

processor
.. handbook

digital equipment corporation

DEC Typesetting
This Handbook was typed and edited with the aid of the DECsystem 10 time·
sharing system and type was set via a DEC computer typesetting system.

Copyright 1971 by Digital Equipment Corporation

PDP,DEC,UNIBUS are registerd trademarks of Digital Equipment Corpora·
tion

The material in this handbook is for information purposes only and is sub·
ject to change without notice

ii

momoomD

The PDP-II is a family of upward-compatible computer systems. We believe
that these systems represent a significant departure from traditional methods of
camputer design. '

'The initial design step was the development, of a totolly new language,
notatian, and theory af computers coiled the Instruction Set Processor (ISP). This
language pravides 0 cancise and pawerful generolized method for defining an arbitrary
computer system ond its operation. Along with the development of ISP, a PDP-IO
program was written for simuloting the operation of any computer system on the bosis
of its ISP description. With the aid of ISP ond the mochine simulotion program,
benchmork comparison tests were run on 0 large number of potentiol computer designs.
In this monner it was possible to evaluate 0 voriety of design choices ond compare
their feotures ond advontages, without the time ond expense of act~lIy constructing
physical prototypes. . '

Since the main design objective of the PDP-II was to optimize totol system
performonce, the interaction of software and hordware was carefully considered at
every step in the design pracess. System programmers continually evaluated the
efficiency of the code which would be produced by the system software, the ease,of
coding a program, the speed of real-time response, the power ond speed thot could
be built into 0 system executive, the eose of system resource monagement, and
numeraus other potential software considerations.

The current PDP-II Family is the result of this design effort. We believe­
,thot its generol purpose register and UNIBUS organization provides unparalleled
power and flexibility. This design is the bosis for our COntinuing commitment ta
further PDP-ll product deve lopment.

Thus the PDP-II Family is at once a new concept in computer systems, and
a tested and tried system. The ultimate proof of this new design opproach hascorne
from the large ond rapidly. increasing number of PDP-II users all around the world.

iii

Kenneth H. Olsen
President,
Digital Equipment Corporation

Introduction

This Handbook provides basic information about the PDP-ll 120 general purpose
16-bit computer, the PDP-ll/15 OEM computer, and the PDP-llR20 rugged
computer. Since these computers are functionally identical, all statements about
the PDP-ll 120 apply also to the PDP-ll 1 15 and the PDP-llR20. Part I describes
the processor, its major components and how the PDP-1l120 is programmed.
Part II is a summary of PDP·ll software; and Part III describes PDP-ll time­
sharing, communications, and data acquisition and control systems.

The PDP-1l120 Processor Handbook is supplemented by the PDP-ll Peripherals
and Interfacing Handbook, which includes detailed descriptions of PDP-ll per­
ipherals, options, and the UNIBUS (the single data bus common to all PDP-ll
family computers).

Manuals covering the various PDP-ll software packages (Paper Tape, Disk Oper­
ating System, FORTRAN, etc.) and detailed hardware maintenance manuals are
also available.

iv

TABLE OF CONTENTS

PART I
PDp·U!20
PDP·U/IS
PDP·UR20

CHAPTER 1 INTRODUCTION ••••.••.•..•.••.•.......•.•••••••••••....•.•......•••••••••.••••.••••...•.....•• 1

1.1 PDP·11 FAMILy .. ~ : 1
1.2 GENERAL CHARACTERiSTICS .. 1
1.3 PERIPHERALS/OPTIONS ... 6
1.4S0FTWARE .. , 7
1.5 DATA COMMUNiCATIONS .. 8
1.6 DATA ACQUISITION AND CONTROL .. 8

CHAPTER 2 SYSTEM ARCHITECTURE •.•••••••••••••••••....••..•..••••••••••.••••.•••..•••••.•• _ •..•• 9

2.1 UNIBUS .. 9
2.2 CENTRAL PROCESSOR. .. 10
2.3 CORE MEMORY ...•.... 13
2.4 SYSTEM INTERACTION .. 15
2.5 AUTOMATIC PRIORITY INTERRUPTS .. 15

CHAPTER 3 ADDRESSING MODES .. 19

3.1 SINGLE OPERAND ADDRESSING ... 20
3.2 DOUBLE OPERAND ADDRESSiNG :•........ 20
3.3 DIRECT ADDRESSING .. 22
3.4 DEFERRED (INDIRECT) ADDRESSING .. 28
3.5 USE Of PC AS GEN ERAL REGISTER .. :30
3.6 USE OF STACK POI NTER AS GENERAL REGISTER : _ 34

CHAPTER 4 INSTRUCTION SET ... 37

4.1 INTRODUCTION ... 37
4.2 INSTRUCTION FORMATS : .. 39
4.3 BYTE INSTRUCTIONS .. 40
4.4 SINGLE OPERAND INSTRUCTIONS41
4.5 DOUBLE OPERAND INSTRUCTIONS .. 58
4.6 PROGRAM CONTROL INSTRUCTIONS ... 68
4.7 MiSCELLANEOUS ... 101

v

CHAPTER 5 PROGRAMMING TECHNIQUES ... 108

5.1 STACK .. lOB
5.2 SUBROUTINE LINKAGE ... 113
5.3INTERRUPTS .. ~ 117
5.4 REENTRANCY .. , 121
5.5 POSITION INDEPENDENT CODE.. .. 123
5.6 RECURSION c .. 124

. 5.7CO·ROUTINES .. 124

CHAPTER 6 SPECIFICATIONS ~ ... 125

6.1 PDp· 11 120 AND PDp·ll/15 COMPUTER .. 127
6.2 PDp·11R20 RUGGEDIZED COMPUTER , 132
6.3 INSTALLATION PROCEDURE ... 133
6.4 SYSTEM UNITS AND CABLES ... 133
6.5 POWER SU PPL Y ... 134 ..
6.6 TELETYPE REQUI REMENTS ... 135

CHAPTER 7 CONSOLE OPERATION : , 137;

CHAPTER 8 EXTENDED ARITHMETIC ELEMENT · 143

~.1 DESCRIPTION .. 143
B.2 PROGRAMMING ... 145
B.3INSTRUCTIONS , ... 148
8.4 PROGRAMMING EXAMPLES ... 150

vi

PART II
SOFTWARE

INTRODUCTION ..•... 153

CHAPTER 1 PAPER TAPE SOFTWARE .. 155

1.1 PAL·ll AS\EMBLER ... ,· 155
1.2 EDITING SOURCE PROGRAM .. 156
1.3 LOADERS AND DUMPS ... 156
1.4 FLOATING POINT P.ACKAGE .. 157
1.5 ON·LlNE DEBUGGING ... 159
1.6 INPUT IOUTPUT EXECUTIVE. ~ ... 159
1.7.BASIC LANGUAGE .. 160

CHAPTER 2 DISK OPERATING SySTEM ... 163

2.1 DESCRIPTION : .. 163
2.2 ASSEMBLY LANGUAGE .. ;.165
2.3 TEXT EDITOR ... 166
2.4 ON·LlNE DEBUGGING .. 166
2.5 FILE UTILITY PACKAGE .. 166.
2.6 LINKER ... 167
2.7 LIBRARIAN ... 168

CHAPTER 3 FORTRAN IV .. 169

CHAPTER 4 COMMUNICATIONS SOFTWARE (COMTEX·ll) I71

4.1 APPLICATIONS ~ ... 171
4.2 DESCRIPTION ; ; .. 171
4.3 DISTRIBUTION .. ; 172
4.4 CORE REQUIREMENTS ; ... 173

CHAPTER 5 REAL TIME EXECUTIVE (RSX·llC) .. 175

5.1 LANGUAGES SUPPORTED : : 175
5.2 SCHEDULING ... 176
5.3 MEMORY EFFICIENCY .. 176
5.4 MUL TI·PROGRAMMING .. 176
5.5INPUT/OUTPUT ... 176
5.6 OPERATOR COMMUNICATION ... 177
5.7 PROGRAM DEVELOPMENT · .. 177

vii

PART III
SYSTEMS

CHAPTER 1 TIMESHARING. SYSTEM (RSTS-ll) ... 181

1.1 PROGRAMMING LANGUAGE .. 181
1.2 PROGRAM DEVELOPMENT + : .. 183
1.3 INPUT tOUTPUT ... , 184
1.4 INTERNAL SySTEM .. 185
1.5 MONITOR FUNCTIONS ... 185
1.6 SYSTEM ACCESS .. : 185

CHAPTER 2 COMMUNICATIONS .. 187

2.1 PDP·Il ARCHITECTURE .. 187
2.2 HARDWARE .. 188
2.3 SOFTWARE , .. 189
2.4APPLICATIONS " ... 189

CHAPTER 3 INDUSTRIAL DATA ACQUISITION AND CONTROL 193

3.1 PROCESS INTERFACES .. I93
3.2 REAL T-:lME OPERATING SYSTEM ... 193
3.3APPLICATIONS ... 194

APPENDIXES

APPENDIX A INSTRUCTION REPERTOIRE .. 195

APPENDIX B MEMO~Y MAP ... 199

APPENDIX C INSTIWCTlON SET PROCESSOR : 207

INDEX .•.....•..••.•.••••••.•••.•.•.•....• · .•.••••.•.•..•...............•.•...•...•........••••...••.•.•••.•..•.••...• 221

viii

PDP-II/20
PDP-II/IS
PDP-IIR20

ix

1

x

PART I
CHAPTER 1

INTRODUCTION

The PDP-1I120 is a powerful I6-bit computer in the medium-sized branch of the
PDP-ll Family of computers_ As the first member of the PDP-ll family it is the
computer on which the whole family is based_ It is a balanced, modular system
with a wide range of features, peripherals, software and growth potential not nor­
mally found in I6-bit computers_

1_1 THE PDP-ll FAMILY
The PDP-ll Family includes several processors, a large number of peripheral de­
vices and options, and extensive software_ PDP-ll machines are architecturally
similar and hardware and software upwards compatible, although each machine
has some of its own characteristics. New PDP-ll systems will be compatible with
existing family members_ The user can chose the system which is most suitable to
his application, but as needs change or grow, he can easily add or change hard­
ware_ The major characteristics of PDP-II family computers are listed in Table I­
I.

1.2 GENERAL CHARACTERISTICS
1.2_1 The UNIBUS
All computer system components and peripherals connect to and communicate
with each other on a single high-speed bus known as the UNIBUS -- the key to the
PDP-Irs many strengths_ Since all system elements, including the central proces­
sor, communicate with each other in identical fashion via the UNIBUS, the pro­
cessor has the same easy access to peripherals as it has to memory.

PDP-ll System Simplified Block Diagram

With bidirectional and asynchronous communications on the UNIBUS, devices
can send; receive, and exchange data independently without processor inter­
vention_ For example, a cathode ray tube (CRT) display can refresh itself from a
disk file while the central processor unit (CPU) attends to other tasks. Because it
is asynchronous, the UNIBUS is compatible with devices operating over a wide
range of speeds.

Device communications on the UNIBUS are interlocked. For each command is­
sued by a "master" device, a response signal is received from a "slave" com­
pleting the data transfer. Device-to-device communication is completely indepen­
dent of physical bus length and the response times of master and slave devices.

1

TABLE 1-1 PDP-ll Family Computers

PDP-ll/05 PDP-ll/IS PDP-llI20 PDP-1l/45
PDP-ll/R20

CENTRAL PROCESSOR KDll-B KCIL KAll KBll

General Purpose Registers 8 8 8 16

Instructions Basic Set Basic Set Basic Set Basic Set
and MUL,DIV

XOR,ASH,ASHC,

MARK,SXT,SOB,

SPL,RTI,MFPI,

. MTPD,MFPD,MTPI

Segmentation Option No. No No Yes

Hardware Stacks Yes Yes Yes Yes

Stack Overflow Yes, fixed Yes, fixed . Yes,fixed Yes
Detection programmable

Automatic Priority single-line Single line four-line four-line
interrupt mUlti-level multi-level multi-level multi-level

(four line PLUS
optional) 8 software levels

. Overlapped instruction No No No Yes

Floating Point Internal to

Hardware CPU(optional)
No No No'

Extended Arithmetic option option 'option standard

Power Fail and standard
Auto-Restart

option standard standard

Maximum 32K 32K 32K 128K
Addressable (128K optional)
Memory Lor.ations

2

Interfaces to the UNIBUS are not time-dependent; there are no pulse-width or
rise-time restrictions to worry about. The maximum transfer rate on the UNIBUS
is one 1€?-bit word every 400 nanoseconds, or 2,500,000 words, per second_ .

Input/output devices transferring directly to or from memory are given highest
priority and may request bus mastership and steal bus and memory cycles during
instruction operations, The processor resumes operation immediately after the
memory transfer. Multiple devices can operate simultaneously at maximum direct
memory access (DMA) rates by "stealing" bus cycles. The UNIBUS is further ex­
plained in Paragraph 2.2, Chapter 2; and is covered in considerable detail in Part
II of the PDP-ll Peripherals and Intertacing Handbook.

l.2.2 Central Processor
The central processor, connected to the UNIBUS as a subsystem, controls the
time allocation of the UNIBUS for peripherals and performs arithmetic and logic
operations and instruction decoding. It contains multiple high-speed general·pur­
po~~ registers which can be used as accumulators, pointers, index registers, or as
auto'indexing pointers in autoincrement or autodecrement modes. The processor
can perform data transfers directly between I/O devices and memory without dis·
turbing the registers; does both single·and double-operand addressing; handles
both 16-bit word and 8-bit byte data; and, by using its dynamic stacking tech­
nique, allows nested interrupts and automatic reentrant subroutine calling.

Instruction Set
The instruction complement uses the flexibility of the general-purpose registers to
provide over 400 powerful hard-wired instructions .. the most comprehensive and
powerful instruction repertoire of any computer in the 16-bit class. Unlike con­
ventional 16·bit computers, which usually have three classes of instructions
(memory reference instructions, operate or AC control instructions and I/O in­
structions) ali operations in the PDP-11 are accomplished with one set of instruc­
tions. Since peripheral device registers can be manipulated as flexibly as core
memory by the central processor, instructions that are used to manipulate data in
core memory may be used equally well for data in peripheral device registers. For
example, data in an external device register can be tested or modified directly by
the CPU, without bringing it into memory or disturbing the general registers. One
can add data directly to a peripheral device register, or compare logically or arith­
metically contents with a mask and branch. Thus all PDP·ll instructions can be
used to create a new dimension in the treatment otcomputer I/O and the need
for a special class of I/O instructions is eliminated. PDP-llI20 instructions are
described in Chapter 4.

The following example contrasts the rotate operation in the PDP-11 with a similar
operation in a conventional minicomputer:

RORA

LOA A

PDp·ll Approach

; rotate contents of memory location A
right one place

Conventional Approach

; load contents of memory location A into
AC

3

ROR

STAA

.;rotate contents of AC right one place

;store contents of AC ~n location A

The basic order code of the PDp·l} uses both single and double operand address
instruc~ions for words or bytes; The PDp·}l therefore performs very efficiently in
one step, such operations as adding or subtracting two operands, or moving an
operand from one location to another:

ADDA,B

LDAA

ADDB

STAB

Priority Interrupts

PDP-ll Approach

; add contents of location A to location B

Conventional Approach

;Ioad contents of memory location into AC

;add cntents of memory location B to AC

;store results at location B

A multi· line automatic priority interrupt system permits the processor to respond
automatically to conditions outside the system, Any number of separate devices
can be attached to .each line. The PDP· 11 115 has only a single line of interrupt
(any number of devices). A multi· line system, like that of the PDp· 11 120, is op·
tional on the PDp·1l1l5 (KFll·A).

Each peripheral device in the PDp·ll system has a hardware pointer to its own
pair of memory words (one points to the devices's service routine, and the other
contains the new status processor information). This unique identification elimi·
nates the need for polling of devices to identify an interrupt, since the interrupt
servicing hardware selects and begins executing the appropriate service routine
after having automatically saved the status of the interrupted program segment.

The devices' interrupt priority and service routine priority are independent. This
allows adjustment of system behavior in response to real·time conditions, by dy·
namicallY changing the priority level of the service routine.

The interrupt system allows the processor to continually compare its own pro·
grammable priority with the priority of any interrupting devices and to acknow·
ledge the device with the highest level above the processors priori~y level. Servic·
ing an interrupt for a device can be interrupted for servicing a higher priority
device. Service to the lower priority device is resumed automatically upon com·
pletion of the higher level servicing. Such a process, called nested interrupt servic·
ing, can be carried out to any level without requiring the software to save and reo
store processor status at each level.

The interrupt scheme is explained in paragraph 2.7, Chapter 2.

Reentrant Code
Both the interrupt handling hardware and the subroutine call hardware facilitate
writing reentrant code for the PDP·11.This type of code allows a single copy of a
given .subroutine or program to be shared by more than one process or task. This

4

reduces the amount of core needed for mUlti-task applications such as the con­
current servicing of many peripheral devices.

Addressing
Much of the power of the PDP-ll is derived from its wide range of addressing ca­
pabilities. PDP-ll addressing modes include list sequential addressing, full ad­
dress indexing, full l6-bit word addressing, 8-bit byte addressing, and stack ad­
dressing_ Variable length instruction formatting allows a minimum number of
bits to be used for each addressing mode. This results in efficient use of program
storage space. Addressing modes are described in Chapter 3.

Stacks
In the PDP-ll, a stack is a temporary data storage area which allows a program
to make efficient use of frequently accessed data. The stack is used automatically
by program interrupts, subroutine calls, and trap instructions_ When the proces­
sor is interrupted, the central processor status word and the program counter are
saved (pushed) onto the stack area, while the processor services the interrupting
device. A new status word is then automatically acquired from an area in core
memory which is reserved for interrupt instructions (vector area). A return from
the interrupt instruction restores the original processor status and returns to the
interrupted program without software intervention. Stacks are explained in Chap­
ter 5.

Direct Memory Access
All PDP-l1's provide for direct access to memory. Any number of DMA devices
may be attached to the UNIBUS. Maximum priority is given to DMA devices thus
allowing memory data storage or retrieval at memory cycle speeds. Latency is
minimized by the organization and logic of the UNIBUS, which samples requests
and priorities in parallel with data transfers_

Power Fail and Restart
The PDP-ll's power fail and restart system not only protects memory when
power fails, but also allows the user to save the existing program location and
status (including all dynamic registers), thus preventing harm to devices, and
eliminating the need for reloading programs_ Automatic restart is accpmplished
when power returns to safe operating levels, enabling remote or unattended oper­
ations of PDP-ll systems_ All standard peripherals in the PDP-ll family are in­
cluded in the systemized power-fail protect/restart feature. This feature is optio­
nal on the PDP-llll5 (KPll-A). Power Fail is discussed in Chapter 2, paragraph
2_

1.2.3· Memories
Memories with different ranges of speeds and various characteristics can be
freely mixed and interchanged in a single PDP-ll system_ Thus as memory needs
expand and as. memory technology grows, a PDP-ll can evolve with none of the
growing pains and obsolescence associated with conventional computers. See
Chapter 2, paragraph 2.5

1.2.4 Packaging
The PDP-ll has adopted a modular approach to allow custom configuring of sys­
tems, easy expansion, and easy servicing_ Systems are composed of basic build­
ing-blocks, called System Units, which are completely independent subsystems
connected only by pluggable UNIBUS and power connections. There is no fixed
wiring between them_ An example of this type of subsystem is a 4,096-word
memory module.

5

System Units can 'be mounted in many combinations within the PDp·ll hard·
ware, since there are no fixed positions for memory or I/O device controllers. Ad·
ditional units can be mounted easily and connected to the system in the field. In
case maintenance is required, defective System Units can be replaced with spares
and operation resumed within a few minutes.

1.3 PERIPHERALS/OPTIONS
Digital Equipment Corporation (DEC) designs and manufactures many of the per·
ipheral devices offered with PDP·l1's. As a designer and manufacturer of per·
ipherals, DEC can offer extremely reliable equipment specifically designed for the
small computer environment, lower prices, more choices and quantity discounts.

Many processor, input/output, memory, bus, storage, and communications op·
tions are available. These devices are explained in detail in the Peripherals and in·
terfacing Handbook. Options used only by thePDP·1l!l5, PDP·1l120, and PDp·
llR20 are discussed in Chapter 8.

1.3.1 I/O Devices
All PDP· I I systems are available with Teletypes as standard equipment. However,
their I/O capabilities can be increased with high speed paper tape reader·
punches, line printers, card readers or alphanumeric display terminals. The LA30
DECwriter, a totally DEC·designed and built teleprinter, can serve as an alterna·
tive to the Teletype. It has several advantages over standard electromechanical
typewriter terminals, including higher speed, fewer mechanical parts and very
quiet operation.

PDP·II I/O devices include:

DECterminal alphanumeric display

DECwriter teleprinter

High Speed Line Printers

High Speed Paper Tape Reader and Punch

Teletypes

Card Readers

Synchronous and Asynchronous Communications Interfaces

1.3.2 Storage Devices
Storage devices range from convenient, small·reel magnetic tape (DECtape) units
to mass storage magnetic tapes and disk memories. With the UNIBUS, a large
number of storage devices, in any combination, may be connected to a PDp·l1
system. TU56 DECtapes, highly reliable tape units with small tape reels, designed
and built by DEC, are ideal for applications with modest storage requirements.
Each DECtape provides storage for I47K I6·bit words. For applications which reo
quire handling of large volumes of data, DEC offers the industry compatible TUIO
Magtape.

Disk storage devices include fixed· head disk units and moving·head removable
cartridge and disk pack units. These devices range from the 65K RS64 DECdisk
memory, to the RP02 Disk Pack system which can store up to 93.6 million words.

6

PDP·ll storage devices include:

DECtape

Magtape

RS64 ~5K·256K word fixed· head disk

RS11 256K·2M word fixed·head disk

RK03 1·2M word moving·head disk

RP02 10M word moving head disk

1.3.3 Bus Options
Several options (bus switches, bus extenders) are available for extending the UNI·
BUS or for configuring multi·processor or shared·peripheral systems.

1.4 SOFTWARE
Extensive software, consisting of disk .and paper tape systems, is available for
PDp·ll Family systems. The larger the PDp·ll configuration, the larger and
more comprehensive the software package that comes with it.

1.4.1 Paper Tape Software
The Paper Tape Software system includes:

Editor (EDll)

Assembler (PALll)

Loaders

On·Line Debugging Technique (DOnI)

Input·Output .Executive (lOX)

Math Package (FPPll)

1.4.2 Disk Operating System Software
The Disk Operating System software includes:

.~

Text Editor (£011)

Relocatable Assembler (PAL1IR)

Linker (UNKll)

File Utilities Packages (PIP)

On Line Debugging Technique (ODT1I)

Librarian (UBRll)

1.4.3 Higher Levt!1 Languages .
PDP·ll users needing an interactive conversational language can use BASIC
which can be run on the paper tape software system with only 4.096 words of core
memory. A multi·user extension of BASIC is available so up to eight users can ac·
cess a PDP·ll with o"!ly 8K of core.

7

RSTS-ll
The PDP-ll Resource Timesharing System (RSTS-ll) with BASIC-PLUS, an en­
riched version of BASIC, is available for up to 16 terminal users.

FORTRAN
PDP-ll FORTRAN is an ANSI-standard FORTRAN IV compiler with elements that
provide easy compatability with IBM 1130 FORTRAN.

1.5 DATA COMMUNICATIONS
The advanced architecture of PDP-11 Family machines makes them ideal for use
in data communications applications. For example, the UNIBUS performs like a
multiplexer, and multiple single-line interfaces can be added without special mul·
tiplexing hardware; byte handling, the key to communications applications, is ac­
complished easily and efficiently by the PDP-11. To provide total systems capabil­
ity-in the communications area DEC has developed a full line of communications
bardware and communications-oriented software.

COMTEX-11 software, is described in Part II, Chapter 4; communications hard­
ware is explained in the Peripherals and Interfacing .Handbook; and commu­
nications applications are discussed in Part III, Chapter 2.

1.6 DATA ACQUISITION CONTROL
The PDP-II. modular process interfaces and special state-of-the art software
(RSX-11C Real-Time Executive) combine to provide efficient, low-cost and reliable
systetyls for industrial'data acquisition and control (IDACS) applications. IDACS-
11 hardware is described in the Peripherals and Interfacing Handbook. RSX-llC
is described in Part II, Chapter 6; and the PDP-11 in data acquisition and contrDl
applications is discussed in Part III, Chapter 3.

8

SYSTEM DEFINITION

PART I
CHAPTER 2

SYSTEM ARCHITECTURE

Digital Equipment Corporation's PD~·l1 is a 16·bit, general·purpose, parallel16gic
computer using two's complement arithmetic. The PDp·ll is a variable word
length processor which directly addresses 32,768 16·bit words or 65,536 8-bit
bytes. All communication between system components is done on a single high·
speed bus called a UNIBUS. Standard features of the system include eight gen·
eral·purpose registers which can be used as accumulators, index registers, or ad·
dress pointers, and an automatic priority interrupt system.

2.1 UNIBUS
The UNIBUS is a single, common path that connects the central processor,
memory, and all peripherals. Addresses, data, and control information are sent
along the 56 lines of the bus.

The form of communication is the same for every device on the UNIBUS. The pro·
cessor uses the same set of signals to communicate with memory as with per·
ipheral devices. Peripheral devices also use this set of signals when commu·
nicating with the processor, memory or other peripheral devices. Each device,
including memory locations, processor registers, and peripheral device registers,
is assigned an address on the UNIBUS. For example, location 10008 is a core
memory location, while location 177562 is the Teletype keyboard data buffer.
Thus, peripheral device registers may be manipulated as flexibly as core memory
by the central processor. All the instructions that can be applied to data in core
memory can be applied equally well to data in peripheral device registers. This is
an especially powerful feature, considering the special capability of PDP·ll in·
structions to process data in any memory location as though itwere an accumula·
tor.

2.1.1 Bidirectional Lines
Most UNIBUS lines are bidirectional, so that the same signals that are received as
input can be driven as output. This means that a peripheral device register can 'be
either read or loaded by the central processor or other peripheral devices; thus,
the same register can be used for both input and output functions.

2.1.2 Master-Slave Relation
Communication between two devices on the bus is in the form of a master·slave
relationship. At any point is time, there is one device that has control of the bus.
This controlling device is termed the "bus master". The master device controls
the bus when communicating with another device on the bus, termed the "slave".
A typical example of this relationship is the processor, as master, fetching an in·
struction from memory (which is always a slave). Another example is the disk, as
master, transferring data to memory, as slave. Master-slave relationships -are
dynamic. The processor, for example, may pass bus control to a disk. The.c:Jisk, as
master, could then' communicate with a slave memory bank.

9

Since the UNIBUS is used by the processor and all I/O devices, there is a priority
structure to determine which device gets control of the bus. Every device on the
UNIBUS which is capable of becoming bus master is assigned a priority. When
two devices, which are capable of becoming a bus master, request use of the bus
simultaneously, the device with the higher priority will receive control. The priority
structure is further explained in paragraph 2 .5 of this Chapter.

2.1.llnterlocked Communication
Communication on the UNIBUS is 'interlocked so that for each control signal is­
sued by the master device, there must be a reSponse from the slave in order, to
complete the transfer. Therefore, communication is independent of the physical
bus length (as far as timing is concerned) and the response time of the master
and slave devices_ This asynchronous operation precludes the need for synchro­
nizing with, and waiting for, clock pulses. Thus, each device is allowed to operate
at its maximum possible speed_

2.2 CENTRAL PROCESSOR
The central processor is organized around three functional blocks: the general
purpose registers, arithmetic unit, and UNIBUS and priority control. Data paths
conncecting these units are in a figure eight. The processor may perform the fol­
lowing data transfers:

register to register

memory to memory

register to memory

memory to register

2.2.1 General Registers

7

STATUS WORD

PRIORITY' I T I·NI z I vI c I
5 o

The PDP-11/15, PDP-1l/20, and PDP-llR20 processors each contain one set of
eight-general purpose registers. These registers (referred to as RO, RI, R2,. __ R7)
may be used as accumulators, as auto index registers, or as pOinters. General
Registers R6 and R7 have unique capabilities. R6 serves as the hardwar~ stack
pointer, and R7 is the program counter. Using general registers to perform these
functions greatly enhances the power and flexibility of the PDP-ll_ Their use is
discussed in Chapter 3 and Chapter 5_

2.2.2 Central Processor Status Register ,
The Central Processor Status Register(PS) contains information on the current.
priority of the processor, the result of the previous operations, and an indicator

10

for detecting the execution of an instruction to be trapped during program de·
bugging. The priority of the central processor can be set under program control to
anyone of five levels. This information is held in bits 5, 6, and 7 of the PS.

Four bits of the PS are assigned to monitoring different results of previous in·
structions. These bit'> are set as follows:

Z .. if the result was zero

N .. if the result was negative

C·: if the operation resulted in a carry from the most significant bit

V .. if the operation resulted in an arithmetic overflow

The T bit is used in program debugging and can be set or cleared under program
control. If this bit is set, when an instruction is fetched from memory, a processor
trap will occur on completion of the instruction's execution.

The processor status word is location 177776 on the UNIBUS and can be oper,
ated on by any instruction.

Register organization for PDP·UI20, PDp·1l115 and PDP·llR20:

GENERAL REGISTERS

R0

RI

R2

R3

R4
CENTRAL PROCESSOR STATUS REGISTER

R5
UNUSED

R6 (SPI

R7JPCl
15 8 7 6 5 4 o

2.2.3 Processor States
This description of the KAll (and KCll) processor is intended only to give the
reader a basic description of the processor's operation. More detailed discussion,
including theory of operation and logic design, is provided in the KAII Processor
Manual, DEC·ll·HR2A·D.

The PDP·ll processor has five major states: fetch, source, destination, execute
and service. The first four states are used during normal processor operation; ser·
vice is used during special operations, such as traps and interrupts.

Fetch: locates and decodes an instruction. When fetch is completed, the
processor enters another major state, depending on the type of instruction
decoded. It is possible to go from fetch to any other state, including back
to fetch. Every instruction starts by first entering the fetch state.

Source: decodes the source field of a double·operand instruction and
transfers the source operand to the appropriate location. The source major
state is entered only if the instruction is a double·operand type.

Destination: decodes the destination field of the appropriate instruction.
Destination fields are present in both single and double·operand instruc·

11

tions. Destination operand is accessed and transferred to appropriate loca·
tion.

Execute: uses the data obtained during previous major states to perform
the specified operation. During this state arithmetic operations, logic func·
tions, and tests are performed, and the Destination location is updated if
required.

Service: used to execute special operations, such as interrupts, traps, etc.

Although major states follow the sequence of fetch, source, destination, execute,
and service, not all major states are required for every instruction. The processor
enters only the states necessary to execute the current instruction. The minimum
sequence is from fetch of one instruction directly to fetch of the next instruction.
Maximum sequence is fetch, source, destination, execute, service, and back to
fetch.

2.2.4 Processor Traps
There area series of errors and programming conditions which \l\(ill cause the
Central Processor to trap to a set of fixed locations. These include Power Failure,
Odd Addressing Errors, Stack Errors, Timeout Errors, Memory Parity Errors, Use
of Reser:ved Instructions, Use of the T bit in the Processor Status Word, and use
of the lOT, EMT, and TRAP instructions.

The T bit Trap has already been discussed in this chapter. The lOT, EMT, and
TRAP instructions are described in Chapter 4.

Power Failure
Whenever AC power drops below 95 volts for 117v nominal power (190 volts for
235 v nominal) or outside a limit of 47 to 63Hz, as measured by DC power, the
power fail sequence is initiated. The Central Processor automatically traps to 10·
cation 24 and the power fail program has 2 msec. to save all volatile information
(data in registers), condition peripherals for power fail, and change the contents
of location 24 to a pointer to the power-up routine.

When power is restored the processor traps to location 24 and executes the power
up routine to restore the machine to its state prior to power failure. Power fail and
auto·restart is an option on the PDP-ll 115.

Odd Addressing Errors
This error occurs whenever a program attempts to execute a word instruction on
an odd address (in the middle of a word boundary). The instruction is aborted
and the CPU traps through location 4.

Time-Out Errors
These errors occur when a Master Synchronization pulse is placed on the UNIBUS
and there is no slave pulse within 10 I'sec. This error usually occurs in attempts to
address non·existant memory or peripherals.

The offending instruction is aborted and the processor traps through location 4.

Reserved Instructions
There is a set of illegal and reserved instructions which 'cause the processor to
trap through location 4.

2.2.5 Trap Handling
Appendix B includes a list of the reserved Trap Vector Locations. When a trap oc­
curs, the processor follows the same procedure for traps as it does for interrupts

12

(saving the Program Counter (PC) and Processor Status Word (PS) on the new
Processor Stack etc ...)

2.3 CORE MEMORY
2.3.1 Memory Organization __
A memory can be viewed as a series of locations, with a number (address) as­
signed to each location. Thus a 4096-word PDP-II memory could be shown as
follows:

OCTAL
ADDRESSES

000000

000001

000002

000003

000004

017774

017775

017776

017777

LOCATIONS

'-'

Because PDP-ll memories are designed to accommodate both 16-bit words and
8-bit bytes, the total number of addresses does not correspond to the number of
words. A 4096-word memory can contain 8,192 bytes and consists of 017777 oc­
tal locations. Words always start at even-numbered locations.

A PDP-ll word is divided into a high byte and a low byte as follows:

15

HIGH BYTE
I

B 7

LOW BYTE

o

Low bytes are stored at even-numbered memory Im;ations and high bytes at odd­
numbered memory locations. Thus it is convenient for the programmer to view
the PDP-ll memory as follows:

13

000001

000003

000005

,

.......--

BYTE

HIGH

HIGH

HIGH

16-BYTE WORD
~

BYT

LOW

LOW

LOW

,
000000

000002

000004

017773 HIGH LOW 017772
r----------r--------~

017775 HIGH LOW 017774

01777 ~ I--H-IG-H --+--L-O-W--; 017776
~ ________ -L ________ ~

WORD ORGANIZATION

OR

WORD (
WORD {

B-BYTE WORD

~

LOW BYTE

HIGH BYTE

LOW BYTE

HIGH BYTE

(-, LOW BYTE

(
(

HIGH

LOW

HIGH

BYTE ORGAN IZATION

000000

000001

000002

000003

000004

017775

017776

017777

PDP·ll memories are normally provided in 4096·word read and write modules.
However, there are also 8192·word interleaved memory modules. The various
PDp·ll memories, their characteristics and speeds are listed below.

Specifications and Memory Types
Time

Memory Size Type Access
0::::.,
"'? E 0

MMlH 4K X 16 bit :3:0 u 500ns (r) N Q.

>. . - E c .,
00

MMll·F 4K X 16 bit
E:;:;

400ns ., ro E
E·~ ::J C .-
QJroal

MMll·FP 4K X 18 bit oOD E 400ns
with parity

c..>o
(1 bit per
byte)·**

M792 3216 bit Read only; al90 lOOns
words available as

bootstrap loader

AI.I memories are PDP·ll Unibus·compatible

Temperature: OOto 50°C

Cycle

l200ns

950ns

950ns

lOOns

Time
Interieaved *

Access Cycle

500ns 900ns

400ns 490ns**

400ns 490ns**

NO NO

*MMll·F and MMll·FP automatically..interleavEld if 8K or more is ordered. Add
suffix "X" to part number when ordering MMll·E interleaved (Le., MMll·EX).

**For a 16·bit DMA transfer into memory. A l6·bit transfer out of memory takes
800 ns.

··"Available from Computer Special Systems

14

The areas of addresses of particular interest to the programmer are the interrupt
and trap vectors, pr.ocessor stack and general storage, and peripheral device reg·
isters. Most of the addresses between 00000o and 00370 are reserved for inter·
rupt: vectors, anc(the tpp 4,096 addresses are generally reserved for peripheral
device registers. A detailed address map is contained in Appendix 8.

The concept of word "pages" has been completely eliminated in the PDp·n. The
programmer can directly address-32K word locations. A memory extension unit is
available for the PDp·ll/20 and PDP·l1R20 to extend the number of addres·
sable locations to 128K.

2.3.2Interleavirig
When an address register is incremented on successive memory cycles, the cycles
are performed with a 4K memory bank and cannot be overlapped. However, a
technique called "interleaving", causes successive memory cycles to be per·
formed within alternate 4K memory banks. This allows cycles to be overlapped;
that is the second memory bank can start its cycle before the first memory bank
has completed its cycle, provided the bus is free. This effect is called memory in·
terleaving and results in faster memory operation.

