PART 9

THE DOS/BATCH LINKER

LINK

PART 9
CHAPTER 1
INTRODUCTION TO THE LINKER

The PDP-11 Disk Operating System (DOS/BATCH) software includes the linker program
(LINK), which is a system program for linking and relocating user programs

assembled by an assembler or generated by a compilér running under DOS/BATCH.

LINK enables the user to aésemble separétely his main program and various subprograms

without assigning an absolute address for each segment at assembly time.

LINK processes the binary output (object module) of an assembly as follows:

Relocates each object module and assigns absolute addresses.

Links the modules by correlating global symbols defined in one module
and referenced in other modules.

Produces a load map, which displays the assigned absolute addresses.

Creates a load module that can be subsequently loadéd (by the Monitor or the
absolute loader) and executed. '

The advantages of LINK include:

The source program can be divided into sections (usually subroutines) and
assembled separately. If an error is discovered in one section, only that
section need be reassembled. LINK can then link the newly reassembled
object module with other object modules already existing. Similarly, a
general-purpose module can be assembled and used within several different
main programs.) i
Absolute addresses need not be assigned at assembly time; LINK automatically
assigns them. This prevents programs from accidentally overlaying each other,
and also allows subroutines to change size, thereby influencing the placement
of other routines but not affecting their operation.

Separate assemblies allow the total number of symbols to exceed the number
allowed in a single assembly.

Internal symbols (which are not global) need not be unique among object
modules. Thus, only global symbols need be unique, as when different
programmers prepare separate subroutines for a single run-time system.

Subroutines may be provided for general use in object module form to be
linked into the user's program.

LINK requires at least a PDP-1ll capable of running DOS/BATCH with a disk and a
keyboard. DECtape, high-speed paper tape reader and punch, a line printer and
extra memory can be used if available. A line printer provides a fast display

device for the load map listing.

1.1 GLOBAL SYMBOLS

.
Global symbols provide the links, or communication, between object modules.
' Symbols that are not global are called internal symbols. If a global symbol is
defined (as a label or by direct assignment) in an object module, it is called an
entry symbol, and other object modules can reference it. If the global symbol is

not defined in the object module, it is an external symbol and is assumed to be

defined (as an entry symbol) in some other object module.

As LINK reads the'object modules it keeps track of all global symbol definitions
and references. It then modifies instructions and/or data that reference the
global symbols.

1.2 RELINKING LINK

LINK is provided as a system program with the DOS/BATCH operating system. Procedures
that enable you to relink LINK using the LINK object moduies can be found in the
DOS/BATCH System Manager's Guide. The resulting LINK program assumes a top of
memory corresponding to the system configﬁration; this can be overridden using

the T (top) or B (bottom) switches (See Appendix J-3.1).
The top address assumed by LINK is

077460 for 1léK.
117460 for 20K.
137460 for 24K.
157460 for 28K.

9-2

PART 9
CHAPTER 2
INPUT AND OUTPUT

2.1 INPUT MODULES

Input to LINK consists of one or more object modules, which can be output from the

DOS assembler, FORTRAN compiler, or other system programs.

On an object ﬁodule's first pass through the linker, LINK gathers enough information
so that absolute addresses can be assigned to all relocatable sections, and all
globals can be assigned absolute values. This information appears in the global

symﬁol directory (GSD) of the object modﬁle.

On the second pass, LINK produces a load module and link map. The data gathered
during the first pass is used. to guide the relocation and linking process of the

second pass.
2.2 OUTPUT MODULE

LINK's main function is to produce a load module, which consists of formatted binary
blocks of absolute load addresses and object data as specified for the Absolute
Loader and the Monitor Loader. The first few woxds of data will be the communica-
tions directory (COMD), and will have an absolute load address equal to the lowest

relocated address of the program (see Chapter 9-9).

LINK can also produce a contiguous férmat file (see Chapter 9-9); this format consists
of an.actual core image of the user program., This format is used mainly in the

production of overlaid programs (see Chapter 9-4).
2.2.1 Absolute Loader

As described above, a communications directory (COMD) is included_at the beginning
of a load module. If the COMD is loaded by the absolute loader, it will be over-
laid by normal code in the program, since the data in the COMD is not needed‘by the
:Absolute Loader. This overlaying of the COMD by the relocated program allows the
absolute loader to handle load modules with a COMD. However, a problem arises if
a load module is to be loaded by the absolute loader and either of the following

conditions exists:

1. The object modules used toc construct the load module contain no
relocatable code, or

2. The total size of the relocatable code is less than the size of the COMD.

In either case, there would not be enough relocatable code to overlay the COMD,
which means that the COMD will load into parts of core not intended by the user to
be altered. LINK will select the COMD's load address such that the COMD will be
against the current top of the area being linked (see T switch in Appendix J-3.1).
If the top is very low, LINK will not allow the COMD to be loaded below address @;
;t will load it up from g.

2.2.2 Program Transfer Address

. -
If a transfer address is not specified by a switch, it is assumed by LINK to be
the first even transfer address encountered in the object input. Thus, if four
‘object modules are linked together and if the first and second have a .END
statement without a transfer address, the third a .END A, and the fourth a .END B,

the transfer address used would be A of module three.
2.3 LOAD MAP

The load map produced by LINK provides several types of information concernin§ the
organization of the load module. The map begins with the load module filename and
‘ extension, time and date of creation, followed by the transfer address and the low
and high limits of the relocatable code. A synopsis of program section arrangehent
follows, describing the placement of each progrém section relative to the other.
" Then there is a section of the map for each object module included in the linking
process. Each of these sections begins with the module's name, identification
(if specified via the assembler .IDENT assembly directive),'and the filename from
which the module was obtained, followed by a list of the control sections and their
entry points. For each control section the base of the section (its low address),
the top of the section (its high address), and its size (in bytes) are printed to
the right of the section name (enclosed in angle brackets). Following each
section name is an alphabetically ordered list of entry points and their addresses.
The load map is concluded with a list of undefined symbols for each object
module.

Modules are loaded in alphabetical order in memory.

Chapter 9-11 describes load map formats in detail.

Note that an existing map file is deleted from a device before a new map file of

the same name and extension is output to the device.

9-4

PART 9
CHAPTER 3 |
OPERATING PROCEDURES
5.1 tomome
LINK is loaded into core from the disk by typing the following Monitor command.
A —

When LINK is loaded and ready to accept the user's command, it prints the following

lines:

LINK Vxx (where xx is the LINK version number)
#

The user can now type a command string as described below.

3.2 COMMAND STRING

Commands are typed in response to the # symbol printed by LINK. The format of the
command string adheres to the requirements of the DOS. Command String Interpreter
(CSI), as explained in Part 3 of this handbook, DOS/BATCH Monitor.

The linker's file specifications must appear in the following order:

#load module, load map, symbol table < object modules

A null specification field signifies that the associated output is not desired. A

complete file specification contains the following information:
dev:filnam,ext[uic]/sl:v/s2:v.../sn:v

The default values for each output specification are noted below.

dev filnam T T ext . uic
load module * * % LDA ‘this user
map output * none MAP this user
object module * none OBJ this user
* . none _ STB this user

symbol table

*system device (SY:) or last device specified on this side of the < symbol.
**the filename from the first input specification.

If a syntax error is detected in a command string, LINK prints the command on the
terminal up to and including the character in error, followed by a question mark, and
then a line beginning with the input request character #. The user must retype the

entire command correctly.

If a command string to LINK requires more than one line at the keyboard (for
example, when using the /IN or /EX switches), switch values can be continued on up
to three succeeding lines by typirg a colon (:) at the end of each line to be
continued. The colon can be used only to continue a series of switch values; the
individual values cannot be broken up over two lines. See Appendix J-3.10 for an

example of the proper usage of the colon to continue command strings.

Optionally, command input can be taken from a file. Such a file is called an '
indirect command file, and can be specified anywhere in the command input stream.
Normally, input is accepted from the keyboard; when a keyboard command line begins

with an @ character, the subsequent characters are assumed to specify an indirect file.
Example:
@INDIR.FIL

where INDIR.FIL is a DOS/BATCH filename and extension. Thié line causes subsequent
commands to be obtained from the file INDIR.FIL.

NOTE

No file extension default exists/for
indirect files.

Upon encountering an indirect file, LINK stacks the current command file specification
(i.e., the keyboard or another indirect file) and opens the specified indirect file.

Commands are then read from the file until

1. Another indirect file is specified, or

2. The end-of-file is reached.

Upon reaching end-of-file, the current command file is closed, and the next file
(the one on the top of the file stack) is unstacked. Subsequent command lines are

then read from this file until

l. Another indirect file is specified, or

2. The end-of-file is reached.

LINK allows up to five nested levels of indirect files. This should be adequate
for most applications, but can be changed, if desired, through an- assembly option.

(See Appendix J-3.)

The use of indirect command files reduces typing repetitive commands at the key-

board, and provides for batching of commands.
3.2.1 sSwitches
The command switches associated with LINK are:

Input Switches

3

/T Top

/B Bottom

/0D oDT .

/cc Concatenated File

/TR Transfer Address

/E End

/L Library

/GO Go

/MP Overlay Mapping Description
/0 Options)
/IN Include

/EX Exclude

Map Switches -

/LG Long map
/SH Short map
- /CR Global Cross-Reference

Load Module Output Switches
/CO Contiguous
/SQ Control Section sequencing
The mnemonic representing each switch is always preceded by the slash symbol.
If a value is specified for a switch that does not require a‘value, the specified

value is ignored.

3.2.1.1 Top and Bottom Switches

The T and B switches are used to control the placement or relocation of the object
program. When neither switch is specified, LINK will link the object programs at

the top of available core, i.e., immediately below the Absolute and Bootstrap loaders.

*

The T switch (top) can be specified with any of the input file specifications. It

must be in the following format: »
/T:n
Where n is an unsigned octal number which defines the address of the object program.

The B switch (bottom) is spec%Sied in the same manner as the T switch. It must

be in the following format:
/B:n

where n is an unsigned octal number which defines the bottom address of the object
program.,

If more than one T or B switch is specified during the creation of a load module,
the value of the last T or B switch specification is used. When the load module

creation is either finished or aborted, the default top value reverts to its’

original value, i.e., the top of core of the installation.

3.2.1.2 Concatenate Switch
The CC switch is ﬁsed to indicate that the file was formed (for example, by PIP or
the FORTRAN compiler) as a concatenation of several object modules. This switch
may be used only with an input file specification. 1Its format is:

/cc
This switch does not have a value.
3.2.1.3 ODT Switch
The OD switch is used to link ODT with your object modules. It identifies the
associated input file as ODT for Transfer address purposes. /OD appearing by itself
in an input file specification is equivalent to

SY:0DT.OBJ[1,1]/0D o

3.2.1.4 Transfer Address Switch

The TR switch can appear with any input file specification. It can be used with

no value, or with an octal number or global symbol as its value.

9-8

When the TR switch has no value, it'indicates that LINK should take the transfer
address (even or odd) of the first object module in the file that has the /TR

appended to it as the transfer address of the load module. Its format is:

/TR

)

When an octal number is specified as its value, it indicates that the value is the

transfer address of the load module. ' Its format is:

/TR:n
When it has a global symbol as its value, it indicates that the value of the global
symbol is the transfer address of the load module. Its format is:

/TR : XXXXXX

When the specified value is a nonexistent symbol or address, the transfer address

is set to 1, and an error message is issued.
3.2.1.5 End Switch : ‘

The E switch should appear with the last input file specification. It indicates

the end of input. Its format is:
/E
The /E switch should not be used Qith /GO.
3.2.1.6° Library Switch
The L switch is optionally used to indicate that the file is a library. It can
appear in an input file specification only if the specifigation specifies a

~ library. The L switch does not require a value. Its format is:

/L

Note that this switch is not necessary for correct functioning of libraries

in LINK. This switch is supplied only for compatibility with the old linker.
3.2.1.7 Go Switch

The /GO switch should appear with the last input file specification when used. It
indicates two things: ’

1. The end of input (in lieu of /E), and
2. When linking is complete, the load module is to be loaded and executed.

The GO switch should not be used with /E.

3.2.1.8 overlay Mapping Description Switch

The /MP switch is used to specify that the file is an ASCII overlay description
file as described in Chapter 9-4. No value is allowed on the switch. When
specified, there must not be any other input files specified in this command
string or any other input switches other than /E.

3.2.1.9 Options Switch

The /O switch is used in lieu of the /E switch to specify that the link options

are required.
3.2.1.10 Include/Exclude Switches

The /IN and /EX switches are used on library files to cause the inclusion or

exclusion of specific library modules. For example, the file specification
FTNLIB/IN:$PSHO1
guarantees that when the library file FINLIB is searched, the routine named $PSHOL
within the library is linked. Conversely, the /EX switch guarantees that the
specified module(s) are not loaded from the library. A typical specification
mighf be
LIBRY/IN:ABC:DEF/EX:QKQ
which when encountered, guaranteses that ABC and DEF will be loaded from the library

file LIBRY and QKQ will not be loaded.

9-10

If, for instance, the modules ABCTMP, DEFTMP, FILTMP; DATTMP, TSTTMP,'and XPROPR
(residing in a library named SPEC.LIB) are to be linked with a file named MASTER.OBJ,
and the result is to be placed in a file named MASTER.LDA, the following command
string can be used:

_#_MASTER<SPEC «LIB/IN:ABCTMP :DEFTMP : FILTMP : DATTMP:
#TSTTMP : XPROPR,MASTER .. OBJ/E :

Note the use of the colon (:) at the end of the first line of the command string;

this serves to continue the switch value list from line 1 to line 2.

