

mamooma

processor
handbook

digital equipment corporation

Copyright~ 1973, by Digital Equipment Corporation

DEC, PDP,UNIBUS are registered trademarks of Digital Equipment Corporation.

ii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1·1

1.1 THE PDP·ll CONCEPT .. 1·1
1.2 COMPUTERS : :............... 1·2

1.2.1 PDp·ll/05 & PDP·ll/l0 1·2
1.2.2 PDP·11/35 & PDP·ll/40 1·3

1.~ PERIPHERALS/OPTIONS .. 1-4
~.3.1 1/0 Devices .. 1-4
1.3.2 Storage Devices :................... 1·4

1.4 SOFTWARE 1·6
1.4.1 Paper Tape Software .. 1·6
1.4.2 Disk Operating System Software 1·6
1.4.3 Higher Level Languages 1·6

1.5 NUMBER SYSTEMS .. 1·6

CHAPTER 2 SYSTEM ARCHITECTURE .. 2·1

2.1 UNIBUS .. 2·1
2.1.1 Bidirectional Lines 2·1
2.J.2 Master·Slave Relation 2·1
2.1.3 Interlocked Communication 2·2

2.2 CENTRAL PROCESSOR 2·2
2.2.1 General Registers .. 2·2
2.2.2 Instruction Set 2·3
2.2.3 Processor Status Word 2·4
2.2.4 Stacks 2·5

2.3 PDp·ll/05 & 11/10 INTERNAL CPU EQUIPMENT 2·5
2.4 PDp·11/35 & 11/40 EQUIPMENT 2·6
2.5 MEMORy......... 2·7
2.6 AUTOMATIC PRIORITY INTERRUPTS 2·9

2.6.1 Using the Interrupts :................................ 2·11
2.6.2 Interrupt Procedure .. 2·11
2.6.3 Interrupt Servicing 2·12

CHAPTER 3 ADDRESSING MODES .. 3·1

3.1 SINGLE OPERAND ADDRESSING 3·2
3.2 DOUBLE OPERAND ADDRESSING 3·2
3.3 DIRECT ADDRESSING 3-4

3.3.1 Register Mode ... ;...... 3-4
3.3.2 Auto·increment Mode 3-5
3.3.3 Auto·decrement Mode...... 3·7
3.3.4 Index Mode 3·8

3.4 DEFER~ED (INDIRECT) ADDRESSING 3·10
3.5 USE OF THE PC AS A GENERAL REGISTER 3·12

3.5.1 Immediate Mode .. 3·13
3.5.2 Absolute Addressing .. 3-13
3.5.3 Relative Addressing 3-14
3.5.4 Relative Deferred Addressing 3·15

iii

3.6 USE OF STACK POINTER AS GENERAL REGISTER 3·16
3.7 SUMMARY OF ADDRESSING MODES 3·16

3.7.1 General Register Addressing 3·16
3.7.2 Program Counter Addressing ;................ 3·18

CHAPTER 4 INSTRUCTION SET .. 4·1

4.1 INTRODUCTION .. 4·1
4.2 INSTRUCTION FORMATS .. 4·2
4.3 LIST OF INSTRUCTIONS 4-4
4.4 SINGLE OPERAND INSTRUCTIONS 4·6
4.5 DOUBLE OPERAND INSTRUCTIONS 4·22
4.6 PROGRAM CONTROL INSTRUCTIONS 4·32
4.7 MISCELLANEOUS .. 4·70

CHAPTER 5 PROGRAMMING TECHNIQUES ~............ 5·1

5.1 THE STACK .. 5·1
5.2 SUBROUTINE LINKAGE ;....................................... 5·5

. 5.2.1 Subroutine Calls ... 5·5
5.2.2 Argument Transmission 5·6
5.2.3 Subroutine Return 5·9
5.2.4 PDp·ll Subroutine Advantage 5·9

5.3 INTERRUPTS 5·9
5.3.1 General Principles .. 5·9
5.3.2 Nesting 5·10

5.4 REENTRANCY 5·13
5.5 POSITION INDEPENDENT CODE 5·15
5.6 CO·ROUTINES ... :.......... 5·16
5.7 PROCESSOR TRAPS .. 5·17

5.7.1 Power Failure.. 5·17
5.7.2 Odd Addressing Errors 5·17
5.7.3 Time·Out ErrorS .. 5·17
5.7.4 Reserved Instructions ;............................. 5·17
5.7.5 Trap Handling .. 5·17

CHAPTER 6 MEMORY MANAGEMENT (FOR THE 11/35 & 11/40) 6·1

6.1 GENERAL .. 6·1
6.1.1 Options .. 6·1
6.1.2 Programming .. 6·1
6.1.3 Basic Addressing .. 6-2
6.1.4 Active Page Registers 6·2
6.1.5 Capabilities Provided by Memory Management 6-3

6.2 RELOCATION .. 6'3
6.2.1 Virtual Addressing .. 6·3
6.2.2 Program Relocation :.... 6·4

6.3 PROTECTION.. 6·6
6.3.1 Inaccessible Memory .. 6·6
6.3.2 Read-Only Memory 6-6
6.3.3 Multiple Address Space ,................ 6·7

6.4 ACTIVE PAGE REGISTERS -........ 6-7

iv

6.4,1 Page Address Registers 6·8
6.4.2 Page Descriptor Registers 6-8

6.5 VIRTUAL & PHYSICAL ADDRESSES 6-13
6.5.1 Construction of a Physical Address 6-13
6.5.2 Determining the Program Physical Address 6-14

6.6 STATUS REGISTERS 6-15
6.6.1 Status Register 0 6-15
6.6_2 Status Register 2 0 '. 6·17

6.7 INSTRUCTIONS .. 6-17
6.8 STACK LIMIT OPTION .. 6·23

CHAPTER 7 ARITHMETIC OPTIONS (FOR THE 11/35 & 11/40) 7·1

7.1 GENERAL .. 7·1
7.2 EIS OPTION .. 7-1
7.3 FLOATING POINT· OPTION 7-6

CHAPTER 8 CONSOlE OPERATION .. 8-1

8.1 PDP·11/05 & 11/10 CONSOLE 8-1
8.1.1 Console Elements .. 8-1
8.1.2 Console Switches .. 8·1
8.1.3 Indicators 8-3

8.2 POP-1l/35 & 11/40 CONSOLE 8·6
8.2.1 Console Elements .. 8-6
8.2.2 Status Indicators .. 8.6
8.2.3 Console Switches 8· 7
8.2.4 Displays.......... 8.8

CHAI'TER 9 SPECIFICATIONS .. 9-1

. 9.1 CPU OPERATING SPECIFICATIONS : ... ~..... 9-1
9.2 PACKAGING 9-1
9.3 MOUNTING INFORMATION.. 9-7
9.4 TABLE OF SPECIFICATIONS .. 9-9
9.5 PDp·ll FAMILY OF COMPUTERS 9-10

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Programming Differences Between PDP-11 CPU's A-I

Memory Map 8-1

Instruction Timing ,,,..................................... C.1

Instruction Index and Numerical Op COde Ust 0.1

Summary of PDP· 11 Instructions E-1

v

vi

CHAPTER 1

INTRODUCTION

1.1 THE POP-ll CONCEPT
In 1970, the first PDP-ll was introduced, marking a break with tradi­
tional small computers. To achieve a superior product, an extensive
study was made on how small computers are used and what type of
programming was needed. Typically, an installation has a wide variety
of peripherals and customer designed interfaces. To handle this situ­
ation, the PDP-ll uses a single communications path called a UNIBUS,
that allows easy data transfer and control with fast or _slow, simple or
complex devices. This unique bus design eliminates system obsoles­
cence! Any particular component may be replaced by a faster or mote
sophisticated one, including ,the central processor, since timing is asyn­
chronous_ This means a PDP-ll system can take advantage of new tech-
nological breakthroughs. '

The programming aspect of the investigation turned up several signif­
icant facts. Most programs operate on structured data; arrays, lists,
m,atrices, and characters, as opposed to isolated data elements. The
PDP-ll addressing architecture has eight different modes for efficient
manipulation of the data structures. Input/output programming is
accomplished in an innovative manner resulting in low overhead and
easy implementation. The unique concepts in the PDP-ll resulted in
the award of three patents.

The PDP-ll family includes several central processor units (CPU's), a
large number of peripheral devices and options, and extensive soft­
ware. New equipment will be compatible with existing family members.
The user can choose the system which is most suitable for his appli­
cation, but as needs change,he can easily add or change hardware.

All PDP-ll computers have the following features:
• IS-bit word (two a-bit bytes)
. direct addresSing of 321< 16-bit words or 64K a-bit bytes (K = 1024)

• Word or byte processing
very efficient handling of a-bit characters without the need to rotate,
swap, or mask

• Asynchronous operation
system components run at their highest possible speed, replace­
ment with faster devices means faster operation without other
hardware or software changes

1-1

• Modular component design
extreme ease and flexibility in configuring systems

• Stack. processing
hardware sequential memory manipulation makes it easy to handle
structured data, subroutines, and interrupts

• Direct Memory Access (DMA)
inherent in the architecture is direct memory access for multiple
devices

• 8 general-purpose registers
fast integrated circuits used for accumulators or address generation

• Automatic Priority Interrupt
four-line, multi-level system permits grouping of interrupt lines
according to response. requirements

• Vectored interrupts
fast interrupt response without device polling

• Single & double operand instructions
powerful and convenient set of programming instructions

• Power Fail & Automatic Restart
hardware detection and software protection for fluctuations in the
AC power

1.2 COMPUTERS
This Handbook describes two central processors_They are offered in
several packaging arrangements, and with different services and soft­
ware to fill the diverse needs of the End User and the Original Equip­
ment Manufacturer (OEM)_ Four basic models will be described: PDP-
11/05, PDP-lIllO, PDP-1l/35, and PDP-11/40_ Another processor, the
PDP-11/45, is described in a separate handbook.

A PDP-11 processor is a 16-bit general-purpose, parallel logic computer
using 2's complement a,rithmetic_ The processor can directly address
32,768 16-bit words or 65,536 8-bit bytes. The CPU performs all arith­
metic and logical operations required in the system.

1.2.1 PDP-U/05 & PDP-ll/10
The PDP-11/05 and the PDP-ll/10 central processors are electrically
the same_ Digital Equipment Corporation (DEC) offers the PDP-U/05
for the Original Equipment Manufacturer (OEM)_ As such it is sold in
those configurations and with those services that are convenient for the
OEM. The PDP-llIlO is offered for the End User, and is sold in con­
figurations that optimize its use with our small system software. More
services and software are included with the PDP-H/IO for the End User.

Both central processors are housed in a 5 1,4" or 10112" high assembly
unit that mounts in a standard 19" rack. The PDP-11/05 can accept
between 4K and 28K words of memory; the PDP-ll/10 comes standard
with 8K of core memory_ '

1·2

The PDP-1I/05 and 11/10 are full-fledged computers that can execute
aU the basic PDP-11 instructions_ They are the small, economical cen­
tral processors with the large capability_ They enjoy all the advantages
of being a true member of the PDP-ll family and being able to use all
the extensive developed software and peripheral equipment. If there is
ever a need to upgrade to a faster or more powerful central processor,
the PDP-Il/05 (or 11/10) can simply be replaced by a different POpel!
CPU, and software and peripherals remain the same in the system_

The PDP-Il/05 and 11/10 include as standard item, hardware equip­
ment that would be either necessary or very desirable in a usable con­
figuration, such as:

-Input/Output comJ?.uter terminal interface control
The serial line interface can be used to operate a Teletype, a DEC­
writer (LA30, 30 character/sec printer and input keyboard), or an
Alphanumeric CRT Terminal (VT05, 240 character/sec display and
input keyboard)_

• Programmer's Console
Switches and display for entering and verifying data as well as con­
trolling basic cO'mputer operations. There is- a Power/Panel Lock
switch with-'a removable key.

• Line Frequency Clock
An internal timing signal derived from the power source for keeping
track of when events happen. (Equivalent to the KW11-L clo.ck option)

• Pre-wired Connector Slots
The PDP-Il/05 & PDP-ll/lO are prewired to accept extra memory,
communication interfaces, and standard peripheral device control­
lers_ The included CPU power supply has sufficient excess capacity
to handle optional internal equipment_

1.2.2 PDP-11/35 & PDP-ll/40
The PDP-Il/35 and the PDP-ll/40 central processors are functionally
identical. The 11/40 is packaged in a 21" high front panel slide chassis,
which in turn" is mounted in a standard DEC 72" cabinet, allowing con­
venient access and expansion. The 11/35 is mounted in a 10%" high
slide mounted chassis for compactness_ The computers were designed
to fit a broad range of applications, from simple situations where the
computer consists of only 8K of memory and an I/O device, to large
multi-user, multi-task environments requiring up to 124K of core mem­
ory. The machines provide a balance between high-speed processing
and economy coupled with expandability. The processor assembly is
pre-wired to accept a Floating Point option, and a Memory Manage­
ment option for addressing over 28K of core memory_ Memory Man­
agement also provides relocation and protection, especially useful in a
mUlti-user operation. .

Included with the basic 11/35 & 11/40 are:
• 8K of 900 nsec core memory

• Programmer Console with LED display and removable key ·for
Power/ Panel Lock

• Power supply with excess capacity to drive internal optional equip­
ment

1-3

• Prewired to accept Floating Point and Memory Management hard-
ware options

Table 1-1 highlights some of the significant differences and similarities
of the computers.

DEC References

PDp·ll Peripherals and Interfaci:1g Handbook

Introduction to Programming

Small Computer Handbook

PDp·ll Computer Manuals

1.3 PERIPHERALS/OPTIONS
Digital Equipment Corporation (DEC) designs and manufactures many of
the peripheral devices offered with PDP-II's. As a designer and manu­
facturer of peripherals, DEC can offer extremely reliable equipment, lower
prices, more choice and quantity discounts.

1.3.1 I/O Devices
All PDP-ll systems can use a Teletype as the basiS I/O device. How­
ever, I/O capabilities can be increased with high-speed paper tape
reader· punches, line printers, card readers or alphanumeric display ter­
minals. The LA30 DECwriter,. a totally DEC·designed and built tele­
printer, can serve as an alternative to the Teletype. It has several
advantages over standard electromechanical typewriter terminals, in­
cluding higher speed, fewer mechanical parts and very quiet operation.

PDp·ll I/O devices include:

Cassette, TAll
DECterminal alphanumeric display, VT05
DECwriter teleprinter, LA30
High Speed Line Printers, LSll, LPll
High Speed Paper Tape Reader and Punch, PCll
Teletypes, LT33
Card Readers, CRlI, COlI
Graphics Terminal, GT40
Synchronous and Asynchronous Communications Interfaces

1.3.2 Storage Devices
Storage devices range from· convenient, small-reel magnetiC tape (DEC­
tape) units to mass storage magnetic tapes and disk memories. With the
UNIBUS, a large number of storage devices, in any combination, may be
connected to aPDP-ll system. TU56 DECtapes, highly reliable tape units
with small tape reels, designed. and built by DEC, are ideal for applica­
tions with modest storage requirements. Each DECtape provides storage
for I44K I6-bit words. For applications which require handling of large
volumes of data, DEC offers the industry compatible TUI0 Magtape.

Disk storage include fixed· head disk units and moving-head removable
cartridge and disk pack units. These devices range from the 64K RS64
DECdisk memory, to the RP03 Disk Pack which can store up to 20 mil­
lion words.

1-4

Table 1·1 COMPUTERS DESCRIBED IN THIS HANDBOOK

PDP-llf05 I PDP-llfl0 PDP-llf35 I PDP-ll/40

Main Market OEM End User OEM End User
Front Panel Height 5 14" or 10%" 5 14" or 10112" 10112" 21"
Central processor KDll-B KDll-A
Max Memory Size (words) 28K (K = 1024) 124K
Max Address Space (words) 32K 128K
Instructions basic set basic set + 5 extra
Programming Modes 1 1 (std), or 2 (optional)
EQUIPMENT:

Floating POint (software only) option
Memory Management (not available) option
1/0 Serial Interface included with CPU option included
line Frequency Clock included with C.PU option
Core memory included 4K or 81'(8K 8K 8K
Teletype or DECwriter optional optional optional included
Cabinet optional optional optional included

SERVICES:
Warranty 30 day, 90 day. 30 day, 90 day.

return to on-site return to on-site
factory factory

Installation optional on-site optional on-site
Papertape System optional
Software

included optional included

Papertape Diagnostic with first included optional included
Software system
Maintenance Manual with first included optional included

system
Training optional optional optional included

PDP-ll storage devices include:

DECtape, TU56
Magtape, TUlO
64K word fixed-head disk, RS64
256K word fixed-head disk, RSll
I.2M word moving-head disk, RK05
20M word moving-head disk, RP03

1.4 SOnwARE
Extensive software, consisting of disk and paper tape systems, is avail­
able for PDP-ll Family systems. The larger the PDP-ll configuration, the
larger and more comprehensive the software package that comes with it.

1.4.1 Paper Tape Software
The Paper Tape Software system includes:

Editor (EDll)
Assembler (PALlI)
Loaders
On-line Debugging Technique (ODTlI)
Input-Output· Executive (lOX)
Math Package (FPP!I)

1.4.2 Disk Operating System Software
The Disk Operating System software includes:

Text Editor (EDI!)
MACRO Assembler (MACRO-ll)
Linker (LlNKll)
File Utilities Packages (PIP)
On Line Debugging Technique (ODTl!)
Librarian (LlBR!l)

1.4.3 Higher Level Languages
BASIC
PDP-ll users needing an interactive conversational language can use
BASIC which can be run on the paper tape software system with only
8,!92 words of core memory. A multi-user extension of BASIC is avail­
able so up to eight users can access a PDP-I! with only 8K of core.

BATCH
The BATCH System adds job stream processing to the DOS System.

RSTS-ll
The PDP-ll Resource Timesharing System (RSTS-ll) with BASIC-PLUS,
an enriched version of BASIC, is available for up to !6 terminal users.

FORTRAN
PDP-ll FORTRAN is an ANSI-standard, FORTRAN IV compiler.

1.5 NUMBER SYSTEMS
Throughout this Handbook, 3 number systems will be used; octal, binary,
and decimal. So as not.to clutter all numbers with subscripted bases,
the following general convention will be used:

I-S

Octal-for address locations, contents of addresses, and operation
codes for instructions; in most cases there will be words of,6'
octal digits

Binary-for describing a single binary element; when referring to
a PDP-ll word it will be 16 bits long

Decimal-for all normal referencing to quantities

Octal Representation

:-r--115114 13 121;1 10 91 8 7 6 1 5 4 3 1 2 1 0 1 PDP-ll word
L-.J.. __ ~ . I I . J I·. I I . I ! . ! I .
~\)~,----------.-J~~

o 0 0 0 0 0 6-digit octal

The 16-bit PDP-ll word can be represented conveniently as a 6-digit
octal word. Bit 15, the Most Significant Bit (MSB), is used directly as
the Most Significant Digit of the octal word. The other 5 octal digits are
formed from the corresponding groups of 3 bits in the binary word.

When an extertded address of 18 bits is used (shown later in the Hand­
book), the Most Significant Digit of the octal word is formed from bits
17, 16, and 15. For unsigned numbers, the correspondence between
decimal and octal is:

Decimal Octal

o
(216_1)= 65,535
(218-1)=262,143

2's Complement Numbers

000000
177777
777777

(I6-bit limit)
(18-bit limit)

In this system, the first bit (bit 15) is used to indicate the sign;

O=positive
l=negative

For positive numbers, the other 15 bits represent the magnitude directly;
for negative numbers, the magnitude is the 2's complement of the
remaining 15 bits. (The 2's complement is equal to the 1's complement
plus one.) The ordering of numbers is shown below:

Decimal

largest PQsitive +32,767
+32,766

+1
o

-1
-2

-32,767
most negative -32,768

1-7

2's Complement (Octal)

Sign Bit
o
o
o
o
1
1

1
1

Magnitude. Bits
77777
77776
00001
00000
77777
77776

00001
00000

CHAPTER 2

SYSTEM ARCHITECTURE

2.1 UNIBUS
All computer system components and peripherals connect to and com­
municate with each other on a single high·speed bus known as -the
UNIBU5-the key to the PDP-ll's many strengths. Addresses, data, and
control information are sent along the 56 lines of the bus.

Figure 2·1 PDP-ll System Simplified Block Diagram

The form of communication is the same for every device on the UNIBUS.
The processor uses the same set of signals to communicate with memo
ory as with peripheral devices. Peripheral devices also use this set of
signals when communicating with the processor, memory or other pe­
ripheraldevices. Each device,including memory locations, processor
registers, and peripheral device registers, is assigned an address on the
UNIBUS. Thus, peripheral device registers may be manipulated as flex­
ibly as. core memory by the central processor. All the instructions that
can be applied to data in core memory can be applied equally well to
data in peripheral device registers. This is an especially powerful feature,
considering the special capability of PDp·ll instructions to process data
in any memory location as though it were an accumulator.

2.1.1 B.idirectional Unes
With bidirectional and asynchronous communications on the UNIBUS,
devices can send, receive, aM exchange data indepen'dently without
processor intervention. For example, a cathode ray tube (CRT) display
can refresh itself from a disk file while the central processor unit (CPU)
attends to other tasks,Because it is asynchronous, the UNIBUS is c.om­
patible with devices operating over.a wide range of speeds.

2.1.2 Master-Slave Relation
Communication between two devices on the bus is rn the form of a
master-slave relationship. At any point in time, there is one device that
has control of the bus. This controlling device is termed the "bus mas­
ter." The master device controls the bus when communicating with
another device on the bus, termed the "slave." A typical example of
this relationship is the processor, as master, fetching an instruction from
memory (which is always a slave). Another example is the disk, as

2·1

master, transferring data to. memory, as slave. Master-slave relation­
ships are dynamic. The processor, for example, may pass bus control
to a disk. The 'disk, as master, could then communicate with a slave
memory bank.

Since the UNIBUS is used by the processor and all I/O devices, there is
a' priority structure to determine which device gets control ofthebus~
Every device on the UNIBUS which is capable of becoming bus master
is assigned a priority. When two devices, which are capable of becoming
a bus master, request use of the bus simultaneously. the device with
the. higher priority will receive control.

2.1.3 Interlocked Communication
Communication on the UNIBUS is interlocked so that for each control
signal issued by the master device, there must be a response from the
slave in order to complete the transfer. Therefore, communication is
independent of the physical bus length (as far as timing'is concerned)
and the response time of the master and slave devices. The asynchro­
nous operation precludes .the need for synchronizing with, and waiting
for, clock impulses. Thus, each device is allowed to operate at its
maximum possible speed.

Interlaces to the UNIBUS are not time-dependent; there are no pulse­
width.or rise-time restrictions to worry about. The maximum transfer rate
()n the UNIBUS is one I6-bit word every 400 nanoseconds, or 2,500,000
words per second.

Input/output devices transferring directly to or from memory are given
highest priority and may request bus mastership and steal bus and mem­
ory cycles during instruction operations. The processor resumes opera­
tion immediately after the memory transfer. Multiple devices can operate
simultaneously at maximum direct memory 'access (DMA) rates by
"stealing" bus cycles.

Full 16-bit words or 8-bit bytes of information can be transferred on the
bus between a master and a slave. The information can be instructions,
addresses, .or data.- This type of operation occurs when the processor, as
master,is fetching instructions, operands,and data from memory, and
storing the results into memory after execution of instructions. Direct
data transfers occur between a 'peripheral device control and memory.

2.2 CENTRAL PROCESSOR
The central processor, connected to the UNIBUS as a ,subsystem, con­
trols the time allocation of the UNIBUS for peripherals and performs
.arithmetic and logic operations and 'instruction decoding. It contains
multiple high'speedgeneral-purpose registers which can be used as accu­
mulators, address pointers, index registers, and other specialized func­
tions. The processor .can perform data transfers directly between I/O
devices and memory without disturbing the processor registers; does
both single- and double-operand ·addressing and handles both 16-bit
word and.8-bit byte data.

2.2.1 General Registers
The .central processor contains 8 general registers which can be used for
a variety of purposes. The registers can be used as acc.umulators, index

2-2

· registers, autoincrement registers, autodecrement registers, or as stack
pointers for temporary storage of data. Chapter 3 on Addressing de·
scribes. ~ese uses of the general registers in more detail. Arithmetic
operations can be from one general register to another, from one memory
or device register to another, or between memory or a device register
and a ge(leral register. Refer to Figure 2·2.

GENERAL
REGISTERS RO

Rl

R2

R3

R4

R'

R6 I(sp)

STACK POINTER

R7 l(pC)

PROGRAM COUNTER

Fgure 2·2 The General Registers

R7 is used as the machine's program counter (PC) and contains the
address of the next instruction to be executed. It is a general register
normally used only for addressing purposes and not as an accumulator
for arithmetic operations.

The R6 register is normatly used as the Stack Pointer indicating the last
entry in the appropriate stack (a common temporary stDrage area with
"Last·in First·Out" characteristics).

2.2.2 Instruction Set
The instruction complement uses the flexibility of the general·purPQse
registers to provide over 400 powerful hard·wired instructions-the most
comprehensive and 'powerfuI instruction repertoire of any computer in
the 16·bit class. Unlike conventional 16·bit computers, which usually
have three classes of instructions (memory reference instructions, oper·
ateor AC control instructions and I/O instructions) all operations in the
PDp·ll are accomplished with one set of instructions. Since peripheral
device registers can be manipulated as flexibly as core memory by the
central processor, instructions that are used to manipulate data in core
memory may be used equally well for data in peripheral device registers.
For example, data in an external··device register can be tested or modified
directly by the CPU, without bringing it into memory or disturbing the
general registers. One can add data directly to a peripheral device reg·
ister, or compare logically or arithmetically. Thus all PDp·ll instructions
can be used to create a new dimension in the treatment of computer
I/O and the need for a speCial class of I/O instructions is eliminated.

The basic order code of the PDp·ll uses both single and double operand
address instructions for words or bytes. The PDp·ll therefore performs

2·3

very efficiently inOhe step, such operations as adding or subtracting two
operands, or moving an operand from one location to another.

ADDA,B

LDAA

ADDB

STAB

Addressing

PDp·ll Approach

;add contents of location A to loca­
tion B, store results at location B

Conventional Approach

;Ioad contents of memory location A
. into AC

;add contents of memory location B to
AC

;store result at location B

Much of the power of the PDP·ll is derived from its wide range of ad­
dressing capabilities. PDP-ll liddressing modes include sequential
addressi!1g forwards or backwards, addressing indexing, indire.ct address:
ing, 16-bit word addressing,8-bit bYte addressing, and stack addressing.

, Variable length instruction formating allows a minimum number of bits
to be used for. each addressing mode. This results in efficient use of
program storage space.

2.2.3 Processor Status Word

.15 I. 13 12 11 8 7 5' 3 2 1 0

CURRfNTMOOE~ ~t ~l
PREVIOUS MO~.~ _
PRIORITY
CONDITION CODES

• MODE: 00' KERNEL} USED ON PDP-ll/3S OR PDP-IliAD WITH
11 • USER TI,IE MeMORY MANAGEMENT OPTION.

Figure 2-3 Processor Status Word

The Processor Status word (PS), at location 777776, contains infor­
mation on the current status of the PDP-ll. This information includes
the current processor priority: current and previous operational modes;
. the condition codes describing the results of the last instruction; and
an indicator for detecting the execution of an instruction to be trapped
during program debugging.

Processor Priority
The Central Processor operates at anyone of eight levels of priority, 0-7.
When the CPU is operating at level 7 an external device cannot interrupt
it with a request for service. The Central Processor must be ·operating
at a lower priority than the external device's request in order for the
interruptio.n to take effect. The current priority is maintained in the

24

processor status word (bits 5-7). The 8 processor levels provide an
effective interrupt mask.

Condition Codes
The condition codes contain information on the result of the last CPU
operation. -

The bits are set as follows:

Trap

Z = 1. if the result was zero
N = 1. if the result was negative
C = 1. if the operation resulted in a carry from the MSB
V = 1. if the operation resulted in an arithmetic overflow

The trap bit (T) can be set or cleared under program control. When set,
a processor trap will occur through location 14 on completion of instruc­
tion execution and a new Processor Status Word will be loaded. This bit
is especially useful for debugging programs as it provides an efficient
method of installing breakpoints.

2.2.4 Stacks
In the PDP-ll. a stack is a temporary data storage area which allows a
program to make efficient use of frequently accessed data. A. program
can add or delete words or bytes within the stack. The stack uses the
"last-in. first-out" concept; that is, various items may be added to a
stack in sequential order and retrieved or deleted from the stack in
reverse order. On the PDP-1~, a stack starts at the highest location re­
seNed for it and expands linearly downward to the lowest address as
items are added. The stack is used automatically by program interrupts,
subroutine calls, and trap instructions. When the processor is inter·
rupted, the central processor status word and the program counter are
saved (pushed) onto the stack area. while the processor services the
interrupting device. A new status word is then automatically acquired
from an area in core memory which is reserved for interrupt instruc­
tions (vector area). A. return from the interrupt instruction restores the
original processor status and returns to the interrupted program without
software inteNention.

2.3 PDP·llfOS & 11/10 INTERNAL CPU EQUIPMENT
SCI., Serial Communication Line Interface
The SCL interface is contained on one of the CPU modules. The inter­
face is program compatible with the DLll·A, DEC's standard serial in­
terface option, and can handle speeds up to 2,400 baud. Specifically it
can control:

DECwriter, LA.30, up to 30 characters/ sec
Alpha·numeric Terminal, VT05, up to 240 characters/sec
Teletype, up to 10 characters/sec

The SeL interface is not connected to the UNIBUS; it is connected to the
CPU by an internal bus. This means that there can be no NPR transfers
on the SCL It also means that a parallel LA30 cannot lae used as the
local I/O device, only a serial LA30 or a Teletype.

2-5

L Te, Une Time Clock
The clock is contained on one of .the CPU modules. It is program com­
patible with the KWll-L, DEC's standard line clock option. The clock
.senses the 50 or 60 Hz line frequency for internal timing.

Power Supply
The power supply can be operated from either l15 VAC or 230.VAC by a
sit:nple change of the power control (within the power supply assembly) .

. The power supply has enough capacity to handle the CPU, 8K of memory,
plus additional memory and optional equipment that can mount within
the CPU assembly unit.

2.4 PDP-l1/35 & 11/40 EQUIPMENT
The central processor is prewired to accept the following options:

Extended Instruction Set, KEll-E
Floating Point, KEll-F
Memory Management, .KT11·D
Programmable Stack Limit, KJll-A
Real Time Clock, KWl1-1
I/O Terri1inaIControl, DLll or LCll

~ended Instruction Set & Floating Point Options
The Extended Instruction Set (EIS) option provides the capability of per­
forming hardware fixed pai.nt arithmetic and allows direct implementa­
tion of multiply, divide, and multiple shifting. A double-precision 32-bit
word can be handled.

