

PDP-ll UNIBUS Processor Handbook
PDP-ll/84, PDP-ll/44, and PDP-ll/24

ii

Digital Equipment Corporation makes no representation that the interconnec­
tion of its products in the manner described herein will not infringe on existing
or future patent rights,· nor do the descriptions contained herein imply the
granting of license to make, use, or sell equipment constructed in accordance
with this description.

Digital believes the information. in this publication is accurate as of its
publication date; such information is subject to change without notice. Digital
is not responsible for any inadvertent errors.

The following are trademarks of Digital Equipment Corporation: DEC,
DECnet, DECsystem-10, DECSYSTEM-20, DECtape, DECUS, DECwriter,
DlBOL, the Digital logo, lAS, MASSBUS, OMNIBUS, PDp, PDT, Q-bus, RSTS,
RSX, RT-ll, ULTRIX, UNIBUS, VAX, VMS, and VT.

iii

Contents

Preface ... VII

Chapter 1 • Introduction

Overview of PDP-ll UNIBUS Family Members 1-2
PDP-ll/84 System .. 1-3
Software ... 1-6
Networks ... 1-8
Peripherals ... , 1-8
Service .. 1-9
Documentation .. 1-9

Chapter 2 • PDP-ll/84

Introduction .. 2-2
Features .. 2-2
System Architecture. .. 2-3
Central Processor .. , 2-4

General Registers 2-6
Processor Status Word 2-7
Program Interrupt Request Register 2-10
Pipeline Processing 2-11
CPU Error Register .. 2-12
Stack Limit Protection 2-13
Kernel Protection 2-14
Trap and Interrupt Priorities 2-15
Hardware Detected Errors 2-16

Private Memory Interconnect 2-17
Memory System ... 2-18

Memory Management 2-18
Error Correction Code 2-19
Battery Backup Unit 2-19
UNIBUS Adapter (UBA) .. 2-20
DMA Cache ... 2-20
UNIBUS Mapping 2-21
Boot ROM Facility 2-21
Cache Memory 2-22
Cache Registers 2-24

iv

Backplane Configuration .. 2-28
Console Functions .. 2-29

Console Serial Line Unit Registers 2-29
Line-time Clock ... 2-33

Clock status Register 2-33
Console .. 2-34

Setup Mode ... 2-34
Program Mode 2-36
Console ODT Mode 2-37

Specifications .. 2-38

Chapter 3' PDP-ll/44

System Architecture. .. 3-2
Central Processor. .. 3-2

General Registers 3-4
Processor Status Word 3-5

CPU Registers ... 3-7
CPU Error Register .. 3-7
Processor Traps. .. 3-9
Program Interrupt Request Register 3-11
CPU and I/O Device Registers and Addresses 3-12

Memory Systems .. 3-13
Error Correction Code and Battery Backup 3-13
Memory Management 3-13
UNIBUS Map .. 3-13

Cache Memory ... 3-13
General System Architecture 3-13
CPU Bypass of the Cache 3-14
Cache Memory Organization 3-15
Cache-Control Registers 3-15

Floating-Point Processor 3-21
Backplane Configuration 3-21
Serial Line Unit Registers 3-21

Serial Line Unit Timing Considerations 3-22
Terminal Serial Line Unit Control Registers 3-22
Second Serial Line Unit Registers (SLU 2) 3-26

Line Clock. .. 3-29
Line Clock Status Register 3-29

Address and Vector Assignment .. 3-30
Specifications .. 3-31

Chapter 4 • PDP.ll/24

System Architecture. .. 4·2
Central Processor ... 4·2
Registers ... 4·4

Processor Status Word 4-5
CPU Error Register .. 4-7
Processor Traps .. 4-8
CPU and I/O Device Registers and Addresses 4-9

Memory System ... 4-10
Memory Management 4·10
Error Correcting Code and Battery Backup 4-10
UNIBUS Map .. 4-10

Backplane Configuration 4-10
Console .. 4·11

Program Mode 4-12
Console ODT Mode 4-13

Address Specification 4-14
Processor I/O Addresses .. 4-14

Stack Pointer Selection .. 4-14
Entering Octal Digits .. 4-15

Serial Line Units .. 4-16
Terminal Serial Line Unit Control Registers 4-16
Second Serial Line Unit Registers .. 4-19

Line Clock .. 4-22
Clock Status Register 4-22

Address and Vector Assignments 4-23
Specifications .. 4-23

Chapter 5 • UNIBUS Technical Description

Characteristics of the UNIBUS 5-2
Nonmultiplexed Bus .. 5-2
Strict Master/Slave Relationship .. 5·3
Partially Distributed Arbitration. .. 5-3
Overlapped Arbitration and Data Transfer 5-5
Asynchronous Operation 5-5
18 Address Bits. .. 5-7
Word or Byte Operations 5-7
Parity Error Information from Slaves 5-7

UNIBUS Block Diagram .. 5-8
UNIBUS Data and Address Organization . 5·9

v

vi

Types of UNIBUS Data Transfers 5~ 10
Read Word .. 5-11
Write Word .. 5-12
Write Byte .. 5-12
Read Word with Write Intent 5-13
Write Vector ... 5-14

UNIBUS Signal Details 5-14
Initialization and Shutdown Signals 5-17
Powerup Timing 5-18
Powerdown Timing 5-19
Initialization Timing. .. 5-20
Arbitration Signals .. 5-21
UNIBUS Arbitration Timing .. 5-22
Abnormal Cycles 5-23
Data Transfer Signals 5-25
DATI Timing. .. 5-27
DATIP , 5-29
DAIDjDAIDB .. 5-29
Write Vector Timing 5-30
Abnormal Bus Cycles 5-32
Multiple Bus Cycles 5-32
Miscellaneous Signals , 5-33

UNIBUS Electrical Characteristics. .. 5-34
Electrically Bidirectional High-speed Lines 5-35
Electrically Unidirectional High-speed Lines 5-35
BUS AC LO L and BUS DC LO L 5-36

Design Suggestions. .. 5-37
Watch the dc Voltage Levels. .. 5-37
Maintain 120-ohm Impedance and Watch ac Signals 5-38
Minimize Crosstalk. .. 5-39
Consider All Timing Cases 5-39
Be A Good Bus Citizen 5-40

Appendix A • PDP-ll Family Differences Table Al

Appendix B· Console Commands. .. B-1

Appendix C • Instruction Times ;............. C-l

Index. .. Index-l

vii

. Preface

This handbook is a reference guide that focuses on Digital's PDP-ll UNIBUS
processors and details the UNIBUS specifications. Written with both evalua­
tors and users in mind, this handbook will help you choose the processor that
best meets the needs of your application.

Chapters 1 through 4 supply a discussion of the key functions of the following
PDP-ll UNIBUS processors.

• PDP-ll/84

• PDP-ll/44

• PDP-ll/24

Chapter 5 describes the technical specifications of the PDP-ll UNIBUS to assist
in configuring large, complex PDP-ll systems and to aid in the design of
interfaces for PDP-lls.

After reading this handbook, you may wish to learn more about PDP-ll
architecture. The PDP-ll Architecture Handbook is a companion to this
handbook and describes the key elements of the PDP-ll architecture, including
addressing modes, the PDP-ll instruction set, memory management, PDP-ll
floating point, commercial instruction set, and the assignment of addresses
and vectors. This and other handbooks that you can order are listed in the
documentation section of Chapter 1.

A postage-paid Reader's Comments card is located at the back of this
handbook. We hope you will take the time to fill it out. Your suggestions will
help us to continue to present literature that meets your needs.

Chapter 1 • Introduction

1-2 • Introduction

The UNIBUS, a single, bidirectional, asynchronous bus, is the connecting
device that makes possible the strengths and flexibilities of the PDP-ll family
members discussed in this book. The UNIBUS is a high-speed communications
path that links system components and peripheral devices and provides
system-to-system connectability. This unique data bus provides the hardware
and software backbone of the PDP-ll/84, PDP-ll/44, al1d PDP.ll/24
processors.

The UNIBUS was the first data bus in the history of the minicomputer industry
to enable devices to send, receive, or exchange data without processor
intervention and without intermediate buffering in memory. PDP-ll architec­
ture takes advantage of the UNIBUS in its method of addressing peripheral
devices. Memory elements, such as main memory or any read-only or solid­
state memories, have ascending addresses starting at zero, while registers that
store input/output (I/O) data or the status of individual peripheral devices have
addresses in the highest 8 Kbytes of addressing space. Communications
between any two devices on the bus use a master/slave relationship and priority
arbitration. Details of this unique UNIBUS design are highlighted in chapter 5
of this handbook.

Each member oUhe PDP-ll family of computers shares a common architec­
ture. Each is based on a 16-bitwordlength, a common instruction set, and the
same addressing techniques. Each also shares the same data management
utilities, the same I/O systems, and the same programming languages. The
software written for one member of the PDP-ll family runs on other PDP-ll
family members. The peripherals and I/O systems for the UNIBUS PDP-ll

. family are also compatible. In other words, the success of this Jamily of
computers is a function of their common architecture that provides compatibil- .
ity across all models.

Digital has provided customers with a clear growth path to expand their
computer systems as their requirements demand. You can upgrade or extend
any UNIBUS system by adding memory and peripherals without worrying
about major incompatibilities in your computing system.

Beyond the architecture and software commonalities, the processors described
in this handbook are bound together by the UNIBUS. Yet each PDP-ll
processor has features and capabilities uniquely suited for various applications.
Some functionally similar features have been accomplished with different
implementations. Therefore, there is some repetition of information in the
chapters describing the individual processor members. It is often necessary to
discuss each separately because what may appear to be very subtle differences
in operations lIlay actmilly be crucial to a certain processor's uniqueness.

1-3

Thble 1-1 lists many of the basic UNIBUS system functions and five of the
UNIBUS PDP-11 processors for comparison. This chart allows you to compare
the processors quickly, especially in relation to the latest member, the PDP-l1/
84. The X denotes the processor is equipped with that particular function .

. High-performance PDP-ll/84 System
The year 1985 marks the 15th anniversary of the PDP-11 UNIBUS computer,
and also the advent of Digital's new, high-speed minicomputer-the PDP-11/
84. It is the most powerful, yet most cost-effective, UNIBUS PDP-11 computer
ever designed. Based on the]-l1 chipset with cache memory, the PDP-11/84
processor surpasses PDP-11/70 performance, yet fits into the price range of the
current PDP-11 processors. The introduction of the PDP-ll/84 establishes the
fifth generation of UNIBUS PDP-11 computers. Figure 1-1 represents the
enhancement of performance/functionality versus price with the development
of each succeeding PDP-ll generation. The PDP-11/84 clearly provides the
price/performance advantage over previous PDP-ll designs.

2nd generation

Performance/Functionality

3rd
generation

Figure 1-1 • UNIBUS PDP-ll Peiformance/Functionality versus Price

1-4 • Introduction

Table 1-1" Functionality Matrix

Function

Basic PDP:ll
Instruction Set with Extended
Instruction Set (multiply, divide,
longshift)

Floating-point
" Processor '

Commercial '
Instruction Set (CIS)

Memory-management
Unit '

22-bit Physical
Addressing

Maximum Memory

Console

Battery Backup

Relative Processing
Power

Expansion Slots

Open System Units

Onboard Serial-line
Units

Line-time Clock

Kernel and User
Modes

Supervisor Mode

Separation of
Instructions ahd Data

Dual-register Set

Packaging
Box

Cabinet

PDP-ll/84

x

Microcode'stahdard
Hardware standard'

X

X

3,840 Kbytes

ASCII

.optional

1.1

7 hex:fquad and
1 quad

o in 10.5-inch box
2 in cabiriet

X

X

X

X

X

1O.5-inch

42.0-inch

PDP-ll/44

x

Hardware optional

Optional

X

X

3,840 Kbytes

ASCII

Optional

.75

1 hex/quad and
1 quad

3 in 10.5-inch box

2

X

X

X

X

10.5-inch

10.5-inch box
within 42.0-inch
cabinet

1-5

PDP-ll/24 PDP-ll/34A PDP-llj70

x x x

Microcode optional Hardware optional Hardware optional
Hardware optional

Optional

X X X

Optional X

248 Kbytes 248 Kbytes 3,840 Kbytes
3,840 Kbytes
optional

ASCII ASCII standard Hardware standard
Hardware optional ASCII optional"

Optional Optional Optional

.30 .50 1.0

5 hex/quad and 3 hex/quad and 3 hex/quad and
1 quad 1 quad 1 quad

o in 5.25-inch box o in 5.25-inch box o in cabinet
4 in 10.5-inch box 3 in 1O.5-inch box

2

X X X

X X X

X

X

X

5.25-inch 5.25-inch
1O.5-inch 10.5-inch
1O.5-inch box lO.5-inch box 60.0-inch or
within 42.0-inch within 42.0-inch 72.0 inch
cabinet cabinet

* Provided by Digital's Field Service.

1-6 • Introduction

The powerful]-ll chipset is an example of Digital's sophisticated technology,
providing increased performance in a smaller package. The chipset itself
performs functions that once required many separate boards. Based on CMOS
technology, the]-ll microprocessor has 16-bit I/O and a 32-bit internal data
path. It can address up to 4 Mbytes of memory. This 60-pin package
implements the full PDP-ll instruction set including hardware multiply/divide,
floating point instructions, and online debugging technique (ODT). In addi­
tion, the chipset contains memory management logic and cache-control
registers. It also handles all data and address transfers .

. Software
The large installed base of PDP-ll computers with their associated software
means that software for your application will be easy to find. You can choose
from proven software developed and supported by Digital and you can choose
from software supported by third parties. An important source of software is
DECUS, the Digital Equipment Computer Users Society. DECUS is one of the
largest and most active user groups in the computer industry and membership
is available to owners of Digital's computers.

The PDP-ll UNIBUS systems detailed in this handbook offer simple, easy
programming with a rich array of languages and software tools. Thousands of
application software packages already exist to serve virtually every area of
business and industry. The same software that runs on Digital's smaller, low­
priced PDP-ll systems will run on our larger models. A directory of over 2000
available software offerings for PDP-lis is listed in Digital's two-volume PDP-ll
Software Source Book.

The Digital PDP-ll 16-bit operating systems meet realtime, timesharing, and
batch proccessing demands efficiently and effectively in a host of environ­
ments-from small, dedicated laboratory and industrial control systems to
large, multiuser information management systems. For more information
about PDP-ll operating systems and layered products, see the PDP-ll Software
Handbook. It includes a general description of each operating system, the file
structure and data-handling facilities, the user interfaces, the system utilities,
and the languages supported by each processor.

PDP-ll UNIBUS processors support multiple operating systems so that the right
hardware, operating system, and application software can be combined to meet
your exact requirements. Table 1-2 gives a short description of the PDP-ll
operating systems and the availability of each operating system on the PDP-ll
processors.

1-7

Table 1-2' PDP-ll Operating Systems

Name Description Processor

RT-11 A single-user, multi-job PDP-11/84, 11/44, 11/34A,
system, ideal for dedicated 11/24, 11/70
realtime or small business
applications

CTS-300 A multiuser, commercial PDP-11/84, 11/44, 11/34A,
timesharing system that 11/24, 11/70
combines DIBOL
with RT-11

DSM-ll A timesharing system PDP-11/84, 11/44, 11/24,
oriented toward large 11/70
database applications

RSTS/E A general-purpose, time- PDP-11/84, 11/44, 11/34A,
sharing system that pro- 11/24, 11/70
vides a fast response time
in multiuser applications
and program development

RSX-11M-PLUS Multiuser, multiprogram- PDP-11/84, 11/44, 11/24,
ming realtime systems that 11/70
support multiple languages,
program development
tools, and a variety of
utilities

RSX-11M Subset of RSX-llM-PLUS PDP-11/84, 11/44, 11/34A,
RSX-11S appropriate for small- 11/24, 11/70

memory PDP-11s. RSX-11S
is a memory-only system

lAS Interactive Application PDP-11/84, 11/44, 11/24,
System allows realtime 11/70
application execution
concurrent with timeshared
processing

ULTRIX-11 Digital's enhanced native- PDP-11/84, 11/44, 11/24,
mode UNIX software that 11/70
is upward compatible with
Digital's ULTRIX-32
operating system

1-8 • Introduction

. Networks
Digital offers extensive capabilities that permit the linking of computers and
terminals into flexible configurations called networks. Networking lets com­
puter systems amd terminals, whether located within a facility or around the
world, share resources and exchange information, files, and programs. The
smaller computers in a network have access to the powerful capabilities of
larger systems, while the larger computers can take advantage of smaller
dedicated systems chosen for specific application environments.

The PDP-ll UNIBUS processors support a wide range of users while simultane­
ously connecting them all to a network of systems. Digital's powerful commu­
nications software, DECnet, enables two or more Digital computer systems
-16-bit PDP-lls, 32-bit VAXes, and 36-bit DEC system-lOs and DECSYSTEM-
20s -to form a network. DECnet offers task-to-task communications, remote
file access, utilities for network file transfer, heterogeneous network command
terminal support, and network resource sharing.

The Ethernet-to-UNIBUS high-performance synchronous communications
controller (DEUNA) connects VAX and PDP-ll UNIBUS systems to Ethernet
local area networks (LANS). This allows large amounts of data to be exchanged
at high rates between systems located within limited distances.

The key to this networking feature is Digital's Network Architecture (DNA), a
set of hardware and software networking capabilities that supports communi­
cations between Digital's systems, and between Digital's systems and other
manufacturers' systems. Digital-to-Digital communications are permitted
through protocols, or rules, that are defined by the DNA. Internet products
provide a means for Digital's systems to communicate with systems built by
other manufacturers. These products use common communications protocols
and are data transfer facilitators rather than hardware emulators. Digital's
packetnet system interface (PSI) products allow Digital's systems to connect to
public packet-switching networks.

Digital Networks: An Architecture with a Future and the Communications
Handbook describe in detail computer networking and the data communica­
tions devices available for use with the PDP-ll family members .

. Peripherals
The UNIBUS links the PDP-ll processors with one of the industry's most
comprehensive set of mass-storage systems. And it provides the configuration
flexibility and growth capacity that make the PDP-ll processors ideal solutions
for a broad spectrum of applications.

Digital sets the standard for the design and manufacture of storage systems
with its Digital Storage Architecture (DSA). DSA is a carefully planned
framework of standardized interfaces that permit the addition of new products

1-9

and new technologies to host systems without the need to develop additional
specialized controllers or software drivers. The PDP-ll/84, PDP-ll/44, and
PDP-ll/24 all support the Digital Storage Architecture.

Digital manufactures a full range of peripheral equipment designed to meet
specific needs as well as to maintain PDP-ll family compatibility. I/O and
storage devices range from low-cost cassette-tape devices through high-capac­
ity Winchester disks, and from intelligent, rugged DEC writers for hard copy, to
ergonomically designed video-display terminals. You can also choose from a
variety of peripheral products developed and supported by third parties. Either
way, there is a complete spectrum of peripherals available to complement the
software and provide the complete answer to application needs in all mar­
ket areas-business, education, industry, laboratory, and engineering envi­
ronments.

The Terminals and Printers Handbook and the PDP-ll Systems and Options
Catalog describe the optional equipment available for use with the PDP-ll
UNIBUS family members .

. Service
Digital's style of computing stresses quality and consistency in every phase of
development, manufacturing, service, and support. Comprehensive services
are offered to help customers before, during, and after system installation. Our
sales representatives work closely with customers, studying each application
and determining specific computing needs. Trained software and hardware
specialists, well-versed in designing systems using Digital's products, are
available to supplement the sales representative's product knowledge.

Comprehensive customer services continue to complete our commitment to
meeting users' needs. Digital's customer service organizations include software
services, educational services, and field service.

Digital is a complete service vendor and has the products and tools to back its
commitment to customer satisfaction. For an indepth description of Digital's
PDP-ll UNIBUS systems and PDP-ll software, talk to your Digital sales
representative or to one of Digital's commercial or technical OEMs. Or visit
one of Digital's Training Centers located throughout the United States. For
information on courses, training materials, or training center locations, call the
customer support number in Massachusetts: (617) 276-4373 .

. Documentation
Digital offers several levels of documentation describing PDP-ll UNIBUS
software and hardware. These manuals are updated periodically to include new
developments and equipment and can be ordered through Digital's Peripherals
and Supplies Group, Continental Boulevard, Merrimack, NH, 03054. The
following lists contain the titles and associated Digital order numbers of
documents that apply to the PDP-ll UNIBUS family.

1-10 • Introduction

Hardware Handbooks and System Manuals
PDP-ll Architecture Handbook
Communications Handbook
Terminals and Printers Handbook
PDP-ll/44 System Technical Manual
PDP-ll/24 System Technical Manual
PDP-ll/84 System Installation and Technical
Reference Manual

Other Technical Manuals and User's Guides
PDP-ll/84 Maintenance Guide
PDP-ll/84 Site Preparation, Unpacking and
Installation Guide
DCJll Microprocessor User's Guide
KDJ11-B User's Guide
MSVll-J MOS Memory User's Guide
MSVll-J Configuration Summary
PDP-ll/44 System User's Guide

Software Handbooks
PDP-ll Software Handbook
RSX-ll Handbook
RSTSjE Handbook
ULTRIX Software Guidebook
PDP-ll Software Sourcebook-Fourth Edition
(Volumes 1 and 2)

Other Important Reference Materials
PDP-ll Systems and Options Catalog
Networks and Communications Buyer's Guide
Digital's Networks: An Architecture With A Future

EB-23657-18
EB-30066-42
EB-23909-54
EK-KDllZ-TM
EK-ll024-TM

EK-1l84A-TM

EK-PDP84-SV
EK-PDP84-IN

EK-DCJ-ll-UG
EK-PDP84-UG
EK-MSVIJ-UG-OOl
EK-MSVIJ-HR-OOl
EK-ll044-UG

EB-25398-41
EB-25742-41
EJ-23534-18
EJ-26153-20
EB-27333-41

ED-27252-41
EB-26067-42
EB-260l3-42

The hardware user documentation, software tutorial documentation, and
reference manuals that accompany the delivery of a PDP-ll computer system
offer the most detailed levels of information. There are also several books
published commercially that discuss the PDP-ll family. If you have a specific
documentation need, discuss the issue with a Digital sales representative who
will guide you to the appropriate literature.

Chapter 2 • PDP-ll/84

2-2· PDP-ll/84

The PDP-11/84, the newest member of the PDP-11 UNIBUS family, offers the
highest levels of functionality and performance for a machine in its price range.
The UNIBUS processor, based on the J-11 chipset and an advanced floating­
point processor, surpasses the performance of the PDP-11/70 at about one-third
the price. Many new features such as a UNIBUS Adapter (UBA) module with
DMA cache and a high-performance private memory interconnect (PMI) that
accelerates communications between the CPU and memory are all standard on
the PDP-11/84. The 8192-bytehigh-speed cache memory provides fast access of
instructions and data and greatly enhances program execution speeds. The
PDP-11/84 handles more users and more memory-resident programs while
delivering maximum system throughput. Main memory can be easily
expanded to 4 Mbytes. These and other features combine to make the PDP-l1/
84 the most powerful, yet cost effective UNIBUS PDP-11 system presently
offered.

Integral to the PDP-11/84 central processor unit are hardware features and
expansion capabilities that are common to the PDP-ll/44, PDP-11/24, PDP-l1/
70 and PDP-ll/34A. Table 1-1 illustrates some of the similarities and differ­
ences between these earlier PDP-ll UNIBUS systems and the PDP-ll/84 .

. Features

The following are hardware features of the PDP-ll/84.

• Powerful CPU features Digital's high-perfortnanceJ-ll chipset.

• Private memory interconnect (PM!) enhances data transfers between mem­
ory, the CPU, and the UNIBUS adapter module.

• High-speed DMA cache provides caching of data for DMA devices.

• 8-Kbyte CPU cache memory speeds program execution.

• Concurrent processing allows simultaneous execution of CPU instructions
and UNIBUS I/O data transfers.

• Programmable bus mastership gives the CPU unconditional PMI bus access
regardless of pending DMA I/O requests.

• Support of up to 4 Mbytes of error correcting code (ECC) MOS memory.

• Integral floating-point processor operates with 32-bit and 64-bit numbers for
faster FORTRAN or BASIC execution.

• Memory management unit provides dual register set, 22-bit addressing,
separate instruction (I) and data (D) space, and three operating modes
(kernel, supervisor, user).

• Console serial line unit with 8 baud rates (switch-selectable from the rear
panel).

2-3

• Source control of the line-frequency clock.

• Optional battery backup unit provides power to the memory and air-moving
devices in the event of a power failure.

• Standard 32-Kbyte bootstrap and diagnostic ROM resident on the CPU

module.

• Mounting space for 4 standard M9312-type UNIBUS bootstrap PROMs to
support Digital or customer devices.

• EEROM to set system characteristics and assist user in writing bootstrap
programs .

. System Architecture

The PDP-11/84 integrates the CPU, the UNIBUS adapter module, and the ECC
MaS memory into a general purpose system. Private memory interconnect
offers a high-performance communication path between these three modules.
A system-level block diagram is shown in Figure 2-1.

PRIVATE MEMORY INTERCONNECT (PMI)

Figure 2-1 ·PDP-ll/84 System-level Block Diagram

The CPU module comprises the]-l1 chipset, floating-point processor, cache
memory, a source selectable line-frequency clock, a boot and diagnostic facility,
a console serial line unit, and electrically erasable programmable ROMs

2-4 • PDP-ll/84

(EEPROM). The]-ll microprocessor implements the PDP-ll/70 instruction set,
including floating-point instructions and memory management. The cache
comprises 8-Kbytes of fast, static MOS memory that buffers the processor data
from main memory. Dual tag storage enables the PDP-ll/84 system to perform
CPU cache accesses while concurrently monitoring the cache for DMA hits.
Thus, while DMA activity is transferring data on the UNIBUS, the CPU can still
access cache memory without being delayed by the DMA. This simultaneous
execution makes efficient use of the PM!.

The UNIBUS adapter (UBA) module contains the UNIBUS map for converting
between I8-bit UNIBUS addresses and 22-bit PMI memory addresses, the
DMA cache, four sockets for M93I2-compatible boot ROMs, and the UNIBUS­
to-high-speed PMI adapter logic, which interfaces the CPU and PMI memory to
the UNIBUS. A block diagram of both the UBA and CPU is shown in Figure 2-2.

The UNIBUS remains the primary I/O control path in the PDP-ll/84 system. It
is conceptually identical with the UNIBUS of previous PDP-ll systems; the
memory in the system still appears to be on the UNIBUS to all UNIBUS devices
through the UNIBUS map. There is the additional advantage of the PMI's high­
speed communication between the CPU and PMI memory, allowing fast data
transfers including double-word reads. The PDP-ll/84 system also features
programmable bus management, where the CPU can gain bus mastership and
compete with DMA devices. The PDP-ll/84 can be programmed to occasionally
give the CPU unconditional bus priority regardless of how many DMA requests
are pending .

. Central Processor

The PDP-ll/84 CPU module includes the powerful]-ll microprocessor chipset,
a floating-point processor, cache memory, a 32-Kbyte bootstrap/diagnostic
ROM, a console serial line unit, and a line-frequency clock. Standard features
of the]-ll chipset include the floating-point instructions, the PDP-ll instruc­
tion set, general purpose registers, processor status word, traps and interrupts,
memory system registers, and DMA mechanism.

The]-l1 chipset consists of a data chip and a control chip. The data chip
performs all arithmetic and logic functions, handles all data and address
transfers, and generates most of the signals used for system timing. In addition
to the primary execution data path, the data chip contains memory manage­
ment logic, an I/O state sequencer, and floating-point and cache control
registers. The control chip directs the operation of the data chip with
microinstructions. The major components of the control chip are the micropro­
gram control store and the microprogram sequencing logic.

2-5

A
en
::>
m
Z » ::>

<'I

J- -.l J- <;
ena:w w Nen ::>w...J mil- <{I ~::;

~~5 ::>:;li ::;u "'0
Oc) ma:

ZoO ::;Il-
::><{::;

~ T
'--

>-@
Na:W

'--- a:0...J
0::;::>

;--- w O
~::;~

~
Il-

W
r--...J

::>::> - .-- ,....--

Il-O ::; W
Uo I-en ...J

::; <{(!) 0::; 0 0::>
::;<{ 00 a: en...J
0>-" <{ zen ma: w 0

U

T T T T
1

- 1- ~
f-- Ww

::>(!) ~I rf. &~ m~
~o

LL

..., T T T

Figure 2-2' PDP-ll/84 CPU and UBA Block Diagram

2,6· PDP-ll/84

The machine operates in three modes: kernel, supervisor, and user. When the
machine is in kernel mode, a program has complete control of the machine;
when the machine is in any other mode, the processor is inhibited from
executing certain instructions and can deny direct access to the peripherals on
the system. This hardware feature can be used to provide complete executive
protection in a multiprogramming environment.

The central processor contains 12 general registers that can be used as
accumulators, index registers, or as stack pointers. Stacks are extremely useful
for nesting programs, creating reentrant coding, and as temporary storage
where a last-in/first-out structure is desirable. An additional register is used as
the PDP-ll/84's program counter. Three other additional registers are used as
processor stack pointers, one for each operational mode.

The CPU performs all of the computer's computation and logic operations in a
parallel binary mode through step-by-step execution of individual instructions.

A standard feature of the PDP-ll/84 CPU module is the floating-point
processor. This coprocessor is a 40-pin chip that significantly improves the
computation speed for scientific applications of the CPU module.

General Registers
The general registers can be used for many purposes. Usage varies with
requirements. The general registers can be used as accumulators, index
registers, autoincrement registers, autodecrement registers, or as stack pointers
for temporary storage of data. A chapter on addressing modes in the PDP-ll
Architecture Handbook describes the uses of general registers in more detail.
Arithmetic operations can be performed between one general register and
another, from one memory or device register to another, or between a memory
or a device register and a general register.

The general registers, as shown in Figure 2-3, include a dual set of six registers
(RO through R5), three stack pointers corresponding to the three processor
modes (R6), and a single program counter (R7).

The machine's program counter (PC) contains the address of the next instruc­
tion to be executed and thereby controls the order of execution of instructions.
The PC is a general register in the sense that it is directly used by all single­
operand and double-operand instructions. Much of the power of the PDP-ll/84
instruction set is achieved by utilizing the PC in conjunction with various
addressing modes. It is a general register normally used only for addressing
purposes and not as an accumulator for arithmetic operations.

Register R6 is normally used as the processor stack pointer (SP) indicating the
last entry on the current mode's hardware stack, a common temporary storage
area with last-in/first-out characteristics. The three stacks are called the kernel
stack, the supervisor stack, and the user stack. When the central processor is
operating in kernel mode, it uses the kernel stack; in supervisor !TIode, the

GENERAL
REGISTER
SET 1

KERNEL
STACK POINTER

R6

RO

R1

R2

R3

R4

R5

GENERAL
REGISTER
SET 0

SUPERVISOR
STACK POI NTER

R6

PROGRAM
COUNTER

R7

RO

R1

R2

R3

R4

R5

Figure 2-3· The General Registers

USER
STACK POI NTER

R6

2-7

supervisor stack; and in user mode, the user stack. When an interrupt or trap
occurs, the PDP-ll/84 automatically switches to the mode specified by the
service routine and saves its current status on that mode's processor stack. This
stack-based architecture facilitates reentrant programming.

The remaining twelve registers are divided into two sets (set 1 and set 0) of
unrestricted registers. At any given time, either register set 1 or set 0 is used.
The two sets cannot be used simultaneously. The current register set in
operation is determined by the processor status word.

The two sets of registers can be used to increase the speed of realtime data
handling or facilitate multiprogramming. Each of the six registers in general
register set 0 could be used as an accumulator and/or index register for a
realtime task or device, or as general registers for a kernel- or supervisor-mode
program. The six registers in general register set 1 could be used by the
remaining programs or user-mode program. The supervisor or kernel can
therefore protect its general registers and stacks from user programs or from
other parts of the supervisor or kernel program.

Processor Status Word (PSW)
The processor status word contains information on the current status of the
PDP-ll. This information includes current and previous operational modes;
current register set selection; current processor priority; an indicator for
detecting the execution of an instruction to be trapped during program
debugging; and the condition codes describing the results of the last instruc­
tion. Bit 8 is reserved for future Digital use. Bits 9 and 10 are unused and
always read as zeros.

2-8· PDP-ll/84

15 14 13 12 11 10 9 8 6 5 4 o

I I I I
T~~RESERVEDJ ~

REGISTER LEVEL
SET

PREVIOUS MEMORY
MANAGEMENT MODE

CURRENT MEMORY
MANAGEMENT MODE

l§t t LCARRY(C)

~FLOW(V)
ZERO(Z)

NEGATIVE (N)

TRACE TRAP (T)

Figure 2-4· 17 777 776 Processor Status Word

• PROCESSOR MODE FIELDS
Mode information includes the current mode, either kernel, supervisor, or user
(bits 15, 14), and the mode the machine was in before the last interrupt or trap
(bits 13, 12). The three modes permit a fully protected environment for a
multiprogramming system by providing the user with three distinct sets of
processor stacks and memory management registers for memory mapping.

In addition, certain PDP-ll instructions are privileged in that their operation is
inhibited in supervisor and user modes. For example, in supervisor or user
mode, the processor will ignore the RESET and SPL (Set Priority Level)
instructions and the HALT instruction will cause a trap through the vector at
virtual address 4 in kernel instruction space. In kernel mode, the processor will
execute all instructions. A summary of the effects of processor modes on
various instruction types is provided in Table 2-1.

Table 2·1· Instructions Influenced by Processor Modes

Operation in Operation in
Kernel Mode Supervisor/User Mode

HALT Depends on halt Traps through a vector at
option selected location 4 in kernel data space

WAIT, RESET, Executes as specified Executes as a NOP
SPL

RTI, RTT, MPTS Can alter PSW 7-5 Cannot alter PSW 7-5

Stack Reference Checked for stack Not checked for stack
overflow overflow

2-9

• REGISTER SELECTION FIELD
This one-bit field selects which of the two general purpose register (GPR) sets
will be used. When the bit is clear (i.e., 0), GPR set 0 will be used. When the
bit is set, GPR set 1 will be used.

• PROCESSOR PRIORITY FIELD
The central processor operates at any of eight levels of priority, 0-7. When the
CPU is operating at level 7, an external device cannot interrupt it with a request
for service. The central processor must be operating at a lower priority than the
priority of the external device's request in order for the interruption to take
effect. The current priority is maintained in processor status word bits 5-7 and
is set by the software and used by hardware to determine which interrupts will
be processed. The eight processor levels provide an effective interrupt mask,
which can be dynamically altered by the kernel-mode program through use of
the SPL instruction (used only by the kernel mode). This instruction allows a
kernel-mode program to alter the central processor's priority without affecting
the rest of the processor status word.

• TRACE TRAP FIELD
The debugging trace trap is enabled by setting bit 4 of the processor status
word and can be set and cleared under program control. When set, a processor
trap will occur through location 14 on completion of instruction execution, and
a new processor status word and program counter will be loaded. This bit is
especially useful for debugging programs because it provides an efficient
method of single-stepping the program and is transparent to the general
programmer.

Interrupt and trap instructions both automatically cause the previous processor
status word and program counter to be saved and replaced by the new values
corresponding to those required by the routine servicing of the interrupt or
trap. The user can thus cause the central processor to automatically switch
modes (context switching), alter the CPU's priority, or disable the trace trap bit
(T) whenever a trap or interrupt occurs.

NOTE
Bit 4 of the processor status word can be set only indirectly by executing an RTI
(return from interrupt) or RTT (return from interrupt, delaying T-bit trap)
instruction with the desired processor status word on the stack. The traced
instruction is the instruction after the one that set the T bit.

2-10 • PDP-ll/84

The following are special cases of the T bit.

• An instruction that clears the T bit-After fetching the traced instruction,
an internal flag (trace flag) is set. The trap occurs at the end of this
instruction's execution. The status word on the stack, however, will have a
clear T bit.

• An instruction that sets the T bit-Because the T bit is already set, setting it
again has no effect. The trap will occur.

• An instruction that causes an instruction trap-The instruction trap is
performed and the entire routine for the service· trap is executed. If the
service routine exits with an RTI or in any other way restores the stacked
status word, the T bit is set again, the instruction following the traced
instruction is executed and, unless it is one of the special cases noted
previously, a trace trap occurs.

• An instruction that causes a stack overflow-The instruction completes
execution as usual. The stack overflow does not cause a trap. The trace trap
vector is loaded into the program counter and the processor status word, and
the old program counter and processor status word are pushed onto the stack.
Stack overflow occurs again, and this time the trap is made.

• An interrupt between setting the T bit and fetching the traced instruction­
The entire interrupt service routine is executed and then the T bit is set again
by the exiting RTl. The traced instruction is executed (if there are no other
interrupts) and, unless it is a special case noted above, causes a trace trap.

• CONDITION CODES FIELD
The condition codes contain information on the result of the last CPU

operation. They include a negative bit (N), set if the result of the previous
operation was negative; a zero bit (2), set if the result of the previous operation
was zero; an overflow bit (V), set if the result of the previous operation
resulted in an arithmetic overflow; and a carry bit (C), set if the result of the
previous operation caused a carry out of the most-significant bit.

Program Interrupt Request Register (PIRQ)
The program interrupt request (PIRQ) register (see Figure 2-5) provides seven
levels of software interrupt capability. An interrupt request is queued by setting
one of bits 15-9, which corresponds to interrupt priority levels 7 through 1,
respectively. Bits 7-5 and 3-1 are set by the]-l1 microprocessor to the encoded
value of the highest pending request. When the program interrupt request is
granted, the processor traps through the vector at virtual location 240. It is the
responsibility of the interrupt service routine to clear the appropriate bit in the
PIRQ before the interrupt is dismissed.

2-11

15 14 13 12 11 10 9 8 6 5 4 3 o

I I I I
PIR7~~ t PIR6~
PIR5

PIR4

PIR3--------'

PIR2-----------'

PIR1-------------'

~~
PRIORITY ENCODED PRIORITY ENCODED
VALUE OF BITS 15-09 VALUE OF BITS 15-09

Figure 2-5·17777 772 Program Interrupt Request Register

Because the PIRQ interrupt can be caused by any priority between 7 and 1, the
PIRQ service vector usually causes the processor to service the PIRQ interrupt
at priority level 7 (this locks out further PIRQ interrupts). Bits 7-5 provide a
convenient way of lowering the processor's priority to the level that actually
caused the PIRQ interrupt. For example, if a level-5 PIRQ interrupt occurs, the
CPU hardware would set bits 7-5 = 240. Putting this value in the PSW would
place the CPU at priority level 5, blocking further level 5 interrupts.

Bits 3-1 once again provide the actual priority of the PIRQ interrupt. This time
the bit field is positioned to allow its use as a word-offset (e.g., bits 3-1 could
be used with an indexed-JMP instruction to dispatch each PIRQ interrupt level
to a unique address).

Bits 15-9 are read or write. Bits 7-5 and 3-1 are read-only. The remaining bits
are always read as zeros. PIRQ is cleared by a console start, by a RESET
instruction, or at powerup time.

Pipeline Processing
The J -11 chipset gets much of its performance from its prefetch and predecode
mechanisms. The primary benefit of prefetch and predecode is that memory
references are overlapped with internal operations, and the need for explicit
instruction fetch and decode cycles is minimized. The prefetch and predecode
operations are performed automatically by the microprocessor and cannot be
altered by the user.

A primary function of the prefetch mechanism is to fill four registers with
information and replenish the registers as required. These four registers, the
virtual program counter (VPC), the physical program counter (PPC), the
prefetch buffer (PB), and the instruction register (IR) are collectively referred to
as the prefetch pipeline. The contents of registers in the beginning of the
pipeline are used to determine the contents of registers farther down the

2-12' PDP-ll/84

pipeline_ This four-stage pipeline processing enables the processor to overlap
execution when decoding, addressing, and fetching instructions_ When the
pipeline is filled, the prefetch mechanism is said to be in steady state_

Once the prefetch mechanism is in steady state, a stream of macroinstructions
that operate only on registers may be executed at the rate of one per microcycle_
While one instruction is being executed, the next one is being decoded, and
the following one is being prefetched into the PB_ This maintains the steady
state, allowing the next macroinstruction to be executed in the next microcycle_
TheJ-ll bus is kept busy 100 percent of the time.

The instructions that operate on immediate data and a register also make
maximum use of the pre fetch mechanism. At steady state, a stream of the
macroinstructions executes in two microcycles. At the same time the operation
is being performed, the data in thePB is being moved to a scratch register. In
both cycles, the steady state of the prefetch mechanism is maintained by
prefetching the next instruction stream word.

The prefetch pipeline is refilled after a powerup sequence or if a prefetch fault
occurs. Prefetch faults occur when the PSW, cache control register, PC or any
other memory management registers are written. A prefetch fault invalidates
only the PB. This means that the pipeline remains synchronized and can be
refilled in two microcycles.

CPU Error Register
The CPU error register (Figure 2-6) assists the operating system by identifying
the source of the abort that caused a trap through the vector at location 4.

15 14 13 12 11 10 8 6 4 3

ILLEGALHALT~GLU till
ADDRESS ERROR~
NONEXISTENT MEMORY

110 BUS TIMEOUT

YELLOW STACK VIOLATION

RED STACK VIOLATION ----------'

Figure 2-6' 17 777 766 CPU Error Register

-

Bits: 15-8
Name: Unused
Function: These bits are unused and are always read as zeros

Bit: 7
Name: Illegal HALT (Read Only)

2-13

Function:Set when execution of a HALT instuction is attempted in user or
supervisor mode, or in kernel mode when the halt-trap option is enabled.

Bit: 6
Name: Address Error (Read Only)
Function:Set when a word access is made to an odd byte address, or when an
instruction fetch from an internal register is attempted.

Bit: 5
Name: Nonexistent Memory (Read Only)
Function: Set when reference is made to a nonexistent memory address.

Bit: 4
Name: I/O Bus Timeout (Read Only)
Function:Set when reference is made to a nonexistent I/O page address.

Bit: 3
Name: Yellow Stack Trap (Read Only)
Function: Set when a yellow zone stack overflow trap occurs.

Bit: 2
Name: Red Stack Trap (Read Only)
Function: Set when a red zone stack overflow trap occurs.

Bits: 1-0
Name: Unused
Function: These bits are unused and are always read as zeros.

The CPU error register is cleared by any write reference to it, by a powerup, or
by a console start. The RESET instruction has no effect on this register.

Stack Limit Protection
The J -11 microprocessor provides hardware protection for the kernel stack. The
supervisor and user stacks are not protected by hardware, but may be checked
by memory management and appropriate software.

Stack protection in kernel mode is provided by defining yellow and red stack
traps. Kernel stack references are checked against a fixed Iimit of 400 (octal). If
the virtual address of the stack reference is less than 400 (octal), a yellow stack
trap occurs at the end of the current instruction. The PDP-ll/84 treatment of a
yellow stack trap is identical to that of the PDP-ll/44 treatment of yellow stack
trap.

2-14· PDP-ll/84

The J-11 chipset also checks for kernel stack aborts during interrupt, trap, or
abort sequences. If an abort is caused by a kernel stack push during an
interrupt, a trap, or an abort sequence, the J -11 initiates a red zone stack trap by
setting CPU error register bit 2, loading virtual address 4 into the kernel stack
pointer, R6, and trapping through location 4 in kernel data space. The J-11
microprocessor's definition of a red stack trap is unique.

Kernel Protection
In order to protect the kernel operating system against interference, the J-11
microprocessor incorporates a number of protection mechanisms.

