PART 8

THE DOS/BATCH TEXT EDITOR

EDIT

PART 8
'CHAPTER 1

INTRODUCTION TO EDIT
A TEXT EDITOR

Controlled by ﬁser commands from the keyboard, the DOS/BATCH Text Editor (EDIT)
creates and modifies ASCII source files, EDIT can merge or separate files through
use of primary and secondary file commands. EDIT has I/0 facilities which‘allow
the user to: read or write any ASCIT file to and from any deviqé, list and verify
portions of the text} and output form feed and null characters to the paper tape
device. EDIT also has pointers for .delimiting sections of text for modificétiqn.
EDIT has the capability of modifying text by inserting, deleting, or exchanging
portions of text. In conjunction with text modification, EDIT has macro facilities

which allow the user to repeat a command operation as often as desired.

EDIT moves sequentially through the text by any number of lines or pages. A page
'is text delimited by form feed characters. If there are no form feeds, EDIT fills
core and uses that as a page. Since EDIT is a sequential page editor, the user
cannot page backward. To go back to a previous page, it is necessary to close

the file and reétart the editing session. Pages are useful for they benefit the

user by sectioning text for ease of reference.

PART 8
CHAPTER 2
OPERATING PROCEDURES.

~

2.1 CALLING AND USING EDIT

To call EDIT, load DOS/BATCH (if it is not running already) and log in. Then type:

.

-~

$RUN EDIT

Upon receipt of this command, DOS/BATCH loads EDIT and begins execution. EDIT
first requires an input/output specification for the editing session. After being
loaded and started, EDIT responds with the # character indicating a request for a

command string. The user responds with a command string of the form:
#dev:filel.ext[uic],dev:fileZ.ext[uic}<dev:file3.ext[uic]/B,dev:fi1e4.ext[uic]

In the above specification, filel is the primary output file and file3 is the
primary input file, while file2 and file4 are the secondary output and input files

respectively. Note the following:

1. dev: is the device name and is optional; the system disk is assumed if
no device is specified. The assumed device changes, however, as soon as
a new device is typed. $See Part 3 (Monitor).

2. filen.ext is the filename and extension of the appropriate input or
output file.

3. [uic] is the user code for the owner of the file, and need not be speci-
fied if the file in guestion is the user's own file.

4. /B is the no-backup switch. If /B is specified, a backup file is not
created. Otherwise, the backup facility is used. If the /B switch is
used, it must follow the primary input file specification since there is
no backup facility for secondary files.

The /B switch is useful when working with large input and output files
having the same names. Since the backup facility is automatic, the
specified device may get filled with extraneous backup files.

5. A minimum of one output file must be specified; a maximum of two input
and two output files may be specified. If two input files are specified,
the first one specified is the primary input file (i.e., file3.ext).
This ASCII file can only be.read; it is the user's primary editing file,
The first output file specified is the primary output file (i.e., filel.ext)
and it is into this file that corrected text is written.

6. If the primary input and output files have the same name and reside on
the same device, EDIT creates the file EDITOR.TMP for output. When the
primary input file is closed, it is renamed with .BAK as its extension.
The output file EDITOR.TMP is then renamed to the desired name. This
backup facility is automatic, but it can be suppressed with the /B switch.

. The user should never create a file with the name EDITOR.TMP as a fatal
error results if EDIT needs the name and it is not accessible.

8-2

7. EDIT allows text to be read or written from secondary files. Secondary
files are used as utility files to ease the process of editing. They
are controlled by commands distinct from primary input and output file
commands. All secondary input/output commands begin with the letter E
(ER, EW, EH, EP), while all primary input/output commands are one-letter
commands. ’)

When EDIT receives a syntactically correct dataset specification, it performs in-
ternal initialization, then types an * indicating its readiness to receive the

first command.

Whenever EDIT receives a syntactically incorrect command, or cannot execute a

command properly, it returns an error message of the form:
Xnnn

where X is either an S (System erxror) or W (Warning) and nnn
is a numerical error code. (See Appendix K.)

If the error occurs after the first command in a command string, EDIT follows the
error code with a second line. The second line is a copy of the command string
being executed, with a 2 following the character where EDIT found the error. Those
commands preceding the question mark are executed and those commands following the
"question mark are ‘not execﬁted. EDIT then prints an * and awaits another command

string.

In most cases, EDIT performs no further action on receipt of an illegal command.

In effect, the command string is truncated at the error point.

2.2 CREATING A NEW FILE

There are two methods for creating a file. The first is the preferred method for

there is léss human intervention as the system writes and closes all files.

The first method is general and does not require a primary input device. It in-
volves use of the Insert command to open the file and insert text. The line feed
prepares EDIT for another command. The EXit command is used to close the file
(see Section 8-3.3.1.7 for specific details). The general procedure for this

method is:

#dev:filenam.ext
*I <CR>

(text object)

<LF>
*Ex - -

The second method is used when the keyboard is explicitly specified as the primary
input device. Text is input via Read or Next commands. The Form Feed is pressed
to terminate the text object and prepare EDIT for another command. The two options

~

for closing the file are: . >

1. Use the Write command followed by an End File command. See Section
8-2,3.1.6,

2. Use the Write and EXit commands followed by CTRL/C. This elicits a . to

which the user responds by typing EN then pressing the RETURN and
LINE FEED keys.

The second method is illustrated with both options for closing the file. .

ﬁﬁev:filel.ext<Ké:
*R <CR>

(text object)

<FF>
*/W
*EF
*EX)
#

or

#dev:filel .ext<KB:
*N <CR>

(text object)
<FF>

*/W

*EX

tc

.EN
<LF>

2.3 RESTARTING AN EDIT SESSION

To restart EDIT, use the Monitor REstart command after issuing a CTRL/C.

#1512
S B3

*

Note that the above method of restarting enables a user to stop the progress of a

command execution if desired.

2.4 FINISHING AN EDIT SESSION

To finish an editing session, use the EX command. This restarts EDIT for the next
job unless the keyboard (KB:) is explicitly specified as a primary input device.

In this case, the following sequence is used.

*EX Type the EXit command,

e the CTRL/C combination,
EN <Cr> ' the EN command, press RETURN,
<LF> press LINE FEED. ‘
NOTE

Any other way of terminating an edit session, including
system or power failure, results in the input or output
files' not being properly closed. A file not properly
closed cannot be used until correctly closed by the
Unlock switch in PIP (see Part 12). Furthermore, if

the backup facility was being used, -the user may have
to unlock and, then, rename or delete EDITOR.TMP (see
Section 8-2.1).