The Floating Point Unit uses the EIS as a prerequisite. This option en­
ables the execution of 4 special instructions for floating point addition,
subtraction, multiplication, and division. The EIS and Floating Point
hardware provide significant time and coding improvement over com­
parable software routines.

The Floating Point Unit functions as an integral part of the PDP-l1 pro­
cessor, not as a bus device.

Memory Management Option
Memory rytanagement is an advanced memory extension, relocation, and
protection feature which will:

Extend memory space from 28K to 124K words
Allow efficient segmentation of core for multi-user environments
Provide effective protection of memory segments in multi-user en-.
vironments

With this option the machine operates in two modes; Kernel and User,
When the machine is in Kernel mode a program has complete control
of the machine; when in User mode the processor is inhibited from exe­
cuting .certain instructions and can be deniea direct access'to the periph­
erals on the system. This hardware feature can be used to provide
complete executive protection in a multi-programming environment. A
software operating system can insure that no user (who is operating in
user mode) can cause a failure (crash) of the entire system. Full con­
trol of the entire system is retained at the console or by an operator
who is in Kernel mode.

2-6

Bits 12 through 15 of the Processor Status word, see Figure. 2-3, are
used with the Memory Management option. Mode information includes
the present mode, either Kernel or User (bits 15,14) and the mode the
machine was in prior to the last interrupt ortrap (bits 13,12).

Stack Limit Option
This option allows. program control of the lower limit for permissible
stack addresses. The normal boundary without this option is (400) s.
If the program attempts to exceed this limit for stack addresses, an indi­
cation is given to the program by means of a trap.

The Stack Limit option is included with the Memory Management option.

Power Supply
The power supply can be operated from either 115 VAC or 230 VAC, by'
making simple equipment changes. The power supply ha.s enough capac­
ity to handle the CPU, 8K of memory, plus additional memory and
optional equipment that can mount within the CPU assembly unit.

Other Equipment
ThePDP-11/40 is supplied with the following:

I/O terminal interface control logic
DECwriter terminal or teletype
72" high, standard 19H wide cabinet
8K words of core memory

2.5 MEMORY
MemO!)' Organization
A memory can be viewed as a series of locations, with a number (ad­
dress) assigned to each location. Thus an 8,192-word PDP-11 memory
could be shown as in Figure 2-4.

LOCATIONS

000000

000001

000002

000003

000004

• • OCTAL • --ADDRESSES • ----• • •
037774

037775

037776

037777

Figure 2-4 Memory Addresses

2-7

Because PDP-ll memories are designed to accommodate both 16-bit
words and 8-bit bytes, the total number of addresses does not corre­
spond to the number of words. An 8K·word memory can contain 16K
bytes and consist of 037777 octal locations. Words always start at even·
numbered locations.

A PDP-.ll word is divided into a high byte and a low byte as shown in
Figure 2-5.

IS 7 o
HIGH BYTE LOW 8YTE

Figure 2·5 High & Low Byte

Low bytes. are stored at even·numbered memory locations and high
bytes at odd·numbered memory locations. Thus it is convenient to view
the PDP·ll memory as shown in Figure 2-6.

000001

000003

000005

03n73

037775

037777

16-811 WOI1O

BYTE BYTE

~ __ ~H~IG~H ____ +-__ ~.~~~W~~ 00000o

~ __ ~H~IG=H~ __ +-___ L=OW=-__ ~ 000002

HIGH

--
--

HIGH

HIGH

HIGH

LOW 00000'

LOW

LOW

LOW

-/

037772

03777'

037716

OR

{
{

LOW

HIGH

LOW

HIGH

~W

L---' :---

HIGH

LOW

HIGH

WORO ORGANIZATION BYTE ORGANIZATION

Figure 2·6 Word and Byte Addresses

00000o

000001

000002

000003

00000.

037775

037776

037717

Certain memory locations have been reserved by the system for inter­
rupt and trap handling, processor stacks, general registers, and periph·
eral device registers. Addresses from 0 to 3708 are always reserved and
those to 7778 are reserved on large system configurations for traps and
interrupt handling.

A 16-bit word used for byte addressing can address a maximum of 32K
words. However, the top 4,096 word locations are reserved for peripheral
and register addresses and the user therefore has 28K of core to pro­
gram. With the PDP-ll/35 & 11/40, the user can expand above 28K
with the Memory Management option. This device provides an 18·bit

2-8

effective memory address which permits addressing up to 124K words
of actual memory. .

If the Memory Management option is not used, an octal address be·
tween 160000 and 177 777 is interpreted as 760000 to 777 777. That
is, if bit 15, 14 and 13 are 1's, then bits 17 and 16 (the extended ad­
dress bits) are. considered to be 1's, which relocates the last 4K words
(8K bytes) to become the highest locations accessed by the UNIBUS.
Refer to Section 1.5.

2.6 AUTOMATIC PRIORITY INTERRUPTS
The multi·level automatic priority interrupt system permits the processor
to respond automatically to conditions outside the system. Any number
of separate devices can be attached to each level.

CP
PRIORITY

DEVICE
REQUEST

UNO

---NPR~--I-'-----l-"----l~-----------
'~"Ej ~

~8R7---I~t------I-_---------------
~ ~

---·"-[f]-'--o .. ~[f]O---. --

'--815 ---,-..----,-,-..----,--.-----------

~ :~ ~
-.0. -[£]----H5R . -[£].----P ----[f]-[f]---.--T.

INCREASING "ORITY

Figure 2·7 UNIBUS Priority

Each peripheral device in the PDP·ll system has a hardware pointer 'to
its own pair of memory words (one pOints to the devices's service rou·
tine, and the other contains the new processor status information). This
unique identification eliminates the need for polling of devices to identify
an interrupt, since the interrupt service hardware selects and begins
executing the appropriate service routine after having automatically
saved the status of the interrupted program segment.

The devices' interrupt priority and service routine priority are indepen·
dent. This allows adjustment of system behavior in response to real·time
conditions, by dynamically changing the priority level of the service
routine.

The interrupt sysfem allows the processor to continually compare its

2·9

own programmable priority with the priority of any interrupting devices
and to acknowledge the device with the highest . level above the proces­
sors priority level. Servicing an interrupt for a device can be interrupted
for servicing a higher priority device_ Service to the lower priority. device
is resumed automatically upon completion of the higher level servicing.
Such a process, called nested interrupt servicing, can be carried out to
any level without requiring the software to Save and restore processor
status at each level.

When a device (other than the central processor) is capable of becom­
ing bus master and requests use of the bus, it is generally for one of
two purposes:

1. To make a non-processor transfer of data directly to or from
memory

2. To interrupt a program execution and force the processor to
go to a specific address where an interrupt service routine
is located.

Direct Memory Access
All PDP-U's provide for direct access to memory_ Any number of DMA
devices may be attached to the UNIBUS_ Maximum priority is given to
DMA devices thus allowing memory data storage or retrieval at memory
cycle speeds. Response time is minimized by the organization and logic
of the UNIBUS, which samples requests and priorities in parallel with
data transfers.

Direct memory or direct data transfers can be accomplished between
any two peripherals without processor supervision. These non-processor
request transfers, called NPR level data transfers, are usually madfl for
Direct Memory Access (memory to/from mass storage) or direct device
tram;fers (disk refreshing a CRT display)_

Bus Requests
Bus requests~from external devices can be made on one of five request
lines. Highest priority is assigned to non-processor request (NPR)_ These
are direct memory access type transfers, and are honored by the pro­
cessor between-bus Cycles of an instruction execution_

The processor's priority can be set under program control to one of eight
levels using bits 7, 6, and 5 in the processor status register. These bits
set a priority level that inhibits granting of bus requests on lower levels
or on the same level_ WIlen the processor's priority is set to a level, for
example PS6, all bus requests on BR6 and below are ignored.

When more than one device is connected to the same bus request (BR)
line, a device nearer the central processor has a higher priority than a
device farther away_ Any number of devices can be connected to a given
BR or NPR line_

Thus the priority system is two-dimensional and provides each device
with a unique priority. Although its priority level is fixed, its actual
priority changes as the processor priority varies. Also, each device may
be dynamically, selectively enabled or disabled under program control.

2-10

Once a device other than the processor has control of .the bus, it may
do one of two types of operations: data transfers or interrupt operations.

NPR Data Transfers-NPR data transfers can be made between any two
peripheral devices without the supervision of the processor. Normally,
NPR transfers are between a mass storage device, such as a disk, and
core memory. The structure of the bus also permits device·to·device
transfers, allowing customer·designed peripheral controllers to access
other devices, such as disks, directly.

An NPR device has very fast access to the bus and can transfer at high
data rates once it has control. The processor state is not affected by
the transfer; therefore the processor can relinquish control while an in·
struction is in progress. This can occur at the end of any bus cycles
except in between a read·modify·write sequence. An NPR device in con·
trol of the bus may transfer 16·bit words from memory at memory speed.

2.6.1 Using the Interrupts
Devices that gain bus control with one of the Bus Request lines (BR 7-
BR4) can take full advantage of the Central Processor by requesting an
interrupt. In this way, the entire instruction set is available for manipu­
lating data and status registers.

When a service routine is to be run, the current task being performed
by the central processor is interrupted, and the device service routine
is initiated. Once the request has been satisfied, the Processor returns
to its former task. .

2.6.2 Interrupt Procedure
Interrupt handling is automatic in the PDP-11. No device polling is re­
quifi:!d to determine which service routine to execute. The operations
required to service an interrupt are as follows:

1. Processor relinquishes control of the bus, priorities permitting.

2. When a master gains control, it sends the processor an interrupt
command and an unique memory address which contains the ad­
dress of the device's service routine, called the interrupt vector
address. Immediately following this pointer address is a word (lo­
cated at vector address +2) which is to be used as a new Processor
Status.

3. The processor stores the current Processor Status (PS) and the cur­
rent Program Counter (PC) into CPU temporary registers.

4. The new PC and PS (interrupt vector) are taken from the specified
address. The old PS and PC are then pushed onto the current stack.
The service routine is then initiated.

5. The device service routine can cause the processor to resume the
interrupted process by executing the Return from Interrupt instruc­
tion, described in Chapter 4, which pops the two top words from
the current processor stack and uses them to load the PC and PS
registers.

2-11

A device routine can be interrupted by a higher priority bus request any
time after the new PC and PS have been loaded. If such an interrupt
occurs, the PC and PS of the service routine are automatically stored
in the temporary registers and then pushed onto the new current stack,
and the new device routine is initiated.

2.6.3 Interrupt Servicing
Every hardware device capable of interrupting the processor has a unique
set of locations (2 words) reserved for its interrupt vector. The first word
contains the location of the device's service routine, and the second, the
Processor Status Word that is to be used by the service routine. Through
proper use of the PS, the programmer can switch the operational mode
of the processor, and modify the Processor's Priority level to mask out
lower level interrupts.

Reentrant Code
Both the interrupt handling hardware and the subroutine call hardware
facilitate writing reentrant code for the PDP-ll. This type of code allows
a single copy of a "given subroutine or program to be shared by more
than one proce!is or task. Thi.s reduces thearnount of core needed ·for
multi:task applications such as the concurrent servicing of many periph­
eral devices.

Power Fail and Restart
The PDP-ll's power fail and restart system not only protects memory
when power fails, but also allows the user to save the existing program
location and status (including all dynamic registers), thus preventing
harm to devices, and eliminating the need for reloading programs. Auto­
matic restart is accomplished when power returns to safe operating
levels, enabling remote or unattended operations of PDP-l1 systems. All
standard peripherals in the PDP-l1 family are included in the systemized
power-fail protectl restart feature.

2-12

CHAPTER 3

ADDRESSING MODES

Data stored in memory must be accessed, and manipulated. Data handling is
specified by a PDP·ll instruction (MOV, ADD etc.) which usually indicates:

the function (operation code)

a general purpose register to be used when locating the source operand
and/or a general purpose register to be used when locating the destination
operand.

an addressing mode (to specify how the selected register(s) is/are to be
used)

Since a large portion of the data handled by a computer is usually structured (in
character strings, in arrays, in lists etc.), the PDp·ll has been designed to handle
structured data efficiently and flexibly. The general registers may be used with an
instruction in any of the following ways:

as accumulators. The data to be manipulated resides within the register.

as pointers. The contents of the register are the address of the operand,
rather than the operand itself.

as pointers which automatically step through core locations. Automatically
stepping forward through consecutive core locations is known as au·
toincrernent addressing; automatically stepping backwards is known as
autodecrernent addressing. These modes are particularly useful for pro·
cessing tabular data.

as index registers. In this instance the contents of the register, and the
word following the instruction are summed to produce the address of the
operand. This allows easy access to variable entries in a list.

PDp·Il's also have instruction addressing mode combinations which facilitate
temporary data storage structures for convenient handling of data which mu~t be
frequently accessed. This is known as the " stack."

1Ft the p,DP·U any register can be used as a "stack pointer"under program con·
trol, however, certain instructions associated with subroutine linkage and inter·
rupt service automatically use Register 6 as a "hardware stack pointer". For this
r!!ason R6 is frequently referred to as the "SP".

R7 is used by the processor as its program counter (PC). It is recommended that
R7 not be used as a stack pointer.

3·1

An important PDP·.11 feature, which must be considered in conjunction
with the addressing modes, is the register arrangement;

Six general purpose registers, (RO·R5)

A hardware Stack Pointer (SP), register (R6)

A Program Counter (PC), register (R7).

Instruction mnemonics and address mode symbols are sufficient for
writin, machine language programs. The programmer need not be con·
cerned about conversion to binary digits; this is accomplished auto·
matically by the ,PDP· 11 MACRO Assembler.

3.1 SINGLE OPERANO ADDIESSING
The instruction format for all· single operand instructions (such as clear,
increment, test) is:

I I MODE Rn

...... '_5 _____ ..,.-____ --.J6 J \5 4 3 2 OJ

OP CODE _~~--3
DESTINATIOIII ADDRESS -----------'

Bits 15 through 6 specify the operation code that defines the type of in·
struction to be executed.

Bits 5 through 0 form a six·bit field called the destination address field.
This consists of two subfields:

. a) Bits 0 through 2 specify which of the eight general purpose registers
is to be referenced by this instruction word.

b) Bits 3 through 5 specify how the selected register will be used (ad·
dress mode). Bit 3 is set to indicate deferred (indirect) addressing;

3.2 DOUBLE OPERAND ADDRESSING ,
Operations which imply two operands (such as add, subtract, move and
compare) ,are handled by instructions that specify two addresses. The
first operand is called the source operand, the second' the destination
operand. Bit assignments in' the source and destination address ffelds
may specify different modes and different registers. The Instruction
format for the double operand instruction is:

3·2

OP CODE I MODE Rn MODE

15 12 ,11 ·10 9 8 6, ,5 4 3 2 0,

SOURCE ADORESS---.J f--'=---.::.J
DESTINATION ADORESS --------,---'-

The soUrce address field is used to select the source operand, the first
operand. The destinatiorris used similarly, and locates the second op·
erand and the result. For, example, the instruction ADD A, B adds the
contents (source operand) of location A to the contents (destination
operand) of location B. After execution B will contain the result of the
addition and the contents of A will be unchanged.

Examples in this section and further in this chapter use the following
sample PDP-ll instructions:'

Mnemonic Oescription Octal Code

CLR clear (zero the specified, destination) 005000

CLRB clear byte (zero the byte in the specified 105000
destination)

INC increment (add 1 to contents of destination) 005200

INCB increment byte (add 1 'to the ~ntents of 105200
destination byte)

COM complement (repla.ce the contents of the 005100
destination by their logical c(lmplement;
each 0 bit is set and each .1 bit is cleared)

COMB complement byte (replace the contents of the 105100
destination byte by their logical complement;
each 0 bit is set and each 1 bit is cleared).

ADO add (add source operand to destination .06SS00
operand and store the result at destination
address)

00 ::: destination field (6 bits)

SS = source field (6 bits) .

()::: contents of

3-3

3.3 DIRECT ADDRESSING
The following table summarizes the four basic modes used with direct addressing.

DIRECT MODES

Mode Name Assembler Function
Syntax

0 Register Rn Register contains operand

2 Autoincrement (Rn) + Register is used as a pointer to
sequential data then in-
cremented

4 Autodecrement -(Rn) Register is decremented and
then used as a pointer.

6 Index X(Rn) Value x is added to (Rn) to pro-
duce address of operand. Nei-
ther X nor (Rn) are modified.

3.3.1 Reelster Mode
OPR Rn

With register mode any of the general registers may be used as simple accumula­
tors and the operand is contained in the selected register. Since they are hard­
ware registers, within the processor, the general registers operate at high speeds
and provide speed advantages when used for operating on frequently-accessed
variables. The PDP·ll assembler interprets and assembles instructions of the
form CPR Rn as register mode operations. Rn represents a general register name
or number and OflR is used to represent a general instruction mnemonic. As­
sembler syntax requires that a general register be defined as follows:

RO = %0 (% sign indicates register definition)

Rl-%l

R2 == %2, etc.

Registers are typically referred to by name as RO, RI, R2, R3, R4, R5, R6 and R7.
However R6 and R7 are also referred to as SP and pc, respectively. .

Reelster Mode Examples
(all nunibers in octal)

"Symbolic

1. INCR3

Operation:

Octal Code lnstruction Name

005203 Increment

Add one to the contents of general register 3

3-4

10000101001001010 I~~"k
L\~15~~~~~~~--~~~R6~J'\5~44~3~~2~~_-_-_~_~~~ ..
OP CODE (lNC(0052))~ i
DESTINATION FIELD------------

2. ADDR2,R4 060204 Add

R0

R1

R2

R3

R4

R5

RS(SP)

R7(PC)

Operation: Add the contents of R2 to the contents of R4.

3. COMBR4

Operation:

BEFORE ,.;..""'.,;.:lE:..;.R_:-:-:---.

R2 L.I __ 000002=:,::",..J R2 1...1 _-=0.:,:00:..;.00=2---J

R4 LI __ o:..;.ooo;;.:.:..04---J R4 1...1 _...;0..;..00_00,;..:6--,

BEFORE

105104 Complement Byte

One's complement bits 0-7 (byte) in R4. (When
general registers are used, byte instructions only
operate on bits 0-7; i.e. ~e 0 of the register)

AFTER

R.I 022222 R41 022155

3.3.2 Autoincrement Mode
OPR (Rn) +

This mode provides for automatic stepping of a pointer through sequential ele­
ments of a table of operands. It assumes the contents of the selected general reg­
ister to be the address of the operand. Contents of registers are stepped (by one
for bytes, by two for words, always by two for R6 and R7) to address the next se­
quential location. The autoincrement mode is especially useful for array process­
ing and stacks. It will access an element of a table and then step the pointer to
address the next operand in the table. Although most useful for table handling,
this mode, is completely general and may be used for a variety of purposes.

3-5

,Autoincrement Mode Examples
Symbolic Octal Code Instruction Name

1. CLR(R5)+

Operation:

BERlRE
ADDRESS SPACE

20000 1 005025
1 Rsl

005025 Clear

Use contents of R5 as the address of the operand.
Clear selected operand and· then increment the
a>ntents ofR5 by two.

AFTER
REGISTER ADDRESS SPACE REGISTER

030000
120000 00502S Rsl 030002

,..-::
30000 1 1 !litis 1

~

2. ClRB(R5}+

Operation:

8EFORE
AalRESS SPACE

30000 000000

105025 Clear Byte

Use contents of R5 as the·.address oHheoperand.
Clear selected byte operand and then increment
the colitentsof R5 by one.

AFTER
REGISTER ADDRESS SPACE REGISTER

20000 105025 I R5 I 030000

::1"'i'yJ
120000 105025 RS 1 ... __ 03_0_00_'_-,

3. ADD (R:i!)+.R4

Operation:

BEFORE
ADDRESS SPACE

10000 062204 R2

R41

1000021 010000

:= 11-'_11---;_0_00-1

062204 Add

The contents of R2 are used as the address of the
operand which .is added. to the contents of R4. R2
is then incremented by two.

AFTER.
REGISTERS ADORESSSPACES REGISTERS

10000 1 062204 R21 100004

010000 R4(020000

100002 1 010000

3·6

3.3.3 Autodec:rement ~
OPR-(Rn)

This mode is useful for processing data in a list in reverse direction. The contents
of the selected general register are decremented (by two for word instructions, by
one for byte instructions) and then used as the address of the operand. The
ohoice of postincrernent, predecrement features for the PDp·Il were not arbitrary
decisions, but were intended to facilitate" hardware/software "stack operations.

". Autodecrement Mode .£xamples
Symbolic Octal Code Instruction Name

1. I NC-(RO)

Operation:

BEFQRE
AOORESS SPACE

005240 Increment

The contents of RO are decremented by two and
used as the address of the operand. The operand is
increased by one.

AFTER
flEGISTERS AOORESS SPACE REGISTER

1000 I QQS24Q R01 0.17776 10.00 I 005240

17774 I 000.0.00

2. I NCB-(RO)

Operation:

BEFORE

ApoflESS SPACE

1000 I 1 0.5240

177741 000.

17776 L_......l._---'

0.0.0.

3. ADD-(R3),RO

Operation:

...---:::::: .
17774 I 00000.1

105240 I ncrement Byte

The contentscif· RO are decremented by one then
used.as the address of the operand. The operand
byte is increased by one.

REGISTER

RCilI 0.17776

AFTER

'"ADDRESS SIIiACE

10.00 I 1(15240

17774 j......:.:.:....~::.::...-I
17776 L-_~_...J

Add

The cont~ts of R3 are decremented by 2 then
" used as a pointer to an operand (source) which is
added to the contents ofRO (destination operand).

3·7

BEFORE
ADDRESS SPACE

10020 1 __ 0_64_30_0_-,

7777411----'-'000=.;05...:.0_-l
77776 L... ____ -'

3.3.4 Index Mode

REGISTER
AFTER

ADDRESS SPACE

10020 1L----'-06:.,.4_30_0_-'

REGISTER

R01 0000070 R0 L.I _-,-0_00_0_20_-,

R3 1 __ 07_7_77_6_--, ~4
777741 000050 I
71776 ____ -'.

OPR X(Rn)

The contents of the selected general register, and ~n index word following the in·
struction word, are summed to form the address of the operand. The contents of
the selected register may be used as a bas~ for calculating a series of addresses,
thus allowing random access to elements of data structures. The selected register
can then be modified by program to access data in the table. Index addressing in·
structrons are of the form OPR X(Rn) where X is the indexed word and is located
in the memory location following the instruction word and Rn is the selected gen·
eral register.

Index Mode "Examples
Symbolic

1. CLR 200(R4)

Operation:

BEFORE

ADORESS SPACE

Octal Code Instruction Name

005064
000200

Clear

The address of the operand is determined by ad·
ding 200 to the contents of R4. The location is
then cleared.

AFTER

REGISTER ADDRESS SPACE REGISTER

R4 1 __ 00_'_00_0_ R41 00'000 1020

1022 ~-:-=~-!
'020

1------1

2.

1024 ,000
~+200

1200~ 1200

'202 t===:j

COMB 200(R1) 105161
000200

1022 1-___ -;
1024 L..... ___ ---'

1200~

Complement Byte

Operation: The contents of a location which is determined by
adding 200 to the contents of R1 are one's com·
plemented. (Le. logically complemented)

3-8

BEFORE

AD_55 SPACE

t020
f-~--~

102Z ~--'==_-I

20176 1 20200

REGISTER

RI LI _..:0,.;.17..:7..:77_--1

AFTER

ADDRESS SPACE REGISTER

Rl 0...1 __ 0_17_7_7_1_-,

1022 ~--':=~_-I

::~ 0...1 __ '6_.6 ... IO_O_"_...J1

3. ADD 3O(R2).2O(R5) 066265
000030
000020

Add

Operation:

BEFORE
OODAESSSf>ACE

1020 r 066265

1022 I 000030

1024 r 000020

1130 I' 000001

2020 I 000001

1100 2000
+30 +20

1130 2020

R21

R5 !

The conteAts of a location which is determined by
adding 30 to the contents of R2 are added to the
contents of a location which is determined byad·
ding 20 to the contents of R5. The result is stored
at the destination address. i.e. 20(R5)

AFTER
REGISTER ADDRESS SPACE REGISTER

001 100 1020 r 066265 R2! 001100

1022 l 000030
002000

1024 r 000020 RSI 002000

1130 I 000001

2020 j 000002

3·9

3.4 DEFERRED (INDlRECl) ADDRESSING
The four basic modes may also be used with deferred addressing. Whereas in the
register mode the operand is the contents of the selected register, in the register
deferred mode the contents, of the selected regist~ is the address of the operand.

In the three other deferred modes, the contents of the register selects the address
of the operand rather than the operand itself. These modes are ther'E!fore used
when a table consists of addresses rather than operands. Assembler syntax for.
indicating deferred addressing is "@"(or "()"when this is not ambiguous)'iThe
following table summarizes the deferred versions of the baSic modes: '

Mode Name Assembler Function
Syntax

1 Register Deferred @Rnor(Rn)
Register contains the address of
the operand '

3 Autoincrement Deferred @(Rn) + Register is first used as a
pointer to a word containing the
address of the operand, then in·
cremented (always by 2; even
for byte instructions).

5 Autodecrement Deferred @-(Rn) Register is decremented (always
by two; even for byte instruc·
tions) and then used as a
pointer to a word containing the
address of the operand

7 Index Deferred @X(Rn) , Value X (stored in a word follow·
ing the instruction) and (Rn) are
added and the sum is,used as a
pointer to a word containing the
address of the operand. Neither
X nor (Rn) are modified.

Since each deferred mode is similar to its basic mode counterpart, separate de­
scriptions of each deferred mode are not necessary. However, the following exam·
pies illustrate-the deferred modes.

,Register Deferred Mode Example
Symbolic Octal Code Instruction Name

CLR@R5

Operation:

BeFORE
AOORESS SPACE

_161100
71 '11------1

. 000'00

005015 Clear

The contents of location specified, in R5 are
cleared.

AFTER

REGISTER ADDRESS SPACE REGISTER

RS 11.._001,-,-7",00_--1 :: 11---000000----1
AS 1..1 _00,-,-' 7",00_ ...

3·10

Autoincrement J)eferred Mode Example
Symbolic Octal Code Instruction Name

INC@(R2)+

Operation:

BEFORE
ADDRESS SPACE

'0300 LI __ oO_'_01O_--.J1

005232 Increment

The contents of R2 are used as the address of the
address of the operana.
Operand is increased by one. Contents of R2 is in·
cremented by 2. -

REGISTER
AFTER

ADDRESS SPACE

,o,o~
'012~

'0300 1-1_.::00:.:':::°':::°_-1

REGISTER

R2 L.I _.:..O'.:..03:;0=2_...J

Autodecrement Deferred Mode Example

Symbolic

COM@-(RO)

Operation:

OlEFOjIE
AOIlRES$ SFAC£

'0100 I 012345

'0102

'O774 l 0'0100

'0776

Octal Code Complement

005150

The contents of RO are decremented by tWfl and
then used as the address of the address oHhe op'
erand. Operand is one's complemented. (Le. logi­
cally complemented)

- AFTER
AOIJRESS SPACE REGISTER

R0 L.I ---.:o~' 0:.;,.776:.:..........J :!l'- f55~
:~: LI_-_O_'O_'O_O_-II

Index-~~Ie
Symbolic Octal Code - Instruction Name

ADD.@ l000(R2),Rl 067201 Add
001000

Operation: 1000 and contents of R2 are summed to pr,oduce
the address of the address oHhe :source operand
the contents of. which are aCilded to contents of Rl;
the result is sfored-inRl. -

3·11

BEFORE AfTER
ADDRESS SPACE REGISTER AOOAESS SPACE REGISTER

1020 ~201 RI I OOlZ34

IQZZ '. 001000 R2 I 000100
1024

1020 RI I 001236 I
1022

R21 000100 I
1024

1050 I ~0002 I
11~00,'Q5() 1000

~. ±!Q.Q.. 1100

1050
1 1

000002

1100 I' 001050 I

3.5 USE OF THE PC AS A GENERAL REGISTER
Although .RegiSter'7 is a general ,purpose register,.it doubles in function as the
Program Counter·for the PDP-H_ Whenever the processor uses the program
counter to acquire a word from memory, the pr-ogram.counteris automaticaIlY'in­
cremented by two to contain the address of the next word of the instruction being.
executed or the address of the next instruction to be executed. (When the pro­
gram uses the PC to locate byte data, the PC. is still incremented by two.)

The PC responds to all the standard PDp·ll addressing mOdes. However, there
are four of these modes with which the PC can provide advantages for handling
position independent code (PIC - seeChapter 5) ,and unstructured data. When re­
garding the PC these modes are termed immediate, ,absolute (or immediate de­
ferred), relative and relative deferred, and are summarized below:

Mode Name'

2 Immediate

3 Absolute

6 Relative

7 Relative Deferred

Assembler Function
Syntax

n ' Operand 'follows instruction

@#A.

A

@A

Absolute Address follows. in­
struction

Relative Address (index value)
follows the instruction.

Index value (stored in the
word' following the instruction)
is the relative address for the
address .of the. operand.

The rea~r should remember that the special effect modes are the same as modes
described in 3.3 and 3.4, but ,the general register selected is R7, the program
counter.

When a standard program is available for different users; it often is helpful to be
able to load it into different areas of core and run it there;" PDP·II'scan accompl­
ish the relOcation of a program very.-efficiently through the use of position inde-

pendent code (PIC) which is written by using the PC addressing modes. If an in·
struction and its objects are moved in such a way that the relative distance
between them is not altered, the same offset relative to the PC can be used in all
positions in memory. Thus, PIC usually references locations relative to the current
location. PIC is discussed in more detail in Chapter 5.

The PC also greatly facilitates the handling of unstructured data. This is partic­
ularly true of the immediate and relative modes.

3.5.1 Immediate Mode
OPR #n.DD

Immediate mode is equivalent to using the autoincrement mode with the PC. It
provides time improvements for accessing constant operands by including the
constant in the memory location immediately following the instruction word.

Immediate Mode Example
Symbolic

ADD #10,RO

Operation:

BE~ORE

ADDRESS SPACE

102Q •. 062700 ",R0 1
1022 000010 PC
1024

3.5.2 Absolute Addressing

Octal Code Instruction Name

062700 Add
000010

The value 10 is located in the second word of the
instruction and is added to the contents of RO.
Just before this instruction is fetched and exe­
cuted, the PC points to the first word of the in­
struction. The processor fetches the first word and
increments the PC by two. The source operand
mode is 27 (autoincrement the PC). Thus, the PC
is used as. a pointer to fetch the operand (the sec­
ond word of the instruction) before being in­
cremented by two to point to the next instruction.

AFTER

REGISTER ADDRESS SPACE REGISTER

000020 1020~ R01 000030

1022 000010 PC

1024 ----

OPR @#A

This mode is the equivalent of immediate deferred or autoincrement deferred us­
ing the PC. The contents of the location following the instruction are taken as the
address of the operand. Immediate data is interpreted as an absolute address
(i.e .• an address that remains constant no matter where in memory the as­
sembled instruction is executed).

