PART 10

THE DOS/BATCH LIBRARIAN

LIBR

PART 10
CHAPTER 1
INTRODUCTION TO LIBRARIAN

The DOS/BATCH Librarian (LIBR) is a system program that prbvides facilities for
creating, mdaifying, deleting, and listing the contents of libraries. &A library
is a file consisting of one or more object modules which are accessible through
a library directory. An object module is the binary output of the DOS/BATCH
Assembler or FORTRAN Compiler.

LIBR is a valuable program for the DOS/BATCH user because:

1. It eliminates having separate directory entries in a User File Directory
(UFD) for each object module.

2. It expedites the linking process in conjunction with the Linker's library
search capabilities. .

3. It allows for standardization and controlled updating of frequently used
routines, e.g., FORTRAN cosine routine.

Thg user controls the operating of LIBR through command strings typed on the
keyboard. Command strings may specify devices, library and object module names,
and switches that indicate the LIBR operation desired. The user can direct
LIBR to: '

a. Create a library,

b. Update a lihrary,

c. Insert one or more object modﬁles ;n a library,

d. Replace one or more object modules in a library,

e. List the contents of a library,

f. Delete one or more object modules from a library, and

g. Delete an entife library.

A directory listing of the object modules of a library can be obtained by merely
specifying the device on which the directory is to appear and the name of the

library.
The flexibility of LIBR enables the user to specify certain combinations of opera-

tions in a single command string. For example, a library can be modified, renamed,

and listed in one command string.

10-1

The switch optidns which direct LIBR operations are:

Switch Operation
/D Delete object mcdule
/DL Delete input library
/I Insert object mcdule
/LO List object modules
/R Replace object module

If the user types an illegal command string (e.g., illegal format, excessive
switches, nonexistent file or object module, etc.) LIBR prints an appropriate

error message on the teleprinter.

The following discussion assumes that the reader is familiar with the DOS /BATCH
Monitor, EDIT Text Editor, MACRO Assembler, ODT-11R Debugging Program, and LINK

Linker.

10-2

PART 10
CHAPTER 2
"OPERATING PROCEDURES

2.1 CALLING LIBR

‘The Librarian is called into core by typing the RUN command in response to the
Monitor's dollar sign. The Librarian is stored as LIBR; when called it prints its
name, version number, and a # sign, and then waits for the user to issue a command

string. For example:

$RUN LIBR

LIBR Vxxx
#

2.2 COMMAND STRING

When the Librarian is in core and has printed the # sign, it is ready to accept a

user command string. The format is:
output library,listing file<input library, input file(s)

LIBR performs two passes over all input files. For non-file-structured devices
(e.g., paper tape reader), the system informs the user to reload the device for the
second pass. For file-structured devices, both passes are performed automatically

without requiring user intervention.

2.2.1 Creating a Library

Creating a library requires an output library specification and the input files to be
placed in the library. The input files must be preceded by a comma; the input

files are not considered to be an input library.
output library(,listing file)<,input file(s)

A library is created on the device specified in the output library specxflcatlon and
named as specified. The listing file specification is optional and, if it is present,
the contents of the output library will be listed. The format of the 1lst1ng is

discussed under the heading "Listing a Library."

An input library need not appear, but the comma and one or more input files must

appear (each of which contains one or more object modules) For example:
#DT1:FIL. LIB< FIL. 1 FIL.2

creates a library named FIL.LIB on DECtape 1. The library consists of all object
modules in FIL.1l and FIL.2 in that order, and in the order in which the object

\

modules appear in their respective input files.

10-3

A restriction placed on the user by the Librarian is that it accepts a command
specification of only one line. It is therefore suggested when creating a Library
from a large number of object modules, that the object modules be concatenated into

a reasonable number of files.!

Because the length of the Librarian's command string
is restricted to one teleprinter line, creating libraries from many object modules
must be accomplished with an intermediate step. The step is to first concatenate
the object modules in their desired order using PIP. Having done'this; the command
string to the Librarian is reduced to one input file which contains the concatenated

object modules. &An example of this follows.

