THE DOS/BATCH OPERATING SYSTEM

PART 3

THE DOS/BATCH MONITOR

PART 3
CHAPTER 1 |
INTRODUCTION TO THE MONITOR

1.1 THE DOS/BATCH MONITOR

The PDP-11 Disk Operating System (DOS/BATCH) Monitor is a powerful, keyboard and
batch~oriented program develppment system designed for use on PDP-1ll computers.
The Monitor facilitates use of a wide range of peripherals available for use with
the PDP-11. '

The Monitor supports the PDP-1l user throughout the development and execution of

his program by:

)
) providing convenient access to system programs and utilities such as the
FORTRAN Compiler, the MACRO Assembler, a Linker, a debugging package, an
Editor, a file utility package, etc.;

° performing input/output transfers at three different levels, ranging
- from direct access of device drivers to full formatting capabilities,
while providing the convenience of complete device independence;

e providihg a file system for management of secondary storage; and

e providing a versatile set of keyboard commands for use in controlling
the flow of programs.

System programs and utilities can be called into core from disk, DECtape, magtape,
cassette or paper tape with Monitor commands issued directly from batch streams or
the keyboard. This feature eliminates the need to manipulate numerous paper tapes,

and provides the user with an efficient and convenient programming tool.

DOS/BATCH gives the user program the capability of complete device independence.
Programs can be written without concern for speéific I/0 devices. When the program
is run, the user can select the most'efﬁective or convenient I/0 device available
for the function to be performed. In addition, if the system cogfiguration is
altered, many programs can take advantage of the new configuration without being
rewritten. Logical names can be assigned to devices within the system, enabling
symbolic referencing of apy device. No concern need be given to I/0 buffer size
within the user program, yet the user can alternatively retain direct control of
I/0 buffers. ‘

All input/output (I/0) transfers are handled by the Monitor in any of three user-
selected levels called READ/WRITE, RECORD/BLOCK, and TRAN. READ/WRITE is a
formatted level of I/O in which the user can specify any one of nine options.
RECORD/BLOCK is a file-structured, random-access I/O level with no formatting.

TRAN does basic I/0 operations at the device driver level.

and interrupt-driven.

The file system on secondary storage uses two types of files:

Linked files can grow serially and have no

All I/O is concurrent

linked and contiguous.

logical limit on their size. Contiguous

files must have their lengths declared before use but individual records can be

randomly accessed by RECORD or BLOCK level
file are physically adjacent, while blocks

I/0 requests. All blocks in a contiguous

in a linked file are typically not

adjacent (the first word Qf each block contains the address of the next block).

Files can be deleted or created at any time, and are referenced by name.

Table

3-1 summarizes the features and benefits of the DOS/BATCH Monitor.

The user communicates with the Monitor in two ways:

keyboard instructions called commands, and

requests. f

through batch streams or

through programmed instructions called

Batch streams or keyboard commands enable the user to load and run programs; assign

I/0 devices or files; start or restart programs at specific addresses; modify the

contents of memory locations; retrieve system information such as time of day and

date; and dump core.

Users can utilize programmed requests, which are macros

assembled into the user's program through which the user specifies the operation

to be performed by the Monitor:. Some programmed requests are used Lo access

input/output transfer facilities, and to specify where the data is, where it is

going, and what format it is in. 1In these

cases the Monitor will take care of

bringing drivers in from disk, performing the data transfer, and notifying the

user of the status of the transfer.

Table
PDP-11 DOS/BATCH Monitor

3-1
Features and Benefits

Feature

Benefits to User

Files are catalogued in multi-level file
directories.

Files are referred to by name.
Files can grow serially.

Files can be as large as the storage
device can accept.

File storage is allocated dynamically on
any bulk~storage device.

No file naming conf}icts among users.
Files do not have to be remembered by
number.

Files can be created or expanded even
when their final size is not known.

No logical limit on the gize of files.

Files can be deleted or created even at
run time for maximum storage efficiency.

(continued on next page)

Table 3-1
PDP-11 DOS/BATCH Monitor

(Cont.)
Features and Benefits

Feature

Benefits to User

Monitor subroutines can be swapped into
core when needed. Routines need not
permanéntly tie up an area of core.

Monitor subroutines can be made per-
‘manently core resident before or during
run time. ’

The Monitor is divided into logical
modules. '

All I/0 is interrupt-driven.

Device independence.

| -

Devices are assigned to one or more

datasets.

Two modes available.

‘his

Much more efficient use of core space
for user programs. Free core expands
and contracts as Monitor subroutines
are used. Space can be reclaimed for
user programs. The user can determine
which Monitor subroutines will be in
core, and when.

The user can tailor the Monitor: for his

particular needs.

The
the

user can easily and efficiently use
logical pieces of the Monitor for
own needs. He can also easily add
his own specialized drivers to the
system by following a simple set of
rules, and still use the rest of the
Monitor with these drivers.

Such specialized equipment as communi-
cations modems and A/D converters which
must be interrupt-driven can be' run
under the Monitor. Several I/0 calls
can be handled concurrently.

Any device tan be specified by the user
in his program, and another device can
be substituted by him when his program
is being run. '

The user
used for
changing
purposes

may reassign a device which is
one purpose {(dataset) without
its assignment for all other
(datasets).

Interactive mode and batch mode allow
user great ease of program development.

Other requests access

day, date, and system

Programs supported by DOS/BATCH, and hence
listed in Table 3-2.

Monitor facilities to query system variables such as time of

status, and to specify special functions for devices.

accessible through the Monitor, are

Table 3-2
Principal DOS/BATCH System Programs

Assembler (MACRO-11)

FORTRAN IV Compiler

File Utility Package (PIP)
Debugging Program (ODT-11R)
Linker (LINK)

Librarian (LIBR)

Text Editor (EDIT-11l)

File Compare Program (FILCOM)
Verification Program (VERIFY)
Disk Initialization Program (DSKINT)
File Dump Program (FILDMP)

Core Image Library Update and Save
(CILUS)

System Loader (SYSLOD)

1.2 MONITOR CORE ORGANIZATION
Core memory is divided into:

° a user area where user programs are located;

e the stack where parameters are stored temporarily during the transfer of
control between routines;

° the free core or buffer area which is divided into l6-word blocks
assigned by the Monitor for temporary tables, for Monitor routines
called in from disk, and for data-buffering between devices and user
programs;

° the resident Monitor itself which includes all permanently resident
routines and tables;

e the interrﬁpt vectors.
Figure 3-1 is a map of core as organized by the Monitor.

The Monitor dynamically acquires and releases core on the basis of system re-

quirements.

xx77768 l . Top of Core (.CORE)

USER PROGRAM
Base of User
Programs (.GTPLA)

Free Core
Top of Full
Monitor (.MONF)

Device Assignment Table
Generated After Program Start

Monitor Buffers ‘ .
(Data Buffers, Data Control
Blocks, Drivers, etc.) Top of Resident
Device Assignment Table Monitor (.MONR)

Generated Before Start of Program
and After Load Time

Monitor Routines Resident
for Program Duration

Device Assignment Table
Generated Before Load Time

Permanently Resident
Monitor and Vectors

poegpp

Figure 3-~1
The Monitor Core Map

1.3 HARDWARE CONFIGURATIONS

Many minimum hardware configurations for use by the operating system may be derived

by choosing one item from each of the five following sets.

° PDP-11 System Building Block with 98@ nsec. Core Memory and a Terminal
(DECwriter [LA3@]), Alphanumeric CRT [VT¢5—B], or Teletype [LT33]). '

) Cabinets and all Mounting Hardware.

° Bootstrap Loader (BM792-YB or MR-11l).

L] Choice of Disks (Control Logic Included)
256K word Fixed Head Disk (RF11/RS1ll)

‘1.2 million ®word Interchangeable Cartridge Disk (RK¢5/RK11)
2@ million word mass storage disk (RP¢3/RP11C)

lpeletype is .a registered trademark of the Teletype Corporation.

. Choice of Tape Devices (Control Logic Included)
Dual Drive DECtape (TUS56/TCll)
7- or 9-track Industry Standard Magnetic Tape (TUl@/TM1l)

Dual Drive Cassette (TU6¢/TAll)
High-Speed Paper Tape Reader/Punch (PCll)

Specific details are available from a sales representative.

1.4 MONITOR MESSAGE

When a message-producing situation (such as a system error) occurs, an error code
and an additional word of information are displayed on the terminal. There are
five types of message:

1. Action required by the operator

2. Fatal

3. Informational

4. System Program error

5. Warning to the operator
The type of message is identified by being preceded by the letter A, F, I, S, or W

respectively. If the system disk should fail and the error message cannot be

brought into core, the Monitor halts.

Monitor messages are described in detail in Appendix K.

1.5 STARTING THE MONITOR

The Monitor is called into core from disk by performing the following procedure
for systems with the BM792YB:

1. Move HALT/ENABLE switch to HALT position;

2. Load the processor switch register with 17318¢%;

3. Depress LOAD ADDRESS processor switch;

4. Load the switch register with,

177462 1f the system device is RF1ll disk,
177496 if the system device is RK11l disk,
176716 if the system device is RP1ll disk,

5. Move HALT/ENABLE processor switch to ENABLE position;

6. Depress START processor switch.

3-6

With the MR1l Bootstrap Loader, the procedure is:

1. Load the processor switch register with:

173199 ' if the Monitor storage device is RF1l disk,
173119 if the Monitor storage device is RK1ll disk,
173154 if the Monitor storage device is RP1ll disk,

2. Move HALT/ENABLE switch to HALT position;
3. Move HALT/ENABLE switch to ENABLE position;
4, Depress LOAD ADDRESS processor switch;

5. Depress START processor switch.
The Mon%;or will load into core and identify itself by printing:

DOS/BATCH Vxx-xx
DATE: :

on the terminal. The user enters the date in the format dd-mmm-yy.

dd = day of the month.
mmm = 3-letter abbreviation of the month.
yy = year -which must be equal to or greater than 71 and less than or

equal to 99.
The Monitor then requests the time of day.

TIME:

The user specifies the time in the format hh:mm.

hh
am

hour of the day.
minutes.

The Monitor is now ready to go into a dialogue mode if the system was initialized

to do so, or'it is ready to accept an'operator command (see Chapter 3-2).

1.6 TERMINOLOGY

The reader should understand the following terms as they apply to DOS/BATCH. An

expanded Glossary, with abbreviations, can be found in Appendix I.

A dataset is a logical collection of data which is treated as an entity by a
program. Typically, the items in a dataset have a relationship to each other
which simultaneously binds them together and distinguishes them from items in
other datasets. For example, the records in the Object dataset produced by the
assembler are clearly related to‘gach other and ére clearly distinct from the

listing dataset produced by the same assembler. A parameter file and a source
file, when presented successively to the assembler, might be viewed as a single

dataset, however.

Typically, each dataset is associated with exactly one link block (see Section
3-3.9.1), although a link block can be associated (successively, not simultanéously)
with more than one dataset. For example, when the assembler finishes processing
one dataset and returns for another command, the new input will constitute a new

dataset, but the same link block will be used.

Examples of datasets are:

) all or part of a file on a file-structured device; »

® one or more paper tapes in a paper tape reader;

® a deck of cards, terminated by an EOF card;

° three lines of keyboard data, a disk file, and a paper tape; which

are read in sequence by the assembler and are viewed as the source
input dataset. ’

A device is any PDP-11 peripheral supported by the Monitor.

A device controller .can support one or more devices.

A file is a physical collection of data which resides on a directory device (e.g.,
disk or DECtape) and is referenced by its name. A file occupies one or more

blocks on a directory device. See Section 2-2.3.1.2 for more information.

Bulk storage devices which allow data to be stored by name rather than by physical

location are called file-structured or directory devices. Devices such as paper

tape equipment and terminals which cannot support a file structure are called

non-directory devices or non-file-structured devices.

A block is a group of adjacent words of a specified size on a device; it is the
smallest system-addressable segment on the device. If the blocks comprising a
file are physica;ly adjacent to each other, the file is said to be contiguous;
if the blocks of the file are not physically adjacent, the file is said to be
linked. '

-A line is a string of ASCII! characters which is terminated by a LINE FEED, FORM
FEED or VERTICAL TAB.

lascrr represents American Standard Code for Information Interchange.

File structure refers to the manner in which files are organized. Specifically,
each of a user's files is given a unique name by the user. Each user on a file-

7 .
structured device is assigned a User File Directory (UFD) in which each of his

files is listed by name and location. Each UFD is then listed in a Master File

Directory (MFD) which is unique to a specific device unit.

‘ Throughout this manual the terms file structure directory, directoried device,
file-structured device and non-file-structured device all refer to the DOS/BATCH
Monitor—im?osed file structuge upon disk devices and/or DECtape. The file structures
on magtape and cassette tape are independent of the disk or DECtape file structure.
Magtape tape Open (EMT 638) and cassette tape Open (EMT 718) impose the file

structures upon the appropriate devices.

1.7 STANDARDS FOR TABLES

A table is a collection of data stored in sequential memory locations. A typical
table as represented in this Part is shown below. This table is two words long,
and is referéhced by the symbolic address TABL:. The first entry is at location
TABL and contains ENTRY A, which might be coded as .WORD AYE in the user's program.
The second word of the table, at address TABL+2, is divided into two bytes. The
low-order byte (address TABL+2) contaiﬁs ENTRY B, and the high-order byte

(address TABL+3) contains ENTRY C. They might be written into a program és

.BYTE BEE,CEE.

a) Representation in manual

TABL: _ - ENTRY A

ENTRY C ENTRY B

b) Representation in program listing:

TABL: .WORD AYE ;ENTRY A
.BYTE BEE,CEE ;ENTRY B, ENTRY C

' Note that the first byte specified is stored at the rightmost available byte.

Unless étated, all numbers in the text and examples are in octal form.

3-9

PART 3
CHAPTER 2
MONITOR KEYBOARD COMMANDS

2.1 INTRODUCTION

This chapter shows how the DOS/BATCH Monitor looks to the user as he sits at the
terminal (i.e., the Teletype, DECwriter, etc.). The user is communicating with

the DOS/BATCH Monitor while running system, utility, and user programs.

~

For DOS/BATCH in the interactive mode, the primary input and output device is the
user's terminal or teleprinter (keyboard and printer). Through the terminal

keyboard, the user can communicate with:

o the Monitor,
° a system or utility program (Macro, PIP, Editor, etc.), or

° a user program written to run under DOS/BATCH.
The console terminal is used for user input and system output.

In communicating with the Monitor, the keyboard is uéed as a control device to
allocate system resources, move programé into core, start and stop programs, and
exchange information with the system. Data from the keyboard may be transferred

to a buffer in the user program or it may be processed immediately by the DOS/BATCH
Command String Interpreter (CSI) as explained in Chapter 3-6. 1In this chapter, the
CSI is described only as it applies to the formatting of Monitor keyboard commands.

When the system is ready for input from the keyboard, a single character is

printed on the terminal. The following conventions apply:

Character Meaning
$ ' The system is idle, waiting for a Monitor command.
. The Monitor is waiting to continue or abort a task.
A system, utility, or user's program regllests a command

through the CSI.

* A system program requests direct input, i.e., not through
the CSI.

In this chapter, we are concerned only with the $ and . characters. The # and *

charactérs are expléined in the individual parts of this handbook.

The $ and . indicate that the Monitor is waiting for a keyboard'command from the
user. Note, however, that some commands may be issued only to a $ and some only to
a . and that each command has different limitations; these are discussed with each

command in Section 3-2.8. .

2.1.1 Monitor Commands by Function

A number of keyboard commands are provided for communication with the-Monitor.
These commands are briefly identified by function in Table 3-3 and are fully

described in Section 3-2.8.

Table 3-3

Monitor Commands by Function
. Function | Command
Establish identity of user v LOGIN
Terminate a session before 1eavihg the system ‘ FINISH
Enter or retrieve date DATE
Enter or retrieve the time-of-day TIME
Load aﬁd execute a program : RUN
Load a program ' GET
Start a program which has been loaded BEGIN
Resume a program that is waiting for user action CONTINUE
Assign an I/0 device or a file at run-time ‘ ASSIGN
Inspect or modify individual memory locations MODIFY
Save a program in core for later use . SAVE
Dump memory data on the terminal DUMP
Suppress or resume echoing of keyboard input) ECHO
Suppress or resume terminal output PRINT
Start the program just loaded at its ODT entry point oDT
Stop a program _ . | srop
Suspend a program WAIT
Restart a program that has been running .] RESTART
Terminate a keyboard or paper tape dataset END

2.1.2 When Monitor Commands are Legal

Each command performs a specific function, is legal to use under specific conditionms,

and often alters the state of the system, as shown on the/following page.

3-11

Command Legal When State Induced
ASSIGN ‘any time no change .
BEGIN program loaded and stopped program running
ICONTINUE ., program loaded and waiting program running
DATE any time * no change
DUMP any time) no change
ECHO program running no change
 [END program running : no change
INISH no program loaded logged out
ET no program loaded . program loaded and stopped
ILL program loaded program stopped and unloaded
LOGIN not logged in -logged in
ODIFY any time no change
DT program loaded program running under ODT
RINT program running no change
RESTART program loaded and stopped/waiting program running
RUN no program loaded program loaded and running
SAVE program loaded and stopped no change
STOP program running program stopped
TIME any time no change
AIT program running program waiting

A program is loaded if the user has typed RUN or GET but not KILL, and as long
as the program has not executed a .EXIT call (see Chapter 3-3).

A program is running if the user has typed RUN or if it has been loaded and
you have typed BEGIN, CONTINUE, RESTART, or ODT.

.

A program is loaded and stopped if GET but not BEGIN was typed, if it was running

and a STOP was typed, or after issuing a fatal error message (see Appendix K).

A program is waiting if it was running and the user typed CTRL/C followed by

WAIT, or after the system issues an action error message (see Appendix K).

A program is stopped and unlcaded (from core) if the user has typed KILL or if

the program issued an .EXIT call (see Chapter 3-3).

2,2 MONITOR MODE AND USER MODE

From the user's point of view, his terminal is in either Monitor mode or user mode.
In Monitor mode, each line the user types is sent to the Monitor command inter-
preter (Transient Monitor). The execution of certain commands (GET or RUN) places
the terminal in user mode. The return to Monitor mode is achieved either by a KILL,
command or an EXIT EMT. When the terminal is in user mode, it becomes simply an
input/output (I/0) device for that user. In addition, user programs use the
terminal for two purposes: to accept user command strings (user mode) or as a
direct I/0 device (data mode).

2.3 MONITOR COMMAND INTERPRETATION

When the terminal is in Monitor mode, the user communicates with the system. The
system makes several checks before processing commands from the user. For example,
if a user who has not logged in types a command that reéuires him to be logged in,

the system responds with the message:
PLEASE LOGIN

meaning that the command was illegal and was not executed. When a command-is issued
that requires the job to use more core than is available, the system responds with

the message:
NO CORE!
and the user's command is not executed.

All Monitor messages are shown in Appendix K.
2.4 USER IDENTIFICATION AND PROTECTION CODES

2.4.1 User Identification Code (UIC)

Each user of the system is normally assigned a User Identification Code (UIC) by
the system or installation manager. The UIC is first used when logging into the

system, as explained in Section 3-2.7. ,
The format of the UIC is:

[nnn,nnn]

P

where nnn represents a pair of 1- to 3-digit octal numbers, each of which may have
a value betwéen 11 and 376 (@-19 are reserved for special use). The value to the
left of the comma represents the user-group number, while the value to the right
represents the user's number within the group. Thus, if the user is assigned a
user number 27 within group 34, he would enter [34,27] for [UIC]: Except when
logging in, the UIC is always delimited by the left and right square brackets. !

The maximum number of UIC's that a directory device can contain is dependent upon
the block size of the device. The maximum capacity is the integer result of sub-
tracting one from the block size and dividing that by four as illustrated on the

following page.

lon Teletype terminals, the left bracket is typed usinq SHIFT/K; the right bracket
is typed as SHIFT/M. -

3-13

MAXIMUM UIC CAPACITY OF DIRECTORY DEVICES

DIRECTORY BLOCK SIZE MAXIMUM NUMBER
DEVICE (in words) OF UIC's

RC1l1 64 15

RF11 v 64 ') 15

RK11 256 63

RP@3 512 127

DECtape 256 63

The user identification code is used in connection with file storage and protection.
When a UIC does not appear in a command string, the UIC specified in the last LOGIN

command is assumed.

2.4.2 Protection Codes

DOS/BATCH provides file security (see Section 2-3.4.1.2) by means of file protection
codes. Each file's record in the user's directory (or, on magnetic tape, in the.
file's header label) includes a binary protection code, in which an octal digit
defines the permissable operations for specific classes of users. The four modes

of operation are: running, reading, writing, and deleting. The three classes of
user are: the owner, the user group, and all other users. The protection code,
which is specified as an octal value argument to the PROTECT (/PR) switch, is
treated as three fields corresponding to owner, user group, and all others. Each

field is assigned an octal digit as illustrated below.

7 6 5 4 3 2 1 a
g —

" ~
Owner User Group All oOthers

Owner: Bit 6 = 1 indicates that the Owner of the file cannot write on or
delete the file. This is a safequard to prevent inad-
vertent deletion or overwriting.

Bit 7 (not used)

User Group and All Others:

PROTECTION CODE OPERATION
(octal value) DELETE WRITE READ or RUN
] yes yes yes
1 . no yes yes
2 or 3 no no* Yes
4,5,6, or 7 no no no

3-14

Yes indicates that the operation is allowed; No indicates that the operation is

not allowed.
Examples Illustrating Protection Codes:

Protection Code Description

233 Allows any access by the owner; the user group and all
others may read or run but not delete or write on the
file. This is the default code provided by the system.

377 i Allows the owner to read or run but not delete or write
on the file. Néither the user group nor.anyone else
may have access to the file.

213 Allows the owner to delete, write, read or run. The
) user group can only write, read or run. Anyone else
may read or run but not delete or write on the file.

2.5 FILENAMES AND FILENAME EXTENSIONS

User program files are named with a certain convention, much the same as a person-
is named. For example, the first name is the filename and the second name is the
filename extension, By convention, the filename and extension are separated by a

period. For example:
FILNAM.EXT

could be a legal filename and extension. Note that the filename and extension
cannot have embedded blanks (spaces) because a space will be interpreted as a

delimiter.

Filenames cén consist of from one to six alphanumerics; all characters after the
sixth are ignored. However, the first character must be alphabetic. The filename
extension can consist of from one to three alphanumerics. The extension is
generally used to indicate the type of information in the file. For example:

,

File - Could be:
MAIN.FTN | a FORTRAN file named MAIN
» SAMPLE.MAC A Macr§ source file named SAMPLE
TEST1.TMP a temporary file named TEST1
NAME .OBJ a relocatable binary file named NAME

The list of standard extensions used by the DOS/BATCH system are shown in Appendix E.

3-15

User program files are identified by their filename.extension and the UIC. Thus,
different users may use the same filename.extension, and as long as they are

created under different UIC's the files would remain distinct and separate.

The asterisk (*) character can be used in a command string to replace either the
filename or filename extension specification. The asterisk can be read as "all
files" with the filename or filename extension indicated. For example:

* _TMP indicates all files with the extension .TMP

FILE.* indicates all files with the name FILE

The asterisk can appear in both positions:

which denotes all files on the specified device belonging to the user identification

code specified (or the current user UIC if no UIC is specified).

The asterisk feature can generally be used in all transfer operations, all directory
listing operations, deletion operations, protection operations and rename operations.

See Part 12 for exceptions.

2.6 SPECIAL KEYBOARD CHARACTERS

There are several special keyboard characters recognized by the Monitor command
string scanner that cause specific functions to be performed. These keyboard

characters are explained below.

2.6.1 The RETURN Key

The RETURN key is used to terminate a keyboard command and to advance the terminal
paper one line. Typing the RETURN'key produces a carriage return and line feed

action on the terminal.

As characters are typed, they are transferred into a buffer where they are stored
until the RETURN key or another special keyboard character is typed. When the
RETURN key is typed, the data on that line is transferred to and processed by the
csI.

All legal command strings are terminated by the RETURN key.

3-16

2.6.2 The RUBOUT Key

The RUBOUT key is used to correct typing errors. Typing the RUBOUT key.causes the
last character typed to be deleted; successive characters may be deleted by re-
peated rubouts. The Monitor prints the deleted characters delimited by backslashes.
For example, if the user meant to type ASSIGN But typed ASIS instead, the error could
be corrected by typing two rubouts and then the correct characters. The printout
would be: '

v

ASIS\SI\SIGN

Notice that the deleted characters are shown in the order in which they are deleted.

2.6.3 The CTRL/C Keys

The CTRL/C key combination is typed by holding down the CTRL key while typing the
C key. When CTRL/C is typed, the Monitor is alerted to accept a command from the
keyboard. CTRL/C is echoed on the teleprinter as 4C, carriage return, line feed,

and period.

CTRL/C ihterrupts terminal output or keyboard input in a user program. Monitor
action on a CTRL/C is not taken until any current Monitor command is completed

because the keyboard interrupt is turned off.
CTRL/C puts the Monitor in listening mode only. If it is desirable to stop the
function of the operating program, the STOP command should be used.

If a second CTRL/C is typed before the RETURN key which terminates the command is
pressed, the input entered on the current line is erased, a fresh 4C is printed, and
the Monitor awaits a new command. The second CTRL/C merely deletes the line (similar
to a CTRL/U); it does not kill the program.

2.6.4 The CTRL/U Keys

The CTRL/U key. combination is typed by holding down the CTRL key while typing the
U key. The combination CTRL/U may be used for either of the following purposes:

1. To cancel a line of input before it is sent. 1In this case, CTRL/U is
echoed on the terminal as +U, carriage return, and line feed.

2. To suppress printing of output at the terminal (except that generated
by a batch stream). 1In this case, CTRL/U is not echoed. ‘

When CTRL/U is typed, the line on which it is typed is deleted; the system responds

with a carriage return and line feed so that the line (command) may be typed again.

CTRL/U is echoed on the terminal as MU, carriage return, and line feed.

3-17

2.6.5 The Semicolon Key

When in Monitor mode (i.e., following a CTRL/C), the semicolon (;) key causes
subsequent characters on the line to be treated as a comment. It effectively puts’
the keyboard off-line so that all characters following the semicolon are printed

on the teleprinter but no Monitor action is taken.

2.6.6 The ESCAPE Key

' The ESCAPE key (ASCII @33 octal) may be used to pass special keyboard characters to
a running user program. When the CSI detects the ESC key it passes the next char-
acter directly to the user program. The use of this feature is under programmer

control.

. 2.6.7 How Keyboard Characters are Ptocessed

As characters are typed they are stored in the keyboard buffer (about 85 characters
capacity) pending termination_pf the line with a RETURN, CTRL/C, or CTRL/U, which

transfers the line of characters to the Monitor buffer,

When a RUBOUT is processed, it remains in the keyboard buffer and the character
which it deletes is replaced with another RUBOUT. Since RUBOUTs are not removed
until the line is transferred to the user, the capacity of the keyboard buffer may
be exceeded if the sum of normal characters plus RUBOUTs is greater than 85. When
this occurs, only CTRL/U is accepted; all other characters are discarded and not
echoed. This is done to maintain economy of core and to ensure that characters
such as CTRL/C and CTRL/U can be processed correctly, even when they appear at the

end of a very long line.

2.7 GETTING ON THE SYSTEM

In order to gain access to the system, the user musf log in with the LOGIN command
(see Section 3-2.8.11). First, ensure that the terminal is connected to the system
{see Appendix H). The LOGIN command is issued in response to the Monitor's $. If
none exist on the terminal paper, type the RETURN key and a $ will be printed by
the Monitor; if not, a new Monitor must be loaded as described in the DOS/BATCH

System Manager's Guide.

In response to $, the user should issue the LOGIN command with his User Identifica-

tion Code (UIC) (see Section 3-2.4). For example:

$LOGIN 208,208
DATE : -2¢-OCT-72
TIME:-18:41:16
$

-

3-18

In response to the LOGIN command, the Monitor prints the current calendar date and
time-of-day followed by the §, indicating that the system is ready for a Monitor

command from the user.

Only one user can be logged in at a time. The LOGIN command will be rejected when

it is given before the previous user has logged out with the FINISH command.

2.8 MONITOR KEYBOARD COMMANDS'

A keyboard command to the Monitor consists of two parts: a command name and
possibly one or more command arguments. A command name is a string of two or more
letters; all letters after the first two and up to a command name delimiter (space

or -comma) are opticnal and are ignored.

Monitor keyboard commands are typed in response to a dollar sign ($) or a period
(.), which is printed by the system. Generally speaking, the $ indicates that
the Monitor is waiting for a new task, and the . indicates that the Monitor is

waiting to continue or abort a previously assumed task.

Although the commands are arranged in alphabetical order for ease of reference,
they can be divided into functional groups for ease of learning. These groups with

their associated commands are as follows:

® Command to allocate system resources:
ASSIGN . ,
° Commands to manipulate core images:
RUN GET
DUMP SAVE
[Commands to start a program:
BEGIN CONTINUE
RESTART
° Commands to stop a program:
STOP WAIT
KILL
° Commands to exchange information with the system:
' DATE TIME
LOGIN MODIFY
FINISH
® Miscellaneous commands:
ECHO " PRINT
END oDT

The following éonventions apply to all Monitor commands:

- 1. All commands are terminated with the RETURN key.

2. The command name is separated from its argument (dataset specifier, etc.)
by one or more spaces.

3. All characters in a command are interpreted by the CSI; thus, no embedded
blanks are allowed.

4. The UIC is always enclosed within square brackets, [], except when used
with the LOGIN command.

The préper format for each command is given in the discussion of each command in
this section. The following conventions apply to the command formats shown in this

section.

The dataset specifier may be represented by the expression:

[dev:] filnam [.ext] [[uic]]

where
dev: is a legal device mnemonic and colon (see Appendix C).
filnam is a filename of up to six alphanumerics.
.ext is a period and filename extension of up to three alphanumerics.
uic is the user's identification code in the form:

[group number, user number]

The brackets are part of the UIC and keyed as part of it.

The logical name is the name given by the user to the dataset in Link Block word
LNKBLK+2 (see Chapter 3-3).

If for any reason a command cannot be executed satisfactorily, an appropriate message
will be printed on the terminal and the command will be ignored. These messages

are shown in Appendix K,
ASSIGN:2.8.1 The ASSIGN Command
Format:

AS[SIGN]A[dataset specifier, logical namel

Purpose:

~

This command assigns a physical device (and a filename when the device is file-
structured) to the dataset identified by "logical name". If a dataset specifier

\
is included in the ASSIGN command, a logical name must be specified also.
Any filename specified for a non-file-structured device is ignored.

Note that a device is assigned‘to a dataset, and that reassigning it for one dataset

does not reassign it for all datasets.

The ASSIGN command overrides any assignment made in the program's internal control
blocks (Link and Filename Blocks). The ASSIGN command is not needed if the program
makes its own provisions for obtaining this information; e.g., by specifying
defaults in its control blocks or by requesting a command string, as is done with
the # symbol in the DOS/BATCH system programs.