3-13

Absolute Mode Examples
Symbolic

1. CLR@#,llOO

Operation:

BEFORE
ADDRESS SPACE

20

22

HOO I t77777

1102

Octal Code Instruction Name

005037
001100 ,

Clear

Clear the contents of location 1100.

AFTER
ADDRESS SPACE

20 005037

C 22 DOt tOO IPC
24

ttOO I 000000

H02

2. ADD @#2000,R3 063703
002000

Operation: Add contents of location 2000 to R3.

BEFORE AFTER
ADORESS SPACE REGISTER ADDRESS SPACE REGISTER

20 063703 ~I 000500 20 063703 R31 001000

22 002000 22 002000
/PC

24 24

2000 I 000300 2000 I 000300

3.5.3 Relative Addressing
OPR A or

OPR X(PC) , where. Xis the location of A relative to the instruction.

This mode is assembled as index mode using R7. The base of the address,calcu·
lation, which is stored in the second or third word of the instruction, is not the ad­
dress of the operand, but the number which, when added to the (PC), becomes
the address of the operand. This mode is uS,efiJl for writing position independent
code (see Chapter 5) since the I~tion referenced is always fixed relative to the
PC. When instructions are to be relocated, thf! operand is moved by the same

- amount.

3·14

IWative· Addressing. Example
Symbolic Octal Code Instruction Name

INC A 005267 Increment
000054.

Operation: To increment location A, contents of memory loca­
tion immediately following instruction word are ad­
dedto (PC) to produce address A_ Contents of A
are increased by one_

BEFORE AFtER

ADDRESS SPACE ADDRESS SPACE

1020 005267 1020 0005267

1022 000054 lO22 000054

f024 PC 1024 _PC

1026 I-------l 1026

1100 I 000001

1024

H~"'~6

3.5.4 Relative Deferred Addressing
OPR@A, or

OPR@X(PC), where x is location containing address of A, relative to the in-
. struction_

This mode is similar to the relative mode, except that the second word of the in­
struction, when added to the PC, contains the address of the address of the oper·
and, rather than the address of the operand.

Relative Deferred Mode Example
Symbolic Octal Code Instruction Name

ClR@A

Operation:

BEFORE

ADDRESS SPACE

1020 I---=:=~---l'
1022 pc

1024 1-___ ----1

10~ .'0~6 ~ ~tD44
10100 I 100001 I

005077
000020

Clear

Add second word of instruction to PC to produce
address of address of operand. Clear operand.

AFTER

ADDRESS SPACE

1022 I-___ ~-PC

10241---___ --1'

104411--::.0 ':.::O~1O:.::0_-I

10100 1-1 _..:0::.;00:,.:000=----1

3-15

3.6 USE OF STACK POINTER AS GENERAL REGISTER
The processor stack pointer (SP, Register 6) is in most cases the general
register used for the stack operations related to program nesting. Auto­
decrement with Register 6 "pushes" data on to the stack and autoincre­
ment with Register 6 "pops" data off the stack. Index mode with SP
permits random access of items on the stack. Since the SP is used by
the processor for interrupt handling, it has a special attribute: autoin·
crements ana autodecrements are always done in steps of two. Byte
operations using the SP in this way leave odd addresses unmodified.

3.7 SUMMARY OF ADDRESSING MODES

3.7.1 General Register Addressing

R is a general register, 0 to 7
(R) is the contents of that register

Mode 0 Register OPR R R contains operand

R

'1NSTRUCTION ~ OPERAND

Mode 1 Register deferred OPR (R) R contains address

I INSTRUCTION l----j ADDRESS r------J OPERAND

Mode 2 Auto·increment OPR (RH

R contains address, then increment (R)

3-16

Mode 3 Auto-increment OPR @(R)+ R contains address of address,
deferred then increment (R) by 2

I INSTRUCTION ~ ADORESS

Mode 4 Auto-decrement. OPR -(R)

Decrement (R), then R contains address

I INSTRUCTION ~ ADORESS L-J-Z.FOR WORDl---r--1 OPERAND . .. rc--,-1 FOR BYTE, I .
R

Mode 5 Auto"Ciecrement
deferred

R

OPR @-(R) Decrement (R) by 2,
then R contains
address of.address

I INSTRUCTION 1-------1 ~""""---Z-T ADDRESS 1-------1 OPERAND· I AOORESS

t

Mode 6 Index OPR X(R) . (R) + X is address

R

AODRESS ~'--OPER-A-NO--'

Mode 7 Index deferred· OPR @X(R) (R)+ X is address of address

R

PC+: : INST~CT~N ~ ADDRESS ~-AOO"'R--:E-:-ss---'H OPERAND

3·17

3.7.2 Program Counter Addressing

Register = 7

Mode 2 Immediate OPR #n

PC I INSTRUCTION I
PC+2 ... 1 ___ -'

Mode 3 Absolute OPR @#A

PC I INSTRUCTION I
PC+2 1-1 _..:.A,--..J~ OPERANO

Mode 6 Relative OPRA

PC f INSTRUCTION I

Mode 7 Relative deferred OPR @A

Operand n follows instwction

Address A follows instwction

PC + 4 + X is address
""-v-'

updated PC

PC + 4 + X is address of address
'-.t-" .

updated PC

PC 1 INSTRUCTION I

PC+2
'------'

3·18

CHAPTER 4

INSTRUCTION SET

4.1 INTRODUCTION

The specification for each instruction Includes the mnemonic,octal code,
binary code, a diagram showing the format of the instruction, a symbolic
notation describing its execution and the effect on the condition codes,
a description, special .comments, and examples. ..

MNEMONIC: This is indicated at the top corner of each page. When the
word instruction has a byte equivalent, the byte mnemonic is also shown.

INSTRUCTION FORMAT: A diagram accompanying each instruction
shows the octal op code, the binary op code, and .bitassignments. (Note
that in byte instructions the most significant bit (bit 15) is always a 1.)

SYMBOLS:

() = contents of

SS or src = source address

DD or dst = destination address

loc = location

+- = becomes

t = "is popped from stack"

~ = "is pushed onto stack"

A = boolean AND

v == boolean OR

..y.== exclusive OR

-- == boolean not

Reg or R = register

B= Byte

• == {O for word

1 for byte

4·1

4.2 INSTRUCTION FORMATS
The major instruction formats are:

15

15

15

15

S.ingle Operand Group

OP Code
I

Double Operand Group

OP Code
I

12 11

Src
I

Register·Source or Destination

OPCode
I

Branch

9 8

18as~ ~ode I

8 7

4-2

dst

6 5

6 5

6 5

dst
I

Src/dst
I

offset
I

, .
o

o

o

o

Byte Instructions
The POP·l1 processor includes a full complement of instructions that
manipulate byte operands. Since all POP·l1 addressing is byte-oriented,
byte manipulation addressing is straightforward. Byte instructions with
autoincrement or autodecrement direct addressing cause the specified
register to be modified by one to point to the next byte of data. Byte
operations in register mode access the low·order byte of the specified
register. These provisions enable the POP·l1 to perform as either a word
or.byte processor .. The numbering scheme for word and byte addresses
in core memory is:

HIGH BYTE
ADDRESS

002001

002003

BYTE

BYTE

,
3

BYTE 0

BYTE 2

'itORo OR BYTE
ADDRESS

002000

002002

The most significant bit (Bit 15) of the instruction word is set to ind.icate
a byte instruction.

Example:

Symbolic Octal

CLR
CLRB

005000
105000

4·3

Clear Word
Clear Byte

4.3 LIST· OF INSTRUCTIONS
The POP·ll instruction set is shown in the following sequence.

A-A triangle indicates instructions not implemented in the POP-H/05
and 11/10_

. SINGLE OPERAND

Mnemonic

General
CLR(B)
COM(B)
INC(B)
OEC(B)
NEG(B)
TST(B)

Shift & Rotate
ASR(B)
ASL(B)
ROR(B)
ROL(B)
SWAB

Instruction

clear destination
complement dst
increment dst
decrement dst
negate dst
test dst

arithmetic shift right
'arithmetic shift left
rotate right :
rotate left
swap bytes

Multiple Precision
ADC(B) add carry "
SBC(B) subtract carry

A SXT sign extend

DOUBLE OPERAND

General
MOV(B)
CMP(B)
ADD
SUB

Logical
BIT(B)
BIC(B)
BIS(B)

A XOR

move source to destination
compare. src to dst
add src to dst
subtract src from dst

bit test
bit clear
bit set

exclusive OR

4-4

OpCode Page

-05000
-05100
-05200
-05300
-05400
-05700

-06200
-06300
-06000
-06100
000300

-05500
-05600
006700

-lSS00
·.2SSDO
06SS0D
16SS00

-3SS00
-4SS00
-5SS00

074ROO

4·6
4-7
4-8
4-9
4-10
4-11

4-13
4-14
4-15
4-16
4-17

4-19
4-20
4-21

4-23
4-24
4-25
4-26

4-28
4-29
4-30
4-31

PROGRAM CONTROL

Mnemonic

;Branch.
BR
BNE
BEQ
BPl
BMI
BVC
BVS
BCC
BCS

·Instruction

branch (unconditional)
branch if not equal (to zero)
branch if equal (to zero)
branch if plus

. branch if minus
branch if overflow is clear
branch if. overflow is set
branch if carry is clear
branch if carry is set

Signed Conditional Branch
BGE branch if greater than or equal

(to zero)
BlT branch if less than (zero)
BGT branch if greater than (zero)
BlE branch if less than or equal (to zero)

Unsigned Conditional Branch
BHI branch if higher
BlOS branch if lower or same
BHIS branch if higher or same
BlO branch if lower :

Jump & Subroutine

OpCode
or

'Base Code Page

000400
001000
001400
100000
100400
102000
102400
103000
103400

002000
002400
003000
003400

101000
101400
103000
103400

4·33
4·34
4·35
4·36
4·37
4-38
4·39
4·40
4·41

4·43
4·44
4-45
4·46

4·48
4-49
4·50
4·51

JMP jump .. 000100 4.52
JSR jump to subroutine '" 004ROO 4.54
RTS te~urn from subroutine 00020R 4;56

• MARK mark... 006400 4.57
.. SOB subtract 'one and branch (if #- 0) 077 ROO 4.59

Trap & Interrupt
EMT emulator trap 104000-104377 4.61
TRAP trap 104400-104777 4.62
BPT breakpoint trap :....... 000003 4.63
lOT input/output trap 000004 '4.64
RTI return from interrupt 000002 4.65

.. RTT return from interrupt 000006 4.66

MISCELLANEOUS
HALT halt
WAIT wait for interrupt
RESET reset external bus

Condition Code Operation

000000
000001
000005

.clC, ClV, CLZ, ClN, CCC clear 000240 4.73
SEC, SEV, SEZ, SEN, SCC set :........................... 000260 4.73

4·5

4.4 SINGLE OPERAND INStRUCTIONS

CLR
CLRB

clear destination

o 0 o

15

Operation: Cdst).EO

Condition Codes: N: cleared
Z: set
V: cleared
C: cleared

d d d d

6 5 o

Description: Word: Contents of specified destination are replaced with ze­
roes.

Example:

Byte: Same

Before
CRl) = 177777

NZVC
11 11

4-6

CLR R1

After
CR1) = 00000o

NZVC
0100

complement dst

o 0 o

15 6 5

Operation: (dst).-(dst)

d d d

COM
COMB

d

o

Condition Codes: N: set if most significant bit of result is set; cleared otherwise
Z: set if result is 0; cleared otherwise
V: cleared
C: set

Description: Replaces the contents of the destination address by their log­
ical complement (each bit equal to 0 is set and each bit equal
to 1 is cleared)
Byte: Same

Example: COM RO

Before
(RO) = 013333

NZVC
0110

4-7

After
(RO) = 164444

NZVC
1001

INC
INCB

increment dst -05200

1011 I ° ° ° ° 1 I 0: 1 I ° I d
d d d

15 6 5

Operation: (dst~(dst)+ 1

Condition Codes: N: set if result is <0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: set if (dst) held 077777; cleared otherwise
C: not affected

Description: Word: Add one to contents of destination
Byte: Same

Example: INC R2

Before
(R2) "" 000333

After
(R2) "" 000334

d

NZVC
0000

NZVC
0000

4-8

°

decrement dst.

o 0 o d . I
15 6 5

Operation: (dst).t(dst)-l

Condition Codes: N: set if result is <0; cleared otherwise
Z: set if result is 0; cleared otherwise

d

V: set if (dst) was 100000; cleared otherwise
C: not affected

d

DEC
DECB

o

Description: Word: Subtract 1 from the contents of the destination
Byte: Same

Example: DEC R5

Before
(R5) =000001

NZVC
1000

4-9

After
(R5) = 00000o

NZVC
0100

NEG
NEGB

negate dst

10/110 0 0 o d d
I d d I

15 6 5

Operation: (dst)4 -(dst)

Condition Codes: N: set if the result is <0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: set if theresuH is 100000;c!eared otherwise
C: cI~red if the resuH is· 0;. set otherwise

o

Description: Word: Replaces the contents of the destination address by·its,
two,'s complement. Note that 1()()()()() is replaced by itself ·(in
two's complement notation the most negative number has
no positive counterpart).
Byte: Same

Example: NEG RO

Before
(RO) ",ooono

NZVC
0000

4·10

After
(RO) = 177770

NZVC
1001

TST
TST8

test dst

o 0 o 1 : 1 d

15 6 5

Operation: (dst).,.(dst)

Condition Codes: N: set if the result is <0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: cleared
C: cleared

o

Description: Word: Sets the condition codes Na nd Z according to the con­
tents of the destination address
Byte: Same

Example: TST R1

Before
(R1) = 012340

NZVC
0011

4·11

After
(Rl) = 012340

NZVC
0000

Shifts
Scaling data by factors of two is accomplished by the shift instructions:

ASR . Arithmetic shift right

ASL . Arithmetic shift left

The sign bit (bit 15) of the operand is replicated in shifts to the right. The low
order bit is filled with 0 in shifts to the left. Bits shifted out of the" C bit, as shown
in the following examples, are lost.

Rotates
The rotate instructions operate on the destination word and the C bit as though
they formed a 17·bit "circular buffer'. These instructions facilitate sequential bit
testing and detailed bit manipulation.

4·12

ASH
ASRB

arithmetic shift right

10/1 I ° ° ° ° I d
d d d d

15 6 5 °
Operation: (dst).(dst) shifted one place to the right

Condition Codes: N: set if the high·order bit of the result is set (result < 0);
cleared otherwise
Z: set if the result-O; cleared otherwise
V: loaded from the Exclusive OR of the N·bit and C·bit (as set
by the completion of the shift operation)
C: loaded from low·order bit of the destination

Description: Word: Shifts a\l bits of the destination right one place. Bit 15
is replicated. The C·bit is loaded from bit 0 of the destination.
ASR performs signed division of the destination by two.
Word:

Byte:

4·13

ASL
ASLB

arithmetic shift left -063DD

1°'1 I ° ° °
15

Operation:

6 5

(dst)~dst) shifted one place to the left

o

Condition COdes: N: set if high-order bit of the result is set (result < 0); cleared
otherwise _
Z: set if the result = 0; cleared otherwise
V: loaded with the exclusive OR of the N-bit and C-bit (as set
by the completion of the shift operation)
C: loaded with the high-order bit of the destination

Description: Word: Shifts all bits of the destination left one place_ Bit 0 is
loaded with an 0_ The C-bit of the status word is loaded from
the most significant bit of the destination. ASl performs a
signed multiplication of the destination by 2 with overflow in­
dication.
Word:

Byte:

0-l...:-' ::-I-......."",!~I ~! --'--...L.....Jf..{~J-1....::1 :-,--""",1 ",J-! ~! :=L-~-.l'--O
15 000 ADDRESS 8 7 EVEN ADDRESS 0

4-14

rotate right

10/11 0 o
15

Condition Codes:'

Description:

Example:'
Word:

Byte:

o I 1 o I 0 : 0 I 0 I d d

6 5
d I d d

o

ROR
RORB

N: set if the high-order bit of the result is set (result < 0);
cleared otherwise
Z: set if all' bits of result ".0; cleared otherwise
V: loaded with the Exclusive OR of the N-bit'and C-bit (as set
by the completion of the rotate operation)
C: loaded with the low-order bit of the destination

Rotates all bits of the destination right one place. Bit 0 is
loaded into the C-bit and the previous contents of theC·bit
are loaded into bit 15 of the destination.
Byte: Same

4-15

ROL
ROLB

rotate left

1011 0·0 0
- I

d d
I

15 6 5

Condition Codes: N: set if the high-order bit of the result Y«)rd is set
(result <' 0): cleared otherwise
Z: set if all bits of the result Y«)rd .. 0; cleared otherwise
V: loaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion. of the rotate operation)
C: loaded with the high-order bit of the dest1nation

Description: . Word: Rotate all bits of the destination left one place_ Bit 15
is loaded in.to the C-bit of the status word. and the previous
contents of the C:bit are loaded.into Bit 0 of the destination_
Byte: Same

Example:
Word:

dol

G-I;,.-l ..I-...-J-~--'--",,"---,---.l...-: ----'---'---'-.l..-.-.L..----'-----L~l.
~I ___ 1~5 __________________________________ ~tO

Bytes:

4-16

I

SWAB

swap bytes 000300

o o I 0 o d I d

15 6 5 o

Operation: Byte 1 I Byte 0 .Byte O/Byte 1

Condition Codes: N: set if high-order bit of low-order byte (bit 7) of result is set;
cleared otherwise

Z: set if low-order byte of result = 0; cleared. otherwise
V: cleared
C: cleared

Description: Exchanges high-order byte and low-order byte of the destina­
tion word (destination must be a word address).

EXample: SWAB Rl

Before.
CRl) =077777

NZVC
1 1 1 1

4·17

After
(Rl) = 177577

NZVC
0000

Multiple· Precision
It is· sometimes necessary to do arithmetic on operands considered as multiple
words or bytes. The PDP·ll makes special provision for such operations with the
instructions AOC (Add Carry) and SBC (Subtract Carry) and their Ilyte equiva­
lents.

For example two 16·bit words may be combined into a 32-bit double precision
word and added or subtracted as shown below:

32 BIT WORD -r

• OFERAND I AI A0

31 16 15
I

OFERAND I Bl 80

31 16 15

RESULT

31 16 15

Example:

The addition of -1 and -1 could be performed as follows:

-1 = 37777777777

,

I
0 ,

I
0

0

(Rl) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777

ADD Rl,R2
ADC R3
ADD R4,R3

1. After (Rl) and (R2) are added, 1 is loaded into the C bit

2. ADC instruction adds C bit to (R3);(R3Y = 0

3. (R3) and (R4) are added

4. Result is' 37777777776 or -2

4-18

add carry

o o o 1 I d

15 6 5

d d

ADC
ADCB

-055DD

d

o

Operation: (dst).(dst) + (C)

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if Cdst) was 077777 and (C) was 1; cleared otherwise
C: set if (dst) was 177777 and (C) was 1; cleared otherwise

Description: Adds the contents of thee·bit into the destination. This per·
mits the carry from the addition of the low·order words to be
carried into the high·order re·sult.
Byte: Same

Example: Double precision addition may be done with the following in·
struction sequence:
ADD AO,BO ; add low·order parts
ADC Bl ; add carry into high·order
ADD Al,Bl ; add high order parts

4·19

SBC
SBCB

subtract carry

1011 I 0 o 0

15

o

Operation: (dst).(dst)-(C)

I : 1 o I d d

6 5

Condition Codes: N: set if result <0; ·cleared otherwise
Z: set if result 0; cleared otherwise

d d

V: set if(dst) was 100000; cleared otherwise

-05600

d d I
o

C: cleared if(dst) was 0 and Cwas 1: set otherwise

Description: Word: Subtracts the contents of the C-bit from the destina­
tion. This ·permits·the carry from the subtraction of two low­
order words to be subtracted from the high order part of the

.result.
Byte: Same

Exampte: Double precision subtraction is done by:

SUB AO,BO
sse B1
SUB A1,B1

4-20

SXT
(not in 11/05 & 11/10)

sign extend 006700

o o o o • 1
I

d d i d d

'5 6 5 a

Operation: (dst) • 0 if N bit is clear
(dst) .-IN bit is set

Condition Codes: N: unaffected

Description:

Example:

Z: set if N bit clear
V: cleared
C: unaffected

If the condition code bit N is set then a -1 is placed in the
destination operand: if N bit is cl.ear, then. a 0 is placed in the
destination operand. This instruction is particularly useful in
multiple precision arithmetic because it permits the sign to
be extended through multiple words.

Before
(A) =012345

NZVC
1000

4-21

SXT A

After
(A)=177777

NZVC
1000

4.5 DOUBLE OPERAND INSTRUCTIONS
Double operand .instructions provide an instruction (and time) sal(ing facility
since they eliminate the need for "Ioad"and "save" sequences such as those
used in accumulator-oriented machines_

4-22

MOV
MOVe

move source to destination

o d d d d
I

15 12 '1 6 5

Operation: (dst)~src)

Condition Codes: N: set if (src) <0; cleared otherwise
Z: set if (src) = 0; cleared otherwise
V: cleared
C: riot affected

Description: . Word: Moves the source operand to the destination location.
The previous contents of the destination are lost The con·
tents of the source address are not affected.
Byte: Same as MOV. The MOVB to a register (unique among
byte instructions) extends the most significant bit of the low
order byte (sign extension). Otherwise MOVe operates on
bytes exactly as MOV operates on words.

Example: MOV XXX,R1 ; loads Register 1 with the con·
tents of memory location; XXX represents a programmer-de­
fined mnemonic used to represent a memory location

MOV #20,RO ; loads the number 20 into
Register 0; "# "indicates that the- value 20 is the operand

MOV @#20,-(R6) ; pushes the operand con·
tained in location 20 onto the stack

MOV (R6) + '@ # 177566 ; pops the operand off a stack
and moves it into memory location 177566 (terminal print
buffer)

MOV R1,R3 ; performs an inter
register transfer

MOVB @ # 177562, @ # 177566 ; moves a cha racter
from terminal keyboard buffer to terminal buffer

4-23

CMP
CMPB

compare src to dst

1011 I 0

15 12 II

• :. s Id d d d d

6 5 o

Operation: (src)-(dst) [in detail, (src) + - (dst) + 11

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow; that is, operands were
of opposite signs and the sign of the destination was the
same as the sign of the result; cleared otherwise
C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Description: Compares the source and destination operands and sets the
condition codes, which may then be used for arithmetic and
logical conditional branches. Both operands are unaffected.
The only action is to set the condition codes. The compare is
customarily followed by a conditional branch instruction.
Note that unlike the subtract instruction the order of oper·
ation is (src)-(dst), not (dstHsrc).

4-24

ADD

add src to dst 06SSDD

5 d d d d
.J J

15 12 11 6 5 o

Operation: (dst).{src) + (dst)

COndition Codes: N: set if result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow as a result of the oper·
ation; that is both operands were of the same sign and the
result was of the opposite sign; cleared otherwise
C: set if th~re was a carry from the most significant bit of the
result: cleared otherwise

Description: Adds the source operand 'to the destination operand and
stores the result at the destination address. The original con·
tents of the destination are lost. The contents of the source
are not affected. Two's complement addition is performed.

~xamples: Add to register: ADD 20,RO

Add to memory: ADD RI,XXX

Add register to register: ADD RI,R2

Add memory t() memory: ADD@ # 17750,XXX

XXX is a programmer·defined mnemonic for a memory loca·
tion.

4-25

SUB

subtract src from dst 16SSDD

01 s s d d d I d d d

15 12. 11 6 5 o

Operation: (dst).(dst)-(src) [in detail (dst).(dst) + -(src) + 1J

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow as a result of the oper­
atiqn, that is if operands were of opposite signs and the sign
of the source was the same as. the sign of the result; cleared
otherwise
C: cleared if there wasa carry from the most significant bit of
the result; set otherwise .

Description: Subtracts the source operand from the destination operand
and leaves the result .at the destination address_ The origni al
contents of the destination are lost. The contents of the
source are not affected. In double-precision arithmetic the C­
bit, when set, indicates a "borrow".

Example: SUB R1,R2

Before
(Rl) =011111
(R2) = 012345

NZVC
1 1 1 1

4-26

After
(R1) = 011111
(R2) = 001234

NZVC
0000

Logical
These instructions have the same. format as the double operand arithmetic group.
They permit operations on data at the bi! level. .

4·27

BIT
81TS

bit test

1011, °
15 12 11

OpeNtiom (src) A (dst)

s : s
I .

d

6 5

d d

I
d

o

Condition Codes: N: set if high·order bit of result set; cleared otherwise
Z: set if result =0; cleared otherwise
V: cleared
C: not affected

Description: Performs logiCal "and"comparison of the source and desti·
natiori operands and modifies condition codes accordingly.
Neither the source nor destination operands are affected.
The BIT instruction may be used to test whether any of the
corresponding bits that are set in the destination are also set
in the source or whether all corresponding bits set in the des.·
ti nation are clear in the source.

Examp'e: BIT #30.R3 test bits 3 and 4 of R3 to see

it both are off

(30).=0 000 000 000 011 000

4-28

bit clear

o

15 12 11 6

Operation: (dst) .. -(src).\(dst)

d d d

5

d

BtC
BICB

o

Condition Codes: N: .set if high order bit of result set; cleared otherwise
Z: set if result =0; cleared otherwise
V: cleared
C: not affected

Description: Clears each bit in the destination that corresponds toa set
bit in the source. The original contents of the destination are
lost. TtJe contents of the source are. unaffected.

Example: BIC R3,R4

Before
(R3) = 001234

(R4) = 001111

NZVC
1 1 1 1

Before:

After:

After
(R3) = 001234

(R4) = 000101

NZVC
0001

(R3)=0 000 001 010 011 100
(R4)=0 000 001 001 001 001

(R4)=0 000 000 001 000 001

4-29

BIS
BISB

bit set

15

o

12 11

Operation: (dst).(src) v (dst)

d d d d

6 5 o

Condition Codes: N: set if high-order bit of result set, cleared otherwise
Z: set if result = 0: cleared otherwise
V: cleared-
C: not affected

Description: Performs "Inclusive OR"operation between the source and
destination operands and I~aves the result at the destination
address; that is, corresponding bits set in the source are set
in the destination. The contents of the d~stination are lost.

Example: 81S RO,Rl

Before
(RO) = 001234
(R1) = 001111

Before:

After:

NZVC
0000

After
(RO) =001234
(R1) = 001335

NZVC
0000

(RO)=O 000 001 010 011 100
(R1):;=0 000 001 001 001 001

(Rl)=O 000 001 011 all 101

4-30

XOR

exclusive OR 074RDD

o 0 d d d I d

15 9 8 6 5

Operation: (dst).R ... (dst)

Condition Codes: N: set if the result <0; cleared otherwise
Z: set if result =0; cleared otherwise
V: cleared
C: unaffected

d

o

Description: The exclusive OR of the register and destination operand is
stored in the destination address. Contents of register are
uAaffected. Assembler format is: XOR R.D

Example: XOR RO,R2

Before After
(RO) = 001234 (RO) = 001234
(R2) = 001111 (R2) = 000325

Before: (RO)=O 000 001 010 011 100
(R2)=0 000 001 001 001 001

After: (R2)=0 000 000 011 010 101

4-31

4.6 PROGRAM CONTROL INSTRUCTIONS
Branches

The instruction causes a branch to a location defined by the sum of the offset
(multiplied by 2) and the current contents of the Program Counter if:

a) the branch instruction is unconditional

b) it is conditional and the conditions are met after testing the condition
codes (status word).

The offset is the number of words from the current contents of the PC. Note that
the current contents of the PC point to the word following the branch instruction.

Although the PC expresses a byte address. the offset is expressed in words .. The
offset is automatically multiplied by two to express bytes before it is added to the
PC. Bit 7 is the sign of the offset. If it is set. the offset is negative and the branch
is done in the backward direction. Similarly if it is not set. the offset is positive
and the branch is done in the forward direction.

The 8·bit offset allows branching in the backward direction by 200. words (400.
bytes) from the current PC. and in the forward direction by 177. words (376.
bytes) from the current PC.

The PDP·II assembler handles address arithmetic for the user and computes and
assembles the proper offset field for branch instructions in the form:

Bxx Icc

Where "Bxx" is the branch instruction and "Icc" is the address to which the
branch is to be made. The assembler gives an error indication in the instruction if
the permissable branch range is exceeded. Branch instructions have no effect on
condition codes.

4-32

BR

branch (unconditional) 000400 Plus offset

1000000011 OFFSET

.1!! 8 7 o

Operation: PC .. PC + (2 x offset)

Description: Provides a way of transferring program control within a
range of -128 to + 127 words with a one word instruction.

New PC address = updated PC + (2X offset)

Updated PC = address of branch instruction + 2

Example: With the Branch Instruction at location 500, the following off­
sets apply.

New PC Address
474
476
500
502
504
506

Offset Code
375
376
377
000
001
002

4-33

Offset (decimal)

-3
-2
-1

o
+1
+2

BNE

branch if not equal (to zero) 001000 Plus offset

OFFSET
I

15 8 7 o

Operation: PC .. PC + (2 x offset) if Z = 0

Condition Codes: Unaffected

Description: Tests the state of the Z-bit and causes a branch if the Z-bit is
clear_ BNE is the Complementary operation to BEQ. It is used
to test inequality following a CMP, to test that some bits set
in the destination were also in the source, following a BIT,
and generally, to test that the result of the previous oper­
ation was not zero.

Example: CMP A.B
BNE C

will branch to C if A =1= B

and the'sequence

ADD A,B
BNE C

; compare A and B
; branch if they are not equal

; add Ato B
; Branch if the result is not

equal to 0

will branch to C if A + B =1= 0

4-34

SEQ

branch if equal (to zero) 001400 Plus offset

I 0 0 0 0 0 0 1 I OFFSET
L..,."....J'---...J.-..--L_.L1 _L--....I---L-::-.l..-=-''--.-lI_-'---L_l-.....I--...1.-:;--J

15 8 7 0

Operation: PC ~ PC + (2 x offset) if z

Condition Codes: Unaffected

Description: Tests the state of the Z·bit and causes a branch if Z is set. As
an example, it is used to test equality following a CMP oper·
at ion, to test that no bits set in the destination were also set
in the source following a BIT operation, and generally, to test
that the result of the previous operation was zero.

Example: CMP A,B
BEQ C

will branch to C if A = B
and the sequence

ADD A,B
SEQ C

; compare A and B
: branch if they are equal

(A - B = 0)

; add A to B
; branch if the result =0

will branch toC if A + S o.

4·35

BPL

branch if plus

15

Operation:

Description:

100000 Plus offset

OFFSET

6 7 o

PC .PC + (2 x.offset) if N=O

Tests the state of the N·bit and causes a branch if I'l is
clear, (positive result).

