PART 11

THE DOS/BATCH DEBUGGING PROGRAM

oDT

PART 11
CHAPTER 1

INTRODUCTION TO THE
DEBUGGING PROGRAM ODT

ODT (on-line-debugging technique for the PDP-11) is a system program that aids in
debugging programs. From the keyboard the user interacts with ODT and a loaded

object program. The major features provided by ODT include:

1. Printing the contents of any location for
examination or alteration.

2. Running all or any portion of a user
program using the breakpoint feature.

3. Searching the program area for specific
bit patterns.

4. Searching the program area for words which
reference a specific word.

5. Calculating offsets for relative addresses.

6. 'Filling a block of words or bytes with a
designated value. ‘

During a debugging session at the terminal the user should have the assembly
listing of the program to be debugged. Minor corrections to the program may be
made on-line during the debugging session, The program may then be run under
control of ODT to verify changes made. Major corrections,'however, such as a
missing subroutine, should be noted on the assembly listing and incorporated in

a subsequent updated program assembly.
l.1 RELOCATION.

When the assembler produces a binary relocatable object module, the base address
of the module is taken to be location @@g@gg, and\thé addresses of all program
locations as shown in the asséﬁbly listing are indicated relative to this base
address., ’After the module is linked by the Linker, many values within the program,
and all the addresses of locations in the Program, will be incremented by a
constant whose value is the actual absolute base of the module after it has been

relocated., This constant is called the relocation bias for the module. - Since a

linked program may contain several relocated modules, each with its own relocation
bias, and since, in the process of debugging, these biases will have to be sub-
tracted from absolute addresses continually in order to relate relocated code to

assembly listings, ODT provides an automatic relocation facility,

11-1"

The basis of the relocation facility lies in 8 relocation registers, numbered [}
through 7, which may be set to the values of the relocation biases you are inter-
ested in at a given time during debugging. Relocation biases should be obtained
by consulting the link map produced by the Linker., Once set, a relocation regis-
ter is used by ODT to relate relocatable code to relocated code. For more infor~
mation on the exact nature of the relocation process, consult Part 9, the
DOS/BATCH Linker.

1.2 RELOCATABLE EXPRESSIONS

The symbqlﬁh'below stands for an integer in the range @ to 7 inclusive.

The symbol k stands for an octal number up to six digits long, with a maximum
value of 177777. If more than six digits are typed, ODT takes the last six digits,

truncated to the low-order 16 bits. k may be preceded by a minus sign, in which

case its value will be the two's complement of the number typed. For example:

k (number ﬁxged) - value
1 p2pepel
-1 177777
499 2po4gd
-17773¢ 2e@a5H
1234567 #34567

The symbol r is called a relocatable expression and is evaluated by ODT as a

16-bit (6 octal digit) number. It may be typed in any one of three forms.

Form A k The value r is simply the value of k.
Form B - n,k The value of r is the value of k plus the contents

of relocation register n. If the n part of this
expression is greater than 7, ODT takes only the
last octal digit of n.

Form C C or Whenever the letter C is typed, ODT replaces C with
C,k or the contents of a special register called the constant
n,C or register. This value has the same role as the k or
c,C n that it replaces. The constant register is desig-

nated by the symbol $C and may be set to any value.

In the following examples, assume that relocation register 3 contains @@3499

and that the constant register contains @gggggs.

11-2

r value of r

5 200085
-17 177761
3,8 293408
3,15¢ #93558
3,-1 9@3377
c 2099093
3,C #p34p3
c, ¢ #3409
c,1¢ g@341p
c,C 893403

1.3 COMMANDS

ODT's commands are composed using the following characters and symbols. They are
often used in combination with the address upon which the operation is to occur,

and are offered here for familiarization prior to their thorough coverage, which

follows.,

r/ . Open the word at location r.

/ Reopen the last opened location.

r \ (SHIFT/L) Open the byte at location r.

\ " Reopen the last opened byte.

nR After .a word has been opened, retype the
contents of the word relative to relocation
register n; i.e., subtract contents of
relocation register n from the contents of -
the opened word and print the result. If
n is omitted, ODT selects the relocation
register whose contents are closest but
less than or equal to the contents of -the
opened location.

n! After a word or byte has been opened, print

) the address of the opened location relative

to relocation register n. If n is omitted,
ODT selects the relocation register whose
contents are closest, but less than or
equal to the address of the opened location.

v (LINE FEED Key). Open next sequential location.

for * Open previous location. .

RETURN Close open location and wait for the next command.

+or _ Take contents of opened location, index by
contents of PC, and open that location.

Q@ Take contents of opened location as absolute

address and open that location,

11-3

$n/
$y/

Take ccntents of opened location n as
relative branch instruction and open
referenced location.

Return to sequence prior to last e, >,
or + command and open succeeding location.

Perform a Radix-5@ unpack of the binary
content:s of the current opened word;

then permit the storage of a new Radix 5@
binary number in the same location.

Calculate offset from currently open
location to r.

Open general register n (@-7).

Open special register y, where y may
be one of the following letters.

S status register (saved by ODT
after a breakpoint)

M mask register

B first word of the breakpoint table
P priority register

Cc constant register

R first relocation register
(register @)

F format register

Fill memory words with the contents of
the constant register.

Fill memory bytes with the contents of
the low-order 8 bits of the constant
register. -
Separate commands from command arguments
(used with alphabetic commands below);
separate a relocation register specifier
from an addend.

Remove all breakpoints.

Set breakpoint at location r.

Set. breakpoint n at location r.

Remove breakpoint n.

Search for instructions that reference
effective address r.

11-4

;S

r;G

3P

k;P

r;nA

CTRL/C

.

Search for words with bit patterns
that match x.

Enable single-instruction mode (n can 2
have any value and is not significant);
disable breakpoints.)

Disable single-instruction mode; reenable
breakpoints.

Go to location r and start program run.

