

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard,
Massachusetts 01754, Telephone: (617) 897-5111
SALES AND SERVICE OFFICES
DOMESTIC - ARIZONA, Phoenix and Tucson. CALIFORNIA, Los Angeles, Monrovia,
Oakland, Ridgecrest, San Diego, San Francisco (Mountain View), Santa Ana, Sunnyvale
and Woodland Hills. COLORADO, Englewood. CONNECTICUT, Fairfield and Meriden
• DISTRICT OF COLUMBIA, Washington (Lanham, Md.) • FLORIDA, Orlando. GEORGIA,
Atlanta. ILLINOIS, Chicago (Rolling Meadows) • INDIANA, Indianapolis. IOWA,
Bettendorf • KENTUCKY, Louisville • LOUISIANA, Metairie (New Orleans)
• MASSACHUSETTS, Marlborough and Waltham. MICHIGAN, Detroit (Farmington
Hills) • MINNESOTA, Minneapolis. MISSOURI, Kansas City and St. Louis. NEW
HAMPSHIRE, Manchester. NEW JERSEY, Fairfield, Metuchen and Princeton. NEW
MEXICO, Albuquerque. NEW YORK, Albany, Huntington Station, Manhattan, Rochester
and Syracuse. NORTH CAROLINA, Durham/Chapel Hill. OHIO, Cleveland, Columbus
and Dayton. OKLAHOMA, Tulsa. OREGON, Portland. PENNSYLVANIA, Philadelphia
(Bluebell) and Pittsburgh. TENNESSEE, Knoxville. TEXAS, Austin, Dallas and Houston
• UTAH, Salt LakeCity. WASHINGTON, Bellevue. WISCONSIN, Milwaukee (Brookfield).
INTERNATIONAL - ARGENTINA, Buenos Aires • AUSTRALIA, Adelaide, Brisbane,
Canberra, Melbourne, Perth and Sydney. AUSTRIA, Vienna. BELGIUM, Brussels
• BOLIVIA, La Paz. BRAZIL, Puerto Alegre, Rio de Janeiro and Sao Paulo. CANADA,
Calgary, Halifax, Montreal, Ottawa, Toronto and Vancouver. CHILE, Santiago
• DENMARK, Copenhagen. FINLAND, Helsinki. FRANCE, Grenoble and Paris
• GERMANY, Berlin, Cologne, Hannover, Hamburg, Frankfurt, Munich and Stuttgart
• HONG KONG • INDIA, Bombay • INDONESIA, Djakarta • ISRAEL, Tel Aviv
• ITALY, Milan and Turin • JAPAN, Osaka and Tokyo. MALAYSIA, Kuala
Lumpur. MEXICO, Mexico City. NETHERLANDS, Utrecht. NEW
ZEALAND, Auckland. NORWAY, Oslo • PUERTO RICO, Santurce
• SINGAPORE • SPAIN, Barcelona and Madrid • SWEDEN, Gothenburg
and Stockholm • SWITZERLAND, Geneva and Zurich • TAIWAN, Taipei and Taoyuan
• UNITED KINGDOM, Birmingham, Bristol, Dublin, Edinburgh, Leeds, London,
Manchester and Reading. VENEZUELA, Caracas. YUGOSLAVIA, Ljubljana.

o

000 a
processor
handbook

digital equipment corporation

.r .'

Copyright © 1975 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice,

Digital Equipment Corporation assumes no re­
sponsibility for any errors which may appear in
this handbook.

The following are trademarks of
Digital 'Equipment Corporation, Miiynard, Massachusetts:

DEC

FLIP CHIP

DIGITAL

LSI-ll

ii

PDP

FOCAL

DECUS

CHAPTER 1
1.1
1.2
1.3
1.4
1.5

1.6
1.7

CHAPTER 2
2.1
2.2
2.3
2.4

CONTENTS

INTRODUCTION
The LSI·11 Concept.
PDp·11/03
Features
System Architecture
Microcomputer
1.5.1 General Registers
1.5.2 The Processor Status Word .
1.5.3 Instruction Set.
LSI-11 Memory Organization
LSI-II BUS
1.7.1 Bidirectional Lines
1.7.2 Master Slave Relation.
1.7.3 Interlocked Communication

SPECIFICATIONS
LSI-ll Operating Specifications.
PDP-ll/03 Operating Specifications.
H9270 Backplane Packaging and Mounting.
PDP-11!03 Packaging and Mounting

CHAPTER 3 ADDRESSING MODES.
3.1 Single Operand Addressing.
3.2 Double Operand Addressing.
3.3 Direct Addressing

3.3.1 Register Mode.
3.3.2 Autoincrement Mode.
3.3.3 Autodecrement (Mode 4)
3.3.4 Index Mode (Mode 6) .

3.4 Deferred (Indirect) Addressing.
3.5 Use of the PC as a General Register.

3.5.1 Immediate Mode.
3.5.2 Absolute Addressing
3.5.3 Relative Addressing
3.5.4 Relative Deferred Addressing

3.6 Use of Stack Pointer as General Register.
3.7 Summary of Addressing Modes

3.7.1 General Register Addressing.
3.7.2 Program Counter Addressing

INSTRUCTION SET
Introduction
Instruction Formats
List of Instructions

CHAPTER 4
4.1
4.2
4.3
4.4
4.5
4.6

Single Operand Instructions.
Double Operand Instructions
Program Control Instructions ...

iii

1·1
1-1
1-1
1-1
1-3
1-4
1-5
1-7
1-8
1-9
1-10
1-12
1-12
1-12

2-1
2-1
2-2
2-2
2-2

3·1
3-3
3-3
3-5
3-5
3-7
3-8
3-9
3-11
3-13
3-14
3-15
3-16
3-16
3-17
3~17
3-17
3·19

4-1
4·1
4-2
4-4
4-6
4-24
4·34

CHAPTER 5 PROGRAMMING TECHNIQUES
5.1 The Stack .
5.2. Subroutine Linkage.

5.2.1 Subroutine Calls
5.2.2 Argument Transmission
5.2.3 Subroutine Return
5.2.4 LSI-ll Set Subroutine Calls

5.3 Interrupts
5.3.1 General Principles.
5.3.2 Nesting

5.4 Programming Peripherals
5.5 Device Registers

CHAPTER 6 EXTENDED ARITHMETIC OPTION
6.1 General
6.2 Fixed Point Arithmetic (EIS) .
6.3 Floating Point Arithmetic (FIS)

CHAPTER 7 CONSOLE OPERATION
7-1 General
7.2 Interfacing
7.3 ODT/Console Microcode

APPENDIX A Memory Map

APPENDIX B Instruction Timing

APPENDIX C lSI-ll PDP-ll Family of Computers ...

APPENDIX D Instruction Index

APPENDIX E Summary of lSI-ll Instructions.

iv

5-1
5-1
5-5
5-5
5·6
5-9
5-9
5-10
5-10
5-11
5-.13
5-14

6-1
6-1
6-1
6-6

7-1
7-1
7-1
7-2

Al

8-1

D-1

E-1

The LSI-11 (POP11/03) is the smallest member of the POP-ll family
of computer systems_ It offers the user minicomputer performance in a
microcomputer package that crosses traditional industry barriers_ There­
fore, the user can truly add computer power in systems previously too
small for computer application_ Yet for"Our traditional user, the boxed ver­
sion of the LSI-11, the POP11/03, offers a completely integrated smaller
systems tool at lower cost without sacrifiCing performance_ The LSI-11
(POP11/03) maintains traditional POP-ll architectural compatibility_
This includes programs up to 64K bytes and the use of the (optional)
floating instruction set (FIS) and extended instruction set (EIS).

Since the main design objective of the POP-ll family has always been
to optimize total system performance, the interaction of software and
hardware have been carefully considered at every step in the design
process_ The initial POP-11 was specified in the ISP language and ex­
tensively simulated and benchmarked_

The effort of bringing the LSI-ll to the marketplace has required exten­
sive design engineering ranging over many disciplines_ The basic N-chan­
nel MOS semiconductor densities are state-of-the-art, since the POP-ll
requires many circuits_ In fact, the 4-chips that com-prise the processor
have approximately 50,000 active elements in an area of about 4 X 200
mils X 200 mils (0_16 square inches)_ Extensive circuit simulation was
carried out for the basic circuits that comprise those elements-using a
DECsystem-lO. The basic logic masks were laid out using an Applicon
system for computer-aided-design, which is based on a POP-ll. Two
levels of simulation were carried out on a OECsystem-lO to check the
logic (Gate Level), and the behavior of the microprograms (Register­
Transfer Level). Finally,complete systems were simulated (including
I/O equipment).

All the preparation in the design and production of computers, we be­
lieve, is necessary to support our main goal: providing high performance
quality computers at the lowest cost by which you, our users, can apply
them.

v

~~
C. Gordon Bell
Vice President, Engi neeri ng
Digital Equipment Corporation

vi

CHAPTER 1

INTRODUCTION

1.1 THE LSI·ll CONCEPT
DIGITAL introduced the first PDP·ll Processor in 1970. Since then, a fam·
ily of PDP::11 Computer products has been constantly evolving-not just
a family of processors, but a family of peripherals, software, and ser·
vices. Today, the PDP-ll family is the broadest family of compatible
computer products on the market, with one of the latest additions being
the LSI-ll.

The LSI-ll is a 16-bit microcomputer with the speed and instruction set
of a minicomputer. Due to its size and unique capabilities, it can fit into
almost any instrumentation, data processing, or controller configuration.

1.2 PDP-ll/03
The PDP-ll/03, a 3 1h"H x 19"W x 13 1h"D boxed version of the LSI-ll,
·is designed as an off-the-shelf microcomputer system. It consists of an
LSI-ll microcomputer, a modular power supply, and a mounting box. The
mounting box is designed to mount in a standard 19" cabinet. For a
description of PDP-ll/03 specifications, refer to Chapter 2.

1.3 FEATURES
The LSI-ll has the following features:

• 400 Plus Instruction Set
More than 400 instructions make up the LSI-ll's extensive instruction

. ~et. This instruction set (also used by the PDP-ll/35,40) permits the
user to take C\dvantage of standard PDP-ll software. The only depar­
ture from the standard software is the addition of two new instruc­
tions, used to explicitly access the processor status word (PSW). De­
velopment programs as in the PDP-ll family include assemblers,
linkers, editors, loaders, utility packages, operating systems, and

~- higher level languages. .

• Extensive Compute Power and Small Processor Size
The processor module is built around a set of four N-channel metal
oxide semiconductor (MOS) chips, which include control and data -
elements as well as two microcoded read-only memories (microms).
The latter are programmed to emulate the powerful PDP-ll/35,40 in­
struction set,- along with routines for on-line debugging techniques
(ODT), operator interfacing, and boot-strap loader capability. The
processor also contains a 16-bit buffered parallel input/ output (I/O)
bus, a 4096-word MOS random-access memory (RAM), a real-time
clock input, priority interrupt control logic, power-fail/auto restart, and
other features to provlde stand-aLone operation. The entire processor,
plus all of the above-mentioned features, are contained on one 8.5-by­
lO-inch printed circuit board.

1-1

• Modularity
The processor, memory, device interfaces, backplane, and intercon­
necting hardware are all modular in design. Module selection, such as
the type and size of memory, and device interfaces, enable custom
tailoring to meet specific application requirements.

• Serial and Parallel I/O Modules
Serial and parallel I/O modules are available for interfacing the pro­
cessor bus with external devices. These modules simplify connection
to peripherals when and if required, and also facilitate assembly of
prototype systems without penalizing later development of customized
interfaces.

• Choice of Memory
Memory modules are offered for applications reqUiring more storage
than is available with the 4096-word MOS random-access memory on
the processor board. Included are a non-volatile 4096-word core mem­
ory, a 1024-word static RAM, a 4096-word dynamic RAM which can be
automatically refreshed by central processor microcode, and read-only
memory (PROM/ ROM) with capacity to a maximum of 4096 words in
512-word increments (2048 words in 256-word increments).

• 16-Bit Word (Two 8-Bit Bytes)
Direct addressing of 32K 16-bit words.

• Word or Byte Processing
Very efficient handling of 8-bit characters without the need to rotate,
swap, or mask.

• Asynchronous Operation
System components run at their highest possible speed; replacement
with faster devices means faster operation without other hardware or
software changes.

• Stack Processing
Hardware sequential memory manipulation makes it easy to handle
structured data, subroutines, and interrupts.

• Direct Memory Access (DMA)
Inherent in the architecture is direct memory access for multiple de­
vices.

• 8 General-Purpose Registers
For accumulators or address generation.

• Priority,Structured I/O System
Daisy-chained grant signals provide a priority-structured I/O system.

• Vectored Interrupts
Fast interrupt response without device polling.

• Single and Double Operand Instructions
Powerful and convenient set of programming instructions.

• Power-Fail/ Auto Restart
Whenever DC power sequencing signals indicate an impending AC
power loss, a microcoded power-fail sequence is initiated. When power
is restored, the processor can automatically return to the run state.
Four options are available for power up sequencing.

1-2

1.4 SYSTEM ARCHITECTURE
A complete and powerful microcomputer system can be configured by
utilizing the KDll-F microcomputer, appropriate memory, I/O devices,
and interconnection hardware. The LSI-ll bus (implemented on the
H9270 card guide backplane assembly) is the interface which enables a
complete system to be configured.

H9270 BACKPlANE

SERIAL PARALLEL
DEVICES DEvICES

Figure I-I LSI-ll System Configuration

All LSI-11 modules connected to this common bus structure receive the
same interface signals. LSI-ll bus control and data lines are bidirec­
tional, open-collector lines which are asserted when low. All transactions
on the bus are asynchronous. The bus is composed of 16 multiplexed
data/address lines, six data transfer control lines, six system control
lines, and five interrupt and direct memory access (DMA) control lines.

Interrupt and DMA are implemented with two daisy-chained grant sig­
nals which provide a priority-structured I/O system. The highest priority
device is the module electrically located closest to the microcomputer
module. Only when a device is not asserting a request does it pass grant
signals to lower priority devices.

The LSI-ll .bus provides a vectored interrupt interface for any device.
Device polling is not required in prqcessing interrupt requests. When an
interrupting device receives a grant, the device passes to the processor
an interrupt vector which points to a new processor status word and the
starting address of an interrupt service routine for the device.

The H9270backplane assembly contains all of the wiring for the LSI-l1
bus; plus standard power and, system control wires.

1-3

1.5 MICROCOMPUTER
The. microcomputer connected to the LSI-ll bus controls the time al­
location offhe LSI-ll bus for peripherals and performs arithmetic and
logic operations and instruction decoding. It contains multiple high­
speed, general-purpose registers which can be used as accumulators,
address pointers, index registers, and other specialized functions. The
processor does both single and double operand addressing and handles
both I6-bit word and 8-bit byte data. The bus permits data transfers
directly between I/O devices and memory without disturbing the pro­
cessor registers.

The microcomputer processor is implemented with four LSI 40:pin chips.
The four chips are the control chip, the data chip, and two microm
(inicrocode read-only memory) chips.

Control Chip
This chip provides the microinstruction address sequence, for the microm
and control for the data access port. It contains the following features:

• Programmable Translation Array (PTA)~Provides a decoding mech­
anism for generating microinstruction addresses from macroinstruc-
tions. .

• Location Counter (LC)-Stores the address in the microm from which
accesses are being made.

• Return Register (RR)-Used to hold a microsubroutine return address.

• Data Transfer Control Logic-Provides control .and timing signals for
datal add ress port.

• Interrupt Logic-Provides control over three internal flags for the pro-
cessor and four external flags for the system-.

Data Chip
The data· chip incorporates the paths, registers, and logic to execute
microinstructions. It offers the following features':

• Register File--Provides multiple registers for storage of frequently~re­
quired data.

• Arithmetic and Logic Unit (ALU)-Performs the arithmetic and logic
operations necessary for instruction execution.

• Condition Flags Logic-Monitors the status of the result from the ALU
section.

• Datal Address Port-Provides access to the data address lines.

Microm Chips
The microm chips provide storage of the microcode for emulation of the
basic PDP-ll/35,40 ins1ruction set, residentQDT (octal debugging tech­
nique) firmware, resident ASCII/ console routine, and bootstrap.

An optional fifth chip (third microm) can be added to the LSI-ll pro­
, cessor, via a socket available on the microcomputer module, to extend the

instruction set to include fixed and floating point arithmetic instructions.

1-4

1.5.1 GeneralRegisters
The LSI-1I central processor module contains eight I6-bit general-pur­
pose registers that can perform a variety of functions. These registers
can serve as accumulators, index registers, autoincrement registers, auto­
decrement registers, or as stack pointers for temporary storage of data.
Arithmetic operations can be from one general register to another, from
one memory location or device register to another, or between memory
locations or a device register and a general register. The following illus­
tration identifies the eight I6-bit general registers RO through R7.

L GENERA
REGISTERS RO

Rl
R2
R3
R4
R5

R6 lisP)

STACK POINTER

R7 l(pC)

PROGRAM COUNTER

Figure 1-2 General Register Identification

Registers R6 and R7 in the LSI-ll are dedicated. R6 normally serves
as the Stack Pointer (SP) and contains the location (address) of the last
entry in the stack. Register R7 serves as the processor's Program
Counter (PC) and contains the address of the next instruction to be exe­
cuted. It'is normally used for addressing purposes only and not as an
accumulator. Register operations are internal to the processor and do
not require bus cycles (except for instruction fetch); all memory and
peripheral device data transfers do require bus cycles and longer execu·
tion time. Thus, general registers used for processor operations result in
faster execution times. The bus cycles required for memory and device
references are described below.

Bus Cycles
The bus cycles (with respect to the processor) are:

DATI Data word transfer in Equivalent to Read opera-
tion

DATIO Data word transfer in, fol- Equivalent to Read! Modify
lowed by word transfer out Write

DATIOB Data word transfer in, fol- Equivalent to Read! Modify
lowed by byte transfer out Write

DATO Data word transfer out Equivalent to Write opera-
tion

DATOS Data byte transfer out Equivalent to Write opera-
tion

1-5

, Every processor instruction requires one or more bus cycles. The first
operation required is a DATI, which fetches an instruction from the loca·
tion addressed by the Program Counter (R7). If no further operands are
referenced in memory or in an ItO device, no --additional bus cycles are
required for instruction execution. If memory or a device, is referenced,
however, one or more additional bus cycles are required. '

Note the distinction between interrupts and DMA operations: Interrupts,
which may change the state of the processor, can occur only between
processor-instructions; DMA .operations can occur between individual bus
cycles since these operations do not change the state of thel processor.

Addressing Memory and Peripherals .
The maximum direct address space of the LSI-ll is 32K 16-bit words of
memory. LSI-ll's memory locations and peripheral device registers are
addressed in preCisely the same manner. The upper 4096 addresses
(28K-32K) are usually reserved by convention for peripheral device ad­
dressing. However, the user does not need to dedicate the entire 4K
space to I/O; he can implement only what he needs.

An LSI"ll word is qivided into a high byte and a low byte as .shown
below.

15 7 o

• : l~gtTE:

Figure 1-3 High and Low Byte

Word addresses are always even-numbered. Byte addresses can be either
even- or odd-numbered. Low bytes are stored at even-numbered memory
locations and high bytes at odd·numbered memory locations. Thus, it is
convenient to view the memory as: r'

16-BIT WORD

BYTE BYTE

HIGH lOW
HIGH lOW'
HIGH lOW ,

--=-:::-

HIGH lOW

HIGH tOW
HIGH lOW

WORD ORGANIZATION

000000
000002
000004

OR

017772
01 777 4
017776

8-BIT~ -
lOW
HIGH
lOW
HIGH

lOW

000000
000001
000002
000003
000004

.'
HIGH

LOW
HIGH

[
017775
017776

, 017777

gtTE ORGANIZATION

Figure 1-4 Word and Byte Addresses for First 4K Bank

1-6

Certain memory locations have been reserved by convention for interrupt
and trap handling and peripheral device registers. Addresses from 0 to
3768 are usually reserved for trap and device interrupt vector locations.
Several of these are reserved in particular for system (processor in­
itiated) traps.

1.5.2 The Processor Status Word (PSW)

Figure 1-5 Processor Status Word (PSW)

The Processor Status Word (PSW) contains inforr:1<:ti0!1 the current
nn,r,'<:<:nr status. This information includes tiH' current processor priority,

condition codes describing the arithmetic or iogical results of the
last instruction, and an indicator for detecting the execution of an in­
struction to be trapped during program The PS word format
is shown abOVe. Certain instructions allow programmed manipulation of
condition code bits and loading or storing (moving) the PSW. The two
instructions for explicitly accessing the PSvV2!(e described in Chapter 4.

Priority Interrupt Bit
The processor operates with interrupt pnonry PS\iJ bit 7 asserted (1) or
cleared (0). When PSW bit 7 = I, an external rlevice cannot interrupt the
processor with a request for service. The proC('SSN inust be operating at
PSW bit 7 = 0 for the device's request to take effect. As compared to
other'-PDP-ll's, the LSI-ll operates at 1 line multi level priority.

Condition Codes
The condition codes contain information on the result of the last CPU
operation. The bits are set as follows: (The bits are set after execution
of all arithmetic or logical Single operand or double operand instructions.)

Z = 1, if the result were zero
N = 1, if the result were negative
C = 1, if the operation resulted ina carry from the MSB (most

significant bit) or a 1 were shifted from MSB or LSB (least
significant bit)

V = 1, if the operation resulted in an arithmetic overflow

Trap (T Bit)
The program can only set or clear the trap bit (T) by popping a new PSW
off the stack. When set, a processor trap will occur through location 14 at
completion of the current instruction execution, and a new processor
status word will be loaded from location 16. This T bit is especially use­
ful in debugging programs as an efficient method of installing break­
points.

1·7

1,5.3 Instruction Set
Implementing the-PDP·ll instruction repertoire in the LS" chip set per·
mits the user to take advantage of Digital Equipment Corporation's years
of experience with the PDP·ll family---:-more than 17;000 units installed,
with all associated application notes, software, documentation, training,
reliability, customer references, .and the DECUS library of application
programs.

The instruction complement uses the flexibility of the general. purpose
registers to provide more than 400 powerful hard·wired instructions­
the most comprehensive and powerful instruction repertoire of any com·
puter in the 16·bit class. Unlike conventional 16·bit computers, which
usually have three classes of instructions (memory reference instruc·
tions, operate or accumulator control instructions, and I/O instructions),
all data manipulation operations in the LSI·ll are .accomplished with
one set of instructions. Since peripheral device registers can be manip·
ulated as flexibly as memory by the central processor, instructions that
are used to manipulate data in\memory can be used equally well for data
in peripheral device registers. 'for example, data in an external device
register can be tested or modified directly by the CPU without bringing it
into memory or disturbing the general registers. One can add or com·
par.e data logically or arithmetically in a device register.

The basic order code of the LSI·ll uses both single and double operand
address instructions for words or bytes. The LSI·ll therefore performs
very efficiently in one step such operations as adding or subtracting two
operands or moving an operand from one location to another.

LSI·ll Approach

ADD A, B

Conventional Approach
LDA A

ADD B

STA B

Addressing

Add .contents of location A to location B;
store results at location B

Load contents of memory location A into
accumulator

Add contents of memory location B to ac·
cumulator

Store result at location B

Much of the power of the LSI·ll is derived from its wide range -of ad·
dressing capabilities. LSI·ll addressing modes include sequential for·
ward or backward addressing, address indexing, indirect addressing, 16·
bit word addressing, 8·bit byte addressing, and stack addressing. Vari·
able·length instruction formatting allows a minimum number of words
to be used for each addressing mode. The result is efficient use of pro·
gram storage space.

1·8

1.6 LSI-ll MEMORY ORGANIZATION
The LSI-ll processor organization and addressing, register, memory, and
device addresses are shown.