2.5 ERROR RECOVERY

In the course of editing a page of the program, it may become necessary to correct

mistakes in the commands themselves. There are two special commands which do this:

1. Pressing the RUBOUT key removes the preceding typed character, if it is
on the current line.

2. The CTRL/U combination (holding down the CTRL key andAtyping U) removes
all the characters in the current line.

If, in the course of a command string execution, a serious error is discovered,
the restart capability can be used to terminate the command.

’

2.6 PROCEDURE WITH THE LOW-SPEED PUNCH

If the low-speed punch is one of the output devices, EDIT pauses before executing

any command that writes to the punch. The punch must be turned on at this time, after
which pressing the LINE FEED key oh the keyboard initiatés the output (the key does
not echo on the tape). FolloWing completion of the operation, EDIT pauses again

to allow the user to turn the punch off. When the punch has been turned off,

press the LINE FEED key and EDIT returns to command mode.

PART 8
CHAPTER 3
COMMANDS

3.1 MODE OF OPERATION

EDIT operates in two modes: command mode and text mode. The mode of operation
determines the action performed on the characters in a command string. Whenever
EDIT prints an asterisk (*) on the terminal, it is waiting to receive a command
string, and is in command mode. While most commands operate in command mode, there
are eight commands which require additional text, referred to as the text object,
to operate upon. For example, the command to insert text must be followed by the
text object to be inserted. The eight commaﬁas which reqhire text objects are
Insert, .Get, wHole, Edit wHole, Position, Edit Position, Change and eXchange.
(Capitalized letters represent the actual commands typed.) There are two ways

to provide the required text object for a command. If the text object is small
enough, EDIT can accept text in command mode if it is separated from the rest of
the command string by delimiters. If the text object is’long'or contains carriage

return or line feed characters, then the user must cause EDIT to enter text mode.

3.1.1 Command Mode

EDIT's processing begins in command mode. When fhe user types a command string,:
no action occurs until the string is completed by pressing the RETURN Key
(symbolized as <CR>), What happens next depends on the last character in the
command string. If the last character in the command string is not a text command,
EDIT expects to find any necessary text objects embedded in the command string and

stays in command mode as it executes the command string.

Text can be accepted in command mode if the text contains no cartiage return or
line feed characters, and is small enough to fit on a single typed line with the
command string. When EDIT finds a text command which is not the last command in
the command string, it looks at the next character in the string as a text de-
limiter. BAll characters between this. and the next occurrence of the delimiter
are considered the text object for the command. Thus, any ASCII character which

does not appear in the text object is a valid delimiter.

3.1.2 Text Mode

Tf the text object is lengthy or contains carriage return or line feed characters,
it can be accepted only if EDIT is in text mode. To enter text mode, type the

text command of interest as the last character in the command string. Then press

8«6

the RETURN key. When EDIT executes this command, it enters text mode and accepts
text input. It continues to accept text until the user terminates text mode and

re-enters command mode by pressing thé LINE FEED key (symbolized as <LF>).

The. line feed and carriage return are both counted as characters even though they

do not print. The line feed is considered to be part of the text unless it is

the first character entered on a line in text mode. If a user wishes to terminate
text mode, he should press the LINE FEED key. Note that typing the RETURN key
always causes the physical return of the printing head to the beginning of the

line, and automatically generates a line feed, thereby advancing the carriage to

a new line. In text mode, the REfURN key serves these mechanical functions allowing
the user to continue typing at the beginning of a new line while 51mu1taneously

entering a carriage return and line feed character into the text.

The following example enters text mode and inserts three lines of text into the

rage buffer. Note that EDIT signifies its return to command mode by printing an *.

* I<CR>

BLOOP: MOV #1799, (R3) + <CR>
BIT (R4) +,MASK <CR>
BNE ~ BLOCOP <CR>

<LF>

*
3.2 COMMAND SYNTAX

3.2.1 The Character Location Pointer (Dot)

Almost all EDIT commands function with respect to a movable reference point, Dot.
This character pointer is normaily located between the character most recently
operated upon and the next character. At any given time, it can be thought of

as "where EDIT is" in the text. As will be seen shortly, there are commands which
move Dot anywhere in the text, thereby redefining the "current location" and

allowing greater facility in the use of the other commands.

3.2.2 Mark

In addition to Dot, a‘secondary character pointer known as Mark also exists in
EDIT. This less agile pointer is used with great effect to Mark or "remember" a
location by moving to Dot and conditionally remaining there while Dot moves on to
some other place in the text. Thus, it is possible to think of Dot as "here" ‘
and Mark as “there". The position of Mark, which is referenced by means of the

argument @, is discussed in the following commands. -

3.2.3 Character-=Oriented Command Properties

Many EDIT commands are character-oriented; that is, the argument to the command
specifies the number of characters in the Page Buffer the command is to act on.

The number of characters specified by the argument n is the same in the forward

(n) and backward {(-n) direction. Carriage Return and line feed characters embedded
hetween text lines are counted in character-oriented commands, and are indistin-

guishable from other characters.

3.2.4 Line-Oriented Command Properties

EDIT recognizes a line as a unit by detecting a line terminator in the text. This
means that ends-of-lines (line feed or form feed characters) are counted in line-
oriented commands. This is important to know, particularly if Dot, which is a

character location pointer, is not pointing at the first character of a line.

In such a case, the argument n will not affect the same number of lines (forward)
as its negative (backward). For example, the argument -1 applies to the character
string beginning with the first character following the second previous end-of-line
character and ending at Dot. Argument +1 applies to the character string beginning
at Dot and ending at the first end-of-line character. If Dot is located in the
center of a line, the -1 would affect 1-1/2 lines back and the +1 would affect 1/2

lines forward.

The following example illustrates line-oriented command properties with 4 illustra-
ting the location of DOT.
TEXT

CMPB ICHAR, ##33
BEQ S$ALT
CMPB I+CHAR,#175

The command -1L yields the listing:

BEQ $ALT
CMPB I

qhe command +1L yields the listing:

CHAR, #175

3.2.5 The Page Unit of Input

Input files to EDIT can be divided into smaller, more manageable segments called
"pages". A page is delimited by a form feed (CTRL/FORM on keyboard) in the source

text whenever a page division is desired. Although the unit of output is the 'line,

the unit of input to EDIT is the page. .In order to‘facilitate editing, the

user may divide the input file into small segments by inserting form feeds in
desired places before output occurs. Since more than one page of text can be in
the buffer at the same time, it should be noted that the entire contents of the

Page Buffer is available for editing.

