PART 6

THE DOS/BATCH ASSEMBLER

MACRO

PART 6
CHAPTER 1
INTRODUCTION TO THE MACRO ASSEMBLER

This chapter presents a brief overview of some fundamental software concepts
essential to efficient assembly language programming of the PDP-11 family of com-
puters. A description of the hardware components of the PDP-11 family can be found

in two DEC paperback handbooks.

PDP-11 Processor Handbook .
PDP-11 Peripherals and Interfacing Handbook

The user is also advised to obtain a PDP-11 Pocket Instruction List card for easy

reference. (These items can be obtained from the Software Distribution Center.)\
Some notable features of MACRO are:

B Progra@ and command string control of assembly functions.
2. Device and filename specifi;ations for input and output files.‘
3. ﬁrror listing on command output device.
4. Alphabetized, formatted symbol téble‘listing.~
5. Relocatable object modules.
6. Global symbols fof linking between object modules.
7. Conditional‘assembly directives. /
8. Program sectioning directives.
9. User-defined macros.
10. Comprehensive set of system macros.
11. Extensive listing control.
No attempt is made in this document to describe the PDP-11 hardware or the function

of the various PDP-1l1 instructions. The reader is advised to become familiar with

this material before proceeding.

Assembly language programming deals directly with the host hardware. Therefore
great care must be taken in specifying programming standards‘and con?entions, if
code written by different groups is to be easily interchanged. When a set of
standards éuides the entire programming process, the total programming effort

becomes easier to plan, comprehend, test, modify, and convert.

The output of a MACRO assembly is a relocatable object module. LINK can bind one

or more modules together and create an executable task.

Once built, a program can generally be loaded and executed only at the address
specified at LINK time. This is because LINK has had to make adjustments in some

codes to reflect the memory locations in which the program is to run.

It is possible to write a source program that can be loaded and run in any section
of memory. Such a program consists of position-independent code. The construction
of position-independent code is dependent upon the proper usage of PDP-11 addressing
modes. (Addressing modes are described in detail in the Processor Handbook.) See

Chapter 6-10 for an explanation on how to write position-independent code.

PART 6
CHAPTER 2 .
SOURCE PROGRAM FORMAT

A source program is composed of a sequence of source lines, where each line contains

a single assembly language statement.

An assembly language line can contain up to 132 characters. Beyond this limit an

I/0 error is generated.

2.1 STATEMENT FORMAT

A statement can contaifl up to four fields, which are identified by order of appear-
ance and delimited by certain terminating characters. The general format of a

MACRO assembly language statement follows.
[label:] [opetator][operand] [;comments])

The label and comment fields are optional. The operator and operand fields are
interdependent; .either may be omitted depending upon the contents of the other.

However, blank lines are legal.
Some stétements have one operand, for example,
' CLR A RY
while others have twb.
MoV #344,R2

An assembly language statement must be complete on one source line. WNo continuation

lines are allowed.

MACRO source statements may use the TAB character to align the statement fields
according to this standard format:

label - column 1

operator - column 9

operand(s) - column 17

comments - column 33"
For example:

1l 9 17 33
REGTST: BIT #MASK, VALUE ;3 BITS?

2.1.1 Label Field

i

A label is a user-defined symbol to which the assembler assigns thé value of the
cﬁrrent location counter and enters it into the user-defined symbol table. The
value of the label may be either absoluie or relocatable, depending on whether the
location counter value is currently absolute or relocatable. (In the latter case,
LINK assigns the absolute value of the symbol by adding the stated relocatable

value to the relocation bias calculated by*LINK.)

A label is a means of symbolically referring to a specific location within a program.
If present, a label always occurs first in a statement and must be terminated by a
colon. For example, if the current location is absolute 1@@(octal), the assembler

processes the statement
_ABCD: Mov A,B

and assigns the value 1¢@(octal) to the label ABCD. Subsequent references to ABCD
reference location 1@@(octal). In this example if the location counter were re-
locatable, the assigned value of ABCD would be 1@@(octal)+K, where K is the location

of the beginning of the relocatable section in which the label ABCD appears.

A double colon defines the label as a global-symbol that is accessible to independ-
ently assembled modules; the statement '

ABCD:: MOV A,B
establishes ABCD as a global symbol.

More than one label may appear within a single label field; each label within the
field references the same location. For example, if the current location counter

is 1¢@(octal), the multiple labels in the statement .

ABC: $DD: A7.7: Mov A,B

causes each of the three labels ABC, $DD, and A7.7 to be assigned the value
1¢d (octal).

The legal label characters are
A - 2Z

g-9

(By convention, $ and . characters are reserved for use in system software symbols.)

The first six characters of a label are significant. An error message is generated

if two or more labels share the same first six characters.

A symbol used as a label may not be redefined within the user program. Ban attempt

to redefine a label results in an error flag (M) in the assembly lietihg.

2.1.2 Operator Field

An operator field follows the label field in a statement, and may contain a macro
call, an instruction mnemonic, or an assembler directive. The operator may be
preceded by none, one or more labels and may be followed by none, one or more
operands and/or a comment. Leading and trailing spaces and tab characters are

ignored.

When the operator is a macro call, the assembler inserts the appropriate code to
expand the macro. When the operator is an instruction mnemonic, it specifies the
instruction to be generated and the action to be performed on any operand(s) that
follow. = When the operator is an assembler directive, it specifies a certain

function or action to be performed during assembly.
An operator is legally terminated by a space, tab, or any nonalphanumeric character.
Consider the following examples.

MOV A,B ;space terminates the operator MOV
MOV@A,B 7@ terminates the operator MOV

A blank operator field is interpreted as a .WORD assembler directive (see Section
6-5.3.2).

2.1.3 Operand Field

An operand is that part of a statement that is manipulated by the operator.
Operands may be expressions, numbers, symbolic names, or macro arguments (within
the context of the operation). When multiple operands appear within a statement,
each is separated from the next by one of the following characters: comma, tab,
space, or paired angle brackets around one or more operands (see Section,6—3.1:l).
An operand may be preceded by an operator, label, or other operandband followed by

another operand or a comment.

The operand fleld is terminated by a semicolon when followed by a comment, or by a

statement terminator when the operand completes the statement. For example:

LABEL: MOV A,B ; COMMENT

6=5

The tab between MOV and A terminates the operator field and begins the operand
field; a comma separates the operands A and B; a semicolon terminates the operand

field and begins the comment field.

2.1.4 COmmeﬂE Field

The comment field is optional and may contain any ASCII characters except null,
rubout, carriage return, line feed, vertical tab or form feed. All other characters,
even special characters with a defined use, are ignored by the assembler when

‘appearing in the comment field.

The comment field may be preceded by any or none of the other three field types.

Comments must begin with the semicolon character.

Comments do not affect assembly processing or program execution, but are useful in

source listings for later analysis, debugging, or documentation purposes.

2.2 FORMAT CONTROL

Horizontal or line formatting of the source program is controlled by the space and
tab characters. These characters have no effect on the assembly process unless
they are embedded within a symbol, number, or ASCII text; or unless they are used ~
as the operator field terminator. Thus, these characters can be used to provide

an orderly source program.

LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK

(See Section 6-5.1.2 for a description of page formatting with respect to macros,

and Section 6-5.1.1 for a description of assembly listing output.)

PART 6

CHAPTER 3
SYMBOLS AND EXPRESSIONS

This chapter describes the various componentsvof legal MACRO expressions, the

assembler character set, symbol construction, numbers, operators, terms, and

expressions.

3.1 CHARACTER SET

The following characters are legal in MACRO source prograﬁé:

1. The letters A through Z. Both upper and lower case letters are acceptable;
although, upon input, lower case letters are converted to upper case
letters. Lower case letters can only be output by sending their ASCII
values to the output device. This conversion is not true for .ASCII,
.ASCIZ, ' (single quote) or " (double quote) statements if .ENABL LC
is in effect. :

2. The digits ¢ through 9.

3. The characters . (period or dot) and $§ (dollar sign), are reserved
for use in system program symbols.

4. The special characters in Table 6-1.

Table 6~1
MACRO Special Characters
Character Designation Function -

double colon
double equal sign
colon

equal sign
percent sign

tab

space

number sign

at sign

left parenthesis
right parenthesis

comma

Either the double colon or double equal
sign may be used to define a symbol as a
global symbol (refer to Section 6-3.5).
label terminator

direct assignment indicator

register term indicator

item or field terminator

item or field terminator

immediate expression indicator

deferred addressing indicator

initial register indicator

terminal register indicator

operand field separator

(continued on next page)

Tabl
MACRO Sp

e 6-1 (Cont.)
ecial Characters

Character Designation Function

: semicolon comment field indicator

< left angle bracket initial argument or expression indicator

> right angle bracket terminal argument or expression indicator

+ plus sign arithmetie addition operator or auto-
increment indicator

- minus sign arithmetic subtraction operator or auto-
decrement indicator

* asterisk arithmetic multiplication operator

/ slash arithmetic division operator

& ampersand logical AND operator

! exclamation logical inclusive OR operator

" double quote double ASCII character indicator

' single quote single ASCII character indicator

4 up arrow or universal unary operator, argument

~ circumflex indicator

\ backslash macro numeric argument indicator

3.1.1 Separating and Delimiting Characters

Reference is made in the remainder of the manual to legal separating characters

and legal argument delimiters. These

terms are defined in Tables 6-2 and 6-3.

and/or tabs

comma

Table 6-2
Legal Separating Characters
Character Definition Usage
space one or more spaces A space is a legal separator only for

argument operands. Spaces within ex-
pressions are ignored (see Sectio
6-3.3). i

A comma is a legal separator for both
expressions and arguments.

Table 6-3
Legal Delimiting Characters

Character Definition Usage

<..0>) paired angle brackets| Paired angle brackets are used to enclose
' an argument, particularly when that
argument contains separating characters.
Paired angle brackets may be used any-
where in a program to enclose an ex-
pression for treatment as a term.

Y.../ up arrow construction| This construction is equivalent in
where the up arrow function to the paired angle brackets
character is followed| and is generally used only where the
by an argument argument contains angle brackets.
bracketed by any .
paired printing T
characters

Where argument delimiting characters are used, they must bracket the first (and,
optionally, any following) argument(s). The character < and the characters *x,
where x is any printing. character, can be considered unary operators that cannot

be immediately precede@ by another argument. For example
«MACRO . TEM <A?>C

indicates a macro definition with tyo arguments, while
+MACRO TEL C<AB>

has only one argument. The closing character (or matching character where the up
arrow construction is used) acts as a separator. The opehing argument delimiter

does not act as an argument separator.

Angle brackets can be nested as follows:
D,<AC>

which reduces to:

D,AC

and which .ds considered to be two arguments in both forms.

3.1.2 Illegal Characters

A character can be illegal in one of two ways:

1.

A character that is not recognized as an element of the MACRO character
set is always an illegal character and causes immediate termination of
the current line at that point and an error flag (I) in the assembly
listing. For example in the statement

LABEL+*A: MOV A,B
the backarrow is not a recognized character. The entire line is treated
as

-WORD LABEL
and is flagged in the listing.

A legal MACRO character may be illegal in context. Such a character
generates a Q error on the assembly listing.

3.1.3 Operators

Table 6-4 shows legal unary operators under MACRO.

Table 6-4
MACRO Unary Operators

Unary Explanation
Operator ’
+ plus sign, positive
value

- minus sign, negative
2's complement value

4 up arrow, universal
unary operator

The unary operators described in Table 6-4 can be used adjacent to each other in a

term.

Table 6-5 shows legal binary operators under MACRO.

6-10

Table 6-5 v
MACRO Binary Operators

Binary ;
Operator Explanation
+ addition
- ; subtraction
* multiplication
/ division
& logical AND
1 1og§cal inclusive OR

All binary operators have the same priority.- Items can be grouped for evaluation
within an expression by enclosure in angle brackets. Terms in angle brackets are
evaluated first, and remaining operations are performed left to right. See the

following examples.

»

-WORD 1+2*3 ;IS 11 OCTAL
.WORD 1+<2*3> ;IS 7 OCTAL

3.2 TERMS

A term is a component of an expression. A term may be one of the following.

1. A number, as defined in Section 6-3.9.
2. A symbol, as defined in Section 6-3.4.
3. An ASCII conversion as defined in Section 6-5.3.3.

4. An expression or term enclosed in angle brackets. Any quantity
enclosed in angle brackets is evaluated before the remainder of the
expression in which it is found. BAngle brackets are used to alter
the left-to-right evaluation of expressions (to differentiate between
A*B+C and A*<B+C>) or to apply a unary operator to an entire expression
(-<A+B>, for example).

3.3 EXPRESSIONS

Expressions are combinations of terms and operators that reduce to a 16-bit value.
The evaluation of an expression includes the evaluation of the mode of the resultant

expression; that is, absolute, relocatable or external.

Expressions are evaluated left to right with no operator hierarchy rules except
that unary operators take precedence over binary operators. A term preceded by a
unary operator can be considered as containing that unary operator. (Terms are
evaluated, where necessary, before their use in expressions.) Multiple unary

operators are valid and are treated as follows:

6-11

RO
is equivalent to
—<+<-2>>

A missing term, expression, or external symbol is interpreted as a zero. A missing
operator terminates the expression analysis. A Q error flag is generated for each

missing term or operator. For example:
TAG!LA 177777
is evaluated as
TAGILA
with a Q error flag on the assembly listing line.

The value of an externdl expression is the value of the absolute part of the ex-
pression; e.g., EXTERNAL+A has a value of A. This is modified by LINK to become
EXTERNAL+A.

Expressions, when evaluated, are either absolute, relocatable, or external. For the

programmer writing position-independent code, the distinction is important.

1. An expression is absolute if its value is fixed. An expression whose
terms are numbers and ASCII conversions will have an absolute value.
A relocatable expression minus a relocatable term, where both items
belong to the same program section, is also absclute.

2. An expression is relocatable if its value is fixed relative to a base
address but will have an offset value added at link time. Expressions
whose terms contain labels defined in relocatable sections and periods
(in relocatable sections) will have a relocatable value.

3. An external expression is one whose partial definition at assembly time
is completed at linking time. Also, an external expression is one whose
terms may contain global symbols not defined in the current program. At
linking time, external expressions containing relocatable global symbols.
are considered relocatable; those containing absolute globals are con-
sidered absolute.

3.4 MACRO SYMBOLS

There are three types of symbols: permanent, user-defined, and macro. MACRO
maintains three types of symbol tables; the permanent symbol table (PST), the user
symbol table (UST), and the macro symbol table (MST). The PST contains all the
permanent symbols and is part of the MACRO Assembler load module. The UST and MST
are constructed as the source program is assembled. User-defined symbols are added

to the table as they are encountered.

6-12

Symbols are interpreted according to the foliowing hierarchy:

a. A period causes the value of the current location counter to be used.

b. A permanent symbol's basic value is used, but its argumeﬁts (if any) are
ignored. ‘

c. An undefined symbol is assigned a value of zero and is inserted in the
user-defined symbol table as an undefined global reference. If the
.DSABL GBL directive is in effect, the automatic global reference
default function is inhibited, and the symbol is not defined as a global
reference. It remains undefined. Refer to Section 6-5.2.

3.4.1 Pefmanent Symbols

Permanent symbols consist of the instruction mnemonics and assembler directives
(see Chapter 6-5, G—Bi and 6-8).' These symbols are primitives of the assembler and

need not be defined before being used in. the source program.

3.4.2 User-Defined and Macro Symbols

User-defined symbols are those used as labels (Section 6-2.1.1) or defined by direct
assignment (Section 6-3.5). These symbols are added to the user symbol table as
they are encountered during the‘first pass of the assembly. Macro symbols are

those symbols used as macro names (Section 6-6.1). These symbols are added to the

macro symbol table as they are encountered during the assembly.

User-defined and macro symbols can be composed of alphanumeric characters, dollar

signs, and periods only; any other character is illegal.

The $ and . are in general use by system software, and the user is advised to avoid

their use.
The following rules apply to the creation of user-defined and macro symbols:

1. The first character must not be a number (except in the case of local
symbols, see Section 6-3.7).)

2. Each symbol must be unique within the first six characters.
3. A symboi can be written with moré than six legal characters, but the
seventh and subsequent characters are only checked for legality, and

are not otherwise recognized by the assembler.

4. Spaces, tabs, amtl illegal characters must not be embedded within a symbol.

The value of a symbol depends upon its use in the program. A symbol in the operator .
field may be any one of the three symbol types. To determine the value of the v
symbol, the assembler searcheé the three symbol tables in the order Macro Symbol
Table, Permanent Symbol Table, User Symbol Table.

6-13

A symbol found in the operand field is sought in the order User-Defined Symbol
Table and Permanent Symbol Table.

These search orders allow redefinition of permanent symbol table entries as user-
defined or macro symbols. The same name can also be assigned to both a macro and a
label.

User~-defined symbols are either internal or external (global). All user-defined
symbols are internal unless they remain undefined internally or unless explicitly
defined as being global with the .GLOBL directive or by the double-colon, or double-

equal sign (see Section 6-5.10).

Global symbols provide links between object modules. A global symbol that is
defined as a label is generally called an entry point (to a section of code). Such
symbols are referenced from other object modules to transfer control throughout the

load module (which may be composed of a number of object modules).

Since MACRO provides program sectioning capabilities (Section 6-5.9), two types of
internal symbols must be considered: symbols that belong to the current program
section, and symbols that belong to ofher program sections. 1In both cases, the
internal symbol must be defined within the current assembly; this is critical in
evaluating expressions involving the second type of internal symbol (see Section
6-3.3).

3.5 DIRECT ASSIGNMENT

A direct assignment statement associates a symbol with a value. When a direct
assignment statement defines a symbol for the first time, that symbol is entered
into the user symbol table (UST). A symbol may be redefined by assigning a new -
value to a previously defined symbol. The latest assigned value replaces any

previous value assigned to a symbol.
The general format for a direct assignment statement follows:

sym = expression
or

sym == expression

The second statement also defines sym as a global symbol.

Symbols take on the relocatable or absolute attribute of their defining expression.
However, if the defining expression is external, the symbol is not global unless
explicitly defined as such in a .GLOBL directive, by a label delimi£ed by a double
colon, or by the double equal sign (see Section 6-5.10). Global references in an

expression assigned to a symbol are illegal, and are flagged with an A error flag.

6-14

The following conventions apply to direct assignment statements.

1. An equal sign (=) or double equal (==) must separate the symbol from the
expression defining the symbol value.

2. A direct assignment statement is usually ﬁlaced in the label field and
) may be followed by a comment. ‘

3. Only one symbol can be defined in a single direct assignment statement.

4. Only one level of forward referencing is allowed.

Example of two levels of forward referencing (illegal):

3.6 REGISTER SYMBOLS

The eight general registers of the PDP-1l are numbered @ through 7 and can be

expressed in the source program as

%0
%1

-

%7

where the digit indicating the specific register can be replaced by any legal term

that can be evaluated during the first assembly pass.

It is recommended that the programmer use symbolic names for all register references.
Unless the .DSABL REG statement has been encountered, the definitions as shown in

the following example are defined by default; alternatively, a register symbol may be
defined in a direct assignment statement among the first statements in the program.

The defining expression of a register symbol must be absolute. For example:

=% . ;REGISTER DEFINITION
R1=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

The user can reassign the register expressions, if he wishes.