MEMORY
ADDRESS

PROCESSOtI
MODULE
RESIDENT
READIWRITE
MEMORY(4K)

(28K lOCATmS)

32K MAXIMUM
WORD LOCATIONS

OPTIONAL
MEMORY

o

376
400

17776

157776
160000

_--lL.. _______ lOC 177776

DEVICE INTERRURT
AND SYSTEM
TRAP VECTORS

USER AND SYSTEM
PROGRAMS AND
STACK(S)

~

DEVICE & REGISTER

MEMORY ORGANIZATION

NOTE

RESERVED VECTOR LOCATIONS
4 BUS ERROR. TIME OUT

10 RESERVED

}

14 BPT TRAP INSTRUCTION. T 81T
<D lOT EXECUTED
24 POWER FAIL/RESTART
30 EMT EXECUTED
34 TRAP EXECUTED
60 CONSOLE INPUT DEVICE
64 CONSOLE OUTPUT DEVICE

100 EXTERNAL EVENT
LINE INTERRUPT

244 FlS TRAP

NOTE:
DEVICE VEaORS AND
DEVICE ADDRESSES
ARE SELECTED BY
JUMPERS LOCATED ON
THE DEVICE INTER­
FACE MODULES

}
RECOMMENDED FOR
PERIPHERALS I/O
DEVICE ADDR .• ETC.

There is 32K of users memory space available;
however 0-28K is recommended for memory ad·
dress locations, and 28K-32K for peripherals
I/O device addresses, etc.

Figure 1-6 Memory Organization

1-9

1.7 LSI·ll BUS
The LSI-ll bus is a simple, fast, easy-to-use interface between LSI-ll
modules. All LSI-ll modules connected to this common bidirectional bus
structure. receive the same interface signal lines. A typical system ap­
plication in which the processor module, memory modules, and periph­
eral device interface modules are connected to the bus is shown in Figure
1-7.

KEYBOARD AND
CRT DISPLAY lIO
TO/FROM VT50
DKSCOPE OR
LA36 TELEPRINTER

.~~-:~
Figure 1-7 Typical Bus Application

Bus data and control iines are bidirectional open-collector lines that are
asserted low. The bus is comprised of 16 datal address lines (BDAL
0-15), and 17 controllsynchronization signal lines, and system function
lines.

Control signal lines include two daisy-chained grant signals (four signal
pins), which provide a priority-structured 110 system. The highest priority
device is the module located electrically closest to the microcomputer
module. Higher priority devices pass a grant signal to lower priority de­
vices only when not requesting service. For example, "Module A," shown
in figure 1-8, is the highest priority device, and is capable of interrupting
processor operation and/or executing DMA transfers. Modules Band C
have lower priorities, respectively. Module B can receive a grant signal
when Module A is not asserting a request. Similarly, Module C can re­
ceive a grant signal when both Modules A and B are not asserting a re­
quest.

Both 16-bit address and 16·bit data words (or data bytes) are multi­
plexed over the 16 BDAL lines of the LSI-II bus. For example, during a
programmed data transfer, the processor will assert an address on the
bus for a fixed time.

1-10

HIGHEST
PRIORTY
DEVICE DECREASING PRIORITY --------------

~------. BIAK
KDll-F
MICRO-
COMPUTER BDMG
MODULE
ICCMAINS 4K

MODULE
A

RAM) BIRQlI-----L---j----L..-+----"---t--
I READ/WRITE

BDMRLI----------''-c--------'--

Figure 1-8 Bus Priority Structure

B IAK } PR lOR ITY
STRUCTURED
DAISY-CHAINED

BDM GRANT SIGNALS
TO ADDn 10NAl
SYSTEM MODULES

}

REQUEST
SIGNALS
FROM
ADDITIONAL
SYSTEM
MODULES

After the address time has been completed, the processor initiates the
programmed input or output data transfer. The actual data transfer is
asynchronous and requires a reply from the addressed device; bus syn­
chronization and control signals provide this function_

The processor module is capable of driving six device slots (double­
height) along the bus without additional termination, as provided with the
H9270 backplane. Devices or memory can be installed in any location
along this bus, as long as the desired priority order of the devices is
maintained. Position 1 (figure 1-9) has the highest priority, position 6
the lowest.

COMPONENT SIDE UP

(MODULE INSERTION SIDE)

Figure 1-9 Devices Priority Guide

The bus protocal allows for a vectored interrupt by the device. Hence,
device polling is not required in interrupt processing routines. This re­
sults in a considerable savings in processing time when many devices
requiring interrupt service are interfaced along the bus. When an inter­
rupting device receives an interrupt grant signal, the device passes to the
processor, an interrupt vector_ The vector points to two addresses which
contain a new processor status word and the starting address of the in­
terrupt service routine for the particular device.

One bus signal line (BEVNT) functions as an external event interrupt line
via the processor module. This signal line can be connected to a 60 Hz
line frequency source, and can be used as a real-time interrupt. A wire
wrap connection on the processor module enables or inhibits this func­
tion. When enabled, the device connected to this line has the highest in­
terrupt priority external to the processor. Interrupt vector 100R is re­
served for this function, and an interrupt request via the external event
line causes new PC and PS words to be loaded from locations 100, and
102",

1-11

1.7.1 Bidirectional Lines
With bidirectional' and asynchronous communications on the LSJ.11 bus,
devices can send, receive, and exchange data at their own rates. The
bidirectional nature of the bus allows utilization of common bus inter·
faces for different devices, and simplifies the interface design.

1.7.2 Master Slave Relation
Communication between two devices on the bus is in the form of a
master·slave relationship. At any point in time, there is one device that

*has control of the bus. This Controlling device is termed the "bus mas·
ter." The master device controls the bus when communicating with
another device on the bus, termed the "slave." A typical example of this
relationship is the processor, as master, fetching an instruction from
memory (which is always a slave). Another example is a DMA device in·
terface, as master, transferring data to memory, as slave. Bus master
control is dynamic. The bus arbitrator on the processor module, for ex·
ample, may pass bus control to a DMA device. The DMA device, as mas·
ter, could then communicate with a slave memory bank.

Since the LSI·ll bus is used by the processor and all I/O devices, there
is a priority structure to determine which device gets control of the bus.
Every device on the LSI-ll bus which is capable of becoming bus master
is assigned a priority according to its position along the bus. When two
devices which are capable of becoming a bus master request use of the
bus simultaneously, the device with the higher priority position will reo
ceive control.

1.7.3 Interlocked Communication
Data transfer on the LSI·ll bus is interlocked so that communication is
independent of the physical bus length and the response time of the
slave device. The asynchronous operation precludes the need for syn­
chronizing with, and waiting fo~, clock impulses. Thus, each device is
allowed to operate at the maximum possible speed.

Full 16·bit words or 8-bit bytes of information can b~ transferred on the
bus between a master and.a slave. The information can be instructions,
addresses, or data. This type of information transfer occurs when the
processor, as master, is fetching instructions, operands, and data from
memory, and storing the results into memory after execution of the in·
struction.

1-12

CHAPTER 2

SPECI FICATIONS

2.1 LSI-ll OPERATING SPECIFICATIONS
Tables 2·1 and 2·2 list the electrical and mechanical specifications of the
LSI·ll options. All LSI·ll modules will operate at temperatures of 41 ° F
to 122°F (5°C to 50°C) with a relative humidity of 10% to 95% (no
condensation), with adequate airflow across the modules.

TABLE 2-1 LSI·ll ELECTRICAL SPECIFICATIONS

LSI·II Module Power Requirements*
Nomenclature Description +5V ±5%** +12V±3%**

KDll·F Microcomputer with 1.8A (Typ) 0.8A (Typ)
1.1A (Max) 4K X 16 RAM 2.4A (Max)

MSVll·A 1K X 16 RAM 0.8A (Typ)
1.8A (Max)

O.lA (Typ)
O.lA (Max)

MSVll·B 4K X 16 RAM 0.6A (Typ)
1.1A (Max)

0.3A (Typ)
0.6A (Max)

MRVll·AA 4K X 16 PROM/ ROM
(OK implemented)

(4K implemented)

MMVll·A 4K X 16 Core

DLVll Serial Line Unit

DRVII Parallel Line Unit

*Preliminary
**At the module connector

For all Modules:

Electrical Input Logic Levels:

Bus Low: 1.3 Vdc Max
Bus. High: 1.7 Vdc Min

0.2A (Typ)
O.4A (Max)

2.8A (Typ)
4.1A (Max)

3.0A (Stby) (Max) 0.2A (Stby) (Max)
7.0A (Optg) (Max) 0.6A (Optg) (Max)

1.0A (Typ)
1.6A (Max)

0.8A (Typ)
1.3A (Max)

0.180A (Typ)
0.250A (Max)

Electrical Output Logic Levels:

2·1

Bus Low: 0.8 Vdc Max
Bus High: 2.7 Vdc Min

TABLE 2·2 MECHANICAL SPEC.IFICATIONS

Module
LSI·ll

Nomenclature
Dimension

(Tolerance ± 0.05")

KDll·F
KDll·J

MSVll·A
MSVll·B
MRVll-AA
MMVll-A
DLVll
DRV11
H9270

10.436 X 8.50 X 0.5"
10.436 X 8.50 X 0.9"
10.436 X 8.50 X 0.5"

5.187 X 8.50 X 0.5"
5.187 X 8.50 X 0.5"

, 5.187 X 8.50 X 0.5"
10.436 X 8.50 X 0.9"

5.187 X 8.50 X 0.5"
5.187 X 8.50 X 0.5"

11.15 X 11.0 X 2.80"

2.2 PDP·11/03 OPERATING SPECIFICATIONS
Table 2-3 lists the environmental and electrical specifications of the
PDP-ll/03.

TABLE 2·3 PDP 11/03 OPERATING SPECIFICATIONS

, Temperature

Relative Humidity

Input Voltage:
PDP·ll/03-AA, BA

PDP-ll/03·AB, BB

Input Power: .

41°F to 122°F (5°C to 50°C)

10% to 95% (no condensation)

90·132 Vac, 115 Vac nominal,
47-63 Hz

180-264 Vac, 230 nominal,
47-63 Hz

P-DP-ll/03-AA, AB, BA, BB 210 watts max at full load,
190 watts typical at full load

2.3 H9270 BACKPLANE PACKAG,ING AND MOUNTING
TheH9270 Backplane (Figure 2-1) is designed, to accept the KDll-F
or KD11:J microcomputer and up to six I/O interface modules, or mem­
ory modules. Mounting of the H9270 backplane can be accomplished in
anyone of three planes, as shown in Figure 2-1.

2.4 PDP·11/03 PACKAGING AND MOUNTING
The PDP·11/03 shown in Figure 2-2 is offered in the following versions:

Designation

PDP-ll/03-AA

PDP-ll/03:AB

PDP-ll/03·BA

PDP·ll/03~BB

Description

4K RAM Configura'tion (KD11·F), 115 Vac

4K RAM Configuration (KDll-F), 230 Vac
, 4K Core Configuration (KDll-J), 115 Vac

4K Core Configuration (KDll-J), ,230 Vac

2-2

The PDP-ll/03 is designed with a removable front panel. Removing the
front panel exposes the LSI modules and cables. This enables replace­
ment or installation of a module from the front of the PDP-ll/03. The
11/03 power supply is located on the right-hand side of the PDP-11/03
when viewed from the front. The power supply contains three front
panel switches and indicators which are accessible through a cutout in
the front panel. Therefore, when the front panel is removed, the lights
and switches are still attached and functional.

The PDP-ll/03Js designed to mount in a standard 19" cabinet (Figure
2-3). A standard 19" cabinet has two rows of mounting holes in the
front, spaced 18K6" apart. The holes are located 112" or 0/8" apart from
each other. Standard front panel increments are 1 %".

MOUNTiNG '----+-­
BRACKET
O.21S·"DIA
HOLES

. (4 PLACES)

Figure 2-1 H9270 Backplane Mounting (SHT 1 of 2)

11.0""

SIDE MOUNTING
0.187 OIA. HOlES
4 PLACES .

o

0.81" .. 1----- Z29" ---

1------- 11.00"

REAR MOUNTING

O--------r- I
1.375" 2.80"

o-----.---L J i 0.74:: I

.

0.31 - /' THREADED STUD (4 PLACES) 008" j t 10-32 THO<O.S" LONG

=y~. _1+
~if- "" f~L ..
f----- 11.15" ----------0011 .

VIEW FROM REAR OF 8ACKPLANE

TOP AND BOTTOM MOUNTING

r--- 11.15"

9.04"

6-32 THO HOLE

<0.2~P

_L- --- - -----(ll- ---- - - - - -- "0-
I

f6~~-U CONNE
8

1---- 5.250"---1

o .31" 2.95" ___

Figure 2-1 Backplane Mounting (SHT 2 of t)

2-4

:

T
3-V2"

~

~--17-518" .. I

~====~IT C 3-112"

1..l=========:;!~
~1--1-112"

19"'---------1 .. 1

""r>------13.50"

POWER SUPPL Y

~R A~R

'--

FRONT

PROCESSOR,
MEMORY AND

DEVICES

Figure 2-2 PDP-ll!03 Assembly Unit

2-5

FRONT VIEW

o ---Z---------
o TOP OF A STANDARD o FRONT PANEL

o
o
o
o
o

1/4" 0 T

-1-1~ 0 t"
T 5/8"

1-3/4" 0 + 1 5/8"

--- 91"
3-112" 0 +

5/8" 1 0 +
5/8 "

------ 9 t,
o--L

1-------18-5/16"'--------/

18-5/16"-------t-IL,19" TYP --J i r,31S" TYP

f ~ ... ~4
.50" 1.75" FRONT OF BOX(PANEL REMOVED) Jl,

O.SS" •
TYP

19"

T
3.S0" FRONT

~~----~-----11H

~""" " 1 ~"
Figure 2-3 PDP-ll!03 Cabinet Mounting

2·6

CHAPTER 3

ADDRESSING MODES

Data stored in memory must be accessed and manipulated. Data han·
dling is specified by an LSI-ll instruction (MOV, ADD, etc.), which
usually indicates:

• The function (operation code).

• A general·purpose register is to be used when locating the source oper­
and and/or a general·purpose register to be used when locating the
destination operand.

• An addressing mode (to specify how the selected register(s) is/are to
be used).

A large portion of the data handled by a computer is usually structured
(in character strings, arrays, lists, etc.). LSI·ll's addressing modes pro·
vide for efficient and flexible handling of structured data.

The general registers may be used with an instruction in any of the
following ways:

• As accumulators. The data to be manipulated resides within the reg­
ister.

• As pointers. The contents of the register is the address of the operand,
rather than the operand itself.

• As pointers which automatically step through memory locations. Auto'
matically stepping forward through consecutive locations is known as
autoincrement addressing; automatically stepping backwards is known
as autodecrement addressing. These modes are particularly useful for
processing tabular or array data.

• As index registers. In this instance, the contents of the register and
the word following the instruction are summed to produce the address
of the operand. This allows easy access to variable entries in a list.

An important LSI-ll feature, which should be considered in conjunction
with the addressing modes, is the register arrangement:

• Six general·pur.pose registers (RO - R5)

• A hardware Stack Pointer (SP), register (R6)

• A Program Counter (PC), register (R7)

Registers RO through R5 are not dedicated to any specific function; their
use is determined by the instruction that is decoded:

• They can be used for operand storage. For example, contents of two
registers can be added and stored in another register.

• They can contain the address of an operand or serve as pointers to
the address o~ an operand.

• They can be used for the autoincrement or autodecrement features.

• They can be used as index registers for convenient data and program
access.

3-1

The LSI-! 1 also has instruction addressing mode .combinations that facH­
)tate temporary- data storage structures_ This can be used for convenient
'handling of data which must be frequently accessed_ This is known as
stack manipulation. The register used to keep track of stack manipula·
tion is known as the stack pOinter. Any register can be used as a "stack
pointer"under prograIT) control; however, certain instructions associated
with subroutine linkage and interrupt service automatically use Register
R6 as a "hardware stack pointer." For this reason, R6 is frequently re­
ferred to as the "SP":

• The stack pointer (SP) keeps track of the latel't entiy on the stack.

• The stack pointer moves,down as items are· added to the stack and
moves up as items are removed. Therefore, it always points to the top
of the stack.

• The hardware stack is used during trap or interrupt handling to':store
information allowing the processor to return to the main program.

Register R7 is used by the processor as its program counter (PC). It is
recommended that R7 not be used as a stack pointer or accumulator.
Whenever an instruction is fetched from memory, the program counter
is automatically incremented by two to point to the next instruction
word.

The next section is divided into seven major categories:
• Single Operand Addressing-One part of ttie instruction word specifies a

register; the second part provides information for locating the operand.

• Double Operand Addressing-part of the instruction word specifies the
registers; the remaining parts provide information for locating two
operands.

• Direct Addressing-The operand is the contents of the selected reg­
ister.

• Deferred (Indirect) Addressing-The contents of the selected register
is the address of the operand.

• Use of the PC as a General Register-The PC is unique from other
general· purpose registers in one important respect. Whenever the
processor retrieves an instruction, it automatically advances the PC
by 2. By combining this automatic advancement of the PC with four
of the basic addressing modes, we produce the four special PC modes
-immediate, absolute, relative, and relative deferred.

• Use of Stack Pointer as General Register-Can be uSed for stack
operations.

• Summary of Addressing Modes

NOTE
Instruction mnemonics and address mode sym-

- _ bois are sufficient for writing assembly language
programs. The programmer need not be con­
cerned about conversion to binary digits; this
is accomplished automatically by the assembler
program.

3-2

3.1 SINGLE OPERAND ADDRESSING
The instruction format for all single operand instructions (such as clear,
increment, test) is:

MODE Rn

~_~l5 4 ~Z ___ O---,

OP CODE· '+
DESTfNATION ADDRESS -----------~

Bits 15 through 6 specify the operation code that defines the type of in­
struction to be executed.

Bits 5 through 0 form a six·bit field called the destination address field.
This consists of two subfields:

a) Bits 0 through 2 specify which of the eight general purpose registers
is to be referenced by this instruction word,

b) Bits 3 through 5 specify how the selected register will be used (ad·
dress mode). Bit 3 is set to indicate deferred (indirect) addressing.

3.2 DOUBLE OPERAND ADDRESSING
Operations which imply two operands (such as add, subtract, move and
compare) are handled by instructions that specify two addresses. The
first operand is called the source operand, the second the destination
operand. Bit assignments in the source and destination address fields
may specify different modes and different registers. The Instruction
format for the double operand instruction is:

OP CODE MODE Rn MODE

15 12 \11 10 ~ __ ~6J ,5 4

SOURCE ADDRESS---.-.J+ f
DESTINATION ADDRESS -----------'

Rn

0,

The source address field is used to select the source operand, the first
operand. The destination is used similarly, and locates the second op­
erand and the result. For example, the instruction ADD A, B adds the
contents (source operand) of location A to the contents (destination
operand) of location B. After execution B will contain the result of the
addition and the contents of A will be unchanged.

3-3

Examples in this section and further in this chapter use the following
sample LSI·l1 instructions. A complete listing of the LSI·II instructions
is located in the appendix.

Mnemonic Oescription Octal Code

CLR clear (zero the specified destination) 005000

CLRB clear byte (zero the byte in the specified 105000
destination)

INC increment (add 1 to contents of destination) 005200

INCB increment byte (add 1 to the ~ntents of 105200
destination byte)

COM complement (replace the contents of the 005100
destination by their logical complement;
each 0 bit is set and each 1 bit is cleared)

COMB complement byte (replace the contents of the 105100
destination byte by their logical complement;
each 0 bit is set and each 1 bit is cleared).

Abo add (add source operand to destination 06SS00
operand and store the result at destination
address)

00 = destination field (6 bits)

SS = source field (6 bits)

) = contents of

3·4

3.3 DIRECT ADDRESSING
The following table summarizes the four basic modes used with direct addressing.

Mode

o

2

4

6

01 REeT MODES

Name Assembler Function
Syntax

Register Rn Register contains operand

I INSTRUCTION ~ OPERAND I

Autoincrement (Rn)+ Register is used as a pointer to
sequential data then in­
cremented

I INSTRUCTION ~~

I LI ________ ~~~2~~~RJ~~RDq.~

OPERAND

Autodecrement

j t,1 FOR BYTE ~

-(Rn) Register is decremented and
then used as a pointer.

I INSTRUCTION ~ > ADDRESS ~

~.-----.

Index X(Rn) Value X is added to (Rn) to pro­
duce address of operand. Nei­
ther X nor (Rn) are modified.

I INSTRUCTION ~ ADDRESS f--~ I~OP-E-R-AN-D--'
L! ~X __ II--------~~

3.3.1 Register Mode

OPR Rn

With register mode any of the general registers may be used as simple
accumulators and the operand is contained in the selected register. Since
they are hardware registers, within the processor, the general registers
operate at high-speeds and provide speed advantages when used for
operating on frequently-accessed variables. The assembler interprets
and assembles instructions of the form OPR Rn as register mode oper­
ations. Rn represents a general register name or number and OPR is
used to represent a general instruction mnemonic. Assembler syntax re­
quires that a general register be defined as follows:

RO = %0 (% sign indicates register definition)

Rl = %1

R2 - %2, etc.

3-5

Registers are typically referred to by name as RO, RI, R2, R3, R4, R5,
R6 and R7. However R6 and R7 are also referred to as SP and PC,
respectively.

Register Mode Examples
(all numbers in octal)

1.

Symbolic

INC R3

Operation:

Octal Code Instruction Name

005203 Increment

Add one to the contents of general register 3

~:~-=----
. R2

I a a a a 0 0 0 I a a 1 0 [a 1 1 I~':.E~:_ ,;;---
15' . 6 5 4 3 2' . 0 RL..GIST R -~--.--

'--"'- __ ~ ___ ~ "-____________ -----':-' R4

OP CODE IINCI0052))--.J J --~-
DESTINATION FIELD R6 (SP)

R? (PC)

2. ADD R2,R4 060204 Add

Operation: Add the contents of R2 to the contents of R4.

3. COMB R4

Operation:

BEFORE AFTER

R21 000002 R2 ~I ===0~O~OO~0~2=~

R4 1,--_o_o_oo_04_...J R4 LI __ o_o_OO-'O..:.6----.J

BEFORE

105104 Complement Byte

One's complement bits 0-7 (byte) in R4. (When
general registers are used, byte instructions only
operate on bits 0·7; Le. byte 0 of the register)

AFTER

R4 I 022222 R41 022155

3-6

3.3.2 Autoincrement Mode

OPR (RnH

This mode provides for automatic stepping of a pointer through sequen­
tial elements of a table of operands. It assumes the contents of the
selected general register to be the address of the operand. Contents of
registers are stepped (by one for bytes, by two for words, always by
two for R6 and R7) to address the next sequential location. The auto­
increment mode is especially useful for array processing and stack pro­
cessing. It will access an element of a table and then step the pointer to
address the next operand in the table. Although most useful for table
handling, this mode is completely general and may be used for a variety
of purposes.

Autoincrement Mode Examples
-Symbolic Octal Code Instruction Name

1. ClR (R5) +

Operation:

BEFORE
ADDRESS SPACE

20000 I 005025

005025 Clear

Use contents of R5 as the address of the operand.
Clear selected operand and then increment the
contents of R5 by two.

REGISTER

R5 I 030000 120000

AFTER
ADDRESS SPACE

005025

REGISTER

R5 LI_-..:.:03:::0.:::00:.:2--1

30~ ",i,,6 ~

2. ClRB (R5) +

Operation:

BEFORE
AOORESS SPACE

30000 L-'-:O:";OO:..:O:..;OO=----,

105025 Clear Byte

Use contents of R5 as the address of the operand.
Clear selected byte operand and then increment
the contents of R5 by one.

AFTER
REGISTER ADDRESS SPACE REGISTER

20000

30000

30002

'" '''~:ci:L'-j..:..03:,,:0,,:,,00:,,:0_..JI;, L-,_"_'0...J50_2_:_00---,
R5 LI __ 03_0_00_'_....1

3-7

3. ADD (R2) + ,R4

Operation:

BEFORE
ADDRESS SPACE

062204 Add

The contents of R2 are used as the address of the
operand which is added to the contents of R4. R2
is then incremented by two.