The /IN and /EX switches have no effect if specified for non-library files.
3.2.1.11 Long/Short Map Switches

The /LG switch is specified on the.map file to cause the long map form to be
produced. In addition to the normal entry points, a iong map also prints out any
external globals referenced by a module. 4

The /SH switch is specified to cause the short map to be printed. The short map
consists only of the heading, program size description, and section allocation
synopsis. '

The /LG and /SH switches are mutually exclusive.

3.2.1.12 Global Cross-Reference Switch

The /CR switch is specified on the map file to cause a global cross-reference table
to be produced on the map device when the link is complete. See Abpendix H for

an example of a global cross-reference table. The /CR switch can be used with the
/LG or /SH switches if desired.

3.2.1.13 Contiguous Output Switch

The /CO switch is used for a load module output file to specify that the file is to
be contiguous, with an output format similar to that produced by the CILUS program

(core-image file). When overlaid programs are generated by LINK, use of the /CO

switch is automatically forced, since overlaid programs require a contiguous file.

9-11

The /CO switch can also be used with a value specifying that the contiguous file
genexated is to be built for a device with a block size that does not correspond
to the block size of the output device actually used. For example, if LINK is run
with load module output placed on an RF1l disk, the contiguous file produced will
be formatted into 64-word blocks. Thus, the file produced will run only on disks
with 64-word block sizes. If it is desired to produce a file on a 64-word block
device to run on a 256-word block device, it can be done by specifying /C0O:256

on the load module file specification to correctly generate the file.

Thus the /CO:n switch (where n must be a multiple of 64) can be used to allow
contiguous output files to be generated on devices with block sizes other than
that of the actual output device.

NOTE

A contiguous file generated by LINK will run correctly

only on those devices with a block size equal to that for
which the file was generated; a file generated for 256-word
blocks will not run on a 64-word block device, and

vice wversa.

3.2.1.14 Program Section Sequencing Switch

Normally, program sections (.CSECT's and .PSECT's) are placed in memdry in alpha-
betical order. The /SQ switch is used when it is desired to place program sections
in memory in order of declaration (i.e., in the order they are encountered by LINK).
The /SQ switch is useful mainly for programs that depend upon .CSECT ordering as

implemented by previous versions of the Linker program.
3.2.1.15 General Notes on Switches
If a switch appears by itself as a specification (e.g., , ./CC,) it takes the -

default device and a null file name. Thus, the linking process will be aborted

if the default device is file structured. The /0D switch is the only exception.

3.3 LIBRARY SEARCHES
3.3.1 User Libraries

Object modules from the specified user libraries built by LINK will be relocated

‘ seléctfvely and linked. The object modules in the libraries must be ordered; only

9-12

forward references are allowed. (Any module that makes reference to another module

or entry point must appear befoge that referenced item in the library.)

The libraries are specified to LINK like any other input file.

For example, the user could type the following command string to thg Linker:
ﬁ?ASKﬂl.LDA,LP:éMAIN.OBJ,MEASUR.LIB/E

Program MAIN.OBJ would be read in from the disk as the first input file. Any un-
defined symbols generated by program MAIN.OBJ can be satisfied by the library
MEASUR.LIB specified in the second input file. The load module, TASK@Ll.LDA would be

put on the disk, and a load map would go to the line printer.

As described in.Appendix J~3.6 the /L switch can be used in a library file specifica-
tion. This switch is provided only for compatibility with the old linker, and does

not affect‘proQgr processing of the library.
3.3.2 Monitor Library

At the end of pass 1, the Monitor library is searched for Monitor routines (EMT's)
which were declared as globals in the user program. Satisfying these globals means
that the Linker passes the EMT trap number of the found routines (in the COMD)

to the Monitor so that at load time the requested routines are made resident with
the user program. Making EMT's core resident in a resident section can‘be accom-
plished by defining the appropriate EMT as a global before assembly with the

.GLOBL assembly directive. Example:

.GLOBL FOP.,LUK.,CKX.

Refer to Part 3-5 of this handbook, DOS/BATCH Monitor, for a description of globals
associated with various EMT requests. Making a potentially swappable EMT routine
core resident uses core space but saves swapping time for the routine. This
tradeoff usually becomes important when an often-used subroutine uses one or more
Monitor functions that would normally be nonresident. For instance, this problem
'might arise from™simultaneous use of the Block I/O routine and conversion routines

within the same program.
The user libraries are searched first and the Monitor library is searched if any

globals remain undefined. Input file look-up occurs in the following order, where

#,# is the current UIC.

9-13

1. FILNAME.OBJ[#,#]

2. FILNAME[1,1]

3. FILNAME.OBJ{1,1]
_ 4. FILNAME[#,#]

NOTE

Although some undefined globals may be satisfied at the
Monitor level, they continue to be flagged as undefined
globals. A message will be printed on the user's terminal
stating that there are undefined globals, and a similar
message is given in the load map listing. However, any
undefined globals satisfied at the Monitor level are
flagged in the LINK map undefined summary with "##*"
following the name. See Chapter 9-11 for an example.

3.4 SAMPLE LINKS
3.4.1 FORTRAN

For this example assume that the user is logged in under user identification code (UIC)
of [20@,200]. He wishes to link a FORTRAN program .(FORT1.0BJ) to the FORTRAN library
(FTNLIB) which is on the system disk under UIC [1,1]. He wants a load map printed on
the line printer. Input comes from and output goes to the disk.

The command string is as follows:

#FORT1,LP:<FORT1,FINLIB/E

(The default input extension is OBJ. Since both files FORT1 and FTNLIB had the

extension OBJ there was no need to put this information in the command strings.)
3.4.2 Assembly Language
For this example assume that the user is logged in under UIC [20¢¢,20¢]. He has a
DECtape, but he has no line printer at his installation. He wants his outputs,
load module (LOAD.LDA) and load map (LOAD.MAP) on DECtape and his inputs to come
from disk. (He has seven input filés all with extension OBJ.)
The command strings are as follows:

#DT1:LOAD, LOAD<IN1,IN2,IN3

#IN4,IN5,IN6,IN7/E

9-14

(Note that LINK accepts multiple command lines.) - On the DECtape the load module

has the extension LDA and the load map has extension MAP.

3.4.3 oOverlays

' For this example assume that the user is logged in under UIC [28¢,28¢]. He has an
ODL file (overlay description language -- see Chapter 9-4) named BUILD.ODL that

describes his overlaid program. He wishes to place the load module on the disk and
the listing on the line printer.

The command string is as follows:

#ABC,LP:<BUILD.ODL/MP/E

When using an ODL file no other input file may be specified.
3.5 PROGRAMMING NOTES
If the user means to type

PP:,LP:<PR:/E

but accidentally types:

PP:,LP<PR:/E

/the load map (an ASCII file) will be punched on the paper tape followed by the load
module (a binary file). The linker will not detect the error since the erroneous
string is a legal ohe (i.e., output file LP.MAP to default device, PP:); thus the

load module cannot be loaded (since there is an ASCII. file in front of it).

There is a fair amount of blank tape between the load map and the load module, so

either separate them or relink with the correct command string.

9-15

PART 9
CHAPTER 4
OVERLAYS

An overlay capability is very important in computer systems such aé DOS/BATCH where
the size of a program is apt to be larger than the amount of memory available.
Overlay'support is an integral part of the design of LINK. The only difference, as
far as LINK is concerned, between a normal link and an overlaid link is the fact

that the normal link contains only one segment.

Overlays are defined in terms of a simple tree structure via a special Overlay
Description Language (ODL) that is interpreted by LINK. The trunk of the tree is
termed the root segment and always“remains in memory. The branches of the tree re-~

present overlay segments that may overlay each other.

Figure 9-1 illustrates a tYpical overlay structure. A is the root segment and

B,'C, D, E, and F are overlay segments.

Figure 9-1

Overlay File Structure

9~-16

A path is defined as a route that is traced from the root when following a series
of branches to an outermost branch of the tree. In the above figure A-B, A-C-D,

A-C-E, and A-C-F represent all possible paths.

Overlays may call other overlays if they occur on a common path. Thus in Figure
9-1, the root segment may call overlays B, C, D, E, and F. On the calls to D, E,
or F the overlay C is also normally loaded. This is path loading, and it occurs
whenever a call is made from one segment to another segment that is more than one
branch level up the tree (away from the trunk). Overlay C may call D, E, or F but

B cannot call C, D, E, or F nor can C, D, E, or F call B.

4.1 TERMINOLOGY

AUTOLOAD - The process of automatically loading an overlay segment and subsequently
transferring control to a called entry point in a manner that is com-
pletely transparent to the caller. Also known as load-on-call or
LOCAL. '

AUTOLOAD ENTRY POINT - An entry point that has been defined such that a transfer of
control to the entry point will cause the segment in which it is
defined to be automatically loaded if it is not already in memory.

ENTRY POINT - A GLOBL symbol defined in a source representation of a program and
subsequently accessible to independently translated modules via the
binding mechanism provided in the LINK. All such symbols must be
established as globals.

LOAD-ON-CALL-See autoload.
LOCAL - See autoload.

MANUAL LOAD-An explicit call to the 11brary routine LOAD to load a named segment
into memory.

PATH: - " A route that is traced when following a series of branches in an
overlay structure.

PATH UP - The routes traced when following all paths from a branch segment away
from the trunk to the outermost branches that lie on a common path.

PATH DOWN - The route traced when following a path from a branch segment toward
the trunk.

ROOT SEGMENT - A group of modules and/or program sections that occupy memory
. simultaneously and are never overwritten. Every program has one and
one only root segment (i.e., even a single segment program is con-
sidered to have a root segment.)

SEGMENT - A éroup of modules and/or program sections that occupy memory simul-
. taneously and may be loaded via a single overlay request.

9-17

4.2 LOADING OVERLAYS

Two methods are provided for loading overlay segments into memory. The first method
is by an explicit call to the library routine LOAD to load a named segment. This

is termed manual load. Before a manual load request is honored, LINK marks out-of-
core all segments up the tree that emanate from the overlay control point where

the request is to be loaded. The manual load is then initiated and control is
returned to the cal;er; Upon successful loading, the calling routine may then

call entry points in the named segment via normal subroutine or transfer of control

instructions. Only the segment specified in the LOAD call is loaded into memory.

The second method of loading overlay segments is termed autoload (also known as
load-on-call or LOCAL). Autoload occurs whenever a transfer of control instruction
references an autoload entry point in another segment that is further up the

tree on a common path. Autoload causes the automatic loading of an overlay segment
and subsequent transfer of control to the called entry point in a manner that is

completely transparent to the caller.

"Both methods of loading overlay segments have different merits that warrant their

. support. Autoload has the advantage of being completely transparent, while manual-
load requires slightly less memo:cy.1 Autoload allows a program to be separated
into segments without reprogramming, while manual-lcad requires explicit calls to

load overlay segments. Unlike manual-load, autoload calls pexrform path loading.

The actual loading of all overlay segments is accomplished via the .TRAN requesf
in the DOS Monitor. No extensive file open/read/close sequence need take place
since the Monitor knows the disk address of the core image. The loading of an

overlay segment thus requires a single disk access and can be very fast.
4.2.1 Manual Load

Manual load is initiated by a call to the LOAD routine. LOAD can operate either
synchronously or asynchronously with program execution and does not path load.
LOAD marks as out-of-core any segment currently in core and not along the path

leading to the requested segment.

lHowever, condition codes are not passed on an autoload call.

9-18

Calling Sequence: In FORTRAN, LOAD is referenced as shown below.
CALL LOAD ('strnam',sync,error) .

where

strnam is a 1- to 6-character ASCII module name. If strnam is less than
six characters long, it must be terminated by a blank or null
character.

sync is a value set to @ for a synchronous load, or to 1 for an
asynchronous load. In a synchronous load, the requested
segment is already in memory when control is returned to)
the program after the call. In an asynchronous load, the input
transfer is initiated by the call; segment loading may proceed
concurrently with the execution of the program issuing the
call.

NOTE

When using asynchronous calls, the user must insure that
the desired overlay is in memoxry before referencing values
within the overlay or jumping to an entry point within
.the overlay. By using "CALL WAIT" the user can insure
that the overlay transfer is complete before control is
returned to the program.

error is a value returned to the calling program. If error is ﬁﬂ no
errors have occurred in the CALL LOAD. If error is nonzero,
the requested segment has not been loaded; for example, if a
nonexistent segment has been specified or a permanent read
error has occurred. ' ’ :

The equivalent assembler calls for LOAD and WAIT are shown below.

ISR R5,LOAD ;CALL LOAD

BR .48, ;SKIP AROUND PARAMETERS

.WORD strnam ;ADDRESS OF STRING NAME

.WORD sync ;ADDRESS OF - SYNCHRONOUS
;FLAG WORD :

.WORD' error ' ;ADDRESS OF ERROR FLAG WORD

JSR R5,WAIT ' ;WAIT FOR COMPLETION

BR 42

Use JSR R5 for xxxMOD of OTS; JSR PC for xxxPC of OTS.