An ASSIGN with no argument cancels all ASSIGNments previously made by the current

-

user, i.e., since the last LOGIN command.

The ASSIGN command can be given at any time the Monitor is in core. Consider the

following:

1. If ASSIGN is given beforé a program is loaded, the device assignment will
remain in effect until another ASSIGN is given with the same logical name
or with no arguments, or until the Monitor itself is reloaded (as with a
FINISH command or hardware reboot). ASSIGN, given at this time, enables
the user to specify an assignment which will apply to several programs. .

2. If ASSIGN is given after a program is loaded and before it has started
running (i.e., after a GET command), the assignment will remain in effect
as long as the program is in core, or until another ASSIGNment is per-
formed. When the program disappears (by an .EXIT request or a KILL
command) , the assignment is released.

3. ASSIGN may also be given after a program is running. For example, as a
recovery from an

AQ@3 (illegal or nonexistent device code)

message, the user would do an ASSIGN followed by a CONTINUE. The assign-
ment will remain in effect as long as the program is in core, or until
the programmer reassigns the dataset, or until he restarts the program
with a BEGIN command. ’
Doing an ASSIGN in this manner is provided for such emergency situations,
but is not recommended as standard practice because it causes an extra
buffer to be allocated from free core, and it will be effective only if
the program has not already INITed the Jataset to some other device.

BEGIN

Examples:

As DT#:,3

ASSIGN DK@:INPUT.DAT[1,5],INFIL
AS SY:OUTPUT.DAT[14,123],0UTFIL
ASSIGN

2.8.2 The BEGIN Command

-

Format:
’ BE[GIN]A[address]

Purpose:

The BEGIN command starts the execution of an already loaded program at the stated
address. If no address is specified, the normal start address will be used. This

command is valid only if a program is already in core.

BEGIN is used after a GET, a STOP, or following a fatal error condition. It
removes all core allocations of buffers, device drivers, and assignments made
dynamically, and the stack is cleared before control is passed back to the program.

If any files are under creation at this time, they are deleted.
To start a program at its normal start address, type:

BE
To start a program at absolute address 3446, type:

BEA3446

After a Program Crash:

The BEGIN Command is provided not only as a means of starting a program loaded by
GET but also to enable the user to try again after a program crash, hopefully with
a clean slate. At the time of the crash, the program may already have opened but
not closed output files and the subsequent request to reopen after a restart could
then lead to other failures because these files now exist. To prevent this, the
BEGIN processor tries to delete the files, but not by the normal Monitor process
since this could mean writing out bit-maps which are currently in core and must be
suspect because of the crash. Instead, it merely removes the names of the files
from the appropriate device directaxry, and if these are on disk, unlinks any
blocks so far allocated; for safety it does not touch the bit-maps already stored
on the device. In almost all cases, this procedure suffices. However, the

following implications should be noted.

Format:

Purpose:

interrupted.

Forma%:

Purpose:

This automatic deletion by BEGIN will not suit a user who has already
amassed considerable data in one of his output files and cannot replace
it if he starts over. 1In this case, KILLing ‘the program to save his
data under a different filename might be a more appropriate action.
However, the user should then realize that further errors may occur from
the use of this data.

It is .possible that by the time of the crash the program may have produced
a fairly long file. On a DECtape for which there is only one bit-map,
this is no problem. A disk, however, requires several bit-maps and the
allocation of some of the blocks for the file may already be permanently
recorded because the appropriate bit-map has been filled and has been
replaced in core by another. Since BEGIN does not change the maps, these
blocks will not be released for further use. Facilities for recovering
this space are provided by the system program VERIFY. A series of
situations such as this can, after a tlme, result in the disk becoming
full even though the known files are not seen to occupy the whole capacity.
The user should in this case consider whether or not he should chance
disk-corruption and use KILL rather than BEGIN. The user can- then delete
the file by using PIP to avoid the build-up of the nonavailable blocks
described.

Some programs cannot be restarted with BEGIN (i.e., after having been
started, they cannot be restarted with BEGIN). A FORTRAN program is an
example. In general, a program must be self-initialized if BEGIN is to
be used in this way. Also, since the Monitor will try to clean up core
and delete files, reBEGINing a program which was badly out of control may
lead to undesirable results. Thus, use BEGIN only if there is no other
alternative.

2.8.3 The CONTINUE Command CONTINUE

CO [NTINUE]

This command is used after a WAIT command or a recoverable erxror condition

(operator action message) to resume program operation at the point where it was

CONTINUE is valid only if a program is already in core.

2.8.4 The DATE Command DATE

DA[TE] A[date]

The DATE command may be used to obtain the current calendar data and to enter a date
\

value from the keyboard; the data is printed in the dd-mmm-yy format.

3-23

To obtain the cufrent calendar date, simply type the DATE command followed by the
RETURN key. For éxample: '

$DATE
28-FEB-74
$

To enter a date value from the keyboard, type the DATE command, the desired date
value, and then the RETURN key. For example:

$DATEAdd-mmm-yy

putting the desired date value in place of dd~mmm-yy. The entered date value is
returned in response to subsequent DATE commands until another date is given. Any

invalid date is rejected.

DATE is valid at any time.

DUMP 2.8.5 The DUMP Command

Format:

DU[MP]{A}LP: [[,01 [,{“artgaddr} [,end addrﬂ]

Purpose:

The DUMP command is used to print on the line printer an absolute copy of the
contents of the specified core area, formatted in octal. The core image is not.

altered.

The argument O specifies the dump to be output from core. An O is assumed on

default, but the comma is required.

The argument @ is assumed if no "start address" is specified and the highgst word

in core is assumed if no "end address" is specified.

DUMP is valid at any time. If given while a program is running, the operation of

the program will be suspended for the time required tobeffect the dump.

The syntax of the DUMP command was chosen to facilitate later expansion and

flexibility of the command.

3-24

2.8..6 The ECHO Command : , ECHO
Format:

EC[HO]
Purpose:

The ECHO command may be used to suppress and restore keyboard echo, i.e., characters
typed by the user will not appear on the terminal printer. A subsequent ECHO command
turns the echo feature on again. The terminal as an output device for the program

or the Monitor is not affected by this command.

ECHO is valid only when a program is running in core and using the keyboard as an

input device.

2.8.7 Thg END Command i END

xa)
EN[D]A{PT}

The END command is used to terminate the use of the keyboard or low-speed paper tape

Format:

Purpose:

reader as an.input device. The command tells the Monitor "there is no more input
from the device". The command effectively generates an end-of-file (EOF) from the

keyboard.
When no device is specified in the command, KB is assumed.
The following actions are required with this command

1. Type CTRL/C to obtain the Monitor's attention. Since the console is
being used for program input (data mode), the Monitor is not expecting
‘a command. :

S 2. Issue the END command (with appropriate argument).

3. Type the RETURN key twice. Two RETURNs are required to return to the
Monitor.

For example: (where #C = CTRL/C, and (CR) = RETURN)

+c
-END KB (CR) (CR)

END is valid only when the specified device is being used as an input device.

3-25

FINISH :2.8.8 The FinIsH command
Format:
FI[NISH)
Purpose:

‘The FINISH command informs the Monitor that the current user is leaving the system

and a new copy of the resident Monitor is "booted" into core.

FINISH is valid only when no user program is in core. Therefore, unless the last
character on the teleprinter is a $, the user should precede a FINISH with CTRL/C
followed by KILL. For example, the printout might be!

ic

.KILL

SFINISH
TIME:-16:42:80
DOS/BATCH V@9-xx
$

In response to a FINISH, the Monitor prints the time and then the newly booted

Monitor identifies itself. The system is now ready for a user to log in.

GET 2.8.2 The GET Command
Format:
GE[T]Adataset specifier

Purgose H

The GET command loads the specified file from the specified device. When a device

is not specified, the system device is assumed.
GET is valid only when no program is in core.

The user should use a BEGIN or ODT command to commence execution.

KILL 2.8.10 The KILL Command
Format:

KI[LL]

3-26

Purgose:

The KILL command stops the execution of the current program after closing all open
files and completing any unfinished I/O. it then returns control to the Monitor.

A RESET instruction is performed during the processing of KILL, thus initializing

all 1/0.

KILL is valid only when a program is in core.

" To resume operations, the user must reload the program or load another with RUN
or GET.

2.8.11 The LOGIN Command . LOGIN
Format:

LO[GIN]Auic
Purpose:

The LOGIN command enables a user to gain access to the system. LOGIN'requires a
UIC as its argument (see Section 3-2.4). The UIC indicates which of the direc-

tories on each file—stfucturgd device will be directly available to the user.

Here the UIC is gég enclosed within the squgré bracketé; its fofmat is simply
nnn,nnn

specifying group number aﬁd user number respectively.

"LOGIN is valid only when there is no program loaded in core and provided no user

is logged in.

2.8.12 The MODIFY Command MODIFY
Format:

MO[DIFY]Aoctal address

. octal address/contents: [new contents)

Pur@se H

This command allows the user to display and make changes to the contents of the
absolute memory location specified by "octal address" in the command line. When

the RETURN key is typed at the end of the command line, the syétem responds byA

oDT

printing the contents of that address. At this point, the user can type one of the

following ((CR) = RETURN key; (LF) = LINE FEED key):

{CR) leaves the contents unmodified.
new contents (CR) changes contents to new contents.
(LF) takes similar action as CR and then prints the contents

of the next memory location.

new contents (LF) changes the contents to the new contents and prints the
contents of the next memory location.

For example, to change the contents of location 4g@@g:

$MODIFYA4@P@R (CR)

Ap00p/P16406: 18406 (CR)

Then to examine the contents of 4gggd:

§§0A4¢¢¢¢ (CR)
ApPER/PLgAge (CR)

To examine the contents of locations 4@@@@ and 4@@@2, the sequence would be:

$MOA4PEEP (CR)
4pp0/104p60 : (LF)

40002/000003

Entry of an address outside the available core memory as part of the original

MODIFY command will cause an error, and the command will be rejected.

MODIFY is valid at any time.

2.8.13 The ODT Command

o]

The ODT command starts the execution of the ODT-1lR Debugging Program. The argument

Format:

Purpose:

specifies which ODT start address is to be used:

_ Argument Starts at Action

(none) START+@ ~ _Clears ODT breakpoint table without resetting
‘ v breakpoints.
R START+2 Clears ODT breakpoint table after replacing

old instructions at breakpoints.

K START+4 Leaves breakpoints exactly as they are.

This command begins execution at the ODT entry point of the user's load module.
The user must have linked ODT-11R with his program and must have identified his

program to the Linker with the /OD switch.

To reset all breakpoint locations at their former instructions and restart ODT, the

user would type:
$ODAR

ODT is valid only when ODT-1lR is linked to a program and both are in core. The

program may or may not be running.

2.8.14 The PRINT ‘Command | PRINT
Format: ‘

PR[INT]
Purpose:

The PRINT command may be used to suppress and restore terminal printing when the
terminal is used as an output device by a user program. Each PRINT command cancels

the effect of the previous PRINT command.

PRINT is valid only when a program is running in core and is using the terminal as

an output device.

2.8.15 The RESTART Command RESTART
Format: | | |

RE[START] Aladdress]
Purpose:

The RESTART command permits a program to be restarted. As shown, the user may

optionally supply an address at which the program is to be restarted. If no

3-29

RUN

address is specified, the address set by the .RSTART programmed request is assumed

if a .RSTRT request has been issued by the program (see Section 3-3.6.32).

If neither address is specified, the command is rejected.

" RESTART is valid only when a program is already in core.

Before the program is restarted, the stack is cleared, any current I/O is stopped,
and all internal busy states are removed. Buffers and device drivers set up for

I/0 operations will, however, remain linked to the program for future use.

2.8.16 The RUN Command
Format:

RU[N]Adataset specifier

PUEEOSG H

The RUN command loads into core the specified program from the specified device
and starts its execution at the normal start address. RUN is equivalent to a GET

command followed by a BEGIN command.

When no device is specified in the dataset specifier, the system device (disk)

is assumed.

The séquence in which the Monitor performs its search for the specified program
depends on the existence and type of filename extension and on the UIC. Various
forms of the RUN command are shown below with the search sequence performed by the
Monitor.
[} RUNAFILE
Attempt 1 -- FILE.LDA [current uic]
Attempt 2 -- FILE.LDA [1,1]
Attempt 3 -~ FILE [current uic]
Attempt 4 -~ FILE [1,1]
[RUNAFILE.EXT

Attempt 1
Attempt 2

- FILE.EXT [current uic]
- FILE.EXT [1,1]

° RUNAFILE {nnn,nnn)

Attempt 1 -- FILE.LDA [nnn,nnn]
Attempt 2 ~- FILE [nnn,nnn]

® RUNAFILE.EXT[nnn,nnn]

Attempt 1 -- FILE.EXT [nnn,nnn]

3-30

If all attempts fail to find the file, a NO FILE message is printed at the terminal.

Searching for the LDA extension first exploits the fact that both the Linker and

the SAVE command produce LDA extensions, unless the user specifies otherwise.

RUN is valid only when there is no program in core.

2.8.17 The R System Program Command R SYSTEM
Format:
RA [dev:]filename

Purpose:

The R System Program command loads into core the specified system program from
device SY: and starts execution at the normal start address. R is equivalent to
the RU command with the dataset specification for the program in UIC [1,1] and an
extension of .LDA. Attempts to specify either UIC or extension causes the command

to be rejected.

The advantage of R is that it saves the time required to search for the program in
the user's program directory. The search starts in the system program directory.

.

2.8.18 The SAVE Command SAVE
Format:

SA[VE]A[dataset specifier][/RA:low:high]

Purpose:

The SAVE command writes the program in core onto the device in loader format. The
core image is not altered. SAVE is valid only when a program is in core but not
running, i.e., immediately after loading with a GET command or after being halted

by either a STOP command or a fatal error.

If no dataset specifier is given, the SAVE processor will automatically set up a
file called SAVE.LDA on the system disk after it has deleted any current file of
the same name. If the user wishes to retain the current file, he must first rename
it using PIP. 1If the dataset specifier is given, the file named must not already,
exist or the command will be rejected. The system disk is assumed by default if
the dataset specifier contains only a filename. When the filename is specified,

the extension should also be specified.

¢

3-31

STOP

Normally it is expected that the user will only wish to save his program area. If
this is the case, the range need not be given and the new file will begin from the
program's low limit and extend to the top of core. If any other area is to be

saved, the user should include the following at the end of the command:
/RA:low:high

where /RA is the range switch, and low and high define the limits required (each
being valid octal word-bound addresses). The saved image will be preceded by the
same communication information as that for the original program loaded, except

that any information about the residgent EMT modules will be lost.

The SAVE processor will endeavor to get an extra 256-word buffer in order to
satisfy the command. If this request cannot be granted because of insufficient
free core, the command will be rejected. The user is therefore advised to use this

facility only after he has released any datasets currently established.

Once the SAVE command has been syntactically verified, any errors will be handled
by the SAVE processor, which will print a relevant message and return to Monitor

mode:

DEVICE FULL End of output medium reached

FILE ERROR xxX File structures error as indicated by xxx = file
status byte

NOTE

Overlayed programs cannot be saved.

2.8.19 The STOP Command

Format:

ST[OP]

Purpose:

This is an emergency command to stop the program and to abort any I/0 in progress
by doing a hardware reset. The program may be resumed with either the BEGIN or
RESTART command.

STOP is valid only if a program is in core.

STOP differs from KILL in that KILL terminates the program in an orderly manner

and returns control to the Monitor.

2.8,20 The TIME Command . : TIME
Format:

TI[ME]A[time]

-

Purgose :

The TIME command may be used to obtain the current time-of-day and to enter a time

value from the keyboard. The time is printed in the following format:
hh:mm:ss
meaning hours:minutes:seconds.

To obtain the current time-of-day, simply type the TIME command followed by the
RETURN key. "For example: /

$TIME
19:43:27
$) :

The current time-of-day is entered by the system or installation manager, and need

not be reentered except when loading a new DOS/BATCH Monitor.

To enter a time value from the keyboard, type the TIME command, the desired time -

valﬁe, and then the RETURN key. For example:
$TIMEAhh:mm:ss

putting the desired time value in place of hh:mm:ss. The entered time value is
returned in response to subsequent TIME commands until another time value is

given.

TIME is valid at any time.

2.8.21 The WAIT Command . WAIT
Format:

WA[IT]
Purpose:

The WAIT command suspends the current prbgram and allows any I/O in progress to

finish. The program may be resumed with either the CONTINUE or RESTART command.

WAIT is valid only if a program is in core.

3-33

PART 3
CHAPTER 3
PROGRAMMED REQUESTS

3.1 INTRODUCTION

The Monitor provides a number of services available to any user or system program.
The most prominent of these are input/output.(I/O) services. Other services include
directory management, retrieval and modification of system parameters, various con-
version routines, and a command string interpreter. The I/0 services provide for
linkage to device drivers, access to files in the file structure, and transfer of

data to or from each device.

The user program calls for the services of the Monitor through programmed requests.
Programmed requests are macro calls (or the assembly language expansion of such a
call) which are assembled into the user program and interpreted by the Monitor at
execution time. A programmed request consists of a macro call followed, when

appropriate, by one or more arguments. For example:
WAIT #LNKBLK

is a programmed request called .WAIT followed by an argument #LNKBLK. The macro
request is expanded at assembly time by the MACRO Assembler into a sequence of
instructions that passes the afguments to the appropriate Monitor service routine
to carry out the specified function, then calls the appropriate Monitor service
routine (via an EMT instruction). The assembly language expansion for .WAIT
#LNKBLK is:

MOV #LNKBLK,-(SP)
EMT 1

To use the macro call, it is necessary to tell the assembler that the system
definition for the macro is needed. This is accomplished via the .MCALL assembler

directive (see Part 6), e.g.,
.MCALL WAIT

which must appear in the source prior to the first use of .WAIT. When .MCALL is
encountered, the MACRO Assembler will get the definition of .WAIT from the system
macro file (SYSMAC.SML) which is searched first in the current user's disk

area, then under user identification code [1,1].

The syé%em macros accept most addressing modes as arguments. They will detect

and announce potentially troublesome or unlikely modes to protect the user.

¥

All legal addressing modes will appear without alteration in the expansion. Since
the Monitor expects the address of the Link Block on top of the stack at .WAIT

time, any of the follqwing macro calls might be appropriate:

.WAIT #LNKBLK ;ADDRESS OF LNKBLK
JWAIT RE © ;IS IN REGISTER g
;ADDRESS OF INKBLK IS

.WAIT POINTR ;IN MEMORY LOCATION POINTR

The programmed request arguments are parameters or addresses of tables which contain
the parameters of the request. These tables are part of the user program, and are

described in detail in Figﬁres 3-7 to 3-18.

3.2 TYPES OF PROGRAMMED REQUESTS

Services which the Monitor makes available to the user through programmed requests
can be classified into three groups:

1. Requests for input/output and related services,

2. Requests for directory management services, and

3. Requests for miscellaneous services.

Table 3-4 summarizes the programmed requests available under the Monitor. Detailed

descriptions of each request can be found in the sections cited in Table 3-4.

Table 3-4
. Summary of Programmed Requests

IMnemonic Purpose Section

Requests for Input/Output and Related Services:

-BLOCK Transfers one physical block of a file between a device and 3.6.5
a Monitor buffer.

.CLOSE | Closes a dataset. _— ’ 3.6.6

INIT Associates a dataset with a device driver and sets up the 3.6.21
initial linkage.

.OPEN Opens a dataset. 3.6.25

.READ Transfers data from a device to a user's line buffer. 3.6.28
-RECRD Transfers one logical record of a file between a device 3.6.29

and a user buffer.

.RLSE Removes the linkage between a device driver and a dataset, 3.6.31
and releases the driver. :

.SPEC Performs special device functions. 3.6.34

(continued on next page)

3-35

Table 3-4 (cont.)
Summary of Programmed Requests

Mnemonic Purpose ‘Section
.STAT Obtains device characteristics. 3.6.35

. TRAN Transfers data between a device and a user buffer, 3.6.41
independent of any file structure. i

.WAIT Waits for completion of any action on a dataset. 3.6.43

.WAITR Checks for completion of any action on a dataset, and 3.6.44
provides a transfer address for a busy return.

.WRITE Transfers data from a user's line buffer to a device. 3.6.45

Requests for Directory Management Services:

-ALLOC Allocates a contiguous file. 3.6.1
.APPND Appends one linked file to another. 3.6.2
.DELET Deletes a file. ” 3.6.11
.LOOK Searches the directory for a particular filename and 3.6.22

returns information about the file.
.RENAM Renames a file. Changes a protection code. 3.6.30

Requests for Miscellaneous Services:

.BIN2D Converts one binary word into five decimal ASCII characters. 3.6f3
.BIN20 Converts one binary word into six octal ASCII characters. 3.6.4
.CORE Obtains address of higﬁest word in core memory. 3.6.7
.CSI1 Condenses a command string and checks for proper syntax. 3.6.8.1
.CSI2 Interprets one command string dataset specification. 3.6.8.2
.CVTDT Converts internal date or time to ASCII. | 3.6.9
.DATE Obtains the date.) 3.6.10
.DUMP ‘ Dumps contents of memory for specified locations. 3.6.46
-+ D2BIN Converts five decimal ASCII characters into one binary 3.6.12
word. .
.EXIT Returns control to the Monitor. 3.6.13
.FLUSH Bypasses lines in the batch stream.] 3.6.47
.GTCIL Gets the base disk address of the CIL. : \ 3.6.14
.GTCLK Obtains system clock information. - 3.6.15
.GTOVF Obtains and sets the overlay flag. 3.6.16

(continued on next page)

Table 3-4 (cont.)
Summary of Programmed Requests

Mnemonic Purpose Section
.GTPLA Gets thé current program load address. 3.6.17
.GTRDV Obtains RUN device information. 3.6.18
.GTSTK Gets the current stack base address. 3.6.19
.GTUIC Gets current UIC. 3.6.20
-MONF Obtains address of first word above the Monitor's highest 3.6.23

allocated free core buffer.
.MONR Obtains address of first word above the resident Monitor. 3.6.24
.02BIN Converts six octal ASCII characters into one binary word. - 3.6.26
.RADPK facks three ASCII characters into one Radix-5@ word. 3.6427.1
.ﬁADUP Unpacks one Radix-5@ word into three ASCII characters; 3.6.27.2
-RSTRT Sets the address used by the RESTART command. 3.6.32
. RUN Léads programs and overlays. 3.6.33
.STFPU Sets the floating point exception vector. 3.6.36
.STPLA Sets the program low address. ' 3.6.37
.STSTK Sets the current stack base address. 3.6.38 "
.SYSDV Gets Radix~-5@ name of the system device. 3.6.39
.TIME Obtains the time of da&. 3.6.40
.TRAP Sets interrupt vector for the TRAP instruction. 3.6.42

3.2.1 Requests for Input/Output and Related Services

All user I/0 is handled by programmed requests, which provide three different

levels of transfer:

READ or WRITE
RECORD or BLOCK
TRAN

The term, request level, refers to the division of work and responsibility between

the Monitor and the user.
intermediate level, and TRAN is the lowest level.
Monitor assumes most of the responéibility and provides the user with many

At the RECORD/BLOCK level, the work is more evenly shared, and at the

services.

READ/WRITE is the highest level, RECORD/BLOCK is the
At the READ/WRITE level, the

TRAN level, the user assumes most of the responsibility and does most of the work.

3~-37

Disk I/0 handling provides a good example of the function of the three levels.

At the READ/WRITE level, the user specifies a block size that is appropriate for
the input or output device. The Monitor accumulates read or write requests until
the correct block size is reached; then, the physical transfer of data is made.
The READ/WRITE level provides extensive formatting, legality checking, and error
reporting facilities. Although a small.amount of flexibility is lost, the user

gains assurance that data on the disk is not going to be harmed.

»

At the TRAN level, the user canspecify any disk location, core location, and the num-
ber of words to include in the data transfer. The Monitor does not check the legality
of the instruction, except for an invalid address, and does no formatting. If the user

issues an incorrect instruction, he may lose data on the disk or corrupt the file structure.

The RECORD/BLOCK requests are at an intermediate level and provide some of the
advantages of the lower and higher levels.

Each level uses a sequence of requests to complete the transfer. Note the dis-

tinction between READ/WRITE, RECORD/BLOCK, and TRAN as names of transfer levels,

and .READ, .WRITE, .RECRD, .BLOCK, and .TRAN as specific programmed requests

within these levels.

I/0 related services perform special device functions (such as rewinding a magtape)

and obtain device characteristics from device status words.
L J

Each request related to I/0 services is described in Section 3-3.6.

3.2.1.1 READ or WRITE Level Requests

Most input and output is done at this level. Processing is sequential, in that
each read or write is applied to the next record in the file. Records may be in
either ASCII or binary mode, and a number of formats are handled by the Monitor.
Records may also be of variable length: ASCII records usually contain line

terminators while formatted binary records contain byte counts.

READ or WRITE I/0 under the Monitor consists of transferring the contents of a
dataset between a device and a line buffer via a buffer in the Monitor (see
Figure 3-2a). A line buffer is an area set up by the user in his program, into

which the user (or the Monitor) places data for output (or input). The line buffer

'is usually preceded by the line buffer header, in which the user specifies the size

and location of the line buffer and the mode (format) of the data.

USER PROGRAM

USER'S LINE .WRITE MONITOR
- BUFFERS : BUFFER

.READ T
MONITOR BUFFER |« DEVICE

Figure 3-2a
The Transfer Path

LINIT #LNKBLK

MOV #FILBLK,RZ
, ;FOR OUTPUT, REPLACE .OPENI
.OPENI #LNKBLK , R@ ; WITH .OPENO
;ADDRESS OF FILBLK IS IN R@

—P» . READ #LNKBLK , #BUFHDR ;FOR OUTPUT, REPLACE .READ
. ; WITH .WRITE
WAIT #LNKBLK ;COULD BE REPLACED BY .WAITR

(Process Data)

“

END
OF DATA
?

No

.CLOSE #LNKBLK

RLSE #LNKBLK
'LNKBLK : ' (gntrieé)
FILBLK: (entries) - ~ Tables in User's Program
BUFHDR: : (entries)

Figure 3~2b
Sequence of Requests for READ/WRITE

Figure 3~2 v
«READ/ .WRITE Input/Output Transfers

3-39

When using READ or WRITE one can specify nine different types of transfer, in two

modes: ASCII and Binary. Details are presented in Section 3-4.3.1 and Figure 3-10.

ASCII Modes: Formatted ASCII Parity - Special
Formatted ASCII Parity - Normal
Formatted ASCII Nonparity - Special
Formatted ASCII Nonparity - Normal
Unformatted ASCII Parity - Normal
Unformatted ASCII Nonparity - Normal

Binary modes: Formatted Binary - Special
' Formatted Binary - Normal

Unformatted Binary -~ Normal

To implement a READ or WRITE transfer, the programmer follows the sequence of
requests shown in Figure 3-2b. First, the programmer associates the device with
the dataset via the .INIT reéuest. The arguﬁent of this request is the address of
a table called the Link Block. Entries in this table specify the device involved
in the approaching transfer so that the Monitor may eventually establish a link
between that device and the dataset. The Link Block is described in detail in
Figure 3-7. The .INIT request loads the appropriate device driver into the

Monitor's free core area, if it is not already there.

Following the .INIT request, the programmer opens a dataset with an .OPENX request.
This need be done only if the device being used is a file-structured device.
However, it is advisable to use an .OPENx even for a non-file-structured device to
presérve the device indepéndence of the program, since it may be desirable to assign
the transfer to a file-structured device later. The arguments of this réquest are
the address of the Link Block and a register into whigch the user has moved the
address of a table called the Filename Block (Figure 3-8). Entries in this table

describe the file involved in the transfer.

N

A dataset can be opened for input, for output, for update, or for extension. The

last letter of the .OPENX request specifies which type of open is desired.

A READ (for input) or a .WRITE‘(for output) follows the .OPENx. Either request
causes a transfer to take place between the line buffer and the device via a

buffer allocated by the Monitor in its free core area. The arguments of either
request are the address of the Link Block for the dataset and the address of the
Line Buffer Header (Figure 3-9). The Line Buffer Header specifies the area in the
user's core area to or from which the data is to be transferred. During the
transfer, the quitor formats the data according to the transfer mode and formatting
characters in the data itself. In most modes, terminating characters indicate the

end of a line.

3-40

-READ or .WRITE is followed by .WAIT (or .WAITR), which tests for the completion of the
last transfer, and passes control to the next instruction when the transfer is complete.
Typically, what follows a .WAIT on an input is a subroutine to process the portion
of data just read. When the process has been completed, the program checks to see
if there is more data; if there is, the program transfers‘control back to the .READ
request and the process is repeated. ;f all data has been transferred, the .CLOSE
request(follows to complete any pending action, update any directories affected,
and release to free core any buffer space the Monitor has allocated from free core
for this dataset. Finally, action on the dataset is formally terminated with the
«RLSE request, which dissociates the device from the dataset, and releases the
driver. Releasing the driver frees the core it uses provided there is no other

claim to the driver from another dataset.

3.2.1.2 RECORD Level Requests

The Record Level request is used for random access to the records in a file. A
program which uses Read or Write Level requests can only read or write the next
record in the dataset being processed. When Record Level requests are used, the

program always has access to any record in the file. See Figure 3-3.

Record Level requests may be used only with contiguous files that reside on file-
structured deviées. Each of the records in the file must contain the same number
of bytes. No formatting is done and no line terminating characters are needed.

The length of a record is independent of the block size of the device,

Some consideration must be given to the manner in which a Record Level file is
created. Perhaps the most common way to create such a file is by doing an .OPENC
(after the file has been allocated) and using the .WRITE request to enter data.
Unformatted ASCII and unformatted binary are the suggésted transfer modes, since
they do not require terminators and do not perform formatting, When such a file is
.CLOSEd, a logical end~of-file is established following the last record written.
Subseqﬁent processing of the file by .READ or .RECRD will be confined to the area
just written. At some later time, the file may be opened for extension (.OPENE)
and more data can be written (.WRITE), provided the original space allocated to the
file is sufficient to contain it. A second way to create a Record Level file is to
start with .OPENU (again the file musf have been allocated previously) and to use
+RECRD to do the writing. In this mode, the logical end-of-file corresponds to

the end of the allocated area.