• Limiting execution of certain instructions.

• Limiting user-program access to data.

• Limiting user-program modification of data.

• Limiting user-program access to I/O .

• INSTRUCTION LIMITATION
As mentioned previously, only a kernel-mode program may execute certain
instructions. These instructions are

• SPL-Set processor priority level

• RESET-Initialize the I/O system.

• HALT-Halt the entire PDP-11f84.

If a user- or supervisor-mode program attempts to execute SPL or RESET,
nothing happens. If a user- or supervisor-mode program attempts to execute a
HALT instruction, a trap is taken. This allows the operating system to simulate
halts while in a multiuser environment.

In addition, certain other instructions execute differently while in kernel
mode.

• MFPD-Move from previous data space .

• ADDRESSING LIMITATIONS
The operating system can limit the amount of physical memory visible to any
of the three modes of operation. Typically, only the kernel-mode program has
access to the I/O page. Because the registers which control access to memory
are themselves located in the I/O page, this means that only the kernel-mode
program can change the access rights of the other modes.

2-15

Memory is allocated by pages to each of the operating modes_ Each operating
mode allocates 8 pages for code and 8 pages for data_ Each page may be from
zero to 8,192 bytes long, in increments of 64 bytes_ Each page may be marked
as read/write or read-only.

Taken together, these capabilities provide a robust protection scheme which
ensures the integrity of a multiprogramming system. The hardware features are
used extensively by the RSX, RSTSjE, lAS and ULTRlX multiprogramming
operating systems.

Figure 2-7 illustrates how the user's "view" of the entire system can be limited
(much different from the kernel's "view"). The user has no ability to access
anything outside of the user's area of memory. This gives complete protection.

KERNEL'S
VIEW

110 PAGE

KERNEL DATA

USER DATA

KERNEL PROGRAM

PHYSICAL
MEMORY

------+-----t--------j
VECTORS VECTORS USER DATA

Figure 2-7 • Kernel's and User's View of Physical Memory

Trap and Interrupt Service Priorities
Interrupts and traps are requests that cause the PDP-ll/84 to suspend the
execution of the current program temporarily and provide service for the
device or condition that caused the interrupt or trap. Interrupts differ from
traps in that interrupts are initiated asynchronously by some external event
while traps are caused by synchronous or asynchronous conditions internal to
the PDP-ll/84.

2-16· PDP-ll/84

When an interrupt or trap occurs, the current PSW and PC are preserved in
order to allow a return to the interrupted program. The new contents of the PC
and the PSW are fetched from two consecutive memory words called a vector.
The first word of the vector contains the interrupt or trap service routine
starting address (the new PC), and the se\=ond word contains the new PSW.
Some vectors are predefined by the PDP-ll/84 while others are user defined.

The priority order for traps and interrupts is as follows.

Red stack trap
Address error
Memory-management violation
Timeout/nonexistent memory
Parity error
Trace (T-bit) trap
Yellow stack trap
Powerfail
Floating-point trap
PIRQ7
Interrupt level 7
Line-time clock
PIRQ6
Interrupt level 6
PIRQ5
Interrupt level 5
PIRQ4
Interrupt level 4
PIRQ3
PIRQ2
PIRQ 1
Haltline*

Hardware Detected Errors
The PDP-ll/84 detects certain hardware error conditions during program
execution. These conditions, and the resultant actions, are described in the
following paragraphs .

• BUS TIMEOUT ERROR
A bus timeout error can occur during PDP-ll/84 memory or UNIBUS cycles,
when a slave device fails to respond. This generally occurs when the addressed
memory and I/O device do not exist in the particular system. The processor
recognizes the error condition and immediately traps through virtual address 4
in the kernel data space. The UNIBUS Adapter module asserts the PMI timeout
signal causing the CPU to abort.

*The halt line is given highest priority when the processor hangs up.

2-17

• ADDRESSING ERROR
An addressing error occurs when an odd byte address is used with a word
reference (odd addressing error) or an instruction stream fetch attempts to
access an internal processor register. The internal processor registers include
PARs, PDRs, CPU error, processor status word, program interrupt request,
MMRO-MMR3, hit/miss, and cache control. When an addressing error hap­
pens, it sets bit 6 of the CPU error register and traps through virtual address 4
of the kernel data space.

• RED STACK ABORTS
A red stack abort occurs if, during the servicing of an abort, interrupt or trap
routine, an abort occurs while pushing the processor status word or program
counter onto the kernel stack. This type of abort sets bit 2 of the CPU error
register, loads the kernel stack pointer (R6) with virtual address 4, and then
traps through location 4 of the kernel data space. The last PC and PSW are
saved in locations 0 and 2 of the kernel data space.

• Private Memory Interconnect (PMI)

The UNIBUS is a general purpose bus designed to handle numerous interface
modules and a variety of peripheral devices. The UNIBUS protocols were
designed for optimum data transfer on a 50-foot long bus. This length and the
delay characteristic of the associated bus drivers and receivers result in a
relatively low data transfer rate. To increase data transfer rate on the PDP-ll/84
system, Digital's engineers had to extend and upgrade the existing bus
structure so that it could function concurrently as two separate buses. The
result was the development of the private memory interconnect (PM!), which
shares some of the existing bus hardware, but at the same time has its own bus
architecture and data transfer protocols. '

The PMI's princi!Jal contribution is to double the speed of DMA and CPU/
memory transfers. The basis for this process is serial double-word transfers,
often called double-pumping. Double-word transfers involve moving two
words in sequence with only one address. Performance improvement was
achieved, first, with a private memory interconnect having faster drivers and
receivers and accommodating the reduced transfer delay demands on a shorter
bus. The interconnect's transfer protocols then take advantage of the high­
speed capability.

The PM! consists of a multiplexed data/address commmunication path
between the CPU, PM! memory, and the UNIBUS adapter module (UBA).
Direct access to the PM! is reserved exclusively for these three modules (see
Figure 2-2) All communication between these modules and the UNIBUS
devices is controlled and directed through the UBA module. The CPU and UBA

2-18' PDP-ll/84

modules, but not the memory module, can become PMI master. All three can
respond as PMI slaves. The CPU is always the PMI default master and the UBA
is the UNIBUS's default master. The PMI arbitration logic is located on the CPU
and arbitrates both PMI and UNIBUS interrupt/data transfers.

Once a bus structure is established, its effective speed in memory transfers
depends on the bus protocols and control signals that make it work. Iti the PMI,
the control signals manage PMI operations to reduce total transfer time. Twenty
control signals are used in the PMI protocol.

The PMI supports standard UNIBUS interrupt transfers through the UBA.
During a vectored interrupt transfer, the UNIBUS device initiates the interrupt
request line that is then received directly by the processor logic. After receiving
the interrupt request, the processor arbitration logic arbitrates priorities and
grants PMI mastership to the UBA interrupting device. After acquiring bus
mastership, the UNIBUS device can control data or vector interrupt transfers
via the UBA .

. Memory System

Memory Management
Memory management hardware is standard on the PDP-ll/84 system, provid­
ing a dual register set, 22-bit addressing, separate instruction and data space,
and three operating modes. The]-l1 chipset contains the memory management
unit (MMU) that provides the user with the hardware necessary to effect
complete memory management and protection. The MMU is designed to
provide access to all of physical memory and is an important part of multiuser,
multiprogramming systems on which memory protection and relocation facili­
ties are necessary.

The basic characteristics of the PDP-ll/84 memory management unit are

• 16 kernel-mode memory pages.

• 16 supervisor-mode memory pages.

• 16 user-mode memory pages.

• 8 pages in each mode for instructions.

• 8 pages in each mode for data.

• Page lengths from 64 to 8,192 bytes, in increments of 64 bytes.

• Full protection and relocation for each page.

• Transparent operation.

• Memory access to 4 Mbytes.

2-19

The PDP-ll/84 implements PDP-ll/44 compatible memory management. The
visible memory management state consists of 48 page address registers (PARs),
48 page descriptor registers (PDRs), and 4 memory management registers
(MMRO, MMRI, MMR2, MMR3). Details of these registers may be found in
both the KDJll-B User's Guide and the PDP-ll/84 Technical Manual.

The PDP-ll/84 processor can perform I6-bit, I8-bit, or 22-bit address map­
ping. This mapping operation provides compatibility with the other PDP-ll
computers. This means that software written and developed for any PDP-ll
computer can run on the PDP-ll/84 without modification.

Error Correction Code (ECC)
Error correction code (ECC) is a technique used to check the contents of
memory to detect errors and correct them before sending the data to the
processor. The process of checking is accomplished by combining the bits in a
number of unique ways so that parity, or syndrome, bits are generated for each
unique combination and stored along with the data bits in the same word. The
memory word length is extended to store these unique bits. When memory is
read, the data word is checked against the syndrome bits stored with the word.
If they match, the word is sent on to the processor. If they do not match, an
error exists and the mismatch of the syndrome bits determines which data bit
is in error. The bit in error is then corrected and this corrected data is then sent
on to the processor. The ECC that is employed in MOS memory will detect and
correct single-bit errors in a word, and detect double-bit errors in a word.
Where a double-bit error is detected the data cannot be corrected so the
processor is notified (as happens with a parity error in parity memory).

ECC provides maximum system benefits when used in a storage system that
fails in a random single-bit mode rather than in blocks or large segments.
Single-bit errors (or failures) are the predominant failure mode for modern
MOS memories.

ECC memory provides fault tolerance with the result that multiple hard or soft
single-bit failures can be present in a memory system without causing measur­
able degradation in either performance or reliability.

Battery Backup Unit
MOS memory is volatile. It depends on electricity to store information.
Because a power loss or shutdown causes data loss, battery backup units (BBD)

are designed to temporarily preserve data in memory. These units are available
as options on the PDP-ll/84 system.

Generally, the incidence of ac line power loss varies inversely with the severity
of loss. That is, there are an extremely small number of long-term failures of ac
power and a relatively larger number of short-term failures or drops in voltage.

2-20' PDP-ll/84

Battery backup units are not intended to preserve data overnight or over
weekends, but rather to prevent data loss during infrequent, short-term failures
of ac power.

UNIBUS Adapter (UBA)
The UNIBUS Adapter (UBA) is essentially a special-purpose DMA device that
contains the UNIBUS to PMI adapter logic, UNIBUS mapping, and four boot
ROM sockets. The multifunction UNIBUS Adapter links the PMI and UNIBUS,
to which is connected one or more UNIBUS-compatible peripheral devices. The
UBA communicates with the CPU and memory via the PMI protocol and
communicates with peripheral devices on the UNIBUS via the UNIBUS
protocol. Among its many functions, the UBA is responsible for translating the
I8-bit UNIBUS DMA addresses to 22-bit PMI addresses and vice-versa
exchanging information between UNIBUS and PMI protocols .

• DMACACHE
Performance of UNIBUS DMA is improved by adding a 32-word cache to the
UBA module (see Figure 2-8). When a DMA read from memory occurs and the
address is an even 8-word boundary, the first word of data is transferred to the
I/O device and the next 7 words are cached. When the data from the next 7
addresses is required, this data is taken directly from the cache. The DMA
cache is a four-set associative cache. DMA cache contains 32 I6-bit data
registers, arranged in four sets of eight data registers each. Associated with
each set is a valid bit and an 18-bit tag register. The data registers are located in
RAM memory. The tag registers and valid bits are located in the UBA gate array.
The operation of DMA cache is transparent to the software.

CPU
KDJ11-8

CACHE

PMI
MEMORY

UBA
KTJ11-B

CACHE

UNIBUS
MEMORY

Figure 2-8' PDP-ll/84 Cache Diagram

UNIBUS
DMA

DEVICE
(DISK)

2-21

The DMA cache allows the UBA to "group" UNIBUS word read-operations into
PMI octal-words. It also provides a speed-matching buffer to level out varia­
tions in PMI or UNIBUS traffic. Since the cache is organized as 4 groups of 8
words each, the UBA can very efficiently manage up to 4 concurrent UNIBUS
DMA devices without thrashing .

• UNIBUS MAPPING
The UNIBUS map is the interface between the UNIBUS and PMI memory. It
responds as a slave to UNIBUS masters and is used to convert I8-bit UNIBUS
addresses to 22-bit memory addresses. The 22-bit memory address is accompa­
nied by an additional signal line, BBS7 L. The assertion of BBS7 L disables the
PMI address decoding and selects the I/O page.

The UNIBUS address space is 256 Kbytes, of which the top 8,192 (8-Kbyte)
addresses always refer to the I/O page. The lower 248 Kbytes of UNIBUS
address space can be used by the UNIBUS map to refer to physical memory. The
UNIBUS map can be programmed, via memory management register 3 (MMR3)
to run with relocation enabled or disabled. UNIBUS mapping and the memory
management registers are explained in detail in the PDP-ll Architecture
Handbook.

The ability to install UNIBUS memory instead of, or in addition to, PMI
memory has been preserved with the PDP-ll/84. UNIBUS address space is
assigned to UNIBUS memory in 8-Kbyte segments, starting with the segment
below the I/O page and proceeding downward. The UNIBUS address segments
assigned to UNIBUS memory cannot be used to access PMI memory via the I/O
map. Whenever the CPU accesses UNIBUS memory, the UBA will disable the
PMI memory response. The CPU module does not cache UNIBUS memory.

The Memory Configuration Register (KMCR), one of three registers on the
UBA, reflects the placement of UNIBUS memory by allowing the CPU boot and
diagnostic programs to configure the UBA for the distribution of UNIBUS and
main memory within the system. Additional KMCR bits allow the DMA cache
to be enabled and disabled, provide diagnostic status of the read buffer and
supply information on the reboot status of the system. For a more detailed
description of the optional UNIBUS memory and the registers on the UBA refer
to the PDP-11/84 Technical Manual .

• BOOT ROM FACILITY (M93I2 COMPATIBLE)
The UBA boot ROM facility allows the user to install M93I2-compatible boot
programs written for UNIBUS devices that are not directly supported by the
CPU boot programs. ROM programs that run on the M93I2 also work on the
UBA. The M9312-compatible boot programs are implemented with from one to
four 512-by-4-bit ROMs. Each ROM contains 64 I6-bit words of accessible code
that is located in the first half of the ROM. The last 256 4-bit ROM locations
are not used.

2-22· PDP-ll/84

The CPU module can be configured to boot the system from

• one of its self-contained boot programs_

• EEROM, user written in EEROM_

• the UBA boot ROM facility_

• a M9312 type ROM option that resides on the UNIBUS_

For details of the location of each ROM socket along with its address range, see
the PDP-ll/84 Technical Manual.

Cache Memory
The PDP-ll/84 has a large 8-Kbyte cache located on the CPU module that is
used to decrease the system access time of instructions and data (see Figure 2-
8). CPU cache operations occur only for memory on the PM! bus. Memory on
the UNIBUS, if present, is not cached.

The 8-Kbyte write-through direct map CPU cache has dual tag stores that allow
'concurrent operations of the CPU and DMA. The cache is transparent to all
programs and acts as a high-speed buffer between the processor and PM!
memory. The data stored in cache represents the most active portion of the PM!
memory being used. The processor accesses main memory only when data is
not available in the cache.

Cache memory is a high-speed memory that buffers data between the CPU and
main memory. When a memory access occurs, the system looks first for data in
cache memory. If found (a hit), the data is read from cache and execution
proceeds at the fastest rate. If not found (a miss), the data must be read from
memory and written to cache.

In a write-through cache system, such as the PDP-ll/84, a CPU request to write
data into memory causes data to be written to both the cache and to main
memory. This ensures that both stores are always updated immediately.

Typical hit/miss ratios in a write-through cache system are summarized in Table
2-2. In a typical program, WRITEs occur only 10-15 w:rcent of the time and
READs occur 85-90 percent of the time. Thus, READ'roisses cause the cache to
be updated.

READ
hit
mISS

WRITE
hit
miss

2-23

Table 2-2' Typical Hit/Miss Operations

CACHE

no change
updated

updated
no change

MAIN MEMORY

no change
no change

updated
updated

The top 8 Kbytes of physical memory (the I/O page) is not cached. This is
because the I/O page contains device status registers that, when read, must
always convey the latest information.

When a DMA device writes to a cached location, the cache entry must be
invalidated. The cache system monitors DMA transactions to determine if this
action is needed. Because the PDP-ll/84 contains two identical tag stores, this
DMA monitoring can overlap CPU cache accesses. Only if a DMA write-hit
occurs must the CPU be stopped to invalidate the cached location.

The following matrix (Table 2-3) shows the cache response forhoth DMA and
CPU data transfers from and to the PMI memory space. There are two cache tag
memories refered to in the matrix. The DMA tag matrix heading refers to DMA
activity. The CPU tag matrix heading refers to PMI activity involving the CPU.

Cache parity errors affect the cache response matrix in the following ways.

• During DMA write cycles, a DMA tag parity error forces a cache hit response,
and the cache location is invalidated.

• During CPU read cycles (nonbypass), a CPU tag or data parity error forces a
cache miss response.

• During CPU write-byte cycles (nonbypass; non force miss), a CPU tag parity
error forces a cache hit response, but the data is loaded with bad parity.

• During CPU read bypass or write bypass cycles, a CPU tag or data parity error
forces a cache hit response. The cache location is invalidated.

• For all force miss cycles, and for the CPU write word (nonbypass) cycle, cache
parity is ignored.

2-24· PDP-ll/84

Cache Registers
The PDP-ll/84 contains hardware that allows the user to control the cache
memory. This hardware consists of the cache control register, the memory
system error register, and the hit/miss register. These registers allow for a broad
spectrum of cache implementations and considerable flexibility in designing a
cache memory scheme to fit a specific application.

Table 2-3· PDP-ll/84 Cache Response Matrix

• DMATAG

Read

Write word

Write byte

Read bypass

Write bypass

Read force miss

Write force miss

• CPU TAG

Read

Write word

Write byte

Read bypass

Write bypass

Read force miss

Write force miss

Hit

Read memory

Invalidate cache
Write memory

Invalidate cache
Write memory

Read memory

Write memory
Invalidate cache

Hit

Read cached data

Write both cache and
memory

Write both cache and
memory

Invalidate cache and
read memory

Invalidate cache and
write memory

Read memory
No cache change

Write memory
No cache change

Miss

Read memory

Write memory

Write memory

Read memory

Write memory

Miss

Read memory and allocate
cache

Write memory
No cache change

Write memory
No cache change

Read memory
No cache change

Write memory
No cache change

Read memory
No cache change

Write memory
No cache change

• CACHE CONTROL REGISTER (CCR)
Bits: 15-11
Name: Unused
Function: These bits always read as zeros.

Bit: 10
Name: Wrong Tag Parity

2-25

Function: When this read/write bit is set, the CPU and DMA tag parity bits are
both written as wrong parity during all operations that update these bits. A
cache tag parity error will thus occur on the next access to that location.

Bit: 9
Name: Unconditional Cache Bypass
Function: When this read/write bit is set, all references to memory by the CPU
will bypass the cache and go directly to main memory. Read or write hits will
result in the invalidation of the corresponding cache location; misses will not
affect the cache contents.

Bit: 8
Name: Flush Cache
Function: Writing a one into this write-only bit clears all CPU tag and DMA tag
valid bits invalidating the entire contents of the cache. Writing a zero into this
bit has no effect. Flush Cache always reads as zero. The CPU requires
approximately 1.2 milliseconds to flush the cache.

15 14 13 12 11 10 9 8

:~Z:~~::" t I)
CACHE BYPASS

FLUSH CACHE

ENABLE PARITY
ERRORABORT----------------~

WRITE WRONG

6

DATA PARITY ------------------------'

UN INTERPRETED -------------------------'

FORCE CACHE MISS -------------------------------'

DIAGNOSTIC MODE -----------------------------------'

DISABLE CACHE

o

PARITY INTERRUPT ---------------------------------------'

Figure 2-9· 17 777 746 Cache Control Register

2-26· PDP-ll/84

Bit: 7
Name: Parity Error Abort
Function: This read/write bit is set for diagnostic purposes only. When it is set,
a cache parity error (during a CPU cache read) will cause the CPU to abort the
current instruction and trap to parity error vector 114. When this bit is clear, a
cache parity error (during a CPU read) results in a force miss and data fetch
from main memory. The CPU will trap to 114 only if CCR bit 0 is clear. DMA

cycle cache parity errors will cause a trap to 114 if CCR 7 is set or CCR 0 is clear.
CCR 7 has no effect on main memory parity errors that always cause the CPU to
abort the current instruction and trap to 114.

Bit: 6
Name: Write Wrong Data Parity
Function: When this read/write bit is set, both the high and low data parity
bits are written with wrong parity during all operations that update these bits.
This will cause a cache data parity error to occur on the next access to that
location.

Bits: 3-2
Name: Force Miss
Function: When either of these read/write bits is set, CPU reads will be
reported as cache misses.

Bit: 1
Name: Diagnostic Mode
Function: When this read/write bit is set, a lO-microsecond nonexistent
memory timeout during a word write will not cause a nonexistent memory trap
and will not set CPU error register bit 5. All nonbypass and nonforced miss
word writes will allocate the cache regardless of the nonexistent memory
timeout.

Bit: 0
Name: Disable Cache Parity Interrupt
Function: This read/write bit controls cache parity interrupts when CCR 7 is
clear (normal operation). If CCR 7 is clear, a cache parity error (during a CPU
cache read) results in a force miss and data fetch from main memory. The CPU
will trap to 114 only if CCR bit 0 is clear. DMA cycle cache parity errors will
cause a trap to 114 if CCR 7 is set or if CCRO is clear .

• MEMORY SYSTEM ERROR REGISTER (MSER)

Bit: 15
Name: CPU Abort
Function: This read-only bit is set if a cache or main memory parity error
results in an instruction abort, such as during the demand read cycle. Cache
parity errors cause an abort only if CCR 7 is set. Main memory parity errors
always cause an abort.

15 14 13 12 11 10 9 8 7 6 4 3

~tDTSPAR J
LDTSCMP

CPU ABORT

CACHE HB DATA PARITY ERROR

CACHE LB DATA PARITY ERROR ------'

CACHE CPU TAG PARITY ERROR --------'

CACHE DMA TAG PARITY ERROR ---------'

Figure 2-10· Memory System Error Register

Bit: 14
Name: DMA Tag Store Comparator (DTS CMP)

2-27

Function: In standalone mode (BCSR bit 8 set), this read-only bit indicates the
output of the cache DMA tag store comparator for the previous non-I/O page
reference with cache miss. When BCSR 8 is clear, DTS CMP reads as zero.

Bit: 13
Name: DMA Tag Store Parity (DTS PAR)

Function: In standalone mode (Boot and Diagnostic Controller Status Regis­
ter (BCSR) bit 8 set) this read-only bit indicates the output of the DMA tag store
parity check logic for the previous non-I/O page reference with cache miss.
When BCSR 8 is clear, DTS PAR reads as zero.

Bits: 12-8
Name: Unused. These bits always read as zeros.

Bit: 7
Name: Cache HB Data Parity Error
Function: This read-only bit is set if a parity error is detected in the high-data
byte during a CPU cache read. If CCR 7 is clear, MSER 7 is also set by a low-data
byte parity error and by the set condition of MSER 5 or 4.

Bit: 6
Name: Cache LB Data Parity Error
Function: This read-only bit is set if a parity error is detected in the low-data
byte during a CPU cache read. If CCR 7 is clear, MSER 6 is also set by a high­
data byte parity error and by the set condition of MSER 5 or 4.

Bit: 5
Name: Cache CPU Tag Parity Error
Function; This read-only bit is set if a parity error is detected in the CPU tag
field during a CPU cache read. If CCR 7 is clear, MSER 7 is also set by a high- or
low-data byte parity error.

2-28' PDP-ll/84

Bit: 4
Name: Cache DMA Tag Parity Error
Function; This read-only bit is set if a parity error is detected in the DMA tag
field during a DMA write operation.

NOTE
Cache parity errors are ignored (that is, they do not affect MSER 7-4) if either
CCR 3 or 2 (force miss) is set or if the CPU tag valid bit is clear.

Bits: 3-0
Name: Unused. These bits always read as zeros .

• HIT/MISS REGISTER

This register indicates whether the six most recent CPU memory references
resulted in cache hits or cache misses. Bits enter from the right (at bit 0) and are
shifted left. A one indicates a cache hit, a zero indicates a cache miss.

The hit/miss register is read-only. Bits 15-6 are not used and always read as
zero. The register's value at powerup is undefined and is not affected by
console start or a RESET instruction. The hit/miss register will always read zero
when the CPU is in console ODT mode.

15 6 5 -- -FLOW

Figure 2-11 • Hit/Miss Register

• Backplane

The PDP-ll/84 backplane (Figure 2-12) consists of 13 slots. Slot MDM is
reserved for the monitor and distribution module (MDM). Slot 1 is dedicated
for the KDJll-B CPU module. Slots 2 and 3 are reserved for the MSVll-J
memory modules. If only one memory module is installed, either slot 2 or 3 can
be used. The final dedicated slot, slot 4, is for the UNIBUS adapter module.
Slots 1 through 4 are connected via the PMI bus on rows A, B, C, and D. Slots 5
through 12 are wired to support any UNIBUS-compatible, small peripheral
controller (SPC). Quad SPCs are installed in rows C, D, E, and F. In addition to
SPC support, slots 9, 10, and 11 support modified UNIBUS devices. A
terminator module or UNIBUS out cable must be installed in slot 12, rows A
andB.

The monitor and distribution module has unique features that are essential to
the function of the PDP-ll/84. It is a quad-height board and includes power
supply voltage indicators and test points, fanjblower rotation monitor with

S
L
o
T

MDM

3

6

8

9

10

11

12

2-29

A B C D E F

MDM M7677

CPU M8190
UNIBUS SIGNAL

MEMORY MSV11-J DIAGNOSTIC

MEMORY MSV11-J
CABLE HEADERS

UBA M8191

HEX OR QUAD OPTION

HEX OR QUAD OPTION

HEX OR QUAD OPTION

HEX OR QUAD OPTION

MODIFIED UNIBUS HEX OR QUAD OPTION

MODIFIED UNIBUS HEX OR QUAD OPTION

MODIFIED UNIBUS HEX OR QUAD OPTION

TERM OR UNIBUS OUT QUAD OPTION

Figure 2-12 • PDP-ll/84 Backplane Configuration

audible alarm that shuts down the system after 60 seconds of air-moving
failure, and nonprocessor jumper switches for slots 5 through 12. It has module
fingers for row B only and occupies only backplane slot MDM .

. Console Functions

Console Serial Line Unit
The console serial line unit provides the J-ll microprocessor with a serial
interface for the console terminal. There are four console serial line unit
registers-the receiver status register, the receiver data buffer, the transmitter
status register, and the transmitter data buffer. These registers cannot be
disabled .

• RECEIVER STATUS REGISTER (RCSR)

Bits: 15-12
Name: Unused. They always read as zeros.

Bit: 11
Name: Receiver Active (RCV ACT)
Function: This read-only bit is set at the center of the start bit of the serial
input data and is cleared at the expected center of the stop bit at the end of the
serial data.

2-30' PDP-ll/84

15 14 13 1211 10 9 8 7 6 5 4 3 2 1 0

RCV ACT~_· ------,I)
RXDONE -

RXIE-------------'

Figure 2-13 • 17 777 560 Receiver Status Register

Bits: 10-8
Name: Unused. They always read as zeros.

Bit: 7
Name: Receiver Done (RX DONE)
Function: This read-only bit is set when an entire character has been received
and is ready to be read from the RBUF register. This bit is automatically cleared
when RBUF is read. It.is also cleared by Powerup. RX DONE is set one bit time
after RCV ACT clears.

Bit: 6
Name: Receiver Interrupt Enable (RXIE)
Function: This read-write bit is cleared by Powerup and bus INIT. If both
RCVR DONE and RCVR INT ENB are set. a program interrupt is requested at
priority level 4 .

Bits: 5-0
Name: Unused. They always read as zeros .

• RECEIVER DATA BUFFER (RBUF)

Bit: 15
Name: Error (ERR)
Function: This read-only bit is set if RBUF bit 14 or bit 13 is set. ERR is clear if
these two bits are clear.

Bit: 14
Name: Overrun Error (OVR ERR)
Function: This read-only bit is set if a previously received character was not
read before being overwritten by the present character.

Bit: 13
Name: Framing Error (FRM ERR)
Function: This read-only bit is set if the present character had no valid stop bit.
This bit is used to detect break if the front console panel switch is enabled and
the break key is depressed on the console terminal.

2-31

NOTE
Error conditions remain present until the next character is received, at which

point the error bits are updated_ The error bits are not necessarily cleared by
powerup_

15 14 13 12 11 10 9 8 6 5 3 2 o

III~~~ I
E!R ~ L RCV '-----R-E-C-E�-VE~Dy-DA-;C-A-B-IT-S---/
OVR BRK

ERR

FRM
ERR

Figure 2-14· 17 777 562 Receiver Data Buffer

Bit: 12
Name: Unused. This bit always reads as zero.

Bit: 11
Name: Received Break (RCV BRK)
Function: This read-only bit is set at the end of a received character for which
the serial data input remained in the SPACE condition for all 11 bit times. RCV
BRK then remains set until the serial data input returns to the MARK
condition.

Bits: 10-8
Name: Unused. These bits always read as zeros.

Bits: 7-0
Name: Received Data Bits
Function: These read-only bits contain the last received character .

• TRANSMITTER STATUS REGISTER (XCSR)

Bits: 15-8
Name: Unused. Read as zeros.

Bit: 07
Name: Transmitter Ready (TX RDY)
Function: This read-only bit is cleared when XBUF is loaded, and set when
XBUF can receive another character. TX RDY is set by Powerup and by bus
INIT.

2-32 • PDP-ll/84

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~~~~ .~ ~ 
TXRD~ t t 

MAl NT XMIT 

TXIE BRK 

Figure 2-15 ·17777 564 TransmitterSf4tus Register 

Bit: 06 
Name: Transmitter Interrupt Enable (TX IE) 
Function: This. read-write bit is cleared by Powerup and by bus INIT. If both 
TX RDY and TX IE are set, a program interrupt is requested. 

Bits: 5-3 
Name: Unused. Read as zeros. 

Bit: 2 
Name: Maintenance (MAINT) 
Function: This read-write bit is used to facilitate a maintenance self-test. 
When MAINT is set, the DLART internally connects its output to its input. 
Input from the EIA receivers is ignored. The EIA output drivers are still 
cOll!J.ected and any characters sent with MAINT set will wrap around to the 
input and also go to the output drivers. This bit is cleared by Powerup and by 
bus INIT. 

Bit: 1 
Name: Unused. Read as zero. 

Bit: 0 
Name: Transmit Break (XMIT BRK) 

. Function: When this read-write bit is set, the serial output is forced to the 
SPACE condition. XMIT BRK is cleared by Powerup and by bus INIT . 

• TRANSMITTER DATA BUFFER REGISTER (XBUF) 

Bits: 15-8 
Name: Unused. 

Bits: 7-0 
Name: ASCII character. These eight bits are write-only bits used to load the 
character to be transmitted. 

15 08 07 00 

DATA 

Figure 2-16·17777566 Transmitter Daf4 Buffer 



2-33 

. Line-time Clock 

The Line Clock provides the system with timing information at fixed intervals 
determined by the UNIBUS line-time clock (LTC) signal from the power supply 
at 50 or 60 Hz, or by one of the on-boardJ-ll processor frequency signals as 
programmed by the boot and diagnostic controller status register bits 11 and 
10. The three on-board frequencies are 50 Hz, 60 Hz and 800 Hz. 

Clock Status Register (LKS) 
The Clock Status Register (LKS) allows Line Clock interrupts to be enabled 
and disabled under program control. 

15 07 06 

Bits: 15-8 

L1NECLOCKMONITOR~ t 
LINE CLOCK INTERRUPT EN ~ 

Figure 2-17·17777546 Clock Status Register 

Name: Unused. Always read as zeros. 

Bit: 7 
Name: Line Clock Monitor. «LCM) 

00 

Function: This read-only bit is set by the leading edge of the external BEVENT 
line (or one of the three on-board frequencies) and by Bus INIT. Line Clock 
Monitor is cleared automatically on processor interrupts acknowledge. It is 
also cleared by writes to the LKS with bit 7 = zero. 

Bit: 6 
Name: Line Clock Interrupt Enable (LCIE) 
Function: This read-write bit, when set, causes the set condition of LCM (LKS 
7) to initiate a program interrupt request. When LCIE is clear, line clock 
interrupts are disabled. LCIE is cleared by Powerup and by Bus INIT. LCIE is 
held set when BCSR 13 (FRC LCIE) is set. 

Bits: 5-0 
Name: Unused. Always read as zeros. 



2-34· PDP-ll/84 

. Console 

The console terminal of the PDP-ll/84 provides three functions. 

• Setup of the system hardware 

• Communication with the operating software 

• Debugging of hardware and software 

While using the console terminal to setup the system hardware, it is said to be 
in setup mode. While the console terminal is communicating with the 
operating software, it is said to be in program mode. While the PDP-ll/84 is 
stopped, the console terminal is said to be in console-ODT mode. 

The three modes are summarized in Table 2-4. Various conditions can switch 
the console terminal between modes. These conditions are diagrammed in 
Figure 2-18. 

Table 2-4 • PDP-ll/84 Console Terminal Modes 

Setup-mode Program-mode Console-mode 

Microprogram Yes Yes Yes 
running? 

Macroprogram from ROM from memory No 
running? 

UNIBUS No Yes Yes 
functioning? 

Setup Mode Functions 
All setup of the PDP-ll/84 CPU, except for the selection of the console baud 
rate, is performed via the console terminal using console-mode commands. 
Setup mode is a ROM-based program that can be entered when the ROM code 
is in dialog mode. Dialog mode allows the user to enter setup mode, map the 
memory and the I/O page, run ROM-based diagnostics, list available boot 
programs, and boot a device. 

This setup dialog allows the user to determine the actions taken by the ROM 
code at powerup or restart including 

• Select one of four powerup or restart modes 

- Enter dialog mode after running tests. 
- Autoboot selected devices after running tests. 
- Enter ODT HALT. 
- Restart operating system through powerup vector 24 for systems with 

battery backup memory. 



Setup 
mode 

(ROM program) 

"Boot ddn" command 

/' 
"'- /' "'- /' /' "" ../ ,/ 

"P" or"'- /' / HALT switch, 
"G" " '\ I HALT instruction, 

PDP-11/84 running command \ 'I or < BREAK> key 
Pop:;-1/84halled--------\-~------------

Console-ODT 
mode 

(microprogram) 

Figure 2-18· Conditions that Switch Console Terminal Modes 

• Select register values and other parameters 

- Enable/disable the UNIBUS cache. 
- Enable/disable the line clock CSR and select clock source. 
- Select testing. 
- Enable/disable trap on HALT. 
- Override errors for nonstandard boot blocks. 
- Additional parameters ... 

• Bootstrap device selection for autoboot mode 

- Select one to six devices to try to boot. 
- Identify nonstandard CSR addresses. 

• Support of custom bootstraps loaded in the EEROM 

- Create a custom bootstrap. 
- Delete a custom bootstrap. 
- Edit a custom bootstrap. 

2-35 

The setup dialogue appears as a series of menu pages that are compatible with 
hard- and soft-copy terminals. 



2-36" PDP-ll/84 

" LEAVING SETUP MODE 
Setup mode is exited by typing CTRL C. Then the user can either boot the 
operating system manually (Le., BOOT DUO < CR » or toggle the restart 
switch if autoboot mode is selected. 

Program Mode Functions 
While the console terminal is operating in program mode, it is under the sole 
control of the operating system software, and most of its functions are defined 
by that software. 

" LEAVING PROGRAM MODE 
The user enters console-ODT in one of three ways-by pressing the 
<BREAK> key while the PDP-11/84 keyswitch is in the <ENABLE> 
position, by placing the HALT/RUN/RESTART switch in the HALT position 
(again, while the keyswitch is in the < ENABLE> position), or by the PDP-11 
program executing a HALT instruction while in kernel mode. 

The user enters setup mode by simply pressing the HALT/RUN/RESTART 
switch to the RESTART position and typing CTRL C after the "Testing in 
progress-Please wait" message is displayed. Setup mode can be entered by 
setting the force dialog mode switch ON and pressing the HALT/RUN/ 
RESTART switch to the restart position. 

ConsoleODT 
Besides machine setup, the console mode can also be used to examine or 
modify the contents of memory or UNIBUS device registers. Programs may also 
be stopped, started, or single-stepped. These functions are implemented by a 
microprogram contained within the J -11 processor chip. During the execution 
of these functions, the PDP-11/84 CPU is stopped. That is, although the J-11 
microprogram is still running, no PDP-11 macroinstructions are being executed. 

These functions are collectively refered to as console ODT (octal debugging 
technique) and are generally compatible with both ODT-11 and the console 
ODT functions provided by the LSI-11, the MicroPDP-11/23, and the PDP-11/ 
24. 

Console ODT can examine any read-only or read/write address in the entire 22-
bit address space. Console ODT can also modify any read/write (not write-only) 
location. Locations which read all zeros (such as the console XBUF) can also be 
modified. The ODT commands are summarized in Table 2-5. 



2-37 

Table 2-5 • Console ODT Commands 

Command Symbol Function 

Slash n/ Opens the specified location (n) and outputs 
its contents. The n is an octal number. 

Carriage Return <CR> Closes an open location 

Line Feed <LF> Closes an open location and then opens the 
next contiguous location. 

Internal Register $n or Rn Opens a specific processor register (n). 
Designator Here n is an integer from 0 to 7 or the 

character S. 

Processor Status S Opens the PSW - must follow an $ or R 
Word Designator command. 

Go G Starts program execution. 

Proceed P Resumes execution of a program. 

Binary Dump Control-S Manufacturing use only 

• LEAVING CONSOLE ODT MODE 
The user can leave console-ODT mode via: 

• The P command 

• The G command 

• The boot switch 

If the user were previously in setup mode, the P or G command will exit you 
back to setup mode. 

NOTE 
The G command is used for a total restart, while P allows the user to proceed. 
The G command reinitializes the UNIBUS and resets memory. 

If the user were previously in program mode, the P or G command will exit you 
back to program mode. The bootswitch's action depends on how you have 
setup the PDP-ll/84. 



2-38· PDP-ll/84 

. Specifications 

Packaging 
The basic PDP-ll/84 is packaged as a lO.5-in by 19-in rackmount box product 
or a 19-in by 42-in cabinet product. 

Standard Equipment 

• PDP-ll/84 CPU. 

• Memory management. 

• Line-frequency clock. 

• 8-Kbyte cache memory. 

• 1-Mbyte or 2-Mbyte ECC MaS memory. 

• Floating-point accelerator (FPA) processor. 

• Console serial line unit. 

• Bootstrap and diagnostic ROM facility. 

• Electrically erasable programmable ROMs (EEPROM). 

• UNIBUS adapter (UBA) module. 

• Monitor and distribution module. 

Prewired Expansion Space for Optional Equipment 

• .8 SPC slots for UNIBUS compatible peripherals, 7 hex and 1 quad. 

• I-Mbyte or 2-Mbyte ECC MaS memory (up to 4 Mbytes maximum). 

• 0 SU open spaces in the box product. 

• 2 SU open spaces in the cabinet product . 

. Other Specifications 

ACPower 

Box 

Cabinet 

90-132 Vrms, 47-63 Hz, 1 phase power, 8 amp rms 
maximum @ 120 Vac 

180-264 Vrms, 47-63 Hz, 1 phase power, 4.2 amp rms 
maximum @ 240 Vac 

93-132 Vrms, 47-63 Hz, 1 phase power, 11.3 amp rms 
maximum @ 120 Vac 
186-264 Vrms, 47-63 Hz, 1 phase power, 5.6 amp rms 
maximum @ 240 Vac 



2-39 

Physical Characteristics 

Box 

Cabinet 

Weight 

Box 

Cabinet 

48.2 em wide by 68.6 em deep by 26.7 em high (19 in by 27 
in by 10.44 in) 

53.9 em wide by 80 em deep by 105.7 em high (21.25 in by 
31.52 in by 41.64 in) 

44.5 kg (98Ib) 

150 kg (331Ib) 

Operating Environment 

• BOX 

Temperature: 

Humidity: 

Altitude: 

• CABINET 

Temperature 

Humidity: 

Altitude: 

10% to 95% with maximum wet bulb of 32°C(90°F) 
(noneondensing) 

To 2.4 km (8,000 ft) 

10% to 90% with maximum wet bulb of 28°C(82°F) 
(noncondensing) 

To 2.4 km (8,000 ft) 

Nonoperating Environment 

• BOX 

• CABINET 







3-2· PDP-ll/44 

The PDP-ll/44 processor delivers the capability needed to satisfy a wide range 
of application requirements. Many outstanding features such as a high­
performance central processor, access up to four Mbytes of main memory, and a 
large 8-Kbyte parity cache memory are standard on the PDP-ll/44. Available 
dPtions include the floating-point processor, commercial instruction set proc­
essor and the battery backup unit. 

Many of the hardware featUres and expansion capabilites of the PDP-ll/44 are 
common to other PDP-lls. Table 1-1 illustrates the similarities and differences 
between the PDP-ll/44, PDP-ll/84, PDP-ll/70, PDP-ll/24, and PDP-ll/34A . 

• System Architecture 

The PDP-ll/44 is a medium-scale, general purpose computer that is designed 
according to an enhanced, upwardly compatible version of the basic PDP-ll 
architecture. A block diagram is shown in Figure 3-1. 

Memory management is standard with the basic computer, allowing expanded 
memory addressing, relocation, and protection. Also standard is a UNIBUS 
map that translates 18-bit UNIBUS addresses to 22-bit physical memory 
addresses. The cache contains 8,192 bytes of fast, static MOS memory that 
buffers the processor data from main memory. 

The PDP-ll/44 system has an expanded internal implementation of the PDP-ll 
architecture for greatly improved system throughput. All memory is on its own 
high-data-rate bus. The processor has a direct connection to the cache memory 
system for very rapid memory access. 

The UNIBUS remains the primary control path in the PDP-ll/44 system. It is 
conceptually identical with all other PDP-ll systems; the memory in the system 
still appears to be on the UNIBUS to all UNIBUS devices through the UNIBUS 
map. This expanded internal implementation of the PDP-ll architecture is 
generally compatible with earlier PDP-ll/70 programs . 

• Central Processor 

The PDP-ll/44 processor acts as the arbitration unit for UNIBUS control by 
regulating bus requests and transferring control of the bus to the requesting 
device with the highest priority. 

The central processor contains arithmetic and control logic for a wide range of 
operations. These include fixed point arithmetic with hardware multiply and 
divide, extensive test and branch operations, and other control operations. It 
also provides room for the addition of the floating-point processor, commercial 
instruction set, and UNIBUS options. 

,. 
~: 



~ 
~ 

~ 

t 
C3 
!: ...... 
~ 
-k 
b:l 
is' 
~ 
t:i 

J£" 
<S 
~ 

------------- -----------l rc~&OPTIONS I 

: AMUX BUS i 
I r I CENTRAL I 
I PROCESSOR I COMMERCIAL FLOATING POINT AND I 
I INSTRUCTION SET PROCESSOR MEMORY I 
I PROCESSOR (OPTIONAL) MANAGEMENT I 
I (OPTIONAL) UNIT I 
: I I I 

I I I I I 
j------, I 

I 

MULTI-FUNCTION 
MODULE 

PAX BUS I 
I 
I 
I 
I 

UNIBUS 

L __________________________ _ 
I 
I 

___ J 

MAIN MEMORY 
UP TO 4 MBYTES 

w 

"" 



3-4· PDP-ll/44 

The machine operates in three modes-kernel, supervisor, and user. When the 
machine is in kernel mode, a program has complete control of the machine; 
when the machine is in any other mode, the processor is inhibited from 
executing certain instructions and can deny direct access to the peripherals on 
the system. This hardware feature can be used to provide complete executive 
protection in a multiprogramming environment. 