Memory interleave is completely transparent to the user, who addresses core as if
it were one continuous 8K block. Interleaved memory allows 16·bit transfers into
memory every 490 nanoseconds, and out of memory every 800 nanoseconds (us·
ing the 950 nanosecond MMll·F).

Interleavlng.affects 8K blocks. For example, if a system has a 12K memory, the
first 8K is interleaved. If the system has 16K of memory, the first 8K would be in·
terleaved and the second 8K would also be interleaved. Any 8K block of memory
delivered from DEC is automatically interleaved.

2.4 SYSTEM INTERACTION
Full 16·bit words or 8·bit bytes of information can be transferred on the bus be·
tween a master and a slave. The information can be instructions, addresses, or
data. This type of operation occurs when the processor, as master, is fetching in·
structions, operands, and data from memory, and storing the results into
memory after execution of instructions. Direct data transfers occur between a
peripheral device control and memory.

2.5 AUTOMATIC PRIORITY INTERRUPTS
When a device (other than the central processor) is capable of becoming bus mas·
ter and requests use of the bus, it is generally for one of two purposes:

L to make a non· processor transfer of data directly to or from memory

2. to interrupt a program execution and force the, processor to go to a spe·
cific address where an interrupt service routine is located.

Direct memory or direct data transfers can be accomplished between any two per·
ipherals without processor supervision. These non· processor request transfers.
called NPR level data transfers. are usually made for Direct Memory Access
(memory to/from mass storage) or direct device transfers (disk refreshing a CRT
display).

The PDp·ll has a multi·line, multi·level priority interrupt structure.

15

DEVICE
CP REQUEST

. PRIORITy LINE

......-NPR----,-------,,------,------8 -~ .. ~
_BR7---[;5-0'6---.-· -[±J--'0'-7 --. --------- -- --,.

4--BR6----.-----,---------------- ~ [;5 [;5 ----!
~

--BR'--[f]-'-01 --[±]---'02--.-[±]-'-03 ------ --~

_BR4-[fJ-r-HSR -[f]-'--HSP -dJ---r--KB -. [fJ---r-TP - - - --

INCREASING PRIORITY

See Table I-I, page 2 ,for a summary of the API structures of the various PDP­
II's. Bus requests from external devices can be made on one of five request lines.
Highest priority is assigned to non-processor request (NPR). These are direct
memory access type transfers, and are honored by the procesor between bus
cycles of an instruction execution. "-

Bus request 7 (BR7) is the next highest priority, and BR4 is the lowest. Levels be·
low BR4 are not implemented in the PDP-UI20, 11/15, or llR20, They are used
in larger machines (PDP-1l/45). Thus, a processo'r priority of 3, 2, 1, or 0 will
have the same effect, i.e. all interrupt requests will be granted.

BR7 through BR4 priority requests are honored by- the processor ,between instruc­
tions. The priority is hardwired into each device except for the processor, which is
programmable. For example, Teletypes are normally assigned to Bus Request line
4. Bus request lines assigned to each peripheral device and option are showr1 in
Appendix B.

The processor's priority can be set under program control to one of eight levels
using bits 7, 6, and 5 in. the processor status register. These bits set a priority
level that inhibits granting of bus requests on lower levels or on the same level.
When the processor's priority is set to a level, for example PS6, aU bus requests
on BR6 and below are ignored.

When more than one device is connected to the same bus request (BR) line; a de·
vice nearer the central processor has a higher priority than a device farther away.
Any number of devices can be connected to a given BR or NPR line,

Thus the priority system is two·dimensional and provides each device with a
unique priority. Although its priority. level is fixed, its actual priority changes as
the processor priority varies. Also, each device may be dynamically, selectively en·
abled or disabled under program control.

16

Once a device other than the processor has control of the bus, it may do one of
two types of operations: data transfers or interrupt operations.

NPR Data Transfers· NPR data transfers can· be made between any two per·
ipheral devic.es without the supervision of the processor. Normally, NPR transfers

. are between a mass storage device, such as a disk, and core memory. The struc·
ture of the bus also permits device-to·device transfers, allowing customer·de·
signed peripheral controllers to access other devices, such as disks, directly.

An NPR device has very fast access to the bus and can transfer at high data rates
once it has control. The processor state is riot affected by the transfer; therefore
the processor can relinquish control while an instruction is in progress. This can
occur at the end of any bus cycles except in between a read·modify·write se·
quence. An NPR device can gain control of the bus in 3.5 microseconds
or less. An N'PR device in control of the bus may transfer i6·bit words from
memory at memory speed.

Interrupt Operations· Devices that request interrupts after getting bus control on '
the bus request lines (BR7, BR6, BR5, BR4) can take advantage of the power and
flexibility of the processor. The entire instruction set is available for manipulating

.. data and status registers. When a device servicing program must be run, the task
currently under way in the central processor is interrupted and the device service.
routine is initiated. Once the device request has been satisfied, the processor reo
turns to the interrupted task. This is all accomplished through h~rdware, and is
done automatically by the processor.

Example· A peripheral devices requires service and requests use of the bus at one
of the BR levels.

1. The processor determines which device is requesting use of the bus, and
compares the priority of the device with the existing processor priority.

2. If device priority is higher, the processor grants priority to the device by
sending a signal along a bus grant line, and the device takes control of the
bus.

3. When the device has control of the'bus, it sends the processor an inter· ,
rupt command with the address of the words in memory containing the ad·
dress and status of the appropriate device service routine. '

4. The processor then saves the current central processor status (PS) and
the current program counter (PC).

, 5. The new PC and PS are'take from the location (interrupt vector) speci·
fied by the device and the next location, and the device service routine is
begun. Note that these operations all occur automatically and that no de­
vice·polling is required to determine which service routine to execute.
(Appendix B contains a list of interrupt vectors.)

6. 7.2 microseconds is the time interval between the central processor's re­
ceiving the interrupt command and the fetching of the first instrucU(:tn.
This assumes there were no NPR transfers during this time.

7. The device service routine can resume the interrupted process byexecu­
. ting the RTI (Return from Interrupt) ,instruction. This requires 4.5 micro­
seconds if there are no intervening NPR's. It is done by restoring the old
PC and PS.

8. A device service routine can be interrupted in turn by a sufficiently high
priority bus request any time after completion of its first instruction.

9. If such an interrupt occurs, the PC and the PS of the device service rou·
tine are also automatically saved (without loss of the other PC and PS that
had been saved) and the new device routine is initiated. This nesting of .
priority interrupts can go on to any level, limited only by the core available
for temporarily storing the PS and the PC.

18

PART I

CHAPTER 3

ADDRESSING MODES

Data stored in memory must be accessed, and manipulated. Data handling is
specified by a PDp·11 instruction (MOV, ADD etc.) which usually indicates:

the function (operation code)

a general purpose register to be used when locating the source operand
and/or a general purpose register to be used when locating the destination
operand.

an addressing mode (to specify how the selected register(s) is/are to be
used)

Since a large portion of the data handled by a computer is usually structured (in
character strings, in arrays, in lists etc.), the PDp· 11 has been designed to handle
structured data efficiently and flexibly. The general registers may be used with an
instruction in any of the following ways:

as accumulators. The data to be manipulated resides within the register.

as pointers. The contents of the register are the address of the operand,
rather than the operand itself.

as pointers which automatically step through core locations. Automatically
stepping forward through consecutive core locations is known as au·
toincrement addressing; automatically stepping backwards is known as
autodecrement addressing. These modes are particularly useful for pro·
cessing tabular data.

as index registers. In this instance the contents of the register, and the
word following the instruction are summed to produce the address of the
operand. This allows easy access to variable entries in a list.

PDP·U's also have instruction addressing mode combinations which facilitate
temporary data storage structures for convenient handling of data which must be
frequently accessed. This is known as the "stack." (See Chapter 5)

In the PDP-11 any register can be used as a "stack pointer"under program con·
trol, however, certain instructions associated with subroutine linkage and inter­
ruptservice automatically use Register 6 as a "hardware stack pointer". For this
reason R6 is frequently referred to as the "SP".

An important PDP-ll feature, which must be considered in conjunction with the
addressing modes, is the register arrangement:

19

RO

Rl

R2

R3

R4

R5

R6 (Hardware Stack Pointer)

R7 (Program Counter)

.3.1 SINGLE OPERAND ADDRESSING
The instruction format for all single operand instructions (such as clear, in·
crement, test) is:

** * ***

MODE j <!II I Rn

,15 " 6 I ,,5 4 3 2. 0 I

OPCOOE------~i~----------~ f~----~
DESTINATION ADDRESS ----------------------'-

*-SPECIFIES DIRECT OR INDIRECT. ADDRES.:;:_
**'SPECIFIES HOW REGISTER WILL BE USED

*** -SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

Bits 15 through 6 specify the operation code that defines the type of instruction
to be executed.

Bits 5 through 0 form a six·bit field called the destination address field. This con·
sists of two subfields:

a) Bits 0 through 2 specify which of the eight general purpose registers is to be
referenced by this instruction word.

b) . Bits 4 and 5 specifY how the selected register will be used (address mode). Bit
3 indicates direct or deferred (indirect) addressing.

3.2 DOUBLE OPERAND ADDRESSING
Operations which imply two operands (such as add, subtract, move and compare)
are handled by instructions that specify two addresses. The first operand is called
the source operand, the second the destination operand. Bit assignments in the
source and destination address fields may specify different mOdes and different
registers. The Instruction format for the double operand instruction is:-

20

** * **- ** *
OP CODE MOllE 1·1 Rn MODE i@1

15 12 \11 10 9 B 6, ,5 4 3 2

SOURCE ADDRESS t f DESTINATION ADDRESS

*-DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
**-SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED

***"SPECIFIES A GENERAL REGISTER

Rn

0,

The source address -field is used to select the source operand, the first operand.
The destination is used similarly, and locates the second operand and the result.
For example, the instruction ADD A,B adds the contents (source operand) of loca·
tion A to the contents (destination operand) of location B. After execution B will
contain the result of the addition and the contents of A will be unchanged.

I

Instruction mnemonics and address mode symbols are sufficient for wntmg ma­
chine language programs. The programmer need not be concerned about con­
version to binary digits; this is accomplished,automatically by the PDP-ll as­
sembler.

Examples in this section and further in this chapter use the following sample
PDp·ll instructions:

Mnemonic Description Octal Code

CLR clear (zero the specified destination) 0050nn

CLRB clear byte (zero the byte in the specified 1050nn
destination)

INC increment (add 1 to contents of destination) 0052nn

INCB increment byte (add 1 to the contents of 1052nn
destination byte)

COM ,complement (replace the contents of the 0051nn
destination by their logical complement;
each 0 bit is set and each 1 bit is cleared)

COMB complement byte (replace the contents of the 1051nn
destination byte by their logical complement;
each Obit is set and each 1 bit is cleared) ..

AOD add (add source'operand to destination 06mmnn
operand and store the result at destination
address)

21

3.3 DIRECT ADDRESSING
The following table summarizes the four basic modes used with direct a~dressing.

Binary Name

000 Register

010 Autoincrement

100 Autodecrement

110 Index

3.3.1 Register Mode

DIRECT MODES

Assembler
Syntax

Rn

(Rn)+

-(Rn)

X(Rn)

OPR Rn

Function_

Register contains operand

Register is used as a pointer to
sequential data then in·
cremented

Register is decremented and
then used as a pointer.

Value X is added to (Rn) to pro·
duce address of operand. Nei·
ther X nor (Rn) are modified.

With register mode any of the general registers l!1ay be used as simple accumula·
tors and the operand is contained in the selected register. Since they are haJd­
ware registers, within the processor, the general registers operate at high speeds
and provide speed advantages when used for operating on frequently-accessed
variables. The PDP-l1 assembler interprets and assembles instructions of the
form OPR Rn as register mode operations. Rn represents a general register name
or number and OPR is used to represent a general instruction mnemonic. As­
sembler syntax requires that a general register be defined as follows:

RO=%Q

Rl=%l

(% sign indicates register definition)

. R2 = %2, etc.

Registers are typically referred to by name as RO, RI, R2, R3, R4, R5, R6 and R7.
However R6 and R7 are also referred to as SP and PC, respectively.

Register Mode Examples
(all numbers in octal)

Symbolic Octal Code . Instruction Name

1. INCR3 005203 Increment

Operation: Add one to the contents of general register 3

22

** *
;" 10 0 0 0 t .0 tOO I 0 0 I 0 lOt t =

~,~'~5~::~:~::~:~::~'_-_~_-_-_~_-_~_~~6~,~,5~~4~3~~2----~0~,

OP COOE IINC(0052U--I j
D£STlNATtON FIELD-------------'

2.

* -DIRECT ADDRESS ** -REGISTER MODE

ADDR2,R4 060204 Adr.l

Re

Rt

R2

R3

R4

. R5

R6(SP)

R7(PC)

Operation: Add the contents of R2 to the contents of R4.

3. COMBR4

Operation:

BEFORE AFTER

R2 I 000002 . I RZI 000002

R4 LI _....:0;,:,000:;.:..04---, R4 Lf _....:000.:.:.;:,00:,:6---1

105104 Complement Byte

One's complement bits (}.7 (byte) in R4. (When
general registers are used, byte instructions only
operate on bits ()'7; i.e. byte 0 of the register)

BEFORE AFTER

R41 022222 R41 022155

3.3.2 Autoincrement Mode

OPR (Rn) +

This mode provides for automatic stepping of a pointer through sequential ele­
ments of a table of operands. It assumes the contents of the selected general reg­
ister to be the address of the- operand. Contents of registers are stepped (by one
for bytes, by two for words, always by two forR6 and R7) to address the next sa­
quential·location~ The autoincr.ement mode is especially useful. for array process­
ing and stacks. It will access an element of a table and then step the pointer to
address the next operand in the table. Although most useful for table handling,
this mode~is completely general and may be used for a variety of purpo~.

23

Autoincrement Mode Examples
Symbolic Octal Code Instruction Name

1. CLR (R5) +

OPeration:

BEFORE
ADDRESS SPACE

20000 I.-.....;.00;.:502.=;5_...J

30000 ... (_..;.",-,,1..;."..;.6_-,

2. CLRB (R5) +

Operation:

BEFORE
AOORESS SPACE

20000 (105025 R5(

30000 1 111 "116

30002

3. ADD (R2)+,R4

Operation:

BEFORE
AllDRESS SPACE

10000 062204 ~2 1

1141

1000021 010000

005025 Clear

Use contents of R5 as the address of the operand.
Clear selected operand and then increment the
contents of R5 by two.

REGISTER
AFTER
ADDRESS SPACE

030000 1 20000 I 005025

30000 I.----:OO.::.:O:.:OOO.:.=..---,

105025 Clear Byte

REGISTER

R5 ... (__ :.~3?O~02_

Use contents of R5 as the address of the'operand.
Clear selected byte operand and then increment
the contents of R5 by one.

AFTER
REGISTER ADDRESS SPACE REGISTER

030000 (20000 105025 115 (030001

:=1 111 t :000

062204 Add

The contents of R2 are used as the address of the
operand which is added to the contents of R4. R2
is then incremented by two.

AFTER
REGISTERS A00RE5S SPACES REGISTERS

100002 10000 1 062204 1121 100004

010000 R41 020000 1-
100002 (010000

24

3.3.3 Autodecrement Mode

OPR-(Rn)

This mode is useful for processing data in a list in reverse direction. The contents
of the selected general register are decremented (by two for word instructions. by
one for byte instructions). and then used as the adc;lress· of the operand. The
~hoice of postincrement. predecrement features for the PDP·1 i were npt arbitrary
decisions. but were intended to facilitate hardwa re I softwa re stack operations
(See Chapter 5 for complete discussions of stacks).

Autoclecrement Mode Examples
Symbolic Octal Code Instruction Name

1. INC-(RO)

Operation:

BEFO~E
AOORESS SPACE

1000 I 005240 Rill

In74(000000

2~ INCB-(RO)

Operation:

BEFORE

AOORESS SPACE

1000 I '05240 Rill
.

17n41 000

!
000 I 17776

3.' ADD -(R3).RO

Operation:

005240 Increment

The contents of RO are decremented by two and
used as the address of the operand. The operand is
increased by one.

AFTER
REGISTERS AOORESS SPACE REGISTER

017776 1000 I 005240 Rei 017n4

In74 I 000001

105240 Increment Byte

The contents of RO are decremented by one then
used as the address of the operand. The operand'
byte is increased by one.

AFTER

REGISTER AIlORESS SPACE' REGISTER

o,n76 '000 I '05240 RIll 0'7775

,n74 I 00' ~ 000
l7n6

064300 Add

The contents of R3 are decremented by 2 then
used as a pointer to an operand (source) which is.
added to the contents of RO (destination operand).

25

BEFORE AFTER
AODRESS SPACE REGISTER AOORESS SPACE REGISTER

10020 I 064300 RfJ I 000020 10020 I 064300 R01 0000070

R31 077776 R31 077774

777741 000050 777741 000050

71776 11776

3.3.4 Index Mode

OPR X(Rn)

The contents of the' selected general register, and an index word following the in­
struction word, are summed to form the address of the operand. The contents of
the selected register may be used as a base for calculating a series of addresses,
thus allowing random access to elements of data structures. The selected register _
can then be modified by program to access data in the table. Index addressing in­
structions are of the form OPR X(Rn) where X is the indexed word and is located
in the memory location following the- instruction word and Rn is the selected gen­
eral register.

Index Mode Examples
Symbolic

<i
1. CLR 200(R4)

Operation:

~EFORE

AOORESS SPACE

'~o~ R41

'022 000200

'024

'200~
'202

2. COMB 200(R1)

Operation:

Octal Code" Instruction Name

005064
000200

Clear

The address of the operand is determined by ad­
ding 200 to the contents of R4. The location is
then cleared.

REGISTER

00'000

105161
000200

AFTER"

AOORESSSPACE

.~o~
'022 000200

'024

'2OO~

Complement Byte

REGISTER

R41 00.000

The contents of a location which is determined-by
adding 200 to the contents of R1 are one's com- "
plemented_ (i.e_ logically complemented)

26

BEFORE

AODAESS SPACE

1020~
1022~

20176\ 011 000

20200 t::~:~~::j

, Rl (

RalISTER

017777 "

"

AfTER

AOORESSSl'lACE

:~t-I_l:..;;66.;;..:.;Ooo~-i1

REGISTER

Rl 11.-_,-01,-7,;-;77,-7_....1

3. ADD 3O(R2),20(R5) 066265
000030
000020

Add

Operation:

BEFORE
AOORESS SPACE

-~
R2(

1022 ()()()OOO

1151 1024 000020 .

1130 I 000001

20201 000001

The contents of a location which is determined by
adding 30 to the contents of R2 are added to the
contents of a location which is determined by ad·,
ding 20 to the contents.ofR5. The result is stored
at the destination address, ie. 20 (R5~

AfTER
REGISTER AIlORESS SPACE REGISTER

001100

1020~ R21 001100

1022 000030
1151 002000 1024 000020

(00)00

1130 I 00000I

20201 000002

27

3.4 DEFERRED (INDIRECT) ADDRESSING
The four basic modes may also be used with deferred addressing. Whereas in the
register mode the operand is the contents of the selected register, in the register
deferred mode the contents of the selected register is the address of the operand.

In the three other deferred modes, the contents of the register selects the address
of the operand rather than the--operand itself. These modes are therefore used
when a table consists of· addresses rather than operands. Assembler syntax for
indicating deferred addressing is "@" (or "()" when this not ambiguous). The
following table summarizes the deferred versions of the basic modes:

Binary Name Assembler Function
Code Syntax

001 Register Deferred @Rnor (Rn) Register contains the address of
the operand

01 1 Autoincrement Deferred @(Rn)+ Register is first used as a
pointer to a word containing the
address of the operand, then in­
cremented (always by 2; even
for byte instructions).

101 Autodecrement Deferred @-(Rn) Register is decremented (always
by two; even for byte instruc·
tions) and then used as a
pointer to a word containing the
address of the operand

1 1 1 Index Deferred @X(Rn) Value X (stored in a word follow·
ing the instruction) and (Rn) are
added and the sum is used as a

. pointer to a word containing the
address of the operand. Neither
X nor (Rn) are modified.

Since each deferred mode is similar to its basic mode counterpart, separate de­
scriptions of each deferred mode are not necessary. However, the following exam·
pies illustrate the deferred modes. '

Register Deferred Mode Example
Symbolic Octal Code Instruction Name

ClR@R5

Operation:

BEFORE
AOORESS SPACE

:: ... 1-000..,..-100-----1

005015 Clear

The contents of location specified in R5 are
cleared;

AFTER
A£GISTER ADORES8 SPACE REGISTER

R5 L-I _00_'700_---' :: 1-1-000000----1 R5 L-I _00_1700_--,

?R

Autoincrement Deferred Mode Example
Symbolic Octal Code Instruction Name

INC@(R2)+

Operation:

B£FCRE
ADDRESS SPACE

005232 Increment

The contents of the location specified in R2 are
used as the address of the address of the operand.
Operand is increased by one. Contents of R2 is in·
crementedby 2.

AFTER
REGISTER ADDRESS SPACE REGISTER

'01O~
'0'2~

R2 I 0'0300 '01O~
'0I2~

R2 I 010302

'0300 ... 1_.;..00:....'.;..010-,--; '0300 1-1 __ 0°_'_°'_°_--1

Autodecrement Deferred Mode Example
COM @-(RO) 005150 Complement

Operation:

IlEFORE

The contents of RO are decremented by two and
then used as the address of the address of the op­
erand. Operand is one's complemented. (i.e. logi­
cally complemented)

AFTER
AOORESSS"",CE REGISTER ·ADORESSs...oE REG'STER

'0'001
012345 RIll 010776 =1 '65432 R01 0'0774

10102

10774 1
0,0'00

10774
1

0'0'00

'0776 10776

Index Deferred Mode Example

ADD @1000(R2),Rl 067201 ,~dd

Operation:

001000

1000 and contents of R2 are summed to produce
the address of the address of the source operand
the contents of which are added to contents of Rl;
the result is stored in Rl.

29

BEFORE
ADORE55 SPACE REGISTER

.t020~7201
1022 001000

1024

Rl 1 001234

R2 1 000100

lO5(i ... 1-OOOOO--2--i

1100 ... 1_00-----C10_5O_-i

AFTER
AOORESS SPACE

102O~67201
1022 001000
1024 .,

.050 1..-_0_0000_2_--1

1100 If--_OO;..;.;.;;IOS.;;.;O'----I

REGISTER

RI 1 001236

021. 000100

3.5 USE OF THE PC AS A GENERAL REGISTER
Although Register 7 is a general purpose register, it doubles in function as the
Program Counter for the PDP·ll. Whenever the processor uses the program

-counter to acquire a word from memory, the program counter is automatically in·
cremented by two to contain the address of the next word of the instruction being
executed or the address of the next. instruction t9 be exeC!Jted. (When the pro·
gram uses the PC to locate byte data, the PC is still incremented by two.)

The PC responds to all the standard PDp·ll addressing modes. However, there
are four of these modes with which the PC can provide advantages for handling

- -poSition independent code (PIC· see Chapter 5) and unstructured data. When reo
garding the PC these modes are termed immediate, absolute (or immediate de­
ferred), relative and relative deferred, and are summarized below:

Binary Name Assembler Function
Code Syntax
010 Immediate #n Operand follows instruction

011 Absolute @#A Absolute Address folows in·
struction

110 Relative A Address of A, relative to the in-
struction, follows the instruc·
tion.

111 Relative Deferred @A Address of location containing
address of A, relative to the in·
struction follows the instruc·
tion.

The reader should remember that the special effect modes are the same as modes
described in 3.3 and 3.4, but the general register selected is R7~ the program
counter.

When a standard program is available for different users, it often is helpful to be
able to load it into different areas of core and run it there. POP·II's can accompl·
ish the relocation of a program very efficiently through the use of position inde-

30

pendent code (PIC) which is written by using the PC addressing modes. If an in­
struction and its objects are moved in such a way that the relative distance
between them is not altered, the same offset relative to the PC can be used in all
positions in memory. Thus, PIC usually references locations relative to the current
location: PIC is discussed in more detail in Chapter 5.

The PC also greatly facilitates the handling of unstructured data. This is partic­
ularly true of the immediate and relative modes which are discussed more fully in
Paragraphs ,3.5.1 and 3.5.2.

3;5.1 Immediate Mode

OPR #n,DD

Immediate mode is equivalent to using the autoincrement mode with the PC. It
. provides time improvements for accessing constant operands by including the
constant in the memory location immediately following the instruction word.

Immediate Mode Example
Symbolic

ADD #10,RO

Operation:

BEfORE
ADDRESS SPACE

1020 ~'" Rei
1022 0000,10 PC I
1024

3.5.2 Absolute Addressing'

Octal Code Instruction Name

062700 Add
000010

The value 10 is located in the second word of the
instruction and is added to the contents of RO.
Just before this instruction is fetched and exe­
cuted, the PC points to the first word of the in­
struction. The processor fetches the first word and
increments the PC by two. The source operand
mode is 27 (autoincrement the PC). Thus, the PC
is used as a pointer to fetch the operand (the sec­
ond word of the instruction) before being in­
cremented by two to point to the next instruction.

AFTER
REGISTER ADDRESS SPACE REGISTER

000020 1020 062700 Rei 000030

001020
1022 000010

........--PC I 1024
1024

OPR @#A

This mode is the equivalent of immediate deferred or autoincrement deferred us­
ing the PC. The contents of the location following the instruction are taken as the
address of the operand. Immediate data is interpreted as an absolute address
(i.e., an address that remains constant no matter where in memory the as,
sembled instruction is executed).

31

Absolute Mode Examples
Symbolic

1. CLR@#l100

Operation:

BEFORE

ADDRESS SPACE

20
"'-

22 PC

1100 , ,-t77777

1102

Octal Code Instruction Name

005037
001100

Clear

Clear the contents of lo~ation 1100.

AFTER

AOORESS SPACE

20 1 005037

221 001100 /PC

241

1100 , 000000

1102

2. ADD @ # 2000,R3 063703
002000

Add

,Operation: Add contents of location 2000 to R3.

BEFORE AFTER

AOORESS SPACE REGISTER AOOR ESS SPACE

20 063703 R31 000500 20 063703 R31

22 002000 " 22 002000
PC /PC

24 24

2000 I 000300 ,
2000 I 000300

3.5.3 Relative Addressing

OPR A or

REGISTER

001000

OPR X(PC), where X is the ,location of A relative to the instruction.

This mode is assembled as index mode using R7. The base of the address calcu·,
lation, which is stored in the second or third word of the instruction, is not the ad·
dress of the operand, but the number which, when added to the (PC), becomes
the address of the operand. This mode is useful for writing position independent
code (see Chapter 5) since the location referenced is always fixed relative to the
PC. When instructions are to be relocated, the operand ismOlled by the same
amount.

32

Relative Addntssing Example
Symbolic octal Code . Instruction Name

INCA

Operation:

8ERlRE
AIXlAESS SMCE

=1 ::: I' 1024 PC

1026

10U)O t 000000 I.

005267
000054

Increment

To increment location A, contents of memory loca·
tion immediately following instruction word· are ad­
ded to (PC) to produce address A. Contents of A
are increased by one.

AFTER·

ADOAESS SPACE

102O~. 1022 000054 .
t024 _PC

1026

1\ 00 I 000001

3.5.4 Relative DefeTed Addressing

OPR@A or

.. OPR@X(pc), where x is location containing address of A, relative to the in·
. __ struction.

This mode is similar to the relative mode, except that the second-word of the .in­
struction, when added to the PC, contatns the address of the address of the oper·
and, rather tJ:Iatthe address. of the operand .

. Relative DefeTed Mode Example
Symbolic Octal Code Instruction Name

CLR@A

Operation:

-- BUORE

ADORESS SPACE

~~' 1022 000020 PC

_ .024

1044 1 OlCMl!O

IQIOOJ .oooiif

005077
000020

Clear

Add second word of instruction to PC to produce
addtess of. address of operand. Clear operand,

AFTER

ADDRESS SlW:E

10~1 005057

~PC 000020 .'022
1024

W>441 0.0100 l &-1044

-t 00000o

33

3.6 USE OF STACK POINTER AS GENERAL REGISTER
The processor stack pointer (SP, Register 6) is in most cases the general register
used for the stack operations related to program nesting. Autodecrernent with
Register 6 "pushes"data on to the .stack and autoincrement with Register 6
"pops" data off the stack. Index mode with the SP permits random access of
items on the stack. Since the SP is used by the processor for interrupt handling, it
has a special attribute: autoincrements and autodecrements are always done in
steps of two. Byte operations using the SP in this way simply leave odd addresses
unmodified . .use of stacks is explained in detail in Chapter 5.

Addressing Modes Summary

The following table is a concise summary of the various POP·l1 addressing
modes

DIRECT MODES

Binary Name Assembler Function
Code Syntax

000 Register Rn Register.contains operand·

010 Autoinerement (Rn)+ Register'contains address of op·
erand. Register contents in·
cremented after reference.

100 Autodecrement -eRn) Register contents decremented .
before reference register con·
tains address of operand

110 Index X(Rnl Value X (stored in a word follow··
ing the instruction) is added to
(Rn) to produce address'of opec· .
and. Neither X nor (Rn) are·
modified.

34

Binary
Code

001

011

101

111

010

011

110

111

Name

Register Deferred

DEFERRED MODES

Assembler
Syntax

@Rn
or (Rn)

Function

Register contains the address of
the operand

Autoincrement Deferred @(Rn)+ Register is first used as a
pointer to A word containing the
address of the operand, then in­
cremented (always by 2; even
for byte instructions)

Autodecrement

I ndex Deferred

Immediate

Absolute

Relative

Relative Deferred

@-(Rn)

@X(Rn)

Register is decremented (always
by two; even for byte instruc­
tions) and then used as a
pointer to a word containing the
address of the operand

Value X (stored in a word follow­
ing the instruction) and (Rn) are
added and the sum is used as a
pointer to a word containing the
address of the operand. Neither
X nor (Rn) are modified

PC ADDRESSING

#n

@#A

A

@A

35

Operand follows instruction

Absolute address follows in­
struction

Address of A, relative to the in­
struction, follows the instruc­
tion.

Address of location containing
address of A, relative to the in­
struction follows the instruc­
tion.

36

4.1 INTRODUCTION'

PART I

CHAPTER 4

INSTRUCTION SET'

This chapter describes the PDp·ll instructions in the following· order:

Single Operand (4.4)
General

Shifts

~~::i: Precision I(tructions

Double Operand (4.5)
Arithmetic Instructions

Logical Instructions

Program Control Instructions (4.6)
Branches

Subroutines

Traps ~

Miscelleneous (4.7)
Conditien Code Operators (4.8)

The specification for each instruction includes the mnemonic, octal code, binary
code, a diagram showing the format of the instruction, a symbolic notation de·
scribing its execution and the effect on the condition codes, timing information, a
description, special comments, and examples.

MNEMONIC: This is shown at the top left hand side of the page. When the word
instruction has a byte equivalent, the byte mnemonic is also shown.

INSTRUCTION FORMAT: A diagram accompanying each instruction shows the oc·
tal op cOde, the binary op code, and bit assignments. (Note that in byte instruc·
tions the most significant bit (bit 15) is always a 1.)

37

OPERATION: The operation of each instruction is described with a single nota·
tion. The following symbols are used:

() = contents of

src = source address

dst = destination address

loc = location .= becomes

• = "is popped from stack"

'f = "is pushed onto stack"

A = boolean AND

v = boolean OR

..,. = exclusive OR

~= boolean not

Reg or R = register

B = Byte

Instruction Timing
The PDp·l1 is an asynchronous processor in which, in many cases, memory and
processor operations are overlapped. The execution time for an instruction is the
sum of a basic instruction time and the time to determine and fetch the source.
and/or destination operands. The following table shows the addressing times re­
quired for the various modes of addressing source and destination operands. All
times stated are subject to ±20% variation.

Addressing Format Timing

(src or dst)
R
(R)ot@R
(R)+
-(R)
@(R)+
@-(R)
BASE(R)
@BASE(R) or @(R)

src(ps)**
o
L5
1.5
1.5
2.7
2.7
2.7
3.9

* dst time is 0.5 JIS. less than listed time if instruction was a
CoMPare, CoMPare Byte
Bit Test, Bit Test Byte
TeST, or TeST Byte

none of which ever modify the destination word.

dst(ps) *It

o
1.4*
1.4*
1.4*
2.6*
2.6*
2.6*
3.8*

: referencing bytes at odd addresses adds 0.61'5 tosrc and dst times.

38

4.2 INSTRUCTION-FORMATS

The major instruction formats are:

Single Operand Group

OF' ,Code
15

Double Operand Group

OF' Code

15 12 II

Condition Code Operators

o ,0

Register-Source or Destination

Subroutine Return

o

Branch

15

o ,

OP Code
I

o

6 5

6 5

2

o -,

offset

8 7

39

dst ,

dst
I

Src/dst ,

o

o

o

4.3 BYTE INSTRUCTIONS
The POP-ll processor includes a full complement of instructions that manipulate
byte operands. Since all POP-ll addressing is byte-oriented, byte manipulation
addressing is straightforward. Byte instructions with autoincrement or autodecre­
ment direct addressing cause the specified register to be modified by one to point
to the next byte of data. Byte operations in register mode access the low·order
byte of the specified_register. These provisions enable the POP-ll to perform as
either a word or byte processor. The numbering scheme for word and byte ad­
dresses in core memory is:

BYTE 1

BYTE 3

BYTE 0

BYTE 2

2000

2002

The most significant bit (Bit 15) of the instruction word is set to indicate a byte
instruction.

Example:

NOTE·ISP

Symbolic

CLR
ClRB

Octal

005000
105000

ISP . The Instruction Set Processor (ISP) notation has been used with each in­
struction. It is a precise notation for defining the action of any instruction set and
is described in detail in Appendix C. It was inclLided for the benefit of POP-ll
users who wish to gain an in depth understanding of each instruction. However,
understanding ISP is not essential to understanding POP-ll instructions.

40

4.4 SINGLE OPERAND INSTRUCTIONS

General: CLR DEC INC NEG TST COM
CLRB DECB INCB NEGB TSTB COMB

Shifts: ASR ASL

ASRB ASLB

Multiple Precision: ADC SBC
ADCB SBCB

Rotates: ROL ROR SWAB
ROLB RORB

4.4.1 Single Operand General Instructions

41

CLR
CLRB

Clear dst

15

o o o

Operation: (dst).O

Condition Codes: N: cleared
Z: set
V: cleared
C: cleared

o

6

2.3 p.s

n050DD

d d d d d d

5 o

Description: Word: Contents of specified destination are replaced with ze·
roes.

Example:

ISP:

CLR:

DI ~ 0;

N· ... 0;

Z +- 1;

v ... 0;

C~O

CLRB:

Db' 0;

N ~ 0;

z 1;

V 0;

C ~ 0

Byte: Same

Before
(Rl) = 177777

NZVC
11 11

CLR Rl

After
(Rl) = 000000

clear D~ N~ V., C, set Z

cZeaP D, N, V, C; Bet Z

42

NZVC
0100

2.3 ps

Decrement dst

o o 0" o d d d d

15 6 5

Operation: (dst).(dst)-l

Condition Codes: N: set if result is <0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: ·set if (dst) was 100000; cleared otherwise
C: not affected

d

DEC
DECB

n053DD

d

o

Description: Word: Subtract 1 from the contents of the destination
Byte: Same

Example: DEC R5

ISP:

DEC:

Before
(R5) = 000001

NZVC
1000

After
(R5) = 00000o

NZVC
0100

r D' -:-1; next

II" T<15>;

NBult is difference of D-l

negative?

(r<15:0> - 0) ~ (Z ~ 1 else Z ~ 0); aero?

(r<15:0'>. 777778) -= (V'" 1 else V 0); overflorJ if largest positive number
D .. r tnmsmit Nsu.lt to D

DECI:

r .. Db' -1; nut result is diffel'ence of D-l

N .. 1<1>; nsgative?

(r<7:D> - 0) • (Z .. 1 else Z ... 0); aero?

