PART 4

THE BATCH USER’S GUIDE

PART 4
CHAPTER 1
HOW TO USE BATCH

1.1 INTRODUCTION

This Chapter contains the basic information required to preparé a job for execution
by PDP-11 Batch operating system. While the input medium is assumed to be the card
reader in the following examples, Batch supports a variety of input devices: disk,

DECtape, magnetic tape, cassette or paper tape (refer to Table 4-2).

Batch includes a disk-resident Monitor, and a number of system programs (such as
the FORTRAN Compiler). The Monitor controls execution of user jobs, by reading

and interpreting the batch stream, batch command statements the user has placed in

the input deck. Several jobs can be processed sequentially by Batch, each job set
apart from its neighbors by delimiters that define its starting and ending points.
The sample job shown below consists of a FORTRAN program to be compiled, linked,

and executed. See Figure 4-1.

End~of-File

$FINISH

DATA CARDS

SOURCE PROGRAM -
SEXECUTE

$JOB MATX

Figure 4-1
Sample Batch Job

When the $EXECUTE command is used, the Batch system determines the input and output
specifications for the FORTRAN Compiler. Thus, in the sample deck shown in

Eigure 4-1, the object program is output to the system device, the source listing
is output to the line printer, and the source program is read in from the batch
stream. The user can include input/output specifiers with tﬁe SEXECUTE statement,
or he can use the $RUN command instead of $EXECUTE, followed by a command string.
The command string consists of the input/output specifications, and is distinguished
by having a # Fharacter in colum 1. Figure 4-2 shows a typical command string.
Note the "/GO" at the end of the # card - this is a switch that causes the FORTRAN
program to be compiled, linked, and executed, just as though the $EXECUTE command
had been used.

End-of-File

$FINISH

$RUN FORTRN

$JOB MATX

Figure 4-2
Use of /GO Switch

L

In Figure 4-2, the output is specified as:

MATX - object program (file name MATX; the extension .OBJ is assigned
by default):;

LP: - the line printer will be used to 1list the source program.

The input is:

-BI: - the source program comes from the batch stream (BI);
/GO - the /GO switch causes the program to be compiled, linked, and
- executed.

The user also has the option of specifying each step of a job's processing. For
example, he may wish to have the system generate a dump in the event of a fatal
error in his program. To do so, he must include Batch Commanq Language cards at
each step of the job. As shown in Figure 4-3, the dump is specified on the $RUN
MATX/DU card, by the switch,»/DU.

End-of-File Card

$FINISH

DATA FOR MATX

$RUN MATX/DU

#MATX,LP : <MATX,FTNLIB/L/E L
SRUN LINK

FORTRAN SOURCE DECK

#MATX,LP:<BI:

$RUN FORTRN :)

$JOB MATX

Figure 4-3 :
Batch Job Set-Up with User-Specified Job Steps

Table 4-1 defines the function of each BCL card in the deck.

Key

TABLE 4-1

to Card Deck in Figure 4-3

-

$JOB MATX

Defines the starting point of the job and gives
the job name, MATX.

$RUN FORTRN

Causes the FORTRAN Compiler to be loaded and
executed.

#MATX,LP:<BI:

Command string defining the FORTRAN Compiler's
input and output datasets. Note that the GO
switch is not used.

FORTRAN source deck

v

The cards comprising the source program, MATX.

SRUN LINK

Causes the Link=-1l Linker to be loaded
and executed.

#MATX, LP:<MATX/CC,FTNLIB/L/E
(See note)

Defines the Link-11l load module to be
MATX; the Map output to be on the line
printer; and the object modules to be
MATX (the output of the FORTRAN Compiler)
and FINLIB, library routines (as indi-
cated by the /L switch). The /E switch
signifies end of Linker input.

$RUN MATX/DU

Causes the linked program, MATX, to be loaded
and executed. The /DU is a "DUMP" switch, re-
questing that the program be dumped if an
error occurs.

DATA FOR MATX

Data to be used during program execution.

SFINISH

The $FINISH card is the end-of-job delimiter;
it designates the logical end of the job.

End-of-File

This card physically delimits the job. The
operator must place one of these cards at the
end of each job. As a further safeguard, the
user should put one as the first card in his
deck, to protect himself from a preceding job's
erroneous execution. Eight consecutive end-
of-file cards terminate the batch stream.

NOTE

The /CC switch (concatenate) must be used if the source
deck comprises more than one main program or subroutine
in a concatenated deck. The /CC tells the Linker that the
object module contains concatenated modules.

1.2 STANDARD BATCH PERIPHERAL DEVICES

As discussed in preceding chapters, standard DEC peripheral devices must be
referred to by specific mnemonics. In addition to those previously mentioned two

new devices are introduced here, the pseudo devices. See Table 4-2,

TABLE 4-2

Standard Batch Peripheral Devices

‘Name Mnemonic
-Disk DP
DF
DK
ne
DECtape DT
Line Printer LP
Magtape ' - MT
Cassette Tape ' cT
Paper Tape Punch (High-speed) PP
Paper Tape Reader (High-speed) PR
Low-speed Punch and Reader PT
Keyboard KB
Card Reader CR
Batch Input " BI*
System Device SY*

*This is a pseudo-device. Refer to Section 4-~1.2.1.
1.2.1 Use of Pseudo-Device Specifiers (BI, SY)

By specifying BI as the input device, the user achieves device-independence; the
source program is read from the batch input device, regardless of what the device
may be. This feature of Batch permits the same control card to be used without

concern for which device the batch stream may be read from.

The pseudo-device BI must be used whenever the batch stream is coming from cards
or papertape. Batch stream inputs from multi-dataset devices such as disk can

use the explicit device mnemonic. However, BI should be used for device independence.

To specify that the system device is to be used, when the actual device is not

known, specify SY. The system will supply the correct device for SY.
1.2.2 Device Assignment
1.2.2.1 FORTRAN Logical Units

The BI pseudo-device specifier is assigned to logical unit 8 in the FORTRAN device
table.

Example:
READ (8,23) A,B,C (read from BI)
The $ASSIGN command can be used to override the default values.
$ASSIGN BI: ,4
Logical unit 4 is assigned fo the batch streah dataset.
1.2.2.2 Macro Device Assignment
It is possible in Macro to access the BI pseudo device via direct reference to BI:,
Example:
.READ #LNKBLK, #FILBLK ;read from BI

.WORD ERROR ~ ;ERROR RETURN ADDRESS
INKBLK: - .WORD @ ‘
.RAD5@/IN/
.WORD 1
.RADS@/B1/

1.3 BATCH OPERATING PROCEDURES

1.3.1 Entering Batch Mode

Two basic procedures are involved in getting started with DOS/BATCH. The first
procedure, loading the Monitor, is accomplished through the console. The second
procedure, entering Batch mode, is done via the keyboard.

When the Monitor has been loaded into core, it responds by printing

DOS/BATCH Vxx-xx
DATE:

at the terminal. The date must be supplied by the user in the form

dd-mmm-yy

where
dd is the current day.
mmm is the first three letters of the month.
Yy is the last two digits of the year.

Any other response will yield a WRONG DATE! message from the Monitor. After the

date is supplied, the Monitor responds by printing
TIME:

to which it expects the current time given in the format of hours:minutes:seconds
(hh:mm:ss). The Monitor then prints 'a $ to indicate readiness for a user command.
At this point, the user logs in to the system by typing LO[GIN] [uic], where

uic is his user identification code, as described in Section 3.2.4.
When the Monitor responds by printing $, the appropriate response to invoke Batch
mode is to type the following command string immediately after the $, and on the

same line.

$BA datasetl[/switch (es)] [,dataset2]

where

datasetl is the batch stream dataset

dataset2 is the default log dataset!

The switches that may be specified are the time-limit (/TI) switch, no-echo switch
(/NE), and default-log (/LO) switch. The time limit switch governs the maximum

duration of a job. It is specified as
/TI:hh:mm

where hh and mm are specified as decimal digits. If both are included, hh equals
hours, and mm equals minutes. If only one value is given, it is assumed to be

minutes.

The no-echo switch suppresses printing of commands at the keyboard. It is specified
as /NE. If this switch is included, only the $JOB command is echoed at the
keyboard with the start and finish times of the jobs.

