

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard,
Massachusetts 01754, Telephone: (617) 897-5111
SALES AND SERVICE OFFICES
UNITED STATES-ALABAMA, Huntsville. ARIZONA, Phoenix and Tucson.
CALIFORNIA, EI Segundo, Los Angeles, Oakland, Ridgecrest, San Diego, San
Francisco (Mountain View), Santa Ana, Santa Clara, Stanford, Sunnyvale and Woodland
Hills· COLORADO, Englewood' CONNECTICUT, Fairfield and Meriden. DISTRICT
OF COLUMBIA, Washington (Lanham, MD) • FLORIDA, FI. Lauderdale and Orlando.
GEORGIA, Atlanta' HAWAII, Honolulu' ILLINOIS, Chicago (Rolling Meadows) •
INDIANA, Indianapolis' IOWA, Bettendorf. KENTUCKY, Louisville. LOUISIANA,
New Orleans (Metairie) • MARYLAND, Odenton' MASSACHUSETTS, Marlborough,
Waltham and Westfield. MICHIGAN, Detroit (Farmington Hills) • MINNESOTA,
Minneapolis' MISSOURI, Kansas City (independence) and SI. Louis' NEW
HAMPSHIRE, Manchester. NEW JERSEY, Cherry Hill, Fairfield, Metuchen and
Princeton. NEW MEXICO, Albuquerque' NEW YORK, Albany, Buffalo (Cheek­
towaga), Long Island (Huntington Station), Manhattan, Rochester and Syracuse •
NORTH CAROLINA, Durham/Chapel Hill' OHIO, Cleveland (Euclid), Columbus and
Dayton' OKLAHOMA, Tulsa. OREGON, Eugene and Portland. PENNSYLVANIA,
Allentown, Philadelphia (Bluebell) and Pittsburgh' SOUTH CAROLINA, Columbia.
TENNESSEE, Knoxville and Nashville. TEXAS, Austin, Dallas and Houston. UTAH,
Salt Lake City' VIRGINIA, Richmond. WASHINGTON, Bellevue. WISCONSIN,
Milwaukee (Brookfield) •
INTERNATIONAL-ARGENTINA, Buenos Aires. AUSTRALIA, Adelaide, Brisbane,
Canberra, Melbourne, Perth and Sydney' AUSTRIA, Vienna' BELGIUM, Brussels.
BOLIVIA, La Paz' BRAZIL, Rio de Janeiro and Sao Paulo. CANADA, Calgary,
Edmonton, Halifax, London, Montreal, Ottawa, Toronto, Vancouver and Winnipeg'
CHILE, Santiago' DENMARK, Copenhagen' FINLAND, Helsinki. FRANCE,
Grenoble and Paris. GERMANY, Berlin, Cologne, Frankfurt, Hamburg, Hannover,
Munich and Stuttgart. HONG KONG. INDIA, Bombay. INDONESIA, Djakarta'
IRELAND, Dublin' ITALY, Milan and Turin' JAPAN, Osaka and Tokyo' MALAYSIA,
Kuala Lumpur' MEXICO, Mexico City. NETHERLANDS, Utrecht. NEW ZEALAND,
Auckland. NORWAY, Oslo' PUERTO RICO, Santurce • SINGAPORE. SWEDEN,
Gothenburg and Stockholm. SWITZERLAND, Geneva and Zurich' UNITED
KINGDOM, Birmingham, Bristol, Edinburgh, Leeds, London, Manchester and Reading
• VENEZUELA, Caracas.

mamaamo

000

processor
handbook

digital equipmert. corporation .

Copyright © 1976, by Digital Equipment Corporation

DEC, PDP, UNIBUS are registered trademarks

of Digital Equipment Corporation

ii

CONTENTS

CHAPTER 1 INTRODUCTION :... 1-1

1.1 PDP-ll FAMILy.. 1-1
1.2 SCOPE 1'.. 1-2
1.3 PDP-ll/34 COMPUTER .. 1-2
1.4 PERiPHERALS/OPTIONS·.. 1-6
1.5 SOFTWARE 1-6
1.6 NUMBER SYSTEMS .. 1-8

CHAPTER 2 SYSTEM ARCHITECTURE 2-1

2.1 UNIBUS 2-1
2.2 CENTRAL PROCESSOR .. 2-2
2.3 MEMORy................. ... 2-6
2.4 AUTOMATIC PRIORITY INTERRUPTS 2-7

CHAPTER 3 ADDRESSING MODES 3-1

3.1 SINGLE OPERAND ADDRESSiNG............................ 3-1
3.2 DOUBLE OPERAND ADDRESSING 3-2
3.3 DIRECT ADDRESSING 3-4

3.3.1 Register Mode .. 3-4
3.3.2 Auto-increment Mode 3-5
3.3.3 Auto·decrement Mode 3-7
3.3.4 Index Mode ... 3·8

3.4 DEFERRED (INDIRECT) ADDRESSING 3-10
3.5 USE OF THE PC AS A GENERAL REGISTER 3·12

3.5.1 Immediate Mode 3-13
3.5.2 Absolute Addressing 3-13
3.5.3 Relative Addressing 3-14
3.5.4 Relative Deferred Addressing 3·15

3.6 USE OF STACK POINTER AS GENERAL REGISTER 3·16
3.7 SUMMARY OF ADDRESSING MODES 3·16

3.7.1 General Register Addressing 3-16
. 3.7.2 Program Counter Addressing 3-18

CHAPTER 4 INSTRUCTION SET .. 4·1

4.1 INTRODUCTION .. 4·1
4.2 INSTRUCTION FORMATS 4·2
4.3 LIST OF INSTRUCTIONS 4·4
4.4 SINGLE OPERAND INSTRUCTIONS 4-6
4.5 DOUBLE OPERAND INSTRUCTIONS 4·23
4.6 PROGRAM CONTROL INSTRUCTIONS 4·32
4.7 MISCELLANEOUS .. 4·69

iii

CHAPTER 5 PROGRAMMING TECHNIQUES 5-1

5.1 THE STACK 5-1
5.2 SUBROUTINE LINKAGE 5-5

5.2.1 Subroutine .Calls 5-5
5.2.2 Argument Transmission 5-6
5.2.3 Subroutine Return 5-9
5_2.4 PDP-ll Subroutine Advantage. 5-9

5.3 INTERRUPTS :.. 5-9
5.3.1 General Principles 5-9
5.3.2 Nesting 5-10

5.4 REENTRANGY. 5-13
5.5 POSITION INDEPENDENT CODE 5-15
5_6 CO-ROUTINES " 5-16
5.7 PROCESSOR TRAPS 5-17

5.7_1 Power Failure 5-17
5.7.2 Odd Addressing Errors 5-17
5.7.3 Time-Out Errors .. 5-17
5.7.4 Reserved Instructions 5-17
5_7.5 Trap Handling .. 5-17

CHAPTER 6 THE PDP-ll/34 COMPUTER 6-1

6.1 DESCRIPTION ... 6-1
6.2 SPECIFICATIONS. .. 6-2
6.3 MOS & CORE MEMORY. 6-6
6.4 BATIERY BACKUP 6-6
6.5 M9301 MODULE 6-6
6.6 M9302 MODULE 6-7
6.7 DL11-W (M7856) .. 6-8
6_8 OPERATOR'S CONSOLE :......... 6-8
6.9 CONSOLE EMULATION .. 6-10
6.10 EIS ARITHMETIC OPERATION 6-14

CHAPTER 7 MEMORY MANAGEMENT 7-1

7.1 GENERAL 7-1
7.2 RELOCATION .. 7-3
7.3 PROTECTION .. 7-6
7.4 ACTIVE PAGE REGISTERS 7-7
7.5 VIRTUAL & PHYSICAL ADDRESSES 7-13
7.6 STATUS REGISTERS .. 7-15
7_7 INSTRUCTIONS .. 7-17

Appendix A Instruction Timing .. A-I

Appendix B Instruction Index .. B-1

iv

CHAPTER 1

INTRODUCTION

1.1 PDP·ll FAMILY
The PDp·ll family includes several central processor units (CPU's), a
large number of peripheral devices and options, and extensive software.
Future equipment will be compatible with existing family members. The
user can choose the system which is most suitable for his application,
but as needs change, he can easily add or change hardware.

1.2 PDP-ll/34 COMPUTER
The PDP-ll/34 is a systems level computer that includes increased
memory expansion to 124K words, memory relocation and protection,
faster processing speeds, and hardware multiply .and divide instructions.
The computer system is mounted in a 5 14",10 112", or 21" chassis that
mounts in a standard 19" cabinet. The PDP-ll/34 processor is prewired
to accept additional memory (parity core or MOS) and standard periph­
eral device controllers including communications interfaces, mass storage
controllers, etc. Additional mounting space is provided within the 10lh"
and 21" computer chassis for more complex controllers. The computer
power supply within the chassis is capable of powering the optional in­
ternal devices.

T~e PDP-ll/34 computer, as a member of the PDP-ll family, has the
following features:

• Single & double operand instructions
powerful and convenient set .of programming instructions

• Hardware implemented multiply and divide instructions

• 16-bit word (two 8-bit bytes)
direct addressing o(32K words or 64K bytes (K = -1024)

• Parity detection on each 8-bit byte

• Hardware address expansion and protection allowing memory address­
ing to 124K words

• Word or byte processing
very efficient handling of 8-bit data without the need to rotate, swap,
or mask

• Asynchronous operation
system components run at their highest possible speed, replacement
with faster subsystems means faster operation without other hardware
or software changes

1-1

• Modular component design
extreme ease and flexibility in configuring systems

• Stack processing
hardware sequential memory manipulation makes it easy to handle
structured data, subroutines, and interrupts

• Direct Memory Access (DMA)
inherent in the architecture is direct memory access for multiple de'
vices

• 8 internal general·purpose registers
used interchangeably for accumulators or address generation

• Automatic Priority Interrupt
four·line, multi·level system permits grouping of interrupt lines accord·
ing to response requirements

• Vectored i nterru pts
fast interrupt response without device polling

• Power Fail & Automatic Restart
Hardware detection and software protection for fluctuations in the AC
power

The minimum PDp·ll/34 includes:

• Parity MOS or core memory

• Memory management
Program protection arid relocation for memory expansion to 124K 16·
bit words

• Automatic bootstrap loader
Automatic starts from a variety of peripheral devices

• Self.test featu re
ROM hardware automatically performs diagnostics on the CPU and
memory

• Operator's front panel
Allows complete control of the computer via any ASCII terminal. All
front panel functions are key entries on the terminal, thereby elimi·
nating the need and cost of a programmer's lights and switches con·
sole.

The following optional equipment is available:

• Battery backup for MOS memory

• Programmer's console

• Serial communications line interface and line frequency clock

• Large variety of standard PDp·ll peripherals

1.3 SCOPE
This Handbook describes the PDp·ll/34 computer designed and manu·
factured by Digital Equipment Corporation.

The intent is to provide extensive information on operation of the com·
puter in general, performance, features and basic programming. This
Handbook is not intended to be the sole reference for the computer.
More comprehensive and detailed information is available in the PDp·

1·2

11/34 User's Guide, Maintenance Manual, and Programming Manuals.
Improvements and modifications in equipment made after January 1976
are not reflected in this Handbook.

1.4 PERIPHERALS/OPTIONS
Digital Equipment Corporation designs and manufactures many of the
peripheral devices offered with PDp·ll's. As a designer and manufacturer
of peripherals, DIGITAL can offer extremely reliable equipment, lower
prices, quantity discounts, and a wide range of computer options to
choose from.

I/O DEVICES
All PDp·ll systems can use any ASCII terminal as the basic I/O device.
However, I/O capabilities can be increased with high·speed paper tape
reader·pul1ches, line printers, card readers or alphanumberic display ter·
minals. The LA36 DECwriter, a totally DIGITAL designed and built tele·
printer, has several advantages over standard electromechanical type·
writer terminals, including higher speed, fewer mechanical parts and very
quiet operation.

PDp·ll devices include:

Cassette, TAll
Floppy disk, RXOI
DECterminal alphanumeric display, VT50
DECwriter teleprinter, LA36
High Speed Line Printers, LSll, LPll, LVll
High Speed Paper Tape Reader and Punch, PCl1
Teletypes, LT33 .
Card Readers, CRll, CDll, CMll
Graphics Terminal, GT40 '.
Synchronous and Asynchronous Communications Interfaces

Storage Devices
Storage devices range' from convenient, small· reel magnetic tape (DEC·
tape) units to mass storage magnetic tapes and disk memories. With the
UNIBUS, a large number of storage devices, in any combination, may be
connected to a PDp·ll system. TU56 DECtapes, highly reliable tape
units with small tape reels, designed and built by DEC, are ideal for ap­
plications with modest storage requirements. Each DECtape provides
storage for I44K I6-bit words. For applications which require handling
of large volumes of data, DEC offers the industry compatible TUI6
Magtape.

Disk storage include fixed·head disk units and moving·head removable
cartridge and disk pack units. These devices range from the 256K word
RS03 fixed head disk, to the RP04 Disk Pack which can store up to 44
million words.

1·3

1.5 SOFTWARE
The PDP-ll family of central processors and peripherals is supported
by a comprehensive family of licensed software products. This software
family includes support for small stand-alone configurations, disk based
real-time and program development systems, large multi-programming
and time-sharing systems, and many diverse dedicated applications.
Some examples of general purpose operating systems and standard high
level language processors are:

• PAPER TAPE SYSTEM (PTS-ll)-A c;ore only high-speed paper tape
system with program development in assenibly language. Editor, de­
bugger, and linker are supplied along with a relocating assembler.

• CASSETTE PROGRAMMING SYSTEM (CAPS-ll)-A small program de­
velopment system with a core based monitor, utilizing dual magnetic
tape cassettes as file structured media. Complete program develop­
ment utilities such as a relocating assembler, linker, editor, debugger,
and file interchange program are included.

• SINGLE USER ON-LINE PROGRAM DEVELOPMENT SYSTEM (RT-ll)­
A small, powerful, easy-to-use disk (or DECtape) based system for
program development or fast on-line (real-time) applications. A Fore­
ground/ Background version can accommodate simultaneous program
development in the background with on-line applications in the fore­
ground. A MACRO assembler, linker, editor, debugger, and file utility
programs are included.

• MULTI-TASKING PROCESS CONTROL SYSTEM (RSX-llM)-An effi­
cient multi-tasking system suitable for controlling many processes
simultaneously, in a protected environment with concurrent develop­
ment of new programs. Utilities include a MACRO assembler, task
builder (linker), editor, debugger, and file utility programs.

• COMPREHENSIVE MULTI-PROGRAMMING SYSTEM (RSX-llD)-The
total job operating system. As a compatible extension of RSX-ll M,
the system allows concurrent fully hardware protected execution of
multiple on-line jobs, with BATCH program development. Complete
utilities include a MACRO assembler, task builder (linker), editor, de­
bugger, and file utility programs.

• EXTENDED RESOURCE TIME SHARING SYSTEM (RSTS/E)-A disk­
based time-sharing system implementing BASIC-PLUS, an enriched
version of the popular BASIC language. Up to 32 simultaneous users
share system resource via interactive terminals. Additional features
such as output spooling, and comprehensive file protection are in­
cluded.

1-4

Languages

• BASIC-ll-An extended version of Dartmouth Standard BASIC is
available for PTS-ll, CAPS-ll and RT-l1. Many applications, such as
signal processing and graphics are accessed by the user through ex­
tensions to this simple, yet powerful, language. A multiuser version is
available under PTS·ll and RT-l1.

• PDP-ll FORTRAN IV-An extended version of ANSI standard FOR­
TRAN is supplied with RSX-llM and RSX·llD, and available under
RT-lI. As an optimizing compiler, FORTRAN IV is designed for fast
compilation, yet requires very little main memory, and generates
highly efficient code without sacrificing execution speed. Under RT-ll,
FORTRAN IV features the same signal-processing and graphics ex­
tensions as BASIC-II.

• PDP-ll COBOL-To supplement the business data processing needs
often associated .with large scale PDP-ll system applications, an
ANSI-74 COBOL language is available under RSX-llD. Running as a
BATCH job, COBOL enhances the RSX-llD total job computing sys­
tem, where some business data processing is required.

In addition to the above mentioned general purpose licensed software
products, DIGITAL offers a great number of optional and applications
oriented products. A wide range of educational, consulting, and mainte­
nance services are also offered, to ensure full utility of any PDP-ll
system. For a complete and detailed listing of DIGITAL software prod­
ucts and services, consult the latest CATALOG OF SOFTWARE PRODUCTS
and SERVICES.

1.6 NUMBER SYSTEMS
Throughout this Handbook, 3 number systems will be used; octal,
binary, and decimal. So as not to clutter .all numbers with subscripted
bases, the following general convention will be used:

Octal-for address locations, contents of addresses, and operation
codes for instructions; in most cases there will be words of 6
octal digits

Binary-for describing a single binary element; when referring to
a PDP-ll word it will be 16 bits long