The symbolic names assigned to the registers in the example above are the conven-
tional names used in all PDP-1ll system programs. Since these names are mnemonic,
it is suggested the user follow this convention. Note that registers 6 and 7 are

given special names because of their special functions.

6-15

All register symbols must be defined before they are referenced. A forward

reference to a register symbol is flagged as an error.

The % character may be used with any term or expression to specify a register. (A
registet expression less than @ or greater than 7 is flagged with an R error code.)

For example, the statement
CLR $3+1

is equivalent to
CLR %4

and clears the contents of register 4; while
CLR 4

clears the contents of memory address 4.

3.7 LOCAL SYMBOLS
Local symbols are specially formatted symbols used as labels within a given range.

Local symbols provide a convenient means of generating labels for branch instruction,
‘etc. Use of local symbols reduces the possibility of multi-defined éymbols within

a user program and separates entry point symbols from local references. Local
symbols may not be referenced from other object modules or even from outside their

local symbol block. The rules for delimiting a local symbol block appear below.

Local symbols are of the form n$ where n is a decimal integer from 1 to 65535,
inclusive, and can only be used on word boundaries (i.e., at even addresses). Local
symbols include the following.

1s
27$
59$
194$

Within a local symbol block, local symbols can be defined and referenced. 'However,
a local symbol cannot be referenced outside the block in which it is defined.

There is no conflict with labels of the same name in other local symbol blocks.

Local symbols 64$ through 127§ can be generated automatically as a feature of the
macro processor (see Section 6-6.3.6 for further details). When using 1oca1
symbols, the user is advised to first use the range from 1$ to 63§, or the range
from 128$ to 65535$.

6~16

A local symbol block is delimited in one of the following ways:

1.

For exampl

The range of a single local symbol block can consist of those statements
between two normally constructed symbolic labels. (Note that a state-
ment of the form

LABEL=.

is a direct assignment; it does not create a label in the strict sense,
and does not delimit a local range.)

The range of a local symbol block is always terminated upon encountering
a .PSECT, .CSECT, or .ASECT directive. ’

The range of a single local symbol block can be delimited with .ENABL LSB

and the first symbolic label or .PSECT, .CSECT, or .ASECT directive
following .DSABL LSB directive. .

es of local symbols and local symbol blocks, see Figure 6-1.

Line Octal)
Number Expansion Source Code Comments
1 .SBTTL SECTOR INITIALIZATION
2
3 po00e8" .CSECT IMPURE ;IMPURE STORAGE AREA
4 PPPRes IMPURE:
S goeoes’ * .CSECT IMPPAS ;CLEARED EACH PASS
6 pogeeY IMPPAS:
7 : 280000" .CSECT IMPLIN - ;CLEARED EACH LINE
8 gogpeg IMPLIN:
9
19 goe008" .CSECT XCTPRG ;PROGRAM INITIALIZATION CODE
11 gpogs XCTPRG : ‘
12 gopeg 212709 MoV #IMPURE,R@
pooees’
13 pgpgp4 p@s5@2g 1$: CLR (rR@)+ ;CLEAR IMPURE AREA
14 gpgoe 22799 CMP #IMPTOP,R@
gepgpag:
15 @gggl2 191374 © BHI 13
16 .
17 ool ln] A .CSECT XCTPAS ;PASS INITIALIZATION CODE
18 ggpegd XCTPAS:
19 2p0ep P12728 MOV #IMPPAS,R@
_ gopeea" . »
20 gpppa 2@s@2g 1%: CLR (R@) + ;CLEAR IMPURE PART
21 ggpgge 322708 cMP #IMPTOP ,RP
popgap" '
22 gP@12 191374 BHI 1%
23 :
24 ﬂpﬂﬁgﬁ' .CSECT XCTLIN ;LINE INITIALIZATION CODE
25 goged XCTLIN:
26 gpgpd p12799 MoV #IMPLIN,R@
2pgees’
27 gPgps PP5828 1$: CLR (RO) +
28 gpgpde P22799 CMP #IMPTOP ,RE
gpppag’ .
29 gp@l2 191374 BHI 1$
32 :
31 Juufufufu oM .CSECT MIXED ;MIXED MODE SECTOR
Figure 6-1

Assembly Source Listing of MACRO Code Showing
6-17

Local Symbol Blocks

3.8 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location countex. When used in the
operand field of an instruction, it represents the address of the first word of the
instruction. When used in the operand field of an assembler directive, it represents

the address of the current byte or word. For example:

A: MOV #.,RE 7+ REFERS TO LOCATION A,
;I.E., THE ADDRESS OF THE
MOV INSTRUCTION.

(# is explained in Section 6-4.1.)

At the beginning of each assembly pass, the assembler clears the location counter.
Normally, consecutive memory locations are assigned to each byte of object data
generated. However, the location where the object data is stored may be changed

by a direct assignment altering the location counter.
Example:
.=expression

The location counter symbol has a mode associated with it, either absolute or
relocatable. The existing mode of the location counter cannot be changed by using

a defining expression of a different mode.

The mode of the location counter symbol can be changed by the use of the .ASECT,
.CSECT or .PSECT directives as explained in Section 6-5.9.2.

The expression defining the location counter must not contain forward references

or symbols that vary from one pass to another.
Examples:

.ASECT

=508 ;SET LOCATION COUNTER
;ABSOLUTE 5@@

- FIRST: MOV «+10,COUNTY ;THE LABEL FIRST HAS THE VALUE
; 5¢9 (OCTAL)

; .+1@ EQUALS 51@(OCTAL). THE

;CONTENTS OF THE LOCATION

;519 (OCTAL) wiLL BE DEPOSITED

sIN LOCATION COUNTY.

.=52¢ ; THE ASSEMBLY LOCATION COUNTER

, sNOW HAS A VALUE OF
;ABSOLUTE 52@ (OCTAL)

6-18

SECOND: MOV . » INDEX ;THE LABEL SECOND HAS THE
;VALUE 52¢ (OCTAL) '
;THE CONTENTS OF LOCATION
;520 (OCTAL) , THAT IS, THE BINARY
;CODE FOR THE INSTRUCTION
; ITSELF, WILL BE DEPOSITED IN
; LOCATION INDEX.

.PSECT
L=,4+20 ;SET LOCATION COUNTER TO
;RELOCATABLE 2@ OF THE
;UNNAMED PROGRAM SECTION.
THIRD: .WORD]) ;THE LABEL THIRD HAS THE

;VALUE OF RELOCATABLE 28.

Storage area may be reserved by advancing the location counter. For example, if

the current value of the location counter is 1@@@g, the direct'assignment statements

Y]
; or

.BLKB 4§
; or

.BLKW 20

reserve 40 (octal) bytes of storage space in the program. The next instruction is
stored at 11f@.. (The .BLKB and .BLKW directives are recommended as the;preferred

ways to reserve space. Refer to Section 6-5.5.3.)

.3.9 NUMBERS

The MACRO Assembler assumes all numbers in the source program are to be interpreted
in octal radix unless otherwise specified. The assumed radix can be altered with
the .RADIX directive (see Section 6-5.4.1) or individual numbers can be treated as

being of decimal, binary, or octal radix (see Section 6-5.4.2).

Octal numbers consist of the digits @ through 7 only. A number not specified as a
decimal number and containing an 8 or 9 is flagged with an N error code and treated
as a decimal number. ot
Negative numbers are preceded by a minus sign (the assembler translates them into
two's complement form). Positive numbers may be preceded by a plus sign, although

this is not required.

A number that does not fit into 16 bits (n>177777) is truncated from the left and
flagged with a T error code in the assembly listing.

6-19

Numbers are always considered absolute quantities (that is, not relocatable).

Single-word floating-point numbers may be generated with the 4F operator (see
Section 6~5.6.2). Refer to PDP-11 Processor Handbook for details of the floating-

point format.

3.10 RELOCATION AND LINKING

The output of the MACRO Assembler is an object module that must be processed by
‘LINK before loading and execution. (See Part 9 of this manual for details.) LINK
essentially fixes (i.e., makes absolute) the values of external or relocatable

symbols and turns the object module into a load module. .

To enable the Linker to determine the value of an expression, the assembler issues
certain directives to LINK, together with required parameters. In the case of
relocatable expressions, LINK adds the base of the associated relocatable section
(the location in memory of relocatable @) to the value of the relocatable expression
provided by the assembler. In the case of an external expression, LINK determines
the value of the external term in the expression (since the external symbol must

be defined in one of the other object modules which are being linked together), and

adds it to the value of the external expression provided by the assembler.

All instructions that are to be modified (as described in the previous paragraph)
are marked with an apostrophe in the assembly listing (see also Chapter 6-10). ~ Thus,
the binary text output looks like the following.

#@5865 CLR EXTERNAL (5)

oeppes’ ;VALUE OF EXTERNAL SYMBOL
;ASSEMBLED ZERO; WILL BE
;MODIFIED BY LINK.

@95¢65 CLR EXTERNAL+6 (5) ;THE ABSOLUTE PORTION OF THE

poggpe” ;EXPRESSION (@@@@@6) IS ADDED
;BY LINK TO THE VALUE
;OF THE EXTERNAL SYMBOL

@g5865 CLR RELOCATABLE (5) ;ASSUMING WE ARE IN A
; RELOCATABLE '

. PPpgap" ;SECTION AND THE VALUE OF

;RELOCATABLE SYMBOL IS RELOCATABLE 4¢
;LINK WILL ADD
;THE RELOCATION BIAS TO 4@

6-20

PART 6
CHAPTER 4
ADDRESSING INFORMATION

Please refer to the PDP-11 Processor Handbook for complete information and examples

concerning addressing modes. This chapter serves only to summarize that information.

4.1 MODE FORMS AND CODES

Each instruction takes at least one word. Operands of the forms listed in Table 6-6

do not increase the length of an instruction.

Table 6-6
Address Modes - No Instruction Modification
Op Code Operand Mode Meaning
op R } Zn Register mode
op @R or (ER) 1n . Register deferred mode
op (ER)+ . 2n Autoincrement mode
op @(ER) + 3n Autoincrement deferred mode
op - (ER) 4n Autodecrement mode
op @-(ER) 5n Autodecrement deferred mode

n is the register number.

However, any of the forms in Table 6-~7 adds one word to the instruction length.

Table 6-7
Address Modes - Instruction Modifying
Op Code Operand Mode Meaning

op E (ER) 6n Index mode
op @E (ER) - 7Tn Index deferred mode
op . #E 27 Immediate mode .
op @#E 37 Absolute memory reference mode
op E 67 Relative mode
op @E 77 Relative deferred reference mode

n is the register number. N&te that in the last four forms, register 7 (the PC)

is referenced.

NOTE

An alternate form for @R is (ER). However, the
form @(ER) is equivalent to @@ (ER).

The form @#E differs from the form E in that the
‘second or third word of the instruction contains
the absolute address of the operand rather than
the relative distance between the operand and the

6-21

PC. Thus, the instruction CLR @#1f@ clears
absolute location 18@ even if the instruction
is moved from the point at which it was
assembled. - See the description of the .ENABLE
AMA function in Section 6-5.2, which directs
the assembly of all relative mode addresses as
absolute mode addresses.

4.2 BRANCH INSTRUCTION ADDRESSING

The branch instructions are l-word instructions. The high byte contains the op-code
and the low byte contains an 8-bit signed word offset (seven bits plus sign) that
specifies the branch address relative to the PC. The hardware calculates the branch

address as follows:

1. Extend the sign of the word offset through bits 8-15.

.

2. Multiply the result by 2. This creates a byte offset from a word offset.

3. Add the result to the PC to form the final branch address.

The assembler performs the reverse operation to form the word offset from the
specified byte address, when assembling the instruction. Remember that when the
byte offset is added to the PC, the PC is pointing to the word following the branch

instruction; hence the factor -2 in the following calculation.

word offset = (E-PC)/2 truncated to eight bits.

-

Since PC = .+2, we have
word offset = (E-.-2)/2 truncated to eight bits.

NOTE

It is illegal to branch to a location specified as
an external symbol, to a relocatable symbol from
within an absolute section, or to an absolute or
relocatable symbol or another program section from
within a relocatable section. '

The EMT and TRAP instructions use the low-order byte of the instruction word for
user-defined codes. This allows information to be transferred to the trap handlers
via this low-order byte. If EMT or TRAP is followed by an expression, the value is
put into the low-order byte of the word. However, if the expression is too big

(>377 (octal)) it is truncated to eight bits and a T error flag is generated.

6-22

PART 6

| CHAPTER 5
GENERAL ASSEMBLER DIRECTIVES

5.1 LISTING CONTROL DIRECTIVES
5.1.1 .LIST and .NLIST

Listing options can be specified in the text of a MACRO program through the .LIST

and .NLIST directives. These are of the form

.LIST [arg]
.NLIST [arg]

where arg represents one or more optional arguments.

When used without arguments, the listing directives alter the listing level count.
The listing level count causes the listing to be suppreésed when it is negative.
The count is initialized to zZero, incremented for each .LIST and decremented for

each .NLIST. For example:

.MACRO LTEST ;LIST TEST
A-THIS LINE SHOULD LIST.
.NLIST
B-THIS LINE SHOULD NOT LIST
NLIST
C-THIS LINE SHOULD NOT LIST
.LIST ,
; D-THIS LINE SHOULD NOT LIST (LEVEL NOT BACK TO ZERO)
.LIST
E-THIS LINE SHOULD LIST (LEVEL BACK TO ZERO)
.ENDM

~ ~

~

~

LTEST ;CALL THE MACRO

A-THIS LINE SHOULD LIST
«NLIST
.LIST
E-THIS LIST SHOULD LIST (LEVEL BACK TO ZERO)

~

~

4 B
The primary purpose of the level count is to allow macro expansions to be selectively

listed and yet exit with the level returned to the status current during the macro
call .

The use of arguments with the listing directives does not affect the level count;

however, use of .LIST and .NLIST can be used to override the current listing control.

6-23

For example:

-

.

.MACRO XX

LLIST

.NLIST

-
.

.ENDM
.NLIST ME
XX

.LIST

;LIST NEXT LINE
;DO NOT LIST REMAINDER

;OF MACRO EXPANSION

B ;DO NOT LIST MACRO EXPANSIONS

;LIST NEXT LINE

Allowable arguments for use with the listing directives appear in Table 6-8. These
arguments can be used singly or in combination.
Table 6-8
MACRO Listing DPirective Arguments

Argument Default Function

SEQ list Controls the listing of source line sequence numbers.
Error flags are normally printed on the line preceding
the questionable source statement.

LoC list Controls the listing of the location counter (this
field would not normally be suppressed).

BIN list Controls the listing of generated binary code.

BEX list Controls listing of binary extensions; that is, those
locations and binary contents beyond the first binary
word (per source statement). This is a subset of the
BIN_argument.

SRC list Controls the listing of the source code.

coM list Controls the listing of comments. This is a subset of
the SRC argument and can be used tp reduce listing time
and/or space where comments are unnecessary.

MD list Controls listing of macro definitions and repeat range
expansions.

MC list Controls listing of macro calls and repeat range ex-
pansions.

ME no list Controls listing of macro expansions.

MEB no list Controls listing of macro expahsion binary code. A
LIST MEB causes only those macro expansion statements
producing binary code to be listed. This is a subset
of the ME argument.

(continued on next page)

6-24

Table 6-8 (cont.)
MACRO Listing Directive Arguments

Argument Default Function

CND list Controls the listing of unsatisfied conditions and all
.IF and .ENDC statements. This argument permits con-
ditional assemblies to be listed without including

_ unsatisfied code.

LD no list Control listing of ali listing directives having no
arguments (those used to alter the listing level count).

TOC list Control listing of table of contents on pass 1 of the
assembly (see Section 6-5.1.4 describing the .SBTTL
directive). The full assembly listing is printed during
pass 1 of the assembly.

TTM console Control listing output format. The TTM argument (the

' mode default case) causes output lines to be truncated to

72 characters. Binary code is printed with the binary
extensions below the first binary word. The alternative
(.NLIST TTM) to terminal mode is line printer mode,
which is shown in Figure 6-2.

SYM list Controls the listing of the symbol table for the assemblyJ

An example of an assembly listing as sent to a 132-column line printer is shown in

Figure 6-2. Notice that binary extensions for statements generating more than one

word are spread horizontally on the source line. An example of an assembly listing
as sent to a teleprinter is shown in Figure 6-3. Notice that binary extensions

for statements generating more than one word are printed on subsequent lines.

The listing options can also be specified through switches on the listing file

specification in the command string to the MACRO Assembler. These switches are

/LI:arg
/NL:arg

where arg is any one or more of the arguments defined in the .LIST and .NLIST

directive. : . :

6~25

L]

(x@3utad outl UUMTOD ZET)

BUT3ISTT I9JUTIJ DUTT O¥OVW FO o1dwexy

ON
<d0d
yogdad ‘sdX
ON
4avd ONIHLANY
HIX9 3A0D a9

P S

0S "dI HONWYA!

SSMID0Ed NI OdOVW FWNSSY!?
TYIDAdS ‘Sdx ¢

LOMOVH WALSKS NI!

SHDNRIVW ANIT JO ANT ANV ¢
ONINNIDAG 40 Ivds?

HONANGES IMIO MAN LINI?
JIIWNAN FOVd II¥ddn ‘sdx!?
ON ¢

&S, dd QAAMASTY ANV?

INIT INANI NY 13D¢

Z-9 a2anbta
$veE INg
IAANT ¢ AVSISO sid
14 1ad
ga 9108
T dowydE
$ce Ozg
o’ Lyd# LIdg
#a’ c+9AHOES gAOW
WANNTI'T ONI
ANTOUSH# IIVM®
T angous# AOKH
$O1 ANg
T’ IWESH AOW
LY4 aNd
. INDTHS hAhA
TANIOT’ ANINITH AOKH
poki:reala’y AOKW
29! ANANTIT# AOH
INDAdT i gre)
$1€ Ozd
ss¥d ISL
anadas i gre)
INDAA g)
WONNIT a0
IXIOV’ T~# AOW
WONOYJ’ g aay
$TE -Qdd
#d’ INDJA AOKW
DMIAYS

sTe

$TE

ST

NITLID

Vo000

V18000

1 9CPPad

1 900009

JAZ 110"
L ESLO0E
RAL L0

1 95.0d0
N at4ad/:]

N[l
91T28d
2100888
NAVAYS)
B10000

N L]
' 9Tg000
BToodd
2180808
LLLLLT
1228008

Bzoded

£OdTo8
LoL9SH
v1ggdT
dOT190T

I §Av]
gdLeed
28L9TT
Locsdd

18L218

991100
T6L918
SYT11dd
LOLSHE
LoLz1d
Lozg1g
zéLz1g
Logsdd

cevied .