The central processor contains six general registers that can be used as 
accumulators, index registers, or stack pointers. Stacks are extremely useful for 

'nesting programs, creating reentrant coding, and as temporary storage where a 
last-in/first-out structure is desirable. An additional register is used as the PDP-
11/44's program counter. Three other additional registers are used as processor 
stack pointers, one for each operational mode. 

The CPU performs all of the computer's computation and logic operations in a 
parallel binary mode through step-by-step execution of individual instructions. 

General Registers 
The general registers, as shown in Figure 3-2, can be used in many ways, the 
uses varying with requirements. The general registers can be used as accumula­
tors, index registers, autoincrement registers, autodecrement registers, or as 
stack pointers for temporary storage of data. The PDP-ll Architecture Hand­
book chapter on Addressing Modes describes these uses of the general registers 
in more detail. Arithmetic operations can be done from one general register to 
another, from one memory location or device register to another, or between 
memory or a device register and a general register. 

R7 is used as the machine's program counter (PC) and contains the address of 
the next instruction to be executed. It is a general register normally used for 
addressing purposes and not as an accumulator for arithmetic operations. 

The R6 register is normally used as the processor stack pointer indicating the 
last entry on the current mode's hardware stack. (For information on the 
programming uses of stacks, please refer to the PDP-ll Architecture Hand­
book.) The three stacks are called the kernel stack, the supervisor stack, and 
the user stack. When the central processor is operating in kernel mode, it uses 
the kernel stack; in supervisor mode, the supervisor stack; and in user mode, 
the user stack. When an interrupt or trap occurs, the PDP-ll/44 automatically 
saves its current status on the stack selected by the service routine. This stack­
based architecture facilitates reentrant programming. The remaining six regis­
ters are RO-R5. 

Registers can be used to increase the speed of realtime data handling or 
facilitate multiprogramming. Each of the six general registers could be used as 
an accumulator or index register for a realtime task or device. 



KERNEL 
STACK POINTER 

R6 

RD 

R1 

R2 

R3 

R4 

R5 

SUPERVISOR 
STACK POINTER 

R6 

PROGRAM I R7 
COUNTER L. _____ -l 

GENERAL 
REGISTER 
SET 

Figure 3-2 • The General Registers 

Processor Status Word (PSW) 

USER 
STACK PCINTER 

R6 

3-5 

The processor status word (PSW), shown in Figure 3-3, contains information 
on the current status of the PDP-I!. This information includes current and 
previous operational modes, an indicator that is used to show that a Commer­
cial Instruction Set (CIS) instruction was suspended by an interrupt, current 
processor priority, an indicator for detecting the execution of an instruction to 
be trapped during program debugging, and condition codes describing the 
results of the last instruction . 

• MODES 
Mode information includes the present mode, either user, supervisor, or kernel 
(bits 15, 14), and the mode the machine was in before the last interrupt or trap 
(bits 13, 12). 

15 14 13 12 11 9 8 5 4 3 2 D 

P~IORI-rv T I N I z I V I C I 

CURRENTMJI~ 
PREVIOUS MODE 

CIS INSTRUCTION SUSPENSION 

Figure 3-3·17777 776 Processor Status Word 



3-6· PDP-ll/44 

The three modes permit a fully protected environment for a multiprogramming 
system by providing the user with three distinct sets of processor stacks and 
memory management registers for memory mapping. 

In user and supervisor modes, a program is inhibited from executing a HALT 
instruction, and the processor will trap through location 4 if an attempt is 
made to execute this instruction. Furthermore, the processor will ignore the 
RESET and SPL (Set Priority Level) instructions, and will execute No 
Operation. In kernel mode, the processor will execute all instructions. 

A program operating in kernel mode can mapusers' programs anywhere in 
memory and thus explicitly protect key areas (including the device registers and 
the processor status word) from the user operating environment. 

• CIS INSTRUCTION SUSPENSION 
Bit 8, when set, indicates that a commercial instruction is in process. Because 
commercial instructions can be suspended (interrupted), this bit will be pushed 
onto the stack with the rest of the processor status word so that when control is 
returned to the routine, the commercial instruction can continue where it left 
off. Bit 8 may be used in future nonCIS instructions. 

• PROCESSOR PRIORITY 
The central processor operates at any of eight levels of priority, 0-7. When the 
CPU is operating at level 7, an external device cannot interrupt it with a request 
for service. The central processor must be operating at a lower priority than the 
priority of the external device's request in order for the interruption to take 
effect. The current priority is maintained in the processor status word (bits 5-
7). The eight processor levels provide an effective ihterrupt mask, which can be 
dynamically altered by the kernel-mode program through use of the SPL 
instructions. (For more information on the instructions see the PDP-ll 
Architecture Handbook.) This SPL instruction allows a kernel mode program to 
alter the central processor's priority without affecting the rest of the processor 
statv word. 

• TRACE TRAP 
The trace trap bit (T) can be set or cleared under program control. When the 
trace trap bit is set, a processor trap will occur through location 14 on 
completion of instruction execution and a new processor status word and 
program counter will be loaded. This bit is especially useful for debugging 
programs because it provides an efficient method of single-stepping the 
program. 

Interrupt and trap instructions both automatically cause the previous processor 
status word and program counter to be saved and replaced by the new values 
corresponding to those required by the routine servicing the interrupt or trap. 



3-7 

The user can thus cause the central processor to automatically switch modes 
(context switching), alter the CPU's priority, or disable the trace trap bit 
whenever a trap or interrupt occurs. 

• CONDITION CODES 
The condition codes contain information on the result of the last CPU 
operation. They include a negative bit (N), set if the result of the previous 
operation was negative; a zero bit (Z), set if the result of the previous operation 
was zero; an overflow bit (V), set if the result of the previous operation caused 
an arithmetic overflow, and a carry bit (C) set by the previous operation if the 
operation caused a carry out of its most significant bit. 

• STACK LIMIT 
The PDP-ll/44 has a kernel stack overflow boundary at location 400. Once the 
kernel stack exceeds this boundary, the processor will complete the current 
instruction and then trap through location 4, stack overflow in the CPU error 
register. 

· CPU Registers 

The following CPU registers are accessed by program or console control. 

CPU Error Register 

The CPU error register (shown in Figure 3-4) identifies the source of the abort 
or trap that caused a trap through the vector at location 4. Bits 7-4, bit 2 and 
bit 0 are cleared when the CPU error register is written. When set, bit 9 
indicates to software that a software powerdown is in progress. The remaining 
bits are software transparent and are accessible only when the console has 
control. They serve to provide diagnostic visibility into the processor. 

Bit: 15 
Name: Data Transfer 
Function: Monitors the data transfer line of the processor. When clear, this bit 
indicates the processor is initiating a data transfer on the UNIBUS. 

Bit: 14 
Name: C1 
Function: Set when the control signal Bus C 1 is asserted, indicating that a 
DATO or DATOB transfer is being performed. 

Bit: 13 
Name: Cache Restart 
Function: Set when the cache has generated the signal necessary to restart the 
processor clock. 



3-8· PDP-ll/44 

I ?ATi I C1 F:CH~l KTE I BE I PE I; )IDC LOI'LL 'lfO~ h MEM TITUBUSTrR~1 'IJNTR I elM: I TA.AN • A~AT • • • AC LO • HALT ~~~ TMOUT TMOUT I~IT STav • ~:z~ 

,m""t'lj 
HE RESTART 

OAT 

C1-
CAC 

KTE 

BUS 

PAR 

AC L 

DC 

ILLE 

ODD 

MEM 

UNI 

PRO 

STA 

INTE 

CIM 

ERROR 

ITY ERROR 

0 

LO 

GAL HALT 

ADDRESS ERROR 

ORY TIME-OUT 

BUS TIME-OUT 

CESSOR INITIALIZE 

CKOVERFLOW 

RRUPT 

POWER FAILURE 

• SOFTWARE TRANSPARENT 

Bit: 12 
Name:KTE 

Figure 3-4·17 777 766 CPU Error Register 

Function: Set when a memory management error (nonresident, page length, or 
read-only abort) has occurred. 

Bit: 11 
Name: Bus Error 
Function: Set when processor has attempted to access nonexistent memory, 
odd address during word reference, or if there was no response on the UNIBUS 

within approximately 20 microseconds. 

Bit: 10 

Name: Parity Error 
Function: Set when processor has received an indication of a memory parity 
error. 

Bit: 9 
Name: ACLO 
Function: Set when UNIBUS AC LO is asserted. To software, when this bit is 
set, a powerdown is in progress. This signal is not latched and therefore bit 9 is 
not affected by a processor INIT. 

Bit: 8 
Name: DCLO 

Function: Set when UNIBUS DC LO is asserted. This signal is not latched and 
therefore bit 8 is not affected by a processor INIT. 



3-9 

Bit: 7 
Name: Illegal Halt 
Function: Set when a HALT instruction was attempted while the processor was 
in user or supervisor mode. 

Bit: 6 
Name: Odd Address Error 
Function: Set when the program attempts a word reference of an odd address. 

Bit: 5 
Name: Memory Timeout 
Function: Set when the processor attempts to read/write from a non-existent 
main memory location. This does not include UNIBUS addresses. 

Bit: 4 
Name: UNIBUS Timeout 
Function: Set when the processor attempts to read/write from a nonexistent 
UNIBUS location. 

Bit: 3 
Name: Processor Initialize 
Function: Set when the processor initialize signal is asserted. 

Bit: 2 
Name: Stack Overflow 
Function: Set when the kernel hardware stack is below virtual address 400 
octal. 

Bit: 1 
Name: Interrupt 
Function: Set when the PAX interrupt line is asserted. 

Bit: 0 
Name: elM Power Failure 
Function: Set after de power to the machine has exceeded voltage tolerance 
limits for a period of 1.5 microseconds or greater. 

Processor Traps 
Processor traps are a series of errors and programming conditions that will 
cause the central processor to trap through a set of fixed locations. These 
include power failure, odd addressing errors, stack errors, timeout errors, 
nonexistent memory references, parity errors, memory management viola­
tions, floating-point processor exception traps, use of reserved instructions, 
use of the T bit in the processor status word, and use of the lOT, EMT, and 
TRAP instructions . 

• POWER FAILURE 
Whenever ac power drops below 90 volts for 120 V power (180 volts for 240 V) 
or outside a limit of 47 to 63 Hz, as measured by de power, the powerfail 



3-10· PDP-11/44 

sequence is initiated. The central processor automatically traps through 
location 24 and the user's powerfail program has 2 milliseconds to save all 
volatile information (data in registers). 

If battery backup is present, and the batteries are not depleted when power is 
restored, the processor traps again through location 24 and executes the user's 
powerup routine to restore the machine to its state prior to power failure. If 
batteries are not present, a bootstrap of the default device is executed. 

• ODD ADDRESSING ERROR 
This odd addressing error occurs whenever a program attempts to execute a 
word instruction on an odd address (between word boundaries). The instruc­
tion is aborted and the CPU traps through location 4. 

• TIMEOUT ERROR 
This timeout error occurs when a MSYN pulse is placed on the UNIBUS or 
main memory bus and there is no SSYN pulse within 20 microseconds. This 
error usually occurs during attempts to address nonexistent memory or 
peripherals. The instruction is aborted and the processor traps through 
location 4. 

• RESERVED INSTRUCTION 
There is a set of illegal and reserved instructions that causes the processor to 
trap through location 10. (e.g., if no floating-point processor is installed in the 
PDP-ll/44, execution of a floating-point instruction results in a trap through 
location 10.) 

• TRAP HANDLING 
The PDP-I1 Architecture Handbook includes a list of the reserved trap vector 
locations and system error definitions that cause processor traps. When a trap 
occurs, the processor follows the same procedure for traps as it does for 
interrupts (saving the PC and PSW on the new processor stack, for example). 

In cases in which traps and interrupts occur concurrently, the processor will 
service the conditions according to the priority sequence following. 

1. HALT (instruction, switch, or command) 
2. Memory management fault 
3. Memory parity errors 
4. Bus error traps 
5. Floating-point traps 
6. TRAP instruction 
7. Trace trap 
8. Stack overflow trap 
9. Powerfail trap 



3-11 

10. Console bus request (console NEXT command or on-the-fly EXAMINE) 
11. Program interrupt request (PIR) level 7 
12. Bus request (BR) Level 7 
13. PIR 6 
14. BR6 
15. PIR5 
16. BR 5 
17. PIR4 
18. BR 4 
19. PIR 3 
20. PIR2 
21. PIR 1 
22. WAIT LOOP 

• STACK LIMIT VIOLATIONS 
When instructions cause the kernel stack virtual address to go lower than 400 
octal, a stack violation occurs. When the operation that caused the stack 
violation is completed, then a bus error trap is effected (trap through 4). The 
error trap, which itself uses the stack, executes without causing an additional 
violation. 

Program Interrupt Requests (PIR) 
Figure 3-5 shows the layout of the program interrupt request register. A request 
is booked by setting one of bits 15-9 (forPIR 7-PIR 1) in the program interrupt 
register. The hardware sets Bits 7-5 and 3-1 to the encoded value of the 
highest PIR bit set. This program interrupt active (PIA) field should be used to 
set the processor level and also index through a table of interrupt vectors for the 
seven software priority levels. 

When the PIR is granted, the processor will trap through location 240 and pick 
up the PC from 240 and the PSW from 242. It is the interrupt service routine's 
responsibility to queue requests within a priority level and to clear the PIR bit 
before the interrupt is dismissed. 

15 9 8 5 4 3 o 
A I%a P A~ 

Figure 3-5·17777 772 Program Interrupt Request Register 



3-12· PDP-ll/44 

The following sample shows how the actual interrupt dispatch program should 
look. 

MOVBPIR,PS ;places bits 7-5 in PSW 

:priority level bits 
MOV R5,-(SP) 
MOVPIR,R5 

;save R5 on the stack 

;gets bits 3-1 BIC #177761,R5 
JMP @DISPAT(R5) ;use to index through table 

;which requires 15 core 
;locations 

CPU and I/O Device Registers and Addresses 
The following, Table 3-1, summarizes the PDP-ll/44 registers and their 
addresses. 

Table 3-1 • PDP-11/44 CPU and I/O Device Registers and Addresses 

Address 

17777 776 
17777 772 
17777 766 
17777 707-17 777 700 
17777 676-17777 660 
17777 656-17777 640 
17777 636-17 777 620 
17777 616-17 777 600 
17777 576 
17777 574 
17777572 
17777 570 
17777 566-17777560 
17777776-17760000 
(switch-selectable) 
17777516 
17772376-17772360 
17772356-17772340 
17 772 336-17 772 320 
17772316-17772300 
17772276-17772260 
17772256-17772 240 
17772236-17772220 
17772216-17772 200 
17770372-17770200 

Register 

Processor Status Word (PSw) 
Program Interrupt Request (PIRQ) 
CPU Error 
CPU General Registers 
User Data PAR, Reg. 0-7 
User Instruction PAR, Reg. 0-7 
User Data PDR, Reg. 0-7 
User Instruction PDR, Reg. 0-7 
MM Status Register 2 (SR2) 
MM Status Register 1 (SRI) 
MM Status Register 0 (SRO) 
Switch Register 
Console Terminal SLU 
SLU 2 DEC tape 
(Normally 17 776500) 
MM Status Register 3 (SR3) 
Kernel Data PAR, Reg. 0-7 
Kernel Instruction PAR, Reg. 0-7 
Kernel Data PDR, Reg. 0-7 
Kernel Instruction PDR, Reg. 0-7 
Supervisor Data PAR, Reg. 0-7 
Supervisor Instruction PAR, Reg. 0-7 
Supervisor Data PDR, Reg. 0-7 
Supervisor Instruction PDR, Reg. 0-7 
UNIBUS Map Registers 



3-13 

. Memory Systems 

MOS Memory With Error Correcting Code and Optional Battery Backup 
MOS memory with error correcting code (ECC) is identical to the PDP-1l/84 
system. For an explanation of ECC and the optional battery backup unit 
available for the PDP-Il/44, refer to the PDP-1l/84 chapter. 

Memory Management 
The Memory management hardware is standard with the PDP-Il/44 computer. 
It is a hardware relocation and protection facility that can convert the 16-bit 
program virtual addresses to 22-bit physical addresses. The unit may be 
enabled or disabled under program control. There is a small speed advantage 
when the unit is in the 16-bit mode. For a more detailed description of memory 
management techniques, refer to the PDP-ll Architecture Handbook. 

UNIBUS Map 
The UNIBUS map is the hardware relocation facility for converting the 18-bit 
UNIBUS addresses to 22-bit addresses. The relocation mapping may be 
enabled or disabled under program control. Once again, there is a slight speed 
advantage when the UNIBUS map is disabled (of£) . 

• Cache Memory 

PDP-Il/44 cache memory is integral to the PDP-Il/44 processor and is designed 
to increase the CPU performance by decreasing the CPU-to-memory read access 
time. It is an 8,192-byte, high-speed RAM memory, organized as a direct­
mapped cache with write-through. Functionally, main memory and cache can 
be treated as a single unit (see Figure 3-1). 

Physical Description 
The PDP-Il/44 cache memory interfaces to the processor through the processor 
backplane. Two user-accessible switches (S1 and S2) enable the cache to be 
shut off by causing a forced-miss condition in either upper or lower cache 
address space. Software bits for enabling or disabling cache are also provided in 
the processor's cache-control registers discussed later in this chapter. 

General System Architecture 
The cache operates as an associative memory in patallel with the main memory, 
and is connected to the CPU by the high-speed internal data path in the PDP-Ill 
44 (the PAX data bus). This high-speed data path is separate from the internal 
data path that is shared by the floating-point and commercial instruction set 
options (the AMUX data bus). The cache is logically connected to the PAX 
address and memory address buses, but is isolated from them by a set of 
independent receivers. When a memory read transfer is initiated by the CPU, 



3-14· PDP-ll/44 

the cache is strobed 100 nanoseconds later to determine if the data is in the 
cache and is error free. If so, this is referred to as a cache hit. If the access 
results in a cache hit, the processor clock is immediately restarted and clocks in 
the cache data that ends the transfer from the CPU. If access results in a cache 
miss, then main memory MSYN is asserted and the access is to main memory 
with the cache performing an automatic write-through to update itself. During 
write transfers, a write is performed to main memory with the cache updating 
itself if that location is presently cached. DMA write transfers from the 
UNIBUS are monitored by the cache and result in invalidation of cached 
locations. Only CPU transfers which access main memory are cached. Any data 
stored in memory appearing on the UNIBUS will not be cached. 

CPU Bypass of the Cache 
Besides having the capability of disabling half the cache, or the entire cache, 
the CPU can also disable caching of data based on the virtual address (virtual 
page) of the data. This is useful in two circumstances. 

• If a multiported main memory (not supplied by Digital) is shared among two 
or more processors, it is possible for a particular word of main memory data 
to be cached in all of the CPUs. If one CPU then alters this word, only the 
copy of the data in main memory and that particular CPU's cache is updated. 
The other CPUs still have the old data in their caches. The old data is referred 
to as stale. In order to avoid using stale data, each CPU that accesses shared 
data must do so bypassing its cache. This ensures that the CPU gets the copy 
of the data stored in main memory, which is fresh (currently valid) . 

• Bypassing the PDP-ll/44 cache is also useful if the CPU is sweeping through a 
large amount of data, with no intent of soon rereading the data. If the CPU is 
caching all the data, the cache will simply become full of useless data, 
meanwhile forcing out the program and other useful data. This is particularly 
true if the amount of data the CPU sweeps through exceeds 8,192 bytes. This 
technique of bypassing the cache while accessing large data lists does not 
apply to the PDP-ll/70 or PDP-ll/84. 

Table 3-2 • Cache Response Matrix 

CPU Hit Miss DMAHit Miss 

Read Bypass Nothing or Nothing Nothing Nothing 
Invalidate 

Write Bypass Invalidate Invalidate Nothing Nothing 

Write Update Nothing Invalidate Nothing 

The response of the cache to a CPU read bypass hit (see Thble 3-2) is jumper 
selectable. In its normal configuration, jumper W1 (M7097 module) is 



3-15 

inserted and jumper W2 is removed to allow a forced miss to occur only for a 
CPU read hit bypass. If the PDP-ll/44 and the KKll-B cache are to be used in a 
multiported memory system, jumper WI is removed and jumper W2 is 
inserted to allow a CPU read hit with bypass to cause an invalidation to occur to 
that location. This allows the software to clear potentially stale cache data that 
might arise in a multiported memory system. 

Cache Memory Organization 
The cache memory array (Figure 3-6) consists of thirty 4096 X 1 RAM chips 
arranged as follows. 

8 8 9 

~1 1 1 r-~1~1 

4.096~ 
WORDS~ BYTE 1 

>-t:: 
a: 
rt 

Figure 3-6 • Cache Memory Array 

BYTE 2 

TAG Consists of nine tag store bits plus one bit of parity. 

>-
t:: 
a: 
rt 

VALID Consists of two bits, one of which is currently active, allowing the 
other bit to be cleared concurrently. By having two bits, a fast flush 
may be accomplished by switching to the set which has been 
previously cleared. 

DATA Consists of two 8-bit bytes plus a parity bit for each byte. 

Cache-Control Registers 
The following cache-control registers are implemented on the PDP-ll/44 cache. 
All bits are cleared by processor INIT, but not by a CPU RESET instruction . 

• CACHE DATA REGISTER (CDR) 

Bits: 15-0 (Read Only) 
Name: Cache Data Register Bits 
Function: These bits are loaded from the 16-bit data array section of the cache 
RAM on every read access to main memory space, except the top 256 Kbytes, 

15 a 

CACHE DATA 

Figure 3-7·17777 754 Cache Data Register 



3-16· PDP-ll/44 

which are reserved for the UNIBUS address space. This register can be used 
with the hit on destination only bit to aid the cache diagnostics in identifying 
failures in the data section of the cache array . 

• CACHE MEMORY ERROR REGISTER (CMER) 

Bit: 15 
Name: Cache Memory Parity Error (CMPE) 

Function: Set if a cache parity error is detected while the cache parity abort, 
bit 7, is set, or if a memory parity error occurs. If set, cache will force a miss. 
Clear by any write to the CMER or by console INIT. This bit must be cleared 
before the disable cache parity interrupt (DCPI) is cleared. If the cache detects 
a parity error in itself, the cache error LED (mounted on the cache module) will 
light. 

15 14 8 7 6 5 4 0 

I~~~~ ~~ I ~~ ITPE_~_ 
Figure 3-8· 17 777 744 Cache Memory Error Register 

Bit: 7 
Name: Parity Error High Byte (PEHI) 

Bit: 6 
Name: Parity Error Low Byte (PELO) 

Bit: 5 
Name: Tag Parity Error (TPE) 
Function: These bits are set individually when a parity error occurs in the 
high-data byte, low-data byte, or tag field, respectively, if the cycle is aborted 
(cache parity abort bit is set). If the cycle is not aborted, all three bits, 5, 6 and 
7, are set upon any cache parity error occurrence as an aid to system software 
compatibility. Cleared by any write to the CMPE register or by console INIT . 

• CACHE CONTROL REGISTER (CCR) 

Bit: 13 (Read Only) 
Name: Valid Store in Use (VSIU) 
Function: This bit indicates which set of valid store bits is currently being used 
to determine the validity of the contents of the tag store memory. It is 
complemented each time that the cache is flushed. When set, valid bit set B is 
in use. When clear, valid bit set A is in use. 



3-17 

15 14 13 12 11 10 9 8 2 o 

Figure 3-9· 17777746 Cache Control Register 

Bit: 12 (Read Only) 
Name: Valid Clear in Progress (VCIP) 
Function: This is set to indicate that the cache is currently in the process of 
clearing a valid store set. The clear cycle occurs on powerup and when the flush 
cache bit is set. 

NOTE 
The hardware clear cycle takes approximately 800 microseconds_ While a valid 
store set is being cleared, the other set is in use allowing the cache to continue 
functioning. If the cache is flushed a second time within 800 microseconds, 
then the CPU will pause until the first flush completes (i.e., 800 microseconds 
from the time the first flush command was issued). 

Bit: 10 (Read/Write) 
Name: Write Wrong Tag Parity (WWTP) 

Function: This bit when set causes tag parity bits to be written with wrong 
parity on CPU read misses and write hits. A parity error will thus occur on the 
next access to that location. 

Bit: 9 (Read/Write) 
Name: Unconditional Cache Bypass (UCB) 
Function: When this bit is set, all references to memory by the CPU will be 
forced to go to main memory. Read or write hits will result in invalidation of 
those locations in the cache and misses will not change the contents. 

Bit: 8 (Write Only) 
Name: Flush Cache (FC) 
Function: This bit will always read as zero. Writing a one into it will cause the 
entire contents,of the cache to be declared invalid. Writing a zero into this bit 
will have no effect. 

Bit: 7 (Read/Write) 
Name: Parity Error AQort (PEA) 

Function: This bit controls the response of the cache to a parity error. When 
set, a cache parity error will cause a forced miss and an abort to occur (asserts 
UNIBUS signal PB L). When cleared, this bit inhibits the abort and enables an 
interrupt through location 114. All cache parity errors result in forced misses. 



3-18· PDP-ll/44 

Bit: 6 (ReadfWrite) 
Name: Write Wrong Data Parity (WWDP) 
Function: This bit when set causes high and low parity bytes to be written with 
wrong parity on all update cycles (CPU read misses and write hits). This will 
cause a cache parity error to occur on the next access to that location. 

Bit: 3 (ReadfWrite) 
Name: Force Miss High (FMHI) 
Function: This bit when set causes forced misses to occur on CPU reads of 
addresses where physical address bit 12 is a one. This bit can also be set by 
moving the toggle switch S 1 to the right side of the board. The bit cannot be 
cleared via the toggle switch. 

Bit: 2 (ReadfWrite) 
Name: Force Miss Low (FMLO) 
Function: This bit when set causes forced misses to occur on CPU reads of 
addresses where physical address bit 12 is a zero. This bit can also be set by 
moving the toggle switch S2 to the right side of the board. The bit cannot be 
cleared via the toggle switch. 

NOTE 
Setting bits 3 and 2 will cause all CPU reads to be misses. 

Bit: 0 (ReadfWrite) 
Name: Disable Cache Parity Interrupt (DCPI) 
Function: This bit when set overrides the cleared condition of the parity error 
abort bit, disabling the interrupt through location 114. The cache memory 
parity error bit must be cleared before disable cache parity interrupt (DCPI) is 
cleared. 

Bit 7 Bit 0 Result of Cache Parity Error 

0 0 Interrupt to 114 and force miss 

0 1 Force miss only 

1 X Abort and force miss 

• CACHE MAINTENANCE REGISTER (CMR) 

Bits: 15-10 (Write Only) 
Name: Address Match Bits 21-16 
Function: This register is used to set bits 21-16 of the address-match register. 
The contents of the address-match register are constantly compared to the CPU 
physical address bus (PAX address). When an address-match occurs, the 
processor can 1) stop its microprogram; 2) halt; 3) supply an oscilloscope trigger 
pulse. This feature is useful for troubleshooting the PDP-11/44 system and is 
used with the console BREAK command. 



3-19 

--------y~-------

ADDRESS MATCH 

Figure 3-10·17777750 Cache Maintenance Register 

Bit: 15 
Name: Compare 1 H 

Bit: 14 
Name: Compare 2 H 

Bit: 13 
Name: Compare 3 H 

Bit: 12 
Name: Valid H 

Bit: 11 
Name: High parity bit H 

Bit: 10 
Name: Low parity bit H 

Bit: 9 
Name: Tag parity bit H 

Bit: 8 
Name: HitL 
Function: These bits are key points in the cache that the diagnostic can use to 
help localize errors. This register is loaded on any read to main memory. Like 
the cache data register, these bits can be used with the hit on destination only 
bit to aid the cache diagnostic in tracing cache faihw., .. 

Bit: 4 
Name: Enable Stop Action 
Function: This bit can be set to allow the cache to stop the CPU clock upon 
detection of a cache parity error or address match condition. This stops the 
CPU microprogram. 

Bit: 3 (Read/Write) 
Name: Address Matched (AM) 
Function: This bit is set when the 22-bit address match register is equal to the 
22-bit cache address. The address-match LED (on the cache module) also 
lights. 

Bit: 2 (Read/Write) 
Name: Enable Halt Action 
Function: This bit can be set to allow the cache to halt the CPU upon detection 
of a cache parity error or address match condition. 



3-20· PDP-ll/44 

Bit: 1 (ReadjWrite) 
Name: Hit on Destination Only (HODO) 
Function: When set, this bit causes the cache to be enabled only during the 
final memory access of an instruction. Read hits and updates will happen only 
during the final access. This feature is a very powerful tool for cache 
diagnostics. When cleared, this bit has no effect on the cache. This bit should 
be used with caution because it can cause stale data in the cache. 

Bit: 0 (Read/Write) 
Name: Tag Data from Address Match Register (TDAR) 
Function: When set, this bit enables the tag field of the cache to be written 
with data from bits 8-0 of the address match register. Once this bit is set, it will 
cause all cache writes to clear the valid bit in these locations. This feature 
allows the cache diagnostics to identify failures in the tag field of the cache 
array . 

• CACHE HIT REGISTER (CHR) 

Bits: 15-0 (Write Only) 
Name: Address Match Bits 
Function: This register is used to set bits 15-0 of the address match register. It 
is used in conjunction with bits 15-10 of the cache maintenance register. 

Bits: 15-7 (Read Only) 
Name: Tag Address Bits 
Function: Tag address bits contain the nine bits of the tag store memory of the 
last access by the CPU to main memory (except the top 256 Kbytes). When 
used with the hit on destination only and tag data from address match register 
bits, this field will allow the cache diagnostics to read any tag field of any 
location in the array. 

15 6 5 o 

I TAG ADDRESS ~ HIT REGISTER I 
'~----------------------~y-----------------------~/ 

ADDRESS MATCH 

Figure 3-11 • 17777 752 Cache Hit Register (CHR) 

Bits: 5-0 (Read Only) 
Name: Hit Register 
Function: This six-bit field shows the number of cache hits (read and write 
hits) on the last six CPU accesses to noncache-control memory. The bits flow 
from the least significant bit to the most significant bit of the field with a one 
indicating a hit and a zero indicating a miss. 



3-21 

. Other PDP-ll/44 Processor Equipment 

Floating-Point Processor 
The PDP-ll/44 floating point processor module fits integrally into the central 
processor. It provides a supplemental instruction set for performing single- and 
double-precision floating-point arithmetic operations and floating-integer 
conversion in parallel with the CPU. The floating-point processor provides 
both speed and accuracy in arithmetic computations. It provides 7 decimal 
digit accuracy in single-precision calculations and 17 decimal digit accuracy in 
double-precision calculations. For a detailed discussion on the PDP-ll floating­
point processors, refer to the PDP-ll Architecture HandBook. 

Backplane 
Figure 3-12 illustrates the PDP-ll/44 CA Backplane. In this diagram, the 
standard and optional hardware features are seen in their corresponding slots in 
the backplane. 

CIM I RESERVED FOR KE44-A 
2 

3 RESERVED FOR FP11-A (FLOATING-POINT PROCESSOR) 

4 

{ "'"'" "'0"""'. ""'"' MEMORY MANAGEMENT. 
UNIBUS MAP. ASCII CONSOLE, 

CPU 2 SERIAL LINE UNITS, LINE 
FREQUENCY CLOCK, 
BOOTSTRAP LOADER 

5 

6 

7 

8 

9 256-KBYTE/1-MBYTE ECC MOS MEMORY MS11-MB/PB 

0 RESERVED FOR MS11-MB/PB 

1 RESERVED FOR MS11-MB/PB 

2 RESERVED FOR MS11-MB/PB 

3 HEX OR QUAD SLOT 

4 M9302 I QUAD SLOT 

Figure 3-12· PDP-ll/44 Backplane Configuration 

. Serial Line Unit Registers 

The PDP-ll/44 contains two serial line interfaces as a standard feature. The 
first interface (the console interface) is used to control the PDP-ll/44 hardware 
and the operating system software. 



3-22' PDP-ll/44 

While controlling the PDP-ll/44 hardware, the console interface is said to be in 
console mode and is operated by a fixed program in both systems. While 
controlling, and in turn being controlled by, operating system software, the 
console interface is said to be in program mode. The selection of console or 
program mode is made via the front panel and by special characters typed at the 
console terminal. 

A detailed description of the console ODT commands for the PDP-ll/44 is 
found in Appendix B. 

Serial Line Unit Timing Considerations 
The UART (Universal Asynchronous Receiver/Transmitter) is an asynchronous 
subsystem. The transmitter accepts parallel characters and converts them to 
serial asynchronous output. The receiver accepts asynchronous serial charac­
ters and converts them to parallel output. 

• RECEIVER 
The RECEIVER DONE bit sets when the UART has assembled a full character, 
which occurs approximately at the middle of the first stop bit. Because the 
UART is double-buffered, data remains valid until the next character is received 
and assembled. This allows one full character time for servicing the RECEIVER 
DONE bit or the interrupt caused by it. 

• TRANSMITTER 
The UART's transmitter section is also double-buffered. After initialization, 
the TRANSMITTER READY bit is set. When the buffer is loaded with the first 
character, the bit clears but sets again within a fraction of a character 
transmission time period. A second character can then be loaded, clearing the 
bit again. This time the bit remains clear until the first character and its stop 
bit(s) have been transmitted (about one character time). 

• BREAK GENERATION 
Setting the break bit causes the transmission of a continuous space. Because 
the TRANSMITTER READY bit continues to function normally, the duration 
of the break can be timed by the "pseudo-transmission" of a number of 
characters. However, because the transmitter is double-buffered, a null charac­
ter (all zeros) should precede transmission of the break to ensure that the 
previous character completes transmission. Likewise, the last "pseudo-trans­
mitted" character under break should be a null. 

Terminal Serial Line Unit Control Registers (SLU 1) 
There are four terminal SLU registers that follow. All unused or write only bits 
are zero when examined. 



• RECEIVER CONTROL STATUS REGISTER (TERM RCSR) 

Bits: 15-8 
Function: Unused 

Bit: 7 (Read Only) 
Name: RECEIVER DONE 

3-23 

Function: Set during the program mode when an entire character has been 
received and is ready for transfer to the CPU. Cleared by INIT or by addressing 
(read only) RBUF. Starts an interrupt sequence when set if RECEIVER 
INTERRUPT ENABLE is also set. 

15 8 6 5 0 

RECEIVER DONE (RCVR DONE) __ t t 
RECEIVER INTERRUPT ENABLE (RCVR INT ENB) ~ 

Figure 3-13· 17 777560 Receiver Control Status Register 

Bit: 6 (Read/Write) 
Name: RECEIVER INTERRUPT ENABLE 
Function: Cleared by INIT. When set, a priority 4 interrupt sequence will start 
each time RECEIVER DONE is set. 

Bits: 5-0 
Function: Unused 

• RECEIVER DATA BUFFER (TERM RBUF) 

Bit: 15 (Read Only) 
Name: ERROR 
Function: Logical OR of OVERRUN ERROR, FRAMING ERROR and PARITY 
ERROR. ERROR is not tied to the interrupt logic, but RECEIVER DONE is. 

15 14 13 12 11 10 9 8 6 2 o 

~-----------y~----------/ 

RECEIVED DATA BITS ____________________________ --'1 

Figure 3-14·17777562 Receiver Data Buffer 



3-24' PDP-ll/44 

Bit: 14 (Read Only) 
Name: OVERRUN ERROR 

Function: Set if the previously received character is not read (RECEIVER 
DONE not cleared) before another character is received. 

Bit: 13 (Read Only) 
Name: FRAMING ERROR 

Function: Set if the character received has no valid stop bit(s). Also used to 
detect a "break" character. 

Bit: 12 (Read Only) 
Name: PARITY ERROR 

Function: Set if received parity does not agree with the expected parity. 
Always cleared if no parity is selected. 

NOTE 
Error bits remain set until the next character is received, at which time the 
error bits are updated. INIT does not clear the console terminal error bits. 
However, a powerup sequence does clear them. Error bits may be disabled by 
removing a jumper on the M7096 module. 

Bits: 11-8 
Function: Unused 

Bits: 7-0 (Read Only) 
Name: RECEIVED DATA 

Function: These bits contain the character just received. If fewer than eight 
bits are selected, the buffer will be right-justified with the unused bits read as 
o. Not cleared by INIT . 

• TRANSMITTER CONTROL STATUS REGISTER (TERM XCSR) 

Bits: 15-8 
Function: Unused 

Bit: 7 (Read Only) 
Name: TRANSMITTER READY 
Function: Set during the program mode only by IN IT or when XBUF can 
accept another character. Cleared when a character is written into the XBUF. 
Starts an interrupt sequence if TRANSMITTER INTERRUPT ENABLE is 
also set. 

Bit: 6 (Read/Write) 
Name: TRANSMITTER INTERRUPT ENABLE 
Function: Cleared by INIT. When set, a priority 4 interrupt sequence will start 
each time TRANSMITTER READY is set. 



SYSTEM REMOTE MODE ----------' 

CONSOLEMODE------------~ 

REMOTE DIAGNOSTIC BITS ENABLE ---------' 

MAINTENANCE -------------------' 

BREAK---------------------~ 

Figure 3-15' 17 777 564 Transmitter Control Status Register 

Bit: 5 (Read Only) 
Name: SYSTEM REMOTE MODE 

Function: Set when CPU is operating in the remote diagnostic mode. 

Bit: 4 (Read Only) 
Name: CONSOLE MODE 

Function: Set to indicate that the CPU is operating in the console mode. 

Bit: 3 (Read Only) 
Name: REMOTE DIAGNOSTIC BITS ENABLE 

3-25 

Function: Set by turning on switch #2 of E79 on the M7096 module. When 
set, the statuses of bits 4 and 5 are entered into this register. When cleared 
(switch off), all three bits will be zero. 

Bit: 2 (Read/Write) 
Name: MAINTENANCE 

Function: Cleared by INIT. When set, it connects the serial output of the 
TRANSMITTER into the serial input of the RECEIVER, in place of the normal 
serial input from the terminal. It also forces the receiver to run at the same 
speed as the transmitter. 

Bit: 1 
Function: Unused 

Bit: 0 (Read/Write) 
Name: BREAK 

Function: Cleared by IN IT. When set, a continuous space is transmitted, 
equivalent to sending a null character with no stop bits (framing error). May be 
disabled by removing a jumper on the M7096 module. 



3-26· PDP-ll/44 

• TRANSMITTER DATA BUFFER (TERM XBUF) 17 777 566 

Bits: 15-8 
Function: Unused 

Bits: 7-0 (Write Only) 
Name: TRANSMITTER DATA BUFFER 

Figure 3-16 .• 17 777566 Transmitter Data Buffer 

Second Serial Line Unit Registers (SLU 2) 
The second serial line unit is a general-purpose serial line interface. It may be 
used for a variety of purposes. 

• Connection of a serial line-printer 

• Connection of a 11158 cartridge tape drive 

• Connection of a modem 

This interface is not recomended for use with a high-speed (> 1200 baud) 
interactive terminal, such as a VT220 or VT240/Z. The four SLU2 registers 
follow . 

• RECEIVER CONTROL/STATUS REGISTER (SLU 2 RCSR) 

Bits: 15-8 
Function: Unused 

Bit: 7 (Read Only) 
Name: RECEIVER DONE 
Function: Set when an entire character has been received and is ready for 
transfer to the CPU. Cleared by INIT or addressing (read-only) RBUF. Starts an 
interrupt sequence when set if RECEIVER INTERRUPT ENABLE is also set. 

15 8 6 5 0 

RECEIVER DONE (RCVR DQNE) t t 
RECEIVER INTERRUPT ENABLE (RCVR INT ENB) ~ 

Figure 3-17 • Receiver Control/Status Register 



3-27 

Bit: 6 (ReadfWrite) 
Name: RECEIVER INTERRUPT ENABLE 

Function: Cleared by IN IT. When set, a priority 4 interrupt sequence will start 
each time RECEIVER DONE is set. 

Bits: 5-0 
Function: Unused 

• RECEIVER DATA BUFFER (SLU 2 RBUF) 

Bit: 15 (Read Only) 
Name: ERROR 
Function: Logical OR of OVERRUN ERROR, FRAMING ERROR and PARITY 
ERROR. ERROR is not tied to the interrupt logic, but RECEIVER DONE is 
cleared by INIT. Bits 12 through 15 may be disabled and cleared by removing a 
jumper on the M7096 module. 

Bit: 14 (Read Only) 
Name: OVERRUN ERROR 

Function: Set if previously received character is not read (RECEIVER DONE 

not cleared) before another character is received. Cleared by IN IT or reading 
before receiving another character. 

~-----------y~--------~/ 

RECEIVER DATA BITS ________________ ----'1 

Figure 3-18· Receiver Data Buffer 

Bit: 13 (Read Only) 
Name: FRAMING ERROR 

Function: Set if character received has no valid stop bit(s). Cleared by IN IT or 
when a valid character is received. This bit indicates an error in transmission or 
the reception of a "break" character. 

Bit: 12 (Read Only) 
Name: PARITY ERROR 

Function: Set if received parity does not agree with expected parity. Cleared by 
INIT or when the parity of the next character is valid. Always cleared if no 
parity is selected. 



3-28· PDP-ll/44 

Bits: 11-8 
Function: Unused 

Bits: 7-0 (Read Only) 
Name: RECEIVED DATA 
Function: These bits contain the character just received. If fewer than eight 
bits are selected, the buffer will be right-justified with the unused bits read as 
zero. Not cleared by INIT . 

• TRANSMITTER CONTROL/STATUS REGISTER (SLU 2 XCSR) 
Bits: 15-8 
Function: Unused 

Bit: 7 (Read Only) 
Name: TRANSMITTER READY 
Function: Set by INIT or when the XBUF can accept another character. Starts 
an interrupt sequence when set if TRANSMITTER INTERRUPT ENABLE is 
also set. Cleared when a character is written into the XBUE 

Bit: 6 (Read/Write) 
Name: TRANSMITTER INTERRUPT ENABLE 
Function: Cleared by INIT. When set, a priority 4 interrupt sequence will start 
each time TRANSMITTER READY is set. Cleared by the program or by the 
initialization sequence. 

Bits: 5-3 
Function: Unused 

Bit: 2 (Read/Write) 
Name: MAINTENANCE 
Function: Cleared by INIT. When set, it connects the serial output of the 
transmitter into the serial input of the receiver, in place of the normal serial 
input from the terminal. It also forces the receiver to run at the same speed as 
the transmitter. 

15 8 6 

TRANSMITIER READY (XMIT RDY)· t t 
TRANSMITIER INTERRUPT ENABLE (XMIT INT ENB) ~ 
MAINTENANCE BIT (MAINT) ----------------' 

o 

BREAK BIT (BREAK) ---------------------' 

Figure 3-19· Transmitter Control/Status Register 



Bit: 1 
Function: Unused 

Bit: 0 (Read/Write) 
Name: BREAK 

3-29 

Function: Cleared by INIT. When set, a continuous space is transmittd 
equivalent to sending a null character with no stop bits (framing error). May be 
disabled by removing a jumper on the M7096 module . 