Proceed with program execution from
breakpoint; stop when next breakpoint
is encountered or at end of program.

In single~instruction mode. only, proceed
to execute next instruction only.

Proceed with program execution from
breakpoint; stop after encountering the
breakpoint k times.

In single-instruction mode only, proceed
to execute next k instructions.

Set all relocation registers to =1 (high-
est address value).

set relocation register n to -1,

set relocation register n to the value of
r; if n is omitted, it is assumed to be f.

Print the value of r and store it in the
constant register.

Print n bytes in their ASCII format, starting
at location r; then allow n bytes to be typed
in, starting at location r.

Prepare Monitor to accept a command from

. the keyboard.

11-5

PART 11
CHAPTER 2
COMMANDS AND FUNCTIONS

When ODT is started as explained in Chapter 11-4, it will indicate its readiness
to accept commands by printing an asterisk on the left margin of the teleprinter
output. In response to the asterisk the user can issue most commanas; for example,
you can examine and, if desired, change a word, run the object program in its
entirety or in segments, or even search core for certain words or references

to certain words. The discussion below explains these features.

All commands to ODT are stated using the characters and symbols shqwn in
Sections 11-1.2 and 11-1.3.

2.1 PRINTOUT FORMATS

Normally, when ODT prints addresses (as with the commands ¥, 4+, +, @, <, and >},
it attempts to print them in relative form (Form B in Section 11-2,1). ODT looks
for the relocation register whose value is closest but less than or equal to

the address to be pﬁinted, and then represents the address relative to the con-
tents of the relocation register. However, if no relocation register fits the
requirement, the address is printed in absolute form. Since the relocation
registers are initialized to -1 (the highest number), the addresses are initially
printed in absolute form, If any relocation register subsequently has it contents

changed, it may then, depending on the command, qualify for relative form.

For example, suppose relocation registers 1 and 2 contained 1f@¢ and 1g@4
respectively, and all other relocation registers contained numbers much higher.

Then the following sequence might occur.

*774/909099V
gog176/ 908008+
1,000008 /p20deg+
1,000002 /gg000gy
2,000p080 /292008

The format is controlled by the format register, $F. Normally this register
contains @, in which case ODT prints addresses relatively whenever possible.
$F may be opened and changed to a nonzero value, howe%er, in which case all

addresses will be printed in absolute (see Section 11-2.2.1f).

11-6

2,2 OPENING, CHANGING AND CLOSING LOCATIONS

An open location is one whose contents ODT has printed for examination, and whose
contents are available for change. A closed location is one whose contents are

no longer available for change.

The contents of an open location may be changed by typing the new contents
followed by a single character command which requires no argument (i.e., ¥, 4,
RETURN, +, @, >, <). Any command typed to open a location when another location
is already oped; will first cause the currently open location to be closed.

2.2.1 slash /
One way to open a location is to type the addresé followed by a slash,

*100@/212746

Location 1g@@ is open for examination and is available for change. (Note that in

all examples ODT's printout is underlined; user typed input is not.)

Should the user not wish to change the contents of an open location, he should type
the RETURN key and the location will be closed; ODT will print another asterisk and
wait for another command. However, should the user wish to change the word, he

should simply type the new contents before giving a command to close the location.

*109@/812746 $12345
*

-In the example above, location 1@@@ now contains @12345 and is closed since the
RETURN key was typed after entering the new contents, as indicated by ODT's

second asterisk. Used alone, the slash will reopen the last location opened.

*100@/@12345 2349
*/992348
In the example above, the open locatién was closed by typing the RETURN key,
ODT changed the contents of location 1g@g@ to @@234¢ and tﬁen closed the
location before printing the *, A single slash then directed ODT to reopen
the last location opened. ~This allowed verifying that the word @g234g8 was correct-

ly stored in location 10¢88.

11-7

Note again that opening a location while another is currently open will auto-

matically close the currently open location before opening the new location.

Also note that if you specify the opening of an odd~numbered address with a
slash, ODT will open the location as a byte, and subsequently will behave as
if a backslash had been typed.

2.2,2 Backslash \

In addition to operating on words, ODT operates on bytes. One way to open a
byte is to type the address of the byte followed by a backslash (\ is printed

by typing SHIFT/L). This not only causes the byte value at the specified address
to be printed out, it also causes the value to be interpreted as ASCII code, and

the corresponding character to be echoed (if possible) on the terminal.

*1ggI\ 1g1=A

A backslash typed alone will reopen the last open byte. If a word was previously

open, the backslash will reopen its even byte.

*1992/90808\g84=

2.2.3 LINE FEED Key ¥

If the LINE FEED key is typed when a location is open, ODT closes-the open

location and opens the next sequential location. -

*1ppp/9@2348Y (¥ denotes typing the LINE FEED‘keQ)

gp1pp2/g12748

In this example, the LINE FEED key instructed ODT to print the address of the
next location along with its cocntents, and to wait for further instructions.
After the above operation, location 1¢@g@ is closed and 1@g@2 is open. The open

location may be modified by typing the new contents.

If the opened location was a byte, the LINE FEED opens the next byte.

11-8

2,2.4 Up-Arrow 4 -

The up-arrow (or circumflex) symbol results from typing the SHIFT and N key
combination. If the up-arrow is typed when a location is open, ODT closes the
open location and opens the previous location (as shown by continuing from the

example above).

221@p2/81274¢4 —
201920/992348

Now location 1@@2 is closed and 1¢@¢@ is open. The open location may be modified

by typing the new constants.

If the opened location was a byte, then 4 opens a byte as well,

The LINE FEED and up-arrow (or circumflex) keys will operate on bytes if a byte

is open when the command is given (see Sections 11-2,2.3 and 11-2.2.4). For

example:
*1g@1N\1g1=n¥

go1gp@2\pgg4=+

2g1g21\1@1=A

*

2.2.5 Back=-Arrow <

The back-arrow (or underline) symbol results from typing the SHIFT and O key
combination. If the back—arrow is typed to an open word, ODT interprets the
contents of the currently open word as an address indexed by the program counter

(PC) and opens the location so addressed.