AFTER
REGISTERS ADDRESS SPACES R£GIST~RS

10000 1 06220~ R2 '/002 10000 1 062204 R2 1 100004

R41 020000

1000021

~-~ooo
1000021 010000 1 010000

3.3.3 Autodecrement Mode (Mode 4)

OPR-(Rn)

This mode is useful for processing data in a list in reverse direction.
The contents of the selected general register are decremented (by two
for word instructions, by one for byte instructions) and then used as
the address of the operand. The choice of postincrement, predecrement
features for the LSI·ll were not arbitrary decisions, but were intended
to facilitate hardware/software stack operations.

Autodecrement Mode Examples

1.

Symbolic

INC-(RO)

Operation:

BEFORE
ADDRESS SPACE

1000 1 __ 00_5_24_0_'--1

17774 1,--_00_0_00_0_-,

2. INCB-(RO)

Operation:

Octal Code

005240

Instruction Name

Increment

The contents of RO are decremented by two
and used as the address of the operand. The
operand is incremented by one.

AFTER

REGISTERS ADDRESS SPACE REGISTER

R0 LI_..:.O_'7_77_6_..J 1000 I 005240] 017774

~
17774 I 000001 1

105240 Increment Byte

The contents of RO are decremented by one then
used as the address of the operand. The operand
byte is increased by one.

3·8

BEFORE

ADDRESS SPACE

1000 I 105240

1m4~+=y
17776 :

3. ADD-·(R3).RO

Operation:

BEFORE
ADDRESS SPACE

10020 L! _..;,06:....4..:.30:.:0_--,

77774 ~_.::,00:.:0.::,05:.:0_
77776 L _____ ..J

AFTER

REGISTER ADDRESS SPACE REGISTER

R01 017776 1000 1 105240 I R975

17774/ £I" =-i 17776

064300 Add

The contents of R3 are decremented by 2 then
used as a pointer to an operand (source) which is
added to the contents of RO (destination operand).

REGISTER

R0 LI _..:.0:....00..;,0.::,20:.....,....J

R3 LI _..:.07:..,;7.:.,77:.:6_--,

AFTER

ADDRESS SPACE REG!STER

10020 LI _..:.06:....4:....30..:.0_-, R01 0000070

R31 077774

77G}:~---/
77776 Lt= ___ =::j_--.J

3.3.4 Index Mode (Mode 6)
OPR X(Rn)

The contents of the selected general register, and ~n index word following the in­
struction word, are summed to form the address of the operand. The contents of
the selected register may be used as a base for calculating a series of addresses,
thus allowing random access to elements of data structures. The selected register
can then be modified by program to access data in the table. Index addressing in·
structions are of the form OPR X(Rn) where X is the indexed word and is located
in the memory location following the instruction word and Rn is the selected gen­
eral register.

Index Mode Examples
Symbolic

1. ClR 2oo(R4)

Operation:

Octal Code Instruction Name

005064
000200

Clear

The address of the operand is determined by
adding 200 to the contents of R4. The oper­
and location is then cleared.

3-9

BEFORE

ADDRESS SPACE

1020
1------1

102.2 r------j

REGISTER

R41 L-__ 0_0_'0_0_0_-,

AFTER
ADDRESS SPACE

1020
f-------/

1022
1------1

REGISTER

R41 L-__ 0_0_'0_0_0_-,

1024 1000
. ~I--:::===~::::-t +200

1200~ 1200

1024 1-____ -1

1200~
'202' t:=::===j

2: COMB 200(R1)

Operation:

BEFORE

ADDRESS SPACE

1020 R'

105161
000200

Complement Byte

The contents of a location which is determined by
adding 200 to the contents of RI are one's com·
plemented. (Le. logically complemented)

AFTER

REGISTER ADDRESS SPACE REGISTER

. 017777 1020 RI 017777
f------l L-.. ___ --' f------l

1022

20176 ~--'--+--'----t
20200 L. __ --'-__ -'

1022 f------I

201761f----C'c.66=--!,O:..O:.;O_-I
20200 L. __ ..ii __ ~

3. ADD 3O(R2),20(R5) 066265
000030
OCOO20

Add

Operation:

BEFORE
ADDRESS SPACE

'020 I 066265 R2 1
1022 I 000030

'024 I 000020 R5 I

1130 I 000001

2020 I 00000'

1100 2000
+30 +_20

11"30 2020

The contents of a location which is determined by
adding 30 to the contents of R2 are added to the
contents of a location which is determined by ad·
ding 20 to the contents of R5. The result is stored
at the destination address, i.e. 20(R5)

AFTER
REGISTER ADDRESS SPACE REGISTER

00"00 '020 I 066265 R21 . 001100

1022 L 000030
002000

1024 I 000020 Rs! 002000

"30.1 00000'

2020 [000Q02

3·10

3.4 DEFERRED (INDIRECT) ADDRESSING
The four basic modes may also be used with deferred addressing. Whereas
in the register mode the operand is the contents of the selected register.
In the register deferred mode the contents of the selected register is the
address of the operand.

In the three other deferred modes, the contents of the register selects
the address of the operand rather than the operand itself. These modes
are therefore used when a table consists of addresses rather than oper­
ands_ Assembler syntax for indicating deferred addressing is "@"(or
"()" when this is not ambiguous). The following table summarizes the
deferred versions of the basic modes: .,

Mode Name Assembler
Syntax

Function

1 Register Deferred @Rn or (Rn)
Register contains the address
of the operand

I INSTRUCTION 1-----1 OPERAND. I

3 Autoincrement Deferred @(Rn) + Register is first used as a
pointer to a word containing
the address of the operand,
then incremented (always by
2; even for byte instructions).

5 Autodecrement Deferred @-(Rn) Register is decremented (al-
ways by two; even for byte in­
structions) and then used as
a pointer to a word containing
the address of the operand.

I INSTRUCTION 1----1 ADDRESS 1----1 -2 f-r-.I !OORESS 1----1 OPERAND I
t :....J .

7 Index Deferred @X(Rn) Value X (stored in a word fol­
lowing the instruction) and
(Rn) are added and the sum
is used as a pointer to a
word containing the address
of the operand. Neither X nor
(Rn) are modified.

:

INST. RUXCTION H ADDRESS ~
c: =~=J!----~~=:=~~~ . + -jr--AOO-RE-ss--.H -OP-E-RA-N-D

3·11

The following examples illustrate the deferred modes.

Register Deferred Mode Example

Symbolic

CLR @R5

Operation:

BEFORE
ADDRESS SPACE

11700
677 t------I . 000100

R51

Octal Code Instruction Name

005015 Clear

The contents of location specified in R5 are
cleared.

AFTER
REGISTER ADDRESS SPACE REGISTER

001700
16771 R5 I 001700

1700 000000

Autoincrement Deferred Mode Example (Mode 3)
Symbolic Octal Code Instruction Name

INC@(R2)+

Operation:

BEFORE

005232 Increment

The contents of R2 are used as the address of the
address of the operand.
Operand is increased by one. Contents of R,? is in-.
cremented by-2_ ~

AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

~ "21 010300

1010 000025 /

1012 ~-

------~~-----

1010~
1012 t====j

R2 Li~.==J

104"--:;-010 10300 Jr--__ OO_'_0'_0_.J

Autodecrement Deferred Mode Example (Mode 5)

Symbolic

COM @-(RO)

Operation:

BEFORE
ADDRESS SPACE

lQl00 012345 ·1 m102

10774
1

010100

I 10776

R01

Octal Code Complement

005150

The contents of RO are decremented by two and
then used as the address of the address of the op­
erand. Operand is one's complemented_ (i.e. logi­
cally complemented)

REGISTER

010776

3-12

AFTER
ADDRESS SPACE REGISTER

10100 I ~ 65432 I R0 1 0\0774

10102. _ ~
~~

lot:il 010100 I
10-776 L-___ --'

Index Deferred Mode Example (Mode 7)
Symbolic Octal Code Instruction Name

ADD @ 1000(R2),R1 067201 Add
001000

Operation:

BEFORE
ADDRESS SPACE

1000 and contents of R2 are summed to produce
the address of the address of the source operand
the contents of which are added to contents of R1;
the result is stored in R 1.

AFTER
REGISTER ADORES S SPACE REGISTER

1020

1022 1---:-::-:7:-::--1
Rl I 001234

R2 I 000100

1020

1022

Rl I 001236

R2 I OOOtOO
1024 1024

1---------1

1050
1

000002

"00 I 00t050

1050 I 000002 1

,,~o .001050 1000

~. +100 1100

3.5 USE OF THE PC AS A GENERAL REGISTER
Although Register 7 is a general purpose register, it doubles in function
as the Program Counter for the. LSI·l1. Whenever the processor uses the
program counter to acquire a word from memory, the program counter
is automatically incremented by two to contain the address of the next
word of the instruction being executed or the address of the next instruc·
tion to be exe.cuted. (When the program uses the PC to locate byte data,
the PC is still incremented by two.)

The PC responds to all the standard LSI·l1 addressing modes. However,
there are four of these modes with which the PC can provide advantages
for hand Ii ng position independent code and unstructured data. When
utilizing the PC these modes are termed immediate, absolute (or im·
Plediate deferred), relative and relative deferred, and are summarized
below:

Mode Name Assembler Function
Syntax

2 Immediate #n Operand follows instruction

3 Absolute @#A Absolute Address of operand
follows instruction

6 Relative A Relative Address (index value)
follows the instruction.

7 Relative Deferred @A Index value (stored in the
word following the instruction)
is the relative address for the
address of the operand.

3·13

The reader should remember that the special PC modes are the same as
modes described in 3.3 and 3.4, but the general register selected is R7,
the program counter.

When a standard program is available for different users, it often is help­
ful to be able to load it into different areas of memory and run it there.
LSI·ll's can accomplish the relocation of a program very efficiently
through the use of position independent code (PIC) which is written by
using the PC addressing modes. If an instruction and its operands are
moved in such a way that the relative dist<,!nce between them is not
altered, the same offset relative to the PC can be used in all positions
in memory. Thus. PIC usually references locations relative to the current
location.

The PC also greatly facilitates the handling of unstructured data. This is
particularly true of the immediate and relative modes.

3.5.1 Immediate Mode
OPR #n,DD

Immediate mode is equivalent to using the autoincrement mode with the PC. It
provides time improvements for accessing constant operands by including the
constant in the memory location immediately following the instruction word.

Immediate Mode Example
Symbolic

ADD #10,RO

Operation:

BEfORE
ADDRESS SPACE

1020 062700

'" R01 1022 000010
PC

102.4

Octal Code Instruction Name

062700 Add
000010

The value 10 is located in the second word of the
instruction and is added to the contents of RO.
Just before this instruction is fetched and exe­
cuted, the PC points to the first word of the in·
struction. The processor fetches the first word and
increments the PC by two. The source operand
mode is 27 (autoincrement the PC). Thus, the PC
is used as a pointer to fetch the operand (the sec·
ond word of the instruction) before being in·
cremented by two to point to the next instruction.

AFTER

REGISTER AOORES5 SPACE REGISTER

000020 1020 062700 I R01 000030

1022 000010 J _______ pc

1024 I

3·14

3.5.2 Absolute Addressing
OPR @#A

This mode is the equivalent of immediate deferred or autoincrement deferred us·
ing the PC. The contents of the location following the instruction are taken as the
address of the operand. Immediate data is interpreted as an absolute address
(Le., an address that remains constant no matter where in memory the as·
sembled instruction is executed).

Absolute Mode Examples
Symbolic

1. CLR@#lloo

Operation:

BEFORE

ADDRESS SPACE

20

22

1100 I 177777

1102

Octal Code Instruction Name

005037
001100

Clear

Clear the contents of location 1100.

AFTER

ADDRESS SPACE

20

PC 22

24

1100 I 000000

1102

2. ADD @#2ooo,R3 063703

Operation:

BEFORE

ADDRESS SPACE

20 r-""":==--j
22
t------i

24
f-::=~----l

002000

Add contents of location 2000 to R3.

AFTER

REGISTER ADDRESS SPACE REGISTER

000500 20 R3LI_~0~0~10~0~0 __ ~
221-_____ .., ____ PC

24 ¥
~----l

200011-__ ...:0~0.:..03:...:0..:.0_-i

3·15

3.5.3 Relative Addressing
OPR A .or OPR X (PC)

, where X is. the location of A relative to the instruction.

This mode is assembled as index mode using R7. The base of the address calcu·
lation, which is stored in the second or third word of the instruction, is not the ad·
dress of the operand, but the number which, when added to the (PC), becomes
the address of the operand. This mode is .useful for writing position independent

.. code (see Chapter 5) since the location referenced isa{ways fixed relative to the
PC. When instructions are to be relocated, the operand is moved by the same
amount. .

Relative Addressing Example
Symbolic Octal Code Instruction Name

INC A 005267 Increment
000054

Operation: To increment location A, contents of memory loca­
tion immediately following instruction word are ad;
ded to (PC) to produce address A. Contents of A .
are increased by one.

BEFORE AFTER
AomESS SPACE ADDRESS SPACE

1020 005267 1020 0005267

1022 000054 1022 000054

1024 PC 1024 _PC

1026 1-------1 1026

1100 I 000001

102.4

11~~

3.5.4 Relative Deferred Addressing
OPR@A or

OPR@X(PC), where x is location containing address of A, relative to the in-
struction.

This mode is similar to the relative mode, except that the second word ofthe in­
struction, when added to the PC, contains the address of t~e address of the oper­
and, rather than the address of the operand.

Relative Deferred Mode £xample .
Symbolic Octal Code Instruction Name

CLR@A

Operation:

005077
000020

Clear

Add second word of instruction to updated
PC to produce address of address of operand.
Clear operand.

3-16

BEFORE

ADDRESS SPACE

(PC=1020) 1020 r------i
1022 f--,-:c:..:..:~--I

(PC~1022)1024 r------I

lo~~r~t~ri
~...---------- 1044

10100 I 100001 I

AFTER

ADDRESS SPACE

1020 "-
1022 r-------j 'PC

1024 r-------j

I0441~-,-01c::O:.::.10c:.O_-I

10100 1 _-,-OO.:..:O..:.oOO-,-,-~

3.6 USE OF STACK POINTER AS GENERAL REGISTER
The processor stack pointer (SP, Register 6) is in most cases the general
register used for the stack operations related to program nesting. Auto­
decrement with Register 6 "pushes" data on to the stack and autoincre­
ment with Register 6 "pops" data off the stack_ Index mode with SP
permits random access of items on the stack. Since the SP is used by
the processor for interrupt handling, it has a special attribute: autoin·
crements and autodecrements are always done in steps of two. Byte
operations using the SP in this way leave odd addresses unmodified.

3.7 SUMMARY OF ADDRESSING MODES

3.7.1 General Register Addressing

R is a general register, 0 to 7
(R) is the contents of that register

Mode 0 Register OPR R R contains operand

I INSTRUCTION ~---1 OPERAND

Mode 1 Register deferred OPR (R) R contains address

I INSTRUCTION ~ ADDRESS ~ OPERAND

3-17

Mode 2 Auto-increment

R contains address, then increment (R)

Mode 3 Auto-increment aPR @(R)+
deferred

I INSTRUCTION f-------1
ADTS

S ~t~~A~D_DR_E_SS_
L ______ ~_~___

~ode4 Auto-decrement

Decrement (R), then R contains address

I INSTRUCTION ~~.--1 ADDRESS

OPR (RH

R contains address of address,
then increment (R) by 2

~-. --1 OPERAND I

aPR -(R)

-1 OPERAND

Mode 5 Auto-decrement
deferred

aPR @-(R) Decrement (R) by 2,
then R contains
address of address

I INSTRUCTION ~-1 ADDL~-=---1 __ -_2_2=r-1L-A-D-DR-E-SS---,f----1 OPERAND

Mode 6 Index OPR X(R) (R) + X is address

PC I INSTRUCTION f------i ADDRESS f---L '
L~1 OPERAND

PC+2 L.I __ --'~.~.~- __ . ____ ~ L __ --'

3-18

Mode 7 Index deferred OPR @X(R)

PC I INSTRUCT ION t" --- -1 ADDRESS

PC+2C~-

3.7.2 Program Counter Addressing

Register = 7

Mode 2 Immediate OPR #n

PC , INSTRUCTION I
PC+2L,~~

Mode 3 Absolute OPR @:trA

PC+2 [--A-~I -1 OP~RAND

Mode 6 Relative OPR A

PC+21,-__ --'f--
OPt RAND

P~-.-4 I NEX1 iNSTR I
-----------.-- --j

Mode 7 Relative deferred OPR @A

(R) -I- X is address of address

Operand n follows instruction

Address A follows instruction

PC -+- 4 + X is address
--v-'

updated PC

PC + 4 + X is address of address
'-y-'

updated PC

PC I iNSTRUCTION I

PC,2 I ~-
r-~~--, --~-?1 ADDRESS K_ OPlC""" I

PC+ 4 ! NEXT INSTR I :
L _____ . ________ J

3-19

3-20

CHAPTER 4

INSTRUCTION SET

4.1 INTRODUCTION

The specification for each instruction includes the mnemonic, octal code,
binary code, a diagram showing the format of the instruction, a symbolic
notation describing its execution and the effect on the condition codes,
a description, special comments, and examples.

MNEMONIC: This is indicated at the top corner of each page. When the
word instruction has a byte equivalent, the byte mnemonic is also shown.

INSTRUCTION FORMAT: A diagram accompanying each instruction
shows the octal op code, the binary op code, and bit assignments. (Note
that in byte instructions the most significant bit (bit 15) is always a 1.)

SYMBOLS:

() = contents of

5S or src = source address

DD or dst = destination address

loc = location

~ = becomes

t = "is popped from stack"

. 1- = "is pushed onto stack"

1\ = boolean AND

v = boolean OR

-¥-= exclusive OR

- = boolean not

Reg or R = register

B = Byte

• = {O for word

1 for byte

, = concatenated

4-1

4.2 INSTRUCTION FORMATS
The following formats include all instructions used in the LSI-H. Refer
to individual instructions for more detailed information.

1. Single Operand Group (CLR, CLRB, COM, COMB, INC, INCB, DEC,
DECB, NEG, NEGB, ADC, ADCB, SBC, SBCB,
TST, TSTB, ROR, RORB, ROL, ROLB, ASR,
ASRB, ASL, ASLB, JMP, SWAB, MFPS, MTPS,
SXT, XOR)

15 o
~D(SS): : I

2. Double Operand Group (BIT, BITB, BIC, BICB, BIS, BISB, ADD, SUB,
MOV, MOVB, CMP, CMPB)

IS 12 11 o
: OP~ODE : 55 D~ I

3. Program Control Group
a.· Branch (all branch instructions)

c: >P~OD<
o

b. Jump To Subroutine (JSR)

c. Subroutine Return (RTS)
IS o
o o : 0

d. Traps (break point, lOT, EMT, TRAP, BPT)
15 o

'---'-_'--_:'-.~==---J._O_P..J.~O_D_E ...L---'-_...L---'-_~--'-_.J........-'
e. Mark (MARK)

6 o
o 6 NN

f. Subtract I and branch (if = O)(SOB)

4-2

4. Operate Group (HALT, WAIT, RTI, RESET, RTT, NOP)

15

I OP CODE

5. Condition Code Operators (all condition code instructions)

o : 2 : 6 I : ! O~I I : I : I ~ I ~

6. Fixed and Floating Point Arithmetic (optional EIS/FIS) (FAOO, FSUB,
FMUL, FDIV, MUL, OIV, ASH,
ASHe)

IS 3 2 0
--~ ~-I·"--r----'-"--,

[
----,---------,--.-----.- OP CODE

! t I ! .-.L_-"--_'----"-_ -,----"-I _-'----'-_-'

Byte Instructions
The LSI-ll includes a full complement of instructions that manipulate
byte operands. Since all LSI-ll addressing is byte-oriented, byte mani­
pulation addressing is straightforward. Byte instructions with autoincre­
ment or autodecrement direct addressing cause the specified register to
be modified by one to point to the next byte of data. Byte operations in
register mode access the low-order byte of the specified register. These
provisions enable the LSI-ll to perform as either a word or byte proces­
sor. The numbering scheme for word and byte addresses in memory is:

HIGH BYTE
ADDRESS

002001

002003

BYTE

BYTE

1

3

BYTE 0

BYTE 2

--

--

'MJRD OR BYTE
ADDRESS

002000

002002

The most significant bit (Bit 15) of the instruction word is set to indicate
a byte instruction.

Example:

Symbolic Octal

CLR
CLRB

005000
105000

4·3

Clear Word
Clear Byte

4.3 LIST OF INSTRUCTIONS
The LSI·l1 instruction set is shown in the following sequence.

SINGLE OPERAND

Mnemonic Instruction Op Code Page

General
CLR(B) clear dst -05000 4-6
COM(B) complement dst -05100 4-7
INC(B) increment dst . -05200 4-8
DEC(B) decrement dst -05300 4-9
NEG(B) negate dst .<0 ••••••••••••••• ,,, -05400 4-10
TST(B) test dst -0570D 4-11

Shift & Rotate
ASR(B) arithmetic shift'right . -06200 4-13
ASL(B) arithmetic shift left -06300 4-14
ROR(B) rotate ri ght . -06000 4-15
ROL(B) rotate left . -06100 4-16
SWAB swap bytes 000300 4-17

Multiple Precision
ADC(B) add carry -05500 4-19
SBC(B) subtract carry -0560D 4-20
SXT sign extend 006700 4-21

PS WORD OPERATORS
MFPS move byte from PS 106700 4-22
MTPS move byte to PS . 1064SS 4-23

DOUBLE OPERAND

General
MOV(B) move source to destination .. -lSS00 4-25
CMP(B) compare src to dst ... -2SS00 4-26
AOO add src to dst . 06SS00 4-27
SUB subtract src from dst . 16SS00 4-28

logical
BIT(B) bit test .. -3SS00 4-30
BIC(B) bit clear -4SS0D 4-31

. BIS(B) bit set ", -5SS00 4-32
XOR exclusive or 072ROD 4-33

4·4

PROGRAM CONTROL

Mnemonic Instruction Op Code
or

Base Code Page
Branch

BR branch (unconditional) . 000400 4-35
BNE branch if not equal (to zero) 001000 4-36
BEQ bra nch if eq ua I (to zero) 001400 4-37
BPl branch if plus. 100000 4-38
BMI branch if minus 100400 4-39
BVe branch if overflow is clear .. 102000 4-40
BVS branch if overflow is set 102400 4-41
Bee branch if carry is clear. 103000 4-42
BeS branch if carry is set 103400 4-43

Signed Conditional Branch
BGE branch is greater than or equal

(to zero) 002000 4-45
BlT branch if less than (zero) . 002400 4-46
BGT branch if greater than (zero) 003000 4-47
BlE branch if less than or equal (to zero) . 003400 4-48

Unsigned Conditional Branch
BHI branch if higher 101000 4-50
BlOS branch if lower or same 101400 4-51
BH IS branch if higher or same. 103000 4-52
BlO branch if lower 103400 4-53

Jump & Subroutine
JMP jump 000100 4-54
JSR jump to subroutine 004RDD 4-56
RTS return from subroutine. 00020R 4-58
MARK mark 006400 4-59
SOB subtract one and branch (if # 0) . 077ROO 4-61

Trap & Interrupt
EMT emulator trap 104000-104377 4-63
TRAP trap 104400-104777 4-64
BPT breakpoint trap .. 000003 4-65
lOT input/ output trap 000004 4-66
RTI return from interrupt 000002 4-67
RTT return from interrupt 000006 4-68

MISCELLANEOUS
HALT halt 000000 4-71
WAIT wait for interrupt 000001 4-72
RESET reset external bus 000005 4-73

RESERVED INSTRUCTIONS
00021R 4-74
00022N 4-75

4-5

CONDITION CODE OPERATORS
ClC clear C
ClV clear V
ClZ clear Z
elN clear N
ecc clear all CC bits ..
SEC set C .
SEV set V .
SEZ set Z .
SEN set N .
SCC set all CC bits.
NOP no operation .