• TRANSMITTER DATA BUFFER (SLU 2 XBUF) 

Bits: 15-8 
Function: Unused 

Bits: 7-0 (Write Only) 
Name: TRANSMITTER DATA 
Function: If fewer than eight bits are selected, the character must be right­
justified. 

15 8 6 o 

----------~y----------~ 

TRANSMITTER DATA BITS ______________ -'t 

Figure 3-20 • Transmitter Data Buffer 

. Line Clock 

The PDP-ll/44 includes a line-time clock as standard equipment. This clock 
provides interrupts synchronized with the cycles of the ac power line (mains). 
By counting these interrupts, this allows the operation system software to keep 
realtime. 

Line Clock Status Register 

Bits: 15-8 
Function: Unused 

Bit: 7 (Read/Write, clear only) 
Name: LINE CLOCK MONITOR 
Function: Set by INIT or by the line-frequency clock signal (LTC). Cleared only 
by the program. 



3-30· PDP-ll/44 

Bit: 6 (Read/Write) 
Name: LINE CWCK INTERRUPT ENABLE 
Function: Cleared by INIT. When set, starts a priority 4 interrupt sequence 
each time LINE CLOCK MONITOR is set. 

Bits: 5-0 
Function: Unused 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

~~J_f@t~~1~~~~~;a 
LINE CLOCK MONITOR ________ ---'t 1 
LINE CLOCK INTERRUPT ENABLE --------'-

Figure 3-21·17777546 Line Clock Status Register 

. Address and Vector Assignments 

Integral to the PDP-ll/44 CPU are the two serial line units and the line clock. 
The serial line units and clock follow the same address and vector assignments 
as the KLll, DLll-A, B, C, D, and W, and the KWll-L, respectively. SLU #1 is 
used for the system console and has fixed addresses and vectors. SLU #2, which 
may be used for the TU58 or other asynchronous devices, has switch-selectable 
contiguous addresses and vectors. The realtime clock has a fixed address and 
vector. 

Table 3-3· PDP-ll/44 Address and Vector Assignments 

Console 

(SLU #1) 

(SLU #2) 

Line Clock 

Address 

17777560 

17 777 562 

17 777 564 

17777 566 

177YXXXO 

177YXXX2 

177YXXX4 

177YXXX6 

Where Y=6 or 7 and 
X=0-7 (vector) 

17777546 

Vector Priority 

BR4 (fixed) 

60 

64 BR4 (fixed) 

BR4 (fixed) 

XXO 

XX4 BR4 (fixed) 

100 BR6 (fixed) 



3-31 

NOTE 
Recommended address and vector assignments for SLU #2 when used for a 
TU58 are: 
Address: 17776500 
Vector: 300 
These are the settings as received from Digital. 

. Specifications 

Packaging 
A basic PDP-ll/44 consists of a 1O.5-in box with a 14-slot backplane, power 
supply, CPU, and 1-Mbyte memory. 

Component Parts 
The basic PDP-ll/44 system includes 

• Standard Equipment 
-PDP-ll/44 CPU 
-Memory management. 
-Bootstrap loader. 
-Line-frequency clock. 
-Asynchronous console terminal interface. 
-Second asynchronous serial interface. 
-8-Kbyte cache memory. 
-l-Mbyte ECC MOS Memory. 
-BAll-A box with power supply. 

• Prewired Expansion Space for Optional Equipment 
-Floating-point processor. 
-Commercial instruction set processor. 
-2 SPC slots for peripherals (1 hex, 1 quad). 
-3-Mbyte ECC MOS memory (up to 4 Mbytes maximum). 
- 3 SU open space in CPU box. 

Other Specifications 

• ACPOWER 
90-128 Vrms, 47-63 Hz, 1 phase power, 19 amp rms maximum @ 120 Vac 
180-256 Vrms, 47-63 Hz, 1 phase power, 9.5 amp rms maximum @ 240 Vac 

• SIZE 
Each cabinet is 26.4 cm high by 42.2 cm wide by 66.0 cm deep (10.4-in by 
16.6-in by 26.0-in) 



3-32· PDP-ll/44 

• WEIGHT 

CPU box 40.5 kg (90 lbs) 

• OPERATING ENVIRONMENT 

Temperature: 

Humidity: 

Altitude: 

5°C to 50°C (41°F to 122°F) 

10% to 95% with max. wet bulb of 32°C (89.6°F) and 
minimum dew point of 2°C (36°F) 

To 2.4 km (8,000 ft.) noncondensing 

• NONOPERATING ENVIRONMENT 

Temperature: -40°C to 80°C (-40°F to 176°F) 

Humidity: To 95% noncondensing 

Altitude: To 9.1 km (30,000 ft.) 



• Chapter 4 ·PDP-ll/24 



4-2 • PDP-ll/24 

The PDP-ll/24 is a fourth-generation member of the UNIBUS PDP-ll processor 
family. Designed as a single hex-module UNIBUS processor, the PDP-ll/24 
provides the basis for compact, low-cost application solutions. Offering an 
extended 22-bit memory addressing capability, the PDP-ll/24 can address up 
to four full Mbytes of memory. The PDP-ll/24 optional floating-point unit and 
commercial instruction set provide programming compatibility' with other 
PDP-Us. 

Integral to the PDP·ll!24 central processor unit are hardware features and 
expansion capabilities that are common to the PDP-ll/84, PDP-U/44, PDP-111 
70 and PDP-ll/34A. Tablel-l illustrates the similariti<;s and differences 
between these five minicomputers . 

• System Architecture 

The PDP-ll/24 is a minicomputer designed for both multitasking and dedle 
cated applications. A block diagram of the computer is shown in Figure 4"1. 

The central processor performs all arithmetic and logical operations required in 
the system. Memory management is standard with the basic computer, 
allowing. expanded memory addressing, relocation, and protection. The 
UNIBUS map, which translates UNIBUS addresses to physical memory address, 
is program compatible with PDP-ll/44 and PDP-ll/84 UNIBUS maps. The 
UNIBUS remains the primary control path in the PDP-ll/24 system. Memory 
address(:s are passed on a separate 22-bit wide bus. This bus provides reduced 
memory access times. It is conceptually identical with previous PDP-ll 
systems; the memory in the system still appears to be on the UNIBUS to all 
UNIBUS devices through the UNIBUS map . 

• Central Processor 

The PDP-ll/24 processor is the arbitration unit for UNIBUS control. It· 
regUlates bus' requests and transfers control of the bus to the request device 
with the highest priority. 

The central processor contains arithmetic and !ontrollogic for a wide range of 
operations. These include fixed-point arithmetic with hardware multiply and 
divide, extensive test and branch operations, and other control operations. It 
also provides room for the addition of the floating point unit, commercial 
instruction set, and UNIBUS options. 

The machine operates in two modes-kernel and user. When the machine is in 
kernel mode, a program has complete control of the machine; when the 
machine is in user mode, the processor is inhibited from executing certain 
instructions and can be denied direct access to the peripherals on the system. 
This hardware feature can be used to provide complete executive protection in 
a multiprogramming environment. 



4-3 

,---------------------------------1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I SLU 2 

BUS 
INTERFACE 

,-i=P-1 
I OPTION I 
L . .9HI~--.J 

,-CiS-I 
I OPTION I 
L..EHI~--.J 

MEMORY BUS 

iL.:SINGLE CPU MODULE I ------------- ------- ------ ----~ 

'NOT REQUIRED IF MAP MODULE INSTALLED 

Figure 4-1' PDP-ll/24 Block Diagram 



4-4· PDP-ll/24 

The PDP-ll/24 processor is implemented using three chips. Two MaS/LSI 
chips, called the data chip and control chip, implement the basic processor (see 
Figure 4-2). The memory management unit (MMU), the third chip, provides a 
software-compatible memory management scheme. 

CHIP CARRIER U"" ,,,,,m> 

BOTTOM VIEW 
(CHIP CARRIER) 

PAD 1 LOCATORS 
FOR MOTHERBOARD 

CHIP CARRIER 
PIN 1 LOCATOR 

DATA CHIP 
CARRIER 

':,..~~ __ -r-I--CONTROL CHIP 
... CARRIER 

MOTHERBOARD 

(~~~~~~~~R*!"\RI-it-~----=::::::::: CHIP 

PAD 1 LOCATOR 
FOR MOTHERBOARD 

Figure 4-2· PDP-ll/24 Data and Control Chip 

CAPACITORS 

The data chip (DC302) performs all arithmetic and logical functions, handles 
data and address transfers with the external world, and coordinates most inter­
chip communication. The control chip (DC303) does microprogram sequenc­
ing for PDP-ll instruction decoding and contains the control store ROM. The 
data and control chips are both contained on one 40-pin package. The MMU 
chip (DC304) contains the registers for I8-bit or 22-bit memory addressing and 
also includes the FPll floating-point registers and accumulators . 

. Registers 

The central proce.ssor contains nine registers that can be used as accumulators, 
index registers, or stack pointers for temporary storage of data. Six of these 
registers, RO-R5, are general registers (see Figure 4-3) that increase the speed of 
realtime data handling and facilitate multiprogramming. They can be used as 
accumulators or index registers for a realtime task or device. Another register, 



KERNAL 
STACK POINTER 

R6 

RO 

R1 

R2 

R3 

R4 

R5 

PROGRAM 
COUNTER 

R7 

GENERAL 
REGISTER 
SET 

USER 
STACK POINTER 

R6 

Figure 4-3· The General Registers 

4-5 

R7, is the PDP-ll/24's program counter (PC). It is normally used for addressing 
purposes, not as an accumulator for arithmetic operations. This register 
contains the address of the next instruction to be executed. The other registers, 
R6, are processor stack pointers (SP). They maintain their respective hardware 
stacks, kernel and user. Additional registers are reserved for internal machine 
use. The PDP-l1 Architecture Book describes the functions and operations of 
the registers in more detail. 

Stacks are used for nesting programs, creating reentrant coding and temporary 
storage when a last-in/first-out structure is designed. For more information on 
programming uses of stacks, please refer to the PDP-ll Architecture Hand­
book. 

Processor Status Word (PSW) 

The processor status word (PSW) contains information on the current status of 
the PDP-ll/24. This information includes current and previous operational 
modes, an indicator that is used to show that a CIS instruction was suspended 
by an interrupt, current processor priority, an indicator for detecting the 
execution of an instruction to be trapped during program debugging, and 
condition codes describing the results of the last instruction . 

• MODES 
Mode information includes the present mode, either user or kernel (bits 
15, 14), and the mode the machine was in before the last interrupt or trap (bits 
13, 12). 



4-6· PDP-ll/24 

15 14 13 12 11 9 8 

RSVD 
I I I I 

CURRENT MODJ t ~~" __ J 
PREVIOUS MODE~ 
CIS INSTRUCTION SUSPENSION 

4 

PRIORITY 

Figure 4-4 • 17 77 7 776 Processor Status Word 

o 

The two modes permit a fully protected environment for a multiprogramming 
system by providing the user with two distinct sets of processor stacks and 
memory management registers for memory mapping. 

When in user mode, a program is inhibited from executing a HALT instruction 
and the processor will trap through location 4 if an attempt is made to execute 
this instruction. Furthermore, the processor will ignore the RESET instruc­
tion, and execute No Operation. In kernel mode, the processor will execute all 
instructions. 

A program operating in kernel mode can map users' programs anywhere in 
memory and thus explicitly protect key areas (including device registers and the 
PSW) from the user operating environment. 

• CIS INSTRUCTION SUSPENSION 
When set, bit 8 indicates that a commercial instruction is in process. Since 
commercial instructions can be interrupted, this bit will be pushed onto the 
stack with the rest of the processor status word. When control is returned to 
the routine, the commercial instruction will continue where it left off. 

• PROCESSOR PRIORITY 
The central processor operates at any of eight levels of priority, 0-7. When the 
CPU ; operating at level 7, an external device cannot interrupt it with a request 
for service. The central processor must be operating at a lower priority than the 
priority of the external device's request in order for the interruption to take 
effect. The current priority is maintained in the PSW (bits 5-7). The eight 
processor levels provide an effective interrupt mask, which can be dynamically 
altered by the kernel-mode program through use of the set priority level 
instruction. (For more information on the instructions, see the PDP-ll 
Architecture Handbook). 

• TRACE TRAP 
The trace trap bit (T) can be set or cleared under program control. When set, a 
processor trap will occur through location 14 after the execution of the 



4-7 

instruction is completed, and a new PSW will be loaded. This bit is especially 
useful for debugging programs because it provides an efficient method of 
single-stepping the program. 

Interrupt and trap instructions both automatically cause the previous processor 
status word and program counter to be saved and replaced by the new values 
corresponding to those required by the routine servicing the interrupt or trap. 
The user can thus cause the central processor to automatically switch modes 
(context switching), alter the CPU's priority, or disable the trace trap bit 
whenever a trap or interrupt occurs . 

• CONDITION CODES 
The condition codes contain information on the result of the last CPU 
operation. They include a negative bit (N), set if the result of the previous 
operation was negative; a zero bit (Z), set if the result of the previous operation 
was zero; an overflow bit (V), set if the result of the previous operation caused 
an arithmetic overflow, and a carry bit (C) set by the previous operation if the 
operation caused a carry out of its most significant bit. 

• STACK LIMIT 
The PDP-ll/24 has a kernel stack overflow boundary at location 400. Once the 
kernel stack goes below this boundary, the processor will complete the current 
instruction and then trap through location 4, indicating stack overflow in the 
CPU error register. 

CPU Error Register 

This register is available only when the UNIBUS map is installed. The CPU 
error register contains one bit, bit o. This bit when set indicates that one or 
more power supply voltages has exceeded its tolerance. This bit is set when 
voltage error occurs and is cleared either by RESET or by writing a zero to 
the bit. 

Bit: 0 
Name: CPU Power Failure 
Function: (See explanation above.) 

15 

POWER FAILURE BIT------------------..J 

Figure 4-5· 17 777 766 CPU Error Register 



4-8' PDP-11/24 

Processor Traps 
These are several kinds of errors. and programming conditions that will cause 
the central processor to trap through a set of fixed locations. These include 
power failure, stack errors, timeout errors (nonexistent memory references), 
memory errors, memory management violations, floating-point processor 
exception traps, use of reserved instructions, use of the T bit in the PSW, and 
use of the lOT, EMT, BPT, and TRAP instructions. 

• POWER FAILURE 
Whenever ac power drops below 90 volts for 120 V power (180 volts for 240 V) 
or outside a limit of 47 to 63 Hz, as measured by de power, the powerfail 
sequence is initiated. The central processor automatically traps through 
location 24 and the user's powerfail program has approximately 5 milliseconds 
to save all volatile information (data in registers, 1/0 status, etc.) and to 
condition peripherals for power failure. 

If battery backup is present and if the batteries are not depleted when power is 
restored, the processor again traps to location 24 and executes the user's 
powerup routine to restore the machine to its state prior to power failure. If 
batteries are not present, a bootstrap of the default device is executed. 

• TIMEOUT ERROR 
This timeout error occurs when a MSYN pulse is placed on the UNIBUS and 
there is no SSYN pulse within 20 microseconds. This error usually occurs in 
attempts to address nonexistent memory or peripherals. The instruction is 
aborted and the processor traps through location 4. 

• RESERVED INSTRUCTION 
There is a set of illegal and reserved opcodes that causes the processor to trap 
through location 10. An example would be an attempt to execute a floating­
point instruction when no floating-point processor is present. 

• TRAP HANDLING 
The PDP-ll Architecture Handbook includes a list of the reserved trap vector 
locations and system error definitions that cause processor traps. When a trap 
occurs, the processor follows the same procedure for traps as it does for 
interrupts (saving the PC and PSW on the new Processor Stack, etc.). In cases 
in which multiple traps and interrupts occur concurrently, the processor will 
service the conditions according to the priority sequence that follows. 



4-9 

• TRAP PRIORITIES 

1. DC LO (powerup) 9. Bus request (BR) level 7 
2. Reserved instruction trap 10. Line clock (highest B6 device) 
3. Memory management fault 11. BR level 6 
4. Bus error traps 12. BR level 5 
5. Memory parity errors 13. BR level 4 
6. Trace trap 14. HALT REQUEST 
7. Stack overflow trap 15. WAIT LOOP 
8. Powerfail trap 

• STACK LIMIT VIOLATIONS 
When instructions cause the kernel R6 to exceed (go lower than) 400" a stack 
limit violation occurs. When operations that cause a stack limit violation are 
completed, then a bus error trap is effected (Trap to 4). The error trap, which 
itself uses the stack, executes without causing an additional violation. 

CPU and I/O Device Registers and Addresses 

Table 4·1 • PDP.ll/24 CPU and I/O Device Registers and Addresses 

Address 

17777776 

17777766 

17777 707-17 777 700 

17 777 656-17 777 640 

17777 616-17 777 600 

17777 576 

17777 574 

17777 572 

17777 570 

17777 566-17 777 560 

17776500-17776506 

17772 516 

17772 356-17 772 340 

17772 316-17 772 300 

17 770 372-17 770200 

Register 

Processor Status Word (PSW) 

CPU Error (Optional with UNIBUS map) 

CPU General Register (not accessible by address) 

User Instruction PAR, Reg. 0·7 

User Instruction PDR, Reg. 0-7 

MM Status Register 2 (SR2) 

MM Status Register 1 (SR1) 

MM Status Register 0 (SRO) 

Display Register 

Console Terminal SLU 

SLU2 

MM Status Register 3 (SR3) 

Kernel Instruction PAR, Reg. o· 7 

Kernel Instruction PDR, Reg. 0-7 

UNIBUS Map Registers (optional with UNIBUS 
map) 



4-10· PDP-ll/24 

. Memory System 

Memory Management 
The memory management hardware is ~tandard with the PDP-ll/24 computer. 
This hardware relocation and protection facility can convert the 16-bit program 
virtual addresses to 22-bit physical addresses. The unit may be enabled or 
disabled under program control. There is a small speed advantage when the 
unit is in the 16-bit mode.The basic function of relocating memory and 
protecting individual programs from one another is described in detail in the 
PDP-ll Architecture Handbook. 

MOS Memory with Error Correcting Code and Optional Battery Backup 
MOS memory with error correcting code (ECC) is identical to the memory 
available for the PDP-ll/44 and PDP-ll/84 systems. For an explanation of ECC 
and optional battery backup, refer to the descriptions in the PDP-ll/84 chapter. 

UNIBUS Map 
The UNIBUS map responds as memory on the UNIBUS. It is the hardware 
relocation facility for converting the 18-bit UNIBUS addresses to 22-bit 
addresses. The relocation mapping may be enabled or disabled under program 
control. The UNIBUS map is an optional feature of the PDP-ll/24, except when 
used in conjunction with theone-Mbyte MSll~P memory. It then becomes a 
standard feature . 

. PDP-ll/24 Backplane Configuration 

The PDP-ll/24 backplane (see Figure 4-6) consists of nine slots. Slot 1 is re­
served for the M7133 CPU module. Slot 2 can contain memory or the UNIBUS 
map module. Additional memory can be configured in slots 3-6. (In the 5.25-
inch box, the total number of MSll-L memory modules cannot exceed three; 
only one MS 11-P memory module can be configured in the 5 .25-inch box). The 
UNIBUS map is generally required for configurations with more than 256 
Kbytes of memory. Slot 9 contains either the M9312 bootstrap/terminator, the 
M9302 terminator (if the UNIBUS map option is installed), or the UNIBUS 
cable. 
The PDP-ll/24 uses MSll-LB (128 Kbytes), MSll-LD (256 Kbytes) or MSll-PB 
(1 Mbyte) MOS ECC memory. These have the characteristics outlined in 
Table 4-2. 



A B c D E F 

CPU (M7133) 

MS11-LB (128Kb), MS11-LD (256Kb), MS11-PB (1 Mb) 
MOS MEMORY OR M7134 MAP OPTION 

3 MEMORY, HEX OR QUAD 

4 MEMORY, HEX OR QUAD 

5 MEMORY, HEX OR QUAD 

6 MEMORY, HEX OR QUAD 

MUD HEX OR QUAD 

8 MUD HEX OR QUAD 

UNIBUS 
QUAD 

TERM/BOOT 
9 

Figure 4-6· PDP-ll/24 Backplane Configuration 

Table 4-2· Memory Modules 

Size Access Time Cycle Time 
(Bytes) (osee) (osee) 

MSll-LB (l8-bit) 128 Kbytes 360 for DATI 450 
95 for DATa 

MSll-LD (l8-bit) 258 Kbytes 360 for DATI 450 
95 forDATO 

MSll-PB (22-bit) 1 Mbyte 490 for DATI 680 
(720 w/err) 
100 for DATa 580 

. Console 

The console terminal of the PDP-ll/24 provides two functions. 

• Communication with the operating software 

• Debugging of hardware and software 

4-11 

EXPANSION 
SLOTS 

Refresh 

560 ns every 
12.5 ~s 

560 ns every 
12.5 ~s 

675 ns every 

13.3 ~s 

When the console terminal is communicating with the operating software, it is 
in program mode. When the PDP-ll/24 is stopped, the console terminal is in 
console-ODT mode. 



4-12' PDP-ll/24 

The two modes are summatized in Table 4-3. Various conditions can switch 
the console terminal between modes. These conditions are diagrammed in 
Figure 4-7. 

