PART 7

THE DOS/BATCH FORTRAN

COMPILER AND OBJECT TIME SYSTEM

PART 7
CHAPTER1
INTRODUCTION TO FORTRAN

FORTRAN (FORmula TRANslation) is a problem-oriented language designed to permit
scientists and engineers to express mathematical operations in a form with which
they are familiar. The term FORTRAN is used interchangeably to designate both

the FORTRAN "language and the FORTRAN Compiler or translator. A program written in
the FORTRAN language is called a FORTRAN source proéram.

A FORTRAN source program is composed of comhands describing the functions per=-
formed and computational elements expressed in a notation similar to that of
mathematics. The source program is compiled by the FORTRAN Compiler into code
which is then automatically assembled into a binary object module. The Linker
program links the resultant relocatable module with any other reduired module or
modules to create an executable program image called a load module. Execution is

started by using the appropriate commands as described in Chapter 7-9 of this _

manual.

There is no one-to-one correspondencé between a FORTRAN statement and a machine-
language instruction. Some FORTRAN statements generate many machine instructions

while others yield none.
1.1 DOS/BATCH FORTRAN

DOS/BATCH FORTRAN conforms to the specifications for American National Standard
FORTRAN., It is also highly compatible with IBM 113@ FORTRAN. The following
additions to American National Standard FORTRAN are included in DOS/BATCH FORTRAN:

a. An array subscript may consist of any valid arithmetic expression. If
the result of the expression is not an integer, it is truncated and
converted to integer format before being used as a subscript.

b. Hexadecimal, octal and Radix-5¢ constants are allowed within DATA
statements.

c. Hollerith constants may be delimited by single quote (apostrophe) .
characters. :

" 4. General mixed-mode expressions are allowed for all data types,
including complex.

e. . Assigned GOTO statements may contain optional label lists.

£. The following statements have been added to handle random access 1/0:

DEFINE FILE

FIND -
READ (a'b)
WRITE (a'b)

g. The IMPLICIT statement is provided to allow redefinition of the rules
for data type classification of variables by default. (In the absence
of any data type specification, a variable name beginning with one of
the letters I through N indicates an integer variable; A through H and O
through Z indicate real variables.)

h. The data types

LOGICAL*1
INTEGER*2
REAL*4
REAL*8

are provided.

J. The I/O conditions END=n and ERR=n can be specified on any READ or WRITE
statement to transfer control upon detection of an end-of-file or error
condition.

k. Default values for field width and number of characters to the right of
the decimal point are provided on numeric and logical format conversions.

1. Variable format expressions are provided.

m. A simplified type of free form formatted input (termed "short field
termination”) is provided.

1.2 SOFTWARE AND HARDWARE ENVIRONMENTS

The FORTRAN Compiler produces code suitable for assembly by MACRé. Thé user can
compile and assemble his FORTRAN program in one step (which is normally done), or he
can compile the program into assembly language for later assembly (indicated by
means of a switch option to the compiler). FORTRAN programs can call assembly
language subroutines. The FORTRAN Library routines can be called by either FORTRAN

or assembly language code.

DOS/BATCH FORTRAN programs can be compiled and run on any hardware configuration
that supports the DOS/BATCH operating system, and that has a minimum of 16K of
memory. DOS/BATCH FORTRAN supports all standard hardware options supported by the

operating system.

7-2

1.3 HOW TO USE THIS PART

This Part is primarily a referehce document deécribing the DOS/BATCH FORTRAN
language. It is not intended to teach the reader how to program in FORTRAN. The
bulk of this Part describes details of the language statements and descriptions

of the file handling, library, internal structures, and Object Time System. Later

- chapters provide concise summaries of material in tabular form.

Although designed as a reference tool, this Part contains a number of programming
examples to show the use of statements in a context. Internal details supplied

" will aid the more advanced FORTRAN programmer.
1.4 FORTRAN STATEMENT STRUCTURE

A statement is the basic functional unit of the FORTRAN language. An executable
statement performs a calculation, does I/0, or directs control of the program; a
nonexecutable statement provides the Compiler with information regarding variable

structufe, array allocation, storage requirements, etc.

All categories of FORTRAN statements are coded in a standard format for ease of
program preparation. Figure 7-1 shows a FORTRAN coding form (there are many types
available) with four miscellaneous lines written on it. FORTRAN coding forms lend
themselves to paper tape input as well as to punched»card inpup preparation. The

form is divided into four major sections:

a. Statement number field - columns 1-5.
b. Line continuation field - column 6.
c. Statement field - column 7-72.

d. Sequence field (ignored by the FORTRAN Compiler) - columns 73-80.

.1.4.1 Formatting a FORTRAN Line
"
Punched card input for the DOS/BATCH FORTRAN Compiler is formatted as shown on
- the coding form in Figure 7-1. This is the standard format for FORTRAN punched

cards on most computer systems.

wrog BuTpod NYILI0d
T-4 =2Inb1g

04ZN-§£01-(09€)-

3

R

“lal3|NunlL[3ly] Is[i] lulaimsNv] [BHL [a[Nlv] (o] ‘8] *[v] [u3[Na] [Llsinw] [al3isin] [3[HiL
r , ‘IS|Liojojd] [T{w[3jyl 'Wo[4] INo[I][L]v|njo[3] [o]I]L]v[dia]vin[d m::wmm;,_om | %omm S/1H|L
TR I8 I8 14 Nnnwnﬂnahm@.mwnm $9 92919 o5 ¥S L[5 9QGS PS LG CET S ov gy IV 99|57 VeV IVPPOE UE JE JE|SE PEET CE [E|UE B¢ [£4 Ctece (CPCc Ol BLITT T ETCTTIPT & 8 (9GS v |
— uww._muﬁmwm INTFWALVIS m »zww.m
- PSLIO "SSVIN ‘QUVNAVI
F | 40 | 35vd "d¥0) INFWAINOT TV.LIDIA
| L9 | NL4 VHAVNO | [NVWV3S <

3Ivd TILIL WVYD0ud , NVILRIO4 , AWYN JINAVY

When programs are prepared on-line with the Editor, statements can be typed in the

same manner as described for cards or they can use the EAB character as follows:

a. A TAB causes the internal character count to be set to 6 or 7
depending on whether or not the character following the TAB is numeric.
If the character is not numeric, it is assumed to be the start of a
statement proper. If the character following the tab is numeric, the
line is assumed to be a continuation line.

b. A 1- to 5-digit statement label may precede the TAB character.

In order to obtain the forméffing shown on the coding form in Figure 7-1, the

user would type the following to EDIT.

123X=12.43. or © 123MAAX=12.+3
—|A=B+C , or AAAAAARHB+C
‘41A1'Aack' or ‘AAAAAIAL'ABC ' (continuation line)
"|COMMENT LINE v or CAAAAACOMMENT LINE
where:
'4\ C - indicates typing of the TAB character (CTRL/TAB)

A - indicates typing of the SPACE bar.

As specified in Section 7-2.1, the TAB character is not included in the legal FORTRAN
character set; therefore, fhe TAB character can be used only at the beginning of a
line to indicate spacing to the continuation or statement field. FORTRAN ignores
spaces within each field (except within Hollerith constants); spaces méy therefore

be inserted at the user's convenience to increase program legibility.
1.4.2 Statement Number Field

A statement number consists of one to five digits in columns 1 to 5. Leading zeros
+ and all blanks in this field are ignored. BAny statement to which reference is made
by another statement must have a statement number. A label consisting only of one’

or more zero characters is not allowed.
Statement numbers must be unique. If two statements within a program unit have the

same statement number, the error is noted at assembly time. There is no limit to

the value of therstatement,number.

7-5

1.4.3 Continuation Lines

- .
Any FORTRAN statement may be continued onto more than one physical source line. A
nonzero or nonblank character is placed in column é of all continuation lines (or
caxds). When using an editor, the TAB character followed by a nonzero numeric

character may be used to indicate a continuation line.

DOS/BATCH FORTRAN normally allows up to five continuation lines; however, this
number may be changed to any number in the range @ to 99 through the use of the
/CO switch (see Appendix J).

1.4.4 Comment Lines

A comment may be inserted into a FORTRAN program by making the first character of
the line a C. 1If the C character is detected in column 1 of a card or as the first
character of any input record, all information on that line is disregarded. A
comment line must not precede a continuation line. Continuation lines cannoct be

used to continue comments. All comment lines begin with the letter C.

1.5 PROGRAM UNIT STRUCTURE

*
A FORTRAN program unit is a FORTRAN main program or a subprogram. Except for BLOCK
DATA subprograms, which are a special class (described in Section 7-6.4.8), program

units are constructed of FORTRAN statements in the following order:

a. Subprogram statement, if the program unit is a subprogram.
b. IMPLICIT statement, if used.

c. Specification statements (other than IMPLICIT). Those specification
statements that determine the storage required by a variable or
array must precede statements that initialize the values of the
variable or array. DATA statements must follow all other specification
statements.)

d. Arithmetic statement function definitions, if used.

e. Executable program statements. Each program unit (except BLOCK DATA
subprograms) must have at least one executable statement.

f. END statement.

PART 7
CHAPTER 2
FORTRAN STATEMENT COMPONENTS

2.1 FORTRAN CHARACTER SET
The character set from which statements can be constructed is as follows.

the letters A through Z
the digits § through 9

blank / slash
= equal sign _ (left parenthesis
+ plus sign : ©) right parenthesis
= 'minus sign . ‘ ’ comma k
o asterisk . decimal point

$ dollar sign

The TAB character can be used only at the beginning of a line to indicate spacing
to the continuation or statement field. Other printing characters (except %)
may appear within a FORTRAN program only as part of a comment line or a Hollerith

constant (text string).

While the PDP-11 Monitor provides device independence for input to the FORTRAN
Compiler, it is mandatory that FORTRAN source programs be in ASCII code. Programs
intended for compilation by the DOS/BATCH FORTRAN Compiler and prepared on cards,

paper tape, or magtape from other systems must conform to this requirement.
2.2 FORTRAN CONSTANTS

A constant is a self-defining value that does not change from one ekecution,of
the program to the next. In general, constants can be numeric, logical, or

character string entities.

Types of constants allowed in DOS/BATCH FORTRAN include:

integer

real 1

double precision b - numeric constants
octal s

hexadecimal

‘complex

logical - logical constants

Hollerith - character string constants

Storage formats for each type of constant are described in Chapter 7-12.
2.2.1 Integer Constants?

An integer constant is a string of numeric characters, from one to five digits in
length; it is interpreted as a decimal integer. Integers are 16-bit signed quantities.
A negative integer is preceded by a minus sign; a positive integer is optionally pre~
ceded by a plus sign. An integer constant must lie within the range -32768 to

+32767 (which is -2!% to0,2!% -1).

If the result of any operation exceeds 16 bits, the Object Time System displays an
»

error diagnostic.
Examples of integers acceptable to DOS/BATCH FORTRAN follow.

3564
+14
-26357

Commas and decimal points are not allowed in integer constants.
2.2.2 Real Constants

A real (or floating—poinf) constant is a string of numeric characters including a
decimal point. A real constant may contain any number of digits, but only the
leftmost eight digits are significant. A negative value is preceded by a minus sign;

for positive values, the plus sign is optional.

A real constant may alternately be expressed in scientific notation with a decimal
exponent, represented by the letter E, and a signed integei constant. The decimal
‘point with the real number is optional if there is an exponent. The exponent field

cannét be blank, but may be zero. For positive exponents, the plus sign is

optional.

A real constant has 24 bits of precisién, or somewhat more than seven decimal digits.
The magnitude must lie within the range #.14*18%® to 1.7*1¢4%®. Real constants occupy
two words of PDP-11 storage (see Chapter 7-12.)

lsee Appendix J for the effect of the /ON switch on the storage allocation of integer
values.

Examples of real constants follow.

15,
.579

T p.9

~14.685
5.9E3 (i.e., 5¢¢8.)
4.2E+3 (i.e., 4288.)
2.0E-3 (i.e., .£@2)
SEg (i.e., 5.%)

2.2.3 Double-Precision Constants

A double-precision constant is a string of numeric characters including a decimal
point and the letter D followed by an integer exponenﬁ. The decimal point is
optional. A double-precision constant may contain any number of digits, but anly
the leftmost 16 digits are significant. A double-précision constant is always
expressea in scientific notation with a decimal exponent (represented by the letter
D and a signed integer constant). The exponent field cannot be blank, but may be

zero. The plus sign preceding a positive constant and/or exponent may be omitted.

A double-precision constant has 56 bits of precision, or about 16 decimal digits.
The magnitude of a double-precision constant must lie between .].4*121—38 and
1.7*1538. Double-precision constants occupy four words of PDP-11 storage.

Examples of double-precision constants are shown below.

24.6713264837465D%
2.5D2 (i.e., 25f. to 16 digits precision)
3.6D-2) : ’ (i.e., @36 to 16 digits precision)

5.6Dg (i.e., 5.6 to 16 digits precision)

2.2.4 Octal Constants

The general form for an octal constant is a string of one to six octal digits (g to

7 inclusive) preceded by a quotation mark ("). For example:

1112¢
nﬂ
177777

Octal constants of this form may appear anywhere an integer constant is valid. An

octal constant may also be a string of one to six octal digits preceded by thé letter

0. Octal constants of this form are valid only in DATA, STOP and PAUSE statements.

7-9

A 1

Examples are shown below.

ol2¢
og
0177777

The maximum value of an octal constant is 177777.
2.2.5 Hexadecimal Constants

A hexadecimal constant is a string of one to four hexadecimal digits (@ to 9, and
A to F, inclusive) preceded by the letter Z. The hexadecimal digits follow.

Hexadecimal - Decimal

Digit Equivalent
Digit Equivalent

MEHODOWPOONIOUD WL HEE
=
FOOUONOOOE WL HFS

el
(LR NERE)

A hexadecimal constant is valid only in a DATA statement. The maximum value of a

- hexadecimal constant is FFFF. Some examples:

ZA34
ZCl
ZFFFF

2.2.6 Complex Constants

A complex constant is written as an ordered pair of real constants separated by a
comma and enclosed in parentheses. The first constant represents the real part of
the complex number; the second represents the imaginary part. Each may be signed.
The parentheses are part of the constant and must appear. A complex constant is
represented internally by four consecutive words of PDP-11 storage. Examples
follow.

(.78712,-%.7$712)
(8.763E3,2.297)

2.2.7 Logical Constants!

The two logical constants .TRUE. and .FALSE. are represented internally by the
integer values ~1 and @, respectively. The delimiting periods are part of the
constant and always appear. Any nonzero value is considered true when tested by a
logical IF statemeﬁt; -1 is equivalent to the octal number 177777. These values

may be entered via DATA statements as .TRUE. and .FALSE. (See Section 7-5.7). (See

Section 7-7.186 concerning input and output of logical values.)

Both arithmetic and logical operators may be used with logical constants, which are

treated as one-word integer values.
2.2.8 Hollerith Constants

A Hollerith (or literal) constant is a string of up to 255 characters, which may be

represented in one of two ways.

a. An integer constant indicating the number of characters,
followed by an H, followed by a character string:

S5HWORDS
4H1p23

b. A character string enclosed in single quoteé characters:

'WORDS'
'1423!

The single quote (apostrophe) character may be included in the character
string if it is 1mmed1ate1y preceded by another single quote character.
For example:

IDONI ITI

Hollerith constants may be entéred in DATA or input statements as a string of one
or two ASCII characters pef integer variable, one to four characters per real
variable, and one to eight charécters'per complex or double-precision variable.
Hollerith constants are stored in memory as byte strings, filling up to word
boundaries. If a Hollerith constant has an odd number of characters, a blank is

appended to the end of the constant.

!see Appendix J for the effect of the /ON switch on the storage allocation of
logical values.

7-11

A Hollerith constant is treated as an integer quantity when it appears in an

arithmetic context. For example:

I = 'ABC' +34

is equivalent to

I = "'AB' +34

The third and any subsequent characters are ignored. The integer value of 'AB'

can be determined by examining the storage format, which is shown here.

15 [}

ASCII value ASCII value
"of B of A

2.2.9 Radix—Sﬂ'Constants

Radix-Sﬂ/ is a special character data representation in which up to thfee characters
from a limited set of characters may be packed into a siqgle PDP-11 word. Radix—sﬁ
constants are allowed only in DATA statements. They are represented by a leading

R followed by up to six characters and may be used to initialize only variables

of type REAL.

A Radix-5§ constant terminates with the first non-Radix-5§ character or the sixth

Radix~5@ character, whichever comes first. Examples are shown below.

R123456

RPBYBEYA
R1.$ ' :

If i, j, and k are three characters from the Radix-5¢ set, they are combined into a

single word value using the formula:

((i * 585 + 3) * 56 + X

The Radix-5f characters and their code values follow.

Radix-SQ/Value

Character (Octal)
Space]
A-2Z . 1 - 32

7-12

Radix-5@ Value

Character) (Octal)
$ « 33,
.) 34
(not used) 35

g -9 36 - 47

Note that leading and embedded blanks are significant if they are within the
' 6-character limit, since blank is a valid Radix-5¢ character. Since the Radix—Sﬁ

code value blank is zero, trailing blanks may be omitted without affecting the
Radix-5¢ value.

2.3 FORTRAN VARIABLES

A simple FORTRAN variable is a named quantity whose value may change during execu-
tion of a program. A variable name is a string of one to six alphanumeric characters,
the first of which must be alphabetic. Variable names longer than six characters

are rejected by the FORTRAN Compiler, and cause an error diagnostic to be printed.

Legal Names Illegal Names.
ALPHA 2A (begins with a number)
MAX MAXIMUM * (more than 6 characters)

A34 : N

A variable has a principal attribute type, just as constants are of one type or
another. The type of variable indicates the type of value it can be assigned, its

precision, and its storage requirements.

Type INTEGER, REAL, LOGICAL, DOUBLE PRECISION or COMPLEX is assigned by means of an
explicit type declaration statement (see Section 7-5.2) or by an IMPLICIT statement

(see Section 7-5.1). INTEGER or REAL may also be assigned by virtue of the initial
letter of the variable name.

In the absence of any type'declarations or IMPLICIT statements, a variable name that
begins with I, J, K, L, M, or N is assumed to represent an integér variable. All

other initial letters indicate a real variable.

Integef‘Variablés Real Variables
MAX REAL
IDAT " DATAL
NJOB . X

7-13

2.3.1 Integer Variables

Integer variables undergo ariﬁhmetic calculations with automatic truncation of any
fractional part. For example, if the current value of K is 5 and the current value
of J is 9, J/K yields 1 as a result. Integer values can be converted to real values
by the FLOAT function or by an arithmetic assignment statement. Integer arithmetic
operations do check for overflow and priht an error message if the result of an

integer operation overflows 16 bits.
2.3.2 LOGICAL*1 Variables

Data items in LOGICAL*1 format are eight bits long (1 byte), and are always accessed

by means of a variable name defined as BYTE or LOGICAL*l type. The range of numbers
from +127 to -128 can be represented. Any arithmetic operation is performed internally
by taking two 8-bit operands, extending the sign to a full word, and performing the
desired operation. No diagnostics are issued for byte overflow; the reéult is trun-

cated to an 8-bit quahtity.

Logical and masking operations are performed with one byte of data at a time.

LOGICAL*l (or BYTE) array elements are stored in adjacent bytes.
2.3.3 Array Variables

The extent of a variable refers to the number of values that are represented by a
single variable name. A scalar variable represents a single quantity; e.g., BETA

represents a single numeric value.

An array variable represents a one, two, or three dimensional array of quantities.

A given variable name cannot be used as both a simple variable and an array name

in the same program unit. An array element ié denoted by the array name followed

by a subécript list enclosed in parentheses. The subscript list can be any one, two,

or three arithmetic expression(s) separated by commas.

An array can be defined with a DIMENSION or COMMON statement or as part of a type

declaration statement. Array dimensioning is discussed in Section 7-5.3.
Any legal arithmetic expression can be used as a subscript of any array element
once the array has been defined. Noninteger subscripts are converted to integers’

by truncation of the fractional part before use.

The extent of any array variable is determined by the number of dimensions it is

assigned. For example, the following are legal references to array elements.

7-14

one dimensional array - (Al)
two dimensional array' REL (24,3)

three dimensional array TR4 (X*2,5,2*X)

Arrays are stored in contiguous storage locations that are addressed in ascending
order with the first subscript varying most rapidly. -For instance, the 2-dimensional

array B(J,K) is stored in the following order:

B(l,l),B(Z,l),...,B(J,l)
B(1,2),B(2,2),...,B(J,2)

B(L,K), ... ,B(J,K)

See Section 7-5.3.1 for a detailed description of array storage.

References to an array variable must contain the number of subscripts with which
the array was defined, the exception being those statements that can refer to an

entire array given only the array name.
2.4 TFORTRAN EXPRESSIONS

FORTRAN expressions can be arithmetic, relational, or logical. Relational or logical
expressions‘have logical values that can be treated as integers. All expressions
are combinations of elements and operators. The different types of expressions are

discussed below.
2.4.1 Arithmetic Expressions

An arithmetic expression is a combination of arithmetic operators and elements. The

arithmetic operators follow in descending order of priority.

Operator ' Meanin
*%) Exponentiation (A¥**2)
+,- unary operators (algebraic signs: +3,-1)
*,/ multiplication (A*B), division (1/2)
+,- -addition (A+B), subtraction (D-4)

7-15

An arithmetic expression cannot contain adjacent arithmetic operators. An element
preceded by a unary operator must therefore be separated from a preceding binary
operator by parentheses, as in A + (-B).

In cases where two operations within an expression have the same priority (*,/ and

+,-) the operations are performed from left to right. For example:
-A*f2+B*c-1

is performed as
(~(A**2)) + (B*C) -1

Additional computations (such as sine, cosine, or square root) can be specified
via library function references. A function reference acts as a basic element in
an expression since all functions return a single value. (For example, SQRT (4.9)

returns the value 2.4 in an expression.)
An arithmetic éxpression may consist of a single element:

B4
22.7
NEX (3)

or a combination of arithmetic operators and basic elements.

1

-X+3
A/24DAT
TAN (PI*M)
B#* (-2)

2.4.2 Use'of Parentheses

Any arithmetic expression can be enclosed in parentheses and considered as a basic
element (it is evaluated before the remainder of the expression). Parentheses can

be used to change the order (and the result) of evaluation. For example:

4+3%2-6/2 = 4+(3%2)~(6/2) = 4+6-3 = 7
(4+3)*%2-6/2 = (7%2)-(6/2) = 14-3 = 11
(4+3%2-6) /2 = (4+(3%2)-6)/2 = (4+6-6)/2 = 4/2 = 2
((4+3)*2-6) /2 = ((7*2)-6)/2 = (14-6)/2 = 8/2 = 4

Within parentheses, the order of operator evaluation is as follows:

a. function evaluation

b. exponentiation

c. unary minus

d. multiplication, division

e. addition, subtraction
Parentheses cannot be used to imply multiplicatioh. That is:

A(2)
is the second element of the array A, whereas

A*2
indicates twice the value of the variable A.
2.4.3 Mixed Mode Arithmetic Expressions
With few exceptions, any type of constant, variable or function can be combined
with any other type in an arithmetic expréssion. The type of the resultant
expression when any two types are combined is found in Table 7-1.
Logical, octal and Hollerith constants are treated as integer constants when com-~
bined with other elements in arithmetic expressions. The result of such a combination
is then changed to the appropriate resultant mode.
Arithmetic operations can be performed between complex and other data types. Real,
integer, and double-precision values (represehted by V) are converted, if necessary,

to the complex value (V,#.f) prior to the arithmetic operations; V is a real value

in this representation.

- 7-17

Table 7-1

Mixed Mode Arithmetic Results

Byte Double
Logical*1l| Integer | Logical | Real |Precision Complex
Byte Double
Logical#*l Byte Integer | Logical Real Precision Complex
Double
Integer Integer Integer | Integer Real Precision Complex
Logical Logical Integer | Logical | Real |Double Complex
Precision
. Double)
Real Real Real Real Real Precision Complex
Double Double Double | Double Double|Double
Precision Pre- Pre- Pre- Pre- Pre~
cision cision | cision cision|cision Complex
Complex Complex Complex | Complex Complex~Complex Complex

The general rule for mixed modes is that the result has the type of the most sig-
nificant operand.

The following special rules apply for determining the type resulting from expressions|
of the form A**B .

1. If B is integer, the expression is of the same type as A;

2. If A and B are both Real, the expression is real;

3. If A or B is Double-precision, the expression is Double-precision;

4. No other possibilities for A and B are legal.

When a real number is converted to Double-precision format, repeating decimals are
not carried through the additional precision.

7-18

The -only illegal mixed mode operations are

B**}
I**R
I**D
C**R
C**D
X**B
X**G

-where
‘B is a Byte value.
I is an Integer value.
R is a Real value.
C is a Complex value.
D is a Double~precision value.

X is a value of any daté type.
2.4.4 Logical Expressions

A logical expression combines constants, logical variables, logical function
references and arithmetic expressions using relational or logical operators.

Logical masks can be represented by using octal constants. The logical constants
.TRUE. and .FALSE. can be used in any logical expression and have the values -1

and @, respectively. The fesult of a logical expression is the logical value true or
false and uses one word of storage space. (Any nonzero integer value is considered

true when tested by a logical IF statement.)

A relational expression consists of two arithmetic expressions separated by a
relational operator. The arithmetic expressions can be of any complexity and any
combination of integer, real, or double-precision types.' The relational operators

follow (where A and B are arithmetic expressions).

Relational
Operator Example Meaning

.GT. A.GT.B A is greater than B
.GE. A.GE.B A is greater than or equal to B
LT. A.LT.B A is less than B
.LE. A.LE.B A is less than or equal to B
.EQ. A.EQ.B A is equal to B
.NE. A.NE.B A is not equal to B

7-19

Relational expressions can be written comparing values of different precision
(having different data types). All lower-precision values are converted to the

highest precision format. The following should be noted:

a. When combined with, or related to, a complex value, a real, integer,
or double-precision value (represented by V) is converted tu the complex
value (V,@.8). V is a real value in this representation.

b. When a real number is converted to double-precision format, repeating
decimals are not carried through the additional precision. This causes
a real $.333..., for instance, to be less than a double-precision
#.333...

Only the relational operators .EQ. and .NE. can be used with complex expressions

(complex quantities are equal if their corresponding parts are equal).

The value of a relational expression is always either true or false (-1 or #,"no

other value). The following are relational expressions.

A.GT.B
A**2+C.LT.NET*B+4
AB/C.LE.AB/D

Parentheses can be used in relational expressions. For example:

(A+B) *C.EQ. (D+1)**2
(A(1)+1) .GT.(B(1))
A logical expression may also contain logical operators which operate on relational

expressions. The logical operators are as follows.

Logical

Opexator Example Meaning

.NOT. ’ .NOT.A Has the value .TRUE. only if A is
.FALSE.; has the value .FALSE. if A
is .TRUE.

.AND. A.AND.B Has the value .TRUE. only if A and B
are both .TRUE.; has the value .FALSE.
if either A or B is .FALSE.

.OR. A.OR.B Has the value .TRUE. if either A or B

or both are .TRUE.; is .FALSE. only
if both A and B are .FALSE. {inclusive
CR) .

7-20

A logical expression may consist of basic logical elements or a combination of
logical elements. For example, the following are all logical expressions (relational
expressions are a subtype of logical expressions).

.TRUE. 7

X.GE.3.14159

TV (1) .AND.INDEX

B(M) .OR. (K.EQ.LIMIT)
No two relational or logical operators may appear in sequence, except in the case
where .NOT. appears as the second of two logical operators. Any logical expression
can be preceded by the unary operator .NOT. as follows.

.NOT.T

«NOT. (X+7.GT.Y+2)

B(M) .AND..NOT.TV.OR.R which is the same as (B(M).AND.(.NOT.TV)) .OR.R

However, where .NOT. appears next to an arithmetic operator, the arithmetic expres-—

sion mist appear in parentheses. For examples
.NOT. (+1.0) .T.E.DA (2)

gs opposed to the following form, which is incorrect:
.NOT.+1.4.LE.DA(2)

Logical and relational operators have priorities in the following order when the

precedence is not established by parentheses.

.GT. .GE. .LT. <LE. -EQ. -NE. .NOT. .AND. -OR.

Relational operators are evaluated in an expression from left to right subject
to the priority rules above. In a logical expression, all arithmetic evaluation
is performed prior to any logical evaluation. Thus, the logical expression

.NOT.Z**2+Y*MA .GT. K-2 .OR. PA .AND. X .EQ. Y

is interpreted. as -

J

(.NOT. (((Z**2) + (Y*MA)).GT.(K-2))).OR.(PA.AND.(X.EQ.Y))
ltr___) L____% [L e

L - J)

7-21

Parentheses may be used within logical expressions to make an expression more
readable or to override established priorities. For example, the following two

expressions are evaluated differently.

A.AND. (B.OR.C)
(A.AND.B) .OR.C

2.5 OPERATOR SUMMARY)

Operators in each type are shown in order of descending priority.

Type Operator Operates Upon
arithmetic ok exponentiation numeric constants
+,- ‘. unary plus, minus variables and
Tx,/ multiplication, division expressions
+,- addition, subtraction
relational .GT. greater than logical variables,
.GE. -greater than or equal to logical constants
LLT. . less than and arithmetic
.LE. less than or equal to expyessions (all
.EQ. equal to relational operators
.NE. not equal to have equal priority)
logical .NOT. .NOT.A is true if logical variables
} and only if A is and logical constants

false; it is false
if A is true.

.AND. A.AND.B is true if and
only if A and B are both
true; it is false if either
A or B is false.

<OR. A.OR.B is true if
either A or B or both
are true; it is false
if both A and B are
false.

7-22

PART 7
CHAPTER 3
ASSIGNMENT STATEMENTS

There are three types of assignment statements.

1. Arithmetic assignment statements
2. Logical assignment statements, and
3. ASSIGN statements.
A value can be assigned to a variable at any point in a source program. During
- program execution, the most recent assignment determines the value of that variable

in subsequent statements.
3.1 ARITHMETIC ASSIGNMENT STATEMENT

The arithmetic assignment statement provides the means by which the results of

computations can be stored.
The format of the arithmetic assignment statement is

variable = expression
where variable is any legal simple or subscripted variable name, expression is any
- 3
legal arithmetic expression, and = is the replacement operator. The equal sign does
not indicate equality as in an algebraic statement, but rather a replacement. The
value of the expression is assigned to the variable name, regardless of any previous

value of the variable. For example,
I = I+l

takes the current value if I; adds 1 to it, and uses the new value as the current

value of I for any subsequent operations.

The expression to the right of the equal sign is evaluated and converted when
necessary to conform to the type of the variable to the left of the equal sign.
That is, if a real expression iis assigned to an integer variable, the value of the

expression is converted (truncated) to an intéger before assignment. For example:

~

AND = Y* (X**2+Z)
I = I*N

7=-23

X(J)

= (J)-B(J)

J = A¥*24C

14

The expression to be assigned must be capable of yielding a value that conforms to

the type attribute of the variable that is to. receive thét value.

Type conversions

are performed in accordance with the rules stated for mixed mode expressions in

Section 7-2.4.3 and Tables 7-1 and 7-2.