Before issuing Record Level requests, the program must issue an .INIT request to
associate the dataset with a file-structured device. The program is then required

to open the dataset. The dataset may be opened in two ways:

USER PROGRAM

.RECRD output

USER BUFFER .RECRD input
DEVICE
Figure 3-3a
The Transfer Path
<INIT #LNKBLK ;INIT THE DATASET
MOV #FILBLK,R1
.OPENU #LNKBLK,R1 ;OPEN THE FILE
Request next ————gp .RECRD #LNKBLK , #RECBLK ;INPUT THE RECORD
record for JWAIT #LNKBLK

update if
more

+.RECRD
JWAIT

No

.CLOSE
.RLSE

(Process Data)

#LNKBLK, #RECBLK
#LNKBLK

#LNKBLK
#LNKBLK

Tables in User Program

Figure 3-3b

;OUTPUT THE RECORD

;CLOSE THE FILE
;RELEASE THE DATASET

Sequencde of Requests for .RECRD

Figure 3-3

.RECRD Input/Output Transfers

) OPENU - This mode is used if the program will write in the dataset.
vReading is also permitted. 1In fact, quite often the program
will read a record, update it, and write it back.

° OPENI - This mode is used if no writing will be done. Only reading
) will be permitted.

The dataset may then be processed using .RECRD requests. If updating is being
done, there will generally be two such requests in each cycle. Otherwise, there
will be only one. Each .RECRD request should be fbllowed by a .WAIT (or .WAITR)
request. Whén processing is completed, a .CLOSE request.should be issued to ensuré
that the last record is actually written to the device (for output) and that the
directory is updated (if necessary). A .RLSE request is also required, so that
the driver can be removed from core if it is not still in use by another dataset.
The .RECRD request has a Link Block and a Record Block as arguments. The Record
Block specifies fﬁnction (input/output), buffer address, record length, and record
number (see Figure 3-12).

3.2.1.3 BIOCK Level Requests

The Block Level réquest is used for random‘access to the physical.blocks in a file.
The Block Level is similar to the ﬁecord Level. However, at the Block Level, each
request always reads or writes exactly one physical block of data instead of a
user-defined quantity of data, as is true at the Record Level. 1In addition, data
transfer is to and from a buffer provided by the Monitor, rather than a buffer
provided by the user. The user may do his processing in the Monitor buffer or he
may transfer data to his own area. Block Level requests may be ﬁsed only with
file-structured devices (i.e., diék and DECtape, bﬁt not magtape or cassette) and

only with contiguous files.

To implement a BLOCK transfer, the programmer follows the sequence of requests
shown in Pigure 3-4b. Notice that the transfer must use .INIT, .OPEN, .WAIT,
.CLOSE and .RLSE following the “same rules as the RECORD level. The .BLOCK request
has the address of the Link block and the Block block for its arguments.

The BLOCK block specifies the function (INPUT, GET, or OUTPUT), the relative
number of the block being transférred to or from, the Monitor buffer address
(supplied by the Monitor), and the length of the Monitor buffer (supplied by the
Monitor). See Section 3-3.6.5.

3-43

USER PROGRAM *Transfers between the Monitor's buffer and
the user's buffer are optional and must be
done by the user.

POSSIBLE
USER BUFFER

i
A |

.BLOCK OUTPUT
MONITOR BUFFER .l DEVICE)
-t

.BLOCK INPUT

Figure 3-4a
The Transfer Path

JINIT #LNKBLK
MoV #FILBLK,R1
.OPENU #LNKBLK,Rl
—» .BLOCK #LNKBLK, #BLKBLK . ;INPUT DESIRED BLOCK
JWAIT #LNKBLK ;COULD BE REPLACED BY .WAITR
(Process Data) v +UPDATE DATA
.BLOCK #LNKBLK, #BLKBLK iWRITE UPDATED BLOCK
JWAIT #LNKBLK '
Yes MORE
?
No

.CLOSE #LNKBLK

+RLSE #LNKBLK

LNKBLK : (entries)
FILBLK: (entries)
BLKBLK: (entries)

Figure 3-4b
The Sequence of Requests for ,BLOCK

Figure 3-4
.BLOCK Input/Output Transfers

3-44

3.2.1.4 TRAN Level Requests

A TRAN level request is a basic input/output operation. No services are provided
for theruser other than to pass his fequest'to the appropriate driver. The Monitor
request .TRAN does not operate within a paréiculgr file structure as do .READ,
.WRITE, .RECRD, and .BLOCK; hence no .OPEN or .CLOSE is used. Because .TRAN does

not respect file structures, the user is strongly éautioned against using it for

writing on file-structured devices, since he can easily do irreparable damége to
information on such a device. Omitting the dataset logical name from the Link Block

prevents another physical device from being assigned.

Data is transferred directly between the device and a buffer provided by the user

(Figure 3-5a), with no formatting performed.
.TRAN is generally used in 2 situations:

1. When the file structure does not allow the desired operation (e.qg.,
PIP uses .TRAN to read a directory block for the directory listing
operation) . ’

2. When one does not need or cannot afford the overhead of doing READ/WRITE
processing on a non-file-structured device (e.g., a program to read data
arriving at random intervals from an A/D converter might use .TRAN to
read the data and .BLOCK to buffer the data on a disk for processing as
time permits.

To implement a TRAN level 1/0 request, the programmer follows the sequence of
macros shown in Figure 3-5b. Notice that the programmer must use .INIT and .RLSE,
but must not use .OPEN or .CLOSE. The .TRAN request has the address of the TRAN
Control Block (TRNBLK) as its argument. Thisvblock contains entries which specify
the core starting address of the user's buffer, the device block gddress, the

number of words to be transferred, and the function to be performed. .TRAN is

therefore a device dependent request.

v Table 3-5
Transfer Levels for Types of Datasets

Type of Dataset

Type of Linked Contiguous | Non-file-Structured
Transfer File File Device
READ/WRITE Yes Yes Yes

RECORD No Yes No

BLOCK No Yes No

TRAN *) * R Yes

* indicates that TRAN may be used on a file-structured device if the
~warnings mentioned are observed. Usage in these cases is not advised.

-

3-45

USER PROGRAM

.TRAN output

USER BUFFER .TRAN input

DEVICE
Figure 3-5a

The Transfer Path

INIT #LNKBLK : :

—3» . TRAN #LNKBLK, #TRNBLK
.WAIT #LNKBLK ;COULD BE REPLACED BY .WAITR

(Process Data)

i Yes
No
"«RLSE #LNKBLK
LNKBLK: (entries)
Tables and parameters in User Program
TRNBLK: (entries)

Figure 3-5b
Sample Sequence of Requests for .TRAN

Figure 3-5
.TRAN Input/Output Transfers

3-46

3.2.2 Requests for Directory Management Services

Directory management requests are used to enter filenames into directories, search
for files, update filenames, and protect files against deletion. See Table 3-4

for the specific requests.

3.2.3 Requests for Miscellaneous Services
Requests for miscellaneous services include:

1. Requests to Load programs and overlays.

2. Requests to return control from a running program to the Monitor.

7/

3. Requests to set Monitor parameters such as the TRAP vector or a program's
restart address.

4. Requests to obtain Monitor parameters such as the size of the Monitor,
the date, the time, and the current user's UIC.

S. Requests to perform conversions between ASCII and Radix~5@ packed
ASCII, binary and ASCII decimal, and binary and ASCII octal.

6, Requests to access the Command String Interpreter.

7. Requests to dump core.

See Table 3-4 for the list of miscellaneous service requests and their purposes.

3.3 DEVICE INDEPENDENCE

It is generally preferable to write programs so that each dataset may be associated
with the widest possible variety of devices. This makes it easier to move a
program from one configuration to another. It also makes it possible to use the
program with a variety of different media. For éxample, the Assembler accepts

input from disk, paper tape, DECtape, and other devices.

The Monitor makes it relatively easy to achieve this objéctive. Most I/O operations
are completely device independent. No special actions by the user are required

to accommodate the operation to the device. This holds true specifically for

.READ, .WRITE, .OPEN, .CLOSE, .WAIT, .WAITR, .fNIT, and .RLSE. In addition, .RECRD
and .BLOCK require only that the device be file structured. Only .TRAN and .SPEC
are typically device dependent.)

In no case is a device associated with a dataset until an .INIT request is made.

The device name may be specified in any of the following ways:

1. The programmer may specify the name in his Link Block.

¢ 3-47

2. The program can obtain a device name by requesting the user to enter a
command string (Section 3-3.6.8); this will override any device
specified in the Link Block.

3. The user can use the ASSIGN command (see Chapter 3-2) to associate a
device (and file name) with the dataset; this option overrides both
preceding options.

When a command string is requested by the program, it always overrides the link block
specification. However, when ASSIGN is entered at the operator's discretion, it
overrides the Link Block only when its logical dataset name is specified. 1Inthe latter

case, it is best to supply a default physical device name in the Link Block.

Note that the substituted devices must be compatible. For example, the user may
initially specify a BLOCK transfer from disk and later change the assignment to
input from DECtape instead. But, he cannot later specify a paper tape reader as
the input device, since BLOCK level requests are not usable on non-file-structured

devices.

It is important to note that a device is assigned in a program to a dataset logical
name and that reassigning a device at run time for one dataset logical name does
not reassign that device for all dataset logical names to which it was originally

assigned.

The only transfer requests which are not device independent are .TRAN and .SPEC.

3.4 OVERLAYING ROUTINES INTO CORE

Except for a small, permanently-resident portion, the Monitor routines which
process most programmed requests are potentially swappable. They are normally disk
resident and are swapped into core by the Monitor only when needed. The user may,
however, specify that one or ﬁore of these potentially swappable routines be made
permanently core resident or core resident only for the duration of his program's

run. N

Making a pétentially swappable routine core resident ties up core space, but speeds
up operation on the associated request. The user may, for example, be collecting
data via a .TRAN request in a real-time enviromment. In such a case, even the
short time needed to swap in the .TRAN request processor could cause him to lose
data.

Any routine which services a programmed request other than .READ or .WRITE may

be made core resident by one of the following methods:
1. Routines may be made permanently core resident at Monitor generation

time (see the DOS/BATCH System Manager's Guide).

3-48

Routines may be made core resident for the duration of a program's run
by declaring the appropriate global name (as specified in the definition
of each request in Section 3~3.6) in a .GLOBL assembler directive in the
user program. For example, to make the .TRAN processor resident while
program FROP is being run, the following directive would be included in

- program FROP:

.GLOBL TRA.

Device drivers are loaded into the Monitor's free core area on an .INIT call and

are freed from core on the occurrence of a .RLSE, provided no other dataset is
INITed to that device. '

3.5 MONITOR RESTRICTIONS ON THE USER

In return for the services provided by the Monitor, the programmer must honor

certain restrictions:

1.

The user should not use elther the EMT or the IOT instructions for
communication within his program.

It is recommended that the user not raise his interrupt priority level
above 3, since it might lock out a device that is currently trying to
do input/output, i.e., TTY interrupts at BR4.

HALT instructions are not recommended. If a HALT is executed during an
I/0 operation, most ‘devices will stop, and only recovery from the console
(pressing the CONTinue switch on the console) will be effective (recovery

_ from the keyboard will not be immediately possible, since a HALT in-

hibits the keyboard interrupt). Some devices, such as DECtape, do not:
see the HALT and continue moving, thereby losing their positions over
the block under transfer, and consequently can run the tape off the reel.

The RESET instruction should not be used because it forces a hardware
reset: clearing all buffer registers and status flags, and disabling
all interrupts, including keyboard interrupts. Since all I/0 is
interrupt driven, RESET will disable the system.

The user must not penetrate the Monitor when he is using the stack.

The stack is set by the RUN time loader just below the lowest address of
the program loaded. The Monitor checks to see that the stack is not
overflowing each time it honors a request.

The user may allocate temporary storage areas on the stack by simply
subtracting the size of the area needed from the current stack pointer
value. When doing so, he should use a .MONF (Section 3-3.6.23) to
determine the highest address being used by the Monitor. It is generally
wise to leave some space for future Monitor expansion (as a consequence
of programmed requests) and for stack extension (as a consequence of
subroutine calls, Monitor requests, device interrupts, etc.). Consult
Figure 3-6 for more information about Monitor core usage.

The user should be aware that certain requests, such as .INIT, may change
the amount of available free core, since the request may call in drivers
and establish data blocks. Such requests affect the result of .MONF
requests.

3-49

.ALLOC

8. Certain requests return data to the user on the stack. The user must
clear this data from the stack before the stack is used again. The
Monitor clears the stack after it honors requests that do not return
data to the user on the stack.

9. The user should not use global names that are listed in Chapter 3-9.

10. The Link pointer in the Link Block is set by the Monitor and must not be
altered by the user.

11. The stack should be left at the bottom of the user's core area to ensure
protection against the Monitor buffer area's overlaying the user's area.

12. The Monitor uses the stack (via R6) for communication to the user and for
its own functions; the user should therefore not use R6 for arithmetic
operations as the Monitor might need the stack while it was corrupted.

3.6 REQUEST FOR MONITOR SERVICES

3.6.1 ".ALLOC - Allocate (create a contiguous file).

Macro Call: LALLOC #LNKBLK,#FILBLK ,#N
where LNKBLK is the address of the Link Block, FILBLK is the address of the

Filename Block, and N is the number of 64-word segments requested.

Assembly Language Expansion:

MOV #N,-(SP) or MOV #N+1@@@gg,-(SP)
MOV #FILBLK,-(SP)

MOV #LNKBLK,-(SP)

EMT 15

Global Name: ALO. (See Appendix C for subsidiary routineé.)

Description: Searches the device for a free area equal to N 64-word segments, and
creates a contiguous file in the area if it is found, by making an appropriate
entry in the User File Directory (UFD). If the sign bit (bit 15) of N is set, the
UFD pointér will point to the beginning of the a}located area thereby indicating
that the file is empty. This enables partial filling of the file space and later
extension of the file. If the sign bit of N is not set, the UFD pointer will
point to the end of the allocated area and thereby indicate that the file area is
full and may not later be extended. (Linked files are created by an .OPENO
request.) The search‘begins at the high end of the device. The nuﬁber of blocks

allocated will be the minimum number required to contain N segments, i.e.,

' N

B
where B is the number of 64-word segments per block. For example, if N=9 and the
device specified is DECtape, then B=g§-é = 4, Therefore, — = %—= 3, and 3 blocks

64
will be allocated.

Wiz

3-50

After the request has been completed, control is returned to the user at the in-~
struction following the assembly language expansion. The arguments are removed
from the stack, and the top word of the stack will be set to -1 to indicate the
successful completion of the request, or to the largest‘number of segments
currently available if this is less than the called request. The value will be

meaningless if the call cannot be met because of any other error.

If a 64-word segment count of zero is detected, the next word on the stack is
assumed to be the number of device standard size blocks to be allocated. The sign
bit on the zero count retains the same meaning as the standard request. The

device standard size count remains on the stack after the call.

This type of call allows allocation of large RP@3 files that cannot be allocated

in the normal manner. This version is not recommended for any other use.

Rules: Must be preceded by an .INIT request on the dataset. A Filename

Block must be set up by the user in his program.

Exrrors: Control is returned either to the ERROR RETURN ADDRESS in the
Filename Block if it is specified, or to the terminal for an error message if it is

not. Possible errors are shown below:

" Error Code Returned Error Message
Error Condition To Filename Block Oon Default
‘Device Not Ready - AP@2
Dataset Not INITed : - Fgep
File Exists 2 F@24
Directory Full 12 : F@24
UIC Not In Direétory 13 F@24

Illegal Filename 15 F@24

If the error address in the Filename Block is taken, the top word of the stack is

meaningless.

Example: Create a contiguous file of four 2561¢ wqrd block; on DECtape unit 4.
Name the file FREQ.DAT.

.
-

.ALLOC #FRQ,#FREQIN,#2§ .= ;ALLOCATE A DATASET .
INC @sp) ;CALL COMPLETE?
BNE NOROOM ; NO
, .WORD ERR1 ;LINK BLOCK
FRQ: JWORD @

3-51

.APPND

.RAD5¢ /DTA/
.BYTE 1,4
.RAD5¢ /DT/

-WORD ERR2

.WORD J}
. FREQIN: -RAD5@ /FRE/
.RADSZ /Q/

.RAD5@ /DAT/
.WORD UIC,PROT1

ERR1: ;TO HERE IF NO BUFFER AVAILABLE
N . ;FOR DRIVER
ERR2: ;TO HERE IF FILE STRUCTURED ERROR

NOROOM : ;TO HERE IF NOT ENOUGH CONTIGUOUS
iBLOCKS ON DEVICE :

3.6.2 .APPND - Append one linked file to another.

Macro Call: .APPND #LNKBLK,#FIRST,#SECOND

where LNKBLK is the address of the Link Block, FIRST is the address of the Filename
Block for the first file (file to be appended to), and SECOND is the address of the
Filename Block for the second file (file to be appended).

Assembly Language Expansion:

MOV #SECOND, - (SP)
MOV #FIRST,- (SP)
MOV #LNKBLK,-(SP)

EMT 22

Global Name: APP. (See Chapter 3-5 for subsidiary routines.)

Description: Makes one linked file out of two by appending the SECOND to the

FIRST. The directory entry of the SECOND file is deleted. When the request is
completed, control is returned to the user at the instruction following the assembly
language expansion. The arguments are removed from the stack. No attempt is made

to pack the two files together, the physical blocks are merely linked together.

Since the last block of a file is typically not full, there will be a gap (null
characters) in the new file at the junction point. This causes no problem in

ASCII files but might cause confusion in binary files.

Exrrors: Control is returned either to the ERROR RETURN ADDRESS in the
offending Filename Block if it is specified, or to the terminal foxr an error

message if it is not. Possible errors are illustrated on the following page.

3-52

' Error Code Returned Error Message

Error Condition To Filename Block On Default
Device Not Ready . - aAp@2
Dataset Not INITed - Fogg
First File Nonexistent 2. F@24
Contiguous File 5 . F@24
Protect Code Violated 6 Fg24
File Opened ‘ 14 F@24

3.6.3 .BIN2D - Convert one binary word into five decimal ASCII characters. .BIN2D

Macro Call: .BIN2D #ADDR,#WORD
where ADDR is the address of the first byte of the buffer where the characters are
to be placed, and WORD is the number to be converted.

Assembly Language Expansion:

MOV #WORD, - (SP)

MOV #ADDR, - (SP)

MOV #3,-(SP) . sMOVE -CALL CODE ONTO STACK
EMT 42 -

Global Name: CVT.

Description: WORD is converted into a string of five decimal 7-bit ASCII characters
which are placed into consecutive bytes starting at location ADDR. They are right-

justified with leading zeros. The stack is cleared.

3.6.4 .BIN20 - Convert one binary word into six octal ASCII characters. .B|N20

Macro Call: .BIN20 #ADDR,#WORD
where ADDR is the address of the first byte of the buffer into which the six octal
ASCII characters are to be placed, and WORD is the binary number to be converted.

Assembly Language Expansion:

MOV #WORD, - (SP)
MOV #ADDR, - (SP)
MOV #5,-(SP)
EMT 42

Global Name: CVT.

Description: The WORD is converted into a 6-bYte string of 7-bit octal ASCII
characters, right-justified with leading zeros, which is placed into the buffer
addressed by ADDR. The stack is cleared.

.EBl.()(:I(3.6.5 .BLOCK - Read or write a specific block in a file.

Macro Call: .BLOCK #LNKBLK,#BLKBLK
where LNKBLK is the address of the Link Block, and BLKBLK is the address of the
BLOCK block (see Figure 3-13).

Assembly Language Expansion:

MOV #BLKBLK, - (SP)
MOV #LNKBLK,-(SP)
EMT 11

Global Name: BLO.

Description: BLOCK requests provide for random access to the blocks of files

stored on disk or DECtape. This function is not supported for magtape or cassette.

In this mode, data is transmitted to or from a specified block in a file with no
formatting performed. Transfers take place between the device block and a Monitor
buffer. The user may process the data in the Monitor buffer or he may transfer
the block to and from his own area. BLOCK requests require the use of the .INIT,

.OPEN, .CLOSE and .WAIT (or .WAITR) requests.

The user must specify one of three functions in the BLOCK block: INPUT, GET, or
OUTPUT (see Figure 3-13). After the transfer has started, control is returned to
the user at the instruction following the assembly language expansion with argu-

ments removed from the stack.

INPUT: During an INPUT request, the requested block of the requested file
is read into a Monitor buffer, and the user is given in the BLOCK
block (see Figure 3-13) the address of the buffer and the physical
length of the block transferred. ’

GET: During a GET request, the Monitor returns in the BLOCK Block the
address and length of a buffer within the Monitor that he can fill
for subsequent output. Only one GET is required for each time the
file is OPENed and CLOSEQ (i.e., once a buffer has been located, it
may be used repeatedly). The user must assure that he does not
over-run the buffer. This request is unnecessary if an INPUT
request has occurred. ’

OUTPUT : During an OUTPUT request, the contents of the buffer assigned is
written on the device in the requested rélative position in the
requested file.

Rules: The associated file must be opened by .OPENI for input or .OPENU for
input or output. ‘

Access to linked files or nondirectory devices is illegal.

3-54

The user must set up the BLOCK block in his program according to the format of

Figure 3-13.

Errors: Error processing causes a normal return to the user, with the type
of error indicated in the FUNCTION/STATUS word of the BLOCK block. The user should

perform

TSTB BLKBLK+1
BNE ERROR

after a .WAIT to assure that his request was error free.

3.6.6 .CLOSE - Close a dataset. . CLOSE
Macro Call: .CLOSE #LNKBLK ' .

where LNKBLK is the address of the Link Block (see figure 3=-7).

Assembly Language Expansion:

MOV #LNKBLK,- (SP)
EMT 17

Global Name: CLS. (See Chapter 3-5 for subsidiary routines.)

Description: The .CLOSE request indicates to the Monitor that no more I/O requests
will be made on the dataset. .CLCSE completés any outstanding processing on the
dataset (e.g., on output, it writes the last bufferf on extension, it links the
extension to the old file; etc.), updates any directories affected by the processing,
and releases to free core any buffer space established for the processing. When a
file which has been opened for output is closed, the last block written and the

last byte written are recorded in the directory to indicate end-of-data. This
eliminates the need to pad out blocks with nulls and allows the written data within

a contiguous file to be extended at a later time.

After the .CLOSE request has been completed, control is returned to the user at the
instruction following the assembly language expansion; the argument is removed from
the stack. As with .OPEN, some appropriate device action may still be in progress

at this point.

Rules: The dataset to be closed must have previously been opened if it was

a file on a file-structured device.

As with .OPENx, a .CLOSE is not required if the dataset is not a file, but it is

strongly recommended in order to maintain device independence.

Errors: Dataset Not INITed - Fatal Error F@gg;

Device Parity Error - Fatal Error F@gl7
All error messages are explained in Appendix K.

Examgle: Open for input a dataset named IMP, which is file PROG1l.BIN on
DECtape unit 3. After the data transfer is complete, close the file.

LINIT #SET1

.
-

.OPEN #SETl,#FILEl ;OPEN SET1 FOR INPUT (OPEN CODE
N ;IS IN FILE BLOCK)

(Input is

Performed

Here)

.CLOSE #SET1 ;CLOSE SET1

.RLSE #SET1

.WORD ERRL
SET1: WORD & :
.RADS5@ /IMP/ ;DATASET NAME
.BYTE 1,3
.RAD5@ /DT/ ;PHYSICAL DEVICE NAME
.WORD ERFl ;ADDR OF ERROR RTN
.WORD 4 ;OPEN FOR INPUT
FILEL: .RADS@ /PRO/ ;FILENAME
.RADS@ /Gl/)
.RAD5@ /BIN/ ;EXTENSION
.BYTE PROG,PROJ
.BYTE 177
.EVEN
ERRL: {HERE FOR .INIT, .OPENI, .CLOSE,
M ;OR .RLSE ERRORS (DEVICE)
ERF1l: ;HERE FOR .OPENI ERRORS

: ; (DATA FILE)

.(:()F‘EE 3.6.7 .CORE - Obtain address of the highest word in core memory.
Macro Call: .CORE

Assembly Language Expansion:

MOV #10@,-(SP) ; CODE
EMT 41

3-56

.Global Name: GUT.

Description: Determines the address of the highest word in core memory (core size
minus 2) and returns it on the top of the stack. For an 8K machine, it would

return 37776. The user must clear the stack.

3.6.8 Requests for Interfacing with the Command String Interpreter

A user program may obtain dataset specifications via keyboard input at run time by
calling the Command String Interpreter (CSI) routine. This routine is used by
many system programs; it accepts keyboard input at progrém run time in the format

presented in Appendix H.

The CSI is called in two parts, by two different requests:

.CSI1 condenses the command string and checks for syntactical .
errors.
.C8I2 sets the appropriate Link Block and Filename Block parameters

for each dataset specification in the command string.

Each command string requires one .CSI1 request for the entire command string, and

one .CSI2 request for each dataset specifier in the:command string,

The user must first set up a line buffer in his program and read in the command
string (see‘Section 3-4.3). Then he does a .CSI1l, which condenses the string by
eliminating spaces, horizontal TABs, nulls, and RUBOUTs, sets pointérs in a table
to be referenced by .CSI2, and checks the command string for syntactical errors.
If there are no errors, the .CSI2 request may be given once for each dataset
épecification that the user expects to find in the command string. .CSI2 fills
in the appropriate Link Block and Filename Block parameters according to the

device name, filename, extension, UIC, and switch entries in the command string.

3.6.8.1 .CSI1 - Condense command string and check syntax. .<:£;|1

Macro Call: .CSI1 #CMDBUF
where CMDBUF is the address of the command buffer header described under "Rules"

below.

Assembly Language Expansion:

MOV #CMDBUF, - (SP)
EMT 56

Global Name: = CSX.

. ' 3-57

.CSI12

Description: Condenses the command string by removing spaces, horizontal TABs,
nulls, and RUBOUTs, and checks the entire command string for syntactical errors.
Control is returned to the user with a @ at the top of the stack if the syntax is
acceptable, or with the address (in the command string line buffer) of the data

byte at which the scan terminated because the first error was encountered.

If .CSI1 encounters a CTRL/C in the command string, it executes an immediate
.EXIT EMT thus terminating program execution. CTRL/C can be entered in a command

string by immediately preceding it with an ALTmode character.

Rules: The .CSI2 request must be preceded by a .CSIl request, because .CSI2
assumes it will get a syntactically correct command; more than one .CSI2 request

can follow a single .CSI1l request.

The user must set up a line buffer and read in the command string before doing

.CSIl. Command Strings must not be read in dump mode.

It is the user's responsibility to print a # on the terminal to inform the)
operator that a CSI format is expected (Section 3-2.1). 1If VERTICAL TAB is used
as the terminator, the # will be typed immediately without a carriage return or

line feed.

The user ﬁust set up a seven-word work area (CMDBUF) in his program immediately
preceding the header of the line buffer into which the command is to be read. The
user is not required at this time to set up anything in the work area (CMDBUF)
prior to calling .CSIl; it will be used as a work-and-communication area by the

Monitor routines which process the .CSIl and .CSI2 requests.

The user must clear the stack upon return from the Monitor. If the top of the

stack # @ (i.e., if there was a syntax error), .CSI2 must not be called.

s

Example: See .CSI2, Section 3-3.6.8.2.

3.6.8.2 .CSI2 - Interpret one dataset specification of a command string.

Macro Call: .CSI2 #CSIBLK _
where CSIBLK is the CSI control block, described under "Rules" below.

Assembly Language Expansion:

MOV #CSIBLK, - (SP)
EMT 57

Global Name: CSM.

3-58

Description: Gets the next input or output dataset specification from the command
string, and sets the PHYSICAL DEVICE NAME entry in the Link Block, the FILENAME,

EXTENSION, and UIC entries in the Filename Block, and any switch entries in an

extension of the Link Block.

Rules:

Before calling .CSI2, the user must:

Call .CSI1 to condense the command string and check it for syntax errors.
There must have been no syntax errors.

Set up a CSI control block as follows:

.CSIBLK: POINTER TO CMDBUF
POINTER TO LNKBLK
POINTER TO FILBLK

‘where POINTER TO CMDBUF is the address of the 7-word work area preceding

the command string line buffer header;

POINTER TO LNKBLK is the address of the Link Block of the dataset whose

‘specification is being requested; and

POINTER TO FILBLK is the address of the Filename Block of the dataset
- whose specification is being requested (currently, CSI allows only one

file per dataset specificatlon).

Set the first word (Code Word) of CMDBUF to either @ or 2. @ means "get
next input dataset specification", and 2 means "get the next output
dataset specification". .CSI2 does not check the validity of the code
word.

Initialize the NUMBER OF WORDS TO FOLLOW entry in the Link Block to
contain the number of words to follow. This must be at least one,
because .CSI2 will alter the following word, i.e., the PHYSICAL DEVICE
NAME word. .CSI2 does not check the validity of this byte.

The user may specify any number from 1 to 2551¢ in this location. All
words in excess of 1 are used for switch space.

Ypon return from the .CSI2 request; the Monitor will have provided the following

information:) H

l.k

The top of the stack contains two items of information. Bits 1-@ have
the following meaning:
p .
a. @, which means the dataset specification requested has been obtained,
and there are still more dataset specifications of the type
requested (i.e., input or output); or

b. 1, which means the dataset specification requested has been obtained,
and there are no further dataset speciflcatlons of the type
requested, or -

c. 2, which means (a), but this particular dataset specification included
more switches than would fit in the space provided; or

3-59

d. 3, which means (b), but this particular dataset specification included

more switches than would fit in the space provided.

If there are no more dataset specifications and the user. requests one
anyway, a null specification will be returned.

Bit 2, when set to one, indicates that the device name in the Link Block
is a default supplied by the system (see Section 3-6.2).

With respect to values returned in the Link Block (Figure 3-7):

If the PHYSICAL DEVICE NAME word is zero, the user does not wish this
particular output (input) dataset to be generated (read); i.e., this
entry was omitted when the command string was typed. If not zero, the
PHYSICAL DEVICE NAME and UNIT NUMBER are appropriately set to the device
and unit specified in the command string.

Immediately following the PHYSICAL DEVICE NAME word in the Link Block are
the switches specifiefi in the command string. The interface for each
switch is shown in the switch block below. These switch blocks are
written in the area provided by the programmer in the Link Block. Note
that the number of words to follow in the switch block is not the same
quantity as is specified in the LINK Block

LNKBLK+1f#: NUMBER OF WORDS TO FOLLOW
POINTER TO FIRST CHARACTER OF Vn
POINTER TO FIRST CHARACTER OF Vn-1

-
.
.

POINTER TO FIRST CHARACTER OF V1
W(ASCII) | S (ASCII) :for /SW

If NUMBER OF WORDS TO FOLLOW is zero, there are no more switches. Note
that the pointers are in reverse order. After the value pointers are
the ASCII bytes which contain the first two characters of the switch.
The first character is in the low byte, and the second is in the high
byte. If the name of the switch contains only one character, the ASCII
representation of that character will be in the low byte, and the high
byte will contain a zero. Note that if the NUMBER OF WORDS TO FOLLOW
is not zero, it is the number of values +l. For example, if the switch
/SWITCH:$12:AB is stored in memory beginning at location 1@@@ as:

S1gge 1pgl 1g@2 1g@3 19p4 1995 1906
/ S w I T C H

1207 1219 1211 1912 1913 1914 1215
H $ 1 2 : A B

then the completed interface appears as:

LNKBLK+10: 3

1914

1919
127=wW 123=s

3-60

Remark:

a.