Table 4·3 • PDP.ll/24 Console Terminal Modes 

Program Mode Console Mode 

Microprogram running? Yes Yes 

Macroprogram running? Yes No 

bootSWitch' P or G / / HALT flip-flop. 
\ command / / HALT switch. 
, / / HALT instruction. 

~~~~~~~~ ___ J ___ J_~~~~~~~~_ 
PDP-11/24 halted' // //

/

Figure 4·7' Conditions That Switch the Console Terminal between Modes

Program Mode Functions
While the console terminal is operating in program mode, it is under the sole
control of the operating system software, and most of its functions are defined
by that software .

• LEAVING PROGRAM MODE
The user can leave program mode and enter console-ODT in one of four ways­
by pressing the <BREAK> key while the PDP-ll/24 keyswitch is in the
< LOCAL> position, by placing the HALT/RUN/BOOT switch in the HALT
position (again while the keyswitch is in the < LOCAL> position), by the PDP­
n program executing a HALT instruction while in kernel mode, or by the HALT
flip-flop being set (from a previous H command.)

4-13

ConsoleODT
Besides machine setup, the console mode can also be used to examine or
modify the contents of memory or UNIBUS device registers. Programs may also
be stopped, started, or single-stepped. These functions are implemented by a
microprogram contained within the F-ll processor chip. During the execution
of these functions, the PDP-ll/24 CPU is stopped. That is, although the F-ll
microprogram is still running, no PDP-ll macroinstructions are being executed.

These functions are collectively referred to as console ODT (octal debug­
ging technique) and are generally compatible with both ODT-ll and the
console ODT functions provided by the LSI-ll, the MicroPDP-ll/23, and the
PDP-ll/84.

Console ODT can examine any read-only or read/write address in the first 248
Kbytes of main memory or 8 Kbytes of I/O page. Console ODT can also modify
any read/write (not write-only) location. Locations that read all zeros (such as
the console XBUF) can also be modified. The ODT commands are summarized
in Table 4-4.

Table 4-4 • Console ODT Commands

Command Symbol Function

Slash n/ Opens the specified location (n) and out-
puts its contents. n is an octal number.

Carriage Return <CR> Closes an open location.

Line Feed <LF> Closes an open location and then opens
the next contiguous location.

Internal Register $n, Rn, or rn Opens a specific processor register (n). n is
Designator an integer from 0 to 7 or the character S.

Processor Status S or s Opens the PSW -must follow $ or R
Word Designator command.

Go Gorg Starts program execution.

Proceed Porp Resumes execution of a program.

Binary Dump Control-S Manufacturing use only.

Toggle Halt H Sets or clears an internal flip-flop that
flip-flop acts in parallel with the HALT position of

the HALT/CONT/BOOT switch.

A detailed description of the console ODT commands for the PDP-ll/24 is
found in Appendix B.

4-14' PDP-ll/24

• LEAVING CONSOLE ODT MODE
You can leave console-ODT mode and return to program mode via

• The P command

• The G command

• The boot switch

The P or G command will exit you back to program mode. (The G command is
used for a total restart, while the P command allows you to proceed). The
bootswitch will reboot the I/O device selected by an internal switchpack.

. Address Specification

All addresses must be entered by users with all 18 bits specified, regardless of
whether the MMU is present or not. For example, if a user desires to open the
RCSR of Serial Line Unit 1, the user must enter 777 560, not 177 560.
Eighteen-bit addresses must also be used to access memory greater than 32
Kwords. Leading zeros need not be typed. Console ODT cannot access
memory above 248 Kbytes (124 Kwords).

Processor I/O Addresses
Certain processor and MMU registers have I/O addresses assigned to them for
programming purposes. If referenced in console ODT, the PSW responds to its
bus address, 777 776. Processor registers RO through R7 do not respond to bus
addresses 777 700 through 777 707 if referenced in console ODT (i.e., timeout
occurs).

The MMU contains status registers and PAR/PDR pairs. Any of these registers
can be accessed from console ODT by entering its bus address.

Example: @777572/00000l < SPACE> (User's entry in boldface type)

In this case, memory management status register 0 is opened and the memory
management enable is seen to be set. The internal display register (777 570)
can not be accessed with ODT because the register is write-only and ODT
always first attempts to read the register.

Stack Pointer Selection
Accessing kernel and user stack pointer registers is accomplished in the
following way. Whenever R6 is referenced in ODT, it accesses the stack pointer
specified by the PSW current mode bits (PSW < 15-14». This is done for
convenience. If a program operating in kernel mode (PSW < 15-14> = 00) is
halted and R6 is opened, the kernel stack pointer is accessed.

Similarly, if a program is operating in user mode, R6 accesses the user stack
pointer. If a specific stack pointer is desired, PSW < 15-14> must be set by the

4-15

user to the appropriate value and then the R6 command can be used. If an
operating program has been halted, the original value of PSW < 15-14> must
be restored in order to continue execution.

Example: PSW = 140000
@R6/123456<SPACE>

The user mode stack pointer has been opened.
@RS/140000<SPACE>0<CR> <CR> <LF> (switch to ker­
nelmode)
@R6/123456<SPACE> <CR> <CR> <LF> (read the kernel
stack pointer)
@RS/OOOOOO < SPACE> 140000 < CR > < CR > < LF > (return
to user mode)
@P

In this case, the kernel mode stack pointer was desired. The PSW was opened
andpsw < 15-14> was set to 00 (kernel mode). ThenR6 (kernel stack pointer)
was examined and closed. The original value of PSW < 15-14> was restored
and then the program was continued using the P command.

If PSW < 15-14> is set to 01, another unique register exists in the processor,
but is reserved for future Digital use.

The floating-point accumulators, which are also in the MMU chip, cannot be
accessed from console ODT. Only floating-point instructions can access these
registers.

Entering Octal Digits
When the user is specifying an address of data, console ODT will use the last
six octal digits if more than six have been entered. The user need not enter
leading zeros for either address or data; console ODT forces zeros as the
default. If an odd address is entered, the low-order bit is ignored and a full 16-
bit word is displayed.

ODT Timeout and Parity Errors
If the user specifies a nonexistent address, console ODT responds to the error
by printing ? < CR > < LF > @. If a parity error is indicated while opening a
location, console ODT also prints ?<CR> <LF>@.

Invalid Characters
Console ODT will recognize, with the exception of H, uppercase and lowercase
characters as commands. Any character that console ODT does not recognize
during a particular sequence is echoed (with the exception of ASCII 0,2, 10, or
12) and console ODT prints a ?<CR> <LF>@.

4-16· PDP-ll/24

• Terminal Serial Line

The PDP-ll/24 contains two serial line interfaces as a standard feature. The
first interface (the console interface) is used to control the PDP-ll/24 hardware
and the operating system software.

While controlling the PDP-ll/24 hardware, the console interface is said to be in
console mode and is operated by a fixed program. While controlling, and in
turn being controlled by, operating system software, the console interface is
said to be in program mode. The selection of console or program mode is made
via the PDP-ll/24 front panel and by special characters typed at the console
terminal. Use of the console mode and program mode is described earlier in
this chaptel:

Serial Line Unit Timing Considerations
The serial line unit timing considerations for the PDP-ll/24 are identical to the
PDP-ll/44. Therefore an explanation of the UART (Universal Asynchronous
Receiver/Transmitter) subsystem may be found in the PDP-ll/44 chapter.

Terminal Serial Line Unit Control Registers (SLU 1)
There are four Terminal SLU registers that follow. All unused or write-only bits
are zero when examined

• RECEIVER STATUS REGISTER (TERM RCSR)
Bits: 15-8
Function: Unused

Bit: 7 (Read Only)
Name: RECEIVER DONE
Function: Set when an entire character has been received and is ready for
transfer to the UNIBUS. Cleared by addressing (Read or Write) RBUF or by
INIT, Starts an interrupt sequence when RECEIVER INTERRUPT ENABLE
(bit 6) is also set.

15 8 6

RECEIVER DONE (RCVR DONE) t t
RECEIVER INTERRUPT ENABLE (RCVR INT ENB) ~

5 a .

Figure 4-8·17777 560 Receiver Status Register

4-17

Bit: 6 (Read/Write)
Name: RECEIVER INTERRUPT ENABLE

Function: Cleared by INIT. Starts a priority 4 interrupt sequence when
RECEIVER DONE is set.

Bits: 5-0
Function: Unused

• RECEIVER DATA BUFFER (TERM RBUF)

Bit: 15 (Read Only)
Name: ERROR
Function: Logical OR of OVERRUN ERROR, FRAMING ERROR, and PARITY
ERROR. Cleared by removing the error conditions. ERROR is not tied to the
interrupt logic, but RECEIVER DONE is.

Bit: 14 (Read Only)
Name: OVERRUN

Function: Set if the previously received character is not read (RECEIVER
DONE not reset) before the present character is received. This indicates that
the previous character(s) have been lost.

Bit: 13 (Read Only)
Name: FRAMING ERROR
Function: Set if the character read has no valid stop bit. Also used to detect
break.

Bit: 12 (Read Only)
Name: RECEIVE PARITY ERROR

Function: Set if received parity does not agree with the expected parity.
Always zero if no parity is selected.

NOTE
Error conditions remain present until the next character is received, at which
time the error bits are updated. INIT does not necessarily clear the error bits.

15 12 11 8 6 o

~-----------y~----------/

RECEIVED DATA BITS ______________________________ --'1

Figure 4-9·17777 562 Receiver Data Buffer

4-18· PDP-ll/24

Bits: 11-8
Function: Unused

Bits: 7-0 (Read Only)
Name: RECEIVED DATA
Function: These bits contain the character just read. If fewer than eight bits
are selected, the buffer will be right-justified with the unused bits read as
zeros. Not cleared by INIT .

• TRANSMITTER STATUS REGISTER (TERM XCSR)

Bits: 15-8
Function: Unused

Bit: 7 (Read Only)
Name: TRANSMITTER READY

Function: Set by INIT. Cleared when XBUF is loaded; set when XBUF can
accept another character. When set, it will start an interrupt sequence if
TRANSMITTER INTERRUPT ENABLE is also set.

Bit: 6 (Read/Write)
Name: TRANSMITTER INTERRUPT ENABLE
Function: Cleared by INIT. As per Receiver Interrupt Enable, when set it will
start a priority 4 interrupt sequence if TRANSMITTER READY is also set.

Bits: 5-3
Function: Unused

Bit: 2 (ReadjWrite)
Name: MAINTENANCE

Function: Cleared by INIT. When set, connects the serial output of the
TRANSMITTER into the serial input of the RECEIVER, in place of the normal
serial input from the terminal. It also forces the receiver to run at the same
speed as the transmitter.

Bits: 1-0
Function: Unused

15 8 6 5 3

TRANSMITTER READY (XMT RDV) t t
TRANSMITTER INTERRUPT ENABLE (XMT INT ENB) ~

2 1 0 -
MAINTENANCE (MAINT) -----------------'

Figure 4-10· 17 777564 Transmitter Status Register

• TRANSMITTER DATA BUFFER (TERM XBUF)

Bits: 15-8
Function: Unused

Bits: 7-0 (Write Only)
Name: TRANSMITTER DATA BUFFER

4-19

Function: If fewer than eight bits are selected, then the character must be
right-justified. The character to be transmitted is written into this register.

Second Serial Line Unit Registers (SLU 2)
The second serial line unit is a general-purpose serial line interface. It may be
used for a variety of purposes:

• Connection of a serial line-printer

• Connection of a TU58 cartridge tape drive

• Connection of a modem

This interface is not recommended for use with a high-speed (> 1200 baud)
interactive terminal, such as a VT220 or VT240jz). The four SLU2 registers
follow.

----------~y~--------~

TRANSMITTER DATA BUFFER--------------lt
Figure 4-11 • 17 777 566 Transmitter Data Buffer

• RECEIVER CONTROL STATUS REGISTER (RCSR)

Bits: 15-8
Function: Unused

Bit: 7 (Read Only)
Name: RECEIVER DONE
Function: Set when a complete character is contained in the RBUF. Cleared
when the RBUF is addressed or when an INITIALIZE operation occurs.
Initiates the interrupt sequence when the RECEIVER INTERRUPT ENABLE

(bit 6) is set.

4-20' PDP-ll/24

15 8 7 6 5 0

RECEIVER DONE (RCVR DONE) t t
RECEIVER INTERRUPT ENABLE (RCVR INT ENB) ~

Figure 4-12' 17 776500 Receiver Control/Status Register

Bit: 6 (Read/Write)
Name: RECEIVER INTERRUPT ENABLE

Function: Set by program to allow a priority 4 interrupt sequence to be
initiated by the RECEIVER DONE (bit 7).

Bits: 5-0
Function: Unused

• RECEIVER BUFFER REGISTER (RBUF)

Bit: 15 (Read Only)
Name: ERROR
Function: Set when the OR ERROR (bit 14), FR ERROR (bit 13) or the PAR
ERROR (bit 12) is set. Cleared by the reception of new and correct data.

Bit: 14 (Read Only)
Name: OVERRUN ERROR
Function: Set if the character in the RBUF has not been read before another
character is received. Cleared by an INITIALIZE operation or when the RBUF

is emptied.

Bit: 13 (Read Only)
Name: FRAMING ERROR
Function: Set when the character read in RBUF does not have a valid stop
bit(s). Cleared when a valid character is received. This bit may indicate an error
in transmission or the reception of a BREAK character.

15 14 13 12 11 8 6 4 2 0

\. /
y

RECEIVER DATA BITS 1
Figure 4-13' 17 776502 Receiver Buffer Register

Bit: l2 (Read Only)
Name: PARITY ERROR

4-21

Function: Set when the parity of the character read in the RBUF is incorrect
relative to the parity mode selected. Cleared when the parity of the next
character is valida ted.

Bits: 11-8
Function: Unused

Bits: 7-0 (Read Only)
Name: RECEIVED DATA
Function: These bits constitute the data characters received from the SLU 2 .

• TRANSMITTER CONTROL/STATUS REGISTER (XCSR)

Bits: 15-8
Function: Unused

Bit: 7 (Read Only)
Name: TRANSMITTER READY
Function: Set when the XBUF is ready to accept a character or when an
initialize operation occurs. Setting the bit indicates an interrupt sequence if
the TRANSMITTER INTERRUPT ENABLE (bit 6) is set. Cleared. when a
character is written into the XBUF.

Bit: 6 (Read/Write)
Name: TRANSMITTER INTERRUPT ENABLE
Function: Set by program. Enables a priority 4 interrupt sequence to be
initiated if the TRANSMITTER READY (bit 7) is set. Cleared by the program.

Bits: 5-1
Function: Unused

Bit: 0 (ReadfWrite)
Name: BREAK

Function: Set by the program. When set, a continuous space is transmitted
equivalent to sending a null character with no stop bits (framing error). May be
diabled by removing a jumper on the M7096 module.

15 8 6 5 0

TRANSMITTER READY (XMIT RDV) t t
TRANSMITTER INTERRUPT ENABLE (XMIT INT ENB) ~
BREAK BIT (BREAK) ----------------------'

Figure 4-14·17776504 Transmitter Control/Status Register

4-22· PDP-ll/24

• TRANSMITTER DATA BUFFER REGISTER (XBUF)

Bits: 15-8
Function: Unused

Bits: 7:0 (Write Only)
Name: TRANSMITTER DATA
Function: These bits constitute the data characters to be transferred to the SLU

2.

15 8 1 6 5 4 3 2 1 0

~j~~ DOli D061 D051 D041 D031 D021 D011 DOol

~ y~----------/

TRANSMITIER DATA BITS __________ --'t
Figure 4-15· 17 776506 Transmitter Data Buffer Register

. Line Clock

The PDP-ll/24 includes a line-time clock as standard equipment. This clock
provides interrupts synchronized with the cycles of the ac power line. By
counting these interrupts, this allows the operating system software to keep
realtime.

Clock Status Register (LKS)

Bits: 15-8
Function: Unused

Bit: 7 (Read/Clear)
Name: LINE CLOCK MONITOR
Function: Set only by the line frequency clock signal and cleared only by the
program or the line clock interrupt sequence. Set by INIT.

Figure 4-16· 17 777 546 Clock Status Register

4-23

Bit: 6 (Read/Write)
Name: LINE CLOCK INTERRUPT ENABLE
Function: Cleared by INIT. \X'hen set, starts an interrupt sequence if LINE
CLOCK MONITOR is also set.

Bits: 5-0
Function: Unused

. Address and Vector Assignments

Integral to the PDP-ll/24 CPU are the two serial line units and the clock. The
serial line units follow the same address and vector assignments as the KLll,
DLll-A,-B,-C,-D,-W, and the KWll-L, respectively. SLU 1 is for the system
console and has fixed addresses and vectors. SLU 2, which may be used for
asynchronous devices, has switch-selectable contiguous addresses and vectors.
The realtime clock has a fixed address and vector.

Table 4-5· Address and Vector Assignments

Console
(SLU #1)

(SLU #2)

Line Clock

. Specifications

Packaging

Address

17777560
17777562
17777564
17777 566

17776500
17776502
17776504
17776506

17777 546

Vector

60/64

300/304

100

Priority

BR4

BR4

BR6

A basic PDP-ll/24 consists of either a 5 .25-inch or a 1O.5-inch box with a 9-slot
backplane, power supply, CPU, 128-Kbyte, 256-Kbyte, or I-Mbyte memory.

There are prewired areas within the backplane for expansion with optional
equipment.

4-24' PDP-ll/24

Component Parts
The basic PDP-llf24 system contains

• Standard Equipment
-PDP-llf24 CPU_
-Memory management.
-Bootstrap loader.
-Line-frequency clock.
-Second serial line interface.
-Terminal interface.
-128-Kbyte, 256-Kbyte, or I-Mbyte ECC MOS memory.
-BAll-L or BAll-A box with power supply.

• Prewired Expansion Space for Optional Equipment.
-Floating-point unit.
-SPC slots for peripherals, up to 6 hex height and 1 quad height (depending

on the memory configuration).
-768-Kbyte parity MOS memory (up to 1024 Kbytes maximum).
-4 system units of open space in BAll-A Box.

Other Specifications
• ACPOWER

5.25-in Box 104-127 Vrms, 47-63 Hz, 1 phase power, 5 amps rms maximum
@ 120Vac

10.5-in Box 90-128 Vrms, 47-63 Hz, 1 phase power, 9 amps rms maximum
@240Vac

• SIZE

5.25-in Box Cabinet is 13.5 em high by 48 em wide by 69 em deep (5.25 in
by 19 in by 25 in)

10.5-in Box Cabinet is 26.3 em high by 42.4 em wide by 66 em deep (10.35
in by 16.62 in by 26 in)

• WEIGHT

5.25-in Box 20 Kg (45Ibs)

10.5-in Box 32 Kg (70 Ibs)

4-25

• OPERATING ENVIRONMENT
The 5 .25-inch and lO.5-inch CPU boxes have the same operating and nonoper­
ating environment specifications.

Temperature: 5°e to 50 0 e (41°F to 122°F)

Humidity: 10% to 95% with maximum wet bulb of 32°e (89.6°F) and
minimum dew point of 2°e (36°F)

Altitude: To 2.4 Km (8,000 ft) noncondensing

• NONOPERATING ENVIRONMENT

Temperature: -40°C to 80 0 e (-40°F to 176°F)

Humidity: To 95% noncondensing

Altitude: To 9.1 Km (30,000 ft)

• Chapter 5 • UNmUS Technical Description

5-2· UNIBUS Technical Description

. Characteristics of the UNIBUS

All computers must contain some method of interfacing with the outside
world. For some computers, this requires a collection of integrated input/
output (I/O) controllers with special connections to the processor and/or
memory. For other computers, this requires a collection of wires, and a protocol
explaining how to use these wires to communicate with the rest of the
computer. The set of wires is called a bus. The UNIBUS is the particular bus
used by many of the PDP-ll and VAX-ll computers from Digital.

Some of the major characteristics of the UNIBUS are listed below, and
discussed in subsequent paragraphs.

• Nonmultiplexed bus

• Strict master/slave relationship

• Partially distributed arbitration

• Overlapped arbitration and data transfer

• Asynchronous operation

• 18 address bits

• Word or byte operations

• Parity error information from slaves

Nonmultiplexed Bus
Most buses contain the concepts of address and data. All things on the bus are
uniquely accessed by means of an address, or a series of addresses. The address
on the bus is very much like a telephone number or an address on an envelope.
OIlce a unique device has been addressed (selected), data may be exchanged
with that device. This data would correspond to the phone conversation, or the
letter itself.

Some buses first use the same physical set of wires to carry the address,
followed by one or more items of data. These buses are called multiplexed buses
(see Figure 5-1). The Digital Q-bus is an example of a multiplexed bus. Other
buses use separate sets of wires to carry the address and data. These buses are
called nonmultiplexed buses (see Figure 5-2). The UNIBUS is an example of a
nonmultiplexed bus.

Because an address and data can be carried simultaneously, a nonmultiplexed
bus is usually faster, particularly if each new address bears no relationship to
any preceding address. However, multiplexed buses share the same set of wires
for address and data so they tend to be physically smaller and thereby less
expensive. If addresses are usually presented in a particular order (e.g.,
ascending), the next address can be predicted rather than explicitly transmit­
ted, and the performance of the multiplexed bus can approach the perform­
ance of the nonmultiplexed bus.

Data
and
Addr
Wires

Addr
Wires

Data
Wires

Figure 5-1 • A Multiplexed Bus (like the Q-bus)

One Transfer

Figure 5-2· A Nonmultiplexed Bus (like the UNIBUS)

Strict Master/Slave Relationship

5-3

Most transfers on the UNIBUS consist of a single device (called the bus master,
or just master) requesting another device (the slave) to perform some operation.
Other buses may use the terms commander and responder as synopyms for
master and slave. No direction of data flow is implied here-the master may be
requesting that the slave read or write data.

Partially Distributed Arbitration
The UNIBUS, like most buses, allows only one device at a time to be the bus
master. This implies that there must be some method of selecting a bus master
from among all of the devices requesting the bus. The process that performs
this selection is called priority arbitration, and the bus is usually granted to the
requester with the highest priority (according to some pre-arranged scheme).

Arbitration on the UNIBUS is performed using a two-dimensional scheme. A
typical example is shown in Figure 5-3. The first dimension is the specific
priority level of the request. The UNIBUS may be requested at any of five
different priority levels. The highest priority level is named nonprocessor
request (NPR), so named because devices requesting use of the UNIBUS at this
priority level do not need any assistance from the central processor. This is
somewhat analagous to direct memory access (DMA), although the UNIBUS

allows NPR transfers between any two devices, not just between a device and
memory. The lower four levels are simply called bus request 7 (BR 7) through bus
request 4 (BR4). Devices request use of the UNIBUS via BR levels in order to
interrupt a processor (described later).

All requests are passed to a central bus arbitrator. This central bus arbitrator is
usually included in the PDP-ll processor or VAX-ll UNIBUS adapter or
interface. In any case, it is always located at the front end of the UNIBUS. The

5-4· UNIBUS Technical Description

arbitrator determines the highest requested level from among the five available
and issues a bus grant for that level, if appropriate. The grant then travels
towards the back end of the UNIBUS. Nonprocessor grant (NPG) is given in
response to NPR, bus grant 7 (BG7) in response to BR7, and so forth.

The second dimension of the arbitration is performed when more than one
device requests the UNIBUS at the same priority level. Now the grant is passed
from device to device, towards the back end of the UNIBUS (this is referred to
as daisychaining). Each device, in turn, considers whether it wants to use the
UNIBUS. A device that does not want to use the UNIBUS passes the grant on to
the next device along the UNIBUS. A device that does want to use the UNIBUS
does not pass the grant (i.e., it blocks the grant) and the device wins the
arbitration. Thus arbitration among more than one device on a particular level
is distributed among the devices.

Device Device Device Device
1 2 3 4

Processor DL11-W Disk Tape DL11-W

N N
p P

A R R

B
R
6

a B B
R R

0 5 5
B B
R R
4 4

Figure 5-3· UNIBUS Two-dimensional Priority

Figure 5-3 illustrates the beginning of a typical UNIBUS. Here, the first DLll­
W (Device 1) can request the UNIBUS at priority levels BR6 or BR4; both the
disk controller (Device 2) and the tape controller (Device 3) can request at NPR
or BR5; the second DLll-W (Device 4) can request only at BR4. No device in
this illustration uses BR 7.

The UNIBUS arbitrator considers the five levels of priority and grants the
highest-level request. So in our example, the disk or the tape requesting at the
NPR level always have priority over either of the DLll-Ws requesting at either
BR6or BR4.

5-5

On any given level (e.g., NPR), the grant is passed from device to device along
the UNIBUS. At the NPR level, the disk has priority over the tape because the
disk gets an opportunity to examine (and possibly block) the grant before
passing it on to the tape. Similarly, at the BR4 level, the first DLll-W has
priority over the second DLll-W.

Overlapped Arbitration and Data Transfer
As mentioned previously, before a prospective bus master may use the bus, it
must win the arbitration (ensuring that it is the highest priority requester of
the bus). Some buses can do only one thing at a time (e.g., arbitrate or transfer
data), but not both. This is illustrated in Figure 5-4. The UNIBUS, on the other
hand, allows the next master to be selected (arbitrated) while the current
master is still transferring data. This is referred to as overlapped arbitration and
greatly contributes to the performance of the UNIBUS. See Figure 5-5.

Data.
Addr,
and
Arb
Wires

Figure 5-4 • A Non-overlapped Arbitration Bus

Arbitration

Data
Transfer

Figure 5-5· An Overlapped Arbitration Bus (like the UNIBUS and Q-bus)

Asynchronous Operation
A bus may be synchronous or asynchronous. Synchronous buses partition time
into parcels of fixed duration, usually called cycles. These cycles are defined by
one or more clocks on the bus. Every operation on the bus must take place in an
integral number of these cycles. Some buses require that every operation must
take place within a single bus cycle. A synchronous bus of this sort is illustrated
in Figure 5-6. Here, every rising edge of the system clock implies that a valid
address is on the bus; every faIling edge of the system clock implies that the
data has replaced the address. Although synchronous buses may be very simple

5-6' UNIBUS Technical Description

or very fast (although usually not both), this fixed timing imposes severe
constraints on the system designer. The duration of the bus cycle must be long
enough to allow for the slowest peripheral, yet short enough to get reasonable
system performance.

Other synchronous systems allow a device to take multiple bus cycles for one
transfer. A bus of this sort is illustrated in Figure 5-7. Here, a wait (or stall) line
freezes the system, allowing slow slaves more time to process the data. This
eases the timing constraints somewhat but does so at the expense of a more
complex design. Also, when a wait or stall must occur, it must occur in whole­
cycle "chunks," even if the data was late by only a few nanoseconds. Stalling by
whole cycles degrades the performance of this synchronous bus.

Figure 5-6· A Single-cycle Synchronous Bus

Figure 5-7' A Multicycle Synchronous Bus

The UNIBUS, on the other hand, is completely asynchronous. No master clock
times the operations of the UNIBUS. Rather, the selected master and slave
devices exchange handshaking signals to indicate the presence of information
on the bus. This handshaking allows each bus cycle to run as quickly as the
particular master/slave pair will allow. Figure 5-8 shows a series of read data
cycles on the UNIBUS (i.e., the master has asked the slave to provide data to the
master). Note that the master first asserts the address of the desired slave, then
address strobe (actually called MASTER SYNC or BUS MSYN L). The slave then

5-7

looks up the desired data and places it on the data lines along with a signal that
combines the functions of data strobe and address acknowledge (actually called
SLAVE SYNC or BUS SSYN L). No fixed timing is required between BUS MSYN
L and BUS SSYN L; fast slaves can respond quickly while slow slaves can take
more time to produce the requested data.

Addr
Wires

Addr
Strobe

Data
Wires

Data
Strobe
and Address
Acknowledge One Transfer

Figure 5-8· An Asynchronous Bus (like the UNIBUS)

18 Address Bits

address

Driven by
the Master

Driven by
the Slave

The total number of unique data that can be addressed on any bus is dependent
on the number of bits used to form the address. The UNIBUS uses 18 bits to
specify an address. Each address represents a byte of data. Thus the UNIBUS
allows 218 = 256K* Unique Byte Addresses

Of these 256K byte addresses, 248K are reserved for system main memory, or
access to system main memory, and 8K are used for access to I/O devices.

Word or Byte Operations
The UNIBUS allows data to be accessed as a 16-bit word or an 8-bit byte.

Parity Error Information from Slaves
If the slave contains logic to detect parity errors (e.g., a MOS memory), the
slave can pass a parity error indication to the master via a predefined UNIBUS
signal. The UNIBUS itself does not include parity checking of any bus signals.

*K=1024

5·8· UNIBUS Technical Description

. UNIBUS Block Diagram

The UNIBUS may be viewed as three separate but cooperating buses. Please
refer to Figure 5-9.

• Initialization and shutdown bus

• Arbitration bus

• Data transfer bus

The first bus contains signals used to initialize the system or to signal that
power has failed and the system must now be shut down in an orderly fashion.
Any processor may drive the system initialization signal (BUS INIT L), while
power supplies are generally responsible for driving the system shutdown
signals (BUS AC LO L and BUS DC LO L). Every device monitors one or more of
these signals.

The third bus allows the exchange of data between a selected master device and
a selected slave device.

The second bus controls who may have access to the data transfer bus. A
central device called the bus arbitrator receives requests for use of the UNIBUS,
and replies with grants (permission to use the UNIBUS).

UNIBUS
Arbitrator

Initialization Bus

Arbitration Bus

Figure 5-9· UNIBUS Block Diagram

5-9

The UNIBUS may contain more than one processor but only one processor is
designated to be in charge of handling (servicing) interrupts. This processor is
called the interrupt-fielding processor (IFP). The arbitrator may, on its own
authority, issue an NPG in response to an NPR, since a nonprocessor request by
definition does not allow a processor to be interrupted. If, however, the request
is a BR (which would interrupt the IFP), the arbitrator must first consult the
IFP for permision to issue the BG, since the IFP may not allow the interrupt .

. UNIBUS Data and Address Organization

Addresses
Addresses on the UNIBUS are IS-bits wide and represent the address of a
particular byte. The bits are numbered as shown in Figure 5-10, address bit 00
being the Least Significant Bit (LSB) and address bit 17 being the Most
Significant Bit (MSB).

Words are addressed on even-byte boundaries. That is, address bit 00 is always
equal to zero (= 0) when accessing a word.

17 15 12 ~ 00 00 00

MS B L-I ---L...--,---,----,----,---,---,---,----,-I-----'------'-----L..I----L..--L--LI ---,----,---:--,1 LS B

By1e selection -------------'

Figure 5-10· UNIBUS Address Format

Data
Data words on the UNIBUS are 16-bits wide. The bits are numbered as
illustrated in Figure 5-11, bit 00 being the LSB and bit 15 being the MSB.

During word operations, address bit 00 must equal zero.

Each data word may also be construed as two data bytes. See Figure 5-12. Data
on the UNIBUS is never justified. That is, data bits 07-00 always form the even
bytes (i.e., bytes with address bit 00=0) and data bits 15-0S always form the
odd bytes (i.e., bytes with address bit 00= 1). When two bytes are construed as
a word, the even byte forms the low-order bits of the word and the odd byte
forms the high-order bits of the word.

The UNIBUS does not define a byte-read operation. Reads always produce a
word (two bytes) of data, and it is the responsibility of the master to select the
correct byte, based on address bit 00. To read from an even byte, you must take
your data from the lines representing word bits 07-00. To read from an odd
byte, you must take your data from the lines representing word bits 15-0S. For
read operations, address bit 00 is never actually asserted on the bus.

5-10· UNIBUS Technical Description

The UNIBUS does define a byte-write operation. Here, it is the responsibility
of the slave to update the selected byte of the data word (based on address bit
00) while preserving the unselected byte. The master must still drive data on
the correct byte of the UNIBUS, and must now correctly assert address bit 00.
In fact, the master's logic can be simplified by driving the same data onto both
bytes of the UNIBUS simultaneously. The slave will select the correct byte and
ignore the other byte.

Not all slave devices implement the byte-write operation for all addresses.
Some addresses can be written only as entire words, and an attempt to write to
a byte updates the entire word anyway, using whatever data happens to be on
the other byte of the UNIBUS data lines. This is generally true of I/O device
registers. Memories almost always support byte-write operations.

15 12 09 06 03

MSB

Figure 5-11 • UNIBUS Data as a Word

15 14

MSB t
Odd Byte ----1
(ADO = 1)

11 08

I I
LSB

07 06

MSB t
Even Byte----1
(ADO = 0)

Figure 5-12· UNIBUS Data as Two Bytes

. Types of UNIBUS Data Transfers

00

LSB

03 00

LSB

The previous paragraphs introduced the three major subbuses of the UNIBUS,
the form of a UNIBUS address, and the two forms of UNIBUS data. The
following paragraphs will examine in more detail the functions of the Data
Transfer Section.

Because the ultimate function of any bus is to move data from place to place,
the Data Transfer Bus can be viewed as the central, most important part of the
UNIBUS.

5-11

The Data Transfer Section implements five distinct types of operations.

• Read word

• Write word

• Write byte

• Read word (with write intent)

• Write vector

Read Word
The read word operation allows the current UNIBUS master to read one 16-bit
word from a particular UNIBUS slave device. In UNIBUS terminology, this
operation is called a DATI (Data-In). The direction ("In") is always taken with
respect to the master device. For example, a processor (the master in this case)
may wish to read a word of data contained in main memory (the slave). See
Figure 5-13.

15 00

: :

Processor
(Master)

, __ " ====D======oo , Memory
(Slave)

Figure 5-13 • DATI Used to Read a Word

This same operation is also used when the master wishes to read a byte. In this
case, the slave still presents an entire word (two bytes) and the master simply
selects the correct byte. See Figure 5-14.

Figure 5-14 • DATI Used to Read a Byte

5-12' UNIBUS Technical Description

Write Word
This operation allows the current UNIBUS master to write one 16-bit word
from the master to a particular UNIBUS slave device. In UNIBUS terminology,
this operation is called a DATO (Data-Out). The direction ("Out") is once
again taken with respect to the master device. In this example, a disk controller
is writing into main memory. See Figure 5-15.

15 00

: :

Disk " n 00 (Master)

r-:'---------"----------':..:, Memory
'--_______________ -' (Slave)

Figure 5-15' DATO (Write Word)

DATO always writes an entire 16-bit word. DATO can not write a single byte.
The DATO must be directed at a word-address (i.e., an even byte address). In
any case, most slave devices ignore address bit < 00 > during word operations;
this forces the operation to an even address.

Write Byte
This operation allows the current UNIBUS master to write one 8-bit byte from
the master to a particular UNIBUS slave device. In UNIBUS terminology, this
operation is called a DATOB (Data-Out Byte). As usual, the direction ("Out")
is taken with respect to the master device. See Figures 5-16 and 5-17.

r1_5 ______ -'-08:..,-0_7 _______ 0.:-:.,0 DR11-W

I I I (Word-oriented
'-----,.--r----'----,--,-----' Master)

AOO selects
which
byte gets
written

15 08 07 v 00

I I I Slave ~ ____________ L_ __________ ~

Figure 5-16· DATOB (Write Byte) for a Word-oriented Master

5-13

.--_______ 0, Magtape Controller

(Byte-oriented Master)
L-__ ,-_~ __ ~

Figure 5-17 • DATOB (Write Byte) for a Byte-oriented Master

DATOB attempts to write a single 8-bit byte. The other byte is to be left
unmodified.

Read Word with Write Intent
Like DATI, this operation also allows the current UNIBUS master to read one
16-bit word from a particular UNIBUS slave device. In addition, the slave is
informed that a write (DATO/DATOB back to the same address) will soon
follow. In UNIBUS terminology, this cycle is called a DATIP (Data-In Pause).

This cycle originated in the days of magnetic core memory. Reading data from a
core memory is a destructive process. That is, the very process of reading the
data from the magnetic cores destroys the data, clearing it to zeroes (see Figure
5-18). If the core memory location is to retain its data, the read/destroy
operation must immediately be followed by a "restore" operation to write the
data back into the cores.

However, when the master device knows that some form of Read/Modify/
Write operation is being performed (e.g., an increment instruction), there is no
need to restore the. old data to the cores. In fact, core memory requires that the
cores be cleared to zero prior to writing new data into them. Rather than allow
the automatic restoration of the data, the master indicates that it will shortly
supply new data and that the core memory should pause, rather than restore
the old data. Hence the name of the cycle.

DATIPjDATO or DATIPjDATOB requires about half the time compared to DATI/
DATO or DATI/DATOB. See Figure 5-19.

DATI ------' '----- DATO -----'

Figure 5-18 • Separate Read and Write Cycles

5"14· UNIBUS Technical Description

Figure 5-19· DATIP Followed by Write Cycle

Once the core memory has responded to the DATIP, it locks out all other
operations except for the DA'ID/DATOB to the same location as read by the
DATIP.

Write Vector
The final type of UNIBUS cycle has no mnemonic name. It is used by any
master that desires to interrupt the interrupt-fielding processor (IFP). Figure 5-
20 illustrates the case of a disk controller interrupting the IFP.

The master performs this cycle by using a special UNIBUS signal that always
selects the IFP as the slave device and causes the master's data word to be
written to the IFP. The IFP then takes the data word as the address of an
interrupt service pointer (the vector) and interrupts through that vector.

15 00

: :

Disk " U ~ (Master)

~------------~~------------~ IFP
'--____________________________ --' (Slave)

Figure 5-20 • Interrupt Vector Write

By convention, the interrupt vector is in the range [000000-000774] but
neither the UNIBUS hardware nor most IFPs impose any limit. If your master
device passes 177774 as its vector, the IFP will try to interrupt through that
vector.

Interrupt vectors .are always located on even-word (quad-byte) boundaries.
That is, they always take the form xxxxxO or xxxxx4. IFPs will respond
unpredictably to vectors of the form xxxxx2 or xxxxx6.

UNIBUS Signal Details
The UNIBUS actuaIlyconsists of 56 signal lines and a number of ground (logic
reference) lines. The individual lines are detailed in Table 5-1 and discussed in
the subsequent paragraphs.

5-15

All lines on the bus employ open-collector drivers and resistive pull-ups.

Most of these signals are considered to be asserted (Le., 1), while near ground,
and are considered to be deasserted (Le., 0) while near 3.3 volts. Signals of this
type are indicated by the suffix L after the signal name. Any signal that is
asserted while near 3.3 volts is indicated by the suffix H.

NOTE
All timing diagrams are drawn with up meaning asserted, rather than any
particular voltage level.

Three different kinds of termination are used, depending on the particular
signal line. The signals BUS AC LO L and BUS DC LO L are terminated by a
resistor-capacitor network. In the table, this is indicated as "slow" termina­
tion. The grant lines (BUS NPG H, BUS BGx H) only connect from one module
to the next and use a simplified termination on each module. In the table, this
is indicated as "Grant" termination. All other lines are terminated at each end
of the UNIBUS into 120 ohms and 3.3 volts. This is indicated as "fast"
termination. Further details may be found under the heading "UNIBUS
Electrical Characteristics."

The signals are partitioned into three groups which exactly follow the same
grouping as previously described.

• Initialization and shutdown signals

• Arbitration signals

• Data transfer signals

In addition to those signals, which are actually part of the UNIBUS and
controlled by the UNIBUS specifications, there are other standard signals
which are present in most UNIBUS backplanes and follow UNIBUS-like
conventions. These signals are documented under the heading of "Miscellane­
ous Signals."

'Thble 5-1 • UNIBUS Signals

Pin(s) In
High/Termination
Low Type

UNIBUS SPC
Name Cable Backplane

• INITIALIZATION AND SHUTDOWN
BUS DC LO L L Slow BF2
BUS AC LO L L Slow BFl
BUS INIT L L Fast AA1

CNl
CVl
DLl

5-16· UNIB US Technical Description

Pin{s} In
High/Termination UNIBUS SPC

Name Low Type Cable Backplane

• ARBITRATION

BUS NPR L L Fast AS2 FJI
BUSBR7 L L Fast AT2 DD2
BUSBR6L L Fast AU2 DE2
BUSBR5 L L Fast BCI DF2
BUSBR4L L Fast BD2 DH2
BUS NPG H H Grant AUl In-CAIOut-CBI
BUSBG7 H H Grant AVI In-DK20ut-DL2
BUSBG6H H Grant BAI In-DM20ut-DN2
BUSBG5 H H Grant BBI In-DP20ut-DR2
BUSBG4 H H Grant BE2 In-DS20ut-DT2
BUSSACKL L Fast AR2 FT2

• DATA TRANSFERS

BUSAOOL L Fast BH2 EH2
BUSAOl L L Fast BHI EHI
BUSA02 L L Fast BJ2 EFI
BUSA03 L L Fast BJI EV2
BUS A04 L L Fast BK2 EU2
BusA05 L L Fast BKI EVI
BUS A06L L Fast BL2 EUl
BusA07 L L Fast BLl EP2
BusA08 L L Fast BM2 EN2
BusA09 L L Fast BMI ERI
BUS AlO L L Fast BN2 EPI
BUS All L L Fast BNI ELl
BUS A12 L L Fast BP2 ECI
BUS A13 L L Fast BPI EK2
BUS Al4 L L Fast BR2 EKI
BUS Al5 L L Fast BRI ED2
BUS Al6L L Fast BS2 EE2
BUS Al7 L L Fast BSI EDl

BUSCOL L Fast BU2 EJ2
BUS Cl L L Fast BT2 EF2

BUS DOO L L Fast ACl CS2
BUS DOl L L Fast AD2 CR2

5-17

Pin(s) In
High/Termination UNIBUS SPC

Name Low Type Cable Backplane

BUS D02 L L Fast AD! CU2, FE2'<
BUS DO) L L Fast AE2 CT2, FL1"
BUS D04 L L Fast AEI CN2, FN2"<
BUS D05 L L Fast AF2 CP2, FFI ,<
BUS D06 L L Fast AFI CV2, FF2'<
BUS D07 L L Fast AH2 CM2, FHI"
BUS DOS L L Fast AHl CL2, FKI'<
BUS D09 L L Fast AJ2 CK2
BUS DlO L L Fast AJI CJ2
BUS Dll L L Fast AK2 CHI
BUS Dl2 L L Fast AKI CH2
BUS DB L L Fast AL2 CF2
BUS Dl4 L L Fast ALl CE2
BUS Dl5 L L Fast AM2 CD2

BUSPAL L Fast AMI CCI
BUSPB L L Fast AN2 CSI

BUSBBSY L L Fast AP2 FDI
BUSMSYNL L Fast BVI EEl
BUS INTR L L Fast ABI FMI
BUS SSYN L L Fast BUl EJI, FCI"

• MISCELLANEOUS

BOOT ENABL L L NjA <none> ARI
HALTREQL L NjA <none> CPI
HALTGRANTL L NjA <none> CRI
LTC NjA NjA <none> CD!

Initialization and Shutdown Signals

BUS DC LO L This signal, when asserted, indicates that somewhere on the
UNIBUS the ac power has failed for sufficiently long that all
other bus signals are not to be trusted. Each power supply in the
system can drive BUS DC LO L.

This signal may also be driven by any UNIBUS device which
desires to restart the system as though power had just been
applied. Network interfaces use this feature to cause down-line
loading to begin.

"For forwards compatibility, use the first pin rather than the second.

5-18' UNIBUS Technical Description

BUSACillL This signal, when asserted, indicates that somewhere on the
UNIBUS ac power has failed and the system will soon be
inoperative. Upon the assertion of BUS AC LO L, the system
processor will usually begin an orderly shutdown. Each power
supply in the system can drive BUS AC ill 1.

Note that this signal (and BUS DC LO L, as well) is usually
derived from each power supply's bulk dc source, not from
direct measurements of the ac power line. This means that a
lightly loaded power supply may not assert BUS AC ill L until
quite awhile after the actual line power fails. This helps the
processor ride through line transients but means that a system
that must actually monitor the quality of the ac power line must
not depend on BUS AC LO 1. Other devices in the system may
become inoperative prior to the assertion of BUS AC ill 1.

This signal may also be driven by any UNIBUS device which
would like to cause the system to perform its power-fail or
power-recovery action. This is also used by network interfaces.

BUS INIT L This signal, when asserted, indicates that all devices on the
UNIBUS should reset themselves to the state they entered upon
initial powerup. BUS INIT L is asserted each time the system is
started, by the PDP-ll RESET instruction, and by specific
commands to the VAX-ll UNIBUS adapter or interface.

Powerup Timing
Powerup timing is quite variable depending on the specific power supplies and
devices connected to the UNIBUS. A typical powerup sequence is shown in
Figure 5-21. As ac power is applied to the system, the output(s) from each
power supply becomes stable. As this occurs, each power supply releases BUS
DC ill 1. When the last power supply (stabilizes and) releases BUS DC ill L,
BUS DC ill L is deasserted on the UNIBUS. At this point, certain devices (such
as the system central processor) begin their initialization.

As the +5 Vdc power supply voltage to the processor(s) stabilizes, the
processor(s) will assert BUS INIT 1. BUS INIT L will remain asserted for
between 10 microseconds and 120 milliseconds. The assertion of BUS INIT L
will initialize the remaining devices on the UNIBUS.

As with BUS DC LO L, each power supply also drives BUS AC ill 1. When the
last power supply releases BUS AC 10 L, BUS AC ill L is deasserted on the
UNIBUS. When BUS INIT L deasserts, the processor(s) begins monitoring BUS
AC 10 L (which very likely has already deasserted). Once each processor
detects that BUS AC 10 L has deasserted, the processor begins operating as

5-19

directed by the user. This may mean that the operating system is bootstrapped,
or it may mean that a recovery from a power failure is attempted. In any case,
the system is now on the air.

In a system with a single power supply, once BUS AC LO L deasserts, it is
guaranteed to remain deasserted for a minimum of 2 milliseconds. That is to
say, the system guarantees that at least 2 milliseconds of time is available to
recover from the previous power failure before the next power failure is
signaled. In systems with more than one power supply, this guarantee cannot
be made.

BOOT ENABL L is valid only at the instant that BUS DC LO L deasserts. Any
device requiring this signal must latch it at this time.

Ac power

Dc power ~

BUS DC LO L

BUS AC LO L \

BUS INIT L
?????????--+----------.\

BOOT ENBL L ????????? --t-- ???

Figure 5-21 • Typical Powerup Timing

Powerdown Timing
Powerdown timing is generally the reverse of powerup timing. It is also quite
variable depending on the specific power supplies and devices connected to the
UNIBUS. A typical powerdown sequence is shown in Figure 5-22.

Once ac power fails, the storage capacitors in the various power supplies begin
discharging. As each power supply recognizes that it will soon have insufficient