9-19

4.2.2 AUTOLOAD

During program creation from ODL, LINK records all autoload entry points referenced
by a segment. References toward the root are resolved absolutely. Those away

from the root are replaced by a jump into the autoload vector table built by LINK
for the’segment. The autoload vector table consists of one entry per unique auto-
load enﬁry point referenced by the segment. Each entry in the autoload vector

table consists. of one instruction and a three-word descriptor as shown in Figure 9-2.

~ JSR BC,$AUTO

ADDR:' CALLED SEGMENT DESCRIPTOR

CURRENT SEGMENT DESCRIPTOR

ENTRY POINT ADDRESS

_Figure 9-2

Autoload Vector Entry

The jump into the autoload vector table is made to ftransfer to the entry in the table

describing the required autoload entry point.

$AUTO is a library routine that carries out the autoload process. $AUTO checks

if the requested segment is in core (low order byte of the segment descriptor

status word), and if it is in core, transfers to it., If the requested segment is not
in core $AUTO initiates a pré—en@tion scan, followed by a path load. The function of
the pre-emption scan is to mark out-of-core all segments currently in core that will

be overlaid by the autolcoad call. The path loading results in loading every segment

along the path from the caller to the callee. Both the pre-emption scan and path

loading use a tree-walk technique similar to that described in Section 9-6.3.

For examples of autoload and marnual load usage see Section 9-4.7 and Section 9-4.8.

9-20

N

4.3 CVERLAY DESCRIPTION LANGUAGE
An overlay description lanauace (ODL) is provided to describe overlay structures.
Rather than being a part of the command language itself, which .would make it very

complex, these descriptions are always read from a separate file.

An overlay description file is specified by including the /MP switch on the

_first input file specification (see Appendix J-3.8). This file contains all the

object module input file specifications in addition to the overlay description.
The /MP switch must appear on the first input file specification (ignored elsewhere),
and no other input specifications to ODL may be given subsequently. Option input

is accepted in the normal manner.
Example:
IMAGE,MAP ,SYMBOL<OVERL/MP/E

specifies that the file OVERL contains a deséription of the overlaid program to be
built. '

The ODL comprises a number of directives fhat describe the overlay structure.

In order to build tree-structured programs, LINK must interpret and carxy out the
directives provided by the ODL. Its inputs are directives written in ODL, and

object files produced by language translators. Its output is an*overlaid program

suitable for execution under DOS.

Object files result from a source to object transformation by a language translator.
These object files consist of storage allocated under the three section types:

.ASECT, .CSECT, and .PSECT. Individual files may contain unresolved global references
that LINK attempts to resolve during the linking process.

ODL consists of directives that specify a function and operands that are either file-
names, name strings reducible to filenames, or names appearing in PSECT directives.
LINK uses the name strings to locate or create object modules that are built into

the overlays. .

ODL provides the following:

® Identification of the Root Segment:

® Building overlays

'Q Naming overlays

® Strict placement within the overlay structure of globally referenced
memory.

® Establishing overlay control points

Declaring autoload entry points

Five directives:

.ROOT
.NAME
.FCTR
.PSECT
.END

® Four operators:
- concatenation
’ overlay
() overlay control point
* autoload
The user specifies ODL operations via directives and operators.

The directives have the following general format:

label: .direc [oprnds]

where
label is an alphanumeric label.
direc is the directive name.
oprnd is one or more optional operands.

-
4.3.1 The .ROOT Directive

The .ROOT directive completely specifies the program tree structure and has the

following format:
[label:] .ROOT [oprnds]
The optional label field, if present, is ignored.

The permissible operands of a .ROOT directive are
Ay
1. Filenames of the form: dev:file.ext[uic]/sW
2. A name that appears in a .NAME directive
3. The label on a .FCTR directive
4. The name in a .PSECT directive

9-22

These operands are operated on by four operators.

- The concatenation operator (minus sign).

A binary operator that specifies that its operands are to occupy memory
simultaneously, consequently they are part of a path.

, The overlay operator (comma).

A binary operator whose operands occupy memory starting at the same base
address (a node in an overlay tree). Segments that occupy the same
memory are not on a path, but they overlay one another.

() The overlay control point operator (parentheses).

With an exception to be noted, a control point at which an overlay is
to begin (the points x and y in Figure 9-3 are implied by enclosing
operands in parentheses.

* The autoload operator (asterisk). See Section 9-4.4

Figure 9-3

Sample Tree Structure

9-23

Figure 9-3 consists of six object files to be linked together by LINK. The input
required by LINK to construct the program of Figure 9-3 should be specified. To
sinplify the explanation, establish the structures below the branch point, X, as

the leftbranch and rightbranch. Now Figure 9-3 can be described as

.ROOT A-B-(leftbranch,rightbranch)
This statement instructs LINK to concatenate A and B, form a branch point, and
cause the leftbranch and rightbranch to occupy memory starting at the same base
address. (If the leftbranch ic in memory, the rightbranch cannot be, and vice-versa.)
The leftbranch can be represented as

C
and the right branch as

D-(E,F)

specifying the concatenation of D with E and F; E and F overlay each other. The ODL
specification of Figure 9-3 is

.ROOT A-B-(C,D-(E,F)).

The ODL syntax can now be completed with the .NAME, .FCTR, .PSECT, and .END directives

Aand the * operator.
4.3.,2 The .NAME Directive

.NAME declares an alphanumeric name that may subsequently be used in a .ROOT or

.FCTR directive to define the name of a segment.
Normally a segment is named according to the first file or P-section that is

included in the segment. It is recognized that this may not be adequate in some

cases; therefore this directive may be used to explicitly declare a segment name.

9-24

Directive syntax:

[label:] .NAME sname

where

.NAME is the directive name, and

sname is an alphanumeric name of 1 to 6 characters.
(a-z, 1-9,%)

NOTE

If a label is present it is ignored. sname must
be unique with respect to file -names, P-section

names, and other segment names that are declared
in the description file.)

If in Figure 9-3, the user wanted to name the root segment JIM, the directives

.NAME JIM

+ROOT JIM-A-B-(C,D-(E,F))

‘'would create a root segment with the name JIM.

4.3.3 The .FCTR Directive

The factor (.FCTR) directive has the same format as .ROOT:

[label:] .FCTR [oprnds]

Its operands are the same as for ROOT.

The .FCTR directive formalizes the pedagogical convenience used earlier in

presenting the development of the .ROOT directive used to describe the overlay

structure of Figure 9-3. Recall that a factoring occurred by using the terms

leftbranch and rightbranch. Using .FCTR this becomes a capability of the ODL

itself.

The ODL string

LEFTBR: .FCTR C
RHTBR: .FCTR D-(E,F)
.ROOT A-B- (LEFTBR,RHTBR)

© 9-25

Unlike .ROOT, the LABEL field is required.

describes ‘the same overlay structure to LINK as
.ROOT A-B-(C,D-(E,F))

When expanding the .ROOT statement
.ROOT A~B- (LEFTBR,RHTBR)

LINK will substitute the expressions equated in the .FCTR directives for LEFTBR
and RHTBR.

.FCTR is a notational convenience for simplifying the process of representing complex

overlay structures to LINK.
4.3,4 The .PSECT Directive

Often segments within an overlay structure have a requirement to access common
storage. LINK allocates storage for referenced sections within the section in
which is is defined (local reference) or in the branch on its path closest to the

root (global reference). For example, if in Figure 9-4

Figure 9-4
Simple Global Reference
A, B, and C each reference a global storage area D, then LINK will allocate storage

in A. 1If, however, only B and C reference a global storage area D, then LINK will

allocate storage in both B and C - a default decision that may or may not coincide

9-26

with the programmer's wishes. The .PSECT directive permits the programmer to
explicitly place the global area, overriding LINK's default.

.PSECT declares an alphanumeric P-section (program section) name that may be sub-
sequently used in a .ROOT or .FCTR directive explicitly placing a P-section in an
overlay segment. A declared P-section may be placed anywhere in the overlay

structure that is not ambiguous (i.e., not on a common path that already contains

the specified P-section in another segment).! All actual references to the P-section

from object modules must have exactly the same attributés as declared in, the

directive.

A good example of this directive is a FORTRAN common area placed close to the root
segment so that a number of branch segments that are not on a common path may share
and communicate via this area. 1In this case, if the explicit placement were left

out, the common area would be allocated in each branch segment and not shared.

.

Directive syntax:
.PSECT sname [,AT1,AT2,...,ATn]
where

.PSECT is the directive name,

sname is an alphanumeric control section name, and
(A-Z' 1"91 $)

‘ATl through Atn are optional control section attributes.

P-gection attributes are specified exactly as they are for the .PSECT directive

under MACRO. These attributes include:

RO or RW specify the access mode of the P-section. RO means read only
and RW read/write. '

I orbD specify the type of P-section. I means instruction and D data.
Currently all PSECT's are I.

GBL or ICL specify the scope over which the P-section is considered by
LINK. GBL means global and the P-section will be considered
across segment (overlay) boundaries. ICL means local and the

1 -

The ambiguity is not detected in the ODL syntax check, but is detected at the
point where a reference to an ambiguous section is encountered during file
processing.

9-27

ABS or REL

CON or OVR

HGH or LOW

P-section is considered only within the segment in which

it is defined. If a single segment program is produced GBL
and LCL have no effect on the core allocation in LINK
(i.e., only one segment to consider P-sections over).

specify relocation of the P-section. ABS means absolute
and no relocation is necessary. REL means relocatable and a
relocation bias must be added to all references to the
P-section.

specify the allocation of the P-section. CON means that all
allocation references to the P-section are concatenated to
form the total allocation of the P-section. OVR meéans

that all allocation references to the P~section from
different mcdules overlay each other. The total allocation
of the P-section is the largest request made by the
individual modules that reference it.

specify the speed of the memory that the P-section is
to be loaded into. HGH means high-speed (MOS memory) and
LOW means core.

NOTE

The HGH/LOW attribute is currently ignored
by LINK. -

Default atributes are applied to all .PSECT directives. These attributes may be
subsequently overridden by an explicit attribute specification. The default

attributes are as follows:

.PSECT name,RW,I,LCL,REL,CON,LOW

This directive is

description file.

Directive syntax:

.END

4.3.5 The .END Directive

Declare the end of the overlay description file.

mandatory and must appear at the logical end of each overlay

9-28

where

.END is the directive name.

NOTE

If a label or operands are present, they
are -ignored. !

"4.4 AUTOLOAD OPERATOR ASTERISK(*)

The asterisk (*) is a unary operator that specifies its operand as autoloadable.

Any transfer of control to an entry point in a P-section with an I attribute will

cause the segment in which the operand resides to be loaded, unless the segment already
exists in memory. If * occurs on an open parenthesis, every operand within the

parenthesis and its matching close parenthesis will have the autoload attribute.
As applied to specific operand types, the * operator acts as follows:

1. For section names the section is made autoload.

2. Fb: the name in a .NAME directive all the components in the segment
to which the name applies are made autoload.

3. For name labeling a .FCTR statement, * (asterisk) applies to the first
irreducible component of the factor. If the entire factor list is enclosed
in parenthesis, every file in the factor is made autoload.

4. For a Filename all components of the file are made autoload.

4.5 ODL USAGE SPECIFICATIONS

1. The directives may appear in the input file in any order, with the
exception of .END, which must always terminate the file.

2. Every ODL task description must have only one .ROOT directive.
3. A label must appear in a .FCIR directive.
4. Labels in a .ROOT directive are ignored.

5. Redundant péirs of parentheses are permitted for notational clarity,
but will not cause additional overlay control points.

6. A .FCTR directive label and snames must not contain periods.
4.6 EXAMPLES OF OVERLAID PROGRAM BUILDING USING LINK

N

Given the fdllowing tree structure of the desired overlay:

9-29

>

<
.ALLOC
.ZERO égg;ﬁg PROTEC TRNFER--| .ENTER .DIREC .FAST
DELETE

a file can be created to contain the foilowing ODL task description.

W NAME
, ~RONT
M1 FCTR
Fi3 LFCTR
01t LFCTR
023 FCTR
03} LFCTR
04 .FCTR
;ENn

PIP
PTP=MiwmF1

Ve PIP. LIB/IN~PIPEX/F¥: ALLOCx FNTFR!.DTRFC!
RENAMF:.UNlOC:PRnTEC:DFLFTF!.ZFRO:TRNFFR: FAST

*(01,02.,03, n4)

PIP. LIﬂ/IN! ALLOC!

pIP. LIH/IN:TRNFFR! ENTER
PIP. LIR/INI DIREC
PIP.LIR/IN:.FAST

The following LINK command string builds the overlaid PIP module.

#PIP,LP:<PIP.ODL/MP/E

ZFROIDELETF!.UNLOCIRENAMEIPROTEC

The following command builds a nonoverlaid version of the same program, using the

Librarian.

#PIP,LP:<PIP.LIB/IN:PIPEX/E

the library listing:

9-30

i

LIRR vnsaA

Another example:

.

pIR +LIB AdmFF

8FQ. NAME VFRS8ION
nperai PIPEX ABAAR
aRna2 TRNFER 1§
anpnn3 GL8UBS an9
annnd <ALLOC @7R
npARs <FNTER @Q6F
aaane - 7ERD a7
npaaz RENAMF @8
npaAs LUNLDC Q6F
nonse9 ~FAST ao
ane1Q PROTEC Q6F
nnny e .NIREC - 20
ANy 2 DELFTE @6F
et CKSUM a1

LINK

Rw74 113146155

CMDS

CMDS1

CMDS2

COMPRO

PASS1

OUTCOM

EPASS1

PASS2

OUTSYM

GLBCRF

9-31

ODL task description:

'NAMF
LROOT
M1y "FeTr

1, INK
LINK LIR/!N:(INK-TAQKBQDFF°FRM%G!FIIYO'IﬂDAT!