Table 7-2

Conversions Rules for Assignment Statements

Expression Type
INTEGER
LOGICAL,
Literal or - ‘
Variable OCTAL Double Byte
Type REAL Constant COMPLEX PRECISION LOGICAL*1
REAL Store X Make X REAL = |Store REAL Round to Sign~extend byte to
in Vv store in V part of X REAL and INTEGER convert
in V imagi- |store in V, INTEGER to REAL and
nary part low-order store in V
lost portion
lost
INTEGER Truncate Store X Tryncate Truncate X Store X in low-
LOGICAL X to INTE- |in V REAL por- to INTEGER order portion of V
GER and tion of X and store with sign bit
store inV to integer in Vv extended through
in V, imagi- high~order portion
nary part= of V.
8.9
COMPLEX Store X Make X REAL Store X in |[Round X to Sign-extend byte to
in REAL and store in |V REAL, store INTEGER, convert
portion REAL portion in REAL part [INTEGER to COMPLEX
of V, of Vv, imagi~ of V, imagi- |(imaginary part =
imaginary |nary por- nary part = ?.9) and store in V.
portion= |tion=g.g 2.9
g.2
DOUBLE Make X Make X REAL Set V to Store X in Sign-extend byte to
PRECISION | DOUBLE and store in REAL por- \' INTEGER, convert
precision |high-orxder tion of X INTEGER to DOUBLE
with low- |portion of with low- PRECISION, store in
order por-|V, low-order |order por- V.
tion = @ |portion=g tion of V=4,
store invVv imaginary
part lost .
BYTE Convert Store low- Convert Convert Store X in V
LOGICAL*1 | REAL por- |orxrder 8 REAL por- DOUBLE
tion to bits in Vv tion to PRECISION
INTEGER INTEGER portion to
store low- store low- INTEGER,
order 8 order 8 store low-
bits of bits of order 8 bits
INTEGER INTEGER of INTEGER
in byte in byte in byte
where: X indicates the expression that is evaluated on the right of the equal sign.

V indicates the variable name to the left of the equal sign, as in the state-

ment: X=X

7-24

3.2 LOGICAL ASS;GNMENT STATEMENT
A logical assignment étatement is of the form
variable = expression

where variable is a predefined logical variable name or a 1ogica1 array element
name, expression is a logical expression, and = is the replacement operator. As
in the arithmetic assignment statement, the equal sign indicates that the value of

the expression (true or false) is given to the variable specified. For example:

P = .TRUE. ‘ . -
VAL = X.GT.4.0R.B.EQ.X
A = R.LE.X**2

In the case where mixed mode arithmetic expressions are being logically compared,

Table 7-3 shows the mode in which the comparison is effected. For .example,
A = X**2 GE. I

causes X**2 to be evaluated, the value of the integer variable I converted to real

format, and the comparison made.

3.3 ASSIGN STATEMENT

The ASSIGN statement is of the form
ASSIGN n TO ivar

where n is a statement number and ivar is an integer variable. The ASSIGN statement
permits alsubsequently—executed assigned GOTO statement (see Section 4.1.3) to
transfer control to the statement identified by the variable ivar, The ASSIGN
statement and the associated GOTO statement(s) must appear in the same FORTRAN
program unit. The statement number assigned must be»that of an executable state-

ment (assignment, I/O, or control statement).

An integer variable used in an ASSIGN statement must be redefined in an arithmetic
assignment statement before it can be used in any context other than the GOTO
statement (and after which it can no longer be used in the GOTO statement). For

example,

ASSIGN 10 TO COUNT

7-25

associates the variable name COUNT with statement number 10, after which the state-

ment
COUNT=COUNT+1

is considered invalid by the FORTRAN system. The above statement can be performed,

however, if preceded by the statement.

COUNT=24
which assigns the value of 20 to the variable COUNT. But the variable COUNT can no
longer be used to refer to statement number 10. Incorrect usage of a variable

defined in an ASSIGN statement causes a warning diagnostic to be printed by the

Compiler.

7-26

PART 7
'CHAPTER 4
" CONTROL STATEMENTS

4.1 GOTO STATEMENTS

GOTO statements allow program execution to jump from one section of code to another,

either directly or based on the value of a variable.
There are three typég of GOTO statements.
a. Unconditional GOTO statements

b. Computed GOTO statements
c. Assigned GOTO statements

4.1.1 Unconditional GOTO Statement

The unconditional GOTO statement transfers control directly to the specified

statement number. The form of this statement is

GOTO n
where n is the statement number of an executable statement. For example:
GOTO 1098

When the above statement is encountered, program execution continues at the state-

ment identified by statement number 18@.

An unconditional GOTO statement may appear anywhere in the executable part of a
source program, except as the terminal statement of a DO Loop. The GOTO statement
and the statement to which it transfers control must both appear in the same FORTRAN

program unit.
~4.1.2 Computed GOTO Statement
_ The computed GOTO statement allows the user to transfer control to ohe of several

statement numbers, depending upon the value of a variable. The form of the state-

ment s as follows:

7-27

GOTO(nl,n ,n ,...,nk),ivar

2773

where n, are statement humbers and ivar is an integer variable whose value is
between +1 and k. The comma between the statement number list and ivar is
optional. Control is automatically transferred to the statement whose number is
n,ar in the list.

GOTO (75,158,199,85,275)L

If L is equal to 1 when the statement is executed, control transfers to statement
number 75 in the program; if L equals 5, control transfers to statement number
275. If L has a value less than 1 or greater than 5 at the time this statement
is executed, control passes to the next statement in the program. There is no

restriction on other uses of the integer variable L within the program.

A computed GOTO statement may appear anywhere in the executéble part of a source
program except as the terminal statement of a DO loop. The statement numbers in
parentheses must identify executable statements that exist in the same program
unit as the GOTO statement.

4.1.3 Assigned GOTO Statement

The assigned GOTO statement allows the user to transfer control based on an integer

variable name.
Assigned GOTO statements may t;ke one of two forms.
GOTO K
or
GOTO K, (nl Dy oDy reee sy)
where K is an integer variable name and ni are statement numbers. Control is
transferred to the statement whose number is currently associated with the variable

K via an ASSIGN statement.

As described in Section 7-3.3, an ASSIGN statement defines an integer variable as

a statement number. Thus, when the statement

ASSIGN 1§ TO LOOP

is executed, the ptogrammer can transfer control to statement 10 by inserting the

statement:
GOTO LOOP
or, alternatively: B

GOTO LOOP, (14, 24, 140)
which transfers control to whichever statement number is currently associated with
LOOP, A statement number must have been assigned to LOOP priof to execution of the
GOTO statement; if the optional statement list is included, the number assigned to
LOOP must be one of the listed numbers. Otherwise, control passes to the next

sequential statement.

The GOTO statement and the executable statement to which it transfers control must

both appear in the same FORTRAN program unit.
4.2 FIF STATEMENTS

IF statements allow program execution to jump from one section of code to another
or conditionally execute a statement based on the value of an expression. There

1]
are two types of IF statements.

a. Arithmetic IF statements
b. 7 Logical IF statements

Care should be taken in mixed mode comparisons or comparisons in which one or more
values have undergone a type conversion. Mixed mode values to be compared are set
to the more significant of the two types being compared. When this is done, repeating
binary fractions do not repeat to the full precision of the new mode. For example,

this may cause a real g.1 (1l.gE-1l) to be unequal to a double-precision g.1 (1.¢D-1).

4.2.1 Arithmetic IF Statement
An arithmetic IF statement is of the form

IF (expression) nl /0, ,n

2 3)

7-29

- where expression is an arithmetic expression in parentheses and nl ,n, ,n_ represent

) 2 3
the statement numbers to which control is transferred if the expression is less than,

equal to, or greater than zero, respectively. All three statement numbers must be

present (although two may refer to the same statement). For example:

iF (ALPHA) 1¢, 28, 1f

Control transfers to statement number %ﬂ, since the expression is less than zero.
It would also transfer to statement 14 if the expression were greater than zero.
Control would transfer to statement number Zﬂ’only if the expression were exactly

equal to zero.

Expressions having complex or logical results cannot be used in arithmetic IF

statements.
4.2.2 Logical IF Statement
A logical IF statement is of the form

IF (expression) statement
where. expression is a logical expression in parentheses and statement is an executable
FORTRAN statement other than another IF statement or a DO statement. If the ‘
expiession has the value .TRUE. the contained statement is executed; otherwise, the
next sequential statement is executed.
Examples of logical IF statements are shown below.

IF (T.OR.S) X=Y+1

IF (2.GT.X(K)) CALL SWITCH(S,Y)

IF (M.EQ.INDEX) GOTO 15

4.3 DO STATEMENT

The DO statement simplifies the coding of repetitive procedures. The DO statement

is of the form

DO n i = ml ,m2 ,m3

7-30

where n is a statement number, i is a unsubscripted integer variable, and m I Jmy

are positive integer constants or unsubscripted integer variables. If m, is not,

specified, it is understood to be 1. A zero or negative m_, vdlue is not permitted.

3
Statements following the DO statement, up to and including statement n, are
executed repeatedly for values of i starting with m1 and incremented by m3 until

i is greater than m,.

The statements that are executed as a result of a DO statement are called the

range of the loop. The variable i is called the index variable. The terms m /M, ,m

1
are the initial, terminal, and increment parameters of the index, respectively. The

3

initial parameter value must be less than or equal to the terminal parameter value.

When the DO statement is executed, its range is first executed with the index equal
to the initial parameter's value. After each execution of the range, the increment
value is added to the value of the index and the result compared with the terminal
parameter value. If the index value is not greater than the terminal parameter
value, and integer overflow has not occurred, the range is executed again with the

new index value. The range of a DO loop is always executed at least once.
For example:

DO 20 I = 5,1¢¢,2 ‘ (final iteration has I = 99)

DO 148 M = 1g,1¢9,2 (final iteration has M = 1g4§)
After the last execution of the range, control passes to the statement immediately
following the loop. This is tne normal exit from a DO loop. Exit can also be
accomplished by the execution of a control statement within the range. (Control
- cannot be transferred into the range of a DO loop from outside that loop except

in the case of an extended range as described below.)

The values of the terminal and increment parameters, and of the index variable, of
the DO loop cannot be altered within the tange of the DO statement. The index vari-
able is, however, available for use as an ordinary véiiable within the range of a
DO loop, with a GOTO or IF, the index variable retains its curfent value and is
available for use as a variable. The value of an index variable is not defined on

normal edit from the DO loop.

The terminal statement of a DO loop cannot be a GOTO, DO, RETURN, or arithmetic
IF statement. A logical IF statement is allowed as the last statement of the
range, provided it does not contain any of the statements mentioned above. For

example:

DO 5K =1,4 N

5 IF (X(K).GT.Y(L)) Y(K)=X(K)
6 e

In this case, the loop ends when control passes to statement number 6. Statement 5
is executed four time whether or not the Y(K)=X(K) statement is executed. Note that

if statement 5 were
5 IF (X(K).GT.Y(L)) GOTO 1%
improper execution may result.

The range of a DO statement may include other DO statements, provided the range of
each DO statement is contained (nested) entirely within the range of the next -
outermost DO statement. That is, the range of any two DO statements must intersect
completely or not at all. More than one DO loop within a nest of DO loop can end on
the same terminal statement.

The range of a DO loop need not be merely a section of straight line code following
the DO statement. A control statement that causes execution of instructions else-
where in the program is permissible as long as control returns to the range of the
originating loop. The statements executed between ;he pair of control statements

(leaving and returning to the DO loop) are called the extended range of the loop.

" DO loops can be nested up to 10 levels deep. In calculating this depth, an implied
DO in an I/0 statement (see Section 7-9.1.3) counts as one level, whose range is
a single statement; and n implied DO loops within one I/O statement count as n

levels whose ranges are all within the single stdtement. - For example,
54 WRITE (5,25@) (BUF,F(I),I=1,5),(DIFF(I),I=1,3)

contains two complete implied.loops resulting in one level of nesting at a time. If
the above statement were contained in an unnested DO loop, the maximum nesting level

generated by line 50 would be two.

NOTE

A common typing mistake is to replace a comma in
a DO statement with a period. For example:
DO 5 I = 1.5

This statement is interpreted by the FORTRAN Compiler
as. an arithmetic assignment statement:

DO5I = 1.5

7-32

4
4.4 CONTINUE STATEMENT
The CONTINUE statement is of the following form.
CONTINUE

No processing is done when this statement is executed. It is used primarily as a
target line number for control transfers, particularly as the terminal statement of

a DO loop. For example:

DO 7 K = START,END

IF (X(K)) 22,13,7

7 CONTINUE

A positive value of X(K) begins another execution of the range or causes a normal

exit from the loop.

In this example, the CONTINUE statement provides a target address for the IF state-
ment and ends the range of the DO loop.

The CONTINUE statement can be inserted anywhere in the executable portion of a

program with no effect.
4.5 PAUSE STATEMENT
The PAUSE statement takes one of the following forms.
PAUSE
or
PAUSE n
where n is an octal constant from one to six digits long (up tb 177777) optionally

preceded by the letter O. The PAUSE statement temporarily interrupts program

execution.

7-33

4.6 STOP STATEMENT .
The STOP statement is of the form

STOP
or

STOP n
where n is an octal constant from one to six digits long (optionally preceded by
the letter O). The STOP statement prints the constant (zeros, if no constant is
specified), terminates execution of the current program, and returns control to the
Monitor.
4.7 END STATEMENT
The END statement is of the following form.

END

This statement must be the last statement in every FORTRAN program unit. Program

compilation is terminated when the END statement is encountered in a main program

unit.

An END statement forces a call to the EXIT subroutine in a main program. A
function or subroutine subprogram forces a return to the calling program if a

RETURN statement is not present.

If a compiler input file is exhausted before an END statement is encountered, a

diagnostic is printed and an END statement forced.

PART 7
CHAPTER 5
SPECIFICATION STATEMENTS

Specification statements are nonexecutable statements generally placed at the
beginning of a program to inform the FORTRAN Compiler about storage allocation,

variable types, subprograms, or data.

Specification statements must be placed in the program prior to the first usage
of any variable they describe. Some specification statements determine storage
allocation and must appear prior to any executable statements. Those statements

that must precede all executable statements are called declaratives and include:

IMPLICIT

EXTERNAL

type declaration

COMMON

EQUIVALENCE

DIMENSION

DATA
The IMPLICIT declaration, if present, should occur first as its action may affect
any other declaratives. DATA statements, if used must appear last, since other k

declaratives may have an effect on the data elements they define.
5.1 IMPLICIT STATEMENT
The IMPLICIT statement is of the form

- IMPLICIT type al,az,(blsz),a3,(b3-b4),...
where type indicates the variable type being defined (see Section 7-5.2 for a
complete list). The elements ai'represent single alphabetic characters separated
by commas. The elements (bn-bm) represent a range of characters denoted by the
first and last characters of the range and separated by a minus sign. A range of
characters is always enclosed in parentheses. For example:

IMPLICIT INTEGER (A-D), (X-2)

This statement instructs the FORTRAN Compiler that any variable name in the program

.beginning with the letters A, B, C, D, X, Y, or 2 is an integer variable.

7-35

The effect of the IMPLICIT statement is to extend the basic rule that all names
beginning with I, J, K, L, M or N indicate integer variables; all others are real
variables. Any variable name that does not appear explicitly in a type declaration
statement and whose first character is one of those listed in an IMPLICIT statement

is classified according to the type appearing in that IMPLICIT statement.
The initial state of the FORTRAN Compiler is as though the statements

IMPLICIT REAL(A-H), (0-Z)
IMPLICIT INTEGER(I~N)

appeared at the beginning of each program. This state is in effect unless a type
declaration or IMPLICIT statement changes the interpretation of any variable name.
Definition of a variable name in a type declaration statement overrides any type

specification determined by an IMPLICIT statement.

The IMPLICIT statement, if present in a subprogram,.must precede all other state-
ments (except the SUBROUTINE and FUNCTION statement). The IMPLICIT statement
becomes effective when it is encountered in the program. Previous specifications
of variables having implicitly defined values will cause a diagnostic. For

example,

COMMON Y1

IMPLICIT INTEGER (X-2)

results in a W (warning) diagnostic.

Most of the FORTRAN Library function names (FLOAT, IFIX, etc.) follow the default
type rules. That is, FLOAT produces a real result, IFIX producés an integer
result, and so on. The use of an IMPLICIT statement may change the default type,

causing undesirable results. For example, in the program,

IMPLICIT INTEGER (A-2Z2)
REAL X

I=1

X=FLOAT(I)

END

the function FLOAT is treated as though it produced an integer result leading to

incorrect values being generated. To have the FLOAT function return a real value

7-36

in this context, an explicit‘type declaration should be included in the program

before or after the IMPLICIT statement, as follows.
REAL FLOAT |

Those library functions whose names do not follow the default type rules (fhose
that return complex or double-precision values) are recognized by the compiler
under any conditions. The data type of these names is not affected by an IMPLICIT

statement but may be changed by an explicit type declaration. For example:
INTEGER CABS

This statement could cause incorrect operations at execution time if the intrinsic
function CABS is called.

5.2 TYPE DECLARATION STATEMENT

A type declaration statement provides the compiler with a description of the

storage format of the variables defined, and is of the form

type varl,varz,...

where type indicates the name of the variable type being defined. Acceptable A

types:
INTEGER (1~ or 2-wora integer numbers)
INTEGER* 2 "~ (same as INTEGER)
REAL ‘ (2-word real numbers)
REAL*4 (same as REAL)
DOUBLE PRECISION (4-word real numbers)
REAL*S (same as DOUBLE PRECISION)
COMPLEX (4-woxd values, each having a 2-word real

part and a 2-word imaginary part)

LOGICAL (true = -1, false = @)
BYTE ? (8-bit format)

LOGICAL*1 (same as BYTE)
Allocation of two bytes for l-word integers is effected only by the /ON switch.
INTEGER*2 causes four bytes: per element when the /ON switch is not set (see
Section 7-12.1).

Allocation of two bytes for LOGICAL variables is effected only by the /ON switch.
LOGICAL allocates four bytes per element when the /ON switch is not set (see
Section 7-142.2).

indicate the variable name(s) that are to be allowed

The terms var_,var

1 g
storage space in the data type format specified.

Type declarations must precede all executable statements. For example:

COMPLEX RET,X,TST
BYTE IAMB,LEN,R(28),S(28)

In the first statement, three variable names are specified as complex variables.
In the second statement, two variable names are specified as 8-bit byte variables, .

and the "arrays R and S are dimensioned as having byte-sized elements each.

Type declarations can be used to define dimension specifications for arrays.
However, an array defined in a type declaration cannot be redimensioned by any
other specification statement, and vice versa. Adjustable arrays in subprograms
can also be defined in type declarations.

If a variable name is defined in a type declaration, the type so specified over-
rides any type specification determined by the initial letters of the variable.

The priority for defining a variable type is, therefore, as follows:

a. type declarations.
b. IMPLICIT variable type.

c. real or integer, depending on the initial letter (where I through N
indicates an integer).

5.3 DIMENSION STATEMENT

The DIMENSION statement is of the form
DIMENSION 51,82,33,,..

where S is an array specification of the form
var(nl)

var(nl,nz)

ox

var(nl,nz,n3)

7-38

where var is the array variable name, and nl,nz, and n3

constants (or variables, optionally, in the case of adjustable array dimensions

are unsigned integer

in subprograms) indicating the maximum size of the array in each of the three

possible dimensions.
An array can have one, two, or three dimensions. For example:
DIMENSION A(20), B(1#,18), C(5,5,5)

Where more than one array is defined in a single DIMENSION statement, the array

specifications are separated by commas.

DIMENSION statements must precede all executable statements.

The appearance of the DIMENSION statement causes the FORTRAN Compiler to allocate
space for the appropriate number of variables. Array definition can also be

performed by a COMMON statement or any type declaration statément. For example:

-COMMON X(1#4,4),Y,2
INTEGER A(7,32)

Once defined, an array cannot be redimensioned by any other specification statement.

Unless én array is specified in a type declaration statement, the type of the array

is determined by the first letter of the array variable name.

An error message is always generated at run-time if an array subscript is less than
one. Optionally, using the /CK switch option (see Appendix J), the system will

check to see that array subscripts do not exceed the maximum size specified.

A subprogram can use adjustablé arrays, the size of which may depend upon the

parameters of the subprogram call (see Sections 7-6.4.1 and 7-6.4.2).
5.3.1 Array Storage

Arrays of one, two, or three dimensions are each stored as a linear sequence of values
. . : th
inmemory. Arrays are always stored in memory column by column. Therefore, the n

element of a l-dimensional array is A(n).

In order to find the linear element of a 2-dimensional array A(I J) where a given

element is A(i,j), the formula

7-39

n=1i+ I*(j-1)
is evaluated. A(i,j) is stored at the nth element.

In the 3-dimensional array (A(I,J,K) where a given element is A(i,j,k), an indi-

vidual element is stored at the nth element, where n is
n=1i+ I*(j-1) + I*J (k-1) .

It is sometimes desirable to equivalence a2~ or 3-dimensional array to a l-dimensional
array. The above formula is useful for determining the algorithms for manipulating

the arrays after such a change. However, for any given array, elements of that

array must be referenced using the number of subscripts specified in the defining
statement (although in some contexts an entire array can be referenced by indicating

the array name only). See Figure 7-2.
5.4 COMMON STATEMENT

The COMMON statement causes the specified variables to be stored in an area of memory
available to other programs and subprograms. Common block areas can be of any size
and any number of them can exist within the space available on the system:i One
unnamed common block (known as blank common) is allowed. The variables are placed

in the individual common blocks in the order in which they appear in the block

description.
The COMMON statement takes the form
COMMON /blockl/a,b,c/block2/d,e,f

where blockn is a 1- to 6-character alphanumeric name (the first character of
which must be alphabetic), delimited by slashes, and considered to be the block

name. The sequences a,b,c and d,e,f represent the names of the variables assigned

to the common block(s). The form
COMMON a,b,c,...,n

is used to indicate the blank common block.

One or more common blocks can be defined in the same COMMON statement.

For example:

COMMON /A/X,Y,2/B/L,M,N

£

abexols Aexay
Z-L @anb1g

-aousnbas ut JusweTe obeiols ISTPT @2U3 ST (S'T’1)D

roousnbas ur jusweTe sBeIO3IS YI9L OYI ST (Z'€T)D

(T's’'s)o|se| (T’'p’s)olgz|(1'e’s)d]sT[(T2’ S)ofgT[(T'T'S)o
(T's*'7)0|pz| (1'% 7)) D[6T[(T'E RO [P | (T2 ?)D]6 [(T'T’%)D

S

4

(z’s’s)ol@gs | (T's‘e)d|eg (Tp e)ofsT (T c’e)o[eT{(T°2‘€)D|8 [(T'T°E)D|¢E

(e’s'v)olev | (T’s‘2)o(ze| (T'% 2)D[LT[(T'c’e)D et |(T°2’2)D|L |(T'T'2)D]|2

(€°6°6)DJse [(2's’€)D[8y | (T's’T)O|Te[(T'7' D9t (T €' DT (1’2’ D9 |(T'T’'T)D| T

(€'s'9)D|bL |(2's’2)O[Ly [(2'%’2)D]ew[(c’e e)o[Le](z'z’2)o|ee (2’ 1°2) 0| L2

(7's’6)0|@dT](€’s"€)0[eL [('s'T)o[ov [(2’ v 'T)o|tw| (2’ €' T)D| 9| (c'¢ ' T)o|Te [(2" T°T) |9z .
- __[(#'s'v)0J66 |(€7°5"2)D]2L (£ 7 2)D|L0 | (£'€°2)0]|29| (£°2'2)DLS| (£°1°2)Dz8
(6'576)9[s2T KS"w’S)0[det (v s’€)d86 | ('S ' TIO|TIL | (€' v ' 1)0|99 | (£ €'1)D]|19] (€°2°T)D|95| (€' T'T)D| 1S
(s°s’%)0 w2t [(s’v’'v)D[6T1[(v’'s’2)0[L6 | (W' ¥'2)0|e6 | (7 €°2)0|L8 | (¥'2'2)D|c8| (#°1°2) 0| LL
(s7c’e)djeeT (S % €)D|8IT|(v'6'1)D|96 [(v' v ' 1)IO|16 | (v’ €' 1)D]|98 | (v'¢ TD|18| (7 T°T)D| oL
(s's’2)0|zeT [(S‘v’2)0[L1T] (S € 2)D|eTt|(6'c 2)D|LBT] (5 1'2)D|chT
(§7S DD [TeT [v ' DIOJ9TT] (S €' D)O|TTT] (5 ¢ ' 1D|9BT| (S’ T° 10| 18T

(5'G6“G)D Aexxy TRUOTSUSWTQ-E

7-41

. sousnbes uT jusweTe aberols yaueaybre Syl ST (p’Eld

sousnbas ur juewsie 26vI03S PATYI Y3 ST (T‘€)d

(s‘orailtz] (v’'s)aldz|(c’s)gafst|(z‘s)a|gt|(1's)a

(s'pajvzi (v'majet|(c’r)g|vif(c’'v)e (1’'y)g

(s‘zidlez]| (p'z)a]iTl(€2)d]zT (2 2)d (T'2) 9

6
(s‘e)gfez] (v'eldlsT|(c‘e)afeT{(c’e)g]8 T(1'e)a

L

9

NI N

(s'Dajtej (p'Dg|ot{(e'Da|TT|(2'T)a (T'De

(5’s)g Kexay TeuoTsUSWId-Z

N(evefee@e]wodedmeedeoor]

(FT) ¢ Aexay TeuoTSUSWIQg-T

This statement defines two common blocks, each containing three variables.

Where blank common is the first common block being described in the COMMON statement,
no block name or specification is necessary. Subsequent block names in the same
COMMON statement are delimited by slashes. However, when elements of blank common
are indicated other than in the first position in a COMMON statement, two con-

secutive slashes (any separating spaces are ignored) are used. For example:

COMMON /R/X,Y¥//B,C,D
COMMON B,C,D/R/X,Y

The two COMMON statements above are identical in effect.

All COMMON statements within a program unit must precede all executable statements.
A common variable cannot appear in more than one common block in a single program
unit. However, since labeled common block names are used only by the compiler and
are not present in the functional program at run time, such block names can be used

as variable or subroutine names within the program.

Block entries are linked sequentially throughout the program, beginning with the
first COMMON statement. For example, the statements

COMMON/A/ALPHA/B/BET ,GAM/C/ET

COMMON/B/DEL,EP, 2E/C/THE,10/D/KA,KA
have the same effect as the statement
COMMON/A/ALPHA/B/BET,GAM,DEL,EP,ZE/C/ET,THE,IO/D/KA,LA
Storage allocation for blocks of the same name begins at the same location for all
program units linked together in a single load module. For example, if a program
contains the statement
COMMON A,B/R/X,Y,Z

as its first COMMON statement, and a subprogram contains thg statement

COMMON /R/U,V,W//D,E

7-42

as its first COMMON statement, the quantities represented by X and U, by ¥ and V,
and by Z and W (provided they are of corresponding word lengths) are stored at the
same locations in common block R; a similar correspondence holds for the quantities
A and D, and B and E, in the blank common block. Responsibility for the values of
the variables used and the correspondence of word lengths of the variables rests

with the programmer.

The size of a common block is the sum of the storage reQuired for all'elements
introduced through COMMON and EQUIVALENCE statements. Where the size of the
various common blocks referenced by several program units in a single load module
differs, the length of each common biock is resolved at linkage time to be the
length of the longest block of the given name declared by any program unit.

The variable names thap follow the block name indicate scalar or array variables
assigned to that block. Where an unsubscripted array name appears in a COMMON
statement, the array must have been previously defined in a DIMENSION or type
declaration statement. Where.a subscripted array name appears in a COMMON state-
ment and the array has not been defined, the arréy is defined as being the indi-
cated size. Where the array has been dimensioned previously, an error diagnostic

is printed. For example:

DIMENSION T(10)
'COMMON ABS (5,10,5),T .

The COMMON statement defines the array ABS and allocates storage space for that
array in blank common. All elements of thé array T are also stored in blank
common. (Arrays in common storage are stored according to the rules specified
in Section 7-5.3.1.)

When both BYTE (LOGICAL*1) and other types of variables are included in the same
COMMON block, care must be taken to assure that non-BYTE elements that follow

BYTE elements are allocated on a word boundary. Non-BYTE elements may only follow
an even number of BYTE elements. (Failure to assure this may result in a "word

reference to odd address" hardware error when the program is executed.)
5.5 EQUIVALENCE STATEMENT
The EQUIVALENCE statement is of the form

EQUIVALENCE (varl,var),(Vari,varj,...),...

2,...

7-43

where var indicates a variable name used in the current program unit. Each of the
variables within a set of parentheses is assigned to the same storage location.

For example,
EQUIVALENCE (LAN,MAR)

specifies that the variables LAN and MAR are stored in the same location,\and
have the same value. Where variables being equivalenced are not of the same
type, the equivalencing operation assumes that each variable begins in the same

word (see the description of storage formats in Chapter 12).
EQUIVALENCE statements must precede all executable statements.

The equivalence relationship is transitive; that is, the two statements below have

the same effect.

EQUIVALENCE (A,B), (B,C)
EQUIVALENCE (A,B,C)

The EQUIVALENCE statement is used to conserve core storage during exécution or to
obtain a portion of a numeric value in a different format. Rather than reserving
space for a variable that is only used for a short<time in the program, a later vari-
able can be equivalenced to use this space when the earlier value is no longer of

interest. A statement such as the following
EQUIVALENCE (TRI,ISO)

allows ISO to represent the storage location formerly occupied by the real variable
TRI.

To make full use of the space required by a real variable, tﬁat real variable can
be equivalenced to two integer variables (assuming use of the /ON switch! which
causes l-word integers to be used throughout the program). Similar techniques
can be used to equivalence two real, or two to four integer, variables to complex

or double-precision variables. For example:

DIMENSION N(2)
EQUIVALENCE (TRI,N)

lsee Appendix J.

These two statements equivalence the first word of TRI to N(1) and the second word

of TRI to N(2), assuming use of the /ON switch.
5.5.1 Equivalencing Array Variables

The subscripts of any array variables appearing in an EQUIVALENCE statement must be

integer constants. For example:
EQUIVALENCE (X,A(S5)),(BET(2,2),Y(2,4,1),NET)

A previously-dimensioned array name used in an EQUIVALENCE statement without sub-

scripts implies reference to the first element of the array. For example,

DIMENSION Y (2%)
EQUIVALENCE (Y,X)

has the same effect as

DIMENSION Y (28)
EQUIVALENCE (Y (1),X) .

Where a subscript is present in an EQUIVALENCE statement, the array element speci-
fication must contain an integer constant for each of the array dimensions as
originally defined. No default value is supplied for missing dimension eiements,

and a diagnostic is generated. For example,

DIMENSION REAL(2,14,18)
EQUIVALENCE (REAL(1,1),TRAN)

is illegal and would result in an error message. (See also the description of array
storage in Section 7-5.3.1).

5.5.2 EQUIVALENCE and COMMON Interaction

The same variable name may appear in both COMMON and EQUIVALENCE statements. How-
ever, two quantities in common cannot be made equivalent to each other. Quantities
placed in a common block by an EQUIVALENCE statement may cause the end of the

common block to be extended. For example,
COMMON/R/X,Y,2

DIMENSION A (4)
EQUIVALENCE (A,Y)

7-45

causes the common block R to extend from X to A(4) as follows.

X
Y=A(1)
Z=A(2)
A(3)
A(4)

The end of the common block has been extended by two elements. No EQUIVALENCE
statements are allowed to extend the beginning of a common block, however. For

example, the sequence

COMMON/R/X,Y,2
DIMENSION A(4)
EQUIVALENCE (X,A(4))

is not permitted, since it would require A(l), A(2) and A(3) to extend beyond the .

starting location of common block R.

An EQUIVALENCE statement is not permitted to violate any previous EQUIVALENCE
storage assignments or extend any array beyond its maximum predefined dimensions.

For example:

DIMENSION A(1g),B(19)
EQUIVALENCE (A(1g),B(1)),(A(5),B(3))
EQUIVALENCE (A(5,18),B(5))

Both of the preceding EQUIVALENCE statements are unacceptable.