LoLSPd
Logsgd
Logs@d
Logspd
1L9L21d
Log@od
4 an]}
geLoTE

Zvieed ve
PETZHP €€
zeT1eed z€
ge1zdd 1€
TTIege d¢
#z12ed 62
11208 82
#1128 LT
P@12Ed 9T
9L9280 ST
TLaTod ve
gLegzdd zz
vogzdd 12
zogzgd st
osdgzdd LT
gegzad ST
vrgedd v1
gvgeds €1
vededd 1
zegedg 11
9z@zed BT
zegedd 6

o1gzed
10200
yodzod
geazad
oLLTED
TLLIBD
99,180
99.18d

N MmN O~ 00

6-26

1 gg1766

GETLIN:

2 PP1766 SAVREG

3 gP1772 P1670% 1$: MOV
goep2e:’

4 PP1776 BPL42p BEQ

5 2920908 Pegpe7 ADD
gopa22"

6 PP2pP4 P12767 MOV
177777
2p0326"

7 $@2p912 PE5867 CLR
gpggL2”

8 PP2016 PEsP67 CLR
gppp2g!

9 @@2p22 PPSP67 CLR
g2p@le!

10 920926 @g@5767 TST
Jojulu)ulo]

11 @2@32 gpl4g2 BEQ

12 @2@34 P@s5P67 CLR

T gpepLg’

13 @2p4¢ P12782 31$: MOV
#p1712"

14 @244 919267 MOV
pRe@L2"t

15 §2058 $12767 MoV
g@2116"
gope14’ .

16 .IF NDF

17 P20856 @@5767 TST
gpe20p*

18 @2p62 @P1145 BNE

19 .ENDC

20 .IF NDF

21 g2g64 P167¢1 MoV
gp2214"

22 P2p78 991166 BNE

23 .IFTF

24 g2p72 $12791 MoV
gpp756"

25 @2976 JWAIT

26 P21p4 PP5267 INC
gogg12t

27 92119 116790 MOVB
P9@753"

28 92114 P3279¢ BIT
popea7

29 @212¢ PP1493 BEQ

3¢ g2122 ERROR

31 @213¢ 196198 32%: ROLB

32 g2132 19pP14 BPL

33 92134 P56767 BIS
popgpe”
popepat

34 §2142 PPLER3 BNE

- FFCNT,R@

318
R@, PAGNUM

#-1,PAGEXT

LINNUM
FFCNT
SEQEND
PASS

313
LPPCNT

#LINBUF,R2
R2,LCBEGL
#LINEND,LCENDL
XSML

SMLCNT

4¢3

XMACRO
MSBMRP ,R1

19$
#SRCBUF,R1

#SRCLNK
LINNUM

SRCHDR+3,Rf
#9047 ,RP

328
L N

g

2%
CS1SAV,ENDFLG

34

Figure 6-3

;GET AN INPUT LINE
;ANY RESERVED FF'S?

NO
YES, UPDATE PAGE NUMBER

.
7
.
7

\

;INIT NEW CREF SEQUENCE

;SEAT UP BEGINNING

; AND END OF LINE MARKERS

;IN SYSTEM MACRO?

i YES, SPECIAL

;ASSUME MACRO IN PROGRESS

;BRANCH IF SO

;GET CODE BYTE
;ANYTHING BAD?

NO
YES, ERROR
EOF?

NO

~e N0 owe we

Example of Page Heading from MACRO Teleprinter Listing
(same format as for 8¢ column line printer)

6-27

NOTE

Where no listing file specification is in-
dicated, any errors encountered are printed
on the teleprinter. Where the /NL switch is
used with no argument, the errors and symbol
table are output to the device and/or file
specified. Use of the switches /NL and
/NL:SYM cause only the errors to be sent to
the file and/or device specified.

Each argument used with a listing switch is preceded by a colon.

Use of these switches overrides the enabling or disabling of the equivalent listing
option in the source. Default listing controls can be specified by the user within
his source code and overridden, where necessary, by switch options at assembly time.

For example:
#OBJFIL,KB:/NL:BEX :COM/LI : SRC<DF : SRCFIL

This command string suppresses the listing of binary extensions and source comments
‘and‘ignores all listing directives with the arguments BEX, COM, and SRC. (The
object file is sent to OBJFIL on the system device, and the listing and symbol
table to the keyboard.)

#OBJFIL,LP:/LI<DT1:ABC

causes MACRO to ignore all .LIST and ,NLIST directives without arguments. This
command string causes the listing of any source code that would have otherwise been
suppressed. (The object file is sent to the system device; the source listing and

symbol table are sent to the line printer.)
#OBJFIL,SYM/NL<ABC

causes MACRO to produce only an object file and a symbol table listing. The
assembly listing is completely suppressed by the /NL switch. (The object file and
symbol table file are sent to the system device.)

5.1.2 Page Headings

The MACRO Assembler outputs each page in the format shown in Figure 6-3 (teleprinter
listing). On the first line of each listing page the assembler prints (from left
to right) the following items. ’

1. Title taken from .TITLE directive

2. Assembler version identification

3. Date

6-28

4, Time-of-day

5. Page number

The second line of each listing page contains the subtitle text specified in the

last encountered .SBTTL directive.

5.1.3 .TITLE

The .TITLE directive is used to assign a name to the object module. The name is
the first symbol following the directive and must be six Radix-5@ characters or
less (any characters beyond the'first six are ignored). Non-Radix-5@ characters are

not acceptable. For example,
.TITLE PROG TO PERFORM DAILY ACCOUNTING

causes the object module of the assembled program to be named PROG (this name is
distinguished from the filename of the object module specified in the command
string to the assembler). The name of the object module appears in the LINK load

map and on the listing.
If there is no .TITLE statement, the default name assigned to the object module is
.MAIN.

The first tab or space following the .TITLE directive is not considered part of the
object module name or header text, élthough subsequent tabs and spaces are

significant.

If there is more than one .TITLE directive, the last .TITLE directivé in the program

convkys the name of the object module.

5.1.4 .SBTTL

The .SBTTL directive is used to provide the elements for a printed table of contents
of the assembly listing. The . text following the directive is printed as the second
line of each of the following assembly listing pages until the next occurrence of a

.SBTTL directive. For example:
«SBTTL CONDITIONAL ASSEMBLIES
The text
LY
CONDITIONAL ASSEMBLIES

is printed as the second line of each of the following assembly listing pages.

6-29

During pass 1 of the assembly process, MACRO automatically prints a table of contents
for the listing containing the line sequence number and text of each .SBTTL direc-
tive in the program. Such a table of contents is inhibited by specifying the

/NL:TOC switch option to the assembly listing file specification (or a .NLIST TOC

directive within the source). For example:
#OBJFIL,LISTM/NL: TOC<SRCFIL

In this case the table of contents normally generated prior to the assembly listing
is inhibited.

An example of the table of contents is shown in Figure -6-4. Note that the first
word of the subtitle heading is not limited to six characters since it is not a

module name.

5.1.5 L.IDENT

The .IDENT directive provides another means of labeling the object module produced
as a result of a MACRO assembly. In addition to the name assigned to the object
module with the .TITLE directive, a character string (up to six characters, treated

like a RAD5# string) can be specified between paired delimiters. For example:
.IDENT /V@@5n/

The character string
v@ggsa

is converted to Radix-5@ notatich and included in the global symbol directory of
the object module. ’

This symbol is included in the load map listings output by LINK.

When more than one .IDENT directive is found in a given program, the last .IDENT
found determines the symbol which is passed as part of the object module identi-

fication.

6-30

5- 1 SECTOR INITIALIZATION
7- 1 SUBROUTINE CALL DEFINITIONS
12- 1 PARAMETERS
14- 1 ROLL DEFINITIONS
16- 1 PROGRAM INITIALIZATION
26- 1 ASSEMBLER PROPER
36- 1 STATEMENT PROCESSOR
4a0- 1 ASSIGNMENT PROCESSOR
41- 1 OP CODE PROCESSOR
48- 1 EXPRESSION TO CODE-ROLL CONVERSIONS
58- 1 "CODE ROLL STORAGE
51- 1 DIRECTIVES
59- 1 DATA-GENERATING DIRECTIVES
68~ 1 CONDITIONALS
72- 1. LISTING CONTROL
74~ 1 ENABL/DSABL FUNCTIONS
75~ 1 CROS$ REFERENCE HANDLERS
78~ 1 LISTING STUFF
79- 1 KEYBOARD HANDLERS
8g~- 1 OBJECT CODE HANDLERS
88~ 1 LISTING OUTPUT
92- 1 I/0 BUFFERS
93- 1 EXPRESSION EVALUATOR
99- 1 TERM EVALUATOR
193- 1 SYMBOL/CHARACTER HANDLERS
199- 1 ROLL HANDLERS
114- 1 REGISTER STORAGE
116- 1 MACRO HANDLERS
135~ 1 ‘FIN

Table of contents text is taken from the text of each .SBTTL
directive. The associated numbers are the page and line sequence
numbers of the .SBTTL directives.

Figure 6-4
Assembly Listing Table of Contents

5.1.6 Page Ejection
There are three ways of obtaining a page eject in a MACRO assembly listing.

1. After a line count of 58 lines, MACRO automatically performs a page

eject to skip over page perforations on line printer paper and to
" formulate terminal output into pages.

2. More commonly, the .PAGE directive is used within the source code to
perform a page eject at that point. The format of this directive
appears here.

.PAGE

This directive takes no arguments and causes a skip to the top of the
next page.

Used within a macro definition, the .PAGE is ignored, but the page eject
is performed at each invocation of that macro.

3. The insertion of form feed chafacters (FF) cause page ejection.

6-31

5.2 FUNCTIONS:

.ENABL AND .DSABL DIRECTIVES

Several functions are provided by MACRO through the .ENABL and .DSABL directives.

These directives use 3-character symbolic arguments to designate the desired

function, and are of the forms

.ENABL arg
.DSABL arg

where arg is one of the legal symbolic arguments as described in Table 6-9.

,

Table 6-9
Functions: Symbolic Arguments
Argument Default Function

ABS disable Produces absolute binary output; i.e., input to the
paper tape software system absolute loader.

AMA disable Causes the assembly of all relative addresses -(address
mode 67) as absolute addresses (address mode 37).
This switch is useful during the debugging phase of
program development.

CDR disable Causes source columns 73 and greater to be treated as

_comment. This accommodates sequence numbers in card
columns 72-88.

FPT disable Causes floating point truncation, rather than rounding,
as is otherwise performed. .DSABL FTP returns to
floating point rounding mode.

LC disable Causes the assembler to accept lower case ASCII input

" instead of converting it to upper case.

LSB disable Causes a local symbol block to be started. See
Figure 6-5.

PNC enable Causes binary output to be produced on the source
listing.

REG enable causes the default register names to be defined. The
following code is implied as being present.

R@=%0
R1=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

GBL enable Causes the assembler to attempt to resolve undefined

or global references at the end of pass 1.

6-32

SOAT3O9TA 1I9¥SA” Pue TI¥NI*® Fo oTduexm

NOILVI0T IN3¥3ND ANV ¢
$L18 300W last

-9 @anbTd

(v¥) ‘207312
(c¥)‘py

§9v14 LINV43Q0 dv3ITI(EA) 19714871919714940%

ON 083 4I¢ $11

{434 WO¥4 V8019 LNvd3gs (cd)’974940#%
DILINI43Q IVE0TY 378I8850d Iou3Ind . @y41(ds)
938V sy 9yIdd 2¥/9747811974430#

0ILY30713d LnE 11V dv3a1dd P <914 13> = LEH
IVHVHI NOILVIO0T LIN3H¥NI 139 ‘ON¢ Y8941
g3A | g3

LA3INI43d AdvId v (£¥) 49144308

NO102 ANDI3S SSvdag!

118 NOILINIZ3Q V80719 Llast
ON 3N 414

_ IND0D ANDI3sS

NOILINIZ3G IYE019 ON IWNssvs

. NO10J ssvdagt

§83181934 NOISSI¥4X3 L3g!

- 378VL 108WAS 3HL HOuv3S ‘ON#
J08WAS T¥307 M3IN 40 L¥V1S 9v144

Youd3 ‘s3A 4

I EEFT
¥0553208d 138v1H

(d8) ‘914819#

$o1

103°HI# ‘Y
(dS)=

138881
88103X
114

100254 ‘70aHAS
; 887

G1 39Vd GItE0 pL=834=12 CO=90A 0¥IVW

AOW
slg

JIlg
034

118
sld

slg
J1g

AOW
3ang

118
aNl39

AQW
3INg

dH3

419
8NL139
H4dX138
430443
HJOdss
JA4N3*
IIv2
4daN 41°
03¢

di)
18¥YN3*®

AT AT
1$11 £100g0
vzlooe
€142v0
cevion
bzoeoe
£142¢0
239162
ciopgan
0RL250
Le€0d0
004299
\p2oeon
2949109
020100
2100090
t801 £142¢0

LAY T
914210

vodioe.

2./0029
425029
9pa500

$4738v7

BLviog
1220009
1000000

494929

$138v7

2e900
2£900

r29ad
22500

9l9ne
viong

019002
v3900

28929
94500

24500
99500

29500
09509

1431
26600
IvGea
erson
9£5000
ZEsane
925000

vZsoeo

915000
915800

N T U ON
NN NN o

& -
N N

V=M IO Lo 2 N @ O

DO N O O vt vt et v -t . - - -

- M

d0683308d INIWILVLE

04

VW

6-33

SoAT309XTd THVYSA* Pue TEYNA® Jo ordwexdy
(*3uoD) ¢-9 sanbra

881 18vsQ* Ly

, oF
| _ . 912441

240K ¥04 Adlé LNWLS dWP 291080 2€.00 ob
. 9200000
. . 1 2€0000

738v7 40 AN3 N¥VAS ANITET/LNdEHD AOW 194918 v2L00 pb

SHNVIB ANV Ssvdagt gNl3s g9 Acloo ¢F

¥40683004d INIWILVLS
T=G1 39vd @I:EQ pi=83d=12 £0=90A OHIVW QHIVH

NIViE NV3ITIH +(dS) 184 218G 924509 9100 2¥
t $9 yg leboop v100 1¥
o HOHM3 13 90/p0 ob
$S ¥g yaveoe vaLee 6%
971314 NOILVI0T LNIdd OL 3dns 3af 04dl3s 204099 ef
3.vadn/Lu3SNIY LY3eNI tge L9000 LE
i vedoon
Q3INI43Q AT4ILINKW sV 9Vdd (eH) 914 40nn gl £1£250 84972 9F
HOu¥3 9v14 “‘oNé d HOH¥3 152 299048 of
N0 ‘e3A s¢ 03g Sor1oe 29900 L
: 1G20000
4401338 3nvsd (24) 4238912 8dWD 214921 vS9pd g€
834 ¢ §2 3Ng footae 25900 2t
1920000
L03A0N AQOBANY BvM{ (P¥) 4207999 dh) . P1./922 9vosa IC
GIMVANI ‘ON ¢ %2 CET] 00viee pPP900 BE
. 2p0p8p
d138v7 sV ‘Q3aNI43qQd (£d) 19174181# 1ig 1¢1 €120 0v9pd 68
Lu3ENI $€ L . 91p22@ 9E9PB 8

19200002

6-34

A misspelled argument causes the directive containing it to be flagged as an error.
No further action is taken. These functions can also be controlled through

switches specified in the command string £o the MACRO Assembler. The switches are

/EN:arg
/DS:arg

where arg is any of the arguments that can be used with the .ENABL and .DSABL

directives.

Use of these switches overrides the enabling or disabling of all occurrences of
that argument in the program. They are used in the same manner as /LI, /NL, but

in general apply mainly to source files.

5.3 DATA STORAGE DIRECTIVES

The MACRO Assembler generates a wide range of data and data types. These facilities

are explained in the following sections.

5.3.1‘ BYTE -

The .BYTE directive is used to generate one or more successive bytes of data.
Format:
.BYTE[expl] [,exp2,...]

A legal expression must have an absolute value (or gontain a reference to an
external symbol)vand must result in eight bits or less of data. The 16-bit value
of the expression must have a high-order byte (which is truncated) that is either
all zeros or all ones. Each operahd expression is stored in a byte of the object
program. Multiple operands are separated by commas and stored in successive bytes.

For example:

SAM=5
=419
.BYTE 1D48,SAM 1#6¢ (OCTAL EQUIVALENT OF 48
;DECIMAL) IS STORED IN LOCATION
141¢, P@5, IS STORED IN
;LOCATION 411.

If the high-order byte of the expression equates to a value other than @ or -1, it
is truncated to the low-order eight bits and flagged with a T error code. If the

. expression is relocatable, an A-type warning flag is given.

At link time it is likely that relocation will result in an expression of more than

eight bits, in which case, LINK prints a truncation error message. For example:

6-35

.BYTE 23 ;STORES OCTAL 23 IN NEXT BYTE.

A:
.BYTE A ;RELOCATABLE VALUE CAUSES AN "A"
;ERROR FLAG.
.GLOBL X
X=3 .
-BYTE X ;STORES 3 IN NEXT BYTE.

If an operand following the .BYTE directive is null, it is interpreted as a zero.

For example:

=428
.BYTE, ,

5.3.2 .WORD
The .WORD directive is used to generate one or 'more -successive words of data.
Format:

WORD [expl] [,exp2,...]

A legal expression must result in 16 bits or less of data. Each operand expression
is stored in a word of the object program. Multiple operands are separated by

commas and stored in successive words. For example:

SAL=¢
=500
.WORD 177535, .+4,SAL sSTORES 177535, 586 AND # IN
;WORDS 5@@, 5¢2 AND 5@4.

If an expression equates to a value of more than 16 bits, it is truncated and

flagged with a T error code.

If an operand following the .WORD directive is null, it is interpreted as zero.

For example:

.=50¢
«WORD 5, ;STORES @, 5, AND @ IN LOCATIONS
;504, 502, and 5p4

A blank operator field (any operator not recognized as a macro call, op-code,
directive or semicolon) is interpreted as an implicit .WORD directive. Use of this
convention is discouraged because it may not be the default case in future PDP-1l
assemblers. The first term of the first expréssion in the operand field must not
be an instruction mnemonic or assembler directive unless preceded by a + or -

operator. For example:

6-36

=449 ;THE OP-CODE FOR MOV, WHICH
1IS Pg199@@, IS STORED ON

LABEL: +MOV,LABEL ;LOCATION 44p. 44g 1S
;STORED IN LOCATION 442.

Note that the default .WORD directive occurs whenever there is a leading arithmetic
or logical operator; or whenever a leading symbol is encéantered that is not recog-
nized as a macro call, an instruction mnemonic, or an assembler directive. There-
fore, if an instruction mnemonic, macro call, or assembler directive is misspelled,
the .WORD directive is assumed and errors will result. Assume that MOV is spelled

incorrectly as MOR.
MOR A,B

Two error codes result: Q occurs because an expression operator is missing between
MOR and A, and U occurs if MOR is undefined. The U error occurs only if GBL is
disabled and MOR is undefined, else MOR is classed as a global. Two words are then

generated: one for MOR A and one for B.

5.3.3 ASCII Conversion of One or Two Characters

The ' and " characters are used to generate text characters within the source text.
A single apostrophe followed by a character results in a word in which the 7-bit
ASCII representation of the character is placed in the low-order byte and zero is

placed in the high-order byte. For example,
MoV #'a,RO

results in the following 16 bits being moved into R#.

P88 PPPP| P10 PPPL

ASCII value of A

STMNT :

GETSYM
BEQ 4%

CMPB @CHRPNT, #' : ;COLON DELIMITS LABEL FIELD.
BEQ LABEL

CMPB @CHRPNT, #'= ;EQUAL DELIMITS

BEQ ASGMT ;ASSIGNMENT PARAMETER.