4.4 SINGLE OPERAND INSTRUCTIONS

CLR
CLRB

clear destination

o 0 o

15

Operation: (dst).O

Condition Codes: N: cleared
Z: set
V: cleared
C: cleared

000241 4-76
000242 4-76
000244 4-76
000250 4-76
000257 4-76
000261 4-76

. 000262 4-76
000264 4-76
000270 4-76
000277 4-76
000240 4-76

-05000

d d

6 5 o

Description: Word: Contents of specified destination are replaced with ze·
roes.

, Example:

Byte: Same

Before
(Rl) = 177.777

NZVC
1 1 1 1

4-6

CLR Rl

After
(Rl) =000000

NZVC
0100

complement dst

a a a 1 I d

15 6 5

Operation: (dst).-(dst)

d d d

COM
COMB

-051DD

d

a

Condition Codes: N: set if most significant bit of result is set; cleared otherwise
Z: set if result is 0; cleared otherwise
V: cleared
C: set

Description: Replaces the contents of the destination address by their log­
ical complement (each bit equal to a is set and each bit equal
to 1 is cleared)
Byte: Same

Example: COM RO

Before
(RO) = 013333

NZVC
01 10

4-7

After
(RO) = 164444

NZVC
1001

INC
INCB

increment dst -05200

IQ/1, 0 : 0 o o d d

15 6 5

Operation: (dst).(dst) + 1

Condition Codes: N: set ifresult is <0; cleared otherwise
Z: set if result .is 0; cleared otherwise

d

V: set if (dst) held 077777; cleared otherwise
C: not affected

Description: Word: Add one to contents of destination
Byte: Same·

Exar:nple: INC R2

Before
(R2) = 000333

After
(R2) = 000334

d

'NZVC
0000

NZVC
0000

4-8

o

DEC
DECB

decrement dst -053DD"

o o o 1 I d

15 6 5

Operation: (dst).(dst)-l

Condition Codes: N: set if result is <0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: set if (dst) was 100000; cleared otherwise
C: not affected

o

Description: Word: Subtract 1 from the contents of the destination
Byte: Same

Example: DEC R5

Before
(R5) = 000001

NZVC
1000

4-9

After
(R5) = 00000o

NZVC
0100

NEG
NEGB

negate dst -05400

10/1 I ° ° ° ° d

15 6 5

Operation: (dst). -(dst)

Condition Codes: N: set if the result is <0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: set if the result is 100000; cleared otherwise
C: cleared if the result is 0; set otherwise

d

°

Description: Word: Replaces the contents of the destination address by Its
two's complement. Note that 100000 is replaced by itself ·(in
twO's complement notation the most negative number has
no positive counterpart).
Byte: Same

Example: NEG RO

Before
(RO) =000010

NZVC
0000

4·10

After
(RO) = 177770

NZVC
1001

test dst

o 0 o 1 : 1

15 6 5

Operation: (dst)..{dst)

d d d
I

TST
TST8

-057DD

d

o

Condition Codes: N: set if the result is < 0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: cleared
C: cleared

Description: Word: Sets the condition codes Nand Z according to
the contents of the destination address, contents of
dst remains unmodified
Byte: Same

Example: TST R 1

Before
(Rl) = 012340

NZVC
0011

4·11

After
(Rl) = 012340

NZVC
0000

Shifts
Scaling data by factors of two is accomplished by the shift instructions:

ASR - Arithmetic shift right

ASL - Arithmetic shift left

The sign bit (bit 15) of the operand is reproduced in shifts to the right.
The low order bit is filled with 0 in shifts to the left. Bits shifted out of
the C bit, as shown in the following examples, are lost.

Rotates
The rotate instructions operate on the destination word and the C bit as
though they formed a 17-bit "circular buffer." These instructions facili­
tate sequential bit testing and detailed bit manipulation.

4-12

ASR
ASRB

arithmetic shift right

lOll, 0 0 0 o 0: 1 d d d d d

15

Operation:

Condition Codes:

Description:

6 5 o

(dst)~dst) shifted one place to the right

N: set if the high-order bit of the result is set (result < 0);
cleared otherwise
Z: set if the result = 0; cleared otherwise
V: loaded from the Exclusive OR of the N-bit and C-bit (as set
by the completion of the shift operation)
C: loaded from low-order bit of the destination

Word: Shifts all bits of the destination right one place_
Bit 15 is reproduced_ The C-bit is loaded from bit 0 of
the destination. ASR performs signed division of the
destination by two.
Word:

Byte:

4-13

ASL
ASLB

arithmetic shift left

1°/'1 ° ° ° ° , I d d d d d d I
15 6 5 °

Operation: (dst)4dst) shifted one place to the left

Condition Codes: N: set if high-order bit of the result is set (result < 0); cleared
otherwise
Z: set if the result = 0; cleared otherwise
V: loaded with the exclusive OR of the N-bit and C-bit (as set
by the completion of the shift operation)
C: loaded with the high-order bit of the destination

Description: Worg: Shifts all bits of the destination left one place. Bit 0 is
loaded with an O. The C-bit of the status word is loaded from
the most significant bit of the destination. ASL performs a
signed multiplication of the destination by 2 with overflow in­
dication.
Word:

Byte:

GJ -L,;I ,...L-,,-=,:-' -:-;:hI .".;,.' --L-...l..-Jf-o GJ -L,I :-l-~I ",J-I =b' ::L-,---,-~I- a
15 ODD ADDRESS 8 EVEN ADDRESS 0

4-14

rotate right

ROR
RORB

10/1 I 0 0 0 I 1 ! 1 ! 0 I 0 : 0 0 I d d I d

15 6 5 o

Operation: (dst) ~ (dst)
rotate right one place

Condition Codes: N: set if the high-order bit of the result is set (result < 0);
cleared otherwise
Z: set if all bits of result = 0; cleared otherwise
V: loaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion of the rotate operation)
C: loaded with the low-order bit of the destination

Description: Rotates all bits of the destination right one place, Bit 0 is
loaded into the C-bit and the previous contents of the C-bit
are loaded into bit 15 of the destination_
Byte: Same

Example:
Word:

Byte:

4-15

ROL
ROLB

rotate left

10/1 I a a

15

a , , 0 a I a
I I I I !

Operation: (dst) ~ (dst)
rotate left one place

6 5

d d
I

d

Condition Codes: N: set if the high-order bit of the result word is set
(result < 0): cleared otherwise

a

Z: set if all bits of the result word = 0; cleared otherwise
V: loaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion of the rotate operation)
C: loaded with the high-order bit of the destination

Description: Word: Rotate all bits of the destination left one place_ Bit 15
is loaded into the C-bit of the status word and the previous
contents of the C-bit are loaded into Bit 0 of the destination.
Byte: Same

Example:
Word:

Bytes:

4-16

SWAB

swap bytes 0003DD

o 0 o I 0

'5 6 o

Operation: Byte I/Byte 0 .Byte O/Byte 1

Condition Codes: N: set if high-order bit of low-order byte (bit 7) of result is set;
cleared otherwise

Z: set if low-order byte of result = 0; cleared otherwise
V: cleared
C: cleared

Description: Exchanges high-order byte and low-order byte of the destina­
tion word (destination must be a word address)_

Example: SWAB Rl

Before
(Rl) = 077777

NZVC
1 1 1 1

4-17

After
(Rl) = 177577

NZVC
0000

Multiple Precision
It is sometimes necessary to do arithmetic on operands considered as
multiple words or bytes. The LSI·l1 makes special provision for such
operations with the instructions ADC (Add Carry) and SSC (Subtract
Carry) and their byte equivalents.

For example two 16·bit words may be combined into a 32·bit double
precision word and added or subtracted as shown below:

32 BIT WORD
,---

OPERAND I AI I I A0

31 16 15

OPERAND " 91 90

31 16 15

RESULT

31 16 15

Example:

The addition of -1 and -1 could be performed as follows:

-1 = 37777777777

,

I
0

-.

I
0

0

(Rl) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777

ADD Rl.R2
ADC R3
ADD R4,R3

1. After (Rl) and (R2) are added, 1 is loaded into the C bit

2. ADC instruction adds C bit to (R3); (R3) = 0

3. (R3) and (R4) are added

4. Result is 37777777776 or -2

4·18

add carry

10/11 0 o o o

15

1 I d d

6 5

ADC
ADCB

-05500

d

o

Operation: (dst) ~ (dst) + (C bit)

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if (dst) was 077777 and (C) was 1; cleared otherwise
C: set if (dst) was 177777 and (C) was 1; cleared otherwise

Description: Adds the contents of the C-bit into the destination_ This per­
mits the carry from the addition of the low-order words to be
carried into the high-order result_
Byte: Same

Example: Double precision addition may be done with the following in­
struction sequence:
ADD AO,BO add low-order parts
ADC BI add carry into high-order
ADD AI,BI add high order parts

4-19 ..

SBC
SBCB

subtract carry

1011 I ° ° °
15

°

Operation: (dst).f(dst)-(C)

I : 1 d d

6 5

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result 0; cleared otherwise

-05600

d d

o

V: set if (dst) was 100000; cleared otherwise
C: set if (dst) was 0 and C was 1; cleared otherwise

Description: Word: Subtracts the contents of the C-bit from the destina­
tion. This permits the carry from the subtraction of two low·
order words to be subtracted from the high order part of the
result.
Byte: Same

Example: Double precision subtraction is done by:

SUB AO,BO
SBC Bl
SUB Al,BI

4·20

sign extend

I 0 I 0 o

15

Operation:

Condition Codes:

Description:

Example:

SXT

006700

o o • 1
I

6 5

(dst) ~ 0 if N bit is clear
(dst) ~-1 N bit is set

N: unaffected
Z: set if N bit clear
V: cleared
C: unaffected

d d I d d

o

If the condition code bit N is set then a -1 is placed in the
destination operand: if N bit is clear, then a 0 is placed in the
destination operand. This instruction is particularly useful in
multiple precision arithmetic because it permits the sign to
be extended through multiple words.

Before
(A)=012345

NZVC
1000

4-21

SXT A

After
(A) = 177777

NZVC
1000

MFPS.

Move byte From . Processor Status word

11 0 0 0 o 1 11

Operation: (dst) +- PSW
dst lower 8 bits

Condition Code

d

Bits: N = set if PSW bit 7 = 1; cleared otherwise
Z = set if PS <0:7> = 0; cleared otherwise
V= cleared
C = not affected

1067DD

Description: The 8 bit contents Clf the PS are moved to the effec­
tive destination. If destination is mode 0, PS bit 7 is
sign extended through upper byte of the register. The
destination operand address is treated as· a byte ad­
dress.

Example: MFPS RO

before

RO [0]
PS [000014]

4-22

after

RO [000014]
PS [000000]

MTPS
Move byte To Processor Status word 1064SS

~ 0 0 0 . I

Operation: PSW ~ (SRC)

Condition Codes: Set accoring to effective SRC operand bits 0-3

Description: The 8 bits of the effective operand replaces the cur­
rent contents of the PSW_ The source operand address
is treated as a byte address_
Note that the T bit (PSW bit 4) cannot be set with this
instruction_ The SRC operand remains unchanged.
This instruction can be used to change the priority bit
(PSW bit 7) in the PSW

4-23

4.5 DOUBLE OPERAND INSTRUCTIONS
Double operand instructions provide an instruction (and time) saving facility
since they eliminate the need for "Ioad"and "save" sequences such as those­
used in accumulator·oriented machines.

4·24

MOV
MOVB

move source to destination

10/1 1 0 o d d d
I

d

15 12 11 6 5 o

Operation: (dst).(src)

Condition Codes: N: set if (src) <0; cleared otherwise
Z: set if (src) = 0; cleared otherwise
V: cleared
C: not affected

Description: Word: Moves the source operand to the destination location.
The previous contents of the destination are lost. The con·
tents of the source address are not affected.
Byte: Same as MOV. The MOVB to a register (unique among
byte instructions) extends the most significant bit of the low
order byte (sign extension). Otherwise MOVB operates on
bytes exactly as MOV operates on words.

Example: MOV XXX,R1 ; loads Register 1 with the con·
tents of memory location; XXX represents a programmer·de·
fined mnemonic used to represent a memory location

MOV # 20,RO ; loads the number 20 into
Register 0; "# "indicates that the value 20 is the operand'

MOV @ # 20,-(R6) ; pushes the operand con·
tained in location 20 onto the stack

MOV (R6) + ,@ # 177566 ; pops the operand off a stack
and moves it into memory location 177566 (terminal print
buffer)

MOV R1,R3
register transfer

; performs an inter

MOVB @#177562, @#177566 ; moves a char·
acter from terminal keyboard buffer to terminal printer
buffer.

4·25

CMP
CMPB

compare src to dst

10/1! 0 s : s • I d d d d d dl
15 12 tt 6 5 o

Operation: (src)-(dst)

Condition Codes: N: set if result <0: cleared otherwise
Z: set if reSult = 0: cleared otherwise
V: set if there was arithmetic overflow: that is, operands were
of opposite signs and the sign of the destination was the
same as the sig'n of the result: cleared otherwise
C: cleared if there was a carry from the most significant bit of
the result:':set otherwise

Description: Compares the source and destination operands and sets the
condition codes, which may then be used for arithmetic and
logical conditi'onal branches. Both operands are unaffected.
The only action is to set the condition codes. The compare is
customarily followed by a conditional branch instruction.
Note that unlike the subtract instruction the order of oper·
ation is (src)-(dst), not (dst)-(src).

4·26

ADD

add src to dst 06SSDD

d I d d! d 'I
15 12 11 6 5 o

Operation: (dst) ~ (src) + (dst)

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow as a result of
the operation; that is both operands were of the same
sign and the result was of the opposite sign; cleared
otherwise
C: set if there was a carry from the most significant bit
of the result; cleared otherwise

Description: Adds the source operand to the destination operand
and stores the result at the destination address. The
original contents of the destination are lost. The con·
tents of the .source are not affected. Two's comple·
ment addition is performed.

Examples:

Note: There is no equivalent byte Mode.

Add to register:

Add to memory:

ADD # 20,RO

ADD Rl,XXX

Add register to register: ADD Rl,R2

Add memory to memory: ADD@ # 17750,XXX

XXX is a programmer·defined mnemonic for a memory
location.

4·27

SUB

subtract src from dst 16SSDD

d

15 12 11 6 5 a

Operation: (dst) ~ (dst) - (src)

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow as a result of the oper·
ation, that is if operands were of opposite signs and the sign
of the source was the same as the sign of the result; cleared
otherwise
C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Description: Subtracts the source operand from the destination operand
and leaves the result at the destination address. The orignial
contents of the destination are lost. The contents of the
source are not affected. In double·precision arithmetic the C·
bit, when set, indicates a "borrow".

Example:

Before
(R1) =011111
(R2) = 012345

NZVC
1 1 1 1

4-28

SUB R1,R2

After
(R1) =011111
(R2) = 001234

NZVC
0000

logical
These instructions have the same format as the double operand arithmetic group"
They permit operations on data at the bit level.

4·29

BIT
BITB

bit test

15 12 11

Operation: (src) 1\ (dst)

d d d

6 5 o

Condition Codes: N: set if high-order bit of result set; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: not affected

Description: Performs logical "and"comparison of the source and desti­
nation operands and modifies condi_tion codes accordingly_
Neither the source nor destination operands are affected_
The BIT instruction may be used to test whether any of the
corresponding bits that are set in the destination are also set
In the source or whether all corresponding bits set in the des­
tination are clear in the source_

Example: BIT #30.R3 test bits 3 and 4 of R3 to see

if both are off

R3=0 000 000 000 011 000

Before
NZVC
1111

4-30

After
NZVC
0001

bit clear

o

15 12 11 6 '5

d d d

BIC
BICB

o

Operation: (dst).-(src) 1\ (dst)

Condition Codes: N: set if high order bit of result set; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: not affected

Description: Clears each bit in the destination that corresponds to a set
bit in the source. The original contents of the destination are
lost. The contents of the source are unaffected.

Example: SIC R3.R4

Before After
(R3) = 001234 (R3) = 001234

(R4) =001111 (R4) =000101

NZVC NZVC
1111 0001

Before: (R3)=0 000 001 010 all 100
(R4)=O 000 001 001 001 001

After: (R4)=0 000 000 001 000 001

4-31

BIS
BISB

bit set

15

o

12 11

Operation: (dst).(src) v (dst)

-SSSDD

d d d d
I

6 5

Condition Codes: N: set if high-order bit of result set. cleared otherwise
Z: set if result = 0: cleared otherwise
V: cleared
C: not affected

Description: Performs "Inclusive OR"operation between the source and
destination operands and leaves the result at the destination
address; that .is. correspondi ng bits set in the source are set
in the destination. The contents of the destination are lost.

Example: BIS RO.Rl

Before
(RO) = 001234
(R1) = 001111

Before:

After:

NZVC
0000

After
(RO) = 001234
(Rl) =001335

NZVC
0000

(RO)=O 000 001 010 all 100
(R1)=0 000 001 001 001 001

(R1)=0 000 001 all all 101

4-32

XOR

exclusive OR 074RDD

r I d d d I d d

15 9 8 6 5 o

Operation: (dst).R¥-(dst)

Condition Codes: N: set If the result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: unaffected

Description: The exclusive OR of the register and destination operand is
stored in the destination address. Contents of register are
unaffected. Assembler format is: XOR R.D

Example: XOR RO,R2

Before
(RO) = 001234
(R2) = 001111

NZVC

1111

Before:

After:

After
(RO) =001234
(R2) = 000325

NZVC

0001

(RO)=O 000 001 010 all 100
(R2)=0 000 001 001 001 001

(R2)=0 000 000 all 010 101

4-33

4.6 PROGRAM CONTROL INSTRUCTIONS
Branches
These instructions cause a branch to a location defined by the sum of
the offset (multiplied by 2) and the current contents of the Program
Counter if:

a) the branch instruction is unconditional

b) it is conditional and the conditions are met after testing the con­
dition codes (NZVC)

The offset is the number of words from the current contents of the PC
forward or backward. Note that the current contents of the PC point to
the word following the branch instruction.

Although the offset expresses a byte address the PC is expressed in
words. The offset is automatically multiplied by two and sign extended to
express words before it is added to the PC. Bit 7 is the sign of the offset.
If it is set, the offset is negative and the branch is done in the backward
direction. Similarly if it is not set, the offset is positive and the branch is
done in the forward direction.

The a-bit offset allows branching in the backward direction by 200., words
(400 bytes) from the current PC, and in the forward direction by 177s
words (376 bytes) from the current PC.

The PDP-ll assembler handles address arithmetic for the user and com­
putes and assembles the proper offset field for branch instructions in the
form:

Bxx loc

Where "8xx" is the branch instruction and "Ioc" is the address to which
the branch is to be made. The assembler gives an error indication in the
instruction if the permissable branch range is exceeded. Branch instruc­
tions have no effect on condition codes. Conditional branch instructions
where the branch condition is not met, are treated as NO OP's.

4-34

BR

branch (unconditional) 000400 Plus offset

1000000011 OFFSET

15 8 7 o

Operation: PC ~ PC + (2 x offset)

Condition Codes: Unaffected

Description: Provides a way of transferring program control within
a range of -12810to +12~owords with a one word in·
struction.

New PC address = updated PC + (2 X offset)

Updated PC = address of branch instruction + 2

Example: With the Branch instruction at location 500, the following off·
sets apply.

New PC Address
474
476
50Q
502
504
506

Offset Code
375
376
377
000
001
002

4·35

Offset (decimal)

-3
-2
-1

o
+1
+2

BNE

branch if not equal (to zero) 001000 Plus offset

10 0 0 0 0 0 o OFFSET
!

15 8 7 o

Operation: PC • PC + (2 x offset) if Z o

Condition Codes: Unaffected

Description: Tests the state of the Z-bit and causes a branch if the Z-bit is
clear_ BNE is the complementary operation to BEQ_ It is used
to test inequality following a CMP. to test that some bits set
in the destination were also in the source. following a BIT.
and generally. to test that the result of the previous oper­
ation was not zero_

Example: CMP A.B
BNE C

will branch to C if A t- B

and the sequence

ADD A.B
BNE C

; compare A and B
; branch if they are not equal

; add A to B
; Branch if the result is not

equal to 0

will branch to C if A + 8 t= 0

4-36

BEQ

branch if equal (to zero) 001400 Plus offset

I 0 000 0 0 OFFSET

15 8 7 o

Operation: PC .. PC + (2 x offset) if Z

Condition Codes: Unaffected

Description: Tests the state of the Z·bit and causes a branch if Z is set. As
an example, it is used to test equality following a CMP oper·
ation, to test that no bits set in the destination were also set
in the source following a BIT operation, and generally, to test
that the result of the previous operation was zero.

Example: CMP A,B
BEQ C

will branch to C if A = B
and the sequence

ADD A,B
BEQ C

; compare A and B
; branch if they are equal

(A - B = 0)

; add A to B
; branch if the result = 0

will branch to C if A + B O.

4-37

BPL

branch if plus 100000 Plus offset

I 1 I 0

15

Operation:

o 0 0 0
I

o I 0

8 7

OFFSET

PC ~ PC + (2 x offset) if N = 0

o

Condition Codes: Unaffected

Description: Tests the state of the N-bit and causes a branch if N
is clear, (positive result). BPL is the complementary
operation of BMI.

•

4-38

branch if minus

15

o 0 0 0 0 0
I

B 7

8MI

100400 Plus offset

OFFSET

o

Operation: PC .. PC + (2 x offset) if N = 1

Condition Codes: Unaffected

Description: Tests the state of the N-bit and causes a branch if N
is set_ It is used to test the sign (most significant bit)
of the result of the previous operation), branching if
negative_ BMI is the Complementary Function of BPl-

4-39

Bve

branch if overflow is clear 102000 Plus offset

o o I 0 o I 0 ! OFFSET

15 B 7 o

Operation: PC ~ PC + (2 x offset) if V = 0

Condition Codes: Unaffected

Description: Tests the state of the V bit and causes a branch if the
V bit is clear. BVC is complementary operation to BVS.

4-40

BVS

branch if overflow is set 102400 Plus offset

l' 0 0 0 0 OFFSET

15 B 7 o

Operation: PC ~ PC + (2 x offset) if V = 1

Condition Codes: Unaffected

Description: Tests the state of V bit (overflow) and causes a branch
if the V bit is set. BVS is used to detect arithmetic
overflow in the previous operation.

4·41

Bee

branch if carry is clear 103000 Plus offset

o o o 10 OFFSET
I

15 8 7 o

Operation: PC <- PC + (2 x offset) if C = 0

Condition Codes: Unaffected

Description: Tests the state of the C·bit and causes a branch if C
is clear. BCC is the complementary operation to BCS.

4-42

BCS

branch if carry is set 103400 Plus offset

OFFSET

15 B 7 o

Operation: PC <- PC + (2 x offset) if C = 1

Condition Codes: Unaffected

Description: Tests the state of the C-bit and causes a branch if C
is set. It is used to test for a carry in the result of a
previous operation.

4-43

Signed Conditional Branches
Particular combinations of the condition code bits are tested with the signed con·
ditional branches. These instructions are used to test the results of instructions in
which the operands were considered as signed (two's complement) values.

Note that the sense of signed comparisons differs from that of unsigned com·
parisons in that in signed 16·bit, two's complement arithmetic the sequence of
values is as follows:

largest

positive

negative

smallest

077777
077776

000001
00000o
177777
177776

100001
100000

whereas in unsigned 16·bit arithmetic the sequence is considered to be

highest

lowest

177777

000002
000001
00000o

4-44

BGE

branch if greater than or equal
(to zero)

002000 Plus offset

o I 0 o o o OFFSET

15 8 7 o

Operation: PC • PC + (2 x offset) if N If V o
Condition Codes: Unaffected

Description: Causes a branch if N and V are either both clear or both set.
BGE is the complementary operation to BLT. Thus BGE will
always cause a branch when it follows an operation that
caused addition of two positive numbers. BGE will also cause
a bra nch on a zero result.

4·45

Bll

branch if less than (zero) 002400 Plus offset

o 1 I OFFSET
!