5.5.3 EQUIVALENCE and BYTE Arrays

. ‘ >
In using EQUIVALENCE with items in a BYTE (LOGICAL*1l) array, only'thoge items
aligned on a word boundary can be specified in an EQUIVALENCE statement. Individual
BYTE variaples are always aligned on word boundaries except within COMMON blocks
(see Section 7-5.4). 1In a BYTE array, only the elements having odd subscripts are

aligned on word boundaries. For example:

BYTE A,B(9)

REAL X
correct: EQUIVALENCE (A,X,B(3))
incorrect: EQUIVALENCE (A,X,B(4))

7-46

5.6 EXTERNAL STATEMENT

The EXTERNAL statement is of the form

-

EXTERNAL a,b,c,...

where a,b,c,... represent the names of FUNCTION or SUBROUTINE subprograms to be used
as parameters to a subprogram call.

FUNCTION and SUBROUTINE subprogram names can be used as arguments of other sub-
programs. When used in this manner, subprogram names are distinguished from

ordinary variables by'their appearance in an EXTERNAL statement. For example:

EXTERNAL SIN,COS

CALL TRIGF (SIN,1,5,ANSWER)

.
.

. CALL TRIGF (COS,18.7,ANSWER)

.
.

END

SUBROUTINE TRIGF(FUNC,ARG,ANSWERf

ANSWER = FUNC (ARG)

RETURN

END
The EXTERNAL statement must appear before any executable statements in any program
or subprogram. This statement is used in programs or subprograms using the name
of a function or subroutine as a parameter in a subprogram call. This statement
does not take a line number and should not contain any name previously defined.
5.7 DATA STATEMENT

The DATA statement is of the form

DATA var/value/,var/value/,...

7-47

where var is a list of variable names, and value is an ordered list of numeric or

string values that are to be assigned to the respective elements of the variable
list.

The DATA statement is used to supply initial or constant values for variables.
DATA statements must precede all executable statements and must follow all other
declaratives. Elements of the variable and value lists are_separated by commas.
More than one set of variable and value lists can be contained in a single DATA

statement. For example:

DATA A,B,C/3.4,5.9,7./

DATA I,3/7,3/X,Y,2/43.5,2.01,8.4/

Dummy arguments must not appear in the variable list. Whenever several variables
are to be assigned the same value, the item in the value list can be preceded by
an integer constant indicating the number of repetitions of that variable. The

integer and data values are separated by an asterisk. For example:
DATA A,B,C/3%*3.17/
The three real variables are each assigned the value 3.17.

Radix-5@ constants (See Section 7-2.2.9) may only bhe used to initialize variables
of type REAL.

Hollerith (or character) constants may be used to initialize variables of any type.
Each Hollerith constant may be used to initialize exactly one variable. If the number
of characters in a Hollerith constant is fewer than needed to initialize the entire
variable element, the compiler will append additional blank characters to the right
of the constant to completely fill the variab}e. If the number of characters in
the constant is more than needed, the leftmost characters will be used and the
remainder ignored.

The specified values are compiled into the object program and are assumed by the
variables when program execution begins. Variables in a labeled common block can
only be defined in a BLOCK DATA subprogram (see Section 7-6.4.8). Variables in

the blank common block cannot be initialized. . -

7-48

Variables may aiso be subscripted array elements or unsubscripted array names.

-When the unsubscripted name of a predefined array is given in the list, a data
value must be specified for every element of the array. Data elements are stored
in the array in the order used for data transmission and storage of arrays; that is,
in order of increasing subscripts with the first subscript varying most rapidly

(column by column storage, see Section 7-5.3.1). Allocation of data to an array

stops when

a. the daté (value) 1list is exhausted; or

b. data items have been allocated to the entire array, in which case

additional data items are allocated to any additional items in the
variable list.

.For example, .
DATA X,Y,Z/'A','BCDE', 'FGHIJKL"/

produces the following iq memory.

X+1 X
blank
X+3 ' X+2
blank blank
Y+l e
c B
Y+3 Y42
E D
Z+1 Z
G F
Z+3 Z+2
I H

The data items following each list of variables must have a one-to-one corres-
pondence with the variables of the list, and must agree in type, since each item

of the data specifies the value given to the corresponding variable.

Data items assigned may be numeric, Hollerith, octal, hexadecimal, Radix-5¢, or

logical constants. For example,
DATA ALPHA,BETA,IVAL/5.,16.E-2, .TRUE./
specifies the value 5.¢ for ALPHA, the value @.16 for BETA, and the value -1 for
IVAL. Any item of data may be preceded by an integer constant followed by an
asterisk. This notation indicates that the item is to be repeated. Example:
DATA A(l),A(2),A(3)/3*g./

specifies the value §.¢ for array elements A(l) to A(3). For example,

DIMENSION A(2,2),B(3)
DATA A,B/2*1 .@,3*2.8,3.4,4.98/

will initialize
A(1,1) and A(2,1) to 1.8

A(l,2), A(2,2) and B(l) to 2.8
B(2) to 3.4, and B(3) to 4.8

.

As another‘example,

DIMENSION R(4),I(3),L(5)
DATA L,I,R/4%0177777,2*'AB', 2*4,4*1.8/

results in

L(1l) to L{(4) = 177777 (octal)
L(5),I(1) = 'AB' (Hollerith)
I(2),1(3) =4

R(1) to R(4)= 1.8

PART 7
CHAPTER 6
FORTRAN FUNCTIONS AND SUBROUTINES

6.1 PROCEDURES

FORTRAN contains provisions for the creation and use of coded procedures. Pro-
cedures consist of FORTRAN (or assembly language)'routines that perform operations
for,»and independentiy of, the main FORTRAN program. Procedures perform operations
that may be required more than once in the course of a program and that might
otherwise require repetition of code within a program. Their use, then generally

saves programming effort and reduces storage used.

There are two main types of procedures: functions and subroutines. Functions
include the following.

1. library functions (provided by the FORTRAN OTS)
2, statement functions (one-line, user-defined function definitions)

3. external functions (user-defined function subprograms)
Subroutines include the following.

1. system subroutines (provided by the FORTRAN OTS)

2. subroutines (user-defined subroutine subprograms)

Library functions and system subroutinés are provided by the FORTRAN Object Time
System and need only be referred to or called by the user program. (See Section
7-6.2 and Chapter 7-14 for a describtion of the available routines.) = External
functions and subroutines can be compiled independéntly of the main program;

they are linked to the main program by the Linker Program (LINK).

The term subprogram refers to both external functions and subroutines. Sub-
programs can communicate with the maln program and among themselves by means of
parameters specified in the subprogram call or by means of variables stored in
common blocks. Calls to subprograms cannot be recursive; that is, a call to any sub-

program cannot result in a subsequent call to that subprogram, directly or indirectly.

7-51

6.2 FORTRAN LIBRARY FUNCTIONS

The FORTRAN Library functions are described in Table 7-3. In order to use a library
function in any routine, it is only necessary to use the symbolic name of the
function, together with one or more data references (arguments) upon which the
function is to act, in a FORTRAN statement. The value obtained from the execution
of the function is assigned to the function's name, which can then be used as a

variable in the execution of the FORTRAN statement. For example,
R = ABS(X~-1)
causes the absolute value of X-1 to be calculated and assigned to the variable R.

The data type of each library function is predefined as described in Table 7-3.
Arguments passed to these functions may consist of subscripted or simple variable
names, constants, arithmetic expressions or other intrinsic functions. Arguments

to these functions must correspond o the type indicated in Table 7-3. If the
argument types do not match, no conversion is pexformed, nor is any diagnostic
given. See also Section 7-5.1 for the effect of the IMPLICIT statement on function

values.

Details on the algorithms used in the individual library functions are contained in
Chapter 7-13.

6.3 ARITHMETIC STATEMENT FUNCTIONS

An arithmetic statement function is used to define one-line functions for the user.
These functions can be referenced only by the program unit in which they are
defined.

To define an arithmetic statement function, the following form is used:
nameﬁargl,...) = expression

where name is the function name, which must be a legal FORTRAN variable name.
Function type is determined either implicitly, by the initial letter of the function
name, or explicitly, through a data type specification. The term (argl,.;.)
represents the list of dummy variables used in the function definition; at least

one argument must be present. Expression is an arithmetic expression that defines

the computation to be performed by the function.

7-52

FORTRAN Library Arithmetic Functions

Table 7-3

Argument Result
Form Definition Type Type
ABS (X) Real absolute value Regl Real
IABS(I) Integer absolute value Integer Integer
DABS (X) Double precision absolute value Double Double
CABS (Z) Complex to Real, absolute value
where Z=(X,Y) CABS(2)=(x24y2)l/2 Complex Real
FLOAT(I) Integer to Real conversion Integer Real
IFIX (X) Real to Integer conversion Real Integer
. IFIX(X) is equivalent to INT(X)
SNGL (X) Double to Real conversion Double Real
DBLE (X) Real to Double conversion Real Double
REAL (2Z) Complex to Real conversion, Complex Real
" obtain real part
AIMAG(Z) Complex to Real conversion, Complex Real
obtain imaginary part
CMPLX (X,Y) Real to Complex conversion Real Complex
CMPLX (X,Y)=X+Y*i
Truncation functions return the largest
integer §_|argument|, carrying the sign
of the argument.
AINT (X) Real to Real truncation Real Real
INT(X) Real to Integer truncation Real Integer
IDINT (X) Double to Integer truncation Double ‘Integer |
Remainder functions divide the first
argument by the second and return the
remainder from that division
AMOD (X,Y) Real remainder Real Real
MOD(I,J) Integer remainder Integer Integer
DMOD (X,Y) Double precision remainder Double Double
Maximum value functions return the largest
value in a list of at least two arguments.
-AMAXZ(I,J,...) Real maximum from Integer list Integer Real
AMAX1(X,Y,...) Real maximum from Real list Real Real
MAX@(I,J,...) Integer maximum from Integer list Integer Integer .
MAX1(X,Y,...) Integer maximum from Real List Real Integer
DMAX1 (X,Y,...) . - Double maximum from Double list Double Double

7-53

Table 7-3 (Cont.)

FORTRAN Library Arithmetic Functions

’

Argument Result

Form Definition Type Type

Minimum value functions return the

smallest value in a list of at least

two arguments.
AMING(I,J,...) Real minimum from Integer list Integer Real
AMIN1 (X,Y,...) Real minimum from Real list Real Real
MING(I,J,...) Integer minimum from Integer list Integer Integer
MIN1(X,Y,...) Integer minimun from Real List Real Integer
DMIN1 (X,Y,...) Double minimum from Double list Double Double

The transfer of sign Functions return

the value c¢f the first argument to which

the sign of the second has been attached.
SIGN(X,Y) Real transfer of sign Real Real
ISIGN(I,J) " Integer transfer of sign Integer Integer
DSIGN (X,Y) Double precision transfer of sign Double Double

Positive difference functions return

the first argument minus the lesser

of the two arguments (never less than

zero).
DIM(X,Y) Real positive difference Real Real
IDIM(I,J) Integer positive difference Integer Integer

Expcnential functions return the value

of ¢ raised to the power of the argument.
EXP (X) ei Real . Real
DEXP (X) e, : Double Double
CEXP (2) . e . Complex ~ Complex
ALOG (X) Returns 1oge(x) : Real Real
ALOGLZ (X) _ Returns log; (X) Real Real
DLOG (X) Returns logeqx) Double Double
DLOG1d (X) Returns log 0(x) Double Double
CLOG Returns loge of complex argument Complex Complex
SQRT (X) ' Square root of Real argument Real Real
DSQRT (X) Square root. of Double precision argument Double Double
CSQRT(Z) Square root of Complex argument Complex Complex
SIN(X) Real sine Real Real
DSIN (X) Double precision sine Double Double
CSIN(Z) Complex sine Complex Complex

7-54

Table 7-3 (Cont.)

FORTRAN Library Arithmetic Functions

. Argument Result
Form Definition : Type Type
COs (X) Real cosine Real Real
DCOs (X) Double precision cosine ~ Double Double
CCOS (2) Complex cosine .) . Complex Complex
TANH (X) Hyperbolic tangent Real Real
ATAN (X) Real arctangent] Real Real
DATAN (X) Double precision arctangent . Double Double
ATAN2 (X,Y) Real arctangent of (X/Y) - Real Real
DATAN2 (X,Y) Double precision arctangent of (X/Y) Double Double
CONJG(2Z) Complex conjugate, if Z=X+Y*i Complex Complex

CONJG (Z) =X-Y*i

RAN(I,J) Returns a random number of uniform Integer Real

distribution over the range 4 to 1.

I and J must be integer variables and
should be set initially to #. Resetting
I and J to £ regenerates the random
number sequence. Alternate starting
values for I and J will generate
different random number sequences.

Arguments of the sine and cosine functions represent angles expressed in radians.

Arithmetic statement function definitions must occur after’ all declaratives (speci-

fication statements) and before any executable statements.

An arithmetic statement function definition must be contained ir a single statement.
The expression that defines the function may include dummy arguments, other variables,
array elements, non-Hollerith constants,’ and references to intrinsic functions,

external functions, and previously-defined statement functions. For example,
ACOSH(X,A) = (EXP(X/A))/2.8
is an acceptable‘arithmetic statement function definition. X and A are dummy argu-

ments. Since they serve only to indiéate the number, type, and order of actual

arguments, they may also be used as variables elsewhere in the program unit.

7-55

Array references cannot be used as dummy arguments in a statement function definition.

For example,

DIMENSION X (1)
F(X) = Y+X(1)+X(2)+Xx(3)

would generate a .function reference to the array X instead of an array reference.

No diagnostic is issued. However, in the following~definition,
G(Y) = F(Y)*X(Y+2)

X is legal as an a;ray name since it is not a dummy argument.

6.4 EXTERNAL SUBPROGRAMS

6.4.1 Subprogram Arguments

Variable names and identifiers used in any given program unit are completely inde-
pendent of variable names in other program units. Relationship between data
references in different program units (and, thereby, communication of data between
those program units) is established by means of arguments. The variable names and
identifiers that appear in a function reference or & subroutine CALL statement are
called actual arguments; those that appear in a FUNCTION or SUBROUTINE statement
that defines an external subprogram are called dummy arguments. The rules con-
cerning dummy arguments are identical for both function and subroutine sub-

programs.

Subprograms are written much like a FORTRAN main program. However, the first
statement of a subprogram must be either a FUNCTION statement with a list of
arguments or a SUBROUTINE statement with or without an argument list. The argu-
ment list contains the dummy arguments of the subprogram. When the subprogram is
called, the dummy arguments are replaced by the actual arguments contained in the

calling statement.

A subroutine mdy return zero, one, or more values to the calling program by means
of its arguments. A function returns a single value, which is assigned to the
function's name. The values of a function's arguments may, however, be altered
within the function to effectively return additional values to the calling program

unit. Actual arguments that are passed to a subprogram may be any of the following.

arithmetic or logical expressions

alphanumeric strings

7-56

array names or elements.

subprogram names

(Expressions may contain constants, variables, array elements, and library function

references, alone or in conjunction with operators.)

Actual arguments must agree in number, order, and type with the dummy arguments of
the subprogram to which they are passed. No type conversion is performed where a

difference in data type occurs, nor is any diagnostic given.

Dummy arguments that represent array names must be defined within the subprogram,
either in a DIMENSIbN statement or in one of the type specification statements

that can contain dimensioning information. Array dimensions within a subprbgram,
although they need not be exactly the same as those of the corresponding array(s) in
the calling program unit, must not exceed those dimensions. Dummy érguments may

be used as dimension specifications within alsubprogram; the actual dimensions may

then be passed to the subprogram by the calling program unit (see Section 7-6.4.2).

Dummy arguments must not appear in EQUIVALENCE, DATA, or COMMON statements within a
subprogram. '

A function or subroutine subprogram may be ﬁsed as_an actual argument of a sub-
program, provided that name appears in an EXTERNAL statement in the calling program
unit. The EXTERNAL statement identifies such a name as being an external subprogram
name, rather than a variable name. 7

-

For example, the subprograms TRIG and TAN:

SUBROUTINE TRIG(ARG,FUNC,RES)
RES = FUNC (ARG)

RETURN

END

FUNCTION TAN(ARG)

TAN = SIN(ARG)/COS (ARG)

RETURN

END
If the calling program unit contains an EXTERNAL statement naming the library
functions SIN and COS, and the user-written function TAN, three different calls
to the subroutine TRIG can be made to produce three different results. For

example:

-

EXTERNAL SIN,COS,TAN

CALL TRIG (ANGLE,SIN,SINE)

CALL TRIG(ANGLE,COS,COSINE)

CALL TRIG (ANGLE,TAN,TANGNT)

Because each call transmits a different function name to the subroutine TRIG, the
first call returns the sine of the first argument, thé second call returns the

cosine, and the third, the tangent.
6.4.2 Adjustable Dimensions

In order to obtain maximum flexibility from a subprogram, the user may wish to vary
the dimensions of one or more arrays with each subprogram call. An array within
a subprogram may have adjustable dimensions, provided it refers to an array defined

in the calling program unit and passed as an argument.

In this case, both the array name and its dimension values must be expressed as
dummy arguments in the FUNCTION or SUBROUTINE statement that begins the subprogram.
" The array name (which may be of any data type) and the dimension variab;es (which
must be simple integer variables) are used to define the array within the sub-

program as follows.

SUBROUTINE TRAN(A,I,J,RET,DET)
DIMENSION A(I,J)

RETURN
END

The dimension arguments passed in this way must not exceed the actual ‘dimensions

of the corresponding array, as defined in the calling program unit, although they
may be smaller.

The arguments representing the array dimensions must be defined prior to the subpro-

gram call; the dimension values will not change during the execution of the

7-58

subprogram even though the dummy arguments may be redefined or made undefined within
the subprogram. The dimension specifications for an adjustable array must be supplied
as arguments within the subprogram call; they cannot reside in common.

6.4.3 FUNCTION Subprograms

A FUNCTION subprogram is a computational procedure that returns a single value through
its name; a function can also return values through its.arguments. A FUNCTION subpro-
gram is invoked by using the function name with associated arguments in an
arithmetic expression. A FUNCTION subprogram begins with a FUNCTION statement and
ends with an END statement. Control is returned to the calling statement by means

of one or more RETURN statements. (The END statement acts like an implied RETURN
statement.) The mode of the function (the type of value returned) is determined

by the name of the function or a type designation inserted into the initial FUNCTION
statement.

The FUNCTION statement format:

FUNCTION name(argl,...argn)
or
type FUNCTION name(argl,...,argn)

This statement declares the program unit that follows to be a FUNCTION subprogram.
The function name may be any legal FORTRAN variable name that is not used as a
dummy argument. This name must not appear in_ahy nonexecutable statement in the

calling program oxr function subprogram, except as a scalar variable in a type declara-
tion. At some point in the subprogram the function name must appear as a scalar

variable to which a valué is given by an assignment statement. The value assigned
to the function name is the value returned by the function reference in the calling

program.

The argument list in the FUNCTION statement must consist of at least one dummy
argument. Dummy arguments follow the rules established for subprogram parameters

as described in Section 7-6.4.1 and 7-6.4.2.

The data type of the value returned by the function is normally determined to be
either INTEGER or REAL according to the default type rule applied to the function
name. However, a.different type can be defined for the returned value by placing
a type designation term at the beginning of the FUNCTION statement or placing a

type declaration statement within the subprogram.

' 7-59

A FUNCTION statement must not have a statement number. The only FORTRAN statements
that must not appear in a FUNCTION subprogram are SUBROUTINE, BLOCK DATA and
another FUNCTION statement.,

An example of a FUNCTION subprogram is shown in Figure 7-3.

C FRAGMENTARY FORTRAN PROGRAM
c FOR ADJUSTABLE ARRAYS
c

0001 . REAL x(10,10), Y(25,25)
C L]
C -
c -

0002 XT=TRACE (X,10)

0003 YT=TRACE (¥, 25)
C L]
C L]
C .

0004 END

ROUTINES CALLED:
TRACE

BLOCK LENGTH
MAIN 1500 (005670)*

COMPILER —--=- CORE
PHASE USED FREE

DECLARATIVES 00366 17629

EXECUTABLES 00446 17549

ASSEMBLY 00881 19977
0001 REAL FUNCTION TRACE(A,N)
. o]
c COMPUTE THE TRACE OF N * N MATRIX A
c
0002 DIMENSION A(N,N)
c
0003 SUM=0,.0
0004 DO 10 I=1,N
0005 10 SUM=SUM + A(I,I)
0006 TRACE=SUM
0007 RETURN
0008 END
BLOCK LENGTH
TRACE 82 "(000244) *
COMPILER =-=== CORE
PHASE USED FREE

DECLARATIVES 00366 17629
EXECUTABLES 00446 17549
ASSEMBLY 00929 19929

Figure 7-3
Sample FUNCTION Subprogram

7-60

6.4.4 SUBROUTINE Subprograms

A SUBROUTINE subprogram is a computational précedure that returns zero, one, or more
values to the calling program. Values and data types are associated with the sub-
routine arguﬁents, but not with the subroutine name. A SUBROUTINE subprogram
begins with a SUBROUTINE statement and ends with an END statement. Control is

returned to the calling statement by means of one or more RETURN statements.
The SUBROUTINE statement is of the following form.

SUBROUTINE name

or

SUBROUTINE name(argl,...,argn)

This statement declares the program that follows to be a SUBROUTINE subprogram. The
subroutine name may be any legal FORTRAN variable name, but must not be used as a
variable name within the calling program or subprogram itself, or as the name of a
labeled COMMON block used in the same load module.

The argument list in the SUBROUTINE statement cdnsists of any number of dummy
arguments (or none). Dummy arguments follow the rules established for subprogram
parametérs as described in Section 7-6.4.1 and 7-6.4.2. Dummy arguments to a
SUBROUTINE subprogram must not appear in an EQUIVALENCE or COMMON statement within
the subprogram,

A SUBROUTINE subprogram can redefine any of the actual arguménts or use any of the

dummy arguments specified to return results to the calling program. For example:

SUBROUTINE COMPUT (A,B,ANS)

ANS=A+B

A=A+l.0

RETURN

END
In this simple subroutine, the calling statement provides numeric values for A and
B and a variable name in which the value of ANS is returned. If the calling state-

ment is
CALL COMPUT (AI,4.8,RET)

where the value of AI is 7.4, the value returned to the calling program in RET is
11.8, and AI is 8.4.

7-61

A SUBROUTINE subprogram cannot contain a FUNCTION, BLOCK DATA or another SUBROUTINE

statement.
6.4.5 CALL Statement

A subroutine is invoked by means of a CALL statement having one of the following

forms:
CALL name
or,
CALL name(argl,...argn)

where name is the name of the subroutine referenced. The argument list of the
subroutine call, where included, should agree in number, order, and type with the
arguments in the subroutine definition. The actual arguments specified in the

subroutine call replace the dummy arguments during execution of the subroutine.

The arguments of a CALL statement may be expressions, array names or elements,
scalar vareables, alphanumeric strings, or subprogram names. The subroutine name
cannot be referenced as a basic element in an expression in the callihg program

or in the subroutine itself.

A call to a subroutine may contain fewer, or more, actual arguments that the sub-

routine definition, as lcng as

a. an unsupplied call argument is not a dummy array in the subroutine, and

b. some indication of the number of real arguments (such as an argument
that states the number of other arguments supplied on a given subroutine
call) is given to the subroutine so that no attempt is made to reference
unsupplied arguments.

6.4.6 RETURN Statement

The RETURN statement is of the form

and causes an exit from the subprogram to the calling program. It is generally the
last executable statement in the subprogram. Any number of RETURN statements can
appear in either a FUNCTION or SUBROUTINE program.

7-62

The RETURN statement must not occur in a main program.

En END statement must occur following each subprogram. If a subprogram contains an
END statement and no RETURN statement, executing the END statement causes a return to
the calling program.

6.4.7 BLOCK DATA Subprograms

The BLOCK DATA subprogram is used to enter initial values for variables assigned to
labeled COMMON blocks. The BLOCK DATA subprogram is of the following form.

BLOCK DATA
. (Specification Statements)
END

The first statement must be a BLOCK DATA statement, which does not allow either a
line numbér or any arguments. No executable statements may appear in a BLOCK DATA
subprogram. The entire BLOCK DATA subprogram can contain only EQUIVALENCE, DATA,
DIMENSION, COMMON, IMPLICIT and type declaration statements. A complete set of
specifications is given for an entire common block by a single BLOCK DATA sub-
program, although a single BLOCK DATA subprogram can initialize any number of named

common blocks. For example:

BLOCK DATA

COMMON/R/S ,Y/C/Z,W,Y

DIMENSION Y(3) '

COMPLEX Z »)

DATA Y/1E-1,2*3E2/W,2/11.877E#, (-1.41421,1.41421)/
END

6.5 NULL ARGUMENTS IN CALLS TO SUBROUTINES OR FUNCTIONS

-An argument in a call to a subroutine or function may be left unspecified by

writing a null, or blank, expression as the actual argument. For example,

CALL S(a,,B)
is a call with three actual arguments of which the second argument is null.
The use of null arguments is only meaningful when calling routines that are

specifically designed to accept optional arguments. Such routines can only be

written in assembly language, not in the PDP-11 FORTRAN language.

7-63

Ingeneral, theuse of a null argument in calling a routine that is not designed to

detect and handle it will result in a fatal error at execution time.

The implementation of null arguments is discussed in Chapter 7-15.

7-64

PART 7
CHAPTER 7
FORMAT STATEMENTS

Data transmission statements govern the transfer of data between internal storage
and either peripheral devices or other locations in the computer memory. These

statements are divided into four categories.

a. Data description statements: Format (described in this Chapter) and
DEFINE FILE (Section 7-8.4.1)

b. Input/Output statements READ, WRITE and PRINT (Chapter 7-8)

c. Device control statements FIND, BACKSPACE, REWIND and END FILE
for magnetic tape and - Section 7-8.4.2, 7-8.6.1, 7-8.6.2,
disk usage: and 7-8.6.3) :

d. Statements specifying data ENCODE and DECODE (Section 7-8.7)

transmission between
internal storage areas:

Chapter 7-7 describes the construction of FORMAT statements. Chapter 7-8 describes

the remaining data transmission statements.

7.1 FORMAT STATEMENTS

The FORMAT statement describes the format in which one or more records are trans-
mitted. FORMAT statements are nonexecutable statements used in conjunction with

input/output statements or with ENCODE and DECODE statements.
FORMAT statements have the following form.

FORMAT(Sl,S ,...Sn /$'l, s' ,....Sn/...)

2 2

A statement ndhber must be specified. (FORMAT statements are referenced by the data
transmission statements with which they operate.) Each S is a data field speci-
fication; the slash (/)‘character indicates the start of a new record. The closing

parenthesis at the end of the FORMAT statement also terminates a record.

Each record description may consist of one or more field specifications, a field
being a consecutive series of character§ within the record. Field specifications
are separaﬁed by commas within the4FORMAT statement (consecutive commas are not
allowed) .

FORMAT statements must be placed in the executable part of the source program. Unless
the FORMAT statement contains only alphanumeric data for direct transmission, it is
used in conjunction with the list of a data transmigsion statement. The FORMAT
statement indicates the form in which the variables specified in the data trans-

mission statement are to be read or written.

During dat@ transmission, the object program scans the indicated FORMAT statement.
If one or more specifications for a numeric field, for example, are present, and

the data transmission statement contains numeric data items to be ;ransmitted, those
items are transmitted according to the format specification. Execution of the data
transmission statement is terminated when all items in the data list have been
handled. The FORMAT statement can contain specifications for more items than are
contained in a given data fransmission statement, in which case excess format
specifications are ignored. Conversely, the FORMAT statement can contain speci-
fications for fewer items than are contained in the data transmission list, in
which case the set of format specifications beginning with the last left parenthesis
or slash is repeated‘as,often as necessary to supply the needed number of data

formats.
A field specification within a FORMAT statement is of the form
Cw
or
Cw.d
] I .] /
where C is a format code, w indicates the .field width and 4 (where present) indi-

cates the number of characters within the field that occur following the decimal

point. The following types of format conversion codes may appear in a FORMAT

statement.
a. numeric: iw, Ow, Fw.d, Ew.d, Dw.d, Gw.d
b. numeric with scale factor: nPFw.d, nPEw.d, nPDw.d, nPGw.d
c. logical: Lw
da. alphanumeric and editing Aw, nH, '...', nX, Tw

There are several ways to specify the numeric values for repeat count, (see Section
7-7.19) field width and number of characters following the decimal point in formats.

They are used in the following order of precedence.

1. A default value is assumed. The default repeat count is 1. ‘The default
values for width and number of decimals are discussed in Section 7-7.14.

2. If an explicit value is specified, it is used in place of the default.)
Explicit values may be specified in the format either as a literal integer
‘or as a variable format expression (Section 7-7.17).

3. In the case of formatted input, if the field thus specified contains a
comma or extends past the end of the input record, then the field is
said to be short field terminated and the field width (but not the num-
ber of decimal characters) is reduced ac¢cordingly. See Section 7-7.15.

7.2 I FORMAT CONVERSIONS
A specification of the form

Iw
is used to transmit decimal integer values. The corresponding element in the data

transmission list must be an integer or byte variable.

On output, a field w characters long is reserved for the value to be output. The
value is transmitted into this field right-justified. Where a minus sign is
expected in the outéut, one position must be included in w for that sign. Since
a plus sign is suppressed, no allowance need be made for it. Where the field
specified for the output value is too small, the entire outpﬁt field is filled

with asterisks. For example:

Format Internal Value External Representation
I3 284) 284
I4 -284 -284
I5 174 . AA174
I2 3244 *%
I3 ’ -473 *kk
17 29.443 not permitted, error

On input, a field of w positions is read as it appears. The external data must be
a decimal integer and must not contain a decimal point or exponent field. Blanks
are interpreted as zeroes. Leading blanks are ignored. An all blank field is
interpreted as a zero on input. An integer overflow occurs if the value being

read is beyond the range -32768 to 32767. For example:

7-67

Format External Value Internal Representation

I4 2788 2788

I3 -26 -26

19 AAAAAA3L2 ‘ 312 s

19 312AAM0AA not permitted, error;
system attempts to input

3129088908
7.3 O FORMAT CONVERSIONS
A specification of the form
Oow

is used to transmit octal integer values. The corresponding element in the data

transmission list must be an integer or byte variable.

On output a field w characters long is reserved for the value. The value is
transmitted into this field right-justified. Where the field specified is too

small, the entire output_fiéld is filled with asterisks. For example:

Format Internal (Decimal) External Representation
06 32767 A77777
06 -32768 199220
02 14261 *k
04 27 AA33
05 13.52 not permitted, error

On input, a field of w positions is read as it appears. The external values must
not contain a sign, a decimal point, an exponent field, or the digits 8 or 9.
Leading blanks are ignored, embedded and trailing blanks are interpreted as zeros;
an all blank input field is treated as a value of §. The value is read into the

first word of the data element specified in the input statement. For example:

Format External Value Internal Octal Representations
05 32767 32767
o4 16234 1623
06 13AAAA 139900
03 97 : not permitted, error

7.4 F FORMAT CONVERSIONS

A specification of the form

Fw.d

7-68

is used to transmit real or complex values. The corresponding element in the data

transmission list must be a real or complex variable.

On output a field w characters long is reserved for the value, which is transmitted
into this field right-justified.- The total field length reserved (w) must be

large enough to include a decimal point, at least one digit to the left of the
decimal point, a sign (only minus signs are printed on output), and d decimal digits
following the decimal point; that is, w>d+3. Where the field length specified for
the output value is too small, the entire output field is filled with asterisks.