A double quote allows for the 7-bit ASCII representation of two characters to be

placed in the low and high order bytes of a word. For example,

6~37

.WORD "AB

results in the creation of the following binary word constant.

: ‘lmma po1p| o180 pp1 |

binary ASCII for A

binary ASCII for B

5.3.4 .ASCII

The .ASCII directive translates character strings into their 7-bit ASCII equivalents

for use in the source program.

Format:

.ASCII /character string/

where

character string

As an example:

is a string of any acceptable printable ASCII characters.
The string may not include null, rubout, return, line
feed, vertical tab, or form feed characters. Nonprinting
characters can be expressed in digits of the current

radix and delimited by angle brackets. Any legal, defined
expression is allowed between angle brackets.

these are delimiting characters and may be any printing
characters other than ; < = or any character within the
string.

Az .ASCII /HELLO/ ;STORES ASCII REPRESENTATION OF

;THE LETTERS HEL L O INS
;CONSECUTIVE BYTES.

8

ASCII /ABC/<15><12>/DEF/ ;STORES A B C 15, 12, DE F IN 8

; CONSECUTIVE BYTES.

.ASCII /<AB>/ ;STORES < A B > IN 4 CONSECUTIVE

;BYTES.

The ; and = characters are not illegal delimiting characters, but are pre-empted

by their significance as a comment indicator and assignment operator, respectively.

For other than the first group, semicolons are treated as beginning a comment

field. For example:

6-38

ASCII ;ABC; /DEF/ ;STORESABCDETF
;NOT RECOMMENDED PRACTICE

.ASCIT /ABC/;DEF; ;STORES A B C. DEF TREATED
JAS A COMMENT

.ASCII /ABC/=DEF= iSAME AS CASE 1

.ASCII =DEF= ;THE ASSIGNMENT

i «ASCII=DEF

;IS PERFORMED AND A Q ERROR GENERATED
;UPON ENCOUNTERING

+THE SECOND =.

~5.3.5 L.ASCIZ

The .ASCIZ directive is equivalent to the .ASCII directive with a zero byte auto-~

matically inserted as the final character of the string. For example:

When a list or text string has been created with a
.ASCIZ directive, a search for the null character
can determine the end of the list. For example:

! CALLED BY JSR PC,EXY

e O@NAOG D LR -

-

Buevn vlg7al EXxl: MOV #HELLO,R]
PRYYLEY
wopda a127n2 MOV #LINBUF,R2
PRBY3IY?
BYol1e 112122 X3 17} (R1)*, (R2)» JMUVE DATA
puple we1376 BNE X
RUB1l4 vlpen7 KTS PC
V0OuYLS Cr®15
VeRU1LY LFSL3
Qv0le W15 HELLOS LASCIZ <CR><[F>/HELLO/<CR><LF»
punL? 013
LIy 112
wouey 105
wapeez 114
TR 114
PaPes 117
ouees 415
won2e 013
pave? woa
19 vnedn C LINBUFS ,BLKW 6

-
"N

TN G D O

6=39

5.3.6 .RAD5¢

The .RADS@ directive allows the user the capability to handle symbols in Radix-5¢
coded form (this form is sometimes referred to as MOD4@ and is used in PDP-1ll system
programs). Radix-5¢ form allows three characters to be packed into sixteen bits;

therefore, any 6-character symbol can be held in two words.

Format:
.RADS@ /string/
where
/ 4 delimiters can be any printing characters other than the =
< and ; characters.
string is a list of the characters to be converted (three characters

per word) and which may consist of the characters A through Z,
@ through 2, $§ . and space. If there are fewer than three
characters (or if the last set is fewer than three characters)
they are considered to be left justified and trailing spaces
are assumed. Illegal nonprinting characters are replaced with
a ? character and cause an I error flag to be set. TIllegal
printing characters set the Q error flag.

The trailing delimiter may be a semicolon or matching delimiter. For example:

.RAD5@ /ABC/ ;PACK ABC INTO ONE WORD.
.RADS@ /AB/ ;PACK AB (SPACE) INTO ONE WORD.
RADSZ /ABCD/ ;PACK ABC INTO FIRST WORD AND

;D SPACE SPACE INTO SECOND WORD.

Each character is translated into its Radix-5@ equivalent as indicated below.

Character Radix-5@ Equivalent (octal)

(space) @

A-Z 1-32 &
$ 33

- 34

2-9 . 36-47

The character code for 35 is currently undefined.

The Radix-5@ equivalents for characters 1 through 3 (C1,C2,C3) are combined as

follows.

Radix 5@ value = ((C*5¢8)+C2)*5¢8+C3

For example:

Radix-5@ value of ABC is ((1*5ﬂ8)+2)*5¢8+3 or 3223

. 6-40

See Appendix B for a table of Radix-5¢ equivalents.

Use of angle brackets is encouraged in the .ASCII, .ASCIZ, and .RADS5@ statements

whenever leaving the text string to insert special codes. For example:

XN D G N

9 Y0PuUgea wp3IL2Y WRADSE /ABC/ 1STORES 3223

10 20046 Yp3IL23 - «RADSO /AB/<3> FTEQUIVELENT TO /ABC/
11 vonbel vimg

12 poewp2 vamz

13 - N0RLEI VIR

14 0009p Vw3223 2»RADSD <V12<y2><V3>

5.4 RADIX CONTROL

5.4.1 .RADIX

Numbers used in a MACRO source program are initially considered to be octal numbers.
However, the programmer has the option of declaring the radices 2, 4, 8, 1g. This

is done via the .RADIX directive,
.RADIX [n]
where n is one of the acceptable radices.

The argument to the .RADIX directive is always interpreted in decimal radix.
Following any radix di;ective, that radix is the assumed base for any number speci-
fied until the following .RADIX directive.

The default radix at the start of each program, and the argument assumed if none

is specified, is 8 (i.e., octal). For example:

RADIX 19 7BEGINS SECTION OF CODE WITH
;s DECIMAL
s RADIX

~RADIX ;REVERTS TO OCTAL RADIX

In general it is recommended that macro definitions not contain or rely on radix
settings from the .RADIX directive. The temporary radix control characters should

be used within a macro definition and are described in the following section. A

6-41

given radix is valid throughout a program until changed. Where a possible conflict
exists within a macro definition or in possible future uses of that code module, it

is suggested that the user specify values using the temporary radix controls.

5.4.2 Temporary Radix Contxrol: 4D, 40, and 4B

Once the user has specified a radix for a section of code, or has determined to use
the default octal radix, he may discover a number of cases where an alternate radix
is more convenient (particularly within macro definitions). For example, the

creation of a mask word might best be done in the binary radix.

MACRO has three unary operators to provide a single interpretation in a given radix

within another radix.

4Dx (x is treated as béing in decimal radix)
+0x (% is treated as being in octal radix)
+Bx (x is treated as being in binary radix)

For example:

4p123

+0 47

1B $@@p1101
+0<a+3.>

Notice that while the up arrow and radix specification characters may not be
separated, the radix operator can be physically separated from the number by spaces
or tabs for formatting purposes. Where a term or expression is to be interpreted

in another radix, it should be enclosed in angle brackets.
These numeric quantities may be used any place where a numeric value is legal.

MACRO provides a feature (maintained for compatibility with PAL-1l) that allows
temporary radix change from octal to decimal by specifying a decimal radix number
with a decimal point. For example,
19@.
1376.
128.

are all decimal numbers.

5.5 LOCATION COUNTER CONTROL

Four directives control movement of the location counter. .EVEN and .0ODD move
the counter a maximum of one byte. .BLKB and .BLKW allow the user to specify

blocks of a given number of bytes or words to be skipped in the assembly.

6-42

5.5.1 L.EVEN

The .EVEN directive ensures that the assembly location counter contains an even
memory address by adding one if the current address is odd. If the assembly loca-
tion counter is even, no action is taken. Any operands following an .EVEN directive

are ignored.
5.5.2 .0DD

The .ODD directive ensures that the assembly location counter is odd by adding one

if it is even. For example:

NG D N -

8 opovuse ¥el QPEVES LBYTE 1,2,9
Qapnd3d vp2
V0uVBS4 vpd

g +EVEN pPADJUST TO EVEN BOUNDRY
10 06056 bl WBYTE 1,2
PYES? w2
11 »000 , JADJUST TO 00D BOUNDRY
12 20poy vyl «BYTE 1,2,9 :)
LY) TP
neps3 K] »
13 ‘ «EVEN JEVEN BOUNDRY?
14 pupta o1 «BYTE 1,2,9 :
PURLS o2
peoLs ves ‘
15 00D JODD BOUNDRY?
16 anes7 vnl +.BYTE 102,39
guv/e wpe :
wou71 v
17 +EVEN

5.5.3 .BLKB and .BLKW

Blocks of storage can be reserved using the .BLKB and .BLKW directives. .BLKB is

used to reserve byte blocks and .BLKW reserves word blocks.
Format:

.BLKB [exp]
~ «BLKW [exp]

where exp is the number of bytes or words to reserve. If no expfession is present,
1 is the assumed default value. Any legal expression that is completely defined at
assembly time and produces an absolute number is légal; e.g., external expressions

are illegal. Using these directives without arguments is not recommended.

6-43

For example: -

1 goeeee’ .CSECT IMPURE

2

3 Pogege PASS: +BLKW

4 ;NEXT GROUP MUST STAY TOGETHER
5 gppeg2 SYMBOL: .BLKW 2 ;SYMBOL ACCUMULATOR

6 poggge MODE :

7 P@0P06 FLAGS: .BLKB. 1 ;FLAG BITS

8 Poaga? SECTOR: .BLKB 1 ; SYMBOL/EXPRESSION TYPE

9 ggpaLg VALUE: BLKW 1 ;EXPRESSION VALUE

10 @gggl2 RELLVL: .BLKW 1 .

11 .BLKW 2 ;END OF GROUPED DATA

12

13 geg2g CLCNAM: .BLKW 2 ;CURRENT LOCATION COUNTER SYMBOL
14 g@g24 CLCFGS: .BLKB 1

15 g@g25 CLCSEC: .BLKB 1

16 g@P26 CLCLOC: .BLKW 1

17 29038 CLCMAX: .BLKW 1

The .BLKB directive has the same effect as
.=.4+exp

but is easier to interpret in the context of source code.

5.6 NUMERIC CONTROL

Several directives are available to simplify the use of the floating-point hardware
on the PDP-11. (Refer to Processor Handbook for floating-point hardware descrip-

tion.)

A floating-point number is represented by a string of decimal digits. The string
may contain an optional decimal point and an optional exponent indicator (the
letter E and a signed decimal exponent). The list below contains seven valid
representations of the same floating-point number:

3
3.

3.8
3.gE@
3EQ
.3E1
3¢PE-2

The list could be extended indefinitely (e.g., 3g@ggE-3, .@3E2, etc.). A leading
plus sign is ignored (e.g., +3.¢ is considered to be 3.¢). A leading minus sign

complements the sign bit. No other operators are allowed (e.g., 3.f+N is illegal).

Floating-point number representations are valid only in the contexts described in

the remainder of this section.

6~44

Floating-point numbers are normally rounaed. That is, when a floating-point number
exceeds the limits of the field in which it is to be stored, the high-order excess
bit is added to the low-order retained bit. For example, if the number is to be
stored in a 2-word field, but more than 32 bits are needed for its value, the
highest bit carried out of the field is added to the least significant position.

The .ENABL FPT directive is used to enable floating-point truncation, and .DSABL FPT

is used to return to floating-point rounding (see Section 6-5.2).

5.6.1 .FLT2 and .FLT4

Like the .WORD directive, the two floating-point storage directives cause their

arguments to be stored in line with the source program.
Format:

FLT2 argl,arg2,...
FLT4 argl,arg2,...

where argl,arg2,... represent one or more floating point numbers separated by

commas.

FLT2 causes two words of storage to be generated for each argument, while .FLT4

generates four words of storage.
5.6.2 Temporary Numeric Control: +F and 4C

Like the temporary radix control operators, operators are available to specify
either a l-word floating-point number (4F) or the 1's complement of a l-word number
(#C). The 4F operator can only be used within an instruction operand expression.

4C can be used in any expression. For example,
FL3.7: MOV #4F3.7,R@

. creates a l-word floating-point number at location FL3.7+2, containing the value

3.7 formatted as follows,

15 6 g
SEEEEEEEEMMMMMMM'

' Lmantissa (bits g-6)
exponent (bits 7-14)

sign (bit 15)

This l-word floating-point number is similar to the first word of a 2- or 4-word

floating-point number format shown in the PDP-11 Processor Handbook. The statement

6-45

CMP151: .WORD 4+C151

stores the 1l's complement of 151 in the current radix (assume current radix is

octal) as follows (177626 shown in binary)

111111111p514119
y7i7i6216

Since these control operators are unary operators, their arguments may be terms,

and the operators may be expressed recursively. For example:

. 4F<1.2E3>
+C<D25> or +c31 or 177746

The term created by the unary operator and its argument is then a term that can be

used by itself or in an expression. For example,
4Cc2+6 is equivalent to 177775
while
+<éz>+6‘is equivalen£ to 177775+6 or @Pgpd3.

For this reason, the use of angle brackets is advised. Expressions used as terms

or arguments of a unary operator must be explicitly grouped.

An example of the importance of ordering with respect to unary operators is shown

below.

AFl.g = p2pagp

1F-1.80 = 1l2@4p¢9
-tFl.g§ = 1574pp
-tF-1.8 = @5749¢

The argument of the 4F operator must not be an expression and must be of the same

format as arguments to the .FLT2 and .FLT4 directives (see Section 6-5.6.1).
5.7 TERMINATING DIRECTIVES

5.7.1 L.END
The .END directive indicates the physical end of the source program.
Format:

.END [exp]

6-46

where exp is an optional argument that indicates the program entry point; i.e.,

the transfer address.

When the load module is loaded, program execution begins at the transfer address

indicated by the .END exp directive.

5.7.2 .EOT

Under the DOS/BATCH Monitor, the .EOT directive is ignored.

5.8 PROGRAM BOUNDARIES DIRECTIVE: .LIMIT

It is often impbrtant to know the boundaries of the load module's relocatable code.
The .LIMIT directive reserves two words into which LINK puts the low and high
addresses of the relocated code. The low address (inserted into the first word) is
the address of the first byte of code. The high address is the address of the first

free byte following the relocated code.

Example:

N A DG N -

D72 00voed" JLIMIT C GLIMIT AND LIMIT#2
20Un7 4 BYRUNY

ac

Jwlll BE THE PROGRAM LIMITS

5.9 PROGRAM SECTION DIRECTIVES

' The assembler provides for 255 program sections: one absolute section, one blank
relocatable section, and 253 named relocatable sections. The .PSECT directive
enables the user to create his program (object module) in sections, and share code

and data.

5.9.1 .PSECT Directive
Program sections are defined by the .PSECT directive.
Format:

.PSECT [NAME][,RO/RW]([,I/D] [,GBL/LCL] [,ABS/REL] [,coﬁ/OVR] [,HGH/LOW]

6~47

Any program section without a .PSECT directive is given the name .MAIN., and is

assigned all the default attributes. Table 6-10 summarizes the program section

attributes

Table 6-10
.PSECT Directive Parameters

Parameter

Default

Meaning to Linker

NAME

RO/RW

1/D

GBL/LCL

ABS/REL

CON/OVR

iahi/LOW

blank

RW

CON

Program section name, in Radix-5@ format, specified
as one to six characters. If omitted, a comma must
appear in the first parameter's position.

Defines the type of access to the program section
permitted; read only or read/write.

Allows LINK to differentiate global symbols that are
entry points (I) from global symbols that are data
values (D). :

Defines the scope of a program section. A global
program section's scope crosses segment (overlay)
boundaries; a local program section's scope is within
a single segment. In single-segment programs, the
GBL/LCL parameter is ignored.

When ABS is specified, the program section is ab-
solute. No relocation is performed by the Linker
for references within that section. When REL is
specified, a relocation bias is calculated by LINK,
and added to all refererfSes in the section.

CON causes LINK to collect all allocation references
to the program section from different modules and
concatenate them to form the total allocation for
the program section. OVR indicates that all alloca-
tion references to the program section overlay one
another. Thus, the total allocation of the program
section is determined by the largest request made by.
a module that references it.

Program section memory type.

HGH
Low

high-speed
core

NOTE

The HGH/LOW attribute is currently ignored by LINK.

The first parameter must always be NAME. If it is omitted, a comma must be used

in its place.

Example:

.PSECT ,RO

6-48

This example shows a .PSECT with a blank name and the read only access parameter.

Defaults are used for the remaining parameters.

Once the. attributes of a named .PSECT are declared in a module, the MACRO Assembler
assumes that this .PSECT's attributes hold for all subsequeﬁt declarations of the
named .PSECT in the same module. Thus, the attributes may be declared once, and
later .PSECT's with the same name will have the same attributes,'wheﬁ specified

within the same module.

For each program section specified or implied, the assembler maintains the
following information.

1. Section name

2. Contents of the program counter

3. Maximum program counter value encountered

4. Section attributes (the six .PSECT attributes)

5.9.1.1 Creating Program Sections

The attributes of a given program section are defined by explicit and default
parameters upon its first reference. Thereafter, references to the section can
either respecify the same section aftributes, or the section name only. You may
not assign different attributes on a later call to the section. For example, a »

section can be specified as
<PSECT ALPHA,ABS,OVR

vhich will give it the attributes ALPHA,RW,I,LCL,ABS,OVR,LOW. The same program

can be later referenced as
PSECT ALPHA
and the same attributesrwill still be in effect.

By maintaining separate location counters for each section, the assembler allows
the user to write statements which are not physically contiguous but are loaded

‘contiguously; as shown in the following example.

6-49

S CINEED OGN -

"] H CALLED BY JSR PC/CLRR .
11
12 yopaaa WPSECT CLEAR,REL }SECT, CLEAR RELOCATABLE
13 ydgda 20U Al «HORD . 9 $PUINTER VARIABLES
14 uvpv2 @upond Bl + WORD @
15 avndd 2Upudy Q1 «WORD 7]
16 punus vbvpave D1 «WORD 7]
17
18 gvula woS5us7 CLKRK3 CLR A JSET TO NULL
: 177764
19 1B0l4 WBB5467 - CLR 8
1777862
20 wuudp woduo’ CLR. c
177769
21
22 pdpund «PSECT VECT,ABS $1SECT.VECT ABSOLUTE
23 noBRd! «B,%4
24 g0UV4 VBRNBVG «WORD TRAPP
25 QpUrYb QUEIER «WURD 369 JPRIORITY 7
26
27 adauzd! «PSECT CLEAR JSECT. CLEAR
28 gUn24 wAsVe7 CLR 0
177756
29 vgIn drE7 RTS PC JRETURN

The first appearance of a .PSECT directive with a given name assumes the location
counter is at relocatable or absolute zero. The scope of each directive extends
until a directive beginning a different section is given. Further occurrences of
a section name in a subsequent .PSECT statement resume assembling where the section

previously ended.

All labels in an absolute section are absolute; all labels in a relocatable section
are relocatable. The location counter symbol ., is relocatable or absolute when
referenced in a relocatable or absolute section, respectively. An undefined symbol

is a global reference. It essentially has no attributes except global reference.