The default-log switch specifies that the default log dataset is to be used. It is
specified as /LO. If this switch is specified, it causes log information to be
placed on a system file on the disk (CMO.SYS) in the user's area. When the

$FINISH card is read, this file is automatically output by the system, in accordance
with the appropriate cleanup file (as described in the System Manager's Guide).

Thus, the advantage of speéifying /LO is that log output is collected and output

all together, rather than being interspersed among unrelated outputs on the

listing. Note that when /LO is specified, a log dataset (dataset 2) must not be

‘ specified with the $BATCH command, since tﬁis creétes a conflict. If the /NL

switch has been specified on the $JOB card, log processing is inhibited for that job.

A no file error message at the keyboard indicates that the batch stream could not
be found. The system searches first the current user's area; if it fails to
find the batch stream there, it searches the system area. If the batch stream

is not found there, a no file message results.

The time-limit switch given with this BATCH command takes precedence over any

specified in a $JOB command.

IIOutput related to syntax errors, is printed on the teleprinter, if the log dataset
is omitted.

Sample BATCH Command
$BA CR:/TI:20,LP:

‘The dataset specifiers in the example designate the batch stream device to be the
card reader, with the log produced on the line printer. The default time limit

is set to 2¢ minutes for each $JOB in the above example.

1.3.2 Operator-System Communication

Batch mode provides‘several ways for the operator and the system to communicate
with each other: the Monitor may print information regarding the status of a
job (e.q., error messages); a user program may request operator action; or, the
operator may wish to exercise control of system operation, or respond to a

system request.
1.3.2.1 Error Messages

The actions taken as the result of an error in Batch mode are described below.

The messages prdduced are summarized in‘Appendix K of this handbook.

.Action messages (Annn) are printed on the terminal, but do not appear in the log
returned to the user. The system suspends operation until the operator responds
at the keyboard. Other classes of messages (I, S, W, and F) are printed at the

téleprinter, and in the log (unless the user has suppressed the log).

If a system program error occurs, subsequent input from the batch stream is

ignored until detected, or a Monitor command is read.

A fatal (P) error causes the job to be aborted. If the user has specified dump-on-
error, he is given an octal listing of the contents of the area he specified to be
dumped.

1.3.2.2 Messages to the Operator

Messages can be sent to the operator from the batch stream by means of the $ME

command, which is formatted here.

SME { A} text

The $ME command adheres to the syntax conventions used by the other Batch mode
commands; i.e., the $ must be in column 1. The command itself is separated from

the message by either a comma or a space, as indicated by { A} .
14

The program will continue execution, following the issuance of $ME text, unless
the user issues a SWAIT command; in this case, the operator is required to type

in CO to effect resumption of the program.
Example:
Entries supplied by user in batch stream (assume job name to be MATX):

$ME MOUNT TAPE XY¥Y2 ON UNIT 1
$ME DO NOT WRITE ENABLE
$WAILT

Response printed at keyboard (as seen by the operator):

MATX :MOUNT TAPE XY¥Z ON UNIT 1

MATX :DO NOT WRITE ENABLE

AgSg @P@Pg® (action message indicating that $WAIT statement is in
effect.)

£

.

The operator types CO (followed by the RETURN key) on the $ line to resume the

program, after the action has been taken.

1.3.2.3 Operator Commands

The operator notifies the Monitor of his intention to type in a command by pressing
the CTRL and C keys simultaneously. (This action is indicated as CTRL/C.) The
Monitor then responds by printing a period at the start of the next line. The
operator then types the appropriate command.

To abort the current job, the pperator/Monitor message sequence is

CTRL/C
.KI (the period (.) is printed at the keyboard in
response to CTRL/C)

To terminate the batch stream, the operator types

CTRL/C
.TE

4-10

[

after which the system leaves Batch mode, returning the Monitor to keyboard mode.
TE is legal only from the keyboard. If entered through the batch stream, the
current job is aborted with the INV CMD! message.

1.3.2.4 Commands Printed at the Keyboard

The batch system prints some commands at the keyboard to help the operator

monitor a job's progress. For example,

$RUN FORTRN

is printgd at the keyboard when this card is read. (It is also output to the‘job
log) $JOB, $GET, SCHANGE and S$FINISH are also prlnted. (If the /NE switch is used,
only $JOB is printed.)

4-11 ¢

PART 4
CHAPTER 2
BATCH COMMAND LANGUAGE

2.1 BATCH COMMAND LANGUAGE

The user communicates with the Batch Monitor through Batch Command Language (BCL)
statements. For example, to prepare a FORTRAN job for execution, he must include

statements to:

a. Define and delimit the job;
b. Effect compilation of source code;
c. Link object modules; and,

d. Execute the program.

Batch Command Language includes most of the DOS monitor keyboard commands, the
special Batch commands (e.g., $JOB), and the concise commands. It is assumed

that the reader is familiar with the DOS/BATCH Monitox.

Batch Command Language statements directed to the Monitor, must observe the

following rules:

1. A dollar sign ($) must appear in column 1;

2. The statement identifier must immediately follow the
$, starting in column 2.

3. The statement identifier is terminated by a comma or
a space. Therefore, neither of these characters can
appear as part of the identifier,

2.1.1 Batch Commands

These include most of the DOS commands and the special batch commands:

1. $CHANGE
2. $EOD

3. $JOB

4. S$ME

5. $OwWN

which are only valid as input from a batch stream.

4-12

The effect of a DOS command in Batch mode depends on whether the command is

reteived from the keyboard (following CTRL/C) or from the batch stream. Table
4-4 lists all commands’ and their status in Batch mode.
Table 4-4
Batch Commands
Command Function
From Keyboard From Batch Stream
$SASSIGN Assign a physical device and Same as from keyboard. See Note 1.
filename to a dataset.
$BATCH Invokes batch mode. Invalid.
$BEGIN Invalid. Honored only when program loaded, and
: never started.
$CHANGE Invalid. Transfers batch stream to dataset
specified. '
SCONTINUE Resumes program execution. Ignored.)
$DATE As in interactive mode. Cannot contain a value. Causes date
to be printed in the log.
$DUMP Dumps core to line printer. Same as from keyboard.
«Processing suspended until R
dump complete.
$ECHO As in interactive mode. Invalid.
$END As in interactive mode. - Invalid.
$EOD Invalid. Delimits physically contiguous,
logically distinct data.
$FINISH Invalid. Logical job delimiter.
$GET Invalid. Loads a program from the specified
device.
$JOB Invalid. Logical job delimiter.

4-13

(continued on next page)

Table 4-4 (Cont.)

Batch Commands

Command Function

From Keyboard

From Batch Stream

$KILL Terminates the current job.

2

Terminates the current program. See
Note 1.

SMESSAGE Invalid.

Outputs a message to the operator.

$MODIFY As in interactive mode. No display of location's previous
contents.
$ODT Invalid. Invalid.
SOWN _ Invalid. Allows unformatted reads from batch
’ stream,
SPRINT As in interactive mode. Invalid.

$RESTART Invalid.

Restarts a program.

$RUN Invalid. ILoads and starts a program.

$SAVE Invalid. " Writes the program in core, onto the
disk in loader format.

$5TOP Invalid. Invalid.

$TERMINATE Terminates the batch session. Invalid.

$TIME ‘Enter a value for TIME or
: display the time.

Request that TIME's value be output to
the log. Entering time is illegal.

SWAIT As in interactive mode.

Suspends job execution until CO is
typed at keyboard.

Note

1. Other commands that force a KILL,
reading command string input, are:
$SCHANGE, and $JOB.

if read when the program is
SRUN, GET, SFINISH,

4-1

4

2.1.2 Concise Commands

The $EXECUTE command, discussed, is one of the BCL commands referred to as
- "concise commands". They are called concise commands because they allow the
user to invoke whole sequences of commonly-used functions with a single
command, instead of two or more otherwise required. Concise commands are

summarized in Table 4-5.

Table 4-5

Batch Concise Commands

NAME FUNCTION

$CPY Copies a file, or files onto a specified output dataset.
$DEL Deletes specified datase;s.

$DIR Obtaiﬁs a direqtory listing.

$EX [ECUTE] Causes a source'program to be compiled (or assembled),

linked, and run.

$FORTRN - Compiles a source program, producing an object module
and/or listing.

