hold all the resulting object
modules in separate files so that each has to be recorded individﬁally in the user's
directory and each has to be specified individually to LINK. The system program
LIBR can be used to create a single "1ibr%ry"'file'into which the object modules

of the program can be inserted.

A primary example of the technique of library building is the FORTRAN library,

which contains commonly required FORTRAN routines,
7.3 DEBUGGING

Several system programs provide services to aid in the debugging of user programs

under development. : s
7.3.1 Editing with EDIT

Anyirequired changes to a source program can be made through the system program

EDIT, which is described in detail in Part 8.
7.3.2 Dumping Files with FILDMP

The contents of a file may be examined by means of the system program FILDMP.
FILDMP can read the whole file.or specified blocks of a file consisting of
formatted or unformatted binary qataior formatted ASCII data; can create a dump
copy in octal bytes or words or ASCII characters; and can, optionally, treat each
word as a group of three packed Radix-50 characters, and print the characters )
represented. More than one representation of the file may be specified. Output
can be sent directly to the keyboard device or line printer or be stored in a th

file., See Part 15 for more details.
7.3.3 Comparing Files with FILCOM
The file comparison program FILCOM can trace changes to a file by providing

a list of differences between two specified ASCII files, For more details

see Part 14.

2=-53



7.3.4 The On-line Debugging Program ODT
The system program ODT (On-line Debugging Technique) enables the user to:

1. Print the contents of any location or register.
2., Change the contents of any location or register.

3. Set breakpoints anywhere in the program to interrupt execution and
give the user control at the keyboard.

"4, Perform single~step execution.

5. Search the program for specific bit patterns.

6. Search.the program for instructions that reference a given word.
7. Ascertain offsets for relative addresses.

8. Fill a block of words or bytes with a specified value.

ODT is unique among system programs in that it is loaded concurrently with the

user program which is being tested. The two programs run co-operatively and

interact with one another.

2=-54



PART 2
CHAPTER 8

SYSTEM DISTRIBUTION,
GENERATION, AND MODIFICATION

One of the advantages of DOS/BATCH is the ease with which it can be installed and
set into operation. This chapter describes the methods used for the distribution

and building of the system.
8,1 DISTRIBUTION MEDIA
DOS/BATCH is distributed on each of the following media:

1. DECtape
2, Magnetic tape (7= and 9-track)

3. Disk cartridge
8,2 MONITOR FORMAT

The first task when loading the Monitor is to copy the whole Monitor, including

the part that will ultimately be resident in memory, onto the system disk.
8,2.1 Core Images

The loading procedure described in Section 2-5.1 is satisfactory for a program
that is run infrequently. However, if the whole procedure had to be repeated
every time a Monitor module was swépped into memory the consequent system degrada-
tion would be intolerable. Therefore the Monitor modules are held on the system
device not as load modules but as "core images"; that is, exact replicas of the;r
_appearance in memory without any control information. When it is required, a

core image can be simply copied straight into memory.

8.2.2 The Monitor Library (MONLIB.CIL)

The Monitor must be a single coherent file and must have direct access to
individual modules so that they can be loaded with minimum delay. This

individual accessibility is also necessary when the Monitor library is being

updated.

/ v 2-55

"



The requirements of Monitor unity and individual module accessibility are satisfied
by a Core Image Library (CIL). Just as libraries of object modules can be built
by means of LIBR so libraries of core images can be built by means of the system

program CILUS (Core Image Library Update and Save).

A Core Image Library is a file consisting of a set of core images and a directory
which holds the address of each image. The file is named, and can be referred to
in the usual way. Individual core images can be accessed by the Resident Monitor
when a module is to be overlaid, and by CILUS when changes are required., Since
the Monitor must load mahy non-resident modules (some many times) during a typical
run, it must know in advance where to find each. This is most easily accomplished
if the modulés can be accessed directly; therefore the Monitor library is a con- |
tiguous file, An additional advantage is that modules which require more than

one block for storage can be loaded in a single transfer.

The Monitor, then, is held on the system device in the form of a Core Image Library
known as the Monitor Library, whose filename is usually MONLIB.CIL (.CIL is the

standard extension for a Core Image Library).
8.2.3 The File MONLIB,LCL

The Monitor Library is held on each distribution medium in a form appropriate to
that medium - for example, on magnetic tape it is held as an ordinary sequential
file. It can easily be converted into a contiguous file when it is copied on to

the system device.

On DECtape the Monitor Library is held as a iinked file, A Core Image Library held
as a linked file is known as a LICIL (Linked Core Image Library). The standard
extension for a LICIL is .LCL, and so the name of the Monitor Library on DECtape

is MONLIB.LCL. In order that a standard interface be piesented to the program
that transfers the Monitor to the system device, the same name is given to the
Monitor Library on all distribution media, Similarly the file is often referred

to as LICIL irrespective of the medium on which it is held.

8.3 ESTABLISHING THE SYSTEM

8.3.1 Building the Monitor With SYSLOD

The program SYSLOD transfers the Monitor from the distribution medium to the system

device. SYSLOD itself is held on the distribution medium and is loaded manually

via the operator's console.



SYSLOD performs the following functions:

1. Clears the disk selected as the system device and initializes it to the
DOS/BATCH file structure.

2., Copies the Monitor onto the specified system device, converting it to a
contiguous file,

3. Unless specified otherwise, loads the Resident Monitor into memory and
- transfers control of the system to it,

8.3.2 Building System Programs

The system programs are usually distributed as object modules so that they can be
built to take advantage of the amount of memory available on the machine on which
they will be running. Once the Monitor is running, the system programs. can be
linked under the Monitor control by running batch streams held on the distribution

medium,

8.3.3 Preserving the System with ROLLIN or PIP

The whole contents of the system device, including the Monitor system programs
and user files, can be copied onto magnetic tape and subsequently back onto the
system device by means of the program ROLLIN. This provides backup in case of a
system crash. Alternatively PIP may be used. See Part 16 for more detailed

information on ROLLIN,
8,4 MONITOR MODIFICATION

It may on occasion be necessary to modify the Monitor. For example, if a new
peripheral device is added to the system, a driver for that device must be included
in the Monitor. It is also possible to reconfigure the Monitor, for example, by

speéifying that various Monitor modules become part of the Resident Monitor.
Since the Monitor is modular such modification is simply performed by the sub-
stitution of one module for another, or by the inclusion of an additional module.
This is done by the system program CILUS.

8.4.1 CILUS (Core Image Library Update and Save)

The system program CILUS can be used to perform any of the following functions:

1. Build a core image library (as a contiguous or linked file) from specified
core images (load modules). ‘

2-57



2.

3.

4.

5.

6.

7.

Copy a LICIL onto disk, converting it into a contiguous file.

By means of a simple editing language, edit a core image library by
deleting, inserting, replacing or renaming specified modules.

Load and run the first core image in a core library.

Determine which core image library should be loaded and run the next
time the system is started.

List the directory of the core image library.

Produce an octal dump of one or more modules,

Full details of the procedures for establishing and modifying the system are

given in the System Manager's Guide.

2-58



	2-001
	2-002
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58

