GAMMA-11
System Reference
Order No. AA-2186B-TC

June 1978

This document describes the GAMMA-11 patient files, save area files, and
playback files. This document also describes the BASIC and FORTRAN
routines that access these files for user-written programs. See also the
GAMMA-11 Operator’s Guide (AA-2185B-TC).

SUPERSESSION/UPDATE INFORMATION: This document completely supersedes the
document of the same name, Order No.
DEC-11-MGRMA-A-D, published August

1976.
OPERATING SYSTEM AND VERSION: RT-11 VO3B
SOFTWARE VERSION: GAMMA-11 v2C

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

GAMMA-11
System Reference
Order No. AA-2186B-TC

digital equipment corporation - maynard, massachusetts

First Printing August 1976
Revision June 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation., Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use-or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1976, 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET~8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11

ASSIST-11 RTS-8 ITPS~10

6/78-14

CHAPTER

CHAPTER

CHAPTER

1

3]

e o o e o o o o
BN b b e et

NN LSH SR SN SR O SN SN N

. .
Lo
P

N =

e o o
w -

oo~ oonoW,m

w [LSILSI UM S S S S) V)
. .]] . ° . .
.
[

CONTENTS

BUILDING A GAMMA-11 SYSTEM DISK

INTRODUCTION

COPYING THE GAMMA-11 DISTRIBUTION MEDIA
Copying a GAMMA-11l Distribution Disk
Copying the GAMMA-~11 Distribution Magnetic
Tape

CONFIGURING A GAMMA-11l SYSTEM DISK

BACKING UP A GAMMA-11 SYSTEM DISK
Disk-to-Disk Copy
Disk-to-Magnetic-Tape
Magnetic~Tape~to~-Disk Copy

UNSUPPORTED PROGRAMS ON THE GAMMA-11 V2C MEDIA

PROGRAMMING SUPPORT INFORMATION

GAMMA-11 PATIENT FILES
Dynamic Studies
Single Static Studies
Multiple Static Studies
List Mode Studies
Z-COUNT AREA
COMMENT AREA
LAYOUT AND DESCRIPTION OF THE ADMINISTRATIVE
DATA BLOCK
The Administrative Data Block Common Section
The Administrative Data Block Individual
Study Section
PATIENT FILENAMES
SAVE AREAS
Save Area Descriptor Block
Saving Matrix Data
Saving Dynamic Curves
INTERNAL GAMMA-11l FILES
GAMMA-11 MACRO AND PLAYBACK FILES
Playback Files

BASIC AND FORTRAN SUPPORT

BASIC AND FORTRAN SUPPORT FOR GAMMA-11 F/B
Support Routine Notation
Patient Data File Subroutines
Save Area Subroutines
General Purpose Support Subroutines for
BASIC and FORTRAN

iii

NNN(’?’NNN
[
~N g DOV & W N

[\SN]
i

'CONTENTS (CONT.)

Page
3.1.5 Linking FORTRAN Subroutines with a User
Program 3-11
3.1.6 BASIC And FORTRAN Error Messages 3-11
3.1.7 BASIC and FORTRAN Examples 3-15
3.2 SUPPLEMENTAL FORTRAN SUPPORT 3-19
3.2.1 FORTRAN and GAMMA-11 Variables 3-19
3.2.2 Arrays : , 3-19
3.2.3 Functions 3-20
3.2.4 Subroutines 3-20
3.2.5 Linking Supplemental FORTRAN Subroutines
With A User Program 3-22
3.2.6 FORTRAN Example 3-22
CHAPTER 4 - ASSEMBLING AND LINKING GAMMA-11 4-1
4.1 ASSEMBLING GAMMA-11 USING INDIRECT COMMAND
FILES 4-1
4.2 LINKING GAMMA-11 USING INDIRECT COMMAND FILES 4-5
APPENDIX A BASIC/RT-11 LANGUAGE SUMMARY A-1
A.l BASIC/RT-11 STATEMENTS a-1
A,2 SUMMARY OF BASIC/RT-11 FUNCTIONS A-5
Arithmetic Functions A-5
String Functions A-6
System Functions A-7
A.3 SUMMARY OF BASIC/RT-11 COMMANDS A-8
Key Commands A-9
A.4 BASIC/RT-11 ERROR MESSAGES A-10
Function Error Messages A-17
APPENDIX B FORTRAN/RT-11 LANGUAGE SUMMARY B-1
B.1 EXPRESSION OPERATORS B-1
B.2 STATEMENTS B-2
B.3 FORTRAN LIBRARY FUNCTIONS B-11
APPENDIX C CAMERA ORIENTATION c-1
Cc.1 TRANSFORMATION OPERATORS : Cc-1
C.2 CONVERSION TO OTHER CAMERAS c-3
APPENDIX D USING A NEW DISK i D-1
D.1 FORMATTING A NEW RK0O5 DISK ON AN 11/34 D-1
D.2 INITIALIZING AN RKO5 RT-11 DISK DIRECTORY D-2
D.3 INITIALIZING AN RK06 RT-11 DISK DIRECTORY D-3
INDEX ‘ Index-1

iv

CONTENTS (CONT.)

Page

FIGURES
FIGURE 2-1 Dynamic Study Data File 2-2
2-2 Single Static Study Data File 2-3
2-3 Multiple Static Study Data File 2-5
2-4 List Mode Study Data File 2-6
2-5 Matrix Save Area 2-15
2-6 ROI Map and Cell Map 2-16
2-7 Word in ROI Map 2-16
2-8 Dynamic Curve Save Area 2-17
TABLES
TABLE - Administrative Block -

Administrative Data Block

2-1 2-8
2-2 Save Area Descriptor Block 2-11
3-1 3-4
3-2 Save Area Descriptor Block 3-7

CHAPTER 1

BUILDING A GAMMA-1l1 SYSTEM DISK

1.1 INTRODUCTION

This chapter describes the procedures that are required 1in order to
build a GAMMA-11 system disk. GAMMA-11 1is distributed on the
following media.

® RKO05 disks
® RKO06 disks
® RLO1l disks
e Magnetic tape

The disks are complete, runnable system disks that contain all the
GAMMA-11 software and an executable subset of the RT-11 V3B software.
A special version of BASIC with GAMMA-11 support subroutines and
binary files providing FORTRAN callable GAMMA-~11l support subroutines
are on the disks. The magnetic tape is a bootable tape that can
generate an RKO5, RKO06, RK07, or RLOl system disk.

NOTE

Although the GAMMA-11l distribution disk
is a runnable system disk, it should not
be used as such. You should copy the
distribution disk, back it up, and then
store it in a safe place. 1In your daily
activities, you should use only the
copies that you make of the sysgened
disk.

The general procedure for building a GAMMA-1l1l system disk is as
follows:

1. Copy the GAMMA-11 distribution disk or magnetic tape to a
scratch disk. (See Section 1.2.)

2. Run the SYSGEN program, which creates a configuration
procedure that will tailor the system to your needs. (See
Section 1.3.)

3. (Optional) Add RT-11 FORTRAN to your system disk.,

4. Backup your new system disk on another disk or magnetic tape.
(See Section 1.4.)

1-1

BUILDING A GAMMA-11 SYSTEM DISK

The following sections give step by step instructions for performing
the above procedures.

The generic terms 'disk', 'disk pack', 'disk drive', etc. refer to
either the RK05, RK06, RKO07 or RL0O1 disks. The general build
procedures are the same for all of these disks, except where
specifically noted.

1.2 COPYING THE GAMMA-11 DISTRIBUTION MEDIA

GAMMA-11 is distributed on RK05, RK06, and RLO1 disks and 9-track
magnetic tape. This section gives the instructions for copying the
distribution disks or magnetic tape to a scratch disk. You will use
this copy of the GAMMA-11 distribution when building your system.

The build procedures for the different disk types are .the same, the
only difference being the 2-character device mnemonic used to identify -
the various disks. In the sections below, you must replace any
occurrence of 'xx' with the 2-character device mnemonic that
identifies your type of system disk. The mnemonics are:

RK for the RKO05 disk
DM for the RK06 or RK0O7 disk
DL for the RLO1 disk

1.2.1 Copying a GAMMA-11 Distribution Disk

Step 1l: Mount the GAMMA-11 distribution disk in unit 0 of the disk
drive. Write lock the disk by pressing the 'WTPROT' or
'WRITE PROT' switch. The corresponding 1light should come
on, indicating that the disk 1is indeed write protected.
Mount a formatted scratch disk in drive 1; this disk must
not be write protected.

Step 2: Bootstrap the distribution disk. See Chapter 3 of the
GAMMA-11 Operator's Guide for bootstrap instructions. When
the disk has been bootstrapped, the following will be
printed.

RT-11FB V03B-nn

.TYPE WARN.TXT

WARNING

You have just booted your MASTER copy of GAMMA-11
F/B Vv02C. Please copy this disk according to the
instructions in Section 1.2.1 of the GAMMA-11l System
Reference manual.

Step 3: To copy the master disk (in drive 0) to the scratch disk (in
drive 1), type:
@MSTCOP
The initialization and copy procedure will take from 1 to 5

minutes depending on the disk type. During this time, the
system will print a few lines of commands on the DECwriter.

1-2

Step 4:

BUILDING A GAMMA-1l1l SYSTEM DISK

When the copying has been completed, the system will print
the following message.

COPY COMPLETE

The disk in drive 1 is now a copy of the disk in drive 0.
Remove the distribution disk from drive 0 and store it in a
safe place. Remove the new system disk from drive 1 and
mount it on drive 0. Proceed to Section 1.3 to configure
your new system disk.

1.2.2 Copying the GAMMA-1l Distribution Magnetic Tape

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Mount the GAMMA-11 distribution ' magnetic tape on the
magnetic tape unit. Mount a formatted scratch disk in drive
0. This disk must not be write protected.
Bootstrap the magnetic tape. If your processor has a
hardware bootstrap, such as a PDP-~11/34, boot the processor
and type:

MT
Otherwise, refer to Appendix C of the RT-11 System
Generation manual for instructions on how to bootstrap a
TM11l magnetic tape unit.

When the tape has been successfully booted the system prints
the following message.

MSBOOT V(01l-nn
*
Start the TM11l magnetic tape build program by typing the
following line at the asterisk.
MDUP.MT
The program will respond with an '*',

Initialize and scan the scratch disk for bad blocks by
typing:

xx0:/%2/B
where xx is RK, DM, or DL.

The scan will take a few m1nutes. When the scan is complete
the system will print '*',

Copy a minimal RT-11 system to the disk by typing:
xX0:A=MT:
where xx is RK, DM, or DL.

Then the disk will be booted. When it is booted, the system
will print the following message.

RT-118J VO03B-nn
?KMON-F-Command file not found

1-3

BUILDING A GAMMA-11 SYSTEM DISK
Step 6: Copy the GAMMA-11 magnetic tape copy file from the magnetic
tape to the disk by typing:
COPY MT:MTTOxx MTCOPY
where xx is RK, DM or DL.
The system response is:

Files copied
MT:MTTOxx.COM to xx:MTCOPY.COM

Step 7: Proceed with the magnetic tape copying procedure by typing:
@MTCOPY

The copy procedure will take a few minutes. The system will
print a few lines of commands during the copying. When the
copy is completed the system will reboot itself.

Proceed with step 2 of the next section.

1.3 CONFIGURING A GAMMA-11 SYSTEM DISK

After you have copied your GAMMA-11 distribution medium, you must
configure it for your specific GAMMA-1l system. You do this using a
program called SYSGEN, which asks you a series of questions concerning
your system and then generates an RT-11 indirect command file and
BATCH file that do the actual configuring of your system disk.

Step 1: Mount a disk copy of the GAMMA-11 distribution medium in
drive 0 and boot it. The following message will be printed:

RT~11FB V03B-nn
.TYPE GAMCOP.TXT

This is a copy of the GAMMA~11 F/B V02C distribution
media. You should follow the configuration
instructions in Section 1.3 of the GAMMA-11 System
Reference manual.

Step 2: To configure your disk type:
R SYSGEN

An explanation of the system configuration will be printed.
You will be asked a series of guestions concerning your
system. Each guestion is preceded by a short explanation
that will aid you in answering the question. The example
below was used to generate a standard RK05 system.

BUILDING A GAMMA-11 SYSTEM DISK

+R SYSGEN

GAMMA—-11 VO02C SYSTEM CONFIGURATION

This rrocedure will confidgure wour GAMMA-11 V2C
disk to wour hardware confiduration. You will

be asked a series of cuestions. All auestions

excert the first two are to be answered with

Y for des
N for no

followed by & carriade return. If gou ture
Just 3 carriade returny ‘wes’ will be used.

After answering all the auestionsy wou will be
given further instructions. If wou make a8
mistake and wish to restarty ture 3 CTRL/Cy» and

R SYSGEN

GAMMA-11 can use any of the following disks as
sustem devices., (RKOS is the default.,)

RKOS RKO6 RKO7 RLO1
WHAT IS YOQUR SYSTEM DISK? RKOS

The GAMMA-11 disk must be loaded in an RKOS driver and
the disk unit must be ur to sreed and riot write rrotected

before wou answer the next acuestion.
IN WHICH DISK UNIT DID YOU LOAD THE GAMMA-11 DISK? O

You have a choice between a foredround/bachkdround
orerating systems or a8 sindgle Job orerating sustem.
The foredround/backdground oreratindg sustem will
allow wou to simultaneousls acauire and snaluze datas.

Most users will use this featurer the only users
who can rnot use it are those with no foredround
terminaly or less than 28K words of memorws.

DO YOU WANT A FORGROUND/BACKGROUNI+ SYSTEM? Y

1-5

~ BUILDING A GAMMA-11 SYSTEM DISK

If wour FIF-11 has the Extended Imnstruction Set (EIS)

wou can use the EIS version of BASIC. EIS is
standard on 8 FIOIF~-11/34,

I8 YOUR SYSTEM A FOF-11/34 OR DNOES IT HAVE EIS? Y

The RT-11 Monitors will have to be ratched if
gour line freauency is 50 Hz instead of 60 Hz.

IS YOUR LINE FREQUENCY 60 HZ? Y

The standard disrlay for 38 GAMMA-11 sustem is the
USVO1 color disrlaw. Some users maw have the older
UTO01l storasde score disrlav.

DOES YOUR SYSTEM HAVE A VSV01 COLOR DISFLAYT Y

The Gate Sunchronized Acauisition (GSA) rrodgrams require
an external datindg sidgnal. If vour sustem has the

mnew NCV11-A dasmma camera interfacer the date is
alwavs interfaced through it. If wou have the NC11-A
interfacer the date is interfaced via the AR-11.

DOES YOUR SYSTEM HAVE THE NEW NCV11 GAMMA CAMERA INTERFACE? N

If wour gste sidnal is a3 TTL low-to—-high sidnaly -
it is interfaced thru AR-11 ADC channel 3.

If gour gate sidgnal is a TTL hidgh-to-low signale
it is interfaced thru the AR-11 ‘EXT aA/D 8T,

WILL YOU INFUT THE GATE SIGNAL THRU AR-11 AIC CHANNEL 37 Y

The datas acausition rrodrams can store the date
in either the U.S. date formatr month/davg/gesry or
the Eurorean date format, dav-month-gear.

DO YOU WISH TO USE THE U.S. DATE FORMATs MONTH-DAY-YEAR? Y

The madgtare backur rrocedure can create bootable

or non-hootable madgtares. Bootable madgtares require
estra RT-11 srograms. Only those users with 3
magtare drive and only one disk drive need the
hootable masdgtare hackur rrocedure, All others
should delete this ostion.

[0 YOU WISH TO DELETE THE ROOTARLE MAGTAFE OFTION?T Y

BUILDING A GAMMA-11 SYSTEM DISK

The followindg swstem will be confidured

A F/B RKOS sustem with
VSV01 color disrlau
EIS surrort
40 Hz line freauency
U. 8. date format (month/dsu/dear)
GSA inrut AR-11 ADC Charrmel 3

IS THIS CORRECT? Y

The actual configuration will take a few minutes.
When it is finishedyr the riewly confidgured disk

will be booted., This disk should be backed-ur

on another disk or madtare. Read section 1.3

of the GAMMA—-11 SYSTEM REFERENCE MANUAL AA~2186E-TC.

You are now reasdws to run the actual configuration
files. The disk loaded in RKQOS drive 0 will

be the disk that will be configured,

When the RT—-11 MONITOR rFrrints a8 dot (.)r tusre

@RKO : GAMCNF (followed bw a return)

When BATCH rrints an asteric (X)r tyre

GAMBAT (followed by a return)

+ @RKO ! GAMCNF
+LOAD BA
+ASSIGN RKO LST
+ASSIGN RKO LOG
+ASSIGN RKO DN

+R BATCH
AGAMEAT

1-7

BUILDING A GAMMA-11 SYSTEM DISK

Step 3: Invoke the configuration procedure by typing:
| @xx0:GAMCNF
where xx is RK, DM, or DL.
When the following is printed:

.R BATCH

*

type:
GAMBAT
The configuration will take a few minutes. The system will
reboot itself when the configuration is complete, and prints
the following: '
RT-11FB V03B-nn (or RT-11SJ VQ3B-nn)
.RENAME/NOLOG START%.TMP *.COM
System configuration is now complete.
Users who have purchased FORTRAN Version 2 should install FORTRAN on’

their new system disk according to the instructions in the RT-11/F4
Installation Guide, and then proceed with the back up procedure.

1.4 BACKING UP A GAMMA-1l SYSTEM DISK

You should prepare a back-up copy of your new system disk on another
disk or magnetic tape. If anything should happen to your system disk,
the back-up copy can be used to quickly create a new system disk.

The configuration procedure leaves two RT-11 indirect command files on
your disk which you can use to quickly and easily back up your disks.
BACKUP is used for disk-to-disk copying, and MTBACK 1is wused for

disk—-to-magnetic tape copy. The following sections describe the
simple procedures required to back up your GAMMA-11 system disk.

1.4.1 Disk-to-Disk Copy
To back up your system on another disk, do the following:

Step 1: If your system disk is not running in drive 0, mount it in
drive 0 and boot it, Write protect the system disk.

Step 2: Mount a scratch disk in drive 1. Do not write protect the
scratch disk.

Step 3: Assign the scratch disk to device 'COP' by typing
ASSIGN xx1 COP

where xx is RK, DM, or DL.

BUILDING A GAMMA-11 SYSTEM DISK

Step 4: Initiate the copy by typing

@BACKUP
BACKUP will initialize the disk in drive 1 and scan it for bad blocks,
Then all files will be copied from the system disk, and finally the
bootstrap program will be copied. When this is finished (5-10
minutes), the disk in drive 1 will be an exact copy of the disk in

drive 0. Simply repeat this section whenever a new copy of vyour
system disk 'is needed.

1.4.2 Disk-to-Magnetic-Tape
To copy your system disk to magnetic tape, do the following:

Step 1: If it is not running, mount your system disk in drive 0 and
boot it, write protected.

Step 2: Mount a scratch magnetic tape and place it on-line.
Step 3: Initiate the copy by typing:
MTBACK
MTBACK will initialize the magnetic tape and copy all files
to it. If vyou did not request that the bootable magnetic

tape option be deleted during system configuration, the
magnetic tape will be a bootable magnetic tape.

1.4.3 Magnetic-Tape-to-Disk Copy

There are two methods by which a system disk can be generated from a
magnetic tape back-up. Method 1 is the simplest; it requires a-dual
disk system and a running GAMMA-1l system disk. Method 2 is more
complicated and 1is necessary only if your system has only one disk
drive, or if no GAMMA-11l system disk is available.

METHOD 1 (non-bootable magnetic tape)

Step 1: Mount any GAMMA~-1l system disk in drive 0 and boot it.

Step 2: Mount the magnetic tape and place it on-line.
Step 3: Mount a formatted scratch disk in drive 1.
Step 4: Assign the magnetic tape to device 'DK' and the scratch disk

to device 'COP' by typing:

ASSIGN MT DK
ASSIGN xx1 COP

where xx is RK, DM, or DL.
Step 5: Initiate the copying by typing:
@BACKUP
BACKUP will initialize the disk in drive 1 and scan it for bad blocks.
Then all files will be copied from the magnetic tape, and finally the
bootstrap program will be copied. The entire process will take 5-10

minutes.

1-9

BUILDING A GAMMA-1l1l SYSTEM DISK

METHOD 2 (bootable magnetic tape)

Step 1: Mount the magnetic tape on the tape drive and mount a
scratch disk in drive 0.

Step 2: Follow steps 2, 3, 4, 5, 7 of Section 1.2.2, copying a
GAMMA-11 distribution tape.

Do not configure the disk, since it is a copy of a confiqured disk.

1.5 UNSUPPORTED PROGRAMS ON THE GAMMA-11 V2C MEDIA

Four unsupported programs are distributed with GAMMA-11 F/B VO02C.
These programs are furnished as a convenience to the user. These
programs are NOT supported by DIGITAL.

VTECO and STECO are modified versions of the unsupported RT-11 text
editor TECO. VTECO uses the VSV0l color display, and STECO uses the
VT0l storage scope display in the same manner as TECO uses the VTI11
graphics processor.

TTYl and TTYO allow the user to switch cohtrol of the RT-11 background
to and from the foreground VTS52 terminal.

The file CLASSC.TXT on the distribution media contains more’
information concerning these four programs. To print this file, mount
the distribution medium on a spare drive, write protected and type:
TYPE dev:CLASSC.TXT
To copy any of these programs, type:
COPY dev:name DK:
where dev: 1is the device and unit of the distribution medium; e.g.,

DK1:, MT:, etc. The ‘'name' 1is the name of the program to be
transferred.

1-10

CHAPTER 2

PROGRAMMING SUPPORT INFORMATION

2.1 GAMMA-11 PATIENT FILES

A GAMMA-11 file is:.an RT-11 file produced by the GAMMA-1l1 programs.
Consequently a GAMMA-11 file can be treated like any RT-1l1 file and
can be read by BASIC, FORTRAN, or assembly language programs.

A different file structure represents each of the four GAMMA-1ll
patient study types. The four types of studies are: dynamic, single
static, multiple static, and list mode.

A description of each of the four file types follows. Along with each
description 1is a diagram of the file layout. The pointers labeled in-
each diagram are not explained in the general file descriptions.
Instead they are explained in Section 2.4, and the whole file is laid
out in Tables 2-1 and 2-2.

2-1

PROGRAMMING SUPPORT INFORMATION

2.1.1 Dynamic Studies

A dynamic study consists of up to 512 frames <collected at specified
rates over designated periods of time, comparable to a seguence of
motion picture frames., The specified rate of acquisition may be
changed up to 12 times during the acquisition. Thus, a dynamic study
consists of between one and thirteen groups of frames. Between groups
only the frame rate, number of frames, and the matrix size may be
varied.

Figure 2-1 shows the structure of a dynamic study file. The file
consists of three to six blocks of general file and specific patient
information followed by the gamma camera data.

The initial block (block 0) of a dynamic study file 1is called the

administrative data block. This block is filled by the collection
procedure program and contains all information entered by the user at
acquisition set up time. It contains the ‘patient name and number,

organ under study, types of tests, dosage, and other statistical
information together with pointers to various other blocks that make
up the data file.

The z-count area follows thé administrative data block and consists: of
one to four disk blocks, depending on the number of groups within the
dynamic study. The z-count area contains statistics on the number of
events that occurred during the study (see Section 2.2).

Following the z-count area: is the comment block. The comment = block
holds the user's comments about the study (see Section 2.3). i

The rest of the study is composed of the matrix data.

