
pnocessorhandbook
pdp11/04/34a/44/S0/70

Copyright © 1979, by Digital Equipment Corporation

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibili­
ty for any errors that may appear in this manual.

PDP, UNIBUS
are trademarks of

Digital Equipment Corporation.

This handbook was designed, produced and typeset
by DIGITAL's Sales Support literature Group

using an In-house text-processing system
operating on a DECSYSTEM-20.

ii

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

APPENDIX A

APPENDIX B

APPENDIX C

CONTENTS

INTRODUCTION 1

UNIBUS 11

ADDRESSING MODES 23

INSTRUCTION SET 45

PROGRAMMING TECHNIQUES 105

MEMORY MANAGEMENT 147

PDP-11/04, 11/34A 181

PDP-11/44 OJ 195

PDP-11/60 · 233

PDP-11/70 , 277

FLOATING POINT PROCESSORS 341

COMMERCIAL INSTRUCTION SET 405

UNIBUS ADDRESSES A-1

INSTRUCTION SET 8-1

CONVERSION TABLE C-1

INDEX .. Index-1

iii

iv

CHAPTER 1

INTRODUCTION

DIGITAL's 11 family of interactive computers ranges in size from the
single-board LSI-11 through the extensive PDP-11 group. Develop­
ment efforts are constantly expanding both ends of the spectrum, as
well as creating enhanced products in the PDP-11 price-versus-per­
formance matrix.

The processors specifically discussed in this handbook are:

• PDP-11/04
• PDP-11/34A
• PDP-11/44
• PDP-11/60
• PDP-11/70

PDP-11 processors are a family based on common architecture. Com­
patibility is inherent in design, and is reflected in the software and in
the peripheral options. It is pOSSible, for example, to develop pro­
grams on the smallest PDP-11 family member, the PDP-11 103, and,
with only slight modifications, run them on any other PDP-11 system.
Peripherals such as video terminals and line printers are equally
upward and downward compatible in their ability to interface with
PDP-11 family members.

The processors which are discussed specifically in this book have one
outstanding characteristic in common: they all process data on a data
bus called the UNIBUS.

The UNIBUS, (discussed in detail in Chapter 2), was first announced
by DIGITAL in 1970, in conjunction with the announcement of the first
PDP-11, the PDP-11/20. The UNIBUS and its unique capabilities have
provided the flexibility and growth options for the PDP-11 family mem­
bers discussed in this handbook. Figure 1-1 illustrates the major cate­
gories of PDP-11 processors. Figure 1-2 illustrates the block structure
of the PDP-11.

1

MICROCOMPUTERS

LSI-II
11103
1I/03L
SUB-UNIBUS

Introduction

MI NICOMPUTERS MEDIUM-SCALE FOR MULTI-TASK
AND DEDICATED COMPUTERS

APPLICATIONS 11144
11/04 11170
11/34-A
11/60

UNIBUS
UNIBUS MASSBUS

HIGH
PERFORMANCE
WIDE-WORD

VAX-I 11780

UNIBUS
MASSBUS
SBr

UPWARD COMPATIBLE >
'----------'---------,

MAJOR CATEGORIES OF PDP-II FAMILY PROCESSORS

Figure 1-1 Major Categories of PDP-11 Processors

2

,...
INPUT

DEVICE

CORE
MEMORY

15

OPTIONS

Vl
::::>

CIJ
ell

Z
::::>

LINE
PRINTER

DISK

OTHER
DEVICES

PROCESSOR STATUS REGISTER

I PRIORITY I I I I
7 5 4 3 2 1

ARITHMETIC
AND

LOGICAL
UNIT

CENTRAL PROCESSOR

Figure 1-2 PDP-11 Block Structure

T
0 EIGHT GENERAL-

PURPOSE .REGISTERS

RO

Rl

R2

R3
R4

R5

R6
R7

~STi
I

r--PRI
:A.(K POINTER
:OGRAM COUNTER

s-
a g-
o
g.
:::l

Introduction

Beyond the UNIBUS commonality, each PDP-11 processor has fea­
tures and capabilities uniquely suited for various applications. Some
functionally similar features have been accomplished with different
implementations. Therefore, there is some repetition of information in
the chapters describing the individual processor members of the
PDP-11 family. It is often necessary to discuss each separately be­
cause what may appear to be very subtle differences in operations
may actually be key to a certain processor's uniqueness.

PROGRAMMING THE PDP-11
Information is provided in this handbook about the assembly language
parameters, processes, and techniques involved in programming the
PDP-11. DIGITAL publishes tutorial software documentation that pro­
vides detailed information about using the PDP-11 instruction set to
develop programs. There are also well-developed courses for custom­
ers given by DIGITAL's Education Services group.

The material presented on the PDP-11 instruction set, addressing
modes, and on programming techniques is intended, with the exam­
ples included, to illustrate the range of and possibilities for program
development. A companion book, the PDP-11 Software Handbook,
clearly explains the operating systems and associated software which
run on the PDP-11 family of processors. Table 1 illustrates these soft­
ware prod ucts.

Name

RT-11

DSM-11

RSTS/E

Table 1 PDP-11 Operating Systems

Description

Real-Time Operating System for PDP-11 Proces­
sors.

A small, single-user foreground/background system
that can support a real-time application job's execu­
tion in the foreground and an interactive or batch
program development job in the background.

DIGITAL Standard MUMPS Operating System for
PDP-11 Processors.

A small- to large-size timesharing system that offers
a unique fast access data storage and retrieval sys­
tem for large data base processing.

Resource-Sharing Timesharing System/Extended
Operating System for PDP-11 Processors.

4

Name

RSX-11M

and

RSX-11 M­
PLUS

RSX-11S

lAS

TRAX

Introduction

Description

A moderate- to large-size timesharing system that
can support up to 63 concurrent jobs, including in­
teractive terminal user jobs, detached jobs, and
batch processing.

Real-Time Multiprogramming Executive Operating
System for PDP-11 Processors.

A small- to moderate-sized real-time multiprogram­
ming system that can be generated for a wide range
of application environments-from small, dedicated
systems-to large, multipurpose real-time application
and program development systems.

Real-Time Multiprogramming Executive Operating
System for PDP-11 Processors.

A small, execute-only member of the RSX-11 family
for dedicated real-time multiprogramming applica­
tions (requires a host RSX-11 M, RSX-11 M-PLUS,
VAX/VMS system).

Interactive Application System for PDP-11 Proces­
sors.

A large multi-user operating system, allowing real­
time applications execution concurrent with time­
shared interactive and batch processing.

A dedicated high-volume transaction processing
system offering real-time and batch in a multi-user
commercial environment.

In each chapter describing the operating systems, the PDP-11 Soft­
ware Handbook includes: a general description of the requirements
for the system, the monitor/executive characteristics, the file struc­
tures and data handling facilities, the user interfaces, the programmed
monitor services, the system utilities, and the language processors
supported.

PERIPHERALS
DIGITAL manufactures a full range of peripheral equipment designed
to meet specific needs as well as to maintain PDP-11 family compati­
bility. 110 and storage devices range from cassette tape devices

5

Introduction

through high volume disk packs, and from the DECwriter to the intelli­
gent terminals which provide both hard copy and video display. There
is a complete spectrum of peripheral devices available to complement
the software, and to provide the complete answer to customer needs
in all market areas-business, education, industry, laboratory, and
engineering.

The Peripherals Handbook and the Terminals and Communications
Handbook describe in detail the optional equipment available for use
with the PDP-11 family members.

SPECIALIZED SYSTEMS -
DIGITAL's Computer Special Systems (CSS) and OEM (Original
Equipment Manufacturers) groups can provide the exact hardware
and software combination to fill any customer need. Software Services
provides software consultation services for customers who have spe­
cialized application software needs.

PACKAGE SYSTEMS
DIGIT AL's Package Systems program offers you the opportunity to
purchase a well-defined, pretested, hardware/software system, rather
than purchasing the options separately. Package systems are fully
equipped PDP-11 configurations including operating system, disk
storage and loading device. Entry level systems consist of the correct
minimum set of options defined in the Software Product Description
(SPD) as necessary to run the operating system. Medium and high
performance systems have expanded configurations that in some cas­
es substantially exceed minimum SPD requirements. Package sys­
tems are available for all of DIGITAL's major operating systems. The
introductory family of systems represents the combined effort of the
product lines and of central engineering to offer the best set of sys­
tems to meet customer application needs. Package systems are
priced less than the sum of the individual options. Figure 1-3 illustrates
the combinations (shaded portions) of options currently available un­
de(the Packaged Systems program.

6

CPU

OS

SPDVER

RT-Il

DSM-ll
(VERSION 1.01

RSTS- E
(VERSION 7.0)

TRAX
(VERSION 1)

Introduction

PDP-II FAMILY PACKAGE SYSTEMS

04 34A 44 60 70

D OPTIONS CURRENTLY AVAILABLE UNDER THE PACKAGE SYSTEMS PROGRAM

_ OPTIONS NOT AVAILABLE UNDER PACKAGE SYSTEMS PROGRAM

FUTURE PDP-11/44 PACKAGE SYSTEMS WILL BE CONFIGURED WITH THE NEXT
VERSION OF THE DSM-l1 AND TRAX OPERATING SYSTEMS.

Figure 1-3 Package Systems

DOCUMENTATION
DIGITAL offers several levels of documentation describing PDP-11
software and hardware. The PDP-11 Handbook series, which includes
the Peripherals Handbook, the Terminals and Communications Hand­
book, and the Software Handbook, presents an introductory technical
level of PDP-11 family information. The hardware user documentation
and software tutorial documentation which accompany the delivery of

7

Introduction

a PDP-11 computer system offer the most detailed levels of informa­
tion. There are also several good books published by commercial
publishers which discuss the PDP-11 family. Specific topics such as
microprogramming are also well-covered in commercially available
books. If you have a specific documentation need, discuss the issue
with a DIGITAL sales representative, who will guide you to the appro­
priate literature.

NUMERICAL NOTATION
Three number systems are used in this handbook: octal, base eight;
binary, base two; and decimal, base ten. Octal is used for address
locations, contents of addresses, and instruction operation codes.
Binary is used for descriptions of words and decimal for normal
quantitative references. Refer to Appendix C for a conversion table
including these three number systems.

8

9

10

CHAPTER 2

UNIBUS

The UNIBUS is the outstanding design feature that makes possible the
strengths and flexibility of the PDP-11 family members discussed in
this book. DIGITAL's unique data bus, the UNIBUS, provides the hard­
ware and software backbone of the PDP-11/04, 34A, 44, 60, and 70
processors. The UNIBUS was the first data bus in the history of the
minicomputer industry to enable devices to send, receive, or ex­
change data without processor intervention and without intermediate
buffering in memory.

PDP-11 ARCHITECTURE AND THE UNIBUS
PDP-11 architecture takes advantage of the UNIBUS in its method of
addressing peripheral devices. Memory elements, such as the main
core memory, or any read-only or solid state memories, have ascend­
ing addresses starting at zero, while registers that store I/O data or the
status of individual peripheral devices have addresses in the highest
8K bytes of addressing space.

There are tens of thousands of memory addresses, but only two-one
for data, one for control-for some peripheral devices, and up to half a
dozen for more complicated equipment like magnetic tapes or disks.

The PDP-11 UNIBUS consists of 56 signal lines, to which all devices,
including the processor, are connected in parallel.

51 lines are bidirectional and 5 are unidirectional.

Communication between any two devices on the bus is in a mas­
ter/slave relationship. During any bus operation, one device, the bus
master, controls the bus when communicating with another device on
the bus, called the slave. For example, the processor, as master, can
fetch an instruction from the memory, which is always a slave; or the
disk, as master, can transfer data to the memory, as slave.
Master/slave relationships are dynamic: the processor, for example,
may pass bus control to a disk, then the disk may become master and
communicate with slave memory.

When two or more devices try to obtain control of the bus at once,
priority circuits decide among them. Devices have unique priority lev­
els, fixed at system installation. A unit with a high priority level obvi­
ously always takes precedence over one with a low priority level; in the
case of units with equal priority levels, the one electrically closest to
the processor on the bus takes precedence over those further away.

11

I
I BUS I ADDRESS REG.

~

~
~

I PROCESSOR I
BUS TIMING

.....
I\) I

I PROCESSOR I DATA PATHS

t
~

BUS PRIORITY
CONTROL

PROCESSOR

UNIBUS

~ ~ ~ A

~ r

BUFFER
REGISTER .. ADDRESS • . SELECTOR

CORE
MEMORY

MEMORY

Figure 2-1 UNIBUS

.. ~ .. ~

~ , , ,
ADDRESS

SELECTOR DEVICE
INTERRUPT REGISTER

CONTROl

DEVICE LOGIC

PERIPHERAL DEVICES

-_ ..

§=
0:
c:
rn

Unibus

Suppose the processor has control of the bus when three devices, all
of higher priority than the processor, request bus control. If the re­
questing devices are of different priority, the processor will grant use
of the bus to the one with the highest priority. If they are all of the same
priority, all three signals come to the processor along the same bus
line, so that it sees only one request signal. Its reply granting priority
travels down the bus to the nearest requesting device, passing
through any intervening non-requesting devices. The requesting de­
vice takes control of the bus, executes a single bus cycle of a few
hundred nanoseconds, and relinquishes the bus. (Some devices will
take the bus for more than one bus cycle.) Then the request grant
sequence occurs again, this time going to the second device down the
line, which has been waiting its turn. When all higher-priority requests
has been granted, control of the bus returns to the lowest-priority
device, usually the processor.

The processor usually has lowest priority because in general it can
stop whatever it is doing without serious consequences. Peripheral
devices may be involved with some kind of mechanical motion, or may
be connected to a real-time process, either of which requires immedi­
ate attention to a request, to avoid data loss.

The priority arbitration takes place asynchronously in parallel with
data transfer. Every device on the bus except memory is capable of
becoming a bus master.

BUS COMMUNICATION
Communication is interlocked, so that each control signal issued by
the master must be acknowledged by a response from the slave to
complete the transfer. This simplifies the device interface because
timing is no longer critical. The maximum transfer rate on the UNIBUS
is one 16-bit word every 400 ns, or about 2.5 million 16-bit words per
second. However, the typical transfer rate including average bus de­
lays, is 1 million 16-bit words per second.

USING THE BUS
A deVice uses the bus if it needs to:
• Request the processor. As a result, the processor stops what it is

dOing, enters an interrupt service routine, and services the device .
• Transfer a word or byte of data to or from another device, (usually

memory), without involving the processor, an NPR (non-processor
request) transfer. Such functions are performed by direct memory
access devices such as disks or tape units.

Whenever two devices communicate, it is called a bus cycle. Only one
word or byte can be transferred per bus cycle. An instruction cycle

13

Unibus

involves one or more bus cycles. Fetching an instruction involves a
bus cycle; storing a result in memory or a device register involves
another bus cycle.

BUS CONTROL
There are two ways of requesting bus control: non-processor requests
(NPRs) or bus requests (BRs).

An NPR is issued when a device wishes to perform a data transaction.
An NPR device does not use the CPU once the running program has
set up parameters of buffer address, disk sector selection and byte
count; therefore, the CPU can relinquish bus control while an instruc­
tion is being executed.

A BR is issued when a device needs to interrupt the CPU for service.
An interrupt is not serviced until the processor has finished executing
its current instruction.

BUS REQUESTS
• DEVICE makes a bus request by asserting a BA.
• BUS ARBITRATOR recognizes the request by issuing a Bus Grant

(BG). This bus grant is issued only if the priority of the device is
greater than the priority. currently assigned to the processor.

• DEVICE acknowledges the bus grant and inhibits further grants by
asserting Selection Acknowledge (SACK). The device also clears
BA.

• BUS ARBITRATOR receives SACK and clears BG.
• DEVICE asserts Bus Busy (BBSY) and clears SACK.
• DEVICE asserts Bus Interrupt (INTR) and its vector address.

• CPU responds

NON-PROCESSOR REQUESTS
• DEVICE makes a non-processor request by asserting NPA.
• BUS ARBITRATOR recognizes the request by issuing a non­

processor grant or NPG.
• DEVICE acknowledges the grant' and inhibits further grants by as-

serting SACK; device also clears NPA.
• BUS ARBITRATOR receives SACK and clears NPG.
• DEVICE asserts Bus Busy (BBSY) and clears SACK.
• DEVICE starts its data transfer.

BUS BUSY SIGNAL
Once a device's bus request has been honored, it becomes bus mas­
ter as soon as the current bus master relinquishes control.

14

Unibus

• Current bus master relinquishes bus control by clearing bus busy
(BBSY) .

• New device assumes bus control by setting BBSY.

INTERRUPTS
Interrupt handling is automatic in the PDP-11. No device polling is
required to determine which service routine to execute. A device can
interrupt the CPU only if it has gained bus control via a BA. The
DEVICE requests an interrupt by asserting INTR along with an inter­
rupt vector. The vector directs the CPU to a memory location previ­
ously loaded by the running program with the starting address of an
interrupt service routine (ISR). ("~ need to interrupt.") The CPU
accepts the interrupt vector an asserts SSYN (Slave SYNC) to indicate
the vector has been accepted. ("I have your interrupt.") The DEVICE
releases the bus to the CPU by clearing INTR, removing the vector,
and clearing BBSY. ("I'm giving control of the bus back to you.") The
CPU acknowledges by clearing SSYN (Slave SYNC), stores the infor­
mation it needs to return to the interrupted program (a hardware stack
located in memory is used for this purpose), and enters the interrupt
handling sequence. ("Thank you, I'm starting to service your inter­
rupt.") When the interrupt operation is completed, the CPU removes
the information that was stored on the stack and resumes the program
at the point where it was interrupted. A more detailed description of
the operations required to service an interrupt follows:
1. Processor relinquishes control of the bus, priorities permitting.
2. When a master gains control, it sends the processor an interrupt

request and a unique memory address which contains the ad­
dress of the device's service routine, called the interrupt vector
address. Immediately following this pOinter address is a word (lo­
cated at vector address +2) which is to be used as the new
processor status (PS) word.

3. The new PC and PS (interrupt vector) are taken from the specified
address. The old PS and PC are pushed onto the current stack.
The service routine is then entered when the contents of the vec­
tor address are moved to the PC and program execution re­
sumes-at the address of the interrupt service routine (ISR) load­
ed previously as a vector by the running program

4. The device service routine can cause the processor to resume the
interrupted process by executing the return from interrupt in­
struction, described in Chapter 4, which pops the two top words
from the current processor stack and uses them to load the PC
and PS registers.

15

Unibus

A device routine can be interrupted by a higher priority bus request
any time after the new PC and PS have been loaded. If such an
interrupt occurs, the PC and PS of the service routine are automatical­
ly stored in the temporary registers and then pushed onto the new
current stack, and the new device routine is entered. This is known as
"nesting."

Interrupt Servicing
Every hardware device capable of interrupting the processor has a
unique pair of locations (2 words) reserved for its interrupt vector in
low memory. The first word contains the location of the device's ser­
vice routine, and the second, the processor status word that is to be
used by the service routine. The program Is responsible for loading
the address of the ISR into this low memory address before interrupt
time occurs. Through proper use of the PS, the programmer can
switch the operational mode of the processor, and modify the proces­
sor's priority level to mask out lower level interrupts.

PRIORITY CONTROL
The PDP-11 priority system determines which device obtains the bus.
Each PDP-11 device is assigned a specific location in the priority
structure. Priority arbitration logic determines which device obtains
the bus according to its position in the priority structure. The priority
structure is 2-dimensional; i.e., there are vertical priority levels and
horizontal priorities at each level. There are five vertical priority levels.

Devices that gain bus control with one of the bus request lines (BR7,
BR6, BR5, BR4) can take full advantage of the power of the processor
by requesting an interrupt. The entire instruction set is then available
for manipulating data and status registers. When a device servicing
program is being run, the task being performed by the processor is
interrupted, and the device service routine is initiated. After the device
request has been satisfied, the processor returns to its former task.
Note that interrupt requests can be made only if bus control has been
gained through a BR priority level.

Bus Request Level
There are two lines associated with each BR level. The bus request is
made on a BR line (BR7, BR6, BR5, or BR4). The bus grant is made on
the corresponding grant line (BG7, BG6, BG5, or BG4). BR levels BR3
through BRO are used only by the software; devices are not assigned
to these BR levels. Unlike NPRs, a BR can be handled only between
instruction cycles. The BR levels are used for interrupts so that the
device can obtain service from the CPU. A request made at any BR
level requires processor intervention.

16

Unibus

Priority Levels
Because there are only five vertical priority levels, NPR, BR7, BR6,
BRS and BR4, it is often necessary to connect more than one device to
a single level. When a number of devices are connected to the same
level, the situation is referred to a horizontal priority. If more than one
device makes a request at the same level, then the device electrically
closest to the CPU has the highest priority.

DEVICE
CP REQUEST

PRIORITY LINE

_NPR I . I I

101 -OMA I I D2 -OMA I I 03 -OMA I
_BR7 -----

6 I 06 I 07

_BR6

I

I 04 I 05

-4--BR5

I

4 I 01 I 02 03

-BR4 -----

HSR HSP KB TP

INCREASING PRIORITY

0

Figure 2-2 Priority Control

The grant line for the NPR level is connected to all devices on that level
in a "daisy chain" arrangement. When an NPG is issued, it first goes to
the device electrically closest to the CPU. If that device did not make
the request, it permits the NPG to travel to the next device. Whenever
the NPG reaches a device that has made a request, that device cap­
tures the grant, and prevents it from passing to any subsequent device
in the chain.

BR chaining is identical to NPR chaining in function. However, each
BR level has its own BG chain. Thus, the grant chain for BR7 is the
BG7 line which is chained through all devices at the BR7 level.

17

Unibus

PRIORITY ASSIGNMENTS
When assigning priorities to a device, three factors must be consid­
ered: operating speed, ease of data recovery, and service require­
ments.

Data from a fast device may be available for only a short time period.
Therefore, highest priorities are usually assigned to fast devices to
prevent loss of data and to prevent the bus from being tied up by
slower devices.

If data from a device is lost, recovery may be automatic, may require
manual intervention, or may be impossible. Therefore, highest
priorities are assigned to devices whose data cannot be recovered,
while lowest priorities are reserved for devices with automatic data
recovery features.

CPU Priority Level
In addition to device priority levels, the CPU has a programmable
priority. The CPU can be set to anyone of eight priority levels. Priority
is not fixed; it can be raised or lowered by software. The CPU priority is
elevated from level 4 to level 6 when the CPU stops servicing a BR4
device and starts servicing a BR6 device. This programmable priority
feature (the second vector word) permits masking of bus requests.
The CPU can hold off servicing lower priority devices until more criti­
cal functions are completed. For example, when CPU priority is set to
level 6, all bus requests on the same and lower levels are ignored (in
this case, all requests appearing on BR4, BRS, and BR6).

DATA TRANSACTIONS
There are four types of data transactions:
• DATO-a data word is transferred out of the master and into its

slave.
• DATOB-a data byte is transferred out of the master and into its

'slave.

• DATI-a data word is transferred from the slave to the master. The
master may select the low or high byte if only a data byte is desired.

• DATIP-used with destructive readout devices such as core memo­
ry. It is similar to a DATI except that data is not rewritten (restored)
into the addressed memory location (data is restored during a DATI)
unless followed by DATO or DATOB to the same location.

EXECUTION OF DATA TRANSACTIONS
Before a device can perform a data transaction, it must:

• Obtain control of the bus via an NPR.

18

Unibus

• Select (address) the slave device it wishes to communicate with.
Each device on the bus has a unique address.

• Tell the slave what type of data transaction is to be performed.
• Wait for a response from the slave indicating the slave is present

and ready.

Data transactions between a master and a slave device are synchron­
ized by master sync (MSYNC) and slave sync (SSYN) signals. Below is
an example of how these signals are used during a typical DATI trans­
action:
1. Master selects the slave by addressing it, specifies the type of

data transaction, and requests data by asserting MSYN. ("Give
me data.")

2. Slave gathers the data and asserts SSYN when the data is
available. ("Here it is.") ,.

3. Master drops MSYN after it accepts the data. ("Thank you, I have
the data.")

4. Slave removes data from the lines and acknowledges the master
by dropping SSYN. ("You're welcome.")

19

Table 2 Bus Control

SIGNAL NAME SOURCE DEST. TIMING FUNCTION

NPR Non-processor Any DMA device UNIBUS Asynchronous Highest priority bus
Request Control Logic request

NPG Non-processor CPU Next bus master Asynchronous Transfers bus
Grant control

BR7 Bus Request Any device UNIBUS Asynchronous Requests bus
through Control Logic control
BR4 ~

I\)

BG7 Bus Grant Memory Next bus master After instruction Transfers bus 5= 0 c::
through control

C'I)

BG4

SACK Selection Next bus master UNIBUS Response to NPG Acknowledges
Acknowledge Control Logic orBG grant and inhibits

further grants

BBSY Bus Busy Master All devices Asserted by bus Asserts control of
master the bus

INTR Interrupt Master UNIBUS If control has been Transfers bus
Control Logic gained by a BR (not control to handling

NPR). INTR assert- routine in the
ed after BBSY processor

21

22

CHAPTER 3

ADDRESSING MODES

In the PDP-11 family, all memory reference addressing is accom­
plished using the eight general purpose registers. In specifying an
address of the data (operand address), one of the eight registers is
selected with one of several addressing modes. Each memory refer­
ence instruction specifies the:

• function to be performed (operation code)
• general purpose register to· be used when locating the destination or

source and destination operand(s)

• addressing mode, which specifies how the selected registers are to
be used

The instruction format and add~essing techniques available to the pro­
grammer are of particular importance. It is the combination of ad­
dressing modes with the instruction set that provides the PDP-11
family a unique number of capabilities. The PDP-11 is designed to
handle structured data efficiently and with flexibility. The general pur­
pose registers implement these functions in the following ways, by
acting:

• as accumulators: holding the data to be manipulated
• as pOinters: the contents of the register are the address of the oper­

and, rather than the operand itself.
• as index registers: the contents of the register are added to the

second word of the instruction to produce the address of the oper­
and. This capabilty allows easy access to variable entries in a list.

Using registers for both data manipulation and address calculation
results in a variable length instruction format. If registers alone are
used to specify the data source, only one memory word is required to
hold the instruction. In certain modes, two or three words may be
utilized to hold the basic instruction components. Special addressing
mode combinations enable temporary data storage for convenient
dynamic handling of frequently accessed data. This is known as stack
addressing. Programming techniques utilizing the stack are dis­
cussed in Chapter 5. Register 6 is always used as the hardware stack
pOinter, or SP. Register 7 is. used by the processor as its program
counter (PC). Thus, the register arrangement to be considered in
conjunction with instructions and with addressing modes is: registers
0-5 are general purpose registers, register 6 is the hardware stack
pOinter, and register 7 is the program counter. The full instruction set
and instruction formats are explained in Chapter 4.

23

Addressing Modes

For the purpose of clearly illustrating the use of the various addressing
modes, the following instructions are used in this chapter:

Mnemonic Description Octal Code

CLR Clear (Zero the specified desti- 005000
nation.)

CLRB Clear Byte (Zero the byte in the 105000
specified destination.)

INC Increment (Add 1 to contents of 005200
destination.)

INCB Increment Byte (Add 1 to the 10520D
contents of destination byte.)

COM Complement (Replace the con- 005100
tents of the destination by their
logical1's complements; each 0
bit is set and each 1 bit is
cleared.)

COMB Complement Byte (Replace the 105100
contents of the destination byte
by their logical1's comple-
ments; each 0 bit is'set and
each 1 bit is cleared.)

AOO Add (Add source operand to 06SS00
destination operand and store
the result at destination ad-
dress.)

00 = destination field (6 bits)
SS = source field (6 bits)
o = contents of

Single and double operand instructions use the following format.

The instruction format for the first word of all single operand instruc­
tions (such as clear, increment, test) is:

24

Addressing Modes

15 6 5 3 2 o
MODE Rn

\'-______ ~ __ -----~J \ •• 'V"~----'J

r i
• • ••

OP CODE--------~
DESTINATION FIELD ---------------------'

• SPECIFIES DIRECT OR INDIRECT ADDRESS
•• SPECIFIES HOW REGIST·ER WILL BE USED

••• SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

Single Operand Instruction Format

The instruction format for the first word of the double operand instruc­
tion is:

15 12 8 6 5 3 2 0 11 9

MODE

\ * • •
'V

4

• DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
•• SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED

••• SPECIFIES A GENERAL REGISTER

Double Operand Instruction Format

J

Bits 5-3 of the source or destination fields specify the binary code of
the addressing mode chosen. Bits 2-0 specify the general register to
be used.

The four direct addressing modes are:

• register
• autoincrement

• autodecrement

• index

In a register mode, the content of the selected register is taken as the
operand. In autodecrement mode, after the register has been modi­
fied, it contains the address of the operand. In autoincrement mode, at
the start of the instruction execution, the register contains the address
of the operand, and after the instruction is executed, the address of
the next higher word or byte memory location. In index mode, the
register is added to the displacement, X, to produce the address of the
operand.

25

Addressing Modes

When bit 3 of the source/destination field is set, indirect addressing is
specified and the four basic modes become deferred modes.

Prefacing the register operand(s) with an "@" sign or placing the
register in parentheses indicates to the MACRO-11 assembler that
deferred addressing mode is being used.

The indirect addressing modes are:

• register deferred
• autoincrement deferred
• autodecrement deferred
• index deferred

Program counter (register 7) addressing modes are:

• immediate
• absolute
• relative
• relative deferred

The addressing modes are explained and shown in examples in the
following pages. They are summarized, in text and in graphic
representation, at the end of the chapter.

REGISTER MODE MODE 0 Rn

Register mode provides faster instruction execution. There is no need
to reference memory to retrieve an operand. Any of the general regis­
ters can be used as simple accumulators. The operand is contained in
the selected register (low order byte for byte operations). Assembler
syntax requires that a general register be defined as follows:

RO =%0
R1 = %1
R2 = %2

% indicates register definition.

Register Mode Example-

SymbOlic Instruction
Octal Code

INCR3 005203

26

Description

Add 1 to the contents
ofR3.

Addressing Modes

Represented as:

R0

Rl

I 0 , 0 , 0 , 0 ,1 0 1 0 1 , 0 I 0 , 0 j 0 I 0 ,1 1 I~~~~R
R2

.. R3

~ 15 ~~ ____ ~6) \ 5 4 3 ~,-:.2=----_~OJ R4

OP CODE (1NC(0052))-.J r
DESTINATION FIELD------------'

R5

R6(SP)

Register Mode Example

Symbolic Instruction
Octal Code

ADD R2,R4 060204

Represented as:

BEFORE

R21 000002

R41 000004

REGISTER DEFERRED MODE

AFTER

R7 (PC)

Description

Add the contents of
R2 to the contents of
R4, replacing the ori­
ginal contents of R4
with the sum.

R21 000002

R41 000006

MODE 1 (Rn)

In register deferred mode, the address of the operand is stored in a
general purpose register. The address contained in the general pur­
pose register directs the CPU to the operand. The operand is located
outside the CPU, either in memory, or in an 1/0 register.

This mode is used for sequential lists, indirect pOinters in data struc­
tures, top of stack manipulations, and jump tables.

Register Deferred Mode Example

Symbolic Instruction
Octal Code

CLR (RS) 005015

27

Description

The contents of the
location specified in
RS are cleared.

Addressing Modes

Represented as:

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1676

1

R5 c 001700 1676

1

R5 I 001700

1700 000100 1700 000000

AUTOINCREMENT MODE MODE 2 (Rn)+

In autoincrement mode, the register contains the address of the oper­
and; the address is automatically incremented after the operand is
retrieved. The address then references the next sequential operand.
This mode allows automatic stepping through a list or series of oper­
ands stored in consecutive locations. When an instruction calls for
mode 2, the address stored in the register is incremented each time
the instruction is executed. It is incremented by 1 if you are using byte
instructions, by 2 if you are using word instructions. However, R6 and
R7 are always incremented by 2.

Autoincrement Mode E.xample

Symbolic Instruction

CLR (R5)+

Represented as:

BEFORE
ADDRESS SPACE

20000 I 005025

~--~
30000 111116

30002 051367

Octal Code

005025

REGISTER

R5 [030000

-:;?'
I 20000 I

30000

30002

28

AFTER

Description

Contents of R5 are
used as the address
of the operand. Clear
selected operand and
then increment the
contents of R5 by 2.

ADDRESS SPACE REGISTER

005025 R5 I 030002

000000

051367

Addressing Modes

AUTOINCREMENT DEFERRED MODE MODE 3 @(Rn)+

In autoincrement deferred mode, the register contains a pOinter to an
address. The"+" indicates that the pointer in Rn is incremented by 2
(for both word and byte operations) afterthe address is located. Mode
2, autoincrement, is used only to access operands that are stored in
consecutive locations. Mode 3, autoincrement deferred, is used to
access lists of operands stored anywhere in the system; i.e., the oper-

I

ands do not have to reside in adjoining locations. Mode 2 is used to
step through a table of operands, mode 3 is used to step through a
table of addresses.

Autoincrement Deferred Example

Symbolic Instruction
Octal Code

Description

INC @(R2)+

Represented as:

BEFORE

ADDRESS SPACE

1010~
1012~

001010

175623

005232

REGISTER

R2 010300
L--.--;;r---I

AUTODECREMENT MODE

AFTER

Contents of R2 are
used as the address
of the address of the
operand. The oper­
and is increased by 1,
contents of R2 are in­
cremented by 2.

ADDRESS SPACE REGISTER

1010~
1012~

10300 001010
I-----~

10302 1 75623
~ ___ ---J

R2! L-_0_10_3_02_---'

MODE 4 -(Rn)

In autodecrement mode, the register contains an address that is auto­
matically decremented; the decremented address is used to locate an
operand. This mode is similar to autoincrement mode, but allows step­
ping through a list of words or bytes in reverse order. The address is
decremented by 1 for bytes, by 2 for words. However, R6 and R7 are
always decremented by 2.

29

Addressing Modes

Autodecrement Mode Example

Symbolic Instruction
Octal Code

INCB -(RO) 105240

Represented as:

BEFORE AFTER

Description

The contents of RO
are decremented by
1, then used as the
address of the oper­
and. The operand
byte is increased by
1.

ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER

1000 I 005240 RO C 017776 1000 I 005240 RO I 017774

7
~

17774 000000 17774 000001

17776 105324 17776 105324

AUTODECREMENT DEFERRED MODE MODE 5 @-(Rn)

In autodecrement deferred mode, the register contains a pOinter. The
pointer is first decremented by 2 (for both word and byte operations),
then the new pOinter is used to retrieve an address stored outside the
CPU. This mode is similar to autoincrement deferred, but allows step­
ping through a table of addresses in reverse order. Each address then
redirects the CPU to an operand. Note that the operands do not have
to reside in consecutive locations.

Autodecrement Deferred Mode Example

Symbolic Instruction
Octal Code

COM @-(RO) 005150

30

Description

The contents of RO
are decremented by 2
and then used as the
address of the ad­
dress of the operand.
The operand is 1 's
complemented.

Addressing Modes

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

10100 I 012345 R01 010776 10100 L 165432 I R01 010774

10102 101~ 1 10774

1
010100 107741 010100

10776 10776

INDEX MODE MODE 6 X(Rn)

In index mode, a base address is added to an index word to produce
the effective address of an operand; the base address specifies the
starting location of table or list. The index word then represents the
address of an entry in the table or list relative to the starting (base)
address. The base address may be stored in a register. In this case,
the index word follows the current instruction. Or the locations of the
base address and index word may be reversed (index word in the
register, base address following the current instruction).

Index Mode Example

Symbolic Instruction
Octal Code

CLR 200(R4)

Represented as:

BEFORE

ADDRESS SPACE

1020 005064
1------1

1022 000200

005064
000200

REGISTER

R4 I 001000

1024 1000

,-;:= ~~~~g
1200~
1202 C===l

31

Description

The add ress of the
operand is deter­
mined by adding 200
to the contents of R4.
The location is then
cleared.

AFTER

ADDRESS SPACE

1020 005064
1-------1

1022 000200
1-------1

1024 L..--. ___ --'

REGISTER

R41 001000

Addressing Modes

INDEX DEFERRED MODE MODE 7 @X(Rn)

In index deferred mode, a base address is added to an index word.
The result is a pOinter to an address, rather than the actual address.
This mode is similar to mode 6, except that it produces a pOinter to an
address. The content of that address then redirects the CPU to the
desired operand. Mode 7 provides for the random access of operands
using a table of operand addresses.

Index Deferred Mode Example

Symbolic Instruction

ADD @1000(R2),R1

Represented as:

BEFORE

Octal Code

067201
001000

ADDRESS SPACE REGISTER

1020 067201
~----I

1022 001000
1-------1

1024
1-------1

000002

Rl [001234

R2 [000100

1100 001050 1000

~+100 11()0

Description

1000 and the con­
tents of R2 are
summed to produce
the address of the ad­
dress of the source
operand, the contents
of which are added to
the contents of R1.
The result is stored in
R1.

AFTER
ADDRESS SPACE REGISTER

1020 067201 RI I 001236

1022 001000
R2 I 000100

1024

1050 I 000002

1100 I 001050

USE OF THE PC AS A GENERAL REGISTER
Register 7 is both a general purpose register and the program counter
on the PDP-11. When the CPU uses the PC to access a word from
memory, the PC Is automatically incremented by two to contain the
address of the next word of the instruction being executed or the
address of the next instruction to be executed. When the program
uses the PC to access byte data, the PC is still incremented by two.

32

Addressing Modes

The PC can be used with all the 7 addressing modes if you use ma­
chine language only. There is no symbol in MACRO-11 for 7 PC ad­
dressing modes so it will not accept all modes. There are four modes
in which the PC can provide advantages for handling position-inde­
pendent code and for handling unstructured data. These modes refer
to the PC and are termed immediate, absolute (or immediate de­
ferred), relative, and relative deferred.

PC IMMEDIATE MODE MODE 2 #n

Immediate mode is equivalent to using the autoincrement mode with
the PC. It provides time improvements for accessing constant
operands by including the constant in the memory location immedi­
ately following the instruction word.

PC Immediate Mode Example

Symbolic Instruction

ADD#10,RO

Octal Code

062700
000010

33

Description

The value 10 is locat­
ed in the second word
of the instruction and
is added to the con­
tents of RO. Just be­
fore this instruction is
fetched and
executed, the PC
poi nts to the fi rst
word of the instruc­
tion. The processor
fetches the fi rst word
and increments the
PC by two. The
source operand
mode is 27 (autoin­
crement the PC).
Thus, the PC is used
as a pOinter to fetch
the operand (the sec­
ond word of the in­
struction) before be­
ing incremented by
two to point to the
next instruction.

Addressing Modes

Represented as:

BEE"ORE

ADDRESS SPACE REGISTER

1020 t--_0_6_27_00_-I' R0 C 000020

1022 000010 ""-PC

1024

AFTER

ADDRESS SPACE

1020 062700

1022 000010

1024

REGISTER

R01 000030

.....-PC

PC ABSOLUTE MODE MODE 3 @#A

This mode is the equivalent of immediate deferred or autoincrement
deferred mode using the PC. The contents of the location following the
instruction are taken as the address of the operand. Immediate data is
interpreted as an absolute address (i.e., an address that remains con­
stant no matter where in memory the assembled instruction is execut­
ed).

PC Absolute Mode Example

Symbolic Instruction

CLR@#1100

Represented as:

BEFORE
ADDRESS SPACE

20
1-------1

22
I----~---I

1100 ~_1_77_77_7_-t
1102 '--___ --1

PC RELATIVE MODE

Octal Code

005037
001100

PC

Description

Clears the contents of
location 1100.

AFTER
ADDRESS SPACE

20 005037
I------t

221--_0_0_'1O_0_-t/PC

24

1100 ~_O_O_OO_OO_--f
1102 L....-___ -I

MODE 6

This mode is index mode 6 using the PC. The operand's address is
calculated by adding the word that follows the instruction (called an
"offset") to the updated' contents of the PC.

PC+2 directs the CPU to the offset that follows the instruction. PC+4
is summed with this offset to produce the effective address of the
operand. PC+4 also represents the address of the next instruction in
the program.

34

A

Addressing Modes

With the relative addressing mode, the address of the operand is
always determined with respect to the updated PC. Therefore, when
the instruction is relocated, the operand remains the same relative
distance away.

The distance between the updated PC and the operand is called an
offset. After a program is assembled, this offset appears in the first
word location that follows the instruction. This mode is useful for writ­
ing position-independent code.,

PC Relative Mode Example

Symbolic Instruction
Octal Code

INCA 005267
000054

Represented as:

BEFORE

ADDRESS SPACE

1020 I--_OO.:....:....;..:52;.;,.;67_--1~
1022 000054

1-------1
1024 PC

1026
~-----1

1024

"~;'~6

PC RELATIVE DEFERRED MODE

Description

To increment location
A, contents of memo­
ry location in the
second word of the
instruction are added
to PC to produce ad­
dress A. Contents of
A are increased by 1.

AFTER

ADDRESS SPACE

1020 0005267

1022 000054

1024 __ PC

1026

1100 I 000001

MODE 7 @A

This mode is index deferred (mode 7), using the PC. A pOinter to an
operand's address is calculated by adding an offset (that follows the
instruction) to the updated PC.

This mode is similar to the relative mode, except that it involves one
additional level of addressing to obtain the operand. The sum of the
offset and updated PC (PC+4) serves as a pOinter to an address.
When the address is retrieved, it can be used to locate the operand.

35

Addressing Modes

PC Relative Deferred Mode Example

Symbolic Instruction

CLR@A

Represented as:

BEFORE

ADDRESS SPACE

Octal Code

005077
000020

1020 005077 "
1022 ~-0-0-00-20--I "-....PC

1024
~----I

10~~10~6
~ 1044

10100 I 100001 I

Description

Adds the second
word of the instruc­
tion to PC to produce
the address of the ad­
dress of the operand.
Clears operand.

AFTER

ADDRESS SPACE

1020 005077

1022 000020
/PC

1024

1044 1 010100

101001 000000

Direct Addressing Modes

Binary
Code

000

010

Mode Name

o Register

2 Autoincre-
ment

Symbolic

Rn

(Rn)+

36

Function

Register contains
operand.

Register is used
as a pOinter to
sequential data.
then increment­
ed. RO-R5 are in­
cremented by 1
for byte and 2 for
word instruction.
R6-R7 are always
incremented by
2.

Binary
Code

100

110

Binary
Code

001

Addressing Modes

Mode Name Symbolic

4 Autodecre- -(Rn)
ment

6 Index X(Rn)

Indirect Addressing Modes

Mode Name

1 Register
Deferred

37

Symbolic

@Rnor
(Rn)

Function

Register is de-
cremented and
then used as a
pointer to se-
quential data.
RO-RS are decre-
mented by 1 for
byte and by 2 for
word instruc-
tions. R6-R7 are
always decre-
mented by 2.

Value X is added
to (Rn) to pro-
duce address of
operand. Neither
X nor (Rn) is
modified. X, the
index value, is al-
ways found in the
next memory lo-
cation and incre-
ments the PC.

Function

Register contains
the address of
the operand.

Binary
Code

011

101

111

Addressing Modes

Mode Name Symbolic

3 Autoincre- @(Rn)+
ment Deferred

5 Autodecre- @-(Rn)
ment Deferred

7 Index @X(Rn)
Deferred

Function

Register is first
used as a pOinter
to a word con­
taining the ad­
dress of the op­
erand, then in­
cremented
(always by 2,
even for byte in­
structions).

Register is de­
cremented (al­
ways by 2, even
for byte instruc­
tions) and then
used as a pOinter
to a word con­
taining the ad­
dress of the op­
erand.

Value X (the in­
dex is always
found in the next
memory location
and increments
the PC by 2) and
(Rn) are added
and thesum is
used as a pOinter
to a word con­
taining the ad­
dress of the op­
erand. Neither X
nor (Rn) is modi­
fied.

When used with the PC, these modes are termed immediate, absolute
(or immediate deferred), relative, and relative deferred.

38

Addressing Modes

PC Register Addressing Modes

Binary Mode Name Symbolic Function
Code

010 2 Immediate #n Operand is con-
tained in the in-
struction.

011 3 Absolute @#A Absolute ad-
dress is
contained in the
instruction.

110 6 Relative A Address of A, re-
lative to the in-
struction, is con-
tained in the in-
struction.

111 7 Relative @A Address of loca-
Deferred tion containing

address of A, re-
lative to the in-
struction, is con-
tained in the in-
struction.

GRAPHIC SUMMARY OF PDP-11 ADDRESSING MODES

General Register Addressing Modes
R is a general register, 0 to 7.
(R) is the contents of that register.

Mode 0 Register OPRR

R
1 INSTRUCTION 1-1 ---1.1 OPERAND

Mode 1 Register deferred OPR (R)

R

1 ~ IN~S~TR~UC~TIO~N~I~--t·1 ADDRESS ~~.I OPERAND

39

R contains
operand.

R contains
address.

Addressing Modes

Mode 2

Mode 3

Autolncrement

R

INSTRUCTION 1----001 ADDRESS

Autoincrement
deferred

R

INSTRUCTION ADDRESS

Mode 4

Mode 5

I INSTRUCTION I

Autodecrement

Autodecrement
deferred

R ,
ADDRESS]

L
·1 -2

40

OPR (R)+

OPERAND

OPR
@(R)+

ADDRESS

OPR -(R)

OPR@­
(R)

R contains ad­
dress, then incre­
ment (R). Note
that R6 and R7
are always incre­
mented by 2.

'1+2 FOR WORD, b
+1 FOR BYTE

R contains ad­
dress of address,
then increment
(R) by 2.

OPERAND

+2

Decrement (R),
then R contains
address. Note
that R6 and R7
are always de­
cremented by 2.

OPERAND

Decrement (R) by
2, then R con­
tains address of
address.

J
-1 ADDRESS -1 OPERAND

Mode 6 Index

Addressing Modes

OPRX(R)

R

(R)+X is ad­
dress.

PC 1 INSTRUCTION .11-------1.1 ADDRESS

PC+2 I x I ~_OF'E_RA_ND----,

Mode 7

PC INSTRUCTION

Index deferred

R

ADDRESS

OPR
@X(R)

PC+2 L~x~..J---------I

Program Counter Addressing Modes
Register = 7

Mode 2 Immediate OPR #n

PC I INSTRUCTION I
PC+21 n

Mode 3 Absolute OPR@#A

PC I INSTRUCTION I
PC+2 I A Jr--~1~OP~E~RA~ND~

41

(R)+X is address
of address.

Literal operand n
is contained in
the second in­
struction word.

Address A is
contained in the
second instruc­
tion word.

Mode 6

Mode 7

Addressing Modes

Relative

PC I ~STRUCTION I

OPRA PC+4 + X is ad­
dress. PC+4 is
updated PC.

PC+2 C X ~~ A ,...--...--_...., ,-d-i OPERAND

PCt4 ~T INSTR I r ---......

Relative deferred

PC (INSTRUCTION I

OPR@A PC+4 + X is ad­
dress of address.
PC+4 is updated
PC.

PC+2 I x :

L~======~ ___ ~~+ A ~AD_D_RE_SS~~~_O_PE_RA_N_D~
PC+ 4 I NEXT INSTR I

I

42

43

44

CHAPTER 4

- INSTRUCTION SET

The PDP-11 instruction set and addressing modes produce over 400
unique instructions. The instruction set offers a wide choice of opera­
tions, so that a single instruction will frequently accomplish a task that
would require several in a traditional computer. PDP-11 instructions
allow byte and word addressing in both single and double operand
formats. This saves memory space and simplifies the implementation
of control and communications applications. The PDP-11 's use of
double operand instructions allows you to perform several operations
with a single instruction. For example, ADD A,B adds the contents of
location A to location B, storing the result in location B. Traditional
computers would implement this instruction in the following way:

LDAA
ADDB
STRB

The PDP-11 instruction set also contains a full set of conditional
branches, eliminating excessive use of jump instructions. PDP-11 in­
structions fall into one of seven categories:
• Single Operand - one part of the word specifies the operation,

referred to as "op code," the second part provides information for
locating the operand.

• Double Operand - the first part of the word specifies the operation
to be performed, the remaining two parts provide information for
locating two operands.

• Branch - the first part of the word specifies the operation to be
performed, the second part indicates where the action is to take
place in the program.

• Jump and Subroutine - these instructions have an opcode and
address part, and in the case of JSR, a register for linkage.

• Trap - these instructions contain an opcode only. In TRAP and
EMT, the low order byte may be used for function dispatching.

• Miscellaneous - HALT, WAIT, and Memory Management

• Condition Code

45

.. _- Instruction Set

.... -~-

I.NGLE OPERAND INSTRUCTIONS
Mnemonic Instruction

General
CLR(B)
COM(B)
INC(B)
DEC(B)
NEG(B)
TST(B)

Shift & Rotate
ASR(B)
ASL(B)
ROR(B)
ROL(B)
SWAB

Multiple Precision
ADC(B)
SBC(B)
SXT

Instruction Format

clear
1's complement
increment
decrement
2's complement (negate)
test

arithmetic shift right
arithmetic shift left
rotate right
rotate left
swap bytes

add carry
subtract carry
sign extend

3 2 o
Rn

\~------ ------~) \ ..
OP CODE -------Y --'-.-'~) r DESTINATION FIELD -----------

• SPECIFIES DIRECT OR INDIRECT ADDRESS
•• SPECIFIES HOW REGISTER WILL BE USED

••• SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

Figure 4-1 Single Operand Instruction Format

The instruction format for single operand instructions is:

• Bit 15 indicates word or byte operation.
• Bits 14-6 indicate the operation code, which specifies the operation

to be performed.

• Bits 5-0 indicate the 3-bit addressing mode field and the 3-bit gener­
al register field. These two fields are referred to as the destination
field.

46

Instruction Set

DOUBLE OPERAND INSTRUCTIONS
Mnemonic Instruction

General

Logical

MOV(8)
ADD
SU8
CMP(8)
ASH
ASHC
MUL
DIV

8IT(8)
8IC(8)
8IS(8)
XOR

Instruction Format

15 12 11

move source to destination
add source to destination
subtract source from destination
compare source to destination
shift arithmetically
arithmetic shift combined
multiply
divide

bit test
bit clear
bit set
exclusive OR

9 a 6 532 o

L-~_O_P~CO_D_E~~~~IM_O_D_E~~~~R~n~~~~IM~O __ DE~~_R_n~~
"'--*-*--.~ ~--*-. *---') \ •• * "'~-* -* *-......,)

SOURCE FIELD _________ ---'4 1
DESTINATION FIELD -------------------'-

* DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
* * SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED

••• SPECIFIES A GENERAL REGISTER

Figure 4-2 Double Operand Instruction Format

The format of most double operand instructions is similar to that of
single operand instructions except that they have two fields for locat­
ing operands. One field is called the source field, the other is called the
destination field. Each field is further divided into addressing mode
and selected register. Each field is completely independent. The mode
and register used by one field may be completely different than the
mode and register used by another field .
• Bit 15 indicates word or byte operation except when used with op­

code 6a• Then it indicates an ADD or SUBtract instruction .
• Bits 14-12 indicate the op code, which specifies the operation to be

done.

47

Instruction Set

• Bits 11-6 indicate the 3-bit addressing mode field and the 3-bit
general register field. These two fields are referred to as the source
field.

• Bits 5:.0 indicate the 3-bit addressing mode field and the 3-bit
general register field. These two fields are referred to as the destI­
nation field.

• Some double operand instructions (ASH, ASHe, MUl, DIV) must
have the destination operand only in a register. Bits 15-9 specify the
opcode. Bits 8-6 specify the destination register. Bits 5-0 contain the
source field. XOR has a similar format, exc~pt that the source is in a
register specified by bits 8-6, and the destination field is specified by
bits 5-0.

Byte Instructions
Byte instructions are specified by setting bit 15. Thus, in the case of
the MOV instruction, bit 15 is 0; when bit 15 is set, the mnemonic is
MOVB. There are no byte operations for ADD and SUB, i.e., no ADDB
or SUBB.

BRANCH INSTRUCTIONS
Mnemonic Instruction

Branch
BR branch (unconditional)
BNE branch if not equal (to zero)
BEQ branch if equal (to zero)
BPl branch if plus
BMI branch if minus
BVe branch if overflow is clear
BVS branch if overflow is set
Bce branch if carry is clear
BeS branch if carry is set

Signed Conditional Branch
BGE branch if greater than or

BlT
BGT
BlE

equal (to zero)
branch if less than (zero)
branch if greater than (zero)
branch if less than or
equal (to zero)

SOB subtract one and branch (if not = 0)

Unsigned Conditional Branch
BHI branch if higher
BlOS branch if lower or same
BHIS branch if higher or same
BLO branch if lower

48

Instruction Set

Instruction Format

15 8 7 o

\.~----- ~-----) ~'------ ------~)

OP cODE-------'l T
BYTE OFFSET -------------------'-

Figure 4-3 Branch Instruction Format

• The high byte (bits 15-8) of the instruction is an op code specifying
the conditions to be tested .

• The low byte (bits 7-0) of the instruction is the signed offset value in
words that determines the new program location if the branch is
taken. Thus, program control can be transferred within a range of -
128 to +127 words from the updated PC.

JUMP AND SUBROUTINE INSTRUCTIONS
Mnemonic
JMP
JSR
RTS
MARK

Instruction Format

JSR Format

15

\.

OP CODE l'
LINKAGE POINTER
DESTINATION FIELD

Instruction
jump
jump to subroutine
return from subroutine
facilitates stack clean-up
procedures

9 8 6 5

Rn MODE
I I

J~\.

t

Figure 4-4 JSR Instruction Format

3 2

I Rn

1

• Bits 15-9 are always octal 004 indicating the op code for JSR.

0

I
J

• Bits 8-6 specify the link register. Any ~eneral purpose register may
be used in the link, except R6 (SP).

49

Instruction Set

• Bits 5-0 designate the destination field that consists of addressing
mode and general register fields. This specifies the starting address
of the subroutine.

• Register R7 (the Program Counter) is frequently used for both the
link and the destination. For example, you may use JSR R7, SUBR,
which is coded 004767. R7 is the only register that can be used for
both the link and destination, the other GPRs cannot. Thus, if the
link is R5, any register except R5 can be used for one destination
field.

RTS Format

15 3 2 o
Rn

\~ ________________ y ______________ ~J~
OP CODE ---------------~- f
LINKAGE POINTER ---------------------------------------'

Figure 4-5 RTS Instruction Format

The RTS (return from subroutine) instruction uses the link to return
control to the main program once the subroutine is finished.

• Bits 15-3 always contain octal 00020, which is the op code for RTS.
• Bits 2-0 specify anyone of the general purpose registers.
• The register specified by bits 2-0 must be the same register used as

the link between the JSR causing the jump and the RTS returning
control.

TRAPS AND INTERRUPTS
Mnemonic
EMT
TRAP
BPT
lOT
CSM
RTI
RTT

Instruction
emulator trap
trap
breakpoint trap
input/output trap
call to supervisor mode
return from interrupt
return from interrupt

There are three ways of leaving a main program:
• software exit - the program specifies a jump to some subroutine
• trap exit - internal hardware on a special instruction forces a jump

to an error handling routine
• interrupt exit - external hardware forces a jump to an interrupt

service routine

50

Instruction Set

In all of the above Gases, thE:fre is a jump to another program. Once
that program has been executed, control is returned to the proper
point in the main program.

MISCELLANEOUS INSTRUCTIONS
Instruction
halt
wait for interrupt
reset UNIBUS

Mnemonic
HALT
WAIT
RESET
MTPD
MTPI
MFPD
MFPI
MTPS
MFPS

move to previous data space
move to previous instruction space
move from previous data space
move from previous instruction space
move byte to processor status word
move byte from
processor status word

Note that on the PDP-11170, "the four instructions for referencing the
previous address space (MTPD, MTPI, MFPD, MFPI) use the General
Register set indicated by PSW<11 > when they are executed.

CONDITION CODE OPERATION
Mnemonic
CLC,CLV,CLZ,CLN,CCC
SEC,SEV,SEZ,SEN,SCC

There are four condition code bits:

Instruction
clear
set

• N, indicating a negative condition when set to 1
• Z, indicating a zero condition when set to 1
• V, indicating an overflow condition when set to 1
• C, indicating a carry condition when set to 1

These four bits are part of the processor status word (PS). The result
of any single operand or double operand instruction affects one or
more of the four condition code bits. A new set of condition codes is
usually created after execution of each instruction. Some condition
codes are not affected by the execution of certain instructions. The
CPU may be asked to check the condition codes after execution of an
instruction. The condition codes are used by the variol::ls instructions
to check software conditions.

Z bit - Whenever the CPU sees that the result of an instruction is zero,
it sets the Z bit. If the result is not zero, it clears the Z bit. There are a
number of ways of obtaining a zero result:
• adding two numbers equal in magnitude but different in sign
• comparing two numbers of equal value

51

Instruction Set

• using the CLR or BIC instruction

N bit - The CPU looks only at the sign bit of the result. If the sign bit is
set, indicating a negative value, the CPU sets the N bit. If the sign bit is
clear, indicating a positive value, then the CPU clears the N bit.

e bit - The CPU sets the C bit automatically when the result of an
instruction has caused a carry out of the most significant bit of the
result. Otherwise, the C bit is cleared. During rotate instructions (ROL
and ROR), the C bitforms a buffer between the most significant bit and
the least significant bit of the word. A carry of 1 sets the C bit while a
carry of 0 clears the C bit. However, there are exceptions. For exam­
ple:

• SUB and CMP set the C bit when there is no carry.
• INC and DEC do not affect the C bit.
• COM always sets the C bit, TST always clears the C bit.

V bit - The V bit is set to indicate that an overflow condition exists. An
overflow means that the result of an instruction is too large to be
placed in the destination. There are two methods the hardware uses to
check for an overflow condition.

One way is for the CPU to test for a change of sign.

• When using single operand instructions, such as INC, DEC, or NEG,
a change of sign indicates an overflow condition.

• When using double operand instructions, such as ADD, SUB, or
CMP, in which both the source and destination have like signs, a
change of sign in the result indicates an overflow condition.

Another method used by the CPU is to test the N bit and C bit when
dealing with shift and rotate instructions.

• If only the N bit is set, an overflow exists.
• If only the C bit is set, an overflow exists.
• If both the Nand C bits are set, there is no overflow condition.

More than one condition code can be set by a particular instruction.
For example, both a carry and an overflow condition may exist after
instruction execution.

CONDITION CODE OPERATORS

o o

Figure 4-6 Condition Code Operators' Format

52

Instruction Set

Instruction Format
The format of the condition code operators is as follows:

• Bits 15-5 - the opcode
• Bit 4 - the "operator" which indicates set or clear with the values 1

and 0 respectively. If set, any selected bit is set; if clear, any selected
bit is cleared.

• Bits 3-0 - the mask field. Each of these bits corresponds to one of
the four condition code bits. When one of these bits is set, then the
corresponding condition code bit is set or cleared depending on the
state of the "operator" (bit 4).

EXAMPLES
The following examples and explanations illustrate the use of the vari­
ous types of instructions in a program.

Single Operand Instruction Example
This routine uses a tally to control a loop, which clears out a specific
block of memory. The routine has been set up to clear 308 byte loca­
tions beginning at memory address 600.

INIT: MOV #600,RO
MOV#30,R1

LOOP: CLRB (RO)+
DECR1
BNELOOP
HALT

Program Description
• The CLRB (RO)+ instruction clears the content of the location

specified by RO and increments RO.

• RO is the pOinter.
• Because the autoincrement addressing mode is used, the pOinter

automatically moves to the next memory location after execution of
the CLRB instruction.

• Register R1 indicates the number of locations to be cleared and is,
therefore, a counter. Counting is performed by the DEC. R1 instruc­
tion. Each time a location is cleared, it is counted by decrementing
R1.

• The Branch If Not Zero, BNE, instruction checks for done. If the
counter is not zero, the program branches back to clear another
location. If the counter is zero, indicating done, then the program
halts.

53

Instruction Set

Double Operand Instruction Example
The_ following routine moves characters to be printed from location
600 into a print buffer area in memory.

INIT: MOV #600, RO ;set up source address

START:

MOV #prtbuf, R1 ;set up destination address
MOV #76, R2 ;set up loop count

MOVB (RO)+, (R1)+ ;move one character
;and increment

DECR2
BNESTART
HALT

;both source and
;destination addresses
;decrement count by one
;Ioop back if
;decremented counter is not equal
to zero

Program Description
• MOV is the instruction normally used to set up the initial conditions.

Here, the first MOV places the starting address (600) into RO, which
will be used as a pOinter. The second MOV places the starting ad­
dress of the print buffer ,into R1. The third MOV sets up R2 as a
counter by loading the desired number of locations (76) to be print­
ed.

• The MOVB instruction moves a byte of data to the printer buffer. The
data comes from the location specified by RO. The pOinters RO and
R1 are then incremented to point to the nextsequentiallocation.

• The counter (R2) is then decremented to indicate one byte has been
transferred.

• The program then checks the loops for done with the BNE instruc­
tion. If the counter has not reached zero, indicating more transfers
must take place, then the BNE causes a branch back to START and
the program continues.

• When the counter (R2) reaches zero, indicating all data has been
transferred, the branch does not occur and the program halts.

Branch Instruction Example

NOTE
Branch instruction offsets are limited to the range of
+ 1778 to - 2008 words.

A payroll program has set up a series of words to identify each
employee by his badge number. The high byte of the word contains
the employee's badge number, the low byte contains an octal number

54

Instruction Set .

ranging from 0 to 13 which represents his salary. These numbers
represent steps within three wage classes to identify which employees
get paid weekly, monthly, or quarterly. It is time to make out weekly
paychecks. Unfortunately, employee information has been stored in a
random order. The problem is to extract the names of only those
employees who receive a weekly paycheck. Employee payroll num­
bers are assigned as follows: 0 to 3 - Wage Class I (weekly), 4 to 7 -
Wage Class II (monthly), 10 to 13 - Wage Class III (quarterly).

600 is the starting address of memory block containing the employee
payroll information. 1264 is the final address of this data area. The
following program searches through the data area and finds all num­
bers representing wage class I, and, each time an appropriate number
is found, stores the employee's badge number (just the high byte) on a
"Iast-in/first-out" stack which begins at location 4000.

INIT: MOV #600, RO
MOV #4000, R1

START: CMPB(RO)+,#3

BHI CO NT

STACK: MOVB (RO), -(R1)

CO NT: INCRO

CMP #1264,-RO

BHISSTART

Program Description
• RO becomes the address pointer, R1 the stack pOinter.
• Compare the contents of the first low byte with the number 3 and go

to the first high byte.

• If the number is more than 3, branch to continue.
• If no branch occurs, it indicates that the number is 3 or less. There­

fore, move the high byte containing the employee's number onto the
stack as indicated by stack pOinter R1.

• RO is advanced to the next low byte.
• If the last address has not been examined (1264), this instruction

produces a result equal to or greater than zero.

55

Instruction Set

• If the result is equal to or greater than zero, examine the next memo­
ry location.

INSTRUCTION SET
The PDP-11 instruction set is presented in the following section. For
ease of reference, the instructions are listed alphabetically.

SPECIAL SYMBOLS
You will find that a number of special symbols are used to describe
certain features of individual instructions. The commonly used
symbols are explained below.

SYMBOL MEANING

MN

SO

DO

PC

MS

CC

o

src

dst

(SP)+

-(SP)

A

v

Reg or R

B

Maintenance Instruction

Single Operand Instruction

Double Operand Instruction

Program Control Instruction

Miscellaneous Instruction

Condition Code

Indicates the contents of. For example, (R5)
means "the contents of R5."

Source address

Destination address

Becomes, or moves into. For example, (dst)
..- (src) means that the source becomes the
destination or that the source moves into
the destination location.

Popped or removed from the hardware
stack

Pushed or added to the hardware stack

Logical AND

Logical inclusive OR (either one or both)

Logical exclusive OR (either one, but not
both)

Logical NOT

Register

Byte

56

SYMBOL

M.P.I.

M.N.I.

Instruction Set

MEANING

Most Positive Integer-077777(word) or 177
(Byte)

Most Negative Integer-100000(word) or
200 (Byte)

NOTE
Condition code bits are considered to be cleared
unless they are specifically listed as set.

57

0'1

Mnemonic/
Instruction

AOC
AOCB
Add Carry

CD ADD
Add

Type

SO

DO

Table 4-1 PDP-11 Instruction Set

OPCode Operation

005500 (dst) +- (dst)+C
105500

06SS00 (dst) +- (src) +
(dst)

Condition Codes

N: set if result < 0
Z: set if result = 0
V: set if (dst) was M.P.I.

and C was 1
C: set if (dst) was -1

and Cwas 1

N: set if result < 0
Z: set if result = 0
V: set if there is ar-

ith metic overflow as
a result of the oper­
ation; that is, both
operands were of
the same sign and
the result is of the
opposite sign

C: set if there is a carry
from the most sig­
nificant bit of the re­
sult

Description

Adds the contents of the C bit into
the destination.

~
:;­
r::
(')

Adds the source operand to the g:
destination operand and stores the ~
result at the destination address. ~
The original contents of the desti­
nation are lost. The contents of the
source are not affected. 2's com­
plement addition is performed.

Table 4·1 PDp·11 Instruction Set, cont.

Mnemonic!
Instruction Type OPCode Operation Condition Codes Description

ASH DO 072RSS R +- R shifted ar- N: set if result < 0 The contents of the register are
Arithmetic ithmetically NN Z: set if result = 0 shifted right or left the number of
Shift places to rig ht or V: set if sign of register times specified by the shift count

left where NN = changed during (Le., bits <5:0> of the source op-
(src) <5:0> shift. Cleared if NN erand). The shift count is taken as

= O. the low order 6 bits of the source . S-
CI)

C: loaded from last bit operand. This number ranges from ~ r::: 01
shift out of register. -32 to +31. Negative is a right shift

(')
<.0 -.. o·

Cleared if NN = O. and positive is a left shift. ::J
CI)
CD -..

ASHC DO 073RSS tmp+-R, Rv1 N: set if result < 0 The contents of the specified regis-
Arithmetic tmp +- tmp shift- Z: set if result = 0 ter R, and the register Rv1 are
Shift ed NN bits V: set if sign bit treated as a single 32-bit operand
Combined R+-tmp<31: changes during the and are shifted by the number of

16> shift bits specified by the count field
Rv1 +-tmp<15: C: loaded with high or- (bits <5:0> of the source operand)
0> der bit when left and the registers are replaced by
The double word shift; loaded with the result. First, bits <31:16> of
R,Rv1 is shifted low order bit when the result are stored in register R.
NN places to the right shift, (loaded Then, bits < 15:0> of the result are

0)
o

Mnemonic/
Instruction

ASL
ASLB

Type

SO
SO

Table 4·1 PDP·11 Instruction Set, cont.

OPCode Operation

006300
106300

right or left,
where NN = (src)
<5:0>

(dst) +- (dst)
shifted one place

Condition Codes

with the last bit shift­
ed out of the 32-bit
operand}

N: set if high order bit
of the result is set

Description

stored in register Rv1. The count
ranges from -32 to +31. A nega­
tive count signifies a right shift. A
positive count signifies a left shift.
A zero count implies no shift, but
condition codes are affected. Con-

s-
CI)
:::;-

dition codes are always set on the a
32-bit result. g.

::J

Note: 1) The sign bit of the register g>
R is replicated in shifts to the right. -
The least significant bit is filled with
zero in shifts to the left. ihe C bit
stores the last bit shifted out. 2} In­
teger overflOw occurs on a left shift
if any bit shifted into the sign ·posi­
tion differs from the initial sign of
the register.

Shifts all bits of the destination left
one place. The low order bit is

Table 4·1 PDP·11 Instruction Set, cont.

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

Arithmetic to the left (result < 0) . loaded with a O. The C bit of the
Shift Left Z: set if the result = 0 status word is loaded from the high

V: loaded with the ex- order bit of the destination. ASL
clusive OR of the N performs a signed multiplication of
bit and C bit (as set the destination bY'2 with overflow'
by the completion of indication. For example, -1 shifted S-

CI)

the shift operation) left yields -2, +2 shifted left yields 2" m C: loaded with the high +4, and -3 shifted left yields -6. 0
~ g.

order bit of the des- ::J

tination en
(I) -

ASR SO 006200 (dst) +- (dst) N: set if the high order Shifts all bits of the destination
ASRB SO 106200 shifted one place bit of the result is set right one place. The high order bit
Arithmetic to the right (result < 0) is replicated. The C bit is loaded
Shift Right Z: set if the result = 0 from the low order bit of the desti ..

V: loaded from the ex- nation. ASR performs signed divi-
clusive OA of the N sion of the destination by 2, round-
bit and C bit (as set ed to minus infinity. -1 shifted
by the completion of right remains -1, +5 shifted right
the shift operation) yields +2, -5 shifted right yields

C: loaded from low or- ...,.3.

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonicl
Instruction Type OPCode Operation Condition Codes Description

der bit of the desti- Note: In the PDP-11 160, the ASRB
nation does a DATIIDATIP/DATO bus se-

quence in the execution portion of
the instruction. This allows an in-
terlocking of memory addresses. If

S-
an 1/0 page reference is made, the CI)

::;-
ASRB does a DATIP/DATIP/DATO c:

0') 0
N bus sequence during instruction g.

execution.
:::J
Ct.I
CD -BCC PC 103000 PC PC + N: unaffected Tests the state of the C bit and

Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if C is clear.
carry clear bit C=O V: unaffected

offset C: unaffected

BCS PC 103400 PC PC + N: unaffected Tests the state of the C bit and
Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if C is set. Used to
carry set bit C = 1 V: unaffected test for a carry in the result of a

offset C: unaffected previous operation.

BEQ PC 001400 PC PC + N: unaffected Tests the state of the Z bit and

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if Z is set. As an
equal (to bit Z=1 V: unaffected example, it is used to test equality
zero) offset C: unaffected following a CMP operation, to test

that no bits set in the destination
were also set in the source follow-
ing a BIT operation, and, generally, S"
to test that the result of the previ-

CIJ

2
0') ous operation was O. 0
w g:

BGE PC 002000 PC PC + N: unaffected Causes a branch if N equals V (Le.,
:;:,
C/.)

Branch if PLUS 8- (2 X offset) if Z: unaffected either both clear or both set). BGE Q) -
greater bit N-V-V=O V: unaffected is the complementary operation to
than offset C: unaffected BLT. Thus, BGE always causes a
or equal branch when it follows an opera-

tion that caused addition to two po-
sitive numbers. BGE also causes a
branch on a 0 result.

BGT PC 003000 PC PC + N: unaffected Causes a branch if Z is clear and N
Branch if PLUS 8- (2 X offset) if Z: unaffected equals V. Thus, BGT never branch-
greater bit Zv(N¥V) = 0 V: unaffected es following an operation that add-
than offset C: unaffected ed two negative numbers, even if

m
~

Mnemonic/
Instruction

BHI
Branch if
higher

Type

PC

Table 4·1 PDp·11 Instruction Set, cont.

OPCode Operation

101000
PLUS 8-
bit
offset

PC~PC+

(2 X offset) if
C = Oand Z = 0

Condition Codes

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description

overflow occurred. In particular,
BGT never causes a branch if it fol­
lows a CMP instruction operating
on a negative source and a positive
destination (even if overflow oc­
curred). Further, BGT always
causes a branch when it follows a
CMP instruction operating on a
positive source and negative desti­
nation. BGT does not cause a
branch if the result of the previous
operation was 0 (without overflow).

Causes a branch if the previous
operation causes neither a carry
nor a 0 result. This will happen in
comparision (CMP) operations as
long as the source has a higher un­
signed value than the destination.

s-
CI)

2
()
::!' o·
::;,
CI.l
en

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

BHIS PC 103000 PC+-PC + N: unaffected Tests the state of the C bit and
Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if C is cleared.
higher bit C=O V: unaffected
than or offset C: unaffected
same

S-
BIC DO 04SSDD (dst) +- '" (src) A N: set if high order bit Clears each bit in the destination

(I)

~

m BICB 14SSDD (dst) of result set that corresponds to.a set bit in the .
s:::
C')

Bit Clear Z: set if result = 0 . source. The original contents of the
g.
:J

V: cleared destination are lost. The contents en
CD

C: not affected of the source are unaffected.
...

BIS DO 05SSDD (dst) +- N: set if high order bit Performs inclusive OR operation
BISB 15SSDD (src)v(dst) of result set between the source and destina-
Bit Set Z: set if result = 0 tion operands and leaves the result

V: cleared at the destination address, i.e.,
C: not affected corresponding bits set in the

source are set in the destination.
The contents of the destination are
lost.

0)
0)

Mnemonic!
Instruction

BIT
BITB
Bit Test

BlE
Branch if
less
than or
equal to

Type

DO

PC

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes

03SSDD (dst) A (src) N: set if high order bit
13SSDD of result set

Z: set if result = 0
V: cleared
C: not affected

003400 PC PC + N: unaffected
PLUS 8- (2 X offset) if Z: unaffected
bit Zv(N¥V) = 1 V: unaffected
offset C: unaffected

Description

Performs logical AND comparison
of the source and destination oper-
ands and modifies condition codes
accordingly. Neither the source
nor destination operands are af-
fected. The BIT instruction may be S-

CI)

used to test whether any of the cor-
=:;-
c::
0

responding bits that are set in the ::!:
0

destination are clear in the source. ::J
Ci)
ctI

Causes a branch if Z is set or if N
....

does not equal V. Thus, BlE al-
ways branches following an opera-
tion that added two negative num-
bers, even if overflow occurred. In
particular, BlE always causes a
branch if it follows a CMP instruc-
tion operating on a negative source
and a positive destination (even if
overflow occurred). Further, BlE
never causes a branch when it fol-

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

lows a CMP instruction operating
on a positive source and negative
destination. BlE always causes a
branch if the result of the previous
operation was O.

BlO PC 103400 PC PC + N:. unaffected Tests the state of the C bit and
:;-
(I.)

0) Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if C is set. Used to 2
0

"'" lower bit C = 1 V: unaffected test for a carry in the result of a g:
offset C: unaffected previous operation.

;:,
CI)
CD -

BlOS PC 101400 PC PC + N: unaffected Causes a branch if the previous
Branch if PLUS 8- (2 X offset) if Z: unaffected operation caused either a carry or
lower bit CvZ = 1 V: unaffected a 0 result. BlOS is the com-
or same offset C: unaffected plementary operation to BHI. The

branch occurs in comparison op-
erations as long as the source is
equal to or has a lower unsigned
value than the destination.

BlT PC 002400 PC PC + N: unaffected -Causes a branch if the exclusive

0)
(XI

Mnemonic/
Instruction

Branch if
less than

BMI
Branch if
minus

Type

PC

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes

PLUS 8- (2 X offset) Z: unaffected
bit ifN¥V = 1 V: unaffected
offset C: unaffected

100400 PC+-PC + N: unaffected
PLUS 8- (2 X offset) if Z: unaffected
bit N=1 V: unaffected
offset C: unaffected

Description

OR of the Nand V bits is 1. Thus,
Bl T always branches following an
operation that added two negative
numbers, even if overflow oc-
curred. In particular, Bl T always S'
causes a branch if it follows a CMP (I)

~
instruction operating on a negative s:::

(')

source and a positive destination g.
~

(even if overflow occurred). Fur- ('I)
CD

ther, BlT never causes a branch -
when if follows a CMP instruction
operating on a positive source and
negative destination. Bl T does not
cause a branch if the result of the
previous operation was 0 (without
overflow).

Tests the state of the N bit and
causes a branch if N is set. Used to
test the sign (most significant bit)
of the result of the previous opera-
tion.

0)
co

Mnemonic/
Instruction

BNE
Branch if
not equal

BPL
Branch if
plus

BPT
Breakpoint
Trap

Type

PC

PC

PC

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes

001000 PC+-PC + N:/unaffected
PLUS 8- (2 X offset) if Z: unaffected
bit Z=O V: unaffected
offset C: unaffected

100000 PC+-PC + N: unaffected
PLUS 8- (2 X offset) if Z: unaffected
bit N=O V: unaffected
offset C: unaffected

000003 -(SP)+-PS N: loaded from trap
-(SP) +- PC vector
PC +-(14) Z: loaded from trap
PS +-(16) vector

V: loaded from trap

Description

Tests the state of the Z bit and
causes a branch if the Z bit is clear.
BNE is the complementary opera-
tion to BEQ. It is used to test
inequality following a CMP, to test
that some bits set in the destination S-

CI)

were also in the source, following a ::::-s:::
(')

BIT, and, generally, to test that the g.
result of the previous operation ~

CI)

was notO. CD
Tests the state of the N bit and
causes a branch if N is clear. BPL
is the complementary operation of
BMI.

Performs a trap sequence with a
trap vector address of 14. Used to
call debugging aids. The user is
cautioned against employing code
000003 in programs run under

-....t
0

Mnemonic/
Instruction

BR
Branch
(Uncondi-
tional)

BVC
Branch if V
bit
clear

BVS
Branch if
V bit set

Type

PC

PC

PC

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes

vector
C: loaded from trap

vector

000400 PC PC + N: unaffected
PLUS 8- (2 X offset) Z: unaffected
bit V: unaffected
offset C: unaffected

102000 PC PC + N: unaffected
PLUS 6- (2 X offset) if Z: unaffected
.bit offset V=O V: unaffected

C: unaffected

102400 PC PC + N: unaffected
PLUS 8- (2 X offset) if Z: unaffected
bit V=1 V: unaffected
offset C: unaffected

Description

these debugging aids. No informa-
tion is transmitted in the low byte.

Provides a way of transferring pro- S
gram control within a range of (J)

-128 to + 127 words with a one 2
0

word instruction. An unconditional ::t
0
::J

branch. en
CD -Tests the state of the V bit and

causes a branch if the V bit is clear.
BVC is the complementary opera-
tion to BVS.

Tests the state of V bit and causes
a branch if the V bit is set. BVS is
used to detect arithmetic overflow
in the previous operation.

'"

Mnemonic/
Instruction

CLR
CLRB
Clear

C
Clear se-
lected
condition
code
bits

CCC
Clear all
condition
code
bits

CLC
ClearC

Type

SO

CC

CC

CC

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes Description

005000 (dst) +- 0 N: cleared Contents of specified destination
105000 Z: set are replaced with zeros.

V: cleared
C: cleared

000240 Clear condition code bits. Selectable combinations of these bits may be S-
CI)

PLUS 4- cleared together. Condition code bits corresponding to bits in the condition :::;-
s:::

bit mask code operator (Bits 0-3) are modified. Clears the bit specified by the mask; i.e.,
0 g:

bit 0, 1, 2, or 3. Bit 4 is a O. :l
CI)

Operation:
(I)

PSW <3:0> +-PSW <3:0>A[-mask <3:0>]

00257 N, Z, V, C+-O

000241 C+-O

Mnemonic/
Instruction

ClN
Clear N

ClV
Clear V

~ ClZ
I\:) Clear Z

CMP
CMPB
Compare

Type

CC

CC

CC

DO

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation

000250

000242

000244

02SSDD
12SSDD

N+-O

V+-O

Z+-O

(src).- (dst)
[in detail
(src) + '" (dst) +
1]

Condition Codes

N: set if result < 0
Z: set if result = 0
V: set if there is ar-

ithmetic overflow;
i.e., operands of op­
posite signs and the
sign of the destina­
tion is the same as
the sign of the result

C: set if there is a bor­
row into the most

Description

s-
O)

2
()

g.
:;,
C/)

Compares the source and destina- a
tion operands and sets the condi-
tion codes, which may then be
used for arithmetic and logical
conditional branches. Both oper­
ands are unaffected. The only ac-
tion is to set the condition codes.
The compare is customarily fol-
lowed by a conditional branch in­
struction. Note that unlike the
subtract instruction, the order of

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

significant bit, i.e., if operation is (src)-(dst), not (dst)-
(src)+-(dst)+1 was (src).
less than 2**16

COM SO 005100 (dst) +- - (dst) N: set if most signifi- Replaces the contents of the desti-
COMB 105100 cant bit of result = 1 nation address by their logical :s-

CI)

Com ple- Z: set if result = 0 complements (each bit equal to 0 2"
() -....I

V: cleared set and each bit equal to 1 g. (,.) ment
C: set cleared).

::;,
C/)
CD -

CSM PC 007000 IfMMR3<3> = N: unaffected CSM may be executed in Useror
Call to 1 and current Z: unaffected Supervisor Mode, but is an illegal
Supervisor mode ;r6. kernel V: unaffected instruction in Kernel mode. CSM
Mode then: C: unaffected copies the current stack pOinter to
(POP- begin the Supervisor Mode (SP), switch-
11/44 only) Supervisor SP +- es to Supervisor Mode, stacks

current mode three words on the Supervisor
SP; stack, (the PSW with the condition
temp <15:4> +- codes cleared, the PC, and the ar-
PSW <15:4>; gument word addressed by the op-

-.....I
~

Mnemonic!
Instruction

DEC
DECB
Decrement

Type

SO

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation

temp <3:0> +- 0;
PSW <13:12> +­
PSW <15:14>;
PSW <15:14> +-
01;
PSW <4> +-0;
-(SP) +- temp;
-(SP) +-PC;
-(SP) +- (dst);
PC +- (10);
end;
else trap to 10 in
kernel mode;

005300 (dst) +- (dst) - 1
105300

Condition Codes

N: set if result < 0
Z: set if result = 0
V: set if (dst) was

M.N.I.
C: not affected

Description

erand), and sets the PC to the con­
tents of location 10 (in Supervisor
space). The called program in Su­
pervisor space may return to the
calling program by popping the S-

CI)

argument word from thastack and ::;-. ~
executing RTI. On return, the con- g,
dition codes are determined by the g"
PSW word on the stack. Hence, the ~
called program in Supervisor
space may control the condition
code values following return.

Subtracts 1 from the contents of
the destination.

-

......
0'1

Mnemonic/
Instruction

DIV
Divide

EMT
Emulator
Trap

Type

DO

PC

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes

071RSS R,Rv1 ~ N: set if quotient < 0
R,Rv1/(src) (unspecified if V =

1)
Z: set if quotient = 0

(u nspecified if V =
1)

V: set if source = 0 or if
quotient cannot be
represented as a
16-bit 2's com ple-
ment number. R,
Rv1 are unpredicta-
ble if V is set and C
is clear.

C: set if divide by 0 is
attempted

104000 -(SP)~PS N: loaded from trap
to -(SP)~PC vector
104377 PC~(30) Z: loaded from trap

Description

The 32-bit 2's complement integer
in Rand Rv1 is divided by the
source operand. The quotient is
left in R; the remainder in Rv1 is of
the same sign as the dividend. R

5" must be even. C'I.I - 2'
0
g.
:::s
CI)
CD -

All operation codes from 104000 to
104377 are EMT instructions and
may be used to transmit informa-

......
0)

Mnemonic/
Instruction

HALT

Type

MS

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation

PS +-(32)

000000

Condition Codes

vector
V: loaded from trap

vector
C: loaded from trap

vector

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description

tion to the emulating routine (e.g.,
function to be performed). The trap
vector for EMT is at address 30.
The new PC is taken from the word
at address 30; the new central
processor status word (PS) is tak­
en from the word at address 32.

Caution: EMT is used frequently
by DIGITAL system software and is
therefore not recommended for
general use.

Causes the processor operation to
cease. The console is given control
of the processor. The consol~ data
lights display the contents of the
PC (which is the address of the
HALT instruction plus 2). Transfers
on the UNIBUS are terminated im­
mediately. Pressing the continue

S'
C'I)

~ c:: o
g.
:;:,
CI)
CD

......

......

Mnemonic/
Instruction

INC
INCB
Increment

lOT
I/O Trap

Type

SO

PC

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes

005200 (dst) (dst) + 1 N: set if result < 0
105200 Z: set if result = 0

V: set if(dst) was M.P.I.
C: not affected

000004 -(SP) PS N: loaded from trap
-(SP) PC vector
PC (20) Z: loaded from trap
PS (22) vector

V: loaded from trap
vector

C: loaded from trap
vector

Oescription

key on the console causes proces-
sor operation to resume.

Adds 1 to the contents of the desti-
nation.

S-
CI)

~ s:::
0
g.

Performs a trap sequence with a
:;,
C/)

trap vector address of 20. Used to CD
call the I/O executive routine lOX in
the paper tape software system
and for error reporting in the disk
operating system. No information
is transmitted in the low byte.

.......
en

Mnemonic/
Instruction

JMP
Jump

Type

PC

Table 4·1 PDp·11 Instruction Set, cont.

OPCode Operation

000100 PC ... dst

Condition Codes

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description

JMP provides more flexible pro­
gram branching than provided with
the branch instruction. It is not lim­
ited to + 1778 and - 2008 as are
branch instructions. JMP does
generate a second word, which
makes it slower than branch in­
structions. Control may be trans­
ferred to any location in memory
(no' range limitation) and can be
accomplished with the full flexibili­
ty of the addressing modes with
the exception of register mode O.
Execution of a jump with mode 0
will cause an illegal instruction
condition. (Program control cannot
be transferred to a register.) Regis­
ter deferred mode is legal and will
cause program control to be trans­
ferred to the address held in the

s-
CI)

~
C')

a-
:l
C/)
CD -

.....
co

Mnemonic/
Instruction

JSR
Jumpto
Subroutine

Type

PC

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation

004RDD (tmp) +- (dst)
(tmpis an inter­
nalprocessor
register)
.(SP) +- reg
(push reg con­
tents onto proc­
essor stack)
reg +- PC (PC

. .
holds the loca-
tion following
JSR; this address

Condition Codes

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description

specified register. Note that in­
structions are word data and
therefore must be fetched from
an even numbered address. A
boundary error trap condition will _

::;,
result when the processor at- ~
tempts to fetch an instruction a

.
from an odd address. g.
In execution of the JSR, the old ~
contents of the specified register
(the linkage pointer) are automati­
cally pushed onto the RS stack and
new linkage information placed in
the register. Thus, subroutines
nested within subroutines to any
depth may all be called with the
same linkage register. There is no
need either to plan the maximum
depth at which any particular sub­
routine will be called or to include

co o

Mnemonic/
Instruction Type

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation

now put in reg)
PC +-tmp (PC
now pOints to
subroutine ad­
dress)

Condition Codes Description

instructions in each routine to save
and restore the linkage pOinter.
Further, since all linkages are
saved in a re-entrant manner on
the R6 stack, execution of a sub­
routine may be interrupted, and
the same subroutine re-entered
and executed by an interrupt ser­
vice routine. Execution of the initial
subroutine can then be resumed
when other requests are satisfied.
This process (called nesting) can
proceed to any level.

