PART 5

DOS/BATCH DEVICE DRIVERS

PART 5
‘CHAPTER 1
USING DEVICE DRIVERS OUTSIDE DOS/BATCH

Subroutines to handle I/0 transfers between a PDP-11 and each of its peripheral
devices are developed as required for use within the Disk Operating System DOS/BATCH.
These subroutines are made available within an I/d Utilities Package for the benefit
of PDP-1l1 users who have configurations unable to support DOS/BATCH or who wish to
run programs outside DOS/BATCH control. A

All the subroutines associated with one peripheral device form an entity known as a
device driver. This part provides a general description of a driver and shows how
it can be used in a stand-alone environment. The unique properties of each driver
are discussed in separate ddcuments, which are made availagie~as part of the Device
Driver Package. The I/O utilities package for any system is determined by the

peripherals of that system.. Thus, the full documentation for a particular package

consists of this document and applicable supplements.

PART 5
CHAPTER 2
DRIVER FORMAT

2.1 STRUCTURE

The basic principle of all drivers under the DOS/BATCH Monitor is that they must
present a common interface to the routines using them in order to provide device-
independént operation. The subroutines are structured to meet this end. Moreover,
a driver can be loaded anywhere in memory under Monitor Control. Its code is always

position-independent (prc) .}

A detailed description of a driver is found in Chapter 5-4. This section describes

driver interfaces.
2.1.1 Driver Interface Table

The first section of each driver is a table which contains, in a standard format,
information on the nature and capabilities of the device it represents and entry
points to each of its subroutines. The calling program can use this table as
required, regardless of the device being called. See Section 5-4.1 for a detailed

description of the table.
2,1.2 Setup Routines

Each driver is expected to handle its device under the PDP-1l1 interrupt system.
When called by a program, therefore, a driver subroutine merely initiates the required
action by setting the device hardware registers appropriately. It returns to the

calling program by a standard subroutine exit.

The main setup routines prepares for a data transfer to or from the device, using
parameters supplied by the calling program. Normally, blocks of data are moved at
each transfer. The driver returns control to the program only when the whole
block has been transferred or when it is unable to continue because there is no

more data available.

lsee Part 6 for information on PIC.

The driver can also contain subroutines by which the calling program can request
(1) start-up or shut-down action, such as leader or trailer functions for a paper
tape punch, or (2) éome special function ﬁrovided by the device hardware (or a
software simulation of that for some similar device), e.g., rewind of a magnetic

tape or DECtape.
2.1.3 Interrupt Servicing

The driver routine to service device interrupts is particularly dependent upon the
device hardware provisions for controlling transfers. In general; the driver
determines the cause of the interrupt and checks‘whether the last action was
performed correctly or was prevented by some error condition. If more device
action is needed to satisfy the program reqﬁest, the driver again initiates fhat
action and takes a normal interrupt exit. If the program réquest has been fully
met, cdntrol is returhed to the program at an address supplied at the time of the

request.
2.1.4 Error Handling

Device errors can be handled in two ways. There are some errors for which recovery
can be progrémmed; the driver, if appropriate, attempts this itself (és in the case
of parity or timing failure on a bulk-storage device) or recalls the program with the
error condition flagged (as at the end of a physical paper tape). Other errors
normally require external action, perhaps by an operator. The driver calls a DOSs/
BATCH error handler via an IOT call with supporting information on the processor
stack.

2.2 INTERFACE TO THE DRIVER
2.2.1 Control Interface

The principal link between a calling program and any driver subroutine is the first
‘word of the driver table (link word). In order to provide the control parameters
for a device operation, the calling program brepares a list in a standardized form
and places a pointer to the list in the link word. The called driver uses the
pointer to access the parameters. The driver can place return staﬁus information
(if needed) in the list area via the link word. The first word of the driver table
can also act as a busy indicator; if it is @, the driver is not currently performing
a task, but if it contains a listpointer, the driver can be assumed to be/busy.

Since most drivers support only one job at a time, the link word state is significant.

2.,2.2 Interrupt Interface

Alfhough the driver expects to use the interrupt-system, it does not itself ensure
that its interrupt vector in the memory area below 4¢¢8 has been set up correctly;
the Monitor takes care of this. However, the driver table contains the information

required to initialize the appropriate vector.

PART 5
CHAPTER 3
STAND-ALONE USE

Because each driver is designed for operation within the device-independent frame-
work of the Monitor, it can be similarly used in other applications. Since the
easiest way to use the driver is to assemble it with the program that requires

it, this method will be described first. Other péssible methods will be discussed

later.

3.1 DRIVER ASSEMBLED WITH PROGRAM

3.1.1 Setting Interrupt Vector

| —

As noted in Section 5-2.2.2, the calling program must initialize the device

transfer vector within memory locations $-377. The address of the driver's interrupt
entry point can be identified on the source listing by the symbolic name which appears
asfﬁeconﬁentsof the Driver Table Byte, DRIVER+5. The priority level at which the
driver expects to process the interrupt is at byte DRIVER+6. For a program which

can reference position-dependent Fode, the setup sequenceymight be:

Mov #DVRINT ,VECTOR ;SET INT. ADDRESS
MOVB DRIVER+6,VECTOR+2 ;SET PRIORITY
CLRB VECTOR+3 . ;CLEAR UPPER STATUS BYTE

where the Driver Table Byte (at DRIVER+5) shows the follwing instruction:

.BYTE DVRINT-DRIVER

" If the program must be position-independent, it can take advantage of the fact that
the Interrupt Entry address is stored as an offset from the start of the driver, as

illﬁstrated above. In this case, a sample sequence might be:

MoV PC,R1 - . ;GET DRIVER START

ADD #DRIVER-.,R1l

MoV #VECTOR,R2 i...8& VECTOR ADDRESSED

CLR @R2 ' ;SET INT. ADDRESS

MOVB 5(R1) ,@R2 : ;...AS START ADDRESS+OFFSET
ADD R1,(R2)+ .

CLR @Rr2 . SET PRIORITY

MOVB 6(R1),@R2

3.1.2 Parameter Table for Driver Call

For any call to the driver the program must provide a list of control arguments

mentioned in Section 5-2.2.1. This list must adhere to the following format:!

[SPECIAL FUNCTION POIN'I’ER]2
[BLOCK NO.]?
STARTING MEMORY ADDRESS FOR TRANSFER
" NO. OF WORDS to be transferred (2's complement)
STATUS CONTROL showing in Bits:

@-2 Function (octally 2=WRITE, 4=READ)"
8-1f Unit (if Device can consist of several units, e.g., DECtape)
11 Direction for DECtape .travel (g=Forward)

ADDRESS for RETURN ON COMPLETION
[RESERVED FOR DRIVER USE] S

The list can be assembled in the required format 'since its content will not vary.
The driver can return information in this area; this will not corrupt the program
data.

On the other hand, most programs will probably use the same list area for several
tasks or even for different drivers. In this case, the program must contain

the necessary routine to set up the list for each task before making the driver

call. The driver may refer to the list again when it is recalled by an interrupt

or when returning information to the calling program. Therefore, the list must not be
changed until any driver has completed a function requested; for concurrent opera-

tions, different list areas must be provided.

1Tn some cases, it can be further extended as discussed in later sections.
2Required only if Driver is being called for Special Function; addresses a Special
Function Block.

3Required only if the device is bulk storage (e.g., Disk or DECtape).

“Most devices transfer words regardless of their content, i.e., ASCII or Binary.
Some devices (e.g., Card Reader) may be handled differently depending on the mode
for these, Bit @ must also be set to indicate ASCII=@g, Binary =1. In these cases,
the driver always produces or accepts ASCII even though the device itself uses some
other code.

5This word may be omitted if the device is bulk storage.

3.1.3 Calling the Driver

To enable the driver to access the parameter list, the program must set the first
word of the driver to an address six bytes less than that of the word containing the
MEMORY START ADDRESS. It can then directly call the required driver subroutine

by a normal JSR PC,xxxx call, where xxxx is the address of the driver subroutine.