3.2.6 Arguments

Some EDIT commands require .an argument to specify the particular portion of text
to be affected by the command or how many times to perform the command. In other

commands this specification is implicit and arguments are not allowed.
The EDIT command arguments are described as follows:

1. 'n stands for any number from 1 to 32767 (decimal) and may, except where
noted, be preceded by a + or -. If no sign precedes n, n is assumed to
be positive. If n is omitted, the default value is 1.

Where an argument is acceptable, its absence implies an argument of 1
(or -1 if a - is present). The role of n varies according to the command
with which it is associated. '

2. P refers to the beginning of the current line,
3. @ refers to a Marked (designated) character location (see Section 8-2.2.2).
4. / refers to the end of text in the Page Buffer.

The function of the arguments is explained in further detail in Section 8-2.3

Commands.

3.2.7 Command Strings

A command string consists of one or more commands typed on the same line. Spaces
are not allowed between a command and its associated argument, although spaces
may be inéérted between.commands in a command string. The command string, in-
cluding embedded text objects, must be less than 72 characters and is terminated

by typing the RETURN key.

NOTE
Caution must be exercised when using spaces in text
commands. If a space separates a text command from
its object, the space is considered the delimiter.
Hence:
1. I OBJECT B/L is legal.

2. I #OBJECT#B /L will use #OBJECT#B as the text
object.

8-9

3. I I0OBJECT!B/L is illegal because there is no
second delimiter.

The following are all legal command strings:

*B/L B GHOBJECT# <CR>

*B/L BGH#OBJECT#I#TEXT# B/L <CR>
*BSKB3L <CR>

*-3J -ACHTEXT# PA L <CR>

When the user types a command string to EDIT, it is not processed until he presses
the RETURN key. Upon receipt of the carriage return character, EDIT starts at the
beginning of the command string and serially processes each command. If an error
is encountered in the middle of the string, those commands preceding the error are

executed and those commands following the command in error are not executed.
3.3 EDITING COMMANDS .

3.3.1 1Input/Output Commands

The X/0 commands allow files to be created, opened, listed or closed. Pages of
the files can bé read into memory kor processing. Once editing is completed and
the page is written to the output file, that page of text is unavailable for
further editing until the file is closed and reopened. Note that the output
process does not cause Dot to move.

B

3.3.1.1 Read and Edit Read

Two ways of getting text into storage so that it can be edited are by means of the
Read (R) and Edit Read (ER) commands. There are no arguments for the R or ER
Commands. The command R reads a page of text from the primary input file; the
command ER reads a page from the secondafy input file. The read text is appended
to the contents (if any) of the page buffer. Text is input until one of the

following conditions is met.

T 1. A form feed character is encountered.

2. The page buffer is 128 characters from being filled, or a line feed is
encountered after the buffer has become 5@8@ characters from being full.
3. The end of data is detected on the input device.

-
An error message (W3@3) is printed if the Read (or Edit Read) exceeds the core

available or if there is no input available. The command stops executing and no
text is lost. A warning message W3ll is printed when the end of data is detected

on the input device.

8-10

The maximum number of characters which can be brought into core with an R command
is approximately 2#,@@@ characters for a 16K system. Each additional 4K of core

allows approximately 8@@@ additional characters to be input.

3.3.1.2 Write and Edit Write

The Write command moves lines of text from the text buffer to the primary output

file: the Edit Write command moves text to the secondary output file.

Format Function Length of Character String Operated On
nwW Writes on primary output file The charactetr string beginning at Dot
nEwW Writes on secondary output file. and ending with nth end of line.

-nW Writes on primary output The character string beginning with
-nEW Writes on secondary output the first character following the

(n+l)th previous end of line and
terminating at Dot.

oo Writes on primary output The character string beginning with
ZEW Writes on secondary output the first character of the current
line and ending at Dot.

ew Writes on primary output The character string between Dot

CEW Writes on secondary output and the Marked location.

/W Writes on primary output The character string beginning at Dot
/EW Writes on secondary output and ending with the last character in

the Page Buffer.

Examples:

SwW Write the next 5 lines of text, starting at Dot, to the
current output file.

-=2W Write the previous 2 lines of text startlng at Dot, to the
current output file.

B/W ' Write the entire text buffer to the current output file.

3.3.1.3 Next

The Next command writes the current page buffer (followed by trailer if paper tape
is the output medium and a form feed is the last character in the buffer) orito
the primary output‘file, clears the buffer, and reads the next page from the
primary output file into the buffer. It performs the sequence n times as the
format nN illustrates. Next accepts only positive arguments (n) and leaves the
pointers Dot and Mark at the beginning of the page buffer. An error code (W31ll)
is printed if fewer than n pages are available in the input file and the command
executedvfor the number of pages available. It is used to space forward in page

increments through the input file.

8-11

Example:

2N Write the contents of the current text buffer to the output
file. Read and write the next page of text. Then read
another page into the page buffer.

3.3.1.4 List

The List command prints the specified number of lines on the terminal. The format
of the command is:
nL Beginning at Dot print n lines on the terminal.

-nL Beginning n lines prior to Dot and ending at Dot prints n
: lines on the terminal. :

2L Prints the character string beginning with the first
character of the current line and ending at Dot.

QL - Prints the character string between Dot and Mark pointer
locations.
/L Prints the character string beginning at Dot and ending

with the last character in the page buffer.

List accepts all legal line-oriented arguments and does not move the pointer Dot.

See Section 8~3.2.4 and Chapter 8-5 for exampleé.

3.3.1.5 Verify

The Verify command prints the current text line on the terminal. The position of
the pointer Dot within the line has no effect and the pointer does not move. The

‘command format is:
v

and there are no legal arguments. The V command is equivalent to a 1L (List)

command.

3.3.1.6 End File

The End File command closes the primary output file to any further ogtbut and
renames it if a backup file is to be created. It also closes the primary input
file to any further read operations. The secondary output and input files remain

open for further editing. The form of the command is:

EF

8-12

and there are no legal arguments. EF is used when the output file is to be
closed as it stands, with no further output desired. Note that this command is

useful to create a truncated output file from a large input file.