4,36

branch if minus

15

o 0 0 0 0 0
I

e 7

8MI

100400 Plus offset

OFFSET

o

Operation: PC • PC + (2 x offset) if N "" 1

Condition Codes: Unaffected

Description: Tests the state of the N-bit and causes a branch if N is
set. It is used to test the sign (most significant bit) of
the result of the previous operation), branching if neg­
ative.

4-37

Bve

branch if overflow is clear 102000 Plus offset

o

15

Operation:

Description:

o I 0 OFFSET

e 7 o

PC • PC + (2 x offset) if V = 0

Tests the state of the V bit and causes a branch if the V bit is
clear. BVC is complementary operation to BVS.

4-38

BVS

branch if overflow is set 102400 Plus offset

15

Operation:

Description:

o 1 I OFFSET

8 7 o

PC • PC + (2 x offset) if V = 1

Tests the state of V bit (overflow) and cal,lses a branch if the
V bit is set. BVS is used to detect arithmetic overflow in the
previous operation.

4-39

Bee

branch if carry is clear 103000 Plus offset

o o
15

Operation:

Description:

o I 0 o OFFSET
I !

8 7 o

PC • PC + (2 x offset) if C = 0

Tests the state of the C-bit and causes a branch if C is clear.
BCC is the complementary operation to BCS

4-40

BCS

branch if carry is set 103400 Plus offset

I' I 0
o

'5

Operation:

Description:

o o OFFSET
" I

8 7 o

PC • PC + (2 x offset) if C - 1

Tests the state of the C·bit and causes a branch if C is set. It.
is used to test for a carry in the result of a previous oper.
ation.

4-41

Signed Conditional Branches
Particular combinations .of the condition code bits are tested with the signed con·
ditional branches. These instructions are used to test the results of instructions fn
which the operands were considered as signed (two's complement) values.

Note that the sense of signed comparisons dIffers from that of unsigned com·
parisons in that in signed 16·bit. two's complement arithmetic the sequence of
values is as follows:

largest

positive

negative

smallest

077777
077776

000001
00000o
177777
177776

100001
100000

whereas in unsigned 16·bit arithmetic the sequence is considered to be

highest

lowest

177777

000002
000001
00000o

4-42

BGE

branch if greater than or equal
(to zero)

002000 Plus offset

o I 0 o

15

Operation:

Description:

o o o o OFFSET

8 7 o

PC ~ PC +. (2 x offset) if N If V = 0

Causes a branch if N and V are either both clear or both set.
BGE is the complementary operation to Bl T. Thus BGE will
always cause a branch when it follows an operation that
caused additionof two positive numbers. BGE will also cause
a branch on a zero result.

4-43

BLl

branch if less than (zero) 002400 Plus offset

L-°~IL-°~_O~O~I_O~ __ L-°_1L-1~~ __ ·.I __ OF_F_SE~,T~~~~~
15 8 7 0

Operation:

Description:

PC • PC + (2 x offSet) if N If V = 1

Causes a branch if the "Exclusive Or"of the N and V bits are
1. Thus Bl Twill atways branch following an operation that
added two negative numbers, even if overflow occurred.
In particular, BlT will always cause a branch if it follows a
CMf> instruction operating on a negative source and a posi.
tive destination (even if overflow occurred). Further, Bl T will
never cause a branch when it follows a CMP instruction o~r.
ating on a positive source and negative destination. BlT will
not cause a branch if the result of the previous operation was
zero (without overflow).

4·44

BGT

branch if greater than (;zero). 003000 Plus offset

I 0 I 0 0 0 I 0 OFFSET

15

Operation:

DeKription:

8 7 o

PC • PC . + (2 x offset) if Z v(N II- V) = 0

Operation of BGT is similar to BGE. except BGT will not cause
a branch on a zero result.

4·45

BlE

branch if less than or equal (to zero) 003400 Plus offset

I 0 I 0 ,0 0 I 0 OFFSET

15 .

Operation:

Description:

8 7 o

PC .. PC + (2 x offset) if Z v(N yo V) == 1 .

Operation IS similar to BL T but in addition will cause a
branch if the result of the previous operation was zero.

4·46

Unsigned· Conditional· Branches
The Unsigned Conditional Branches provide a means for testing the result of
comparison operations in which the operands are considered as unsigned values.

4·47

BHI

branch if higher 101000 Plus offset

II 1 0 o
15

Operation:

Description:

o I 0 o o I OFFSET

8 7 o

PC.PC + (2 x offset) if C ... OandZ-O

Causes a branch if the previous operation caused neither a
carry nor a zero result. This will happen in comparison (CMP)
operation!; as long as the source has a higher unsigned value
than the destination.

4·48

BLOS

branch if lower or same 101400 Plus offset

Operation:

Description:

pc. PC + (2x offset) if C v Z = 1

Causes a branch if the previous operation caused either a
carry or a zero result. BlOS is the complementary operation
to BHI. The branch will occur in comparison operations as
long as the source is equal to, or has a lower unsigned value
than the destination.

4-49

BHIS

branch if higher or same 103000 Plus offset

15

Operation:

Description:

1 I 0 OFFSET

8 7 o

PC .. PC + (2 x offset) if C = 0

BHIS is the same instruction as Bce. This mnemonic is in·
cludep only, for convenience.

4·50

BLO

branch if IQwer 103400 Plus offset

15

Operation:

Description:

OFFSET

8 7 o

PC .. PC + (2 x offset) if C= 1

BLO is same instruction as BCS. This mnemonic is included
only for convenience.

4·51

JMP

jump . 000100

I 0 1 0 o o I I'd d d I d d ,d I
15 6 5· o

OpwatIon: PC.(dst)

Condition Codes: not affected

Description: JMP provides more flexible program branching than provided
with the branch instructions. Control may be transferred to
any location in memory (no range limitation) and can be ac·
complished with the full flexibility of the addressing modes,
with the exception of register mode O. Execution of a jump
with mode 0 will cause .an"illegal instr!lction"ccmdition.
(Program control cannot be transferred to a register.) Regis·
ter deferred mode is legal and will cause program control to
be transferred to the address held' in the'specified register.
Note that instructions are word data and must therefore be
fetched from an even· numbered address. A 'boundary er-

-ror"trap condition will result when the processor attempts to
fetch an instruction from an odd address.

Deferred index mode JMP instructions permit transfer of
control to the address 'Contained in a selectable element of'a
table of-dispatch vectors.

Subroutine Instructions
The subroutine call in the POp·U provides for automatic nesting of subroutines,
reentrancy, and multiple entry points. Subroutines may call other subroutines (or
indeed themselves) to any level of nesting without making special provision for
storage or return addresses at each level of subroutIne call. The subroutine call­
ing mechanism does not modify any fixed location in memory, thus providing for
reentrancy. This allows one copy of a subroutine to be shared among several in·
terrupting process~. For more detailed description of subroutine programming
see Chapter 5.

4-53

JSR

jump to subroutine 004RDD

15

Operation:

Description:

9 8 6 5 o

(tmp).(dst) (tmp is an internal processor register)

t(SP).reg (push reg contents onto processor stack)

reg. PC (PC holds location following JSR; this address
now put in reg)

PG.(tmp) (PC now points to subroutine destination)

111 execution of the JSR. the old contents of the specified reg­
ister (the "LINKAGE POINTER") are automatically pushed
onto the processor stack and new linkage information placed
in the register. Thus subroutines nested within subroutines
to any depth may all be called with the same linkage register.
There is no need either to plan the maximum depth at which
any particular subroutine will be called or to include instruc­
tions in each routine to save and restore the linkage pointer.
Further, since all linkages are saved in a reentrant manner
on the processor stack execution of a subroutine may be in­
terrupted, the same subroutine reentered and executed by an
interrupt service routine_ Execution of the initial subroutine
can then be resumed when other requests are satisfied. This
process (called nesting) can proceed to any level.

A subroutine called with a JSR reg,dst instruction can access
the arguments following the call with eitherllutoincrement
addressing; (reg) + , (if arguments are accessed sequentially)
or by indexed addressing, X(reg), (if accessed in random or­
der). These addressing modes may also be' deferred,
@(reg) + and @X(reg) if the parameters are operand ad­
dresses rather than the operands themselves_

4-54

Example:

Before:

After:

JSR PC, dstis a special case of the PDP-ll subroutine call
suitable for subroutine calls that transmit parameters
through the general registers. The SP and the PC are the only
registers that may be modified by this call.

Another special case of the JSR instruction is JSR PC,
@(SP) + which exchanges the top element of the processor
stack and the contents of the program counter. Use of this
instruction allows two routines to SWl\P program control and
resume operation when recalled where they left off. Such rou­
ti nes-are called "co-routi nes. "

Return from a subroutine is done by the RTS instruction. RTS
reg loads the contents of reg into the PC and pops the top
element of the processor stack into the specified register.

JSR R5, SBR

(PC) R7 PC Stack

(SP) R6 n .. DATA 0

R5 #1

R7 SBR

I~ R6 n-2 DATA 0

#1
R5 PC+2 I

4·55

'RTS

return from subroutine 00020R

I 0 I 0 0 0 I' 0 , 0 , 0 1 0 : 1 o ci· 0
I .

15

Operation:

Description:

Example:

Before:

After:

PC.reg
re&-f (SP) ,

3 2 o

Loads contents of reg into PC and pops the top element of
the processor stack into the speci~ied register.
Return from a non· reentrant subroutine is typically made
through the same register that was used ill its call. Thus, a
subroutine called with a JSR PC, dst exits with a RTS PC and
a subroutine called with a JSR RS. dst. may pick up para·
meters with addressing modes (RS) +. X(RS), or @X(RS)
and finally exits, with an RTS RS

RTS R5

(PC) R7 SBR Stack

(SP) R6 L..1 __ n_----'~I_-D-AT-A-0__l
L'~ #1

RS PC

R7 I, PC

R6 . n+2 .. DATA 0

RS #1

4·56

mar~

I 0 I 0 o
15

Operation:

Condition Codes:

Description:

Example:

MARK

(not in il/05 & 11110)

o , 0 o I 1 , 0 I n

00 64 NN

n I n n n

.8 7 6 5 o

SP.SP+2xnn
PC .. R5
Rs..(SP) •

nn <= number of parameters

unaffected

Used as part of the standard PDp·I1 subroutine return con·
vention. MARK facilitates the stack clean up procedures in·
volved in subroutine exit. Assembler format is: MARK N

MOV
MOV
"IIOV

R5,-(SP)
Pl.-(SP)
P2.-(SP)

MOV PN.-(SP)
MOV # MARKN,-(SP)

MOV SP ,RS

JSR PC,SUB

;place old RS on stack
;place N parameters
;on the stack to be
;used there by the
:subroutine

;places the instruction
;MARK N on the stack ..
;set up address at Mark N in-
struction .

;jump to subroutine

At this point the stack is as follows:

OLD R5

PI

PN

MARKN

OLD PC

4-57

And the program is at the address SUB which is the beginning
of the subroutine. '
SUB: ;exeCution of the subroutine it·

self

RTS R5 ;the return b!!gins: this causes

the Contents of R5 to be placed in the PC which then results
in the execution of the instruction MARK -N. The contents of
old PC are placed in R5

MARK N causes: (1) the stack pointer t!> be adjusted to point
to the old R5 value; (2) the value now in R5 (the old PC) to be
placed in the PC; and (3) contents of the the old R5 to be
popped into R5 thus completing the return from 5ubrouti ne.

4-58

SOB
(not in the 11/05 & 11/10)

subtract one and branch (if =f:. 0) 077ROO Plus offset

I 0 I I

15 9 8 6 5

OFFSET
I

o

Operation: R. R -1 if this result +- 0 then PC. PC -(2 x offset)

Condition Codes: unaffected

Description: The register is decremented. If it is not equal to 0, twice the
offset is. subtracted from the PC (now pointing to the follow·
ing word). The offset is interpreted as a sixbit positive num­
ber. This instruction provides a fast, efficient method of loop
control. Assembler syntax is:

SOB R,A

Where A is tne address to which transfer is to be made if the
decremented R is hot equal to O. Note that the SOB instruc­
tion can not be used to transfer control in the forward direc­
tion.

4·59

Traps
Trap instructions provide for calls to emulators, 1/0 monitors, debugging pack·
ages, and user·defined interpreters. A trap is effectively an interrupt generated by.
software. When a trap occurs the contents of the current Program Counter (PC)
and Program Status Word (PS) are pushed onto the processor stack and reo
placed by the contents of a two· word trap vector containing a new PC and new
ps. The return sequence from a trap involves executing anRTI or RTT instruc·
tion which restores the oid PC and old PS by popping them from the stack. Trap
vectors are located at permanently assigned fixed addresses.

4-610

emulator trap

I ' , 0 o o I 1 o
15

Opention: t (SP)4PS
t(SP)4PC

PC.(30)
PS4(32)

o I 0 I
8 7

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
c: loaded from trap vector

EMT

104000-104377

o

Description: All operation codes from 104000 to 104377 are EMT instruc­
tions and may. be used to transmit information to the emulat­
ing routine (e_g .. function to be performed). The trap vector
for EMT is at address 30. The new PC is taken from the word
at address 30; the new central prQcessor status (PS) is taken
from the word at address 32.

Before:

After:

Caution: EMT is used frequently by DEC system software and
is therefore not recommended for general use.

PS PS 1 I Stack

R7, PC PC 1

~
DATA 1

R6, SP n

PS (32)

PC (30) I DATA 1

PS 1
SP n-4 II: PC 1

4·61

TRAP

trap

Op_ation: • (SP)4PS
• (SP)4PC

PC.(34)
~(36)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap v\,!<:tor
C: loaded from trap vector

104400-104777

o

Description: Operation codes from 104400 to 104777 are TRAP instruc­
tions_ TRAPs and EMTs are identical in operation, except
that the trap vector for TRAP is at address 34.

Note: Since DEC software makes frequent use of EMT, the
TRAP instruction is recommended for general use.

4-62

BPT

breakpoint trap 000003

10100000010:000000 II
m 0

Operation: t(SP).PS
t(SP).PC

PC <II (14)
PS '4(16)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 14.
Used to call debugging aids. The user is cautioned against
employing code 000003 in programs run under these de·
bugging aids.

'(no information is transmitted in the low byte.)

4·63

lOT

input/output trap 000004

Operation: ... (SP).PS
't(SP).PC

PC.(20)
ps-'(22)

Condition Codes: N:lcaded from trap vector
- Z:loaded from trap vector

V:loaded from trap vector
C:loaded from trap vector

DescriPtion: Performs a trap sequence with a trap vector address of 20.
Used to call the 1/0 Executive routine lOX in the paper tape
software system. and for error reporting in the Disk Oper·
ating System.
(no information is transmitted in the low byte)

4·64

RTI

,.,turn from interrupt 000002

15

Operation:

o 0
I

o

pc'(SPU
PS.(SP) ..

o o o o I 0

N: loaded hom processor stack
Z' ioad",dlrom pmc~:,or stack
\I: ir",";'l",,c h::m processor stack
C: Ica,ded frc.:wn pf'c:i\::essor stack

o o 0
I

o

o

t(> €;;1\it from an int%lrrup'l or TRAP service routine, The
,,,: ;;'i'it~ PS are restored (popped) from the processor stack,

4-65

RTT
(not in 11/05 & 11/10)

return from interrupt 000006

I 0 o o 0 o o o I 0 o o o 0 o o

15 a

Operation: ~(SP) ~
PS.(SP)~

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: This is the same as the RTI instruction except thatit inhibits
a trace trap. while RTI permits a trace trap. If a trace trap is
pending. the first instruction after the RTT will be executed
prior to the next "T"trap. In the case of the RTI instruction
the "TOO trap will occur immediately after the RTI.

4-66

Reserved Instruction Traps - These are caused by attempts to execute instruction
codes reserved for future processor" expansion (reserved instructions) or instruc­
tions with illegal addressing modes (illegal instructions)_ Order codes not corre­
sponding to any of the instructions described are considered to be reserved in­
structions_ JMP and JSR with register mode destinations are illegal instructions_
Reserved and illegal instruction traps occur as described under EMT. but trap
through vectors at addresses 10 and 4 resp~tively.

Stack Overflow Trap
Bus Error Traps- Bus Error Traps are:

1. -Boundary Errors - attempts to reference instructions or word
operands at odd addresses_

2. Time·Out Errors· attempts to reference addresses on the bus
that made no response within a certain length of time. In general,
these are caused by attempts to reference non-existent memory,
and attempts to reference non-existent peripheral devices.

Bus error traps cause processor traps through the trap vector address 4.

Trace Trap - Trace Trap enables bit 4 of the PS and causes processor traps at
the end of instruction executions. The instruction that is executed after the in­
struction that set the T·bit will proceed to completion and then cause a processor
trap through the trap vector at address 14. Note that the trace trap is a system
debugging .aid and is transparent to the general programmer.

The following are special cases and are detailed in subsequent paragraphs.

1. The traced instruction cleared the T-bit.

2_ The traced instruction set the T-bit.

3. The traced instruction caused an instruction trap.

4. The traced instruction caused a bus error trap.

5. The traced instruction caused a st'ack overflow trap.

6. The process was interrupted between the time the T·bit was set and the
fetching of the instruction that was to be traced.

7. The traced instruction w~s a WAIT.

8. The traced instruction was a HALT.

9. The traced instruction was a Return from Trap

Note: The traced instruction is the instruction after the one that sets the T·bit.

An instruction that cleared the T-bit . Upon fetching the traced instruction an in·
ternal flag, the trace flag, was set. The trap will still occur at the end o-f execution
of this instruction. The stacked status word. however, will have a clear T·bit.

An instruction that set the T-bit· Since the T·bit was already set, setting it again
has no effect. The trap will occur.

4-67

An instruction that caused an Instruction Trap . The instruction trap is sprung and
the entire routine for the service trap is executed. If the service routine.its with
an RTI or in any other way restores the stacked status word,the T·bit is set again,
the instruction following the traced instruction is executed and, unless it is one of
the special cases rioted above, a trace trap occurs.

An'instruction that caused a. Bus Error Trap This is treated as an Instruction
Trap. The ooly. difference is that the error service is not as likely. to exit with an
RTI, so that the trace trap may not occur.

An instruction that caused,a· stack··overffow . The instruction 'completes execution
as usual . the Stack Overflow does 'not cause a trap. The Trace Trap Vector is
loaded into the PC and PSi 'and the old PC'and PS are pushed onto the stack.
Stack Overflow occurs again, and this time the trap is made.

An interrupt between setting of ' the T -bit and fetch of the traced instruction· The
entire interrupt service routine is executed and then the T·bit is set again by the
exiting RTI. The traced il'lstraction is executed (if there have been no' other inter·
rupts) and, unless it is a special case noted above, causes a trace trap.

Note that interrupts may be acknowledged immediately after the loading of the
new PC and PS at the trap vector location. To lock out all interrupts, th~ PS at
the trap vector should raise the processor priority to level 7.

A WAIT· The trap occurs immediately.

A HALT· The processor halts. When the continue key on the console is pressed,
~ the instruction following the HALT is fetched and executed. Unless it is one of the

exceptions noted above, th~ trap occurs immediately following execution.

A Return from Trap· The return from trap instruction either clears or sets the T·
bit. It inhibits the trace trap. If the T·bit was set and RTT is the traced instruction
the trap is delayed until completion of the next instruction.

Power Failure Trap· is a standard PDP·ll feature. Trap occurs whenever the AC
power drops below 95 volts or outside 47 to 63 Hertz. Two milliseconds are then
allowed for power down processing. Trap vector for power failure is aflocations
24 and 26.

Trap priorities' in case multiple processor trap conditions 'occur simultaneously
the following order of priorities is observed (from high to low):

I1/OS & 11/10
Odd Address
Timeout
Trap Instructions
Trace Trap
Power Failure

11/35 & 11/40
Odd Address
Fatal Stack Violation
Memory Management Violation
Timeout
Trap Instructions
Trace Trap
Warning Stack Violation
Power Failure

The details on the trace trap process have been de~cribed in the trace trap oper·
ational description which includes cases in which an instruction ~ng traced
causes a bus error, instruction trap, or a stack 'overflow trap.

If a bus error IS caused by the trap process handling instruction traps, trace traps,
stack overtlow traps. or a previous bus error, the processor is halted.

If a stack overflow IS caused by the trap process in handling bus errors, instruc­
tion traps. or trace traps. the. process is completed and then the stack overflow
trap is sprung.

4-69

4.7 MISCELLANEOUS

HALT

halt 000000

10100 00 00 0:00 00

15 o

Condition Codes: not affected

Description: Causes the processor operation to cease. The console is
given control of the bus. The console data lights display the
contents of RO; the. console addresS lights display the ad·
dress after the halt instruction. Transfers on the UNIBUS are
terminated immediately. The PC ppints to the next instruc·
tion to be executed. Pressing the continue key on the console
causes processor operation to resume. No INIT signal is
given.

Note: A halt issued in User Mode will generate a trap.

4·70

WAIT

wait for interrupt 000001

o o o o o 10 o ! I I
~ 0

Condition Codes: not affected

Description: Provides a way for the processor to relinquish use of
the bus while it waits for an external interrupt.
Having been given a WAIT command, the processor
will not compete for blis use by fetching instructions
or operands from memory. This permits higher trans·
fer rates between a device and memory, since no
processor-induced latencies will be encountered by
bus requests from the device. In WAIT, as in all in­
structions, the PC points to the next instruction fol­
lowing the WAIT operation. Thus when an interrupt
causes the PC and .PS to be pushed onto the pro­
cessor stack, the address of the next instruction
following the WAIT is saved. The exit from the in­
terrupt routine (i.e. execution of an RTI instruction)
will cause resumption of the interrupted process at
the instruction following the WAIT.

4-71

RESET

reset external bus 000005

I 0 1 0 o o o o o o

'5 0

Condition Codes: not affected

Description: Sends INIT on the UN IBUS for 10 ms. All devices on the UNI·
BUS are reset to their state at power up.

4·72

· Condition Code Operators ClN SEN
ClZ SEZ
ClV SEV
ClC SEC
eee SCC

condition code operators 0002XX

o I 1 1011 IN Iz I v I c I 10000 ,00
~ I ! , _

o ,0
15 5 4 3 2 0

Description: Set and clear condition code bits. Selectable combinatiohs of
these bits may be cleared or set together. Condition code bits
corresponding to bits in the condition code operator (Bits O·
3) are modified according to the sense of bit 4, the set/clear
bit of the operator. i.e. set the bit specified by bit 0, 1, 2 or 3,
if bit 4 is a 1. Clear corresponding bits if bit 4 = O.

Mnemonic
Operation

ClC ClearC

ClV Clear V

ClZ Clear Z

ClN Clear N

SEC SetC

SEV Set V

SEZ Setl

SEN Set N

sec Set all CC's

CCC Clear all CC's

Clear V and C

NOP No Operation

OP Code

000241

000242

000244

000250

000261

000262

000264

000270

000277

000257

000243
000240

Combinations of the above set or clear operations may be ORed together to form
combined instructions.

4-73

4·74

CHAPTER 5

PROGRAMMING TECHNIQUES

In order to produce programs which fully utilize the power and flexibility of the
PDP·1I, the reader should become familiar with the various programming tech·
niques which are part of the basic design philosophy of the PDP·1l. Although it is
possible to program the PDP· 11 along traditional lines such as "accumulator ori·
entation" this approach does not fully exploit the architecture and instruction set
of th.e PDP·ll.

5.1 THE STACK
A "stack", as used on the PDp·ll, is an area of memory set aside by the"p.ro­
grammer for temporary storage or subroutine/interrupt service linkage. The in·
structions which facilitate "stack" handling are useful features not normally
found in low·cost computers. They allow a program to dynamically establish,
modify, or delete a stack and items on it. The stack uses the "Iast·in, first·out"
concept, that is, various items may be added to a stack in sequential order and reo
trieved or deleted from the stack in reverse order. On the PDp· 11 , a stack starts
at the highest location reserved for it and expands linearly downward to the low·
est address as items are added to the stack.

HIGH ADDRESSES "".".".,.,.----p;>

LOW ADDRESSES

Figure 5·1: Stack Addresses

The programmer does not need to keep track of the actual locations his data is
being stacked into. This is done automatically through a "stack pointer." To keep
track of the last item added to the stack (or "where we are" in the stack) a Gen·
eral Register always contains the memory address where the last item is stored in
the stack. In the PDP· II any register except Register 7(the Program Counter·PC)
may be used as a "stack pointer" under program control; however, instructions
associated with subroutine linkage and interrupt service automatically use Regis·
ter 6 (R6) as a hardware "Stack Pointer." For this reason R6 is frequently reo
ferred ~o as the system "SP." .

5·1

Stacks in the PDP· 11 may be maintained in either full word or byte units. This is
true for a stack pointed to by any register except R6, which mustbe organized in
full word units only.

WORD STACK

ITEM .,

ITEM *2

ITEM *3

007100

007076

007074

007072

007070

007066

007064

1-_'T..:E_M_*_4_-j-- SP 1 ... __ 0_0_7_07_2_--,

007100

007077

007076

007075

BYTE STACK

ITEM *,
ITEM *2

ITEM *3

ITEM .4 4--SP~I __ 0_0_7_07_5_~

Figure 5·2: Word and Byte Stacks

Items are added to a stack using the autodecrement addressing mode with the
appropriate pointer register. (See Chapter 3 for description of the autoincre·
mentldecrement modes).

This operation is accomplished as follows;

MOV Source,-(SP) ;MOV Source Word onto the stack

or

MOVB" Source, -(SP) ;MOVB Source Byte onto the stack

This is called a "push" because data is "pushed onto the stack."

5·2

To remove an item from stack the autoincrement addressing modI;! with the ap­
propriate SP is employed. This is accomplished in the following manner:

MOV (SP) + ,Destination ;MOV Destination Word off the stack

or

MOVB (SP) + ,Destination ;MOVB Destination Byte off the stack

Removing an item from a stack is called a "pop" for "popping from the stack."
After an item has been "popped," its stack location is considered free and avai­
lable for other use. The stack pointer points to the last·used location implying
that the next (lower) location is free. Thus a stack may represent a pool of share­
able temporary storage.lacations.

HIGHMEMORY§ ~ ~ (+ E0 -sp ; E0 .

J~ + El SP

LOW MEMORY t AN EMPTY STACK 2.PUSHINGA DATUM 3.PUSHING ANOTHER
AREA ONTO TIE STACK DATUM ONTO THE

STACKS

~0
El

~ E2 -SP

4. ANOTHER PUSH

~
E3

E'
ff -sp

~ PDP

~p
~~P
5, PDP

~e
El

• E3 _se
6. PUSH

Figure 5-3: Illustration of Push and Pop Operations

5-3

As an example of stack usage consider this situation: a subroutine (SUBR) wants
to use registers 1 and 2, but these registers must be returned to the calling pro·
gram with their contents unchanged. The subroutine could be written as follows:

Address

076322
076324
076326
076330

076410
076412
076414
076416
076420
076422
076424

*Index Constants

Octal Code

010167
000074
010267
000072

016701
000006
016702
000004
000207
00000o
00000o

SUBR:

Assembler Syntax

MOV Rl,TEMPI ;save Rl

MOV R2,TEMP2 ;save R2

MOV TEMPI, Rl ;Restore Rl
*
MOV TEMP2, R2 ;Restore R2
*
RTSPC
TEMPI: 0
TEMP2: 0

Figure 5·4: Register Saving Without the Stack

OR: Using the Stack

Address

010020
010022

010130
010132
010134

Octal Code

010143 SUBR:
010243

012301
012302
000207

Assembler Syntax

MOV Rl, -(R3) ;push Rl
MOV R2, -(R3) ;push R2

MOV (R3) + , R2 ;pop R2
MOV (133) +, Rl ;pop Rl
RTSPC

Note: In this case R3 was used as a Stack Pointer

Figure 5-5: Register Saving using the Stack

The second routine uses four less words of instruction code and two words of
temporary "stack" storage. Another routine could use the same stack space at
some later point. Thus, the ability to share temporary storage in the form of a
stack is a very economical way to save on memory usage.

5-4

As a further example of stack usage, consider the task of managing an input buf­
fer from a terminal. As characters come in, the terminal user may wish to delete
characters from his line; this is accomplished very easily by maintaining a byte
stack containing the input characters_ Whenever a backspace is received a char­
acter is "popped" off the stack and eliminated from consideration. In this ex­
ample, a programmer has the choice of "popping" characters to be eliminated by
using either the MOVB (MOVE BYTE) or INC (INCREMENT) instructions.

001011

001010

001007

001006

001005

001004

001003

001002

001001

c c
U U

5 INC R3 5

T T

0 0. "

M M

E E

R R

Z' 001001

Figure 5-6: Byte Stack used as a Character Buffpr

001002

NOTE that in this case using the increment instruction (INC) is preferable to
MOVB since it would accomplish the task of eliminating the unwanted character
from the stack by readjusting the stack pointer without the need for a destination
location; Also, the stack pointer (SP) used'in this example cannot be the system
stack pointer (R6) because R6 may only point to word (even) locations.

5.2 SUBROUTINE LINKAGE
5_2_1 Subroutine Calls
Subroutines provide a facility for maintaining a single copy of a given routine
which can be used in a repetitive manner by other programs located anywhere
else in memory. In order to provide this facility, generalized linkage methods
must be established for the purpose of control transfer and information exchange
between subroutines and calling programs. The PDP-ll instruction set contains
several useful instructlons for this purpose.

PDP-ll subroutines are called by using the JSR instruction which has the follow­
ing format.

a general register (R) for linkage -----,
JSR R,SUBR

an entry location (SUBR) for the sUbroutine.-J

5-5

When aJSR is executed, the contents of the linkage register are saved on the sys·
tem R6 stack as if a MOV reg,-(SP) had been performed. Then the same register
is loaded with the·memory address following the JSR instruction (the contents of
the current PC) and a jump is made to the entry location specified.

BEFORE

(RS)= 000'32
(R6)= 00 t 716

(PC):(R7).001000

002000

Address Assembler Syntax Oct.,eod.
00\000 JSRR5·.SUBR 004567
001002 index constant tor SUBR 000060

001064 SUBR: MOV A.B Olnnmm

Figure S·7: JSR using R5

AFTER

(R5)=OOI004
(R6)=00'774

(PC)=(R7)-OO '064

002000 n"nnnrt
00'776 1------1_ SP '---:000:":'"::77::6-"', 00.776 l--m- mm- mmm---1

00.774 001774 000132 ~SP 001774

00.772 00'772
1-------1

Figure 5·8: JSR

Note that the instruction JSR R6,SUBR is not normally considered to be a mean·
ingful combination.