As an example, the following position-independent code might appear in a program
which wishes to read Blocks #1£@-103 backward from DECtape unit 3 into a buffer
starting at address BUFFER. k

MOV * PC,R@ ;GET TABLE ADDRESS
ADD #TABLE+12-. ,R@
MOV PC,@RY ;GET AND STORE...
ADD #RETURN-. , @R@ ;.. .RETURN ADDRESS
MOV #5404, - (R@) ;SET READ REV. UNIT 3
MoV #-1@24.,~ (R@) +4 BLOCKS REQUIRED
MOV PC, - (R@) $GET AND STORE
- ADD #BUFFER-. ,@R@ i ++.BUFFER ADDRESS
MOV #183, - (R@) ;START BLOCK
cMP -(RZ) ,-(RE) ;SUBTRACT 4 FROM POINTER
MOV * R@,DT ;SET DRIVER LINK
JSR PC,DT.TFR ;GO TO TRANSFER ROUTINE
WAIT: . s RETURNS HERE WHEN
. $++.TRANSFER UNDER WAY
. ; RETURNS HERE WHEN

i+ . . TRANSFER COMPLETE
;LIST AREA SET

TABLE: .WORD
) i «..BY ABOVE SEQUENCE

+WORD
«WORD
-WORD
«WORD
+WORD

ASRCR SRR SR)

3.1.4 User Registers

During its setup operations for the function requested, the driver assumes that
Processor Registers -5 are available for its use. If their contents are of value,

the program must save them before the driver is called.

While servicing intermediate interrupts, the driver may need to save or restore
its registers. It expects to have two subroutines available for the purpose
(provided by the Monitor). It accesses them via addresses in memory locations
448 and 468.

MOV @#44,- (SpP) ;OR MOV @#46,-(SP)
JSR R5,@(SP)+

The driver must also ensure that the start addresses are set into the correct
locations (448 and 468).
At its final interrupt, the driver saves the contents of Registers @~-5 before

returning control to the calling program completion return.
3.1.5 Returns From Driver

As shown in the example in Séction 5—5.1.3, the driver returns control to the
calling program immediately after the JSR as soon as it has set the device in
motion. The program can wait or carry out alternative operations until the driver
signals completion by'retufning at the address specified (i.e., RETURN above).
Prior to this, the program must not attempt to access the data peing read in, nor

refill a buffer being written out.

The program routine beginning at address RETURN varies according to the device
being used. In general, the driver has given control to the routine for one of two
reasons; either the function has been satisfactorily perfdrmed, or it cannot be
carried out due té some hardware failure with which the driver is unable to cope,
though the program may be able to do so. In the latter case, the driver uses

the STATUS word in the program list to show the cause:

Bit 15 = 1 indicates that a device or timing failure occurred
and the driver has not been able to overcome this,
perhaps after several attempts.

=1 shows that the end of the available data has been

Bit 14
. reached.

The driver places in R@ the contents of its first word as a pointer to the

parameter table (see Section 5-3.1.2).

Possibly, the driver has transferred only soﬁe of the data requested. In this

case, it shows in the RESERVED word of the program list a negative count of the words
not transferred in addition to setting Bit 14 of the STATUS word. As mentioned in
the note in Section 5-3.1.2, this applies only to non—bﬁlk storage devices. The
drivers for DECtape or disks! always endeavor to complete the full transfer, even

beyond a parity failure, or they take more drastic action (see Section 5-3.1.6).

'This includes RF11 Disk; although this is basically word-oriented, it is assumed
to be subdivided into 64-word blocks.

It is thus the responsibility of the program RETURN routine to check the informa-
tion supplied by the driver in order to verify that the transfer was satisfactory

and to handle the error situations appropriately.

In addition, the routine must contain_-a sequence to take care of the Processor
Stack, Registers, etc. As noted earlier, the driver takes the completion return
address after an interrupt and saves Registers £-5 on the stack above the
Interrupt Retufn Address and Status. The program routine should, therefore, contain
some sequence to restore the processor to its state prior to such interrupt, e.qg.,.

using the same Restore subroutine illustrated earlier:

MOV @#46, - (SP) ' ;CALL REGISTER RESTORE

JSR R5,@(sP)+
RTI ;RETURN TO INTERRUPTED PROGRAM

.

3.1.6 Irrecoverable Errors

All hardware errors other than those noted in the previous section cannot normally
be overcome by the program or by the driver on its behalf. Some of these could be
due to an operator fault, such as not turning on a paper tape reader or not setting
the correct unit number on a DECtape transport. Once the operator has rectified

the problem, the program could continue. Other errors, however, require hardware
repair or even software repair, e.g., if the program asks for Block 2#@@ on a device
having a maximum of 1g@f. In general, all these errors result in the driver placing
identifying information on the processor Stack and calling IOT to produce a trap

through location 348'

Under DOS/BATCH, the Monitor provides a rdutine to print a teleprinter message when
this occurs. In a stand-alone environment, the program using the driver must

itself contain the routine to handle the trap (unless the user wishes to modify the
driver error exits before assembly); The handler format depends upon the program.

The following format takes advantage of the information supplied by the driver:

(SP) : Return Address

2 (SP) = Return Status Stored by IOT call
4 (SP) : Error No. Code Generally unique to driver
5 (SP) : Error Type Code: 1 = Recoverable after Operator Action
3 = No recovery
6 (SP) : Additional Such as content of Driver,
’ Information Control Register, Driver Identity,
etc.

As a rule, the driver expects a return following the IOT call in the case of recoverable
errors but contains no provision for an IOT call following a return from irrecoverable

errors.

3.1.7 General Comment

The source language of each driver has been written for use with DOS/BATCH and
contains some code which is not accepted by the Paper Tape Software PAL~11lR, in
particular, .TITLE, .GLOBL, and Conditional Assembly directives. Such statements
should be déleted before the source is used. Similarly, an entry in the driver
table gives the device name as .RADS5@ 'DT' to obtain a specifically packed format
used internally by DOS/BATCH. If the user wishes to keep the name, for instance,
for identification purposes as discussed in Section 5-3.3, .RADS5@ might easily

be changed to .ASCII without detrimental effect, or it might be replaced with
-WORD #&.

3.2 DRIVERS ASSEMBLED SEPARATELY

Rather than assemble the driver with every program requiring its availability, the
user may wish to hold it in binary form and attach it to the program only when
loaded. The only requirement is that the start address of the driver should be

known or be determinable by the program.

The example in Section 5-3.1.2 showed that the Interrupt Servicing routine can be
accessed through an offset stored in the Driver Table. The same technique can be
used to call the setup routines, as these also have corresponding offsets in the

Table, as follows:

DRIVER+7 Open1
+10 Transfer
+11 Close?
+12 Special Functions!

The problem is £he start address. There is the obvious solution of assembling the
driver at a fixed location so that each program using it can immediately referénce

the location chosen. This ceases to be convenient when the program has to avoid

the area occupied by the driver. A more general method is to relocate phe driver

as dictated by the program ﬁsing it, thus taking advantage of the position-independent
nature of the driver. The Absolute Loader, described in the Paper Tape Software
Handbook (DEC-11-XPTSA-A-D), provides the capability to continue a load from the
point at which it ended. Using this facility to enter the driver immediatelyr
following the program, the program might contain the following code to call the

subroutine to perform the transfer illustrated in Section 5-3.1.3.

11f the routine is not provided, these are @.

5-10

MoV - PC,R1 ;GET DRIVER START ADDRESS

ADD #PRGEND-. ,R1
MOV PC,RP ;GET TABLE ADDRESS
ADD #TABLE+12-. ,R@ - ;AND SET UP AS SHOWN

. i...IN SECTION 5-3.1.3
CMP -(R@) ,- (R@) ;FINAL POINTER ADJUSTMENT
MOV R@,@R1 ;STORE IN DRIVER LINK
CLR -(sp) ;GET BYTE SHOWING...
MovB . 18 (R1) ,@SP ;. ..TRANSFER OFFSET
ADD (SP)+,R1 ; COMPUTE ADDRESS
JSR PC,@R1) GO TO DRIVER

PGREND:

.END

This technique can be extended to cover situations in which several drivers are
used by the same program, provided that it takes account of the size of each
driver (known because of prior assembly) and that the drivers themselves are always

loaded in the same order.