Decimal-for all normal referencing to quantities

1-5

Octal Representation

r -:--1 15 114 13 12 III 10 9 I 8 7 6 I ~ 4 3 I 2 .1 0 1 PDP·l1 wor-d
L_..L___ . I I . r I . I I . I I . ' ! .

~~~~~~ 

o 0 0 0 0 0 6·digit octal 

The I6·bit PDp·l1 word can be representeci conveniently as a 6·digit 
octal word. Bit 15, the Most Significant Bit (MSB), is used directly as 
the Most Significant Digit of the octal word. The other 5 octal digits are 
formed from the corresponding groups of 3 bits in the binary word. 

When an extended address of 18 bits is used (shown later in the Hand· 
book), the Most Significant Digit of the octal Word is formed from bits 
17, 16, and 15. For unsigned numbers, the correspondence between 
decimal and octal is: . 

Decimal Octal 

o 
(216_1)= 65,535 
(218_1) =262,143 

2's Complement Numbers 

000000 
177777 
777777 

(16·bit limit) 
(18·bit limit) 

In this system, the first bit (bit 15) is used to indicate the sign; 

O=positive 
l=negative 

For positive numbers, the other 15 bits represent the magnitude directly; 
for negative numbers. the magnitude is. the 2's complement of the 
remaining 15 bits. (The 2's. complement is equal t6 the 1's complement 
plus one.) The ordering of numbers is shown below: 

Decimal 

largest positive +32,767 
+32,766 

+1 
o 

-1 
-2 

-32,767 
most negative -32,768 

1·6 

2's Complement (Octal) 

Sign Bit 
o 
o 
o 
o 
1 
1 

1 
1 

Magnitude Bits 
77777 
77776 
00001 
00000 
77777 
77776 

00001 
00000 



CHAPTER 2 

SYSTEM ARCHITECTURE 

2.1 UNIBUS 
Most computer system components and peripherals connect to and com­
municate with each other on a single high-speed bus known as the 
UNIBUS- a key to the PDP-ll's many strengths. Addresses, data, and 
control information are sent along the 56 lines of the bus_ 

Figure 2-1 PDp·l1 System Simplified Block Diagram 

The form of communication is the same for every device on the UNIBUS. 
The processor uses the same set of signals to communicate with mem­
ory as with peripheral devices_ Peripheral devices also use this set 9f 
signals when communicating with the processor, memory or other pe­
ripheral devices. Each device, including memory locations, processor 
registers, and peripheral device registers, is assigned an address on the 
UNIBUS_ Thus, peripheral device registers may be manipulated as flex­
ibly as core memory by the central processor. All the instructions that 
can be applied to data in core memory can be applied equally well to 
data in peripheral device registers_ This is an especially powerful feature, 
considering the special capability of PDP-ll instructions to process data 
in,any memory location as though it were an accumulator. 

2.1.1 Bidirectional Lines 
With bidirectional and asynchronous communications on the UN IBUS, 
devices can send, receive, and exchange data independently without 
processor intervention. For example, a cathode ray tube (CRT) display 
can refresh itself from a disk file while the central processor unit (CPU) 
attends to other'tasks. Because it is asynchronous, the UNIBUS is com­
patible with devices operating over a wide range of speeds_ 

2.1.2 Master-Slave Relation 
Communication between two devices on the bus is in the form of a 
master-slave relationship. At any point in time, there is one device that 
has control of the bus. This controlling device is termed the "bus mas­
ter_" The master device controls the bus when communicating with 
another device on the bus, termed the "slave_" A typical example of 
this relationship is the processor, as master, fetching an instruction from 
memory (which is always a slave). Another example is the disk, as 

2-1 



master, transferring data to memory, as slave. Master·slave relation· 
ships are dynamic. The processor, for example, may pass bus control 
to a disk. The disk, as master, could then communicate with a slave 
memory bank. 

Since the UNIBUS is used by the processor ana all I/O devices, there is 
a priority structure to determine which device gets control of the bus. 
Every device on the UNIBUS which is capable of becoming bus master 
is assigned a priority. When two devices, which are capable of becoming 
a bus master, request use of the bus simultaneously, the device with 
the higher priority will receive control. 

2.1.3 Interlocked Communication 
Communication on the UNIBUS is interlocked so that for each control 
signal issued by the master device, there must be. a response from the 
slave in order to complete the transfer. Therefore, communication is 
independent of the physical bus length (as far as timing is concerned) 
and the timing of each transfer is dependent only upon the response 
time of the master and slave devices. The asynchronous operation pre· 
cludes the need for synchronizing with, and waiting for, clock impulses. 
Thus, each system is allowed to operate at its maximum possible speed. 

Input/ output devices transferring directly to or from memory are given 
highest priority and may request bus mastership and steal bus and memo 
ory cycles during instruction operations. The processor resum·es opera­
tion immediately after the memory transfer. Multiple devices can operate 
simultaneously at maximum direct memory access (DMA) rates by 
"stealing" bus cycles. 

Full 16-bit words or a-bit bytes of information can be transferred on the 
bus between a master and a slave. The information can be instructions, 
addresses, or data. This type of operation occurs when the processor, as 
master, is fetching instructions, operands, and data from memory, and 
storing the results into memory after execution of instructions. Direct 
data transfers occur between a peripheral device control and memory .. 

2.2 CENTRAL PROCESSOR 
The central processor, connected to the UNIBUS as a subsystem, con­
trols the time allocation of the UNIBUS for peripherals and performs 
arithmetic and logic operations and instruction decoding. It contains 
multiple high-speed general-purpose registers which can be used as accu­
mulators, address pointers, index registers, and other specialized func­
tions. The processor can perform data transfers directly between I/O 
devices and memory without disturbing the processor registers; does 
both single~ and double-operand addressing and handles both 16-bit 
word and a-bit byte data. 

2.2.1 General Registers 
The central processor contains a general registers which can be used for 
a variety of purposes. The registers can be used as. accumulators, index 
registers, autoincrement registers, autodecrement registers, or as stack 

2-2 



pointers for temporary storage of data. Chapter 3 on Addressing de­
scribes these uses of the general registers in more detail. Arithmetic 
operations can be from one general register to another, from one mem­
ory or device register to another, or between memory or a device register 
and a general register. Refer to Figure 2-2. 

GENERAL 
REGISTERS RO 

R 1 

R2 

R3 

R4 

RS 

R6 l(sP) 
STACK POINTER 

R7 I(PC) 

PROGRAM COUNTER 

Fgure 2-2 The General Registers 

R7 is used as the machine's program counter (PC) and contains the 
address of the next instruction to be executed. It is a general register 
normally used only for addressing purposes and not as an accumulator 
for arithmetic operations. 

R6 is normally used as the Stack Pointer indicating the last entry in the 
appropriate stack (a common temporary storage area with "Last-in First­
Out" characteristics). The Memory Management feature provides 2 
separate stack pointers, 1 for each of 2 operating modes (Kernel and 
User). 

2_2_2 Instruction Set 
The instruction complement uses the flexibility of the general-purpose 
registers to provide over 400 powerful hard·wired instructions-the most 
comprehensive and powerful instruction repertoire of any computer in 
the 16-bit class. Unlike conventional 16-bit computers, which usually 
have three classes of instructions (memory reference instructions, oper­
ate or AC control instructions and I/O instructions) all operations in the 
PDP-ll are accomplished with one set of instructions. Since peripheral 
device registers can be manipulated as flexibly as core memory by the 
central processor, instructions that are used to manipulate data in core 
memory may be used equally well for data in peripheral device registers. 
For example, data in an external device register can be tested or modified 
directly by the CPU, without bringing it into memory or disturbing the 
general registers. One can aCld data directly to a peripheral device reg­
ister, or compare logically or arithmetically. Thus ali PDP-ll instructions 
can be used to create a new dimension in the treatment of computer 
I/O and the need for a special class of I/O instructions is eliminated. 

The basic order code of the PDP-ll uses both single and double operand 
address instructions for words or bytes. The PDP·ll therefore performs 

2-3 



very efficiently in one step, such operations as adding or subtracting two 
operands, or moving an operand from one location to another. 

ADD A,B 

LDAA 

ADD B 

STA B 

Addressing 

PDP-ll Approach 

;add contents of location A to loca­
tion B, store results at location B 

Conventional Approach 

;Ioad cpntents of memory location A 
into AC 

;add contents of memory location B to 
AC 

;store result at location B 

Much of the power of the PDP-ll is derived from its wide range of ad­
dressing capabilities. PDP-ll addressing modes include sequential 
addressing forwards or backwards, addressing indexing, indirect address­
ing, 16·bit word addressing, a·bit byte addressing, and stack addressing. 
Variable length instruction formating allows a minimum number of bits 
to be used for each addressing mode. This results in efficient use of 
program storage space. 

2.2_3 Processor Status Word 

IS 14 13 12 II 8 5 4 

I T 

CURRENT MOO~ ~ 
t PREVIOUS MO~E ~ 

PRIORITY----------------..J 

3 I 0 

I N I z I v I C I 
~ 

) 
CON01T10N. COOES-------------------~---l 

Figure 2·3 Processor Status Word 

The Processor- Status word (PS), at I.ocation 777776, contains informa­
tion on the current status of the PDP-ll. This information includes the 
current processor priority: current and previous modes; the condition 
codes describing the results of the last instruction; and an indicator for 
detecting the execution of an instruction to be trapped during program 
debugging. 

Processor Priority 
The Central Processor operates an anyone of eight levels of priority, 0-7. 
When the CPU is operating at level 7 an external device cannot interrupt 
it with a request for·service. The Central Processor must be operating at 
a lower priority than the external device's request in order for the inter­
ruption to take effect. The current priority is maintained in the processor 
status word (bits 5-7). The a processor levels enable high speed devices 
requiring rapid servicing to take priority over, and disable interruption by, 
low speed devices. 

2-4 



Condition Codes 
The condition codes contain information on the result of the last CPU 
operation. 

The bits are set as follows: 

. Z = 1, if the result was zero 

N = ·1, if the result was negative 

C = 1, if the operation resulted in a carry from the MSB 

V = 1, if the operation resulted in an arithmetic overflow 

Current and Previous Mode 
These bits indicate the relocation and protection mode of the Memory 
Management unit at the present time (current) and prior to the last 
mode change (previous). Two modes are implemented in the PDP-ll/34, 
refered to as Kernel and User modes, see Chapter 7. 

Trap 
The trap bit (T) can be set or cleared under program control. When set, 
a processor trap will occur through location 14 on completion of instruc­
tion execution and a new Processor Status Word will be loaded_ This bit 
is especially useful for debugging programs as it provides an efficient 
method of installing breakpoints. 

2.2.4 Stacks 
In the PDP-ll, a stack is a temporary data storage area which allows a 
program to make efficient use of frequently accessed data. A program 
can add or delete words or bytes within the stack. The stack uses the 
"last-in, first-out" concept; that is, various items may be added to a 
stack in sequential order and retrieved or deleted from the stack in re­
verse order. On the PDP-ll, a stack starts at the highest location re­
served for it and expands linearly downward to the lowest_address as 
items are added. The stack is used automatically by program interrupts, 
subroutine calls, and trap instructions. When the processor is inter­
rupted, the central processor status word and the program counter are 
saved (pushed) onto the stack area. A new status word and program 
counter are then automatically acquired from an area in memory which 
is reserved for ,interrupt service routine pointers (vector area). A return 
from the interrupt instruction restores the original processor status and 
program counter and returns to the interrupted program without software 
intervention. 

2-5 



2.3 MEMORY 

Memory Organization 
A memory can be viewed as a series of locations, with a number (ad· 
dress) assigned to each location. Thus 16,384 bytes of PDP-ll memory 
could be shown as in" Figure 2-4. 

LOCATIONS 

000000 

000001 

000002 

00'0003 

000004 

• • OCTAL • V'" 
ADDRESSES • 

• ---------• 
• 

037774 

037775 

037776 

037777 

Figure 2-4 Memory Addresses 

Because PDp·II memories are designed" to accommodate both 16-bit 
words and 8-bit bytes, the total number of addresses does not corre· 
spond to the number of words but to the number of bytes. An 8K-word 
memory contains 16K bytes and consist of 037777 octal locations. 
Words always start at even-numbered locations. 

A PDP·ll word is divided into a high byte and a low byte as shown in 
Figure 2·5. 

15 7 o 
HIGH BYTE I LOW BYTE 

Figure 2·5 High & Low Byte 

Low bytes are stored at even-numbered memory locations and high 
bytes at odd-numbered memory locations. Thus it is convenient to view 
the PDP-ll memory as shown in Figure 2-6. 

2·6 



OCOOO 1 

000003 

000005 

--

HIGH 

HIGH 

HIGH 

r---

lOW 000000 

LOW 000002 

lOW 000004 

./ 

WORD { 

WORD { 

{ 
OR 

lOW 

HIGH 

lOW 

HIGH 

lOW 

------,..-----------

000000 

000001 

000002 

000003 

000004 

037772 
{ 

HIGH 037773 037775 HIGH lOW 

037774 { lOW 037775 037776 HIGH lOW 

037776 HIGH 037777 037777 HIGH lOW 

WORD ORGANIZATION BYTE ORGANIZATION 

Figure 2-6 Word and Byte Addresses 

Certain memory locations have been reserved by the system for inter­
rupt and trap handling, processor stacks, general registers; and periph­
eral device registers_ Addresses from 0 to 3708 are always reserved and 
those to 7778 are reserved on large system configurations for traps and 
interrupt handling_ 

A 16-bit word can address a maximum of 32K words of memory. How­
ever, the top 4,096 word locations are reserved for peripheral and reg­
ister addresses and the user therefore has 28K to program. With the PDP-
11/34 the user can expand above 28K with the Memory Management 
unit. This device provides an 18-bit effective memory address which per­
mits addressing up to 124K words of actual memory. 

If Memory Management is not enabled, an octal address between 
160 000 and 177 777 is interpreted as 760 000 to 777 777. That is, 
if bit 15, 14 and 13 are 1 's then bits 17 and 16 (the extended address 
bits) are considered to be 1 's, which relocates the last 4K words (28K-
32K) to the highest 4K words (124K-128K) of the UNIBUS. 

2_4 AUTOMATIC PRIORITY INTERRUPTS 
The multi-level automatic priority interrupt system permits the processor 
to respond automatically to conditions outside the system. Any number 
of separate devices can be attached to each level. 

2-7 



C, 
PRIORITY 

DEVICE 
REOUEST 

LINE 

----NPR---�--,---·~-~~r----I---jr------------ -

~E]~ 
-BR7---::r--,----=r-r----------=----- - - - --

~ ~ 
~ 

_BR6 ---I--,----~-r------------ ---ii 

~ ~ 

-·"-[5~Dl -[5~, --r-[5------~ 

- ... -[±J~' HS. -[±J~, --r-[f]~[f] 

INCREASING PRIORITY 

Figure 2-7 UNIBUS Priority 

Each peripheral device in the PDP-ll system has a pointer to its own 
pair of memory words (one points to the devices's service routine, and 
the other contains the new processor status information). This unique 
identification eliminates the need for polling of devices to identify an 
interrupt, since the interrupt service hardware selects and begins ex­
ecuting the appropriate service rou!ine after having automatically saved 
the status of the interrupted program segment. 

The devices' interrupt priority and service routine priority are indepen­
dent. This allows adjustment of system behavior in response to real-time 
conditions, by dynamically changing the priority level of the service 
routine. . 

The interrupt system allows the processor to continually compare its 
own programmable priority with the priority of any interrupting devices 
and to acknowledge the device with the highest level above the proces­
sor's priority level. The servicing of an interrupt for a device can be in­
terrupted in order to service an interrupt of a higher priority. Service to 
the lower priority device is resumed automatically upon completion of 
the higher level servicing. Such a process, called ne~ted interrupt ser­

. vicing, can be carried out to any level without requiring the software to 
save and restore processor status at each level. 

When a device (other than the central processor) is capable of becom­
ing bus master and requests use of the bus, it is generally for one of 
two purposes: 

1. To make a non-processor transfer of data directly to or from 
memory 

2-8 



2. To interrupt program execution and force the processor to go 
to a specific address where an interrupt service routine is 
located. 

Direct Memory Access 
All PDp·ll's provide for direct access to memory. Any number of DMA 
'devices may be attached to the UNIBUS. Maximum priority is given to 
DMA devices, thus allowing memory data storage or retrieval at memory 
cycle speeds. Response time is minimized by the organization and logic 
of the UNIBUS, which samples requests and priorities in parallel with, 
data transfers. 

Direct memory or direct data transfers can be accomplished between any 
two peripherals without processor supervision. These non· processor re­
quest transfers, called NPR level data transfers, are usually made for 
Direct Memory Access (memory to/from mass storage). 

Bus Requests, ' 
Bus requests from external devices can be made on one of five request 
lines. Highest priority is assigned to non-processor request (NPR). These 
are direct memory access type transfers, and are honored by the pro· 
cessor during an instruction execution. 

The processor's priority can be set under program control to one of eight 
levels using bits 7, 6, and 5 in the processor status register. These bits 
set a priority level that inhibits granting of bus requests on lower levels 
or on the same level. When the processor's priority is set ,to a level, for 
example,priority level 6, all bus requests on BR6 and below are,ignored. 

When more than one device is connected to the same bus request (BR) 
line, a device nearer the central processor has a higher priority than a 
device farther away. Any number of devices can be connected to a g,iven 
BR or NPR line. . 

Thus the priority system is tWO-dimensional and provides each device 
with a unique priority. Each device may be dynamically, selectively 
enabled or disabled under program control. 

Once a device oth·er than the processor has control of the bus, it may 
do one of two types of operations: data transfers or interrupt operations. 

NPR Data Transfers 
NPR data transfers can be made between any two peripheral devices 
without the supervision of the processor. Normally, NPR transfers are 
between a mass storage device, such as a disk, and core memory. The 
structure of the bus also permits device-to-device transfers, allowing 
customer-designed peripheral controllers to access other devices, such 
as disks, directly. 

An NPR device has very fast access to the bus and can transfer at high 
data rates once it has control. The processor state is not affected by 
the transfer; therefore the processor can relinquish control while an in­
struction is in progress. This can occur at the end of any bus cycles 

2·9 



except in between a read-modify-write sequence_ An NPR device in con­
trol of the bus may transfer I6-bit words from memory at memory speed_ 

BR Transfers 
Devices that gain bus control with one of the Bus Request lines (BR 7-­
BR4) can take full advantage of the Central Processor by requesting an 
interrupt. In this way, the entire instruction set is available for manipu­
lating data and status registers. 

When a service routine is to be run, the current task being performed 
by the central processor is interrupted, and the device service routine 
i~ initiated. Once the request has been satisfied, the ProcessQr returns 
to its former task. . 

Interrupt Procedure 
Interrupt handling is automatic in the PDP-ll. No' device polling is re­
quired to determine which service routine to execute. The operations 
required to service an interrupt are as follows: 

1. Processor relinquishes control of the bus, priorities permitting. 

2. When a master gains control, it sends the processor an interrupt 
command and an unique memory address which contains the ad­
dress of the device's service routine, called the interrupt vector 
address. Immediately following this pointer address is a word (lo­
cated at vector address +2) which is to be used as a new Processor 
Status Word. 

3. The' processor stores the current Processor Status (PS) and the cur­
rent Program Counter (PC) into CPU temporary registers. 

4. The new PC and ~S (interrupt vector) are taken from the specified 
address. The old PS and PC are then pushed onto the current stack. 
The service routine is then initiated. 

5. The device service routine can cause the processor to resume the 
interrupted process by executing the Return from Interrupt instruc­
tion, described in Chapter 4, which pops the two top words from 
the current processor stack and uses them to load the PC and PS 
registers. 

A device routine can be interrupted by a higher priority bus request any 
time after the new PC and PS have been loaded. If suchan interrupt 
occurs, the PC and PS of the service routine are automatically stored 
in the temporary registers and then pushed onto the new current stack, 
and the new device routine is initiated. 

Interrupt Servicing 
Every hardware device capable of interrupting the processor has a unique 
set of locations (2 words) reserved for its interrupt vector. The first word 
contains the location of the device's service routine, and the second, the 
Processor Status Word that is to be used by the service routine. Through 

2-10 



proper use of the PS, the programmer can switch the priority level of the 
processor, and modify the Processor's Priority level to mask out lower 
level interrupts. 

Reentrant Code 
Both the interrupt handling hardware and the subroutine call hardware 
facilitate writing reentrant code for the PDP-l1. This type of code allows 
a· single copy of a given subroutine or program to be shared by more 
than one process or task. This reduces the amount of core needed for 
multi-task applications such as the concurrent servicing of many periph­
eral devices. 

Power Fail and Restart 
Whenever AC power. drops below 95 volts for 1l0v power (190 volts for 
220v) or outside a limit of 47 to 63 Hz, the power fail sequence is initi­
ated. The Central Processor automaticaily traps to location 24 and the 
power fail program has 2 msec. to save all volatile information (data in 
registers), and to condition peripherals for power fail. 

When power is restored the processor traps to location 24 and executes 
the power up routine to restore the machine to its state prior to power 
failure. 

2-11 



2·12 



CHAPTER 3 

ADDRESSI NG MODES 

Data stored in memory must be 'accessed, and manipulated. Data handling is 
specified by a PDP-ll instruction (MOV, ADD etc.) which usually indicates: 

the function (operation code) . 

a general purpose register to be used when locating the source operand 
and/or a general purpose register to be used when locating the destination 
operand. 

an addressing mode (to specify how the selected register(s) is/are to be 
used) 

Since a large portion of the data handled by a computer is usually structured (in 
character strings, in arrays, in lists etc.), the PDp·l1 has been designed to handle 
structured data efficiently and flexibly. The general registers may be used with an 
instruction in any of the following ways: 

as accumulators. The data to be manipulated resides within the register. 

as pointers. The contents of the register are the address of the operand, 
rather than the operand itself. 

as pointers which automatically step through core locations. Automatically 
, stepping forward through consecutive core locations is known as au· 

toincrement addressing; automatically stepping backwards is known as 
autodecrement addressing. These modes are particularly useful for pro­
cessing tabular data. 

as index registers. In this instance the contents of the register, and the 
word following the instruction are summed to produce the address of the 
operand. This allows easy access to variable entries in a list. 

PDP·U's also have instruction addressing mode combinations which facilitate 
temporary data storage structures for convenient handling of data which must be 
frequently accessed. This is known as the " stack." 

In the PDP·l1 any register can be used as a "stack pointer"under program con­
trol, however, certain instructions associated with subroutine linkage and inter­
rupt service automatically use Register 6 as it "hardware stack pointer". For this 
reason R6 is frequently referred to as the "SP". 

R7 is used by the processor as its program counter (PC), It is recommended that 
R7 not be used as a' stack pointer. 

3·1 



An important PDP-ll feature, which must be considered in conjunction 
with the addressing modes, is the register arrangement; 

Six general purpose registers, (RO-R5) 

A hardware Stack Pointer (SP), register (R6) 

A Program Counter (PC), register (R7). 

Instruction mnemonics and address mode symbols arEl sufficient for 
writing machine language programs. The programmer need not be con­
cerned about conversion to binary digits; this is accomplished auto­
matically by the PDP-ll MACRO Assembler. 

3_1 SINGLE OPERAND ADDRESSING 
The instruction format for all single operand instructions (such as clear, 
increment, test) is: 

MOOE Rn 

,-I '_5 ____ ~~----~6 J \5 4 o 
OP CODE ------' 
DESTINATION AODRESS ------------' 

Bits 15 through 6 specify the operation code that defines the type of in­
struction to be executed. 

Bits 5 through 0 form a six-bit field called the destination address field. 
This consists of two subfields: 

a) Bits 0 through 2 specify which of the eight general purpose registers 
is to be referenced by this instruction word. 

b) Bits 3 through 5 specify how the selected register will be used (ad­
dress mode). Bit 3 is set to indicate deferred (indirect) addressing. 

3.2 DOUBLE OPERAND ADDRESSING 
Operations which imply two operands (such as add, subtract, move and 
compare) are handled by instructions that specify two addresses. The 
first operand is called the source operand,· the second the destination 
operand. Bit assignments in the source and destination address fields 
may specify different modes and different registers. The Instruction' 
format for the double operand instruction is: 

3-2 



OP CODE MODE Rn 

15 12 ,II 10 9 _8=---------=.;6, ~~ 

SOURCE AOORESS----~ 1 
DESTINATION AODRESS------------'-

The source address field is used to select the source operand, the first 
operand. The destination is used similarly, and locates the second op­
erand and the result. For example, the instruction AOO A, B adds the 
contents (source operand) of location A to the contents (destination 
operand) of location B. After execution B will contain the result of the 
addition and the contents of A will be unchanged. 

Examples in this section and further in this' chapter use the following 
sample POP-ll instructions: 

Mnemonic Oescription Octal Code 

CLR clear (zero the specified destination) 005000 

CLRB clear byte (zero the byte in the specified 105000 
destination) 

INC increment (add 1 to contents of destination) 005200 

INCB increment byte (add 1 to the ~ntents of .105200 
destination byte) 

COM complement (replace the contents of the 005100 
destination by their logical complement; 
each 0 bit is set and each 1 bit is cleared) 

COMB complement byte (replace the contents of the 105100 
destination byte by their logical complement; 
each 0 bit is set and each 1 bit is cleared). 

AOO add (add source operand to destination 06SS00 
operand and store the result at destination 
address) 

00 = destination field (6 bits) 

SS = source field (6 bits) 

) = contents of 

3·3 



3.3 DIRECT ADDRESSING 
The following table summarizes the four basic modes used with direct addressing. 

DIRECT MODES 

Mode Name Assembler Function 
Syn,ax 

0 Register Rn Register contains operand 

2 Autoincrement (Rn)+ Register is used as a pointer to 
sequential data then in· 
cremented 

4 Autodecrement -(Rn) Register is decremented and 
then used as a pointer. 

6 Index X(Rn) Value X is added to (Rn) to pro· 
duce address of operand. Nei· 
ther X nor (Rn) are modified. 

3.3.1 Register Mode 
OPR Rn 

With register mode any of the general registers may be used as simple accumula· 
tors and the operand is contained in the selected register. Since they are hard· 
ware registers, within the processor, the general registers operate at high speeds 
and provide speed advantages when used for operating on frequently·accessed 
variables. The PDP·ll assembler interprets and assembles instructions of the 