1906/ pggage-
gp1p16/1994g5

r

Notice in this example that the open location, 1@@g6, was indexed by the PC as
if it were the operand of an instruction with address mode 67 as explained in

the Processor Handbook.

11-9

A modification to the opened location can be made before a ¥, 4, or +, is typed.
Also, the new contents of the location will be used for address calculations

using the + command. Example:

:}¢¢/¢¢¢222 4¥ (modify to 4 and open next location)
gpg1p2/ppgill 64 (modify to 6 and open previous location)
237190/ 300034 1@@«(change to 1¢¢@ and open location indexed
239282/ (contents) by PC)

2.2.5 Open the Addressed Location @

The symbol @ will optionally modify, close an open word, and use its contents

as the address of the location to open next.

*1pge/g@1p24 Q (open location 1@24 next)
pgplp24/¢p858¢8

*1pp6/p@1924 21p8 @(modify the 219% and open
232103/177774 location 21¢9)

2.2.7 Relative Branch Offset >

The right angle bracket > will optionally modify, close an open word, and use its

low~order byte as a relative branch offset to the next word opened.

*1932/8@0497 341> - (modify to 3@l and interpret
ppge36/29pp1e as a relative branch)

2.2,8 Return to Previous Sequence <

The left-angle bracket < will optionally modify, close an open location, and
open the next location of the previous sequence interrupted by a <, @, or >
command; Note that <, @, or > will cause a sequence change to the word opened.
If a sequence change has not occurred, < will simply open the next location as

a LINE FEED does. The command will operate on both words and bytes.

*1¢32/9p@407 391 > (> causes a sequence change)

. P9p636/p00818 < (< causes a return to original sequence)
291934/001849 @ (@ causes a sequence change)
201840/08@4@5\ gg5= < (< now operates on byte)

291835 \gg2= < (< acts like V)

291936 \@gg4=

11-10

2.2,9 Accessing General Registers g-7

The program's general registers @-7 can be opened using the following command

format:

*$n/
where n is the integer representing the desired register (in the range @ through
7). When opened, these registers can be examined or changed by typing in new

data as with any addressable location. For example:

*$9/08920833 (RZ was examined and closed)
* .

and : ‘
*54/28p8474 464 (R4 was opened, changed, and
* : closed)

The example above can be verified by typing a slash in response to ODT's asterisk.

L

*/@pga64
The ¥, 4, ¢, or @ commands may be used whenAa register is open.
2.2,1f BAccessing Internal Registers

The program's status register contains the condition codes of the most recent
operational results and the interrupt priority level of the object program.

It is opened using the following command:

*$s/gg@311

where $S represents the address of the status register. In response to $S

in the example above, ODT printed the 16-bit word of which only the low-order

8 bits are meaningful: bits ¢-3 indicate whether a carry, overflow, zero, or
negative (in that order) has resulted, and bits 5-7 indicate the interrupt
priority level (in the range @-7) of the object program, (See Part 3, DOS/BATCH

Monitor, for the status register format.

1l1-11

The $ is used to open certain other internal locations:
$B location of the first word of the breakpoint table (see
Section 11-2,3).

$M mask location for specifying which bits are to be
examined during a bit pattern search.(see Section 11-2.6).

$P location defining the operating priority of ODT (see
Section 11-2.12).

$sS location containing the condition codes (bits @#-3)
and interrupt priority level (bits 5-7).

$C location of the constant register (see Section 11-2.7).

$R location of relocation register @, the base of the relocation
register table (see Section 11-2.1f).

$F location of format register (see‘Section 11-2,1).
2.,2.11 Radix-5@ Mode X

The Radix-5¢ mode of packing certain ASCII characters three to a word is employed
bj many DEC-supplied PDP-11 system programs, and may be employed by any programmer

via the assembler's .RAD5@ directive.

ODT provides a method for examining and changing memory words packed in this

way with the X command.

When a word is opened, the user may type X, in which case ODT will convert the
contents of the opened word to its 3-character Radix-5@ equivalent, and will

type these characters on the terminal. The user may then type one of the following.

Type Effect
a. RETURN key closes the currently open location.
b. LINE FEED key closes the location and opens the

next one in sequence.

ce % key " closes the location and opens the
previous one in sequence.

d. Any three characters whose converts the three specified characters
octal code is @4¢ (space) or . into packed Radix-5¢ format.
greater

Here are the legal Radix-5@ characters.

. $ Space # through 9 A through %

11-12

If any other characters are typed, the resulting binary number is unspecified.
However, exactly three characters must be typed before ODT resumes its normal

mode of operation,

After the third character is typed, the resulting binary number is available to
be stored into the opened location by‘closing the location in any one of the

usual ways (carriage-return, line feed, etc.). Example:

*1009/842431 " X=KBI CBA
*1gp@/g11421 X=CBA

WARNING

After ODT has converted the three characters to binary, the
binary number can be interpreted in one of many different
ways, depending on the command that follows. For example,

*1234/@63337 X=PRO XIT/

Since the Radix-5@ equivalent of XIT is 113574, the final

slash typed in the example will cause ODT to open location
113574 if it is a legal address. (See Section 11-2,15 for
a discussion of command legality and detection of errors.)

2.3 BREAKPOINTS

The breakpoint feature facilitates monitoring the progress of program execution.

A breakpoint may be set at any instruction that is not referenced by the program
for data. Whén a breakpoint is set, ODT replaces the contents of the breakpoint
location with a trap instruction. When the program is executed and the breakpoint
is encéuntered, program execution is suspended, the original contents of the

breakpoint location are restored, and ODT regains control.