ALBlK!CATB'RnlCB!QAVRGSSAVVR!SCVTR MHL!CAT*!DTV!GTTXTIQRCINS!
TAR[S/EY:BLD%G:GLOB!GTCML:P)”PT:PJNDQIPANAL!PRMDQIPBQTHSQSETUPSTFXT

(x012,%x03456,TXT)H
cCMDS
CMDS-LtNK LTR/INIGFTLNIGTCML2SCANS

BLDQG/FX:MUISthNGSG-*(OI 02)

Fis WFCTR

2 NAME

0121 "FcTR
01 _FCTn

» NAME

02: ~FCTR
NAME

034561 LFCTR

, - NAME

03: JFCTR

2NAME

04568 ,FCTR

. »NAME
.04y .FCTR

«NAMF

05t LFCTR

«NAME

TXT JFCTR
<END

LINK,LIR/TNIMULSG

CMDS2

CMDS2=L THK,I TB/TINIP2NPTIENRSGISSFTUP
COMPRQO

COMPRO=L INK', LIH/IN:&TBYT:STIHD-wﬁRCH-PrTRL-*(DS n4%63
PASSH

PASS1=LINK,L TB/IN:P3MDS:GTVALGIL OB
ouTCOM

OUTCOM=I INK.LIR/INtPRIMG=%(04,05)
FPASS!
EPASS1=LINK.LIB/INSPAMALEGTVAI

PASS2

PASS2=LITNK,I IB/INIPSMDSIPESTR

TEXT , L
TEXTwmLINK.LTR/INITFXT

LINK command string for overlaid module:

#LINK,LP:<LINK.ODL/MP/E

Command string for nonoverlaid module, using Librarian

#LINK,LP:<LINK.LIB/IN:LINK:TASKB/E

the library listing:

LIRR vaS5A

L TNK
sFQ.

anent
nane2
LT K]
ApAR4
anans
nprné
ngen?
aQana

.LIB

NAME

L TNK

TASKA
BLDSG
P20PT
PIMNS
PAMAL
P5EMNS
PESTA

PdmFER=74

VERSTION

25
@A2x26
DS
gaxia
A2X22
pexos
P2X11
fiXna

11148151

9-32

namQo
Apn10
nEn11
ngay2
[T] R)
ann14
apoLs
AnnLé
anny7
Anmnt8
ANy
npn2e
npan
apn22
apo23
agno4
apn2s
AAN26
anng?
nAA28
npne9
AAn30
ApA3e
npn32
nan33
apna3ag
npe3s
AQA3S6
Apn37
AAMR3IA8
Apn39
aANn4
apoal
APRA42
Apna4a3
apm4d
nAR4s
ANA46
apan4az
ANN48
AnMa9
Anas5n
npnst
nens2
Apns3
ARN%4
aAposs
AAnK6

AANS7
nPNS8
apas9
ANABA
nanet
ANNE2
APN63
ann64

NXTFL,
PCTRL
PSELM
PSIMG
ADRST
ALALD
ALBLK

ALELD

CATR
DFF
DIV
DKALD
DNSHED
DOSL TR
FRMSG
GTTXT
ERROR
FIL10
GETLN
GL.GEN
GLOB
GTBYT
GTCMIL
GTVAL
INITL
$SETUP
10DAT
LIBSWT
MPOUT
MUL
MULSG
ROLCA
SAVRG
SAVVR
SCAN
8CVTR
8GALD
SRTAL
SNGSG
SRCINS
STINP
SWSECN
8YALOD
TABLS
WSRCH
ALSGD
CATS
EDTMG

CRTA
C5TA
TEXT
SLOAD
sauTa

SMARKS .

$RDSEG
SRETA

- a2x06

a1

2A2y08 .

AIXLA
ay

71

a1
21001
L2
a1

a1
poxaz
P2D03
a2
a2xna
DRt
ay
p1%02
ALXO
a
ne2
21
21X0AQ
a1Da4
P1%18
O] K|
a2X0q
D@5
22X%11
21
A2x25
21x03
21

a1
21%X0Q
a2
A2X18
21%21
A1LXAY
Al
21%03
#1D1a
AIx01
#2x18

a1
)]
DAt
23
23
@2
P4
a1

9-33

4.7 MANUAL LOAD OVERLAYS FROM FORTRAN

The following is an example of a synchronous overlay load using the FORTRAN callable
routine LOAD (see Section 9-4.2.1). The program requests that the overlay segment
GAUSS (which contains the subroutine RANDOM) be loaded into core. Control will not
be returned to the program until the load operation is complete. IERR is checked .
to assure that the segment was successfully loaded; then the program transfers

control to a routine contained in the overlay segment that was just loaded.

-
.

IF(ITEST.EQ.#) GO TO 994
CALL LOAD ('GAuss',l,IERR)
IF (IERR.NE.#) GO TO 5¢¢
CALL RANDOM(A,B,ITEST,2)

.

99¢
509

The following example illustrates the use of the asynchronous overlay load. Both

the source coding and the ODL file are used as input to the linker.

In the main segment, the program regquests that the segment OV1 (which contains the
subroutine ADL1l) ke loaded into core. The two assignment. statements following the
CALL LOAD are executed while the overlay is being loaded. The program then per-
forms a CALL WAIT to assure that the load operation is complete before transferring
control to the subroutine ADL1 in the overlaid segment. This calling sequence is
repeated through the tree structure until the CALL EXIT is encountered in the

main segment and control is returned to the Monitor.

9-34

MAIN

ovl : C ov2

ov3 ' ov4

ov5 ' ov6

ov7 ove

Sample Tree Structure

9-35

FORTRAN V06,43

eoel

eee2

2093
2004
0025
0026
goey
egee
0029
po1e
0oLt

veie
0013
peLa
2e15
oetes
0017
vete
POL9
P020
1. r3
eoee
gea3

ool
peez
003
gee4
poos
gage
goar

oRo4

ppg2

2003
2024
gees
geosé
eoa7
goes

2009
2a1e
ee1y
ool
2013
0014
2015
po16
eoy7
2018
eni9
ee2e
peal
geec
es23

11

11

28107136 Q1=APReT4

SUBROUTINE ADL1Y
DIMENSION A(10)
A(1)=0,0

NRITE(Sv
FORMAT(/:1EXw‘ADL1‘)
CALL LOAD{?0Y3%,1,1ERR)
X=1,

YaX/2,

CALL WAIT
IFC(JERR,NE,B) GDTO 1@
CALL A2A

CALL LOAD(®OY4¢, 1) IERR)
X=2,

YaX/ 4,

CALL WAIT
IF(IERR,NE,B)GOTO 1"
CALL A2B

RETURN

CALL ERROUT(3)

G0 TO 2

CALL ERROUT(4)

GO TO0 3

“END

SUBROUTINE ADL2
DIMENSION AC1Q)
A(1)20,0

WRITE(S,1)
FORMAT(/,10X,*ADL2?)
RETURN

END

SUBROUTINE A24

- DIMENSION A(§0)

A(1)=0,0

NRITE(S,1)
FORMAT(/,18X,?A2A°)
CALL LOAD(*OVS?,1,IERR)
X=1,

Y=X/2,

CALL WAIT
IF(YERR,NE,B) GO TO 10
CALL A3A A

CALL LOADC’OV6“,4,]ERR)
Xm2,

YaX/d,

CALL WAIT
IF(IERR,NE,@) GOTO 11
CALL A3B

RETURN

CALL ERROUT(5)

G0 T0 2

CALL ERROWT (&)

GOT0 3

END

9-36

PAGE

{

000y
ere2

0003

2004
pees
_2eee
eee7

0001

oo0e
0003
0004
0805
20a6
poer
0008
0009
ee10
ea1y
pot2
oLl
004

-9e1s
Aeie
0oL7
0R18
2919
go2n
002y
one2
oaasl

2004
2002
0003
e0e4
0025
0006

eRe7 .

eeoy
ooa2
o0a3
ooed4
eees
booe
0og7

Qeey
20@2
00e3
voa4
eeas
086
eeat

11

SUBROUTINE a2e
DIMENSION A30)
A(1)=0,0

NRITE(S:I)
FORMAT(/, 10X, *A2B°)
RETURN

END

SUBROUTINE A3A
DIMENSION A(10)
ACL)=0,0

‘ NRITE(S;X)

FORMAT(/!iﬂX"ASA"
CALL LOADC’OVT*,4,1ERR)
X=1,

Y=X/2,

CALL WAIT

IFCIERR,NE,2) GO TO 1@
CALL A4A

CALL LOAD(‘OVG':!:IERR)
Y=X/4d,

CALL WAIT :
IFC(IERR,NE,@) GO TO 1}
CALL A48

RETURN

CALL ERROUT(T)

GOTO0 2

CALL ERROUT(8)

G0 T0 3

END

SUBROUTINE A3B
DIMENSION A(1Q)
A(1)=0,0"

WRITE(S,1)
FORMAT(/IlUX"A3B‘)
RETURN

END

SUBROUTINE Ad4A
DIMENSION A(C10@)
A(L)RO,.0

NRITE(S,1)
FORMAT (/¢ 10X, ®A4A®)
RETURN

END

SUBROUTINE A4B
DIMENSION A(12)
AC1)%0,0

WRITE(S, 1)
FORMAT (/, 18X, *A4B*)
RETURN

END

9-37

2001

poaa
e0e3
poRY
o005
pRo6
peay
op08
eoe9
QaLo
o214
o212

ety

214
P215
g6
po17

enie
poL9
0228
ge2i
R022

2081
2002
go03

2284
@9es

10
11

+FCTR
«FCTR
«FCTR
«FCTR
oFCTR
+FCTR
+FCTR
FCTR
+FCTR
+ROOT
» NAME
NAME
« NAME

o NAME

o« NAME
o+ NAME
o« NAME

+END

RESIDENT MAIN

DIMENSION A(18)
WRITE(S,1)
FORMAT(1M1,25X, *RESIDENT MAIN ASYNCHRONOUS LOAD?)
A())=0,0

CALL LOADC'0V1'01lIERR)
Xni,

Y=X/2,

CALL WAIY

IF(IERR,NE,@) GO TO i@
CALL ADLI

CALL LOAD(’0V27,3,IERR)
X=2,

YaX/d,

CALL WAITY

IF(IERR,NE,8) GO TO 11
CALL ADLZ

CALL EXIT

CALL ERROUT(Y)
GOTO 3 .
CALI. ERRONT(2)
GO T0 4 °

END

SUBROUTINE ERROUT(OVLNUM)
WRITE(S,2) OVLNUM
FORMAT(1M »25X,*FAILURE TO LOAD ov*,11)

RETURN
END

OVRI.Y»ERROUT=FTNLIB/L
OViwADLi=FTNLIB/L
OvV2=ADL2=FTNLIB/L
OV3wA2A=FTNLIB/L
OV4mA2B=FTNLIB/|,
OVS=ASASFTNLIB/L
OV6=A3BmFTNLIB/L
OVT=A4A=FTNLIB/L
OVBmA4B=FTNLIB/L
Aw(Be(Dm(Fu(H,1),6),E)/C)
ovi

ov2

ov3

oV

ovS

ove

ov7?

ove

9-38

4,8 AUTOLOAD OVERLAYS FROM FORTRAN

This example of autoload overlays uses the same program and tree structure as the
asynchronous manual load overlay example. The differences between the two load

examples are:
. 1. The source code has a call to each subroutine with no explicit
reference to loading each segment, and

2. The autoload operator ('*')bis included in the ODL file.

2001 SUBROUTINE ADLY

Jut T DIMENSION A(10@)

0223 AC1)m0,0

0004 WRITE(S,1) v
2005 1 FORMAT(/,10X,*ADLL?)
0206 CALL A2A

Qo7 CALL A2B

0ags RETURN

eo09 END

goay SUBROUTINE ADLZ2
peo2 DIMENSION A(10)

0003 : AC1)%0,0

2004 WRITE(S,1) v
ooes 1 FORMAT(/,10X,?ADLR")
2006 RETURN

goar END

goay SUBROUTINE A2A

ega2 DIMENSION A(10)

2203 A())=0,0 '

0ao4 WRITE(S,1)

0008 1 FORMAT(/,10X,%A2A°)
gooe CALL A3A

oeer CALL A3B

eeos RETURN

gaoe END

0001 SUBROUTINE A2B

oaee DIMENSION A(10)

g0a3 : A(1)=30,0

eeo4 - WRITE(S,1)

eees 1 FORMAT(/,18X,?A2B*)
00l RETURN '
2007 END

Qoey : SUBRQUTINE A3A

geoe DIMENSION A(1@)

poes3 AC1)=0,0

0004 WRITE(S,1)

2005 1 FORMAT(/, 10X, ?A3A"7)
@eoe CALL Ad4A

2007 CALL Ad4B

o008 RETURN

0009 END

9-39

20814
epaz
2003
0004
0005
pede
2207

11} }
eee2
oee3

geo4
pees

oeoe
oee7

11
geee
eees
pees
oees
geaé
gee7

oeol
ggaz
oees
peod
2eos
Bage
geey
o098

+FCTR
.FCTR
LFCTR
FCTR

«FCTR

«FCTR
«FCTR
+FCTR
«FCTR
+ROOT
+END

SUBROUTINE A3B
DIMENSION A(10)
A(L)=0,0

WRITE(S,1)
FORMAT(/, 18X, "A3B?)
RETURN

END

SUBRQUTINE A4A
DIMENSION A(§0)
A(i)=0,0

WRITE(S,1)
FORMAT(/, 10X, A4A")
RETURN

END

SUBROUTINE A48
DIMENSION A(410)
A(1)=0,0

WRITE(S,1)
FORMAT(/,30X,°A4B%)
RETURN

END

RESIDENT MAIN
DIMENSION A(10)

- NRITE(S,1)

FORMAT(1HL, 25X, RESIDENT MAIN?)
A(§)=0o,0

CALL ADLt

CALL ADLZ

CALL EXIT

END

OVRLY=FTNLIB/L
ADL{eFTNLIB/L
ADL2=FTNLIB/L,
A2A=FTNLIB/L
A2BaFTNLIB/L
A3A«FTNLIB/L
A3BaFTNLIB/L
A4A=FTNLIB/L
A4B<FTNLIB/L
Aw (Bm(Dw(Fm{H,1),6)¢E),C)

9-40

4.9 FORTRAN FORMAT CONVERSIONS AND I/0 ROUTINES

Any format conversion not needed in a FORTRAN resident section but required by
overlay sections must be forcibly loaded into the resident section. (See Part 7,
FORTRAN.)