form OPR Rn as register mode operations. Rn represents a general register name 
or number and OPR is used to represent a general instruction mnemonic. As· 
sembler syntax requires that a general register be defined as follows: 

RO=%O 

Rl =%1 

(% sign indicates register definition) 

R2 = %2, etc. 

Registers are typically referred to by name as RO, Ri, R2, R3, R4, R5, R6 and R7. 
However R6 and R7 are also referred to as SP and pc, respectively. 

Register Mocki Examples 
(all numbers in octal) 

Symbolic 

1. INCR3 

Operation: 

Octal Code Instruction Name 

005203 Increment 

Add one to the contents of general register 3 

3·4 



1'0 ° ° ° 0 1 0 0 I 0 . 0 j 0 I 0 1 I~~~~R 
~,~~15~~_-_-_~_-_~_-_-~_-~_~~_~_-_-_~_-_~_-_-_~_76~)~,5~~4~~o-~~O~) 

OP CODE (INC(0052})~ f 
DESTINATION FIELD------------' 

2. ADDR2,R4 060204 Add 

R0 

RI 

R2 

'-- R3 

R4 

R5 

R6(SP) 

"R7 (PC) 

Operation: Add the contents of R2 to the contents of R4. 

R2 r
FORE 

000002 R2 :r=TE~R~0~00~0~02:::::::; 

R4 11--_0_00_004_-, R4 1...1 __ 0-,-00_0-,-06--, 

3. COMBR4 105104 Complement Byte 

Operation: One's complement bits 0-7 (byte) in R4. (When 
general registers are used, byte instructions only 
operate on bits 0-7; i.e. byte 0 of the register) 

BEFORE AFTER 

R41 022222 R4 :1 ===0~2;;:21;;:55== 

3.3.2 Autoincrement Mode 
OPR (Rn) + 

This mode provides for automatic stepping of a pointer through sequential ele­
ments of a table of operands. It assumes the contents of the selected general reg­
ister to be the address of the operand. Contents of registers are stepped (by one 
for bytes, by two for words, always by two for R6 and R7) to address the next se­
quential location. The autoincrement mode is especially useful for array process· 
ing and stacks. It will access an element of a table and then step the pointer to 
address the next operand in the table. Although most useful for table handling. 
this mode is completely general and may be used for a variety of purposes. 

3·5 



Autoincrement Mode Examples 
Symbolic Octal Code Instruction Name 

1. CLR (R5) + 

Operation: 

BEFORE 
ADDRESS SPACE 

005025 Clear 

Use contents of R5 as the address of the operand. 
Clear selected operand and then increment the 
contents of R5 by two. 

REGISTER 
AFTER 
ADDRESS SPACE REGISTER 

toooo 1 005025 R5 1 030000 120000 005025 R5 LI_--=0~3.:.00:.:0~2--.J 

30Ca[= "'1"6 
~ 

1 30000 

2. CLRB(R5)+ 

Operation: 

BEFORE 
AOORESS SPACE 

000000 

105025 Clear Byte 

Use contents of R5 as the address of the operand. 
Clear selected byte operand and then increment 
the contents of R5 by one. 

AFTER 

REGISTER ADDRESS SPACE REGISTER 

20000 105025 R5 I 030000 120000 105025 R5 LI __ 0_3_00_0_'_-, 

30000 

30002 

3. 

''''~ 

ADD (R2) + ,R4 062204 

30000 111 000 

30002 '-_-'-__ ...J 

Add 

Operation: The contents of R2 are used as the address of the 
operand which is added to the contents of R4. R2 
is then incremented by two. 

BEFORE AFTER 
ADDRESS SPACE ... REGISTERS ADDRESS SPACES REGISTERS 

'0000 1 062204 1 R2 1 100002 

--~ooo 
~--~ 

1000021 010000 

10000 IL_..:O.::62:.:2::.04':"---l R2 LI _....:':.:.0.:.00~0..:4_...J 

R4 LI_....:O:::20.:.0:.:0:::0_...J 

100002 LI _....:0..:1O:.:0~0:.:.0_...J 

3-6 



3.3.3 Autodecrement Mode 
OPR-(Rn) 

This mode is useful for processing data in a list in reverse direction. The contents 
of the selected general register are decremented (by two for word instructions, by 
one for byte instructions) and then used as the address of the operand. The 
choice of postincrement, predecrement features for the PDP· 11 were not arbitrary 
decisions, but were intended to facilitate hardware/software stack operations. 

Autodecrement Mode Examples 
Symbolic Octal Code Instruction Name 

1. INC-(RO) 

Operation: 

BEFORE 
ADDRESS SPACE 

005240 Increment 

The contents of RO are decremented by two and 
used as the address of the operand. The operand is 
increased by one. 

AFTER 
REGISTERS ADDRESS SPACE REGISTER 

1000 L..I __ 00_5_24_0_~ R0 L..I __ 0_'7_77_6_-, 1000 L..I -..,...:.00-=5=24=0=~_...:R:::.0~1==0,::1:::777,.-4_~ 

17774 L..I __ OO_O_OO_O_~ 

2. INCB-(RO) 

Operation: 

BEFORE 

ADDRESS SPACE 

1000 c=:i§~ 

17774 I 000 

17776 L. __ '--_.....I 

000 

3. ADD··(R3),RO 

Operation: 

~ 
17774 I 000001 

105240 . I ncrement Byte 

The contents of RO are decremented by one then 
used as the address of the operand. The operand 
byte is increased by one. 

REGISTER 

R01 017776 < 

064300 

AFTER 

ADDRESS SPACE 

1000 I 105240 

17774 f--:..:.c..-+-.:..:.:~ 
17778 L-_-'-_ ____" 

Add 

The contents of R3 are decremented by 2 then 
used as a pointer to an operand (source) which is 
added to the contents of RO (destination operand). 

3-7 



BEFORE 
ADDRESS SPACE 

10020 1...1 __ 0_64_30_0_--, 

77774 ~_...:.OOO.:..:..:.0.:..:50'---1 
77176 L... ____ -' 

3.3.4 Index Mode 

AFTER 
REGISTER ADDRESS SPACE REGISTER 

10020 .... 1 __ 06_4_30_0_-, R01 0000070 R0 1...1 __ 0_00_0_20_-, 

R3 1...1 _...:.07...:.7...:.77:..:6_-, ~4 
777741 000050 I 
77776 ..... ____ -'. 

OPR X(Rn) 

The contents of the selected general register, and l'In index word following the in· 
struction word, are summed to form the address of the operand. The contents of 
the selected register may be used as a base for calculating a series of addresses, 
thus allowing random access to elements of data structures. The selected register 
can then be modified by program to access data in the table. Index addressing in­
structions are of the form OPR X(Rn) where X is the indexed word and is located 

. in the memory location following the instruction word and Rn is the selected gen­
eral register. 

I ndex Mode Examples 
Symbolic 

1. CLR 200(R4) 

Operation: 

BEFORE 

ADDRESS SPACE 

Octal Code Instruction Name 

005064 
000200 

Clear 

The address of the operand is determined by ad-
ding 200 to the contents of R4. The -location is 
then cleared. . 

AFTER 

REGISTER ADDRESS SPACE REGISTER 

R4 1...1 __ 00_'_00_0_-, 1020 

1022 1---:-:=----4 
R41 001000 1020 

1022 r--::==----1 
10241--===---1 

2. COMB 200(Rl) 

Operation: 

105161 
000200 

1024'--___ ---' 

1200~ 

Complement Byte 

The contents of a location which is determined by 
adding 200 to the contents of Rl are one's com­
plemented. (Le. logically complemented) 

3-8 



BEFORE AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

1020 Rl 017777 1020 Rl 017777 

1022 1022 

;-__________ 017777 
+200 

)20177 

20176
1 20200 

0111000_J 201761 

20200 

166!000 

3. ADD 30(R2).20(R5) 066265 
000030 
000020 

Add 

Operation: The contents of a location which is determined by 
adding 30 to the contents of R2 are added to the 
contents of a location which is determined by ad· 
ding 20 to the contents of R5. The result is stored 
at the destination address. i.e. 20(R5) 

BEFORE AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

1020 1 066265 R2 I 001100 1020 r 066265 R2 I 001100 

1022 L 000030 10221 000030 

1024 1 000020 R5 I 002000 
1024 1 000020 R5 I 002000 

1130 I 000001 1130 I 000001 

2020 I 000001 2020 I 000002 

1100 2000 
+30 +20 

\130 2020 

3-9 



3.4 DEFERRED (INDIRECT) ADDRESSING 
The four basic modes may also be used with deferred addressing. Whereas in the 
register mode the operand is the contents of the selected register, in the register 
deferred mode the contents of the selected register is the address of the operand. 

In the three other deferred modes, the contents of the register selects the address 
of the operand rather than the operand itself. These modes are therefore used 
when a table consists of addresses rather than operands. Assembler syntax for 
indicating deferred addressing is "@"(or "( )"when this is not ambiguous). The 
following table summarizes the deferred versions of the basic modes: 

Mode Name 

1 Register Deferred 

Assembler 
Syntax 

Function 

@Rnor(Rn) 
Register contains the address of 
the operand 

3 Autoincrernent Deferred @(Rn)+ Register is first used as a 
pointer to a word containing the 
address of the operand, then in· 
cremented (always by 2; even 
for byte instructions). 

5 Autodecrement Deferred @-(Rn) Register is decremented (always 
by two; even for byte instruc­
tions) and then used as a 
pointer to a word containing the 
address of the operan~ 

7 Index Deferred @X(Rn) Value X (stored in a word follow­
ing the instruction) and (Rn) are 
added and the sum is used as a 
pointer to a word containing the 
address of the operand. Neither 
X nor (Rn) are modified. 

Since each deferred mode is similar to its basic mode counterpart, separate de­
scriptions of each deferred mode are not necessary. However, the following exam-
ples illustrate the deferred modes. . 

Register Deferred Mode Example 
Symbolic Octal Code Instruction Name 

CLR@R5 

Operation: 

BEFORE 
AOOAESS SPACE 

"
700
671 II-----l . 000'00 

005015 Clear 

The contents of location specified in R5 are 
cleared. 

REGISTER 

R~ 1 ... _00_"_00_-, 

3-10 

AFTER 
ADDRESS SPACE 

1617 ~-----1 
1100 L... _0_0_0000_---' 

REGISTER 

R5 L..I _00_"_00_-, 



Autoincrement Deferred Mode Example 
Symbolic Octal Code Instruction Name 

INC@(R2)+ 

Operation: 

BEFORE 

005232 Increment 

The contents of R2 are used as the address of the 
address of the operand. 
Operand is increased by one. Contents of R2 is in· 
cremented by 2. 

AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

~ R21 0'0300 

:-YJ/--/ 1010~ 
1012~ 

R2 1 010302 

'0300 I 00'010 ! . 10.;00 1-1 ~.:.oo:..:'.:.o,.:.o_-I 

Autodecrement Deferred Mode Example 

Symbolic 

COM @·(RO) 

Operation: 

BEFORE 
ADDRESS SPACE 

10100 012345 
~-----I 

'0'02 ~ ___ --I 

10774 ~_.:.o.:..:' 0.:.'0:.:0_.:..: 
10776 L. ____ .J 

Octal Code Complement 

005150 

The contents of RO are decremented by two and 
then used as the address of the address of the op· 
erand. Operand is one's complemented. (i.e. logi· 
cally complemented) 

AFTER 
REGISTER ADDRESS SPACE REGISTER 

R0 ,-I __ 0_' 0_7_76_...J '0'00 I:=j R01· 0'0774 

'o,~ 

'°7741 0'0100 I 
10776 . 

Index Deferred Mode Example 
Symbolic Octal Code Instruction Name 

ADD @ 1000(R2),R1 067201 Add 
001000 

Operation: 1000 and contents of R2 are summed to produce 
the address of the address of the source operand 
the contents of which are added to contents of R1; 
the result is stored in R 1. 

3-11 



BEFORE AFTER 
ADDRESS SPACE REGISTER 'ADDRESS SPACE REGISTER 

1020 RI I 001234 1020 1 067201 Rl I 001236 

1022 
R2 I 000100 1022 1 001000 

R2 I 000100 
1024 1024 1 

1050 I . 000002 I 1050 I 000002 

,,~ '000 1100 I 001050 

~+100 
1100 

3.5 USE OF THE PC AS A GENERAL REGISTER 
Although Register 7 is a general purpose register, it doubles in function as the 
Program Counter for the PDP·n. Whenever the processor uses the program 
counter to acquire a word from memory, the program counter is automatically in· 
cremented by two to contain the address of the next word of the instruction being 
executed or the address of the next instruction to be executed. (When the pro· 
gram uses the PC to locate byte data, the PC is still incremented by two.) 

The PC responds to all the standard PDp·n addressing modes. Howeve~, there. 
are four of these modes with which the PC can provide advantages for handling 
position independent code (PIC· seeChapter 5) and unstructured data. When reo 
garding the PC these modes areJermed immediate, absolute (or immediate de· 
ferred), relative and relative deferred, and are summarized below: 

Mode Name 

2 Immediate 

3 Absolute 

6 Relative 

7 Relative Deferred 

Assembler Function 
Syntax 

# n Operand follows instruction 

@#A Absolute Address follows in· 
struction 

A Relative Address (index value) 
follows the instruction. 

@A Index value (stored in the 
word following the instruction) 
is the relative address for the 
address of the operand. 

The reader should remember that the special effect modes are the same as modes 
described in 3.3 and 3.4, but the general register selected is R7, the program 
counter. 

When a standard program is available for different users, it often is helpful to be 
able to load it into different areas of core and run it there. PDp·ll's can accompl· 
ish the relocation of a program very efficiently through the use of position inde· 

3·12 



pendent code (PIC) which is written by using the PC addressing modes. If an in· 
struction and its objects are moved in such a way that the relative distance 
between them is not altered, the same offset relative to the PC can be used in all 
positions in memory. Thus, PIC usually references locations relative to the current 
location. PIC is discussed in more detail in Chapter 5. 

The PC also greatly facilitates the handling of unstructured data. This is partic· 
ularly true of the immediate and relative modes. 

3.5.1 Immediate Mode 
OPR #n,DD 

Immediate mode is equivalent to using the autoincrement mode with the PC. It 
provides time improvements for accessing constant operands by including the 
constant in the memory location immediately following the instruction word. 

Immediate Mode Example 
Symbolic 

ADD #10,RO 

Operation: 

BEE'ORE 
ADDA ESS SPACE 

1020 062700 

""" R0 1 1022 000010 
PC 

-1024 

3.5.2 Absolute Addressing 

Octal Code Instruction Name 

062700 Add 
000010 

The value 10 is located in the second word of the 
instruction and is added to the contents of RO. 
Just before this instruction is fetched and exe· 
cuted, the PC points to the first word of the in· 
struction. The processor fetches the first word and 
increments the PC by two. The source operand 
mode is 27 (autoincrement the PC). Thus, the PC 
is used as a pointer to fetch the operand (the sec· 
ond word of the instruction) before being in· 
cremented by two to point to the next instruction. 

AFTER 

REGISTER ADDRESS SPACE REGISTER 

000020 1020 062700 I R01 000030 

1022 000010 
'.........-PC 

1024 I 

OPR @#A 

This mode is the equivalent of immediate deferred or autoincrement deferred us· 
ing the PC. The contents of the location following the instruction are taken as the 
address of the operand. Immediate data is interpreted as an absolute address 
(Le., an address that remains constant no matter where in memory the as­
sembled instruction is executed). 

3·13 



Absolute Mode Examples 
Symbolic 

1. CLR @#1l00 

Operation: 

BEFORE 

ADDRESS SPACE 

20 
1------1 

22 
I---'~----l 

Octal Code Instruction Name 

005037 
001100 

Clear 

Clear the contents of location 1100. 

PC 

AFTER 

ADDRESS SPACE 

20 
1-~..:..:..:---1 

22 
24 I-----'-~~----l 

1100 11------=.:00:..:0.::.:00:..:0_-1 
tl02 

L------1 

2. ADD @#2000,R3 063703 
002000 

Operation: Add contents of location 2000 to R3. 

BEFORE AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

20 I-----'-::.::..:..::.:.....--l~ R3 L..I _.::.:00:.:0:::.50:.:0---,-...1 2 ° I------'-::'::":":::'::":":----l 
22 

R3 L..I _.::.:00::.10::0:::.0_...1 

22 PC 1------1 
24 
I---::=~--I 

241-___ --1 

2000 11------'-00:.:0.::.:30:..:0_-1 

3.5.3 Relative Addressing 
OPR A or OPR X(PC) 

where X is the location of A relative to the instruction. 

This mode is assembled as)ndex mode using R7. The base of the address calcu­
lation, which is stored in the second or third word of the instruction, is not the ad­
dress of the operand, but the number which, when added to the (PC), becomes 
the address of the operand. This mode is useful for writing position independent 
code (see Chapter 5) since the location referenced is always fixed relative to the 
PC. When instructions are to be relocated, the operand is moved by the same 
amount. 

3-14 



Relative Addressing Example 
Symbolic Octal Code Instruction Name 

INC A 005267 Increment 
000054 

Operation: To increment location A, contents of memory loca­
tion immediately following instruction word are ad­
ded to (PC) to produce address A_ Contents of A 
are increased by one_ 

BEFORE AFTER 

ADDRESS SPACE ADDRESS SPACE 

1020 OQ05267 

102.2 000054 

1024 """;""-PC 

1020 1----.::::.00::::5:::;26::.:.7_---1 

1022 000054 "" 
1024 PC 

1026 ~ ___ ----I 1026 

1100 I 000001 

1024 

11~t'~6 

3.5.4 Relative Deferred Addressing 
DPR@A .or 

OPR@X(PC), where x is location containing address of A, relative to the in-
struction. 

This mode is similar to the relative mode, except that the second word of the in­
struction, when added to the PC, contains the address of the address of the oper­
and, rather than the address of the operand. 

Relative Deferred Mode Example 
Symbolic Octal Code Instruction Name 

CLR@A 

Operation: 

BEFORE 

ADDRESS SPACE 

1020 1--':::'=:':'-----1' 
1022 "'-PC 

1024 1-___ ----1 

10~ +,0~6 ~ ~1044 
10100 I 100001 I 

005077 
000020 

Clear 

Add second word of instruction to PC to produce 
address of address of operand. Clear operand. 

AFTER 

ADDRESS SPACE 

1020 ~-==:':"-----I 
1022 /PC 

10241--___ ----I¥ 

104411-_.::.01~O~1O::::0_-I 

10100 1L-_.:.OO:.:O.:.OOO=------l 

3·15 



3.6 USE OF STACK POINTER AS GENERAL REGISTER 
The processor stack pointer (SP, Register 6) is in most cases the general 
register used for the stack operations related to program nesting. Auto· 
decrement with Register 6 "pushes" data on to the stack and autoincre­
ment with Register 6 "pops" .data off the stack. Index mode with SP 
permits random access of items on the stack. Since the SP is used by 
the processor for interrupt handling, it has a special attribute: autoin· 
crements and autodecrements are always done in steps of two. Byte 
operations using the SP in this way leave odd addresses unmodified. 

3.7 SUMMARY OF ADDRESSING MODES 

3.7.1 General Register Addressing 

R is a general register, 0 to 7 
(R) is the contents of that register 

Mode 0 Register OPR R R contains operand 

I INSTRUCTION t------4 OPERAND I 

Mode 1 Register deferred OPR (R) R contains address 

I INSTRUCTION t------4 ADDRESS t------4 OPERAND 

Mode 2 Auto·increment OPR (RH 

R contains address, then increment (R) 

+2 FOR WORD, 
+1 FOR BYTE 

3-16 



Mode 3 Auto-increment OPR @(R)+ 
deferred 

Mode 4 Auto-decrement 

Decrement (R), then R contains address 

R contains address of address, 
then increment (R) by 2 

OPR -(R) 

Mode 5 Auto-decrement 
deferred 

OPR @-(R) Decrement (R) by 2, 
then R contains 
address of address 

Mode 6 Index OPR X(R) (R) + X is address 

PC::: INSTR~CTION ~ ADDRESS ~.j""-O-F'E-R-A-ND--' 

Mode 7 Index deferred OPR @X(R) (R) + X is address of address 

PC 

PC+2 L=~=}-------_..J 

3-17 



3.7.2 Program Counter Addressing 

Register = 7 

Mode 2 Immediate OPR #n 

PC I INSTRUCTION I 
pC+21 ... ___ -' 

Mode 3 Absolute OPR @#A 

PC IINSTRUCr"ION I 
PC+2 LI -,-_A_--l~ OPERAND 

Mode 6 Relative OPR A 

PC I INSTRUCTION I 

Mode 7 Relative deferred OPR @A 

Operand n follows instruction 

Address A follows instruction 

PC + 4 + X is address 
'-v-' 

updated PC 

PC + 4 + X is address of address 
'-v-' 

updated PC 

PC I INSTRUCTION I 

PC+2: x ~~ 
. + A ADDRESS H OPERAND 

PCj4 I NEXT INSTR I 

3·18 



CHAPTER 4 

INSTRUCTION SET 

4.1 INTRODUCTION 

The specification for each instruction includes the mnemonic, octal code, 
binary code, a diagram showing the format of the instruction, a symbolic 
notation describing its execution and the effect on the condition codes, 
a description, special comments, and examples. 

MNEMONIC: This is indicated at the top corner of each page. When the 
word instruction has a byte equivalent, the byte mnemonic is also shown. 

INSTRUCTION FORMAT: A diagram accompanying each instruction 
shows the octal op code, the binary op code, and bit assignments .. (Note 
that in byte instructions the most significant bit (bit 15) is always a 1.) 

SYMBOLS: 

( ) = contents of 

SS or src = source address 

DD or dst = destination address 

loc = location 

~= becomes 

t = "is popped from stack" 

J. = "is pushed onto stack" 

A = boolean AND 

v = boolean OR 

..,...= exclusive OR 

- = boolean not 

Reg or R = register 

B = Byte 

• = {O for word 

1 for byte 

4·1 



4.2 INSTRUCTION FORMATS 
The major instruction formats are: 

Single Operand Group 

, I 
OP Code 

I 
15 

15 

Double Operand Group 

OP Code 
I 

12 11 

Src 
I 

Register·Source or Destination 

15 

15 

OP Code 
I 

9 8 

Branch 

I Base ~ode I 

8 7 

4·2 

dst 

6 5 

6 5 

6 5 

dst 
I 

Src/dst 
I 

offset 
I 

o 

o 

o 

o 



Byte Instructions 
The PDP-ll processor includes a full complement of instructions that 
manipulate byte operands_ Since all PDP-ll addressing is byte-oriented, 
byte manipulation addressing is straightforward_ Byte instructions with 
autoincrement or autodecrement direct addressing cause the specified 
register to be modified by one to point to the next byte of data_ Byte 
operations in register mode access the low-order byte of the specified 
register_ These provisions enable the PDP-ll to perform as either a word 
or byte processor. The numbering scheme for word and byte addresses 
in core memory is: 

HIGH BYTE 
ADDRESS 

002001 

002003 

BYTE 

BYTE 

1 

3 

BYTE 0 

BYTE 2 

'.\ORO OR BYTE 
ADDRESS 

002000 

002002 

The most significant bit (Bit 15) of the instruction word is set to indicate 
a byte instruction_ 

Example: 

Symbolic Octal 

CLR 
CLRB 

0050DD 
1050DD 

NOTE 

Clear Word 
Clear Byte 

The term PC (Program Counter) in the Opera­
tion explanation of the instructions refers to the 
updated PC_ 

4-3 



4.3 LIST OF INSTRUCTIONS 
Instructions are shown in the following sequen'ce. Other instructions are 
found in Chapters 6 and 7. 

SINGLE OPERAND 

Mnemonic 

General 
CLR(B) 
COM (B) 
INC(B) 
DEC(B) 
NEG(B) 
TST(B) 

Shift & Rotate 
ASR(B) 
ASL(B) 
ROR(B) 
ROL(B) 
SWAB 

Instruction 

clear destination .,,'"'' 
complement dst """"" 
increment dst ""."""""",, 
decrement dst 
negate dst 
test dst ' 

arithmetic shift right ""''',,'',,'',,. 
arithmetic shift left "" ",,"",,"," 
rotate right, "." "" ,"" """",, 
rotate left" """" ""'" ,,," "." ". ,," 
swap bytes, """"".".""",,",,",,"",,. 

Multiple Precision 
AOC(B) add carry ",,'''''''''' ""'''''''''''''''''''''''' 
SBC(B) subtract carry ""."""""',,.""",,' 
SXT sign extend """"." .. """,""",,.,,",,"",,' 

Processor Status 
MFPS move from PS " """.,,"'" 
MTPS move to PS . 

DOUBLE OPERAND 

General 
MOV(B) 
CMP(B) 
AOO 
SUB 

Logical 
BIT(B) 
BIC(B) 
BIS(B) 

XOR 

move source to destination 
compare src to dst ."",,,," """"",,",'" 
add src to dst "'" 
subtract src from dst '''''''''' """"."",, .. 

bit test "" ''''''''''''''''" 
bit clear "".,," """""",,"'" 
bit set """,,.,," "" '"'''' '" 

exclusive OR ' 

4-4 

Op Code 

-05000 
-05100 
-05200 
-05300 
-05400 
-05700 

-06200 
-06300 
-06000 
-06100 
000300 

-05500 
-05600 
006700 

106700 
1064SS 

-ISS00 
-2SS00 
06SS00 
16SS00 

-3SS00 
-4SS00 
-5SS00 

074ROO 

Page 

4·6 
4·7 
4·8 
4-9 
4-10 
4·11 

4-13 
4·14 
4-15 
4-16 
4-17 

4-19 
4·20 
4-20 

4-21 
4·22 

4-23 
4·24 
4·25 
4-26 

4-28 
4-29 
4-30 

4-31 



PROGRAM CONTROL 

Mnemonic 

Branch 
BR 
BNE 
BEQ 
BPl 
BMI 
BVC 
BVS 
BCC 
BCS 

Instruction 

branch (unconditional) ............ .. 
branch if not equal (to zero) ... . 
branch if equal (to zero) .... . 
branch if plus ...................... . 
branch if minus .... . 
branch if overflow is clear ... ......... . 
branch if overflow is set ...... .. 
branch if carry is clear .. .. 
branch if carry is set ................ .. 

Signed Conditional Branch 
BGE branch if greater than or equal 

(to zero) ... .. ................ .. 
Bl T branch if less than (zero) ... .. 
BGT branch if greater than (zero) 
BlE branch if less than or equal (to zero) 

Unsigned Conditional Branch 
BHI branch if higher .............. . 
BlOS branch if lower or same .. 
BHIS branch if higher or same ............. . 
BlO branch if lower ............... .. 

Jump & Subroutine 
JMP jump 
JSR jump to subroutine. 
RTS return from subroutine 
MARK mark ......................... .. 
SOB subtract one and branch (if -:j:: 0) . 

Trap & Interrupt 

Op Code 
or 

Base Code 

000400 
001000 
001400 
100000 
100400 
102000 
102400 
103000 
103400 

002000 
002400 
003000 
003400 

101000 
101400 
103000 
103400 

000100 
004RDD 
00020R 
006400 
077ROO 

EMT emulator trap .......... .. 104000-104377 
TRAP trap .. 104400-104777 
BPT breakpoint trap ........... . 000003 
lOT input/ output trap. 000004 
RTI return from interrupt ........ . 000002 
RTT return from interrupt ....... .. 000006 

MISCELLANEOUS 
HALT halt 000000 
WAIT wait for interrupt 
RESET reset external bus . 

000001 
000005 

Condition Code Operation 
ClC, ClV, ClZ, ClN, CCC clear 000240 
SEC, SEV, SEZ, SEN, SCC set. 000260 

4-5 

Page 

4-33 
4-34 
4-35 
4-36 
4-37 
4-38 
4-39 
4-40 
4-41 

4-43 
4-44 
4-45 
4-46 

4-48 
4-49 
4-50 
4-51 

4-52 
4-54 
4-56 
4-57 
4-59 

4-61 
4-62 
4·63 
4-64 
4-65 
4-66 

4-69 
4-70 
4-71 

4·72 
4·72 



4.4 SINGLE OPERAND INSTRUCTIONS 

CLR 
CLRB 

clear destination 

1°/1 1 ° .1 ° P 
15 

Operation: (dst~O 

° 

Condition Codes: N: cleared 
Z: set 
V: cleared 
C: cleared 

d d d 

6 5 ° 

Description: Word: Contents of specified destination are replaced with ze· 
roes. 

Example: 

Byte: Same 

Before 
(R1) = 177777 

NZVC 
1 1 1 1 

4·6 

CLR R1 

After 
(R1) = 00000o 

NZVC 
0100 



complement dst 

o 0 o 1 I d 

15 6 5 

Operation: (dst).-(dst) 

d d d 

COM 
COMB 

d dl 
o 

Condition Codes: N: set if most significant bit of result is set; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: cleared 
C: set 

Description: Replaces the contents of the destination address by their log­
ical complement (each bit equal to 0 is set and each bit equal 
to 1 is cleared) 
Byte: Same 

Before 
(RO) = 013333 

NZVC 
0110 

4-7 

After 
(RO):= 164444 

NZVC 
1001 



INC 
INCB 

increment dst -052DD 

o o o d d d J!,. d 

15 6 5 

Operation: (dst).(dst) + 1 

Condition Codes: N: set if result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: set if (dst) held 077777; cleared otherwise 
C: not affected 

Description: Word: Add one to contents of destination 
Byte: Same 

Example: INC R2 

Before 
(R2) = 000333 

NZVC 
0000 

4-8 

After 
(R2) = 000334 

NZVC 
0000 

I 

o 



DEC 
DECB 

decrement dst -053DD 

o o o d d 

15 6 5 

Operation: (dst).(dst)-l 

Condition Codes: N: set if result is < 0; cleared otherwise 
Z:. set if result is 0; cleared otherwise 

d 

V: set if (dst) was 100000; cleared otherwise 
C: not affected 

d 

o 

Description: Word: Subtract 1 from the contents of the destination 
Byte: Same 

Example: DEC RS 

Before 
(RS) = 000001 

NZVC 
1000 

4-9 

After 
(RS) = 00000o 

NZVC 
0100 



NEG 
NEGB 

negate dst -054DD 

1011 I ° ° ° ° d d d 

15 6 5 

Operation: (dst). -(dst) 

Condition Codes: N: set if the result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 

d 

V: set if the result is 100000; cleared otherwise­
C: cleared if the result is 0; set otherwise 

° 

Description: Word: Replaces the contents of the destination address by its 
two's complement. Note that 100000 is replaced by itself -(in 
two's complement notation the most negative number has 
no positive counterpart). 
Byte: Same 

Example: NEG RO 

Before 
(RO) =000010 

NZVC 
0000 

4-10 

After 
(RO) = 177770 

NZVC 
1001 



TST 
TSTB 

test dst -05700 

1 ~/1 0 
- I 

15 

o 0 o 

Operation: (dst)~dst) 

d d d 
I 

G 5 

Condition Codes: N: set if the result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise· 
V: cleared . 
C: cleared 

d 

o 

Description: Word: Sets the condition codes Nand Z according to the con-
tents of the destination address . 
Byte: Same 

Example: TST Rl 

Before 
(Rl) = 012340 

NZVC 
0011 

4·11 

After 
(Rl) =012340 

NZVC 
0000 



Shifts 
Scaling data by factors of two is accomplished by the shift instructions: 

ASR . Arithmetic shift right 

ASL . Arithmetic shift left 

The sign bit (bit 15) of the operand is replicated in shifts to the right. The low 
order bit is filled with 0 in shifts to the left. Bits shifted out of the C bit, as shown 
in the following examples, are lost. 

Rotates 
The rotate instructions operate on the destination word and the C bit as though 
they formed a 17·bit "circular buffer'. These instructions facilitate sequential bit 
testing and detailed bit manipulation. 

4·12 



arithmetic shift right 

10/1, ° ° ° 
15 6 5 

Operation: (dst).(dst) shifted one place to the right 

ASR 
ASRB 

-062DD 

° 

Condition Codes: N: set if the high·order bit of the result is set (result < 0); 
cleared otherwise 
Z: set if the result = 0; cleared otherwise 
V: loaded from the Exclusive OR of the N·bit and C·bit (as set 
by the completion of the shift operation) 
C: loaded from low·order bit of the destination 

Description: Word: Shifts all bits of the destination right one place. Bit 15 
is replicated. The C·bit is loaded from bit 0 of the destination. 
ASR performs signed division of the destination by two. 
Word: 

Byte: 

r[1 -LI _'~1 ~~,---,-I 0-'8 I-GJ rZ--'---'-=-=':-l ~! ~I-,---,--:::-,I~ b 000 ADDRESS U EVEN ADDRESS 0 

4-13 



ASL 
ASLB 

arithmetic shift left 

10/1 I 0 0 0 

15 6 5 0 

Operation:. (dst)...(dst) shifted one place to the left 

Condition Codes: N: set if high-order bit of the result is set (result < 0); cleared 
otherwise 
Z: set if the result = 0; ,cleared otherwise 
V: loaded with the exclusive OR of the N-bit and C-bit (as set 
by the completion of the shift operation) 
C: loaded with the high-order bit of the destination 

Description: Word: Shifts all bits of the destination left one place. Bit 0 is 
loaded with an O. The C-bit of the status word is loaded from 
the most significant bit of the destination. ASL performs a 
signed multiplication of the destination by 2 with overflow in­
dication. 
Word: 

~-I 1_ 0 

15 0 

Byte: 

G]-I I I I f.-o~-I I I I I 1_0 

'5 ODD ADDRESS EVEN ADDRESS 0 

4-14 



ROR 
RORB 

rotate right -06000 

10111 0 o o 1 I I I 0 1 0 :0 d d 1 d 

IS 6 5 o 

Condition Codes: N: set if the high·order bit of the" result is set (result < 0); 
cleared otherwise 
Z: set if all bits of result = 0; cleared otherwise 
V: loaded with the Exclusive OR of the N·bit and C·bit (as set 