$RU PIP
ﬁ_FILE.001<FILE.A,FILE.B,FILE.C
iFILE.002<FILE.D,FILE.E,FILE.F
ﬁFILE.003<FILE.G,FILE.H,FILE.I

#tc

LKI

$RU LIBR
iNAME,LIB<,FILE.¢¢1,FILE.¢M2,FILE.¢¢3
$RU PIP ‘
#FILE.001,FILE.002,FILE.003/DE

The Librarian does not supply default extensions (e.g., .OBJ); the user must

remember to supply them.
2.2.2 vupdating a Library

To update a library, both output and input library specifications are required,

along with input files that may consist of one or more object modules.
Libraries can be updated in one of three ways:

1. Delete one or more object modules.
2. Insert one or more object modules
3. Replace one or more object modules.

Listing the updated library is optional.

INote that an input file of concatenated object modules differs from a library in
that it does not have a directory of the object modules it contains.

10-4

2.2.2.1 To Delete One or More Object Modules
output library(,listing file)<input library/D:Ml:...Mn

The output library is created as a result of deleting the object modules named

" Ml..., Mn from the input library. The listing file is optional.

The name associated with an object module is the symbol assigned to the module by

the MACRO Assembler's .TITLE directive.

The object modules to be deleted must appear in the same order as they appear in

the library; their order can be determined from the listing.
For example:
#DT1:LIBR.1<DT2:LIBR.0/D:M1:M2

creates a library named LIBR.1 on DECtape 1 as a result of deleting the object
modules M1 and M2 from LIBR.O on DECtape 2.

Insert and/or Replace operations cannot accompany a Delete request.

2.2.2.2 To Insert One or More Object Modules

-

output library(,listing file)<input library,input file(s)/I(:v)

The output library is created as a result of combining the object modules of the
input file with the input library. If v is specified, the object module(s) in the
input file are insertéd starting at position v, otherwise, they are inserted at
the end. v is treated as a decimal integer, and is always relative to the’input
library.

If more than one input file is specified for insertion, the positions at which the

files are to be inserted must appear in ascending order. For example:
#DT1:LIBR.1<DT2:LIBR.0,FIL.1/I:2,FIL.2/I

creates an output library on DECtape 1 as a result of inserting the object modules
of FIL.1 into LIBR.O, beginning at position 2, and then inserting the object
modules of FIL.2 into LIBR.O at the end.

Insert and Replace operations can appear in the same command as long as the order

restriction is observed.

10-5

2.2.2.3 To Replace One or More Object Modules
output library(,listing file)<input library, input file(s)/R

The output library is created as a result of replacing the object module(s) in the

input library -by those in the input file(s).

The object modules to be replaced must have the same name as those replacing them,

and they must be in the same order. For example:
iDTl :LIBR.1<DT2:LIBR.O,FIL.1/R,FIL.2/R

creates the output library LIBR.1l on DECtape>1 as a result of replacing the object
modules in the input library LIBR.O with those in FIL.l and FIL.2.
./

2.2.3 Listing a Library

To list the contents of a library requires only a listing file specification and an
input library specification. The listing file specification must be preceded by a

comma, so that it is not interpreted as an output library.
#,listing file(/LO)<input library

The directory of the input library is listed. The presence of the /LO switch
directs the Librarian to produce an object module listing. This is a means of
double-checking the accuracy of the library; the directory listing must corres-

pond exactly to the object module listing.

The output library is listed if one was created; otherwise, the input library is

listed. The format of the listing is:

Library Name and Extension
Decimal Order Number Object Module Name (first module)

. .
. .

Decimal Order Number Object Module Name (last module)

10-6

For example, if LIB.l contains object modules M1, M2, and M3 in that order, the
command :

#,LP:FIL.LST<DT1:LIB.1 -,

produces on the line printer;:

LIBR Vxxx (xxx is the LIBR version number)
FIL .LST date time
SEQ. NAME VERSION
00001 © M1 021
00002 M2 031
00003 M3 041

If the /LO switch appears, for example:
i,LP:FIL.LST/LO<DT1:LIB.l

the listing above is followed by a form feed and a similar table, except that the
name of the second table is always OBJMOD.LST.

The library name that is printed at the head of the listing is the name specified

in the listing file specification. For example:

#LIB.ABC,LP:NAME<,FIL.1,FIL.2

The listing is titled NAME, not the newly created library LIB.ABC. When the listing
file name is not specified, then the listing.is:titled with the name of the newly
created file (LIB.ARC). -

2.2.4 Naming Libraries

The output library can have the same name as the input library. Tn this case,
" however, the input library has an implied /DL; that is, the input library is deleted.
‘For example:

#LIB.1<LIB.1/D:0M1

is the same as:

#LIB.TMP<LIB.1/D:OM1/DL

and then rename LIB.TMP to LIB.1

10-7

NOTE

The user must never name a
Library LIBR.TMP.
is reserved for use by the

Librarian.