For F conversion output, the‘data value after scaling must be within the range

0.14 x 10738 to 1.7 x 10°°. For example:)

Format . Internal Value External Representation
F8.5 2.3547188 A2.35472

F9.3 8789.7361 ' A8789.736

F2.3 - . 51.44 * %

Fl14.4 - | =23.24352 AA-23.2435

F5.2 . 325.413 ‘ dkdkdk :

F5.2 -.2 -3.28

On input, a field of w positions is read as it appears. . The external data must

be a decimal number with or without a decimal point or exponent field. Blanks

are interpreted as zeros. Leading blanks are .ignored. An all blank field is
interpreted as zero. Where no decimal poiht is encountered within the first w
positions, those digits are accepted as the input value and a decimal point is
inserted d poéitions from the right. A decimal point found in the input value over-

rides the format specification. For example:

A

Format External Value Internal Representation
F8.5 123456789 ' 123.45678

F8.5 12345.67 12345.67

F8.5) 24.77E+2 2477.8

F5.2 . © 1234567.88 '123.45
7.5 E FORMAT CONVERSIONS
A specification of the form
Ew.d
is used to transmit real or complex values, with a decimal point and E exponent

field. The corresponding element in the data transmission list must be a real or

complex variable.

7-69

On output a field w characters long is resefved for the value, which is transmitted
into this field right-justified. The total field length reserved (w) must be large
enough to include a decimal point, at leést one digit to the left of the decimal
point, a sign (only minus signs are printed on output), d decimal digits following
the decimal point, and four positions for the exponent representation; that is to
say, w>d+7 in most cases. Where the field length specified for the output value

is too small, the entire output field is filled with asterisks. For E conversion

output, the data value after scaling must be within the range 0.14 x 1038 to
1.7 x 1038. For example:
Format Internal Value External Representation
E9.2 475867, 222 Ag.48EAgE
El2.3 475867.222 AAAZ . 4T76EAP6
ES5.3 56.12 kR kk

On input, a field of w positions is read as it appears. The external data must be
a decimal number with or without decimal point or exponent field. Blanks are
interpreted as zeros. Leading blanks are ignored. An all blank field is inter-
preted as zero. Where no decimal point is encountered within the first w positions,
those digits are accepted as the input value and a decimal point is dnserted d
positions from the right; a zero exponent is assumed. A decimal point found in

the input value overrides the format specification. For example:

Format External Value Internal Representation
E9.3 734.432E8 734.432E8

El2.4 AA1@22.43E~6 1¢22.43E~6

E15.3 52.3759663 52.3759663

Elg.4 A1971.3213E12 1971.3213

E8.1 123456789 1234567.8Eg

El12.5 21@.5271D+1g) 21¢.5271E19

7.6 D FORMAT CONVERSIONS
A specification‘of the form
Dw.d
is used to transmit real values, with a decimal point and D exponent f£field. The

corresponding element in the data transmission must be a real or double-precision

variable.

7-70

On output, the effect of this field‘specification is identical to that of an equiva-
lent Ew.d specification, except that a D exponent indicator is used in place of the

E indicator. For example:

Format Internal Value ‘ External Representation -
'D.14.3 #.363 AMAAAG . 363DAZE

D23.12 5413.87625793 © AAAAAG.541387625793DAg4
D9.6 1.3)) khkkkhkhkkk i

On input, the effect of a Dw.d specification is identical to an equivalent Ew.d

specification, except that the internal representation appears as in the following

examples. '
Format External Value Internal Representation
D10.2 . 12345AMAAA 12345¢¢9. 9@
D10.2 AA123.45AMA - 123.45D@g
D15.3 367.4981763D+g4 3.674981763D+86

7.7 G FORMAT CONVERSIONS
A specification of the form

Gw.d
is used to transmit real or complex data.
On output a field w characters long is reserved for the value, which is trans-
mitted into this field right-justified. The form of the output conversion depends
upon the individual variable in the data transmission list. The output conversion

format is a function of the magnitude of the data being converted, as described
in Table 7-4.)

7-71

Table 7-4

Floating-Point Magnitudes and Resulting G Format Conversions

Data Magnitude Effective Conversion
m< g.1 Ew.d
g.1<m< 1.p F(w-4).d4, 4X
1.6 <m< 14.8 F(w-4).(d-1), 4X
10472 < < 10972 F(w-4).1, 4X
d-1 d
100 " <m< 10 F(w-4).8, 4X
m > 1.0d Ew.d

s

(The 4X specification, which is inserted (in effect), by the Gw.d specification,
indicates that four blanks are to follow the numeric field representation.. The

X specification is described in Section 7-7.16).

The total field length reserved (w) includes a decimal point, at least one digit
to the left of the decimal point, a sign (only minus signs are printed on output),
d decimal digits following the decimal point, and four positions for the exponent
representation; that is to say, w>d+7 in most cases. Where the field length
specified for the output value is too small, the entire output field is filled
with asterisks. For example: '

Format Internal Value External Representation
G1l3.6 #.01234567 AP,123457E-91
G13.6 : $.12345678 : 0. 123457AANA
G13.6 1..23456789 AAL. 23457000
Gl3.6 ’ 12.34567899 AA12,.3457AAAA
G13.6 123.45678988 AA123,457AMAA
Gl13.6 ' 1234.56789008 : AA1234,57AAMA
Gl3.6 12345.6789¢0899 - AA12345,7AMMAA
Gl3.6 123456.7890p004 AA123457.AA0A
Gl3.6 1234567.89000008 AP .123457EAE7

For comparison, consider the following example of the same values output under the
control of an equivalent Fw.d specification.

7-72

Format Internal Value External Representation

F13.6 #.81234567 AMAANG . $12346
F13.6 $.12345678 AAAAAB . 123457
F13.6 1.23456789 AAAAAL . 234568
F13.6 . 12.3456789¢ AAAAL2.345679
F13.6 123.456789g¢ AAA123.456789
F13.6 1234.5678988¢ AA1234.567898
F13.6 12345.67890999 A12345.67890¢
F13.6 123456.78992000 123456.789990
F13.6 1234567.89008000 L ARk kR Rk ARR ‘

On input, a field of w bositions is read as it appears. The external data must be
a decimal number with or without a decimal point or exponent field. The rules for

input conversion are the same as those for F format input conversion.

7.8 COMPLEX I/0

Complex data values are transmitted as two independent real qualities. The following
specification consists of one repeated real specification or two successive real

specifications of the form.

Two Real Specifications - Repeated Real Specifications
Fw.d,Fw.d 2Fw.d
Ew.d,Ew.d : 2Ew.d
Gw.d,Gw.d 2Gw.d

Nothing is output between the two parts of a complex number unless specified by
the format.

Output Conversion:

Format " Internal Value - External Representation
2F8.5 2.3547188,3.456732 A2,35472A3.45673
E9.2,E5.3 47587.222,56.123 AP . ABEAGG* * % **

Input Conversion:

Format . External Value Internal Representation
F8.5,F8.5 1234567812345.67 ' 123.45678,12345.67 -
E9.1,E9.3 734.432E8123456789 734.432E8,1234567.8E~1

7-73

7.9 SCALE FACTORS

Scale factors of the form

can be specified for D, E, F, and G conversions. The number n is a signed or

unsigned integer specifying the scale factor.

For E and D type output conversions, the basic real constant part of the output
quantity is multiplied by 1f(n) and the exponent is reduced by n. For G type
output conversion, the effect of the scale factor is suspended unless the magnitude

of the value to be converted is outside the F conversion range (see Table 7-4).

For the F, E, G and D type input conversions where no exponent is found in the
external value, and F type output conversions, the scale factor causes the external

value to equal the internal value times 1@ (n).

For F, E, G and D type input conversions, the scale factor has no effect if there

is an exponent in the external value.

Where no scale factor is specified, a scale factor of zero is assumed. Once a

scale factor has been specified, it is carried onto all subsequent D, E, F, and G
type conversions within the same format specification unless another scale factor is
encountered. A zero scale factor can only be reinstated by an explicit gP speci-

fication.

Output Conversions:

Format External Value External Representation
3PE15.3 -273.612 AAA-273.612EAIP

1PE15.3 -273.612 AAAA-2, 736EAG2

1PE15.2 -273.612 AAAAA=2, T4EAG2
~1PE15.2 . -273.612 - AAAAAA-@ . B3EAPS

Input Conversions:

Format B External Value Internal Representation
3PE1d4.5 AAA37.614 .@37614
3PE1g.5 AA37,.614E2 3761.4
-3PEl1g.5 AAAAA3T . 614 37614.9

7-74

7.10 L FORMAT CONVERSICNS
A specification of the form
Lw
is used to transmit the value of a logical variable.
. On output; a‘field w characters long is résefved for the value, which is trans-

mitted into this field right-justified. The letter T or F is transmitted following
w-1 blanks. TFor example:

Format Internal Value External Representation
LS . .TRUE. ‘ AAAAT

Ll .FALSE. ' F

On input, the first nonblank character in the data field must be a T or an F} the
value of the logical variable is stored as true or false, respectively. If the
data field is blank or empty, a Value of false is stored. Any other value in the

data field causes an error diagnostic.
7.11 A FORMAT CONVERSIONS

Alphanumeric data can be transmitted in a manner similar to numeric data by use of

a specification of the following “form.
Aw

Conversions of this type are generally used where the alphanumeric data is generated

or operated upon by the user program.

. The field specified has a length of w characters. The alphanumeric characters are
transmitted as the value of a variable in the data transmission list. The variable
may be of any type. The value of w is limited to the maximum number of characters
that can be stored in the space allotted for a single variable of the type speci-

fied. Table 7-5 indicates the number of alphanumeric characters that can be stored

in a single variable of a given type.

7-75

Table 7-5

Alphanumeric Data Storage

Number of Characters
Variable Type per Variable

Integer
Byte
Logical
Real

Double~precision

® O & NN H N

Complex

For example, the seqﬁence

READ(2,5) V
5 FORMAT (A4)

causes four characters to be read and stored in memory as the value of the real

variable V.

If the value of w exceeds the amount specified in Table 7-5, the leftmost characters
are lost on input; on output, w characters appear right-justified in the external

output field.

If the value of w is less than the number of characters that can be stored in the
space allotted to a variable, on input the characters are lefﬁ-justified and
blank-filled on the right of each list item. On output the leftmost w characters
in the variable are transmitted to the output field.

7.12 ALPHANUMERIC DATA WITHIN FORMAT SPECIFICATIONS

Alphanumeric data can be transmitted directly into or from a format specification
by means of Hollerith conversion (H) or of single quote delimiting characters.
Direct transmission of alphanumeric data is performed where such data is not
operated upon by the program; i.e., headings and explanations to be printed along
with output data.

7-76

The H conversion isvindicated by a specification of the form

nH

where n indicates the number of characters to be transmitted. On output, the follow-
ing n characters are sent to the output device. On input, n characters are read

and inserted into the Hollerith conversion field of the format specification; For

example:
C OUTPUT HEADING TO LINE PRINTER'
WRITE (5,1¢) N
12 FORMAT (15H OUTPUT HEADING, I3)
C INPUT HEADING FROM KEYBOARD FOR LATER USE; UP TO 38 CHARS:
READ (6,20)
20 FORMAT (30H)

In line 14, the leading space in the line to be output is the carriage control
character (see Section 7-7.14). The l4-character heading is output, followed by
the integer value of N printed in a field of three characters. The comma following

the Hollerith field is optional.
In line 20, the Hollerith field indicated is blank; however, any alphanumeric
characters within this field would be replaced by those characters read from the
keyboard. If fewer than n characters are read, they overlay the first portion of
the Hollerith field , with the remainder of the field being blank filled.
An alternative form is to enclose Hollerith data in single quotes (apostrophes).
The result on both input and output is exactly as described for H conversion. 2an
apostrophe within such a Hollerith string must be represented by two successive
singie quotes to distinguish it from the terminating single quote of the string.
For example: '

FORMAT ('DON'''T TYPE ON KEYBOARD UNTIL QUTPUT IS FINISHED')
When output is to the keyboard or line printer, the line

DON'T TYPE ON KEYBOARD UNTIL OUTPUT IS FINISHED

is printed.

Note that variable format expressions (Section 7-7.17) cannot be used with H

conversion.

7-77

7.13 Q FORMAT SPECIFICATION
The Q format specification is used to read the actual number of characters input
on the current READ operation. It must correspond to an input list item of

integer type into which the character count will be placed. For example,

READ(4,10)X,Y,2,K
10 FORMAT (3F13.5,Q)

reads input values into the real variables X, ¥, and Z, and places the number of

characters read in the integer variable K.
Q format is ignored on output.
7.14 DEFAULT FIELD SPECIFICATICNS

The w.d may be omitted from the numeric and logical conversioms, in which case

the following default values are used.

Format Default
E 15.7
- F 15.7
G 15.7
b 25.16
I 7
o} 7
L 2
A 8

For example, the format
FORMAT (I, 2E,A)

is equivalent to the format
FORMAT (17, 2E15.7,A8)

See also the discussion on short field termination (Section 7-7.15).

Note that in the case of E, F, G and D formats, the entire w.d portion of the format
is defaulted; partial defaulting is not allowed.

Legal defaults: E, F
Illegal defaults: El@g, F.2, F.

7-78

7.15 SHORT FIELD TERMINATION ON FORMATTED INPUT

When using formatted input, either a comma in an input field or the end of the
input record will override the field width specified by the FORMAT statement. This
provides a simple method of free form input that is particularly useful when
entering data from a keyboard. short field termination may be used with E, F, G,

»

I, L, and' O formats. For example,

READ (6,10¢)1,J,A,B
1g# FORMAT(2I6,2F1f.2)

and input data record

v

1,-2,1.4,35
LN

will result in the following assignments being performed by the READ statement.

= 1.p
8.35

w P g H
t

Note that thé comma must be included within the field width specified by the FORMAT
statement. The only effect of the comma is to adjust the field Qidth used by the
conversion routines. A zero length field is allowed. In the case of a null

(zer6 length field) the value read will be ﬂ.‘ for D, E, F or G formats, @ and I or
O formats and ;FALSE. for L format.

A comma may not be used to terminate a field being read with A format. However, if
the end of record occurs within the A field width, the available characters will be
transmitted successfully with trailing blanks appended as necessary to f£ill the

data element.

7.16 RECORD LAYQUT SPECIFICATIONS

Spacing control within a record is'perfdrmed through the use of the X specification
to generate a given number of blanks or skip a given number of éharacters, or the
T specification which allows the user to specify "tabulation" to a given position

within a record.

A specification of the form

wX

7-79

ﬁrovides for the transmission of w spaces on output or the skipping of w characters

on input. The value of w must be greater than zero, For example:

, WRITE(5,75) I,X
75 FORMAT (5H STEPIS,1@X2HY=F7.3).

could be used to output the folloiwng line (A indicates a blank).
STEPAAA2B8AAAAAAAAAAY=b-3.872

The first blank would not be printed on the terminal or line printer as it would be
considered the carriage control character. Notice that the comma following an X

specification is optional.

A specification of the form

Tw

specifies the character position in a FORTRAN record where the data transfer is tobegin.
The value of w must be an unsigned 1nteger\constant and indicates the (w)th character
of the record on input and on ncnprinted output, and the (w-1)th character of a printed

output record (where the first character is a carriage control character). For example,

2 FORMAT (T5@,'BLACK/T3@%, 'WHITE')

would cause the following line to be printed.

Print Position 29 . Print Position 49
¥ ¥
WHITE BLACK

The statements

1 FORMAT (T35,"MONTH')
READ (3,1)

causes the first 34 characters of the input data to be skipped, and the next five
characters would replace the characters M, O, N, T, and H in storage. If an input
record containing

ABCEYPKBXYZ
is read with the format specification

1g FORMAT (T7,A3,T1,A3)

then the characters XYZ and ABC are read, in that order.

7.17 VARIABLE FORMAT EXPRESSIONS

An integer valued expression may be used in a FORMAT statement any place an integer
may be used (except as a Hollerith count) by enclosing it in angle brackets,

<expression>. For example,
FORMAT (I<J+1>)

will cause an I conversion with a field width one greater than the value of J at the

time the format is scanned. The expression will be re-evaluated each time it
7-80

is encountered in the normal format scan. If the expression is not of type integer
it will be automatically converted to integer prior to use. Any valid FORTRAN

expression may be used including function calls and references to dummy parameters.
A complete example is-'shown in Figure 7-4.

The value of a variable format expression must be valid for its use in the format

or an error will occur at runtime.

The FORTRAN program

DIMENSION A(5)
DATA A/l.,2+,3.,4.,5./

"DO10I = 1,10
WRITE (5,100) I
100 FORMAT (I<MAXO(I,5)>)
10 CONTINUE

Do 201I=1,5

WRITE (5,101) (A(J),J=1,I)
101 FORMAT (<I>F10,<I-1>)
20 CONTINUE

END -

produces the following output when executed.

1
2
3
4
5
6
7
8
9
10
1. :)
2.0 v 2.0
3.00 3,00 3.00
4,000 4.000 4,000 4,000
5.0000 5,00000 5.0000 5.0000 5.0000

-

Figure 7-4
Variable Format Expression Example

7-81

7.18 CARRIAGE CONTROL

The first character of each ASCII record controls the vertical spacing of the line
printer and terminal. When an output line (record) is generated, it is constructed
within the system exactly as described by the combined WRITE and FORMAT statement

designations. Before output to either of the printing devices, the first character
of the record is interpreted as the carriage control character and is deleted from

the output line.
The carriage control characters are specified in Table 7-6

Table 7-6

Carriage Control Characters

Character Effect

A blank carriage return/line feed
(advance printing position to beginning of next line)

@ zero carriage return/line feed/line feed
(advance printing position to beginning of the line
. after the next)

1 one carriage return/form feed
(advance printing position to the beginning of the next
line and perform a form feed where the hardware capability
exists)

+ plus - carriage return
(advance printing position to the beginning of the current
line, allows current line to be overprinted)

$ dollar inhibit carriage return/line feed
(do not advance printing position, used when creating output
lines to interact with the keyboard)

Any character other than those described in Table 7-6 that appears first in the line
is deleted from the output line and treated as though it were a blank carriage

control character.

7-82

7.19 REPETITION OF FIELDS, GROUPS, AND MULTIPLE RECORDS

A field specification can be repeated by preceding that specification with an

unsigned integer constant denoting the number of repetitions. For example,
2£r- FORMAT (2E12. 4, 315)

is equivalent to
20 FORMAT(E12.4,E12.4,I5,I5,I5)"

Similarly, a group of field specifications can be repeated by enclosihg the group
in parentheses and preceding the whole with an unsigned integer denoting the

number of repetitions. For example,

{

3ﬁ FORMAT (218,2(E15.5,2F8.3))
is equivalent to

37 FORMAT (2I8,E15.5,F8.3,F8.3,E15.5,F8.3,F8.3)
A L]
Where several input/output records are specified in a éingle format specification,
and those differént records have different field specifications, a slash is used

to indicate a new record. For example,

WRITE (6,48)K,L,M,N,0,P

44 FORMAT (308/16,2F8.4)
is equivalent to the following. .
WRITE (6,48)K,L,M

WRITE (6,48)N,0,P
44 + FORMAT (308).
41 FORMAT (I6,2F8.4)

A single record may be up to 133 characters long; this provides for a 132-character

line printer plus a carriage control character.

The separating comma can be omitted when a slash is used. The presence of n slashes
at the beginning. or end of a FORMAT statement causes n blank records to be output
or to be skipped on input. When n slashes appear between the first and last

FORMAT specifications, (n~1) blank records are output or skipped on input.

7-83

7.20 FORMATS STORED AS DATA.

The ASCII character string that makes up a format specification may be stored as
the values of an array. Input/output statements may refer to the format by
giving the array name instead of the statement number of a FORMAT gtatement. The
stored format has the same form as a FORMAT statement, except foi the word

FORMAT and the statement number. The enclosing parentheses are:included, however.

As an example, consider the following sequence.

DIMENSION SKEL(2)
READ (4,1) SKEL

1 FORMAT (2A4)
READ(5,SKEL)K,X

The first READ statement enters the ASCII string into the array SKEL. In the
second READ statement, SKEL is referenced as the format-governing conversion of
K and X.

As another\example, the format created by the DATA statement below

REAL FORM1 (3)
DATA FORM1/'(16','//i6',',13)'/
WRITE (6,FORM1) I,J,K \

is equivalent to

WRITE(6,50) I,J,K
54 FORMAT (16 //16,13)

One caution should be noted with respect to the storing of formats within arrays.
Such storage does not result in the correct linkage of the I/O conversion

routines from the OTS Library. For example:

REAL FORM1 (2)

INTEGER II

LOGICAL LL

DATA FORM1 / '(I5,','L5)'/

I1=8 N
LL=.TRUE.

WRITE (6,FORM1) II,LL

END

If the preceding program is run, it produces the following run-time error
message. :

FORT@0820P LINKAGE ERROR (MISSING FORMAT CONVERSION ROUTINE)

When this error occurs, executicn of the program is terminated.

7-84

To correct this error, the programmer should include within his FORTRAN program a
FORMAT statement that contains any format conversions that will be needed at run-
time. This FORMAT statement need not be used or referenced by any READ or WRITE
statement; it need only be present. In the preceding example, the following

statement could be included immediately before the END statement.
9999 FORMAT (I1,L1),

Also note that the variable format expression notation cannot occur in formats

stored as data.

7-85

PART 7
CHAPTER 8
1/0 AND DEVICE HANDLING STATEMENTS

8.1 INTRODUCTION TO FORTRAN I/C

Input of data to a FORTRAN program is performed by the READ statement. Output from
a FORTRAN program is performed by either the WRITE or PRINT statement. These
statements are generally used in conjunction with a FORMAT statement or format
specification contained in an array. Each READ or WRITE statement contains a
reference to the device to or from which the data transfer is to occur. The

PRINT statement assumes dutput to the line printer, although the assumed device can
be altered.

There are three categories of READ and WRITE statements.

a. Formatted READ, WRITE and PRINT statements are used with or without
an I/0 list. Where a list of variables is provided, those values are
transferred and automatically converted to ASCII on output or internal
format on input. Where an I/O list is not provided, an alphanumeric
data transfer is indicated.

b. Unformatted READ or WRITE statements perform a transfer of binary
’ information only. These statements make no reference to FORMAT
statements or specifications.

c. Direct access disk READ and WRITE statements perform I/O of fixed-length
records to a file previously defined by a DEFINE FILE statement. Direct
access READ and WRITE statements cannot be used with FORMAT statements
or specifications.

A feature available with all forms of READ and WRITE statements allows the program
to transfer control to a specified line number if an end-of-file or error condition

develops during the I/0 operation.

Table 7-7 shows the skeletal formats for each of the three categories described

above.
The remaining statements covered in this chapter perform file-oriented or device-

oriented operations with respect to bulk storage devices such as magnetic tape,

disk and DECtape.

; 7-86

Table 7=7
READ and WRITE Statement Summary

Category Input Statements Output Statements
formatted READ (u,f) list WRITE (u,f) list-

READ (u,f) WRITE (u,f)

READ £, list) PRINT £, list
unformatted READ (u) list WRITE (u) list

READ (u) " | WRITE (u)
direct disk access READ (u'r) 1list WRITE (u'r) list
transfer on END= and READ (u,f,END=n) list WRITE (u,f,END=n) list
ERR= can also be READ (u,f,ERR=n) list WRITE (u,f,ERR=n) list
used with unformatted READ (u,f,END=n,ERR=n) WRITE (u,f,END=n,ERR=n) list
and direct access I/0 list :)
statements
Where:

is a logical unit number, either an integer constant or variable

£ is a format reference (line number of a FORMAT statement or an array
' name)
list is a list of I/0 variables
r is an integer variable or constant designating the record number
n is a statement number

' is the character used to separate the symbolic file number and the
record number

. is the character used to separate all other arguments of I/0O statements

8.1.1 I/0 Devices
PDP-11 FORTRAN supports all I/O devices supported by thé Monitor. The default

FORTRAN logical device assignments are described in Table 7-8. Device assignments

«<an be altered by means of the ASSIGN routine. (See Section 7-14.2.3.)

7-87

Table 7-8

FORTRAN Logical Device Assignments

Logical Unit Number - Device

system disk, SY:

system disk, SY:

system disk, SY:

high-speed paper tape reader, PR:
line printer, LP:

terminal, KB:

system disk, SY:

BATCH system input device, BI:

ONOU B WN

8.1.2 1I/0 Records

All data is transmitted by input/output statements in terms of records. The maximum
amount of information in one record and the manner of separation between records
depends upon the medium. For punched cards, each card constitutes one record; on a
teletypewriter a record is one line; for ASCII records, the amount of information is
specified by the FORMAT reference and the I/O list; for unformatted binary records,
the amount of information is specified by the I/0 list; DEFINE FILE is used to speci-

fy record length for direct-access files.

Each execution of an input or output statement initiates the transmission of a

new data record. Thus, the statement
READ 2,FIRST,SECOND,THIRD
is not necessarily equivalent to the following statements.

READ 2,FIRST
READ 2,SECOND
READ 2,THIRD

In this case at least three separate records are required, whereas the single

statement

READ 2,FIRST,SECOND,THIRD

may require one, two, three, or more records depending upon FORMAT statement 2.

7-88

If an input/output statement requests less than a full record of information, the
unrequested part of the record is lost and cannot be recovered by another input/

output statement without repositioning the record. Repositioning is not possible
on all devices (see Section 7-8.6). If an input list requires more than one ASCII

record of information, successive records are read.

8.1.3 1I/0 Lists
An input/output list contains the names of variables and arfay elements whose
values are assigned on input or written on output. Inpﬁt and output lists have

the same form, consisting of individual elements separated by commas.

The simplest form of I/O list consists of a list of variable names or array element

names. For example,
A,B,C
indicates three simple variable names.

An array name used alone in an I/O list specifies all of the array elements defined
when the array is declared. Elements are read into core or output in the order
specified for array storage (see Section 7-5.3.1). Thus, where the maximum element
of the array X is X(4¢8), an I/0 list to include the entire array X éould be
written as

A,B,C,X
The elements of a list are specified in the order of their occurrence from left to
right and may be enclosed in parentheses. The following list is identical in
meaning to the previous list. ‘
(a,B,C),X
An implied DO loop within the I/O list can be used to indicate transmission of only

part of an array. This is performed by including a parenthesized quantity as a

list element as follows:

One-Dimensional Array Two-Dimensional Array

(A(I) ,I=n,m,k) ((a(z,J) ,I=n,m,k) ,J=n',m', k')
or

(A(I),I=n,m) ((A(1,3),I=n',m),J=n',m')

7-89

where A is an array name, I and J are array subscripts, and n, m, and k represent
the initial, terminal and step values of the implied loop. When the step parameter
is omitted it is presumed to be +1. For example,

(X (K) ,K=1,4)
is equivalent to

X(1) ,X(2) ,X(3) ,X(4)
The implied DO loop

((Y(I,J),;=1,2),J=l,3)
is equivalent to

¥(1,1),¥(2,1),¥(1,2),¥(2,2),¥(1,3),¥(2,3)

As shown above, nesting is used to provide for various levels of indexing, up to three

dimensionsf

8.2 FORMATTED 1I/0

8.2.1 Formatted READ Statement

A formatted READ statement is of the form

READ (u,f) list
READ (u,f)

or
READ f, list‘[equivalent to READ (4,f)]

where u indicates a logical unit number and f indicates a format reference (either

a FORMAT statement or an array name whose elements contain a format specification).

A formatted READ statement causes information to be read from thé specified device
and placed in memory. The data is converted from external to internal format as
indicated by the format specification. If an I/0 list is provided, data items are
stored as the values of the listed variables. If a list is not provided the data is

stored as an alphanumeric string in the format itself. For example,

7-90

READ (1,1¢¢) A,B,C

reads three values from device 1 according to the format in the FORMAT statement

at line 1@@ and assigns the values to the three variables named.

READ (1,188)
1¢§ FORMAT (5SHHELLO)

When the above READ statement is executed, and the characters ABCDE (for example)
are given as input, the FORMAT statement at line 1@@ becomes

199 FORMAT (SHABCDE)

A READ statement of the form : .
READ 11¢,X,Y,2
is similar to the first form discussed, except that input is assumed to come from

logical unit 4 (default to PR:). The FORMAT statement associated with the operation
is at line 11¢.

Example:
DIMENSION B(32)
50 READ (6,2¢0) B
19@ READ (6,B) I,J,K,L
200 FORMAT (32a4)

When statement 50 is executed in this example, the value of the array B is read

from device 6. If the first two elements of B contain the following

B(1l) = '(416'
B(2) = ")!

and the remaining_élements of B, B(3) through B(32), are blank, ﬁhe array B contains
the format specification (4I6). (The format statement in line 2@@ provides for-
matting information for the user to input enough data to completely fill the array B.)
When statement 1@@ is executed, the contents of the array B become the format
reference for that READ statement. The variables I, J, K and L are read from

‘device 6 according to the format 4I6 (that is, four 6-digit integers). This type of

7-91

READ statement (statement 1@¢@) is said to contain variable read-in formats and
allows the user to specify an I/O format at run time (see Section 7-7.16).

.
Any format conversions and I/0 control routines not needed in the resident section
but required by overlay sections must be forcibly loaded into the resident section.
This can be done by declaring the appropriate globals in an assembly language
routine or inserting dummy FORMAT and input/output statements in the resident main
program for all those routines needed in the overlays and not required in the

resident- section. See Section 7-9.10 for further details.
8f2°2 Formatted WRITE Statement
A formatted WRITE statement is of thg form
WRITE (u,f) list
or
WRITE (u,f)
where u indicates a logical unit number and £ indicatés a format reference.

A formatted WRITE statement causes one or more logical records to be constructed
and written on the designated device in ASCII format. A logical record contains
up to 133 characters, including the carriage control character. The data is
converted to external form as specified in the designated format reference. If
an I/0 list is provided, the values of the variables indicated.are output. If a
list is not provided, the information is read directly from the format reference
and written on the device designated in ASCII form (this is generally done with

Hollerith output). For example:

WRITE (5,115} IERR, INET, ILOW
115 FORMAT (3I4)

The above combination outputs three integer values to device 5.

WRITE (5,128)
120 FORMAT (25H THIS IS HOLLERITH OUTPUT)

The above combination outputs 25 characters to form the message

THIS IS HOLLERITH OUTPUT

7-92

on device 5 (the first character, blank, is not printed, but is used as a carriage

control character).
8.2.3 PRINT Statement
‘The PRINT statement is of the form

PRINT £, list
where f indicates a format reference. The PRINT statement is a formatted WRITE
statement whose output is always sent to the same device, the line printer. PRINT
performs a WRITE (5,f). The default device can be changed by using the ASSIGN
subroutine (see Section 7-14.2.4) or the ASSIGN Monitor command with respect to
logical unit 5. ’
As an example,

PRINT 115, NA,NB,NC

outputs three values according to the format described in line 115. This statement

is analogous to the third type of READ statement described in Section 7-8.2.1.
8.3 UNFORMATTED I/O '
8.3.1 Unformatted READ Statement

An unformatted READ statement is of the form
READ (u) list

_or
READ (u)

where u indicates a logical unit number.

An unformatted READ statement causes binary informatidn to be read from the unit

designated and stored in memory as the values of variables in the I/0 list, if any.

For example:

READ (7) A,B,C

This statement reads enough binary values from device 7 to fill three real
variables (2 words each). If A, B, and C have been previously defined as double-
precision variables, then three real values (4 words each) are read, and so on.