For example, to access the second driver, the above sequence would be modified to:

MOV PC,R1 ;GET DRIVER 1 ADDRESS
ADD #PRGEND-. ,R1)
ADD #DVR1S2Z,R1 ;SET TO DRIVER 2
DVR1SZ=n
PRGEND:
.END

An alternative method may be to use the MACRO Assembler in association with the
Linker program LINK, both of which.are available through the DECUS Library. The
start address of each driver is identified as a global. Any calling programs need

merely include a corresponding .GLOBAL statement, e.g., .GLOBL DT.
3.3 DEVICE-INDEPENDENT USAGE

The drivers are assigned for use in a device—independent environment, i.e., one

in which a calling program need not know in advance which driver has been associated
with a table for a particular run. One application of this type might be to allow
line printer output to be diverted to some other output medium because the line
printer is not currently available. Another might be to provide a general pro-

gram to analyze data samples although these on one occasion might come directly

5-11

from an Analog-to-Digital converter and on another be stored on a DECtape because

the sampling rate was too high to allow immediate evaluation.

Programs of this type should be written to use all the facilities that any

one device might offer, but not necessarily for each device. For instance, the
program should ask for start-ﬁp procedures because it may sometime use a paper
tape .punch which provides them, even though it may nérmally use DECtape which
does not. As noted in paragraph 5-2.2.1, the driver table contains an indication
of its capabilities to handle this situation. The program can thus examine the
appropriate item before calling the driver to perform some action. As an example,
the code to request start-up procedures might be (assuming R@ already set to

List Address):

MOV #DVRADD, R1 ;GET DRIVER ADDRESS

TSTB 2(R1) ;BIT 7 SHOWS

BPL NOOPEN ;+...0OPEN ROUTINE PRESENT
MoV R@,@R1 ;STORE TABLE ADDRESS
CLRB - (SP) ;BUILD ADDRESS

MOVB 7(R1) ,@SP 7...0F THIS ROUTINE

ADD (sP)+,R1 .

JSR PC,@R1 i...AND GO TO IT

;FOLLOWED POSSIBLY BY

WAIT AND COMPLETION

3 PROCESSING

;RETURN TO COMMON OPERATION

NOOPEN 3

Similarly, the indicators show whether the device is capable of performing input
or output, or both; whether it can handle ASCII or binary data; whether it is a
bulk storage device capable of supporting a directory structure or is a terminal-
type device requiring special treatment. Other table entries show the device
name as identification and the number of words the device miéht normally expect
to transfer at a time (in 16-word units). All of the information can be readily

examined by the calling program, thus enabling the use of a common call sequence
for any I/0 operation, as illustrated in the example on the following page.

5-12

Mov #DVRADR, R5 iSET DRIVER START

JSR , R5,TIOSUB ;CALL SET UP SUB
BR WAIT i SKIP TABLE FOLLOWING ON RETURN
WORD 1p ; TRANSFER REQUIRED
.WORD 193 . 7BLOCK NO.
«WORD BUFFER }BUFFER ADDRESS
.WORD -256. ;WORD COUNT
.WORD 4ag4 o ;READ FROM UNIT 1
.WORD RETURN ;EXIT ON COMPLETION
.WORD '] . ;RESERVED

WAIT: v , ;CONTINUE HERE...
o

IOSUB: MoV @sP,Rg@ " ;PICK UP DRIVER ADDR
MoV R5,R1 ;SET UP POINTER TO LIST
TST (RL)+ ;BUMP TO COLLECT CONTENT

. ;ROUTINE CHECKS ON DEVICE
. : . ;.. .CAPABILITY USING R1

. ' ;...TO ACCESS LIST AND

. ;...R¥ THE DRIVER TABLE

. ;IF O.K...

Mov @R1,R1 ;GET ROUTINE OFFSET .
ADD . RG,R1

CLR -(SP) ;USE IT TO BUILD

MOVB @R1,@SP i .. .ENTRY POINT

ADD R@,QsSP

JSR PC,@(SP)+ ;CALL DRIVER

RTS , R5 ;EXIT TO CALLER

The calling program, or a subroutine oﬁ the type just illusﬁrated, may take
advantaée of a feature mentioned earlier; the fact that when a driver is in use,
its first word is non-zero. The driver itself does not clear this word except

in special cases shown in the description‘for the driver concerned. If the pro-
gram itself always ensures that the first word of the driver is sét to zero between
driver tasks, then this word forms a suitable driver-busy flag. Under DOS, the
program parameter list is extende@ to allow additional words to provide linkage
between lists as a queue in which the list indicated in the driver's first word

is the first link.

The preceding Paragraphs indicate possible ways of incorporating the available
drivers into the type of environment for which they were designed. The user should
carefully read ‘the more detalled descrlptlon of the driver structure in Chapter 5-4,
and the individual driver spec1ficatlons before determlnlng the final form of his

program.

5-13

A word of warning is appropriate here. Although most drivers set up an operation
and then wait for an interrupt to produce a completion state, there are some cases
in which the driver can finish its required task without an interrupt, e.g.,
"opening" a paper tape reader involves only a check on its status. Moreover,

where "Special Functions" are concerned, the driver routine may determine from

the code specified that the function is not applicable to its device, and therefore,
have nothing to do. In such cases, the driver clears the inte;mediate return
address from the processor stack and immediately takes the completion return.
Special problems can arise, however, if the driver concefned is servicing several
tasks, any of which can-cause a queue for the driver's services under DOS/BATCH.

To overcome these problems, the driver expects to be able to refer to flags outside
the scope of the list so far described. This can mean that a program using such
a driver may also need to extend the list range to cover such possibilities.

Particular care should be exercised in such cases.

5-14

PART 5
CHAPTER 4 .

1/0 DRIVERS WITHIN THE
DOS/BATCH OPERATING SYSTEM

The principal function of an I/O driver is to satisfy a Monitor processing routine's
requirement for the transfer of a block of data in a standard format to or from

the device it services. This involves setting up the device hardware registers to
cause the transfer and gaininé control under tﬁe interrupt scheme of PDP-1l, making
allowance for peculiar device characters (e.g., conversion to or from ASCII if

some special code is used).

The I/0 driver must also include routines for handling device start-up or shut-
down such as punching leader or trailer, and for making available to the user

certain special features of the device, such as rewind of magtape.

4.1 DRIVER STRUCTURE

In order to provide a common interface to the Monitor, all drivers must begin with

‘a table of identifying information as follows:

-

DVR: BUSY FLAG (initially #)

FACILITY INDICATOR (expanded below)

Offset to Standard Buffer Size
Interrupt Routine* in 16~word Units.
Offset to Priority for
OPEN Routine* Interrupt Service*
Offset to Offset to
CLOSE Routine* Transfer Routine*
Space Offset to

Special Functions*

DEVICE NAME (Packed Radix-50)

Offsets marked * enable the calling routine

to indicate the routine required. The offsets

are considered to be an unsigned value to be

added to the start address of the driver. This
may mean that with a 256-word maximum, the
instruction referenced by the offset is a JMP or BR
(routine). '

5-15

The table should be extended as follows if the device is file-structured:

BLOCK USED AS MASTER FILE DIRECTORY

POINTER TO BIT-MAP IN MEMORY Unit @

Similar Bit-Map
Pointers for
. ' Multi-Unit Devices

The driver routines that set up the transfer and control under the interrupt follow

the table.

-Bits in the Facility Indicator Word define the device for Monitor reference:

-

SPECIAL STRUCTURES GENERAL STRUCTURE
15 |14 I 13 112 | 11 1 9 8 l 7 6 5 4 3 2 | 1 '7 2
' 4 & r t T ’ ? 4 , ?
File ' Resexrved Reserved Multi-User
Structured Ooutput Device
Device - Variable length _Input Device
DECtape record bit Binary Device
(or simil- ASCII Device
arly Contains SPECIAL
reversible) d 1 Contains CLOSE
Magtape Contains OPEN
"Terminal"
Device

*
Multi-unit System
type devices (i.e., RK disk).

4.2 MONITOR CALLING
When a Monitor I/0 processing routine needs to call the driver, it first sets up the
paraheters for the driver operation in relevant words of the appropriate DDB!, as

illustrated in the following table.

!pataset Data Block - a l6-word table which provides the main source of communica~
tion between the Monitor drivers and a particular set of data being processed on

behalf of a using program.