power to continue operation, it asserts BUS AC LO L. Effectively, BUS AC LO L
is asserted by the first power supply to detect the failure. PDP-ll and VAX-ll
central processors are notified by means of an interrupt that power is failing. A
minimum of 2 milliseconds (5 milliseconds nominal) of runtime remains.

5-20· UNIBUS Technical Description

As each power supply discharges further, it asserts BUS DC LO L Once BUS
DC 10 L has been asserted by any power supply, all activity in the system is
halted_ Each of the dc supply voltages actually remains valid for at least 5
milliseconds after the assertion of BUS DC LO L BUS INIT L also asserts
briefly when BUS DC LO L asserts_

Ac power

Dc power

BUS AC LO L

BUS DC LO L

BUS INIT L

\-----

------------+----1 ??????????????????

I----
2 milliseconds

(minimum)

Figure 5-22 • Typical Powerdown Timing

Initialization Timing
Any time the PDP-11 executes a RESET instruction, or the VAX-11 UNIBUS
adapter or interface is commanded to reset the UNIBUS, BUS INIT L will be
asserted_ This signal resets most devices to the state they assumed immediately
after powerup_

The BUS INIT L signal is a pulse_ Its normal duration varies from 10
microseconds in the PDP-11/84 to about 120 milliseconds in the PDP-ll/24_
Typical timing is illustrated in Figure 5-23 _ In order to allow powerfail routines
to complete, BUS IN IT L may be prematurely terminated by the assertion of
BUS AC 10 L In this case, a minimum assertion of BUS IN IT L for about 1
microsecond is guaranteed by most PDP-11 processors and VAX-11 UNIBUS
adapters/interfaces_ The PDP-11/15, 11/20, 11/35, 11/40, and 11/60 do not
terminate BUS INIT L upon a powerfail_

5-21

Figure 5-23· UNIBUS Initialization Timing

Arbitration Signals

BUS BR4 L
BUS BR5 L
BUSBR6 L
BUS BR7 L

BUSBG4H
BUSBG5 H
BUSBG6H
BUSBG7 H

These signals request that the Interrupt Fielding Processor
(IFP) (usually the central processor) be interrupted at priority
level 4, 5,6, or 7, respectively. Priority 7 is the highest priority.
If the IFP is running below the priority of the request, the
interrupt will be granted at the end of the current instruction.
If the IFP is running at or above the priority of the request, the
request will be deferred until the processor priority is reduced.

These signals indicate that the IFP is willing to grant the
interrupt at priority level 4, 5, 6, or 7, respectively. The
interrupting device must now become bus master and pass its
interrupt service vector address to the IFP.

NOTE
These signals are asserted high. They are also not used as wired­
OR signals although they are driven with the same type of
integrated circuits as all other lines. They are terminated in a
slightly different manner than other UNIBUS signals.

BUS NPR L This signal is used to request use of the UNIBUS (without
causing an interrupt of the IFP). This signal is roughly analag­
ous to the direct memory access (DMA) request signal defined
by other buses.

BUS NPG H This signal indicates that the bus arbitrator is willing to allow
use of the UNIBUS by one of the devices asserting BUS NPR L.

NOTE
This signal, like the BUS BGx H signals, is aserted high. It is
also not used as a wired-OR signal although it is driven with the
same type of integrated circuits as all other lines. Also like the
BUS BGx H signals, it is terminated in a slightly different
manner than other UNIBUS signals.

BUS SACK L This signal is asserted by a device that has accepted a grant
(whether a BG or NPG). This signal means selection acknowl­
edged. As long as BUS SACK L is asserted, further arbitration is
stopped. This assures that only one device is designated as the
next master of the UNIBUS.

5-22 • UNIBUS Technical Description

UNIBUS Arbitration Timing

The sequence a device uses to arbitrate for use of the UNIBUS data transfer bus
is shown in Figure 5-24 and described below.

1. Assert Request
Our device, wishing to become the bus master, asserts a request line. This
request may be ORed with other requests already present on the BRx/NPR
line.

2. Receive Grant
Sometime later, when our device's NPR or BRx is the highest-priority
request presented to the bus arbitrator, the arbitrator will issue NPG, or,
with authorization from the the IFP, BGx. If no higher priority device at
level BRx or NPR wants the grant, the grant will be propagated to our
device. Our device will receive the grant and not propagate it (i.e., we
block the grant).

3. Assert SACK
As soon as our device sees the grant, it asserts BUS SACK L to indicate that
it acknowledges its selection as the next bus master.

4a. Remove Request
Once BUS SACK L has been asserted, our device may remove its request.

4b. Removal of the Grant
Once the arbitrator sees our device's assertion of BUS SACK L, the
arbitrator will remove the grant. No further grants will be issued to anyone
as long as our device holds BUS SACK L.

5. Data Cycles
One or more data cycles follow, and are described later.

BRx
or
NPR

BGx
or
NPG

SACK

4b

--------------~J(;-J
3

Figure 5-24· Arbitration Timing

5-23

Abnormal Cycles
Five abnormal arbitration cycles exist.

• Grant refusal

• No-SACK timeout

• Passive release

• Stolen grant (good guy interrupter)

• Stolen grant (bad guy DMA)

• GRANT REFUSAL
After making a request and being given a grant, our device may choose not to
take the grant. In this case, the grant passes through our device. If another
device further down the bus is waiting for the grant, the arbitration cycle
continues normally (from the point of view of the device down the bus). If no
device on a particular BRxjNPR level takes the grant, the grant reaches the bus
terminator. Some UNIBUS terminators do nothing with the grant-this leads
to the no-SACK timeout described below. Other UNIBUS terminators (notably
the M9302) take all grants and reply with BUS SACK L. Then, once the grant is
removed by the arbitrator, BUS SACK L will be deasserted by the terminator
and a passive release occurs.

• NO-SACK TIMEOUT
The arbitrator only issues one grant at a time, and the UNIBUS is considered to
be busy while a grant is being issued. This means that if a grant is issued, and
no one asserts BUS SACK L, the system will hang waiting for its assertion. This
situation often occurs if noise is being coupled onto the request lines. In this
case, the arbitrator issues a grant in response to the noise but there are no
genuine requesters on the UNIBUS. All PDP-lIs and VAX-ll UNIBUS adapters
and interfaces therefore contain a feature called No-SACK Timeout. If BUS
SACK L is not received within 10-25 microseconds of issuing a grant, the
arbitrator removes the grant and a passive release occurs. This prevents the
system from hanging while waiting for a grant.

• PASSIVE RELEASE
At any time, the device selected to be the next bus master can say "nevermind"
by just releasing BUS SACK L. Because no actual data cycles occurred, this is
referred to as a passive release of the UNIBUS. Passive releases are harmless but
should be avoided because they waste time.

• STOLEN GRANT (GOOD GUY INTERRUPTER)
The UNIBUS treats NPR as higher in priority than any of the BRx interrupt
requests. However, once any grant is issued, the master granted use of the .-

5-24' UNIBUS Technical Description

UNIBUS is allowed to take as much time as needed. In addition, certain older
central processors (e.g., the original PDP-ll) did not allow an NPR to interleave
with any (and all) processor operations. Rather, NPRs, like BR interrupt
requests, were only granted at the end of processor instructions (or similar
operations).

Certain older DMA peripheral devices (e.g., TCll and RKll-C) contain very
little buffering, and must be granted immediate use of the UNIBUS once they
require that a word be transferred. If the arbitrator has just issued a BG (to an
interrupting device), the total time required for the processor (the IFP) to get
the vector, save the PC and PS, and load the PC and PS from the vector was too
long for the DMA device to wait, and a data-late error occurred in the device.

To alleviate this problem, some old interrupting devices incorporate a feature
called Steal Grant. If a BUS BGx H is propagating down the UNIBUS and
reaches one of these devices, the device examines BUS NPR 1. If BUS NPR L is
asserted (meaning that an NPR device is waiting), the device blocks the BGx
grant, and asserts BUS SACK 1. In effect, it has stolen the BGx intended for
some device on the UNIBUS. Once the arbitrator sees the assertion of BUS
SACK L, it deasserts BUS BGx H. The stealing device then deasserts BUS SACK
L (a passive release!). The arbitrator re-arbitrates and now issues the desired
BUS NPG H in response to BUS NPR 1.

As processors became more flexible about granting NPRs, and DMA devices
have come to contain more buffering, this feature has fallen into disuse.
On most Digital modules, the steal grant feature is controlled by a jumper
named Nl.

• STOLEN GRANT (BAD GUY DMA)
While an interrupting device can never issue BUS INTR L while using the bus
under the authority granted by BUS NPG H, it is perfectly legal for a device to
become bus master under the authority of BUS BGx H and then do a number
of DMA bus cycles prior to performing the vector write cycle. Stretching this
just a little suggests that it is perfectly acceptable for a DMA device to borrow
the BUS BGx H intended for an interrupt device, do a few bus cycles, and then
pass BUS BGx H on to the interrupting device. The interrupting device
generally won't know that its authority to become next bus master has been
borrowed. The only possible UNIBUS failure that can occur is a no-SACK
timeout should the bad guy DMA device keep the grant too long. Bad guy DMA
has never been used by a Digital device.

5-25

Data Transfer Signals

BUS BBSY L Also known as BUS BUSY L, this signal indicates that the
UNIBUS data transfer bus is occupied (by the current bus
master). The next bus master monitors this signal to deter­
mine when it can seize the data transfer bus.

BUS A17 L
through
BUS AOO L

BUS C1 L
BUS CO L

C1

0
0

1

x

CO

0
1

0
1

x

BUS D15 L
through
BUS DOO L

BUSPAL
BUSPB L

These 18 signals are referred to as the UNIBUS address lines
and supply the address that selects a slave device. BUS AOO L
is the least significant bit and is ignored for all cycles except
DATOB (write byte).

These two signals are referred to as the UNIBUS control lines
and designate four out of the five types of operations of the
data transfer bus. The operations are described in detail later
in this chapter.

Cycle Type

DATI (Read word)
DATIP (Read with intent to

modify)

DATO (Write word)
DATOB (Write byte)

WRITE VECTOR (see BUS INTR L)

These 16 signals are referred to as the UNIBUS data lines and
transmit the data word. BUS DOO L is the least significant bit.
Byte data is not always transmitted on D07-DOO. While the
data for bytes at even addresses (AOO=O) is transmitted on
D07-DOO, data for bytes at odd addresses (AOO= 1) is trans­
mitted on D15-D08. This generally simplifies the design of
word-oriented devices that may also read and write bytes.

These two signals are used to convey parity error information
between the master and slave devices (e.g., memories assert
BUS PB L to indicate that a parity error was detected within
the memory).

5-26· UNIBUS Technical Description

PA

o

o

1

BUSMSYNL

BUSSSYNL

BUS INTR L

PB

o

1

x

Status

Good parity detected
within slave
Bad Parity detected
within slave

Master should ignore PA
(i.e., parity detection is
disabled by someone on the
UNIBUS). This combination
is not used by Digital

This signal serves two purposes.

As the UNIBUS address strobe, it indicates that the
UNIBUS address lines contain a valid address and
that BUS Cl L and BUS CO L contain a valid
function code.

For write word and write byte operations (DATO
and DATOB), BUS MSYN L also serves as the data
strobe, indicating that the master has placed valid
data on the UNIBUS data lines.

This signal also serves two functions.

As the UNIBUS address acknowledgement, it
serves to inform the bus master that the requested
address exists within some slave.

For read operations (DATI and DATIP), BUS SSYN
L also serves as the data strobe, indicating that the
slave has placed valid data on the UNIBUS data
lines and valid parity status information on BUS PA
L and BUS PB 1.

This signal provides for a fifth kind of UNIBUS
data cycle known as WRITE VECTOR. BUS INTR L
acts simultaneously as the address, the address
strobe, and the data strobe. The IFP is always the
selected slave. The contents of the UNIBUS address
lines, BUS Cl L, and BUS CO L are ignored. The
contents of the UNIBUS data lines are accepted by
the IFP as an interrupt vector. The IFP then returns
BUS SSYN L, just like any other bus slave.

Strobe

5-27

This is not a UNIBUS signal. It is typical of signals
that exist within real devices. The signal is shown
as a pulse indicating the moment that data should
be latched into a device's flip-flops.

DATI Timing (Master Reads from Slave)

Assuming that our device has won the priority arbitration and asserted BUS
SACK L, we can now proceed to observe a data transfer cycle. Please refer to
Figure 5-25.

1. Receive the deassertion of the previous BBSY.
Our device begins monitoring the BUS BUSY L line and waits until it sees
BUS BBSY L unasserted.

2a. Assert BBSY.
As soon as our device sees that BUS BBSY L is unasserted (indicating that
the previous master is no longer using the data section of the UNIBUS), our
device asserts BUS BBSY L. We are now the bus master.

SACK -I~
2a I I

BBSY ==t;;J /I ~
2b

A+C
-II I 1//1

I 1/

4 II
/I

MSYN
~I I

DATA
-II /I

I II

8 ==t;3 I;J L SSYN
I

I I

6

Strobe
-II I I n

I 7 I

Figure 5-25· DATI/DATIP Timing

5-28' UNIBUS Technical Description

2b. Assert Address and Control
At the same time that we drive BUS BBSY L, we may also drive the UNIBUS
address lines along with control information, BUS C1 L and BUS CO L. All
other devices on the bus immediately begin decoding this information to
determine whether they will be the selected slave. A minimum of 150
nanoseconds must elapse prior to the assertion of BUS MSYN L. This time
period allows the addressing information time to reach all points on the bus
and be decoded. It is referred to as the front end deskew.

2c. Deassert SACK
Once our device asserts BUS BBSY L, it has become the bus master. If we are
only transferring a single word, our device can now allow arbitration to
resume. This is done by deasserting BUS SACK L. This may be done anytime
after the assertion of BUS BBSY L, but should be done as early in the cycle
as practical.

3. Receive the deassertion of the previous SSYN.
Any device on the UNIBUS is allowed to stall the onset of the next bus cycle
by holding BUS SSYN L asserted. Our new bus master must ensure that BUS
SSYN Lis deasserted prior to proceeding. See paragraph 8.

4. Assert MSYN.
Once the 150 nanoseconds of front-end deskew time have elapsed, and any
previous BUS SSYN L has been deasserted, our master may now assert BUS
MSYN L. This informs everyone on the bus that the addressing information
is valid.

5. Receive the assertion of SSYN
Our master device now waits for the selected slave to place the requested
data onto the UNIBUS data lines (along with parity information on BUS PA L
and BUS PB L). When the slave does this, it also asserts BUS SSYN L.

6. Deskew the Data
Our master must now allow 75 nanoseconds from the receipt of BUS SSYN L
to guarantee that the returned data has all arrived at the master. This is
referred to as the data deskew. Once this time has elapsed, the master may
strobe in the returned data. Note that Strobe is not a bus signal but rather a
typical signal within our master device.

7. Deassert MSYN
Once the master has captured the returned data, BUS MSYN L may be
removed. The master must continue to hold the addressing information
valid for at least 75 nanoseconds to ensure that all devices are notified that
the address is invalid prior to it actually becoming invalid. This period is
referred to as tail end deskew.

5-29

8. Receive the deassertion of SSYN
Once the selected slave sees BUS MSYN L deassert, the slave will eventually
deassert BUS SSYN L. The slave is completely within its rights to hold BUS
SSYN L asserted for as long as necessary to complete whatever operations it
must. For hardwired devices, BUS SSYN L usually is deasserted very quickly,
but for microcoded devices, there may be a delay. Other devices (which are
neither the current master nor slave) may also stretch BUS SSYN L once it
appears. This capability allows cache memories and bus monitors adequate
time to perform their business.

DATIP (Master Reads from Slave, No Restore)
DATIP (Data-In, Pause) is used when the master wishes to read a value from the
slave but also expects to write back a new value.

DATIP differs from DATI only in the fact that the control line BUS CO L is
asserted. Most masters also keep BUS SACK L and BUS BBSY L asserted
between the DATIP and the subsequent DATO or DATOB. This saves the time
that would be spent rearbitrating for the UNIBUS. In the case of interlocked
slaves (like the core memory), this also prevents other devices from becoming
bus master and subsequently from being frustrated as they try to access the
unresponsive memory.

Most I/O devices treat DATIP identically to DATI.

DATO/DATOB (Master Writes to Slave)

In many respects, a DATO/DATOB cycle is similar to a DATI cycle. The principal
difference is that the master supplies the data to the slave. Please refer to Figure
5-26. The following paragraphs document only the differences between a
DATI/DATIP and a DATO/DATOB. All other comments from DATI/DATIP apply
to DATO/DATOB as well.

2b. Assert Address, Control, and Data.

During a write cycle, we assert not only UNIBUS address and control
information, but data as well. Note that the 150 nanoseconds of front end
deskew is more than adequate to cover the 75 nanoseconds of required data
deskew time.

4. Assert MSYN.
Once the 150 nanoseconds of front end deskew has elapsed and any
previous BUS SSYN L has deasserted, our master may now assert BUS MSYN
L. This informs everyone on the bus that the addressing information and
data is valid.

5. Receive the assertion of SSYN.
Our master device now waits for the selected slave to accept the data it has
presented on the UNIBUS data lines. When the slave does this, the slave will
assert BUS SSYN L.

5·30' UNIBUS Technical Description

2a I I

~;J
/1

BBSY

2b

A +C I LJ --(I f /1

2b(also l)

DATA
--(I f

I I "I 71

r/ 7

MSYN I --(I /

Strobe --II ft. n
/ II

8

SSYN
(I L ~I / 1/

Figure 5·26 • DATOjDATOB Cycles

7. Deassert MSYN.
Upon receiving the returned BUS SSYN L, the master removes BUS MSYN
L. The master must hold the addressing information valid for 75 nanosec·
onds to ensure that all devices are notified that the address is invalid prior to
it actually becoming invalid (tail end deskew). The UNIBUS specifications
don't require that the data also be held, but it certainly helps add margin to
the system if you can do it.

Write Vector Timing (Master Interrupts IFP)

For the write vector operation, BUS INTR L replaces the functions of the
UNIBUS address and control lines and BUS MSYN L. Please refer to Figure
5·27.

1. Receive the deassertion of the previous BBSY.
Our device begins monitoring the BUS BUSY L line and waits until it sees
BUS BBSY L unasserted.

2a. Assert BBSY.
As soon as our device sees that the previous master is no longer using the
data section of the UNIBUS, our device asserts BUS BBSY L. Our device is
now the bus master.

5-31

2b. Deassert SACK.
Once our device asserts BUS BBSY L, it has become the bus master and can
now allow arbitration to resume. This is done by deasserting BUS SACK L.

3. Receive the deassertion of the previous SSYN.
Any device on the UNIBUS is allowed to stall the onset of the next bus cycle
by holding BUS SSYN L asserted. Our new bus master must ensure that BUS
SSYN Lis deasserted prior to proceeding.

4. Assert D15-DOO and INTR.
Once BUS SSYN L is deasserted, our device can immediately drive its
interrupt vector onto the UNIBUS data lines and simultaneously drive BUS
INTR L. This is the one case where the master is not responsible for the
deskewing.

5. Receive the assertion of SSYN
The IFP, acting as the slave device, receives BUS INTR L and waits 75
nanoseconds to allow for the deskewing of the data (the interrupt vector).
The IFP then strobes in the vector and returns BUS SSYN L. Meanwhile, as
in any write cycle, our master device has been waiting for the slave to assert
BUS SSYN L. Most masters do not contain the logic to timeout if the IFP
fails to return BUS SSYN L.

SACK ---i~
2a 7

BBSY =t;) I
4

DATA --1,1 I

4

INTR --I)

Strobe --I, I n /~ __ ~ L ______________________ __

3 8

SSYN =t;/f-I ------'

Figure 5-27· Write Vector Cycle

5-32' UNIBUS Technical Description

7. Deassert D15-DOO, INTR, and BBSY
After the IFP asserts BUS SSYN L, the master may deassert BUS INTR Land
remove the vector from the UNIBUS data lines. Note that the IFP must really
have meant it when it returned BUS SSYN L because the master is not
obliged to provide any tail end deskew of the vector data.

8. Receive the deassertion of SSYN
Once the IFP sees BUS INTR L deassert, it will eventually deassert BUS
SSYNL.

Abnormal Bus Cycles
Aside from the abnormalities of arbitration, only one exception can occur .

• SSYN TIMEOUT
When an address is placed on the bus, and BUS MSYN L is asserted, the master
device begins waiting for BUS SSYN L to be asserted by some slave. If no device
exists at the specified address, BUS SSYN L will never be asserted. As
described thus far, this situation would hang the bus.

To avoid this problem, it is the responsibility of the current bus master to
monitor the amount of time that it has spent waiting for the assertion of BUS
SSYN L. If too much time expires, the master must end the current bus cycle
(using valid tail end timing). The bus master may then handle the error in
whatever manner the designer sees fit. PDP-ll processors trap through the
vector at 4 when a UNIBUS timeout error occurs. VAX-ll processors report the
error in varying ways. Most I/O devices set a status bit and begin an error
interrupt.

The SSYN timeout value varies from device to device but generally ranges from
10 to 25 microseconds. If the system uses multiported memory, it may be
necessary to increase the timeout value. If a one-shot is used as the SSYN timer,
you can simply increase the size of the capacitor. If a counter is used to provide
the timeout, a variety of settings should be provided.

The unqualified phrase "bus timeout" usually refers to the specific case of
SSYN timeout (rather than any of the other timeouts discussed in this chapter).

Multiple Bus Cycles (Burst Mode)
Once a device has gained UNIBUS mastership, it may do a single bus cycle and
then release the UNIBUS, or it may do a series of UNIBUS data cycles while
holding BUS BBSY L constantly asserted. Remember, once you gain ownership
of the UNIBUS, it is yours without limit until you release BUS BBSY L.

If the device gained control of the UNIBUS under the authority of a BGx, it
may perform a write vector as its last cycle.

5-33

Performing multiple data cycles during one UNIBUS mastership is generally
referred to as burst mode. Usually, a small number of data cycles (1, 2, 4,
sometimes 8 or 16) are performed. If the device performs an unlimited number
of data cycles, it is referred to as a bus hog because this prevents other devices
(including the CPU) from using the UNIBUS.

When a device performs multiple data cycles, it is usually best to keep BUS

SACK L asserted until the last data cycle is underway. This ensures the fairest
arbitration of the UNIBUS (because the priority arbitration will be made based
on the most recent requests, not those many microseconds old). Refer to Figure
5-28.

SACK
----(/~/------------------------------,

BBSY =+;J L
Address.

Control --I L..-I L...-_-l-I--,--I __ L-I L-I _----'-I--'-I __ ~
(& Data) /-

MSYN

SSYN
--I~----'

Figure 5-28· Burst Mode (Showing Four-Cycle Burst)

Miscellaneous Signals
These signals are not part of the UNIBUS but are usually used by UNIBUS

devices. They are present in most (but not all) UNIBUS backplanes.

BOOT ENABL L This signal is derived from the power supply and indicates
whether the system can reasonably expect the contents of
a volatile memory (e.g., MaS) to be valid. If so (e.g., a
battery backup unit maintained the contents of memory
through a power failure), the signal is unasserted. How­
ever, if the contents of the volatile memory are not to be
trusted (e.g., the battery went dead), then the signal is
asserted, and the central processor is thus made aware that
the operating software must be reloaded (bootstrapped).
BOOT ENABL L is valid only at the instant that BUS DC

La L deasserts.

5-34· UNIBUS Technical Description

HALT REQ L This signal appears in the CPU backplanes of the PDP-11/
04, 11/24, 11/34, and 11/44. When asserted, it causes the
processor to halt at the completion of the current instruc­
tion. This signal is not available in any other backplane in
the system.

HALT GRANT L This signal is issued by the PDP-11/04, 11/24, 11/34, and
11/44 when the CPU halts in response to HALT REQ L.
This signal is not available in any other backplane in the
system.

LTC This signal is a square wave driven from the power supply
at the ac power frequency (i.e., 60 Hz or 50 Hz). Since
this signal has a nominal 50% duty cycle, and is not
related in time to any other bus signal, it has no polarity
indicator and may be construed as either logic high or
logic low. LTC normally has slow rise and fall times
(requiring the use of Schmitt-trigger receivers) and cannot
drive as many receivers as other bus signals .

. UNIBUS Electrical Characteristics

The UNIBUS has the following major electrical characteristics.

• 56 signal lines, combined with grounds as necessary

• 120-ohm impedance

• Open-collector drivers

• Low-leakage receivers

• Termination at each end

Thevenin voltage = 3.3 volts
Thevenin resistance = 120 ohms

The 56 signal lines have already been described. Electrically, they fall into
three major classes.

• Electrically bidirectional high-speed lines

• Electrically unidirectional high-speed lines

• BUSACW Land BUS DC LOL

5-35

Electrically Bidirectional High-speed Lines
Most of the lines on the UNIBUS are electrically bidirectional, although they
may be logically unidirectional (e.g., BRx and NPR only carry signals to the bus
arbitrator). A typical line is illustrated in Figure 5-29. All these lines

• Are terminated at each end of the UNIBUS into 120 ohms

ISO ohms to + 5V dc, 390 ohms to ground.

• Contain at least one open-collector driver.

• Contain at least one low-leakage receiver.

• Are asserted by pulling the line to ground (i.e., they are logic low lines).

180[J 180 [J

390 [J 390 [J

Figure 5-29· An Electrically Bidirectional Line

Electrically Unidirectional High-speed Lines
The UNIBUS grant lines (BUS NPG H, BG7 H, BG6 H, BG5 H, and BG4 H) are
electrically unidirectional (i.e., BGx and NPG only carry signals from the bus
arbitrator). A typical segment of a grant line is illustrated in Figure 5-30. All
these lines

• Are daisychained from module to module.

• Are terminated at each module in the daisychain with a simplified termina­
tor.

Towards arbitrator-ISO ohms to + 5Vdc.
Away from arbitrator-ISO ohms to +5Vdc, 390 ohms to ground.

• Contain only one open-collector driver.

• Contain only one low-leakage receiver.

• Are deasserted by pulling the line to ground and asserted by allowing the line
to float (i.e., they are logic high lines).

5-36' UNIBUS Technical Description

A
R

T B
01

Typical Module

1800 1800

A
A R
W B

WTL...-___ ,-__ -+.-__ --I
A R

AI
Y T

'-----,+---,-----1 F R

A
R T
00
M R

R A
D T

o
R

3900

Figure 5-30· An Electrically Unidirectional Line

BUS AC LO L and BUS DC LO L
BUS AC LO L and BUS DC LO L greatly resemble the bidirectional lines.
However, besides connecting to each device on the UNIBUS, connections from
these two lines are also carried in wiring harnesses to each of the system's
power supplies. This requires slow-down filtering to prevent noise from
disrupting the operation of the system. Each power supply must drive the lines
with some form of "normally on" drivers, so that the lines will be held
grounded while the power supply is de-energized. This is often done with a
depletion-mode FET (field effect transistor). Other devices use bias from the
termination resistors to activate their drivers. A typical line is illustrated in
Figure 5.31. Both BUS AC LO L and BUS DC LO L

• Are terminated at each end of the UNIBUS with a slow terminator

390 ohms to +5Vdc.
1000 picofarads to ground.

• Contain at least one open-collector or open-drain driver.

• Contain at least one low-leakage receiver.

• Are asserted by pulling the line to ground (i.e., they are logic low lines).

• Must remain asserted (grounded) when no other power is applied to the
system.

3901l

1000 pF T

Within
Power Supply

Figure 5-31 ~ BUS AC LO L or BUS DC LO L

. Design Suggestions

5-37

390 n

T 1000pF

Some suggestions for UNIBUS designers are presented below. While not an
exhaustive list, these suggestions cover the most common mistakes made while
designing UNIBUS devices.

Watch the de Voltage Levels
The UNIBUS depends on its voltage levels. These voltage levels can be
maintained only if the driver and receivers operate optimally, the cable has a
controlled resistance, and the ground reference at all points in the system is
accurate.

• Use the correct drivers and receivers.

Drivers must be able to pull down at least 60 milliamperes with a small
Vol (0.6V or less).
Drivers and receivers must have little leakage current.
At the time of this printing, the most recent UNIBUS transceivers are
Digital part number 19-14987.

• Establish a solid logic reference (ground) throughout the system. No driver
or receiver can cope with more than a few millivolts of ground potential.

• Keep dc resistances low so as to minimize voltage drop.

5-38· UNIBUS Technical Description

• Limit anyone UNIBUS segment to a total length of 15.25 meters (50 feet),
including all cable segments, backplanes, and the hidden cable in the M9202
bus jumper modules. A segment of the UNIBUS is defined as that portion of
the bus between the front- and back-end terminators (there can be more than
one segment to a given UNIBUS).

• Limit anyone UNIBUS segment to a total of 20 dc loads. A de load is defined
as one driver and one receiver, or one transceiver.

• If the UNIBUS must extend beyond 15.25 meters, or contain more than 20 dc
loads, the one logical UNIBUS must be broken up into more than one
UNIBUS segment, with a UNIBUS repeater between each segment. The
UNIBUS repeater contains logic which amplifies the UNIBUS signals, making
possible greater length and more bus loads, at the expense of transmission
speed. Each of the individual UNIBUS segments between bus repeaters has
its own termination.

Maintain 120-ohm Impedance and Watch ac Signals
The UNIBUS can operate correctly only if its signals are propagated quickly and
cleanly from end to end. Signals propagate quickly and cleanly along a line only
when the impedance of the line remains constant. Any time the signal
encounters a different impedance, a small part of the signal is reflected. These
reflections can accumulate and cause errors in the signal.

Each time a branch (or stub) is added to the bus (e.g., a module connected),
capacitance is added to the bus. This additional capacitance is referred to as an
ae load, since the capacitance only affects ac signals, not dc voltage levels. The
capacitance also changes the local impedance of the UNIBUS.

If many modules are connected in a short length of the bus, these many small
changes of bus impedance add up to a large change, and a large reflection can
be generated. These many small capacitances lumped together are referred to as
a lumped load.

• Minimize the distance between the UNIBUS and the drivers and receivers.
Minimize the capacitance of the connecting etch run or wire.

• Keep lumped loads small and separate them with 120-ohm bus cable (as in
the M9202 2-foot cable in a I-inch module) or 120-ohm twisted pair (as in
the DDll-DK).

• Terminate with accurate, pure resistances and accurate voltages.

5-39

Minimize Crosstalk

• Use drivers which generate edges with controlled rise and fall times.

• Be cautious routing UNIBUS signals. Route the critical timing signals (at a
minimum, BUS SACK L, BUS BBSY L, BUS MSYN L, BUS INTR L, BUS SSYN
L) away from the address and data lines.

• Don't allow any signals to glitch, whether or not such a glitch violates any
timing specification. Glitches crosstalk much more readily than clean
signals.

• Use twisted pair with an impedance of 120 ohms to route critical timing
signals in backplanes.

• Maintain the 120-ohm impedance of the UNIBUS.

Consider All Timing Cases
Design your logic explicitly considering all of the UNIBUS operations, whether
you intend to use them or not. For example, whether or not your device honors
DATOB, 'consider what will happen if your device is requested to perform a
DATOB. Don't ignore the case.

Remember to consider all of the data deskew and setup times. For devices
acting as UNIBUS masters, the most important considerations are.

• The master must assert the UNIBUS address at least 150 nanoseconds prior
to asserting BUS MSYN L (front-end deskew time).

• For read operations, the master must not strobe in the slave's data until at
least 75 nanoseconds after the reception of BUS SSYN L at the master (data­
deskew time for reads).

• For write word and write byte, the master must assert the UNIBUS data at
least 75 nanoseconds prior to asserting BUS MSYN L (data-deskew time for
writes).

• For write vector, the master must assert the UNIBUS data (the vector) at or
before the assertion of BUS INTR L. This is the one case where the master is
not responsible for the data deskew. Here, the IFP performs the deskew.

• The master must hold the UNIBUS address valid for at least 75 nanoseconds
after deasserting BUS MSYN L (tail-end deskew).

Design is considerably easier for devices acting as UNIBUS slaves, since the
master does most of the deskewing. The major considerations for slaves are

• For read operations, do not assert BUS SSYN L prior to asserting data.

• For write operations, do not assert BUS SSYN L prior to latching in the data.

5-40' UNIBUS Technical Description

• Never use the falling edge of BUS MSYN L to latch the data (i.e., don't use
transparent latches to capture the data unless the latches are closed prior to or
simultaneously with the assertion of BUS SSYN L).

Remember that the UNIBUS is asynchronous and requires careful attention to
setup and hold times at flip-flops. Be particularly careful to ensure that all
synchronizer circuits account for the possibility of metastability. This is
particularly important around the logic that decides whether to pass or block
UNIBUS grants, and around circuits that synchronize BUS SSYN L for use by
synchronous logic.

Be A Good Bus Citizen
Design for speed-any time your device can save on the UNIBUS saves
everyone time and increases the system's overall throughput.

• Your device should be ready to immediately read or write data once it
becomes the bus master.

• During your device's last (and possible only) data cycle, drop BUS SACK L so
that bus arbitration may resume.

If your device transfers many words at great speed (perhaps 100,000 words or
more per second)

• Within your device, provide enough FIFO (First-In, First-Out) buffering to
avoid data late errors should your device not win mastership of the UNIBUS
for some time.

• Transfer two words per bus mastership. Better yet, let the user specify the
burst size (but default to two words).

• Design in sufficient high-speed buffering at the bus interface so that the
multiple words transfer as quickly as possible. Do not use a microprocessor to
produce the words one at a time, at the microprocessor's speed.

• Allow the user some method of throttling the data rate (e.g., provide an
adjustable delay between the time that your device releases the bus and the
next time that it requests the bus).

Appendix A-PDP-ll Famlly Differences Table

Appendix A-2· PDP-ll Family Differences Table

The table that follows illustrates the issues involved in software migration
between different members of the PDP-11 family. Each member of the family
has some small difference in the way it executes instructions. Any program
developed using PDP-11 operating systems with higher level languages will
migrate from one system to another with very little difficulty. However, some
applications written in assembly language may have to be modified slightly.

The table also details the slight differences between the various PDP-11 family
processors and modules. Available hardware options and memories occasion­
ally vary from processor to processor. Sometimes there is a small difference in
the specific feature of one processor or another (e.g., a given feature may be
standard on one module, optional on another, or not applicable). These
variances are categorized under seven major headings-instructions or instruc­
tion sets, memory management expansion and relocation, interrupts, buses,
general purpose registers, error handling, and consoles.

The VAX column refers to the PDP-11 Compatibility Mode available on VAX-
11 processors.
Key to the table:
Y
N
III
Std
Opt
With "option"

-Yes
-No
-Not applicable to that processor or module
-Standard
-Optional
-This feature is available only if the named option

is available.

Instructions or Instruction sets

Processor

Module
BASIC
SOB, SXT
fITT
MARK
XOR

ASH, ASHC, MUL,
DIV

46 Floating·point
instructions

MFPT
MTPS
KEll·A, ·B available
for MUL, DlV, SHIFT

CIS

MFPI, MFPD,
MTPI, MTPO
SPL
CSM

·limitea subset
(DIS) with KEVll·C

03 T11 21

Various ocm KXT11·A

Y Y Y
Y y y

Y y y

Y N N
Y Y Y

With
KEVIl N N or

KEVll·B

N N N

N Y Y
Y Y Y

N N N

. N N

N N N

N N N
N N N

23 73 04 05/10

KOF11·A KOFll·B KDJll·A KOJ11·B K011·D K011·B

Y Y Y Y Y Y
y y y y N N
y y y y y N
Y Y Y Y N N
y y y y N N

y y y y N N

With With
KEFll·A KEFll·A Y y N N or or
FPFll FPFll

y y y y N N
Y Y Y Y N N

N N N N Y y

With With N N N N KEFll·B KEFll·B

Y y y y N N

N N Y Y N N
N N Y y N N

15/20 24 34 35140 44

KC11 KDF11·UA KD11-E KOll·A K011-Z KA11
Y y Y Y Y
N Y Y N Y
N Y Y Y y

N Y Y N Y
N Y Y y Y

N y Y With Y KE11-E

With With With
N KEF11·A FPll·A N FPll·A

or
FPFll

N y N N Y
N Y Y N N

Y y y y y

N With N N With
KEFll·B KE44

N Y Y Y Y

N N N N Y
N N N N Y

45/50/55 60
KD11·A KD11·K KD11·D

y Y
N Y
Y Y
N Y
Y Y

Y y

With
FPll·B y

or
FPll·C

N N
N N

y y

N N

Y Y

Y N
N N

70 84
KB11·B KOJ11·B K811·C

Y Y
Y Y
Y Y
Y Y
Y Y

Y Y

With
FPll·B y

or
FPll·C

N Y
N Y

y y

N N

Y Y

Y Y
N Y

VAX

Various

Y
Y
Y
N
Y

Y

N

N
N

y

N

Y

N
N

~ :g
l
\<"

t

Instructions or Instruction sets

~ :g

~
~

t3
~
2'
~
~
tl
S; '<if
" ..
~
~
~

1>'

Instructions or Instruction sets

R R±2 I R±2 I R±2 I R±2 I R±2 I R±2 R R R±2 I R±2 R R±2 R R R±2 R R±2 R

PC I PC+2 I PC+2 I PC+2 I PC+2 I PC+2 I pC+21 PC PC I PC+21 PC+2 I PC I PC+2 I PC PC IpC+21 PC IpC+21 PC

I nl:v II I IY y y

If R = Rv1 (in other
words, the register is odd

I I I I I I I I I I I

and a 16-bit result is ;".
being produced), are the :g
condition codes based on 32 32 32 32 32 16 16 32 32 32 ~
the 16-bit or 32-bit result? "'-!<-

~
'"

Instructions or Instruction sets

Hardware FPP is
synchronous or
asynchronous

FPP instructions
can be interrupted N N N

:.. :g
l
l;"

~
'"
~
~
2"1
~
~
t:l
S;
~
~

" " ~
~
<:s­
Ii>'

Instructions or Instruction sets

~ :g
~
1;"

~
"

Memory Management Expansion and Relocation ~ :g
~
"'-.. !<.
~
00

(3
~
;;r
l!.
~
tJ
S;
~

" '" R
Sl
<:s­
IS'

Memory Management Expansion and Relocation

;:,.
:g

~
f.
\0

Interrupts

~ :g

~
~
a

t§
~
;;r
:.
~
t:I
S;
~
~

'" a
t;l
~
1;;-

Buses

Processor 03 1 Tll 1 21 I 23 73 1 04 1 05/10 1 15/20 1 24 1 34 1 35/40 1 44 145/50/551 60 1 70 1 84 1 VAX

Module Various 1 DCT11 1 KXT11-AIKDFll-AIKDFll-BIKDJ11-AIKDJ11-B1 KDll-D 1 KD11-BI ~~~~ I KDF11-UA I KDll-E I KD11-A I KDll-Z I ~~11:~ I KDll-K I ~:~1:~ IKDJ11-BI Various

Buses Available:

Q-bus ~ I .. ~ J ~ J.;I ~ ~ l. Y l N I N I N I N I N I N I N I N I N I N I N I N

Special Memory Bus

. Bus Cycles Utilized:
CLR. SXT. do only DATO for
las1 bus cycle (alternative:
DATIP-DATO)

N N N Y N Y Y N N N

Y MOV does only DATO for Y I DATI, I DATI, I I UM"r, I UM"r. I UM"r. I
last bus cycle DATO DATO MTn ~.

DATIP. 1 DATlp, I DATIp,
UM' U I UMTQ DATO

" Y Y

EIS does DATI to fetch DATlp,
source operand DATO
UNIBUS/Q-bus lOllS
timeout value
NPRs (OMAs) will be
granted during CPU Y
instructions
Console SLU accessible Y N
from Q-bus/UNIBUS
Line clock register
accessible from
a Q-bus/UNIBUS

N

Bootstrap ROMs N
accessible from Q-bus/ Y

• If LTC/Bootstrap exists at all.
1 M93l2 Emulation-Yes.

Internal ROMs-No.

i lOllS

Y

Y

Y

lOllS lOllS

Y Y

N Y

N Opt

N

lOllS 2211S I 2211S

Y Y I Y

N YIN

N YIN

N Y I Y

2511S

With
KHll

Y

Y

Y

N N I N N N I N N N I Varies

Y I Varies

2511S 2511S I 1511S 2511S 711S I 3511S 711S 1511S I Various

Y Y I Y Y Y I Y Y Y I Y

N Y I Y N Y I Y Y N I N

N Y I Y N Y I Y Y N I N

Y Y I Y Y Y I Y Y 1 I N ~ :g

~
+-.....

Processor Status Word

:.. :g

~
~
'"
o
~
2"
~
~
t::l
S;
';if:

" ;:;
~
t:;l
<:>--
1e

Processor Status Word

Processor 03 TIl 21 23 73 04 05/10

Module Various DCT11 KXT11-A KDFll·A KDFll·8 KDJ11-A KDJ11-B KDn·D KDll·8

Bits (06·05) mechanized
(low·order priority bitsY N y y y y y y y y

Bit (04) mechanized IT) Y Y Y Y Y Y Y y y
Bits (03·00) mechanized y y y y y y y y y
(N, Z, V, and C)
Processor Status Word can
be accessed via N N N Y Y Y Y Y Y Reads/Writes to location 17
777 776

! ~TPS/MFPS instructions
Bits (07·00) or (03·00)

y N N Y Y Y Y N N

, ~Pl instruction
Bits (07·05) N N N N N Y Y N N

Condition code
instructions (bits (03·00)

y y y y y y y y y

Tobi! Differences:
Can explicit PSW reference
(by program or console)
Set/Clear T-bit?

N N N N N N N Y Y

Number of instructions
executed between RTI set· 0 0 0 0 0 0 0 0 1
tino Hit and Hit TRAP:
Number of instructions No
executed between 1 1 1 1 1 1 1 1 RTT
RTT setting T-bit and Instruc·
T·bittrap tion
T-bit TRAP immediately N y Y Y Y Y Y Y Y ends WAIT instruction
T-bit TRAPS have higher

y priority than interruPt~s\are y y y y
taken prior to interrupts

15/20 24 34 35/40 44
KCll KDFll·UA KD1H KDll·A KD1H KAll

y y y y y

y y y y y

y y y y y

Y Y Y Y Y

N Y Y N N

N N N N Y

y y y y y

Y N N N N

1 0 0 0 0

No
RTT 1 1 1 1 Instruc·
tion

Y Y
I

Y Y Y

y y y

45/50/55 60 70
KDll·A KD11·K K811·8
KD11·D K811·C

y y y

y y y

y y y

Y Y Y

N N N

Y N Y

y y y

N N N

0 0 0

1 1 1

N Y N

N N

84

KDJll·8

y

y

y

Y

Y

Y

y

N

0

1

Y

y

VAX

Various

~.~
I\··~;

y

N

N

N

y

N

0

1

~i
1:'/;5 1

~
w

General Purpose Registers

Processor 03 T11 21 23 73 04 05/10

Module Various DeT11 KXT11-A KDFll-A KDFll-B KDJll-A KDJll-B KDll-D KDll-B

Number of sets of RO-R5 1 1 1 1 1 2 2 1 1

Number of 1 1 1 3 3 3 1 1
stack pointers (2 u eful)
Can program code be executed N N N N N N N N y
from GPRs?
Can GPRs be accessed
by program as N N N N N N N N y
17777700-17777717?
Can GPRs be accessed

I Iy by console as N N N N N N N Y
17777700-17777717?

15/20 24 34 35/40 44
Kell KDFll-UA KDll-E KD11-A KD11-Z KAll

1 1 1 1 1
1 3 2 2 3 (2 useful)

N N N N N

I
N N N N N

I

L ~_ N y y y
__ 0

45/50/55 60 70
KDll-A KDll-K I KBll-B
KDll-D I KBll-e

2 1 2

3 2 3

N N N

N N N

y y y

84 VAX

KDJll-B Various

2 1

3 1

N N

N N

N N

~ :g
~
~
~
~

~
~
~
~­
~
tJ
S;
~

" ~
Dl
\:;-l
'" ~

Error Handling

t l<.
~
'-"

Error Handling

1 Odd SP not detected.

~ ::g
~
l;'

t
0\

\3
';tl
t:
;p
~ .
.:;;-
t1
S;
~

~
~
$;:I
"'"" ~

Consoles

I Processor

Module
Programmer's Console:

Lights and switches

ASCII console

ASCII console memory
addressing range in bits
ASCII console could access
GPRs
Operator's Console:

Exists

Remote Diagnosis:
Available from Field
Service

1,,°3

N

Micro
OOT

16

y

Std

N

~ :g
~ ;:;-
~
"

Appendix B • Console ODT Command Languages

Appendix B·2 • Console om Command Languages

• Console om Command Set for PDP.ll/84 and PDP.ll/24

Descriptions of the PDP-ll/84 and PDP.11/24 console terminal and a summa­
rized table of the console ODT comands are found in Chapter 2 (PDP-11/84)
and Chapter 4 (PDP·11/24). The ODT command language is identical for the
PDP.ll/84 and PDP-ll/24 with the following two exceptions.

• The PDP-11/24 addresses 18 bits of physical memory. The PDP·11/84
addresses 22 bits of physical memory. ..

• The H command (ASCII 110) Toggle HALT flip-flop is only available with
the PDP·11/24.

In order to describe the use of a command, other commands are mentioned
before they have been defined. For the novice user, the following paragraphs
should be skimmed first for familiarization and then reread for detail. The
word "location" refers to a bus address, processor register, or the processor
status word (PSW).

NOTE
In the.following examples, the user's entry is in boldface (dark) type, while the
response from the processor is not.

/(ASCII 057) Slash
This command (f) is used to open a bus address, processor register, or the
processor status word and is normally preceded by other characters that specify
a location. In response to /, console ODT prints the contents of the location
(Le., six characters) and then a space (ASCII 40). After printing is complete,
console ODT waits either for new data for that location or fora valid close
command. The space character is issued so that the location's contents and
possible new contents entered by the user are legible on the terminal.
· Example: @001000/012525< SPACE>

@ = console ODT prompt character.

001000 = octal location in the bus address space desired by the

00100

12525

<SPACE>

user (leading zeros are not required).

= command to open and print contents of location.

= contents of octal location 1000.

= space character generated by console ODT.

The / command can be used without a location specifier to verify the data just
entered into a previously opened location. The / is recognized only if it is
entered immediately after a prompt character. A / issued immediately after the
processor enters ODT mode causes a ? < CR > < LF > to be printed because a
location has not yet been opened.

Example:

first line

Appendix B·3

@1000/012525 < SPACE> 1234 < CR > < CR > < LF >
@/001234< SPACE>

= new data of 1234 entered into location 1000 and
location closed with < CR > .

second line = a j was entered without a location specifier and the
previous location was opened to reveal that the new
contents were correctly entered into memory.

< CR > (ASCII 015) Carriage Return
This command <CR> is used to close an open location. If a location's
contents are to be changed, the user should precede the < CR > with the new
data. If no change is desired, < CR > closes the location without altering its
contents.

Example: @Rl/004321<SPACE> <CR> <CR> <LF>
@

Processor register R1 was opened and no change was desired so the user issued
< CR > . In response to the < CR > , console ODT printed < CR > < LF > @ .

Example: @Rlj004321<SPACE> 1234 <CR> <CR> <LF>
@

In this case the user desired to change R1, so new data, 1234, was entered