FIRST ADMINISTRATIVE
DATABLOCK IS O ADMINISTRATIVE
DATA
BLOCK

ZCTOFF

ZCTOFF

Z-COUNT
BLOCKS

COMPRS

MDOFF

COMPRS

COMMENT
BLOCK

MDOFF
MATRIX

DATA
BLOCKS

Figure 2-1 Dynamic Study Data File

PROGRAMMING SUPPORT INFORMATION

2.1.2 Single Static Studies

A single static study is structured 'similarly to a dynamic study.
However, 1in a single static study, the z-count area (see Section 2.2)
is contained within the administrative block and only one frame of
data follows the comment block (see Figure 2-2). ‘

FIRST ADMINISTRATIVE
DATA BLOCK IS0

ADMINISTRATIVE
DATA
BLOCK

COMPRS .

COMMENT
BLOCK

MDOFF

MATRIX
DATA
BLOCKS

|

Figure 2-2 Single Static Study Data File

2.1.3

PROGRAMMING SUPPORT INFORMATION -

Multiple Static Studies

A multiple static study file is a number of single static study files.
linked together. 1In a multiple static study,

each data frame is.preceded by an administrative block, ‘but*
only the first administrative block is followed by a comment
block,

each administrativé‘block is 1linked to the administrative
blocks that precede it and follow it, o

each data frame has»a link to the comment block.

See Figure 2-3.

2-4

PROGRAMMING SUPPORT INFORMATION

FIRST ADMINISTRATIVE
DATA BLOCK IS0 ADMINISTRATIVE

DATA BLOCK
FRAME #1

COMPRS

COMMENT
BLOCK

MDOFF

FADOFF —s

MATRIX
DATA BLOCKS -
FRAME #1

PADOFF ~—#-

|<=— NADOFF

[]

ADMINISTRATIVE
DATA BLOCK
FRAME #2

COMPRS
1

MDOFF

MATRIX
DATA BLOCKS
FRAME #2

FADOFF—#-

PADOFF —e

<+—NADOFF

4

ADMINISTRATIVE
DATA BLOCK
FRAME #3

MDCFF

MATRIX
DATA BLOCKS
FRAME #3

Figure 2-3 Multiple Static Study Data File

2-5

PROGRAM“ING SUPPORT INFORMATION

2.1.4 List Mode Studies

A list mode study is structured like a static study except that the
data following the comment block is raw 1list data rather than a
matrix. See Figure 2-4.

FIRST ADMINISTRATIVE
DATA BLOCK IS O ADMINISTRATIVE
DATA
BLOCK

COMPRS

COMMENT
BLOCK

MDOFF

LIST
MODE -
DATA

Figure 2-4 List Mode Study Data File

2.2 Z-COUNT AREA

The z-count area is contained in the administrative block for static
and 1list studies and follows the administrative block for dynamic
studies. The z-count area stores the number of events present on each
study frame as a 32-bit unsigned integer composed of two l6-bit words.
The first word is the ‘high order 16 bits, and the second word 1is the
low order 16 bits. In a dynamic study, the z-count area is one to
four blocks of disk space.

2.3 COMMENT AREA

The comment block is available for the user's comments. The comment
block consists of ten lines of ASCII text with up to 51 characters per
line. The first character of each line is a non-printing character
which 1is either an octal 0 or an octal 1. 1If the first character is
an octal 1, the rest of the line contains up to 49 characters of valid
ASCII text which is terminated by an octal 200. The first line with a
0 as the first character indicates the end of the comments.

2-6

PROGRAMMING SUPPORT INFORMATION

2.4 LAYOUT'AND DESCRIPTION OF THE ADMINISTRATIVE DATA BLOCK

The administrative data block contains all the information needed to
reference the data in the study file. It 1is divided into two
sections; .the first section contains those variables and pointers
common to all types of studies, and the second section contains those
variables and pointers specific to each type of study.

Table 2-1 shows a complete layout of the administrative data block.
The decimal and octal positions of each variable are given along with
the variable type, its name, and its description.

2.4.1 The Administrative Data Block Common Section

The first section of the administrative data block, which occupies the
area from octal address 0 to octal address 332, is common to all the
study types. This section includes all offset pointers and the
information pertinent to the patient such as the patient name, number,
birth date, and doctor.

The offset pointers are the links from the administrative data block
to the other data blocks. The offset pointers are:

ZCTOFF .points to the z-count block (dynamic study only)
COMPRS points to the comment block
MDOFF points to the data block

Those pointers that are‘specific to multiple static studies are:

PADOFF ,points to the previous administrative block
FADOFF 'points to the first administrative block
NADOFF points to the next administrative block

2.4.2 The Administkative Data Block Individual Study Section

The .second section of the administrative data block, which -occupies
octal positions 346 to 776, consists of collection parameters, number
of frames, number of groups, types of matrices, and general
administrative information pertaining to the immediate study.

The second section is an overlay area and is used for one type of
study at a time. Since static, dynamic, and list studies cannot be
combined in the same file, only the information applicable to the
specific study type is used in the overlay area.

In the following»table, Table 2-1, the variable types are abbreviated.
ASC. represents ASCII, . INT represents integer, DPI represents double
precision integer, and SPE represents special.

Decimal

1
24
40
43

53

63
73
96
110
120
127

130
144
158
172
186
189

192
194
198

202
205
208
212
214

214
216

219
227

230
234
238
247
252

257

241

PROGRAMMING SUPPORT INFORMATION

Octal Type

77
111
140
156
170
177

202
220
236
254

275

300
302
306

312
315
320
324
326

326
330

333
343

346
352
356
367
374

401

361

ASC
ASC
ASC
ASC

ASC

ASC
ASC
ASC
ASC
ASC
ASC

ASC
ASC
ASC
ASC
ASC
SPE
BYTE

INT
INT
INT

INT
ASC
ASC
INT
INT

INT
INT

ASC
ASC

STATIC AND
DPI
DPI
ASC
ASC
ASC

ASC

Table 2-1
Administrative Block

Name

PATNAM
PATNUM
CAMID
ATIME

ADATE

BIRTHD
DOC
ORGAN
VIEW
CMTRT
AQMODE

ISOTOP
DOSE
I1s02
DOSE2
ISMODE
COLTYP
< 0
=0

> 0
COMPRS
TOTBLK
FADOFF

DATTYP
ORIENT
POSSWT
MDOFF

PADOFF

ZCTOFF
NADOFF

AMACRO
AUTO

Description

Patient name

Patient number

Camera number (0-3) (NCV1l only)
Acquisition time (supplied by
program)

Acguisition date (supplied by .
program) ‘

Patient birth date

Doctor's name

Organ being studied

View of picture

Collimator type

Acquisition
mode:l=special,2=normal

Isotope being used

Dosage

2nd isotope being used

2nd dosage (dual isotope study)
l=single isotope, 2=dual isotope
Collection type

List mode

Dynamic study

Static study

Offset to comment block

Total number of blocks in study
Offset to first admin block
(multiple static)

Data type:0=patient data,l=flood
Orientation switch

Position (rotation) switch
Offset to matrix data

Static: offset to previous
admin block (multiple static)
Dynamic: offset to z count block
Offset to next admin block
(multiple static)

Auto analysis macro name

Auto analysis switch (Y or N)

LIST COLLECTION PARAMETERS

ZCOUNT
OVFTIM

ENDFRA

MINUTE

SECOND

PSCNT

Z count, the number of events
Time of overflow clock counter
Method of ending study:l=time,
2=counts

The number of minutes in the
study

The number of seconds in the
study

The number of preset counts
chosen

STATIC MODE COLLECTION PARAMETERS

ASC

SMTXSZ

The type of matrix
(1,2,3,4, or 5)

Decimal

244

268
272

241
268
271
274
281

230
232
234
238
240
242
246

251
268

438

. Octal

364

414
420

361
414
417
422
431

346
350

352

356

360

362 .
366

373

414

666

PROGRAMNING SUPPORT INFORMATION

Type

ASC

ASC
INT

Name

SMTXCS

MSFRM
CFRM

Table 2-1 (Cont.)
Administrative Block

Description

Close on overflow: <SPACE>=do
not = !
close,<T>=close

The number of frames

Current frame number

LIST MODE COLLECTION PARAMETERS

ASC
ASC
ASC
ASC

ASC

LDBLCK
LDBPC

LDELST
LDELRT

LGSA

The number of disk blocks of
data

Method of closing:l=by counts,
2=by number of blocks

Method of starting:Y=delayed
start,N=immediate start

Count rate for delayed start
(maximum of 20,000)

If 'Y', study is a gated list
mode

DYNAMIC MODE COLLECTION PARAMETERS

INT
INT
ASC
ASC
ASC
ASC
ASC

ASC

ASC

ASC

FRAMEN
GROUPN
GRP1

GRP2

GRP3

GRP13

Total number of frames

Total number of groups

The number of frames in group 1
The type of matrix(1,2,3 or 4)
The type of close

Frame rate: X frames

Per Y seconds (milliseconds for

gated studies)

Group 2 (same 5 parameters as
group 1)

Group 3

Group 13

GATE SYNCHRONIZED ACQUISITION (GSA) COLLECTION PARAMETERS
(Group #1 is set up as a dynamic study)

251
254
259
265
271

274
285
291

373
376
403
411
417

422
435
443

ASC
ASC
ASC
ASC
ASC

ASC
ASC
ASC

GSAMTX
GSAFRM
GSADUR
GSATOL
GSAEFM

GSAPSC
GSACYC
GSAMIN

2-9

GSA matrix type (1 or 2)
Number of frames

Frame duration in msec
Tolerance in msec

End Frame (1, 2, or 3)

1 = Time
2 = Counts
3 = Cycles

Preset Counts
Preset Cycles
Preset Minutes

PROGRAMMING SUPPORT INFORMATION

Table 2-1 (Cont.)
Administrative Block

Decimal -~ Octal Type Name Description

296 450 ASC GSASEC Preset Seconds

302 456 INT BINSEC Collection time in seconds

304 460 INT BINCYC # cycles collected (accepted
plus rejected)

306 462 DPI BINZLO Total Counts Collected

BINZHI

310 466 INT BINDUR Frame duration in msec

312 470 INT BINTOL Tolerance in msec

314 472 INT BINBAD # rejected cycles

2.5 PATIENT FILENAMES

GAMMA-11 identifies patient studies via an indexed line which contains
up to 62 characters. For example,

1 JOHN DOE, 370180, LIVER, D, 6/3/74

is the way John Doe's file would appear on the GAMMA-11 patient study
index. Internally, however, the patient files are referenced using
RT-11 filenames. The RT-11 patient filenames have the form;

aaaaaa.Xnn where aaaaaa are the first six characters of the
name field of the patient's study. The nn is a
number between 00 and 99. This formula creates a
unique filename even when the name portion
(aaaaaa) of the file is duplicated. The system
assigns the number at the time of file creation,
The numbers are assigned in the order of
acguisition for each patient with the same name.
For example, JOHNDO.X00 and JOHNDO.X01 are two
filenames for two John Doe's (or two studies on
the same John Doe).

These filenames are created automatically by GAMMA-11 at data
acquisition setup time.

To reference GAMMA-11 data files when using BASIC or FORTRAN, you must
know the RT-11 filename for that data file.' To obtain the RT-11
filenames for all patients, type :

F (rer

when the patient index is displayed during the data analysis program.
The RT-11 filenames will be displayed at the end of each index line
instead of the date. For example,

1 JOHN DOE, 370180, LIVER, D, JOHNDO.X00

is displayed for the first John Doe,

PROGRAMMING SUPPORT INFORMATION

2.6 SAVE AREAS

Save areas are disk files that are reserved for the user to store
single matrices or dynamic curves., Save areas 0 through 9 permanently
exist on the disk.

Save area 0 is used by the data analysis program for temporary storage
of new study .data in core. Because save area 0 contains the last
displayed matrix image other than a save area matrix, the user can
perform save area manipulations, such as reading other save areas into
core and performing save area algebra, and then return to the original
study in core by reading save area 0. Fifty-five optional save areas
(10 through 64) can be specified by the user. However,. these areas
are restricted to matrices and have no provision for dynamic curves.
When the. user writes a matrix into a previously nonexistent optional
save area, GAMMA-11 automatically produces the optional save area on
the disk.

Save éteas 1 thtdhgh 9 each.take'up 53 ‘blocks of the system - disk.
Each optional save area will reside on the system disk and take up 33
disk blocks each. ‘

Save?areas are RT-11 files. Their filenames are:

SVAR00.SYS for save area 0
SVAR01.8YS - for save area 1
SVAR02,SYS for save area 2
etc. . .

2.6.1 Save Area Descriptor Block

The first block block 0) of the save area disk file is called the
save area descriptor block. The save area descriptor block describes
the type.of save area (matrix or curve data) as well as the study with
which the save area is currently associated. It contains the matrix
type, number of frames, frame rate, pointers -"into the study, etc.
Table 2-2 shows the layout of the save area descriptor block.

In Table 2;2;;the variable types are abbreviated. ASC represents
ASCII, ‘INT represents integer, DPI represents double precision
integer, and FP represents floating point.

Table 2-2
Save Area Descriptor Block

Decimal Octal. .. Type,,l Name Description
o 0o = INT NDXDEV RAD50 device name of indexed
R ; device
2. 2. INT FILNAM RAD50 file name and extension of
file
8 10 INT NPFILE Number of patient files found on

indexed device

2-11

Decimal

10

12

14
16
82
128
130
132

134
136

138

140
142
143
144
146
"148
150
150
152
152
154

156
158

160
162

l63
164

Octal

12

14

16
20
122
200
202
204

206
210

212

214
216
217
220
222
224
226
226
230
230
232

234
236

240
242

243
244

PROGRAMMING SUPPORT INFORMATION

Type

INT

INT

INT
ASC
ASC
INT
INT
INT

INT
INT

INT

INT
BYTE
BYTE
INT
INT
INT
INT
INT
INT
INT
INT

INT
INT

INT
BYTE

BYTE
BYTE

Table 2-2 (Cont.)
Save Area Descriptor Block

Name

XTRBYT

STYPE

SDTYP
SINDX
SCMDH
SXPND
SLADFG
SROTAT

SNESW
SSD

SDUAL

SORIG
SPOSOR
SAQM
SFLDN
SPDTA
SPPAD
SPZCT
SPNAD
SPTOV
SPADM

SPCOM
SDAD

SDMOD

STHSH

STHSL

Description

Number of extra bytes in dir-
ectory entry

Data type indicator (in low
byte)

0 = no data in save area

1 = matrix data

200 = dynamic curves

‘Save register number in low byte
negative number=frame divide is
set

Index line (66 ASCII characters)

" GAMMA-11 command string (46

ASCII characters)

Expand switch: 0 = no expansion,
non-zero = expanded matrix
Sliding add switch (the number
of frames to add)

Rotation factor: 0 = reqular, 1,
2, or 3 to rotate axes

No enchancement switch

Static or dynamic:0=static,
non-zero=dynamic

Dual isotope switch:0=no dual
isotope

1 = isotope A,

2 = isotope B

Original study type
(non-zero=list mode)

Position (rotation) switch
Orientation switch

Acquisition mode:

1 = special, 2 = normal

Flood correction switch:

0 = not done, 1 = flood cor,
done

Offset to data matrices

Offset to previous admin block
(multiple static only)

Offset to Z-count block (dynamic
only)

Offset to next admin block
(multiple static only)

Offset to time of overflow block
(dynamic only)

Offset to admlnlstratlve data
block

Offset to comment block
Relative block number of. present
frame

Isometric switch:

0 = intensity,

1 = isometrics

High threshold in %

Step size in %

Low threshold in §

12

Decimal
165
166
168
170
172
174

176
180

206
208
212
216
220
222

224

206
208
210
212
214
234
- 236
238

240
242

244
246

356

366

PROGRAMMING SUPPORT INFORMATION

Table 2~2 (Cont.)
Save Area Descriptor Block

Octal Type Name Description

245 BYTE Step size in %

246 INT SSIZE Number of words in current
matrix

250 INT SWDBYT Word or byte switch: 0 = word,
1 = byte

252 INT SDIM Dimension size (32, 64, or 128)

254 INT SMAX Maximum cell count :

256 INT SMIN Minimum cell count

260 DPI SCOUNT Total number of counts

264 INT SMEAN The average cell count

STATIC MODE PARAMETERS

316 INT SMSCFR Current frame number of multiple
static study

320 DPI SSTM Duration of collection in
seconds

324 DPI SSVTM Time of overflow in seconds

330 DPI SSZCT Z count, the number of events

334 INT SSMS2Z Number of words in matrix

336 INT SSFAD Offset to first administrative
data block

340 ASC SVIEW View of frame (10 ASCII
characters)

DYNAMIC MODE PARAMETERS

316 INT SCRFRM Cummulative frame number
320 INT SCURGP Current group number
322 INT SCURGF Current number of frames in
group
324 INT SCURFM Current frame within group
326 INT SN Total number of frames
352 INT SG Total number of groups
354 INT SGROUP Number of frames in group
(1) :SGPF
356 INT SGPSZ Number of words of frames in the
group
360 INT SGPCS The close on overflow flag
362 INT SGXTM Exposure rate: X frames per
(SGX)
364 INT SGY Y seconds (milliseconds for
gated studies)
366 INT SGROUP Group 2
(2)
544 INT SGROUP Group 13
(13)

ROI AND DYNAMIC CURVE PARAMETERS

556 INT NMROIS The number of regions of
interest (max of 12)

2-13

PROGRAMMING SUPPORT INFORMATION

Table 2-2 (Cont.)
Save Area Descriptor Block

Decimal Octal Type Name Description

368 560 BYTE ROIXY Region of interest definition
(1) X1 table
If X1 and Y1 are negative, the
region is undefined
X1l = x-position of
: left ordinate
369 561 BYTE Y1 Yl = y-position of lower

abscissa
370 562 BYTE X2 X2 = right ordinate
371 563 BYTE Y2 Y2 = upper abscissa
372 564 BYTE ROIXY ROI table number 2
(2) X1
412 634 BYTE ROIXY X1 ROI table 13
(12) .
422 646 INT IRM Irregular ROI switch:
0 = reqular region,
. non-zero = irregular
424 650 INT SCELLS The number of cells in the
: matrix
426 652 INT NMCELLS Number of cells in
) (1) region of interest 1
428 654 INT NMCELLS Number of cells in
(2) ROI 2
448 700 INT NMCELLS Cells in ROI number 12
. (12)
452 704 FP MAXCCR Maximum cell count rate for the
matrix : :
456 710 FP MAXCCR = Maximum cell count rate for
(1) region of interest 1
460 714 FP MAXCCR Maximum cell count rate for ROI
(2) 2
500 764 FP MAXCCR Maximum for ROI 12
(13)

MATRIX SAVE AREA PARAMETERS

452 704 DPI ROICNT Cell counts for matrix

456 710 DPI ROICNT Cell counts for each ROI (used
(1) with matrix data)

460 714 DPI ROICNT Cell counts for ROI 2
(2)

500 764 DPI ROICNT Cell counts for ROI 12
(12)

2-14

PROGRAMMING SUPPORT INFORMATION

2.6.2 Saving Matrix Data

Matrix data starts at block one of the save area disk file. If a
specific save area contains matrix data, the data may use from 2 to 32
disk blocks, depending upon the size of the matrix.

Irregular region of interest (ROI) data is stored 1in the save area
along with the matrix. Irregular ROIs are not applicable for 128x128
matrices. If the matrix size is 128x128, the matrix fills blocks 1
through 32. For 32x32 and 64x64 matrices, the matrix fills up to 16
blocks, and the irregular ROI information fills blocks 17 through 32.
The irregular ROI information always starts at block 17, even if the
matrix does not fill 16 blocks. Figure 2-5 shows the 1layout of a
matrix save area. ’

The ROI information is stored an ROI map. The map contains one word
per cell of the matrix; that 1is, each <cell in the matrix is
represented by one word in the ROI map. Figure 2-6 shows the layout
of the ROI map compared to the cell map that shows on the display.

Each word in the ROI map defines, the ROI information for the
corresponding cell in the display matrix. Each word in the ROI map
contains one bit per ROI. Bits 0 through 11 represent ROIs A through
L. If the corresponding cell is in ROI A, then bit 0 is set. If the
cell is also within ROI B, then bit 1 is set, and so forth. Bits 12
through 15 are used internally and should not be written by a program.
Figure 2-7 shows a word in The ROI map.

The ROI map is always a 64x64 matrix. Thus for a 32x32 matrix, four
cells of the map are marked for each cell of the 32x32 matrix. Note
on Figure 2-6, cells (i,1), (1,2), (2,1), and (2,2) would all be
marked for the first cell of the 32x32 matrix.

0
SAVE AREA
DESCRIPTOR BLOCK
1
MATRIX
16
17
NOTE: In FORTRAN IRREGULAR
the descriptor block is REGION OF INTEREST
block 1 and the ROI MAP
map starts at block 18.
32

Figure 2-5 Matrix Save Area

2-15

PROGRAMMING SUPPORT INFORMATION

CELL (1.1
(1,2)
(64,63 |(64,64)
(1,3)
(2,1) {(2,2)
(1,1 101,2)
(64,63)
(64,64) CELL MAP ON DISPLAY
ROI MAP
Figure 2-6 ROI Map and Cell Map
L K J | H G F E D C B A ROI
11 10 9 8 7 6 5 4 3 2 1 0 bit
number
used
internally

Figure 2-7 Word in ROI Map

2-16

PROGRAMMING SUPPORT INFORMATION

2.6.3 Saving Dynamic Curves

Each dynamic curve uses four disk blocks and consists of up to 512
floating point numbers. A save area may hold up to thirteen dynamic
curves, twelve representing the twelve possible regions of interest
and the thirteenth representing the total count curve.

Blocks one through four of the dynamic curve data contain the total
count curve which represents the total number of elements present
within each frame of the study. Each following 4-block set contains
the dynamic curve data for each region of interest. Therefore a save
area containing twelve regions of interest uses all of the available
52 disk blocks. See Figure 2-8.

BLOCK O

SAVE AREA
DESCRIPTOR

THIS AREA CONTAINS
THE TOTAL NUMBER OF
COUNTS WITHIN EACH
FRAME OF THE STUDY

REGION OF
INTEREST
‘A’

9 REGION OF
®

49

REGION OF

INTEREST
w

52

Figure 2-8 Dynamic Curve Save Area

2.7 INTERNAL GAMMA-1l1 FILES

GAMMA~-11 requires a number of internal files for use as work areas and
save areas. The naming conventions for these files are as follows:

SVARNN.SYS is the name of a save area where nn is the number of
the save area (00 through 64).
GAMMAX.SYS names a work area where x 1is the identification

character of the work area. This is the general form
of the following internal files.

GAMMAD, SYS used to store dynamic curves.

GAMMAS.SYS a scratch file used to store intermediate values.
GAMMAI.SYS a scratch file used by indexed display routine.
GAMMAP.SYS the predefined study file.

2-17

PROGRAMMING SUPPORT INFORMATION

GAMMAM. SYS temporary storage for the irregular regions mark matrix
(IR definition map). (Do not confuse this with the
save area ROI map.)

GAMMAL.SYS. temporary storage for list mode parameters.

GAMMAC.SYS storage for the color tables,

GAMMAB.SYS dual display buffer

2.8 GAMMA-11 MACRO AND PLAYBACK FILES
GAMMA-11 macro filenames are all of the form
filename.GMC

where filename is the name given to the macro at its creation with the
MC or MS command.

GAMMA-11 playback filenames are all of the form
filename.GPB

where filename 1is the name given to the playback file at its
initialization with the PBI or PBM command.

2.8.1 Playback Files

A GAMMA-11 playback file (.GPB extension) consists of a one-block
header block followed by the playback image buffers.