SLINK ' Links object modules into an executable load module,
and generates a load map.

$LIST Prints datasets on the line printer.

$MACRO Assembles a source program into an object module, and
' produces a listing; or, if specified, produces only
a listing.

SRNM Renames a dataset.

2.1.3 Synchronous/Asynchronous Commands

Certain commands are treated‘as asynchronous commands, while the rest are dealt
with synchronously. Asynchronous commands cause action to be taken as soon as they
are read, regardless 6f whether they are read from the Batch command input

dataset (logical name CMI); from the system program command input dataset (pc1) !;

or from a user's dataset.

lcommand datasets are discussed in Chapter 4-4.

Asynchronous commands:

$SBEGIN
$DATE
$DUMP
$EOD
SKILL
SMESSAGE
SMODIFY
SOWN
$SRESTART
SSAVE
STIME
SWAIT

Synchronous commands are those which are not executed immediately unless they are
read while the program is reading CMI. If read from PCI, or a user's dataset, they
cause an "end-of-file" to be returned to the program; the command is held until a

READ CMI is issued, at which point the command is executed.
Synchronous commands :

$ASSIGN
$CHANGE
$FINISH
$GET
$JOB
$RUN

All synchronous commands, except SASSIGN, force a $KILL. $JOB also forces a
SFINISH. ‘

2.1.4 Monitor Command Statements

Commands are arranged in alphabetic order. Only those commands that are valid or

effective from the batch stream are discussed (refer to Tables 4-4 and 4-5).
ASSIGN 2.1.4.1 sassion

Format:

$AS[SIGN]<A}[dataset specifier, logical name]

4-16

Purpose:

This command assigns a physical device (and a file name, when the device is file-
structured) to the dataset identifier by logical name. The format of dataset

specifier is
dev:filename.ext [uic]

where dev designates the device, and filename.ext[uiod designates the name, exten-

sion, and uic, if any, to be assigned to the file.

The logicalvname is the name that has been specified in the link block in the user's

program.

NOTE

The $ASSIGN command should not be used with Batch
command datasets (i.e., CMO, CMI, PCI, and CDI).
These datasets are used for input to the Command
String Interpreter (CMI), related output (CMO),
input to system programs (PCI), and data input re-
sulting from a program command (CDI). Refer to
Chapter 4-4 for details., ’ .

The duration of an S$ASSIGN depends on when it was issued. If issued at the job

level (i.e., after $JOB, but prior to $RUN or $EXECUTE), an $ASSIGN remains in

effect for the duration of the job, unless subsequently altered. If issued at the

program level, an $ASSIGN is in effect for the duration of that program, unless

changed during execution of the program. An $ASSIGN with no arguments releases

(deassigns) all assignments previously made by the curxrent job.

Examples:

'To assign a DECtape file named COM.BN to the dataset with the logical name ITR:
$AS DT:COM.BN,ITR’

To assign a disk file to FORTRAN unit number 5:

$AS FILE.EXT,5

4-17

BEGIN

CHANGE

2.1.4.2 $BEGIN

Format:

SBE[GIN] [(A} address]

Purpose:

The $BEGIN command starts execution of an already loaded program at the stated
address. The address value, if specified, is an absolute octal value; if not

stated, the normal start address is used.

The $BEGIN command is used only for programs that have been loaded (via $GET), but
have not yet been started. The $BEGIN need not iﬁmediately follow the $GET. The
effect of the $GET...$BEGIN sequence is the same as the $RUN command; the main
purpose is to allow the user to insert changes into the program, which has been

loaded, but not begun. The $MODIFY command is used to make these changes.
Example:
$BEGIN
Start executing a program at the normal start address.
2.1.4.3 S$CHANGE

Format:

$CH [ANGE] { A} dataset

Purpose:

This command changes the batch stream input to the dataset specified. This permits
data, source programs, etc., to be stored on datasets other than the one used

normally for batch input,'énd then to be read in during execution of a job.

$CHANGE command is a synchronous command. When the $CHANGE command is honored, the
batch stream is read from the secondary dataset. When an end-of-file is sensed on
the secondary dataset, command input is resumed from the primary dataset, at the

point following the $CH command.
4-18

Example:

A B

(PRIMARY DATASET) {SECONDARY DATASET)
1. $JOB AAA[204,20d] ' $RUN FORTRN
2. $RUN MACRO #PROGA ,LP : <PROGA
3. #FILEA<FILEA ‘ .
4. $CHANGE B ’ » .
5. $RUN LINK ' (EOF)

6. #FILEA,LP:<FILEA,PROGA,FTNLIB/L/E

7. $FINISH

In this example, when EOF is encountered on dataset B, command input is resumed at

command 5 of dataset A (SRUN LINK).

NOTE

.

'$JOB and $CHANGE are not legal in the secondary
dataset, The job will be aborted if either is
encountered.

2.1.4.4 S$CPY o - CPY

Function: Copies input dataset(s) to an outbut dataset.

Format: $CPY input datasetl[,input dataset2,...,input datasetn] To‘output
_ dataset ’

Input: At least one dataset must be specified; more than one may be
specified. Two or more input datasets are concatenated into
one output dataset, if the output is a specific file. Otherwise,
they are separate. (Refer to Part 12 of this handbook, which
discusses the file utility package, PIP.)

\

Output: Only one dataset must be specified.
Examples:
"l. S$CPY DT2:*,0BJ TO SY:

All files with extension OBJ, residing on DECtape unit 2, are copied
to the system device.

4-19

DATE

DEL

2, $CPY DK1l:FIL.EXT[3,17] TO MT2:NUFIL.EX1l

The file, on RK1l disk unit 1, FIL.EXT (belonging to user 17 of group 3)
is copied to magnetic tape unit 2. The name of the copy on magnetic
tape is NUFIL.EX1.

2.1.4.5 $DATE
Format:
$Da [TE]
Purpose:
This command requests that the current date be included in the job log.

The date will be printed in the dd-mmm-yy format. When entered via the batch

‘stream, the $DATE command may be used solely to place the date of the job's execu-

tion in the log. When the $JOB card is processed, the date and time are put in

the log.

The user can enter a date value'through the keyboard, while Batch mode is running.

To do this, type

CTRL/C
.DATE dd-mmm-yy

putting the correct date value in place of
dd-mmm-yy .
2.1.4.6 S$DEL

Function: Deletes specified datasets.

Format: S$DEL datasetl[,dataset2,...,datasetn]
At least one dataset must be specifiéd. If no device is specifiéd,
the system device is assumed, If a device is specified, it is

assumed for following datasets that do not have device specifiers,
until a device is specified.

4-20 .

Examples:

1. $DEL A
A file named A is deleted from the system device.
2. S$DEL DT1:FILA.FTN,DKl:FLE.MAC,FLA.FTN

FILA,FTN is deleted from DECtape unit 1; FLE.MAC and FLA.FTN are deleted
from RK1l disk unit 1.

3. $DEL *.MAC

All files with extension MAC are déleted from the system device.

2.1.4.7 $DIR DIR

Function: Obtains a direétory listing.
N
Format: $DIR [input dataset(s)] TOy[output'datasetﬂ
Input: One or more input datasets can be specified. If omitted, the
directory obtained is that of the user who is currently logged in.
The default device is the system device.

Output: The default device is the‘keyboard.
Examples:

1. $DIR

The éurrent user's system device diréctorf is pfinted at the kéyboard.
2., $DIR DF:

The current user's RF11°disk directory is printed at the keyboard.
3. $DIR DT1l:,DK:[3,5] TO LP:

The current user's directory on DECtape uhit 1, and user [3,5]'s directory
on the RK11l disk, are printed at the line printer.

4, S$DIR TO LP:

The current user's directory, on the system device, is printed at the
line printer. : : '

5. $DIR *,0BJ TO LP:
A directory listing of all files with extension OBJ that belong to the

current user, and that reside on the system device, is printed on the
line printer. ’

4-21

DUMP

EOD

2.1.4.8 $DUMP
Format:

$DU[MP]<?}LP: [: to1(, start aadr § [,end add'r]]
Purpose:

The $DUMP cohmand causes an absolute copy of a specified core area to be written
out of core to the line printer. If no arguments, other than device name, are
supplied, values are assumed by default; é:g., "O", dump from core to the line
printer starting at address @. If no end address is specified, the highest word
in memory is the default value. A $DUMP command is valid at any time; if issued
during program execution, operations are suspended for the time needed to complete

the dump. A $DUMP can be entered through the keyboard while in Batch mode.