This can be accomplished in any of three ways:

1. Declare the appropriate globals in an assembly language routine.

2 Insert dummy FORMAT statements in the resident main program for all
format conversions that are required in the overlays but not in the
resident section.

3. Specify in the root segment link the appropriate module names needed
(through the /IN switch). Table 9-5 contains a detailed list of these
names,

For example, assume I and L format conversions are needed for READ and I and E
format conversions are needed for WRITE. An assembly language routine such as the

following could be written:

.TITLE DUMMY
. «GLOBL $LCI,$ICI,$ICO,$DCO
.+END

Where $LCI performs the L conversions for READ, $ICI performs the I conversions for
READ, $ICO performs the I conversions for WRITE, and $DCO performs the E conversions
for WRITE.

An alternate mode involves dummy FORMAT statements supplied in the resident main
program to force linking of these routines. (If this is done, a message may be
printed at compile time indicating that there is nonexecutable code in the program.
Also, this method may pull more routines into core than needed; the ofher two

ways are more efficient.)
For example:

LOGICAL L

GO TO 1g¢gg

READ (6,14¢) I,L
14 FORMAT (I1,L1)

WRITE (6,101), I,E
11 FORMAT (Il, E6.0)

1990 coﬁTINUE

9-41

Ancther alternative is use of the /IN switch as follows:
XXXLIB/IN:$ICI:$ICI:$DCI

where XXXLIB is the library specified in the ODL command file, and $LCI,$ICI, and
$DCI are module names associated with the required globals (see Table 9-1).
Including global references in an assembly language routine (or specifying module
names with the /IN switch) causes only the four format conversion packages to be
linked to the résident program section. Inserting dummy FORMAT and Input/Output
statements causes the resident to carry the overhead of the four format conversion
packages plus the FORTRAN READ/WRITE processor, FORMAT scanner, and associated

routines.

Two other possibilities are either to perform all I/O in the resident program, or
to perform all I/O in the overlay section. If there is no I/O in the resident
section, each overlay includes only those modules needed to satisfy its own 1/0

requirements.

If those format conversion routines that are needed in the overlays and not required
in the resident section are not forcibly loaded into the resident section, the

FORTRAN system causes the linking of dummy routines. Global requests in the overlay
files are then linked to the resident dummy routines and, at execution time, result

in the fatal error message:
'FORT¢¢8¢¢¢ LINKAGE ERROR (MISSING FORMAT CONVERSION ROUTINE)

If it is essential to minimize the amount of memory used by the resident section,
the technique of forced loading of modules by means of an assembly language routine
or the /IN switch is recommended. The assembly language routine does not force

all routines in the I/O package into the resident section, but rather causes the
loading of some modules, which would otherwise be blocked. The resulting resident
section may be smaller than that produced by the inclusion of the dummy FORTRAN

statements shown above.
Table 9-1 is useful in building overlay systems. If any module not needed by the

resident is required in an overlay, then the corresponding global must be declared

in the resident section.

9-42

Table 9-1

Format Conversion Packages and I/OARoutines

Globals | Length of

in . Module Package in

Package Name Function Performed ‘Decimal Words#*
spco $DCO Output Conversions, D,E,F,G 469

$ECO '

$SFCO

$GCO

$ICO $ICO Output Conversions, I, O 93

$0Co

$LCO $LCO Output Conversion L 31

$DCI $DCI . Input Conversions D,E,F,G 384

$RCI

$ICI $ICI Inbut‘Conversion I,0 85

$0CI

SLCI . SLCI Input Conversion L : 31

*Includes certain associated modules.

- 9-43

PART 9
CHAPTER 5
PROGRAM MEMORY ORGANIZATION

5.1 ALLOCATION FOR A NONOVERLAID PROGRAM

A nonoverlaid program is allocated to memory as shown in Figure 9-5.

high memory
CODE
-R-0
CODE
R/W
low memory
Figure 9-5

Nonoverlaid Program
5.1.1 'Réad/Write Code (and Data) (R/W)
The program's read/write code and data a;e placed in the lowest memory allocatgd.
5.1.2 Read-Only éodg (and Data) (R-O)

If the program has a read-only portion, LINK places it immediately above the area

occupied by the read/write code.
5.2 ALLOCATION FOR AN OVERLAID PRCOGRAM
5.2.1 Root Segment Allocation

~The allocatien of real memoxry to the root segment is shown in Figure 9-6.

9-44

Vhigh memory

CODE (R-0)

AUTOLOAD VECTORS

- SEGMENT TABLES

CODE (R/W)

- low niemory
Figure 9-6

Root Segment Overlaid Program

Code (R/W) and code (R-0) are the same as for nonoverlaid programs, consequently,

only the segment tables and autoload vectors are described.
5.2.2 The Segment Tables

Each segment in an overlay structure has a 10-word segment descriptor formatted as

shown in Figure 9-7,

RESERVED STATUS

RELATIVE DISK ADDRESS

LOAD ADDRESS

LENGTH IN BYTES

LINK UP

LINK DOWN

LINK NEXT

LINK PREVIOUS

SEGMENT

NAME

Figure 9-7

Segment Descriptor

9-45

Status: -- ¢ specifies the segment is in core, 1 specifiesnot in core. The
bit is used during path loading to eliminate unnecessary disk

accesses.

Relative Disk ~ == A program image occupies a contiguous disk area. Each overlay
Address of the

Overlay Segment: segment begins at a disk block boundary, and. this word is an

index to the relative block number from the start of the
program disk image. This word enables loading of segments with

a single disk access.

Load Address of -- The program relative address where this segment is to be
The Segment: ’
loaded.

Length of the -- The number of bytes in the segment; this number is used to

S H
egment construct the disk read.

Link Fields: -=- The function of the link fields is, given the address of any
descriptor, to find a path to the root and to develop from

any segment the path to any other segment (if it exists) up

the tree.

Link Up: -- This word is a pointer to a segment descriptor away from the
root. Such & segment emanates from an overlay control point
that starts at the base of this descriptor. Since many
segments may emanate from an overlay control point, this
pointer does not point to a unique successor. In Figure
9-8 the segment descriptor for the root segment may point to B,
Cc, or D depending on how the LINK algorithm makes its link-up

pointer selection; once made, however; it is never altered.

Link Down: -~ This word is a pointer to a segment, nearer the root, that is
the immediate predecessor of the segment described by this
descriptor. This pointer is always unique since paths moving

toward the root always have unique predecessors.

Link Next and -- All segments emanating from an overlay control point are cir-
Link Previous: cularly linked forward and backward. This facilitates the
search needed to mark in-core segments out-of-core when they
are overlajd. In Figure 9-8, B, C, and D are circularly
linked as are E and F. A has null link-next and link-previous

pointers.

9-46 .

B D~
C
E £
Figure 9-8
Link ?aths
Segment Name: -~ This two-word field is RADS5@ representation of the segment
name.

5.2.3 Autoload Vectors

Autoload vectors appear in every segment that references autoload entry points in
segments farther away from the root than the referencing segment. Segments that
reference autoload entry points toward the root are resolved directly. Autoload
-entry points occur in the segment making an autoload transfer. A discussion of
the format of the autoload vector and the autoload machihery is discussed in
Chapter 9-4.

5.3 OVERLAY MEMORY ALLOCATION
Every overlay in a program has an a@llocation as shown in Figure 9-9, The con~

struction of segments is identical to the root segment structure discussed in
Chapter 9-5.2.

9-47

high memory
CODE (R-0)

AUTOLOAD VECTORS

CODE
(READ/WRITE)

low memory

Figure 9-9

Overlay Sedment

5.4 OVERALL MEMORY ORGANIZATION

Figure 9-10 shows the overall memory allocation of an overlaid program running

under DOS/BATCH.

BOOTSTRAP AND ABSOLUTE LOADER

OVERLAY AREA

ROOT SEGMENT AS
DESCRIBED IN SECTION 5.2

USER PROGRAM STACK

UNUSED MEMORY

DOS/BATCH BUFFER POOL

DOS/BATCH MONITOR

Figure 9-10

Overall Memory Allocation

9-48

* -
The linker computes the size of the overlay area to accommodate the largest possible

combination of overlays that could exist simultaneously in memory.

9-49

PART 9
CHAPTER 6
MEMORY ALLOCATION

The allocation of memory occurs at the start of pass 2 of LINK. In the previous
pass, LINK has established the memory requirements and aftributes of every P-section
in the program. It has also built the segment tables, which completely define the
structure described by the ODL, and has stored commands it must act upon during
memory allocation. Using P-section memory requirements, P-section attributes,
segment tables, autéload vector lists, and the command list, LINK can proceed to

allocate memory.
6.1 MEMORY ALLOCATION PRCOCEDURES
6.1.1 Allocating Root Segment Memory

LINK begins by allocating the read/write portion of the root segment. It proceeds
algorithmically as follows:

Allocate in alphabetical order all read/write P-sections of the root segment,
accumulating the total memory reguired as the allocation proceeds. This implies

that if in ODL a user described the root as

A-C~B
the actual allocation and placement would be as though he had specified

A-B-C
The placement of every P-section is clearly shown on the map listing produced by
LINK. After a P-section is processed, a check is made of the extension list
(created from EXTSCT commands) described in Chapter 9-7; and if a command is found

for this P-section it is extended under the following conditions:

1. If the CON attribute for the P-section is set.

2. If the OVR attribute is set and insufficient storage is currently
allocated to the P-section to cover its extend request.

9-50

Also, the processing of a P-section will result in proper boundary align-
ment. Currently, the assembler only supports word alignment, but when it
supports alignment requests to any specified boundary, LINK will place the
P section on the requested boundary, incrementing the location counter
appropriately.

LINK now checks if it is building an overlaid program, and, if it is, it allocates
the storage for the Segment Tables. Finally, any storage needed to hold autoload

entry points referred to up-the-tree by the root segment are allocated.
6.1.2 Allocating Overlay Segment Memory

The procedure follows closely the allocation of read/write storage in the root, with

the following exceptions:

1. If an overlay segment contains read-only P-sections, these sections are
processed after the read/write sections of the same segment. Within each
of the attribute types (read/write and read-only) allocation is
alphabetical. If LINK encounters a read-only section in an overlay
segment, it will issue a diagnostic and continue to process the read-only
section as if it were read/write. ' ‘

2. No Segment Tables are produced for overlay segments.

3. Allocation for én overlay segment starts at address+l of the bottom of
the segment pointed to by the link-down of the segment being processed.

All memory allocation for a program described by ODL is now complete.

6.2 MEMORY ALLOCATION MAP

The listing of the memory map produced by LINK consists of a heading followed by
detailed descriptions of each segment in the program. The data on each segment
includes the following: ‘ '

1. The statistics and attributes for each section.

2. The memory limits of every P-section in every segment.

3. File descriptions of the files used to build the program.

4. Undefined references by file.

The segment description begins with the goot ‘segment, which begins on the same page
as the heading. The ovérlay segments each start on a new page and their order is
determined by a tree walk algorithm used in a number of contexts within LINK. See

Chapter 9-11 for a -detailed map description and example.

9-51

6.3 LINK TREE WALK ALGORITHM

In the map listing, LINK displays segment descriptions in a path order that results
from a tree Qalk; the result of the walk is the segment list that appears following
the root segment name on the heading page. The tree walk algorithm proceeds as
follows: '
1. After displaying the root segment's description, take the link-up
la. If a link-up exists,
THEN
1b. Display its description, try the next link-up, and return to la.
ELSE
lc. Try a link-next.
If an unprocessed link-next is found,
THEN
Go~to 1lb.
ELSE
Try a link-down. If the link-down is the root,
THEN
Terminate the Walk.
ELSE
Go-to lc.k

Using this algorithm, Figure 9-11, and the ODL description

LEFTBR .FCTR B-(C,D,E)
RHTBR .FCTR F-(G,H)
.ROOT A~ (LEFTBR,RHTBR)

9-52

LINK will walk the tree (thus producing segment descriptions) in the following
order: ’

(root)

(1ink-up)

(link-up)

(link-next

(link-next)

(link-down) :not redisplayed
(link-next)

(1ink-up)

(link-next))
(link-down) :not redisplayed
(link-down) :not redisplayed

PHIOQAODEBOOQE Y

-

Note that the link-down is taken as the first filename in the ODL description follow-

ing a new overlay control point.