DDB:
. —_ . (User Call Address)

SPECIAL FUNCTION CODE (User Line Address)

DEVICE BLOCK NUMBER

MEMORY BLOCK ADDRESS

WORD COUNT (2'S COMPLEMENT)

TRANSFER FUNCTIONS (expanded below)

COMPLETION RETURN ADDRESS

(DRIVER WORD-COUNT RETURN) Set to Zero

The relevant content of the Transfer Function word is as follows:

EOF
or
EOD : TT Echo Control

l 15] I;’ 13 | 12 , 11’| 10‘ 9 , 8 l 7 [6 I 5 l 4], ; l 2 l 1] g |

S T Nm— v M (g’
reserved (reserved)
Used by Driver DECtape #=ASCII
to indicate . : reverse . 1=Binary
Hardware Parity DEVICE Open vs.
X ‘ - - Transfer OUT
Fail . UNIT Closed °

ransfer IN

Provided that the Facility Indicator in the Driver Table described above shows that
the driver is able to satisfy the request, according to the direction and mode and
the service required, £he Monitor routine places in Register 1 the relative By%e
address of the entry in the Driver Table containing the offset to the routine to
be used (e.g.,'for the Transfer routine, this would be 1@). The Monitor routine

then calls' the Driver Queue Manager, using a JSR PC, S.CDB instruction.

The Driver Queue Manager refers to the Busy Flag (Word @ of the driver table) to

assure that the driver is free to accept the request. If the Busy Flag contains @,
the Queue Manager inserts the address of the DDB from Register # and jumps to the
start of the routine in the driver using Register 1 content to evaluate the address
required. If the driver is already occupied, the new request is placed in a queue
linking the appropriate DDB's for datasets waiting for the driver's services. It

is taken from the queue when the driver completes its current task. (This is done

by a recall to the Queue Manager from the routine just serviced, using JSR PC,S.CDQ) .

On entry to the Driver Routine, therefore, thé address following the Monitor routine
call remains as the "top" element of the processor stack. It can be used by the
driver in order to make an immediate return to the Monitor (having initiated the
function requested), using RTS PC. 'It should also be noted that the Monitor

routine saveé register contents if it needs them after the device action. The

driver may thus freely use the registers for its own operations.

When the driver has completly satisfied the Monitor request, it should return
control to the Monitor using the address set into the DDB. On such return,

Register @ must be set to contain the address of the DDB just serviced and since

the return will normally follow an interrupt, Registers @-5 at the interrupt must be

stored on top of the stack.
4.3 DRIVER ROUTINES
4.3.1 TRANSFER

The sole purpose of the TRANSFER routine is to set the device in motion. The
information needed to load the hardware registers is availablg in the DDB, whose
address is contained in the first word of the driver. Conversion of the stored
values is the function of the routine. It must also enable the interrupt; however,
it need not set the interrupt vectors as these are preset by the Monitor when the
driver is brought into core. After the TRANSFER routine has activated the device,

the routine returns to the calling processor by an RTS PC instruction.
4.3.2 Interrupt Servicing

The form of this routine depends upon the nature of the device.- In most drivers
it falls into two parts, one for handling the termination of a normal transfer and

the other to deal with reported error conditions.

For devices which are word or byte-oriented, the routine must provide for indi-
vidual word or byte transfers, with appropriate treatment of certain charac;ers
(e.g., TAB or Null) and for their conversion between ASCII or binary and any
special device coding scheme, until either the word count in the DDB is satisfied
or an error prevents this. On these devices, the most likely case for such error
is the detection of the end of the physical medium; the treatment for the error
varies according to whether the device is providing input or accepting output.

The calling program usually needs to take action in the former case and the driver
should merely indicate the error by returning the unexpired portion of the woxrd .

count in DDB Word 7 on exit to the Monitor. Output End of Data requires operator

5-18

action.” To obtain this, the driver should call the Error Diagnostic Print routine

within the Monitor by:

MoV DEVNAM, - (SP) 7 SHOW DEVICE NAME
Mov #4g2,- (SP) v ;SHOW DEVICE NOT READY

I0T ;CALL ERROR DIAGNOSTIC PRINT ROUTINE

On the assumption that the operator will reset the device for further output and
request continuation, the driver must follow the above sequence with a Branch or

Jump to resume the transfer.

Normal transfer handling on blocked devices (or those like RF11l Disk which are
treated as such) is simpler since the hardware takes care of individual words or

bytes and the interrupt only occurs on completion.

Errors that indicate definite hardware malfunctions must generate diagnostic
messages to the Operétor, The only recourse is to start the program over, after
the malfunction has been corrected. ' ‘

There are some errors which the driver can attempt to overcome by restarting the
transfer. Device parity failure on input is a common example. If one or more
retries are unsuccessful, the driver should normally allow programmed recovery
and indicate the error by Bit 15 of DDB word 5. Nevertheless, because the pro-
gram may try to process the data despité the error, the driver should attempt to
transfer the whole block requested if this has not already been effected. The
remaining forms of errors must be processed according to the type of recovery

-deemed desirable.

Whether the routine uses processor registers for its operation depends on con-
siderations of the core space saved against the time taken to save the user's
contents. However, on completion (or error return to the Monitor), the calling
routine expects the top of the stack to contain the contents of Registers @g-5
and Register @ to be set to the address of the DDB just serviced. The driver

must, therefore, provide for this.
4.3.3 OPEN

This routine need be provided only for those devices that require some hardware
initialization. It should not normally appear in drivers for devices used in a
file oriented manner. The presence of the routine must be indicated by Bit 7

in the driver table Facility Indicator.

The OPEN routine may vary according to the transfer direction of the device. For
output devices, the probable action required is the transmission of appropriate
data, e.g., CR/LF at a keyboard terminal, form-feed at a printer, or null characters
as punched leader code, and for this a return interrupt is expected. The OPEN
routine should then be somewhat similar to the TRANSFER routine in that it se;s

the device going and makes an interim return via RTS PC, waiting until completion

of the whole transmission before taking the final return address in the DDB.

An input OPEN may consist of just a check .on the readiness of the device to provide
data when requested. In this case, the desired function can be effected without any
interrupt wait. The routine should, therefore, take the completion return immediately.
Nevertheless, it must ensure that the saved PC value on top of the stack from the call
to S.CDB is appropriately removed before exit. In the case of drivers which can service
only one dataset at a time (i.e., Bit @ of theix Facility Pattern word is set to #)

and can never be queued, a TST (SP)+ instruction can effect this. However, a multi-
uger driver must allow for the possibility that it may be recalled to perform some

new task waiting in a queue. This condition exists if the byte at DDB-3 is non-zero.
In th£§ case, the driver must simulate the iq;errupt expected by the completion
process. This is accomplished by inserting a PS word on the stack above the return
address supplied by the JSR of the Open request. A possible sequence for the

interrupt simulation is illustrated below.

Mov DRIVER,R@ ;PICK UP DDB ADDRESS

MoV (SP)+,R5 ;SAVE INTERIM RETURN

TSTB -3 (R@) ;COME FROM QUEUE?

BEQ EXIT

MoV @#%177776,-(SP) ;IF SO, STORE STATUS

Mov R5,-(SP) +..& RETURN

SUB #14,spP ;DUMMY SAVE REGS
EXIT: JMP @10 (R@)

- 4.3.4 CLOSE

The CLOSE routine is like the OPEN routine, in that it should provide for the
possibility of some form of hardware shut-down, such as the punching of trailer code
and that it is not necessary for file-structured devices. Moreover, it is likely

to be a requireﬁent for output devices only. If it is provided, Driver Table

Facility Indicator (Bit 6) must be set.

5-20

Again, the probable form is initialization of the_hard&are action required, with
immediate return via RTS PC and eventual completion return via the DDB-stored
address. '

4.3.5 SPECIAL

This routine may be included if either the device itself contains the hardware to
perform some speciai function or there is a need for software simulation of each
hardware on other devices, e.g., tape rewind; it should not be provided otherwise.

Its presence must be indicated by Bit 5 of the Facility Indicator.

The function itself is stored by the Monitor as a code in the DDB. When called,

the driver routine must determine whether such function is appropriafe in its case.
If not, the completion return should be taken immediately with prior stack clearance,
as diécussed under OPEN. For a recognized function, the necessary routine must be
provided. Its exit method depends upon the necessity for an interrupt wait.