(r<7: 0> .. 1778) ~ IV'" 1 else V .. 0); OIJel'fiOlJ if largest positive number

Db ... r tzransmit result to D

43

INC
INCB

Increment dst

1°/1 1 ° ° 0 0 0 0 d d d

15 6 5

Operation: (dst~(dst) + 1

Condition Codes: N: set if result is <0; cleared otherwise
Z: set if result is 0; cleared otherwise

d d

V: set if (dst) held 077777; cleared otherwise
C: not affected

Description.: Word: Add one to contents of destination
Byte: Same

Example: INC R2

ISP:
INC.

r ... D'+l; next

N ... '1'<15>;

Before
(R2) '" 000333

NZVC
0000

(r<15:0:> ~ 0) :) (Z ... ·1 else z ... O)j

After
(R2) '" 000334

result i6 8W1l of D+l

negative?

zero?

NZVC
0000

(r<U: (t> ... 1000008) .. (V ... 1 else V ... 0) j overflow if largest negative numbep

D ... r transmit :N8Ult to D

INCB:

r ... D1t+lj next

N'" r<7>i

(r<7:U> • 0) =t (Z ... 1 else. Z ... 0);

(r<7: 0> .. 200S) ~ (V ... 1 -else V ... 0);

Db'" r

"MBult is sum of Drl

nsgative?

ove:r>f'lOLJ if largeat negative numb~_l'

transmit ""8utt to D

44

2.3 p.s

n052DD

d

0

2.3 J1S

NEG
NEGB

Negate dst n0054DD

10/1 I ° ° ° ° :0 ° d d d d d d

15 6 5

-Operation: (dst). -(dst)

Condition Codes: N: set if the result is <0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: set if the result is 100000; cleared otherwise
C: cleared if the result is 0; set otherwise

°

Description: Word: Replaces the contents of the destination address by its
two's complement. Note that 100000 is replaced Q;' itself -(in .'
two's complement notation the most negative number has
no positive counterpart).
Byte: Same

Example: NEG RO

Before
(RO) = 000010

After
(RO) = 177770

ISP:
NEG:

NZVC
0000

r ... -D'; next result is negative of D

negative? N +- r<lS:>;

(r<15:0> - 0) ~ (Z +-1 else z ... 0); zem?

(1."<15:0> = 100000a) ~ (v'" 1 else v ... O);overfZOb)?

(r<15: 0> ;,I" 0) ~ (C'" 0 else C ... 1); carry?

D ... r -tPansmit result to D

NEGB:

r·t- - Db'; next

N ... r<7>;

t:6suZt is negative of D

negative?

(r<7:0> "" 0) ~ (Z'" 1 else z ... 0);

(r<7: 0> ... 200S) =10 (V'" ~ else V'" 0);

(r<1:.1l>" 0) =10 (C'" 0 else c'" 1);

Db'" r

aero?

O71e'1'f/.ow?

=-ry?

transmit l'esuJt to D

45

NZVC
1001

,~

1.8 p.s
2.3 p.s if Mode 0

TST
1ST8

lest dst n057DD

1°/1 1 0 0 0 0 , : ' d d d d d d
I

15 6 5 0

Operation: (dst). (dst)

Condition Codes: N: set if the result is <0; clearedotherwi~
Z: set if result is 0; cleared otherwise
V: cleared
C: cleared

Description: Word: Sets the condition codes Nand Z according to the con·
tents of the destination address

Example:

ISP:
TST:

r ... DI ... 0;.. next

N ~ r<15>;

Byte: Same

Before
(Rl) = 012340

NZVC
0011

(r<lS:O> - 0) ~ (Z'- 1 else Z ... 0);

v'" 0;

c ~ 0

TSTB:

r Db' .. 0; next

N'" r<7>;

(r<7: 0> :II 0) ~ (Z 1 else Z 0);

V'" 0;

C~O

.46

TST Rl

After
(Rl) = 012340

NZVC
0000

NBult is diffBl'e7ICe of DandO

nega1;iTJe?

zero?

otear Vande

2'esuZt is ,diffeNnos of DandO

nsgative?
3em?

otear Vande

2.3 ps

COM
COMB

Complement dst nOSlDD
0 0

: 0 1 I d d d d d' d
I

o 0

15 6 5 0

Operation: (dst).~(dst)

Condition Codes: N: set if most significant bit of result is set; cleared otherwise
Z: set if result is 0; cleared otherwise
V: cleared
C: set

Description: Replaces the contents of the destination address by their log·
ical complement (each bit equal to 0 is set and each bit equal
to 1 is cleared)
Byte: Same

Example: COM RO

ISP:
CI»I:

r ... -. D'; Dext

N" r<15>;

Before
(RO) = 013333

NZVC
0110

(.-<15:0> - 0) .. (Z ~ 1 eloe Z ~ 0);

V'" 0;

c 1.
D~r

com:
r'P-,Db ' ; next

N r<1>;

(r<7:0> • 0) ~ (Z'" 1 else z ... 0);

V'" 0;

c ~ 1;

Db ~ r

After
(RO) = 164444

M.ult i. """,,1.ement of D

negative?

"'PO?

a'tea,. V

set C

t,.."..",nt result to D

result i. """,,1.ement of D

nsgative?

aero?

atea.. V

set C

~t ""Bult to D

47

NZVC
1001

450 ns

4.4.2 Shifts
Scaling data by factors of two is accomplished by the shift instructions:

ASR - Arithmetic shift right

ASL - Arithmetic shift left

The sign bit (bit 15)of the operand is replicated in shifts to the right. The low-or­
der bit is filled with 0 in shifts to the left. Bits shifted out of the C-bit, as shown in
the following examples, are lost.

48

2.3p.S
3.5 p.S if odd byte

Arithmetic Shift Right dst

lOll, 0 0 0 I

t5

o 0

ASR
ASRB

n062DD

Odddddd

6 5 0

Operation: (dst).(dst) shifted one place to the "right

COndition Codes: N: set if the high-order bit of the result is set (result < 0);
cleared otherwise
Z: set if the result = 0; clearecLotherwise
V: loaded from the Exclusive OR of the N-bit and C-bit (as set
by the completion of the shift operation)
C: loaded from low-order bit of the destination

Description: Word: Shifts all bits of the destination right one place. Bit 15
is replicated. The C-bit is loaded from bit 0 of the destination.
ASR performs signed division of the destination by two.

ISP:
ASR,

r D'/2; ne:.:t

c ... Dr::.G'>-;

N'" 1'<15>;

Word:

Byte:

(r<lS:Ct> • 0) :=I (Z ... 1 el .. Z ... 0); next

(R • C) ~ (V" 1 e1a. V ... 0);

D~r

ASII:

;"Db'/2; IMJlt

c ~ Dl><Il>J
..... 1<1>;

(1<7:11> - 0) _ (Z ~ 1 ela. z ~ II); _.

(11 at C) 1:$ (V'" 1 .1 •• V'" 0).

Db .. r,

49

.... utt i8 D/2

Darl7J ... -'-..... tease .igm.fi.oant bit
J'l6gtJti,11fJ?

8"ro?

.... 8utt i8 D/2

DtU'I'/J i.... wast significant bit

... gaU",,?

INPO?

-fit>.> is "Eo:aluei"" OR" of If aM C

ASL
ASLB

Arithmetic Shift left dst

lOll, 0 0 0

15

1 0 0

2.3 ps
3.5 ps if odd byte

n063DD

6 5 o

Operation: (dst~(dst) shifted one place to ,the left

Condition Codes: N: set if high·order bit of the result is set (result < 0); cleared
otherwise
Z: set if the result ,= 0; cleared otherwise
V: loaded with the exclusive OR of the N-bit and Cbit (as set
by the completion of the shift 0peration)
C: loaded with the high-order bit of the- destination

Description: Word: Shifts all bits of the destination left one place. Bit 0 is
loaded with an O. The C-bit of the status word is loaded from
the most significant bit of the destination. ASL performs a
signed multiplication of the destination.by 2 with overflow in·
dicati'on.
Byte: Same

Word:

Byte:

0':'L-I =-,'---'-~' =:b" =!!,........--'-."......r-{~..:..I I I I I 1-0
15 ODD ADDRESS e L-::7....L.--!EVE=N~ADIlRESS==L-....L..---'--::-'0

ISP:
ASL, ,

r - D'<lS>t:D'<1:3:O>clt; next

C'" D <14>; next

ASLB:

N'" r<15>;

(r<15:0> - 0) = (Z 1 elae Z .. 0); next

(N e C) = (V 1 else V" 0);

D ~ r

r'" Db'<1>CDb l <S:O>ci);next

C ... Db<6>i nes.t

N - r<.7>;

(r<1:0> = 0)" (Z"'1 elae Z,'" 0); uext
eN e C) = (V" 1 elae v ... 0);

Db ~ r

50

N8Ult is DX2

bit .queesed ou.t to c
negative?

ael'O?

overfl,ow is nEzcZu.sive. ORn of N and C

tl'a7umri t "" ... tt to D

:Nsu.l.t is 'DX2

bit Bquseaed out to c
negati1Hl?

aero?

O1Hl!'{to6> iB "k<>u,.sive OR" pf N and C

tl'a7umrit ""Butt to D

4.4.3 Multiple Precision
It is sometimes necessary to do arithmetic on operands considered as multiple
words or bytes. The PDP·l1 makes special provision for such operations with the
instructions ADC (Add Carry) and SBC (Subtract Carry) and their byte equiva·
lents.

For example two 16·bit words may be combined into a 32·bit double precision
word and added or subtracted as shown below:

32 BIT WORD
~

I

OPERAND I A1 A0

31 16 15
I

OPERAND I 81 80

31 16 15

RESULT

31 16 15

Example:

The addition of -1 and -1 could be performed as follows:

-1 = 37777777777

,

I
0 ,

I
O.

I
0

(Rl) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777

ADD Rl,R2 ;Add low order parts
ADC R3 ;Add carry to high order part
ADD R4,R3 ;Add high order parts

1. After (Rl) and (R2) are added, 1 is loaded into the C bit

2. ADC instruction adds C bit to (R3); (R3) = 0

3. (R3) and (R4) are added
~ .
4. Result is 37777777776 or -2

51

2.3 p.s

ADC
ADCB

Add Ca rry dst n05500

1°/' 1 ° ° ° 0 0 d- d

15 6 5

Operation: (dst).(dst) + (C)

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result = 0; cleared otherwise

d d d d

0

V: set if (dst) was 077777 and fC) was 1; cleared otherwise
C: set if (dst) was 177777 and (C) was 1; cleared otherwise

Description: Adds the contents of theC-bit into the destination. This per­
mits the carry from the addition of the low-order words to be
carried into the high-order result.
Byte: Same

Example: Double precision addition may be done with the following in­
struction sequence:
ADD AO,BO ; add low-order parts
ADC Bl ; add carry into high-order
ADD Al,Bl ; add high order parts

ISP:
ADC:

r D' + C; next

N ~ r<15>;

(r<15:0> = 0) .. (Z ~ 1 else Z ~ 0);

negative?

1!6l"O?

(r<15: 0> = 1000008) 1\ (0=1) ~ (V ~ 1 e1 •• V " 0); overfiOlJ if largest negative number
(r<15: 0> = 0) 1\ (0-1) .. (C ~ 1 eloe C ~ 0);

D ~ r

ADell:

r ... Db' + C; nex.t

N 1"<7>;

(r<7:0> - 0) ~ (Z'" 1 e18e Z .. 0);

(<<:7: 0> • 2008) 1\ (0=1) .. (V ~ 1 e1.e V ~ 0);

. (r<7:0>. 0) 1\ (0-1) .. (C ~ 1 .ls. c ~ 0);

Db ~ r

52

troanmIrit ,"""uZt to D

negative?

aero?

overj'tOlJ if "largest negative ~r

troanmIrit ""Butt to D

2.3 pS

SBC
SBCB

Subtract Carry ctst n056DD

1011 I ° ° ° ° ° d d

15 6 5

Operation: (dst~(dst)-(C)

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result 0; cleared otherwise

d d

V: set if result is 100000; cleared otherwise

d

C: cleared if result is 0 and C = 1; set otherwise

d I
°

Description: Word: Subtracts the contents of the C·bit from the destina­
tion. This permits the carry from the subtraction of two low­
order words to be subtracted from the high order part of the
result.
Byte: Same

Example: Double precision subtraction is done by:

I5P:
SBCB:

r ~ Db' - C; nexc

Nt- T<7>j

SUB AO,BO
SBC B1
SUB AI,SI

(r<7:0> = 0) = (Z 4- 1 else Z .(- 0);

(1<7:0> = 2008) = (V of- 1 else V+- 0);

(r<7,0> ~ 0) A (0=1) ~ (C ~ 0 else C ~ 1);

Db - r

53

result i8 differencB of D and C

negative?

aero?

ovel'[lOlJ?

t:t'ansmi t result to D

4.4.4 Rotates
The rotate instructions operate on the destination word and the C bit as thoug-h
they formed a 17·bit "circular buffer'. These instructions facilitate sequential bit
testing and detailed bit manipulation.

54

'2.3 fJS
3.5 ps if odd byte

Rotate Left dst

15

OperatIon:

Condition Codes:

Description:

Example:·

ISP:
• BOL:

I
15
1

ROL
ROLB

n061DD

0 0 0 d d d d d d I I
o

I
6 5 0

(dst).(dst) rotated left one place

N: set if the high·order bit of the result word is set
(result < 0): cleared otherwise
Z: set if all bits of the result word = 0; cleared otherwise
V: loaded with the Exclusive OR ofthe N-bit and C·bit (as set
by the completion of the rotate operation)
C: loaded with the high-order bit of the destination

Word: Rotate all bits of the destination left one place. Bit 15
is loaded into the C-bitof the status word and the previous
contents of the C-bitare loaded into Bit 0 of the destination.
Byte: Same

Word:

Bytes:

ODD
I

~0

r<:16:D>" n'<ls:o>a:; nu.t

III· r<1S>;

l'BsuU i8 D and C J"(Jtat.d

negative?

(...:15:11> - 0) .. (Z ~ 1 else Z ~ 0);

c~ ... r; next.

(N $ C) =- (V 1 else V ... 0)

I\OLB:

1"<8: 0> ... Db '<7: O>;CCi next

111·1'<7>;

~r<7: 0> • 0) • (Z .. 1 e1ae Z 0);

CJ:I)b ... r; next

(III Ole) .. (v .. 1.eloe v .. 0)

55

881'O?

~t result to C and D

V i.s based 011 n.6J.J1 Nault" of N and C

resuZt is D and C rotated

nsgatiVB?

ae1'lO?

tmnsnrit ,..,Butt to C and D

V is based on NSUlt of R and C

ROR
RORB

Rotate Right dst

2.3 ps
3.5 ps if odd byte

n060DD

o 0 0 0 d d d d d dl
15 650

Operation: (dst)~(dst) rotated right one place

Condition Codes: N: set if the high~order bit of the result is set (result < 0);
cleared otherwise
"Z: set if all bits of result = 0; cleared otherwise
V: loaded with the Exclusive OR of the N·bit and C-bit (as set
by the completion of the rotate operation)
C: loaded with the low-order bit of the destination

" Description: Rotates all bits of the destination right one place. Bit 0 is
loaded into the C-bit "and the previous contents of the C-bit
are loaded into bit "15 of the destination.
Byte: Same

Example:

Word:"

~-1
t 15

Byte:

I Il
[~}

ISP:

ROR:

r<16:0> Dto>ccc:nt~lS: 1>; next

)I r<:tS>;

ROBlI:

(r<lS:ct> - 0) (Z 1 else z ... O)j

CaK15: 0> ... r; next

(N e C) ~ (V +- 1 else V ... 0)

r<8:0>'" Db '<0>a:aJb'<7:1>; next

N"" r<:7>;

(r<7:0> • 0) • (Z 1 else z ... 0);

CCOb +- r; next

(N e C) ~ (V ... 1 else V ... 0)

I I I
18 7t

56

[~}

:result is D and C rotated

negative?

aero?

tl'fIn8m'it result to C and D

1°

I
10

I

V is based on "'..m.l pesul t of N and C

"".uZ t i. D and C rotated
nsgatiVB?

aero?

tN1'l8JJtit 1'6BuZt to C and D

V is based on n.miI result of N and C

2.3 p.s

SWAB

Swap Bytes dst 0003DD

II" d d d d d

15 6 5 a

Operation: Byte l/ByteO-.Byte O/Byte 1

Condition Codes: N: set if high·order bit of low·order byte (bit 7) of result is set;
cleared otherwise

Z: set if low·order byte of result = 0; cleared otherwise
V: cleared
C: cleared

Description: Exchanges high-order byte and low-order byte of the destina·
tion word (destination must be a word address).

Example: SWAB Rl

ISP:
SWAB:

Before
(Rl) =077777

NZVC
11 11

r ... D'<7: 0>00'<15:8>; ne·xt

N -- r<7>;

(r<7:0> - 0) ,. (Z ~ 1 else Z ~ 0);

V - OJ

C f- 0;

D ~ r

57

After
(Rl) = 177577

NZVC
0000

reBult iB byt;e swapped of D

nega~ive?

aero?

ctea2' v" C

trcmsnri t ""BU t t UJ D

4.5 Double Operand Instrudions
Double operand instructions provide an instruction (and time) saving facility
since they eliminate the need for "load" and "save" sequences such as thoSe
used in accumulator·oriented machines.

General: MOV ADD SUB CMP
MOVB CMPB

Logical: BIS BIT BIC
BISB BITB BICB

4.5.1 Double Operand Generallnstrudions

58

2.3 ps

Movsre. dst

MOV
MOVB

nlSSDD

10" I ° ,0 1 I s s s d d d
I

d

15 12 II

Operation: (dst).(src)

Condition Codes: N: set if (src) <0; cleared otherwise
Z: set if (src) =0; cleared otherwise
V: cleared
C: not affected

Description: Word: Moves the source operand to the destination location.
The previous contents of the destination are lost The con·
tents of the source address are not affected.
Byte: Same as MOV. The MOVB to a register (unique among
byte instructions) extends the most significant bit of the low
order byte (sign extension). Otherwise MOVB operates on
bytes exactly as MOV operates on words.

Example: MOV XXX,Rl ; loads Register 1 with the con·
tents of memory location; XXX represents a programmer·de·
fined mnemonic used to represent a memory location

MOV #20,RO ; loads the number 20 into
Register 0; •• # "i ndicates that the value 20 is the operand

MOV 2O,-{R6) ; pushes the operand con·
tained in location 20 onto the stack

MOV (R6) + , @ # 177566 ; pops the operand off a stack
and moves it into memory location 1775t;;~ (terminal print
buffer)

MOV Rl,R3
transfer

; performs an interregister

. MOve 177562, @#177566 ; moves a character from ter·
minal keyboard buffer to terminal buffer

59

ISP:

HOVE:

r ... SI~ next

N'" r<lS..>;

HOVB:

(r<lS: 0> - 0) ~ (Z ... 1 else Z ... O)~

V'" OJ

~ .. r

r'" Sb l ; next

N'" r<7>;

(r<7: Cl> • 0) .. (Z .. 1 else Z .. 0);

V" 0;

Db'· ... r

moue source to intemediate NBwlt regiBter~ ,.
nsgativ.1

.ero - if 16 bi.ts of r 4!'e all ae:ro then Z is Bet
to 1 etse Z ill se-t to 0

ovopfl,ow is ",!.BaNd

~t s .. lt to destination

. MOVe 80Ul'Ce, to intermediate result

""gativ.?
aero?

clear V
t>"ll7lSlllit Nsult to Db

60

2.31JS

ADD

Add src. dst 06SSDD

10 0 I s s s > s I d d cI d d d
I I

15 12
"

6 5 0

Operation: (dst).(src) + (dst)

Condition Codes: N: set.if result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow as a result of the oper­
ation; that is both operands were of the same sign and the
result was of the opposite sign; cleared otherwise
C: set if there was a carry from the most significant bit of the
result; cleared otherwise

Description: Adds the source operand to the destination operand and
stores the result at the destination address. The original con­
tents of the destination are'lost. The contents of the source
are not affected. Two's cOlllplement additiOn is performed.

Examples: Add to register: ADD 20,RO

ADD Rl,XXX

ADD· Rl,R2

ISP:

ADD:

Add to memory:

Add register to register:

Add memory to memory: ADD @ # 17750,XXX

XXX is a programmer-defined mnemonic for a memory loca­
tion.

r::::16:0> - s· + 0'; next

N ... 1'<15>;

deteJ'mine intermediate result sum of 17 bits

negative?

(r<15:0> - 0) ~ (2 - 1 else Z - 0);

(5<15> " 1K15» " (5<15> e r<15» ~ (

v 1 else V'" 0);

C'" r<16>;

D ~ r

aeNJ?

overflow .. .? .~if sig7l$ of operands agree and sign -of
Q7J. opemnd and "the sign of the l"esul.t disagNle
then 8et V to 1 else set V to 0

canoy th8 17th bit

tJtctnsnrit result to D

61

2.3 p.S

SUB

Subtract src. dst 16SSDD

11 0 s s s
I

s s d d d I d d d

15 12 11 6 5 0

Operation: (dst).(dst)-(src) [in detail, (dst) + ~(src) + 1 (dst)]

Condition.Codes: N: set if result <0; cleared otherwise
Z: set if result =0; cleared otherwise
V: set if there was arithmetic overflow as a result of the oper·
ation, that is if operands were of opposite signs and the sign
of the source was the same as the sign of the result; cleared
otherwise

. C: .cleared if there was a carry from the most significant bit of
the result; set otherwise

Description: Subtracts the source operandJrom the destination operand
and leaves the result at the destination address. The orignial
contents of the destination are lost. The contents of the
source are not affected. In double-precision arithmetic the C·
bit, when set, indicates a "borrow".

Example: SUB Rl,R2

ISP:
SUB:

Before
(Rl) =011111
(R2) = 012345

NZVC
11 11

After
(Rl) =011111
(R2) =001234

NZVC
0001

r'" 0' - 8 1 ; next 17 bit :result is D minus S; actually P +- .., S+D+l-;

negative? N'" r<lS>;

(r<15:.0;>·. 0) "* (Z - 1 else z 0); .8ero?

(1X1S> .. -. 8<15» 1\ (1X1S> Ell r<15» '" (overof1,O>1? (Bee add)

V ... 1 else V ... 0);

c'" r<16>;

D~r

bol'l'O>1 from 1 ?th bit

move 'l'68utt to D

62

1.8 pS
2.3 pS if Mode 0

Compare src. ds!

10/1 10 0 I s s s s S 8 d d d

15 12 11 6 5

Operation: (src)-(dst) [in detail, (src) + - (dst) + 11

Condition Codes: N: set.if result
<O;chfared otherwise
Z: set if result =0; cleared otherwise

CMP
CMPB

n2SSDD

d d d

0

V: set if there was arithmetic overflow; that is, operands were
of opposite signs and the sign of the destination was the
same as the sign of the result; cleared otherwise
C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Description: Compares the source and destination operands and sets the
condition codes, which may then be used for arithmetic and
logical conditional branches. Both operands are unaffected.
The only action is to set the condition codes. The compare is
customarily followed by a conditional branch instruction.
Note that unlike the subtract instruction the order of oper·
ation is (src)-(dst), not (dst)-(src).

ISP:
DlPB:

. r<8:. 0> ... Sb' .. Db I; nex.t c::ompare affects CC only

N ... r<7>; negative?

(r<7:0> ·-0) .. "(Z ... 1 elae z ... 0); 38ro?

(Sb<7> " .., Db<7»' 10. (Sb<7> e r<7» ~ (overfi"",? (s •• add)

v ... 1 else V ... 0);

c'" 1"<8> 8th bit is """"!I

. DIP:

r .. 5' - 0'"; next ~ affects CC onty

N ... r<::1.5>; negative?
(1"<15: 0> - 0) ;::t (Z ... 1 el&a Z ... 0); ael'O?

(5<15> " .., 0<15» 10. (5<15> E9 r<15» .. (OVOl'fto.J? (8 •• add)

V'" 1 elae V ~ 0);

c'" 1<16> 17th bit i8 """"!I

63

· 4.5.2 Logical Instructions
These instructions have the same.format as the double·operand.arithmetic group:
They permit operations on data at the bit level.

64

2.3 J.IS

Bit Set src. dst

\0/1, ° s

15 12 11

Operation: (dst)~(src) v (dst)

s [d d

6 5

d d
I

d

BIS
BISB

n5SSDD

d

°

Condition Codes: N: set if high·order bit of result set, cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: not affected

Description: Performs "Inclusive OR"operation between the source and
destination operands and leaves the result at the destination
address; that is, corresponding bits set in the source are set
in the destination. The contents of the destination are lost.

Example: SIS RO,R1

ISP:

BIS:

Before
(RO) =001234
(Rl) = 001111

NZVC
0000

r ... D I V S I j next

BISB:

N "'T<15>;

(1'<15:0> • 0) =- (Z'" 1 ehe z ... 0);

V ~ 0;

D ~ r

r'" Db' V Sb ' ; next

N t- r<7>;

(r<7:<t>. 0) ~ (Z'" 1 ,.lIe z .. 0);

V - 0;

Db - r

After
(RO) =001234
(R1) =001335

1"e8Ult is S "OR" D

negative?

.:a:e:ro?

clear V

transmit NBUlt to D

result is S "OR" D

negative?

"6l'O?

olear V

tztanlJtttit roeeult to D

65

NZVC
0000

BIT
BitS

Bit Test src, dst

15

s s

12 11

Operation: (dst)~(src)A(dst)

d

6 5

2.4p.s
2.9 p.s if Mode 0

d d
I

n3SSDD

d d

o

Condition Codes:. N: set if high-order bit of result set; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: not affected

Description: Performs logical "and"comparison of the source and desti-.
nation operands and modifies condition codes accordingly.
Neither the source nor destination operands are affected.
The BIT instruction may be used to test whether any of the
corresponding bits that are set in the destination are also set
in the source or whether all corresponding bits set in the des­
tination are clear in the source.

Example:

ISP:
,BIT:

r ... Dr 1\ S'. next

N" r<15'>;

BIT #30.R3

BEQ HELP

(r<15r 0> == 0) :::; (Z 1 else Z +- 0);

V ~ 0

BITB:

r Db' A Sb'; next

N" r<.7>,

(><7: 0> = 0) '" (Z ~ 1 else Z ~ 0);

V~O

; test bits 3 and 4 of R3 to see
; if both are off

; BEQ to HELP will occur if
; both are off

test result is nAND" of D and S

negatitxn

lSero?

elear V

test result is "AND" of D and S

neganve?

zero?

66

2.9 pS

BIC
BICB

,Bit Clear src dst n4SSDD

[0/1 1 0 0 I s I> S S : s s I d d d d d d

15 12 11 6 5 0

Operation: (dst).-(src)A(dst)

Condition Codes: N: set if high order bit of result set; cleared otherwise
Z: set if result =0; cleared otherwise
V: cleared
C: not affected

Description: Clears each bit in the destination that corresponds to a set
bit in the source. The original contents of the destination are
lost. The contents of the source are unaffected.

Example: BIC R3,R4

ISP:

BIC:

Before
(R3) -001234

(R4) ==001111

NZVC
1111

r"'D'I\-,S';next:

BleB:

N ~ r<15>;

(r<l5:0> - 0) 0 (Z 1 else Z ... 0);

V 0;

D~r

r'" Db' A Sb ' ; next

N'" 1"<7>;

After
(R3) ~ 001234

(R4) ==000101

N8uZt is D "AND" 'Wor" 8

negative?
a82'01

cZea:t'V

tM>!Blllit l'esuZt to D

resuZt is D HAND" "NO.!" S

negative?

NZVC
0001

(1"<7:0> - 0) ~ (Z 1 else Z 0);

V'" 0;

, aeY'O?

cleaP V

Db'" T tM>!Blllit ""8UZt to D

67

4.6 PROGRAM CONTROL INSTRUCTIONS
4.6.1 Branches

The instruction causes a branch to a location defined by the sum of the offset
(multiplied by 2)·and the current contents of the Program Counter if:

a) the branch instruction is unconditional

b) it is -conditional and the conditions are met after testing the condition
codes (status word).

The offset is the number of words from the current contents oUhe PC. Note that '
the current contents. of the PC point to the word following the branch instruction.

Although the PC expresses a byte address, the offset is expressed in words. The
offset is automatically multiplied by two to express bytes before it is added to the
PC. Bit 7 is the sign of the offset. 'If it is set, the offset is negative and the branch
is done in the backward direction. Similarly if it is not set, the offset is positive
and the branch is done in the forward direction.

The8~bit offset allows branching in the backward direction by 200. words (400.
bytes) from the current PC, and in the forward direction by 177. words (376.
bytes) from the current PC.

The PDp·ll assembler handles address arithmetic for the user and computes and
assembles the proper offset field for branch instructions in the form:

Bxxloc

Where "Bxx" is the branch instruction and "Ioc" is the address to which the
branch is to be made. The assembler giv.esan error indication in the instruction if
the permissable branch range is exceeded. Branch instructions have no effect on
condition codes.

68

2.6 J1S

Branch (unconditiona!)

15

Operation:

000 000
I

8 7

PC • PC + (2 x offset)

BR

ooo410c

OFFSET

o

Description: Provides a way of transferring program control within a
range of -128 to + 127 words with a one word instruction.

Example:

ISP:
BR:

001000
001002
001004

xxx: 001006
001010

BR xxx

PC +- PC + sign-extend(instrtlction<7:0> x 2)4

69

Simple. Conditional Branches
BEQ
BNE
BMI
BPL
BCS
BCC
BVS
BVC

70

1.5 pS -- no branch
2_6 pS -- branch

Branch on Equal (zero)

BEQ

0014 offset

~I_°-LI_°-LI_O_·L-°-LI_O~_0-L __ L--L __ L--L __ O~F_~_~L-~I_·~ __ ~~I.
15 8 7 o

Operation: PC • PC + (2 x offset) if Z = 1

Condition Codes: Unaffected .

Description: Tests the state of the Z-bit and causes a branch if Z is set. As
an example. it is used to test equality following a CMP oper­
ation. to test that no bits set in the destination were also.set
in the source following a BIToperation. and.generally. to test
that the result of the previous operation was zero.

. Example: CMP A.B
BEQ C

will branch to Cif A =. B
and the sequence

ADD A.B
BEQ C

; compare A and B
; branch if they are equal

(A- B = 0)

; addAto B
; branch if the result = 0

will branch to C if A + B = 0;

ISP:
BEQ:

(Z=1) :=,b (PC'''' PC + sign-extend(instruction<7:0> X 2»

71

1.5 ps .. no branch
2.6 ps .. branch

Branch Not Equal (Zero) 0010 offset

I 0 J 0

15

Operation:

o 0 0 0
I

1 10

8 7

OFFSET

PC ... PC + (2 X offSet) if Z = 0

Conditio.n Codes: Unaffected

Description:

Example:

15ft;
BNE:

Tests the state of the Z·bit and causes a branch if the Z·b1t is
clear. BNE is the cOl11plementary operation to BEQ. It is used
to test inequality following a CMP, to test that some bits set
in the destination. were also in the source, followi ng a BIT,
and generally, to test that the result of the previous opel"·

. ation was not zero.

CMP A,B
BNE C

will branch to C if A '" B

ADD A,S
BNE C

; compare A and B
; branch if they are not equal

and the sequence

; add A to B
'; Branch if the resultnot equal
;to 0

,will branch to C if A + B = 0

'(Z:::"(J) -= (PC - PC + sign-extend(instruction<7:0> x 2)}

72

1.5 pS -- no branch
2.6 pS -- branch

Branch on Minus

15

OFFSET

8 7

Operation: PC .. PC + (2 x offset) if N = 1

Condition Codes: Unaffected

8MI

1004 same offset

o

Description: Tests the state of the N·bit and causes a branch if N is set. It
is used to test the sign (most significant bit) of the result of
the previous operation).

Example:

ISP:
BMI:

(N=1) :::10 (PC +- PC + sign·extend(instruction<7:0>)(2»

73

BPl

Branch on Plus

I 1 , .0 .0

15

Operation:

Description:

ISP:
B"PL:

0 0 .0 0 0 .oFFSET

8 7

PC. PC + (2 x offset) if N =0

l.5 pS •• no branch
2.6 pS .• branch

1000 offset

.0

Tests the state of the N·bit and causes a branch if N is clear.
'BPL is the complementary operation of BMI.

(NooO) ~ (PC - PC + sign-extend(insrructioo<7:0 x 2»

74

1.5 /.IS •• no branch
2.6 /.IS •• branch

Branch on Carry Set

BCS

1034 offset

II 1 0 o 0 0
I

OFFSET I
15

Operation:

Description:

ISP:
BCS;

8 7 o

PC • PC + (2 x offset) if C = 1

Tests the state of the C·bit and causes a branch ~f Cis set. rt
is used to test for a carry in the result of a previous oper.
ation.

(C=l) = (PC PC + sign-extend(instructiono::::1: 0>)(2» if C=1 then bl'aJ'lCh

75

Bee
1.5 J.IS -- no branch
2.6 J.IS '- branch

Branch on Carry Clear 1030 offset

o o
15

Operation:

Description:

ISP:
Bee:

o J 0 o OFFSET

B 7 o

PC., PC + (2 x offset) if C=O

Tests the state of the C·bit and causes a branch if C is clear.
BCC is the complementary operation to BCS

(C=O) ~ (PC +- PC + sign-extend(instruction<7:0> x 2))

76

1.5 pS .. no branch
2.6·,us .. branch

BVS

Branch on Overflow Set 1024 offset

o 0 0 0 o OFFSET

15

Operation:

Description:

ISP:
BVS:

8 7 o

PC .. PC +. (2 x offset) if V = 1

Tests the state of V bit (overflow) and causes a branch if. the
V bit is set BVS is used to detect arithmetic overtlow in the
previous operation.

(V<=;l) =:I (pc PC .. + sign~~xtend(instruction<7;();> x 2»

77

ave
1.5 JlS .. no branch
2.6 JlS .. branch

Branch on Overflo .v Clear 1020 offset

o

15

Operation:

Description:

ISP:
Bve:

o OFFSET

8 7 o

PC ~ PC + (2 x offset) if V =0

Tests the state of the V bit and causes a branch if the V bit is
clear. BVC is complementary operation to BVS.

(V==O) ~ (PC'" PC + sign-extend(instruction<7; 0> x 2)

78

'Signed Conditional Branches
Particular combinations of the condition'code bits are tested with the signed con·
ditional branches. These instructions are used to test the results of instructions in
which the operands were considered as a signed (two's complement) values.

Note that the sense of signed comparisons differs from that of unsigned com·
parisons in that in signed 16·bit, two's complement arithmetic the sequence of
values is as follows:

largest

positive

negative

smallest

077777
077776

000001
000000
177777
177776

100001
100000

whereas in unsigned 16·bit arithmetic the sequence is considered to be

highest

lowest

177777

000002
000001
000000

The signed conditional branch instructions are:

BLT BGE

BLE BGT

79

BLT

1.5 p.s .. no .branch
2.6 fIS" branch

Branch on Less Than (Zero) 0024 offset

~o~l_o~_o~ __ O~I~o~ __ ~o~ __ ~I_'~ __ ~~O~F_FS_ET~-L __ ~~ __ ~1 .
ffi 8 7 o

Operation:

Description:

ISP:
BLT:

PC .-PC + (2x offset) if N "'v = 1

Causes a branch if the "Exclusive Or"of the N and V bits are
1. Thus BL T will always branch.following an operation that

. added two negative numbers, even if overflow occurred;
In particular, BLT will always cause a branch ·if it follows a
CMP instruction operating on a negative source and a posi­
tive destination (even if overflow occurred). Further, BL Twill
never cause a branch when it follows a CMP instruction oper­
ating on a positive source and negative destination. BL Twill.
not cause a branch if the result of the previous operation was
zero (without overflow).

. (N E& V) do PC t- PC + sign-exr:end(lnstruct.ion<7:0> x 2»

80

1.5 pS .. no branch
2.6 pS .. branch

BGE

Branch on Greater than or Equal (zero) 0020 offset

o I 0 o
15

Operation:

Description:

ISP:
BGE:

o o o I 0 OFFSET

8 7 o

PC ~ PC + (2 x offset) if N \f V = 0

Causes a branch if N and V are either both clear or both set.
BGE is the complementary operation to BLT. Thus BGE will
always cause a branch when it follows an operation that
caused addition to two positiv.e numbers. BGE will also cause
a branch on a zero result.

(N =- V) =- (pc PC + sign~extend(instruction<):O>)(2»

sn

BlE

1.5 }IS .. no branch
2.6 }IS •. branch

Branch on Less than or Equal (zero) 0034 offset

o I 0 o

15

Operation:

Description:

ISP:
BLE;

o 0 OFFSET

8 7 o

PC ~ PC + (2 x offset) if Z v(N v- V) = 1

Operation is similar to BLT but in addition will cause a
branch if the result of the previous operation was zero.