With respect to the values returned in the Filename Block (Figure 3-8):

The FILENAME occupies the two words at FILBLK and FILBLK+2. If the
Monitor returns zero at FILBLK, no filename was specified in the
dataset specification; if it returns 52g at FILBLK, * was specified
as the filename. Otherwise, the Monitor returns at FILBLK and
FILBLK+2 the first six characters of the filename specified, in
Radix-5@ packed ASCII.

The EXTENSION occupies the word at FILBLK+4. If the Monitor returns
zero at FILBLK+4, no extension was specified; if it returns 52g, *
was specified. Otherwise, the Monitor returns the first three
characters of the extension specified, in Radix-5@ packed ASCII.

The system does not distinguish between a name with no extension and
a name with an extension of all blanks. E.g., NAME and NAME.AAA are
equivalent.

The USER IDENTIFICATION CODE occupies the word at FILBLK+6. If the
Monitor returns zero at FILBLK+6, no UIC was specified in the dataset
specification (the I/O processors will assume the UIC of this user).
If a UIC was typed in, the Monitor will set this word appropriately.
The Monitor returns 377g in the high- or low-order byte of this word
1f * was specified in either of those positions.

The user may restart at. the beginning of the input dataset.or output
dataset side of the command string simply by recalling .CSI1 and
issuing a @ or 2 code, respectively. Note that he may not restart
one without restarting the other.

There is no error checking with respect to magnitude when the UNIT

or UIC values are converted from octal ASCII to binary.

3.6.9

string.

Macro Call:

\

.CVTDT - Convert binary representation of date or time to ASCII character

.CVTDT #CODE, #ADDR[,VALUE]

where CODE identifies the conversion to be done;

CODE = ¢ Current date as stored by monitor,
CODE = 1 Current time as stored by monitor,
CODE = 2 Date supplied as VALUE,

CODE = 3 Time supplied as VALUE (and VALUE+2)

ADDR is the address of the first byte of the user buffer into which the ASCII

string is to be stored, and VALUE is the address of user supplied Date or Time
(used with CODEs 2 and 3 only).

Assembly Lénguage Expansion:

MOV VALUE+2,-(SP) :Code 3 only

MOV VALUE, - (SP) ;Codes 2 and 3 only
MOV #ADDR, - (SP)

MOV #CODE, - (SP)

EMT 66

3-61

.CVTDT

Global Name: CDT.

Description: This request converts either a date or a time from internal (binary)
representation into an ASCII string suitable for display. The user may specify that the
current system value (of date oxr time) is to be used for conversionor he may supply his own
"value. The string returned has the format of the Date and Time returned by the Keyboard
DATEandTIMEcommands(seechapter3—2). Upon return, the call arguments have been re-
moved from the stack and condition codesN, Zand V are cleared to@. If .CVIDT iscalled
witha code of 1 and the time is past midnight (i.e., 24:0@), a .CVIDTwill automatically
update the time and date as stored in the Monitor, before supplying the cénvérted value

to the calling program.
Rules:
1. The buffer area supplied by the user program (starting at ADDR) must
provide sufficient room for the text returned as no check canbe made. Nine

bytes are required for Date, eight bytes are required for Time.

2. User-supplied VALUEs for Date or Time must comply with the internal
storage format of those values, that is:

a. Date; 1 word containing (year-197@)*1@@g@ + day of the year (Julian).
b. Time; 2 unsigned integer words for high-order and low-order time in

clock ticks.

Errors:

i 1. Specification of an illegal CODE (i.e., > 3) causes fatal error message:
F@34 Call address

2. If the currently stored date or time is out of range (i.e., date > 366
(Modulo 1¢@@) or time > 47:59:59), an operator action message

Agll CODE(f = Date, 1 = Time)

is printed. The operator should enter the desired value via the
appropriate DAte or TIme keyboard command and type COntinue to proceed.
If 23:59:59 < Time < 48:9@:0@, the date is incremented and the time is
reduced by 24:08:20.

3. If a user supplied date or time is out of range as above, the éonversion
routine will return without attempting conversion and the condition code
V will be set to 1. Thus the program should follow the .CVTIDT request
with the check:

BVS (error routine).

.DATE 3.6.10 .DATE - Obtain current date.
Macro Call: .DATE

Assembly Language Expansion:

MOV #1@3,-(5P)
EMT 41

Global Name: GUT.

Description: The current date word is returned to the ﬁser at the<top of the

stack. The user must clear the stack. The date format is a binary number equal
to (year-l97¢)*l¢¢¢lg
of the date, he should use the .CVIDT request.

+day (Julian). If the user requires the ASCII representation

3.6.11 .DELET - Delete a file. ‘ .DELET

Macro Call: .DELET #LNKBLK, #FILBLK
where LNKBLK is the address of the Link Block, and FILBLK is the address of the
Filename Block.

Assembly Language Expansion:

MOV #FILBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 21

Global Name: DEL. (See Chapter 3-5 for subsidiary routines.)

Description: Deletes from directory—oriented device the file named in the Filename
Block. After the request has been completed, control is returned to the user at
the instruction following the assembly language expansion. The arguments are

removed from the stack.

Rules: .DELET operates on both contiguous and linked files. It must be
preceded by an .INIT on the dataset. If the file has been OPENed, it must be
CLOSEd before it is deleted.

Errors: + Control is returned either to the ERROR RETURN ADDRESS in the Filename
Block if it is specified, or to the terminal for an error message if it is not.

Possible errors are shown below:

Error Code Returned Error Message
Error Condition To Filename Block On Default
Device Not Ready - Ap@2
Dataset Not INITed : - F@gg
Nonexistent File 2 _ F@24
Protect Code Violation 6 F@24
File Is Open - ‘ 14 F@24

3-63

.DZBlN 3.6.12 .D2BIN - Convert five decimal ASCII characters into one binary word. -

Macro Call: .D2BIN #ADDR |
where ADDR is the address of the first byte in the 5-byte string of decimal char-

acters to be converted.

Assembly Language Expansion:

MOV #ADDR, - (SP)
MOV #2,-(SP) ;MOVE CALL CODE ONTO STACK
EMT 42

Global Name: CVT.

Description: The 5-byte string of 7- or 8~bit decimal ASCII characters which

start at ADDR are converted into their binary equivalent. The converted value is
returned to the top of the stack, right-justified, followed by the address of the
byte which follows the last character converted. The largest decimal number that

can be converted is 65,535 (216—1). The user must clear the stack.

Errors: The conversion will be stopped if an error .condition is encountered.
The user will be informed of the type of error via the condition codes in the

Processor Status register.

C-bit set means that a byte was not a decimal digit.
V-bit set means that the decimal number was too large, i.e.,
greater than 65535,

The value returned will be correct up to the last valid byte. The address returned
will be that of the invalid byte. If the conversion is satisfactory, the condition

codes will be cleared.

.EX'T 3.6.13 .EXIT - Exit from a user program to Monitor.
Macro Call: EXIT

Assembly Language Expansion:

EMT 6@
Global Name: XIT.

Description: This is the last statement executed in a user's program. It returns
control to the Monitor, assures that all of the program's data files have been
closed and, in general, prepares for the next keyboard request. After the exit,
all Monitor buffer space reserved for the program, such as Device Assignment Tables

(DAT) established during program execution, are returned to free core.

3-64

3.6.14 . .GTCIL - Return the address of the first block of the Monitor core image .GTC“.

library (CIL).

Macro Call:

.GTCIL

Assembly Language Expansion:

Global Name:

Description:

MOV #111,-(SP)

EMT 41

GUT.

This request returns the address of the first block of the Monitor

core image libtapy to the top of the stack.

Rules: The user is required to clear the disk address returned on the stack.
3.6.15 .GICLK - Obtains system clock information. .GTCLK

Macro Call:

-GTCLK

Assembly Language Expansion}

Global Name:

Refurns:

Description:
the stack.

Rules:

- Bit 6

MOV #113,-(SP)

EMT 41

GUT.

Bits g, 6, and 7 or (SP) are used to indicate thevfollowing:

Bit & =

Ll

[l

Bit 7

2

-1

If both KW1lL

to indicate
to indicate

to indicate
to indicate

to indicate
to indicate

KW1llL is used

60 hz.
50 hz.

KW1lL.
KWllP.

no clock. .
that there is a clock.

NOTE

and KW11P are present, the
as the system cl?ck.

.GTCLK obtains information about the system clock and returns it on

L4

The user must clear the stack.

3-65

.GTOVF 3.6.16 .GTOVF - Obtains and sets the overlay flag.
Macro Call: . GTOVF

Assembly Language Expansion:

MOV #144,-(SP)
EMT 41

Returns: (SP) = address of the variable OVLFLG in the SVT.

Description: .GTOVFL sets the value of the variable OVLFLG to one. It is reset

to zero by either of the following conditions:

1. Execution of a KILL or BEGIN Monitor command,

2. The exit EMT.
.GTOVF is used by the overlay system. It should not be used in overlayed programs.

Rules: The user must clear the stack.

.GTPLA 3.6.17 .GTPLA - Return the current program low address.
Macro Call: .GTPLA

Assembly Language Expansion:

CLR -(SP)
MOV #5,-(SP)
EMT 41

Global Name: GUT.

Descrigt;on: The program's low address is the address of the first (lowest) word of
the current program. In the case of a program with overlays, the PLA is the

address of the first word of the resident section. PLA is established when the
keyboard RUN command is executed or when the .RUN request is used to load a new
program (not an overlay, e.g., when MACRO calls CREF, which then replaces MACRO).
Because the .RUN processor will not load an overlay which extends above this

address, the PLA is also called the Protection Boundary.

.GTPLA allows. the user to retrieve this value (see Figure 3-6), which is returned

to the top of the stack. The .STPLA request allows the user to set it.

Rules: The user must clear the stack.

3.6.18 .GTRDV -~ Gets run device information. ' .GTRDV
Macro Call: .GTRDV

Assembly Language Expansion:

CLR -(SP)
CLR - (SP)
MoV #112,-(SP)
EMT 41
Returns: (sp) = Device name from last RUN EMT call (RAD5f).

(SP+2)
(SP+4)

Unit number in bits 2 through @.
Starting block number if the file was contiguous and on a
file~structured device; otherwise it is g.

\

Description: JGTRDV obtains information about. the last run device and places it
in the indicated location.

Rules: The user must clear arguments from the stack.
3.6.19 .GTSTK - Return the current stack base entry. -GTSTK
Macro Call: .GTSTK

¢

Assembly Language Expansion:

CLR -(SP)
MOV #4,-(SP)
EMT 41

Global Name: GUT.

Description: The stack base is the highest core address used for stack storage
plus two. A RUN keyboard command clears the stack and sets the stack base address
to the program low address. A user .RUN request does not clear the stack (to
allow inter-program communication.via the stack) but the staék may be relocated.
This request may be used to determine the stack base. Following the request the-

current stack base entry is returned on top of the stack.

Rules: The user is required to clear the returned value from the stack.

3-67

GTUIC

JNIT

3.6.20 .GTUIC - Get the current user's UIC.
Macro Call: .GTUIC

Assembly Language Expansion:

MOV #1@5,-(SP) 7 CODE
EMT 41

Global Name: GUT.

Description: The current user's UIC is returned at the top of the stack in the

form:
GROUP NUMBER USER'S NUMBER
HIGH-ORDER BYTE LOW-ORDER BYTE
Rules: The user must clear the stack.

3.6.21 .INIT - Associate a dataset with a device driver and set up thg initial

linkage.

Macro Call: .INIT #LNKBLK
where LNKBLK is the address of the Link Block.

Assembly Language Expansion:

MOV #LNKBLK, - (SP)
EMT 6

Global Name: INR.

Description: Assigns a device to a dataset and assures that the appropriate driver
exists and is in core. If the driver is not in core, it is loaded. The device
assigned is that specified in the associated Link Block, unless assignment has been
made to the logicél name specified in the Link Block with the ASSIGN command or via
the Command String Interpreter. After the .INIT has been completed, control is
returned to the user at the instruction following the assembly language expansion.

The argument is removed from the stack.

Rules: The user must set up within his program a Link Block of the format
explained in Section 3-4.1 for each dataset to be .INITED. A dataset which has
been .INITed should be .RLSEd prior to any further .INIT request for that Link
Block.

3-68

/

Errors: A nonfatal error message,'AﬂﬁB, is printed on the terminal if no
assignment has been made through the ASSIGN command, and the DEFAULT DEVICE is
- either not specified in the Link Block‘or has been specified illegally (i.e., no
such device on the system). The user may type in an assignment (ASSIGN) and give

the CONTINUE console command to resume operation.

The A@@P3 error message also is issued by .INIT if an attempt is made to assign a
- Link Block to a device that already has an outstanding Link Block and whose driver

does not support more than one user.

Control is transferred to the address specified by the érrof return address in the -
Link Block if at any time during an operation there is not enough space in free
core for the necessary drivers, buffers, or tables, If no address (i.e., a zero)
is specified in the Link Block's ERROR RETURN ADDRESS, a fatal (F¢¢7) error is

printed and the program stops.

Example: See the .RLSE request.

3.6.22 .LOOK - Search the device directory for a specified filename. .I.()()'(
: -

Macro Call: .LOOK #LNKBLX,#FILBLK[,1]

where LNKBLK is the address of the Link Block, and FILBLK is the addre&ss of the

Filename Block.

Assembly Language Expansion:

‘a. If the optional argument is not specified:

MOV #FILBLK,-(SP)
MOV # LNKBLK,-(SP)
EMT 14

b. If the optional argument is specified:

“«

MOV #FILBLK,-(SP)

CLR -(SP)

MOV #LNKBLK, - (SP)
" EMT 14

Global Name: DIR. (See Chapter 3-5 for subsidiary routines.)

Description: The primary purpose of this>routine is to search through a specified
directory for a specified file and return with the current parameters of the file.
However, this routine can also be used to indicate (bits @-3) the permissible
functions for a nondirectory device (i.e., input, output, update, etc.). By
specifying the optional argument, the user indicates whether he requires two or

three parameters be returned.

i

‘ 3-69

The device to be searched is specified in the Link Block, and the file is specified
in the Filename Block. The request returns to the user with the top elements of

the stack as follows:

2 Arg. Call 3 Arg. Call
START BLOCK - sp
OF BLOCKS SP SP+2
INDICATOR WORD SP+2 SP+4

where # OF BLOCKS is the number of blocks in the file, and the INDICATOR WORD is

coded as follows:

Bit g=1 .OPENC allowed
Bit 1=1 .OPENI allowed
Bit 2=1 .OPENE allowed
Bit 3=1 .OPENU allowed
Bit 4=¢ File is not in use
4=1 File is being used by another dataset
Bit 5=1 Dataset already has a file open (no search has
. been performed)
Bit 6=0 File is linked
6=1 File is contiguous
Bit 7=g File nonexistent (.OPENO allowed)
7=1 File exists or .OPENO not allowed
Bits 8-15 Protection Code

After the request has been completed, control is returned to the user at the
instruction following the assembiy expansion. The stack must be cleared by the

user. If a file is protected against READ access, it will be signaled as non-

existent.
Rules: The dataset must be INITed.
Errors: Control is returned either to the ERROR RETURN ADDRESS in the Filename

Block if it is specified, or to the terminal for an error message if it is not.

Possible errors are shown below:

Erroxr Code Returned

Error Condition To Filename Block Error Message
Device Not Ready - Ag@2
A File Is Open On

Requesting Dataset 14 F@24
Illegal Filename 15 F¢24

Note that it is possible to .LOOK for a file and be told that it does not exist.
A subsequent attempt to open the nonexistent file may lead to an OPEN error
(code=2). Hence, it may be more efficient to simply attempt the .OPEN request and

check for an error.

3-70

-

3.6.23 .MONF - Obtain the address of the first word above the Monitor's highesi: .MONF

allocated free core buffer.
Macro Call: . MONF

Assembly Language Expansion:

e MOV #1@2,-(SP)
EMT 41

Global Name: GUT.

Description: The address of the first word above total Monitor area (see Figure
3-6), including the buffer and transient areas current at the time of the request,
is returned to the user at the top of the stack. After the request is completed,
control is returned to the user at thg‘instruction following the assembly language

expansion.

Rules: The user must clear the stack. Since buffers are allocated by the
Monitor in its processing of certain requests, .MONF should be requested in the

program at the point where the information is actually required.

xx77768 . -} Top of Core.
’ (.CORE)

Base of User
Stack Programs (.GTPLA)

. Top of Full
Device Assignment Table) Monitor (.MONF)
Generated After Load Time

Monitor Buffers
(Data Buffers, Data Control
Blocks, Drivers, etc.) Top of Resident
¢ Monitor (.MONR)

Device Assignment Table
Generated Before Start of Program

Monitor Routines Resident
For Program Duration

Device Assignment Table
Generated Before Load Time

Permanently Resident Monitor
and Vectors

JJ)

Figure 3-6
Core Map of Resident Monitor and Full Monitor

3-71

.MONR

.OPEN

3.6.24 .MONR - Obtain the address of the first word not within the resident

Monitor.
Macro Call: .MONR

Assembly Language Expansion:

MOV #lﬂl [(SP)
EMT 41

Global Name: GUT.

Description: Determines the first word above the top of the currently‘resident
Monitor (see Figure 3-6) and returns it to the user at the top of the stack. This
value does not reflect any area allocated by the Monitor for control blocks,

device drivers, data buffers, etc. (see .MONF, Section 3-3.6.23). After the request
is completed, control is returned to the user at the instruction following the

assembly lanéuage expansion.

Rules: The user must clear the stack.

3.6.25 .OPEN - Prepare a device (which has been .INITed) for data transfer and

associate the dataset with a file (if the device is file-structured).
Macro Call:. .OPEN #LNKBLK,#FILBLK

This form assumes that the File Block contains a code indicating how the file is to

be opened (see Description below).

Assembly Language Expansion:

MOV #FILBLK,- (SP)
MOV #LNKBLK,- (SP)
EMT 16

Alternate Form of Macro Call:

.OPENx #LNKBLK,Rn

where Rn is a register containing the address of the File Block and x indicates

the type of .OPEN (see Description below).

Assembly Language Expansion:

MOVB #CODE, -2 (Rn) (see Description below)
MOV Rn,-(SP)

MOV #LNKBIK, -~ (SP)

EMT 16

3-72

Global Name: OPN. (See Chapter 3-5 for subsidiary routines.)

Description: Wheh used, .OPEN follows .INIT or .CLCSE if mofe than one file is to
be opened on the same LINK block. When fhe-device being used is file-structured,
«OPEN associates a specific file with the dataset. .OPEN also acquires a data
buffer and prepares the dévice or the file for the ensuing data transfer. The
.OPEN request has five forms; the desired form may be spedified by inserting the
proper HOW OPEN coae in the File Block-(see.Figure 3-8) or by selecting one of the
alternate forms of the Macro Call. The different .OPEN forms are described below:

HOW OPEN
Form Code ’ Description

.OPENU 1 Opens a previously created contiguous file for input
and output by .RECRD or .BLOCK request; .OPENU is
rejected if the device is not file-structured or if
it is magtape or cassette.

.OPENO 2 a. Creates a new linked file and prepares it for
' output via .WRITE; the file must not already
exist. '

b. Prepares a non-file-structured device for output via
+WRITE (e.g., punch a leader for paper tape output).

.OPENE 3 ‘Opens a previously created linked or contiguous file
to make it longer via .WRITE; note that a contiguous
file may only be extended within the area already
allocated; although additional blocks may be added
to a linked file, no additional blocks may be added
to a contiguous file (see .CLOSE); .OPENE is treated
like .OPENO if the device is not file-structured.

.OPENI 4 a. Opens a previously created linked or contiguous
' file for input via .READ, .RECRD, or .BLOCK.

b. Prepares a non-file-structured device for input
via .READ. :

.OPENC 13 Opens a new contiguoué file for output via .WRITE. Whena
contiguous file is first opened for writing (via .WRITE),
»OPENC must be used. Subsequent opens for output (via
.WRITE) must be .OPENE's. The .OPENC request is treated
like .OPENO if the device isnot file-structured. .OPENC
is the only request which can create a contiguous file
(via .WRITE).

At this point, the user should note the difference between linked files and con-
tiguous files. A linked file has records allocated to it one at a time, as they
are needed. Each record in the file contains a pointer to its successor, the User
File Directory (UFD) points to the first record. Because records are allocated as
needed, the user need not concern himself at all with the size of the filé nor with
" the allocation of any records. Furthexmore: a linked file can easily be extended

in the future. However, because records are scattered about on the disk and

3-73

because the system must read all intermediate records to move from one record to

another (forward only), linked files can only be used for sequential processing
(.READ or .WRITE).

E]

A contiguous file has all of its records allocated at once in a contiguous area of

the disk which is resefved for the file. Since any record in the file can easily
be located relative to the first record in the file, random (or direct) access
(.RECRD or .BLOCK) is possible in addition to sequential access. However, it is
now necessary to know in advance how much space will be needed, since no more space
can be added later. Since this may be difficult, one often has to guess and space
is often wasted. Note, however, that a contiguous file can be extended within the
space already allocated, i.e., if the area was not filled when the file was first
written (or extended), more data can be added. Because the user is responsible
for determining the size of a contiguous file, he is required to allocate it
before opening it (compare .OPENC and .OPENO). This may be done with PIP, using
the ALLOCATE command or with the ,ALLOC programmed request.

After the open request has been processed, control is returned to the user at the
instruction following the assembly language expansion; the arguments are removed
from the stack. At this‘time, however, the device concerned may still be completing
operations required by the request. A summary of transfer requests which may

legally follow .OPEN requests is illustrated in Table 3-6.

Table 3-6
. Transfer Requests Which May Follow Open Requests

i

Linked File Contiguous File
Input Output Input Output File
~RECRD -RECRD Already
Type of Open -READ .WRITE .READ .BLOCK WRITE .BLOCK Exist?
-OPENU Yes Yes Must
.OPENO Yes Must Not
.OPENE Yes Yes Must
.OPENI Yes Yes Yes Must
.OPENC Yes Must

Rules: a. General Rules for All .OPENx Requests - The user must set up a Filename
Block in his program (see Figure 3-8). If the dataset is a file, the
Filename Block must contain a legal filename. If the dataset is not a
file, or if it will be specified by an .ASSIGN or via the Command '
String Interpreter, the Filename Block need not contain any filename
or extension entries.

.All datasets must have been INITed before they are OPENed. The .OPEN
must be applicable to the type of device (e.g., .OPENI to the line
printer is illegal).

3-74

For datasets on directory devices, the User Identification Code (UIC)
in the Filename Block (if specified) must be in the directory of the
device. 1If the UIC is not specified, the default UIC is that of the
current logged in user.

The .OPENx request must not, violate the protect code of the file.

If a dataset is opened for any output, it cannot be opened agaln until
it has been closed

b. Rules for .OPENO - The .OPENO request is applicable only for output
to non-file-structured devices or to a linked file on a file-structured
device. It is not applicable to contiguous files.

The .OPENO request creates a linked file on a file-structured- dev1ce,
hence, the file referenced in the corresponding Filename Block cannot
exist prior to the .OPENO request.

The .OPENO request will return an error if the disk is full.

¢. Rules for .OPENI - .OPENI may be used for inputs from contiguous or
linked files, or nondirectory devices.

The file referenced in the corresponding Filename Block must exist in
the directory.

If a file is open for input (.OPENI), it cannot be opened for output,
but it may be opened for extension or update.

At any one time, a file can be opened for ‘input to a maximum of 621¢

or 768 datasets. :

d. Rules for .OPENU, OPENE, and .OPENC - The file must exist and cannot
currently be opened for output.

The file cannot currently be opened by another .OPENU, .OPENE, or
.OPENC.

A contiguous file can be opened for exténsion, provided that the area
already allocated to the file does not need to be enlarged.

A linked file cannot be opened with .OPENC, which is applicable only to
contiguous files.

Errors: If any of the preceding rules are violated, the Monitor places an error
code in the STATUS byte of the Filename Block (see Table 3-7) and transfers control
via'the/pointer in the ERROR RETURN ADDRESS of the Filename Block. If this

address is @, a fatal error message is printed on the terminal. Fatal error

messages are listed in Appendix K.

Example: See the .CLOSE request.

3-75

.OZBlN 3.6.26 .02BIN - Convert six octal ASCII characters into one binary word.

Macro Call: .02BIN #ADDR
where ADDR is the address of the first byte in the 6-byte string of octal characters

to be converted.

Assembly Language Expansion:

MOV #ADDR, - (SP)
MOV #4,-(SP) ;MOVE CALL CODE ONTO STACK
EMT 42

Global Name: CVT. “

Description: The 6-byte string of 7- or 8-bit octal ASCII characters which starts
at ADDR is converted into the binary number equivalent. The converted value is
returned to the top of the stack, right-justified, followed by the address of the
byte which follows the last character converted. The largest octal number which can

be converted is 177777. The stack must be cleared by the user.

Errors: The conversion will be stopped if an error condition is encountered,
and the user will be informed of the type of error via the condition codes in the

Processor Status register:

C-bit set means that a byte was not an octal digit.

Vv-bit set means that the octal number was too large, i.e., the first
byte was greater than 1. ’ '

If the conversion has been satisfactory, the condition codes are cleared. Following
C- or V-bit errors, the value returned will be correct up to the last valid byte.

The address returned will be that of the first invalid byte.

3.6.27 Requests to Perform Conversions

Using the EMT level 42 instruction the user can request data conversions between
binary and some external form such as decimal ASCII or Radix-5@. He communicates
his request by pushing the necessary parameters and an identifier code onto the
stack. If a code outside the range of those currently established is specified,
a fatal error (F@34) will result.

.F‘I\[)F"(3.6.27.1 .RADPK - Pack three ASCII characters into one Radix-5@ word.

Macro Call: .RADPK #ADDR .
where ADDR is the address of the first byte in the 3-byte string of ASCII charac-

ters to be converted.

3-76

Assembly Language Expansion:

~

MOV #ADDR,-(SP)
" CLR ~-(SP) ;MOVE CALL CODE ONTO STACK
EMT 42

Global Name: CvT.

Description: The string of 7~ or 8-bit ASCII characters in three consecutive bytes
starting at ADDR is converted to Radix-5@ packed ASCII using the algorithm shown
below. The packed value is returned on the top of the stack, foilowed by the
address of the byte following the last character converted. The user must clear

"~ the stack.

Radix-5@ is used by the Monitor to store in one word three characters for half a

filename or an extension or other three-character sets of data.

Because the characters allowed within names (e.g., filenames or extensions,
assembler symbols, etc.) are restricted to letters, digits, and a few speciél
characters, it is possible to store three characters within a siﬂgle word by using
the formula: ’

(e, x 585 +C,) x 58) + c,

where Cl, Cz, and C3

value to the value shown in the foIiowing table.

are the three characters converted from their original ASCII

CHARACTER ASCII Value Radix~5@ Value
Space g 2
A~Z . 191-132 1-32
$ 44 33
. 56 ‘34
unused ’ L35
2-9 . ' 6@-71 36-47

The maximum value for three characters is thus:

(((47 x 5@Y + 47) x 58) + 47 = 174777

3-77

The Radix-5@ representation for various peripheral devices is shown below:

Radix-5@
Mnemonic Device : Equivalence
CR Card Reader (CR1l1l) . 212620
DC RC11 Disk 214578
* DF RF11l Disk gl476@
DK(A,B) RK11l Disk ’ #1527@(+1,2)
DT (A) DECtape (TCl1) gregag (+1)
KB ASR-33 Keyboard/Printer 342429
LP Line Printer (LP1ll) g46e0g
MT Magtape (TM11) 252149
PP High~-Speed Paper Tape Punch 763200
PR High-Speed Paper Tape Reader 263320
PT ASR~-33 Paper Tape Device 263440
cT TAll Cassette Tape ' #1.274¢

Rules: 1. Device mnemonics may be three letters on some systems. The third
letter is assigned if there is more than one controller. For example:

DTA for DECtape controller A
DTB for DECtape controller B

2. The device name may be followed by an octal number to identify a
particular unit when the controller has several device units associated
with it. For example: :

DT1 for unit 1 under a single DECtape control
DTAl for unit 1 under controller A in a multi-controller situation.

Exrors: The conversion will be stopped if an error condition is encountered,
and the user will be informed of the type of error via the condition codes in the

Processor Status register:

C-bit set means that an ASCII byte outside the valid Radix-5@ set
was encountered.

The value returned will be left-justified and correct up to the last valid byte,
e.g., DT: will be returned packed as DTA. The address returned will be that of the
first invalid byte.

If no errors were encountered during the conversion, the condition codes will be

cleared.

Example: Pack a string of 3@ ASCII characters, starting at UNPBUF, into a

19
buffer starting at PAKBUF.

3-78

MOV #PAKBUF,R3 ;SET UP POINTER TO PACK BUFFER

MOV #UNPBUF,- (SP). ; .RADPK UNBUF

NEXT: CLR -(SP) ’

' EMT 42

BCS ERRC ; INVALID ASCII CODE ENCOUNTERED
MOV (SP)+, (R3)+ ;MOV PACKED VALUE TO BUFFER
CMP R3,#PAKBUF+12 ;END OF STRING?
BNE NEXT ;NO
TST (SP)+ ;YES - REMOVE POINTER FROM STACK

Note that this example takes advantage of the fact that the Monitor returns on the

stack the address of the byte which follows the last character converted.

3.6.27.2 .RADUP - Unpack one Radix-5@ word into three ASCII characters. .F‘l\[)lj"

Macro Call: .RADUP #ADDR, #WORD
where ADDR is the address of the first of three bytes into which the unpacked

characters are to be placed, and WORD is the Radix—Sﬂ‘word to be converted.

Assembly Language Expansion:

MOV #WORD, - (SP)

MOV #ADDR, - (SP)

MOV #1,-(SP) iMOVE CALL CODE ONTO STACK
EMT 42

Global Name: CVT.

Description: WORD is converted into a string of 7-bit ASCII characters which are
placed left-justified with trailing spaces in three consecutive bytes starting at
location ADDR. The stack is cleared. See Section 3-3.6.27.1 for a definition of

Radix-~50.

Errors: If an error is encountered, the user will be informed via the condi-

tion codes in the Processor Status register.

C-bit set means: .a. a value of WORD was outside the valid Radix-5g
) set, i.e., >174777 (see Section 3-3.6.27.1).

b. a Radix-5@ byte value was found to be 35,
which is currently not used.

Nevertheless, three bytes will be returned with a : as the first of the three for

error type (a), and a / for any of the three bytes for error type (b).

If the conversion is satisfactory, the condition codes are cleared.

3-79

.READ

3.6.28 L.READ - Read the next record in the dataset.

Macro Call: .READ #LNKBLK,#BUFHDR
where LNKBLK is the address of the Link Block, and BUFHDR is the address of the

line buffer header.