3.3.1.7 EXit

The EXit command is used to terminate one edit session and begin another. Edit out-
puts' the page buffer, copies the remainder of the primary input file into the primary
output file, closes all files, and then is ready to accept another dataset command

string. The format of the command is:
EX
and there are no legal arguments.

i

Always end the editing session with the EX command. EX guarantees that all files
are closed correctly. If an EF command was executed during the editing session,
EX does not perform any input/output operations - it merely closes files. The

last command of every editing session should be the EX command.

NOTE

Following an EX command, the user should always wait
for the # character response before entering CTRL/C
KILL to ensure the integrity of his file structure.

3.3.1.8 Form Feed and Trailer

The Form Feed and Trailer commands are used when the primary output device is paper

~ tape. The format of the Form Feed command is:

with no arguments. It writes a form feed character and four inches of null

characters into the primary output file. The format of the Trailer command is:
nT

where n indicates the number of times to write four inches of Trailer (null

characters) on the primary output device.
3.3.2 Commands to Move the Location Pointer

3.3.2.1 Beginning

The Beginning Command moves Dot to the beginning of the page buffer. The command

format is:

8-13

and there are no arguments.
Example:
Assume the buffer contains:

MOVB 5(Rl),@R2
ADD R1, (R2)+
CLR @R2

MOVB+ 6(R1) ,@R2

4 indicates the current location of the Dot pointer.
The command:
*B

moves the pointer to:

MOVB 5(R1),@R2
+

3.3.2.2 Jump

The Jump Command moves the pointer over the specified number of characters in the

page buffer. The form of the command is:

nJ Moves Dot forward n characters.

-nJ Moves Dot backwards n éh;racters.

a3 Moves Dot to the beginning of the current line.
Qg Moves Dot to the location pointer Mark.

/J Moves Dot to the end of the page buffer.

Jump treats the carriage return, line feed, and form feed characters the same as

any other character, counting one buffer position for each.
Examples:

*37 Moves Dot ahead three characters.

*-47 Moves Dot back four characters.

8-14

3.3.2.3 Advance '

The Advance command moves the pointer the specified number of lines and leaves it

at the beginning of the line. The form of the command is:

-
naA Advances Dot forward past n ends-of~lines to the beginning
) of the succeeding line.

-naA ' Moves Dot backward to the first character following the
(n+l)th previous end-of-line.

oA Moves Dot to the beginning of the current line.
@A Moves Dot to the location pointer Mark.
/A Moves Dot to the end of the page buffer.

Notice that while n moves Dot n characters in the Juhp command, its role becomes
that of a line counter in the Advance command. However, because @, @, and / are
absolute,>their use with these commands overrides the line-character distinctions.
Consequently, Jump and Advance perform identical functions if both have either

@, @, or / for an argument.

3.3.2.4 Mark

The Mark command marks ("remembers") the current position of Dot for later
reference in a command which uses the argument @. The format of the Mark command
is:

M

and there are no arguments. Note that only one position at a time can be in a
Marked state. Mafk is also affected by the execution of the following'commandé:
C (Change), D(Delete), H (wHole), I (Insert), K(Kill), N (Next), R(Read),

X (eXchange), EH (Edit wHole), ER (Edit Read).

3.3.3 Search Commands

3.3.3.1 Get

The Get command starts at 5ot and searches the current page buffer for thebnth
occurrence of the specified text string. If the search is successful, the Dot

is left immediately following the nth occurrence of the gext string. If the

search fails, Dot is located at the end of the page buffer and an error message
W3@7 is printed on the terminal before EDIT prints an %, The format of the command

is:

8«15

nG (text)

where n is a positive integer. If no argument is present, n is assumed to be 1.
If the text object is to follow the G command in the command string, it must be
properly set off by delimiters. If G is the last character typed in the command

string, EDIT enters text mode and accepts a search object of up to 72 characters.
Examples:
Assume the buffer contains:

4MOV PC,R1

ADD #DRIV-.,Rl
MOV #VECT,R2
CLR @R2

MOVB 5(R1),@R2
ADD R1, (R2)+
CLR @R2

MOVB 6(R1) ,@R2

1. G$ADDS positions the pointer at ADD4#DRIV-.,R1l
2. 3GS@R2$ positions the pointer at:

ADD R1, (R2)+
CLR @R2+

3.3.3.2 wHole

The wHole command starts at Dot and searches the entire primary input file for the
nth occurrénce of the text string. If the nth occurrence of the text string is
not found in the current page buffer, a Next command is automatically performed
and the search continues on the new text in the buffer. The search proceeds until
the search object is found or until the complete source text has been searched.

In either case, Mark is located at the beginning of the page buffer. The format

of the command is:
nH (fext)

where the argument n, if specified, must be positive. If the search object (text)

is found, Dot is located immediately following the nth occurrence of it.

If the search is unsuccessful, Dot is located at the end of the buffer and a W3@7
error message appears on the terminal. Upon completion of the command, EDIT is
in command mode. Note that an H command specifying a nonexistent search object
can be used instead of the EXIT command to copy all remaining text from the

primary input file to the primary output file. The EXIT command returns control

8-16

to the Monitor when execution is complete whereas the WHOLE command leaves

control in EDIT when execution is complete.

3.3.3.3 Edit wHole

A wHole search can be performed through the secondary input file with the EH
command. The EH search is identical to the WHOLE command except that the search
is performed on the secondary input file and written into the primary output file.
Note that an EH command spécifying a nonexistent search object is a method of
copying the enti:e secondary input file into the primary output'file.

3.3.3.4 Position

The Position command searches the primary input file for the nth occurrence of

the character strihg.

If the desired text string is not found in the current buffer, the buffer is
cleared and a new page is read from the primary input file. The format of the

command is:
nP (text)

where the argument n, if specified, must be positive. When a P command is executed
the current contents of the buffer are searched from Dot to the end of the buffer.
If the search is unsuccessful, the buffer is cleared and a new page of text is

read and the cycle continued.

If the search i5‘successfﬁl, the pointer is positioned after the nth occurrence
of the text. If the search fails, the pointer is left at the beginning of an
empty text buffer.

The Position command is most useful as a means of placing the location pointer in
the input file. For example, if the aim of the editing session is to create a
new file out of the second half of the primary input file, a Position search saves

time.

The différence between a wHole command and a Position command is that wHole writes
the contents of the searched buffer to the output file while Position deletes the

contents of the buffer after it is searched.

'3.3.3.5 Edit Position .