READ (7)

allows the user to skip over one record on device 7. One such statement must

appear for each record to be skipped.
Each READ statement reads one unformatted binary record. If the I/O list does not
use all values in the record, the remaining values are discarded. If more values are
required than are contained in the record, a run-time error message results.
Unformatted binary I/O generally is used to enable the storage of intermediate
results from one program to another without the loss of precision involved in for-
matting data output. Unformatted I/0 is pérformed between memory and such peri-
pherals as paper tape, DECtape, magnetic tape or disk, but not to an ASCII device
where such I/0 is generally meaningless. V
8.3.2 Unformatted WRITE Statement
An unformatted WRITE statement is of the form

WRITE (u) list
or

WRITE (u)

where u indicates a logical unit number.

An unformatted WRITE statement causes binary information to be read from memory

and written on the device indicated in binary form. For example:
WB;TE (7) A,B,C

This statement writes the binary values of the variables A, B and C onto device 7.
WRITE (7)

allows the user to write one null record on device 7. Execution of such a state-

ment must appear for each null record to be output.

7-94

8.4 DIRECT ACCESS I/0
Direct access I/0 can be performed on any directory-structured device.
8.4.1 DEFINE FILE Statement
The DEFINE FILE statement defines the record structure of a disk or DECtape file.
However, DEFINE FILE automatically allocates a file if none exists. The DEFINE FILE
statement can be used as either a declarative (nonexecutable) or executable state-
ment in the program. Where DEFINE FILE is executable, arguments can be computed
within the program.
The DEFINE FILE statement is formatted as follows:

DEFINE FILE u(m,n,U,ivar)

where the arduments are as follows:

u is an integer constant or variable used as the logical unit number
for this file specification. ' ’

m is an integer constant or variable defining the number of records
in the disk file. The records in the file are numbered from
1 to m.

n is an integer constant or variable defining the length (in words)

of each file record.

U is a fixed argument designating that the disk file is unformatted
(i.e., binary). No other characters are legal.

-

ivar is an integer variable, valled the associated variable, which is set
to point to the next record at the conclusion of an I/O operation on the
file. If the associated variable is to be used by more than one
subprogram or in an overlay environment, it should be placed in a resi-
dent common block.

The statement
DEFINE FILE 1(1@¢@g,1¢d,U0,IVAR)

specifies a 1@@f-record file on unit number 1, each record of which is 1¢@ words

long.

The variable IVAR maintains an index of records processed, providing a pointer to the

next record.

With respect to overlays, the DEFINE FILE routine uses storage space that must be

‘allotted in such a way that the overlay system is not corrupted. In the statement
DEFINE FILE 1(1¢,1¢,U,INDX)

the variable INDX (the associated variable) is used to point to the record to be

processed for statements such as the following ones.

READ - (1'INDX)
WRITE (1'INDX)
FIND (1'INDX)

Every READ, WRITE or FIND done on unit 1 modifies INDX. INDX must be placed in the
local storage of the resident section or in a resident common block. If it is not,
the FORTRAN I/O system may destroy an unpredictable location in core when attempting
to store into INDX.

8.4.2 FIND Statement
The format of the FIND statement is

FIND (u'r)
where u is the file specification as assigned by the DEFINE FILE statement, and r is
an integer variable or constant specifying the record number. The FIND statement
is included for compatibility with other FORTRAN systems. The Monitor does not
support disk head positioning; therefore, the only effect of executing this statement
is to update the associated variable for the specified unit.
8.4.3 Direct Access READ Statement:
A direct access READ statement is of the form

READ (u'r) list
where u is a logical unit number as established in a prior DEFINE FILE statement
and r is an integer variable or constant specifying the record number. An
apostrophe is used to separate the two elements to differentiate this form of

READ statement from a formatted READ statement. The list specifies the number

of the items to be read.

¢

7-96

A direct access READ statement provides random access to fixed-length records in a
disk or DECtape file. For example,

READ (1'5@¢) ADC, ADX, AOD

reads record number 5@ of the file on unit number 1 to obtain values for the

" variables ADC, ADX and AOD. Three 2-word values are transmitted since the variables
indicated are real variables. If the variables were.byte, integer, complex, or
double precision, a co;responding number of bytes or words of data would be read for

each variable.

As in other I/O operations, only the number of items in the list are transmitted
regardless of the number of items in the record. If a list requires more values

than are provided in the record, gn error message is printed.
Implied DO ioops can be included in direct access I/0 statements.
- 8.4.4 Direct Access WRITE Statement
A direct access WRITE statement is of the form

WﬁITE'(u'r) list ,

where u is a logical unit number and r is an integer variable or constant specifying
the record number. An apostrophe(is used to separate the two elements to differentiate
this form of WRITE statement from a formatted WRITE statement. The list specifies

the number of items to be output.

The direct access WRITE statement outputs a fixed—léngth record directed into a
file and is analogous to the direct access READ statement described in the

previous section.

8.5 TRANSFER OF CONTROL ON ERROR CONDITION

'

Both READ and WRITE statements can be written so as to transfer control to a given
statement number if an error condition is detected. These ‘variations can be
specified in one of the following formats:

READ (u, £ ,END=n) list

READ (u,f,ERR=n) list
READ (u, f,END=,ERR=n) list

7-97

WRITE (u, f,END=n) list

WRITE (u,f,ERR=n) list

WRITE (u,f,END=n,ERR=n) list
where u is a logical unit designation, f is a format reference, and n is a line number
within the program. The list is optional. END= and ERR= can also be used with

unformatted and direct-access 1/0.

The arguments END=n and ERR=n can appear separately, or together in the order
illustrated. If an end-of-file condition is encountered during a READ, control
transfers to the statement having the line number associated with the END parameter.
If an END parametey is not specified, I/0 on that device terminates and the program ‘

terminates with an error indication.

If an error is encountered on input or output} control transfers to the statement
having the line number associated with the ERR barameter. If an ERR parameter_ is

not specified, the program terminates with an error message.

If an error variable has been associated with a logical unit as a result of a
CALL ASSIGN or CALL SETFIL statement, then when the ERR transfer is taken, the
error variable will contain a code designating the type of the error. This code
is the number of the error message within the Class 1 errors as described in

Appendix K.
8.6 - DEVICE CONTROL STATEMENTS

Refer to Table 7-13 which defines the type of I/0 and the specific operations that

can be performed on each of the periphegals.
8.6.1 BACKSPACE Statement
The BACKSPACE statement is of the form

BACKSPACE u

where u is an unsigned in;eger constant or integer variable specifying the logical
unit number of a device. The unit is repositioned to the beginning of the file
opened on that unit, and the read/write mechanism spaces forward n-1 records, where
n is the number of the record processed before the BACKSPACE. The effect is to

backspace one ASCII record or one logical binary record, depending upon the device.

7-98

8.6.2 REWIND Statement
The REWIND statement is of the form
-
REWIND u

where u is an unsigned integer constant or integer variable specifying the logical
unit number of a device. This statement repositions the designated unit to the

beginning of the currently opened file.

8.6.3 END FILE Statement

The END FILE statement is of the form
END FILE u

where u is an unsigned integer constant or integer variable specifying the logical
unit number of a device on which input or output operationé are being performed.
The END FILE statement causes the currently open file to be closed. END FILE also

closes any open random-access files to allow another DEFINE FILE to be performed.
8.7 ENCODE AND DECODE

ENCODE and DECODE statements transfer data, according to format specifications,
from one section of memory to another. DECODE changes data in ASCII format to the
specified format. ENCODE changes data of the specified format into ASCII format.

The two statements are of the form

ENCODE (c,f,v)1list
DECODE (c,f,v)1list

" where the arguments are as follows:

c the number of characters-(bytes) to be converted.
£ the FORMAT statement number or array specifying the format.

v the name of the array that contains, or is to contain, the
ASCII character string; it must be an array name.

list the list of variables to be changed from or into ASCII format; it is
the same as any other I/0 list (see Section 7-8.1.3).

7-929

Example of the use of the DECODE statement:

- DIMENSION A(3),I(3)
- DATA A/'1234','5678','9¢g12'/
DECODE (12,18¢,3)I

199 FORMAT (3I4)

This code causes the integer array I to take on the numeric values of the three

strings stored in the ASCII array, as follows.

I(1l) = 1234
I(2) = 5678
I(3) = 9g12

DECODE is analogous to a READ statement, since it causes conversion from ASCII to
internal format. ENCODE is analogcus to a WRITE statement, causing conversion

from internal-data formats to ASCII.

The DECODE statement is used when it is necessary to process records having‘different
formats. Figure 7-5 contains a segment of FORTRAN code that reads 80-character
records from logical unit 1. The first two characters of each record contain an
integer between 1 and 3 indicating the format of the remainder of the record.

DECODE is used twice in the example: first to scan the record type field and then

to read and translate the remainder of the record.

Note that the character data processed by ENCODE/DECODE must be in adjacent bytes
in core. This means that if character data is to be stored in an integer array,
the /ON (l-word integers) compile time switch must be used. If l-word integers

are undesirable then the character data should be stored in a real array.

7-100

BYTE BUFF(B82),TITLE(L2)

GET NExT RECORD
READ(1,10,END=920) BUFF
FORMAT (80AL)

DECODE TyPE FIELD AND BRANCH ON IT
DECODE(80,28,BUFF) ITyP

29 FORMAT(12)
IF (ITYP.GE,4,AND,ITYP,LE,3) GOTO (100,200,300) ITYP

aaQ~aad
=

o
€ 8AD RECORD
WRITE(S,30)BUFF |
30 FORMAT (/ #wBAD RECORD#s'/1X,80A1)
60 T08
o _
c 1TyPsi

100 DECODE(82,342,BUFF)1,J4,K
110 FORMAT(T4,214,T24,16)

'

]

.

¢ 1TYPa2
208 DECODE(88,210,BUFF)A,B,C,D,1,J
218 FORMAT(T20,4F18,5,215)
: ,
[]
L}

C1TYPe3)
300 DECODE(80,340,BUFF)TITLE, I,J
310 FORMAT(T3,12A1,762,215)

c E&D'OF“FILE TRANSFERS To 909
902 CONTINYE

[]

K]

an

Figure 7-5
DECODE Example

7-101

PART 7
CHAPTER 9
OPERATING PROCEDURES

9.1 USING THE FORTRAN SYSTEM
Figure 7-6 outlines the steps required to prepare a FORTRAN source program for

execution under the DOS/BATCH Monitor: (1) compilation, (2) linking, and

(3) execution.

oTs
Libracy
\

Source compiler |, Object Linker . Load Running
Program Module Module Program

Figure 7-6

Steps in Compiling and Executing a FORTRAN Program

Step 1 in Figure 7-6 is initiated by a call to the FORTRAN Compiler, accompanied by

a command string that describes input and output files, and switch options, if desired,
to be used by the compiler. Step 2 is initiated by a call to the linker, accompanied
by a similar command string. Steps 2 and 3 can be made to follow step 1 automaﬁically
by including the /GO switch option in the command string presented to the compiler.
The /GO switch causes the linker to be called, the program linked, and execution

begun in automatic sequence following compilation.

7-102

9.1.1 Filename Specifications

The DOS/BATCH FORTRAN compiler accepts a standard DOS command string of fhe follow-

ing form.
output files < input files

The DOS/BATCH command string syntax is described more completely in Part 3 the
DOS/BATCH Monitor.

The FORTRAN Compiler can produce two output files: an object module file and a
listing file. The single input file permitted is a FORTRAN source file, containing
one or more FORTRAN program units (a FORTRAN subprogram or main program). Each

file specification is of the form
dev:filename.ext[uic]

where dev: is any legal device specification code. The usual DOS device specifica-

tions are shown in Table 7-9.

Table 7-9

Device Specification Codes

dev: Device
SY: . system disk, assumed default device
DKn: RK1l disk, cartridge unit n; n=@ is the default condition
B RC1l1 disk
DF: 3 RF11l disk
DPn: RPO3 disk, cartridgevunit n;
n=¢ is the default condition
KB: user terminal
CR: ’ card reader
LP: line printer
PR: high-speed paper tape reader
PP: high-speed paper tape punch
DTn: DECtape unit n; n=@ is the default condition
MTn: Magtape unit n; n=g is the default condition

BI: BATCH input data set

7-103

The filename may be any l- to 6-character alphanumeric name. The filename extension

may be any l- to 3-character alpharumeric sequence.

or supplied on default for the FORTRAN Compiler (and for

The filename extensions assumed

LINK) are shown in

Table 7-10.
Table 7-10
Filename Extensions
Asisumed Extension Default Extension
File on Input File

on Output File

FORTRAN Compiler

object file
listing file
source file

LINK

load module
object module

.FTN

.0OBJ

.OBJ
.LST

.LDA

When a source file of the given filename (having no extension) cannot be found on

the device specified using the default extension, the system attempts to find

the filename with a null extension.

9.1.2 Compilation and Linking Procedures

To activate the FORTRAN Compiler under the DOS Monitor, the command

$RUN FORTRN

is given. The FORTRAN Compiler then prints FORTRAN and the compiler version

number, and a # to indicate that it is ready to accept a command string.

A sample FORTRAN command sequence is shown below.

$RUN FORTRN
FORTRAN Vxxx
#OBJECT, LIST<FILEL

7-104-

This command string directs the compiler to take the source file FILE1.FTN from the
system device and output the files LIST.LST and OBJECT OBJ to thé system device. The
user then calls the DOS/BATCH Linker to link the 6bject module (s) with the FORTRAN
Library as follows. '

(1) Link (2) Link and Execute

$RUN LINK :$RU LINK ‘

LINK Vxxx LINK Vxxx

#LOAD<OBJECT ,FTNLIB/L/E #LOAD<OBJECT ,FTNLIB/L/GO

Input to LINK is one or more compiled object modules and any required library files.
Output from LINK is a single load module and, optionally, a load map and symbol table

file.
L}

In the linkage shown in example (1) above, the linker output is a load module, which
can then be loaded and run by ﬁeans of the RUN command. The /L switch indicates that
FTNLIB is a library file and the /E switch indicates the end of input to the linker.
In example (2), the /GO switch causes the linker to output the load module to the
system device, to load a copy of that load module, and to begin execution of the

program, as though a

$RUN LOAD

command had beén given. When the /GO switch is used, the /E switch is omitted from

the linker command string.

If any of the FORTRAN source files contains more than a single subroutine or a single
main program, the resulting object“module préduced by the FORTRAN Compiler is a con-
catenated ;bject quule file. When such a file is linked by LINK, the linker /CC
switch must be used following the object module file specification. Failure to use
the /CC switch with é concatenated object module results in an error message from
LINK and a defective load module.

The following sequence might be used to compile, link, and execute a FORTRAN system

consisting of

a. the FORTRAN main program MAIN.FTN,
b. the FORTRAN subroutine SUBRL.FTN, and . i '
c. several FORTRAN subroutines in the file UTILTY.FTN.

SRUN FORTRN

FORTRAN Y@6,d9

HMATN, LPICMALN

#SUBRL,LP1<SUBRY ‘

BUTILTY LPISUTILTY

#el

K1

SRUN LINK

LINK Vxxx

#P1,LPISKMALIN,SUBRL,UTILTY/CC, FTNLIB/L/E
#20

LK1

$RUN Pi

7-105

Either of the compiler output files can be eliminated by omitting its file specifica-
tion from the command string. For example,
$RUN FORTRN

FORTRAN Vv@é,09
#FILELSFILEL

produces FILE1l.OBJ on the system device but no listing file, while

#,LP:<FILE1
produces a listing on the line printer, but no object module output.

9.1.3 Compile-Load-and-Go Operation

Rather than give separate command strings to both the FORTRAN Compiler and LINK, a
single command string to the FORTRAN Compiler can be used to cause compilation,
linking and execution. This one-step compile-load-and-go sequence is performed as

follows:

SRUN FORTRN
FORTRAN Vxxx
#FILEL.LST<FILE1/GO

in which case the source program FILEl.FTN on the system device is compiled and
linked to the FORTRAN Library.(FINLIB). A listing file (FILE1l.LST), an object
file (FILEl.OBJ) and a load module file (FILEl.LDA) are created on the system

device. The load module file is then loaded and execution begun.
9.1,4 FORTRAN Library Usage

By means of the DOS Librarian, the user can construct his own libraries of machine
language and FORTRAN routines, which he then searches at link time. The user is
constrained to search all of his own libraries before searching the FORTRAN System

Library.

Users should not add subroutines or functions to the DEC-supplied FORTRAN Library.
Maﬁy routines in the OTS Library are order-dependent and the insertion of new
routines could result in undefined global references when linking FORTRAN programs.
Similarly, the deletion or rearrangement of routines.in FTNLIB is likely to cause
similar problems unless the user is familiar with the ordering dependencies of the
FORTRAN Library. Therefore, users should create separate liBrary files, using the
Librarian. Thus, if MATLIB is a user library containing matrix manipulation
routines, and the user writes a program (PROG) that uses routines from MATLIB, a

command string to the Linker might be:

#PROG, LP : <PROG ,MATLIB/L,FTNLIB/L/E

7-106

9.2 FORTRAN OUTPUT LISTING FORMAT

When a listing file is requested, each page contains a header with the following

information:

Compile version identification
current time

current date

listing page number

Using the /LI:n switch option, the user can vary the type of listing file obtained;
from a mere listing of error diagnostics to a complete listing of source, assembly
language and symbol table. All listing files include block summaries describing

the current program unit.

The block summary or descriptor block is a collection of. information about a

FORTRAN main program or subroutine, printed following the END statement on the source
listing (before the assembly listing, if one is requested). Figuresr7-7 and 7-8

show sample FORTRAN programs and their descriptor bldcks. A descriptor block

provides the following data:

a. A listing of the routines called from the program.
b. A listing of the switches specified in the command string.

c. A listing of the size of the program in both decimal words and
octal bytes. Sizes are also provided for each common block declared
within the program. Since common blocks may be shared among several
programs, their sizes are of individual interest.

The information is formatted into three columns under two headings:
BLOCK and LENGTH. The name of the program or common block is

listed under BLOCK, followed by the size in decimal words, followed
by the size in octal bytes (in parentheses). These last two entries
are under the LENGTH heading.

The line containing the program name is followed by an asterisk.

. Where no program name is supplied, the name MAIN. is shown. The
name .$$$$. denotes blank common; the name DATA. indicates a block
data subprogram.

d. Following the Assembly listing, where one is requested, a final data
item is supplied, entitled:

COMPILER -—--- CORE
It has three subheadings: PHASE, USED, and FREE.
These terms head columns that contain, respeétively, the phase of the
compiler (three phases). The number of decimal words of core storage

~used in that phase, and the number of decimal words of core storage
free .in that phase.

7-107

FORTRAN V@6.12

2og1
2ep2
2093
ggg4
- #pps
2086
geg7
pags
2089
2018

17:16:59 23-MAY-73 PAGE

SUBROUTINE SUB2X(I)
DOUBLE PRECISION DOS
COMMON T1, Z, DOS /L2/ J2(1@), V2, W2

Tl=1

Z=-1.0

DOS=~1.4D@

W2 = SQRT (EXP (J2(I)-1.8))
v2= -1.¢

RETURN

END

ROQUTINES CALLED:

SORT , EXP
OPTIONS = /ON,/CK,/OP:l
BLOCK LENGTH
SUB2X 94 ((g@@274)*
5888, 7 (2gggLre)
1.2 24 (PP2B58)
**COMPILER ====- CORE*#
PHASE USED FREE

DECLARATIVES @@366 18276
EXECUTABLES @@543 18999
ASSEMBLY g@965 28594

Figure 7-7

Block Summary Example #1

FORTRAN V@6.12

2291
2092
2003
2004
2095

2906

17:17:18 -23~-MAY-73 PAGE

BLOCK DATA
COMMON /L1/ XBD, YBD, CBD, DBD /L2/ UBD, VBD, WBD

- COMPLEX CBD

DOUBLE PRECISION DBD :
DATA XBD, YBD, CBD, DBD, UBD, VBD, WBD / 2*1.f,

1 (1.2,1.9),1.90+8,3*1.8 /
END

BLOCK iENGTH

DATA. @ (2p2200) *

Ll 12 (2e2@3g)

L2 6 (PPEEL4)

COMPILER -——-- COREW

PHASE USED FREE

DECLARATIVES @366 19276

EXECUTAB
ASSEMBLY

LES @@g55¢ 18092
99845 29714

Figure 7-8
Block Summary Example #2

7-108

These sizes describe the symbol table space used in each phase and
provide the user with a ratio of used to unused space in the
compiler.

If the FORTRAN program was compiled without subroutine calls or switches, the
information described in' (a) or (b), respectively, is not provided. The information
in (c) and (d) is provided as part of the listing for every FORTRAN program or
subroutine. ’

9.3 COMPILE-TIME MEMORY REQUIREMENTS

The DOS/BATCH FORTﬁAN Compiler uses all available memofy space for the program
symbol table. A simple variable entry in the symbol table is eight words long.
A constant entry is eight words plus the size of the constant. An array entry
is ten words plus one word for each dimension. For example, a complex constant
entry is twelve words long and a 3-dimensional array entry is thirteen words long.
The user can reduce the amount of memory used by the‘compiler by his choice of
input/output files in command strings and by rgducing the number of continuation
lines permitted. Memory space saved in this way is available as additional symbol
table spéée. .
The /CO switch, which controls the number of allowable continuation lines on a
given FORTRAN statement, takes space from the symbol table area. Thus, /CO:99
takes the maximum amount of space from the symbol table while /CO:@ makes
additional space available to the symbol table. (The default value is /CO:5).

: . ’
The devices used for I/0 affect the compiler core requirements. The minimum core

required for I/O operations would be used with the command sequence

SRUN FORTRN
FORTRAN VXxx .
#FILE<FILE

where source and object files are on the system device. Memory requirements are
increased, and symbol table space correspondingly reduced, when the user requests
listings or uses devices other than the system device. For example,

#FILE,KB:<DT:FILE

requires considerably more memory space than the previous command string.
-

7-109

PART 7
CHAPTER 10
FORTRAN OPERATING ENVIRONMENT

1#.1 FORTRAN OBJECT TIME SYSTEM
The FORTRAN Object Time’System (OTS) is composed of the following:

a. Mathematics routines, including all standard FORTRAN functions plus other
arithmetic routines needed to do arithmetic operations (e.g., floating
point).

b. Miscellaneous utility routines (bDUMP, SETERR and SETFIL).
c. I/0 Routines, which handle the various types of FORTRAN I/O.

d. Error handling routines, which process arithmetic errors, I/O errors and
system errors.

e. Miscellaneous (Polish) routines required by the compiled code ($SBS,
$DOEND, $POP, etc.).

The library is designed as a large number of small pieces so that unnecessary rou-
tines can be omitted at link time. Thus, if the user performs only seguential

formatted I/0, none of the random access routines are linked to his program.
14.2 THREADED CODE

Most FORTRAN compiled statements gernerate calls to 1ibrary subprograms. These calls
are based on the technique of evaluating expressions in Polish notation, which
breaks down expressions into a large number of simple operations performed in a
linear sequence. These operations use the PDP stack for evaluating all expressions

and subexpressions.
The implementation of Polish notation makes several assumptions.

a. The first operation done in a Polish sequence is always a "push".

b. It is not necessary to place breakpoints (as in ODT) in the middle of an
arithmetic statement. :

c. Speed does not suffer by assignment of a register (R4) for special purposes.

As an example, the FORTRAN statements

w

A=1.0
B=1.0

7-110

generate the following code.

iA=1.9
$PPQPl
.GLOBL $POP3
$POP3,A
sB=1.p
$POLAL
$POP3,B

-
Routines such as those above, referenced directly or indirectly, are inserted into
the user program and are found at the end of the assembly listing; other routines

are linked to the user program from the FORTRAN Library. .The routines inserted

into the user program as a result of the above code follow.

SPOOOL MoV #SROQOP+4 , RO ';GET ADDRESS OF VALUE
. BR SFO001
)

$ROOBP: Qa0 ;FLOATING-POINT CONSTANT 1.%

of fupnfuu} :
$SFO001: MoV - (R4) ,- (SP) ;PUSH 2~-WORD VALUE ONTO

MOV - (RE) , - (SP) ;STACK

JMP @(R4)+ _ ;GO TO NEXT ROUTINE

The routine $POP3 is in the FORTRAN Library. $POP3 pops a real value off the stack
into the memory location whose address follows the call to $POP3 in the threaded
code.

$POP3,A

‘e

pops the value on top of the stack into the two memory words reserved for A.

Similarly,
$POP3,B

places the 2-word value found on top of the stack into B. As another example, the

statement

generates code similar to the following

7-111

$pgggL ;PUSHES THE VARIABLE B ONTO THE STACK.

$PAgg2 ;EACH OFERATION CONSISTS OF THE ADDRESS OF A
.GLOBL $ADR ;ROUTINE TO BE EXECUTED. A PUSH PLACES A
$ADR ;VALUE ON THE STACK; A POP REMOVES A VALUE.
$POP3,A

o+2 ;THIS LINE CAUSES AN EXIT FROM POLISH MODE;

;NORMAL EXECUTION IS RESUMED.

$PgdYl and $PEEP2 push the values of B and C onto the stack; $ADR is a FORTRAN
Library routine to add two floating-point numbers; $POP3 saves the result in the

variable A. The subroutine calls for the above sequence follow.

$POEPL: MOV #B+4,RM ;GET THE ADDRESS OF B.
BR - SFEEI1 }JUMP TO PUSH.
$pggd2: MoV #c+4, RO ;GET THE ADDRESS OF C.
SFOBFL: MoV - (R@) ,-(SP) ;PUSH TWO

- MoV -(R®) ,- (SP) ;WORDS ON STACK.
- JMP @ (R4)+ ;JUMP TO NEXT .ROUTINE.

$POP3: MOV . (R4)+,R3 ;GET ADDRESS OF
;VARIABLE DESTINATION.

MOV (SP)+, (R3)+ ;POP A VALUE
MOV (SP)+, (R3)+ ;FOR THE VARIABLE.
JMP @(R4)+ ;GO TO NEXT ROUTINE.

Note that the instruction

JMP @(R4)+
jumps to the next routine in the list as well as incrementing R4 over that item in
the threaded code. All internal functions are called in this manner and exit using
such a jump instruction and must clear any stack space used (except for the return

value left on top of the stack).

All routines explicitly called by the user (i.e., subroutines and external func-

tions) are called using the PDP-1ll subroutine calling convention (see Chapter'16).

1¢4.2.1 Entry to Polish Mode
Entry to Polish mode is made via a call to the $POLSH routine, as follows.
JSR R4, $POLSH

This invokes the following routine.

7-112

$POLSH: TST (sP)+ sDELETE OLD VALUE OF
.) 7R4 PUSHED ON ENTRY
JMP .@(R4)+ ;EXECUTE NEXT THREADED CODE CALL

The word following the JSR to $POLSH is the first word of Polish code to be executed.
, R . .

19.2.2 Exit from Polish Mode

An explicit exit from Polish mode is made by means of a word containing the address

of the following word. For example:

. ; IN POLISH MODE
«WORD +2 ;LEAVE POLISH MODE
.) 3CONTROL PASSES TO THIS LOCATION

14.2.3 Polish Mode Subroutine Calls

The PDP-11 FORTRAN calling sequence convention is described in Chapter 7-15. The
PDP-11 FORTRAN Compiler (V@6) implements this convention by means of Polish Mode

operators described in this section.

A subroutine or function call is performed using the $CALL service routine followed
by one argument (the routine to be called). The argument list follows immediately
in memory. The routine called is entered in direct execution mode. (This is true

of FORTRAN compiled subprograms as well as assembly language programé;)

Thus, it is necessary to re-establish Polish mode after each subroutine or function
call using one of the library routines $RPOLO or $RPOLN. These routines are similar
to $POLSH but $RPOLN additionally adjusts the processor stack register to delete)
any temporary arguments created for the call. For example the statement

X = FNC(A+B,C)

will result in the following code.

.

7-113

$SPOERL
$pgoe2
$ADR
$SVSP, SFAEP1
$CALL,FNC
: BR .+6
sFdedL: &
+C

JSR %4, SRPOLN
+4

;PUSH VALUE OF A ON STACK

;PUSH VALUE OF B ON STACK

;ADD REAL - RESULT LEFT ON STACK
;COPY ADDRESS OF A+B INTO ARG LIST

; TWO ARGUMENTS

;FILLED IN AT EXECUTION TIME
;ASSEMBLED IN ADDRESS OF C
$ARRIVE HERE IN NON-POLISH MODE
;RETURN TO POLISH MODE AND
;DELETE TEMPORARY VALUE A+B

14.3 FORTRAN RUN-TIME MEMORY ORGANIZATION

The memory map during execution of a FORTRAN program is shown in Figure 7-9.

xx7588:

R6 ---pu---n-)

OTS Routines
and
FORTRAN Program

v Stack

e])

‘ Monitor Free Core Area

et cow; . — e e a— —J

I/0 Buffers and
Device Drivers

Resident
Monitor

Interrupt
Vectors

Figure 7-9

Memory Map Organization

7-114

As files are opened, space is taken from the Monitor free-core area to accommodate
additional I/O buffers and device drivers. The FORTRAN program and OTS routines
use the processor RG stack for storage of temporary results. Overflow of the
stack into the areas dynamically allocated by the Monitor may cause DOS fatal

errors or system crashes.

I/0 buffer space and device drivers are released and the memory reclaimed when the
logical unit is closed by an END FILE statement. END FILE may be used on both in-
put and output files.

DOS I/O uses space from the free core area as follows:

1. One device driver routine for each device that has been initialized
(.INIT) but not released (.RLSE). (The END FILE statement performs
a .CLOSE and .RLSE). The approximate DOS driver sizes are given in
Table 7-11.

2. One I/O buffer for each open dataset (FORTRAN logical unit in use).
The buffer size depends upon the device.

3. One Device Data Block (DDB) for each open dataset (16 words).
4. One File Information Block (FIB) for each open file (16 words).

5. One bit map for each unit on which a file is open for output (64

words) .
) Table 7-11
Approximate DOS Device Driver Sizes
Device Driver I/0 Buffer
Device Specifier Size (Words) Size (Words)
DK 138 256
DF) 64
DC : 74 64
DP 264 512 .
DT 196 256
MT : 468 256
Lp 160 48
CR (ASCII only)] 214 48
KB 60d 32
PP 1 8d 32
PR 74 32

7-115

1¢.4 DEBUGGING FORTRAN PROGRAMS

The use of traditional FORTRAN debugging techniques such as PDUMP is recommended for
development of FORTRAN applications (see Chapter 7-14).

System error reporting and traceback information is of significant value in debug-

ging. Figure 7-1f is an example of the traceback feature in the FORTRAN system.

At run time, diagnostics are printed by OTS with a trace of the flow of control
within the user-written code. Foilowing each error code are printed the error
headings NAME and SEQ, below which are the names of the routines through which the
call is being tréced and the sequence number of the specific line in which the
error occurred (or that from which that subprogram was called). The first name and
sequence number at the top of the list is the error location; subsequent names and

numbers refer to the path through which the program reached that point.

The example in Figure 7-20 shows the same error message being printed twice. Though
the two errors were generated by the same line in the subprogram, they are traced to

different lines in the main program.

It requires considerable experience to successfully use ODT with a FORTRAN program.
ODT was not intended to handle the problems of FORTRAN debugging; it is especially

hard to use when Frying-to debug threaded code.

The threaded code generated by the compiler is a sequence of addresses, rather than
machine instructions. ODT breakpoints can be placed only on machine instructions.
The user is therefore constrained to use breakpoints only in places where the code
leaves Polish Mode; e.g., a subroutine or function call. Alternatively, breakpoints

can be placed in the Polish routines themselves.

There is one significant inconvenience associated with putting breakpoints in Polish
routines. Polish routines are usually called from several places in a program and
when the breakpoint in a Polish routine is encountered, the user must look at R4 to

find the address from which the routine was called.