The first word of the playback header block contains the number of
images stored in the playback file., To change the number of frames
(in BASIC), declare the file an integer wvirtual array and change
element 0 (zero).

The index line and comment line are stored as ASCII strings with
maximum length of 128 characters. To change either the index line or
comment line, declare the file a character wvirtual array of string
length 128 and change element 1 (the index line) or element 2 (the
comment line). You must make sure that the new string 1is 1less than
128 characters (0 to 127).

For example, the following BASIC program changes both the index line
and the comment line. Note that this example deletes the comment
line.

10 DIM #1, AS(3) 128

20 OPEN 'filename.GPB' AS FILE #1
30 A$S(l) = 'NEW INDEX LINE'

40 AS$(2) = "!

50 CLOSE #1

60 END

Do not change any other elements in the file.

2-18

CHAPTER 3

BASIC AND FORTRAN SUPPORT

3.1 BASIC AND FORTRAN SUPPORT FOR GAMMA-11l F/B

The BASIC and FORTRAN support subroutines for GAMMA-1l allow complete
access to the patient files and save areas (whether they hold matrix
data or dynamic curves). The BASIC routines are linked with the BASIC
interpreter and include a resident 1.5K buffer for data. The FORTRAN
routines use the same resident 1.5K buffer for the data and perform
the 1I/0 similarly to BASIC. However, you have to link the object
files of the FORTRAN routines with your compiled FORTRAN program to
produce a running program.

Because the GAMMA-11 data, the BASIC interpreter or FORTRAN compiler,
and a user-written program together need more memory than is
available, the BASIC and FORTRAN support routines contain an automatic
disk swapping routine. This swapping routine is transparent to the
user, who can write programs as if there were more than enough memory.

There are two kinds of FORTRAN support routines discussed in this
chapter. The first set of routines are called the FORTRAN support
routines. These routines are similar to the BASIC routines.

The second set of FORTRAN routines are called the supplemental FORTRAN
support routines.. The supplemental routine€s do not perform input and
output operations on patient files and save areas. The supplemental
routines are not compatible with the FORTRAN support routines, and the
two sets of FORTRAN routines can not be used together.

3.1.1 Support Routine Notation
The following table lists the notétion for the parameters of the BASIC
and FORTRAN support subroutines.
NOTE
Since BASIC numeric variables have no
type (e.g., integer or real number), the

last column of this table is applicable
to FORTRAN only.

3-1

BASIC AND FORTRAN SUPPORT

Variable Description FORTRAN Variable Type
Name

isanum represents a save area integer

isatype represents a save area type integer

(matrix or dynamic curves)

index represents an index number integer
which refers to a specific
element of a save area or
patient file. For example,
the index number of the
patient name is 1 and of
the patient number is 2.

i, 3 represent the row (i) and integer,integer
column (j) indices of a
matrix. Note that row 1,
column 1 is the lower left
corner of the matrix.

iframe represents a frame number integer

icurve represents a dynamic integer
curve number

ipoint represents a point number integer
from a dynamic curve

value represents the value in an all value types
element of the data file within administrative
or save area and save area

descriptor blocks are
given in Tables 2-1
and 2-2. Points on a
dynamic curve are
floating point.

string represents the equivalent of this variable should
value if the element is an be a logical array
ASCII string in FORTRAN.

dev:file.Xnn represents the RT-11 file this descriptor
descriptor of a patient should be contained
file in a logical array in

FORTRAN
[,1en] represents the optional integer

length of the logical
array given by "string"
above. This parameter is
valid in FORTRAN only.

3.1.2 Patient Data File Subroutines
The following subroutines reference the patient data files. Table 3-1

shows the administrative data block layout with the indexes needed for
subroutines GPAR, GPAW, GPDR, and GPDW,

3-2

BASIC AND FORTRAN SUPPORT

Subroutine Explanation
GPFR('dev:file.Xnn'). Opens a patient file for read only processing.
or When a file is opened with this subroutine
GPFR{(string) call, it cannot be modified.
or . BASIC examples:
GPFR(string[,len]) CALL GPFR('RK1:NAME.X00')

CALL GPFR(VS)
However, if an ASCII string V$ 1is used,
then V$='RK1:NAME.X00' must be defined
before GPFR(VS$) is called.

FORTRAN examples

CALL GPFR('RK1:JOHNDO.X01')

CALL GPFR(VA)

CALL GPFR(VA,®b)
In these examples, VA is a logical array,
and 6 1is the length of the logical array.
The 6 is optional.

GPFW('dev:file.Xnn') Opens a patient file for read or write
processing. When a file is opened with this
subroutine call, it can be modified. The
alternate forms of the call and examples are
similar to GPFR.

GPF () Closes a patient file that is currently open.
This subroutine should be used to ensure that '
all modifications to a file have been made.

GPAR(index,string|[,len])
Returns in parameter string the ASCII string
in element(index) from the administrative data
block. The parameter [,len] is the optional
array length for the logical array in FORTRAN.

GPAW(index,string[,len])
Stores the ASCII string in element(index) of
the administrative data block of the patient
file.

GPDR(index,value) . Returns in value the value of element(index)
in the administrative data block.

GPDW (index,value) Stores value in the administrative data block
as element(index).

GPMR(iframe,i,j,value) Returns in value the value of element(i,j) of
frame iframe of a study. This subroutine may
only be used for static and dynamic studies.

GPMW(iframe,i,j,value) Stores value as the element(i,j) of frame
iframe. This subroutine may be used only for
static and dynamic studies.

GPLR(n,x,y,t,q9) Returns from 1list mode element (n), the
following values in the variables:

X = X-coordinate

y = Y-coordinate

t = 0, if there is no time mark
= 1, if the time mark is set

g = 0, if there is no gate mark
= 1, if the gate mark is set

Subroutine

GPLW(n,x,y,t,q9)

BASIC AND FORTRAN SUPPORT

Explanation

Note that for GPLR and GPLW, x, vy, t, and g

are integers (FORTRAN only).

Stores whatever is in x, y, t, and g into
list mode element number (n).

Table 3-1

Administrative Data Block

Ascii String Variable Table (FORTRAN and BASIC)

Index Name

W OIRNAUEWN -

26

28
29

PATNAM
PATNUM
ATIME
ADATE
BIRTHD
DOC
ORGAN
VIEW
CMTRT
AQMODE
ISOTOP
DOSE
1502
DOSE2
ISMODE
ORIENT
POSSWT
AMACRO
AUTO

---= Subroutines GPAR and GPAW ---

Description

Patient name

Patient number

Acqguisition time (supplied by program)
Acquisition data (supplied by program)
Patient birth date

Doctors name

Organ being studied

View of picture

Collimator type

Acquisition mode: l=special, 2=normal
Isotope being used

Dosage

2nd isotope being used

2nd dosage (dual isotope study)
l=single isotope, 2=dual isotope
Orientation switch

Position (rotation) switch

Auto analysis macro name

Auto analysis switch (y or n)

GATE-SYNCHRONIZED ACQUISITION (GSA) COLLECTION PARAMETERS

CAMID

GSAMTX
GSAFRM
GSADUR
GSATOL
GSAEFM

GSAPSC
GSACYC
GSAMIN
GSASEC

ENDFRA
MINUTE
SECOND
PSCNT

Camera number (0~3) (NCV11l only)
GSA matrix type (1 or 2)

Number of frames

Frame duration in msec
Tolerance in msec

End Frame (1, 2, or 3)

Time

Counts

1
2
3 Cycles

Preset counts
Preset cycles
Preset minutes
Preset seconds

STATIC AND LIST COLLECTION PARAMETERS

Method of ending study: l=time, 2=counts
The number of minutes in the study
The number of seconds in the study
The number of preset counts chosen

3-4

the

Index

36
37

38

41
42

43
44
45

> W

~Novn

BASIC AND FORTRAN SUPPORT

Table 3-1 (Cont.)
Administrative Data Block

Name Description

STATIC MODE COLLECTION PARAMETERS

SMTXS?Z The type of matrix (1, 2, 3, 4, or 5)

SMTXCS Close on overflow: <space>=do not close,
. <t>=close

MSFRM The number of frames

LIST MODE COLLECTION PARAMETERS

LDBLCK The number of disk blocks of data

LDBPC Method of closing: l=by counts, 2=by number
of blocks

LDELST Method of starting: y=delayed start,
n=immediate start

LDELRT Count rate for delayed start (maximum of
20,000)

LGSA If 'y', study in a gated list mode
v DYNAMIC MODE COLLECTION PARAMETERS

GRP1 The number of frames in group 1
: The type of matrix(l, 2, 3 or 4)
The type of close
Frame rate: x frames
Per y seconds (milliseconds for gated)

GRP2 Group 2 (same 5 paramenters as graup 1)
GRP3 Group 3
GRP13 Group 13

Data Value Table (FORTRAN and BASIC)
-=~ Subroutines GPDR and GPDW ---

COLTYP Collection type
Second byte < 0 list mode
= 0 dynamic study
> 0 static study

COMPRS Offset to comment block

TOTBLK * Total number of blocks in study

FADOFF Offset to first admin block (multiple
static)

DATTYP Data type: O=patient data, l=flood

MDOFF Offset to matrix data

PADOFF Offset to previous admin block (multiple
static)

ZCTOFF Dynamic: offset to z count block

NADOFF Offset to next admin block (multiple
static) »

ZCOUNT Z count, the number of events (double
precision integer)

OVFTIM Time of overflow clock counter

CFRM Current frame number

FRAMEN Total number of frames

GROUPN Total number of groups

3-5

BASIC AND FORTRAN SUPPORT

Table 3-1 (Cont.)
Administrative Data Block

Index Name Description
14 BINSEC Collection time in seconds
15 BINCYC # cycles collected
16 BINZLO Total counts collected
. BINZHI
17 BINDUR Frame duration in msec
18 BINTOL Tolerance in msec
19 BINBAD # rejected cycles

1 Format of data is double precision integer (FORTRAN data type
REAL*4)

3.1.3 Save Area Subroutines

Only one save area can be opened for reading at a time with GSAR.
However, with GSAW, you can write to any of the save areas--opened or
unopened. The term current save area refers to the save area that is
currently open.

Table 3-2 shows the layout of the save area descriptor block and the
indexes into the block needed by the save area subroutines.

The following subroutines access the Save Areas.
Subroutine ' Explanation

GSAR(isanum, isatype) Opens save area isanum; The subroutine
returns the save area type in isatype.
isatype=1 if the save area contains
matrix data; isatype = -1 if the save
area contains dynamic curves;
isatype = 0 if the save area contains
neither matrix data nor dynamic curves or
if the save area does not exist.

GSVG (index,value) Returns the value of element(index) of
the save area descriptor block.

GSVP (index,value) Stores value in element(index) of the
save area descriptor block.

GMXG(1i,]j,value) Returns the value of element(i,j) of the
matrix.

GMXP (i,]j,value) Stores value as element(i,j) of the
matrix.

GCVG (icurve, ipoint,value) Returns the wvalue of point ipoint of

curve icurve.

GCVP (icurve, ipoint,value) Stores value as point 1ipoint of curve
icurve.
GDIS(icurve) Plots curve icurve on the display.

3-6

Subroutine

GPOV (icurve)

GPKX(x) [BASIC ONLY]

GPKY (y) . [BASIC ONLY]

FGPICK (ix,y) [FORTRAN ONLY]

BASIC AND FORTRAN SUPPORT

Explanation

Plots curve icurve on the display,
overlaying the previously displayed
curve.

Displays a cursor above a point plotted
by GDIS or GPOV and waits for the user to
pick a point. 1If the user types an "L"
or. an "R", the cursor moves to the left
or the right, respectively. If the user
types a "J", the cursor moves 10 spaces
in the direction last typed. When . the
user types an "M", the x value (point
number) returns as x.

Same as subroutine GPKX except the y
value (count rate) is returned.

Displays a cursor on the display above a
point plotted by GDIS or GPOV. If the
user types an "L" or an “"R", the cursor

moves to the left or the right

respectively. If the user types a "J",
the cursor moves 10 spaces in the
direction last typed. When the user
types an "M", FGPICK returns the position
of the cursor in ix (integer) and vy
(real).

Writes the current save area into save
area number isanum.

Returns in string ASCII element(index) of
the save area descriptor block.

Stores string as the ASCII element(index)
of the save area descriptor block.

Table 3-2

Save Area Descriptor Block

.Save Area String Table (FORTRAN and BASIC)

GSAW (isanum)

GSAG(index;string)

GASP (index,string)
Index Name
1 SINDX
2 SCMDH
3 SVIEW

~-=-= Subroutines GSAG and GASP ~--

Description

Index line (66 ASCII characters)
GAMMA-11 command string (46 ASCII
characters)

View of frame (10 ASCII characters)

Save Area Data Table (FORTRAN and BASIC)
-=--= Subroutines GSVG and GSVP (FORTRAN and BASIC) =---

NDXDEV

RAD50 device name of indexed device
2-4 FILNAM RAD50 file name and extension
of file (3 integers)

3-7

BASIC AND FORTRAN SUPPORT

Table 3-2 (Cont.)
Save Area Descriptor Block

Index Name Description
5 NPFILE Numbers of patient files found on
indexed device
6 XTRBYT Number of extra bytes in directory entry
7 STYPE Data type indicator (in low byte)
0 = no data in save area
1 = matrix data
200 = dynamic curves
8 SDTYP Save register number in low byte
negative number=frame divide is set
9 SXPND Expand switch: 0=no expansion, non-zero=
expanded matrix
10 SLADFG Sliding add switch (the number of frames
. to add)
11 SROTAT Rotation factor: O=regular, 1, 2, or 3
to rotate axes
12 SNESW No enhancement switch
13 SSD Static or dynamic: O~static,
non-zero=dynamic
14 SDUAL Dual isotope switch: 0O=no dual isotope
: 1 = isotope A,
2 = isotope B
15 SORIG Original study type (non-zero=list mode)
16! SPOSOR Position (rotation) switch
17! Orientation switch
18 SAQM Acquisition mode: l=special, 2=normal
19 SFLDN Flood correction switch: 0=not done,
1=flood correction done
20 SPDTA Offset to data matrixes
21 SPPAD Offset to previous admin block (static
anly) :
21 SPZCT Offset to z-count block (dynamic only)
22 SPNAD Offset to next admin block (static only)
22 SPTOV Offset to time of overflow block
(dynamic only)
23 SPADM Offset to administrative data block
24 SPCOM Offset to comment block
25 SDAD Relative block number of present frame
26 SDMOD | Isometric switch: O=intensity,
l=isometrics
271 STHSH High threshold in %
28! , Step size in %
29! STHSL Low threshold in %
30! Step size in %
31 SSIZE Number of words in current matrix
32 SWDBYT Word or byte switch: 0=word, l=byte
33 SDIM Dimension size (32, 64, or 128)
34 SMAX Maximum cell count
35 SMIN Minimum cell count
362 SCOUNT Total number of counts
37 SMEAN The average cell count

3-8

Index

121

1222
1232
1242
125
126

130
131

132!
1331
134!
1351

1751
183
186

187
188

BASIC AND FORTRAN SUPPORT

Table 3-2 (Cont.)

Save Area Descriptor Block

STATIC MODE PARAMETERS

Name

SMSCFR

SSTM

SSVTM
SSZCT
SSMSZ
SSFAD

Description

Current frame number of multiple static
study ;

Duration of collection in seconds

Time of overflow in seconds

Z count, the number of events

Number of words in matrix

Offset to first administration block

DYNAMIC MODE PARAMETERS

SCRFRM
SCURGP
SCURGF
SCURFM
SN
SG

SGROUP (1) :SGPF

SGPSZ
SGPCS
SGXTM . (SGX)
SGY
SGROUP(2)

SGROUP (13)

Cumulative frame number

Current group number

Current number of frames in group
Current frame within group

Total number of frames

Total number of groups

Number of frames in group

Number of words of frames in the group
The close on overflow flag
Exposure rate: x frames per

Y seconds (milliseconds for gated)
Group 2

Group 13

ROI AND DYNAMIC CURVE PARAMETERS

NMROIS

ROIXY(1l) X1

Y2
ROIXY(2) X1

ROIXY(12) X1
IRM

SCELLS
NMCELLS (1)
NMCELLS (2)

The number of regions of interest (max
of 12)

Region of interest definition table

If X1 and Y1 are negative, the region is
undefined

X1 = x-position of left ordinate
Yl = y-position of lower abscissa
X2 = right ordinate

Y2 = upper abscissa

ROI table number 2

ROI table 12

Irreqular ROI switch: 0= regular region,
non-zero=irreqular

The number of cells in the matrix

Number of cells in region of interest 1
Numbers of cells in ROI 2

Index

198

201°¢
2023
2033

2133

2012
2012

20372

2132

BASIC AND FORTRAN SUPPORT

Table 3-2 (Cont.)
Save Area Descriptor Block

Name

NMCELLS (12)
MAXCCR
MAXCCR(1)
MAXCCR(2)
MAXCCR(12)
MATRIX

ROICNT
ROICNT (1)

ROICNT (2)

éOICNT(lZ)

Description

Cells in ROI number 12

Maximum cell count rate for the matrix
Max.cell count rate for ROI 1

Max.cell count rate for ROI 2

Max.for ROI 12

SAVE AREA PARAMETERS

Cell counts for matrix

Cell counts for each ROI (psed with

matrix data)
Cell counts for ROI 2

Cell counts ‘for ROTI 12

1 Byte data (FORTRAN uses INTEGER*2 format)
2 Double precision integer data (FORTRAN uses REAL¥4 format)
3 Floating point data (FORTRAN uses REAL*4 format)

3.1.4 General Purpose Support Subroutines for BASIC and FORTRAN

GAM(string)

GCHR(string[,lineno,icolno})

Exits from BASIC or FORTRAN and loads the
background GAMMA-11 program. BGAMMA is
executed, and it interprets the string as
the first command. 1If string is null, the
background command table is displayed. 1If
string 1is an 1illegal command, an error
message is displayed and typing a carriage
return will return GAMMA-1l to the command
table.

Prints the character string (string)
starting at 1location (lineno,icolno) on
the VsSvO01l. The parameters 1lineno and
icolno are optional. 1If lineno = negative
number or zero (0), the subroutine erases
the screen. If you call GCHAR with only
the string parameter (e.g.
GCHAR(string)), the string 1is printed
starting at the current cursor position,
(NOTE: This subroutine works for the
VSV0l display only.) You can reference
only line numbers 1 through 25, and
columns 1 through 64.

BASIC AND FORTRAN SUPPORT

3.1.5 Linking FORTRAN Subroutines with a User Program

For you to use the FORTRAN/GAMMA-1l subroutines with your own program,
you must 1link four FORTRAN object modules to your program. The four
object modules are:

GMFOR1 ,0BJ
GMFOR2.0BJ
GMFOR3.0BJ
GMFERR.OBJ

GMFOR1.0BJ and GMFOR2.0BJ should always be linked with a user program
whenever any of the support routines are referenced in the user
program. You should 1link GMFOR3.0BJ when any curve ‘plotting
subroutines are used. You should always link GMFERR.OBJ because it
contains the FORTRAN error messages.,

NOTE

You can install the FORTRAN OTS library
in SYSLIB.OBJ or in FORLIB.ORJ. See
Section 2.4.1 of the RT-11 FORTRAN 1V
Installation Guide (DEC-11-LRSIA-A-D).
If you have installed the FORTRAN OTS
library in SYSLIB.OBJ, you do not need
the FORLIB or /F parameters when you
link your FORTRAN program.

If a program named PGM references only GAMMA-1l patient files, type:
.LINK PGM,GMFOR1l,GMFOR2,GMFERR,FORLIB
If a program references save area data and plot curves, type:
.LINK PGM,GMFOR1l,GMFOR2,GMFOR3,GMFERR,FORLIB
I1f the overlay feature of the RT-11 Linker is used, GMFOR1 should. be
linked to the root section of the program. GMFOR2, GMFOR3, and GMFERR

can be included in the overlays if desired. To use the overlay
feature, type:

.R LINK

*PGM=PGM,GMFOR1, FORLIB/C
*GMFOR2/0:1/C
*GMFOR3/0:1/C
*GMFERR/0:1

3.1.6 BASIC And FORTRAN Error Messages
The error messages are the same for both the BASIC and FORTRAN support
subroutines. However, the format of the messages vary between BASIC
and FORTRAN.
The format for the BASIC error messages is:

?GAMMA-F-Save are numbers too large or negative AT LINE 20
The line number of the line where the error occurred 1is given. In

this example, the error occurred at line 20. 1In BASIC, the system
returns to a READY when an error occurs.

3-11

BASIC AND FORTRAN SUPPORT

The format for the FORTRAN error messages is:

?GAMMA-F-Save area number too large or negative
?Err 0 Non-FORTRAN error call
in routine ".MAIN." line 5

The first line of the message states the problem. The second and
third 1lines of the message state the routine name and line in which
the error occurred. 1In this example, the error occurred in line 5 of
the main program. 1In FORTRAN, the system returns to the RT-1ll1 monitor
when an error occurs.

The error messages for the BASIC and FORTRAN support subroutines - are
listed below.

Null file name

Routines GPFR, GPFW
A null string was given as the GAMMA patient file name.

Illegal device

Routines GPFR, GPFW
An illegal device name was given in the string while opening the
GAMMA patient file.

Illegal file name

Routines GPFR, GPFW
Illegal RADS0 character was given as part of the GAMMA-~-1l patlent
file name.

Non-file structured device

Routines GPFR, GPFW :
A non-file structured device (e.g., paper tape, line printer) was
given in the string while opening the GAMMA patient file.

No device handler loaded

Routines GPFR, GPFW
The device handler is not in memory, and the GAMMA patient file
cannot be opened.

GAMMA file lookup error

Routines GPFR, GPFW, GSAR

A lookup error occurs trying to open a patient file or a save
area file, This error usually means that the file is not on the
device specified.

GAMMA file not open

All routines except GPFR, GPFW, GSAR :
- Subroutine tried to reference a GAMMA patient file or save area
file before it was opened.

GAMMA file savestatus error

Routines GPFR, GPFW, GPF, GPMR, GPMW, GPLR, GPLW, GSAR, GMXG,
GMXP, GCVG, GCVP, GSAW

Save status error occured during input/output operation (probable
hardware error).

BASIC AND FORTRAN SUPPORT

GAMMA file reopen error

Routines GPFR, GPFW, GPF, GPMR, GPMW, GPLR, GPLW, GSAR, GMXG,
GMXP, GCVG, GCVP, GSAW i

Reopen error during an input/output operation (probable hardware
error) .

GAMMA file read error
Routines GPFR, GPFW, GPF, GPMR, GPMW, GPLR, GPLW, GSAR GMXG,
GMXP, GCVG, GCVP, GSAW
Read error during I/0 (probable hardware error).

GAMMA file write error
Routines GPFR, GPFW, GPF, GPMR, GPMW, GPLR, GPLW, GSAR, GMXG,
GMXP, GCVG, GCVP, GSAW
Write error during I/0 (probable hardware error).

Frame number too large or negative
Routines GPMR, GPMW
The frame number (iframe) is not within the range of the number
of frames in the current patient file.

List element too large or negative
Routines GPLR, GPLW
The list mcde element (n) is outside the boundaries of the number
of elements in the patient file,

Index too large or negative
Routines GPAR, GPAW, GPDR, GPDW, GSVG, GSVP, GSAG, GSAP
The index number (index) exceeds the number of indices in the
table that is being referenced.

Curve number too large or negative
Routines GCVG, GCVP, GDIS, GPOV
The curve number (icurve) is greater than 12, the maximum number
of curves in a save area.