2.2.5 Legal File Specification Combinations

This name

In a command string, various combinations of file specifications are possible;

legal combinations and their operation are shown below.

Input

Output Input

Operation Library Listing Library File (s) Note
Insert or Replace (1) P P P P SE if/D on
Object Modules; input
List Output Lib- library
rary
Delete Object (2) P P P NP SE if/D not
Modules; List on input
Output Library library
Create Library; (3) P P NP P SE if switch
List Output on input
Library file
List Input (4) NP P P NP . SE if /D on
Library inputf library
Same as (1) ex- (5) P NP P P Same as (1)
cept no listing
Same as (2) ex- (6) P NP P NP Same as (2)
cept no listing
Same as (3) ex- (7) P NP NP P Same as (3)
cept no listing
Legend: present :

P
NP
SE

not present

syntax errcor

10-8

“ PART 10
CHAPTER 3
EXAMPLES

" Example 1

Assume FIL.l contains object modules OMI1, OM2, and OM3 in that order, FIL.2 contains
OM4 and OM5 in that order, FIL.3 contains OM5 and OM3 in that order, and FIL.4 con-
tains OM6. Then: ’

#LIB.1,LP:LIB.1<,FIL.1,FIL.2

Creates a library named LIB.l containing object modules OM1, OM2, OM3, OM4, and OMS5

in that order. The listing appears on the line printer as:

LIBR Vxxx

LIB .1 date time
SEQ. NAME VERSION

00001 OoM1 025

00002 oM2 032

00003 oM3 041

00004 oM4 054

00005 oM5 027

Files FIL.l and FIL.2 remain unaltered. The listing is produced after all other

actions have been performed. Consequently,
#LIB.1,LIB.1<,FIL.1,FIL.2

N

produces an error message (file already exists) when an attempt is made to write
the listing to the disk.

Example 2
Using the assumption above:
ﬁ;IB.2<LIB.1/D:OMl:OM4
.creates ailibrary named LIB.2 containing objeét‘modules OM2, OM3, and OM5 in that

order. No listing is produced and LIB.l is not deleted.

10-9

Example 3
#LIB,3<LIB.2/D:0M3:0M2

produces an error message because the modules to be deleted are not in the order in

which they appear in the library.

Example 4

The command string:
#,LP:LIB2.LS/LO<LIB.2

produces a listing on the line printer which appears as:

LIBR Vxxx
LIB2 LS date time
SEQ. NAME VERSION
00001 oMz 032
00002 OM3 . 041
00003 oM5 027
Example 5

The command string:
#LIB.3<LIB.2/DL,FIL.4/I:2

creates a library named LIB.3 containing OM2, OM6, OM3 and OM5 in that order. No
listing is produced and LIB.2 is deleted.

Example 6
The command string:
#LIB.4<LIB.3,FIL.4/R

creates a library named LIB.4, which is really LIB.3 with OM6 replaced (i.e.,

removed from LIB.3 before creating LIB.4).

10-10

Example 7
The command string:

#LIB.5<LIB.4,FIL.3/R

produces an error message because the object modules in FIL.3 are not in the same
order as in LIB.4.

Example 8
The command string:
ﬁLIB.5<LIB.3/DL,FIL.4/I
creates a library named LIB.S5 containing OM2, OM6, OM3, OM5 and OM6 in that order.
No listing is produced and LIB.3 is deleted. Note that a library can contain
multiple copies of the same object module, e.g., two OM6 modules, as above.
Example 9
The command string:
#LIB.6<LIB.5/D:0M6
creates a library named LIB.6 containing OM2, OM3, OM5 and OM6 in that order. No
1iSting is produced and LIB.5 is not deleted. When a library contains multiple
copies of the same object module, the copies are deleted one at a time in their
order of occurrence. k
Example 10 -
To delete all occurrences of OM6, the command string should be either:
#LIB.6<LIB.5/D:0M6:0M6

or

#LIB.6<LIB.5/D:0M6/D:0M6

10-11

	10-001
	10-002
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12