When executing a FORTRAN program that stores data outside the memory area allocated
for an array, the Monitor messages 342 and F344 may occur and the system may halt.
The compiler /CK switch (Appendix K).causes all subscript references to be checked
for upper and lower bounds. Use of /CK is recommended while debugging FORTRAN

programs.

7-116

Jufuf 5% J=2
Vofofup) CALL MUL(J)
293 J=4
224 , CALIL MUL(J) } Main Program
2245 END y
BLOCK LENGTH
MAIN. 51 (ggpla6)* J
c
c
ggd1 SUBROUTINE MUL (J))
ped2 DO 1# I=1,5
ogg3s 1g J=J*J
il RETURN _ Subprogram
i @95 END - }
BLOCK LENGTH
MUL 46 (dgR134)*
$RU EXAMPLE

FORTZ@3Z14 PRODUCT OUTSIDE OF RANGE ON INTEGER MULT.

NAME SEQ
MUL #4443
MAIN. f@gg2 . Run Time
- ' Diagnostics °
FORTOP3014 PRODUCT OUTSIDE OF RANGE ON INTEGER MULT.
NAME SEQ ‘
MUL 0003
MAIN. Qop4
$

Figure 7-1¢

Example of Run Time Diagnostics

7-117

19.5 FORTRAN OTS ERROR PROCESSING

The FORTRAN OTS error diagnostics are divided into nine classes (Classes 2-8). The

messages associated with each diagnostic are given in Appendix K.

The FORTRAN OTS maintains an error class table, which governs the actions taken for

each error class.

The user can modify the values in the error class table (and

hence the error processing) by means of the SETERR subroutine call (Chapter 7-14).

Each error class entry contains values for the following variables:

COUNT

FLAG

a count of the number of errors that have occurred for this
class.

set to 1 on any occurrence of an error in the class. May be
tested and reset by means of CALL TSTERR (Chapter 7-14).

an integer specifying the acticn to be taken on an error in
the class.

The actions taken by the OTS when an error condition occurs are determined by the
value of MAX as follows:

MAX>E

MAX=g¢f

MAX=-1

MAX=-2

MAX=-3

Set FLAG, log error message on output device, increment COUNT,
and call EXIT if COUNT>MAX. ‘

Set FLAG, log error message on output device, and continue
program execution.

Set FLAG, do not log message, ignore count, and continue program
execution.

Do not log message, EXIT to Moniﬁof, and print I351 message.
Immediate exit to Monitor with a message of the form:
FO3¢ JCCONN

where CC and NN are the error class and number (in octal) of
the condition causing the exit (see Appendix K).

The error classes and default MAX values are detailed in Table 7-12.

'7-118

, Table 7-12
FORTRAN OTS Error Classes

Default)
Class MAX Value Meaning

2 -3 Fatal errors; it is recommended that the
occurrence count (-3) not be changed.

1 z Physical I/O errors.

2 1 Errors in FORMAT statements.

3 3 Arithmetic overflow or division by O.

4 4 | Incorrect arguments to library functions or
subroutines.

5 -1 Arithmetic underflow errors.

6 z Conversion errors.

7. 7 Subscripting errors.

8 1 Errors involving incorrect linkages to OTS
routines; the maximum occurrence count (1)
cannot be changed, although no diagnostic
is given.

For example, arithmetic underflows (class 5) are ordinarily ignored by the FORTRAN
OTS; arithmetic overflows (class 3) are logged and the default error limit is three

occurrences.

7-119

PART 7
CHAPTER 11
FORTRAN MONITOR I/0 CONSIDERATIONS

Input/output operations for a FORTRAN-compiled program are performed by the FORTRAN
Object Time System. The FORTRAM language statements related to I/O are described
in Chapters 7 and 8. It is the purpose of this Chapter to describe the.processing
of I/0 requests in greater detail, with emphasis on the FORTRAN OTS and DOS/BATCH
Monitor mechanisms and representations. File formats and interactions between DOS
and the FORTRAN OTS are also desicribed.

The FORTRAN OTS accomplishes all physical I/O through the DOS Monitor. FORTRAN I/0O
is therefore device~independent to the extent that such independence is supported
by the DOS/BATCH Monitor. For example FORTRAN formatted WRITE statements can be
directed to any ASCII output device, but direct-access I/0 can only be done on

~ devices having fixed-length addressable blocks (disks and DECtape, but not industry-

standard magnetic tape).
11.1 INPUT/OUTPUT OVERVIEW

As described in Chapter 8, all FORTRAN I/O operations are done in terms of logical
records. Each READ or WRITE statement transmits one or more logical records. The
overall flow of control in processing a single FORTRAN READ or WRITE statement
appears in Figure 7-11.°

I/0 call from FORTRAN program

) ,.

Initialize I/O Operation

&

Transmit Items Specified in
FORTRAN I/0 List

Finish I/0 Operation

U

Return Control to
FORTRAN Program

Figure 7-11
FORTRAN I/O Flow

7-120

The operations accomplished follow.

l. 1Initialize I/O Operation:
a. Verify legal unit number, obtain $DEVTB entry.
b, Test to see if the file is open; if it is not, open the file.

c. If the file is open, check for compatibllity of device and file for
the type of I/O requested.

If a contiguous file is to be allocated, this lS done as a part of the
file-opening process in step (b) above.

2. Item Transmission:

a. If the operation is a READ, obtain a record if needed; check for I/0
errors.

b. Transmit items according to the I/O list. If the record length is
exceeded, issue a diagnostic message.

3. PFinish I/O Operation:

a. Complete the current record with padding and record separators as
required.

b. If the operation is a WRITE, transmit the record and wait for
completion. '

c¢. Evaluate physical I/O error returns.

In the above descriptions, a file is not opened until a READ or WRITE statement for
that unit is executed. Thus, errors such as nonexistent files or inability to

locate a contiguous file are not detected until an I/0 operation is attempted.

All FORTRAN I/O is single-buffered. A DOS .WAIT macro is issued after each Monitor
I/0 call. All transfers of control on END= and ERR= precisely identify the FORTRAN
I/0 statement causing the END= or ERR= transfer.

The principal data structure used by the FORTRAN OTS for controlling I/O is the
device table, $DEVTB, described in Sections 7-11.4 and 7-11.5. The unit number
supplied in a READ or WRITE statement is used to select a device table entry. The

device’ table entry contains information for each logical unit, including:

Filename. ,

Physical device specification and unit number.
User identification code (UIC).

Protection code.

Open/close status.

. 7-121

FORTRAN logical unit defaults are specified by the values assembled into $DEVIB in

the version supplied with the FORTRAM OTS,

7-14) can be used to modify $DEVIB entries under program control.

CALL SETFIL and CALL ASSIGN (Chapter

The DOS ASSIGN

command can be used to override some of the $DEVIB attributes,

The physical devices supported by FORTRAN and DOS, and the types of FORTRAN opera-

tions permitted on each device, are specified in Table 7-13.

Table 7-13

DOS/BATCH FORTRAN Standard Peripheral Devices

Device FORTRAN FORTRAN
Name Specification I/0 Type I/O Operations
Direct- | READ WRITE ENDFILE BACKSPACE
Formatted Unformatted Access REWIND
DC:
DF:
Disk* or Sy: X . & X X X X X
DK:
DP:
DECtape DTn: X X X
Magtape MTn: X "X
Line Printer|LP: X X
Card Reader [CR: X X X
Terminal KB: X X X
High~-speed
paper tape PR: X X X X
reader
High-speed ,
paper tape |PP: X X X X
punch
Low-speed
paper tape PT: X X X X
reader/punch

* The universal mnemonic SY can be used to specify the
system disk regardless of whether that unit is an
RC11l, RF11l, RK1l, RP@2, or RPZ3 disk. '

X Indicates that a specific I/0 mode or operation is
supported on the indicated device.

7-122

11.2 FILE STRUCTURES AND FORMATS

FORTRAN input/output facilities are provided by three packages of OTS routines:
formatted I/0, unformatted I/O, and direct-access I/O. General characteristics of
DOs file structures and the three I/O packages are discussed in following sections.
. The DOS Monitor proﬁides a variety of I/O modes, and two principal file structure

organizations:

a. Linked files for sequential access.

b. Contiguous files for direct or sequential access.

Linked files consist of a series of blocks, which need not be physically contiguous
on the device. Each block contains a pointef to the next block of the file. When

a linked file is initially openéd for output, the first blo;k is allocated. As out-~
put requests occur, addifional'blocks are allocated and linked to the file. The

length of the file is therefore unknown at the time the file is opened.

Formatted and unformatted output ordinarily uses linked files. A contiguous file
may be used for output following a file allocation operation through SETFIL.
Contiguous files are specifically intended for direct-access I/0. A fixed-size
contiguous file must be initially allocated on disk or DECtape by means of DEFINE
FILE or CALL SETFIL. Direct-access I/O statements may then read or write individual

‘records without having to read all preceding records.

Table 7-14 summarizes tRe file structures and DOS I/O modes used by the FORTRAN I/O

packages.
Table 7-14
File Structures and I/0 Modes
FORTRAN DOS DOS
I/0 Type File Structure I/0 Mode
Formatted Linked or Contiguous Formatted ASCII Normal
Unformatted Linked or Contiguous Formatted Binary Normal
Direct-access Contiguous Unformatted Binary

7-123

11.2.1 FORTRAN Formatted I/0 : .

The formatted input/output routines read or write variable-length formatted ASCII
recoxds. A record consists of a maximum of 133 ASCII characters transmitted under
control of a format specification, followed by record separator characters (typi-
cally carriage return/line feed). For example, the format specification 133Al

transmits a maximum length record.

On output to a nonprinting device (e.g., disk file), the record separator consists
of the carriage return/line feed secuence. The maximum length output line thus
requires 135 bytes on a disk file. The file consists simply of a sequence of out-

put lines; there are no additional headers, checksﬁms, or byte counts.

On output to a printing device (KB: or LP:) the record separator appended to each
record consists of a carriage return and a vertical tab. The first character of
each record is deleted from the record and is interpreted as a carriage control
character; it may cause output of @, 1 or 2 line feed characters or a form feed

character.

On input, records longer than 135 bytes (including separator) are truncated. For
shorter records, the last character (line feed, form feed or vertical tab) is
deleted. The next-to~last character is deleted if it is a carriage return. No
other special interpretations are provided; that is, form feeds, tabs and other
special ASCII characters are passed to the program as single characters. In par-

ticular, tab characters are not converted to blanks.

Note that interpretation of the carriage control character is provided by the
FORTRAN OTS, not by the Monitor or utility programs. If output containing FORTRAN
carriage control characters is directed to a disk or tape file for later printing,
that printing must be done under control of a FORTRAN program in ofder to obtain»

the desired carriage control.
11.2.2 FORTRAN Unformatted I/O

The unformatted input/output routines read or write variable length binary records
uéing the DOS/BATCH formatted binary mode. Each record contains checksums, for

parity checking, and a byte count.

A FORTRAN unformatted WRITE statement outputs a single logical record. A logical
record consists of one or more segments, each segment containing a maximum of 61
wo;ds of data from the user program and a segment control word supplied by the

FORTRAN OTS. The segment control word is inserted as the first data word of the

.gegment and may take one of the values shown in Table 7-15.

7-124

Table 7-15
Segment Control

Wofa

Value -

Meaning

(RN Y

‘Neither first nor last segment

First segment of logical record

Last segment of logical record ‘
First and last segment of logical record
(Single-segment record)

Each segment of the logical record is output as a DOS formatted binary line.

format of each segment is shown in Figure 7-12.

word & 1
supplied by DOS
word 1: byte count
woxrd 2: - segment control supplied by FORTRAN
word oTs
user data
maximum of supplied by FORTRAN
. 122 bytes program I/O list
' 4 ‘ f/
- 7 l'/
Checksum supplied by DOS
byte :

DOS-11 (V@8-g2 and later) supplies a single null charac-
ter, if necessary, to end a logical record on a word
boundary; otherwise, no further characters are appended
to the file by the system.

Figure 7-12

- Logical Record Segment Format

The

Each segment has four words of overhead; the user must allow for these overhead

words when allocating a contiguous file for unformatted I/O through CALL SETFIL.

7~-125

11.2.3 FORTRAN Direct-Access I/0O

The direct-access I/0 routines read or write fixed-length binary records in a con-
tiguous file. The DOS unformati:ed binary I/O mode is used. The maximum record
length is 32,767 bytes.

The logical record structure for a direct-access file is determined entirely by the
DEFINE FILE statement. The records themselves contain no checksums, byte counts,
or record separators. Differeni programs can process the same file using different
logical record structures. In Figure 7-13, Program 1 operates on records consistingv
of 14 x 1f integer matrices, while Program 2 operates on records consisting of a

single row of a matrix.

Program 1
INTEGER MATRIX (19,12}

DEFINE FILE 1 (2, 109, U, INDX)

c WRITE OUT A 1¢ x 12 MATRIX
WRITE (1'NREC) ((MATRIX(I,J), J=1,1@) ,I=1,19)

END

Program 2
INTEGER ROW (1£)

DEFINE FILE 1(20%, 1¢, U, INDEX)

c READ A 12 ELEMENT ROW OF MATRIX
READ (1'NREC) ROW

END

Figure 7-13

Program Example Using Logical Records

7-126

P

If a WRITE statement transmits fewer words than will fit in the record, the remain-

der of the record is filled with zeros.

The direct-access record structure is independent of the physical block size of the
I/0 device, but more efficient operatioh results if the record size is an exact
divisor or multiple of the physical block size (RF and RC disks = 64 words, RPZ2 or
RK disk and DECtape =-256 words, and RP@3 disk = 512 words). ‘

11.3 FORTRAN I/O ERROR HANDLING

Three classes of run-time error conditions are specifically associated with FORTRAN

I/0 operations.

Class 1 Nonexistent file, physical I/0 error, etc.
Class 2 FORMAT syntax errors

Class 6 Conversion errors during format conversions.
A complete list of FORTRAN run-time errors is contained in Appendix K.

As described in Chapter 8, READ and WRITE statements can specify transfer of control
on an end~of-file condition (END=) and on certain physical I/0O conditions (ERR=).
The SETFIL and ASSIGN subroutines (Appendix F) can specify an error variable, IERR,

which is set té indicate the specific type of I/O error.

Errors in classes 2 and 6 are processed as described in Section LﬂﬁS and Appendix

K. Class 1 I/O error conditions are processed as follows:

Assume the error condition is identified by the diagnostic FORTZPL1ONN.
1. sSet the IERR variable, if specified in the previous SETFIL to NN.

2. If END=n is specified, and the error condition is an end-of-file
(FORT@P1904) , transfer control to statement n.

3. If ERR=n is specified, transfer control to statement n.

4. Otherwise, process the error according to Section 7-19.5.
11.4 FORTRAN DEVICE. ASSIGNMENTS
The default FORTRAN device assignments are shown in Table 7-16. These assignments
can be temporarily altered through use of a call within the user program to the

SETFIL or ASSIGN routines or by use of the ASSIGN Monitor command. Section 7-11.5

describes how to permanently alter the FORTRAN device assignments.

, 7-127

Table 7-16
FORTRAN Logical Device Assignments

Logical. Unit Default
Numbexr Device File Name

1 system disk, SY: FOR@P1.DAT

2 gsystem disk, SY: FOR@P@2 . DAT

3 system disk, SY: FOR@®P3.DAT .

4 high-speed paper FOR@P4 .DAT

tape reader, PR:

5 line printer, LP: FOR@RS5 .DAT

6 terminal keyboard, KB: , FOR@RP6 .DAT

7 system disk, SY: FOR@®7 .DAT

. 8 ‘BATCH system input FORO®S .DAT

device, BI:

Device assignments are determined in one of three ways. These are described below

in order of increasing priority.
a. The device table default values described in Appendix D.

b. A call within a FORTRAN program to the SETFIL (or ASSIGN) subroutine
(see Chapter 7-14) overrides the default device assignments.

¢. The Monitor ASSIGN command overrides both default assignments and any

assignments made within the program by a call to the SETFIL routine.

The SETFIL routine causes entries to be made in the FORTRAN device table, $bEVTB,

which is described in greater detail in Section 7-11.5.
An ASSIGN Monitor command for use with FORTRAN is specified in the form:
$ASSIGN dev:file.ext[uic], n

where the $ character is printed by the system; dev:file.extluic] represents a file

specification, and n represents a FORTRAN unit number. For example,
" $ASSIGN DT:,2

forces a search on DECtape unit @ for the filename (and extension) associated with

logical unit 2 in the device table (or in a SETFIL call).

7-128

$ASSIGN DT3:FILE.TMP,3

causes the file FILE.TMP on DECtape unit 3 to be associated with logical unit 3.

Alterations in the device table made by a céll to the SETFIL subroutine are only

valid during the program in which they appear.

Device assignments made with DOS

ASSIGN command vary in scope depending upon when the command is given.

When no program is in core, ‘assignments made through an ASSIGN command
are valid through several 'runs of the same or different programs; they
can be removed by an ASSIGN command with no arguments. For example:

R%3
A
H

>

3

T~
L4

elakal
caomn
KX g

During programs X and Y, DECtape unitlﬁ is treated as logical unit 1.

When a progtam is in core, assignments made through an ASSIGN command
are valid only through the running of that program. For example:

$GE X%
$as DT:,1

During the run of program X, DECtape unit # is treated as logical unit 1.
The KILL command returns the dev1ce assignments to their original default
conditions.

When a program is in core and executing, an assignment made by an ASSIGN
command is valid only through the running of that program. For example:

$RU X
PLEASE ASSIGN INPUT ON UNIT 4
AR5 199 ‘—-——-(PAUSE message)
$AS SY:FILEl.XX,4
$co

During the run of program X, the FORTRAN program wrote a message requesting
a device assignment and then executed a PAUSE statement. The user then
indicated that the desired file was to be read from the system disk.
Following the execution of program X, the device‘table reverts to its de-
fault assignments. - . :

11.5 THE FORTRAN DEVICE TABLE, $DEVTB

Logical device assignment is governed by the device table, which contains entries

for eight devices.

entries deleted by reassembliné the device table file.

Additional entries can be inserted, default entries changed, or

To allow for such changes,

the source file for the device table (DVB.MAC) is supplied with each FORTRAN system.

7-129

When the source has been altered and assembled, the new device table object module

can replace the supplied module in the FORTRAN Library or be linked as an object

module (to individual programs) preceding the library file. The device table con-

sists of a 12-word header followed by a 16-word entry for each device.

Table 7-17
Device Table Entry

Header

Word @

- Word 1
SDEVTB: Word 2
Word 3

Words 4-11

Words 4-5

Word 6
Word 7
Word 8
Word 9
Words 1¢-14

Word 15

Word 16

Address of device table entry for logical unit -3
(the message logging unit)

Address of entry for error routine message file
Number of entries in device vector table
Device number of message logging file

Addresses of device table entries for each of the
devices 1 through 8

Link pointer (from L{nk Block, after .INIT)
Physical device name stored in Radix-5@" format

Bits 15-8 = unit number (Default 2); Bits 7-=¢
= DOS Open Code, taken from File Block-2

Filename (stored as .RAD5Q/FOR/,/NNN/; NNN =
Entry number)

Filename extension (stored as .RAD5F/DAT/)
Switches* and protection code (Default = 233)
Status/Mode (from Line Buffer Header)

Count of I/0 operations for this device
Unused for for&atted and unformatted I/0

User Identification Code (UIC) (default=d,
indicating the current UIC)

Address of error variable (IERR from CALL
SETFIL)

7-130

Table 7-17 (Cont.)

For Random I/O, Words 8-14 are as follows:

Word 8 Function word

Word 9 Block number

word 1ff Buffer address

Word 11 Buffer length °*

Word 12 - Associated variable address;(from DEFINE FILE)
Word 13 Méximum number of records (from DEFINE FILE)
Word 14 Record length (from DEFINE FILE)

*Switches are as follows:

Bit Setting Meaning
g-1 Closed
Open formatted

Open unformatted

Open random

DEFINE FILE done on this device

[SIAN S Y

Table 7-17 describes the device table header and individual entry formats. The

supplied device table is listed in Chapter 7-17.

In order to add a device to the table,

1.

3‘

Alter the word at $DEVTB to reflect the number of entries in the device
table (the number of devices available to FORTRAN). The supplied value
at. $DEVTB is 8.

Append the address of the device enfry to the 8-word header sequence of
device table entry addresses (kpown as the device table entry vector).

Append the new lé-word entry describingvthe additional device.

To delete a device from the table,

l.

2'

30

Alter the word at $DEVTB to reflect the entries in the device table.

Set the address of the device entry in the device table entry vector/to
2ero. . B

Delete the entry for that device from the device table.

7-131

The default physical device’for a table entry can be changed by modifying the second
word of the entry. This allows the user to alter the associations between devices ’

and logical unit numbers shown in Table 7-17.

The default filename and extension for a table entry can be changed by modifying
words 4 through 6 of the table entry.

11.6 I/0 EXAMPLE

This section presents an example using the FORTRAN I/O system. The program FORDGN.-
FTN on the follbwing pages is used in the FORTRAN system to read an ASCII source
file and produce a contiguous file of specially formatted records containing the
English language diagnostic messages for the FORTRAN Compiler and OTS. A listing

of the message file is also printed on the line printer in the example following.

The program reads an input file from logical unit 4. The first record of the input
file specifies the number of error messages in the output file and the name of the
output file. CALL SETFIL sets the name of the output file and the DEFINE FILE

statement specifies the record structure.

The source listing of FORDGN.FIN follows.

o

FORTRAN VBE. 13 14:5%:12 B1i-AFR-74 FRGE 1
FORTRAN SYSTEM DIAGNOSTIC MESSAGE FILE EBUILDER
THIS FROGRAM CAN BE USED TO BUILD FILES FOR
EITHER DOS-14 OR RSX-14D AND IT CAN BE
FUN UNDER EITHER SYSTEM EBY MAKING THE APFROFRIATE
CHOICE OF "RASSIGN" OR "SETFIL" EBELOW

CREATES AND THEN FRINTS A FILE OF MESSAGES
FOR ACCESS BY THE FORTRAN COMFPILER OR 0TS

INFUT:
FILE - AS SPECIFIED BY KEYBOARD TYFE-IN
LUN - 4

15T RECORD-- 1ZX, 48A1 I12=40F &4 CHARRCTER MESSAGES

TO BE ALLOCATED. <48A1=FILE SPECIFICATION
OTHER RECORDS- I3. 64A1 I1Z=FOSITION OF CURRENT

MESSAGE IN THIS FILE. £4AL=CLURRENT MESSAGE
LAST RECORD-- IZ, &4A1 I1Z=NEGATIVE INTEGER. &4R1=IGNORELD

OUTPUT :
" FILE - FILE SFECIFICATION RERD INTO FILSFC
LUN - 1

64 CHARACTER FIXED LENGTH RECORDS

LUN = S C(NORMALLY LF:»
PRINTED OUTFUT

OOOO0N0NO0O00000000000000n0n

7-132

gaol
aB8a2
e8e3
vao4d
aa85
beac
Beev
oeag

Baas
08186

o811
aatiz

BalLs

gelid4

as1s
Bo16 |

FORTRAN

[c1ch g
baig
Ba19
aoze

Boz2l
pezz
Be23

apz4
eazs
BezZE

aoav
Bezg
BBas
aeze

8031
P32
8833
034
0835
883E
8B37
eo3s
0839
8048

i106e

10001

nnnn; OO0 O 0O0OO0O0
[}
=

o

a0

uoOoon

1@z

51
1884

1883

INTEGER COUNT, INDEX

BYTE TODARY(S), FILSFCC(48Y, ACE4D>, NULLC(E4)

DATA NULL ~# &4 = 8 /

COUNT=8

WRITE (&, 1080)

FORMAT($SPECIFY INFUT FILE>” >
RERDCE, 160041> 18, FILSPC
FORMATC(G, 46AL)

SET UF THE INFUT FILE NAME ASSIGNMENT

CALL ASSIGNC4, FILSFPC, 183
CARLL SETFILC4, FILSPC, IERR, < SY7 . @)

ENDFILE &

RERD FIRST RECORD AND ALLOCATE CGNTIGUQUS.FILE
READC4, 48815 IBLOK, FILSPC

FORMAT(IZ, 468A1) :

SET UF THE OUTFUT FILE NAME ASSIGMMENT

CALL HSSIGN(iaFILSPC,4@)
CALL SETFILCL, FILSFL, IERR, “SY’. @)

DEFINE FILE 1CIBLOK, 22, U; INDE®)

INITIALIZE ALL RECORDS OF OUTFUT FILE TO ZERGS
D0 1@ I=1, IELOK

WRITE <47 I>NULL

14;52:12° 81-AFR-74 PAGE 2

RERD INFUT AND WRITE ERCH RECORD OF OUTFUT FILE
REARD <4, 188z, END=S@>18, I1. A

FORMHT(@:I\;&4HL)

IF (I1 .LT. &> GO TO 4@

COUNT=COUNT+1

Ia=16-X
IF <I@ .LE. @> GO 7D 48
IF (18 .LT. &4XRl{lB+1)=8@

Ii=11+1
WRITE ¢4i7I4>R
GOTO 48

READ THE CONTIGUOUS FILE AND

PRINT AR LISTING OF THE COMFLETEDR FILE

ENCFILE 4

CRLL DRTECTODAYS

WRITE <5, 108%) FILSFC. TODAY

FORMAT CAHL, 28X, 4BALALHE, “MESGE MESSAGES . 47X, AL/ NUM‘ A5

0O 51 Idi=4, IBLOK
RERDBCL I13A

cIg=l4-1

WRITE (5, 1884)> I2. A
FORMAT (X, 12, X, &4R1)
WRITE ¢S,4@850 IBLOK, COUNT

FORMAT(/X, 13, MESSAGES ALLOCAHTED. “. 16, ©- MESSAGES INPUT.)

ENDFILE 1
ENCDFILE S
ENC

7-133

ROUTINES CRLLED:

SETFIL,

DATE

OPTIONS =/0F:1

BLOCK LENGTH)

MAIN. 584 (@azzea)*

*#COMPILER —=——- CORE##
FHASE USED FREE

DECLARATIVES 08522 06476
EXECUTRELES ©@8€x @85829

RSSEMELY

B135S Qa997Y

The input file, ABC.SRC:

B18ABC. TST

aa2
faz
ea4
oo
Bal
085
2121
aav
oag
aie
g1z
P11z
o415
Ble

“"FORTOBBBOZ

FORTBOBOBZ
FORTanabE4
FORToBDBEAE
FORTGBROOL
FORTOBOBAES
FORTE010060
FORTBBl1@81
FORTBO1862
FORToB16604
FORTBB18066
FORTOB1B67
FORTEB186%
FORToB10180

Before execution of

#/01
DIRECTORY
01-AFR-74

FORDGN. FTN
REC . BRK
FORDGN. OBJ
FORDGN. LDR
ABC . SRC

TOTL BLKS:
TOTL FILES:

DKe: [

)
NOD NG

in
[l

SUBROUTINE DIRECTLY (INDIRECTLY)REFERENCES ITSELF
ILLEGAL FLOATING FOINT INSTRUCION

SYSTEM ERROR NO DIAGNOSTIC MESSAGE ASSIGNED
INVALID CALL TO ERROR

NO SPACE TO DO I/70

SYSTEM ERFOR NO DIAGNOSTIC ASSIGNED
SYSTEM ERREOR NO DIAGNOSTIC ASSIGNELD
DEVICE FARITY ERROR

CHECKSUMAFARRITY ERROR-END OF DRTR ERROR
END OF FILE OR ENC OF MEDIUM

DEFINE FILE NOT DONE (RANDOM RCCESS)
DEFINE FILE DONE (NOT RANDOM ACCESS)
FILE DOES NOT EXIST / OR IS ALRERDY OFEN
UNAELE TO OFEN FILE

CRANDOM)

the program, the disk contains the following.

5@, 51 1

a1-AFR-74
a1-AFPR-74
B1-AFR-74
@1-AFR-74
61-AFR-74

{2E2>
{233>
(232>
{232>
{23%>

7-134

1
The program is run and the output file ABC.TST is created.

FASSIGN SV RBC. SRC. 4
FRUN FORDGH. LEA

SFECIFY INFUT FILEXREC. SRC
FRUN FIF

PIF Vig-g2

FLP AT

#

DIRECTORY DK@s: [58,51)

@3=APR=T4

FORDGN,FTN 6 DieAPR=T74 <233>
ABC ,BAK 2 @1~APR=T4 <233>
FORDGN, 0BJ 8 By=APR=T4 <233>
FORDGN, LDA 20 @1=APR=T4 <233>
ABC LSRC 2 01%APR=74 <233>
ABC . TST 3C @1=APR=T4 <233>
TOTL BLKS1 431

TOTL FILESG 6

The listing of the file produced on the line printer:

ARETC. TST

MSG MESSAGE Bi-AFR-74
NLUM _

B FORTB@@es8 INVALID CALL TO ERROR ;

1 FORTBBG6B1 NO SPACE TO OO 140 _ ’

) FOrRTOGEBBZ SUEBROUTINE DIRECTLY (INDIRECTLY)REFERENCES ITSELF

3 FORTBE66B: ILLEGAL FLORTING FOINT INSTRUCION

4 FORTOOGOR4 SYSTEM ERROR NO DIAGNOSTIC MESSAGE ASSIGNED

S FORTBEOBHS SYSTEM ERROR NO DIAGNOSTIC ASSIGNED

€ FORTEB1B06 SYSTEM ERROR NO DIAGHMOSTIC ASSIGNED

e FORToBi084 DEVICE PARITY ERROR '

g2 FORTBB10882 CHECKSUMAFPARITY ERROR-EMD OF DATA ERROR (RANDOM)

2

i@ FORTeB1664 END OF FILE OR END OF MEDIUM

11

iz FORTOELGAE DEFINE FILE NOT DONE (RANDOM ACCESS)

1z FORTEB1@87 DEFINE FILE DONE (NOT RANDOM ACCESS)

14

15 FORTBO10BS FILE DOES NOT EXIST # OR IS ALEEADY OFENMN

i€ FORTOBLG16 UNRELE TO QFEN FILE

iv

18 MESSAGES RLLOCATED

14 MESSAGES INFUT

7-135

PART 7
CHAPTER 12
FORTRAN WORD FORMATS

12.1 INTEGER FORMAT

Sign
n P=+

e binary number

15 14 g
n+2 15 [4

In a 2-word format, an integer is assigned two storage words,.although only the
high-order word (i.e., the word having the lower address) is significant. Use of
the /ON switch (see Appendix J) causes integers to be assigned a single storage
word. Negative integers are stored in a two's complement representation. Inéeger

data must lie in the range -32768 to 432767, For example:

+22
-7

¢¢¢¢2ea
177771

&
12.2 FLOATING-POINT FORMATS

All floating-point data, in both 2-wora and 4-word formats, is stored as a 1l-bit
sign, an 8-bit exponent (characteristic), and a fractional mantissa. The exponent
is stored in excess 128 notation.” That is, a binary zero represents an exponent

of -128; the binary equivalent of 255 (3778) represents an exponent of +127. The
mantissa is stored as a binary fraction; that is, the most significant bit repre-
sents $.5, the next bit represents @.25, the third, @.125, and so on. Because all
numbers are presumed to be normaliZzed, the most significant bit is redundant and

is therefore not stored (this is called hidden bit normalization). If the exponent
is zero (corresponding to 2_128), the most significant bit is assumed to be ﬂ; for
all other exponent values, it is assumed to be 1. A value of zero is represented
by two or four words completely filled with zeros. As an example of floating-point

storage, the value +1.ﬂ is represented in the 2-word format by

gag2p¢
poppee

7-136

or in the 4-word format by the following.

gag2gg
gogoep
go9dee
aeppee

[}

This is equivalent to an exponent of 129 (corresponding to 21) multiplied by a
mantissa of zero (assumed to have a value of Z.5). The value -5.0 in the 2-word

format is

149648
Pogape

or in the 4-word format, ﬁhe_following.