Point number too large or negative
Routines GCVG, GCVP
The point number (ipoint) is outside the boundaries of the number
of points in the save area curves.

Dimension too large or negative
Routines GPMR, GPMW, GMXG,
The element specified by (i,j) of the patient file or save area
is outside the boundaries of the matrix.

Save area number too large or negative
Routines GSAR, GSAW

The save area number (isanum) referenced exceeds 64, the maximum
number of save areas.

3-13

BASIC AND FORTRAN SUPPORT

Curve save area number too large or negative

Routines GSAW

An attempt was made to write a dynamic curve Save Area in a save
area number (isanum) greater than 9.

Illegal parameter value
Routines All routines except GPFR, GPFW, GPF
An illegal value (less than or equal to zero) 1is set for a

subroutine parameter (e.g., index number (index), matrix
dimension (i,j), point number (ipoint), frame number (ifame)).

3~-14

BASIC AND FORTRAN SUPPORT

3.1.7 BASIC and FORTRAN Examples
BASIC Example 1

The following example reads a patient summary and then prints it out.
The important lines of this example are lines 20 and 30. 1In line 20,
the user enters the patient file name which is stored in variable AS.
In line 30, that file is opened for reading and writing.

10 REM ~-- READ IN PATIENT FILE --
20 FRINT ‘INFUT FATIENT FILE NAME’ \ INFUT As
30 CALL GFFW(AS$)

40 FRINT

50 REM -- OUTFUT FILE SUMMARY —-

60 FOR I=1 TO 20

70 PRINT ‘%’ \ NEXT I

80 PRINT \ PRINT

90 PRINT ‘FATIENT:’3 \ FOR I=1 TO 8
100 CALL GFAR(I»B$) \ FRINT E$

110 NEXT I

120 CALL GFDR(12sE)

130 PRINT ‘NUMBER OF FRAMES =;R
140 PRINT

150 FOR I=1 TO 20

160 FRINT ‘%’ \ NEXT I

170 CALL GFF ()

180 END

READY

BASIC Example 2

The following example integrates a dynamic curve. The user picks the
save area where the curve is stored, the curve to be displayed, and
the left and right bounds of the integral. Since the raw counts are
stored with the curve data, the integral is merely a summation of the
counts between the boundaries chosen (using subroutine GCVG in 1line
110).

20 REM -- READ' DYNAMIC CURVE SAVE AREA --
30 PRINT ‘WHICH SAVE AREA’S \ INFUT Al

35 CALL GSAR(A1:A)

40 REM ~-- READ CURVE INTO THE BUFFER —-

50 PRINT ‘WHICH CURVE TO BE DISFLAYED’§F \ INPUT Bl
595 CALL GDIS(EL)

60 REM —— FIND THE NUMBER OF FOINTS --

70 CALL GSVG(41sR)

80 REM -- FIND THE INTEGRAL OF THE CURVE
90 I=0

100 FRINT “THERE ARE’ B3 'FOINTS’

102 FRINT ‘FICK THE ROUNDS OF THE INTEGRAL’
104 CALL GFKX(D) \ CALL GFKX(E)

106 FOR J=D TO E

110 CALL GCVG(E1l»JrK)

120 0=I+K

130 NEXT J

140 FRINT ‘INTEGRAL OF CURVE’Bl3 ‘=51

150 ENID

READY

BASIC AND FORTRAN SUPPORT

BASIC Example 3

The following example initializes a save area to hold static matrix
data. The user picks the save area to be initialized. Then that save
area is opened as a virtual file (lines 40, 50, and 60) to allow the
program to zero the save area descriptor block (lines 80 and 90). The
user chooses the type of matrix and the subroutine initializes the
save area descriptor block. Finally, in lines 160 to 200, the matrix
is filled (with whatever you choose). 1In this example, an "X" is put
in the matrix. Then the BASIC program returns to the GAMMA-11 data
analysis program to continue analysis.

10 REM —-- ZERO SAVE AREA DRESCRIFTOR ELOCK --

20 REM

30 FRINT N\ FRINT ’‘SAVE AREA MATRIX INITIALIZATION’
40 PRINT \ FRINT ‘WHICH SAVE AREA’# \ INFUT A3% \ LET A3=VAL (A3$)
50 LET A$=’'SVARO’&A3$&’.5YS’

60 DIM #1,F1(255)

70 OFEN A% AS FILE 1

80 FOR I=0 TO 255 \ LET F1(I)=0 \ NEXT I

9?0 CLOSE 1

100 REM

110 REM —-- CHOOSE MATRIX TYFEs» THEN INITIALIZE

120 REM

130 FRINT ‘WHAT MATRIX SIZE:!(32564,128)’F \ INFUT Al
140 FRINT ‘BYTE OR WORD:(1=RYTE»O=WORL)/‘F \ INFUT A2
150 CALL GSAR(A3»Z) \ GOSUR 210

160 FOR I=1 TO Al \ LET J=Al+1-I

170 CALL GMXF(IsI»I) N\ CALL GMXF(IrdrJd)

180 NEXT I

190 CALL GSAW(A3)

200 CALL GAMC'CA’)

210 REM

220 REM -- MATRIX INITIALIZATION SUBROUTINE

230 REM SET TO INIT A STATIC MATRIX

240 REM -—- A1=SIZE(32+64,128)..A2=BYTE(1)..0R WORD (0)
250 REM :

260 CALL GSVF(7+1) \ CALL GSVF(8,A3)

270 CALL GSVF(27»100) \ CALL GSVF(28+3)

280 CALL GSVF(2990) \ CALL GSVF(30,5)

290 LET A4=512

300 IF A1=32 THEN 320 \ LET A4=A4X%4

310 IF Al=64 THEN 320 \ LET A4=A4%4

320 IF A2=1 THEN 330 \ LET A4=A4%2

330 CALL GSVF(31sA4) \ CALL GSVF(125,A4)

340 CALL GSVF(32sA2) \ CALL GSVF(33sAl)

350 CALL GASF (1 GAMMA—-11 SAVE AREA’)

360 RETURN ;

370 END

READY

3-16

BASIC AND FORTRAN SUPPORT

BASIC Example 4

The following macro creates the playback file GSA.GPB, plays the
playback, calls the BASIC program NEWNME (line 4), and then plays the
playback file a second time. Program NEWNME changes the patient file
index 1line in the playback file called GSA.GPB. When the program is
finished, the macro will continue execution and replay the playback.

MACRO

1) PBI GsA,0,48,1
2) RSO;BE;LT10

3) 48:PBS; !{SK

4) PB GSA;BA NEWNME
5) PB GSA

BASIC PROGRAM NEWNME

10 DIM #1rAS(146)=64

20 OFEN ‘GSA.GFE’ AS FILE #1

30 FRINT ‘OLD FATIENT INDEX:!’7A$(2)

40 FRINT ‘“INPUT NEW INDEX:!‘5 \ INFUT E$
S0 LET A$(2)=E$

60 CLOSE #1

70 CAL GAM(’CA’)

FORTRAN Example 1

The following FORTRAN example is similar to BASIC Example 3. This
program initializes a save area to hold static matrix data. The main
program asks the user for the save area number, opens the save area,
initializes the save area descriptor block (subroutine INITMA), and
fills the matrix (subroutine FILLMA). Subroutine IALPH converts the
numeric save area number to ASCII data for the save area name.

INTEGER NAME(6)»ADMIN(2G6)
1 FORMAT(I2)
NAME(1)="8V~’
NAME (2)="'AR"’
NAME(4)=".8"
NAME(S)="Y8"
NAME (6)=0
TYFE %Xy ‘SAVE AREA MATRIX INITIALIZATION’
TYFE X» ‘WHICH SAVE AREAT”’
ACCEFT X» NUM
ENCODE(2y1sNAME(3)) NUM
OFEN(UNIT=1y NAME=NAME y ACCESS='DIRECT ' » TYPE="UNKNOWN" »
1RECORDSIZE=128, INITIALSIZE=33yASSOCIATEVARIABLE=N1)
D0 100 I=1+256
100 ADMINCI) =0
WRITEC(1/1)ADMIN
WRITE(1/33)ADMIN
CLOSE(UNIT=1)
TYPE %» ‘WHAT MATRIX SIZE:(32,64,128)°
ACCEFT %» NSIZE
TYFE Xy ‘BYTE OR WORD$ (1=RYTE,»O=WORD)

3-17

BASIC AND FORTRAN SUPPORT

ACCEFT Xy NTYFE

CALL GSAR(NUMsM)

CALL INITSA(NSIZEsNTYFEsNUM)
CALL INITMA(NSIZE)

CALL GSAW(NUM)

CALL RGAMMA(’/CA‘)

STOF

END

SUBROUTINE INITSA(NSIZE,NTYFENUM)
CALL GSVF(7s1)
CALL GSVF(8yNUM)
CALL GSVF(27,100)
CALL GSVUF(28,3)
CALL GSVF(2950)
CALL GSVF(30y5)
I=512
IF(NSIZE.EQ.64)T=1%4
IF(NSIZE.EQ,128)I=1%14
IF(NTYFE.EQ.0)I=I%2
CALL GSVF(31s1D)
CALL GSVUF(125,1)
CALL GSVF(32sNTYFE)
CALL GSVF(33yNSIZE)
CALL GASF(1s’'GAMMA—-11 SAVE AREA’22)
RETURN
END

C
SUBROUTINE INITMA(NSIZE)
[0 100 I=1sNSIZE
JENSTZE+L-T
CALL GMXF(IsIyI)

100 CALL OGMXF(IsJded)
RETURN
END

3-18

BASIC AND FORTRAN SUPPORT

3.2 SUPPLEMENTAL FORTRAN SUPPORT

Besides the FORTRAN support routines 1listed in Section 3.1, other
FORTRAN routines exist to access patient files and save areas, and to
plot dynamic curves. The routines listed in this section do not
perform input and output operations on the patient files and save
areas. To use these supplemental routines, you must first assign and
define the input and output files as random access files and then read
the appropriate blocks into arrays before calling the routines. Refer
to Tables 3-1 and 3-2 for -a description of the internal structure of
the patient files and save areas.

3.2.1 FORTRAN and GAMMA-11 Variables

The variables used in the GAMMA-11 files are not compatible with
FORTRAN 1IV. The GAMMA-1ll variables are unsigned (i.e., not 2's
complement) numbers. FORTRAN IV variables must be signed.

Below is the notation that is used to denote the GAMMA-11l and FORTRAN
variable types.

GAMMA-11 Variables

Name Data Type Contents

g8 LOGICAL*1 Unsigned, 8-bit datum

gleé INTEGER*2 Unsignéd, 16-bit datum

932 REAL*4 or Unsigned, 32-bit double precision
INTEGER*4 integer.

FORTRAN Variables
integerf INTEGER*2 Signed integer

realf REAL*4 Real, floating point number

3.2.2 Arrays

When you use this set of FORTRAN support routines, you must handle
inputting and outputting the files yourself. The following array
notation describes the format for handling these files.

Name Description

rawfile A 512-byte array in which you 1load the entire
administrative data block of a patient study
(using a direct-access read).

patientinfo A real array, dimensioned (3,42), which contains
ASCII data converted from rawfile. The
patientinfo array is obtained from the rawfile
array by using subroutine FGADM1.

ipointers A 75-word integer array which contains pointers
and parameters from the administrative data block
contained in array rawfile. The pointers array is
obtained from array rawfile by using subroutine
FGADM1.

3-19

BASIC AND FORTRAN SUPPORT

Name Description
rawcomments A 510-byte array which contains the comment block
: of the patient study (read by a direct-access
read). v
comments " A 510-byte logical array dimensioned (51,10) which

contains the ASCII text of the comment block. The
array comments is obtained from the array raw
comments using subroutine FGCOM1l. Each position
of the array is one ASCII character.

savearea A 256-word array containing the descriptor block
of a save area (read by a direct-access read).

curve A 512-real element array containing a dynamic

curve read from a save area (read by a
direct-access read).

3.2.3 Functions

The following functions convert unsigned integer data from GAMMA-1il to
signed integer or floating point format of FORTRAN IV.

IBYTE (g8) Returns the byte datum, g8, as a signed integer,
integerf.
RSPI(glé) Returns the 1l6-bit unsigned integer, glé, as a

floating point number, realf,

RDPI (g32) Returns the unsigned 32-bit integer, g32 as
floating point number, realf,

The following functions convert FORTRAN IV data to GAMMA-1ll format.

LBYTE(integerf) Returns the signed integer, integerf, as an
unsigned 8-bit integer, g8.

ISPR(realf) Returns the floating point number, realf, as an
unsigned 16-bit integer, glé6.

RDPR(realf) Returns the floating point number, realf, as an
unsigned 32-bit integer, g32.) :

GAMMA-11 word data does not have to be converted to real format unless
the number of cell counts exceeds 32767. In a typical study, such
large cell -counts are extremely unlikely.

3.2.4 Subroutines
The following subroutines process GAMMA-1ll patient studies.

FGADM1 (rawfile,pointers,patientinfo)
Converts the patient administrative data block in. array
rawfile into the ASCII array patientinfo and parameter
pointer block pointers, 1f patientinfo is not
specified, no ASCI1 data 1is converted. Rawfile and
patientinfo, or rawfile and pointers cannot be
equivalenced.

3-20

BASIC. AND FORTRAN SUPPORT

FGADM2 (rawfile,pointers,patientinfo)
The ASCII array patientinfo and parameter pointer block
pointers are converted into a patient administrative
data block in array rawfile. Rawfile and patientinfo,
or rawfile and pointers cannot be equivalenced.

FGCOM1 (rawcomments,comments)
Converts the comment block (in rawcomments) into a
FORTRAN ASCII array comments.

FGCOM2 (rawcomments ,comments)
Converts the FORTRAN ASCII array comments into a
GAMMA-11 comment block rawcomments. Rawcomments and
comments can be eguivalenced. '

IFGFRM(ipointers,i)
A function which returns the record number of frame 1i.
The array ipointers is the pointer array set up by
FGADM1.

IGLSTR(n,x,y) Return the x and y coordinates of the list mode element
n. The function returns 1 of 4 possible values.

2 Time mark not set, gatemark set.
1 No time mark, no gatemark.
-1 Time mark set, gatemark not set.
-2 Time mark set, gatemark set.
Note that for IGLSTR and IGLSTW, x, vy, t, and g are
integers.

IGLSTW(x,Y,t,q9)
A function which returns a list mode element number from
the four parameters, x, y, t, and g.

NOTE

FORTRAN record numbers are one greater
than RT-11 block numbers.

The following subroutines reference save area data.

FGPLOT (savearea,curve) Plots a dynamic curve on the display. The
array savearea contains the save area
descriptor block and curve is an array that
contains the floating point dynamic curve
data.

FGPICK (ix,y) Displays a cursor on the display above a point
already displayed by FGPLOT. The user can
move the cursor with the keyboard commands "R"
(right) and "L" (left). The keyboard command
"J" jumps 10 spaces in the direction last
typed by the user. When the user types "M",
the position of the cursor is returned in the
ix and y parameters.

FGPTOV (savearea,curve) Plots a dynamic curve on the display that
overlays the previously displayed curve,

BGAMMA (command) Exits from FORTRAN and 1loads the background

GAMMA-11 program, BGAMMA is executed and it
interprets the ASCII characters in the real

3-21

BASIC AND FORTRAN SUPPORT

variable, command, as the first command. If
command is blank (i.e., contains ASCII
blanks), the background command table is
displayed. 1If the characters form an illegal
command, an error message is displayed, and
typing a carriage return will return GAMMA-1l
to the command table. ‘

3.2.5 Linking Supplemental FORTRAN Subroutines With A User Program

There are three object files included 'in the supplemental FORTRAN
support package. These are:)

F4ROOT.OBJ
F4PLOT.OBJ
F4ADMN.OBJ

F4ROOT.OBJ should always be linked with your program whenever any of
the supplemental support routines are referenced. F4PLOT.OBJ is
linked when any curve plotting subroutines are used. F4ADMN.OBJ must
be linked when any subroutines that reference GAMMA-11 patient studies
are referenced within your program.

The following list shows subroutine calls that are referenced within
the three files of the supplemental support package.

Object File FORTRAN Supplemental Support Subroutines

F4ROOT IBYTE, LBYTE, RSPI, ISPR, RDPI, RDPR, BGAMMA

F4PLOT FGPLOT, FGPTOV, FGPICK

F4ADMN FGADM1, FGADM2, FGCOM1l, FGCOM2, 1IFGFRM, IGLSTR,
IGLSTW

If the overlay feature of the RT-11 linker is used, F4ROOT should be
linked to the root section of the program. F4ADMN and F4PLOT can be
included in the overlays if desired (see following example).
1. If a program references only GAMMA-1l patient files, type:
.LINK PGM,F4ROOT,F4ADMN,FORLIB

2, 1If a program references only save area data and curves, type:

.LINK PGM,F4ROOT,F4PLOT,FORLIB

3. If a program references both GAMMA-1l patient files and save
area data and curves, type:

.R LINK
PGM=PGM, F4ROOT,FORLIB/C

F4ADMN/O:1/C
F4PLOT/O:1

3.2.6 FORTRAN Example

The following program is an example of a FORTRAN program using the
supplemental GAMMA-11 FORTRAN support.

3-22

BASIC AND FORTRAN SUPPORT

READ A FRAME INTO ARRAY MAT

GO0

no 2 I1=1,64+8
READCLI/NL) ((MAT(JrK)9yK=1964) 9y J=T1I1+1147)

CONVERT THE GAMMA DATA INTO FORTRAN FORMAT.
THEN CHECK EACH ELEMENT FOR NEW MAXIMUM

oOooG

D0 1 I=1,64

o 1 J=1,64
MX=IRYTE(MAX(Iy.J))
FT=IRYTE(MAT(I».J))
IF(MX-FT +GE. 0) GOTO 1

IF NEW MAXIMUMy STORE COUNT AND TIME

ocO0

MAX(I»J)=MAT(Is.))
TIMCIy D)=LRYTE(IJ)
CONTINUE

ELIMINATE COUNTS UNDER S

OO0 =

DO 12 I=1,64

N0 12 J=1y64 .

IFCIBYTE(MAX (L)) oLTe 5) TIM(I»J)=O
CONTINUE

8]

OO0~

RECONVERT INTO GAMMA FORMAT

]

CALL FGADM2(ADIMINSFyE)
N2=1

]

WRITE ALL BLOCKS FRECEDING DATA

[

WRITE(2/N2) ADMIN
N0 15 KRK=2yMDOFF~-1
READNCLI ‘KK)YADIIMIN
15 WRITE(2/N2) ADMIN
C
C WRITE EITHER TIME OR COUNTS INTO FRAME
C
WRITE(Sy444)
444 FORMAT(’ “y ‘D0 YOU WANT TIME OR INTENSITY FOR THE MATRIX?’)
WRITE (5y44%5)
445 FORMAT(’ “»“TYPE 1 FOR TIMEs 2 FOR MAX. INTENSITY’//)
READ(Sy4446) IF
4446 FORMAT(I1)
TF QP2 JGE. 0)Y GOTO 122
N0 7 I=1+64:8
7 WRITEC2/N2Y(C(TIMC(IsRKY y K219y 64) vy J=1yI47)
STOF
122 N 8 I=1+64+8
8 WRITEC2N2)Y ((MAXCIsK) y K=y b64) 9y =19 I47)
STOF
END

3-23

ooOCcOLOG o0

aooOn

BASIC AND FORTRAN SUPPORT

FORTRAN SUFFORT EXAMFLE
k% FUNCTIONAL TIMAGING FROGRAM %X

THIS FROGRAM WILL STEF THROUGH A DYNAMIC STUDY LOOKING
FOR MAXIMUM VALUES AT EVERY MATRIX FOSITION (1sJ0).
IT WILL RECORD THE TIME OF EACH MAXIMUM ALSO (TIM(64+64)).

LOGICALX1 MAT(&44,64)yTIM(64164) yMAX(64564)»ADMIN(S12)
INTEGERX2 N1yN2yNAMEy NAME2sF (735) sy MXyPTy IF
REALX4 E(3y42) sFMsIM

ZERO VARIARLES IN ARRAYS

DATA FM/'FN 17/

DATA IM/ ' MAGE’/

DATA ADMIN/S12%0/

DATA F/75%0/yR/1L26X0./
D0 333 I=1s64

D0 334 J=1,64
MAT(IyJ)=0

MAX(Iv.J)=0

TIM(I»J)=0

CONTINUE

INFUT FILE NAMES FROM KEYROARD

WRITE(S5,222)

FORMAT (7 7 “INFUT FATIENT FILE AND NEW FILE NAME ‘//)
CALL ASSIGNC1«NAMEy -1y RDO7» "NC’)

CALL ASSIGN(2yNAMEZy 1y "NEW’y "NC’)

DEFINE FILES FOR RANDO ACCESS 170
DEFINE FILE 1 (1000+286sUsN1)
DEFINE FILE 2 (202065UsN2)

Nl=1

READ BLOCK ¢ (RECORD 1) AND CONVERT FROM GAMMA FORMAT
TO FORTRAN FORMAT

READ(L/NL) ADMIN
CALL FGADMLIAODMINYF Y R)

MOOFF=TFGFRM{F» 1)
N1=MDOFF
CONVERTR FPRAMETERS FROM DYNAMIC TO STATIC

Fery=1
(143
P20 =1

STORE FUNCTTONAL IMAGE " MESHAGE

BClLy10)=FM
B(2e10)=1M
NFRMS=F(9)
DO 1L L=l s NFRMS

‘3-24

CHAPTER 4

ASSEMBLING AND LINKING GAMMA-1l

You can assemble and link GAMMA-1l by using the RT-11 MACRO and LINK
commands, Indirect command files which contain all the commands
required to assemble and link GAMMA-1l are included on the GAMMA-11
source media (DEC~11-MGAMA-C-EC, ED or ET).

4.1 ASSEMBLING GAMMA-~1l USING INDIRECT COMMAND FILES

To assemble GAMMA-11l, assign three logical devices and call two out of
three indirect command files. The three indirect command files for
assembling GAMMA-11l are

GMASMC,COM Display~-independent assemblies
GMASMV.COM VSV0l-dependent assemblies
GMASMS .COM VT0l-dependent assemblies

To assemble GAMMA-11l for the VSVO0l coior display, use command files
GMASMC and GMASMV. To assemble GAMMA-1l for the VT(0l display storage
scope use command files GMASMC and GMASMS.

These indirect command files use three logical device assignments:

SRC for the source file device (MACRO-11 input device)
OBJ for the object file device (MACRO-11 output device)
LST for the listing device (MACRO-11 listing device)

You must use the RT-11 ASSIGN command to assign physical devices to
the 1logical devices before using the indirect command files. If you
do not want the object files or the listing files, assign the null
device handler (NL) to OBJ or LST.

NOTE

Each indirect command file generates
about 3000 blocks of listings. Thus, if
you assign an RKO5 to LST, this disk
becomes full if other files are also on
it.