5.2.2 Argument Transmission
The memory location pointed to by the linkage register of the JSR instruction may
contain arguments or addressses of arguments. These arguments may be ac·
cessed from the subroutine in several ways. Using Register S as the linkage regis·
ter, the first argument could be obtained by using the addressing modes in·
dicated by (RS), (RS) + ,X(RS) for actual data, or @(RS) + , etc. for the address of
data. If the autoincrement mode is·used;the linkage register is automatically up··
dated to point to the next argument.

Figures S·9 and S·10 illustrate two possible methods of argument transmission.

Address Instructions and Data

010400
010402
010404
010406

020306 SUBR:
020310

JSR RS,SUBR
Index constant forSUBR
arg #1
arg #2

MOV(RS)+,R1
MOV (1\5) + ,R2

SUBROUTINE CALL

ARGUMENTS

;get arg # 1

;get arg # 2 Retrieve Arguments
from SUB

Figure 5-9; Argument Transmission ·Register Autoincrement Mode

5·6

Address Instructions and Data

010400 JSR R5,SUBR
010402 index constant for SUBR SUBROUTINE CALL
010404 077722 Address of Arg # 1
010406 077724 Address of Arg. # 2
010410 077726 Address of Arg. # 3

0'17722 Arg #1
077724 arg #2 arguments
077726 arg #3

020306 SUBR: MOV @(R5)+,R1 ;get arg # 1
020301 MOV @(R5)+,R2 ;get arg #2

Figure 5·10: Argument Transmission-Register Autoincrement Deferred Mode

Another method of transmitting arguments is to transmit only the address of the
first item by placing this address in a general purpose register. It is not necessary
to have the actual argument list in the same general area as the subroutine call.
Thus a subroutine can be called to work on data located anywhere in memory. In
fact, in many cases, the operations performed by the subroutine can be applied
directly to the data located on or pointed to by a stack without the need to ever
actually move this data into the subroutine area.

Calling Program: MOV
JSR

SUBROUTINE ADD

POINTER, R1
PC,SUBR

(R1) + ,(R1) ;Add item # 1 to item # 2, place
result in item # 2, R1 points

etc.
or

to item #2 now

ADD (R1),2(R1) ;Same effect as above except that

R1 stili points to item # 1
etc.

ITEM *' 1 -R1 ,<--___ --'
ITEM #2

Figure 5·11: Transmitting Stacks as Arguments

5-7

Because the PDp·ll hardware already uses general purpose register R6 to point.
to' a stack for. saving and restoring PC and PS (processor status word) informa·
tion, it is quite convenient to use this same stack to save and restore intermediate
reSUlts arid to transmit arguments to and from subroutinl!li. Using R6 in this
manner permits extreme flexibility in ~sting subroutines and interrupt service
routines.

Since arguments may be obtained from the stack by using some form of register
indexed addressing, it is Sometimes useful to·save.a temporary copy of R6 in
some other register which has a Iready been saved at the beginning of a subrout·
ine. In the .previous example R5 may be used to index the arguments while R6 is
free to be incremented and decremented in the course of being used as a stack
pointer. If R6 had been used direCtly as the base for indexing and not "copied", it
might be difficult to keep track of the position in the argument list since the base
of the stack would change with every autoincrement/decrement which occurs.

art .2.

5' ... 1---.,;;.;..:'1..;;03'---1

art" 2 I. ot IOUrce
-2 (SP)

tM when onoth.,. item
TO i> pond

art #1

';'lo 'art .• '2 ~ ,

art .3
~_I-_..;TO'----1

GfI#2 II at source
-4(SP)

Figure 5·12: Shifting Indexed Base

However if the contents of R6 (SP) are saved in R5 before any arguments are
pushed ~nto the stack, the position relative to R5 would remain constant.

SP
\ -- Qrljl #1

or, #2

ar9#2 IS of 2 (R5)

1-_0'.:.9_#.".' _-I ... R5
org .2

SP"'~_.'..:.9_#_3_-I

O".f:Zllltlllot2(R5)

Figure 5·13: Constant Index Base Using "R6 Copy"

5-8

5.2.3 Subroutine Return
In order to provide for a return from a subroutine to the calling program an RTS
instruction is executed by the subroutine. This instruction should specify the
same register as the JSR used in the subroutine call. When executed, it causes the
register specified to be moved to the PC and the top of the stack to be then placed
in the register specified. Note that if an RTS PC is executed, it has the effect of reo
turning to the address specified on the top of the stack.

Note that the JSR and the JMP Instructions differ in that a linkage register is al·
ways used with a JSR; there is no linkage register with a JMP and no way to reo
turn to the calling program.

When a subroutine finishes, it is necessary to "clean·up" the stack by eliminating
or skipping over the subroutine arguments. One way this can be done is by insist·
ing that the subroutine keep the number of arguments as its first stack item. Re·
turns from subroutines would then involve calculating the amount by which to reo
set the stack pointer, resetting the stack pointer, then restoring the original
contents of the register which was used as the copy of the stack p()inter. The PDp·
11/40, however, has a much faster and simpler method of performing these
tasks. The MARK instruction which is stored on a stack in place of "number of ar·
gument" information may be used to automatically perform these "clean·up"
chores. .

5.2.4 PDP·l1 Subroutine Advantages
There are several advantages to the PDp·ll subroutine calling procedure.

a. arguments can be quickly passed between the calling program and the subr·
outine.

b. if the user has no arguments or the arguments are in a general register or on
the stack the JSR PC,DST mode can be used so that none of the general pur·
.pose registers are taken up for linkage. .

c. many JSR's can be executed without the need to provide any saving procedure
for the. linkage information since all linkage information is automatically
pushed onto the stack in sequential order. Returns can simply be made by
automatically popping this information from the stack in the opposite order of
the JSR's.

Such link~ge address bookkeeping is cal~d automatic "nesting" of subroutine
calls. This feature enables the programmer to construct fast, efficient linkages in
a simple, flexible manner. It even permits a routine to call itself in those cases
where this is meaningful. Other ramifications will appear after we examine the
PDp·l1 interrrupt procedures.

5.3 INTERRUPTS
5.3.1 General Principles
Interrupts are in many respects very similar to subroutine calls. However, they are
forced, rather than controlled, transfers of program execution occurring:because
of some external and program· independent event (such as a stroke on the tele·
printer keyboard). Like subroutines, interrupts have linkage information such

5·9

that a return to the interrupted program can be made. More information is ac·
tually necessary for an interrupt transfer than a subroutine transfer because of
the random nature of interrupts. The complete machine state of the program im·
mediately prior to the occurrence of the interrupt must be preserved in order to
return to the program without any noticeable effects. (i.e. was the previous oper·
ation zero or negative, etc.) This information is stored in the Processor Status
Word (PS). Upon interrupt, the contents of the Program Counter (PC) (address of
next instruction) and the PS are automatically pushed onto the R6 system stack.
The effect is the same as if:

MOV PS ,-(SP)
MOV R7, -(SP)

had been executed.

; Push PS
; PushPC

The new contents of the PC and PS are loaded from two preassigned consecutive
memory locations which are called an "interrupt vector". The actual locations are
chosen by the device interface designer and are located in low memory addresses
of Kernel virtual space (see interrupt vector list, Appendix B). The first word con·
tains the interrupt service routine address (the address. of the new program se·
quence) and the second word contains the new PS which will determine the mao
chine status including the operational mode and register set to be used by the
interrupt service routine. The contents of the interrupt service vector are set un·
der program control.

After the interrupt service routine has been completed. an RTI (return from inter·
rupt) is performed. The two top words of the stack are automatically "popped"
and placed in the PC and PS respectively, thus resuming the interrupted pro·
gram.

5.3.2. Nesting
Interrupts can be nested in much the same manner that subroutines are nested.
In fact, it is possible to nest any arbitrary mixture of subroutines and interrupts
without any confusion. By using the RTI and RTS instructions, respectively, the
proper returns are automatic.

1. Process 0 is running;
SP is Dointing to loca·
tion PO.

2. Interrupt stops process 0
with PC = PCO, and
status = PS 0 ;starts process 1.

5-10

po§ pso
SP~ pco

3. Process I uses stack for
temporary storage (TEO, TEl). ~ PO ~------l

PSO

PCO

TEO

4. Process 1 interrupted with PC = PCI PO

and status = PSI; process 2 is started

5. Process 2is running and does a
JSR R7,A to Subroutine A with
PC = PC 2.

6. Subroutine A is running
a nd uses stack for
temporary storage.

o

PO

o

P 0

SP-....

o

PSO

PC 0

TEO

TE,

PS,

PC'

PsO

PCO

TEO

TE'
PS'

PC'

PC2

pso

pco

TEO

TE'

ps,

PC'

pel

TA.

TAl

7. Subroutine A. releases the temporary

storage holding TAl and TA2.

8. Subroutine A returns contr.ol to process'
2 with an RTS R7,PC is reset to PC2.

9. Process 2 completes with an RTI instruction
(dismisses interrupt) PC is reset
to PC(l) and status is reset to PSI;
process 1 resumes:

10. PrOC8.'iS 1 releases the temporary
storage holding TEO and TEl.

11. Process I cQmpletes its operation with
an RTI PC is reset to PCO and status is

reset to PSO.

PO

PSO

pco
TEO

TEt

PSt

PCt
SP __

PC2

.0

PO

PSO

PCO

TEO

TEt

PSt

PCt

o

PO

PSO

PCO

TEO

'---0 SP TEt

0

PO~' PSO

-SP: PCO.

Figure 5·14: Nested Interrupt Service Routines and Subroutines

Note that the area of interrupt service programming is intimately involved with
the concept of CPU and device priority levels.

5·12

5.4 REENTRANCY
Further advantages of ~ack organization become apparent in complex situations
which can arise in program systems tilat are engaged in the concurrent handling
of several tasks. Such multi·task program environments may range from rela·
tively simple single·user 'applications which must manage an intermix of I/O in·
terrupt service and background computation to large complex multi·programm·
ing systems which manage a very intricate mixture of executive and multi·user
programming situations. In all these applications there is a need for flexibility
and time/memory economy. The use of the stack provides this economy and
flexibility by providing a method for allowing many tasks to use a single copy of
the same routine and a simple, unambiguous method for keeping track of com·
plex program linkages.

The ability to share a single copy of a given program among users or tasks is
called reentrancy. Reentrant program routines <!iffer from ordinary subroutines in
that it is unnecessary for reentrant routines to finish processing a given task be·
fore they can be used by another task. Multiple tasks can be in various stages of
cOinpletion in the same routine at any time. Thus the following situation may oc·
cur:

MEMORY

PROOftAM'A PROGRAM 2. SUBROUTINE A
PROGRAM 3

PDP·ll Approach

Programs 1, 2, and 3 can
share Subroutine A.

MEMORY

PROGRAM 1 SUB IN A'''''

PROGRAM 2 siJBROUTIi!~··.~

PROGRAM 3 ~SUBROUT""E A"

Conventional Approach

A separate copy of Subroutine A
must be provided for each program.

Figure 5·15: Reentrant Routines

The chief programming distinction between a non-shareable routine and a reen­
~rant ro.utine is !hat the. reentrant routine is composed solely of "pure code", i.e.
it contains only Instructions an~ c.o~stants. Thus, a section of program code is re­
entrant (shareable) If and only If It IS "non self-modifying", that is it contains no
information within it that is subject to modification.

Using reentrant routines, control of a given routine may be shared as illustrated
in Figure 5-16.

5·13

REENTRANT
ROUTINE 1-----'

a

Figure 5-16: ReentrantRoutine Sharing,

1. Task A has requested processing by Reentrant Routine Q.

2. Task A temporarily relinquishes control (is interrupted) of Reentrant Routine
Q before it finishes processing.

3. Task B starts processing in the same copy of Reentrant Routine Q.

4. Task B relinquishes control of Reentrant Routine Q at some point in its pro·
cessing.

5. Task A regains control of Reentrant Routine Q and resumes processing from
where it stopped.

The use of reentrant programming allows many tasks to share frequently used
routines such as device interrupt service routines, ASCII·Binary conversion rou·
tines, etc. In fact, in a multi-user system it is possible for instance, to construct a
reentrant FORTRAN compiler which can be used as a single copy by many user
programs.

Asan application of reentrant (shareable) code, consider a data processing pro·
gram which is interrupted while executing a ASCII·to·Binary subroutine which has
been written as a reentrant routine. The same conversion -routine is used by the
device service routine. When the device servicing is finished, a return from inter­
rupt (RTI) is executed and execution for the processing program is then resumed
where it left off inside the same ASCII·to·Binary subroutine.

Shareable routines generally result in great memory saving. It is the hardware im·
plemented stack facility of the PDP-ll that makes shareable or reentrant rou­
tines reasonable.

A subroutine may be reentered by a new task before its completion by the pre·
vious task as long as the new execution does not destroy any linkage information
or intermediate results which belong to the previous programs. This usually
amounts to saving the contents of any general purpose registers, to be used and
restoring them upon exit. The choice of whether to save and restore this informa·
tion in the calling program or the subroutine is quite arbitrary and depends on the
particular application. For example in controlled transfer situations (i.e. JSR's) a
main program which calls a code·conversion utility might save the contents of
registers which it needs and restore them after it has regained control, or the
code conversion routine might save the contents of registers which it uses and reo
store them upon its completion. In the case of interrupt service routines this
save/restore process must be carried out by the service routine itself since the in­
terrupted program has no warning of an impending interrupt. The advantage of

5-14

using the stack to save and restore (i.e. "push" and "pop") this information is
that it permits a program to isolate its instructions and data and thus maintain
its reentrancy. .

In the case of a reentrant program which is used in a multi·programming envi·
ronment it is usually necessary to maintain a separate R6 stack for each user.al·
though each such stack would be shared by all the tasks of a· given user. For ex­
ample, if a reentrant FORTRAN compiler is to be shared between many users,
~ch time the user is changed, R6 would be set to point to a new user's stack area
as illustrated in Figure 5-17. .

Figure 5-17: MuitipleR6 Stack

5.5 POSITION INDEPENDENT CODE - PIC
Most programs are written with some direct references to specific addresses, if
only as an offset from an absolute address origin. When it is desired to relocate
these programs in memory, it is necessary to change the address references
and lor the origin assignments. Such programs are constrained to a specifiec set
of locations. However, the PDP-ll .architecture permits programs to be con­
structed such that they are not constrained to specific locations. These Position
Independent programs do not (\irectly reference any absolute locations in
memory. Instead all references are "PC-relative" i.e. locations are referenced im
terms of offsets from the current location (offsets from the current value of the
Program Counter (PC». When such a program has been translated to machine
code it will form a program module which can be loaded anywhere in memory as
required.

Position Independent Code is exceedirigly valuable .for those utility routines
. which may be disk-resident and are subject to loading in a dynamically changing
program environment. The supervisory progr~m may load them anywhere it de­
termineswithout the need for any relocation parameters since all items remain in
the same positions relative to each other (and thus also to the PC).

Linkages to program routines which hav!! been written in positiof! independent
code (PIC) must still be absolute in some manner. Since these routines can be lo­
cated anywhere in memory there must be some fixed or readily lo~atable linkage
addresses to facilitate access to these routines. This linkage address may be a
simple pointer located at a fixed address or it may be a complex vector composed
of numerous linkage information items.

5·15

5.6 CO-ROUTINES
In some situations it happens that two program routines are highly interactive.
Usi ng a special case of the JSR instruction i.e. JSR PC,@(R6) + which exchanges
the top element. of the Register 6 processor stack and the contents of the Pro·
gram Counter (PC), two routines may be permitted to swap program control and
resume operation wl:1ere they stopped, when recalled. Such routines are called
"co·routines". This control swapping is illustrated in Figure 5-18.

Routine #·1 is operating, it then executes:

MOV #PC2,-(R6)

JSR PC,~(R6) +
with· the following results:

1) PC2 is popped from the stack

and the SP autoincremented

2) SP is autodecrernented and the
old PC (i.e. PC1) is pushed

3) control is tFansferred to the
Ipcation PC2 (i.e. routine # 2)

Routine #2 is operating, it then executes:

JSR PC ,@(R6) +
with the result the PC2 is exchanged
for PCI on the stack and control· is
transferred back to routine # 1.

...-_.1.-_-, PC2

Figure 5·18· Co·Routine Interaction

5·16

5.7 PROCESSOR TRAPS
There are a series of errors and programming conditions which will
cause the Central Processor to trap to a set of fixed locations. These
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout
Errors, Memory Parity Errors, Memory Management Violations, Floating
Point Processor Exception Traps, Use of R'eserved Instructions, Use of
the T bit in the Processor Status Word, and use of the lOT, EMT, and
TRAP instructions.

5.7.1 Power Failure
Whenever AC power drops below 95 volts for 115v power (190 volts for
230v) or outside a limit of 47 to 63 Hz, as measured by DC power, the
power fail sequence is initiated. The Central Processor automatically
traps to location 24 and the power fail program has 2 msec. to save
all volatile information (data in registers), and condition peripherals for
power fail.

When power is restored the processor traps to location 24 and executes
the power up routine to restore the machine to its state prior to power
failure.

5.7.2 Odd Addressing Errors
This error occurs whenever a program attempts to execute a word instruc·
tion on an odd address (in the middle of a word boundary). The in·
struction is aborted and the CPU traps through location 4.

5.7.3 Time-out Errors
These errors occur when a Master Synchronization pulse is placed on
the UNIBUS and there is no slave pulse within a certain length of time.
This error usually occurs in attempts to address non·existent memory or
peripherals.

The offending instruction is aborted and the processor traps through
location 4.

5.7_4 Reserved Instructions
There is a set of illegal and reseNed instructions which cause the pro·
cessor to trap through location 10.

5.7.5 Trap Handling
Appendix B includes a list of the reserved Trap Vector locations, and
System Error Definitions which cause processor traps. When a trap oc·
curs, the processor saves the PC and PS on the Processor Stack and
begins to execute the trap routine pointed to by the trap vector.

5·17

CHAPTER 6

MEMORY MANAGEMENT (FOR THE 11135 & 11140)

6.1 GENERAL
6.1.1 Opt'hms . .
This chapter describes the Memory Management option, which mounts
in the 11/35 or 11/40 Central Processor assembly unit. The option pro·
vides the hardware facilities necessary for complete memory manage·
ment and protection. It is designed to be a memory management facility
for "systems where the memory size is greater than 28K words and for
multi-user, multi-programming systems where protection and relocation"
facilities are necessary.

The Stack Limit option, which is included with the Memory Manage·
ment option, is described at the end "of the chapter. The Stack Limit
option allows dynamic adjustment of the lower limit of permissible stack
addresses_

The options are contained on individual modules that plug into dedi­
cated prewired slots.

KTl1-D Memory Management option
KJU-A Stack Limit option

6.1.2 Programming
The Memory Management hardware has been optimized towards a multi­
programming environment and the processor can operate in two modes,
Kernel and User. When in Kernel mode, the program has complete
control and can execute all instructions. Monitors Clnd supervisory pro:
grams would be written in this mode.

When in User Code, the program is prevented from executing certain
instructions that could:

a) cause the modification of the Kernel program.
b) halt the computer.
c) use memory space assigned to the Kernel program.

In a multi-programming environment several user programs would be
resident in memory at any given time. The task of the supervisory pro­
gram would be: control the execution of the various user programs,
manage the allocation of memory and peripheral device resources, and
safeguard the integrity of the system as a whole by careful control of
each user program.

6-1

In a multi-programming system, the Management Unit provides the
means for assigning pages (relocatable memory segments) to a user
program and preventing that user from making any unauthorized access
to those pages outside his assigned area. Thus, a user can effectively
be prevented from accidental or willful destruction of any other user
program _Qr the system executive program.

Hardware implemented features enable the operating system to dy­
namically allocate memory upon demand, while a program is being run.
These features are particularly useful when running higher-level language
programs, where, for example, arrays are constructed at execution time.
No fixed space is reserved for them by the compiler_ Lacking dynamic
memory allocation capability, the program would _have to calculate and
allow sufficient memory space to accommodate the worst case. Memory
Management eliminates this time-consuming and wasteful procedure.

6.1.3 Basic Addressing
The -addresses generated by all PDP-ll Family Central Processor Units
(CPUs) are 18-bit direct byte addresses. Although the PDP-ll Family
word length and operational logic is all 16-bit length, the UNIBUS and
CPU addressing logic actually is 18-bit length_ Thus, while the PDP-ll
word can only contain address references up to 32K words (64K bytes)
the CPU and UNIBUS can reference addresses up to 128K words (256K
bytes). These extra two bits of addressing logic provide the basic frame­
work for expanding memory references.

In addition to the word length constraint on basic memory addressing
space, the uppermost 4K words of address space is always reserved for
UNIBUS I/O device registers. In a basic PDP-ll memory configuration
(without Management) all address references to the uppermost 4K words
of 16-bit addresS space (160000-177777) are converted to full 18-bit
references with bits 17 and 16 always set to 1. Thus, a 16·bit reference
to the I/O device register at address 173224 is automatically internally
converted to a full 18-bit reference to the register at ad,dress 773224.
Accordingly, the basic PDP-ll configuration can directly address up to
28K words of true memory, and 4K words of UN IBUS 1/ 0 ~evice registers_

6.1.4 Active Page Registers
The Memory Management Unit uses two sets of eight 32-bit Active Page
Registers. An APR is, actually a pair of 16-bit registers: a P!,!ge Address
Register" (PAR) and a Page, Descriptor Register (PDR). These registers
are always used as a pair and contain all the information needed to
describe and locate the currently active memory pages.

One set of APR's is used in Kernel mode, and the other in User mode.
The choice of which set to be used is determined by the current CPU
mode contained in the Processor Status word.

6-2

15 14 13 12

APR 0

APR 1

APR 2

APR 3

APR 4

APR 5

APR 6

APR 7

KERNEL 100)

--

PROCESSOR STATUS WORD
I . ,

USER 111)

APR 0 1-------;
APR 1 1---____ -1
APR 2 1---____ -1

APR 3 1-____ -1
APR 4 1---____ -1
APR 5

1-------;
APR 6

1---'-----;
APR 7 L-____ -'

ACTIVE
PAGE
REGISTERS

15 0 15 0
~-------P-AR--------~I---~r~------p-DR------~~I

PAGE AODRESS REGISTER PAGE DeSCRIPTION REGISTER

Figure 6·1 Active Page Registers

6.1.5 Capabilities Provided by Memory Management
Memory Size (words): 124K, max (plus 4K for I/O & registers)

Address. Space:

Modes of Operation:

Stack Pointers:

Memory Relocation:
Number of Pages:
Page Length:

Memory Protection:

6.2 RELOCATION
6.2.1 Virtual Addressing

Virtual (16 bits)
Physical (18 bits)

Kernel & User

2 (one for each mode)

16 (Sfor each mode)
32 to 4,096 words

no access
read only
read/write

When the Memory Management. Unit is operating, the normal 16·bit
direct byte address is no longer interpreted as a direct Physical Address
(PA) but as a Virtual Address (VA) containing information to be used in
constructing a new IS-bit physical address. The information contained
in the Virtual Address (VA) is combined with relocation and desctiption
information contained in the Active Page Register (APR) to yield an
18-bit Physical Address (PA).

Because addresses are automatically relocated, the computer may be
considered to be operating in virtual address space. This means that no
matter where a program is loaded into physical memory, it will not have

6-3

to be "re-linked"; it always appears to be at the same virtual location in
memory.

The virtual address space is divided into eight separate 4K-word pages_
Each page is relocated separately. This is a useful feature in multi­
programmed timesharing systems_ It permits a new large program to be
loaded into discontinuous blocks of physical memory.

A page may be as small as 32 words, so that short procedures or data
areas need occupy only as much memory as required_ ThiS is a useful
feature in real-time control systems that contain many separate small
tasks. It is also a useful feature for stack and buffer control.

A basic function is to perform memory relocation and provide extended
memory addressing capability for systems with more than 28K of phys­
ical memory. Two sets of page address registers are used to relocate
virtual addresses to physic;:tl addresses in memory. These sets are used
as hardware relocation registers that permit several user's programs,
each starting at virtual address 0, to reside simultaneously in physical
memory.

6.2.2 Program Relocation
The page address registers are used to determine the starting address
of each relocated program in physical memory. Figure 6-2 shows a sim·
plified example of the relocation concept.

Program A starting address a is relocated by a constant to provide
physical address 6400s'

KDII PROCESSOR

VIRTUAL
ADDRESS
(VA)- 0

KTlI-D OPTION

REl!lCATION
CONSTANT

A-6400
B = 100000

PROGRAM B

100000

PROGRAM A

006400

Figure 6-2 . Simplified Memory Relocation Example

6-4

If the next processor virtual address is 2, the relocation constant will then
cause physical address 6402" which is the s.econd item of Program A, to
be accessed. When Program B is running, the relocation constant is
changed to 100000,. Then, Program B virtual addresses starting at 0, are
relocated to access physical addresses starting at 100000,. Using the ac·
tive page address registers to provide relocation eliminates the"need to "re·
link" a program each time it is loaded into a different physical memory
location. The program always appears to start at the same address ..

A program is relocated in pages consisting of fr~m 1 to 128 blocks.
Eacl'! block is 32 words in length. Thus, the maximum length of a page
is 4096 (128 x 32)- words. Using all of the eight available active page
registers in a set, a" maximum program length of 32,768 words can be
accommodated. Each of the eight pages can be relocated anywhere in
the physical memory, as long as each relocated page begins on a
boundary that is a multiple of 32 words. However, for pages that are
smaller then 4K· words, only the memory actually allocated to the page
may be accessed.

The relocation example shown in Figure 6·3 illustrates several pOints
about. memory relocation.

a) Although the program appears to be in contiguous address space to
the processor, the 32K·word virtual address space is actually scat­
tered through several separate areas of physical memory. As long
as the total available physical memory space is adequate, a pro­
gram can be loaded . .The physical memory space need not be con-
tiguous. "

b) Pages may be relocated to higher or lower j)hysical addresses, with
respect to their virtual address ranges. In the ·example Figure 6-3,
page 1 is relocated to a higher range of physical addresses, page 4
is relocated to a lower range, and page 3 is ·not relocated at all
(even though its relocation constant is non-zero).

c) All of the pages shown in the example start on 32-word boundaries_

d) Each page is relocated independently. There is no reason why two or
more pag~s could not be relocated to" the same physical memory
space. USing more than one page address register in the set to
access the sam~ space would be one way of Providing different
memory access fights to the same data, depending upon which part
of a program was referencing that data.

Memory Units

Block:
Page:
No. of pages:
Size of relocatable
memory:

32 words
1 to 128 blocks (32 to 4,096 words)
8 per mode
32 ;768 words, max (8 x 4,096)

6-5

PROCESSOR MEM. MGT.

VIRTUAL ADDRESS PAGE RELOCATION PHYSICAL MEMORY
RANGES NO. CONSTANT SPACE

160000-177776 7 150000 340000- 357776

140000- 157776 6 000000 330000- 347776

120000 - 137776 100000 310000- 327776

100000- 117776 020000 220000 - 237776

060000- 077776 060000 140000 - 157776

04000.0- 057776 250000 120000- 137776

020000-037776 320000 040000- ,057776

000000-017776 0 400000

Figure 6-3 Relocation of a 32K Word Program into
124K Word Physical Memory

6.3 PROTECTION
A timesharing system performs multiprogramming; it allows several
programs to reside in memory simultaneously, and to .operate sequen­
tially. Access to these programs, and the memory space they occupy,
must be strictly defined and controlled. Several types of memory pro­
tection must be afforded a timesharing system. For example:

a) User programs must not be allowed to expand beyond allocated
space, unless authorized by the system.

b) User must be prevented f~om modifying common subroutines and
algorithms that are resident for all users.

c) Users must be prevented from gaining control of or modifying the
operating system software.

The Memory Management option provides the hardware facilities to im­
plement all of the above types of memory protection.

6.3.1 Inaccessible Memory
Each page has a 2-bit access control key associated with it. The key is
assigned under program control. When the key is set to 0, the page is
defined as non-resident. Any attempt by a user program to access a
non-resident page is prevented by an immediate abort. Using this fea­
ture to· provide memory protection, only those pages asociated with the
current program are set to legal access keys. The access control keys
of all other program pages are set to 0, which prevents illegal memory
references.

6.3.2 Read-Only Memory
The access control key for a page can be set to 2, which allows read
(fetch) memory references to the page, but immediately aborts any at­
tempt to write into that page. This read-only type of memory protection

6-6

c,an be afforded to pages that contain common data, subroutines, or
shared algorithms, This type of memory protection allows the access
rights to a given information module to be user·dependent. That is, the
access right to a given information module may be varied for different
users by altering the access control key.

A page address register in each of the sets (Kernel and User modes)
may be set up to reference the same physical page .in memory and
each' may be keyed for different. access rights. For example, the User
access control key might be 2 (read·only. access), and the Kernel access
control key might be 6 (allowing complete read/write access).

6.3.3 Multiple Address Space
There are two complete separate PAR/ PDR sets provided: one. set for
Kernel mode and one set for User mode. This affords the timesharing
system with another type of memory protection capability. The motleof
operation is specified by the Processor Status. Word current mode field,
or previous mode field, as determined by the current instruction.

Assuming the current mode PS bits are valid, the active page register
sets are enabled as follows:

PS(bitsI5, 14)

00
01
10
11

}

PAR/ PDR Set Enabled
Kernel mode

Illegal (all references aborted on access)

User mode

Thus, a User mode program is relocated by its own PAR/ PDR set, as are
Kernel programs. This makes. it impossible for a program running in
one mode to accidentally reference space allocated to another mode
when the active page registers are set correctly. For example, a user can,
not transfer to Kernel space. The Kernel mode address space may be re­
served for resident system monitor functions, such as the basic Input/
Output Control routines, memory management trap handlers, and time­
sharing scheduling modules. By dividing the types of timesharing system
programs functionally between the Kernel and User modes, a minimum
amount of space control housekeeping is required as the timeshared
operating system sequences from one user program to the next. For
example, only the User PAR/ PDR set needs to be undated as each new

. user program is serviced. The two PAR/ PDR sets implemented in the
Memory Management Unit option are shown in Figure 6.1.

6.4 ACTIVE PAGE REGISTERS
The Memory Management Unit provides two sets of eight Active Page
Registers (APR). Each APR consists of a Page Address Register (PAR)
and a Page Descriptor Register (PDR). These registers are always used
as a pair and contain all the information required to locate and .describe
the current active pages for each mode of operation. One PARI PDR set
is used in Kernel mode and the other is used in User mode. The cur­
rent mode bits (or in some cases, the previous mode bits) of the Proces­
sor Status Word determine which set will be referenced for each
memory access. A program operating in one mode cannot use the PAR/
PDR sets of the other mode tei ij,ccess memory. Thus, the two sets are

. .
6-7

a key feature in providing a fully protected env.ironment for a time­
shared multi-programming system.

A specific processor I/O address. is assigned to each PAR and PDR· of
each set. Table 6-1 is a complete list of address assignment.