JSR PC, dst is a special case of the
PDP-11 subroutine call suitable for
subroutine calls that transmit para­
meters through the general pur­
pose registers. JSR, with the PC as
the linkage register, saves the use
of an extra register.

s-
CI)

2
(')
::!" g"
C/)
Q)

(X)

Mnemonicl
Instruction

LDUB
Load
Microbreak
Register

Type

MN

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes Description

170003

Note: If the register specified in the
first operand register is autoincre­
mented or autodecremented in the
second operand (dst) evaluation,
the modified register contact is
pushed on SP. For example, JSR
R5,@(R5)+ will cause the modified
value of R5 to be pushed to SP.

In the 11/60, causes the lower 8 bits of general register 3 in the CPUto be
loaded into the microbreak register. LDUB can be used for the functions de­
scribed below, depending on the FMM bit (bit 04) in the program status word
(FPS). The FMM bit in the status word is used to enable special maintenance
logic. In order to set this bit, the CPU must be in Kernel mode.

With the FMM bit set, the microprogram will be aborted through JAM JLstate
address 777 to the Ready state after the state specified by the address (next
sequential JLstate) in the microbreak register is detected. If the interrupt enable
bit (bit 14) of the floating point processor status word is set, the CPU will trap to
location 244. An exception code of 16 will be stored in the FEC (floating excep-

:;-
C'I)

g
g:
:;,
C/)
CD -

(X)
I\)

Mnemonic/
Instruction

MARK

MED
Mainte­
nance,
Exam,
and Dep

Type

PC

MN

Table 4-1 PDP-11 Instruction Set, cont.

OPCode . Operation Condition Codes Description

0064NN

tion cbde) register. The contents of the FEC register can be transferred to the
CPU by the STST (store status) instruction. A second function, available as a
result of the LDUB instruction, is that the maintenance personnel can use the
address match as a scope sync independent of the FMM bit. When the address
matches the contents of the microbreak register, the micro MATCH signal is
present. This output is pin DC1 (slot 8 in the FNUA module) and is used as a
scope sync to allow visual observation. of events that occur during a particular
,ustate.

SP PC +2 X
NN
PC RS
RS (SP)+
NN = number of
parameters

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Used as part of the standard PDP-
11 subroutine return convention.
MARK facilitates the stack clean-
up procedures involved in subrou­
tine exit. Assembler format is:
MARKN

076600 Used in the 11 /~O for a processor-specific maintenance function. The first word
is used as an escape, with the CODE specifying the operation and address. The

_ instruction is executed only in Kernel mode. Its main purpose is to allow error
logging of internal registers and examination of internal registers for diagnostic

~
2 o
::!' g"
g> -

(X)
(,)

Mnemonicl
Instruction Type

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes Description

purposes through the EXAM function. Instruction execution in user mode will
result in a trap to 10.

The instruction also allows an alteration of registers through the write code.

Note: The cache is turned off via an internal UNIBUS address.

The OPERATION CODE is specified and is register- and operation-dependent.
The code directly benefits 1 j 160 microcode.

RO, a general register, contains the information to be deposited or the results of
an examination. The instuction is mainly for diagnostic purposes and failsafe
features will not exist. The use of illegal operation codes will only be defined to
the extent of completion of the instruction; no-op's will occur. Condition codes
are unaltered for this instruction.

The operation codes for the registers and function are noted below:

MED MED
CODE REGISTER AND FUNCTION CODE REGISTER AND FUNCTION

XXXOOX LOW HALF ASP LOW (READ) XXX154 CACHE INVALIDATE
XXX01X HIGH HALF ASP LOW (READ) XXX155 READ CACHE TAG
XXX02X LOW HALF ASP HIGH (READ) XXX20X LOW HALF ASP LOW

(WRITE)
XXX03X HIGH HALF ASP HIGH (READ) XXX21X HIGH HALF ASP LOW

(WRITE)

s-
CI)

2 o g.
:3
CI)
CD -

<XI
~

Mnemonic!
Instruction Type

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes Description

XXX04X LOW HALF BSP LOW (READ) XXX22X LOW HALP ASP HIGH
(WRITE)

XXX05X HIGH HALF BSP LOW (READ) XXX23X HIGH HALF ASP HIGH
(WRITE)

XXX06X LOW HALF BSP HIGH (READ) XXX24X LOW HALF BSP LOW
(WRITE)

XXX07X HIGH HALF BSP HIGH (READ) XXX25X HIGH HALF BSP LOW
(WRITE)

XXX100 CSP(O) (READ) XXX26X LOW HALF BSP HIGH
(WRITE)

XXX101 CSP(1) (READ) XXX27 HIGH HALF BSP HIGH
(WRITE)

XXX 1 02 CSP(2) (READ) XXX300 CSP(O) (WRITE)
XXX 1 03 CSP(3) (READ) XXX301 CSP(1) (WRITE)
XXX104 CSP(4) (READ) XXX302 CSP(2) (WRITE)
XXX105 CSP(5) (READ) XXX303 CSP(3) (WRITE)
XXX 1 06 CSP(6) (READ) XXX304 CSP(4) (WRITE)
XXX 1 07 CSP(7) (READ) XXX305 CSP(5) (WRITE)
XXX110 CSP(10)(READ) XXX306 CSP(6) (WRITE)
XXX111 CSP(11)(READ) XXX307 CSP(7) (WRITE)

S
C/)

2
0
g.
;::,
CI)
<D -

CD
01

Mnemonic!
Instruction

MFPD
Move from
previous

Type

MS

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes

XXX112 CSP(12) (READ)
XXX113 CSP(13) (READ)
XXX114 CSP(14) (READ)
XXX115 CSP(15)(READ)
XXX116 CSP(16)(READ)
XXX117 CSP(17) (READ)
XXX140 JAM (READ
XXX141 SERVICE (READ)
XXX142 NOP
XXX143 CUA (READ)
XXX144 FLAG REGISTER (READ)
XXX145 NOP
XXX146 NOP
XXX147 COUNT REGISTER (READ)
XXX152 DCS REGISTER #1 .(READ)
XXX153 DCS REGISTER #2 (READ)

Descri ption

XXX310 CSP(10) (WRITE)
XXX311 CSP(11) (WRITE)
XXX312 CSP(12)(WRITE)
XXX313 CSP(13) (WRITE)
XXX314 CSP(14) (WRITE)
XXX315 CSP(15) (WRITE)
XXX316 CSP(16) (WRITE)
XXX317 CSP(17) (WRITE)
XXX344 FLAG REGISTER (WRITE)
XXX345 0 REGISTER (WRITE)
XXX346 SHIFT REGISTER (WRITE)
XXX347 COUNTER (WRITE)
XXX350 NUA (WRITE)
XXX351 RES REGISTER (WRITE) .
XXX352 INIT REGISTER (WRITE)
XXX353 NOP

1065SS tmp +- (src) N: set if the source < 0 Pushes a word onto the current R6
0065SS -(SP) +- tmp Z: set if the source = 0 stack from an address in previous

V: cleared space determined by PS<13:12>.

s
(I)

2
(")

g.
:;:,
en
CD

(X)
en

Mnemonicl
Instruction

data space
MFPI
Move from
previous
instruction
space

MFPS
Move Byte
from PSW

Type

MS

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation

10S7DD (dst) ~ PS<7:0>
dst lower 8 bits

Condition Codes

C: unaffected

N: set if PS bit 7 = 1
Z: set if PS <0:7> = 0
V: cleared
C: not affected

Description

The source address is computed
using the current registers and
memory map. When MFPI is exe­
cuted and both previous mode and
current mode are User, the instruc- S'

CI.I
tion functions as though it were 2"
MFPD. Not implemented on the 2:
PDP-11/04. MFPD is identical to g
M FPI on the PDP 11 134A and ~
11 ISO, and on the 11/44 and 11/70
when D-space is disabled.

The 8-bit contents of the PS are
moved to the effective destination.
If destination is mode 0, PS bit 7 is
sign extended through the upper
byte of the register. The destina­
tion operand is treated as a byte
address. 11/34A only.

-

(X)
......

Mnemonicl
Instruction

MFPT
Move From
Processor
(PDP-
11/44
ONLY

MNS
Mainte-
nance
normaliza-
tion
shift

Type

MS

MN

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes Description

000007 RO<7:0> +- N: not affected No source operands are used. The
processor model Z: not affected MFPT instructions returns in the

code V: not affected low byte of RO a processor model

RO<15:8> C: not affected code (1 on the PDP-11 144). The

+-processor sub- high byte of RO is loaded with a

code processor specific subcode, (cur- S
C'I)

rently 0 on the PDP-11 144). The ::::-c:
0

condition codes are not affected . =:!:
0

The previous contents of RO are
;:,
CI)

lost.
CI) -

Note: On processors where this in-
struction is not implemented, a re-
served instruction trap through
veclor 10s is taken.

1'10004 On the 11/60, rounds the contents of FSPAD (0) in bit position 34 (02) for
floating (double) precision number; left-shifts two places the results of the
rounding operation (this action effectively drops the hidden bit); normalizes the
resulting number using the NORMK indirect control of the shifter (result is left
in FSPAD (1)); adjusts the exponent of ACO (E(O)) to reflect normalization.
Result is left in E(1).

(X)
(X)

Mnemonicl
Instruction

MOV
MOVS
Move

MPP
Mainte-
nance
Partial
Product

Type

DO

MN

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes Description

01SSDD (dst) +- (src) N: set if (src) < 0 Moves the source operand to the
11SSDD Z: set if (src) = 0 destination location. The previous

V: cleared contents of the destination are lost.
C: not affected The source operand is not affect-

ed. -:;, en
Syte: Same as MOV. The MOVS to 2'
a register (unique among byte in- C) --. structions) extends the most 0

:;,

significant bit of the low order byte g> -(sign extension). Otherwise MOVS
operates on bytes exactly as MOV
operates on words.

170005 In the 11 ISO, used for diagnostic purposes to test the multiplication network
(MULNET).

A 3S-bit partial product (MNETCARRY plus MNETSUM) and a 3S-bit limited
product (MNETSUM) is generated from:

FSPA (0) <31 :03>. FSPAD (0) <42:35>.

The result is stored in FSPAD (1) <58:23> (MNETSUM), and FSPAD (2)
•

00 co

Mnemonicl
Instruction

MTPD
Move to
previous
data space
MTPI
Move to
previous
instruction
space

MTPS

Type

MS

MS

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes Description

<58:23> (MNETSUM plus MNETCARRY).

The exponents of FSPAD (1) and FSPAD (2) save the information needed to
establish the contents of the most significant bit (AR <58» of MNETSUM and
MNETSUM plus MNETCARRY.

1066DD tmp+-SP+ N: set if the source < 0 This instruction pops a word off the ~
0066DD (dst)+-tmp Z: set if the source = 0 current R6 stack determined by PS ~

V: cleared (bits 15,14) and stores that word , g.
C: unaffected into an adc,lress in previous space ~

(I)

determined by PS (bits 13,12). The CD
destination address is computed
using the current registers and
memory map.

Not implemented on the PDP-
11/04. MTPD is identical to MTPI
on the 11 134A and 11/60, and on
the 11 144 and 11170 when D-space
is disabled.

1064SS PS +-(src) N: set according to ef- The 8 bits of the effective operand

co
0

Mnemonic/
Instruction

Move Byte
toPSW

MUL
Multipy

Type

DO

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes

fective src operand
0-3

Z: same as above
V: same as above
C: same as above

070RSS R,Rv1 +-R X N: set if product < 0
(src) Z: set if product = 0

V: cleared
C: set if the result is

less than _215 or
greater than or
equal to 215. Condi-
tion codes set on
32-bit result even if
R is odd.

Description

replace the current contents of the
PS <0:7>. The source operand
address is treated as a byte ad-
dress. Note that PS bit 4 cannot be
set with this instruction. The src 5'"
operand remains unchanged. C'I) -2 11/34A only. (')

::t
0

The contents of the destination :::J
CI)

register and source taken as 2's Q) -complement integers are multi-
plied and stored in the destination
register and the succeeding regis-
ter (if R is even). If R is odd, only
the low order product is stored.
Assembler syntax is: MUL S,A.
(Note that the actual destination is
R, Rv1, which reduces to just R
when R is odd.)

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonicl
Instruction Type OPCode Operation Condition Codes Description

NEG SO 00540D (dst) +- -(dst) N: set if result < 0 Replaces the contents of the desti-
NEGB 105400 Z: set if result = 0 nation address by its 2's comple-
Negate V: set if result = M.N.I. ment. Note that 100000 is replaced

C: cleared if result = 0; by itself.
set otherwise

S-
CI)

RESET MS 000005 N: unaffected Sends INIT on the UNIBUS for 2
<0 Z: unaffected 10ms. All devices on the unit are

(')

....I. g.
V: unaffected reset to their state at power..;up. ;:,

CI)

C: unaffected Within the POP-11 160 processor, CD -
the stack limit and memory man-
agement register, MMRO, are in-
tialized.

ROL SO 006100 (dst) +- (dst) N: set if the high order Rotates all bits of the destination
ROLB 106100 rotate left one bit of the result word left one place. The high order bit is
Rotate Left place is set(result < 0) loaded into the C bit of the status

Z: set if all bits of the word and the previous contents of
result = 0 the C bit are loaded into the low

V: loaded with the ex- order bit of the destination.

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonicl
Instruction Type OPCode Operation Condition Codes Oescription

elusive OR of the N
bit and C bit (as set
by the completion of
the rotate operation)

C: set if the high order
5" bit of the destination C/)

was set 2' co 0 N g.
:':l ROR SO 006000 (dst) ~ (dst) N: set if high order bit Rotates all bits of the destination CI.l
Q) RORB 106000 rotate right one of the result is set right one place. The low order bit is -

Rotate place Z: set if all bits of result loaded into the C bit and the previ-
Right areO ous contents of the C bit are load-

V: loaded with the ex- ed into the high order bit of the
elusive OR of the N destination.
bit and the C bit as
set by ROR

C: set if the low order
bit of the destination
was set

<0
Co)

Mnemonic/
Instruction

RTI
Return
from
Interrupt

RTS
Return
from
Subroutine

Type

MS

PC

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes

000002 PC +- (SP)+ N: loaded from current
PS +- (SP)+ R6stack

Z: loaded from current
R6stack

V: loaded from current
R6stack

C: loaded from current
R6 stack

00020R PC +- (reg) N: unaffected
(reg) +- (SP)+ Z: unaffected

V: unaffected
C: unaffected

Description

Used to exit from an interrupt or
trap service routine. The PC and
PS are restored (popped) from the
R6 stack. If the RTI sets the T bit in
the PS, a trace trap will occur prior -to executing the next instruction. ::3

(I)

::.:-When executed in Supervisor t::
(')

mode, the current and previous g.
mode bits in the restored PS can- ::3

C/)

not be Kernel. When executed in Q) -
User mode, the current and previ-
ous mode bits in the restored PS
can only be User. RTI cannot clear
PS< 11> if it was already set.

Loads contents of register into PC
and pops the top element of the R6
stack into the specified register.

Return from a non-reentrant sub-
routine is made through the same

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonicl
Instruction Type OPCode Operation Condition Codes Descri ption

register that was used in its call.
Thus, a subroutine called with a
JSR PC,dst exits with an RTS PC,
and a subroutine called with a JSR
RS,dst may pick up parameters

5" with addressing modes (RS)+. CI)

X(RS). or @X(RS) and finally exit, 2 co (')
,J:lo. with an RTS RS. g.

;::,

RTT MS 000006 PC.- (SP)+ N: loaded from current This is the same as the RTI instruc-
en
CD -Return PS .-(SP)+ R6stack tion (used to exit from an interrupt

from Z: loaded from current or trap service routine; the PC and
Interrupt R6 stack PS are restored (popped) from the

V: loaded from current processor stack; if the RTI sets the
R6stack T bit in the PS, a trace trap will oc-

C: loaded from current cur prior to executing the next in-
R6 stack struction) except that it inhibits a

trace trap. while RTI permits a
trace trap. If a trace trap is pend-
ing, the first instruction after the
RTT will be executed prio.r to the

co
C1I

Mnemonic/
Instruction

SBe
SBCB
Subtract
Carry

S
Set
selected

Type

SO

CC

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes Description

next "T" trap. In the case of the RTI
instruction, the "T". trap will occur
immediately after the RTI. When
executed in Supervisor mode, the
current and previous mode bits in
the restored PS cannot be Kernel.
When executed in User mode, the
current and previous mode bits in
the restored PS can only be User.
RTT cannot clear PS<11 > if it was
already set.

005600 (dst) +- (dst) - C N: set if result < 0 Subtracts the contents of the C bit
105600

000260
PLUS 4-
bit mask

Z: set if result = 0 from the destination.
V: set if (dst) =M.N.1.
C: set if (dst) was 0 and

Cwas1

Set condition code bits. Selectable combinations of these bits may be set
together. Condition code bits corresponding to bits in the condition code oper­
ator (Bits 0-3) are modified; set the bit specified by bit 0, 1, 2, or 3. Bit 4 is a 1.

s-
CI)

2
o g.
::::s
en
CD -

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

condition Operation:
codes PSW <3:0> +- PSW <3:0> v mask <3:0>

SCC CC 000277 N, Z, V, C +-1
Set all -condition ;:,

rn

<0 codes 2
()

0> :::t
0

SEC CC 000261 C+-1
;:,
CI)

SetC CD

SEN CC 000270 N+-1
SetN

SEV CC 000262 V+-1
Set V

SEZ CC 000264 Z+-1
SetZ

co
.......

Mnemonic/
Instruction

SOB
Subtract
one and
branch if
not
equal to 0

SPL
Set priority
level

Type

PC

PC

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes

077ROO R+-R-1 N: unaffected
PLUS if this result does Z: unaffected
6-bit not = 0 V: unaffected
offset then PC +- PC - C: unaffected

(2 X offset)

00023N PS (bits 7-5) +- N: not affected
Priority (priority Z: not affected
= N) V: not affected

C: not affected

Description

The register is decremented. If it is
not equal to 0, twice the offset is
subtracted from the PC (now point-
ing to the following word). The off-
set is interpreted as a 6-bit positive S"
number. This instruction provides C'I)

::::-
a fast, efficient method of loop con- a
trot. Assembler syntax is: g

SOB R,A (I)
CD

where A is the address to which

transfer is to be made if the decre-
mented R is not equal to O. Note
that the SOB instruction cannot be
used to transfer control in the for-
ward direction.

The least significant three bits of
the instruction are loaded into the
program status word (PS), bits 7-5,
thus causing a changed priority.
The old priority is lost.

Mnemonicl
Instruction

SUB
co Subtract
co

Type

DO

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation

16SSDD (dst) .- (dst) -
(src)
{in detail (dst) .­
(dst)+ '" (src)+1

Condition Codes

N: set if result < 0
Z: set if result = 0
V: set if there is ar-

ithmetic overflow as
a result of the oper­
ation, i.e., if the op­
erands were of op­
posite signs and the
sign of the source is
the same as the sign
of the result

C: set if there is a
borrow into the
mostsignificant bit
of the result, i:e., if

Description

Assembler syntax is: SPL N

Note: If used on the 11/60, it re­
sults in a processor trap through
vector address 10.

Subtracts the source operand from ~
the destination operand and leaves ~
the result at the destination ad.. g.
dress. The original contents of the
destination are lost. The contents
of the source are not affected. In
double precision arithmetic, the C
bit, when set, indicates a borrow.

~
C/)
CD

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

.,.

(dst) + IV (src)+1
was less than 2**16.

SWAB SO 000300 Byte 1 ~ Byte 0 N: set if high order bit Exchanges high order byte and low
Swap Bytes Byte 0 ~ Byte 1 of low order byte (bit order byte of the destination word

7) of result is set (destination must be a word ad- S"
en

Z: set if low order byte dress). 2
(0

of result = 0
0

(0 g.
V: cleared ::'l

(I)

C: cleared (I)

SXT SO 006700 (dst) ~ 0 if N bit N: unaffected If the condition code bit N is set,
Sign is clear Z: set if N bit clear then a -1 is placed in the destina-
Extend (dst) ~ -1 if N V: cleared tion operand; if the N bit is clear,

bit is C: unaffected then a 0 is placed in the destination
set operand. This instruction is partic-

ularly useful in multiple precision
arithmetic because it permits the
sign to be extended through multi-
pie words.

......
0
0

Mnemonic/
Instruction

TRAP

TST
TSTB
Test

WAIT
Wait for
Interrupt

Type

PC

SO

MS

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes

104400 -(SP)~PS N: loaded from trap
to -(SP)~PC vector
104777 PC~(34) Z: loaded from trap

PS ~(36) vector
V: loaded from trap

vector
C: loaded from trap

vector

0057DD tmp ~(dst) N: set if result < 0
1057DD Z: set if result = 0

V: cleared
C: cleared

000001 N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description

Operation codes from 104400 to
104777 are TRAP instructions.
TRAPs and EMTs are identical in
operation, except that the trap vec-
tor for TRAP is at address 34.

Note: Since DIGITAL software
:s-
CI)

makes frequent use of EMT, the
::;-
s::::
0

TRAP instruction is recommended g.
for general use.

::J
CI)
CD

Sets the condition codes Nand Z
according to the contents of the
destination address.

Provides a way for the processor to
relinquish use of the bus while it
waits for an external interrupt. Hav-
ing been given a WAIT command,
the processor will not compete for
the bus by fetching instructions or

......
o

Mnemonic!
Instruction

XFC

Type

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes Description

operands from memory. This per­
mits higher transfer rates between
device and memory, since no
processor-induced latencies will
be encountered by bus requests
from the device. In WAIT, as in all ~
instructions, the PC pOints to the 2'
• 0
next instruction following the WAIT g.
operation. Thus, when an interrupt ~
causes the PC and PS to be ~
pushed onto the stack, the address
of the next instruction following the
WAIT is saved. The exit from the
interrupt routine (Le., execution of
an RTI instruction) will cause re­
sumption of the interrupted proc-
ess at the instruction following the
WAIT.

The UCS (User Control Store) option for the PDP-11!60 utilizes the XFC in-

.....
o
I\)

Mnemonicl
Instruction

Extended
Function
Code

XOR
Exclusive
OR

Type

00

Table 4-1 PDP-11 Instruction Set, cont.

OPCode Operation Condition Codes Oescription

struction. Oetails on use are contained in documentation associated with the
UCS option.

Extended Function Code (USER)

1017161 71011021

This instruction provides dispatch information to the user control store or ex­
tended control store. The 01 field is used for initial instruction group determi­
nation, with further instruction determination by 02 field or additional MACRO
instruction words. If the option is not enabled, a trap through vector address 10
occurs.

074ROO (dst) R V (dst) N: set if the result < 0
Z: set if result = 0
V: cleared
C: unaffected

The exclusive OR of the register
and destination operand is stored
in the destination address. Con­
tents of register are unaffected.
Assembler format is XOR R,O

5"
CI.I

2 o

~
CI)
CD -

103

104

CHAPTER 5

PROGRAMMING TECHNIQUES

The PDP-11 processors offer you a great deal of programming flexibil­
ity and power. The combination of the instruction set, the addressing
modes, and the programming techniques makes it possible to develop
new software or to utilize old programs effectively. The programming
techniques in this chapter show methods which exploit the unique
capabilities of the PDP-11 processors. The techniques specifically dis­
cussed are: position-independent coding (PIC), stacks, subroutines,
interrupts, reentrancy, coroutines, recursion, processor traps, and
conversion.

POSITION-INDEPENDENT CODE
The output of a MACRO-11 assembly is a relocatable object module.
The task builder or linker binds one or more modules together to
create an executable task image. Once built, a task can generally be
loaded and executed only at the address specified at link time. This is
because the linker has had to modify some instructions to reflect the
memory locations in which the program is to run. Such a body of code
is considered position dependent (Le., dependent on the virtual ad­
dresses to which it was bound).

All PDP-11 processors offer addressing modes that make it possible
to write instructions that are not dependent on the virtual addresses to
which they are bound. A body of such code is termed position-inde­
pendent and can be loaded and executed at any virtual address. Posi­
tion-independent code can improve system efficiency, both in the use
of virtual address space and in the conservation of physical memory.

In multiprogramming systems like lAS and RSX-11 M, it is important
that many tasks be able to share a single physical copy of common
code; for example, a library routine. To make the optimum use of a
task's virtual address space, shared code should be position-indepen­
dent. Code that is not position independent can also be shared, but it
must appear in the same locations in every task using it. This restricts
the placement of such code by the task builder and can result in the
loss of virtual addressing space.

The construction of position-independent code is closely linked to the
proper use of PDP-11 addressing modes. The remainder of this
explanation assumes that you are familiar with the addressing modes
described in Chapter 3.

All addressing modes involving only register references are position
independent. These modes are:

105

R
(R)
(R)+
@(R)+
-(R)
@-(R)

Programming Techniques

register mode
register deferred mode
autoincrement mode
autoincrement deferred mode
autodecrement mode
autodecrement deferred mode

When using these addressing modes, you are guaranteed position
independence, providing that the contents of the registers have been
supplied independent of a particular memory location.

The relative addressing modes are position-independent when a relo­
eatable address is referenced from a relocatable instruction. These
modes are as follows:

A PC relative mode
@A PC relative deferred mode

Relative modes are not position-independent when an absolute ad­
dress (that is, a non-relocatable address) is referenced from a reloca­
table instruction. In this case, absolute addressing (i.e., @#A) may be
employed to make the reference position-independent.

Index modes can be either position-independent or position-depen­
dent, according to their use in the program. These modes are as
follows:

X(R) index mode
@X(R) index deferred mode

If the base, X, is an absolute value (e.g., a control block offset), the
reference is position-independent. For example:

MOV 2(SP),RO ;POSITION INDEPENDENT
N=4

MOV N(SP),RO ;POSITION INDEPENDENT

If, however, X is a relocatable address, the reference is position
dependent. For example:

CLR ADDR(R1) ;POSITION DEPENDENT

Immediate mode can be either position independent or not, according
to its use. Immediate mode references are formatted as follows:

#N immediate mode

When an absolute expression defines the value of N, the code is posi­
tion-independent. When a relocatable expression defines N, the code
is position-dependent. That is, immediate mode references are posi­
tion independent only when N is an absolute value.

106

Programming Techniques

Absolute mode addressing is position-independent only in those cas­
es where an absolute virtual location is being referenced. Absolute
mode addressing references are formatted as follows:

@#A absolute mode

An example of a position-independent absolute reference is a refer­
ence to the directive status word ($DSW) from a relocatable
instruction. For example:

MOV

EXAMPLES

@#$DSW,RO ;RETRIEVE DIRECTIVE
;STATUS

The RSX-11 library routine, PWRUP, is a FORTRAN-callable subrou­
tine to establish or remove a user power failure AST (Asynchronous
System Trap) entry point address. Imbedded within the routine is the
actual AST entry point which saves all registers, effects a call to the
user-specified entry point, restores all registers on return, and exe­
cutes an AST exit directive. The following examples are excerpts from
this routine. The first example has been modified to illustrate position­
dependent references. The second example is the position-indepen­
dent version.

Position-Dependent Code
PWRUP:

10$:

CLR
CALL

.WORD

MOV

MOV

BNE

CLR
BR

MOV
MOV

-(SP)
.X.PAA

1.,$DSW

$OTSV,R4

(SP)+,R2

10$

-(SP)
20$

R2,F.PF(R4)
#BA,-(SP)

107

;ASSUME SUCCESS
;PUSH (SAVE)
;ARGUMENT A"oDRESSES
;ONTOSTACK
;CLEAR DSW, AND
;SET R1 =R2=SP
;GET OTS IMPURE
;AREA POINTER
;GET AST ENTRY
;POINT ADDRESS
;IF NONE SPECIFIED,
;SPECIFY NO POWER
;RECOVERY AST SERVICE

;SET AST ENTRY POINT
;PUSH AST SERVICE
;ADDRESS

Programming Techniques

20$:

BA:

CALL
. BYTE

MOV
MOV
MOV

.X.EXT
109.,2.

RO,-(SP)
R1,-(SP)
R2,-(SP)

Position-Independent Code
PWRUP:

CLR -(SP)
CALL .X.PAA

.WORD 1.,$DSW

MOV @#$OTSV,R4

MOV (SP)+,R2

BNE 10$

CLR -(SP)
BR 20$

10$:
MOV R2,F.PF(R4)
MOV PC,-(SP)
ADD #BA-.,(SP)

20$:
CALL .X.EXT
.BYTE 109.,2.

,
;ACTUAL AST SERVICE ROUTINE:

1) SAVE REGISTERS

,
;ISSUE DIRECTIVE, EXIT .

;PUSH (SAVE) RO
;PUSH (SAVE) R1
;PUSH (SAVE) R2

;ASSUME SUCCESS
;PUSH ARGUMENT
;ADDRESSES ONTO
;STACK
;CLEAR DSW, AND
;SET R1 =R2=SP.
;GET OTS IMPURE
;AREA POINTER
;GET AST ENTRY
;POINT ADDRESS
;IFNONE SPECIFIED,
;SPECIFY NO POWER
;RECOVERY AST SERVICE

,
;SET AST ENTRY POINT
;PUSH CURRENT LOCATION
;COMPUTE ACTUAL
;LOCATION
;OFAST

;ISSUE DIRECTIVE, EXIT.

2) EFFECT A CALL TO SPECIFIED SUBROUTINE
3) RESTORE REGISTERS
4) ISSUE AST EXIT DIRECTIVE

108

BA: MOV
MOV
MOV

Programming Techniques

RO,-(SP)
R1,-(SP)
R2,-(SP)

;PUSH (SAVE) RO
;PUSH (SAVE) R1
;PUSH (SAVE) R2

The position-dependent version of the subroutine contains a relative
reference to an absolute symbol ($OTSV) and a literal reference to a
relocatable symbol (BA). Both references are bound by the task build­
er to fixed memory locations. Therefore, the routine will not execute
properly as part of a resident library if its location in virtual memory is
not the same as the location specified at link time.

In the position-independ~nt version, the reference to $OTSV has been
changed to an absolute reference. In addition, the necessary code has
been added to compute the virtual location of BA based upon the
value of the program counter. In this case, the value is obtained by
adding the value of the program counter to the fixed displacement
between the current location and the specified symbol. Thus,
execution of the modified routine is not affected by its location in the
image's virtual address space.

STACKS
The stack is part of the basic design architecture of the PDP-11. It is an
area of memory set aside by the programmer or by the operating
system for temporary storage and linkage. It is handled on a LIFO
(Iast-in/first-out) basis, where items are retrieved in the reverse of the
order in which they were stored. On a PDP-11 processor, a stack
starts at the highest location reserved for it and expands linearly
downward to a lower address as items are added to the stack.

You do not need to keep track of the actual locations into which data is
being stacked. This is done automatically through a stack pOinter. To
keep track of the last item added to the stack, a general register
aiways contains the memory address when the last item is stored in
the stack. Any register except register 7 (the PC) may be used as a
stack pointer under program control; however, instructions associated
with subroutine linkage and interrupt service automatically use regis­
ter S~ as a hardware stack pOinter. For this reason, R6 is frequently
referred to as the system SP. Stacks may be maintained in either full
word or byte units. This is true for a stack pOinted to by any register
except RS, which must be organized in full word units only. Byte
stacks, Figure 5-1, require instructions capable of operating on bytes
rather than full words.

109

007100

007076

007074

007072

007070

007066

007064

007100

007077

007076

007075

Programming Techniques

WORD STACK

ITEM #1

ITEM #2

ITEM #3

ITEM # 4 1---------1 - SP L.I __ 0_07_0_72_--,

BYTE'STACK

ITEM .1

ITEM #2

ITEM #3

ITEM #4

NOTE: BYTES ARE
ARE ARRANGED IN
WORDS AS FOLLOWING:

BYTE 3 BYTE 2

BYTE 1 BYTE °

- SP L..I __ 0_07_0_75_---'

Figure 5-1 Word and Byte Stacks

Items are added to a stack using the autodecrement addressing
mode. Adding items to the stack is called PUSHing, and is accom­
plished by the following instructions:

MOV Source,-(SP) ;MOV Contents of Source Word
;onto the stack

MOVB Source,-(SP)
or

;MOVB Source Byte onto
;the stack

Data is thus PUSHed onto the stack.

Removing data from the stack is called a POP (popping from the
stack). This operation is accomplished using the autoincrement mode:

MOV (SP)+, Destination ;MOV Destination Word
;off the stack

MOVB (SP)+, Destination
or

;MOVB Destination Byte
;off the stack

After an item has been popped, its stack location is considered free
and available for other use. The stack pOinter pOints to the last used
location, implying that the next lower location is free. Thus, a stack
may represent a pool of temporary storage locations.

110

Programming Techniques

HIGHMEMORY~ ~ -SP

}

• E0 -SP

STACK
AREA

LOW MEMORY
1. AN EMPTY STACK 2.PUSHINGA DATUM

AREA ONTO THE STACK

~0
El

~ E2 -SP

4. ANOTHER PUSH

§
E3

E0

El "SP

7. POP

~';2
~~P
~. POP

~
'~SP

3. PUSHING ANOTHER
DATUM ONTO THE
STACKS

~0
El

• E3 -SP

6. PUSH

Figure 5-2 Illustration of Push and Pop Operations

Uses for the stack

• Often one of the general purpose registers must be used in a sub­
routine or interrupt service routine and then returned to its original
value. The stack can be used to store the contents of the registers
involved.

• The stack is used in storing linkage information between a subrou­
tine and its calling program. The JSR instruction, used in calling a
subroutine, requires the specification of a linkage register along
with the entry address of the subroutine. The content of this linkage
register is stored on the stack, so as not to be lost, and the return
address is moved from the PC to the linkage register. This provides
a pOinter back to the calling program so that successive arguments
may be transmitted easily to the subroutine.

• If no arguments need be passed by stacking them after the JSR
instruction, the PC may be used as the linkage register. In this case,
the result of the JSR is to move the return address in the calling
program from the PC onto the stack and replace it with the entry
address of the called subroutine.

• In many cases, the operations performed by the subroutine can be
applied directly to the data located on or pOinted to by a stack
without the need ever actually to move the data into the subroutine
area.

111

Programming Techniques

;CALLING PROGRAM
MOV SP,R1
JSR PC,SUBR

;SUBROUTINE
ADD (R1)+,(R1)

;R1IS USED AS THE STACK
;POINTER HERE

;ADD ITEM #1 to #2,PLACE
;RESUL T IN ITEM #2,
;R1 POINTS TO
;ITEM #2 NOW

Because the hardware already uses general purpose register R6 to
point to a stack for saving and restoring PC and processor status word
(PS) information, it is convenient to use this same stack to save and
restore immediate results and to transmit arguments to and from sub­
routines. Using R6 in this manner permits extreme flexibility in nesting
subroutines and interrupt service routines.

Since arguments may be obtained from the stack by using some form
of register indexed addressing, it is sometimes useful to save a
temporary copy of R6 in some other register which has been saved at
the beginning of a subroutine. If R6 is saved in R5 at the beginning of
the subroutine, R5 may be used to index the arguments while R6 is
free to be incremented and decremented in the course of being used
as a stack pOinter. If R6 had been used directly as the base for index­
ing and not "copied," it might be difficult to keep track of the position
in the argument list, since the base of the stack would change with
every autoincrementldecrement which occurs.

However, if the contents of R6 (SP) are saved in R5 before any argu­
ments are pushed onto the stack, the position relativ~ to R5 would
remain constant.

Return from a subroutine also involves the stack, as the return instruc­
tion, RTS, must retrieve information stored there by the JSR.

When a subroutine returns, it is necessary to "clean up" the stack by
eliminating or skipping over the subroutine arguments. One way this
can be done is by insisting that the subroutine keep the number of
arguments as its first stack item. Returns from subroutines then in­
volve calculating the amount by which to reset the stack pointer,
resetting the stack pOinter, then storing the original contents of the
register used as the copy of the stack pointer .
• Stack storage is used in trap and interrupt linkage. The program

counter and the processor status word of the executing program are
pushed on the stack.

112

Programming Techniques

• When using the system stack, nesting of subroutines, interrupts,
and traps to any level can occur until the stack overflows its legal
limits .

• The stack method is also available for temporary storage of any kind
of data. It may be used as a LIFO list for storing inputs, intermediate
results, etc.

As an example of stack use consider this situation: a subroutine
(SUBR) wants to use registers 1 and 2, but these registers must be
returned to the calling program with their contents unchanged. The
subroutine could be written as follows:

Assembler
Address Octal Code Syntax Comments

076322 010167 SUBR: MOV R1 ,TEMP1 ;save R1
076324 000074 *
076326 010267 MOV R2,TEMP2 ;save R2
076330 000072 *

076410 016701 MOV TEMP1 ,R1 ;restore R1
076412 000006 *
076414 0167902 MOV TEMP2,R2 ;restore R2
076416 000004 *
076420 000297 RTSPC
076422 000000 TEMP1: 0
076424 000000 TEMP2: 0

* Index Constants

OR: Using the Stack
R3 has been previously set to point to the end of an unused block of
memory.

Assembler
Address Octal Code Syntax Comments

010020 010143 SUBR: MOV R1 ,-(R3) ;push R1
010022 010243 MOV R2,-(R3) ;push R2

113

010130
010132
010134

Programming Techniques

012302
012301
000207

MOV (R3)+,R2
MOV (R3)+,R1
RTSPC

Note: In this case R3 was used as a stack pOinter.

;pop R2
;pop R1

The second routine uses four fewer words of instruction code and two
words of temporary "stack" storage. Another routine could use the
same stack space at some later pOint. Thus, the ability to share tempo­
rary storage in the form of a stack is a way to save on memory use.

As another example of stack use, consider the task of managing an
input buffer from a terminal. As characters come in, you may wish to
delete characters from the line; this is accomplished very easily by
maintaining a byte stack containing the input characters. Whenever a
backspace is received, a character is "popped" off the stack and elimi­
nated from consideration. In this example, you have the choice of
"popping" characters to be eliminated by using either the MOVB
(MOVE BYTE) or INC (INCREMENT) instructions.

001011

001010

001007

001006

001005

001004

001003

001002

001001

C C

U U

S INC R3 S

T T

0 0

M M

E E

R R --R3

Z 001001

Figure 5-3 Byte Stack Used as a Character Buffer

NOTE
In this case the incremen't instruction (INC) is prefer­
able to MOVB, since it accomplishes the task of eli­
minating the unwanted character from the stack by
readjusting the stack pointer without the need for a
destination location. Also, the stack pointer (SP)
used in this example cannot be the system stack
pointer (AS) because AS may point only to word
(even) locations.

114

001002

Programming Techniques

DELETING ITEMS FROM A STACK
To delete one item:

INC SP or TSTB(SP)+ for a byte stack

To delete two items:

ADD#2,SP or TST(SP)+ for word stack

To delete fifty items from a word stack:

ADD #1 OO.,SP

SUBROUTINE LINKAGE
The contents of the linkage register are saved on the system stack
when a JSR is executed. The effect is the same as if a MOV reg,-(R6)
had been performed. Following the JSR instruction, the same register
is loaded with the memory address (the contents of the current PC),
and a jump is made to the entry location specified.

The JSR figure, Figure 5-4, gives the before and after conditions when
executing the subroutine instructions JSR R5,1064.

BEFORE

(R5)' 000132
(RS)=001776

(PC)=(R7)-001000

002000 nnnnnn
1-------1

001776 mmmmmm "'SP

001774

001772

AFTER

(R5)= 001004
(RS)=001774

(PC)=(R7)-001064

002000 n n n n n n

""'---0-0-17-76--'1001776 mmmmmm

001774

001772

000132 ""'SP

1------/

Figure 5-4 JSR

001774

Because the PDP-11 hardware already uses general purpose register
R6 to point to a stack for saving and restoring PC and PS (processor
status word) information, it is convenient to use this same stack to
save and restore intermediate results and to transmit arguments to
and from subroutines. Using R6 this way permits nesting subroutines
and interrupt service routines.

Return from a Subroutine
An RTS instruction provides for a return from the subroutine to the
calling program. The RTS instruction must specify the same register
as the one the JSR instruction used in the subroutine call. When the
RTS is executed, the register specified is moved to the PC, and the top
of the stack to be placed in the register specified. Thus, an RTS PC has
the effect of IPeturning to the address specified on the top of the stack.

115

Programming Techniques

Subroutine Advantages
There are several advantages to the PDP-11 subroutine calling pro­
cedure, effected by the JSR instruction.

• Arguments can be passed quickly between the calling program and
the subroutine.

• If there are no arguments, or the arguments are in a general register
or on the stack, the JSR PC,DST mode can be used so that none of
the general purpose registers are used for linkage.

• Many JSRs can be executed without the need to provide any saving
procedure for the linkage information, since all linkage Information
is automatically pushed onto the stack in sequential order. Returns
can be made by automatically popping this information from the
stack in the order opposite to the JSRs.

Such linkage address bookkeeping. is called automatic "nesting" of
subroutine calls. This feature enables you to construct fast, efficient
linkages in a Simple, flexible manner. It also permits a routine to call
itself in those cases where this is meaningful.

INTERRUPTS
An interrupt is similar to a subroutine call, except that it is initiated by
the hardware rather than by the software. An interrupt can occur after
the execution of an instruction.

Interrupt-driven techniques are used to reduce CPU waiting time. In
direct program data transfer, the CPU loops to check ~he state of the
DONE/READY flag (bit 7) in the peripheral interface. Using interrupts,
the system actually ignores the peripheral, running its own low-priority
program until the peripheral initiates service by setting the DONE bit.
The interrupt enable bit in the control status register must have been
set at some prior point. The CPU completes the instruction being
executed and then is interrupted and vectors to an interrupt service
routine. The service routine will transfer the data and may perform
calculations with it. After the interrupt service routine has been com­
pleted, the computer resumes the program that was interrupted by the
peripheral's high-priority request.

With interrupt service routines, linkage information is passed so that a
return to the main program can be made. More information is neces­
sary for an interrupt sequence than for a subroutine call because of
the random nature of interrupts. The complete machine state of the
program immediately prior to the occurrence of the interrupt must be
preserved in order to return to the program without any noticeable
effects. This information is stored in the processor status word (PS).

116

Programming Techniques

Upon interrupt, the contents of the program counter (PC) (address of
next instruction) and the PS are automatically pushed onto the R6
system stack. The effect is the same as If:

MOV PS, -(SP) ;Push PS
MOV PC,-(SP) ;Push PC

had been executed.

The new contents of the PC and PS are loaded from two preassigned
consecutive memory locations which are called "vector addresses."
The first word contains the interrupt service routine entry address (the
address of the service routine program sequence), and the second
word contains the new PS which will determine the machine status,
including the operational mode and register set to be used by the
interrupt service routine. The contents of the vector address are set
under program control.

After the interrupt service routine has been completed, an RTI (return
from interrupt) is performed. The top two words of the stack are auto­
matically "popped" and placed in the PC and PS respectively, thus
resuming the interrupted program.

Nesting
Interrupts can be nested in much the same manner that subroutines
are nested. In fact, it is possible to nest any arbitrary mixture of
subroutines and interrupts without any confusion. By using the RTI
and RTS instructions, respectively, the proper returns are automatic.
1. Process 0 is running; SP is

pointing to location PO.

2. Interrupt stops process 0
with PC = PCO, and status =
PSO; starts process 1.

3. Process 1 uses stack for
temporary storage (TEO,
TE1).

117

PO

psa
pea

a

PO
~----4

PSO

pea
TEO

SP- TEl

a

Programming Techniques

4. Process 1 interrupted with
PC = PC1 and status = PS1;
process 2 is started.

5. Process 2 is running and
does a JSR R7,A to subrou­
tine A with PC = PC2.

6. Subroutine A is running and
uses stack for temporary
storage.

PO

o

PO

o

PO

SP-+

7. Subroutine A releases the
temporary storage holding
TA1 and TA2.

118

o

PO

o

PSO

PCO

TEO

TE t

PSt

PC t

PSO

PCO

TEO

TE t

PSt

PCt

PC2

PSO

PCO

TEO

TEt

PSt

PCt

PC2

TAt

TA2

PSO

PCO

TEO

TEt

PSt

PCt

PC2

Programming Techniques

8. Subroutine A returns control
to process 2 with an RTS R7;
PC is reset to PC2.

9. Process 2 completes with an
RTI instructions (dismisses
interrupt) PC is reset to PC1
and status is reset to PS 1;
process 1 resumes.

10. Process 1 releases the tem­
porary storage holding TEO
and TE1.

11. Process 1 completes its op­
eration with an RTI, PC is re­
set to PCO, and status is re­
set to PSO.

PO

PSO

peo

TEO

TEl

PSI

pel

o

PO

pso

peo

TEO

sp- TEl

0

PO
1------1

PSO

peo sp-
1------1

o
~---.....I

Nested Interrupt Service Routines and Subroutines

Note that the area of interrupt service programming is intimately in­
volved with the concept of CPU and device priority levels.

119

Programming Techniques

REENTRANCY
Other advantages of the PDP-11 stack organization are obvious in
programming systems that are engaged in concurrent handling of
several tasks. Multi-task program environments range from simple
single-user applications which manage a mixture of 1/0 interrupt ser­
vice and background data processing, as in RT-11, to large complex
multi-programming systems that manage an intricate mixture of exe­
cutive and multi-user programming situations, as in RSX-11. In all
these Situations, using the stack as a programming technique pro­
vides flexibility and timelmemory economy by allowing many tasks to
use a single copy of the same routine with a simple straightforward
way of keeping track of complex program linkages.

The ability to share a single copy of a program among users or among
tasks is called reentrancy. Reentrant program routines differ from
ordinary subroutines in that it is not necessary for reentrant routines to
finish processing a given task before they can be used by another
task. Multiple tasks can exist at any time In varying stages of comple­
tion in the same routine. Thus the following situation may occur.

(ART)

PDP-11 Approach

Programs 1, 2, and 3 can share
Subroutine A.

MEMORY

PROGRAM 1
PROGRAM 2 SUBROUTINE A

PROGRAM 3 I-----~

(ART)

Conventional Approach

A separate copy of Subroutine A
must be provided for each
program.

MEMORY

PROGRAM 1 ~~wr~

PROGRAM 2 ~~~~

PROGRAM 3 f'Z'4"""~~~

Figure 5-6 Reentrant Routines
Reentrant Code
Reentrant routines must be written in pure code, code that is not self­
modifying and consists entirely of instructions and constants.

Pure code (any code that consists exclusively of instructions and con­
stants) may be used when writing any routine, even if the completed
routine is not to be reenterable. The value of using pure code when­
ever possible is that the resulting code:

• is generally considered easier to debug
• can be kept in read-only memory (is read-only protected)

120

Programming Techniques

Using reentrant code, control of a routine can be shared as follows:

L..-----------I REENTRANT
,---------..1 ROUTINE Q

Figure 5-7 Sharing Control of a Routine

• Task A requests processing by Reentrant Routine Q.

• Task A temporarily relinquishes control of Reentrant Routine Q be-
fore it completes processing.

• Task B starts processing the same copy of Reentrant Routine Q.

• Task B completes processing by Reentrant Routine Q.

• Task A regains use of Reentrant Routine Q and resumes where it
stopped.

Writing Reentrant Code
In an operating system environment, when one task is executing and is
interrupted to allow another task to run, a context switch occurs which
causes the processor status word and current contents of the general
purpose registers (GPRs) to be saved and replaced by the appropriate
values for the task being entered. Therefore, reentrant code should
use the GPRs and the stack for any counters, pOinters, or data that
must be modified or manipulated in the routine.

The context switch occurs whenever a new task is allowed to execute.
It causes all of the GPRs, the PS, and often other task-related informa­
tion to be saved in an impure area, then reloads these registers and
locations with the appropriate data for the task being entered. Notice
that one consequence of this is that a new stack pointer value is
loaded into R6, therefore causing a new area to be used as the stack
when the second task is entered.

The following should be observed when writing reentrant code:

• All data should be in or pOinted to by one of the general purpose
registers.

• A stack can be used for temporary storage of data or pOinters to
impure areas within the task space. The pointer to such a stack
would be stored in a GPR.

121

Programming Techniques

• Parameter addresses should be used by indexing and indirect
reference rather than by putting them into instructions within the
code.

• When temporary storage is accessed within the progam, it should
be by indexed addresses, which can be set by the calling task in
order to handle any possible recursion.

Use of Reentrant Code
Reentrant code is used whenever more than one task may reference
the same code without requiring that each task complete processing
with the code before the next may use it.

COROUTINES
In some programming situations it happens that several program seg~
ments or routines are highly interactive. Control is passed back and
forth between the routines, each going through a period of suspension
before being resumed. Since the routines maintain a symmetric rela~
tionship with each other, they are called coroutlnes.

Coroutines are two program sections, neither subordinate to the oth­
er, which can call each other. The nature of the call is "I have proc­
essed all I can for now, so you can execute until you are ready to stop,
then I will continue."

The coroutine call and return are identical, each being a jump to
subroutine instruction with the destination address being on top of the
stack and the PC serving as the linkage register, i.e.,

JSR PC,@(R6)+

Coroutine Calls
The coding of coroutine calls is made simple by the PDP-11 stack
feature. Initially, the entry address of the coroutine is placed on the
stack and from that point the

JSR PC,@(R6)+

instruction is used for both the call and the return statements. The
result of this JSR instruction is to exchange the contents of the PC and
the top element of the stack, ~nd so permit the two routines to swap
control and resume operation where each was terminated by the
previous swap.

122

Programming Techniques

For example:

Routine A Stack

MOV #LOC, -(SP)LOC +-SP

JSR PC,@(SP)+ PCO +-SP
(PCO)

PC1+-SP

Routine B

LOC:

Comments
LOC is pushed
onto the stack
to prepare for
the corou-
tine call.

When the call
is executed,
the PC from
routine A is
pushed on the
stack and exe­
cution contin­
uesat LOC.

JSR PC,@(SP)+ Routine B can
(PC1) return control

to routine A
by another
coroutine call.
PCO is popped
from the stack
and execution
resumes in
routine A just
after the call
to Routine B,
i.e., at PCO.
PC1 is saved
on the stack
for a later
return to
Routine B.

Figure 5-8 Coroutine Example

Notice that the coroutine linkage cleans up the stack with each transfer
of control.

123

Programming Techniques

Coroutlnes Versus Subroutln~s
• A subroutine can be considered to be subordinate to the main or

calling routine, but a coroutine is considered to be on the same
level, as each coroutine calls the other when it has completed cur­
rent processing.

• A subroutine executes, when called, to the end of its code. When
called again, the same code will execute before returning. A corou­
tine executes from the point after the last call of the other coroutine.
Therefore, the same code will not be executed each time the corou­
tine is called. For example,

COROUTINES

A B

JS' pj"" (S~ - -I
j >JS. PC.@ (SP)-

JS' PC@ (SP)- I
~JSR PC'@ (SP)+

MAIN PROGRAMS SUBROUTINES I ~'''LOC
JSR Rn. lOC

JSR Rn. LOC

1

Figure 5-9 Coroutines vs. Subroutines

• The call and return statements for coroutines are the same:

JSR PC,@(SP)+

This one instruction also cleans up the stack with each call.

RTS

The last coroutine call will leave an address on the stack that must
be popped if no further calls are to be made .

• Each coroutine call returns to the coroutine code at the point after
the last exit with no need for a specific entry point label, as would be
required with subroutines.

Using Coroutlnes
• Coroutines should be used whenever two tasks m,ust be coordinat­

ed in their execution without obscuring the basiC structure of the
program. For example, in decoding a line of assembly language

124

Programming Techniques

code, the results at anyone position might indicate the next process
to be entered. Where a label is detected, it must be processed. If no
label is present, the operator must be located, etc .

• Coroutines should be employed to add clarity to the process being
performed, to ease in the debugging phase, etc.

Examples
An assembler must perform a lexicographic scan of each assembly
language statement during pass one of the assembly process. The
various steps in such a scan should be separated from the main
program flow to add to the program clarity and to aid in debugging by
isolating many details. Subroutines would not be satisfactory here, as
too much Information would have to be passed to the subroutine each
time it was called. This subroutine would be too isolated. Coroutines
could be effectively used here with one routine being the assembly­
pass-one routine and the other extracting one item at a time from the
current input line.

ROUTINE A ROUTINE B

r-----------~END

Figure 5-10 Coroutine Path

Coroutines can be utilized in 1/0 processing. The example shows co­
routines used in double-buffered 1/0 using lOX. The flow of events
might be described as:

Write 01
Read 11 concurrently
Process 12

125

Programming Techniques

then
Write 02
Read 12
Process 11

concurrently

Routine #1 is operating, it then
executes:

MOV #PC2,-(R6)
JSR PC,@(R6)+

with the following results:
1. PC2 is popped from the

stack and the SP autoincre­
mented.

2. SP is autodecremented and
the old PC (Le. PC1) is
pushed.

3. Control is transferred to the
location PC2
(i.e. Routine #2).

Routine #2 is operating, it then
executes:

JSR PC,@(R6)+
with the resu It that PC2 is
exchanged for PC1 on the
stack and control is
transferred back to Routine #1.

sp-

sp--

Figure 5-11 Coroutine Interaction

RECURSION

PC2

1 PC2

PC2

An interesting aspect of a stack facility, other than its providing for
automatic handling of nested subroutine.s and interrupts, is that a
program may call on itself as a sub-routine just as it can call on any
other routine. Each new call causes the return linkage to be placed on
the stack, which, as it is a last-in/first-out queue, sets up a natural
unraveling to each routine justafter the point of departure.

Typical flow for a recursive routine might be something like this:

126

Programming Techniques

Figure 5-12 Recursive Routine Flow

The main program calls function one, SUB 1, which calls function two,
SUB 2, which recurses once before returning.

Example:

DNCF:

1$

BEQ1$
JSR RS,DNCF

RTS RS"

;TO EXIT RECURSIVE LOOP
;RECURSE

;RETURN TO 1$ FOR
;EACH CALL, THEN TO
;MAIN PROGRAM

The routine DNCF calls itself until the variable tested becomes equal
to zero, then it exits to 1$ where the RTS instruction is executed,
returning to the 1$ orice for each recursive call and one final time to
return to the main program. _

In general, recursion techniques will lead to slower programs than the
corresponding interactive techniques, but the recursion will give
shorter programs in memory space used. Both the brevity and clarity
produced by recursion are important in assembly language programs.

Uses of Recursion
Recursion can be used in any routine in which the same process is
required several times. For example, a function to be integrated may
contain another function to be integrated, i.e., to solve for XM

127

where:

and:

Programming Techniques

x
XM = 1 + f F(X)

o

o

F(X) = f G(X)
)(

Another use for a recursive function could be in calculating a factorial
function because

FACT(N) = FACT(N-1) * N

Recursion should terminate when N = 1.

The macro processor within MACRO-11, for example, is itself recur­
sive, as it can process nested macro definitions and calls. For exam­
ple, within a macro definition, other macros can be called. When a
macro call is encountered within definition, the processor must work
recursively, i.e., to process one macro before it is finished with anoth­
er, then to continue with the previous one. The stack is used for a
separate storage area for the variables associated with each call to the
procedure.

As long as nested definitions of macros are available, it is possible for
a macro to call itself. However, unless conditionals are used to termi­
nate this expansion, an infinite loop could be generated.

PROCESSOR TRAPS
There are a series of errors and programming conditions which will
cause the central processor to trap to a set of fixed locations. These
include power failure, odd addressing errors, stack errors, time out
errors, memory parity ~rrors, memory management violations, float­
ing point processor exception traps, use of reserved instructions, use
of the T bit in the processor status word, and use of the lOT, EMT, and
TRAP instructions.

Power Failure
Whenever AC power drops below 95 volts for 115V power (190 volts
for 230V) or outside a limit of 47 to 73 Hz, as measured by dc voltage,
the power-fail sequence is initiated. The central processor automati­
cally traps to location 24 and the power-fail program has 2 msec. to
save a" volatile information (data in registers), and to condition peri­
pherals for power failure.

128

Programming Techniques

When power is restored, the processor traps to location 24 and exe­
cutes the power-up routine to restore the machine to its state prior to
power failure.

Odd Addressing Errors
This error occurs whenever a program attempts to execute a word
instruction on an odd address (in the middle of a word boundary). The
instruction is aborted and the CPU traps through location 4.

Time-out Errors
These errors occur when a master synchronization pulse is placed on
the UNIBUS and there is no slave pulse within a certain length of time.
This error usually occurs in attempts to address non-existent memory
or peripherals. The typical UNIBUS time-out is 10 microseconds.

The offending instruction is aborted and the processor traps through
location 4.

Reserved Instructions
There is a set of illegal and reserved instructions which cause the
processor to trap through location 10.

Vector Address and Trap Errors

000 (reserved)
004 CPU errors
010 Illegal and reserved instructions
014 BPT, breakpoint trap
020 lOT, input/output trap
024 Powerfail
030 EMT, emulator trap
034 TRAP instruction

TRAP INSTRUCTIONS
Trap instructions provide for calls to emulators, 1/0 monitors,
debugging packages, and user-defined interpreters. A trap is effec­
tively an interrupt generated by software. When a trap occurs, the
contents of the current program counter (PC) and program status
word (PS) are pushed onto the processor stack and replaced by the
contents of a 2-word trap vector containing a new PC and new PS. The
return sequence from a trap involves executing an RTI or RTT instruc­
tion which restores the old PC and old PS by popping them from the
stack. Trap vectors are located at permanently assigned fixed ad­
dresses.

The EMT (trap emulator) and TRAP instructions do not use the low­
order byte of the word in their machine language representation. This

129

Programming Techniques

allows user information to be transferred in the low-order byte. The
new value of the PC loaded from the vector address of the TRAP or
EMT instructions is typically the starting address of a routine to access
and interpret this information. Such a routine is called a trap handler.

The trap handler must accomplish several tasks. It must save and
restore all necessary GPRs, interpret the low byte of the trap instruc­
tion and call the indicated routine, serve as an interface between the
calling program and this routine by handling any data that need be
passed between them, and, finally, cause the return to the main
routine.

Uses of Trap Handlers
The trap handler can be useful as a patching technique. Jumping out
to a patch area is often difficult because a 2-word jump must be
performed. However, the 1-word TRAP instruction may be used to
dispatch to patch areas. A sufficient number of slots for patching
should first be reserved in the dispatch table of the trap handler. The
jump can then be accomplished by placing the address of the patch
area into the table and inserting the proper TRAP instruction where
the patch is to be made.

The trap handler can be used in a program to dispatch execution to
anyone of several routines. Macros may be defined to cause the
proper expansion of a call to one of these routines. For example,

.MACRO SUB2 ARG
MOVARG, RO
TRAP +1
.ENDM

When expanded, this macro sets up the one argument required by the
routine in RO and then causes the trap instruction with the number 1 in
the lower byte. The trap handler should be written so that it recognizes
a 1 as a call to SUB2. Notice that ARG here is being transmitted to
SUB2 from the calling program. It may be data required by the routine
or it may be a pointer to a longer list of arguments.

In an operating system environment like RT-11, the EMT instruction is
used to call system or monitor routines from a user program. The
monitor of an operating system necessarily contains coding for many
functions, i.e., 110, file manipulation, etc. This coding is made accessi­
ble to the program through a series of macro calls, which expand into
EMT instructions with low bytes indicating the desired routine, or
group of routines to which the desired routine belongs. Often a GPR is
designated to be used to pass an identification code to further indicate
to the trap handler which routine is desired. For example, the macro
expansion for a resume execution command in RT-11 is as follows:

130

Programming Techniques

.MACRO .RSUM
CM3,2 .
. ENDM

and CM3 is defined as

.IIF NB

.MACRO CM3 CHAN, CODE
MOV #CODE *400,RO
CHAN,BISB CHAN,RO
EMT 374
.ENDM

Notice the EMT low byte is 374. This is interpreted by the EMT handler
to indicate a group of routines. Then the contents of RO (high byte) are
tested by the handler to identify exactly which routine within the group
is being requested, in this case routine number 2. (The CM3 call of the
.RSUM is set up to pass the identification code.)

Summary of PDP·11 Processor Trap Vectors:
VECTOR ADDRESS FUNCTION SERVED

4

10

14
20
24
30
34

114

244
250

Illegal instructions (JSR, JMP
for mode 0)
Bus errors (odd address error,
timeout)
Stack limit (Red Zone, Yellow
Zone)--

Illegal internal address
Microbreak

Reserved instruction
XFC with UCS disabled
SPL, MTPS, MFPS
FADD, FSUB, FMUL, FDIV
HALT in user mode

Trace (T bit)
lOT
Power fail
EMT
TRAP
Cache parity error
UNIBUS memory parity error
UCS parity error

Floating point exception
Memory management (KT) abort

131

Programming Techniques

CONVERSION ROUTINES
Almost all assembly language programs require the translation of data
or results from one form to another. Coding that performs such a
transformation will be called a conversion routine in this handbook.
Several commonly used conversion routines are included in the fol­
lowing pages.

Almost all assembly language programs involve some type of conver­
sion routines, octal to ASCII, octal to decimal, and decimal to ASCII
being a few of the most widely used.

Arithmetic multiply and divide r:outines are fundamental to many con­
version routines.

Division is typically approached in one of two ways.
1. The division can be accomplished through a combination of ro­

tates and subtractions.

Examples:
Assume the following code and register data; to make the
example easier, also assume a 3-bit word.

DIV: MOV #3,-(SP) ;SET UP DIGIT COUNTER
CLR -(SP) ;CLEAR RESULT

1$

2$

ASL (SP)
ASL R1
ROLRO
CMP RO,R3
BLT2$
SUB R3,RO
INC (SP)
DEC 2 (SP)
BNE$1

Therefore, to divide 7 by 2:

RO=OOO
R1 = 111
R3=010
C bit=O

STACK
011
000

;RO CONTAINS REMAINDER
;INCREMENT RESULT
;DECREMENT COUNTER

remainder
seven-m u Iti pi icand
two-multiplier

counter
quotient

Following through the coding, the quotient, remainder, and div­
idend all shift left, manipulating the most significant digit first, etc.

132

Programming Techniques

At the conclusion of the routine:

RO=001
R1=000
R3=010

STACK
000
011

remainder

counter
quotient

1. A second method of division occurs by repeated subtraction of
the powers of the divisor, keeping a count of the number of sub­
tractions at each level.

Example:
To divide 221 10 by 10, first try to subtract powers of 10 until a non­
negative value is obtained, counting the number of subtractions of
each power.

221
-1000

negative so go to next lower power, count for 103 = O.
221

-100

121 countfor 102 = 1.
-100

21 count = 2
-100

negative, so reduce power count for 102 = 2
21

-10

11 count for 101 =1.

11
-10

1 count=2
-10

negative, so count for 101 = 2.

133

Programming Techniques

No lower power, so remainder is 1.

Answer = 0221°' remainder 1.

Multiplication can be done through a combination of rotates and addi­
tions or through repetitive additions.

Example:
Assume the following code and a 3-bit word.

ADD

CLR RO ;HIGH HALF OF ANSWER
MOV #3,CNT ;SET UP COUNTER
MOV R1 ,MUL T; ;MUL TIPLICAND

MORE:

NOW:

MULT:
CNT:

RORR2
BCCNOW
ADD MUL T,RO ;IF INDICATED,

;MUL TIPLICAND
RORRO
RORR1
DECeNT
BNEMORE
o
o

The following conditions exist for 6 times 3:

RO = 000 - high order half of result
R1 = 110 - multiplicand
R3 = 011 - multiplier

After the routine is executed:

RO = 010- high order half of result
R 1 = 010 - low order half of resu It
R2 = 100
CNT = 0
MULT=110

Example:
Multiplication of RO by 50s (101000).

MUL50: MOV RO,-(SP)
ASLRO
ASLRO
ADD (SP)+,RO
ASLRO

134

Programming Techniques

If RO contains 7:

RO = 111

After execution;

RO = 100011000
(7*508 = 4308)

ASCII CONVERSIONS

ASLRO
ASLRO
RETURN

The conversion of ASCII characters to the internal representation of a
number as well as the conversion of an internal number to ASCII in 1/0
operations presents a challenge. The following routine takes the 16-bit
word in R1 and stores the corresponding six ASCII characters in the
buffer addressed by R2.

OUT: MOV #5,RO
LOOP: MOV R1,-(SP)

BIC #177770,@SP
ADD #'O,@SP
MOVB (SP)+,-(R2)
ASR R1
ASR R1
ASR R1
DEC RO
BNE LOOP
BIC #177776,R1
ADD #'0,R1
MOVB R5, -(R2)
RTS PC

PROGRAMMING EXAMPLES

;LOOPCOUNT
;COpy WORD INTO STACK
;ONE OCTAL VALUE
;CONVERT TO ASCII
;STORE IN BUFFER
;SHIFT
;RIGHT
;THREE
;TEST IF DONE
;NO, DO IT AGAIN
;GET LAST BIT
;CONVERT TO ASCII
;STORE IN BUFFER
;DONE,RETURN

The programming examples on the following pages show how the
PDP-11 instruction set, the addressing modes, and the programming
techniques can be used to solve some simple problems. The format
used is either PAL-11 or MACRO-11.

135

Program Program
Address Contents Label OpCode Operand Comments

;PROGRAMMING EXAMPLE
;SUBTRACT CONTENTS OF LOCS 700-710
;FROM CONTENTS OF LOCS 1000-1010

000000 RO=%O
000001 R1=%1
000002 R2=%2 "'tI

000003 R3=%3 a
CQ

000004 R4=%4 ii;
:3

...... 000005 R5=%5 :3
UJ 000006 SP=%6 S'
0) CQ

000007 PC=%7 q}
(")
::r
~

000500 .=500 -,
.Q

START: MOV #.,SP ;INIT STACK POINTER
c::

000500 012706 CD
CI)

000500
000504 012701 MOV #700,R1

000700
000510 012702 MOV #712,R2

000712
000514 012703 MOV #1000,R3

001000
000520 012704 MOV #1012,R4

001012

Program Program
Address Contents Label OpCode Operand Comments

000524 005000 CLR RO
000526 005005 CLR R5

000530 062105 SUM1: ADD (R1)+,R5 ;START ADDING
000532 020102 CMP R1,R2 ;FINISHED ADDING?
000534 001375 BNE SUM1 ;IF NOT BRANCH BACK
000536 062300 SUM2: ADD (R3)+,RO ;START ADDING ."

000540 020304 CMP R3,R4 ;FINISHED ADDING? a co
000542 001375 BNE SUM2 ;IF NOT BRANCH BACK ~

3
3

"'""" 000544 160500 DIFF: SUB R5,RO ;SUBTRACT RESULTS 5" w co
c;}

000546 000000 HALT ;THA T'S ALL FOLKS (')
::l"
::3
.0"

000700 .=700
c::
CD
en

000700 000001 .WORD 1, 2, 3, 4, 5
000702 000002
000704 000003
000706 000004
000710 000005

001000 .=1000
001000 000004 .WORD 4,5,6,7,8
001002 000005

U) -C
CD
E
E
o o

'0
C
ca ...
CD
a.
o

CD
'0
o o
a.
o

CD
.Q
ca
..J

E.!! ca C
... CD
en­o C
... 0
£LO

E U) ca U)
... CD
en'"
0'0
... '0 £Lea:

CO,..... 0
00,...
000
000
000
000

"=tCOO
00,...
000 ,... ,... ,...
000
000

o en
I

«

Cl
Z
W

o
o
LO
o
o
o

Programming Techniques

138

START:

CHECK:

NEXT:

VALUES:

Programming Techniques

;PROGRAM TO COUNT NEGATIVE NUMBERS
;IN ATABLE
;20. SIGNED WORDS
;BEGINNING AT LOC VALUES
;COUNT HOW MANY ARE NEGATIVE IN RO

RO=%O
R1=%1
R2=%2
SP=%6
PC=%7

.=500

MOV#.,SP
MOV #VALUES,R1
MOV #VALUES+40.,R2
CLRRO

TST (R1)+
BPL NEXT
INCRO

CMP R1,R2
BNECHECK
HALT

.BLK 20.
o
.END

;SET UP STACK
;SET UP POINTER
;SET UP COUNTER

;TEST NUMBER
;POSITIVE?
;NO. INCREMENT
;COUNTER
;YES, FINISHED?
;NO,GOBACK
;YES, STOP

;PROGRAM TO COUNT ABOVE AVERAGE QUIZ SCORES
;LlST OF 16. QUIZ SCORES
;BEGINNING AT LOC SCORES
;KNOWN AVERAGE IN LOC AVRAGE
;COUNT IN RO SCORES ABOVE AVERAGE

RO=%O
R1=%1
R2=%2
R3=%3
SP=%6
PC=%7

139

START:

Programming Techniques

.=500

MOV#.,SP
MOV#16.,R1
MOV #SCORES, R2
MOV #AVRAGE,R3
CLRRO

;SET UP STACK
;SET UP COUNTER
;SET UP POINTER

CHECK: CMP (R2)+, (R3)
BLENO

;COMPARE SCORE AND AVRAGE
;LESS THAN OR EQUAL
;TOAVRAGE?

INCRO
NO: DEC R1

BNECHECK
HALT

AVERAGE: 65.

;NO, COUNT
;YES, DECREMENT COUNTER
;FINISHED? NO, CHECK
;YES, STOP

SCORES: 25.,70.,100.,60.,80.,80.,40.
55.,75.,100.,65.,90.,70.,65.,70 .

. END

;PROGRAMMING EXAMPLE
;ACCEPT (IMMEDIATE ECHO) AND
;STORE 20. CHARS
;FROM THE KEYBOARD, OUTPUT CR & LF
;ECHO ENTIRE STRING FROM STORAGE

RO=%O
R1=%1
SP=%6
CR=15
LF=12
TKS=177560
TKB=TKS+2
TPS=TKB+2
TPB=TPS+2

.TITLE ECHO

.=1000

140

START:

IN:

ECHO:

OUT:

SAVE:

INPUT:

IN:

OUT:

Programming Techniques

MOV #.,SP ;INITIALIZE STACK POINTER
MOV #SAVE+2,RO ;SA OF BUFFER

;BEYOND CR & LF
MOV #20.,R1 ;CHARACTER COUNT

TSTB @#TKS ;CHAR IN BUFFER?
BPL IN ;IF NOT BRANCH BACK

;ANDWAIT
TSTB @#TPS ;CHECK TELEPRINTER

jREADY STATUS
BPL ECHO
MOVB @#TKB,@#TPB ;ECHO CHARACTER
MOVB @#TKB,(RO)+ ;STORE CHARACTER AWAY
DEC R1
BNE IN ;FINISI4ED INPUTTING?

MOV #SAVE,RO ;SA OF BUFFER INCLUDING
;CR& LF

MOV #22.,R1 ;COUNTER OF BUFFER
;INCLUDING CR & LF

TSTB @#TPS ;CHECK TELEPRINTER
;READY STATUS

BPL OUT
MOVB (RO)+,@#TPB ;OUTPUT CHARACTER
DEC R1
BNE OUT ;FINISHED OUTPUTTING?
HALT

.BYTE CR,LF

.=.+20 .

. END

;PROGRAMMING EXAMPLE
;SUBROUTINE TO INPUT TEN VALUES

MOV #BUFFER,RO

MOV #-10.,R1
TSTB@#TKS
BPLIN
TSTB@#TPS

;SET UPSAOF
;STORAGE BUFFER
;SET UP COUNTER
;TEST KYBD READY STATUS

;TESTTTO READY STATUS

141

Programming Techniques

BPL OUT
MOVB @#TKB,@#TPB;ECHO CHARACTER
MOVB @#TKB,(RO)+ ;STORE CHARACTER
INC R1 ;INC COUNTER
BNEIN
RTS PC ;EXIT

;PROGRAMMING EXAMPLE
;SUBROUTINE TO SORT TEN VALUES

SORT: MOV#-10.,R4
NEXT: MOV COUNT,R3

MOV #BUFFER+9.,RO
ADD R3,RO
MOVB (RO)+,R1

LOOP: CMPB (RO)+,R1
BGEGT

L T: MOVB -(RO),R2
MOVB R1 ,(RO)+
MOV R2,R1

GT: INC R3
BNELOOP

INSERT: MOVB R1,BUFFER+10.(R4)
INCR4
INC COUNT
BNE NEXT
MOV #-9.,COUNT ;RESTORE LOCATION COUNT
RTS PC ;EXIT'

COUNT: .WORD -9.
LlNE1: .ASCII/INPUT ANY TEN SINGLE DIGIT VALUES (0-9);
I'LL/

.ASCII/SORT AND OUTPUT THEM IN/
LlNE2: .ASCII/SMALLEST TO LARGEST ORDER.!
BUFFER: .=.+10 .

. END INITSP ;FINISHEDI!!

;PROGRAMMING EXAMPLE
;SUBROUTINE EXAMPLE
;INPUT TEN VALUES, SORT, AND
;OUTPUT THEM IN SMALLEST TO LARGEST ORDER

142

RO=%O
R1=%1
R2=%2
R3=%3
R4=%4
RS=%S
SP=%6
PC=%7

Programming Techniques

TKS = 177S60 (address of teletype control status register)
TKB=TKS+2 - (teletype data buffer register)
TPS=TKB+2 (teletype output control and status registers)
TPB=TPS+2 - (teletype output data buffer)

.=3000

INITSP: MOV #.,SP ;INITIALIZE STACK POINTER
;GO TO CRLF SUBROUTINE
;GO TO OUTPUT SUBROUTINE
;SA OF LINE 1 BUFFER
;NUMBER OF OUTPUTS

CRLF:

LNFD:

JSR PC,CRLF
JSR RS, OUTPUT
L1NE1
69.
JSR PC,CRLF
JSR RS,OUTPUT
L1NE2
26.
JSR PC,CRLF
JSR PC,INPUT
JSR PC,SORT
JSR PC,CRLF
JSR RS,OUTPUT
BUFFER
10.
JSR PC,CRLF
HALT

;GO TO CRLF SUBROUTINE
;GO TO OUTPUT SUBROUTINE
;SA OF LINE 2 BUFFER
;NL!MBER OF OUTPUTS
;GO TO CRLF SUBROUTINE
;GO TO INPUT SUBROUTINE
;GO TO SORT SUBROUTINE
;GO TO CRLF SUBROUTINE
;GO TO OUTPUT SUBROUTINE
;INPUT BUFFER AREA
;NUMBER OF OUTPUTS

;THE END!!!

;PROGRAMMING EXAMPLE
;SUBROUTINE TO OUTPUT A CR & LF

TSTB @#TPS ;TEST TTO READY STATUS
BPLCRLF
MOVB #1S,@#TPB ;OUTPUT CARRIAGE RETURN
TSTB @#TPS ;TEST TTO READY STATUS
BPLLNFD
MOVB #12,@#TPB ;OUTPUT LINE FEED
RTS PC ;EXIT

143

Programming Techniques

;SUBROUTINE TO OUTPUT A
;VARIABLE LENGTH MESSAGE

OUTPUT: MOV (R5)+,RO ;PICK UP SA OF DATA BLOCK
MOV (R5)+,R1 ;PICK UP NUMBER OF OUTPUTS
NEG R1 ;NEGATE IT

AGAIN: TSTB @#TPS ;TEST TTO READY STATUS
BPLAGAIN
MOVB (RO)+,@#TPB ;OUTPUT CHARACTER
INC R1 ;BUMP COUNTER
BNEAGAIN
RTSR5

LOOPING TECHNIQUES
PROGRAM SEGMENTS BELOW USED TO CLEAR

A 50.WORD TABLE

1. AUTOINCREMENT (POINTER ADDRESS IN GPR)

RO=%O

LOOP:
MOV#TBL,RO
CLR (RO)+
CMP RO,#TBL+100.
BNELOOP

2. AUTODECREMENT (POINTER AND LIMIT VALUES IN GPR)

RO=%O

LOOP:

R1=%1
MOV#TBL,RO
MOV #TBL+100.,R1
CLR - (R1)
CMP R1,RO
BNELOOP

3. COUNTER (DECREMENTING A GPR CONTAINING COUNT)

RO=%O

LOOP:

R1=%1
MOV#TBL,RO
MOV#50.,R1
CLR (RO)+
DECR1
BNELOOP

144

Programming Techniques

4. INDEX REGISTER MODIFICATION (INDEXED MODE; MODIFY­
ING INDEX VALUE)

LOOP:

RO=%O
CLRRO
CLR TBL (RO)
ADD#2,RO
CMP RO,#100.
BNELOOP

5. FASTER INDEX REGISTER MODIFICATION (STORING VALUES
IN GPR)

LOOP:

RO=%O
R1=%1
R2=%2
MOV#2,R1
MOV #1 OO.,R2
CLRRO
CLR TBL (RO)
ADD R1,RO
CMP RO,R2
BNELOOP

6. ADDRESS MODIFICATION (INDEXED MODE; MODIFYING BASE
ADDRESS)

LOOP:

RO=%O
MOV#TBL,RO
CLR 0 (RO)
ADD #2,LOOP+2
CMP LOOP+2,#100.
BNELOOP

145

146

CHAPTER 6

MEMORY MANAGEMENT

PDP-11 programs address memory using a 16-bit virtual address. On
the PDP-11/04 (always) and other PDP-11 processors (with memory
management disabled), the 16-bit virtual address provides direct ac­
cess to 56K bytes of main m0l1ory and 8K bytes of peripheral and
processor registers. Addresses in the lower 56~ bytes are presented
directly to the UNIBUS by the CPU. The high 8K bytes are mapped by
the CPU to the UNIBUS I/O page address 760 000 'to 777 777 (see
Figure 6-1).

PDP-11 processors with memory management can address up to 64K
bytes of main memory by mapping all of the virtual address space to
physical memory.

Memory mapping is available in three forms on PDP-11s:

16-bit mapping: PDP-11/04, 11 134A, 11/60, 11/44, 11/70
18-bit mapping: PDP-11/34A, 11/60, 11 144, 11/70
22-bit mapping: PDP-11/44, 11/70

CPU MAPPING ON THE 11/34A AND 11/60
Mapping of processor addresses is performed in one of two possible
ways: 16-bit mapping (with Memory Management disabled), or 18-bit
mapping (with Memory Management enabled).

16-blt Mapping (Memory Management Disabled)
There is a fixed relocation mapping from virtual to physical addresses.
The lowest 56K virtual addresses correspond to the same physical
addresses. The top 8K addresses cause UNIBUS cycles to addresses
760000 to 777 777. (Refer to Figure 6-1.) 16-bit mapping occurs after
Power-Up, Console Start, or the RESET instruction.

147

177777
176000

000000

Memory Management

I/O PAGE (8KB)

j--------f<'- - - - - - - - - - - -,--------1

56K BYTES
MAXIMUM
AVAILABLE
MAIN
MEMORY

r-------, r------,
I 16-BIT PROGRAM I I 18- BIT I
I VIRTUAL ADDRESS 1----------.. I UN IBUS ADDRESS I L ______ ...J L ______ -l

Figure 6-1 16-Bit Mapping on the 11/04, 11 134A, 11/60

18-Blt Mapping (Memory Management Enabled)

777777
776000

175777

000000

64K bytes of virtual address space for each of the two modes (Kernel
and User) are mapped into 256K bytes of physical address space. The
lowest 248K byte addresses reference physical memory. The top 8K
byte addresses access peripheral page registers. (Refer to Figure 6-
2).

177777

000000

I/O PAGE (8 KB)

248KB
MAXIMUM
AVAILABLE
MAIN
MEMORY

777777
776000

L....-_____ -l ---------._.... 000000

16- BIT PROGRAM ____ .. MEMORY Do 16 - BIT
VIRTUAL ADDRESS MANAGEMENT UNIBUS ADDRESS

Figure 6-2 Memory Management on the 11 134A, 11/60

148

Memory Management

CPU MAPPING ON 11/44 AND 11/70
Mapping of processor addresses is performed in one of three possible
ways: 16-bit mapping, 18-bit mapping and 22~bit mapping.

16-Bit Mapping
There is fixed relocation mapping from virtual to physical addresses.
The lowest 56K virtual addresses are treated as corresponding to the
same physical addresses. The top 8K addresses cause UNIBUS cycles
to addresses 17 760 000 to 17 777 777. (Refer to Figure 6-3.) 16-bit
mapping operation occurs after Power-Up, Console Start, or the RE­
SET instruction.