15 8 7 0-

Operation: PC ~ PC + (2 x offset) if N If V

Condition Codes: Unaffected

Description: Causes a branch if the "Exclusive Or"ol the N and V bits are
1. Thus BL T will always branch following an operation that
added two negative numbers, even i.f overflow occurred.
In particular, BL T will always cause a branch if it follows a
CMP instruction operating on a negative source and a posi­
tive destination (even if overflow occurred). Further, BL Twill
never cause a branch when it follows a CMP instruction oper­
ating on a positive source and negative destination. BLT will
not cause a branch if the result of the previous operation was
zero (without overflow).

4·46

BGT

branch if greater than (zero) 003000 Plus offset

I a I 0 0 0 0 OFFSET

15 8 7 o

Operation: PC .. PC + (2 x offset) if Z v(N If V) = 0

Condition Codes: Unaffected

Description: Operation of BGT is similar to BGE, except BGT will not cause
a branch on a zero result.

4-47

BLE

branch if less than or equal (to zero) 003400 Plus offset

I 0 I 0 0 0 0 OFFSET

15 B 7 o

Operation: PC .. PC + (2 x offset) if Z v(N or V) = 1

Condition Codes: Unaffected

Description: Operation is similar to Bl T but in addition will cause a
branch if the result of the previous operation was zero.

4·48

Unsigned Conditional Branches
The Unsigned Conditional Branches provide a means for testing the result of
comparison operations in which the operands are considered as unsigned values.

4·49

BHI

branch if higher 101000 Plus offset

1 I 0 o o o o OFFSET

15 8 7 o

Operation: PC .. PC + (2 x offset) if C = 0 and Z = 0

Condition Codes: Unaffected

Description: Causes a branch if the previous operation caused neither a
carry nor a zero result. This will happen in comparison (CMP)
operations as long as the source has a higher unsigned value
than the destination.

4·50

BLOS

branch if lower or same 101400 Plus offset

OFFSET ,
15 B 7 o

Operation: PC • PC + (2 x offset) if C v Z

Condition Codes: Unaffected

Description: Causes a branch if the previous operation caused either a
carry or a zero result. BlOS is the complementary operati.on
to BHI. The branch will occur in comparison operations as
long as the source is equal to, or has a lower unsigned value
than the destination.

4-51

BHIS

branch if higher or same 103000 Plus offset

I I a a a a OFFSET

15 8 7 a

Operation: PC ~ PC + (2 x offset) if C o

Condition Codes: Unaffected

Description: BHIS is the same instruction as BCC. This mnemonic is in·
cluded only for convenience.

4·52

BLO

branch if lower 103400 Plus offset

000 0 OFFSET

15 8 7 o

Operation: PC .. PC + (2 x offset) if C = 1

Condition Codes: Unaffected

Description: BLO is same instruction as BCS. This mnemonic is included
only for convenience.

4-53

JMP

jump 000100

d

15 6 5 o

Operation: PC (-- (dst)

Condition Codes: unaffected

Description:

Example:

First:

List:

JMP provides more flexible program branching than
provided with the branch instructions. Control may be
transferred to any location in memory (no range limita·
tion) and can be accomplished with the full flexibility
of the addressing modes, with the exception of regis·
ter mode O. Execution of a jump with mode 0 will
cause an "illegal instruction" condition, and will cause
the CPU to trap to vector address 4. (Program con·
trol cannot be transferred to a register.) Register de·
ferred mode is legal and will cause program control to
be transferred to the address held in the specified
register. Note that instructions are word data and must
therefore be fetched from an even·numbered address.

Deferred index mode JMP instructions permit transfer
of control to the address contained in a selectable
element of a table of dispatch vectors.

JMP

JMP

FIRST

JMP

FIRST

@LlST

@(SPH

; Tra nsfers to Fi rst

; Transfers to location pointed to at
LIST

; pointer to FIRST

; Transfer to location pointed to by
the top of the stack, and remove
the pointer from the stack

4·54

Subroutine Instructions
The subroutine call in the PDP-l1 provides for automatic nesting of sub­
routines, reentrancy, and multiple entry pOints. Subroutines may call
other subroutines (or indeed themselves) to any level of nesting without
making special provision for storage of return addresses at each level of
subroutine call. The subroutine calling mechanism does not modify any
fixed location in memory, thus providing ·for reentrancy. This allows one
copy of a subroutine to be shared among several interrupting processes.

4-55

JSR

jump to subroutine 004RDD

15

Operation:

Description:

d d d I
9 8 6 5 o

t(SP}.reg (push reg contents onto processor st3ck)

reg. PC (PC holds location following JSR; this address
now put in reg)

PC.(dst) (PC now points to subroutine destination)

In execution of the JSR the old contents of the specified reg­
ister (the "LINKAGE POINTER") are automatically pushed
onto the processor stack and new linkage information placed
in the register. Thus subroutines. nested within subroutines
to any depth may all be called with the same linkage register.
There is no need either to plan the maximum depth at which
any particular subroutine will be called or to include instruc­
tions in each routine to save and restore the linkage pointer.
Further. since all linkages are saved in a reentrant manner
on the processor stack execution of a subroutine may be in­
terrupted. the same subroutine reentered and executed by an
interrupt service routine. Execution of the initial subroutine
can then be resumed when other requests are satisfied. This
process (called nesting) can proceed to any level.

A subroutine called with a JSR reg.dst instruction can access
the arguments following the call with either autoincrement
addressing. (reg) +. (if arguments are accessed sequentially)
or by indexed addressing. X(reg). (if accessed in random or­
der). These addressing modes may also be deferred.
@(reg) + and @X(reg) if the parameters are operand ad·
dresses rather than the operands themselves.

4-56

Example:

Before:

After:

Before:

After:

JSR PC, dst is a special case of the PDP-ll subroutine call
suitable for subroutine calls that transmit parameters
through the general registers. The SP and the PC are the only
registers that may be modified by this call.

Another special case of the JSR instruction is JSR pc,
@(SP)+ which exchanges the top element of the processor
stack and the contents of the program counter. Use of this
instruction allows two routines to swap program control and
resume operation when recalled where they left off. Such rou­
tines are called "co-routines."

Return from a subroutine is done by the RTS instruction. RTS
reg loads the contents of reg into the PC and pops the top
element of the processor stack into the specified register.

JSR R5, SBR

(PC) R7 PC Stack

(SP) R6 n DATA 0

R5 #1

R7 SBR

R6 ~_n_-_2 __ ~I~~_D_AT_A __ O~
--....... #1

R5

JSR PC, SBR

Stack
(PC) R7

(SP) R6

R7

PC §j
,--_n __ --' ----4~~ DATA 0

SBR

R6 n-2 DATA 0
PC+ 2

4·57

RTS

return from subroutine 00020R

I 0 I 0 0 0 I 0 0 0 I 0 : 1 0 I 0" 0 0 I r ,3
15

Operation:

Description:

Example:

Before:

After:

PC ~ (reg)
(reg) <- (SP) t

3 2 o

Loads contents of reg into PC and pops the top element of
the processor stack into the specified register,
Return from a non-reentrant subroutine is typically made
through the same register that was used in its call. Thus, a
subroutine called with a JSRPC. dst·exits with a RTS PC and
CiJ'subroutine called with a JSR R5. dst. lTIay pick up para-,
meters with address.ing modes (R5) +. X(RS). or @X(RS)
and finally exits. with an RTS R5

RTS R5

(PC) R7 SBR Stack

(SP) R6 n ~~ __ ~I~~_D_AT_A __ O~
#1

R5 PC

R7 PC

R6 n+2 DATA 0

R5 #1

4-58

MARK

mark 0064NN

I 0 0 0 0 o o 0 n I n

'5 B 7 6 5 o

Operation: SP. updated PC + 2 + 2n n = number of parameters
PC.R5
R5.(SP) •

Condition Codes: unaffected

Description: Used as part of the standard PDP 11 subroutine return con­
vention. MARK facilitates the stack clean up procedures in­
volved in subroutine exit. Assembler format is: MARK N

Example: MOV R5,-(SP) ;place old R5 on stack
MOV Pl,-(SP) ;place N parameters
MOV P2,-(SP) ;on the stack to be

;used there by the
:subroutine

MOV PN,-(SP)
MOV # MARKN,-(SP) ;places the instruction

;MARK N on the stack
MOV SP ,R5 ;set up address at Mark N in·

struction
JSR PC,SUB ;Jump to subroutine

At this point the stack is as follows:

OLD R5

P'

PN

MARK N I
OLD pc

4·59

And the program is at the address SUB which is the
beginning of the subroutine.
SUB: ;execution of the subroutine

itself

RTS R5 ;the return begins: this

causes the contents of R5 to be placed in the PC which
then results in the execution of the instruction MARK
N. The contents of old PC are placed in R5

MARK N causes: (1) the stack painter to be adjusted
to point to the old R5 value; (2) the value now in R5
(the old PC) to be placed in the PC; and (3) contents
of the old R5 to be popped into R5 thus completing
the return frorn subroutine.

4·60

SOB

subtract one and branch (if -.:f. 0) 077ROO

o
15 9 8 6 5

OFFSET
I

o

Operation: (R) <'-- (R) - 1; if this result -I 0 then PC <-- PC -(2 x
offset) if (R) = 0; PC <'-- PC

Condition Codes: unaffected

Description: The register is decremented. If it is not equal to 0, twice the
offset is subtracted from the PC (now pOinting to the follow·
ing word). The offset is interpreted as a sixbit positive num·
ber. This instruction provides a fast, efficient method of loop
control. Assembler syntax is:

SOB R,A

Where A is the address to which transfer is to be made if the
decremented R is not equal to O. Note that the SOB instruc·
tion can not be used to transfer control in the forward direc­
tion.

4-61

Traps
Trap instructions provide for calls to emulators, I/O monitors, debugging
packages, and user-defined interpreters_ A trap is effectively an interrupt
generated by software. When a trap occurs the contents of the current
Program Counter (PC) and processor Status Word (PS) are pushed onto
the processor stack and replaced by the contents of a two-word trap vec­
tor containing a new PC and new PS. The return sequence from a trap
involves executing an RTI or RTT instruction which restores the old PC
and old PS by popping them from the stack. Trap instruction vectors are
located at permanently assigned fixed addresses_

4-62

emulator trap

I 1 0 0 0 o 0 I 0 r
15

Operation: • (SP).PS
• (SP).PC

PC.(30)
PS.(32)

8 7

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

EMT

104000 -1 04377

o

Description: All operation codes from 104000 to 104377 are EMT
instructions and may be used to transmit information
to the emulating routine (e.g., function to be per­
formed). The trap vector for EMT is at address 30. The
new PC is taken from the word at address 30; the new
processor status (PS) is taken from the word at ad­
dress 32.

Before:

After:

Caution: EMT is used frequently by DEC system soft­
ware and is therefore not recommended for general
use.

PS PS 1 Stack

PC PC 1

~
DATA 1

SP n

PS (32)

PC (30) DATA 1

PS 1

SP n-4 • PC 1

4-63

TRAP

trap

1 I 0 o o I 1 o
15

Operation: .. (SP).PS
t (SP).PC

PC.(34)
PS.(36)

o
8 7

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

104400-104777

o

Description: Operation codes from 104400 to 104777 are TRAP instruc·
tions. TRAPs and EMTs are identical in operation. except
that the trap vector for TRAP is at address 34.

Note: Since DEC software makes frequent use of EMT. the
TRAP instruction is recommended for general use.

4·64

BPT

breakpoint trap 000003

1000000010:000000 1]
15 0

Operation: t (SP).PS
t(SP).PC
PC. (14)
ps. (16)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 14.
Used to call debugging aids. The user is cautioned against
employing code 000003 in programs run under these de·
bugging aids.

'(no information is transmitted in the low byte.)

4·65

lOT

input! output trap 000004

o 0 I
15 0

Operation: t (SP).PS
t(SP).PC

PC.(20)
P5.(22)

Condition Codes: N:loaded from trap vector
Z:loaded from trap vector
V:loaded from trap vector
C:loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 20.

(no information is transmitted in the low byte)

4-66

RTI

return from interrupt 000002

15

Operation:

Condition Codes:

Des.cription:

PG.tCSP\.
PS ... (SP).
N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

o

Used to exit from an interrupt or THAP service routine.
The PC and PS are restored (popped) from the pro·
cessor stack. If a trace trap is pending, the first in·
struction after Rn will not be executed prior to the
next T tr,~ps.

4·67

RTT

return from interrupt 000006

15 0

Operation: ~(SP) ...
PS.(SP) ...

Condition Codes: N: loaded from processor stack
Z: loaded· from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: Operation is the same as RTI except that it inhibits a
trace trap while 8T1 permits trace trap. If new PS has
T bit set, trap will occur after execution of first in­
struction after RTT.

4-68

Reserved Instruction Traps-These are caused by attempts to execute
instruction codes reserved for future processor expansion (reserved in­
structions) or instructions with illegal addressing modes (illegal instruc­
tions). Order codes not corresponding to any of the instructions de­
scribed are considered to be reserved instructions. JMP and JSR with
register mode destinations are illegal instructions, and trap to vector
address 4. Reserved instructions trap to vector address 10.

Bus Error Traps-Bus Error Traps are time-out errors; attempts to refer­
ence addresses on the bus that have made no response within a certain
length of time. In general, these are caused by attempts to reference
non·existent memory, and attempts to reference non-existent peripheral
devices. Bus error traps cause processor traps through the trap vector
address 4.

Trace Trap-Trace Trap is enabled by bit 4 of the PSW and causes pro­
cessortraps at the end of instruction execution. The instruction that is
executed after the instruction that set the T-bit will proceed to comple­
tion and then trap through the trap vector at address 14. Note that the
trace trap is a system debugging aid and is transparent to the general
programmer.

The following are special cases of the T-bit and are detailed in subse­
quent paragraphs.

1. The traced instruction cleared the T-bit.

2. The traced instruction set the T-bit.

3. The traced instruction caused an instruction trap.

4. The traced instruction caused a bus error trap.

5. The processor was interrupted between the time the T-bit was set and
the fetching of the instruction that was to be traced.

6. The traced instruction was a WAIT.

7. The traced instruction was a HALT.

8. The traced instruction was a Return from Interrupt.

NOTE
The traced instruction is the instruction after the
one that set the T-bit.

An instruction that cleared the T bit-Upon fetching the traced Instruc­
tion, an internal flag, the trace flag, was set. The trap will still occur at
the end of execution of this instruction. The status word on the stack,
however, will have a clear T-bit.

An instruction that set the T-bit-Since the T-bit was already set, setting
it again tlas no effect. The trap will occur.

4-69

An instruction that caused an Instruction Trap-The instruction trap is
performed and the entire routine for the service trap is executed. If the
service routine exists with an RTI or in any other way restores the
stacked status word, the T·bit is set again, the instruction following the
traced instruction is executed and, unless it is one of the special cases
noted previously, a trace trap occurs.

An instruction that caused a Bus Error Trap-This is treated as an In·
struction Trap. The only difference is that the error service is not as
likely to exit with an RTI, so that the trace trap may not occur.

Note that interrupts may be acknowledged immediately after the loading
of the new PC and PS at the trap vector location. To lock out all inter·
rupts, the PSW at the trap vector should set Bit 7.

A WAIT-T bit trap is not honored during a wait.

A HALT-The processor halts. The PC points to the next instruction to
be executed. The trap will occur immediately following execution resump·
tion.

A Return from Intertupt-The return from interrupt instruction either
clears or sets the T·bit. If the T·bit was set and RTT is the traced in·
struction, the trap is delayed until completion of the next instruction.

Power Failure Trap-Occurs when AC power fail signal is received while
processor is in run mode. Trap vector for power failure is location 24
and 26. Trap will occur if an RTI instruction is executed in power fail
service routine.

Trap Priorities-In case of internal and external multiple processor trap
conditions, occurring simultaneously, the following order of priorities is
observed (from high to low):

Bus Error Trap
Memory Refresh
Instruction Traps
Trace Trap
Halt Line .
Power Fail Trap
Event Line Interrupt
Device (Bus) Interrupt Request

If a bus error is caused by the trap process handling instruction traps,
trace traps, or a previous bus error, the processor is halted. This is called
a double bus error.

4·70

4.7 MISCELLANEOUS

HALT

halt 000000

I 0 I 0
0 0 0 0 0 o : 0 0 0 0 0 0 0 o I

15 0

Condition Codes: not affected

Description: Causes the processor to leave RUN mode. The PC
points to the next instruction to be executed. The
processor goes into the HALT mode. The console mode
of operation is enabled.

4·71

WAIT

wait for interrupt 000001

o o 0 o o o 0 o I 0 o
15 o

Condition Codes: not affected

Description:

!

Provides a way for the processor to relinquish use of
the bus while it waits for an external interrupt request.
Having been given a WAIT command, the processor
will not compete for bus use by fetching instructions
or operands from memory. This permits higher trans·
fer rates between a device and memory, since no proc·
essor·induced latencies will be encountered by inter­
rupt requests from devices. In WAIT, as in all instruc­
tions, the PC points to the next instruction following
the WAIT instruction. Thus when an interrupt causes
the PC and PS to be pushed onto the processor stack,
the address of the next instruction following the WAIT
is saved. The exit from the interrupt routine (i.e. ex­
ecution of an RTI instruction) will cause resumption of
the interrupted process at the instruction following the
WAIT.

4-72

RESET

reset external bus 000005

o 1 I
15 o

Condition Codes: not affected

Description: Sends INIT on the BUS for 10 !,sec. All devices on the
BUS are reset to their state at power·up. The proc·
essor remains in an idle state for 90 !,sec following is­
suance of INIT.

4-73

.". ;.

(NO ASSIGNED MNEMONIC) 00021R

15 12 II 6 o
00000000 :

Operation: (R) ~ gets contents of 5 internal 16 bit registers R ~
R + 12 at end of inst.

Condition Codes: Unaffected

Description:

Memory
Location

(R)

(R)+2

(R)+4

(R)+6

(R)+10

Contents of register R (low order 3 bits of inst.) is
used as a pointer. The contents of the internal hidden
temporary registers are consecutively written into
memory and the contents or R are incremented by 2
until the five 16 bit registers have been written.
(R) ~ (R) + 12,. Primarily used as a main·
tenance aid in diagnostic routines. The interpretation
of the five words in memory is as follows:

Microlevel
Register
Symbol Function

RBA

RSRC

RDST

RPSW

RIR

Bus address Register. It contains the last
non·instruction fetch< bus address for desti·
nation modes, 3, 5, 6 and 7.

Source Operand Register. It contains the last
source operand of a double operand instruc·
tion. The high byte may not be correct if it
was source mode O.

Destination operand register. It contains the
last destination operand fetched by the pro·
cessor.

PSW and Scratch Register. The top 4 bits
are PSW bits 4 thru 7. The remaining bit in·
terpretation is a function of the last instruc­
tion and may not be that useful for all cases.

Instruction Register. It contains the present,
not past, instruction being executed, and will
always be 36R where R is the register in the
format. The 360 is a result of firmware in­
struction decoding and is caused by 150
being added to the opcode (21R+150=36R).

4-74

(NO ASSIGNED MNEMONIC) 00022N

Operation:

o
o CYl

Causes Micro Instruction Control Transfer to Micro­
location 3000

Condition Codes: Unaffected

Description: This instruction can be used to transfer Microcontrol
to Microcode address 3000 in the Microprocessor. If
Microaddress 3000 does not exist this opcode will
cause a reserved instruction trap through memory lo­
cation 10.

This is a reserved DEC instruction.

4-75

Condition Code Operators
ClN SEN
ClZ SEZ
ClV SEV
ClC SEC
CCC SCC

condition code operators 0OO2XX

I ~ 000000 1 0:'
. I I I I .. o I 1 left I N I z I v I c I

4 2 0

Description: Set and clear condition code bits. Selectable combinatiohs of
these bits may be cleared or set together. Condition code bits
corresponding to bits in the condition code operator (Bits O·
3) are modified according to the sense of bit 4, the set/clear
bit of the operator. i.e. set the bit specified by bit 0, 1, 2 or 3,
if bit 4 is a 1. Clear corresponding bits if bit 4 = O.

Mnemonic
Operation

ClC ClearC

ClV Clear V

ell Clear l·

ClN Clear N

SEC SetC

SEV Set V

SEZ Setl

SEN Set N

SCC Set all CC's

CCC Clear all CC's

Clear V and C

NOP No Operation

OP Code

000241

000242

000244

000250

000261

000262

000264

000270

000277

000257

000243
000240

Combinations of the above set or clear operations may be ORed together to form
combined instructions.

4·76

CHAPTER 5

PROGRAMMING TECHNIQUES

In order to produce programs which fully utilize the power and flexibility
of the LSI-H, the reader should become familiar with the various pro­
gramming techniques which are part of the basic design philosophy of
the LSI-ll_ Although it is possible to program the LSI-ll along tradi­
tional lines such as "accumulator orientation" this approach does not
fully exploit the architecture and instruction set of the LSI-ll_

5.1 THE STACK
A "stack," as used on the LSI-ll, is an area of memory set aside by the
programmer for temporary storage or subroutine/interrupt service link­
age_ The instructions which facilitate "stack" handling are useful fea­
tures not normally found in low-cost computers. They allow a program
to dynamically establish, modify, or delete a stack and items on it. The
stack uses the "last-in, first-out" concept, that is, various items may be
added to a stack in sequential order and retrieved or deleted from the
stack in reverse order. On the LSI-ll, a stack starts at the highest loca­
tion reserved for it and expands linearly downward to the lowest address
as items are added to the stack.

LOW ADDRESSES

HIGH ADDRESSES

Figure 5·1: Stack Addresses

The programmer does not need to keep track of the actual locations his
data is being stacked into. This is done automatically through a "stack
pointer." To keep track of the last item added to the stack (or "where
we are" in the stack) a General Register always contains the memory
address where the last item is stored in the stack. In the LSI-ll any
register except Register 7 (the Program Counter-PC) may be used as a
"stack pOinter" under program control; however, instructions associated
with subroutine linkage and interrupt service automatically use Register
6 (R6) as a hardware "Stack Pointer." For this reason R6 is frequently
referred to as the system "SP."

5-1

Stacks in the LSI-ll may be maintained in either full word or byte units.
This is true for a stack pointed to by any register except R6, which must
be organized in full word units only.

007100

007076

007074
007072

007070
007066

007064

WORD STACK

ITEM#1

ITEM #2

ITEM#3

ITEM#4

r---

BYTE STACK

007100 ITEM#I
00 70 77 1-----cIT=EccM-#~2---I
007076 ITEM#3

---SP

o 0 70 7 5 r---::I T;;E::-M:-#-;;-C-4 ---I __ RO - R5

007072

007075

Figure 5-2: Word and Byte Stacks

Items are added to a stack using the autodecrement addressing mode with the
appropriate pointer register. (See Chapter 3 for description of the autoincre.
mentldecrement modes).

This operation is accomplished as follows;

MOV Source,-(SP) ;MOV Source Word onto the stack

or

MOVS Source,-(R) ;MOVB Source Byte onto a stack

This is called a "push" because data is "pushed onto the stack."

5-2

To remove an item from a stack the autoincrement addressing mode with
the appropriate R is employed. This is accomplished in the following
manner:

MOV (SP), + ,Destination ;MOV Destination Word off the stack

or

MOVB (R) + ,Destination ;MOVB Destination Byte off the stack

Removing an item from a stack is called a "pop" for "popping from the stack."
After an item has been "popped," its stack location is considered free and avai·
lable for other use. The stack pointer points to the last·used location implying
that the next (lower) location is free. Thus a stack may represent a pool of share·
able temporary storage locations.