by the completion of the rotate operation) 
C: loaded with the low·order bit of the destination 

Description: Rotates all bits of the destination right one place. Bit 0 is 
loaded into the C·bit and the previous contents of the C·bit 
are loaded into bit 15 of the destination. 
Byte: Same 

Example: 
Word: 

~-~I ~~~~~~~~~I 
t~ __ ~15 ____________________________ ~ ______ ~IO 

Byte: 

4-15 



ROL 
ROLB 

rotate left 

10/1 I ° 
15 

° ° o 0: ° d d d 
I 

d 

Condition Codes: N: set if the high-order bit of the result word is set 
(result < 0): cleared otherwise 
Z: set if all bits of the result word = 0; cleared otherwise 
V: loaded with the Exclusive OR of the N-bit and C-bit (as set 
by the completion of the rotate operation) 
G: loaded with the high-order bit of the destination 

Description: Word: Rotate all bits of the destination· left one place. Bit 15 
is loaded into the G-bit of the status word and the previous 
contents of the G-bit are loaded into Bit 0 of the destination. 
Byte: Same 

Example: 
Word: 

dst 

~-I 
I 15 to 

Bytes: 

4-16 



SWAB 

swap bytes 000300 

o o I 0 o d 

15 6 5 

Operation: Byte 1 /Byte a .Byte a/Byte 1 

Condition Codes: N: set if high-order bit of low-order byte (bit 7) of result is set; 
cleared otherwise 

Z: set if low-order byte of result = 0; cleared otherwise 
V: cleared . 
C: cleared 

Description: Exchanges high-order byte and low-order byte of the destina­
tion word (destination must be a word address)_ 

Example: SWAB Rl 

Before 
(Rl) = 077777 

NZVC 
11 11 

4-17 

After 
(Rl) = 177577 

NZVC 
0000 



Multiple Precision 
It is sometimes necessary to do arithmetic on operands considered as multiple 
words or bytes. The PDp· 11 makes special provision for such operations with the 
instructions ADC (Add Carry) and SSC (Subtract Carry) and their byte equiva­
lents. 

For example two 16-bit words may be combined into a 32·bit double precision 
word and added or subtracted as shown below: 

32 BIT WORD 
~ 

OPERAND f Al I I A0 

31 16 15 , 
OPERAND , Bl 

, 
80 

31 16 15 

RESULT -, 
31 16 15 

Example: 

The addition of -1 and -1 could be performed as follows: 

-1 = 37777777777 

, 

I 
0 , 

I 
0 

I 
0 

(Rl) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777 

ADD Rl,R2 
ADC R3 
ADD R4,R3 

1. After (Rl) and (R2) are added, 1 is loaded into the C bit 

2. ADC instruction adds C bit to (R3); (R3) = 0 

3. (R3) and (R4) are added 

4. Result is 37777777776 or -2 

4-18 



add carry 

o o o 

15 6 5 

d 

ADC 
ADCB 

-055DD 

d 

o 

Operation: (dst).(dst) + (C) 

Condition Codes: N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if (dst) was 077777 and (C) was 1; cleared otherwise 
C: set if (dst) was 177777 and (C) was 1; cleared otherwise 

Description: Adds the contents of the C-bit into the destination. This per· 
mits the carry from the addition of the low-order words to be 
carried into the high-order result. 
Byte: Same 

Example: Double precision addition may be done with the following in­
struction sequence: 
ADD AO,BO ; add low-order parts 
ADC Bl ; add carry into high-order 
ADD Al,Bl ; add high order parts 

4-19 



SBC 
S'BCB 

subtract carry 

10/1 I a a a a 1 : 1 d d d d 

15 6 5 a 

Operation: (dst).(dst)-(C) 

Condition Codes: N: set if result 0; cleared otherwise 
Z: set if result 0; cleared otherwise 
V: set if (dst) was 100000; cleared otherwise 
C: set if (dst) was 0 and C was 1; cleared otherwise 

Description: Word: Subtracts the contents of the C-bit from the destina­
tion. This permits the carry from the subtraction of two low· 
order words to be subtracted from the high order part of the 
result. 
Byte: Same 

Example: Double precision subtraction is done by: 

SXT 
sign extend 

I a 1 0 a 

15 

Operation: 

Condition Codes: 

Description: 

SUB AO,BO 
SBC Bl 
SUB Al.Bl 

a a d 

6 5 

(dst). 0 if N bit is clear 
(dst) .-1 N bit is set 

N: unaffected 
Z: set if N bit clear 
V: cleared 
C: unaffected 

0067DD 

d d I d d 

a 

If the condition code bit N is set then a -1 is placed in the 
destination operand: if N bit is clear, then a 0 is placed in the 
destination operand. This instruction is particularly useful in 
multiple precision arithmetic because it permits the sign to 
be extended through multiple words. 

4-20 



MFPS 
move byte from processor'status word 106700 

I 1 0 0 0 o 1 11 

Operation: 

Condition 'Code 
Bits: 

Description: 

Example: 

(dst) ~ PS <0:7> 
dst lower 8 bits 

N= set if PS bit 7 = 1; cleared otherwise 
Z = set if PS <0:7> = 0; cleared otherwise 
V = cleared 
C = not affected 

The 8 bit contents of the PS are moved to the effec­
tive destination. If destination is mode 0, PS bit 7 is 
sign extended through the upper byte of the register. 
The destination operand address is treated as a byte 
address. 

MFPS RO 

before after 

RO [0] RO [000014] 
PS [000000] PS [000014] 

4·21 



MTPS 
move byte to processor status word 1064SS 

.["i 0 0 0 o 1 I 0 0 

Operation: PS <0:7> ~ (SRC) 

Condition Codes: N = set if (SRC) <7> = 1; cleared otherwise 
Z = set if (SRC) <0:7> = 0; cleared otherwise 
V = cleared 
C = not affected 

$ I 

Description: The 8 bits of the effective operand replaces the cur­
rent contents of the PS <0:7>. The source operand 
address is treated as a byte address. 
Note that the T bit (PS bit 4) cannot be set with this 
instruction. The SRC operand remains unchanged. 
This instruction can be used to change the priority bits 
(PS <5:7» in the PS. 

4-22 



4.5 DOUBLE OPERAND INSTRUCTIONS 
Double operand instructions provide an instruction (and time) saving facility 
since they eliminate the need for "Ioad"and "save" sequences such as those 
used in accumulator·oriented machines. 

MOV 
MOVB 

move source to destination 

o d d d d 
I 

15 12 11 6 5 o 

Operation: (dst).(src) 

Condition Codes: N: set if (src) <0; cleared 
Z: set if (src) = 0; cleared 
V: cleared 
C: not affected 

Description: Word: Moves the source operand to the destination location. 
The previous contents of the destination are lost. The con· 
tents of the source address are not affected. 
Byte: Same as MOV. The MOVB to a register (unique among 
byte instructions) extends the most significant bit of the low 
order byte (sign extension). Otherwise MOVB operates on 
bytes exactly as MOV operates on words. 

Example: MOV XXX,R1 ; loads Register 1 with the con· 
tents of memory location; XXX represents a programmer·de· 
fined mnemonic used to represent a memory location 

MOV # 20,RO ; loads the number 20 into 
Register 0; "# "indicates that the value 20 is the operand 

MOV @#20.-(R6) ; pushes the operand con· 
tained in location 20 onto the stack 

MOV (R6) + ,@ # 177566 ; pops the operand off a stack 
and moves it into memory location 177566 (terminal print 
buffer) 

MOV R1.R3 performs ani nter 
register transfer 

MOVB @# 177562, @# 177566 ; moves a character 
from terminal keyboard buffer to terminal buffer 

4·23 



CMP 
CMPB 

compare src to dst 

1011 I 0 d d d d d 

15 12 11 650 

Operation: (src)-(dst) 

Condition Codes: N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if there was arithmetic overflow; that is, operands were 
of opposite signs and the sign of the desti nation was the 
same as the sign of the result; cleared otherwise 
C: cleared if there was a carry from the most significant bit of 
the resu It; set otherwi se 

Description: Compares the source and destination operands and sets the 
condition codes, which may then be used for arithmetic and 
logical conditional branches. Both operands are unaffected. 
The only action is to set the condition codes. The compare is 
customarily followed by a conditional branch instruction. 
Note that unlike the subtract instruction the order of oper­
ation is (src)-(dst), not (dst)-(src). 

4-24 



ADD 

add src to dst 06SSDD 

s 
.1 

15 12 11 6 5 o 

Operation: (dst).(src) + (dst) 

Condition Codes: N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if there was arithmetic overflow as a result of the oper· 
ation; that is both operands were of the same sign and the 
result was of the opposite sign; cleared otherwise 
C: set if th~re was a carry from the most significant bit of the 
result; cleared otherwise 

Description: Adds the source operand to the destination operand and 
stores the result at the destination address. The original con· 
tents of the destination are lost. The contents of the source 
are not affected. Two's complement addition is performed. 

Examples: Add to regi ster: ADD 20,RO 

Add to memory: ADD Rl,XXX 

Add register to register: ADD Rl,R2 

Add memory to memory: ADD@ # 17750,XXX 

XXX is a programmer-defined mnemonic for a memory loca­
tion. 

4·25 



SUB 

subtract src from dst 16SSDD 

d d d d 
I 

15 12 11 6 5 o 

Operation: (dst).(dst)-(src) 

Condition Codes: N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if there was arithmetic overflow as a result of the oper· 
ation. that is if operands were of opposite signs and the sign 
of the source was the same as the sign of the result; cleared 
otherwise 
C: cleared if there was a carry from the most significant bit of 
the result; set otherwise 

Description: Subtracts the source operand from the destination operand 
and leaves the result at the destination address. The orignial 
contents of the destination are lost. The contents of the 
source are not affected. In double·precision arithmetic the C. 
bit. when set. indicates a "borrow" 

Example: SUB Rl.R2 

Before 
(Rl) =011111 
(R2) = 012345 

NZVC 
1 1 1 1 

4·26 

After 
(R1)=011111 
(R2) =001234 

NZVC 
0000 



/ 

Logical 
These instructions have the same format as the double operand arithmetic group. 
They permit operations on data at the bit level. 

4·27 



BIT 
BITB 

bit test 

15 12 11 

Operation: (src) A (dst) 

s : s I _ 

-3SSDD 

d d d d 

6 5 o 

Condition Codes: N: set if high-order bit of result set; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: clear~ 
C: not affected 

Description: Performs logical "and"comparison of the source and desti­
nation operands and modifies condition codes accordingly. 
Neither the source nor desti"nation operands are affected. 
The BIT instruction may be used to test whether any of the 
corresponding bits that are set in the destination are also set 
in the source or whether all corresponding bits set in the des­
tination are clear in the source_ 

Example: BIT #30.R3 ; test bits 3 and 4 of R3 to see 

; if both are off 

(30),=0 000 000 000 all 000 

4-28 



bit clear 

o 0 I s d 

15 12 11 6 5 

d d d 
I 

BIC 
BICB 

o 

Operation: (dst).-(src)A(dst) 

Condition Codes: N: set if high order bit of result 'set; cleared otherwise 
Z: set if result =0; cleared otherwise 
V: cleared . 
C: not affected 

Description: . Clears each bit in the destination that corresponds to a set 
bit in the source. The original contents of the destination are 
lost. The contents of the source are unaffected. 

Example: BIC R3,R4 

Before 
(R3) =001234 

(R4) = oollll 

NZVC 
1 1 1 1 

Before: 

After: 

After 
(R3) = 001234 

(R4) = 000101 

NZVC 
0001 

(R3)=0 000 001 010 011 100 
(R4)=0 000 001 001 001 001 

(R4)=0 000 000 001 000 001 

4·29 



BIS 
BISB 

bit set 

1011, 1 

15 
° s s 

12 " 

Operation: (dst)4(src) v (dst) 

d 

6 5 

d . d , 
-SSSDD 

d 

° 

Condition Codes: N: set if high·order bit of result set. de'ared otherwise 
Z: set if result·= 0: cleared otherwise 
V: cleared 
C: not affected 

Description: Performs· "Inclusive OR"operation between the source and 
destination operands and leaves the result at the destination 
address: that is. ·correspondi ng bits set in the source are set 
in the destination. The contents of the destination are lost. 

Example: . BIS RO.Rl 

Before 
(RO) = 001234 
(Rl) = 001111 

Before: 

After: 

NZVC 
0000 

After 
(RO) = 001234 
(Rl) =001335 

NZVC 
0000 

(RO)=O 000 001 010 011· 100 
(R1)=0 000 001 001 001 001 

(R1)=0 000 001 011 011 101 

4-30 



XOR 

exclusive OR 074RDD 

o 01 r :- r d I d 

15 9 8 6 5 

Operation: (dst).Ry.(dst) 

Condition Codes: N: set if the result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: unaffected 

d 

o 

Description: The exclusive OR of the register and destination operand is 
stored in the destination address. Contents of register are 
unaffected. Assembler format is: XOR RD 

Example: XOR RO,R2 

Before 
(RO) =001234 
(R2) =001111 

Before: 

After: 

After _ 
(RO) =001234 
(R2) = 000325 

(RO)=O 000001 010 011 100 
(R2)=0 000 001 001 001 001 

(R2)=0 000 000 011 010 101' 

4-31 



4.6 PROGRAM CONTROL INSTRUCTIONS 
Branches 

The instruction causes a branch to a location defined by the sum of the offset 
(multiplied by 2) and the current contents of the Program Counter if: 

a) the branch instruc;tion is unconditional 

b) it is conditional and the conditions are met after testing the condition 
codes (status word). 

The offset is the number of words from the current contents of the PC. Note that 
the current contents of the PC point to the word following the branch instruction. 

Although the PC expresses a byte address, the offset is expressed in words. The 
offset is automatically multiplied by two to express bytes before it is added ·to the 
PC. Bit 7 is the sign of the offset. If it is set, the offset is negative and the branch 
is done in the backward direction. Similarly if it is not set, the offset is positive 
and the branch is done in the forward direction. 

The 8·bit offset allows branching in the backward direction by 200, words (400. 
bytes) from the current PC, and in the forward direction by 177, words (376. 
bytes) from the current PC. 

The PDp· 11 assembler handles address arithmetic for the user and computes and 
assembles the proper offset field for branch instructions in the form: 

Bxx loc 

Where "Bxx" is the branch instruction and "Ioc" is the address to which the 
branch is to be made. The assembler gives an error indication in the instruction if 
the permissable branch range is exceeded. Branch instructions have no· effect on 
condition codes. 

4-32 



branch (unconditional) 000400 Plus offset 

1000000011 OFFSET 

15 B 7 o 

Operation: PC .. PC + (2 x offset) 

Descri ptio n: Provides a way of transferring program control within a 
range of -128 to + 127 words with a one word instruction. 

New PC address = updated PC + (2 X offset) 

Updated PC = address of branch instruction + 2 

Example: With the Branch instruction at location 500, the following off­
sets apply. 

New PC Address 

474 
476 
500 
502 
504 
506 

Offset Code 
375 
376 
377 
000 
001 
002 

4·33 

Offset (decimal) 

-3 
-2 
-1 

o 
+1 
+2 



BNE 

branch if not equal (to zero) 001000 Plus offset 

OFFSET , , 
15 8 - 7 o 

Operation: PC • PC + (2 x offset) if Z = 0 

Condition Codes: Unaffected 

Description: Tests the state of the Z·bit and causes a branch if the Z·bitis 
clear. BNE is the complementary operation to BEQ. It is used 
to test inequality following a CMP, to test that some bits set 
in the destination were also in the source, following a BIT, 
and generally, to test that the result of the previous oper· 
ation was not zero. 

Example: CMP A.B 
BNE C 

will branch to C if A i= B 

and the sequence 

ADD A,B 
BNE C 

; compare A and B 
: branch if they are not equal 

: add A to B 
: Branch if the result is not 

equal to 0 

will branch to C if A + B::/:. 0 

4-34 



branch if equal (to zero) 

15 

o 0 0 0 0 
I 

8 7 

Operation: PC • PC + (2 x offset) if 

Condition Codes: Unaffected 

BEQ 

001400 Plus offset 

OFFSET 

o 

Z 

Description: Tests the state of the Z·bit and causes a branch if Z is set: As 
an example, it is used to test equality following a CMP oper· 
ation, to test that no bits set in the destination were also set 
in the source following a BIT operation, and generally, to test 
that the result of the previous operation was .zero. 

Example: CMP A,B 
BEQ C 

will branch to C if A = B 
and the sequence 

ADD A,B 
BEQ C 

; compare A and B 
; branch if they are equal 

(A - B = 0) 

; add A to B 
; branch if the result = 0 

will branch to C if A + B == O. 

4·35 



BPl 

branch if plus 

15 

Operation: 

Description: 

100000 Plus offset 

OFFSET 

8 7 o 

PC. PC + (2 x offset) if N =0 

Tests the state of the N·bit and causes a branch if N is 
clear, (positive result). 

4·36 



BMI 

branch if minus 100400 Plus offset 

1100000011 OFFSET 

15 8 7 o 

Operation: PC .. PC + (2 x offset) if N = 1 

Condition Codes: Unaffected 

Description: Tests the state of the N-bit and causes a branch if N is 
set It is used to test the sign (most significant bit) of 
the result of the previous operation). branching if neg­
ative_ 

4-37 



Bve 

branch if overflow is clear' 102000 Plus offset 

o 
. 15 

Operation: 

Description: 

'0 I 0 OFFSET 

8 7 o 

PC • PC + (2 x offset) if V = 0 

Tests the state of the V bit and causes a branch if the V bit is . 
clear. avc is complemen~ary. operation toBVS. 

4·38 



BVS 

branch if overflow is set 102400 Plus offset 

15 

Operation: 

Description: 

o 0 
I 

o OFFSET 

8 7 

PC • PC + (2 x offset) if V = 1 

o 

Tests the state of V bit (overflow) and causes a branch if the 
V bit is set. BVS is used to detect arithmetic overflow in the 
previous' operation. 

4·39 



Bee 

branch if carry .is clear 103000 Plus offset 

11 I 0 o 
15 

Operation: 

Description: 

o ,0 OFFSET 
! , 

8 7 o 

PC • PC + (2 x offset) if C = 0 

Tests the state of the C·bit and causes a branch if C is clear. 
BCC is the complementary operation to BCS 

4·40 



BCS 

branch if carry is set 103400 Plus offset 

15 

Operation: 

Description: 

OFFSET 

8 7' o 

PC • PC + (2 x offset) if C = 1 

Tests the state of the C-bit and causes a branch if C is set. It 
is used to test for a carry in the result of a previous oper­
ation, 

4·41 



Signed Conditional Branches 
Particular combinations of the condition code bits are tested with the signed con· 
ditional branches; These instructions are used to test the results of instructions in 
which the operands were considered as signed (two's complement) values. 

-Note that the sense of signed comparisons differs from that of unsigned com· 
parisons in that in signed 16·bit, two's complement arithmetic the sequence of 
values is as follows: . 

largest 

positive 

regative 

Ismallest 

077777 
077776 

000001 
'000000 
177777 
177776 

100001 
100000 

whereas in unsigned 16·bit arithmetic the sequence is considered to be 

highest 

lowest 

177777 

000002 
000001 
00000o 

4·42 



branch if greater than or equal 
(to zero) 

BGE 

002000 Plus offset 

I ~ I 0 0 0 0 0 I 0 I OFFSET 

15 

Operation: 

Description: 

8 7 o 

PC .. PC + (2 x offset) if N If V = 0 

Causes a branch if N and V are either both clear or both set. 
BGE is the complementary operation to BlT. Thus BGE will 
always cau~e a branch when it follows an operation that 
caused addition of two positive numbers. BGE will also cause 
a branch on a zero result. 

4·43 



BlI 

branch if less than (zero) 002400 Plus offset 

100000 o OFFSET 
I 

15 

Opet'ation: 

Description: 

8 7 o 

PC ~ PC + (2 x offset) if N If V = 1 

Causes a branch if the "Exclusive Or"of the N and V bits are 
1. Thus BL T will always branch following an operation that 
added two negative numbers, even if overflow occurred. 
In particular, BLT will always cause a branch if it follo:ws a 
CMP instruction operating on a negative source and a posi. 
tive destination (even if overflow occurred). Further, BL Twill 
never cause a branch when it follows a CMP instruction oper. 
ating on a positive source and negative destination. BL T wi II 
not cause a branch if the result of the previous operation was 
zero (without overflow). 

4·44 



BGT 

branch if greater than (zero) 003000 Plus offset 

I 0 I 0 0 0 I 0 OFFSET 

15 

Operation: 

Description: 

8 7 o 

PC • PC + (2 x offset) if Z v(N ¥ V) = 0 

Operation of BGT is.similar to BGE, except BGT will not cause 
a branch on a zero result 

4·45 



BLE 

branch if less than or equal (to zero) 003400 Plus offset 

o I 0 o 

15 

Operation: 

Description: 

o o OFFSET 

8 7 o 

PC • PC + (2 x offset) if Z v(N ... V) = 1 

Operation is similar to BLT- but in addition will cause a 
branch if the result of the previous operation was zero. 

4·46 



Unsigned Con"itional Branches 
The Unsigned Conditional Branches provide a means for testing the result of 
comparison operations in which the operands are considered as unsigned values. 

4·47 



BHI 

branch if higher 101000 Plus offset 

15 

Operation: 

Description: 

OFFSET 
I 

87 o 

PC. PC + (2 x offset) if C = 0 and Z = 0 

Causes a branch if the previous operation caused neither a 
carry nor a zero result. This will happen in comparison (CMP) 
operations as long as the source has a higher unsigned value 
than the destination. 

4-48 



BLOS 

branch if lower or same 101400 Rlus offset 

I 1 1 00 0 0 0 OFFSET 

15 

Operation: 

Description: 

B 7 o 

PC • PC + (2 x offset) if C v Z = 1 

Causes a branch if the previous operation caused either a 
carry or a zero result. BlOS is the complementary operation 
to BHI. The branch will occur in comparison operations as 
long as the source is equal to, or has a lower unsigned value 
than .the destination. 

4-49 



BHIS 

branch if higher or same 103000 Plus offset 

I 1 0 0 0 0 OFFSET 

15 

Operation: 

Description: 

8 7 o 

PC"" PC + (2 x offset) if C = 0 

BHISis the same instruction as BCC, This mnemonic is in· 
cluded only for convenience, 

4·50 



BLO 

branch if lower 103400 Plus offset 

. 15 

Operation: 

Description: 

OFFSET 

8 7 o 

PC .. PC + (2 x offset) if C = 1 

BLO is same instruction as BCS. This mnemonic is included 
only for convenience. 

4-51 



JMP 

jump 000100 

I 0 1 0 o o I 0 o o 1 I d d d 
I 

d 

15 6 5 o 

Operation: ~(dst) 

Condition Codes: not affected 

Description: JMP provides more flexible program branching than provided 
with the branch instructions. Control may be transferred to 
any location in memory (no range limitation) and can be ac; 
complished with the full flexibility of the addressing modes, 
with the exception of register mode O. Execution of a jump 
with mode 0 will cause an "illegal instruction"condition. 
(Program control cannot be transferred to a 'register.) Regis· 
ter deferred mode is legal and will cause program control to 
be transferred to the address held in the specified register. 
Note that instructions are word data and must therefore be 
fetched from an even·numbered address. A 'boundary er· 
ror"trap condition will result when the processor attempts to 
fetch an instruction from an odd address. 

Deferred index mode JMP instructions permit transfer of 
control to the address contained in a selectable element of a 
table of dispatch vectors. 

4-52 



Subroutine Instructions 
The subroutine call in the PDP-ll provides for automatic nesting of subroutines, 
reentrancy, and multiple entry points_ Subroutines may call other subroutines (or 
indeed themselves) to any level of nesting without making special provision for 
storage or return addresses at each level of subroutine call. The subroutine call­
ing mechanism does not modify any fixed location in memory, thus providing for 
reentrancy_ This allows one copy of a subroutine to be shared among several in­
terrupting processes. For more detailed description of subroutine programming 
see Chapter 5. 

4-53 



JSR 

jump to subroutine 004RDD 

15 

Operation: 

Description: 

d d I d d 

9 8 6 5 o 

t(SP).reg . (push reg contents onto processor stack) 

re~PC (PC holds location following JSR; this address 
now put in reg) 

PC .(dst) (PC now points to subroutine destination) 

In execution of the JSR. the old contents of the specified reg· 
ister (the "LINKAGE POINTER") are automatically pushed 
onto the processor stack and new linkage information placed 
in the register. Thus subroutines nested within subroutines 
to any depth may all be called with the same linkage register. 
There is no need either to plan the maximum depth at which 
any particular subroutine will be called or to include instruc· 
tions in each routine to save and restore the iinkage pointer. 
Further. since all linkages are saved in a reentrant manner 
on the processor stack execution of a subroutine may be in· 
terrupted. the same subroutine reentered and executed by an 
interrupt service routine. Execution of the initial subroutine 
can then be resumed when other requests are satisfied. This 
process (called nesting) can proceed to any level. 

A subroutine called with a JSR reg.dst instruction can access 
the arguments following the call with either autoincrement 
addressing, (reg) + , (if arguments are accessed sequentially) 
or by indexed addressing. X(reg), (if accessed in random or· 
der). These addressing modes may also be deferred. 
@(reg) + and @X(reg) if the parameters are operand ad· 
dresses rather than the operands themselves. 

4·54 



Example: 

Before: 

After: 

JSR PC, dst is a special case of the PDp·l1 subroutine call 
suitable for subroutine calls that transmit parameters 
through the general registers. The SP and the PC are the only 
registers that may be modified by this call. 

Another special case of the JSR instruction is JSR PC, 
@(SP)+ which exchanges the top element of the processor 
stack and the contents of the program counter. Use of this 
instruction allows two routines to swap program control and 
resume operation when recalled where they left off. Such rou· 
tines are calleg "co·routines." 

Similar to the JMP instruction, a JSR instruction with 
a destination mode of 0 will cause an "illegal instruc· 
tion" trap since program control cannot be passed 
to a register. The address specified by the destination 
must similarly be. even. 

Return from a subroutine is done by the RTS instruction. RTS 
reg loads the contents of reg into the PC and pops the top 
element of the processor stack into the specified register. 

JSR R5, SBR 

(PC) R7 PC Stack 

(SP) R6 n .. DATA 0 

R5 #1 

R7 SBR 

I~ R6 n-2 DATA 0 

#1 
R5 PC+2 I 

4·55 



RTS 

return from subroutine 00020R 

I 0 I 0 o 
15 

Operation: 

Description: 

Example: 

Before: 

After: 

o I 0 o 

PCAreg 
reg. (SP) .. 

o o > o I 0 o 

3 2 o 

Loads contents of reg into PC and pops the top element of 
the processor stack into the specified register. 
Return from a non·reentrant subroutine is typically made 
through the same register that was used in its call. Thus. a 
subroutine called with a JSR PC. dst exits with aRTS PC and 
a subroutine called with a JSR R5. dst. may pick up para· 
meters with addressing modes (R5) +. X(R5). or @X(R5) 
and finally exits with an RTS R5 

RTS R5 

(PC) R7 SBR Stack 

(SP) R6 DATA a 
#1 

L--
n ---'---"I~ 

R5 PC I 

R7 PC 

R6 .. DATA a 

R5 #1 

4-56 



mark 

15 

Operation: 

o 

SP. PC + 2nn 
PC.R5 
R54(SP) • 

MARK 

00 64 NN 

o n n I n n . n 

e 765 o 

n n = number of parameters 

Condition Codes: unaffected 

Description: Used as part of the standard PDp· I I subroutine return con· 
vention. MARK facilitates the stack clean up procedures in· 
volved in subroutine exit. Assembler format is: MARK N 

Example: MOV 
MOV 
MOV 

R5,-(SP) 
PI,-(SP) 
P2,-(SP) 

MOV PN,-(SP) 
MOV #MARKN,-(SP) 

MOV SP ,R5 

JSR PC,SUB 

. ;place old R5 on stack 
;place N parameters 
;on the stack to be 
;used there by the 
:subroutine 

; places the instruction 
;MARK N on the stack 
;set up address at Mark N in· 
struction 

;jump to subroutine 

At this point the stack is as follows: 

OLD R5 

PI 

PN 

MARK N 

OLD PC 

4·57 



And the program is at the address SUB which is the beginning 
of the subroutine. 
SUB: ;execution of the subroutine it· 

self 

RTSR5 ;the return begins: this causes 

the contents of R5 to .be placed in the PC which then results 
in the execution of the instruction MARK N. The contents of 
old PC are placed in R5 

MARK N causes: (1) the stack pointer to be adjusted to point 
to the old R5 value; (2) the value now in R5 (the old PC) to be 
placed in the PC; and (3) contents of the the old R5 to be 
popped into R5 thus completing the return from subroutine. 

4-58 



SOB 

subtract one and branch (if =f. 0) 077ROO Plus offset 

I~O~I_'~~'-~~~~I~r~: ~~r~I~~_OF~F~_ET~~~I. 
15 9 e 6 5 0 

Operation: R. R -1 if this result", 0 then PC. PC -(2 x offset) 

Condition Codes: unaffected 

Description: The register is decremented. Ifit is not equal to O. twice the 
offset is subtracted from the PC (now pointing to the follow· 
ing word). The offset is interpreted as a sixbit positive num· 
ber. This instruction prtAides a fast. efficient method of loop 
control. Assembler syntax is: 

SOB R.A 

Where A is the address to which transfer is to be made if the 
decremented R is not equal to O. Note that the SOB instruc· 
tion can not be used to transfer control in the forward direc· 
tion. 

4·59 



Traps 
Trap instructions provide for calls to emulators, 1/0 monitors, debugging pack· 
ages, and user·defined interpreters. A trap is effectively an interrupt generated by 
software. When a trap occurs the contents of the current Program Counter (PC) 
and Program Status Word (PS) are pushed onto the processor stack and reo 
placed by the contents of a two·word trap vector containing a new PC and new 
PS. The return sequence from a trap involves executing an RTI or RTT instruc· 
tion which restores the old PC and old PS by popping them from the stack. Trap 
vectors are located at permanently assigned fixed addresses. 

4·60 



emulator trap 

1 I 0 o 0 o 
15 

Operation: t (SP).fPS 
't(SP).fPC 

P<A(30) 
PS.(32) 

o I O! 
8 7 

Condition Codes: N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

EMT 

104000-104377 

o 

Description: All operation codes from 104000 to 104377 are EMT instruc· 
tions and may be used to transmit information to the emulat· 
ing routine (e.g .• function to be performed). The trap vector 
for EMT is at address 30. The new PC is taken from the word. 