F.LOW ..
----------777777 17777777

PERIPHERAL PAGE

17600000 -----------
UNIBUS " (18 BITS) " (124K)

~~~s 000000 17000000 
16777777 

T 
M~ 

" " " " 1920K 

PHYSICAL 
177777 MEMORY 

(96K) 

160000 -------00157777 00157777 
VIRTUAL (28K) (28K) (16BITS) 

000000 00000000 00000000 ------------ ----------
INCOMING PHYSICAL ADDRESS 
ADDRESS ADDRESS SPACE LOCATlONS 

(22 BITS) (MAX, AVAILABLE 
MEMORY 1024K) 

.. = RELOCATION 
- - - - - =NO ADDRESS 

RELOCATION 

Figure 6-3 16-Bit Mapping on 11/44, 11/70 

18-Blt Mapping 
64K virtual addresses for each of the three modes (Kernel, Supervisor, 
and User) are mapped into 256K of physical address space. The lo­
west 248K addresses reference physical memory. The top 8K ad­
dresses cause UNIBUS cycles to addresses 17760000 to 17 777777. 
(Refer to Figure 6-4.) 

149 



777777 

UNIBUS 
(18 BITS) 

000000 

177777 

VIRTUAL 
(168ITS) 

Memory Management 

fLOW ... 

(124K) 

17777777 
PERIPHERAL PAGE 

17600000 

16777777 

PHYSICAL 
MEMORY 

(124K) 

"'"OO=O'"""OO=O'-_-I _______ ~ .. <=.0..::.c00::..;:0-=.00;:..::0=0_--, ___________ 00000000 

INCOMING PHYSICAL ADDRESS 
ADDRESS ADDRESS SPACE LOCATIONS 

-~-.. =RELOCATION 
------ =NO ADDRESS 

RElOCATION 

(22 BITS) (MAX. AVAILABLE 
MEMORY 1024K) 

Figure 6-4 18-Bit Mapping on 11/44, 11/70 

22-81t Mapping 

I 
1920K 

This mode produces full 22-bit addresses for accessing all of physical 
memory. The top 256K addresses cause UNIBUS cycles to addresses 
17000000 to 17777777. (Refer to Figure 6-5.) 

150 



Memory Management 

FLOW 

r:;77:;':;-7:;::;77::;-7 ---,- - - - - - - - - -,,-:-::17=77=77=77=------,- - - - --- - - - - 1'":":17=77=77=77::------' 

UNIBUS 
(18 BITS) 

000000 

(4K) PERIPHERAL PAGE 

1-:'17=:76==00=0~0 ---k-_________ ,-,,1~=60..::..:000..::..:0,------, 
17757777 '\ 

(124K) 

_____ !--;,17c.:;,00;.=-00=-=0.;.-0 -4 
16777777 

\ 

16777777 

.--17-n-77----r/ ::tJt,/ (1920K) 
PHYSICAL 
MEMORY 
(1920K) 

000000 

INCOMING 
ADDRESS 

--- • RELOCATION 
----- 'NO ADDRESS 

RELOCATION 

.00000000 
PHYSICAL 
ADDRESS SPACE 
(22 BITS) 

ADDRESS 
LOCATIONS 
(MAX,AVAILABLE 
MEMORY 1024K) 

Figure 6-S 22-Bit Mapping on 11 144, 11/70 

COMPATIBILITY 
16-bit and 18-bit mapping can used so that the computer is 
compatible with other PDP-11 computers, such as the PDP 11/20 or 
the PDP-11 14S. Thus, software written for another PDP-11 can be run 
on the 11/44 or PDP-11/70 without modification. 

UNIBUS 

Mem Map 
Mapping Mgt Relocation Compatible With 
16 Bit Off Off PDP-11 lOS, 11/40 

11/1S, 11/20, 11/04 
18 Bit On Off PDP-11/3S, 11/40 

11/4S, 11/S0, 11/34A, 11/60 
22 Bit On Off or On PDP-11/70,11/44 

Although all machines are started in 16-bit mapping mode at boot 
time, DIGITAL operating systems run 11 134As and 11 160s with 18-bit 
mapping and 11 I 44s a~d 11 170s with 22-bit mapping. 

1S1 



Memory Management 

On the PDP-11 134A,11 144, 11/60 and 11/70, memory management 
can be used to map the 64K bytes of program virtual address space 
into a larger physical address space. This mapping allows the pro­
gram to access 64K bytes of memory at any given time. The mapping 
can be changed to address a different set of 64K bytes. This mapping 
mechanism allows several programs to occupy different portions of 
physical memory without risk of unintended accesses by other pro­
grams, as is necessary in multiprogramming systems. The operating 
system can also allow several programs to share physical memory 
locations without requiring them to use the same virtual address. 

On the PDP-11 134A and 11/60, memory management hardware maps 
16-bit program virtual addresses to 1B-bit UNIBUS addresses provid­
ing access to 256K bytes of which the high order BK bytes are reserved 
for peripheral and processor registers (I/O page). This leaves 24BK 
bytes of addressable main memory on the UNIBUS (see Figure 6-2). 

On the PDP-11 144 and 11/70, memory management hardware con­
verts a 16-bit program virtual address to a 22-bit physical address, 
which provides access to over 4 million bytes (the 11/44 is currently 
limited to 1 M bytes of physical memory). The high order 256K byte 
addresses are used to access the UNIBUS. The remaining 3,B40K byte 
addresses are available for access to physical main memory. Thus, 
physical addresses between 00 000 000 and 16 777 777 access main 
memory 

17777 777 

17760000 

17000 000 

00000 000 

I/O PAGE(8KB) 

3840K BYTES 
MAXIMUM 
AVAILABLE 
MAIN 
MEMORY 

152 



Memory Management 

If an address is in the top 256K bytes of the 22-bit physical address 
space, i.e., 17 000 000 to 17 777 777, the lower 18 bits of the address 
are placed on the UNIBUS. The UNIBUS map can convert the 18-bit 
UNIBUS address back to a 22-bit physical main memory address. 

18-BIT 
UNIBUS 
ADDRESS 

16-BIT 
PROGRAM MEMORY UNIBUS 
VIRTUAL MANAGEMENT MAP 
SPACE 

22-BIT 
PHYSICAL 
MAIN 
MEMORY 
ADDRESS· 

ADDRESSING AND MEMORY MANAGEMENT 
PDP-11 memory management allows addressing of physical memo­
ries larger than 64K bytes, and provides other enhancements of the 
PDP-11 memory addressing capability. 

The 16-bit addresses which appear in the PDP-11 programs refer to 
physical memory on processors, such as the PDP-11 104, which do not 
have memory management. However, on processors which support 
larger physical memories, these 16-bit addresses are transformed by 
memory mangement into physical address which are 18 bits long on 
the PDP-11 134A and 11/60, and 22 bits long on the 11 144 and 11/70. 

The 16-bit addresses which are part of the PDP-11 program are called 
Virtual Addresses because the program operates as if it were ad­
dressing a 64K byte memory even though it is actually addressing a 
part of a much larger physical memory. Because the PDP-11 program 
operates without explicitly invoking memory management, the reloca­
tion of programs by memory is said to be transparent to the program. 

The mechanism described below by which memory management 
maps virtual addresses to physical addresses provides other func­
tions such as: 
• extension of the physical memory address 
• separation of system and user functions 

153 



32K 

o 

VIRTUAL 
INSTRUCTION/DATA 
ADDRESS SPACE 

VIRTUAL ADDRESS 
(16 BITS) 

Memory Management 

PAR 7 ",L 
. PAR 6 

~ .. PAR S 

... PAR 4 

~ PAR 3 

PAR 2 

PAR 1 

PAR 0 
0 

PAGE ADDRESS REGISTERS 

PHYSICAL 
ADDRESS SPACE 

PAGE S 

PAGE 6 

PAGE 7 

PAGE 4 

PHYSICAL ADDRESS 
(22 BITS) 

Figure 6-6 Virtual Address Mapping into Physical Address 

The starting physical address for each page is an integral multiple of 
32 words, and each page has a maximum size of 4,096 words. Pages 
may be located anywhere within the Physical Address space. The 
determination of which set of page registers is used to form a Physical 
Address is made by the current mode of operation of the CPU, i.e., 
Kernel, Supervisor, or User mode. 

'NOTE 
All references to Supervisor Mode or Data Space 
pertain to the PDP-11 /44 and 11170 only. When Data 
Space is disabled and not in Supervisor Mode, the 
memory management facility on the PDP-11/44 and 
PDP-11/70 operates in the same way as PDP-
11/34A and PDP-11/60 memory management. 

Interrupt Conditions Under Memory Management Control 
The Memory Management Unit relocates all addresses. Thus, when it 
is enabled, all trap, abort, and interrupt vectors are considered to be in 
Kernel mode virtual address space. When a vectored transfer occurs, 
control is transferred according to a new Program Counter (PC) and 
Processor Status Word (PS) contained in a two-word vector relocated 
through the Kernel Page Address Register set. Relocation of trap ad­
dresses means that the hardware is capable of recovering from a 
failure in the first physical bank of memory. 

When a trap, abort, or interrupt occurs, the "push" of the old PC and 
old PS is to the User/Supervisor/Kernel R6 stack specified by CPU 

155 



Memory 'Management 

mode bits 15, 14 of the new PS in the vector. (00 = Kernel, 01 = 
Supervisor, 11 = User.) The CPU mode bits also determine the new 
Page Address Register set. Thus, it is possible for a Kernel mode 
program to have complete control over service assignments for all 
interrupt conditions, since the interrupt vector is located in Kernel 
space. The Kernel program may assign the service of some of these 
conditions to a Supervisor or User mode program by simply setting 
the CPU mode bits of the new PS in the vector to return control to the 
appropriate mode. 

Construction of a Physical Address 
With memory relocation enabled, all addresses either reference infor­
mation in Instruction (I) space or Data (D) space. I space is used for all 
Instruction fetches, index words, absolute addresses and Immediate 
operands. 0 Space is used for all other references. I Space and 0 
Space each have eight PAR's in each mode of CPU operation (Kernel, 
Supervisor, and User). Using Memory Management Register #3, the 
operating system may select to disable 0 space and map all refer­
ences (Instructions and Data) through I space, or to use both I and 0 
space. 

15 13 12 o 
APF DF 

, ! , , , , 

ACTIVE PAGE DISPLACEMENT FIELD 
FIELD 

Figure 6-7 Interpretation of Virtual Address 

The Virtual Address consists of: 
1. The Active Page Field (APF). This 3-bit field determines which of 

eight Page Address Registers (PARO-PAR7) will be used to form 
the Physical Address. 

2. The Displacement Field (OF). This 13-bit field contains an address 
relative to the beginning of a page. This permits page lengths up 
to 4K words (8K bytes). The OF Is further subdivided into two 
fields as shown in Figure 6-8. 

12 6 5 

BN 
! , 

BLOCK NUMBER DISPLACEMENT IN BLOCK 

Figure 6-8 Displacement Field of Virtual Address 

156 



Memory Management 

The Displacement Field consists of: 
1. The Block Number (BN). This 7 -bit field is interpreted as the block 

number within the current page. 
2. The Displacement in Block (DIB). This 6-blt field contains the dis-

placement within the block referred to by the Block Number. 

The remainder of the information needed to construct the Physical 
Address comes from the Page Address Field (PAF) which is 16 bits on 
the 11 144 and 11/70, and 12 bits on the 11 134A and 11/60. The Page 
Address Register (PAR) specifies the starting address of the memory 
page which that PAR describes. The PAF is actually a block number in 
the physical memory, e.g., PAF = 3 indicates a starting address of 96 
(3 X 32) words in physical memory. 

The formation of the Physical Address (PA) is illustrated in Figure 6-9. 

The logical sequence involved in constructing a Physical Address Is: 
1. Select a set of Page Address Registers depending on the space 

being referenced. 
2. The Active Page Field of the Virtual Address is used to select a 

Page Address Register (PARO-PAR7). 
3. The Page Address Field of the selected Page Address Register 

contains the starting address of the currently active page as a 
block number In physical memory. 

4. The Block Number from the Virtual Address is added to the Page 
Address Field to yield the number of the block in physical memory 
(PBN-Physical Block Number) which will contain the Physical 
Address being constructed. 

5. The Displacement in Block from the Displacement Field of the 
Virtual Address is joined to the Physical Block Number to yield a 
Physical Address. 

15 o 
VIRTUAL ADDRESS 

15 13 

SELECT PAR 

12 o 

OffSET INTO PAGE (VA) 

21 

PAF + L-I _-->HI....... __________ --' 
21 o 

PHYSICAL ADDRESS 1L-_-.Jn<--________________ -------' 

Figure 6-9 Construction of a Physical Address 

157 



Memory Management 

Memory Management Registers on the PDP-11/44 and PDP-11/70 
The Memory Management Units on the PDP-11/44 and 11/70 imple­
ment three sets of 32 16-bit registers. One set o'f registers is used in 
Kernel mode, another in Supervisor, and the third in User mode. The 
choice of which set is to be used is determined by the current CPU 
mode contained in the Processor Status word. Each set is subdivided 
into two groups of 16 registers. One group is used for references to 
Instruction (I) Space, and one to Data (D) Space. The I Space group is 
used for all instruction fetches, index words, absolute addresses and 
immediate operands. The D Space group is used for all other refer­
ences, providing it has not been disabled by Memory Management 
Register #3. If D space is disabled, then I space is used for all refer­
ences. Each group is further subdivided into two parts of eight regis­
ters. One part is the Page Address Register (PAR) whose function has 
been described in previous paragraphs. The other part is the Page 
Descriptor Register (PDR). PARs and PDRs are always selected in 
pairs by the top three bits of the virtual address. A PAR/PDR pair 
contains all the information needed to describe and locate a currently 
active memory page. 

The Memory Management registers are located in the uppermost 8K 
bytes of PDP-11 physical address space along with the UNIBUS lID 
device registers. 

• KERNI (00) 

~~o~I_~_OC_ES_S_STA_TU_S_W_OR_D __ ~) 
15 I 14 , 

USER (11) 
PAR PDR PAR PDR 

I SPACE 

Figure 6-10 Active Page Registers on the PDP-11 144 and 11/70 

Memory Management Registers on the PDP-11/34A and PDP-11/60 
The Memory Management Units on the PDP-11/34A and PDP-11/60 
implement a subset of the capability described above for the 11/44 
and 11/70. The Supervisor mode and Data space have been omitted 
and addressing is limited to 18-bit physical addresses. Hence, on the 
11/34A and 11/60, the Memory Management Units implement two 
sets of 16 registers. 

158 



Memory Management 

Page Address Register (PAR) 
The Page Address Register (PAR) contains the Page Address Field 
(PAF), a 16-bit field on the 11/44 and 11/70, and a 12-bitfield on the 
11/34A and 11/60, which specifies the starting address of the page as 
a block number in physical memory. 

15 o 
PAF 

Figure 6-11 Page Address Register 

The Page Address Register, which contains the Page Address Field, 
may be alternatively thought of as a relocation register containing a 
relocation constant, or as a base register containing a base address. 
Either interpretation indicates the basic importance of the Page 
Address Register as a relocation tool. 

Page Descriptor Register 
The Page Descriptor Register contains information relative to page 
expansion, page length, and access control. 

8765432 0 

PLF 

Figure 6-12 Page Descriptor Register 

Access Control Field (ACF) 
This 3-bit field, occupying bits 2-0 of the Page Descriptor Register 
contains the access rights to this particular page. The access codes, 
or "keys," specify the manner in which a page may be accessed and 
whether or not a given access should result in a trap or an abort of the 
current operation. A memory reference which causes an abort is not 
completed while a reference causing a trap is completed. In fact, when 
a memory reference causes a trap to occur, the trap does not occur 
until the entire instruction has been completed. Aborts are used to 
catch "missing page faults," prevent illegal access, etc.; traps are used 
as an aid in gathering memory management information. 

159 



Memory Management 

In the context of access control the term "write" is used to indicate the 
action of any instruction which modifies the contents of any address­
able word. "Write" is synonymous with what is usually called a "store" 
or "modify" in many computer systems. 

The modes of access control are as follows: 

000 non-resident 

001 read-only* 

010 read-only 

011 unused 

100 read/write 

101 read/write* 

110 read/write 

111 unused 

abort all accesses 

abort on write attempt, memo­
ry management trap on read 

abort on write attempt 

abort all accesses-reserved 
for future use 

memory management trap 
upon completion of a read or 
write 

memory management trap 
upon completion of a write 

no system trap/abort action 

abort all accesses-reserved 
for future use 

*Read-only and read/write traps are implemented on the PDP-11 /70 
only. 

It should be noted that using I Space provides the user with a further 
form of protection on the PDP-11/44 and PDP-11/70, execute only. 

Access Information Bits 
A Bit (bit 7)-This bit, implemented on the PDP-11 /70 only, is used by 
software to determine whether or not any accesses to this page met 
the trap condition specified by the Access Control Field (ACF) (A = 1 is 
Affirmative). The A Bit is used in the process of gathering memory 
management statistics. 

W Bit (bit 6)-This bit indicates whether or not this page has been 
modified (written into) since either the PAR or PDR was loaded. (W = 1 
is Affirmative). The W Bit is useful in applications which involve disk 
swapping and memory overlays. It is used to determine which pages 
have been modified and hence must be saved in their new form and 
which pages have not been modified and can be simply overlaid. 

Note that A and W bits are reset to "0" whenever either PAR or PDR is 
modified (written into). 

160 



Memory Management 

Expansion Direction (ED) 
Bit 3 of the Page Descriptor Register specifies in which direction the 
page expands. If ED = 0 the page expands upwards from block num­
ber 0 to include blocks with high addresses; if ED = 1, the page 
expands downward from block number 127 to include blocks with 
lower addresses. Upward expansion is usually used for program 
space while downward expansion is used for stack space. 

Page Length Field (PLF) 
This 7-bit field, occupying bits 14-8 of the Page Descriptor Register, 
specifies the block number, which defines the boundary of that page. 
The block number of the Virtual Address ,is compared against the 
Page Length Field to detect Length Errors. An error occurs when 
expanding upwards if the block number is greater than the Page 
Length Field, and when expanding downwards if the block number is 
less than the Page Length Field. 

Bypass Cache bit (Be) (11/44 only) 
When bit 15 of Page Descriptor Register is set, and relocation is en­
abled, all CPU references to this page go directly to main memory. 

Reserved Bits 
Bits 5 and 4 are spare and always read as 0, and should never be 
written. They are unused and reserved for possible future expansion. 

Fault Recovery Registers 
Aborts and traps generated by the Memory Management hardware 
are vectored through Kernel virtual location 250. Memory Manage­
ment registers #0, #1, and #3 are used to differentiate an abort from a 
trap, determine why the abort or trap occurred, and allow for easy 
program restarting. Note that an abort or trap to a location which is 
itself an invalid address will cause another abort or trap. Thus the 
Kernel program must insure that Kernel Virtual Address 250 is 
mapped into a valid address, otherwise a loop will occur which will 
require console intervention. 

Memory Management Register #0 (MMRO) 
MMRO contains error flags, the page number whose reference caused 
the abort, and various other status flags. The register is organized as 
shown in Figure 6-13. . 

Setting bit 0 of this register enables address relocation and error de­
tection. This means that the bits in MMRO become meaningful. 

Bits 15-12 are the error flags. They may be considered to be in a 
priority queue in that flags to the right are less significant and should 

161 



Memory Management 

be ignored. That is, a non-resident fault-service routine would ignore 
length, access control, and memory management flags. A page length 
service routine would ignore.access control and memory management 
faults, etc. 

Bits 15-13, when set (error conditions), cause Memory Management to 
freeze the contents of bits 1-7 and Memory Management Registers #1 
and #2. This has been done to facilitate error recovery. 

These bits may also be written under program control. No abort will 
occur, but the contents of the Memory Management registers will be 
locked up as in an abort. 

ABORT-NON RE 
ABORT-PAGE 
LENGTH ERRO 

SIDENT 

R} 

ABORT-READ 0 
ACCESS VIOLAT 

NLY} 
ION 
MANAGEMENT 

RY MANAGEMENT TRAP 

TRAP-MEMORY 
NOT USED­
NOT USED­
ENABLE MEMO 
MAINTENANCE 
INSTRUCTION C 
PAGE MODE­
PAGE ADDRESS 
PAGE NUMBER 

. ."."" 

OMPLETED 

SPACE I/O 

ENABLE RELOCATION----------------------' 

Figure 6-13 Format of Memory Management Register #0 (MMRO) 

Abort-Non-Resldent Bit 15 - Bit 15 is the Abort Non-Resident bit. It 
is set by attempting to access a page with an Access Control Field 
(ACF) key equal to 0,3, or 7. It is also set by attempting to use Memory 
Relocation with a processor mode of 2 (undefined/invalid mode). 

Abort-Page Length, Bit 14 - Bit 14 is the Abort Page Length bit. It is 
set by attempting to access a location in a page with a block number 
(Virtual Address bits 12-6) that is outside the area authorized by the 
Page Length Field of the Page Descriptor Register for that page. Bits 
14 and 15 may be set simultaneously by the same access attempt. Bit 
14 is also set by attempting to use Memory Relocation with a proces­
sor mode of 2. 

Abort-Read Only, Bit 13 - Bit 13 is the Abort Read Only bit. It is set 
by attempting to write in a read-only page. Read-only pages have 
access keys of 1 or 2. 

162 



Memory Management 

Trap-Memory Management, Bit 12 (PDP-11/70 only) - Bit 12 is the 
Trap Memory Management bit. It is set whenever a Memory Manage­
ment trap condition occurs; that is, a read operation which references 
a page with an Access Control Field of 1 or 4, or a write operation to a 
page with an ACF key of 4 or 5. 

Bits 11-10 - Bits 11 and 10 are spare and are always read as 0, and 
should never be written. They are unused and reserved for future use. 

Enable Memory Management Traps, Bit 9 (PDP-11/70 only) - Bit 9 
is the Enable Memory Management Traps bit. It is set or cleared by 
doing a direct write into MMRO. If bit 9 is 0, no Memory Management 
traps will occur. The A and W bits will, however, continue to log Memo­
ry Management Trap conditions. When bit 9 is set to 1, the next 
Memory Management trap condition will cause a trap, vectored 
through Kernel Virtual Address 250. 

NOTE 
If an instruction which sets bit 9 to 0 (disable Memory 
Management Trap) causes a Memory Management 
trap condition in any of its memory references prior 
to and including the one actually changing MMRO, 
the trap will occur at the end of the instruction. 

Maintenance/Destination Mode, Bit 8 - Bit 8 specifies that only 
destination mode references will be relocated using Memory Manage­
ment. This mode is only used for maintenance purposes. 

Instruction Completed, Bit 7 (PDP-11/70 only) - Bit 7 indicates that 
the current instruction has been completed. It will be set to 0 during T 
bit, Parity, Odd Address, and Time Out traps and interrupts. This 
provides error handling routines with a way of determining whether 
the last instruction will have to be repeated in the course of an error 
recovery attempt. Bit 7 is read-only (it cannot be written). It is initial­
ized to a 1. Note that EMT, TRAP, BPT, and lOT do not set bit 7. 

Processor Mode, Bits 6-5 - Bits 6 and 5 indicate the CPU mode 
associated with the page causing the abort (Kernel = 00, Supervisor = 
01, User = 11, illegal mode = 10). If an illegal mode is specified, bits 
15 and 14 will be set. 

Page Address Space, Bit 4 (PDP-11/44 and 11/70) - Bit 4 indicates 
the type of address space (lor 0) the Unit was in when a fault occurred 
(0 = I Space, 1 = D Space). It is used in conjunction with bits 3-1, Page 
Number. 

Page Number, Bits 3-1 - Bits 3-1 contain the page number of a 
reference causing a Memory Management fault. Note that pages, like 
blocks, are numbered from 0 upwards. 

163 



Memory Management 

Enable Relocation, Bit 0 - Bit 0 is the Enable Relocation bit. When it 
is set to 1, all addresses are relocated by the unit. When bit 0 is set to 0 
the Memory Management Unit is inoperative and addresses are not 
relocated or protected. 

Memory Management Register #1 (MMR1) (PDP-11/44 and 11/70) 
MMR1 records any autoincrementldecrement of the general purpose 
registers, including explicit references through the PC. MMR1 is 
cleared at the beginning of each instruction fetch. Whenever a general 
purpose register is either autoincremented or autodecremented, the 
register number and the amount by which the register was modified 
(in 2's complement notation) is written into MMR1. 

The information contained in MMR1 is necessary to accomplish an 
effective recovery from an error resulting In an abort. The low order 
byte is written first and it is not possible for a PDP-11 instruction to 
al,ltoincrementldecrement more than t~o general purpose registers 
per instruction before an abort-causing reference. Register numbers 
are recorded MOD 8; thus it is up to the software to determine which 
set of registers (User/Supervisor/Kernel-General Set O/General Set 
1) was modified, by determining the CPU and Register modes as con­
tained in the PS at the time of the abort. The 6-bit displacement of R6 
(SP) that can be caused by the MARK instruction cannot occur if the 
instruction is aborted. 

15 

AMOUNT CHANGED 
(2'5 COMPLEMENT) 

11 10 8 7 

REGISTER AMOUNT CHANGED 
NUMBER (2'5 COMPLEMENT) 

3 2 

REGISTER 
NUMBER 

o 

Figure 6-14 Format of Memory Management Register #1 (MMR1) 

Memory Management Register # 2 (MMR2) 
MMR2 is loaded with the 16-bit Virtual Address (VA) at the beginning 
of each instruction fetch, or with the address Trap Vector at the begin­
ning of an interrupt, T Bit trap, Parity, Odd Address, and Timeout 
aborts and parity traps. Note that MMR2 does not get the Trap Vector 
on EMT, TRAP, BPT and lOT instructions. MMR2 is read-only; it can­
not be Written. MMR2 is the Virtual Address Program Counter. 

Memory Management Register #3 (MMR3) (PDP-11/44 and 11/70) 
The Memory Management Register #3 (MMR3) enables or disables 
the use of the D space PARs and PDRs, 22-bit mapping and UNIBUS 

164 



Memory Management 

mapping. When 0 space is disabled, all references use the I space 
registers; when 0 space Is enabled, both the I space and 0 space 
registers are used. Bit 0 refers to the User's registers, Bit 1 to the 
Supervisor's, and Bit 2 to the Kernel's. When the appropriate bits are 
set, 0 space is enabled; when clear, It is disabled. Bit 3 is used to 
enable the change to Supervisor mode (CSM) instruction In the 11/44. 
It is reserved for future use. Bit 4 enables 22-bit mapping. If Memory 
Management Is not enabled, bit 4 is ignored and 16-bit mapping is 
used. 

If bit 4 is clear and Memory Management is enabled (bit 0 of MMRO is 
set), the computer uses 18-bit mapping. If bit 4 is set and Memory 
Management is enabled, the computer uses 22-bit mapping. Bit 5 is 
set to enable relocation in the UNIBUS map; the bit is cleared to 
disable relocation. Bits 15-6 are unused. On initialization this register 
is set to 0 and only I space is in use. 

15 6 5 4 3 2 1 0 

Figure 6-15 Format of Memory Management Register #3 (MMR3) 

Bit 

5 

4 

2 
1 
o 

State 

o 
1 

o 
1 
1 
1 
1 

Operation 

UNIBUS Map relocation disabled 
UNIBUS Map relocation enabled 
if bit 0 of MMRO Is set 
Enable 18-bit mapping 
Enable 22-bit mapping 
Enable Kernel 0 Space 
Enable Supervisor 0 Space 
Enable User 0 Space 

Instruction Back-Up/Restart Recovery 
The process of backing-up and restarting a partially completed in­
struction involves: 
1. Performing the appropriate memory management tasks to 

alleviate the cause of the abort (e.g., loading a missing page). 
2. Restoring the general purpose registers indicated in MMR1 to 

their original contents at the start of the instruction by subtracting 
the modify value specified in MMR1. 

165 



Memory Management 

3. Restoring the PC to the abort time PC by loading R7 with the 
content of MMR2, which contains the value of the Virtual PC at the 
time the abort-generating instruction was fetched. 

Note that this back-up/restart procedure assumes that the general 
purpose register used in the program segment will not be used by the 
abort recovery routine. This is automatically the case if the recovery 
program uses a different general register set (available on the PDP-
11/70 only). 

Clearing Status Registers Following Trap/Abort 
At the end of a fault service routine, bits 15-12 of MMRO must be 
cleared (set to 0) to resume error checking. On the next memory 
reference following the clearing of these bits, the various registers will 
resume monitoring the status of the addressing operations. MMR2 will 
be loaded with the next instruction address, MMR1 will store register 
change information and MMRO will log Memory Management status 
information. 

Multiple Faults 
Once an abort has occurred, any subsequent errors that occur will not 
affect the state of the machine. The information saved in MMRO 
through MMR2 will always refer to the first abort detected. However, 
when multiple traps occur, the information saved will refer to the most 
recent trap that occurred. 

In the case that an abort occurs after a trap, but in the same instruc­
tion, only one stack operation will occur; and the PC and PS at the time 
of the abort will be saved. 

EXAMPLES 

Normal Usage 
The Memory Management Unit provides a general purpose memory 
management tool. It can be anything from a simple memory expansion 
device to a complete memory management facility. 

With the facilities Offered by the Memory Management Unit, both sin­
gle users and mUlti-users can make whatever memory management 
decisions best suit their needs. Although certain methods of using the 
Memory Management Unit will be more common than others, there is 
no limit to the ways to use these facilities. 

In most normal applications, it is assumed that control over the actual 
memory page assignments and their protection resides in a supervi­
sory program which would operate at the nucleus of a CPU's executive 
(Kernel) mode. It is further assumed that this Kernel mode program 
would set access keys in such a way as to protect itself from willful or 

166 



Memory Management 

accidental destruction by other Supervisor mode or User mode pro­
grams. The nucleus can dynamically assign memory pages of varying 
sizes in response to system needs. 

When in the Kernel mode, the program has complete control and can 
execute all instructions. Monitors and supervisory programs are 
executed in this mode. When in the user mode, the program is pre­
vented from executing certain instructions that could: 
• cause the modification of the Kernel program 

• halt the computer 
• use memory space assigned to the Kernel or to other users 

Typical Memory Page 
When the Memory Management Unit is enabled, the Kernel mode 
program, Supervisor mode program (11/44 and 11170 only) and User 
mode program each have eight active pages, described by the appro­
priate Page Address Registers and Page Descriptor Registers; on the 
PDP-11/70 and 11/44, when D space is enabled, there are an addi­
tional eight register pairs in each mode for data. Each segment is 
made up of from 1 to 128 blocks and is pOinted to by the Page Address 
Field of the corresponding Page Address Register as illustrated in 
Figure 6-16. 

The memory segment illustrated in Figure 6-16 has the following at­
tributes: 
1. Page length: 40 blocks 
2. Virtual Address range: 140000-144777 
3. Physical Address range: 312000-316777 
4. No trapped access has been made to this page 
5. Nothing has been modified (i.e., written) in this page 
6. Read-only protection 
7. Upward expansion 

167 



Memory Management 

VA 144777 I'=-LL.LLL'..L.L<'-L..L...L.LL-L.LL-L...L...£~ PA 316777 
BLOCK 478 (391d 

BLOCK 1 

BLOCK 0 
L-______ ----' PA 312000 

{

PAR6
1 

3120 I 

PAF 
VA 140000 3910 

P~6~~~~4~~lo~lo~~~~0~1~11 
PLF A W ED ACF 

Figure 6-16 Typical Memory Page 

The attributes were determined by the following scheme: 
1. Page Address Register (PAR6) and Page Descriptor Register 

(PDR6) were selected by the Active Page Field of the Virtual Ad­
dress. (Bits 15-13 of the VA = 6.) 

2. The initial address of the page was determined from the Page 
Address Field of PAR6 (312000 = 3120 blocks X (3210 words per 
block X 2 bytes per word)). 

Note that the PAR which contains the PAF constitutes what is 
often referred to as a base register containing a base address or a 
relocation register containing a relocation constant. 

3. The page length (47 + 1 = 40 blocks) was determined from the 
PLF contained in PDR6. Any attempts to reference beyond these 
40 blocks in this page will cause a Page Length Error, which will 
result in an abort, vectored through Kernel Virtual Address 250. 

4. The Physical Addresses were constructed according to the 
scheme illustrated in Figure 6-22. 

5. The A-bit of PDR6, (implemented on the 11/70 only), indicates 
that no trapped access has been made to this page (A-bit = 0). 

168 



Memory Management 

When an illegal or trapped reference (Le., a violation of the Pro­
tection Mode specified by the ACF for this page) or a trapped 
reference (Le., read in this case) occurs, the A-bit will be set to 1. 

6. The Written bit (W-bit) indicates that no locations in this page 
have been modified (Le., written). If an attempt is made to modify 
any location in this particular page, an Access Control Violaton 
Abort will occur. If this page were involved in disk swapping in a 
memory overlay scheme, the W-bit would be used to determine 
whether it had been modified and thus required saving before 
overlay. 

7. This page is read-only protected; no locations in this page may be 
modified. In addition, a memory management trap will occur upon 
completion of a read access. The mode of protection was speci­
fied by the Access Control Field of PDR6. 

8. The direction of expansion is upward (ED = 0). If more blocks are 
required in this segment, they will be added by assigning blocks 
with higher relative addresses. 

The various attributes which describe this page can all be determined 
under software control. The parameters describing the page are all 
loaded into the appropriate Page Address Register and Page Descrip­
tor Register under program control. In a normal application, it is as­
sumed that the particular page which itself contains these registers 
would be assigned to the control of a supervisory program operating 
in Kernel mode. 

Non-Consecutive Memory Pages 
It should be noted that although the correspondence between Virtual 
Addresses and PAR/PDR pairs is such that higher VAs have higher 
PAR/PDRs, this does not mean that higher Virtual Addresses 
necessarily correspond to higher Physical Addresses. It is quite sim­
ple to set up the Page Address Fields of the PARs in such a way that 
higher Virtual Address blocks may be located in lower Physical Ad­
dress blocks as illustrated in Figure 6-17. 

Although a single memory page must consist of a block of contiguous 
locations, memory pages as units do not have to be located in conse­
cutive Physical Address locations. It also should be realized that mem­
ory page assignment is not limited to consecutive non-overlapping 
Physical Address locations. 

169 



Memory Management 

VA 037777 PA 467777 

PAR 7 VA 02000" PAF 
PA460000 

VA 017777 PA 560777 

: 
PAR 1 PAF 

PAF 

~ 
PAR 0 PA 541000 

Figure 6-17 Non-Consecutive Memory Pages 

Stack Memory Pages 
When constructing programs, it is often desirable to isolate all 
program variables from pure code (i.e., program instructions) by plac­
ing them on a register indexed stack. These variables can then be 
pushed or popped from the stack area as needed (see Chapter 3, 
Addressing Modes). Since all PDP-11 family stacks expand by adding 
locations with lower addresses, when a memory page which contains 
stacked variables needs more room it must expand down, i.e., add 
blocks with lower relative addresses to the current page. This mode of 
expansion is specified by setting the Expansion Direction bit of the 
appropriate Page Descriptor Register to a 1. Figure 6-18 illustrates a 
typical stack memory page. This page will have the following parame­
ters: 

PAR6: PAR = 3120 
PDR6: PLF = 175 or 125 (128 + 3) 
ED = 1 
A = 0 or 1 (implemented on the 11/70 only) 
W = Oor 1 
ACF = nnn (to be determined by programmer) 

Note: the A and W bits will normally be set by hardware. 

In this case the stack begins 128 blocks above the relative origin of this 
memory page and extends downward for a length of three blocks. A 
PAGE LENGTH ERROR abort vectored through Kernel Virtual Ad­
dress 250 will be generated by the hardware when an attempt is made 

170 



Memory Management 

to reference any location below the assigned area, i.e., when the Block 
Number from the Virtual Address is less than the Page Length Field of 
the appropriate Page Descriptor Register. 

VA 157777 ,.------::--=-:-::c::---:cc::-::--c:----,PA 331777 
BLOCK 1778 (12710) 

BLOCK 1768 (12610) 

BLOCK 1758 (12S,O) 

Figure 6-18 Typical Stack Memory Page 

Transparency 
It should be clear that in a multiprogramming application, it is possible 
for memory pages to be allocated so that a particular program seems 
to have a complete 32K memory configuration. Using relocation, a 
Kernel mode supervisory program can perform all memory manage­
ment tasks transparently to a Supervisor or User mode program. In 
effect, a PDP-11 system can use its resources to provide maximum 
throughput and response to a variety of users, each of whom seems to 
have a powerful system all to himself. 

Memory Management Unit-Register Map 

REGISTER 
Memory Mgt Register #0 (MMRO) 
Memory Mgt Register #1 (MMR1)* 
Memory Mgt Register #2 (MMR2) 
Memory Mgt Register #3 (MMR3)* 

User I Space Descriptor Register (UIDRO) 

171 

ADDRESS 
17777572 
17777574 
17777576 
17772516 

17777600 



Memory Management 

User I Space Descriptor Register (UIDR7) 
User 0 Space Descriptor Register (UDSDRO)* 

User 0 Space Descriptor Register (UDSDR7)* 
User I Space Address Register (UISARO) 

User I Space Address Register (UISAR7) 
User 0 Space Address Register (UDSARO)* 

User 0 Space Address Register (UDSAR7)* 
Supervisor I Space Descriptor Register (SISDRO)* 

Supervisor I Space Descriptor Register (SISDR7)* 
Supervisor 0 Space Descriptor Register (SDDRO)* 

Supervisor 0 Space Descriptor Register (SDSDR7)* 
Supervisor I Space Address Register (SISARO)* 

Supervisor I Space Address Register (SISAR7)* 
Supervisor 0 Space Address Register (SDSARO)* 

Supervisor 0 Space Address Register (SDSAR7)* 
Kernel I space Descriptor Register (KISDRO) 

Kernel I Space Descriptor Register (KISDR7) 
Kernel 0 Space Descriptor Register (KDSDRO)* 

172 

17777616 
17777620 

17777636 
17777640 

17777656 
17777660 

17777676 
17772200 

17772216 
17772220 

17772236 
17772240 

17772256 
17772260 

17772276 
17772300 

17772316 
17772320 



Memory Management 

Kernel D Space Descriptor Register (KDSDR7)* 
Kernel I Space Address Register (KISARO) 

Kernel I Space Address Register (KISAR7) 
Kernel D Space Address Register (KDSARO)* 

Kernel D Space Address Register (KDSAR7)* 

17772336 
17772340 

17772356 
17772360 

17772376 

* These registers are implemented on the 11/44 and 11/70 only. 

UNIBUS MAP (11/44 AND 11/70 ONLY) 
The UNIBUS Map performs the conversion that allows devices on the 
UNIBUS to communicate with physical memory by means of Non­
Processor Requests (NPRs). UNIBUS addresses of 18 bits are 
converted to 22-bit physical addresses using relocation hardware. 
This relocation is enabled (or disabled) under program control. 

The top 8K byte addresses of the 256K UNIBUS addresses are re­
served for CPU and I/O registers and are called the Peripherals or I/O 
Page; see Figure 6-19. The lower 248K addresses are used by the 
UNIBUS Map to reference physical memory. 

777777 
PERIPHERAL 

PAGE 

r-_{4K_WO_R_DS_l --;760000 
757 777 

114K 

{TO UNIBUS MAPl 

'--___ ---'000000 

Figure 6-19 UNIBUS Address Space 

The UNIBUS Map is the interface to memory from the UNIBUS. The 
operation is transparent to the user if it is disabled. 

173 



Memory Management 

Relocation Disabled (11/44 and 11/70 only) 
If the UNIBUS Map relocation is not enabled, an incoming 18-bit UNI­
BUS address has 4 leading zeroes added for referencing a 22-bit 
physical address. The lower 18 bits are the same. No relocation is 
performed. 

Relocation Enabled (11/44 and 11/70 only) 
There are a total of 31 mapping registers for address relocation. Each 
register is composed of a double 16-bit PDP-11 word (in consecutive 
locations) that holds the 22-bit base address; see Figure 6-20. These 
registers have UNIBUS addresses in the range 770 200 to 770 372. 

If UNIBUS Map relocation is enabled, the five high order bits of the 
UNIBUS address are used to select one of the 31 mapping registers. 
The low-order 13 bits of the incoming address are used as an offset 
from the base address contained in the 22-bit mapping register; see 
Figure 6-21. To form the physical address, the 13 low-order bits of the 
UNIBUS address are added to 22 bits of the selected mapping register 
to produce the 22-bit physical address. Refer to Figure 6-22. The 
lowest order bit of all mapping registers is always a zero, since reloca­
ton is alway on word boundaries. 

ADDRESS' A+2 ADDRESS, A 

15 6 5 0 1 0 

~6 HIGH ORDER BITS I 16 LOW ORDER BITS 

~--------------------~~~---------------------J~ 
DOUBLE WORD 

ALWAYS 
ZERO 

Figure 6-20 Single Mappiilg Register (1 or 31) 

17 13 12 0 

I 5 BITS I 13 BITS I UNIBUS 
. _ ADDRESS 

t,==~~==jl'C=======~========~1 f OFFSET 

~.k~~,TN~O~lJs -----' 
(IF RELOCATION 
IS ENABLED) 

Figure 6-21 18-bit UNIBUS Address 

174 



Memory Management 

17 

UNIBUS ADDRESS 

SELECT MAP REGISTER 1-1_7 __ =J 
12 

OFFSET INTO PAGE (UNIBUS ADDRESS) 

CONTENTS OF 
MAP REGISTER +1~21 __ ~H~ _____________________ ~011 

00 

00 

21 00 

CACHE ADDRESS 
(PHYSICAL) ~I ~1\~ _______________ ~1 

Figure 6-22 Construction of a Physical Address 

Non-Existent Memory Errors 
After a 22-bit physical address is generated (on the 11170), the CPU 
looks at the four high order bits, bits 18 to 21, to see if they are all 1 s. If 
this is true (range 17 000 000 to 17 17 777 777), the lower 18 bits are 
used for a UNBIUS address. If, after 10 to 20 J'sec, there is no re­
sponse, the CPU does a UNIBUS Timeout abort, and bit 4 in the CPU 
Error Register is set. 

Non-Existent Memory Errors on the 11/34A, 11/44, and 11/60 
If there is no response 10 to 20 J'sec after a physical address is 
generated, the CPU does a UNIBUS timeout abort, and bit 4 in the 
CPU error register is set. 

Key for Interpreting KT111 comparison chart 

d - implemented but with differences 

f - forces nonresident memory abort 

i-illegal/invalid 

k - field value signifies kernel mode 

0- not implemented 

r - implemented, read-only 

s - field value signifies supervisor mode 

u - field value signifies user mode 

w - implemented, read/write 

x - implemented 

175 



Memory Management 

MEMORY MANAGEMENT COMPARISON CHART 

KT11 registers, fields, 
and options /34A /44 /60 no 

MANAGEMENT REGISTERS 

Modes (Management Register Sets) 
Kernel 

I space x x x x 
D space 0 x 0 x 

Supervisor 
I space 0 x 0 x 
D space 0 x 0 x 

User 
I space x x x x 
D space 0 x 0 x 

Registers (per mode) 

PAR(ASK) fields 
PAF(SAF) 11-0 15-0 11-0 15-0 

PDR fields 
ACF (2-0) 

000 x x x x 
001 0 0 0 x 
010 x x x x 
011 0 0 0 0 

100 x x x x 
101 0 0 0 x 
110 x x x x 
111 0 0 0 0 

ED (3) x x x x 
W (6) x x x x 
A (7) 0 0 0 x 
PLF (14-8) x x x x 
BC (15) 0 x 0 0 

176 



Memory Management 

FAUL T RECOVERY 

Interrupt Vector 250 250 250 250 

Registers 

MMRO (SSRO) fields 
Abort-non resident (15) w w w w 
Abort-length error(14) w w w w 
Abort-read-only (13) w w w w 
Trap-memory management 
(12) 0 0 0 w 
Trap-programmer's aid 
(11 ) 0 0 0 0 

Enable MM trap (9) 0 0 0 w 
Maintenance mode (8) w w w w 
Instruction completed (7) 0 0 0 r 
Mode (6-5) 

00 x x x x 
01 x x 
10 i f 
11 x x x x 

10(4) 0 x 0 x 
Page number(3-1) x x x x 
Enable(O) w w w w 

MMR1(SSR1) fields 
Amount changed (15-11) 0 x 0 x 
Register number (10-8) 0 x 0 x 
Amount changed (7-3) 0 x 0 x 
Register number (2-0) 0 x 0 x 

MMR2(SSR2) fields 
VA (15-0) r r r r 

MMR3(SSR3) fields 
Enable 18-bit 0 w 0 w 
(UNIBUS) map (5) 
Enable 22-bit map (4) 0 w 0 w 
Enable Kernel 0 space (2) 0 w 0 w 
Enable Supervisor 0 w 0 w 
o space (1) 
Enable User 0 space (0) 0 w 0 w 
Enable CSM instruction 0 w 0 0 

177 



Memory Management 

MEMORY MANAGEMENT INSTRUCTIONS 

MFPI x x x x 
MTPJ x x x x 
MFPD X1 x X1 x 
MTPD X1 x X1 x 

PROCESSOR STATUS BITS 

PS (1S-14)/PS (13-12) 
00 k k k k 
01 j s j2 S 

10 i j j2 j 

11 u u u u 

1 MFPD and MTPD are duplicates of MFPI and MTPI respectively. 

2 Attempts to write 01, 10 to the PS bits 15:14 and 15:12 will result in 00 and 11 
to be written. 

178 



179 



180 



CHAPTER 7 

PDP-11/04, 11/34A 

Although the PDP-11 /04 and 11/34A have similar architecture, capa­
bilities and features, the performance of these two processors is very 
different. 

The PDP-11/04 is optimized for compactness, with the entire CPU 
logic confined to one circuit board. Ttlis allows extra chassis space for 
system expansion. By offering up to 56K bytes of core or MOS memo­
ry, the PDP-11/04 offers flexibility-now you can tailor both package 
and price to each application. This offers minimum hardware initially, 
and gives you room to grow. 

The PDP-11/34A contains hardware multiply/divide instructions, 
memory management, an enhanced data path, and control signals for 
the addition of hardware Floating Point and Cache Memory options. 
These extra features require two modules instead of one. The PDP-
11/34A looks like the PDP-11 /04. Yet it has 2% times the power of the 
11/04. It also has memory expansion to 248K bytes, setting a standard 
of upward compatibility for 11 /04-based systems. 

FEATURES 
The features common to the PDP-11 /04 and 11 /34A include: 
• Self-test diagnostic routines which are automatically executed every 

time the processor is powered up, the console emulator routine is 
initiated, or the bootstrap routine is initiated. These allow system 
faults to be detected and avoid catastrophic failure during the run­
ning of the application program. 

• Operator front panel with built-in CPU console emulator allows con­
trol from any ASCII terminar without the need for the conventional 
front panel with display lights and switches. 

• Automatic bootstrap loader allows system restart from a variety of 
peripheral devices without manual switch toggling or key-pad oper­
ations. 

• Choice of core or MOS memory, with parity memory optional, ex­
pandable from a minimum of 16K Bytes on the 11/04 and 32K bytes 
on the 11/34A to as much as 56K bytes on the 11/04, and 248K 
bytes on the 11/34A. This choice gives exceptional configuring 
flexibility, and allows tailoring of memory size to precisely fit appli­
cation requirements. 

181 



PDP-11/04, PDP-11/34A 

• Slot-independent backplane with power and space available for sig­
nificant expansion within the 5114 or 10% inch chassis. This provides 
easier system configuring than the single mounting chassis most 
systems have. 

In addition, the PDP-11/34A includes these features: 
• Integ~al extended instruction set (EIS) that provides hardware fixed­

point arithmetic in double precision mode (32-bit operands). This 
significantly improves performance" compared with software im­
plementations. 

• Hardware Floating Point option allows ten times the performance of 
software implementations of floating point functions. 

• Cache Memory option can mean up to 60 percent system perform­
ance improvement (application dependent). 

MEMORY 
The PDP-11/04 and the PDP-11/34A are available with MOS or Core 
memory. All memories are available with parity to enhance system 
integrity. Parity is generated and checked on all references between 
the CPU and memory, and any parity errors are flagged for resolution 
under program control. Odd parity is used, with one parity bit per 8-bit 
byte, for a total of 18 bits per word. 

A double height module, M7850, contains parity control logic. Its 
control and status register (CSR) address is selectable betweer. '772 
100 and 772 136. 

The CSR captures the high order address bits of a memory location 
with a parity error. 

Memory Capacity 
The PDP-11/04 has 16 address lines, which provide 64K unique byte 
addresses. The upper 8K addresses are reserved for UNIBUS 1/0 
device registers, so that there remain 56K memory addresses. The 
PDP-11/34A, however, contains Memory Management, which extends 
the addressing to 18 bits (248K bytes for memory plus 8K for 110). 
(See Chapter 6). 

Memory Management 
Memory Management is a hardware feature in the PDP-11/34A. It 
serves two functions: it extends memory addresses to 18 bits (248K 
bytes) and provides protection and relocation features for multiuser 
applications. The processor can be operated in either of two modes: 
Kernel and User. In Kernel mode, the program has complete control 
and can execute all instructions. Monitors and supervisor programs 
would be executed in this mode. In User Mode, the program is pre-

182 



PDP-11/04, PDP-11/34A 

vented from executing certain instructions that could modify the Ker­
nel program, halt the computer, gain access outside the assigned 
memory, or issue a restart. 

Core 
Each core memory unit requires two hex mounting spaces. 

Core memories are non-volatile; their contents are not lost when 
power Is shut down or lost. 

The core memories available on the PDP-11 104 and PDP-11/34A are: 

Model Size (Bytes) Access Time Cycle Time 
Number (nsec) (~sec) 

MM11-YP 64K 450 (no parity) 1.3 
(18 Bit) 600 (parity) 

MM11-DP 
(18 Bit) 

MOS 

32K 560 (parity) 1 

Several MOS memories are available for the PDP-11/04 and the PDP-
11/34A. All are available with partially depopulated boards for smaller 
capacities. Since the PDP-11 104 does not have Memory Management, 
it cannot use memories larger than 64K bytes. 

MOS memory is volatile. Information is stored as charge, and must be 
continuously refreshed. If there were a power loss, or if power were 
shut down, the MOS memory contents would be lost. To preserve the 
integrity of the memory during a power failure, a battery backup op­
tion is available. 

Battery Backup 
With the 5%" and 101h" CPUs, there is an optional battery backup unit 
which can preserve the contents of 64K bytes of MOS memory for 
about two hours. This auxiliary power unit is a battery which is charged 
up by the main AC power when the computer system is operating 
normally. Under normal operation, the battery backup has no effect on 
MOS memory. But if power is interrupted, voltage sensing circuitry 
within the battery backup will automatically cause the MOS to be 
powered from this auxiliary source. Information will be retained by 
being refreshed at a low cycle rate, using minimum power. 

183 



PDP-11/04, PDP-11 /34A 

Size " Access Cycle Refresh 
(Bytes) Time Time 

(nsec) (nsec) 

MS11-JP 32K 550 700 700 nsec 
(18 Bit) every 

24 ~sec 

MS11-LB 128K 360 for DATI 450 560 nsec 
(18 Bit) 95 for DATO every 

12.5 ~sec 

MS11-LD 256K 360 for DATI 450 560 nsec 
(18 Bit) 95 for DATO every 

12.5 ~sec 

Cache Memory 
Cache memory is an option available on the PDP-11/34A. 

Cache memory reduces the cycle time for accessing frequently used 
main memory addresses by storing the contents of these addresses in 
a small, high speed memory attached directly to the CPU. This archi­
tecture bypasses the UNIBUS, thus eliminating the access and 
transmission times associ'ated with the UNIBUS. A cache system of­
fers significantly faster system speed for a small quantity of fast mem­
ory plus associated logic. 

The cache option on the PDP-11 /34A uses a 2K byte direct mapping 
approach. Without operator or programming intervention, it copies 
the contents of every memory location fetched from the main memory, 
unless it has already been copied. When this address is called again 
(as is very likely, because of the repetitive nature of most programs) 
the cache memory registers a cache "hit," places the memory con­
tents on the CPU's internal data bus, and aborts the UNIBUS transfer 
going to main memory. 

FLOATING POINT OPTION 
The Floating Point Processor is a hardware option that enables the 
PDP-11/34A central processor to execute floating point arithmetic op­
erations. It performs high speed numerical data handling much faster 
and more effectively than software floating point routines. Floating 
point representation permits a greater range of number values than is 
possible with the conventional integer mode. The option provides a 
faster alternative to the use of software floating pOint routines, and 
system speed is increased without complex arithmetic coding routines 
that consume valuable CPU time. The option features both single- and 
double-precision (32- or 64-bit) capability and floating point modes. 

184 



PDP-11/04, PDP-11/34A 

The option is an integral part of the central processor. It operates 
using similar address modes, and the same memory management 
facilities as the central processor. Floating Point Processor 
instructions can reference the floating pOint accumulators, the central 
processor's general registers, or any location in memory. 

Floating Point Instruction Set Features 
• 32-bit (single-precision) and 64-bit (double-precision) data modes 
• Addressing modes compatible with existing PDP-11 addressing 

modes 
• Special instructions that can improve input/output routines and ma­

thematical subroutines 

• Allows execution of in-line code (Le., floating point instructions and 
other instructions can appear in any sequence desired) 

• Multiple accumulators for ease of data handling 
• Can convert 32- or 64-bit floating point numbers to 16- or 32-bit 

integers during the Store instructions 
• Can convert 32-bit floating point numbers to 64-bit floating-point 

numbers and vice-versa during the Load or Store instructions 

CONSOLES 
Either of two consoles are available for the PDP-11/04 and PDP-
11/34A. They are the Operator's console and the Programmer's con­
sole. 

The Operator's console (KY11-LA) contains only three switches, pro­
viding control of Power ON/OFF, Initialization and Boot, and 
Halt/Continue. 

Power 

CONTI 
HALT 

BOOT/ 
INIT 

OFF 

ON 

STNDY 

CONT 

HALT 

INIT 

DC power to the computer is off. 

Power is applied to the computer (and the 
system) 

Standby; no DC power to the computer, but 
DC power is applied to MOS memory (to 
retain data). In the 5%" box, the fans remain 
on. 

The program is allowed to continue. 

The program is stopped. 

The switch is spring-returned to the BOOT 
position. When the switch is depressed to 
INITialize and then returned to BOOT, the 

185 



PDP-11104, PDP-11134A 

operation depends on the setting of the 
CONT /HAL T switch. 

If the switch is set to HALT, then only the 
processor is initialized and no "UNIBUS 
INIT" is generated. Upon lifting the 
CONT /HAL T switch, the M9312 routine is 
executed, allowing examination of system 
peripherals without clearing their contents 
with "UNIBUS INIT." 

If the switch is set to CONT, then initializa­
tion and execution of the M9312 program 
begins. 

Details of the sequence of operations which occur upon booting are 
described in this chapter under the BOOT module section. 

Console Emulation 
The normal console functions traditionally performed through front 
panel switches can be obtained by typing simple commands on the 
console terminal. LOAD, EXAMINE, DEPOSIT, START, and BOOT 
functions are available. 

The BOOT module contains a console emulator routine. When the 
routine is used in conjunction with the terminal, functions quite similar 
to those found on the programmer's console of traditional PDP-11 
family computers are generated. 

Booting is performed by a read-only memory which then transfers 
control of the CPU to an ASCII terminal, if it is present in the system. 
This terminal, through another read-only memory called the Console 
Emulator, can then function as the conventional console to execute 
instructions such as LOAD, EXAMINE, and DEPOSIT. 

Summary of Console Emulator Functions 
LOAD ADDR Loads the address to be manipulated into 

the system. 

EXAMINE 

DEPOSIT 

START 

BOOT 

Allows the operator to examine the contents 
of the address that was loaded. 

Allows the operator to write into the address 
that was loaded and/or examined 

Initializes the system and starts execution of 
the program at the address loaded. 

Allows the booting of a device specified by a 
2-character code and optional unit number 

186 



PDP-11/04, PDP-11/34A 

Entry into the Console Emulator 
There are four ways of entering the console emulator: 

• move the power switch to the ON position 

• depress the BOOT switch 
• enter automatically on return from a power failure 

• load the address manually 

After the console emulator routine has started and the basic CPU 
diagnostics have all run successfully, a series of numbers represent­
ing the contents of RO, R4, S'p and PC will be printed on the terminal. 
This sequence will be followed by an @ on the next line. 

Example-a typical printout on power up: 

XXXXXXXX XXXXXXXX XXXXXXXX 
(RD) (R4) (R6, Stack 

Pointer,SP) 

@ (Prompt Character) 

NOTE 

XXXXXXXX 
(PC, Program 
Counter) 

X signifies an octal numeral (0-7). Whenever there is 
a power-up routine, or the BOOT switch is released 
from the INIT position, the PC at the time will be 
stored. The stored value is printed out as above (not­
ed as the PC). 

Detailed instructions about using the console emulator can be found in 
user instruction documents, the PDP-11/34 User's Guide and the as­
sociated hardware manual. 

Both the BOOT read-only memory and the Console Emulator read­
only memory are contained in the Boot Module (M9312) described in 
this chapter. 

The Programmer's Console (KY11-LB) contains a 20-key keypad 
which is functionally divided into two distinct modes: Console Mode 
and Maintenance Mode. 

In Console Mode, facilities exist for displaying and addressing data, 
for depositing data and examining the contents of the UNIBUS ad­
dresses including processor registers, and for single-stepping the 
processor one instruction cycle at a time. This is a useful aid for pro­
gram development. Note that the Operator's Console also contains 
these features through the use of the Console Emulator and an ASCII 
terminal. (This console emulator feature is still available with the Pro­
grammer's Console.) 

187 



PDP-11/04, PDP-11/34A 

In Maintenance Mode, the above facilities are locked out. Instead, 
features useful for system error diagnostics are provided. In this 
mode, the Programmer's Console enables the CPU's microcode to be 
single-stepped one clock Gycle at a time and allows the UNIBUS ad­
dresses and their contents to be displayed or printed. Note that this 
feature is not available with an Operator's Console. 

Boot Module (M9312) 
The Boot Module provides the following four functions: 

• It contains diagnostic routines in ROM for verifying computer opera­
tion. 

• It contains the several bootstrap loader programs in ROM for start­
ing up the system. 

• It contains the console emulator routine In ROM for issuing console 
commands from the terminal. 

• It provides termination resistors for the UNIBUS. 

Diagnostics 
The M9312 contains diagnostics to check both the processor and 
memory in a GO/NOGO mode. Execution of the diagnostics occurs 
automatically but may be disabled by switches on the module. 

Bootstrap Loader 
The M9312 contains independent programs that can bootstrap pro­
grams into memory from a selected peripheral device. Through front 
panel control or following power-up, the computer can execute a 
bootstrap directly, without the operator's keying in the initial program 
manually. The M9312 contains four sockets for peripheral bootstrap 
loader programs encoded in ROMs. The choice of ROMs is deter­
mined by the system configuration. 

After execution of the CPU diagnostics, the M9312 turns control of the 
system over to the user at the console-terminal. The system prints out 
status information and is ready to accept simple user commands for 
checking and modifying information within the computer, starting a 
program already in memory, or executing a device bootstrap. 

The inclusion of a bootstrap loader in non-destructible read-only 
memory is a tremendous convenience in system operation. Bootstrap 
programs do not have to be loaded manually into the computer for 
system initialization. 

188 



PDP-ll/04, PDP-ll/34A 

BACKPLANE CONFIGURATIONS 

2 

3 

4 

5 

6 

7 

8 

9 

CENTRAL PROCESSOR 

8K MEMORY 

BOOTSTRAp· I 

EXPANSION SLOTS 

TERMINATOR I 
• BOOTSTRAP MODULE ALSO CONTAINS THE 

SELF" TEST FEATURE AND FRONT" PANEL 
EMULATOR ROM PROGRAMS. 

Figure 7-1 PDP-11/04 Processor Backplane Configuration 

2 

3 

4 

5 

6 

7 

8 

9 

A 

M9301 

M7850 

M9302 

CPU 

, 
I 

, 
: 
I 

: 
I 

: 

B C 

QUAD SPC 

QUAD SPC 

HEX SPC 

HEX SPC 

HEX SPC 

HEX SPC 

QUAD SPC 

D E F 

Figure 7-2 PDP-11/34A Processor Backplane Configuration 

The processor backplane consists of a double system unit (SU) 
comprising nine hex slots. All PDP-11/34A systems contain the CPU, 
M9312 Bootstrap/Terminator, M7850 parity control, and"M9302 (or a 
UNIBUS jumper to the next SU) as shown in Figure 7-2. Memory is 
added as follows depending on whether the system uses core or MOS. 

189 



PDP-11/04, PDP-11134A 

,-------------

2 

3 

4 

5 

6 

7 

8 

9 

r---

f----

'-----

A 

M9301 

M7580 

M9302 I 
B 

CPU 

QUAD SPC 

QUAD SPC 

MMll-DP 

HEX SPC 

HEX SPC 

QUAD SPC 

C D E F 

Figure 7 -3 PDP-11/34A Backplane Configuration with Core Memory 

Additional memory or quad and hex SPC options (DL 11-W, T A 11 con­
troller, RX11 controller, etc.) may be added to the processor back­
plane as space allows . 

.------~----------------------------------, 

CPU 
2 

3 

4 

MSll-JP OR LB OR LD 5 

6 
------ ----;-------------~----

HEX SPC 

7 HEX SPC 

8 HEX SPC 
--------.------------~------

9 M9302 QUAD SPC 

A B C D E F 

Figure 7 -4 PDP-11/34A Backplane Configuration with MOS Memory 

SPECIFICATIONS 
PDP·11/04 AND PDP·11/34A 

Environment 
Operating Temperature: 
Relative Humidity: 

190 

10°-40°C, (50°-104°F) 
10-90%, non-condensing 



PDP-11/04, PDP-11/34A 

Mechanical 
Weight: 451bs. (20 Kg) 
Height: 5.25 in. (13.3 em) 
Width: 19 in. (48.3 em) 
Depth: 25 in. (63.5 em) 

110 Ibs. (50 Kg) 
10.5 in. (26.7 em) 
19 in. (48.3 em) 
25 in. (63.5 em) 

191 



192 



193 



PDP-11/44 PRODUCT POSITION 

// 
45 70 

// 
w 

~/ / / 4' 

20 40 60 

10 34 

// 
04 

/ 
PERFORMANCE 

194 



THE MID-RANGE MINICOMPUTER STANDARD 

CHAPTER 8 

PDP-11/44 

The 11/44, a new fourth generation mid-range PDP-11, offers new 
levels of functionality and performance for a machine in its price 
range. It offers many large, high performance machine tealures such 
as a high-speed central processor, support of megabyte memory, 
large 8,192 byte high-speed cache memory, optional floating point 
processor, optional commercial instruction set processor and optional 
battery backup unit. The 11/44 will provide more system up-time since 
it is designed to meet a rigorous reliability and maintainability program 
(RAMP). 

FEATURES 
The PDP-11/44 contains, as an integral part of the central processor 
unit, the following hardware features and expansion capabilities: 

• Cache memory organization to provide very fast program execution 
speed and high system throughput 

• Extended Instruction Set (EIS) for better integer arithmetic through­
put 

• Optional remote diagnosis 
• Memory management for relocation and protection in multi-user, 

multi-task environments 
• Intelligent ASCII console emulator with which the user can operate 

the computer without having access to the front panel 
• TU58 cartridge tape interface port makes it easy to load software 

patches or field service diagnostic programs 
• Ability to access up to 1 million bytes of main memory (1 byte = 8 

bits) provides ample memory space for application programs 

• Real-time clock which provides KW11-L compatible line-frequency 
clock 

• Optional Commercial Instruction Set for better COBOL throughput 
• Optional Floating Point Processor with advanced features, operat­

ing with 32-bit and 64-bit numbers for better FORTRAN or BASIC 
throughput 

195 



PDP-11144 

• Optional battery backup unit for data integrity during most power 
outages 

• 256 Kbyte ECC MOS main memory modules provide high density, 
low cost memories with error correcting codes to insure better 
memory reliability 

SYSTEM ARCHITECTURE 
The PDP-11/44 is a medium scale general purpose computer using an 
enhanced, upwardly-compatible version of the basic PDP-11 architec­
ture. A block diagram of the computer is shown in Figure 8-1. 

The central processor performs all arithmetic and logical operations 
required in the system. Memory Management is standard with the 
basic computer, allowing expanded memory addressing, relocation, 
and protection. Also standard is a UNIBUS Map which translates UNI­
BUS addresses to physical memory addresses. Th~ cache contains 
8,192 bytes of fast, MOS memory that buffers the data from main 
memory. 

196 



-'" 
CO 
...... 

'-=------------
I 

FLOATING I l 
POINT 

PROCESSOR CENTRAL 
PROCESSOR 

& 
MEMORY 

MANAGEMENT 

UNIBUS 

I {OPTION.-A_LJ_---.J 

I 
COMMERCIAL 
INSTRUCTION 

SET I {OPTIONAL I 

I 
I 

CACHE 

UNIBUS 
MAP 

L ____ --I--_ 

MEMORY 
BUS 

MAIN 
MEMORY 

Figure 8-1 PDP-11/44 Block Diagram 

--~ 

UNIBUS 
PERIPHERAL 

1J o 
"P --~ 
~ 



PDP-11144 

The PDP-11/44 System has an expanded internal implementation of 
the PDP-11 architecture for greatly improved system throughput. All 
the memory is on Its own high data rate bus. The processor has a 
direct connection to the cache memory system for very high-speed 
memory access. 

The UNIBUS remains the primary control path in the 11/44 system. It 
is conceptually identical with previous PDP-11 systems; the memory in 
the system still appears to be on the UNIBUS to all UNIBUS devices. 
This expanded internal implementation of the PDP-11 architecture is 
generally compatible with earlier 11/70 programs. 

CENTRAL PROCESSOR 
The PDP-11/44 processor performs all arithmetic and logical opera­
tions required in the system. It alsO acts as the arbitration unit for 
UNIBUS control by regulating bus requests and transferring control of 
the bus to the requesting device with the highest priority. 

The central processor contains arithmetic and control logic for a wide 
range of operations. These include fixed point arithmetic with hard­
ware multiply and divide, extensive test and branch operations, and 
other control operations. It also provides room for the addition of the 
Floating Point Processor, Commercia' Instruction Set, and UNIBUS 
options. 

The machine operates in three modes: Kernel, Supervisor, and User. 
When the machine is in Kernel mode, a program has complete control 
of the machine; when the machine is in any other mode the processor 
is inhibited from executing certain instructions and can be denied 
direct access to the peripherals on the system. This hardware feature 
can be used to provide complete executive protection in a 
multiprogramming environment. 

The central processor contains 10 general registers which can be 
used as accumulators, index registers, or as stack pOinters. Stacks 
are extremely useful for nesting programs, creating re-entrant coding, 
and as temporary storage where a Last-ln/First-Out structure is desir­
able. One of the general registers is used as the PDP-11/44's program 
counter. Three others are used as Processor Stack POinters, one for 
each operational mode. 

The CPU performs all of the computer's computation and logic opera­
tions in a parallel binary mode through step by step execution of 
individual instructions. 

General Registers 
The general registers can be used in many ways, the uses varying with 
requirements. The general registers can be used as accumulators, 

198 



PDP-11144 

index registers, autoincrement registers, autodecrement registers, or 
as stack pOinters for temporary storage of data. Chapter 3 on Ad­
dressing describes these uses of the general registers in more detail. 
Arithmetic operations can be from one general register to another, 
from one memory or device register to another, or between memory or 
a device register and a general register. 

KERNEL 
STACK POINTER 

R6 

R0 

Rl 

R2 

R3 

R4 

R5 

SUPERVISOR 
STACK POINTER 

R6 

GENERAL 
REGISTER 
SET 

PROGRAM I R7 
COUNTER . 

Figure 8-2 The General Registers 

USER 
STACK POINTER 

R6 

R7 is used as the machine's program counter (PC) and contains the 
address of the next instruction to be executed. It is a general register 
normally used only for addressing purposes and not as an accumula­
tor for arithmetic operation. 

The R6 register is normally used as the Processor Stack Pointer 
indicating the last entry in the appropriate stack (a common temporary 
with "Last-ln/First-Out" characteristics). (For information on the pro­
gramming uses of stacks, please refer to Chapter 5). The three stacks 
are called the Kernel Stack, the Supervisor Stack, and the User Stack. 
When the central processor is operating in Kernel mode it uses the 
Kernel Stack, in Supervisor mode, the Supervisor stack, and in User 
mode, the User Stack. When an interrupt or trap occurs, the PDP-
11/44 automatically saves its current status on the Processor Stack 
selected by the service routine. This stack-based architecture facili­
tates re-entrant programming. 

The remaining six registers are RO-R5. The current register set in 
operation is determined by the Processor Status Word. 

The set of registers can be used to increase the speed of real-time 
data handling or facilitate multiprogramming. The six registers in the 

199 



PDP-11144 

General Register Set could each be used as an accumulator and/or 
index register for a real-time task or device, or as general registers. 

Processor Status Word 

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0 

I I C-'----.-I RS,----VD ,----I ,-----I PR,-----10R1T-,----Y ,-----I T -,----I N -'----.-1 z -,----I v -,----,I C I 

CURRENT MOD~ ! J 1 
PREVIOUS MODE ----'-
GENERAL REGISTER SET---
CIS INSTRUCTION SUSPENSION--------' 

Figure 8-3 Processor Status Word 

The Processor Status Word, at location 17777776, contains informa­
tion on the current status of the PDP-11. This information includes 
current processor priority; current and previous operational modes; 
the condition codes describing the results of the last instruction; and 
an indicator for detecting the execution of an instruction to be trapped 
during program debugging. 

Bit 8, when set, indicates that a commercial instruction is in process. 
Since commercial instructions can be suspended (interrupted), this bit 
will be pushed onto the stack with the rest of the Processor Status 
Word so that when control is returned to the routine, the commercial 
instruction can continue where it left off. 

Modes 
Mode information includes the present mode, either User, Supervisor, 
or Kernel (bits 15, 14), and the mode the machine was in prior to the 
last interrupt or trap (bits 13, 12). 

The three modes permit a fully protected environment for a multi­
programming system by providing the user with three distinct sets of 
Processor Stacks and Memory Management Registers for memory 
mapping. 

In all modes, except Kernel, a program is inhibited from executing a 
"HALT" instruction and the processor will trap through location 4 if an 
attempt is made to execute this instruction. Furthermore, the proces­
sor will ignore the "RESET" and "SPL" (Set Priority Level) instructions, 
and will execute No Operation. In Kernel mode, the processor will 
execute all instructions. 

A program operating in Kernel mode can map users' programs 
anywhere in memory and thus explicitly protect key areas (including 

200 



PDP-11144 

the device's registers and the Processor Status Word) from the User 
operating environment. 

Processor Priority 
The central processor operates at any of eight levels of priority, 0-7. 
When the CPU is operating at level 7, an external device cannot inter­
rupt it with a request for service. The central processor must be oper­
ating at a lower priority than the priority of the external device's re­
quest in order for the interruption to take effect. The current priority is 
maintained in the Processor Status Word (bits 5-7). The eight proces­
sor levels provide an effective interrupt mask, which can be 
dynamically altered through use of the Set Priority Level (SPL) instruc­
tion described in Chapter 4 (which can only be used by the Kernel 
mode.) This instruction allows a Kernel mode program to alter the 
central processor's priority without affecting the rest of the Processor 
Status Word. 

Condition Codes 
The condition codes contain information on the result of the last CPU 
operation. They include: a carry bit (C), which is set by the previous 
operation if the operation caused a carry out of its most significant bit; 
a negative bit (N), set if the result of the previous operation was nega­
tive; a zero bit (Z), set if the result of the previous operation was zero; 
and an overflow bit (V), set if the result of the previous operation 
resulted in an arithmetic overflow. 

Trap 
The trap bit (T) can be set or cleared under program control. When 
set, a processor trap will occur through location 14 on completion of 
instruction execution and a new Processor Status Word will be loaded. 
This bit is especially useful for debugging programs as it provides an 
efficient method of installing breakpoints. 

Interrupt and trap instructions both automatically cause the previous 
Processor Status Word and Program Counter to be saved and re­
placed by the new values corresponding to those required by the 
routine servicing the interrupt or trap. The user can, thus, cause the 
central processor to automatically switch modes (context switching), 
switch register sets, alter the CPU's priority, or disable the Trap Bit 
whenever a trap or interrupt occurs. 

Stack limit 
The 11/44 has a Kernel Stack Overflow Boundary at location 400. 

Once the Kernel stack exceeds its boundary, the Processor will com­
plete the current instruction and then trap to location 4 (Stack 
Overflow). 

201 



MEMORY SYSTEM 

MOS Memory with ECC 

PDP-11144 

ECC (error correcting code) is a technique for checking the contents 
of memory to detect errors and correct them before sending them to 
the processor. The process of checking is accomplished by combining 
the bits in a number of unique ways so that parity, or syndrome, bits 
are generated for each unique combination and stored along with the 
data bits in the same word as the data. The memory word length is 
extended to store these unique bits. When memory is read, the data 
word is checked against the syndrome bits stored with the word. If 
they match, the word is sent on to the processor. If they do not match, 
an error exists and the mismatch of the syndrome bits determines 
which data bit is in error. The bit in error is then corrected and sent on 
to the processor. The error correcting code which is employed in MOS 
memory will detect and correct single bit errors in a word, and detect 
double bit errors in a word. Where a double bit error is detected, the 
processor is notified, as happens with a parity error. 

ECC provides maximum system benefits when used in a storage sys­
tem which fails in a random single bit mode rather than in blocks or 
large segments. Single bit error (or failure) is the predominant failure 
mode for MOS memory. 

ECC memory provides fault tolerance with the result that multiple 
single bit failures can be present in a memory system without measur­
able degradation in either performance or reliability. 

MOS memory by its nature is volatile. It cannot retain data without 
proper DC voltages. DIGITAL MOS memories, therefore, have battery 
backup (BBU) power provisions standard on the PDP-11/44, so that 
data may be retained during short-term loss of AC line power. 

Generally, the incidence of AC line power loss varies inversely with the 
severity of loss. That is, there are an extremely small number of com­
plete failures of AC power, and a relatively larger number of short­
term failures or drops in voltage. No economically feasible battery 
backup unit can store sufficient energy to accommodate a complete 
AC power failure for more than several minutes. 

Battery backup units are not intended to preserve data overnight or 
over weekends, but rather to overcome infrequent, short-term failures 
of AC power. 

Memory Management 
The Memory Management hardware is standard with the PDP-11/44 
computer. It is a hardware relocation and protection facility that can 
convert the 16-bit program virtual addresses to 22-bit addresses. The 

202 



PDP-11144 

unit may be enabled and disabled under program control. There is a 
small speed advantage when in the 16-bit mode. 

UNIBUS Map 
The UNIBUS Map responds as memory on the UNIBUS. It is the hard­
ware relocation facility for converting the 18-bit UNIBUS addresses to 
22-bit addresses. The relocation mapping may be enabled or disabled 
under program control. 

CACHE MEMORY 

11/44 Cache Specification and Design Description 
An overall block diagram of the PDP-11/44 is shown in Figure 8-4. 
From a function standpoint, main memory and the cache can be 
treated as a single unit of memory. 

r-------- ------, 
I I 
I CPU & MEM UNIBUS 

MGT 
I 
I 
I 
I 
I 
I 
L __ ___ ..s.P~SSEMBLY _ --1 

~_--1....~-' MAIN 
MAIN 

MEMORY 
MEMORY 
BUS 

Figure 8-4 Overall Block Diagram PDP-11/44 

Introduction 
The 11/44 cache memory is integral to the 11/44 processor and is 
designed to increase the CPU performance by decreasing the CPU-to­
memory read access time. It is a 8, 192-byte high speed RAM memory, 
organized as a direct mapped cache with write-through, on a hex 
module. 

Prerequisites 
The cache module plugs into slot 7 of the processor backplane, re­
quiring no extra connectors or modifications for its installation. 

Physical Description 
The 11/44 cache memory module is implemented on a hex high densi­
ty (12 mil etch, 13 mil spacing) multilayer module which interfaces to 

203 



PDP-11144 

the processor via the processor backplane. Two user-accessible 
switches (S 1 and S2) enable the cache to be shut off by causing a 
force-miss condition in either upper or lower cache address space. 
The power requirement is 7 amps of +S Vdc. No other voltages are 
required. Software bits or switches for enabling or disabling cache are 
also provided in the MMU registers, discussed later in this chapter. 

General System Architecture 
The cache operates as an associative memory in parallel with the main 
memory and is connected to the CPU via the high speed internal data 
path in the 11/44 ("PAX Data Lines"). This high speed data path is 
isolated from the internal data path that is shared by the floating pOint 
and commercial instruction set options ("AMUX Lines"). The cache is 
logically connected to the PAX address and memory address buses, 
but is isolated from them by a set of independent receivers. When 
memory DATI or DATIP transfers are initiated by the CPU, the cache is 
strobed 100 ns later to determine if it is a valid hit with no errors. If the 
access is a cache hit, the processor clock is immediately restarted. 
This clocks in the cache data which ends the transfer from the CPU. If 
the strobe resulted in a read miss, then main memory MSYN is assert­
ed and the access is to main memory with the cache performing an 
automatic write-through to update itself. During DATO and DATOB 
transfers, a write is performed to main memory with the cache updat­
ing itself if that location is presently cached. DMA, DATO or DATOB 
transfers from the UNIBUS are monitored by the cache and result in 
invalidation of cached locations. Only CPU transfers to main memory 
are cached. Any memory appearing on the UNIBUS will not be 
cached. 

Read 

DMA 
Miss 
Nothing 

Read Bypass Nothing 

Write Bypass Nothing 

Write Nothing 

Hit 
Invalidate 

Nothing 

Invalidate 

Invalidate 

CPU 
Hit 
Cached 

Miss 
Update 

Nothing or Nothing 
Invalidate 

Invalidate Nothing 

Update Nothing 

Figure8-S Cache Response Matrix 

The response of the cache to a CPU read bypass hit is jumper selecta­
ble. In its normal configuration, jumper W1 is in and jumper W2 is 

204 



PDP-11144 

removed to allow. a forced miss only to occur for a CPU read hit 
bypass. If the 11/44 and the KK11-B cache are to be used in a multi­
ported memory system, jumper W1 is removed and jumper W2 is 
inserted, to allow a CPU read hit with bypass to cause an invalidation 
to occur to that location. This allows the software to clean potentially 
stale cache data that might arise in a multiported memory system. 

Cache Memory Organization 
The cache memory array consists of 30 4,096 X 1 RAM chips arranged 
in the following way: 

TAG 

VALID 

DATA 

4096 [JAG ~ ~_e 
WORDS "'~;:( 

~ » 

,.. ,.. 
BYTE 1 '= BYTE 2 '= 

'" '" <t <t ... ... 

Consists of nine tag store bits plus one bit of parity. 

Consists of two bits, one of which is currently active, 
allowing the other bit to be cleared concurrently. By 
having two bits, a fast flush may be accomplished by 
switching to the set which has been previously 
cleared. 

Consists of two 8-bit bytes plus a parity bit for each 
byte. 

205 



PDP-11144 

I/O PAGE REGISTERS 
The following I/O page registers will be implemented on the 11/44 
cache. All bits will be cleared by processor INIT, but not a CPU RESET 
instruction. 

15 o 
CACHE DATA 

Figure 8-6 17777 754 Cache Data Register 

CDR<15:00> 

15 14 

Cache Data Register Bits 15:00 

These bits are read-only and are loaded from the 16-
bit data array section of the cache RAM on every 
read access to main memory, except the top 256K 
bytes. This register can be used with the Hit on 
Destination Only bit to aid the cache diagnostics in 
identifying failures in the data section of the cache 
array. 

8 7 654 o 

NOT USED NOT USED 

Figure 8-7 17777744 Cache Memory Error Register 

CME<15> Cache Memory Parity Error (CMPE) 

Set if a cache parity error is detected while the cache 
parity abort bit CCR<07> is set, or if a memory pari­
ty error occurs. If set, cache will force a miss. 
Cleared by any write to the CME Register or by con­
sole INIT. If the cache detects a parity error in itself, 
the LED mounted on the right side of the board will 
beon. 

206 



CME<07> 
CME<06> 
CME<05> 

PDP-11144 

Parity Error High Byte (PEHI) 
Parity Error Low Byte (PELO) 
Tag Parity Error (TPE) 

Set individually when a parity error occurs in the 
high data byte, low data byte or tag field, respective­
ly, if the cycle is aborted (CCR<07> is set). If the 
cycle is not aborted, bits 5, 6 and 7 are all set upon 
any cache parity error occurrence as an aid to sys­
tem software compatibility. Cleared by any write to 
the CME registe~.or by console INIT. 

Figure 8-8 17777746 Cache Control Register 

CCR<13> 

CCR<12> 

CCR<10> 

Valid Store in Use (VSIU) 

This bit controls which set of valid store bits is cur­
rently being used to determine the validity of the 
contents of the tag store memory. It is read-only and 
is complement~d each time that the cache is 
flushed. 

When set, valid bit B is in use. 
When clear, bit A is in use. 

Valid Clear in Progress (VCIP) 

This bit is read-only and is set to indicate that the 
cache is currently in the process of clearing a valid 
store set. The clear cycle occurs on Power-Up and 
when the flush cache bit is set. 

NOTE: The hardware clear cycle will take approxi­
mately 800 microseconds to be accomplished. While 
a valid store set is being cleared the other set is in 
use, allowing the cache to continue functioning. 

Write'Wrong Parity Tag (WWPT) 

This bit is read/write, and when set causes tag parity 
bits to be written with wrong parity on CPU read 
misses and write hits. A parity error will thus occur 
on the next access to that location. 

207 



CCR<09> 

CCR<08> 

CCR<07> 

CCR<06> 

CCR<03> 

CCR<02> 

PDP-11144 

Unconditional Cache Bypass (UCB) 

This bit is read/write, and when set, all references to 
memory by the CPU will be forced to go to main 
memory. Read or write hits will result in invalidation 
of those locations in the cache and misses will not 
change the contents. 

Flush Cache (FC) 

This bit is write-only. It will always read a "0." Writing 
a "1" into it will cause the enti re contents of the 
cache to be declared invalid. Writing a "0" into this 
bit will have no effect. 

Parity Error Abort (PEA) 

This bit is read/write and controls the response of 
the cache to a parity error. When set, a cache parity 
error will cause a force miss and an abort to occur 
(asserts UNIBUS signal PB L). When cleared, this bit 
inhibits the abort and enables an interrupt to parity 
error vector 114. All cache parity errors result in 
force misses. 

Write Wrong Parity Data (WWPD) 

This bit is read/write, and when set causes high and 
low parity bytes to be written with wrong parity on all 
update cycles (CPU read misses and write hits). This 
will cause a cache parity error to occur on the next 
access to that location. 

Force Miss High (FMHI) 

This bit is read/write, and when set causes forced 
misses to occur on CPU reads of addresses where 
address bit 12 is a 1. This bit can also be set by 
moving the toggle switch S 1 to the right side of the 
board. 

Force Miss Low (FMLO) 

This bit is readlwrite, and when set causes forced 
misses to occur on CPU reads of addresses where 
address bit 12 is a o. This bit can also be set by 
moving the toggle switchS2 to the right side of the 
board. 

NOTE: Setting bits 03 and 02 will cause all CPU 
reads to be misses. 

208 



CCR<OO> 

CCR<07> 

o 
o 
1 

PDP-11144 

Disable Cache Parity Interrupt (DCPI) 

This bit is read/write. When set, this bit overrides the 
cleared condition of the parity error abort bit, disab­
ling the interrupt to location 114. 

CCR<OO> 

o 
Result of Cache Parity Error 

Interrupt to 114 and force miss 
Force miss only 1 

X Abort and force miss. 

7 5 

NOT USED 

L--ADDRESS MATCH---' 

Figure 8-9 17 777 750 Cache Maintenance Register 

CMR<15:10> 

CMR<15> 

CMR<14> 

CMR<13> 

CMR<12> 

CMR<11> 

CMR<10> 

CMR<09> 

CMR<08> 

Address Match Bits <21 :16> 

These bits are write-only. This register is used to set 
bits 21 :16 of the address match register, which pro­
vides a scope sync pulse to a user accessible test 
point when the memory address lines (21 :00) match 
the address match register (21 :00). This feature is 
useful for troubleshooting the cache and 11/44 
system. 

Compare 1 

Compare 2 

Compare 3 

Valid 

High Parity bit 

Low Parity bit 

Tag Parity bit 

Hit 

These bits are key pOints in the cache that the diag­
nostic can use to help localize errors. This register is 
loaded on any read to main memory. Like the cache 
data register, these bits can be used with the Hit on 
Destination Only bit to aid the cache diagnostic in 
tracing cache failures. 

209 



CMR<04> 

CMR<03> 

CMR<02> 

CMR<01> 

CMR<OO> 

15 

PDP-11144 

Enable Stop Action 

This bit can be set to allow the cache to stop the CPU 
clock upon detection of a cache parity error or ad­
dress match condition. 

Address Matched (AM) 

This bit is read/write, and is set when the 22-bit 
address match register is equal to the 22-bit cache 
address. The bit being set is indicated by the left LED 
mounted on top of the board. 

Enable Halt Action 

This bit can be set to allow the cache to halt the CPU 
upon detection of a cache parity error or address 
match condition. 

Hit on Destination Only (HODO) 

This bit is read/write. When set this bit causes the 
cache to be enabled during the destination memory 
access only of an instruction. Read hits and updates 
will only happen during the final destination access. 
This feature will be a very powerful tool for cache 
diagnostics. When cleared, this bit has no effect on 
the cache. This bit should be used with caution, as it 
can cause stale data in the cache. 

Tag Data from Address Match Register 
(TDAR) 

This bit is read/write. When set, this bit enables the 
tag field of the cache to be written with data from bits 
08:00 of the address match register. Once this bit is 
set, it will cause all cache writes to clear the valid bit 
in these locations. This feature allows the cache di­
agnostics to identify failures in the tag field of the 
cache array. 

765 o 

TAG ADDRESS 1~~61 HIT REGISTER 

ADDRESS MATCH -----------' 

Figure 8-10 17777752 Cache Hit Register 

210 



CHR<15:00> 

PDP-11144 

Address Match Bits 15:00 

These bits are write-only. This register is used to set 
bits 15:00 of the address match register, which pro­
vides a scope sync pulse to a user accessible test 
point when the memory address lines (21 :00) match 
the address match register (21 :00). This feature is 
useful for troubleshooting the cache and 11/44 sys­
tem. 

CHR<15:07> Tag Address 

This field is read-only. These bits contain the nine 
bits of the tag store memory of the last access by the 
CPU to main memory (except the top 256K bytes). 
When used with the Hit on Destination Only and Tag 
Data from Address Match register bits, this field will 
allow the cache diagnostics to read any tag field of 
any location in the array. 

CHR <05:00> Hit Register 

This 6-bit field is read-only and shows the number of 
cache hits (read and write hits) on the last six CPU 
accesses to non-I/O page memory. The bits flow 
from LSB to MSB of the field with a "1" indicating a 
hit and a "0" indicating a miss. 

OTHER CPU EQUIPMENT 

Floating Point Processor 
The PDP-11 /44 Floating P.oint Processor fits integrally into the central 
processor. It provides a supplemental instruction set for performing 
single and double precision floating point arithmetic operations and 
floating-integer conversion in parallel with the CPU. The Floating Point 
processor provides both speed and accuracy in arithmetic computa­
tions. It provides 7 decimal digit accuracy in single word calculations 
and 17 decimal digit accuracy in double calculations. 

ASCII CONSOLE 
The 11/44 serial console is a standard feature which replaces the 
"lights and switches" programmer's console of earlier processors with 
logic that interprets ASCII characters to perform equivalent panel 
functions. 

Physically, the I/O port used for the serial console function is shared 
with the standard system terminal (also called the "system console"), 

211 



PDP-11144 

and is mode (or state) switchable by the typing of ASCII characters at 
the system terminal (the LA 120 or equivalent which serves as system 
consolelprogrammer console). 

In this section "Console State" defines the serial console mode of 
operation in which ASCII commands are interpreted and result in the 
programmer's console functions (load, examine, halt, continue, etc.) 
being performed. The term "Program 1/0 State" will be used to refer to 
that state in which the LA 120 functions simply as the standard system 
terminal (also referred to as the system console). 

NOTE 
The console state can be entered only when the key 
switch is not in the local disable pOSition. 

Console State 
The console state is entered by typing a reserved input character, 
Control P (ASCII tP <020», called the CONSOLE BREAK character. 
The reserved character is not passed to a running program, and CON­
SOLE state is entered after printing the current output character, if 
any. While in the CONSOLE state, all input characters are interpreted 
by the console logic as commands to the CPU control interface. The 
console performs all character echoing while In the CONSOLE state. 

A program running in the processor Is Inhibited by the console logic 
from sending or receiving any characters (see NOTE). The CONSOLE 
state is exited to the PROGRAM 1/0 state by typing a specific console 
command. 

Program I/O State 
The PROGRAM I/O state is entered from the CONSOLE state by typ­
ing the CONTINUE command: A running program will then resume 
any input/output that might have been interrupted by the CONSOLE 
BREAK character. Any ASCII character may be output by the pro­
gram, and any ASCII character, except the CONSOLE BREAK charac­
ter, may be input to the program. Character echoing is the 
responsibility of the CPU software in PROGRAM 1/0 state. 

The PROGRAM I/O state is exited to the CONSOLE state by typing the 
CONSOLE BREAK character. 

NOTE 
This is accomplished by inhibiting the "ready" and 
"done" bits from being set. If a program just sends 
output to the printer without testing status bits, fewer 
characters will be printed. 

212 



PDP-11144 

CONSOLE COMMAND SYNTAX & SEMANTICS 
<> 

[ ] 

<SP> 

<COUNT> 

<ADDRESS> 

<DATA> 

<QUALIFIER> 

<INPUT­
PROMPT> 

<CR> 

<LF> 

Angle brackets are used to denote category 
names. For example, the category name 
<ADDRESS> may be used to represent 
any valid address, instead of actually listing 
all the strings of characters that can repre­
sent an address. 

Brackets surrounding part of an expression 
indicate that part of the expression may not 
have to pe typed. 

Represents one space. 

Represents a numeric count in OCTAL: 

Represents an address argument. 

Represents a numeric argument. 

A command modifier (switch). 

Represents the console's input prompt 
string "> > >." 

Carriage return. 

Line feed. 

Console defaults: 
Address defaults: 

Data defaults: 

a physical 22-bit address is always 
assumed. 

all transfers are 16-bit WORD transfers. 

Control Characters & Special Characters 
This section lists the control characters and special characters recog­
nized by the console adaptor, and describes their functions. All control 
characters, with the exception of tP, are optional. 

CONTROL C Causes the suspension of all repetitive console oper-
(tC) ations such as: 

CONTROL 0 
(to) 

1. Successive operations as a result of a /N qualifi­
er. 

2. Repeated command executions as a result of a 
REPEAT command. 

Suppresses/enables console terminal output (tog­
gle). Console terminal output is always enabled at 
the next console input prompt. 

213 



CONTROLP 
(tP) 

CONTROLU 
(tU) 

CONTROLS 
(tS) 

CONTROLQ 
(tQ) 

CARRIAGE 
RETURN 
<CR> 

PDP-11144 

Enters CONSOLE mode (if key switch is not in local 
disable position). Characters typed are now fielded 
by the console. If the console was already in CON­
SOLE mode another console <INPUT-PROMPT> is 
typed. 

tu typed before a line terminator causes the deletion 
of all characters typed since the last line terminator. 
The console echoes: "tu <CR> <LF>" 

Will cause cease of execution of current command 
and of character transmission until either a tQ is re­
ceived, or a tc is received. A system power failure 
will cause the flag that ts sets to be cleared before 
exiting CONSOLE mode (transmission of characters 
stops). 

Will cause execution to continue of current com­
mand and of character transmission. If no command 
or character transmmission is in process, there is no' 
response to this command. (Transmission of charac­
ters, if any, continues.) 

Terminates a console command line. 

The following is a list of allowable qualifiers along with their descrip­
tions: 

IG 

IN 

Specifies general register space. This is a shorthand 
method to get to the general registers. The user 
need only type an E or D (examine or deposit) fol­
lowed by the "/G" qualifier, and then, instead of a full 
22-bit address, simply enter the register number 
(e.g. 0, 1,2,3 ....... ). . 
Example: E/G <SP> 7 <CR> will examine R7 
as compared to: E <SP.> 17777707 <CR> 

The IN qualifier is provided to permit examine and 
deposit commands to operate on multiple sequential 
addresses. The syntax of the IN qualifier is: 
<SLASH>N(:<COUNT» The <COUNT> argument 
specifies the number of additional executions of the 
command to be performed after the initial execution. 
The default value for <COUNT> is one. 

214 



1M 

IE 

BOOT 

CONTINUE 

PDP-11144 

The /M qualifier allows the operator to examine the 
various data and control paths in the 11/44, and, in 
one special case, allows the operator to change (de­
posit to) the CPU's MPC. 

Example: E/M <SP> 0 <CR> will examine the data 
that is on the data bus internal to the floating pOint 
option. A list of machine dependent addresses fol­
lows: 

ADDRESS = DATA EXAMINED 
0 = Floating Point Data 
1 = CISMPC 
2 = CIS Data 
3 = CPU Data 
4 = CPU MPC 
5 = CACHE Data 
6 = CPU Error Register 
7 = Illegal 

Extensive test used only with T (TEST) command 

B [<SP> <DEVICE-NAME>] <CR> 

<DEVICE-NAME> is of the following format: "DOn" 
where "DO" is a 2-letter device mnemonic (such as 
DT for DECtape), and "n" is a 1-digit unit number. 

If no <DEVICE-NAME> is given with the boot com­
mand, the console will perform the boot sequence 
for the default system device. This is the equivalent 
of using the front panel "boot" switch. 

The boot command is executed only if the CPU is 
halted, otherwise, an error message is generated. 

C<CR> 

The CPU begins instruction execution at the address 
currently contained in the CPU program counter 
(PC) or continues execution if already running. CPU 
initialization is NOT performed. Additionally, the 
console enters PROGRAM I/O mode (see CONSOLE 
state and PROGRAM I/O state sections) at the same 
time as issuing the CONTINUE to the CPU. This com­
mand may be used to return the console to PRO­
GRAM I/O mode even if the CPU was already run­
ning. 

215 



FILL 

DEPOSIT 

SW 

+ 

* 

@ 

PDP-11144 

F [<SP> <COUNT>] <CR> 

Until a power failure has occurred, the console will 
send <COUNT> (in system radix) null characters 
after each <CR> before any further transmission. A 
power failure will clear <COUNT>. Also, neither en­
tering/exiting CONSOLE mode nor execution of any 
other console command (including Self-Test) affects 
<COUNT>. F <CR> sets fill to zero. Response: 
<CR> <LF> <77> 

D [<QUALIFIER-LIST>] <SP> 

/M, /N, /G 

Deposits <DATA> into the <ADDRESS> specified. 
The address space used will depend upon the quali­
fiers specified with the command (e.g. general regis­
ters if /G, or machine dependent register if /M, or 
the default physical address, if no qualifiers are 
specified). 

<ADDRESS> is a 1- to a-digit octal number (see 
Note). Non-specified upper bits are set to zero. Addi­
tionally, the address may be specified by one of the 
mnemonics listed below. 

<DATA> is a 1- to 6-digit octal number, and as with 
the address, non-specified upper bits are set to zero. 

NOTE: When the /M (machine dependent register) 
qualifier is used, the value of <ADDRESS> may not 
be anything but 4 (this is the machine dependent 
register which is writable.) 

When the /G (general register) qualifier is used, the 
value of <ADDRESS> may not exceed 208 . 

depOSits to the Switch Register. 

depOSits to the location immediately follow­
ing the last location referenced. 

deposits to the location immediately 
preceeding the last location referenced. 

depOSits to the location last referenced. 

deposits to the address represented by the 
last data examined or depOSited. 

216 



PDP-11144 

Deposits are legal only when the CPU is' halted. Otherwise, an error 
message is generated. 

EXAMINE E [<QUALIFIER-LIST>] <SP> <ADDRESS> 
<CR> 

SW 

+ 

* 

1M, IN, IG 

Examine the contents of the specified <ADDRESS>. 

<ADDRESS> is a 1- to a-digit octal number (see 
note) with non-specified upper address bits set to 0, 
or one of the mnemonics described below. 

NOTE: Where the 1M (machine dependent regis­
ter) qualifier is specified, the value of <ADDRESS> 
may not exceed 7. 

Where the IG (general register) qualifier is specified 
the value of <ADDRESS> may not exceed 17 8• 

examines the Switch Register. 

examines the location immediately follow­
ing the last location referenced. 

examines the location immediately preced­
ing the last location referenced. 

examines the location last referenced. 

@ examines the address represented by the 
last data examined or deposited. 

The EXAMINE command is legal whether or not the CPU is running. 

HALT H <CR> 

INITIALIZE 

The CPU will stop instruction execution after com­
pleting the execution of the instruction being 
executed when the console presents the HALT re­
quest to the CPU. 

Upon halting the CPU, the console will display the 
contents of the PC. 

I<CR> 

A CPU system initialize is performed. 

The INITIALIZE command is executed only if the 
CPU is halted, Otherwise, an error message is gen­
erated. 

217 



MICROSTEP 

NEXT 

SPACE-BAR­
STEP 
FEATURE 

REPEAT 

START 

PDP-11144 

M «SP> <COUNT>] <CR> 

The CPU is allowed to execute the number of MI­
CRO-instructions indicated by <COUNT>. If no 
<COUNT> is specified, one instruction is per­
formed, and the console enters SPACE-BAR-STEP 
mode. (See below.) The Console enters PROGRAM 
I/O mode immediately before issuing the step, and 
re-enters CONSOLE mode as soon as the step com­
pletes. The CPU may be restarted by typing "C," and 
will continue executing the current instruction before 
halting. 

The MICROSTEP command is executed only if the 
CPU is halted. Otherwise, an error message is gen­
erated. 

N [<SP> <COUNT>] <CR> 

The CPU is allowed to execute the number of 
MACRO instructions indicated by <COUNT>. If no 
<COUNT> is specified, one instruction is per­
formed, and the console enters SPACE-BAR-STEP 
mode. 

The console enters PROGRAM I/O mode immedi­
ately before issuing the step, and re-enters CON­
SOLE I/O mode as soon as the step completes. 

1. Each time a NEXT or MICROSTEP command 
with no <COUNT> argument is given, the step 
is executed and SPACE-BAR-STEP mode is en­
tered. Each depression of the SPACE-BAR will 
cause a single step of the microcycle or instruc­
tion. 

2. To exit SPACE-BAR-STEP mode, type any char­
acter except SPACE. 

R <SP> <CONSOLE COMMAND> 

This causes the console to repeatedly execute the 
<CONSOLE COMMAND> specified, until execution 
is terminated by a Control-C (tC). Any valid console 
command may be specified for <CONSOLE COM­
MAND> except the REPEAT command. 

S [<SP> <ADDRESS>] <CR> 

218 



TEST 

BINARY 
LOAD 

PDP-11144 

The START command performs the equivalent of the 
following sequence of console commands: 
1. A system INITIALIZE is performed. 
2. <ADDRESS> is deposited into the CPU 

Program Counter (PC). If no address is speci­
fied, the console uses the address which was 
associated with the last START command exe­
cuted. 

3. A CONTINUE is issued to begin CPU execution. 

T [<QUALIFIER-LIST>] 

The console subsystem will execute a self test, 
checking to insure its own integrity. 

X <SP> <ADDRESS> <SP> <COUNT> <CR> 

This command instructs the console to prepare to 
load or unload <COUNT> binary data bytes from 
the address space specified by the <QUALIFIER­
LIST>, starting from location <ADDRESS> 

A count with bit 15 set indicates that the data are to 
be sent to the requester. The remaining bits in the 
count field are considered a positive number indicat­
ing the number of bytes to load or unload. 

All CHECKSUMS used by this command are calculated by performing 
a 2's complement addition of each character into a register initially set 
to zeroes. If no errors occurred, the low eight bits of the register 
should be zero after the checksum has been received and added into 
it. 

Once the command has been parsed, the console will stop echoing 
input bytes. A byte of binary data will immediately follow the command 
(after the <CR». This byte of data is a byte CHECKSUM of the ASCII 
characters which made up the command string (including the <CR», 
and will not be loaded into memory. <COUNT> will not be decrement­
ed. 

If the checksum is correct, the console will respond with the input 
prompt, but remain in binary mode (echo suppressed) and either send 
data to the requester or be prepared to receive data. 

If the checksum calculation detects an error, the console will respond 
within one second with an error message, re-enable echo of received 
characters, issue its input prompt and await another command. This 

219 



PDP-11144 

will prevent inadvertent operator entry into a mode where the console 
is accepting the next several thousand input characters as data with 
no escape sequence possible from the keyboard. Note that this entire 
command Including the checksum may be received by the console as 
a single burst of characters at the console's specified character rate. 

BINARY LOADING 
A binary string of data of length <COUNT>1 will be sent once the 
requester receives the input prompt indicating that the console has 
accepted the command. The console will deposit all but the last byte 
into the specified address space. The data length actually deposited 
during each memory reference is implementation-dependent. As the 
console is receiving the data it is also adding the bytes together to 
form another checksum, and reading back from memory (if possible) 
the data it just stored to assure data integrity. 

Once the <COUNT> is exhausted, the final byte transmitted will be 
the block CHECKSUM of all the data. The console will compute the 
CHECKSUM as above, and respond within one second with an error 
message if an error is detected. In any case, the console will re-enable 
echo, issue an Input prompt, and await the next command. 

BINARY UNLOAD 
As in the load command, the console processes the command and 
checks the CHECKSUM. If the CHECKSUM is correct, the console 
responds with a normal input prompt, followed by a string of bytes 
which is the binary data requested. As each byte is sent, it as added to 
the CHECKSUM and at the end of the transmission, the 2's comple­
ment of the low byte of the CHECKSUM is sent. The console then re­
enables echo, issues an input prompt, and awaits the next command. 

If the original CHECKSUM fails, the console will respond with an error 
message. It will then issue an input prompt and await the next com­
mand. 

NOTE 
If the console detects line parity error or memory 
read-after-write errors while receiving the above 
command or data streams, it will continue process­
ing the incoming data and will send a single appro­
priate error message after the command Is complet­
ed. 

To make this command useful for automated test 
systems, the consoles should be able to receive at 
least 2K bytes of data in a single "X" command. 

220 



PDP-11144 

REGISTERS 

Receiver Status Register (RCSR) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

, I I 
RECEIVER AOIVE (RCVRACTI dJ 1 
RECEIVER DONE(RCVR DONE) --- -
RKEIVER INTERRUPT ENABlE (RCVR INT ENS) 
READER ENABLE (RDR ENB) _______________ ---1_ 

Bit: 15-12 Name: Unused 
Function: 

Bit: 7 Name: RCVR DONE 
Function: Read-only. Set when an entire character has been re­
ceived and is ready for transfer to the UNIBUS. Cleared by setting RDR 
ENB, addressing (READ or WRITE) RBUF or INIT. Starts an interrupt 
sequence when RECEIVER INTERRUPT ENABLE (bit 6) is also set. 

Bit: 6 Name: RECEIVER INTERRUPT ENABLE 
Function: Read/Write. Cleared by INIT. Starts an interrupt sequence 
when RCVR DONE is set. 

Bit: 5-1 Name: Unused 
Function: 

Bit: 0 Name: READER ENABLE 
Function: Write-only. Cleared by INIT or at middle of START bit. 
Advances paper tape reader of ASR teletypes. Clears RCVR DONE. 20 
rnA current loop circuit output associated with this bit. 

Receiver Data Buffer (RBUF) 

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0 

~{~1 J I ~'------"I·"-------'} 
FRAME ERROR 
RECEIVE PARITY ERROR 
RECEIVED DATA BIT5--------------' 

Bit: 15 Name: ERROR 
Function: Read-only. Logical OR of OVERRUN ERROR, FRAMING 
ERROR and PARITY ERROR. Cleared by removing the error 
conditions. ERROR is not tied to the interrupt logic, but RCVR DONE 
is. 

Bit: 14 Name: OVERRUN 
Function: Read-only. Set if previously received character is not read 
(RCVR DONE not reset) before the present character is read. 

221 



PDP-11144 

Bit: 13 Name: FRAMING ERROR 
Function: Read-only. Set if the character read has no valid bit. Also 
used to detect break. 

Bit: 12 Name: RECEIVE PARITY ERROR 
Function: Read-only. Set if received parity does not agree with the 
expected parity. Always 0 if no parity is selected. 

NOTE: Error conditions remain present until the next character is 
received, at which time the error bts are updated. INIT does not neces­
sarily clear the error bits. Error bits may be disabled via a switch. 

Bit: 11-8 Name: Unused 
Function: 

Bit: 7-0 Name: RECEIVED DATA 
Function: Read-only. These bits contain the character just read. If 
less than eight bits are selected, the buffer will be right justified with 
the unused bits read as O's. Not cleared by INIT. 

Transmitter Status Register (XCSR) 

15 14 13 12 11 10 9 8 7 6 

I ~~J 11~b I 
t f TRANSMITTER REAOY---------' 

TRANSMITTER INTERRUPT ENABLE --------' 

5 4 3 2 

EI 
1 MAINTENANCE ---------------~ 

0 

rREAKI 

I BREAK ----------------------' 

Bit: 15-9 Name: Unused. 
Function: 

Bit: 7 Name: TRANSMITTER READY 
Function: Read-only. Set by INIT. Cleared when XBUF is loaded; set 
when XBUF can accept another character. When set, it will start an 
interrupt sequence if XMIT INT ENB is also set. 

Bit: 6 Name: TRANSMITTER INTERRUPT ENABLE 
Function: Read/Write. Cleared by INIT. When set it will start an inter­
rupt sequence if XMIT READY is also set. 

Bit: 5-3 Name: Unused 
Function: 

Bit: 2 Name: MAINTENANCE 
Function: Read/Write. Cleared by INIT. When set it disables the seri­
al line input to the RECEIVER and sends the serial output of the 
TRANSMITTER into the serial input of the RECEIVER. Forces receiver 
to run at transmitter speed. 

222 



PDP-11144 

Bit: 1 Name: Unused. 
Function: 

Bit: 0 Name: BREAK 
Function: Read/Write. Cleared by INIT. When set, it transmits a con­
tinuous space. May be disabled with a switch. 

Transmitter Data Buffer (XBUF) 

15 14 13 12 II 10 9 8 

Bit: 15-8 Name: Unused. 
Function: 

Bit: 7-0 Name: TRANSMITTED DATA BUFFER 
Function: Write-only. If less than eight bits are selected, then the 
character must be right justified. 

Clock Status Register (ClKS) 

15 14 13 12 II 10 9 8 7 6 5 4 3 2 0 

1~8':1 ~r~IB I 
LINE CLOCK MONITOR ----------', j 
LINE CLOCK INTERRUPT ENABLE--------'-

Bit: 15-8 Name: Unused. 
Function: 

Bit: 7 Name: LINE CLOCK MONITOR 
Function: Read/Clear. Set only by the line frequency clock signal 
and cleared only by the program. Set by INIT. 

Bit: 6 Name: LINE CLOCK INTERRUPT ENABLE 
Function: Read/Write. Cleared by INIT. When set, starts an interrupt 
sequence if Line Clock monitor is also set. 

Bit: 5-0 Name: Unused. 
Function: 

NOTE: Line Clock circuit must be disabled via a switch when serial line 
portion is used as other than console interface (Address 77756X). 

Floating vectors for serial line interface portion are switch selectable. 

223 



PDP-11144 

INTERRUPTS 
The real-time clock has three interrupt channels: one for the receiver 
section (vector = XXO), one for the transmitter section (vector = XX4) 
and one for the clock section (vector = 100). These circuits operate 
independently. 

ADDRESS AND VECTOR ASSIGNMENTS 
The serial line port follows the same address and vector assignments 
as the KL 11, DL 11-A, B, C, D. 

Line Clock 

Console 

Additional 
Units 

Address 

777546 
777560 

777662 
777564 
777566 
776XXO 

776XX2 
776XX4 
776XX6 

Where XX = 50 to 67 
77XXXO 
77XXX2 
77XXX4 
77XXX6 

Where XXX = 561 t0617. 

TIMIN"G CONSIDERATIONS 

Receiver 

Vector 

100 

60/64 

Floating 

Floating 

Priority 

BR6 

BR4 

BR4 

BR4 

The RCVR DONE flag sets when the UART has assembled a full char­
acter, which occurs at the middle of the first stop bit. 

Since the UART is double buffered, data remain valid until the next 
character is received and assembled. This allows one full character 
time for servicing the RCVR DONE flag. 

NOTE 
The UART (Universal Asynchronous Receiv­
er/transmitter) is an asynchronous subsystem. The 
transmitter accepts parallel characters and converts 
them to a serial asynchronous output. The receiver 
accepts asynchronous serial characters and con­
verts them to a parallel output. 

224 



PDP-11144 

Transmitter 
The UART's transmitter section is also double buffered. After 
initialization, the XMIT ROY flag is set. When the buffer is loaded with 
the first character, the flag clears but sets again within a fraction of a 
bit time. A second character can then be loaded, clearing the flag 
again. The flag then remains clear for nearly a full character time. 

Break Generation 
Setting the break bit causes the transmission of a continuous space. 
Since the xMrt ROY flag continues to function normally, the duration 
of break can be timed by the "pseudo-transmission" of a number of 
characters. However, since the transmitter is double buffered, a null 
character (all zero) should precede transmission of break to insure the 
previous character clears the line. Likewise, the last "pseudo-trans­
mitted" character under break should be null. 

Registers 
The following five CPU registers are not accessible from the UNIBUS. 
They are accessed by program or console control. 

CPU Error Register 17777766 

15 B 7 6 5 4 3 2 0 

NOT USED I I I r~11 NOT 
USED 

, 

ILLEGAL HALT 
, 1 1 1 I ODD ADDRESS ERROR 

NON1EXISTANT MEMORY 
UNIBUS TIME-OUT 
STACK OVERFLOW 

This register identifies the source of the abort or trap that used the 
vector at location 4. 

Bit: 7 Name: Illegal Halt 
Function: Set when trying to execute a HALT instruction when the 
CPU is in User or Supervisor mode (not Kernel). 

Bit: 6 Name: Odd Address Error 
Function: Set when a program attempts to do a word reference to an 
odd address. 

Bit: 5 Name: Non-Existent Memory 
Function: Set when the CPU attempts to read a word from a non­
existent location. This does not include UNIBUS addresses. 

Bit: 4 Name: UNIBUS Timeout 
Function: Set when there is no response on the UNIBUS within ap­
proximately 20 JLsec. 

225 



PDP-11144 

Bit: 2 Name: Stack Overflow 
Function: Set when a Stack Limit violation occurs. 

Processor Status Word 17 777 776 

15 14 13 12 11 10 9 8 7 5 4 3 2 0 

C I J RSVD PRIORITY 
TIN I Z I v ~ I 

~~J 
1 

CURRENT MODE ~ j 
PREVIOUS MODE 
GENERAL REGISTER SET 
CIS INSTRUCTION SUSPENSION 

The Processor Status Word contains information on the current status 
of the CPU. This information includes current processor priority; cur­
rent and previous operational modes; the condition codes describing 
the results of the last instruction; an indicator for detecting the execu­
tion of an instruction to be trapped during program debugging; and an 
indicator to determine whether a commercial instruction was in prog­
ress. 

PROCESSOR TRAPS 
These are a series of errors and programming conditions which will 
cause the central processor to trap to a set of fixed locations. These 
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout 
Errors, Non-Existent Memory References, Memory Errors, Memory 
Management Violations, Floating Point Processor Exception Traps, 
use of Reserved Instructions, use of the T bit in the Processor Status 
Word, and use of the lOT, EMT, and TRAP instructions. 

Power Failure 
Whenever AC power drops below 90 volts for 120V power (180 volts 
for 240V) or outside a limit of 47 to 63 Hz, as measured by DC power, 
the power-fail sequence is initiated. The central processor 
automatically traps to location 24 and the power-fail program has 5 
msec. to save all volatile information (data in registers), and to condi­
tion peripherals for power failure. 

If battery backup is present, and batteries are not depleted when 
power is restored, the processor traps to location 24 and executes the 
power-up routine to restore the machine to its state prior to power 
failure. If batteries are not present, a boot to default device is execut­
ed. 

226 



PDP-11144 

Odd Addressing Errors 
This error occurs whenever a program attempts to execute a word 
instruction on an odd address (in the middle of a word boundary). The 
instruction is aborted and the CPU traps through location 4. 

Time-Out Error 
This error occurs when a Master Synchronization pulse is placed on 
the UNIBUS and there is no slave pulse within 20 ILsec. This error 
usually occurs in attempts to address non-existent memory or peri­
pherals. 

The instruction is aborted and the processor traps through location 4. 

Non-Existent Memory Errors 
This error occurs when a program attempts to reference a non-exis­
tent memory location. The cycle is aborted and the processor traps 
through vector 4. 

Reserved Instruction 
There is a set of illegal and reserved instructions w~ich cause the 
processor to trap through location 10. The set is fully described in 
AppendixA. 

Trap Handling 
Appendix A includes a list of the reserved Trap Vector locations and 
System Error Definitions which cause processor traps. When a trap 
occurs, the processor follows the same procedure for traps as it does 
for interrupts (saving the PC and PS on the new Processor Stack, etc.). 

In cases where traps and interrupts occur concurrently, the processor 
will service the conditions according to the priority sequence 
illustrated. 

Trap Priorities 
1. HALT (Instruction, Switch, or Command) 
2. Memory Management Fault 
3. Memory Parity Errors 
4. Bus Error Traps 
5. Floating Point Traps 
6. TRAP Instruction 
7. TRACE Trap 
8. OVFL Trap 
9. Power Fail Trap 
10. Console Bus Request (Console Operation) 
11. Program Interrupt Request (PIR) level 7 

227 



PDP-11144 

12. Bus Request (BR) level 7 

13. PIR6 

14. BR6 

15. PIR5 

16. BR5 

17. PIR4 

18. BR4 

19. PIR3 

20. PIR2 

21. PIR 1 

22. WAIT LOOP 

Stack Limit Violations 
When instructions cause a stack address to exceed (go lower than) 
4008 , a Stack Violation occurs. Operations that cause a Stack Violation 
are completed, then a bus error trap is effected (TRAP to 4). The error 
trap, which itself uses the stack, executes without causing an addition­
al violation. 

PROGRAM INTERRUPT REQUESTS 
A request is booked by setting one of bits 15 through 9 (for PIR 7-PIR 
1) in the Program Interrupt Register at location 17 777 772. The hard­
ware sets bits 7-5 and 3-1 to the encoded value of the highest PIR bit 
set. This Program Interrupt Active (PIA) should be used to set the 
Processor Level and also index through a table of interrupt vectors for 
the seven software priority levels. The figure below shows the layout of 
the PIR Register. 

,-=IS ________ 9'-rn8--n-7'----__ .-:S"-r 4 3 1 0 

IPIR7, ,PIR1~ P I A E. I I A ~ 

Program Interrupt Request Register 

When the PIR is granted, the Processor will trap to location 240 and 
pick up the PC in 240 and the PSW in 242. It is the interrupt service 
routine's responsibility to queue requests within a priority level and to 
clear the PIR bit before the interrupt is dismissed. 

The actual interrupt dispatch program should look like: 

MOVB PIR,PS ;places Bits 5-7 in PSW 
;Priority Level Bits 

MOV R5,-(SP) ;save RS onthe stack 

228 



PDP:..11144 

MOV PIR,R5 
BIC #177761 ,R5 
JMP @DISPAT(R5) 

SPECIFICATIONS 
Packaging 

;Gets Bits 1-3 
;use to index through table 
;which requires 15 core. 
;Iocations 

A basic PDP-11 /44 consists of a 10.5" box with a 14-slot backplane, 
power supply, CPU, 256 Kbyte memory, and two cabinets. 

There are prewired areas within the backplane for expansion with 
optional equipment. 

Component Parts 
The basic PDP-11 /44 system has: 

Included Equipment 
11/44 CPU 
Memory Management 
Bootstrap Loader 
Line Frequency Clock 
Serial Bus Interface for TU58 
Terminal Interface 
8 Kbyte Cache Memory 
256 Kbyte ECC MOS Memory 
BA11-A Box with Power Supply 

Prewlred Expansion Space for Optional Equipment 
Floating Point Processor 
Commercial Instruction ~et 
2 SPC Slots for Peripherals 
768 Kbyte ECC MOS memory (up to 1024 Kbytes maximum) 
3 SU open space in CPU Box 

OTHER SPECIFICATIONS 
ACPower 
90-128 VRMS, 47 to {33Hz, 1 phase power, 19 amps RMS maximum @ 
120 Vac 
180-256 VRMS, 47 to 63Hz, 1 phase power, 9.5 amps RMS maximum 
@ 240Vac. 

Size 
Each cabinet is 26.34cm X 42.21cm X 66.01cm (10.38" high X 16.22" 
wide X 26" deep). 
Weight 
CPU Box: 40.5 Kg (90 Ibs.) 

229 



PDP-11144 

Operating Environment 
Temperature: 

Humidity: 

Altitude: 

Non-Operating Environment 
Temperature: 

Humidity: 

Altitude: 

230 

5°C to 50°C (41°F to 122°F) 

10% to 95% with max wet bulb 
32°C (89.6°F) and minimum dew 
point 2°C (36°F) 

to 2.4 km (8000 ft.) 

-40°C to 80°C (-40°F to 176°F) 

to 95% 

to 9.1 km (30,000 ft.) 



231 



232 



CHAPTER 9 

PDP-11/60 

The PDP-11 /60 is at the top of the mid-range PDP-11 processors for 
floating point applications. It is designed for both real-time applica­
tions and multi-user timesharing applications, offering a combination 
of features normally found only in larger computers. 

The unique combination of UNIBUS-interfaced MOS or core memory 
and processor cache memory allows I/O transfers to memory to occur 
simultaneously with CPU accesses from cache memory. Since the 
cache memory is an integral part of the processor, the standard PDP-
11 operations of the UNIBUS, I/O devices, and memory are unaf­
fected. 

FEATURES 

Features of the PDP-11 /60 that are explained in this chapter include: 
• cache memory system 
• keypad, numeric programmers' display console 
• system integral floating point instructions and an optional parallel 

float,ing point processor 

• internal extended instruction set (EIS) 
• four levels of priority interrupt 
• maintenance features 
• reliability and maintainability (R.A.M.P.) 

User microprogramming capability is described later in this chapter. 

233 



N 
(.,.) 
~ 

BOOTSTRAP 
LOADER & 
TERMINATOR 

MAIN MEMORY 
(8.4CKING STORE) 

256K BYTES 

I CENTRAL 
L!ROCESSOR __ --1 

I/O 
DEVICES 

Figure 9-1 Simplified PDP-11/60 System 

I/O 
DEVICES 

TERMINATOR 

" o 
" I 
....... 
....... 
~ 
<:) 



PDP-11160 

PDP-11/60 MEMORY 
Memory for the PDP-11/60 is a. combination of a 2048-byte high­
speed bipolar cache memory and up to 248K bytes main memory 
which can be either ECC MOS or parity core memory. Cache memory 
provides for rapid execution of instructions, while the main memory 
provides cost-effective bulk storage. \ 

Cache Memory 
Cache memory is a small, high-speed memory that maintains a copy 
of previously selected portions of main memory for faster access of 
instructions and data. The PDP-11 /60 computer system appears to be 
a conventional PDP-11 system with UNIBUS-connected memory, ex­
cept that the execution of programs is noticeably faster. The only 
difference is in system timing; there are no changes in programming. 

Cache memory is physically located within the processor and is a part 
both of the processor and of main memory, as shown in Figure 9-2. 
The high-speed bipolar cache memory is synchronized with the proc­
essor and eliminates long bus transmission and access times 
associated with main memory. Allocation mechanisms in the PDP-
11/60 processor update the cache memory automatically and dynami­
cally and extend the speed effect of cache across the entire main 
memory. 

,-------
i-----------T------i ~ 

I DATA PATH I I ::> 
I MEMORV CACHE to 

AND MANAGEMENT MEMORV I4--l-+lZ I CONTROL STORE I ::> 

LPROCESSOR _________ ~ _____ J 
~~~V ____ _ 