4.4 DRIVERS FOR TERMINALS

The rate of input from terminal devices normally reflects the typing skill of the
operator. For both input and output, the amount of data to be transferred on each
occasion may be a varying length, i.e., a line rather than a block of standard size.
Furthermore, echoing input may confiict with interrupting output. As a result,

drivers for such devices demand special treatment. .

Normal output operation, i.e., .WRITE by the program, is handled by the Monitor
Processor. On recognizing that the device being used is a terminal, as shown by Bit
8 of the facility indicator, this routine always causes a driver transfer at the end
of the user line, even though the internal buffer has not been filled. The driver,
however, is given the whole of a standard buffer, padded as necessary with nulls.

Provided the driver can ignore these, the effect is the suppression of trailing nulls.

Input control remains the driver's responsibility since overcoming the rate problem
requires circular buffering within the driver. This circular buffering feature
allows the user type-ahead facilities. A subsequent input request may then be
satisfied by data already in core. If the data is sufficient to fill the Monitor
buffer, the driver awaits the next reﬁuest before further transfer. If this is
insufficient, the driver should operate as ahy other device and use subsequent
'interrupts to satisfy the Monitor's requests. Since the driver must stop any trans-
fer at the end of a line in normal operation, in order to allow the Monitor to coﬁ—
tinue,vthe driver must. simulate the filling of the buffer by null padding. If the
user requests .TRAN's which are not line oriented, the buffer size'varies from the
standard and the driver assumes the program requires a complete buffer before

return. .
5-21

OVENOUNRD GIN) -

~ PART 5
CHAPTER 5

SAMPLE LINE PRINTER DRIVER LISTING

The following is a sample listing of a DOS/BATCH Device Driver. The actual driver
is the LPll Line Printer Driver (for device name LP:).

-pogdol
eoevie

voovaow
oopon}
oopdee
0eEved
oveLR4
0eaLes
200008
odpoe7

p0s4p2
vo0nva4

™A ™A W WS Me MY W WG WS WS WS WS e Mm W we

LPTYP

LPL1
SKIp2

LSiy
SPREAD
SKip2

WIDTH

R
R
R2
R3
R4
RS
SP
PC

Apo2
S,.R8AV

DIGITAL
COPYRIG

DIGITAL
FOR THE
WHICH I

VERSION

 DATEDS

DEVICE
DRIVER

o IF

]
+ENDC
o IF

+TITLE
.

]
«IFF
o IF

oTITLE
L}

]

L

« IFF

+ MERROR
+ENDC
«ENDC

o LFNDF

JENDC

EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 0f
HT|‘1973

EQUIPMENT CORPORATION ASSUMES NO RESPONSIBILITY
USE UR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT
8 NOT SUPPLIED BY DIGITAL EQUIPMENT CORPORATION,

NUMBERS V13,014
MARCH 5, 1973
DRIVER FOR THE LP11/LS11 LINE PRINTER(S)

PARAMETERIZATION SYMBOLS
LP11, LS11, WIDTH, SPACES, SPREAD

NOF,LPTYP ;LPTYP=g if LP1l1l

@ ;LPTYP=1 if LS11
;DEFAULT IS ¢

EQ,LPTYP

DV.LFo

i

12

EQd)<LPTYP=i>
OVeLF: :
i

i

13

JUNSUPPORTED LINE PRINTER

WIDTH
8@,) 88, COLUMN PRINTER DEFAULT

X0
%1
X2
X3
%4
%5
X6
X7

422 ! DIAGNOQSTIC MESSAGE CODE
44 ! REGISTER SAVE (MONITOR SUPPORT

5=22

bv

PRGApa e s s DB NDEL G R

L o o
OCENODARDGND O

GGG DN DO
DU S OONIAAD NS

b G W GL
=T OENE,

>DbHhbdd
[P W R N

[« X 3 - W 3
VBOENO

51

LPO

!

0ovolo vREYEd LRI

ovpe2

peea3
0204
dopes
00006
P00@7
poolo
ovely

poAl2

poeid
enpla

000ls
P0D<eD
pooe2
P24
Q00286
TR
voead2

00034

0S4
00035

322

vea
0ed
110
200

038

060
236

20
p4actpn

00p200
177514
177516

200120
00133
plebpe
P0plo0
000000
000000
P0e0eY

218
214

noenag

+GLOBL
« IDENT

MACRU V@6eU3 09~JAN»74 12155 PAGE 5

P -
/13,93/

DOSe11 DEVICE DRIVER'S STANDARDIZED INTERFACE

+ WARD
« IFDF
+BYTE
+ENDGC
o JIFNDF
+BYTE
«ENDC
«BYTE
«BYTE
+BYTE
«BYTE
«BYTE
«BYTE
oBYTE
oIF

. oBYTE

LPaNAM}

LPoTRP
LP4CSR

'LP-DBR

LPeSIZH
UPPCASY
QVPRNTS
LPoLINT
LP«BKSIE
LPsTCTS

LP«BADS

LP«TOF}

LPeFLGS

LPsLOW

o IFF

«BYTE
+ENDC
«BYTE
+RADSOD

W« WORD
s WORD

+WORD
«WORD
« WORD
+« WORD
«WORD

+ IFOF
+BYTE

2ENDC

oBYTE

+EVEN
+ IFDF
+ WORD
+ENDC

2
LS11&SPREAD
362

LS1148PREAD
322

2
<E<WIDTH*I7 540>

200
LP.TRNFLP
LPL,CLSnLF
EQ,LPTYP
"]

LP,SPC=P

"]
/LP/
200
177514
177516

WIDTH
133

CESe®

LSt
21

15,14

LS4 4SPREAD
@

42

5-23

}
/

Ten Wme we WE W W we

- e s

e ws e s ws we we

USER'S DDB PUINTER
FACILITIES INDICATOR

FACILITIES INDICATOR

SPECIAL STRUCTURES, NONE
STANDARD BUFFER SIZE
INTERRUPT ENTRY OFFSET
INTERRUPT PRIORITY 4°
OPEN ENTRY OFFSET

TRAN ENTRY QOFFSET

CLOSE ENTRY QFFSET

"SPECIAL ENTRY OFFSET

SPARE
DEVICE DRIVER'S NAME

INTERRUPT VECTOR'S ADORESS
COMMAND/STATUS REGISTER
DATA BUFFER REGISTER

THIS WORD IS SET BY THE INITIA
SET TO THE HIGHER PRINT LIMIT
SET TO TRUE WHEN OVER PRINTING
ALREADY SENT (CHARACTERS)
BLANK POSITIONS COUNTER
TRANSFER CHARACTER COUNT
BUFFER ADDRESS POINTER

COMMAND DEVICE TO TOP=QF=FORM
COMMAND DEVICE TO ON=|INE

CRy FF

CHARACTER ELONGATION FLAG

PRINTABILITY, LOWER LIMIT

e a4 o« ~N POADGN -

36

37

PQuBa6

0Aveds
0pv36

00042

Q0u0p4E

pousS2

pUpY6

oeede
00252

90upo4

gvp7a

Bov76

wyla4q

weare’
VL4s4
w62/l
177772
vlpie?
177760

vipeé67
177752

voR414

vuvaze?7
Qo432
wi67en
177710
wi6we7
vopuab
177734
nieve7
wopvia
177724
vR6367
177729

H
LPsOPN}
!
LP«CLSS

)
LP«SPCH

LPLSUYY

j .
LP«TRNY

OPEN PROCESSUR

CLOSE PROCESMOR

J8R

ADD

MoV

+« IFDF
MOV
2ENDC
2 IFNDF
Moy

+ENDC
« IFDF
CLR
+ENDC
BR

« IFOF
SPECIAL

MOV
CMPB
BANE
MOV
JMP
+ENDC

PC,LP.STS
#LP.TUF'IpRI
RIILP.BAD

LS11 .
#'3;LP|TLT

L5111 ,
RZ'LP.TCT
LS11&4SPREAD
LP FLG
LPLINT
L5114SPREAD
PROCESSOR
2(R@) ,R1
#1,(R1)
LP,SUD

2(R1) ,LP«FLG
814 (Rp)

TRAN PROCESSUR

JSR
tMov

hay

Moy

ASL

PCyLF,STS
LPyRE

6(RA),LPBAD

1B (RO, LP,TCT

LP.TCT

- we we ws W

!