Figure 9-11

Tree Walk

9-53

PART 9
, CHAPTER 7
LINKING OPTIONS

7.1 OPTIONAL INPUT
Optional input is accepted by LINK if the first command string was terminated by
</0>. This input specifies options that are to be selected for the program being
built.
Input is solicited with the line

ENTER OPTIONS:
followed by a line containing a leading hash mark.
Each option is specified by a keyword followed by one or more parameters. After
- each line of optional input is processed, the next line is solicited with another

hash mark.

The options input is terminated with the /E specification in the same manner as

normal LINK commands.

Optional specifications must always fit on a single line. An optional input line

has the following general format:

KW = P(1,1):P(1,2):...:P(1,N):P(2,1):P(2,2) IKW=P(1,1)...;COMMENT
whexre
KW = an alphanumeric keyword identifier of 1 to 6 characters
<=> = a delimiter that delineates the keyword identifier from its
parameters.,

P(1,1) P(1,2)

P(2,2) = parameter values that are specified for the option. The
construction P(N,M) is used for illustration purposes only
and signifies the Mth parameter of the Nth set of parameters.
The general format allows multiple sets of parameters for a
single keyword. Actual parameters are specified as alpha-
numeric characters and/or octal/decimal numbers.

<> = a delimiter that separates parameter values.
<,> = a delimiter that separates multiple sets of parameters.
<1> = a delimiter that separates multiple keyword identifiers on a

single line.

v
1]

a delimiter indicating that a comment follows.

9-54

Blank characters and horizontal tabs are ignored and'may appear anywhere.

A brief description of each keyword option is given below followed by the keyword

syntax. Parameter values are defined using the following abbreviations:

DEVNAM = a two character alphabetic device name followed by a one
or two digit unit number.
NAME = an alphanumeric name of 1 to 6 characters, using the RAD5@

character set (A-Z, 1~9, $ and .).
NOTE

Octal and decimal numbers may
contain a sign (i.e., + or -).

Certain options require that global symbols or P-sections be defined in the object
modules that are loaded into the program image. If the appropriate definitions are
not found, the corresponding option input is treated as-a no operation (i.e., it

is not performed, and the user is not notified).

7.2 ABSOLUTE PATCH (ABSPAT)‘

This allows the user to declare a.series of absolute patch values in a segment.

An absolute address is the physical core address of where the patches are to be
applied. All patch values must lie within the segment or a load address error is
generated. ’

Keyword syntax:

ABSPAT = SGNAM:PADDR:VALUE:VALUE:...:VALUE

where
SGNAM ’ = the name of the segment in which the patches are to be applied.
PADDR = the absolute patch address.
VALUE = patch value.
- NOTE

Three parameters are fequired by this command.
A maximum of eight values (ten parameters total)
can be specified.

9-55

Default:
None.

Example:

Declare a series of patches in segment PAY starting at the absoluté address 1gg:
"ABSPAT = PAY:1@@:-1:5:6 -

NOTE

Patch values are stored in consecutive locations
as a byte string. Each patch requires two bytes.

7.3 EXTEND CONTROL SECTION (EXTSCT)
Extend the length of a P-section.

If the P-section has the attribute CON then the section is extended by the specified
length. If the attribute is OVR, the section is assured to be at least as large

as the specified length. The extension occurs when the specified name is encountefed
in an input object file. If no such name is encountered, no extension occurs.

Keyword syntax:

EXTSCT CNAME : LENGTH

where

CNAME = control section name.

LENGTH = length to extend the P-section in bytes (octal).
- Default:

None.
Example:

Declare the P-sections ONE and TWO to both be eligible for extension by a length of
' 5¢ and 1@@ bytes, respectively.

EXTSCT;ONE:Sﬂ,TWO:lﬂﬂ

9-56

7.4 GLOBAL SYMBOL DEFINITION (GBLDEF)
Declare the definition of a global symbol.

' The symbol definition is considered absolute (not relocatable). The symbol

entered in the root segment symbol table.

‘Keyword syntax:

GBLDEF = SNAME:VALUE
where

SNAME = global symbol name.

VALUE = absolute Valué (octal) to be assigned to the symbol.
Default:

None.
Example:

Declare the symbol SMART to have a value of 152525.
GBLDEF = SMART:152525
7.5 GLOBAL PATCH (GBLPAT)

Declare a series of patch values in a segment that are relative to a global

within a segment.

is

symbol

The value of the global symbol is taken as the base address of where the patches

are to be applied. All patches must be within the segment or a load address error

is generated.
Keyword syntax:

SGNAM : SNAME :VALUE: VALUE:...:VALUE

GBLPAT =
or
GBLPAT = SGNAM:SNAME+OFFSET :VALUE:VALUE:...:VALUE

ox

9-57

GBLPAT = SGNAM:SNAME-OFFSET:VALUE:VALUE:...:VALUE

where

SGNAM = the name of the segment in which the patches are to be applied.
SNAME = global symbol name.

OFFSET = relative offset (octal) from the global symbol to where patch
values are to be applied.

VALUE = patch values <{octal).

NOTE

This command requires at least one patch value
and can include a maximum of eight patch values.

Default:

None.

Example:

Declare a series of patches in the segment TELTAL relative to the global symbol
PATCH.

GBLPAT = TELTAL:PATCH+1@:1774%6:177344

NOTE

Patch values are stored in consecutive locatiéns
as a byte string. Each patch value requires two
bytes.

7.6 RESERVED SYMBOLS AND SPECIAL FILES

1.

The symbol .NSTBL is reserved by LINK. Special handling occurs when the
definition of this name is encountered in a program. Definition of this
global symbol causes the word pointed to by this symbol to be modified
with a value calculated by LINK. The value placed in this location is

the, address of the segment description tables. Note that this modification
occurs only when the number of segments is greater than one.

9-58

If a global CREF is desired, the file GLOB.TMP is generated by LINK. After the
global CREF is listed, GLOB.TMP is deleted. If a file named GLOB. . TMP already
exists when a CREF is specified, that file is deleted.

Overlay run-time support uses the follow1ng global symbols, whlch should not be
accessed in any way by the user.

$AUTO
$MARKS
$RDSEG
SRETA
$SAVAL
SSWAIT

9-59

PART 9
CHAPTER 8
LINK INPUT DATA FORMATS

A object module is the fundamental unit of input to LINK.

Object modules are created by any of the standard language processors (i.e., MACRO,
FORTRAN, etc.) or LINK itself (symbol definition file). The librarian provides the
capability to combine a number of object modules together into a single library
file.

An object module consists of variable length records of information that describe
the contents of the module. Six record (or block) types are included in the object
language. These records guide LINK in the translation of the object language into

a load module.

The six record types follow:

Type 1 - Declare Global Symbol Directory'(GSD) .
Type 2 - End of Global Symbol Directory

Type 3 - Text Information (TXT)

Type 4 - Relocation Directory (RLD)

Type 5 - Inteinal Symbol Directory (ISD)

Type 6 - End of Module

Each object module must contain all of the record types except the ISD, which
is optional. The appearance of the various record types in an object module follows

a defined format.

An object module must begin with a declare GSD record and end with an end of module
record. Additional declared GSD records may occur anywhere in the file but before
an end of GSD record. An end of GSD record must appear before the end of module
record. At least one relocation directory record must appear before the first

text information record. Additional relocation directory and text information
records may appear anywhere in the file. The internal symbol directory records may
appear anywhere in the file between the initial declare GSD and end of module
records. Figure 9-12 illustrates this format.

Object module records are variable length and are identified by a record type code
in-the first word of the record. The format of additional information in the

record is dependent upon the record type.

1 9-60

GSD Initial GSD
RLD Initial Relocation Directory
GSD Additional GSD |
TXT ' Text Information
TXT Text Information
RLD Relocation Directory
__-————__________._________‘_’,
GsD Additional GSD
END GSD _End of GSD.

IsD ' Internal Symbol Directory
IsD° . Internal Symbol Directéry
TXT Text Information
TXT Text Information
TXT Text Information

END MODULE END OF MODULE

Figure 9-12

General Object Module Format

9-61

8.1 GLOBAL SYMBOL DIRECTQRY

Global symbol directory records (GSD) contain all the information necessary
to assign addresses to global symbols and to allocate the memory required by a

program.
GSD records are the only records processed in the first pass. Therefore significant
time can be saved if all GSD records are placed at the beginning of a module (i.e.,

less of the file must be read in phase 3).

GSD records contain 7 types of entries:

Type § - Module Name

Type 1 - Control Section Name

Type 2 - Internal Symbol Name

Type 3 - Transfer Address

Type 4 - Global Symbol Name

Type 5 - Program Section Name

Type 6 - Program Version Identification

Each type of entry is represented by four words in the GSD record. The. first two
words contain six RADS@ characters. The third word contains a flég byte and the
entry type identification. The fourth word contains additional information about

the entry. Figure 9-13 illustrates the GSD record format.

9-62

g 1
RADS0
NAME
TYPE FLAGS
VALUE
RADSP
NAME
TYPE FLAGS
VALUE
"‘—__-_-"-—-—______________’,,——
—————---._____;__________—___,_
' 'RAD5@
NAME
TYPE FLAGS
VALUE
RAD5#,
NAME
TYPE FLAGS
VALUE

? Figure 9-13

GSD Record and Entry Formats

9-63

8.1.1 Module Name

The module name entry declares the name of the object module. The name need not be
unique with respect to other object modules (i.e., modules are identified by file
not module name), but only one such declaration may occur in any given object-
module. ‘

MODULE
NAME

Module Name Entry Format

8.1.2 Control Section Name
Control sections, which include ASECTs, blank~CSECTS, and named-CSECTs are obviated
in DOS by PSECTs. For compatibility, LINK processes ASECTs and both forms of CSECTS.
Section 9-8.1.6 details the entry generated for a fSECT statement. In terms of a
PSECT statement we can define ASECT and CSECT statements as follows:
For a blank CSECT:

.PSECT ,ICL,REL,CON,RW,I,I1OW
For a named CSECT:

.PSECT name, GBL,REL,OVR,RW,I,LOW
And for an ASECT:

.PSECT . ‘ABS.,GBL,ABS,I,OVR,RW,LOW
ASECTs and CSECTs are processed by LINK as PSECTs with the fixed attributes defined

above (refer to Section 9-8.1.6.) The entry generated for a control section is

illustrated on the following page.

9-64

CONTROL SECTION

NAME

‘1 ' IGNORED

MAXIMUM LENGTH-

Control Section Name Entry Format

8.1.3 Internal Symbol Name

The internal symbol name entry declares the name of an internal symboli(with respect
to the module). LINK does not yet support internal symbol tables; therefore the
detailed format of this entry is not defined. If an internal symbol entry is

encountered while reading the GSD, it is merely ignored.

SYMBOL
NAME

UNDEFINED

Internal Symbol Name Entry Format

8.1.4 Transfer Address

The transfer address entry declares the transfer address of a module relative to a
P-section. The first two words of the entry definé the name of the P-section and
the fourth word the relative offset from the beginning of that P-section. If no
transfer address is declared in.a module, a transfer address entry must either not
be included in the GSD or a transfer address of @@@@@l relative to the default

absolute P-section (.ABS.) must be specified.

9-65

SECTION
NAME

OFFSET

Transfer Address Entry Format

NOTE

If the P-section is absolute, then OFFSET is
the actual transfer address if not gggggl.

8.1.5 Global Symbol Name

The global symbol name entry declares either a global reference or definition. All
definition entries must appear after the declaration of the P-section under which
théy are defined and before the declaration of another P-section. Global references

may appear anywhere within the GSD.

The first two words of the entry define the name of the global symbol. The flag
byte declares the attributes of the symbol, and the fourth word the value of the

symbol relative to the P-section under which it’is defined.

The flag byte of the symbol declaration entry has the followihg bit assignments.
Bits #§ - 2 - Not used

Bit 3 - Definition

g = Global symbol references.
1 = Global symbol definition.

Bit 4 - Not used

Bit 5 -~ Relocation

@ = Absolute symbol value.
1 = Relative symbol value.
Bit 6 - 7 - Not used

9-66

SYMBOL
NAME

4 FLAGS

VALUE

Global Symbol Name Entry Format
8.1.6 Program Section Name

The P-section name entry declares the name of a P-section and i;s maximum length

in the module. It also declares the attributes of the P-section via the flag byte.

GSD records must be qonstructed such that once a P-section name has been declared,
all global symbol definitions that pertain to that P-section must appear before
another P-section name is declared. Global symbols are declared via symbol
declaration entries. Thus the normal format is a P-section name followed by zero

or more symbol declarations, followed by another P-section name, followed by zero or

more symbol declarations, and so on.

The flag byte of the P-section has the following bit assignments:

Bit @ - Memory Speed

@ = P-section is to occupy low speed (core) memory.

-1 = P-section is to occupy high-speed (MOS/Bipolar) memory.