I/O
DEVICE

------,
I
I
I
I
I
I
I _ _____ -1

Figure 9-2 Cache Memory System Relationships

235

PDP-11160

All instructions are stored in main memory; a copy of some of this
information is stored in the cache. If most of the time the needed data
is in the fast cache memory, the program will execute quickly, slowing
down only for access to main memory. The cache system loads cache
memory automatically and dynamically, in a way that gives a high
probability that desired data will be in the fast memory.

The principle of program locality states that programs have a tenden­
cy to make most accesses In the neighborhood of locations accessed
in the recent past. Programs typically execute instructions in straight
lines or small loops, with future accesses likely to be within a few
words of the last reference. Stacks grow and shrink from one end, with
the next few accesses near the current bottom. Data elements are
often scanned sequentially. Cache makes effective use of this pro­
gram behavior by keeping copies of recently used words.

A cache system offers faster system speed for the cost of a small
quantity of fast memory plus associated logic, while main memory can
be implemented economically. An increase in system speed depends
on the size and organization of cache, not on the type or speed of main
memory. You receive a substantial speed improvement for a modest
cost, and there are no programming changes. Although the exact
speed improvement depends on the particular program, a judicious
choice of architecture and algorithm will produce good results for all
programs.

The fundamental concern is instruction execution speed. This is af­
fected by the speed of fast and slow memory and by the percentage of
time that memory references will find the data within the cache,
allowing faster execution. When the needed data is found in the cache,
a hit is said to occur. A miss occurs when the data is not in the cache.

The cache system within the 11/60 processor provides an additional
advantage of lower UNIBUS utilization by the processor, since read
memory references that are hits do not access the UNIBUS. Conse­
quently, the UNIBUS is available more often for I/O device-to-memory
transfers.

PDP-11/60 Cache Implementation
Cache memory organization can be implemented in different ways.
The PDP-11 /60 cache implementation is summarized in Table 9-1.

236

PDP-11160

Table 9-1 PDP-11/60 Cache Implementation

CACHE CHARACTERISTICS
Address mechanism
Block size
Set size
Allocation mechanism
Replacement algorithm

PDP-11/60 IMPLEMENTATION
Direct mapping
Block size one
Set size one

_ Write through
Not applicable
with set size of one

Direct mapping address mechanism This type of mechanism allows
each word from main memory only one possible location in cache and
consequently requires only one address comparison, as opposed to
the fully associative cache, for example, which requires many address
comparisons.

Block size The PDP-11/60 has a block size of one, which means that
every time a fetch to main memory occurs, one word is fetched. One
word is allocated to cache in the event of a miss.

Set size The PDP-11 160 has a set size of one, which means that there
is a unique location in cache for any given word from main memory.
Consequently, if a miss occurs, only one cache location is available for
the data to be written into.

Write through The PDP-11 160 method of handling stale data in main
memory is write through. In the write through method, the data stored
in cache is immediately copied into main memory; main memory al­
ways has a valid copy of all data.

Cache Memory Data Format
Figure 9-3 shows the basic data format of the PDP-11 160 cache mem­
ory. The 2048 bytes of memory data are organized in 1024 words of 27
bits each. These 1024 words are index positions and are organized
into a direct mapping cache. Bits 10 through 1 of the physical address
access these index positions up,on a memory reference. A complete
address match requires a comparison of bits 17 through 11 of the
physical address with the address information contained in the tag
field of the index pOSition. The tag field contains seven address bits, a
valid bit, and a parity bit. The data field of the index position consists of
two 8-bit bytes of data, each with byte parity.

237

l
PHYSICAL ADDRESS

1 INDEX J

PDP-11160

r-.---- 27 BITS

I--- TAG -I" - DATA

~
i7~JC~~

I I I
I I I
I I
I I I V,, ____

_/"'- _/~I

P V ADDRESS

LEGEND:
P= PARITY BIT
V= VALID BIT

P BYTE P BYTE

I
I

CACHE INDEX
POSITIONS

I
I
I
I
I ,

102310

Figure 9-3 Cache Memory Data Format

Physical and Cache Address
Since the physical address space is 256K bytes, an address mapping
technique is necessary to allow the 1 K-word cache to be mapped
directly onto anyone of the 128 blocks. The physical address is di­
vided into a tag field, an index field, and a byte field, as shown in
Figure 9-4.

,-17 ________ 1_1 -r-·_l0 ______________ ,..---,o BIT POSITION

___ IN_D_EX _______ IB_YT--IE I CA~~M~IELD TAG

Figure 9-4 Physical Address Format

The byte field selects the high or low byte. The Index field determines
which cache index position is used to store the copy of the data. This
10-bit index field specifies one of 1024 index values and is the address
of a 27-bit word in the cache (see Figure 9-3).

For each of the index words, however, the remaining bits of the physial
address can specify one of the 128 blocks. These bits constitute the
tag field and are stored with the memory data in the cache index
location. They prevent ambiguous determination of a specific physical
address by uniquely specifying one of the 128 1 K blocks.

Aedressing cache then consists of applying the lower part of a
physical address <10: 1> against the 1 K cache memory matrix and

238

PDP-11160

checking the higher order physcial address < 17:11> against the tag
field of the index word obtained. If the tag field in the address matches
the tag field stored with the data in the index word, the word obtained
is the word specified by the physical address. This is designated as a
hit. If the word is not the same (the fields do not match), it is designat­
ed as a miss. On a processor write, a main memory reference occurs
and the new data and tag portion of its physical address will be stored
in the still accessed index position. This allocation keeps current data
in the cache for processor use.

Processor Memory Reference
Cache memory within the PDP-11/60 operates synchronously with
processor memory references. Address information from the proces­
sor is translated to physical addresses by the memory management
unit (if enabled).

The processor always looks for data in the fast cache memory first.

If the data is in the cache memory, a hit occurs, and there is no change
to cache or main memory. The UNIBUS is not accessed and instruc­
tion proceeds at the fastest rate. If a miss occurs, the data and tag of a
cache location are changed to correspond to the information obtained
in a bus cycle to a main memory location (allocating cache). During a
write into memory, if a hit occurs, both main memory and cache are
updated. If a miss occurs during a word write memory reference, main
memory is written, and the tag and data of the cache location are
changed to correspond to the main memory location (allocating
cache). For a write byte into memory, the process is similar except that
cache is not allocated upon a miss.

239

MAIN
MEMORY

PDP-11160

UNIBUS

r=-----,
I CACHE I

MEMORY I I 11K)

I I
I MEMORY I
I MANAGEMENT I

I I
I DATA PATH I

AND
CONTROL PATH I
~ ~OCESSOR _ J

I/O
DEVICES

Figure 9-5 Cache Addressing Scheme

Table 9-2 Hit or Miss Operations

Processor
Operation

Read (word, byte)
Hit
Miss

Write (word)
Hit
Miss

Write (byte)
Hit
Miss

NPR
Operations

What Happens In
Cache

No change
Allocated 1

Updated2

Allocated1

Updated2

No change

What Happens In
Cache

240

What Happens In
Main Memory

No change
No change

Written Into
Written Into

Written Into
Written Into

What Happen In
Main Memory

Processor
Operation

Read (word)

PDP-11160

What Happens In
Cache

Hit (not checked) No change
Miss (not checked) No change

Write (word or byte)
Hit Invalidated3

Miss No change

What Happens In
Main Memory

No change
No change

Written Into
Written Into

1 Allocated - The data and tag of the cache location are changed to corre­
spond to the main memory location.

2 Updated - The data in cache is changed to correspond to the data in main
memory.

3 Invalidated - Valid bit in the cache word is cleared to show that the data is
stale and does not correspond to the data in main memory.

NPR Memory References
Exterior UNIBUS memory references (NPRs) that alter memory (write
into memory) are monitored by ·the cache control logic. Physical ad­
dress bits 1-10 are used as an index to access the corresponding
index position in cache. If the tag bits of the physical address match
the address bits in the cache tag field, the index position is invalidated
by clearing the valid bit in the tag field to O. If the tag bits of the
physical address do not match the address bits in the cache tag field,
no change occurs (see Table 9-2) ..

The I/O monitoring is synchronized by the processor logic to maxim­
ize overlap of processor operations and to have a negligible effect on
I/O transfer rates.

Power Failure
When power is first applied, the valid bit is cleared in all cache index
values prior to any memory reference. First memory references are to
the main memory. If power is lost, cache data will become invalid, but
main memory, if non-volatile core, will have a correct copy of the data.
If the machine contains MOS memory, with battery backup, a power
fail will operate just as with core, provided the battery is functioning
properly. If the battery is depleted, defective, or no battery backup is
present, the machine will boot upon an automatic restart in panel lock
mode. Otherwise, restart will be according to console switch setting.

Registers
The registers described in this section provide information about pari-

241

PDP-11160

ty errors, memory status, and processor status. These hardware
registers have program addresses in the top 4K words of physical
address space (peripheral page).

Register
Memory System Error'
Control
Hit/Miss

Address
777744
777746
777752

Some bit positions of the registers are not used (not implemented with
hardware). These bits are always read as zeros by the program. The
memory system error register is assembled from data within various
error log registers and has certain restrictions. These registers are all
accessed by processor program execution or console actions.

15 14 8 7 6 5 4

I NOT USED I I NOT USED

CPU J I)J ABORT
HIGH BYTE PARITY ERROR
LO BYTE"'PARITY ERROR
TAG PARITY ERROR

Figure 9-6 Memory System Register 777744

Bit
15

Function

Name
CPU ABORT

0

Set if an error occurs that caused the processor to abort an operation.
The errors that cause this action are: UNIBUS memory parity error;
cache parity error if the cache parity error abort bit of the cache
control register is set; and user control store parity error.

Bit Name
14-8 Not Used

Bit
7
6
5

Function

Name
HI BYTE
LO BYTE
TAG PARITY

These bits are set for cache parity errors. The bits are set for parity
errors in the high byte of data, the low byte of data, or the tag field
(which includes the valid bit). if the cycle is aborted. If the cycle is not

242

PDP-11160

aborted (cache parity error, abort bit of cache control register is
cleared and backing store references occur), all the bits (7, 6, 5) are
set upon an error to aid compatibility with the PDP-11/70 system
software. Then if a cache parity error occurs, the disable traps bit of
the cache control register should be set to prevent the operating sys­
tem from looping in the parity handler.

B" Name
~O N~U~d

In the PDP-11/60, the memory system error register is assembled
from error log information and is subject to the restrictions on the
error log. The error log is stored, upo"n an error, in scratch-pad regis­
ters used for floating pOint constants. If error information is to be
obtained, floating point instructions cannot be executed between the
parity error trap (location 114) and register access. The contents of
this register are undefined if the last trap is not to location 114.

15 8 7 6 5 4 3 2 1

NOT USED INOT USED I
I 1~~11

CACHE PARITY ERROR ABORT t J) I WRITE WRONG PARITY
FORCE MISS 1
FORCE MISS 0
DISABLE TRAPS

Figure 9-7 Cache Control Register 777746

Bit
15-8

Bit
7

Function

Name
Not Used

Name
Cache Parity Error Abort

0

1

This bit is cleared on power-up. It is set only during maintenance
diagnostics and will cause an abort when a cache parity error occurs.

B" Name
6 . Write Wrong Parity

Function
This bit is cleared on power-up. It is used during maintenance diag­
nostics and, if set, will write wrong parity in the tag, high byte, and low
byte when cache is updated.

Bit
5-4

Name
Not Used

243

Bit
3-2

Function

PDP-11160

Name
Force Miss

Setting these bits forces misses on reads to the cache and on attempts
to invalidate the cache on NPR DATO references. Bit 3 forces misses
on words 512 to 1023. Bit 2 forces misses on words 0 to 511. Setting
both bits forces all cycles to main memory (degraded operation).

Bit Name
1 Not Used

Bit
o
Function

Name
Disable Traps

Set by the cache parity error handler when it is desired to disable traps
occurring as a result of non-fatal cache errors.

15 650

NOT USED I -----FLOW

Figure 9-8 Hit/Miss Register 777752

This register indicates whether the six most recent references by the
processor were hits or misses. A one (1) indicates a read hit; a zero (0)
indicates a read miss or a write. The lower numbered bits are for the
more recent cycles.

All the bits are read only. The bits are undetermined after a power up.
They are not affected by a console start clear.

PDp·11/60 MAIN MEMORY
The 11/60 is available with EGG MOS and parity core configurations.
The use of EGG MOS memory provides the following advantages:

• lower power consumption
• greater packaging density
• more reliable systems
• lower maintenance costs

Mos Memory with ECC
EGG (error correcting code) is a technique for checking the contents
of memory to detect errors a~d correct them before sending them to

244

PDP-11160

the processor. The process of checking is accomplished by combining
the bits in a number of unique combinations so that parity, or syn­
drome, bits are generated for each unique combination and stored
along with the data bits in the same word as the data. The memory
word length is extended to store these unique bits. When memory is
read, the data word is again checked, syndrome bits are regenerated
and compared with the syndrome bits stored with the word. If they
match, the word is sent on to the processor. If they do not match, an
error exists and the mismatch of the syndrome bits determines which
data bit is in error. The bit in error is then corrected and sent on to the
processor. The error correcting code which is employed in MaS
memory will detect and correct single bit errors in a word, as well as
detect multiple bit errors in a word. Where a multiple bit error is de­
tected, the processor is notified, as happens with a parity error.

ECC provides the maximum system benefits when used in a storage
system which fails in a random single bit mode rather than in blocks or
large segments. Single bit error (or failure) is the predominant failure
mode for MOS. ECC provides fault tolerance with the result that multi­
ple single bit failures can be present in a memory system without
measurable degradation in either performance or reliability.

PARITY
Parity is used extensively in the PDP-11/60 to insure the integrity of
data handling and to enhance the reliability of system operation.
• UNIBUS memory parity is isolated to 1K blocks. When a memory

parity error occurs on the UNIBUS, examination of the memory pari­
ty register (in memory) will localize the error to the nearest 1 K block.

• Cache parity has parity bits associated with the tag field (including
valid bit), high byte of the data word, and low byte of the data word.

• There is a parity bit for each 16-bit segment of the 4B-bit Writable
Control Store (WCS) word.

S'oftware routines are used to log the occurrence of parity errors, to
handle recovery from errors, and to provide information on system
reliability and performance. Diagnostic software uses parity to isolate
errors for rapid repair.

Error Response
The PDP-11 /60 has two basic responses to parity errors:
1. The operation is aborted, an error log is generated concerning

conditions at the point of error, and a macro trap is generated
immediately.

2. The operation continues, an error log cannot be generated, and a
macro trap occurs at the end of the instruction. The macro trap

245

PDP-1f/60

can be suppressed for cache errors if the disable traps bit of the
cache control register is set.

The first response (abort) is necessary for UNIBUS memory parity
errors, non-existent address, time-out, and writable control store pari­
ty errors. In these instances, there is no way to continue or to
reconstruct operation. For cache parity errors, the abort mode with its
error log can be used for diagnostic purposes. This mode is enabled
by setting the cache parity error abort bit of the Cache Control Regis­
ter. Multiple errors within MOS memory will result in memory cycle
abort with an immediate macro trap. The error correcting logic will
correct the error and will set the single error bit in the MOS memory
control and status registers. The register can be analyzed by system
software to note degradation of memory operation. Continued opera­
tion depends upon the ability to obtain correct information. For cache
parity errors r a reference to memory can provide this information. This
reference o~curs automatically if the cache parity error abort bit of the
cache control register is not set. Certain bits of the memory system
error register are set for compatibility with the PDP-11/70, and a
macro trap through location 114 (parity error trap) occurs at instruc­
tion end. For error correcting codes in MOS memory, single errors are
corrected in the memory to provide correct information.

The PDP-11 /60 has been designed to allow recovery from cache pari­
ty errors, and to allow operation in a degraded mode if a section of the
memory system is not operating properly. This type of operation is
possible under program control by using the built-in control registers.

If data found in a location in cache does not have correct parity, a
memory reference can automatically occur to allow program execu­
tion to proceed. If a number of locations in cache fail, it is possible to
turn off the cache using the force miss bits of the cache control regis­
ter. All of the read data is then brought from the memory. Operation of
programs will be slower, but the system will yield correct results. A
decision to force misses in cache at the system level should be consid­
ered irrevocable until the system is restarted or diagnostic corrections
have occurred. Restart requires an update of the full 1024-word cache
during the absence of I/O device intervention.

If the macro trap after an automatic memory reference takes too much
system time, it can be suppressed by the disable traps bit of the cache
control register. This disable is also used in the service routine for the
cache error to prevent endless traps.

If part of the main memory is not working, the memory management
unit can be used to map around the malfunctioning memory.
Indication of main memory failure comes from the UNIBUS memory

246

PDP-11160

parity error bit for single core memory failures and multiple MOS
memory errors.

For MOS memory, the error correcting logic will correct a single bit
error and will set the single error bit in the MOS memory control and
status register. No direct macro program indication of an error is
made. The control and status register of the MOS memory does con­
tain a single error bit that is set and remains set until cleared by
program action. This register also contains a disable correction code
bit to provide diagnostic determination of the exact error.

Cache Parity Error and Cache Control Register (CCR)
The system response to cache parity errors depends on the state of
the Cache Control Register bits CRR<07> (Cache Parity Error Abort)
and CCR<OO> (Disable Traps). ,

In most operations, CCR<07> and CCR<OO> are zero. On a cache
parity error, a trap will occur at the end of the current instruction. In
this mode, where a cache parity error occurs, an internal control bit is
set that will cause a trap through location 114, and a memory refer­
ence occurs to obtain correct data. Inrthe error handling routine, the
CPU abort bit (bit 15) in the memory system error register is exam­
ined. It will be zero, indicating that the instruction was not aborted. Bits
7, 6, and 5 (high byte, low byte and tag parity) will all be set for
compatibility with PDP-11170 software.

In certain situations (the parity handler routine, for example), it is
desirable, to disable traps because of cache parity errors. The disable
is done by making CCR<07> equal to zero and CCR<OO> equal to
one. In this mode, a cache parity error results in a memory reference
and no macro trap occurs.

If more detailed information about a cache parity error is required, as
in a diagnostic, the current instru'ction is aborted. This mode occurs
with CCR<07> set to one. When the error occurs, the memory refer­
ence cycle is aborted, an error log is constructed, and a macro trap
through location 114 occurs. The information in the error log includes
exact parity error location to the address and byte level. When the
memory system error register is examined, it will contain a value of
one, indicating that an instruction was aborted.

Table 9-3 summarizes cache parity operations.

247

Table 8-3 summarizes cache parity operations.

Table 9-3 . Actions Upon Cache Parity

Cache Control Memory System Error System Action

CCR<07> CCR<OO> MSE<1S> MSE<07,06,OS>

0 0 0 Ail Set Memory references, trap through '1l
t:J

I\) location 114 at instruction end. "'tJ
.$:0.

I co
tii

0 1 0 All Set Memory references, no trap to c

location 114.

1 0 1 Set per Error Abort current operation, construct
error log, trap through location 114.

1 1 1 Set per Error Abort current operation, construct
error log, trap through location 114.

PDP-11160

PDP-11/60 PROGRAMMERS' CONSOLE
The Programmers' Console, KY11-P, is designed for both computer
operation and maintenance. The console maintenance function sup­
plements other PDP-11/60 features such as a single clock, micro­
break, processor error log, error status registers, and device-specific
macrodiagnostics. Microdiagnostics are also available with the micro­
programming options.

The PDP-11/60 console allows direct control of the computer system.
It contains a power switch that is used as the master switch for the
system. The console is used for starting, stopping, resetting, and de­
bugging programs. Lights, switches, and a numeric display provide for
monitoring operfltion, system control, and maintenance. Debugging
and detailed tracing of operations can be accomplished by executing
single instructions. Contents of all memory locations and internal
registers can be examined and data entered manually from the con­
sole control switches and numeric keypad.

Power-up
Power is turned on by turning the rotary switch to POWER. What
occurs after power-up depends on the position of the
BOOT IRUNIHAL T slide switch prior to the power-up. The slide switch
allows three modes of power-up: BOOT, RUN, and HALT.

BOOT: Position allows the system to boot directly
from the bootstrap loader (M9301-YX). The
boot procedure is accomplished by select­
ing the device to be bootstrapped by the
microswitches, placing the slide switch in
BOOT position and turning the rotary switch
to POWER.

RUN:

HALT:

Position allows automatic restart on power­
fail recovery. Power-up is to location 24 for
automatic restart and occurs in all except
MOS memory systems where the battery is
depleted or absent; in that case, a boot oc­
curs.

Position allows the use of the console key­
pad after power-up.

NOTE
To initialize the computer, depress the HALT lSI key
while holding the START key down. You should have
the slide switch in the desired position, as it is exam­
ined during the initialization. This procedure can be
used to clear a hung bus without turning off power.

249

PDP-11160

Starting and Stopping
If you wish to start a program from a given address, turn the power on
after placing the slide switch in HALT position. The keypad is active
and the desired address can be loaded into the temporary switch
register (and also in the display) by pressing the numeric switches.
After checking the desired address as displayed, press the LADRS
key. Then press START, holding the CNTRL key down. This starts the
program. The CONSOLE light goes out and the RUN light comes on;
the system is now in run mode. The only keys which are active are the
numerics, DADRS, D/LSWR, and HALT lSI.

To terminate the execution of a program, depress the HALT lSI key.
This stops the program, the CONSOLE light comes on and the RUN
light goes out. The system is in console mode and all the keys in the
keypad are active. The display contains the PC. In this mode of
operation, a single instruction is executed each time the HALT lSI key
is depressed.

Console Indicators and Switches
The PDP-11 160 Programmers' Console provides the following facili­
ties:
• 6-digit octal display for address and data indication

• Processor state lights:
RUN
PROC (Processor)
USER
CONSOLE
BATT (Battery)

• BOOT IRUN/HAL T slide switch for power-up action
• 5-position rotary switch for selection of machine status

STDBY
POWER
LOCK (panel lock)
R1 (Remote 1)
R2 (Remote 2)

• Keypad switches (four rows of five switches each, noted below)
DADRS (Display address)
7 (Numeric)
EXAM (Examine)
DEP (Deposit)
HAL T lSI (Halt/Single Instruction)
(L)ADRS (Load Address)
4 (Numeric)
5 (Numeric)

250

6 (Numeric)
CONT (Continue)

PDP-11160

(D)SWR, (l)SWR (Display Switch Register, load Switch Register)
1 (Numeric)
2 (Numeric)
3 (Numeric)
BOOT (Bootstrap)
MAINT (Maintenance)
o (Numeric)
DIAG (Diagnostic)
CNTRl (Control)
START

NOTE
The CNTRl interlocks the action of other keys. The
functions labeled in blue on the control panel cause
irrevocable change in machine status and therefore
are interlocked with CNTRL. CNTRl must be de­
pressed when the other key is activated for action to
occur.

Console Internal Registers
The console has the following four internal registers (in the A and B
Scratch pads) for its exclusive use. Each is 16 bits wide and has the
functions noted below:

CNSL.CNTL, Console Control, is a 16-bit register containing various
control bits used in the console microcode. It also contains the upper
two bits of the temporary switch register, the console switch register,
and console address register.

CNSL.TMPSW, Console Temporary Switch Register, is 18 bits wide
and is made up of the CNSL.TMPSW register and two bits in the
control register. The temporary switch register is used as a buffer to
collect the numerics and is also used for display.

CNSL.ADRS, Console Address Register, is also 18 bits wide and is
composed of the CNSL.CNTl to allow 18-bit physical addresses.

CNSL.SW, Console Switch Register, is also 18 bits wide and is com­
posed of the CNSL.SW register and two bits in the CNSL.CNTl regis­
ter. This register has a UNIBUS address of 777570 and is a read-only
register. If a write is attempted at this address, the data will be written
in the console address register and then displayed on the console if
the DlOCK bit in the CNSL.CNTl is not set. This bit is cleared in
(D)ADRS and START functions and set in every other function.
(D)ADRS can be used to unlock the display and provide a positive
indication of movements by the program to 777570.

251

PDP-11160

Switches and Indicators
Octal Display
The octal display is a 6-digit, 7-segment display used to display ad­
dress or data information. The display allows 18 bits (octa"y coded) to
be displayed.

Processor State Lights
RUN - If illuminated, indicates that the processor is executing in­
structions. The light wi" not remain illuminated during an extended
WAIT instruction.

PROC - If illuminated, indicates that the processor is the master
device and has control of the UNIBUS.

USER - If illuminated, indicates that the processor is in user mode·
and certain restrictions on instruction operation and Processor Status
word (PS) loading exist.

CONSOLE - If illuminated, indicates that the processor is in console
mode and is under control of the console keypad switches (manual
operation).

BATT - Battery monitor indicator. This indicator will function only in
machines containing the battery backup options and has the following
four states:

OFF - Indicates either no battery present, or battery depletion, if
battery is present.

ON (Continuous) - Indicates that battery is present and is
charged.

Flashing (Slow) - Indicates battery is charging.

Flashing (Fast) - Indicates loss of power, and also that battery is
discharging while maintaining MOS memory contents.

BOOT/RUN/HALT Slide Switch
Power-up action is determined by this switch position, in conjuction
with PANEL LOCK status. If the rotary switch is in LOCK position
(deactivating a" keypad functions), inadvertent operation of the slide
switch has no effect. Upon power-up, the slide switch is treated as if it
were in the RUN position, regardless of its physical position. If the
battery is depleted for a MOS memory system, RUN is altered to a
BOOT action.

If the console is not in LOCK position, and a power fail occurs, three
choices of recovery (BOOT, RUN, and HALT) are available.

BOOT - Power-up to the M9301 bootstrap terminator.

RUN - Power-up to location 24, which contains the power-up vector.

252

PDP-11160

Note that this action occurs independent of battery status on aMOS
memory system.

HALT - Power-up to the console. The CONSOLE light is illuminated
and the console keypad switches are active.

Rotary Switch
STD BY - Removes DC power from processor and core memory
(MOS memory battery charger is still on).

POWER - Applies power to all units. All console controls are opera­
ble in console mode.

lOCK - Deactivates all keypad functions. With power switch in lOCK
position, the position of the BOOT fRUNfHAl T slide switch has no
effect when power-up occurs; power-up is to RUN, unless a battery
depletion causes BOOT upon a MOS memory system.

R1 - local control is deactivated to allow operation from a remote
console. The octal display on the console will be blanked.

R2 - Console action Is the same as R 1.

NOTE
The CNTRl (Control) key is used in conjunction with
some keys to prevent accidental operation of certain
functions. When these are used, the CNTRl key
must be depressed.

Those keys which are interlocked with the CNTRL
key are indicated with an asterisk.

Keypad Switches
The keypad contains twenty switches which are priority-encoded into
a unique 5-bit code. Simultaneous operation of the keys will allow the
operation of the switch with the higher priority. The switches are listed
in order of their priorities, with the highest priority described first.

0-7 NUMERICS - Activation of any of the numeric keys causes the
binary value of that key to be entered into the low-order three bits of
the temporary switch register. The previous contents are left-shifted
three bits. Each 3-bit binary value is displayed in octal representation
for each additional numeric depressed; the temporary switch register
(one of four internal registers) is left-shifted three bits; and the octal
display is left-shifted one digit. Consequently, a 6-digit octal number is
generated as octal digits are entered from the right and left-shifted.
Operation of the numerics occurs in both console mode and run
mode.

253

PDP-11160

HAL TIS 1 (Halt/Single Instruction) - Depressing this switch while the
processor is in run mode halts the processor between instructions,
after outstanding trap sequences, and before bus requests. The proc­
essor is now in console mod~ and the CONSOLE indicator is lighted.
The octal display indicates the program counter for both HALT and SI
functions. Depressing the HALT /SI switch now causes a single instruc­
tion to be executed.

To initialize the system without a program start, it is necessary to
depress the HALT /SI key while holding the START switch down.

NOTE
The PDP-11/60 differs from other PDP-11 proces­
sors regarding the single instruction step function.
An operator cannot simply load an address and im­
mediately start single-stepping. To start from an
arbitrary address, the PC must be loaded using the
maintenance key function; one can then single-step
by pressing the HALT /SI switch.

(D)SWR, *(L)SWR (Display Switch Register, load Switch Register)­
Displays the contents of the console address register in both console
and run modes. If this switch is depressed while the eNTRl switch is .
held, the contents of the temporary switch register are loaded into the
console switch register. The contents of the console switch register
are displayed. Operative in both console and run modes.

(D)ADRS - Displays the contents of the console address register and
clears the display lock bit, thus enabling the program movements to
777570. Operation occurs in both console and run modes.

Console Mode Functions
Console operations are word-ordered operations. If an odd bus ad­
dress (bit 00 enabled) is used, the odd address is stored in the console
address register (CAR). Examine or deposit operations in this address
will be treated as word operations (bit 00 ignored).

An EXAM or a DEP operation that references a non-existent address
causes the machine to display the console address with all the decimal
pOints lighted. Time-out trap sequences to non-existent addresses will
not be activated.

NOTE
The following switches are active only in console
mode.

(L)ADRS (load Address) - Depressing this switch transfers the con-

254

·PDP-11160

tents of the temporary switch register to the console address register
to be used in subsequent DEP or EXAM operations. The contents of
the console address register are displayed in the octal display and all
decimal pOints are lighted.

EXAM (Examine) - Depressing this key accesses the UNIBUS ad­
dress specified in the console address register and displays the con­
tents of that address in the octal display. Sequential examination in­
crements the address by 2 and displays the contents of the
incremented addresses. This incrementation process is stopped if any
key other than the numeric keys is depressed.

DEP (Deposit) - Depressing this switch deposits the contents of the
temporary switch register at the UNIBUS address specified by the
console address register. The console switch register is not changed.
To deposit data into sequential addresses, all that is necessary is to
press the DEP key. This automatically word-increments the console
address register and deposits the data into the incremented address.
This process is stopped if any key other than the numeric keys is
depressed.

*CONT (Continue) - Depressing this switch allows the processor to
leave console mode and·.continue operation at the present Program
Counter (PC) location without a BUS INIT. The display is unaltered.

*START - Depressing this switch begins machine operation at the
address (PC) specified by the console address register after a BUS
INIT signal. Operation occurs only in console mode and the CONSOLE
mode light is turned off. The display is unaltered.

*BOOT (Bootstrap) - Depressing this switch will cause a BUS INIT
and will start the boot program of the M9301 module. The display is
unaltered.

*DIAG (Diagnostic) - Depressing this switch transfers control to the
DCS (Diagnostic Control Store) module, if present. Otherwise, the
computer enters console mode. The display is unaltered.

MAINT (Maintenance) - This key is used to read and write the inter­
nal registers. The procedure for reading an internal register is:
1. Load the temporary switch register with the read code of the

register that you wish to read. The opcodes for the internal regis­
ters are listed in Table 9-4.

2. Depress the (L)SWA keypad switch while holding the eNTAL key­
pad switch depressed. This transfers the contents of the tempora­
ry switch register to the console switch register.

255

PDP-11160

3. Depress the MAINT keypad switch while holding the CNTRl
switch depressed. The console display will display the contents of
the register specified by the opcode in step 1.

The procedure for writing an internal register is:

1. load the temporary switch register with the write opcode of the
register that you wish to write. The internal register function codes
are listed in Table 9-4.

2. Depress the (l)SWR keypad switch while holding the CNTRl key­
pad switch depressed. This transfers the contents of the tempora­
ry switch register to the console switch register.

3. load the temporary switch register with the data to be written by
depressing the applicable numeric switches.

4. Depress the MAINT keypad switch while holding the CNTRl
switch depressed. The console display will display the data that
has been written into the specified register.

NOTE
In Table 9-4, a register can have several names, de­
pending upon its use at a given time. For example, in
the C Scratchpad, the r'egister with the readlwrite
code of 100/300 can be used as a floating point (FP)
register or as the log jam register.

Table 9-4 Internal Registers Read/Wrlte Function Codes

ASP lO: A SCRATCHPAD [0:15]

Register Read/Write Code

RO 000/200
R1 001/202
R2 002/202
R3 003/203
R4 004/204
R5 005/205
R6 006/206
R7 007/207
FAC3[O] 010/210
FAC3[1] 011/211
FAC3[2] 012/212

256

PDP-11160

Register Read/Write Code

FAC3[3] 013/213
FAC3[4] 014/214
FAC3[5] 015/215
USER R6 016/216
FDST3 917/217

ASP HI: A SCRATCHPAD [16:31]

Register

WCSA[O]
WCSA[1]
WCSADR
CNSL.CADR
R(SRC)

R(SRC X)
R(SRC I)
R(T1A)
R(VECT)

R(DST)
R(DST X)
R(T2A)
R(DST I)

CNSL.SW
CNSL.TMPSW
FAC1[0]
FAC1[1]
FAC1 [2]
FAC1[3]
FAC1[4]
FAC1[5]
GEN, WHAMI
FPSHI, FEC FDST 1

Read/Write Code

020/220
021/221
022/222
023/223
024/224
025/225

026/226

027/227
030/230
031/231
032/232
033/233
034/234
035/235
036/236
037/237

257

PDP-11160

BSP LO: B SCRATCHPAD [0:15]

Register Read/Write Code

RO 040/240
R1 041/242
R2 042/242
R3 043/243
R4 044/244
R5 045/245
R6 046/246
R7 047/247
FAC2[0] 050/250
FAC2[1] 051/251
FAC2[2] 052/252
FAC2[3] 053/253
FAC2[4] 054/254
FAC2[5] 055/255
USER R6 056/256
FDST2 057/257

BSP HI: B SCRATCHPAD [16:31]

Register Read/Wrlte Code

WCSB[O] 060/260
WCSB[1] 061/261
WCSB[2] 062/262
R(ZERO) 063/263
R(SRC) 064/264

R(SRC, X)
R(ES)
R(T1 B)

R(DST) 065/265
R(DST X)
R(T2B)
R(ES)

R(IR) 066/266
CNSL.CNTL 067/267

258

PDP-111BO

CSP: C SCRATCHPAD [0:15]

Register Read/Wrlte Code

FP, LOG JAM 100/300
FP, LOG SERVICE 101/301
FP, LOG PBA 102/302
FP, LOG CUA 103/303
FP, LOG FLAG/INTR 1041304
FP, LOG WHAM I 105/305
FP, LOG CACHE DATA 106/306
FP, LOG TAGE CPU 107/307
FP, CONSOLE 110/310
FP, CONSOLE 111/311
FP, CONSOLE 112/312
FP, CONSOLE 113/313
CONST2 114/314
MD 115/315
CONSTO 116/316
CONST 1 117/317

OTHER REGISTERS

Register Read/Write Code

JAM 1401 - Read-only
SERVICE 1411 - Read-only
PBA 1421 - Read-only
CUA 1431 - Read-only
FLAG 144/344
REV 146/-
DCSO 152/-
DCS1 153/-
DREG - 1345 Write-only
SREG -/346
COUNT 147/347
NUA -350
RES -351
INIT -352

259

PDP-11160

Register

PROGRAMMABLE STACK LIMIT

Read/Write Code

NO-OPS@
340-343
150-177
120-137
320-337
352-377

The stack limit allows program control of the lower limit for permissi­
ble stack addresses. This limit may be varied in increments of
(400)8 words, up to a maximum address of 177400, almost the top of a
32K word memory.

The normal boundary for stack addresses is 400. The stack limit op­
tion allows this lower limit to be raised, providing more address space
for interrupt vectors or other data that should not be destroyed by a
program.

There is a stack limit register, with the following format:

15 8 7 o
STACK LIMIT DATA NOT useD l

Figure 9-9 Stack Limit Register Format

The stack limit register can be addressed as a word at location
777774, or as a byte at location 777775. The register is accessible to
the processor and to the console; but not to any bus device.

Bits 15 through 8 contain the stack limit information. These bits are
cleared by system reset, console start, or the RESET instruction. The
lower 8 bits are not used. Bit 8 corresponds to a value of 4008 or 25610 ,

The contents of the stack limit register (SL) are compared to the stack
address to determine if a violation has occurred (although memory
references that do not alter memory are always allowed). The least
significant bit of the register (bit 8) has a value of 4008 . The determina­
tion of the violation zones is as follows:

• Yellow Zone = (SL) + (340 through 377)8 execute, then trap .
• Red Zone = (SL) + (337)8 abort, then trap to location 4.

260

PDP-11160

If the stack limit register contents were zero:
•

• Yellow Zone = 340 through 377
• Red Zone = 000 through ·337

INTEGRAL FLOATING POINT INSTRUCTIONS
The PDP-11/60 contains integral floating point hardware which can
execute the full complement of PDP-11 floating point instructions. The
instructions are noted in Chapter 10.

High-Speed Floating Point Processor Option
The FP11-E floating point proc~ssor is an optional, asynchronous,
parallel processor capable .of doing high-speed arithmetic calcula­
tions. The FP11-E is logically contained on four hex modules that fit
into the processor backplane.

The FP11-E provides 17 digits of decimal accuracy, does 32-bit single
precision or 64-bit double precision arithmetic, and contains six 64-bit
accumulators. Additional information about the FP11-E may be found
in Chapter 11.

EXTENDED INSTRUCTION SET
The Extended Instruction Set (EIS) allows hardware fixed-point arith­
metic and direct implementation of multiply, divide, and multiple shift­
ing. A double-precision 32-bit word can be handled. The Extended
Instruction Set executes compatibly with the EIS available on the PDP-
11/34A.

PRIORITY INTERRUPT
The PDP-11 160 interrupt system has four priority levels, each of which
can handle an almost unlimited number of devices. The priority of the
device is a function of the device's electrical location on the
UNIBUS-the closer to the processor, the higher its priority on that
level.

The priority system makes excellent use of the PDP-11's hardware
stacks. When the processor services an interrupt, it first saves impor­
tant program information on the stack. This information enables the
processor to return automatically to the same point in the program
and the same conditions, once the current interrupt has been ser­
viced.

The device causing the interrupt(s) provides a direct vector to its own
service routine-eliminating the slow and tedious operation of polling
all devices to see which one interrupted.

The system also allows interrupts to be enabled or disabled, through
software, during program operation. Such masking allows priorities to
change dynamically in response to system conditions.

261

PDP-11160

For example, a real-time program· can disable data entry terminals
whenever critical analog data is being collected. As soon as the scan is
complete, the terminals can automatically be enabled and ready to
input data.

RELIABILITY, ACCESSABILITY AND MAINTAINABILITY
The significant maintenance feature of the PDP-11 /60 is the availabil­
ity of a wide spectrum of reliabilty and maintenance aids. Th.e spec­
trum ranges from software (system, diagnostics, error logging,
microdiagnostics) to hardware (packaging, parity, error status regis­
ters, microbreak). These aids are coordinated via the Reliability, Ac­
cessability, and Maintenance Program (RAMP).

RAMP is a DIGITAL corporate program whose purpose is the develop­
ment of trade-off data for use by DIGITAL's engineering groups in
hardware design. Reliability means minimizing failures, and accessa­
bility and maintainability mean planning for ease of maintenance and
for minimum time spent isolating faults and making repairs.

The design and packaging of the PDP-11 /60 has placed great
emphasis on RAMP. This means reduced mean time between failures
(MTBF) and reduced mean time to repair (MTTR).

Computer System Specifications

Environment
Operating Temperature: 10° C to 40° C
Relative Humidity: 20% to 80%, non-condensing

Mechanical (double-width lowboy)
Height: 50.5 inches (128.3 cm)

Width: 46.5 inches (118.11 cm)

Depth:

Weight:

MICROPROGRAMMING

30 inches (76.20 cm)

379 Ibs. (172 Kg.) 11 X 60
with 64Kb MaS memory

4091bs. (186 Kg.) 11 Y 60
with 64Kb MaS memory

The user microprogramming capability of the PDP-11/60 offers you
an opportunity to custom tailor the processor's performance to meet
your particular needs precisely. This feature is best utilized by those
whose programming requirements include bit manipulation of data or
by those who wish to increase the speed of a specific type of data
handling, for example, certain scientific calculations. A scientist who is

262

PDP-11160

working with dynamic graphic display data may wish to increase the
speed and specificity of the calculation by utilizing one of the micro­
progamming options, either permanently or temporarily modifying,the
way the processor implements the software.

DIGITAL offers excellent tutorial user documentation to support the
Writable Control Store software option. The programmer who wishes
to use the microprogramming options on the PDP-11 /60 should have
extensive experience in assembly language programming and should
be familiar with the RSX-11 M operating system.

For the user who wishes to take advantage of the features of micropro­
gramming but who does not wish to do the actual programming,
DIGITAL offers the option of consultation with software speCialists who
are experienced in microprogram development. Specific micropro­
gramming application packaged systems are also available through
DIGITAL's network of OEMs and independent software suppliers.

Three microprogramming options are offered with the PDP-11/60.
They are:

• User Control Store - 1,024 48-bit words of random access memo­
ry, used for storing user microprograms and data. The UCS in­
cludes the Writable Control Store (WCS) hardware and the WCS
software tools: the MICRO-11/60 Assembler, the Microprogram
Loader, and the Microdebugging Tool.

• Extended Control Store - 1,536 48-bit words of read-only memory
for a microprogram. With ROM, there is no loss of microprogram
either through inadvertent program modification or through power
failure.

• Diagnostic Control Store - a hardware aid using microcode ana­
lysis of processor operations. It provides a read-only memory that
quickly allows isolation and analysis of many central processor
faults.

You may use only one microprogramming option at a time, but you
may find it useful to have all three options, using whichever is appro­
priate at any particular time.

The term Writable Control Store (WCS) is the industry-wide generic
term used to describe various options which enable the user to control
basic processor logic. These options vary widely in their capabilities.
Efforts to clarify the functions and capabilities of DIGITAL's control
store options have led to each option's being named individually, i.e.,
UCS, ECS, and DCS. In discussion of the PDP-11 /60 microprogram­
ming capabilities, the term WCS refers to the hardware board and to
the accompanying software tools, all of which are considered part of
the UCS option.

263

PDP-11160

Before explaining further the microprogramming options available
with the PDP-11/60, it is helpful to consider some of the basic con­
cepts of microprogramming and some of the variables which can in­
fluence your decision about whether or not to utilize microprogram­
ming capabilities.

Microprogramming is a method of controlling the functions of a com­
puter. The essential ideas of microprogramming were first outlined by
M.V. Wilkes in 1951 (Wilkes, M.V., "The Best Way to Design an
Automatic Calculating Machine," Manchester University Inaugural
Conference, 1951, pp16-21). Wilkes proposed a structured hardware
design technique to replace prevailing methods of logic design. He
observed that a machine-language instruction could be subdivided
into a sequence of elementary operations which he called micro-oper­
ations, and he compared the execution of the individual steps to the
execution of the individual instructions in a program. This concept is
the basis of all microprogramming.

For many years, microprogramming remained the province of the
hardware designer. As new machines were designed that incorporat­
ed advances in theory and technology, the software for the older,
slower machines became obsolete. Microprogramming proved to be
an attractive solution to this problem of incompatibility. New machines
could be provided with additional read-only memory, or control store,
which allowed them to emulate earlier computers. The use of emula­
tion, or the interpretive execution of a foreign instruction set, was later
extended to provide upward and downward compatibility among a
number of computers in a family.

Microprogramming as a tool of the user has evolved slowly. Three
things had to happen before its use became feasible. First, technologi­
cal advances in the field of fast random-access memories were re­
quired. The use of read-only memories in a user environment was
troublesome and expensive, because correction of programming
errors, or bugs, required new memories. Second, user microprogram­
ming required the spread of previously specialized knowledge. When
only those engineers actually involved in the design of micropro­
grammed computers knew what microprogramming involved, users
and educators were at a severe disadvantage. In recent years, micro­
programming has found a place in computer science curricula, and
has been widely used throughout the electronics and scientific indus­
try. The third, and most important, prerequisite for user
microprogramming is the inclusion of generality and extendability in
the design of a computer. A machine designed solely to implement a
given instruction set, with no address space for user co_ntrol programs,

264

PDP-11160

makes alteration an onerous task. A corollary to this point is that
software tools had to be developed, so that the user would not have to
work solely with binary patterns.

The USC options and the software microprogramming tools devel­
oped for the PDP-11 /60 now make user microprogramming a reality.

MICROINSTRUCTIONS
The heart of the 11/60 is a 3-board microprocessor, whose operation­
al unit is the data path. A data path is composed of three types of
components:
1. combinational units, such as adders, decoders, or other logical

circuits
2. sequential units, such as registers and counters
3. connections, such as wires

The execution of a PDP-11 instruction involves a sequence of trans­
fers from one register in the data path to another; some of these
transfers take place directly, others involve an adder or other logical
circuit. Each step in this sequence is controlled by a microinstruction;
a set of such microinstructions is known as a microprogram.

Microprograms are held in a control store, a block of high-speed
memory that can be accessed once per machine cycle. A machine
cycle is the basic unit of time within a processor.

PROCESSOR STATE
The processor state of a computer is the set of registers and flags that
hold the information left upon the completion of one instruction avail­
able for use during the execution of the next instruction.

Programmers working at different levels of a machine see different
machine states; an applications programmer may never be concerned
with machine state at all. A machine-language or macro-level
programmer knows the PDP-11 processor state to be defined by the
contents of RO through R7 and the processor status word. Nearly 100
registers are included in the machine state known to 11/60 micropro­
grammers. At the nano- or hardware level, even more machine state is
seen.

This concept of machine, or processor, state is fundamental to an
understanding of microprogrammable processors like the 11/60.
State changes at the microprogramming level can affect the macro­
level processor state.

A computer is unique, or defined, by the functions it performs and the
machine states it enters while performing those functions. Because of
this, two machines can be built differently and yet perform identically.

265

PDP-11160

A microprogrammed machine changes state as it reads successive
locations in the control store, emulating the state changes that would
take place in a completely hard-wired machine. Additionally, the
macro-level state, which is a subset of the micro-level machine state,
changes as if there were no machine but the macro-level machine.

ARCHITECTURE AND ORGANIZATION
To distinguish the micro-level machine from the macro-level machine,
it is useful to differentiate between the terms architecture and or­
ganization.

Architecture refers to that set of a computer's features that are visible
to the programmer. To a PDP-11 machine-language programmer, this
includes the general registers, the instruction set, and the processor
status word.

Organization describes a level below architecture, and is concerned
with many items that are invisible to the programmer. The term archi­
tecture describes what facilities are provided, while organization is
concerned with how those facilities are provided. Occasionally, anoth­
er term is included in this hierarchy: realization. This term is used to
characterize the components used in a particular machine implemen­
tation, such as the type of logic and chips used.

The macro-level organization, transparent to the macro-level
programmer, defines the micro-level architecture of the machine. The
concept is illustrated graphically in Figure 9-10.

266

PDP-11160

MACRO- LEVEL ARCHITECTURE

PDP-ll INSTRUCTION SET. GENERAL REGISTERS. etc.
PROGRAM RESIDES IN MAIN MEMORY.

MACRO-LEVEL ORGANIZATlON= MICRO-LEVEL ARCHITECTURE
PDP-11/60 REGISTERS! 100) AND OPERATIONAL CAPABILITIES.
PROGRAMS RESIDE IN CONTROL STORE.

MICRO-LEVEL ORGANIZATION

HARD-WIRED LOGIC

Figure 9-10 Hierarchical Structure of Memories, Architecture, and
Organization

The micro-level architecture of the 11/60 is radically different from the
standard PDP-11 structure visible to the macro-level programmer. To
microprogram the 11/60 successfully, you must familiarize yourself
with the details of its micro-level architecture.

The 11/60 can be divided into five logical sections. The micropro­
grammer's task is to control the flow of data within each of these five
basic sections, and sometimes between them.

• the data-path section, where most data handling functions are per­
formed

• the bus control section, which contains the UNIBUS control logic,
the timing generator, and the console interface

• the KT/cache section, which contains the memory management log­
ic (KT), the stack limit register (KJ), and 1024 words of high-speed
cache memory

• the processor control section, which contains the control store for
the base machine in the form of a read-only memory, ROM; other
control logic, the processor status word (PS) and the floating point
status register (FPS)

267

PDP-11160.

MICRODEBUG31NG TOOL
The MicroDebugging Tool (MDT) is a stand-alone program that pro­
vides an efficient tool for debugging 11/60 microprograms. Using
MDT you can monitor the execution ",f your microprogram. You can
set breakpoints, examine and change data or Instructions in main or
micro memory, and alter the control of the program.

MDT is intended for debugging microprograms. Usually, the program
to be debugged consists' of a small maill memory program and a
microprogram. The main memory program's purpose is to call the
microprogram and, In some cases, provide data for the microprogram
to manipulate. MDT takes over the machine and controls all I/O vec­
tors and, consequently, all the interrupts. Therefore, the processing

I .

that can be done by the main memQry program is limited. It cannot, for
example, perform any input or output unless you make special provi­
sions for handling I/O.

Because MDT is' used to debug microprograms, it saves the state of
the machine.

WCS
WCS enables you to tailor, or bias, the PDP-11 to your particular
special purpose needs. Such tailoring can be classified hierarchically
as follows:

Class 0

Class 1

Instruction Set Extensions
Some functions were considered to be too
special-purpose In nature to be included In
the original PDP-11 design. These func­
tions, such as block move and decimal
arithmetic, can become new PDP-11 in­
structions. Their definition should conform
to 11-lnstructlon format and style.

Application Kernels
Most applications and systems programs
have sections which are executed much
more frequently than others. A useful rule of
thumb is that 10% of the code Is executed
90% of the time. Kernels within these critical
sections can be microprogrammed for bet­
ter throughput. Examples include the Fast
Fourier Transform, the operating system's
memory allocation routine, and Cyclic Re­
dundancy Check calculations.

269

Class 2

PDP-11160

Emulation
The interpretive execution of an instruction
set by software is generally called simula­
tion. When this interpretation is done by
hardware it is called emulation. Micropro­
gramming provides a means for inexpen­
sively emulating several different instruc­
tion sets on one piece of hardware. The
tasks involved in emulation include instruc­
tion decode, address calculation, operand
fetch, and I/O operation, as well as instruc­
tion execution.

Class 0 applications are relatively simple and straightforward uses of
microprogramming. Class 1 applications require more intensive study
and possibly statistical analysis if they are to improve performance
significantly.

The final class of applications, emulation, is best served by a machine
specifically designed as a general purpose emulator. The 11/60 was
designed to emulate a PDP-11; hence, the organization of its data path
is keyed to the 16-bit PDP-11 word and to the other characteristics of a
PDP-11 computer system. These factors in large part determine what
other computers can be emulated by the 11/60.

WCS MICROPROGRAMMING
To gain real benefit from use of the UCS option, you should invest time
and resources in two areas of study before attempting any WCS mi­
croprogramming. These two areas are: 1) understanding the 11/60,
and 2) analyzing your proposed application.

To microprogram the 11/60 effectively, you must study the internal
details of the microprocessor-particularly the data path. Although
this is not a difficult task per se, the largely unprotected nature of the
microprogramming environment may seem overly complex and un­
predictable.

Use of microprogramming will not always result in significant
performance gains. Applications well suited to microprogramming
may improve performance by a factor of 5 to 10; poorly suited ones,
not at all. You must understand your application and analyze the exe­
cution of its individual instructions. This section is aimed at helping
such analYSiS, but it is in no way a complete treatment of performance
analysis.

A machine-language instruction goes through the following process­
ing phases:

270

I-phase

O-phase

E-phase

PDP-11160

Instruction fetched from memory and de­
coded.

Operand addresses calculated; operands
fetched from memory.

Operation executed upon operands.

Each of these phases takes one or more micro-cycles. The total exe­
cution time, assuming no overlap of the phase, is the sum of these
microcycles. Each phase can be seen as a candidate for elimination or
for cycle reduction through microprogramming, with resulting gains in
performance.

The following generalizations can be made.

Composite operations save I-cycles.

A block move on the PDP-11 can be programmed as:
MOV COUNT,RO ;INSTRUCTION 1
MOV #A,R1 ;2:FIRST SOURCE ADDRS TO R1
MOV #B,R2 ;3:FIRST DESTINATION ADDRS

;TOR2
LOOP: MOV (R1)+,(R2)+ ;4:MOVEAND INCREMENT

;BOTHADDRS
SOB RO, LOOP ;5:DECREMENT AND TEST

;COUNTER

Combining these operations into one instruction,

BLOCKMOV #A, #B, COUNT

elimates I-cycles, with the predominant savings coming from instruc­
tions four and five.

Using processor storage saves O-cycles.

The microprogram mer can use internal CPU storage (the hardware
registers) for intermediate results. There are a number of hardware
registers, in addition to the general registers RO-PC, which can be
used by the microprogram mer to avoid memory cycles.

Because there is more parallelism at the micro-level, the inner ma­
chine (the microprocessor) is potentially more efficient than the outer
machine (the PDP-11). Moverover, the microbranching logic structure
of the microprocessor provides a broader decision logic capability
which can be exploited, for example, in table search and string-edit
operations.

In general, most cycle reductions which result from microprogram­
ming come for the 1- and O-phases of instructions.

271

PDP-11160 .
When analyzing instructions, you must also consider the ratio of the
time used by the 1- and a-phases to that of the E-phase:

1+0

E

In vector scalar multiplication, for example, the cycles saved by a
composite instruction are a small fraction of the overall execution
time.

In summary, you should analyze your application to develop candidate
sections for microprogramming, then apply detailed analysis to the
instruction execution sequence before coding a microprogram.

INSTRUCTION FORMATS '
An instruction, whether at the macro-level or the micrO-level, is the
basic mechanism that allows a procedure to be invoked. Instructions
usually take two source operands and produce a single result. This
kind of instruction has five logical functions:
1) and 2 specify the address (locatIOn in storage) of the two source

operands.

2) Specify the address (location in storage) of the two source
operands.

3) Specify the address at which the result of the operation is to be
stored.

4) Specify the operation to be performed on the two source oper-
ands.

5) Specify the address of the next instruction in the sequence.

These specifications may be explicit or implicit. Implicit specification
saves space in the instruction at the expense of additional instructions
in the sequence.

There are four common formats for. instructions: 3-address, 2-ad­
dress, single-address, and zero-address (stack-type). These catego­
ries indicate how many of the address specifications are explicit in the
instruction.

A normal PDP-11 instruction of the form aPR SRC DST uses a 2-
address instruction format. The addresses of both the source oper­
ands are explicitly specified. The result address is implicitly specified
by the address of the destination operand. The next instruction to be
executed is implicitly identified by the contents of the program
counter.

The 11/60 microword, on the other hand, uses a 4-address instruction
format: two source operand addresses, result address, and next in-

272

PDP-11160

struction address are all explicitly identified in each instruction. There
is no microprogram counter analogous to the PDP-11 PC.

Sequencing and Branching
Because there is no incremental program counter at the micropro­
gramming I~vel fn the 11/60, each microinstruction specifies the ad­
dress of Hs successor. Therefore, there is no requirement that mi­
croinstructions execute sequentially according to their storage
address.

Moreover, each microinstruction can also specify a branch condition
to be tested before the next microinstruction is fetched. The result of
the test can cause a different microinstruction to be fetched.

MICROPROGRAM FLOW
The basic interpretive loop of instruction execution in 11/60 micro­
code is as follows:

FETCH MEMORY WORD AOORESSED BY PC

j
INCREMENT PC

j
DECODE

j
EXECUTE

Every microprogram invoked by a PDP-11 opcode follows this pattern.
The instruction currently pOinted to by the conte(lts of the PC is
brought into the processor from main memory and stored in the in­
struction register, or IR. The PC is incremented by two so that it pOints
at the next location to be accessed. The decode step identifies what
instruction is to be executed, and dispatches control to the proper
section of microcode. After the operaton is performed, another in­
struction is fetched.