2.1.4.9 S$EOD
Format:

;EO[D]
Purxpose:

The $EOD command stands for end-of-data. It delimits groups of data statements
that are logically distinct, but physically contiguous.

When this statement is encountered in the batch stream, an end-of-file is generated
and returned to the current stream. This end-of-file indicates that the data that

follows is logically distinct from data the program has read to that point.

$EOD allows data to be stacked in a deck in physically contiguous fashion, while
the program treats each group of cards as a logical unit. In the example below,
the program PROGA processes data contained in two logically distinct datasets:
FILEA, and FILEB. The $EOD card signals the end of FILEA, by returning end-of-file
to PROGA when the last record in FILEA has'been read. Then FILEB may be processed.

4-22

FILEB

[end-of-file
\feturned at

this point

)———— > FILEA

$SRUN PROGA

$JOB XXY

NOTE

$EOD provides a logical end-of-file; it is
.not the same as the physical end-of-file
card, which is required to signal the end
of a card file. (Refer to Appendix H.)

2.1,4.10 $EX[ECUTE] o , EXECUTE

Function: Compiles a source program, links the ocbject module, and runs the
resulting load module.

Format: S$EX[ECUTE] [sourge dataset] E?O [binary dataset] [,1istingi]

Input: The source program is assumed to be FORTRAN. The FORTRAN Compiler
- is invoked to compile the source code specified in the input
dataset.

If the source dataset is not specified, the source program is
assumed to follow the SEXECUTE statement in the batch stream.
An $EOD statement is required to signal the end of source input
and the beginning of data.

Output: If the binary dataset and/or the listing dataset are omitted,. the
object and load modules are temporary files on the system device,
and the listing is produced at the line printer. Otherwise, the
object and load modules are produced as specified; i.e., the load
module assumes the object module's filename, with extension .LDA.

Examples:

1. S$EXECUTE

The FORTRAN Compiler is loaded and run. The source program is read from
the batch stream. The object module is output to the system device,
linked into a load module, and run. The listing is printed at the line
printer.)

FINISH

FORTRN

2. S$EXECUTE PROG

The FORTRAN Compiler is loaded and run, to compile the source program,
PROG, from the system device. Linking and execution follow.

3. $EXECUTE DT1:ABC.CBA TO DK:ABC,LP:
The FORTRAN Compiler is loaded and run to compile the source program
ABC,CBA from DECtape unit 1. An object module (ABC,OBJ), and load

module (ABC.LDA) are produced and placed on the RK1l disk. The load
module is runm. The listing is produced at the line printer as requested.

2.1.4.11 S$FINISH
Format:

SFI [NISH]
Purpose:

The $FINISH command delimits a job. When a $FINISH is detected, it signifies that

the current job is ended. There are no arguments associated with $FINISH.

Processing continues with the next $JOB statement. Note that the $FINISH command

cannot be entered through the keyboard while the system is in Batch mode.
To terminate the batch stream from the keyboard, type the following command.

CTRL/C
.TE

2.1.4.12 $FORTRN : -
Function: Loads and runs the FORTRAN Compiler to compile source input dataset
(source) and produces a binary output dataset and listing.

Format: S$FORTRN [}input dataset] TO [object dataset], [,listi]

Input: If omitted, the source program is assumed to follow immediately in
the batch stream.

Output : The object dataset, if omitted, goes to the system device, with the
file name specified in the input dataset. If no input file name
.was given, the object module assumes the job name. The extension
is OBJ. The listing goes to the line printer, if defaulted.

4-24

Examples:

1.

$FORTRN ABC TO XYZ,DT1:SRC

The source program ABC is read from the system device and compiled,
producing an object module. The object module is output to the system

' device, with the name XYZ,0BJ. The listing dataset goes to DECtape

unit 1, with the name SRC.LST (LST is the default extension).
BN

$FORTRN DK:ABC TO SY:ABC

. The source program ABC.FTN is read from the RK1l disk, and compiled; the

4.

2,1.4.,13

Format:

Purpose:

object module goes to the system device, under the name ABC.OBJ; the
listing is produced at the line printer by default.

SFORTRN ABC

Thé source program ABC is read from the system device. The object module
ABC.OBJ goes to the system device by default, and the listing is defaulted
to the line printer, :

SFORTRN

The source program is read, immediately following in the batch stream
(i.e., BI: is assumed). The binary object module is put on the system
device with the listing at the line printer, both by default.

$FORTRN A TO ,LP:

Generates a listing at the line printer, but no binary dataset.

$GET . ~ R GET

A : : PR [OGRAM]
$GE[T] program specifier | /DU :AL[L]
) ’

1'V2

This command causes the program to be loaded into core from a specified device.

The progtam specifier entry can include the device identifier, and the filename

(and extension, if any) and uic of the program to be loaded. (A $BEGIN command

would, at some point, normally follow the $GET, to start the program.) $GET can

also be used in conjunction with the $SAVE command.

4-25

A dump-on-error switch (/DU) is available, allowing the user to obtain a dump of a

specified area, in case an error occurs in his program. One of three values may

be specified with the dump switch.

PR [OGRAM]
AL[L]

Vl:V2

dump the program area
dump core in its entirety
dump the area delimited by the absolute octal addresses

specified for V. and V,. V_ must be greater than Vl and
must be even (i.e., word boundaries).

The default value is PR. The dataset to which the dump is made is system-defined.

The program area depends on the location of the stack pointer.

L3

1. If the stack pointer is below the load address, the program area is
from the stack pointer to the top of core.

2. If the stack pointer is not below the load address, the program area
is from the load address to the top of core.

The /DU switch forces an automatic dump in the event of an error, thus providing

the Batch user a means of debugging his program. Refer to Chapter 4-3 for the

format of error dumps.

JOB 2.1.4.14

Function:

$JOB

Identifies the start of a Batch job, and permits the user to supply

information pertinent to its execution.

Format:

where

$JO[B] (:A:} [jobname] [uic]/swl/sw2[,log dataset]
; , '

jobname

is specified by the user to‘assign a name to his job. This field
consists of one or more letters or digits. The jobname could,

for example, be the user's name (to help identify the destination
of the log). Only the first six characters are used by the system.
(The whole name is placed in the log, however.) If omitted, the
job name is given a default value. (The first default job name

is P@@g@EP1, the next is @PPPP2, etc.) Defaults are assigned in
numerical sequence. Each time a batch session is started, the
default sequence is reset.

4-26

[uic]

/swl

/sw2

v

log dataset

Example:

is the field in which the user identifies himself by means of the
user identification code. This field is delimited by left and
right brackets. The format of the uic field is

[nnn,nnnl"

where the nnn value to the left of the comma is an octal number
identifying the user-group to which the user belongs; and the
second nnn value, an octal number, identifies the particular user
within that group. Thus, if the user has been assigned as user 27
within group 34, he would enter [34,27] for l[uic].

If the uic is omitted, the default uic set by the system manager
is used. If the default uic is @, the job is not ran.

is a switch used to set a limit on how long the job is permitted
to run. It is formatted as

/TI:hh:mm

wheré hh and mm are specified as decimal integers for hours and
minutes respectively. If no time limit is provided, the BATCH
command value is assumed. A value greater than that specified in
the BATCH command is ignored (see 4~1.3.1.X). If only one value
is supplied, it is assumed to be minutes (see sample job card
below) .}

is the switch that allows the user to suppress the log, a

record of the job's execution. If /NL is specified for /sw2, no

log. (record) is produced of the job control statements processed
. during the job's execution. If /NL is omitted, the user will

get this record as part of his output. The device used for the

log is specified in the BATCH command (refer to 4-1.3.1).1

is an optional entry that specifies the dataset used for the log
for this job. It overrides the log dataset specified in the
BATCH command. /NL and a log dataset specification are

mutually exclusive,

A

$JOB MATX[34,27]/TI:15,DT1:LOG

job name -~ MATX

user identification code - user group 34, user 27
time limit - 15 minutes

klog - put the log on DECtape 1, under file name LOG.

Yrhe switches may appear in either order on the $JOB caxd.