Bit 1 = Library P-section (not used by LINK)

@ = Normal P-section.

1 = Relocatable P-section that references a core resident library or common
block.

Bit 2 -~ Allocation

@ = P-section references are to be concatenated with other references to the
" same P-section to form the total memory allocated to the section.

1 = P-section references are to be overlaid. The total memory allocated to
the P-section is the largest request made by individual references to
the same P-section.

Bit 3

Bit 4

Bit 6

Not used but reserved
Access

P-section has read/write access.

P-section has read only access.

Relocation
P-section is absolute and requires no relocation.
P-section is relocatable and references to the control section must

have a relocation bias added before they become absolute.

Scope

The scope of the P-secticn is local. References to the same P-section will
be collected only within the segment in which the P-section is defined.

The scope of the P-secticn is global. References to the P-section are
collected across segment boundaries. The segment in which a global P-section
is allocated storage is either determined by the first module that defines
the P-section on a path cr direct placement of a P-section in a segment via
the segment description map.

Type

The P-section contains instruction (I) references.

The P-section contains data (D) references.

P-SECTION
NAME

5 FLAGS

MAX LENGTH

P-Section Name Entry Format

NOTE

The length of all absolute sections
is zero.

9-68

8.1.7 Program Version Identification

The program version identification entry declares the version of the module. LINK
saves the versioh identification of the first module that defines a nonblank version.
This identification is then included on the memory allocation map and is written in

the label block of the task image file.

The first two words of the entry contain the version identification. The flag

byte and fourth words are not used and contain no meaningful information.

SYMBOL
NAME

Program Version Identification Entry Format

8.2 END OF GLOBAL SYMBOL DIRECTORY
The end of global symbol directory record declares that no other GSD records are
contained further on in the file. Only'one end of GSD record must appear in every

object module. It is one word in length.

End of GSD Record Format

9-69

8.3 TEXT INFORMATION

The, text information record contains a byte string of information that is to be
written directly into load modules. The record consists of a load address followed

by the byte string.

Text records may contain words and/or bytes of information whose final contents are
yet to be determined. This information will be bound by a relocation directory
record that immediately follows the text record (see Section 9-8.4). If the text
record does not need modification, then no relocation directory record is needed.
Thus, multiple text records may appear in sequence beforé a relocation directory

record.

The load address of the text record is specified as an offset from the current
P-section base. At least one relocation directory record must precede the first

text record. This directory must declare the current P-séction.

LINK writes a text record directly into the program image file and computes the
value of the load address minus four. This value is stored in anticipation of a
subsequent relocation directory that modifies words and/or bytes that are contained
in the text record. When added to a relocation directory displacement byte, this

value yields the address of the word and/or byte to be modified in the task image.

LOAD ADDRESS

TEXT TEXT

" ‘ TEXT

" TEXT

TEXT TEXT

Text Information Record Format

9-70

8.4 - RELOCATION DIRECTORY

Relocation directory records contain the information necessary to relocate and link
a preceding text information record. Every module must have at least one reloca-
tion directory record that precedes the first text information record. Figure 9-14
shows the relocation directory record format. The first record does not modify a
preceding text record, but rather it defines the current P-section and location.
Relocation directory records contain 13 types of entries. These entries are
classified as relocation or ldcation modification entries. The following type of

entries are defined:

Type
Type
Type

1 - Internal Relocation

2

3
Type 4 - Global Displaced Relocation

5

6

7

- Global Relocation

- Internal Displaced Relocation
Type - Global Additive Relocation
Type
Type
Type 18 -~ Location Counter Modification

- Global Additive Displaced Relocation

- Location Counter Definition

Type 11 - ProgrambLimits

Type 12 -~ P-Section,Relocation

Type 13 - Not used

Type 14 - P-Section Displaced Relocation

Type 15 - P-Section Additive Relocation

fype l6é -~ P-Seétion Additive Displaced Relocation

Each type of entry 'is représehted by a command byte (specifies type or entry and
word/byte modification), followed.by a. displacement byte, followed py the information
required for the particular type of entry. The displacement byte, when added to

the value calculated from the load address of the previous text information record

(see Section 9-8.3) yields the absolute address that is to be modified.

The command byte of each entry has the following bit assignments.

Bits @ - 6 Specify the type of entry. Potentially 128 command types may be speci-
fied, although only 13 are implemented.

Bit - 7 Modification
g = The command modifies an entire word.
1= The command modifies only one byte. LINK checks for truncation errors

in byte modification commands. If truncation is detected (i.e., the
modification value has a magnitude greater than 255), then an error is
. produced. -

9-71

DISP ' CMD
INFO INFO
" INFO

CMD "
INFO DISP
" INFO
L) n
" "
n "
" n
DISP CMD
INFO INFO
INFO INFO
INFO INFO .

Figure 9-14

Relocation Directory Record Format

9-72

8.4.1 ' Internal Relocation
This type of entry relocates a direct pointer to an address within a module. The
current P-section base address is added to a specified constant, and the result

is written into the load module.

Example:
A: Mov #A,Rg
or \
<WORD A

DISP B 1

CONSTANT

Internal Relocation Entry Format
8.4.2 Global Relocation

This type of entry relocates a direct pointer to a global symbol. The definition

of the global symbol is obtained, and the result is written into the load module.

Example:
MoV #GLOBAL,ﬁﬁ
or
.WORD GLOBAL

DISP B 2

SYMBOL
NAME -

Global Relocation Entry Format

9-73

8.4.3 Internal Displaced Relocation
This type of entry relocates a relative reference to an absolute address from within
a relocatable control section. The address +2 that the relocated value is to be
written into is subtracted from the specified constant. The result is then written
into the load module.

CLR @#17755¢

or

MOV @#177550,R@

DISP B 3

CONSTANT

Internal Displaced Relocation Entry Format
8.4.4 Global Displaced Relocation

This type of entry relocates a relative reference to global symbol. The definition

of the global symbol is obtained, and the address +2 that the relocated value is to

be written into is subtracted from the definition value. This value is then written
into the load module.

Example:
CLR GLOBAL
or
MOV GLOBAL,R@

DISP B 4

SYMBOL

Global Displaced Relocation Entry Format

9-74

8.4.5 Global Additive Relocation
This type of entry relocates a direct pointer to a global symbol with an additive

constant. The definition of the global symbol is obtained, the specified constant

is added, and the resultant value is then written into the load module.

Example:
MoV #GLOBAL+2,R@

or

.WORD GLOBAL-4

DISP B 5

SYMBOL
NAME

CONSTANT

Global Additive Relocation Entry Format
8.4.6 Global Additive Displaced Relocation

This type of entry relocates a relative referénée to a global symbol with an additive
constant. The definition of the global symbol is obtained, and the specified con-
‘stant is added to the definition value. The address +2 that the relocated value is tobe
written into is subtracted from the resultant additive value. The resultant value

is then written into the load module.

Example:
CLR GLOBAL+2
or
MOV GLOBAL-5,Rf
DISP B 6
SYMBOL
NAME
CONSTANT

Global Additive Displaced Relocation Entry Format

9-75

8.4.7 Location Counter Definition

This type of entry declares a current P-section and location counter value. The
control base is stored as the current control section, and the current control

section base is added to the specified constant and stored as the current location

counter value.

P B 7

SECTION
NAME

CONSTANT

Location Counter Definition Entry Format

8.4.8 Location Counter Modification
This type of entry modifies the current location counter. The current P-section
base is added to the specified constant, and the result is stored as the current
location counter.
Example:

«=,+N

or

.BLKB N

g B | 19

CONSTANT

Location Counter Modification Entry Format

9-76

8.4.9 Program Limits

This type of entry is generated by the .LIMIT assembler directive. The lowest and

highest addresses allocated to the task are obtained and written into the load

module.

Example:

.LIMIT

DISP B 11

Program Limits Entry Format

8.4.10 P-Section Relocation

This type of entry relocates a direct pointer to the beginning address of another
P-section (other than the P-section in which the reference is made) within a module.

The current base address of the specified P-section is obtained and written into the

load module.

Example:
.PSECT A
B:
PSECT C
MOV #B,R@
or
-
-WORD B

9-77

DISP

B

12

SECTION
NAME

P-Section Relocation Entry Format

8.4.11 P-Section Displaced Relocation

This type of entry relocates a relative reference to the beginning address of another
P-section within a module. The current base address of the specified P-section is

obtained, and the address +2 that the relocated value is to be written into is

subtracted from the base value.

Example
.PSECT A

B:
.PSECT (o}
MOV B,R@

This value is then written into the load module.

DISP

B

14

SECTION
" NAME

P-Section Displaced Relocation Entry Format

9-78

8.4.12 P-Section Additive Relocation

This type of entry relocates a direct pointer to an address in another P-section within
a module. The current base address of the specified P-section is obtained and added

to the specified constant. The result is written into the load module.

!

Example:
«PSECT A
B:
C: .
PSECT D
MOV #B+1g,RZ
MOV #C,R@
N
or

.WORD B+10

«WORD (o]
.) DISP B 15
SECTION
'NAME
CONSTANT

P-Section Additive Relocation Entry Format

9-79

8.4.13 P-Section Additive Displaced Relocation

This type of entry relocates a relative reference to an address in another P-section
within a module. The current base address of the specified P-section is obtained
and added to the specified constant. The address +2 that the relocated value is

to be written into is subtracted from the resultant additive value. This value

is then written into the load module.

Example:
.PSECT A
B:
C: .
.PSECT D
MoV B+1g,R@
MOV C,R@

DISP B 16

SECTION
NAME

CONSTANT

P-Section Additive Displaced Relocation Entry Format

9-80

8.5 INTERNAL SYMBOL DIRECTORY

Internal symbol directory records declare definitions of symbols that are local to
a module. This feature is not supported by LINK and therefore a detailed record

format is not specified. If LINK encounters this type of record, it will ignore it.

) NOT
SPECIFIED

Internal Symbol Directory Record Format

8.6 _END OF MODULE

The end of module record declares the end of an object module. " Only one end of

module record must appear in one object module, and it is one word in length.

End of Module Format

9-81

PART 9
CHAPTERY9 .
PROGRAM LOAD MODULE FILE STRUCTURE

An overlay image as it is recorded on disk appears in Figure 9-15 (pertinent bound-

aries are shown).

' OVERLAY SEGMENT
BLOCK BOUNDARY

OVERLAY SEGMENT
BLOCK BOUNDARY

ROOT SEGMENT
(READ-ONLY SECTION)

ROOT SEGMENT PROG??gE
(READ/WRITE SECTION) RELA

HEADER

START OF FILE

- Figure 9-15

Overlay Disk Format

9.1 THE HEADER

The overlay header consists of +wo parts:

1. Core Image Descriptor

2. Communications Directory (COMD)
The core image descriptor contains information required for loading the overlay into

core. The COMD describes the characteristics of the root segment so that it can be
loaded and run using the DOS/BATCH RUN command.

9-82

The core image descriptor has the following format:

These three
fields make up
a formatted
binary file.

- 1
BYTE COUNT
BLOCK LOAD POINT
BLOCK SIZE = 1¢ 3

TIME OF CREATION

DATE OF CREATION

BLOCK SIZE OF BYTES PER BLOCK

' NUMBER OF IMAGES = 1

NUMBER OF BYTES IN HEADER CORE

Body of Core
- Image Descriptor

_{7

CHECKSUM

RO R RN Y

k)

The COMD has the following format:

1

COMD BYTE COUNT

BLOCK LOAD POINT

WORDS TO FOLLOW=14 | GENERAL INFORMATION=1

PROGRAM LOAD POINT

PROGRAM SIZE IN BYTES

PROGRAM TRANSFER ADDRESS

. ODT TRANSFER ADDRESS

FIRST RELATIVE BLOCK OF CORE IMAGE

PROGRAM NAME IN RADIX-5@

.IDENT OF PROGRAM -IN RADIX-5@

TIME OF CREATION

DATE OF CREATION

WORDS TO FOLLOW | EMT CALLS RES. = 2

DOS/BATCH EMT NUMBERS CORRESPONDING TO
MONITOR ROUTINES TO BE MADE RESIDENT

END OF COMD = ¢

CHECKSUM l

9-83

9.1.1 The Root Segment

The root segment is written as a contiguous number of blocks starting after the

headex.
9.1.2 Overlay Segments

Every overlay segment begins on a block boundary and is always read/write. The
relative block number for the segment is placed in the segment table, making it
possible to load any overlay segment with a single read. Note that a given overlay
segment occupies as many contiguous disk blocks as it needs to supply its space

requests. The maximum size for any segment, including the root, is 32K words.
9.2 NONOVERLAID PROGRAM FILE STRUCTURES

The file structure of a nonoverlaid program normally :consists of a formatted

binary file beginning with a header whose COMD is similar to that described in

Section 9-9-1, with the following exceptions:

1. "FIRST RELATIVE BLOCK OF IMAGE" entry is not included.

2, Byte count is correspondingly smaller.

The end of a nonoverlaid program indicated by a formatted binary line with a byte

count of 6. This line is the transfer address biock.

If the /CO switch is used to produce a nonoverlaid program, the file image will be

as shown in Figure 9-15, except for the omission of overlay segments.