HIGHMEMORY~ ~ -sp

}
• E0 -sp

STACK
AREA

LOW MEMORY
, AN EMPTY STACK 2.PUSHINGA DATUM

AREA ONTO THE STACK

~0
El

j E2 -SP

4. ANOTHER PUSH

00"
E0

E1 sp

7 POP

~p
~~P
5. POP

~
.~sP

:3 PUSHING ANOTHER
DATUM ON'TO THE
STACI<:$

I~"
6 PuSH

Figure 5·3: Illustration of Push and Pop Operations

5-3

As an example of stack usage consider this situation: a subroutine (SUBR) wants
to use registers 1 and 2, but these registers must be returned to the calling pro·
gram with their contents unchanged. The subroutine could be written as follows:

Address

076322
076324
076326
076330

076410
076412
076414
076416
076420
076422
076424

*Index Constants

Octal Code

010167
000074
010267
000072

016701
000006
016702
000004
000207
000000
000000

SUBR

Assembler Syntax

MOV Rl,TEMP1 ;save Rl

MOV R2,TEMP2 ;save R2

MOV TEMPI, Rl ;Restore Rl

MOV TEMP2, R2 ;Restore R2

RTS PC
TEMPI: 0
TEMP2: 0

Figure 5·4: Register Saving Without the Stack

OR: Using a Stack

Address

010020
010022

010130
010132
010134

Octal Code

010143 SUBR:
010243

012301
012302
000207

Assembler Syntax

MOV RI, -(R3) ;push Rl
MOV R2, -(R3) ;push R2

MOV (R3) + , R2 ;pop R2
MOV(B3)+,Rl ;pop Rl
RTS PC

Note: In this case R3 was used as a Stack Pointer

Figure 5-5: Register Saving using the Stack

The second routine uses four less words of instruction code and two words of
temporary "stack" storage. Another routine could use the same stack space at
some later point. Thus, the ability to share temporary storage in the form of a
stack is a very economical way to save on memory usage.

5-4

As a further example of stack usage, consider the task of managing an
input buffer from a terminal. As characters come in, the terminal user
may wish to delete characters from his line; this is accomplished very
easily by maintaining a byte stack containing the input characters. When·
ever a backspace is received a character is "popped" off the stack and
eliminated from consideration. In this example, a programmer has the
choice of "popping" characters to be eliminated by using either the
MOVS, (MOVE BYTE) or INC (INCREMENT) instructions.

0010 1 1

001010

001007

001006-

001005

001004

')01003

001002

001001

c c

u u

S INC R3 S

T T

0 0

M M

E E

R R 001002

Z 00100\

Figure 5·6: Byte Stack used as a Character Buffer

NOTE that in this case using the increment instruction (INC) is prefer·
able to MOVB since it would accomplish the task of eliminating the un·
wanted character. from the stack by readjusting the stack pointer without
the need for a destination location. Also, the stack pointer (SP) used in
this example cannot be the system stack pointer (R6) because R6 may
only point to word (even) locations.

5.2 SUBROUTINE LINKAGE
5.2.1 Subroutine Calls
Subroutines provide a facility for maintaining a single copy of a given
routine which can be used in a repetitive manner by other programs
located anywhere else in memory. In order to provide this facility, gen·
eralized linkage methods must be established for the purpose of control
transfer and information exchange between subroutines and calling pro·
grams. The LSI·l1 instruction set contains several useful instructions
for this purpose.

LSI-ll subroutines are called by using the JSR instruction which has the
following format.

a general register (R) for linkage I

JSR R,SUBR
an entry location (SUBR) for the subroutine--'

5-5

When a JSR is executed, the contents of the linkage register are saved
on the system R6 stack as if a MOV reg.-(SP) had been performed.
Then the same register is loaded with the memory address following the
JSR instruction (the contents of the current PC) and a jump is made to
the entry location specified by the DST operand.

BEFORE

(R5)· 000132
(R6)=OOl776

(pel-(R7) - 001000

002000 !---------l

Address Assembler Syntax Octal Code

001000 JSRR5 SUBR 004567
001002 Index constant fur SUBR OCXJ060

001064 SUBR MOV A.B Olnnmm

Figure 5·7: JSR using R5

AFTER

(R5;: 001004
(R6)=OOl? r4

(PC)=(R7}=OD 106 4

,.-___, 002000 1--______ ---1
001776 - SP ,--_00_'_71_6_...J1 001776 f......------.4
001774 001774 000132 SP 001714

001772 0017721--___ --l

Figure 5·8: JSR

Note that the instruction JSR R6,SUBR is not normally considered to be a mean·
ingful combination.

5.2.2 Argument Transmission
The memory location pointed to by the linkage register of the JSR instruction may
contain arguments or addressses of arguments. These arguments may be ac·
cessed from the subroutine in several ways. Using Register 5 as the linkage regis'
ter, the first argument could be obtained by using the addressing modes in·
dicated by (R5), (R5) + ,X(R5) for actual data, or @(R5) +, etc. for the address of
data. If the autoincrement mode is used, the linkage register is automatically up·
dated to point to the next argument.

Figures 5-9 and 5·10 illustrate two possible methods of argument transmission.

Address Instructions and Data

010400
010402
010404
010406

020306 SUBR:
020310

JSR R5,SUBR
Index constant for SUBR
arg # 1
arg #2

MOV (R5) + ,Rl
MOV (R5) + ,R2

SUBROUTINE CALL

ARGUMENTS

;get arg # 1

;get arg # 2 Retrieve Arguments
from SUB

Figure 5·9; Argument Transmission -Register Autoincrement Mode

5-6

Address Instructions and Data

010400 JSR R5,SUBR
010402 index constant for SUBR SUBROUTINE CALL
010404 077722 Address of Arg # 1
010406 077724 Address of Arg. # 2
910410 077726 Address of Arg. # 3

077722 Arg # 1
077724 arg #2 arguments
077726 arg # 3

020306 SUBR: MOV @(R5) + ,Rl ;get arg # 1
020301 MOV @(R5) + ,R2 ;get arg # 2

Figure 5·10: Argument Transmission-Register. Autoincrement Deferred Mode

Another method of transmitting arguments is to transmit only the ad­
dress of the first item by placing this address in a general purpose
register. It is not necessary to have the actual argument list in the same
general area as the s·ubroutine call. Thus a subroutine can be called to
work on data located anywhere in memory. In fact, in many cases, the
operations performed by the subroutine can be applied directly to the
dati! located on or pointed to by a pointer without the need to ever
actually move this data into the subroutine area.

Calling Program: MOV
JSR

SUBROUTINE ADD

POINTER, Rl
PC,SUBR

(RlJ + ,(Rl) ;Add item # 1 to item # 2, place
result in item # 2, R1 points

etc.
or

to item # 2 now

ADD (Rl),2(R1) ;Same effect as above except that

R1 still points to item # 1
etc.

ITEM # 1 -AI LI ____ -'

ITEM #- 2

Figure 5-11: Transmitting Stacks as Arguments

5-7

Because the LSI·ll hardware already uses general purpose register R6
to point to a stack for saving and restoring PC and PS (processor status
word) information, it is quite convenient to use this same stack to save
and restore intermediate results and to transmit arguments to and from
subroutines. Using R6 in this manner permits extreme flexibility in nest·
ing subroutines and interrupt service routines.

Since arguments may be obtained from the stack by using some form of
register indexed addressing, it is sometimes useful to save a temporary
copy of R6 in some other register which has already been saved at the
beginning of a subroutine. in the previous example R5 may be used to
index the arguments while R6 is free to be incremented and decremented
in the course of being used as a stack painter. If R6 had been used
directly as the base for indexing and not "copied," it might be difficult
to keep track of the position in the argument list since the base of the
stack would change with every autoincrement/decrement which occurs.

erg #1 ceO .. ,
erg ~2 org '* 2

SP---. ar<4 #3 oro '* 3

oro #- 2 is at source
-2 ($P)

but when another item
TO is pushed

TO

oro .. 2 is at source

- 4(SP)

Figure 5-12: Shifting Indexed Base

However, if the contents of R6 (SP) are saved in R5 before any arguments are
pushed onto the stack, the position relative to R5 would remain constant.

1-_"-=-0-:",-:' --1- R5
sp- org *2

org *' 1

~ org 4F 2

---R5

SP- ar\) #3

or9#2 IS 012 (R5) aflj #215 stili 01 2(R51

Figure 5·13: Constant Index Base Using "R6 Copy"

5·8

5.2.3 Subroutine Return
In order to provide for a return from a subroutine to the calling program
an RTS instruction is executed by the subroutine. This instruction should
specify the same register as the JSR used in the subroutine call. When
executed, it causes the register, specified, to be moved to the PC and
the top of the stack to be then placed in the register specified. Note that
if an RTS PC is executed, it has the effect of returning to the address
specified by the contents of the top of the stack.

Note that the JSR and the JMP instructions differ in that a linkage reg­
ister is always used with a JSR; there is no linkage register with a JMP
and no way to return to the calling program.

When a subroutine finishes, it is necessary to "clean-up" the stack by
eliminating or skipping over the subroutine arguments. One way this can
be done is by making the subroutine keep the number of arguments as
its first stack item. Returns from subroutines would then involve calcu­
lating the amount by which to reset the stack pointer. Resetting the
stack pointer then restores the original contents of the register which
was used as the copy of the stack pointer. The LSI-ll however, has a
specific instruction (MARK instruction) used to perform the clean-up
task. The MARK instruction which is stored on a stack in place of "num­
ber of argument" information may be used to automatically perform
these "clean-up" chores.

5.2.4 LSI·ll Set Subroutine Advantages
There are several advantages to the LSI-ll Set subroutine calling pro­
cedure.

a. arguments can be quickly passed between the calling program and
the subroutine.

b. if the user has no arguments or the arguments are in a general reg­
ister or on the stack, the JSR PC, DST mode can be used so that
none of the general purpose registers are taken up for linkage.

c. many JSRs can be executed without the need to provide any saving
procedure for the linkage information since all linkage information is
automatically pushed onto the stack in sequential order. Returns can
simply be made by automatically popping thiS information from the
stack in the opposite order of the JSRs.

Such linkage address bookkeeping is called automatic "nesting" of sub­
routine calls. This feature enables the programmer to construct fast.
efficient linkages in a simple, flexible manner. It even permits a routine
to call itself in those cases where this is meaningful. It also allows sub­
routines to be interrupted by external devices without losing the proper
return linkage registers.

5.2.5 Trap Subroutine Calls
The TRAP instruction may be used to call subroutines. The TRAP instruc­
tion is typically used with a package of many different subroutines such
as the software floating-point math package. The subroutines in the
package are assigned a unique number which is to be included in the
TRAP instruc;tion. When a subroutine is called, a "TRAP n" instruction
is executed, where "n" is the number (o:=~ n ~ 255) which deSignates

5-9

-the subroutine to be invoked. Arguments are typically passed on the
stack, in the registers, or they may follow the TRAP instruction. The
advantages of using the TRAP instruction are that a program using a
TRAP subroutine package may be assembled and linked independent of
the TRAP package and the subroutine call only requires one word, as
opposed to tw6 words which are normally required using the JSR in­
struction. The disadvantage of using the TRAP instruction is the extfa
overhead incurred in the software decoding of the TRAP instruction.

Calling
Program:

Trap
handler:

Mav ARG, -(SP)

TRAP 3

TRAPH: MaV RO, -(SP)

Mav 4(SP), RO

MaVB -2(RO), RO

BIC #177400, RO

ASL RO
JSR PC,@TRPTBL(RO)
MaV (SPH. RO
RTT

TRPTBL: SUBO
SUB1
SUB2
SUB3

5.3 INTERRUPTS
5.3.1 General Principles

; Push -argument onto the
stack
Invoke subroutine # 3

; Save register

; Copy address of the
TRAP instruction +2

; Copy subroutine number
in TRAP instruction

; Clear possible sign
extension bits

; Convert to word offset
; Call subroutine
; Restore register
; Return to user

; Table of pointer to
subroutines

Interrupts are in many respects very similar to subroutine calls. However,
they are forced, rather than controlled, transfers of program execution
occurring because of some external and program-independent event
(such as a stroke on the teleprinter keyboard). Like subroutines, inter­
rupts have linkage information such that a return to the interrupted

.. program can be made. More information is actually necessary for an
interrupt than a subroutine because of the random nature of interrupts.
The complete machine state of the program immediately prior to the
occurrence of the interrupt must be preserved in order to return to the
program without any noticeable effects. (i.e. was the previous operation
z;ero or negative, etc.) This information is stored in the Processor Status
Word (PS). Upon interrupt, the contents of the Program Counter (PC)
(address of next instruction) and the PS are automatically pushed onto
the R6 system stack. The effect is the same as if:

MFPS, -(SP)
MOV R7,-(SP)

had been executed.

; Push PS
; Push PC

5-10

The new contents of the PC and PS are loaded from two preassigned con­
secutive memory locations which are called an "interrupt vector_" The
actual locations are chosen by the device interface designer and are
located in low memory addresses. The first word contains the interrupt
service routine address (the address of the new program sequence) and
the second word contains the new PS which will determine the machine
status including the operational mode and register set to be used by the
interrupt service routine.

After the interrupt service routine has been completed, an RTI (return
from interrupt) is performed. The two top words of the stack are auto­
matically "popped" and placed in the PC and PS respectively, thus re­
suming the interrupted program_

5.3.2 Nesting
Interrupts can be nested in much the same manner that subroutines are
nested. In fact, it is possible to nest any arbitrary mixture of subroutines
and interrupts without any confusion. By using the RTI and RTS instruc­
tions, respectively, the proper returns are automatic.

1. Process 0 is running:
SP is pointing to loca­
tion PO.

2. Interrupt stops process 0
with PC = PCO. and
status = PS 0 :starts process 1.

3. Process 1 uses stack for

temporary storage (TEO, TEl).

4. Process 1 interrupted with PC = PCl
and status = PSI: process 2 is started

5-11

PO§ pso

,p~ peo

PO t--p::s-=-o--1

peo

TEO

PO
PSQ

PC 0

TEO

TE 1 P51
sp_ PC 1

5. Process 2 is running and does a
JSR R7,A to Subroutine A with
PC = PC 2.

6. Subroutine A is running
and uses stack for
temporary storage.

7. Subroutine A releases the temporary

storage holdi ng TAl and TA2.

8. Subroutine A returns control to process
2 with an RTS R7,PC is reset to PC2.

5-12

PO

SP~

PO

SP~

PO

SP_

PO

SP -.-

PSO

pco

TE 0

TE 1

PS I

PC I

PC2

PSO

PCO

TEO

TEl

PS 1

PC,

PC2

TA'

TA2

pso

pro

TEO

TEl

PS'

pel

p~:: 2

pso

peo

TtO

TEl

PSI

PC'

9. Process 2 completes with an RTI instruction
(dismisses interrupt) PC is reset
to pe(l) and status is reset to PSI;
process 1 resumes.

10. ProCl~'is 1 releases the temporary

storage holding TEO and TEL

11.Process 1 completes its operation
with an RTI PC is restored to PCO
and status is reset to PSO.

PO
f------i

PSO peo
TEO

sp-.- HI

po§ pso
sp~ peo

Figure 5-14: Nested Interrupt Service Routines and Subroutines

Note that the area of interrupt service programming is intimately involved with
the concept of CPU and device priority levels.

5.4 PROGRAMMING PERIPHERALS
Programming of LSI-ll modules (devices) is simple_ A special class of
instructions to deal with input/output operations is unnecessary. The
bus structure permits a unified addressing structure in which control,
status, and data registers for devices are directly addressed as memory
locations. Therefore, all operations on these registers, such as transfer­
ring information into or out of them or manipulating data within them,
are performed by normal memory reference instructions.

The use of all memory reference instructions on device registers greatly
increases the flexibility of input/output programming. For example, infor­
mation in a device register can be compared directly with a value and a
branch made on the result:

CMP RSUF,
SEQ SERVICE

#101

In this case, the program looks for 101 in the DLVII Receiver Data
Buffer Register (RBUF) and branches if it finds it There is no need to
transfer the information into an intermediate register for comparison.

When the character is of interest, a memory reference instruction can
transfer the character into a user buffer in memory or to another peri­
pheral device. The instruction:

MOV DRINBUF LOC

5-13

transfers a character from the DRVII Data Input Buffer (DRINBUF) into a
user·defined location.

All arithmetic operations can be performed on a peripheral device reg·
ister. For example, the instruction ADD # 10, DROUT BUF will add 10
to the DRVIl's Output Buffer.

All read/write device registers can be treated as accumulators. There is
no need to funnel all data transfers, arithmetic operations, and com·
parisons through a single or small number of accumulator registers.

5.5 DEVICE REGISTERS
All devices are specified by a set of registers which are addressed as
memory and manipulated as flexibly as an accumulator. There are two
types of registers associated with each device: (1) control and status
registers; (2) data registers. The following examples are general, for
specific device register information refer to the applicable manual.

Control and Status Registers-Each device can have one or more con­
trol and status registers that contain the'information necessary to com·
municate with that device. The general form, shown below does not
necessarily apply to every device, but is presented as a guide.