6-50

Any labels appearing on a .PSECT (or .ASECT or .CSECT) statement are assigned the
value of the location counter before the .PSECT (or other) directive takes effect.

Thus, if the first statement of a program is
A: .PSECT ALT,REL

then A is assigned to relocatable zero and is associated with the relocatable
section ALT.

-Since it is not known at assembly time where the program sections are to be loaded,
all references between sections in a single assembly are translated by the assembler
to references relative to the base of that section. The assembler provides LINK ‘
with the necessary information to resolve the linkage. bThis information is not
necessary when making a reference to én absolutg section. The assembler can

determine all load addresses of an absolute section.

In the following example, references to X1 and Y are translated into references

relative to the base of the relocatable section P2.

1

2

J

4

5

b buaupa? »PSECT Pl,ABS FSECT. P1 = ABSQLUTE

7 020vdw LABUET AAAL CLR X1 FCLEAR X1 IN RELOCATABLE SECTION
bugupa? :

8 vdvevd nvalerz JMP Y 1GO0TO RELOCATABLE SECTION
vopuage

9 .

ia nogvag +PSECT P2,REL FSECT, P2 = RELOCATABLE

A1 o0euUn BVRLIGT Y3 JMP AAA }GOTO ABSOLUTE SECTION
vuyvay! ’

12 d0udae puvkny Xti « WORD]

5.9.1.2 .Code or Data Sharing

Named relocatable program sections’wiih the attribute OVR can be used to redefine
the same sections of core. Sections of the same name with the attribute OVR from
different assemblies are all loaded at the same location by LINK. All other

program sections (those with the attribute CON) are concatenated.

Note that there is no conflict between internal symbolic names and program section
names. It is legal to use the same symbolic name for both purposes. Program

section names should not duplicate .GLOBL names.

6-51

5.9.2 .ASECT and .CSECT Directives

DOS/BATCH assembly language programs use the .PSECT directive exclusively, since
it affords all the capabilities of the .ASECT and .CSECT directives defined for
other PDP-11 assemblers. For the sake of compatibility with non-DOS/BATCH MACRO
programs, the MACRO Assembler will accept .ASECT and .CSECT directives, but
assembles them as if they were .PSECT's with the default attributes listed in
Table 6-11.

Table 6-11

Non~DOS/BATCH Program Section Defaults

Attribute Default Value
JASECT .CSECT (named) .CSECT

Name ABS name blank
Access RW RW RW
Type 1 1 I
Scope GBL GBL LCL
Relocation ABS- REL . REL
Allocation . OVR OVR CON
Memory Low LOW LOW

§
The allowable syntactical forms of .ASECT and .CSECT follow here.

JASECT
.CSECT [symboll

Note that, due to default attribute selection applied to .CSECT's by MACRO,
.CSECT JIM
is identical to

.PSECT JIM,GBL,OVR,RW,I,REL,LOW.

5.10 SYMBOL CONTROL: .GLOBL

The assembler produces a relocatable object module and a listing file containing
the assembly listing and its associated symbol table. LIﬁK joins separately
assembled object modules into a single load module. Object modules are relocated
"as a function of the specified base of the load module. The object modules

(where there are more than one) are linked via global symbols such that a global

6-52

- symbol in one module (either defined by direct assignment or as a label) can be

referenced from another module.
A global symbol may be specified in a .GLOBL directive.

In addition, symbols referenced but not defined within a module are assumed to be
global references. The .GLOBL directive is provided to reference (and provide
linkage to) symbols not otherwise referenced within a module. For example, one
might include a .GLOBL directive to cause linkage to a library. When defining a
global definition, the .GLOBL A,B,C directive is equivalent to the following.

A==value (or A::value)
B==value (or B::value)
C==value (or C::value)

The form of the -.GLOBL directive is
.GLOBL syml,sym2,...

where syml,sym2,... are legal symbolic names, separated by commas or spaces where

more than one symbol is specified.

Symbols appearing in a .GLOBL directive are either defined within the current
program, or are external symbols defined in another program. This other program
is linked with the current program by LINK prior to execution in order to resolve

.all references to external symbols.

A .GLOBL directive line may contain a label in the label field and comments in the

‘comment field.

At the end of assembly pass 1, MACRO has deﬁermined whether a given global symbol

'is defined within the program oé is an external symbol. All internal symbols to a
given program must be defined by the end of pass 1, or they will be assumed to be

global references (see .ENABL, .DSABL or globals in Section 6-5.2).

1

2

3

4

5

6

7 ; ROUTINE WITH TWU ENTRIES

8 ¥ UEPENDING ON NUMBER OF FOLLOWING ARGUMENTS

9 H CALLED 8Y JSR RY,EN3 FOR THREE ARGS,

10 : CALLED BY JSR RY,EN2 FOR TWO ARGS,

11

12 Vopus Blibdo ENTIE MOV B(RS)+,=(SP) FGET FIRST PARAM

13 vonlo wua/e7 JSK PC,CUNV ' JCUNVERT IT
BABRY AN

14 gvula w2075 MOV (SP)+,0(R5) IPASS IT BACK
Yvabng .

15 Yoy 612935 ENT21 MOV (R5)+,8(R5)+ JSEND PARAM -

16 vuee2 voreud KT8 RS ' FRETURN

¥

6-53 -

References to external symbols can appear in the operand field of an instruction or

an assembler directive in the form of a direct reference,

.GLOBL EXT
CLR EXT
.WORD EXT
CLR @EXT

or a direct reference plus or minus a constant.

.GLOBL EXT
A=6

CLR EXT+A
JWORD EXT-2
CLR QEXT+A

An external symbol cannot be used in the eva}uation of a direct assignment
expression. Exception: a global symbol defined within the program can be used in

the evaluation of a direct assignment statement.

5.11 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives provide the programmer with the capability to
conditionally include or ignore blocks of source code in the assembly process.
This technique is used to allow several variations of a ‘program to be generated

from the same source program.

The general. form of a conditional block follows.

IF cond,argument (s) ;START CONDITIONAL BLOCK
.) ;RANGE OF CONDITIONAL
. 3 BLOCK
.ENDC ;END CONDITIONAL. BLOCK
where
cond is a condition which must be met if the block is to be included
in the assembly. These conditions are defined in Table 6-12.
argument (s) are a function of the condition to be tested.
range is the body‘of code that is included in the assembly (oi

ignored) depending upon whether the condition is met.
Conditional assembly blocks must end with the .ENDC directive,
and are limited to a nesting depth of 16 levels.

*

6-54

Table 6-12
Conditional Assembly Directives

Conditions
POSITIVE COMPLEMENT ARGUMENTS - ASSEMBLE BLOCK IF
EQ NE expression | expression=g (or #)
GT LE expression expression>: (or <g)
LT GE expression expression<@ (or >f)
DF NDF symbolic argument symbol is defined (or
undefined)
B NB macro-type argument is blank (or
: argument* nonblank)
IDN DIF two macro-type arguments identical (or
arguments separated| different)
by a comma
b4 NZ expression same as EQ/NE
G . L : expression same as GT/LE
*A macro-type argument is enclosed in angle brackets or within an
up-arrow construction (as described in Section 6-6.3.1). For example:
<A,B,C> -
4/124/
1
2
3 .
4
5
6
7 povERy ALPHAZY
8 o IF DF,ALPHA
9 Vool BETAs]
14 «ENQC
11) o IF EQ,ALPHA
12 vGindz7 BETA®377
13

VENDC

Within the conditions DF and NDF the féllowing two operators are allowed to group
symbolic arguments.

& logical AND operator

! logical inclusive OR operator

6-55

Weguvad SYHyse

CENOALDLEN -

o IF NDF , SYM11SYMR2JSYM3
PRI12 ALPHABLY
19 <ENDC
11 JIF NDF,SYM1ISYM2
12 vooL15 ALPHA®LS
13 JENOC

5.11.1 Subconditionals
t . .
Subconditionals may be placed within conditional blocks to indicate the following.

1. Assembly of an alternate body of code when the condition of the block
indicates that the code within the block is not to be assembled.

2. Assembly of a noncontiguous body of code within the conditional block
depending upon the result of the conditional test to enter the block.

3. Unconditional assembly of a body of code within a conditional block.

These subconditional directives are defined in Table 6-13.

Table 6-13
Subconditional Directives

Directive Function

IFF The code following this statement up to the next sub-
conditional or end of the conditional block is included in
the program, provided the value of the condition tested
upon entering the conditional block was false.

JIFT The code following this statement up to the next sub-
conditional or end of the conditional block is included
in the program, provided the value of the condition
tested upon entering the conditional block was true.

.IFTF The code following this statement up to the next sub-
conditional or the end of the conditional block is
included in the program, regardless of the value of the
condition tested upon entering the conditional block.

The implied argument of a subconditional directive is the value of the condition
upon entering the conditional block. Subconditionals are used within outer level

conditional blocks. They are ignored within nested, unsatisfied conditional blocks.

€6-56

CENTO LGN

WﬂUQ@l

13 pupd2 2ipcud
14

19 pPRdd wlyde4
i6 .

17

18

19

20

21

22 BURIS vilndnl
23

SYMiIm} ,
o IF DF,8YM1
JIFF o o
MoV R1,R2 JASSEMBLE IF SYM1 UNDEFINED
JIFT
MOy R2,R3 JASSEMBLE IF SYM{ DEFINED
JIFTF
nov R3, R4 JASSEMBLE ALWAYS
JENOC
o IF NE,SYMY
VIFF
MOV RA4,RD . . JASSEMBLED IF SYyMi = 0
IF1
MoV RS, R1 JASSEMBLED IF SYML # 0
+ENDC

5.11.2 Immediate Conditionals

An immediate conditional directive is a facility for writing a conditional block in

one line. In this form, no .ENDC statement is required and the condition is com-

pletely expressed on the line cdntaining the conditional directive. Immediate

conditions are of

the form

.IIF cond, arg, statement

where

cond

arg

statement
For example:

JIIF

is one of the legal conditions defined for conditional blocks
in Table 6-12.

is the argument associated with the conditional specified; that
is, either an expression, symbol, or macro-type argument, as :
described in Table 6-12.

is the statement to be assembled if the condition is met.

DF FOO BEQ ALPHA

This statement generates the code

BEQ

if the symbol FOO

ALPHA

is defined.

6-57

A label must not be placed in the label field of the .IIF statement. Any necessary

labels may be placed on the previous line.
LABEL:

<IIF DF FOO,BEQ ALPHA

.IIF DF FOO, LABEL: BEQ ALPHA
5.11.3 PAL-11R Conditional Assembly Directives

In order to maintain compatibility with programs developed under PAL-11R, the
following conditionals (see Table 6-14) remain permissible under MACRO. It is
advisable that future programs be developed using the format for MACRO conditional

assembly directives.

Table 6-14
PAL-11R Compatible Directives
Directive Arguments Assemble Block if
- JIFZ or .IFEQ expression expression=@
.IFNZ or .IFNE | expression expression not equal ¢
.IFL or .IFLT expression expression<g
.IFG or .IFGT expression expression>g
.IFLE expression expression is < or =¢
. IFDF logical expression expression is true (defined)
.IFNDF logical expression - expression is false (undefined)

The rules governing the usage of these directives are the same as those for the

MACRO conditional assembly directives previously described.

6-58

PART 6
CHAPTER 6
MACRO DIRECTIVES

6.1 MACRO DEFINITION

In assembly language programming, it is often convenient to generate a recurring
code sequence by means of a single statement. In order to do this, the desired
coding sequence is first defined as a prototype with dummy arguments. This proto-
type definition is known as a macro. Once a macro has been defined, it is invoked
by a single statement that contains its name and, optionally, a list of real
arguments that replaces the corresponding dummy arguments in the prototype
definition. Calling a mécfo causes its prototype statements to be generated in

line, replacing the single macro call.

6.1.1 .MACRO

The first statement of a macro definition must be a .MACRO directive. The .MACRO

directive is of the form

-MACRO name[, dummy argument list]

where
name is the name of the macro. . This name is any legal symbol. The
name chosen may be used as a label elsewhere in the program.
represents any legal separator (generally a comma or space) .
dummy represents zero, one, or more legal symbols which may appear
argument anywhere in the body of the macro definition, even as a label.
list These symbols can be used elsewhere in the user program with no

conflicts of definition. Where more than one dummy argument is
used, they are separated by any legal separator (generally a
corma) . i

A comment may'follow the dummy argument list in a statement containing a .MACRO

directive. For example:
.MACRO ABS,A,B ;DEFINE MACRO ABS WITH TWO ARGUMENTS

A label must not appear on a .MACRO statement. Labels are sometimes used on macro

calls, but serve no function when attached to .MACRO statements.

6-59

6.1.2 .ENDM

The final statement of every macro definition must be an .ENDM directive of the

’

form

.ENDM[name]
where

name is an optional argument, being the name of the macro terminated
by the statement.

For example:

.ENDM (terminates the current macro definition)

.ENDM ABS (terminates the definition of the macro ABS)
If specified, the symbolic name in the .ENDM statement must correspond to the one
in the matching .MACRO statement. Otherwise the statement is flagged and processing

continues. Specification of the macro name in the .ENDM statement permits the

assembler to detect missing .ENDM statements or improperly nested macro definitions.

The .ENDM statement may contain a comment field, but must not contain a label.

Example:
1
2
3
4
5
6
7 «MACRQ TYPE/MESS
8 JSR RS, TYPE ¢0UTPUT MESSAGE
9 « WORD MESS
12 «ENOM
i1
12 aUpdo TYPE HELLU
a4y nd4de7? JoK RS, TYPE JOUTPUT MESSAGE
VeRuvdG
novdd Qweuw1d! «WORD HELLU
13

6.1.3 .MEXIT

In order to implement alternate exit points from a macro (particularly nested
macros), the .MEXIT directive is provided. .MEXIT terminates the current macro as
though an .ENDM directive were encountered. Use of .MEXIT bypasses the complica-

tions of conditional nesting and alternate paths. For example:

6~-60

IMACRU ALTRIN'M'R

DONC L GN -

MQV RTINJRTIR . JRESET PARAM
1@ o IF EQyN
11 JMEXIT
12 «ENDC
13 MQV RTINIm(S5PF) ISET UP RETURN
14 +ENDM
15
16 vdw4s ALTR 01,2 :
povae vi6767 noy RTQ,KT2 JRESET PARAM
wonuy1d
PUY1e
o IF EQ,Q
SMEXIT
+ENDC
MOV RTB,"(SP) ISET UP RETURN
17 wuyoda ALTR 102,9
nvaP4 V16767 MoV RTL1,RT3 JRESET PARAM
upuly ')
Pupd12
o IF EQ,1
LMEXIT
fENOC
PVpL2 wie/746 MQV RTL,=(8P) - JSET UP RETURN
AApVKR
18
19 QUPLs venvEd RTWS +WORD i}
20 aua7y vdeYes RTLB » WURD [’}
21 @vu72 QIpdeY RT2: «WORD @
22 pow/4 Yogund RTI: «AORD -

In an assembly where N=@, the .MEXIT directive terminates the macro expansion.

Where macros are nested, a .MEXIT causes an exit to the next higher level. A .MEXIT

encountered outside a mcaro definition is flagged as an error.

6.1.4 MACRO Definition Formatting

~ . /t
A form feed character used as the only character on a line causes a page eject. Used
within a macro definition, a form feed character causes a page eject. A page eject

is not performed when the macro is invoked.

Used within a macro definition, the .PAGE directive is ignored, but a page eject is

performed at invocation of that macro.

6-61

6.2 MACRO CALLS

A macro must be defined prior to its first reference. Macro calls are of the

general form

[label:] name[, real arguments]

where
label represents an optional statement label.
name represents the name of the macro specified in the .MACRO directive
preceding the macro definition.
' represents any legal separator (comma, space, Oor tab). No separator
is necessary where there are no real arguments.
real are those symbols, expressions, and values that replace the dummy

arguments arguments in the .MACRO statement. Where more than one argument
is used, they are separated by any legal separator.

Where a macro name is the same as a user label, the appearance of the symbol in the
operation field designates a macro call, and the occurrence of the symbol in the

operand field designates a label reference. For example:

1

2

3

4

5

6 »MACRO ABS,NUM

7 JAURD NUM

8 <ENOM

9

10 ¥9e26 V11011 ABSS MOV #RU, OR1 JABS AS A LABEL

11 29@d0 60776 BR ABS 7ABS AS AN OPERAND

12 veed2 Usts

13 vuuse ABS 4 JABS AS A MACRU CALL
W0EI2 VIALEY JWURD 4

14 gupds viro1l Moy ®RY, K1

Arguments to the macro call are treated as character strings whose usage is determined

by the macro definition.

6.3 ARGUMENTS FOR MACRO CALLS AND DEFINITIONS

Arguments within a macro definition or macro call are separated from other argumehts

by any of the separating characters described in Section 6-3.1.1.

6-62

For example:

.MACRO REN A,B,C

REN ALPHA ,BETA,<C1l,C2>

Arguments that contain separating characters are enclosed in paired angle brackets.
An up-arrow construction is provided to allow angle brackets to be passed as
arguments. Bracketed arguments are seldom used in a macro definition, but are more

likely in a macro call. For example:
REN <MOV X,Y>,#44,WEV

This call would cause the entire statement
MOV X,Y

to replace all occurrences of the symbol A in the macro definition. Real arguments
within a macro call are considered to be character strings and are treated as a

single entity until their use in the macro expansion.
The up—érrow construction could have been used in the above macro call as shown here.
REN +/MOV X,Y/,#44 ,WEV
is equivalent to.
REN <MOV X,Y>,#44,WEV .

Since spaces are ignored preceding an argument, they can be used to increase

legibility of bracketed constructions.
The form
REN #44,WEVH/MOV X,Y/

however, contains only two arguments, #44 and WEV4/MOV X,Y/ (see Section 6=3.1.1),

because * is a unary operator.

6.3.1 Macro Nesting

Macro nesting (nested macro calls), where the expansion of one macro includes a call
to another macro, causes one set of angle brackets to be removed from an argument
with each nesting level. The depth of nesting allowed is depende%F upon the amount

of core space used by the program being assembled. To pass an argument containing

. 6-63

legal argument delimiters to nested macros, the argument should be enclosed in one

set of angle brackets for each level of nesting, as shown below.

1
2
3
4
-]
6
7
8 .
9 «MACRD LEVEL,FOU,F0O0R2
lu LEVELY FOO
11 LEVELL FOO2
12 ' +ENDM
13
14 «MAGCRU LEVELL,FUOJ
15 FOQ3
16 ADD #19,R0) JARJUST TABLE POINTER
17 Hov RO,=(SP) JSAVE IT FUR LATER
18 sENDM
19
20 awvp’e LEVEL <<MOV RTO,Ro»><<CLR Ri>»
wowz e LEVELL <MOV RTO,Ra>
aen/e vie79a MQV RT@ XD
177764
pB1u2 ud27eyw Apu #10,Rp JADJUST TABLE POINTER
Bope1a
P01Y6 Y1lpadd MQV RY,=~(SP) JSAVE IT FOR LATER
av1le , LEVEL1 <CLR R1»
peily vubvanl CLR R1
o112 w6274 ADD #10,%0 JADJUST TABLE POINTER
Wean1Y ,
pu116 plywas MOV RY,=(8P) JSAVE IT FUR LATER
21

Where macro definitions are nested (that is, a macro definition is entirely con-
tained within the definition of another macro), the inner definition is not defined

as a callable macro until the outer macro has been called and expanded. For example:

.MACRO LVl A,B

.MACRO LV2 A

.ENDM
. .ENDM

The LV2 macro cannot be called by name until after the first call to the LVl macro.
Likewise, any macro defined within the LV2 macro definition cannot be referenced

directly until LV2 has been called.