4-1

ASSEMBLING AND LINKING GAMMA-11

For example, the following RT-11] commands would be used to assemble
GAMMA-11 for the VSV0l display with the source files on RKO05 drive 0,
the object files on RK05 drive 1, and the listing on the line printer:

.ASSIGN RKQO SRC
.ASSIGN RK1 OBJ
.ASSIGN LP LST
. @GMASMC

. @GMASMV

IRAZ XSRS 222 GWASM:.:O'{ EEEREESEIBHRSFREBEBE0EES
]
!
!GAMMA=11 V2C DEVICE INDEPENJENT ASSEMBLIES
)
]
1
[]

#¥#4ss MISC, SYSTEM SUMMARY, TRANSFER, DJELETE *#%

MACRI/LIST:LST:DATTIM/OBI:ORIDATTIM/ALL:20, SRTC:DATTIM
MAZRO/ULIST:LST:ACQDEV/OBJ:OBIIACQIDEV/ALL220, SRTIAZQDEV
MACRO/LIST:LST:GAMFIL/0BJ:08JsGAMFIL/ALL:20, SRI:GAMFIL
MACRI/LIST:LST:MEVMMNG/0B8J:0BRJIMEMMNG/ALL:20., SRT:MEMMNG
MACRO/LIST:LST:SYSSUM/0RI:0BI:SYSSUM/ALL:20, SRT:(SYSSUM+GAMLIB/LIB)
YACRI/LIST:LST:DELETE/IBJ:OBI:DELETE/ALL:20. SRT:(DELETE+GAMLLIB/LIB)
MACRO/LIST:LST:TRNFER/OBJ:OBI:TRNFER/ALL:40, SRT:(TRNFER+GAMLIB/LIB)

IEFSFEESSEE DATA ACQUISITION SEksssssssas st sty
: .
MACRI/LIST:LST:BACQCM/0UBI:0BI:BAZQCM/ALL:20, SRC:(ACITCMNHAPSECT+GAMLIB/LIB)
MACRO/LIST:LST:FACQCM/0BJ:0BJ:FACQCM/ALL:20, SRTC:(FJIR+ACQIMN+APSECT+GAMLIB/LIB)
MACRO/LIST:LST:EACQCM/0BI:0BJ:EACQCM/ALL:220, SRTI(EFJIB+ATQCMNSAPSECT+GAMLIB/LIB)
MAZRO/LIST:LST:OYNACQ/0BI:0BJ:DYNACQ/ALL:20, SRT:(DYNACQ+APSECT+GAMLIB/LIB)
MAZRO/ULIST:LST:EDYNAQ/OBJ:OBJSEDYNAQ/ALL:20, SRC:(EFJIB+DYNACQ+APSECT+GAMLIB/LIB)
MACRI/LIST:LST:STCACQ/0RJ:0BIJ:STZACQ/ALL:20, SRT:(STTACQ+APSECT+GAMLIB/LIB)
MACRD/LIST:LST:ESTCAQ/OBJ:OBJISESTCAQ/ALL:20, SRI:(EFJIB+STCACQ+APSECT+GAMLIB/LIB)
MAZRI/LIST:LST:LSTACQ/I8J:0BJsLSTACQ/ALL:20, SRT:(LSTACQ+APSECT+GAMLIB/LIB)
!ACRO/L!ST:LST:FLSTAO/OBJ:OBJ:FLS[AQ/ALL:ZO. SRTC:(FJOB+LSTACQ+APSECT+GAMLIB/LIB)
MACRO/LIST:LST:ELSTAQ/0BJ:OBJISELSTAQ/ALL:20. SRC:(EFJIB+LSTACQ+APSECT+GAMLIB/LIB)
MACRO/LIST:LST:BACQSB/0BJIs0OBI:BAZYSB/ALL:20. SRI:(ACJSB+APSECT+GAMLIB/LIB)
MACRI/LIST:LST:FACQSB/0BJ:0OBJ:FAZISB/ALL:20, SRT:(FJIB+AZISB+APSECT+GAMLIB/LIB)
MACRI/LIST:LST:EACQSB/0BJIIOBISEAZQISB/ALL:20, SRC:(EFJIB+ACQSB+APSECT+GAMLIB/LIB)
MACRO/LIST:LST:BACQST/0BJt0OBI:BAZIST/ALL:20, SRC:(ACQSTR+APSECT+GAMLIB/LIB)
MACRO/LIST:LST:FACQST/0B8J:08JsFAZYST/ALL:20, SRC:(FJIB+ACOSTR+APSECT+GAMLIB/LIB)
MACRO/LIST:LST:EACQSTI/0BJ:0BIIEAZQYST/ALL:20, SRC:(EFJIB+ACQSTR+APSECT+GAMLIB/LIB)
MACRO/LIST:LST:BAQSEF/0BJ:0OBJ:BAJSET/ALL:90, SRT:(ADS1+AQS2+GSASET+APSECT+GAMLIB/LIB)
YAZRI/LIST:LST:FAQSET/0BJtIRJsFAQSET/ALL:90. SRI:(FJIB+AQSI+AQS2+APSECT+GAMLIB/LIB)
MACRD/LISTSLST:EAQSET/0BI:0BJI:EAQSET/ALL:I90, SRC:(EFJIB+AQS1+AQS2+¢APSECT+GAMLIB/LIB)
MAZRI/LISTSLST:PREDEF/0BJ:DBJSPREDEF/ALL:20, SRC:(PREDEF+APSECT+GAMLIB/LIB)
~MACRI/LIST:LST:GSAACQ/0BIs0BISsGSAACQ/ALL:20, SRC!(GSAACO#APSKCT'SAMLIH/LIB)
MAZRD/LIST:LST:PATMON/0BJ:0BJ:PATMON/ALL:20, SRC:(PATMON+APSECT+GAMLIB/LIB)
MACRO/LIST:LST:PADMIN/OBI:OBJ:PADYIN/ALL:20, SRT:(SB+APSECT)’ : :
MACRO/LIST:LST:RAAVE/OBJ:OBJ:RWAVE/ALL:2), SRIIRWNAVE

]

ASSEMBLING AND LINKING GAMMA-11

LEENS000 888 DATA ANALYSIS *$S6s5s835288000%4
]

MACRO/LIST:LST:FRMST1/70BJ:0BJ:FRUSTI/ALL: 20,
MACRI/LIST:LST:FRUYST2/NBJ:0OBJFRUST2/ALL:20,
MACRIO/LIST:LST:ADMIN/O0B8J:OBI:ADMIN/ALL:20, SR
MACRI/LIST:LST:FLOOD/0BI:OBI:FLIID/ALLE2D, SR
MACRO/LIST:LST:INDEX/0BJ:0BJI:INDEX/ALL:20,., SR
MACRID/LISTSLST:DX/08J:08J:DX/ALLs20. SRC:(DX¢
MACRI/LIST:LST:ERROR/08BJ:0OBJIERRIR/ALL:I20, SR
MAZRD/LLIST:LST:CIMMAZRO/I8BI: 18I CIOMMACROZALL:
MACRO/LIST:LSTIFLOLV2/08J:0BJsFLOLV2/ALL:20,
MAZRO/LIST:LST:VMARK2/08J: 0B Js VMARK2/ALL: 2V,
MAZRI/LIST:LST:RIILV2/70BJ:08JsROILV2/RLL20,
MAZRI/LIST:LST:PPPLV2/08J:0B8J:PPPLV2/ALL:20,
MAZRO/LIST:LST:DATARI/0UBJ:0B8J:DATAR]I/ALL:20,
MACRO/LIST:LST:JIY/0RJ:I8J:JJY/ALL:20, SRT:(J
MACRI/LIST:LST:LIST/0BJ:OHJ:LIST/ALL:20,. SRC:
MAZRI/LIST:LST:FPUPEX/NBJUBJIFPMPEX/ALLL 20,
MAZRI/ULIST:LST:RUFSET/0BJ;0RJ:BUFSET/ALL:20,

*EXX

SRCI(FRMST1+CSECT+GAVMLIN/LIB)
SRT: (FRYST2+CSECT+GAMLIB/LIB)
C3(ADMIN+CSECT+GAMLIB/ZLIB)
Ce(FLIJID+CSECT+GAMLLIB/LIB)
CICINDEX+CSECT+GAMLIB/LIB)
CSETT+GAMLIB/LIN)
Ct(ERRJR+CSECT+GAMLIB/LIR)

20. SRC$(TOMMAC+TSEZT+GAMLIB/LIB)

SRT:(FLOLV2+ZSECT+GAMLIB/LIA)
SRT: (VMARK2+ISECT+GAMLIB/LII)
SRT:(RIILV2+CSECT+GAMLIB/LIB)
SRZ: (PPPLV2+ISECT+GAMLIB/LIA)
SRZ:(DATAR1+ZSECT+GAVLIB/LIR)
IY+ZSECT+GAMLIB/LIB)
(LIST+ISECT+GAMLIB/LIB)
SRI:FPMPEX

SRIIHJFSET

]
Tabsasskbdtr HBASIC SUPPURT 4SS 44 KKFRX0ksbasatss

'

MACRO/LIST:LST:GYBERR/DIAJIGM3ERR/ALL:I20, SRC:(ERRGAY)
'

ISREEEEE¥4%84 FORTRAN SUPPIRT K45 X543 5£ 06350054

'
MACRO/LIST:LST:GAFERK/ IBJIGMFERR/ALLL 20, SRT:I(FIRT+ERRGA™)
'

.

TEREEEREREFEERE TND SREXREREFEIX4FEFHER KR0S ERKEX

EEEFREEERERE GMASMY COM SEBEESS0SERXERRKEERKER

SAMMA=-11 V2T VSVO1 DEPENDENT ASSEMBLIES

SEEEFE 04558 BCAMMA FEEFKEEEEKAEBEXRF ALK 04%X

!
.
1
.
[
.
'
.
1
.
!
.
1
.
1
.

MACRI/LIST:LST:GAMRUM/OBJ:GAMRUM SRC: (GAMLIB/LIB+GAMRUM)
MAZRI/LIST:LST:B3SCUMD/UBI:BGTIMD SRC:(GAMLIB/LIB+BSEIIVD)
1

TEEEEESESEEE DATA ANALYSIS ##KE863 408885088 4%%

1
MACRI/LILIST:LST:DATARN/OBI:UBJSDATARN/ALL:20,
MAZRD/LISTSLST:GSAFRM/0BI:UBJIGSAFRM/ALL: 20,
MACRI/LUIST:LST:VIDISP/0BI:OBJsVIOISP/ALL 20,
MAZRO/LIST:LST:VITEXT/0BJ:0BJsVITEXT/ALL: 20,
MACRO/LIST:LSTsCILEDT/0BI:08J3CIOLEDT/ALL: 20,
MACRI/LISTLST:COMNDL/J4J:0BJCIMNDL/ZALLS20.

"MACRO/LIST:ILST:1C/708J:08J:I1C/ALLS20, SRC:(1C+
MACRI/LIST:LST:P3STOR/ORJ:IBJIsPBSTOR/ALLLI20.
MACRO/LLIST:LST:P3IMERG/OBJ:0BJsPRYERG/ALL: 20,
MAZRI/LIST:LST:P3ATK/03J:JIBI:PBACZK/ALL: 2,
MATRI/LISTILSTIRILI/Z08J:0BI:RIL/ALL20, SRCZI(R
MACRI/LISIILST:PPP/0BI:BI:PPP/ALLE20, SRT: (P
MACRO/LIST:LSTSINII/OBJOBJSINIT/ALL:20, SRC:
MAZRI/LIST:LST:SLICE/OBJ:OBJISLICE/ALL: 2D,
MACRO/LIST:LST:GSATOL/08J:08J:GSATOL/ALL: 20,
MACRI/LESI:LST:INITRI/Z0BI:0BISINITRIZALLL20,
MACRI/LISTsLST:CIMND2/70BJ:08J:TOMND2/7ALL: 20,
MACRI/LIST:LST:DUAL/OBI:IBJSDUAL/ALL:20, SRC:
MAZRD/LIST:LST:DISCMD/0BJ:0BJ:DISCMD/ALL: 20,
MACRI/LIST:LSTtOATAR1/DRJ:UBJ:DATARI/ZALL:20,
MACRI/LIST:LST:DISPAT/08J:0BJ:DISPAT/ALL: 20,
MACRI/LISTILST:VTARIT/0BJ:3IBJsVINRIT/ALL:20.
MACRI/LIST:LST:NRCTBL/0ORJ:OBJ:NRITBL/ALL220,

SRT: (DATAR+CZSECT+GAMLIB/LIN)
SRT: (GSAFRM+ISECT+GAMLIB/LIR)
SRT:(VIDISP+ISECT+GAMLIB/LIB)
SRT:(VTTEXT+CISECT+GAMLIB/LIG)
SRT: (COLEDT+CSECT+GAMLIB/LIB)
SRT:(CIMND1+ZSECT+GAMLIB/ZLIR)
CSECT+GAMLIB/LIB)

SRZ: (PBSTUR+CSECT+GAML1IA/L18)
SRC: (PBMERG+CSECT+GAMLIB/LLS)

SRZ: (PBACK+TSECT+GAMLIB/LLB)

JI+ISETT+GAMLIR/LLIB)
PP+ZSECZT+GAMLIB/LIB)
(INIT#CSECT+GAMLIB/LIB)

SRT:(SLICE+CSECT+GAMLIB/LIB)

SRZ: (GSATOL+CSECT+GAMLIB/LIB)
SRC:(INLTRI+ZSECT+GAMLIB/LIB)
SRT:(COMND2+ZSECT+GAMLIB/LILIB)
(QUAL+CTSECT+GAMLIB/LIB)

SRC:(DISCMD+ZSECT+GAMLIB/LIR)
SRC: (DATAR1+CSECT+GAMLIB/LIB)
SRT:(DISPAT+ISECT+GAMLIB/LIA)
SRT:(VIANRIT+ISECT+GAMLIZ/LIA)
SRC:(NRZCTBL+CSECT+GAMLIB/LIR)

ASSEMBLING AND LINKING GAMMA-11

168885655388 BASIC SUPPORT #2555 K555 5555588%&%

'

MACRI/LIST:LST:GYBAS1/0BJ:GMBAS1/ALL:20, SRC:(FABAS+RTFB+IOTBL+CSECTL)
MACRO/LIST:LST:GUBAS2/08J:GMBAS2/ALL:20, SRC:(F4BAS24ISETITL)
MACRO/LIST:LST:GYBAS3/0BJ:GMBAS3/ALL:20. SRC:(PLOT+CSECTY)
MACR)/LIST:LST:GAMCLI/Z0BJsGAMTLI/ALL:20, SRC:GAMCILI

(]

1885 x463%8% FORTRAN SUPPORT $%$555546558558855&%

!

MACRO/LIST:LST:GYFOR1/08J:GMFOR1/ALL:20, SRC:(FORT+F4BAS+RTFB+IOTBL+TSECTY)
MACRI/LIST:LST:GMFOR2/08J:GMFIR2/ALL:20, SRC:(FORT+F4BAS2+4CTSECTY)
MACRO/LIST:LST:GUFOR3/0BJ:GMFOR3/ALL:20, SRC:(FORT+PLIT+CSECT])
MACRO/LIST:LST:F4ADMN/OBI:F4ADMN/ALL:20, SRC3(COLOR+F4ADM)
MACRI/LIST:LST:F4RO0OT/0BI:F4RIIT/ALLL20, SRC:(COLIR+RIOT+CSCTVL)
MACRI/LIST:LST:F4PLOT/0BJ:F4PLIT/ALL:20., SRC:(COLOR+PLOTVI+CSCTV1)

]
JERKRRESERERERENEE END SEXKXEREXREXEEEXEEERE085%SK

EEESXEEREE8% GUASMS , COM XXEEEEERLXXKKXXSBR0E 5%

GAMMA=-11 V2T VTO1 DEPENDENT ASSEMBLIES

FEEEREXEE5E BGAVMA FXESERFFIEXEFEREEEFREREXEKENNNS

t= 0= 4= o= 4w o= o= 0

MACRO/LIST:LST:GAMRMS/0BJ:GAMRMS SRC: (VIO +GAMRUM+GAMLIB/LIB)
MACRO/LIST:LST:BGCMDS/0BJ:BGIVMDS SRC:(VEIL+B3TIOMD+GAMLIB/LIB)

]

TESRFReE845% DATA ANALYSIS SESFE ok 465 Ka0 0665 %

]

MACRO/LIST:LSTsDATARS/0BJ:0OBJ:DATARS/ALL:20, SRTZ:(VTUl+DATAR+CSECT+GAMLIB/LIZ)Y -
MACRO/LIST:LST:MDIS/OBJ;IBJ:MDIS/7ALL:20, SRC:(MDIS+ZSECT+GAMLIR/LIB)
MACRO/LIST:LST:CUNDIS/ORJI:0OBJsCMNDIS/ALL:20., SRT:(VIQ1+CIOIMNDL+ZSECT+GAMLIR/LIN)
MACRO/LIST:LST:1CS/70BJ0BISICS/ALL:20, SRC:(VIO1+4IZ+CSECT+GAMLIB/LIB)
MACRO/LIST:LST:RIIS/OBI:IBI:RIIS/ALL:20, SRC:(VTOL+RIT+CSECT+GAVMLIR/LIB)
MACRO/(GIST:LST:PPPS/0BJ:IBIsPPPS/ALLI20, SRT:(PPP+ISEZT+GAMLIB/LIE)
MACRO/LIST:LST:INITS/0BIs0OBItINITS/ALL:20, SRZ:(VTOL+INMIT+TISECT+GAMLIB/LIR)
MACRO/LIST:LST:SLICE/Z0BJ:OBJtSLICES/ALL:20, SRZ:(VIOL+SLICE+CSECT+GAMLIB/LIB)
MACRO/LIST:LSTSINTRIS/0BJ:OBJI: INFRIS/ALL:20, SRTC:(VTO1+INITRI4CSEZT+GAMLIR/LIB)
MACRD/LISTSLST:CUND2S/08J: 3B CVMND2S/ALL:20, SRTC:(VTOL1+COMND2+CSECT+GAMLIB/LIB)
MACRO/LIST:LST:DUALS/0BJ:0BJ:NUALS/ALL22), SRI:(VTI1+DUAL+ZSECT+GAMLIR/LIR)
MACRO/LLIST:LST:0SCMDS/70BJ:0RJ:DSIUDS/ALL:20, SRT:(VIDL¢NISTYD+CISECT+GAMLIB/LIB)
MACRO/LIST:LST:DSPATS/0BJ:0BJ:DSPATS/ALLI20, SRT:(VIO1+DISPAT+CISECT+GAYMLIB/LLY)
MACRO/LIST:LST:VINRTS/0RJ:0ORJ:VIARTS/ALL220, SRC:(VTOL+VIWNRIT¢ZSECT+GAMLIB/LIB)
MACRO/LIST:LST:NRTBLS/0B):UBJ:NCIBLS/ALL220, SRT:(VTOL1+MNRITBL+ISECT+GAMLIB/LIB)
]

INXSS8REREss BASIC SUPPORT XSS E4 40 R5E8 504K KEES

1

MACRO/LISTILSTIGUBVT1/708J:GMBASY,IVT/ALL:20,., SRI:(VIOL+FA3AS+RTFB+10TBL+ISECTL)
—MATROALESTHES T GUB VT 2/ 08)+ GMBAS 25 VI AAL L+ 20— SRS (VT O +F4BAS2+SSECTL)
MACRO/LIST:LST:GMBVT3/0BJ:GMBAS3,JVI/ALL:20., SRZ:(VTI1+PLIT+CSECTL)
MACRO/LIST:LST:GAMCVT/0BJ:GAMZLILIVT/ZALL:20, SRI:(VIOLI+GAUZLI)

1

L3354 x%8% FORTRAN SUPPORT *#¥ %555 525X X5%46K&KX

]

MACRO/LIST:LST:GUFVT1/0BJ:GMFOR] ,IVT/ALL:20, SRC:(VIO1+4FIRT+F4BAS+RIFB+I0TBL+CSECTY)
MAZRO/LIST:LST:GUFVT2/08J:GMFOR2,IVT/ALL:20. SRI:(VTOL1+FORT+F48AS2+CSETTL)
MACRO/LIST:LST:GUFVT3/0B8J:GMFIR3,IVT/ALL:20, SRC:(VIO14FORT+PLIT+ISECTL)
MACRO/LIST:LST:F4ADVT/0BISsF4ADMN ,OVT/ALL:20, SRT:(VTO1+F4ADM)
MACRO/LIST:LST:F4RTVI/OBJ:F4RIOT,IVI/ALL220, SRC:(VIO14RJIDT+TSITVL)
MAZRO/LISISLST:F4PLVT/0BJ:F4PLOT,IVT/ALLE2), SRT:(VIO1+PLOTVI+CSTTIVL)

. .

IEAEENBEEEEREERIIE END SEEXFESRSARER AR RS R RS KR KK

ASSEMBLING AND LINKING GAMMA-11l

4.2 LINKING GAMMA-11 USING INDIRECT COMMAND FILES

There are four indirect command files for linking GAMMA-11l:

GMLNKC.COM Display-independent links

GMLNKV .COM VSv0l-dependent links

GMLNKS .COM VTO0l-dependent links

GMLNKB.COM BASIC/RT-11 links (with GAMMA-1l subroutines)

To link GAMMA-11 for the VSV01l color display, use indirect command
files GMLNKC and GMLNKV. To 1link GAMMA-11 for the VTO0l . display
storage scope use indirect command files GMLNKC and GMLNKS.

These command files use four logical device assignments:

OBJ for the object file device (LINK~-1l input device)
EXE for the .SAV and .REL files (LINK-1l1l output device)
MAP for the link map device (LINK-11l map device)

BAS for BASIC/RT-11 object files

BAS is used only by GMLNKB.COM.

Use the RT-11 ASSIGN command to assign physical devices to the logical
devices. If you do not want output files or maps, assign the null
device handler (NL) to EXE or MAP.

For example, the following RT-11 commands would be used to link
GAMMA-11 for the VSV01l display with the object files on RKO05 drive 1,
the .SAV and .REL files on RKO5 drive 1, and no link map.

.ASSIGN RK1 OBJ
.ASSIGN RK1l EXE
.ASSIGN NL MAP

. @GMLNKC

. @GMLNKV

GAMMA~11 V2T DISPLAY INDEPENDENT LINKS

e o o= o=

!