With ODT the user can spécify up to eight breakpoints set, numbered‘ﬂ'through 7.
The r;B command will set the next available breakpoint. Specific breakpoints
may be set or changed by the r;nB command where n is the number of the breakpoint.

For example:

*1p2p;8 (sets breakpoint @)
*103@;B (sets breakpoint 1)
*1gag;B - {sets breakpoint 2)-
*1¢32;1B (resets breakpoint 1)
*

11-13

The ;B command removes all breakpoints. To remove only one of the breakpoints

the }nB command is used, where n is the number of the breakpoint. For example:

2B (removes the second breakpoint)

| *| *
-

\

The $B/ command opens the location containing the address of breakpoint @. The
next seven locations contain the addresses of the other breakpoints in order,
and thus can be opened using the LINE FEED key. (The next location is for single-

instruction mode, explained in Section 11-2.5). Example:

*$B/pgLgep
nnnnnn/g@1332+

nnnnnn/ (address internal to ODT)

In this example, breakpoint 2 is not set. The contents will be an address internal
to ODT. After the table of breakpoints is the table of proceéd command repeat
counts, first for each breakpoint, and then for the single instruction mode

(see Section 11-2,5).

o ¥

nnnnnn/ggigic ¥ (breakpoint 7)
nnnnnn/nnnnnn + (single-instruction address)
nnnnnn/gggEgs 15 ¥ (count for breakpoint @)
nnnnnn/gEgeos (count for breakpoint 1)

2,4 RUNNING THE PROGRAM r;G AND 1;P

Program execution is under control of ODT, There are two commands for running
the program: r;G and r;P. The r;G command is used to start execution (go) and
xr;P to continue (proceed) execution after having halted at a breakpoint.

For example,
*1900;G

starts execution at location 1@@@. The program will run until encountering a
breakpoint or until program completion, unless it gets caught in an infinite

loop, where you must either restart or re-enter as explained in Section 11-4.2.
When a breakpoint is encountered, execution stops and ODT prints Bn; (where n is

the breakpoint number), followed by the address of the breakpoint. You may

then examine desired locations for expected data. For example:

11-14

*1¢19;3B (breakpoint 3- is set at location

1919) .
*10900:G (execution started at location 19¢9)
*B3;091910 (execution stopped at location 1g1g)

*

When a breakpoint is set in a loop, it may be/déstfaﬁié to allow the program to
execute a certain number of times through the loop before recognizingtthe breakpoint.
This may be done by typing the k;P command and speciffing the number of times the
breakpoint is to be encountered before program execution is suspended (on the

kth encounter).

The count k is associated only with the numbered breakpoint that most recently
occurred, A different proceed count may be associated with each numbered

breakpoint, and will apply to that breakpoint only. Example:

B3; 99101 (execution halted at breakpoint)
*125¢;B (set breakpoint at:location 125¢g) '
*4;p {continue execution, loop through
B3; g@125 breakpoint 3 times and halt on 4th

* occurrence of the breakpoint)

The breakpoint repeat counts can be inspected by typiné $B/ and following that
with the typing of nine LINE FEEDs., The repeat count for breakpoint @ will then
be printed. The repeat counts for breakpoints 1 through 7, and the repeat count
for the single instruction trap follow in sequence (see Section 11-2,5).. Opening
any one of these provides an alternative way of specifying the count. The
location, being open, can have its contents modified in the usual manner by the

typing of new contents and then the RETURN key.

Breakpoints are inserted when performing an r;G or k;P command. Upon execution
of the r;G or k;P command, the general registers @-—6 are set to the values in
the locations specified as $@-$6 and the processor status register is set to the

value in the location specified as $S.
2,5 SINGLE-INSTRUCTION MODE

With this mode the user can specify the number of instructions he wishes executed
before suspension of the program run. The proceed command, instead of specifying a
repeat count for a breaonint encounter, specifies the number of succeeding instruc-
tibns to be executed. Note that breakpoints are disabled when single-instruction

mode is operative. Commands for single-instruction mode follow,

11-15

;ns Enables single-instruction mode (n can
have any value and serves only to dis-
tinguish this form from the form ;S);
breakpoints are disabled.

k;P Proceeds with program run for next k
instructions before re-entering ODT (if
k is missing, it is assumed to be 1),
(Trap instructions and associated handlers
can affect the proceed repeat count. See
Section 11-3.2.)

S Disables single~instruction mode.

When the repeat count for single-instruction mode is exhausted and the program

suspends execution, ODT prints

B8;k
*

where k is the address of the next instruction to be executed. The $B breakpoint
table contains this address following that of breakpoint 7. However, unlike

the table entries for breakpoints @-7, direct modification has no effect.

Following the repeat count for breakpoint 7 in the table is the repeat count
for single-instruction mode. This table entry, though, may be directly modified,
and thus is an alternative way of setting the single~instruction mode repeat
count. In such a case, ;P implies the argument set in the $B repeat count table

rather than 1.
2.6 SEARCHES

With ODT the user can search all or any specified portion of core memory for any

specific bit pattern or for references to a specific location.
2.6.1 Word Search Xx;W

Before initiating a word search, the mask and search limits must be specified
as shown in the example below. The 1oéation represented by $M is used to
specify the mask of the sedrch. $M/ opens the mask register. The next two
sequential locations (opened by LINE FEEDs) contain the lower and upper limits
of the search. Bits set to 1 in the mask will be examinéd during the search;
other bits will be ignored. Then the search object and the initiating command
are given using the x;W command where X is the search object. When a match is

found the address of the unmasked matching word is printed. For example:

) 11-16

*oM/gPpapE 177408 ¥ (test high order eight bits)

nnnnnn/goggps 1g9s < (set low address limit)

nnnnnn/@ggeees 1p49 (set high address limit)

*4pp;wW (initiate word search)
1g1 @778

281034/820494

*
In the search process, the word currently being examined and the search object
are exclusively ORed (XOR), and the result is ANDed with the mask. If this
result is zero, a match has been found, and is reported on the teleprinter.