4-27

KILL 2.1.4.15 S$KILL
Format:
$KI[LL]
Pur_pose:

The $KILL command terminates the cuxrent program, stops I/O and closes all open
files. Processing continues at the next command prefixed by a $. No arguments

are specified for $KILL.

The $KILL command can be entered via the keyboard to abort the job while in Batch
mode; for example, to abort a job that is threatening to pre-empt system resources

to the detriment of other jobs, type in the sequence shown here.

CTRL/C
.KILL

The following commands force a KILL.

$SCHANGE

SFINISH

$GET

$J0B ' .
$RUN

LINK 2.1.4.16 soinx

Function: Invokes the LINK program, to link input datasets (object modules)
into an output load module, and produce a load map.

Format: SLINK input dataset(s) TO load module [,load map)
Input: At least one input dataset is required; more than one can be
’ specified. File characteristics, such as concatenated object
modules (/CC) or library modules (/L), must be deflned by the user
(refer to Part 9, Linker).

Output: Complete dataset specification required; the load module extension
is .LDA.

Example:
SLINK DF:A,DT1:FTNLIB/L TO SY:ABC,LP:
The object module A.OBJ is input from the RF1ll disk, and linked with
routines from FTNLIB.OBJ, input from DECtape unit. The load module

ABC.LDA is output to the system device; the load map is produced at the
line printer.

4-28

2.1.4.17 SLIST . LIST

Function: Prints datasets on the line printer.
Format: $LIST[datasetl,...,datasetn]

" Input: .~ If no datasets are specified, the datdset immediately following
in the batch stream is printed on the line printer.

Output: Line printer only. Never specified.

Examples:

1. S$LIST DK:A.FIN,B.FTN,DT1:Z.FTN
Three datasets are printed at the line printer; DK:A.FTN, DK:B.FTN, and
DT1:Z.FTN (DK: is used as the device specifier, until a different device
is specified. 1If no device is specified, SY: is assumed.)

2. S$LIST

The dataset immediately following in the batch stream is printed.

2.1.4.18 $MACRO MACRO

Function: Assembles MACRO source input, producing an object module and a
listing as output.

Format: $MACRO input dataset(s)[:TO [object dataset] [,listing datasetﬂ
Input: At least one input dataset is required; two or more can be specified.
The MACRO Assembler assembles multiple input datasets together,
creating a single object module.
NOTE-
Input to the MACRO Assembler must be from a mass storage

device. Source programs on punched cards must be copied
to disk, DECtape, etc., prior to invoking the assembler.

Output: The object module defaults to the system device, and the listing
defaults to the line printer.

Examples:

1. $MACRO A.MAC

The source program A.MAC is assembled. Therbject module A.OBJ is output
to the system device, by default. The listing is produced at the line '
printer, also by default.

2. $MACRO A TO DT1:Z,DK:A

The source program A is assembled, to broduce‘object module Z.OBJ, output
to DECtape unit 1. The listing is placed on the RK1ll disk, as A.LST.

4-29

3. S$MACRO A.MAC TO ,LP:

The result of this form of $MACRO is a listing on the line printer. No
object module is produced.

MESSAGE 2.1.4.19 suEssace ‘ :
Format:
$ME [SSAGE]
Purpose:

The $ME statement is used to send a message to the operator. A single message
consists of one line. To send a message from the batch stream, the user inserts

commands in the following format.
r
SME (A) any text

The text can contain any ASCII characters the user wishes passed to the operator.

The message is printed on the terminal.

Example of the $ME Usage:

Message lines in batch stream (job name TBLT);

he $ME MOUNT DECTAPE LABELLED XYZ ON UNIT 1
$ME DO NOT WRITE ENABLE

$WAIT
Keyboard output:

TBLT : MOUNT DECTAPE LABELLED XYZ ON UNIT 1
TBLT : DO NOT WRITE ENABLE

AgSY 000000

$

The keyboard output includes the job name (TBLT) in the message line. The Action
message (AG5¢ @PPPEP) indicates that a $WAIT is in effect; the program is suspended

until the operator types CO on the same line as the §.

The $WAIT statement is optional; if omitted, the message is printed at the keyboard,
but the program continues without suspension. (Of course, the A@S@ @g@08%, $ lines

are not printed, since no operator response is expected.)

4-30

2.1.4.20 $MODIFY ' MODIFY

Format:
$MO [DIFY] (A)octal addr:new contents
Purpose:

This command provides a way of changing the contents of an absolute memory location.
Whatever was in the location is altered to the value specified in the new contents
field. The system makes no provision for displaying the previous contents of the
address. The value specified in the octal addr field must be an even number (i.e.,

_ aligned on a word boundary), and must not exceed 16 bits. Locations in the resident

Monitor may not be modified.

Example:
SMO 2164p:16¢40
This changes the contents of location 2164 to 16@44.

NOTE

‘ The location specified must not fall within the
: area occupied by the Monitor or the job will be

aborted.
2.1.4.21 $OWN ' ‘ OWN
Format:
$ow([N]
Purpose:

This command causes the system to enter a mode of operation called OWN mode, which
allows batch input data to be read in unformatted mode. Statements in the batch
stream are treated as pure data; thus, special characters, such as $, #, and *,
which might ordinarily cause some Monitor action to occur, are treaﬁed as data

rather than control characters.

Currently, the $OWN command can be used only when the batch stream device is the

card reader.

4-31

Return from OWN mode to normal input mode is effected by placing an end-of-file
caxrd at the end of the data.

NOTE
The characters $, #, and * can also be read as
data, rather than as control characters, by

placing an apostrophe in the first position of
the line (refer to Section 4-2.4).

RESTART 2.1.4.22 s$RreESTaRT

Format:

- $RE [START] [(A} addressa

Purpose:

This command permits a program to be restarted. As shown, the user may optionally
supply an absolute address at which the program is to be restarted. Normally, a
restart address will have been specified by the program. It is recommended that
the address option for $RESTART be used with care.

$RESTART is valid only when the program is already loaded, Before the program is
restarted, the stack is cleared, any current I/0 is stopped, and all internal busy
states are removed. Buffers and device drivers set up for I/O operations will,

however, remain linked to the program for future use.

The $RESTART command is invalid if a restart address has not been specified, either
by the program, or by an address field with the command itself. $RESTART may not be

entered from the keyboard while the system is in Batch mode.

RNM :2.1.4.23 srwM

Function: Renames an input file as specified in the output dataset.

Format: $SRNM [device:]old name TO [device:]lnew name
Input, Both are required. They must both be on the same physical device.
output: If omitted, the default is the system device.

Examples:)

1. $RNM DT1:ABC TO DT1:XYZ
The file ABC is renamed XYZ.
2. S$RNM UNO TO DUE

A file on the system device (UNO) is renamed DUE.

4-32

2.1.4.24 S$RUN ‘ RUN

Format:
PR{OGRAM]
$RU[N] (A) program specifier | /DU (:AL[LL]
. sV, Vv
172
Purpose:

The $RUN command causes a named program to be loaded from a specified device, and

started at the normal address.

The program specifier provides the name of the program, and the device from which
it is to be loaded, and, optionally, a user identification code that is associated

with the program.

As with the $GET command, a dump-on-error switch may be included, in the format

:PR[OGRAM]
/DU { :AL[L]
:Vl:V2
where
pr [ogram] means dump the program area (see $GET) .
. AL[L] means dump all of core.
R means dump the area bounded by the absolute octal addresses

12 specified for V; and V?. Vv, and V, must be even values
r

(i.e., word boundaries and V, must be greater than vy

The default area is PROGRAM. If no /DU switch is included, no dump-on-error occurs.

The dataset to which the dump is made is system defined.

Example:
$RU DT:PGM/DU

The program named PGM'is loaded from DECtape, and started. The dump-on-error

specification’requésts that the program area be dumped (by default).

2.1.4.25 *$SAVE ' ’ SAVE

Format:) .

$SA[VE][}dataset specifier[/RA:low:highi]

4-33

TIME

Purpose:

The $SAVE command allows a program to be saved in loader format. It is used after
a program has been loaded into core, prior to starting the program. The program
is copied onto the device specified in the dataset specifier, under the name that

is included in the dataset specifier, if any.