LINK/MAP:MAP:DATTIM/WIDE/EXE:SAVIDATTIM JBJ:DATIIM
LINK/MAP:MAP:SYSSUM/WIDE/EXE$SAV:SYSSUM JBJ:SYSSUM
LINK/MAP:MAP:DELETE/WIDE/EXE:SAVSDELETE J2BJ: (DELETE, INDEX)
LINK/MAP:MAP:TRNFER/WIDE/EXE:SAV:TRNFER/PROMPT =
JBJ: TRNFER

JBJ:GAVFIL/0:1

JBJ:INDEX/0:1

//

LINK/MAP:MAP:DATACQ/WNIDE/EXE:DATAZQ/PROMPT =~

JBJ: (BACQCM, GAMDEV) :
JBJ:DYNACQ/O:1

JBJ:STCACQ,LSTAC2/0:1

JBJ:PATUMON/O:2

JBJ:BACDSB/O:2

JBJ:GAMFIL/0:2

JBJ:BAZIST/O:3

JBJ:PREDJEF/0:3

JBJ:BADSET/0:3

JBJ:PADMIN/O24

J8J:GSAACQ,RAAVE/D:S

//

4-5

ASSEMBLING AND LINKING GAMMA-11

LINK/MAPIMAP:FGAMMA/AIDE/EXESSAVIFGAMMA/PROMPT/FIRE =
J3J: (FAZQCM,GAMDEV)
JBJ:DYNAZQ/0:1
ABJsSTZACQ/0:
JBJ:FLSTAQ/0: !
JBJ:FAZISB/O:2
J8J:GA4FIL/O:2
IBJFACISTI/0:3
JBJIPREDEF/V:3
JBJ:FAQSET/0:13
JBJPAIVMIN/O: 4

/7
LINK/MAPIMAPIEGAMMA/WIDE/EXE:SAVIEGAMMA/PROMPT/FIRE =
JB3J:(EACZQCM,GAMDEV)
JBJLEAZISB/OsL
J8J:GAMFIL/0:1
JIBJLEATIST/0:2
JBJ:PREIEF/0:22
J3JsEAQSET/D:2
JBJ:EDYNAQ/0:3
JBJSESTCAQ/0:3
JBJ:ELSTAQ,RWNAVE/D:3
JBJ:PADMIN,MEMMNG/0: 4
//

GAMMA-11 V27 VSV0l DEPENDENT LINKS

o= g = S s

LINK/MAP:MAP :BGAVYMA/WIDE/EXE:SAV:BGAMMA/PROMPT -
JBJ: (GAVMRUM, GAMDEV , MEMMNG)
JB8J:BGIIMD/O:1

//
LINK/MAP:MAP:DATANL/WIDE/EXE:SAV:DATANL/PROMPT =~
JBJ:DATARN
JBJ:FRUST1/0:1/C
JBJ:FRMST2/0:1/C
JBJ:GSAFRM/0D:1/C
IBJ:VTOISP/0O:1/C
JBJsVTTEXT/0:1/C
JBJ:COLEDT/0:1/C
JBJ:ADMIN/O:1/C
JBJ:COMNDL/0:1/C
JB8J:IC/D:1/C
JBJsPBMERG/ND:1/C
JBJ:PBSTOR/0:1/C
JBJ:PBACK/021/C
J8J:ROI/0:1/°C
JBJ:FLIID/O:1/C
JJsppPe/0:1/C
JBJIINDZX,INIT,DX/0:1/C
JBJ:ERRIR/Q:1/C
IBJ:TOMMAC/0s1/C
JBJ:SLICE/O:1/C
JBJ:GSATOL/0:2/C
IBJ:FLIOLV2/0:2/C
JBJIINITRI/O:2/C
JBJ:VMARK2/0:2/C
JBJseP2LV2/0:2/C
JBJ:ROILV2/0s2/C
JB8J:T0OMND2/0:2/C

4-6

ASSEMBLING AND LINKING GAMMA-11

J8J:DUAL/D: 2/
38J:DISIMD/0:2/C
IBJ:BUFSET/0:2/C
JBJ:DATARIZ0:3/C
JBJ:DISPAT/0:3/C
J8J:J0Y/0:3/C
JBJ:VTARIT/0:3/C
IBJ:FPYPEX/0:3/C
JBJ:NRITBL/0:3/C
J8J:LIST/0:3

/7

!

GAMMA~«11 V2T VTO1 DEPENDENT LINKS

- g o o=

LINK/MAP:MAP:BGAVMS ,MAP/WIDE/EXE:SAVIBGAVYMA,VT1/PRIOMPT =
JB:J: (GAMRMS,GAMDEV)
JBJ:BGZMDS/0:1

/7
LINK/MAP:MAP:DATNLS MAP/WIDE/EXE:SAV:DATNLUS/PRIMPT =
JBJ:DATARS
JBJ:FRMST1/0:1/C
JBJ:FRYST2/0:1/C
JBJ:ADMIN/D:1/C
JBJ:CMNDIS/0s1/C
JBJ:ICS/0:1/C
JBJ:RO1S/0:1/C
J8J:FLIID/O21/C
JBJ:pPPS/0:1/C
IBJSINDEX,INITS,DX/7031/C
JB8J:ERRIR/D:1/C
JBJ:COMMAC/0:1/C
JBJ:SLICES/Q:1/C
dBJ:FLOLV2/0:2/C
JB8J:INTRIS/0:2/C
JBJ:VMARK2/0:2/C
JB8JspPPPLV2/0:2/C
JBJ:ROILV2/70:2/C
IBJ:CMND2S/032/C
JBJ:DUALS/D:2/C

- JBJ:DSIMDSs0s2/C
JBJ:BUFSET/0:2/C
JB8JsDATR1S/0:3/C
JBJ:DSPATS/0:3/C
J8JsJOYs0:3/C
JBJ:VTARTS/0:3/C
JBJ:FPMPEX/0:3/C
JBJ:NRTBLS/0:3/C
JB8J:LIST/0:3

/7

4-7

ASSEMBLING AND LINKING GAMMA-11

t#xxwxe [INK VSVO1 BASIC W/0 EIS $%%xx
1

R LINK

SAV:BASIC ,MAP:BASIC/W=/B:700//
BAS:BSPIRS,BSPAT,BSROS
JBJ:GAMCLI

JB8J:GMBASI

BAS:B8SILLB

BAS:SUIJPR
8AS:SUJ11D,B50T05,BS0T1S/70:1
BAS:SUIJID,SUIOP],BSPRO,SURYID,BSR1S/0:1
3AS:SUXID,BSX0A,B8SX0B/0:2
BAS:SUX21D,BS8X2/2:2
BAS:SUEID,BSEQ/0:2
BAS:SUElL1D,BSE1,358UB,BSRSQ/DJ:2
3AS:SUDICM/0:2
BAS:BSERR,BSERML/J:2
3AS:BSX1A/0:3

3AS:8SXx18/70:3

3AS:BSPR1/0:3

3AS:B8S2LS/0:3

3AS:3SXEYS/0:3

BAS:BSZMP/0:3

JBJ:GMBAS2/0:4

JBJ:GMBAS3/0:4

JBJ:GM3ERR/O: 4
BAS:SUIMP,BSFUNC,SUOPT/0:5

//

Lexxxes LINK VSVOL BASIC WITH EIS #*%k¥x
]

SAV:BASICE ,MAP:BASICE/W=/8:700//
BAS:BSPTRS,BSPAT,B8SROS

JBJ:GAMCLI

JBJ:GMBAS!

BAS:BSILLB

BAS:SUIJPR
3AS:SUDJ1ID,BSOTOS.EIS,BSOTIS.EIS/0:1
BAS:SUIJ1D,SUIOPI,BSPRO,SURLID,B8SR18/0:1
BAS:SUXID,BSX0A,BSX08/0:2
BAS:SUX21ID,BSX2/2:2
3AS:SUEID,BSE0/0:2
3AS:SUZ11D,BSE!,BSSUB,BSRSQ/DJ:2
BAS:SUDICM/0:2

BAS:BSERR,BSERML/3:2

BAS:BSX1A/0:3

BAS:BSX1B/0:3

BAS:BSPR1/0:)

3A5:BSCLS/70:3

BAS:BSKEYS/0:3

8AS:BSCUP/0:3

JBJ:GMBAS2/0:4

JBJ:GM3AS3/0:4

JBJ:GMBERR/0: 4
BAS:SUIYP,BSFUNC,SUOPT/0:5

/7/

ASSEMBLING AND LINKING GAMMA-11l

!
L¥sx¥x% LINK VTO! BASIC W/0 EIS #¥#»%

SAV:BASIC.VI1 ,MAPIBASICS/W=/8B:700//
BAS:BSPIRS,B8SPAT,BSROS
JIBJ:GAMZLLI.OVT

JBJ:GM3AS1 ,OVT

BAS:8SCLLB

BAS!SUIJPR
BAS¢SUJ11ID,BS0T0S,BSOT1S/0:1
34S8:SUIDID,SUIDP),BSPRO,SURL1I1D,BSR1S/0:1
BASsSUXID,BSX0A,BSX08/0:2
BAS:SUX2ID,BSX2/72:2
BAS:SUEID,BSE0/0:2

3AS:SUT11D0,BSEL ,BSSUB,BSRSQ/J3:2
BAS:SUDTCM/0:2

BAS:BSERR,BSERML/0:2

3AS:BSX1A/0:3

BAS:BSX1B/0:3

BAS:BSPR1/0:3

34S:BSTLS/0:3

BAS:BSKEYS/0:3

3AS:BSCMP/0:3

JB8J:GMBAS2.0VT/0: 4
JBJ:GMBAS3.0OVT/0:4

JBJ:GMBERR/0: 4
BAS:SUIVP,BSFUNC,SUOPT/0:S

//

!

1¥%x%%% LINK VTO1l BASIC WITH ELS *%#%%%
i
SAV:BASICE.VT1,MAP:BASCES/W=/B:700//
3AS:BSPIRS,BSPAT,BSROS
JB8J:GAMZLI.OVT

JBJ:GM34S1,0VT

3AS:BSCLLB

3AS:SUIJPR
BAS:SUJ1ID,BSOTOS.E1S,BSOT1S.EIS/D:1
3AS:SUIJID,SUIDPI,BSPRO,SURLID,BSR1S5/70¢1
BAS:SUXID,BSX0A,3SX08/0:2
BAS:SUX2ID,BSX2/2:2
BAS:SUEID,BSEQ/0:2
3AS:SU=11D,BSE1,355UB,BSRSQ/J: 2
3ASsSUDICM/0:2

BAS:BSERR,BSERML/0:2

BAS:BSX1A/0:3

BAS:BSX1B/0:3

BAS:BSPR1/0:3

3AS:BSCLS/0:3

3AS:BSKEYS/0:3

3AS:BSZMP/D:3

JBJ:GMBAS2.0VT/0:4
J)8J:GMB3AS53,.0VT/0:4

JBJ:GMBERR/D: 4

IAS:SUIMP,BSFUNC, SUOPT/0:S

//

~m
-~

APPENDIX A
BASIC/RT-11 LANGUAGE SUMMARY

This appendix lists the BASIC/RT-11 commands, functions, statements,
and error messages. For more detail, see the BASIC-1l1 Language
Reference Manual: (DEC-11-LIBBB-A-~D) and the BASIC-11/RT~1l1 User's
Guide (DEC-11-LIBUA-A-D).

For the differences between version 1B and Version 2 of BASIC, see the
BASIC—ll/RT—ll Installation Guide (DEC~1l1~LIBTA-A-D).

A.l BASIC/RT—ll STATEMBNTS
CALL routine name u:argument llstm

Calls assembly language routines from a BASIC program.

CHAIN string H}INE expressioiﬂ

Terminates execution of the program, loads the program specified
by string, and begins execution at the lowest line number or at
the line number specified by expressxon. The string is a file
-specification, ‘

CLOSEﬂﬂiﬂexprl,ﬂiﬂexprz,Hiﬂexpr3, ...]

Closes the file(s) associated with the channel number(s) and
virtual file channel number(s) specified. If no channel number
is specified, closes all open files.

COMMON list

Preserves values and names of specified variables and arrays when
the CHAIN 'statement is executed. Both string and arithmetic
variables and arrays .can be passed. The statement also
dimensions the specified arrays. List is in the general format:

varl [[(-expr I]:,explznz[l [[varz l]zexpr [[,exp{]]iﬂ vie }]

Used in conjunction with READ to input 1listed data into an
executing program. Can contain. any mixture of strings and
numbers. Items must be separated by commas.

DATA list

BASIC/RT-11 LANGUAGE SUMMARY

Al(s
DEF FNletter { } (varl[Evar2,...,variﬂ)=expression
$
Defines a user function., Letter may be any single letter A
through 2.
DIM list
Reserves space in memory for arrays according to the subscript(s)
specified after the wvariable name. List 1is in the general
format:
varl (expr[[_;expxj]) [van(expr [Eexpr Yoo :H
DIM #integerl,variable(integer2 ,integer3) =integer$
Dimensions the virtual array file associated with the channel
number specified by integerl. 1Integer4 specifies the string size
for string virtual arrays.
END

Optional. Placed at the physical end of the program to terminate
execution.

FOR var=exprl TO expr2 ﬂ%TEP expriﬂ

Sets up a loop to be executed the specified number of times.

GOSUB line number

Unconditionally transfers control to specified line ' of
subroutine.

GO TO line number

Unconditionally transfers control to specified line number;

THEN statement
IF relational expression {THEN line number

GO TO line number
Conditionally executes the specified statement or transfers
control to specified line number. When the condition is not true
and a statement is specified, execution continues at the next
sequential statement. The expressions and the relational
operator must all be string or all be numeric.

THEN statement
IF END #expr THEN line number
GO TO line number

Tests for end-of-file condition of input seguential file
associated with channel number specified by expression.

BASIC/RT-11 LANGUAGE SUMMARY

INPUT [[#expr]] variablel H:,var iable2,.. :[I
Inputs data from your terminal or from the file associated with
the channel number specified by expression. Variables may be
arithmetic or string.

KILL string

Deletes file specified by string.

H@Efﬂ variable=expression
Assigns yalye of expression to the specified variable. Variable
and expression mygt be of the same type, either numeric or
string.

LINPUT H}expr{ﬂstring varl”}string var2,..I
Inputs string data from the terminal or from the file associated
with channel number specified by expression. Variables can only
be string variables. '

NAME stringl TO string2

Renames file specified by stringl to name specified by string2.

NEXT variable

Placed at end of FOR loop to return control to FOR statement.

ON expression GOSUB line numberlIEline number2,line number3,..2ﬂ
Conditionally transfers control to subroutine at one line number
specified in 1list. Value of expression determines the line
number to which control is transferred. ’

ON expression GO TO line numberlﬂZline number2,line number3,..{ﬂ
Conditionally transfers control to one line number in the 1list.

Value of expression determines the line number to which control
is transferred.

ON expression THEN line numberlﬂZline numberZ,..Zﬂ

Equivalent to ON GO TO.

OPEN string BF‘OR INPUT ﬂ AS FILE[[#Hexptll]jDOUBLE BUF]]I]:,RECORDSIZE expr2]] HEMODE expr%][[,FILESIZE expr;ﬂ
FOR OUTPUT!

Opens a file specified by string for input or output as specified
(assumes input if neither specified) and asscciates file with the
channel number specified by exprl. String is a file
specification.

BASIC/RT-11 LANGUAGE SUMMARY

OVERLAY string H;INE exptessioé]
Overlays or merges the program currently in memory ‘with the
program in the file specified by string, and when overlay is
completed, transfers control to either the next sequential BASIC

line number or the line number specified by expression. String
is a file specification.

PRINT Bexpr] [[liSt]
Prints items in list on the terminal or to the file associated-
with channel number specified by expression. List can consist of
string and arithmetic expressions and the TAB function. Items
can be separated by either commas or semicolons.

PRINT ﬂ}expriﬂUSING string, list
Prints items in list on the terminal or to the file associated
with channel number specified by expr in the format determined by
string. List can consist of string and arithmetic expressions.
Items can be separated by either commas or semicolons.

RANDOMIZE
Causes the random number generator (RND function) to produce
different random numbers.

READ variablel.mvariable2,..{ﬂ
Assigns values listed in DATA statements to specified variables.
Variables may be string or numeric.

REM comment
No effect on execution of program. Contains explanatory comments
about the BASIC program.

RESETﬂ}expr]]
Eaquivalent to RESTORE.

RESTOREH}expgﬂ

Resets either the data pointer or, when specified, the input file
associated with the specified channel number to the beginning.

RETURN

Terminates a subroutine and returns control to the statement
following the last executed GOSUB statement.

STOP

Terminates execution of the program. Placed at logical end(s) of
the program,

BASIC/RT-11 LANGUAGE SUMMARY

A.2 - SUMMARY OF BASIC/RT-11 FUNCTIONS

Arithmetic Functions

ABS (expr)

Returns the absolute value of the expression.

ATN (expr)
Returns the arctangent of the expression as an angle in radians
in the range + or - pi/2.

COS (expr)
Returns the cosine of the angle specified by the expression in
radians.

EXP (expr)
Returns the value of e raised to the power (expr) where e is
(approximately) 2.71828,

INT (expr)
Returns the greatest integer less than or equal to the expression
(expr). (Truncation of decimal values.)

LOG (expr)

Returns the natural logarithm of the expression (expr).

LOG10 (expr)

Returns the base 10 logarithm of the expression (expr).

- PI

Returns the value of pi (3.141593).
RND I[(expr)]]

Returns a random number between 0 and 1.
SGN (expr)

Returns a value indicating the sign of expression (expr).
SIN(expr)

Returns the sine of the angle specified by expression (expr) in
radians.

BASIC/RT-11 LANGUAGE SUMMARY

SQR(expr)

Returns the square root of the expression (expr).

TAB (expr)

Causes the terminal to tab to column number specified by the
expression (expr) (valid only in PRINT statements).

String Functions

ASC(string)
Returns as a decimal number the 8-bit internal code (ASCII value)
for the l-character string expression (string).

BIN(string)
Converts a string expression (string) containing a binary number
to a decimal value. Blanks are ignored.

CHRS (expr)

Generates a l-character string whose ASCII value is the low-order
8 bits of the integer value of the expression (expr).

CLKS$
Returns the time as a string in the form hh:mm:ss (for example
12:30:15).
DATS
Returns the date as a string in the form dd-mon-yr (for example
07-FEB-75). ‘ ‘ '
LEN(string)

Returns the number of characters in the string (string).

OCT(string)

Converts a string expression (string) containihg an octal number
to a decimal value. Blanks are ignored.

POS(stringl,string2,expr) .

Searches for and returns the position of the first occurrence of
string2 in stringl. The search starts at the character position
specified by expression (expr). '

BASIC/RT-11 LANGUAGE SUMMARY

SEGS (string,exprl,expr2)

Returns the string of characters in position specified by
expressionl through the position specified by expression2.

STRS (expr)
Returns the string which represents the numeric value of the
expression,

TRMS (string)

Returns string without trailing blanks.

VAL (string)

Returns the value of the decimal number contained in the string.

System Functions

ABORT (expr)
Deletes the program and changes the program name to NONAME if the
expression is equal to 1. The ABORT function is eguivalent to an
END statement if the expression is egqual to 0.

CTRLC

Enables the BASIC program to be interrupted with a CTRL/C.

RCTRLC
Disables the CTRL/C interrupt. While the RCTRLC function is in
effect, the BASIC program cannot be interrupted.
RCTRLO
Ensures that BASIC program output is printed even if a CTRL/O is
in effect.
SYS(exprl[,expr2])
Performs system dependent functions determined by exprl and
expr2. See the BASIC-11/RT-11 User's Guide (DEC-11-LIBTA-A-D).
TTYSET (255%,expr)
Specifies the right margin of the terminal as the value -of

expr-1. If expr equals 0, BASIC does not change the previous
margin,

BASIC/RT-11 LANGUAGE SUMMARY

A.3 SUMMARY OF BASIC/RT-11 COMMANDS
APPEND ﬂ%ile specificatio€B

Merges the program in your area in memory with the program
specified by the file specification,

CLEAR

Initializes all variables to 0 and all string variables to nulls
and deletes arrays.

COMPILE H}ile specificatio%ﬂ

Saves a compiled version of the program.

DEL line'specification[Eline specification,..]

Deletes specified lines.

LENGTH

Prints on your terminal the size of the program in memory and the
size of the remaining free memory.

LISTH&@ﬂﬂEine specificationl,line specificationZ,..Zﬂ
Prints on the terminal the specified 1line(s) of the progranm

currently in memory. NH suppresses the printing of the header
line and is optional. '

NEW ﬂ?rogram nam%ﬂ

Erases your storage area and sets the current program name to the
one specified. :

OLD H?ile specificatioﬁﬂ

Erases your storage area and inputs the program from the
specified file. ‘

RENAME program name

Changes the current program name to the one specified,.

REPLACE ﬂ%ile specificatioéﬂ

Replaces the specified file with the current program.

RESEQ[[[new line nuxﬁbeﬂ] R [Eld line numberl]]' ﬂz-old line numberzﬂ ,ﬂ:increment:[]:n

Resequences program as specified.

BASIC/RT-11 LANGUAGE SUMMARY

RUNﬂbéﬂ

Executes the program in memory. NH suppresses the printing of
the header line and is optional.

RUNHFQDfile specification
Erases your storage area, inputs the program from the specified
file, and then executes the program. Does not print header line
in any case.

SAVE ﬂfile specificatioéﬂ

Outputs the program in memory to the specified file,

SCR

Erases your storage area and changes the program name to NONAME.

SUB line numberxstringlxstring2 xintegegﬂ
Substitutes the integer occurrence of stringl with string2 on
line specified. X is a delimiter and can be any character such
as @.

UNSAVE file specification

Deletes specified file.

Key Commands

CTRL/C
Interrupts execution of a command or program and causes BASIC to
print the READY message. See your BASIC-1l1 User's Guide for more
information about CTRL/C.

CTRL/O
Causes all further terminal output to be discarded. Printing
resumes if an INPUT statement is encountered, another CTRL/0 is
typed, or the program is terminated.

CTRL/Q

Continues output to the terminal; cancels effect of CTRL/S.

CTRL/S

Temporarily suspends all output to terminal until CTRL/Q 1is
typed; allows alphanumeric display terminals to be read or
photographed before data is moved off screen,

BASIC/RT-11 LANGUAGE SUMMARY

CTRL/U

Deletes the entire current input line (provided the RETURN key
has not been typed).

DELETE

A.4

Deletes the last character typed.

BASIC/RT-11 ERROR MESSAGES

?ARGUMENT ERROR (?ARG)

Arguments in a function do not match the arguments defined for
the function, in number, range, or type. Ensure that there are
the correct number of arguments, that their wvalues are in the
correct range, and that they are the correct type.

‘?ARRAYS TOO LARGE (?ATL)

?BAD

?BAD

?BAD

Not enough memory is available for the arrays specified 1in the
DIM statements. Reduce the size of the arrays or reduce the size
of the program. .

DATA READ (7BDR)

Data item input from a DATA statement or from a file is the wrong
data type. Ensure that the DATA statement or the file contains
the same data type as specified in the READ or INPUT # statement.

DATA - RETYPE FROM ERROR (?BRT)

Nonfatal. 1Item entered in response to an INPUT or INPUT #0
statement 1is the wrong data type. Retype item and program will
continue,

LOG (?BLG)

Nonfatal. Expression in LOG or LOGl0 function is 0 or negative.
The function returns 0 and BASIC continues execution of. the
program.

?BUFFER STORAGE OVERFLOW (?BSO)

Not enough room available for file buffer in your area. Reduce
program size. '

?CHANNEL ALREADY OPEN (?CAO)

OPEN statement specifies a channel that 1is already associated
with an open file., Ensure that OPEN statements specify correct
channel numbers and that files that should be closed are closed.

BASIC/RT-11 LANGUAGE SUMMARY

?CHANNEL I/0 ERROR (?CIE)

Accessing data in a file produces an error. Ensure that vyour
peripheral devices and their storage media are working correctly.
One possible cause is that the file accessed has 0 length.

?CHANNEL NOT OPEN (?2CNO)

A PRINT #, PRINT # USING, INPUT %, IF END #, or CLOSE statement,
or a reference to a virtual array file specifies a channel number
not associated with an open file. Check that the OPEN statement
has been executed and that it specifies the same channel number
as the program line with the error, ' ’

?CHECKSUM ERROR IN COMPILED PROGRAM (?CCP)
File produced by the COMPILE command contains a format error.
Use a copy of the program created by a SAVE or REPLACE command,
2COMMON OUT OF ORDER (?2COO)
Variables and arrays in a COMMON statement are not listed in the
same order as those in a previous segment. Ensure that all
segments have equivalent COMMON statements. '
?CONTROL VARIABLE OUT OF RANGE (?CVO)
Expression in an ON GOTO or ON GOSUB statement is 0 or negative
or has a value greater than the number of line numbers listed.
Ensure that expression has a value in the correct range.
?DIVISION BY ZERO (?2DVO0)
Nonfatal. An expression includes a division by 0. BASIC
substitutes a value of 0 for that operation and continues
execution of the program.
?END NOT LAST (?ENL)
END statement is not the highest numbered program line. This
error message is printed when the END statement is executed.
Ensure that there is only one END statement in program and that
it has the highest line number,
?EXCESS INPUT IGNORED (?EII)
Nonfatal. There are more data items than required by an INPUT or
INPUT #0 statement. BASIC ignores the excess items and continues
execution of the program. Ensure that data items did not contain
an unintended comma (e.g., 1,430 instead of 1.430).
?EXPONENTIATION ERROR (?ERR)
Nonfatal. An expression includes the operation of raising a

negative value to a nonintegral power (e.g., (~1)".5). This
would produce a complex number, which cannot be represented in

A-11

BASIC/RT-11 LANGUAGE SUMMARY

BASIC. This message 1is also produced when a negative value is
raised to an integral value that has an absolute value greater
than 255 (e.g., (-1)7256). 1In both cases, BASIC substitutes a
value of 0 for the operation and continues execution.