Note that if the mask is zero, all locations within the limits will be printed.
Typing CTRL/U during a search printout will terminate the search.

2.6.,2 Effective Address Search r;E

ODT enables the user to search for words that address a specified location. Open
the mask register only to gain access to the low- and high-limit registers. After

specifying the search limits (Section 11-2.6.1) the command r:E is typed initiating

the search.

Words which are either an absolute address (argument r itself), a relative address

offset, or a relative branch to the effective address will be printed after

their addresses. For exam@le:

*sM/177490% ’ (open mask register only to gain
nnnnnn 1 1718v access to search limits)
nnnnnn/@g@lE4p 1g6g :
*1034;E } (initiating search)
¢glgleggglgge . (relative branch)
@E1@54 /882767 (relative branch)
*1020;E (initiating a new search)
2p1222/177774 (relative address offset)

103 1920 (absolute address)
=

" Particular attention should be given to the reported references to the effective
address, because a word may have the specified bit pattern of an effective

address without actually being so used, ODT will report these as well,

Typing CTRL/U during a search printout will terminate the search,

11-17

2,7 CONSTANT REGISTER r;C

It is often desirable to convert a relocatable address into a relocated address
or to convert a number into its two's complement, and then to store the converted
value into one or more places in your program. The constant register provides

a means of accomplishing this and other useful functions.

When r;C is typed, the relocatable expression r is evaluated to its six digit
octal value and is both printed on the terminal and stored in the constant
register. The contents of the constant register may be invoked in subsequent

relocatable expressions by typing the letter C.

Examples:

*-4432;C=173346 (The two's complement of 4432 is -~
placed in the constant register.)

:}ﬁﬁﬂ/ﬂﬁlgﬂﬂ C (The contents of the constant register
are stored in location 1@@d.)

*1g@@; 1R (Relocation register 1 is set to
14p@.)

*1,4272;C=g@5272 (Relative location 4272 is reprinted

as an absolute location and stored in
the constant register,)

2.8 CORE BLOCK INITIALIZATION ;F AND ;I

The constant register can be.used in conjunction with the commands ;F and ;I to
set a block of memory to a given value, While the most common value required

is zero, other possibilities are plus one, minus one, ASCII space, etc.

When the command ;F is typed, ODT stores the contents of the constant register
in successive memory words staiting at the memory word address specified in the
lower search limit, and ending with the address specified i the upper search

limit.

When the command ;I is typed, the low-order 8 bits in the constant register are
stored in successive bytes of memory starting at the byte address specified in
the lower search limit and ending with the byte address specified in the upper

search limit,

11-18

Example: Assume relocation register 1 contains 1@@@, 2 contains 2¢g@@, 3 contains
3¢P@. The following sequence sets word locations 1@@@-1776 to zero, and byte
locations 2@@@-2777 to ASCII spaces. '

*SM/ppapps v (open mask register to gain access

to search limits)

nnnnnn/geggEs 1,8+ (sets lower limit to 1@@@)
nnnnnn/g@gges 2,-2 (sets upper limit to 1776)
*@; C=pgeepy (constant register set to zero)
X F (locations 1@@@-1776 set to zero)
*sM/goppgay .
nnnnnn/gglgﬂﬂ 2,8% (sets lower limit to 2@@9)
nnnnnn/@g@1776 3,-1 (sets upper limit to 2777)
*ag;C=0ppp4p (constant register set to 4@

’ (SPACE))
I (byte locations 2@@@-2777 are set
* to value in low order 8 bits of

constant register)

2.9 CALCULATING OFFSETS r;O

Relative addressing and branching involve the use of an offset--the number of
words or bytes forward or backward from the current location to the effective
address, During the debﬁgging session it may be necessary to change a relative
address or>branch reference by replacing one instruction offset with another.

ODT calculates the offsets in response to its r;O0 command.

The command r;O causes ODT to print the 16-bit and 8-bit offsets from the currently

open location to address-r. For example:

:}46/¢ggg34 414;0 g¢¢g44 222 22
T/go0g22

In the example, location 346 is opened and the offsets from that location to
location 414 are calculated and printed. The contents of location 346 are then

changed to 22 (the 8-bit offset) and verified on the next line.

" The 8-bit offset is printed only if it is in the range -1281¢ to 1271¢ and the
16-bit offset is even, as was the case above. For example, the offset of a

relative branch is caléulated and modified as follows,

*1934/193421 1¢34;0 177776 377\@2L 377
*193777

Note that the modified low-order byte 377 must be combined with the unmodified
high-order byte. '

11-19

2.10 RELOCATION REGISTER COMMANDS r;nR, ;nR, ;R

The use of the relocation registers has been defined in Section 11-1,1, At the
beginning of a debugging sessioh it will be desirable to preset the registers

to the relocation biases of those relocatable modules that will be receiving the

most attention,

This can be done by typing the relocating bias, followed by a semicolon and the.

specification of relocation registers.
r;nR

r may be any relocatable expression and n is an integer from ¢ to 7. If n is

omitted it is assumed to be g.

As an example:

:}¢¢¢;5R ' (puts 1@@¢@ into relocation register 5)
*5,100;5R (effectively adds 1¢@ to the contents
*

of relocation register 5)

Y

In certain uses, programs may be relocated to an address below that at which they
were assembled. This could occur with PIC code which is moved without the use

of the linker.

In this case the appropriate relocation bias would be the 2's complement of the
actual downward displacement. One method for easily evaluating the bias and

putting it in the relocation register is illustrated in the following example.

Suppose the program was assembled at location 5¢@@ and was moved to locatiqn

1g¢@. Then the sequence

*1009; 1R
¥1,-5008; 1R
*

puts the 2's complement of 4@@@ in relocation register 1, as desired,
Relocation registers are initialized to -1, so that unwanted relocation registers

will never enter into the selection process when ODT searches for the most

appropriate register.