(Z V (N $ V) ~ (pc PC + sign-ext.end(instruction<:7:0> x 2»

82

1.5 !JS -- no branch
2_6!JS -- branch

BGT

Branch on Greater Than (zero) 0030 offset

15

Operation:

Description:

ISP:
BGT:

o OFFSET

B 7 o

PC. PC -t (2 x offset) if Z v(N y. 0)

Operation of.BGT is similar to BGE. except BGT will not cause
a branch on a zero result

-.(Z V (N e v» :$ (PC PC + sign-extend.{instruction<7:0> X 2»

83

Unsigned Conditional Branches
The Unsigned Conditional Branches provide a means for testing the result of
comparison operations in which the operands are considered as unsigned values.

BHI
BlOS
BHIS
BlO

84

1.5 pS .. no branch
2.6 pS .. branch

Branch on Higher

BHI

1010 offset

1 ,0 o 0 o o o OFFSET

15

Operation:

. Description:

ISP:
Btl!:

B 7 o

PC ~ PC + (2 x offset) if C = 0 and Z = 0

Causes.a branch if the previous operation caused neither a
carry nor a zero result. This wi" happen in comparison (CMP)
operations as long as the source hasa higher unsigned value
than the destination.

-,(C v Z) ::::J (PC Pc + sign-extend(instruction<7:1l'--> x 2»

85

BlOS

1.5 !lS -- no branch
2-6!lS -- branch

Branch on Lower or Same 1014 offset

11100000 OFFSET

15

Operation:

Description:

ISP:
BLOS,

8 7 o

PC..., PC + (2 x offset) if C v Z = 1

Causes a branch if the previous operation caused either a
carry or a zero result_ BLOS is the complementary operation
to BHL The branch will occur in comparison operations as
long as the source is equal to, or has a lower unsigned value
than the destination_ _
Comparison of unsigned values with the CMP instruction can
be tested for "higher or same" and "higher"by a simple test
of the C-bit.

(C v Z) ~ (PC +- PC +-sign-extend(instruction<7:0> X 2»)

86

1.5 ps .. no branch
2.6 ps .- branch

Branch on Lower

15

o 0 0 0
I

OFFSET

8 7

Operation: PC.. PC + (2 x offset) if C = 1

BlO

1034 offset

I
o

Description: BlO is same instruction as BCS. This mnemonic is included
only for ,convenience.

ISP:
BCS/BUJ:

(C.=l) = (PC'" PC + sign-excerui(instructlon<7:0> x 2»

87

BHIS

Brallch on Higher or Same

1 1 ,0000 ° OFFSET

15 8 7

Operation: PC • PC + (2 x offset) if C = 0

1.5 iJS -- no branch
2_6 iJS -- branch

1030 offset

°

Description: BHIS is the same instruction as BCC_ This mnemonic is in­
cluded only for convenience_

'SP:
Bee/BUIS:

(C=O) ~ (PC'" PC + sign-extend(ill8truction<1:0> x 2»

88

4.6.2 Subroutine Instructions
The subroutine call in the PDP-II provides for automatic nesting of subroutines,
reentrancy, and multiple entry points. Subroutines may call other subroutines (or
indeed themselves) to any level of nesting without making special provision for
storage or return addresses at each level of subroutine calL The subroutine call­
ing mechanism does not modify any fixed location in memory, thus providing for
reentrancy_ This allows one copy of a subroutine to be shared among several in­
terrupting processes. For more detailed description of subroutine programming
see Chapter 5.

89

3.5 ps

RTS

Return from Subroutine 00020 Reg

o 0 ..
15

Operation:

Description:

ISP:
RTS:

PC ~ R[dr];

R[dr] Ms[SPJ;

SP ... Sp + 2

o 10 o

PC .. (reg)
(reg) .. SP.

o i 0 o 10 o
3 2 o

Loads contents of reg into PC and pops the top element of
the processor stack into the specified register.
Return from a non·reentrant subroutine is typically made
through the s,ame register. t~at was used'in its catr.Tffi:ts;""Cf
subroutine called with a JSR PC, dst exits with a RTS PC and
a subroutine called with a JSR R5. dst. may pick up para·
meters with addressing modes (R5) +. X(R5). or @X(R5)
and finally exits, with an RTS RS.

zoetl4Pn jump

unstaek (pop) R[dr J

90

4.4 ps

JSR

Jump to Sub Routine 004 reg. dst

15

Operation:

. [)escription:

.'

d d I d d d I
9 8 6 5 o

(tmp).(dst) (tmp is an internal processor register)

'f (SP).reg (push reg contents onto processor stack)

reg~PC (PC holds location following JSR; this address

P~(tmp) now put in reg)

In execution of the JSR, the old contents of the specified reg­
ister (the "LINKAGE POINTER") are automatically pushed
onto the processor stack and new linkage information placed
in the register. Thus subroutines nested within subroutines
to any depth may all be called with the same linkage register.
There is no need either to plan the maximum depth at which
any particular subroutine will be called or to include instruc­
tions in each routine to save and restore the linkage pointer.
Further, since all linkages are saved in a reentrant manner
on the processor stack execution of a subroutine may be in·
terrupted, the same subroutine reentered and executed by an
interrupt service routine. Execution of the initial subroutine
can then be resumed when other requests are satisfied. This
process (called nesting) can proceed to any level.

In both JSR and JMP instructions the destination address is
used to load the program counter, R7. Thus for example a
JSR in destination mode I for general register RI (where
(RI) = 100), will access a subroutine at location 100. This is
effectively one level less of deferral tha n o.perate instructions
such as ADD.

A subroutine called with a JSR reg,dst instruction can access
the arguments following the call with either autoincrement
addressing, (reg) +, (if arguments are accessed sequentially)
or by indexed addressing, X(reg), (if accessed in random or·
der). These addressing modes may also be deferred,
@(reg) + and @X(reg) if the parameters are operand ad·
dresses rather than the operands themselves.

JSR PC, dst is a special case of the PDp·ll subroutine call
suitable for subroutine calls that transmit parameters

91

ISP:
JSR;

SP ... S'P - 2; next

Nw6 [SP] ... R[sr];

R[sr] ~ PC;

PC - Daddress·

through the general registers. The SP and the PC are the only
registers that may be modified by this call.

Another special case of the JSR instruction is JSR pc,
@(SP)+ which exchanges the top element of the processor
stack and the contents of the program counter. Use of this
instruction allows two routines to swap program control and
resume operation when recalled where they left off. Such rou­
tines are ·called "co-routines."

Return from a subroutine is done by the RTS instruction. RTS
reg loads the contents of reg into the PC and pops the top
element of the processor stack into the specified register.

JSR used in address mode 2 (autoincrement), increments ttie
register before using it as an address. This is a special case,
and is only true of one other instruction (JMP)

92

stack (p""hJ R[""];
l.oad R[S"] .n.th Pa
jump

4.6.3 Traps
Trap instructions provide for calls to emulators, 1/0 monitors, debugging pack­
ages, and user-defined interpreters. A trap is effectively an interrupt generated by
software. When a trap occurs the contents of the current Program Counter (PC)
and Program Status Word (PSW) are pushed onto the processor stack and re­
placed by the contents of a two-word trap vector containing a new PC and new
PSW. The return sequence from a trap involves executing an RTI instruc­
tion which restores the old PC and old PSW by popping them from the stack. Trap
vectors are located permanently assigned fixed address.

TRAP
EMT
lOT

93

EMT

Emulator Traps

I I 0 o 0 o

15

Operation: , (SP).PS
t (SP).PC

P~(30)

P5.(32)

o I 0 I
8 7

Condition Codes: N. loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

9.3 fLS

104000·104377

.,
o

Description: All operation codes from 104000 to 104377 are EMT instruc·
tions and may be used to transmit information to the emulat·
ing routine (e.g., function to be performed). The trap vector
for EMT is at address 30. The new PC is taken from the word
at address 30; the new central processor status (PS) is taken
from the word at address 32.

ISP:
QlT,

SP - SP-2; next

Hw[SP] ~ PS;

SP .. SP-2; next

Hw[SPj ~ PC;

PC ~ Hw[30j;

PS ~ Hw[32]

Caution: EMT is used frequen'tly by DEC system software and
is therefore not recommended for general use.

94

place

PS and

PC on stack

take n.., PC and PS from ,11[301. ,11[321

2.25 p.s

Trap

o 0 0 o 0

15

Operation: t (SP~PS
",(SP~PC

P<A(34)

PS.(36)

8 7

Condition Codes: N: loaded from trap vector·
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

TRAP

104400 to 104777

o

Description: Operation codes from 104400 to 104777 are TRAP instruc·
tions. TRAPs and EMTs are identical in operation, except
that the trap vector for TRAP is at address 34.

ISP:.
TRAP:

SP - SP-2; next

Hs[SP] PS;

SP SP-2; next

Hw[SP] - pc;

pc - Hw[34]

PS - Hw[36]

Note: Since DEC software makes frequent use of EMT, the
TRAP instruction is recommended for general use.

95

plaee (push)

PS and

PC on atack

take n.,., PC and PS f1'Om M[J4]. M[36]

(No mnemonic)

Breakpoint Trap

15

Operation:

Condition Codes:

Description:

tSP:

SP - SF • 2; next

""[SF] - PS;

SP ... SP - 2; next

Mw[SP] - PC;

PC - Mw[14al;

PS - Mw[168 1

f(SP).PS
f(SP).PC
PC .(14)
PS .(16)

N: loaded from trap vector
Z: loaded from trap vector
V; loaded from trap vector
C: loaded from trap/vector

9.3 p.s

000003

o

Performs a trap sequence with a trap vector address of 14.
Used to call debugging aids. The user is cautioned against
employing code 000003 in programs run under these de­
bugging aids_

96

place

PS ami

PC on stack

take new PC ami PS f~om MIN] > M [16]

9.3 !JS

I/O Trap

0 0 0 0 0 0
I

15

Operation: t (SP~PS
,(SP~Pc

P<A(20)
PS.(22)

0 0 0 0

Condition Codes: N:loaded 'from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

lOT

000004

0 0 0 0 0

0

Description: Performs a trap sequence with a trap vector address of 20.

ISP:

IOT:

SP - SP-2; next

Mw[SP] - PS;

SP SP-2; next

Mv[SP) .,... PC;

PC - Mw[20];

PI; - Mv(",

Used to call the I/O Executive routine lOX in the paper tape
software system. and for error reporting in the Disk Oper­
ating System.

97

pla.ee

PH and

PC on stack

take new PC and PS f""'" M[201, M[22]

Reserved Instruction Traps - These are caused by attempts to execute instruction
codes reserved for future processor expansion (reserved instructions) or instruc­
tions with illegal addressing modes (illegal instructions)_Order codes not corre­
sponding to any of the instructions described are considered to be reserved in­
structions_ JMP and JSR with register mode destinations are illegal instructions_
Reserved and illegal instruction traps occur as described under EMT, but trap
through vectors at addresses 10 and 4 respectively_

Stack Overflow Trap Stack Overflow Trap is a processor trap through the
vector at address 4_ It is caused by referencing addresses below 400. through the
processor stack pointer R6 (SP) in autodecrement or autodecrement deferred ado'
dressing_ The instruction causing the overflow is completed before the trap is
made_

Bus Error Traps - Bus Error Traps are:

L Boundary Errors - attempts to reference word operands at odd ad­
dresses_

2_ Time-Out Errors - attempts-to reference addresses on the bus that made
no response within lOJLS in the PDP-ll .. In general, these are caused by
attempts to reference non-existent memory, and attempts to reference
non-existent peripheral devices.

Bus error traps cause processor traps through the trap vector address 4.

Trace Trap - Trace Trap enables bit 4 of the PSW and causes processor traps' at
the end of instruction executions. The instruction that is executed after the in­
struction that set the T-bit will proceed to completion and then cause a processor
trap through the trap vector at address 14. Note that the trace trap is a system
debugging aid and is transparent to the general programmer.

The following are special cases and are detailed in subsequent paragraphs:

L The traced i nstructi on cleared the T-bit.

2. The traced instruction set the T-bit.

3. The traced instruction caused an instruction trap.

4. The traced instruction caused a bus error trap.

5. The traced instruction caused a stack overflow trap.

6. The process was interrupted between the time the T-bit was set and the
fetching of the instruction that was to be traced.

7. The traced instruction was a WAIT.

8. The traced instruction was a HALT.

Note: The traced instruction is the instruction after the one that sets the T-bit.

98

An instruction that cleared the T·bit . Upon fetching the traced instruction an in·
ternal flag, the trace flag, was set. The trap will still occur at the end of execution
of this instruction. The stacked status word, however, will have a clear T·bit.

An instruction that set the T·bit . Since the T·bit was already set, setting it again
has no effect. The trap will occur. . .

An instruction that caused an Instruction Trap· The instruction trap is sprung and
the entire routine for the service trap is executed. !f the service routine exists with
an RTI or in any other way restores the stacked status word, the T·bit is set again,
the instruction following the traced instruction is executed and, unless it is one of
the special cases noted above, a trace trap occurs.

An instruction that caused a Bus Error Trap· This is treated as an Instruction
Trap. The only difference is that the error service is not as likely to exit with an
RTI, so that the trace trap may not occur.

An instruction that caused a stack overflow· The instruction completes execution
as usual - the Stack Overflow does not cause a trap. The Trace Trap Vector is
loaded into the PC and PS, and the old PC and PS are pushed onto the stack.
Stack Overflow occurs again, and this time the trap is made.

An interrupt between setting of the T·bit and fetch of the traced instruction· The
entire interrupt service routine is executed and then the T·bit is set again by the
exiting RTI. The traced instruction is executed (if there have been no other inter·
rupts) and, unless it is a special case noted above, causes a trace trap.

Note that no interrupts are acknowledged between the time of fetching any
trapped instruction (including one that is trapped by reason of the T·bit being set)
and completing execution of the first instruction of the trap service.

A WAIT The trap occurs immediately. The address of the next instruction is saved
on the stack

A HALT· The processor halts. When the continue key on the console is pressed,
the instruction following the HALT is fetched and executed. Unless it is one of the
exceptions noted above, the trap occurs immediately following execution.

Power Faiiure -Trap· is a standard PDp·ll feature. Trap occurs whenever the AC
power drops below 105 volts or outside 47 to 63 Hertz. Two milliseconds are then
allowed for power down processing. Trap vector for power failure is at locations
24 and 26.

Trap priorities in case multiple processor trap conditions occur simultaneously
the following order of priorities is observed (from high to low):
- 1. Bus Errors

2. Instruction Traps
3. Trace Trap
4. Stack Overflow Trap
5. Power Failure Trap

The details on the trace trap process have been described in the trace trap oper·
ational description which includes cases in which an instruction being traced
causes a bus error, instruction trap, or a stack overflow trap. .

99

If a bus error is caused by the trap process handling instruction traps, trace traps,
stack overflow traps,-or a previous bus error, the processor is halted.

If a stack overflow is caused by the trap process in handling bus errors, instruc­
tion traps, or trace traps, the process is completed and then the stack overflow
trap is sprung~

100

4.7 Miscellaneous
HALT
WAIT
RESET
JMP
RTI

101

1.8 J1S

HALT

Hall 000000

0000000000000000

m 0

Condition Codes: not affected

Description: Causes the processor operation to cease. The console is
given control of the bus. The console data lights display the
contents of RO; the console address lights display the ad·
dress after the halt instruction. Transfers on the UN IBUS are
terminated immediately. The PC points to the next instruc·
tion to be executed. Pressing the continue key on the console
causes processor operation to resume. No INIT signal is
given.

ISP:
Off ... true

102

set activity to Off state
no moPe inst1'Uctiorw earl
be executed unti Z a con­
sole action takes place
to restal't p1"O(!eS801'

1.8 f.IS

WAIT

Wait for Interrupt 000001

10000000 00 000000

ffi 0

Condition Codes: not affected

Description: Provides a way for the processor to relinquish use of the bus
while it waits for an external interrupt. Having been given a
WAIT command, the processor will not.compete for bus use
by fetching instructions or operands from memory. This per·
mits higher transfer rates between a device and memory,
since no processor·induced latencies will be encountered by
bus requests from the device. In WAIT, as in all instructions,
the PC points to the next instruction following the WAIT oper.
ation. Thus when an interrupt causes the PC and PSW to be
pushed onto the processor ation. from the interrupt routine
(i.e. execution of anRTI instruction) will cause resumption of
the interrupted process at the instruction following the WAIT.

ISP:
WAIT:

Watt true

103

set activity to Wait state; intel'Tupts
coan o~cur

20 ms

RESET

Reset External Bus 000005

o 0 000 0 0 000 000 0

15 0

Condition Codes: not affected

Description: Sends INIT on the UNIBUS for 20ms. All devices on the UNI·
BUS are reset to their state at power up.
At the end of a reset sequence an effective halt is executed.

ISP:
Reset:

InU I.

Delay "(so milliseconds)i next

Init - 0

104

~ause a si.gnal.~ Init~ to be one fo'1'
20 mi Z liseeond8

4.8 flS.

Return from Interrupt

o 0 0 00000000000
I

RTI

000002

o

ffi 0

Operation: PC.(SP)~
PSW.(SP)~

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: Used to exit from an interrupt or TRAP service routine. The
PC and PSW are restored (popped) from the processor stack.
If a trace trap is pending, the first instruction after the RTI

ISP: will be executed prior to the next "T" Trap.
RTI:

PC ~ Mw[SP];

sp sp- + 2; next

PS ~ Mw[SP);

SP SP + 2;

T-trap-inhibit true

unstack (pop) PC for ,jump

unstack (pop) PS

inhibit T-trup faT' 1 instruation

105

1.2 J1S

JMP

Jump 000100

I 0
0 0 0 0 0 0 0 : 0 d d d d

I
d d

15 6 5 0

Operation: PC .dst

Condition Codes: not affected

Description: JMP provides more flexible program branching than provided
with the branch instructions. Control may be transferred to
any location in memory (no range limitation) and can be ac·
complishedwith the full flexibility of the addressing modes,
with the exception of register mode O. Execution of a jump
with mode 0 will cause an "illegal instruction"condition.
(Program control cannot be transferred to a register.) Regis·
ter deferfed mode is legal and will cause program control to
be transferred to the address held in the specified register.
Note that instructions are word data and must therefore be
fetched from an even·numbered address. A 'boundary er·
ror"trap condition will result when the processor attempts to
fetch an instruction from an odd address.

ISP:

JMP,

PC Daddress'

Deferred index mode JMP instructions permit transfer of
control to the address contained in a selectable element of a
table of dispatch vectors.

106

Dadd:reS8 is C!orrrputed in a fashion
similar to D

4.8 Condition Code Operators

1.5/-l.s ClC
ClZ
ClN
ClV

SEC
SEZ
SEN
SEV

Condition Code Operators 0002 XX

I 0 I 0 o o I 0 o o I I 10/1 I N I z I V I c I
15 5 4 3 2 0

Description: Set and clear condition code bits. Selectable combinations of
these bits may be cleared or set together. Condition code bits
corresponding to bits in the condition code operator (Bits 0-
3) are modified according to the sense of bit 4, the set/clear
bit of the operator. i.e. set the bit specified by bit 0, 1, 2 or 3,
if bit 4 is a 1. Clear corresponding bits if bit 4 = 0,

Mnemonic
Operation

CLC ClearC

CLV ClearV

ClZ Clear Z

CLN Clear N

SEC SetC

SEV Set V

SEZ Set Z

SEN Set N

Set all CC's

Clear all CC's

ClearV and C

No operation

No operation

OP Code

000241

000242

000244

000250

000261

000262

000264

000270

000277

000257

000243

000240

000260

Combinations of the above set or clear operations may be ORed together to form
combined instructions.

107

ISP:
CLe:

..., 1<4> " 1<0> :0 C 0

CLN:

..., 1<4> /I. i<.1> .". N 0

CLV:

..., 1<4> " i<1> .. V 0

CLZ:

...., 1<4> " 1<2> -= z 0

SEC:

1<4> " 1<0> ::::l C 1

SEN:

i<4> " i<3> .. N ... 1

SEV:

1<4> " 1<1> ". V ... 1

SEZ:

1<4> A i<2> _ Z - 1

olear C

atear N

olear V

cZear- Z

set C

set N

set V

set Z

108

To remove an item from stack the auto increment addressing mode with the ap·
propriate SP is employed: This is accomplished in the following manner:

MOV (SP) + ,Destination ;MOV Destination Word off the stack

or

MOVB (SP) + ,Destination ;MOVB Destination Byte off the stack

Removing an item from a stack is called a "pop" for "popping from the stack."
After an item has been "popped," its stack location is considered free and avai·
lable for other use. The stack pointer points to the last·used location implying
that the next (lower) location is free. Thus a stack may represent a pool of share·
able temporary storage locations.

HIGHMEMORY~L'~0 51' ~Ee
JAREA • E1 51'

LOW MEMORY
1. AN EMPTY STACK 2. PUSHING A OATUM 3. PUSHING ANOTHER

AREA ONTO TH£ STACK DATUM OHlO THE
STACKS

~0
E1

~ E2 -SP

4. ANOTHER PUSH

~
'E3

E0

.. E1 +SP

7 POP

bdp
~~r
!t POP

~0
E1

~ E3 _sp
6. PUSH

~igure 5·3: Illustration of Push and Pop Operations

111

PART 1
CHAPTER 5

PROGRAMMING TECHNIQUES

In order to produce programs which fully utilize the power and flexibility of the
PDP·l1, the reader should become familiar with the various programming tech·
niques which are part of the basic design philosophy of the PDP·l1. Although it is
possible to program the PDp· II along traditional lines such as "accumulator ori·
entation" this approach does not fully exploit the architecture and instruction set
of the PDp· 1 L

5.1 THE STACK
A "stack", as used on the PDP·l1, is an area of memory set aside by the pro·
grammer for temporary storage or subroutine/interrupt service linkage. The in·
structions which facilitate "stack" handling are useful features not normally
found in low·cost computers. They allow a program to dynamically establish,
modify, or delete a stack and items on it. The stack uses the "Iast·in, first·out"
concept, that is, various items may be added to a stack in sequential order and reo
trieved or deleted from the stack in reverse order. On the PDP·l1, a stack starts
at the highest location reserved for it and expands linearly downward to the low·
est address as items are added to the stack.

HIGH ADDRESSES

LCNI ADDRESSES

Figure 5·1: Stack Addresses

The progr~mmer does not need to keep track of the actual locations his data is
being stacked into. This is done automatically through a "stack pointer." To keep
track G~ the last item added to the stack (or "where we are" in the stack) a Gen·
eral Register always contains the memory address where the last item is stored in
the:;tack. In the PDp·l1 any register except Register 7 (the Progrart. Counter·PC)
me.l be used as a "stack pointer" under program control; however, instructions
as~ ociated with subroutine linkage and interrupt service automatically use Regis·
ter 6 (R6) as a hardware "Stack Pointer." For this reason R6 is frequently reo
ferred to as the system "SP."

109

To remove an item from stack the autoincrement addressing mode with the ap­
propriate SP is employed: This is accomplished in the following manner:

MOV (SP) + ,Destination ;MOV Destination Word off the stack

or

MOVB (SP) + ,Destination ;MOVB Destination 8yteoff the stack

Removing an item from a stack is called a "pop" for "popping from the stack."
After an item has been "popped," its stack location is considered free and avai­
lable for other use. The stack pointer points to the last-used location implying
that the next (lower) location is free. Thus a stack may represent a pool of share­
able temporary storage locations.

HIGHMEMORY§ ~ ~ , ts::CK' E0 sP E0
JOREA 'EI SP

LOW MEMORY
t AN EMPTY STACK 2,PlJSHINGA OATUM 3,PUSHING ANOTHER

AREA ONTO THE STACK OATUM ONlO THE
STACKS

~e
EI

• E2 -SP

~'Ee r2"~11
E1 4SP E1

I E3 _SP

4, ANOTHER PUSH 5, POP 6, PUSH

~:
1 POP

~igl!re 5-3: ,Illustration of Push and Pop Operations

III

As an example of stack usage consider this situation: a subroutine (SUBR) wants
to use registers 1 and 2, but these registers must be returned to the calling pro­
gram with their contents unchanged_ The subroutine could be written as follows:

Address Octal Code Assembler Syntax

076322 010167 SUBR: MOV Rl,TEMPI ;save Rl
076324 000072 *
076326 010267 MOV R2,TEMP2 ;save R2
076330 000070 *

076410 ~ 016701 MOV TEMPI, Rl ;Restore Rl
076412 000006 *
076414 016702 MOV TEMP2, R2 ; Restore R2
076416 000004 *
076410 000207 RTSPC
076422 000000 TEMPI: 0
076424 000000 TEMP2: 0

*Index Constants

Figure 5-4: Register Saving Without the Stack

OR: Using the Stack

Address

010020
010022

010130
010132

010134

Octal Code

010143 SUBR:
010243

012302
012301

000207

Assembler Syntax

MOV Rl, -(R3) ;push Rl
MOVR2, -(R3);push R2

MOV(R3) + , R2 ;pop R2
MOV(R3) +, Rl ;pop Rl

RTSPC

Note: In this case R3 was used as the Stack Pointer

Figure 5-5: Register Saving using the Stack

The second routine uses four less words of instruction code and two words of
temporary "stack" storage_ Another routine could use the same stack space at
some later point_ Thus, the ability to share temporary storage in the form of a
stack is a very economical way to save on memory usage_

As a further example of stack usage, consider the task of managing an input buf·
fer from a terminal. As characters come in, the terminal user may wish to delete
characters from his line; this is accomplished very easily by maintaining a byte
stack containing the input characters. Whenever a backspace is received a char·
acter is "popped" off the stack and eliminated from consideration. In this ex·
ample, a programmer has the choice of "popping" characters to be eliminated by
using either the MOVB (MOVE BYTE) or INC (INCREMENT) instructions.

001011

001010

001007

001006

001005

001004

001003

001002

001001

c
u
S

T

0

M

E

R

Z

MOV (SP) +. dest.

OR

INC SP

001001

c
u
S

T

0

M

E

R

Figure 5·6: Byte Stack used as a Character Buffer

001002

NOTE that in this case using the increment instruction (INC) is preferable to
MOVB since it would accomplish the task of eliminating the unwanted character
from the stack by readjusting the stack pointer without the need for a destination
location. Also, the stack pointer (SP) used in this example cannot be the system
stack pointer (R6), because R6 may only point to word (even) locations.

5.2 SUBROUTINES LINKAGE
5.2.1 Subroutine Calls '
Subroutines provide a facility for maintaining a single copy of a given routine
which can be used in a repetitive manner by other programs located anywhere -
else in memory. In order to provide this facility, generalized linkage methods
must be established for the purpose of control transfer and information exchange
between subroutines and calling programs. The PDp·l1 instruction set contains
several useful instructions for this purpose.

PDp·ll subroutines are called by using the JSR instruction which has the follow­
ing format.

a general register (R) for linkage ----,
JSR R,SUBR

an entry location (SUBR) for the subroutine...J

113

When a JSR is executed, the contents of the linkage register are saved on the sys­
tem R6 stack as if a MOV reg,~(SP) had been performed. Then the same register
is loaded with the memory address following the JSR instruction (the contents of
the current PC) and a jump is made to the entry location specified.

002000

001776

001774

001772

Address
001000
001002
001064

Assembler Syntax
JSR R5:'SUBR
Index constant for SUBR
SUBR:MOV A,B

Octal Code
004767
000064
01mmnn

Figure 5-7: JSR using RO-R5

BEFORE

IRS)' 000132
IRS)' 00 '776

IPC)·IR7). 00 1000

I------i
-SP

1------;

AFTER

(R5)=OOI004
(RS),.-OQI774

IPC)'IR7)'001064

002000 nnnnnn

"'--00""'::-:77:-:-6-'10017761--m-m-m-m-mm--;

0017741-_00_0_13,-2_-i-SP

001772 I-------j

Figure 5-8: JSR

001774

Note that the instruction JSR R6,SUBR is not normally considered to be a mean­
ingful combination.

5.2.2 Argument Transmission
The memory location pointed to by the linkage register of the JSR instruction maY'
contain arguments or addressses of arguments. These arguments may be ac- '
cessed from the subroutine in several ways. Using Register 5 as the linkage regis­
ter, the first argument could be obtained by using the addressing modes in­
dicated by (R5), (R5) + ,X(R5) for actual data, or @(R5) +, etc. for the address of
data. If the autoincrement mode is used, the linkage register is automatically up­
dated to point to the next argument

Figures 5-9 and 5·10 illustrate two possible methods of argument transmission.

Address Instructions and Data

010400
010402

010404
010406

020306

020301

JSR R5,SUBR
I ndex constant for SU BR

arg #1
arg #2 ARGUMENTS

SUBR: MOV'(R5)+,R1 ;get arg #1
MOV (R5) + ,R2 ;get arg # 2 Retrieve Arguments from SUB

Figure 5-9: Argument Transmission-Register Autoincrement Mode

114

Address

010400
010402

010404
010406
010410

077722
077724
077726

020306
020301

Instructions and Data

JSR R5,SUBR
index constant for SUBR

077722
077724
077726

Arg # 1
arg #2
arg #3

Address of Arg # 1
Address of Arg. # 2
Address of Arg. # 3

arguments

SUBR: MOV @(R5) + ,R1 ;get arg # 1
MOV @(R5) + ,R2 ;get arg # 2 Retrieve Arguments

; from SUB

Figure 5·10: Argument Transmission·Register Autoincrement Deferred Mode

Another method of transmitting arguments is to transmit only the address of the
first item by placing this address in a general purpose register. It is not necessary
to have the actual argument list in the same general area as the subroutine cali.
Thus a subroutine can be called to work on data located anywhere in memory. In
fact, in many cases, the operations performed by the subroutine can be applied
directly to the data located on or pointed to by a stack without the need to ever
actually move this data into the subroutine area.

Calling Program: MOV
JSR

SUBROUTINE

POINTER, Rl
PC,SUBR

ADD (Rl) +)Rl) ;Add item # 1 to item # 2, place
result in item #2, Rl points

etc.
or
ADD (Rl),2(Rl)

etc.

to item # 2 now

;Same effect as above except that Rl stili
points to item # 1

ITEM ". , -RI LI ___ ---'

ITEM # 2

Figure 5·11: Transmitting Stacks as Arguments

115

Because the PDP-ll hardware already uses general purpose register R6 to point
to a stack for saving and restoring PC and PS (processor status word) informa­
tion, it is quite convenient to use this same stack to save and restore intermediate
results and to transmit arguments to and from subroutines_ Using R6 in this
manner permits extreme flexibility in nesting subroutines and interrupt service
routines_

Since arguments may be obtained from the stack by using some form of register
indexed addressing, it is sometimes useful to save a temporary copy of R6 in
some other register which has already been saved at the beginning of a subrout­
ine_ In the previous example R5 may be used to index the arguments while R6 is
free to be incremented and decremented in the course of being used as a stack
pointer_ If R6 had been used directly as the base for indexing and not "copied", it
might be difficult to keep track of the position in the argument list since the base
of the stack would change with every autoincrementldecrement which occurs_

org #1

org ",2

.org,. 2 Is at source
-2 (SP)

but when another item
TO I~ pushed

"rQ .. ,
erg #2

arg #3

TO

ar'i!# 2 is at source
-4(SP}

Figure 5-12: Shifting Indexed Base

However, if the contents of R6 (SP) are saved in R5 before any arguments are
pushed onto the stack, the position relative to R5 would remain constant

org :# 1

sp-t-_"...:r9_"_2_--I
t-_"...:rQ-c#:-:'c----I-R5

org #2

org#2 IS at 2 (RS) or;*2 IS still at 2{RSl

Figure 5-13: Constant Index Base Using "R6 Copy"

116

5.2.3 Subroutine Return
In order to provi<;le for a return from a subroutine to the calling program an RTS
instruction i" executed by the subroutine. This instruction should specify the
same register as the JSR used in the subroutine call. When executed, it causes the
register specified to be moved to the PC and the top of the stack to be then placed
in the register specified. Note that if an RTS PC is executed, it has the effect of reo
turning to the address specified on the top of the stack.

Note that the JSR and the JMP Instructions differ in that a linkage register is al·
ways used with a JSR; there is no linkage register with a JMP and no way to reo
turn to the calling program. .

When a subroutine finishes:' it is necessary to "clean'up" the stack by eliminating
. or skipping over the subroutine arguments. One way this can be done is by insist·
ing that the subroutine keep the number of arguments as its first stack iten""Re·
turns from subroutines then involve calculating the amount by which to reo
set the stack pointer, resetting the stack pointer, then restoring the original
contents of the register which was used as the copy of the stack pointer.

5.2.4 PDP·ll Subroutine Advantages
There are several advantages to the PDP·ll subroutine calling procedure.

a. arguments can be quickly passed between the calling program and the subr·
outine.

b. if the user has no arguments or the arguments are'in a general register or on
the stack the JSR PC,DST ~ode can be used so that none of the general pur·
pose registers are taken up for linkage.

c. many JSR'~ can be executed without the need to provide any saving procedure
for the linkage information since atl linkage information is automatically
pushed onto the stack in sequential order. Returns can simply be made by
automatically popping this information from the stack in the opposite order of
the JSR's.

Such linkage address bookkeeping is called automatic "nesting" of subroutine
calls. This feature enables the programmer to construct fast. efficient linkages in
a simple, flexible manner. It even permits a routine to call itself in those cases
where this is meaningful (e.g. SQRT in FORTRAN SQRT(SQRT(X». Other ramifica·
tions will appear after we examine the PDP·ll interrrupt procedures.

5.3 INTERRUPTS
5.3.1 General Principles
Interrupts are in many respects very similar to subroutine calls. However, they are
forced, rather than controlled, transfers of program execution occuring because
of some external and program' independent event (such as a stroke on the tele·
printer keyboard). Like subroutines, interrupts have linkage information such

117

that a return to the interrupted program can be made. More information is ac·
tually necessary for an interrupt transfer than a subroutine transfer because of
the random nature of interrupts. The complete machine state of the program im·
mediately prior to the occurrence of the interrupt must be preserved in order to
return to the program without any noticeable effects. (i.e. was the previous oper·
ation zero or negativeV3, etc.) This information is stored in Processor Status Word
(PSW). Upon interrupt, the contents of the Program Counter (PC) (address of
next instruction and the Processor Status Word (PSW) are automatically pushed
onto the R6 system stack. The effect is the same as if:

had been executed.

MOV PS ,··(SP)
MOV R7,-(SP)

; Push PS
; Push PC

The new contents of the Program Counter (PC) and Processor Status Word (PSW)
are loaded from two preassigned consecutive memory locations which are called
an "interrupt vector". The actual locations are chosen by the device interface de·
signer and are located in low memory addresses (see interrupt vector list, Appen·
dix D). The first word contains the interrupt service routine address (the address
of the new program sequence) and the second word contains the new Processor
Status Word (PSW) which will determine the machine status at the start of the in·
terrupt service routine. The contents of the interrupt service vector is set under
program control.

After the interrupt service routine has been completed, an RTI (return from inter·
rupt) is performed. The two top words of the stack are automatically "popped"
and placed in the PC and PS respectively, thus resuming the interrupted pro·
gram.

5.3.2 Nesting
Interrupts can be nested in much the same manner that subroutines are nested.
In fact, it is possible to nest any arbitrary mixture of subroutines and interrupts
without any confusion. By using the RTI and RTS instructions, respectively, the
proper returns are automatic.

1. Process 0 is running; Stack Pointer (SP)
points to location PO.

2. Interrupt stops process 0 with PC =
PCCO) and status = PS(O);starts process 1.

PO§ PSO

sp~ pco

3. Process 1 uses stack for temporary storage
(TEO,TEl).

4. Process 1 interrupted with PC = PC(1) and
status = PSI; process 2 is started.

5. Process 2 is running and does a JSR R7, A to
subroutine A with PC = PC(2).

6. Subroutine A is running and uses the stack
for temporary storage.

119

PO
I---Ps-o-----I

PCO

TEO

SP-I-__ TE_'_--i

o
'-----~

PO

PSO

PC 0

TEO

TE'

ps,
SP-+ PC,

o

PO

PSO

PCO

TEO

TE t

P.$ I

PC'

PC2

o

PO

PSO

PCO

TEO

TE,

PS,

PC'

PC2

TA'

sp_ TA2

o

7. SubroiJtine A rel.eases the temporary storage
holding TAl and TA2.

8. Subroutine A returns control to process 2
with an RTS R7. PC is reset to PC2.

9. Process 2 completes with an RTI instruction
(dismisses interrupt). PC is reset to PC(l) and
status is reset to PS(l) process 1 resumes.