6~64

6.3.2 Concatenation

The apostrophe or single quote character (') operates as a legal separating char-
acter in macro definitions. An ' character that precedes and/or follows a dummy
argument in a macro definition is removed, and the substitution of the real argument

occurs at that point. For example:

1

2

3

4

5

6

7 «MACRD DEF,L,J,K "

8 RTVYJ? «ASCIZ /K/

9 «EVEN

1@ 2 WORD L |

11) +ENDM

12 :

19 ©pa142 DEF RT7T5,6,<MACRO=11>
yo14z 115 RTOL - [ASCIZ /MACROw1l/
4143 101 .
wwldd 103
woi45 ©o1ge
na146 117
ne147 nwss
nui1dp U1
Pduivy - w6l
pU1d2 wey

«EVEN
wu184 woRYEAG «WORD RTSH

Within nested macro definitions, multiple single quotes can be used, with one quote
removed at each level of macro nesting.

6.3.3 Special Characters

Arguments may include special characters without enclosing the argument in a bracket
construction, if that_argument does not contain spaces, tabs, semicolons, or commas.

For example:

-MACRO PUSH ARG
MoV ARG, - (SP)
.ENDM

PUSH X+3(%2)
generates the following code:

MoV X+3(%2) ,~(spP)

6-65

6.3.4 Numeric Arguments Passed as Symbols

When passing macro arguments, a useful capability is to pass a symbolvthat can be
treated by the macro as a numeric string. An argument preceded by the unary
operator backslash (\) is treated as a number in the current radix. The ASCII
characters representing the number are inserted in the macro expansion; their

function is defined in context. For example:

1

2

3

4

5

6

7 PANGR4 NUMa4 ’
8 20pdeY Cousp

9 «MACRO- INK,V¥i,v2
10 COUNT Vi,ov2

11 CoUsCOU»1

12 <ENOM

13 A

14 «MACKRO COUNT,V1,V2
1o RT'VY1E (WORD ve

16) «ENDM

17

18 Y122 INK <1@> ¢ NUM

av1en . COUNT 10, 0NUM
Wv1dp Quubrd4 RY1A «WORD 4
nupuvel CouaCOU+y

Using this facility can make source listings somewhat clearer. Fof example,
versions of programs created through conditional assembly of a single‘source can

identify themselves as follows.

.MACRO IDT SYM ;ASSUME THAT THE SYMBOL ID TAKES

.IDENT /SYM/ ;ON A UNIQUE 2-DIGIT VALUE FOR
.ENDM ;EACH POSSIBLE CONDITIONAL ASSEMBLY
.MACRO OUT ARG ;OF THE PROGRAM
IDT PP5A ARG .
.ENDM .

. ;WHERE @@5A IS THE UPDATE
our \ID ;VERSION OF THE PROGRAM

;AND ARG INDICATES THE
;CONDITIONAL ASSEMBLY VERSION.

The above macro call expands to

.IDENT /@@5AXX/

where XX is the conditional value of ID.

6~66

Two macros are necessary since the text delimiting characters in the .IDENT state-
ment would inhibit the concatenation of a dummy argument.

6.3.5 Number of Arguments

If more arguments appear in the macro call than in the macro definition, the excess
arguments are ignored. if fewer arguments appear in the macro call than in the
definition, missing arguments are assumed to be null (consist of no characters).
The conditional directives .IF B and .IF NB can be used within the macro to detect

unnecessary arguments.

A macro can be defined with no arguments.

6.3.6 Automatically Created Symbols

MACRO can create symbols of the form n$vwhere n is a decimal integer number such
that 64<n<127. Created symbols. are always local symbols between 64$ and 127$.
(For a description of local symbols, see Section 6-3.7.) Such local symbols are

created by the assembler in numerical order.

64$
65%

.
-

126$
127%

Created symbols are particularly useful where a label is required in the expanded
macro. Such a label must otherwise be explicitly stated as an argument with each
macro call or the same label is generated with each expansion and results in a
multi-defined label. Unless a lgbel is referenced from outside the macro, there is

no reason for the programmer to be concerned with that label.

The range of thesé local symbols extends between two explicit labels. Each new
explicit label creates a new local symbol block.

The macro processor creates a local symbol on each call of a macro whose definition
contains a dummy argument preceded by the ? (question mark) character. Local
symbols are generated only where the real argument of the macro call is either null
or missing. If a real argument is specified in the macro call, the generation of

a local symbol is inhibited and normal replacement is performed. Consider the

following example and expansions.

6-67

+MACRO TEST,REG,2LAB

s e s e D AN D N

T8T1 REG
BEGQ LAB
@ ApD #5,REG
1 LADS
2 +ENDM
3
4 001e2 TEST %1
#0122 ves7pi T8T %1
PU14 AU1402 BEQ 643
QL1126 @oe27v1 ADD #5,%1
ponaesd
pyY1d2 6481
15 w192 TEST %1,%YZ
gu132 Vs 187 %1
vulda ve1402 BEQ XYZ
QU136 6b2701 ADD #5,%1
Y]
nay4d XyZs

These assembler-generated symbols are restricted to the first 16 (decimal) arguments

of a macro definition.

6.4 .NARG, .NCHR, AND .NTYPE

These three directives allow the user to obtain the number of arguments in a macro
call (.NARG), the number of characters in an argument (.NCHR), or the addressing
mode of an argument (.NTYPE). Use of these directives permits selective modifica-

tions of a macro depending upon the nature of the arguments passed.

The .NARG directive enables the macro being expanded to determine the number of

arguments suppiied in the macro call.
Format:

[label:] .NARG symbol
Where

label is an optional statement label.

symbol is any legal symbol whose value is to be equated to the number of
’ arguments in the macro call currently being expanded. The symbol
can be used by itself or in expressions.

The .NARG directive can occur only within a macro definition.

6-68

«MACRO NUPP/NUM
«NARG SYM

o IF EWySYM
eMEXIT

JIFF

JREPT NUM

NOP :

«ENOM

<ENDC

«ENDM

e rm e G @ N U D GN

S Pl Jub
CORGN=S

pu2uv2 NOPP
vwoReAY « NARG SYM
nIF‘ Eul SYM
WMEXIT
« IFF
«REPT
NOP
sENDOM
17
18 wueve NOPP 6
vopval o NARG SYM
o IF EQd,8YM
sMEXIT
o IFF
poRanpeé «REPT 6
NQP
’ «ENDNM-
w02 WBBLay NQP
Que2vd gonreay. NQP
BB2V6 Wopedy NOP
weelg vepdau NQP
wo2l2 viglde ’ NQP
uoela uvupeay ~ - NQP
«ENDC

The .NCHR directive,eqables a program to determine the number of characters in a
character string.

Format:
[label:]. .NCHR symbol, <character string>
where
- label is an optional gtatement>1abel.
‘symbol is any legal symboi that is to be equated to the number

of characters in the specified character string. The
symbol is separated from the character string argument .
by any legal separator.

6~69

<character string> is a string of printing characters that should only be

enclosed in angle brackets if it contains a legal
separator. A semicolon also terminates the character
string.

The .NCHR directive can occur anywhere in a MACRO program.

1
2
3
4
5
&
7 «MACRD CHAR,MESS
8 «NCHR SYM,MESS
9 «WORD SYM
19 «ASCII /MESS/
11 «ENDM
12
13 pa172 CHAR <HELLO>
VUenany «NCHR SYM,HELLU
wBL172 Wduwud « NURD SYH
war7 4 112 «ASCII /HELLO/
G175 1ud
gul’s 114
wuL77 114
w290 117
14 «EVEN

The .NTYPE directive enables the macro being expanded to determine thé addressing

mode of any argument.

Format:

[label:] .NTYPE symbol, arg ‘

where

label

symbol

arg

is an optional statement label.

is any legal symbol, the value of which is to be equated to the

6-bit addressing mode of the argument. The symbol is separated

from the argument by a legal separator. This symbol can be used
by itself or in expressions.

is any legal macro argument (dummy argument) as defined in Section
6-6.3. ’

The .NTYPE directive can occur only within a macro definition.

6-70

1
2
3
4
]
6 .
7 +MACRO SAVE/ ARG
8 +NTYPE SYM,ARG
) o IF EW,8YME70
19 MoV ARG, TEMP JREGISTER MQODE
11 o [FF
12 MOV HARGy TEMP FNON=REGISTER MODE
13 JENDC
14 +ENDM
15 '
16 aV156 Yoy TENMPI +«WORD]
17
18 Bw169 SAVE %1
veavel +NTYPE SYM, %%
o IF EG,5YMR7Y
wal1en vlpls? MOV %1, TEMP FREGISTER MODE
177772 -
o [FF . . .
MOV %1, TEMP - - INON=REGISTER MODE
+ENDC :
19
‘20 Wb164 SAVE TEMP
BAewe7 «NTYPE SYM,TEMP
«IF EQ,SYM&E7¥
MoV TEMP TEMP JREGISTER MODE
+ IFF
w164 V12767 MOV HTEMP, TEMP iNON»REGISTER MODE
QUEl1561
177764
«ENDC)

6.5 .ERROR AND .PRINT

The .ERROR directive is used to output messages to the command output device during
assembly pass 2. A common use is to provide diagnostic announcements of a rejected

or erroneous macro call. The form of the .ERROR directive is as follows:
[1abei:] .ERROR [expr];text
where

label is an optional statement label.

expr is an optional legal expression whose value is output to the
command device when the .ERROR directive is encountered. Where
expr is not specified, the text only is output to the command
device.

denotes the beginning of the text string to be output.

-

text is the one-line string to be output to the command device.

6=-71

Upon encountering an .ERROR directive anywhere in a MACRO program, the assembler
outputs a single line containing the following information.

1. The sequence number of the .ERROR directive line.

2. The current value of the location counter.

3. The value of the expression if one is specified.

4, The text string specified.
For example,
.ERROR “A;UNACCEPTABLE MACRO ARGUMENT
causes a line similar to the following to be output:
512 5642 @gggg7e - ; UNACCEPTABLE MACRO ARGUMENT

where the above fields are, from left to right, sequence number, location counter,

expression value, and text.
The line is flagged on the assembly listing with a P error code.

The .PRINT directive is identical to .ERROR except that it is not flagged with a P

'~ error code.

6.6 INDEFINITE REPEAT BLOCK: .IRP AND .IRPC

An indefinite repeat block is a structure very similar to a macro definition. An
indefinite repeat is essentially a macro definition that has only one dummy
argument and is expanded once for every real argument supplied. An indefinite
repeat block is coded in line with its expansiqn, rather than being referenced by

name as a macro is referenced.

An indefinite repeat block can occur either within or outside macro definitions,
repeat ranges, or indefinite repeat ranges. The rules for creating an indefinite
repeat block are the same as for the creation of a macro definition. Indefinite

repeat arguments follow the same rules that apply to macro arguments.

Format:

[label:] .IRP arg,<real arguments>

(range of the indefinite repeat)

.ENDM

6-72

where

label is an optional statement label. A label may not appear on
any .IRP statement within another macro definition, repeat
range or indefinite repeat range, or on any .ENDM statement.

arg is a dummy argument that is successively replaced with the

real arguments in the .IRP statement.
-

<real argument> is a list of arguments to be used in the expansion of the
indefinite repeat range and enclosed in angle brackets.
Each real argument is a string of zero or more characters
or a list of real arguments (enclosed in angle brackets) .
The real arguments are separated by commas.

range is the block of code to be repeated once for each real
argument in the list. The range may contain macro
definitions, repeat ranges, or other indefinite repeat
ranges. Note that only created symbols should be used as
labels within an indefinite repeat range.

Figure 6-6 illustrates the use of .IRP.

1
2
K)
4
5 -
6 .
7 « IRP Xe<AsB, (>
] MOV Xy (RU)#
9 «ENOM
Bou216 v16720 MOy A,(Rﬂ)#
177556
Vuw2e2 ©is72u mQv Bs(RU)+
177654
Po0226 VY16724. © MOV Cr(RO)#
177552
) Figure 6-6
.IRP Example

-

A second type of indefinite repeat block is available which handles character sub-

stitution rather than argument substitution. The .IRPC directive is used as follows:

label: .IRPC arg,string

*

(range of indefinite repeat)

.ENDM

On each iteration of the indefinite repeat range, the dummy argument (arg) assumes

the value of each successive character in the string.

6-73

6.7 REPEAT BLOCK: .REPT

Occasionally it is useful to duplicate the same block of code a number of times in

line with other source code. This is performed b& creating a repeat block of the

following form.

[.label:] .REPT expr

where

label

expr

range

.

(range of repeat block)

.

.ENDM ;OR .ENDR

is an optional statement label. The .ENDR or .ENDM directive may
not have a label. A .REPT statement occurring within another
repeat block, indefinite repeat block, or macro definition may
not have a label associated with it.

is any legal expression controlling the number of times the block
of code is assembled. When the value of expr = @, the range of the
repeat block is not assembled.

is the block of code to be repeated expr number of times. The
range may contain macro definitions, conditionals, indefinite
repeat ranges or other repeat ranges. Note that no statements
within a repeat range can have a label. :

The last statement in a repeat block can be an .ENDM or .ENDR statement. The .ENDR

statement is provided for compatibility with previous assemblers.

The .MEXIT statement is also legal within the range of a repeaﬁ block.

1

2 .

3

4

5

6

7 vophzd «REPT 2@

8 ¢ WURD %

9 2ENDOM
Yoved2 vapdewy «WURU (]
QeURdd wBevRY « WURD)
PUUZI6 VLudrY « WORD é -
VPY24y WOLdLG «WORD a
Pyuzd2 ¢aedeu «HORD)
"QuR244 VIV «WORD %]
U246 V2LV «WORD @
waBE2Da vonbea «WURD a
uauzh2 vopdad «WORD)

6-74

028294 V2pLRY o WORD

)
20256 VAPULD JHORD @
Qpu2o9 VURUYY SWORD 0
Ye0262 1URVAR CWORD @
000264 VRO WWORD @
000266 VPRVVY JWORD @
000279 YUYy CWURD @

10 “egdal «END

6.8 MACRO LIBRARIES: .MCALL

All macro definitions must occur prior to their being referenced within the user
program. - MACRO provides a selection mechanism for the programmer to indicate in

advance those system macro definitions required by his program.

The .MCALL directive is used to specify the names of all system macro definitions
not defined in the current program but required by the program. The .MCALL
directive must appear before the first occurrence of a macro call for an externally

defined macro. The .MCALL directive has the following format.
.MCALL argl([,arg2,...]

where argl,arg2,... are the names of the macro definitions required in the current

program.

»

When this directive is encountered, MACRO searches the system library SYSMAC.SML
to find the requested definition(s).)

6-75

PART 6
CHAPTER 7
OPERATING PROCEDURES

The MACRO Assembler assembles one or more ASCII source files containing MACRO
statements. Its output consists of a relocatable binary object file and an assembly
listing followed by the symbol table listing. A cross-reference listing (CREF) can

be specified as part of the assembly output by means of a switch option.

7.1 LOADING MACRO
MACRO is loaded with the Disk Monitor RUN command.
$RUN MACRO

(Characters printed by the system are underlined to differentiate them from char-
acters typed by the user.) The assembler responds by identifying itself and its
version number, followed by a # character to indicate readiness to accept a command
input string.

MACRO Vxxx

.4

7.2 COMMAND INPUT STRING

In response to the # printed by the assembler, the user types the output file

specification(s), a left angle bracket, and the input file specification(s).

Format:
#object,listing<sourcel,source2,...,sourceN
where
object * is the binary object file.
listing is the assembly listing file containing the assembly
listing and symbol table. Optionally, a separate CRF
listing file can be appended to the assembly listing or
output as a separate file.
sourcel,source2, are the ASCII source files containing the MACRO source
.+ ,S0UrceN program(s). No limit is set on the number of input source

files, but the assembler is limited by the size of the
user-defined and macro symbol tables.

6-76

A null specification in any of the file fields signifies that the associated input
or output file is not desired. Each file specification contains the following in-

formation and follows the standard DOS conventions for file specifications.
dev:filnam.ext[uic)/option:arg

One or more switch options can be specified with each file specification to provide
‘the assembler with information about that file. The switch options are described

in Appendix J.

A syntactical error detected in the command string causes the assembler to output
the command string up to and including the point where the error was detected,
_followed by a ? character. The assembler then reprints the # character and waits
for a new command string to be -entered. The following command string errors are
detected.
Exrror .Exrror Message

Illegal switch .

Too many switches ILLEGAL SWITCH.

Illegal switch value

Too many switch values

Too many output file specifications TOO MANY OUTPUT FILES

No input file specification INPUT FILE MISSING

‘The default value for each file specification is noted below in Table 6-15.

Table 6-15
File Specification Default Values
dev filnam- ext uic
object system ' last source .OBJ current
: device file name
listing device used last source LST current
for object file name
output
CREF system last source .CRF current
intermediate device file name
sourcel system - .MAC
‘ device .PAL current
) .null
source2 device used - .MAC
. for sourcel ' .PAL current
. (last source .null
sourceN file specified)

(continued on next page

6-77

Table 6-15 (Cont.)
File Specification Default Values

dev filnam ext uic
system system SYSMAC . SML current
macro device [1,1]

file

7.3 CROSS-REFERENCE TABLE GENERATION

A cross-reference listing (CREF) of all or a subset of all symbols used in the
source program can be obtained by a call to the CREF routine. CREF can be used in

two ways.

a. CREF can be called automatically following an assembly. In order to do
this, the /CRF switch is specified following the assembly listing file
specification. For example:

#,LP:/CRF<FILEl,FILE2

This command string sends the assembly listing (FILE2.LST) to the line
printer. An intermediate CREF file is created and temporarily stored on
the system device (FILE2.CRF) under the current UIC. The CREF routine
takes this intermediate file, generates a CREF listing and routes that
listing to the line printer. (The CREF listing is appended to the file
FILE2.LST.) The CREF intermediate file is then deleted; there is no way
to preserve this file when CREF is being called automatically.

b. If no CREF listing is desired immediately, the intermediate CREF file
can be saved on the system device; the CREF listing can be generated at
a later date. In order to preserve the intermediate CREF file, the
following MACRO command string is given.

#,LP:/CRF:NG<FILEl,FILE2

This command string sends the assembly listing (FILE2.LST) .to the line
printer. The CREF intermediate file (FILE2.CRF) is sent to the system
device under the current UIC. (The :NG argument is a mnemonic for

"No Go" to CREF; i.e., no automatic transfer to the CREF routine
following the output of the assembly listing.)

In order to generate the CREF listing, the CREF routine is run and given
a command string indicating the input file specification(s) and a single
output file specification. For example:

$RU
CREF V@@lA
4LP :<FILE2 .CRF

In this case the intermediate file created automatically in the MACRO example
above is processed to obtain a CREF listing, which is then sent to the

line printer. The CREF intermediate file is then automatically deleted.

If it is desired to preserve the intermediate file, the following command
string should be given. .