-

The Edit Position command is identical to the Position command except that the
input file read and searched is the secondary input file. Note that any text

8-17

in the buffer is written to the primary output file before the search begins. The

format of the command is:
nEP (text)

where n is any positive integer (if specified).
3.3.4 Commands toiModify the Text

3.3.4.1 Insert

The Insert command inserts the specified text in the text buffer starting at the
current pointer position. The location pointer (Dot) is positioned after the last

character of the insert. The command format is:
I (text)

There are no arguments to the Insert command. In text mode, up to 8¢ characters
per line are acceptable. Execution of the command occurs when the LINE FEED key
(which does not insert a line feed character unless it is the first character

typed in text mode) is pressed to terminate the text typed in text mode.

Dot is located in the position immediately following the last inserted text char-
acter. If Mark was anywhere affer the text to be inserted, Dot becomes the new

Marked location.

As with the Read command, an attempt to overflow the page buffer causes a W3@3
error message to be printed, followed by an * on the next line. This indicates
that EDIT is ready to accept a new command; however, all or part of the last typed
line may be lost. All previouély typed lines are inserted. See Chapter 8-5 for

examples.

3.3.4.2 Delete

The Delete command removes the specifiéd number of characters from the text buffer.
Characters are deleted starting at Dot; upon completion of the command, Dot is
positioned at the first character following the deleted text. After execution

of this command, Dot becomes the Marked location.

The format of the command is:

- nD Deletes the following n characters.
-nD Deletes the previous n characters.
2D Removes the current line up to Dot.

@ : Removes the character string bounded by Dot and Mark.

/D . Removes the character string'begihning at Dot and ending
with the last character in the page buffer.

Examples:
Assume a buffer contains:

ADD R1,(R2)+

CLR +@R2
1. 2D ~ leaves 'the buffer as:
ADD R1l,(R2)+
¢@R2’
2. 3D leaves the original buffer as:
ADD RI, (R2)+
CLR

3.3.4.3 Kill

The Kill command removes n lines from the page buffer. Lines are deleted starting
at the location pointer. The pointer is then positioned at the beginning of the

line following the deleted text. The‘command format is:

nkK Kills the.character string beginnlng at Dot and ending at
the nth end-of-line.

-nK - Kills the character string beginning from Mark (the first
character following the (n+l)th previous end-of-line) and’
ending at Dot.

gK Removes the current line up to Dot.
@K Removes the character string bounded by Dot and Mark.
/K Removes the character string beginning at Dot and ending

with the last character in the page buffer.
Examples:
Assume a buffer contains:

AbD R1, (Rz) +
CLR} @R2
MOVB 6 (R1) ,@R2

1. /K alters the contents of the buffer to:

ADD R1, (R2)+
CLR

8-19

2. -K alters the contents of the original buffer to:

@Rr2
MOVB 6(R1l),@R2

Kill and Delete commands perform the same function, except that Kill is line-

oriented and Delete is character-oriented.

3.3.4.4 Change

The Change command replaces n characters, starting at Dot, with the specified
character strings. The form of the command is:
nC (text) Replaces the following n characters with the specified text.
-nC (text) Replaces the previous n characters with the specified text.

gC (text) Replaces the current line up to Dot with the specified text.

@Cc (text) Replaces the character string bounded by Dot and Mark.
/C (text) Replaces the character string beginning at Dot and ending

with the last character in the page buffer.

The Change command is identical to an Insert followed by a Delete which accepts
all legal character-oriented arguments. If the Insert portion of this command is
terminated because of an attempt to overflow the page buffer, data from the last
line may be lost and text removal will not occur. Such buffer overflow might be
avoided by separately executing a Delete followed by an Insert, rather than a

Change which does an Insert follocwed by a Delete.
Examples:
Assume a buffer contains:

CMPB ICHAR,#@33

BEQ $ALT
CMPB J+CHAR,#175
1. -1c /1/ Changes the last line of the buffer to:
CMPB I+CHAR,#17S

3.3.4.5 Exchange

The Exchange command replaces n lines with the character string stafting at the

pointer. The form of the command is:

8-20

QX (text) Replaces n lines with the specified text.

-nX (text) Replaces the previous n lines with the specified text.

#X (text) Replaces the current line up to Dot with the specified text.
@x (text) Replaces the character string bounded by Dot and Mark.

/X (text) Replaces the character string beginning at Dot and ending
with the last character in the page buffer.

The Exchange command is identical.to an Insert féllowediby a Kill. As in the
Change command, if the Insert portion of the command is terminated because of an
attempt to overflow the page buffer, data from the last line may be lost and text
removal does not occur./ such buffer overflow can be avoided by separately execu-

ting a Kill followed by an Insert rather than executing an Exchange.
3.3.5 Utility Commands

3.3.5.1 save

The Save command copies the n lines beginning at Dot onto an external buffer called

the Save buffer. The form of the command is:
ns

where n must be a positive integer because Save is a line-oriented command and
operates only in the forward direction. Dot dées not change nor is the saved data
deleted. Any previous contents of the Save buffer are destroyed. If the Save
command causes the Save buffer to exceéd the core available, a W3@3 error message

is printed and none of the text is saved.

3.3.5.2 Unsave

The Unsave commahd inserts the entire contents of the Save buffer at the location
referenced by Dot. Dot then moves to the position following the last character

Unsaved. The format of the command is:
1))

The contents of the Save buffer are not destroyed by the Unsave command. and may
be Unsaved as many times as desired. If the action of unsaving would result in
an overflow of the page buffer, a W3lg error message is printed and the Unsave

~does not occur.

Note that Save and Unsave provide convenient tools for moving blocks of text or

inserting the same block of text in several places.

8-21

3.3.5.3 Execute Macro

The Execute Macro command performs the same Edit command string n times. The

format of the command is:
nEM

When the EM command is received, the contents of the save buffer up to the first
carriage return character are interpreted as a command string and are executed n
times. The macro is subject to the same rules as any typed command string, and in
addition, a macro string may not contain another macro call. Thus, fo execute a
macro, it is necessary to insert the macro in the page buffer, save it, then

execute it.
Example:

The following sequence of commands changes the first 15 occurrences of .CSECT in
the buffer to .ASECT.

*BI

B G#.CSECT# -4J -C#A# <CR>
<LF>

*BSK15EM

3.3.5.4 EAdit Open

The Edit Open command closes the secondary input file and reopens it at the be-

ginning. The format of the command is:
EO
with no arguments. .

Although EDIT is a one-pass editor, capable of making only one trip through the
primary input file per job, with this command it is possible to make many passes
through the secondary input file. EOQ has no effect on the text.