11-20

To set a relocation register to -1, type ;nR. To set all relocation registers

to <1, type ;R.

ODT maintains a table of relocation registers, beginning at the address specified
by $R. Opening $R ($R/) opens relocation register @. Successively typing the
LINE FEED key opens the oﬁher relocation registers in sequence. When a relocation
register is opened in this way, it may be modified just as any other memory

location.
2.11 'THE RELOCATION CALCULATORS nR and n!

when a location has been opened, it is often desirable to relocate the relocated
address and the contents of the location back to their relocatable values. To
calculate the relocatable address of the opened location relative to a particular
relocation bias, type n!, where n specifies the relocation register., This calcu-
lator works with opened bytes and words. If n is omitted, the relocation register
whose contents are closest but less than or equai to the opened location is
selected automatically by ODT. In the following example, assume that these
conditions are fulfilled by relocation register 2, which contains 2@g@. To

find the most likely module that a given opened byte is in, use n! as shown here.

L 3
*250N\g11= 1=2,p0050p

Typing nR after opening a word causes ODT to pfint the octal number which equals
the value of the contents of the opened location minus the contents of relocation
register n. If n is omitted, ODT selects the relocation register whose contents
are closest but less than or equal to the contents of the opened location. For
example, assume the relocation bias.stored in relocation register 1 is ¢¢1234; use

nR as shown here,

*1,500/824558 1R=1,023314

The value 23314 is the content of 1,5@@, relative to the base 1234. An example
of the use of both:

If relécation register 1 contains 1@@@g, and relocation register 2 contains 2@gd,
then to calculate the relocatable addresses of relocation 3@¢@@ and its content,
relative to 1¢@¢ and 2@¢@@, the following can be performed.

*3000/p@56708 11=1,002000 21=2,0p1090 1R=1,PP4678 2R=2,@03678

11-21

2.12 ODT PRIORITY LEVEL $P

$P represents a location in ODT that contains the priority level at which ODT
operates., If $P contains the walue 377, ODT will operate at the priority level
of the processor at the time ODT is entered., Otherwise $P may contain a value

between @ and 7 corresponding to the fixed priority at which ODT will operate.

To set ODT to the desired priority level, open $P. ODT will print the present

contents, which may then be changed.

*$p/@gppse 377
*

If $P is not specified, its value will be seven.

Breakpoints may be set in routines at different priority levels. For example,
a program running at low priority level may use a device service routine which
operates at a higher priority level., If a breakpcint occurs from a low priority
routine, if ODT operates at a low priority, and if an interrupt does occur from
a high priority routine, then the breakpoints in the high priority routine will

not be executed since they have been removed.

2.13 ASCII INPUT AND OUTPUT r;nhA

ASCII text may be inspected and changed by the command
r;nA

where r is a relocatable expression, and n is a character count., If n is omitted
it is assumed to be l. ODT prints n characters starting at location r, followed

by a <CR> <LF>, You may then type one of the following.

a. <CR> ODT outputs <CR> <LF> <*> and waits for another command.
b. <LF> ODT opens the byte following the last byte output.
c. <up to n characters of text>
'ODT inserts the text into core, starting at location r.
If less than n characters are typed, you must
terminate the command by typing CTRL/U, causing
<CR> <LF> <*> to be output as in case a, above.
However, if exactly n characters are typed, ODT

responds with <CR> <LF> <address of next available
byte> <CR> <LF>» <#*>,

33-22

Note that n may actually be expressed as a relocatable expression, and could

be quite large, accidentally. There is no safeguard against this in ODT.
2,14 RETURN TO MONITOR CTRL/C

If ODT is awaiting a command, a CTRL/C from the keyboard will simulate a TTY
interrupt and call the Monitor. The Monitor responds with a 4C on the terminal
and returns to ODT at a wait loop. See Chapter 3-3 of this handbook (DOS/BATCH
Monitor) for a more detailed description of CTRL/C. ‘

2,15 ERROR DETECTION

ODT informs the user of two types of error: illegal or unrecognizable command
and bad breakpoint entry. ODT does not check for the legality of an address when

commanded to open a location for examination or modification. Thus the command:
177774/

‘will reference nonexistent memory, thereby causing a trap through the vector at
location 4, If this vector has not been properly initialized, unpredictable

results will occur.

¥

Similarly, a command such as

520/

which references an address eight times the value represented by $2, may'cause an

illegal (nonexistent) memory reference.

Typing something other than a legal command will cause ODT to ignore the

command, print

?
. —

and wait for another command. Therefore, to cause ODT to ignore a command

just typed, type any illegal character (such as 9 or RUBOUT) and the command *

will be treated as an error, i.e., ignored.

11=-23

ODT suspends program execution whenever it éncounters a breakpoint, i.e., a
trap to its breakpoint routine. If the breakpoint routine is entered and no

known breakpoint caused the entry, ODT prints

BE@P1542
*

and waits for another command., In the example above, BE@@1542 denotes a bad
entry from location @@l542, A bad entry may be caused by an illegal trace
trap instruction, setting the T-bit in the status register, or by a jump to

the middle of ODT.

11-24

PART 11
'CHAPTER 3
"PROGRAMMING CONVENTIONS

Information in this chapter is not necessary for the efficient use of ODT.
Howéver, it provides a better understanding of how ODT performs some of its

functions,

3.1 FUNCTIONAL ORGANIZATION
The internal organization of ODT is almost totally modularized into independent
subroutines. The internal structure consists of three major functions: command

decoding, command execution, and various utility routines.

The command decoder interprets the individual commands, checks for command errors,
saves input parameters for use in command execution, and sends control to the
appropriate command execution routine,

The command execution. routines take parameters to be saved by the command decoder
and use the utility routines to execute the specified command. Command execution

routines exit either to the object program or back to the command decoder.