14p6490
pddps
gpgeog
gpdoes : -

12.2.1 Real Format (2-Word Floating-Point)

Sign

o=+ Binary excess High-order
s word n: 1=- 128 exponent mantissa
15 14 76 g
word n+2: Low-order mantissa
15 X j-4

Real floatihg-point format gives an effective precision of 24 bits, or approximately
7 digits of accuracy. The magnitude tange lies between approximately 2.14 x 10’38
and 1.7 x 1938. ‘ ‘

12.2.2 Double Precision Format (4-Word Floating-Point)

Sign -

@=+ Binary excess High-order
word n: | 1=- 128 exponent mantissa
15 14 76 y 4 .

7-137

word n+2:

word n+4:

word n+6:

PART 7
CHAPTER 12

low-order mantissa
15 4
Lower-order mantissa
15 Jo4
Lowest~order mantissa
15 3

The effective precision is 56 bits, or approximately 16

decimal digits, or accuracy.

The magnitude range lies between #.14 x Lﬁ—se and 1.7 x lﬂse.

12.3 COMPLEX FORMAT

word n:

word n+2:

word n+4:

word n+6:

7-138

Sign
g=+ Binary excess High-order A
1=- 128 exponent mantissa
15 14 76 J 4
> Real
Part
Low-order mantissa
15 4 J
- Sign ~
@=+ Binary excess High-oxdexr
1-=- 128 exponent mantissa
15 14 76 -1
> Imaginary
Part
Low-order mantissa
15 I’4 o

12.4 BYTE FORMAT

Unspecified Data Item
15 8 7 '3

The range of numbers from +127 to -128 can be represented in BYTE (LOGICAL *1)

format. BYTE format array elements are stored in adjacent bytes.

12.5 HOLLERITH FORMAT

word Q: char 2 char 1
15 8 7 %8
word 2: char 4 ' ‘char 3
15 8 7 I’
blank=4ﬂé char n (n<255)
”
15 8 7 2

Hollerxrith éonstants are stored internally as one character per byte, £filling up to
word boundaries. An odd number qf characters causes a blank to be appended to the
constant. A Hollerith constant included in an arithmetic expression is treated as
a l-word integer quantity where dnly the first two characters of the constant are

significant.

- 12.6 LOGICAL FORMAT

trye: 1 7 7 7 7 7
15 _)4

false:. | J:4 J J 4 Jf 7 4
15 T 7

Logical format data items are treated as l-word integer values for use with arith-
metic and logical operators. Any nonzero value is considered to have a logical

value of .TRUE. when tested by a logical IF statement.

12.7 RADIX-5¢ FORMAT

See Appendix B.

7-139

~ PART 7
CHAPTER 13

FORTRAN LIBRARY FUNCTIONS

This Chapter contains a brief outline of the OTS library of’ FORTRAN functions that
involve approximations. Floating-point means single-precision, 2-word, floating-
point format with a 24-bit fraction and an 8-bit binary exponent. Double-precision
means 4-word, floating-point format with a 56-bit fraction and an B-bit binary ex-
ponent. The values of the coefficients used in the various approximations may be

found at the cited parts of the following references.

a. Computer Approximations, by J.F. Hart et al, John Wiley & Sons, 1968.

b. Approximation for Digital Computers, by C. Hastings et al, Princeton
University Press, 1955.

c. PDP-ll Paper Tape Software Programming Handbook, DEC-11~GGPC-D,
Digital Equipment Corporation.

. In the descriptions of the various functions, the relative error values given are
for the approximating polynomials in the cited intervals. These error bounds
assume exact arithmetic. There are two additional sources of errors in the function

calculations that are not considered in the error bounds.

a. Rounding and truncation errors can occur in reducing the given. argument
to the range in which the polynomial or rational fraction approximations
are valid.

b. Rounding errors can occur as a result of using finite precision floating-
point arithmetic in the polynomial or rational fraction computations.

All OTS FORTRAN functions are called using one of the following standard sequences
(see Chapter 7-15).

Mov #LIST,RE
JSR RS5,NAME oxr JSR PC,NAME
LIST: BR RTN LIST: BR RTN
+WORD ARGl,...,ARGn . WORD ARGl,...,ARGn

RTN: RTN:

The result is returned in Rﬁ—Rl for floating-point and RﬂLRB for a double-precision

function.

7-140

Some FORTRAN functions call other single argument functions in the course of their
computation. In order for them to be re-entrant, these calls are made via the
routine $FCALL.

MoV ARGUMENT ADDRESS, RS
MoV #FUNCTION NAME, R4
JSR PC,$SFCALL !

$FCALL calls the FORTRAN function whose address is in R4 with the argument whose
address is in R5. Control is returned to the instruction following the JSR with
the function result in R@-R1 for floating-point or R@-R3 for double-precision.

Here are the FORTRAN Library approximation functions.

1. ALOG(X), Floating-point Natural Logarithm

If X<@ call error

Let X=y*2? where 1/2_<_y<1v

Let Q=(y*/2 - 1)/(y*/2 + 1)

Then 1n(X) = a * 1n(2) + ln(y)
ALOG(X) = a*ln(2) = 1In(vY 2) + sz ciQ2i

where the c, are drawn from Hart #2662. The relative error is 5;5’9'9.

2. ALOGlZ(X), Floating point Common Logarithm

Computed as‘loglﬂ(e)*ALOG(x).

3. ATAN(X), Floating-point Arctangent

If X<¢, ATAN(X) = -ATAN (-X)
1f |x|>1, aTan(|x|) = m/2 - aman (1/]x])
If |X|>tan ™ /12, ATAN(X) = T /6 + ATAN ((X /3 -1)/(X + V3))

4 ,
For |X|<tan m/12, ATAN(X) = XI ci*le

[

where the c, are drawn from Hart #4941. The relative error is 5;2’9'5.

4. ATAN2 (X,Y),Two Argument Floating-point Arctangent

e
If Y = @, or X/Y >2 5, ATAN2 (X,Y) = m/2 (sign X).
If Y > 2, and X/¥<2%°, ATAN2 (X,Y) = ATAN(X/Y).

25

If Y < @, and X/Y<2“”, ATAN2(X,Y) = T*signX + ATAN(X/Y).

5. DATAN(X), Double-precision Arctangent

The analysis is the same as in that for ATAN(X) except that the polynomial
approximent is of degree 8. The coefficients are drawn from Hart #4945.

The relative error is 5}9’16'8.

7-141

10.

1l1.

12.

DATAN2 (X,Y), Two Argument Double~-precision Arctangent

The rules for DATAN2 are the same as those for ATAN2 except that the

DATAN is used in all computations.

DLOG (X), Double-precision Natural Logarithm

The analysis for DLOG is the same as that for ALOG except that the poly-
nomial in Q2 is of degree 6. The c, are drawn from Hart #2665. The rela-

tive error is f}ﬂrlﬁ's.

DLOGlﬂ%X), Double-precision Common Logarithm

Computed as loglp;(e)*DLOG(x).

DSQRT(X) , Double-precision Sguare Root

If X<f call error

Let X = A*2° where 1/2 < A <1

Let Y,d = ZB/Z * (1/2+ A/2) if B iseven
or

(B+1) /2

Yy =2 * (1/4 + A/2) if B is odd

a transformation requiring only two instructions. Starting with ?ﬂ” four

Newton-Raphson iterations are performed. N

Yn+l = 1/2(yn + x/yn).

The relative error is <Lﬂrl7.

DSIN(X), Double-precision Sine

Let y = Integer (4 * fraction (X/2m))
Let V = Fraction (4 *fraction (X/2m))
Then DSIN(X) = B(VN/2) if y=#f
P((1-v)m/2) if y=1
P(-VT/2) if y=2
P((v-1)m/2) if y=3

8
where sin (Vr/2) *pP(Vn/2) = ?Esiv

2ifor-l:f_\?il

The c, are drawn. ffom Hart #3345. The relative error is 5;gr18.6'

DCOS (X) , Double-precision Cosine

Computed as DSIN(X + T/2).

DEXP (X) , Double-precision Exponential

If X > 87 call cverflow
e [x| < 2%, pExp(x) = 1
If X < -88.7,DEXP(X) = &

Let y = Integer (X*logz(e))

7-142

13.

14.

Let V = 16 * Fraction (X - 1092(9))
Let w = 1/16 * Fraction (V)

DEXP = 2¥ » 2V x g Integer (VI/16 Lo o < w < 1/16.

Powers of 21/16 are obtained from a table.
2 2
2" = P(w2)+ (w2) where P and Q are first .
P(w)-wQ(w")

degree polynomials in wz.
The coefficients of P and Q are drawn from Hart #1121.
The relative error is j}¢-16'4.

EXP (X) , Floating-point Exponential

If X > 87, call overflow
1t |x| <2 7% mxpx) = 1.

If X < -88.7, (EXP(X) = f.

Let y = Integer (X * logz(e))
Let V = Fraction (X *1og2(e))
Let w = 1/2 1n(2) * V where |X| < 1n(2)/2

Then EXP(X) = 2¥ * (")

where 6" ® 1 + 2 * y
¢, -~w-c,

c, +w
3

2,

The c, are drawn from DEC-11-GGPC-D, page 7-23. The relative error is
<1¢'lé.

RAN(I1,I2) and CALL RANDU(I1,I2,F), Random Number Generator

RAN and RANDU use the same multiplicative congruential algorithm for
generating uniformly distributed pseudo-random numbers in the interval

@, 1.

-

If I1=@, I2=¢ set generator base

_ .16
Xn+l = 2743

otherwise -

16
xn+1 = (277+3) Xn mod 2

32

Store generator base xn+ in I1,I2.

1

i < <
Result is xn+l scaled to a real value Yn+1' p'Yn+l 1.

7-143

15.

l6.

17.

18.

SIN(X), Floating-point Sine

The analysis is the same as that for DSIN(X). The polynomial approximant
used is of degree 4 and the coefficients are drawn from Hastings, sheet

16. The relative error is < 2 *19’8.

COS (X) , Floating-point Cosine
Computed as SIN(X + m/2).

SQRT (X) , Floating-point Square Root

' The analysis is the same as that for DSQRT(X) except that only three

iterations are performed. The relative errcr is f_lﬂpe.

TANH (X) , Floating point Hyperbolic Tangen£

If [x| > 16, TANH(X) ¥ 1 * sign(X)
otherwise
let y = EXP(2 * X)

TANH(X) = (y-1)/(y+1).

7-144

PART 7
| -CHAPTER 14
SYSTEM SUBPROGRAMS

14.1 LIBRARY ARITHMETIC FUNCTIONS

. Refer to Table 7-3 for the FORTRAN Library arithmetic functions.

14.2 SYSTEM SUBROUTINES AND FUNCTIONS

The FORTRAN library contains subroutines that mﬁy be called in the same manner as
user-written subroutines, similar to the functions intrinsic to the FORTRAN system.

These subroutines appear in Table 7-18.

Table 7-18
FORTRAN Library Subroutines

System .

Subroutine Function

PDUMP . performs core dumps of specified sections of -
core. '

SETPDU changes logical unit-to which PDUMP output is
written.

SETFIL overrides default value for a logical unit at
run time.

ASSIGN)) allows specification at run-time of filename
or device and filename to be associated with
a FORTRAN logical unit number.

SETERR allows the user to reset the maximum occurrence
count for any class of error except 4.

TSTERR returns an indication of whether an error of
the specified class has occurred.

RANDU, RAN" returns a single random number with uniform
distribution between £ and 1.

EXIT terminates the execution of a program and re-
turns control to the Monitor (also invoked
automatically by the error processing routines
and STOP statement).

DATE returns a 9-byte string containing the ASCII
representation of the current date.

TIME ' returns an 8-byte string containing the ASCII
representation of the current time in hours,
minutes and seconds.

7-145

Table 7-18 (Cont)

/ FORTRAN Library Subroutines
System .

Subroutine Function

SECNDS provides system time of day or elapsed time as a
floating-point value in seconds.

IRADSQ performs conversion of Hollerith strings to

RAD5@ Radix-5@ representation.

R5@ASC ' converts Radix-~5@ strings to.Hollerith strings.

SSWTCH tests specified bits of the console switch
register. g

14.2.1 PDUMP

The PDUMP subroutine causes specified portions of core to be dumped. Control re-
turns to the calling program following execution of the dump. The call to PDUMP
is performed as follows:

CALL PDUMP (Ll,U F '""'Ln'Un'Fn)

11

where Ll is the lower limit (a variable name) and U1

to be dumped. The order in which the two variables appear may be reversed; regard-

is the upper limit of the area

less of the order of specification, memory is always dumped from the lower limit

to the upper limit, inclusive. For example,

DIMENSION N(1¢)

CALL PDUMP (N(1),N(1d),3)
causes the array N to be dumped on the logical unit 5 (generally LP:) as a string
of 2-word integers from N(1) to N(1@). The following line performs exactly the

same dump.

CALL PDUMP (N (14),N(1),3)

7-146

-

The value of Fi is an integer constant or variable indicating the dump format, as

follows.

£

Code Description Format
ﬁ l-word octal 808
i 1 l-word decimal 818
2 2-word octal 808
3 2-word decimal . 818 |
4 real 4G15.7
5 double precision 3D22.14

Codes § and 1 should be used if the /ON (l-word integer) switch is set; éodes 2
and 3 should be used ifythe /ON switch is not set. Codes ﬂ and 1 print every word
while codes 2 and 3 print every other word, since the alternate words are unused.
No default dump modé is assumed; a code must be specified or aAdiagnostic will be
generated. Whefe several sections of core aré to be dumped, each set of three

values (Li,Ui,Fi) specifies a separate core area and dump format.

No spacing is performed between dumps of individual sections, nor are addresses
printed on the PDUMP output. '

As an example, the output shown below is produced using the call:
CALL PDUMP (B(3),B(3),8,R(1),R(7),8,F(1),F(4),5,5(1),5(24))

where the program contains:

DOUBLE PRECISION F (4)
INTEGER B(3),R(7),S(24)

and the /ON (pne-word integer) switch is used at compilation time.

1404 14 12746 .
g 4 [B 20124 2613¢ 17776
‘ #. £.197215245¢87¢1D-3¢ #.98607624319639D-31
£.49393812265972D-31 '

2206 3477¢ 17756 5pp@2 38 21172 406 20139
4 4467 12672 322490 .2 g s5¢gsel 55744
32792 1 2¢g24 4567 1412 4 4467 12649

7-147

14.2.2 SETPDU

The SETPDU subroutine allows PDUMP output to be directed to any legal logical unit
number. The call to SETPDU is performed as follows:

CALL SETPDU (IUNIT)

where IUNIT is a constant, variable or expression of type INTEGER designating the

logical unit desired.

When used in conjunction with the ASSIGN subroutine (see Section 7-15.2.4), PDUMP

output may be directed to any file or device on the system.
14.2.3 SETFIL

The SETFIL subroutine overrides.the default value for a logical device assignment
at run time. The SETFIL call must occur before the file in question has been
opened for I/O operations (by a READ or WRITE statement). The new logical device
assigqment remains in effect until the end of the current program run or until the
file is closed by END FILE and a new device assignment made. The call to SETFIL

appears as shown below:
CALL SETFIL (N,FILE,IERR,DEV,NU,UIC,PC,CS,LREC,NREC)
SETFIL accepts a variable numker of arguments; nonessential arguments may be

omitted. The complete list of arquments to this call appears in Table 7-19.

Table 7-19
FORTRAN SETFIL Arguments

Argument Significance
N Logical unit number, expressed as an integer value.
FILE Character string containing the file name and extension

specification, of the form:
file.ext

where "file" may be up to six alphanumeric“characters, of which
the first is alphabetic. Optionally, ".ext" may be specified
to indicate an extension. The entire file specification is an
ASCII string that can be expressed as a Hollerith string or
enclosed in single quotes. For example:

7-148

Table 7-19
FORTRAN SETFIL Arguments (Cont.)
Argument Significance

'MAT.TMP'
8HOBJ2.DAT

See also the discussion of string argument storage in Section
F.2.13.

IERR Integer variable into which the error returns from this routine
or from I/O operations on logical unit "N" are placed. IERR is
set to -1 if CS is neither 1 nor 2; it is set to 2 if CS=1 and
neither LREC nor NREC is specified.

DEV A 2- or 3-character device specification, expressed as a
Hollerith string or enclosed in single quotes. For example:

IDTI
2HLP

NU . Unit number of the device specified, if appropriate. This is
an integer constant or variable (e.g., 1 if the device is DEC-
tape unit 1, or § if a line printer or other single-unit device)

UIC User identification code (UIC), expressed as an integer value.
' A UIC specification of @ indicates the current UIC (the usual
specification). A simple way of preparing the UIC entry. is
shown below (assume the desired UIC is 12¢,15¢)

INTEGER UIC

LOGICAL*1 UICB(2)
EQUIVALENCE (UICB(l),UIC)
UICB(1l) = "15¢

UICB(2) = "12¢

CALL SETFIL (2,'DATA.TMP',IERR,'DT',2,UIC)

which specifies that the file DT2:DATA.TMP [12¢,15@] is to be
accessed on logical device 2.

PC Protection code, specified as an integer value, which is the
decimal equivalent of the desired octal protection code (pro-
tection codes are defined with octal values in Part 3 of this
handbook). The default value for a FORTRAN protection code is
233(8).) :

cs Integer value used to indicate one of the following:

CS = 2, allocate a contiguous file for random I/0. The
DEFINE FILE statement sets the record length and
number of records in the file. :

CS = 1, allocate a contiguous file for formatted or un-
formatted I/0. The arguments LREC and NREC are
used to set the record length and number of re-
cords in the file.

LREC Logical record length in words, expressed as an integer value;
required if CS=1, ignored otherwise.

NREC Number of records to allocate, expressed as an integer value;
required if CS=1, otherwise ignored.

7-149

The discussioh of file formats in Section 7-11.2 should be consulted as a guide in

choosing values for LREC and NREC.

When SETFIL is used in an overlay system, a special restriction exists for the

variable IERR. 1In the statement
CALL SETFIL (7,'FILE.DAT',IERR,'DK',{)

the address of the variable IERR is saved and is used by the I/O system for report-
ing certain kinds of I/O error conditions. This variable name is saved by SETFIL
in the device table, $DEVTB. Any subsequent I/O errors (during READ or WRITE op-
erations) attempt to set IERR. Therefore, IERR must be in the local storage of the
resident section or in a resident common block. If it is not, the FORTRAN I/0
system may destroy an unpredictable location in.memory when attempting to store
error data in IERR. Further discussion of the use of SETFIL and of the FORTRAN I/O
system is presented in Chapter 7-1l. .Two examples of the use of SETFIL are given

below. These examples assume the default logical unit assignments.

Example 1: Make logical unit 5 the card reader and logical unit 6 the
‘ line printer.

CALL SETFIL (5,'A',IERR,'CR')
CALL SETFIL (6,'A',IERR,'LP')

Note that the parameters to SETFIL are positional. The CR: and LP: are not file
structured, so the file name afgumént is superfluous; a file name argument must be

included, however.

Example '2: Allocate a file for direct-access I/O on disk unit 1 under
the current UIC.

CALL SETFIL (1,'FILEl.XYZ',6IERR,'SY',§,#,100,2)
DEFINE FILE 1 (2@,2¢¢,U, INDX1)

The file FILEl.XYZ is created on the system disk with protection code 1¢¢ (read,
write, execute access; the file cannot be deleted until its protection code is

changed) .

7-150 -

14.2.4 ASSIGN!

The ASSIGN subroutine assigns, at run time, the device and/or file name to be
associated with a logical unit number. The ASSIGN call must occur before the
logical unit is opened for I/O operations (by READ or WRITE). The assignment
remains in effect until the end of the program or until the file is closed by
END FILE and a new CALL ASSIGN is performed. The call to ASSIGN is performed as

follows.
CALL ASSIGN (N,NAME, ICNT, IERR)

The arguments to this routine follow.

Argument ' : Significance
N : Logical unit number, expresses as an integer value,
NAME Character string conéaining any device and file name acceptable

to the Monitor system.
The maximum acceptable length for a name string is 3¢ characters.

If the device is not specified, the device remains unchanged
from that specified by default or by a previous ASSIGN or SETFIL
call. If the device is specified, the filename must also be
specified@ in the case of file-structured devices. (If the de-
vice is not file-structured, a file name, if present, is
ignored.)

ICNT - Actual length of the name string in characters (bytes); if the
: value is ¢, then the name string itself will be assumed to be
terminated by a zero byte.

. IERR ' Integer variable into which error code values from this routine,
or I/0 operations on logical unit "N" are to be placed.

The error variable name is an optional argument and may be omitted. If specified,

it should not be allocated in an overlay segment of the program.

-

14.2.5 SETERR

The system maintains an error count for each error class. The SETERR subroutine
allows the user to reset the maximum occurrence count for any class of run-time
error (except class f) to 8. (Following the maximum number of errors in a given

class, control exits to the Monitor.) The call to SETERR is performed as follows.

!This subroutine is the preferred alternative to the SETFIL subroutine when random
access file allocation is not required.

~ 7-151

CALL SETERR (CLASS,MAX)

The argument CLASS is an integer indicating the error class affected. If CLASS is
not a valid number, no action is performed. The CLASS argument is shown in rela-

tion to its associated error messages in Appendix K. The error classes appear here

in brief.
Default .
Class MAX Value Meaning
¢ -3 Fatal errors; it is recommended that the maximum
occurrence count (-3) not be changed
1 ¢ Physical I/O errors
2 1 Errors in FORMAT statements
3 3 Arithmetic overflow or division by ¢
4 4 Incorrect arguments to library functions or subxou-
tines) .
5 -1 Arithmetic underflow ‘errors
6 ﬁ Conversion errors

7 7 Subscripting erxrors

The argument MAX is an integer with the following significance:

MAX Value - Meaning
>¢ Log message, increment error count, call EXIT if

erroxr count is > MAX,

=¢ Log messages and ignore error count for the ‘specified
errox class.

-1 Do not log messages, ignore error count for the
specified error class.

-2 Do not log messages, exit to Monitor after printing
an error message and closing files.,
-3 Immediate exit to Monitor with a message.

14.2.6 TSTERR

‘The TSTERR subroutine allows the user program to monitor the types of errors detec-

ted during program execution. The call is of the form

CALL TSTERR(I,J)

7-152

where I is the error class number (between d and 8); a value is returned to the
variable J as follows:

J=1 if an error of class I has occurred.
J=2 1f an error of class I has not occurred.

The sequence

CALL TSTERR(3,J)
GO TO (1¢,28),J ‘ :
2¢ CONTINUE . _ -

.

transfers control to statement 1¢.if a class 3 error (arithmetic overflow) has

occurred. See Section 7-14.2.4 for a discussion of error classes and messages.

The TSTERR routine also resets to ¢ the error flag for that error class (but not

the error count used by SETERR). For example:

CALL 'I'STERR (I ,J)
CALL TSTERR(I,J)

.

The second call is guaranteed to return J=2. The TSTERR subroutine is indeééndent
of the SETERR subroutine; neither directly influences the other except that SETERR

can .cause execution to terminate.

’

14.2.7 RANDU,RAN

The random number generator may be called as a subroutine, RANDU, or as an intrin-

sic function, RAN. The subroutine call appears as

CALL RANDU(I1,I2,X)
where Il and I2 are previously-defined integer variables and X is the real variable
name in which is returned a random number between,¢ and 1. Il and I2 should be

initially set to ﬁ. They are updated to a new generator base during each call.

7-153

Resetting Il and I2 to @ repeats the random number sequence. The values of Il and
I2 have a special form; only g or values supplied by the random number generator

should be stored in these variables.

Use of the RAﬁ function is si@ilar to the use of the random number subroutine:
RAN(IlfIZ)

is the function reference to the random number generator.

B

14.2.8 EXIT

A call to the EXIT subroutine, in the form
CALL EXIT

is equivalent to»the END statement and causes program termination.

14.2.9 DATE

The DATE subroutine can be used in a FORTRAN program to obtain the current date as
set within the system. The DATE subroutine is called as follows:

CALL DATE (array)

where array is a predefined array able to contain a 9-byte string. The array

specification in the call may be expressed as the array name alone,
CALL DATE (A)

in which the first three elements of the real array A are used to hold the date

string; or as
CALL DATE (A(i))
which causes the 9-byte string to begin at the ith element of the array A.

The date is returned as a 9-byte (9-character) string in the form

dd-mmm-yy

7-154

where:

ad is the 2-digit date.
mmm is the 3-letter month specification.
Yy is the last two digits of the year.

For example:
27-JAN-74 _ ' .

In the case where the array is a real array, 4-1/2 words are used to contain the
date string; the remaining array stofage is untouched. Therefore, the date string
is stored in the first nine bytes in the elements A(i), A(i+l), and A(i+2). The
last three bytes of A(i+2) are untouched and should be made blank by the user if
he intends to print thé date with a 3A4 format. '

14.2./10 TIME

The TIME subroutine allows the user to obtain the current system time or to per-
form time conversions withig a FORTRAN program (see also SECNDS subprogram, sec-
tion 7-14.2.11). The TIME subroutine may be called by any of the folloWing three

statements.

CALL TIME (A)
CALL TIME (I1,I2)
CALL TIME (A,Il,I12)

The first two forms of the TIME call return the current system time; the third is

used to perform time conversions.

0
-

The first type of TIME call returns the time as an 8-character ASCIT string of

the form:
hh:mm:ss
where:

hh is the 2-digit hour indication.
mm is the 2-digit minute indication.
88 is the 2-digit second indication.

For example:

15:45:23

7-155

A 24-hour clock is used. A 2A4 format specification is generally used to output

the time value.

The second type of TIME call returns the time in "clock ticks" (1/6¢ of a second
for 60Hz systems, 1/5¢ of a second for SﬂHz systems) elapsed since midnight, in
the integer variables I(l) and I(2). I(l) contains the high-order 15 bits of the
number and I(2) the low-order 15 bits. Elapsed-time calculations can be performed

as follows (the use of SECNDS is recommended, however; see Section 7-14.2.11).

CALL TIME (Il.I2)

CALL TIME (I3,I4) ,

COMPUTE ELAPSED TIME IN TICKS: FIRST CONVERT TICKS STORED
IN Il AND I2 TO A SINGLE FLOATING-POINT VALUE.

START = I1*32768.@+I2

FINISH = I2%32768.@+14 :
NOTE THAT MULTIPLICATION BY REAL CONSTANT CAUSES ENTIRE

. CALCULATION TO BE PERFORMED IN REAL MODE. ELAPSED TIME
IS NOT CALCULATED IN INTEGER MODE DUE TO THE POSSIBILITY
OF INTEGER OVERFLOW.

Il = ELAPSE/32768.§

I2 = AMOD (ELAPSE, 32768.#)

WRITE (6,21¢) I1,I2

21§ FORMAT (206)

[oNp]

aonan

The above example prints the elapsed time indication as follows:

g 263¢

showing the octal representation cf the number of clock ticks between the two TIME

calls.

The third type of TIME call accepts I(l) and I(2) as integer values and returns
the clock time as represented by I(l) and I(2) in an 8-character ASCII string in

A. For example (the following is a continuation of the preceding example):

CALL TIME (A(1),Il,I2,)
c SCALE ELAPSED TIME TO SECONDS
ELAPSE = ELAPSE/6(.d
WRITE (6,215) ELAPSE,A(2)
215 FORMAT('OELAPSED TIME = |,F5.1, 'SECONDS'/
1' AS CONVERTED BY "TIME" :',234/)

7-156

‘outputs the following:

ELAPSED TIME = 23.9 SECONDS
AS CONVERTED BY "TIME" : @g:@p:23

-14.2.11 SECNDS!

The SECNDS function returns the system time, minus the value of the argument, as

a single precisién floating-point value. For. example,
TIM = SECNDS ({.)

will return the number of seconds since midnight; that is, the current time of day.
It may be called with a non-zZero argument for performing elapsed-time computations

as in

C START OF TIMED SEQUENCE
T1 = SECNDS({.)

CODE TO BE TIMED

[eNoNe]

DELTA = SECNDS (T1)
where DELTA will give the elapsed time.

The value of SECNDS is accurate to the resolution of the system clock: ¢.¢166...

seconds for a 6¢Hz clock and f.§2 seconds for a 5@Hz clock.

With 24 bits of precision for real values, this representation is accurate to the

clock tick for values up to about two days in duration.
14.2.12 Radix-5§ Conversions

14.2.12.1 IRAD5{

-

The IRADS¢ subprogram performs conversions between Hollerith (text) strings and
Radix-Sd representation. (See Section 7-2.2.9 for details for the Radix-50 repre-

sentation.)

IRAD5¢ may be called as a FUNCTION subprogram if the return value is desired, or

as a SUBROUTINE subprogram if no return value is desired. The form of the call is

YThis function is the preferred alternative to the 2~ and 3-argument forms of the
TIME subroutine call. :

7-157

N = IRADS;?/ (ICNT, INPUT, OUTPUT)
or
CALL IRADS{ (ICNT,INPUT,OUTPUT)

where

ICNT is the maximum number of characters to be converted (integer).
INPUT is an ASCII (Hollerith) text string to be converted to Radix-5f.
OUTPUT is the iocation for storing the results of the conversion.

N is the number of characters actually con&erted. l

Three characters of text are packed into each word of output. The number of output

words modified is computed by the following expression (in integer modé).
(ICNT+2)/3»

Thus, in a count if four is specified, two words of output will be written even)

if only a l-character input string is given as an argumént.

Scanning of input characters terminates on the first non—Radix—Sﬁ character en-

countered in the input string.
14.2.12.2 RaD5¢

The RADSﬂ function subprogram provides a simplified way of converting ASCII data

to Radix-5¢ representaﬁion. The form of the call is

X = RAD5# (string)

where
string is the input ASCII string. Up to six characters are scanned and
converted.
X is a real variable to which the converted value is to be assigned.

7-158

The RADSd function is equivalent to the following FORTRAN function.

FUNCTION RADS((A)

CALL IRAD5# (6,A,RAD5)
RETURN

END

14.2.12.3 RS@ASC

The RSﬂASC subprogram provides decoding of Radix-Sﬂ encoded values into ASCII strings.
The form of the call is

CALL RSPASC (ICNT,IN,OUT)

where
ICNT is the number of output characters to be produced.
IN ' is the variable or array containing the encoded input. Note that
(ICNT+2) /3 words will be read for conversion.
ouT is the variable or array into which ICNT characters (bytes) will be

placed.

If undefined Radix-5@ code is detected, or the Radix-5@ word exceeds the maximum

value 1747778' question marks will be placed in the output field.

14.2.13 SSWTCH

The sense switch (SSWICH) subroutine can be used in FORTRAN programs to test the
current status of specified bits of the console switch register. The subroutine

is called by the statement

” CALL SSWTCH (I,J)

where:
I is an integer value designating the console switch register bit to
be tested; it must be within the range of @ through 15. If it is
- outside of this range, no value is returned; no diagnostic is print-
ed in this case.
J is an integer variable that is to contain the value returned by the

subroutine. It is set to 1 if bit I is 1 (the switch is up) or-to
2 if bit I is @ (the switch is down).

7-159

14.2.14 Character String Arguments to System Subroutines

String arguments to system subroutines must be stored in adjacent bytes. String
values stored in integer arrays are not stored in adjacent bytes unless the /ON
switch is used in compiling the program (see Section 7-9.2 and Chapter 7-12); such

character strings are unacceptable as arguments to system subroutines.

The string values returned by the DATE and TIME subroutines are stored in adjacent
bytes independent of the use of the /ON switch. Hence, the /ON switch is needed

to produce correct results.