SIMULATE INTERRUPT
Ry » PC (BY LP,STS)
INTERNAL BUFFER'S ADDRESS

INITIALIZE TRANSFER COUNT

R2 » =2 (BY LP.STS)

INITIALIZE ELONGATION FLAG
ODISPATCH INTERNAL BUFFER

Ry = FUNCTION BLOCK!'S ADDRESS
LINE ELONGATION FUNCTION ?
NO, IGNORE

ENABLE/DISABLE ELONGATION
EXIT VIA COMPLETION RETURN

SIMULATE AN INTERRUPT
Rp = USER'S DDB ADDRESS
RETAIN BUFFER'S ADDRESS

RETAIN DUB'S BYTE COUNT

#

B G e

T RRY]
goeilae

IR R LR

Qedieg
PRV124

VuB199
PeRLd2
00134
20136
w140
avi42

QBl46
B0152
20196
pR16p
w162

w166

Q172

poL74
wo17s
Bv2dy
wpzue

wv2le

L gu212

w214
Y216
Qv

) @226

av2dw
we234
w296
VYed6

wog4e

0va2737
oAyl
177514
vwazeae
POp167
opSB4
wes767
1777082
ve1452
V1ip4d46
vwindan
Vineds
B1o146
016704
177660
Wi6703
177652
vwi167p2
177654
112201
0wo1426
12vl1e7
heevay

PIFLYY]

120167
177624
vpeiit
was5203
w3018
w32737
10meey
177514
100931
201529
CERT]
1060404
112737
yowuv4y
177916
wen7e6d
110137
177616
©wos004

wus267
177566

w1348

!
LPeINT?

LPel0T

INTERRUPT PRUCESSOR (VIA INTERRUPT VECTOR AT 200)

BIC
BGE
JMP
18T
BEQ

MOY
Moy

© MOV

LPal@B

LPs1¥12

LRPelV2:

LP21032
LPel043

LPel¥U523

LPelUG3

LPeONF3
LPeTRTS

MOV
Mov

MoV
MoV

Movs
BEQ
CMPB

BLT
+ IFOF
BGT
INC
BR
+ENDC
LMPH

BGE
INC
BGT
BIT

BM]
BEQ
PEC
BM1
MOVE

BR
Movs
CLR
INC

 BNE

#100,64LP,C8R

LP, 10
LP L ERR

LP,TCT

LF.OUNE
R4"tSPJ
R = (SP)
R2,=(8P)
R1,=(SP)
LP.BKRS,R4

LPLIN,RS
LR,BAD,R2

(R2)*+,R1
LPLDNP
RYs#LP,LOW

LPsll0
SPACES
WP, 102
R4

LFLTRT

R1,UPPCAS
LP.118

R3
LP.DNP

#100200,04 P,CSR

LR, 122
LP.I20

R4

LP.165
#ap,PuLP.DBR

LP.103
R1,8%_P,UBR
R4

LP.TCT

LP,IVR

i

- W W we

DISABLE INTERRUPT

SEGREGATE ERRORS

ENTER ERRQR PROCESSOR

ANY CHARACTERS REMAINING ? -

NO, LINE COMPLETED
SAVE REGISTERS

R4 » BLANK COUNTER

R3 » PRINT POSITION

R2 = BUFFER POINTER C(ADDRESS)
wew ACCESS CHARACTER www

NULL (@) IGNORED

PRINTABILITY CHECK

EXCEEDS LOWER LIMIT

VALID CHARACTER, SO FAR

BLANK (4@) ISOLATED, .COUNT
ACCESS NEXT CHARACTER

PRINTABILITY CHECK

EXCEEDS UPPER LIMIT

PRINTER!'S WIDTH EXCEEDED 7
YES, DO NOT PRINT
ACCESS ERROR/READY STATUS

ERROR INOICATION

NOT READY INDICATION

DECREMENT BLANK COUNTER

NOT PROCESSING BLANKS
BLANK/HTAB EXPANSION PERFORMED

CONTINUE PENDING COMPLETION
*ex PRINT CHARACTER wwew
INSURE NO BLANKS PENDING
INCREMENT BUFFER'S CHARACTER

COUNTER, ANY MORE ?
YES

DN~

©o o ~ [« ¢]

o244

wav2d9g
wupede

POVRYE

vpu262
PUV2064

neR’7e

pva’a

PVl

we3v2

Pud08

Pudlae
w312

vwudie
pu3ca

105737
177514
1veled
Yuahe?
W0Gd6
013746
veav4a4
V04ad36
wle7av
177514
winize
wopo14

12a127
weeull
6y101d

16746
177610

vbud1e

06p4e16
v52716
177770
102604

UQH746

e

LP.UNER

LP+DUNE

LPoI103

LPsI1112

LP.I123

TSTH

BPL
JSR

MoV

JSR
MoV

JMP

CMP8
BNE

Mnov

o IFDF
737
BEQ
ASR

"~ «ENDC

ADD
« [FOF
BGE
CLR

<ENDCT
ADD
BIS
5uB

BR

LINE CUMPLETED

8L P.CSR

LP.I21
RO, LP,SET

0#S RSAV s =(SP)

RO,8(SP)*
LP,RY

el4(Ko)

Rl1,#11

LP.I33

/
i

DEVICE BUSY ?

YES
RESTURE TEMPURARIES

SAVE REGISTERS

R@ = USER'S DDB ADDRESS
EXIT VIA COMPLETION RETURN

MOKIZONTAL TAB (11) 7
NO

HURILONTAL TAB SIMULATION VIA BLANKS

LP.51Z,=(SP)

LS1L{&5PREAD
LP.FLG
LP.IY

(sm

R3, (S5P)
LS114SPREAD
LP,I12
LP.TLT
LP.ONE

R4, (SP)
#177778, (8P)

(sP)+,R4

LPTRT

5-26

!

PRINTER'S MAX WIDTH

ELONGATION 7
NO
(PRINTER'S WIDTH)/2

e PRINT POSITION

NOT EXCEEDED PRINTER'S WIDTH
ELONGATION LINE TERMINATION
EXIT

+ BLANK COUNTER
(MODULD 8) = 8

+ BLANK COQUNTER
s BLANK COUNTER
ACCESS NEXT CHARACTER

—_

O &~ o O H G N

Bavde
Buries
vao3da
hoR392

PAP3IB6
VALY

VAn344

20346
nA346
KR

#e3oy

BUIV4
TRE T

5 W@3be

¥v3oeE
wu3’7a
pR3’2
0376
doave
we4n2
we4uv
Yvaune6

TR Y

12unle7
ndpulo
G RT/RY
neLiyL4
085767
177464
uaiwal
wi67ed
177452
BuH4pd

non7 32

120127
vonovea
vagu1é
gle’7el
vopuie
120127
papwLe
w241l
w1404
12v127
populd
Q01717
va4ny

wis7u3

177412
EERTR)

neub74

LPelld2

LP«IXX3
LPelldd

LPQIYY}

LPell23

LPsI163

CMPB

BGT
BNE
T8T

BNE
hQv

NEG
« IFOF
TST
BEU
ASR
MOV
«ENDC

BR

TST
BEQ
cMpPa
BEW

+ENDC
CMPB

BNE
MOV

CMPB

BLT
BEQ
CMPB

BEU
BR

Moy

NEG
« IFOF
TST
BEW
ASR
Moy
+ENDC
BR

« LFOF

Ri, 815

LPell4
LP.I15
QVPRNT

LP.I16
LP.SIZ,RY

RS
LS11&SPREAD
LP.FLG
LP g IXX

R3 .

RS LPFLG

LP, 146
L9114SPREAD
LP.FLG
LR,IYY
R1,#16
LP,IV4

Ry, 422

LP.IL7
HSKIP2,R1

Ri,#l2

LP.I17
LP.I16
Ri,#13

LP,DNP
LP,116

LP.SLZ,RY

R3
LS11&SPREAD
LP.FLG
LP,104

R3
RS,LP.FLG

LP.1VA

5=27

CARRIAGE=RETURN (15) ?

NQ, ABQVE
NO, BELOW
PRINT THE CARRIAGE=~RETURN ?