The utility routines are common routines such as SAVE-RESTORE and I/0. They are

used by both the command decoder and the command executers. (See Figure 11~-1.)
3.2 BREAKPOINTS

The function of a breakpoint is to give control to ODT whenever the user program
tries to execute the instruction at the s;lected address., Upon encountering

a breakpoint; the user can utilize all of the ODT commands to examine and modify
his program.

wWhen a breakpoint is executed, ODT removes all the breakpoint instructions from
the user's code so that the locations may be examined and/or altered. ODT then
types a message to the user of the form Bn;k where k is the breakpoint address
(and n is the breakpoint number). The breakpoints are automatically restofed

when execution is resumed,

11-25

BREAK~
———————=>| POINT B)
HANDLER
PROGRAM
USER €— ACTION
COMMANDS
€ —— — — —>
PROGRAM
A ~
~
™~
~
~

User Environment

I

MANUAL ENTRY

COMMAND
DECODER

INPUT

7

PROGRAM
EXAMINA-
TION AND
MODIFICA-
TION COM~
MANDS

G - ——

UTILITY
ROUTINES
(1/0, ETC.)

OBT

~

Flow of Control

Flow of Data

Figure 11l=-1

ODT Communication and Data Flow

11-26

\

INTERNAL
TABLE MANI-
PULATION
COMMANDS

INTERNAL
TABLES

A major restriction in the use of breakpoints is that the word where a breakpoint
has been set must not be referenced by the prégram in any way since ODT has altered
the word. Also, no breakpoint should be set at the location of any instruction

that clears the T-bit. For example:
MOV #24@,177776 ;SET PRIORITY TO LEVEL 5

Note that instructions that cause or return from traps (e.g., EMT, RTI)
are likely to clear the T=bit, since a new word from the trap vector or
the stack will be loaded into the status register,

A breakpoint occurs when a trace trap instruction (placed in the user program

by ODT) is executed. When a breakpoint occurs, the following steps are taken.
1. Set processor priority to seven (automatically set
by trap instruction).
2. Save registers and set up stack.
3. If internal T-bit trap flag is set, go to step 1l3.
4. Remove breakpoints., ’

5. Reset.processor priority to ODT's priority oxr
user's priority.

6. Make sure a breakpoint or single-instruction mode caused
the interrupt. '

7e If the breakpoint did not cause the 'interrupt, go
to step 15, b

8, Decrement repeat count.

9. Go to step 18 if nonzero; otherwise reset count
to one,

10, Save terminal status.

11l. Type message to user about the breakpoint or
single-instruction mode interrupt.

12, Go to command decdder.

13. Clear T-bit in stack and internal T-bit flag.
14, Jump to the GO processor.

15, save terminal status.

16, Type BE (bad entry) followed by the address.

11-27

17. Clear the T-bit, if set, in the user status and
proceed to the command decoder.

18, Go to the proceed processor, bypassing the TTY
restore routine.

Note that steps 1-5 inclusive take approximately 1@ microseconds during which

time interrupts are not permitte& to occur (ODT is running at level 7).
-When a proceed (;P) command is-given, the following occuré.

1. The proceed is checked for legality.
2. The processor priority is set to seven.
3. The T-bit flags (internal and user status) are set.

4. The user registers, status, and program counter are
restored.

h5, Control is returned to the user,

6. When the T-bit trap occurs, steps 1, 2, 3, 13, and 14
of the breakpoint sequence are executed, breakpoints are
restored, and program execution resumes normally.

When a breakpoint is placed 6n an IOT, EMT, TRAP, or any instruction causing a

trap, the following occurs.

1. When the breakpoint occurs as described above, ODT
is entered. i

2. When ;P is typed, the T-kit is set and the IOT, EMT,
TRAP, ox other trapping instructiop is executed.

3. This causes the current PC and status (with the T-bit
included) to be pushed on the stack.

4.‘ The new PC and status (nc T-bit set) are obtained from
the respective trap vectcr.

5. The whole trap service routine is executed without
any breakpoints.

6. When an RTI is executed, the saved PC and PS (including
the T-bit) are restored. The instruction following the
trap-causing instruction is executed. If this instruction
is not another trap-causing instruction, the T-bit
trap occurs, causing the breakpoints to be reinserted
in the user program, or the single-instruction mode repeat
count to be decremented, If the following instruction,
is a trap-causing instruction, this sequence is repeated
starting at step 3. All exits from the trap handler must
be via the RTI instruction. Otherwise, the T-bit will be
lost. ODT will not gain control again since the breakpoints
have not yet been reinserted.

11-28

Note that the ;P command is illegal if a breakpoint has not occurred (ODT will

respond with ?); ;P is legal, however, after any trace trap entry.
The internal breakpoint status words have the following format.

1. The first eight words contain the breakpoint addresses
for breakpoints @-7. (The ninth word contains the
address of the next instruction to-be executed in
single~instruction mode.)

2. The next eight words contain the respective repeat
counts, (The following word contains the repeat
count for single-~instruction mode.)

These words may be changed at will by the user, either by using the breakpoint

commands or by direct manipulation with $B.

When program runaway occurs (that is, when the program is no lqnger under ODT
control, perhaps executing an unexpected part of the program where a breakpoint
has not been placed) ODT may be given control by pressing the HALT key to stop
the machine and restart ODT (see Section 11-4,2), QDT will print *, indicating
that it is ready to accept a command. '

If the frogram being debugged uses the terminal fo; input or output, the
program may interact with ODT .to cause an error since ODT uses the terminal as
well. This interactive error will not occur when the program béing debugged is
run without ODT. The user should note the following when using the terminal as

an I/0 device under ODT.

1. If the terminal interrupt is enabled upon entry to the
ODT break routine, and no output interrupt is pending
when ODT is entered, ODT will generate an unexpected
interrupt when returning control to the program.