Assembly Language Expansion:

MOV #BUFHDR, - (SP)
MOV #LNKBLK,-(SPR)
EMT 4

Global Name: RWN. (Routine is permanently core resident.)

Description: The .READ request transfers the data from the device to the user's
line buffer as specified in the line buffer header. The transfer is done via a
buffer in the Monitor, into which an entire device block is read, and from which
the desired data is transferred to the user's line buffer. Each read causes the
user to receive the next record in the data set. Block boundaries are ignored and
new blocks are read as needed. After any I/0 transfer has been started, control
is returned to the user at the next instruction, with the arguments removed from
the stack. ‘

Refer to Section 3-4.3.1 for more details on transfer modes.

Rules: If the device is file-structured, the .READ request must be preceded
by an .OPENI. The user must provide in his program a line buffer and line buffer
header (see Figure 3-92). Further actions on the dataset by the Monitor will be
automatically postponed ﬁntil the .READ processing has completed. The user program
should, however, perform a .WAIT or .WAITR to ensure proper completion of transfer
before attempting to use the data in the line buffer. Otherwise, the program

might find that it is processing before the data it wants has arrived.

Exrors: Specification of a transfer mode which is inappropriate for the
device assigned to the dataset, attempting to .READ from or .WRITE to a file-
structured device for which no file has been .OPENed or for which the type of
.OPEN is incorrect, will be treated as fatal errors and will result in a F@glg

message.

Note: A dataset can only support transfers in one direction at one time,
i.e., READ only or WRITE only. If the same device is to.be used for both operations,

separate datasets must be used for each.

3-80

3.6.29 .RECRD - Read or write a specific record in a file. ’ -RECRD

Macro Call: -RECRD #LNKBLK, #RECBLK
where LNKBLK is the address of the Link Block, and RECBLK is the address of the
Record Block (see Figure 3-12).

Assenmbly Language Expansion:

MOV #RECBLK, - (SP)
MOV #LNKBLK, - (SP)
EMT 25

Global Name: REC.

Description: The .RECRD request causes a specific record to be transferred to (oxr
from)- the user's record buffer. Each record in the file may be individually
addressed, and the user is not restricted to reading or writing the next record.
Data transfer is by way of a buffer in the Monitor which contains exactly one
physical block of information. There is no rule concerning the relative sizes of
records and blocks; however, efficiency may be improved if either is a multiple of
the other. The Record Block specifies record number (starting at @), buffer

address and length, anq transfer direction (read or write); .RECRD requests require
the use of the .INIT, .RLSE, .OPEN, .CLOSE, and .WAIT (or .WAITR) requests. After
the transfer has started, control is returned ﬁo'the user at the instruction follow-
ing the assembly language expansion with arguments removed from the stack. This
function is not supported for magtape or cassette.

A

Rules: ‘1. The requested device must be file-structured and the file must be
contiguous.

2. -The user must set up a Record Block in his program and must provide a
buffer.

3. All records must have the same length.

4. The user should perform a .WAIT or .WAITR to ensure that processing
has completed.

5. The associated file must have been opened with .OPENU or .OPENI.

Errors: An error causes a return to ;he user with the type of error indicated
in the FUNCTION/STATUS word of the RECORD Block. The user should perform the

foliowing test after his request to ensure that the request completed normally.

TSTB RECBLK+1
BNE ERROR

3-81

.F%EEhll\hﬂ 3.6.30 .RENAM - Rename a file. Change protection code.

Macro Call: .RENAM #LNKBLK,#OLDNAM, #NEWNAM
where LNKBLK is the address of the Link Block, OLDNAM is the address of the
Filename Block representing the file, and NEWNAM is the address of the Filename

Block containing the new information.

Assembly Language Expansion:

MOV #NEWNAM, - (SP)
MOV #OLDNAM, - (SP)
MOV #LNKBLK,~(SP)
EMT 28

Global Name: REN. (See Chapter 3-5 for subsidiary routines.)

Description: Allows the user to change the name and protection code (see Section
3-2.4) of a file. After the request has been completed, control is returned to
the user at the instruction following the assembly language expansion. The argu-

ments are removed from the stack.

Rules: Dataset must be INITed, and file must not be OPENed. The user must
specify two Filename Blocks: one contains the name and protection code of the
file as it presently is before the .RENAM request, and the other contains the name
and protection code of the file as it should be after the .RENAM request. The two
filenames must be different. To change just the protection for a file, two

.RENAMs must be requested.

The new filename must not already exist, and the new filename must be legal. The
old file must exist. Renaming a file assigned to the keyboard will effectively be
a NOP.

Errors: Control is returned either to the ERROR RETURN ADDRESS in the
offending Filename Block if it is specified and applicable, or to the Monitor for

an error message if it is not. Possible errors are shown below:

.

Error Code Returned Error Message
Exrror Condition : To Filename Block On Default
Dataset Not INITed - . FPep
File Exists (new name) 2 F@24
File Nonexistent (old file) 2 F@24
Protection Violation 6 F@24
File Is Open 14 F@24
Illegal Filename 15 F@24

3-82

-

3.6.31 .RLSE - Remove the linkage between a device driver and a dataset and .F‘l.f;is

release the driver.

Macro Call: .RLSE #LNKBLK -
where LNKBLK is the address of the Link Block previously INITed.

Assembly Language Expansion:

M?V.#LNKBLK,-(SP)
EMT 7

Global Name: RLS.

Description: Dissociates the device from a dataset and releases the dataset's
claim to the driver. Releasing the driver frees core provided no other dataset has

claimed the driver, and provided that the driver is not permanently core resident.

Rules: The device to be released must have been previously INITed to the

dataset.

If the dataset has been OPENed on a directory device, it must be CLOSEA before the
device is released. On a nondirectory device, or on magtape and cassette, a .RLSE
will ensure that any data remaining in the Monitor buffer for output is dispatched
to the device and will return any buffer still associated with the dataset to

free core.

After the release has been completed, control is returned to the user at the in-
struction following the assembly language expansion; the argument is removed from
the stack.

Errors: If the dataset has been OPENed to a file-structured device, a .RLSE
not preceded by a .CLOSE will be treated as a fatal error, Fg@5. A .RLSE error
(F@PS5) may also occur if the link pointer in the Link Block is invalid, indicating

probable corruption of the Monitor or its control blocks.

Example: .
¢ .
+INIT #LNK1 ;ASSOCIATE A DATASET WITH A DEVICE

.RLSE #LNK1

o .WORD ERRL ;ERROR RETURN ADDRESS
LNK1: .WORD ¢ ;POINTER FOR MONITOR
- .RAD5¢ /DS1/ ;LOGICAL NAME OF DATASET
.BYTE 1,0 ;DEVICE SPECIFIED, UNIT
.RADS5@ /KB/ ;SPECIFY KEYBOARD
-ERR1: . ;ERROR PROCESSING LOGIC

.RSTRT3.6.32 .RSTRT - Set the default address for use by the REstart keyboard command.

.RUN

Macro Call: .RSTRT #ADDR

where ADDR is the restart address.

Assembly Language Expansion:

MOV #ADDR, - (SP)
MOV #2,-(SP) ;2 is the identifier code for .RSTRT
EMT 41

Global Name: GUT.

Description: Sets the address where the program should restart in response to the
keyﬁoard command REstart. This is the assumed address in the absence of an address
in the REstart command. It can be reset as often as requested by the program.

After the request is completed, control is returned to the user at the instruction

following the assembly language expansion. The stack is cleared.

Rules: ADDR must be an address within the user's core area.

3.6.33 .RUN Load and process the program.

Macro Call: .RUN #RUNBLK
where RUNBLK is the address of the user's Run Block (see Figure 3-15).

Assembly Language Expansion:

MOV #RUNBLX,-(SP) ;PUSH ADDRESS OF THE RUN BLOCK
EMT 65 jONTO THE STACK

Global Name: RUN.

Description: The RUN request may be used to load an entire program or a program

«

overlay.

1. ILoad a program or .load an overlay - when an overlay is loaded, the existing
program environment is not disturbed; one section of the program is simply
replaced by another. When a new program is loaded, the old program and

. its effects (except for data on the stack) are purged from core, and the
new program takes over; for example, FORTRAN can use the RUN request to
load LINK and LINK can use it to load and execute the user's program;

2. Load a core image or a load module;

3-84

3. Return of control:
instruction following .RUN;
transfer address of load module or core image;
transfer address plus offset (word F);-
altefnate return address (word G);

4. Stack movement:
leave as is; :

move the stack down if it would otherwise be destrdyed by the entity
being loaded; (stack movement does not occur on short form calls).

5. Load address:
as specified in file,

as specified by user.

The RUN request requires the following control blocks:

Run Block: A variable length control block whose address is passed on
the stack. It contains a fupction word and various optional
parameters. It is described in Section 3-4.7.

Link Block: The sfandard Link Block (Section 3-4.1). It describes the
device from which the entity is to be loaded. It is required
unless bit 15 of the function word in the Run Block is 1.

File Block: The standard File Block (Section 3-4.2). It describes the
) file from which the entity is to be loaded: either an .LDA
> file or a CIL. It is required unless bit 15 of the function
word in the Run Block is 1. ’

The Link Block should not be .INITed, nor should the File Block be .OPENed, when
~RUN is called. RUN will perform .OPEN, .CLOSE, .INIT and .RLSE processing. The

lookup sequence is as follows:

First an extension of LDA is attempted, then no extension, unless an
extension is specified, in which case it alone is used;

For each extension, the current UIC, then [1,1] is tried, unless a UIC
is specified, in which case it alone is used.

The .RUN request always removes the Run Block address from the stack. If bit @ is

2, the foilowing information will be returned upon the stack:
" (SP) - transfer address of loaded module,

2(SP) - size of loaded module in bytes,
4(SP) - low address of loaded module.

3-85

.SPEC

Aside from this, the stack is not disturbed, although it may be moved. This means

that the stack may be used for passing arguments.
Rules: 1. The Link Block should not be .INITed.

2. The File Block should not be .OPENed.

3. If an overlay is being loaded, it must not extend above the bottom of
the resident program section, nor below the top of the Monitor.

4. If a new program is to be loaded, all datasets used by the current
program must be RLSEd.

5. The user must be sure that his stack is not inadvertently destroyed.

6. The appropriate supporting data must be present in-the RUN Block for
the options are requested through the function word.

7. If the stack might be moved, it must not contain absolute pointers to
locations within the stack. For example:

MOV SP,R@
MOV Rﬂl—(sp)

produces a stack which should not be moved. The user can assure that
such a stack will not be moved by setting bit 1 of the Function word
in the RUN Block to @ (ise Section 3-4.7).

Errors: Errors Fg@7, Fgl2, F@2l, F@22, F@24, F@45, F@54, F274, F276, and F277
are all possible. All but F@g@7 and F@2l are nonfatal, provided that an error
return is provided in the File Block (see Table 3-8).

3.6.34 .SPEC -~ Special functions.

Macro Call: .SPEC #LNKBLK,#SPCARG
where LNKBLK is the address of the Link Block, and SPCARG may be either a special
function code or the address of a special function block containing the code (see

Figure 3-17), depending upon the function. >

Assembly Language Expansion:

MOV #SPCARG, - (SP)
MOV #LNKBLK,-(SP)
EMT 12

Global Name: SPC.

Description: This request is used to specify a special function (action) to a
device, such as rewind magnetic tape. A code identifies the function and must be

in the range ¢—2551 When the function requires no supporting data, the code

P

itself is the first parameter to be placed upon the processor stack in the assembly

3-86

language call sequence. However, if the user must supply additional information or
if the function expects to return data to the user, the code is passed within a
special function block and the address of the block is the call parameter. The
format of this block is illustrated in Figure 3-17, Section 3-7.1.1.

If a .SPEC request is made to a device which has no special function code, an
immediate return is made showing that the function has been complete. After the
request has been started, control is returned to the user at the instruction

following the assembly language expan%ion. The stack is cleared.

4

For further information, see Appendix C, "Physical Device Names", and Chapter 3-7

for special functions.

Rules: The dataset must be INITed.
Errors: ‘Fatal error F@@@ is returned if the dataset has not been INITed.
3.6.35 L.STAT - Obtain device status.) .STAT

Macro Call: .STAT #LNKBLK
where LNKBLK is the address of the Link Block.

Assembly Language Expansion:

MOV #LNKBLK, - (SP)
EMT 13

Global Name: STT.

Description: Determine for the user the characteristics of the device specified
in the Link Block. After the request has been completed, control is returned to
the user at the instruction following the assembly language expansion. This

request returns to the user with the following information at the top of the stack.

SP Driver Facilities Word
SP+2 Device Name (Packed Radix-5f)

SP+4 Device Standard Buffer Size (in words)

The Driver Facilities Word has the following format.

3-87

.STFPU

Table 3-7
Driver Facilities Word Format

Bit Switch = 1 (ON) indicates

] Device will support multidataset activity.
1 Device will handle output.

2 Device will handle input.

3 Device will handle binary data.

4 Device will handle ASCII data.

5 Driver has a special function entry.

6 Driver has a CLOSE entry.

7 Driver has an OPEN entry.

8 Device is a terminal.

9 Device is a sequential cassette tape.

1 Device has multiple units under one Controller.
11 Device supports‘ﬁultiple record lengths.
12 ‘Device is the system disk driver.

13 Device is sequential magnetic tape.

14 Device is DECtape.

15 Device is directory (file) structured.

Device Name is the.Radix—Sﬁ packed ASCII standard mnemonic for the device (Appendix
C); and, Device Standard Buffer Size is the block size (in words) on a blocked

device or an appropriate grouping size on a character device.

Rules: The dataset must be INITed. The user must clear the stack upon

return.

3.6.36 .STFPU - Initialize the floating-point exception vector.
Macro Call: .STFPU #PSW,#ADDR

Assembly Language Expansion:

MOV #ADDR, - (SP) ;ADDRESS OF EXCEPTION ROUTINE

MOV #PSW, - (SP) ;PROGRAM STATUS WORD FOR
;EXCEPTION RTN

MOV #3,-(SP) ; REQUEST CODE

EMT 41 .

Global Name: GUT.

Description: This request initializes the exception interrupt vector for the
floating-point processor on the PDP-11/45 or the FIS instruction on the PDP-11/48.

3-88

Any floating-point exception for which interrupt is enabled will cause a trap to
location ADDR with a new program status word of PSW. The interrupt vector is at

location 2448.

3.6.37 .STPLA - Set the program low address. STPLA

Macro Call: .STPLA #ADDR

where ADDR is the desired new program low address.

Assembly Languége Expansion:

MOV #ADDR, - (SP)
MOV #5,-(SP)
EMT 41

Global Name: GUT.

Description: This request allows the user to establish a new program low address.
This is done if the user wants part of his resident code overlayed or if he wants
to reserve additional space between his resident code and his overlays. Consult

the .GTPLA description for more details.

The old program low address (or a zero) will be returned on top of the stack upon

~return from this macro call. The stack is not moved.

Rules: g The user is required to clear the returned address from the stack.
Exrrors: The address returned on top of the stack will be zero when the call

is unsuccessful. This occurs when the address is outside of available memory .

3.6.38 .STSTK - Modify the stack b{:\se‘ entry. ‘ STSTK

Macro Call: .STSTK #ADDR

where ADDR is the desired new stack base address entry.

Assembly Language Expansion:

MOV #ADDR,-(SP)
MOV #4,-(SP)
EMT 41

Global Name: GUT.

Description: This request is used when the stack is to be relocated. It does not
relocate the stack, but it does recérd its new base (the address of the word
immediately above the stack; see Section 3-3.6.19), and it returns the old stack
base on the stack. EXTREME CAUTION should be used when moving the stack; it is

3-89

-SYSDV

not recommended as a standard procedure. Note that the .RUN request may be used

to move the stack when that is appropriate.

Rules: The user must clear the old base value from the stack when control

is returned.
The user is responsible for moving the stack.

Caution should be used when moving the stack, since the new and old stack areas
may overlap and since Monitor interrupt routines may use the stack while it is

being moved. Let:

SBl = old stack base (returned on stack)

SB2 = new stack base (supplied by user)

SP1 = o0ld stack pointer (current value of SP)
SP2 = new stack pointer (SB2 -~ SBl + SPl)

First, set SP=min (SP1l,SP2) to protect against interrupts.' Then if SB1<SB2, move
the stack starting from the base (SBl to SB2). If SB1>SB2, move the stack starting
from the top (SPl to SP2). This strategy prevents the stack from being corrupted
during the move (since the two stack areas might overlap). Finally, set SP to
Sp2.

Errors: If the new stack base ADDR is outside available memory or inside the

Monitor, the request is not honored and a zero is returned on the stack.

3.6.39 .SYSDV - Get name of the system device.
Macro Call: .SYspv

Assembly Language Expansion:

MOV #106,-(SP)
EMT 41

Global Name: GUT.

Description: The name of the system device in Radix-5¢ notation is returned to the
user at the top of the stack.

Rules: The user must clear the stack.

3-90

3.6.40 .TIME - Obtain current time of day. ' .TIME
Macro Call: .TIME

Assembly Language Expansion:

MOV #1@4,-(SP)
EMT 41

Global Name: GUT.

Description: The two current time words are returned to the user at the top of the
stack.

SP: LOW-ORDER TIME IN TICKS
SP+2: ' HIGH-ORDER TIME

where a TICK is 1/6f8 of a second (1/58 second for 5@-cycle lines).

The words are 15-bit unsigned numbers. See the CVIDT request for how to obtain the

ASCII representation of current time value.

Rules: The user must c;ear the stack;

3.6.41 .TRAN - Read or write the specified block (file-structured device) or the .TRAN

next block (non-file-structured device) .

i

Macro Call: .TRAN #LNKBLK ,#TRNBLK
where LNKBLK is the address of the Link Block, and TRNBLK is the address of the
TRAN block (see Figure 3-14, Section 3-4.6).

Assembly lLanguage Expansion:

MOV #TRNBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 18

Global Name: TRA.

Description: .TRAN provides nearly direct access to the device on which the
dataset reéides. No file processing is done and any file structgre is ignored.
Writing with .TRAN on a file-structured device is especially risky and can lead to
the corruption of all data on the device; If .BLOCK request can be used instead
of .TRAN, it is recommended. Each .TRAN will transfer one or more blocks, de-
pending upon the WORD COUNT in the TRAN Block. Blocks on file-structured devices

are referenced by absolute block number,; while blocks on non-file-structured

3-91

devices are processed in sequence. .INIT, .RLSE and .WAIT (or .WAITR) must be
used, while .OPEN and .CLOSE must not. After the transfer has started, control is
returned to the user at the instruction following the assembly language expansion.

The arguments are removed from the stack.

Rules: .TRAN must be preceded by an .INIT request on the associated dataset.
.OPEN must not be used. For each .TRAN request, the user must provide a transfer
control block, as shown in Figure 3-14. Further actions.on the dataset by the
Monitor will be automatically postponed until the .TRAN processing has been com-
pleted. The user program should perform a .WAIT or .WAITR to ensure proper com-
pletion of the transfer before attempting to reference ahy location in the data
buffer.

Errors: An invalid function code in the transfer cohtrol block will result in

an error diagnostic message on the terminal at run time.

Errors in the transfer will be shown in the FUNCTION/STATUS word of Fhe TRAN block;
the last word of the block will be set to show how many data words have not been

transferred.

Example: Transfer 2ﬂ¢8 words of data from DECtape unit 3, starting at block
lﬂﬁe to core starting at location BUFFER.

.INIT #TAPEL ;INITIATE DATASET

.TRAN #TAPEl, #BIN4g ;INITIATE TRANSFER
.RLSE #TAPEl ; RELEASE DATASET
.WORD ERR1 ; LINK BLOCK

TAPEl: .WORD @ : i
.RAD5@ /TPl/
.BYTE 1,3
.RAD5@ /DT/

BIN4g: .WORD 109 ; STARTING BLOCK #
.WORD BUFFER ;STARTING ADDRESS IN CORE
.WORD 2¢¢g ;NUMBER OF WORDS '
WORD 4 ; INPUT
.WORD ¢ . ;FOR MONITOR USE

ERR1: ;ERROR ROUTINE FOR DECTAPE

BUFFER: .BLKW 20¢
BUFEND: .WORD

3-92

-

3.6.42 ,TRAP - Set interrupt vector for the trap instruction. -TRAP

Macro Call: .TRAP #STATUS,#ADDR
where STATUS is the desired status for the trap, and ADDR is the address for the
trap. '

Assémbly Language‘Egpansion:

MOV #ADDR, - (SP)

MOV #STATUS, - (SP)

MOV #1,-(SP) ;1 is the identifier code for .TRAP
EMT 41 .

Global Name: GUT.

Description: Sets the STATUS and ADDR into trap vector 34. After the request is
completed, control is returned to the user at the instruction following the assembly

language expansion. The stack is cleared. The user may then use the trap in-

struction.
‘Rules: STATUS must be a valid Status Byte.
ADDR must specify an address within the user's core area.
Exrors: If an invalid code is specified, a fatal (F@@2) error will result.
3.6.43 .WAIT - Wait for completion of process on dataset. \ WAIT

Macro Call: .WAIT #LNKBLK
where LNKBLK is the address of the Link Block (see Figure 3-7).

Assembly Language Expansion:

MOV #LNKBLK, - (SP)
EMT 1

Global Name: None. (Routine is embedded in the resident Monitor.)

\ Description: .WAIT tests for completion of the last requested action on the data-
set represented by the referenced Link Block. If the actiqn,isbcomplete (that is,
if the request has completed all its action), control is returned to the user at
the next sequential instruction following the assembly language expansion; other-
wise, the Monitor retains control until the action is complete. A .WAIT or .WAITR
should be used to ensure the integrity of data transferred to or from a line

buffer. The argument is removed from the stack.

3-93

Rules: The dataset must be INITed.

Errors: If the dataset is not INITed, a fatal error occurs and F@@@ is printed

on the terminal.

.\AII\|1FF% 3.6.44 .WAITR - Check for completion of processing on dataset and return or transfer.

Macro Call: .WAITR #LNKBLK,#ADDR
where LNKBLK is the address of the Link Block, and ADDR is the address to which

control is transferred if the processing is not complete.

Assembly Language Expansion:

MOV #ADDR, - (SP)
MOV #LNKBLK, - (SP)
EMT ¢

Global Name: (Routine is imbedded in the resident Monitor.)

Description: .WAITR tests for completion of the last requested action on the
specified dataset. If all actions are complete, control is returned to the user
at the next sequential instruction folloﬁing the assembly language expansion. If
all actions are not complete, control is given to the instruction at location ADDR.
The arguments are removed from the stack. It is the user's responsibility to

return to the .WAITR to check again.

Rules: The user should use a .WAIT or-'a .WAITR request to assure the comple-
tion of data transfer to the user's line buffer before processing the data in the

buffer, or moving data into it. The dataset must be INITed.

Errors: If the dataset is not INITed, a fatal error occurs and F@@@ is

printed on the terminal.

.WR'TE 3.6.45 .WRITE - Write the next record in the dataset.

Macro Call: WRITE #LNKBLK,#BUFHDR
where ILNKBLK is the address of the Link Block, and BUFHDR is the address of the

line buffer header.

Assembly Language Expansion:

MOV #BUFHDR, - (SP)
MOV #LNKBLK,~ (SP)
EMT 2

Global Name: RWN. (Routine is permanently core resident.)

3-94

Description: The .WRITE request initiates the transfer of data from the user's
line buffer to the device assigned. The data is first transferred to a buffer in
the Monitor, where it is accumulated until a buffer of suitable length for the
device is filled.! The data in the Monitor buffer is then transferred to the next
device block, and any data remaining in the user's line buffer is moved to the
(now emptiéd) Monitor buffer. After any I/O transfer to the device has been
started, control is returned to the user at the next sequential instruction. The

arguments are removed from the stack upon return.
Refer to Section 3-4.3.1 for more details on transfer modes.

Rules: If the requested device is file-structured, the dataset must have
been opened by an .OPENO or .OPENE for a linked file, or .OPENC for a contiguous
file. The user must provide a line buffer and its header in hié program (Figure
3-9).

Further actions on the dataset by the Monitor after .WRITE will be automatically
postponed until the .WRITE processing has been‘completed.. Before refilling the

line buffer, however, the ﬁser program should perform a .WAIT or .WAITR to ensure
proper completion of the transfer. Otherwise, it might store new data on top of

data which has not yet been written.

Errors: See’ .READ for errors.

3.6.46 .DUMP - Dump specified core locations to the line printer. This Monitor .DUMP

directive can only be used in Batch mode.

Macro Call: .DUMP LOWADD,HIADD,CODE
where LOWADD contains the lower bound of core to be dumped, HIADD contains the upper

bound, and CODE is zero.

Assembly Language Expansion:

MOV LOWADD,-(SP)
MOV HIADD,-(SP)
MOV CODE;-(SP)
EMT 64

Global Name: DMP.

Description: A user running in Batch mode can request "dqump-on-error" with the /DU

switch on the $RUN or $GET command. When an error occurs, EMT 64 is called to dump

lpor terminal devices, data. transfer also occurs when a line terminator is seen
(see Section 3-4.3.2).

3-95

core to a system disk file, DMP.SYS, and to abort the job. When control is re-
turned to the Monitor, it runs a program in the file LDUMP.IDA as part of its job
termination processing. ILDUMP formats and prints the contents of DMP.SYS. See
System Managers Guide "Job Termination Processing" if no line printer is available.

EMT 64 can also be invoked by a user program via .DUMP.

The register preamble is always dumped. With low and high address the user can
specify dump limits, or he can use defaults:

A. High and low limits of @ result in dump of program area.

B. A high limit of -1 defaults to the top of core.

C. Low and high limits of +1 result in a dump of the preamble only. -
Note that in all cases the user must be running in batch mode and must include the

/DU switch in the $RUN directive. The argument on top of the stack should always
be @.

In addition, it is possible for the user to write his own dump formatting program
to be run at job termination instead of LDUMP. (See System Manager's Guide,

Section 5-3, on Job Termination Processing.)

EMT 64 writes unformatted binary data to DMP.SYS. The format follows:

Word 1 Flag Word

Word 2 Starting address of dump

Word 3 Number of bytes dumped

Word 4 sp)

Word 5-12 R@P-R5

Word 13 PC

Word 14 PS

Words 15-17 Three arguments with which DUMP was called (@, high address, low -
address)

Words 2@... Dump of number of bytes specified in Word 3.

The flag word's values are:

@2 User-specified limits
@4 Default high core value
26 Default to program area
19 Preamble only
Rules: ~ 1. The system must be in Batch mode.

2. The DMP.SYS file must be unlocked and present in UIC [1,1].

3. The /DU switch must appear with the RUN or GET command.

Exrors: If DMP.SYS is locked, the Monitor directive will be flagged with the
'ILL CMD' message;

3-96

The command is ignored if the /DU switch was not on the RUN or GET command or if

the system is in interactive mode.

3.6.47 .FLUSH - Bypasses lines in the batch stream. This Monitor directive can .FLUSH

only be used in Batch mode.

Macro Call: .FLUSH CODE

where CODE contains the value @, 1 or 2.

Assembly Language Expansion:

MOV CODE,-(SP) .
EMT 67 ' -

Global Name: BSF. (Batch Stream Flush)

Description: .FLUSH allows the currently running program (system or user) to
request that batch stream input be bypassed until a specified type of control card

is encountered. The type of control card is specified by the contents of code.

CODE STATEMENT TYPE
2 $
1 $ or #
2

$, #, or *

.FLUSH is a NOP when the system is not in Batch mode.

Rules: " The system must be in Batch mode.
Errors: 'If an illegal .FLUSH code is input, a fatal error occurs and F@53

is ‘printed on the terminal.

3-97

3.7 EMT CODE SUMMARY

EMT Described
Code Programmed Reguest) on Page
] .WAITR 3-94
1 " JWAIT 3-93
2 WRITE 3-94

3 2
4 .READ 3-80
5 2 ,
6 LINIT 3-68
7 .RLSE - 3-83
19 . TRAN . 3-91
11 .BLOCK 3-54
12 .SPEC 3-86
13 +STAT 3-87
14 .LOOK 3-692
15 LALLOC 3=-50
16 .OPENx 3-72
17 .CLOSE 3-55
28 .RENAM 3-82
21 .DELET 3-63
22 +APPND 3-52
25 .RECRD 3-81
26-27 2
3g-31 !
32 ' Diagnostic Print
33-35 !
36-37 2
4g !
41 General Utilities
.CORE 3-56
.DATE 3-62
+GTCIL ’ 3-65
.GTCLK 3-65
.GTOVF 3-66
.GTPLA 3-66
.GTRDV 3-67
«GTSTK 3-67
.GTUIC 6-68
.MONF 3-71
+MONR 3-72
+RSTRT 3-84
STFPU 3-88
.STPLA 3-89
.STSTK 3-89
.SYSDV 3-90
.TIME 3-91
.TRAP] 3-93
42 General Conversions .
.BIN2D 3-53
".BIN20 . 3-53
.D2BIN 3-64
.02BIN 3-76
.RADPK . 3-76
. RADUP 3-79

lpeserved for Monitor internal communication.
2Reserved for future Monitor expansion.

3-98

EMT » / Described

Code Programmed Request ; . on Page
43-55 !
56,57 Command String Interpreter .
.CSIl . 3-57
.CSI2 : : 3-58
69 ' LEXIT ‘ 3-64
61-62 !
63 Magnetic Tape Open (MTO)
64 17
65 .RUN 3-84
66 .CVIDT : . 3-61
67 2 ‘
68-69 2
79 - 2 :
71 Cassette Tape Open (CTO)
72-76 2 o
77 ! '
1¢@-117 (reserved for Communications Executive, COMTEX-11)
12¢-137 (resexrved for Real-Time Monitor, RSX-11)
14g-167 (reserved for user-implemented routines)

!Reserved for Monitor internal communication.
2Reserved for future Monitor expansion.

3-929

PART 3
CHAPTER 4

USER PROGRAM TABLES AND CONTROL BLOCKS

LINK
Block

4.1 THE LINK BLOCK (used for all input/output and directory requests)

ERROR RETURN ADDRESS

LNKBLK: P9PP39 LINK POINTER (for Monitor use only)

LOGICAL NAME OF DATASET ~-- Radix-5@ Packed ASCII

UNIT NUMBER NUMBER OF WORDS TO FOLLOW

PHYSICAL DEVICE NAME -~ Radix-5@ Packed ASCII

Figure 3-7
The Link Block

Each dataset in a user's program must have a Link Block associated with it.
Entries in the Link Block which must be specified by the user can be written into
his program or set by the program itself before the dataset is INITed. Each entry

is explained below.

Address Name Function
LNKBLK-2 ERROR RETURN This entry must be set by the user to contain the
ADDRESS address where he wants to transfer control in the

event that any request associated with this data-
set fails to obtain required buffer space from
the Monitor. If no address is specified here,
such an error will be treated as fatal. This
address may be changed by the user's program at
any time.