The $SAVE command may be used only if the program was never started. A common use
is to load a program using $GET, insert fixes with $MODIFY, and then place the

altered program onto secondary storage with a $SAVE command.

If no dataset specifier is included, the current program will be saved on the system
disk, under the name SAVE.LDA. Any file previously saved under this name will first
be deleted.

The /RA switch (range) is included so the user can save an absolute area other than
that occupied by his current program. If he wishes to save only the cutrent program
area, this switch is omitted. including the /RA switch saves only the specified
area. The absolute addresses specified for /RA must be valid octal word boundary

addresses.

The command will be rejected if an additional 256-word buffer cannot be allocated

from free core.

Example:
$SA,REG.LDA

The $SAVE command in this example causes the current program to be saved on the

system disk, under the name REG.LDA.

2,1.4.26 STIME
Format:

$TI [ME]
Purpose:

Including the $TIME command provides a means of obtaining the time-of-~day in the
output job log. It does not permit the user to specify a time from the batch
stream. Attempting to do so is illegal. (The current job will be aborted.)

4-34

To enter a time value, the user should type the following at the keyboard.

CTRL/C
$TIME hh:mm:ss

This is a valid entry from the keyboard while the system is operating in Batch mode.

The time-of-day is also placed in the job log by the $FINISH and $JOB commands.

The $J0B command also includes the current date.

2.1.4.27 $WAIT ‘ WAIT
Format:

$WA[IT]
Purpose:

This command .suspends processing, and causes the Action message

-

ApSg Poooag
$

to be printed at the keyboard. It is usually used in conjunction with the $ME

command. To resumeboperation, type CO.

2.2 INPUT TO COMMAND STRING INTERPRETER

The Command String Interpreter (CSI) accepts command strings consisting of dataset
specifications. The purpose of a command string is to establish the datasets to be
used for input and output by a particular program. In Figure 4-3 (see Chapter 4-1)
the third card (#MATX,LP:<BI:) is a command string. As indicated there, the first
character must be #, in column 1 for in line position 2, if input is not from a

card). The format of a CSI command is
5

ﬁputput dataset (s)<input dataset(s)
where a dataset can be specified as follows.

dev:filename.ext [uic] /swlzv :...:Vn/swnzvlz...:vn

1

4-35

Each dataset specifi¢ation is delimited by a comma.‘ The elements comprising a
dataset specification provide ipformation concerning the détaset's location, its
filename and extepsion (if it is a file), the user identification code associated . -
with the file, and any switches that may be used to specify particuiar actiéns to
be performed. Device specifiers are selected from those listed in Table 4-2

(refer to Chapter 4-1). The ability to include the pseudo-device specifiers fgI

and SY) is a feature of Batch that provides device-independence wﬁen specifying

- datasets to the Command String Interpreter. It allows a dataset to be specified
without requiring that the user know what device may actually be used at job

execution time.

For example, a user may have his source data on cards,'but because of the greater
speed to be gained by reading the data from a faster device, he may transcribe the
data onto another storage medium, such as disk. He would then specify the disk to

be the batch stream input device.

$RUN FORTRAN run the FORTRAN Compiler;

#DK:PRG,LP:<BI: specify that the input dataset is located
" in the batch stream.

The same command string can be used whether the batch stream is coming from disk,
magnetic tape, DECtape, paper tape or cards. By specifying BI, the user has en-
sured that the command string is valid for all these devices; there is no need to

change the card to match the specific device.

The SY device specifier is used to designate the system residence device, as in

the following example. .
#SY:FILE.FTN<PR:

In this example, a command string to PIP specifies that a dataset is to be input
from the paper-tape reader, and output to the system-residence device. ?his command

string is valid, whatever the system-residence device may be when PIP is executed.

2.3 SYSTEM PROGRAM COMMANDS

Commands that are directed to system programs are identified by an asterisk in
position 1. For example, to issue the Insert command to EDIT, the user must

include a command in the format
*T

followed by the text to be inserted. Refer to the appropriate manual for details

on the commands used in system programs.

4-36

3

2.4 READING CONTROL CHARACTERS AS DATA

The characters $, #, and *, appearing in the first position of a line (or card
column 1), are interpreted as control characters, and are stripped off before the
remainder of the line is passed to its destination (Monitor, Command String
Interpreter, or system program). It may happen that the user wishes to include
one of these characters as actual data, to be passed along with the rest of the
data on the line, rather than having‘it stripped off, To do this, place an
apostrophe in the first position,

*

'SAMT 190

which causes the line to be passed as $AMT 1g¢@ (the apostrophe is stripped). This
may also be accomplished through $OWN (see 4-2.1.4.21).

If the apostrophe is not found in column 1, but the § is there instead, the card

would be treated as a command to the Monitor.

Valid control statements can be included, to cause the Monitor, CSI, or system
program to take a desired action. Thus, a deck of cards being read by a user

program may include a statement such as
$RUN PIP

to invoke the Peripheral Interchange Program. When the $RUN PIP card is encountered,
an EOF is returned, and the card is held until a READ is issued to the command input
dataset (CMI); at this point, the $RUN PIP card is passed to the Monitor, which

causes the user program to be terminated, and PIP to be loadgd and executed. (Refer

to the discussion of synchronous/asynchronous commands, in Section 4-2.1.3.)

4-37

PART 4
CHAPTER 3
INPUT/OUTPUT

3.1 BATCH INPUT

Batch input can be from any PDP-1l1 device that can perform the input function. Data

can be read from the batch stream in one of two ways: normal mode or OWN mode.
3.1.1 Normal Input Mode

In most cases the.normal input mode is employed when reading data from the batch
stream. Data read in normal mode must be formatted data. Attempting to read un-
formatted data, if not in OWN mode, results in a fatal error, aborting the job.
(See the DOS/BATCH Monitor, Part 3 of this handbook, for a definition of formatted
data.)

This requirement stems from the need to check the first position on each line for
the presence of a control character. Because it is impossibie to determine the
beginning and end of a line in unformatted data, a situation could arise where the
control card could be.inadvertently bypassed, causing unpredictable results. Note:
All formatted reads from the batch stream must have a byte count of at least 83

specified in the line buffer header maximum byte count word.
3.1.2 OWN Mode

It is occasionally necessary to réad in unformatted mode from the batch stream;
e.g., when translating EBCDIC characters to ASCII. This is permitted by means of
the $OWN control card, which indicates to the Monitor that all characters read
from that point until the next physical end-of-file (EOF) card (which terminates
OWN mode) may be read as unformatted data. In this mode, the characters $, #, and

* are not treated as control chafacters, but as data.

The physical end-of-file (EOF) card statement must be included at the end of the
user's OWN data to avoid the possibility of failing to recognize a control card.
The operator must place an EOF card at the end of each job to prevent the next job
from being read as data, in case the prior user forgot to terminate OWN mode. For

added safety, the user should place an EOF card immediatély ahead of his $JOB card.
Binary data within a batch stream from the card reader must be read in OWN meode.

4-38

3.2 BATCH OUTPUT

Batch output includes brogram listings, output associated with system programs

(such as load maps), the job log, and dumps.
3.2.1 Job Log

The job log is the record of events that occurréd during execution of the job: the
control cards processed, commands read, and error messages generated. The first
line of the job log contains the image of the $JOB command, as specified by the
user, the date, and the time. This is followed by a sequence of images of control
cards that were read in and processed up to the point at which the $FINISH command
was read, or a fatal error occurred. Any error, warning, or informative messages
are included in the log as they are encountered. Provided that a log dataset was
included in the BATCH command, a log is produced for all jobs, unless the log-
suppress switch (/NL) was specified in the $JOB Eard.

3.2.2 Dumps

If the user has specified the /DU switch on the $RUN or $GET card for the program,
and an error occurs, a dump of the area specified in the /DU switch is produced.
The first page of a dump, the header page, consists of a summary of information
regarding the dump itself. It is formatted as shown in Figure 4-4.

* % % % * % DUMP OF HEADER FOLLOWS * * * * % %

STARTING WORD OF DUMP = nnnnnn
NO. OF BYTES DUMPED = nnnnnn -

RO = nnnnnn
Rl = nnnnnn
R2 = nnnnnn
R3 = nnnnnn
R4 = nnnnnn

R5 = nnnnnn

SP = nnnnnn

PC = nnnnnn

HIGH ADDRESS = nnnnnn.
LOW ADDRESS = nnnnnn’

DUMP IDENTIFIER MESSAGE

Figure 4-4
Sample Header Page

4-39

The values of nnnnnn are given in octal, and are left-justified. For example, the

Qalue 477 in the'NO. OF BYTES DUMPED entry would appear as NO. OF BYTES DUMPED = 477.