before issuing the < CR > . Console ODT deposited the new data in the open
location and then printed < CR > < LF > @ .

Console ODT echoes the < CR > entered by the user and then prints an
additional < CR > , followed by a < LF > , and @.

< LF > (ASCII 012) Line Feed
This command < LF > is used to close an open location and then open the
next contiguous location. Bus addresses and processor registers are incre·
mented by 2 and 1 respectively. If the PSW is open when a < LF > is issued, the
PSW is closed and a < CR > < LF > @ is printed; no new location is opened. If
the open location's contents are to be changed, the new data should precede the
< LF > . If no data is entered, the location is closed without being altered.

Example: @R2/123456<SPACE> <LF> <CR> <LF>
R3j054321 < SPACE>

In this case, the user entered <LF> with no data preceding it. In response,
console ODT closed R2 and then opened R3. When a user has the last register,
R 7, open and issues < LF> , console ODT opens the beginning register, RO.
When the user has the last bus address of a 32·Kword segment open and issues
< LF > , console ODT opens the first location of that same segment. The user

Appendix B-4 • Console ODT Command Languages

who wishes to cross the 32-Kword boundary must reenter the address for the
desired 32-Kword segment (i.e., console ODT is module 32 Kword). This
operation is the same as that found on older PDP-ll consoles.

Example: @R7/000000<SPACE> <LF> <CR> <LF>
RO/123456 < SPACE>

or
@577776/000001<SPACE> <LF> <CR> <LF>
400000/125252 < SPACE>

Unlike other commands, console ODT does not echo the < LF >. Instead it
prints < CR >, then < LF> so the printing terminals operate properly. In
order to make this easier to decode, console ODT does not echo ASCII 0, 2, or
10 either, but responds to these three characters with? < CR > < LF > @ .

$ (ASCII 044) or R (ASCII 122) Internal Register Designator
Either character ($ or R) when followed by a register number, 0 to 7, or the PSW
designator, S, will open that specific processor register.

The $ character is recognized to be compatible with ODT-ll. The R character
was introduced because it requires only one keystroke and because it is
representative of what it does.

Example: @$0/000123 < SPACE>
or

@R7/000123<SPACE> <LF>
RO/054321 < SPACE>

If more than one character is typed (digit or S) after the R or $, console ODT
uses the last character as the register designator. There is an exception,
however, if the last three digits equal 077 or 477. ODT interprets this to mean
the PSW rather than R7.

S (ASCII 123) Processor Status Word (PSW)
This designator is for opening the PSW and must be employed after the user
has entered an R or $ register designator.

Example: @RS/100377<SPACE>0<CR><CR> <LF>
@/000020 < SPACE>

Note the trace bit (bit 4) of the PSW cannot be modified by the user. This is
done so that PDP-ll program debug utilities (e.g., ODT-ll) that use the Tbit for
single-stepping are not accidentally harmed by the user.

If the user issues a < LF> while the PSW is open, the PSW is closed and ODT
prints a < CR > < LF> @. No new location is opened in this case.

Appendix B-5

G (ASCII 107) Go
This command (G) is used to start program execution at a location entered
immediately before the G. This function is equivalent to the LOAD
ADDRESS and START switch sequence on older PDP-ll consoles.

Example: @200G<NULL> <NULL>

The console ODT sequence for a G, after echoing the command character
follows.

1. Print two nulls (ASCII 0) so that the bus initialization that follows does not
flush the G character from the double-buffered UART chip in the serial line
interface.

2. Load R 7 (PC) with the entered data. If no data is entered, 0 is used. R 7 is set
equal to 200 and that is where program execution begins.

3. The PSW and floating-point status register contained in the MMU
are cleared to o.

4. The bus is initialized.

5. The service state is entered by the processor. If there is anything to be
serviced, it is processed. If the HALT signal is asserted, the processor
reenters the console ODT state. This feature is used to initialize a system
without starting a program (R 7 is altered). A user who wants to single-step a
program, can execute it by issuing a G and then successive P commands, all
done with the HALT signal asserted (either by the HALT switch or via the
Hcommand). .

P (ASCII 120) Proceed
This command (P) is used to resume execution of a program and corresponds to
the CONTINUE switch on older PDP-ll consoles. No programmer-visible
machine state is altered using this command.

Example: @P

The PDP-ll processor is started immediately after the transmission of the P to
the terminal console has begun. If a RESET instruction is executed while the P
is transmitting, the echo of the P may be lost.

Program execution resumes at the address pointed to by R7. After the P is
echoed, the console ODT state is left and the processor immediately fetches the
next instruction. If the HALT signal is asserted, it is recognized at the end of
the instruction (during the service state) and the processor enters the console
ODT state. Upon entry, the content of the PC (R7) is printed. In this fashion, a
user can single-step an instruction through a program and get a PC trace
displayed on the terminal.

Appendix B-G' Console ODT Command Languages

Control-S (ASCII 023) Binary Dump
This command (Control-S) is used for manufacturing test purposes and is not a
normal user command. It is described here to explain the machine's response if
the command is accidentally invoked. Control-S is intended to more efficiently
display a portion of memory than the / and < LF > commands can display it.
The protocol follows.

1. After a prompt character, console ODT receives a control-S command and
echoes it.

2. The host system at the other end of the serial line must send two 8-bit bytes
that console ODT interprets as a 16-bit starting address. These two bytes are
not echoed.

The first byte specifies starting address < 15-08> and the second byte
specifies starting address < 07 -00>. Bus address bits < 17-16> are always
forced to be 0; the dump command is restricted to the first 32 Kwords of
address space.

3. After the second address byte has been received, console ODT outputs 10
bytes to the serial line starting at the address previously specified. When the
output is finished, console ODT prints < CR > < LF > @.

If a user accidentally enters this command, it is recommended, in order to exit
from the command, that the user resets the terminal and enters two @

characters (ASCII 100) as a starting address. After the binary dump, an @

prompt character is printed.

H (ASCII 110) Toggle HALT Flip-Flop (PDP-ll/24 only)
Programs are often debugged by single-instruction stepping them. In the PDP-
11/24, this may be accomplished by setting the HALT/BOOT switch to the
HALT position and using the P command to single-instruction-cycle the PDP-
11/24. The same result as setting the HALT switch may be realized by typing
H. An internal flip-flop is set, simulating the action of the HALT switch. P will
now single-cycle the PDP-11/24. After the debugging execution is completed, H
must be typed once more. This will clear the internal flip-flop, and the next P
will cause the PDP-ll/24 to run at full speed .

. ASCII Console for the PDP-ll/44

The PDP-ll/44 serial console is a standard feature that replaces the "lights and
switches" programmer's console of earlier processors with logic that interprets
ASCII characters to perform equivalent panel functions.

Physically, the I/O port used for the serial console function is shared with the
standard system terminal (also called the system console), and is mode (or state)
switchable by typing ASCII characters on the system terminal (the LA120 or
equivalent that serves as the system console/programmer console).

Appendix B-7

In this section, "console state" defines the serial console mode of operation in
which ASCII commands are interpreted and result in the programmer's console
functions (deposit, examine, halt, continue, etc.) being performed. The term
"program I/O state" will be used to refer to that state in which the LA120
functions as the standard system terminal, or the system console.

NOTE
The console state can be entered only when the key switch is not in the local

disable position.

Console State
The console state is entered by typing a reserved input character, Control P
(ASCII < CTRL > P < 020 > or < 220 >). This is also called the console break
character. The console state is also entered when the CPU halts. It can be
entered only when the front panel key switch is in the local position. The
reserved character is not passed to a running program, and console state is
entered after printing the current output character, if any. While in the console
state, all input characters are interpreted by the console logic as commands to
the CPU control interface. The console performs all character echoing while in
the console state.

A program running in the processor is inhibited by the console logic from
sending or receiving any characters. This is accomplished by inhibiting the
"ready" and "done" bits from being set. The console state is exited to the
program I/O state by typing a specific console command such as CONTINUE,

START, or BOOT. If there is no console command in execution, a front panel
CONTINUE will cause exit from the console state. Turning the front panel
keyswitch to the local disable position will cause exit. The beginning of a
powerdown sequence will also cause exit from the console state.

NOTE
When in console state, if a program just sends output to the printer without
testing status bits, the characters will be printed if the logic happens to be
ready.

Program I/O State
The program I/O state is entered from the console state by typing the
CONTINUE command. A running program will then resume any input/output
that might have been interrupted by the console break character. Any ASCII

character may be output by the program, and any ASCII character, except the
console break character, may be input to the program. Character echoing is the
responsibility of the CPU software in program I/O state.

The program I/O state is exited to the console state by typing the console break
character, or by CPU execution of a HALT.

I'
I
I

Appendix B-8 • Console ODT Command Languages

. Console Command Language for the PDP.ll/44

This section lists the control characters and special characters recognized by
the console and describes their functions.

ADDRESS
The ADDRESS command is used to redisplay the results of a previous console
operation. The command provides a convenient method of calculating the
effective address of modes 67 and 77 offset addresses.

Syntax: > > > A[ddress]

Example: > > > A
P 00-001000 000240
As an index 001242

»>
The first line displays the last physical address used by the console as noted by
the P. If an internal register was addressed, this would be an M. The data is the
last word examined or deposited by the console.

The second line contains the address that would be referenced if the current
word was used as the index for a mode 67 instruction.

Example: > »E 1000/N:3
P 00001000012767
P 00001002000301
P 00001004176560

»>A
P 00001004 176560

As an index 177566

The MOVE instruction at addresses 1000, 1002, and 1004 has a source mode of
27 (immediate) and a destination mode of 67 (offset from the PC).

BOOT
The BOOT command allows the user to boot from a system device other than
the default system device. This command is executed only if the CPU is halted.
Otherwise, an error message is generated. Console state is exited before boot
execution is continued.

Syntax: > > > B[oot][< SP > < DEVICE-NAME>][:][< Qualifier>]

If no device name is given, the console will perform the boot sequence for the
default system device. This is the equivalent of using the front panel BOOT
switch.

Example: > > > B DT2:/NO

Appendix B-9

BREAK
The BREAK command, when supplied with a physical address, sets a hardware
breakpoint. If this breakpoint is set and the CPU or an I/O device issues a read
or write to the specified address, the CPU will halt. If no address is supplied,
the breakpoint will be cleared. The breakpoint remains in effect until it is
explicitly cleared or the system is powered off.

Syntax: > > >BR[eak] [<address>] [<Qualifier>]

The optional address qualifier may be used to specify virtual address space and
the address translation will be made once using the current mapping. If the
mapping is subsequently changed, the breakpoint will remain at the old
physical address.

The cache address-match registers are used by this command. Therefore, the
cache module (M7097) must be installed in the system. These registers
(17777750/17777752) should not be explicitly addressed while the breakpoint
is in effect nor should a breakpoint be attempted using these addresses.

Example: > > > BRlOOO/KI
(Console) Break at 001004

»>
The CPU is halted and the PC is displayed when the address specified is
encountered. It may be the PC of the first or second instruction following the
breakpoint. The address may be any word in the instruction stream, an explicit
operand address, or an implicit stack access. If the address was accessed by
DMA activity, the contents of the PC may be entirely unrelated.

CONTINUE
When the CONTINUE command is issued, the CPU begins instruction
execution at the address currently contained in the CPU program counter (PC)
or continues execution if already running. CPU initialization is not performed.
Additionally, the console enters program I/O state at the same time as issuing
the CONTINUE to the CPU.

Syntax: > > > C[ontinue]

This command may be used to return the console to program I/O state even if
the CPU was already running.

DEPOSIT
The DEPOSIT command is used to modify the contents of memory, the general
purpose registers, PDP-ll programmer accessible registers, the PDP-ll micro
PC, and various I/O registers. Also, it will deposit data into the address
specified. The address space will depend upon the qualifiers specified with the
command.

Appendix B-1 a • Console ODT Command Languages

Syntax: > > > D[eposit] [< address> < sp >] < data> [< Qualifier>]

An address may be specified with the DEPOSIT command; if no address is
specified, the address defaults to < + > (preincrement).

Initiating deposits while the processor is running is illegal unless the deposit is
to the console switch register (D < sp > sw < data> < cr >).

Example: > > > D 1000 240
> > >D240
»>

The first DEPOSIT command loads 000240 into location 0001000. The second
DEPOSIT loads 000240 into location 0001002.

EXAMINE
The EXAMINE command allows the user to display the contents of memory,
the general purpose registers, PDP-11 programmer accessible registers, the PDP-
11 internal registers, and various I/O registers.

Syntax: > > > E[xaminel [< address>]

The EXAMINE command can be used without the argument. In this case, the
address defaults to < + > (preincrement).

Examines are legal while the processor is running. The console will respond by
printing the eight-digit physical address examined followed by the six-digit
octal data contained in that location. Upon completion of the examine, the
console will respond with the console prompt (> > >)_

Examples: > > > E 1000 Examine location 1000.

FILL

Syntax:

00001000 002625
»>E
00001002 005646
> > >EpC
»>G
00000007 001000

> > > F[ill] count

Examine the next location.

Examine the Pc.

The FILL command must be followed by a numeric count between 0 and 377.
The count is equal to the number of null characters to be echoed following a
<CR>.

Example: > > >F 100
»>FO
»>

The first command sets the fill count to 100 (64 decimal). The second
command sets the fill count back to O.

Appendix B-11

On powerup, the fill count is set to o. Upon completion of the FILL command,
the console responds with the console prompt (> > >).

HALT
The HALT command is used to halt the processor at the completion of its
current instruction. After the processor has halted, the PC is displayed.

Syntax: > > > H[alt]
Example: > > > H

Halted at 001000
»>

HELP
This command provides a listing of all the syntax recognized by the console.
The binary load command is not listed.

Syntax: > > >HE<lp>

INITIALIZE
The INITIALIZE command causes the entire PDP-ll bus and the I/O to be reset
to the conditions present after initial powerup.

Syntax: > > > I[nitialize]

MICROSTEP
The MICROSTEP command causes the PDP-ll processor to execute one
instruction in the microprogram. The updated PC will be printed.

Syntax: > > > M[icrostep] [count] [qualifier]

If either a count or a qualifier is supplied, the PDP-ll will take that many steps.
The count is decremented after each microinstruction is performed. When the
count equals 0, the console will print the last micro PC and the console prompt
(> > >). The console is then in spacebar step mode and an additional
microinstruction is performed each time the spacebar or tab key is pressed.

Example: > > > M 2

NEXT

micro PC = 000015
micro PC = 000263

The NEXT command causes the PDP-ll processor to execute one instruction in
the program. The updated PC will be printed.

Syntax: N[ext] [count]

If used without an argument or qualifier, the NEXT command will execute one
instruction. If either a count or a qualifier is supplied, the PDP-ll will execute

Appendix B-12 • Console ON Command Languages

that many instructions. Immediately after the NEXT command has been
executed, additional instructions may. be executed simply by pressing the
spacebar or tab key.

NOTE
Interrupts are disabled while single stepping the PDP-ll.

Example: > > > N

REPEAT

PC = 001002
> > >N = 2

PC =001004
PC =001010

»>

The REPEAT command will repeatedly execute < command> .

Syntax: > > > R[epeat] < comand >

R[epeat] will repeatedly execute < command> until it is terminated by
CTRL-C.

START
The START command causes the PDP-ll to begin executing its program at the
address specified. The PDP-ll is initialized, the new PC deposited, the
breakpoint (if any) is set, and the PDP-ll continued.

Syntax: S[tart] address

An address must be supplied with the START command.

Example: > > > S 1000
(program)

TEST
The TEST command causes the console to perform its self test. By using the IE
qualifier, the test will include console interaction with the PDP-ll.

Syntax: > > > T[est] [fExtensive >]
Example: > > > T

»>
Errors during this phase of testing produce no error messages. Success of this
test is indicated by the console prompt.

> > >T/E
Halted at 000000

»>
Errors during the jE[xtensive] part of the test are indicated by the printing of
an error message. If no errors occur "Halted at 000000" will be printed at the
end of each pass.

Appendix B-13

NOTE
jE[xtensive] version of the TEST destroys the contents of the switch register
and PDP-ll memory. Unless specially designed, the PDP-ll program is not
restartable after T[est]/E[xtensive].

BINARY LOAD
The BINARY LOAD command instructs the console to prepare to load or
unload < count> binary data bytes starting from location < address>. Only
an even byte < count> may be used.

Syntex: > > > X < address> < sp > < count> < cr >
Example: > > > X 1000 866

A < count> without bit 18 set (0 xxx XXX) will cause a BINARY LOAD of
the count field. A < count> with bit 18 set (1 XXX XXX) will cause a BINARY

UNLOAD. In this case, the remaining bits in the count field are considered an
unsigned positive number indicating the number of bytes to unload.

Command Qualifiers

QUALIFIER COMMAND DESCRIPTION
APPLICABILITY

JIR D[eposit]
E[xamine]
M[icrostep]
N[ext]
T[est]

jNO[diagnostic] B[oot]

jSC[ope] DEPOSIT
EXAMINE
HALT
TEST

jE[xtensive] TEST

jN:<count> DEPOSIT

ICB

ITB

EXAMINE
MICROSTEP
TEST

EXAMINE

DEPOSIT
EXAMINE
INITIALIZE

Repeats the command continuously.
Halts on error or CTRL-C.

Disables running diagnostics only if a
device specifier is used following the
command.

Retry the command continuously
(will not halt on most errors) CTRLI
C will suspend output.

Test CPU-console interaction.

Repeat the command for < count >
iterations.

Cache bypass

Take-bus

Appendix B-14 • Console ODT Command Languages

Addressing Qualifiers
To access virtual memory these qualifiers may be appended to < address> .

Syntax Example: > > > E 1000jK/N:2

QUALIFIER

jP

jK[i]

jKD

jSD

jS[i]

fU[i]

/UD
jV[i]

/VD

KI 00001000 000001
KI 00001002000776

DESCRIPTION

Physical bus addresses (memory or I/O).

Kernel instruction space.

Kernel data space.

Supervisor data space.

Supervisor instruction space.

User instruction space.

User data space.

Use the instruction space specified by the current mode
bits of the PSW.

Use the data space specified by the current mode bits of
thePSW.

< address> Arguments
The < address> in D[epositl and E[xaminel commands can be any of the
following arguments.

ARGUMENTS

0-7

*

+
@

jG[n]

jM[n]

DESCRIPTION

1 to 8 octal digits.

Autodecrement.

Use the last address again.

Autoincrement (default).

The last data examined becomes the address.

General purpose registers (n=0-17 octal).

Machine dependent registers (n = 0-11 octal):' The only
machine-dependent register that can be deposited into is
the CPU micro PC register (address 00000004).

* 0-10 if the M7096 module is below revision C.

SW[r]

PC

PS[w]

KS[p]

SS[p]

US[p]

Execution Errors

?Halt CP

Appendix B-15

Switch register. Equal to /P 17777570.

Program counter. Equal to /G 7.

Processor status word. Equal to /P 17777776.

Kernel stack pointer. Equal to /G 6.

Supervisor stack pointer. Equal to /G 16.

User stack pointer. Equal to /G 00000017.

The command cannot be executed when the CPU is
running.

?No ROM for that The CPU does not contain a bootstrap ROM for the
specified device.

?CP did not start A hardware failure prevented the CPU from performing
the requested command.

?UnBREAKable It is illegal to set the breakpoint to physical address 0,
any general purpose register, or machine-dependent
register.

?Bus timeout error The address you are attempting to breakpoint is nonex­
istent. There is no cache memory in the CPU. The
specified address is not responding.

?Parityerror Parity is enabled and the address you are attempting to
breakpoint or examine contains bad parity.

?J1Step CP Breakpoints cannot be set while the CPU is at micro­
address 015.

?Too big Attempting to deposit, examine or breakpoint based on
a virtual address larger than 177777.

? Access aborted

% Wrote RO page

Deposit/examine a general-purpose register greater than
17 or machine dependent register greater than 11 (10 for
V3.XXB machines).

The requested fill count was greater than 377 (225
decimal).

Attempted to breakpoint/deposit/examine a virtual
address that is not mapped.

Deposit to a virtual page that is read-only. The deposit is
performed. This is a warning message.

Appendix B-16' Console om Command Languages

?Read-only

?Failed to halt

? Already halted

?Rn Err

?PX Err

Notes

Only the micro PC register may be deposited_ All other
machine dependent registers are read-only.

The console attempted to halt the CPU but could not do
so after 500 microseconds.

The CPU is already halted.

The console is not certain of the RUNfHALT state of the
CPU. The CPU did not halt after 500 microseconds
following an EXAMINE command.

The pax address/data lines appear to be stuck high or
low.

1. The message "Console V3.40x" will be printed on powerup where x will be
the revision level of the M7096 module installed in the system.

2. Entering a 22-bit address is not required. Addresses will be expanded to 22-
bits (e.g., 1000+00001000).

3. Entering a 16-bit data word is not required. Data will be expanded to 16-bits
(e.g., 240=000240).

4. Spaces are required to separate numeric groups and alpha character groups to
avoid ambiguity.

Examples: Right
Wrong

Right
Wrong

> > > D PSW340/IR
> > > DPSW340/IR

> > > DIOOO 12737/TB
> > > Dl0001273 7/TB

Appendix C • Instruction Timing

Appendix C-2 • Instruction Timing

It is often useful to know the amount of time required to execute a particular
instruction or series of instructions. The calculation of this time is straightfor­
ward but dependent on a variety of factors. These factors break down into two
main categories-speed of the hardware and complexity of the instruction.

In this appendix, we'll first examine the hardware features that affect speed,
followed by tables that break down the instructions and allow you to calculate
the execution time for any instruction as executed by the various hardware
systems .

. Speed of the Hardware

A computer system is built of many separate hardware subsystems. Each of
these can affect the rate at which instructions are processed. Some of the most
prominent factors are

• The processor microcycle rate.

• The amount of work performed with each microcycle.

• The main memory access time.

• The number of main memory cycles that can be avoided entirely.

• Whether there is DMA activity on the system bus.

• Timing variations peculiar to a given system.

Processor Microcycle Rate
If the time required for a processor microcycle is shortened, clearly the amount
of time required to execute a complete macroinstruction should also be
shortened, assuming nothing else stalls the processor. For example, the basic
clock time of the PDP-ll/24 microcycle is 300 nanoseconds; the basic clock
time of the PDP-ll/84 is 222 nanoseconds. If all other things were equal, the
PDP-ll/84 would be faster for this reason alone.

The Amount of Work Performed with Each Microcycle
All other things are not necessarily equal. A processor that can accomplish more
useful work per microcyle will also execute macroinstructions faster than a
processor that accomplishes less per microcycle. For example, a PDP-ll/84
microcycle can accomplish up to three times the work as a PDP-ll/24 microcycle.

Main Memory Access Time
While the processor is waiting for data from memory, it is not accomplishing
useful work. Faster memories mean less waiting time.

Appendix C-3

Minimizing the Number of Main Memory Cycles
The inclusion of fast buffer memories between the processor and main
memory can mean that fewer references need to go all the way to main memory
for data. This speeds execution while freeing up main memory cycles for use by
DMA devices. The PDP-11/84 uses two methods to minimize the number of
main memory cycles-cache memory and the instruction buffer.

Cache Memory
Both the PDP-11/84 and the -11/44 contain a buffer memory between the
processor and the main memory. This buffer memory attempts to store the data
and instruction words most frequently required by the processor. This buffer is
referred to as the cache memory. Any processor data request satisfied by the
cache memory takes much less time than a request that can be satisfied only
from main memory. When the requested data is found in the cache, the
opemtion is referred to as a cache hit. When the requested data is not found in
the cache, the opemtion is referred to as a cache miss, and the request
automatically passes to main memory.

In addition, every time the PDP-11/84 must go to main memory, two words will
be returned to the cache. This is useful because there is a high probability that
the second word will be used soon.

The PDP-ll/24 does not contain a cache memory. All memory requests result in
a read or write of main memory.

The Instruction Buffer
In addition to the speed improvement provided by its cache, the PDP-ll/84
attempts to predict the address of the next instruction word required by the
processor. Because the processor is normally accessing instruction words in
ascending order (as directed by the Program Counter), this prediction is
genemlly successful. Separate hardware within the processor performs this
prediction and uses "spare" memory or cache cycles to access the next
instruction word. This next instruction word is then stored in the instruction
buffer. Should the prediction prove true, the word is already waiting and the
processor need not stop to fetch that next word. If, however, the progmm
bmnches, the prediction will prove false and the processor will need to stop
while the real next instruction word is fetched from memory.

Any read access using the PC is referred to as an Instruction-stream (I-stream)
read. Read accesses that do not use the PC cannot be predicted in this fashion,
and are referred to as data reads.

Neither the PDP-11/24 nor -11/44 contain an instruction buffer, so all read
operations, whether I-stream or not, act like data reads.

Appendix C-4 • Instruction Timing

Effective Memory Access Time
The table below indicates the time to access data from each of the different
data sources (e.g., the instruction buffer, the cache memory, or main memory),
for each of the different processors (i.e., the PDP-11/84, -11/44, and -11/24).

I-stream Data Data
reads reads writes

11/84, data in ...
Instruction buffer o ns
Cache memory 222 ns 222 ns
Main memory 1000 ns 1000 ns 680 ns

11/44, data in ...
Cache memory 90 ns 90ns
Main memory 450 ns 450 ns 150 ns

11/24, data in ...
Main memory 450 ns 450ns 150 ns

Direct Memory Access (DMA)
If the processor must read or write a main memory word, and the UNIBUS is
already busy servicing a direct memory access (DMA); then the processor must
wait until the DMA completes. This can greatly extend the processor's effective
memory access time.

In most circumstances, the Dual Tag Store of the PDP-11/84 allows the
processor to continue to read from the cache memory unimpeded by DMA
activity. The processor must wait only if a cache miss or a main memory write
occurs or the DMA attempts to alter data already stored in the processor's cache
memory.

The PDP-11/44 and -11/24 will be stalled any time a memory read or write is
required and a DMA is occurring on the UNIBUS.

Timing Variations in a Given System
Finally, the speed of the various hardware systems varies from unit to unit. The
clock of the PDP-11/84 processor is timed by a quartz crystal and so is very
accurate, but the memory system is not so precise. The clocks of the PDP-11/24
and -11/44 processors may vary as much as ±5 percent from sample to sample .

. Instruction Complexity

PDP-11 processors fetch instructions from main memory. These instructions
can change the "state" of the CPU, or manipulate data stored in main memory.
The instructions vary in complexity and, therefore, in execution speed. Let's
examine the execution of a few PDP-11 instructions.

Appendix C-5

Increment (INC)
This instruction causes the operand to be replaced by the operand plus one,
that is, the operand is incremented by one. The operand may be a CPU general
register or a byte or word of main memory. The first step in the execution of any
instruction is to fetch the opcode from main memory. Contained within the
opcode is the field specifying the mode to be used in addressing the operand.
Also specified is the general register that will combine with the addressing
mode to tell the CPU where the operand will be found.

If the operand is contained within a general register (address mode 0), then the
register can be quickly incremented, and the INC instruction is complete.

If any other addressing mode was selected, the operand is contained in main
memory. First, the address in memory of the operand must be determined.
This requires zero, one, or two reads of main memory, depending on the
particular addressing mode. Then the operand can be read from that address.
The data is incremented within the CPU and the updated data written back
into main memory. The INC instruction always returns the incremented data to
the same location as previously read, so the address calculation need not be
repeated.

Move (MOV)
The MOV instruction is used to copy data from one location to another. The
location that supplies the data is called the source. The location to receive the
data is called the destination.

As in all instructions, the opcode is first fetched from memory. This time, the
opcode contains two addressing fields. One specifies the addressing mode and
register for the source operand, and the other specifies the addressing mode
and register for the destination operand.

The exact order of operations varies from one member of the PDP-ll family to
another but, in general, the following operations take place:

The source field is evaluated to supply the address of the source operand (i.e.,
where the MOV instruction will find the data). Remember that this requires
zero, one, or two memory reads, depending on the addressing mode. The
destination field is then evaluated to determine the address of the destination
operand (i.e., where the MOV instruction will put the copy of the data). The
source operand itself is then read, and the destination operand written. If the
source operand is in main memory, this requires reading main memory. If the
destination operand is in main memory, this requires writing main memory.

Add
This is another two-operand instruction. It differs from the MOV instruction
only in that the destination operand is replaced with the sum of the source and
destination operands. In other words, both the source and destination
operands must be read, then the two data words added together, and the result

Appendix C-6 • Instruction Timing

rewritten to the destination operand. Thus, if the destination operand is in
main memory, ADD requires one more read of main memory than an
equivalent MOV instruction.

Emulator Trap (EMT)
This instruction does not require the specification of any addressing modes.
This is because all of the operands are implicitly specified by the opcode itself.

The instruction allows the software to perform a trap (similar to a hardware
interrupt). This instruction is generally used to call monitor or kernel routines.

As always, the opcode is first fetched from memory. Then the old program
counter (Pc) and processor status (PS) are pushed onto the SP stack. The pc and
the PS are then loaded from the EMT trap vector (adocation 000 030). (This is a
simplified explanation, not taking into account memory management.)

Beyond the opcode fetch, EMT therefore requires two main memory writes as
well as two main memory reads to execute completely.

General Method to Calculate Instruction Timing
In general, all instructions executed by the PDP-ll require an opcode fetch, and
most require that some data be manipulated. The data manipulation consists of
one or more of source operand access, destination operand access, destination
operand write-back, and miscellaneous implied reads and writes.

The total execution time of an instruction can be found by summing up the
time required for each of the basic operations listed above. The tables that
follow provide the specific timings for each of these basic operations.

The three-operand CIS instructions are different and are not covered in this
appendix.

Overlap of Phases
Certain simple addressing modes allow much work to be accomplished in a
single microcycle. For example, most PDP-ll processors can execute the
instruction ''ADD Rl, RO" in a single microcycle. In that single microcycle, Rl
and RO are presented to the adder and the result returned to RO. Thus, the
source, destination, execution, and writeback all take place concurrently.

Addressing Modes
The various addressing modes require various amounts of work. Mode 0
(operand in general register) requires essentially no work and is the fastest
addressing mode. Mode 7 (indexed, deferred) is the most complex addressing
mode, requiring the most work and execution time. Use of the various
addressing modes is described in the PDP-ll Architecture Handbook. The
tables below document the number of I-stream reads, data reads, and data
writes performed by each of the source and destination addressing modes as

Appendix C-l

well as their contribution (in microseconds) to the overall instruction execution
time. Separate tables document

• Source addressing modes.

• Destination modes for BIT(B), CMP(B), TST(B).

• Destination modes for JMP.

• Destination modes for JSR.

• Destination modes for MOV(B) and CLR(B).

• Destination modes for all other instructions.

Source Addressing Modes
The source operand is never written, so a source operand access simply consists
of read operations.

1- CPU
Source Macro-11 stream Data Data activities
Mode syntax reads reads writes required 11/84 11/44 11/24

00-07 R 0 0 0 <None> 0 .18' 0

10-17 @Ror(R) 0 1 0 Access operand .44 .18 .60

20-26 (R)+ 0 1 0 Access operand .44 .36 .60
Increment R

27 \pc)+ or Un 1 0
1

0
Access operand, .22 .36 .60
Increment PC

30-36 @(R)+ 0 2 0 Access addr of operand .89 .54 1.20
Access operand
IncrementR

37 @(PC)+ or@Un 1 1 0 Access addr of operand .67 .54 1.20
Access operand
Increment PC

40-46 -(R) 0 1 0 Decrement R .67 .36 3.90
Access operand

47 -(PC) 0 1 0 Decrement PC 1.33 .36 3.90
Access operand

50-56 @-(R) 0 2 0 Decrement R 1.11 .54 1.50
Access addr of operand
Access operand

57 ~-(PC) 0 2 0 Decrement PC 1.78 .54 1.50
Access addr of operand
Access operand

60-67 INDEX(R) 1 1 0 Access index word .89 .72 1.50
SumwithR
Access operand

70-77 @INDEX(R) 1 2 0 Access index word 1.33 .90 2.10
Sum with R
Access addr of operand
Access operand

·0 if destination mode also equals 00-07.

Appendix C-8' Instruction Timing

Destination Addressing Modes for BIT(B), CMP(B), and TST(B) (read-only)
These instructions never modify the destination operand. Therefore most
PDP-II's never write the destination operand. Other older models write back
the exact same data as read. See the PDP-ll difference list (Appendix A) for
details.

"0 if source mode also equals 00-07.

Appendix C-9

Destination Addressing Modes for JMP
The JMP instruction performs one less read than an equivalent MOV to PC
instruction, and is implemented with its own microroutines.

r~r---·--
-------- ---- -_. I cPu-- -~--- .---~ ~----- ---- -.~-.---.-

Destl- 1-
nation M8cro~1l stream Data nata I activities 11/84 11/44 11/24
Mode syntax reads reads writes I required Single Op r..---- .-- ----

N/A N/A lIlle;iinstrucrlc;;-=--'NjA-- Nfj..- -----_._ ..
00-17 R N/A N/A

1---------- ---- -+---- -- _ -i: .."ili_ '" c------
10-11 @Ror(R) 0 0* 0 PC~R .89 .54 1.50

. -- --.-
20-26 (R)+ 0 0* o PC~R 133 .90 1.80

Increment R
_ ..

"-t~
27 lin 0 O' 133 .90 1.80

I Increment R
-_. --_.- .. _--_.- - to- kces';-';;;;'nd -- -- 1.11 30·36 I @(R)+ I 0 1* .90 1.80

I PC~operand

Increment R
-- --~':-e;s operand-----1.U----37 @lIn 1 O' .90 1.80 I

f--~----r--,--------- I J PC ~ operand --+ ._--
-l~·o-- ID;;;;;:;;~~;-R--- 1.11 40-47 -(R) 0 .72 1.80 I I PC~R --!------ _.-- .. --.r--.- 1----------.

50-57 @-(R) o 11 * 0 Decrement R 1.33 .90 2.20
Access operand
PC~operand

60-66 '"""'j --f, -t"-t- "'= ""'~ "'"" 1.33 .90 ~
PC~R + index

1---------- ---- -- - - -- ----
67 Symbol 1 O' 0 Access symbol word 1.11 .90 2.1

T
PC~PC + symbol + 2

@Index(R) Access index word
.-1----

70-76 I' 0 1.55 1.26 2.7
Addr,.~ R + index

I
Access T

In
PC~T

•

@Symbol

I

1 rI' Access symbol word 1.55 1.26 2.7
AddrT~ PC + symbol + 2
Access T

I PC~T
'PDP-11/84 performs one additional read (e.g., 1 instead of 0)

Appendix C-lO • Instruction Timing

Destination Addressing Modes for JSR
The Jump-to-Subroutine instruction is very similar to the]MP instruction,
except that]SR must push the old contents of the destination register onto the
SP stack. This requires extra microcyc1es and one data write. These extra
activities are not listed under the "CPU activities" column.

Desti- I. CPU
nation Mac:ro·ll stream Data Data activities 11/84 11/44 11/24
Mode syntax ",ads ",ads writes required SingleOp

00-17 R N/A N/A N/A Illegal instruction- N/A N/A N/A
Trap through 10

10-11 @Ror(R) 0 O· 1 PC~R 2.00 1.26 2.70

20-26 (R)+ 0 O· 1 PC~R 2.22 1.44 3.00
Increment R

27 #n 0 O· 1 PC~PC 2.22 1.44 3.00
Increment R

30-36 @(R)+ 0 i· 1 .Access operand 2.22 1.44 3.00
PC~operand

IncrementR

37 @#n 1 O· 1 Access operand 2.00 1.44 3.00
PC~operand

40-47 -(R) 0 O· 1 DecrementR 2.22 1.26 3.00
PC~R

50-57 @-(R) 0 l' 1 DecrementR 2.22 1.44 3.3
Access operand
PC~operand

60-66 Index(R) 1 O· 1 Access index word 2.22 1.62 3.3
PC~R + index

67 Symbol 1 O· 1 Access symbol word 2.00 1.62 3.3
PC~PC + symbol + 2

70-76 @Index(R) 1 l' 1 Access index word 2.66 1.80 3.90
AddrT~ R + index
Access T
PC~T

77 @Symbol 1 I- i Access symbol word 2.66 1.80 3.90
AddrT~ PC + symbol + 2
Access T
PC~T

·PDP-11/84 performs one additional read (e.g., 1 instead of 0)

Appendix C-ll

Destination Addressing Modes for MOV(B) and CLR(B) (write-only)
The Move and Clear instructions never need to access the destination data,
because that data is merely overwritten. Therefore, some PDPll processors
suppress the reading of the destination data for MOV(B), CLR(B), or both. This
speeds execution. Other processors may read the data and then discard it. See
the PDP-ll difference list (Appendix A) for details.

*0 if source mode also equals 00-07.

Appendix C-12· Instruction Timing

Destination Addressing Modes for All Other Instructions (read-write)
All other instructions read the old destination operand, modify the data, and
then write back new data.

Desti- I- CPU I I ~I----I
nation Macro-ll stream Data Data activities I I II

f-M_o_d_e_t_sy~n __ ta_x ______ r.,.~_+~.ds writes requ_ir_e_d ______ ---+_l--'l/'---S4 Ill/~~ lt~
00-06 ROO 0 <None> ~ T 18* 0 I
----f------~--___+--+_-~--------.-.------~---------j --1

07 ROO 0 <None> lI!1 18' 0 j
10-16 @Ror(R) 0 1 1 Access operand I 67 36 150

Write-back operand l----t----___+---

17 I @PCor(PC) I 0 1 1 Access operand i 1.55 36 1.50 I
Write-back operand I I ------ -----~- ----+~.--+------ - -- ----I

20-26 (R)+ 0 1 1 I Access operand .67 .54 I 1.50
Increment R

(PC) + or #n

Write-back operand _+--
Access operand, 1.55.54 I 1.50 27
Write-back operand I
Increment PC

~~-+~------~---~~--+-~~-~~~~:-~~~~~~---- ----
'I@(R)+O 2 1 Access addr of operand 30-36 1.11 .72 1.80

Access operand

I II Write back operand
Increment R

I @(PC)+ or@#n 1
I --

I
Access addr of operand I .89

I Access operand I

37 .72 1.80

I Write· back operand I
r-----:--t---=:-----rC------r---t--- -t:ncrem--""-~~<:... ____ +--r----t----l

40-46 I-(R) 0 1 1 I Decrement R .89 .54 1.50
I Access operand

f---__ -t--______ -t---__ t ____ --l __ ---t_W_rite-back operand

II Decrement PC
Access operand
Write-back operand

47 -(PC) o

50-56 I @·(R) 0 2 1 Decrement R
Access addr of operand
Access operand

1.78 .54 1.50

1.33 .72 2.10

~. Write-back operand
57 i@-(PC)-------+-0---t---2--f--1------+-D-e-cre-m-e-nt-PC--=------+-2-.2-2-----+1-. 7-2~-2-.-1O---j

Access addr of operand

60-67 INDEX(R)

70-77 @INDEX(R) 2

Access operand
Write-back operand

Access index word
SumwithR
Access operand
Write-back operand

Access index word
Sum with R
Access addr of operand
Access operand

L... __ --'---______ .L... __ -"----_....J. ___ ..J._W_r_ite-back operand

*0 if source mode also equals 00-07.

1.11 .90 2.10

1.55 1.08 2.70

Appendix C-13

Fetch and Execution Timing
Operand access and update has already been described. The rest of the work
performed by an instruction consists of the opcode fetch; the actual data
manipulation(s); and any implicit reads or writes.

The table below documents the number of microcycles required times the basic
clock time of the processor. Thus, the table directly lists the duration of the
fetch and execution phase in microseconds.

The table also indicates the number of implicit data reads and writes that must
be performed to complete execution of the operation, including the opcode
fetch.

Execution Time on Plus

Opcode 11/84 11/44 11/24 Reads Write

Single
operand:

ADC(B) .22 .54 1.20 1 0
ASR(B) .22 .54 1.20 1 0
ASL(B) .22 .54 1.20 1 0
CLR(B) .22 .54 1.20 1 0
COM(B) .22 .54 1.20 1 0
DEC (B) .22 .54 1.20 1 0
INC(B) .22 .54 1.20 1 0
NEG(B) .22 .72 1.20 1 0
ROL(B) .22 .54 1.20 1 0
ROR(B) .22 .54 1.20 1 0
TST(B) .22 .54 1.20 1 0
SBC(B) .22 .54 1.20 1 0
SBC .22 .54 1.20 1 0
SWAB .22 .54 1.20 1 0
SXT .22 .54 1.20 1 0

Double
operand:

ADD .22 .54 1.20 1 0
BIC(B) .22 .54 1.20 1 0
BIS(B) .22 .54 1.20 1 0
BIT(B) .22 .54 1.20 1 0
CMP(B) .22 .54 1.20 1 0
MOV(B) .22 .54 1.20 1 0
SUB .22 .54 1.20 1 0

I

Appendix C-14 • Instruction Timing

--

Execution Time on Plus

Opcode 11/84 11/44 11/24 Reads Write

EIS:
ASH' .88+.22 4.2-30.3 1 0
ASHe 1.01 + .22 6.3-46.5 1 0
DIV 7.48 39.6-50.1 1 0
MUL 4.84 23.4-24.0 1 0
XOR .22 .72 1.20 1 0

NOTE

lThe execution time of the ASH and ASHC instructions depends on the
number of shifts performed. The table states the minimum time (i.e., for 0 bits
shifted) plus the incremental time per bit shifted, or the minimum-maximum
times.

Execution Time on Plus

Opcode 11/84' 11/44' 11/24 Reads' Write

Branch: no yes no yes
BCC' .44 .88 .36 .90 1.20 1 0
BCS' .44 .88 .36 .90 1.20 1 0
BEQ' .44 .88 .36 .90 1.20 1 0
BGE' .44 .88 .36 .90 1.20 1 0
BGT' .44 .88 .36 .90 1.20 1 0
BHI' .44 .88 .36 .90 1.20 1 0
BHIS' .44 .88 .36 .90 1.20 1 0
BM!' .44 .88 .36 .90 1.20 1 0
BNE' .44 .88 .36 .90 1.20 1 0
BPL' .44 .88 .36 .90 1.20 1 0
BR' .44 .88 .36 .90 1.20 1 0
BVe' .44 .88 .36 .90 1.20 1 0
BVS' .44 .88 .36 .90 1.20 1 0
BLE' .44 .88 .36 .90 1.20 1 0
BLO' .44 .88 .36 .90 1.20 1 0
BLOS' .44 .88 .36 .90 1.20 1 0
BLT' .44 .88 .36 .90 1.20 1 0
SOB' .66 1.11 .72 1.08 1.80-2.10 1 0

NOTE

'The execution time for the branch instructions varies depending on whether
or not the branch is taken. The table states the values for branch-nat-taken and

Appendix C-15

branch-taken, respectively. In addition, on the 11/84, taking the branch flushes
the instruction buffer, requiring an extra read to refill the instruction buffer.

[
- ------- Execution Time o~- ---Pl~s-- ---
---------4----,----~---~--.-- ,------

Opcode 11/84 11/44 11/24 Reads Write

Condition
codes:

CLx'
SEx' .67 .72 2.10 1 0

.67 .72 ~.10_ 1 0
L-_______ ~ ___ ~ ___ ~_ _ _____ _

NOTE

'On a given processor, all cases of the CLx and SEx condition code operators
execute in the same amount of time.

F
Execution Time on

Opcode 11/84 11/44

Jump and
subroutine:

]MP 04 04

]SR 0' 05

RTS 1.116 1.08
MARK 2.22 1.98

NOTES

4Special case-see]MP Destination Table.
'Special case-see]SR Destination Table.
61.33 if other than RTS, Pc.

11/24

04

0'
2.10
3.60

Plus

Reads Write

04 04

05 0'
2) 0
2) 0

JOn the 11/84, these instructions flush the instruction buffer, requiring an
extra read to refill the instruction buffer.

Appendix C-16· Instruction Timing

Execution Time on Plus

Opcode 11/84 11/44 11/24 Reads Write

Trap and
interrupt:

BPT 4.44 2.70 6.00 38 2
EMT 4.44 2.70 5.10 3' 2
lOT 4.44 2.79 6.00 38 2
RTI 1.98 1.98 3.60 38 2
RTT 1.98 1.98 3.60 3' 2
TRAP 4.44 2.70 5.10 38 2

~~

NOTE

'On the 11/84, these instructions flush the instruction buffer, requiring an
extra read to refill the instruction buffer.

Execution Time on Plus

Opcode 11/84 11/44 11/24 Reads Write

Miscellaneous
CSM 6.23 N/A 2-3 3
HALT ** 6.30-7.50 " "k

MFPI 1.10 1.08 3.6 1 1
MFPD 1.10 1.08 3.6 1 1
MFPS .22 N/A 1.2 1 0
MFPT .44 .72 1 0
MTPI .66 1.26 1.8 2 0
MTPD .66 1.26 1.8 2 0
MTPS 1.78 N/A 4.2 1 ° NOP .66 .72 2.10 1 0
RESET "" 10,000'0 "" 100,00010 "" 100,00010 1 0
SPL 1.55 2.16 N/A 1 ° TSTSET 1.11 N/A N/A 1 1
WAIT' -00 .72-00 2.4-00 1 0
WRTLOK .88 N/A N/A 1 1

NOTE

'The value stated in the table is the minimum execution time for the WAIT

instruction. WAIT actually continues executing until the next interrupt
request is received.

Appendix C-17

'OThe RESET instruction timing is actually determined by an RIC one-shot.