10. Process 1 releases the temporary storage
holding TEO and TEL

11. Process 1 completes its operation with an
RTf; PC is reset to PCO and status is reset to
PS(O).

PO

PSO

pco

TEO

TEl

PSI

PC'

SP~ PCl

a

PO

PsO

pco
TEO

TEl

PSI

PC.

a

PO
t-----Ps,-,o---l

PCO

TEO

sp- TEl
t------i

PO~ pso

sP~ pco

Figure 5·14: Nested Interrupt Service Routines and Subroutines

\

Note that the area of interrupt service programming is intimately involved with
the concept of CPU and device priority levels. For a full discussion of the uses of
the PDp·ll priority structure. refer to Chapter 2. System Architecture.

5.4 REENTRANCY
Further advantages of stack organization become apparent in complex situations
which can arise in program systems that are engaged in the concurrent handling
of several tasks. Such multi·task program environments may range from rela·
tively simple single-user applications which must manage an intermix of IIC in­
terrupt service and background computation to large complex multi-programm­
ing systems which manage a very intricate mixture of executive and multi-user
programming situations_ In all of these applications there is a need for flexibility
and timelmemory economy. The use of the stack ·provides this economy and
flexibility by providing a method for allowing many tasks to use a single copy of
the same routine and a simple, unambiguous method for keeping track of com­
plex program linkages.

The ability to share a single copy of a given program among users or tasks is
called reentrancy_ Reentrant program routines differ from ordinary subroutines in
that it is unnecessary for reentrant routines to finish processing a given task be­
fore they can be used by another task. Multiple tasks can be in various stages of
completion in the same routine at any time. Thus the following situation may oc­
cur:

MEMORY

PROGR""~ PROGRAM 2 SUBROUTINE. A,
PROGRAM 3

PDP·ll Approach

Programs 1,2, and 3 can
share subroutine A

MEMORY

Conventional Approach

A separate copy of subroutine A
must be provided for each program

Figure 5·15: Reentrant Routines

The chief programming distinction between a non-shareable routine and a reen·
trant routine is that the reentrant routine is composed solely of "pure code", i.e.
it contains only instructions and constants. Thus, a section tlf program code is reo
entrant (shareable) if and only if it is "non self·modifying", that is it contains no
information within it that is subject to modification.

Using reentrant routines, control of a given routine may be shared as illustrated
in Figure 5-16.

121

REENTRANT
ROUTINE 10----'

Q

Figure 5-16: Reentrant Routine Sharing

L Task A has requested processing by Reentrant Routine Q_

2_ Task A temporarily relinquishes control (is interrupted) of Reentrant Routine
Q before it finishes processing_

3_ Task B starts processing in the same copy of Reentrant Routine Q_

4_ Task B relinquishes control of Reentrant Routine Q at some point in its pro­
cessing_

5_ Task A regains control of Reentrant RoutineQ and resumes processing from
where it stopped_

The use of reentrant programming allows many tasks to share frequently used
routines such as device interrupt service routines, ASCII-Binary conversion rou­
tines, etc_ In fact, in a multi-user system it is possible for instance, to construct a
reentrant FORTRAN compiler which can be used as a single copy by many user
programs_

As an application of reentrant (shareable) code, consider a data processing pro­
gram which is interrupted whi Ie executing an ASCII-to-Binary subroutine which has
been written as a reentrant routine_ The same conversion routine is used by the
device service routine_ When the device servicing is finished, a return from inter­
rupt (RTI) is executed and execution for the processing program is then resumed
where it left off inside the same ASCII-to-Binary subroutine_

Shareable routines generally result in great memory saving_ It is the hardware im­
plemented stack facility of the PDP-ll that makes shareable or reentrant rou­
tines reasonable_

A subroutine may be reentered by a new task before its completion by the pre­
vious task as long as the new execution does not destroy any linkage information
or intermediate results which belong to the previous programs_ This usually
amounts to saving the contents of any general purpose registers to be used and
restoring them upon exit The choice of whether to save and-restore this informa­
tion in the calling program or the subroutine is quite arbitrary and depends on the
particular application. For example in controlled transfer situations (Le. JSR's) a
main program which calls a code-conversion utility might save the contents of
registers which it needs and restore them after it has regained control, or the
code con.l'ersion routine might save the contents of registers which it uses and re­
store them upon its completion. In the case of interrupt service routines this
save/restore process must be carried out by the service routine itself since the in­
terrupted program has no warning of an impending interrupt The advantage--of

122

using the stack to save and restore (i.e. "push" and i·pOp") this information is'
that it permits a program to isolate its instructions and data and thus maintain
its reentrancy.

In the case of a reentrant program which is used to in a multi·programming envi·
ronment it is usually necessary to maintain a separate R6 stack for each user al·
though each such stack would be shared by all the tasks of a given user. Fpr ex­
ample, if a reentrant FORTRAN compiler is to be shared between many users,
each time the user is changed, R6 would be set to point to a new user's stack area
as illustrated in Figure 5-17.

Figure 5-17: Multiple R6 Stack

5.5 POSITION INDEPENDENT CODE - PIC
Most programs are written with some direct references to specific addresses, if
only as an offset from an absolute address origin. When it is desired to relocate
these programs in memory, it is necessary to change the address references
and/or the origin assignments. Such programs are constrained to a specifiec set
of locations. However. the PDP-ll architecture permits programs to be con­
structed such that they are not constrained to specific locations. These Position
Independent programs do not directly reference any absolute locations in
memory. Instead all references are "PC-relative" i.e. locations are referenced in
terms of offsets from the current location (offsets from the current value of the
Program COj.Jnter (PC». When such a program has been translated to machine
code it will form a program module which can be loaded anywhere in memory as
required.

Position Independent Code is' exceedingly valuable for those utility routines
which may be disk-resident and are subject to loading in a dynamically changing
program environment. The supervisory program may load them anywhere it de­
termines without the need for any relocation parameters since all items remain in
the same positions relative to each other (and thus also to the PC).

Linkages to program" routines which have been written in pOSition independent
code (PIC) must still be absolute in some manner. Since these routines can be lo­
cated anywhere in memory there must be some fixed or readily locatable linkage
addresses to facilitate access to these routines. This linkage address may be a
simple pointer located at a fixed address or it may be a complex vector composed
of numerous linkage information items.

123

5.«; RECURSION
It is often meaningful for a program routine to call itself as in the case of calcu·
lating a fourth root in FORTRAN with the expression SQRT(SQRT(X». The ability
to nest subroutine calls to the same subroutine is called recursion. The use of
stack organization permits easy unambiguous recursion. The technique of recur·
sion is of great use to the mathematical analyst as it also permits the evaluiltion
of some otherwise non·compu·table mathematical functions. Although it is be·
yond the scope of this chapter to discuss the concept of recursive routines in de­
tail, the reader should realize that this technique often permits very significant
memory and speed economies in the linguistic operations of cOmpilers and other
higher-level software programs.

5.7 CO-ROUTINES
In some situations it happens that two program routines are highly interactive.
Using a Special case of the JSR instructiOn i.e. JSR PC,@(R6) + which exchanges
the top element of the Register 6 processor stack and the contents of the Pro­
gram Counter (PC), two routines may be permitted to swap program control and
resume operation where they stopped, when recalled. Such routines are called
"co-routines". This control swapping can be illustrated as in Figure 5·18.

Routine # 1 is operating, it then exe·
cutes: ~

JSR PC,@(R6)+

with the following results:

1) PC2 is popped from the stack
and the SP autoincremented

2) SP is autodecremented and the
old PC (i.e. PC1) is pushed

3) control is transferred to the
location PC(2) (i.e. routine # 2)

Routine # 2 is operating, it then exe·
cutes:

JSR PC,@(R6) +

with the result the PC2 is exchanged
for PC1 on the stack and control is
transferred back to routine # 1.

.--_.L...._-. PCZ
sp-

1------1

Figure 5-18: Co·Routine Interaction

124

PART I
CHAPTER 6

SPECIFICATIONS

Physically, the PDP-ll is composed of a number of System Units_ Each System
Unit is composed of three eight-slot connector blocks mounted end-to-end as
shown in Figure 6-1. The UNIBUS connects to the System Unit at the lower left
and at the upper left_ Power also connects to the unit in the leftmost b.lack_ A Sys­
tem Unit is connected to other System Units only via the UNIBUS_

~~i LOGIC LOGIC H
UNIBUS CONNECTION

Figure 6_1 System Unit

The remainder of the System U'nit contains logic for the processor, memory or an
I/O device interface. This lo~ 'c is composed of single height, double height, or
quad height modules which are 8.5" deep.

The use of System Units allows the PDP-ll to be optimally packaged for each in­
dividual application_ Up to six System Units can be mounted into a single mount­
ing box_ For a basic PDP-1IJ20 system, the processor/console would fill 2 112
System Unit spaces and 4096 words of core memory would fill one System Unit
space_ This leaves 2 1 J2 spaces for the user-designated options. This would allow
the user to add 8192 words of additional core memory, a Teletype control, and a
High-Speed Paper Tape Control, or 4096 words of core memory. and six Teletype
interfaces. Larger systems will require a BAlI-EC or BAU-ES Extension Mounting
Box which contains space for six additional System Units.

The use of System Units also facilitates expansion of systems in the field and ser­
vice. To add an additional option to a PDP-ll system, the proper System Unit is
mounted in the Basic or Extension Mounting Box and the UNIBUS is extended_
Servicing of the PDP-ll can be done by swapping modules or by swapping Sys-
tem Units_ -

When ordering PDP-ll systems it is important that sufficient mounting hardware
is ordered to accommodate each system_ Particular attention should be given to
the of DOll's required and whether a BAll-EC or BAll-ES Extension Mounting
Box is needed.

125

To determine the number of ~Oll's to order, total the number of spaces required
for each item ordered times the quantity ordered. Subtract two from this number
and divide by four. Round up to the next whole number if there.is a remainder. Or­
der this number of O.Oll's.

of "Spaces" used -2
of ~Oll's needed

4

Note: Round up to a whole number.

Six System Units will mount in either the Basic or the Extension Mounting Box. To
determine "Yhether to order an Extension Mounting Box, total the products of the
number of System Units required for each item ordered times the quantity or­
dered. Include ~Oll's and BBll's_ Add one and divide the new total by six and
round up to the next whole number if there is a remainder. If the result is one, an
Extension Mounting Box is not needed. If the result is two, order an Extension
Mounting Box (BAll-ES or BAll-EC) and Power Supply (H720A or H720B)_

of System Units used
------------------- = # of Mounting Boxes Required

6

Note: Round up to a whole number. If the result is greater than one an Ex­
tension Mounting Box is needed.

~Oll's are system Units prewired to mount small peripheral controllers such as a
Teletype control or a High Speed Paper Tape Reader IPunch control. Each 0011
can hold four controllers and mounts in 1/6 of a Basic or Extension Mounting
Box. This is in addition to the two small peripheral controller slots available in the
KA-ll.

CPU OCCUPIES 2-1/2 SYSTEMS UNITS; 2 SMALL
PERIPHERAL CONTROLLER SLOTS''') AVAILABLE HERE

IIII IIII

IIII IIII
IIII IIII

VIEW IS FROM
MOOUl.E SIDE

}---:H-~--:H-t---'~~~~- UNIBUS CONNECTIONS

fS~~~~~r&ia..Jl=I~~~~5~~~~~-POWER CONNECTIONS

NOTE:

MOUNTINl BOx WILL HOLD UP TO
6 SYSTEMS UNITS

SYSTEMS UNITS ARE NOT INCLl.[)ED WITH
MOUNTING BOX.
CPU PLUGS INTO :3 SYSTEMS UNITS(SUPPLIED
WITH CPU
ONE SYSTEM UNIT IS INCLUDED WITH EACH
MEMORY ORDERED (EXCEPT M792)

4 SMALL PERfltERAL CONTROLLER SLOTS ARE
AVAILABLE IN EACH 00-11 (PRE-WIRED) OR
8S-11(UN-WIREO) SYSTEMS UNIT; A TOTAL OF
16 DEC LOGIC SLOTS ARE AVAILABLE IN EACH
SYSTEM UNIT

* THESE SMALL PERIPHERAL CONTROLlERS MAY BE:

1. TTY COOTROLLER (Kl- U)

2. HIGH-SPEED READER/PUNCH CONTROL
3. LINE-PRINTER CONTROL
4. CARD READER CONTROL
5. 32 -WORD DIODE ROM BOOTSTRAP
6. OR-1tA GENERAL PURPOSE INTERFACE

Figure 6-2 POP-ll Box Configuration

6.1 PDp·ll/20. PDP·ll/1S COMPUTERS
The PDp·11 is available as either a tabletop or rack· mounted configuration. The
rack·mounted configuration may be installed in a DEC cabinet or mounted in a
customer cabinet. The PDp·ll mounts in an EIA standard 19 inch cabinet. The
rack·mounted PDP·ll has tilt·slides as standard mounting hardware.

The following mounting units and cabinets are available for PDp·11 systems;

6.1.1 PDp·ll Tabletop Box and Power Supply For 11/20, 11/15 Systems (BAll·
ee and H720)
This cover and box may be specified with a basic system and includes:

1. H720 Power Supply

2. 15' of power cord with ground wire

For 115 V standard, parallel blade, U'ground, 15 ampere connectors
(NEMA 5·15P)

For 230 V 3 prong U·ground (NEMA 6·15P)

3. Cooling Fans

4. Filter

5. Programmers Console with 11120 or Turn-Key Console with 11/15

Approximate Size: 11" high, 20" wide, 25 5/S" deep. Figure 6 shows the layout of
this unit.

Figure 6.3 Table Top PDP·ll Dimensions

127

Approximate Weight: 100 Ibs. (including CP, console and 4K core)

Power: 120 V + 10%, 47·53 Hz 5 amps. single phase
(BAll·CC and H720-E)
230 V + 10%,47·63 Hz 2.5 amps. single phase
(BAll·CC and H720-F)

6.1.2 PDP·ll Basic Mounting Box and Power Supply (BAll-CS and H720)
This basic mounting box may be specified with a basic 11/20 or a 11/15 system
and includes:

1. Tilt and Lock Chasis Slides

2. H720 Power Supply

3. 15' of power cord with ground wire

For 115V standard, parallel·blade, U-ground, 15-ampere connector,
(NEMA 5-15P)

For 230 V 3-prong, U-ground, NEMA No. &15P

4_ Cooling Fans

5. Filter

6. Programmer's Console with 11120 or Turn·Key Console with 11/15
"

Approximate Size: 10 112" high, 19" wide, 23" deep. Figures 10.3, 10.4 and 10.5
show the layout of this unit and give slide dimensions;

Approximate Weight: 90 Ibs. (including CP, console and 4K core)

Power:
,

120 V + 10%, 47·63 Hz 5 amps. single phase
(BAll·CS and H720-E)
230 V + 10%, 47·63 Hz 2.5 amps. single phase
(BAl1-CS and H72o.F)

128

Figure 64 R <

. ack M . OUntabl

129

e PDp. 11 0'
Imensions

SIDE \lEW OF MOUNTlNCI HARDwARE

Figure 6·6 Side View of Mounting Hardware

6.1.3 PDP·UI20 and PDp·U/I5 Tabletop Extension Mounting Box (BAU·EC)
The tabletop Extension Box is supplied, when ordered, for mounting of up to 6 ad·
ditional System Units which can not be contained in the Basic Mounting Box. This
unit is supplied with:

1. IS' of power cord with ground wire

For 115 V standard, parallel blade, U·ground, 15·ampere connector
(NEMA 5·15P)

For 230 V 3·prong, U·ground, NEMA 6·15P

2. Cooling Fans

3. Filter

4. Front Panel

5. UNIBUS Cable from Basic Mounting Box, 8'6" long

Approximate Size: 11" high, 20" wide, 24" deep

Power: 120 V + 10%, 47·63 Hz 5 amps. single phase
(when H720-E is added)
230 V + 10%,47·63 Hz 2.5 amps. single phase
(when H720·F is added)

6.J..4 PDp·U/20 Extension Mounting-Box (BAll-ES)
The Extension Box is supplied, when ordered, for mounting of up to 6 additional
System Units which can not be contained in the Basic Mounting Box. This unit
contains:

1. Tilt and Lock chassis slides

2. IS' of power cord with ground wire

For 115 V standard, parallel·blade, U·ground, 15·ampere connector
(NEMA 5·15P)

For 230 V 3· prong, U·ground (NEMA 6'15P)

3. Cooling Fans

4. Filter

5. Front Panel

6. Bus Cable from Basic Box, 8'6" long

130

Approximate Size: 10 112" .high, 19" wide, 23" deep

Power: 120 V + 10%, 47·63 Hz 5 amps. single phase
(when H720·E is added)
230 V + 10%, 47·63 Hz 2Samps. single phase
(when H720·F is added)

6.1.5 PDP·U Freestanding Base Cabinet (H96()..CA)
This optional capinet can be used to mount the BAll·CS Basic Mounting Box and
a BA11·ES Extension Mounting Box supplied with Tilt and Lock chassis slides in
addition to other PDP·11 equipment.

Panel capacity is six 10 1/2" high mounting spaces, each of which is covered with
black plastic panels if equipment is not mounted· (5 panels, maximum, sup·
plied).

Items supplied with the cabinet include:

1. H950·A Frame

2. H952·E Coasters

3., H·952·F ~evelers

4. H·952·C Fan Assembly (in top of cabinet)

5. H·950·S Filter

6. PDP·l1 Logo

7. H·950·B Rear Door

8. 10 1/2" Plastic Bezels, maximum of 5 supplied

9. Two H952·A End Panels

6.1.6 Cable Requirements
When an Extension Mounting Box is used, an external cable, the BCllA, is the
only signal connection between mounting boxes. This external bus cable may also
be used to connect other peripherals to the PDp·l1. The maximum combined, in·
ternal and external, bus cable length is 50'.

6. 1.7 Environmental Requirements· PDP·UI20, PDP·1l/15

The PDp· 11 is designed to operate from + 10' to + 50' C with a relative hum·
idity of from 20% to 95% (without condensation).

131

6.2 POP l1R20 RUGGEDIZED COMPUTER
The PDP-llR20 Rugged computer is available in a rack· mountable configuration
which maybe installed in a DEC cabinet or mounted in a customer cabinet. The
PDP11R20 mounts in an EIA standard 19 inch cabinet and has tilt and lock
chassis slides as standard mounting hardware.

6.2.1 PDP llR20 Basic Mounting Box and Power Supply
This basic mounting box comes standard with the PDP-11R20 system and in­
cludes:

1. Tilt and Lock chassis slides

2. H720 Power Supply

3. 15' of power cord with ground wire

For 115 V standard, three prong twist lock connector

For 230 V three prong twist lock connector.

4. Cooling fans

5. Filters

6. Programmers Console

Approximate Size: 10 1/2" high, 19" wide, 25" deep

Approximate Weight: 110 Ibs

Power Line Frequency:
Power Line Voltage:
Power Line Current:
Power Dissipation:

47-63 Hz, 380-420 Hz
100, 115 VAC + 10% 200, 215, 230 VAC + 10%
5 amps max @ 115 VAC
500 Watts max

6.2.2 BARllEC Rugged Extension Mounting Box
The rugged extension mounting box is designed for moul)ting up to 6 additional
system units which cannot be contained in the basic Rugged mounting box. This
unit contains:

1. Tilt and Lock chassis slides

2. Cooling fans

3. Filters

4. Blank front panel

5. Rugged internal and 10' external unibus cable to connect to the basic
box.

6.2.3 Cables
All options ordered with the rugged PDP-ll must have special rugged cables or­
dered with them. All cables that go into this box do so by means of 114 turn'mil­
type connectors. The convenience outlet is a 3-prong twist lock female plug

132

6.2~4 Environmental Requirements
TEMPERATURE

Operating:
Non'operating:

. HUMIDITY:

VIBRATION:

SHOCK:

Operating:
Non·operating:

ALTITUDE
Operating:
Non·operating:

INCLINATION:

RELIABILITY:
(at 25 C)

o°C.to +55°C
-55°to + 85°C

95% RH

Vibration applied on 3 mutually perpendicular axis.
5·9 Hz, 1.0" double amplitude;9·5QO Hz, 2.00

3 shocks in each direction on 3 mutually per·
pendicular axis (18 shocks)

00,11 msec
100,11 msec

10,000 feet max.
50,000 feet max.

Operates in any attitude

Processor: 22,000 hours MTBF
Power Supply: 33,000 hours MTBF
Memory: 11,000 hours MTBF
C9mputed from MIL·HDBK·217A, 1 Dec. '65

6.3 INSTALLATION PROCEDURE
The PDp·ll is crated for shipment to the customer site to prevent damage. In·
stallation is provided by DEC personnel at the customers site.

Computer customers may send personnel to instruction courses on computer op·
eration, programming, and maintenance conducted regularly in Maynard, Mas·
sachusetts, Palo Alto, California, and Reading, England.

6.4 SYSTEM UNITS AND CABLES
The following items are available for mounting standard and special peripheral
device logic into a PDP·ll system. .

6.4.1 Peripheral Mounting Unit (DDll·A)
The DOll is a prewired system Unit which.atlows standard small peripheral inter­
faces to be mounted in a.PDP-ll system. It accepts standard small peripheral in­
terfaces(up to 4) such as the KLlI Teletype Control or the controller portion
(PCll·M) of the High Speed Reader/Punch. For mounting, it requires one-sixth
(l/6) of a BAll Mounting Box.

6.4.2 Blank System Unit (BBll)
The BBll consists of three 288-pin connector blocks connected end-to-end. This
unit is unwired except for UNIBUS and.power connections and allows customer­
built·interfaces to be integrated easily into a.P.DP-ll system. For mounting it re­
quires one-sixth (116) of a BAll Mounting Box.

133

6.4.3 UNIBUS Module (M920)
The M920 is a double module which connects the UNIBUS from one System Unit
to the next within a Mounting Box. The printed circuit cards are separated by
l"for this purpose. A single M920 will carry all 56 UNIBUS signals and 14
grounds.

6.4.4 UNIBUS Cable (BCllA)
The BCllA is a 120-conductor flexprint cable used to connect System Units in dif­
ferent mounting boxes of a peripheral device which is removed from the mounting
boxes.

The 120 signals consist of the 56 UNIBUS lines plus 64 grounds. Signals and
grounds alternate to minimize cross talk. "

Type Length

BC11A-2 2'
BC11A-5 5'
BC11A-SA 8'6"
BCllA-lO 10'
BC11A-15 15'
BCI1A-25" 25'

6.5 PDP-ll POWER SUPPLY SUBSYSTEM H720

This Power supply is used in the Basic and Extension Mounting boxes and sup­
plies power to all devices mounted in one of these boxes. It is included in basic
PDP-ll systems, but must be ordered separately with a BAllES or BA11EC Ex­
tension Mounting Box.

Approximate Size: 16 1/2" wide, 8" high, 6" deep

Approximate Weight: 30 Ibs.

Power: IN

OUT

117V 10% 47-63 Hz 6A H720E

230V 10% 47-63 Hz 3A H720F
215V 10% 47-63 Hz 3A H720F
200V 10% 47-63 Hz 3A H720F
+5V 5% 22A (H720E,F)
-15V 5% 22A (H720E,F)

+8 RMS (UNREGULATED) 1.5A
(H720E,F)

-22 V (UNREGULATED) l.OA (H720E, F)

AC LO
DC LO

134

6.6 PDP-UI20 Power Requirements

Power Dissipation: 400 watts

6.7 Teletype Requirements
The standard Teletype requires a floor space.approximately22 112 inches wide by
18 112 inches deep. The Teletype cable length restricts its location to within 8
feet of the side of the computer.

Input Voltage: 115 Vac 10%, 60 Hz 0.45 Hz, 230 Vac 10%, 50 Hz 0.75 Hz

Line Current Drain: 2.0 amperes

Power Dissipation: 150 watts

The Teletype plugs into the rear of the PDP·ll Basic Mounting Box and is turned
ON and OFF by the power switch on the front panel of the PDP-11.

135

I Idl i 191 i I tlall!, ~
digital equipmentcorpor(lt;idi\· maynard. massachusetts I

ADDRESS REGISTER RUN BUS FETCH EXEC
I I I I I I I I I I I I I

,

DATA SOURCE DESTINATION ADDRESS

I I I I
I

I I I I I I I I

SWITCH REGISTER LOAD EXAM CONT ENABLE S/INST START

0
OFF POW£~ PANEL

LOCK 17 16 15 14 13 12 11 10 9 e 7 6 5 4 3 2 1 0 ADOR HALT ISJtYCLE

h
~

PART I
CHAPTER 7

CONSOLE OPERATION

The PDP-UI20, PDP-llJl5, and PDP-llR200perators' Consoles provide users
with comprehensive information regarding the status of the system, and with
function switches to control the system_ Each section of the Operator's Console is
discussed in this chapter_ The PDP-IIR20 Console differs slightly in layout due to
ruggedized construction constraints, but it is functionally identical to the PDP-
11/20 Console_ The PDP-1l/15 console differs only in that there are 16 lights
and switches in the Address Register, instead of 18 as in the PDP-1l120_

INDICATOR LIGHTS
RUN On:

Off:

Remarks:

BUS On:

Remarks:

FETCH Function:

Remarks:

Indicates that the processor clock is run­
ning, processor has control of bus, and is
executing an instruction_

Indicates that the processor is waiting for
an asynchronous peripheral data re­
sponse, or that the processor has surren­
dered its control to the console or a per'
ipheraL

Flickers on and off during normdl machine
operation, except during the following pro,
grammed instructions: WAIT (completely
on); HALT (completely off)_

Indicates that a peripheral device is con­
trolling the bus_

Only on when there is a bus malfunction
or where a peripheral holds the bus for ex­
cessive periods of time, or in large sys­
tems when multiple devices are using the
bus for DMA operations_

When Bus and Run are off, bus control
has been transferred to the console_

Indicates that the processor is in the
FETCH state and is obtaining an instruc­
tion_

Only Fetch and Run lights are on during
the Fetch state if no non-processor
requests are honored_

137

EXEC Function:

Remarks:

DEST. function:

Remarks:

SOURCE Function:

Remarks:

ADDR function:

(2 lights)

Remarks:

SWITCH HEG1STER
18 Key·Type Switches*

function:

Remarks:

Indic;ates that the processor is the Execute
state, performing an action specified by
the instruction.

Only Exec and Run indicators are on duro
ing the Execute state if no non· processor
requests are honored.

Indicates that the processor is in Destina·
tion state and is obtaining destination op·
erand data.

Destination and Run are both on during
the Destination state. Address lights may
be on in various combinations. Bus is off
if no non-processor requests are honored.

Indicates that the processor is in the
source state and is obtaining source oper·
and data.

Source and Run lights are both on during
the Source State. Address.lights may be
on in various combinations. Bus if OFF if
no non-procesSor requests are honored.

Indicates bus cycles used to obtain ad­
dress data during Sollrce and Destination
states. Binary code of lights indicates ad·
dress cycle (1,2, or 3) machine is in source
or destination state.

When either light is on, either Source or
Destination is on. Bus if off if no non·pro·
cessor requests are honored.

Used to manually load 16-bit data word or
address into processor.
UP=ON=1
DOWN=OFf=O

If· the word in the Switch Register repre­
sents an address, it can be loaded into an

_ sents an address, it can be loaded into an
Address Register by depressing LOAD
ADDR key.

If the word contains data, it can be loaded
into to address specified by the ADDRESS
REGISTER by lifting the DEP key_ The data
will appear in the DATA display.

*16 Switches on KYllC Console (PDP-HilS)

1~R

Remarks:

CONTROL SWITCHES
LOAD AD DR.

Function:
(Depress to activate)

Remarks:

EXAM Function:
(depress to activate)

Remarks:

CONT Function:
(depress to activate)

Remarks:

ENABLE/HALT
Function:
(2-position switch)

Remarks:

The console permits the user to immedia·
tely examine data just deposited with out
readdressing, to re·deposit it necessary,
and to continue without automatic in­
crementation. These sequences are asso·
ciated with the functioning of DEP and
EXAM Switches. The state of the switches
can be read as I's and .O's under program
control by reading address 777570.

Transfers contents of switch register
. to bus address register.

The resulting bus address, dispfayed in
the ADDRESS REGISTER, provides an ad·
dress for EXAM, DEP, and START.

Transfers contents of bus -address for
DATA display. Data address will appear in
two ADDRESS REGISTER.

If the EXAM switch is depressed,on suc·
cession, the contents of the next sequen­
tial bus address are displayed in DATA.
This action is repeated each time EXAM is
depressed' provided no other Switch is
used between these steps.

Causes processor to continue operation
from the' point at which it had stopped. If
ENABLE/HALT ison ENABLE. returns bus
control from console to processor and
continues program operation. If EN·
ABLEIHALT is on HALT, causes the pro·
cessor to perform a single instruction or a
single bus cycle and stop_

If program stops, this switch provides a
restart without program clear.

Allows either the program or the console
to control processor operation. ENABLE
permits system -to run normally. HALT
stops the processor and passes. control to
the console.

Continuous program control requires the
ENABLE mode.

HALT mode is used to interrupt program
control, perform single-step operation, or
clear the system. HALT is used with the
CONT switch to step the machine through

139

S-INST IS-CYCLE'
Function:

(2 position switch)

Remarks:

START' Function:
(depress to activate)

DEP Function:

Remarks:

ADDRESS REGISTER
IS-Bits, divided in 3-bit sequence_

Function:

Remarks:

DATA
16-Bit Display

Function:

programs and facilitate intermediate ob­
servations.

Allows processor to step through program

operation either one instruction or one
bus cycle' at a time. S-INST: processor
halts after an instruction. S-CYCLE: pro­
cessor halts after a bus cycle.

Enabled by ENABLE/HALT in HALT mode_

If ENABLE/HALT is on ENABLE, provides
a system clear operation, then begins pro­
cessor operation_ A LOAD ADDR operation
establishes the starting address. If EN­
ABLE/HALT is on HALT, provides a sys­
temclear (initialize) only. Processor does
not start_

Transfers contents of console SWITCH
REGISTER to bus address.

After use data will appear on DATA dis­
play, address in ADDRESS REGISTER.

Displays the address of data examined or
deposited. (16-bit in the PDP-1!/15)

During a programmed HALT or WAIT in­
struction, display contains the address of
the instruction.

During direct memory operations, the pro­
cessor is not involved in data transfer
functions, and the address displayed is
not of the last bus operation.

When console switches are used, this dis­
play contains the following:
LOAD ADDR - Transferred
SWITCH REGISTER - data
DEP or EXAM - the bus address just de­
posited into or examined
S-INST or S-CYCLE - the last processor ad­
dress

Displays data from processor data paths_
This is not a single register but the sum of
two later registers on the data paths (16-

140

Remarks:

POWER LOCK
OFF/POWER/PANEL LOCK

3-position switch

OFF:

POWER:
PANEL LOCK:

Remarks:

bit on the PDP-1I/15) on both machines,
no distinction necessary.

Data is mainly loaded into this register by
setting the data value into SWITCH REGIS­
TER and lifting the DEP switch.

When console switches are used, this dis,
play contains:
LOAD ADDR . no indication
DEP . the switch register just deposited.
EXAM - the data from the address exam­
ined.
S-INST . no indication when stepping
through a program by single instruction.
S-CYCLE - last data in the data paths.
WAIT - no indication
HALT . displays processor register HO
when bus control is transferred to console
during a HALT instruction.
RESET· displays register - RO for during of
RESET (70 msec).

Removes all power from processor 3 posi­
tion switch
Applies primary power to processor
Disables all console controls except
swits;h register key switches.

OFF: System is not being used
POWER: Normal operation; all consofe
controls fully operational

141

142

PART I
CHAPTER 8

EXTENDED ARITHMETIC ELEMENT

8.1 EXTENDED ARITHMETIC ELEMENT KEll·A
The Extended Arithmetic Element (EAE) (KE·11A) is an option which performs
multiplication, division, multiple position shifts and normalization significantly
faster than software routines. It connects directly to the UNIBUS and is pro·
grammed as a peripheral, allowing overlap between CP and EAE operations.

The KEl1·A performs the following operations:

Multiply Two 16-bit numbers are multipiled to give a 32·bit product.

Examples:

000002 * 000005 = 000000·000012 (2 *5 = 10),0
177775" 000007 = 177777·177753 (-3 * 7 = -21)'0

176000 " 177400 = 000004-000000 (_2'0 * -2l' =2'8)
010000 " 100000 = 174000·000000 (+ 1212 ... -2" = _227)

Divide A 32,o·bit dividend is divided by a 16,o·bit divisor to give a 16,o·bit quotient
and a 16,o·bit remainder. The sign of the remainder is always the same as the
sign of the dividend, unless the·remainder is zero(Le.-8/3 = -2REM-2 not -3
REM 1). The KEl1·A indicates overflow if more than 16,o·bits would be needed to
express the quotient (Le. overflow if the quotient is out of the range (2")-1 to
(_215). Zero divided by zero gives overflow.

Examples:

000000-000013 1000003 = 000003 REM 000002 (11'0/3 = 3 REM 2)
177777-177765 1 000003 = 177775 REM 177776 (-11'0/3 = -3 REM -2)

000010-()()()()()() 1000020 = Overflow 2'9/24 = 2 15

000007·177777 1000020 = 077777 REM 000017
2',9_112' = 2"-1 REM (24-1)
177770-000000 1 000020 = 100000 REM 00000o (_2'9)/24 -2")
000007·177177 1 177760 = 100001 REM 000017
(2'9)-1/-(24) = -«2")-1) REM (24-1)

NOTE
All numbers are octal unless followed by a subscript "10" for decimal. Also, 32,0·

bit numbers are shown in octal as two sixteen bit numbers, thus, 000001·000000
is 2'6.

143

Normalize A 32 111-bit number is shifted left until the two most significant bits are
different Zeros fill the empty positions on the right A count is kept of the number
of places the 32.fI-bit number is shifted_ There are three special cases:

The number is of the form llL_llCXLOOOO (BINARY) In this case, the
number is shifted until it is 140000-000000_

The number is 177777-177777_ In this case the result is 140000-000000,
and the count is 30'0-

The number is 000000-000000_ In this case the result is 000000-000000,
and the count is 31.0_

Examples:

000041-170324 becomes 041741-124000 Count: 9'0

177777-174321 becomes 106420-000000 Count: 20'0

177740-000000 becomes 140000-000000 Count: 9'0

Multiple Shifts A 32.0'bit number is shifted either left or right the number of
places specified by a count The count is a 6-bit 2"s complement number_ If the
count is positive, the number is shifted left; if it is negative, the number is shifted
right This allows for shifts from 31 positions left to 32 positions right A count of
zero causes no change in the number. There are two different shift operations:

Logical Shift: Zeros always fill the vacated positions_

RIGHT (SC<O)

0_1 AC MQ I-D-LOST

15 o 15 0 SRo

LEFT(SC>O}

LOST-D-I AC Me 1-
SR 15 o 15 a

Arithmetic Shift: When shifting left, zeros fill the vacated positions and the
most significant bit of the number is not shifted (the sign never changes)_
When shifting right, the most significant bit is replicated (the sign is ex­
tended)_

RIGHT(SC<O}

0-1 AC I MQ I-D-LOST
ACl5 14 a 15 0 SRO

D~D-I AC MQ 1-0
ACl5 SRo 14 a 15 0

144

The KEII-A indicates overflow on left shifts ifthe result is not the correct multiple
of the original number. This occurs if the most significant bit changes ona logical
shift, or if it would have changed on an arithmetic shift. No overflow is possible
on right shifts.

Examples:

Original Number
000777-177700
177525-052525
000777-177700
177525-052525

Count
15
05
73
63

8.2 PROGRAMMING

Logical Shift
177770-000000
165252-125240
000017-177776
000007-175252

Arithmetic Shift
077770-000000 overflow
165252-125240
000017-177776
177777-175252

Number Formats All numbers in the KEll-A are in signed, 2's complement nota­
tion. Th'is means that if the most significant bit of a number is zero, the number
is positive and the rest ofthe number is the magnitude. If the most significant bit
is one, it means that the number is negative and the rest of the number is the 2's
complement of the magnitude. Zero is represented with all bits zero.

There are two different number formats in the KE11-A, One fm'mat uses 16,,, bits:

BIT 15 14 o

This gives a range of numbers from + (215)-1 to -(215)_ The largest positive
number is 077777 and the largest negative number is 100000. A pius one
would be 000001; minus one would be 177777; and -«215)-1 would be
100001.