?EXPRESSION TOO COMPLEX (?ETC)

An expression is too complex for BASIC to evaluate in the area it
uses for calculations (called the stack). This condition is
usually caused by 1including user-defined functions or nested
functions in an expression. The degree of complexity that causes
this error varies according to the amount of space available. in
the stack at the time. Breaking the statement up into several
statements containing simpler expressions may eliminate the
error.

?FILE NOT FOUND (?FNF)
BASIC cannot find the specified file. Ensure that the file
specification was typed correctly and that the file exists.

?FILE TOO SHORT (?FTS)
The file is too small to contain the output. If the error occurs
in a data file, specify a larger FILESIZE. If the error occurs

in a program file, delete unused files with the UNSAVE command
and then retry.

?FLOATING OVERFLOW (?FOV)

Nonfatal. The absolute value of the result of a computation is
greater than the largest number that can be stored by BASIC
(approximately 10738). BASIC substitutes a value of 0 for the
operation and continues execution of the program.

?FLOATING UNDERFLOW (?FUN)
Nonfatal. The absolute value of the result of a computation is
smaller than the smallest number that BASIC can store

(approximately 107 (-38) . BASIC substitutes a value of 0 for
operation and continues execution of the program. »

?FOR WITHOUT NEXT (?FWN)

The program contains a FOR statement without a corresponding NEXT
statement to terminate the loop. Ensure that each loop in the
program is terminated with a NEXT statement.

?FUNCTION ALREADY DEFINED (?FAD)

The user-defined function is previously defined, Ensure that
each function is defined only once and has a unique name.

A-12

BASIC/RT-11 LANGUAGE SUMMARY

?ILLEGAL CHANNEL NUMBER (?ICN)

The channel specified is not in the range allowed or the 1IF END
statement specifies a file on a terminal. See your BASIC-11
user's guide for information about the range of valid channel
numbers.

?ILLEGAL DIM (?IDM)

A subscript in a DIM or COMMON statement is not an integer, an
array 1is dimensioned more than once, or an array has more than
two dimensions. Ensure that an array specification 1is in the
correct format and appears only once in the COMMON and DIM
statements in the program.

?ILLEGAL END OF FILE IN COMPILED PROGRAM (?IEF)
File produced by the COMPILE command contains a format error.
Use a copy of the program created by a SAVE or REPLACE command.

?ILLEGAL FILE LENGTH (?IFL)

The FILESIZE specified was less than -1.

?ILLEGAL FILE SPECIFICATION (?IFS)

The file specification is invalid. See your BASIC-11 user's
guide for information on the format of a file specification.

?ILLEGAL IN IMMEDIATE MODE (?IIM)

The INPUT or INPUT # statement cannot be entered in immediate
mode, Enter the statement 1in a program line (followed with a
STOP statement) and execute the statement with an immediate mode
GO TO statement.

?ILLEGAL I/O DIRECTION (?IID)

Statement attempts to write to an input file or read an output
file. Ensure that the channel number specified specifies the
correct file. 1If the statement assigns a value to an element of
a virtual array file, ensure that the file's OPEN statement does
not specify "FOR INPUT."

" 2INCONSISTENT NUMBER OF SUBSCRIPTS (?INS)

The array is dimensioned with one subscript and referenced by
two, or vice versa. Ensure that the DIM statement and array
references are consistent. :

?INPUT STRING ERROR (?ISE)

Nonfatal. A string entered in response to an INPUT statement
begins with a quotation mark but is not terminated by the
appropriate end quotation mark. BASIC assigns to the string all
the characters between the initial quote and the line terminator
and continues execution of the program.

A-13

BASIC/RT-11 LANGUAGE SUMMARY

?INTEGER OVERFLOW (?I0V)

An integer variable is assigned a value greater than 32767 or
less than -32768 or an integer expression produces a result which
exceeds this range. Change the variable or . expression to a
floating point format.

?LINE TOO LONG (?LTL)

The line entered is 1longer than BASIC allows; the 1line 1is
ignored. If this message occurs when BASIC is reading a program
from a file, BASIC stops reading the file. A possible cause Iis
that you entered a line near the maximum size with no spaces, but
when you save the program, BASIC adds spaces making the line too
long. Split the line into several smaller lines.

?LINE TOO LONG TO TRANSLATE (?TLT)

Lines are translated as they are entered; the line just entered
exceeds the area reserved for translating. The line is ignored.
I1f this message is produced while BASIC is reading a program from
a file, BASIC stops reading the file. Split the line into
several smaller lines.

?MISSING SUBPROGRAM (?MSP)

The CALL statement specifies a nonexistent routine name. Ensure
that the name is typed correctly (it must consist of upper case
letters).

?NEGATIVE SQUARE ROOT (?NGS)

Nonfatal. The expression in the SQR (square root) function has a
negative value. The function returns a value of 0. BASIC
continues execution of the program,

?NESTED FOR STATEMENTS WITH SAME CONTROL VARIABLE (?FSV)

A FOR statement specifies the same control variable as that
specified by 'a FOR NEXT loop that the FOR statement is inside,
Change one of the control variables to a different variable name
(in both the FOR and the corresponding NEXT statement).

?NEXT WITHOUT FOR (?NWF)

A NEXT statement 1is without a corresponding FOR statement.
Ensure that each loop starts with a FOR statement and ends with a
NEXT statement which specifies the same variable. This error
message is also produced ‘if control is transferred into the
middle of a loop. FOR NEXT loops should only be entered by
executing the FOR statement.

A-14

' BASIC/RT-11 LANGUAGE SUMMARY

?NOT ENOUGH ROOM (?NER)

‘There is not enough room for the FILESIZE specified. Delete
unused files with the UNSAVE command.

?NUMBERS AND STRINGS (?NSM)

String and numeric values appear in the same expression or they

- are set equal to each other; for example, A$=2. Change either
the data type of the variable (e.g., A=2) or the expression
(e.g., A$="2") so that they are consistent.

20UT OF DATA (?00D)

" The data 1list 1is exhausted and a READ statement requests
additional data or the end of a file is reached and the INPUT #
statement reqguests additional data. Ensure that there is
sufficient data or test for the end-of-file condition with the IF
END statement.

?PRINT USING ERROR' (?PRU)

There is an error in the PRINT USING statement caused when the

" format specification 'is not a valid string, or is null, or does
not -contain one valid field. The error is also caused when an
attempt 1is made to print a numeric value in a string field, a
string value in a numeric field, or a negative number in a
floating asterisk or floating dollar sign field that does not
also specify a trailing minus sign, The message is also printed
if the 1items in the 1list are not separated by commas or
semicolons.

?PROGRAM TOO BIG (?PTB)
The line just entered causes the program to exceed the user area
in memory; the line is ignored. Reduce program size. If this
error occurs when BASIC is reading a program from a file, BASIC
stops reading the file.

?RESEQUENCE ERROR (?RES)
Resequencing the program would cause lines to overlap or existing
lines to be deleted, or would create an illegal line number.
Reenter the command with different arguments.

?RETURN WITHOUT GOSUB (?RWG)
A RETURN is encountered before execution of a GOSUB statement,
Do not transfer control to a subroutine except by executing a
GOSUB or an ON GOSUB statement. ‘

?STRING STORAGE OVERFLOW (?SS0)

Not enough memory is available to store all the strings used in
the program. Reduce program size.

BASIC/RT-11 LANGUAGE SUMMARY

?STRING TOO LONG (?STL)

The maximum length of a string in a BASIC statement is 255
characters. Split string into several smaller strings.

?SUBSCRIPT OUT OF BOUNDS (?SOB)

The subscript computed is less than zero or is outside the bounds
defined in the DIM statement. Ensure that expression specifying
the subscript is in the correct range. ‘

?SUBSTITUTE ERROR (?SUB)

There was no separator between the strings in the SUB command oy
the command would create an immediate mode statement. Retype SUB
command.

?SYNTAX ERROR (?SYN)

BASIC has encountered an unrecognizable element. Common examples
of syntax errors are misspelled commands, unmatched parentheses,
and other typographical errors. This message can also be
produced by attempting to read in a program from a file
containing illegal characters, in which case BASIC stops reading -
the file. Retype program line or ensure that file contains a
valid BASIC program.

2TO0 MANY GOSUBS (?TMG)

More than 20 GOSUBS have been executed without a c¢orresponding
RETURN statement. Change the program logic so that less GOSUB
statements are executed.

?TO0 MANY ITEMS IN COMMON (?TIC)

There are more than 255 variable and array names in COMMON (A,
A(100), A%, A%(10, 10), AS, and AS$(5) are all considered
different names). Reduce the number of items 1in COMMON by
converting individual variables to elements of an array or by
passing fewer items to the next program segment.

?UNDEFINED FUNCTIONS (?UFN)
A user-defined function has been used and not defined. Define
the function, A function is defined only after the RUN command
or CHAIN statement is executed.

?UNDEFINED LINE NUMBER (?ULN)
The line number specified in an IF, GO TO, GOSUB, ON GO 'TO, 2N

GOSUB, or CHAIN statement does not exist anywhere in the program.
Ensure that the line number specified exists in the program.

A-16

"BASIC/RT-11 LANGUAGE SUMMARY

?UNDIMENSIONED ARRAY IN CALL (?UAC)
" The first reference to an undimensioned array appears in a CALL

statement. Dimension the array with the DIM statement.

?USE REPLACE
Saving the program would have caused an existing file to be
deleted. Use either a different file specification or the
REPLACE command. e

?VIRTUAL ARRAY CHANNEL ALREADY IN USE (2VCU)

"The DIM # statement specifies a channel number which has already
appeared in a DIM § statement. Specify another channel number.

Function Error Messages
Using BASIC functions improperly causes error messages to be printed.

The following 1list names the functions and describes under which
conditions BASIC functions produce errors.

H ik
All functions
The argument used is the wrong type. For example, the argument
is numeric and the function expects a string expression. This
condition produces ?ARGUMENT ERROR (?ARG).
All functions
The wrong number of arguments is used in a function, or the wrong
character is used to separate them. For example, PRINT SIN (X,Y)
produces a syntax error because the SIN function has only one
argument. This condition produces ?SYNTAX ERROR (?SYN).
ASC(string)
String is not a ' l-character string. This condition produces
?ARGUMENT ERROR (?ARG). f ‘
BIN(string)
Character other than blank, 0, or 1 in string or value is greater
than 2716. This condition produces ?ARGUMENT ERROR (?ARG).
CHRS$ (expr)

Expression- is not in the range 0 to 32767. This condition
produces ?ARGUMENT ERROR (?ARG). ’

a-17

BASIC/RT-11 LANGUAGE SUMMARY

EXP (expr)

Value of expression is greater than 87, This condition produces
?EXPONENTIATION ERROR (?EER).

FNletter

The function FNletter is not defined (function cannot be defined
by an immediate mode statement). This c¢ondition produces
?UNDEFINED FUNCTION (?UFN).

LOG (expr)

Expression is negative or 0, The function returns a value of 0,
This condition produces ?BAD LOG (?BLG).

LOG10 (expr)

Expression is negative or 0. The function returns a value of 0.
This condition produces ?BAD LOG (?BLG).

OCT (string)

Character other than blank or digits 0 through 7 appears in
string, or value is greater than 2716, These conditions produce
ARGUMENT ERROR (?ARG).

PI

An argument is included. This condition produces ?SYNTAX ERROR
(?8YN) .

SEGS$ (string,exprl,expr2)

No additional error conditions.

éQR(expr)

Expression is negative. The function returns a value of 0. This
condition produces ?NEGATIVE SQUARE ROOT (?NGS).

TAB (expr)

Expression is not in the range 0 to 32767. This condition
produces ?ARGUMENT ERROR (?ARG).

VAL(string)

String is. not a numeric constant. This condition produces
?ARGUMENT ERROR (?ARG). ’

A-18

APPENDIX B

FORTRAN/RT~11 LANGUAGE SUMMARY

B.1 EXPRESSION OPERATORS

Operators in each type are shown in order of descending precedence,

Type Operator Operates Upon
Arithmetic k. exponentiation arithmetic or logical
*,/ multiplication, constants,
division variables, and
+,- addition, subtraction expressions
unary plus and minus
Relational .GT. greater than arithmetic or logical
.GE, greater than or equal to|constants, variables,
and expressions
.LT. less than (all
.LE. less than or equal to relational operators
have equal priority)
.EQ. eqgual to
.NE. not equal to
Logical .NOT. .NOT.A is true if and logical or integer
only if A is false constants, variables,
and expressions
.AND. A.AND.B is true if
and only if A and B
are both true
.OR. A.OR.B is true if and
only if either A or
B or both are true
LEQV. A.EQV.B is true if and (precedence same
only if A and B as .XOR.)
are both true or A
and B are both false
.XOR. A.XOR.B is true if and (precedence same

only if A is true and
B is false or B is
true and A is false

as .EQV.)

FORTRAN/RT-11 LANGUAGE SUMMARY

B.2 STATEMENTS

The following summary of statements available in the PDP-11 FORTRAN
language defines the general format for the statement. If more
detailed information is needed, refer to the PDP-11 FORTRAN Language
Reference Manual (DEC-11-LFLRA-C-DN1).

Statement Formats Effect

ACCEPT See READ, Formatted Sequential
See READ, List-Directed
Arithmetic/Logical Assignment
v=e
v is a variable name or an array element name.
e is an expression,
The-value of the arithmetic or 1logical expression 1is
assigned to the variable.)
Arithmetic Statement Function

f(lel,pl...])=e

f is a symbolic name.
o) is a symbolic name.
e is an expression,

Creates a user-defined function having the variables p
as dummy arguments. - When referenced, the expression is
evaluated using the actual arguments in the function

call.
ASSIGN s TO v
s is an executable statement label.
v is an integer variable name.

Associate the statement number s with the integer
variable v for later use in an assigned GO TO
statement. :

BACKSPACE u

u is an integer variable or constant.

The currently open file on logical unit u is backspaced
one record.

FORTRAN/RT-11 LANGUAGE SUMMARY

BLOCK DATA [nam]
nam is a symbolic name.
Specifies the subprogram which follows as a BLOCK DATA
subprogram.
CALL s[([all[,[a]l]l...)]
s is a subprogram name.
a is an expression, a procedure name, or an array name.
Calls the SUBROUTINE subprogram with the name specified

by s, passing the actual arguments a to replace the
dummy arguments in the SUBROUTINE definition.

CLOSE (pl,P]...)

P is one of the following forms:
UNIT =e
DISPOSE = 'SAVE' - or DISP = 'SAVE'
DISPOSE = 'KEEP' or DISP = 'KEEP'
DISPOSE = 'DELETE’ or DISP = 'DELETE'
DISPOSE = 'PRINT' or DISP = 'PRINT'
ERR = s

e is a numeric expression.
s is an executable statement label.

Closes the specified file.

COMMON [/I[cbl/] nlist [[,]/[cb]l/nlist]...
cb is a common block name.

nlist is a list of one or more variable names, array names, or
array declarators separated by commas.

Reserves one or more blocks of storage space under the

name specified to contain the variables associated with
that block name.

CONTINUE

Causes no processing.

DATA nlist/clist/[[,] nlist/clist/]...

nlist is a list of one or more variable names, array names, or
array element names separated by commas. Subscript
expressions must be constant.

clist is a list of one or more constants separated by commas,
each optionally preceded by Jj*, where j} is a nonzero,
unsigned integer constant.

FORTRAN/RT-11 LANGUAGE SUMMARY

Causes elements in the list of values to be "initially
stored in the corresponding elements of the list of
variable names.

DECODE (c¢,f,b[,ERR=s]) [1list]

c is an integer expression.

f is a FORMAT statement label or array name.

b is a variable name, array namé, or array element name.
s is an executable statement label.

list kis an I1/0 list.

Changes the elements in the I/0 1list from character
into internal format; ¢ specifies the number of
characters, f specifies the format, and b is the name
of the entity containing the characters to be
converted. ‘

DEFINE FILE u(m,n,U,v)[,u{(m,n,U,v)]...

u is an integer variablé name or integer constant.
m is an integer variable name or integer constant.
n is an integer variable name or integer constant.
v is an integer variable name.

Defines the record structure of a direct access file
where u is the logical unit number, m is the number of
fixed length records in the file, n is the 1length in
words of a single record, U is a fixed argument, and v
is the associated variable.

DIMENSION a(d)[,a(d)]...
a(d) is an array declarator.

Specifies storage space requirements for arrays.

DO s {,] i = el,e2[,e3)]

S is the label of an executable statement.
i is a variable name.
ei - are integer expressions.

To execute the DO loop:
l. Set i =el
2. Execute statements through statement number s

3. Evaluate i = i+e3

FORTRAN/RT-11 LANGUAGE SUMMARY

4. Repeat 2 through 3 for
MAX (1, INT((e2 - el)/e3) + 1)

iterations

ENCODE (c,f,b[,ERR=s]) [list]

c is an integer expression.
f is a FORMAT statement label or an array name.
b is a variable name, array name, or array element name.
s is an executable statement label.
list is an I/0 list.
Changes the elements in the 1list of variables into
characters; ¢ specifies the number of characters in
the buffer, f specifies the format statement number,
and b is the name of the entity to be used as a buffer,
END
Delimits a program unit.
END FILE u
u is an integer variable or constant,

An end-file record is written on logical unit u.

END=s,ERR=8s
s is an executable statement label.
(Transfer of Control) on end-of-file or error condition
is an optional element in each type of I/O statement
allowing the program to transfer to statement number s
on an end-of-file (END=) or error (ERR=) condition.
EQUIVALENCE (nlist)[,(nlist)]...
nlist is a list of two or more variable names, array names, oOr
array element names separated by commas. Subscript
expressions must be constant.
Each of the names (nlist) within a set of parentheses
is assigned the same storage location.
EXTERNAL v[,v]...

\ is a subprogram name.

Defines the names specified as FUNCTION or SUBROUTINE
subprograms.

FORTRAN/RT-11 LANGUAGE SUMMARY

FIND (u'r)
u is an integer variable name or integer constant.
r is an integer expression.
Positions the file on logical unit u to record r and
sets associated variable to record number r.
FORMAT (field specification,...f
Describes the format in which one or more records . are

to be transmitted; a statement label must be present.

[typ] FUNCTION nam[*n]{ ({p[,pl...1)]

typ is a data type specifier.

nam is a symbolic name.

*n is a data type length specifier.
p is a symbolic name.

Begins a FUNCTION subprogram, indicating the program’
name and any dummy argument names, p. An optional type
specification can be included.

GO TO s
s is an executable statement label.
(Unconditional GO TO) Transfers control to statement
number s.

GO TO (slist){,] e

slist is a list of one or more executable statement labels
separated by commas.

e is an integer expression.

(Computed GO TO) Transfers control to the statement
label specified by the value of expression e. (If e=1
control transfers to the first statement label. If e=2
it transfers to the second statement label. etc.) If e
is less than 1 or greater than the number of statement
labels present, no transfer takes place.

GO TO v [[,](slist)]

\ is an integer variable name.

slist is a list of one or more executable‘ statement labels
separated by commas.

(Assigned GO TO) Transfers control to the statement
most recently associated with v by an ASSIGN statement.

FORTRAN/RT~11 LANGUAGE SUMMARY

IF (e) sl,s2,s3
e is an expression.
si are executable statement labels.

(Arithmetic IF) Transfers control to statement number
si depending upon the value of the expression. If the
value of the expression is less than zero, transfer to
sl; if the value of the expression is egqual to zero,
transfer to s2; if the value of the expression |is
greater than zero, transfer to s3.

IF (e) st
e is an expression.
st is any executable statement except a DO or logical IF

‘Statement.
(Logical IF) Executes the statement if the 1logical
expression is true.
IMPLICIT typ (al,al...)[,typ(al,al.ce)]enu.
typ is a data type specifier.

a is elther a single letter, or two letters in alphabetlcal
order separated by a dash (i.e., x-y).

The elements a represent single (or a range of)

letter(s) whose presence as the initial letter of a
variable specifies the variable to be of that type.

OPEN (pl[,pl...)

P is one of the following forms:
UNIT = e
NAME = n
TYPE = 'OLD'
TYPE = 'NEW'
TYPE = 'SCRATCH'
TYPE = 'UNKNOWN'
ACCESS 'SEQUENTIAL'

ACCESS = 'DIRECT'
ACCESS = 'APPEND'

FORM = 'FORMATTED'
FORM = 'UNFORMATTED'
RECORDSIZE = e

ERR = s

BUFFERCOUNT = e

INITIALSIZE = e

EXTENDSIZE = e

NOSPANBLOCKS

SHARED

DISPOSE = 'SAVE' or DISP = 'SAVE'
DISPOSE = 'KEEP' or DISP = 'KEEP'
DISPOSE = 'DELETE' or DISP = 'DELETE'
DISPOSE = 'PRINT' or DISP = 'PRINT'

FORTRAN/RT-~11 LANGUAGE SUMMARY

ASSOCIATEVARIABLE = v

CARRIAGECONTROL = 'FORTRAN'
CARRIAGECONTROL = ‘'LIST'
CARRIAGECONTROL = 'NONE'
MAXREC = e

BLOCKSIZE = e

e is an integer expression.

s is an executable statement label.

v is an integer variable name.

n is an array name, variable name, array element name, or

alphanumeric literal.
Opens a file on the specified logical unit according to
the parameters specified by the keywords.

PAUSE ([disp]

disp is a decimal digit string containing one to five digits,
an alphanumeric literal, or an octal constant.

Suspends program execution and prints the display, 1if
one is specified.

PRINT See WRITE, Formatted Sequential
See WRITE, Listed-Directed

PROGRAM nam
nam is a symbolic name.
Specifies a name for the main program.
READ (u,f[,END=s][,ERR=s]) [list]
READ f[,list]

ACCEPT f[,list]

u is an integer variable or constant.

f . is a FORMAT statement label or an array name.
s is an executable statement label.

list is an I/0 list.

(Formatted Segquential) Reads one or more logical
records from unit u and assigns values to the elements
in the list, converted according to format
specification f.

READ (u[,END=s] [,ERR=s]) [1list]

u is an integer variable or constant.
s is an executable statement label.
list is an I/0 list.

FORTRAN/RT-11 LANGUAGE SUMMARY

(Unformatted Sequential) Reads one unformatted record
from unit u, and assigns values to the elements in the
list.

READ(u'r[,ERR=s]) [list]

u is an integer variable or constant.
r is an integer expression.

s is an executable statement label.
list is an I1/0 list.

(Unformatted Direct Access) Reads record r from unit u,
and assigns values to the elements in the list.

READ (u,*[,END=s][,ERR=s])list

READ #*,list

ACCEPT *,list

u is an integer variable or constant.
* denotes list-directed fotﬁatting.

s is an executable statement label.
list is an I/0 list.

(List-Directed) Reads one or more logical records from
unit u and assigns values to the elements in the list,
converted according to the data type of the 1list
element.

RETURN
Returns control to the calling program from the current
subprogram.
REWIND u
u is an integer variable or constant.

Repositions logical unit u to the beginning of the
currently opened file.
STOP [disp]

disp is a decimal digit string containing one to five digits,
an alphanumeric literal, or an octal constant.

Terminate program execution and print the display, if
one is specified.