#LP:<FILE2.CRF/SA

6-78

Unless the /SA switch is specified, the default case is always to delete
the CREF intermediate file. .

The CREF listing is organized into one to five sections, each listing a different
type of symbol. The sections follow here.

Section Type Argument
user-defined symbols :S
macro symbolic names :M
permanent symbols (instructions, :P

directives)

.PSECT symboiic names . :C
error codes : :E

Where no arguments are specified following theé /CRF switch, all of the above sections
except the permanent symbols are cross-referenced. Howevgr, if anonne argument is
specified (other than :NG), then no other default sections are assumed or provigded.
For example, in order to obtain a CREF listing for all five section types, the
following switch option specification is used.

/CRF:S:M:P:C:E

The order in which the arguments are specified does not affect the order of their

output, as is listed above.

Figure 6-7 contains a segment of source code and Figure 6-8 contains a segment of a

CREF listing with some references to the code in Figure 6-7.

In a CREF listing, each cross-referenced symbol is printed in the left-hand column,
followed by a list of the page-line numbers of the places. at which that symbol is
referenced. A # character following a page-line number indicates the point at
which the listed symbol is defined. An @ character designates a page-line number
at which the contents of that symbél are possibly altered.

6=79

1

2 .

3 g12026

4 §12926

g12p926 @P4767

174249

5 §12@32 P@5767
goeees!

6 $12¢36 gg1142

7 P12g48

8 P12848 PP5767
‘gglale’

9 g1l2¢44 g@1517

19 12046 $12767
pPePoL

pggs4a2"
11 12p54
12¢54 gp4a767
' #p1542
12 12g6g $127¢1
popgsg!
13 12@64 $16782
gp@54p"
14 1297¢
12079 @@4767
gpgpeep
15 12¢74 @g@5p46
16 12076 $12667 1¢$:
gpgege"
17 12182
12182 912749
ppeELe
12196 g@4767
, pps4pe
18 12112 @g1459
19 12114 g16746
gpogge
2¢ 12128 p12741
gpogge"
21 12124 @111¢5
22 12126 §42785
298377
23 12132 g@p3gs
24 12134 $42711
177737
25 12148 §52721
ppRaLg
26 12144 g1g521
27 12146 gp14pl
28 1215¢ §11141
29 12152 g@sge7 11$:
pgeage’
3¢ 12156 P127¢1 12§:
gpepe2"
31 12162
12162 g@4767
p#eP56

ENDP:

.SBTTL
CALL
JSR
TST
BNE
ENTOVR
TST
BEQ
MoV
CALL
JSR
MOV

MoV

CALL
JSR

CLR
MoV

NEXT
MoV

JSR

BEQ
MoV

MOV

BIC

SWAB
BIC

BIS
MoV
BEQ
MOV
CLR
MOV

CALL
JSR

OBJECT CODE HANDLERS

SETMAX
PC,SETMAX

PASS

ENDP2

4

OBJLNK

3¢

#BLKT@1 ,BLKTYP
OBJINI
PC,OBJINI
#PRGTTL,R1

RLDPNT,R2

GSDDMP
PC,GSDDMP

-(sP)
(SP) +,ROLUPD

SECROL -
#SECROL,R@

PC,NEXT

20
ROLUPD, - (SP)

#MODE ,R1

(R1) ,R5
#377,R5

RS

#-1~<RELFLG>, (R1)

#<GSDT@1>+DEFFLG. (R1) +

R5, (R1)+
11§

(R1) ,-(R1)
ROLUPD

#SYMBOL,R1
GSDDMP
PC,GSDDMP

Figure 6-7

Assembly Listing

6-80

;END OF PASS HANDLER

;PASS ONE?

;BRANCH IF PASS 2
;PASS ONE, ANY OBJECT?
; NO

;SET BLOCK TYPl1 1

;INIT THE POINTERS

;SET "FROM" INDEX
; AND "TO" INDEX

;OUTPUT GSD BLOCK

;INIT FOR SECTOR SCAN

;SET SCAN MARKER

;GET THE NEXT SECTOR

;BRANCH IF THROUGH
;SAVE MARKER

$SAVE SECTOR
3 ISOLATE IT

; AND PLACE IN RIGHT
;CLEAR ALL BUT REL BIT

;SET TO TYPE 1, DEFINED
ASSURE ABS
OOPS!

; REL, SET MAX
;SET FOR INNER SCAN

;OUTPUT THIS BLOCK

32

33

34

35

36

37

38

39

49

12166
12166 @127¢p
2090098

12172 ¢p4767
295314

12176 @@1737
12208 §32767
208100
pppg6"

122¢6 p@g1767
12218 126795
- BPp00T"
12214 @@1364
12216 g42767
177627
gppppe’

12224 $52767
982009
gpppge’

12232 ggp751

ENDMAC 27-48
ENDP 23-23
ENDP1M 73-16
ENDP2 72- 6
. MDFFLG 12— 7#
MEXIT 116- 1#
MODE 14- 6#
45- 6@
72-38@
116-344#
MOVBYT 18- 5
MPDP 199-42
MPUSH 199-26
MSBARG 27- 9
MSBBLK 121- 4
MSBCNT 27-15
MSBEND 121~ 9
MSBMRP

25-19

» -

138: NEXT

MOV
~ JSR

BEQ
BIT

BEQ
CMPB

BNE
BIC

BIS

BR

199-33#
72- 34
72-224
74- 14

35-28
116-414#
22-29@
48-16@
72-39@

18- 9
121-17#
11¢-48
121-18
121-28
199-33
121-28

27-25@

;FETCH THE NEXT SYMBOL

; FINISHED WITH THIS GUY

7 GLOBAL?

; NO .

;YES, PROPER SECTOR?

‘3 NO

#-1-<DEFFLG!RELFLG! GLBFLG>,MODE

SYMBOL
#SYMBOL . R@
PC,NEXT
1gs
#GLBFLG,MODE
13$
SECTOR,R5
138
#GSDT@4 ,MODE
128
Figure 6-7 (cont.)
. Assembly Listing
92- 8 92-24
34-12 35-17@
58-38@ 64-23
74-34 75-37
28-44 74-41
121~ 1%
C121-4p4%
121-36#
116~ 6 121-41#
121-43%
11g-49@ 121-42#%
Figure 6-8

;SET TYPE 4

;OUTPUT IT
36-12 37- 4
79-19 72-28
86— 8 91-2ge
83-11 83-2¢

Excerpts from CREF Listing to Accompany Figure 6-7

Note particularly the CREF references for ENDP,

ENDP2, and MODE.

6-81

;CLEAR MOST

49-43
72-34
1g6-27

198-19#

PART 6
- CHAPTER 8

A SUMMARY OF THE MACRO
ASSEMBLY LANGUAGE AND ASSEMBLER

8.1 SPECIAL CHARACTERS
Character Function

vertical tab Source line terminator
Label terminator
Direct assignment indicator
Register term indicator
Item terminator
Field terminator
Item terminator
Field terminator
Immediate expression indicator
Deferred addressing indicator
Initial register indicator
Terminal register indicator
(comma) Operand field.separator
. Comment field indicator
Arithmetic addition operator or auto
increment indicator
Arithmetic subtraction operator or auto
decrement indicatoxr ’
Arithmetic multiplication operator
Arithmetic division operator
Logical AND operator
Logical OR operator.
Double ASCII character indicator
(apostrophe) Single ASCII character indicator
Assembly location counter
Initial argument indicator
Terminal argument indicator
Universal unary operator
Argument indicator
MACRO numeric argument indicator
Global label terminator
Global assignment indicator

g‘dl’ll"
o

7]
o]
o
o
o

. YN~ A D

o >V A mze=aNr

6-82

8.2 ADDRESS MODE SYNTAX

n is an integer between @ and 7 representing a register. R is a register expression,

E is an expression, ER is either a register expression or an expression in the range

2 to 7.
Address Address
Mode Mode

Format Name Number Meaning

R register Pn Register‘R contains the operand. R is
a register expression.

@R or deferred register 1n Register R contains the operand address.

(ER)

(ER) + autoincrement 2n The contents of the register specified
by ER are incremented after being used
as the address of the operand.

@(ER) + deferred auto- 3n ER contains the pointer to the address

increment of the operand. ER is incremented
after use.

- (ER) autodecrement 4n The contents of register ER are
decremented before being used as the
address of the operand.

@- (ER) deferred auto- 5n The contents of register ER are

decrement decremented before being used as the
pointer to the address of the operand.

E (ER) index 6n E plus the contents of the register
specified, ER, is the address of the
operand.

@QE (ER) deferred index 7n E plus the contents of the register
specified, ER, is the address of the
address of the operand.

#E immediate 27 E is the operand.

- @#E absolute 37 E is the address of the operand.
E relative 67 E is the address of the operand.
@E deferred relative 77 E is the pointer to the address of
o the operand.

6-83

8.3 ASSEMBLER DIRECTIVES

Form

Described
In Section

Operation

"

4Bn
+Ccn
4Dn
4Fn
40on

ASCII string

.ASCIZ string

ASECT

.BLKB exp
+BLKW exp-

.BYTE expl,exp2,...

.CSECT symbol

6-5.3.3

6-6.3.2

6-5.3.3

6-5.4.2

6-5.6.2

6-5.4.2

6-5.6.2

6-5.4.2

6-5.3.4

6-5.3.5

6-5.9.2

6-5.5.3

6-5.5.3

6-5.3.1

6-5.9.2

A single quote character (apostrophe)
followed by one ASCII character generates
a word contains the 7-bit ASCII represen-
tation of the character in the low-order
byte, and zero in the high-order byte.

=y s . N
Concatenation within a macro.

A double quote character followed by two
ASCII characters generates a word con-
taining the 7-bit ASCII representation
of the two characters.

Temporary radix control; causes the number
n to be treated as a binary number,

Creates a word containing the one's com-
plement of n.

Temporary radix control; causes the number
n to be treated as a decimal number.

Creates a one-word floating point quantity
to represent n.

Temporary radix control; causes the number
n to be treated as an octal number.

Generates a block of data containing the
ASCII equivalent of the character string
(enclosed in delimiting characters) one

character per byte.

Generates a block of data containing the
ASCII equivalent of the character string
(enclosed in delimiting characters), one
character per byte with a zero byte
following the specified string.

Begin or resume absolute section.

Reserves a block of storage space exp
bytes long.

Reserves a block of storage space exp
- words long.

Generates successive bytes of data con-
taining the octal equivalent of the
expression(s) specified.

Begin or resume named or unnamed reloca-
table section.

(continued on next page)

6-84

Form Described
In Section Operation

.DSABL arg 6-5.2 Disables the assembler function specified
by the argument.

.ENABL arg 6-5.2 Provides the assembler function specified
by the argument. -

.END 6-5.7.1 Indicates the physical end of source pro-

.END exp : gram. An optional argument specifies the
transfer address.

.ENDC 6-5.11 Indicates the end of a conditional block.

.ENDM 6-6.1.2 Indicates the end of the current repeat

.ENDM symbol block, indefinite repeat block, or macro.
The optional symbol, if used, must be
identical to the macro name.

.EOT 6-5.7.2 Ignored. Indicates end-of-tape, which is
detected automatically by the hardware.

.ERROR exp,string 6-6.5 Causes a text string containing the

) optional expression and the indicated text
string to be output to the command device.

.EVEN 6-5.5.1 Ensures that the assembly location counter
contains an even address by adding 1 if it
is odd.

FLT2 argl,argZ,...' 6-5.6.1 Generates sﬁccessive two~word floating-
point equivalents for the floating-point
numbers specified as arguments.

FLT4 argl,arg2,... 6-5.6.1 Generates successive four-word floating-
point equivalents for the floating-point
numbers specified as arguments.

.GLOBL syml,sym2,... 6-5.10 Defines the symbol(s) specified as global

: symbol (s) .

.IDENT symbol 6-5.1.5 Provides a means of labeling the object
module with the program version number.
The symbol is the version number between
paired delimiting characters.

JIF cond,argl,ang,... 6-5.11 Begins a conditional block of source code,
which is included in the assembly only if
the stated condition is met with respect
to the argument(s) specified.

IFF 6-5.11.1 Appears only within a conditional block

and indicates the beginning of a section
of code to be assembled if the condition
tested false.

(continued on next page)

6-85

Form

Described
In Section

Operation

.IFT

.IFTF

.IIF cond,arg,statement

.IRP sym,<argl,arg2,...>

.IRPC sym,string

LIMIT

.LIST
«LIST arg

.MACRO sym,argl,arg2,...

| -MEXIT

.NARG symbol

.NCHR sym,string

.NLIST
NLIST arg

6-5.11.1

6-5.11.1

6-5.11.2

6-6.6

6-6.6

6-5.8

6-5.1.1

6-6.1.1
6-6.1.3

6-6.4

6~-5.1.1

Appears only within a conditional block
and indicates the beginning of a section
of code to be assembled if the condition
tested true.

Appears only within a conditional block
and indicates the beginning of a section
of code to be unconditionally assembled.

‘Acts as a one-line conditional block
where the condition is tested for the
argument specified. The statement is
assembled only if the condition tests
true.

Indicates the beginning of an indefinite
repeat block in which the symbol specified
is replaced with successive elements of
the real argument list (which is enclosed
in angle brackets).

Indicates the beginning of an indefinite
repeat block in which the symbol specified
takes on the value of successive characters
in the character string.

Reserves two words into which the Linker
inserts the low and high addresses of the
relocated code.

Without an argument, .LIST increments the
listing level count by 1. With an
argument, .LIST does not alter the listing
level count but formats the assembly
listing according to the argument speci-
fied.

Indicates the start of a macro named sym
containing the dummy arguments specified.

Causes an exit from the current macro or
indefinite repeat block.

Appears only within a macro definition and
equates the specified symbol to the number
of arguments in the macro call currently
being expanded.

Can appear anywhere in a source program;
equates the symbol specified to the number
of characters in the string (enclosed in
delimiting characters) .

Without an argument, .NLIST decrements the
listing level count by 1. With an argu-
ment, .NLIST deletes the portion of the
listing indicated by the argument.

(continued on next page)

6-86

Form

Described
In Section

Operation

.NTYPE sym,arg

.ODD

.PAGE

.PSECT

.PRINT exp,string

«RADIX n

.RAD5@ string
-REPT exp

.SBTTL string

.TITLE string

JWORD expl,exp2,...

6-6.4

6-5.5.2

6-5.1.6

6-5.9

6~6.5 -

6-5.4.1

6-5.3.6

6-6.7

6-5.1.4

6-5.1.3

6-5.3.2

Appears only in a macro definition and
sets the low-order six bits of the symbol
specified to the six-bit addressing mode
of the argument.

Ensures that the assembly location
counter contains an odd address by adding
1 if it is even.

Causes the assembly listing to skip to the
top of the next page.

Begin or resume a program section.

Causes a text string to be output to the
command device containing the optional
expression specified and the indicated
text string. .

Alters the current program radix to n,
where n can be 2, 4, 8, or 14.

Generates a block of data containing the
Radix~5@ equivalent of the character
string (enclosed in delimiting characters)

Begins a repeat block. Causés the section
of code up to the next .ENDM or .ENDR to
be repeated exp times.

Causes the string to be printed as part
of the assembly listing page header. The
string part of each .SBTTL directive is
collected into a table of contents at the
beginning of the assembly listing.

Assigns the first symbolic name in the
string to the object module and causes the
string to appear on each page of the
assembly listing. One .TITLE directive
should be issued per program.

Generates successive words of data con-
taining the octal equivalent of the
expression(s) specified.

6-87

PART 6

CHAPTER 9
PERMANENT SYMBOL TABLE

The Permanent Symbol Table (PST) defines values for each symbol that is automati-

cally recognized by MACRO.

The symbols defined include op-codes and macro-calls.

A listing of the Permanent Symbol Table forms the balance of this chapter.

! ‘
] PFPMANFNT SYMBOIL. TABLFE

H
H

DRis=
DR2s=

20p
170

DFLGEVa=p20
DFLGBMs=@1Q
DFLEND==@04
DFLMACE=B02
DFL8MCx=B1

' .
3 LOCAL MACROS

’

+IF DF
XMACRNe O
X40= n
X458 @
+ENNDC

.11F DF
LIIF OF

2MACRO
«IF NB
.IF DF
#MEXTIT
<ENDE
»ENDC
<RAD5D
«BYTE
«BYTE
» WORD
LENDM

LMACRO
.RADSD
<BYTE
.1F NB
LIF COF

s FGUATFD SYMBOLS

PAL1IIR

X4728%45,
XMACRO, XSMi =
NPCDEF
<COND>
COND

NAME,

/NAME/
FLAGS+D

282+0PCL'CLASS

VAILUE

DIRDFF
/< "NAME/
FLAGS+A,
<COND>
COND

NAMF,

sDFSTRUCTIVE RFFERENCE IN FIRSY FIFLN.
tDFSTRUCTIVE REFERENCE IN SECOND FYELD

$DTRFCTIVF REQUTRES FVFN LOCATION
tDIRFCTIVF USFS RYTE MADE
$CANPITIONAL NTIRFCTIVE

tMACRO DTRECTTYVF
sMCALL

tPAL11R SURSET

XFLTGgs @

7]

CLASS, VALUE,
FLAGS., COMD
@

6-88

FLAGS, COND

LWORD
SMEXTT
LENDC
JENDC
LWORD
<ENDM

+MACRO
#RADSD
+BYTF
»IF NB
o»IF DF
- .NOPD
SMEXTT
«ENDC
~ENDC
2 WORD
. ENDM

PSTRAS: ¢
NPCNEF
OPCNEF
OPCDFF
OPCNEF
OPECDEF
OPCNEF
OPCNRFF
NPCNEF
DPCNEF
OPCDFF
PPCNEF
OPCDFEF
OPECNEF
OPCNEF
OPCDEF
OPCNEF
OPCOFF
OPCNEF
OPCENEF
OPCOEF
OPCNEF
OPCNEF
OPCDEF
OPCNEF
NPCNEF
OPCNEF
OPCNEF
OPCNEF
OPCNEF
MPCNEF
OPCNEF
OPCREF
OPCNEF
OPCNEF
OPCHEF
OPCNEF
AQPCNEF
OPCNEF
OPCNEF
OPCNEF
OPCHEF
OPCNEF
OPCNEF

NPCERR

NAME

DIRDF1 NAME,ENTRY,FLAGS,COND

/< 'NAME/
FLAGS,O
<COND>
COND
OPCERR
ENTRY
<ARSD >,
<ABSF >,
<ADC >,
<ADCR >,
<ADD >,
<ADDD >,
<ADDF >,
<ASH >,
<ASHC >,
<ASL >,
<ASLR >,
<ASR >,
<ASRR >,
<BCC >,
<BCS >y
<REQ >,
<BGE >,
<RGT >
<BHI >
<BHI& >,
<RIC >
<RICR >,
<B1S >,
<RISRA >,
<BIT >
<RITR >,
<BLE >,
<BL.0 >,
<BRLOS >,
<RLT >,
<RBMI >,
<BNE >y
<BPL >,
<HBPT >,
«
,
<RVC >,
<BVS >
<CCC >
<CFCC >,
<CLC >,
<CLN >,
<CLR >,
<CLRB >,

s REF LABFL

nt, 170600,
n1, 170600,
”t, oe550a,
n1, 15500,
a2, REAAAA,
11, 172000,
11, 17240n,
a9, n720900,
29, 73307,
a1, AR632a,
21, 186390,
n, An620a,
nt, 10620n,
n4, 10320n,
04, 103404,
na, Ae1490,
24, ne24%9,
a4, 12100a,
na, 123000,
02, nan0nn,
a2, 140000,
"2, aAsAA0a,
a2, 160a0a,
a2, A30AAR,
"2, 130200,
74, Aal3ana,
a4, 1034020,
n4, 1n1400,
n4, . AR240n,
24, 10m40a,
n4, An1ana,
24, 102090,
e, fagpeaas,
n4, pee4aa,
B4, 1e2a02a,
04, ta240a,
na, peA2%7,
aa, 17008a,
oa, nan2dy,
na, 200250,
a1, agsaan,
ay, 1p5a00,

6-89

DR1.
DR,
nNR1
DR
DR2
DR2.
DR2.
DRzl
PR2,
DRY
DR1
DRY
PR1

DR2
DR2
DR2
DR2

DRI
DR

X45
X45

X45
X458
Y408X45
X408 %45

nPCNEF
OPCDEF
OPCDEF
OPCDEF
OPCNEF
OPCHEF
OPCNEF
OPCDEF
OPCNEF
OPCDEF
NPCNEF
OPCNEF
OPCNFF
OPCNEF
OPCDEF
OPCDEF
OPCREF
OPCDEF
OPCNEF
OPCREF
OPCNEF
OPCNEF

OPCDEF.