BIT

15

7

6

o

15 14 13 it]1 10 1 0 ,---------'---- --- ----I
~~.L.._.._._ __ ..l ____ j ___________I. ___ -L-..._...L_....L_...--..-L __ ~_L....._.L...._.__L __ ~

~~~;R~~ ~iL ...:.:.=-=_ ::-.::.~:=.::.::_=::=.::_=---.J _1 'I 
ENA8LE _____ _ __ . _____________ ~ ___ ....J 

NAME 

Error 

Done or Ready 

Interrupt Enable 

Enable 

DESCRIPTION 

Set when an error occurs, 

Set when the device in either ready to 
accept new information, or has com­
pleted an operation and has data 
available. 

When set, an interrupt will be reo 
quested when a done or error con· 
dition occurs. 

Set to allow the peripheral device to 
perform a function. 

Many devices require less than sixteen status bits. Other devices will 
require more than sixteen bits and therefore will require additional status 
'and control registers. 

Data Buffer Registers-Each device has at least one buffer register for 
temporarily storing data to be transferred into or out of the processor. 
The number and type of data registers is a function of the device. The 
DLVll for example uses single 8·bit data buffer registers. The DRVll 
uses 16·bit data registers and some devices may use more than 1 reg· 
ister for data buffers. 

5·14 



Interrupt Structure-'-If the appropriate interrupt enable bit is set, in the 
control and status register of a device, transition from 0 to 1 of the 
READY or ERROR bit, where applicable, should cause an interrupt re­
quest to be issued to the processor. Also if READY or ERROR is a 1 
when the interrupt enable is turned on, an interrupt request is made. 
If the device makes the request and the processor's priority is zero, 
and no higher priority devices are requesting an interrupt, the request 
is granted, and the interrupt sequence takes place. 

a. the current program counter (PC) and processor status (PS) are 
pushed onto the processor stack; 

b. the new PC and PS are loaded from a pair of locations (the interrupt 
vector) in addressed memory, unique to the interrupting device. 

Since each device has a unique interrupt vector which dispatches con­
trol to the appropriate interrupt handling routine immediately, no device 
polling is required. The Return from Interrupt Instruction (RTI) is used 
to reverse the action of the interrupt sequence. The top two words on 
the stack are popped into the PC and PS, returning control to the inter­
rupted sequence. 

Programming Example-A DLVll interrupt routine to service a low-speed 
paper tape reader, could appear as follows (assume the DLVll's inter­
rupt vector is 60 s and PRSER is the service routine for the device): 

First the user must initialize the Stack Pointer (R6) and device 
vector locations. Then the user must initialize the service 
routine by specifying an address pointer and a word count: 

INIT: MOV # BUFADR, RO 
MOV # COUNT, COUNTR 
MOV # 101, RCSR 

; set add ress poi nter into 
register 

; set counter 
; enable DLVII 

interrupt enable & 
reader run enable, 
Program continues until 
interrupt occurs 

When the interrupt occurs and is acknowledged, the processor stores 
the current PC and PS on the stack. Next it goes to the interrupt vector 
and picks up the new PC and PS location 60, 62. When the program 
was loaded, the address of PRSER would be put in location 60 and 200, 
in 72 (to set the processor's priority to 4 and inhibit new interrupts)_ 
The next instruction executed is the first instruction of the device ser­
vice routine at PRSER. 

PRSER: 

DONE: 

MOVB RBUF, (RO) + 

DEC COUNTR 
BEQ DONE 
INC RCSR 

RTI 

5-15 

; move character from 
DLVll's receiver data 
buffer register to buffer and 
increment pointer 

; decrement character count 
; branch when COUNTR equals 0 
; set reader enable for next 
; character input 

; return to interrupted program 



5-16 ' 



CHAPTER 6 

EXTENDED ARITHMETIC OPTION 

6.1 GENERAL 
This chapter describes the Extended Arithmetic Chip, which is an option 
on the KDll-F, KDll-J Microcomputer Module_ The KEVll option allows 
extended manipulation of fixed point numbers (fixed point arithmetic) 
and enables direct operations on single precision 32-bit words (floating 
point arithmetic)_ 

6.2 FIXED POINT ARITHMETIC (EIS) 
The following instructions apply to fixed point numbers: 

Mnemonic 

MUL 
DIV 
ASH 
ASCH 

Instruction 

multiply 
divide 
shift arithmetically 
arithmetic shift combined 

Operand formats are: 

15 14 

Op Code 

070RSS 
071RSS 
072RSS 
073RSS 

16-bit single word: LI_s .LI ___ -'--__ ___LIN_UM_~_ER _ ___L ____ _'__ __ ___' 

32-bit double word: 

S is the sign bit. 

15 14 
I 

HI?H NUMBER PA1T 

LOW N0MBER PART 
I I 

S = 0 for positive quantities 
S = 1 for negative quantities; number is in 2's 

complement notation 

6-1 



MUL 
multiply 070RSS 

I 0 0 0 o I r : r r I 5 5 I 
15 9 8 6 5 0 

Operation: R, Rv1. R x(src) 

Condition Codes: N: set if product IS <0; cleared otherwise 
Z: set if product is 0; cleared otherwise 
V: cleared 
C: set if the result is less than-2 15 or greater than or equal to 
210-1. 

Description: The contents of the destination register and source taken as 
two's complement integers are multiplied and stored in the 
destination register and the succeeding register (if R is even). 
If R is odd only the low order product is stored. Assembler 
syntax is : MUL S,R. 
(Note that the actual destination IS R, Rv1 which reduces to 
just R when R is odd.) 

Example: 16·bit product (R is odd) 

CLC 
MOV #400,R1 
MUL # 1O,R1 
BCS ERROR 

Before 

(R1) =000400 

;Clear carry condition code 

;Carry will be set if 
;product is less than 
;-215 or greater than or equal to 2"-' 
; no significance lost 

After 

(R1) =004000 

Assembler format for all EIS instructions is: 
OPR src, R 

6-2 



DIV 

divide 071RSS 

I a I I I 10 a 
15 9 8 6 5 a 

Operation: R Rvl ~ R. Rv 1 I(src) 

Condition Codes: N set If quotient" 0; cleared otherwise 
Z: set if quotient = 0; cleared otherwise 
V set If source = 0 or if the absolute value of the register is 
larger than the absolute value of the source. (In this case the 
Instruction is aborted because the quotient would exceed 15 
bits) 
C: set if divide 0 attempted; cleared otherwise 

Description: The 32·bit two's complement integer in Rand Rvlls divided 
by the source operand. The quotient is left in R; the remain. 
der in Rvl. Division will be performed so that the remainder 
IS of the same sign as the dividend. R must be even 

Example: CLR RO 
MOV # 2oo01,R1 
DIV #2,RO 

Before 
(RO) = 000000 
(Rl) =020001 

After 
(RO) = 010000 
(Rl) = 000001 

6-3 

Quotient 
Remainder 



ASH 

shift arithmetically 072RSS 

1 0 o 
15 9 8 6 5 o 

Operation: R. R Shifted arithmetically NN places to right or left 
Where NN = low order 6 bits of source 

Condition Codes: N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 

Description: 

6 lSB of source 
011111 
000001 
111111 
100000 

Example: 

V: set if sign of register changed during shift; cleared other­
wise 
C: loaded from last bit shifted out of register 

The contents of the register are shifted right or left the num­
ber of times specified by the shift count. The shift count is 
taken as the low order 6 bits of the source operand_ This 
number ranges from -32 to + 31_ Negative is a a right shift 
and positive is a left shift_ 

Action in general register 
Shift left 31 places 
shift left 1 place 
shift right 1 place 
shift right 32 places 

Before 
(RO) = 001234 
(R3) = 000003 

6-4 

ASH RO, R3 

After 
(RO) = 012340 
(R3) = 000003 



ASHe 
arithmetic shift combined 073RSS 

1 0 I \ \ I 0 1 \ S 5 I 
I ! 

\5 9 8 6 5 o 

Operation: R, Rvl~R, Rvl The double word is shifted NN places to the 
right or left, where NN = low order six bits of source 

Condition Codes: N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if sign bit changes during the shift; cleared otherwise 
C: loaded with high order bit when left Shift; loaded with low 
order bit when right shift (loaded with the last bit shifted out 
of the 32-bit operand) 

Description: The contents of the register and the register ORed with one 
are treated as one 32 bit word, R + 1 (bits 0 15) and R (bits 
16-31) are shifted right or left the number of times specified 
by the shift count. The shift count is taken as the low order 6 
bits of the source operand_ This number ranges from -32 to 
+ 31. Negative is a right shift and positive is a ,left shift 

When the register chosen is an odd number the register 
and the register OR'ed with one are the same. In this case the 
right shift becomes a rotate (for up to a shift of 16). The 16 
bit word is rotated right the number of bits specified by the 
shift count. 

[-~t ~-----'--~==-'-------'------'--.-~--'-~-'-.-"----'-----".----,-'-, ---''---'--'--' ,-,_--'-,-J;-.,1 

R+I I I 1'-- 1-0 
15 OR 0 

R GJ -I'---'--'---.L-L--"--'----'-I_--'--'--L" ---,---I -,----,-, --'1L--"---'---,,--'----<-r'J 
, _________ , ____________ ------.I 
, 

R+l 

6·5 



6.3 FLOATING POINT ARITHMETIC (FIS) 
The Floating Point instruction~ used are unique to the LSI-ll and PDP-
11/35 & 40. However, the OP Codes used do not-.conflict with' any other 
instructions_ 

Mnenomic Instruction Op Code 

FADD floating add 07500R 
FSUB floating subtract 07501R 
FMUL floating multiply 07502R 
FDIV floating divide 07503R 

The operand format is: 

15 

EXPQtJ\::NT 
I 

760 

FRACTION (HIGH PART) =-= 
I I I_~ 

HIGH ARGUMENT 

FRACTION (LOW PART) L.- I 

____ -L ______ ~J~~=_JI-------L----~ 
LOW ARGUMENT 

S = sign of fraction; 0 for positive, 1 for negative 
Exponent = 8 bits for the exponent. in excess (200)8 notation 
Fraction = 23 bits plus 1 hidden bit (all numbers are assumed to be 
normalized) 

The number format is essentially a sign and magnitude representation_ 
The format is identical with the 11/45 for single precision numbers_ 

Fraction 
The binary radix point is to the left (in front of bit 6 of the High Argu­
ment). so that the value of the fraction is always less than 1 in magni· 
tude_ Normalization would always cause the first bit after the radix point 
to be a 1. such that the fractional value would be between 1/2 and 1. 
Therefore, this bit can be understood and not be represented directly, 
to achieve an extra 1 bit of resolution_ 

The first bit to the right of the radix point (hidden bit) is always a 1. The 
next bit for the fraction is taken from bit 6 of the High Argument. 
The result of a Floating Point operation is always rounded away from 
zero, increasing the absolute value of the number. 

Exponent 
The 8-bit Exponent field (bits 14 to 7) allow exponent values between 
-128 and +127. Since an excess (200)8 or (128) 0 number system is 
used, the correspondence between actual values and coded representa­
tion is as follows: 

Actual Value 

Decimal 

+127 

+1 
o 

-1 

-128 

6-6 

Representation 

Octal 

377 

201 
200 
177 

000 

Binary 
11 111 III 

10 000 001 
10 000 000 
01 111 111 

00 000 000 



If the actual value of the exponent is equal to-128, meaning a total 
value (including the fraction) of less than 2-128, the floating point number 
will be assumed to be 0, regardless of the sign or fraction bits. The hard· 
ware will generate a clean 0 (a 32·bit word of all zeros). 

Example of a Numper 

+(12)10 = +(1100), 

= +(24) 10 X (.11), [16 X (112 + 1/4) == 12] 

s Exponent Fraction 
~, "------~, 

10 000 100 1 1'000000 0000000000000000 

hidden bit is a 1 

radix point is understood 

representation: 0 

Registers 
There are no pre·assigned registers for the Floating Point option. A gen­
eral purpose register is used as a pointer to specify a stack address. 
The .contents of the register are used to locate the operands and answer 
for the Floating Point operations as follows: 

(R) = High B argument address 
(R)+2 = Low B argument address 
(R)+4 == High A argument address 
(R)+6 == Low A argument address 

After the Floating Point operation, the answer is stored on the stack as 
follows: 

(R)+4 == address for High part of answer 
(R)+6 == address for Low part of answer 

where (R) is the original contents of the general register used. 

After execution of the instruction, the general register will point to the 
High answer, at (R)+4. 

Condition Codes 
Condition codes are set or cleared as shown in the Instruction Descrip­
tions, in the next part of this section. If a trap occurs as a function of 
a Floating Instruction, the condition codes are re·interpreted as follows: 

v == 1, if an error occurs 
N = 1, if underflow or divide-by-zero 
C = 1, if divide by zero 
Z=O 

Overflow 
Underflow 
Divide by 0 

v 
1 
1 
1 

6-7 

Nez 
000 
100 
1 1 0 



Traps occur through the vector at location 244. A Floating Point instruc· 
tion will be aborted if an interrupt request is issuect before the instruction 

. is near completion. The Program Counter will point to the aborted Float· 
ing instruction so that the Interrupt will look transparent. 

Assembler format is: OPR R 

INSTRUCTIONS 

FADD 
floating add 

Operation: 

Condition Codes: 

Description: 

FSUB 
floati ng su btract 

Operation: 

Condition Codes: 

Description: 

07500R 

[(R)+4, (R)+6] <-[(R)+4, (R)+6l+ [(R),(R)+2]. if 
result ~ 2. 128 ; else [(R)+4, (R)+6] <-0 

N; set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: cleared 

Adds the A argument to the B argument and stores 
the result in the A Argument position on the stack. 
General register R is used as the stack pointer for 
the operation. 

A<-A+B 

07501R 

[(R)+4, (R)+6] <-[(R)+4, (R)+6]-[(R), (R)+2], if 
result ~ 2-128 ; else [(R)+4, (R)+6] <-0 

N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C:cleared 

Sutracts the B Argument from the A Argument and 
stores the result in the A Argument position on the 
stack. 

A <-A-B 

6·8 



floating multiply 

I 0 I 1 

15 

Operation: 

Condition Codes: 

Description: 

floating divide 

Operation: 

I 0 I 

15 

Condition Codes: 

Description: 

FMUL 
07502R 

3 2 

[(R)+4, (R)+6] <-[(R)+4, (R)+6] X [(R), (R)+2] if 
result ~ 2-128; else [(R)+4, (R)+6] <-0 

N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: cleared 

Multiplies the A Argument by the B Argument and 
stores the result in the A Argument position on the 
stack. 
A<- A X B 

FDIV 
07503R 

o \ a 0 0 10 I '~r -] 

3 <:' 0 

[(R)+4, (R)+6] <-[(R)+4, (R)+6] / [(R),(R)+2 ] if 
result ~ 2-;28; else [(R)+4, (R)+6)]<-0 

N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: cleared 

Divides the A Argument by the B Argument and 
stores the result in the A Argument position on the 
stack. If the divisor (8 Argument) is equal to zero, 
the stack is left untouched. 

A <-A/ B 

6·9 



6·10 



CHAPTER 7 

CONSOLE OPERATION 

7.1 GENERAL 
The LSI-ll can use a standard ASCII terminal or keyboard printer with a 
20 mA current loop and resident microcode for console operation. The 
LA36 is ideally suited for this use and will be described in this chapter. 

7.2 INTERFACING 
Interfacing with the LSI-ll (Figure 7-1) can be accomplished through 
the DLVll Serial Line Unit (SLU) and BC08R cable assembly_ One end 
of this cable connects to a 40 pin connector on the DLVll, the other' 

. end of the cable is terminated with a Mate-N-Lok connector that is pin-
compatible with the following peripheral options: 

LA36 DECwriter 
L T33 Teletypewriter 
L T35 Teletypewriter 
VT05B Alphanumeric Terminal 
VT50 DECscope 
RT02-B Remote Data Entry Terminal 

For a detailed description of the DLVll, refer to the LSI-ll user's 
manual. 

H9270 BACKPLANE 

NOTE' DLVIl 177560 

KDIl-F 
MICROCOMPUTER MODULE 

4KRAM 

LSI-II BUS 

BCOSM CABLE 
ASSEMBLY 

Figure 7-1 Console Interfacing with LA36 

7-1 



7.3 ODT/CONSOLE MICROCODE 
The LSI-II does not- have an internal or external switch register or 'con­
trol function switch option. In a ,typical configuration there is no bus 
device which responds to address 177570 (the SWR address on PDP-ll) . 

. The function of Load Address, Deposit, Examine, Continue, Start/ Halt 
are implemented with microcode routines that communicate with an 
operator via a serial stream of ASCII characters. For operation, it re­
quires a serial line interface (e.g., DLVlI) at Bus address 177560 and 
a device that can interpret and display as' well as send ASCII characters 
(e.g., LA36). . 

The HALT or ODT microcode state of the KDlI-F can be entered in five 
different ways (others are a subset of these) from the RUN state: 

• Execution of a LSI-ll HALT instruction 
• A double Bus Error (Bus Error trap with SP (R6) pointing to non-

existent memory) 
• The assertion of a low level on the B HALT line on the Bus 
• As a powerup option 
• ASCII break with DlVll framing error asserting the B HALT line (en­

abled by jumper of DLVl1) 

Upon entering the HALT state, the KDll-F responds through the con­
sole device with an ASCII prompt character sequence. The following 
prompt sequence is used: 

• CR LF nnnnnn CR LF @ (where nnnnnn is the location of the next" 
LSI-ll instruction to be executed and @ is ODT prompt character). 

The following is a list of the command character set and its utilization. 
In each example the operator's entry is riot underlined, and the KDll-F 
response is. Note that in part the character set is a subset of ODT-ll. 
The input character set is interpreted by th'e KDll-F .only when it is in 
the HALT state. 

Note also that all commands and characters are echoed by the KDll-F 
and that illegal command characters will be echoed and followed by ? 
(ASCII 012) followed by CR (ASCII 015) followed by LF(ASCII 012} fol­
lowed by @ (ASCII 100). If a valid command character is received when 
no location is open (e.g., when having just entered the halt state), the 
valid command character will be echoed and followed by a ? CR, LF, @. 
Opening non-existent locations will have the same response. The console 
always prints six numeric characters; however, the user is not required 
to type leading zeros for either address or data. 

7-2 



1. "/" slash (ASCII 057) , 
This command is used to open a memory location, general purpose 
register, or the processor status word. 
The / command is normally preceded by a location identifier. Be· 
fore the contents is typed, the console will issue a space (ASCII 40) 
character. 

example: 

@ 001000/ 021525 

where: 

@ = KDllF prompt character (ASCII 100) 
001000 = octal location in address space to be opened 
/ = command to open and exhibit contents of location 
012525 = contents of octal location 1000 

NOTE 
If / used without preceding location identifier, 
address of last opened location will be used. 
This feature can be used to verify the data just 
entered in a location. 

2. "CR" carriage return (ASCII 015) 
This command is used to close an open location. If contents of 
location are to be changed, CR should be preceded by the new 
value. If no change to location is necessary then CR will not alter 
contents. 

example: 

@ 001000/ 012525 CR LF 

@ /012525 

OR 

example: 

@ 0010001 012525 15126421 CR LF 

@ /126421 

where: 
CR = (ASCII 015) used to close location 1000 in both examples. 
Note that in second example contents of location 1000 was 
changed and that only the last 6 digits entered were actually placed 
in location 1000. 

7·3 



3. "LF" line feed (ASCII 012) 
This command is also used to close an open location or GPR 
(general purpose register). If entered after a location has been 
opened, it will close the open location or GPR and open location 
+ 2 or GPR + 1. If the contents of the open location or GPR are 
to be modified, the new contents should precede the LF operator. 

example: 

@ 1000/ 012525 LF CR 

001002/ 005252 CR LF 

@ 

where: 
LF = (ASCII 012) used to close location 1000 and open location 
1002, if used on the PS, the LF will modify the PS if the data has 
been typed, and close it; then a CR, LF, @ is issued. If LF is used 
to advance beyond R7, the register name that is printed is mean­
ingless but the contents printed is that of RD. . 

4~ "1''' up arrow (ASCII 135) 
The "t" command is also used to close an open location or GPR. 
If entered after a location or GPR has been opened, it will close 
the open location or GPR and open location -2, or GPR-l. If the 
contents of the open location or GPR are to be modified, the new 
contents should precede the "t" operator. 

example: 

@ 1000/ 012525i..£R LF 

000776/ 010101 CR LF 

@ 

where: 
"i" = (ASCII 135) used to close location 1000 and open location 
776. 
(ASCII 135) up arrow: 

If used on the PS, the i will modify the PS if the data has been 
typed and close it; then CR, LF, @ is issued. If l' is used to decre­
ment below RO, the register name that is printed is meaningless 
but the contents is that of R7. 

7-4 



5. "@" at sign (ASCII 100) 
The @ command is used once a location has been opened to 
open a location using the contents of the opened location as a 
pointer. Also the open location can be optionally modified similar 
to other commands and if done, the new contents will be used 
as the pOinter. 

example: 

@ 1000/000200 @ CR LF 

000200/ 000137 CR LF 

@ 

where: 
@ = (ASCII 100) used to close open location 1000 and open 10' 
cation 200. 

Note that the @ command may be used with either GPRs or 
memory contents. 

If used on the PS, the command with modify the PS if data has 
been typed and close it; however, the last GPR or memory location 
contents will be used as a pointer. 

6. "<-" back arrow (ASCII 137) 
This command is used once a location has been opened to open 
the location that is the address of the contents of the open loca­
tion plus the address of the open location plus 2_ This is useful 
for relative instructions where it is desired to determine the effec­
tive address. 

example: 

@ 1000/ 000200 ~- CR LF 

001202/ 002525 CR LF 

@ 

where: 
"<-" = (ASCII 137) used to close open location 1000 and open 
location 1202 (sum of contents of location 1000, 1000 and 2). 
Note that this command cannot be used if a GPR or the PS is the 
open location and if attempted, the command will modify the GPR 
or PS if data has been typed, and close the GPR or PS; then a CR, 
LF, @ will be issued. 

7-5 



7. $ dollar sign (ASCII 044) or R (ASCII 122) internal register 
designator: 
Either command if followed by a register value 0-7 (ASCII 060~ 
067) will allow that specific general purpose register to be opened 
if followed by the I (ASCII 057) command. 

example: 

@ $ nl 012345 CR LF 
~--"~ 

@ 

where: 
$ = register designator. This could also be R. 
n = octal register 0-7. 
012345 = contents of GPR n. 

Note that the GPRs once opened can be closed with either the CR, 
LF, "1", or @ commands. The" <-" command will also close a 
GPR but will not perform the relative mode operation. 

8. "$ s" (ASCII 044; ASCII 123) processor status word 
By replacing "n" in the above example with the letter S (ASCII 
123) the processor status word will be opened. Again either $ or 
R (ASCII 122) is a legal command. 

example: 

@ $ SI 000100 CR LF 

@ 

where: 
$ = GPR or processor status word designator 
S = specifies processor status register; differentiates from GPRs. 
000200 = eight bit contents of PSW; bit 7 = I, all other bits = O. 

Note that the contents of the PSW can be changed using the CR 
command but bit 4 (the T bit) cannot be set using any of the 
commands. 

9. uG" (ASCII 107) 
The "G" (GO) command is used to start execution of a program 
at the memory location typed immediately before the "G". 