YES
R3 3 =(PRINTER'S WIDTH)

ELONGATIUN ENABLED ?
NO

HALVE PRINTER'S WIDTH
RE=INITIALIZE THE FLAG

SUPPRESS CARRIAGE=RETURN

NO
SUBSTITUTE APPROPRIATE CHAR

LINEFEED (12) ?
ND,
YES .
VERTICAL TAB (13) ?

BELOW

YES, IGNORE IT |
NO, FURMFEED (14) ISOLATED

K3 ® =(PRINTER'S WIDTH)

ELONGATION ENABLED ?
NO, PRINT CHARACTER

HALVE PRINTER'S WIDTH
RE-INITIALIZE THE FLAG

PRINT THE CHARACTER

SIN

4
L]
]
7
8
9
102

11
12

13
14
15
16
17
18

19

29
21
22
23
24

2%

26
27

agpval2

BOV4LE
pa0429

Vovad4

pan4z6

Q004d2
20434

wo4d4g
p0442
20459
v0452
Bdad4
9u4d6
po4adey

pYand

noa7 e
P47 4
Q0476
ao5ve
woduv4

pebdle
ue512

via7al
YoRvaY
vopbe67
120127
voelza
ve3ned

pag7al
voev4Y
©wop66])
12pie7
buplz?
pR1676
126727
177982
oNRly?7
101252
wae757

©vo53pd
vds30e
uwab67
voovs2
052737
poeiod
177514
vopvee

LR LR
prsdee
n1674¢6
1779190
v12746
voe4pe
wapLr4d
bwale?7
177372

LPaIl73

LP.I181

LPeIi9?

LPal203
LPs1211

LPel223

LP«ERKY

MOV

BR
cMPB

BGT

BIC

BR
CmP8
BEQ
CMPB

BAl
BR

DEC
DEC
JSR

BIS

RTI

OEC
DEC
MOV

MoV

107
JMP

#40,R}

LP,103
Ry, 4172

LP,I19

} UNPRINTABLE, BLANK SUBSTITUTIO

} PRINT A BLANK
} LOWER CASE ALPHABET ?

} EXCEEDS

LUWEK CASE TO UPPER CASE CUNVERSION PERFORMED

H40,RY

LF,163
R1,#177

LP,ONP ‘
UPPCAS,#137
LP.103
LP.I17

RS

R2

RS, LF,SET

#100,0#.P,CSR

R3
R2
LP.NAM,=(SP)

#A002,=(SP)

LPJINT

} CONVERSIUN PERFORMED

§ PRINT CHARACTER
! RUBOUT (477) 7

i YES, IGNORED

) UPPER CASE PERMITTED ?

) YES, PRINT CHARACTER

] UNPRINTABLE, BLANK SUBSTITUTIO
)} BACKUP PRINT POSITION

} BACKUP BUFFER POSITION

} RESTORE TEMPDRARIES

7 ENABLE INTERRUPTY

} EXIT FROM INTERRUPT

7 BACKUP PRINT POSITION

1 BACKUP BUFFER POSITION

7 DEVICE DRIVER'S MNEMONIC

} MESSAGE CODE

} TRY AGAIN

= = D o NOCDL N

)
1
12
13
14
15
16
17
18

19
20

000516
20520
v0u522
00524
CITERD
008534
0U536
pu542
00546

pR5S2

P0556

20562
0564
0B566
0as7a

vwieovol
W11646
11TV
014266
wapone
013742
olp2u2
viole7

nig467

- 177264

vivd67
177256
winee?
177269
wi6bp4d
vee010
viz668
bopuR6
wi260]
viztng
012603
avpend
vdpuol!

}
’m
'

LPe8TS3

LP«SETS

Mav
Moy
CLR
MOV

Moy
MOV

MOV

MOV
MOV
MOV
MOV
MOV
MOV
MOV
RTS
CEND

INTERRUPT SIMULATOR

(SP)*,R1
(SP)r=(SP)
R2
w(R2),2(5P)
PHLPeTRP*2, (R2)
R1,PG
R4,LP,BKS
RIJLPLLIN
RZILP.BAO
14(SF),R4
(SP)*,6(3PR)
(SP)+,RY

(SP)*,R2
(SP)*,R3
RS

5-29

!
i
H
!

-~

- we W we

RETURN PC

ULD PC

ADDRESS PS (w2)
OLD STATUS

NEW STATUS
RETURN

RESTORE TEMPORARIES

RESTORE REGISTER 4
RETAIN RETURN ADDRESS
RESTORE REGISTERS

EXIT SUBROUTINE

DV.LF@

MAGRU V@6m03 ¥O=JANw74 12355 PAGE 11=1

SYMBUL TABLE

Ad@2
BSLSH
DuBBLK
DOBOVA
DOBUNT
ODITBSY
DITMFD
DITPRI
EMTINT
EMTVEC
FTMUQ
Fool
FUos
Fule
Fudz
KSBSIZ
LPTYP
LP.CLS
LP.DONE
LPLERR
LPs10
LPoIu2
LPeIDY
LP,Il1}
LPeIl4
LP.IL7
LP,I20
LPWLIN
LPLOPN
LPe3TS
LPoTRN
LP11
oviLeie
0vz2e6
PRI7
RPBIT

SKIp2 =
S,R3AVA
V.CoB =
V,RLE =
V,8VT =
XFTCOM®
XFTRPG®

« ABS,

ERRORS DETECTEDS
FREE CURE?

PUva02
voo1d4
buopoa
177776
wuoenly
VueRYe
vgopla
VYBYo6
vooRUs
T RY)
Vevpot
Vo140
wolaed
vulale
YpBla42
Buo4ave
BuopLe
VRUBIGR
VuR252R
WORBURR
VBB124R
peB170R
BueR30R
VPO3IVGR
GB0ISOR
Ruvdler
YoRa%4R
CPVPR4R
WOORS6ER
VYRS 16R
vpvEoaR
vueouy
00no6
voLRLR
LKLY
pedpoe
vpoelr
Y0044
voopbe
Guupoe
VYoo4e
veBnoe
vuopde
Vudgoa
pausze

©uao
©wol

15039, wORDS

BFSHFTw
CR s
DDBCNT®
DDB3TSs
DITBFSHm
DITFAC=
DITNAMN
DITSPFm
EMTRET®
FTCOM =
FTRPG ®»
Fgog =
Fga7 =
Fai7 =
Fgba =«
LF »
LP.BAD
LP+CSRm
LP ONP
LPoINT
LP,I00
LP. 103
LP,106
LP,I12
LP.I15
LP,I18
LP.I21
LPaLOwWs
LP.SET
LPLTCT
LP,TRF®
mMSBSIZ=
OVPRNT
FPATSIZ=
Ps "
RPO2SZ~
SmMBslze
TABCH =
V.CDQ =
Y.RRES®
V XIT =
XFTDOS»
$HPASSE

0ioeue
pvoals
oapalo
ovpele
guovud
onopL2
evepi2
evoaly
pRBAL4
pooeyy
(21113
gel402
0@a}407
pal14i7
ga145p
ool
DOLRI2R
177514
PRR236R
PABL10R
DBYLO6R
@@21/6R
PUB294R
Qoa3igR
PV0O362R
PpaP4ZgR
AVB460R
Qupe4e
PUDSI6R
PRRASAR
oop2vn
oaioKe
OBOR2R
vedasp
1777786
oopoen
pnoa4n
poaaly
peoed2
gRGe4s
pooo42
voueve
0¥PBYY

BLANK =
DDBALR®
DDBCRTs
DDBUL A=
DITBMP=
DITINT»
DITOPN®=
DITXFR=
EMTVAL=
FTO0S =
FTRPOI=
Food =
Fali =
FuRkd4d =
Fpb2 =
LP
LP,BKS
LP.DBR=
LP+DON
LPeIXX
LPeI10]
LP.I04
LP.110
LPeI13
LPsI16
LP.I19
LPe.I22
LPaNAM
LP.SIZ
LPeTOF
LP«TRT
Ovioués
OVivéis=
PRI4 =
PSFRIO=
RUBOQUT=
STMASK=
UPPCAS
V6TH =
V.RSAV®=
WIODTH =
XFTMUO=

0n0vz4R
opveos
200n14
0puge
TR
bpoues
Qo7
bavale
14000
vavowny
beopay
2a1403
valaly
¥a1424