A slightly more detailed flow structure is shown in Figure 9-11. Note
that at the completion of the instruction execution, a test is made for
service conditions. If no service condition, such as an interrupt, exists,
the next instruction is fetched. If a service condition does exist, control
passes to another microprogram which handles the interrupt or other
condition. The 1-, 0-, and E-phases are noted at the left side of the
diagram.

273

wcs

I-PHASE

O-PHASE

E -PHASE

PDP-11160.

NO
COMPUTE
OPERAND
ADDRESSES

FETCH
OPERANDS
INCREMENT
PC

Figure 9-11 Program Flow in the PDP-11 /60

WCS enables you to tailor, or bias, the PDP-11 to your particular
special purpose needs. Such tailoring can be classified hierarchically
as follows:

274

Class 0

Class 1

Class 2

PDP-11160

Instruction Set Extensions
Some functions were considered to be too
special-purpose in nature to be included in
the original PDP-11 design. These func­
tions, such as block move and decimal
arithmetic, can become new PDP-11 in­
structions. Their definition should conform
to 11-instruction format and style.

. Application Kernels
Most applications and systems programs
have sections which are executed much
more frequently than others. A useful rule of
thumb is that 10% of the code is executed
90% of the time. Kernels within these critical
sections can be microprogrammed for bet­
ter throughput. Examples include the Fast
Fourier Transform, and operation system's
memory allocation routine, and Cyclic Re­
dundancy Check calculations.

Emulation
The interpretive execution of an instruction
set by software is generally called simula­
tion. When this interpretation is done by
hardware it is called emulation. Micropro­
gramming provides a means for inexpen­
sively emulating several different instruc­
tion sets on one piece of hardware. The
tasks involved in emulation include instruc­
tion decode, address calculation, operand
fetch, and I/O operation, as well as instruc­
tion execution.

Class 0 applications are relatively simple and straightforward uses of
microprogramming. Class 1 applications require more intensive study
and possibly statistical analysis if they are to improve performance
significantly.

The final class of applications, emulation, is best served by a machine
specifically designed as a general purpose emulator. The 11/60 was
designed to emulate a PDP-11; hence, the organization of its data path
is keyed to the 16-bit PDP-11 word and to the other characteristics of a
PDP-11 computer system. These factors in large part determine what
other computers can be emulated by the 11/60.

275

276

CHAPTER 10

PDP-11170

The PDP-11/70 is the most powerful computer in the PDP-11 family. It
is designed to operate in large, sophisticated, high-performance sys­
tems. It can be used as a pOWerful computational tool for high-speed,
real-time applications and for large multi-user, multi-tasking, time­
shared applications requiring large amounts of addressable memory
space. It is the systems-level PDP-11 that applies the power of 32-bit
hardware architecture to demanding, multifunction computing re­
quirements.

FEATURES
The PDP-11/70 contains, as an integral part of the central processor
unit, the following hardware features and expansion capabilities:

• Cache memory organization to provide very fast program execution
speed and high system throughput.

• Memory management for relocation and protection in multi-user,
multi-task environments.

• Ability to access up to 4 million bytes of main memory (1 byte = 8
bits).

• Optional high-speed, mass storage controllers as an integral part of
the CPU, to provIde dedicated paths to high performance storage
devices.

• Optional Floating Point processor with advanced features, operating
with 32-bit and 64-bit numbers.

SYSTEM ARCHITECTURE
The PDP-11/70 is a medium scale general purpose computer using an
enhanced, upwardly-compatible version of the basic PDP-11 architec­
ture. A block diagram of the computer is shown in Figure 10-1.

The central processor performs all arithmetic and logical operations
required in the system. Memory Management is standard with the
basic computer, allowing expanded memory addressing, relocation,
and protection. Also standard is a UNIBUS Map which translates UNI­
BUS addresses to physical memory address. The cache contains
2,048 bytes of fast, bipolar memory that buffers the data from main
(core or MOS) memory.

Also within the CPU assembly are pre-wired areas for a floating pOint
processor, and up to four high-speed 1/0 controllers.

277

PDP-11170

L_~ __ ~~_ -"i)! 11/70 CPU ______ _

MEMORY
BUS

-' INDICATES 32-BIT DATA BUS

" OPTIONAL

110
BUS

110
BUS

Figure 10-1 PDP-11170 Block Diagram

110
BUS MASS J . STORAGE

PERIPHERAL

The PDP-11/70 system has an expanded internal implementation of
the PDP-11 architecture for greatly improved system throughput. All
the memory is on its own high data rate bus. The internal high-speed
I/O controllers for mass storage devices have direct connections
through the cache to memory for transferring data (using the cache
only for timing purposes). The processor has a direct connection to
the cache memory system for very high-speed memory access.

The UNIBUS remains the primary control path in the 11170 system. It
is conceptually identical with previous PDP-11 systems; the memory in
the system still appears to be on the UNIBUS to all UNIBUS devices.
Control and status information to and from the high speed I/O con­
trollers is transferred over the UNIBUS. This expanded internal im­
plementation of the PDP-11 architecture has no effect on PDP-11170
programming.

CENTRAL PROCESSOR
The PDP-11/70 CPU performs all arithmetic and logical operations
required in the system. It also acts as the arbitration unit for UNIBUS
control by regulating bus requests and transferring control of the bus
to the requesting device with the highest priority.

The central processor contains arithmetic and control logic for a wide
range of operations. These include high-speed fixed point arithmetic
with hardware multiply and divide, extensive test and branch opera­
tions, and other control operations. It also provides room for the addi-

278

PDP-11170

tion of the high-speed Floating Point Processor, and high-speed
controllers.

The machine operates in three modes: Kernel, Supervisor, and User.
When the machine is in Kernel mode, a program has complete control
of the machine. When the machine is in any other mode, the processor
is inhibited from executing certain instructions and can be denied
direct access to the peripherals on the system. This hardware feature
can be used to provide complete executive protection in a multi-pro­
gramming environment.

The central processor contains 16 general registers which can be
used as accumulators, index registers, or as stack pointers. Stacks
are extremely useful for nesting programs, creating re-entrant coding,
and as temporary storage where a Last-ln/First-Out structure is desir­
able. One of the general registers is used as the PDP-11 170's program
counter. Three others are used as Processor Stack Pointers, one for
each operational mode.

The CPU performs all computation and logic operations in a parallel
binary mode through step by step execution of individual instructions.

General Registers
The general registers can be used for many purposes: the uses vary
with requirements. The general registers can be used as accumula­
tors, index registers, autoincrement registers, autodecrement regis­
ters, or as stack pOinters for temporary storage of data. Chapter 3 on
Addressing describes these uses of the general registers in more
detail. Arithmetic operations can be from one general register to
another, from one memory or device register to another, or between a
memory or a device register and a general register.

GENERAL
REGISTER
SET 1

KERNEL
STACK POINTER

R6

R0

R1

R2

R3

R4

R5

SUPERVISOR
STACK POINTER

R6

PROGRAM r R7
COUNTER •

R0

Rl

R2

R3

R4

R5

Figure 10-2 The General Registers

279

GENERAL
REGISTER
SET 0

USER
STACK POINTER

R6

PDP-11170

R7 is used as the machine's program counter (PC) and contains the
address of.the next instruction to be executed. It is a general register
normally used only for addressing purposes and not as an accumula­
tor for arithmetic operations.

The R6 register is normally used as the Processor Stack Pointer (SP)
indicating the last entry in the appropriate stayk, a common temporary
storage area with Last-In/First-Out characteristics. (For information on
the programming use of stacks, please refer to Chapter S.) The three
stacks are called the Kernel Stack, the Supervisor Stack and the User
Stack. When the central processor is operating in Kernel mode, it uses
the Kernel Stack; in Supervisor mode, the Supervisor Stack; and in
User mode, the User Stack. When an interrupt or trap occurs, the
PDP-11/70 automatically saves its current status on the Processor
Stack selected by the service routine. This stack-based architecture
facilitates re-entrant programming.

The remaining 12 registers are divided into two sets of unrestricted
registers, RO-RS. The current register set 'in operatiO'n is determined
by the Processor Status Word.

The two sets of registers can be used to increase the speed of real­
time data handling or facilitate multi-programming. The six registers in
General Register Set 0 could each be used as an accumulator and/or
index register for a real-time task or device, or as general registers for
a Kernel or Supervisor mode program. General Register Set 1 could
be used by the remaining programs or User mode programs. The
Supervisor can therefore protect its general registers and stacks from
User programs, or other parts of the Supervisor.

Processor Status Word

I NOT USED

~1110 8

CURRENT MODE~ i J
PREVIOUS MODE*
GENERAL REGISTER
SET (0. 1) --'---"'----

*MODE: 00 = KERNEL
01 =SUPERVISOR

11 =USER

PRIORITY I T I NI z I v I c I
7 5 4 3 2 0

Figure 10-3 Processor Status Word

The Processor Status Word, located at location 17 777 776, contains
information on the current status of the PDP-11/70. This information

280

PDP-11170

includes the register set currently in use; current processor priority;
current and previous operational modes; the condition codes describ­
ing the results of the last instruction; and an indicator for detecting the
execution of an instruction to be trapped during program debugging.

Modes - Mode information includes the present mode, either User,
Supervisor or Kernel (bits 15, 14); the mode the machine was irT prior
to the last interrupt or trap (bits 13, 12); and which register set (Gener­
al Register Set 0 or 1) is currently being used (bit 11).

The three modes permit a fully protected environment for a multi­
programming system by providing the user with three distinct sets of
Processor Stacks and Memory Management Registers for memory
mapping. In all modes except Kernel, a program is inhibited from
executing a "HALT" instruction arid the processor will trap through
location 4 if an attempt is made to execute this instruction. Further­
more, in other than Kernel mode, the processor will ignore the
"RESET" and "SPL" (Set Priority Level) instructions. In Kernel mode,
the processor will execute all instructions.

A program operating in Kernel mode can map users' programs any­
where in main memory and thus explicitly protect key areas (including
the device registers and the Processor Status Word) from the User
operating environment.

Processor Priority - The central processor operates at any of eight
levels of priority, 0-7. When the CPU is operating at level 7, an external
device cannot interrupt it with a request for service. The central proc­
essor must be operating at a lower priority than the priority of the
external device's request for the interruption to take place. The current
priority is maintained in the Processor Status Word (bits 5-7). The
eight processor levels provide an effective interrupt mask, which can
be dynamically altered through use of the Set Priority Level (SPL)
instruction (described in Chapter 4). The SPL instruction can only be
used in Kernel mode. This instruction allows a Kernel mode program
to alter the central processor's priority without affecting the rest of the
Processor Status Word.

Condition Codes - The condition codes contain information on the
result of the last CPU operation. They include: a carry bit (C), set by the
previous operation if the operation caused a carry out of its most
significant bit; a negative bit (N), set if the result of the previous opera­
tion was negative; a zero bit (Z), set if the result of the previous opera­
tion was zero; and an overflow bit (V), set if the result of the previous
operation resulted in arithmetic overflow.

Trap - The trap bit (T) can be set or cleared under program control.
When set, the processor trap will occur through location 14 on

281

PDP-11170

completion of instruction execution and a new Processor Status Word
will be loaded. This bit is especially useful for debugging programs, as
it provides an efficient method of installing breakpoints.

Interrupts and trap instructions both automatically cause the previous
Processor Status Word and Program Counter to be saved and re­
placed by new values corresponding to those required by the routine
servicing the interrupt or trap. The user can thus cause the central
processor to automatically switch modes (context switching), switch
registers sets, alter the CPU's priority, or disable the Trap Bit when­
ever a trap or interrupt occurs.'

Stack Limit Register
All PDP-11 s have a Stack Overflow Boundary at location 4008 • The
Kernel Stack Boundary, in the PDP-11/70, is a variable boundary set
through the Stack Limit Register found in location 17777774.

Once the Kernel stack exceeds its boundary, the processor will com­
plete the current instruction and then trap to location 4 (Yellow, or
Warning Stack Violation). If, for some reason, the program persists
beyond the 1S-word limit, the processor will abort the offending in­
struction, set the stack pOinter (RS) to 4 and trap to location 4 (Red, or
Fatal Stack Violation). A description of these traps is contained in
AppendixA.

MEMORY

Memory Organization
A memory can be viewed as a'series of locations, with a number
(address) assigned to each location. Thus a 1S,384-byte PDP-11
memory could be shown as in Figure 10-4.

282

PDP-11170

LOCATIONS

r 000000

000001

000002

000003

000004

• •
OCTAL • '-l../

ADDRESSES .' • --------
•
•

037774

037775

037776

037777

Figure 10-4 Memory Address

Because PDP-11 memories are designed to accommodate both 16-bit
words and 8-bit bytes, the total number of addresses does not corre­
spond to the number of words. An 8K-word memory can contain 16K
bytes and consist of 037777 octal locations. Words always start at
even-numbered locations.

A PDP-11 word is divided into a high byte and low byte as shown in
Figure 10-5.

15 8 7 o
HIGH BYTE LOW BYTE

Figure 10-5 High and Low Byte

Low bytes are stored at even-numbered memory 10cC!tions and high
bytes at odd-numbered memory locations. Thus it is convenient to
view the PDP-11 memory as shown in Figure 10-5.

Certain memory locations have been reserved by the system for inter­
rupt and trap handling, processor stacks, general registers, and peri­
pheral device registers. Addresses from 0 to 3708 are always reserved,
and those to 7778 are reserved on large system configurations for
traps and interrupt handling.

283

000001

000003

000005

037773

037775

037777

POP-11170

16-BIT WORD 8-81T BYTE
r--=BY=TE---" BYTE "'-'-,-. -~

~ __ HIG_H_~~ __ LO_W_~ O~

1--__ HI_GH_~i--------LO.-W-__1 000002

..--

HIGH LOW 000004

____ r--..

HIGH LOW

HIGH LOW

HIGH LOW

WORD ORGANIZATION

/

037772

037774

037776

OR

{
{

LOW

HIGH

LOW

HIGH

LOW

-'--"

HIGH

LOW

HIGH

BYTE ORGANIZATION

Figure 10-6 Word and Byte Addresses

MOS Memory with ECC

000000

000001

000002

000003

000004

037775

037776

037777

EGG (error correcting code) is a technique for checking the contents
of memory to detect errors and correct them before sending them to
the processor. The process of checking is accomplished by combining
the bits in a number of unique ways, so that parity, or syndrome, bits
are generated for each unique combination and stored along with the
data bits in the same word as the data. The memory word length is
extended to store these unique bits. When memory is read, the data
word is again checked, syndrome bits are regenerated and compared
with the syndrome bits stored with the word. If they match, the word is
sent on to the processor. If they do not match, an error exists and the
mismatch of the syndrome bits determines which data bit Is In error.
The bit in error is then corrected and sent on to tlie processor. The
error correcting code which is employed in MOS memory will detect
and correct single bit errors in a word, as well as detect double bit
errors in a word. Where a double bit error Is detected, the processor is
notified, as happens with a parity error.

EGG provides the maximum system benefits when used in a storage
system which fails in a random single bit mode rather than In blocks or
large segments. Single bit error (or failure) Is the predominant failure
mode for MOS memory.

EGG memory provides fault tolerance with the result that multiple
single-bit failures can be present In a memory system without measur­
able degradation in either performance or reliablflty.

284

PDP-11170

MaS memory by its nature Is volatile. It cannot retain data without
proper DC voltages being applied. DIGITAL MaS memories,
therefore, have battery backup (BBU) power provisions, standard on
the PDP-11 170, so that data may be retained during short-term loss of
AC line power.

Generally, the Incidence of AC line power loss varies inversely with the
severity of loss. That is, there are an extremely small number of com­
plete failures of AC power, and In relatively larger number of short­
term failures or drops in voltage. No economically feasible battery
backup unit can store sufficient energy to accomodate a complete AC
power failure for more than several minutes.

Battery backup units are not Intended to preserve data overnight or
over weekends, but rather to overcome Infrequent, very short-term
failures of AC power.

Parity
Parity is used extensively in the PDP-11/70 to ensure the integrity of
information. All memory has byte parity. Parity for botl:l data and ad­
dresses is generated on transfers to memory and is checked on all
transfers from memory. Registers are provided within the CPU to pro­
vide information on the location of parity errors, types of errors, and
other relevant information so that software can respond to the situa­
tion, take corrective action, and log the occurrence of errors.

MEMORY SYSTEM

Address Space
The PDP-11/70 uses 22 bits for addressing physical memory. This
represents a total of 222 (over 4 million) byte locations.

Of the over 4 million byte locations possible with the 22-bit address,
the top 256K are used to reference the UNIBUS rather than physical
memory. Maximum main memory Is therefore 222 - 218, or a total of
3,932,160 bytes.

Three separate address spaces are used with the PDP-11/70. Main
memory uses 22-blt addresses, the UNIBUS uses an 18-bit address,
and the computer program uses a 16-bit virtual address. The
information Is summarized below:

16 bits
18 bits
22 bits

program virtual space
UNIBUS space
physical memory space

285

Bytes
218 = 64K
218 = 256K
4 million

PDP-11170

Memory Management
The Memory Management hardware is standard with the PDP-11 /70
computer. It is a hardware relocation and protection facility that can
convert the 16-bit program virtual addresses to 22-bitaddresses. The
unit may be enabled and disabled under program control. There is no
increase in access time when the Memory Management unit is en­
abled.

UNIBUS Map
The UNIBUS Map responds as memory on the UNIBUS. It is the har­
ware relocation facility for converting the 18-bit UNIBUS addresses to
22-bit addresses. The relocation mapping may be enabled or disabled
under program control.

Cache
The cache memory is a very high-speed memory that buffers data
between the processor and main memory. The cache is completely
transparent to all programs; programs are treated as if there were one
continuous bank of memory.

Whenever a request is made to fetch data from memory, the cache
circuitry checks to see if that data is already in the cache. If it is, it is
fetched from there and no main memory read is required. If the data is
not already in cache memory, four bytes are fetched from main mem­
ory and stored in the cache, with the requested word or byte being
passed directly to the CPU.

When a request is made to write data into memory, it is written both to
the cache and to main memory, assuring that both stores are always
updated immediately.

The key to the effectiveness of PDP-11170's cache memory is its size.
Because it holds 2,048 bytes at any given point in time, the PDP-11170
cache already contains the next needed data a very high percentage
of the time.

A detailed description of cache memory and the other parts of memo­
ry are contained later in the chapter.

OTHER CPU EQUIPMENT

Floating Point Processor
The PDP-11 /70 Floating Point Processor fits integrally into the central
processor. It provides a supplemental instruction set for performing
single and double precision floating point arithmetic operations and
floating-integer conversion in parallel with the CPU. The floating point
processor provides speed and accuracy in arithmetic computations. It

286

PDP-11170

provides 7 decimal digit accuracy In single word calculations and 17
decimal digit accuracy in double word calculations.

Floating point calculations take place in the FPP's six 64-bit accumula­
tors. The 46 floating pOint instructions include hardware conversion
from single or double precision floating point to single or double
precision integers. There is a detailed description in Chapter 11.

High Speed Mass Storage
The PDP-11/70 busing structure is optimized for high-speed device
transfers. Up to four such devices. can be plugged directly into the
processor with a dedicated 32-bit bus feeding through to the main
memory. Present DIGITAL devices that use this bus structure are the
RP04/0S/06, RS03/04, TU16, TE16, and RM03. Refer to the Specifica­
tions Section for device specifications.

SYSTEM INTERACTION
High-speed Non-Processor Request (NPR) devices use separate de­
dicated buses to the individual high-speed 110 controllers. From the
controllers there is a single 4-byte wide bus that interfaces to the
cache. The order of priorities in the system is:
1. UNIBUS (via UNIBUS Map)
2. High-speed 1/0 controllers (A through D)
3. CPU

Control information and lower speed data transfers are carried out
through the UNIBUS.

A device will request the UNIBUS for one of two purposes:
1. To make an NPR transfer of data (direct data transfers such as

DMA), or
2. To interrupt program execution and force the processor to branch

to a service routine.

There are two sources of interrupts, hardware and software.

Hardware Interrupt Requests
A hardware interrupt occurs when a device wishes to indicate to the
program, or the central processor, that a condition has occurred (such
as transfer completed, end of tape, etc.). The interrupt can occur on
anyone of the four Bus Request levels and the processor responds to
the interrupt through a service routine.

Program Interrupt Requests
Hardware interrupt servicing is often a two-level process. The first
level is directly associated with the device's hardware interrupt and

287

PDP-11170

consists of retrieving the data. The second is a software task that
manipulates the raw information. The second process can be run at a
lower priority than the first, because the PDP-11 /70 provides the user
with the means of scheduling his software servicing through seven
levels of Program Interrupt Requests. The Program Interrupt Request
Register is located at address 17 777 772. An interrupt is generated by
the programmer setting a bit on the high-order byte of this register.

Priority Structure on the UNIBUS
When a device capable of becoming bus master requests use of the
bus, handling of the request depends on the hierarchical position of
that device in the priority structure.

The relative priority of the request is determined by the processor's
priority level and the level at which the request is made.

The processor's priority is set under program control to one of
eight levels using bits 7-5 in the Processor Status Word. Bus
requests are inhibited on the same or lower levels.
Bus requests from external devices can be made on anyone of
the five request lines. An NPR has the highest priority, and its
request is granted between bus cycles of an instruction execution.
Bus Request 7 (BR 7) is the next highest priority and Bus Request
4 (BR 4) is the lowest. The four lower priority level requests (BR
7-BR 4) are granted by the processor between instructions pro­
viding they occur on higher levels than the processor's. Therefore,
an interrupt may only occur on a Bus Request Level and not on a
Non-Processor Request level.
Any number of devices can be connected to a specific BR or NPR
line.

If two devices with the same priority request the bus, the device
physically closest to the processor on the UNIBUS has the higher
priority.
Program Interrupt Requests can be made on anyone of seven
levels (PIR 7-PIR 1). Request~ are granted by the processor
between instructions providing that they occur on higher levels
than the processor's.
Program Interrupt Requests take precedence over equivalent lev­
el Bus Requests.

288

PDP-11170

PROCESSOR STATUS WORD

PRIORITY
PROCESSOR STATUS WORD

7 5

CPU REQUEST
PRIORITY LEVEL

7
PIR7

NPR

[5 [5 ANY NUMBER
OF HARDWARE
DEVICES/LEVEL

6
PIR6

BR7

0 ONE PROGRAM/
PIR LEVEL

5
>- PIR5
~

ir

BR6

0 0
0
ir

4 Cl.

(!) PIR4
z
iii

BR5

DOD
«
w
0:: 3 u
~ PIR3

2
PIR2

BR4

[5 [5
PIR 1

0

DECREASING PRIORITY

Figure 10-7 UNIBUS Priority Structure

Non-Processor Data Transfers
Direct memory or direct data tranfers can be accomplished between
any two peripherals without processor supervision. These non­
processor transfers, called NPR level data transfers, are usually made
for Direct Memory Access (memory to/from mass storage) or direct
device transfers (disk refreshing a CRT display).

An NPR device provides extremely fast access to the UNIBUS and can
transfer data at high rates once it gains control of the bus. The state of
the processor is not affected by this type of transfer, and, therefore,
the processor can relinquish bus control while an instruction is still in
progress. The bus can be released at the end of any bus cycle, except
during a read-modify-write cycle sequence. (This occurs, for example,
in destructive read-out devices such as core memory for certain in­
structions.) In the PDP-11/70, an NPR device can gain control in 3.5
microseconds or less (depending on the number of devices on the
UNIBUS), and can tranfer 16-bit words to memory at the same speed
as the effective cycle time of the memory being addressed.

289

PDP-11170

Using the Int~rrupts
Devices that gain bus control with one of the Bus Request Lines (BR
7-BR 4) can take full advantage of the central processor by request­
ing an interrupt. In this way, the entire instruction set is available for
manipulating data and status registers.

When a service routine is to be run, the current task being performed
by the central processor in interrupted, and the device service routine
is initiated. Once the request has been satisfied, the processor returns
to its former task. Interrupts may also be used to schedule program
execution by using the Program Interrupt Request.

Interrupt Procedure
Interrupt handling is automatic in the PDP-11 170. No device polling is
required to determine which service routine to execute. The opera­
tions required to service an interrupt are as follows:
1. Processor relinquishes control of the bus, priorities permitting.
2. When a master gains control, it sends the processor an interrupt

command and a unique memory address which contains the ad­
dress of the device's service routine in Kernel virtual address
space, called the interrupt vector address. Immediately following
this pointer address is a,word (located at vector address + 2)
which is to be used as a new Processor Status Word.

3. The processor stores the current Processor Status Word (PS) and
the current Program Counter (PC) into CPU temporary registers.

4. The new PC and PS (the interrupt vector) are taken from the
specified address. The old PS and PC are then pushed onto the
current stack as indicated by bits 15, 14 of the new PS and the
previous mode in effect is stored in bits 13, 12 of the new PS. The
service routine is then initiated.

These operations are performed in approximately 2.5 ~sec from the
time the central processor receives the interrupt command until the
time it starts executing the first instruction of the service routine. This
time interval assumes no NPR transfer occurred.
5. The device service routine can cause the processor to resume the

interrupted process by executing the Return from Interrupt (RTI or
RTT) instruction, described in Chapter 4, which pops the two top
words from the current processor stack and uses them to load the
PC and PS registers.

This instruction requires approximately 1.5 ~sec providing there is no
NPR request.

A device routine can be interrupted by a higher priority bus request
any time after the new PC and PS have been loaded. If such an

290

PDP-11170

interrupt occurs, the PC and PS of the service routine are automatical­
ly stored in the temporary registers and then pushed onto the new
current stack, and the new device routine is initiated.

Interrupt Servicing
Every hardware device capable of interrupting the processor has a
unique pair of locations reserved for its interrupt vector. The first word
contains the location of the device's service routine, and the second,
the Processor Status Word that is to be used by the service routine.
Through proper use of the PS, the programmer can switch the opera­
tional mode of the processor, alter the General Register Set in use
(context switching) and modify the processor's priority level to mask
out lower level interrupts.

There is one" interrLipt vector for the Program Interrupt Request. It will
generally be necessary in a multi-processing environment to deter­
mine which program generated the PIR and where it is located in
memory.

Processor Traps
There is a series of errors and programming conditions which will
cause the central processor to trap to a set of fixed locations. These
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout
Errors, Non-Existent Memory Errors, Memory Parity Errors, Memory
Management Violations, Floating Point Processor Exception Traps,
use of Reserved Instructions, use of the T Bit in the Processor Status
Word, and use of the lOT, EMT and TRAP instructions.

Input/Output Devices
The LA36 DECwriter is the standard PDP-11 system terminal. It has
several advantages over standard electromechanical typewriter termi­
nals, including higher speed, fewer mechanical parts and very quiet
operation. I/O capabilities can be increased with high-speed paper
tape readers-punches, line printers, card readers or alphanumeric
display terminals.

PDP-11 I/O devices include:

DECwriter teleprinter, LA36, LA38, LA120
DECterminal alphanumeric display VT50, VT52, VT100
High-speed line printers LP11, LS11
High-speed paper tape reader-punch PC11
Card readers CR11, CD11
Synchronous and asynchronous communication interfaces

291

PDP-11170

Storage Devices
Storage devices range fro~ convenient, small reel magnetic tape units
to mass storage magnetic tapes and disk memories. A large number
of storage devices, in any combination, may be connected to a PDP-11
system. TU56 DECtapes are ideal for applications with modest storage
requirements. Each DECtape provides storage for 144K 16-bit words.
For applications which require handling large volumes of data,
DIGITAL offers the industry-compatible TU16 magtape.

Disk storage devices include fixed-head disk units and moving-head
removable cartridge and disk pack units. PDP-11 storage devices in-
clude: .

DECtape: TUS6, TUS8
Magtape: TU16, TE16, TS03, TS11, TU45, TU77
512K byte dual floppy disk: RX01
1 M byte dual floppy disk: RX02
512K byte fixed head disk: RS03
1 ,024K byte fixed head disk: RS04
204M byte moving head cartridge disk: RKOS
5.2M byte moving head cartridge disk: RL01
14M byte moving head disk pack: RK06
28M byte moving head disk pack: RK07
67M byte moving head disk pack: RM03
88M byte moving head disk pack: RP04/0S
176M byte moving head disk pack: RP06

SPECIFICATIONS

PACKAGING
A basic PDP-11/70 consists of two H960 cabinets (see Figure 10-7), or
a double width corporate cabinet (see Figure 10-8):

H960 Cabinet
1. A CPU cabinet which contains the processor, CPU related equip­

ment and interface equipment.
2. A Memory Cabinet which contains the first 128K bytes of parity

core or MOS memory (with expansion capability to 2,048K bytes
within the cabinet. Another H960 memory cabinet located next to
it can house an additional 2,048K bytes of core or MOS memory).

292

PDP-11170

CPU CABINET MOS MEM CABINET

NOT AVAILABLE

t-----------i
BATTERY BACK-UP UNIT

MEMORY CONTROL PANEL

NOT AVAILABLE

11170 CPU

BATTERY BACK-UP UNIT

MKll
MEMORY BOX

(4MB)

Figure 10-7 11170 Equipment in H960 Cabinets

Corporate Cablnet*
1. A CPU cabinet which contains the processor, CPU-related equip­

ment, interface equipment, and the first 128K bytes of parity core
or MOS memory (with expansion capability to 2,048K bytes within
the cabinet).

2. Another memory corporate cabinet located next to it can house
an additional 2,048K bytes of core or MOS memory.

293

1536mm
(60.5 in)

I

PDP-11170

1181 mm

1 (46.5In)~

000

- II II

c=:==JD c J

ODC ~

1111111111

"
111

111111111111

Figure 10-8 11/70 Equipment in Corporate Cabinet

An LA36 DECwriter II console terminal is included with the 11/70 sys­
tem. There are prewired areas within the mounting assemblies for
expansion with optional equipment.

* NOTE: By using the 256K byte memory arrays, the entire 11170 main memo­
ry is contained in a single BA 11-K Box.

COMPONENT PARTS
The basic PDP-11170 system has:

Included Equipment
11/70 CPU
Memory Management
Bootstrap loader
DECwriter (LA36)
Terminal interface (DL 11-W) with integral line clock
2K byte cache memory

..
294

PDP-11170

128K byte parity core or MaS memory
CPU cabinet
Memory cabinet

Prewired Expansion Space for Optional Equipment
Floating Point Processor
Four High-speed I/O controllers
Four SPC slots for peripherals
128K byte parity core or MaS (within 1 st memory expansion
frame)

OTHER SPECIFICATIONS
AC Power
120 Vac ± 10%,47 to 63Hz, 3 phase power
240 Vac ± 10%,47 to 63Hz, 3 phase power

Basic CPU cabinet (maximum current on
each of 2 phases)

120 Vac
15A

240 V ac
7.5A

Memory, each BA11-K Box
(maximum current on 1 phase)

Size

12A 6A

Each H960 cabinet is 72/1 high X 21/1 wide X 30/1 deep.
Each double width corporate cabinet is 60.5/1 high X 46.5/1 wide X 30/1
deep.

Weight (H960 cabinet)
CPU cabinet: 500 Ibs. (227 Kg.)

Memory cabinet:

Memory expansion frame:

Operating Environment
Temperature:

Humidity:

Altitude:

Non-Operating Environment
Temperature:

Humidity:

Altitude:

250 Ibs. (including 1st 512K
bytes) (114 Kg.)

150 Ibs (each additional 512K
bytes) (67.5 Kg.)

15°C to 32°C (59°F to 90°F)

20% to 80% with max wet bulb
28°C (82°F) and minimum dew
point 2°C (36°F)

to 2.4 km (8000 ft.)

-40°C to 66°C (-40°F to 151°F)

to 95%

to 9.1 km (30,000 ft)

295

PDP-11170

PROCESSOR CONTROL

REGISTERS
The following five CPU registers are not accessible from the UNIBUS.
They are accessed by program or console control.

CPU Error Register 17 777 766

ILLEGAL HALT ____ t -.It J 1 1 I ODD ADDRESS ERROR -
NON-EXISTENT MEMORY (CACHE)
UNIBUS TIME-OUT ------------------'
YELLOW ZONE STACK LIMIT -----------------' RED ZONE STACK LIMIT ________________ -1

This register identifies the source of the abort or trap that used the
vector at location 4.

Bit: 7 Name: Illegal Halt
Function: Set when trying to execute a HALT instruction when the
CPU is in User or Supervisor mode (not kernel).

Bit: 6 Name: Odd Address Error
Function: Set when a program attempts to do a word reference to an
odd address.

Bit: 5 Name: Non-Existent Memory
Function: Set when the CPU attempts to read a word from a location
higher than indicated by the System Size register. This does not in­
clude UNIBUS addresses.

Bit: 4 Name: UNIBUS Timeout
Function: Set when there is no response on the UNIBUS within ap­
proximately 10 J,Lsec.

Bit: 3 Name: Yellow Zone Stack Limit
Function: Set when a yellow zone trap occurs.

Bit: 2 Name: Red Zone Stack Limit
Function: Set when a red zone trap occurs.

Lower Size Register 17 177 760
This read-only register specifies the memory size of the system. It is
defined to indicate the last addressable block of 32 words in memory
(bit 0 is equivalent to bit 6 of the Physical Address).

Upper Size Register 17 777 762

296

PDP-11170

This register is an extension of the system size, which is reserved for
future use. It is read-only and its contents are always read as zero.

System I/O Register 17 777 764
This read-only register contains information uniquely identifying each
system.

Microprogram Break Register 17 77 770
This register is used for maintenance purposes only. It is used with
maintenance equipment to provide synchronization and testing facili­
ties.

Processor Status Word 17 777 776
The Processor Status Word contains information on the current status
of the CPU. This information includes the register set currently in use;
current processor priority; current and previous operational modes;
the condition codes describing the results of the last instruction; and
an indicator for detecting the execution of an instruction to be trapped
during program debugging.

PROCESSOR TRAPS
There are a series of errors and programming conditions which will
cause the central processor to trap to a set of fixed locations. These
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout
Errors, Non-Existent Memory References, Memory Parity Errors,
Memory Management Violations, Floating Point Processor Exception
Traps, use of Reserved Instruotions, use of the T bit in the Processor
Status Word, and use of the lOT, EMT, and TRAP instructions.

Power Failure
Whenever AC power drops below 95 volts for 110V power (190 volts
for 220V) Or outside a limit of 47 to 63 Hz, as measured by DC power,
the power fail sequence is initiated. The central processor automati­
cally traps to location 24 and the power fail program has 2 msec. to
save all volatile information (data in registers), and to condition peri­
pherals for power failure.

When power is restored, the processor traps to location 24 and exe­
cutes the power up routine to restore the machine to its state prior to
power failure.

Odd Addressing Errors
This error occurs whenever a program attempts to execute a word
instruction on an odd address (in the middle of a word boundary). The
instruction is aborted and the CPU traps through location 4.

297

PDP-11170

Time-Out Error
This error occurs when a Master Synchronization pulse is placed on
the UNIBUS and there is no slave pulse within 10 /-Lsec. This error
usually occurs In attempts to address non-existent memory or peri­
pherals.

The offending instruction is aborted and the processor traps through
location4.

Non-Existent Memory Errors .
This error occurs when a program attempts to reference a memory
address that is larger than indicated by the system size register. The
cycle is aborted and the processor traps through location 4.

Reserved Instruction
There is a set of illegal and reserved instructions which cause the
processor to trap through location 10. The set is fully described in
Chapter S.

Trap Handling
Chapter S includes a list of the reserved Trap Vector locations, and
System Error Definitions which cause processor traps. When a trap
occurs, the processor follows the same procedure for traps as it does
for interrupts (saving the PC and PS on the new Processor Stack, etc.).

In cases where traps and interrupts occur concurrently, the processor
will service th~ conditions according to the priority sequence
illustrated.

Trap Priorities
• Parity error
• Memory Management violation
• Stack Limit Yellow
• Power Failure (power down)
• Floating Point exception trap
• Program Interrupt Request (PIR) level?

• Bus Request (BR) level?

• PIR6
• BR6
• PIRS

• BRS
• PIR4

• BR4
• PIR3

298

PDP-11170

• PIR2
• PIR 1
• Trace trap

STACK LIMIT
The Stack Limit allows program control of the lower limit for perm iss­
able stack addresses. This limit may be varied in increments of
(400)8 bytes (2008 words), up to a maximum address of 177 400 (al­
most the top of a 64 Kb memory).

The normal boundary for stack addresses is 400. The Stack Limit
option allows this lower limit to be raised, providing more address
space for interrupt vectors or other data that should not be destroyed
by the program.

There is a Stack Limit Register, with the following format:

15 870

The Stack Limit Register can be addressed as a word at location 17
777774, or as a byte at location 17777775. The register is accessible
to the processor and console, but not to ~ny bus device.

The eight bits, 15 through 8, contain the stack limit information. These
bits are cleared by System Reset, Console Start, or the RESET instruc­
tion. The lower eight bits are not used. Bit 8 corresponds to a value of
(400)8 or (256)10'

Stack Limit Violations
When instructions cause a stack address to exceed (go lower than) a
limit set by the programmable Stack Limit Register, a Stack Violation
occurs. There is a Yellow Zone (grace area) of 32 bytes below the
Stack Limit which provides a warning to the program so that corrective
steps can be taken. Operations that cause a Yellow Zone Violation are
completed, then a bus error trap is effected. The error trap, which
itself uses the stack, executes without causing an additional violation,
unless the stack has entered the Red Zone.

A Red Zone Violation is a Fatal Stack Error. (Odd Stack or Non-Exis­
tent Stack are the other Fatal Stack Errors.) When detected, the oper­
ation causing the error is aborted, the stack is repositioned to address
4, and a bus erro"r occurs. The old PC and PS are pushed into
locations 0 and 2, and the new PC and PS are taken from locations 4
and 6.

299

PDP-11170

Stack Limit Addresses
The contents of the Stack Limit Register (SL) are compared to the
stack address to' determine if a violation has occurred. The least sig­
nificant bit of the regist~r (bit 8) has a value of (400)8' The determina­
tion of the violation zones is as follows:

Yellow Zone = (SL) + (340-377)8 execute, then trap
Red Zone S (SL) + (337)8 abort, then trap to location 4

If the Stack Limit Register contents were zero:

Yellow Zone = 340 through 377
Red Zone = 000 through 337

PROGRAM INTERRUPT REQUESTS
A request is booked by setting one of the bits 15 through 9 (for PIR
7-PIR 1) in the Program Interrupt Register at location 17777772. The
hardware sets bits 7-5 and 3-1 to the encoded value of the highest PIR
bit set. This Program Interrupt Active (PIA) should be used to set the
Processor Level and also index through a table of interrupt vectors for
the seven software priority levels. The figure below shows the layout of
the PIR Register.

15 9 a 7 5 " 3 1 0

E~. ~----,-----,_,--_-,-.PI_R '--L..f 1_, ~L~12~~~ . A ~

Program Interrupt Request Register

When the PIR is granted, the Processor will trap to location 240 and
pick up the PC in 240 and the PSW in 242. It is the interrupt service
routine's responsibility to queue requests within a priority level and to
clear the PIR bit before the interrupt is dismissed.

The actual interrupt dispatch program should look like:

MOVB PIR, PS ;places Bits 5-7 in PSW Priority
; Level Bits

MOV R5, -(SP)

MOVPIR,R5
BIC #177761 ,R5
JMP @DISPAT(R5)

;save R5 on the stack

;Gets Bits 1-3
;use to index through table
; which requires 15 core locations.

300

PDP-11170

r- -------- ---- --l

I MEM CPU & MGT UNIBUS

I
I
I

I I
I UNIBUS

J
I

l MAP
I

I HIGH-SPEED I
I CACHE I/O I/O BUS

CONTROL I I
L_ -- _ ___ ~U~SSEMBLY __ ---.1 .. -MAIN

I
MEMORY

MAIN BUS
MEMORY

Figure 10-9 Block Diagram of PDP-11/70

MEMORY SYSTEM
An overall block diagram of the PDP-11170 is shown in Figure 10-9.
From a functional standpoint, main memory and the cache can be
treated as a single unit of memory.

The PDP-11/70 Cache
The architecture of the cache chosen for the PDP-11 /70 is described
in this section. It represents a carefully thought-out approach, backed
by extensive program simulations to determine hit statistics. The size
of the cache memory is 1,024 words (2,048 bytes), organized as a two­
way set associative cache with two-word blocks. There are two groups
in the cache; each group contains 256 blocks of data, and each block
contains two PDP-11 words (see Figures 10-10 and 10-11). Each block
also has a tag field, which contains information to construct the ad­
dress in main memory where the original copy of this data block re­
sides. The data from main memory can be stored within the cache in
one index position determined by its physical address. Refer to Figure
10-12 for the organization of the 22-bit physical address. The 8-bit
index field (bits 2 to 9) determines which element of the array will
contain the data (it can be in either GroupO or Group 1).

301

PDP-11170

I,~"--~-r--_-_-~_-_-<-'-*D"!:~A:TA~-M""-E-M~-O""R~Y~~~GR_O_U_P _1-----"'_-~:J..======~-..;j
TAG

~
I

WORD 1 WORD 2
I
I
I
/
I
I
I
/

I
I
I
/

I
BYTE BYTE BYTE / BYTE

ADDRESS MEMORY

TAG

~
I

WORD 1 WORD 2
I I
I /
I

/ I
/ I

I ./
/ I
/ /

/ I

I I
I I
I I

BLOCK OF DATA

Figure 10-10 Cache Memory (2,048 bytes)

-IBlh f.-12 BITS--j BITS I- 18 BITS -I- 18 BITS

WORD 1

I p ~
WORD 2

BYTE I P I BYTE BYTE I P I BYTE

~

1 p I

1
256 INDEX
POSITIONS

1

/. TAGS -I f.--8--l 1 f.--8--11 I--

Figure 10-11 Block of Data plus Tags

22 BITS "I
21 10 9 2 0

TAG INDEX I I I
BLOCK ADDRESS ~ J WORD IN BLOCK

BYTe

Figure 10-12 Physical Address

The elements of the cache must store not only the data, but also the
address identification. Since the index position itself implies part of
the address, only the high address field (called tag field) must be
stored. The combination of the tag plus index gives the address of the
two-word block in main memory. The lowest two bits in the physical
address select the particular word in the block, and the byte (if need­
ed).

302

PDP-11170

There are two places in the cache where any block of data can go; a
particular index position in either Group 0 to Group 1. Random selec­
tion determines into which group the information is placed,
overwriting the previous data. Another bit is needed within the cache
to determine if the block has been loaded with data. When power is
first applied, the cache data are invalid, and the valid bit for each data
block is cleared. When a particular block location is updated, the
associated valid bit is set to indicate good data.

Figure 10-11 shows the organization for a single block of data within a
set. Note that data has byte parity, and that the non-data part, called
"tags," contains a 12-bit high order address field plus a valid bit and
two parity bits.

General Operation
The system always looks for data in the fast cache memory first. If it is
there (a hit), execution proceeds at the fastest rate. If the information is
not there (a miss), and the operation was a read, a two-word block of
data is transferred from main memory to the cache. If there is a miss
while trying to write, cache is not updated. Main memory and the
cache are both updated on write hits.

The operation of hits or misses is summarized in Table 10-1.

Table 10-1 Operation on Hit or Miss

What Happens In

CACHE MAIN MEMORY

READ
hit no change no change
miss updated no change

WRITE
hit updated updated
miss no change updated

When power is first applied (Power-Up), all of the valid bits are
cleared. If power is suddenly lost, cache data may become invalid, but
main memory, with non-volatile core or battery-backed-up MOS, will
have a correct copy of all the data.

With a typical program, writes occur only 10% of the time. Reads occur
90% of the time. Read hits will average 80% to 95% of all cycles with a
typical program.

303

PDP-11170·

PARITY

System Reliability
Parity is used extensively in the main memory of the PDP-11/70 to
ensure the integrity of data storage and transfer, and to enhance the
reliability of system operation. All of memory (cache and main memo­
ry) has byte parity. Parity is generated and checked on all transfers
between core or MOS and cache, again between cache and the CPU,
between high-speed mass storage devices and their controllers, and
again between the controllers and main memory. A software routine
can be used to log the occurrence of parity errors, to handle recovery
from errors, and to provide information on system reliability and per­
formance.

Parity In the System
Main memory stores one parity bit for each a-bit byte in core, or an
equivalent function in check bits for ECC MOS memory. Refer to Fig­
ure 10-13. The cache also stores byte parity for data, and it stores two
parity bits for the address and control information (tag storage) asso­
ciated with each 2-word block of data.

CPU

ESS DATA
ADDRESS (PI ADDR

A

CON

~TAm J

I ADDRESs(PI I DATA(PI I DATA (PI

CACHE

DDRESS DATA(PI
&

TROL(PI

I DATA(PI I
MAIN CO~TROL

UNIBUS

I I
MAP I

HIGH - SPEED HIGH-SPEED . I/O
CONTROL I/O BUS

DATA &CONTROi.(PI

Figure 10-13 Parity (P) in the PDP-11/70 System

The bus between main memory and the cache contains parity on the
data and address and control lines. The high-speed 110 controllers

304

PDP-11170

check and generate parity for data transfers to main memory, and they
have the capability of handling address errors that are flagged by the
control in the cache memory.

System Handling of Parity Errors
Extensive capabilities have been designed into the PDP-11 /70 to allow
recovery from parity errors, and to allow operation in a degraded
mode if a section of the memory system is not operating properly. This
type of operation is possible under program control by using the built­
in control registers.

\f part or all of the cache memory is malfunctioning, it is possible to
bypass half or all of the cache. Misses can be forced within the cache,
such that all read data is brought from main memory. Operation will be
slower, but the system will yield c·orrect results. If part of main memory
is not working, the Memory Management unit can be used to map
around it. If data found in the cache does not have correct parity, the
memory system automatically tries the copy in main memory, to allow
program execution to proceed.

Details of how to perform this programming are explained in the next
section on the CPU and memory control registers.

Aborts and Traps
Two actions Can take place after detection of a parity error. The cycle
can be aborted. Then the computer transfers control through the
vector at location 114 to an error handling routine. The other action is
that the instruction is completed, but then the computer traps (also
through location 114). In the first case it was not possible to complete
the cycle, whereas in the second case, it was. This second type of
parity error usually (but not always) causes the trap before the next
instruction is fetched. Refer to Table 10-2.

Table 10-2 Response to Parity Errors

PARITY ERROR
DETECTED

CONDITION FOR
ABORT

CPU cycle, Error in requested
data error, word.
read from main memory

UNIBUS cycle, *
data error,
read from main memory

305

CONDITION FOR
TRAP

Error in the other
word.

Error in either
word.

PARITY ERROR
DETECTED

PDP-11170

CONDITION FOR
ABORT

CPU cycle, All reads and writes.
address error,
reference to main memory

UNIBUS cycle
address error
reference to main memory

CPU or UNIBUS cycle, All reads.
data or address error,
reference to cache

CONDITION FOR
TRAP

All reads and writes

High-speed I/O cycle,
data or address error,
ref to main memory

(no CPU aborts or traps occur;
high-speed
I/O controllers
handle their parity errors).

NOTE
When a parity error is detected on data going to the
UNIBUS, the parity error signal is asserted.

System Response to Parity Errors
Data are read from main memory to the cache in 2-word blocks. If the
read cycle was caused by the CPU, and a parity error is detected in the
requested word, an abort occurs. If it was in the other word, a trap
occurs. On UNIBUS cycles, a trap is caused if there is a read error in
either word.

When an address parity error is detected on any read or write to main
memory, an abort is caused for both CPU and UNIBUS cycles.

When any fast data memory or address memory parity error is detect­
ed on any read from the cache, a trap occurs. On a fast data memory
parity error, the CPU will try to get the data from main memory, and
also overwrite the same cache location with the new (correct) word just
fetched. On an address memory parity error, the CPU will go to main
memory for the data, and will correct (overwrite) the tag storage in the
cache.

Data transfers for the high-speed mass storage devices take place
with main memory. No data is stored in the cache. Parity errors are

306

PDP-11170

handled by the device controllers; no CPU aborts or traps occur, and
no cache status registers are affected.

Table 10-2 summarizes the system response.

CACHE REGISTERS
The registers described in this section provide information about pari­
ty errors, memory status and CPU status. These hardware registers
have program addresses in the top 4K words of physical address
space (Peripheral Page).

Register Address

Low Error Address 17777740

High Error Address 17777742

Memory System Error 17777744

Control 17777746

Maintenance 17777750

Hit/Miss 17777752

Some bit positions of the registers are not used (not implemented with
hardware) and are indicated by cross-hatching. These bits are always
read as zeros by the program. Most of the bits can be read or written
under program control. The above six registers are located on the
cache control board of the 11/70:

Low Error Address Register 17 777 740

15 o
Law ~ESS (16 BITS)

This register contains the lowest 16 bits of the 22-bit address of the
first error. The least significant bit is bit O. The high order bits are
contained in the High Error Address Register.

All the bits are read-only. The bits are undetermined after a Power-Up.
They are not affected by a Con~ole Start or RESET instruction.

307

PDP-11170

High Error Address Register 17 777 742

15 1,(13 6 5 0

CYCLE ~ HIGHAODRESS

Bit: 15-14 Name: Cycle Type
Function: These bits are used to encode the type of memory cycle
which was being requested when the parity error occurred.

Bit 15 Bit 14 Cycle Type
o 0 Data In (read)
o 1 Data In Pause
1 0 Data Out
1 1 Data Out Byte

Bit: 5-0 Name: Address
Function: These bits contain the highest 6 bits of the 22-bit address
of the first error. Register Bit 5 corresponds to the physical address Bit
22.

All the bits are read-only. The bits are undetermined after a Power-Up.
They are not affected by a Console Start or RESET instruction.

Memory System Error Register 17 77 744

15 14 13 12 11 10 9 7 6 5 4 3 2

CPU ABORT 'J 1 1 I 1 CPU ABORT AFTER ERROR
UNIBUS PARITY ERROR
UNIBUS MULTIPLE PARITY ERROR
cPU ERROR ------­
UNIBUS ERROR -----­
cPU UNIBUS ABORT -----
ERROR IN MAINTENANCE -------'
DATA MEMORY GROUP 1------------'
DATA MEMORY GROUP 0 ------------'

DATA ERRORS

ADDRESS MEMORY GROUP 1 --------------'
ADDRESS MEMORY GROUP 0---------------'
MAIN MEMORY ODD.WORD ------------------'
MAIN MEMORV EVEN WORD --------------------'

o

MAIN MEMORY ADDRESS PARITY ERROR-----------------'
MAIN MEMORY TIMEOUT ------------------------'

Bit: 15 Name: CPU Abort
Function: . Set if an error occurs which caused the cache to abort $
processor cycle.

Bit: 14 Name: CPU Abort After Error
Function: Set if an abort occurs with the Error Address Register
locked by a previous error.

308

PDP-11170

Bit: 13 Name: UNIBUS Parity Error
Function: Set If an error occurs which resulted in the UNIBUS Map
asserting the parity error signal on the UNIBUS.

Bit: 12 Name: UNIBUS Multiple Parity Error
Function: Set if an error occurs which caused the parity error to be
asserted on the UNIBUS with the Error ,Address Register locked by a
previous error.

Bit: 11 Name: CPU Error
Function: Set if any memory error occurs during a cache CPU cycle.

Bit: 10 Name: UNIBUS Error
Function: Set if any memory errors occur during a cache cycle from
the UNIBUS.

Bit: 9 Name: CPU UNIBUS Abort
Function: Set if the processor traps to vector 114 because of UNI­
BUS parity error on a DATI or DATIP memory cycle.

Bit: 8 Name: Error in Maintenance
Function: Set if an error occurs when any bit in the Maintenance
Register is set. The Maintenance Register will then be creared.

Bit: 7-6 Name: Data Memory i

Function: These bits are set if a Rarity error is detected in the fast
data memory in the cache. Bit 7 is set if there is an error in Group 1; bit
6 for Group O.

Bit: 5-4 Name: Address Memory
Function: These bits are set if a parity error is detected in the ad­
dress memory in the cache. Bit 5 is set if there is an error in Group 1;
bit 4 for Group O.

Bit: 3-2 Name: Main Memory
Function: These bits are set if a parity error is detected on data from
main memory. Bit 3 is set if there is an error in either byte of the odd
word: bit 2 for the even word. (Main memory always transfers two
words at a time.) An abort occurs if the error is in the word needed by a
CPU reference. A trap occurs if the error is in the other word, or if it is a
UNIBUS reference.

Bit: 1 Name: Main Memory Address Parity Error
Function: Set if there is a parity error detected on the address and
control lines on the main memory bus.

Bit: 0 Name: Main Memory Timeout
Function: Set if there is no response from main memory. For CPU
cycles, this error causes an abort. When a UNIBUS device requests a
non-existent location, this bit will set, cause a timeout on the UNIBUS,
and then cause the CPU to trap to vector 114.

309

PDP-11170

The bits are cleared on Power-Up or by Console Start. They are unaf­
fected by a RESET instruction.

When writing to the Memory System Error Register, a bit is unchanged
if a 0 is written to that bit, and it is cleared if a 1 is written to that bit.
Thus, the register is cleared by writing the same data back to the
register. This guarantees that if additional error bits were set between
the read and the write, they will not be inadvertently cleared.

Control Register 17 777 746

,15 6 5 4 3 2 0

IIIII
FORCE REPLACEMENT G_RO_U_P 1 ____________ • _f---Jf I) 1 FORCE REPLACEMENT GROUP 0 -
FORCE MISS GROUP 1
FORCE MISS GROUP 0 -------------------'
DISABLE UNIBUS TRAP
DISABLE TRAPS ----------------------'

Bit: 5-4 Name: Force Replacement
Function: Setting these bits forces data replacement within a Group
in the cache by main memory data on a read miss. Bit 5 selects Group
1 for replacement; bit 4 selects Group O.

Bit: 3-2 Name: Force Miss
Function: Setting these bits forces misses on reads to the cache. Bit
3 forces misses on Group 1; bit 2 forces misses on Group O. Setting
both bits forces all cycles to main memory.

Bit: 1 Name: Disable UNIBUS Trap
Function: Set to disable traps to vector 114 when the parity error
signal is placed on the UNIBUS.

Bit: 0 Name: Disable Traps
Function: Set to disable traps frOm non-fatal errors.

Bits 5 through 0 are read/write. The bits are cleared on Power Up or by
Console Start.

The PDP-11 /70 can run in a degraded mode if problems are detected
in the cache. If Group 0 of the cache is malfunctioning, it is possible to
force all operations through Group 1. If bits 2 and 5 of the Control
Register are set, and bits 3 and 4 are clear, the CPU will not be able to
read data from Group 0, and all main memory data replacements will
occur within Group 1. In this manner, half the cache will be operating.
But system throughput will not decrease by 50%, since the statistics of
read hit probability will still provide reasonably fast operation.

310

PDP-11170

If Group 1 is malfunctioning, bits 3 and 4 should be set, and bits 2 and
5 cleared, such that only Group 0 is operating. If all of the cache is
malfunctioning, bits 2 and 3 should be set. The cache will be by­
passed, and all references will be to main memory.

Bits 1 and 0 can be set to disable trapping; more memory cycles will
be performed, but overall system operation will produce correct
results.

Maintenance Register 17 777 750

15 12 11 8 7 4 3 1 0

I I I I 0 0 ~
\ 1\ A '~

MAIN MEMORY PARITY---.I f f I
FAST ADDRESS PARITY'-----------' I
FAST DATA PARITY---,.------------'
MEMOItY MARGINS---------------~-----.....

Bit: 15-12 Name: Main Memory Parity
Function: Setting these bits causes the four parity bits to be 1 'So

There is 1 bit per byte; there are 4 bytes in the data block.
Bit Set Byte
15 odd word, high byte
14 odd word, low byte
13 even word, high byte
12 even word, low byte

Bit: 11-8 Name: Fast Address Parity
Function: Setting these bits causes the four parity bits for fast ad­
dress memory to be wrong. Bits 11 and 10 affect Group 1; bits 9 and 8
affect Group o.

Bit: 7-4 Name: Fast Data Parity
Function: Setting these bits causes the four parity bits to be 1 'So

Bit Set Byte
7 Group 1, high byte
6 Group 1, low byte
5 Group 0, high byte
4 Group 0, low byte

Bit: 3-1 Name: Memory Margins
Function:These bits are encoded to do maintenance checks on main
memory.

311

Bit3
o
o
o
o
1
1
1
1

Bit2
o
o
1
1
o
o
1
1

PDP-11170

Bit 1
o
1
o
1
o
1
o
1

Normal operation
Check wrong address parity
Early strobe margin
Late strobe margin
Low current margin
High current margin
(reserved)
(reserved)

All of main memory is margined simultaneously.

HIt/Miss Register 17 777 752

.5 o
_FLOW

This register indicates whether the six most recent references by the
CPU were hits or misses. A 1 indicates a read hit; a 0 indicates a read
miss or a write. The lower numbered bits are for the more recent
cycles.

All the bits are read-only. The bits are undetermined after a Power-Up.
They are not affected by a RESET instruction.

HIGH-SPEED CONTROLLERS

Mounting Space
The PDP-11/70 CPU assembly provides dedicated, prewired space
for up to four high-speed 110 controllers. Refer to Figure 10-14. DC
power for the controllers is derived from the cabinet power supply.

Interfacing
Each group of mass storage peripherals communicates with its high­
speed controller through a separate high-speed 110 bus. This 110 bus
consists of a set of 56 signals for data, control, status, and parity. High
transfer rate is achieved by using synchronous block transfer of data
simultaneously with asynchronous control information. The controller
contains an a-word data buffer.

Data are transferred in a Direct Memory Access (DMA) mode. An
internal 32-bit wide data bus transfers 4 bytes in parallel between
memory and the high-speed controllers. The Priority Arbitration logic
within the cache memory controls the timing of data transfers; but the
cache itself is not used for storage. Data transfers are between main

312

PDP-11170

memory and the mass storage peripheral. The cache is not affected,
except that on a write hit from the 1/0 bus to memory, the valid bit is
cleared for that particular 2-word block within the cache. In this way,
the affected areas of the cache are flagged as having incorrect data,
but main memory always contains the correct, updated information.

The UNIBUS plays a subordinate role with respect to the high-speed
controllers. The UNIBUS is used:
a. to supply control and status information
b. to generate an interrupt request (by the controller)

L ___ _ PDP-ll/70CPU ______ _

MEMORY
BUS

110
BUS

110
BUS

110
BUS

Figure 10-14 PDP-11/70 Block Diagram

The UNIBUS is not used for data transfer.

The registers within the controller (which can be read and written
directly) are addressed from the UNIBUS. In a typical DMA transfer,
the registers would first be loaded with the following data:
a. number of words to be transferred
b. starting address in memory for data transfers
c. control, information specifying the device and type of operation

Increased Data Transfer Rate
The architecture of the PDP-11170 allows overlapping of some opera­
tions, providing faster program execution speed. CPU and UNIBUS
read hits with the cache memory are overlapped with mass storage
device reads from main memory. It is possible to overlap the read
cycles of several mass storage devices.

313

PDP-11170

Parity
Parity is generated and checked in the system for data and address
and control information, to ensure the integrity of the information
transferred. The RHCS3 register in the controller is used to indicate
the occurrence of parity errors during memory transfers.

REGISTERS
The controller contains six local registers, plus part of one more which
is shared with the mass-storage device. Other registers needed by the
particular mass storage system and device are contained in the device
itself. Appendix B contains information about the mass storage device
registers.

Controller Registers

RHCS 1 Control and Status 1 (partial)

RHWC

RHBA

RHBAE

RHCS2

RHCS3

RHOB

Word Count

Bus Address (Main Memory Bus)

Bus Address Extension (Main Memory Bus}

Control and Status 2

Control and Status 3

Data Buffer (Maintenance)

CONTROLLER REGISTERS

Control and Status 1 Register (RHCS1)
This register is used by the controller and the mass storage device to
store the device commands and hold operational status. Register bits
o through 5, 11, and 12 are dedicated for use by the drive and are
physically located in each drive attached to the controller. When read­
ing or writing this register, the selected drive (indicated by bits 2
through 0 in the RHCS2 register) will respond in those bits' positions.

When the program reads, writes a word, or writes the low byte of this
register, a register cycle will be initiated to the selected drive over the
high-speed 1/0 bus. If the unit selected does not exist or respond, an
NED (non-existing drive) error will result. The program may, however,
write the upper byte of this register without regard to the unit selected
and without affecting any drive.

Register bits 0 through 5 indicate the command to be performed and
are actually stored in the selected drive. The controller will always
interrogate the command code being passed to the drive by the pro­
gram and Will prepare for the appropriate memory cycle required by

314

PDP-,11170

data transfer operations. Data transfer command codes are designat­
ed by 518 through 778 (always odd, since the GO bit must be asserted
to execute the function) and will cause the controller to become busy
(ROY negated) until the completion of the operation. When the con­
troller is busy, no further data transfer commands may be issued (see
PGE bit 10 in RHCS2). Commands that are not data transfer com­
mands, however, may be issued at any time and to any drive which is
not busy.

While a data transfer is in progress, unit select bits U(02:00) in RHCS2
may be changed by the program in order to issue a non-data-transfer
command to another drive. This will not affect the data transfer.

When a non-data-transfer command code is written into RHCS1 while
a data transfer is taking place, only the even (low) byte of RHCS 1
should be written. This will prevent the program from unintentionally
changing the A 16 and A 17 status bits if the transfer is completed just
before the register is written. (While the ROY bit is negated, the
controller prevents program modification of these control bits even
when the write is done to the odd byte).

_----If J
Control and Status 1 Bit Usage

Bit: 15 Name: SC
Special Condition
Function: Read-only. Set by TRE, Attention, or MCPE. Cleared by
UNIBUS INIT, Controller Clear, or by removing the Attention condition.
SC = TRE + ATTN + MCPE. Attention occurs when any drive has a)
an error condition, b) a change in status, or c) completed a function
requiring action by the program (other than data transfer).

Bit: 14 Name: TRE
Transfer Error
Function: Read/Write. Set by OL T, WCE, PE, NED, NEM, PGE, MXF,
MOPE, or a drive error during a data transfer. Cleared by UNIBUS
INIT, controller clear, error clear (the action of writing a 1 in the TRE
bit), or by loading a data transfer command with GO set. TRE = OL T +
WCE + PE + NED + NEM + PGE + MXF + MOPE + (EXCP-EBL)

315

PDP-11170

Bit: 13 Name: MCPE
Mass I/O Bus Control Parity Error
Function: Read-only. Set by a parity error on the control section of
the I/O bus when reading a remote register (located In the drive).
Cleared by UNIBUS INIT, Controller Clear, error clear, or by loading a
data transfer command with GO set. Parity errors which occur on the
control bus when writing a drive register are detected by the drive.
Parity checking occurs at the completion of the register cycle (an
MCPE when reading the RHCS1 register would not be indicated on the
same cycle).

Bit: 12 Name: Reserved for use by the Orive
Function: Read-only. Always read as 0 if not implemented by the
selected drive.

Bit: 11 Name: OVA
Orive Available
Function: Read-only. Implemented by the drive. Set when the select­
ed drive in available to the controller. Used in dual-port drive applica­
tions. Always a 1 in single port drives.

Bit: 10 Name: Not used
Function: Always read as O.

Bit: 9
8 Name: A17
A16
Bus Address Extension Bits
Function: Read/Write. Upper address extension bits of the BA regis­
ter. Cleared by UNIBUS INIT, Controller Clear, or by writing O's in
these bit positions. These bits cannot be modified by writing to the
RHCS1 register while the controller is busy (ROY negated). Increment­
ed by a carry from the RHBA register during data transfers to/from
memory. These bits can also be set/cleared through the RHBAE
register.

Bit: 7 Name: ROY
Ready
Function: Read-only. Indicates controller status. When set, the con­
troller will accept any command. When cleared, the controller is per­
forming a data transfer command and will allow only non-data transfer
commands to be executed. The assertion of ROY (transfer complete or
TRE) will cause an interrupt if IE = 1.

Bit: 6 Name: IE
Interrupt Enable
Function: Read/Write. Control bit which can be set under program
control. When IE = 1, an interrupt may occur due to ROY, Attention, or

316

PDP-11170

MCPE being asserted. Cleared by UNIBUS INIT, Controller Clear, or
automatically cleared when an interrupt is recognized by the CPU. A
program-controlled interrupt may occur by writing 1s into IE and ROY
at the same time. This bit can be set/cleared through the RHCS3
register.

Bit: .5-0 Name: F4-FO and GO
Function: Read/Write. F4-FO are function (command) code control
bits which determine the action to b~ performed by the controller
and/or drive. The GO bit must be set in order to execute the com-
mand. The GO bit is reset by the drive at the end of the operation. The
function code bits are stored In the selected drive. Only data transfer
commands (defined as F4·(F3 + F2)·GO will cause the controller to
become busy (ROY negated). All other command codes are ignored
by the controller.

Function Code Table

F4 F3 F2 F1 FO Reserved for drive related com-
O 0 0 0 0 mands. No controller action

taken.
through
1 0 0 1 1

1 0 1 0 0 Write Check commands. Memory
1 0 1 0 1 data compared with drive data in
1 0 1 1 0 controller. Memory address in-

crements.

1 0 1 1 1 Write Check command. Memory
address decrements.

1 1 0 0 0 Write commands. Memory data
1 1 0 0 1 written into drive. Memory ad-
1 1 0 1 0 dress increments.

1 1 0 1 1 Write command. Memory ad-
dress decrements.

1 1 1 0 0 Read commands. Drive data writ-
1 1 1 0 1 ten into Memory. Memory ad-
1 1 1 1 0 dress increments.

1 1 1 1 1 Read command. Memory
address decrements.

317

PDP-11170

Word Count Register (RHWC)
This register is loaded by the program with the 2's complement of the
number of words to be transferred. During a data transfer, it is incre­
mented by 1 each time a word is t'ransmitted to or from memory.

Word Count Register Bit Usage

Bit: WC(15:00) Name: Word Count
Function: Read/Write. Set by the program to specify the number of
words to be transferred (2's complement form). This register is
cleared only by writing O's into it. Incremented for each word trans­
ferred to/from memory.

Bus Address Register (RHBA)
This register is loaded by the program to specify the lower 16 bits of
the starting memory address to which data transfers will take place.
The RHBA and RHBAE registers combine to form the complete 22 bit
memory address.

During a data transfer, this register is incremented (decremented for
specific function codes) by 2 each time a word is transmitted to or
from memory. If the BAI (Bus Address Increment Inhibit) bit (bit 3 of
RHCS2) is set, the incrementing (or decrementing) of the RHBA regis­
ter is inhibited and all transfers take place to or from the starting
memory address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I A 151 A 14 I A 13 1 A 121 A 11 I A 10 I A091 Aoal A071 A061 Aosl A041 A"03JA 02 1 AOI I 0

Bus Address Register Bit Usage

Bit: 15-1 Name: A(15:01)
Bus Address
Function: Read/Write. Loaded by the program to specify the starting
memory address of a data transfer operation. Cleared by UNIBUS INIT
or Controller Clear. The RHBA register is incremented (or decrement­
ed) by 2 whenever a word is transmitted to or from memory.

318

PDP-11170

Bit: 0 Name: Not Used
Function: Always read as a 0

Bus Address Extension Register (RHBAE)
The RHBAE register contains the upper 6 bits of the memory address
and combine with the lower 16 bits located in RHBA to form the com­
plete 22 bit address. This register should be loaded by the program
with the RHBA register to specify the starting memory address of a
data transfer operation. The 6-bit field is incremented (decremented
for specific function codes) each time a carry (borrow) occurs from the
RHBA register ~uring memory transfers. .

Address bits A 16 and A 17 can also be set or cleared through the
RHCS1 register. If an address extension field is written into RHBAE,
the program should ensure that A 16 and A 17 are not altered when a
command is loaded into RHCS1. This can be accomplished by either
loading the command with a write low byte instruction to RHCS1 or by
ensuring the proper value appears in the A 16 and A 17 bit positions of
RHCS1.

15 14 13 12 11 10 9 8 7 6 5 " 3 2 1 0
1 0 1 0 I 0 1 0 1 0 I 0 1 0 I 0 I 0 I 0 IA21 IA20IAI9IAI8 IA171A16 I

Bus Address Extension Register Bit Usage

Bit: 15-6 Name: Not Used
Function: Always read as 0

Bit: 5-0 Name: A(21:16)
Bus Address
Function: Read/Write. Loaded by the program to specify the starting
memory address of a data transfer operation. Cleared by UNIBUS INIT
or Controller Clear. The RHBAE register is incremented (or
decremented) each time a carry (borrow) out of RHBA occurs. A16
and A17 can also be set or cleared through the RHCS1 register.

Control and Status 2 Register (RHCS2)
This register indicates the status of the controller and contains the
drive unit number U(2:0). The unit number specified in bits 2 through 0
of this register indicates which drive is responding when registers
located in a drive are addressed.

Control and Status 2 Register Bit Usage

319

PDP-11170

Bit: 15 Name: DLT
Data Late
Function: Read-only. Set when the controller is unable to supply a
data word during a write operation or accept a da~a word during a
read or write-check operation at the time the drive demands a trans­
fer. Cleared by UNIBUS INIT, Controller Clear, error clear, or loading a
data transfer command with GO set. DL T causes TRE. Buffering is
eight words deep in the controller and a Dl T error indicates a severely
overloaded system.

Bit: 14 Name: WCE
Write Check Error
Function: Read-only. Set when the controller is performing a write­
check operation and a word on the drive does not match the corres­
ponding word in memory. Cleared by UNIBUS INIT, Controller Clear,
error clear, or loading a data transfer command with GO set. WCE
causes TRE. If a mismatch is detected during a write-check command
execution, the transfer terminates and the WCE bit is set. The mis­
matched data word from the drive is displayed in the data buffer
(RHDB).

Bit: 13 Name: PE
Parity Error
Function: Read-only. Set if a parity error occurred between memory
and the controller during a memory transfer. Cleared by UNIBUS INIT
Controller Clear, error clear, or loading a data transfer command with
GO set.

PE = APE + DPEOW + DPEEW

Bit: 12 Name: NED
Non-Existent Drive
Function: Read-only

Set yvhen the program reads or writes a register in a drive selected by
U(02:00) which does not exist or is powered down. (The drive fails to
assert TRA within 1.5 /-LS after assertion of OEM.) Cleared by UNIBUS
INIT, Controller Clear, error clear, or loading a data transfer command
with GO set. NED causes TRE./-LBlt:
11 Name: NEM
Non-Existent Memory
Function: Read-only. Set when the controller is performing a DMA
transfer and the memory address specified in RHBA is non-existent.
Cleared by UNIBUS INIT, Controller Clear, error clear, or loading a
data transfer command with GO set. NEM causes TRE to set.

Bit: 10 Name: PGE
Program Error

320

PDP-11170

Function: Read-only. Set when the program attempts to initiate a
data transfer operation while the controller is currently performing
one. Cleared by UNIBUS INIT, Controller Clear, error clear, or loading
a data transfer command with GO set. PGE causes TRE to set. The
data transfer command code is inhibited from being written into the
drive.

Bit: 9 Name: MXF
Missed Transfer
Function: Read-only. Set if the drive does not respond to a data
transfer command within 650 ~sec. Cleared by UNIBUS INIT, Controll­
er Clear, error clear, or loading a data transfer command with GO set.
MXF causes TRE to set. This error occurs if a data transfer command
is loaded into a drive which has FRR set, or if the drive fails to initiate
the command for any reason (such as parity error or illegal function).

Bit: 8 Name: OPE
Mass I/O Bus Data Parity Error
Function: Read-only. Set when a parity error occurs on the data
section of the I/O bus while doing a read or write-check operation.
Cleared by UNIBUS INIT, Controller Clear, error clear, or loading a
data transfer command with GO set. MOPE causes TRE. Parity errors
on the data bus during write operations are detected by the drive.

Bit: 7 Name: OR
Output Ready
Function: Read-only.Set when a word is present in RHOB and can be
read by the program, Cleared by UNIBUS-INIT, Controller Clear, or by
reading DB. Serves as a status indicator for diagnostic check of the
data buffer.

Bit: 06 Name: IR
Input Ready
Function: Read-only. Set when a word may be written in the RHOB
register by the program. Cleared when the data buffer is full (contains
eight words). Serves as a status indicator for diagnostic check of the
data buffer.

Bit: 5 Name: CLR
Controlle(Clear
Function: Write-only. When a 1 is written into this bit, the controller
and all drives are initialized. UNIBUS INIT also causes Controller Clear
to occur.

Bit: 4 Name: PAT
Parity Test
Function: Read/Write. While PAT is set, the controller generates
even parity on both the Control and Data sections of the I/O bus. When

321

PDP-11170

clear, odd parity is generated. Cleared by UNIBUS INIT or Controller
Clear. While PAT is set, the controller checks for even parity received
on the Data Bus but not on the Control Bus.

Bit: 3 Name: BAI
UNIBUS Address Increment Inhibit
Function: Read/Write. When BAI is set, the controller will not incre­
ment the BA register during a data transfer. This bit cannot be modi­
fied while the controller is dOing a data transfer (ROY gated). Cleared
by UNIBUS INIT or Controller Clear. When set during a data transfer,
all data words are read from or written into the same memory location.

Bit: 2-0 Name: U(2:0)
Unit Select (2:0)
Function: Read/Write. These bits are written by the program to se­
lect a drive. Cleared by UNIBUS INIT or Controller Clear. The unit
select bits can be changed by the program during data transfer opera­
tions without interfering with the transfer.

Control and Status 3 (RHCS3)
The RHCS3 register contains parity error information associated with
the memory bus. Bit position 13 of the RHCS2 (PE) indicates that a
parity error occurred during the memory transfer. Bits 15 through 13
of RHCS3 further localize the error for diagnostic maintenance. In
addition, bits 3 through 0 provide the diagnostic program with the
ability to invert the sense of parity check and thereby verify correct
operation of the parity circuits.

An Interrupt Enable bit in the RHCS3 register allows the program to
enable interrupts without writing into a drive register as previously
described. This bit also appears in the RHCS1 register for program
compatibility and can be set or cleared by writing into either register.

Control and Status 3 Bit Usage

Bit: 15 Name: APE
Address Parity Error
Function: Read-only. Set if the address parity error line indicates
that the memory detected a parity error on address and control
information during a memory transfer. Cleared by UNIBUS INIT, Con­
troller Clear, error clear, or loading a data transfer command with GO

322

PDP-11170

set. APE causes PE, bit 13 of RHCS2. When an APE error occurs, the
RHBA cnd RHBAE registers contain the address +4 of the double
word address at which the error· occurred during a double word oper­
ation or the address +2 during a single word operation.

Bit: 14, 13 Name: OPE, OW, EW Data Parity Error Odd Word Even
Word
Function: Read-only. Set if a parity error is detected on data from
memory when the control is performing a write or write check com­
mand. Cleared by UNIBUS INIT, Controller Clear, error clear, or load­
ing a data transfer command with GO set. OPE causes PE, bit 13 of
RHCS2. When a OPE error occurs, the RHBA and RHBAE registers
contain the address +4 of the double word address at which the error
occurred during a double word operation, or the address +2 during a
single word operation.

Bit: 12,11 Name: CE
OW,EW
Write Check Error Odd word, Even word
Function: Read-only. Set when data fails to compare between
memory and the drive. Cleared by UNIBUS INIT, Controller Clear,
error clear, or loading a data transfer command with the GO bit set.
Causes WCE, bit 14 of RHCS2. The word read from the drive which did
not compare is locked in the data buffer and can be examined by
reading the RHOB register.

Bit: 10 Name: OBl
Double word
Function: Read-only. Set if the last memory transfer was a double
word operation. Cleared by UNIBUS INIT, Controller Clear or loading a
data transfer command with GO set.

Bit: 9-7 Name: Not Used
Function: Always read as 0

Bit: 6 Name: IE
Interrupt Enable
Function: Read/Write. IE is a control bit which can be set under
program control. When IE = 1, an interrupt may occur due to ROY or
SC being asserted. Cleared by UNIBUS INIT, Controller Clear, or auto­
matically cleared when an interrupt is recognized by the CPU. When a
o is written into IE by the program, any pending interrupts are can­
celled.

This bit can also be set or cleared by writing into the RHCS1 register. If
written through the RHGS3 register, write operation is not performed
into a drive register simultaneously.

323

PDP-11170

Bit: 15-0 Name: OB(15:00)
Data Buffer
Function: Read/Write. When read, the contents of OBUF (internal
register) are delivered. Upon completion of the read, the next sequen­
tial word in the buffer will be clocked into OBUF. Used by the program
for diagnostic purposes. When the register is written into, IR is cleared
until the DB is ready to accept a new word. When the register is read, it
will cause OR to be cleared until a new word is ready. During a Write
Check Error condition the data word read from the disk which did not
compare with the corresponding word in memory Is frozen in RHOB
for examination by the program.

15 14 13 12 II 10 9 8 7 6 5 .. 3 2 I 0

los 15 108 14 lOB 13 108 121DB 111 0810 I DBO, OB081 DB071 ~E108031OB021DBOIIOBool

Data Buffer Bit Usage

Bit: 5-4 Name: Not Used
Function: Always read as 0

Bit: 3-0 Name: IPCK (3:0)
Invert Parity Check (3:0)
Function: Read/Write. These bits are written by the program to con­
trol the data parity detection logic. When set, inverse parity is checked
with data during memory transfers of write and write check opera­
Hons. Parity control is provided for each byte in double word
addresses.
IPCK O-Even Word, Even Byte

IPCK 1-Even Word, Odd Byte

IPCK 2-0dd Word, Even Byte

IPCK 3-0dd Word, Odd Byte

Data Buffer Register (RHOB)
This register provides a maintenance tool to check the data buffer in
the controller. A total of eight words is accepted before the data buffer
becomes full. Successive reads from DB read out words in the same
order in which they were entered into the data buffer.

The IR (input ready) and OR (output ready) status indicators in the
RHCS2 register are provided so that the programmer can determine
when words can be read from or written into the RHOB. IR should be
asserted before attempting a write into DB; OR should be asserte<;t
before attempting a read from DB.

324

PDP-11170

The RHDB register can be read and written only as an entire word. Any
attempt to write a byte will cause an entire word to be written. Reading
the DB register is a "destructive read-out" operation. The top data
word in the data buffer is removed by the action of reading DB, and a
new data word (if present) replaces ita short time later. Conversely,
the action of writing the DB register does "not destroy the contents of
DB. It merely causes one more data word to be inserted into the data
buffer, if it was notfull.

CONSOLE OPERATION
The PDP-11/70 console allows direct control of the computer system.
It contains a power switch for the CPU, which is also usually used as
the Master Switch for the system. The console is used for starting,
stopping, resetting, and debugging. Lights and switches provide the
facilities for monitoring operation, system control, and maintenance.
Debugging and detailed tracing of operations can be accomplished by
having the computer execute single instructions or single cycles. Con­
tents of all locations can be examined, and data can be entered manu­
ally from the console switches.

GENERAL
The PDP-11 /70 Operator's Console provides the following facilities:
a) Power Switch (with a key lock)
b) ADDRESS Register display (22 bits)
c) DATA Register display (16 bits), plus Parity'Sit Low Byte, & Parity

Bit High Byte
d) Switch Register (22 switches)
e) Error Lights

ADRS ERR (Address Error)
PAR ERR (Parity Error)

f) Processor State Lights (7 indicators)
RUN
PAUSE
MASTER
USER
SUPERVISOR
KERNEL
DATA

g) Mapping Lights
16 BIT
18 BIT
22 BIT

325

PDP-11170

h) ADDRESS Display Select Switch (8 positions)
USERI
USERD
SUPER I (Virtual)
SUPER D
KERNEL I
KERNEL D
PROG PHY (Program Physical)
CONS PHY (Console Physical)

i) DATA Display Select Switch (4 positions)
DATA PATHS
BUS REGISTER
ttADRS FPP /CPU
DISPLAY REGISTER

j) Lamp Test Switch
k) Control Switches

LOADADRS
EXAM (Examine)
DEP (Deposit)
CO NT (Continue)
ENABLE/HAL T
S INST /S BUS CYCLE (Single Instruction/Single Bus Cycle)
START

STARTING AND STOPPING

Starting
Once power is on, execution can be started by placing the EN­
ABLE/HALT switch in the ENABLE position, putting the starting ad­
dress in the Switch Register, and depressing the LOAD ADRS switch.
Verify in the Address Display Lights· that the address was entered
correctly, then depress the START switch. The computer system will
be cleared and will then start running. Once execution has begun,
depressing the START switch again has no effect.

If the system needs to be initialized but execution is not wanted, the
START switch should be depressed while the HALT/ENABLE switch is
in the HALT position.

Stopping
Set the ENABLE/HALT switch to the HALT position. The computer will
stop execution, but the contents of all memory locations will be
retained. The switch can then be set to the ENABLE position with no
effect on the system.

326

PDP-11170

NOTE
NPRs are still serviced after halt from the console if S
BUS CYCLE is disabled.

Continuing
After the computer has been stopped, execution can be resumed from
the point at which it was halted by using the CONT (Continue) Switch.
The function of the CO NT Switch depends on the position of the EN­
ABLE/HALT Switch:

ENABLE (up) CPU resumes normal execution.

HALT (down) The mode is used for debugging purposes
and forces execution of a single instruction
or a single bus cycle.

REFERENCING MEMORY

Unmapped References
When performing unmapped memory references from the console,
the Address Select Switch must be set to CONS PHY. This means that
the 22-bit address entered in the Switch Register should be. the physi­
cal address desired. To examine a memory location, depress the
LOAD ADRS switch and then the EXAM switch. The address refer­
enced will appear in the Address Display Lights. The DATA Select
switch should be selecting DATA PATHS, and the contents of that
location are displayed in the Data Display Lights. To deposit informa­
tion into a memory location, depress the LOAD ADRS switch, then
enter the desired data in the Switch Register and raise the DEP switch.
The DATA Select switch should be in the DATA PATHS position, and
the deposited information will appear in the DATA Di$play Lights.

Mapped References
Sometimes, when software is running with Memory Management en­
abled, the physical addresses generated are not known. This makes
examining and depositing memory locations more difficult. For this
reason, the six positions KERNEL I through USER 0 of the ADDRESS
Select switch are provided. When doing a memory reference, the low
order 16 bits of the Switch Register are considered to be a Virtual
Address and are relocated by Mem<1ry Management using the set of
PAR/PDR's indicated by the ADDRESS Select switch.

To examine a memory location, depress the LOAD ADRS switch and
the EXAM switch. The DATA Select switch should be selecting DATA
PATHS, and the contents of that location are displayed in the DATA
Display Lights. To deposit information into a memory location, de-

327

PDP-11170

press the LOAD ADRS switch, then enter the desired data in the
Switch Register and raise the DEP switch. The Data Select Switch
should be in the DATA PATHS position, and the deposited information
will appear in the DATA Display Lights.

The PROG PHY (Program Physical) position of the ADDRESS Select
switch is used as a debugging tool. After an examine or deposit has
been performed on a virtual address, changing the ADDRESS Select
switch to select PROG PHY will display the Physical Address generat­
ed by Memory Management in the Address Display Lights. Using the
PROG PHY position in any other way will produce meaningless results.

NOTE
An EXAM or DEP operation which causes an ad­
dressing error (ADRS ERR or PAR ERR) will be
aborted and must be corrected by performing a new
LOAD ADRS operation with a valid address.

STEP OPERATIONS
Performing more than one EXAM operation In a row or more than one
DEP operation in a row results in a STEP operation. Depressing the
EXAM switch after previous examination of a location displays the
contents of the next location in memory. Raising the DEP switch after a
previous deposit into a memory location causes the current contents
of the Switch Register to be deposited into the next location in memo­
ry.

In each case, the Address Display is updated by 2 to hold the value of
the now current address. This allows consecutive EXAM operations
and consecutive DEP operations without the use of the LOAD ADRS
switch. An EXAM-STEP or DEP-STEP operation will not cross a 32K
word memory block boundary.

NOTE
The EXAM and DEP switches are coupled to enable
an EXAM-DEP-EXAM sequence to be carried out
on a location without having to do extra LOAD ADRS
operations. The following example deposits values
into consecutive memory locations.

Operation
(Activate Switch)
LOADADRS
EXAM

Location shown In
ADDRESS Display
X
X

DEP X
EXAM X

328

Operation
(Activate Switch)

EXAM (result is
EXAM-STEP)

DEP
EXAM

GENERAL REGISTERS

PDP-11170

Location shown In
ADDRESS Display

X+2

X+2
X+2

The General Registers can be examined and deposited using the EX­
AM and DEP Switches provided the previous LOAD ADRS operation
loaded the Address Display with a "register address."

Address
17777700

17777705
17777706
17777707
17777710

Register
Register 0 (Set 0)

Register 5 (Set 0)
Register 6, Kernel Mode
Program Counter
Register 0 (Set 1)

17777715 Register 5 (Set 1)
17777716 Register 6, Supervisor Mode
17777717 Register 6, User Mode
Examining and depositing into General Register Addresses is inde­
pendent of the ADDRESS Select switch. It is not possible to be
mapped to a General Register.

EXAM-STEP and DEP-STEP operations can be performed on the
General Registers, similar to that for memory locations, except that:
a) ADDRESS Display is incremented by 1 (instead of 2)

329

PDP-11170

b) The STEP after address 17 777 717 is 17 777 700, such that the
addresses are looped.

c) It is not possible to STEP up to the first General Register (17 777
700) from 17 777 676

SINGLE INSTRUCTION/SINGLE BUS CYCLE
Once the machine is halted, a useful debugging tool is being able to
execute code, a small segment at a time. The S INST /S BUS CYCLE
(Single Instruction/Single Bus Cycle) switch provides that capability.
The ENABLE/HALT switch must be in the HALT position. To start
execution of a segment depress the CaNT switch. How much is exe­
cuted is a function of the S INST /S BUS CYCLE switch.