LNKBLK LINK POINTER This location must be set to zero by the user and
’ : . must not be modified by him. The Monitor places
a linking address here when the dataset is INITed.
Before INITing a dataset, the Monitor tests this
pointer for zero. If it is not zero, the Monitor
assumes that the dataset was already INITed.

LNKBLK+2 LOGICAL NAME The user can specify a name for the dataset in
OF DATASET this entry. This name, which must be unique, is

used to associate the dataset with a device which
is specified by an ASSIGN from the keyboard. The
name is stored in Radix-5@ packed ASCII by the
.RADS5@ assembler directive. This specification
is optional, but if it is omitted, the ASSIGN
command cannot be used.

3-100

"Address " Name o Function

LNKBLK+4 NUMBER OF This byte contains the count of the nurber of
WORDS TO words to follow in the Link Block. The user
FOLLOW should set it to a @ if he does not specify any

PHYSICAL DEVICE NAME in the next word, or to a 1
if he does. Values greater than 1 may be used if
the Command String Interpreter is to be called
(see Optional Data below). '

LNKBLK+5 UNIT NUMBER This code specifies the unit number of the device
linked to the dataset. For example, the TCll
Controller (DECtape) can drive up to eight tape
drives (units), numbered g-7.

LNKBLK+6 PHYSICAL If the user specified 1 or greater in byte
DEVICE NAME LNKBLK+4, he may specify here the standard name

(Appendix C) for the device associated with the
dataset in Radix-5@ format. If no name is
specified here, the user must specify LOGICAL
NAME OF DATASET and perform an ASsign command
before he runs his program. If physical device
name is specified both here and in an ASSIGN
command, the device specified in the ASSIGN
command overrides the value given here.

LNKBLK+8 OPTIONAL DATA Present only if LNKBLK+4 is greater than 1. It is
through used to pass additional information such as switch
LNKBLK+n - information when using the Command String Inter-

preter or Resident EMT information when using
.RUN, via the Link Block

FILENAME
Block

Each file associated with a dataset must be described by the user in a Filename

4.2 THE FILENAME BLOCK

Block. If a dataset is not a file, the Filename Block must still be used (if
.OPEN is used) but FILENAME, EXTENSION, and PROTECT need not be specified. The

Filename Block is used by OPEN and all directory management requests.

ERROR RETURN ADDRESS

ERROR CODE HOW OPEN

FILBLK: ‘ FILE NAME

FILE NAME

EXTENSION

USER ID CODE

(spare) PROTECT CODE

Figure 3-8
The Filename Block

3-101

Address

FILBLK-4

FILBLK-2

FILBLK-1

FILBLK+@
FILBLK+2

FILBLK+4

FILBLK+6

FILBLK+1§

Name

ERROR RETURN

ADDRESS

HOW OPEN

ERROR CODE

FILE NAME

EXTENSION

USER ID
CODE

PROTECT CODE

Function

The user must specify here the address to which
he wants the Monitor to return control if one of
the errors in Table 3-8 occurs during an operation
involving the file. If no address is specified
here, any such error will be treated as a fatal
error.

This is set when the .OPENx macro's assembly
language expansion is executed. It tells the

Monitor which kind of open is being requested:

.OPENU=1, .OPENO=2, .OPENE=3, .OPENI=4, .OPENC=13.

This entry should not be set by the user. It will
be set by the Monitor to indicate the type of
error (Table 3-8) which occurred. It will be
cleared of any previous condition at each .OPEN
call.

This two-word entry must be specified by the user
if this dataset, or a portion thereof, is a file.
It is the name of the file, in packed Radix-5¢
format.

This entry must be specified if the file named in
the previous entry has an extension. It is in
packed Radix~5@ format.

The user may enter his USER ID CODE here in octal:

GROUP NUMBER
High-Order Byte

USER'S NUMBER

Low-Order Byte

If no entry is specified here, the current user's
UIC is assumed.

The user may specify here the protection to be

given to the file at its creation or renaming.
If @, a default protection 233 will be allotted.

Table 3-8

Filename Block Error Conditions

Error'Code

In File- Request
name Block Type Cause - Remedy

23 .OPENC An attempt was made to
.OPENE open a dataset that was
.OPENI previously opened.
.OPENO
.OPENU

21 unused

(continued on next page)

3-102

‘Table 3-8 (cont.)

Filename Block Error Conditions

Error Code

In File- Request
name Block Type Cause Remedy
- g2 .OPENO An attempt was made to If name of file was correct,
open a file which al- delete the file (with PIP)
ready exists. or change file name.
.OPENC An attempt was made to
.OPENE open a file for input,
.OPENI extension, or update
.OPENU which is currently
opened for output, or
which does not exist.
+RUN The file specified was
already OPENed for
output, .or the file
does not exist.
23 .OPENC An attempt was made to Close file.
.OPENE open a file which has
.OPENI already been opgned
.OPENU the maximum number of
times (76)
8
24 .OPENC An .OPENC, .OPENE, or .CLOSE the previous open.
.OPENE .OPENU attempt was
.OPENU made to open a file - ,
which has already been
opened for either
.OPENC, .OPENE, or
" .OPENU.
@5 .OPENE Illegal request to
a contiguous file.
26 .OPENC An attempt was made to Resolve access problem with
.OPENE access a file which owner of the file.
.OPENI the protection code
.OPENO prohibits.
.OPENU
-RUN
27 .OPENC Illegai OPEN request
to a contiguous file.
11 .OPENC File opened for out- Close offending file.
.OPENE put or extension is :
.OPENO already on current
.OPENU DECtape unit.
12 ALLOC Directory full (DT). Mount another DECtape. -
.OPENO
.ALLOC The UIC was not en- Enter UIC via PIP.

13

tered into the
device MFD.

3-103

. (continued on next page)

Table 3-8 (cont.)

Filename Block Error Conditions

Error Code

In File~ Request
name Block Type Cause Remedy
14 .APPND An attempt was made to |Wait until file is closed.
.DELET perform an illegal
. RENAM | operation on an opened
file.
15 .ALLOC An attempt was made to |Change file name.
.OPENO create a file with an
illegal file name.

16 -RUN All datasets were not Release all datasets which
released prior to were INITed.
issuing the request.

17 .RUN Load module format File must be linked into
error. a load module.

2¢ .RUN Specified CIL entry Add proper entry to CIL or
not found. use correct name.

21 <RUN No transfer address or Check for END statement in
illegal transfer source program, Or use
address. correct /TR when linking.

22 .RUN Stack base entry in
the System Vector
Table (SVT) is below
the Stack Pointer.

Stack cannot be moved
as requested in the
call.
23 Module is outside the Relink to within boundaries.

-RUN

boundaries of the
allowable load area.

Ensure that resident portion
of program is not being
overlayed.

LINE

BUFFER 4.3 g LINE BUFFER HEADER -

HEADER

BUFHDR:

(used by READ and WRITE requests)

MAXIMUM BYTE COUNT

STATUS MODE

ACTUAL BYTE COUNT

POINTER (Dump Mode only)

Figure 3-9
Line Buffer Header

3-104

Each element of the line buffer

Address

BUFHDR

BUFHDR+2

BUFHDR+3

‘BUFHDR+4

BUFHDR+6

Name

MAXIMUM BYTE

header table is as follows:

Function

The count shows the size of the buffer, in bytes.

COUNT It must be specified here by the user on all

INPUT operations.

MODE The user specifies here the mode of the transfer.

All modes are listed and explained in Figure 3-10.

STATUS The Monitor will place in this byte the status of

the transfer when control is returned to the user.
Figure 3-11 lists each bit and its meaning.

Errors encountered executing an I/0 transfer will
be flagged in this byte. The user should always
check its content after each transfer completes.

ACTUAL BYTE - ' This count controls the number of bytes to be
COUNT transferred on OUTPUT. It must be initialized by

the user before any output transfer from the line
buffer. After any transfer in or out, it will
show how many bytes have been transmitted.

POINTER . If bit 2 of MODE is 1, the user specifies here the
(dump mode) starting address of the line buffer. If bit 2 of

MODE is @, the line buffer header is only three
words in length, and must immediately precede the
line buffer itself.

NOTE

The user should not attempt to change the
block or buffer contents until it is evi-
dent that the transfer has been completed.
(e.g., after a .WAIT return). This is
because the Monitor returns control to the
program if a device transfer is needed to
satisfy a request. During this time, the
header words are used to store data rele-
vant to the operation underway.

L7lefsfafa]afa]o]

et W r,
1

= ASCII
) = Binary
‘Re- @ = Formatted
served 1 = Unformatted
@ = Data follows Header
) 1 = Dump
Set to 1 to - @ = No Parity
suppress auto- — 1 = Parity (indirect)
matic echo on @ = Normal
a terminal ~ 1 = Special
(keyboard) device. i
- Figure 3-10

The Mode Byte

3-105

4.3.1 The Transfer Modes
The user can specify ASCII or binary data in nine different types of transfers:

ASCII Modes: Formatted ASCII Parity - Special
Formatted ASCII Parity - Normal

Formatted ASCII Nonparity = Special
Formatted ASCII Nonparity - Normal -

Unformatted ASCII Parity - Special
Unformatted ASCII Nonparity - Normal

Binary Modes: Formatted Binary - Special
Formatted Binary - Normal

Unformatted Binary - Normal
1. Formatted ASCII Normal - Data in this mode is assumed by the Monitor to

be in strings of 7-bit ASCII characters terminated by LINE FEED, FORM
FEED, or VERTICAL TAB.

READ: The line buffer is filled until either a terminator is seen or
the number of bytes transferred becomes equal to the MAXIMUM
BYTE COUNT. If the MAXIMUM BYTE COUNT is reached before the
terminator is seen, the invalid line error bit in the Status
Register of the buffer header is set, and each remaining character
through to the terminator is read into the last byte of the line
buffer, i.e., the surplus bytes are overlayed. After the transfer,
the actual byte count is set to the number of bytes read (in-
cluding the excess). RUBOUTs and NULLs are discarded. The
terminator is transferred. LINE FEED is supplied after RETURN.

WRITE: The line buffer is output until the number of bytes transferred
equals the ACTUAL BYTE COUNT. If the last character is not a
terminator, the invalid line error bit is set in the STATUS BYTE
of the buffer header. Previous terminators are output as normal
characters.

For non-file-structured devices, TABs are automatically followed by
RUBOUTs; FORM FEEDs are automatically followed by NULLs.

The READ/WRITE processor passes data to the device driver specified, and
each driver will convert the information to meet its specific needs.
Appendix H summarizes the characteristics of the device drivers (see
Part 5 for more information). Normally, output is deferred until the
current buffer is full or until a .CLOSE or .RLSE occurs. However, for
terminal devices, the buffer is written when a line terminator is seen.
VERTICAL TAB plays a special role here, since it is a terminator but
does not cause a carriage return or paper motion.

2. Formatted ASCII Special -

READ: The same as formatted ASCII normal with this exception: if the
MAXIMUM BYTE COUNT is reached before the terminator, the transfer
is stopped. The remaining characters are not overlaid, but are
retained for transfer at the next .READ. An invalid line error
will be returned in the STATUS BYTE, and ACTUAL BYTE COUNT will
equal MAXIMUM. ‘

3-106

WRITE: The same as formatted ASCII normal with this exception: the
: line buffer is output until the first terminator; the ACTUAL BYTE
COUNT will stop the transfer if it is reached before the termina-
tor ig seen. 1In this case, the invalid line error bit is set in
the STATUS BYTE. Note that in this mode only one line of data
can be output at once, but its byte count need not be exactly
specified, provided it is not greater than the ACTUAL BYTE COUNT.

Formatted Binary Normal -

READ: This is an 8-bit transfer. Words 2 and 3, STATUS/MODE, and
ACTUAL BYTE COUNT always accompany the data during formatted
binary transfers. The counts are adjusted by the Monitor to
include the extra words. On input, the line buffer is filled
until the number of characters transferred equals the ACTUAL
BYTE COUNT read, or the MAXIMUM BYTE COUNT. If the MAXIMUM is
reached before the ACTUAL, an invalid line error occurs and the
remaining bytes are overlaid into the last byte until the
checksum is verified. After the transfer, the ACTUAL BYTE COUNT
contains the actual number of data bytes read (including the

- excess).

WRITE: This is an 8-bit transfer. Words 2 and 3 of the line buffer
header are output, and data is transferred until the number of
characters transferred is equal to the ACTUAL BYTE COUNT; then a
checksum is calculated. The checksum is output at the end. The
byte count is adjusted to reflect the presence of words 2 and 3
from the line buffer header.

Formatted Binary Special -

READ : The line buffer is filled until the number of characters trans-
ferred equals the ACTUAL BYTE COUNT read. If the MAXIMUM COUNT
is reached before the ACTUAL, the remainder of the line is
retained by the Monitor. The MAXIMUM BYTE COUNT is transferred
to the line buffer and the ACTUAL BYTE COUNT is set to the full
input count, rather than to the number of bytes actually
transferred. The invalid line error will be set in the STATUS
BYTE. The user can compare the MAXIMUM COUNT with the ACTUAL,
determine how much data remains, and recover it by an unformatted
binary read (allowing 1 extra byte for the checksum).

WRITE: Identical to formatted binary normal.
Unformatted ASCII Normal or Special - This mode is available to the user

who wants to do his own formatting. Seven bits are transferred; the
eighth is always set to zero. Nulls are discarded.

READ: Transfer stops when the number of bytes transferred reaches the
MAXIMUM BYTE COUNT. Nulls are discarded but all other characters
are treated as valid.

WRITE: All characters are transferred. The transfer stops when the
ACTUAL BYTE COUNT is reached.

Unformatted Binary Normal dr.Special - This mode is identical to unformatted
ASCII except that eight bits are transferred on both input and output and
nulls are not discarded. No checksum is calculated.

3=107

Formatted ASCII Parity ~ Identical to formatted ASCII (Special or Normal)
except that even parity is generated in the eighth bit on OUTPUT; during
INPUT it will be checked. Valid characters will be passed to the user as
7 bits; invalid characters will be marked by bit 8 = 1, and will cause
the setting of the parity error bit in the STATUS BYTE.

Unformatted ASCII Parity -~ Identical to unformatted ASCII (Special or
Normal) except that eight bits are transferred instead of seven. No
parity generating or checking is performed.

Indirect Modes -~ All moves can be specified as indirect, which means that
the word after ACTUAL BYTE COUNT is considered to be a pointer to the
beginning of the data rather than the beginning of the data proper.. This
is referred to as DUMP mode.

4.3.2 The Status Byte

7 6 5) 3 2 1 g

"y Y b
End of medium . Invalid line error

(EOM) or Checksum error
End of file Character parity error or
(EOF) illegal binary format
Device parity Spare
flag .
Figure 3-11

Status Byte Format

The function of each status format bit is explained below.

Bit

g
(INVALID
LINE)

Mode Request Condition

Bit = 1 indicates

ALL .READ/WRITE Appropriate BYTE COUNT = @ at call.
FORMATTED .READ The MAXIMUM BYTE COUNT was reached
ASCII NORMAL before a line terminator was seen.
(parity or (Last byte has been overlaid until
non-parity) the terminator has been reached.)
WRITE The last byte was not a terminator.
FORMATTED <READ The MAXIMUM BYTE COUNT was reached
ASCII SPECIAL before a line terminator was seen
(parity or (excess data has not yet been read).

non-parity)

WRITE The ACTUAL BYTE COUNT was reached
before any terminator was seen.

3-108

Bit

1
(CHECKSUM
ERROR)

2
(PARITY
FORMAT)

2
(ILLEGAL
BINARY
FORMAT)

. 6
(EOM/EOF')

[3

Mode

FORMATTED
BINARY
NORMAL

FORMATTED
BINARY
SPECIAL

ALL
UNFORMATTED
MODES

FORMATTED
BINARY

FORMATTED
ASCII PARITY
NORMAL OR
SPECIAL

FORMATTED
BINARY

ALL MODES

Request

.READ

.READ

.READ

-READ

.READ

«READ or
JWRITE

Condition

Bit = 1 indicates

The MAXIMUM BYTE COUNT was reached
before the records internal byte count
was exhausted. (The last byte has
been overlaid in order to verify the
checksum.)

The MAXIMUM BYTE COUNT was reached
before the records internal byte
count was exhausted. (The excess
data still remains to be read and
checksum has not been verified.)

BYTE COUNT = the actual number of
bytes transferred. The reason BYTE
COUNT < MAXIMUM BYTE COUNT is that an
EOF or EOM has been encountered
before the buffer was full. Bit 6
will also be set.

There was a discrepancy between the
checksum accumulated during the .READ,
and that stored with the incoming
data.

A character was read which had odd
parity. The eighth bit of the illegal
character delivered is set to a 1.

The transfer continues. If this bit
is set the user need only check each
character returned during processing
of the buffer for bit 8 set to locate
the character returned with wrong
parity.

This bit is set if a line processed
in a binary mode does not have a @@l
in the first word. The first word is
ignored, i.e., no data is returned to
the buffer. Subsequent reads access

-successive lines and return error

bits or data as appropriate.

An input device cannot supply any more
data or an output device cannot
accommodate more, i.e., the disk has
no more storage space, or the paper

‘tape reader has run out of paper tape.

3-109

No data is returned on .READs unless

bit @ is also set (see bit g). On
WRITEs an unspecified portion of the
buffer may have been written (enough
data to fill a partially filled

monitor buffer may have been transferred
to the buffer and written before the
EOM or EOF was detected). Subsequent
requests return to user with this bit
set.

Bit Mode

5 ALL MODES
(DEVICE
PARITY)

RECORD

B'ock 4.4 THE RECORD BLOCK

Request Condition

Bit = 1 indicates

.READ or A hardware error has been detected on
.WRITE a bulk storage device. This could be
© either a parity error or a timing

error. The driver will already have
tried to READ or WRITE 8 or 9 times
before setting this bit. (This flag
is a warning that the data in this
line or some subsequent line still
using data from the same device block
may be invalid. It will be returned
for each transfer call using the
same block.)

FUNCTION/STATUS
BUFFER ADDRESS

RECORD LENGTH

HI ORDER, RECORD #
LO ORDER, RECORD #

Figure 3-12.
The Record Block

ADDRESS NAME FUNCTION
RECBLK FUNCTION/STATUS WORD BIT
@ - Not used
1 - Record Output - Set by user
2 =~ Record Input - Set by user
. 3-8 - Not used

(Following bits set by Monitor)

9 - Illegal Function

19 - File is linked or device is not
File-structured.

11 - Record requested lies outside
the file.

12 - File not OPEN

13 - Protect code violation, Incorrect
Open

14 - Not used

15 - Device parity error

The user may set only bits 1 or 2; error
bits are set by the Monitor, and should
be tested for by the user upon return
from the request. The error bits are
cleared by the Monitor when a .RECRD
request is issued and are set as appro-
priate upon return from the Monitor.

3-110

ADDRESS NAME FUNCTION

RECBLK+2 BUFFER ADDRESS The address of the user's buffer. The
buffer must be large enough to contain
a record of the length indicated in the
next word, as the Monitor assumes that
sufficient space is available and will
overlay data stored below a buffer of
insufficient length.

RECBLK+4 RECORD LENGTH L - The number of bytes of a Record. This
value, which must remain the same for
all records in the file, is supplied by

the user.
RECBLK+6 High Order - Record Number This entry identifies the record to be
RECBLK+18 Low Order - Record Number read or written. It is treated as a 32-

bit number in anticipation of files that
contain more than 65,536 records.

First Record of File is number #.

4.5 THE BLOCK BLOCK - (used by BLOCK request only) ' BLOCK Block

BLKBLK : ' FUNCTION/STATUS
BLOCK NUMBER
MEMORY BUFFER ADDRESS
LENGTH

Figure 3-13
The BLOCK Block

Address Name i Function
BLKBLK FUNCTION/STATUS User specifies here the function to be

performed, and the Monitor returns to
the user with the appropriate status
bits set.

Type Bit Bit = 1 means:

£ f.ﬂ function is GET
u
n 1 function is OUTPUT
c
t < 2 function is INPUT
i .
o 3-8 reserved
n
\.
e (9 illegal function
r 1g file is linked, or device
r - is not file-structured
o < 11 block number does not
r exist in file, i.e., it is

L greater than the file length

3-111

Address Name Function

Type Bit Bit = 1 means:

s 12 file not open

: 13 protect code wviolation

t 14 end of data error

: 15 device parity error
BLKBLK+2 BLOCK NUMBER Requested block number to be transferred

relative to the beginning of the file.

First block of file is #.

BLKBLK+4 MEMORY BUFFER The address of the buffer (supplied by
ADDRESS the Monitor on INPUT or GET functions).
BLKBLK+6 LENGTH The length of the buffer in words.

BLKBLK+6 is set by the Monitor on INPUT
or GET functions.

TRAN
BLOCK

4.6 THE TRAN BLOCK (used by TRAN request only)

TRNBLK: DEVICE BLOCK NUMBER
MEMORY START ADDRESS
POSITIVE WORD COUNT

FUNCTION/STATUS
NUMBER OF WORDS NOT TRANSFERRED

Figure 3-14
The TRAN.Block

The user must set up a TRAN block before each .TRAN request in his program. See

Section 3-3.6.41 for more information.

Address Name Function
TRNBLK DEVICE BLOCK User specifies here the absolute block
NUMBER number of the device, at which the

transfer is to begin. Block @ is the
first block on bulk storage devices.
If it is not a bulk storage device,
specify block g.

TRNBLK+2 BUFFER ADDRESS User specifies here the core memory
address at which the data transfer is to
begin.

TRNBLK+4 WORD COUNT User specifies here the total number of

16-bit words to be transferred. Word
count may be more or less than block size.

3-112

Address Name . Fuhction

TRNBLK+6 FUNCTION/STATUS Bit Bit Meaning
2 Binary = 1 - set by user
ASCII = @ - set by user
1 Write = 1 - set by user
2 Read = 1 - set by user
3-1¢9 Reserved
11 DECtape direction - set by user

g = forward
1l = reverse

12 Reserved
- 13 Invalid call (improper
function/no word count)
14 End of medium’
15 Recoverable device error (such as

parity, timing, or record length)1

TRNBLK+1g NUMBER OF WORDS NOT User leaves this entry blank. If an EOM
TRANSFERRED occurs during the transfer, the Monitor
will place in this entry the number of
words not transferred.

4.7 THE RUN BLOCK RUN Block

The RUN Block is used exclusively with the .RUN request. It is a variable length
control block containing a function word and several parameter words. The function
word is always present; any of the parameter words may be omitted, depending upon
the settings in the function word. Omitting a parameter word does not mean setting
it to zero, but rather leaving it out. Hence, no parameter word occupies a set
pésition in the RUN Block and the block itself is of variable length.’ For reference,

all words but the function word are referred to by a letter, not by a number.

" Table 3-9
Key to RUN Block Parameter Word

Word* Parameter Present If:
1 FUNCTION WORD always
A FILE BLOCK POINTER Bit 15=¢
B LINK BLOCK POINTER Bit 15=¢
[ed NAME Bit 15=1 or Bit 13=1
D NAME Bit 15=1 or Bit 13=1
E LOAD ADDRESS ’ Bit 3=1
F TRANSFER ADDRESS OFFSET Bit 4=1
G RETURN ADDRESS Bit 5=1
* Words A through G are so designated because any of them might
be omitted under certain conditions.

!This bit is cleared by the Monitor upon .TRAN request issue and is set as
appropriate upon return.

3-113

Address

Name

Function

RUNBLK

RUNBLK+A

RUNBLK+B

RUNBLK+C
and
RUNBLK+D

RUNBLK+E

RUNBLK+F

RUNBLK+G

FUNCTION

FILE BLOCK

LINK BLOCK

NAME

LOAD ADDRESS

TRANSFER ADDRESS OFFSET

RETURN ADDRESS

User specifies here the function to be
performed (see below).

Address of the File Block describing the
file which contains the load module or
core image to be loaded.

Address of the Link Block which describes
the device from which the entity is to be
loaded. Sufficient room must be provided
in the Link Block to contain the EMT
numbers of all Monitor modules which are
to be loaded (these are contained in the
load module, if there are any).

Two Radix=-5@ words containing either the
name of the specific core image to be
loaded from a CIL (bit 13=1) or the name
of the file to be loaded if no File Block
was given (bit 15=1)

SPecifieé an address at which the entity
is to be loaded, without regard to the
load address in the load module or CIL.
The entity should be position indepen~
dent. .

Specifies a value to be added to the
transfer address obtained from the load
module or CIL. Provides for alternate
entry points to the module.

Specifies an address to which control
must be passed when loading is completed.
This address may or may not be in the
loaded entity.

Figure
The RUN Block

3-15
Description

15 14 13 12

Reserved for 5
Expansion

Image

L— Reserved for Monitor
Load Module/Core

Overlay/Program
File Block, Link Block
Present/Not Present

Return Address
Transfer Address Offset

Stack Movement —mm
Argument Return and

Load Address

Transfer of Control

Figure

3-16

The RUN BLOCK Function Word

3-114

Bit g

Argument Return and Transfer of Control

Indicates control is to be returned to the instruction following the
+RUN request after completing the requested actions, unless bit 5=1.
Regardless of the setting of bit 5, the load module's transfer address,
size in bytes, and low address will be on top of the stack when bit g=@
(see Section 3-3.6.33).

Indicates control is to be switched to the transfer address of the
loaded module after completion of the load, unless bit 5=1. Regardless
of the setting of bit 5, no information is returned on the stack when
bit @=1, but information may be passed by the call to the loaded module
either on the stack or in the general registers.

Stack Movement

Indicates that the stack is not to be moved from its present position
under any condition.

Indicates that stack relocation may be necessary and that bit 2 of this

word must be tested to determine under what conditions relocation will

be necessary. The stack is never moved on short form calls (bit 15=1).

Movement Condition

Indicates that the stack is to be unconditionally moved to the area

directly below the module to be loaded. In this position the stack

base entry in the System Vector Table (SVT) will be the same as the

low address of the loaded module. The stack is never moved on short
form calls (bit 15=1). .

Indicates that the stack is to be conditionally moved, based on the
relative positions of the stack base and low address of the module to
be loaded. If the stack base entry in the SVT is higher than the low
address of the module to be loaded, then the stack should be relocated
as described above. If the stack base entry in the SVT is lower in
core or equal to the low address of the module to be loaded, then the
stack will not be relocated. '

Load Address

Indicates that no optional load address is specified in the RUN Block.
The load address information in the load module will be used.

Indicates that the address specified in the RUN Block is to be used as
the load address for the requested module. This entry overrides the
load module information.

Transfer Address Offset

Indicates that no offset from the module's transfer address is included
in the RUN Block.

Indicates that the user desires an offset, specified in the RUN Block,
to be added to the loaded module's transfer address. This offset is
added to the transfer address regardless of the setting of bit @ of
the action word.

3-115

Bit 5

Bit 12

Bit 13

Bit 14

Bit 15

Return Address

Indicates that no alternate return address is included in the RUN Block.
Return of control will thus be determined by the setting of bit f.

Indicates that an alternate return address has been specified in the
RUN Block and that this address will receive control instead of the
address following the .RUN request or the transfer address of the load
module. The setting of bit @ will still determine whether information
will be returned on the stack. ;

Reserved for Monitor

This bit should always be zero.

Load Module/Core Image

Indicates that the entity being loaded is a load module. If the file
identified by the File Block is a CIL, the first member of the CIL will
be loaded.

Indicates that the entity to be loaded is a member of Core Image
Library. The File Block identifies the CIL, while words 4 and 5 of
the RUN Block contain the name of the CIL member.

Overlay/Program

Indicates that an overlay is being loaded. Since this is a continuation
of the current program, datasets may be left open across this call. The
overlay may not extend above the low address of the resident module, nor
may it extend below the top of the Monitor area. System control tables
are not refreshed as a consequence of this call. No additional Monitor
modules may be made resident.

Indicates that a new program is being loaded. This is as if a new
program were being RUN from the keyboard. Although all datasets must
be released by the program which called RUN, RUN itself will do several
things to refresh the enviromment. This includes releasing Monitor
modules made resident by the previous program, undoing dataset assign-
ments made specifically for the previous program, loading any Monitor
modules which should be resident for this program, and changing any
program-related values in the SVT.

File Block, Link Block

Indicates that a Link Block and a File Block pointer are in the RUN
Block.

Indicates that the caller has provided a short form of the RUN Block;
the short form contains only a function word and a six-character file-
name. The Link Block and File Block are created by the .RUN request
itself. The entity to be loaded must be either in the current user's
area or in the [1,1] ‘UIC area and must have an extension of LDA or
null. All other function bits are ignored. The load module or core
image (first member of CIL) is loaded at its normal load address, as if
it were an overlay, and receives control at its normal transfer address.
The stack is not moved.

The following flowchart illustrates the processing of the function word bits.

3-116

LOAD ADDRESS IS
AS SPECIFIED IN
THE LOAD MODULE
CMD

RUN BLOCK FUNCTION WORD PROCESSING

LOAD ADDRESS IS
AS SPECIFIED IN
WORD E OF RUNBLK

Yes

No

LOAD FIRST CIL
MEMBER OR LOAD
MODULE AS SPECI-|
FIED IN WORDS A
& B OF THE
RUNBLK

LOAD CIL MEMBER

‘OR LOAD MODULE

AS SPECIFIED IN

WORDS C, D AND B |

OF THE RUNBLK

FATAL ERROR
F3g2

Load new module

*Word A of the RUNBLK specifies a
Core Image Library or Load Module
to be loaded or is unspecified. If
it is unspecified, words C and D
specify a Load Module and bit 13
must be set. If it is specified
and bit 13 is set, words C and D
specify a CIL member of the CIL
specified in word A.

Stack Movement

MOVE STACK

o~

y

TRANSFER ADDR =
INSTRUCTION
FOLLOWING .RUN
REQUEST.

Y

SET CA=TO TRAN-
SFER ADDR SPECI-
FIED IN LOAD
MODULE IN COMD

BELOW MODULE

Load new module

3-117

RUN BLOCK FUNCTION WORD PROCESSING (Cont.)

ADD OFFSET

SPECIFIED IN

WORD F OF

RUNBLK TO CA
J

SET TRANSFER
ADDR=TO WORD
G OF RUNBLK

SET TRANSFER
ADDRESS TO
CA

RETURN TO CMI
FOR BEGIN OR
RESTART

Program-

Overlay
' RETURN TO KB:
FOR BEGIN,
RESTART OR ODT
(SP) =TRANSFER
AD.
(SP) +2=MODULE
SIZE
(SP) +4=PROGRAM
LOW ADDRESS

RETURN TO CAL~
CULATED TRANS-
FER ADDRESS

3-118

PART 3
CHAPTER 5
SUBSIDIARY ROUTINES AND OVERLAYS

With the exception of .READ/.WRITE and .WAI&, all Monitor code for performing pro-

grammed requests is potentially non-resident. Since non-resident modules are

limited to a size of 256 words (the size of the swap buffer) and since many common

functions are required, many of the programmed request modules must make use of

subsidiary routines. Table 3-10 can be used in two ways:

.