BR1452

DQUBRURG
VpUp26R
177516
VOUR56R
0R346R
Ppo162R
Yp0202R
6pov274R
¥n0322R
W@v4v2R
VQ0434R
@pY47 4R
Vp0el4R
Vo 16R
Quond4R
VQB236R
0yoen2

‘Dpvel2

“pezooe
177437
0auyL77
ig7w70
epapR0eR
280054
dpugda
gpui2e
Ypveea

' LPILPU/CRF<SYIPRAMTR/NL , SYSMAC, FEATSW,DK11LPOI202,200) /LI/LIINE

5-30

CROUSS REFERENCE TaBLE

AQ@2
BFSHFT
BLANK
BSLSH
CR
DOBADR
00BBLK
DDBENT
DOBCRT
0DBDVA
DNBSTS
DDBULA
DOBUNT
DITBFS
DITBMP
0DITBSY
DITFAC
DITINT
DITMFUL
"DITNAM
DITUPN
DITPR]
DITSPF
DITXFR
EMTINT
EMTRET
EMTVAL
EMTVEC
FTCOM
FTOQS
FTMUQ
FTRRG
FTRPQJ3
Fooy
Fouz
Foud

* Fpdb
Faw?
Fol1l

- Fole
Fu1?
Foaa
Fod2
Faso
Fose
K$B8S812Z
LF

LP

LPTYP

LP.BAD
LP.BKS
LP,CLS
LPLCSR
LP.DBR
LPJONE
LPsONP
LP«DON

i=

634

1=102#
1=123#
1=1244
l=120#

i=
1w
im
=
im
1=
im
im
im
1=
i=
im
1=
i=
1=
im
im

“te

im
im
1.
1=
i=
kY
K1
9.
L)
KL
im
i=
i=
iw
‘-
im
i=
1=
im
1w
"I
i»

Sa4n

34

554
5w
514
b6#
ba¥
574
364
454
SaH
asw
84
44y
434
L)
394
a2u
414
63#
624
61w
644

54
12#

84
10
164
a1#
BOH
854
82w
Y]
864
87H
894
914
924
BaM
90#

2460
1=121%

4=
Hm
4w

. Hew

Hm
Dm
D=
Hm
Bw
7=
YA

24

9
18
394

374
0
SOH
91K
64
17
8

4

49%

imlu6s

1wibs

Hm

4w
Ow
7=
bw
/=
7=

7m
Bm

7#

21
8e

13
54
46

d46

28
74

S}
10=

Sm
B
.6.
il=

7=
7=

1=

25

16
el
J5e
iie

29
366

3a#%

/=
8w

* I

5-31

18

15

3¢

Bwm

o=

19m=

19

130

19¢

11

S5« 20

6= 34

CROSS REFERENCE TABLE

LPJERR
LPGINT
LPeIXX
LP.IY
LP, IV
LP.l0Y
LPeI0V2
LP.I0J
LP.I04
LP.165
LP,106
LP.I10
LP.I11
LPsIl2

LP.I13

LP.I14
LP.ILS
LP.IL6
LP.I17
LP.I1B
LP.I19
LP.I20
LP,121
LP.122
LPJLIN
LPaLOW
LP NAM
LP.OPN
LF<SET
LP.,SIZ
LP,8TS
LP.TCT
LPsTUF
LP«TRN
LP,TRP
LPWTRT
LP11

LS11

M8BS8IZ
ovieus
oviLwvile
OVPRNT
ovieel
ovanbl
PATSIZ
PC
PRI4
PRI7
PS
PSPRIO
RPBIT
RPO28Z
RUBOUT
RO

R1

7=
Sw
Um
7=
/e
7=
7=
J=
YA
7=
7w
7=

B’

8w
8w
Ow
Um
Om
9w
rx
o=
/e
Be
YL
Be
Dw
Bw
L]
Hw
Hm
bw
1]
Dm
Hm
Se
7=
4w
Hw
Gw»

6
16
144

5
164
164
25n
274
294
33
378
19
23xn
294
13

2

3

5
24
26

a4
31

5
3
o6#
in
278
18

6
338

6
d8R
41
19
294
do#
23#%

8
20

2=1594
lwign
1=107#%

Om

obR

1=109#4
1=110#
1=116#%

l»
1=
1=
ie=
i=

148
74#
754
724
734

1=103#
1=104H
1=125#

l=
=
7=
Qe

7#

8&
a5
P

10=
b=

7w
/=

/=
°
7w
Y
Bw

Se
Im
Ve
2
Gw
1¢m
{Ve
{Um
19=
10e
/=
7=
10
Ouw
1Ye
8w

[T

Ow
21
Gm
1l=
Be

bw
-1

9w

qw

am
4w
7=
1=

24n
18

78
41

35
41
ob#
15
124

13e
d2#
33

11
i8

474

408

418

36
10

=2

7=

1=

Qw
10~

=

il=
Om
11=
Sm

Sm
8w

6=

Bm
(1]
8w
{0=

3%

94
i

i2¢

114

a#
36e

42
24

6@

d4e

12
3

{de

10»

o
10w

Sw
-1

Swm
m

6m

Om
Ow
P
1Um

5-32

27

9

324

33
376

340

1@m=

Bw
Qe

ii=

Hw
7=
L]
10~

13

7

9
16

9¢

36
i2
23
19

7=

Gm
Qm

8=
Tm
Qw
11w

39

12
39

9e
1660
25¢

40

6w

Bm
YA

1i=

15

CROSS REFERENCE TABLE

- R2

R3
R4

RS
SKIP2

SMBSIZ”

8P

SPACES
SPREAD

STMASK

S.R8AV
TABCH
UPPCAS
v.Coe
V.CDUW
V.GTB
VeRLB
V.RRES
V.RSAY
VeSVT
VeXIT
WIDTH .
XFTCUM
XFTDOS
XFTmMUQ
XFTRPG
$5PASS

il=
iw
lém
] 1.
Qw
i=
8w
iw
4w

16¢
oK
23e
lo#
79
11#
310
l2#
24

2=158w

1=
10w
ll=
YAl
Ow
Ow
i=
4w

134
8
25
17
]’
8
8
93
51w

1=122#

Ow
im
1w
1w
im
i=
l=
i=
1=
4=
L)
KL
S»
KL

344
25w
26#
274
28#
244
234
iR
228
36
74
134
94
li#

2=1774

(L]

7

Gw
ilm
4w
Pe
4w
ti=
4w
Yo

428
Ge
43#
330
444
il
454
25

é=159

4w
8w
1l
" iim

De
Gm

Bm
7w

Ow

464
i7¢
4

18

b}
1

~ O =

2%

15

=3

6w 13
ii» 7
7= 19
9m 340
7= 9
ii= f4e
8= 60

2=169

7= 9@
8= 236
11= “Se

S= 47
9= 35

7m
11w
e
10m
7w

8-
7=
e
1i=

Om

19= 12

5= 33

5-33

11
8e
14
160
1360

8e

100

29e
e

15

YA
il=
7~
10=
7=

10=

7=
8w
1=

L]

10¢

2re
220

320

18¢

i1e

326
14

20

7= 16

ile 17"

8= 23
11= 12

7= 3760

11= 190

7= 12¢
8= 3}
1= 15

8= 18

10= 17¢

9= &
1= 8¢
8= 29

8= 70
10= 24¢
1= 16

8= 24

CROSS REFERENCE TABLE Mw}

AERROR 2= 918
CALL 2= 738
CALLY 2= 69#
CHKPNT 2= 96R
DIA 2=324%
ERROR 2= 18w
FERROR 2= 284
FREMSB 2w2314¥
GETBUF 2mian
IERROR 2= 394
IOTERR 2= 244
MODEND 2w232¥
MOOSTA 2=17948
MOVMSB 2e273#
MOVSEG 2=2974
ouTMSB 2=209n
OVLNAM 2w2224
POP 2= 634
PUSH 2w 578
QURVR 2=1464
RELBUF 2e138#
RESREG 2=i074
RETEMT a=28048
RETURN 2= 774
SAVREG e=102%
SERROR 2» Ob%
SETABS 2=165#
STDEV 2=333#
SWPCAL 2= 8B4a
WERROR 2= 43%

CROSS REFERENCE TaBLE Cet
14

59520
o« ABS, 55520

5-34 -

	5-001
	5-002
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34