FORTRAN/RT-11 LANGUAGE SUMMARY

SUBROUTINE nam[([p[,pl}...]1)]

nam

p

TYPE

is a symbolic name.
is a symbolic name.
Begins a SUBROUTINE subprogram, indicating the program

name and any dummy argument names, p.

See WRITE, Formatted Sequential
See WRITE, List-Directed

Type Declaration

typ vi,v]...
typ

v

VIRTUAL a(d)

a(d)

is a data type specifier.

is a variable name, array name, function or function
entry name, or an array declarator. The name can
optionally be followed by a data type length specifier
(*n). :

The symbolic names, v, are assigned the specified data
type in the program unit.

typ is one of:

DOUBLE PRECISION
COMPLEX
COMPLEX*8
REAL
REAL*4
REAL*8
INTEGER
INTEGER*2
INTEGER*4
BYTE
LOGICAL
LOGICAL*1
LOGICAL*4

f,a(@)]...

is an array declarator that specifies storage space for a
VIRTUAL array.

WRITE (u,f[,ERR=s]) [list]

PRINT £{,list]

TYPE f{,list]
u
£
s

list

is an integer variable or constant,
is a FORMAT statement label or an array name.
is an executable statement label.

is an I/0 list.

B-10

FORTRAN/RT-11 LANGUAGE SUMMARY

(Formatted Sequential) Writes one or more 1logical
records to unit u containing the values of the elements
in the list, converted according to format
specification £,

WRITE (ul,ERR=s])[list]

u
S

list

is an integer variable or constant.
is an executable statement label.
is an I/0 list.
(Unformatted Sequential) Writes one unformatted record

to unit u containing the values of the elements in the
list,

WRITE (u'r([,ERR=s]) [list]

u
r
S

list

is an integer variable or constant.
is an integer expression.

is an executable statement 1label.
is an I1/0 list.

(Unformatted Direct Access) Writes record r to unit u
containing the values of the elements in the list.

WRITE(u,*[,ERR=s])list

PRINT *,list
TYPE *,list

u

*

list

B.3 FORTRAN

is an integer variable or constant.

denotes list-directed formatting.

is an executable statement label.

is an 1/0 list,
(List-Directed) Writes one or more logical records to
unit u containing the values of the elements in the

list, converted according to the data type of the 1list
element.

LIBRARY FUNCTIONS

ARGUMENT RESULT

FORM TYPE TYPE DEFINITION

ABS (X) Real Real Real absolute value

IABS (I) Integer Integer Integer absolute value

DABS (X) Double Double Double precision absolute
value

B-11

FORTRAN/RT-11 LANGUAGE SUMMARY

: ARGUMENT RESULT
FORM TYPE TYPE DEFINITION
CABS (2) Complex to Real, absolute
value
where z=(x,y)
Complex Real CABS(2)=(x2+y2) %2
FLOAT (I) Integer Real Integer to Real conversion
IFIX (X) Real to Integer conversion
Real Integer IFIX(X) 1is -equivalent to
INT (X)
SNGL (X) Double Real Double to Real conversion
DBLE (X) Real Double Real to Double conversion !
REAL(2) Complex to Real conversion,
Complex Real obtain real part
AIMAG(2) Complex to Real conversion,
Complex Real obtain imaginary part |
CMPLX (X,Y) Real to Complex conversion
Real Complex CMPLX (X,Y) =X+1i*Y
Truncation functions return the sign of
the argument * largest integer < |arg]|
AINT(X) Real Real Real to Real truncation
INT (X) Real Integer Real to Integer truncation
IDINT (X) Double Integer Double to Integer truncation
Remainder functions return the remainder
when the first argument is divided by
the second.
AMOD (X,Y) Real Real Real remainder
MOD(I,J) Integer Integer Integer remainder
DMOD (X,Y) Double Double Double precision remainder

Maximum value functions return the
largest value from among the argument
list; > 2 arguments.

AMAXO(I,J...)

AMAX1 (X,Y,...)
MAXO(I,J,...)

MAX1(X,Y,...)

DMAX1(X,Y,¢44)

Integer Real Real ‘maximum from Integer
list
Real Real Real maximum from Real list

Integer Integer Integer maximum from Integer
list

Real Integer Integer maximum from Real
list

" Double Double Double maximum from Double
list

AMINO(I,J,...)
AMIN1 (X,Y,...)
MINO(I,J,...)

MIN1 (X,Y,...)
DMINI (X,Y...)

Minimum value functions return the
smallest wvalue from among the argument
list; > 2 arguments.

Integer Real Real minimum of Integer list 5

Real Real Real minimum of Real list

Integer Integer Integer minimum of Integer
list c

Real Integer Integer minimum of Real list

Double Double Double minimum of Double list

B-12

FORTRAN/RT-11 LANGUAGE SUMMARY

ARGUMENT RESULT

FORM TYPE TYPE DEFINITION
The transfer of sign functions return
(sign of the second argument) *
(absolute value of first argument).
SIGN (X,Y) Real Real Real transfer of sign
ISIGN(I,J) Integer Integer Integer transfer of sign
DSIGN(X,Y) Double Double Double precision transfer of
sign
Positive difference functions return the
first argument minus the minimum of the
two arguments,
DIM(X,Y) Real Real Real positive difference
IDIM(I,Jd) Integer Integer Integer positive difference
Exponential functions return the value
of e raised to the argument power.
EXP (X) Real Real e x
DEXP (X) Double Double e"x
CEXP (Z) Complex Complex e"z
ALOG (X) Real Real Returns log(e) (X)
ALOG10 (X) Real Real Returns 1loglO (X)
DLOG (X) Double Double Returns log(e) (X)
DLOG10 (X) Double Double Returns 1logl0 (X)
CLOG(2) Complex Complex Returns log(e) of complex
argument
SQRT (X) Real Real Square root of Real argument
DSQRT (X) Double Double Square root of Double
precision argument
CSQRT (2) Complex Complex Square root of Complex
argument
SIN(X) Real Real Real sine
DSIN (X) Double Double Double precision sine
CSIN(2) Complex Complex Complex sine
cos(X) Real Real Real cosine
DCOS (X) Double Double Double precision cosine
CCO0Ss(2) Complex Complex Complex cosine
TANH (X) Real Real Hyperbolic tangent
ATAN (X) Real Real Real arc tangent
DATAN (X) Double Double Double precision arc tangent
ATAN2 (X,Y) Real Real Real arc tangent of (X/Y)
DATAN2 (X,Y) Double Double Double precision arc tangent
of (X/Y)
CONJG(2Z) Complex conjugate, if Z=X+i*Y
Complex Complex CONJG (Z) =X-1i*Y

B-13

FORTRAN/RT-11 LANGUAGE SUMMARY

ARGUMENT RESULT
FORM TYPE TYPE DEFINITION
RAN(I,J) Integer Real Returns a random number of

uniform distribution over the
range 0 to 1. I and J must
be integer variables and
should be set initially to 0.
Resetting I and J to O
regenerates the random number
sequence. Alternate starting
values for 1 and J will
generate different random
number sequences.

B-14

APPENDIX C

CAMERA ORIENTATION

Two entries in the Patient Study Plan (see Chapter 4) call for switch
settings on the scintillation camera. These entries. refer to the
orientation and rotation switches on cameras manufactured by Searle
Radiographics, Inc. (formerly Nuclear-Chicago).

On the Searle cameras, the 4-position Orientation switch and the
2-position Rotation switch combine to produce the eight possible
coordinate relations according to the following table, in which X and
Y represent the <camera's field coordinates, and X' and Y' represent

the coordinates of the matrix displayed on the screen,

Orientation Rotation Switch Position
Switch Pos.) 1 (HORIZONTAL) 2 (UPRIGHT)
1] x'=-.Y . X'=X
Y'= '=-y
2 ’ X'="Y ‘ v'=x
Y'==X Y'=y
3 X'=Y X'=-X
Y'=-X Y'=y
4 X'= V=X
Y'=X ‘ t=-y

The camera's coordinates are oriented as shown below, with the viewer
standing above the camera, and the camera rotated 180 so that it is
face upwards toward the viewer.

C.1 TRANSFORMATION OPERATORS

The transformations tabulated above can be written in terms of matrix
operators, thus ’

where

The matrix operators for each value of m and n are as follows:

4

1
(0)
0

0

(R)

-1

e

70 =
7 =
(R)
(0)

0
-1

-1
0

CAMERA ORIENTATION

(X',Y') is the display coordinate operator

(X,Y) is the camera coordinate operator

[m=1 or 2] is the Rotation Switch Setting

[n=1,2,3, or 4} is the Orientation Switch Setting

(0)

(R)

L]

=1 o w1

IT:)

Note that the operator

absolute definition
necessary,
Example:
For n=4, m=1l
ol
z' = =0 R
)
L?
-1 0 -y
0 -1 -X

ey

0

—

———

0
1

(0)
of

(0)

is
the

-1 0

cyclically permutable,

camera's coordinate
0 0 ~1 X
-1 -10 Y

so
system

that
is

an
not

‘"CAMERA ORIENTATION

C.2 CONVERSION TO OTHER CAMERAS

The two switches of the Searle cameras produce any of the eight
possible coordinate orientations. Corresponding functions of other
camera types can be matched to the settings of these two switches.
For example, given a camera that can only rotate the image clockwise,
the corresponding switch settings would be as follows:

‘ Searle
Camera X Switch Settings
Y Rotation Orientation
Switch Switch
X 2 2
Upright
)'4 1 3
Horizontal
X
X 2 4
Upright
Y
X 1 1
Horizontal
Y

APPENDIX D

USING A NEW DISK

Before using a new RKO5 disk cartridge, you must:
1. Format the cartridge,
2. Initialize the directory (reguired forvRT-ll).

Before using a new RK0O6, RK07, or RL0O1l disk, you need only initialize
the directory.

D.1 FORMATTING A NEW RKO5 DISK ON AN 11/34

The following instructions detail the procedure for formatting an RKO05
disk.

1. Mount the disk to be formatted in Unit O. The following
formatting procedure will work only on Unit 0.

2. Begin the boot procedure, Press CNTRL/HALT, then CNTRL/BOOT.
The four numbers will appear on the console followed by a
dollar sign ($).

3. At the §, type:
L SP 1000CrD)

where (Cs) represents a space and represents RETURN.
The L stands for Load address.

4. At the next § prompt type:

D) 12737
D) 6003CeD)
D) 177404CGD)
DCs) 105737CGeD)
DCs) 177404GiD)
D) 100375 CeD)
D) 137GeD)

p G 1000CeD)

Each line will be preceded by the $§ prompt. The D stands for
Deposit (at the address).

5. To check that you have entered the correct numbers, type:

L) 1000GD)
E

" USING A NEW DISK

After you type E (C¢), the system will type the input number
that is deposited at location 1000.

E Cs¥D) 001000 012737

If 012737 does not appear for location 1000, correct the
location by typing the following at the $ prompt:

D D 127371GD)

Proceed to check each location and number in sequence by
typing the following for:. each number you entered in step 4.

ECD)
The locations and numbers should appear.

6. After you have verified that you typed in the numbers
correctly, type:

L 1000 (D)
sC) "

Wait 60 seconds while the disk is formatted. When the disk
light stops flashing, the disk is formatted and ready for
use.

D.2 INITIALIZING AN RKO5 RT-11 DISK DIRECTORY

Initializing a disk sets up and completely clears its file directory.
A new (unused) disk must always be initialized before it is first
used. The effect of an INITIALIZE operation is to remove all
filenames from the directory. Thus, before you initialize any disk,
be sure that there are no files on it that you might later want,

After formatting an RKO5 disk, reload the GAMMA-11 system disk in Unit
0, write protected and load the RK05 disk to be initialized in Unit 1.
Type: S ‘ ’

CRTL/C
INIT RK1: Cx1)

The system will respond with:
RK1l:/Init are you sure?

The system prompt RKl:/Init are you sure? is always printed to provide
an ‘opportunity for you to verify the command. Typing a Y followed by
RETURN initiates the operation, while N followed by RETURN ignores the
operation and returns control to the monitor command mode. Check your
command line, make sure you are initializing the correct disk, and
then type a Y followed by RETURN. ;

USING A NEW DISK

D.3 INITIALIZING AN RK06 RT-11 DISK DIRECTORY

As with RKO5 disks, initializing an RK06 disk sets up and completely
clears its file directory. A new (unused) disk must always be
initialized before it is first used. The effect of an INITIALIZE
operation is to remove all filenames from the directory. Thus, before
you initialize any disk, be sure that there are no files on it that
you might later want.

To initialize an RK06 disk, 1load the GAMMA-11l system disk, write
protected and type:

CTRL/C
INIT/BAD DM1 : ()

The system will respond with:
DM1:/Init are you sure?

The system prompt DMl:/Init are you sure? is always printed to provide
an opportunity for you to verify the command. Typing a Y followed by
RETURN initiates the operation, while N followed by RETURN ignores the
operation and returns control to the monitor command mode. Check your
command line, make sure you are initializing the correct disk, and
then type a Y followed by RETURN.

The /BAD option on the INIT command makes sure that any bad blocks on
the disk are designated in the directory as FILE.BAD. In this way,

the bad blocks are removed from the available disk blocks, thus

minimizing disk errors.

Administrative data block,
2-2 to 2-4, 2-7
Assembling GAMMA-11, 4-1

Backing up disks, 1-8, 1-9
BACKUP, 1-8, 1-9
BASIC commands,
APPEND, A-8
CLEAR, A-8
COMPILE, A-8
DEL, A-8
LENGTH, A-8
LIST, A-8
NEW, A-8
OLD, A-8
RENAME, A-8
REPLACE, A-8
RESEQ, A-8
RUN, A-9
SAVE, A-9
SCR, A-9
sUB, A-9
UNSAVE, A-9
BASIC error messages,
3-11 to 3-14,
A-10 to A-18
BASIC functions,
ABORT, A-7
ABS, A-5S
ASC, A-6
ATN, A-5
CHRS$, A-6
CO0Ss, A-5
CTRLC, A-7
CTRLO, A-7
DATsl A'6
EXP, A-5
INT, A-5
LEN' A"'6
LOG, A-5
LOG10, A-5
OCT' A’6
PI' A"S
POS, A-6
RCTRLC, A-7
SEGS, A-7
SGN, A-5
SIN, A-5
SQR, A-6
STRS, A-7

INDEX

BASIC functions (Cont.)
SYS' A"7
TAB' A"G
TRHS' A‘?
TTYSET, A-7
VAL, A-7

BASIC statements,
CALL' A-l
CHAIN, A-l
CLOSE, A-1l
COMMON, A-1l
DATA, A-1l
DEF' A‘Z
DIM, A-2
END, A-2
FOR, A-2
GO TO, A-2
GOSUB, A-2
IF’ A-z
IF TO, A-2
INPUT, A-3
KILL, A-3
LET, A-3
LINPUT, A-3
NAME, A-3
NEXT, A-3
ON, A-3
OPEN, A-3
OVERLAY, A-4
PRINT, A-4
RANDOMIZE, A-4
READ, A-4
RESET, A-4
RESTORE, A-4
RETURN, A-4
STOP, A-4

BASIC support routines, 3-1

BGAMMA routines, 3-21
Building GAMMA-11l, 1-1

Camera switch settings, C-1
Comment block, 2-2 to 2-4,

2-6

COMPRS, 2-7
Configuring disks, 1-4
CTRL/C, A-9
CTRL/O, A-9
CTRL/Q, A-9
CTRL/S, A-9
CTRL/U, A-10
Curve,

dynamic, 2-17

Index~-1

DELETE, A-10

Disk formatting, D-1

Disks,
backing up, 1-8, 1-9
configuring, 1-4 .
initializing, D-2, D-3 .
RKOS5, 1-1, 1-2, D-1, D-2
RKO6, 1-1, 1-2, D-3
RKO7, 1-1, 1-2
RLO1, 1-1, 1-2 .

Distribution media, 1-1,

1-2

DL, 1-2

DM, 1-2

Dynamic curve, 2-17

Dynamic study, 2-2, 2-17.

Error messages,
BASIC, 3-11 to 3-14,
A-10 to A-18
FORTRAN, 3-11 to 3-14

FADOFF, 2-7

FGADM1 routines, 3-20
FGADM2 routines, 3-21
FGCDM1 routines, 3-21
FGCOM2 routines, 3-21

FGPICK routines, 3-7, 3-21

FGPLOT routines, 3-21
FGPTOV routines, 3-21
File,

dynamic patient, 2-2

patient, 2-1, 2-10, 3-2
File names,

patient, 2-10
File type, 2-1
Files,

internal, ;2-17

macro, 2-18

playback, 2-18
Formatting,

disk,; D-1
FORTRAN arlthmetlc

operators, B-1
FORTRAN error messages,
3-11 to 3-14

FORTRAN library functlons,

ABS, B-11

AIMAG, B-12

AINT, B-12

ALOG, B-13

ALOGID, B-13

AMAX(0, B-12

INDEX (CONT.)

FORTRAN library functions
(Cont.)
AMAX1, B-12
AMINO, B-12
AMIN1, B-~12
AMOD, B-12
ATAN, B-13
ATAN2, B-13
CABS, B-12
CCos, B-13
CEXP, B-13
CLOG, B-13
CMPLX, B-12
CONJG, B-13
C0os, B-13
CSIN, B-13
CSQRT, B-13
DABS, B-11l
DATAN, B-13
DATAN2, B-13
DBLE, B-12
DCOS, B-13
DEXP, B-13
DIM, B-13
DLOG, B-13
DLOG10, B-13
DMAX1, B-12
DMIN1, B-12
DMOD, B-12
DSIGN, B-13
DSIN, B-13
DSQRT, B-13
FLOAT, B-12
FORM, B-12, B-13
IABS, B-11
IDIM, B-13
IDINT, B-12
IFIX, B-12
INT, B-12
ISIGN, B-13
MAX0, B-12
MAX1l, B-12
MING, B-12
MIN1l, B-12
MOD, B-12
RAN, B-14
REAL, B-12
SIGN, B-13
SIN, B-13
SNGL, B-12
SQRT, B-13
TANH, B-13
FORTRAN logical operators,
B-1
FORTRAN relational
operators, B-1

Index-2

FORTRAN statements,
ACCEPT, B-2, B-8, B-9
ASSIGN, B~-2
assignment, B-2
BACKSPACE, B-2
BLOCK DATA, B-3
CALL, B-3
CLOSE, B-3
COMMON, B-3
CONTINUE, B-3
DATA, B-3
DECODE, B-4
DEFINE FILE, B-4
DIMENSION, B-4
DO, B-4
ENCODE, B=-5
END, B-5
END FILE, B-5
END=, B-5
EQUIVALENCE, B-5
ERR=’ B_S
EXTERNAL, B~5
FIND, B-6
FORMAT, B-6
FUNCTION, B-6
GO TO, B-6
IF, B=7
IMPLICIT, B-7
OPEN, B-7
PAUSE, B-8 ,
PRINT, B-8, B~10, B-11
PROGRAM, B-8
READ, B-8, B-9
RETURN, B-9
REWIND, B-9
sSTOP, B-9
SUBROUTINE, B~-10

TYPE, B-10, B-1l
VIRTUAL, B-10
WRITE, B-10, B~-1ll1

FORTRAN support routines,

3-1, 3-10
supplemental, 3-19
Functions,
IBYTE, 3-20
ISPR, 3-20
LBYTE, 3-20
RDPI, 3-20
RDPR, 3-20
RSPI, 3-20

GAM routines, 3-10
GASP routines, 3-7
GCHR routines, 3-1
GCVG routines, 3-6
GCVP routines, 3-6

0

INDEX (CONT.)

GDIS routines,
GMXG routines,
GMXP routines,
GPAR routines,
GPAW routines,
GPDR routines,
GPDW routines,
GPF routines, 3
GPFR routines,
GPFW routines,
GPKX routines,
GPKY routines,
GPLR routines,
GPLW routines,
GPMR routines,
GPMW routines,
GPOV routines,
GSAG routines,
GSAR routines,
GSAW routines,
GSVG routines,
GSVP routines,

[I
WWwwwonovo

w1

Y
i

uwwwwwwwc;)wc‘uwww Il wwwwwww

L T I T B |
A NANNN W Wb WIS WW

1

IBYTE functions, 3-20

IFGFRM routines, 3-21

IGLSTR routines, 3-21

IGLSTW routines, 3-21

Indirect command files,
4-5

Initializing disks, D-2,

D-3
Internal files, 2-17
ISPR functions, 3-20

LBYTE functions, 3-20

4-1,

Linking FORTRAN routines,

3-11

Linking GAMMA-11l, 4-1, 4-5

List mode study, 2-5

Macro files, 2-18
Magnetic tape, 1-1, 1-3
Matrix data, 2-2, 2-15
MDOFF, 2-7
Messages,
BASIC error, 3-14
FORTRAN error, 3-14

Multiple static study, 2-4

NADOFF, 2-7

Index-3

INDEX (CONT.)

PADOFF, 2-7 : Routines (Cont.)
Patient file, 2-1, 2-10, GPF, 3-3
3-2 : GPFR, 3-3
dynamic, 2-2 GPFW, 3-3
pPatient file names, 2-10 GPKX, 3-7
Playback files, 2-18 GPKY, 3-7
GPLR, 3-3
GPLW, 3-4
GPMR, 3-3
GPMW, 3-3
GPOV, 3-7
RDPI functions, 3-20 ~ GSAG, 3-7
RDPR functions, 3-20 GSAR, 3-6
Region of interest, 2-15, GSAW, 3-7
, 2-16 GSVG, 3-6
RK, 1-2 GSVP, 3-6
RKO5 disks, 1-1, 1-2, D-1, IFGFRM, 3-21
D-2 IGLSTR, 3-21
RK06 disks, 1-1, 1-2, D-3 IGLSTW, 3-21
RKO7 disks, 1-1, 1-2 supplemental FORTRAN
RLO1l disks, 1-1, 1-2 support, 3-19
Routines, RSPI functions, 3-20

BASIC support, 3-1
BGAMMA, 3-21
FGADM1, 3-20

FGADM2, 3-21 Save area, 2-11, 2-15, 2-17,
FGCDM1, 3-21 3-6
FGCOM2, 3-21 Save area descriptor block,
FGPICK, 3-7, 3-21 2-11, 3-6
FGPLOT, 3-21 Single static study, 2-3
FGPTOV, 3-21 Study,
FORTRAN support, 3-1, dynamic, 2-2, 2-17

3~10 list mode, 2-6
GAM, 3-10 multiple static, 2-4
Gasp, 3-7 single static, 2-3
GCHR, 3-10 Supplemental FORTRAN
GCVG, 3-6 support routines, 3-19
GCVP, 3-6 Switch settings,
‘GDIS, 3-6 camera, C-1
GMXG, 3-6 SYSGEN, 1-1, 1-4
GMXP, 3-6
GPAR, 3-3
GPAW, 3-3
GPDR, 3-3 Z-count area, 2-3, 2-2, 2-6
GPDW, 3-3 ZCTOFF, 2-7

Index-4

Please cut along this line.

GAMMA-11
System Reference
AA-2186B~TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

pid you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

Ooooog

Other (please specify)

Name Date

Organization

Street

City. State Zip Code
or
Country

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 152
MARLBOROUGH, MA

01752
BUSINESS REPLY MAIL]
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES IR

]

Postage will be paid by: EEEEETE——
ESEE——

]

]

R

Software Documentation I

200 Forest Street MR1-2/E37 =]

Marlborough, Massachuset* 01752

alilglitlall

EJ 05726 77 05A/S20 23 075 Printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	Index-1
	Index-2
	Index-3
	Index-4
	replyA
	replyB
	xBack