at address 30; the new central pro.cessor status CPS) is taken 
from the word at address 32. 

Before: 

After: 

Caution: EMT is used frequently by DEC system software and 
is therefore not recommended for general use. 

PS PS 1 Stack 

-
R7, PC PC 1 

~ 
DATA 1 

R6, SP n 

PS (32) . 

PC (30) DATA 1 

PS 1 

SP n-4 ~ . PC 1 

4·61 



TRAP 

trap 

o 0 0 o 0 1 I 
15 8 7 

Operation: • (SP).PS 
• (SP).PC 

PC. (34) 
P5.(36) 

Condition Codes: N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

104400-104777 

o 

Description: Operation codes from 104400 to 104777 are TRAP instruc· 
tions. TRAPs and EMTs are identical in operation, except 
that the trap vector for TRAP is at address 34. 

Note: Since DEC software makes frequent use of EMT, the 
TRAP instruction is recommended for general use. 

4·62 



BPT 

breakpoint trap 000003 

1000000010:000000 ,1 
m 0 

Operation: t (SP).PS 
t(SP).PC 
PC. (14) 
ps. (16) 

Condition Codes: N: loaded from trap· vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

Description: Performs a trap sequence with a trap vector address of 14. 
Used to call debugging aids. The user is cautioned against 
employing code 000003 in programs run under these de· 
bugging aids. 
(no information is transmitted in the low byte.) 

4·63 



lOT 

input! output trap 000004 

o 0 o 10 o o 0 o o b I 
15 0 

Operation: t (SP).PS 
t(SP).PC 

PC.(20) 
P5.(22) 

Condition Codes: N:loaded from trap vector 
Z:loaded from trap vector 
V:loaded from trap vector 
C:loaded from tra~ vector 

Description: Performs a trap sequence with a trap vector address of 20, 
Used to call the 1/0 Executive routine lOX in the paper tape 
software system. and for error reporting in the Disk Oper, 
ating System, 
(no information is transmitted in the low byte) 

4-64 



RTI 

return from interrupt 000002 

15 

Operation: 

Condition Codes: 

Description: 

pc.csP'.t. 
PS.(SP).t. 

o 0 0 0 
I 

N: loaded from processor stack 
Z: loaded from processor stack 
V: loaded from processor stack 
C: loaded from processor stack 

o 

o 

Used to exitfrbm an interrupt or TRAP service routine. The 
PC and PS are restored (popped) from the processor stack. 

If the RTI sets the T bit in the PS, a trace trap is 
taken immediately following the RTI. 

4·65 



RTT 

return from interrupt 000006 

o I 
15 0 

Operation: ~(SP) • 
PS.(SP) • 

Condition Codes: N: loaded from processor stack 
Z: loaded from processor stack 
V: loaded from processor stack 
C: loaded from processor stack 

Description: If the RTT sets the T bit in the PS, the trace trap is 
not taken, and if no other trap conditions exist, the 
next instruction (pointed to by the PC) is executed. 

4·66 



Reserved Instruction Traps 
These are caused by attempts to execute instruction codes reserved for 
future processor expansion (reserved instructions). Order codes not cor­
responding to any of the instructions described are considered to be 
reserved instructions. Reserved instruction traps occur as described 
under EMT, but trap through a vector at address 10. 

Illegal Instruction Traps 
These are caused by attempts.to execute instructions with illegal address· 
ing modes. JMP and JSR with register mode destination (mode O) are 
illegal and trap as described under EMT, but through a vector at address 
4. 

Stack Overflow Traps 
These are caused by instruction execution which depresses the SP (R6) 
below the vector limit of 400. They may occur during address calcula· 
tion for SRC or DST modes 4 or 5 (auto-decrement modes) if the spec· 
ified register is R6, during the JSR instruction (pushes PC on stack), 
or during any trap operation or instruction (except a trap servicing a 
stack overflow). Stack overflow traps occur as described under EMT, 
but trap through a vector at address 4. Stack overflow traps do not 
abort the instruction but allow it to proceed to completion. 

Bus Error Traps 

1. Boundary Errors - attempts to reference instructions or word oper· 
ands at odd addresses. 

2. Time·Out Errors - attempts to reference addresses on the bus that 
made no response within a certain length of time. In general, these 
are caused by attempts to reference non·existent memory, and at­
tempts to reference non-existent peripheral devices. 

Bus error traps abort execution of the instruction and traps imme· 
diately following their occurrence. 

Bus error traps cause processor traps through the trap vector address 4. 

Trace Traps 
These occur if the trace bit in the PS (bit 4) is set at the end of an in· 
struction execution. The trace bit is not affected by references to the 
PS as an address or by execution of the MTPS instruction. The trace bit 
can only be set by data loaded into the PS during trap operations (in­
terrupts, instruction traps, processor error traps, etc.) or execution of 
an RTI or RTI instruction. Execution of the RTI instruction inhibits a 
trace trap and thus is used to return from the trace trap routine back to 
the main code executed with the trace bit set. The WAIT instruction does 
not disable the trace bit trap. 

4·67 



Power Failure Trap. Trap occurs whenever the AC power drops below 
95 volts or outside 47 to 63 Hertz. The instruction executes to comple· 
tion and then the trap is recognized. Two mifliseconds are then allowed 
for power down processing. Trap vector for power faifure is at locations 
24 and 26. 

Trap Priorities 
In case multiple trap conditions occur simultaneously. the following 
order of priorities is observed (from high to low): 

1. -Odd Address 
2. Memory Management Violation 
3. Timeout -
4. Parity Error 
5. Trap Instruction 
6. Trace Trap 
7. Stack Overflow 
8. Power Fail 
9. Interrupt 

10. HALT From Console 

If a bus error occurs during the trap process (pushing data on the stack 
or fetching data from a vector) the processor halts. 

4·68 



4.7 MISCELLANEOUS 

HALT 

halt 000000 

o I 0 o 0 o : 0 0 o 0 o 

15 o 

Condition Codes: not affected 

Description: Causes the processor operation to cease. The console is 
given control of the bus. The console data lights display the 
contents of RO; the. con.sole address lights display the ad· 
dress after the halt instruction. Transfers on the UNIBUS are 
terminated immediately. The PC points to the next instruc­
tion to be executed. Pressing the continue key' on the console 
causes processor operation to resume. No INIT signal is 
given. 

Note: A halt issued in User Mode will generate a trap. 

4·69 



WAIT 

wait for interrupt 000001 

o 0 o I 0 o o o o ·0 o 10 o 
ffi 0 

Condition Codes: not affected 
/ 

Description: Provides a way for the processor to relinquish us~ of 
the bus \\I.hile it waits for an external interrl!Pt. 
Having been given a WAIT command, the processor 
will not compete for bus use by fetching instructions 
or operands from memory. This permits higher trans· 
fer rates between a device and memory, since no 
processor·induced latencies will be encountered by 
bus requests from the device. In WAIT, as in all in· 
structions, the PC points to the next instruction fol· 
lowing the WAIT operation. Thus when an interrupt 
causes the PC and PS to be pushed onto the pro· 
cessor stack, the address of the next instruction 
following the WAIT is saved. The exit from the in· 
terrupt routine (Le. execution of an RTI .instruction) 
will cause resumption of the interrupted process at 
the instruction following the WAIT. 

4·70 



RESET 

reset external bus 000005 

I 0 I 0 000 o o o o 
15 o 

Condition Codes: not affected 

Description: Sends INIT on the UNIBUS. All devices on the UNI· 
BUS are reset to their state at power up. 

NOTE 
A RESET fetched in User Mode executes as a 
NOP. 

4-7l 



ClN 
ClZ 
ClV 
ClC 
CCC 

SEN 
SEZ 
SEV 
SEC 
SCC 

condition code operators 0002XX 

15 

Description: 

Mnemonic 
Operation 

CLC Clear C 

CLV Clear V 

CLZ Clear Z 

CLN Clear N 

SEC Set C 

SEV Set V 

SEZ Set Z 

. SEN SetN 

SCC Set all ce's 

o 0 0 I 1 
, I ! 

o I 1 

5 

101 IN I Z I v I c I 
432 0 

Set and clear condition code bits. Selectable combinatiohs of 
these bits may be cleared or set together. Condition code bits 
corresponding to bits in the condition code operator (Bits O· 
3) are modified according to the sense of bit 4, the set/clear. 
bit of the operator. i.e. set the bit specified by bit 0, 1, 2 or 3, 
if bit 4 is a 1. Clear corresponding bits if bit 4 = 0. 

OP Code 

000241 

000242 

000244 

000250 

000261 

000262 

000264 

000270 

000277 

CCC Clear all CC's 000257 

Clear V and C 000243 
NOP No Operation 000240 

Combinations of the above set or clear operations maybe ORed together to form 
combined instructions. 

4-72 



CHAPTER 5 

PROGRAMMING TECHNIQUES 

( 

In order to produce programs which fully utilize the power and flexibility of the 
PDP·l1, the reader should become familiar with the various programming tech· 
niques which are part of the basic design philosophy of the PDp·II. Although it is 
possible to program the PDp·II along traditional lines such as "accumulator ori· 
entation" this approach does not fully exploit the architecture and instruction set 
of the PDp·l1. 

5.1 THE STACK 
A "stack", as used on the PDp·II, is an area of memory set aside by the pro· 
grammer for temporary storage or subroutine/interrupt service linkage. The in· 
structions which facilitate "stack" handling are useful features not normally 
found in low·cost computers. They allow a program to dynamically establish, 
modify, or delete a stack and items on it. The. stack uses the "Iast·in, first·out" 
concept, that is, various items may be added to a stack in sequential order and reo 
trieved or deleted from the stack in reverse order. On the PDp·l1, a stack starts 
at the highest location reserved for it and expands linearly downward to the low· 
est address as items are added to the stack. 

HIGH ADDRESSES 

LCNI ADDRESSES 

Figure 5·1: Stack Addresses 

The programmer does not need to keep track of the actual locations his data is 
being stacked into. This is done automatically through a "stack pointer." To keep 
track of the last item added to the stack (or "where we are" in the stack) a Gen· 
eral Register always contains the memory address where the last item is stored in 
the stack. In the PDp· 11 any register except Register 7 (the Program Counter·PC) 
may be used as a "stack pointer" under program control; however, instructions 
associated with subroutine linkage and interrupt service automatically use Regis· 
ter 6 (R6) as a hardware "Stack Pointer." For this reason R6 is frequently reo 
ferred ~o as the system "SP." 

5·1 



Stacks in the PDp· 11 may be maintained in either full word or byte units. This is 
true for a stack pOinted to by any register except R6, which must be organized in 
full word units only. 

007100 

007076 

007074 

007072 

007070 

007066 

007064 

007100 

007077 

007076 

007075 

WORD STACK 

ITEM #1 

ITEM #2 

ITEM #3 

ITEM # 4 

BYTE STACK 

ITEM #, 
ITEM #2 

ITEM #3 

ITEM #4 

-spl 007072 

NOTE: BYTES ARE 
ARE ARRANGED IN 
WORDS AS FOLLOWING: 

.--sp ~1 ___ 0_0_7_0_75 __ ~ 

Figure 5·2: Word and Byte Stacks 

Items are added to a stack using the autodecrement addressing mode with the 
appropriate pointer register. (See Chapter 3 for descri ption of the autoi ncre· 
ment / decrement modes). 

This operation is accomplished as follows; 

MOV Source,-(SP) ;MOV Source Word onto the stack 

or 

MOVB Source,-(SP) ;MOVB Source Byte onto the stack 

This is called a "push" because data is "pushed onto the stack." 

5·2 



To remove an item from stack the autoincrement addressing mode with the ap. 
propriate SP is employed. This is accomplished in the following manner: 

MOV (SP) + ,Destination ;MOV Destination Word off the stack 

or 

MOVS (SP) + ,Destination ;MOVB Destination Byte off the stack 

Removing an item from a stack is called a "pop" for "popping from the stack." 
After an item has been "popped," its stack location is considered free and avai. 
lable for other use. The stack pointer points to the last·used location implying 
that the next (lower) location is free. Thus a stack may represent a pool of share· 
abl~ temporary storage locations. 

HIGHMEMORY~ ~ -SP 

} 
j E0 -SP 

STACK 
AREA 

LOW MEMORY . 

1 AN EMPTY STACK 2.PUSHINGA DATUM 
AREA ONTO THE STACK 

~0 
EI 

j E2 -SP 

4 ANOTHER PUSH 

OOE3 

E0 

E' .. sp 

7 POP 

E;ap 
~+SP 
5. POP 

E;a 
j~SP 

3 PUSHING ANOTHER 
DATUM 0010 THE 
STACKS 

~0 
E 1 

. j E3 _SP 

6. PUSH 

Figure 5·3: Illustration of Push and Pop Operations. 

5·3 



As an example of stack usage consider this situation: a subroutine (SUBR) wants 
to use registers 1 and 2,but these registers must be returned to the calling pro­
gram with their contents unchanged_ The subroutine could be written as follows: 

Address 

076322 
076324 
076326 
076330 

076410 
076412 

. 076414 
076416 
076420 
076422 
076424 

'Index Constants 

Octal Code 

010167 
000074 
010267 
000072 

016701 
000006 
016702 
000004 
000207 
000000 
000000 

SUBR: 

Assembler Syntax 

MOV Rl,TEMPI ;save Rl 

MOV R2,TEMP2 ;save R2 

MOV TEMPI, Rl ;Restore Rl 

MOV TEMP2, R2 ;Restore R2 

RTSPC 
TEMPI: 0 
TEMP2: 0 

Figure 5-4: Register Saving Without the Stack 

OR: Using the Stack 

Address 

010020 
010022 

010130 
010132 
010134 

Octal Code 

010143 SUBR: 
010243 

012301 
012302 
000207 

Assembler Syntax 

MOV Rl, -(R3) ;push Rl 
MOV R2, -(R3) ;push R2 

MOV (R3) + , R2 ;pop R2 
MOV(R3)+,Rl ;pop Rl 
RTS PC 

Note: In this case R3 was used as a Stack Pointer 

Figure 5-5: Register Saving using the Stack 

The second routine uses four less words of instruction code and two words of 
temporary "stack" storage. Another routine could use the same stack space at 
some later point. Thus, the ability to share temporary storage in the form of a 
stack is a very economical way to save on memory usage. 

5·4 



As a further example of stack usage, consider the task of managing an input buf· 
fer from a terminal. As characters come in, the terminal user may wish ·to delete 
characters from his line; this is aceomplished very easily by maintaining a byte 
stack containing the input characters .. Whenever a backspace is received a char· 
acter is "popped" off the stack and ejiminated from consideration. In this ex· 
ample, a programmer has the choice of "popping" characters to be eliminated by 
using either the MOVB (MOVE BYTE) or INC (INCREMENT) instructions. 

001011 

00 1010 

001007 

001006 

001005 

001004 

')01003 

001002 

001001 

c c 
u u 

S INC R3 S 

T T 

0 0 

M M 

E E 

R R 

Z OOIDal 

. Figure 5·6: Byte Stack used as a Character Buffpr 

001002 

NOTE that in this case using the increment instruction (INC) is preferable to 
MOVB since it would accomplish the task of eliminating the unwanted character 
from the stack by readjusting the stack pointer without the need for a destination 
location. Also, the stack pointer (SP) used in this example cannot be the system 
stack pointer (R6) because R6 may only point to word (even) locations. 

5.2 SUBROUTINE LINKAGE 
5.2.1 Subroutine Calls 
Subroutines provide a facility for maintaining a single copy of a given routine 
which can be used in a repetitive manner by other programs located anywhere 
else in memory. In order to provide this facility, generalized linkage methods 
must be established for the purpose of control transfer and information exchange 
between subroutines and calling programs. The PDp·l1 instruction set contains 
several useful instructi,ons for this purpose. 

PDP·ll subroutines are called by using the JSR instruction which has the follow· 
ing format. 

a general register (R) for linkage ~ 
JSR R,SUBR 

an entry location (SUBR) for the subroutine-1 

5·5 



When a JSR is executed, the contents of the linkage register are saved on the sys· 
tem R6 stack as if a MOV reg,-(SP) had been performed. Then the same register 
is loaded with the memory address following the JSR instruction (the contents of 
the current PC) and a jump is made to the entry location specified. 

BEFORE 

(RSI' 000132 
(RGI: 00 1776 

(PC):(R7)=OQ1QOO 

002000 

Address Assembler SyntaK Octal Code 

001000 JSRRS .SUBR 004567 
001002 Inde)(constant forSU8R 000060 

001064 SUBR, MOV A.B Olnnmni 

Figure 5·7: JSR using R5 

AFTER 

(RSI' 001004 
(RSI' 00,]74 

(pel'(R71'00IOS" 

001776 1------1_ SP 

002000 

.----:-OO,....,,,,77::-S-', 00t776 I--mm-m-m-mm--t 
001774 

001772 

00t7741-_00_0_'3_2_--i-SP 

001772 
1------1 

Figure 5·8: JSR 

001774 

Note that the instruction JSR R6,SUBR is not normally considered to be a mean· 
ingful combination. 

5.2.2 Argument Transmission 
The memory location pointed to by the linkage register of the JSR instruction may 
contain arguments or addressses of arguments. These arguments may be 'ac: 
cessed from the subroutine in several ways. Using Register 5 as the linkage regis· 
ter, the first argument could be obtained by using the addressing modes in· 
dicated by (R5), (R5) + ;X(R5) for actual data, or @(R5) + , etc. for the address of 

1 data. If the autoincrement mode is used,"the linkage register is automatically up· 
dated to point to the next argument. ." 

Figures 5·9 and 5·10 illustrate two possible methods of argument transmission. 

Address Instructions and Data 

010400 
010402 
010404 
010406 

020306 SUBR: 
020310 

JSR R5,SUBR 
Index constant for SUBR 
arg # 1 
arg #2 

MOV(R5)+,R1 
MOV (R5) + ,R2 

SUBROUTINE CALL 

ARGUMENTS 

;get arg # 1 

;get arg· # 2 Retrieve Arguments 
from SUB 

Figure 5·9; Argument Transmission ·Register Autoincrement Mode 

5·6 



Address Instructions and Data 

010400 JSR R5,SUBR 
010402 index constant for SUBR SUBROUTINE CALL 
010404 077722 Address of Arg # 1 
010406 077724 Address of Arg. # 2 
010410 077726 Address of Arg. # 3 

077722 Arg #1 
077724 arg #2 arguments 
077726 argO #3 

020306 SliBR: MaY @(R5) + ,R1 ;get arg # 1 
020301 MOV @(R5) + ,R2 ;get arg #2 

Figure 5·10: Argument Transmission·Register Autoincrement Deferred Mode 

Another method of transmitting arguments is to transmit only the address of the 
first item:by placing this address in a general purpose register. It is not necessary 
to have the actual argument list in the same general area as the subroutine call. 
Thus a subroutine can be called to work on data located anywhere in memory. In 
fact, in many cases, the operations performed by the subroutine can be applied 
directly to the data located on or pointed to by a stack without the need to ever 
actually move this data into the subroutine are$!. 

Calling Program: MOV 
JSR 

SUBROUTINE ADD 

POINTER, R1 
PC,SUBR 

(R1) + ,(R1) ;Add item # 1 to item #2, place 
result in item #2, R1 points 

etc. 
or 

to item # 2 now 

ADD (R1),2(R1) ;Same effect as above except that 

R1 still points to item # 1 
etc. 

ITEM # t -R1 'I 
.'TEM #2 ~ ___ ....J 

Figure 5·11: Transmitting Stacks as Arguments 

5·7· 



Because the PDP·ll hardware already uses general purpose register R6 to point 
to. a stack for saving and restoring PC and PS (processor status word) informa· 
tion, it is quite convenient to use this same stack to save and restore intermediate 
results and to transmit arguments to and from subroutines. Using R6 in this 
manner permits extreme flexibility in nesting subroutines· and interrupt service 
routines. 

Since arguments may be obtained from the stack by using some form of register 
indexed addressing, it is sometimes useful to save a temporary copy of R6 in 
some other register which has already been saved at the beginning of a subrout· 
ine. In the previous example R5 may be used to index the arguments while R6 is 
free to be incremented and decremented in the course of being used as a stack 
pointer. If R6 had been used directly as the base for indexing and not "copied", it 
might be difficult to keep track of the position in the argument list since the base 
of the stack would change with every autoincrementldecrement which occurs. 

oro ., oro #1 

Clrg #2 oro" 2' 

SP-"t-_O'..;cO_#_'_--t 
but when another item 
TO is pushed 

ar; '*:3 

org .. 2 is at source 
-2 (5"1 

SP-I-__ T-,-O ----l 

or; .. 2 Is at SClliree 

-4(SPI 

Figure 5·12: Shifting Indexed Base 

However, if the contents of R6 (SP) are saved in R5 before any arguments are 
pushed onto the stack, the position relative to R5 would remain constant. 

org '# 1 

~ arg .. 2 

-R5 
SP t--o,-,-"-2---t 

oro" I 

Sp- or; #3 

Of9111:2 Is-ot 2 (R5) or; #2 IS stili 01 2\R51 

Figure 5·13: Constant Index Base Using "R6 Copy" 

5·8 



5.2.3 Subroutine Return 
In order to provide for a return from a subroutine to the calling program an RTS 
instruction is executed by the subroutine. This instruction should specify the 
same register as the JSR used in the subroutine call. When executed, it causes the 
register specified to be moved to the PC and the top of the stack to be then placed 
in the register specified. Note that if an RTS PC is executed, it has the effect of re: 
turning to the address specified on the top of the stack. 

Note that the JSR and the JMP Instructions differ in that a linkage register is ai, 
ways used with a JSR; there is no linkage register with a JMP and no way to re­
turn to the calling program. 

When a subroutine finishes, it is necessary to "clean·up" the stack by eliminating 
or skipping over the subroutine arguments. One way this can be done is by insist, 
ing that the subroutine keep the number of arguments as its first stack item. Re­
turns from subroutines would then involve calculating the amount by which to re­
set the stack pointer, resetting the stack pointer, then restoring the original 
contents of the register which was used as the copy of the stack pointer. The PDP-
11/40. however, has a much faster and simpler method of performing these 
tasks. The MARK instruction which is stored on a stack in place of "number of ar­
gument" information may be used to automatically perform these "clean-up" 
chores. 

5.2.4 PDp·ll Subroutine Advantages 
There are several advantages to the PDP-ll subroutine calling procedure. 

a. arguments can be quickly passed between the calling program and the subr­
outine. 

b. if the user has no arguments or the arguments are in a general register or on 
the stack the JSR PC,DST mode can be used so that none of the general pur­
pose registers are taken up for linkage:-

c. many JSR's can be executed without the need to provide any saving procedure 
for the linkage information since all linkage information is automatically 
pushed onto the stack in sequential order, Returns can simply be made by 
automatically popping this information from the stack in the opposite order of 
the JSR's. 

Such linkage address bookkeeping is called automatic "nesting" of subroutine 
calls. This feature enables the programmer to construct fast, efficient linkages in 
a simple, flexible manner. It even permits a routine to call itself in those cases 
where this is meaningful. Other ramificati'ons will appear after we examine the 
PDP-11 interrrupt procedures. 

5.3 INTERRUPTS 
5.3.1 General Principles 
Interrupts are in many respects very similar to subroutine calls. However, they are 
forced, rather than controlled, transfers of program execution occurring because 
of some external and program-independent event (such as a stroke on the tele­
printer keyboard). Like subroutines, interrupts have linkage information such 

5·9 



that a return to the interrupted program can be made. More information is ac· 
tually necessary for an interrupt transfer than a subroutine transfer because of 
the random nature of interrupts. The complete machine state of the program im· 
mediately prior to the occurrence of the interrupt must be preserved in order to 
return to the program without any noticeable effects. (i.e. was the previous oper· 
ation zero or negative. etc.) This information is stored in the Processor Status 
Word (PS). Upon interrupt. the contents of the Program Counter (PC) (address of 
next instruction) and the PS are automatically pushed onto the R6 system stack. 
The effect is the same as if: 

MOV PS .-(SP) 
MOV R7.-(SP) 

had been executed. 

; Push PS 
; Push PC 

The new contents of the PC and PS are loaded from two preassigned consecutive 
memory locations which are called an "interrupt vector". The actual locations are 
chosen by the device interface designer and are located in low memory addresses 
of Kernel virtual space (see interrupt vector list. Appendix B). The first word con· 
tains the interrupt service routine address (the address of the new program se· 
quence) and the second word contains the new PS which will determine the mao 
chine status including the operational mode and register set to be used by the 
interrupt service routine. The cc;mtents of the interrupt service vector are set un· 
der program control. -

After the interrupt service routine has been completed. an RTI (return from inter­
rupt) is performed. The two top words of the stack are automatically "popped" 
and placed in the PC and PS respectively. thus resuming the interrupted pro­
gram. 

5_3_2 Nesting 
Interrupts-can be nested in much the same manner that subroutines are nested. 
In fact. it is possible to nest any arbitrary mixture of subroutines and interrupts 
without any confusion. By using the RTI' and RTS instructions. respectively. the 
proper returns are automatic. . 

1. Process 0 is running; 
SP is pointing to loca­
tion PO. 

2. Interrupt stops process 0 
with PC = PCO. and 
status = PS 0 ;starts process 1. 

5-10 

PO~ pso 
~p_ pco 

o _ 



3. Process I uses stack for 
temporary storage (TEO, TEl). 

POf-___ ---1 
PSO 

4. Process I interrupted with PC = PCI PO 

and status = PSI; process 2 is started 

5. Process 2 is running and does a 
JSR R7,A to Subroutine A with 
PC = PC 2. 

6. Subroutine A is running 
and uses stack for 
temporary storage. 

5·11 

SP---+ 

o 

PO 

PO 

PCO 

TEO 

PSO 

PC 0 

TEO 

TE' 

PS' 

PC' 

PSO 

pco 
TE 0 

TE' 

ps, 
pc. 
PC2 

PSO 

PCO 

TEO 

TEl 

PS. 

PC. 

PC2 

TA. 

TA2 



7. Subroutine A releases the temporary 

storage holding TAl and TA2. 

8. Subroutine A returns control to process 
2 with an RTS R7,PC is resefto PC2. 

9. Process 2 completes with an RTI instruction 
(dismisses interrupt) PC is reset 
to PC(l) and status is reset to PSI; 
process 1 resumes. 

10. Proce'ioS 1 releases the temporary 
storage holding TEO and TEL 

II. Process 1 completes its operation with 
an RTI PC is reset to PCO and status is 
reset to PSO. 

PO 

PSO 

pco 

TEO 

TEt 

PSt 

PCt 

SP~ PC2 

PO 

PSO 

PCO 

TEO 

TEt 

PSt 

PC t 

P0l-___ -l 
PSO 

PCO 

TEO 

PO~ PSO . 

SP: PCO 

Figure 5·14: Nested Interrupt Service Routines and Subroutines 

Note that the area of interrupt service programming is intimately involved with 
the concept of CPU and device priority levels.· 

5-12 



5.4 REENTRANCY 
Further advantages of stack organization become apparent in complex situations 
which can arise in program systems t!1at are engaged in the concurrent handling 
of several tasks. Such multi-task program environments may range from rela­
tively simple single-user 'applications which must manage an intermix of I/O in­
terrupt service and background computation to large complex multi-programm­
ing systems which manage a very intricate mixture of executive and multi-user 
programming situations_ In all these applications there is a need for flexibility 
and time/memory economy_ The use of the stack provides this economy and 
flexibility by providing a method for allowing many tasks to use a single copy of 
the same routine and a simple, unambiguous method for keeping track of com­
plex program linkages. 

The ability to share a single copy of a given program among users or tasks is 
called reentrancy_ Reentrant program routines c!iffer from ordinary subroutines in 
that it is unnecessary for reentrant routines to finish processing a given task be­
fore they can be used by another task_ Multiple tasks can be in various stages of 
completion in the same routine at any time. Thus the following situation may oc­
cur: 

MEMORY 

PROGRAM t 
PROGRAM 2 SUBROUTINE A 

PROGRAM 3 1------1 

PDP-ll Approach 

Programs 1,2, and 3 can 
share Subroutine A. 

MEMORY 

PROGRAM 1 ~SU8ROUTINE A 

PROGRAM 2 ~_SUBROUTINE .~ 

PROGRAM :3 ~?UBROUTIN ~~ 

Conventional Approach 

A separate copy of Subroutine A 
must be provided for each program. 

Figure 5-15: Reentrant Routines 

The chief programming distinction between a non-shareable routine and a reen­
trant routine is that the reentrant routine is composed solely of "pure code", i.e. 
it contains only instructions and constants. Thus, a section of program code is re­
entrant (shareable) if and only if it is "non self-modifying", that is it contains no 
information wi,thin it that is subject to modification_ 

Using reentrant routines, control of a given routine may be shared as illustrated 
in Figure 5-16. 

5-13 



REENTRANT 
ROUTINE J.----l 

Q 

Figure 5·16: Reentrant Routine Sharing 

1. Task A has requested processing by Reentrant Routine Q. 

2. Task A temporarily relinquishes control (is interrupted) of Reentrant Routine 
Q before it finishes processing. 

3. Task B starts processing in the same copy of Reentrant Routine Q. 

4. Task B relinquishes control of Reentrant Routine Q at some point in its pro· 
cessing. 

5. Task A regains control of Reentrant Routine Q and resumes processing from 
where it stopped. 

The use of reentrant programming allows many tasks to share frequently used 
routines such as device interrupt service routines, ASCII·Binary conversion rou· 
tines, etc. In fact, in a multi·user system it is possible for instance, to construct a 
reentrant FORTRAN compiler which can be used as a single copy·by many"user 
programs. 

As an application of reentrant (shareable) code, consider a data processing pro· 
gram which is interrupted while executing a ASCII·to·Binary subroutine which has 
been written as a reentrant routine. The same conversion 'routine is used by the 