The other format uses 32,,, bits:

BIT 31 30 o

This gives a range of numbers from (2311)-1 to -(231). The largest positive num­
ber is 077777-177777 and the largest negative number is 100000-000000.4 The
2's complement of a number is formed by changing all l's to 0'5, all O's to l's,
and then adding 1.

REGISTERS

Accumulator (AC)
Multiplier Quotient (MQ)
Step Counter (SC)
Status Register (SR)

145

ADDRESSES

777302
777304
777310
777311

Accumulator (AC) and Multiplier Quotient (MQ)
These are the two data registers in the KE-llA_ Each is 16",-bits_ They are some­
times used together to hold one 32,o-bit number, in which case the MQ is the low
order part of the word (bits 00-15) and the AC is the high order part (bits 16-31)_

AC MQ

BIT 31 30 16 15 o

Whenever a part of this double-word register is loaded, the sign is always ex­
tended into the higher bits that were not loaded_ For example:

MOVB
MOV
MOVB
MOVB
MOV
MOVB

A,MQ
A,MQ
A,MQ+1
A,AC
A,AC
A,AC+ 1

;MQ BITS 8-15 AND AC BITS 0-15 EXTENDED
;AC BITS 0-15 EXTENDED
;AC BITS 0-15 EXTENDED
;AC BITS 8-15 EXTENDED
;NO EXTENSION
;NO EXTENSION

Thus, when loading the AC and the MQ with word operations, first the MQ and
then the AC must be loaded_ When using byte operations, first the low byte of the
MQ, the high byte of the MQ, the low byte of the AC, and then the high byte of the
AC must be loaded_

NOTE: This applies to all instructions that effect the destination not only MOVe_

On multiplication, the MQ initially contains the multiplier and theAC is ignored_
After the multiply, the AC-MQ contains the 32,o-bit product On division, the AC-

• MQ initially contains the 321O-bit dividend, and after the divide, the MQ contains
the quotient and the AC contains the remainder_ On normalize and shifts, the AC­
MQ contains the 32,o-bit number which is shifted_

Step Counter (SC)
The SC controls the number of steps done in all operations which the KEl1-A per­
forms_ It gets loaded automatically on multiply, divide, normalize and shifting_
The register is six bits long, and is at address 777310.

Status Register (SR)
The SR contains bits which give information about the last operation performed
and the status of the AC and MQ_ It is 8 bits long and it is at address 777311 (the
high byte of the AC address).

SRBIlS 7 6 5 4 3 2 I 0 5 4 3 2 1 0 SC
WORD BITS 15 14 13 12 11 10 09 06 07 06 05 04 03 02 01 00

RO: READ ONLY

146

SIT

o

1

2

3

4

5

6

7

NAME

Carry

AC=MQ

AC=MQ=O

MQ=O

AC=O

AC = 177777

NEG

FUNCTION

On shifts this bit contains the last bit
shifted out of the AC·MQ.

On multiply, divide, and normalize this 15
bit is cleared. When set, this bit means
that every bit in the AC is the same as MQ
bit IS, and therefore the number in the
AC·MQ has only single word precision.

When set, indicates that both the MQ and
AC are all zero.

When set, indicates that the MQ is zero.

When set, indicates that the AC is zero.

When set, indicates that the AC contains
all ones.

On shifts, normalize, and multfply this bit
is set if the AC sign bit is set. On divide, if
there is no overflow, this bit is set if MQ
sign bit is set. If there was overflow, this
bit is set if the original dividend was nega·
tive.

This bit, in c ~njunction with Sit 6, is used
to indicate ov, -flow conditions. It is coded
with Bit 6 as k . lows:
Bit 7 Sit 6
o 0 = Posit. Ie and no overflow
o 1 = Negati\'!. and overflow
1 0 = Positive c:nd overflow
1 1 = Negative and' no ~verflow

The reasc,;'! for coding bits 6 and 7. in this manner is so the processor condition
code bits "N" and "V" can be set by a "ROLB SR" (rotate left byte) instruction.
When the processor does a ROLS instruction, the old bit 6 becomes the new bit 7
and goes into condition code bit "N", and the old bit 6 exclusive·or'ed with the old
bit 7 goes into condition code bit "V". Therefore, by doing. a "ROLS SR" after a
KE11·A operation, the "N" and "V" bits in the processor will get set, and some of
. the conditional branches can be used. It should be noted that the other two bits in
the processor condition codes, "Z" and "C', will not be set correctly (although
they will be changed) and therefore not all ofthe conditional branches will work.

Since it is not desirable to actually rotate the status register with the "ROLS SR",
when the processor writes back the rotated SR into the KEll·A, nothing will ac­
tually change. This is .done by inhibiting the SR from being written when ad­
dressed as a byte. Therefore, no instruction that attempts to write the SR as a
byte will have any effect on the SR. although the KEll·A will respond normally.
For example, "CLRS', "MOVS", etc. will not change the SR.

However, to allow for reentrant programming of the KE11·A, it is necessary to be
able to save theSR and restore it. Therefore, when the word which contains the
SR and SC is written (777310), both the SR and SC are loaded. The SC, just like

147

the SR, however, caMot be loaded by addressing it as a byte. When reloading the
registers as a word, bits 0 through,S of the SC and bits 0,6, and 7 of theSR are
the only ones that actually change. Bits 1 to 5 of the SR always indicate the pres·
ent state of the AC and MQ. Examples of r~ading and writing the SR and SC:

MOVB SC,RO

MOVB SR,RO

ROLB SR

MOVB #-I,SC

MOVB #-I,SR

MOV #-I,SC

8.3 INSTRUCTIONS

;ASSUME THE SC = 70 AND THESR = 140

;THE COMBINED WORD IS THEN 060070

;RO WOULD BE 000070

;RO WOULD BE 000140

;SR WOULD REMAIN 140, "N" AND "V"
BITS WOULD SET

;SC WOULD REMAIN 70

;SR WOULD REMAIN 140

;SC WOULD BE 77, SR WOULD BE 301.
;WORD WOULD BE 140477

Operations in the KEll·A are started-by storing a number at an address. There is
one address for each of the five operations that the KEll·A performs. Thenum·
ber must be stored as a word or as the low byte, in which case the sign is auto·
matically extended to the high byte. Storing the number as the high byte has no
effect on the KEll·A. Once an operation is initiated in the KEll-A, it will not re­
spond to any instructions until it is finished with that operation. Thus, whenever
the KEll-A is examined for a result, it will always be the correct, final answer, and
never be some intermediate number. The maximum amount of time the KEll-A
takes after an operation is started is 4.25 microseconds, and therefore, the most
a processor can wait for a result is about 2 microseconds, due to the overlap in

. operation and beginning the fetch for the result. .

Multiply The multiply operation is initiated by writing the 16,,,-bit multiplicand at
the multiply address. This number is then multiplied by the MQ, and a 32,,,-bit
product is left in the AC-MQ. Reading the multiply address always returns
000000.

Address:
Execution Time:
SR BUs:

777306
4!'5
o cleared
I, 2, 3, 4, 5 set conditionally
6 sign of the produce (AC)
7 no overflow possible

Divide The divide operation is initiated by writing the 16",-bit divisor at the divide
address. This number is then divided into the AC-MQ, and a 16j,,-bit quotient is
left in the MQ and a 16,n·bit remainder is left in the AC. Reading the divide ad­
dress· always returns 000000.

14A

Address:
Execution Time:
SRBits:

777300
4.25 p.s
o cleared
1, 2, 3, 4, 5 set conditionally
6 if no overflow, sign of the quotient (MQ)

if overflow, sign of the dividend (original AC
sign)
7 Overflow possible

Normalize The normalize operation is initiated by writing something at the nor­
malize address. The number written there is ignored. The operation normalizes
the number in the AC-MQ. The count of the number of left shifts can be read at
the normalize address, where it will be in the lower six bits. (The SR will not be in
the high byte). Since the count is always a positive ,number, reading the norma­
lized address as a word will get a "sign extended" value, and that number can be
directly added or subtracted from an exponeht.

Address:
Execution Time:
SR Bits:

777312
0-4 p.s
o cleared
1 set conditionally
2 unchanged
3, 4 set conditionally
5 cleared
6 sign of the AC
7 no overflow possible

Logical Shift The logical shift operation is initiated by writing a six bit shift count
at the logical shift address. The number in the AC-MQ is then shifted right or left
the number of places determined by the count. Reading the logical shift address
always returns 000000.

Address: 777314
Execution Time: 0-4 p.s
SR Bits: 0 Right shift: last bit shifted out of MQ(OO)

Left shift: last bit shifted out of AC(15)
1, 2, 3, 4, 5 set conditionally
6 sign of the AC
7 Right shift: no overflow possible

Left shift: overflow is AC(15) changed at any
point

Arithmetic Shift The arithmetic shift operation is initia,ted by writing a six bit shift
count' and the' arithmetic shift address. The number ih the AC-MQ iii then shifted .
right or left the number of places determined by the count Reading the arithme­
tic shift address always returns 000000.

Address:
Execution Time:
SR Bits:

777316
0-4 p.s
o Right shift: Last bit shifted out of MQ(O)

,Left shift: last bit shifted out of AC(14)
1, 2, 3, 4, 5 set conditionally
.6 sign of the AC
7 Right shift: no overflow possible

Left shift: overflow if AC(15) would have
changed at any point

149

8.4 PROGRAMMING EXAMPLES

DIV=777300
AC=777302
MQ=777304
MUL =777306
SC =777310
SR=777311
NOR =777312
LSH=777314
ASH =777316

,
MOV #MQ,RO

;THE AUTO·INCREMENT AND AUTO·
DECREMENT MODES OF ADDRESSING
CAN BE USED TO TAKE ADVANTAGE OF
THE ORDERING OF THE KEll·A AD·
DRESSES

;SET UP RO TO ADDRESS OF MQ. RO ASSUMED TO HAVE THIS ADDRESS FOR
AI..L OF THESE EXAMPLES
MULTIPLY EXAMPLE
MUL T: MOV A,(O) + ;PUT "A" INTO MQ

MOV B,(O) ;MUL TIPL Y BY "B"

MOV -(O),C ;PUT LOW ORDER PRODUCT IN C

MOV -(O),D ;PUT HIGH ORDER PRODUCT IN D

TST (0) + ;BUMP RO BACK TO THE MQ

DIVIDE EXAMPLE

DIVD: MOV A,(O)

MOV B,-(O)

MOVC.-(O)

TST(O)+

MOV(O)+.D

MOV (O).E

;NOTE THAT IF THE PRODUCT IS KNOWN
TO BE LESS THAN 16 BITS, THE LAST
TWO LINES ABOVE CAN BE ELIMINATED:

;LOAD LOW ORDER DIVIDEND IN MQ

;LOAD HIGH ORDER DIVIDEND IN AC

;DIVIDE BY "C"

;BUMP RO BACK

;PUT REMAINDER IN "D"

;PUT QUOTIENT IN "E"

NORMALIZE EXAMPLE, (ASSUME AC·MQ ALREADY LOADED)

INC@#NOR

SUB@#NOR,Rl

SHIFT EXAMPLES
MOV #3.@#LSH .

MOV #-5.@#ASH

;SUBTRACT COUNT FROM Rl

;LOGICALSHIFT LEFT BY 3

;ARITHMETIC SHIFT RIGHT BY 5

150

2
SOFTWARE

151

152

PART II
INTRODUCTION

SOFTWARE

A comprehensive collection of proven software is available for thePDP·II. The
programmer can choose from two major software systems (a number of special·
purpose systems are available), depending on his particular application and hard­
ware configuration (amount of core, external memory, and peripherals). The ma­
jor software systems are:

1. Paper Tape System
BASIC Interpreter
PAL-ll Assembler
ED-ll Text Editor
ODT-ll and ODT-llX Debugging Programs
Bootstrap and Absolute Loaders
Binary and Octal Core Dump Programs
lOX, Input/Output Executive
Floating-Point Package

2. Disk Operating System
DOS Monitor
FORTRAN IV Compiler
PAL-llR Assembler
Edit-l1 Text Editor
ODT-llR Debugging Program
PIP, File Utility Package
Link-II Linker
Libr-ll Librarian

Each system contains a comprehensive software package of commonly used sys­
tem programs, providing the systems and applications programmer complete fa­
cilities for writing, editing, assembling or compiling, debugging,loading, and run­
ning his own programs.

The software system to be used depends greatly on the hardware configuration of
the PDP-II. The Paper Tape System software is capable of running on all PDP-II
configurations, with I/O to the user's terminal, paper tape reader and punch, and
line printer. It requires only 4,096 words of core memory and a teletype (an 8K
and larger version of PAL-ll assembler is also available). The Disk Operating
System software requires at least 8K of core and a disk and lor DECtape, and can
use virtually any peripheral.

In the Paper Tape System, input and output of programs and data are performed
manually via a paper tape reader and punch; printed output can be directed to
the user's terminal or line printer; the user communicates with the system pro­
grams from the terminal keyboard.

153

In the Disk Operating System, input and output of programs and data can be on
virtually an 1/0 device; the user communicates with the DOS Monitor and system
programs from the terminal keyboard, thus eliminating the need to manipulate
paper tapes.

The descriptions in the following chapters highlight some of the benefits and fea·
tures of PDP·!! software. The PDP·!! user needing complete information should
refer to the various PDp·ll software manuals.

11:;;.01.

PART II
CHAPTER 1

PAPER TAPE SOFTWARE

1.1 PAL·ll ASSEMBLER

PAL·lIA provides the programmer a means of writing programs with meaningful
symbols rather than with numerical code of usually no mnemonic value. These
symbols are then assembled into absolute binary code capable of being executed
by the PDP·lI. The binary program is norm'ilily produced after two passes
through the Assembler, although a third pass is available if desired, for either pro·
ducing a listing or punching a binary tape.

A source program in the PAL-lIA language is composed of a sequence of state·
ments where each statement is on a single line as follows:

ABCD: MOVX,Y ; MOVE THE CONTENTS OF X TO LOCATION Y

PAL·lIS (Program Assembly Language for the PDP·ll, Relocatab.le Version) like
PAL·llA, provides the PDP-ll programmer a means of writing programs with
meaningful symbols rather than with numerical code of usually no mnemonic
value. However, with this relocatable version, symbols are assembled into object
modules which are then processed by the LlNK·llS Linker. LlNK·llS produces a
load module that is loaded for execution. Object Modules may contain absolute
and/or relocatable code; and separately assembled object modules may be linked
with the aid of global symbols. The object module is produced after two passes
through the Assembler. A complete octal/symbolic listing of the assembled pro­
gram may also be obtained.

Some notable features of PAL·llS are:

Selective assembly pass functions

Error listing on command output device

Alphabetized, formatted symbol table listing

Relocatable object modules

Global symbols for linking between object modules

1.1.1 Representing Code
Binary code can be represented in a variety of ways. At one level higher than bi­
nary, the octal number system is the primary way of specifying numerical data.
Decimal numbers can be specified by following a number with a.decimal point.
Proceeding to a level higher, symbols can be used to represent octal or decimal
values by directly assigning a value to a symbol. Similarly ASCII symbols, theloca·
tion counter symbol (specifying the current address), or arithmetic/logical ex­
pressions can be used to represent numerical code.

1.1.2 Operating Procedures
The Assembler enables the user to assemble ASCII tapes containing PAL·llA
statements into an absolute binary tape. To do this two or three passes are neces·
sary. On the first pass the Assembler creates a table of user-defined symbols and

155

their associated values, and lists undefined symbols on the teleprinter. On the
second pass the Assembler assembles the program and punches out an absolute
binary tape and lor outputs an assembly listing. During the third pass (optional)
the Assembler punches an absolute binary tape or outputs an assembly listing.
The symbol table (and lor ::I list of errors) may be output on any of these passes.
The input and output devices as well as various options are specified during the
initial dialog.

1.2 EDITING THE SOURCE PROGRAM, ED-ll
The PDp·11 Text Editor program (ED-11) enables the user to display his source
program (or any text) on the teleprinter, make corrections or additions to it, and
punch all or any portion of the program on paper tape.

This is accomplished by the typing of simple one-character commands on the key·
board.

Editor Commands can be grouped according to function:

i nput/ output

searching for strings of characters

positioning the current character location printer

inserting, deleting, and exchanging text portions

All input/output functions are handled bylOX, the PDP-ll Input/Output Execu·
tive (See 1. 6). .

1.3 LOADING AND DUMPING CORE MEMORY
1.3.1 The Bootstrap Loader
The Bootstrap Loader is a program that instructs the computer to accept and
store in core, data that is punched on paper tape in bootstrap format. The Bootst­
rap Loader is used to load very short paper tape programs of 162 16-bit words or
less .. primarily the Absolute Loader and Memory Dump Programs. Either the low­
speed reader or high-speed reader can be specified. Programs longer than 162
16-bit words must be assembled into absolute binary format with the PAL-llA
ASSEMBLER and loaded into core with the Absolute Loader. The Bootstrap
Loader is usually loaded into the highest core memory bank using the console
switches and is not destroyed by DEC programs. A 32·word diode ROM hardware
bootstrap is available.

1.3.2 The Absolute Loader
The Absolute Loader is a system program that loads into any core memory bank,
data punched on paper tape in absolute binary format. It is used primarily to load
the paper tape system software (excluding certain sub-programs) and the user's
object programs assembled with PAL-llA.

The loader programs are loaded into the uppermost area of available core so they
will be available for use with system and user programs. User programs should
not use the locations used by the loaders without restoring their contents.

Major features of the Absolute Loader include:

Testing of the checksum on the input tape to assure complete; accurate
loads.

156

Starting the loaded program upon completion of loading without additio·
nal user action, as specified by the .END statement in the program just
loaded.

Specifying the load address of position· independent programs at load time
rather than at assembly time, by using the desired Loader switch register
option.

1.3.3 Loading Absolute Tapes
Any paper tape punched in absolute binary format is referred to as an absolute
tape, and is loaded into core using the Absolute Loader.

1.3.4 Core Memory Dumps
'A core memory dump program is a system program which enables the user to
dump (print or punch) the contents of all or any specified portion of core memory
onto a device, as indicated below.

There are two dump programs available in the. Paper Tape Software System:

a. DUMPTT, which dumps the octal representation of the contents of specified
portions of core onto the teleprinter, low·speed punch, highcspeed punch, or
line printer.

b. DUMPAB, which dumps the absolute binary code of the contents of specified
portions of core onto the low·speed punch or high·speed punch.

Both dump programs are supplied on punched paper tape in bootstrap and abso·
lute binary formats. The bootstrap tapes are loaded over the Absolute Loader.
The absolute binary tapes are position·independent and may be loaded and run
anywhere in core. Operation of these programs is controlled by the user at the
PDP·ll console~

1.4 FLOATING·POINT AND MATK PACKAGE, FPp·u
The Floating·Point and Math Package for the PDp·ll (FPP·ll) is a com·
pnihensive set of subroutines that enables the user to perform a variety of
arithmetic operations. FPP·ll provides for:

floating·point operations .. add, subtract, multiply, divide:

calculation of transcendental functions .. sine, cosine, arc tangent, 10-
garithm, square root, exponential;

operations to negate, normalize, move, and compare floati!1g·poipt num·
bers; .

fixed·point operations of single· and double'precision multiply and divide;

conversion to and from ASCII strings.

Floating·point operations automatically align the binary points of operands, reo
taining maximum precision by discarding leading zeros. In addition to increasing
precision, floating.point operations relieve the user of having to scale numbers (a
problem common in fixed·point operations).

The code of the Floating·Point Package is position independent; that is, it may be
stored and executed in any contiguous block of core memory without reassembly.
The code is also reentrant; that is, any subroutine may be interrupted and reen·

157

tered from the interrupt handler. This eliminates the necessity for multiple copies
.. one for the main program and one for interrupts.

FPP·ll has considerable flexibility. It can handle numbers that are octal or deci·
mal,fractional or integer, signed or unsigned. A number may be represented as
one, two, or three binary words, or as a string of ASCII characters. Numbers may
be. converted from one representation to another e.g., numerical to ASCII.

FPP·ll'sflexibility extends to the ways of calling and of specifying operands .. The
subroutines' may be called with the addresses of the operands specified directly or
indirectly.

The indirect method using the EMT instruction employs a trap handler to perform
housekeeping functions. Three calling modes for specifying source and destina·
tion addresses are available when using EMT:

L full addressing mode using the full power of the PDP·ll address modes.

2. fast addressing mode using two general registers as pointers

3. Polish mode that pops the operands off a last·in·first·out stack, leaving the reo
suit on the top.

The direct method uses the JSR instruction, thereby requiring .that housekeeping
be performed by the calling program.

The complete package consists of eleven partially· interdependent modules. The
symbolic tapes of the modules may be rearranged and some may be deleted be·
fore assembly to tailor FPp·ll to the main program's needs. It is also possible to
delete modules without reassembly. .

Four formats are available for niJmerical representation of data:

L Single-Word Integer

2. Double-Word Integer

3. Floating-Point Normalized (3-word)

4. Floating·Point Unnormalized (3,word)

. Following is a list of the FPP-ll subroutines:

Subroutine name

ADDF
SUBF
NEGF
MULF
DIVf
NORM
MOVF
CMPF
FIX
FIXD

Meaning

ADD Floating
SUBtract Floating
NEGate Floating
MUltiply Floating
DIVide Floating
NORMalize
MOVe Floating
CoMPare Floating
convert float to FIXed point
convert float to FIXed point
Double-word

158

·FlT
FHO
ITOA
JTOA
FlOA
ETOA

OTOA
ATOI
ATOF
ATOO
COS
SIN
ATAN
lOG
EXP
SQRT
MUl

OIV

convert fixed point to FloaTing
convert Double-word to FloaTing
convert Integer TO ASCII
convert double word (J) TO ASCII
convert Floating point TO ASCII
convert Exponential form .of
floating point TO ASCII
convert Octal TO ASCII
convert ASCII TO Integer
convert ASCII TO Floating point
convert ASCII TO Octal
COSine {argument in radians)
SINe (argument in radians)
Arc TANgent
lOGarithm to the base e
EXPonential function
SQuare RooT
MUltiply single-word integer by
single word integer
DIVide double-word integer by
singJe-word integer

1.5 DEBUGGING OBJECT PROGRAMS ON-LINE, ODT-11
OOT'l1 (On-line Bebugging Technique for the POP-ll) is a system program that
aids in.debugging assembled object programs. From the keyboard the user is able
to interact with OOT and the object program to accomplish the following:

print the contents of any location for examination or alteration.

run all or any portion of his object program using the break-point feature.

search the object program for specific bit patterns •

. search the object" program for words which reference a specific word,

calculate offsets for relative addresses.

A breakpoint feature facilitates monitoring the progress of program execution. A
breakpoint may be set at any instruction that is not ref~renced by the program
for data. When a breakpoint is set, OOT replaces the contents of the breakpoint
location with a trap instruction so that when the program is executed and the
breakpoint is encountered. program execution is suspended, the original contents
of the breakpoint location are restored, and OOT regains control. OOT types a
message to the user of the fotm Bn (Bm;n for OOT-llx) where n is the breakpoint
address (and m is the/breakpoint number). The breakpoints are automatically re­
stored when execution is resumed.

1.6 INPUT 10UTPUT EXECUTIVE, lOX
lOX, the POP-ll Input/Output executive, frees the user from the details of deal­
ing directly with the I/O devices. lOX provides asynchronous I io service for the
following non·file-oriented external devices:

keyboard, teleprinter, and low-speed paper tape reader and punch

high:speed paper tape reader and punch

159

For line printer handling, an addition to all lOX facilities, 10XLPT is available.

Simple I/O requests can be made, specifying devices and data forms for inter·
rupt·controlled data transfers, which can be occurring concurrently with the exe·
cution of a running user program. Multiple I/O devices may be running single or
double bufferred I/O processi ng simultaneously.

Real·time capability,is provided by allowing user programs to be executed at de·
vice priority levels upon completion of a device action or data transfer.

Communication with lOX is accomplished by lOT (Input/Output Trap) instruc·
tions in the user's program. Each lOT is followed by two or three words consisting
of one of the lOX commands and its operands. The lOX commands can be divided
into two categories:

those concerned with establishing necessary conditions for performing in·
put and output (mainly initializations), and

those concerned directly with the transfers of data.

When transfer of data is occurring, lOX is operating at the priority level of the de·
vice. The calling program runs at its priority level, either concurrent with the data
transfer, or sequentially.

1.6.1 The Device Assignment Table
Use of the Device Assignment Table (DAT) serves to make the user's programs
device·independent by allowing him to reference a slot to which a device has been
assigned. rather than a specific device itself. Thus, changing the input or output
device becomes a simple matter of reassigning a different device to the slot in·
dicated in the program.

1.7 PDP·ll BASIC PROGRAMMING LANGUAGE
PDp-ll BASIC (Beginners AII·purpose Symbolic Instruction Code) is an easy· to·
learn, conversational, programming language for scientific, business and edu·
cational applications. PDp-ll BASIC is directly derived from Dartmouth BASIC
with a few limitations and many added features which provide more power and
flexibility than is available with standard Dartmouth BASIC. Notable features in·
clude:

Use of BASIC statements in immediate mode (no line number).

Ability to use any BASIC command (RUN. LIST, etc.) in deferred mode
(with a line number).

Recursive subroutine calls.

Multiple statements on a single line.

Array names 'of a letter followed by a number.

User programs can be halted (with CTRL/P) without clearing variables.
PRINT can then be used to examine values'.

Ability to call assembly language functions,

Basic can run in the minimal 4K PDp-ll configuration. Any additional 4K
memory increments are available for user storage unless restricted at load time

160

(see Absolute Loader). A 12K configuration would normally provide 8K plus about
450 words of user storage, and an additional 1000 words are available if BASIC's
arithmetic functions are deleted at load time.

161

162

PART II
CHAPTER 2

DISK OPERATING SYSTEM

2.1 DISK OPERATING SYSTEM
The PDp· I I Disk Operating System (DOS) represents a significant advance in
software development for small computers, providing capabilities which were for·
mally available only on larger machines such as the PDp· 10.

The DOS is a program development system for a PDp· I I with a minimum of 8K of
core, one or more disks and DECtapes or high·speed paper tape. The DOS Monitor
supports the PDp·ll user throughout the development and execution of his pro·
gram by:

providing convenient, complete access to system programs such as the as·
sembler, compiler, debugger, editor, file utility package, etc.

performing input/output transfers

handling secondary storage management

The PDp· II DOS is a keyboard·oriented system containing a powerful Monitor
and a comprehensive package of system programs. The DOS is modular and
open·ended, permitting users to incorporate the:·iJrograms required for a particu·
lar application and to have full access to disk and DECtape for storage and reo
trieval of system and user programs.

By typing appropriate commands to the DOS Monitor and system programs, the
user can generate, edit. assemble or compile, debug, load, save, call, and run pro·
grams with ease.

System programs can be called into core from disk or DECtape with Monitor com·
mands issued from the keyboard. This feature eliminates the need to manipulate
numerous paper tapes, and provides the user with an efficient and convenient
programming tool.

Keyboard commands enable the operator to load and run programs, dump data
from core, start or restart programs at specific addresses, modify the contents of
memory registers, redirect 110 with logical assignments, and retrieve system in·
formation such as time of day, date, and system status.

The user communicates with the Monitor in two ways: through keyboard instruc·
tions called commands, and through programmed instructions called requests.

Programmed requests are assembled into the user's program. Some programmed
requests are used to access inputloutput transfer facilities, to specify where the
data is, where it is going, and what format it is in. In these cases, the Monitor will
take care of bringing device drivers (110 routines) in from the disk, performing
the data transfer, and notifying the user of the status of the transfer. Other
requests access Monitor facilities to obtain such information as time of day, date,
and system status, and to specify special functions for devices.

163

2.1.2 Monitor Core Organization
Core memory is divided into:

a user area where user programs and buffers are located;

the stack where parameters are stored temporarily during the transfer of
control between routines:

The free core or butter area which is divided into I6-word blocks assigned
by the Monitor for temporary tables, for device drivers called in from disk,
and for data buffering between devices and user programs;

the resident Monitor itself which includes all permanently resident routines
and tables; -

the interrupt vectors.

2.1.3 Hardware Configurations
The following DOS configurations are supported by DEC:

Configuration '.
The reliability and speed of a large fixed· head disk are combined with DECtape
an inexpensive means of storing large amounts of file-structured data, both on­
line and off-line.

PDP-ll/20; extra 4K core (SK total); with cabinet and Teletype

RFll/RSll 256K-word, DEC Disk and Control

TCll/TU56 Dual DECtape Transport and Control '

BM792·YB ROM Bootstrap Loader

Configuration 1\
This configuration is a lower cost alternate to configuration I. It is intended for
applications not requiring a lot of removable storage.

PDP·1l120; extra 4K core (8K total); with cabinet and Teletype

RFll /RSll 256K-word DEC Disk and Control

PCll High·Speed Paper Tape Reader and Punch

BM792·YB ROM Bootstrap Loader

DDll·A Peripheral Mounting Panel for BM792·YB

Configuration III
This configuration is based on a small, fast 64K fixed·head disk used for systems
residency. The DECtape provides the media for on-line file, data or program stor­
age. Off·line storage is also provided by the removable DECtapes.

PDp·UI20; extra 4K core (8K total); with cabiAet and Teletype

RCll/RS64 64K·word Disk and Control

TCll/TU56 Dual DECtape Transport and Control

BM792·YB ROM Bootstrap Loader

164

Configuration IV
This system tombines the flexibility of a disk system with the convenience of a
removable disk cartridge pack. It is particularly well suited for applications where
several groups use and share the same system. Each group can easily maintain
their files independently of the others.

PDP-ll!20; extra 8K core (12K total) with cabinet and Teletype

RKll/RK03 1.2 million word DECpack Disk and Control and cabinet

TCll/TU56 Dual DECtape Transport and Control

BM792-YB ROM Bootstrap Loader

Configuration V (For very high speed operation and large file storage)
This system has all the advantages of configuration IV plus: the additional fixed­
head disk increases system throughput; the DECtape provides an inexpensive
means of providing large amounts of off-line file-structured data storage.

PDP-l1!20; extra 8K core (12K total) with cabinet and Teletype

RK 11 IRK03 1.2 million word DECpack Disk and Control and cabinet

RCll/RS64 64K fixed head DEC Disk and Control

TCll/TU56 Dual DECtape Transport and Control

BM792-YB ROM Bootstrap Loader

2.2 PAL·llR PROGRAM ASSEMBLY LANGUAGE
PAL-llR (Program Assembly Language for the PDP-ll, Relocatable Version) op­
erates under the Disk Operating System. Like PAL-llA, its counterpart in the Pa­
per Tape System, PAL·llR provides the PDP-ll programmer a means of writing
programs with meaningful symbols rather that with numerical code of usually no
mnemonic value. However, with this relocatable version, symbols are assembled
into object modules which are then processed by the LlNK-ll Linker. LlNK-ll
produces a Idad module that is loaded for execution by the Monitor RUN com­
mand_ Object modules may contain absolute and lor relocatable code; and sepa­
rately assembled object modules may be linked with the aid of global symbols.
The object module is produced after two passes through the Assembler. A com­
plete octal Isymbolic listing of the assembled program may also be obtained. This
listing is especially useful for documentation and debugging purposes_

Some notable features of PAL-llR are:

Selective assembly pass functions

Device and file name specifications for pass functions

Error listing on command output device

Double buffered and concurrent 1/0

Alphabetized, formatted symbol table listing

Relocatable object modules

Global symbols for linking between object modules

165

Conditional assembly directives

Program sectioning directives

Instruction mnemonics and statement format are identical to those of PAL-llA,
described in the previous chapter- However, labels in PAL-llR may have either
absolute or relocatable values. In the latter case, the final (absolute) value is as­
signed by the Linker by adding a relocation constant to it.

PAL-llR assembler directives include those of PAL-llA, described in the previous
chapter, except that .EOT is effectively ignored under the Disk Operating System.

2.3 EDIT-ll TEXT EDITOR
The DOS Text Editor, Edit-ll, is an on-line text editing program providing charac-'
ter, line, and file manipulations. Edit-ll will read and write ASCII files to and from
any device.

In addition to .normal editing functions, Edit-ll provides for command macros
and multiple input/output files. .

An 8K system can accommodate about 4000 characters of text. AH additional
core memory is available for text storage, i.e., abOut 8000 characters of text for
each additional 4K memory bank.

2.4 ODT-llR DEBUGGING PROGRAM
ODT·llR is the on-line .debugging program for the PDp·l1 Disk Operating Sys­
tem. It is a system program which aids in debugging assembled and linked object
programs. From the teleprinter keyboard the user interacts with ODT-IIR and the
object program to:

print the contents of any location for examination or alteration,

run all or any portion of your object program using the break· pointiea­
ture,

search the object program for specific bit patterns

search the object program for words which reference a specific word,

calculate offsets for relative addresses,

fill a block of words or bytes with a designated value.

2.5 PIP-ll FILE UTILITY PACKAGE
The File Utility Package performs file handling operations for the PDP-ll Disk
Operating System (OOS). Some examples are file transfers, directory listings, and
file renaming. The Package is named PIP (Perih- erallnterchange Program) to be
compatible with similar programs on' other DEC systems.

2.5.1 File Handling
The transferring of files between devices is one of PIP's primary junctions. There
are two basic methods of file transfer:

1. Transferring and combining .- used to combine seVeral files from one or more
source devices into one file on the destination device.

1 filii

2. Transferring without combining .. used to move several files from the source
devices to the {jestination device as in· dividual files.

A file is specified by a file extension and filename. Several files can be specified by
using the asterisk' in place of the filename. extension, or both. The • symbol de·
notes "all". •

For example:

DTO: < '.PAL

will transfer all files with the extension PAL from the systems device to DECtape
unit O.

MAIN.*/BR

will output a brief directory listing all files with the file name MAIN._

·.TMP/DE

will delete all files with the extension TMP from the systems device. Unless speci­
fied the systems device is assumed to be the disk.

A comprehensive description of PIP's features and operation is contained in the
PDP-11 PIP File Utility Package, Programmer's Manual, DEC-11·PIDA·D.

2.6 LlNK-l1 LINKER
. The LINK· 11 Linker is a system program for linking and relocating user programs

assembled by the DOS Assembler. It enables the user to separately assemble his
main program and various subprograms without assigning an absolute address

- for each segment at assembly time.

The binary output (object module) of each assembly can be processed by L1NK-ll
-to:

Relocate each object module and assign absolute addresses.

Link the modules by correlating global symbols defined in one module and
referenced in another module.

Produce a load map which displays the assigned absolute addresses.

Create a load module which can subsequently be loaded (by the Monitor or
the Absolute Loader) and executed. -

The advantages of using L1NK·ll include:

The source program can be divided into segments (usually sub-routines)
and assembled separately. If an error is discovered in one segment, only
that segment needs to be reassembled. L1NK·ll can then link the newly
assembled object module with other object modules.

Absolute addresses need not be assigned at assembly time; the Linker
automatically assigns absolute addresses. This keeps programs from over­
laying each other:This also allows subroutines to change size without in­
fluencing the placement of other routines.

Separate assemblies allow the total number of symbols to exceed the num­
ber allowed in a single assembly.

167

Internal symbols (which are not qlobal) need not be unique among object
modules. Thus, naming rules are required for global symbols only when
different programmers prepare separate subroutines for a single program.

Large numbers of commonly usEid routines can be kept in a library and be
retrieved with the Library search facility of the Linker.

Selective DOS monitor modules which are normally disk resident and
swapped on request can be selected to be core resident for the duration of
a program run using the Linker's DOS monitor Library search feature.

A core library facility is provided, with the user optionally requesting that
the defin~ symbols be written onto a file for retrieval by later linking pro­
cess.

2.7 LlBR·l1 LIBRARIAN
The PDP-ll Librarian (LlBR-ll) is a system program for the Disk Operating Sys­
tem providing facilities for creating, modifying, deleting, and listing the contents
of libraries. A libra.-.y can be created fro[11 one or more files. A file consists of one
or more object modules, i.e., the binary output of the DOS Assembler.

LlBR-ll is a valuable program for the DOS user because;

It eliminates having separate directory entries in a User File Directory
(UFO) for each object module.)

It expedites the linking process in conjut;lction with the Linker's library
search capabilities.

It allows for standardization and controlled updating of frequently used
routines, e.g., FORTRAN cosine routine.