NOTE
UNIBUS devices cannot access PARs or PDRs

In a fully-protected multi-programming environment, the implication is
that only a program operating in the Kernel. mode would be allowed to
write into the PAR and PDR locations for the put1lose of mapping user's

- programs. However, there are no restraints imposed by the logic that
will prevent User mode programs from writing into these registers. The
option of implementing such a feature .in the operating system, and thus
explicitly protecting these locations from user's programs, is. available
to the sY$tem software designer.

Table 6-1 PAR/PDR AddreSs Assignments

Kernel Active Page Registers User Active Page Registers

No. PAR PDR No. PAR PDR

0 -772340 772300 0 777640 777600
1 772342 772302 1 777642 777602
2 772344 772304 2 777644 777604
3 772346 772306 3 777646 777606
4 772350 772310 4 777650 777610
5 772352 772312 5 777652 777612
6 772354 772314 6 777654 777614
7 772356 772316 7 777656 777616

6.4.1 Page Address Registers (PAR)
The Page Address Register (PAR), shown in Figure 6-4, contains the
12-bit Page Address Field (PAF) that specifies the base address of the
page.

IS 12 II o
PAF

Figure 6-4 Page Address Register

Bits 15-12 are unused and reserved for possible future use.

The Page Address Register may be alternatively thought of as a relo·
cation 'constant, or as a base register containing a base address. Either
interpretation indicates the basic function of-the Page Address Register
(PAR) in the relocation scheme.

6.4.2 Page Descriptor Registers (PDR)
The Page Descriptor Register (PDR), shown in -Figure 6·5, contains in·
formation relative to page expansion, page length, and access control.

6·8

I I
15 14 7 6 5 4 3

PlF ACF ~

Figure 6-5 Page Descriptor Register

Access Control Field (ACF)
This 2-bit field, bits 2 and 1, of the PDR describes the access rights to
this particular page. The access codes or "keys" specify the manner
in which a page may be accessed and whether or not a given access
should result in an abort of the current operation. A memory reference
that causes an abort is not completed and is terminated immediately.

Aborts are caused by attempts to access non-resident pages, page
length errors, or access violations, such as attempting to write into a
read-only page. Traps are used as an aid in gathering memory manage­
ment information.

In the context .of access control, the term "write" is used to indicate
the action of any instruction which modifies the contents of any ad­
dressable word. A "write" is synonymous with. what is usually called a
"store" or "modify" in many computer systems. Table 6-2 lists theACF
keys and their functions. The ACF is written into the PDR under pro­
gram control.

AFC

00

01

10
11

Key

o

2

4
6

Table 6-2 Access Control Field Keys

Description

Non-resident

Resident read-only

(unused)
Resident read/ write

Function

Abort any attempt to access this
non-resident page
Abort any attempt to write into
this page.
Abort all Accesses.
Read or Write allowed. No trap
or abort occurs_

Expansion Direction (ED)
The ED bit located in PDR bit position 3 indicates the authorized direc­
tion in which the page can expand. A logic 0 in this bit (ED = 0) indi­
cates the page can expand upward from relative zero. A logic 1 in this
bit (ED = 1) indicates the page can expand downward toward. relative
zero. The ED bit is written into the PDR under program control. When
the expansion direction is upward (ED = 0). the page length is increased
by adding blocks with higher relative addresses. Upward expansion is
usually specified for program or data pages to add more program or
table space. An example of page expansion upward is shown inFigure 6-6.

When the expansion direction is downward (ED = I), the page length is
Increased by adding blocks with lower relative addresses. Downward
expansion is specified for stack pages so that more stack space. can be
added. An example of page expansion downward is shown in Figure 6-7_

6-9

PAR PDR

1000001 1110001100101001000.001.101

-----'~ '-----:-~----;"'"'"-----;-:·r I..........-'--'t
PAF ;0170 - t
PLF ;51, ;411O;NUMBER OF BLOCKS-------...J
ED;O ; UPWARD EKPANSION _________ --:-______ ..J

ACF ; 6 ; READ /WRITE

NOTE:
To specify a block length of 42 for an upward expandable page, write
highest authorized block no. directly into high byte of PDR. Bit'15 is
not used because the highest allowable block number is 1778 •

I
ADDRESS RANGE
OF POTENTIAL PAGE
EXPANSION BY
OtANGING THE PLF

AUTHORIZE PAGE
LENGTH; 4210 BLOCKS
OR 0 THRU 518 ;
52, BLOCKS

j
Figure 6·6

BLOCK 51,

!!LOCK 2

BLOCK 1

BLOCK 0

024176

024100

017276

017200

017176

017100

017076

017000 .

ANY BLOCK NUMBER
GREATER THAN 41J01S1,1
IVA<12:06> 51, I
WILL CAUSE A PAGE
LENGTH ABORT.

_BASE ADDRESS Of PAGE

Example of an Upward Expandable Page

6-10

Written Into (W)
The W bit located in PDR bit position 6 indicates whether the page has
been written into since it· was loaded into memory. W = 1 is affirma­
tive. The W bit is automatically cleared when the PAR or PDR of that
page is written into. It can only be set by the control logic.

In disk swapping and memory overlay applications, the W bit (bit 6) can
be used to determine which pages in memory have been modified by a
user. Those that have been written into must be saved in their current
form. Those that have not been written into (W = 0), need not be saved
and can be overlayed with new pages, if necessary.

Page Length Field (PlF) .
The 7-bit PLF located in PDR (bits 14-8) ~'specifies the authorized length
of the page, in 32-word blocks. The PLF holds block numbers from 0 to
177s; thus allowing any page length from 1 to 128 10 blocks. The PLF
is written in the PDR under program control.

PLF for an Upward Expandable Page
When the page expands upward, the PLF must be set to one less than
the intended_ number of blocks authorized for that page. For example,
if 52 8 (42 10) blocks are authorized, the PLF is set to 518 (41 10) (Figure
6-6). The KTlI-D hardware compares the virtual address block number,
VA (bits 12-6) with the PLF to determine if the virtual address is within
the authorized page length.

When the virtual address block number is less than or equal to the PLF,
the virtual address is within the authorized page length. If the virtual ad­
dress is greater than the PLF, a page length fault (address too high)
is detected by the hardware and an abort occurs. In this case, the vir­
tual address space legal to the program is non-contiguous because the
three most significant bits of the virtual address are used to select the
PARI PDR set.

PLF for a Downward Expandable Page
The, capability of providing downward expansion for a page is intended
specifically for those pages that are to be used as stacks. In the PDP-l1,
a. stack starts at the highest location reserved for it and expands down­
ward toward the lowest address as items are added to the stack.

When the page is to be downward expandable, the PLF must be set to
authorize a page length, in blocks, that starts at the highest address of
the page. That is always Block 1778, Refer to Figure 6-7, which shows
an example of a downward expandable page. A page length of 421.0
blocks is arbitrarily chosen so that the example can be compared with
the upward expandable example shown in Figure 6-6.

NOTE
The same PAF is used in both examples. This is
done to. emphasize that the PAF, as the base
address, always determines the lowest address
of the page, whether it is upward or downward
expandable.

6-11

r I-o-------ACTIVE PAGE REGISTER CONTENTS--------..l_1

PAR PDR

DOl 1110001 1010101100000 I 101

~ '-----...-----' I PAF, 0170 ______ .J. t
PLF '126, =8610 ----------------'
ED'I = DOWNWARD EXPANSION _______________ ---l

To specify page length for a downward expandable page, write comple­
ment of blocks required into high byte of PDR.

In this example, a 42-block page is required.
PLF is derived as follows:

42, 0 = 52 8 ; two's complement = 1268 ,

AUTHORIZED PAGE
LENGTH = 4210 BLOCKS

ADDRESS RANGE
OF POTENTIAL PAGE
EXPANSION BY
CHANGING THE PLF

036776
BLOCK 177,

036700

036676
8LOCK176a

036600

036576
BLOCK 175,

036500

0311676
8LOCKI26,

0311600

A BLOCK NUMBER
REFERENCE LESS
THAN 1268
(VA<12:06>LESS THAN 126&)
WILL CAUSE A PAGE
LENGTH ABORT.

___ ""IL... ______ ~~~~~~~:1_8ASE ADDRESS OF PAGE

Figure 6-7 Example of a Downward Expandable Page

6-12

The. calculations for complementing the number of blocks requi.red to
obtain the PLF is as follows:

MAXIMUM BLOCK NO.
1778
127 10

MINUS REQUIRED LENGTH
52 8
42 10

6.5 VIRTUAL & PHYSICAL ADDRESSES

EQUALS PLF
. - 1258

85 10

The Memory Management Unit is located between the Central Processor
Unit and the UNIBUS address lines. Once installed, the Processor ceases
to supply address information to the Unibus. Instead, addresses. are
sent to the Memory Management Unit where they are either transferred·
without change or relocated by various constants computed within the
Memory Management Unit.

6.5.1 Construction of a Physical Address
The basic information needed for the construction of a PhYSical Address
(PA) comes from the Virtual Address (VA), which is illustrated in Figure
6-8, and the appropriate APR set.

15 13 \2 o
AP'f OF

I ,

,ocr1VE PI>GE FIELD DISPlACEMENT FIELD

Figure 6-8 Interpretation of a Virtual Address

The Virtual Address (VA) consists of:

1. The Active Page Field (APF). This 3-bit field determines which of
eight Active Page Registers (APRO-APR7) will be used to form the
Physical Address (PA).

2. The Displacement Field (DF). This 13-bit field contains an address
relative to the beginning of a page. This permits page .Iengths up to
4K words (2 13 = 8K bytes). The DF is further subdivided into two
fields as shown in Figure 6-3.

12

BN DIB

BLOCK !'UMBER DISPlACEMENT IN BLOCKS

Figure 6-9 Displacement Field of Virtual Address

The Displacement Field (DF) consists of:

1. The Block Number (BN). This 7-bit field is interpreted as the block
number within the current page.

2. The Displacement in Block (DIB). This 6-bit field contains the dis­
placement within the block referred to by the Block Number.

6'13

The remainder of the information needed to construct the Physical Ad·
dress comes from the 12·bit Page Address Field (PAF) (part of the Active
Page Register) and specifies the starting address of the memory which
that APR describes. The PAF is actually a block number in the physical
memory, e.g. PAF = 3 indicates a starting address of 96, (3 X 32 = 96)
words in physical memory.

The formation of a physical address takes 150 ns.

The formation ofthe Physical Address is illustrated in Figure 6·10.

"
13 12 , 5

BLOC'" NO 0 II I VIRTUA' ,--~_-<-___ ,--I _--;--_-'-__ --;--' __ --' ADDRESS

15 12 11 o I
I II'

'----,o~

PAGE AOORESS fiElD

I

ACTI'/E PAGE
REGISTER

PHVSlCAllllOC1I: '\10. 1 ______ ' r DIS I PHYSICAL

'--__ ..T.-___ ~ __ ~ __ _....Jr lL.._{=OJS::::"PL""""=ENI::':-'. ~ ADDRESS

Figure 6·10 Construction of a Physical Address

The logical sequence involved in constructing a Physical Address is as
follows:

1. Select a set of Active Page Registers depending on current mode.

2. The Active Page Field of the Virtual Address is used to select an
Active Page Register (APRO·APR7).

3. The Page Address Field of the selected Active Page Register con·
tains the starting address of the currently active page as a block
number in physical memory.

4. The Block Number from the Virtual Address is added to the block
number from the Page Address Field to yield the number of the
block in physical· memory which will contain the Physical Address
being constructed.

5. The Displacement in Block from the Displacement Field of the Virtual
Address is joined to the Physical Block Number to yield a true 18·bit
Physical Address.

6.5.2 Determining the .Program Physical Address
A 16·bit virtual address can specify up to 32K words, in the range from
o to 1777768 (word boundaries are even octal numbers). The three
most significant virtual address bits designate the PARI PDR set to be
referenced during page address relocation. Table 6·3 lists the virtual
address ranges that specify each of the PARI PDR sets.

6·14

Table 6-3 Relating Virtual Address to PARI PDR Set

Virtual Address Range PARI PDR Set

000000-17776 0
020000-37776 1
040000-57776 2
060000-77776 3
100000-117776 4
120000-137776 5
140000-157776 6
160000-177776 7

NOTE
Any use of page lengths less than 4K words
causes holes to be left in the virtual address
space.

6.6 STATUS REGISTERS
Aborts generated by the. hardware are vectored through Kernel virtual
location 250. Status Registers #0 and # 2 (# 1 is used by the PDp·
11/45) are used to determine why the abort occurred. Note that an
abort to a location which is itself an invalid address will cause another
abort. Thus the Kernel program must insure that Kernel Virtual Address
lOis mapped into a valid address, otherwise a loop will occur which
will require console intervention. .
6.6.1 Status Register 0 (SRO)
SRO contains abort error flags, memory management enable, plus other
essential information required by an operating system to recover from
an abort or service a memory management trap. The SRO format is
shown in Figure 6-11. Its address is 777 572.

15 ·14. 13 12 9 740

~ I ~ I,

Figure 6-11 Format of Status Register #0 (SRO)

Bits 15·13 are the abort flags. They may be considered to be in a
"priority queue" in that "flags to the right" are less significant and
should be ignored. For example, a "non·resident" abort service routine
would ignore page length and access control flags. A "page length"
abort service routine would ignore an access control fault.

NOTE
Bit IS, 14, or 13, when set (abort conditions)
cause the logic to freeze the contents of SRO ..
bits 1 to 6 and status register SR2. This is done
to facilitate recovery from the abort.

6-15

Bits 15-13 are enabled when an address is being relocated. This im­
plies that either SRO, bit 0 is equal to 1 (KT11-0 operating) or that
SRO, bit 8, is equal to 1 'and the memory reference is the final one of
a, destination calculation (maintenance/ destination mode).

Note that SRO bits 0 and 8 can be set under program control to pro­
vide meaningful memory management control information. However,
information written into all other bits is not meaningful. Only that in­
formation which is automatically written into these remaining bits as a
result of hardware actions is useful as a monitor of the status ,of the
memory management unit. Setting bits 15-13 under program control
will not cause traps to occur. These bits, however, must be reset to 0
after an abort or trap has occurred in order to resume monitoring
memory management.

Abort-Nonresiderit
Bit 15 is the "Abort-Nonresident" bit. It is set by attempting to access
a page with an access control field (ACF) key equal to 0 or 4 and
setting PS (bits 15, 14) to an illegal mode.

Abort-Page Length
Bit 14 is the "Abort-Page length" bit. It is set by attempting to access
a location in a page with a block number (virtual address bits 12-6) that
is outside the area authorized by the Page Length Field (PFL) of the
POR for that page. '

Abort-Read Only
Bit 13 is the "Abort-Read Only" bit. It is set by attempting to write in a
"Read-Only" page having an access key of 2.

NOTE
There are no restrictions that any abort bits
eQuid not be set simultaneously by the same
access attempt.

Maintenance/ Destination Mode
Bit 8 specifies maintenance use of the Memory, Management Unit. It is
used for diagnostic purposes. For the instructions used in the initial
diagnostic program, bit 8 is set so that only the final destination refer­
ence is relocated. It is useful to prove the capability of relocating
addresses.

Mode of Operation
Bits 5 and 6 indicate the CPU mode (User or Kernel) associated with
the page causing the abort. (Kernel = 00, User = 11). These bits are
controlled by the logic that decodes current and previous mode bits of
the PS_ '

Page Number
Bits 3-1 contain the page number of reference. Pages, like blocks, are

-numbered from 0 upwards. The page number bit is used by the error
recovery routine to identify the page being accessed if an abort occurs.

Enable KTll-D ,
Bit 0 is the "Enable KTl1-0" bit. When it is set to 1, all ~d.dresses are

6-16

relocated and proteded by the memory management unit. When bit 0
is set to O,the memory management unit is disabled and addresses are
neither relocated nor protected.

6.6.2 Status Register 2 (SR2)
SR2 is loaded with the 16-bit Virtual Address (VA) at the beginning of
each instruction fetch but is not updated if the instruction fetch fails.
SR2 is read only; a write attempt will not modify its contents. SR2 is
the Virtual Address Program Counter. Upon an abort, the result of SR
bits 15, 14, or 13 being set, will freeze SR2 until the SR abort flags are
cleared. The address of SR2 is 777 576.

15

L-______________ 1_6-_81_T_VI_~U_A_L_A_o~ __ es_s ______________ __JI~

Figure 6-12 Format of Status Register 2(SR2)

6.7 INSTRUCTIONS
Memory Management provides the ability to communicate between two
spaceS,as determined by the current and previous modes of the Pro·
cessor Status word (PS).

Mnemonic Instruction
MFPI move from previous instruction space
MTPI move to previous instruction space

These instructions are directly compatible with the larger 11
the POP-1l/45. .

6-17

Op Code
006555
006600

computer,

MFPI
move from previous instruction space 0065SS

15 o

I 0 0 0 0 , I
Operation:

Condition Codes:

Description:

Example:

(temp) -E-(src)
./- (SP).-E-(temp)

N: set if the source <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected

This instruction pushes a word onto the current stack
from an address in previous space, Processor Status
(bits 13, 12). The source address is computed using
the current registers and memory map.

MFPI @ (R2) R2 = 1000
1000 = 37526

The execution of this instruction causes the contents of (relative)
37526 /of the previous address space to be pushed onto the current
stack as determined by the PS (bits 15, 14).

6-18

MTPI
move to previous instruction space

Operation: (temp) <E-(SP) t
(dst) <E-(temp)

006600

o I d d d

Condition Codes: N: set if the sourse <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected

Description: This instruction pops a word off the current stack
determined by PS (bits 15, 14) and stores that word
into an address in previous space PS (bits 13, 12).
The destination address is computed using the cur·
rent registers and 'memory map. An example is as
follows:

Example: MTPI @ (R2) R2 = 1000
1000 = 37526

The execution of this instruction causes the top word of the current
stack to get stored into the (relative) 37526 of the previous address
space.

6-19

MTPI AND MFPI, MODE 0, REGISTER 6 ARE UNIQUE IN THAT THESE
INSTRUCTIONS ENABLE COMMUNICATIONS TO AND FROM THE PRE­
VIOUS USER STACK.

; MFPI, MODE 0, NOT REGISTER 6

MOV
MOV
CLR
INC
MFPI

#KM+PUM, PSW
#-1, -2(6)
%0
@#SRO
%0

; KMODE, PREY USER
; MOVE -Ion kernel stack -2

; ENABLE KT
; -(KSP)~RO CONTENTS

The -1 in the kernel stack is now replaced by the contents of RO which
is O.

; MFPI, MODE 0, REGISTER 6

MOV #UM+PUM, PSW
CLR %6 ; SET R1G=0
MOV # KM+PUM, PSW ; K MODE, PREV USER
MOV #-1,-2 (G)
INC @#SRO ; ENABLE KT
MFPI %6 ; -(KSP) ~R1G CONTENTS

The -1 in the kernel stack is now replaced by the contents of RIG
(user stack painter which is 0).

To obtain info from the user stack if the status is set to kernel mode,
prey user, two steps are needed.

MFPI %6
MFPI @(6)+

; get contents of RI6=user pointer
; get user pointer from kernel stack
; use address obtained to get data
; from user mode using the prey
; mode

The desired data from the user stack is now in the kernel stack and has
replaced the user stack address.

6-20

; MTPI, MODE 0 NOT REGISTER 6

MOV # KM+PUM, PSW ; KERNEL MODE, PREV USES
MOV #TAGX, (G) ; PUT NEW PC ON STACK
INC @ # SRO ; ENABLE KT
MTPI %7 ; %7~ (G)+
HLT ; ERROR

TA6X: CLR @#SRO ; DISABLE KT

The new PC is popped off the current stack and since this is mode 0 and
not register 6 the destination is register 7.

; MTPI, MODE 0, REGISTER 6

MOV # UM+PUM, PSW
CLR %6
MOV #KM+PUM, PSW
MOV #-1, -(6)
INC @#SRO
MTPI %6

; user mode, Prey User
; set user SP=O (R1G)
; Kernel mode, prey user
; MOVE -1 into K stack (R6)
; Enable KT
;%16 ~(6)+

The 0 in R16 is now replaced with -1 from the contents of the kernel
stack.

To place info on the user stack if the status is set to kernel mode, prey
user mode, 3 separate steps are needed.

MFPI
MOV
MTPI

%6
DATA, -(6)
@(6)+

; Get content of Rl6=user pointer
; put data on current stack
; @(6)+ [final address relocated] ~
(R6)+ ,

The data 'desired is obtained from the kernel stack then the destination
address is obtained from the kernel stack and relocated through the pre­
vious mode.

6·21

Mode Description
In Kernel mode the operating program has unrestricted use of the
machine. The program can map users' programs anywhere in core and
thus expiicitly protect key areas (including the device registers and the
Processor Status word) from the User operating environment.

In User mode a program is inhibited from executing a HALT instruction
and the processor will trap through location 10 if an attempt is made
to execute this instruction. A RESET instruction results in execution of
a NOP (no·operation) instruction.

There are two stacks called the Kernel Stack and the User Stack; used
by the central processor when operating in either the Kernel or User
mode, respectively. .

Stack Limit violations are disabled in User mode. Stack protection is
provided by memory protect features.

Interrupt Conditions
The Memory Management Unit relocates all addresses: Thus, when Man­
agement is enabled, all tr.ap, abort, and interrupt vectors are considered
to be in Kernel mode Virtual Address Space. When a vectored transfer
occurs, control is transferred according to a new Program Counter (PC)
and Processor Status Word (PS) cOIltained in a two·word vector relocated
through the Kernel Active Page Register Set. .

When a trap, abort, or interrupt occurs the "push" of the old PC, old PS
is to the User/ Kernel R6 stack specified by CPU mode bits 15, 14 of the
newPS in the vector (00 = Kernel, 11 = User). The CPU mode bits
also determine the new APR set. In this manner it is possible for a
Kernel mode program to have complete control over service assignments
for all interrupt conditions, since the interrupt vector is located in Kernel
space. The Kernel program may assign the service of some of these con­
ditions to a User mode program by simply setting the CPU ntode bits
of the new PS in the vector to return control to the appropriate mode.

User Processor Status (PS) operates as follows:

User Traps, Explicit
PS Bits User RTI, RTT Interrupts PS Access

Condo Codes (3-0) loaded from loaded from *
stack vector

Trap (4) loaded from loaded from cannot be
stack vector changed

Priority (7-5) cannot be loaded from *
changed vector

Previous (13-12) cannot be copied from *
changed PS (15,14)

Current (15-14) cannot be loaded from *
changed vector

* Explicit operations can be made if the Processor Status is mapped in
User space.

6·22

6.8 STACK LIMIT OPTION
This option allows program control of the lower limit for permIssible
stack addresses. This limit may be varied in increments of (400). bytes
or (200). words, up to a maximum address of 177 400 (almost the top
of a 32K memory).

The normal boundary for stack addresses is 400. The Stack Limit option
allows this lower limit to be raised, providing more address space for
interrupt vectors or other data that should not be destroyed by the
program.

There is a Stack Limit Register, with the following format:

15 7 0

The Stack Limit Register can be addressed as a word at location 777774,
or as a byte at location 777775. The register is accessible to the proces·
sor and console, but not to any bus device.

rhe 8 bits, 15 through 8, contain the stack limit information. These bits
are cleared by System Reset, Console Start, or the RESET instruction.
The lower 8 bits are not used. Bit 8 corresponds to a value of (400).
or (256)10.

Stack Limit Violations
When instructions cause a stack address to exceed (go slower than). a
limit set by the programmable Stack Limit Register, a Stack Violation
occurs. There is a Yellow Zone (grace area) of 16 words below the Stack
Limit which provides a warning to the.. program so that corrective steps
can be taken. Operations that cause a Yellow Zone Violation are com­
pleted, then a bus error trap is effected. The. error trap, which itself uses
the stack, executes Without causing an additional violation, unless the
stack has entered the Red Zone.

A Red Zone Violation is a Fatal Stack Error. (Odd.stack or non-existent
stack are the other Fatal Stack Errors.) When detected, the operation
causing the error is aborted, the stack is repositioned to address 4, and
a bus error occurs. The old PC and PS are pushed into location 0 and 2,
and the new PC and PS are taken from locations 4 and 6.

Stack Limit Addresses
The contents of the Stack Limit Register (SL) are compared to the stack
address to determine Jf a violation has occurred. The least significant
bit of the register (bit 8) has a value of (400) •. The determination of
the violation zones is as follows:

Yellow Zone = (SL) + (340 through 377).

Red Zone :;:;;. (SL) + (337) 8

If the Stack Limit Register contents were zero:
Yellow Zone = 340 through 377
Red Zone = 000 through 337

6-23

execute, then trap

abort, then trap to lo­
cation 4

6-24

CHAPTER 7

ARITHMETIC OPTIONs ,(FOR THE 11/35 & 11/40)

7.1 GENERAL
This chapter describes 2 options which mount in the 11/35 or 11/40
Central Processor assembly unit. The Extended Instruction Set'(EIS) option
allows extended manipL\lation of fixed point numbers. The Floating Point
option (which requires . .the EIS option) enables direct operations .on sin­
gle precision ,32,bit words.

The options' are contained on' individual. modules that plug into dedi·
cated, prewired slots.

KEll·E
KEll-F

EIS option
Floating Point option

The basic processor'timing is not degraded, and NPR latency is not
affected by the use of these options.

7.2 EIS OPTION
The Extended Instruction Set option adds the following instruction
capability:

Mnemonic

MUL
DIV
ASH
ASHe

Instruction.,

multiply
divide
shift arithmetically.
arithmetic shift combined

Op Code

070RSS
071RSS
072RSS
073RSS

The EIS instructions are directly.compatible with the la.rger, 11 com­
pUter, the PDP-ll/45.

The number formats are:

15 14 0

16-bit single word: I s I I I ruMBER

15 14 0

I s I 1

~ Hlf' NUMB£R PAT:

32-bit double word:
15 0

I 1 I If'" MJMBER ""V

S is the sign bit. S = 0 for posi~ivequantities
S = 1 for negative quantities; number is in 2's

complement notation

Interrupts are serviced at the end of an EIS instructio.n.

7-1

MUL
m41tiply 070RSS

I 0 I 1 1 I 0 o s I S s S I
15 9 8 6 5 o

Operation: R. Rv1. R x(src)

Condition Codes: N: set i·f product is <0; cleared otherwise
Z: set if product is 0; cleared otherwise
V: cleared
C: set if the result is less than-2'" or greater than or equal to
2"'-1 :

Description: The contents of the destination register and source taken as
twO's complement integers are multiplied and stored in the
destination register and the succeeding register (if R is even).
If R is odd only the low order product is stored. Assembler
syntax is : MUL S,R.
(Note that the actual destination is R. Rv1 which reduces to
just R when R is odd.)

Example: 16-bit product (R is odd)

CLC
MOV #400,R1
MUL #10,R1
BCS ERROR

Before

(R1) = 000400

;Clear carry condition code

;Carry will be set if
;product is less than
;-2'-' or greater than or equal to 2"
;no significance lost

After

(R1) = 004000

Assembler format for all EIS instructions is:
OPR src, R

7·2

DIV

divide 071RSS

1 0 I 1 1 I ~ o s s s I S

15 9 8 6 5

Operation: R. Rvl. R, Rvl /(src)

Condition Codes: N: set if quotient <0; cleared otherwise
Z: set if quotient = 0; cleared otherwise

$ $

V: set if source = 0 or if the absolute value of the register is
larger than the absolute value of the source. (In this case the
instruction is aborted because the quotient would exceed 15
bits.)
C: set if divide 0 attempted; cleared otherwise

Description: The 32~bit two's complement integer in R andRv1 is divided
by the source operand. The quotient is left in R; the remain.
der in Rvl. Division 'Nil! be performed so that the remainder
is of the same sign as the dividend. R must be even.

Example: CLR RO
MQV#20001,R1
DIV#2,RO

Before
(RO) = 00000o
(R1) =020001

After
(RO),= 010000
(R1) =000001

7·3

Quotient
Remainder

ASH

shift arithmetically 072RSS

S I S I
15 9 8 6 5 o

Operation: R. R Shifted arithmetically NNplaces to right or left
Where NN = low order 6 bits of sbtm:e.

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if sign of register changed during shift; cleared other·
wise
C: loaded from last bit shifted out of regi,:;ter

Description: The contents of the register are shifted right or left the num­
ber of times specified by the shift count. The shift count .is­
taken as the low order 6 bits of the source operand .. This
number ranges from -32 to. + 31. Negative is a a right shift

6 LSB of source
011111
000001
111111
100000

Example:.

, and positive is a left shift.

Action in general register
Shift left 31 places'
shift left 1 place
shift right'l place
shift right 32 places

Before
(R3)=O01234
(RO) =000003

7-4

ASH RO, R3

After
(R3)=012340
(RO)=OOOOO3

ASHe
arithmetic shift combined 073RSS

I 0 , 1

15

Ope'ation:

Condition Codes:

Description:

1 I 0 • 'I , 1 I r : r
9' 8 65 0

R, Rvl.R, Rvl The double word is shifted NN places to the
right or left, where NN = low order six bifsof source

N: setif result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if sign bit changes during the shift; cleared otherwise
C: loaded with high order bit when left Shift; loaded with low
order bit when right shift (loaded with the last bit shifted out
of the 32-bit operand)

The contents of the register and the register ORed with one
are treated as one 32 bit word, R + 1 (bits 0-15) andR (bits
16-31) are shifted right or left the number of times specified
by the shift count. The shift count is taken as the low order 6
bits of the source operand. This number ranges from -32 to
+ 31. Negative is a right shift and positive is it "eft shift.
When the register chosen is an odd number the register
and the register OR'ed with one are the same. In this case the
r~ht shif.t becomes~. rot~te(for uptoa shiftofl6). "f!1e 16
bit word IS rotated right the number of bits spetified by the
shift count.

R+'I I ~ I-E]
15 OR 0

7-5

7:3 FLOATING POINT OPTION
The Floating Point instructions used with this option are unique to the
PDP-ll/35 & 40. However, the OP Codes used do not conflict with any
other instructions_

Mnenomic Instruction Op Code

FADD floating add 07500R
FSUB floating subtract 07501R
FMUL floating multiply 07.502R
FDIV floating divide 07503R

The number format is:
IS

15

EXPONENT
I

7 6

HIGH ARGUMENT

o
FRACTION (HIGH PART)
I I

o
.1~~ ______ ~ ____ F~RA~~~IO~N_i(~~W __ P~AA~)~) ______ L-____ ~

LOW ARGUMEN't

S = sign' of fraction; 0 for positive, 1 for negative
Exponent = 8 bits for the exponent, in excess (200). notation
Fraction = 23 bits plus 1 hidden bit (all numbers are assumed to be
normalized)

The number format is essentiallY a sign and magnitude representation.
The format is identical with the 11/45 for single precision numbers.

Fraction
The binary radix point is to the left (in front of bit 6 of the High Argu­
ment), so that the value of the fraction is always less than 1 in magni­
tude. Normalization would always cause the first bit after the radix point
to be a 1, such that the fractional value would be between % and 1.
Therefore, this bit can be understood and not be represented directly,
to achieve an extra 1 bit of resolution.