2. If the interrupt of the terminal reader (the keyboard)
- is enabled upon entry to the ODT break routine, and the
program is expecting to receive an interrupt to input
a character, both the expected interrupt and the character
will be lost. '

3. If the terminal reader (keyboard) has just read a character
into the reader data buffer when the ODT break routine is
entered, the expected character in the reader data buffer
will be lost.

11-29

3.3 SEARCH

The word search allows the user to search for bit patterns in specified sections
of memory. Using the $M/ command, the user specifies a mask, a lower search
limit ($M+2), and ah upper search limit ($M+4). The search object is specified

in the search command itself,

The word search compares selected bits (where ones appear in the mask) in the
word and search object. If all of the selected bits are equal, the unmasked

word is printed.
The search algorithm:

l., ~ Fetch a‘ﬁord at the current address.
2. XOR (exclusive OR) the word and search object.
3. AND the result of step 2 with the mask.

4, If the result of step 3 is zero, .type the address
of the unmasked word and its contents. Otherwise,
" proceed to step 5.

Se Add two to the current address. If the current
address is greater than the upper limit, type *
and return to the command decoder, otherwise go
to step 1.

Note that if the mask is zero, ODT will print every word between the limits,

since a match occurs every time (i.e., the result of step 3 is always zero).

In the effective address search, ODT interprets every word in the search range

as an instruction that is interrogated for a possible direct relationship. to

the search object. The mask register is opened only to gain access to the search
limit registers. ’

The algorithm for the effective address search (where (X) denotes contents of

X, and K denotes the search object):

1. Fetch a word at the current address X.

2. If (X)=K [direct reference], print contents and
go to step 5. .

3. If (X)+X+2=K [indexed by PC], print contents and
go to step 5.

11-30

»

4, If (X) is a relative branch to K, print contents.
5. Add two to the current address. If the current
address is greater than the upper limit, perform

a carriage return/line feed and return to the
command decoder; otherwise, go to step 1.

3.4 TERMINAL INTERRUPT
Upon entering the TTY SAVE routine, the following occurs.

1. Save the status register (TKS).

2. Clear interrupt enable and maintenance bits in
) the TKS . »

3. Save the TTY status register (TPS).
4, Clear interrupt enable and maintenance
bits in the TPS,)

To restore the TTY:

1. Wait for completion of any I/0 from ODT.
2. Restore the TKS.

3e Restore the TPS.

WARNINGS

If the TTY printer interrupt is enabled upon entry to the ODT
- break routine, the following may occur.

1. If no output interrupt is pending when ODT is entered,
an additional interrupt will always occur when ODT
returns control to the user.

2. If an output interrupt is pending upon entry, the expected
interrupt will occur when the user regains control.

If the TTY reader (keyboard) is busy or done, the expected
character in the reader data buffer will be lost.

If the TTY reader (keyboard) interrupt is enabled“upon entry
to the ODT break routine, and a character is pending, the
interrupt (as well as the character) will be lost.

11-31

PART 11
CHAPTER 4
OPERATING PROCEDURES

This section describes loading procedures for ODT, restarting and reentering

procedures, and error recovery.
4,1 LOADING PROCEDURES

ODT is supplied as a relocatable object module. It should be linked with other
object modules which form the program to be debugged. The resultant load module
is loaded into core memory using the System Loader, as explained in Part 3,

DOS/BATCH Monitor.
4.2 STARTING AND RESTARTING

After loading the load module (including ODT) into core via the Monitor GET
command, ODT may be started by means of the Monitor command OD, ODT indicates

its readiness to accept input by printing the following.

ODT1lR Vnnnn) {nnnn is the ODT version number)
*

when ODT is started at its start address, the SP register is set to an ODT
internal stack, registers R@-R6 are saved in $@-$6, the terminal status and the
processor status information are saved, and the trace trap vector isiinitialized.
If ODT is started at its start address after breakpoints have been set in a

program, ODT will forget abbut the breakpoints and will leave the program

modified; i.e., the breakpoint instructibns will be left in the program.

ODT's start address is determined from the LINK's load map; i.e., the low limit

address plus 172

a‘equals ODT's start address.

There are two ways of restarting ODT.

l. Restart at start address + 2 (use the DOS/BATCH command OD R).

2. Re~enter at start address + 4 (use'the DOS/BATCH command OD K).

11-32

To restart, use the Monitor command OD R, A restart'wiil save the general
registérs, clear the relocation registers, remove the breakpoint instructions
from the user program, and then forget all breakpoints; i.e., simulate the ;B

command.

To re-enter, use the Monitor command OD K. A re-enter Will save the processor
status and general registers, remove the breakpoint instructions from the user
program, and ODT will type the BE (bad entry) error message. ODT will remember
which breakpoints were set and will reset them on the next ;G command (;P is

illegal after a.bad entry).
4,3 USING ODT WITH STAND-ALONE SYSTEMS

Since DOS/BATCH supports console devices with various fill character counts

aﬁd external page addresses, it is necessary for ODT to have this information.

In the normal case ODT obtains this information from the DOS/BATCH SVT'table.

If ODT is to be used in a nonDOS/BATCH environment, the user program must

supply the necessary information. This is done by defining a global symbol $SCON
that has in that location the £ill count, and in the following location the
‘terminal status register address. The fill count is set by turning on successive
_high=-order bits for each null required on <CR><LF>. For example, if the word con-
tained 17¢¢d@, 4 nulls would be inserted; if the word contained 177777, the
maximum number of nulls (16) would be inserted,

Example:

$SCON: +WORD 174¢99 ;5 null £ill
+WORD 177564 ;external page addr.

NOTE

The word specified by the global $$CON is used

by ODT to determine whether or not to access '
the DOS/BATCH SVT table. It must not be used

in user programs for any purpose other than that
described above or ODT will not operate correctly.

11-33

	11-001
	11-002
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34