The subsequent pages of the dump comprise the area specified in the /DU switch. As
shown in Figure 4-5, each group of four lines describes 1§@(8) locations, and is
headed by the flag --- n ---, where n corresponds to the first location in the
group, @, 198, 2p¢@, etc.

Each line in the dump contains the contents of eight words, represented as octal
value. If a sequence of lines contains all zeroes, the first line in the sequence
is printed in its entirety.

The next line is printed with asterisks in the first position.

Af: krkhxk

Subsequent lines in the sequence are omitted altogether. The next nonzero line is

printed.

At the end of each line is a field of 16 ASCII characters, which is the ASCII
contents of each byte. ASCII equivalents of characters that are not within the
printable range are mapped into the printable range, converted to upper case (if

necessary), and printed.

Figure 4-5 illustrates the form and content of a dump.

4-40

* % % % % * DUMP OF DATA FOLLOWS * * * # % *

ecejgdgiyees
poYs M1214
wlwt NY6116
wéYy Aybele
pbut WyY2726

vign24
L2342
w1029
00p242

woajYlil Yme=
WYt Ag7e6e
pevt Aphlde
wdyt AghLUL
wbul 26192

6Ap390
62356
wdE3s6
pRe356

R P LI

Lldt 211506 242
wad?t Ip7u24 KB242
padt Apbli2 pdpdss
VWous Aya1d2 ¢ow3se

R

wdyg: PMY61a2 PRP3ISE
W2yt 0p6192 wdL3s6
ndut NPp61d2 Audss
byt VY6142 YHE3I56

LY PEPT T

e Y4567 1466
veuvs V42716 177437
pdgs Apaldve 12¢467
wb! 2Y5/43 glsie?

mmeNYASGym=-

phyt Mn1424 plp21@
Laud 211416 pdeRad
wdys 10346 pAp0yd
wbPt N10LA0 106204

ameiYP6lumm-
powE 1udb67
w203 2pi1eb
pdys A12/04
v6Us 1prene

©n1d22
w2443
6n33242
105714

np61e2
26136
Pu2y72
ng2720

ngb10e
nabreg
pblLezg
apb1ee

wYb122
2u6102
Jub172
av6102

dué102
dp6lee
du61r2
2a6102

295009
Ai11645
295645
Ppl1az)

11101%
183432
{v54024
1en7a7

62606
121227
151716
2ylode

vrY342
vap3an
wn2124
Javed

VrR356
Yru3be
WaB3b6
vrp3obe

wup3os6
020356
Yaa3oh
PUNKETS

¥np3se6
@¥AB3s6
wAv3IoE
¥a0356

B1ubv1
105715
111033
152718

w2234y
yi126u?
vwitlu2
183404

wAnLu2
oRBe3n
Ww12343
w5224

Ap6122
Ip43gp
w2244
1p6142

np6102
A6l
206122
Ap6142

Hp61R2
Ap6102
Ap6192
1p6122

up6102
Apbtuve
ag6142
Ap6102

n62771
1pvuny
ApdSpnp
200349

Aeb3ctd
120427
AgN40g
422520

411646
1p3405
146
A14116

vwepl3da
vewddan
ene31?
B20n356

veniss
Qeulsbs
NRR3ISE
aep3de

aee3o6
Wrp3be
2ee355
Ueuidbs

Ae03I55
Levddbe
Bevibh
Vo idbs

wena14
111715
120467
0e5710

462704
ve0AVE
pes5722
014117

©v3ysle
121227
v21624
ra1716

Figure 4-5
Sample Data Dump

4-41

206102
Pu6102
292354
266102

153170
206102
w6102
A06102

206122
nY61e2
206102
206102

w61m2
Apbla2
16102
Avb1p2

A12102
114204
205034
2ely23

176332
261764
212625
n1icd

Juirss0
APVR4Q
aplvi2
A2Rw21

2103461
929352:
nA2526%
240356

#1a3ses
a113563
¥1¥3563
240356

A1P3561¢
202356
813561
"493561

2133563
AIP 3563
AN366%
vIp356:

n12146:
212703
1414143
130504

hl14p4;:
21021613
Wa5741
2105411

2127043

1739023
2257143
1126153

LPTeBLBeBL . DeBLFo
NLeoaLeossApolL Je
HLF3£DTOONJDLOVE
VEeSVEASBLNOBLNS

HN@OHLNOBLNOXVNE
HLNOBLNOBLNOBLNG
BLNOBLNOBLNOBLNE
BLNOBLNOBLNEBLN®

FSeopLNOB NOBLNS
INeos|_NOBLNOBLNE
BLNOBLNOBLNEBLNE
BLNOBLNSBLNGBLNE

BLNOBLNOBLNOBLNG
HLNOBLNOBLNOBLNS
BLNSELNOBLNOBLNS
BLNOYL NOBLNOBLNG

WNIVCEJANAELABTFT
NEVOESMKAOMSDXCU
HCWAEK [B@JWAOKLB
CKpVWCMUPBHKSBDO

FCHPMSADULDEZODS
NQDLZGGUWAF®TCNP
FPDODKBRAARKUUAK
PPULGAAGPEHX®PAR

WIPBFEB®FSNQHCDU
PBLUWBXOEGWROIBF
DUBFMSCTFRTICJYLK
BOLKeBTINXNCGOMY

PART 4
CHAPTER 4
BATCH PROGRAMMING CONVENTIONS

This chapter is aimed at programmers responsible for writing, modifying, or main-
taining programs that function in the Batch mode operating system environment.

Familiarity with DOS/BATCH is assumed.

To function properly in Batch mode, programs must observe certain conventions.
Currently existing programs should be modified to conform to these conventions, if

the user intends them to operate in the Batch environment.
As an aid in making the modifications, assemble the program to be modified with
MACRO and obtain a CREF listing. The cross-reference data will help ;n locating

and examining relevant link blocks and file blocks.

4.1 COMMAND DATASETS

The Monitor organizes BATCH input into several unique pseudo datasets}based on the

identifying character at the beginning of each record, i.e.: f

CHARACTER PSEUDO DATASET
$ BOS
CMI
* PCI

any other CDI

All BATCH output is handled through the CMO pseudo dataset. These pseudo datasets
have been implemented to ensure the operating system has constant control over the
-input to each program. This control is maintained through a hierarchal command

structure, i.e., a CMI input dataset is not allowed if a BOS dataset has not been
input previously, or if a BOS dataset is received after a PCI dataset the% the PCI

dataset is discontinued and the BOS dataset regains control.

4.1.1 Command String Input (CMI)

The dataset named CMI is used for all Command String Interpreter input; i.e., all
commands with a # symbol in line position (or card column) 1. When reading CMI,

a .WAIT should follow the .READ, and a test for end-of-data (EOD) should be made;
if EOD has occurred, the Monitor EXIT EMT should be issued.

4-42

4.1.2 Command Output (CMO)
The dataset with logical name CMO is used for:
~a. All Command String Interpreter related output (such as syntax error
announcements, and the # symbol);

b. all responses to program command input (e.g., *);

c. all error logging.
A default must be specified»for £he CMO physical device. This default must be
KB:.
sd that the program will run in either DOS or BATCH mode.

NOTE

Because the physical devices for the
datasets used for command string input
and output will, in all likelihood, not
be the same; it is recommended that a
.WRITE to CMO be followed by a .WAIT,
before issuing a .READ to CMI, and
vice-versa.

4.1.3 Program Command Input (PCI)

All program command input must be entered via a dataset named PCI. That is, all
commands prefixed by * must be read from PCI. When edd-offdata (EOD) is detected
from PCI, the proper procedure is to clean ‘'up the current Command String Inter-

preter request (# command) and read the next # command.

4.1.4 Command Data-Input (CDI)

Input to programs, other than program commands, such as text insert to EDIT, must

be entered via a link block that has a logical dataset named CDI. When EOD on
CDI is detected, the current * command processing has finished. The next * command
should be read from PCI.