9-84

PART 9

CHAPTER 10
.ASECTS, .CSECTS, AND .PSECTS

10.1 PROGRAM SECTION DIRECTIVES

. 10.1.1 .PSECT Directive

Program sections are defined by the .PSECT directive, which is formatted as:

-PSECT [NAME] [,RO/RW] [,I/D] [,GBL/ICL] [,ABS/REL] [",CON’/OVR] [,HGH/LOW]

The brackets ([]) are for purposes of illustrating optional parameters, and are not

included in the parameter specifications.
to be made between the parameters.

summarized in Table 9-2.

The slash (/) indicates that a choice is

The program section attribute parameters-are

Table 9-2

.PSECT- Directive Parameters

Parameter Default Meaning
NAME Blank Program section name, in Radix -50 format,
specified as one to six characters. If
omitted, a comma must appear in the first
parameters position.
RO/RW RW Program section access mode.
. RO=Read Only
RW=Read/Write
I/D I Program section type.
I=Instruction
D=Data (not implemented)
GBL/LCL 1CL The scope of the program section, as
interpreted by LINK.
GBL=Global
ICL=Local
ABS/REL REL Defines relocation of the program section.
ABS=Absolute (no relocation)
REL=Relocatable (a relocation bias
is required)

9-85

Table 9-2 (Cont.)

.PSECT Directive Parameters

Parameter Default Meaning
CON/OVR : CON - Program section allocation.
CON=Concatenated

OVR=Overlaid

_HGH/LOW LOW Program section memory type.
HGH=High~-speed
LOW=Core

(Note: HGH/LOW is not supported in the
current DOS/BATCH release.)

The only parameter that is position-dependent is NAME. If it is omitted, a comma

must be used in its place. For example,
.PSECT ,RO

This example shows a PSECT with a blank name and the Read Only access parameter.

Defaults are used for the remaining parameters.
LINK interprets the .PSECT directive's parameters as follows:

RO/RW Defines the type of access to the program section permitted
which is; Read Only, or Read/Write.

/D Allows LINK to differentiate global symbols thdt are entry
: points (I) from global symbols that are data values (D).

GBL/ICL Defines the scope of a program section. A global program
section's scope crosses segment (overlay) boundaries; a local
program section's scope is within a single segment. 1In
single-segment programs, the GBL/ICL parameter is ignored.

ABS/REL. When ABS is specified, the program section is absolute. No
relocation is necessary (i.e., the program section is
assembled starting at absolute @). When REL is specified,
a relocation bias is calculated by LINK, and added to all
references in the section.

9-86

CON/QVR CON causes LINK to collect all allocation references to
: the program section from different modules and concatenate
them to form the total allocation for the program section.
OVR indicates that all allocation references to the program
section overlay one another. Thus, the total allocation
of the program section is determined by the largest request
made by a module that references it.

HGH/LOW In future releases of DOS/BATCH, the. user may be able to
- specify the kind of memory used to store the .PSECT (high
or low speed). Currently, this parameter is ignored.

Once the attributes of a named .PSECT are declared in a module, the MACRO Assembler
assumes that this .PSECT's attributes hold for all subsequent declarations of the
named .PSECT in the same module. Thus, the attributes may be declared once, and
later .PSECT's Qith the same name will have the same attributes when specified

within the same module.

The Assembler provides for 255(1@) program sections: one absolute section, one
blank relocatable section, and 253(1¢) named relocatable sections. The .PSECT
directive enables the user to create his program (object module) in sections and

share code and data.

For each program section specified or implied, the Assembler maintains the following

information:

l. Section name
2. Contents of the program counter ' . !
3. Maximum program counter value encountered

4. Section attributes (the six .PSECT attributes)

10.1.2 Creating Program Sections
A given program section is defined completely upon its first reference. Thereafter,
the section can be referenced by completely specifying the section attributes or
by specifying the name only. For example, a section can be specified as
~ .PSECT ALPHA,ABS,OVR

and later referenced as

.PSECT ALPHA

9-87

By maintaining separate locaticn counters for each section, the Assembler allows
the user to write statements that are not physically contlguous but are loaded

contlguously, as shown in the following example:

.PSECT SECl,REL ;START A RELOCATABLE SECTION NAMED
A: JWORD @ ;SEC1 ASSEMBLED AT RELOCATABLE #,
B: JMORD @ ;RELOCATABLE 2 AND
C: .WORD @ ;RELOCATABLE 4,
ST: CLR A - ;ASSEMBLE CODE AT
CLR B ;RELOCATABLE ADDRESSES
CIR C ;6. THROUGH 21
.PSECT SECA,ABS ;START AN ABSOLUTE SECTION NAMED SECA
.= ;ASSEMBLE CODE AT
.WORD .+2,HALT ABSOLUTE 4 THROUGH 7,
.PSECT SECl ;RESUME THE RELOCATABLE SECTION
INC A ;ASSEMBLE CODE AT
BR ST ;RELOCATABLE 22 THROUGH 27
.END

The first appearance of a .PSECT directive with a given name assumes the location
counter is at relocatable or absolute zero. The scope of each directive extends
until a directive beginning a different section is given. Further occurrences of a
section name in a subsequent .PSECT statement resume assembling where the section

previously ended.

.PSECT COM1,REL ;DECLARE RELOCATABLE SECTION COM1
A: .WORD @ ;ASSEMBLED AT RELOCATABLE @,
B: .WORD @ : ;ASSEMBLED AT RELOCATABLE 2,
C: .WORD @ ;ASSEMBLED AT RELOCATABLE 4,
.PSECT COM2,REL ;DECLARE RELOCATABLE SECTION COM2
X: .WORD @ ;ASSEMBLED AT RELOCATABLE @
Y: .WORD @ ;ASSEMBLED AT RELOCATABLE 2,
.PSECT COM1 ;RETURN TO COM1
D: .WORD @& ;ASSEMBLED AT RELOCATABILE 6,
.END

All labels in an absolute section are absolute; all labels in a relocatable section
are relocatable. The location counter symbol, ., is relocatable or absolute when
referenced in a relocatable or absolute section respectively. An undefined internal
symbol is a global reference. It has no attributes except global reference. Any
labels appearing'on a .PSECT (or .ASECT or .CSECT) statement are assigned the value
of the location counter before the .PSECT (or other) directive takes effect.. Thus

if the first statement of a program is

9-88

A: .PSECT ALT,REL

then A is assigned to relocatable zero and is associated with the relocatable
section ALT.

Since it is not known at assembly time where the program sections are to be loaded,
all references between sections in a sihgle assembly are translated by the
Assembler to references relative to the base of that section. The Assembler

provides LINK with the necessary information to resolve the linkage.

Note that this is not necessary when making a reference to an absolute section

(the Assembler knows all load addresses of an absolute section).

In the following example, references to X and Y are translated into references

relative to the base of the relocatable section SEN.

.PSECT ENT,ABS

-=100¢
A: : CLR X ;ASSEMBLED AS CLR BASE OF
iRELOCATABLE SECTION + 10
JMP b4 ;ASSEMBLED AS JMP BASE OF

 RELOCATABLE SECTION +6
.PSECT SEN,REL

MoV R@,R1
JMP A . sASSEMBLED AS JMP 1090
Y: HALT o
X: WORD g -
.END

9-89

10.1.3 Code or Data Sharing

Named relocatable program sections with the attribute OVR operate as FORTRAN labeled
COMMON; that is, sections of the same name with the attribute OVR from different
assemblies are all loaded at the same location by LINK. All other program sections

(those with the attribute CON) are concatenated.

Note that there is no conflict between internal symbolic names and program section
names; it is legal to use the same symbolic name for both purposes. In fact,

considering FORTRAN again, this is necessary to accommodate the FORTRAN statement
COMMON /X/A,B,C,X

where the symbol X represents the base of this program section and also the fourth
element of this program section.

Program section names should not duplicate .GLOBL names. In FORTRAN language,

COMMON block names and SUBROUTINE names should not be the same.

10.2 JASECT AND .CSECT DIRECTIVES

DOS/BATCH assembly language programs may use the .PSECT directive exclusively,

as it affords all the capabilities of the .ASECT and .CSECT directives defined for
other PDP-11 assemblers. The DOS/BATCH Macro'Assembler will accept .ASECT and
.CSECT but assembles them as if they were .PSECT's with the default attributes
listed below. Also, compatibility exists between old object programs and the LINK,
.because LINK recognizes .ASECT and .CSECT directives that appear in such programs.

LINK accepts these directives from such object programs, and assigns default values
as shown in Table 9-3.

Table 9-3

pProgram Section Defaults

Attribute ' Default Value

.ASECT .CSECT (named) .CSECT
Name ABS name) Blank
Access RW RW RW
Type I - I . I
Scope GBL GBL ' ICL
Relocation ABS. : REL REL
Allocation OVR OVR CON
Memory LOW Low LOW

9-90

-

The allowable syntactical forms of .ASECT and .CSECT are:

.ASECT
.CSECT
«CSECT symbol

Note that
.CSECT JIM
is identical to

.PSECT JIM,GBL,OVR

9-91

PART 9
CHAPTER 11

LOAD MAP EXAMPLES

11.1 MAP LISTING
The Map has a header followed by segment descriptions.
11.1.1 Map Header

The header consists of the follcwing display (lower case entries are self-explanatory

variables filled in at runtime):

FILE file-name MEMORY ALLCCATION MAP
TyIS ALLOCATION WAS DONE ON date
AT time LINK VERSION ver-number

11.1.2 Segment Descriptions

Segment descriptions have four subsections

1. Attributes and Statistics - _ -Short
2. Control Section Allocation Syn8psis *Map -Long
3. File Contents ’) Map

4, Undefined References

Segment title lines appear as

***SEG: segname

11.2 ATTRIBUTES AND STATISTICS

LINK prints out the following data on segments. Only those items that apply to the

segment being described will appear on the map.

11.2.1 Read/Write Memory Limits

Read/Write Memory limits are displayed as follows:

R/W MEM LIMITS: start end length

9-92

The addresses define the storage allocated to the segments R/W section. The end

address is an inclusive address.
11.2.2 Read-Only Memory Limits

Read-Only memory limits are displayed as follows:

R=O MEM LIMITS: start end length

This entry can oc;ur only for the root segment.

11.2.3 ODT Transfer Address

ODT transfer address is displayed as follows:
ODT XFR ADDRESS: address

11.2.4 Program Transfer Address

Program transfer address is displayed gs follows:
PRG XFR ADDRESS: address

11.2.5 1Identification

Identification is diéplayed as follows:
IDENTIFICATION : name

«

The name is derived from the first non-blank .IDENT entry encountered during the

processing of the segment's object files.

11.3 CONTROL SECTION ALLOCATION SYNOPSIS

The Control Section Allocation Synopsis lists all the P-sections comprising the
segmen%. The sections are listed in alphabetical qrdér. In segments other than

the root, the read-only attribute is not valid. LINK processes R/W sections, then

R~0 sections, but declares any R~O section R/W.

9-93

For each section encountered in building the segment LINK displays
name: start end length.

Blank control sections are given the name
. BLK.

and collated lowest in the sort sequence. Absolute control sections are given

the name . ABS.

Note that neither of these names is a legal assembler section name and thus cannot

. be user-generated.

11.4 FILE CONTENTS

This section of the map identifies by file every P-section contributed to the seg-
ment. And for each P-section it lists every global symbol defined in the section.
The section begins with the display line

**%TITLE: t-name IDENT: i-name FILE: file-name

where

file-name = the name of the file specified in the ODL description of the
Task

t-name = the name of the first non-blank .TITLE entry encountered
in module. If a file contains n modules then a complete
FILE sections is displayed for each module.

i-name = the name of the first non-blank .IDENT entry encountered

in this file.

Following the. TITLE line, each section in the file appearxs in the order it is

encountered, formatted as
name; start end length
Following a section identifier is a list of global symbols in the form:

name address

If the address is relocatable, -R is appended to the address.

9-94

If an undefined reference is encountered, the following line is displayed.

- 2>>>>>>>>>>>UNDEFINED REFERENCE: name

These undefined references will appear interspersed with the global symbol definitions.
11.5 UNDEFINED REFERENCES

This section is headed by

kkkkkhhkdhhkk

UNDEFINED REFERENCES
This section separator is followed by an alphabetical list of all undefined symbols
found in the segment. This list contains all undefined references that appeared

in the FILES section. . .

At the end of this section the number of octal bytes used by LINK to complete the

load, and the number of octal bytes remaining unused by LINK appear as
SPACE USED XXXXXX SPACE FREE XXXXXX
The load map shown below was generated by the following LINK command string:

CILUS3,LP:/LG/CR<CILUS.ODL/MP/E

9-95

	9-001
	9-002
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	9-31
	9-32
	9-33
	9-34
	9-35
	9-36
	9-37
	9-38
	9-39
	9-40
	9-41
	9-42
	9-43
	9-44
	9-45
	9-46
	9-47
	9-48
	9-49
	9-50
	9-51
	9-52
	9-53
	9-54
	9-55
	9-56
	9-57
	9-58
	9-59
	9-60
	9-61
	9-62
	9-63
	9-64
	9-65
	9-66
	9-67
	9-68
	9-69
	9-70
	9-71
	9-72
	9-73
	9-74
	9-75
	9-76
	9-77
	9-78
	9-79
	9-80
	9-81
	9-82
	9-83
	9-84
	9-85
	9-86
	9-87
	9-88
	9-89
	9-90
	9-91
	9-92
	9-93
	9-94
	9-95
	9-96