Position
SINST

S BUS CYCLE

Depressing the CaNT Switch will result in
the execution of one instruction. This
means that the machine state can be deter­
mined· after each instruction. Examining
and depositing into memory locations is a
method of accomplishing this. The contents
of the DATA Display Lights are not neces­
sarily meaningful.

For this mode to have any meaning, the DA­
T A Select switch should be selecting the
BUS REG (Bus Register). Depressing the
CaNT Switch will execute until the end of
the next bus cycle. The Address Display
Lights will then contain the address of the
location at which the bus cycle was per­
forming. (Virtual or Physical, depending on
the position of the ADDRESS Select switch).
The DATA Display Lights, on a read opera­
tion, will contain the data that was read (this
could be an instruction or data). During a
write operation, the lights will contain the
data just written (except during a stack op­
eration or Floating Point Instruction).

Examine and deposit operations cannot be
used in this mode. Depressing the LOAD
ADRS, EXAM, or DEP switch will not cause
anything to happen. If an examine or depo­
sit operation is desired, the S INST /S BUS
CYCLE switch should be changed to select

330

PDP-11170

S INST and the CONT switch should be
depressed once. (This will cause execution
until the end of the current instruction). The
system will then be ready to perform an ex­
amine or deposit.

FUNCTIONS OF SWITCHES & INDICATORS

Power Switch
OFF

POWER

LOCK

Control Switches

Power to the processor is OFF.

Power to the processor is ON, and all con­
sole switches function normally.

Power to the processor is ON, but the seven
control switches LOAD ADRS through
START are disabled. All other switches are
functional.

When a LOAD ADRS switch is depressed, the contents of the Switch
Register are loaded into the ADDRESS Display. The address dis­
played in the Address Display Lights is a function of the position of the.
ADDRESS Select switch.

EXAM (Examine)
Depressing the EXAM switch causes the contents of the current loca­
tion specified in the Address Display to be displayed in the DATA
Display Register when the DATA Select switch is in the DATA PATHS
position. The address in the Address Display will be mapped or un­
mapped depending on the position of the ADDRESS Select switch.
The location displayed in the Address Display Lights is also a function
of that switch.

DEP (Deposit)
Raising the DEP switch causes the current contents of the Switch
Register to be deposited into the address specified by the current
contents of the Address Display.

The address in the Address Display will be mapped or unmapped
depending on the position of the ADDRESS Select switch. The location
displayed in the Address Display Lights is ·also a function of that
switch.

CONT (Continue)
Depressing the CO NT switch causes the CPU to resume execution.
The CO NT switch has no effect when the CPU is in RUN state.

331

PDP-11170

ENABLE/HAL T
The ENABLE/HALT switch is a two position switch used to stop ma­
chine execution and to enable the system to run.

S INST/S BUS CYCLE (Single Instruction/Single Bus Cycle)
The S INST /S BUS CYCLE switch affects only the operation of the
CONT switch. It controls whether the machine stops after instructions
or bus cycles. This switch has no effect on any switches when the
ENABLE/HAL T switch is set to ENABLE.

START
The functions of the START switch depend on the setting of the EN­
ABLE/HAL T switch as follows:

ENABLE
HALT

Starts execution
Clears the computer system

Switch Register
The switches are used to manually load data or an address into the
processor, as determined by the control switches and the ADDRESS
Select switch.

Note that bits 0 to 15 of the current setting of the Switch Register may
be read under program control from a read-only register at address
17777570.

Lamp Test
The Lamp Test switch (which is not labeled) is located between the
Switch Register and the LOAD AQRS switch. It is used for mainte­
nance purposes. When the Lamp Test switch is raised, all console
indicator lights should go on. An indicator which does not light is
defective and should be replaced.

Address Select Switch

VIRTUAL (6-position for User,
Supervisor, & Kernel)

CONS PHY (Console Physical)

PROG PHY (Program Physical)

332

Uses a 16-bit Virtual Address
where bits 16 to 21 are always
OFF

Uses a 22-bit Physical Address to
perform console operations (e.g.,
LOAD ADRS, EXAM, & DEP).

Displays the 22-bit Physical Ad­
dress of the current bus cycle
that was generated by the Memo­
ry Management Unit.

PDP-11170

Address Display
The ADDRESS Display lights are used to show the address of data
being examined or just deposited. The address is interpreted as a
Virtual or Physical Address as determined by the ADDRESS Select
switch.

Data Select Switch

DATA PATHS

BUS REG

J.tADRS FPP/CPU

DISPLAY REGISTER

Data Display

The normal display mode, shows examined
or deposited data.

The internal CPU register used for bus cy­
cles.

The ROM address, FPP control micropro­
gram (bits 15 to 8) and the CPU control mi­
croprogram (bits 7 to 0).

The contents of the Display Register. This
has an address of 17777570.

The Data Display lights are used to show the 16-bit word data just
examined or deposited, or other data within the CPU. The PARITY
HIGH & LOW lights indicate the parity bit for the respective bytes on
read operations; on write operations the bits are off. The interpretation
of the data is determined by the DATA Select switch.

Status Indicator Lights
ERROR INDICATORS

PAR ERR

ADRS ERR

PROCESSOR STATE

RUN

Lights to indicate a parity error during a
reference to memory.

Lights to indicate any of the following ad­
dressing errors:
a) Reference to non-existent memory
b) Access control violation
c) Reference to unassigned memory

pages

The CPU i~ executing program instructions.
If the instruction being executed is a WAIT
instruction, the RUN light will be on. The
CPU will proceed from the WAIT on receipt
of an external interrupt, or on console inter­
vention.

333

PAUSE

MASTER

MODE

USER

SUPER
(Supervisor)

KERNEL

DATA

ADDRESS

16 bit

18 bit

22 bit

PDP-11170

The CPU is inactive because the current in­
struction execution has been completed as
far as possible without more data from the
UNIBUS or memory, or the CPU is waiting
to regain control of the the UNIBUS (UNI­
BUS mastership).

The CPU is in control of the UNIBUS (UNI­
BUS Master only when it needs the
UNIBUS). The CPU relinquishes control of
the UNIBUS during DMA and NPR data
transfers.

The CPU is executing program instructions
in User mode.

The CPU is executing program instructions
in Supervisor mode.

The CPU is executing program instructions
in Kernel mode.

If on, the last memory reference was to D
address space in the current CPU mode. If
off, the last memory reference was to I ad­
dress space in the current mode.

Lights when the CPU is using 16-bit
mapping.

Lights when the CPU is using 18-bit
mapping.

Lights when the CPU is using 22-bit
mapping.

M9301-YC, -YH/M9312 BOOTSTRAP LOADER

Features
• Contains bootstrap routines for a wide range of storage media

• Allows bootstrapping of any drive unit on a particular controller

• Runs diagnostic programs to test the basic CPU, Cache, and Main
Memory

• Allows booting to selected physical memory segments in 32K incre­
ments

334

PDP-11170

• Switch-selectable default loading device

Description
The M9312 and M9301-YC, -YH are dedicated diagnostic bootstrap
loaders for use with the PDP-11 170. They contain a ROM organized as
512 16-bit words which are separated into hardware verification pro­
grams and bootstrap routines. They are double-height extended mod- '
ules which occupy rows E and F of slot one in the PDP-11/70 CPU.

DIAGNOSTICS (M9312)
The M9312 provides basic diagnostic tests for the CPU, memory, and
cache when used with PDP-11/60 and PDP-11/70 computers. All
diagnostic tests reside in ROM (read-only memory) locations 765000
through 765776 (console emulator routine is eliminated.) These diag­
nostics test the basic CPU including the branches, the registers, all
addressing modes, and many of the instructions in the PDP-11 reper­
toire. Memory from virtual address 1000 to the highest available ad­
dress up to 28K will also be checked. After main memory has been
verified, with the cache off, the cache memory will be tested to verify
that hits occur properly. Main memory will be scanned again to ensure
that the cache is working properly throughout the 28K of memory to be
used in the boot operation. If one of the cache memory tests fails, the
operator can attempt to boot the system anyway by pressing CONTIN­
UE. This will cause the program to force misses in both groups of the
cache before going to the bootstrap section of the program. The
following is a list of M9312 diagnostic tests.

TEST 1 This test verifies the unconditional branch.

TEST 2

TEST 3

TEST 4

TEST 5

TEST 6

TEST?

TEST 10

TEST 11

TEST 12

TEST 13

TEST 14,

Test CLR, MODE 0, and BMI, BVS, BHI, BL T, BLOS

Test DEC, MODE 0, and BPL, BEQ, BGE, BLE

Test ROR, MODE 0, and BVC, BHIS, BNE

Test register data path.

Test ROL, BCC, BL T

Test ADD, INC, COM, and BCS, BLE

Test ROR, DEC, BIS, ADD, and BLO

Test COM, BIC, and BGT, BLE

Test SWAB, CMP, BIT, and BNE, BGT

Test MOVB, SOB, CLR, TST and BPL, BNG

Test JSR, RTS, RTI, and JMP

335

TEST 15

TEST 16

TEST 17

PDP-11170

Test main memory from virtual 001000 to last ad­
dress. Cache memory diagnostic tests.

Test cache data memory.

Test memory with the data cache on.

DIAGNOSTICS (M9301-YC, -YH)
The diagnostic portion of the program will test the basic CPU, includ­
ing the branches, the registers, all addressing modes, and most of the
instructions in the PDP-11 repertoire. It will then set the stack pOinter
to kernel D-space PAR 7. It will also turn on, if requested, memory
management and the UNIBUS map, and will check memory from virtu­
al address 1000 to 157776. After main memory has been verified, with
the cache off, the cache memory will be tested to verify that hits occur
properly. Main memory will be scanned again to ensure that the cache
is working properly throughout the 28K of memory to be used in the
boot operation.

If one of the cache memory tests fails, the operator can attempt to boot
the system anyway by pressing CONTINUE. This will cause the pro­
gram to force misses in both groups of the cache before going to the
bootstrap section of the program.

A listing of the M9301-YC, -YH diagnostic tests follows.

TEST 1 This test verifies the unconditional branch

TEST 2

TEST 3

TEST4

TEST 5

TEST 6

TEST 7

TEST 10

TEST 11

TEST 12

TEST 13

TEST 14

TEST 15

TEST 16

TEST 17

Test CLR, MODE 0, and BMI, BVS, BHI, BLOS

Test DEC, MODE 0, and BPL, BEQ, BGE, BGT, BLE

Test ROR, MODE 0, and BVC, BHIS, BHI, BNE

Test BHI, BL T, and BLOS

Test BLE and BGT

Test register data path and modes 2, 3, 6

Test ROL, BCC, BL T, and MODE 6

Test ADD, INC, COM, and BCS, BLE

Test ROR, BIS, ADD, and BLO, BGE

Test DEC and BLOS, BL T

Test COM, BIC, and BGT, BGE, BLE

Test ADC, CMP, BIT, and BNE, BGT, BEQ

Test MOVB, SOB, CLR, TST and BPL, BNE

Test ASR, ASL

336

TEST 20

TEST 21

TEST 22

TEST 23

TEST 24

TEST 25

TEST 26

TEST 27

PDP-11170

Test ASH, and SWAB

Test 16 Kernel PARs

Test and load KiPDRs

Test JSR, RTS, RTI, and JMP

Load and turn on memory management and the
UNIBUS map

Test main memory from virtual 1 000 to 28K

Test cache data memory

Test virtual28K with cache on

ERROR RECOVERY
If the processor halts in one of the two cache tests, the error is
recoverable. By pressing CONTINUE, the program will either attempt
to finish the test (if at either 17 773 644 or 17 773 736) or force misses
in both groups of the cache and attempt to boot the system monitor
with the cache fully disabled (if at 17 773 654, 17 773 746, or 17 773
764). The run time for this program is approximately three seconds.

337

PDP-11170

339

340

CHAPTER 11

FLOATING POINT PROCESSORS

The floating point processor is an option available for all members of
the PDP-11 family except the 11/03 and 11/04. A floating point proc­
essor (FPP) is much faster and more effective for high speed numeri­
cal data handling than software floating point routines. Users who are
programming in FORTRAN, BASIC, and APL find that the FPP gives
them the speed and capability that they require for data and number
manipulation.

There are four FPPs available for the PDP-11 family: the FP11-A, used
with the PDP-11/34A; the FP11-C~ used with the PDP-11/70; the FP11-
E, used with the PDP-11/60; and the FP11-F, used with the PDP-
11/44. .

FPPs perform all floating point arithmetic operations and convert data
between integer and floating point formats.

Features of the floating point processors are:

• 17-digit precision in 64-bit mode, 8 in 32-bit mode
• overlapped operation with the central processor (FP11-C and FP11-

E)

• high speed operation
• single and double precision (32- or 64-bit) floating point modes

• flexible addressing modes
• six 64-bit floating point accumulators

• error recovery aids

ARCHITECTURE
The floating point processors contain scratch registers, a floating ex­
ception address pOinter (FEA), a program counter, a set of status and
error registers, and s'ix general purpose accumulators, ACO-ACS.

The accumulators are 32 or 64 bits long, depending on the instruction
and on the FPP status. In a 32-bit instruction, only the left-most 32 bits
are used.

The six floating point accumulators are used in numeric calculations
and in inter-accumulator data transfers. The first four accumulators
(ACO-AC3) are also used for all data transfers between the FPP and
the general registers, or memory.

341

Floating Point Processors

r----~~----------I

A

AC@

ACI

AC2

AC3

AC4

AC5

ACCUM~LATOR I
I 32 BIT

EXC~~~ION CCUMULATOR
f-

FPP

I ~ CODE STATUS

REGISTER REGISTER
I

I I I
I

FLOATING POINT
ARITHMETIC I

-- AND
I CONVERSION

UNIT I

I I SCRATCH

I
PROGRAM POINTER I TO LAST

INSTRUCTION I CAUSING ERROR

FLOATING POINT PROCESSOR I '--------------------'

uor'
CENTRAL

PROCESSOR
ARITHMETIC

AND
LOGICAL

UNIT

MEMORY

Figure 11-1 Floating Point Processor

OPERATION

CPU
- PROCESSOR

STATUS

CPU
- GENERAL

REGISTER

A floating point processor functions as an integral part of the central
processor. It operates using similar address modes, and using the
same memory management facilities provided by the memory man­
agement option. FPP instructions can reference the floating point
accumulators, the central processor's general registers, or any loca­
tion in memory.

The FP11-C and the FP11-E overlap operation with the central proces­
sor. When an FPP instruction is fetched from memory, the FPP will
execute that instruction in parallel with the CPU as the CPU continues
its instruction sequence. The CPU is delayed a very short period of
time during the FPP instruction fetch operation, and then is free to
proceed independently of the FPP. The interaction between the two
processors is automatic, permitting a program to take full advantage
of the parallel operation of the two processors, by the intermixing of
FPP and CPU instructions. This is all accomplished by the hardware of
the processors. When an FPP instruction is encountered in a program,
the CPU first initiates floating point handshaking and calculates the
address of the operand. It then checks the status of the FPP. If the FPP
is busy, the CPU waits until it receives a done signal before continuing
execution of the program. For example:

LDD(R3)+,AC3 ;Pick up constant operand and
;place it in AC3

342

Floating Point Processors

ADDLP: LDD(R3)+,ACO

MULAC3,ACO

ADDD ACO,AC1
SOB R5,ADDLP
STCDI AC1 @R4

;Load ACO with next value
;in table
;and multiply by constant
;inAC3
;and add the result into AC1
;check to see whether done
;done, convert double
;to integer and store.

In this example, the FPP executes the first three instructions. After the
ADD is fetched into the FPP, the CPU will execute the SOB, calculate
the effective address of the STCDI instruction, and then wait for the
FPP to be done with the ADDD before continuing past the STCDI
instruction. Autoincrement and autodecrement addressing automati­
cally adds or subtracts the correct amount to the contents of the regis­
ter, depending on the modes represented by the instruction.

FLOATING POINT DATA FORMATS
A floating point number is defined as having the form (2**K)f, where K
is an integer and f is a fraction. For a non-vanishing number, K and f
are uniquely determined by imposing the condition 1 12;:5;f< 1. The
fractional part, f, of the number is said to be normalized. For the
number zero, f must be assigned the value 0, and the value of K is
indeterminate.

The FPP data formats are derived from this mathematical representa­
tion for floating point numbers. Two types of floating point data are
provided: single precision, or floating mode,. where the word is 32 bits
long; and double precision, or double mode, where the word is 64 bits
long. Sign magnitude notation is used.

Non-Vanishing Floating Point Numbers
The fractional part f is assumed normalized, so that its most significant
bit must be 1. This 1 is the hidden bit; it is not stored in the data word,
but the hardware restores it before carrying out arithmetic operations.
The floating and double modes reserve 23 and 55 bits respectively for
f, which with the hidden bit imply effective word lengths of 24 bits and
56 bits for precise arithmetic operations.

Eight bits are reserved for the storage of the exponent K in excess 128
(2008) notation (Le., as K+2008). Thus exponents from -128 to +127
can be represented by 0 to 3778, or 0 to 25510' For reasons given
below, a biased EXP of 0 (true exponent of -2008 is reserved for
floating point zero. Thus exponents are restricted to the range -127 to
+127 inclusive (-1178 to 1778) or, in excess 2008 notation, 1 to 3778,
The remaining bit of the floating point word is the sign bit.

343

Floating Point Processors

Floating Point Zero
Because of the hidden bit, the fractional part is not available to distin­
guish between zero and non-vanishing numbers whose fractional part
is exactly 1/2. Therefore, the FPP reserves a biased exponent of 0 for
this purpose. Any floating point number with biased exponent of 0
either traps or is treated as if it w~re an exact 0 in arithmetic opera­
tions. An exact zero is represented by a word in which the bits are all
Os. An arithmetic operation in which the resulting true exponent
exceeds 1778 is regarded as producing a floating overflow; if the true
exponent is less than -1778 the operation is regarded as producing a
floating underflow. A biased exponent of 0 can thus arise from ar­
ithmetic operations as a special case of underflow (true exponent = 0).
Recall that only eight bits are reserved for the biased exponent. The
fractional part of the results obtained froni such overflows and under­
flows is correct.

The Undefined Variable
The undefined variable is any bit pattern with a sign bit of one and a
biased exponent of zero. The term undefined variable is used to indi­
cate that these bit patterns are not assigned a corresponding floating
point arithmetic value. An undefined variable is frequently referred to
as "-0" elsewhere in this chapter.

The FPP design assures that the undefined variable will not be stored
as the result of any floating point operation in a program run with the
overflow and underflow interrupts disabled. This is achieved by stor­
ing an exact zero on overflow or underflow, if the corresponding
interrupt is disabled. This feature, together with an ability to detect a
reference to the undefined variable, is intended to provide the user
with a debugging aid. If a -0 is generated, it is not a result of a
previous floating point arithmetic instruction.

FLOATING POINT DATA
Floating point data is stored in words of memory as illustrated below.

F Format, single precision

344

Floating Point Processors

D Format, double precision

:,:1,4
EXP FR I-I I I I I I , I ! ! !

7 6 a 15

LI II
TI 1.--1 , , , , .,

AC
, ! !

ON
, , !

15 a 15 a

S = Sign of fraction
EXP = Exponent in excess 200 notation, restricted to 1 to 377 octal for

~

non-vanishing numbers.
FRACTION = 23 bits in F Format, 55 bits in D Format, + one hidden bit
(normalization). The binary radix pOint is to the left.

The FPP provides for conversion of floating point to integer format and
vice-versa. The processor recognizes single precision integer (I) and
double precision integer long (L) numbers, which are stored in stan­
dard 2's complement form:

I Format

L Format

NUM BER
I , , ! , !

1514 a 15 a

where

S = Sign of number
NUMBER = 15 bits in I Format, 31 bits in L Format.

FLOATING POINT UNIT STATUS REGISTER (FPS REGISTER)
This register provides mode and interrupt control for the floating point
unit, and conditions resulting from the execution of the previous in­
struction.

Four bits of the FPS register control the modes of operation:

• Single/Double: Floating point numbers can be either single or dou­
ble precision.

345

Floating Point Processors

• Long/ShOrt: Integer numbers can be 16 bits or 32 bits.

• Chop/Round: The result of a floating point operation can be either
chopped or rounded. The term chop is used instead of truncate in
order to avoid confusion with truncation of series used in approxi­
mations for function subroutines.

• Normal/Maintenance: A special maintenance mode is available on
the FP11-C and FP11-E. .

The FPS register contains an error flag and four condition codes (5
bits): carry, overflow, zero, and negative, which are equivalent to the
CPU condition codes.

The floating point processor recognizes seven floating point
exceptions:

• detection of the presence of the undefined variable in memory

• floating overflow
• floating underflow
• failure of floating to integer conversion

• maintenance trap
• attempt to divide by zero

• illegal floating OP code

For the first five of these exceptions, bits in the FPS register are avail­
able to enable or disable interrupts individually. An interrupt on the
occurrence of either of the last two exceptions can be disabled only by
setting a bit which disables interrupts on all seven of the exceptions as
a group.

Of the fourteen bits described above, five, the error flag and condition
codes, are set by the FPP as part of the output of a floating point
instruction. Any of the mode and interrupt control bits (except the
FP11-C and FP11-E, FMM bit) may be set by the user; the LDFS
instruction is available for this purpose. These fourteen bits are stored
in the FPS register as follows:

Name Bit
15 Floating Error (FER)

Description
The FER bit is set by the FPP if:
1. Division by zero occurs.
2. Illegal OP code occurs.
3. Anyone of the remaining occurs and the corressponding interrupt

is enabled.

346

Floating Point Processors

Note that the above action is independent of whether the FID bit (next
item) is set or clear.

Note also that the FPP never resets the FER bit. Once the FER bit is set
by the FPP, it can be cleared only by an LDFPS instruction or by the
RESET instruction. This means that the FER bit is up-to-date only if the
most recent floating point instruction produced a floating point excep­
tion.

Bit
14

Name
Interrupt Disable (FID)

Description
If the FID bit is set, all floating point interrupts are disabled. Note that if
an individual interrupt is simultaneously enabled, only the interrupt is
inhibited; all other actions associated with the individual interrupt en­
abled take place.

Bit
13

Bit
12

Bit
11

NOTE
The FID bit is primarily a maintenance feature. Nor­
mally, it should be' clear. In particular, it must be
clear if you wish to assure that storage of -0 by the
FPP is always accompanied by an interrupt.

Through the rest of this chapter, it is assl'."1'led that
the FID bit is clear in all discussions involving
overflow, underflow, occurrence of -0, and integer
conversion errors.

Name
Not Used

Name
Not Used

Name
Interrupt on Undefined Variable (FIUV)

Description
An interrupt occurs if FIUV is set and a -0 is obtained from memory as
an operand of ADD, SUB, MUL, DIV, CMP, MOD, NEG, ABS, TST, or
any LOAD instruction. The interrupt occurs before execution except
on NEG and ABS instructions. For these instructions, the interrupt
occurs after execution. When FIUV is reset, -0 can be loaded and
used in any FPP operation. Note that the interrupt is not activated by
the presence of -0 in an AC operand of an arithmetic instruction. In
particular, trap on -0 never occurs in mode o.

347

Floating Point Processors

The FPP will not store a result of -0 without the simultaneous occur­
rence of an interrupt.

Bit Name
10 Interrupt on Underflow (FlU)

Description
When the FlU bit is set, floating underflow will cause an interrupt. The
fractional part of the result of the operation causing the interrupt will
be corrected. The biased exponent will be too large by 4008 , except for
the special case of 0, which is correct.. An exception is discussed in the
detailed description of the LDEXP instruction.

If the FlU bit is reset and if underflow occurs, no interrupt occurs and
the result is set to exact O.

Bit
9

Description

Name
Interrupt on Overflow (FIV)

When the FIV bit is set, floating overflow will cause an interrupt. The
fractional part of the result of the operation causing the overflow will
be correct. The biased exponent will be too small by 4008 •

If the FIV bit is reset, and overflow occurs, there is no interrupt. The
FPP returns exact O. Special cases of overflow are discussed in the
detailed descriptions of the MOD and LDEXP instructions.

Bit Name
8 Interrupt on Integer Conversion Error (FIC)

Description
When the FIC bit is set, and a conversion to integer instruction fails, an
interrupt will occur. If the interrupt occurs, the destination is set to 0,
and all other registers are left uliltouched.

If the FIC bit is reset, the result of the operation will be the same as
explained above, but no interrupt will occur.

The conversion instruction fails if it generates an integer with more bits
than can fit in the short or long integer word specified by the FL bit
(see bit 6 below).

Bit
7

Description

Name
Floating Double Precision Mode (FL)

Determines the precision that is used for floating point calculations.
When set, double precision is selected; when reset, single preCision is
used.

348

Bit
6

Description

Floating Point Processors

Name
Floating Long Integer Mode (FL)

Active in conversion between integer and floating point format. When
set, the integer format selected is double precision 2's complement
(Le., 32 bits). When reset, the integer format is assumed to be single
precision 2's complement (Le., 16 bits).

Bit Name
5 Floating Chop Mode (FT)

Description
When bit FT is set, the result of any arithmetic operation is chopped
(or truncated).

When reset, the result is rounded.

Bit Name
4 Floating Maintenance Mode (FMM)

(FP11-C and FP11-E)

Description
This mode is a maintenance feature. Refer to the maLntenance manual
for the details of its operation. The FMM bit can be set only in kernel
mode.

Bit
3

Description

Name
Ploating Negative (FN)

FN is set if the result of the last operation was negative, otherwise it is
reset.

Bit
2

Description

Name
Floating Zero (FZ)

FZ is set if the result of the last operation was zero; otherwise it is reset.

Bit Name
1 Floating Overflow (FV)

Description
FV is set if the last operation resulted in an exponent overflow; other­
wise it is reset.

Bit
o
Description

Name
Floating Carry (FC)

FC is set if the last operation resulted in a carry of the most significant
bit. This can occur only in floating or double to integer conversions.

349

Floating Point Processors

FLOATING EXCEPTION CODE AND ADDRESS REGISTERS
One interrupt vector is assigned to take care of all floating point ex­
ceptions (location 244). The seven possible errors are coded in the 4-
bit FEC (Floating Exception Code) register as follows:

2 Floating OP code error
4 Floating divide by zero
6 Floating (or double) to integer

8
11
12
14

conversion error
Floating overflow
Floating underflow
Floating undefined variable
Maintenance trap

The address of the instruction producing the exception is stored in the
FEA (Floating Exeception Address) register.

The FEe and FEA registers are updated when one of the following
occurs:

• divide by zero
• illegal OP code
• any of the other five exceptions with the corresponding interrupt

enabled

If one of the five exceptions occurs with the corresponding interrupt
disabled, the FEC and FEA are not updated. Inhibition of interrupts by
the FlO bit does not inhibit updating of the FEe and FEA, if an excep­
tion occurs. The FEC and FEA are not updated if no exception occurs.
This means that the STST (store status) instruction will return current
information only if the most recent floating point instruction produced
an exception. Unlike the FPS register, no instructions are provided for
storage into the FEC and FEA registers.

FLOATING POINT PROCESSOR INSTRUCTION ADDRESSING
Floating pOint processor instructions use the same type of addressing
as do the central processor instructions. A source or destination
operand is specified by designating one of eight addressing modes
and one of eight central processor general registers to be used in the
specified mode. The modes of addressing are the same as those of
the central processor except for mode O. In mode 0 the operand is
located in the designated floating point processor accumulator, rather
than in a central processor general register. The modes of addressing
are:

o = Direct Accumulator
1 = Deferred
2 = Autoincrement

350

Floating Point Processors

3 = Autoincrement deferred
4 = Autodecrement
5 = Autodecrement deferred
6 = Indexed
7 = Indexed deferred

Autoincrement and autodecrement operate on increments and decre­
ments of 4 for F Formatand 10 for 0 Format.

In mode 0, you can use all.six FPP accumulators (ACO-AC5) as your
source or destination. In all other modes, which involve transfer of
data from memory or the general register, you are restricted to the first
four FPP accumulators (ACO-AC3).

In immediate addressing (mode 2, R7) only 16 bits are loaded or
stored.

ACCURACY
This section contains some general comments on the accuracy of the
FPP. The descriptions of the individual instructions include their accu­
racy. An instruction or operation is regarded as exact if the result is
identical to an infinite precision calculation involving the same oper­
ands. All arithemetic instructions treat an operand whose biased
exponent is 0 as an exact 0 (unless FIUV is enabled and the operand is
-0, in which case an interrupt occurs). For all arithmetic operations,
except DIV, a zero operand implies that the instruction is exact. The
same statement applies to DIV if the zero operand is the dividend, but
if it is the divisor, division is undefined andbn interrupt occurs.

For non-vanishing floating point operands, the fractional part is binary
normalized. It contains 24 bits for floating mode and 56 bits for double
mode. The internal hardware registers contain 60 bits for processing
the fractional parts of the operands, of which the high order bit is
reserved for arithmetic overflow. There are, internally, 35 guard bits
for floating mode and 3 guard bits for double mode arithmetic opera­
tions. For ADD, SUB, MUL, and DIV, two guard bits are necessary and
sufficient to guarantee return of a chopped or rounded result identical
to the corresponding infinite precision operation, chopped or rounded
to the specified word length. Thus, with two guard bits, a chopped
result has an error bound of one least significant bit (LSB), a rounded
result has an error bound of 1/2 LSB. To obtain the corresponding
statements on accuracy for a radix other than 2, replace references to
bit in the two preceding sentences with the word digit. These error
bounds are realized for most instructions. For the addition of oper­
ands of opposite sign or for the subtraction of operands of the same
sign in rounded double precision, the error bound is 3/4 LSB (FP11-C

351

Floating Point Processors

and FP11-E), or 33/64 (FP11-A, and FP11-F) which is slightly larger
than the 1/2 LSB error bound for all other rounded operations.

The error bound for the FP11-C differs from the FP11-A, since the
FP11-C and FP11-E carry three guard bits while the FP11-A and FP11-
F carry seven guard bits.

In the rest of this chapter, an arithmetic result is called exact if no non­
vanishing bits would be lost by chopping. The first bit lost in chopping
is referred to as the rounding bit. The value of a rounded result is
related to the chopped result as follows:

• If the rounding bit is one, the rounded result is the chopped result
incremented by an LSB (least significant bit).

• If the rounding bit is zero, the rounded and chopped results are
identical.

It follows that:

• If the result is exact
rounded value = chopped value = exact value

• If the result is not exact, its magnitude
is always decreased by chopping

is decreased by rounding if the rounding bit is zero
is increased by rounding if the rounding bit is one

Occurrence of floating point overflow and underflow is an error condi­
tion. The result of the calculation cannot be correctly stored because
the exponent is too big to fit into the eight bits reserved for it. However,
the internal hardware produces the correct answer. For the case of
underflow, replacement of the correct answer by zero is a reasonable
resolution of the problem for many applications. This is done on the
FPP if the underflow interrupt is disabled. The error incurred by this
action is an absolute rather than a relative error. It is bounded (in
absolute value) by 2-128• There is no such simple resolution for the
case of overflow. The action taken, if the overflow interrupt is disabled,
is described under FIV (bit 9).

The FIV and FlU bits (of the floating point status word) provide you with
an opportunity to implement your own fix-up of an overflow or under­
flow condition. If such a condition occurs and the corresponding
interrupt is enabled, the hardware stores the fractional part and the
low eight bits of the biased exponent. The interrupt will take place and
you can identify the cause by examination of the FV (floating overflow)
bit or the FEC (floating exception) register. You can readily verify that
(for the standard arithmetic operations ADD, SUB, MUL, and DIV) the
biased exponent returned by the hardware bears the following relation
to the correct exponent generated by the hardware:

352

Floating Point Processors

• on overflow: it is too small by 4008

• on underflow: if the biased exponent is 0, it is correct. If it is not 0, it
is too large by 4008

Thus, with the interrupt enabled, enough information is available to
determine the correct answer. You may, for example, rescale your
variables (via STEXP and LDEXP) to continue your calculation. Note
that the accuracy of the fractional part is unaffected by the occurrence
of underflow or overflow.

FLOATING POINT INSTRUCTIONS
Each instruction that references a floating point number can operate
on either floating or double precision numbers, depending on the
state of FD mode bit. Similarly, there is a mode bit FL that determines
whether 32-bit integers (FL = 1) or 16-bit integers (FL =0) are used in
conversion between integer and floating point representation. FSRC
and FDST use floating pOint addressing modes; SRC and DST use
CPU addressing modes.

In the descriptions of the floating point instructions, the operations of
the FP11-A, FP11-E, FP11-F, and FP11-C are identical, except where
explicitly stated otherwise.

Floating Point Instruction Format
Mnemonic Description

OC Op Code = 17

FOC

AC

FSRC, FDST

SRC,DST

f

XL

XLL

XUL

JL

Floating Op Code

Accumulator

Use FPP Address Modes

Use CPU Address Modes

Fraction

Largest fraction that can be represented:
1-2**(-24), FD=O, single precision
1-2**(-56), FD= 1, double precision

Smallest number that is not identically zero
= 2**(-128)-2** (-127))*J(%)

Largest number that can be represented =
2**(127)*XL

Largest integer that can be represented:
2**(15)-1 if FL=O 2**(31)-1 if FL=1

353

Mnemonic

ABS (address)

EXP (address)

<

>

LSB

Mnemonlc/
Name
ABSF
ABSD'
Make Abso­
lute Float­
ing/Double

Description:

Interrupts:

Accuracy:

Special
Comments:

Mnemonlc/
Name
ADDD
Add Float­
ing/Double

Floating Point Processors

Description

Absolute value of (address)

Biased exponent of (address)

Less than

Less than or equal

Greater than

Greater than or equal

Least significant bit

Code
1706FDST

Operation
If (FDST) < 0 FDST
+- - (FDST).
If EXP (FDST) = 0,
FDST +- exact O.
For all other cases,
FDST +- (FDST).

Condition
Codes
FC +-0.
FV +-0.
FZ +-1 if
EXP(FDST) = 0,
else FZ+-O.
FN +-0

Set the contents of FDST to its absolute value.

If FIUV Is set; trap on -0 occurs after execution.

Overflow and underflow cannot occur.

These instructions are exact.

If a -0 is present In memory and the FIUV bit is
enabled, then the FP11-E and integral floating point
unitstore exact 0 in memory (zero exponent, zero
fraction, and positive sign). The condition code re­
flects an exact 0 (FZ +-1).

Code
172ACFS­
RO

Operation
Let SUM = (AC) +
(FSRC):
If underflow occurs
and FlU is not en­
abled, AC +- exact
O.

354

Condition
Codes
Fe +-0.
FV +-1 if over­
flow occurs, else
FV +-0.
FZ +- 1 if (AC) =
0, else FZ +- O.

Mnemonic/
Name

Description:

Interrupts:

Accuracy:

Floating Point Processors

Code Operation
If overflow occurs
and FIV is not en­
abled, AC +- exact
O.
For all other cases,
AC+-SUM.

Condition
Codes

FN +- 1 if (AC) <
0, else FN +- O.

Add the contents of FSRC to the contents of AC. The
addition is carried out in single or double precision
and is rounded or chopped in accordance with the
values of the FD and FT bits in the FPS register. The
result is stored in AC except for:

• overflow with interrupt disabled
• underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in
AC.

If FIUV is enabled, trap on -0 in FSRC occurs before
execution.

If overflow or underflow occurs and if the corres­
ponding interrupt is enabled, the trap occurs with'
the faulty result in AC. The fractional parts are cor­
rectly stored. The exponent part is too large by 400
8 for underflow, except for the special case of 0,
which is correct.

Errors due to overflow and underflow are described
above. If neither occurs, then for oppositely signed
operands with exponent differences of 0 or 1, the
answer returned is exact if a loss of significance of
one or more bits occurs. Note that these are the only
cases for which loss of significance of more than one
bit can occur. For all other cases, the result is inexact
with error bounds of:

• 1 LSB in chopping mode with either single or dou­
ble precision

• 3/4 LSB (FP11-C and E) or 33/64 LSB (FP11-A
and FP11-F) in rounding mode with double preci­
sion

355

Special
Comment:

Mnemonlc/
Name
CFCC
Copy Floating
Condition
Codes

Description:

Mnemonlc/
Name
CLRF
CLRD
Clear Float­
ing/Double

Description:

Interrupts:

Accuracy:

Mnemonlc/
Name
CMPF
CMPD
Compare
Floating/
Double

Description:

Floating Point Processors

The undefined variable -0 can occur only in con­
junction with overflow or underflow. It will be stored
in AC only if the corresponding interrupt is enabled.

Code
170000

Operation
C+-FC
V+-FV
Z+-FZ
N+-FN

Condition
Codes

Copy FPP condition codes into the CPU's condition
codes.

Code
1704FDST

Operation
FDST +- exact 0

Condition
Codes
FC+-O
FV+-O
FZ+-1
FN +-0

Set FDST to O. Set FZ condition code and clear other
condition code bits.

No interrupts will occur. Neither overflow nor under­
flow can occur.

These instructions are exact.

Code
173
(AC+4)
FSRC

Operation
(FSRC) (AC)

Condition
Codes
FC+-O
FV+-O
FZ +- 1 If (FSRC)
- (AC) = 0, else
FZ.-o
FN +- 1 If (FSRC)
- (AC) < 0, else
FN .-0

Compare the contents of FSRC with the accumula­
tor. Set the appropriate floating point condition
codes. FSRJC and accumulator are left unchanged
(see special comment below).

356

Interrupts:

Accuracy:

Special
Comment:

Mnemonlc/
Name
DIVF
DIVD
Divide Float­
ing/Double

Description:

Interrupts:

Floating Point Processors

If FIUV is enabled, trap on -0 occurs before execu­
tion.

These instructions are exact.

An operand which has a biased exponent of zero is
treated as if it were true zero. If both operands have
biased exponents of zero, the accumulator gets a
true zero and, hence, may be modified.

Code
174(AC +
4)FSRC

Operat'on
If EXP(FSRC) = 0,
AC +- (AC): instruc­
tion is aborted.
If EXP(AC) = 0, AC
+-exactO.
For all other cases,
let QUOT =
(AC)/(FSRC):
If underflow occurs
and FI U is not en­
abled AC +- exact O.
For all remaining
cases, AC +- QUOT.

Condition
Codes
FC+-O
FV +-1 if over­
flow occurs, else
FV+-O
FZ +-1 if
EXP(AC) = 0,
else FZ +-0
FN +- 1 if (AC) <
0, else FN +- 0

..

If either operand has a biased exponent of 0, it is
treated as an exact O. For FSRC this would imply
division by zero; in this case the instruction is abort­
ed, the FEC register is set to 4, and an interrupt
occurs. Otherwise the quotient is developed to single
or double precision with enough guard bits for cor­
rect rounding. The quotient is rounded or chopped
in accordance with the values of the FD and FT bits
in the FPS register. The result is stored in AC except
for:
• overflow with interrupt disabled
• underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in
the accumulator.

If FIUV is enabled, trap on -0 in FSRC occurs before
execution.

357

Accuracy:

Special
Comments:

Mnemonic/
Name
LDCDF
LDCFD
Load and
Convert from
Double to
Floating or
from Floating
to Double

Description:

Floating Point Processors

If EXP(FSRC) = 0, interrupt traps on attempt to di­
vide byO.

If overflow or underflow occurs and if the corres­
ponding interrupt is enabled, the trap occurs with
the faulty result in AC. The fractional parts are cor­
rectly stored. The exponent part is too large by
400 8 for underflow, except for the special case of 0,
which is correct.

Errors due to overflow, underflow, and division by 0
are described above. If none of these occurs, the
error in the quotient will be bounded by 1 LSB in
chopping mode and by % LSB in rounding mode.

The undefined variable -0 can occur only in con­
junction with overflow or underflow. It will be stored
in AC only if the corresponding interrupt is enabled.

Code
177(AC+4)
FSRC

Operation
If EXP~FSRC) = 0,
AC +-€'xactO
If FD = 1 , FT = 0,
FIV = 0 and round­
ing causes overflow,
AC +- exact O.
In all other cases AC
+- Cxy (FSRC),
where C xy specifies
conversion from
floating mode x to
floatin,g mode y.
x = D, Y = F if FD =
o (single)
x = F, Y = D if FD =
1 (double)

Condition
Codes
FC+-O
FV +- 1 if conver­
sion produces
overflow, else
FV+-O
FZ +- 1 if (AC) =
0, else FZ +- 0
FN +- 1 if (AC) <
0, else FN +- 0

If the current mode is floating mode (FD = 0), the
source is assumed to be a double precision number
and is converted to single precision. If the floating
chop bit (FT) is set, the number is chopped, other­
wise the number is rounded.

If the current mode is double mode (FD = 1), the
source is assumed to be a single-precision number,

358

Interrupts:

Accuracy:

Special
Comment:

Mnemonic/
Name
LDCIF, LDCID
LDCLF,
LDCLD
Load and
Convert Integ­
er or Long In­
teger to Float­
ing or Double
Precision

Description:

Floating Point Processors

and is loaded left-justified in the AC. The lower half
of the AC is cleared.

If FIUV is enabled, trap on -0 occurs before execu­
tion.

Overflow cannot occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding with
LDCDF causes overflow; AC ~ overflowed result of
conversion. This result must be +0 or -0.

Underflow cannot occur.

LDCFD is an exact instruction. Except for overflow,
described above, LDCDF incurs an error bounded
by one LSB in chopping mode, and by % LSB in
rounding mode.

If (FSRC) = -0, the FZ and FN bits are both set
regardless of the condition of FIUV.

Code
177ACSRC

Operation
AC ~ C jx (SRC),
where
C jx specifies con­
version from integer
mode j to floating
mode x;
j = 1 if FL = 0
j = L if FL = 1
x = F if FD = 0
x = 0 if FD = 1

Condition
Codes
FC~O

FV~O

FZ ~ 1 If (AC) =
0, else FZ~O
FN ~ 1 If (AC) <
0, else FN ~O

Conversion is performed on the contents of SRC
from a 2's complement integer with precision j to a
floating point number of precision x. Note that j and x
are determined by the state of the mode bits FL and
FD: j = I or L, and x = F or D.

If a 32-bit integer is specified (L mode) and (SRC)
has an addressing mode of 0, or immediate address­
ing mode is specified, the 16 bits of the source regis­
ter are left-justified and the remaining 16 bits loaded
with zeros before conversion.

359

Interrupts:

Accuracy:

Mnemonic/
Name
LDEXP
Load
Exponent

I

Floating POint Processors

In the case of LDCLF, the fractional part of the float­
ing point representation is chopped or rounded to 24
bits for FT = 1 and 0 respectively.

Note: SRC is not floating pOint, so trap on -0 cannot
occur.

Overflow and underflow cannot occur.

LDCIF, LDCID, and LDCD are exact instructions. The
error incurred by LDCLF is bounded by 1 LS.B in
chopping mode, and by % LSB in rounding mode.

Code
176(AC+4)
SRC

Operation
Note:177 and 200,
appearing below,
are octal numbers.

If -200<SRC<200,
EXP(AC) +-(SRC) +
200 and the rest of

-AC is unchanged.

If SRC>177 andFIV
is enabled,
EXP(AC) +-(SRC)
<6:0> on FP11-C,
EXP(AC) +­
((SRC)+ 200)
<7:0> on FP11-A,
FP11-E, FP11-F.

If SRC>177 and FIV
is disabled, AC +­
exact O.

If SRC <-177 and
FlU is disabled, AC
+-exactO.

If SRC <-177 and
FlU is enabled,
EXP(AC) +-(SRC)
<6:0> on FP11-C,
EXP(AC) +- ((SRC)
+ 200)
<7:0> on FP11-A,
FP11-E, FP11-F.

360

Condition
Codes
FC +-0.
FV +-1 if
SRC>177, else
FV +-0.
FZ +-1 if
EXP(AC) = 0, else
FZ+-O.
FN +-1 if
(AC)<O, else FN
+-0.

Description

Interrupts:

Accuracy:

Mnemonic/
Name
LDF
LDD
Load Float­
ing/Double

Description:

Interrupts:

Accuracy:

Floating Point Processors

Change AC so that its unbiased exponent = (SRC).
That is, convert (SRC) from 2's complement to ex­
cess 200 notation, and insert in the EXP field of AC.
This is a meaningful operation only if ABS(SRC) ~
177.

If SRC < -177, resu It is treated as overflow. If
SRC<177, result is treated as underflow. Note that
the FP11-C, FP11-F and FP11-A do not treat these
abnormal conditions in exactly the same way.

No trap on -0 in AC occurs, even if FIUVenabled.
If SRC > 177 and FIV enabled, trap on overflow will
occur.
If SRC < -177 and FlU enabled, trap on underflow
will occur.

The answers returned by the FP11-C, FP11-E, FP11-
F, and FP11-A differ for overflow and underflow con­
ditions.

Errors due to overflow and underflow are described
above. If EXP(AC)=O and SRC ~ -200, (AC)
changes from a floating point number treated as 0 by
all floating arithmetic operations to a non-zero num­
ber. This is because the insertion of the "hidden" bit
in the hardware implementation of arithmetic in­
structions is triggered by a non-vanishing value of
EXP.

Code
172(AC+4)
FSRC

Operation
AC +-(FSRC)

Condition
Codes
FC+-O
FV+-O
FZ +- 1 if (AC) =
0, else FZ +- 0
FN +- 1 if (AC) <
0, else FN +- 0

Load single or double precision number into accu­
mulator.

If FIUV is enabled, trap on -0 occurs before AC is
loaded. Neither overflow nor underflow can occur.

These instructions are exact and permit use of -0 in
a subsequent floating point instruction if FIUV is not

361

Mnemonlc/
Name
LDFPS
Load FPP's
Program
Status

Description:

Special
Comment:

Mnemonlc/
Name
MODF
MODD
Multiply and
Integerize
Floating/
Double

Description and
Operation:

Floating Point Processors

enabled and (FSAC) = -0. If (FSAC) = -0, the FZ
and FN bits are both set, regardless of the condition
of FIUV.

Code
1701SAC

Operation
FPS +- (SAC)

Load FPP's status from SAC.

Condition
Codes

On the FP11-C, bits 13 and 12 are ignored. Bit 4 can
be set if the CPU is in kernel mode.

On the FP11-A and FP11-F, the FPS is loaded with
the source. The user is cautioned not to use bits 12
and 13 (in FP11-C, FP11-F, FP11-E, and the FP11-A)
or bit 4 (in the FP11-A and FP11-F) for a special
purpose since these bits are not recoverable by the
STFPS instruction.

Code
171(AC+
4) FSAC

Operation
See below

Condition
Codes
FC+-O
FV +- 1 if PROD
overflows, else
FV+-O
FZ +- 1 if (AC) =
0, else FZ +- 0
FN +- if (AC) < 0,
else FN +-0

This instruction generates the product of its two
floating point operands, separates the product into
integer and fractional parts and then stores one or
both parts as floating point numbers.

Let PROD = (AC)*(FSAC) so that in:
Floating point: ABS(PROD) = (2**K)*f where
1/2.LE.f.LT.1 and EXP(PAOD) = (200+K)s Fixed Point
binary: PROD = N + g, with
N = INT(PROD)=the integer part of PROD
and

362

Floating Point Processors

9 = PROD - INT(PROD) = the fractional part of
PROD with 0 ~ g<1
Both Nand 9 have the same sign as PROD.
They are returned as follows:

If AC is an even-numbered accumulator (0 or 2), N is
stored in AC + 1 (1 or 3), and 9 is stored in AC.

If AC is an odd-numbered accumulator, N is not
stored, and 9 is stored in AC.

The two statements above can be combined as fol­
lows: N is returned to ACv1 and 9 is returned to AC,
where v means .OR.

Five special cases occur, as indicated in the follow­
in~ f;.;rmal description with L = 56 for Double Mode:
1. If PROD overflows and FIV enabled:

ACv1 +- N, chopped to L bits, AC +- exact O.

Note that EXP(N) is too small by 4008 , and that 0
can get stored in ACv1.

If FIV is not enabled: ACv1 +- exact 0, AC +­

exact 0, and -0 will never be stored.
2. If 2**L~ABS(PROD) and no overflow:

ACv1 +- N, chopped to L bits, AC +- exact O.

The sign and EXP of N are correct, but low order
bit information, such as parity, is lost.

3. If 1 ~ABS(PROD)<2**L:

ACv1 +- N, AC +- 9

The integer part N is exact. The fractional part 9
is normalized, and chopped or rounded in ac­
cordance with FT. Rounding may cause return
of ± unity for the fractional part. For L = 24, the
error in 9 is bounded by 1 LSB in chopping
mode and by % LSB in rounding mode. For L=
56, the error in 9 increases from the above limits
as ABS(N) increases above 3 because only 59
bits of PROD are generated:

if 2**pSABS(N)<2**(p + 1), with P > 2,

the low order p - 2 bits of 9 may be in error.
4. If ABS (PROD)<1 and no underflow:

ACv1 +- exact 0, AC +- 9

363

Interrupts:

Accuracy:

Applications:

Floating Point Processors

There is no error inthe integer part. The error in
the fractional part is bounded by 1 LSB in chop­
ping mode and Y2 LSB in rounding mode.
Rounding may cause a return of ± unity for the
fractional part.

5. If PROD underflows and FlU enabled:

ACv1 +- exact 0 AC +- g

Errors are as in Case 4, except that EXP(AC) will
be too large by 4008 (except if EXP = 0, it is
correct). Interrupt will occur and -0 can be
stored in AC.

IF FlU is not enabled, ACv1 +- exact 0 and AC +­
exact O. For this case, the error in the fractional
part is less than 2**(-128).

If FIUV is enabled, trap on -0 in FSRC will occur
before execution.

Overflow and underflow are discussed above.

Discussed above.

1. Binary to decimal conversion of a proper frac­
tion: the following algorithm, using MOD, will
generate decimal digits D(1), D(2) ... from left to
right:

Initialize:

While X "# 0 do

1+-0
X +- number to be
converted:
ABS(X) < 1

Begin PROD +-X*10;
I+-I + 1;
D(I) +-INT(PROD);
X +- PROD - INT(PROD);
END;

This algorithm is exact; it is case 3 in the de­
scription: the number of non-vanishing bits in
the fractional part of PROD never exceeds L,
and hence neither chopping nor rounding can
introduce error.

2. To reduce the argument of a trigonometric func­
tion.

364

Mnemonic/
Name
MULF
MULD
Multiply Float­
ing/Double

Description:

Floating Point Processors

ARG*2/PI = N + g. The low two bits of N identify
the quadrant, and g is the argument reduced to
the first quadrant. The accuracy of N + g is limit­
ed to L bits because of the factor 2/PI. The accu­
racy of the reduced argument thus depends on
the size of N.

3. To evaluate the exponential function e**x,
obtain

x*(log e base 2) = N + g.
Then e**x = (2**N)* (e**(g*ln 2))

The reduced argument is g*ln2<1 and the factor
2**N is an exact power of 2, which may be
scaled in at the end via STEXP, ADD N to EXP
and LDEXP. The accuracy of N + g is limited to L
bits because of the factor (log e base 2). The
accuracy of the reduced argument thus de­
pends on the size of N.

Code
171AC
FSRC

Operation
Let PROD = (AC)*
(FSRC)
If underflow occurs
and FlU is not en­
abled, AC +- exact
O.

If overflow occurs
and FIV is not en­
abled, AC +- exact
O.
For all other cases
AC+-PROD

Condition
Codes
FC +-0.
FV +-1 if over­
flow occurs, else
FV+-O
FZ +- 1 if (AC) =
0, else FZ +- 0
FN +- 1 if (AC) <
0, else FN +- 0

If the biased exponent of either operand is zero, (AC)
+- exact O. For all other cases PROD is generated to
48 bits for floating mode and 59 bits for double
mode. The product is rounded or chopped for FT =
o and 1, respectively, and is stored in AC except for
• overflow with interrupt disabled
• underflow with interrupt disabled

365

Interrupts:

Accuracy:

Special
Comment:

Mnemonic!
Name
NEGF
NEGD
Negate Float­
ing/Double

Description:

Interrupts:

Accuracy:

Special
Comment:

Floating Point Processors

For these exceptional cases, an exact 0 is stored in
accumulator.

If FIUV is enabled, trap on -0 occurs before execu­
tion.

If overflow or underflow occurs and if the corres­
ponding interrupt is enabled, the trap occurs with
the faulty results in AC. The fractional parts are cor­
rectly stored. The exponent part is too small by
4008 for underflow, except for the special case of 0,
which is correct.

Errors due to overflow and underflow are described
above. If neither occurs, the error incurred is bound­
ed by 1 LSB in chopping mode and % LSB in round­
ing mode.

The undefined variable -0 can occur only in con­
junction with overflow or underflow. It will be stored
in AC only if corresponding interrupt is enabled.

Code
1707FDST

Operation
FDST +- -(FDST) if
EXP(FDST) ¢O, else
FDST +- exact O.

Condition
Codes
FC +-0.
FV +-0.
FZ +-1 If
EXP(FDST) = 0,
else FZ+-O.
FN +-1 If (FDST)
< 0, else FN +-0.

Negate single or double precision number, store re­
sult in same location. (FDST)

If FIUV is enabled, trap on -0 occurs after execution.

Neither overflow nor underflow can occur.

These instructions are exact.

If a -0 is present in memory and the FIUV bit is
enabled, then the FP11-E and the integral floating
point unit store exact 0 in memory (zero exponent,
zero fraction, and positive sign). The condition code
reflects an exact 0 (FZ +(1).

366

Mnemonlc/
Name
SETF
Set Floating
Mode

Description:

Mnemonlc/
Name
SETD
Set Floating
Double Mode

Description:

Mnemonlc/
Name
SETI
Set Integer
Mode

Description:

Mnemonlc/
Name
SETl
Set long In­
teger Mode

Description

Mnemonic!
Name
STCFD
STCDF
Store and
Convert from
Floating to

Floating Point Processors

Code
170001

Operation
FD+-O

Condition
Codes

Set the FPP in single precision mode.

Code
170011

Operation
FD+-1

Condition
Codes

Set the FPP in double precision mode.

Code
170002

Operation
Fl+-O

Set the FPP for integer data.

Code
170012

Operation
Fl+-1

Set the FPP for long integer data.

Code
176AC­
FDST

Operation
If EXP(AC, = 0,
FDST+-Oand
rounding causes
overflow, FDST +­
exactO. i

367

Condition
Codes

Condition
Codes

Condition
Codes
FC +-0.
FV +-1 If conver­
sion produces
overflow else
FV +-0.

Mnemonlc/
Name

Double or
from Double
to Floating

Description:

Interrupts:

Accuracy:

Mnemonlc/
Name
STCFI
STCFl
STCDI
STCDl
Store and
Convert from
Floating or
Double to In-

Floating Point Processors

Code Operation

In all other cases,
FDST +- Cxy (AC),
where Cxy specifies
conversion from
floating mode x to
floating mode y: x =
F and y = D if FD =
0, x = D and y = F if
FD = 1.

Condition
Codes

FZ +- 1 If (AC) =
0, else FZ +- O.
FN +- 1 If (AC) <
0, else FN +- O.

If the current mode is single precision, the accumu­
lator is stored left-justified in FDST and the lower
half is cleared. If the current mode is double preci­
sion, the contents of -the accumulator are converted
to single precision, chopped or rounded depending
on the state of FT, and stored in FDST.

Trap on -0 will not occur even if FIUV is enabled
because FSRC is an accumulator.

Underflow cannot occur.

Overflow cannot occur for STCFD.

A trap occurs if FIV is enabled, and if rounding with
STCDF causes overflow; FDST +- overflowed result
of conversion. This result must be +0 or -0.

STCFD is an exact instruction. Except for overflow,
described above, STCDF incurs an error bounded
by 1 lSB in chopping mode and % lSB in rounding
mode.

Code
175(AC +
4)DST

Operation
DST +- Cxj (AC) if
-Jl - 1 <Cxj (AC)
< Jl + 1,
else DST +- 0,
where Cxj specifies
conversion from
floating mode x to
integer mode j:

368

Condition
Codes
C +-FC +-0 if
- Jl - 1 < Cxj
(AC) < Jl + 1,
else FC +-1.
V +-FV +-0.
Z +- FZ +-1 if
(DST) = 0, else
FZ +-0.

Mnemonic/
Name

teger or Long
Integer

Description:

Interrupts:

Accuracy:

Mnemonic/
Name
STEXP
Store Expo­
nent

Floating Point Processors

Code Operation

j = I if FL == 0, j = L if
FL = 1, x -= F if FD =
0, x = D if FD = 1.
JL is the largest in­
teger:
2**15 - 1 for FL = 0
2** 31 - 1 for FL = 1

Condition
Codes

N +- FN +-1 if
(DST) < 0, else
FN +-0.

Conversion is performed from a floating point repre­
sentation of the data in the accumulator to an integer
representation.

If the conversion is to a 32-bit word (L mode) and an
address mode of 0, or immediate addressing mode,
is specified, only the most significant 16 bits are
stored in the destination register.

If the operation "is out of the integer range selected
by FL, FC is set to 1 and the contents of the DST are
set to O.

Numbers to be converted are always chopped (rath­
er than rounded) before conversion. This is true
even when the chop mode bit, FT, is cleared in the
floating point status register.

These instructions do not interrupt if FIUV is en­
abled, because the -0, if present, is in AC, not in
memory.

If FIC is enabled, trap on conversion failure will oc­
cur.

These instructions store the integer part of the float­
ing point operand, which may not be the integer
most closely approximating the operand. They are
exact if the integer part is within the range implied by
FL.

Code
175ACDST

Operation
DST +- EXP(AC)-
2008

369

Condition
Codes
C +-FC +-0.
V+- FV +-0.
Z +- FZ +-1 if
(DST) = 0, else

Mnemonic/
Name

Description:

Interrupts:

Accuracy:

Mnemonic/
Name
STF
STD
Store
Floating/
Double

Description:

Interrupts:

Accuracy:

Special
Comment:

Floating Point Processors

Code Operation
Condition
Codes

FZ+-O.
N +-FN +-1 if
(DST) < 0, else
FN +-0.

Convert accumulator's exponent from excess 200
octal notation to 2's complement, and store result in
DST.

This instruction will not trap on -0.

Overflow and underflow cannot occur.

This instruction is always exact.

Code
174AC­
FDST

Operation
FDST+-(AC)

Condition
Codes
FC+-FC
FV +- FV
FZ+-FZ
FN +- FN

Store single or double precision number from accu­
mulator.

These instructions do not interrupt if FIUV enabled,
because the -0, if present, is in AC, not in memory.
Neither overflow nor underflow can occur.

These instructions are exact.

These instructions permit storage of a -0 in memory
from AC. Note, however, that the FPP can store a -0
in an AC only if it occurs In conjunction with overflow
or underflow, and if the corresponding interrupt is
enabled. Thus, the user has an opportunity to clear
the -0, if he wishes.

370

Mnemonic!
Name
STFPS
Store FPP's
Program
Status

Description:

Special
Comment:

Mnemonic!
Name
STST
Store FPP's
Status

Description:

Mnemonic!
Name
SUBF
SUBD
Subtract
Floating/
Double

Floating Point Processors

Code
1702DST

Operation
DST (FPS)

Sto)'e FPP's status in DST.

Condition
Codes

On the FP11-C, FP11-E, and FP11-A, bits 13 and 12
are loaded with zeros. All other bits (with the excep­
tion of bit 4 in the FP11-A) represent the correspond­
ing bits in the FPS. The FP11-A has no maintenance
mode so bit 4 is loaded with zero.

Code
1703DST

Operation
DST +-(FEC)
DST + 2 +- (FEA)

Condition
Codes

Store the FEC and then the FPP's exception address
pOinter in DST and DST + 2.

NOTES:
1. If destination mode specifies a general register

or immediate addressing, only the FEC is saved.
2. The information in these registers is current only

if the most recently executed floating point in­
structions caused a floating point exception.

Code
173AC­
FSRC

Operation
Let DIFF = (AC) -
(FSRC):
If underflow occurs
and FlU is not en­
abled, AC +- exact
O.
If overflow occurs
and FIV is not en­
abled, AC +- exact
O.
For all other cases,
AC+-DIFF.

371

Condition
Codes
FC +-0.
FV +-1 if over­
flow occurs, else
FV +-0.
FZ +- 1 if (AC) =
0, else FZ +- O.
FN +-1 if (AC) <
0, else FN +- O.

Description:

Interrupts:

Accuracy:

Special
Comment:

Floating Point Processors

Subtract the contents of FSRG from the contents of
AG. The subtraction is carried out in single or double
precision and is rounded or chopped in accordance
with the values of the FD and FT bits in the FPS
register. The result is stored in AG except for:
• overflow with interrupt disabled
• underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in
AG.

If FIUV is enabled, trap on -0 in FSRG occurs before
execution.

If overflow or underflow occurs and if the corres­
ponding interrupt is enabled, the trap occurs with
the faulty results in AG. The fractional parts are cor­
rectly stored. The exponent part is too small by
4008 for overflow. It is too large by 4008 for under­
flow, except for the special case of 0, which is cor­
rect.

Errors due to overflow and underflow are described
above. If neither occurs, then for like-signed oper­
ands with exponent difference of 0 or 1, the answer
returned is exact if a loss of significance of more
than one bit can occur. Note1that these are the only
cases for which loss of significance of more than one
bit can occur. For all other cases the result is inexact
with error bounds of:

1 LSB in chopping mode with either single or double
precision.

V2 LSB in rounding mode with single precision.

3/4 LSB (FP11-G and FP11-E) and 33/64 LSB (FP11-
A and FP11-F) in rounding mode with double preci­
sion.

The undefined variable -0 can occur only in
conjunction with overflow or underflow. It will be
stored in the AG only if the corresponding interrupt
is enabled.

372

Mnemonic/
Name
TSTF
TSTD
Test Float­
ing/Double

Description:

Interrupts:

Accuracy:

Special
Comment:

Floating Point Processors

Code
1705FDST

Operation
FDST +- (FDST)

Condition
Codes
FC +-0.
FV +-0.
FZ +-1 if
EXP(FDST) = 0,
else FZ+-O.
FN +- 1 if (FDST)
< 0, else FN +- O.

Set the floating pOint processor's condition codes
according to the contents of FDST.

If FIUV is set, trap on -0 occurs after execution.

These instructions are exact.

This instruction does not write to the destination.

FLOATING POINT PROCESSOR TIMING
The timing and the processes for determining the timing of the floating
point instruction vary with each processor. The following sections ex­
plain specifically the instruction time and the calculation methods for
FP11-A, FP11-C, FP11-F, and FP11-E.

The following table summarizes the floating point execution time of the
FP11-A, FP11-E, FP11-F, and FP11-C.

Table 11-1 Comparison of Floating Point Processor Instruction
Timing (sec)

Operation 11/34A 11/70 11/60 11/44
(register-to-register) FP11-A FP11-C FP11-E FP11-F
Single Precision
Add/Subtract 8.91 1.65 1.02 8.91
Multiply 16.2 3.27 1.53 16.2
Divide 16.2 4.29 7.00 16.2
Double Precision
Add/Subtract 8.91 1.68 1.02 8.91
Multiply 25.36 5.43 3.74 25.36
Divide 35.36 6.73 12.75 35.36

373

Floating Point Processors

FLOATING POINT INSTRUCTION TIMING: FP11-A

Instruction Execution Time
The execution time of an FP11-A floating point instruction is depen­
dent on the following conditions:

• type of instruction
• type of addressing mode specified

• type of memory
• memory management facility enabled or disabled

Additionally, the execution time of certain instructions, such as ADD, is
dependent on the data.

Table 11-2 provides the basic instruction times for mode O. Tables 11-
3 through 11-7 show the additional time required for instructions other
than mode O. For example, to calculate the execution time of a MULF
(single-precision multiply) for mode 3 (autoincrement deferred) with
the result to be rounded:

1. Refer to Table 11-2 which gives MULF, mode 0, execution time of
13.4 J,Lsec.

2. Refer to Note 1 as specified in the notes column of Table 11-2.
Note 1 specifies an additional 0.84 J,Lsec is to be added if rounding
mode is specified. This yields 14.24 J,Lsec.

3. The modes 1-7 column of Table 11-2 refers to Table 11-3 to deter­
mine the additional time required for mode 1 through 7 instruc­
tions. In this example, mode 3 specifies an additional 3 J,Lsec for
single precision yielding 17.34 J,Lsec.

All timing information is in microseconds unless otherwise noted.
Times are typical; processor timing can vary ± 1 0%.

NOTE
Add .13 J,Lsec for each memory cycle if MS 11-J P
MOS memory is utilized. Add .12 J,Lsec for each DATI
memory cycle if memory management is enabled.

374

Instr.

LDF
LDD
LDCFD
LDCDF
CMPF
CMPD
DIVF
DIVD
ADDF
ADDD
SUBF
SUBD
MULF
MULD
MODF
MODD

STF
STD
STCDF
STCFD
CLRF
CLRD

ABSF
ABSD
NEGF
NEGD
TSTF
TSTD

LDFPS
LDEXP

Floa(ing Point Processors

Table 11-2 FP11-A Instruction Execution Times

Mode 0
(Reg.

to Reg.)

4.0
4.0
5.8
5.8
5.5
5.5

13.3
20.6

7.5
7.5
7.9
7.9

13.4
20.7
17.4
24.7

2.4
2.4
5.2
5.2
2.6
2.6

3.5
3.5
3.6
3.6
3.6
3.6

2.5
4.4

Notes Modes 1 thru 7

1
1

1
1

1,2
1,2
1,2
1,2
1
1

1,3
1,3

375

Use Table 11-3
to determine
memory-to-register times
for these instructions

Use Table 11-4
to determine
memory-to-register times
for these instructions

Use Table 11-5
to determine
memory-to-memory times
for these instructions

Use Table 11-6

Instr.

lDCIF
lDCID
lDClF
lDClD

STFPS
STST
STEXP
lSTCFI
STCDI
STCFl
STCDl

Floating Point Processors

Mode 0
(Reg.

to Reg.)

7.5
7.5
7.5
7.5

2.8
2.6
3.4
4.5
4.5
4.5
4.5

Notes Modes 1 thru 7

1,4
1,4
1,4
1,4

5
5
5
5

to determine
memory-to-register times
for these instructions

Use Table 11-7
to determine
register-to-memory times
for these instructions

The following instructions do not reference memory
CFCC 2.0
SETF 2.2
SETD 2.2 Execution times
SETI 2.2 are as shown
SETl 2.2

Table 11-3 Floating Source Fetch Time

Memory Cycles Time(Jts)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 2 4 2.00 4.20
2 2 4 2.20 4.40
2 Immediate 1 1 1.00 1.00
3 3 5 3.00 5.20
4 2 4 2.20 4.40
5 3 5 3.00 5.20
6 3 5 3.20 5.40
7 4 6 4.20 6.40

376

Floating Point Processors

Table 11-4 Floating Destination Store Time

Memory Cycles Time(jls)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 2 4 1.38 2.94
2 2 4 1.56 3.12
2 Immediate 1 1 0.60 0.60
3 3 5 2.38 3.94
4 2 4 1.56 3.12
5 3 5 2.38 3.94
6 3 5 2.56 4.12
7 4 6 3.56 5.12

Table 11-5 Floating Destination Fetch And Store Time

Memory Cycles Time(jls)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 2 2 1.42 1.42
2 2 2 1.60 1.60
2 Immediate 2 2 1.60 1.60
3 3 3 2.42 2.42
4 2 2 1.60 1.60
5 3 3 2.60 2.60
6 3 3 2.60 2.60
7 4 4 3.60 3.60

377

Floating Point Processors

Table 11-6 Source Fetch Time

Memory Cycles Time(~s)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 1 2 1.00 1.18
2 1 2 1.18 1.36
2 Immediate 1 1 1.18 1.18
3 2 3 2.00 2.18
4 1 2 1.18 1.36
5 2 3 2.00 2.18
6 2 3 2.18 2.36
7 3 4 3.18 3.36

Table 11-7 Destin'ation Store Time

Memory Cycles Time(~s)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 1 2 0.60 1.38
2 1 2 0.96 1.68
2 Immediate 1 1 0.96 0.96
3 2 3 1.60 2.38
4 1 2 0.96 1.68
5 2 3 1.60 2.38
6 2 3 1.78 2.56
7 3 4 2.78 3.56

NOTES:
• Add 0.84 ~sec when in rounding mode (FT = 0) .
• Add 0.24 ~sec per shift to align binary pOints and 0.24 ~sec per shift

for normalization. The number of alignment shifts is equal to the
exponent difference for exponent differences bounded as follows:

1 SIEXP (AC) - EXP (FSRC~::S; 24 single precision
1 ::s; IEXP (AC) - EXP (FSRC~ ::s; 56 double precision

378

Floating Point Processors

The number of shifts required for normalization is equivalent to the
number of leading zeros of the result.

• Add .24 p..sec times the exponent of the product if the exponent of
the product is:

1 ~ EXP (PRODUCT) ~ 24 single precision
1 ~ EXP (PRODUCT) ~ 56 double precision

Add 0.24 p..sec per shift for normaliz&tion of the fractional result. The
number of shifts required for normalization is equivalent to the num­
ber of leading zeros in the fractional result.

• Add 0.24 p..sec per shift for normalization of the integer being con­
verted to a floating point number. For positive integers, the number
of shifts required to normali~e is equivalent to the number of leading
zeros; for negative integers, the number of shifts required for nor­
malization is equivalent to the number of leading ones.

• Add 0.24 p..sec per shift to convert the fraction and exponent to
integer form, where the number of shifts is equivalent to 16 minus
the exponent when converting to short integer or 32 minus the expo­
nent when converting to long integer for exponents bounded as
follows:

1 ~ EXP (AC) ~- 15 short integer
1 ~ EXP (AC) ~ 31 long integer

FLOATING POINT INSTRUCTION TIMING: FP11-C
Floating point instruction times are calculated in a manner similar to
the calculation of CPU instruction timing. Since the FP11-C is a sepa­
rate processor operating in parallel with the main processor, however,
the calculation of floating point instruction times must take this parallel
processing or overlap into account. The following is a description of
the method used to calculate the effective floating point instruction
execution times.

TERM

Instruction Decode
Preinteraction Time

DEFINITION

CPU time required to decode a
floating point instruction opcode
and to store the general register
referred to in the floating point in­
struction in a temporary floating

. point register (FPR). This time is
fixed at 450 ns.

379

Floating Point Processors

TERM

Address Calculation Time

Wait Time

(Load Class Instructions)

(Store Class Instructions)

ResyncTime

380

DEFINITION

CPU time required to calculate
the address of the operand. This
time is dependent on the ad­
dressing mode specified. Refer to
Table 11-8.

CPU time spent waiting for com­
pletion by the floating point proc­
essor of a previous floating point
instruction, in the case of load
class instructions. For store class
instructions, the waittime is the
sum of time during which the
floating point completes a previ­
ous floating point instruction and
floating point execution time for
the store class instruction. Wait
time is calculated as follows:

Wait time = [floating point execu­
tion time (previous FP instruc­
tion)] - [disengage and fetch
time (previous FP instruction)] -
[CPU execution time for interpos­
ing non-floating point instruction]
- [preinteraction time] - [ad­
dress calculation time]. If the re­
sult is ~ 0, the wait time is zero.

Wait time = [floating point execu­
tion time (previous floating point
instruction)] - [CPU execution
time for interposing non-FP in­
struction] - [disengage and fetch
time (previous FP instruction)] -
[preinteraction] + [floating point
execution time] - [address cal­
culation time]. If the result is ~ 0,
the wait time is zero.

If the CPU must wait for the float­
ing pOint processor (Le., wait time
= 0), an additional 450 ns must
be added to the effective execu-

Floating Point Processors

TERM

Interaction Time

Argument Transfer Time

Disengage and Fetch Time

Floating Point Execution Time

Effective Execution Time

381

DEFINITION

tion time of the instruction. If wait
time = 0, then resync time =0.

CPU time required actually to
initiate floating point processor
operation.

CPU time required to fetch and
transfer to the floating point proc­
essor the required operand. This
time is 300 ns X the number of
16-bit words read from memory
(load class floating point instruc­
tions), or 1200 ns X the number
of 16-bit words written to memory
(store class instructions).

CPU time required to fetch the
next instruction from memory.
This time is 300 ns.

Time required by the floating
point processor to complete a
floating point instruction once it
has received all arguments (load
class instructions). Execution
times are contained in Tables 11-
2 through 11-7.

Total CPU time required to exe­
cute a floating point instruction.

Effective Execution Time =
Preinteraction + Address Calcu­
lation + Wait Time + R~sync
Time + Interaction Time + Argu­
ment Transfer + Disengage and
Fetch.

Floating Point Processors

Table 11-8 Address Calculation Times

Mode
Address

Calculation Time
nsec

~--.~. ----- -~- .. --.-~-

o 0
1 300
2 300
3 600
4 300
5 750
6 600
7 1050

Instruction

Table 11-9 FP11-C Execution Times

Minimum
nsec

Maximum
nsec

--.-"-~--- .. --.----.------ --.--~---.... ~----- ~---~----'

LDF 360 360
LDD 360 360
ADDF 900. 2520
ADDD 900 4140
SUBF 900 1980
SUBD 900 4140
MULF 1800 3440
MULD 3060 6220
DIVF 1920 6720
DIVD 3120 14400
MODF 2880 5990
MODO 3780 9770
LDCFD 420 420
LDCDF 540 540
STF* 0
STD* 0

CMPF 540 1080
CMPD 540 1080
STCFD* 720 720
STCDF* 540 720

LDCIF 1260 1440
LDCID 1260 1440

382

Typical

950
980

1130
1160
2520
4680
3540
6000

720
540

1440
1440

Floating Point Processors

Instruction

LDCLF
LDCLD
LDEXP

STCFI*
STCFL*
STCDI*
STCDL*
STEXP*

CLRD
CLRD
NEGF
NEGD
ABSF
ABSD
TSTF
TSTD
LDFPS
STFPS*
STST*
CFCC
SETF
SETD
SETI
SETL

Minimum
nsec

MO

1260
1260
540

1260
1260
1260
1260
360

180
180
360
360,·
360
360
180
180
180

o
o
o

180
180
180
180

* Store Class Instructions

Maximum
nsec

1980
1980
900

1620
2160
1620
2160
360

NotMO
2150

14350
2400
2400
2400
2400

180
180

o

Typical

Load class instructions are those which do not deposit results in a
memory location.
Execution ofa load class floating point instruction by the floating point
occurs in parallel with CPU operation and can be overlapped. Figure
11-2 gives a simplified picture of how a load class floating point in­
struction is executed.
Store class instructions are those which store a result from the floating
point into a memory location. Execution of a store class instruction by
the floating point processor must occur before the result can be
stored, hence parallel processing cannot occur for store class floating
point instructions.

383

Floating Point Processors

CPU

T Load Class Instruction
is fetched. This occurs

- I during previous
instruction execution. Effective

Execution Time
starts here~

No Floating Point
intervention ye\

Floating Point
must respond
(Le., it must be
finished with
prior instruction
by here----­
or CPU will wait

CPU is finished
with FPP; FPP
will now execute
instructions ~
on its own~

Effective ~
Execution Time
ends here

Instruction is decoded.

Contents of CPU General
Register are transferred
to temporary FPP Reg­
ister.

Address of operand
is calculated.

CPU starts FPP execut­
ing this instruction (Le.,
interacts with FPP).

CPU passes arguments
to FPP

Fetch next instruction.

FPP
T

FPP is idle.

FPP interacts with CPU.

FPP accepts arguments
from CPU.

FPP

executes

instruction.

~Floating Point is fin­
ished and ready to
accept next instruc­
tion.

Figure 11-2 Load Class Floating Point Instruction

384

Floating Point Processors

CPU FPP

Effective
Execution Time
starts here----

FPP must
respond or

Store Class Instruction
is fetched. This occurs
during previous instruc­
tion execution.

Instruction is decoded.

Contents of CPU
General Register are
stored in Temporary
FPP Register.

Address at which result
to be stored is calcu­
lated.

T
I
I
I
I
I FPP is idle.

FPP begins execution­
does not respond until
execution is complete.

CPU will wait---I CPU waits for FPP to
I complete execution .

..L

Effective
Execution Time
ends here-

I Since CPU entered Wait
I State, an additional 450

ns Resync overhead is
encountered.

I
I
I

~FPP responds.

CPU interacts with FPP. FPP interacts with CPU.

CPU stores FPP passes

result result to

in Memory. CPU to

CPU fetches
next instruction.

store in

Memory.

I
IFPP is idle.

1.

Figure 11-3 Store Class Floating Instruction

385

Floating Point Processors

Figures 11-2 and 11-3 show how timing associated with a typical load
class and store class instruction is derived.
Figures 11-4 and 11-5 show how effective execution times for actual
floating point instructions in a program are calculated. Note that effec­
tive execution times are dependent on previous floating point instruc­
tions.
Referencing Figure 11-4, a sample calculation of effective time would
be:
For MULF (RO), AC1, effective execution time is the summation of the
following:

Preinteraction Time
Address Calculation Time (Mode 1 from Table 11-8)
Wait Time (Since FPP is idle, Wait = 0)
Resync Time (Since Wait = 0, Resync = 0)
Interaction Time
Argument Transfer Time (Transfer 2 words @ 300 ns/word)
Disengage and Fetch Time

Effective Execution Time

450 ns
300 ns

o ns
o ns

300 ns
600 ns
300ns

1950

For LDF X(R3),ACLO (Ref. Figure 11-4), first we calculate Wait Time:
Wait Time = [Floating Point Execution

(previous FP instruction)(MULF)] 1800 ns
- [Disengage and Fetch Time
(previous FPT instruction)] - 300 ns
- [Execution time of interposing
nonFPT instruction (S08)] - 750 ns
- [Preinteraction Time) - 450 ns
- [Address Calculation (Mode 6 from
Table 11-8») - 600 ns

Since calculation resulted in a negative
number, Wait Time = O .

- 300 ns

... so effective execution time is the summation of the following:
Preinteraction Time
Address Calculation Time (Mode 6 from Table 11-8)
Wait Time (From above calculation)
Resync Time (Since Wait Time = 0, Resync = 0)
Interaction Time
Argument Transfer Time (2 words @ 300 ns/word)
Disengage and Fetch Time

Effective Execution Time

386

450ns
600ns

o ns
o ns

300ns
600 ns
300 ns

2250 ns

Floating Point Processors

FLOATING POINT INSTRUCTION TIMING: FP11·E
Floating point instruction times are calculated similarly to the calcula·
tion of CPU instruction timing. 'However, since the FP11-E is a sepa­
rate processor, and its execution can proceed in parallel with the PDP-
11/60, calculation of floating point instruction times must take this
independent processing into account.

The following information describes the method used to calculate ef­
fective instruction execution times.

NOTE
Resync and interaction times present in the FP11-C
are not considered, since handshaking synchroniza­
tion overhead has been eliminated by the use of
decoding and instruction fetch logic. In the FP11-E,
the fetching of floating point instructions is initiated
by the CPU, but is received simultaneously by both
processors.

In addition to instruction fetch and address calculation, the CPU con­
verts fixed to floating point notation and, in some instances, fully exe­
cutes the instruction, for example, LDFPS.

TERM DEFINITION

Instruction decode

Address calculation time

Wait time

CPU time required to decode a
floating point instruction op code.
This time is fixed at 340 nsec.

CPU time required to calculate
the address of the operand. This
time is dependent on the ad­
dressing mode specified. Refer to
Tables 11-11 and 11-12.

CPU time spent waiting for com­
pletion by the floating point proc­
essor of a previous floating point
instruction in the case of a load
class of instruction. For store
class instructions, the wait time is
the summation of time during
which the floating point proces­
sor completes a previous floating
point instruction and floating
point execution time for store
class instruction. Wait time is cal­
culated as follows:

387

Floating Point Processors

TERM

(Load Class Instructions)

(Store Class Instructions)

Argument transfer time

Shared execution time

Disengage and fetch time

. Floating point execution time

388

DEFINITION

Wait time = [floating point execu­
tion (previous FP instructions)] -
[disengage and fetch time] -
[CPU execution time for interpos­
ing non-floating point instruction]
- [Instruction fetch time] - [Ad­
dress calculation time]. If the re­
sult is S 0, the wait time is O.

Wait Time = [Floating point exe­
cution time (previous FP
instruction)] - [Disengage and
fetch time] '- [CPU execution
time for interposing non-floating
point instruction] - [Instruction
fetch time] + [Floating point exe­
cution time] - [Address calcula­
tion time]. If the result is S 0, the
wait time is O.

CPU time required to fetch and
transfer operands. This time is
340 nsec X the number of 16-bit
words read from memory or 1170
nsec X the number of 16-bit
words written into memory: Add
1.075 JLsec for a word received
from memory (MM-11 D memory
only) that is a miss.

CPU time spent in the execution
of integer convert routines or any
one of the instructions in cate­
gory 5. Refer to Table 11-13.

Time required to fetch the next
instruction from memory. This
time is fixed at 340 nsec for a
cache hit. Add 1.075 JLsec for a
cache miss (MM-nD).

Time required by the floating
point processor to complete a
floating point instruction once it

TERM

Floating Point Processors

DEFINITION

has received all operands (load
class). Refer to Table 11-14.

Effective execution time Total CPU time required to exe­
cute a floating point instruction.

Effective execution time = in­
struction decode + address cal­
culation + wait time + argument
transfer time + shared execution
time + disengage and fetch.

Table 11-10 Floating Point Instructions

Category

LOAD
CLASS

LOAD CLASS
(INTEGER
CONVERT)

STORE CLASS

STORE CLASS
(INTEGER
CONVERT)

NULL
(CPU EXECUTES)

Instruction

LDF,LDD
ADF,ADD
SUBF, SUBD
MULF, MULD
DIVF, DIVD
MODF, MODD
LDCF, LD~D
CMPF,CMPD
LDCIF, LDCID
LDCLF, LDCLD
LDEXP

STF, STD
STCDF
STCFD
STCFI
STCFL
STCDI
STCDL
STEXP
CLRF, CLRD
NEGF, NEGD
ABSF, ABSD
TSTF, TSTD

389

NotMO
NotMO
NotMO
NotMO

Category

Floating Point Processors

Instruction

LDFPS
5TFPS
5TST
CFCC
SETF, SETD
SETI, SETL

--.-~------. -------.----~--.--.-.. --.--~--.----. ----

Table 11·11 Address Calculation (Floating/Double)

Mode

o
1
2
3
4
5
6
7

Time (nsec)

o
510
510
850
850

1360
850

1360

Read
Memory

Cycle

o
0'
o
1
o
1
1
2

Table 11·12 Address Calculation (integer)

Mode

o
1
2
3
4
5
6
7

Time (nsec)

390

340
340
340
850
510

1020
850

1360

Read
Memory

Cycle

o
o
o
1
o
1
1
2

Floating Point Processors

Table 11-13 Shared Execution Time

Instruction Time (nsec)

1. CLRF 2210
CLRD (Not MO) 2720

2. NEGF 3060
NEGD (Not MO) 3400

3. ABSF 3060
ABSD (Not MO) 3400

4. TSTF 3060
TSTD (Not MO) 3400

5. LDFPS 2040
STFPS 1360
STST 2550

6. CFCC 1020
SETD 1190
SETI 1360
SETD 1190
SETL 1360

7. STEXP 2210

8. LDEXP 1700

391

Floating Point Processors

Table 11-14 FP11-E Execution Times (nsec)
~

--.--------_.-----_ .. _--------_.-.. _--_.

Instruction MO M6 Not (MO or M6)

_ ... __ .

1. LDF 170 0 0
2. LDD 170 0 340

--_._------------------

MO NotMO
Min. Max. Typical Min. Max. Typical

3.ADDF 340 1700 510 680 2040 850
4.ADDD 340 2890 680 1020 3570 1360
5.SUBF 340 1700 510 680 2040 850
6.SUBD 340 2890 680 1020 3570 1360
7.MULF 850 850 850 1020 1020 1020
8.MULD 3060 3060 3060 3570 3570 3570
9.DIVF 6120 6460 6290 6800

10.DIVD 11900 12410 12240 12580
11.MODF 3040 4250 3210 4420
12.MODD 5610 8500 6120 9010
13.LDCFD* 1700 1700 2040 2040
14.LDCDF* 2040 2040 2720 2730
15.STF 170 170 510 510
16.STD 170 170 510 510
17.CMPF 170 850 340 1020
18.CMPD 170 850 680 1360
19.5TCFD 680 850 1700 2210
20.STCDF 680 1020 1700 2550
21.LDCIF 7310 9860 7140 9520
22.LDCID 7310 9690 6970 9350
23.LDCLF 7480 10030 8500 13770
24.LDCLD 7310 9860 8330 13600
25.LDEXP 680 680 680 680
26.STCFI* 5270 7650 4930 7310
27.STCFL * 5270 10370 6800 11900
28.STCDI* 5270 7650 4930 7310
29.STCDL* 5270 10370 6800 11900
30.STEXP 0 0
31.CLRF 170 0 0
32.CLRD 170 0 0
33.NEGF 340 0 0
34.NEGD 340 0 0
35.ABSF 340 0

392

Floating Point Processors

. Instruction MO M6 Not (MO or M6)

1. LDF 170 0 0
2. LDD 170 0 340

MO NotMO
Min .. Max. Typical Min. Max. Typical

36.ABSD 340 0
37.TSTF 170 0
38.TSTD 170 0
39.LDFPS 0 0
40.STFPS 0 0
41.STST 0 0
42.CFCC 0 0
43.SETF 0 0
44.SETD 0 0
45.SETI 0 0
46.SETL 0 0

... Requires CPU shared code execution. For Mode 0 address calculation, add
4 cycles.