**The HAl1' instruction is not microcoded on the 11/44.
*Varies for the 11/84, 11/44 and 11/24 .

• Floating-Point Instructions

The same basic methodology can be applied to the floating point instructions,
with a few additional concerns added

Operand Length
PDP-11 floating-point operands may be 32- or 64-bits in length. In addition,
mode 27 operands result in the access of just 16 bits. This means that one, two,
or four words must be read or written from or to memory to access or write
floating-point operands. This obviously affects the execution time of the
floating-point instructions.

Data Dependencies
Most of the basic PDP-11 instructions require a fixed number of microcycles to
execute. ASH and ASHC (the long-shift instructions) vary in the number of
microcycles based on the number of bits shifted, while BRANCH instructions
vary slightly depending on whether or not the branch is taken.

On the other hand, the number of microcycles required to execute a floating­
point instruction can vary greatly depending on the specific floating-point data
used.

This is due to two facts:

• Before two floating-point numbers can be added or subtracted, their radix
points must be aligned.

• Before a floating-point number can be stored, it must be normalized (so that
its mantissa is in the range of 0.5 to 0.999 ...).

Both of these operations require long shifts of varying lengths. This affects the
execution time of the instructions .

• PDP-ll/84 Floating Point Instruction Timing: FPJll

Because the FPJ11 is a coprocessor operating in parallel with the J-11 chipset,
the calculation of floating point instruction times (for J-11 systems that utilize
the FPJ11) must take this parallel processing into account.

TERM DEFINITION

FPJll cycle Two clock periods (110 ns at 18 MHz)

J -11 nonstretched cycle Two FPJ11 cycles (220 ns at 18 MHz)

Appendix C-18 • Instruction Timing

TERM

J -11 read cycle

J -11 write cycle

Instruction Decode

Address Calculation
Time

Argument Transfer Time

INPR (FEATEMp, TEMP)

DEFINITION

]-11 nonstretched cycle if cache hit. Dependent
on read access time of the system if cache miss,
the minimum is two J-11 nonstretched cycles,
after which the J-11 stretches in 1/2 cycle incre­
ments until MeONT is asserted.

Dependent on write access time of the system
(Two]-l1 cycles + 1/2 cycles until MeONT).

A decode/prefetch cycle followed by a MOV
microinstruction that allows the FPJ11 to assert
DMR prior to the start of the next microinstruc­
tion (INPR for REG mode). This time equals
two nonstretched cycles if the prefetch is a
cache hit, else one nonstretched cycle plus one
read cycle.

J -11 time required to calculate the address of the
operand. This time is dependent on the
addressing mode of the instruction, the fre­
quency of the system clock, and whether any
indirect data required is present in the cache.
See Table C-l.

]-11 time required to load or store floating-point
operands. This time is one nonstretched cycle
(address relocation microcycle) plus one read
cycle per 16-bit word read from memory for load
class instructions-or one nonstretched cycle
plus one write cycle per 16-bit word written to
memory for store class instructions.

]-11 support code microinstruction executes for
all FPJ11 instructions. It moves the pe of the
previous FPJ11 instruction to a TEMP register in
case that instruction resulted in a floating-point
exception. If the FPJ 11 is still executing the
previous floating-point instruction when the J-
11 reaches its INPR microinstruction, the FPJ11
asserts STALL causing the J -11 INPR microcycle
to stretch. The]-l1 then WAITs for the FPJ11 to
deassert STALL, signaling the system interface
to assert MeONT before executing the next
microinstruction (OUTR).

TERM

WAIT

RESYNC

OUTR (PC,FEATEMP),
TESTPLAFPE

Appendix C-19

DEFINITION

J-ll time waiting for the completion by the
FPJll of the previous floating-point instruction.
For load class or REG mode instructions, this
time is from when the J-ll INPR cycle stretches
at the trailing edge of MALE until the FPJll
deasserts STALL. This time equals zero if a stall
was not required or if the FPJll deasserted the
STALL signal after the INPR cycle began, but
prior to the trailing edge of MALE. Although
the WAIT time for this latter case is zero,
RESYNC time is required. For store class
instructions the WAIT time equals the time
between the assertion of SCTL (i.e., when the
system interface is ready to execute the first
write cycle of a floating-point store) and the
assertion of FPA-RDY (data ready) by the FPJl1.

For load class and REG mode instructions, this
is the time required to continue a stretched
INPR. This is the time for the SYSTEM INTER­
FACE to recognize the deassertion of STALL and
assert MCONT, plus the time required for the J-
11 to synchronize MCONT and advance to the
next microinstruction. Store class instructions
normally do not have RSYNC time because the
J-ll is waiting in a stretched write cycle and the
continuation time is part of the write cycle.
However, if the FPJll is executing a previous
MODF/D or DIVD, the FPJll will assert STALL
in order to stretch a non-I/O cycle prior to the
first bus write. This allows the SYSTEM INTER­
FACE to service DMA thus limiting the worst
case DMA latency when waiting for FPJll out­
put. In this case a WAIT and RESYNC time
associated with the stretched non-I/O cycle is
added to the effective execution time of the
store class instruction.

Last J-ll support microinstruction unless there
is a floating-point execution from the previous
floating-point instruction. This saves the
address of PC in FEATEMP.

Appendix C-20 • Instruction Timing

TERM

PRDCSYNC

Floating-Point
Execution Time

Effective Execution
Time

Load class

REG mode

Store class

DEFINITION

Time required by FPJ11 to decode a floating­
point instruction and begin execution after
receiving PRDC. This time equals two or three
FPJ 11 cycles depending on synchronization.
PRDC SYNC is not added to FPJ11 instruction
execution times when the FPJ11 is executing a
previous floating-point instruction at the asser­
tion of PRDC.

Time required by FPJ11 to complete a floating­
point instruction once it has received all argu­
ments. For store class instructions,
floating-point execution time includes the time
from the start of the instruction until the FPJ 11
asserts FPA-RDY indicating the first 16-bit word
is available for output. See Table C-2.

Total J-11 time required to execute a floating­
point instuction.

Instruction Decode + Address Calculation +
Argument Transfer + INPR + WAIT + RSYNC
+ OUTR.

Instruction Decode + INPR + WAIT +
RSYNC + OUTR.

Instruction Decode + Address Calculation +
INPR + Argument Transfer + WAIT + OUTR.

Load class instructions require input data and deposit results to the destination
floating-point accumulator. REG mode instructions are floating-point accumu­
lator to floating-point accumulator.

Execution of a load class floating-point instruction by the FPJl1 occurs in
parallel withJ-ll operation and can be overlapped. See Figure C-l.

Store class instructions can be overlapped by theJ-l1 as the FPJl1 will complete
a previously started load class or REG mode instruction and then continue to
store the instruction. Execution of the store class instruction must be com­
pleted before the result can be stored to memory, thus eliminating further
parallel processing for store class floating-point instructions. See Figure C-2.

Table C-I • Address Calculation Times

MODE LOAD CLASS

0 0

1 3

2 3

3 3+RD

4 4

5 3+RD

6 3+RD

7 3+RDI+RD

27 2

37 2+RDI

67 2+RDI

77 4+RDI+RD

RDI = J-ll I-stream request
RD = J-11 Read cycle

Appendix C-21

STORE CLASS

0

3

2

2+RD

4

3+RD

2+RDI

3+RDI+RD

2

l+RDI

2+RDI

4+RDI+RD

Appendix C-22 • Instruction Timing

Table C-2· FPJll Instruction Times (18MHz= IUns cycle)

MIN TYP MAX STRETCH 18 MHz
INSTRUCTION CYCLES CYCLES CYCLES CYCLES TYP (l1s)

ADDF/SUBF 7 9 19 5 1.0

ADDD/SUBD 7 9 30 5 1.0

MULF 15 15 16 11 1.7

MULD 26 26 27 22 2.9

DIVF 17 24 30 25 2.7

DIVD 33 48 62 57 5.4

MODF 28 34 43 15 3.7

MODD 39 45 71 26 5.0

CMPF/D 3 4 6 2 .4

LDF/D 3 3 3 0 .3

LDEXP 2 2 2 0 .2

LDCIF/D 10 10 10 3 1.1

LDCLF/D 10 10 10 3 1.1

LDCFD 4 4 4 .4

LDCDF 4 4 8 1 .4

STF/D 3 3 3 0 .3

STCFl 8 10 13 1.1

STCFL 8 12 16 1 1.3

STCFD 4 4 4 0 .4

STCDF 6 6 6 1 .7

STEXP 5 5 5 0 .6

TSTF/D,LDFPS 3 3 3 0 .3
STFPS,CFCC,SET

ABSF/D,NEGF/D 4 4 5 0 .4

NOTE

Stretch cycles indicate the number of cycles out of maximum cycles that a data
dependent stretch of one additional cycle could occur with probability less
than 1 % for each additional cycle.

J-ll

Load class instruction is prefetched.
This occurs during previous instruc­
tion execution

Instruction decode
Pre fetch next instruction

Address calculation

Argument transfer

INPR

WAIT if any

RSYNC

OUTR

Decode next instruction

FPJll

FPJ 11 only stalls if next instruction is
FP and REG mode. The FPJ11 can
overlap the loading of operands for
subsequent load class instructions.

Appendix C-23

PRDC SYSC

FPJ11 loads
operands

FPJ11 execution
starts

FPJ11 execution
unit done

Figure C-1 • Jll/FPJll Interaction/or Load Class Instructions

Appendix C-24 • Instruction Timing

J-11
Store class instruction is prefetched.
This occurs during previous instruc­
tion execution

Instruction Decode
Prefetch next instruction

Address Calculation

INPR

Argument Transfer

]-11 waits during first write if FPA-RDY
not aserted

]-11 completes argument transfer

OUTR

Decode next instruction

FP 11

-f----

PRDCSYNC

FPJll starts
execution

FPJll places
operands in out­
put buffer sets
FPA-RDY

Figure C-2 • J-ll/FPJll Interaction for Store Class Instructions

Appendix C-25

. PDP.llj44 Floating Point Instruction Timing: FPll·F

Instruction Execution Time
The execution time of an FPll-F floating point instruction is dependent on the
following conditions

• type of instruction.

• type of addressing mode specified.

• type of memory.

• memory management facility enabled or disabled.

Additionally, the execution time of certain instructions, such as ADD, is
dependent on the data.

Table C-3 provides the basic instruction times for mode O. Tables C-4 through
C-8 show the additional time required for instructions other than mode O. For
example, to calculate the execution time of a MULF (single-precision multiply)
for mode 3 (autoincrement deferred) with the result to be rounded:

1. Refer to Table C-3 which gives MULF, mode 0, execution time of 12.4lls.

2. Refer to Note 1 as specified in the notes column of Table C-3. Note 1
specified an additional 0.841ls is to be added if rounding mode is specified.
This yields 12.24 Ils.

3. The Modes 1 through 7 column of Table C-3 refers to Table C-4 to
determine the additional time required for mode 1 through 7 instructions.
In this example, mode 3 specifies an additional 3 Ils for single precision
yielding 16.24 Ils.

All timing information is in microseconds unless otherwise noted. Times are
typical; processor timing can vary ± 10%. All instructions assume 100%
cache hits.

NOTE
Add .090 Ils for each DATI memory cycle if memory management is enabled.
Add .630 Ils for each DATI memory cycle if a cache miss is encountered.

Appendix C-26 • Instruction Timing

Table C·3· FPll·F Instruction Execution Times

Instruction Mode 0 Notes Modes 1 thru 7
(Reg. to Reg,)

LDF 3.0
LDD 3.0
LDCFD 4.8 1
LDCDF 4.8 1
CMPF 4.5
CMPD 4.5
DIVF 12.3 1
DIVD 19.6 1 Use Table C-4 to
ADDF 6.5 1,2 determine memory-
ADDD 6.5 1,2 to-register times
SUBF 6.9 1,2 for these
SUBD 6.9 1,2 instructions
MULF 12.4 1
MULD 19.7 1
MODF 16.4 1,3
MODD 23.7 1,3

STF 1.4 Use Table C-5 to
STD 1.4, determine memory-
STCDF 4.2 to-regis ter times
STCFD 4.2 for these
CLRF 1.6 instructions
CLRD 1.6

ABSF 2.5 Use Table C-6 to
ABSD 2.5 determine memory-
NEGF 2.6 to-memory times
NEGD 2.6 for these
TSTF 2.6 instructions
TSTD 2.6

LDFPS 1.5 Use Table C-7 to
LDEXP 3.4 determine memory-
LDCIF 6.5 1,4 to-register times
LDCID 6.5 1,4 for these
LDCLF 6.5 1,4 instructions
LDCLD 6.5 1,4

STFPS 1.8 Use Table C-8
STST 1.6 to determine
STEXP 2.4 5 register-to-memory

Appendix C-27

Instruction Mode 0 Notes Modes 1 thru 7
(Reg. to Reg.)

STCFl 3.5 5 times for these
STcm 3.5 5 instructions
STCFL 3.5 5
STCDL 3.5

The following instructions do not reference memory
CFCC 1.0
SETF

SETD
SET!

SETL

Addressing
Mode

1
2
2 Immediate
3
4
5
6
7

Addressing
Mode

1
2
2 Immediate
3
4
5
6
7

1.2
1.2
1.2
1.2

Execution times
are as shown.

Table C-4 • Floating Source Fetch Time

Memory Cycles Time (I-Is)
Single Double Single Double
Precision Precision Precision Precision

2 4 0.60 1.4
2 4 0.80 1.6
1 1 0.30 0.3
3 5 0.90 1.7
2 4 0.80 1.6
3 5 0.90 1.7
3 5 1.10 1.9
4 6 1.40 2.2

Table C-5 • Floating Destination Store Time

Memory Cycles Time (l-1s)
Single Double Single Double
Precision Precision Precision Precision

2 4 0.38 2.94
2 4 1.56 3.12
1 1 0.60 0.60
3 5 1.68 3.24
2 4 1.56 3.12
3 5 1.68 3.24
3 5 1.86 3.42
4 6 2.16 3.72

Appendix C-28· Instruction Timing

Thble C-6 • Floating Destination Fetch And Store Time

Memory Cycles Time (l1s)
Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 2 2 0.72 0.72
2 2 2 0.90 0.90
2 Immediate 2 2 0.80 0.80
3 3 3 1.02 1.02
4 2 2 0.90 0.90
5 3 3 1.20 1.20
6 3 3 1.20 1.20
7 4 4 1.50 1.50

Thbl~ c-7 ~ Source Fetch Time

Memory Cycles Time (l1s)
Addressing Short Long Short Long
Mode Integer Integer Integer Integer

1 1 2 0.30 0.70
2 1 2 0.48 1.28
2 Immediate 1 1 0.48 0.48
3 2 3 0.60 1.00
4 1 2 0.48 1.28
5 2 3 0.60 1.00
6 2 3 0.78 1.18
7 3 4 1.08 1.48

Table C-g • Destination St9re Time

Memory Cycles Time (l1s)
Addressing Short Long Short Long
Mode Integer Integer Integer. Integerr,.

1 1 2 0.60 1.38
2 1 2 0.96 1.68
2 Immediate 1 1 0.96 0.96
3 2 3 0.90 1.68
4 1 2 0.96 1.68
5 2 3 0.90 1.68
6 2 3 1.08 1.86
7 3 4 1.38 2.16

Appendix C-29

NarES

1. Add 0.841..1s when in rounding mode (FT= 0).

2. Add 0.24 j..ls per shift to align binary points and 0.24 j..ls per shift for
normalization. The number of alignment shifts is equal to the exponent
differnces bounded as follows

1 ::z EXP(AC)-EXP(FSRC) ::z 24, single precision.
1 ::z EXP(AC)-EXP(FSRC) ::z 56, double precision.

The number of shifts required for normalization is equivalent to the number
of leading zeros of the result.

3. Add 0.24 j..ls times the exponent of the product if the exponent of the
product is

1 ::z EXP(PRODUCT) ::z 24, single precision.
1 ::z EXP(PRODUCT) ::z 56, double precision.

Add 0.24j..lS per shift for normalization of the fractional result. The number
of shifts required for normalization is equivalent to the number of leading
zeros in the fractional result.

4. Add 0.24j..lS per shift for normalization of the integer being converted to a
floating point number. For positive integers, the number of shifts required
to normalize is equivalent to the number of leading zeros; for negative
integers, the number of shifts required for normalization is equivalent to the
number of leading ones.

5. Add 0.24 j..ls per shift to convert the fraction and exponent to the integer
form, when the number of shifts is equivalent to 16 minus the exponent
when converting to short integer, or 32 minus the exponent when converting
to long integer for exponents bounded as follows

1 ::z EXP(AC) ::z 15, short integer.
1 ::z EXP(AC) ::z. 31, long integer .

. PDP-ll/24 Floating-Point Instruction Timing: KEFll-AA

Floating-point instruction timing for the PDP-ll/24, using the KEFll-AA
chipset, may be computed using Tables C-9 through C-16. The following
conditions must be accounted for in making these calculations.

• Type of instruction-each floating-point instruction is listed in Table C-9
along with instruction fetch and execution times for addressing mode zero.
Each table is divided into single precision and double precision catagories .

• Type of addressing-when using any mode other than zero, Tables C-1O
through C-14 must be referenced for additional time necessary for transfers
between memory and FPP registers.

Appendix C-30' Instruction Timing

• Special conditions-conditions that affect execution time are listed in Table
C-15. If an instruction lists any of these conditions in the" Notes" column of
Table C-9, each specified note must be referenced and the appropriate times
added.

• State of memory management if memory management is enabled, the time
for each DATI/DATIP is increased by 75 nanoseconds and the time for each
DATO/DATOB is increased by 150 nanoseconds.

• Type of memory-these times were calculated using the MOS MSll-L

memory with typical access times of 385 nanoseconds for DATI/DATIP and
125 nanoseconds for DATO/DATOB. When using other memories, any
difference in access times must be accounted for.

All times are typical and may vary by ± 10 percent.

Table C-9' Instruction Fetch and Execution Times

Instruction Microcycles Mode 0 (1-18) Notes Modes 1-7

ADDF 119 39.22 1-9
ADDD 135 44.78 1-9
SUBF 122 40.13 1-9
SUBD 138 45.68 1-9
MULF 168 53.85 8-11,13
MULD 641 196.50 8,9,12,13
MODF 229 72.98 8-11,20-26 For these
MODD 694 213.23 8,9,12,20-26 instructions use
DIVF 302 94.05 8,9,13 Table C-I0 to
DIVD 795 242.70 8,9,13 determine
CMPF 65 22.58 14,15 additional times
CMPD 71 24.83 14,15 due to
TSTF 30 10.35 9 memory-to-register
TSTD 34 11.85 9 transfer.
LDF 29 10.20 9
LDD 37 13.20 9
LDCFD 41 14.03 9
LDCDF 56 19.05 9

For these
CRLF 37 12.45 9 instructions use
CLRD 41 13.95 9 Table C-11 to
STF 19 6.90 determine
STD 27 9.90 additional times
STCFD 47 15.98 9 due to
STCDF 66 22.35 9 memory-to-register

transfer.

Appendix C-31

Instruction Microcycle Mode 0 (I-Is) Notes Modes 1-7

For these
instructions use
Table C-12 to

ABSF,NEGF 43 14.48 9 determine
ABSD,NEGD 51 17.48 9 additional times

due to
memory-to-register
transfer.

For these
instructions use

LDFPS 16 5.63 Thble C-13 to
LDEXP 40 13.35 9 determine
LDCIF,LDCLF 59 19.28 16,17 additional times
LDCID,LDCLD 54 17.85 16,17 due to

memory-to-register
transfer.

For these
STFPS 13 4.73 instructions use
STEXP 36 12.08 9 Table C-14 to
STCFI 58 18.75 9,18,19,27,28 determine
STCFL 57 18.45 9,18,19,27,28 additional times
STcm 59 19.20 9,18,19,27,28 due to
STCDL 58 18.90 9,18,19,27,28 memory-to-register
STST 18 6.38 transfer.

For these
CFCC 13 4.73 instructions
SETF,SETD, 15 5.40 memory is not
SETI,SETL referenced.

Appendix C-32' Instruction Timing

Table C-10· Floating Source Fetch Time*

Memory Cycles Time (l1s)
Single Double Single Double

Mode Precision Precision Precision Precision

2 4 255 4.20
2 2 4 2.85 4.50
2 Immed 1 1 2.10 0.60
3 3 5 3.45 5.10
4 2 4 3.15 4.80
5 3 5 3.75 5.40
6 3 5 3.75 5.40
7 4 6 4.95 6.60

*If floating source is negative, add 0.60 microseconds.

Table C-11 • Floating Destination Store Time

Memory Cycles Time (I-Is)
Single Double Single Double

Mode Precision Precision Precision Precision

1 2 4 1.60 2.90
2 2 4 2.58 3.88
2 Immed 1 1 -0.40 -1.90
3 3 5 250 3.80
4 2 4 2.88 4.18
5 3 5 2.80 4.10
6 3 5 2.80 4.10
7 4 6 4.00 5.30

Table C-12' Floating Destination Fetch and Store Time

Memory Cycles Time (l1s)
Single Double Single Double

Mode Precision Precision Precision Precision

1 4 8 4.15 7.10
2 4 8 5.43 8.38
2 Immed 2 2 1.70 -1.30
3 6 10 5.95 8.90
4 4 8 6.03 8.98
5 6 10 6.55 9.50
6 6 10 6.55 9.50
7 8 12 8.95 11.90

Appendix C-33

Table c-n . Source Fetch Time

Memory Cycles Time (I-Is)
Single Double Single Double

Mode Precision Precision Precision Precision

1 2 1.20 2.40
2 2 1.50 2.70
2 Immed 1 0.90 0.90
3 2 3 2.10 3.30
4 1 2 1.80 3.00
5 2 3 2.40 3.60
6 2 3 2.40 3.60
7 3 4 3.60 4.80

Table C·14 • Destination Store Time

Memory Cycles Time (l1s)
Single Double Single Double

Mode Precision Precision Precision Precision

1 1 2 1.03 2.05
2 1 2 1.33 2.35
2 Immed 1 0.73 0.73
3 2 3 1.93 2.95
4 1 2 1.63 2.65
5 2 3 2.23 3.25
6 2 3 2.23 3.25
7 3 4 3.43 4.45

Table C·15 • Notes on Special Conditions

Time (l1s)
Single Double

Condition Precision Precision

1. Addition of opposite signs or subtrac- 0.60 1.20
tion of like signs.

2. Alignment of binary points is required (1.20)n (1.80)n
(n = exponent difference).

3. Exponent difference ~ 7 but not=O. 1.20 1.20

4. Exponent difference> 26. -2.10 -2.10

5. ACC exponent < SRC exponent. 1.95 3.30

Appendix C-34 • Instruction Timing

6_ ACC exponent=SRC exponent. see Table 8 see Table 8

7 _ Normalization is required (n = number ·0_.30+ (1-20)n 030+ (1-80)n
of shifts necessary to normalize)_

8_ Rounding is selected_ 1-20 L80

9_ Result is positive_ 0_30 030

10- DST <15-00> not=O_ 29_10

lL DST <22-00> not=O (n=number of (0_60)n

bits in DST < 22-00 > which are set_

12_ DST <54-00> not=O (n=number of (1-20)n
bits in DST < 54-00 > which are set_

13_ Normalization is required_ 0_60 1-20

14 _ Both ACC & SRC have same sign, but .are L80 3-15
not equaL

15_ ACC=SRC 0_90 225

16_ The integer to be converted < 2 15 (single (1-20)n (1-20)n
precision) or < 2" (double precision)
(n = number of leading zeros in binary
representation of the integer, excluding
the sign bit-

17 _ Result is negative_ 0_30 0_90

18_ Unbiased exponent> 15_ 0_90 0_90

19_ Unbiased exponent not equal to 8 or 24 (2_10)n (2_10)n
(if exponent > 15, n = [expn-24]) (if
exponent:! 15, n=[expn-81])_

20_ Normalization of product is required 1-20 1-20
prior to separation of integer and
fraction_

2L Normalization of product is required 0_38 + (L80n) 038+(L80n)
after separation of integer and fraction
(n = number of shifts necessary to
normalize)_

22_ The number represented by the low 4 (O_90)n (O_90)n
bits of the product exponent not equal
to 0 (n=number represented by these 4
bits)_

23_ Biased exponent 6: 16 but < 32_ 030 0_30

24_ Biased exponent 6: 32 but < 48_ 0_60 0_60

Appendix C-35

25. Biased exponent ~ 48 but < 64. 0.90 0.90
--------------------------------- -------------

26. Biased exponent ~64. 0.60 0.60

27. Resulting integer is negative. 0.98 0.98

28. Result is a long integer. 0.30 0.30

Numbers referred to in the text of the notes are decimal unless otherwise
specified.

Table C·16 • Additional Time Under Condition [ACC Expn = SRC Expn]
(see Note 6)

Single Precision

Condition

ACC<22-16> > SRC<22-16>
ACC<22-16> < SRC<22-16>

ACC < 15-00> > SRC < 15-00> "
ACC < 15-00> < SRC < 15-00> *

ACC < 22-00 > = SRC < 22-00 >

Double Precision

Condition

ACC < 54-48 > > SRC < 54-48 >
ACC < 54-48 > > SRC < 54-48 >

ACC<47-32> > SRC<47-32>"
ACC<47-32> > SRC<47-32>*

ACC<31-16> > SRC<31-16>"
ACC<31-16> > SRC< 31-16> "

ACC < 15-00> > SRC < 15-00> *
ACC < 15-00> > SRC < 15-00> "

ACC < 54-00 > = SRC < 54-00 >

"All higher bits of ACC and SRC mantissas are equal.

Time (l1s)

0.60
2.55

1.20
3.15

0.60

0.60
3.90

1.20
4.50

1.80
5.10

2.40
5.70

1.80

Index

A

abnormal bus cycles, 5-23-5-24
timing of, 5-32

aborts, CPU error register and,
2-12-2-13

ac loads, 5-38

ac signals, 5-38

ADD instruction, C-5-C-6

address acknowledge (SLAVE SYNC;
BUS SSYN L), 5-7, 5-26

SSYN timeout" 5-32

addresses, 5-7

arguments with, B-14-B-15

on buses, 5-2
for I/O device registers,

in PDP-11/44 systems, 3-12

in PDP-11/24 systems, 4-2, 4-9,
4-14-4-15,4-23

in PDP-11/44 systems, 3-30-3-31

in PDP-11/84 systems, kernel
protection and, 2-14-2-15

in PDP-ll/84 systems. UNIBUS
mapping of, 2-21

qualifiers for, B-14

UNIBUS organization of, 5-9

addressing errors, 2-17

addressing modes, C-6-C-12

address strobe (MASTERSYNC;
BUS MSYL L), 5-6, 5-26

AMUS data bus, 3-13

applications, 1-6

arbitration, on UNIBUS, 5-3-5-5

arbitration bus (UNIBUS), 5-8

arbitration signals, 5-15, 5-16, 5-21

arbitration timing, on UNIBUS, 5-22
abnormal cycles in, 5-23-5-24

architecture

of PDP-ll/24 systems, 4-2

of PDP-11/44 cache memory,
3-13-3-14

of PDP-11/44 systems, 3-2

of PDP-ll/84 systems, 2-3-2-4

UNIBUS in, 1-2

ASCII console for PDP-11/44 systems,
B-6-B-7

asynchronous operation of UNIBUS,
5-5-5-7

B

backplanes

for PDP-11/24 systems, 4-10-4-11

for PDP-ll/44 systems, 3-21

for PDP-11/84 systems, 2-28-2-29

battery backup units (BBUs)

for PDP-ll/24 systems, 4-8

for PDP-ll/44 systems, 3-10

for PDP-ll/84 systems, 2-19-2-20

BOOT ENABL L signal, 5-33

booting of PDP-11/84 systems, 2-35

boot ROM facility, 2-21-2-22

buffers

cache memory as, 2-22

instruction, C-3

burst mode (multiple bus cycles),
5-32-5-33

BUS AC LO L (system shutdown signal),
5-8,5-15,5-18-5-20

electrical characteristics of, 5-36

bus arbitrators, 5-3-5-4, 5-8

BUS Ax L (data transfer signals), 5-25

BUS BBSY L (data transfer signal),
5-25,5-27

multiple bus cycles and, 5-32

I'
I
I"

Index 2

BUS BGx H (grant lines), 5-15, 5-21

BUS BRx L (arbitration signals), 5-21

BUS CO L (data transfer signal), 5-25

BUS C1 L (data transfer signal), 5-25

BUS DC LO L (system shutdown signal),
5-8,5-15,5-17-5-20

electrical characteristics of, 5-36

BUS Dx L (data transfer signals), 5-25

buses, 5-2

AMUX and PAX, 3-13

PDP-ll system differences and, A-ll

private memory interconnect and,
2-17-2-18

synchronous and asynchronous,
5-5-5-7

see also UNIBUS

bus grants, 5-4

BUS INIT L (system initialization
signal), 5-8, 5-18, 5-20

BUS INTR L (data transfer signal),
5-26

bus master, 5-3

BUS MSYN L (address strobe;
MASTER SYNC), 5-6, 5-26

BUS NPG H (grant line), 5-15, 5-24

BUS NPR L (arbitration signal),
5-21,5-24

BUS PA L (data transfer signal),
5-25-5-26

BUS PB L (data transfer signal),
5-25-5-26

bus repeaters, 5-38

bus requests, 5-3

BUS SACK L (arbitration signal), 5-21

multiple bus cycles and, 5-33

no-SACK timeouts and, 5-23

BUS SSYN L (address acknowledge;
SLAVE SYNC), 5-7, 5-26

SSYN timeouts, 5-32

bus timeout errors, 2-16

byte-read operations, 5-9

bytes, 5-7, 5-9

byte-write operations, 5-10

c
cache-control registers (CCRs)

in PDP-ll/44 systems, 3-15-3-20

in PDP-ll/84 systems, 2-23-2-28

cache data register (CDR), 3-15-3-16

cache hit register (CHR), 3-20

cache maintenance register (CMR),
3-18-3-20

cache memory

in PDP-ll/44 systems, 3-13-3-20

in PDP-ll/84 systems, 2-22-2-23
speed of, C-3

cache memory error register (CMER),
3-16

caches

DMA, in PDP-ll/84 systems,
2-20-2-21

in PDP-ll/44 systems, 3-2

clocks

bus cycles measured by, 5-5-5-6

line clock, in PDP-ll/24 systems,
4-22-4-23

line clock, in PDP-ll/44 systems,
3-29-3-30

line-time, in PDP-ll/84 systems, 2-33

clock status register (LKS), 2-33,
4-22-4-23

commander devices, 5-3

commands

console command languge for
PDP-ll/44 systems, B-8-B-16

console ODT command set for
PDP-ll/84 and PDP-ll/24 systems,

B-2-B-6

in PDP-ll/24 console ODT, 4-13

commercial instruction set (CIS),
suspension of

in PDP-11/24 systems, 4-6

in PDP-ll/44 systems, 3-6

compatibility

across PDP-11 systems, 1-2

of memory management, 2-19

of PDP-11/24 with PDP-11/44 and
PDP-ll/84 systems, 4-2

between PDP-11/44 and PDP-ll/70
systems, 3-2

components

in PDP-11/24 systems, 4-24

in PDP-11/44 systems, 3-31

in PDP-ll/84 systems, 2-38

condition codes

in PDP-11/24 processors, 4-7

in PDP-11/44 processor, 3-7

condition codes field, in processor status
word 2-10

configuration

of PDP-ll/24 systems, 4-10-4-11

of PDP-11/44 systems, 3-21

of PDP-11/84 systems, 2-38-2-29

console command language for

PDP-11/44 systems, B-8-B-16

console interface

in PDP-11/24 systems, 4-16

in PDP-ll/44 systems, 3-21-3-22

console mode

in PDP-11/24 systems, 4-16

in PDP-11/44 systems, 3-22

console-ODT mode

command set for PDP-11/84 and
PDP-11/24 systems, B-2-B-6

in PDP-11/24 systems, 4-11, 4-13-4-14

in PDP-ll/84 systems, 2-36-2-37

consoles

PDP-ll system differences and, A-17

in PDP-ll/24 systems, 4-11-4-14

in PDP-ll/84 systems, 2-29-2-32,
2-34-2-37

console serial line units, in

PDP-ll/84 systems, 2-29-2-32

console state,
in PDP-ll/44 systems, B-7

control chip

in PDP-ll/24 processors, 4-4

in PDP-ll/84 processors, 2-4

CPU error register

in PDP-ll/24 systems, 4-7

in PDP-ll/44 systems, 3-7-3-9

in PDP-ll/84 systems, 2-12-2-13

CPU registers

in PDP-ll/24 systems, 4-4-4-9

in PDP-ll/44 systems, 3-7-3-12

in PDP-ll/84 systems, 2-6-2-13

CPUs (central processing units)

for PDP-ll/24 systems, 4-2-4-4

for PDP-11/44 systems, 3-2-3-7

for PDP-ll/84 systems, 2-3-2-17

speed of, C-2

crosstalk, 5-39

cycles (in bus operations), 5-5

abnormal, 5-23-5-24

multiple bus cycles (burst mode),
5-32-5-33

D

daisychaining, 5-4

3

data, UNIBUS organization of, 5-9-5-10

data chip

in PDP-ll/24 processors, 4-4

in PDP-ll/84 processors, 2-4

data strobe, 5-7

data transfer bus (UNIBUS), 5-8

Index 4

data transfers

on buses, 5-2

private memory interconnect and,
2-17-2-18

types of, 5-10-5-11

UNIBUS arbitration and, 5-5

data transfer signals, 5-15-5-17,
5-25-5-27

DATI (Data-In) data transfers, 5-11
timing of, 5-27-5-29

DATIP (Data-In Pause) data
transfers, 5-13

timing of, 5-29

DATOB (Data-Out Byte) data transfers,
5-12-5-13

timing of, 5-29-5-30

DATO (Data-Out) data transfers, 5-12
timing of, 5-29-5-30

dc loads, 5-38

DECnet, 1-8

DECUS (Digital Equipment Computer
U sers Society), 1-6

destination addressing modes, C-8-C-12

DEUNA controllers, 1-8

Digital Equipment Computer Users
Society (DECUS), 1-6

Digital's Network Architecture
(DNA),1-8

Digital Storage Architecture (DSA),
1-8,1-9

direct memory access (DMA), 5-3, C-4

DMA cache, 2-20-2-21

documentation, 1-9-1-10

double-word transfers
(double-pumping),2-17

DSM-ll (operating system), 1-7

E

electrical characteristics of UNIBUS,
5-34-5-36

EMT (emulator trap) instruction, C-6
environments

for PDP-11/24 systems, 4-25

for PDP-11/44 systems, 3-32

for PDP-11/84 systems, 2-39

error correcting code (ECC)

in PDP-11/24 systems, 4-10

in PDP-11/44 systems, 3-13

in PDP-11/84 systems, 2-19

errors

execution, B-15-B-16

handling of, PDP-11 system differences
and, A-15-A-16

hardware detected, 2-16-2-17

parity, 4-15, 5-7

Ethernet, 1-8

execution errors, B-15-B-16

execution timing, C-13-C-17

F

fetch and execution timing, C-13-C-17

floating-point instructions, C-17

for PDP-11/24 systems, C-29-C-35

for PDP-11/44 systems, C-25-C-29

for PDP-ll/84 systems, C-17-C-24

floating-point processors

in PDP-11/44 systems, 3-21

in PDP-ll/84 systems, 2-6

FPll-F floating point instruction timings,
C-25-C-29

FPJll floating point coprocessor,
instruction timings for, C-17-C-24

G

general registers

in PDP-11/24 systems, 4-4

in PDP-11/44 systems, 3-4

in PDP-11/84 systems, 2-6-2-7

PDP-11 system differences and, A14

grant lines (BUS NPG H; BUS BGx H),
5-15,5-21,5-24

grant refusals, 5-23

grants, 5-8

abnormal cycles resulting from,
5-23-5-24

H

HALT GRANT L signal, 5-34

HALT instruction, 2-8, 2-14, 3-6

HALT REQ L signal, 5-34

handshaking, 5-6

hardware

errors detected by, 2-16-2-17

speed of, C-2-C-4

hit/miss register, 2-28

I

lAS (operating system), 1-7

impedance on UNIBUS, 5-38

INC (increment) instruction, C-5

initialization and shutdown bus
(UNIBUS),5-8

initialization and shutdown signals,
5-15,5-17-5-20

initialization timing signals, 5-20

instruction buffer, C-3

instruction register (IR), 2-11

5

instructions and instruction sets
commercial, in PDP-11/24 systems, 4-6

commercial, in PDP-ll/44 systems, 3-6

kernel protection in, 2-14

in PDP-11/84 systems, 2-4

PDP-11 system differences and
A3-A-7 '

reserved, 3-10, 4-8

timings for, C-2-C-35

interfaces

for peripherals, 1-8-1-9

terminal serial line, in PDP-11/24
systems, 4-16

Internet, 1-8

interrupt-fielding processor (IFP),
5-9,5-14

interrupts

PDP-11 system differences and, A10

in PDP-ll/24 processor, 4-7

in PDP-ll/44 processor, 3-6-3-7

PDP-11/44 systems' handling of,
3-10-3-11

PDP-11/84 systems stacks and, 2-7

priority levels for, in PDP-11/24
systems, 4-9

priority levels for, in PDP-ll/84
systems, 2-15-2-16

program interrupt request register for,
2-10-2-11

interrupt service pointers

(vectors),5-14

invalid characters, 4-15

I/O addresses, in PDP-ll/24 systems,
4-14

I/O device registers

in PDP-ll/24 systems, addresses of,
4-9

in PDP-ll/44 systems, 3-12

I/O page, 2-23

Index 6

J
]-11 chipset, 1-3, 1-6,2-4

FP] floating point coprocessor
for, C-17-C-24

kernel protection in, 2-14-2-15

memory management unit in, 2-18

pipeline processing by, 2-11

stack limit protection in, 2-13-2-14

K

KEF11-AA floating point instruction
timings, C-29-C-35

kernel mode

in PDP-11/24 systems, 4-2

in PDP-11/44 systems, 3-4

on PDP-ll/84 systems, 2-6

protection for, 2-14-2-15

kernel stack, 3-4

in PDP-ll/44 systems, 3-7

protection for, 2-13-2-14

KMCR (Memory Configuration
Register), 2-21

L

line clock

in PDP-ll/24 systems, 4-22-4-23

in PDP-ll/44 systems, 3-29-3-30

in PDP-ll/84 systems, 2-33

line clock status register

in PDP-ll/24 systems, 4-22-4-23

in PDP-ll/44 systems, 3-29-3-30

in PDP-ll/84 systems, 2-33

local area networks (Ethernet), 1-8

LTC signal, 5-34

lumped loads, 5-38

M

mapping

in PDP-ll/24 systems, 4-10

in PDP-ll/84 systems, 2-19

see also UNIBUS map

master/slave relationship, 5-3

asynchronous, 5-6-5-7

MASTER SYNC (address strobe; BUS
MSYNL),5-6

memory

access time for, C-2, C-4

battery backup units for, 2-19-2-20

cache, in PDP-ll/44 systems,
3-13-3-20

in PDP-11/24 systems, 4-10, 4-11

in PDP-ll/44 systems, 3-13

in PDP-ll/84 systems, 2-18-2-28

private memory interconnect,
2-17-2-18

read data with write intent data
transfers and, 5-13-5-14

Memory Configuration Register

(KMCR), 2-21

memory management
PDP-ll system differences and,

A-8-A-9

in PDP-ll/24 systems, 4-2, 4-10

in PDP-ll/44 systems, 3-2, 3-13

in PDP-ll/84 systems, 2-18-2-19

memory management units (MMUs)

in PDP-ll/24 systems, 4-4, 4-14

in PDP-ll/84 systems, 2-18

memory mapping

in PDP-ll/24 systems, 4-10

in PDP-ll/84 systems, 2-19

see also UNIBUS map

memory system error register (MSER),
2-26-2-28

microprocessors, see CPUs;]-ll chipset

migration within PDP-ll systems, A-2

monitor and distribution modules
(MDM), in PDP-ll/84 systems, 2-28

MOV (move) instruction, C-5

multiple bus cycles (burst mode),
5-32-5-33

multiplexed buses, 5-2

N

networks, 1-8

nonmultiplexed buses, 5-2

nonoperating environment

for PDP-ll/24 systems, 4-25

for PDP-ll/44 systems, 3-32

for PDP-ll/84 systems, 2-39

nonprocessor grants (NPGs), 5-4, 5-9

nonprocessor requests (NPRs), 5-3

stolen grants and, 5-23-5-24

no-SACK timeouts, 5-23

o
odd addressing errors, 3-10

ODT (octal debugging technique)

ASCII console for PDP-ll/44 systems,
B-6-B-7

console command language
for PDP-ll/44 systems, B-8-B-16

console ODT command set for
PDP-ll/84 and PDP-ll/24 systems,

B-2-B-6

in PDP-ll/24 systems, 4-13-4-14

in PDP-ll/84 systems, 2-36-2-37

operating environment

for PDP-ll/24 systems, 4-25

for PDP-ll/44 systems, 3-32

for PDP-ll/84 systems, 2-39

operating modes

for console terminals, in PDP-ll/84

systems, 2-34-2-36

in PDP-ll/24 systems, 4-2

7

in PDP-ll/24 systems, processor status
word and, 4-5-4-6

in PDP-ll/44 systems, 3-4-3-6

in PDP-ll/84 systems, 2-6

in PDP-ll/84 systems, memory
allocation by, 2-15

in PDP-ll/84 systems, processor status
word and, 2-8

operating systems, 1-6, 1-7

overlapped arbitration, 5-5

p

packaging

of PDP-ll/24 systems, 4-23

of PDP-ll/44 systems, 3-31

of PDP-ll/84 systems, 2-38

packetnet system interface (PSI)

products, 1-8

page address registers (PARs), 2-19

pages (memory), 2-15

parity bits, 2-19

parity errors, 5-7

in PDP-ll/24 systems, 4-15

passive releases, 5-23

PAX data bus, 3-13

PDP-ll systems

buses on, A-ll

consoles on, A-17

documentation for, 1-9-1-10

error handling by, A-15-A-16

functionality matrix of, 1-4-1-5

general registers on, A-14

instructions and instruction sets on,
A-3-A-7

interrupts on, A-1O

Index 8

memory management expansion and
relocation on, A-8-A-9

in networks, 1-8

performance and functionality versus
prices of, 1-3

peripherals for, 1-8-1-9

processor status word on, A-12-A-13

service for, 1-9

software for, 1-6

UNIBUS on, 1-2

PDP-11/24 systems, 4-2

address and vector assignments in,
4-23

address specifications for, 4-14-4-15

architecture of, 4-2

backplaneconfiguration for, 4-10-4-11

central processor in, 4-2-4-4

console for,. 4-11-4-14

console ODT command set for,
B-2--B-6

floating point instruction timings for,
C-29-C-35

functionality matrix of, 1-5

line clock in, 4-22-4-23

memory in, 4-10

registers in, 4-4-4-9

specifications for, 4-23-4-25

terminal serial line in, 4-16-4-22

PDP-11/34A systems, 1-5

PDP-11/44 systems, 3-2

address and vector assignments in,
3-30-3-31

architecture of, 3-2-3

ASCII console for, B-6-B-7

backplane on, 3-21

central processor for, 3-2-3-7

console command langugefor,
B-8-B-16

CPU registers in, 3-7-3-12

floating point instruction timings for,
C-25-C-29

floating-point processor in, 3-21

functionality matrix of, 1-4

line clock in, 3-29-3-30

memory systems in, 3-13-3-20

PDP-11/84 systems' memory
management compatible

with,2-19

serial line unit registers in, 3-21-3-29

specifications for, 3-31-3-32

PDP-11/70 systems

functionality matrix of, 1-5

PDP-11/44 compatibility with, 3-2

PDP,11/84 systems, 1-3-1-6,2-2-2-3

backplane on, 2-28-2-29

battery backup unit for, 2-19-2-20

cache memory in, 2-22-2-23

cache registers in, 2-23-2-28

central processor for, 2-4-2-6

console on, 2-34-2-37

console functions on, 2-29-2-32

console ODT command set for,
B-2-B-6

CPU error register in, 2-12-2-14

error correction code in, 2-19

floating point instruction timings for,
C-17-C-24

functionality matrix of, 1-4

general registers in, 2-6-2-7

hardware detected errors in, 2-16-2-17

kernel protection in, 2-14-2-15

line-time clock on, 2-3 3

memory management in, 2-18-2-19

pipeline processing in, 2-11-2-12

private memory interconnect in,
2-17-2-18

processor status word in, 2-7-2-10

program interrupt request register in,
2-10-2-11

specifications for, 2-38-2-39

system architecture of, 2-3-2-4

trap and interrupt service priorities in,
2-15-2-16

UNIBUS adapter in, 2-20-2-22

peripherals, 1-8-1-9

compatibility of, across PDP-11
systems, 1-2

UNIBUS adapter connected to, 2-20

UNIBUS arbitration of requests by,
5-4

physical program counter (PPC) , 2-11

pipeline processing, 2-11-2-12

powerdown timing signals, 5-19-5-20

power failures

in PDP-11/24 processors, 4-8

in PDP-11/44 systems, 3-9-3-10

power timing signals for, 5-19-5-20

power supply

for PDP-11/24 systems, 4-24

for PDP-11/44 systems, 3-31

for PDP-11/84 systems, 2-38

powerup timing signals, 5-18-5-19

predecode mechanism, 2-11

prefetch buffer (PB), 2-11

prefetch mechanism, 2-11

prefetch pipeline, 2-11-2-12

priority arbitration, 5-3

priority levels

in PDP-11/24 processors, 4-6

in PDP-11/44 processor, 3-6

in PDP-11/84 processor status word,
2-9

for software interrupts, 2-10-2-11

for traps and interrupts, 2-15-2-16,
4-9

private memory interconnect (PMI),
2-17-2-18

cache memory and, 2-22

UNIBUS adapter connected to, 2-20

UNIBUS map and, 2-21

processor mode fields, in processor status
word,2-8

processor priority field, in processor
status word, 2-9

processors

speed of, C-2

on UNIBUS, 5-9

see also CPUs; J-11 chipset

processor stack pointers (SPs)

in PDP-11/24 systems, 4-5

in PDP-11/44 systems, 3-4

in PDP-11/84 systems, 2-6

processor status word (PSW) during
interrupts and traps, 2-16

in PDP-11/24 systems, 4-5-4-7

in PDP-11/44 systems, 3-5-3-7

in PDP-11/84 systems, 2-7-2-10

PDP-ll system differences and,
A-12-A-U

processor traps

in PDP-11/24 systems, 4-8-4-9

in PDP-ll/44 systems, 3-9

program counter (PC)

during interrupts and traps, 2-16

in PDP-11/24 systems, 4-5

in PDP-11/44 systems, 3-4

in PDP-11/84 systems, 2-6

program interrupt request register in
PDP-11/44 systems (PIR), 3-11-3-12

in PDP-11/84 systems (PIRQ),
2-10-2-11

9

program I/O state, in PDP-11/44 systems,
B-7

program mode

in PDP-11/24 systems, 4-11, 4-12, 4-16

in PDP-11/84 systems, 2-34

protocols, 1-8

Q

Q-bus, 5-2

Index 10

R

read operations, 5-9

read word data transfers, 5-11

read word with write intent data
transfers, 5-13-5-14

receiver buffer register (RBUF),
4-20-4-21

receiver control status register

in PDP-11/24 systems (RCSR),
4-19-4-20

in PDP-11/44 systems (SLU 2 RCSR),
3-26-3-27

in PDP-11/44 systems (TERM RCSR),
3-23

receiver data buffer

in PDP-11/24 systems (TERM RBUF),
4-17-4-18

in PDP-11/44 systems (SLU 2 RBUF),
3-27-3-28

in PDP-ll/44 systems (TERM RBUF),
3-23-3-24

in PDP-11/84 systems (RBUF),
2-30-2-31

receiver status register

in PDP-11/24 systems (TERM RCSR),
4-16-4-17

in PDP-11/84 systems (RCSR),
2-29-2-30

red stack aborts, 2-17

red stack traps, 2-14

registers

cache, in PDP-11/84 systems,
2-23-2-28

cache-control, in PDP-11/44 systems,
3-15-3-20

clock status, 2-33, 4-22-4-23

console serial line unit, 2-29-2-32

CPU, in PDP-11/44 systems, 3-7-12

CPU error, 2-12-2-13

general, in PDP-11/24 systems, 4-4

general, in PDP-11/44 systems, 3-4

general, in PDP-ll/84 systems,
2-6-2-7

general, PDP-11 system differences and,
A-14

line clock status, 3-29-3-30

Memory Configuration, 2-21

page address, 2-19

in PDP-ll/24 central processors,
4-4-4-9

in PDP-11/24 systems, addresses of,
4-9,4-14

prefetch pipeline, 2-11-2-12

processor status word, in PDP-ll/24
systems, 4-5-4-7

processor status word, in PDP-ll/44
systems, 3-5-3-7

processor status word, in PDP-ll/84
systems, 2-7-2-10

program interrupt request, 2-10-2-11

serial line unit, in PDP-ll/44 systems,
3-21-3-29

terminal serial line, in PDP-11/24
systems,

4-16-4-22

register selection Held, in processor
status word, 2-9

repeaters, UNIBUS, 5-38

requests, 5-8

to program interrupt request register,
3-11-3-12

UNIBUS arbitration of, 5-3-5-5

reserved instructions, 3-10, 4-8

RESET instruction 2-8 2-14 3-6
initialization timing signals' and, 5-20

responder devices, 5-3

ROM (read only memory), booting from,
2-21-2-22

RSX-11M (operating system), 1-7

RSX-llM-PLUS (operating system), 1-7

RSX-llS (operating system), 1-7

RT-11 (operating system), 1-7

RTST/E (operating system), 1-7

s
serial line uni t regis ters

in PDP-11/24 systems, 4-16-4-22

in PDP-11/44 systems, 3-21-3-29

service, 1-9

setup mode, in PDP-11/84 systems
console terminal, 2-34-2-36

signal lines in UNIBUS, 5-14-5-17

arbitration, 5-21-5-24

data transfer, 5-25-5-33

electrical characteristics of, 5-35-5-36

initialization and shutdown,
5-17-5-20

miscellaneous, 5-33-5-34

slave devices, 5-3

SLAVE SYNC (address acknowledge;
BUS SSYN L), 5-7

slots

in PDP-11/24 systems, 4-10, 4-11

in PDP-11/44 systems, 3-21

in PDP-11/84 systems, 2-28

SLU 1 registers
in PDP-11/24 systems, 4-16-4-19

in PDP-11/44 systems, 3-22-3-26

SLU 2 RBUF (receiver data buffer),
3-27-3-28

SLU 2 RCSR (receiver control/status
register), 3-26-3-27

SLU 2 registers

in PDP-ll/24 systems, 4-19-4-22

in PDP-11/44 systems, 3-26-3-29

SLU 2 XBUF (transmitter data buffer),
3-29

SLU 2 XCSR (transmitter control/status
register), 3-28-3-29

software, 1-6

compatibility of, across PDP-11
systems, 1-2

software interrupts, 2-10-2-11

source addressing modes, C-7

specifications

for PDP-11/24 systems, 4-23-4-25

for PDP-11/44 systems, 3-31-3-32

for PDP-11/84 systems, 2-38-2-39

SPL instruction, 2-8, 2-14, 3-6

SSYN timeouts, 5-32

stack pointers (SPs)
in PDP-11/24 systems, 4-5, 4-14-4-15

in PDP-11/44 systems, 3-4

in PDP-11/84 systems, 2-6-2-7

stacks, 2-6

in PDP-11/24 systems, 4-5, 4-7

11

in PDP-11/24 systems, limit violations
of, 4-9

in PDP-ll/44 systems, 3-4, 3-7

in PDP-11/44 systems, limit violations
of, 3-11

protection for, 2-13-2-14

stall (wait) lines, 5-6

stolen grants, 5-23-5-24

storage, Digital Storage Architecture
(DSA) for, 1-8

strobe signals, 5-27

supervisor stack, 3-4

synchronous buses, 5-5-5-6

syndrome (parity) bits, 2-19

system initialization signal
(BUS INIT L), 5-8, 5-18, 5-20

system shutdown signals (BUS AC LO L·
BUS DC LO L), 5-8, 5-15, 5-17-5-20 '

electrical characteristics of, 5-36

T

terminal serial lines, in PDP-ll/24
systems, 4-16-4-22

terminal serial line unit control registers
(SLU 1), in PDP-ll/44 systems,
3-22-3-26

TERM RBUF (receiver data buffer),
3-23-3-24,4-17-4-18

Index 12

TERM RCSR

receiver control status register, 3-23

receiver status register, 4-16-4-17

TERM XBUF (transmitter data buffer),
3-26,4-19

TERMXCSR

transmitter control status register,
3-24-3-25

transmitter status register, 4-18

timeout errors

no-SACK, 5-23

in PDP-ll/24 systems, 4-8

in PDP-ll/44 systems, 3-10

SSYN timeouts, 5-32

timings for instructions, C-2-C-35

timing signals

powerdown, 5-19-5-20

powerup, 5-18-5-19

trace trap field, in processor status word,
2-9-2-10

trace traps

in PDP-ll/24 processors, 4-6-4-7

in PDP-ll/44 processors, 3-6-3-7

transmitter controVstatus register

in PDP-ll/24 systems (XCSR), 4-21

in PDP-ll/44 systems (SLU 2 XCSR),
3-28-3-29

in PDP-ll/44 systems (TERM XCSR),
3-24-3-25

transmitter data buffer register

in PDP-ll/24 systems (TERM XBUF),
4-19

in PDP-ll/24 systems (XBUF), 4-22

in PDP-ll/44 systems (SLU 2 XBUF),
3-29

in PDP-ll/44 systems (TERM XBUF),
3-26

in PDP-ll/84 systems (XBUF),
2-32

transmitter status register

in PDP-11/24 systems (TERM XCSR),
4-18

in PDP-ll/84 systems (XCSR),
2-31-2-32

traps

CPU error register and, 2-12-2-13

in PDP-ll/24 processors, 4-6-4-7

PDP-ll/24 systems' handling of,
4-8-4-9

in PDP-ll/44 processor, 3-6-3-7

PDP-ll/44 systems' handling of,
3-10-3-11

in PDP-ll/84 processor status word
(PSW),2-9-2-10

PDP-ll/84 systems stacks and, 2-7

priority levels for, in PDP-ll/84
systems, 2-15-2-16

red stack traps, 2-14

yellow stack traps, 2-13

u
UART (Universal Asynchronous

Receiver/Transmitter),3-22

ULTRIX-ll (operating system), 1-7

UNIBUS, 1-2-1-3,5-2-5-7 data and
address organization of, 5-9-5-10

data transfer types on, 5-10-5-34

design suggestions for, 5-37-5-40

electrical characteristics of, 5-34-5-36

in PDP-ll/24 systems, 4-2

in PDP-ll/44 systems, 3-2

in PDP-ll/84 systems, 2-4

peripherals linked to, 1-8

private memory interconnect and,
2-17-2-18

structure of, 5-8-5-9

UNIBUS adapter (UBA)

on PDP-11/84 systems, 2-4

in PDP-11/84 systems, 2-20-2-22

private memory interconnect and,
2-17-2-18

UNIBUS map, 2-21

in PDP-11/24 systems, 4-2, 4-10

in PDP-11/44 systems, 3-2, 3-13

UNIBUS repeaters, 5-38

Universal Asynchronous
Receiver/Transmitter (UART), 3-22
users group (Digital Equipment
Compuster Users Society; DECUS),
1-6

user stack, 3-4

vector assignments

in PDP-11/24 systems, 4-23

in PDP-11/44 systems, 3-30-3-31

vectors, 2-16

write vector data transfers for, 5-14

virtual program counter (VPC), 2-11

voltage levels in UNIBUS, 5-37-5-38

w
wait (stall) lines, 5-6

words, 5-7, 5-9

write byte data transfers, 5-12-5-13

write operations, 5-10

13

write vector data transfers, 5-14 timing of,
5-30-5-32

write word data transfers, 5-12

x
XBUF (transmitter data buffer register),

2-32,4-22

XCSR

transmitter control/status register, 4-21

transmitter status register, 2-31-2-32

y

yellow stack traps, 2-13

PDP-ll UNIBUS Processor Handbook

Reader's Comments

Your comments and suggestions will help us in our continuous effort to
improve the quality and usefulness of our handbooks.

What is your general reaction to this handbook? (format, accuracy, complete­
ness, organization, etc.)

What features are most useful? ________________ _

Does the publication satisfy your needs? ____________ _

What errors have you found? _________________ _

Additional comments ___________________ _

Name

Title

Company Dept.

Address

City State Zip

EB-260n-41

I

l

(staple here)

__________ lpleasefoldherel _________ _

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD, MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation
Corporate Communications Services
CFO 1-2/M92
200 Baker Avenue
West Concord, MA 01742

No Postage
Necessary if
Mailed in the
United States