device service routine. When the device servicing is finished, a return from inter· 
rupt (RTI) is executed and execution for the processing program is then resumed 
where it left off inside the same ASCII·to·Binary subroutine. 

Shareable routines generally result in great memory saving. It is the hardware im· 
plemented stack facility of the PDp· 11 that makes shareable or reentrant rou· 
tines reasonable. 

A subroutine may be reentered by a new task before its completion by the pre· 
vious task as long as the new execution does not destroy any linkage information 
or intermediate results which belong to the previous programs. This usually 
amounts to saving the contents of any general purpose registers, to be used and 
restoring them upon exit. The choice of whether to save and restore this informa· 
tion in the calling program or the subroutine is quite arbitrary and depends on the 
particular application. For example in controlled transfer situations (Le. JSR's) a 
main program which calls a code·conversion utility might save the contents of 
registers which it needs and restore them after it has regained control, or the 
code conversion routine might save the contents of registers which it uses and reo 
store them upon its completion. In the case of interrupt service routines this 
save/restore process must be carried out by the service routine itself since the in· 
terrupted program has no warning of an impending interrupt. The advantage of 

5·14 



using the stack to save and restore (i.e. "push" and "pop") this information is 
that it permits a program to isolate its instructions and data and thus maintain 
its reentrancy. 

In the case of a reentrant program which is used in a multi'programming envi· 
ronment it is usually necessary to maintain a separate R6 stack for each user al· 
though each such stack would be shared by all the tasks of a given user. For ex· 
ample, if a reentrant FORTRAN compiler is to be shared between many users, 
each time the user is changed, R6 would be set to point to a new user's stack area 
as illustrated in Figure 5·17. 

Figure 5·17: Multiple R6 Stack 

5.5 POSITION INDEPENDENT CODE - PIC 
Most programs are written with some direct references to specific addresses, if 
only as an offset from an absolute address origin. When it is desired to relocate 
these programs in memory. it is necessary to change the address references 
and/or the origin assignments. Such programs are constrained to a specifiec set 
of locations. However, the PDp·ll architecture permits programs to be con· 
structed such that they are not constrained to specific locations. These Position 
Independent programs do not directly reference any absolute locations in 
memory. Instead all references are "PC·relative" i.e. locations are referenced im 
terms of offsets from the current location (offsets from the current value of the 
Program Counter (PC)). When such a program has been translated to machine 
code it will form a program module which,can be loaded anywhere in memory as 
required. 

Position Independent Code is exceedingly valuable for those utility routines 
which may be disk·resident and are subject to loading in a dynamiCally changing 
program environment. The supervisory prograni may load them anywhere it de· 
termines without the need for any relocation parameters since all items remain in 
the same positions relative to each other (and thus also to the PC). 

Linkages to program routines which have been written in position independent 
code (PIC) must still be absolute in some manner. Since these routines can be 10· . 
cated anywhere in memory there must be some fixed or readily lo~atable linkage 
addresses to facilitate access to these routines. This linkage address may be a 
simple pointer located at a fixed address or it may be a complex vector composed 
of numerous linkage information items. 

5·15 



5.6 C()'ROUTINES 
In some situations it happens that two program routines are highly interactive. 
Using a special case of the JSR instruction i.e. JSR PC.@(R6) + which exchanges 
the top element of the Register 6 processor stack and the contents' of the Pro· 
gram Counter (PC). two routines may be permitted to swap program control and 
resume operation where they stopped. when recalled. Such routines are called 
"co·routines". This control swapping is illustrated in Figure 5·18. 

Routine #-1 is operating. it then executes: 

MOV #PC2.-(R6) 

JSR PC.@(R6) + 
with the following results: 

1) PC2 is popped from the stack 

and the SP autoincremented 

2) SP is autodecremented and the 
old PC (i.e. PCl) is pushed 

3) control is transferred to the 
location PC2 (i.e. routine # 2) 

Routine #2 is operating. it then executes: 

JSR PC .@(R6)+ 

with the result the PC2 is exchanged 
for PC1 on the stack and control is 
transferred back to routine # 1. 

SP-~ 

~l PC2 
SP-

PC 2 

. I SP_§g1 

Figure 5-18· Co-Routine Interaction 

5·16 
.. 



5.7 PROCESSOR TRAPS 
There are a series of~ errors and programming conditions which will 
cause the Central Processor to trap to a set of fixed locations. These 
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout 
Errors, Memory Parity Errors, Memory Management Violations, Use of 
Reserved Instructions, Use of the T bit in the Processor Status Word, 
and use of the lOT, EMT, and TRAP instructions. 

5.7.1 Power Failure 
Whenever AC power drops below 95 volts for 115v power (190 volts for 
230v) or outside a limit of 47 to 63 Hz, the instruction executes to com­
pletion and the power fail sequence is initiated. The Central Processor 
automatically traps to location 24 and the power fail program has 2 
msec. to save all volatile information (data in registers), and condition' 
peripherals for power fail. 

When power is restored the processor fetches its PC and PS from loca­
tions 24 and 26 and executes the power up routine to restore the mao 
chine to its state prior to power failure. 

5.7.2 Odd Addressing. Errors 
This error occurs whenever a program attempts to execute a word instruc­
tion on an odd address (in the middle of a word boundary). The in­
struction is aborted and the CPU traps through location 4. 

5.7.3 Time·out Errors 
These errors occur when a Master Synchronization pulse is placed on 
the UNIBUS and there is no slave pulse within a certain length .of time. 
This error usually occurs in attempts to address non·existent memory or 
peripherals. 

The offending instruction is aborted and the processor traps through 
location 4. 

5.7.4 Reserved Instructions 
There is a set of reserved instructions which cause the processor to trap 
through location 10. ' 

5.7.5 lIIegal'lnstruction 
JMP and JSR with OST mode of 0 are considered illegal addressing 
modes and trap through location 4. 

5.7.6 Trap Handling 
When a trap occurs, the processor saves the PC and PS on the Processor 
Stack and begins to execute the trap routine pointed to by the trap 
vector. 

5·17 



5·18· 



CHAPTER 6 

THE PDP·ll/34 COMPUTER 

6.1 DESCRIPTION 
The PDP-ll/34 computer system can contain up to 124K words of 
parity MOS or core memory. The mounting assembly for the central 
processor is available in 3 sizes. Chassis heights of 5 1,4",10112", or 21" 
allow the user to optimize space utilization for the particular application. 

The basic PDP-ll/34 includes the following capabilities and equipment: 

Central processor 
Parity memory (MOS or c.ore) 
Automatic bootstrap loader program in ROM memory. 
Operator's console 
Self-test diagnostics 
Memory management, relocation and protection 
Extended instruction set (EIS) 

Optional equipment includes: 

Serial line interface and clock 
Console terminal 
Programmer's console 
Battery backup unit for MOS memory 
Standard PDP-ll peripherals 

Extended Instruction Set 
The Extended Instruction Set ('EIS) provides the capability of performing 
hardware fixed point arithmetic and allows direct implementation of 
multiply, divide, and multiple shifting. A double-precision 32-bit word 
can be handled. The Extended Instruction Set executes compatibly with 
the EIS available on the PDp·ll/35 and 11/40. Refer to Section 6.10. 

Memory Management 
Memory Management is an advanced memory extension, relocation, and 
protection feature which will: , 

Extend memory space from 28K to 124K words 
Allow efficient segmentation of core for multi·user environments 
Provide effective protection of memory segments in multi·user en· 
vironments. 

Memory Management in the PDp·ll/34 is totally compatible with the 
Memory Management (KTl1·D) option on the PDP·ll/35 and 11/40. 

The machine operates in two modes; Kernel and User. When the rna· 
chine is in Kernel mode a program has complete control of the machine; 

6·1 



when in User mode the processor is inhibited from executing certain 
instructions and can be denied direct access to the peripherals or other 
protected memory locations in the system. This hardware feature can be 
used to provide complete executive protection in a multi·programming 
environment. A software operating system can insure that no user (who 
is operating in User mode) can cause a failure (crash) of the entire 
system. 

Refer to Chapter 7 for a detailed description of the Memory Management 
unit. 

6.2 SPECIFICATIONS 

Computer 

Main Market 

Memory . 

Max size: 
Type: 
Parity: . 

Central Processor 

Instructions: 

Programming modes: 
No. of general registers: 
Auto hardware interrupts: 
Auto software interrupts: 
Power fail/auto restart: 

Mechanical & Environmental 

Chassis height: 
Weight: . 
Input power: 

Operating temperature: 
Relative humidity: 

Equipment 

I/O serial interface: 
line frequency clock: 
Console terminal: 

Operators console: 
Programmer's console: 

Hardware bootstrap: 
Extended arithmetic: 
Autodiagnostics: 

PDp·ll/34 

End User & OEM 

124K words 
core or MOS 
standard 

basic set + XOR, SOB, MARK, SXT, RTT, 
MFPS, MTPS 

EIS set: (MUL, ASH, DIV, ASH C) 
mem mgt set: (MFPI, MTPI, MFPD, MTPD) 

user & kernel 
8 
yes 
no 
yes 

5 1/4~' 10 112" 21" 
451bs 110 Ibs 2001bs. 
350W 700W 1000W 
115 VAC, nom. (90 to 132v), 50/60 Hz, or 
230 VAC, nom. (180 to 264v), 50/60 Hz 
5°C to 50°C 
10% to 95%, non·condensing 

optional 
optional 
optional 

standard 
optional 

standard 
standard 
standard 

6-2 



Floating point: 
Stack limit address: 
Memory management: 

Cabinet: 

currently not available 
fixed (at 400) 
standard 

optional with 5 1,4" and lOlh" units; 
standard with 21" units 

6.2.1 Processor Backplane' Configuration 

2 

3 

4 

5 

6 

7 

8 

9 

A 

CPU 

M9301 I QUAD SPC 

M7850 I , QUAD SPC 
I 
I HEX SPC 
I 
I HEX SPC 
I 
I HEX SPC 
I 

HEX SPC I 

M9302 I QUAD SPC 

B C D 

Figure 6-1 Processor Backplane 

The processor backplane consists of a double system unit (SU) com­
prising 9 Hex slots. All PDP-ll/34 systems contain the CPU, M9301 
Bootstrap/Terminator, M7850 parity control, and M9302 (or a UNIBUS 
jumper to the next SU) as shown in Figure 6-1. Memory is added as 
follows depending on whether the system uses core or MOS. 

Core: Core memory is available in two size increments, 8K and 16K 
words, 

The 8K core, designated MMll-C, consists of a Hex and Quad 
module as follows: 

L-____________ r-H_E_X_C_O_N_TR_O_L_LE_R ______________ ~I _ 
QUAD STACK . 

The 16K core, designated MMll-D, consists of 2 Hex modules 
as follows: 

HEX CONTROLLER 

HEX STACK 

MaS: MaS memory is available in 8 or 16K increments and all in­
crements consist of a single Hex module. 

S and 16K increments are designated MSll-F, and MSll-J_ 

6-3 



NOTE 
The M7850 parity c;ontrol may be moved to slot 
5 to optimize usage of the MMll-C memory in 

. slots 4 and 5. 

The following backpanel configurations comprise the basic PDP-ll/34 
computer. 

2 

4 

5 

6 

7 

9 

2 

3 

4 

5 

6 

7 

9 

A 

A 

CPU . 
M9301 1 QUAD SPC 

MMll-C 
M78S0 I 

HEX SPC 

HEX SPC 

HEX SPC 

M9302 I QUAD SPC 

B C D 

Figure 6-2 8K Core using MMll-C 

CPU 

M9301 I QUAD SPC 

M78S0 I QUAD SPC 

MMll-D 

HEX SPC 

HEX SPC 

M9302 I QUAD SPC 

B C D 

Figure 6-3 16K Core using MMll-D 

Additional memory or Quad and Hex SPC options (DL11-W, TAll con­
troller, RXII controller, etc.) may be added to the processor backplane 
as space allows. 

6-4 



2 

3 

4 

5 

6 

7 

9 

CPU 

M9301 I QUAD SPC 

M7850 I QUAD SPC 

MSll-F OR J 

HEX SPC 

HEX SPC 

HEX SPC . 

M9302 I QUAD SPC 

A B C D E 

Figure 6·4 8 or 16K MOS using MSll-F or J 

6.2.2 Chassis Configuration 
5 1,4" Chassis-the previously described processor backpanel is 5 1,4" 
high and fills the 5 1,4" chassis. Further expansion must occur by add· 
ing an additional chassis or converting to a 101;2 "or 21" chassis. 

PROCESSOR BACKPANEL 
2 
~---------~ 

3 
I-

4 
I-

5 L-________________ ~ 

Figure 6·5 PDp·ll/34 back panel in BALL·K (10lh" chassis) 

TheBAll-K lOlh" chassis contains mounting room for 5 system units. 
The processor backpanel occupies the first two, leaving 3 SU's for 
further expansion. 

98765432 
II T -, -, -, 

I I I I I I 

m-" 
»AI no 7<n 
~m 
z~ 
mO 
r- AI 

Figure 6-6 PDP·ll/34 backpanel in BAll·F (21" chassis) 

The BAll·F 21" chassis contains mounting room for 9 system units. 
The processor backpanel occupies the first two, leaving 7 SU's for fur· 
ther expansion. For large memory configurations, it may be ciesirable 
to utilize memories which do not mount in the processor backpanel 
but are more power efficient. This leaves more expansion space in the 
processor backpanel and uses system units in the BAll·F. 

6·5 



6.3 MOS & CORE MEMORY 
The PDp·ll/34 is available with both MOS and core memory. The two 
types of memory may be freely intermixed in the computer system; 

the difference in timing is accommodated by the architecture of the 
asynchronous UNIBUS. 

Parity 
All main memory in a PDp·ll/34 system contains parity to enhance 
system integrity. Parity is generated and checked on all references be· 
tween the CPU and memory, and any parity errors are flagged for 
resolution. under program control. Odd parity is used, with 1 parity bit per 
8·bit byte, for a total of 18 bits per word. 

A double height module, M7850, contains parity control logic. Its control 
& status register (CSR) address is selectable between 772 100 and 772 
136. 
The CSR captures the high order address bits of a memory location with 
a parity error. A single M7850 provides parity generation and detection 
logic for all memory mounted in its back panel. 
MOS 
The basic unit of MOS memory, MS11·JP, contains 16K words of parity 
MOS memory. Each 16K words of MOS requires 1 hex mounting space. 

Core 
The basic unit of core memory, MMll·DP, contains 16K words of parity 
core memory. Each 16K words of core memory requires 2 hex mount· 
ing spaces. 
6.4 BATTERY· BACKUP 
Core memory is non·volatile; the contents are preserved when power is 
removed. However, MOS memory is volatile. If power is interrupted, an 
auxiliary power supply must be provided if information in the memory 
is to be saved. With the 51;2" and 101;2" CPU assemblies there is an 
optional Battery Backup Unit that can preserve the contents of 32K 
words of MaS memory for about 2 hours. This auxiliary power unit is 
a battery that is charged up by the main AC power when the computer 
system is operating normally. In this normal mode, the battery backup 
has no effect on the MOS memory. But if power is interrupted, voltage 
sensing circuitry within the backup option will automatically cause the 
MaS to be powered from this auxiliary power. The MaS information will 
be retained by being refreshed at a low cycle rate, thereby using mini· 
mum power. 
6.5 M9301 MODULE 
The M9301 module, which is included with the PDp·ll/34, provides 4 
functions for the computer system. 

1. It contains a read·only memory (ROM) that holds diagnostic routines 
for verifying computer operation .. 

2. It contains, also in ROM, the several bootstrap loader programs for 
starting up the system. 

3. It contains the Console Emulator Routine in ROM for issuing con· 
sole commands from the terminal. 

4. It provides termination resistors for the UNIBUS. 

6·6 



There are 2 versions of the M9301 module available: 

M9301·YA M9301·YB 

Main user OEM 

Able to run secondary bootstrap pro- yes'~ 

gram directly upon power up or reboot 

Automatic entry to Console yes'~ 
Emulator Routine 

Needs an ASCII terminal no 

End User 

no 

yes 

yes 

,~ Selection of one of these 2 operations is made 'by setting of switches 
contained on the module. 

Diagnostics 
Both versions of the M9301 contain diagnostics to check both the pro­
cessor and memory in a Go/No-Go mode. 'Execution of the diagnostics 
occur automatically but maybe disabled by switches on the M9301. 

Bootstrap Loader 
The M9301-YA contains independent bootstrap programs that can boot­
strap programs into memory from a selected peripheral device. Through 
front panel control or following Power Up, the computer can directly 
execute a bootstrap, without the operator having to manually key in the 
initial program. The bootstrap program for the peripheral device is de­
termined by switches on the M9301. This is useful in remote applica-
tions where no operator is present. . 

The M9301-YB, after execution of the CPU diagnostics, turns control of 
the system to the user at the console terminal. The system prints out 
status information and is ready to accept simple user commands for 
checking or modifying information within the computer, starting a pro­
gram already in memory, or executing a device bootstrap. 

The inclusion of a .bootstrap loader in non-destructible read-only memory 
is a tremendous convenience in system operation. Bootstrap programs 
do not have to be manually loaded into the computer for system initial­
ization. 

Console Emulation 
The normal console functions traditionally performed through front panel 
switches can be obtained by typing simple commands on the console 
terminal. LOAD, EXAMINE, DEPOSIT, START, and BOOT functions are 
available. 

Termination 
The M9301 contains resistors for proper impedance termination at the 
beginning of the UNIBUS (transmisSion line). 

6_6 M9302 MODULE 
The M9302 provides resistors for proper termination of the UN IBUS. It 
also contains logic which detects the assertion of certain UNIBUS sig­
nals and responds to them. Devices which request transfers on the UNI­
BUS receive and stop a serially passed "request granted:' signal from 

6-7 



the processor. If this signal(ever reaches the end of the UNIBUS, no 
device along the serial chain stopped it. The M9302 receives all such un· 
heeded grants and responds to allow the CPU to proceed. 

6.7 DLlI-W (M7856) 
The DLll·W option provides 2 capabilities: 

1. Serial line interface to an ASCII terminal, such as an LA36 DECwriter, 
VT50 video terminal, or an LT33 Teletype. 

2. Line time clock. 

Serial Communication line Interface 
The interface is program compatible with the standard DIGITAL serial 
interfaces, DLlI-A,-B,-C, and -D. It can handle speeds from 110 to 9600 
baud. It provides serial-to-parallel (and vice-versa) data conversion. 

Line Clock 
The clock is program compatible with the KW11-L, the standard line 
clock option used with other PDP-ll computers. The clock senses the 
50 or 60 Hz line frequency for internal timing. 

There are switches on the module for selection of parameters such as: 

register addresses 
baud rate 
communications data formats 

6.8 OPERATOR'S CONSOLE 
The operator's console is the front panel link between the user and the 
computer. It contains a minimum number of switches and lights. A" 
normally used console functions are available through the combination 
of the operator's console and an ASCII terminal; e.g. LA36 DECwriter. 

Console Switches 

POWER OFF 

ON 

STNBY 

DC power to the computer is off. 

Power is applied to the computer (and the 
system). 

Standby; no DC power to the computer, but 
DC power is applied to MaS memory (to re­
tain data) and the fans remain on. 

CAUTION 
AC power is removed only by disconnecting the 

line cord. 

CaNT/HALT 

BOOT/INIT 

CaNT 

HALT 

INIT 

The program is allowed to continue. 

The program is stopped. 

The switch is spring returned to the BOOT po­
sition. When the switch is depressed to IN­
ITialize and then returned to BOOT, the 
operation· depends on the setting of the 
CaNT/HALT switch. 

6-8 



HALT: The processor only is initialized and 
no "UNIBUS INIT" is generated. 
Upon lifting the CO NT /HALT switch, 
the M9301 routi"ne is executed al· 
lowing examination of system pe· 
ripherals without clearing their con· 
tents with "UNIBUS INIT". 

CONT: Initialize and then execute the 
M9301 program. 

When the BOOT switch is released, the following action takes place: 

(a) For both M9301·YA and M9301·YB: 
(when the switches are set for this operation) 

1. Run basic CPU diagnostics. 

2. Print out (on the console terminal) contents of RO, R4, SP, and 
PC at the time of power up, follow.ed by a dollar sign ($) on the 
next line. 

3. Enter Console Emulator Routine, awaiting keyboard commands. 

4. When a device bootstrap command is issued, first run processor 
memory diagnostics, then execute secondary bootstrap program 
from the designated peripheral device. 

(b) For the M9301·YA (OEM) version only: 
(when M9301-YA switches are set for this operation) 

1. Run basic CPU diagnostics. 

2. Run memory diagnostics. 

3. Run secondary bootstrap program from the preselected peri­
pheral device. 

NOTE 
When utilizing the stand alone switch setting 
described as alternative (b) above, the switches 
must be reset to enable execution of the con­
sole emulator routine. 

Indicators 

BATT off 

slow flash 
(1 flash/2 sec) 

fast flash 
(10 flashes/sec) 

continuous on 

DC ON on 

off 

Battery voltage is below minimum leveL to 
maintain MOS contents, or battery is absent. 

Battery is charging, but voltage is above the 
minimum level to maintain MOS contents if 
power is removed. 

Primary power has been lost; battery is dis­
charging, but MOS memory contents are 
being maintained, and voltage is still above 
minimum limit. 

Battery is fully charged and present. 

DC power is applied to logic circuitry. 

DC power is off. 

6-9 



RUN on 

off 

A program is running. 

The program is stopped. 

6.9 CONSOLE EMULATION 
The M9301 module contains a console emulator routine. When this 
routine is used in conjunction with the user's terminal, functions quite 
similar to those found on the programmer's console of traditionalPDP·11 
family computers are generated. 

Summary of the Console Emulator Functions 
LOAD - This function loads the address to be manipulated into the 

system. 

EXAMINE - Allows the operator to examine the contents' of the address 
that was loaded and/or deposited. 

DEPOSIT - Allows the operator to write into the address that was 
loaded and/or examined. 

START -Initializes the system and starts execution of the program 
at the address loaded. 

BOOT - Allows the booting of a specified device by typing in a 
two 'character code and optional unit number. 

Console Emulator Operation 
The console emulator allows the user to perform LOAD, EXAMINE, 
DEPOSIT, START, and BOOT functions by typing in the .appropriate code 
on the keyboard. 

Entry Into the Console Emulator 
There are three ways of entering the Console Emulator: 

• Move the Power .switch to the On position. 

• Depress the BOOT Switch . 

• Automatic entry on return from a power failure. 

After the Console 'Emulator Routine has started and the basic CPU diag; 
nostics have all run successfully, a series of numbers representing the 
contents of RO, R4, SP and PC respectively, will be printed by the ter· 
minal. This sequence will be followed by a $ on the next line. 

Example-a typical printout on power up: 

XXXXXX XXX XXX XXX XXX . 
$ 

RO 

PROMPT 
CHARACTER 

R4 R6 
STACK 
POINTER 

(SP) 

Notes: X signifies an octal number (0'7), 

XXX XXX 

PC 
PROGRAM 
COUNTER 

Whenever there is a power up routine, or the BOOT switch is 
released from the INIT position, the PC at this time will be 
stored. The stored value is printed out as above (noted as 
the PC). 

6·10 



Using the Console Emulator 
After the $-Once the system has been powered up or booted, and RO, 
R4, SP, PC and $ have been printed, the Console Emulator routine can 
be used. . . 

Keyboard Input Symbols-The discussion of keyboard input format uses 
the following symbols: 

• Space 8ar: (S8) 

• Carriage Return Key: (CR) 

• Any number 0·7 (Octal Number) Key: (X) 

Keyboard INPUT Format-Load, examine, deposit, start. All character 
keys shown in the following discussion represent themselves with the 
exception of those in parentheses. 

FUNCTION 

Load address 
Examine 
Deposit 

L (S8) (X) (X) (X) (X) (X) (X) (CR) 
E (S8) 
D (S8) (X) (X) (X) (X) (X) (X) (CR) 

Start S (CR) 

Order of Significance of Input Keys-The first character that is typed 
will be the most significant character. Conversely, the last character trat 
is typed is the least significant character. 

Number of Characters-The console emulator routine can accept up to 
six octal numbers in the range of 0-32K. If all six numbers are inputted, 
the most significant number should be a one or a zero. 

Leading Zeros-When an address or data word contains leading zeros, 
these zeros can be omitted when loading the address or depositing the 
data. 

Example Using the Load, Examine, Deposit, and Start Function-Assume 
that a user wishes to: 

1. Turn on power 

2. Load address 700 

3. Examine location 700 

4. Deposit 777 into location 700 

5. Examine location 700 

6 .. Start at location 700 

USER TERMINAL DISPLAY 

1. turns on power XXX xxx XXXXXX 

2. L (S8) 700 (CR) $ L 700 

3. E (S8) $ E 000700 XXX XXX 

4. D (S8) 777 (CR) $ D 777 

5. E (S8) $ E 000700 000777 

6. S (CR) $S 

6-11 

XXXXXX XXXXXX 
J 



Even Addresses Only-The console emulator routine will not work with 
odd addresses. Even numbered addresses must always be used. 

Successive Operations 
Examine-Successive examine,operations are permitted. The address is 
loaded for the first examine only. Successive examines cause the address 
to increment by two and will display consecutive addresses along with 
thei r contents. 

Example of Successive Examine Operations-Examine Addresses 500· 
506 

Operator Input 

L (58) 500 (CR) 
E (58) 
E (58) 
E (S8) 
E (S8) 

Terminal Display 

$L 500 
$E 000500·XXXXXX 
$E 000502 XXX XXX 
$E 000504 XXX XXX 
$E 000506 XXX XXX 

Deposit-Successive deposit operations are permitted. The procedure is 
identical to that used with examine. 

Example of Successive Deposit Operations 

Deposit: 60 into Location 500 
2 into Location 502 
4 into Location 504 

Operation Input 

L (S8) 500 (CR) 
D (S8) 60 (CR) 
D (S8) 2 (CR) 
D (S8) 4 (CR) 

Terminal Display 

$L 500 
$D 60 
$D 2 
$D 4 

Alternate Deposit·Examine Operations-This mode of operation will not 
increment the address. The address will contain the last data which was 
deposited. 

Example of Alternate Deposit-Examine Operations-Load address 500, 
deposit the following numbers with examines after every deposit: 1000, 
2000,5420. 

Operation Input 

L (58) 500 (CR) 
D (S8) 1000 (CR) 
E (58) 
D (58) 2000 (CR) 
E (58) 
D (S8) 5420 (CR) 
E (S8) 

Terminal Display 

$L 500 
$D 1000 
$E 000500 001000 
$D 2000 
$E 000500 002000 
$D 5420 
$E 000500 005420 

Limits of Operation-The M9301 console emulator routine can directly 
manipulate the lower 28K of memory and the 4K I/O page. Refer to the 
PDP-ll/34 User's Guide for a procedure to utilize the Memory Manage­
ment unit to examine or deposit in expanded memory. 

6-12 



Booting from the Keyboard 
Once the $ symbol has been displayed in response to system power 
coming up, or the boot switch being depressed, the system is ready to 
load a bqotstrap from the device which the operator selects. 

C_onsole Emulator Boot Procedure 

1. Find the two character boot code on Table 6-1 that corresponds to 
the peripheral to be booted. 

2. Load medium, papertape, magtape, disc, etc., into the peripheral if 
required. 

3. Verify that the peripheral indicators signify that the peripheral is 
ready (if applicable). 

4. Type the two character code obtained from the table. 

5; If there is more than one unit of a given peripheral, type the unit 
number to be booted (0-7). If no number is typed the default number 
will be O. 

6. Type (CR), this initiates the boot. 

Table of Bootstrap Routine Codes-Supported by both VA and VB ver­
sions of the M9301. 

Table 6-1 Bootstrap Codes 

Device 

RKll 
RPll 
TCll 
TMll 
TAll 
RXll 
DL11 
PCll 

Description 

Disk cartridge 
RP02/03 disk pack 
DECTAPE 
800 BPI Magtape 

. Magnetic cassette 
Diskette 
ASR-33 teletype 
Papertape 

Boot 
Command 

DK 
DP 
DT 
MT 
CT 
DX 
TT 
PR 

Supported by the VB version only (in addition to all the above). 

RJS03/04 
RJP04 
TJU16 

Fixed Head disk 
Disk pack 
Magnetic tape 

Before Booting .. _-Always remember: 

DS 
DB 
MM 

1. The medium (papertape, disc, magtape, cassette, etc.) must be 
placed in the peripheral to be booted prior to booting. 

2. The machine will not be under the control of the console emulator 
routine after booting. 

3. The program which is booted in must: 
1) be self starting 
2) allow the user to begin execution by using the CONT function, or 
3) be restartable after the console emulator is recalled. 

6-13 



4. Actuating the boot switch will always abort the program being run. 
The contents of the general registers (RO·R7) will be destroyed. There 
is no way to continue with the program which was aborted. Some pro· 
grams are designed to be restartable:' 

6.10 EIS ARITHMETIC OPERATION 
The extended Instruction Set adds the following instruction capability: 

Mnemonic 

MUL 
DIV 
ASH 
ASHe 

Instruction 

multiply 
divide 
shift arithmetically 
arithmetic shift combined 

Op Code 

070RSS 
071RSS 
072RSS 
073RSS 

The EIS instructions are directly compatible with the larger -11 com· 
puters. 

The number formats are: 

15 14 0 

I6·bit single word: I 5 I i I NUMBER 