example: 
@ 100 G or 100;G 

The LSH1 PC(R7) will be loaded with 100 and execution will begin 
at that location. Before starting execution, a BUS INIT is issued 
for 10 /Lsec followed by 90 /Lsec of idle time. Note that a semi· 
colon character (ASCII 073) can be used to separate the address 
from the G and this is done for PDp·11 ODTcompatibility. Since 
the console is a character·by·character processor, as soon as the 
"G" is typed, the command is processed and a RUBOUT cannot 
be issued to cancel the command. If the B HALT L line is asserted, 

7-6 



execution does not take place and only the BUS INIT sequence is 
done. The machine returns to console mode and prints the PC 
fallowed by CR,LF,@. 

10. "P" (ASCII 120) 
The "P" (Proceed) command is used to continue or resume ex· 
ecution at the location poi nted to by the cu rrent contents of the 
PC(R7). 

example: 

@ P or ;P 

If the B HALT L line is asserted the INIT line will not be asserted, a 
single instruction will be executed, and the machine will return to 
console mode. It will print the contents of the PC followed by a 
CR,LF,@. In this fashion, it is possible to single instruction step 

through a user program. 

The semicolon is accepted for PDp·l1 ODT compatibility. If the 
semicolon character is received during any character sequence, 
the console ignores it. 

11. "M" (ASCII 115) 
The "M" (Maintenance) command is used for maintenance pur· 
poses and prints the contents of an internal CPU register. This 
data reflects how the machine got to the console mode. 

example: 

@ M 000213 CR LF 

@ 

The console prints six characters and then returns to command 
mode by printing CR,LF,@. 

The last octal digit is the only number of significance and is en· 
coded as follows. The value specifies how the machine got to the 
console mode. 

Last Octal Digit 

0 

1 

2 

3 

4 

Value Function 

Halt instruction or B Halt line 

Bus Error occurred while getting device 
interrupt vector 

Bus Error occurred while doing memory 
refresh 

Double Bus Error occurred (stack was 
non·existent value) 

Non·existent Micro·PC address occurred 
on internal CPU bus 

In the above exacnple, the last octal digit is a "3", which indicates 
a Double Bus Error occurred. 

7-7 



12. "RO" RUBOUT (ASCII 177) 
While RUBOUT is not truly a command, the console does support 
this character. When typing in either address or data, the user can 
type RUBOUT to erase the previously typed character and the 
,console will respond with a ""-" (Backslash-ASCII 134) for every 
typed RUBOUT. 

example: 

@ 000100/ 077777' 123457 (RUBOUT),,- 6 CR LF 

@ 000100/ 123456 

In the above example, the user typed a "7" while entering new 
data and then typed RUBOUT. The console responded with a ""-" 
and then the user typed a "6" and CR. Then the user opens the 
same location and the new data reflects the RUBOUT. Note that 
if RUBOUT is issued repeatedly, only numerical characters are 
erased and it is not possible to terminate the present mode the 
console is in. If more than six RUBOUTS are consecutively typed, 
and then a valid location closing command is typed, the open 
location will be modified witil all zeroes. 

The RUBOUT command cannot be used while entering a register 
number. R2 "- 4 / 012345 will not open register R4; however the 
RUBOUT command will cause ODT to revert to memory mode and 
open location 4. 

13. "L" (ASCII 114) 
The "L" (Bqot Loader) command will cause the processor to self· 
size memory and then load from the specified device a program 
that is in Bootstrap Loader Format (e.g.-Absolute Loader). The 
device is specified by typing in the address of the input control 
and status register immediately before the ,"L". 

example: 
@ 177560L 

First memory is sized, starting at 28K and the device address 
(177560) is placed in the last location for Absolute Loader com· 
patibility. Then the program will be loaded by setting the "GO" 
bit in address 177560 and reading a byte of data from 177562. 

The loading begins at the address specified in the Bootstrap loader, 
format. The loading is terminated when address XXX775 has been 
loaded and execution automatically begins at XXX774. It is up to the 
program being loaded to halt the processor if that is desired. In 
the case of the Absolute Loader, the processor will halt and the 
console will print XXX500 (the current PC) followed by CR,LF,@. 
(XXX = 017 for 4K memory; XXX = 157 for 28K memory). 

When loading a program using the "L" command, the B HALT L 
line is ignored. If a timeout error occurs, the console will terminate 
the load and print ?,CR,LF,@. 

Any device address may be used as long as it is software com· 

7-8 



patible with the OLV11. If no address is typed, address 0 will 
be used. . 

14. "CONTROL·SHIFT·S" (ASCII 23) 
This command is used for manufacturing test purposes and is not 
a normal user command. It is briefly described here so that in case 
a user accidentally types this character, he will understand the 
machine response. If this character is typed, OOT expects two more 
characters. It uses these two characters as a 16·bit binary address 
and starting at that address, dumps five locations in binary format 
to the serial line. 

It is recommended that if this mode is inadvertently entered, two 
characters such as a NULL (0) and @ (ASCII 100) be typed to 
specify an address in order to terminate this mode. Once com· 
pleted, OOT will issue a CR, LF, @. 

7,·9 



7-10 



RESERVED VECTOR LOCATIONS 
000 (RESERVED) 
004 TIME bUT & OTHER ERRORS 
OlD ILLEGAL & RESERVED INSTRUCTION 
014 BPT INSTRUCTION AND T BIT 
020 lOT INSTRUCTION 
024 POWER FAIL 
030 EMT INSTRUCTION 
034 TRAP INSTRUCTION 
060 CONSOLE INPUT DEVICE 
064 CONSOLE .OUTPUT DEVICE 
100 EXTERNAL EVENT LINE INTERRUPT 
244 FIS (OPTIONAL) 

DEVICE ADDRESSES 
160000 DEVICE ADRESSES 

ARE SELECTED BY 
JUMPERS LOCATED 
ON THEIR LINE UNIT 

177776 MODULES. 

A-I 

APPENDIX A 

MEMORY MAP 



( 

A-2 



APPENDIX B 

INSTRUCTION TIMING 

B.1 LSI·l1 INSTRUCTION EXECUTION TIME 
The execution time for an instruction depends on the instruction itself, 
the modes of addressing used, and the type of memory referenced. In 
most cases the instruction execution time is the sum of a Basic Time, 
a Source Address (SRC) Time, and a Destination Address (DST) Time. 

INSTR TIME = Basic Time + SRC Time + DST Time 

(BASIC Time = Fetch Time + Decode Time + Execute Time) 

Some of the instructions require only some of these times. All timing 
information is in microseconds, unless otherwise noted. Times are typi­
cal; processor timing can vary :+20%_ 

SOURCE AND DESTINATION TIME 

SRC TIME SRC TIME DST TIME DST TIME 
MODE (Word) (Byte) (Word) (Byte) 

0 0 0 0 0 
1 1.40,usec 1.05,usec 2.10,usec 1.75,usec 
2 1.40 1.05 2.10 1.75 
3 3.50 3.15 4.20 4.20 
4 2.10 1.75 2.80 2.45 
5 4.20 3.85 4.90 4.90 
6 4.20 3.85 4.90 4.55 
7 6.30 5.95 6.65 7.00 

NOTE FOR MODE 2 and MODE 4 if R6 or R7 used with Byte opera­
tion, add 0.35 ,usec to SRC time and 0.70 ,usec to DST time. 

INSTRUCTION TIME 

DOPS (Double Operand) 

MOV 
ADD,XOR,SUB,BIC,BIS 
CMP,BIT 
MOVB 
BICB,BISB 
CMPB,BITB 

B-1 

DMO 

3.50,usec 
3.50 
3.50 
3.85 
3.85 
3.15 

DMl-7 

2.45,usec 
4.20 
3.15 
3.85 
3.85 
2.80 



SOPS (Single Operand) 

CLR 
INC,ADC,DEC,SBC 
COM,NEG . 
ROL,ASL 
TST 
ROR 
ASR 
CLRB,COMB,NEGB 
ROLB,ASLB 
INCB, DECB, SBCB,ADCB 
TSTB 
RORB 
ASRB 
SWAB 
SXT 
MFPS (1067DD) 
MTPS (1064SS) 

DMO 

3.85,usee 
4.20 
4.20 
3:85 
4.20 
5.25 
5.60 
3.85 
3.85 
3.85 
3.85 
4.20 
4.55 
4.20 
5.95 
4.90 
7.00 

':'For MTPS use Byte DST time not SRC time. 
':'Add 0.35 ,usee to instr. time if Bit 7 of effective OPR =1 

JMP/JSR MODE 

1 
2 
3 
4 
5 
6 
7 

INSTRUCTION 

JMP 
JSR (PC=LlNK) 
JSR (PC7"'LlNK) 

DST TIME 

0.70,usee 
1.40 
2.10 
1.40 
2.80 
2.80 
4.90 

TIMES 

3.50,usee 
5.25 
6.40 

DM1-? 

4.20,usee 
4.90 
4.55 
4.55 
3.85 
5.95 
6.30 
4.20 
4.20 
4.55 
3.50 
4.90 
5.95 
3.85 
6.65 
6.65 
7.00':' 

ALL BRANCHES 
SOB(BRANCH) 
SOB(NO BRANCH) 

3.50 
4.90 
4.20 

(CONDITION MET OR NOT MET) 

SET CC 
CLEAR CC 
NOP 

RTS 
MARK 
RTI 
RTT 

3.50 
3.50 
3.50 

5.25 
11.55 

8.75':' 
8.75"+ 

B-2 



INSTRUCTION 

TRAP,EMT 
10T,RPT 

WAIT 
HALT 
RESET 

MAINT INST. (00021R) 
RSRVD INST. (00022N) 

TIMES 

16.80'" ,usee 
18.55" 

6.30 
5.60 
5.95 +10.0 ,usee. for INIT + 90.0 .,usee. 

20.30 
5.95 (TO GET TO UADDRESS 3000) 

" IF NEW PS HAS BIT 4 or BIT 7 SET ADD 0.35 ,usee FOR EACH 
+ IF NEW PS HAS BIT 4 (T BIT) SET ADD 2.10 ,usee 

EXTENDED ARITHMETIC (KEVIl) INSTRUCTION TIMES 

EIS Instruction Times 

MODE 

o 
1 
2 
3 
4 
5 
6 
7 

INSTRUCTION 

MUL 

DIV 
ASH (RIGHT) 
ASH (LEFT) 
ASHC (RIGHT) 
ASHC (LEFT) 

SRC TIME 

0.35 ,usee. 
2.10 
2.80 
3.15 
2.80 
3.85 
3.85 
5.60 

BASIC TIME 

24.0 to 37.0 ,usee. If both numbers less than 
256 in absolute value 

64.0 ,usee. Worst Case 16 bit multiply 
78.0 ,usee. Worst Case 
10.1 + 1.75 per shift 
10.8 + 2.45 per shift 
10.1 + 2.80 per shift 
10.1 + 3.15 per shift 

FIS Instruction Times (,usee) 
INST. TIME = BASIC TIME + SHIFT TIME FOR BINARY POINTS + SHIFT 

TIME FOR NORMALIZATION 

INSTRUCTION 

FADD 
FSUB 

BASIC TIME 

42.1 ,usee 
42.4 

B·3 



EXPONENT DIFFERENCE 

0- 7 
8-15 

16-23 

EXPON ENT DIFFERENCE 

0- 7 
8-15 

16-23 

ALIGN BINARY POINTS 

2.45 /Lsec per shift 
3.50 + 2.45 per shift over 8 
7.00 + 2.45 per shift over 16 

NORMALIZATION 

2.1 /Lsec per shift 
2.1 + 2.1 per shift over 8 
4.2 + 2.1 per shift over 16 

INSTRUCTION BASIC TIME (/Lsec) 

FMUL 52,2 base time + 3.85 per "1" bit. If either argument 

93.7 Worst Case 
FDIV 232 Worst Case 

151 Typical 

has 8 bits of precision 

BA 



CENTRAL PROCESSOR lSI·l1 11/05 11/10 11/15 11/20 11/35 11/40 11/45 

Main Market OEM OEM End User OEM End User OEM End User OEM & End User r-
Memory core, MOS, ROM core core core bipolar, MOS, core en 
Reg to Reg Transfer 3.5 us 3.7 us 2.3 us 0.9 us 0.3 0.45 0.9 

, .... 
Max Mem Size (words) 32K 28K 28K 124K 124K 124K .... 
Max Address Space 32K 32K 32K 128K 128K 128K "-General Purpose Reg 8 8 8 8 16 "tJ 
Stack Processing yes yes yes yes yes C 
Micro·programmed yes yes no yes yes "tJ 
Instructions basic set + XOR, basic set basic set basic set + same as 11/40 + , .... 

SOB, MARK, SXT, XOR, SOB, MARK, MUL, DIV, ASH, .... 
RTT, MTPS, MFPS SXT, RTT ASHe, SPL 

Extended Arithmetic option (internal) option (external) option (external) option (internal) standard (int) ." 
Q (hardware) MUL, DIV, MUL, DIV, l> 
,.... ASH, ASHe ASH, ASHe 3: 

Floating Point option, FADD, software only software only tlardware option hardware option 
r-FSUB, FMUL, FDIV 32·bit word 32 or 64·blt word 

Stack Limit Address none 400 (fixed) 400 (fixed) 400 or programmable -< 
programmable 0 (option) ." 

Memory Management not available not available not available option option MFPI, MFPD 
MFPI, MTPI MTPI. MTPD ("") 

Modes 1 std, 2 opt 3 0 » 
Automatic Priority 1·line 4·line 1·llne 4·line 4·line 4·line 3: -0 

Interrupt multi· level multi·level multi·lev multi·lev mult,·level multi·level -0 

+ "tJ ,." 

c: Z Power Fail and standard standard option standard standard 8 software levels -I 0 
Auto· Restart standard rrI X ::c 

en (") 



C-2 



APPENDIX D 

INSTRUCTION INDEX 

A FMUL 6-9 

ADC(B) 4-19 FSUB . 6-8 

ADD 4-27 H 
ASL(B) 4-14 

HALT 4-71 
ASH 6-4 
ASHC 6-5 
ASR(B) 4-13 INC(B) 4-8 

B lOT 4-66 

BCC 4-42 J 
BCS 4-43 JMP 4-54 
BEQ 4-37 JSR 4-56 
BGE 4-45 
BGT 4-47 M 
BHI 4-50 MARK 4-59 
BHIS 4-52 MFPS 4-22 
BIC(B) 4-31 MOV(B) 4-25 
BIS(B) 4-32 MTPS 4-23 
BIT(B) 4-30 MUL 6-2 
BLT 4-46 
BLE 4-48 N 

BLO 4-53 NEG(B) 4-10 
BLOS 4-51 NOP 4-76 
BMI 4-39 
BNE 4-36 R 

BPL 4-38 RESET 4-73 
BPT 4-65 ROL(B) 4-16 
BR 4-35 ROR(B) 4-15 
BVC 4-40 RTI 4-67 
BVS 4-41 RTS 4-58 

RTT 4-68 
C 

CLR(B) 4-6 
S 

CMP(B) 4-26 SBC(B) 4-20 

COM(B) 4-7 SOB 4-61 

C0ND. CODES 4-76 SUB 4-28 
SWAB 4-17 

D SXT 4-21 

DEC(B) 4-9 T 
DIV 6-3 TRAP 4-64 

E TST(B) 4-11 

EMT 4-63 W 

F 
WAIT 4-72 

FADD 6-8 X 

FDIV 6-9 XOR 4-33 

0-1 



"-,--

NUMERICAL OP CODE LIST 

OP Code Mnemonic OP Code Mnemonic OP Code Mnemonic 

00 00 00 HALT 00 60 DD ROR 10 40 00 } 
00 00 01 WAIT 0061 DD ROL 1 EMT 00 00 Of RTI 00 62 DD ASR 
00 00 03 BPT 0063 DD ASL 1043 77 
00 00 04 lOT 00 64 NN MARK 
00 00 05 RESET 00 67 DD SXT 10 44 00 } 
00 00 06 RTT 1 TRAP 00 00.D7 } (unused) 007000} 00 00 77 1 (unused) 10 47 77 

00 01 DD JMP 007777 1050 DD CLRB 
00 02 OR RTS 1051 DD COMB 

01 SS DD MOV 1052 DD INCB 
00 02 10 

}(reSerVed) 

02 SS DD CMP 1053 DD DECB 

1 03 SS DD BIT 1054 DD NEGB 
04 SS DD BIC 1055 DD ADCB 

00 02 27 05 SS DD BIS 1056 DD SBCB 
06 SS DD ADD 1057 DD TSTB 

00 02 40 NOP 
07 OR SS MUL 10 60 OD RORB 

00 02 41 } 07 1R SS DIV 1061 DD ROLB 
cond 07 2R SS ASH 10 62 DD ASRB 1 codes 07 3R 5S ASHC 10 63 DD ASLB 

00 02 77 07 4R DD XOR 1064 SS MTPS 
1067 DD' MFPS 

00 03 DD SWAB 07 50 OR FADD 
07 50 1R FSUB 11 SS DD MOVB 

00 04 XXX BR 07 50 2R FMUL 12 SS DD CMPB 
00 10 XXX BNE 07 50 3R FDIV 13 SS DD BITB 
0014 XXX BEQ 14 SS DD BICB 
00 20 XXX BGE 075040 } 15 SS DD BISB 
00 24 XXX BLT 1 (unused) 16 SS DO ?UB 
0030 XXX BGT 
00 34 XXX BLE 0767 77 

00 4R DO JSR 07 7R NN SOB 

00 50 DO CLR 10 00 XXX BPL 
0051 OD COM 1004 XXX BMI 
00 52 DD INC 1010 XXX BHI 
00 53 DD DEC 1014 XXX BLOS 
00 54 DD NEG 1020 XXX BVC 
00 55 DO ADC 1024 XXX BVS 
00 56 DD SBC 1030 XXX BCC, 
0057 DO TST BHIS 

1034 XXX BCS, 
BLO 

0-2 



APPENDIX E 

SUMMARY OF LSI-II INSTRUCTIONS 

Mode 

o 
1 
2 
3 
4 
5 
6 
7 

Name 

register 
reg ister deferred 
auto-increment 
auto-incr deferred 
auto-decrement 
auto-decr deferred 
index 
index deferred· 

MODE 

Symbolic Description 
---~ 

R 
(R) 
(R)+ 

(,,(R)+ 
~(R) 

(,,~(R) 

X(R) 
@X(R) 

(R) is operand [ex. R2=0/o2j 
(R) is address 
(R) is adrs; (R) +(1 or 2) 
(R) is adrs of adrs; (R) + 2 
(R) ~ (1 or 2); is adrs 
(R) ~ 2; (R) is adrs of adrs 
(R) + X is adrs 
(R) + X is adrs of adrs 

PROGRAM COUNTER ADDRESSING Reg = 7 

2 
3 
6 
7 

LEGEND 

immediate 
absolute 
relative 
relative deferred 

Op Codes 

• = 0 for word/1 for byte 
55 = source field (6 bits) 
DD = destination field 

(6 bits) 
R = gen register (3 bits). 

o to 7 
XXX = offset (8 bits), 

+127 to ~128 
N = number (3 bits) 
NN = number (6 bits) 

Boolean 

/\ = AND 
V = inclusive OR 
"f/" = exclusive OR 

= NOT 

.LI_M_OO_E __ -L~ ___ ~ 

#n operand n follows instr 
@#A address A follows instr 

A instr adrs + 4 + X is adrs 
@A instr adrs + 4 + X is adrs of adrs 

E-1 

Operations 

( ) = contents of 
s = contents of source 
d = contents of destination 

= contents of reg ister 

<- = becomes 

X = relative address 
% = register definition 

= Concatenated with 

Condition Codes 

• = conditionally set/cleared 
= not affected 

o = cleared 
1 = set 



SINGLE OPERAND: OPR dst 

'5 

OP CODE S S OR 00 

Mne-
monic Op Code Instruction dst Result N Z V C 

General 

CLR(B) .05000 clear 0 0 0 
COM(B) • 05100 complement (1 '5) ~d 0 1 
INC(B) .05200 increment d+1 
OEC(B) • 05300 decrement d-1 
NEG(B) • 05400 negate (2'5 com pi) -d 
TST(B) .05700 test d 0 0 

Rotate & Shift 

ROR(B) • 06000 rotate right ... C,d 
ROL(B) .06100 rotate left C, d <-
ASR(B) • 06200 arith shift right d/2 
ASL(B) .06300 arith sh ift left 2d 
SWAB 000300 swap bytes 0 0 

Multiple Precision 

AOC(B) .05500 add carry d+C 
SBC(B) .05600 subtract carry d-C 
SXT 006700 sign extend o or-1 0 

Processor Status (PS) Operators 

MFPS 106700 move byte from d <- PS 0 
PS 

MTPS 1064SS move byte to PS PS <- 5 

DOUBLE OPERAND: OPR src, dst OPR src, Ror OPR R, dst 

" " OP CODE SS DO 
I 

15 6 5 

OF CODE :"-- I S S OR DO 

Mne-
monic Op Code Instruction Operation N Z V C 

General 

MOV(B) .1SS00 move d<-s . 0 -
CMP(B) .2SS00 compare s-d 
AOO 06SS00 add d<-s+d 
SUB 16SS00 subtract d<-d-s 

Logical 

BIT(B) .3SS00 bit test (ANO) sAd 0 
BIC(B) .4SS00 bit clear d <- (~s) A d . 0 
BIS(B) .5SS00 bit set (OR) d <-svd 0 -
XOR 074ROO exclusive OR d <-. r ",d 0 

E-2 



Optional 

MUL 
DIV 
ASH 

ASHC 

Optional 

FADD 
FSUB 
FMUL 
FDIV 

BRANCH: 

EIS 

070RSS multiply r +- r x s 
071RSS divide r +- rls 
072RSS shift 

arithmetically 
073RSS arith shift 

combined 

FIS 

07500R float ng add 0 
07501R float ng subtract 0 
07502R float ng multiply 0 
07503R float ng divide 0 

B - - location 

If condition is satisfied: 
Branch to location, 
New PC +- Updated PC + (2 x offset) 
~ 

BASE CODE 
I 

adrs of br instr + 2 

Op Code = Base Code + XXX 

Mne­
monic Base Code Instruction Branch Condition 

0 
0 
0 
0 

--------- -----------------.-----~-----

Branches 

BR 000400 branch (unconditional) (always) 
BNE 001000 br if not equal (to 0) :;to Z=O 
BEQ 001400 br if equal (to 0) -0 Z=1 
BPL 100000 branch if plus +" N = 0 
BMI 100400 branch if minus N =1 
BVC 102000 br if overflow is clear v=o 
BVS 102400 br if overflow is set V=1 
BCC 103000 br if carry is clear C=O 
BCS 103400 br if carry is set C=1 

Signed Conditional Branches 

BGE 002000 br if greater or ~O N..,.V=O 
equal (to 0) 

BLT 002400 br if less than (0) <0 N ..... V=1 
BGT 003000 br if greater than (0) >0 Z v (N ..... V) = 0 
BLE 003400 br if less or ~O Zv(N..,.V)=1 

equal (to 0) 

Unsigned Conditional Branches 

BHI 101000 branch if higher > CvZ=O 
BLOS 101400 branch if lower ,,; C v Z = 1 

or same 
BHIS 103000 branch if higher ~ C=O 

or same 
BLO 103400 branch if lower < C=1 

E·3 



JUMP & SUBROUTINE-

Mne-
monic Op Code 

JMP 00010D 
JSR 004RDD 
RTS 00020R 

MARK 0064NN 
SOB 077RNN 

TRAP & INTERRUPT: 

Mne-
monic Op Code 

EMT 104000 
to 104377 

TRAP 104400 
to 104777 

BPT 000003 
lOT 000004 
RTI 000002 
RTT 000006 

MISCELLANEOUS: 

Mnemonic 

HALT 
WAIT 
RESET 
NOP 

Instruction Notes 

jump PC ... dst 

return from use same R 
jump to· SUbroutine} 

subroutine 
mark aid in subr return 
subtract 1 & br (R) -1, then if (R) f 0: 

(if * 0) PC ... Updated PC -

Instruction 

emulator trap 
(not for general use) 

trap 

breakpoint trap 
input/output trap 
return from interrupt 
return from interrupt 

Op Code 

000000 
000001 
000005 
000240 

(2x NN) 

Notes 

PC at 30, PS at 32 

PC at 34, PS at 36 

PC at 14, PS at 16 
PC at 20, PS at 22 

inhibit T bit trap 

-----~------ -- --

Instruction 

halt 
wait for interrupt 
reset external bus 
(no operation) 

CONDITION CODE OPERATORS: 

L=~~OP-"C_""'~B_AS_EL'O_002-,'"_~ 
4 3 2 1 a 

I Oil I N I z I v I c I 

Mnemonic Op Code 

CLC 000241 
CLV 000242 
CLZ 000244 
CLN 000250 
CCC 000257 

SEC 000261 
SEV 000262 
SEZ 000264 
SEN 000270 
SCC 000277 

I 
0= CLEAR SELECTED CONDo CODE BITS 
1 = SET SELECTED CONDo CODE BITS 

Instruction N Z V C 

clear C - 0 
clear V 0 -
clear Z - 0 
clear N 0 -
clear all cc bits 0 0 0 

set C - 1 
sefV 1 -
set Z - 1 
set N 
set all cc bits 

E-4 



PROCESSOR STATUS WORD 

7 5 4 3 2 0 

I T N Z V C 
I I 

~ 

1 ~m" 
1 

' . ~:~~~; 
TRACE TRAP 

PRIORITY 

POWERS OF 2 

n 2n ~ 2n 

a 1 10 1,024 
1 2 11 2,048 
2 4 12 4,096 
3 8 13 8,192 
4 16 14 16,384 
5 32 15 32,768 
6 64 16 65,536 
7 128 17 131,072 
8 256 18 262,144 
9 512 19 524,288 

ABSOLUTE BOOTSTRAP LOADER 
LOADER 

Address Contents Address Contents 
Starting 

Address: - 500 -744 016 701 -764 000 002 
Memory Size: -746 000 026 -766 400 

4K 017 -750 012 702 -770 005 267 
8K 037 -752 000 352 -772 177 756 

12K 057 -754 005 211 -774 000 765 
16K 077 -756 105 711 -776 177 560 (TTY) 
20K 117 -760 100 376 
24K 137 -762 116 162 
28K 157 

E-5 



TRAP VECTORS 

000 (reserved) 024 Power Fail 
004 Time Out & other errors 030 EMT instruction 
010 illegal & re'served instr 034 TRAP instruction 
014 BPT instruction 244 FIS (optional) 
020 lOT instruction 

ODT COMMANDS 

Format Description 
RETURN Close opened location and accept next command, 

LINE FEED Close current location; open next sequential 
location, 
Open previous location, 

<- Take contents of opened location, index by con-
tents of PC, and open that 10cation,(ASCII 137) 

@' Take contents of opened location as absolute 
address and open that location. 

rl Open the word at location r. 
I Reopen the last location. 

$n/or Rnl Open general register n (0-7) or S (PS register). 
r;G or rG Go to location r and start program. 

nL Execute bootstrap loader using n as device CSR. 
Console device address is 177560. 

;P or P Proceed with program execution. 
RUBOUT Erases previous numeric character. 

Response is a backslash (,,). 

7-81T ASCII CODE 

Octal Octal Octal Octal 
Code Char Code Char Code Char Code Char 

000 NUL 040 SP 100 @ 140 " 
r 

001 SOH 041 ! 101 A 141 a 
002 STX 042 /I 102 B 142 b 
003 ETX 043 # 103 C 143 c 
004 EOT 044 $ 104 D 144 d 
005 ENO 054 'I, 105 E 145 e 
006 ACK 046 & 106 F 146 f 
007 BEL 047 / 107 G 147 g 
010 BS 050 110 H 150 h 
011 HT 051 111 I 151 i 
012 LF 052 112 J 152 j 
013 VT 053 + 113 K 153 k 
014 FF 054 114 L 154 I 
015 CR 055 115 M 155 m 
016 SO 056 116 N 156 n 
017 SI 057 I 117 0 157 0 
020 DLE 060 0 120 P 160 P 
021 DCl 061 1 121 0 161 q 
022 DC2 062 2 122 R 162 r 
023 DC3 063 3 123 S 163 s 
024 DC4 064 4 124 T 164 t 
025 NAK 065 5 125 U 165 u 
026 SYN 066 6 126 V 166 v 
027 ETB 067 7 127 W 167 w 
030 CAN 070 8 130 X 170 x 
031 EM 071 9 131 Y 171 Y 
032 SUB 072 132 Z 172 z 
033 ESC 073 133 [ 173 { 
034 FS 074 < 134 " 174 I 
035 GS 075 135 1 175 } 
036 RS 076 > 136 1\ 176 
037 US 077 ? 137 177 DEL 

E-6 



NOTES 



NOTES 



DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard, 
Massachusetts 01754, Telephone: (617) 897-5111 
SALES AND SERVICE OFFICES 
DOMESTIC - ARIZONA, Phoenix and Tucson. CALIFORNIA, Los Angeles, Monrovia, 
Oakland, Ridgecrest, San Diego, San Francisco (Mountain View), Santa Ana, Sunnyvale 
and Woodland Hills. COLORADO, Englewood. CONNECTICUT, Fairtield and Meriden 
• DISTRICT OF COLUMBIA, Washington (Lanham, Md.) • FLORIDA, Orlando. GEORGIA, 
Atlanta. ILLINOIS, Chicago (Rolling Meadows) • INDIANA, Indianapolis. IOWA, 
Beitendort • KENTUCKY, Louisville • LOUISIANA, Metairie (New Orleans) 
• MASSACHUSETIS, Marlborough and Waltham. MICHIGAN, Detroit (Farmington 
Hills) • MINNESOTA, Minneapolis. MISSOURI, Kansas City and St. Louis. NEW 
HAMPSHIRE, Manchester. NEW JERSEY, Fairtield, Metuchen and Princeton. NEW 
MEXICO, Albuquerque. NEW YORK, Albany, Huntington Station, Manhattan, Rochester 
and Syracuse. NORTH CAROLINA, Durham/Chapel Hill • OHIO, Cleveland, Columbus 
and Dayton. OKLAHOMA, Tulsa. OREGON, Portland. PENNSYLVANIA, Philadelphia 
(Bluebell) and Pittsburgh. TENNESSEE, Knoxville. TEXAS, Austin, Dallas and Houston 
• UTAH, Salt LakeCity. WASHINGTON, Bellevue. WISCONSIN, Milwaukee (Brookfield) • 
INTERNATIONAL - ARGENTINA, Buenos Aires. AUSTRALIA, Adelaide, Brisbane, 
Canberra, Melbourne, Perth and Sydney. AUSTRIA, Vienna. BELGIUM, Brussels 
• BOLIVIA, La Paz. BRAZIL, Puerto Alegre, Rio de Janeiro and Sao Paulo. CANADA, 
Calgary, Halifax, Montreal, Ottawa, Toronto and Vancouver. CHILE, Santiago 
• DENMARK, Copenhagen. FINLAND, Helsinki. FRANCE, Grenoble and Paris 
• GERMANY, Berlin, Cologne, Hannover, Hamburg, Frankfurt, Munich and Stuttgart 
• HONG KONG. INDIA, Bombay. INDONESIA, Djakarta. ISRAEL, Tel Aviv 
• ITALY, Milan and Turin. JAPAN, Osaka and Tokyo. MALAYSIA, Kuala 
Lumpur. MEXICO, Mexico City. NETHERLANDS, Utrecht. NEW 
ZEALAND, Auckland • NORWAY, Oslo • PUERTO RICO, Santurce 
• SINGAPORE • SPAIN, Barcelona and Madrid • SWEDEN, Gothenburg 
and Stockholm • SWITZERLAND, Geneva and Zurich • TAIWAN, Taipei and Taoyuan 

. • UNITED KINGDOM, Birmingham, Bristol, Dublin, Edinburgh, Leeds, London, 
Manchester and Reading. VENEZUELA, Caracas. YUGOSLAVIA, Ljubljana. 