8-22

PART 8
CHAPTER 4
IMPLEMENTATION NOTES

4.1 MACRO USAGE

Use of the EM macro is most efficient if the text involved is small enough to fit
within the macro itself. -Large amounts of text can be inserted by a macro only

if the macro is the first line of the Save buffer.
For example, suppose it is desirable to insert

JSR RS5,RSAVE
JSR R5,RELOAD

after every occurrence of EMT 4@ in the program. The text to be inserted is too
long to enter in command mode, and there is no way to enter text mode from a macro,

the Unsave command can be used.

To accomplish the above, the commands would look like:

*BI

G;EMT 4¢; A U -3A K
JSR R5,RSAVE
JSR R5,RELOAD

<LF>

*B3S3K . S5gGPEM

The first command inserts the three lines needed to save into the Page Buffer.
Note that the first of the three lines is the macro, while the last two are the
code to be inserted. The macro itself contains the Get command to look for the
EMT 48, followed by an Advance command to advance Dot to the next line. The next
command is the Unsave command, which will Unsave the three lines in the Save buffer.
Since the macro is by definition the first line of the Save buffer, it is Unsaved
along with the other two and has to be deleted.’ The -3A and Kill,commands
accomplish this. The second command string saves the macro and text object,
deletes them from the Page Buffer, and executes the macro 50¢@ times. Five
thousand is an arbitrarily large number which assures reaching all the occurrences
of EMT 4@ in the buffer. When the search fails, thé macro is halted and an error

returned as Edit prepares to accept another user command string.

8-23

4.2 DELIMITER USAGE

When entering text in command mode, any ASCII character is acceptable as a delim-
iter; however, some characters are more appropriately used as a delimiter. The

following are suggestions for choosing delimiters.

1. Use the same delimiter all the time (except when not possible because
it appears in the text itself). Pick an uncommonly used character that
is easy to type such as Q or ; and habitually using it will become
second nature.

2. Avoid delimiters that are valid arguments or commands. Use of /, @ and
valid commands-as delimiters is an error-prone practice. BAbove all avoid
using a space as a delimiter; forgetting that there is a space in the
text object may yield erroneous results or an undesired command string
(as illustrated below) .

For example:
*G SAVE /DUMMY/ ISTESTS

Although the user wanted tc get "SAVE /DUMMY/", he will actually Get
"SAVE", Delete to the end of the buffer, Unsave, Mark, Mark again,
then receive an error message for the illegal ¥ command. ’

4.3 SUBSIDIARY I/0

Subsidiary I/O can serve several purposes.' The following are suggestions for

using subsidiary I/0.

1. If the secondary output file device is a line printer or video terminal,
the user can quickly view his page buffer via the B/EW commands and
check for mistakes.

2. Use of two output files is ideal for dividing a single input file into
two smaller files.

3. If a user wants to move a very long section of text, or wants to save
text for insertion later but may also want the Save buffer free, use
of the HSR (wHole, Save, Read) and HSP (wHole, Save, Position) commands
as subsidiary I/0 is recommended. Punch the desired text, then read
it in whenever desired.

4. Two input files are ideal for concatenation; do a wHole search for a
nonexistent object through the primary input, then do the same through
secondary input.

Remember, to close subsidiary files the EX command must be used.

4.4 CORE USAGE FOR SAVE AND UNSAVE

EDIT saves text during the Save command by setting aside a buffer large enough to
accommodate the saved text. This decreases the total core available to the

Page Buffer, resulting in the possibility that there might not be enough free

8-24

core left to Unsave the text. EDIT guards against this situation by allowing the
user to save only text that is short enough to guarantee at least enough‘room to
insert it again. That is, the user is guaranteed enough room to Unsave at least
onée following every Save command that completes successfully. Of course, if the
user Reads or Inserts a large amount of text between Save and Unséve, he might
exceed the space available and not be able to Unsave. In this case, part of the
buffer will have to be written into the output file to make room. A safe procedure

is to do all Unsave's immediately following the corresponding Save commands.

8-25

II.

OO OO

®

@@e\'

PART 8
CHAPTER 5
EXAMPLES

#QUADRAFTN

*1
REAL AsB,C
WRITEC1,20)

20 FORMITC(®' ENTER A»B>D")
READCL> 30 tANTANALRSC
30 FORMAT(3F6.2)

ANS= ((~B+SOQRT(D**2-4%A%C)) /2*A

ANSMIN= € (~B=-S0RT(R€42-6% 1A\ T1ANA*C)) /2*A
IF(ALED.3) GNTO 999

ATEMP=(R*%2=4*%A%C)

IF CATEMP.LT.d.) GOTO 999
WRITEC(L>46)ALB»CsANS,»ANSMIN

4 FORMATC(' THE ANSWER IS ',10(1X,F8.2))
GOTO 199
999 WRITEC(L1,50)
50 FORMITC(' BAD DATA RBRYE!")
199 STOP
END
*13
*¥20
*V
20 FORMIT(' ENTER A»Bs»D')
*G/M/
*D)
*1/0/
*U i
20 FORMATC(® ANTER AsBsD")
*124
*U
53 FORMITC' RAD DATA BYE!')
*G/M/
*1)
*1/A7
*V ‘
50 FORMATC(' BAD DATA BYE!')
*13dJ
*1/- 7
*
Y, _ .
50 FORMAT(' BAD DATA - BYE!')
*EX
#COMMENFTN
*I :
C THIS PROGRAM SOLVES THE QUADARATIC EQUATION
C FOi SIMPLE INPUT. .
C THE USER MUST ENTEKR A»BsC AND THE ANSWER IS RETURNED.

*EX

8-26

EDIT EXAMPLES

I. This is a very basic FORTRAN program for solving the quadratic formula. It is
being developed at the terminal to illustrate an editing session. No responsi-.
bility is assumed for its accuracy or completeness. i

1. The file QUADRA.FTN is created; the keyboard is the default device. The
) Insert command is used to supply text to the page buffer. The LINE FEED
key is pressed to terminate input and force the editor response *. Notice
that the LINE FEED is a non-printing character that advances the paper one
line.

2. The Beginning command is issued to allow the user to begin the edit session
at the top of the page buffer.

3. The 2A command advances the pointer 2 lines.

4. The V command prints the line to which the user is pointing for verification.

5. The Get command is used to find the first M in the string and place the
character location pointer DOT after it. The / (slash) is used as a de-
limiter because it does not appear in the current character string.

6. The D command deletes the I in FORMIT.

7. The Insert command places the A where the I was in FORMIT, changing it to
FORMAT as verified in the next line. The /(slash) is used as a delimiter

because it does not appear in the current character string.