I 

- 15 14 0 

I 5 I I 
HI~H NUMBER PA~T 

32·bit double word: 
15 0 

I I I LfW NUMBER PA'f 

S is the sign bit. S = 0 for positive quantities 
S = I for negative quantities; number is in 2's 

complement notation 

Interrupts are serviced at the end of an EIS instruction. 

6·14 



MUL 
multiply 070RSS 

0 1 1 1 
1 0 0 o I r : r r I 5 S I 5 5 I 

15 9 8 6 5 0 

Operation: R. Rvl. R x(src) 

Condition Codes: N: set if product is <0; cleared otherwise 
Z: set if product is 0; cleared otherwise 
V: cleared . 
C: set if the result is less than-2'-' or greater than or equal to 
2'-'-1: 

Description: The contents of the destination register and source taken as 
two's complement integers are multiplied and stored in the 
destination register and the succeeding register (if R is even). 
If R is odd only the low order product is stored. Assembler 
syntax is : MUL S,R. 
(Note that the actual destination is R. Rvl which reduces to 
just R when R is odd.) 

Example: 16·bit product (R is odd) 

CLC 
MOV #400,Rl 
MUL #lO,Rl 
BCS ERROR 

Before 

(Rl) =000400 

;Clear carry condition code 

;Carry will be set if 
;product is less than 
;-2"'or greater than or equal to 2'" 
;no significance lost 

After 

(Rl) = 004000 

Assembler format for all EIS instructions is: 
OPR src, R 

6-15 



DIV 

divide 071RSS 

10 I 1 1 10 o s I S S 

15 9 8 6 5 o 

Operation: R, Rvl. R. Rvl /(src) 

Condition Codes: N: set if quotient <0; cleared otherwise 
Z: set if quotient = 0; cleared otherwise 
V: set if source = 0 or if the absolute value of the register is 
larger than the absolute value of the source. (In this case the 
instruction is aborted because the quotient would exceed 15 
bits.) 
C: set if divide 0 attempted; cleared otherwise 

Description: The 32·bit two's complement integer in Rand Rvl is divided 
by the source operand. The quotient is left in R; the remain· 
der in Rvl. Division will be performed so that the remainder 
is of the same sign as the dividend. R must be even. 

Example: CLR RO 
MOV #20001,Rl 
DIV#2,RO 

Before 
(RO) = 00000o 
(Rl) =020001 

After 
(RO) = 010000' 
(Rl) = 000001 

6-16 

Quo~ient 
Remainder 



ASH 

shift arithmetically 072RSS 

I 0 I ' 
15 

Operation: 

Condition Codes: 

Description: 

[I I 
J15 

~-I 
15 

6 LSB of source 
011111 
000001 
111111 
100000 

Example: 

, I 0 

9 8 6 5 o 

R~ R Shifted arithmetically NN places to right or left 
Where NN == low order 6 bits of source. 
N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if sign of register changed during shift; cleared other· 
wise 
C: loaded from last bit shifted out of register 

The contents of the register are shifted right or left the num· 
ber of times specified by the shift count. The shift count is 
taken as the low order 6 bits of the source operand. This 
number ranges from -32 to + 31. Negative is a a right shift 
and positive is a left shift. 

·1 

OR 

I 

. Action in general register 
Shift left 31 places 
shift left 1 place 
shift right -1 place 
shift right 32 places 

Before 
(R3)=001234 
(RO) =000003 

6-17 

ASH RO, R3 

I-G] 
0 

I_ 0 

0 

After 
(R3)=012340 
(RO) =000003 



ASHe 
arithmetic shift combined 073RSS 

1 0 I 1 s s I 
I I 

15 9 B 6 5 o 

Operation: R, Rvl.R, Rvl The double word is shifted NN places to the 
right or left, where NN = low order six bils of source 

Condition Codes: N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if sign bit changes during the shift; cleared otherwise 
C: loaded with high order bit when left Shift; loaded with low 
order bit when right shift (loaded with the last bit shifted out 
of the 32-bit operand) 

Description: The contents of the register and the register ORed with one 
are treated as one 32 bit word, R + 1 (bits 0-15) and R (bits 
16-31) are shifted right or left the number of times specified 
by the shift count The shift count is taken as the low order 6 
bits of the source operand. This number ranges from -32 to 
+ 31. Negative is a right shift and positive is 11 ,left shift 
When the register chosen is an odd number the register 
and the register OR'ed with one are the same. In this case the 
right shift becomes a rotate (for upto'a shift ofl6)_ The 16 
bit word is rotated right the number of bits speCified by the 
shift count 

, + I I Q 
R+I I I---t-.:J 

15 OR o 

6-18 



CHAPTER 7 

MEMORY MANAGEMENT 

7.1 GENERAL 
7.1.1 Memory Management 
This chapter describes the Memory Management unit of the 11/34 
Central Processor. The PDP-11/34 provides the hardware facilities neces­
sary for complete memory management and protection. It is designed to 
be a memory management facility for systems where the memory size is 
greater than 28Kwords and for multi-user, multi-programming systems 
where protection and relocation facilities are necessary. 

7.1.2 Programming 
The Memory Management hardware has been optimized towards a multi­
programming environment and the processor can operate in two modes, 
Kernel and User. When in Kernel' mode, the program has complete 
control an!;! can execute all instructions. Monitors and supervisory pro-
grams would be executed in this mode. . 

When in User Mode, the program is prevented from executing certain 
instructions that could: 

a) cause the modification of the Kernel program. 
b) halt the computer. 
c) use memory space assigned to the Kernel or other users. 

In a multi-programming environment several user programs would be 
resident in memory at any given time. The task of the supervisory pro­
gram would be: control. the execution of the various user programs, 
manage the allocation of memory and peripheral device resources, and 
safeguard the integrity of the system. as a whole by careful control of 
each user program. 

7-1 



In a multi-programming system, the Management Unit provides the 
means for assigning pages (relocatable memory segments) to a user 
program and preventing that user from 'making any unauthorized access 
to those pages outside his assigned area. Thus, a user can effectively 
be prevented from accidental or' willful destruction of any other user 
program or the system executive program. . 

Hardware implemented features enable the operating system to dy· 
namically allocate memory upon demand while a program is being run. 
These features are particularly useful when running higher-level language 
programs,- where, for example, arrays are constructed at execution time. 
No fixed space is reserved for them by the compiler. Lacking dynamic 
memory allocation capability, the program would have to calculate and 
allow sufficient memory space to accommodate the worst case. Memory 
Management eliminates this time-consuming and wasteful procedure. 

7.1.3 Basic Addressing 
The addresses generated by all PDP-ll Family Central Processor Units 
(CPUs) are I8-bit direct byte addresses. Although the PDP-ll Family word 
length is 16 bits, the UNIBUS and CPU addressing logic actually is 18 
bits. Thus, while the PDP-ll word can only contain address references 
up to 32K words (64K bytes) the CPU and UNIBUS can. reference ad­
dresses up to 128K words (256K bytes). These extra two bits of address­
ing logic provide the basic framework for expanding memory references. 

In addition to the word length constraint on basic memory addressing 
space, the uppermost 4K words of address space is always reserved for 
UNIBUS I/O device registers. In a basic PDP-ll memory configuration 
(without Management) all address references to the uppermost 4K words 
of 16-bit address space (160000-177777) are converted to full 18-bit 
-references with bits 17 and 16 always set to 1. Thus, a 16-bit reference 
to the I/O device register at address 173224 is automatically internally 
converted to a full 18-bit reference to the register at address 773224. 
Accordingly, the basic PDP-II configuration can directly address up to 
28K words of true memory, and 4K words of UNIBUS I/O device registers. 

7.1.4 Active Page Registers 
The Memory Management Unit uses two sets of eight 32-bit Active Page 
Registers. An APR is actually a pair of 16-bit registers: a Page Address 
Register (PAR) and a Page Descriptor Register (PDR). These registers 
are always used as a pair and contain all the information needed to 
describe and relocate the currently active memory pages. 

One set of APR's is used in Kernel mode, and the other in User mode. 
The 'choice of which set to be used is determined by the current CPU 
mode contained in the Processor Status word. . 

-7-2 



15 14 13 12 0 

I PROCESSOR STATUS WORD 
" 1 

KERNEL 100) USER Ill) 

APR 0 APR 0 

APR 1 APR I 

APR 2 APR 2 ACTIVE 
PAGE 

APR 3 APR 3 REG<StERS 

APR 4 APR 4 

APR 5 APR 5 

APR 6 APR 6 

APR 7 APR 7 

15 0 15 0 

PAR 1----1 PDR I 
PAGE ADDRESS REGISTER PAGE DESCRIPTION REGISTER 

Figure 7-1 Active Page Registers 

7.1.5 Capabilities Provided by Memory Management 

Memory Size (words): 124K, max (plus 4K for I/O & registers) 

Address Space: 

Modes of Operation: 

Stack Pointers: 

Memory Relocation: 
Number of Pages: 
Page Length: 

Memory Protection: 

7.2 RELOCATION 
7.2.1 Virtual Addressing 

Virtual (16 bits) 
Physical (18 bits) 

Kernel & User 

2 (one for each mode) 

16 (8 for each mode) 
32 to 4,096 words 

no access 
read only 
read/write 

When the Memory Management Unit is operating, the normal 16-bit 
direct byte address is no longer interpreted as a direct Physical Address 
(PA) but as a Virtual Address (VA) containing information to be used in 
constructing a new 18-bit physical address. The information contained 
in the Virtual Address' (VA) is combined with relocation and description 
information contained in the Active Page Register (APR) to yield an 
18-bit Physical Address (PA). 

Because addresses are automatically relocated, the computer may be 
considered to be operating in virtual address space. This means that no 
matter where a program is loaded into physical memory, it will not have 

7-3 



to be "re-Iinked"; it always appears to be at the same virtual location in 
memory_ 

The virtual address space is divided into eight 4K-word pages_ Each page 
is relocated separately. This is a useful feature in multi-programmed 
timesharing systems. It permits a new large program to be loaded into 

. discontinuous blocks of physical memory. 

A page may be as small as 32 words, so that short procedures or data 
areas need occupy only as much memory as required. This is a useful 
feature in real-time control systems that contain many separate small 
tasks. It is also a useful feature for stack and buffer control. 

A basic function is to perform memory relocation and provide extended 
memory addressing capability for systems with more than 28K of phys­
ical memory. Two sets of page address registers are used to relocate 
virtual addresses to physical addresses in memory. These sets are used 
as hardware relocation registers that permit several user's programs, 
each starting at virtual address 0, to reside simultaneously in physical 
memory. 

7.2.2 Program Relocation 

The page address registers are used to determine the starting address 
of each relocated program in physical memory. Figure 7-2 shows a sim­
plified example of the relocation concept. 

Program A starting address 0 is relocated by a constant to provide 
physical address 6400 8 , 

VIRTUAL 
ADDRESS 
(VA)' 0 

PHYSICAL ADDRESS 

PHYSICAL MENORY 

PROGRAM 8 

100000 

PROGRAM A 

006400 

Figure 7-2 Simplified Memory Relocation Example 

7-4 



If the next processor virtual address is 2, the relocation constant will then 
cause physical address 6402 8 , which is the second item of Program A, to 
be accessed. When Program B is running, the relocation constant is 
changed to 100000 •. Then, Program B virtual addresses starting at 0, are 
relocated to access physical addresses starting at 100000 8 • Using the ac­
tive page address registers to provide relocation eliminates the need to "re­
link" a program each time it is loaded into a different physical memory 
location. The program always appears to start at the same address. 

A program is relocated in pages consisting of from 1 to 128 blocks. 
Each block is 32 words in length. Thus, the maximum length of a page 
is 4096 (128 x 32) words. Using all of the eight available active page 
registers in a set, a maximum program length of 32,768 words can be 
accommodated. Each of the eight pages can be relocated anywhere in 
the physical memory, as long as· each relocated page begins on a 
boundary that is a multiple of 32 words. However, for pages that are 
smaller then 4K words, only the memory actually allocated to the page 
may be accessed. 

The relocation example shown in Figure 7-3 illustrates several points 
about memory relocation. 

a) Although the program appears to be in contiguous address space to 
the processor, the 32K-word physical address space is actually scat­
tered. through several separate areas of physical memory. As long 
as the total available physical memory space is adequate, a program 
can be loaded. The physical memory space need not be contiguous. 

b) Pages may be relocated to higher or lower physical addresses, with 
respect to their virtual address ranges. In the example Figure 7-3, 
page 1 is relocated to ja higher range of physical addresses, page 4 
is relocated to a lowe,r range, and page 3 is not relocated at all 
(even though its relocation constant is non-zero). 

c) All of the pages shown in the example start on 32-word boundaries. 

d) Each page is relocated independently. There is no reason why two or 
more pages could not be relocated to the same physical memory 
space. Using more than one page address register in the set to 
access the same space would be one way of providing different 
memory access rights to the same data, depending upon which part 
of a program was referencing that data. 

Memory Units 

Block: 
Page: 
No. of pages: 
Size of relocatable 
memory: 

32 words 
1 to 128 blocks (32 to 4,096 words) 
8 per mode 
27,768 words, max (8 x 4,096) 

7-5 



VIRTUAL ADDRESS PAGE RELOCATION PHYSICAL MEMORY 
RANGES NO. CQ\lSTANT SPACE 

160000-177776 150000 340000- 357776 

140000- 157776 6 000000 330000- 347776 

120000 - 1377 76 100000 310000- 327776 

100000- 117776 020000 220000 - 237776 

060000- 077776 060000 140000 - 157776 

040000- 057776 250000 120000 - 137776 

020000-037776 320000 040000- 057776 

000000-017776 0 400000 

Figure 7-3 Relocation of a 32K Word Program into 
124K Word Physical Memory 

7.3 PROTECTION 
A timesharing system performs multiprogramming; it allows several 
programs to reside in memory simultaneously, and to operate sequen­
tially. Access to these programs, and the memory space they occupy, 
must be strictly defined and controlled. Several types of memory pro· 
tection must be afforded a timesharing system. For example: 

a) User programs must not be allowed to expand beyond allocated 
space, unless authorized by the system. 

b) Users must be prevented from modifying common subroutines and 
algorithms that are resident for all users. 

c) Users must be prevented from gaining control of or modifying the 
operating system software. 

The Memory Management option provides the hardware facilities to im· 
plement all of the above types of memory protection. 

7.3.1 Inaccessible Memory 
Each page has a 2-bit access control key associated with it. The key is 
assigned under program control. When the key is set to 0, the page is 
defined as non·resident. Any attempt by a user program to access a 
non·resident page is prevented by an immediate abort. Using this fea· 
ture to provide memory protection, only those pages asociated with the 
cu'rrent program are set to legal access keys .. The access control keys 
of all other program pages are set to 0, which prevents illegal memory 
references. 

7.3.2 Read·Only Memory 
The access control key for a page can be set to 2, which all'ows read 
(fetch) memory references to the page, but immediately aborts any at· 
tempt to write into that page. This read·only type of memory protection 

7-6 



can be afforded to pages that contain common data, subroutines, or 
shared algorithms. This type of memory protection allows the access 
rights to a given information module to be user·dependent. That is, the 
access -right to a given information module may be varied for different 
users by altering the access control key. 

A page address register in each of the sets (Kernel and User modes) 
may be set up to reference the same physical page in memory and 
each may be keyed for different access rights. For example, the User 
access control key might be 2 (read-only access), and the Kernel access 
control key might be 6 (allowing complete read/write access)_ 

7.3.3 Multiple Address Space 

There are two complete separate PAR/ PDR sets provided: one set for 
Kernel mode and one set for User mode. This affords Jhe timesharing 
system with another type of memory protection capability. The mode of 
operation is specified by the Processor Status Word current mode field, 
or previous mode field, as determined by the current instruction. 

Assuming the current mode PS bits are valid, the active page register 
sets are enabled as follows: 

PS(bits15, 14) 

00 
01 
10 
11 

} 

PAR/ PDR Set Enabled 
Kernel mode 

Illegal (all references aborted on access) 

User mode 

Thus, a User mode program is relocated by its own PAR/ PDR set, as are 
Kernel programs. This makes it impossible for a program running in 
one mode to accidentally reference space allocated to another mode 
when the active page registers are set correctly. For example, a user can­
not transfer to Kernel space. The Kernel mode address space may be re­
served for resident system monitor functions, such as the basic Input/ 
Output Control routines, memory management trap handlers, and time­
sharing scheduling modules_ By dividing the types of timesharing system 
programs functionally between the Kernel and User modes, a minimum 
amount of space control housekeeping is required as the timeshared 
operating system sequences from one user program to the next. For 
example, only the User PAR/PDR set needs to be updated as each new 
user program is serviced. The two PAR/PDR sets implemented in the 
Memory Management Unit are shown in Figure 7-1. 

7.4 ACTIVE PAGE REGISTERS 
The Memory Management Unit provides two sets of eight Active Page 
Registers (APR)_ Each APR consists of a Page Address Register (PAR) 
and a Page Descriptor Register (PDR). These registers are always used 
as a pair and contain all the information required to locate and describe 
the current active pages for each mode of operation. One PAR/ PDR set 
is used in Kernel mode and the other is- used in User mode_ The cur· 
rent mode bits (or in some cases, the previous mode bits) of the Proces­
sor Status Word determine which set will be referenced for each 
memory access. A program operating in one mode cannot use the PAR/ 
PDR sets of the other mode to access memory. Thus, the two sets are 

7-7 



a key feature in providing a fully protected environment for a' time­
shared multi-programming system. 

A specific processor I/O address is assigned to each PAR and PDR of 
each set Table 7-1 is a complete list of address assignment 

NOTE 
UNIBUS devices cannot access PARs or PDRs 

In a fully-protected multi-programming environment, the implication is 
that only a program operating in the Kernel mode would be allowed to 
write into the PAR and PDR locations for the purpose of mapping user's 
programs. However, there are no restraints imposed by the logic that 
will prevent User mode programs from writing into these registers. The 
option of implementing such a feature in the operating system, and thus 
explicitly protecting these locations from user's programs, is available 
to the system software designer. 

Table 7~1 PAR/PDR Address Assignments 

Kernel Active Page Registers User Active Page Registers 

No. PAR PDR No. PAR PDR 

0 772340 772300 0 777640 777600 
1 772342 772302 1 777642 777602 
2 772344 772304 2 777644 777604 
3 772346 772306 3 777646 777606 
4 772350 772310 4 777650 777610 
5 772352 772312 5 777652 777612 
6 772354 772314 6 777654 777614 
7 772356 772316 7 777656 777616 

7.4.1 Page Address Registers (PAR) 
The Page Address Register (PAR), shown in Fi/5ure 7-4, contains the 
12-bit Page Address Field (PAF) that specifies the base address of the 
page. 

15 12 11 

PAF 

Figure 7-4 Page Address Register 

Bits 15-12 are unused and reserved for possible future use. 

The Page Address Register may be alternatively thought of as a relo­
cation constant, or as a base register containing a base address. Either 
interpretation indicates the basic function of the Page Address Register 
(PAR) in the relocation scheme. 

7.4.2 Page Descriptor Registers (PDR) 
The Page Descriptor Register (PDR), shown in Figure 7-5, contains in­
formation relative to page expansion, page length, and access control. 

7-8 



15 14 7 5 4 3 o 
PlF ACF ~ 

Figure 7-5 Page Descriptor Register 

Access Control Field (ACF) 
This 2-bit field, bits 2 and 1, of the PDR describes the access rights to 
this particular page. The access codes or "keys" specify the manner 
in which a page may be accessed and whether or not a given access 
should result in an abort of the current operation. A memory reference 
that causes an abort is not completed and is terminated immediately. 

Aborts are caused by attempts to access non-resident pages, . page 
length errors, or access violations, such as attempting to write into a 
read-only page. Traps are used as an aid in gathering memory manage­
ment information. 

In the context of access control, the term "write" is used to indicate 
the action of any instruction which modifies the contents of any ad­
dressable word. A "write" is synonymous with what is usuallv r.1'I1Ip.rl 1'1 

"store" or "modify" in many computer systems_ Table 7-2 lists the ACF 
keys and their functions. The ACF is written into the PDR under pro­
gram control. 

AFC 

00 

01 

10 
11 

Key 

o 

2 

4 
6 

Table 7·2 Access Control Field Keys 

Description 

Non-resident 

Resident read-only 

(unused) 
Resident read! write 

Function 

Abort any attempt to access this 
non-resident page 
Abort any attemp! to write into 
this page. 
Abort all Accesses. 
Read or Write allowed. No trap 
or abort occurs. 

Expansion Direction (ED) _ 
The ED bit located in PDR bit position 3 indicates the authorized direc­
tion, in which the page can expand. A logic 0 in this bit (ED = 0) indi­
cates the page can expand upward from relative zero. A logic 1 in this 
bit (ED = 1j indicates the page can expand downward toward relative 
zero. The ED bit is written into the PDR under program control. When 
the expansion direction is upward (ED = 0), the page length is increased 
by adding blocks with higher relative addresses. Upward expansion is 
usually specified for program or data pages ·to add more program or 
table space. An example of page expansion upward is shown in Figure 7-6. 

When the expansion direction is downward (ED = 1), the page length is 
increased by adding blocks with lower relative addresses. Downward 
expansion is specified for stack pages so that more stack space can be 
added_ An example of page expansion downward is shown in Figure 7-7_ 

7-9 



PAR PDR 

1000001 1110001100101001000001101 

----'~ '-----:-~---;-------:-:l "-..----J~r 
PAF '0170 - t 
PLF '518 '4110'NUMBER OF BLOCKS-----'---...J 
ED '0 'UPWARD EXPANSION ------------------' 
ACF '6' READ/WRITE 

NOTE: 
To specify a block length of 42 for an upward expandable page, write 
highest authorized block no. directly into high byte of PDR. Bit 15 is 
not used because the highest allowable block number is 177 s. 

1 
ADDRESS RANGE 
OF POTENTIAL PAGE 
EXPANSION BY 
CHANGING THE PLF 

AUTHORIZE PAGE 
LENGTH' 4210 BLOCKS 
OR 0 THRU 518 ' 
528 BLOCKS 

j 
Figure 7·6 

024176 
BLOCK 518 

024100 

017276 
BLOCK 2 

017200 

017176 
BLOCK I 

017100 

017076 
BLOCK 0 

017000 

ANY BLOCK NUMBER 
GREATER THAN 4110151,1 
(VA< 12:06> 5181 
Will CAUSE A PAGE 
LENGTH ABORT. 

_BASE ADDRESS OF PAGE 

Example of an Upward Expandable Page 

7·10 



Written Into (W) 
The W bit located in PDR bit position 6 indicates whether the page has 
been written into since it was loaded into memory. W = 1- is affirma­
tive. The W bit is automatically cleared wheri the PAR or PDR of that 
page is written into. It can only be set by the control logic. 

In disk swapping and memory overlay applications, the W bit (bit 6) can 
be used to determine which pages in memory have been modified by a 
user. Those that have been written into must be saved in their current 
form. Those that have not been written into (W = 0), need not be saved 
and can be overlayed with new pages, if necessary .. 

Page Length Field (PLF) 
The 7-bit PLF located in PDR (bits 14-8) specifies the authorized length 
of the page, in 32-word blocks. The PLF holds block numbers from 0 to 
1778; thus allowing any page length from 1 to 128'0 blocks. The PLF 
is written in the PDR under program control. 

PLF for an Upward Expandable Page 
When the page expands upward, the PLF must be set to one less than 
the intended number of blocks authorized for that page. For example, 
if 528 (42'0) blocks are authorized, the PLF is set to 518 (41'0) (Figure 
7-6). The hardware compares the virtual address block number, VA (bits 
12-6) with the PLF to determine if the virtual address is within the au­
thorized pilgelength. 

When the virtual address block number is less· than or equal to the PLF, 
the virtual address is within the authorized page length_ If the virtual ad­
dress is greater than the PLF, a page length fault (address too high) 
is detected by the hardware and an abort occurs. In this case, the vir­
tual address space legal to the program.. is non·contiguous because the 
three most significant bits of the virtual address are used to select the 
PARI PDR set. 

PLF for a Downward Expandable Page 
The capability of providing downward expansion for a page is intended 
specifically for those pages that are to be used as stacks. In the PDP-ll, 
a stack starts at the highest location reserved for it and expands down­
ward toward the lowest address as items are added to the stack. 

When the page is to be downward expandable, the PLF must be set to 
authorize a page length, in blocks, that starts at the highest address of 
the page. That is always Block 1778 • Refer to Figure 7-7, which shows 
an example of a downward expandable page. A page length of 42" 
blocks is arbitrarily chosen so that the example can be compared with 
the upward expandable example shown in Figure 7-6. 

NOTE 
The same PAF is used in both examples. This is 
done to emphasize that the. PAF, as the base 
address, always determines the lowest address 
of the page, whether it is upward or downward 
expandable. 

7-11 



r .......... ------ACTIVE PAGE REGISTER CONTENTS--------t.~1 
PAR PDR 

/0 a a 001 1110001 101010110 0000 1 101 

~ '-----...-----l 1 PM' 0170 -------->, t 
PLF '1268' 8610 ----------------' 
ED' I' DOWNWARD EXPANSION -------------~--' 

To specify page length for a downward expandable page, write comple­
ment of blocks required into high byte of PDR. 

In this example, a 42-block page is required. 
PLF is derived as follows; 

42 10 = 52 8 ; two's complement = 1268 _ 

AUTHORIZED PAGE 
LENGTH, 4210 BLOCKS 

ADDRESS RANGE 
OF POTENTIAL PAGE 
EXPANSION BY 
CHANGING THE PLF 

j 

036776 
BLOCK 1778 

036700 

036676 
BLOCK 1768 

036600 

036576 
BLOCK 1758 

036500 

0311676 
BLOCK 1268 

0311600 

A BLOCK NUMBER 
REFERENCE LESS 
THAN 1268 
IVA<12:06>LESS THAN 126a1 
WILL CAUSE A PAGE 
LENGTH ABORT. 

Figure 7-7 Example of a Downward 'Expandable Page 

7-12 



The calculations for complementing the number of blocks required to 
obtain the PLf is as follows: 

MAXIMUM BLOCK NO. 
1778 

MINUS REQUIRED LENGTH EQUALS 
528 

127 10 42 10 

7.5 VIRTUAL & PHYSICAL ADDRESSES 
The Memory Management Unit is lo.cated between the Central Processor 
Unit and the UNIBUS address lines. When Memory Management is 
enabled, the Processor ceases to supply address information to the Uni· 
bus. Instead, addresses are sent to the Memory Management Unit where 
they are relocated by various constants computed within the Memory 
Management Unit. 

7.5.1 Construction of a Physical Address 
The basic information needed for the construction of a Physical Address 
(PA) comes from the Virtual Address (VA), which is illustrated in Figure 
7-8, and the appropriate APR set. 

13 12 o 
OF 

ACTIIIE PAGE FIELD DlSP1.ACEMENT FIELD 

Figure 7-8 Interpretation of a Virtual Address 

The Virtual Address (VA) consists of: 

1. The Active Page Field (APF). This 3-bit field determines which of 
eight Active. Page Registers (APRO·APR7) will be used to form the 
Physical Address (PA). 

2. The Displacement Field (OF). This 13-bit field contains an address 
relative to the beginning of a page. This permits page lengths up to 
4K words (2 13 = 8K bytes). The OF is further subdivided into two 
fields as shown in Figure 7-9. 

12 6 

8N OIB 

DlSPI ACEMENT IN BLOCKS 

Figure 7-9. Displacement Field of Virtual Address 

The Displacement Field (OF) consists of: 

1. The Block Number (BN). This 7-bit field is interpreted as the block 
number within the current page. 

2. The Displacement in Block (DIB). This 6-bit field contains the .dis· 
placement within the block referred to by the Block Number. 

7-13 



The remainder of the information needed to construct the Physical Ad­
dress comes from the 12-bit Page Address Field (PAF) (part of the Active 
Page Register) and specifies the starting address of the memory which 
that APR describes_ The PAF is actually a block number in the physical 
memory, e:g_ PAF = 3 indicates a starting address of 96, (3 X 32 = 96) 
words in physical memory_ 

The formation of the Physical Address is illustrated in Figure 7-10_ 

I VIRTUAL 

'--~-...L----'----c---'-----c------'. AD~fSS 

'AGE ADDRESS "'LD ~I .1 