The user controls the operation of LlBR·ll through command strings typed on
the keyboard. Specified in the command strings are such things as devices, li­
brary, file, object modules name, and switches which indicate the LlBR·ll oper­
ation desired. The user can direct LlBR-ll to:

Create a library

Update a library

Insert one or more object modules in a library

Replace one or more object module in a library

List the directory of a library

Delete one or more object modules from a library

Delete an entire library

A directory listing of the object modules of a library can be obtained merely by
.specifying the device on which the directory is to appear and the name of the Ii·
brary.

The flexibility of LlBR·II enables the user to specify certain combinations of oper­
ations in a single command string. For example, a library can. be modified, re­
named, and listed in one command string.

1~

PART II
CHAPTER 3

FORTRAN IV

FORTRAN' IV (FORmula TRANslation) language is a problem·oriented language
designed to help scientists and engineers express a computation in a notation
with which they are familiar. A FORTRAN source program is composed of state·
ments in easy·to·read form. Commands are descriptive of the functions they per·
form, and computa· tional elements are expressed in a notation similar to that of
standard mathematics.

PDp·l1 FORTRAN IV is an ANSI·standard FORTRAN IV compiler with elements
that provide easy language compatibility with IBM 1130 FORTRAN. Since PDP·l1
FORTRAN runs in the DOS environment, it requires only the hardware necessary
to run DOS. There are no other hardware requirements, but the system will take
advantage of added resources; more than 8K of core provides faster compilations
and/or compilation of larger programs. PDp·l1 FORTRAN uses DOS monitor I/O
calls, and will support all peripherals supported by the disk operating system.

Some of the advantages of PDp·l1 FORTRAN are:

random access I/O

mixed mode arithmetic is supported

generalized expressions are allowed as array subscripts

implicit statements allow the user to conveniently control the data type of
variables

improved error diagnostics. A useful error traceback feature specifies: a)
precisely where an error occured, b) all the linkages back to the main pro·
gram

arithmetic can be performed with or without the PDp·l1 Extended
Arithmetic Element; PDp·ll FORTRAN will provide up to 24-bit accuracy
for two· word formats (real), or up to 56· bit accuracy for four words
(double·precision)

character·handling capability with the LOGICAL *1 capability

the ability to conserve core memory by selecting ONE WORD integers

the ability to generate relocatable binary code directly from the compiler,
or to generate intermediate assembly code for custom modifications

extensive compiler diagnostics with text accompanying the diagnostic. The
text may optionally be omitted

a completed, comprehensive and reentrant math library and object time
system.

169

]70

PART II
CHAPTER 4

COMMUNICATIONS SOFTWARE

COMTEX-ll

COMTEX·11 (Communications Oriented Multi·Task Executive) is a communica·
tions software package for the PDp· 11 family of computers. COMTEX·11 pro·
vides the following benefits:

Maximizes message throughput by fast processing of bursts

Software support for PDp·ll Communication Line Adaptors

Software support for standard DEC terminals

Compact reentrant code for core savings

Efficient set of user program commands initiate COMTEX·11 functions

Modular and expandable program modules for easy adaptation to user re·
quirements

Defines programming conventions for communication tasks

4.1 COMTEX·l1 APPLICATIONS
COMTEX is intended for use in any system connected to communication lines or
servicing multiple data terminals. Applications are:

Remote Batch

Store and Forward

Front Ends

Satellite Processors

Concentrators

Message Switching

Telemetry

4.2 COMTEX·l1 DESCRIPTION
COMTEX is a modular. reentrant software package for servicing of commu·
nication line interfaces and communication terminals. To control the line inter·
faces and control or transmit to the terminals. the co·resident user program need
only make executive calls to the monitor (SCIP). COMTEX. via the SCIP. returns
status information to the user program by placing this data into a circular queue
accessible via a COMTEX executive command.

171

The modular nature of COMTEX allows the user to easily replace, add to or modify
the terminal·dependent code in COMTEX. The terminal·oriented routines known
as TAP's (Terminal Application Programs) are completely transparent to the type
of linecontrollef. TAP's perform functions such as special character detection,
terminal control and ·code conversion. TAPs are reentrant and table·oriented;
thus, one TAP can service multiple terminals of the same type.

The routinElli performing line control functions, called ISRs (Interrupt Service Rou·
tines), are transparent to all functions not related to line control. The ISRs per·
form functions such as modem control, and the mechanics of data input and
transmission. One copy of an ISRcan service multiple line controllers of the same
type.

All COMTEX internal operations are scheduled on a priority basis so that time­
critical functions are performed· at high priority levels. Functions requiring fast
service are character·buffer·unloading or end-of-block detection. These tasks
must be serviced quickly to prevent data overrun. Jobs such as code conversion
can be performed at lower priority levels.

COMTEX·l1 system·building uses the PDp· 11 assembler (PAlll-S). System build
parameters consist of the type of terminals, type of line control units, and num·
ber of lines. These factors determine which TAPs, ISRs and Une ta.bles are re­
quiredby the system. User programs to be co-resident with COMTEX may be writ·
ten for assembly using any of the PDP·ll assemblers.

Assemblers are available for host machines such as PDP·IO; CDC 6000 and IBM
360 systems from the DEC User's-Society (DECUS).

4.3 COMTEX·ll DISTRIBUTION
Technical information on all DIGITAL Communication products may be obtained
from the engineering and programming teams resident in DIGITAL sales offices.

The COMTEX·l1 software package including manuals, detailed flow charts, tim­
ing information, source and binary tapes, listings and training may be ordered
through any DIGITAL office.

Table 4-1 COMTEX·ll Commands
UNIT (Line INITialization) .Associates logical line number with physi­

cal.characteristics of the line.

PUTMC (PUT Modem Control)

PUITC (PUT Terminal Control)

ASRBUF (ASsign Receive Buffer)

PUTD (PUT Data)

GETS (Get Status)

PUITM (PUT TiMer)

Control functions to modem

Control functions to terminal

Assign a buffer for input and allow input
to commence

Initiate data transmission

Return status information to the· user pro·
gram.

Provides user program with time and time­
out information

172

INTERFACE SERVICE ROUTINES USR) TERMINAL DEPENDENT RlJl./TlNES (TAP)

SYNCHRONOUS
LINE

ASYNCHRONOUS
LINE

ASYNCHRONOUS
LINE

DATA FLOW
TO TAP

USER PROGRAM
{;OMMANDS

TO COMTEX

USER PROGRAM

TASK
SCHEOULING

STATUS
FROM TAP

-----,
I
I
I
I
I
I
I
I
I ______ .J

INFORMATION
TO USER

PROGRAM

Figure 4·1 COMTEX Block Diagram

4.4 CORE Rf:QUIREMENTS
Core requirements for CO,"",TEX·ll are:

System Control Interface Package (SCIP)
KLlllnterrupt Service Routine (ISR)
DCll (ISR)
Interactive Teletype (TAP)
SCIP Table Space
TAP Table Space
ISR Table Space

173

1300
250
440
1000
I6/line
22/line
9/line

174

PART II
CHAPTER 5

REAL TIME EXECUTIVE
R5X·IIC

RSX-llC (Real Time Executive) is a software package that provides for task
scheduling, input-output, operator communication and other functions required
fo(real time multiprogrammed operation_

User tasks can be written to operate under the control of RSX-llC using either
assembly language or FORTRAN IV_

The handling of program scheduling and input-output by the real-time monitor
makes the use of a high-level language such as FORTRAN possible_ FORTRAN IV
programs including real-time calis are supported by RSX-llC. The use of FOR­
TRAN with a general purpose real-time executive provides a software environment
which makes the real-time computer a practical operation tool for the process en­
gineer, test engineer or researcher. This means that with only a knowledge of
FORTRAN he can get his PDP-ll system producing results in a matter of days,
and can take advantage of FORTRAN code written for other systems.

FORTRAN programs must be compiled on a PDP-ll system under the Disk Oper­
ating System (DOS) control. Machine language programs can be assembled on­
line if sufficient core is available. RSX minimum requirements are 12K, a KWllL
real-time clocl~, ASR Teletype and high speed reader/punch.

5.1 LANGUAGES SUPPORTED
The user can write ali of his tasks In FORTRAN; not only the arithmetic, logic and
control functions of standard FORTRAN but also functions of task starting, se­
quencing and input·output.

RSX-llC supports FORTRAN calls for real time functions.

A relocatable assembler and linkage editor can also be used to build user
tasks_

5.2 SCHEDULING STRATEGY
When a user loads a task in the system he must specify one of three levels of pri­
ority_ These three software or user levels are all below the four system levels of
priority which are entered due to an I/O interrupt or due to instruction trap inter­
rrupts.

The three software (user) interrupt levels are true priority levels_ For instance, if
an interrupt occurs indicating it is time for a new task to begin, and the new task
is' of higher priority than the task interrupted, the low priority task is suspended

175

and the higher level task activated. If the higher level task gets suspended, the
lower level task is continued until the higher level task can resume operation.

5.2.1 System Response Time - User Levels
System response time for user tasks depends mainly on whether another user
level task is running at this or a hTgher level. A task that runs too long at a high
priority level can therefore destroy the response time of other tasks. To avoid this
an important design feature of RSX-llC is a software Task Watch Dog Timer.
This timer is set at the start of each task with the maximum duration a ~ask may
run, at a particular level, before suspending or exiting. This time liniit is a system
parameter for each priority level. Typical values may be 100 milliseconds for the •
highest level,one second· for the intermediate level and unlimited time for the
lowest level. If this time limit is exceeded the task is reduced in priority and must
compete for machine time with other tasks at the next lower level. If it moves to
the lowest level, it is then allocated time slices on a round robin basis with other
tasks running at this level. At the end of each time slice, a check is made to see if
it has exceeded a maximum run time defined for this task. If this time has been
exceeded, an error report is generated. .

A fourth level of priority is available and used by the system tasks. This level is
higher than the three user levels and is used for functions of very short duration.
No watch dog time is set for this level. User tasks of very short duration may also
be loaded into this fourth level if they require exceptionally fast response times.

5.2.2 System Response Time· System (Interrupt) Levels
Normally, executive functions (scheduling, I/O, etc.) are active on the four hard­
ware priority levels. However, special user code can be placed also at these levels.
Programs at these levels are entered due to a hardware interrupt and may be
stopped by higher priority programs. .

5.3 MEM.ORY EfFICIENCY
Commonly used subroutines, such as the FORTRAN arithmetic library, formatter,
etc. can be loaded as part of the RSX-l1C package and shared by all user pro­
grams. This can be done because these subroutines are reentrant, i.e., they can
be interrupted while being used by one task and then re-entered for use by other
tasks.

5.4 MULTIPROGRAMMING CAPABILITY
RSX-llC can handle many concurrent real-time tasks and a single background
task. The number is limited by the memory capacity of the computer, and is typi­
cally less than 128.

5.5 INPUT/OUTPUT
RSX-l1C controls and executes all input and output operations. This is one of the
areas of most concern to real-time users, because most real-time applications are
characterized by a large amount of input and output.

All output transfers from the program to I/O devices are buffered. Programs are
not suspended if room exists in an output buffer for characters being output.

With this feature the engineer does not have to worry about machine language
I/O programming, since all I/O requests are performed by the executive in re­
sponse to simple I/O commands. Executive calls of this type are identical to those
used in the (DOS) Disk Operating System used for data processing in the PDP-ll .
. Programs may be easily transferred between this operating system and RSK-llC.

176

5.6 OPERATOR COMMUNICATION
Simple operator commands are provided to load, start, stop and delete a particu·
lar program. Commands are also provided to set the time·of·day, and to inter·
rogate system status.

5~ 7 'PROGRAM DEVELOPMENT
Program development can be done on·line or off line using the PAL·llR assemb·
ler and LlNK·ll. Object modules produced by the assembler must be processed

.. by the linker to produce a binary load module Which can then be loaded via the
On·Line Loader Task.

If required, the assembler, linker and symbolic editor can be operated as back·
ground tasks. The On·LineLoader Task loads modules generated by the Linker.
The loader checks modules being loaded against a memory map for proper fit.
The On·Line Loader operation does not interfere with the operation of the real
time system.

177

178

SYSTEMS

179

180

PARJ III
CHAPTER 1

TIMESHARING SYSTEM
RSTS-ll

RSTS·ll is a timesharing system developed for the PDp·ll. "RSTS" stands for
Resource Time Sharing System to reflect the capability of allowing terminal users
to access high·speed input/output peripheral devices within their application pro·
grams.

Other distinguishing characteristics of RSTS·ll include:

applications program development in a greatly extended version of the
Dartmouth BASIC programming language.

sequential and random access to on·line disk files with a total capacity as
large as 32 million characters. .

support for both local and remote interactive terminals operating at up to
1200 Baud transmission speed.

up to 16 simultaneous terminal users.

1.1 PROGRAMMING LANGUAGE
RSTS·ll applications programs are written in a greatly extended version of Dar·
tmouthBASIC, named BASIC·Plus. Because of the popularity BASIC now enjoys
as an educational tool, a large body of teaching materials, both textbooks and
programs, have been developed which further enhance the value the language.
One of the benefits of the language extension is that students are less likely to
"outgrow" the language as they become more experienced in programming tech·
niques.

BASIC is. widely used in industry for computational problem·solving via time·
sharing service bureau terminals. It is important that the language features have
sufficient scope so that the difficulty of conversion of programs written in any of
the large number of versions of BASIC be minimized. .

The more significant features of BASIC· Plus include:

extensive set of character string manipulation operators and functions

an integer data type for more efficient computation (e.g., counting) oper·
ations

programmed format control for print files

programmed sensing and reCovery from computational and input/output
errors at the user level

access to sequential and random·access disk files

extensions to the syntax of Dartmouth BASIC to permit more concise pro·
grams and' more efficient execution.

181

Example:

If X = Y THEN A(I) = X ELSE GOTO 550 LET Bl = R5 IF- R5 = 4)

1.1.1 Character String Processing
The design of the BASIC·Plus language gives particular emphasis to flexible and
efficient manipulation of alphanumeric character string data. Computer Aided In·
struction applications consist largely of the input and output of large quantities
of text data. The ability to handle alphanumeric records and fields is essential in
business information processing.

The character string manipulation features permit the programmer to define an
internal character string variable of indefinite length, concatenate strings (ap·
pend strings end·to·end. to form a new string), extract a substring of arbitrary
length from any part of a string variable, and search for a string within a string.
Character string records up to 512 records long may be stored in disk files. String
functions permit the conversion of numeric values to strings and vice versa.

1.1.2 Integer Data Type
BASIC· PI us includes the definition of integers in addition to strings and floating
point numbers. Integers are whole numbers in the range of -32,767 to :.. 32,767.
The use of integers often increases the execution efficiency of programs. The
most common uses of integers are in counting and indexing operations.

1.1.3 Print Formattil"!g
Many applications, such as business data processing, require more flexible con·
trol of the printing format than Dartmouth BASIC allows. BASIC· PLUS includes a
PRINT USING statement which may .be used to acheive precise definition of
printed data format. PRINT USING .allows character, decimal, and exponential
data field lengths and positions to be defined, and mixed, for a print line. In addi­
tion, leading dollar or asterisk symbols may be "floated" to automatically pre­
cede the most significant digit of decimal fields. Trailing minus signs for data
fields may be specified for compatibility with accounting report standards.

1.1.4 Programmed Error Recovery
One of the more frustrating situations for a timesharing terminal user occurs
when a program is cancelled because an input/output error condition occurs
(perhaps temporarily) and causes all results created (in a file, for examgle) tothat
point to be lost. This problem can be particularly serious in an administrativeap­
plication which is processing files. This situation can be controlled by theapplica·
tions programmer by use of the ON ERROR GOTO statement. This subroutine call
statement is triggered by a variety of input~output and computa· tiona I errors.
The called subroutine is passed, a value which identifies the error type, and at·
tempts to recover from the error condition. If the subroutine is successful, normal
execution of the application program resumes. Thus, in effect, the programmer
can design an executive system within his own application which supplements the
services proVided by the RSTS·l1.system monitor.

1.1.5 Disk File Access
RSTS-l1 users may create and have high·speed access to program and data files
stored on disk units with total file space of up to 32,000,000 bytes. Files may be
created for either sequentials or random access processing, depending upon the
requirements of a user's application. Up to 12 files may be open and accessible
from a single program at anyone time. The number of files a user may have.
stored in the disk lib,rary is bounded only by the total system disk capacity and
the library demands of other -users.

182

An on-line file library system means that RSTS-l1 terminal users have the con­
venience of almost instant access to any desired file or file item. Terminal users
are spared the problems and frustrations of handling paper tape each time a pro­
gram is to be executed. Many applications such as on-line customer inquiry-re­
sponse are possible with the large-scale file library system of RSTS-ll.

Each terminal user has full control on the degree of privacy he desires for each
file he creates. The disk library file directory system, which provides efficient ac­
cess to files, includes a privacy-protection level which may be set only by the ter­
minal user responsible for creation of the file. Personnel records, for example,
can be given absolute protection from all other users. Other levels of protection
include access limited to a particular group of users, read only, write only, and
public. Files may be stored on-line on DECpack removable disk cartridge drives,
DECdisk fast-access fixed-head disk units, and removable disk packs with a capa­
bility of 32 million bytes, total, for on:line storage of frequently used files.

1.1.6 Extended BASIC Language Features
The effectiveness of RSTS-ll in solving problems in a broad variety of application
areas is significantly increased with the addition of numerous extensions to the
structure (syntax) of the BASIC program statements. These highly flexible pro­
gram statements permit more concise expression of complex program steps.

Some examples are:

LET Al=Pl*RlIF Rl=5.00R Rl=O.O

GOTO 5530 UNLESS Xl$= Yl$ AND Z$

LET X(Yl,Zl)=Zl*3 FOR Zl=l TO L

FOR I = X(J) STEP 3 WH ILE L$(I) = L$(I + 1) AND J + I = 12

ON X(2,5) GOTO 100, 150, 200, 250, 300

1.2 PROGRAM DEVELOPMENT FACILlT.IES
A relatively high percentage of timesharing systems used in both schools and in­
dustrial organizations is either developing or modifying applications programs.
This is because problems in these environments are often of a "one-shot" nature.
Students have project assignments and engineers have computational problems
requiring special programs.

RSTS-ll provides a number of features which assist terminal users in developing,
modifying, and debugging BASIC-Plus programs. The following features are avai­
lable:

1. Each program statement is checked for errors in syntax and format. If an er­
ror is found, a diagnostic message is reported immediately.

2. Program statements may be entered in any line-number order, so that if a
user discovers that he omitted a line, he may enter it immediately without hav·
ing to type any special commands.

3. Once all program statements are entered, the program may be executed im·
mediately without having to type any special commands.

183

4. Program statements may be changed by simply retyping the line number and
statement. (To delete a statement the line number is followed by a carriage reo
turn Key).

5. For debugging purposes, STOP statements may be temporarily inserted in a
program. When a STOP statement is encountered during execution, ames·
sage is typed indicating the line number of the STOP statement which inter·
rupted execution. Like·wise a program may be interrupted "at random"by typo
ing the CTRLlC key combination. The terminal user may then use immediate
mode statements to print the values of an variables in his program, modity
values of variables, and resume the execution of the program.

6. Statements in a program may be added, modified, or deleted, and the pro·
gram rerun without a waiting time for recompilation of the entire program.

7. Ali debugging is performed at the source program level rather than requiring
knowledge of PDp·ll machine level instructions.

These features permit a programming session to be carried out in a highly conver:
sational manner, thus minimizing the user's time in developing or modifying a
program.

To support the previously·listed programming facilities, RSTS·ll utilizes an in·
cremental compiler. The compiler is core-resident, reentrant, and can be shared
by all terminal users. The incremental compiler generates a highly efficient inter·
mediate language code which allows application programs to be executed with a
high degree of. efficiency.

1.2.1 Desk Calculator Mode
The facilities of the incremental. compiler also provide a "desk calculator" service
to terminal users. BASIC· Plus statements which are entered without a preceding
line number are compiled and executed immediately. In a sequence of one or
more statements entered in immediate mode, a terminal user may assign values
to variable, perform operations upon them, and print out results of comput·
ational operations Thus, the statement: PRINT A(I). SQR<A(I)< FOR 1=1 TO
100 will print out a square root table.

1.3 INPUT IOUTPUT PERIPHERAL ACCESS ,
An important feature of RSTS-ll, distinguishing it from most small-computer
timesharing systems, is that a terminal user may "configure" a collection of in­
put/output devices needed to execute his application with high efficiency. The ob­
jective of this resource sharing concept is to overcome the input-output bot­
tleneck associated with the use of interactive terminals alone - whether they be
used with an in-use computer or on a timesharing bureau. For example, an RSTS-
1 t terminal application program might use a punched-card reader for input of
transaction records, a magnetic tape file for updating a sequential file which is a
log of all transactions, and a high-speed line printer for printing a transaction re­
port_

Another benefit.of the resource sharing concept for organizations which cannot
afford an RST5-11 configuration with extensive on-line. disk storage capacity is
that infrequently used programs and data files may be stored on reels of DEC- .
tape. Two inexpensive DECtape transports are included in the RSTS-ll con­
figuration. Because files may be transferred between reels of DECtape and on-line

184

disk' storage quickly and conveniently, the demand for on-line disk space may be
effectively controlled.

Access to high speed peripherals is assigned by the RSTS-ll system monitor
upon user request on a first-come, first-served basis_ When a user no longer
needs access to a particular peripheral device, he may type a command to the sys­
tem to free the device for use by other terminal users ..

1.4 RSTS-U INTERNAL SYSTEM
RSTS-11 timesharing service is supported by a software system composed of.: a
monitor, a compiler/editor, and a runtime system. The software runs on a stan­
dard PDP-ll with a minimum of 24K words of 16-l;>it core memory, a 256K word
fixed-head disk, a dual;transport DECtape unit, real-time clock, bootstrap loader,
user terminal interfaces and power supplies and mounting hardware. The con­
figuration may be optionally extended with aditional disk units, magnetic tape
transports, line printer, high-speed paper tape reader/punch, card reader, and
additional core memory. .

1.5 MONITOR FUNCTIONS
The pur-pose of the monitor is to control and allocate computer resources to
RSTS-ll terminal users. A major portion of the monitor is core resident to min­
imize terminal. response time.

'. The monitor uses a core-disk swapping strategy to allow terminal users a large
amount of core memory space (up to 8K words) while a round-robin scheduling
algorithm is used to determine which user should next be allocated a slice of pro­
cessor ti~ If the n~xt user-program in the round robin queue is waiting for pro­
cessor time, the program is swapped from a high-speed systems disk to an avai­
lable cQre memory area, The user's program is executed for a time-slice of either
approximately 100 milliseconds or until the program requests input/output ser­
vice, whichever is shorter.

1.6 SYSTEM ACCESS
Users are authorized terminal access to RSTS-ll via a user identification code.
The code is composed of three parts: a project number, a programmer n'umber
and password. Up to 120 discrete users may have accounts .

. RSTS-ll terminals may operate either local to the system (hard-wired) or remo­
telyvia communications lines. A wide variety of terminals operating at speeds
from 10 to 120 characters per second may be used. Teletypes, cathode ray tube
displays and the. new DECwriter (a 30- character-per-second hardcopy terminal)
are currently supported.

185

IB6

PART III
CHAPTER 2

COMMUNICATIONS

Because of its UNIBUS architecture and other advanced features, the PDP-ll is a
natural communications processor_ The PDP-U's adaptability to commu­
nications environments is further enhanced by DEC's advanced general purpose
communications oriented software executive (COMTEX-ll) and by extensive com­
munications hardware_ By combining the PDP-ll with COMTEX-U modules and
DEC's communications hardware, many systems can be configured for remote
terminal, data concentration, message switching and front end preprocessing ap-.
plications.

2.1 PDP-ll ARCHITECTURE
The PDP-ll provides the following advantages for communications applications:

The UNIBUS asynchronous data bus behaves like a multiplexer. Multiple
single-line communications interfaces can be added to the PDp· 11 without
special multiplexing hardware.

The physical modularity of the PDP-11 makes it easy to reconfigure. PDP-
11 system units connect directly to the UNIBUS and allow easy expansion
of memory or communications line ·interfaces. Processors, memories and·
communications interfaces can be easily replaced in the event of failure or
as more powerful units become available.

The PDP-11 handles bytes easily and efficiently. Byte handling is the crux
of communications applications; and each 8-bit byte is directly addres·
sable with a full set of byte instructions.

The PDP-ll handles large core systems easily. The UNIBUS uses 18 ad­
dress bits and allows 262K bytes or 131K words to be addresses.

Eight general registers combine with addressing modes to offer very ef­
ficient string or list processing operations. General registers are used as
full I6·bit index registers; this allows code conversions to be performed
easily.

For example:
MOV TPB,R5
MOVB BASE(R5)

;get the EBCD code from Rcve Buffer
;convert to equivalent ASCII Code

Note that 1/0 device registers are accessed with standard instructions.
This brings the full power of the PDP-II instruction set to bear on 110 pro·
gramming.

The dynamic stack capabiltiy associated with subroutine call and interrupt
processing permits reentrant coding and fully nested.interrupts. Reentrant
code lets multiple devices share the same service routines. Nested inter-

187

rupts allow higher-priority service routines to interrupt lower-priority rou­
tines.

Vectored interrupts reduce the overhead associated with an interrupt. The
PDP-ll branches directly to each interrupt service routine thus saving the
time usually required to identify the interrupt. This increases the number
of lines a communications system can handle.

Flexible interrupt priority structure provides the system designer with full
control over the hardware and software priority assignments.

UNIBUS design" allows easy and inexpensive use of direct memo{y access
devices. The single-bus system reduces the cost of cabling and electronics
associated with DMA devices. .

2_2 COMMUNICATIONS HARDWARE
DEC communications equipment is summarized below and explained in greater
detail in the PDP-ll Peripherals and Interfacing Handbook.

Asynchronous Line Interface (DCll)
Full- or Half-Duplex Operation
Programmable Line Speed (4 speeds)
Input and Output Speed Independent
Programmable Character Size (5,6,7; or 8 bits)
Parity Check on Incomming Characters
Interfaces to Bell 103, 202, or Equivalent Modems
Auto Answering Capability
Reverse Channel for Bell 202 Operation

Asynchronous 16-Line Single Speed Multiplexer (DM 11)
Full- or Half-Duplex Operation
DMA Character Assembly in Core Memory
DMA" Message Transmission from Core Memory
Rates up to 1200 Baud
Character Size Jumper Selectable (5,6,7,8 bits)
Parity Check on Incoming Characters
Break Detection
Reverse Break Generation
64 Character Tumble Table for Buffering Incoming Characters
Transmitter arid Receiver Priority Independent
Up to 16 DMll's per PDp·ll System

Synchronous Line Interface (DPll)
Double-Buffered Program Interrupt Character Service
FuJI-of Half-Duplex Operation
Programmable Sync Character
Programmable Character Size (6,7, or 8 bits)
Receiving Sync Character Stripping Program Selectable
Speeds up to 50,000 Baud
Interfaces to Bell 201 and 303 or Equivalent Modems
Auto Answering Capability
Internal Clocking Source (optional)

188

Automatic Calling Unit Interface (DNll)
Digit·Buffered Interface
Interfaces with Bell SOIA or SOlC or Equivalent Units.
Program Access to all Bits of the SOL

2.3 COMMUNICATIONS SOFTWARE
COMTEX·11, a communications oriented multi·task executive, provides extensive
interrupt and data handling capability for a wide range of communications appli·
cations. Major features are:

Modularity and Expandibility

Low overhead priority t~sk scheduling for maximum system performance

Interrupt service routines for all standard communications hardware

Terminal applications package for many common terminals

Transparent data communications front end to user's application program

COMTEX·11 is explained in more detail in PART II, Chapter 4.

2.4 COMMUNICATIONS APPLICATIONS
2.4.1 Front End Preprocessors
The PDp·11 offers a powerful, low·cost alternative to hardwired communications
controllers on the front end of large computer systems. As a front end, the PDP.
11 handles not only low· and medium·speed terminals such as Teletypes and,
CRT's but also remote· terminal. controllers and remote·data concentrators. Func.
tions performed by this type of system are similar to those of a terminal controller
or a data concentrator.

PDP-t t
PREI'ROCESSOR

Figure 2·1 Front End Processor

189

2.4.2 Store and Forward Message Switchers
This type of system has a number of data terminals connected locany or via com­
munications lines to a central computer. Any terminal can originate a mes~age
and transmit it to the central computer. Here the message is stored until it can be
forwarded to the destination terminal. Typical functions performed by a store and
forward message switcher ar~:

Assembly/disassembly of messages

Polling and addressing of terminals

Line control

Error control

" Code and speed conversion

Message header analysis

Sequence number of messages

Time and date stamping of messages

Message routing

IlMIIAA

o
M
1
1
o
B

Figure 2·2 Store and Forward Message Switcher

2.4.3 Remote Terminal Controllers
This allows remote access to a batch processing facility. Information to be pro·
cessed is stored on punched paper tape, punched cards or magnetic tape. Output
can be displayed on-a CRT, stored on magnetic tape, paper tape or printed on a
line printer. Generally, the controller is transparent to the data being transmitted;
but, it can be used to, perform functions such as:

Code and speed conversion

Data compression

190

Line control

Error control

Message formatting

PDP-11

Figure 2-3 Remote Terminal Controller

2.4.4 Data Concentrators
A cluster of remote low-speed data terminals can 'often be interfaced more eco­
nomically to a remote interactive computer via a data concentrator than by using
a separate line per terminal. Communication line costs can be reduced by con­
centrating several low-speed terminals into a Single medium-speed :::ommu­
nication line using a data concentrator. Typically. a data concentrator performs
the following functions:

Character-to-message assembly Idisassembly

,Communication Line control

Message buffering

Error control

Code conversion

Automatic answering

Automatic identification of the terminal type

191

PDP-ll

DCllAA DCllAA DCllAA

0 0 0 0 0 0
C C C C C C DPllDA 1 1 1 1 1 1
1 1 1 1 1 1
0 D 0 0 0 0
A A A A A A

+_-------'-PHONE LINES ---------+

::::~
Figure 2·4 Remote Data Concentrator

192

PART III
CHAPTER 3

INDUSTRIAL DATA ACQUISITION AND CONTROL
SYSTEMS

Modular process interfaces; special state'of·the·art software (RSX·11C real·time
executive) and the POP· 1 1 combine to provide efficient, low·cost and reliable sys·
tems for industrial data acquisition and-control applications. IOACS·l1 systems
can serve either as on·the·floor satellite computers, or as stand·alone devel·
opment/process control systems. These systems can provide flexible hier·
archichal computer configurations with computer·to-process or computer-to·com·
puter. communication capabilities.

IOACS-11, a total system for real time data acquisition and control, consists of:

PDP-11 computer and peripheral devices

Truly industrial process interfaces

Reai time operating software

3.1 PROCESS INTERFACES
The modular and reliable process interfaces are available for a widfl variety of pro­
cess signals. These industrial interfaces make possible the communications be·
tween a real live process and the PDP-ll computer. The following process 110 de­
vices are offered for IDACS-l1 systems:

flying capacitor scanner (AFCII) for low·leveldifferential analog inputs. It
is expandable to 1024 channels and is truly an industrial subsystem with
high noise rejection.

universal digital controller (UDC·11) for discrete process input/output
such as:

contacts, relays, switches, pushbuttons drivers for lamps or solenoids
counters and analog outputs

analog-to-digital conversion subsystem (ADOI·D) for single·ended high·
level analog inputs. It has optional bipolar feature with automatic sign op­
tion,and it provides IO-bit precision, 14-bit resolution_

digital·tQ-analog converter (AA11-D) for analog outputs with 11·bit pre·
cision plus sign and bipolar output

3.2 REAL·TIME OPERATING SYSTEM
A real·time executive system (RSX-11C) is offered on IDACS-U systems. It is a
software package for coordinating the execution of user tasks in a multi pro- _
gramming mode. With it a test or process engineer can code tasks in FORTRAN

193

language, compilethem using PDP-ll disk operating software and then execute
them_ Communications to a higher level supervisory computer can be achieved
with RSX-UC_ RSX-llC is discussed in more detail in Chapter 5, Part II .

. 3.3 IDACS-ll. APPLICATIONS
The modular structure and reliability of an IDACS-ll system makes it possible to
implement the system on the the plant floor where the process is located. A small
IDACS-ll satellite system can be used for:

Data acquisition from a live process

Monitoring and controlling a process or a production unit

. Automated testing and quality control of components

Sequence control of a batch or an operation

Controlling a complex machine

An IDACS-ll system can be expanded to be a development and process control
system. Working in this type of superviSOry mode, an IDACS-ll system can be
used for:

A process control system performing direct digital control, set point con­
trol, data gathering and record-keeping functions

A supervisory system communicating with in-plant satellite IDAC5-11 sys­
tems or with a large central computer

A program development system for various fDACS-ll systems in a dis­
tributed network_ This ensures the maximum system availabilty fot new
program development and debugging.

194

APPENDIX A-PDp·l1 INSTRUCTION REPERTOIRE

Condition
Instruction Codes

Mnemonic Operation OPCode lNCV Timing

DOUBLE OPERAND GROUP: OPR ser, dst

MOV(B) MOVe (Byte) ·lSSDD v v-O 2.3
(src) -+ (dst)

CMP(B) CoMPare (Byte)
(src) - (dst)

·2SSDD vvvv 2.3*

BIT(B) Bit Test (Byte) ·3SSDD v v-O 2.9*
(src) " (dst)

BIC(B) Bit Clear (Byte) 4SSDD rI rI-O 2.9
- (src) " (dst) -+ (dst)

BIS(B) Bit Set (Byte) ·5SSDD rI rI-O 2:3
(src) V

ADD ADD 06SSDD rlvrlrl 2.3
(src) + (dst)-+ (dst)

SUB SUBtract 16SSDD rlvrlrl 2.3
(dst) - (src) -+ (dst)

CONDITIONAL BRANCHES: &xx loe

BR BRanch (unconditionally) 0004XX 2.6
loc -+ (PC)

BNE Branch if Not Equal (Zero) OOlOXX 2.6-
loe -+ (PC) if Z = 0

BEQ Branch if Equal (Zero) OO14XX 2.6-

- loe -+ (PC) if Z = 1
BGE Branch if Greater or Equal (Zero) 0020XX 2.6-

loc -+ (PC) if N 't V = 0)
BlT Branch if less Than (Zero) 0024XX 2.6-

loe -+ (PC) if N 't V = 1
BGT Branch if Greater Than (Zero) 0030XX 2.6-

loc -+ (PC) if Z v (N Y V = 0)
BlE Branch if less Than or Equal (Zero) 0034XX 2.6-

loe -+. (PC) if Z v (N Y V) = 1
BPL Branch if PLus lOOOXX 2.6-

loc-+ (PC) if N = 0
BMI Branch If Minus lOO4XX 2.6-

loe -+ (PC) if N = 1
BHI Branch if Higher 1010XX 2.6-

loe -+ (PC) if C v Z = 0
BlOS Branch if LOwer or Same lO14XX 2.6-

loe -+ (PC) if C v Z = 1
BVC Branch if oVerflow Clear 1020XX 2.6-

loe-+ (PC) if V = 0
BVS Branch if oVerflow Set 1024XX 2.6-

loe -+ (PC) if V = 1
BCC Branch if Carry Clear 1030XX 2.6-
(or BHIS) loe -+ (PC) if C = 0
BCS Branch if Carry Set 1034XX 2.~-
(or BlO) loe -+ (PC) if C = 1

195

SUB~UTINE CALL: JSR reg, dst
JSR Jump to SubRoutine 004ROO - 4.4

(dst)~ (tmp), (reg) ,J..
(PC) -+ (reg), (tmp) -+ (PC)

SUBROUTINE RETURN: RTS reg
RTS -ReTurn from Subroutine 00020R 3.5

(reg) -+ PC, t (reg)

SINGLE OPERAND GROUP: OPR dst
CLR(B) CLeaR (Byte) .Q5000 1000 2.3

0-+ (dst)
COM (B) COMplement (Byte) ·05100 vvoo 2.3

-~ (dst) -+ (dst)
INC(B) INCrement (Byte) .Q5200 vv-v 2.3

(dst) =+. 1 -+ (dst)
OEC(B)OECrement (Byte) ·05300 vv-v 2.3

v(vv 2.3
.(dst) - 1--+ (dst)

NEG(B) - NEGate (Byte) - .Q5400
~ (dst) + 1 -+ (dst)

ADC(B) ADd Carry (Byte) .Q5500 vvvv 2.3
(dst) + (C) -+ (dst)

SBC(B) SuBtract Carry (Byte) .Q5600 vvvv 2.3
(dst) - (C) -+ (dst)

TST(B) TeST (Byte) ·05700 vvOO 2.3*
0- (dst)

ROR(B) ROtate Right (Byte) ·06000 vvvv 2.3·
rotate right 1 place with C

ROL(B) ROtate Left (Byte) ·06100 vvvv 2.3·
rotate left 1 place with C

ASR(B) Arithmetic Shift Right (Byte) .Q6200 vvvv 2.3~
shift right with sign extension

ASL(B) Arithmetic Shift Left (Byte) .Q6300 vvvv 2.3·
shift left with lo-order zero

JMP JuMP 000100 1.2
(dst) -+ (PC)

SWAB SWAp Bytes 000300 vvOO 2.3
byt. of a word are exchanged

CONDITION COOE OPERATORS: OPR 1.5
Condition Code Operators set or clear combinations of condition code bits.
Selectec:i bits are set if S = 1 and cleared otherwise. Condition code bits cor­
responding to bits set as marked in the word below are set or Cleared.