Table 11-15 Load Class of Instructions

CPU FP11-E

Load class instruction is fetched.
This occurs during previous in-
struction execution.

Instruction is decoded.

Address of operands is
calculated.

CPU passes operands to the
FP11-E.

Disengage and fetch next instruc­
tion.

Load class (integer convert) of in­
structions is fetched. This occurs
during previous instruction.

393

FP11-E decodes instruction and
goes into id Ie state.

FP11-E receives operands from
CPU.

FP11-E executes instruction.

Floating Point Processors

CPU

Instruction is decoded.

Address of operands is calculat­
ed and fetched from memory.

Integer conversion by CPU

FP11-E

FP11-E decodes instruction,
goes into idle state.

CPU passes result to FP11-E. FP11-E receives result from CPU.

Disengage and fetch next instruc- FP11-E stores results.
tion.

Table 11-16 Store Class of Instructions

CPU

Store class of instructions is
fetched. This occurs during
previous instruction.

Instruction is decoded.

Address of operands is calculat­
ed.

CPU waits for FP11-E to com­
plete execution.

CPU receives result from the
FP11-E and stores it in memory.

CPU fetches next instruction.

FP11-E

FP11-E is idle.

FP11-E decodes instruction.

FP 11-E starts instruction execu­
tion.

FP11-E passes result to be stored
in memory.

FP11-E is idle.

Table 11-17 Store Class of Instructions (Integer Convert)

CPU

Store class (integer convert) is
fetched. This occurs during
previous instructions.

Instruction is decoded.

CPU receives floating point num­
ber from FP11-E.

Integer conversion performed by
CPU.

394

FP11-E

FP11-E is idle.

FP11-E decodes instruction.

FP11-E passes floating point
number.

FP11-E is idle.

Floating Point Processors

CPU does address calculation
and stores result in memory.

Tables 11-8 and 11-9 show how effective execution times for actual
floating point instructions in a program are calculated. Note that the
effective execution times are dependent on previous floating point
instructions. Note also that all memory references are considered to
be cache hits.

A sample calculation of effective time would be:

For MULF (RO), AC1:

Instruction Fetch
Address Calculation Time (Mode 1 from Table 11-11)
Wait Time (Since FPP is idle, Wait = 0)
Argument Transfer Time
(Transfer 2 words @ 340 nsec/word)
Disengage and Fetch Time

Effective Execution Time

For LDF X (R3), ACO (Ref. Figure 11-5):

First, calculate Wait Time:
Wait Time = [Floating Point Execution

(previous FP instruction) (MULF)]
- [Disengage and Fetch Time
(previous FPT instruction)]
- [Execution Time of interposing
nonFPT instruction (SOB)

- [Instruction Fetch]
- [Address Calculation
(Mode 6 from Table 11-11)]

Since calculation resulted in a negative
number, Wait Time = O .

340 nsec
510 nsec

o nsec

680 nsec
340 nsec

1870 nsec

1020 nsec

- 340 nsec

-2400
nsec

- 340 nsec

- 850 nsec

-2910 nsec

... so Effective Execution Time is the summation of the following:
Instruction Fetch 340 nsec
Address Calculation Time (Mode 6 from Table 11-11) 850 nsec
Wait Time (from above calculation) 0 nsec
Argument Transfer Time (2 words @ 340 nsec/word) 680 nsec
Disengage and Fetch Time 340 nsec

Effective Execution Time 2210 nsec

395

Floating Point Processors

CPU TIME

--:-:-:c-:::-----:,-----,-----------------
MULF (RO). AC I

PRE INTERACTION

ADDRESS CALCULATiON

INTERACTION
EFFECTIVE EXECUTlON'1950n,ec

ARGUMENT TRANSFER

DISENGAGE & FETCH

(NON FLOATiNG POINT INSTRUCTiON)

LOF X(R31, ACO -------T
PRE INTERACTION l

ADDRESS CALCULATION

EFFECTIVE EXECUTiON'2250 nsec

ARGUMENT TRANSFER

DISENGAGE & FETCH

ADDF AC2, AC I

PRE INTERACTION

EFFECTIVE EXECUTlON'I050nsec

________ 1 ___________________ 'N'_ER_A_C_TlON

IR DECODE

SET UP
TEMP
FPT REG

ADDRESS
CALC
(MODE I)

INTERA010N

ARGUMENT
TRANSFER

DISENGAGE
& FETCH
NEXT INSf.

EXECUTIVE
& FETCH
NEXT INST_

IR DECODE

SET UP
TEMP
FPT REG

ADDRESS
CALC
(MODE 6)

INTERACTION

ARGUMENT
TRANSFER

DISENGAGE
& FETCH
NEXT INST

IR DECODE

SET UP
TEMP
FPT REG

INTERACTION

DISENGAGE
& FETCH
NEXT INST_

Calculation of Effective Execution Times
for Load Class Instructions (FP11-C)

396

FPP TIME

T
FLOATING
POINT
EXECUTION
(MULF)

1
FLOATING
POINT
EXECUTION
(LOF)

iT

T
FLOATING
POINT
EXECUTION
(ADDF)

~

Floating Point Processors

CPU TIME FPP TIME

MULF (RO), AC 1 IR DECODE

INSTRUCTION FETCH

ADDRESS CALCULATION

EFE'ECTIVE EXECUTION' 1870 nsec

ARGUMENT TRANSFER

DISENGAGE & FETCH

SOB Rl

(NON FLOATING POINT INSTRUCTION)

LOF X (R31. ACO

EFFECTIVE EXECUTION' 2210 nsec

ADDF AC2, ACl

EFFECTIVE EXECUTION: 1050 nsec

j

PREINTERACTION

ADDRESS CALCULATION {

{
ARGUMENT TRANSFER {

DISENGAGE & FETCH {

PREINTERACTION

DISENG~GE & FETCH

ADDRESS
CALC
(MODEl)

ARGUMENT
TRANSFER

DISENGAGE
& FETCH
NEXT INST.

EXECUTIVE
& FETCH
NEXT INST.

IR DECODE

ADDRESS
CALC
(MODE 6)

ARGUMENT
TRANSFER

DISENGAGE
& FETCH
NEXT INST.

IR DECODE

DISENGAGE
& FETCH
NEXT INST

Calculation of Effective Execution Times
for Load Class Instructions (FP11-E)

397

FLOATING
POINT
EXECUTION

I'

FLOATING
POINT
EXECUTION
(LOF)

T

T
FLOATING
POINT
EXECUTION
(ADDF)

~

Floating Point Processors

FLOATING POINT INSTRUCTION TIMING: FP11·F ,

Instruction Execution Time
The execution time of an FP11-F floating point instruction is depen­
dent on the following conditions:

• type of instruction
• type of addressing mode specified

• type of memory
• memory management facility enabled or disabled

Additionally, the execution time of certain instructions, such as ADD, is
dependent on the data.

Table 11-18 provides the basic instruction times for mode O. Tables
11-19 through 11-23 show the additional time required for instructions
other than mode O. For example, to calculate the execution time of a
MULF (single-precision multiply) for mode 3 (autoincrement deferred)
with the result to be rounded:
1. Refer to Table 11-18 which gives MULF, mode 0, execution time of

13.4 J.Lsec.
2. Refer to Note 1 as specified in the notes column of Table 11-18.

Note 1 specifies an additional 0.84 J.Lsec is to be added if rounding
mode is specified. This yields 14.24 J.Lsec.

3. The Modes 1 through 7 column of Table 11-18 refers to Table 11-
19 to determine the additional time required for mode 1 through 7
instructions. In this example, mode 3 specifies an additional 3
J.Lsec for single precision yielding 17.24 J.Lsec.

All timing information is in microseconds unless otherwise noted.
Times are typical; processor timing can vary ±10%. All instructions
assume 100% cache hits.

NOTE
Add ,09 J.Lsec for each DATI memory cycle if memory
management is enabled.
Add .630 J.Lsec for each DATI memory cycle if a
cache miss is encountered.

398

Instr.

LDF
LDD
LDCFD
LDCDF
CMPF
CMPD
DIVF
DIVD
ADDF
ADDD
SUBF
SUBD
MULF
MULD

. MODF
MODO

STF
STD
STCDF
STCFD
CLRF
CLRD

ABSF
ABSD
NEGF
NEGD
TSTF
TSTD

Floating Point Processors

Table 11-18 FP11-F Instruction Execution Times

Mode 0
(Reg.

to Reg.) .

3.0
3.0
4.8
4.8
4.5
4.5

12.3
19.6
6.5
6.5
6.9
6.9

12.4
19.7
16.4
23.7

1.4
1.4
4.2
4.2
1.6
1.6

Notes

1
1

1
1

1,2
1,2
1,2
1,2
1
1

1,3
1,3

.---- .. ---~---------.. _._.

2.5
2.5
2.6
2.6
2.6
2.6

Modes 1 thru 7

Use Table 11-19
to determine
memory-to-register times
for these instructions

Use Table 11-20
to determine
memory-to-register times
for these instructions

Use Table 11-21
to determine
memory-to-memory times
for these instructions

~-----------

LDFPS 1.5
LDEXP 3.4 Use Table 11-22
LDCIF 6.5 1,4 to determine
LDCID 6.5 1,4 memory-to-register times
LDCLF 6.5 1,4 for these instructions
LDCLD 6.5 1,4

399

Floating Point Processors

ModeO
(Reg.

Instr. to Reg.)

STFPS 1.8
STST 1.6
STEXP 2.4
STCFI 3.5
STCDI 3.5
STCFl 3.5
STCDl 3.5

Notes Modes 1 thru 7

Use table 11-23
to determine

5 register-to-memory times
5 for these instructions
5
5 .

The following instructions do not reference memory

CFCC 1.0
SETF 1.2
SETD 1.2 Execution times
SETI 1.2 are as shown.
SETl 1.2

Table 11-19 Floating Source Fetch Time

Memory 'Cycles Time (Jls)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 2 4 0.60 1.4
2 2 4 0.80 1.6
2 Immediate 1 1 0.30 0.3
3 3 5 0.90 1.7
4 2 4 0.80 1.6
5 3 5 0.90 1.7
6 3 5 1.10 1.9
7 4 6 1.40 2.2

400

Floating POint.Processors

Table 11-20 Floating Destination Store Time

Memory Cycles Time (f.ts)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

. --~---'--.--~

1 2 4 1.38 2.94 '
2 2 4 1.56 3.12
2 Immediate 1 1 0.60 0.60
3 3 5 1.68 3.24
4 2 4 1.56 3.12
5 3 5 1.68 3.24
6 3 5 1.86 3.42
7 4 6 2.16 3.72

Table 11-21 Floating Destination Fetch And Store Time

Memory Cycles Time (f.ts)
~-----~--~------~-

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

-------------,--

1 2 2 0.72 0.72
2 2 2 0.90 0.90
2 Immediate 2 2 0.80 0.80
3 3 3 1.02 1.02
4 2 2 0.90 0.90
5 3 3 1.20 1.20
6 3 3 1.20 1.20
7 4 4 1.50 1.50

---------_ ..

401

Floating Point Processors

Table 11-22 Source Fetch Time

Memory Cycles Time (,us)

Addressing Short Long Short Long
Mode Integer Integer Integer Integer

1 1 2 0.30 0.70
2 1 2 0.48 1.28
2 Immediate 1 1 0.48 0.48
3 2 3 0.60 1.0
4 1 2 0.48 1.28
5 2 3 0.60 1.0
6 2 3 0.78 1.18
7 .. ~ 4 1.08 1.48

Table 11-23 Destination Store Time

Memory Cycles Time (,us)

Addressinq Short Long Short Long
Mode Integer Integer Integer Integer

1 1 2 0.60 1.38
2 1 2 0.96 1.68
2 Immediate 1 1 0.96 0.96
3 2 3 0.90 1.68
4 1 2 0.96 1.68
5 2 3 0.90 1.68
6 2 3 1.08 1.86
7 3 4 1.38 2.16

NOTES:
1. Add 0.84 ,usec when in rounding mode (FT = 0).
2. Add 0.24 ,usec per shift to align binary points and 0.24 ,usec per

shift for normalization. The number of alignment shifts is equal to
the exponent difference for exponent differences bounded as fol­
lows:

1 S EXP(AC) -'- EXP(FSRC) S 24, single precision
1 S EXP(AC) - EXP(FSRC) S 56, double precision

402

Floating Point Processors

The number of shifts required for normalization is equivalent to
the number of leading zeros of the result.

3. Add 0.24 ~sec times the exponent of the product if the exponent
of the product is:

1 =::; EXP(PRODUCT) =::; 24, single precision
1 =::; EXP(PRODUCT) =::; 56, double precision

Add 0.24 ~sec per shift for normalization of the fractional result.
The number of shifts required for normalization is equivalent to
the number of leading zeros in the fractional result.

4. Add 0.24 ~sec per shift for normalization of the integer being
converted to a floating point number. For positive integers, the
number of shifts required to normalize is equivalent to the number
of leading zeros; for negative integers, the number of shifts re­
quired for normalization is equivalent to the number of leading
ones.

5. Add 0.24 ~sec per shift to convert the fraction and exponent to
integer form, where the number of shifts is equivalent to 16 minus
the exponent when converting :to short integer, or 32 minus the
exponent when converting to lo:ng integer for exponents bounded
as follows:

1 =::; EXP(AC) =::; 15, short intege
1 =::; EXP(AC) =::; 31, long integer

403

404

CHAPTER 12

COMMERCIAL INSTRUCTION SET

Commercial Instruction Set
The PDP-11 Commercial Instruction set (CIS11) consists of the follow­
ing extended instruction groups:

07602X Commercial Load 2 Descriptors
07603X Character String Move
07604X Character String Search
07605X Numeric String
07606X Commercial Load 3 Descriptors
07607X Packed String
07613X Character String Move (in-line)
07614X Character String Search (in-line)
07615X Numeric String (in-line)
07617X Packed String (in-line)

These include instructions which operate on character strings and on
decimal numbers. Each generic type of instruction is provided in two
forms. The essential difference between the two forms is the manner
in which operands are delivered to the instruction. The first form is the
"register" form, where operands are implicitly obtained from the gen­
eral registers. The second form is the "in-line" form, where operands
or word address pOinters to operands follow the opcode word in the
instruction stream. The mnemonic for the in-line form is the mnemonic
for the register for,m suffixed with the letter "I". The condition codes
are set identically for both forms. The in-line forms minimize register
modification.

Instructions are also provided which efficiently ioad operands into the
general registers.

Character Data Types
There are three different character data types. The "character" is a
single byte, and is an abbreviated string of length 1. The "character
string" is a contiguous group of bytes in memory. The third is a "char­
acter set."

405

R.

R.+ 1

Commercial Instruction Set

The character is an 8-bit byte:

char

The character is used as an operand by CIS11 instructions. When it
appears in a general register, the character is in the low order half; the
high order half of the register must be zero. When it appears in the
instruction stream, the character is in the low order half of a word; the
high order half of the word must be zero. If the high order half of a
word which contains a character is non-zero, the effect of the instruc­
tion which uses it will be unpredictable.

A character string is a contiguous sequence of bytes in memory that
begins and ends on a byte boundary. It is addressed by its most
significant character (lowest address). The highest address is the least
significant character. It is specified by a two word descriptor with the
attributes of length and lowest address. The length is an unsigned
binary integer which represents the number of characters in the string
and may range from 0 to 65,535. A character string with zero length is
said to be vacant: its address is ignored. A character string with non­
zero length is said to be occupied.

The character string descriptor is used as an operand by CIS11
instructions. It appears In two consecutive general registers, or in two
consecutive words in memory pointed to by a word in the instruction
stream. The following figure shows the descriptor for a character
string of length "n" starting at address "A" in memory:

15 o

'" I OR plr+2

n J A

406

Commercial Instruction Set

The following figure shows the character string in memory:

7 0

A I MOST SIG CHAR

A+ 1

•
•
•

A+ n-1 LEAST SIG CHAR

A "character set" is a subset of the 256 possible characters that can be
encoded in a byte. It is specified by a descriptor which consists of the
address of a 256-byte table and an a-bit mask. The address is of the
zeroeth byte in the table. Each byte in the table specifies up to eight
orthogonal character subsets of which the corresponding character is
a member. The mask selects which combinations of these orthogonal
subsets comprise the entire character set. In effect, each bit in the
mask corresponds to one of eight orthogonal subsets that may be
encoded by the table. The mask specifies the union of the selected
subsets into the character set. Typical sets would be: upper case,
lower case, non-zero digits, end of line, etc.

Operationally, a character (char) is considerea to be in the character
set if the evaluation of (M[table.adr+char] AND mask) is not equal to
zero. The character is not in the character set if the evaluation is zero.
Each byte in the table indicates which combination of up to eight
orthogonal character subsets (Le., one for each of the eight bit vectors
00000001 2 ,000000102,000001002,000010002 , 000100002 , 001000002 ,

010000002 and 100000002) the corresponding character is a member.
The mask specifies which union of the eight orthogonal character
subsets comprise the total character set. For example, if the eight bit
vector 00000001 2 appearing in the table corresponds to the character
subset of all upper case alphabetic characters, 000000102 appearing
in the table corresponds to the character subset of all lower case
alphabetic characters, and 000001002 appearing in the table corre­
sponds to the decimal digits, then using the mask 00000011 2 with this
table specifies the character set of all alphabetic characters, and using
the mask 00000111 2 specifies the character set of all alphanumeric
characters.

407

Rx

Rx+1

Commercial Instruction Set

The character set descriptor is used as an operand by CIS11 intruc­
tions. It appears in two consecutive general registers, or in two conse­
cutive words in memory pOinted to by a word in the instruction stream.
If the high order half of the first descriptor word is non-zero, the effect
of an instruction which uses a character set will be unpredictable.

15 8 7 o

." I OR

plr+2"

o

TABLE ADDRESS

Character String Instructions
The character string operations conveniently provide most of the com­
mon, as well as time-consuming, functions that are encountered in
commercial data and text processing applications.

Instructions are provided to move and to search character strings:

Character String Move Instructions

MOVC(I) move character

MOVRC(I)

MOVTC(I)

move reverse justified character

move translated character

Character String Search Instructions

LOCC(I) locate character

SKPC(I)

SCANC(I)

SPANC(I)

CMPC(I)

MATC(I)

skip character

scan character

span character

com pare character

match character

The character string move instructions use character string
descriptors as operands. These descriptors specify a source and a
destination character string. The contents of the source are moved to
the destination with alignment at either the most significant character

408

Commercial Instruction Set

as in MOVC(I) and MOVTC(I), or the least signficant character as in
MOVRC(I). If the source is longer than the destination, characters are
truncated from the side opposite that of the alignment; if the destina­
tion is longer than the source, the destination is completed with fill
characters on the side opposite that of the alignment. The MOVTC(I)
instructions move a translated source string to a destination string.

The character string search instructions use a character string de­
scriptor as one operand. The other operand is either a character, a
character string descriptor, or a character set descriptor. These in­
structions are used to examine the source string to find the presence
or absence of characters. The source string is processed from most
significant to least significant character.

Conceptually, these instructions may be divided into three classes:
1. Character String Searches ~ CMPC(I) compares two character

strings. The condition codes are set according to the comparison
of the corresponding most significant unequal characters.
MATC(I) finds an object string within a source string. This is the
"instring" function that languages and text processing systems
provide.

2. Character Searches - LOCC(I) finds the first occurrence of a
given character in a string. SKPC(I) skips to the first non-occur­
rence of a given character in a string.

3. Character Set Searches·- In these instructions, a string is exam­
ined until a member of a character set is either found as a
SCANC(I), or not found as in SPANC(I). This aids the search for
one of several delimiters such as "I", ",", CR, LF, FF, etc, or the
passing of combinations of characters such as blanks, tabs, etc.
LOCC(I) and SKPC(I) are optimizations of SCANC(I) and
SPANC(I) in which the set consists of a single character.

The setting of condition codes reflects the results of the character
string operations. For character string moves, the condition codes
indicate whether the source and destination strings were of equal
length, the source was shorter than the destination such that fill char­
acters were used, or the source was longer than the destination such
that characters were truncated. This is accomplished by setting the
condition codes on the result of arithmetically comparing the initial
source and destination lengths. For CMPC(I), the condition codes are
the result of arithmetically comparing the most significant correspond­
ing pair of unequal characters. For the other search instructions, they
show whether or not the operand strings were completely examined.

The condition codes for some character string search instructions
may be interpreted according to the notion of success or failure. Suc-

409

Commercial Instruction Set

cess is the accomplishment of the instruction's task; failure is the
inability to accomplish the task. Since the condition codes are set
based on the results of the instruction, there is an indirect correspon­
dence between these settings and success or failure. This
correspondence is invariant within an instruction, but it is not the same
for all search instructions. Therefore, different branch instructions
must be used to test the operation of each 'instruction. They are
summarized in the following table:

Instruction Success Failure

LOCC(I)
SCANC(I)
CMPC(I)
MATC(I)

BNE
BNE
BEQ
BNE

BEQ
BEQ
BNE
BEQ

The "register form"- of character string instructions implicity find oper­
ands in the general registers. These operands include character, char­
acter string. descriptor, character set descriptor, and translation table
address. If an instruction does not use a register, Its contents will be
undisturbed. RO-R1 generally contain a source character string de­
scriptor; R2-R3 generally contain a second source character string
descriptor, or the destination string descriptor. The low order half of
R4 is used as an explicit character. R4-R5 is used to contain a charac­
ter set descriptor. R5 contains the starting address of a 256-byte table
which is used for character translation.

When move instructions terminate, RO contains the number of
unmoved source characters, and R1, R2, and R3 are cleared. For
search instructions, the registers are updated to represent descriptors
for the resulting strings.

The "in-line form" of character string instructions find operands, or
pointers to operands, in the instruction stream immediately following
the opcode word. Operands which appear directly in the instruction
stream include characters and translation table addresses. Descrip­
tors are represented in the instruction stream by a single word whose
contents are interpreted as a word address pOinter to the two-word
descriptor. These descriptors specify character strings and character
sets. Some instructions return a character string descriptor in RO-R1.

In general, all character string instructions are unaffected by the over­
lapping of source or destination strings. The result of the move in­
structions is equivalent to having read the entire source string before
storing characters In the destination. If the destination string of the
MOVTC(I) instructions overlaps the translation table, the characters
stored in the destination string will be unpredictable.

410

Commercial Instruction Set

Decimal String Data Types
Two classes of decimal string data types-numeric strings and packed
strings-are defined. Both have similar arithmetic and operational
properties; they primarily differ in the representation of signs and the
placement of digits in memory.

The numeric string data types are signed zoned, unsigned zoned,
trailing overpunch, leadJng overpunched, trailing separate and leading
separate. The packed string data types are signed packed and un­
signed packed. Instructions which operate on numeric strings permit
each numeric string operand to be separately specified; similarly,
packed string instructions permit each packed string operand to be
separately specified. Thus, within each of the two classes of decimal
strings, the operands of an instruction may be of any data type within
the appropriate class.

Decimal strings exist in memory as contiguous bytes which begin and
end on a byte boundary. They represent numbers consisting of 0 to
31 10 digits, in either sign-magnitude or absolute-value form. Sign­
magnitude strings (SIGNED) may be positive or negative; absolute­
value strings (UNSIGNED) represent the absolute value of the magni­
tude. Decimal numbers are whole integer values with an implied deci­
mal radix point immediately beyond the least significant digit; they
may be conceptually extended with zero digits beyond the most signif­
icant digit.

A 4-bit binary coded decimal representation is used for most digits in
decimal strings. A four bit half byte is called a "nibble" and may be
used to contain a binary bit pattern which represents the value of a
decimal digit. The following table shows the -binary nibble contents
associated with each decimal digit:

digit nibble digit nibble

o
1
2
3
4

0000
0001
0010
0011
0100

5
6
7
8
9

0101
0110
0111

<I

1000
1001

Each decimal string data type may have several representations.
These representations permit a certain latitude when accepting
source operands. Decimal String data types have a PREFERRED re­
presentation, which is a valid source representation and which is used
to construct the destination string. Additional ALTERNATE represen­
tations are provided for some decimal data types when accepting
sou rce Qperands.

411

Commercial Instruction Set

Decimal strings used as source opera,,!ds will not be checked for val-.
idity. Instructions will produce unpredictable results if a decimal string
used as a source operand contains an invalid digit encoding, invalid
sign designator, or, in the case of overpunched numbers, an invalid
sign/digit encoding.

When used as a source, decimal strings with zero magnitude are
unique, regardless of sign. Thus, both positive and negative zero have
identical interpretations.

Conceptually, decimal string instructions first determine the correct
result, and then store the decimal string representation of the correct
result in the destination string. A result of zero magnitude is consid­
ered to be positively signed. If the destination string can contain more
digits than are significant in the result, the excess most significant
destination string digits have zero digits stored in them. If the destina­
tion string cannot contain all significant digits of the result, the excess
most significant result digits are not stored; the instruction will indicate
decimal overflow. Note that negative zero is stc;>red in the destination
string as a side effect of decimal overflow where the sign of the result
is negative and the destination is not large enough to contain any non­
zero digits of the result.

If the destination string has zero length, no result digits will be stored.
The sign of the result will be stored in separate and packed strings, but
not in zoned and overpunched strings. Decimal overflow will indicate a
non-zero result.

Decimal String Descriptors
Decimal strings are represented by a two-word descriptor. The de­
scriptor contains the length, data type, and address of the string. It
appears in two consecutive general registers (register form of instruc­
tions), or in two consecutive words in memory pOinted to by a word in
the instruction stream (in-line form of instructions). The unused bits
are reserved by the architecture and must be O. The effect of an in­
struction using a descriptor will be unpredictable if any non-zero re­
served field in the descriptor contains non-zero values or a reserved
data type encoding is used. The design of the numeric and packed
string descriptors are identical:

First Word

length <4:0>

data type
<14:12>

Number of digits specified as an unsigned binary
integer.

Specifies which decimal data type representation is
used.

412

RM

Second Word

address
<15:0>

Commercial Instruction Set

Specifies the address of the byte which contains the
most significant digit of the decimal string.

The following figure shows the descriptor for a decimal string of data
type "T" whose length Is "L" digits and whose most significant digit is
at address "A":

15 14 12 11 5 4 o
0 I T o L

Rx+l
", I

OR Ptr+2
A J

The encodings (in binary) for the NUMERIC string data type field are:

000 signed zoned
001 unsigned zoned
010 trailing overpunch
011 leading overpunch
100 trailing separate
101 leading separate
110 -reserved by the architecture
111 -reserved by the architecture

The encodings (in binary) for the PACKED string data type field are:

000 -reserved by the architecture
001 -reserved by the architecture
010 -reserved by the architecture
011 -reserved by the architecture
100 -reserved by the architecture
101 -reserved by the architecture
110 signed packed
111 unsigned packed

Packed Strings
Packed strings can store two decimal digits in each byte. The least
significant (highest addressed) byte contains the sign of the number in
bits <3:0> and the least significant digit in bits <7:4>.

Signed Packed Strings -:- The preferred positive sign designator is
11002 ; alternate positive sign designators are 10102 , 11102 and 1111 2 ,

The preferrred negative sign designator is 1101 2 ; the alternate
negative sign designator is 1011 2, Source strings will properly accept
both the preferred and alternate designators; destination strings will
be stored with the preferred designator.

413

Commercial Instruction Set

Unsigned Packed Strings - The unsigned sign designator is 1111 2,

PACKED SIGN NIBBLE:

sign
nibble

positive
negative
unsigned

preferred
designator

11002
1101 2

11112

alternate
designators

10102 11102 11112
1011 2

For other than the least significant byte, bytes contain two consecutive
digits-the one of lower significance in bits <3:0> and the one of
higher significance in bits <7:4>. For numbers whose length is odd,
the most significant digit is in bits <7:4> of the lowest addressed
bytes. Numbers with an even length have their most significant digit in
bits <3:0> of the lowest addressed byte; bits <7:4> of this byte must
be zero for source strings, and are cleared to 00002 for destination
strings. Numbers with a length of one occupy a single byte and contain
their digit in bit!; <7:4>. The number of bytes which represent a
packed string is [length/2]+1 (integer division where the fractional
portion of the quotient is discarded).

The following is packed string with an odd number of digits:

A c=_j_~ __ ~_n_~=J
A+l [=~~-==r~=~===J

•

•

A+(LENGTHI2) [=-~~~_=r ___ ~_J

414

Commercial Instruction Set

The following is a packed string with an even number of digits:

7 4 3 0

A I 0 msd

A+l

•
•
•

A+ (LENGTH/2) Isd sign

A zero length packed string occupies a single byte of storage; bits
<7:4> of this byte must be zero for source strings, and are cleared to
00002 for destination strings. Bits <3:0> must be a valid sign for
source"strings, and are used to store the sign of the result for destina­
tion strings. When used as a source, zero length strings represent
operands with zero magnitude. When used as a destination, they can
only reflect a result of zero magnitude without indicating overflow. The
following is a zero length packed string:

7 4 3 o

A ~I _____ O ____ ~~ ____ Sig_n ____ ~

A valid packed string is characterized by:
1. A length from 0 to 31 10 digits.
2. Every digit nibble is in the range 00002 to 1001 2 ,

3. For even length sources, bits <7:4> of the lowest addressed byte
are 00002,

4. Signed Packed Strings-sign nibble is either 10102, 1011 2, 11002,

1101 2, 11102 0r 1111 2,

5. Unsigned Packed Strings - sign nibble is 1111 2 ,

Zoned Strings
Zoned strings represent one decimal digit in each byte. Each byte is
divided into two portions-the high order nibble (bits <7:4» and the
low order nibble (bits <3:0». The low order nibbJe contains the value
of the corresponding decimal digit.

415

Commercial Instruction Set

Signed Zoned Strings - When used as a source string, the high
order nibble of the least significant byte contains the sign of the num­
ber; the high order nibbles of all other bytes are ignored. Destination
strings are stored with the sign in the high order nibble of the least
significant byte, and 0011 2 in the high order nibble of all other bytes.
0011 2 in the high order nibble corresponds to the ASCII encoding for
numeric digits. The positive sign designator is 0011 2; the negative sign
designator is 0111 2.

Unsigned Zoned Strings - When used as a source string, the high
order nibbles of all bytes are ignored. Destination strings are stored
with 0011 2 in the high order nibble of all bytes.

The number of bytes needed to contain a zoned string is identical to
. the length of the decimal number.

7 4 3 0

A ~I ________ ~ ___ ms~

A+l L--..-..-----'--_.~
•
•
•

A+n-l sign ~ 'SIGN' IS PRESENT ONLY
Isd SIGNED ZONED STRINGS

~--------~------

A zero length zoned string does not occupy memory; the address
portion of its descriptor is ignored. When used as a source, zero
length strings provide operands with zero magnitude; when used as a
destination, they can only accurately reflect a result of zero magnitude
(the sign of the operation is lost). An attempt to store a non-zero result
will be indicated by setting overflow.

A valid zoned string is characterized by:
1. A length from 0 to 31 10 digits.
2. The low order nibbles of each byte are in the range 00002 to 10012.
3. Signed Zoned Strings-The high order nibble of the 'feast signifi­

cant byte is either 0011 2 or 01112.

416

Commercial Instruction Set

Overpunch Strings
Overpunch strings represent one decimal digit in each byte. Trailing
overpunch strings combine the encoding of the sign and the least
significant digit; leading overpunch strings combine the encoding of
the sign and the most significant digit. Bytes other than the byte in
which the sign is encoded are divided into two portions-the high
order nibble (bits <7:4» and the low order nibble (bits <3:0». The
low order nibble contains the value of the corresponding decimal digit.
When used as a source string, the high order nibble of all bytes which
do not contain the sign are Ignored. Destination strings are stored with
0011 2 In the high order nibble of all bytes which do not contain the
sign. 0011 2 in the high order nibble corresponds to the ASCII encoding
for numeric digits.

The following table shows the sign of the decimal string and the value
of the digit which is encoded in the sign byte. Source strings will
properly accept both the preferred and alternate desig~ators; destina­
tion strings will store the preferred designator. The preferred designa­
tors correspond to the ASCII graphics "A" to "R," "{," and "I." The
alternate designators correspond to the ASCII graphics "0" to "9," "[,"
"?," "]," "I" and ":"

OVERPUNCH SIGN/DIGIT BYTE:,

overpunch
sign/digit

+0
+1
+2
+3
+4
+5
+6
+7
+8
+9
-0
-1
-2
-3
-4
-5
-6
-7
-8
-9

preferred
designator

01111011 2

01000001 2

010000102

01000011 2

010001002

01000101 2

010001102

01000111 2

010010002

01001001 2

01111101 2

010010102

01001011 2

010011002

01001101 2

010011102

01001111 2

010100002

01010001 2

010100102

alternate
designators

001100002,01011011 2,00111111 2

00110001 2

001100102

00110011 2

001101002

00110101 2

001101102

00110111 2

001110002

00111001 2

01011101 2,00100001 2,001110102

417

Commercial Instruction Set

The number of bytes needed to contain an overpunch string is identi­
cal to the length of the decimal number.

The following is a trailing overpunch string:

A+1 L ____ -'---_____ ---'

A+n- 1 L L ___________ _

The following is a leading overpunch string:

7 4 3 0

A <--I ____ -----'

sign and msd

A+1]
•
•

A+n -1 L ___ ---' ____ IS_d __ --'

A zero length overpunch string does not occupy memory; the address
portion of its descriptor is ignored. When used as a source, zero
length strings provide operands with zero magnitude; when used as a
destination, they can only accurately reflect a result of zero magnitude
(the sign of the operation is lost). An attempt to store a non-zero result
will be indicated by setting overflow.

A valid overpunch string is characterized by:
1. A length from 0 to 31 10 digits.
2. The low order nibble of each digit byte is in the range 00002 to

1001 2 •

3. The encoded sign/digit byte contains values from the above table
of preferred and alternate overpunch sign/digit values.

418

Commercial Instruction Set

Separate Strings
Separate strings represent one decimal digit in each byte. Trailing
separate strings encode the sign in a byte immediately beyond the
least significant digit; leading separate strings encode the sign in a
byte immediately beyond the most significant digit. Bytes other than
the byte in which the sign. is encoded are divided into two por­
tions-the high order nibble (bits <7:4» and the low order nibble
(bits <3:0». The low order nibble contains the value of the corres­
ponding decimal digit.

When used as a source string, the high order nibbles of all digit bytes
are ignored. Destination strings are stored with 0011 2 in the high order
nibble of all digit bytes. 0011 2 in the high order nibble corresponds to
the ASCII encoding for numeric digits. The preferred positive sign
designator is 00101011 2 and the alternate positive sign designator is
001000002• The negative sign designator is 00101101 2 • These designa­
tors correspond to the ASCII encoding for "+," "space," and "-."

SEPARATE SIGN BYTE:

sign
byte

positive
negative

preferred
designator

00101011 2

00101101 2

alternate
designator

001000002

The number of bytes needed to contain a leading or trailing separate
string is identical to (length + 1).

The following is a trailing separate string:

7 4 3 o

A ~I __________ ~ ____ m_sd ____ ~

A+l

•
•
•

A+n-l lsd

A+n sign

419

Commercial Instruction Set

The following is a leading separate string:

7 4 3

A-I C sign L--______J
A I msd

A+I C
•
•
•

A+n-I Isd

A zero length separate string occupies a single byte of memory which
contains the sign. When used as a source, zero length strings provide
operands with zero magnitude; when used as a destination, they can
only reflect a result of zero magnitude without indicating overflow; the
sign of the result is stored.

The following is a zero length trailing separate string:

7 o

A 1~ ___________ Si_gn __________ ~

The following is a zero length leading separate string:

7 o

A-I sign

A valid separate string is characterized by:
1. A length from 0 to 31 10 digits.
2. The low order nibble of each digit byte is in the range 00002 to

1001 2 ,

420

Commercial Instruction Set

3. The sign byte is either 001000002 , 00101011 2 or 00101101 2 •

Long Integer
Long integers are 32-bit binary 2's complement numbers organized as
two words in consecutive registers or in memory-no descriptor is
used. One word contains the high order 15 bits. The sign is in
bit<15>; bit<14> is the most significant. The other word contains the
low order 16 bits with bit<O> the least significant. The range of num­
bers that can be represented is -2,147,483,648 to +2,147,483,647.

The register form of decimal'convert instructions use a restricted form
of long integ~r with the number in the general register pair R2-R3:

15 14 o

R2 5 I HIGH

R3 LOW

The in-line form of decimal convert instructions reference the long
integer by a word address pOinter which is part of the instruction
stream:

15 14 o
ptr LOW

ptr+2 L-.-..s--'-, __________ H_IG_H ___________ -'

...
Note that these two representations of long integers differ. There is no
single representation of long integer among EAE, EIS, FPP and soft­
ware. The "register form" was selected to be compatible with EIS; the
"in-line form" was selected to be compatible with current standard
software usage.

Decimal String Instructions
The decimal string 'instruction groups aid manipulation of decimal
data. Several numeric (byte) and packed decimal data types are sup­
ported. Instructions are provided for basic arithmetic operations, as
well as for compare, shift, and convert functions.

Instructions
Each arithmetic, shift and compare instruction operates on a single
class of data type. Both numeric and packed string instructions are

421

Commercial Instruction Set

provided for most operations. Convert instructions have a source op­
erand of one data type and a destination operand of another data type.
Decimal string instructions specify to which class each of their decimal
string operands belong. The data type supplied as part of each
operand's descriptor may be any valid data type of the class. This
permits a ge~ral mixing of data types within numeric and packed
classes.

The data types on which an instruction operates are designated by the
last letter(s) of the opcode mnemonic. "N" denotes numeric strings,
"P" denotes packed strings, and "L" denotes long binary integers.

The arithmetic instructions are ADDN(I), ADDP(I), SUBN(I), SUBP(I),
MULP(I) and DIVP(I). ASHN(I) and ASHP(I) shift a decimal string by a
specified number of digit positions (either direction) with optional
rounding, and store the result in the destination string. Thus, they
effectively multiply or divide by a power of ten. If the shift count is zero,
these shift instructions can be used simply to move decimal strings
(destinations are stored with preferred representation). Move negated
may be accomplished by using SUBN(I) or SUBP(I). Arithmetic com­
parison instructions, CMPN(I) and CMPP(I), are provided to examine
the relative difference between two decimal strings.

CVTNL(I) and CVTPL(I) convert a decimal string to a long (32-bit) 2's
complement integer. CVTLN(I) and CVTLP(I) convert a long integer to
a decimal string. CVTNP(I) and CVTPN(I) convert between numeric
and packed decimal strings.

The instructions are:

Numeric String Instructions

ADDN(I) add numeric
SUBN(I) subtract numeric
ASHN(I) arithmetic shift numeric
CMPN(I) compare numeric

Packed String Instructions

ADDP(I) add packed
SUBP(I) subtract packed
MULP(I) multiply packed
DIVP(I) divide packed
ASHP(I) arithmetic shift packed
CMPP(I) compare packed

422

Commercial Instruction Set

Convert Instructions

CVTNL
CVTLN
CVTPL
CVTLP
CVTNP
CVTPN

Condition Codes

convert numeric to long
convert long to numeric
convert packed to long
convert long to packed
convert numeric to packed'
convert packed to numeric

For instructions which store a value in a destination string, the Nand Z
bits reflect the value stored. The N bit indicates a negative destination;
the Z bit indicates a destination having zero magnitude. A destination
string with zero magnitude is considered to be positive (even if a
negative zero was stored as· a consequence of decimal overflow).
Thus, the setting of Nand Z are mutually exclusive.

The V bit will indicate whether the destination string accurately repre­
sents the result of the instruction. It is also set if division by zero was
attempted. If the V bit is set, the destination string will represent the
least significant portion of the result (truncated). If the V bit is cleared,
the destination represents the true result.

For DIVP(I), C indicates division by zero. Otherwise, C is always
cleared.

For comparisions using the CMPN(I) and CMPP(I) instructions, the N
and Z bits reflect the signed relationship between the source strings.
The signed branch instructions can test the result. V and Care
cleared.

For instructions which return a long integer value, N reflects the sign of
the 2's complement integer, and Z indicates whether it was zero. V
indicates whether the long integer could not contain all significant
digits and sign of the result. CVTNL(I) and CVTPL(I) also use C to
represent a borrow from a more significant portion of the long binary
result. Otherwise, C is cleared.

Operand Delivery
The "register form" of decimal string instructions implicitly find their
operands in the general registers. These operands include decimal
string descriptors, long binary integers, and shift descriptor words. If
an instruction does not use a register, its contents will be uhdisturbed.
RO-R1 generally contain the first source descriptor, R2-R3 generally
contain the second source descriptor, and R4-R5 generally contain
the destination descriptor. ASHN and ASHP use R4 to contain a shift
descriptor word. CVTLN, CVTLP, CVTNL and CVTPL use RO-R1 to

423

Commercial Instruction Set

contain a decimal string descriptor, and R2-R3 for the long integer.
When an instruction is completed, the source descriptor registers are
cleared.

The "in-line form" of decimal string instructions find their operands, or
pOinters to descriptors, in the instruction stream immediately following
the opcode word. Operands which appear directly in the instruction
stream are shift descriptor words. Operands which are represented in
the instruction stream by a pOinter containing the word address of the
descriptor are decimal string descriptors and long binary integers. No
in-line form of decimal string instructions modify'RO-R6.

Data Overlap
The operation of decimal string instructions is unaffected by any over­
lap of the source operands provided that each source operand is a
valid representation of the specified data type.

The overlap of the destination string and any of the source strings will,
in general, produce unpredictable results. However, ADDN(I),
ADDP(I), SUBN(I) and SUBP(I) will permit the destination string to
overlap either or both source strings only if all corresponding digits of
the strings are in coincident bytes in memory. This facilitates two­
address ari~hmetic.

Commercial Load Descriptor Instructions
The commercial load descriptor instructions augment the character
and decimal string instructions by efficiently loading the general regis­
ters with string descriptors. Two forms of instructions are provided.
The L2Dr instructions load two string descriptors into the general
registers. The first descriptor is loaded into RO-R1 and the second
descriptor is loaded into R2-R3. This instruction supports equal length
character string move, equal length .character string compare, charac­
ter string matching, and decimal string compare.

The second form, the L3Dr instructions, take three descriptors. The
first is loaded into RO-R1, the second into R2-R3, and the third into R4-
R5. The instruction supports 3-address arithmetic.

The condition codes are not affected.

Words containing the addresses of the descriptors (two for L2Dr and
three for L3Dr) are in consecutive locations in memory. The descriptor
addresses are found by applying the addressing mode @(Rr)+ once
for each descriptor. The value of r is encoded as the low order three
bits of the instruction's opcode. If O:Sr:S5, then r can be thought of as
the base address of a small table in memory, where each entry in the
table contains the address of a descriptor. If r =6, then the instructions

424

Commercial Instruction Set

effectively pop the addresses of descriptors off of the stack. If r=7,
then the descriptor addresses are contiguous with the instruction's
opcode word.

The string descriptors are two words long. The address of the descrip­
tor is that of the low order word. It is loaded into the corresponding
even register. The high order word of the descriptor is loaded into the
corresponding odd register. Note th~t although these instructions are
described in terms of string descriptors, they are applicable for other
instances where two consecutive words in memory referenced by a
pointer are to be copied into even-odd general register pairs.

The instructions are:

Commercial Load Descriptor Instructions
L2DO load 2 descriptors using @(RO)+
L2D1 load 2 descriptors using @(R1)+
L2D2 load 2 descriptors using @(R2)+
L2D3 load 2 descriptors using @(R3)+
L2D4 load 2 descriptors using @(R4)+
L2D5 load 2 descriptors using @(R5)+
L2D6 load 2 descriptors using @(R6)+
L2D7 load 2 descriptors using @(R7)+

L3DO load 3 descriptors using @(RO)+
L3D1 load 3 descriptors using @(R1)+
L3D2 load 3 descriptors using @(R2)+
L3D3 load 3 descriptors using @(R3)+
L3D4 load 3 descriptors using @(R4)+
L3D5 load 3 descriptors using @(R5)+
L3D6 load 3 descriptors using @(R6)+
L3D7 load 3 descriptors using @(R7)+

EXTENDED INSTRUCTION OVERVIEW

Opcode Utilization and Availability
Opcodes in the following ranges are reserved and are not available for
usage:

0000108- 0000778
0070008- 0077778
-1070008- 1077778
1700068
1700108
1700138- 1700778

425

Commercial Instruction Set

In general, extended PDP-11 instructions will use opcodes in the
range 0760008- 0767778>
The extended opcode space is divided into 64 groups of eight instruc­
tions each. Groups are treated as integral entities. A group is declared
"closed" when all eight instructions in it have been defined or when no
further instructions are admissible into it. Otherwise a group is consid­
ered "open," and future instructions may be added to it. The opcode
groups are specified later in this chapter.

PDP-11 extended instructions can be defined (a) to operate on impli­
citly speci.fied operands or (b) to require explicit operand specifiers in
the instruction stream, or both. Explicit operand specifiers may use
either (i) a general operand-specifier format or (ii) an opcode-specific
operand-specifier format.

If an extended instruction uses only implicit operands, only the opcode
will appear in the instruction-stream (see section "Operands for Ex­
tended Instructions").

If an extended instruction uses explicit operands, the opcode word is
followed in the instruction stream by as many operand specifiers and
operands as the specification of the instruction requires. As in
traditional PDP-11 instructions, explicit general operand specifiers us­
ing modes 6 or 7 or using R7 in modes 2 or 3 will also require addition­
al words in the instruction stream (see section "Operands for Extend­
ed Instructions").

The extended instruction opcode word is structured as follows:

15 9 8 3 2 o

076 GROUP INSTR

Bits <8:3> contain the group code. Bits <2:0> specify the instruction
within the group.

Extended Instruction Groups
The extended instruction groups are defined in the following table,
where X represents the set of eight instructions in the group.

Code Group Status

07600X
07601X
07602X Commercial Load 2 Descriptors

426

open
open
closed

Commercial Instruction Set

Code Group Status

07603X Character String Move, closed
07604X Character String" Search closed
07605X Numeric String closed
07606X Commercial Load 3 Descriptors closed
07607X Packed String closed
07610X open
07611X open
07612X open
07613X Character String Move (in-line) closed
07614X Character String Search (in-line) closed
07615X Numeric String (in-line) closed
07616X open
07617X Packed String (in-line) closed
07620X open
07621X open
07622X open
07623X open
07624X open
07624X open
07625X open
07626X open
07627X open
07630X open
07631X open
07632X open
07633X open
07634X open
07635X open
07636X open
07637X open
07640X open
07641X open
07642X open
07643X open
07644X open
07645X open
07646X open
07647X open
07650X open
07651X open
07652X open
07653X open

427

Code

07654X
07655X
07656X
07657X
07660X
07661X
07662X
07663X
07664X
07665X
07666X
07667X
07670X
07671X
07672X
07673X
07674X
07675X
07676X
07677X

Commercial Instruction Set

Group

Processor-Specific #0
Processor-Specific #1
Processor-Specific #2
Processor-Specific #3
Processor-Specific #4
Processor-Specific #5
Processor-Specific #6
Processor-Specific #7
CSS/Customer #0
CSS/Customer #1
CSS/Customer #2
CSS/Customer #3
CSS/Customer #4
CSS/Customer #5
CSS/Customer #6
eSS/Customer #7

Status

open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open

The extended instruction groups fall into three major categories:
1. The group 07600X - 07657X is for instructions which will be of

general use across the range of PDP-11 processors. The opcodes
in this range will be characterized as (a) uniquely and immutably
defined and (b) reasonable for implementation on all processor
models of the PDP-11 family.

2. The groups 07660X - 07667X are for instructions which will be
used only on specific processors of the PDP-11 family. These, too,
will be uniquely and immutably.defined, but each opcode will be
restrictively assigned to a specific processor model and may not
be implemented on other processors.

3. The groups 07670X - 07677X will neither be uniquely nor immut-
ably defined but will be left available for customer usage.

Operands for Extended Instructions
Operands for extended instructions may be implicitly or explicitly
specified. Explicit operands are specified, either in a general or in an
opcode-specific manner, through information expressed directly in
the instruction stream. R7 is conceptually incremented by two as each
word which contains an operand-specifier or operand in the instruc­
tion stream is fetched.

428

Commercial Instruction Set

Implicitly specified operands do not appear in the instruction stream.
If an instruction uses an implicitly specified operand, the definition of
that instruction will specify the exact location and form of such an
operand.

Implicitly specified operands may be defined to be located:
1. In the general-purpose registers
2. In defined machine registers
3. On the R6 stack
4. In defined locations in the virtual address space
5. In defined locations in the physical address space

The definition of an instruction may specify that operands immediately
follow it in the instruction stream. The format and interpretation of
such operands can be specified in an opcode-specific manner and will
so be defined in the description of the instruction.

When an instruction uses explicit general operand specifiers, the op­
erand specifiers shall immediately follow the extended opcode in the
instruction stream. As many operand specifiers as the instruction re­
quires follow in consecutive order.

Instructions which use a single general operand will use the single­
operand-specifier format. Instructions which require two consecutive
explicit operands will use the double-operand-specifier format. In­
structions which use more than two consecutive explicit operands will
specify the operands in a succession of double-operand-specifiers,
and the last operand, when there are an odd number of operands, will
be specified in the single-operand format.

The single-operand specifier consists of a word in the following
format:

15 6 5 o

o MODE-REG

Bits < 15:6> must be O. If not, a trap through vector 4 (invalid instruc­
tion specifier) will be taken.

Bits <5:0> specify the operand in the traditional PDP-11 mode-regis­
ter format.

429

Commercial Instruction Set

The double-operand specifier consists of a word in the following for­
mat:

15 12 11 6 5 o
MODE-REG ~

'-----------'----~
o MODE- REG]

Bits <15:12> must be 0, else a trap through vector 4 (invalid instruc­
tion specifier) will be taken.

Bits < 11 :6> specify the first of the two operands, and bits <5:0>
specify the second. Each operand is specified in the traditional PDP-
11 mode-register format.

Additional operand words are required in the instruction stream for as
many general operand specifiers as use mode 6 or 7 (with any
register) or as utilize modes 2 or 3 with register 7. These additional
operand words immediately follow the operand-specifier word which
calls for them.

For example, a hypothetical instruction

ZAP #A, (R1)+, B(R4), C, 0

requiring explicit general operands would appear in the instruction
stream as the following eight words:

opcode zzz for ZAP
specifiers for operands 1 & 2
value of literal A
specifiers for operands 3 & 4
value of index B
displacement off PC for address of C
specifier for operand 5
displacement off PC for address of D

SUSPENDABLE INSTRUCTIONS

076zzz
002721
aaaaaa
006467
bbbbbb
cccccc
000067
dddddd

The intent of defining instruction suspendability is to establish a
means for providing reasonable interrupt latency and does not pre­
sume to endow extended instructions with an ability to recover from
trap conditions from which sequences of basic instructions cannot
recover.

Suspension-events refer primarily to events which occur asynchro­
nously to the instruction's execution; these are specifically the inter­
rupts generated by 110 peripheral devices, power-fail traps, and float-

430

Commercial Instruction Set

ing point processor exceptions. Secondarily, suspension-events can
refer also to those synchronous trap events which occur only for
information notification purposes and do not imply that the integrity of
the instruction's execution is in jeopardy. Such suspension events
include "yellow zone" traps.

Each extended instruction is classified either as "non-suspendable" or
as "potentially suspend able."

As explained below, two implementation choices are possible for non­
suspend able instructions, and three are possible for potentially sus­
pendable instructions. The following diagram can serve as a guide to
subsequent portions of this section.

Architecture Implementation

A) Non-Suspendable 1) non-interruptible
2) restartable

8) Potentially Suspendable 1) non-interruptible
2) restartable
3) suspendable

A non-suspendable instru·ction has no architectural mech~nism to af­
low it to be suspended, while a suspension-event is serviced, and then
subsequently to be resumed.

A non-suspendable instruction may be implemented either as "non­
interruptible" or as "restartable."

If an instruction is implemented as non-interruptible, then once its
execution has commenced, the processor will defer service of all sus­
pension-events until after the completion of the instruction.

If an instruction is implemented as restartable, then the instruction
may be aborted to allow the processor to service suspension-events.
The programmer visible state will be restored to that which existed
immediately prior to tl:le instruction execution. Upon the processor's
return from servicing the suspension-event, the instruction will be
started afresh.

Potentially suspendable instructions have a defined architectural
mechanism, (PS<8> as described below), by which they' can be sus­
pended in mid-execution to allow the processor to service suspen­
sion-events and then subsequently to be resumed from the point
where they had been suspended.

A potentially suspendable instruction may be implemented either as
"non-interruptible," as "restartable," or as "suspendable."

431

Commercia/Instruction Set

The presence of suspension-events may cause certain extended in­
structions to be suspended on some processors. If the instruction is
suspended, PS<8> will be set, R7 will be backed up to address the
opcode word, and the suspension-event will be serviced. When the
instruction is resumed, PS<8> indicates that execution of the instruc­
tion has previously begun.

In order to make these instructions suspendable on all processors, the
instruction state is part of the user state which is saved by interrupt
handling routines. This includes the general registers, condition codes
and memory. This state is processor dependent when suspended.
Software should not attempt to interpret or modify this state; it must
only be saved and restored. Up to 6410 words of internal instruction
state may also have been pushed onto the stack. This state must not
be modified by software. The instruction will remove this state from the
stack when it is resumed.

If PS<8> is set prior to executing a potentially suspendable instruc­
tion, the effect of the instruction is unpredictable.

At the normal completion of an potentially suspendable instruction,
PS<8> will be cleared.

In order to promote uniform nomenclature, the name of the bit PS<8>
will be "Instruction Suspension" with the corresponding mnemonic
"IS" .

All suspendable instructions will use PS<8> to indicate instruction
suspension. If, when a potentially suspendable instruction is executed,
PS<8> is clear, it means that the instruction is being commenced; if it
is set, it means that the instruction is being resumed. PS<8> will be
cleared when:
1. A suspended instruction successfully completes.
2. The processor powers-up.
3. A new PS is fetched from vector location with PS<8> clear.
4. RTI or RTT is executed with new PS<8> clear.
5. It is explicitly cleared by an instruction.

PS<8> will be set when:
1. A potentially suspendable instruction is interrupted and wishes to

be suspended.
2. A new PS is fetched from vector location with PS <8> set.
3. RTI or RTT is executed with PS<8> set.
4. It is explicitly set by an instruction.

432

Commercial Instruction Set

The setting of this bit will have no effect on instructions which are not
potentially suspend able; such instructions will not implicitly modify
this bit.

When an instruction is suspended, the following state may contain
information vital to the resumption of the instruction. The information
must be preserved and restored prior to resta.rting the suspended
instruction. This information may vary from one execution of the in­
struction to another.
1. General registers RO through R5.
2. Condition code bits (PS<3:0».
3. Up to 64 10 words on "the stack of the context in which the

suspended instruction was executing.
4. Any destinations used by the instruction.

Stack Utilization
Extended instructions may use the R6 stack for temporary "scratch"
state storage.

The maximum number of additional words which an extended instru­
cion may claim on the R6 stack is 6410, The reason for imposing a limit
is to ensure that system software can adequately provide for worst­
case stack allocation requirements. In addition to the above restric­
tion" the normal PDP-11 stack-limit mechanism remains in effect for
extended instructions just as it does for any other instruction.

If an extended instruction is interrupted, R6 must have been updated
to encompass any additional stack storage still required for comple­
tion of the instruction.

All extended instructions will support dynamic stack allocation facili­
ties used by some software systems. This means that memory
management traps which result from over-extending the stack area
must be survivable. If insufficient stack space exists, the instruction
must terminate by a memory management abort in such a way that if
additional stack space were allocated, the instruction could be suc­
cessfully restarted.

Unpredictable Conditions
"Unpredictable" means that the outcome is indeterminate and non­
repeatable. Either the result of an instruction or the effect of an in­
struction can be unpredictable. When the results of an instruction are
unpredictable, the condition codes and destination operands (but not
their descriptors) will contain unpredictable values; destinations may
not even contain valid results. When" the effect of an instruction is
unpredictable, the entire user or process state, and not only the por-

433

Commercial Instruction Set

tion typically used by the instruction, will be unpredictable. In a ma­
chine with multiple modes and address spaces, an unpredictable
operation in a less privileged mode will not affect the state of a more
privileged mode, nor will it result in accesses to memory from user
mode which are outside the mapped limits of the user's program.

Note that architectural constraints exist on unpredictable effects. In
particular, an unpredictable effect which manifests itself as a trap
must meet all the requirements for the particular trap.

Implementors are encouraged to select the manifestations of unpred­
ictable results and effects to be such that their occurrence is visible to
software at the earliest possible time.

Multiprogramming Integrity
Machine implementations shall ensure that, under all initial settings of
registers and memory, extended instructions shall not violate any
bound implicit in multiprogrammed operation. Specifically, the follow­
ing are to be avoided:
1. A less-privileged program escaping into a higher-privileged

mode.
2. A program escaping beyond its address-mapping limits.
3. A non-interruptible or non-terminating sequence.
4. Excessive interrupt latency.

Purpose:

Operation:

Condition
Codes:

Opcodes:

ADDN/ADDP/ADDNI/ADDPI

Add Decimal

dst - src2 + src1
N: set if dst < p; cleared otherwise

Z: set if dst = 0; cleared otherwise

V: set if dst cannot contain in all significant digits of the
result; cleared otherwise

C: cleared

ADDN
ADDP
ADDNI
ADDPI

076050
076070
076150
076170

Description: Src1 is added to src2, and the result is stored In the destination
string. The condition codes reflect the value stored in destination string, and
whether all significant digits were stored.

434

Commercial Instruction Set

Register Form-ADDN and ADDP
When the instruction starts, the operands must have been placed in the general
registers. The first source descriptor is placed in RO-R1, the second source
descriptor is placed in R2-R3, and the destination descriptor is placed in R4-
R5:

RO

R 1

R2

R3

R4

R5

15

I---

-

-

o

srcl. dscr -

src2. dscr -

dst· dscr -

When the instruction is completed, the source descriptor registers are cleared:

RO

R1

R2

R3

R4

R5

15

-

In-line Form-ADDNI and ADDPI

o
0

0

0

0

dst .dscr -

Each word address pOinter which follows the opcode word in the instruction
stream refers to a two-word decimal string descriptor. RO-R6 are unchanged
when the instruction is completed.

Notes:

1. The operation of these instructions is unaffected by any overlap of the
source strings provided that each source string is a valid representation of
the specified data type.

2. Source strings may overlap the destination string only if all corresponding
digits of the strings are in cOincident bytes in memory.

435

Purpose:

Operation:

Condition
Codes:

Opcodes:

Commercial Instruction Set

ASHN/ASHP/ASHNI/ASHPI

Arithmetic Shift Decimal

dst - src * (10 ** shift count)

N: set if dst <0; cleared otherwise

Z: set if dst = 0; cleared otherwise

. V: set if dst cannot contain all significant digits of the result;
cleared otherwise

C: cleared

ASHN
ASHP
ASHNI
ASHPI

076056
076076
076156
076176

Description: The decimal number specified by the source descriptor is ar­
ithmetically shifted and stored In the area specified by the destination descrip­
tor. The shifted result is aligned with the least significant digit position in the
destination string. The shift count is a 2's complement byte whose value ranges
from -128,0 to + 127 '0' If the shift count is positive, a shift in the direction of
least to most significant digits Is performed. A negative shift count performs a
shift from most to least significant digit. Thus, the shift count is the power of ten
by which the source is multiplied; negative powers of ten effectively divide. Zero
digits are supplied for vacated digit positions. A zero shift count will move the
source to the destination. The condition codes reflect the value stored in the
destination string, and whether all significant digits were stored.

A negative shift count invokes a rounding operation. The result Is constructed
by shifting the source the specified number of digit positions. The roundin!;!
digit Is then added to the most signiflcantdigit which was shifted out. If this sum
is less than 10,0' the shifted result Is stored in the destination string. If the sum
is 10'0 or greater, the magnitude of the shifted result is increased by 1 and then
stored in the destination string. If no rounding Is desired, the rounding digit
should be zero.

The shift count and rounding digit are represented In a single word referred to
as the shift descriptor. Bits <15:12> of this word must be zero.

15 12 11 8 7 o

o rnd.dgt shift. ent

Register Form-ASHN and ASHP
When the instruction starts, the operands must have been placed In the general
registers. The source descriptor is placed In RO-R1, the destination descriptor
is placed in R2-R3, and the shift descriptor is placed In R4.

436

Commercial Instruction Set

15 o
RO

- src. dscr -
Rl

R2
f- dst. dscr -

R3

R4 shift., dscr

When the Instruction is completed, the source descriptor registers and shift
descriptor register are cleared.

15 o

RO 0

Rl 0

R2
i- dst. ds'Cr -

R3

R4 0

In-line Form-ASHNI and ASHPI
The words which follow the opcode word in the instruction stream are a word
address pOinter to a two-word decimal string source descriptor, a word ad­
dress pOinter to a two-word decimal string destination descriptor, and a shift
descriptor word. RO-R6 are unchanged when the Instruction Is completed.

Notes:

1. If bits <15:12> of the shift descriptor word are not zero, the effect of the
instruction is unpredictable.

2. If bits < 11 :8> of the shift descriptor are not a valid decimal digit, the
results of the instruction are unpredictable.

3. Any overlap of the source and destination strings will produce unpredicta­
ble results.

437

Purpose:

Operation:

Condition
Codes:

Opcodes:

Commercial Instruction Set

CMPC/CMPCI

Compare Character

src1 is compared with src2 (src1-src2)

The condition codes are based on the arithmetic comparison
of the most significant pair of unequal src1 and src2
characters (src1.byte-src2.byte)

N: set if result < 0; cleared otherwise

Z: set if result = 0: cleared otherwise

V: set if there was arithmetic overflow, that is, src1.byte<7>
and src2.byte<7> were different, and src2.byte<7> was
the same as bit <7> of (src1.byte-src2.byte); cleared oth­
erwise

C: cleared if there was a carry from the most significant bit of
the result; set otherwise.

CMPC
CMPCI

076044
076144

Description: Each character of src1 is compared with the corresponding
character of src2 by examining the character strings from most significant to
least significant characters. If the character strings are of unequal length, the
shorter character string is conceptually extended to the length of the longer
character string with fill characters beyond its least significant character. The
instruction terminates when the first corresponding unequal characters are
found or when both character strings are exhausted. The condition codes
reflect the last comparison, permitting the unsigned branch instructions to test
the result.

Register Form-CMPC
When the instruction starts, the operands must have been placed in the general
registers. The first source cnaracter string descriptor is placed in RO-R1, the
second source character string descriptor is placed in R2-R3, the fill character
is placed in R4<7:0>, Rnd R4<15:8> must be zero.

~15~ ____________________ ~8 ___ 7~ _____________________ O~,

RO

src 1. dscr

Rl

R2
src2 dscr

R3
~----------------------.----------

R4 o fill

438

Commercial Instruction Set

The instruction terminates with sub-string descriptors in RO-R1 and R2-R3
which represent the portion of each source character string beginning with the
most significant corresponding unequal characters. RO-R1 contain a descriptor
for the unequal portion of the original src1 string; R2-R3 contain a descriptor
for the unequal portion of the original src2 string. A vacant character string
descriptor indicates that the entire source character string was equal to the
corresponding portion of the other source character string, including extension
by the fill character; its address is one greater than that of the least significant
character of the character string.

15 8 7 o
RO

I- sub, src I, dscr -
Rl

R2

I- sub. src2. dscr -
R3

R4 0 I fill

In-line Form-CMPCI The words which follow the opcode word in the instruc­
tion stream are a word address pOinter to a two-word character string src1
descriptor, a word address pointer to a two-word character string src2 descrip­
tor, and a word whose low order half contains the fill character and whose high
order half must be zero. RO-R6 are unchanged when the instruction is complet­
ed,

Notes:

1. The operation of this instruction is unaffected by any overlap of the source
character strings.

2. If the src1 character string is vacant, the fill character will be compared
with src2. If the src2 character string is vacant, the fill character will be
compared with src1. If both character strings are vacant, the condition
codes will indicate equality.

3. CMPC-If an initial source character string descriptor is vacant, the
resulting sub-string descriptor is the same as the original character string
descriptor.

4. A test for success is BEQ; a test for failure is BNE.

5. When the instruction terminates, the condition codes will be set as if a
CMPB instruction operated on the most significant unequa'i characters. If
both strings are initially vacant or are identical, the condition codes will be
set as if the last characters to be compared were identical. This results in
equality with N cleared, Z set, V cleared, and C cleared.

6. Both CMPC and CMPCI update the condition codes. CMPC returns sub­
string descriptors.

439

Purpose:

Operation:

Condition
Codes:

Opcodes:

Commercial Instruction Set

CMPN/CMPP/CMPNI/CMPPI

Compare Decimal

src1 is compared with src2 (src1-src2)

N: set if src1 < src2; cleared otherwise

Z: set if src1 = src2; cleared otherwise

V: cleared

C: cleared

CMPN
CMPP
CMPNI
CMPPI

076052
076072
076152
076172

Description: Src1 Is arithmetically compared with src2. The condition codes
reflect the comparison. The signed branch instruction can be used to test the
result.

Register Form-CMPN andCMPP
When the instruction starts, the operands must have been placed in the general
registers. The first source descriptor Is placed In RO-R1, and the second source
descriptor is.placed In R2-R3.

15 0

RO

- Icr 1 . dscr -
Rl

R2

I- src2. dSCf -
R3

When the instruction Is completed, the source descriptor registers are cleared.

15 o
RO o

Rl o

R2 o

R3 o

440

Commercial Instruction Set

In-line Form-CMPNI and CMPPI
Each word address pointer which follows the opcode word in the instruction
stream refers to a two-word decimal string descriptor. RO..,R6 are unchanged
when the instruction is completed.

Notes:

1. The operation of these instructions is unaffected by any overlap of the
source strings provided that each source string is a valid representation of
the specified data type.

Purpose:

Operation:

Condition
Codes:

Opcodes:

CVTLN/CVTLP/CVTLN I/CVTLPI

Convert Long to Decimal

decimal string -long integer

N: set if dst < 0; cleared otherwise

Z: set if dst = 0; cleared otherwise

V: set if dst cannot contain all significant digits of the result;
cleared otherwise

C: cleared

CVTLN
CVTLP
CVTLNI
CVTLPI

076057
076077
076157
076177

Description: The source long integer is converted to a decimal string. The
condition codes reflect the result stored in the destination decimal string, and
whether all significant digits were stored.

Register Form-CVTLN and CVTLP
When the instruction starts, the operands must have been placed in the general
registers. The destination descriptor is placed in RO-R1, and the source long
integer is placed in R2-R3.

15 o
RO

- dst. dscr ..,

RI

R2
- src. long -

R3

441

Commercial Instruction Set

When the instruction is completed, the source long integer registers are
cleared.

15 o

RO

-- dst. dscr -
RI

R2 0

R3 0

In-line Form-CVTLNI and CVTLPI
The words which follow the opcode word in the instruction stream are a word
address pOinter to a two-word decimal string descriptor, and a word address
pOinter to a two-word long integer source. RO-R6 are unchanged when the
instruction is completed.

Notes:

1. Register forms use a long integer oriented with the sign and high order
portion in R2, and the low order portion in R3.

2. In-line forms use a long integer oriented with the low order portion in
src.long, and the sign and high order portion in src.long + 2.

Purpose:

Operation:

Condition
Codes:

Opcodes:

CVTNL/CVTPL/CVTNLI/CVTPLI

Convert Decimal to Long

long integer - decimal string

The condition codes are based on the long integer destination
and on the sign of the source decimal string.

N: set if long.integer < 0; cleared otherwise

Z: set if long.integer = 0; cleared otherwise

V: set if long.integer dst cannot correctly represent the 2's
complement form of the result; cleared otherwise

C:· set if src < 0 and 10ng.lnteger#0; cleared otherwise

CVTNL
CVTPL
CVTNLI
CVTPLI

442

076053
076073
076153
076173

Commercial Instruction Set

Description: The source decimal string is converted to a long integer. The
condition codes reflect the result of the operation, and whether significant
digits were not converted.

Register Form-CVTNL and CVTPL
When the instruction starts, the operands must have been placed in the general
registers. The source decimal string descriptor is placed in RO-R1.

15 °

RR01 LL__ . ___ -----------'J L scr.dscr J

When the instruction is completed, the source decimal string descriptors are
cleared, and the destination long integer is returned in R2-R3.

15 °
RO ° --
R1 °
R2

f- dst.long -
R3

In-line Form-CVTNLI and CVTPLI
The words which follow the opcode word in the instruction stream are a word
address pOinter to a two-word decimal string source descriptor, and a word
address pointer to a two-word long integer destination. RO-R6 are unchanged
when the instruction is completed.

Notes:

1. Register forms use a long integer oriented with the sign and high order
portion in R2, and the low order portion in R3.

2. In-line forms use a long integer oriented with the low order portion in
dstlong, and the sign and high order portion in dst.long + 2.

3. If the V bit is set, the contents of the long integer destination are the least
significant 32 bits of the result.

4. A source whose value is +2**31 can be represented as a 32-bit binary
integer. However, since the destination is a 2's complement long integer,
the resulting condition codes will be: N set, Z cleared, V set, and C cleared.

443

Purpose:

Operation:

Condition
Codes:

Opcodes:

Commercial Instruction Set

CVTNP/CVTPN/CVTNPI/CVTPNI

Convert Decimal

CVTNP/CVTNPI

CVTPN/CVTPNI

packed string ~ numeric
string
numeric string ~ packed
string

N: set If dst < 0; cleared otherwise

Z: set if dst = 0; cleared otherwise

V: set if dst cannot contain all significant digits of the result;
cleared otherwise

C: cleared

CVTNP
CVTPN
CVTNPI
CVTPNI

076055
076054
076155
076154

Description: These instructions convert between numeric and packed deci­
mal strings. The source decimal string is converted and moved to the destina­
tion string. The condition codes reflect the result of the operation, and whether
all significant digits were stored.

Register Form-CVTNP and CVTPN
When the instruction starts, the operands must have been placed in the general
registers. The source descriptor is placed In RO-R1 and the destination de­
scriptor is placed in R2-R3.

15 0

RO

- sre . dser -
R1

R2

- dst. dscr -
R3

444

Commercial Instruction Set

When the instruction is completed, the source descriptor registers are cleared.

15 o
RO 0

Rl a

R2

i- ds!. dscr -
R3

In-line Form-CVTNPI and CVTPNI
Each word address pointer which follows the opcode word In the Instruction
stream refers to a two-word decimal string descriptor. RO-R6 are unchanged
when the instruction is completed.

Notes:

1. The results of the Instruction are unpredictable If the source and destina­
tion strings overlap.

2. These instructions use both a numeric and a packed decimal string
descriptor,.

Purpose:

Operation:

Condition
Codes:

Opcodes:

Divide Decimal

dst - src2/src1

N: set If dst < 0; cleared otherwise

Z: set If dst = 0; cleared otherwise

DIVP/DIVPI

V: set If dst cannot contain all significant digits of the result
or if src1 = 0; cleared otherwise

C: . set if src1 = 0; cleared otherwise

DIVP
DIVPi

076075
076175

Description: Src2 is divided by src1, and the quotient (fraction truncated) Is
stored In the destination string. The condition codes reflect the value stored In
the destination string, and whether all significant digits were stored.

445

Commercial Instruction Set

Register Form-OIVP
When the instruction starts, the operands must have been placed in the general
registers. The first source descriptor is placed in RO-R1, the second source
descriptor is placed in R2-R3, and the destination descriptor is placed in R4-
R5.

15 o
RO

t- src1 . dscr -
Rl

R2

r- src2. dscr -
R3

R4

- dsl. dscr. -
R5

When the instruction is completed, the source descriptor registers are cleared.

15 o

RO 0

Rl 0

R2 0

R3 0

R4

~ dsl. dscr -
R5

In-line Form-DIVPI
Each word address pOinter which follows the opcode word in the instruction
stream refers to a two-word decimal string descriptor. RO-R6 are unchanged
when the instruction is completed.

Notes:

1. The operation of these instructions is unaffected by any overlap of the
source strings provided that each source string is a valid representation of
the specified data type.

2. The results of the instruction are unpredictable if the source and destina­
tion strings overlap.

446

Commercial Instruction Set

3. Division by zero will set the V and C bits. The destination string, and the N
and Z condition code bits will be unpredictable.

4. No numeric string divide instruction is provided.

Purpose:

Operation:

Condition
Codes:

Opcodes:

LOCC/LOCCI

Locate Character

Search source character string for a character.

The condition codes are based on the final contents of RO.

N: set if RO<15> set; cleared otherwise

Z: set if RO = 0; cleared otherwise

V: cleared

C: cleared

LOCC
LOCCI

076040
076140

Description: The source character string is searched from most significant
to least significant character until the first occurrence of the search character. A
character string descriptor is returned in RO-R1 which represents the portion of
the source character string beginning with the located character. If the source
character string contains only characters not equal to the search character, the
instructions return a vacant character string descriptor with an address one
greater than that of the least significant character of the source character
string. The condition codes reflect the resulting value in RO.

Register Form-LOCC
When the instruction starts, the operands must have been placed in the general
registers. The source character string descriptor is placed in RO-R1, the search
character is placed in R4<7:0>, and R4<15:8> must be zero.

15 8 7 0

RR01['------___ --------'l L src. dscr]

R4LI _____________ O ____________ ~ ___________ c_ha_r __________ ~

447

Commercial Instruction Set

When the instruction is completed, RO-R1 contain a character set descriptor
which represents the substring of the source character string beginning with
the located character.

RR01L,---" ___ 8 _7 __ 0- 1
[sub. He • dscr J

° char R4/ L-________________________ -L ________________________ ~

In-line Form-LOCCI
The words which follow the opcode word in the instruction stream are a word
address pOinter to a two-word character string source descriptor, and a word
whose low order half contains the search character and whose high order half
must be zero. When the instruction is completed, RO-R1 contain a character
string descriptor which represents the substring of the source character string
beginning with the located character. R2-R6 are unchanged.

15 8 7 0

.
RR01['-----___ J L ___ ~ sub. src . dscr J

Notes:

1. If the initial source character string descriptor is vacant, the instruction
terminates with the condition codes Indicating no match was found. The
original source character string descriptor is returned in RO-R1.

2. A test for success Is BNE; a test for failure is BEQ.

3. The condition codes will be set as if this instruction were followed by TST
RO.

448

Purpose:

Operation:

Condition
Codes:

Opcodes:

Commercial Instruction Set

Load 2 Descriptors

Load word pairs into RO-~1 and R2-R3.

N: not affected

Z: not affected

V: not affected

C: not affected

L2DR 07602r

L2DR

Description: This instruction augments the character and decimal string
instructions by efficiently loading string descriptors into the general registers.

A descriptor "alpha" is loaded into RO-R1; a second descriptor "beta" is loaded
into R2-R3. The address of the descriptors is determined by the addressing
mode @(Rr)+ where r is the low order three bits of the opcode word. The
address of the descriptor "alpha" is derived by applying this addressing mode
once; the address of the descriptor "beta" is derived by applying this address­
ing mode a second time. The addressing mode auto-increments the indicated
register by two. The addressing mode computation is not affected by the de­
scriptors which are loaded into the general registers. The words which contain
the addresses of the descriptors are in consecutive words in memory; the
descriptions themselves may be anywhere in memory. The condition codes are
not affected.

When the instruction is completed, the "alpha" descriptor is in RO-R1 and the
"beta" descriptor is in R2-R3.

449

Purpose:

Operation:

Condition
Codes:

Opcodes:

Commercial Instruction Set

load 3 Descriptors

load word pairs into RO-R1, R2-R3, and R4-RS.

N: not affected

Z: not affected

V: not affected

C: not affected

l3DR 07606r

L3DR

Description: This instruction augments the character and decimal string
instructions by efficiently loading string descriptors Into the general registers.

A descriptor "alpha" is loaded into RO-R1; a second descriptor "beta" is loaded
into R2-R3; a third descriptor "gamma" is loaded into R4-RS. The address of
the descriptors is determined by the addressing mode @(Rr)+ where r is the
low order three bits of the opcode word. The address of the descriptor "alpha"
is derived by applying this addressing mode once. The address of the descrip­
tor "beta" is derived by applying this addressing mode a second time. The
address of the descriptor "gamma" is derived by applying this addressing
mode a third time. The addressing mode autoincrements the indicated register
by two. The addressing mode computation is not affected by the descriptors
which are loaded into the general registers. The words which contain the
addresses of the descriptors are in consecutive words in memory; the descrip­
tors themselves may be anywhere in memory. The conditiori codes are not
affected.

When the instruction is completed, the "alpha" descriptor is in RO-R1, the
"beta" descriptor is in R2-R3 and the "gamma" descriptor is in R4-RS.

15 o

RO

r- alpha. dser -
Rl

R2
f- beta. dser -

R3

R4

f- gamma. d.ser -
R5

450

Purpose:

Operation:

Condition
Codes:

Opcodes:

Commercial Instruction Set

MATC/MATCI

Match Character

Search source character string for object character string.

The condition codes are based on the final contents of RO.

N: set if RO<15> set; cleared otherwise

Z: set if RO = 0; cleared otherwise

V: cleared

C: cleared

MATC
MATCI

076045
076145

Description: The source character string is searched from most significant
to least significant character for th'e first occurrence of the entire object charac­
ter string. A character string descriptor is returned in RO-R1 which represents
the portion of the original source character string from the most significant
character which completely matches the object character string to the end of
the source character string. If the object character string did not completely
match any portion of the source character string, the character descriptor
returned in RO-R1 is vacant with an address one greater than the least signifi­
cant character in the source string. The condition codes reflect the resulting
value in RO. If the Z bit is cleared, the entire object was successfully matched
with the source character string; if the Z bit is set, the match failed.

Register Form-MA TC
When the instruction starts, the operands must have been placed in the general
registers. The source character string descriptor is placed in RO-R1, and the
object character string descriptor is placed in R2-R3.

15 o
RO

- src , dscr -
R1

R2

- obi. dscr -
R3

451

Commercial Instruction Set

The Instruction terminates with a character sub-string descriptor returned In
RO-R1 which represents the portion of the original source character string
beginning with the most significant character to competely match the object
character string.

RO

RI

R2

f­
R3

15

In-line Form-MA Tel

o

sub. He. dse. -

obi. dse. -

The words which follow the opcode word In the Instruction stream are a word
address pOinter to a two-word character string source descriptor, and a word
address pOinter to a two-word character string object descriptor. ,The Instruc­
tion terminates with a character sub-string descriptor returned in RO-R1 which
represents the portion of the original source character string beginning with the
most significant character to completely match the object character string. R2-
R6 are unchanged when the Instruction Is completed.

8 7

sub. sre . dse.

Notes:

1. The operation of this instruction Is unaffected by any overlap of the source
and object character strings.

2. A vacant object character: string matches any non-vacant source
character string. A vacant source character string will not match any ob­
ject character string. If the initial source character string descriptor is
vacant, the Instruction terminates with the condition codes indicating no
match was found. The original source character string descriptor Is re~
turned In RO-R1.

3. If the length of the object character string Is greater than that of the source
character string, no match is found; RO-R1 and the condition codes will be
updated.

4. A test for success is BNE; a test for failure Is BEQ.

5. The condition codes will be set as if this instruction were followed by TST
RO.

452

Purpose:

Operation:

Condition
Codes:

Opcodes:

Commeroia/lnstruotion Set

Move Character

dst~src

MOVC/MOVCI

The condition codes are based on the arithmetic comparison
of the initial character string lengths (result=src.len-dst.len).
N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: set if there was arithmetic overflow, that is, src.len<15>
and dst.len<15> were different, and dst.len<15> was
the same as bit <15> of (src.len-dst.len); cleared other­
wise

C: cleared if there was a carry from the most significant bit of
the result; set otherwise

MOVC
MOVCI

076030
076130

Description: The character string specified by the source descriptor is
moved into the area specified by the destination descriptor. It is aligned by the
most significant character. The condition codes reflect an arithmetic compari­
son of the original source and destination lengths. If the source string is shorter
than the destination string, the fill character is used to complete the least
significant part of the destination string. This is indicated by the C bit set. If the
source string is longer than the destination string, the least significant charac­
ters of the source string are not moved. This Is indicated by the Z and C bits
cleared. If the source and destination strings are of equal length, all characters
are moved with neither truncation nor filling. This Is Indicated by the Z bit set.
The unsigned branch instructions may test the result of the Instruction.

Register Form-MOVe
When the instruction starts, the operands must have been placed In the general
registers. The source character string descriptor is placed in RO-R1, the desti­
nation character string descriptor Is placed in R2-R3, the fill character is placed
in R4<7:0>. and R4<15:8> must be zero.

15 8 7 o

RO

i- sr c dscr -
R1

R2
i- dsl. dscr -

R3

R4 0 I fill

453

Commercial Instruction Set

When the instruction is completed, RO contains the number of unmoved source
string characters, and R1 through R3 are cleared.

15 8 7 a
RO rna.(O, src len-dst. len)

RI a

R2 a

R3 a

R4 a I fi II

In-line Form-MOVel
The words which follow the opcode word in the instruction stream are a word
address pointer to a two-word character string source descriptor, a word ad­
dress pOinter to a two-word character string destination descriptor, and a word
whose low-order half contains the fill character and whose high-order half must
be zero. RO-R6 are unchanged when the instruction is completed.

Notes:

1. The operation of this instruction is unaffected by any overlap of the source
and destination strings. The result is equivalent to having read the entire
source string before storing characters in the destination.

2. If the source string is vacant, the fill character will be propagated through
the destination string. If the destination string is vacant, no characters will
be moved. The condition codes will be updated. MOVC will update the
general registers.

3. MOVC - When the instruction terminates, RO is zero only if Z or C are set.

4. The condition codes will be set as if this instruction were preceded by
CMP src.len, dsUen.

Purpo$e:

Operation:

Condition
Codes:

Move Reverse Justified Character

dst - reverse justified src

MOVRC/MOVRCI

The condition codes are based on the arithmetic comparison
of the initial character string lengths (result = src.len-dstlen).

N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: set if there was arithmetic overflow, that is, src.len<15>
and dst.ren<15> were different, and dstlen<15> was
the same as bit <15> of (src.len-dstlen); cleared other­
wise

454

Opcodes:

Commercial Instruction Set

C: cleared if there was a carry from the most significant bit of
the result; set otherwise

MOVRC
MOVRCI

076031
076131

Description: The character string specified by the source descriptor is
moved into the area specified by the destination descriptor. It is aligned by the
least significant character. The condition codes reflect an arithmetic compari­
son of the original source and destination lengths. If the source string is shorter
than the destination string, the fill character is used to complete the most
significant part of the destination string. This is indicated by the C bit set. If the
source string is longer than the destination string, the most significant charac­
ters of the source string are not moved. This is indicated by the Z and C bits
cleared. If the source and destination strings are of equal length, all characters
are moved with neither truncation nor filling. This is indicated by the Z bit set.
The unsigned branch instructions may test the result of the instruction.

Register Form-MOVRC
When the instruction starts, the operan... must have been placed in the general
registers. The source character string de::»criptor is placed in RO-R1, the desti­
nation character string descriptor is placed in R2-R3, the fill character Is placed
in R4<7:0>, and R4<15:8> must be zero.

15 8 7 o
RO

- He dser -
R1

R2
f-- dst. dser -

R3

R4 0 I fill

455

Commercial Instruction Set

When the instruction is completed, RO contains the number of unmoved source
string characters, and R1 through R3 are cleared.

15 8 7 o

RO max(O, src. len - dst . len)

R1 0

R2 0

R3 0

R4 ° I fi II

In-line Form-MOVRCI
The words which follow the opcode word in the instruction stream are a word
address pointer to a two-word character string source descriptor, a word ad­
dress pOinter to a two-word character string destination descriptor, and a word
whose low order half contains the fill character and whose high order half must
be zero. RO-RS are unchanged when the instruction is completed.

Notes:

1. The operation of this instruction is unaffected by any overlap of the source
and destination strings. The result is equivalent to having read the entire
source string before storing characters in the destination.

2. If the source string is vacant, the fill character will be propagated through
the destination string. If the destination string is vacant, no characters will
be moved. Condition codes will be updated. MOVRC will update the
general registers.

3. MOVRC - When the Instruction terminates, RO is zero only if Z or Care
set.

4. The condition codes will be set as if this instruction were preceded by
CMP src.len, dst.len.

Purpose:

Operation:

Condition
Codes:

Move Translated Character

dst - translated src

MOVTC/MOVTCI

The condition codes are based on the arithmetic comparison
of the initial character string lengths (result = src.len-dst.Jen).

N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise

456

Opcodes:

Commercial Instruction Set

V: set if there was arithmetic overflow, that is, src.len<15>
and dst.len<15> were different, and dstlen<15> was
the same as bit <15> of (src.len-dst.len); cleared other­
wise

C: cleared if there was a carry from the most significant bit of
the result; set otherwise

MOVTC
MOVTCI

076032
076132

Description: The character string specified by the source descriptor is
translated and moved into the area specified by the destination descriptor. It is
aligned by the most significant character. Translation is accomplished by using
each source character as an 8-bit positive integer index into a 256-byte table,
the address of which is an operand of the instruction. The byte at the indexed
location in the table Is stored in the destination string. The condition codes
reflect an arithmetic comparison of the original source and destination lengths.

If the source string is shorter than the destination string, the untranslated fill
character is used to complete the least significant part of the destination string.
This is indicated by the C bit set. If the source string Is longer than the destina­
tion string, the least significant characters of the source string are not moved.
This is indicated by the Z and C bits cleared. If the source and destination
strings are of equal length, all characters are translated and moved with neither
truncation nor filling. This is indicated by the Z bit set. The unsigned branch
instructions may test the result of the instruction.