The first bit to the right of the radix pOint (hidden bit) is always a 1. The
next bit for the fraction is taken from bit 6 of the High Argument_
The result of a Floating Point operation is always rounded away from
zero, increasing the absolute value of the number.

Exponent
The 8-bit Exponent field (bits 14 to 7) allow exponent values between
-128 and +127. Since an excess (200}, or (128)'0 number system is
used, the correspondence between actual values and Coded representa­
tion is I!s follows:

Actual Value

Decimal

+127

+1
o

,-1

-128

7-6

Representation

Octal
377

201
200
177

000

Binary
11 111 111

10 000 001
10 000 000
01 111 !J.ll

00 000 000

If the actual value of the exponent is equal to ·-128, meaning a totai
value (including the fraction) of less than 2-m, the floating point number
will be assumed to be 0, regardless of the sign or fraction bits. The hard­
ware will generate a clean 0 (a 32·bit word of all zeros).

Example of a Number

+(12),0 = +(1100).

= +(24)'0' X (.11). [16 X Ph + %) = 12]

s Exponent Fraction'
,...-----A----. I ,

10 000 lIl0 1 1'000000 0000000000000000

hidden bit is a 1 .

radix point is understood

representation: 0

Registers
There are no pre-assigned registers for the Floating Point option. A gen·
eral purpose register is used as a . pointer to specify a stack address.
The contents of the register are used to locate the operands and answer
for the Floating Point operations as follows:

(R) = High B argument address
(R)+2 = Low B argument address
(R)+4 = High A argument address
(R)+6 = Low A argument address

After the Floating Point operation: the answer is stored on the stack as
follows:

(R)+4 = address for High part of answer
(R)+6 = address for Low part of answer

. where (R) is the original contents of the general register used.

After execution of the instruction, the 'general register will point to the
High answer, at (R)+4.

Condition Codes
Condition codes are set or cleared as shown in the Instruction Descrip·
tions, in the next part of this section. If a trap occurs as a function of
a Floating Instruction, the condition codes are re'interpreted as follows:

V == 1, if an error occurs
N = I, if underflow or divide·by·zero
C = I, if divide by zero
z=o

V

Overflow 1
Underflow 1
Divide by 0 1

7·7

N C Z

0 0 0
1 0 0
1 1 0

Traps occur through the vector at location 244. A Floating Point instruc·
tion will be aborted if a BR request is issued before the instruction is

. near completion. The Program Counter will point to the aborted Floating
instruction so that the Interrupt will look transparent.

'. Assembler ,format is: OPR R

. INSTItUCTIONS

FADD
floating add 07500R

to 1',0:00,0 o,olr r rl
3 2 0

Operation: [(R)+4. (R)+6]+-[(R)+4. (R)+6]+[(R).(R)+2]. if
result ~ 2-128; else [(R)+4. (R)+6]~

Condition Codes: 'N; set if result < 0; cleared otherwise
Z: set if . result = 0; cleared otherwise
V: cleared
C:cleared

Description: Adds' the A argument to the B argument and stores
the result in the A Argl,lment position on the stack.
General register R is used as the stack pointer for
the operation.

FSUB
floating subtract

Operation:

Condition Codes:

DesCription:

A+-A+B

1 0
I , 1 ,0 : 0

07501R

000
I ,

3 2. 0

[(R)+4. (R)+6] +-[(R)+4. (R)+6]-[(R). (R)+2]. if
result ~ 2-128; else [(R)+4. (R)+6]~

N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: cleared

Sutracts the B Argument from the A Argument and
stores the result in the A Argument position on the
stack.

A+-A-B

7-8

FMUL
floating multiply

I 0 I 1

15

Operation:

Condition Codes:

Description:

FDIV
floating divide

07502R

3 2 o

[(R)+4, (R)+6] ~[(R)+4, (R)+6] X [(R), (R)+2] if
result;;::: 2~128; else [(R)+4, (R)+6] ~

N: set if result < 0; cleared otherwise
Z: set if result;;;:: 0; cleared otherwise
V: cleared
C: cleared

Multiplies the A Argument by the B Argument and
stores the result in the A Argument position on the
stack.
A~AX B

07503R

I 0 I 1 1 0 1, '0 : 0 , 0 lOt 1 t I f r r I
15 3 2 0

Operation:

Condition Codes:

Description:

[(R)+4, (R)+6] ~[(R)+4, (R)+6] I [(R), (R)+2] if
result;;::: 2-128; else [(R)+4, (R)+6)] ~

N: set.if result <0; cleared otherwise
Z: set if result;;;:: 0; cleared otherwise
V: cleared
G: cleared

Divides the A .Argument by the B Argument and
stores the result in the A Argument position on the
stack. If the divisor (BArgument) is equal to zero,
the stack is left untouched.

A~A/B

7-9

':'J
o

CHAPTER 8

CONSOLE OPERATION

8.1 PDP·ll/05 & 11/10 CONSOLE

8.1.1 Console Elements
The PDp·1lf05 and 11/10 Operator's Console provides the following
facilities:

Power Switch (with a key lock)

ADDRESS! DATA display (16 bits)

Switch Register (16 switches)

RUN status light

Control Switches
LOAD ADRS (Load Address)
EXAM (Examine)
CONT (Continue)
ENABLE/ HALT
START
DEP (Deposit)

8.1.2 Console Switches

POWER j~::ER

PANEL LOCK

Switch Register
(Up==l)
(Down == 0)

Control Switches

LOAD ADRS
(depress to activate)

Power to the processor is oft.

Power to the processor is on and all con·
sole Switches function normally.

Power to the processor is on, but the
Control Switches are disabled. The Switch
Register is still functional.

Used to manually load data or an address
into the processor.

Transfers contents of the, Switch Register
to the processor. .

The entered data is displayed in the
ADDRESS/ DATA lights, and provide3 an
address for EXAM, DEP, and START.

8·1

EXAM

CONT
(depress and release
to activate)

ENABLE/HALT

START

{
ENABLE.

HALT

(depress and release
to activate)

Causes the contents of the selected
location to be displayed in the ADDRESS/
DATA lights. While the EXAM switch is
depressed, the address to be examined
is displayed. The data itself is displayed
when the switch is released.

If the EXAM switch is depressed again,
the contents of the next sequential word
location are displayed. (Bus Address is
incremented automatically). If an odd ad·
dress is specified, the next lower even
address word will be displayed (except
for the general registers, RO to R7). If a
non· existent memory address is specified,
no UNIBUS operation' will be performed,
and the processor will have to be ini·
tialized /;Iy setting the ENABLE/HALT
switch to HALT and tben depressing the
START switch.

If the CPU is in the RUN state, the
EXAM switch has no effect.

Causes the processor to continue oper·
ation from the point at which it had
stopped. The' switch has no effect when
the CPU. is in the RUN state. If the
program had stopped, this switch pro·
vides a restart without a System Reset.

Allows the CPU to perform normal oper·
ations under program control.

Causes the CPU to stop after the cur·
rent instruction. All interrupts and traps
will be execiJted prior to halting. Depres·
sing and then releasing the CaNT switch
will now cause execution of a single
instruction.

If the program had stopped, depressing
the START switch causes a System Reset
signal to occur and loads the Program
Counter with the address contained in
the switches when LOAD ADRS was last
depressed. The program will then con·
tinue only if the ENABLE/HALT switch is
in ENABLE.

WARNING:
If the CPU is in the RUN state and the
POWER switch is not in PANEL LOCK,
the START switch will interrupt the pro·
gram. The program may even have to be
reloaded.

8·2

DEP

8.1.3 Indicators

Deposits contents of the Switch Register
into the selected location. While the DEP
switch is raised, the address to be loaded
is displayed. When the switch is released,
the data deposited is displayed.

If the DEP switch is raised again, the
Switch Register contents (which were
probably modified) are loaded into the
next word location. (Bus Address is in·
cremented automatically). If an odd ad­
dress is specified, the next lower even
address word will be used (except for
the general registers, RO to R7). If a
non-existent memory address is specified,
no UNIBUS operation will be completed
and the processor will have to be ini­
tialized by setting the ENABLE! HALT
switch to HALT and then depressing the
START switch.

RUN Lights when the processor is executing
instructions. It is Off when the processor
is halted. It is on during a WAIT instruc­
tion and UNIBUS cycles.

ADDRESS/DATA Displays either addresses or data, as spe­
cified in Table 8-1.

8-3

Table 8-1 Information Displayed in ADDRESS/DATA lights

Condition.

POWER On

Load Address

Examine

Deposit

RUN Light On

Program Halt

Program
Execution

{

ENABLE/ HALT in
HALT

ENABLE! HALT in
ENABLE

LOAD ADRS switch
is depressed

{

EXAM switch is
depressed

EXAM switch is
released

{

DEP switch is raised

DEP switch is
released

ENABLE/ HALT in
HALT

HALT instruction
executed

Double Bus Error
(two successive
attempts to access
non-existent memory
or improper odd
byte address)

1
START switch is
depressed

CaNT switch is
depressed

8·4

ADDRESS! DATA Display

Contents of location 24.

Undefined. Depends on con·
tents of memory.

Contents of Switch Register.

Address of location that is to
be examined.

Contents of selected address.

Address of location that is to
be loaded.

Contents of Switch Register
(which is the data deposited).

Undefined.

Address of instruction to be
executed when CaNT switch
is activated.

(same as above)

Contents of Progralli Counter
(R7) at time when double bus
error occurred.

Address of last Load address.

Address of instruction to be
executed.

8.2 PDP·11/35 & 11/40 CONSOLE

8.2.1 Console Elements .

The PDP·ll/35 & 40 Operator's Console provides the following facilities:

Power Switch (with a keY'lock)

ADDRESS Register display (18 bits)

DATA Register display (16 bits)

Switch Register (18 switches)

Status Lights
RUN
PROCESSOR
BUS
CONSOLE
USER
VIRTUAL

Control Switches .
LOAD ADRS (Load Address)
EXAM (Exami ne)
,CO NT (Continue)
'ENABLE/HALT
START
DEP (Deposit)

8.2.2 Status Indicators

RUN Lights when the processor clock is.- run­
ning. It is off when the processor is wait­
ing for an asynchronous periphet'81 data
response, or during a RESET instruction.
It is on during a· WAIT or HALT instruction.

PROCESSOR

BUS

CONSOLE

USER

VIRT[JAL

Lights when the processor has control of
the bus.

Lights whEm the UNIBUS is being used.

Lights when in console mode (manual op­
eration). Machine is stopped and is not
executing the stored program.

Lights when the CPU is executing program
instructions in User mode.

Lights when the ADDRESS Register display
shows the I6-bit Virtual Address. -

8-6

8.2.3 Console Switches

POWER

{
Switch Register

(Up = 1)
(Down = 0)

Control Switches

LOAD ADRS

OFF

ON

LOCK

(depress to activate)

EXAM
(depress to activate)

CaNT
(depress to activate)

ENABLEI HALT I ENABLE

, HALT

Power to the processor is off.

Power to the processor is on and all con·
sole switches function normally. .

Power to the' processor is on, but the Con­
trol Switches are disabled. The Switch
Register is. still functional.

Used to manually load data or an address
into the processor.

Transfers contents of the Switch Register
to the Bus Address register.

The resulting Bus Address is-displayed in
the ADDRESS, Register, and provides an
address for EXAM, DEP, and START. The
LOAD Address is not modified during pro­
gram execution. To restart a program. at
the previous Start Location, the START
switch is' activated.

Causes the contents of the location speci·
fied by the Bus Address to be displayed in
the DATA Register. If the EXAM switch is
depressed again, the contents of the next
sequential word .location are displayed.
(Bus Address is incremented automati­
cally). If an odd address is specified, the
next lower even address word will be dis­
played. If a non·existent memory address
is specified, no UNIBUS operation will be
completed, and contents. of the Switch
R.egister address (777 570) will be dis­
played in the DATA register.

Causes the processor to continue opera.·
tion from the point at which it had'stopped.
The switch has no effect when the CPU
is in the RUN state. If the program had
stopped, this switch provides a restart
without a System Reset.

Allows the CPU to perform normal opera·
tions under program control.

Causes the CPU to stop. Depressing the
CaNT switch will now cause execution of
a single instruction.

8·7

START
(depress to activate)

DEP
(raise to activate)

8.2.4 Displays

ADDRESS Register

DATA Register

If the CPU is in the RUN state, the START
switch has no effect.

If the program had stopped, depressing
the START switch causes a System Reset
signal to occur; the program will then
continue only if the ENABLE! HALT switch
is in ENABLE.

Deposits contents of the Switch Register
into the location specified by the Bus Ad·
dress. If the DEP switch is raised again,
the Switch Register contents (which were
probably, modified) are located into the
next word location. (Bus Address is incre'
mented automatically). If an odd address
is specified, the next lower even address
word 'will be used. If a non·existent mem­
ory address is specified, no UNIBUS oper­
ation will be completed, and contents of
the Switch Register address (777 570)
will ':be displayed-in the DATA register.

Displays the address of data just exam­
ined or deposited. During a programmed
HALT or WAIT instruction, the display
shows the next instruction address.

Displays data just examined or deposited.
During HALT, general register ROcontents
are displayed. During Single Instruction
operation, the Processor Status word (PS)'
is displayed. •

8-8

CHAPTER 9

SPECIFICATIONS

9.1 CPU OPERATING SPECIFICATIONS

Temperature: +lO°C to +50"C

Relative Humidity: 20% to 95% (without condensation)

Input Power: 115 VAC ± 10%,47 to 63 Hz
or 230 VAC ± 10%,47 to 63 Hz

9.2 PACKAGING
All the PDP-ll CPU's are housed in slide chassis units that can be
mounted in standard 19." .. racks. The included power supply has sufficient
excess capacity to drive core memory modules and peripheral logic
mounted within the unit. Module slots are prewired to accept some of
the optional equipment.

11/05 & 11/10
The PDP·11/05 and 11/10 are housed in either a 5·1/4" or 10-1/2" high
unit. The 10-1/ 2" unit can slide out and then tilt (5 positions), for can·
venient access to, the internal equipment. The 11/05 and 11/10 have
the same. CPU, but are available in several arrangements, see Figures
9-1 and 9-2.

11/35
The PDP-ll/35 is housed in a 10·1/2" high unit that can slide and tilt.
The 11/35 is available in :3 versions; the first 2 have core memory
mounted within the CPU assembly, and the third has the memory in an
external unit that can hold between 8K and 24K, see Figure 9-3.

U/40
The PDP·ll/40 is housed in a 21" high unit. The 11/40 and 11/35 have
the same CPU. The power supply does not slide out, but stays mounted
stably in the cabinet, which is included. See Figure 9-4.

Standard Cabinet
A standard 19" cabinet has two rows of mounting holes in the front,
spaced 18-5/16" apart. The holes are located at 1/2" or 5/8" apart from
each other, see Figure 9-5. Standard front panel increments are 1-3/4".

(5/8 + 5/8 + 1/2= 1·3/4)

The standard PDP·l1 cabinet is 72" high by 21" wide by 30" deep. It is
recommended that a service area of at least 35" be allowed in the front
and back of the cabinet. Each cabinet contains a power control so that
all equipment within the cabinet(and other connected cabinets) can have
their AC power turned on and off together.

9-1

Q. MECHANiCAL OUTLINE

"'''.NT VI:W. . -.J ~17''---------1 TOP VIEW

~"~ AIRour.....- POWER SUPPLY

.
FRONT

FRONT PANEL 5'V4"
'--____ ---J..L

,AIR IN --..-. CPU MEMORY LOGIC . ,

1----19" .1
b. PDP-IlIOS #'

#2 10 F TOP A B C E

KMll I KMII I 15PC SLOT OFll

UNIBUS I KM ill KMII
4 SPC SLOTS

UN(SUS

(DO NOT USE)
MEMORY {4K TO 16K)

M930 I M930 H213 OR H214

MEMOfIV (4K TO 8KI G231

GilO

M1261
CPU CPU

M7260

BOTTOM
t PDP-ll/IO

OFl!

KMII J KMll
4SPC SLOT

UNIBUS

(DO NOT USEl

M930 H214

MfMO(fy (81()

CPU

Figure 9·1 5.1/4 11 PDp·11l05 & 11/10 Assembly Unit

FRONT VIEW .1
!-------"'17''-' --.... -,.j.

~23"

~.4r
FRONT PANEL \()-1n"

L--_-------I-.l
... 1·>-----19" ·1

AIR

AIR

AIR

2
CPU

3

4

REAR 5 FRONT

MEMORY(8K TO 16K)
6

7

G231 8

H214 9

Figure 9-210-1/2" PDP-U/05 & 11/10 Assembly Unit

.. I
~23"

~41
FRONT PANEL 10-112"

L-___ --l~

#1

AIR OUT.--

#2

I_ 19" "I

TOP VIEW

POWER SUPPLY

CPU (SAME AS PDP-1V40)

MEMORY (8K TO 24K)

SPACE FOR 1 su

TOP VIEW

POWER SUPPLY

CPU

MEMORY (8K)

SPACE FOR 2 SU'.

AIR
IN

+
1

1
AIR
IN

I

#3 ASSEMBLY UNIT WITH CPU & POWER
SUPPLY PLUS 8K MEMORY IN ANOTHER
UNIT.

Figure 9-3 PDP-ll/35 Assembly Unit

9-4

FRONT

·1
~

AIR IN ""IT
FRONT PANEL 21"

,1----19"·---1 1
• AIR OUT

D C

110 TERMINAL CONTROl

<MEMQIlf MANAGEMENT

CPU

CLOCK

EIS

KMI1 FLOATING POINT

FRONT PANEL

A

UNISUS

M7236

M7234

M7235

M7233

M7231

M7232

M7238

M7239

7

6

•

TOP VIEW

SPACE FOR
5 SU's

SIDE
VIEW

Figure 9-4 PDP-ll/40 Assembly Unit

9-5

POWER
SUPPLY

FRONT VIEW

,0 1/4" 0

-r~-
T Z--------- In"

0 0 +
TOP OF A STANDARD 5/8"

0 FRONT PANEL 1-3/4" 0 1" 1 ___ 0 0 + 1/2"

0 3-1/2" 0 +

L ____
5/8"

0 0 + 518"

0 0 + 1/2"

0 0 -*-

18-5116" -1

Figure 9-5 Standard 19" Rack

9-6

9.3 MOUNTING INFORMATION
There are three basic mounting assemblies for the computers described
in this handbook.

Front Panel Height

5-1/4"
10-1/2"
21"

REAR VIEW

Computers.

PDP-ll/05, 11/10
PDP·11/05, lIllO, 11/35
PDP·11/40

FRONT PANEL

./
1;

,

Reference

Figure 9-6
Figure 9-7
Figure 9-8

w~
!

11
.56 5-114"

~ .31 x.44
SLOT

fool·---------1S.5116" ----------1.1
I SIDE VIEW

foo· ---- 25" ------U
,- - - ,- - - - - - -- - - - - - - r-------{f'-----,-,

3.ffc;l. ' Sl.IDE

T~ . '----:=---~------l~__._-~-.....J
lARVIEW L...-----------7--1

11------ 19" ------I

Figure 9-6 5-1/4" High Unit

9-7

REAR VIEW

-- IT i~ ~.r-rlll2" .~
.251(.44 " 1-1----------18 ''''---------..:...1,' SLOT I -15116- • L __ _

SIDE VIEW

1------23- "

SLIDE

I

BRACKEr ~ { 1 I

Figure 9-7 1O~1/2" High Unit

REAR VIEW tr
~___ 7/8"
~' - -,
I~ -TI-3f4"

~--- 1 21"

i l .25· ... ' I
SLOT 1

~I ------~ , I8-S116!6"-,,---------jd L __

~CSlDEVIEW
T--
1-314" SLIDE

,-- _ '-------ll-r--~----l

I 21-112"'----.. 1

T
1------»-112" ~3-3/4"1--

Figure 9-8 21 II High Unit

9·8

9.4 TABLE OF SPECIFICATIONS

11/05 11/05 11/10 11/10 11/35 11/40

Front Panel Height 5·1/4" 10·1/2" 5·1/4" 10·1/2" 10·1/2" 21"

Max Internal Space 9 slots 5 SU 9 slots 5 SU 5 SU 9 SU

Min MemprySize (words) 4K 4K 8K 8K 8K 8K

Max Pre·wired Memory 16K 16K 8K 16K 24K 24K

Max Memory in CPU Assembly 16K 28K 8K 28K 32K 80K

Space for Options lor 4 3 SU 4 slots 3 SU 1 to 3 5 SU
(or extra memory) slots SU

If>
50lbs 200 10 Weight (CPU) 110 50 110 120

Power (CPU & 8K of memory)
Current at 115 VAC 5 amps 5 5 5 7 .7
Heat dissipation 500W 500 500 500 700 700

Excess Current available
after CPU & 8K memory

+5 V 6amps 15 6 15 11 21
-15 V 3 5 3 5 2 10
+15 V 1 1 1 1 1 1

Cu~rent required for
each extra8K memory

+5 V L7amps })
-15 V 0.5

9.5 PDp·ll FAMILY OF COMPUTERS

Central Processor 11/05 11/10 11/15 11/20 11/35 11/40 11/45

Main Market OEM End User OEM End User OEM End User OEM & End User

Memory core care core bipolar, MOS, core

. Reg to·Reg Transfer 2.7 ~s 2.3 ~s 0~9 ~s 0.3 0.45 0.9

Max Mem Size (words) 28K 28K 124K 124K 124K

Max Address Space 32K 32K 128K 128K 128K

General Purpose Reg 8 8 8 16

Stack Processing yes yes yes yes

Micro·programmed yes no yes yes

Instructions basic set basic set basic set + same as 11/40 +
XOR, SOB, MARK, MUL, DIV, ASH,

SXT, RTT ASHC, SPL

IP Extended Arithmetic option (external) option (external) option (internal) standard (int)
0 (hardware) MUL; DIV,

ASH,ASHC

Floating Point software only software only hardware option hardware option
32·bit word 32 or 64·bit word

Stack Limit Address 400 (fixed) 400 (fixed) 400 or programmable
programmable

(option)

Memory Management not available not available option option MFPI, MFPD
MFPI, MTPI MTPI, MTPD

Modes 1 std, 2 opt 3

Automatic Priority 4·line 1·line 4·line 4·line 4·line
Interrupt multi·level multi·lev multi· lev multi·level multi·level

+
8 software levels

Power Fail and standard option standard standard standard
Auto·Restart

APPENDIX A

PROGRAMMING DIFFERENCES BETWEEN
PDP-II CPU's

A.1 INTRODUCTION

There are a few minor differences in how the different central processors
operate on certain instructions and programming situations. In almost
all cases the differences represent an improvement over the first
PDP-11 computer, the PDP-11/20, and the operations are'more effi­
cient but transparent to the user. In other cases, obscure combinations
of addressing mode.s and registers cause slightly different results ..

A.2 DIFFERENCES.

The following Table shows the major differences between the CPU's
described in this Handbook, and the original PDP-11/20. (The PDP-
11/15 operates the same as the 11/20).

A-I

TABLE OF PROGRAMMING DIFFERENCES

11/20

I. GENERAL REGISTERS (including PC & SP)

»

A. aPR %R, (R)+
or aPR %R, -(R)

aPR %R, @(R)+
OPR %R, @-(R)

(Using the same reg. as
both source &
destination).

N B. JMP (R)+ or
JSR reg, (RH
(Jump using auto­
increment mode)_

C. MOV PC, @#Aor
MOV PC, A
(Moving the incremented
PC to a memory address
referenced by the PC).

D. Stack P€)inter
(SP), R6 used for
referencing.

Contents of R are incre­
mented by 2 (or decre­
mented by 2) before being
used as the source operand.

Contents of R are incre­
mented by 2, then used as
the. new PC address.

location A will contain the
PC of the Move instruction
+4.

Using the SP for pointing to
odd addn!sses or non­
existent memory causes a
HALT (double bus error).

11/05 & 11/10 11/35 & 11/40

Initial contents of R are (same as 11/20)
used as the source operand.

(same as 11/20)

location A will contain
PC+2.

(same as 11/20)

Initial contents of R are used
as the new PC.

(same as 11/20)

Odd address of non-existent
memory references with SP
cause a fatal trap, with a new
stack created at locations 0 & 2.

TABLE OF PROGRAMMING DIFFERENCES (Cont.)

11/20 11/05 & 11/10

E. Stack Overflow Stack limit fixed at 400
(octal). Overflow (going
lower) checked after
@-(R6). JSR, traps, and
address modes 4 & 5. Over­
flow serviced by an overflow
trap. No red zone.

• ", TRAPS & INTERRUPTS

A. RTI instruction

B. RTT instruction

C. Processor Status (PS)
odd byte at location
777 777.

D. T bits of PS

First instruction after RTf is.
guaranteed to be executed.

(not implemented)

Addressi ng odd byte of PS
(bits 15·8) causes an odd
address trap;

T bit can be loaded by
direct address of PS, or
from the console.

(same as 11/20)

(same as 11/20)

(not implemented)

Odd byte of PS can be ad­
dressed without a trap.

(same as 11/20)

11/35 & 11/40

Variable limit with Stack Limit
option. Overflow checked after
JSR, traps, and address modes
1, 2, 4, & 6. Non-altering
references to stack data is
always allowed. There is a
16·word yellow (warning) zone.
Red zone trap occurs if stack is
16 words below boundary; PS &
PC are saved at locations
0&2 .

If RTI sets the T· bit. the T bit
trap is acknowledged immedi­
ately after the RTI instruction.

First instruction after RTT is
guaranteed to be executed.
Acts like RTI on the 11/20

(same as 11/05)

Only RTI, RTT, traps, and
interrupts can load the T bit.

TA8LE OF PROGRAMMING DIFFERENCES (Cont.)

11/20 ' 11/05 &iI/I0 11/35 & 11/40

E. Interrupt service routine The first instruction in the
routine is guaranteed to be
executed.

The first instruction will not (same as 11/05)

F. Priority order of traps
& interrupts

III. MISCELLANEOUS

A. SWAB and V bit

B. Instruction set

Odd address
Timeout
, HALT from console
Trap instructions
Trace trap
Stack overflow
Power fail

be executed if another
interrupt occurs at a higher
priority.

Odd address
Timeout
HALT instruction
Trap instructions
Trace Trap
Stack overflow
Power fail
HAl-T from console

SWAB instruction condition· V bit is cleared.
ally sets the V bit.

!3asic set. (same as 11/20)

Odd address
Stack overflow (red)
Timeout
Mem. Mgt. violation
HALT
Trap instructions
Trace trap
Stack overflow (yellow)
Power fail

(same tis U/05)

, Basic set + MARK, RIT,
SOB, SXT, XOR.

EIS adds: MUl, DIV, ASH, ASHC.

Floating Point adds: 'fADD,
FSUB, FMUl, FDIV.

A.3 COMPATIBILITY

In order to stay compatible with all PDP·ll computers, avoid the
following.

1. Using;
OPR %R, (R)+
OPR %R, -(R)
OPR %R, @(R)+
OPR%R, @-'-(R)

JMP (R)+
JMP %R

JSR reg, (R)+
JSR %R, %R

2. Testing the V bit after SWAB.

3. Using the T bit of the Processor Status word.

A-5

APPENDIX B MEMORY MAP

INTERRUPT VECTORS.

000 RESERVED.
004 TIME OUT, BUS ERROR
010 RESERVED INSTRUCTION
014 BPT TRAP VECTOR
020 lOT TRAP VECTOR
024 POWER FAIL TRAP VECTOR
030 EMT TRAP VECTOR
034 "TRAP" TRAP VECTOR
040 SYSTEM SOFTWARE
044 SYSTEM SOfTWARE
050 SYSTEM SOFTWARE
054 ~YSTEM SOFTWARE
060 TTL IN·BR4
064 TTY OUT·BR4
070 PCll HIGH SPEED READER·BR4
074 PCll HIGH SPEED PUNCH
100 KW11L· LINE CLOCK BR6
104 KWllP· PROGRAMMER REAL TIME CL()CK BR6
120 XY PLOTTER
124 DRllB·(BR5 HARDWIRED)
130 AD01 BR5·(BR7 HARDWIRED)
134 AFC11 FLYING CAP MULTIPLEXER BR4
140 AAll·A,B;~ SCOPE BR4
144 AA11 LIGHT PEN BR5
170 USER RESERVED
174 USER RESERVED
200 LPll, LSll LINE PRINTER CTRL,BR4
204 RFll DISK CTRL·BR5
210 RCll DISK CTRL·BR5
214 TCll DEC TAPE CTRL·BR6
220 RKll DISK CTRL·BR5
224 TMll COMPATIBLE MAG TAPE CTRL·BR5
230 CRll/CMll CARD READER CTRL·BR6
234 UDCll (BR4, BRS HARDWIRED)
240 11/45 PIRQ
244 FLOATING. POINT ERROR
250 SEGMENTATION TRAP
254 RPll DISK PACKCTRL·BR5
260 TAll CASSETTE·BR6
264
270 USER RESERVED
274 USER RESERVED
300. START OF FLOATING VECTORS

8·1

DEVICE ADDRESSES

NOTE: XX MEANS A RESERVED ADDRESS FOR THAT OP·
TlON. OPTION MAY NOT USE IT BUT IT WILL RE·
SPOND TO BUS ADDRESS.