1. -The table shows how many modules (in addition to the primary module) may
be loaded to satisfy a particular type of request.

2. When making certain functions resident, the user should make the primary
module resident, and also each of the subsidiary modules which may be
For example, if the user wants all .OPENI processing routines
(except for magtape) resident, he would put the following assembler
directive in his program:

called.

«GLOBL OPN. ,FOP.,LUK.,CKX.

The following summary explains the codes used in the table.

(blank)

X

subsidiary routine

subsidiary routine
is referenced

subsidiary routine

subsidiary routine
referenced

subsidiary routine
subsidiary routine

subsidiary routine

is

is

is

is

is

is

is

never called

called only when a file-structured device

called only when a linked file is referenced

called only when a contiguous file is

called only when DECtape is referenced
called only if magtape is referenced

called only if cassette is referenced

3-119

Table 3-10
EMT Service Routines

Name of Subsidiary Routine
o % i "
5 = (o] =33 Q @ £} o
o [] - Oy [o N o] AL t o~ et) 0]
EE] Z o~ m ~ g Q- = f =3l m S 3]
Y4 Q ()] ord gq Rl m - O Q s
O r - O Iy Q Q [o Ee E‘- Q
3 K = [o] + 2 Pl n /)] [R (V] +J
QI 23] - L Ole v+ cld 3 0nlio O 310 U0 00 - N
P oo 0O V|0 OlM Y|V O|M Wl & Olg gz nia [(] (4]
% § o ojm X Ol MO M E‘ O 8|l Viw V| g‘ Q P P ol o] n o
= aals s Ta S Sle Qe L BleAle TR B Al 81 S| ” A
.-43‘ O[n()i-:l[)l'-uOm‘tﬂwmﬁ:#UﬂQhﬂpﬁﬂQOgggS SOO
u-g g ™~ & E 3
o .'.' . . L] » . .] . . (] . . » . L]
— M [N [+ =] < 9 4 o~ = % 24 o =
Ba | mequese | B|E|B(E|F|E|B|E|F(8 |5 E|8(5|F]8
RWN.| .READ/WRITE!® X
OPN.| .OPENU X X X M T
OPN.| .oPENO? X X X M T
OPN.| .OPENE X X M T
OPN.| .OPENI" X X M T
OPN.| .OPENC X X
c1s.| .cLose" X
AL0.| .ALLOC X X | x
DEL.| .DELET X x|tl]ec
REN.| .RENAM X X
aPp.| .APPND X X D
DIR.| .LOOK . X X
RUN.| .RUN" X 1 x| x X Mx| x| T
INR.| .INIT®
RLS.| .RLSE"

1Always resident.
2Should never be made resident.

3The .OPENO module requires a second section if a dataset other than CMO is being
opened on the device assigned to CMO.

“The .RUN EMT calls the following routines:

JINIT

.OPENI (once for each combination of filename and UIC)
.LDR (three sections if LDA file; two if CIL file)
.LD2

.CLOSE (once for each .OPENI)

.RLSE

5The .INIT module has two sections, but the second has no name. It is resident
automatically if .INIT is resident.

3-120

PART 3
CHAPTER 6
COMMAND STRING INTERPRETER

6.1 SYSTEM PROGRAM/USER PROGRAM COMMAND STRINGS

There is a single, general format for-all systeﬁ program command strings. All
system programs use it, and any user program may also do so. These command strings
are all processed by a Monitor routine, the Command String Interpreter (CSI) which
is in Section 3-3.6.8. Any program expecting such a command first types # on tﬁe

console to indicate the fact to the operator. The general format is
ds-spec[[,ds-spec]...][<[ds—spec][,ds—spec]...]

where "ds-spec" represents a dataset specification.

6.2 CSI COMMAND FORMAT

Whenever a system program requests input through the CSI, a # will be printed on
the términal and the program'will wait for the operator's‘reply. A CSI command
may consist of one or more output dataset specifications, followed by <, followed
ﬁy one or more input dataset specifications. Spaces, horizontal TABs, and nulls
may appear anywhere in the string and are ignored. A command is terminated by
typing the RETURN key, which causes both carriage return and line feed characters
to be passed to the program. The line-feed character terminates the input.

< need not occur. If it does, at least one input file specification must appear.

Only one < per command is allowed. Commands cannot be continued from line to line.

A dataset specification must be delimited by a comma. - If no items appear before
the comma, it is interpreted as "this particular positional field will not be
used". For example, suppose a program requires three (output) data specifications.

Then the syntax:
Dataset Specification,,Dataset Specification
indicates that the second (output) dataset specified will not be generated.

Each dataset specification is a field which describes a dataset. It generally
contains inforhatioﬁ as to where to find the datéset, the file name and extension
if the dataset is a file, the ﬁser identification code associated with the file,
and one or more switches which request various actions to be performed. A dataset
specification containing all of the above elements would appear as:

dev:filnam.ext[uicl/sw. :v

1 1:...:vn/sw

2:V13.- - :Vn'f

3-121

where:

dev =

filnam =

ext =

[uic] =

The device specification consisting of two or three letters (and
often an octal digit) terminated by a colon. The letters identify
the device and the digit identifies the unit. Units must be given

in octal. The colon delimits this field with one exception; only
physical names as listed in Appendix A may be specified. For
example, DTAl: is the correct specification for DECtape, controller
A, unit 1. The exception is SY: which is a generic name for the
system residence device (e.g., on an RK system SY: is equivalent to.
DK:). If no digit appears, unit @ is assumed. If the device speci-
fication itself does not appear, the device is assumed to be the last
device specified on the current side of the <, if there is one; other-
wise, the system disk (SY:) unit @ is assumed.)

The file name specification consists of one or more letters oxr
digits, or exactly one asterisk. The first six letters or digits
specify the name. The first character must be a letter. All
letters and digits in excess of six are ignored.

The file name need not appear if the device is not file-structured
or if the program can supply a name.

The extension specification consists of a period, followed by one
or more letters or digits, or followed by exactly one asterisk.
The first three letters or digits specify the extension. All
letters or digits in excess of three are ignored.

The extension need not appear.
The asterisk is used to specify "all". For example:

* EXT specifies all files with extension .EXT,
FIL.* gpecifies all files with name FIL, and
* % specifies all files and all extensions.

The User Identification Code (UIC) specification consists of a left
square bracket, followed by one or more octal digits or exactly one
asterisk, followed by a comma, followed by one or more octal digits
or exactly one asterisk, followed by a right square bracket. The
field to the left of the comma specifies the user's group and the
field to the right of the comma specifies the user within the
group. Both fields must be given in octal, and the largest valid
octal number is 376 in both cases (§ is invalid). For example,
[12,136] is the correct specification for user number 136 of user
group 12.

NOTE
The left and right square brackets are not
visible on some keyboard keys; however, they
may be typed using SHIFT/K and SHIFT/M,
respectively.
As in filnam and .ext, the asterisk specifies "all". For example:
[*,136] specifies all users whose number is 136
[12,*] specifies all members of user group 12, and

[*,*] specifies all users.

The user identification code need not appear, in which case the
default is the identification entered with the LOGIN. command.

3-122

SWIV. tesetV_ =
/ 1 n

s
.

A switch specification consists of a slash (/), followed by one or
more letters or digits, and optionally followed by one or more
value specifications. A value specification is initially delimited
by a colon. The value itself can be null, or consist of one or
more letters, digits, periods, or dollar signs. Other characters
are illegal. The digits 8 and 9 .are legal. ‘

For examples: /DATE:12.20.69 might be a switch to enter December 2¢,

1969 in a date field.

/DATE:12::69 might enter December; 1969 in a date field.

Switches need not appear. If a switch does appeaf, it need not
contain more than one letter or digit after the slash. For example:

/S and /SWITCH2 are both legal.

The first two characters after the slash uniquely identify the
switch. For example:

/S is treated as if it were /S null.
/SWITCH1 and /SWITCH2 are both treated as /SW.

Table 3-11 summarizes the legal command syntax.

Table 3-11
.CSI Command String Syntax Rules

Item Which Item Immediately Following
Last Appeared .
. DEV: FILNAM LEXT UIC /SWITCH < Terminator *
blank! * * T E * * * ‘ * *
, * * * E * * * * *
DEV: * E * E * * * * *
FILNAM * E E * * * * * E?
<EXT * E E E * * * * E
“JuIC * E E E E * * * E
/SWITCH * E E E E_ * * hd E
< * * * E * * B E *
Legend: E indicates error. * indicates legal.

The next item encountered is the first item in the command string.
2 % ig legél following FILNAM.

For example, a device specification immediately followed by an extension specifi-

cation is an error, whereas a file name specification immediately followed by a

comma is legal.

Note that a /SWITCH specification is always legal even alone. 1In

such a case, the system device SY: and a mull filename are assumed.

3-123

6.3 CSI COMMAND EXAMPLE

An example of a complete command is:

Fl.El,,DTAl:FZ.E2/S:l<F3.E3[11,123]}DTB:F4.E4/AB,F5.E5v

which is intérpreted by CSI2 as explained below.

The first positional output dataset is to be a file named F1l and will
have extension El. Its data device is the system device unit @, and
catalogued under the ID of the user who entered the command. No switches
are associated with this dataset.

The second pbsitional output dataset will not be generated.

The third positional output dataset is to be in a file named F2 and will
have extension E2. It is to be put on the DECtape which is mounted on
unit 1 of controller A. This file is to be catalogued under the ID of
the user who entered the command. The action indicated by switch S with
value 1 is to be performed on this dataset.

The first positional input dataset is a file named F3, and its extension
is E3. It can be found on the system device unit @, catalogued under
UIC [11,123]). No switches are associated with this dataset.

The second positional input dataset is a file named F4, and its extension
is E4. It can be found on the DECtape currently mounted on controller B,
unit @. Associate the ID of the user who entered the command with this
dataset. Perform the action indicated by switch AB on this dataset.

No values are associated with the switch.

The third positional input dataset is a file named F5 and its extension
is E5, It can be found on the DECtape currently mounted on controller
B, unit @. BAssociate the ID of the user who entered the command with
this dataset. No switches are associated with this dataset.

3-124

- PART 3
CHAPTER 7
SPECIAL I/0 FUNCTIONS

.

7.1 SPECIAL FUNCTION BLOCK AND CODE

Certain I/0 functions are sufficiently device-dependent that they are not included
within the scope of the general I/O facilities. The .SPEC request (see Section
3-3.6.3) is providedlas a means of accommodating such functions. A special function
request requires oge argument, which must be either a code in the range @-255 or a
pointer to a special function block. When a special function block is used, it

must contain a code. See Figure 3-~17.

7.1.1 The Special Functions Block (used for SPEC request only)

SPCBLK: WORDS TO FOLLOW CODE

ADDITIONAL DATA
WORDS AS NEEDED BY
FUNCTION SPECIFIED

~— T~ ——

Figure 3-17
The Special Functions Block

Where a special function requires supporting data, the user must set up a Special

Functions Block in his program.

Address Name Function
SPCBLK CODE " The user identifies the function here by inserting the

appropriate code in the range p-zsslg.

SPCBLK+1 WORDS TO The size of each Special Functions Block is dependent
FOLLOW upon the Function, The user shows here how many more
words belong to the particular block.

SPCBLK+2 —— . The user places in these words data to be passed to
. the function processor or the function processor will
- : return here such items as status information, etc.

. The format in each case is determined by the function.

3-125

7.1.2 The Special Functions Code

Code Function
1 Offline (rewind and unload)
2 Write End-of-File
3 Rewind
4 Skip Recoxd(s)
5 Backspace Record(s)
6 Set Density and Parity
7 Obtain Status
8 Set Buffer Size
9 Rewind Enable/Disable
19 Space Forward Files
11 Space Reverse Files -
12 READ After Write Verification

-

In general, special function codes will have similar meanings from device to device.

When a code has no meaning for a device, it is ignored.
7.2 MAGTAPE SPECIAL FUNCTIONS

7.2.1 Special Function Block

The magtape driver requires a special function block to perform special function
requests. The following is the calling sequence for magtape special functions and
the special function block format:

MOV #SFBLK, - (SP)
MOV #LNKBLK,-(SP)

Address of special function block
Address of link block

~ e e

EMT 12 Special function EMT
SFBLK: .BYTE 3 1 Special function code (e.g., rewind)
.BYTE 3 ; Words to follow (must be 3 or larger)
WORD @ ; Tape unit status (returned by driver)
.WORD ¢ ; User specified count or control
; information
.WORD @ ; Residue count (returned by driver)

7.2.2 Special Function Code

7.2.2.1 OFFLINE (Rewind and Unload - Function Code 1)

This request causes the magtape to be rewound to the beginning-of-tape (BOT) marker
and SELECT REMOTE statué to go off. If the last command to the driver for this
device was a WRITE, three EOF's are written before rewinding. Thus, this function
could cause data to be lost if it is issuved before a CLOSE during READ/WRITE
processing.

3-126

7.2.2.2 WRITE END-OF-FILE - Function Code 2

This request writes an end-of-file (EOF) record on magtape. It may cause data to
be lost as described under OFFLINE. .

7.2.2.3 REWIND - Function Code 3

The REWIND request performs the same function as OFFLINE except that the SELECT
REMOTE status does not go off.

7.2.2.4 SKIP RECORD(S) - Function Code 4

Skips forward over the requested number of records (SFBLK+4) until either the SKIP
count is exhausted or until an EOF record is encountered, in which case the EOF is
spaced over and counted, but the opération terminates and a residue count (SFBLK+6)

is returned (if any).

7.2.2.5 BACKSPACE RECORD(S) - Function Code 5

This request skips backwards over the requested number of records until either‘the
SKIP count is exhausted or an EOF or the BOT marker is encountefed. If an EOF is
encountered it is spaced over and counted,<but the operation terminates and a’
residue count is returned (if any). If the BOT marker is encountered, it is not
skipped or counted. Instead, the operation is terminated and a residue count is

returned.

7.2.2.6 SET DENSITY AND PARITY - Function Code 6

_ DENSITY (SFBLK+5) PARITY (SFBLK+4)
¢ = 2¢@ BPI g = opD
1 = 556 BPI 1 = EVEN
2 = 8gp BPI ‘
3 = 8¢@ BPI Dump Mode

‘The default density and parity are 8@¢ BPI Dump Mode, ODD. In this mode, one byte
from core is represented as two bytes on 7-track magtape or one byte from core is
represented as one byte on 9-track magtape. For 7-track tape, changiné from this
default causes one byte from core to be represented by one byte on tape with a loss
of the two high order bits (6-7) of the byte.

3-127

7.2.2.7 TAPE UNIT STATUS - Function Code 7

This request returns the current status of the tape unit in SFBLK+2 in the
following form:

Bits Content
g -2 Last command was:

= OFFLINE

READ

WRITE

= WRITE EOF

= REWIND

SKIP RECORD
BACKSPACE RECORD

L}

aounbdbwdhDHES
i

3 -6 Unused

7 1 = TAPE AFTER EOF (BEFORE EOF IF LAST
COMMAND WAS BACKSPACE)

8 1 = TAPE AT BOT MARKER
9 1 = TAPE AFTER EOT MARKER
1g 1 = WRITE LOCK ON '
11 PARITY:
@ = oDb
1 = EVEN (DEFAULT = ODD)
12 @ = 9 TRACK
1 = 7 TRACK
13 - 14 DENSITY:
@ = 2¢¢ BPI
1 = 556 BPI
} 2 = 8p@ BPI
3 = 8@@g BPI DUMP MODE
15 1 = LAST COMMAND CAUSED ERROR .

Tape unit status is returned in SFBLK+2 for all special functions.

-~

7.2.2.8 SET BUFFER SIZE - Function Code 8
Set Buffer Size performs either of the following functions:

1. Allows the actual byte count of the data to be transferred to be
specified; the transfer is not restricted to an even byte count.

2. Allows specification of the actual byte count, allocates the buffer,
and performs READ/WRITE I/O as specified.

4
When the first option is selected, the user must ensure that all transfers start
on a word boundary. Option 1 applies only to TRAN I/O processing. The conditional
parameter symbol RECORD must be undefined. .

3-128

When Option 2 is selected, if a buffer has been allocated previously (DDB+6 ¥ 2) .,
S.RLB deallocates it and S.GTB allocates a buffer of the correct size. The DDB is
‘updated. RECORD must be defined (RECORD = @). If sufficient memory is not

available, an F@77 error npessage is issued.

For either option, the actual byte count desired is specified as a positive value

in the third word of the special function block.

The user must never specify a byte count less than 28 bytes (decimal). Because
Magnetic Tape Open processor (EMT 638) requires at least 28 bytes, files with
shorter counts cannot be OPENed or CLOSEd on magtape.)

7.2.2.9 REWIND ENABLE/DISABLE - Function Code 9

Rewind Enable/Disable provides an explicit rewind attribute to the magtape driver.
The driver retains the attribute until the specified unit is released using an

EMT 7 or until enabled or disabled again. The driver refers to the specified unit's
rewind attribute whenever it considers commanding a magtape drive (unit) to rewind.
If the attribute is disabled, the driver does not issue the rewind command. If the

-attribute is enabled, the driver issues the rewind command.

The third word of the special function block contains the attribute in the

following format.

2 indicates that rewind is enabled.
nnn indicates that rewind is disabled.

nnn must be in‘the range 1 through 3778.

7.3 CASSETTE TAPE SPECIAL FUNCTIONS

Special functions for cassette tape provide the user with access to extended
and/or optional capabilities implemented within the device driver or the actual
peripheral system. Special function requests cannot be performed until the dataset

to which they refer has been initialized using an EMT 6.

The use of special functions must be consistent with the file structure imposed on
cassette tape. The user must be careful when using special functions because

several of them reposition the tape or alter the record length.

7.3.1 Special Function Block

Cassette tape special functions must be requested using the special function

block, which has the following format.

- 3-129

3

(Fixed Constant) SPECIAL FUNCTION CODE| -

SOFTWARE FORMATTED STATUS WORD
(Set by the Driver)

COUNT/CONTROL INFORMATION
(Specified by the User)

RESIDUE COUNT
(Returned by the Driver)

15 B
Unrecognized special function codes are ignored.

The following is an assembly language example of the use of the special function
block.

MOV #SFBLK,-(SP)
MOV #LNKBLK, - (SP)

Push SFBLK's address
Push LNKBLK's address

. we e

EMT 12 Special function EMT

SFBLK: .BYTE 4 ; Special function code
.BYTE 3 ; Number of words to follow (3)
.WORD @ ; Software formatted status
.WORD -5 ; User specified gount
.WORD @ ; Residue count

The contents of these locations are not
specified as a part of the calling
sequence.
Encountering a special function block that does not contain the constant 3 in the
second byte causes the driver to print an F@33 diagnostic message on the console.

The user's program is suspended.
7.3.2 Special Function Code

7.3.2.1 OFFLINE (Rewind and Unload) - Function Code 1

The OFFLINE special function rewinds the cassette; the cassette remains on-line.
If a write function was the last command performed, OFFLINE causes an EOF and an
appropriate sentinel label to be written before the rewind occurs. Otherwise, the

only action is to rewind the cassette tape.

3-130

7.3.2.2 WEOF (Write End-of-File) - Function Code 2

The WEOF special function indicates that an end-of-file gap is to be placed on the
cassette tape. Because adjacent file gaps cannot be detected, the WEOF special

function is ignored if the last command performed was WEOF.

During READ/WRITE level transfers, data may be lost if a CLOSE is not performed

before issuing a WEOF special function.

7.3.2.3 REWIND - Function Code 3

The REWIND special function indicates that the cassette tape mounted on the speci-
fied ‘transport is to be rewound to BOT. If the last command performed was a

write function, an EOF and a sentinel label record are written before rewinding.

During READ/WRITE level transfers, data may be lost if a CLOSE is not issued before
the REWIND special function.

7.3.2.4 FBLOCK (Space Forward Blocks) - Function Code 4

The FBLOCK function indicates that the cassette tape is to be positioned forward
the specified number of blocks (records). The user specifies the number of
records. to skip as a two's complement negative integer placed in the third word

of the special function block.

Normally, expiration of a hardware timer terminates a space forward block command,
thus indicating entry into a file gap. The exception to this rule occurs if a
¢assette is positioned at BOT (i.e., within the clear leader) and a space forward

. block command is executed. In this case, tape motion is initiated and is not
‘terminated until the IRG (inter—record gap) after the first record. Performing
FBLOCK on an uninitialized cassette or on a cassette containing only file gaps
results in the tape moving until physical EOT. Blank cassettes must be initialized
using the PIP /ZE switch.

The expiration of a hardware timer fails whenever FBLOCK encounters adjacent file

gaps; i.e., two file gaps are detected and retrieved as three gaps.

The space forward blocks special function request is terminated if an EOF or EOT is

encountered.

7.3.2.5 RBLOCK (Space Reverse Blocks) - Function Code 5

The RBLOCK special function indicates that the cassette tape is to be backspaced

the specified number of blocks (records). The user specifies the number of

3-131

records to backspace as a two's complemenf negative integer placed in the third

word of the special function block.

The RBLOCK request is terminated if it encounters BOT. It cannot detect EOF when
backspacing.

RBLOCK must encounter data before it starts spacing into the IRG (inter-record gap)
that is to terminate tape motion. Therefore, if a cassette is positioned in the
IRG following a file gap and a request to backspace one record is issued, the tape

is positioned into the IRG before the data record that precedes the file gap.

7.3.2.6 PARITY (Parity/Density) - Function Code 6

The PARITY special function is not implemented for cassette tapes; if this function

code is encountered, the device driver exits immediately.

7.3.2.7 STATUS (Software Formatted Status) - Function Code 7

The STATUS special function retrieves the cassette tape peripheral system status
register contents and places an evaluated and rearranged version of it in the
second word of the special function block. The evaluation segregates the BOT from
the EOT situation and examines the possibility that the last transfer encountered
an EOF. '

Figure 3-18 illustrates the information placed in the second word of the special
function block by the STATUS request.

ERR | BC FGE | WRL | EOT | BOT | EOF | TE | RDY | OFF TR FUNC
15 141312 11 18 © 8 7 6 5 4 3 2 1]
Figure 3-18

STATUS Information

ERROR (ERR) is a collective indicator of all possible errors and is set upon
detection of any error within the TAll peripheral system. Error conditions are
defined and evaluated by the TAll control module as a specific collection of .
abnormal relationships that can exist between the function code in bits 1 through
3 and that function's state as reflected in the status bits 4 through 14. ERROR

is valid only when ready is set.

BLOCK CHECK (BC) indicates that the 16-bit cyclic redundancyrchéck (CRC) character
appended to the current block of data has failed inspection during a read function.

BLOCK CHECK is cleared upon initiating a function or during initialization.

3-132

v

Initiating a function causes the setting of the GO bit and then the acceptance of
the specified function code by the TU6@. Initialization is the execution of a
RESET instruction, execution of the computer pbwer—up sequence, or depression of

the START switch on the computer console.
BLOCK CHECK is not altered upon selection of the other transport.

FILE GAP ENTERED (FGE) indicates that a file gap has been entered during the execu-

tion of any of the following functions:

Read,
Space reverse file,

Space forward block,

Space forward file.

FILE GAP ENTERED is cleared upon initiating a function or during system initializa-
tion. It is not altered by selection of the other transport.

WRITE LOCK (WRL) indicates that the cassette is write-protected and occurs only

when a write or a write file gap function resides within the function code bits.

WRITE LOCK reflects the momentary status of the selected transport (i.e., WRITE
‘ LOCK is updated upon selectlon of the other transport if either of the correct

functions reside in the function code bits).

EOT indicates that clear leader or trailer has been detected after performing a
function that moves the tape in a forward direction., The driver must not have been

released.

BOT indicates that clear leader or trailer has been detected after perfofming a
function that moves the tape in a reverse direction. The driver must not have

been réleased.
EOF indicates either of the.following conditions:

1. During the specified unit's last read TRAN processing, an EOF was
. encountered; i.e., an attempt was made to read a file gap,

2. During the specified unit's last CLOSE processing, rewind was specified
and the tape was positioned at EOF.

) .
In either case, the driver must not have been released.

Whenever EOF is set, the tape is positioned in the IRG immediately preceding the
file gap.

3-133

TIMING ERROR (TE) indicates the loss of data during either a read or write function.
TIMING ERROR results when the software response to the transfer request exceeds the
transfer latency (1.8 milliseconds). It is cleared when a function is initiated or

during system initialization.
TIMING ERROR is not altered by selection of the other transpért.

READY (RDY) indicates the presence of power and that the selected TU6@ is prepared
to consider a function request. READY and TRANSFER REQUEST are mutually exclpsive
indicators. READY is cleared upon initiation of a function, setting of TRANSFER
REQUEST, or completion of a function. READY is set during initialization.

OFF-LINE (OFF) indicates the loss of power at the TU6@ or the lack of a cassette
cartridge in the selected transport. OFF-LINE reflects the status of the selected

transport and is updated upon selection of the other transport.

TRANSFER REQUEST (TR) indicates a demand for the system to perform a data byte
transfer or initiate the transfer termination sequence. During a read function,
TRANSFER REQUEST indicates that a data byte is to be retrieved from the TAll DBR
(7775@2) . During a write function, TRANSFER REQUEST indicates that the data byte
is to be placed in the TAll DBR. Associated with TRANSFER REQUEST is a 1.8 milli-

second latency window; if it expires data is lost.

TRANSFER REQUEST and READY are»mutually exclusive. TRANSFER REQUEST prevents
READY from being set, and once set, TRANSFER REQUEST demands servicing prior to
READY. TRANSFER REQUEST is cleared upon addressing.the TAll DBR, setting INITIATE
LAST BYTE SEQUENCE, or during system initialization.

FUNCTION (FUNC) specifies the operation to be performed. Throughout the execution
of any function except rewind, the TU6@ repeatedly refers to the function code to

determine the following:

1. Operational state,
2. Motion direction,
3. Action definition,
4. Error definition.

Therefore, the function code must not be altered during execution. FUNCTION is

cleared during initialization.

Table 3-12 defines the b{t assignments for the function codes.

3-134

Table 3-12
Function Codes

Function Code (Bit Assignment) Mnemonic
Write File Gap 280 WFG
Write ' 21 WRITE
Read : g1g READ
Space Reverse File 211 SRF
Space Reverse Block 192 SRB
Space Forward File 191 SFF
Space Forward Block 11¢ SFB
Rewind) 111 REWIND

7.3.2.8 BLOCK (Record Length Specifications) - Function Code 8

" The BLOCK special function enables the user to indicate a specific record length
to the device driver for TRAN level transfer of records with an odd number of
bytes: i.e., the data does not terminate on a word boundary. The TRAN block

permits the user to specify only a word count.

In addition, if the device driver's RECORD conditional assembly option has been
use&, the user can indicate a specific record length to both the device driver and
the file structure. This facility provides the user with READ/WRITE level transfer
of records with any fixed length. This does not imply support of variable-length

record transfer.

The user specifies the number of bytes per record as two's complement positive

integer placed into the third word of the special function block.

BLOCK special function request servicing occurs independent of the cassette tape

peripheral system.

7.3.2.92 GOVERN (Enable/Disable) - Function Code 9

The GOVERN special function provides an explicit rewind attribute for the purpose
of regulating attempts to rewind the specified unit. Both OPEN and CLOSE processing
execute rewind commands. The device driver retains each unit's rewind attribute
until the attribute is explicitly altered or until the unit is released. The user
places the rewind attribute in the third word of the special function block using

the following conventions:

= enable rewinds,

1-3775 = disable rewinds.

L 3-135

The device driver refers to the specified unit's rewind attribute whenever con-
sidering the issuance of a rewind command. If disabled, the device driver does
not issue the command. If enabled, the device driver issues the command.. Unless
explicitly altered, each unit's rewind attribute is enabled, and when any unit is

released, the unit's rewind attribute is reset to enable rewinds.

7.3.2.10 FFILE (Space Forward Files) - Function Code 18

The FFILE special function indicates that the cassette tape is to be positioned
forward the specified number of files, i.e., file gaps. The user specifies the
number of files to be skipped as a two's complement negative integer placed in

the third word of the speciai function block.
The space forward files request is terminated if it encounters physical EOT.

If a cassette is positioned within the IRG following the last record of a file and
a space forward file command is executed, the tape is positioned approximately two)

thirds the distance into the file gap.

Normally, expiration of a hardware timer terminates a space forward file command,
thus indicating entry into a file gap. The exception to this occurs if a cassette
is positioned at BOT (within the clear leader) and an FFILE commancl is executed.
Then tape motion is initiated and is not terminated until the first. file is skipped.
Thus, performing FFILE on either an uninitialized cassette or a cassette containing
only file gaps does not terminate until EOT. Blank cassettes must be initialized
using the /ZE switch of PIP.

The expiration of a hardware timer techniqué does not work whenever adjacent file
gaps are encountered; e.g., two file gaps are detected and retrieved as three file

gaps.

7.3.2.11 RFILE (Space Reverse Files) - Function Code 11

The RFILE special function indicates the. cassette tape is to be reverse positioned
the specified number of files. The user indicates the number of files as a two's
‘complement negative integer placed in the third word of the special function block.
The space reverse files is terminated if BOT is encountered; i.e., clear leader is

detected.

Under all circumstances, data must be encountered before a RFILE request will begin
seeking the file gap that is to terminate motion. Specifically, if a cassette is
positioned within an IRG following a file gap and RFILE is issued, the tape is
backspaced into the file gap preceding the last file.

3-136

7.3.2.12 VCHECK (Read After Write Verification) - Function Code 12

The VCHECK special function request permits the user to enable the read after write
verification so that he can ensure the retrievability of data transferred to the
cassette. This optional feature requires use of the conditional assémbly VERIFY
symbol{ The verifidation attribute is specified in the third word of the special

function block as follows:

disable verification,

2

1_3778 = enable verification.
3

The device driver refers to the appropriate uhit's verification attribute when
initiating an output transfer. Unless explicitly altered, each unit's verification
attribute is disabled, and upon releasing a unit, the unit's verification attribute

is reset to disable verification.

7.4 CARD READER SPECIAL FUNCTION (CODE 1)

Normally, the default conditions for the card reader are established automatically
for the caller as part of the OPENing process. Under unusual circumstances,

performing an OPEN may not be desirable or possible.

For example, the Operating System's Batch Stream Manager only OPENs the batch
stream once for an unknown number of independent jobs, each of which expects the
card reader's default condition to be established. If the batch stream has been

assigned to the card reader, a problem arises.

Thus, the card reader special function has been implemented to establish the

default conditions as follows:

1. Internal device driver initialization,
2. Blank suppression off,

3. Use of the translation table specified during system initialization,
(usually @29).

The card reader special function is requested using the following Assembly language

sequence.

MOV #1,-(SP) i Push special function code
MOV #LNKBLK,~(SP) ; Push LNKBLK address
EMT 12 i Special function EMT

-
-
.

Special function codes not recognizéd by the system are ignored.

3-137

7.5 LS1l1 PRINTER.SPECIAL FUNCTION (CODE 1)

The printer special function can only be specified for the Centronics printer.