Register Form-MOVTC
When the instruction starts, the operands must have been placed in the general
registers. The source character string descriptor is placed in RO-R1, the desti­
nation character string descriptor is placed in R2-R3, the fill character is placed
in R4<7:0>, R4<15:8> must be zero, and the translation table address is
placed in R5.

15 8 7 o
RO

r- src . dscr -
R1

R2
r- dst. dscr -

R3

R4 0 I fill

R5 table. adr

457

Commercial Instruction Set

When the instruction is completed, RO contains the number of unmoved source
string characters, and R1 through R3 are cleared.

IS a 7 o

RO max(O. src .Ien - dst. len)

RI 0

R2 0

R3 0

R4 0 I fill

R5 table. adr

In-line Form-MOVTCI
The words which follow the opcode word In the instruction stream are a word
address pOinter to a two-word character string source descriptor, a word ad­
dress pointer to a two-word character string destination descriptor, a word
whose low-order half contains the fill character and whose high-order half must
be zero, and a word containing the address of the translation table. RO-R6 are
unchanged when the instruction is completed.

Notes:

1. The operation of this instruction Is unaffected by any overlap of the source
and destination strings. The result is equivalent to having read the entire
source string before storing characters in the destination.

2. If the destination string overlaps the translation table in any way, the re­
sults of the instruction will be unpredictable.

3. If the source string is vacant, the untranslated fill character will be
propagated through the destination string. If the destination string is va­
cant, no characters will be moved. Condition codes will be updated.
MOVTC will update the general registers.

4. MOVTC - When the instruction terminates, RO is zero only if Z or Care
set.

5. The condition codes will be set 'as if this instruction were preceded by
CMP src.len, dstlen.

6. The effect of the instruction is unpredictable if the entire 256-byte transla­
tion table is not in readable memory.

458

Purpose:

Operation:

Condition
Codes:

Opcodes:

Commercial Instruction Set

Multiply Decimal

dst - src2 * src1

N: set if dst < 0; cleared otherwise

Z: set if dst = 0; cleared otherwise

MULP/MULPI

V: set if dst cannot contain all significant digits of the result;
cleared otherwise

C: cleared

MULP
MULPI

076074
076174

Description: Src1 and src2 are multiplied, and the result is stored in the
destination string. The condition codes reflect the value stored in the destina­
tion string, and whether all significant digits were stored.

Register Form-MULP
When the instruction starts, the operands must have been placed in the general
registers. The first source descriptor is placed in RO-R1, the second source
descriptor is placed in R2-R3, and the destination descriptor is placed in R4-
RS.

15 o
RO

t- srcl . dscr -
Rl

R2
I- src 2. dscr -

R3

R4
I- dst. dscr -

R5

459

Commercial Instruction Set

When the instrur.tion is completed, the source descriptor registers are cleared.

15 o

RO 0

Rl 0

R2 0

R3 0

R4

I- dSI. dscr -
R5

In-line Form-MULPI
Each word address pointer which follows the opcode word In the instruction
stream refers to a two-word decimal string descriptor. RO-R6 are unchanged
when the instruction is completed.

Notes:

1. The operation of these Instructions is unaffected by any overlap of the
source strings provided that each source string Is a valid representation of
the specified data type.

2. The results of the instruction are unpredictable if the source and destina­
tion strings overlap.

3. No numeric string multiply instruction Is provided.

Purpose:

Operation:

Condition
Codes:

Opcodes:

SCANC/SCANCI

Scan Character

Search source character string for a member of the character
set.

The condition codes are based on the final contents of RO.
N: set If RO<1S> set; cleared otherwise
Z: set if RO = 0; cleared otherwise
V: cleared

C: cleared

SCANC
SCANCI

460

076042
076142

Commercia/Instruction Set

Description: The source character string Is searched from most significant
to least significant character until the first occurrence of a character which is a
member of the character set. A character string descriptor is returned In RO-R1
which represents the portion of the source character string beginning with the
located member of the character set. If the source character string contains
only characters which are not in the character set, the instructions return a
vacant character string descriptor with an address one greater than that of the
least significant character of the source character string. The condition codes
reflect the resulting value in RO.

Register Form-SCANC
When the instruction starts, the operands must have been placed in the general
registers. The source character string descriptor is placed In RO-R 1, and the
character set descriptor is placed in R4-R5.

15 0

:t s,e . dse, j
::[set. dser j

When the Instruction Is completed, RO-R1 contain a character string descriptor
which represents the substring of the source character string beginning with
the most significant character which is a member of the character set.

15 0

:t sub. s,e . dse,

J

::r set. dser

J
In-line Form-SCANCI
The words which follow the opcode word in the instruction stream are a wo(d
address pOinter to a two-word character string source descriptor, and a word

461

Commercial Instruction Set

address pOinter to a two-word character set descriptor. When the instruction is
completed, RO-R1 contain a character string descriptor which represents the
sub-string of the source character string beginning with the most significant
character which is a member of the character set. R2-R6 are unchanged.

15 8 7 °

RR01 L'----____ ~---'J L _. sub. src . dscr J

Notes:

1. If the initial source character string descriptor is vacant, the instruction
terminates with the condition codes indicating that no characters in the set
were found. The original source character string descriptor is returned in
RO-R1.

2. The source character string and character set table may overlap in any
way.

3. A test for success is BNE; a test for failure is BEQ.

4. The condition codes will be set as if this instruction were followed by TST
RO.

5. The effect of the instruction is unpredictable if the entire 2S6-byte charac­
ter set table is not in readable memory.

Purpose:

Operation:

Condition
Codes:

Opcodes:

SKPC/SKPCI

Skip Character

Search source character string until a character other than the
search character is found.

The condition codes are based on the final contents of RO.

N: set if RO<1S> set; cleared otherwise

Z: set if RO = 0; cleared otherwise

V: cleared

C: cleared

SKPC
SKPCI

076041
076141

Description: The source characer string is searched from most significant
to least significant character until the first occurrence of a character which is
not the search character. A character string descriptor is returned in RO-R1

462

Commercial Instruction Set

which represents the portion of the source character string beginning which the
most significant character which was not equal to the search character. If the
source character string contains only characters equal to the search character,
the instruction returns a vacant character string descriptor with an address one
greater than that of the least significant character of the source character
string. The condition codes reflect the resulting value in RO.

Register Form-SKPC I

When the instruction starts, the operands must have been placed in the general
registers. The source character string decriptor is placed in RO-R1, the search
character is placed in R4<7:0>, and R4< 15:8> must be zero.

15 8 7 0

::r src. dscr j
R41 0 char

When the instruction is completed, RO-R1 contain a character string descriptor
which represents the substring of the source character string beginning with
the most significant character which was not equal to the search character.

8 7 o

sub. src . dscr J
R4IL _____________ O ____________ ~ ____________ c_h_a_r __________ ~

463

Commercial Instruction Set

In-line Form-SKPCI
The words which follow the opcode word in the instruction stream are a word
address pOinter to a two-word character string source descriptor, and a word
whose low-order half contains the search character and whose high-order half
must be zero. When the instruction Is completed, RO-R1 contain a character
string descriptor which represents the substring of the source character string
beginning with the most significant character which was not equal to the search
character. R2-R6 are unchanged.

8 7

sub. He . dser

Notes:

1. If the initial source character string descriptor is vacant, the instruction
terminates with the condition codes Indicating the character string only
contained search characters. The original source character string
descriptor Is returned in RO-R1.

2. The condition codes will be set as if this instruction were followed by TST
RO:

Purpose:

Operation:

Condition
Codes:

Opcodes:

SPANC/SPANCI

Span Character

Search source character string for a character which is not a
member of the character set.

The condition codes are based on the final contents of RO.

N: set if RO<15> set; cleared otherwise
Z: set if RO = 0; cleared otherwise

V: cleared

C: cleared

SPANC
SPANCI

076043
076143

Description: The source character strIng Is searched from most significant
to least significant character until the first occurrence of character which is not
a member of the character set. A character string descriptor Is returned In RO­
R1 which represents the portion of the source character string beginning with

464

Commercial Instruction Set

the character which is not a member of the character set. If the source charac­
ter string contains only characters which are in the character set, the instruction
returns a vacant character string descriptor with an address one greater than
that of the least significant character of the source character string. The condi­
tion codes reflect the resulting value in RO.

Register Form-SPANC
When the instruction starts, the operands must have been placed in the general
registers. The source character string descriptor is placed in RO-R1, and the
character set descriptor is placed in R4-R5.

~ 0

RR01L~ ___ ------>l [sre . dser]

RR

4SL,-------____ J L__ _ set. dser]

When the instruction is completed, RO-R1 contain a character string descriptor
which represents the sub!3tring of the source character string beginning with
the most significant character which is not a member of the character set.

15 0

:~t sub. sre . dscr l
::r set. dscr j

465

Commercial Instruction Set

In-line Form-SPANGI
The words which follow the opcode word in the instruction stream are a word
address painter to a two-word character string source descriptor, and a word
address pOinter to a two-word character set descriptor. When the instruction is
completed, RO-R1 contain a character string descriptor which represents the
substring of the source character string beginning with the most significant
character which is not a member of the character set. R2-R6 are unchanged.

8 7

sub. src . dscr

Notes:

1. If the initial source character string descriptor is vacant, the instruction
terminates with the condition codes indicating that only characters in the
set were found. The original source character string descriptor is returned
in RO-R1.

2. The source character string and character set table may overlap in any
way.

3. The condition codes will be set as if this instruction were followed by TST
RO.

4. The effect of the instruction is unpredictable if the entire 256-byte charac­
ter set table is not in readable memory.

Purpose:

Operation:

Condition
Codes:

Opcodes:

Subtract Decimal

dst - src2-src1

SUBN/SUBP/SUBNI/SUBPI

N: set if dst < 0; cleared otherwise

Z: set if dst = 0; cleared otherwise

V: set if dst cannot contain all significant digits of the result;
cleared otherwise

c: cleared

SUBN
SUBP
SUBNI
SUBPI

466

076051
076071
076151
076171

Commercial Instruction Set

Description: Src1 is subtracted from src2, and the result is stored in the
destination string. The condition codes reflect the value stored in the destina­
tion string, and whether all significant digits were stored.

Register Form-SUBN and SUBP
When the instruction starts, the operands must have been placed in the general
registers. The first source descriptor is placed in RO-R1, the second source
descriptor is placed in R2-R3, and the destination descriptor is placed in R4-
R5.

15 o
RO

- ·srcl. dscr -
R1

R2

I- src2. dscr -
R3

R4

I- dSI. dscr -
R5

When the instruction is completed, the source descriptor registers are cleared.

15 o

RO 0

R1 0

R2 0

R3 0

R4

I- dSI. dscr -
R5

In-line Form-SUBNI and SUBPI
Each word address pOinter which follows the opcode word in the instruction
stream refers to a two-word decimal string descriptor. RO-R6 are unchanged
when the instruction is completed.

467

Commercia/Instruction Set

Notes:

1. The operation' of these Instructions Is unaffected by any overlap of the
source strings provided that each source string Is a valid representation of
the specified data type.

2. Source strings may overlap the destination string only if all corresponding
digits of the strings are In coincident bytes In memory.

468

APPENDIX A

UNIBUS ADDRESSES

I/O PAGE ADDRESSES
Size In Number of

Device Address Words Devices
AA11 776750· 8 1
AA11 776400 8 4
AD01 776770 4 1
ADF11 770460 8 1
AFC11 772570 4 1
AR11 770400 8' 1
BM792-YA 173000 32 1
BM792-YB 773100 32 1
BM792-YC 773200 32 1
BM792-YH 773300 32 1
BM873-YA 773000 128 1
BM873-YB 773000 256 1
BM873-YC 773000 256 1
CD11 777160 4 1
CM11 777160 4 1
CR11 777160 4 1
DC11 774000 4 32
DC14-D 777360 8 1
DL 11-A 777560 4 1
DL 11-A 776500 4 15
DL 11-B 777560 4 1
DL 11-B 776500 4 15
DL l1-C 775610 4 31
DL 11-D 775610 4 31
DL 11-E 775610 4 31
DL 11-W 771546 1 1
DL 11-W 777560 4 1
DL 11-W 776500 4 15
DM11 775000 4 16
DM11-88 770500 4 16
DN11-AA 775200 4 16
DN11-DA 775200 1 64
DP11 77440 4 32
DR11-A(1) 172470 4 1
DR11-A(2) 772460 4 1

A-1

Size In Number of
Device Address Words Devices

DR11-A(3) 772450 4 1
DR11-A(4) 772440 4 1
DR11-B(1) 772410 4 1
DR11-B(2) 772430 4 1
DR11-B(3) 772450 4 1
DR11-B(4) 772470 4 1
DR11-C(1) 772470 4 1
DR11-C(2) 772460 4 1
DR11-C(3) 772450 4 1
DR11-C(4) 772440 4 1
DS11 775400 67 1
DT11 777420 1 8
DV11 775000 16 4
DX11 776200 16 2
FP11 772160 8 1
GT40 772000 4 4
ICR/ICS11 771000 256 1
KE11 777300 8 2
KG11 770700 4 8
KL 11 776500 4 15
KL 11 777560 4 1
KT11 772200 64 1
KT11-SR3 772516 1 1
KW11-L 777546 1 1
KW11-P 772540 4 1
KW11-W 772400 4 1
LP11 777510 4 1
LP20 775400 32 2
LPS11 770400 16 1
LS11 777510 4 1
LV11 777510 4 1
M792 773000 32 8
M9301-XX 765000 256 1
M9301-XX 773000 256 1
MM11-LP 772100 1 16
MR11-DB 773100 64 1
MS11-K 772100 1 16
MS11-LP 772100 1 16
NCV11 772760 8 1
OST 772500 6 1
PA611 772600 32 1
PA611 772700 32 1

A-2

Size In Number of
Device Address Words Devices
PC11 777550 4 1
PDP-11/04 777570 68 1
PDP-11/05 777570 68 1
PDP-11/10 777570 68 1
PDP-11/15 777570 68 1
PDP:'11/20 777570 68 1
PDP-11/34A 777570 68 1
PDP-11/35 777570 68 1
PDP-11/40 777570 68 1
PDP-11/44 777570 68 1
PDP-11/45 777570 68 1
PDP-11/55 777570 68 1
PDP-11/60 777570 68 1
PDP-11/70 777570 68 1
PR11 777550 4 1
RC11 777440 8 1
RF11 777460 8 1
RJP04 776700 22 1
RJS04 772040 16 1
RJ611 777440 16 1
RK11 777400 8 1
RL 11 774400 4 2
RP11 776700 16 1
RS/RP/T J 776300 32 1
RX02 777170 4 1
RX11 777170 4 1
TA11 777500 4 1
TC11 777340 8 1
Testers 770000 32 1
TJU16 772440 16 1
TM11 772520 8 1
TS04 772520 8 1
UDC-Units 771000 1 256
UDC11 771774 2 1
Unibus-Map 770200 64 1
VT48 772000 16 1
VTV01 772600 56 1
XY11 777530 4 1
M9312 773024 256 1
M9312 773224 256 1

A-3

INTERRUPT AND TRAP VECTORS
000 (reserved)
004 Illegal instructions, Bus Errors, Stack Limit, Illegal Internal

Address, Microbreak.
Microbreak.

010 Reserved instructions
014 BPT, breakpoint trap (Trace)
020 lOT, input/output trap
024 Power Fail
030 EMT, emulator trap
034 TRAP instruction

040 System software
044 System software
050 System software
054 System softwar.e

060 Console Terminal, keyboard/reader
064 Console Terminal, printer/punch
070 PC11, paper tape reader
074 PC11, paper tape punch
100 KW11·L, line clock
104 KW11·P, programmable clock
110
114 Memory system errors (Cache, UNIBUS Memory, UCS Parity)
120 XV Plotter
124 DR11-B DMA interlace; (DA11-B)
130 AD01, A/D subsystem
134 AFC11, analog subsystem
140 AA11, display
144 AA11, light pen
150
154
160
164

170 User reserved
174 User reserved

200 LPll/LSll, line printer
204 RS04/RFll, fixed head disk
210 RC1l, disk
214 TCll, DECtape
220 RK1l, disk
224 TU16/TM11, magnetic tape
230 CDll/CM11/CR11, card reader
234 UDC11, digital control subsystem; ICS/ICR11
240 PIRQ, Program Interrupt Request (11/55,11/45)

A-4

244 Floating Point Error
250 Memory Management
254 RP04/RPll disk pack
260 TAll, cassette
264 RXll, floppy disk

270 User reserved
274 User r.eserved

300 (start of floating vectors)

FLOATING VECTORS
There is a floating vector convention used for communications (and
other) devices that interface with the PDP-ll. These vector addresses
are assigned in order starting at 300 and proceeding upwards to 777.
The following Table shows the assigned sequence. It can be seen that
the first vector address, 300, is assigned to the first DCll in the system.
If another DCll is used, it would then be assigned vector address 310,
etc. When the vector addresses have been assigned for all the DC11's
(up to a maximum of 32), addresses are then assigned consecutively
to each unit of the next highest-ranked device (KU1 or DPll or DMll,
etc.), then to the other devices in accordance with the priority ranking.

Priority Ranking for Floating Vectors

(starting at 300 and proceeding upwards)

Rank Device Vector Size Max No.
(in octal)

1 DCll (lO)R 32
2 KLll, DU1-A, DLll-B 10 16
3 DPll 10 32
4 DMll-A 10 16
5 DNll 4 16
6 DMll-BB (DHll-AD or DVll) 4 16
7 DRll-A 10':' 32
8 DRll-C 10~' 32
9 PA611 Reader 4':' 16

10 PA6ll Punch 4':' 16
11 DTll 10':' 8
12 DXll 10'~ 4
13 DU1-C, DU1-D, DU1-E 10 31
14 DJll 10 16
15 DHll 10 16
16 GT40 10 1
17 LPS11 30':' 1
18 DQll 10 16
19 KWll-W 10 1
20 DUll 10 16
21 DUPll 10
22 DVll 10

*-The first vector for the first device of this type must always be on a (10)8
boundary.

A-5

FLOATI NG ADDRESSES
1 hctlct IS :1 floating address convention used for communications (and
,'thctl) dt'vices interfacing with the PDP-ll. These addresses are as­
sl.:,nctd 111 order starting at 760 010 and proceeding upwards to 763 776.
HlHlting addresses are assigned in the following sequence:

Rank Device

1 OJll
2 DHll
3 DQl1
4 DUll

DEV!CE ADDRESSES

777776
777774
777772
777770

777766
777764
777762
777760

777756
777754
777752
777750

777746
777744
777742
777740

777717
777716
777715
777714
777713
777712
777711
777710

777707
777706
777705
777704
7'77703
777702
777701
777700

Processor Status word (PS)
Stack Limit (SL)
Program Interrupt Request (PIR)
Microprogram Break

CPU Error
System I/D
Upper SiZe} .
Lower Size System Size

Hit/Miss
Maintenance

Cache Control
Memory System Error
High Error Address
Low Error Address

User R6 (SP)
Supervisor R6 (SP)

R5
R4

General registers, R3
Set 1 R2

Rl
RO

R7 (PC)
Kernel R6 (SP)

R5
R4

General registers, R3
Set 0 R2

Rl
RO

A-6

777676 }
User Data PAR .. reg 0-7

777660

777656

777640

777636

777620

777616

777600

777576
777574
777572

777570

777566
777564 «

777562
777560

777556
777554
777552
777550

777546
777544
777542
777540
777516
777514
777512
777510

777506
777504
777502
777500
777476
777474
777472

':'777470
':'777466
':'777464
':'777462
':'777460
'~777 456
':'777454
':'777452

} User Instruction PAil, reg 0·7

} User Data POR, reg 0·7

} User Instruction POll, reg 0·7

(MMR2)
Memory Mgt regs, (MMR1)

(MMRO)

Console Switch & Display Register

printer/punch data
Console Terminal, printer/punch status

keyboard/reader data
keyboard/reader status

pu'nch data (PPB)
PC11/PR11, punch status (PPS)

reader data (PRB)
reader status (PRS)

KW11-l, clock status (lKS)
KU116-AA, UCS Data

Address
Status
printer data

lP11/lS11/lVll, printer status

TAll, cassette data (TADB)
cassette status (TACS)

RK06, Maintenance Register 3, (RKMR3)
Maintenance Register 2, (RKMR2)
ECC Pattern Register (RKECPT)
ECC Position Register (RKECPS)
Maintenance Register 1 (RKMR1)
Data Buffer (RKDB)
Unused
Desired Cylinder (RKDC)
Attention Summary/Offset (RKAS/OF)
Error (RKER)
Drive Status (RKDS)

':'Also used by RF 11

A-7

'~~'777 450
*':'777446
'~"777 444
*777442

'''':'777440
777436
777434
777432
777430
777426
777424
777422
777420

777416
777414
777412
777410
777406
777404
777402
777400

777376 }

777360

777356
777354
777352
777350

Control and Status 2 (RKCS2)
Disk Address (RKDA)
Bus Address (RKBA)
Word Count (RKWC)
Control and Status 1 (RKCSl)

#8
#7
#6

DTll, bus switch #5
#4
#3
#2
#1

disk data (RKDB)
maintenance
disk address (RKDA)

RKll, bus address (RKBA)
word count (RKWC)
disk status (RKCS)
errorr (RKER)
drive status (RKDS)

DCI4-D

777346 TCll,
DECtape i:lata (TCDT)
bus address (TCBA)
word count (TCWC)
command (TCCM)
DECtape status (TCST)

777344
777342
777340

777336 }

777320

777316
777314
777312
777310
777306
777304
777302
777300

777 166
777 164
777 162
777 160

776776
776774
776772
776770

KEll-A, EAE #2

arithmetic shift
logical shift
normalize

KElI-A, EAE # 1, stef:: count/status register
multiply
multiplier quotient
accumulator
divide

I
CRlI/ data (CRB2) comp I
CMlI, data (CRBl) I COlI,

status (CRS) I

ADOl, A/D data (ADDB)
A/D status (ADCS)

data (CDDB)
cur adrs (CDBA)
col count (CDCC)
status (COST)

.:' ':'Also used by RC 11

A-8

776766
776764
776762
776760
776756
776754

776752

776750
776746
776744
776742
776740
776736
776734
776732
776730
776726
776724
776722
776720
776716
776714
776712
776710

776706

776704

776702
776700

776676 }
776500

776476 } 776400

776276 } 776200

776176 }
775610

775576 } 775400

register 4 (DAC4)
register 3 (DAC3)
register 2 (DAC2)

AAll # 1, register 1 (DACl)
Dj A status (CSR)

cont & status # 3
(RPCS3)

bus adrs eXJ (RPBAE) I
ECC pattern (RPEC2)
ECC position (RPECl) I
error # 3 (RPER3) .
error # 2 (RPER2) I
cur cylinder (RPCC) I
desired cyl (RPOC)
offset (RPOF) I
serial number (RPSN)
drive type (RPOT) I
maintenance (RPMR)
data buffer (RPOB) I

RP04, look ahead (RPLA) RPll,
attn summary (RPAS) I
error # 1 (RPERl)
drive status (RPOS)
cont & status # 2

(RPCS2)
sector jtrack ad rs

(RPOA)
UNIBUS address

(RPBA)
word count (RPWC)
cont & status # 1

(RPCSl)

KL11, #16
0L11-A, -B,

AAl1,

OXll

#5

#2

0L11-C, -0, -E,

OSII,
#4

#1

#1

#31

#1

A-9

silo memory (SILO)
cyl adrs (SUCA)
maint 3 (RPM3)
maint 2 (RPM2)
maint 1 (RPMl)
disk adrs (RPOA)
cyl adrs (RPCA)
bus adrs (RPBA)
word count (~PWC)
disk status (RPCS)
error (RPER)
disk status (RPOS)

775376 } #16
DNll,

775200 #1

775 176 } #16
DMll, DVll, # 1-4

775000 #1

774776 } #1
DPll,

774400 #32

774376 } #32
DC11,

774000 #1

773766 } BM792, BM873 ROM
PDP-II diagnostic bootstrap (half of it)

773000

772776 } PA611 typeset punch
772700

772-676 } PA611 typeset reader
772600

772576 maintenance (AFMR)
772574 AFC11, MX channel/gain (AFCG)
772572 flying cap data (AFBR)
772570 flying cap status (AFCS)

772556
} XYll plotter

772550

772546
772544 counter
772542 KWU-P, count set
772540 clock status

772536
772534
772532 read lines (MTRD)
772530 tape data (MTD)
772526 TMll, memory address (MTCMA)
772524 byte record counter (MTBRC)
772522 command (MTC)
772500 tape status (MTS)

772516 Memory Mgt reg (MMR3)

772476 cont & status # 3 (MTCS3)
772474 bus adrs ext (MTBAE)
772472 tape control (MTTC)
772470 serial number (MTSN)

A-10

772466 drive type (MTDT)
772464 maintenance (MTMR)
772462 data buffer (MTDB)
772460 check character (MTCK)
772456 TU16, attention summary (MTAS)
772454 error (MTER)
772452 drive status (MTDS)
772450 cont & status # 2 (MTCS2)
772446 frame count (MTFC)
772444 UNIBUS address (MTBA)
772442 word count (MTWC)
772440 cont & status # 1 (MTCSl)

772436 } DRll-B #2
772430

772416 data (DRDB)
772414 DRI1-B # 1, status (DRST)
772412 bus address (DRBA)
772410 word count (DRWC)

772376 } Kernel Data PAR, reg 0-7
772360

772356 } Kernel Instruction PAR, reg 0-7
772340

772336 } Kernel Data PDR, reg 0-7
772320

772316 } Kernel Instruction PDR, reg 0-7
772300

Z72276 } Supervisor Data PAR, reg 0-7
772260

772256 } Supervisor Instruction PAR, reg 0-7
772240

772236 } Supervisor Data Descriptor PDR, reg 0-7
772220

772216 } Supervisor Instruction Descriptor PDR, reg 0-7
772200

772100 } UNIBUS Memory Parity
772136

A-11

772072
772070
772066
772064
772062
772060
772056
772054

772052
772050
772046
772044
772042
772040

772016 }

772010

772006
772004
772002
772000

771 776
771 774
771 772
771 770

771 776 }

771000

770776

770700

770676

770500

770436
770434
770432
770430
770426
770424
770422
770420
770416
770414
770412
770410
770406
770404
770402
770400

}
}

cont & status #3 (RSCS3)
bus adrs ext (RSBAE)
drive type (RSDT)
maintenance (RSMR)
data buffer (RSDB)
look ahead (RSLA)
attention summary (RSAS)

RS04, error (RSER)

drive status (RSDS)
control & status # 2 (RSCS2)

RS04, desired disk adrs (RSDA)
UNIBUS address (RSBA)
word count (RSWC)
control & status # 1 (RSCS1)

GT40 #2

Yaxis
X axis

GT40 # 1 status
program counter

status (U DCS) I
UDCll, scan (UDSR) I ICS/lCRll

I

UDC functional I/O modules

KGl1,
#8

#1

DMll-BB,
#16

#1
DMA

LPSll,

ext DAC
D/A YR
D/A XR
D/A SR
D I/O output
D I/O input
CKBR
CKSR
ADBR
ADSR

A-12

770 366

770 200

767776

766 000

765776

765 000

763776

760010

} UNIBUS Map

} GT40 bootstrap

1. User &
PDP-ll diagnostic bootstra p

Special J (half of it)
Systems

(top of floating addresses)

(start of floating addresses)

NOTE
All presently unused UNIBUS addresses are re­
served by Digital.

A-13

APPENDIX B

INSTRUCTION TIMING

PDP-ll/04 CENTRAL PROCESSOR

INSTRUCTION EXECUTION TIME
The execution time for an instruction depends on the instruction itself
and the modes of addressing used. In the most general case, the In­
struction Execution Time is the sum of a Basic Time, a Source Address
Time, and a Destination Address Time.

Instr Time = Basic Time + SRC Time + DST Time

Double Operand i'nstructions require all 3 of these Times, Single Oper­
and instructions require a Basic Time and a DST Time, and with all
other instructions the Basic Time is the Instr Time.

All Timing information is in microseconds, unless otherwise noted. Times
are typical; processor timing can vary ± 10%.

Double Operand

Instruction

ADD, SUB, BIC, BIS
CMP, BIT
MOV

Single Operand

BASIC TIMES

CLR, COM, INC, DEC, NEG, ADC, SBS
ROR, ROL, ASR, ASL
TST
SWAB
All Branches (branch true)
All Branches (branch false)

Jump Instructions
JMP
JSR

Control, Trap, and Miscellaneous Instructions
RTS
RTI, RTT
Set N,Z,V,C
Clear N,Z,V,C
HALT
WAIT
RESET

lOT, EMT, TRAP, BPT

B-1

Basic Time (,u sec)

MOS Parity MOS

3.17 3.33
2.91 3.07
2.91 3.07

2.65 2.81-
2.91 3.07
2.39 2.55
2.91 3.07
2.65 2.81
1.87 2.03

0.91 0.88
3.27 3.27

4.11 4.43
5.31 5.79
2.39 2.55
2.39 2.55
1.46 1.62
2.13 2.29
100 ms 100 ms

7.95 8.49

ADDRESSING TIMES

ADDRESSING FORMAT

SRC Time*

Parity

Time (~sec)

DST Time*~'
-

Parity
Mode Description Symbolic MaS MaS MaS MaS

a
1

2
3

4

5

6
7

REGISTER R a a a a
REGISTER @R or (R) 0.94 1.10 1.48 1.67
DEFERRED

AUTO-INCREMENT (R)+ 1.20 1.36 1.76 1.95
AUTO-INCREMENT @(R)+ 2.66 2.98 3.20 3.55
DEFERRED
AUTO- -(R) 1.20 1.36 1.76 1.95
DECREMENT
AUTO- @-(R) 2.66 2.98 3.20 3.55
DECREMENT
DEFERRED
INDEX X(R) 2.92 3.24 3.46 3.81
INDEX @X(R) 4.38 4.86 4.92 5.43
DEFERRED

':' For Source time, add the following for odd byte addressing: 0.52
(~sec)

':":' For Destination time, modify as follows:
a) Add for odd byte addressing with a non-modifying instruction:

0.52 (~sec)
b) Add for odd byte addressing with a modifying instruction modes

1-7: 1.04 (~sec)
c) Subtract for all non-modifying instructions except Mode 0:

MaS: 0.54 Parity MaS: 0.57 (~sec)
d) Add for MOVE instructions Mode 1-7: 0.26 (~sec)
e) Subtract for JMP and JSR instructions, modes 3, 5, 6, 7: 0.52

(~sec)

8-2

B.2 PDP-11/34A CENTRAL PROCESSOR

INSTRUCTION EXECUTION TIME
The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most f{eneral case, the Instruction Execution Time is the sum of
a Source Address Time, a Destination Address Time, and an Execute,
Fetch Time.

Instr Time = SRC Time + DST Time + EF Time

Some of the instructions require only some of these times, and are so
noted. All Timing information is in microseconds, unless otherwise noted.
Times are typical; processor timing can vary ± 10%.

BASIC INSTRUCTION SET TIMING

Double Operand

Instr Time = SRC Time + DST Time + EF Time

Single Operand

Instr Time = DST Time + EF Time

Branch, Jump, Control, Trap, & Misc

Instr Time = EF Time

NOTES
1) The times specified apply to both word and

byte instructions whether odd or even byte.
2) Timing is given without regard for NPR or

BR servicing.
3) If the memory management is enabled exe­

cution times increase by 0.12 /tsec for each
memory cycle used.

4) All timing is based on memory with the fol­
lowing performance characteristics:

Memory Access
Time

Core (MMll-DP) .510/tsec
MOS (MSll-JP) .635

8-3

Cycle
Time

1.0/tsec
.775

I. SOURCE ADDRESS TIME

Source Memory Core MOS
Instruction Mode Cycles (MMll-DP) (MS11-JP)

0 0 0.00 f.Lsec 0.00 f.Lsec
1 1 1.13 1.26
2 1 1.33 1.46

Double Operand 3 2 2.37 2.62
4 1 1.28 1.41
5 2 2.57 2.82
6 2 2.57 2.82
7 3 3.80 4.18

II. DESTINATION TIME

Destinatioli Memory
Instruction Mode Cycles Core MOS

0 0 0.00 0.00
Modifying Single 1 2 1.62 1.74

Operand 2 2 1.77 1.89
and 3 3 2.90 3.15

Modifying Double 4 2 1.77 1.89
Operand 5 3 3.00 3.25

(Except MOV, SWAB, 6 3 3.10 3.35
ROR, ROL ASR ASL) 7 4 4.29 4.66

0 0 0.00 0.00
1 1 0.93 0.93
2 1 0.93 0.93

MOV 3 2 2.17 2.29
4 1 1.13 1.13
5 2 2.22 2.34
6 2 2.37 2.49
7 3 3.50 3.75

0 0 0.00 0.00
1 1 0.95 0.95
2 1 1.13 1.26

MTPS 3 2 2.26 2.51
4 1 1.13 1.26
5 2 2.26 2.51
6 2 2.44 2.69
7 3 3.57 4.20

8-4

Destination Memory
Mode Cycles Core

0 0 0.00
1 1 0.64
2 1 0.64

MFPS 3 2 1.95
4 1 0.82
5 2 1.95
6 2 2.13
7 3 3.26

III. EXECUTE, FETCH TIME

DOUBLE OPERAND

Instruction
Memory
Cycles Core

ADD, SUB, CMP, BIT,
BIC, BIS, XOR

MOV

SINGLE OPERAND

CLR, COM, INC, DEC,
ADC, SBC, TST

. SWAB, NEG
ROR, ROL, ASR, ASL
MTPS
MFPS

1

1

1

1
1
2
2

2.03

1.83

1.83

2.03
2.18
2.99
1.99

EIS INSTRUCTIONS (use with DST times)

MUL 1 ':'8.82
DIV (overflow) 1 2.78

12.48
ASH 1 ':":'4.18
ASHC 1 ':":'4.18

MEMORY MANAGEMENT INSTRUCTIONS

MFPI (D)
MTPI (D)

2
2

3.07
3.37

MOS

0.00
0.64
0.64
2.08
0.82
2.08
2.26
3.51

MOS

2.16

1.96

1.96

2.16
2.31
3.12
2.12

':'8.95
2.91

12.61
':<>:'4.31
t.'~'4.31

3.14
3.34

':' Add 200ns for each bit transition in serial data from LSB to MSB
':' ':' Add 200ns per shift

8-5

Destination Memory
Instruction Mode Cycles Core MOS

0 0 0.00 0.00
1 2 1.42 1.54

SWAB, ROR, ROl, 2 2 1.57 1.69
ASR,ASl 3 3 2.70 2.95

4 2 1.62 1.74
5 3 2.80 3.05
6 3 2.90 3.15
7 4 '4.09 4.46

0 0 0.00 0.00
1 1 1.13 1.26

Non-Modifying 2 1 1.28 1.41
Single Operand and 3 2 2.42 2.67
Double Operand 4 1 1.33 1.46

5 2 2.52 2.77
6 2 2.62 2.87
7 3 3.80 4.18

0 0 0.00 0.00
1 1 0.98 1.24
2 1 1.32 L44

MFPI (D) 3 2 2.20 2.45
MTPI (D) 4 1 1.18 1.44

5 2 2.20 2.45
6 2 2.40 2.65
7 3 3.59 3.96

BRANCH INSTRUCTIONS

Memory
Instruction Cycles Core MOS

BR, BNE, BEQ, (Branch) 1 2.18 2.31
BPl, BMI, BVC, BVS, BCC,
SCS, BGE, BlT, BGT,
BlE, BHI, BlOS,
BHIS, BlO

(No Branch) 1 1.63 1.76

SOB (Branch) 1 2.38 2.51
(No Branch) 1 1.98 2.11

8-6

JUMP INSTRUCTIONS

Destination Memory
Mode Cycles Core MOS

1 1 1.83 1.96
2 1 2.18 2.31

JMP 3 2 3.12 3.37
4 1 2.03 2.16
5 2 3.07 3.32
6 2 3.07 3.32
7 3 4.25 4.78

1 2 3.32 3.44
2 2 3.47 3.59

JSR 3 3 4.40 4.65
4 2 3.32 3.44
5 3 4.40 4.65
6 3 4.60 4.85
7 4 5.69 6.06

Memory
Instruction Cycles Core MOS

RTS 2 3.32 3.57
MARK 2 4.27 4.52
RTI, RTT 3 4.60 4.98
Set or Clear C,V,N,Z 1 2.03 2.16
HALT 1 1.68 1.81
WAIT 1 1.68 1.81
RESET 1 100 msec 100 msec
lOT, EMT, TRAP, BPT 5 7.32 7.7

LATENCY

Interrupts (BR requests) are acknowledged at the end of the current in­
struction. For a typical instruction, with an instruction execution time of
4 ,usec, the average time to request acknowledgement would be 2 ,usec.

Interrupt service time, which is the time from BR acknowledgement to
the first subroutine instruction, is 7.32 ,usec, max. for core, and 7.7 ,usec
for MOS.

NPR (DMA) latency, which is the time from request to bus mastership
for the first NPR device, is 2.5 ,usec, max.

8-7

NOTES

1. Add 0.84 p,seconds when in rounding mode (FT = 0).

2. Add 0.24 p,seconds per shift to align binary points and 0.24 p,seconds
per shift for normalization. The number of alignment shifts is equal
to the exponent difference for exponent differences bounded as fol­
lows:

1 S IEXP (AC)-EXP (FSRC)I S 24 single precision
1 S I EXP (AC)-EXP (FSRC)I S 56 double precision

The number of shifts required for normalization is equivalent to the
number of leading zeroes of the result.

3. Add .24 p,seconds times the exponent of the product if the exponent
of the product is:

1 < EXP (PRODUCT) S 24 single-precision
1 S EXP (PRODUCT) S 56 double-precision

Add 0.24 p,seconds per shift for normalization of the fractional result.
The number of shifts required for normalization is equivalent to the
number of leading zeroes in the fractional result.

4. Add 0.24 p,seconds per shift for normalization of the integer being
converted to a floating point number. For positive integers, the num­
ber of shifts required to normalize is equivalent to the number of
leading zeroes; for negative integers, the number of shifts required
for normalization is equivalent to the number of leading ones.

5. Add 0.24 p,seconds per shift to convert the fraction and exponent to
integer form, where the number of shifts is equivalent to 16 minus
the exponent when converting to short integer or 32 minus the ex­
ponent when converting to long [nteger for exponents bounded as
follows:

1 S EXP (AC) S 15 short integer
1 S EXP (AC) S 31 long integer

B.3 PDP-11/44 CENTRAL PROCESSOR

Timing for the instructions assumes the following conditions:
1. Times specified are typical and may vary by ± 1 0%. They apply to

both byte and word instructions, whether odd or even byte.
2. Timing is given without regard to NPR or BR servicing and as­

sumes that no service states are used except where explicitly
forced by the microstructures.

3. Cache times assume 100% hits. Non-cache times assume 0% hits.
4. If memory management is used, add 0.09 Jlsec per memory to the

instruction time.
5. The memory timing is assumed to be the following:

MS11-M DATI (P) 490 ns taa
DATO (B) 230 ns taa

6. All times are expressed in Jlsec.

B-8

MOV, CMP, BIT, BIS, BIC, ADD, SUB Except any
SMO/DMO Combinations

REGISTER TO REGISTER INSTRUCTION TIMES
UNCACHED CACHED

INST TIME TIME

MOV (0,0) 1.23
ADD, BIS, BIC (0,0)

1CMP, BIT, SUB

.60
1.41

For the following instructions, use the time indicated directly.

#MEM
CYCLE

1
.78

To figure time, add SRC time from the first table to DST time from the
second table for the appropriate instruction.

SRC MODE TIMES FOk ALL INSTRUCTIONS LISTED
(INCLUDING FETCH)

UNCACHED CACHED #MEM
SRCMODE TIME TIME CYCLE

0 1.23 .64 1

1 1.92 .66 2

2 2.10 .84 2

3 2.97 1.08 3

4 2.10 .84 2

5 2.97 1.08 3

6 3.15 1.26 3

7 4.02 1.50 4

MOV DST MODE TIMES
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 .18 .18 0

1 .77 .77 0

B-9

UNCACHED CACHED #MEM
DST MODE TIME TIME CYCLE

2 .77 .77 0

3 1.82 1.19 1

4 .95 .95 0

5 1.82 ·1.19 1

6 2.00 1.37 1

7 2.87 1.60 2

ADD, BIS, BIC
UNCACHED CACHED #MEM

DST MODE TIME TIME CYCLE

0 .36 .36 0

1 1.46 .83 1

2 1.64 1.01 1

3 2.51 1.25 2

4 1.64 1.01 1

5 2.51 1.25 2

6 2.69 1.43 2

7 3.56 1.67 3

CMP, BIT
UNCACHED CACHED #MEM

DST MODE TIME TIME CYCLE

0 .36 .36 0

1 1.05 .42 1

8-10

UNCACHED CACHED #MEM
INST TIME TIME CYCLE

2 1.23 .60 1

3 2.10 .84 2

4 1.23 .60 1

5 2.10 .84 2

6 2.28 1.02 2

7 3.15 1.26 3

SUB
UNCACHED CACHED #MEM

DST MODE TIME TIME CYCLE

0 .18 .18 0

1 1.46 .83 1

2 1.64 1.01 1

3 '2.51 1.25 2

4 1.64 1.01 1

5 2.51 1.25 2

6 2.69 1.43 2

7 3.56 1.67 3

XOR, NEG
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 1.59 .96 1

1 2.69 1.43 2

8-11

UNCACHED
SRC MODE TIME

2 2.89

3 3.74

4 2.87

5 3.74

6 3.92

7 4.79

ClR, COM, INC, DEC, SBl, ADl, SXT

DSTMODE

0

1

2

3

4

5

6

7

TST

DSTMODE

o

UNCACHED
TIME

1.23

2.51

2.69

3.56

2.69

3.56

3.74

4.61

UNCACHED
TIME

1.23

8-12

CACHED
TIME

1.61

1.85

1.61

1.85

2.03

2.27

CACHED
TIME

.60

1.25

1.43

1.67

1.43

1.67

1.85

2.09

CACHED
TIME

.60

#MEM
CYCLE

2

3

2

3

3

4

#MEM
CYCLE

1

2

2

3

2

3

3

4

#MEM
CYCLE

1

UNCACHED CACHED #MEM
DST MODE TIME 4 TIME CYCLE

1 2.60 .84 2

2 2.28 1.02 2

3 3.15 1.26 3

4 2.28 1.02 2

5 3.15 1.26 3

6 3.33 1.44 3

7 4.20 1.68 4

ROL, ROR, ASR, ASL
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 1.59 .. 96 1

1 2.69 1.43 2

2 2.87 1.61 2

3 3.74 1.85 3

4 2.87 1.61 2

5 3.74 1.85 3

6 3.92 2.03 3

7 4.79 2.27 4

SWAB
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 1.41 .78 1

8-13

UNCACHED CACHED #MEM
DSTMODE TIME TIME CYCLE

1 2.51 1.25 2

2 2.69 1.43 2

3 3.56 1.67 3

4 2.69 1.43 2

5 3.56 1.67 3

6 3.74 1.85 3

7 4.61 2.09 4

MFPI (0)
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 2.18 1.55 1

1 3.23 1.97 2

2 3.41 2.15 2

3 4.10 2.21 3

4 3.41 2.15 2

5 4.10 2.21 3

6 4.28 2.39 4

7 5.15 2.64 4

MTPI (0)
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 2.64 1.38 2

8-14

UNCACHED CACHED #MEM
DST MODE TIME TIME CYCLE

1 3.59 2.26 2

2 3.27 2.51 2

3 4.46 2.57 3

4 3.27 2.51 2

5 4.46 2.57 3

6 4.64 2.75 3

7 5.51 2.99 4

JMP
UNCACHED CACHED #MEM

DST MODE TIME TIME CYCLE

1 1.23 .60 1

2 1.59 .96 1

3 2.28 1.02 2

4 1.41 .78 1

5 2.28 1.02 2

6 2.28 1.02 2

7 3.33 1.44 3

JSR
UNCACHED CACHED #MEM

DST MODE TIME TIME CYCLE

1 2.47 1.91 1

2 2.65 2.09 1

8-15

UNCACHED CACHED #MEM
DST MODE TIME TIME CYCLE

3 3.34 2.15 2

4 2.47 1.91 1

5 3.34 2.15 2

6 3.52 2.40 2

7 4.39 2.57 3

CALL TO SUPERVISOR MODE
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 7.46 6.20 2

1 8.15 6.44 3

2 8.33 6.45 3

3 9.20 6.68 4

4 8.33 6.44 3

5 9.20 6.68 4

6 9.38 6.86 4

7 10.25 7.10 5

BRANCHES
#MEM

BNE, ETC. TYPE UNCACHEDCASHED CYCLE

FAILED 1.05 .42 1

PASSED 1.59 .96 1

SOB NO BRANCH 1.41 .78
(1)

1.77 1.14 1

B-16

TRAP, SUBROUTINES
#MEM

UNCACHED CACHED CYCLE

TRAP INST. 5.68 3.93 3

RTS 2.46 1.20 2

RTI, RTT K 3.61 1.92 3

K 4.35 2.46 3

MISCELLANEOUS
#MEM

UNCACHED CACHED

SET, CLR CC's 1.41 .78 (1)

WAIT (LOOP) 1.53 .90 (1)

EXIT 5.56 3.67 (3)

RESET 1.23 .60 1

1.50 In Kernel Mode

MARK 3.36 2.10 2

MFPT 1.41 .78 1

SPL 2.85 2.22 1

EIS
ASH DM 0 3.93 1 3.30 ADD 180 ns.

1 4.62 2 3.36 FOR TRANS.
2 4.80 2 3.54 FOR RIGHT SHIFTS
3 5.67 2 3.78 SUBTRACT 0.6 ns.
4 4.80 2 3.36
5 5.60 3 3.78
6 5.78 3 3.89
7 6.65 4 4.13

B-17

ASHe DM 0 3.51 1 2.88 ADD 180 ns.
1 4.20 2 2.94 FOR TRANS.
2 4.38 2 3.12
3 5.25 3 3.36
4 4.38 2 3.12
5 5.25 3 3.36
6 5.43 3 3.54
7 6.30 4 3.78

MUL DM 0 6.63 1 6.00 ADD 180 ns. PER
1 7.32 2 6.06 BIT TRANSITION
2 7.50 2 6.24
3 8.37 3 6.48
4 7.50 2 6.24
5 8.37 3 6.48
6 8.55 3 6.66
7 9.42 4 6.90

DIV DM 0 11.01 1 10.28
1 11.07 2 10.44
2 11.88 2 10.62
3 12.75 3 10.86
4 11.88 1 10.62
5 12.75 3 10.86
6 12.93 3 11.04
7 13.08 4 11.28

B-18

8.4 PDP-11/60 CENTRAL PROCESSOR
The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of
a Source Address Time, a Destination Address Time, and an Execute,
Fetch Time.

Instr Time = SRC Time + DST Time + EF Time

Some of the instructions require only some of these times and are so
noted. Times are typical and are based upon the MMll-WP memory as
backing store. The simplified presentation of the timing data has occa­
sionally resulted in a larger time for an instruction being noted. All
times may vary +10% due to clock and bus tolerances.

BASIC INSTRUCTION SET TIMING
Double Operand

all instructions,
except MOV: Instr Time = SRC Time + DST Time + EF

Time
MOV: Instr Time = SRC Time + EF Time (word

only)

Single Operand
all instructions: Instr Time = DST Time + EF Time or

Instr Time = SRC Time + EF Time

Branch, Jump, Control, Trap & Misc
all instructions: Instr Time = EF Time

EIS (MUL, DIV, ASH, ASHC)
all instructions: Instr Time = DST Time + EF Time

Floati ng Poi nt
all instructions:

except ABSF, ABSD,
NEGF, and NEGD: Instr Time = SRC Time + EF Time

ABSF, ABSD, .
NEGF and NEGD: Instr Time.= DST Time + EF Time

Using the Chart Times
To compute a particular instruction time, first find the instruction "EF"
Time. Select the proper EF Time for the SRC and DST modes. Observe
all "NOTES" to the EF Time by adding the correct amount to basic EF
number.

Next, note whether the particular instruction requires the inclusion of
SRC and DST Times; if so, add the appropriate amounts to correct EF
number.

8-19

Chart Times
The times given in the chart are for Cache "hits"; that is, all the read
cycles are assumed to be in the Cache. The number of read cycles in
each subset of the instruction is also included so that timing can be
calculated for a specific case of hits and misses, or timing can be cal­
culated based on an average hit rate.
a) Specific hits and misses

Add 1.1 j.tsec for each read cycle which is a miss instead of a hit.
b) Average hit rate

If PH is the percent of reads that are hits, add 1.1 X (1 - PH) X
(number of read cycles) to the instruction timing.

For example, an ADD A,B instruction using Mode 6 (indexed) address
modes:
1) All Hits:

SRC time
DST time
EF time

0.85 j.tsec
0.85 j.tsec
2.2 j.tsec

2 read cycles
2 read cycles
1 read cycle

TOTAL 3.9 j.tsec 5 read cycles
2) 4 Hits, 1 Miss

Total = 3.9 + 1.1
= 5.0 j.tsec.

3) Read hit rate of 87%
Total = 3.9 + (1.1)(1 - .87)(5)

= 4.6 j.tsec.

Instruction

Double
Operand

NOTES
1. The times specified generally apply to Word

instructions. In most cases Even Byte instruc­
tions have the same time, with some Odd
Byte instructions taking longer. All exceptions
are noted.

2. Timing is given without regard for NPR or BR
serving.

3. Time~ are not affected if Memory Manage­
ment is enabled.

4. All times are in microseconds, except where
noted.

Source Address Time

Source
Mode

o
1
2
3
4
5
6
7

8-20

SRC Time

.00

.51

.51
1.0

.68
1.2

.85
1.4

Read
Memory

Cycle

o
1
1
2
1
2
2
3

Instruction

Single Operand
and Double Oper­
and (except MOV,
MTPI, MTPD, JMP,
JRS)

Destination Address Time

DST
Mode

o
1
2
3
4
5
6
7

DST Time (A)

.00

.51

.51
1.0

.68
1.2

.85
1.4

Read
Memory
Cycle

o
1
1
2
1
2
2
3

NOTE (A): Add .17 j.tsec for odd byte instructions, except DST Mode O.

Execute, Fetch Time

(Double Operand)

Instruction EF Time EF Time EF Time
(SRC (SRC (SRC

(Use with SRC Mode 0) Read Mode 1-7) Read Mode 0-7) Read
Time and DST (DST Mem. (DST Mem. (DST Mem.
Time) Mode 0) CYC Mode 0) CYC Mode 1-7) CYC

ADD, SUB, BIC, .34 1 1.0 1 2.2 1
BIS

CMP, BIT .34 1 1.0 1 1.0 1

XOR .34 1 1.0 1

MOVB .34 1 .51 1 .51 1

Instruction EF Time EF Time Read
(Use with SRC DST DST (SRC Mode (SRC Mode Memory
Time) Mode Register = 0) 1-7) Cycle

MOV 0 0-7 .34 .51 1
1 0-7 1.0 1.0 1
2 0-7 1.0 1.0 1
3 0-7 1.4 1.4 2
4 0-7 1.2 1.0 1
5 0-7 1.5 1.5 2
6 0-7 1.2 1.4 2
7 0-7 1.7 1.9 3

8-21

Execute, Fetch Time

(Single Operand)

Instruction EF Time Read EF Time
(Use with DST (DST Mode Memory (DST Mode
Time)

TST

CLR, COM, INC,
DEC, ADC, ROL,
ASL

NEG, SBC, ROR,
ASR

Instruction

MFPI, MFPD

Instruction

MTPI, MTPD

Instruction

BR, BN E, BEQ, BPL,
BMI, BVC, BVS,
BCC, BGS, BGE,
BL T, BGT, BLE,
BHI, BLOS, BHIS,
BLO

SOB

= 0) Cycle 1·7)

.34 1 .68

.34 1 1.9

1.2 1 2.4

Read
Memory

EF Time Cycle

6.1 1

DST Instruction
Mode Time

0 3.6
1 6.1
2 6.3
3 6.6
4 6.3
5 6.8
6 6.6
7 7.1

Branch Instructions

Instruction
Time

.85

2.0

8-22

Read
Memory

Cycle

1

1

Read
Memory

Cycle

1

1

1

Use with
SRC Times

Read
Memory

Cycle

1
2
2
3
2
3
3
4

Instruction

JMP

Instruction

JSR

Instruction

RTS
MARK
RTI
RTT
SET N, V, Z, C
CLR N, V, Z, C
RESET
lOT, EMT, BPT, TRAP

J U M P Instructions

DST Instruction
Mode Time

1 1.2
2 1.4
3 1.5
4 1.4
5 1.7
6 1.4
7 1.9

DST Instruction
Mode Time

1 2.5
2 2.7
3 2.9
4 2.7
5 3.2
6 2.9
7 3.6

Miscellaneous Instructions

Instruction
Time

1.5
2.4
2.4
3.1
1.5

10 msec
4.6

8-23

Read
Memory

Cycle

1
1
2
1
2
2
3

Read
Memory

Cycle

1
1
2
1
2
2
3

Read
Memory

Cycle

2
2
3
3
1

1
3

EIS Instructions MUL, DIV, ASH, ASHC

Source Address Time

Source Time
Mode (p,sec)

0 .340
1 .640
2 .640
3 1.19
4 .85
5 1.36
6 1.19
7 1.70

Add 1.1 p,sec for each read cycle which is a miss

EF Time

Instruction

DIV
MUL

':'ASH
*ASHC

':'Add .17 p,sec for each shift

EF Time
(All Modes)

7.65 p,sec
6.12 p,sec
3.57 p,sec
4.25 p,sec

8.5 PDP-11/70 CENTRAL PROCESSOR

Read
Memory

Cycle

0
1
1
2
1
2
2
3

Read
Memory

Cycle

1
1
1
1

The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of a
Source Address Time, and an Execute, Fetch Time.

Instr Time = SRC Time + DST Time + EF Time

Some of the instructions require only some of these times, and are so
noted. Times are typical; processor timing, with E:ore memory, may vary
+15% to -10%.

BASIC INSTRUCTION SET TIMING
Double Operand

all instructions,
except MOV: Instr Time = SRC Time + DST Time
(but including MOVS) + EF Time
MOV Instruction: Instr Time = SRC Time + EF Time
(word only)

8-24

Single Operand
all instructions: Instr Time = OST Time + EF Time or

Instr Time = SRC Time + EF Time

Branch, Jump, Control, Trap & Misc
all instructions: Instr Time = EF Time

USING THE CHART TIMES
To compute a particular instruction time, first find the instruction liEF"
Time. Select the proper EF Time for the 'SRC and OST modes. Observe
all "NOTES" to the EF Time by adding the correct amount to basic EF
number.

Next, note whether the particular instruction requires the inclusion of
SRG and OST Times, if so, add the appropriate amounts to correct EF
number.

USING THE CHART TIMES
The times given in the chart for Cache "hits"; that is, all the read cycles
are assumed to be in the Cache. The number of read cycles in each
subset of the instruction is also included so that timing can be calcu­
lated for a specific case of hits and misses, or timing can be calculated
based on an average hit rate.
a) Specific hits and misses

Add 1.02 p'sec for each read cycle which is a miss instead of a hit.

b) Average hit rate
If PH is the percent of reads that are hits, add 1.02 X (1 - PH) x
(Number of read cycles) to the instruction timing.

For example, an ADD A,B instruction using Mode 6 (indexed) address
modes:

1) All Hits:

SRC time = 0.60 p'sec
OSTtime = 0.60 p'sec
EF time = 1.35 p'sec

TOTAL = 2.55p.sec

2) 4 Hits, 1 Miss
Total = 2.55 + 1.02

= 3.57 p'sec

3) Read hit rate 6f 90%

2 read cycles
2 read cycles
1 read cycle

5 read cycles

Total = 2.55 + (1.02) (.1) (5)
= 3.06 p'sec

NOTES
1. The times specified generally apply to Word instructions. In most

cases Even Byte instructions have the same time, with some Odd
Byte instructions taking longer. All exceptions are noted.

2. Timing is given without regard for NRP or BR serving. Core memory
is assumed to be iocated within the first 128K memory unit.

8-25

3. Times are not affected if Memory Management is enabled.

4. All times are in microseconds.

SOURCE ADDRESS TIME

Instruction

Double
Operand

Source
Mode

0
1
2
3
4
5
6
7

DESTINATION ADDRESS TIME

DST
Instruction Mode

0

Single Operand
1
2

and Double Oper- 3
and (except MOV, 4
MTPI, MTPD, JMP, 5
JRS 6

7

Read
Memory

SRC Time Cycles

.00 0

.30 1

.30 1

.75 2

.45 1

.90 2

.60 2
1.05 3

Read
Memory

DST Time (A) Cycles

.00 0

.30 1

.30 1

.75 2

.45 1

.90 2

.60 2
1.05 3

NOTE (A): Add .15 p,sec for odd byte instructions, except DST Mode O.

8-26

EXECUTE, FETCH TIME

Double Operand

Instruction EF Time

(SRC
Mode 0)

(Use with (DST
SRC Time Mode 0)
and DST Time)

ADD, SUB, _30
BIC, BIS MOVB (D)

CMP, BIT .30
(D)

XOR .30
(D)

Read
Mem
Cyc

1

1

1

EF Time EF Time

(SRC (SRC
Mode 1-7) Mode 0-7)
(DST Read (DST Mode 1-7)
Mode 0) Mem

Cyc

.45 2 1.20
(D) (C)

.45 1 .45
(D) (C)

.30 1 1.20
(D)

NOTE (C): Add 0.15 f.Lsec if SRC is R1 to R7 and DST is R6 or R7.
NOTE (D): Add 0.3 f.Lsec if DST is R7.

EF Time EF Time
Instruction DST DST (SRC (SRC
(Use with SRC Time) Mode Register Mode = 0) Mode = 1-7)

0 0-6 .30 .45
0 7 .60 .75
1 0·7 1.20 1.20

·2 0·7 1.20 1.20
MOV 3 0-7 1.65 1.65

4 0-7 1.35 1.35
5 0·7 1.80 1.80
6 0-7 1.50 1.65
7 0-7 1.95 2.10

Single Operand

EF TIME EF Time
Instruction (DST Memory (DST
(Use with DST Time) Mode = 0) Cycles Mode 1 to 7)

CLR, COM, INC, DEC, .30 1 1.20
ADC, SBC, ROL, . (J)
ASL, SWAB, SXT

NEG .75 1 1.50

TST .30 1 .45
(J)

ROR, ASR .30 1 1.20
(J) (H)

ASH, ASHC .75 1 .90
(I) (I)

B-27

Read
Mem
Cyc

1

1

1

Read
Memory
Cycles

1
1
1
1
2
1
2
2
3

Read
Memory
Cycles

1

1

1

1

1

NOTE (H): Add 0.15 ,usec if odd byte.
NOTE (I): Add 0.15 ,usec per shift.
NOTE (J): Add 0.30 ,usec if DST is R7.

Instruction
(Use with SRC Times) EF Time

MUl
DIV

by zero
shortest
longest

Instruction

MFPI
MFPD

Instruction

MTPI
MTPD

Branch Instructions

Instruction

BR, BNE, BEQ,
BPl, BM I, BVC,
BVS, BCC, BCS,
BGE, BlT, BGT,
BlE, BH I, BlOS,
BHIS, BlO

SOB

EF Time

1.50
1.50

3.30

.90
7.05
8.55

Read
Memory
Cycles

1
1

DST
Mode Instruction Time

o
1
2
3
4
5
6
7

Instr Time
(Branch)

.60

.60

8-28

.90
1.65
1.65
2.10
1.80
2.25
2.10
2.55

Instr Time
(No Branch)

.30

.75

Read
Memory
Cycles

1

1
1
1

use
with
SRC
times

Read
Memory
Cycles

1
2
2
3
2
3
3
4

Read
Memory
Cycles

1

1

Jump Instructions

Read
DST Memory

Instruction Mode Instr Time Cycles

1 .90 1
2 .90 1
3 1.20 2

JMP 4 .900 1
5 1.35 2
6 1.0.5 2
7 1.50 3

1 1.95 1
2 1.95 1
3 2.25 2

JSR 4 1.95 1
5 2.40 2
6 2.10 2
7 2.55 3

Control, Trap & Miscellaneous Instructions

Read

Instruction
Memory

Instr Time Cycles

RTS 1.05 2
MARK .90. 2
RTI, RTT 1.50 3

SET N, Z, V. C
CLR, N, Z, V, C .60 1

HALT 1.05 0
WAIT .45 0

WAIT Loop
for a BR is
.3 p.sec.

RESET 10ms 1
lOT, EMT, 3.30 3
TRAP, BRT
SPL .60 1
INTERRUPT 2.31 2

First Device

EFFECTIVE MEMORY CYCLE TIME
The overall effective cycle time of the CPU can be calculated from the
following formula:

TCE = PR X [(PH X TeH) + (1 - PH) TCM] + (1 - PR) TCw

8-29 '

Where TCE = Effective cycle time
TCII = Cycle time for a read hit = 0.30 p,sec
TCl! = Cycle time for a read miss = 1.32 p,sec
TCw = Cycle time for a write = 0.75 p,sec
PR = Percent of cycles that are reads
PH = Percent of reads that are hits

Thus, for an average PDP-11/70 program which has a read rate of 91 %
and a read hit rate of 93%, the effective cycle time is:

TCE = .91 X [(.93 X .30) + (.07 X 1.32)] + (.09 X .75) = .41 p,sec

8-30

Decimal Octal

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 10
9 11

10 12
11 13
12 14
13 15
14 16
15 17
16 20
17 21
18 22
19 23
20 24
21 25
22 26
23 27
24 30
25 31
26 32
27 33
28 34
29 35
30 36
31 37
32 40
33 41
34 42
35 43

C-1

APPENDIX C

CONVERSION TABLE

Binary

0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111

10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

100000
100001
100010
100011

Decimal Octal Binary

36 44 100100
37 45 100101
38 46 100110
39 47 100111
40 50 101000
41 51 101001
42 52 101010
43 53 101011
44 54 101100
45 55 101101
46 '56 101110
47 57 101111
48 60 110000
49 61 110001
50 62 110010
51 63 110011
52 64 110100
53 65 110101
54 66 110110
55 67 110111
56 70 111000
57 71 111001
58 72 111010
59 73 111011
60 74 111100
61 75 111101
62 76 111110
63 77 111111
64 100 1000000
65 101 1000001
66 102 1000010
67 103 1000011
68 104 1000100
69 105 1000101
70 106 1000110
71 107 1000111
72 110 1001000
73 111 1001001
74 112 1001010
75 113 1001011
76 114 1001100
77 115 1001101

C-2

Decimal Octal Binary

78 116 1001110
79 117 1001111
80 120 1010000
81 121 1010001
82 122 1010010
83 123 1010011
84 124 1010100
85 125 1010101
86 126 1010110
87 127 1010111
88 130 1011000
89 131 1011001
90 132 1011010
91 133 1011011
92 134 1011100
93 135 1011101
94 136 1011110
95 137 1011111
96 140 1100000
97 141 1100001
98 142 1100010
99 143 1100011

100 144 1100100
101 145 1100101
102 146 1100110
103 .147 1100111
104 150 1101000
105 151 1101001
106 152 1101010
107 153 1101011
108 154 1101100
109 155 .1101101
110 156 1101110
111 157 1101111
112 160 1110000
113 161 1110001
114 162 1110010
115 163 1110011
116 164 1110100
117 165 1110101
118 166 1110110
119 167 1110111

C-3

Decimal Octal Binary

120 170 1111000
121 171 1111001
122 172 1111010
123 173 1111011
124 174 1111100
125 175 1111101
126 176 1111110
127 177 1111111
128 200 10000000

C-4

INDEX

Abit 160

Aborts 162

ABSD (Make Absolute Double)
instruction 354

ABSF (Make Absolute Floating)
instruction 354

Access Control Field (ACF) 159, 160

Access Information Bits 160

Accumulators 23

Accuracy
floating point processors 351 to
353

ACF (see Access Control Field) 159,
160

Active Page Field (APF) 156

Active Page Register (APR) 140,
141, 145 to 147

ADC (Add Carry) instruction 46, 58

ADCB (Add Carry Byte)
instruction 46,58

ADDD (Add Floating/Double)
iAstruction 354 to 356

Add instruction 24,45,47,58

ADDN(I) 442, 434, 435

ADDP(I) 422,434,435

Addresses
memory 11
registers 11

Addressing 153,154

Addressing modes
direct 25, 36, 37
indirect 26,37,38
overview 23
position independent 106
program counter 26, 32 to 36, 38,
39,41,42
summary 39 to 41

Address modification looping
technique 144, 145

Application kernels 269

APF (Active Page Field) 156

Architecture
floating point processors 341,
342
PDP-11 family 11,13
PDP-11/44 196

ASCII Console (PDP-11 /44) 211

ASCII conversions 135

ASH (Arithmetic Shift)
instruction 47,59

ASHC (Arithmetic Shift Combined)
instruction 47,59,60

ASHN(I) 422,436,437

ASHP(I) 422, 436, 437

ASL (Arithmetic Shift Left)
instruction 46,60,61

ASLB (Arithmetic Shift Left Byte)
instruction 46,60,61

ASR (Arithmetic Shift Right)
instruction 46,61,62

ASRB (Arithmetic Shift Right Byte)
instruction 46,61,62

Autodecrement deferred mode 26,
30,31,38,40,106

Autodecrement looping
technique 144, 145

Autodecrement mode 26,29,37,
40,106;110

Autoincrement deferred mode 26.
29,37,40,106

Autoincrement looping
technique 144,145

Autoincrement mode 26, 28, 29, 36,
40,106,110

Automatic nesting 115, 116

Battery backup MOS memory 183

BBSY (Bus Busy signal) 14,20

INDEX 1

Index

BCC (Branch if Carry Clear)
instruction 48, 62

BCS (Branch if Carry Set)
instruction 48, 62

BEQ (Branch if Equal)
instruction 48, 62, 63

BG (Bus Grant) 14,17,20

BGE (Branch if Greater Than or
Equal) instruction 48, 63

BGT (Branch if Greater Than)
instruction 48, 63, 64

BHI (Branch if Higher)
instruction 48, 64

BHIS (Branch if Higher Than the
Same) instruction 48,65

BICB (Bit Clear Byte) instruction 47,
65

BIC (Bit Clear) instruction 47,65

BISB (Bit Set Byte) instruction 47,
65

BIS (Bit Set) instruction 47,65

BITB (Bit Test Byte) instruction 47,
66

BIT (Bit Test) instruction 47,66

Bits condition code 51,52

BlE (Branch if less Than or Equal to)
instruction 48, 66, 67

BlO (Branch if lower)
instruction 48, 67

Block Number (BN) 157

Block structure
PDP-111,3

BlOS (Branch If lower or Same)
instruction 48, 67

Bl T (Branch if less Than)
instruction 48,67,68

BMI (Branch if Minus)
instruction 48, 68

BNE (Branch if Not Equal)
instruction 48, 69

Bootstrap loader 188

BPl (Branch if Plus) instruction 48,
69

BPT (Breakpoint Trap)
instruction 50, 69, 70

Branch instructions ,48,49

BR (Branch) instruction 48, 70

BR (bus request) 14,16,17,20

Bus 1,11 to 13,15to 18

Bus Busy (BBSY) signal 14,20

Bus Communication 13

Bus control section 14, 267

Bus cycle 13

Bus Grant (BG) 14,17,20

Bus Interrupt (INTR) 14,20

Bus request (BR) 14,16,17,20

BVC (Branch if V bit Clear)
instruction 48, 70

BVS (Branch if V bit Set)
instruction 48, 70

Bypass Cache Bit (BC) 161

Byte instructions 48

Byte stack 109, 110

Cache memory 184, 203, 235, 236,
301 to 303

Call to Supervisor Mode instruction
(CSM) 50,73,74

C bit 51,52

CCC (Clear All Condition Code Bits)
instruction 51 to 53, 71

Central processor unit (CPU)
bus priority 13, 18
PDP-11/44 198
PDP-11170 278

CPU Mapping 147,148, 149, 150

CFCC (Copy Floating Condition
Codes) instruction 356

Chaining bus grants 17

Character Data Types 405 to 408

Character String Instructions 408 to
410

INDEX 2

Index

CIS (Commercial Instruction
Set) 405 to 468

CLC (Clear C) instruction 51 to 53,
71

CLN (Clear N) instruction 51 to i3,
72

CLRB (Clear Byte) instruction 24,
46,71

CLR (Clear) instruction 24,46, 71

CLRD (Clear Double)
instruction 356

CLRF (Clear Floating)
instruction 356

CLV (Clear V) instruction 51 to 53,
72

CLZ (Clear Z) instruction 51 to 53,
72

CMPB (Compare Byte)
instruction 72

CMP (Compare) Instruction 72

CMPC(I) 408,438,439

CMPD (Compare Double)
instruction 356, 357

CMPF (Compare Floating)
instruction 356, 357

CMPN(I) 422,440,441

CMPP(I) 422,440,441

Code
position independent 105 to 109
pure 120
re-entrant 120, 121

COMB (Complement Byte)
instruction 24, 46, 73

COM (Complement) instruction 24,
46,73

Commercial Instruction Set 405 to
468

Commercial Load Descriptor
Instructions 424,425

Communication between devices
(see also Data bus) 11, 13

Compatability 1,2

Computer Special Systems (CSS)
group 6

Condition code instructions 51 to 53

Console emulator
PDP-11/04 186 to 188

Controller Registers 314

Conversion Table C-1 to C-4

Coroutines 122 to 126

Counter looping 144, 145

CPU
bus priority 13, 18

CSS (Computer Special Systems)
group 6

CVTLN(I) 423, 442

CVTLP(I) 423,442

CVTNL(I) 423,442,443

CVTPL(I) 423,442,443

CVTNP(I) 423,444,445

CVTPN(I) 423,444,445

Cycle
bus 13

Data
formats

cache memory 223
floating point 279 to 281
overlap 424

structures
indirect pOinters 27
transfers 13, 14, 18, 19

Data bus 1, 11 to 20, 23

Data-path section 267

Data (D) Space 156

Debugging microprograms 269

DECB (Decrement Byte)
instruction 46, 74

DEC (Decrement) instruction 46,74

Decimal String Data Types 411, 412

Decimal String Descriptors 412 to
416

Decimal String Instructions 421,
422

INDEX3

Index

Deferred modes
see Addressing modes,
indirect

Devices
bus priority 13, 16 to 18
communication between (see also
Data bus) 11,13
service routine addresses 15, 16

Diagnostic Control Store 263

Direct addressing modes 25, 36,37

Displacement Field (DF) 156,157

Displacement In Block (DIB) 157

DIVD (Divide Double)
instruction 357,358

DIV (Divide) instruction 75

DIVF (Divide Floating)
instruction 357,358

DIVP(I) 422,445 to 447

Division methods 132 to 135

Documentation 7, 8

Double operand instructions 25,47,
48,54,55

Downward compatibility 1

Downward expandable page 161,
162

ECC (Error Correcting Code) 244,
245

EIS (Extended Instruction Set) 261

EMT (Emulator Trap) instruction 50,
75, 76, 129, 130

Enable Memory Management
Traps 163

Errors
parity 245 to 248

Error traps 129, 130

Expansion direction 161

Extended Control Store 263

Extended Instruction Set (EIS) 260,
425 to 430

Fault Recovery Registers 161

FEA (Floating Exception Address)

register 350

FEC (Floating Exception Code)
register 350

Floating point processors (FPP)
accuracy 351 to 353
architecture 341,342
description 341
instruction addressing 350,351
instructions 353 to 373
operation 342, 343
PDP-11/34A 341,374 to 379
PDP-11/44 398t0403
PDP-11/60 387 to 395, 397
PDP-11170 379 to 386, 396
timing 373

Floating point unit status
register 345 to 349

FP11-A 374 to 379

FP11-C 379 to 386

FP11-E 387t0395

FP11-F 398 to 403
FPP(see Floating point
processors)

FPS register 345 to 349

General-purpose registers (GPR)
addressing modes 23, 26, 39 to
41
PDP-11/44 198 to 200
PDP-11170 28, 279
saving contents 111

Grant chain 17

HALT instruction 51, 76, 77

Hardware stack pOinter (SP) 23, 24,
109

High Speed Controllers 312 to 314

Horizontal priorities 16, 17

"INCB (Increment Byte)
instruction 24, 45, 77

INC (Increment) instruction 24,45,
77

Index deferred mode 26, 32, 38, 41,
106

Index mode 25,31,37,41,106

INDEX 4

Index

Index register modifications
looping methods 144,145

Indirect addressing modes 26, 37,
38

Input buffer
managing 114

Instruction formats
branch 48,49
double operand 25,47,48
jump 49,50
single operand 25, 46
subroutine return 49,50

Instructions
addressing

floating point processors 350,
351
reserved 129

timing
floating point processors 372 to
395

trap 129 to 131

Instruction set
branch instructions 45, 48
condition codes 51 to 53
double operand instructions 47
examples 53 to 56
floating point instructions 353 to
373
interrupts 50,51
jump instructions 49,50
miscellaneous instructions 51
overview 45
single operand instructions 45, 46
subroutine instructions 49, 50
summary 56 to 102
traps 45,50,51

Instruction (I) Space 156

Instruction Timing B-1 to B-30

Interrupt conditions
under memory management
control 155
description 116 to 119
handling 15,16
instructions 50
linkage 111

software (see Traps)
vector 15, 16

INTR (Bus Interrupt) 15 to 16, 20

I/O Page Register (PDP-11 /44)
Cache Data Register 206
Cache Memory Error
Registers 206, 207
Cache Control Register 207 to
209
Cache Maintenance Register 209,
210
Cache Hit 210, 211

lOT (I/O Trap) instruction 50, 77

JMP (Jump) instruction 49, 78, 79

JSR (Jump to Subroutine)
instruction 49, 79, 80, 111, 115

Jump instructions 49

Jump tables
addressing 27

KT11 memory management
comparison chart 175 to 178

KT /cache section 267

KY11-P programmers' console 249
to 260

LDCDF (Load and Convert from
Double to Floating) instruction 358,
359

LDCFD (Load and Convert from
Floating to Double) instruction 358,
359

LDCID (Load and Convert Integer to
Double) instruction 359, 360

LDCIF (Load and Convert Integer to
Floating) instruction 359,360

LDCLD (Load and Convert Long
Integer to Double) instruction 359,
360

LDCLF (Load and Convert Long
Integer to Floating) instruction 359,
360

LDD (Load Double) instruction 361,
362

INDEX 5

Index

LDEXP (Load Exponent)
instruction 360,361

LDF (Load Floating) instruction 361,
362

LDFPS (Load FPP's Program Status)
instruction 362

LDUB (Load Microbreak Register)
instruction 81,82

Linkage information
storing 111, 112

Linkage register 111, 115

LOCC(I) 408,447,448

Long Integer 421

Looping techniques 144,145

L2DR 449

L3DR 450

M9312 modules 188,189,334 to
337

Machine-language instructions
processing phases 270 to 274

Machine state
see Processor, state

Macro-level architecture 267
(see also Architecture)

Maintenance Destination Mode 163

MARK instruction 82

Master bus operations 11

MATC(I) 408,451,452

MED (Maintenance Examine and
DEP) instruction 82 to 85

Memory (see also Page
addressing) 11,23 to 42, 140

bus priority 13
PDP-11/04 182
PDP-11/34A 182
PDP-11/44 202
PDP-11/60 244, 245
PDP-11/70 282 to 285

Memory Management 147 to 178
PDP-11/34A 153,154, 182, 183
PDP-11/44 202,203
PDP-11/60 153,154,182,183

registers 158, 159
register map 171 to 173
UNIBUS map 173

Memory Mapping 147,148

Memory system error register 237,
238

MFPD (Move from Previous Data
Space) instruction 51,85,86

MFPI (Move from Previous Instruction
Space) instruction 51,85,86

MFPS instruction 51,86

MICRO-11/60 268

MicroDebugging Tool (MDT) 269

Microinstructions 265

Micro-level architecture 266, 267

Micro-level organization 267

Microprogram Loader (MLD) 268

Microprogramming 262 to 273

Miss (cache operation) 238

MLD (Microprogram Loader) 268

MNS (Maintenance Normalization
Shift) instruction 87

MODD (Multiply and Integerize
Double) instruction 362 to 365

Modes (CPU)
PDP-11/44 200,201

MODF (Multiply and Integerize
Floating) instruction 362 to 365

MOS memory
PDP-11/04 183
PDP-11/34A 183
PDP-11/44 202
PDP-11/60 235, 244, 245
PDP-11170 284,285,301 to 306

MOVB (Move Byte) instruttion 47,
88

MOV (Move) instruction 47,88

MOVC(I) 408, 453, 454

MOVRC(I) 408, 454 to 456

MOVTC(I) 408,456 to 458

INDEX6

Index

MPP (Maintenance Partial Product)
instruction 88, 89

MTPD (Move to Previous Data Space)
instruction 51,89

MTPI (Move to Previous Instruction
Space) instruction 51,89

MTPS instruction 51,89,90

MUL (Multiply) instruction 47,90

MULD (Multiply Double)
instruction 365, 366

MULF (Multiply Floating)
instruction 365,366

MULP(I) 422,459,460

Multiplication methods 134, 135

Multiprocessing 205.

Multiprogramming Integrity 434

N bit 51,52

NEG (Negate) instruction 46, 91

NEGB (Negate Byte) instruction 46,
91

NEGD (Negate Double)
instruction 366

NEGF (Negate Floating)
instruction 366

Nesting
definition 16
automatic 115, 116
interrupts 116 to 118

Non-processor Data Transfers 289

Non-processor grant (NPG) 14, 17,
20

Non-processor request (NPR)
bus control 13,14,16,17,20
PDP-11/60 241

NPG (non-processor grant) 14, 17,
20

NPR (non-processor request)
bus control 13,14,17,20
PDP-11/60 206, 207

Numerical notation 8

Odd addressing error trap 108, 167

OEM group 6

Operating systems
PDP-11 4,5
DMS-11 4
lAS 5
RSTS/E 4
RSX-11M 5
RSX-11 M-PLUS 5
RSX-11S 5
RT-11 4
TRAX 5

Operator's console
PDP-11/34A 185,186

O-phase 271

Organization 236, 237

Overpunch Strings 417,418

Package Systems 6, 7

Page Address Register (PAR) 159

Page Descriptor Register (PDR) 159

Page Length Field (PLF) 161

PAR (Page Address Register) 159

Parity
PDP-11/60 245 to 248

Patching 129, 130

PC absolute mode 34

PC immediate mode 33, 34

PC (program counter) 26,32,33

PC relative deferred mode 35,36

PC relative mode 34, 36

PDP-11
addressing modes 23 to 42
architecture 11, 13
block structure 3
documentation 7,8
instruction set (see also Instruction
set) 45 to 102
major categories 2
operating systems 4, 5
peripherals 5, 6
price vs. performance
PDP-11/44 194
priority system 16 to 18

INDEX7

Index

programming (see also
Programming) 4

PDP-11/04 181 to 183, 185, 189
speCifications 190,191

PDP-11/34A
bootstrap loader 188
console emulator 186 to 188
features 181, 182
floating pOint processor (see FP11-
A)
memory 182 to 184
memory management 147,148,
152 to 154,182,183
operator's console 185, 186
processor backplane 189, 190
I?rogrammer's console 187,188
specifications 190,191

PDP-11/44
features 195
overview 195
block diagram 197
specifications 229, 230
system architecture 196
memory 202
memory management 202, 203
multiprocessing 205

PDP-11/60
extended instruction set 261
features 233
floating pOint processor (see also
FP11-E) 261
memory 235 to 240
microprogramming 264 to 275
programmer's console 249 to 260
programmable stack limit 260
reliability and maintenance
program 262
specifications 262

PDP-11170
overview 277
features 277
specifications 292

PDR (Page Descriptor Register) 159

Peripherals
PDP-115,6

Physical address constructed from
virtual 156, 157,238

PIC (Position-Independent
Coding) 105 to 109

Pointers 23

POP stack operation 110, 111

Position-independent code 105 to
109

Power failure
effect on cache memory 241

Priority
bus control 11, 13, 15 to 18

Processor
priority 13, 18
traps 128 to 131

Processor control
section 267, 296

Processor memory reference
cache memory 239 to 241

Processor Priority 201

Processor status word (PS) 15,16,
200,226,280,281

Program control instructions 45, 48

Program counter addressing
modes 26, 32 to 36, 38, 39, 41

Program counter (PC) 23, 24, 32,
111

Program Interrupt Requests 228

Programmable stack limit 260

Programmer's console
PDP-11/60 249 to 260
PDP-11170 325 to 334

Programming
examples 135 to 145
PDP-11 see also Instruction set 4
techniques 105 to 135

Program relocation 142,144,210 to
212

PS (Processor status word) 15, 16,
200,226,280,281

Pure code 120,121

PUSH stack operation 109 to 111

INDEX 8

RAMP (Reliability and Maintenance
Program) 262 -

Recursion 126 to 128

Reentrancy 120 to 122

Reentrant code 120, 121

Index

Register deferred mode 26,27,28,
37,39,106

Register mode 26,27,29,36,106

Registers
addresses 11
console 251, 252
displaying contents 255 to 260
general purpose addressing
modes 23, 26, 39 to 41
saving contents 111
index 23
PDP-11/44 221 to 223, 225, 228
PDP-11/60 241 to 244

Reliability and Maintenance Program
(RAMP) 262

Relocation
Disabled 174
Enabled 174

Requests
see Bus request
see Non-processor request

Reserved Bits 161

Reserved instructions
traps 129

RESET instruction 51,91

ROLB (Rotate Left Byte)
instruction 46, 91, 92

ROL (Rotate Left) instruction 46, 91,
92

RORB (Rotate Right Byte)
instruction 46, 92

ROR (Rotate Right) instruction 46,
92

Routines
see also Coroutines;
Subroutines recursive 126 to 128
reentrant 120, 121

RTI (Return from Interrupt)
instruction 50, 93

RTS (Return from Subroutine)
instructin 50, 93, 94

RTT (Return from Interrupt)
instruction 50, 94', 95

SACK (Selection Acknowledge) 14,
20

SBCB (Subtract Carry Byte)
instruction 46, 95

SCANC(I) 408,460 to 462

SCC (Set All Cs)
instruction 51 to 53, 96

Separate Strings 419, 420

Sequential lists addressing 27

Service routine
device address 15, 16

SETD (Set Floating Double Mode)
instruction 367

SETI (Set Integer Mode)
instruction 367

SETL (Set Long Integer Mode)
instruction 367

SEV (Set V)
instruction 51 to 53, 96

SEZ (Set Z)
instruction 51 to 53, 96

Signal lines
UNIBUS 11

Single operand
instructions 24, 25, 46

SKPC(I) 408, 462 to 464

Slave
bus operations 11

Slave Sync (SSYN) 15

SOB (Subtract One and Branch if not
Equal to 0) instruction 48, 97

Software Services group 6

SPANC(I) 408,464 to 466

SPL (Set Priority Level)
instruction 97,98

INDEX 9

Index

Specialized Systems 6

SSYN (Slave Sync) 15

Stack
addressing 23
coroutine calls 122, 123
description 109 to 115
interrupt linkage 116 to 1119
limit 259, 299
reentrancy 120
subroutine linkage 115

Stack memory pages 170

Stack pointer 109

Status registers
floating point unit 345 to 349

STCFD (Set and Convert from
Floating to Double) instruction 367,
368

STCDF (Store and Convert from
Double to Floating) instruction 367,
368

STCDI (Store and Convert from
Double to Integer) instruction 368,
369

STCDl (Store and Convert from
Double to long Integer)
instruction 368, 369

STCFI (Store and Convert from
Floating to Integer) instruction 368,
369

STCFl (Store and Convert from
Floating to long Intefer)
instruction 368, 369

STD (Store Double) instruction 370

STEXP (Store Exponent)
instruction 369, 370

STFPS (Store FPP's Program Status)
instruction 371

STF (Store Floating) instruction 370

STST (Store FPP's Status)
instruction 371

SUBD (Subtract Double)
instruction 371,372

SUBF (Subtract Floating)
instruction 371,372

SUBN(I) 422, 466 to 468

SUBP(I) 422, 466 to 468

Subroutines compared to
coroutine 123, 124

linkage 111,115,116
return from 49,50,112,115

SUB (Subtract) instruction 47,98,
99

Suspendable Instructions 430 to
434

SWAB (Swap Byte) instruction 46,
99

SXT (Sign Extend) instruction 46, 99

System Stack
see Stack

Time-out error trap 128

Top of stack
manipulations addressing 27

Transfer rate
UNIBUS 13

Transfers
data 13,14,18,19

Transparency 171

TRAP instruction 50,100

Traps
handler 129,130
instruction 50,129 to 131
linkage 112
processor 128,129

Trap vectors 129,131

TSTB (Test Byte) instruction 373

TSTD (Test Double)
instruction 373

TSTF (Testing Floating)
instruction 373

TST (Test) instruction 46, 100

UCS (see User Control Store)

UNIBUS
description 1, 11 to 20

INDEX 10

Index

UNIBUS ADDRESSES A-1 to A-13

Upward compatibility 1,2

Upward expandable page 161

User Control Store
(UCS) 263

V bit 51,52

Vector addresses
error traps 129,131
interrupts 116, 117

Virtual Address 147,153,154

W Bit 160

WAIT instruction 51,100,101

Word stack 109,110

Writable Control Store
(WCS) 266,274,275

XFC (Extended Function Code)
instruction 101, 102

XOR instruction 47,102

Z bit 51,52

INDEX 11

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	C-01
	C-02
	C-03
	C-04
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11