Object time format specifications (see Section 7—7.2¢) must also be stored in

adjacent bytes.
String arguments to the ASSIGN sukroutine must be stored in adjacent bytes and have

a terminating zero byte. The FORTRAN system automatically appends a zero byte to

character string arguments specified as Hollerith constants.

7-160

PART 7
| CHAPTER 15
FORTRAN CALLING SEQUENCE CONVENTIONS

The calling sequence convention currently in use with FORTRAN on the PDP-11 family
of computers is called "R5", and is used with all versions of the DOS/BATCH opera-

ting system.
The following points should be noted:

1. Version V@6 (DOS/BATCH) of the FORTRAN Compiler implement subprogram
calls $CALL, by means of an OTS threaded code routine, as described in
Section 7-1¢C2. For this reason, there is no compilation-time switch
for specifying the convention to be used. FORTRAN routines .compiled by
the V@6 Compiler may be linked with the R5 forms of the library.

2. FORTRAN routines compiied by earlier Compilers (V4A and before) may be

linked with the R5 form of the library. It is recommended, however, that
these routines be recompiled using the V&6 Compiler.

15.1 PDP-11 FORTRAN "R5" CALLING SEQUENCE CONVENTION

.

The form of the subprogram call under the R5 convention is the same as that used

with'earlier versions of FORTRAN under the DDS/EATCH operating system.
15.1.1 The Call Site

The basic form of the call follows.

JSR %5,S5UB ;CALL SUBPROGRAM

BR NEXT ; BRANCH OVER ARGUMENT LIST
«WORD ADR1 " ;FIRST ARGUMENT ADDRESS

. WORD ADRN ;NTH ARGUMENT ADDRESS

NEXT: ;NEXT EXECUTABLE INSTRUCTION

Note thét the low-order byte of the branch instruction contains the count of the

‘number of arguments that follow. A maximum of 127 arguments are permitted.
15.1.2 Return

Control is returned from the called program unit to the calling program unit by
restoring the stack pointer register (SP, register 6) to its value at the time of

entry, if necessary, and executing the following.

7-161

RTS 5%
15.1.3 Return Value Transmission

FUNCTION subprograms return values in general registers Rﬂ'through R3. The number
of registers used is determined by the data type of the function's returned value,

as follows.

Data Type Value Returned in

LOGICAL
INTEGER

rf ‘

REAL RG, R1

BYTE (LOGICAL*1) }

DOUBLE PRECISION
COMPLEX rR¢, Rl, R2, R3

Example:
" The FORTRAN statement
CALL SUB (Al,22,A3)

results in a subprogram call ecquivalent to the following.

.GLOBAL SUB
JSR %5,SUB
BR $Fnnnn
. WORD Al

. WORD A2
«WORD A3

$Fnnnn:

Within the subprogram, arguments can be accessed by means of indexed references,

using register 5 as the index register. 1In particular, the instruction
MOVB @5, ...

obtains the number of arguments in the list,
MOV 2%5, «ee

obtains the address of the first argument, and, in general, the instruction

7-162

MOV 2*n(%5), ...
' th
obtains the address of the n~ argument.
15.1.4 Null Arguments

Null arguments are represented in an argument list by using an address of -1
(1777778). This address can be easily detected and generally assures that an error
will result at execution time if a null argument is passed to a subprogram that is
not prepared to accept it. Null arguments are included in the argument count as

shown in the following examples:

” ~/

FORTRAN Statement Resulting Argument List
CALL SUB BR 42
CALL SUB () BR 4
JWORD -1
CALL SUB (34,) BR .+6
N .WORD A
.WORD -1
CALL SUB (,B) BR .+6
«WORD -1
- WORD B

15,2 MACROS FOR PDP-11 FORTRAN CALLING SEQUENCE .
15.2.,1 Introduction

Three macros have been defined to facilitate the writing of PDP-11 subprograms

that interface to PDP-11 FORTRAN compiled programs. These provide three functions.
1) Callingia FORTRAN subprogram, including construction of the appropriate
argument list.

2) Returning to a FORTRAN subprogram, including the transmission of the
return value (if any).

. 3) Obtaining the value returned by a FORTRAN subprogram and moving it to the

desired destination. ‘

The goal of these macros is to.make assembly language routines independent of the

details of the FORTRAN éalling sequence conventions.

The generél form of each macro call is

7-163

F4CALL Subroutine-name, argument-list, optional-label
FARTN Typecode,location

F4VAL2 Typecode,location.
These macros are discussed in detail in the following sections.

In the following discussions reference will be made to the addressing mode of a
macro argument. If unfamilar with the details of the PDP-11 addressing modes
please refer to the appropriate processor handbook. Briefly, the following should
be noted. 4

1) 1In some cases the code generated by these macros is dependent on the
addressing mode of one or more arguments. The addressing mode is obtained
by using the .NTYPE directive described in Part 6, MACRO. '

2) Intuitively, the addressing mode is the six bit octal value that would be
placed in either the source or destination field of a PDP-1l instruction.

3) The following cases are particularly important.

Argument Form Addressing Mode
Simple identifier, 67

e.g., X

Push to stack, 46

e.g., = (%6) -

15.2.2 Calling a FORTRAN subprogram

The form of the macro call is

F4CALL NAME ,<ARGLIST>,LABEL
where

NAME is the name of the subprogram to be called.

ARGLIST is a list of addresses of the arguments.

LABEL is an optional identifier to be placed on the argument list.

In most cases this label is not needed. .

Examples:

F4CALL SUB,<A,B,C> ;CALL SUBROUTINE SUB

;WITH ARGUMENTS A, B, AND C
F4CALL X ;CALL SUBROUTINE X WITH NO ARGUMENTS
F4CALL X,<a,>,L1

7-164

L2
-”*

There are two parts to calling a subroutine: f£illing in the argument list (either
at assembly time or at execution time) and transferring control to the subroutine.

The latter is performed by
JSR REG, NAME
where the REGister used depends on the convention.

Fillihg in the argument list is slightly more complex. The argument 1ist itself
consists of a block of N+l words where the low byte of the first word contains the
number of arguments, N, and the next N words are the addresses of the arguments.

There are four cases to be considered. -
Case 1 - assembly time constants

In many cases the argument is at a fixed location and the address can be simply
assembled into the argument list. This is done for all arguments with an addressing
mode of 67. '

Casebz - argument value on stack

Often a result has been computed and left on a stack. In this case the address is
the sum of the contents of the stack register (which need not be %6) and a constant

offset. This is represented by an argument of the following form.
Register,offset
For example:

<%6, 0>
<%1,6>

For this situation the address of the data is computed by the sequence

MOV Register, Argument List Entry
ADD Offset, Argument List Entry

Note that the ‘address is stored in the appropriate positibn in the argument list;

if the offset is zero, no -ADD instruction is needed or produced.

~) 7-165

Case 3 - empty argument

In rare cases the user may want to f£fill in an argument address by code unrelated
to the code that the F4CALL macro produces. Here it is necessary to designate
the argument list label as part of the F4CALL. (Note that the first argument
address goes at LABEL+2, the nth at LABEL+2*QJ and so on.) Space for such an

argument is reserved in the argument list and an address of -1 is assembled in.
Case 4 - general argument express:ion

If none of the above cases holds, then the argument address is obtained by

generating the following instruction.
MoV Argument,Argument List Entry

Note that any auto-incrementing or auto-decremeﬁting indicated in a general argu-

menf expression will be performed as a result of the MOV instruction.

Putting these all together we illustrate with the example shown in Figure 7-14.
Figure 7-15 illustrates how the F4CALL macro relates to the FORTRAN source code.

Assume the following:

ARGl is the address of argument 1,

RY contains the address of argument 2,

Rl contains a pointer to a two word table which contains the
addresses of arguments 3 and 6,

R5 points to the argument list of the call that entered this

subroutine and the first argument of that call is to be the
4th argument of this call, and
. - the address of the fifth argument is the third word on the
processor stack.
- the seventh argument is filled in elsewhere.

Then write
F4CALL NAME, <ARG1,R{@, (Rl)+,2(R5), <SP,6>, (Rl)+,>,L

which would generate the following code for the PC calling sequence con-

vention:

MoV RY, L+4

MoV) (R1)+,L+6

MoV 2(R5) ,L+14

MoV SP,L+12

ADD #6,L+12

MoV (R1)+,L+14

MoV R5,-(sP)

MoV #L,R5

JSR PC,NAME

BR $KPLST
Figure 7-14

Argument List Construction

7-166

L: .BYTE 7,8

. WORD ARGl

.WORD ']

.WORD d

. WORD [}

~WORD ')

.WORD . ¢

. WORD -1
$KPLST: MOV (SP)+,R5

(Where $KPLST is a macro generated label,)

Figure 7«14 (Cont.)

Argument List Construction

SUBROUTINE A(X,Y,2)
DIMENSION Z(1¢)
CALL B(I+J,X+C,D,Z,(I) ,X)

END
might generate the following code using these macros:
Compute I + J and place on stack (1 ﬁord)
Compute X + C and place on stack (2 words)

Compute address of Z(I) and leave in RO

FACALL B,<<SP,4>,<Sp,#>,D,Rf,2 (R5)>>

Figure 7-15
Relationship Between F4CALL and FORTRAN Source Code

15.2.3 Returning to a FORTRAN Program
The form of the macro call is
F4RTN Typecode,Location
where
Typecode is a single letter representing the data type as follows.

- Byte

- Logical

= Integer

Double Integer

- Real

- Double Precision Real
- Complex

Qoo gHP W
1

7-167

Location is either a simple variable name (addressing mode 67) or a stack pop
addressing mode (2X).

i .
The macro generates the move instruction needed to place the returned value in the
correct position for recover& by the calling-routine. (This is presently in the
general registers %¢-%3 but we wish to retain the option of using the floating
registers on 11/45 FPP systems at a future date.) Finally the appropriate RTS

instruction is generated.
If the macro is written with no arguments then only the RTS instruction is produced.

Note that the user code is respcnsible for assuring that the stack pointer (%6) is

correctly positioned at runtime.

Several examples are shown in Figure 7-16.

15.2.4 Obtaining the Returned Value

-*
Example 1
Macro call: F4RTN
Expanded code- RTS RS
Exémgle 2
Macro call: F4RTN B, (%1)+
Expanded code- MOVB (%1)+,R¢
RTS RS
Example 3
Macro call: F4RTN R,LOC+4
Expanded Code~ MOV ‘10C+4,RE
MOV LOC+4+2,R1
RTS R5
Figure 7-16

Returning to the FORTRAN Piogram

The form of the macro call is

F4VaL2

Typecode, Location

7-168

where

Typecode is a single letter ;epresenting the data type as in the F4RTN macro, and
location is either a simple variable name (mode 67) or a stack push addressing mode.
(4%). '

The expansion produced moves the returned value into the designated location or

onto the designated stack.
Examples are shown in Figure 7-17.
Note that code geneiated for this macro is not currently call sequence dependent.

This macro is included to isolate the entire call sequence mechanism so that, for

example, floating-point values may some day be returned in FPP registers.

, Example 1
Macro call: F4VAL2 I,-(SP)
Generated code~- MoV R¢,—(S)
* Example 2
Macrd call: "F4VAL2 C,VAR
- Generated code- MOV RQCVAR
: MoV R1,VAR+2
MOV R2,VAR+4
MoV R3,VAR+6
Figure 7-17

Return Value Transmission

»

15,2,5 Obtaining and Using the Macros

The macros are distributed as part of the system macro file SYSMAC.SML. They are

defined in the user module in the following way.

The macro .F4DEF must be obtained from the system macro file via a
«MCALL .F4DEF
directive. Then the macro .F4DEF must be invoked with an argument specifying the

calling form to be defined: @ for the R5 form. Its action is simply to define

the macros as appropriate for the value of its argument.

7-169

Thus to obtain the R5 form call the user includes the following.

«MCALL .F4DEF
.F4DEF g

As a side effect .F4DEF also defines the variable .F4SEQ to have the value of its
argument. This symbol may then be used to conditionally assemble sections of code

which, for reasons not anticipated here, may be call sequence dependent.

Finally the .F4DEF macro may be called without an argument in which case the value
of .F4SEQ is assumed to be already defined as @, and its value is used to define
the remaining macros. This is useful, for example, where the value of .F4SEQ is

defined in a separate parameterization file used with a collection of routines.
15,2.6 Programming Cautions and Notes

In addition to the macros F4CALL, F4RTN and F4VAL2, several additional macros are
defined for use by the user level macros and several variables are used for com-
munication between macros at assembly time. All of these internal macro and
variable names begin with the period character. Users are urged to not use iden-

tifiers beginning with the period character.

It is a general policy that use of identifiers containing the period character is
to be specified eiClusively by DEC. Users are urged to avoid all such names in
order to assure that name conflicts will not be introduced in future releases of

existing or new software.

In the R5 form of calling convention FORTRAN register 5 ;lways points to the argu-
ment list of the routine calling the current one and this pointer is conveniently
saved and restored by the JSR R5/RTS R5 pair. Fortunately the new FORTRAN genera-
ted code will not require that the argument pointer be also available in register

5 and so does not need to explicitly save/restore RS5.

For those concerned about minimizing core and willing to expend more care in check-

ing the compatibility, it may be worthwhile to try the following call.
.F4DEF 2

This is identical to .F4DEF 1 except the explicit save/restore of R5 is not

generated.

7-170

PART 7
CHAPTER 16
FORTRAN TRACE PACKAGE

16.1 TRACE PACKAGE}

A FORTRAN trace package is provided as a library-called TRCLIB.OBJ that provides a
FORTRAN-level trace of program execution. Actions that can be traced include
assignment to variables, call and returnlfrom subprograms, and transfers of control

within a program unit.

The library consists of two modules: TRACEX,vwhich is a special version of selected
OTS threaded code service routines, and TRACEF, which is a DEC-supplied FORTRAN sub-
routine for performing formatted tracing of program action. If desired, a user

may supply his own version of‘the SUBROUTINE TRACEF for altering the trace dump to

his own needs.
16.2 TRACE OUTPUT DESCRIPTION

A summary of the typeé of trace provided and the trace output generated is shown
in Table 7-20.

.

16.3 SELECTIVE CONTROL OF PROGRAM TRACING

Trace output for each type of action may be independently‘ehabled or disabled
either under. control of the PDP-1l console switches or under program control.
~

The normal or default mode is to control tracing using the console switches. 1In
this mode each time the tracevpackage ié entered the console switches are inter-
rogated to determine whether 'a trace output is to be produced. Each type of
trace is output only if the corresponding console switch is in the up position.
For example, subprogram entry information is printed only if console switch 1 is

up, subprogram return only if switch 2 is up, and so on.

Tracing may be plaéed under program control by means of the FORTRAN subroutine
TRCTRL. This subprogram is called as follows.

CALL TRCTRL (ITYPE,ICODE)

lohis package'depends on the implementation of FORTRAN.compiled output using
threaded code techniques such as are found in vde. It may not be compatible
with later versions. .

7-171

Table 7-20

Trace Output Description

Trace Type " Description Trace Output '

1 Entry to FORTRAN ENTER name
subprogram B

2 Return to calling RETURN TO name
program

3 Sequence number of SEQ. nnnn
statement about to
be executed

4 Transfer of control GOTO nnnn
resulting from any
type of GOTO statement

5 Arithmetic assignment type = value

6 Arithmetic assignment type = value
to variables specified :
in CALL TRCLST state~
ment

7 ASSIGN statement ASSIGN = nnnn

where

name is a subroutine or function name

nnnn is a statement sequence number

type is the type of value being assigned: INTEGER,REAL, etc.
for arithmetic assignment

value is the value assigned, printed in the appropriate format

where
ITYPE is an integer wvalue designating the type of trace output
to be effected (see Table 7-20).
ICODE is an integer value designating whether tracing is to be

enabled or disabled [l=enable, O=disable).

Special cases 6f.the above:

CALL TRCTRL (d:ﬁ) places tracing under program control with all tracing
disabled.

CALL TRCTRL (ﬂﬂl) Pplaces tracing under program control with all tracing.
enabled.

7-172

CALL TRCTRL (-l,ﬁ) pPlaces tracing under control of the cdonsole
switches,

Note that more than one type of trace may be enabled by multiple calls to TRCTRL.

For example, to trace only subprogram calls and returns, the two statements

CALL TRCTRL (1,1)
CALL TRCTRL (2,1) !

may be exec:utecl.~ An initialization call of CALL TRCTRL (¢”d) is unnecessary be-
cause any call to TRCTRL that changes the tracing mode from switch control to
program control automatically disables all tracing except that specified by the
.call.

In many cases it is desirable to trace assignment statements for a designatéd set
of variables only. This can be accomplished by the TRCLST entry. The form of
this call is

CALL TRCLST (Vl,Vz,...,Vn)

where each Vi is the name of a variable to be traced. (Note that only single
elements can be specified. An unsubscripted array name causes only the first ele-
ment of the array to be traced, not the entire array.) Up to 2ff variable names
may be specified for fracing in the program (regardless of the number of TRCLST
calls); variables entered in excess of Zd are simply ighoréd. Variables may be

deleted from the trace list by executing the following staﬁement.
L.
CALL TRCDEL (Vl,Vz,;..,Vn)

An attempt to delete from the trace list a variable that does not exist in the

list causes no problems.

16.4 TRACE OUTPUT DEPENDENCE ON COMPILATION OPTIONS .

If a FORTRAN program or subprogram is compiled with the /SU option in effect,
sequence number information is not. available in the compiled output.- In this

case all trace output requiring a sequence number prints avﬁ/for that number.

7-173

If a FORTRAN program or subprogram is compiled with the /OP option set to a value
other than Qﬂ many assignment operations will be undetectable by the trace package.
To ensure that all assignment actions are traceable, use /OPgQ/in the compiler

control string.
16.5 USAGE

No modifications to FORTRAN source programs are required to obtain tracing under
switch control. If control of tracing through TRCTRL, TRCLST, or TRCDEL is de-
sired, however, appropriate calls to those entry points must be inserted in the

source program where desired.

To provide the tracing features described above, the library TRCLIB is included
in the input file portion of the LINK command string following all other user's

files, but before the normal library, FTNLIB.
Example:

A complete example of the. commands needed to trace a demonstration program,
DEMO.FTN, and the output provided by the TRACEF subroutine, is presented
in Figures 7-18, 7-19 and 7-20.

“RUN FORTRAN

FORTRAN V06,12

#OEMO, LP1CNEMO/QPID
Haell

YKILL

SRUN LINK

LINK Vel .
#OFMOCNEMO/CC, TRCLIB/ZL,FTNLIB/L/E
#e(C

YKILL

YASSIGN LP1,6

YRUK DEMO

Figure 7-18

Console Commands to trace DEMO.FTN on the Line Printer

7-174

doal -

naaz
age3
aans
faa0s
poae

aza7

gags

2e09
geLy

@g1l
@12

2@13
PE14
2e1s
2016
eg17
pp18

9819
peen
gp21
rg22
ge23
ve24

025

2@26
pa7
@28
gg2s

re32
ga31

oann

3YTE
LOGI
INTE
REAL

8
CAL L
GER 1

R

nOUBLE PRECISION D

comp
TRACE EV

CALL
TyPES 1,

00

CALL
TURN OFF

fs e T |

CALL
CALL

TyPE 44

GOTO
] GONT

TyPE 51

-
AN

TYyPE 61

s Re R]

CALL
Y ‘g
CALL
Y =
CALL
Y &

TyPE 71

(] (‘-’_’)

ASS1

MORE TopP

L R 4 |

G070
42 M =
5q 5070
LY CoNT

END

LEX ©
ERyTHING

TRCTRL(2,1)

2. AND 3; CALL, RETURN AND SEQUENCE
DUHMy

SEQUENCE TRACE

TRCTRL (3, 4)
puMMY

50TQ TRACE

19
INUE

ARITHMETIC ASSIGNMENT TRACE

1

» TRUE,

2

105 !
2,300
(1;19"-203)

SELECTED VARIABLE TRACE

TRCTRL(5,9)
1,
TRCLST(Y,B)
2
TRCDEL(Y, 1)
3,

ASSIGN STATEMENT TRACE
GN 47 TO K

£ 41 GOTO TRACE

K

2

(52,60) M
INUE

cALL EXIT

Figure 7-19

Compilation Listing of DEMO.FIN

7-175

FORTRAN V56,12 15117:3¢

RQUTINES CALLED:
YRCTRL, nUMMY , TRCLST, TRCDEL, EXIT

APTIONS =2 /0N, /0PI

aLNgK LENGTH
MAIN, 233 (G00676)#

“’*COMP‘LER - CUREQ“
PHASE USED FREE

NECLARATIVES 02216 81576
CFXECUTABLES 072458 41334

ASSEMBLY P28 U4gT4
FORTRAN V26,12 15117451
2001 SURROUTINE DUMMY
Ape2 RETURN
nen3 ' END
NPTIONS = Z0Na/0PYJ
RLOCK LENGTH
NUMMY 1@ (320024)8

#4CoMpl ER ===== CQRE#®
PHASE ~ USED, FREE
MECLARATIVES 2297 81495 .
FXECUTABLES - 99297 21495
ASSEMBLY w2367 74290

Figure 7-19 (Cont.)

7-176

ENTER MAINS

SEQ, 7
SEQ. 8
ENTER DUMMY
SEQ, 2 .
RETURN. TO MAIN'
SEQ. 9

ENTER DUMMY
RETURN TO MATA,

6070 SgQ. 12

BYTE = 1

LOGICAL = 177777

INTEGER = 2

REAL = 1.,502020%

DOURBRLE = ' 9,2300723099D 21
COMPLEX = (1,1200 PEY-IRY]))
REAL = 2,0080083

ASSIGN = 27
GOTO SEQ, 27
GOTO SER, 29

Pigure 7-20
Trace Output of Program DEMO

7-177

PART 7
CHAPTER 17
FORTRAN DEVICE TABLE LISTING

JTITLE S0VE99
6LOBL RUCVTH
LCSECT

SOEyTh yB¢9A

CopYRIGHT 1971,1572 DIGITAL EqulpMENT CorpgRATIgNs MAYNARD,MAsS

— . e e Wa

FTHEGE ApE THE FagTrAN DEyICE TARLF ENTRIES
JWITH THE ”EVIPE ?ABLE HEADER AND ENTRY VECTOR

C

VIFNDE o : %
WORD DEVMS }ADDR OF ENTRY FOR ERR LQG DEVICE
{ERROR LOG DEVICE IS =3(DEVM3)
WORD TEVERR JADDR OF ENTRY FOR ERR MSG, FILE
LENDO
$DEVTBLT ,WORN 2, JNUMBER OF ENTRIES IN ENTRY VECTOR
VIFNDF RSX
, WORN «3 JDEVICE MUM OF ERROR LOGGING DEVICE
LENDC
VIFDF r8Y
CHORM 5, sDEVICE NUM OF ERROR LOGGING DEVICE
LENDE
)
I THE DEVICE TAPLE ENTRY VECTOR
3 .
» WORD 2Evi s ADDR gF DEyICE 1 ENTRY
VADRD nEVR JADDR OF DEVICE 2 ENTRY
VWORN NEV3 JADUR OF DEVICE 3 ENTRY
LJWORN NEV4 JADDR OF DEVICE 4 ENTRY
VHORD NEVE JADDR OF DEVICE 5 ENTRY
V40RD nNEVe tANDR OF DEVICE & ENTRY
CWORD DEVY JANDR OF DEVICE 7 ENTRY
“WORD NEVS JADDR OF DEVICE 8 ENTRY
3 _
I
[
JENTRY 1 OF NEVICE TABLE
DEvll “WARN 5 JLINK BLOCK PTR
CIFNDFP RSX
VRADSg /S8Y / sPHYSICAL DEVICE NAME QEFAULT
LENDC
VIFDF nSX
YRADSgZ /Kny
LENDC
,BYTE 3 ~ JHOW OPEMN SWITCH
waYrg o JUNIT NUM DEFAULT
VRADSA /FpRr/ _ 1DEFAYLT FILE NAME
'RAu%q 1961/
VRADSG /DAT/ JDEFAULT EXTENSION

7-178 °

~o we

i

VByTE
TRYTE
LBYTE
LBYTF
L WORN
L WORN
WORN
LHORN
L WORND
LWORD
WORN
L WORD

233
]

i
9

#

2]

i

JENTRY 2 oF DEVICE 7ABLE
; . N

DEv21

i

-

+WoRD
IFNDF
WRADSg
ENDO
VIFDF
JRADSG
LENDC
LBYTE
VRADS D

WRADS S

“RADSg
“BYTE
"\ WORD

&
RSX
/8Y /

28X
ARV

G4

/FOR/

1982/

/0ATY/

233,0,240
!ﬁ,ﬁ,ﬂ,@.%.@aﬁgg

FENTRY 3 gF DEVICE TABLE
‘ N

DEy33

-~ e e

WORD
L IFNNE
VRADSE
LENDE
IFDF
VRADS g
LENDC
LBYTE
“RADS?
RADSG
YRADS
“BYTE
TWORD .

RgX
/SY /

RSX
/RPy/

da0

/FOR/

1803/

/DATY/

233}@‘@!‘3
3,@;@.@)@.@;%.@

JENTRY 4 oF DEVICE TABLE
}

IAVER

»WORD
LRADS Y
BYTE
VRAQSG
VRAD®Y

L LRADSS

P
/PRy
et
/FOR/
/847
70AT/

sNO AUTO DEL, GROUP & OTHER READ/RUN ONLy
(DEVICE STATUS SWITCH

IMODE OF 140 = FUNCN WORD (RANDOM)
}STATUS OF 1/0

}RECORD COUNT = BLOCK MUM (RANDOM)

}BUFF ADDR (RANDOM)

JBUF LEN (RANDOM)

1ASSOCTATED VAR ADDR (FROM DEFINE FILE)
{NUM RECORDS IN FILE (FROM DFFINE FILE)
IRECORD LENGTH (FROM DEFINE FILE)

JUSER 1D CODE

IERRNOR VAR ADDR (FROM SETFIL)

7-179

W BYTE 233,20.:2,0
,HOR” ﬁ,%,ﬁ.ﬂ;@,ﬂ.@.ﬂ

ENTRY 5 oF DEVICE tTABLE

s we we we we

OEVS' |N RD 7 B
"RADSE /LP /
;BYTE ﬂlg
WRADSZ /FOR/
(RADSg /s2@5/
RADSE /DAT/
LBYTE 233,2,0,9
WORD Gl BaPa,8,9,0

}

}

IENTRY 5 OF DeyICE TABLE

] .

3
DEVS! YWORD &

“RADS@ /KB /

WBYTE ot

“RADSZ /FOR/

“RADSg /8067

YRADSZ /DAT/

;BYTE 233l$|n'ﬂ

L WORD @.ﬂp@.@pﬂ.@'ﬂ.ﬂ
3
} _
JENTRY 7 oF DEVICE TABLE
I X i

}
DEy7: +WORD 7

L IFNDF RSX
“RADSgZ /SY /
VENDC

JIFDF - RrSX
VRADSg . sUD/
LENDC

LBYTE A2

WRADSg /FOR/

LRADSg sau7/

WRADSZ /DAT/

YBYTE 233,%2.,0,9

L WORD 210,049,2,9,2.9

H
H
;] ‘
JENTRY 8 pF DEVICE TABLE

}
, a
BEy8: wWoRrD ¥

VIFNDF RSX
LRADSZ /BT /
JENDC

JIFpE 35X
JRARSE /ZAn/
LENDC

7-180

WBYyTE bW

YRADSE /FOR/

JRADSE 7908/

JRADS2 /DAT/

LBYTE 233,7,0,2 .

CHORD Se@2Ba BB, 007,0

VIFNDF RSX
)
sEN w3 4F DEYICE ABLE(E GGING DEyICE)

[T al Enfry udEn A DOSe1% RPBR6R Loceins’ DEVICE

}LOGICAL UNIT MUMBER = <3, LOGICAL DEVICE NAME = (MO

3
DEyM3: . n a 3LINK BLACK
‘RBss ska 1DEFAULTOPRYETRAL DEVICE NaME
VBYTE b
LRADBgZ /FOR/ sDEFAULT FILE NAME
WRADSZ /CMO/ 1FORCMO,NAT

«RADSg /DAT/

BYTE 233,0,2,0

WJHORD 9,7,2,2,2,0,0,0
Y

}

} » .
bspECTIAL ENMYRY Fnr ERRoR PROCESSORS MsG FILE
i.,

vWoR? ¥ JLINK BLaCK Egp RTN ADDR
DEVERRY LW0ORD & JLINK PTR

LRADBZ /ERR/ JLOG DATA SET NAME

,BYTE 1 ;PHYSICAL DS NAME FOLLONS

WBYTE g JUNIT NUM

YRADSg /8Y / JPHYSICAL DEVICE NAME

JDEFAULT TO SYSTEM DEVICE

“WORD G jFILE BLOCK FRROR RETURN ADDR

LBYTE 4 $HOW TOD NPEN (OPENY)

LBYTE & tERROR RTN CODE

“RADSa /FQR/ $FILE NAME

“RADBE /RUN/
“RADSZ /DGN/

YBYTE 1 tUSER ID CODE
WBYTE 1
VBYTE 222, JALLOW ONLY INPUT ACCESS
CWORD 4 tFUNCTION WORD (READ)
L WARN % 1BLOCK NUM
;Aan % 1BLOCK ADDR
.HHRD S }BLOCK LENGTH
H
‘ 1
LENDC
LEND

7-181

	7-0001
	7-0002
	7-001
	7-002
	7-003
	7-004
	7-005
	7-006
	7-007
	7-008
	7-009
	7-010
	7-011
	7-012
	7-013
	7-014
	7-015
	7-016
	7-017
	7-018
	7-019
	7-020
	7-021
	7-022
	7-023
	7-024
	7-025
	7-026
	7-027
	7-028
	7-029
	7-030
	7-031
	7-032
	7-033
	7-034
	7-035
	7-036
	7-037
	7-038
	7-039
	7-040
	7-041
	7-042
	7-043
	7-044
	7-045
	7-046
	7-047
	7-048
	7-049
	7-050
	7-051
	7-052
	7-053
	7-054
	7-055
	7-056
	7-057
	7-058
	7-059
	7-060
	7-061
	7-062
	7-063
	7-064
	7-065
	7-066
	7-067
	7-068
	7-069
	7-070
	7-071
	7-072
	7-073
	7-074
	7-075
	7-076
	7-077
	7-078
	7-079
	7-080
	7-081
	7-082
	7-083
	7-084
	7-085
	7-086
	7-087
	7-088
	7-089
	7-090
	7-091
	7-092
	7-093
	7-094
	7-095
	7-096
	7-097
	7-098
	7-099
	7-100
	7-101
	7-102
	7-103
	7-104
	7-105
	7-106
	7-107
	7-108
	7-109
	7-110
	7-111
	7-112
	7-113
	7-114
	7-115
	7-116
	7-117
	7-118
	7-119
	7-120
	7-121
	7-122
	7-123
	7-124
	7-125
	7-126
	7-127
	7-128
	7-129
	7-130
	7-131
	7-132
	7-133
	7-134
	7-135
	7-136
	7-137
	7-138
	7-139
	7-140
	7-141
	7-142
	7-143
	7-144
	7-145
	7-146
	7-147
	7-148
	7-149
	7-150
	7-151
	7-152
	7-153
	7-154
	7-155
	7-156
	7-157
	7-158
	7-159
	7-160
	7-161
	7-162
	7-163
	7-164
	7-165
	7-166
	7-167
	7-168
	7-169
	7-170
	7-171
	7-172
	7-173
	7-174
	7-175
	7-176
	7-177
	7-178
	7-179
	7-180
	7-181
	7-182