The printer special function code allows the user to specify whether the qext line
to be printed is permitted to use the elongated size or simply the normal character
size. Because the elongated size doubles the width of the letters, no more than

66 characters can be printed on one line.
The special function block for the printer has the following format.

“,

nnn

nnn equals @ to disable character elongation.

nnn equals any number in the range 1 through 377

to enable elongation. 8

The actual code to command the line printer to elongate the line is 688.

3-138

2= . OO NV W

o pa b
EWN-S

E X S Y
o ow

VN e
Lol] 0

n
n

M
=W

-
N

N
~No

N
0 o

W
Ll -~]

PART 3
CHAPTER 8
EXAMPLE PROGRAMS

The two following example program listings illustrate methods for utilizing

DOS/BATCH Monitor services.

programmed requests afé used.

Example Program #1

pdeoa

&I

opoRe

poeye
20014

00020

20024
0026

eeR32

poR36
22040

02044

eeose
paos52

00056
peo6e

22064
02066

-

Note that the assembly language expansions oflthe

iPROGRAM WHICH TYPES A MESSAGE ON THE TELETYPE WHILE

1ACCEPTING A MESSAGE FROM THE KEYBOARD.

000020 REsXD
goegel Risx1
000002 Reax2
00003 R3IsX3
200004 R4=X4
000085 RS5=XS
poeaQe SP=x6
povee7 PCxex7
080@15 CR=1S
poeei2 LFeg2
006011 HT=myl

200187 ERQOR=1@7

B12746 BEGINI
geo312*
104006
RL2T46

0008324°

104006
012746
08@356*
012746
gep3ia’
104016
012746
000356
032746
002324°
104016
212746
pee37a*
012746
ova312*
104002

212700

000170° .
005020 LOOP1s
o20027 '
oeg3a2*
103774
L2746
peo3le’

MOV

EMT
May

EMT

MOV
MoV

EMT
Moy

MOV

EMT
mMov

MoV

EMT
Moy

CLR
CMP

BLO

_Mov

#LNK1 = (SP)

6
HLNK2,=~(SP)

6
#FIL2,=(5P)

#LNK1,=(SP)
16

HFIL2,~(SP)

#LNK2,=(SP)

16
#MSGL,»(SP)
HLNKY, ~(SP)

2 \
#LIBL+6,RO

thu)+
RB,#LIBL+8R,

LOOPY
#LNK1,=(SP)

3-139

PROGRAM REPEATS

$INIT LNK{
$INIT LNK2

JOPEN FOR OUTPUYT
!

JOPEN FOR INRYT
PHRITE THE MESSAGE

$SET THE BUFFER POINTER

$CLEAR THE ADDRESS AND INCREMENT
$END OF BUFFER?

$NO, GO BACK AND CONTINUE CLEARIN
JYES, CONTINUE

32
33

34

35
36

37
38
39
40

41
42

43
44

45
46

47

48

49
50
51
52
53
54

58
56
57
58
59
64

61
62
63
64
65

66
67
68

69

70

7

opo72
0B0e7T4

o100

oRi24
peiee

go1ie
o114

ep122
08124

00130
o9132

0136
00140

20144
02146

ge1s2
o154

eoi60
gay6p
ga160
go16p
00162
pe164d
2165
pele6

]R3
po3ie2
P0314

eR31e

00317
00320
p@3a2
20324
0326
20330
20331
2e332
po334
00336
00337
00340
20342
2d344

‘00346

pe3se
pR3s52
20354
08355

104004
212746
p0B162"
912746
0083247
104024
212746
20g324°
104001
132767
000107
200043
201016
212746
@po312°
104017
212746
000324
184017
216746
200146
104007
212746
200324
104207
000167
177620
 ERRy3
ERR23
“ERR3t
104060
go0128 LIB13

TT.

200
200000
200310°
200460"
200000 LNK1t
2160827

201

200
g42420
200160°
200000 LNK21
016030

ee1

200
pu2420
000000

002

e0e
000008 FIL11
000000
200000
200000
200000
200000

204

0oo

EMT
mMav

Mov

EMT
Moy

EMT
8178

BNE
MoV

EMT
MOV

EMT
MOoY

EMT
Moy

EMT
JHP

EMT
+ WORD
+BYTE

+WORD
«=,+80,
2+ WORD
+WORD
«RADSD
+BYTE

LRADS@
+WORD
LWORD
+RADS®
,BYTE

+RADSE
+HWORD
+BYTE

«WORD

+HORD
«BYTE

1
#LIB1,=(SP)
#LNK2,=(SP)

4
#LNK2,=(8P)

T .
#EROR,LIB1+3

ERR3
#LNK1,=(SP)

17
BLNK2,=(S8P)
17 ‘
LNK1,=(SP)

7
HLNK2,=(SP)

7
BEGIN

60
8a,
2,0

2

ERRY
2
/DS4/
1,0

/KB/
ERRZ
0
/Ds2/
1,0

/KB/
e
2,0

,9,0,8,0

4,0

3-140

sNO,READ LNKZ,LIB}

JWAIT
JANY ERRORS?

)YES, GO TO THE ERROR #3 ADDRESS
INO, ,CLOSE LNK1

1.CLOSE LNK2
1,RLSE LNK1

?+.RLSE LNK2

JEXIT ON ANY ERROR
pMAX BYTE COQUNT
JFORMATTED ASCII

JACTUAL BYTE COUNT
JRESERVE THE BUFFER SPACE
$ERROR RETURN ADDRESS
sPOINTER

sLOGICAL NAME

JUNIT @ ‘

$KEYBOARD
JERROR RETURN ADDRESS

!

$KEYBOARD

960 TO FATAL ERROR MESSAGE
JOPEN FOR OUTPUT

gJNO NAME, EXT, UIC, OR PROTECT

360 TO FATAL ERROR
JOPEN FOR INPUT

72

73
74

75
76

77

78

79

20356 200000 FIL2%

00360 000000
00362000000
00364 000000@
20366 000000
00370 pQa210
pe372 . po0
PB373 200

MSGYe

80374 000203
0@376 015
00377 012
po4ge 011
0R4g1 B840
ee4g2 123
0e4e3 120
00404 185
00405 104
00426 113
00407 040
00410 122
pe41t 117
eR412 125
80413 1a7
00414 110
00415 114
00416 134
00417 040
BR420 124
ee421 117
0e422 04D
ee423 134
po424 117
00425 125
0R426 - 122
00427 040
00430 114
0e43t 111
pe432 124
00433 124
00434 314 -
00435 105
00436 ©40
00437 102
02440 117
ee44y 13y
0R442 D4R
e0443 @15
Bo444 012
00445 811
0R446 040
00447 101
00450 116
ee4s51 - 104
0e4s52 040
90453 102
08454 105
PR4SS 101
0@456 124
09457 04D
00460 110
00461 11}

eg4e62 115

+ WORD

«WORD
#BYTE

«WORD
+BYTE

2,2,0,0,0

21e
2,0

MSGEND=MSG1mb
CRILF HT

$NO NAME, EXT ,UIC, OR PROTECT

1MAX BYTE COUN
p)FORMATTED ASCII

JACTUAL BYTE COUNT

+ASCII / SPEAK ROUGHLY TO YOUR LITTLE BOY /

«BYTE

+ASCII

CRoLF o HT

/ AND BEAT HIM WHEN ME SNEEZES /

3-141

81

82
83

00463
00464
0465
go4es
00467
20470
Q@471
no472
28473
00474
o475
0e476
28477
o500
28581
gesee
pasa3
205084
20505
22506
20507
2esie
20511
gas512
20513
808514
29515
2e516
pe517
o520
@521
p@s22
20523
P0524
peseas
BRsSee
2es527
2530
08531
2532
pe533
o534
@535
Pe536
00537

02540

208541
@542
PA543
209544
28545
POS46
pes47
pas550
208551
@552
2e553
20554
p@55s
28556
90557
peS60

040
127
110
185
116
g4
110
185
04
123
116
185
105
132
105
123
240
245
012
11
au4e
110
185
4@
117
116
114
131
040
104
117
105
123
4o
111
124
24e
124
117
840
101
116
116
117
134
040
2006

o1t

\®

240
102
105
183
101
125
123
185
240
110
185
40
113
116

+«BYTE CRILF) NT

«.ASCII + HE ONLY DOES JT YO ANNOY /

«BYTE CR LF/HY
«ASCII / BECAUSE HE KNOWS IT TEASES /

3-142

84

85
86
87

pB561
pese62
pasel
pased
20565
PAS66
pe567
92570
22571
2es7e
pes73
00574
2@s75
02576
28577
PR6EBR

BEGIN
EROR =
ERR3

HT =
LNKY
MSGEND=

ABS,

117
127
123
240
111
124
040
124
185
101
123
1085
123
pao
215
p12
PEe6R21 #*MSGEND=,

pooeee’

o000ReR

peo1e7

PR@L6OR

eeop1l

008312R
P0o6DIR

oeo0ee poo
gegee2 021

ERRORS DETECTED: @

FREE CORE:

r LP3<MON} , MAC

Example Program #2:

gooen

Qeeo4
eaeoe

gogia
eeei4

pepae
eope2

+BYTE CR,LF

«EVEN

+END BEGIN
CR = 000015
ERR} 2oL 60BR
FIL} eea34er
LF = Qoegpie
LNK2 200324R
MSG1 00037PR

9107, WORDS

CReLF = Xxxnwx GX
ERR2 @00160R
FIiLe 2023S6R
LI81} Ae0162R
LOOPY @0085S6R

$PROGRAM TO SUPLICATE A PAPER TAPE

!
peoeoa
papeae
poeea?
2280015
pgogie
Pt
gooo04
eggeee
peeia7
040000
geesior
212746 BEGING
o0D4L4”
104006
12746
pog4ee’
104006
812746
o0e344*
104006
pL2746
oop370

MoV

-RO=X0Q

SP=¥%6
PC=X7
CR=15
LFz12
HT=1}
RD=04
WR=Q2
6=1087
EOD=4000
EROR=107

EMT
MOV

EMT
Mav

EMT
MOV

JUSING TRAN=LEVEL REQUESTS

2

#LNK1,=(5P)

é
#LNK2,»(SP)

6 :
#LNK3,=(SP)

é :
#LNK4,=(5P)

. 3-143

JTRAN BLOCK FUNCTION CODE FOR ,READ
$TRANBLOCK FUNCTION CODE FOR ,WRITE

JASCII G
JTRANBLOCK FUNCTION/STATUSZEOQD
1o INIT LNKL

P« INIT LNK2
$o INIT LNK3

s« INIT [NK4

22
23

24

as
26
27
28

29
3o

31
32

33

34
35

36
37

38
39

49
41
42
43

44
45

46
47

(1]
49

5@
51

52

. 53
54

egBae
pee3g

0034

pae4e
20046
28@52
20056

po@s6e
pooed

20070
pea7e

epe7e

polez
20104

oP110
o112

00120
pei2ea

oB130

ee132.

0140
Po144

29150
pa152

BeL56
20160

pR166
pei7o

PB476
0204

gg21e
gaaie

104006
0050867
000210
012767
200144
200342
905067
200314
05267
200303
012746
opR246*
212746
0oA344”
104002
012746
280344°
104001
012746
200354°
212746
0008370°
104004
g12746
200370°
104001
132767
200187
00@237
001050
122767
0e0107
pe@232
801337
112767
000004
2eR246
012746
200400°
212746
0004147
184010
012746
0004147
104001
232767
p40000
200220
P01406
166767
000214
000206

012767
020001}
200040
112767
eoeese
PR0174
232746
poo4en’
812746
poe426*

START:

LOOPR$

ENDW3

LOOPHS

EMT
CLR

MoV

CLR
CLR
MOV
MOV

EMT
MOV

EMT
MOV

MOV

EMT
Moy

EMT
BITB

BNE
CMPB

BNE
MOVB
MOV
MoV

EMT
MOV

EMT
BIT

BEG
SuUB

Mov

move

MOV

Moy

6
FLAGY

#100,,BLK1+4

BUF1+6
BUF§+1

 #MSGY,=(SP)

#LNK3,=(SP)

2
B¥LNK3,~(SP)

1
#BUF1,=(SP)

#¥LNK&4, = (SP)
4
#LNK4,=(SP)
1
MEROR,BUF§+3

ERR6
KG,BUF1+6

START
#RD,BLK1i+6

#BLK1,~(SP)
#LNKL,=(SP)
10
#LNKL,=(SP)
1
#EOD,BLK1+6

LOOPN
BLK1+10,BLK144

#1,FLAGY
#HR,)BLKL*6

#BLK1,=(SP)
¥LNK2,=(SP)

3-144

$ZERQ END FLAG
$INITIALIZE BUFFER SIZE

s INITIALIZE INPUT BUFFER

PINITIALIZE INPUT BUFFER

'.NRITE‘LNKSF MSG1

'
o WAXIT LNK3

1«READ LNK4, BUF1

JoWALT LNK4Y

$16?
sYESy; SET UP READ

7 TRAN LNK1, BLK1

$oNAIT LNK1

pTESY FUNCTION FOR EOD

_ sRESET WORD COUNT TO FINAL

’ ‘ BUFFERS SIZE
1SET EOD FLAG

$SET UP WRITE

§ o TRAN LNKW,BLKY

55
56

57
S8

59
60
61
62
63
64
65
66
67
68
69

71

72
73

74

75

76

gee22
eeez24

o230
po232

0ge3é
og240
ege4e
ooa42
00242
0042
gaz242
goa42
pRe42
90242
00244
po246
0250
oees51
oeese
0254
0e255
B@a2se
2oes7
0060
0261
pacee
20263
paced
00265
pece6s
00267
eaz7e
202714
pR27e

-pear3

peary
28275

epeve

28277
PR300
ga301
20302
20303
00304
ee3es
ge3ee
e@3ar
20310
00311
pe312
20313
2e314
20315
22316
20317
aa3ao
6R321
golee
20323
2@324
go3as

104010
212746
000426°
104201
205767
geeecs
201274
000734

104060
eoeeeoe
oeoee7
o0
220
epeoe67
2e06
14
114
117
101
1084
e4e
124
.10l
12@
185
o4
111
116
124
117
P40
122
105
1014
104
105
122
215
212
211
129
125
123
110
040
240
L1
1a7
254
249
103
122
a40
Q40
040
127

ERR11
ERR21
ERR3:
ERR4s
ERRS:
ERRG®
ERR7:

FLAGLS
MSG1s

EMT
MOV

EMY
TSY

BNE
BR

EMT

«WORD
+KORD
+BYTE

« WORD
«BYTE

«ASCII /LOAD TAPE INTO READER/

»BYTE

10
HLNK2,=(SP)

1
FLAGY

START
LLOOPR

60

e
55. °
2,02

55,
CRGLF,HT

CRyLF,HT

JoWAIT LNK2

$END OF DATA?
JYES,START OVER

§NO, GET MORE

JEXIT ON ANY ERROR
}1=>E0D RECEIVED ON READ

LASCITI /PUSH G, CR WHEN READY/

3=-145

17

78
79
89
81
82

a3
84
85

86
87
88
89"
90
921
92

93
94
95
96
97
98
99
108
10}
12

103
124
18%
106
107

108
109
110

oR326
pe327
ea33e
283314
20332
20333
2334
208335
208336
20337
Qo340

20342
oR344
@346
9350
P@351
ee3s5e
20354
ee356
8@357
PR360

28366
2@37e
28372
28374
20375
20376
20400
204@2
20404
20406
20410
20412
2414
P416
0420
gu21
2422
@424
2426
0430
2432
0433
434
2436

110
185
116
040
j22
185
101
104
134
e1s
g1e

peoe42°*
2000088 LNK31s
16027
ga1
eoeo
42420
gooeed
- 900
200
poeer4
200366"

BUF1:

pegz24e2*
200000 LNK4?
p16pe7

13}

poeo
242420
000022 BLKL:
2P0436°
200144
pooe00o
20000
ope242°
200000 LNKi)
2160314

eay

000
B6332a
poeagz242°
200000 LNK23
216032

021

200
063200
pAR6@2"BUF28

coogoa’

+BYTE CR¢LF
«EVEN

+WORD ERR3
+ WORD 2
+«RADSB /DSY{/
«BYTE 1,0
«RADSE /KB/
«WORD 4
+BYTE 2,0
«WORD 4

1 Betd

«EVEN

+ WORD ERRY4
» WORD 0
+RADS® /DS1/
«BYTE 1,08
+RADSE /KB/
«WORD)
+WORD BUFe
+WORD 100,
+WORD %]

« WORD 4]
«WORD ERR3
«WORD ("]
+RADSE /DS3/
+BYTE 1,0
«RADSO /PR/
2 WORD ERR2
«WORD (%]
«RADS@® /DS4/
«BYTE i,0
+RADSB /PP/
e Se%100,

«END

BEGIN

3-146

BEGIN
BUF2 2@0436R
ENDW @@0170R
ERRY Q@00242R
ERR4 @PB242R
ERRY POB242R
HT = 000011
LNK2 @BB426R
LOOPR @@8@332R
RD = 008024
. ABS, 000000
000602
ERRORS DETECTEDS
FREE CORE1
¢ LP 1 €MON2, MAC

00Q000R

1]
291

9094, WORDS

BLKY
CR
EOD]
ERR2
ERRS
FLAG1Y
LF s
LNK3
LOOPW
START

PO040Q0R
gepe1s
e40000
000242R

@@0242R

00@244R
goeeala

220@344R
PRA2084R
000030R

3-147

BUF§
CR«LF
EROR
ERR3
ERRé

LNK1
LNK4

 MSGY

WR

PROA3S4R
kXA GX
geesR7
@00242R
20a242R
geesey
BAR4L4R
288374R
P00246R
00o00e

PART 3
CHAPTER 9

SUMMARY OF MONITOR COMMANDS
AND PROGRAMMED REQUESTS

9.1 SUMMARY OF MONITOR COMMANDS

Command

Commands to Allocate System Resources

AS[SIGN]

Commands to Manipulate.Core Images

RU[N]
GE[T]

DU [MP]

sa[VE]

Commands to Start a Program
BE [GIN]
CO[NTINUE]

RE [START]

Commands to Stop a Program

sT[opP]

WA[IT]

KI[LL]

Usage
Assign a physical device to a logical device name

Load and begin a program
Load a program

Write a specified core area onto a device
as a core image

Write a program onto a device in loader
format

Start execution of a program
Resume execution of a halted program

Restart execution of a previously operating
program

Halt the current program, including any
I/0 in progress

Halt current program after finishing any
I1/0 in progress

Halt the current program, finish any I/0
in progress, close all open files, and
pass control back to the Monitor

Commands to Exchange Information with the System

DA[TE]
TI [ME]
LO[GIN]
MO [DIFY]

FI[NISH]

Fetch/Specify date

Fetch/épecify time

Enter User Identification Code
Modify contents of memory location

Log off system

3-148

Command Usage

Miscellaneous Commands

EC[HO] . . Disable/enable keyboard. echo. to user
program
PR[INT] .) Disable/enable terminal output from

user program
EN[D] ‘) End input from a device

oD [T] : Begin operation of On-Line Debugger (ODT)

3-149

9.2 SUMMARY OF MONITOR PROGRAMMED REQUESTS

86-¢

LS IWH
(4S)-'IT9ISO# AOW

ATIISO# ZTISO®

Z 3aed - 20vIIUI ISD

¢Iso*

LS-€

9SG IWF
(ds) - JNTAWDH. AOW

JINGaWO# TISO®

T 3xed - 20BII8IUT ISO

TISO°

_95-¢

17 IWZ
(as)-'gd1# AOW

Cr (0o

9ZTS 230D UTEIqO

TI0O"

SS-¢

LT IWNE
(dS) = ITDINTH# AOHW

ATDINT# ISOTIO°

joseleq e 9SOTD

ds010°

vs-¢€

1T IWd
(dS) = TIDINT# AOW
(dS) = ATr1d# AOKW

ATETIGH ATDINTH AD0TL”

}o0Tg ®© I9ISuel]

2001g°

£5-¢

¥ INdg

(ds)-'G# AOW
(dS) - “¥aav$ AOW
(dS) - QIOM# AOW

@IOM# ‘¥AdY# OZNIgG®

IIOSY Te300 03 AJeurd 3ISAUCD

‘ogNIg®

€G-t

¥ IWdg

(ds)-‘g# AOW
(ds) -‘¥gaavé AOW
(gs) - qIoM# AOW

.

QIOM$ ‘9aav# dZNIg”

IIOSY TewToeq 03 AZeuTld 3ID2AUO0D

dgNIg-

(A%t

. ZZ IWd
(dS) = XIDINT# AOW
(dS) -’ 1SYId# AOW
(ds)~‘aNODIS# AOW

ANOOISH ‘ LSUTd# ' MTDINTH# ANAJY®

9TTd pajuTrl © 03 puaddy

aNddav-*

0s-¢

ST IWd
(dS) - ATDINT# AOW
(dS)-‘MIgIId# AOW

(dS)~‘N# AOKW

Nt TITI A4 ATDINTH D0TTY”

9TTd SnonSTIu0D © 23°O0TTY

o0TIY”

abeg o3 xo39y

(sejou @os) uorsuedxy
abenbue] ATquessSY

(se3jou oes)
TTeD oxoel

uotjoung

OTUOWRUK
TeqoTd

“

3-150

9y I

99-¢ (aS)~'v1T# AOK JAOILD* | bery Kelxsao ayj 38s pue urTeIqO JAAOID*
- v Ind
S9-¢ (ds)-'€TT1# AOW YIOLD® | UOTIPWIOFUT OOTD wosAsS uTeIqo NI0ID*
17 IWd AzxeaqrT
G9~-¢ (ds)~-'TTT# AOW TIDLD* obewl 910D FO SSBAPPT ISTA ISH TIDLD*
*ueaIls
L6~€ L9 IWZ FaA0O0 HSNII" yojeq aya ur sdur] sossedig HSOTd*
y9-¢€ g9 Iwd IIXd" IOJTUOK 03 ITXH IIXE*
79 IWH
(ds)~-"3a0D AOW
(ds)-‘aavIid AOW aojutad SUTT 8yl 03"
G6~¢ (ds) ~‘aa¥MoOT AOK 800D’ AaVIH’ AOYMOT dWnd* SUOT3Eed0T 9100 pPaTFToads dumg JWna-
Zy IWA
(as)-‘z# AOW
po-€ (ds)~-‘3aav4 AOW Jaav# NIdeds ,humﬁﬂm,ou IIOSY Tewtdaq 3I2AU0D NIdza-
T2 IWd -
(dS) = NTIDINT# AOW :
£9-¢ (dS) =’ TITITI4 AOW MIGIIA# ITDINTE LTI OTTJd ® 939T2d ILa19a°
TV IHE
29-¢ (dS)="c@dT# AOW qIva- 93eQ UTeIq0 aLva*
99 IWd
(ds)-‘3aod# AOW
(ds)-‘¥9aav# AOW
S9pod TTY
(dS)-‘dNTYA AOKW
_ R *Afuo ¢ pue g
€ 10 ¢ = ®po0 31 SopoD Y3iTM paT3IToeds jusuw
- -nb.
(dS)=*Z+aNTYA AOW nbre Teuorido ue ST HNTYA BUTI38 ASIORICYD IIOSY
T9-¢ € = 9poD II [Z0TIYA* 19Qav# ‘ 2000# IALAD® O3 SWTL X0 93eQ AIRUIY 3IIASAUCD LALAD*
abeg o3 xayey (sejou 29s) uorsuedxg (sej0u 29s) uoT3IOdOUNI OTUOCWSUR
obenbue] ATquessy TTeD oaodel TeqOTd

3-151

9T IWd
(dS) - TIDINT# ACKH
(ds) = NITITd# AOKW

WIGTId#’ XIDINTH# NIJO®

3ase3eg ®© uedo

NId0*

17 IWd
(ds)-‘T8T1# AOW

INOW*

X073 TUOK
JUSpTSaY FO 82TS UTEIA0

UNOW*

Ty IWd
(as)-'z@1# AOHW

ANOW*

9ZTS I03TUOW TINJ UTeIq0

JINOW*

69-€

T IWI
(dS) = WIDINT# AOW
(ds)- 910
(ds)-*NTIaIId# AOKW

:pat3Toads ST jusu
-nbxe Teuor3jdo uaym IO

PT IWdg
(dS) = ATDINT# AOW
(d8) - 'MT1aIId# AOW

jusumbre Teuorido ue ST T’

[T/ 1XIg1I a4 ATDINTE M00T”

yoaesas A103091T1d

Jq0071°

89—t

9 IWH
(ds) = AIDMINT# AOW

ATDANTH LINI®

jose3eq ® 9ZTTeRTITUI

LINI®

89-¢

v IWg
(as)-'s@T# AOHW

oINLD*

oIN U3IIND 38D

OINLD*

L9-¢

v IWg
(ds)-‘v# AOW
(as)- ¥

ALSLD®

SSPIppY 9sed O3S oYU 32D

ALSLO*

L9-€

1% IWI
(dS)=‘ZT1# AOW
(das)- 910
(as)- ¥1d

ATILD®

UOT3PWIOFUT SOTASP NN UTEIJ0

AQILD*

99-¢t

1% IWE
(dS)-‘S# AOM
(as)~- 910

¥idLo*

ssaappy Mo wexboxd 399

YidLo-*

obeg 03 19399

(se3ou @9s) uorsuedxd
abenbue ATqUOSSY

(sejou 99s)
TTeD OIdeW

uoT3zoung

OTUOWSUR
Teqo1d

3-152

8-t

gz IWd
(dS) = ATDINT# AOW
(dS) - WUYNAIO# AOW
(dS) - WYNMAN# AOW

WYNMAN# ‘ WENQTO# / MTDINT# WYNDI *

9TTd ® sureusy

WYNET *

18-¢

SZ IWA
(dS) ~* XIDANTH# AOW
(ds) =’ MIg0Ta# AOW

MAmUMM#~MQmMZA#;QMUmm.

9TTJ ® UT pIodoay
peTyToads ® 93TaIM JO pesy

qaoag *

08-¢

¥ LiWd
(ds) =~ ATDINT# AOW
(ds)-‘gauandgs# AOW

AHINGH MTDINTH qQYdI *

90TA™(J WOXF pesdy

avag-

6L-E

2y IWd

(dS)-*T# AOW
(ds)-*¥aav# AOW
(dS) - QIOM# AOW

@IOM# ' 4aav# d4navyd-*

syoedun ITIOSY @s-XTped

danawa-

9L-¢

v IWA
.(ds)- ¥10
(dS)-"9aav$ AOW

Jaav# Adavy-

3oed IIOSY @FS-XTpeyd

Adavya”

9L-¢

v IWA
(ds)-‘v# AOW
(ds)-‘¥9aav# AOKW

Jaav¢ NIdeo®

Axeurg o3 IIDSY TPIO0 IIDAUOD

NIgZO*

cL-¢t

ONEJ0* I03F €T
INHIJO™ I0F ¥
dANZdo*~ x03 ¢
ONFJO* 03 T
ONEdO" 703 T = HJAOD

9T IW=
(dS) = AIDINT# AOH
(ds)-'9 AOW

(9) 2-*3q00# AOW

W/ MTIDINTE XNIJO*

39se3eq v usadp

XNIdO*

9beg o3 xagysy

{se30u @9s) uorsuedxdm
obenbue] ATquWessy

(se3j0u 99s)
TTeD oIdey

uoT3ioung

OTUOWDUR
TeqoTd

3-153

T6-¢€

1¥ IWI
(dS)-'vgT1# AOW

dWIL®

Keg 3o awtTl utelqo

IWIL®

06-¢

% IWE
(ds)-"9gT# AOW

AQSAS*®

sureN 9oTASQ we3sis uTelqo

AQSAS®

68-¢€

7 IWZ
(as)-'v# AOW
(ds)-‘¥aav# AOW

Jaqv# ALSIS®

ssoippy osed }oels Iyl 3I°S

ALSLS*®

68-€

1 IWZ
(ds)-‘s# AOW
(dS)-“9aad# AOW

Jaav# vIdLs”®

. ssoappy mo1 uexboig 398

Y1dLs®

88-¢

19 IWI

(ds)-‘c# AOW
(dsS)~’'MSd# AOW
(ds) - ‘3aav# AOW

¥aav#mMsd# Nddrs-

(S7/T1) 20309A uoTidedxa
jutog but3leold Y3 SZTTRTITUI

ndans-

L8-E

€T IWA
(ds) =~ TIDINT# AOW

ATDANTE IVLS®

sn3e3ls JIDTAY UTRIJO

IYLS*®

98-¢

ZT IWdg
(dS) = YIDINT# AOW
(ds)-’99¥0ds# AOW

DAYIISH MTDINT# OFdS®

uoT3loung Teroads

Jdds*®

ve-¢€

S9 Ind
(dS) - * TTENMEH AOW

ATENOE# N °

Aeraaa0 10 wexboxd e peol

NOY*

v8-¢

v Ing
(ds)-‘2# AOW
(dS) - 9aaq¥$ AOW

Jaav# IALSE”

- sso1ppe 3IR3ISTY 3I9S

TALSY

£8-¢t

L IWI
(dS) = WIDINT# AOW

ATDANTH ASTI®

39seled v 35Ty

dsTd-”

2beg 03 x939y

.

{s@30u 29s) uoTrsuedxd
abenbue] ATquesSsy

(sajou 99s)
11RO oxdeR

uot3oung

STUOWAUR
TeqOTd

3-154

Z IWg
(ds) = ATDINT# AOW

S6-¢€ (ds)-'¥aquang# AOW VAHING#H ‘ MTDINTH TLTUM" 90TASQ ® UO O3TIM TLTIM"
¢ INg

{dS) = ‘MTDINT# AOW Jyaay o3 |

p6—-¢ Emvt.maam# AOHW JAAY# TIDINT# JIIYM® uanlay {uoTisTdwod I0F 3ITeM NEHmk.
T IWd

£€6-¢€ (ds) = IIDINTH# AOW ATDINTH LIUYM® uor3eTduo) I0F 3TeM LIVYM®
1y Ind
(dS)-'T# AOW
(dS)-*SNIVISH# AOW

£6-¢ (ds) - 3adv# AOW Yaav4’ SQIVIS# dvdL° I0309A dWdL 39S daL”
gT IW=

(dS) = ATDINT# AOW o

16-¢€ (dS) = TIaNIL# AOW NTINN L4 ' TIDINT# NYEL® }ooTd @3nTOSAY IL9Isueal NVdL°

obeg o1 aagey {sojou 939s) uotrsuedxy (se30u 29s8) uotjoung OTUOCURUR

abenbue] ATqUOSSY TTeD OIoeR TedoTd

3-155

	3-0001
	3-0002
	3-0003
	3-0004
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-140
	3-141
	3-142
	3-143
	3-144
	3-145
	3-146
	3-147
	3-148
	3-149
	3-150
	3-151
	3-152
	3-153
	3-154
	3-155
	3-156