4-43

4.2 - READS FROM BATCH STREAM

As described in‘Chapter 3, all READS from the batch stream must be formatted, unless
the $OWN command has been issued. All formatted READS from the batch stream must

have a byte count in the line buffer header of > 83 This requirement precludes

1g°
corruption of commands that may be read by the user. (If the byte count is less
than 831¢, a command on a card might be truncated before being read in its entirety.)

*

4.3 PSEUDO DEVICE SPECIFIERS

The device speqifiers EI and SY are used when the user wishes to call. for the
Batch input device, or the system residence device, but he does not know which
device is actually being used. Since these specifiers do not call for a physical
device, in the way that CR or DF do, they are termed pseudo device specifiers.
They allow the system to supply the actual device that is being used at job
execution tiﬁe, in place of BI or SY. Thus, the same control cards can be used,

fegardless of the particular device being employed.
4.4 USE OF ASSIGN
The ASSIGN statement must observe the rules listed below.

1. $ASSIGN must not be used with any Batch system program's logical dataset
name. The user must not assign a dataset to CMI, CMO, DCI, or PCI.

2. An $ASSIGN that is made at the job level is global to the job. The
sequence

$JOB MAC [20¢,200]
SASSIGN DT@:CRT,RDO

causes a file named CRT, which is on DECtape, to be assignéd to the

dataset with logical name RDO. This assignment, if not altered by a

later ASSIGN in the job, remains in effect for the duration of the job
M (MAC) .

3. An $ASSIGN that is made at the program level remains in effect (if not
subsequently altered) for the duration of the program.

- $GET PROG
$ASSIGN DK:MTX.OBJ,DCL
$BEGIN

The assignment of file MTX.OBJ, on the RK1ll disk, to dataset DCL is in
effect for the duration of PROG.

4-44

4.5 NOTE PERTAINING TO .CSI2 RETURN CONDITIONS

The user should note that on return from .CSI2, the top of the stack may have bit

2 set. Bit 2 is set when a default device is returned by the Command String
Interpreter; i.e., the user has not épecified a device in a command string, but

has éhosen to use the default device, instead.

As documented in Part 3, DOS/BATCH Monitor, the user is only required to check bits
and 1. In cases where this is done by checking but 1 (to determine that no error
occurred) and then checking the value pf.the word for a zero or nonzero value, the

presence of a 1 in bit 2 may lead to erroneous assumptions.
4.6 ERROR HANDLING

The command output dataset (CMO) must be used for output of all error announcements
that come directly from a system program, rather than via an IOT. Direct error
announcements include announcements of command string syntax errors, and supplementary

N .
information (such as filenames) concerning error announcements made through an IOT.

An EMT has been incorporated into the Batch system to allow the currently running
program((éystem or user) to request that lines in the batch stream be bypassed,
until a specified type of control card is encountered. For example, if a command
string syntax occurs, it may be desired to bypass all following statements up to

the next $ or # statement. This EMT is incorporated by including the following:

MOV #CODE, - (SP)
EMT 67

where CODE's value determines the next statement type to be read (not bypassed).

CODE STATEMENT TYPE
g $

1 $ or #

2 $, #, or *

Any other value for CODE is invalid, and causes a fatal error (F@53).

The DOS/BATCH convention of announcing syntax errors by printing the command as
far as the point of the error, followed by ?, is still-used in Batéh, but the EMT
shown above must be included to cause the batch stream to be bypassed from the
point of the error until a line starting with $, or # is found. (CODE = 1) EMT 67

acts as a NOP when the system is not in Batch mode.

4-45

PART 4
CHAPTER 5
BATCH CARDS

5.1 CARD CODES

Bach card input to the DOS/BATCH system must contain either an ASCII, @26, ox @29
punch code which represents either a single command to the Monitor or a single line
of data. (See Appendix A for a list of the card codes and their corresponding

meaning.)

The default card code is from the @29 keypunch. This may be changed by the user
during the dialogue at system initialization. (See the System Manager's Guide
DEC-11-0OSMGA-A-D for more information.) The default code may be over-ridden at

run time with coded header cards in the'input deck. These header cards contain

a special multipunch in column 1, A deck punched in @26 code should be preceded

by a card containing the multipunch 12-2-4-8; and @29 deck requires the multipunch
12-@-2-4-6-8, and an ASCII deck uses the 12-1-3-5-8-9 in column 1. A deck can contain
the various card codes (i.e., ASCII, @26 (BCD), @29 (EDCDIC) if a header card

precedes the corresponding section of cards.

Table 5-1
HEADER CARDS

Multipunch Function

12-2-4-8 Indicates that the cards which follow are to be
read as @26 punch codes.

12-@-2-4-6-8 Indicates that the following cards are punched

. in @§29 code.

12-1-3-5-8-9 Indicates that the following cards contain

ASCII punches.
J12-11-1-2-8-9 Enables blank suppression.

12-11-g-1-6-7-8-9 Indicates end of file and must conclude each

input file

4-46

5.2 READ LIMITATIONS

For each I/0 réquest, eighty ASCII characters are stored in a specified

user buffer. The Monitor supplies a carriage return and line feed at the end of the
buffer. If the data being input exceeds tbé'length of the buffer, excess data is
discarded and a carriage return and line feed character are placed at the end of the
full buffer.

One method of over-riding the 80-character ASCII read limit is with blank suppress.
Blank suppression is enabled by a header card which contains the multipunch
12-11-1-2-8-9 in column 1. With blank suppress enabled, columns 73-80 on the input
cards are ignored. The carriage return and line feed which terminate the input

are set immediately after the last non-blank data column. This permits the user to

eliminate trailing blanks and create more compact records.

5.3 BINARY DATA

The user can input binary data by spécifying the transfer mode in the Mode Byte of
the line buffer header for '.READ or by setting Bit @ of the Fﬁnction/Status word to

1 in the Tran Block for .TRAN level I/O requests (see Monitor Chapter 3-4 for more
information). Programs which use .READ in unformatted binary mode or .TRAN must make
their own checks for data validity. Monitor processing checks data validity in

formatted binary .READ requests if the data conforms to normal standards.

Binary input data is accepted as 12 bits per column and passed to the calling
program in packed form as four columns which build three binary words as illustrated

below.

Columns: 1 2 3 4 N 80
Rows
(15 3| 7111 12
M . 11
w
el Y. 1
. ri|{ o .
. d r ° 2
1
w d w
. 3
o . 2 o
r| @ r 4
4 : d
. .5
i 3
. w g . 6
. o |15} « 7
. | o .
d o - 8
2 r
. a 9
13
» 4 8 (12| ¢ 10

" 4-47

Each punch represents one bit of a binary word, however, a word is 16 bits and a
card column has only 12 rows, consequently bits are packed in descending order for
each word. Bits 15 through 4 of the first word fall into the first column. The
remaining 4 bits (i.e., 3 to @) and the high order bits of the second word fall
into the second column. This process continues allowing 60 words of binary data

to be packed into a single 80 column card.
5.4 ERROR CONDITIONS

The detection of any card reader error condition in Batch signifies a "Device not
Ready" state which elicits a Ag@2 message and disables the reader interrupt. If

the operator issues a CONTINUE command to resume processing, the error processor
will recall the Transfer routine to repeat the read and exig to await the next
interrupt. The operator is given the opportunity to correct the error before
entering the CONTINUE commandiw The card with the error should be repléced and

the replacement card should be the first card read when processing resumes. An
exception to this procedure occurs whenever the A37¢ diagnostic message is printed.
In this case, the last card from the output side should not be feplaced in the input

hopper for it has already been read.

A "Hopper Empty" condition indicates a "Device not ready" state as opposed to an
end of medium condition. The "Hopper Empty" condition signifies that more data
can be input; this allows input decks to be larger than the size of the Hopper.
This condition necessitates the use of a header card to indicate the end of file.
The end of file card contains the multipunch 12-11-0-1-6-7-8-9 in the first column
for ASCII mode transfer or in each of the first eight columns fér binary mode.

As a "Hopper Empty" condition is detected before the last card has been processed,
it is essential that an EOF card be followed by one or more blank cards. If the
blank cards are initially omitted, normal completion can only be effected by

reinserting the EOF card followed by a blank card.

4-48

	4-001
	4-002
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48