777776
777774
777772
777716
777676
777656
777646
777636
777626
777616
777606
777576
777574
777572
777570
777566
777564
777562
777560
777556
777554
777552·
777550
777546

777516
777514
777512
777510

777476
777474
777472
777470
777466
777464
777462
777460

777456
777454
777452
777450
777446
777444
777442
777440

CPU STATUS
STACK LIMIT REGISTER
11/45 PIRQ REGISTER
TO 777700 CPU REGISTERS
TO 777600 11145 SEGMENTATION REGISTER
TO 777650 MXll #6
TO 777640 MXll #5
TO 777630 MXll #4
TO 777620 MXll # 3
TO 777610 MXll #2
TO 777600 MXll# 1
11/45SSR2
11145 SSRI
11/45 SSRO
CONSOLE SWITCH REGISTER
DLlI T1Y our DBR
DLlI T1Y OUT CSR
DLll T1Y IN DBR
DLll T1Y IN CSR
PCll HSP DBR
PCll HSP CSR
PCll HSR DBR
PCll HSR CSR
LKS LINE CLOCK KWll·L

LPll DBR
LPll CSR

-LPll XX
LPll XX

RFll DISK RFLA LOOK AHEAD
RFll DISK RFMR MAINTENANCE
RFll DISK RFDBR
RFll DISK RFDAE
RFll DISK RFDAR
RFll DISK RFCAR
RFll DISK RFWC
RFll DISK RFDSC

RCll DISK RCDBR
RCll MAINTENANCE
RCll RCCAR
RCII RCWC
RCll RCCSR
RCll RCCSRI
RCll RCER
RCll RCLA

B·2

777434 DTlI BUS SWITCH # 7
777432 BUS SWITCH # 6
777430 BUS SWITCH # 5
777426 BUS SWITCH # 4
777424 BUS SWITCH # 3
777422 BUS SWITCH # 2
117420 BUS SWITCH # 1

777416 RKDB RKll DISK
777414 RKMR
777412 RKDA
777410 RKBA
777406 RKWC
777404 RKCS
777402 RKER
777400 RKDS

777356 TCXX
777354 TCXX
777352 TCXX

777350 TCDT. DEC TAPE (TCll)
777346 TCBA
777344 TCWC
777342 TCCM
777340 TCST

777336 ASH EAE (KEll-A)#2
777334 LSH
777332 , NOR
777330 SC
777326 MUL
777324 MQ
777322 AC
777300 DIV

777316 - ASH EAE (KEll-A)# 1
777314 LSH
777312 NOR
777310 SC
777306 MUL
777304 MQ
777302 AC
777300 DIV

777166 CRll XX
777.164 CRDBR2 CRll CARD READER
777162 CRDBRI
777160 CRCSR

776776 AOOI-D XX
776774 AOOI-D XX
776772 ADDBR AID CONVERTER ADOI-D
776170 ADCSR

B~3

776766
776764
776762
776760
776756
776754
776752
776750
776740
776736
776734
776732
776730
776726
776724
776222
776720
776716
776714
776712
776710

DAC3 DAC AAll
DAC2
DACI
DACO
SCOPE CONTROL· CSR
AAll XX
AAll XX
AAll XX
RPBR3 RPll DISK
RPBR2
RPBR1
MAINTENANCE # 3
MAINTENANCE # 2
MAINTENANCE .# 1
RPDA
RPCA
RPBA
RPWC
RPCS
RPER
RPDS

776676 TO 776500 MULTI TTY FIRST STARTS AT 776500

776476 TO 776406 MULTIPLE AAIl'S SECOND STARTS @ 776760
776476 TO 776460 5TH AAIl
776456 TO 776440 4TH AAll
776436 TO 776420 3RD AAll
776416 TO 776400 2ND AAll
NOTE 1ST AAll IS AT 776750

776377 TO 776200 DX11
775600 DSll AUXILIARY LOCATION
775577 TO 775540 DSll MUX3
775537 TO 775500 DSll MUX2
775477 TO 775440 DSll MUX1
775436 TO 775400 OSll MUXO
775377 TO 775200 DN 11
775177 TO 775000 DMll
774777 TO ,774400 DPll
774377 TO 774000 DCll

773777 TO 773000 DIODE MEMORY MATRIX

773000 BM792·YA PAPER TAPE BOOTSTRAP
7731ooBM792·YB RC,RK,RP,RF AND TCll . BOOTSTRAP
773200 SM792·YC CARD READER BOOTSTRAP
773300
773400
773500
773600
773700 RESERVED FOR MAINTENANCE LOADER

8-4

772776 TO 772700 TYPESET PUNCH
772676 TO 772600 TYPESET READER

772576 AFC-MAiNTENANCE
772574 AFC-MUX ADDRESS
772572 AFC-DBR
772570 AFC-CSR
772546 KW11P. XX
772544 KW11P COUNTER
772542 KWIIP COUNT SET BUFFER
772540 KW11P CSR
772536 TM 11 X.X
772534 TM 11 XX
772532 TM 11 LRC
772530 TM 11 DBR
772526 TMll BUS ADDRESS
7725~4 TM11 BYTE COUNT
772522 TM 11 CONTROL
772520TM11 STATUS
772512 OST CSR
772510 OST EADRSl,2
772506 OST ADRS2
772504 OST ADRSI
772502 OST MASK2·
772500 OST MASK 1
772416 DRIIB/DATA
772414 DRIIB/STATUS
772412 DR11B/BA,
772410 DRUB/WC
772136 TO 772110 MEMORY PARITY CSR
772136 15
772120 4
772116 3
772114 2
772112 1
772110 0
771776 UDCS - CONTROL AND STATUS REGISTER
771774 UDSR - SCAN REGISTER
771772 MCLK - MAINTENANCE REGISTER
771766 UDC FUNCtiONAL I/O MODULES
771000 UDC FUNCTIONAL I/O MODULES
770776 TO 770700 KG11 CRC OPTION
770776 KGUA KGNU 7
770774 KGDBR7
770772 KGS8C7
770770 KGCSR7
770716 KGNUI
770714 KGBCCI
770712 KGDBRI
n071C KQCSRt
770706 KGNUO
770704 KGpBRO
770702 KGBCCO

8-5

770700 KGIIAKGCSRO
770676 TO 770500 16 LINE FOR DMllBB
770676 OM UBB #16
770674
770672
770670
770666 DMllBB #15
770664
770662
770660
770656 DM 11BB # 14
770654
770652
770650
77~ DMllBB #13
770644
770642
770640
770636 OM 11BB # 12
770634
770632
770630
770626 OM nBB # 11
770624
770622
770620
770616 DMllBB # 10
770614
770612
770610
770606 DMllBB #9
770604
770602
770600 DMllBB #8
770076 LATENCY TESTER
770074 . LATENCY TESTER
770072 LATENCY TESTER
770070 LATENCY TESTER
770056 TO 770000 SPECIAL FACTORY BUS TESTERS
767776 TO 764000 FOR USFR and SPECIAL SYSTEMS···DRllA ASSIGNED IN

USER AREA·STARTING AT HIGHEST ADDRESS WORKING DOWN
767776 DRllA #0
767774
767772
767770
767766 DR llA # 1
767764
767762
767760
767756 DR llA # 2

764OCO START ·NORMAL USER ADDRESSES HERE. AND ASSIGN UPWARD.
760004 TO 760000 RESERVED FOR DIAGNOSTIC· SHOULD NOT BE ASSIGNED

8-6

APPEN.DIX C

INSTRUCTION TIMING

C.l PDP-11/05 & 11/10

INSTRUCTION EXECUTION TIME
The execution time for an instruction depends on the instruction itself
and the modes of addressing used. In the most general case, the In·
struction Execution Time is the sum of a Basic Time, a Source Address
Time, and a Destination Address Time.

Instr Time = Basic Time + SRC Time + DST Time

Double Operand instructions require all 3 of these Times, Single Oper·
and instructions require a Basic Time and a DST Time, and with all
other instructions the Basic Time is the Instr Time.

'All Timing information is in microseconds, unless otherwise noted. Times
,are typical; processor timing can vary ± 10%.

SOURCE & DESTINATION ADDRESS TIMES
The SRC and DST Times apply directly to Word and Even Byte instruc·
tions. Odd Byte instructions take longer, see Notes following.

Mode SRC Time* DST Time"

0 0.0 p'sec 0.0 p.sec
1 0.9 2.4
2 0.9 2.4
3 2.4 3.4
4 0.9 2.4
5 2.4 3.4
6 2.4 3.4
7 3.4 4.7

NOTES:

*-For SCR Time, add 1.3 p'sec for Odd Byte addressing.
"-For DST Time, and. Odd Byte addressing:

1. add 1,3 p.sec for a non-modifying instruction (CMPB, BITB,
TSTB).

2. add 2.4 p'sec for a modifying· instruction.

Col

JlASIC TIME

DoublE! Operand
Instruction

ADD, SUB, BIC, BIS
CMP, BIT

MOV

Single Operand
Instruction

CLR, COM, INC, DEC,
NEG, ASR, ASL, ROR,
ROL,ADC, SBC

TST
SWAB

B"!sic Time

3.7 p'sec
2.5

3.7
(3.1 p'sec if Word
instruction
and mode 0)

Basic Time

3.4 p'sec

2.2
4.3

Instr Time = Basic Time +
SRC Time + PST TIme

Instr Time = Basic Time +
DSTTjme

Branch Instructions
Instruction Instr Time (branch) Instr Time (no branch)

(all branches) 2.5 p'sec

Jump Instructions
Instruction Basic Time

JMP
JSR

1.0 p'sec
3.8

Control, Trap & Mise Instructions
Instruction Instr Time

RTS 3.8
RTI 4.4

SET N,Z,V,C 2.5
CLR N,Z,V,C 2.5

HALT l.8
WAIT 1.8

RESET 100 msec

lOT, EMT, TRAP, BPT 8.2 ,usec

LATENCY
NPR latency is 7 p'sec, max.

C·2

1.9 p'sec

Instr Time = Basic Time +
DSTTime

C.2 PDP·11/35 & 11/40

INSTRUCTION EXECUTION TIME
The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of
a Source Address Time, a Destination Address Time, and an Execute,
Fetch Time.

Instr Time = SRe Time + DST Time + EF Time

Some of the instructions require only some of these times, and are so
noted. All Timing information is in microseconds, unless otherwise noted.
Times are typical; processor timing can vary ± 10%.

I. BASIC INSTRUCTION SET TIMING

Double Operand
all instructions,

except MOV: Instr Time = SRC Time + DST Time + EF Time
MOV Instruction: Instr Time = SRC Time + EF Time

Single Operand
all instr, except MFPI, MTPI:
MFPI, MTPI instructions:

Instr Time = DST Time + EF Time
Instr Time = EF Time

Branch, Jump, Control, Trap, & Mise
all instructions: Instr Time = EF Time

NOTES:

1. The times specified g~nerally apply to Word instructions. In most
cases Even Byte instructions have the same times, with some Odd
Byte instructions taking longer. All exceptions .are noted.

2. Timing is given without regard for NRP or BR servicing. Memory
types MM11·S, MFll·l, and MMll-L are assumed with direct use of
the special processor MSYNA signal and with memory within the CPU
mounting assembly. Use of the regular Unibus BUS MSYN signal
means 0.08 p;sec must be added for each memory cycle.

3. If the Memory Management (KT11-D) option is installed, instruction
execution times increase by 0.15 p;sec for each memory cycle used.

C-g

SOURCE ADDRESS TIME

Instruction

Double
Operand

Source Mode

o
1
2
3
4
5
6
7

SRC Time (A)

0.00 !,sec
.78
.84

1.74
.84

1.74
1.46
2.36

Memory Cycles

o
1
1
2
1
2
2
3

NOTE (A): For Source Modes 1 thru 7, add 0.34 !,sec for Odd Byte in­
structions.

DESTINATION ADDRESS TIME

Instruction Destination Mode DST Time (B) Memory Cycles

Single 0 0.00 !L5ec 0
Operand, 1 .78 (.90) 1
and 2 .84 (.90) 1
Double 3 1.74 (1.80) 2
Operand 4 .84 (.90) 1
(except 5 1.74 (1.80) 2
MOV, JMP, JSR) 6 1.46 (1.74) 2

7 2.36 (2.64) 1

NOTE (B): For Destination Modes 1 thru 7, ,add 0,34 !,sec for Odd Byte
instructions. Use higher values in parentheses () for ADD,
SUB, CMP, BIT, BIC, or BIS and a Source Mode of O.

EXECUTE, FETCH TIME

Double Operand

SRC Mode 0
Instruction DST Mode 0

(use with SRC EF Mem
Time & DST Time) Time Cyc

ADD, CMP, } 0.99 !'s 1
BIT, BIC, BIS

SUB .99 1
XOR .99 1

SRC Mode 1 to 7 SRC Mode 0 to 7
DST Mode 0 DST Mode 1 to 7

EF Mem EF Mem
Time Cyc Time (C) Cyc

1.60 !'s 1 1.76 !'s 2

1.60 1 1.90 2
- - 1.76 2

NOTE (C): For Destination Modes 1 thru 7, add 0.48 !,sec for Odd Byte
instructions.

C-4

EFTime
OST SRC EFTime (Odd or Memory

Instruction Mode Mode (Word instr) Even Byte) Cycles

0 0 0.90 p'sec 1.80 p'sec 0
0 lt07 1.46 1.80 0

1 Oto 7 2.42 2.56 2
2 o to 7 2.42 2.56 2

MOV 3 Ot07 3.18 3.32 3
4 o to 7 2.42 2.56 2

(use with 5 Oto 7 3.18 3.32 3
SRC Time)

6 0 2.84 2.98 3
6 lt07 3.18 3.32 3
7. 0 3.68 3.82 4
7 1 to 7 4.02 4.16 4

Single Operand

Instruction Destination Mode 0 Destination Mode 1 to 7

Mem Mem
(use with DST Time) EFTime Cycles EFTime (D) Cycles

ClR, COM, NEG, INC,
DEC, ADC, SBC, TST, 0.99 P.s 1 1.77 p'S 2
ROl, ASl, SWAB

ROR, ASR 1.25 (E) 1 2.06 2
SXT .90 1 1.77 2

NOTE (D): For Destination Modes 1 thru 7, add 0.48 p'sec for Odd Byte
instructions.

NOTE (E): For RORB and ASRB, add 0.14 p'sec for Even or .Odd Byte
instructions.

Instruction Instr Time Mem Cycles Note

MFPI
MTPI

3.74 p'S
3.68

Branch Instructions

Instruction

BR'. BN.E,. BEQ, B .. Pl, BMI,.)
BVC, BVS, BCC, BCS,
BGE, BlT, BGT, BlE,
BHI, BlOS, BHIS, BlO

SOB

2
2

Instr Time
(Branch)

1.76 p.sec

2.36

C·5

These two instructions are im'
plemented only if MelT)ory
Management is installed.

Instr Time
(No Branch)

1.40 p'sec

2.04

Memory Cycles

1

1

Jump Instructions

Instruction Destination Mode Instr Time Memory Cycles

1 1.80 !'Sec 1
2 2.10 1
3 2.30 2

JMP 4 1.90 1
5 2.30 2
6 2.36 2
7 2.92 3

1 2.94 2
2 3.24 2
3 3.44 3

JSR 4 3.04 2
5 3.44 3
6 3.50 3
7 4.06 4

Control, Trap, & Mise Instructions

Instruction Instr Time Mem Cyc Notes

RTS 2.42 p.sec 2
MARK 2.56 2
RTI. RTT 2.92 3

SET N,Z,V,C 1.72 1
CLR N,Z,V,C 2.02 1

HALT 2.42 1 Console loop for a switch
setting is 0.44 p.sec.

WAIT 2.24 1 WAit loop for a BR is 1.12 p.sec.

RESET 80 msec 1

lOT, EMT 5.80 p.sec 5
TRAP, BPT

LATENCY

Interrupts (BR requests) are acknowledged at the end of the current in·
struction. For a typical instruction, with an instruction execution time of
4 p.sec, the average time to request acknowledgement would be 2 p.sec.

Interrupt service time, which is the time from BR acknowledgement to
the first subroutine instruction, is 5.42 p'sec, max.

NPR COMA) latency, which is the time from request to. bus mastership
for the first NPR ,device, is 3.50 p.sec, max.

C-6

II. EIS, KEll·E, INSTRUCTION TIMING

Instr Time = SRC Time + EF Time

Source Mode SRC Time

o 0.28,usee
1 .78
2 .98
3 1.74
4 .98
5 1.74
6 1.74
7 2.64

Instruction EF Time Notes

MUL 8.88 ,usee
DIV 11.30

ASH (right) 2.58 Add 0.30 ,usee per shift.
ASH (left) 2.78 Add 0.30 ,usee per shift.

ASHC (no shift) 2.78
ASHC (shift) 3.26 Add 0.30 ,usee per shift.

LATENCY

Interrupts are acknowledged at. the end of the current instruction. In·
. terruptserviee time is 5.42 ,usee, max. NPR latency is 3.50 ,usee, max.

III. FLOATING POINT, KEll·F, INSTRUCTION TIMING

Instr Time=Basie Time+Shift Time for binary pts+Shift Time for norm

Instr

FADD
FSUB
FMUl
FDIV

Basic Time

• 18.78,usee
19.08
29.00
46.72

Time per shift to
line up binary points

(0 to 23 shifts)

0.30,usee
.30

Time per shift
for normalization
(0 to 25 shifts)

0.34,usee
.34
.34
.34

Basic instruction times shown for FADD and FSUB assume exponents
are equal or differ by.one.

C·7

.LATENCY

If an interrupt request of higher priority than the operating program
occurs during a Floating Point instruction, the current instruction will be
aborted unless it is near completion. The maximum time from interrupt
request to acknowledgement during Floating Point instruction executron
is 20.08 p.sec. Interrupt service time is5.42,.sec, max. NPR latency is
3.50 p.sec, max.

C·8

APPENDIX D
INSTRUCTION INDEX

ADC(B) , 4-19 FDIV 7-9
ADD 4-25 FMUl 7-9
ASl(B) 4-14 FSUB 7-8
ASH 7-4
ASHC 7-5 HALT 4-70
ASR(B) 4-13

INC(B) , 4-8
BCC 4-40 lOT 4·64
BCS 4-41
BEQ 4-35 JMP 4-52
BGE 4-43 JSR 4-54
BGT 4-45
BHI 4-48 MARK 4-57
BHIS 4-50 MFPI 6-18
BIC(B) 4-29 MOV(B) 4-23
BIS(B) 4-30 MTPI 6-19
BIT(B) 4-28 MUl 7-2
BlT 4-44
BlE .. , 4-46 NEG(B) 4-10
BlO 4-51 NOP 4-73
BlOS 4-49
BMI 4-37 RESET 4·72
BNE ' 4-34
BPl : 4-36

ROl(B) 4-16
ROR(B) 4·15

BPT 4-63 RTI 4,65
BR 4-33 RTS 4-56
BVC 4-38 RTI 4-66
BVS 4-39

SBC(B) 4-20
ClR(B) 4-6 SOB 4·59
CMP(B) 4-24 SUB 4-26
COM(B) 4-7 SWAB 4·17
CONDo CODES 4-73 SXT 4-21

DEC(B) 4-9 TRAP 4-62
DIV 7-3 TST(B) 4-11

EMT 4-61 WAIT 4-71

FADD 7-8 XOR 4-31

0-1

NUMERICAL OP CODE LIST

Op Code Mnemonic OpCode Mnemonic Op Code Mnemonic

00 00 00 HALT 00 60 DD ROR 10 40 00 } 00 00 01 WAIT 0061 DD ROL I EMT
00 00 02 RTI 00 62 DD ASR

j

10 43 77
00 00 03 BPT 0063 DD ASL
00 00 04 lOT 00 64 NN MARK 10 44 00 } 00 00 05 RESET 00 65 SS MFPI I TRAP I
00 00 06 RTT 0066 DD MTPI 10 47 77
00 00 07 (unused) 00 67 DD SXT

00 01 DD JMP 00 70 00

}
10 50 DO CLRB

00 02 OR RTS I (unused) 10 51 'DD COMB

" 10 52 DD INCB
00 02 10

}
00 77 77

10 53 DO DECB

1 (unused) 01 SS DO MOV 10 54 DD NEGB
00 02 27 02 SS DD CMP 10 55 DD ADCB

03 SS DO BIT ·10 56 DO SBCB
00 02 3N SPL 04 SS DD BIC 10 57 DD TSTB
00 02 40 NOP 05 SS DD BIS

06 SS DO ADD 10 60 DD RORB
00 02 41 } 10 61 DD ROLB

t cond codes 07 OR SS MUL 10 62 DO ASRB j

00 02 77 07 lR SS DIV 10 63 DD ASLB

00 03 DD SWAB
07 2R SS ASH

10 64 00 } 07 3R SS ASHC
07 4R DD XOR I (unused) 00 04 XXX BR j

00 10 XXX BNE 10 64 77
07 50 OR FADD

00 14 XXX BEQ 07 50 lR FSUB 10 65 SS MFPD
00 20 XXX BGE 0\1 50 2R FMUL 10 66 DO MTPD
00 24 XXX BLT 07 50 3R FDIV
00 30 XXX BGT 10 67 00 1 00 34 XXX BLE 07 50 40 }

I (unused) j J t (unused) 107777 00 4R DD JSR !
07 67 77

11 SS DD MOVB 00 50 DD CLR
00 51 DD COM 07 7R NN SOB 12 SS QD CMPB

00 52 DD INC 13 SS DD BITB
10 00 XXX BPL 14 SS DD BICB, 00 53 DD DEC 10 04 XXX BMI BISB 00 54 DD NEG 15 SS DD
10 10 XXX BHI 16 SS DO SUB 00 55 DD ADC 10 14 XXX BLOS

00 56 DD SBC 10 20 XXX BVC 17 00 00 } 00 57 DD TST 10 24 XXX BVS t floating

10 30 XXX BCC, BHIS
I point

17 7777
10 34 XXX BCS, BLO

0-2

APPENDIX E SUMMARY OF PDPll INSTRUCTIONS

GENERAL REGISTER ADDRESSING MODE

Mode Name Symbolic Description
0 register R
1 register deferred (R)
2 auto-increment (RH
3 auto-incr deferred @(R)+
4 auto-decrement ,-(R)

5 auto-deer deferred @-(R)
6 index X(R)
7 index deferred @X(R)

PROGRAM COUNTER ADDRESSING

2 immediate
3 absolute
6 relative
7 relative deferred

LEGEND

Op,Codes

• = 0 for word/1' for byte
SS = source field (6 bits)
DD = destination field (6 bits)
R = gen register (3 bits), 0 to 7

#n
@#A

A
@A

XXX = offset (8 bits), +127 to-128
N = number (3 bits)
NN = number (6 bits)

Boolaen
11.= AND
v = inclusive OR
"'I- = exclusive OR
-=NOT

NOTE:

(R) is operand [ex. R2 = %2]
(Rr is address
(R) is adrs; (RH(1 or 2)
(R) is adrs of adrs; (R)+2
(R) ,- (1 or 2); (R) is adrs
(R)- 2; (R) is adrs of adrs
(R)+X is adrs
(R)+X is adrs of adrs

MODE I Reg = 7

operand n follows instr
address A follows instr
instr a,drs +4+X is adrs
instr adrs +4+X is adrs of adrs

Operations

() = contents of
s = contents of source
d = contents of destination
r = contents of register
+- = becomes
X = relative address
% = register definition

Condition Codes
* = conditionally set or cleared
,-= not affected
0= cleared
1 = set

.. = Applies to the 11/35, 11/40, & 11/45 computers
• = Applies to the 11/45 computer

E-l

SINGLE OPERAND:
15

Mnemonic Op Code

General

CLR(B)
COM(B)
INC(B)
OECCB)
NEG(B)
TST(B)

.05000

.05100

.05200

.05300

.05400

.05700

Rotate & Shift

ROR(B)
ROL(B)
ASR(B)
ASL(B)
SNAB

.06000

.06100

.06200

.06300
000300

Multiple Precision

AOC(B) •. 05500
SBC(B) • 05600

ASXT 006700

DOUBLE OPERAND:

15

OPR dst
6 5

OP CODE

Instruction

clear
complement (1 '5)
increment
decrement
negate (2'5 com pi)

~ test

rotate right
rotate left
arith shift right
arith shift left
swap bytes

add carry
subtract carry
sign extend

OPR src,dst
6 5

s~: I
9 B 6 5

QP CODE

Mnemonic
General

MOV(B)
CMP(B)
ADD
SUB

Logical

BIT(B)
BIC(B)
BIS(B)

OpC,ode

.lSS00

.2SS00
06SS00
16SS00

.3SS00

.4SSOO

.5SS00

Instruction

move
compare
add
subtract

bit test (AND)
bit clear
bit set (OR)

00
1

o

dst Result N Z V C

o
-d

d+1
d-l
-d
d

d/2
2d

0·1 0 0
* * 0 1
* * ...
* * *
* * * *
* * 0 0

* * * *
* * * *
* * * *
* * *. *
......... 0

d+C ****
d-C '* '" !It *

00r·-1 ... '"

OPR scr;R or OPR R,dst

00
1

S5 OR DO
I t

o

o

Operation N Z V C

d -E- s
s·-d

d -E-s+d
d-E-d·-s

... '" 0 _
* '" * *
...... * ...
* * * ...

sl\d * * 0 _
d -E- (--s) 1\ d '" '" 0 _
d-E-svd * * 0_

A Register

MUL
OIV.
ASH
ASHC
XOR

070RSS multiply r -E- r x s * * 0 ...
... * 071RSS divide r -E- r/s

072RSS shift arithmetically
073RSS arith shift combined
074ROO exclusive OR d -E- r d

E·2

... '" '" *.

... '"
* * 0 _

BRANCH B __ location

15

BASE CODE
I

8 7 0

xxx
I ,

If condition is satisfied:
Branch to location,
New PC +- Updated PC + (2 x offset)

A

Op Code = Base Code + XXX

Base
Mnemonic Code Instruction Branch Condition

Branches

BR 000400 branch (unconditi.onal) (always)
BNE 001000 br if not equal (to 0) ,*0 Z::::O
BEQ 001400 br if equal (to 0) =0 Z=1
BPl 100000 branch if plus + N=O
BMI 100400 branch if minus N=1
BVC 102000 br if overflow is clear V:::: 0
BVS 102400 br if overflow is set V=l
BCe 103000 br if carry is clear C=D'
BCS 103400 br if carry is set C=1

Signed Conditional Branches

BGE 002000 br if greater or eq (to 0) ~O N V=O
BlT 002400 br if less than (0) <0 N..y..V::; 1
BGT 003000 br if greater.than (0) >0 Zv(N..y..V)=0
BlE 003400 br if less or equal (to 0) ~O Z v (N V) = 1

Unsigned Conditional Branches

BHI 101000 branch if higher > CvZ=O
BlOS 101400 branch if lower or same ~ Cvl= 1
BHIS 103000 branch if higher or same ~ C=O
BlO 103400 branch if lower < C=1

JUMP & SUBROUTINE:

. Op
Mnemonic Code

JMP
JSR
RTS

"'MARK
"'SOB

000100
004RDD
00020R
0064NN
077RNN

Instruction
Notes

jump PC +- dst
jump to subroutine }
return from subroutine . use same R
mark aid in subr return
subtract 1 & br (if *' 0) (R)- 1, then if (R) 1= 0:

E-3

PC+- Updated PC~
(2 x NN)

TRAP & INTERRUPT:

Op
Mnemonic Code

EMT 104000
to 104377

TRAP 104400
to 104777 -

BPT

lOT

RTI

.... RTT

000003

000004

000002

000006

MISCELLANEOUS:

Op
Mnemonic Code

HALT
WAIT
RESET
NOP

• SPl

000000
000001
000005
000240
00023N

Instruction·

emulator trap
(not for general use)

trap

breakpoint trap

input/output trap

return from interrupt

return from interrupt

Instruction

halt
wait for interrupt
reset external bus
(no operation)
set priority level (to N)

Notes

PC at 30, PS at 32

PC at 34, PS at 36

PC at 14, PS at 16

PC at 20, PS at 22

inhibit T bit trap

.... MFPI 0065SS move from previous instr space
.... MTPI 006600 move to previous instr space
• MFPO 1065SS move from previous data space
• MTPD 106600 move to previous data space

CONDITION CODE OPERATORS:

15 5 4 3 2 , 0

OP CODE BASE'='000240 :
I I I N I z I v I c I

L 0= CLEAR SELECTED CONO CODE BITS
1 =$ET SELECTED CONO CODE BITS

Op
Mnemonic Code Instruction NZVC

ClC 000241 clear C
___ 0

ClV 000242 clear V __ 0_

CLZ 000244 clear Z _0 __

ClN 000250 clear N
0 ___

ecc 000257 clear all cc bits 000 0

SEC 000261 set C ___ 1

SEV 000262 set V __ 1_

SEZ 000264 set Z _I __
SEN 000270 set N

1 ___

sec 000277 set all cc bits 1 1 1 1

E-4

PDPll/40 FLOATING POINT UNIT:

FADD
FSUB
FMuL
FDIV

07500R
07501R
07502R
07503R

DEVICE REGISTER ADDRESSES

Device

KWll-L Line Clock

KWll-P Real Time Clock
control & status
counter

LA30 DECwriter
keyboard
printer

LPll Line Printer

LT33 Teletype
keyboard
printer

pell Paper Tape
reader
punch

RCll/RS64 Disk (64K words)
lOOk ahead
disk address
error status

floating add
floating subtract
floating multiply
flQating divide

Control
& Data

Status Buffer

777546

772 542
772 540
772 544

771 560 777 562
777 564 777 566

717 514 777 516

777 560 777 562
777 564 777 566

777 550 777 552
777 554 777 556

777 456
777 440
777' 442
777 444

command & status 777 446
word count 777450
current address 777 452
maintena.nce 777 454

RFll/RSll Disk (256K words) 777 472
control status 777 460
word count 777 462
current mem adrs 777 464
disk address 777 466
adrs ext error 777 470
maintenance 777 474
segment address 777 476

E-5

NZVC
* * 00
* * 0 0
* * 00
* * 0 0

Inter-
rupt Priority

Vector Level

100 BR6

104 BR6

60 BR4
64 BR4

200 BR4

60 BR4
64 BR4

70 BR4
74 BR4

210 BR5

204 BR5

RKll/RK05 Disk Cartridge
drive status
error
control status
word count
current address.
disk address
maintenance

777 400
777402
777 404
777 406
777 410

·777 412
777 414

777 416 220 BR5

TCll/TU56 DECtape 777 350 214 BR6
control
command
word count
current address

TMll/TU10 Magtape
status
command
byte counter
current address
read lines

777 340
777 342
777 344
777 346·

772 520
772 522
772 524
772 526
772 532

'PROCESSOR REGISTE~ ADDRESSES

Processor Status Word
PS-7777'76

772 530 224 BR5

15 14 13 12 11 10 8 7 543210

I,I'I~

TLL
PRIORITY

I

OO=KERNEL4 QI=SUPERVISOR. 1'=USER4

... Stack Limit Register - 777 774

• Program Interrupt Request - 777 772

1 r t t LCARRY ~OVERFl.OW
ZERO
NEGATIVE
TRACE TRAP
GEN REG SET
PREVI(XJS MOIJE
CURRENT MODE

General Registers
(console use only)

RO-777 700
Rl-777701
R2-777702

R4-777704
R5-777 705
R6-777 706
R7-777707 R3-777 703

Console Switches & Display Register - 777 570

INTERRUPT VECTORS

000 (reserved) 240 PIRQ
004 Time Out & other errors
010 illegal & reserved instr
014 BPT

244 . Floating Point
250 Memory Management

020 lOT
024 Power Fail
030 EMT
034 TRAP

E·6

Address

_744
__ 746
__ 750
__ 752
__ 754
_ 756
__ 760
__ 762

ABSOLUTE LOADER

Starting Address: __ 500
~

Memory Size: 4K 017
8K 037

12K 057
16K 077
20K 117
24K 137
28K 157

(or larger)

BOOTSTRAP LOADER

Contents

016 701
000 026
012 702
000 352
005 211
105 711
100 376
116 162

E·7

Address Contents

_ _ 764 000 002
__ 766 __ 400
__ 770 005 267
__ 772 177 756
__ 774 000 765
_ 776 177 560 (KB)

or 177 550 (PR)

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	xBack