~~~~=J 

" I

ACTIVE PAGE
REGISTER

'--__ -'-_PH_"_'cA_L~8LO_C_' _NO_~ __ ----1~--- -- -~L-=~ccD~:B---,--,-,--,----,1 :~~~:}
(DISPtACEMENT IN SLOCK S 1

Figure 7-10 Construction of a Physical Address

The logical sequence involved in constructing a Physical Address is as
follows:

L Select a set of Active Page Registers depending on current mode_

2_ The Active Page Field of the Virtual Address is used to select an
Active Page Register (APRO-APR7)_

3_ The Page Address Field of the selected Active Page Register con­
tains the starting address of the currently active page as a block
number in physical memory_

4_ The Block Number from the Virtual Address is added to the block
number from the Page Address Field to yield the number of the
block in physical memory which will contain the Physical Address
being constructed_

5_ The Displacement in Block from the Displacement Field of the Virtual
Address is joined to the Physical Block Number to yield a true 18-bit
Physical Address_

7.5.2 Determining the Program Physical Address

A 16-bit virtual address can specify up to 32K words, in the range from
o to 177776, (word boundaries are even octal numbers)_ The three
most significant virtual address bits designate the PAR/PDR set to be
referenced during page address relocation_ Table 7-3 lists the virtual
address' ranges that specify each of the PAR/ PDR sets.

7-14

Table 7·3 Relating Virtual Address to PAR/PDR Set

Virtual Address Range PARI PDR Set

000000·17776 0
020000-37776 1
040000-57776 2
060000-77776 3
100000-117776 4
120000-137776 5
140000-157776 6
160000-177776 7

. NOTE
Any use of page lengths less than 4K words
causes holes to be left in the virtual address
space_

7.6 STATUS REGISTERS
Aborts generated by the protection hardware are vectored through Kernel
virtual location 250. Status Registers #0 and #2 are used to determine
why the abort occurred. Note that an abort to a location which is itself
an invalid address will cause another abort. Thus the Kernel. program
must insure that Kernel Virtual Address 250 is mapped into a valid ad­
dress, otherwise a loop will occur which will require console intervention_

7.6:1 Status Register 0 (SRO)

SRO contains abort error flags, memory management enable, plus other
essential information required by an operating system to recover from
an abort or service a memory management trap. The SRO format is
shown in Figure 7-11. Its address is 777 572.

15 14 13 12 9 8 7 4

111~w;aI~"
ABORT-NON.RES1DENT---.J ~ • t L-..,-I ~1
:gg:~."~ L~~~H_ER_RO_R.:., __ -.I
ACCESS VIOLATION

MA1NT:~NA~N~CE~MO~0E~~~~~~~~~~~~==~~===:d __ J MODE
PAGE NUMBER
ENABLE MANAGEMENT

Figure 7-11 Format of Status Register #0 (SRO)

Bits 15-13 are the abort flags. They may be considered to be in a
"priority queue" in that "flags to the right" are less significant and
should be ignored. For example, a "non-resident" abort service routine
would ignore page length and access control flags. A "page length"
abort service routine would ignore an access control fault.

NOTE
Bit 15, 14, or 13, when set (abort conditions)
cause the logic to freeze the contents of SRO
bits 1 to 6 and status register SR2. This is done
to facilitate recovery from the abort.

7-15

Protection is enabled when an address is being relocated. This implies
-that either SRO, bit 0 is equal to 1 (Memory Management enabled) or
that SRO, bit 8, i's equal to 1 and the memory reference is the final one
of a destination calculation (maintenance/destination mode).

Note that SRO bits 0 and 8 'can be set under program control to pro·
vide meaningful memory management control information. However,
information written into all other bits is not meaningful. Only that in­
formation which is automatically written into these remaining bits as a
result of hardware actions is us'eful as a monitor of the status of the
memory management unit. Setting bits 15-13 under program control
will not cause traps to occur. These bits, however, must be reset to 0
after an abort or trap has occurred in order to resume monitoring
memory management.

Abort-Nonresident
Bit 15 is the "Abort-Nonresident" bit. It is set by attempting to access
a page with an access control field (ACF) key equal to 0 or 4 or by en­
abling relocation with an illegal mode in the PS.

Abort-Page Length
Bit 14 is the "Abort-Page Length" bit. It is set by attempting to access
a location in a page with a block number (virtual address bits 12-6) that
is outside the area authorized, by the Page Length Field (PFL) of the
PDR for that page.

Abort-Read Only
Bit 13 is the "Abort-Read Only" bit. It is set by attempting to write in a
"Read-Only" page having an access key of 2.

NOTE
There are no restrictions that any abort bits
could not be set simultaneously by the same
access attempt.

Maintenance! Destination Mode
Bit 8 specifies maintenance use of the Memory Management Unit_ It is
used for diagnostic purposes. For the instructions used in the initial
diagnostic program, bit 8 is set so that only the final destination refer­
ence is relocated. It is useful to prove the capability of relocating
addresses.

Mode of Operation
Bits 5 and 6 indicate the CPU mode (User or Kernel) associated with
the page causing the abort. (Kernel = 00, User = 11).

Page Number
Bits 3-1 contain the page number of reference. Pages, like blocks, are
numbered from 0 upwards. Tlie page number bit is used by the error
recovery routine to identify the page being accessed if an abort occurs.

Enable Relocation and Protection
Bit 0 is the "Enable" bit_ When it is set to I, all addresses are relocated

7-16

and protected by the memory management unit. When bit 0 is set to 0,
the memory management unit is disabled and addresses are neither reo
located nor protected.

7.6.2 Status Register 2 (SR2)
SR2 is loaded with the 16·bit Virtual Address (VA) at the beginning of
each instruction fetch but is not updated if the instruction fetch fails.
SR2 is read only; a write attempt will not modify its contents. SR2 is
the Virtual Address .Program Counter. Upon an abort, the result of SRO
bits 15, 14, or 13 being set, will freeze SR2 until the SRO abort flags are
cleared. The address of SR2 is 777 576.

15

16-BIT VIRTUAL ADDRESS I ADDRESS
L-___________ --'-_________ --'.777576

'Figure 7·12 Format of Status Register 2(SR2)

7.7 INSTRUCTIONS
Memory Management provides the ability to communicate between two
spaces, as determined by the current and previous modes of the Pro·
cessor Status word (PS).

Mnemonic
MFPI
MTPI
MFPO
MTPO

Instruction
move from previous instruction space
move to previous instruction space
move fsom previous data space
move to previous data space

Op Code
0065SS
006600
1065SS
106600

These instructions are directly compatible with the larger 11 computers.

The POP·11/45 Memory Management unit, the KT11·C, implements a
separate instruction and data address space. In the POP-ll/34, there
is no differentiation between instruction or data space. The 2 instructions
MFPO and MTPO (Move to and from previous data space) execute iden­
tically to MFPI and MTPI.

7-17

MFPD
MFPI

move from previous data space

move from previous instruction space

1065SS

0065SS

15

o

Operation: (temp) ~(src)
,J, (SP) ~(temp)

Condition Codes: N: set if the source <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected

o

Description: This instruction pushes a word onto the current stack
from an address in previous space, Processor Status
(bits 13, 12). The source address is computed using
the current registers and memory map.

Example: MFPI @ (R2) R2 = 1000
1000 = 37526·

The execution of this instruction causes the contents of (relative)
37526 of the previous address space to be pushed onto the current .
stack as determined by the PS (bits 15, 14).

7-18

MTPD
MTPI

move to previous data space

move to previous instruction space

15

I 0 I 0 o I 1 " 1 , 0 : 1

Operation: (temp) <E-(SP) t
(dst) <E-(temp)

1066DD

0066DD

Condition Codes: N: set if the sourse <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected

Description: This instruction pops a word off the current stack
determined by PS (bits 15, 14) and stores that word
into an address in previous space PS (bits 13, 12).
The destination address is computed using the cur·
rent registers and memory map. An example is as
follows:

Example: MTPI @ (R2) R2 = 1000
1000 = 37526

The execution of this instruction causes the top word of the current
stack to get stored into the (relative) 37526 of the previous address
space.

7·19

MTPI AND MFPI, MODE. 0, REGISTER 6 ARE UNIQUE IN THAT THESE
INSTRUCTIONS ENABLE COMMUNICATIONS TO AND FROM THE PRE·
VIOUS USER STACK.

; MFPI, MODE 0, NOT REGISTER 6

MOV
MOV
CLR
INC
MFPI

KM+PUM, PSW
#-1, -2(6)
%0
@#SRO
%0

; KMODE, PREV USER
; MOVE -Ion kernel stack -2

; ENA.BLE MEM MGT
; -(KSP) ~RO CONTENTS

The -I in the kernel stack is now replaced by the coritents ·of RO which
is O.

; MFPI, MODE 0, REGISTER 6

MOV # UM+PUM, PSW
CLR %6 ; SET R16=0
MOV # KM+PUM, PSW ; K MODE, PREV USER
MOV #-1, -2 (6)
INC @#SRO ; ENABLE MEM MGT
MFPI %6 ; -(KSP) ~R16 CONTENTS

The -I in the kernel stack is now replaced by the contents of RI6
(user stack pointer which is 0).

To obtain info from the user stack if the status is set to kernel mode,
prev user, two steps are needed.

MFPI %6
MFPI @(6H

; get contents of Rl6=user pointer
. ; get user pointer from kernel stack
; use address obtained to get data
; from user mode using the prev
; mode

The desired data from the user stack is now in the kernel stack and has
replaced the user stack address.

7·20

; MTPI, MODE 0 , NOT REGISTER 6

MOV #KM+PUM, PSW ; KERNEL MODE, PREV USES
MOV #TAGX, (6) ; PUT NEW PC ON STACK
INC @#SRO ; ENABLE KT
MTPI %7 ; %7~ (6)+
HLT ; ERROR

TA6X: CLR @ # SRO ; DISABLE MEM MGT

The new PC is popped off the current stack and since this is mode 0 and
not register 6 the destination is register 7.

; MTPI, MODE 0, REGISTER 6

MOV
CLR
MOV
MOV
INC
MTPI

#UM+PUM, PSW
%6
#KM+PUM, PSW
#-1, -(6)
@#SRO
%6

; user mode, Prev User
; set user SP=O (RI6)
; Kernel mode, prev user
; MOVE -1 into K stack (R6)
; Enable MEM MGT
; %16 ~(6)+

The 0 in RI6 is now replaced with -1 from the contents of the kernel
stack.

To place info on the user stack if the status is set to kernel mode, prev
user mode, 3 separate steps are needed.

MFPI
MOV
MTPI

%6
DATA, -(6)
@(6)+

; Get content of Rl6=user pointer
; put data on current stack,
; @(6)+ [final address relocated] ~
(R6)+

The data desired is obtained from the kernel stack then the destination
address is obtained from the kernel stack and relocated through the pre·
vious mode.

7·21

Mode Description
In Kernel mode the operating program has unrestricted use of the
machine. The program can map users' programs anywhere in core and
thus explicitly protect key areas (including the device registers and the
Processor Status word) from the User operating environment.

In User mode a program is inhibited from executing a HALT instruction
and the processor will trap through location 10 if an attempt is made
to execute this instruction. A RESET instruction results in execution of
a NOP (no·operation) instruction.

There are two stacks called the Kernel Stack and the User Stack, used
by the, central processor when operating in either the Kernel or User
mode, respectively.

Stack Limit vio'lations are disabled in User mode. Stack protection is
provided by memory protect features.

Interrupt Conditions
The Memory Management Unit relocates all addresses. Thus, when Man·
agement is enabled, all trap, abort, and interrupt vectors are considered
to be in Kernel mode Virtual Address Space. When a vectored transfer
occurs, control is transferred according to a new Program Counter (PC)
and Processor Status Word (PS) contained in a two·word vector relocated
through the Kernel Active Page Register Set.

When a trap, abort, or interrupt occurs the "push" of the old PC, old PS
is to the User/ Kernel R6 stack specified by CPU mode bits 15, 14 of the
new PS in the, vector (00 = Kernel, 11 = User). The CPU mode bits
also determine the new APR set. In this manner it is possible for a
Kernel mode program to have complete control over service assignments
for all interrupt conditions, since the interrupt vector is located in Kernel
space. The Kernel program may assign the service of some of these con·
ditions to a' User mode program by simply setting the CPU mode bits
of the new PS in the vector to return control to the appropriate mode.

User Processor Status (PS) operates as follows:

User Traps, Explicit
PS Bits User RTI, RTI Interrupts PS Access

Condo Col;Jes (3·0) loaded from loaded from *
stack vector

Trap (4) loaded from loaded from cannot be
stack vector changed

Priority (7·5) cannot be loaded'from *
.changed vector

Previous (13·12) cannot be copied from *
changed PS (15, 14)

Current (15·14) cannot be loaded from *
changed vector

* Explicit operations can be made if the Processor, Status IS mapped in
User space. ' ,

7-22

APPENDIX A

INSTRUCTION TIMING

INSTRUCTION EXECUTION TIME
The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of
a Source Address Time, a Destination Address Time, and an Execute,
Fetch Time.

Instr Time = SRC Time + DST Time + EF Time

Some of the instructions require only some of these times, and are so
noted. All Timing information is in microseconds, unless otherwise noted.
Times are typical; processor timing can vary:': 10%.

BASIC INSTRUCTION SET TIMING

Double Operand

Instr Time = SRC Time + DST Time + EF Time

Single Operand

Instr Time = DST Time + EF Time

Branch, Jump, Control, Trap, & Misc

Instr Time = EF Time

NOTES
1) The times specified apply to both word and

byte instructions whether odd or even byte.
2) Til11ing is given without regard for NPR or

BR servicing.
3) If the memory management is enabled exe­

cution ti mes increase by 0.12 .usec for each
memory cycle used.

4) All timing is based on memory with the fol­
lowing performance characteristics: .

Memory Access·
Time

Core (MMll-DP) .510 .usec
MOS (MSll-JP) .635

A-I

Cycle
Time

1.0 ,"sec
.775

I. SOURCE ADDRESS TIME

Source Memory Core MOS
Instruction Mode Cycles (MMll-DP) (MSll-JP)

a a 0.00 ,usec 0_00 ,usec
1 1 1.13 1.26
2 1 1.33 1.46

Double Operand .3 2 2.37 2.62
4 1 1.28 1.41
5 2 2.57 2.82
6 2 2.57 2.82
7 3 3.80 4.18

II. DESTINATION TIME

Desti nation Memory
Instruction Mode Cycles Core MOS

a a 0.00 0.00
Modifying Single 1 2 1.62 1.74

Operand 2 2 1.77 1.89
and 3 3 2.90 3.15

Modifying Double 4 2 1.77 1.89
Operand 5 3 3.00 3.25

(Except MOV, SWAB, 6 3 3.10 3.35
ROR, ROL ASR ASL) 7 4 4.29 4.66

a a 0.00 0.00
1 1 0.93 0.93
2 1 0.93 0.93

MOV 3 2 2.17 2.29
4 1 1.13 1.13
5 2 2.22 2.34
6 2 2.37 2.49
7 3 3.50 3.75

a a 0.00 0.00
1 1 0.95 0.95
2 1 1.13 1.26

MTPS 3 2 2.26 2.51
4 1 1.13 1.26
5 2 2.26 2.51
6 2 2.44 2.69
7 3 3.57 4.20

A-2

Destination Memory
Mode Cycles Core MOS

0 0 0.00 0.00
1 1 . 0.64 0.64
2 1 0.64 0.64

MFPS 3 2 1.95 2.0B
4 1 0.B2 0.B2
5 2 1.95 2.0B
6 2 2.13 2.26
7 3 3.26 3.51

III. EXECUTE, FETCH TIME

DOUBLE OPERAND

Memory
Instruction Cycles Core MOS

ADD, SUB, CMP, BIT, 1 2.03 2.16
BIC, 81S, XOR

MOV 1 1.B3 1.96

SINGLE OPERAND

CLR, COM, INC, DEC, 1 1.B3 1.96
ADC, SBC, TST

SWAB, NEG 1 2.03 2.16
ROR, ROL, ASR, ASL 1 2.1B 2.31
MTPS 2 2.99 3.12
MFPS 2 1.99 2.12

EIS INSTRUCTIONS (use with DST times)

MUL 1 "'B.B2 '~B.95

DIV (overflow) 1 2.78 2.91
12.48 12.61

ASH 1 ""''4.1B ""~4.31

ASHC. 1 '~;'4.18 "'*4.31

MEMORY MANAGEMENT INSTRUCTIONS

MFPI (D) 2 3.07 3.14
MTPI (D) 2 3.37 3.34

,', Add 200ns for each bit transition in serial data from LSB to MSB
'~;' Add 200l'1s per shift

A·3

Destination Memory
Instruction Mode Cycles Core MOS

0 0 0.00 0.00
1 2 1.42 1.54

SWAB, ROR, ROL, 2 2 1.57 1.69
ASR,ASL 3 3 2.70 2.95

4 2 1.62 1.74
5 3 2.80 3.05
6 3 2.90 3.15
7 4 4.09 4.46

0 0 0.00 0.00
1 1 1.13 1.26

Non·Modifying 2 1 1.28 1.41
Single Operand and 3 2 2.42 2.67
Double Operand 4 1 1.33 1.46

5 2 2.52 2.77
6 2 2.62 2.87
7 3 3.80· 4.18

0 0 0.00 0.00
1 1 0.98 1.24
2 1 1.32 1.44

MFPI (D) 3 2 2.20 2.45
MTPI (D) 4 1 1.18 1.44

5 2 2.20 2.45
6 2 2.40 2.65
7 3 3.59 3.96

BRANCH INSTRUCTIONS

Memory
Instruction Cycles Core MOS

BR, BNE, BEQ, (Branch) 1 2.18 2.31
BPL, BM I, BVC, BVS, BCC,
BCS, BGE, BL T, BGT,
BLE, BHI, BLOS,
BHIS, BLO

(No Branch) 1 1.63 1.76

SOB (Branch) 1 2.38 2.51
(No Branch) 1 1.98 2.11

A·4

JUMP INSTRUCTIONS

Destination Memory
Mode Cycles Core MOS

1 1 1.83 1.96
2 1 2.18 2.31

JMP 3 2 3.12 3.37
4 1 2.03 2.16
5 2 3.07 3.32
6 2 3.07 3.32
7 ·3 4.25 4.78

1 2 3.32 3.44
2 2 3.47 3.59

JSR 3 3 4.40 4.65
4 2 3.32 3.44
5 3 4.40 4.65
6 3 4.60 4.85
7 4 5.69 6.06

Memory
Instruction Cycles Core MOS

RTS 2 3.32 3.57
MARK 2 4.27 4.52
RTI, RTT 3 4.60 4.98
Set or Clear C,V,N,Z 1 2.03 2.16
HALT 1 1.68 1.81
WAIT 1 1.68 1.81
RESET 1 100 msec 100 msec
lOT, EMT, TRAP, BPT 5 7.32 7.7

LATENCY

Interrupts (BR requests) are acknowledged at the end of the current in­
struction. For a typical instruction, with an instruction execution time of
4 JLsec, the average time to request acknowledgement would be 2 JLsec.

Interrupt service time, which is the time from BR· acknowledgement to
the first subroutine instruction, is 7.32 JLsec, max. for core, and 7.7 JLsec
for MOS.

NPR (DMA) latency, which is the time from request to bus mastership
for the first NPR device, is 2.5 JLsec, max.

A-5

A-S

ADC(B)
ADD.
ASL(B)
ASH
ASHC.
ASR(B)

BCC ...
BCS
BEQ
BGE
BGT
BHI .. .
BHIS
BIC(B)
BIS(B)
BIT(B)
BLT
BLE
BLO
BLOS
BMI
BNE
BPL
BPT
BR
Bve
BVS

4-19
4-25
4-14
6-17
6-18
4-13

4-40
4-41
4-35
4-43
4-45
4-48
4-50
4'29
4-30
4-28
4-44
4-46
4-51
4-49
4-37
4-34
4-36
4-63
4-33
4-38
4-39

CLR(B) ,.................... 4-6
CMP(B) 4-24
COM(B) ... 4-7
CONDo CODES. 4-73

DEC (B)
DIV

EMT

4-9
6-16

4-61

B-1

APPENDIX B
INSTRUCTION INDEX

HALT

INC(B)
lOT

JMP
JSR

4-70

4-8
4-64

4-52
4-54

MARK 4-57
MFPD. 7-18
MFPI . 7-18
MFPS. 4-21
MOV(B) 4-23
MTPD ~19
MTPI 7-19
MTPS . 4-22
MUL :. 6-15
NEG(B) 4-10
NOP ... ~73

RESET. 4-72
ROL(B) 4-16
ROR(B) 4-15
RTI 4-65
RTS 4-56
RTT 4-66

SBC(B) 4-20
SOB 4-59
SUB. 4-26
SWAB 4-17
SXT 4-21

TRAP
TST(B)

WAIT

XOR

4-62
4-11

4-71

4-31

8-2

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarlers: Maynard,
Massachusetts 01754, Telephone: (617) 897-5111
SALES AND SERVICE OFFICES
UNITED STATES-ALABAMA, Huntsville. ARIZONA, Phoenix and Tucson.
CALIFORNIA, EI Segundo, Los Angeles, Oakland, Ridgecresl, San Diego, San
Francisco (Mountain View), Santa Ana, Santa Clara, Stanford, Sunnyvale and Woodland
Hills. COLORADO, Englewood. CONNECTICUT, Fairfield and Meriden. DISTRICT
OF COLUMBIA, Washington (Lanham, MD) • FLORIDA, Ft. Lauderdale and Orlando.
GEORGIA, Atlanta. HAWAII, Honolulu. ILLINOIS, Chicago (Rolling Melldows) •
INDIANA, Indianapolis. IOWA, Bettendorf. KENTUCKY, Louisville. LOUISIANA,
New Orleans (Metairie) • MARYLAND, Odenton. MASSACHUSETTS, Marlborough,
Waltham and Westfield. MICHIGAN, Detroit (Farminglon Hills) • MINNESOTA,
Minneapolis. MISSOURI, Kansas City (Independence) and S1. Louis. NEW
HAMPSHIRE, Manchester 0 NEW JERSEY, Cherry Hill, Fairfield, Metuchen and
Princeton. NEW MEXICO, Albuquerque. NEW YORK, Albany, Buffalo (Cheek­
towaga), Long Island (Huntington Station), Manhattan, Rochester and Syracuse.
NORTH CAROLINA, Durham/Chapel Hill • OHIO, Cleveland (Euclid), Columbus and
Dayton. OKLAHOMA, Tulsa. OREGON, Eugene and Portland. PENNSYLVANIA,
Allentown, Philadelphia (Bluebell) and Pittsburgh. SOUTH CAROLINA, Columbia.
TENNESSEE, Knoxville and Nashville. TEXAS, Austin, Dallas and Houston. UTAH,
Salt Lake City. VIRGINIA, Richmond. WASHINGTON, Bellevue. WISCONSIN,
Milwaukee (Brookfield) •
INTERNATIONAL-ARGENTINA, Buenos Aires. AUSTRALIA, Adelaide, Brisbane,
Canberra, Melbourne, Perth and Sydney. AUSTRIA, Vienna. BELGIUM, Brussels·
BOLIVIA, La Paz. BRAZIL, Rio de Janeiro and Sao Paulo. CANADA, Calgary,
Edmonton, Halifax, London, Montreal, Ottawa, Toronto, Vancouver and Winnipeg •
CHILE, Santiago. DENMARK, Copenhagen. FINLAND, Helsinki. FRANCE,
Grenoble and Paris. GERMANY, Berlin, Cologne, Frankfurt, Hamburg, Hannover,
Munich and Stuttgart. HONG KONG. INDIA, Bombay. INDONESIA, Djakarta·
IRELAND, Dublin. ITALY, Milan and Turin. JAPAN, Osaka and Tokyo. MALAYSIA,
Kuala Lumpur. MEXICO, Mexico City. NETHERLANDS, Utrecht. NEW ZEALAND,
Auckland. NORWAY, Oslo. PUERTO RICO, Santurce • SINGAPORE. SWEDEN,
Gothenburg and Stockholm. SWITZERLAND, Geneva and Zurich. UNITED
KINGDOM, Birmingham, Bristol, Edinburgh, Leeds, London, Manchester and Reading
• VENEZUELA, Caracas.