8. The following sequence of commands repeats the process of changing the I
in FORMIT to an A for FORMAT, twelve lines down.

9. The 137 command moves the location pointer dot over 13 character positions.
As Dot was originally located after the A in FORMAT from the last command,
it is now positioned after the space and before the B in BYE.

10. A dash and a space are inserted Before the B in BYE. The line is then
verified.

11. The EX command is used to terminate the first editing session and to
begin another.

II. The following program demonstrates that a file can be created to be merged with
another file at a later time (see example IV).

1. The Insert command is used to 1nput the following comments into the page
buffer. The LINE FEED key is pressed to terminate text mode and elicit
the editor's response.

2. EXit command is used to close the file and terminate the editing session.

III.

OERQEOEOLECEOP OO OO®OO®O

#QUADRAFTN<QUADRAFTN

*H/20 /Y
WRITEC(1,20)

*AY

20 FORMATC' ENTER A»B»D*)

*G/A>Bs /D1/C/V

20 FORMATC(' ENTER A,BsC")

*4U

READC15,30) A»B»C
*2AV
ANS=((~B+SQRT(B*%2-4%A%*C)) /2*A

KGe/e1/C/3J1/O/V

ANS=C (~B+SORT(B**2-4%A*C))/ (2%A)
*AV

ANSMIN=((~B=-SOQRT(B*%2-6*A%C)) /2*A
*Ge/e1/7C/73017)27V , ‘

ANSMIN=C¢(-B-SQRT(R*%2=-6*A%*C))/(2%A)

*AV
IFCAEQ«?)Y GOTO 999
*35
*=2AV
ANS=((-B+SQRT(B*x2=4%A%C)) /(2%A)
*U
*V
ANS=((-B+5SQRT(B**%2~4%A%C))/ (2%A)
*=AY
IF (ATEMP.LT«0s) GOTO 999
*3AV
IFCAEQ.®) GOTO 999
*M3AV
WRITEC1243)05B»CsANS»ANSMIN
*BK
*V
WRITEC(1,40)A,B>C»ANS,ANSMIN
*=AY

ANSMIN=((=B~SQRT(B**2-6%A*C))/ (2%A)

8-28

III.

The file QUADRA.FTN from example 1 is the input file; substantial edits are
made, then the file is output as QUADRA.FTN. Since the /B switch is not used,
the original QUADRA.FTN should be on the user area as QUADRA.BAK. ‘ This file
can be used if the current file is accidentally destroyed or deleted.

1.

10.

11.

12.

13.

14.

15.

16.

17.

i8.

19.

The wHole command is used to fill the page buffer then search it for the

first occurrence of 2@. The Verify command is used to print the line to

verify where the 2@ was found.

The next line is advanced to,:then verified.

' The Get command moves the location pointer to the comma after the B.

Notice that more than one command can be juxtaposed. The D deletes the
D in the character string then the Insert command adds the C. The entire
line is then verified.

The location pointer is advanced to the next line and the entire line is
verified. -)

Two more lines are advanced and the last one verified.

Notice the use of delimiters; the Get command is used to get the / (divide
sign) which is delimited by . (periods). The Insert command in turn uses
the / as a delimiter to insert the left parenthesis. The Jump command
spaces over three characters to allow the Insert command to add the right
parenthesis. The results of the entire command string are then verified.

After the user acknowledges the accuracy of the previous command string,
the next line is advanced and verified.

Sequence #5 above is repeated. . .

The next line is advanced and verified.

The 3S command saves the three lines beginning with the line containing
Dot (i.e., IF (A.EQ.f) GO TO 999). These three lines are stored in a

temporary buffer which then aids in moving it to another location.

The -2AV moves the location pointer.back two lines then verifies the line.
This places the location pointer before the line being verified. '

The Unsave command is issued to reinsert the three lines of text in the
Save buffer back into the page buffer.

The line is verified. Dot is at the beginning of the three lines that
were reinserted.

The previous line is verified.

The three lines are advanced, the next line is verified.

The location is Marked; three lines are advanced and the next line verified.
The @K removes the character strings bounded by Dot and Mark. The three
lines that were inserted above the ANS= and ANSMIN= statements with the
Save-Unsave commands are still located in their original position. The

M@K eliminates the 3 lines from their original position.

The line containing Dot is verified.

The previous line is verified.

8-29

Iv.

®ORRRROHREER®O®

e 6O 66006

*204V
4@ FORMAT(' THE ANSWER IS '"518(1XsF8e2)) *
*G/Ei/1/75 AjE/2DV
40 FORMAT(' THE ANSWERS ARES ', 10(1XsF8.2))
*DV
49 FORMAT(' THE ANSWEHS ARE ', 10C1XsF8.2))
*G/»/28D1/5/V
49 FORMAT(' THE ANSWERS ARE '»5C1XsF8B.2))
*RG/30/7V .
READC(C1,30) AsBsC
*AV
33 FORMAT(3F6..2)
*G/F/C-8-V
3 F8RMAT(3F6.2)
*=D
*U
34 FRMAT(3F6 .20
#I=A=\=-0\0=-V
30 FORMAT(3F6.2)
*G/3F/C=-8-V
34 FORMATC(3F8.2)
/L
REAL A»BsC
WRITEC1,28)
20 FORMAT(' ENTER A>R,C')
READ(1,3¢) ALRB»C C
32 FORMAT(3F8.2)
IFCAEQ.?)> GOTO 999
ATEMP=(Bax2=4%A%C)
IF CATEMP.LTe®e¢) GOTO 999"
ANS=((-B4+SQRT(B*%2-4%A%C))/ (2*A)
ANSMIN=((-B=SQRT(B*x*2=-6%A%C))/ (2%A)
WRITECL,40)A>BsCsANS,»ANSMIN
44 FORMAT(' THE ANSWERS ARE '"»5(1XsF8.2))
GOTO 199
999 WRITECL1,50)
50 FORMATC(' BAD DATA - BYE!')
199 STOP
END
*G/ANSMIN/V

ANSMIN=((~B=-SQRT(B**2-6*%xA*C))/ (2%A)
*G/6/=-D1/74/V

ANSMIN=((-B-50RT(R**2~4%A%C))/ (2%A)
*¥LX

#QUADRA«FTN<COMMEN+ FTN» QUADRAFTN

#il

*/L

C THIS PROGRAM SOLVES THE QUADRATIC EQUATION

Cc FOR SIMPLE INPUT.)