QPCDEF
OPCNEF
OPCNEF
NPCNEF
NPCNEF
NPCNEF
OPCREF
OPCDEF
OPCDEF
OPCDEF
DPCDREF
OPCREF
OPCREF
OPCNEF
OPCDPEF
OPCNFF
OPCNEF
NPCNEF
OPCNEF
OPCNEF
OPCNFF
DPCNEF
OPCNEF
NPCNEF
NPCNEF
OPCNEF
OPCNEF
OPCNEF
OPCDREF
OPCDEF
NPCNEF
DPCNFF
OPCDEF
OPCNEF
OPCDEF
OPCNEF
OPCDEF
OPCNFF
NPCDEF
NPCNEF

<CLRD
<CLRF
<CLV
<CL2Z
<CMP
<CMPR
<CMPD
<CMPF
<CNZ
<COM
<COMR
<DEC
<DECR
<D1IV
<DIVD
<DIVF
<EMT
<FADD
<FD1y
<FMUL
<F8UR
<HALT
<INC
<INCH
<107
<JMP
<JSR
<LDCDF
<LOCFD
<LDCTID
<LNCIF
<LDCLD
<LDCLF
<L.hD
<LLDEXP
<LDF
<LDFPS
<L.DSC
<LDUR
<MARK
<MFPD
<MFPT
<MODD
<MODF
<MOV
<MNVR
<MTPD
<MTPTY
<MUL
<MULD
<MULF
<NEG .
<NEGA
<NEGD
<NEGF
<NQP
<RESFT
<ROL
<ROLB
<ROR
<RORR
<RTI
<RTS

170400,
17040a,
nema24r,
peA244,
P20ARH,
120030a,
173400,
1734%a,
nam254,
Pas100,
105100,
npR30°n,

1es530q,

a714@49,
174493,
174402n,
1e40a0a,
B75a00,
n7523n,
n7502a,
n75a10,
aNAARnm,
aps2an,
ina520n,
ngnqang,
aee1ao,

nednda,

177449,
1774040,
17738,
177003,
177a0q,
177300,
172400,
176404,

172402,

170120,
170804,
177403,
ne64aan,
126570,
AA659a,
17140a,
17142nm,
12000,
110000,
106600,
Pa6aNa,
aA7030a,
171000,
171003,
fe5400,
10540ap,
1707%a,
170790,
nan24a,
pANNS,
226100,
186199,
Ra6AAS,
106000,
paoans,
20224,

6-90

DRY,
DRY.

nR1
NR1
DR
DRI
DR2 .
NR2,
DR2,

nR1,
PRY,
PR1,
DRI,

PR1
DRY

PR

DR2,
NR2,
PR2,
PR?2.,
DR2.
DR2,
NR2,
DR2,
DR2,

DR2,
DR2,
PR2
DR2
DR!'
NRY.
DR2,
DR2,
nR2.
PRY
DR1
PRY.
DR1,

DR1
DRI
DR1
DR1

DRI

X458
Y45

Y45
X45

X408X45
Y45
X45

X40
x40
X409
x40

Y45
Y45
Y45
Y45
X45
X45
X45
X45
X4%
X45
X45
Y45
X45
Y45
X455
X45
X45

X45
X45
X408%45
X45
X45

X485
X45

NPCNEF
OPCDEF
OPCNEF
OPCDEF
OPCNEF
APCHEF
OPCNEF
OPCNEF
OPCNREF
NPCHEF
OPCDEF
NPCNEF
NPCNEF
OPCHEF
OPCHEF
OPCNEF
NPLCNEF
OPCNEF
OPCNEF
OPCNEF
OPCDEF
OPCNFF
OPCNEF
NPCNEF
OPCNEF
OPCREF
NPCNEF
OPCDEF
OPCNEF
OPCNDEF
OPCNEF
OPCNEF
OPCDEF
NPENEF
OPCNEF
OPCNEF
QPCNEF
OPCNFF
OPCDEF
OPCNEF
DIRDEF
DIRDEF
DIRDEF
DIRDEF
DIPNEF
DIRDEF
PIRDEF
.IF DF
NIRNDFF
LENDC

DIRNEF
DIRNEF
DIRNEF
DIRDEF
DIRNF1
DIRDF1
DIRNDEF
PIRNFF
DIRDEF
NIRDEF
DIRDEF
DIRNFF
DIRNFF

<RTT >,
<38RC >,
<SBCR >,
«ScC >,
<SEC >,
<SEN >,
«<SETD >,
<SETF >,
<SETT >,
<SETL >,
<SEV >,
<8EZ >,
<SnN8 >
<SPL >,
<STAG >,
<8T8A >,
<STCDF »>,
<STCDT »,
<STCDL >,
<STCFD »,
<STCFI >,
<STCFL >,
<STD >
<STEXP >,
<STF >,
<STFPS8 »,
<sSTQ000 >,
<8TST >,
<SUR >
<SuBp >,
<SUBF >,
<SWAR >,
<8XT >,
<TRAP >,
<TST >,
<TSTR >,
<TSTD >,
<T8TF >,
<WAIT >
<XNR >,
<ASCII>-
<ASCIZ>,
<ASECT>,
<BLKR >
<BLKW >,
<BYTE >,
<CSECT>,
YPHARE
<DEPHA>
<DSARL>
<ENABRL>
<END >
<ENDC >,

na,
at,
a1,
an,
aa,
g,
na,
e,
aa,
e,
fa,
na,
na,
13,
na,
a9,
12,
12,
12,
12,
12,
12,
12,
12,
12,
at,
na,
ay,
a2,
11,
11,
21,
21,
f6,
Qi.
71,
21,
lﬁl.
fa, .
a5,
DFI GRM
DFI_GRM

NFILGEV
DFLGRM

’

NFI CND

fQNANA,
nA%620,
105600,
pun277,
200261,
AAM270,
1702114,
1700014,
170002,
1706912,

en262,

apr264,
A773%n,
apn23n,
{79005,
170408,
176020,

1754aa,

175490,
176000,

175400,

1754002,
1742%a,
175207,
17400a,
170200,
{7¢aa7,
17230n,
1600300,
173a2n,
173003,

zoa3nn,

AAR72a,
1a44¢a,
2a570a0,
10570nm,
170500,
1792504,
nACARy ,
74000,

YRFEL.

XREL

<ENDM >,ENDM,DFLLMAC, XMACRD
<ENDR >,ENDM,DFI.MAR, XMACRO

<EQT >
<ERROR>
<EVEN >
<FLLT2 >,
<FLTA >,
<GLORL >,
<IDENT>

DFLGFV,
" DFLGFV,

’

XFLTG
XFLTG

XRFL

6-91

NR1
DR

PRY

NR2,
DR2,
DR2.
PR2,
nR2,
PR2,
PR2,
DR2.
PR2,
DR1Y,

DRY,
DR?
DR2,
DR2.
PRY
DRI,

DR2,

¥45

X45
X45
Y45
X45

X 45
¥45
X45
X45
X45
¥45
X45
X45
X45
x45
X45
X45
X45
¥45
x45
X45

X45
X45

X485

¥45
X45

X458

NIRREF
DIRnFi
DIRNF1
NIRDEF
NIRNF1
DIRDF1
DIRDFY
PIPNF1
DIRDF1
DIRDF1
DIRDF1
DIRDF1
DIRDF1
DIRDEF
DIRDEF
DIRNPF1
DIRDEF
DIRDEF
DIRNEF
DIRDEF
DIRDEF
DIRDF1
PIRDF1
‘DIRDEF
DIRNEF
DIRDEF
DIRDEF
DIRNEF
DIRDEF
DIRDEF
PIRDEF
<1F DF
PIRDEF
JENDC
DIRDEF
DIRNDEF
DIRDEF
DIRDEF
DIRDEF
DIRNEF
DIRDEF
DIRREF
WRDSBYM: e
_DIRDEF
PSTTOPR:

LEND

<IF >, DFICND
<IFDF >,1FDF,DFI CND
<IFER >,1FDF,DFILEND
<IFG >.IFDF,DFI CND
<IFGF >, IFNF,DFLEND
<IFGT >.1FDF,NFLCND
<IFL >,1FDF,DFI CND
<IFLE >, IFDF,DFLCND
<IFLY >, IFDF,DFLEND
<IFNDF>, IFDF,DFILCNP
<IFNF >, 1FDF,DFLCND
<1FNZ >, IFDF,DFI CNpD

<IFT >, DF) CND

<IFTF >, DFLCND

<1FZ >,IFDF,DFLEND

<IIF > N

<IRP >, DFt MAC, XMACRAN
<IRPC >, DF| MAC, XMACRN
<LIMIT>, DFI.GFV, YREL
<LIST >

<MACR >,MACR,DFLMAC, XMACRO
<MACRO>,MACR,DFLMAC, XMACRD

<MCALL>, DF1 SMC,. XSML
<CMEXTT>. ,. ’ XMACRN
<NARG > , ’ XMACRN
<NCHR > , . YMACRN
<NLIST>
<NTYPE> , , XMACRN
<aQbdb >
<PAGE >
YPHASE
<PHASE>
<PRINT>
<PSECT>
<RADIX> N
<RADSD>, : NFLGFV
<REM > -
<REPT >, DFIMAC, XMACRN ‘
<SBTTL>
<TITLE> ,

- sRFF LABFL
<WORD >, DFI GFV

tRFF LABFL

6-92

‘PART 6
CHAPTER 10]
WRITING POSITION-INDEPENDENT CODE

All addressing modes involving only register references are position-independent.

These modes are as follows.

R register mode

@R deferred register mode

(R)+ autoincrement mode
@(R)+ deferred autoincrement mode
~(R) autodecrement mode
@-(R) deferred autodecrement mode

When using these addressing modes, position-independence is guaranteed providing
the contents of the registers have been supplied such that they are not dependent

A

upon a particular core location.

The relative addressing modes are generally position-independent. These modes
follow.

A relative mode
@a relative deferred mode

Relative modes are not position-independent when A is an absolute address (that is,

a nonrelocatable address) that is referenced from a relocatable module.

.

Index modes can be either position-independent or nonposition-independent, according

to their use in the program. These modes féllow here.

X (R) index mode
@X(R) index deferred mode

If the base X is position-independent, the reference is also position-independent.

For example:

Mov 2(spP) ,R@ ; POSITION~INDEPENDENT

=4

MoV N(SP) ,R@ 7 POSITION-INDEPENDENT
ADDR: CLR ADDR(R1) :NONPOS ITION-INDEPENDENT

Caution must be exercised in the use of index modes in position-independent code.

Immediate mode can also be either position-independent or not, according to its

usage. Immediate mode references are formatted as shown here.

#N immediate mode

6-93

where N is an absolute number or a symbol defined by an absolute direct assignment,
the code is position-independent. When a label replaces N, the code is nonposition-
independent. (That is, immediate mode references are position-independent only

where N is an absolute value.)

Absolute mode addressing is unlikely to be position-independent and should be
avoided when coding position-independently. Absolute mode addressing references

are formatted as shown here.
@4#A absolute mode

Since this mode is used to obtain the contents of a specific core address, it

violates the intentions of position-independent code.
Such a reference is position-independent if A is an absolute address.

Position-independent code is used in writing programs such as device drivers and
utility routines, which are most useful when they can be brought into any available
core space. Figure 6-9 and Figure 6-10 show pieces of device driver code; one is

position-independent and one is not.

DVRINT -- ADDRESS OF DEVICE DRIVER INTERRUPT SERVICE
VECTOR -- ABSOLUTE ADDRESS OF DEVICE ~INTERRUPT VECTOR
DRIVER -- START ADDRESS OF DEVICE DRIVER

~ N~

MOV #DVRINT , VECTOR ;SET INTERRUPT ADDRESS
MOVB DRIVER+6,VECTOR+2 ;SET PRIORITY
CLRB VECTOR+3 ;CLEAR UPPER STATUS BYTE
Figure 6-9

Nonposition-independent Code

Mov PC,R1 ;+GET DRIVER START

ADD #DRIVER-.,R1l

MOV #VECTOR,R2 7 ~+.& VECTOR ADDRESSES

CLR @r2 © ;SET INTERRUPT ADDRESS

MOVB 5(R1) ,@R2 7 «+.AS START ADDRESS+OFFSET
ADD Rl, (R2)+

CLR @R2 +SET PRIORITY
MOVB 6(R1) ,@R2

Figure 6-10
Position-independent Code

6-94

In both examples the progfam calling the device driver has correctly initialized
its interrupt vector (VECTOR) within absolute memory locations @-377. The
interrupt entry point offset is in byte DRIVER+5. (The contents of the driver
table shows at DRIVER+5: ' .BYTE DVRINT,DRIVER.) The priority level is at byte
DRIVER+6.

In the first example, the interrupt address is directly inserted into the absolute

address of VECTOR. Neither of these addressing modes is position-independent.

The instruction to initialize the driver priority level uses an offset from the
beginning of the driver code to the priority value, and places that value into the
absolute address VECTOR+2, which is pot position—independent. The final operation

clearing the absolute address VECTOR+3 is also not position-independent.

In the position-independent code, operations are performed in registers wherever
possible. The process of initializing registers is carefully planned to be
position-independent. For example, the first two instructions obtain the starting
address of the driver. The current Pcvialue-is loaded into Rl, and the offset from
the start of the driver to the current location is added to that value. Each of
these operations is position-independent. The immediate mode value of VECTOR is
loaded into R2, which places the absolute address of the t#an?fer vector into a
register for later use. The transfer vector is then cleared, and the offset for
the driver starting address is loaded into the vector. The starting address of
the driver*&% then added into the vector, giving the desired entry point to the
driver. (This is equivalent to the first statement . in Figﬁre 6-9.) Since R2 has
been updated to point to VECTOR+2, that location is then cleared and the priority

level inserted into the approprlate byte.

The position-independent code demonstrates a principle of PDP-11 coding practice
discussed earlier; that is, the programmer is advised to work primarily with
register addressing modes wherever possible, relying on the setup mechanism to

determine position-independence. ;
i

The MACRO Assembler provides the.user with a way of checkiég the position-
independence of the code. In an assembly listing, MACRO ieserts a ' character
following the contents of any word that requires the Linke# to perform an operation.
In some cases this characterAindicates a nonposition-independent instruction; in
other cases it merely draws the user's attention to the use of a symbol that may

or may not be position-independent. The cases that cause a ' character in the

assembly listing follow.

6-95

1. Absolute mode symbolic references are flagged with an ' character when
the reference is not position-independent. References are not flagged
when they are position-independent (i.e., absolute). For example:

MOV @#ADDR,R1 ;PIC ONLY IF ADDR IS ABSOLUTE.
2. Index mode and index deferred mode references are flagged with an '
character when the base is a symbolic label address (relocatable rather
than an absolute value). For example:

MoV ADDR(R1) ,R5 ;NON-PIC IF ADDR IS RELOCATABLE.
MOV @ADDR(R1) ,R5 ;NON-PIC IF ADDR IS RELOCATABLE.
3. Relative mode and relative deferred mode are flagged with an ' character

when the address specified is a global symbol. For example:

MOV GLBl,R1 ;PIC WHEN GLBl IS A GLOBAL SYMBOL.
MOV @GLB1,Rl ;PIC WHEN GLBl IS A GLOBAL SYMBOL.

If the symbol is absolute, the reference is flagged and is not position-
independent.

4. Immediate mode references to symbolic labels are always flagged with an

' character.
MOV #3,R@ ;ALWAYS POSITION-INDEPENDENT.
MOV #ADDR,R1 ;NON-PIC WHEN ADDR IS RELOCATABLE.

Examples of assembly listings containing the ' character are shown in Figure 6-11.

1
2
3

4
5
6
7
8

]

19
11

12
13
14

15
16
17
18

19
2¢

@11744 ENDP2: END OF PASS 2
.IF NDF XCREF
g11744 @g16792 MOV CRFPNT,R2 ;ANY CREF IN PROGRESS?
: pppLazt
211759 @gp1agz BFQ 8s ; NO
ﬂll752 CALL CRFDMP ;YES, DUMP AND CLOSE BUFFER
#11756 8$:
.ENDC
g11756 @P5767 TST BLKTYP ;ANY OBJECT OUTPUT?
gpps4a2!
g11762 @P1423 BFQ 1$; NO
11764 CALL OPJDMP ;YES, DUMP IT
11778 P12767 MoV #PLKTP6,BLKTYP ;SET END
pgopoge
gops4a2t
11776 CALL RLDDMP ;DUMP IT
. .IF NDF XFDABS -
12@¢2 @32767 BTT #FD.ABS,EDMASK ;ABS OUTPUT?
gopep2
papL24" .
12010 @p1p1p BNE 1$ ‘ ; NO .
12012 gle67g@ MOV OBJPNT, R@
gPP536" .
12¢16 @16728 MOV " ENDVEC+6, (Rg)+ ;SET END VECTOR
gopgad’
12922 g1gpe7 MOV R@,OBJIPNT
gop536"
12826 . CALL OBJDMP

Figure 6-11 «
Assembly Listing Showing ' Character

Continued on next page

 6-96

21 12¢32 185767 1$: TSTR LLTPL+2 ;ANY LISTING OUTPUT?

gpgsie’

22 12036 PP1474 BFQ 158 i NO

23 12p4¢ 932767 BIT #LC.SYM,LCMASK ;SYMBOL TABLE SUPPRESSION?
240009 ’
ppp1108"

Figure 6-11
Assembly Listing Showing ' Character

6-97

	6-001
	6-002
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	6-73
	6-74
	6-75
	6-76
	6-77
	6-78
	6-79
	6-80
	6-81
	6-82
	6-83
	6-84
	6-85
	6-86
	6-87
	6-88
	6-89
	6-90
	6-91
	6-92
	6-93
	6-94
	6-95
	6-96
	6-97
	6-98