C THE USEil MUST ENTER AsB»C AND THE ANSWER IS R{ETUANED.
*3AV .

*Fit

8-30

Iv.

20.

21.
22.
23.
24f

25,

26.

27.
28.

29.

30.

31.

32.

33.

34.

Two lines are advanced and the next line verified.

Get finds ER, then Insert adds S ARE, then the next two characters are
deleted and the entire line is verified.

The next letter following the Dot (i.e. the S in ARES) is deleted and the
entire line verified again.

Get finds the comma, then deletes the next two characters to insert 5.
The line is verified.

The Dot is moved to the Beginning of the page buffer and a search for the
first occurrence of 3¢ is made, the line where it occurs is verified.

The line is advanced one and verified.

The search command to get the F and change it to an 8 are realized as
causing rather correcting an error when the line is verified.

The 8 is deleted.
The line is verified.

The O is inserted back in FORMAT and the line verified. The command
looks odd because the RUBOUT key was pressed to rub out the dash and zero
and replace it with the letter "O" and a dash. The - (dash) is used as
the delimiter. The RUBOUT key was pressed twice, consequently, the / to
indicate a RUBOUT and the 2 preceding characters were echoed.

The Get command is used to position Dot after 3F then the Change command
is used to change the 6 to an 8.

The Dot is placed at the Beginning of the page buffer then the entire
buffer is listed.

Dot is still located at the beginning of the buffer; consequently, the
search command Get can be used to find the first line containing ANSMIN.
Line is then verified.

The 6 is found then delefed and the 4 is inserted in its place. The entire
line is verified.

The EXit command is used to terminate the editing session, close all files,
and get ready for another session.

This example illustrates the merging of multiple files into a single ocutput file.

1.

2.

The primary input file COMMEN.FTN is read into the input buffer.
Thé entire input buffer is listed.

The three lines are advanced and the next verified. Since there is no
next line nothing is printed.

. The secondary input file is read into the page buffer starting at Dot. This

has the effect of merging the two files into one file.

*B/L

c THIS PROGKAM SOLVES THE QUADRATIC EQUATION
(o] FOR SIMPLE INPUT.
C " THE USER MUST ENTER A»BsC AND THE ANSWER IS RETURNED.
REAL AsBsC
WRITEC1,20)
20 FORMATC' ENTER A»B,C")
READ(1530) AsB,»C ’
30 FORMAT(3F&.2)
IFCA.EQ.8) GOTO 999
ATEMP= (B*42-4%A*C)
IF CATEMP.LT.0.) GOTO 999
ANS=((=B+SQRT(B*%x2=4%A%xC))/ (2%A)
ANSMIN=C(-B-SQRT(B**2-4%A*C))/ (2%A)
. WRITEC1,40)AsB5CsANS» ANSMIN
40 FORMAT(' THE ANSWERS ARE "5>5(1X:F8.2))
GOTO 199 ’
999 WRITECL,58)
50 FORMATC(' BAD DATA - BYE!")
199 STOP
END
*EX
#

.

8-32

5. Dot is moved to the beginning of the rage buffer and the entire buffer is
then listed. .

6. The file is closed and the editing session terminated.

8~33

PART 8 :
CHAPTER 6

COMMAND SUMMARY

In the following table, # represents any legal text delimiter. <CR> represents a

return character, <LF> represents a line feed character, and n represents any

number between 1 and 32767 (decimal).

Command

Advance

Beginning

Change

Delete

Edit Open

Edit Position

Edit Read

Edit wﬂoie

Edit Write

End File

eXchange

Execute Macro

Format

nA

B

NCHXXXXX#
<LF>

or
nC<CR>
XXXXK<CR>
<LF>

nD

EO

nEP#XXXXX#

or
nEP<CR>
XXXX
<LF>

ER

NEH#XXXXX#
or

nEH<CR>

XXXX

<LF>

nEW

EF

nX#XXXXX#
or

nX<CRr>

XXXXX<CR>

<LF>

nEM

Result

Advance Dot n lines. Leave Dot at beginning
of line,

Move Dot to the beginning of the Page Buffer.
Change n characters to XXXXX.

Equivalent to Insert followed by n Delete.

Delete n characters from text.

Move to the beginning of the secondary input

. file. Must follow a W3ll error message before

an ER can be executed. .

Perform a Position search using secondary
input rather than primary input file.

Read from secondary input file until form
feed encountered.

Perform a wHole search for the nth occurrence

of XXXXX, using the secondary input and
primary output files.

Write n lines into secondary output file.

Close the primary output file to any further
output and close the primary input file.

eXchange n lines for XXXXX. Equivalent to
Insert followed by n Kill.

Execute the first line of the Save Buffer as
a command string n times.

8-34

Command

Exit

Form feed

Get

Insert

Jump
Kill
List
Mark

Next

Position

Read

Save

Trailer
Unsave

Verify

wHole

Write

Format

EX

F

nGHEXXXXX#

or
nG<CR>
XXXX<CR>
<LF>

IH#XXXXX#
or

I<CR>

XXXXX<CR>

<LF>

nJ

nkK

nL

nP#XXXXX#
or

nP<CR>

XXXX

<LF>

R

ns

nT

U,

v

nHEXXXXX#
or

. nH<KCR>

XXXXX<CR>
<LF>

nwW

Result

Perform consecutive Next commands until EOM
or EOF reached. Close all files, and return
to # mode.

Write form feed into primary output file.

Search for the nth occurrence of XXXXX.
Return with Dot following XXXXX.

Insert the text XXXXX at Dot. Move Dot to
follow XXXXX.

Move Dot over n characteré.

Kill n lines of text.

List n lines on teleprintér.
Mark the current location of Dot.

Write the contents of the Page Buffer onto the

" primary output file, kill the buffer, and read

a page of text from the primary input file.
Repeat n times. Equivalent to B/W /D R.

Perform a Next command, then search for the
nth occurrence of XXXXX. If found, return
with Dot following XXXX. If not found, clear
the buffer, read another page, and continue
search. '

Read from primary input file until form feed

encountered.
Save the next n lines in the Save Buffer.

Write 4@ null characters as trailer on the
primary output device if device is paper tape.

Copy the contents of the Save Buffer into
Page Buffer at Dot.

Verify the present line via teleprinter.
Search for the nth occurrence of XXXXX. If
found, return with Dot following XXXXX. If

not found, execute an N command and coptinue
search.

Write n lines into primary output file.

8~35

	8-001
	8-002
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36