C9NDITION CODE OPERATORS:

,0 I " ,0 I 2 14 r~ I N I z I v I c I
15 543210

Thus SEC -= 000261 sets the C bit and has no effect on the other condition
code bits (CLC = 000241 clears the C Bit)

OPERATE GROUP: OPR
HALT

WAIT

HALT 000000
processor stops; (RO) and the HALT addres$ in lights
WAIT 000001
processor releases bus, waits for interrupt

lQ6

1.8

1.8

RTI ReTurn from Inter.rupt 000002 1"1"1"1"

lOT
t (PC), t (PS)
Input/Output Trap 000004 1"1".1"1" -

(PS) . .1.. (PC).J.., (20) ~ (PC), (22) ~ (PS)
RESET R£SET 000005

·an INIT pulse-is issued by the CP
EMT EMulator Trap 104000-104377 1"1"1"1"

(PS) .J.., (PC).J.., (30) ~ (PC), (32) ~ (PS)
TRAP TRAP 104400-104777

(PS).1.. (PC)"" (34) ~ (PC), (36) ~ (PS)

NOTATION:
1. for order COdes

• :::..... word/byte bit, set for byte (+100000)
SS-SOurce field,
DD-<lestination field
XX---offset(8 bit)

2. for operations
A and,
v or,

,.., not,
() contents of,
Y XOR
.1. "is pushed- onto the processor stack"

1"1"1"1"

4/8
\.

9.3

20 ms.

9.3

9.3

t -"the contents -of the top of the processor stack is
popped and _becomes"

~ "becomes" '
3. for timing

* 0.4 J.CS less if not register mode
O.9lls4ess if 'Conditions for branch not met
1.2 IlS more if addressing odd byte
(0.6 itS additional in addressing odd bytes otherwise)

4. -for condition codes
V set conditionally

not affected
o cleared
1 set

197

198

APPENDIX B MEMORY MAP

PDP 11 DEVICE REGISTERS AND INTERRUPT VECTORS.
VECTORS

000 RESERVED
004 TIME OUT, BUS ERROR
010 RESERVED INSTRUCTION
014 DEBUGGING TRAP VECTOR
020 lOT TRAP VECTOR
024 POWER FAIL TRAP VECTOR
030 EMT TRAP VECTOR
034 "TRAP" TRAP VECTOR
040 SYSTEM SOFTWARE
044 SYSTEM SOFTWARE }
050 SYSTEM SOFTWARE COMMUNICATION WORDS
054 ~YSTEM SOFTWARE
057
060 TTY IN-BR4
064 TTY OUT·BR4
070 PCll HIGH SPEED READER·BR4
074 PCll HIGH SPEED PUNCH
100 KWllL . LINE CLOCK BR6
104 KWllP - PROGRAMMER REAL TIME CLOCK BR6
110
114
120 XY PLOTTER
124 DRllB-(BR5 HARDWIRED)
130 AD01 BR5-(BR7 HARDWIRED)
134 AFCll FLYING' CAP MULTIPLEXER BR4
140 AAll-A,B,C SCOPE BR4
144 AAll LIGHT PIN BR5
150
154
.160
164.
170 USER RESERVED
174 USER RESERVED
200 LPll LINE PRINTER CTRL-BR4
204 RFll DISK CTRL-BR5
210 RCll DISK CTRL-BR5
214 TCll DEC TAPE CTRL-BR6
220 RKll DISK CTRL-BR5
224 TMll COMPATIBLE MAG TAPE CTRL·BR5
230 CRll/CMU CARD READER CTRL-BR6
234 UDCll (BR4, BR6 HARDWIRED)
240 11/45 PIRQ
244 FPU ERROR
250
254 RPll DISK PACK CTRL-BR5

199

260
264
270 USER RESERVED
274 USER RESERVED

300 START OF FLOATING VECTORS-·BR5
304 STARTING AT 300 ALL OCll'S (BR5), THEN .ALL KLll'S (BR4), THEN

DP11'S (BR5)
THEN DMll (BR5), DNll (BR5), AND OM 11BB, DRllA, TYPE SET
READERS, TYPE
SET PUNCHES, DTlI (BR7) (0511 VECTOR IS AT 1000)

500 FACTORY BUS TESTERS

546

DEVICE ADDRESS

NOTE:

777776
777774
777772
777716
777676
777656
777646
777636
777626
777616
777606
777576
777574

XX MEANS A RESERVED ADDRESS FOR THAT OP·
TlON. OPTION MAY NOT USE IT BUT IT WILL RE·
SPOND TO BUS ADDRESS.

CPU STATUS
11/45 STACK LIMIT REGISTER
11/45 PIRQ REGISTER
TO 777700 CPU REGISTERS
TO 777600 11/45 SEGMENTATION REGISTER
TO 777650 MX11 #6
TO 777640 MXll #5
TO 777630 MXll #4
TO 777620 MXll # 3
TO 777610 MXll #2
TO 777fj()() MXll # 1
11/45SSR2
11/45 SSRI

200

777572 11/45 SSRO
777570 CONSOLE SWITCH REGISTER
777566 KLlI TIYOUT DBR
777564 KLll TTY IN CSR
777562 KLlI TIY IN DBR
777560 KLll TTY OUT CSR
777556 PCll HSP DBR
777554 PCll HSP CSR
777552 PCll HSR. DBR
777550 PCll HSR CSR
777546 LKS LINE CLOCK KWll·L

777526 DRllA·XX··
777524 SEE 767776
777522 DRUA DBR
777520 DRllA CSR
777516 LPll DBR
777514 LPII CSR
777512 LPll XX
7775lO LPll XX
777506
777504
777502
777500

777476 RFll DISK RFLA LOOK AHEAD
777474 RF11 DISK RFMR MAINTENANCE
777472 RFll DISK RFDBR
777470 RF11 DISK RFDAE
777466 RF11 DISK RFDAR
777464 RFll DISK RFCAR
777462 RF 11 DISK RFWC
7.1]460 RFll DISK RFDSC

777456 RCll DISK RCDBR
777454 RCll REMAINTENANCE
777452 RCll RCCAR
777450 RCII RCWC
777446 RCll RCCSRI
777444 RCll RCCSRI
777442 RCll RCDAR
777440 RCll RCLA

777434 DTlI BUS SWITCH # 7
777432 BUS SWITCH # 6
777430 BUS SWITCH # 5
777426 BUS SWITCH #4
777424 BUS SWITCH # 3
777422 BUS SWITCH # 2
777420 BUS SWITCH # 1

777416 RKDB RKll DISK
777414 RKMR

-777412 RKDA

201

777410 RKBA
777406 RKWC
777404 RKCS
777402 RKER
777400 RKDS

777356 TCXX
777354 TCXX
777352 TCXX

777350 TCDT DEC TAPE (TCll)
777346 TCBA
777344 TCWC
777342 TCCW
777340 TCST

777336 ASH EAE (KEll-A)#2
777334 LSH
777332 NOR
777330 SC
777326 MUL
777324 MQ
777322 AC
777300 DIV

777316 ASH EAE (KE ll-A) # 1
771'314 LSH
777312 NOR
777310 SC
777306 MUL
777304 MQ
·777302 AC
777300 DIV

777166 CRll XX
777164 CRDBR2 CRll/CMll CARD READER
777162 CRDBRI
777160 CRCSR

776776 AOOI-D XX
776774 AOOI-D XX
776772 ADDBR AID CONVERTER AOOI-D
776770 ADCSR

776766 DAC3 DAC AAll
776764 DAC2
776762 DACI
776760 DACO
776756 SCOPE CONTROL - CSR
776754 AAll XX
776752 AAll XX
776750 AAll XX

202

776740
776736
776734
776732
776730
776726
776724
776222
776720
776716
776714
776712
776710

RPBR3 RPIl DISK
RPBR2
RPBRI
MAINTENANCE # 3
MAINTENANCE # 2
MAINTENANCE # 1
RPDA
RPCA
RPBA
RPWC
RPCS
RPER

"RPDS

776676 TO 776500 MULTI TTY FIRST STARTS AT 776500

776476 TO 776406 MULTIPLE AAU'S SECOND STARTS @ 776760
776476 TO 776460 5TH AAIl
776456 TO 776440 4TH AA 11
776436 TO 776420 3RD AAll
776416 TO 776400 2ND AAIl
NOTE 1ST AAIl IS AT 776750

776377 TO 776200 OX 11
775600 DSIl AUXILIARY LOCATION
775577 TO 775540 DSll MUX3
775537 TO 775500 DS11 MUX2
775477 TO 775440 DSll MUXI
775436 TO 775400 DSll MUXO
775377 TO 775200 ON 11
775177 TO 775000 OM 11
774777 TO 774400 DPll/DCll
774377 TO 774000 DCll/DPll

773777 TO 773000 DIODE MEMORY MATRIX

773000 BM792-YA PAPER TAPE BOOTSTRAP
773100 BM792-YB RC,RK,RP,RF AND TCll - BOOTSTRAP
773200
773300
773400
773500
773600
773700 RESERVED FOR MAINTENANCE LOADER

772776 TO 772700 TYPESET PUNCH
772676 TO 772600 TYPESET READER

772576
772574
7725'12
772570

AFC-MAINTENANCE
AFC-MUX ADDRESS
AFC-DBR
A FC-CSR

203

·772546
772544
772542
772540
772536
.772534
772532
772530
772526
772524
772522
772520
772512
772510
772506
772504
772502
772500
772476
772474
772472
772470
772466
772462 .
772460
772456
772454
772450
772450
772446
772444
772442
772440
772436
7724S4
772432
772430
772426
772424.
772422
772420

KWllP XX
KWllP COUNTER
KWllP COUNT SET BUFFER
KWI1P CSR
TMll XX
TMll XX
TMll LRC
TMllDBR
TMll BUS ADDRESS
TMl1 BYTE COUNT
TMll CONTROL
TMll STATUS
OST CSR
OST EADRS1.2
OST ADRS2
OST ADRSI
OST MASK2
OST MASK1
DRllB DBR4
DRllB CSR4
DRUB BA4
DRllBWC4

DRUBDBR3
DRUB CSR3
DRUB BA3
DRUB WC3

DRUB DBR2
DRUB CSR2
DRUB BA2
DRUB WC2

772416 DRI1B/DATA
772414 DRUB/STATUS
772412 DRI1B/BA
772410 DRUB/WC
772146 TO 772110 MEMORY PARITY CSR
772146 15
772120 4
772116 3
772U4 2
772112 1
772110 0
771776 UDCS . CONTROL AND STATUS REGISTER

204

771774 UOSR . SCAN REGISTER
771772 UDCM· MAINTENANCE REGISTER
771766 UDC FUNCTIONAL 1/0 MODULES
771000 UDC FUNCTIONAL 1/0 MODULES
770776 TO 770700 KGll CRC OPTION
770776 KGllA KGNU7
770774 KGBOC7
770772 KGDBR7
770770 KGCSR7
770716 KGNU4
770714 KGBCC3
770712 KGDBR2
770710 KGCSRI
770706 KGNUO
770704 KGBCCO
770702 KGDBRO
770700 KGllA KGCSRO
770676 TO 770500 16 LINE FOR DMllBB
770676 DMllBB # 16
770674
770672
770670
770666 DMllBB- #15
770664
770662
770660
770656 DMllBB #~14
770654
770652
770650
770646 DMllBB # 13
770644
770642
770640
770636 DMllBB #12
770634
770632
770630
770626 DMll:BB # 11
770624
770622
770620
770616 DMllBB # 10
770614
770612
770610
770606 DMllBB #9
770604
770f:J)2
770600
770076
770074
770072

DMllBB #8
LATENCY TESTER
LATENCY TESTER
LATENCY TESTER

205

770070 LATENCY TESTER
770056 TO 770000 SPECIAL FACTORY·BUS TESTERS
767776 TO 764000 FOR USER and SPECIAL SYSTEMS---DRllA ASSIGNED IN
USER

AREA-STARTING AT HIGHEST ADDRESS WORKING DOWN
767776 DR llA # 0
767774
767772
767770
767766 DR llA # 1
767764
767762
767760
767756 DR llA # 2
767754
767752
767750

764000 START NORMAL !JSER ADDRESSES HERE AND ASSIGN UPWARD.
760004 TO 760000 RESERVED FOR DIAGNOSTIC - SHOULD NOT BE ASSIGNED

206

APPENDIX C - INSTRUCTION SET PROCESSOR

ISP is a language (or notation) which can be used to define the action of a
computer's instruction set. It defines a computer J including c6nsole and periph­
erals, as seen by a programmer. It has two goals: to be precise enough to cou­
'stitute the complete specification for a computer and to still be highly readable'
by a human user for purposes of reference., such as this manual. The main part of
the manual contained an English language description of the PDP-II, using ISP ex­
pressions as support in defining each instruction. This appendix contains an ISP
description of the PDP-ii, using a few English language comments as support.

The following brief introduction to the notation is given using examples from
the PDP-Ii Model 20 ISP description. The complete PDP-II description follows the ,,'
introduction.

A processor is completely defined at the programming level by giving its
instruction set and its interpreter· in terms of basic operations, data types and
the system's m~ory. For clarity the ISP description is usually given in a fixed
order:

Declare the system I s memory:

Processor state (the information necessary to restart the processor
if stopped between instructions, e. g., general registers, PC, index
registers)

Primary memory state (the memory directly addressable from the
processor)

Console state (any external keys" swi,tches, lights, etc., that
affect the interpretation process)

Secondary memory (the disks, drums" dectapes, magnetic: tapes" etc.)

Transducer state (memory available in any peripheral devices that
is asslQ'lled in the instructions of the processor)

Declare the instruction format
Define the operand address calculation process
Declare the data types -
Declare the operations on the data types
Define the instruction interpretation process including interrupts, traps, etc.
Define the instruction set and the instruction execution process (provides an

ISP expression for each instruction)

Thus, the computer system is described by first declaring memory, data-types and
primitive data operations. The instruction interpreter and the instruction-set
is then defined in terms of these entities.

The ISP notation is similar to that used in higher level programming languages.
Its statements define entities by means of expressions involving other enti~ies in
the system. For example, an instruction to increment (add-one) to memory would be

Increment := (M[x] M[x] + 1); add one to memoray ~ :;r:

This defines an operation, called II increment" , that takes the contents of memory
M at an address, x, and replaces it with a value one higher. The:== symbol simply
assigns a n8lfie (on the left) to stand for the expression (on the right). English
language comments are given in italics. Table I gives a reference list of nota­
tions, which are illustrated below.

isp expressions are inherently interpreted in parallel, reflecting the under­
lying parallel nature of hardware operations. This is an important difference
between ISP and standard programming languages, which are inherently ser~al. For
example, in

~The not.ation derived and used in the book, Computer Structures: ReadingS and
Examples, McGra-.-Hill, 1971 by C. Gordon Bell and Allen Newell. The book contains
ISpt s of ~~ computers.

207

Z ;= (M[x] ~ S'+D'; M[y] ~ M[x]);

both righthand sides of the data transmission operator (....) are evaluated in the
current memory state in parallel and then t't:ansmission occurs. Thus the old
value' of M[x] would go into M[y]. Serial ordering of processing is indicated by
using the term "next". For example,

Z := (M[x] ~ S '+D'; next M[y] ~ M[x]);

performs the righthand data transmission after the lefthand one. Thus, the new
value of M[x] would be used for M[y] in this latter case.

Memory Declarations

Memory is defined by giving a memory declaration as shown" in Table 1. For erp1e ,

MP[O:Zk - 1]<15,(1)

declares a memory named, Mp, of Zk words (wherR k has been given a value). The
addresses of the words in memory are 0,1, ••• ,2 -1.. Each word,has 16 bits and the
bi ts are labeled 15,14, ••• , O. Some other examples of memory declarations are:

,
Boundary-error2)
Boundary-error
A(:tivitY3
N/Negative
CC<:3>
M[0:21B_1]<7; Cl>
M[O: 15][0:4095]<7: Cl>

brop<l: Cl>16}
brop<7: Cl>2

boolean memories; scalar bit aZternatives

te1"l'laPY digit~ holding vaZue 0,1, Ol"

alias~ N and Negative aPe synonomous
bi t 3 Of a l"1J1ister
vector of 21 8-bi t words
a!'1'ay of 16)(4096 ii-hit words
alternative ways of defining a ""giste"

using base 16 and base 2

Renaming and Restructuring: of Previ.ously Defined Registers

Registers can be: defined in terms of existing registers. In effect t each
time the name to the left of the : = symbol is encountered, the value is computed
according to the expression to the right of :=. A process can be evoked to fonn
the value and side-effects are possible when the value is computed.

Examples of simple renaming in part or whole Qf' existing memory

N/Negative := CC<3>
SP<lS;Cl> := R[6]<15;Cl>

N is name of bi t 3 of register Cc
SP is "the same as register R[o]

Examples of register fanned by concatenation

LACKL,O;l1> := LDAC<O; 11>
'AB<O:47> := A<O:23>DB<O; 23>
Mword[O]<15: Cl> := Mbyte[O]<7; Cl>CMbyte[1]<7; Cl>

Examples of values and registers fonned by evaluation of'& process

ai/address-increment<l: 0> :=
..., byte-op ~ 2;

byte-op ~ 1)
Run ':= (Activity = 0)

Instruction Format

value of ai {s 2 if.., byte op~
e ls-e value is 1

Run=l or 0 depending on value of Activity
being 0 or not 0

Instruction formats ar~ declared in the same fashion as memory and are not
distinguishable as special non-memory entities. The instructions are carried in
a register; thus it is natural to decl-are them by giving names to the various
pares of the instruction register. Usually Duly a single declaration is made,
the instructionl!:. followed by the declarations of the parts of the instruction;
the operation code. the address. fields, indirect bit, etc.

This declaration would correspond to the usual box diagram:

208

Table 1. ISP Character .. Set and Expression Forms

A~ ••• ,Z,a, ••• ,z,.,-, , ,',It.O, :l9

M,a:b) ":'; (v:wl<x:y>~

n

a :'"'" f(expression)

b(c, ••. ,e) := g(expression)

name' := h(expre~sion)

• a f(expression)
f (expression) - a

()

(da ta -type J

boolean = expression;

boolean ~ (expr~ssion-l else
expression .. 2) ;

; next

[]

alb

X(:- boolean) ~ expression;

name alphabet. This character set is used for
names.

cCJIIIlPlents. Italics are used for cOIIIJlBnts.

memory declaration. An n-dimensional memory
array of words where a: b V:W are the range
of values for the first and last dimensions.
The values of the first dimension are, for
example, a; a+l, ••• , b for a S; b (or
a,a-l, ••• ,b for a > b). The word length base,
z, is normally 2 if not specified. The digits
of the word are x,x+l y.

definition. The operator, :'"'", defines memory.
names, process, or oper.tions in tems of
existing memory and operations.. Each occur­
rence of "a" 'causes the in place substitution
by f(expression).

·'l1le definition b, may have dutlllly parameters.
c, ••• ,e, which are used in g(expression).

side effects naming convention. In this
description we have used ' to indicate that
a reference to this name will cause other
registers to change.

transmission operator. The contents in
register a are replaced by the value of
the function.

parentheses. Defines precedence and: range
of various operations and definitions
(roughly equivalent to begin, and end)"

operator and data .. type modifier

conditional expression; equivalent to ALGOL
!! boolean S!!!!. expression

equivalent to Algol if boolean then expression-l
~ expreasion-2 - --

sequential de1imi,ter interpretation is to oc:cur

concatenation. Consider the registers to the
left and rigb t of c to· be one.

statement delimiter. Separates statements.

item delitliiter. Separates lists of variables.

division and synonym. Used in two contexts:
fOT division and for defining the name, a,
to be an alias (synonym) of the. name, b ..

unknown or unspecified value

set value. Takes' on all values for a digit
of the given base, e.g., 1'2 specifies either
102 or ll2

instruction value definition. The nane X is
defined to have the value of the boolean.
When the boolean is true, the expression
will be evaluated.

209

Table I. cont I d.

Common Arithmetic, Logical and Relational Operators

Arithmetic
+ add
- subtract, also negative
X multiply
/ divide
mod modulo (remainder)
()2 squared
()a exponentiation
() fa exponentiation
(..)b base
(jib base
sqrt () square root
abs () absolute value
sign-extend ()

i!instruction<l5: 0>
bop<3:il> := KI5:12>
sf<5:il> := Kl1:6>
df<5: il> := 1<5: il>

Operand Address Calculation Process

Logical
..., not
" and
Vor

Relational
- identical
!- not identical
= equal

EB exclusive-or
== equivalence

r not equal
> greater than

the instl'uC!ti071.

~ greater than or equal
< less than
S less than or equal

speaifies binary (dyadia) operations
speaifies source ([ipst) operand
speeifiea seeond operand and destination

In all processors, instructions make use of operands.. In most comrentional
processors, the operand is usually in memory or in the processor, defi-ned as M[z).
where 'z is the effective address. In PDP-II, a destination address, Daddress. is
used in this fashion for only two instructions. It is defined in ISP by giving
the process that calculates it. 'Ibis procesB may involve only accesses to primary
memory (possibly indexed), but it. may a180 involve side effects, i.e., the modifica­
tion of either of Pl'imary memory or processor memory (e.g." by incrementing a reg­
ister). Note that the effect.ive address is calculated whenever its name is en­
countered in evaluating an ISP expression (either in an instruction or in the inter­
pretation expression). That is, it is evaluated on demand. Consequently, any side
effects may be executed more than once.

Operation Detennination Processes

Instead of effective .. addres8, the operands are usually determined directly.
FQr example, the 16-bit destination register is just the re~ister selected by the
dr field of an instruction, i.e.,

Rd := R[dr] the destination register

In one other case, the operand is just the next word following an instrUction.
This next word can be defined,

mr'<15:il>/next-word := (Mw[PC]; PC ~ PC + 2) the next ;}Ord is seteated and PC is moved

Here, the I shows that a reference to nw will cause side effects, in this case,
PC PC + 2. For calculating the source operand, S, the process is:

S '<IS: il> := (

(""...0) ,. R[sr];

(..... 1) ,. Mw[R[srlJ

(_2) 1\ (sr=7) ,. 11W;

value for SOU1'f!e oper>and

if mode=O then S' is the Register addressed
by instruction fietd B1'

if mode=l the S' is ind:ipeat vi.a R 81'

if mod ... 2 and souree registe1'=FC then the
ne:x:t word i8 the ope1'lI1'ld; this can be
seen by substituti.ng the ezpre8s{on fop nb1'

210

An expression is a180 needed £~ the operand, S, which does not cause the side
effects, and assuming the effec.ts have taken place, counteracta thetD. Thus, S
would be:

5<15:0> :- (

(..... 0) => R[ar];

(..... 1) .. !!W[R[sr ll;
(..... :) " (a<=7) .. Mw[PC-2]

no side sffsats

no sids effeots

oountsl"tlCt previous side effeats

In the ISP description a general process is given which determines operands for
Source-Destination, word-,,?yte, and with-without side-effects. In order to clarify
what really happens, the source operand calculation, for words, with side effects,
is given below.

5£<5:0> := 1<11:6>

""'s := sf<5: 3>

ad := 0£<3>

ora :- sf<2: 0>

nw'<15: 0> := (Mw[PC];

Rs<15:0> := R[or]

S '<15: 0>/50urce := «
(sm=O) ~ RSj

PC ~ Pc+2)

(..... 2) " (0";7) => (I!w[Rs]

Rs 4- Rs + 2);

(.... 2) " (0r=7) .. nw;

(....-4) .. (as ~ Ra - 2; next

Mw[Rs]);

(.... 6) " (sr/oil) .. Mw[nw' + Ra];

(.... 6) " (ap7) .. Mw[nw' + PC];

(_1) .. !!W[Ra];

(_3) " (a";7) .. (I!w[llw[Ra]];

itA 4- Rs +"2);

(_3) " (ar-7) .. M[ow'];

< __ 5) • (Rs 4- Rs - 2; next

Mw[!!w[as]]) ;

(_7) " (a";7) "Mw[Hw[nw' + Ra]];

(-7) " (0r-7) .. Mw[Mw[mr' + PC]]

);

(ap6) " «....-4) V (_5» "

(SP<400a) .. (Stack overfloW ~ 1)

Data-Types

souroe fieLd (6-bitsJ of instl'uotion

SOUl'ae mods aontroL fieLd

defeI'l'Bd adQ.roess oontl'oL

registe:rt spsaification for source

ne:ct 'Word; used ,as opemnd

80/.tPCS" regis.teza spBeifiaation

vaLue fol' thB souroce--diZ'eat addressing

use the register Re as operand

diNet auto-increment; (increment

Rs); usua21.y used as pop

diNat; aa. (I"LZy irmIedlats opemnd

direat; aut;,. -dsarement (dsarement

RsJ; usuaZZy (sed as PUSR

di;rsat; inde:cea tia Rs--uses ne:ct-word

direat; Z'Btative c." PC; uaBS ~-fIK)rd
vaLue fol' thB SOla'. ·.-dsfined addressing

dsfe>' thzoough Rs

dsfezo f;/noough' staak; auto

i~"t

dsfs>, via neo:t wl'd; absoLuts addressing

dsfel' f;/noough staak afteZ' auto
dsorement

dsfsZ'. inds:l;ed via. Rs

dsfel' zoeUitive to PC

end aaz.cutation prooess;

ohBakB if staak ov8Z'fiOblBd foZ' S6VeMZ
modss

A da~a-type specifies the encoding of a 1Deaning into an information medium.
The 1Deaning of the data-type (what it designates or refers to) is called its
referent (or value). The referent may be anything ranging from highly abstract
(me uninterpreted bit) to highly concrete (the payroll account for a specific
type of emp loyee).

Every date-type hal a .carrier, into which .all its component data-types can
be mapped. The carrier is used in 8toring the data-type in memories and. is usually
• word or multiple thereof. It must be extensive enough to hold all the component .
data-types, but lIlIly be a larger (having error checking .aad correcting bits, or

211

even unused hi ts). The mapping of the .component data-types, into the carrier is
called the format. It 1s given as a list which associates to each component an
expression involving the carrier (e.g., as in the instruction format).

lSP provides a way of naming da~a-types, which also serves as a basis fOT

abbreviations. Some data-types simply have conventional names (e-.g., character!ch,
floating .point numbers/f); others are named by their value (e.g., integer/i). Data­
types which are iterates of a basic component can be named by the component suffixed
by a length-type. The length-type can.be array/a, implying·a multi-dimensional
array of fixed, but unspecified dimensions; a string/st, implying a single sequence,
of variable length (on each occurrence); or a vector/v, implying a one dimensional
array of a fixed but unspecified number of components. The length-type need not
exist, and then this font of the name is not applicable. Thus, iv is the abbrevi­
ation for an integer vector. It is also possible to name a data-type by simply
listing its components.

Data-types are often of a given precision and it has become customary to
measure this in terms of the number of components that are used, e.g., triple
precision integers. In ISP this ,is indicated by prefixing the precision symbol
to the basic data-type name, e.g., di for double precision- integer. Note ,that a
double precision integer, while taking two words, is not the same thing as a two
integer vector, so that the precision and the length-type, though both implyi~g
sexnething about ,the size of the carrier, do not express' the same thing-.

A list o£ COIIIElon data-types and their abbreviations is given in Table 2.

~erations on nata-types

Operations produce results of specific data-types from operands of specific
data-types. The data-types themselves determine by and large the possible opera­
tions that apply to them. No attempt will be made to define the various opera-
tions here, as they are all familiar. A reasonably comprehensive list is given in
Table 1. An operation-modifier, enclosed in braces, (}, can be used to distinguish
variant operations. The operation-modifier is usually the name of a data-type, e.g.,
A+B(f) is a floating point- addition. Modifiers can also be a description name ap­
plying to the operation, e.g., a X2 (rotate}.

New operations can be defined by means of forms. For example, -the various
add operations on differing data-types are specified by writing (data-type} after
the opera t ion.

Instruction Interpretation Process

The instruct-ion interpretation expression and the instruction s#t constitute
a Single ISP expression that defines the processor's action. In effect, this
single expression is evaluated and all the other parts of the ISP description of
a processor are evoked as indirect consequences of this evaluation. Simple inter­
preter wlthol,lt interrupt facilities show the 'familiar cycle of fetch-the-instruction
and execute-the instruction.

Example:
Run ~ (instruction M[PC]; PC PC + 1; next

lnst-ruction-execution; next)
This is a simple

interpre-tel'.J not the
one fop the PDP-l1

In more complex processors the conditions for trapping and interrupting must
also be dexcribed. .The effective address calculation may also be carried out in
the interpreter, prior to executing the instruction, especially if it is to be
calculated only once and will have a fixed value independent of anything that
happens while executing instructions. Console activity can also be described in
the interpreter, e.g. ~ the effect of a switch that permits stepping through the
program under manual control, or interrogating and changing memory.

The normal statement for PDP-ll interpretation is just:

..., Interrupt-rq " Run ~ (instruction Mw[PC]; PC PC + 2;. next
Instruction-execution; next
T-flag .. (State-change(14S); T-flag ~ 0»

?1?

fetch
exeaute
traae mode

·Table 2 .. COamon Dat.a-TypeB" Abbreviations

Primitive
~rboolean
by byte
ch . character
ex. complex.
df doUble precision floating
dw double word

_d digit
f floating
fr fractIon
hw half-word
i integer
mx mixed number
'I" quadruple length word
tv triple length word
w word

Str-ins .and Vector
bv bit. vector
by.at byte. string
ch. at character •. string

jd j -digit llUIIIber

-Instruction-Set and. Instruction Execution Process

'11le instruction set and .the process by which each instruction is executed
are usually. given together in a single. definition; this process' is called.
Ins~ruction-exec.ution in most. ISP deacri.ptlons. 1his usually includes the defini ...
tion of the condi-tiona for execution,. i.e., the operation code, value, the name
of the ,instruction, a 1IU1eIDOnic alias, and the process for its execution. '!hus.
an individual instruction typically has the form:

IIOV (:= bop = 00012) ..

r "'-8 1.; next

N'" 1'<15>;

I1lOlIe >lord

I1lOlIe 80UPCe to intermediate :t'6giBtel'

n~ti",,?
(r<lS: 0> = 0) .. (Z ~ 1 else Z ~ 0); aero?

V'" 0;

D'" r);

ovel'f1,ooI "z.area
tzoansnttt zoe8UZt to destination

With this format for the instruc.tlon:. the entire "'f.nstruc:tion set is simply
a list of all .the instructions. On any partic:ular aecution. as evoked by the
interpretation eXpres.ion. typically ~one 'and only one opeTation code cOTrelat1on
.Ul be satisfied, hence one and only . one instruction will be executed.

In the case of PDP-li. the text carries the definition of the .individual
instructtons:.· hence they tare not redefined in the appendix. ..Instead, the appendix
definea the condition for executing the instructions. For -ez:mple.

1. given in the appendix, and 'the ,action of MOV is 'defi:ned. (in ISP) in the text.

213

THE PDP-ll ISP

PDP-Il's PPimtU"l/ (Prog1'<l/ll) Memo1'!/ and ""Messor State
The decZaPation of this memory(inaZudss aU the state (bits, words, ete.) that a prog1'<l/ll

(progranrner) has aec~ •• to in this part of the computer. The oonsoZe is not inoZudsd. '!'he
VaM-OU8 S8Conda.l-y memoriefl (e.g.~ di8k8~ tapes).and input-output deviOB state dectarations a;pe
inoluded in a folZo1i!ing seotion.

PPimtU"l/ (progmm) Memo1'!/
Mp(O: 2k -1 J<15: 0> aotual physicaZ, I6-bit memo1'!/ of a varti<>uZar

system; k == 12, .. OJ 17

Mw/Mword[>o<15:0>]<15:0> := (bJOrd-aeOBssed memo'l'!/

-, >0<0> => Mp[>O<15:1>]; bJOl'd on even byte boundaPy, aU l'ight

- -..<0> .. (1 vaZue ; Boundary-error ~ 1» bJOrd on odd byte boundaPy, trap

Mb/Mbyte[>o<15:0>]<7:0> := (

-, x<0> .. Mp [>0<15: 1>]<7: 0> ;

x<0> .. Mp[>o<15:1>]<15:8»

Proeessor State

R[O:7]<l5:0>

51'<15: 0>/5tack-Polnter := R'(6)

PIX15:0>/Progr ... -Counter := R[7]

PS<~5: CD/Processor-State-Word

, Unused<7:0>/Undefined:= PS<15:8>

P<2:O>/Prlority := PS<7:5>

T/Trace

CIX3:0>/Condit'on-COdeB := PS<3:O>

!l/lIe8ative := CO<3>

Z/Zero

V/OverflCltl

C/CSrry

:- CC<2>

:= CIX1>

:- CO<O>

byte-accessed 'memory

take t01i!-order bits if even

take hi-order bi te if odd

eight~ 16-bit GeMrol.-RegistszoBJ used for
<J.OoumulatoP8, indmng and sti2Cks

speeiat stack, controtted by R[B]

looation neri instruction, also R[?]

I6-bit register giving rest of state

mapping of bits into, PS

interrupt Zevet oontrol of pJlOOeS80r

denotes 'IlJheths1" trap i.s tq occur after each
instruction

set as a function of instZ'U(Jtion and result8

if sult = -

if N8uZt = 0

if re8ult overfZ(Ms

if result aal'1'ied into/b01'1'06led from most
8ignifiaant bit

1TO<>8880 ControUed Error FZaq8 (reBuZting from in.tl'Uction-e:uoution)

Boundary-I!rror

Stack-overfloV

Time-CUt-Error

Illegal-Instruction

PI'oceseoJ'oo(l(Jtivi ty
ACtivitY3

Run :- (Activity = 0)

Wait :- (Activity ~ 1)

Off :- (Activity = 2)

Bet if >lOrd i8 aeeessed on odd byte boundary

8et if >lOrd aaoo8sed, via SP < 4008
set if non.-.e:tistent memopY 01'" dsvioe i8
referenoed

8e!, if a parti"uZar class ,of instructions i.
e:cecuted

ternaf'l!. BpeC1o"fltt."'ng state of p1'O<>e880r

nol'lltZt ~nstrue1n.On ~ntePpretahOn

>la1.'ting fop ~nterrupt

off, domant

Error-Flag8 (reButting from .n:thout the proae8SOl')

Power,Fall-F1ag

POwer-Up-Flag

Bet if P"""''' i8 Z01i!

set when power comes on

214

Instl'u<Jt1..oo fOrnt:lt f~'eUde<Jl-aNt~'>nS
1<15: fi>/instruccion

bop<3:0> := i<15:12>

of<5: 0> := 1<11:6>

sms := 9f<5:3>

od := of<3>

sr'8 := 8f<2: 0>-

df<5: 0> K5:0>

dmS := df<5:3>

dd :s df<3>

drS df<2:O>

uop<3:O>S := i<15:6>

df

jooP<J: 0> := 1<15: 9>

31'; df

brop<l: 0>16 := i<15:8>

offset<7: 0> := sign-extend(i<7! 0»

trop<1:0>16 := K15:8>

unused-trop<.l: 0>16 := i<7: 0>

eop<6:0>

e..c: 0>

esKS: 0>

esma
esd

fop<7:0>

ft<7:0>

fsf<5: 0>

15

K15: 9>

:= i<S:6>

:= i<5: 0>

esf<5:3>

:= esf<3>

esf<2:0>

:= K15: 8>

K7:6>

:= 1<5:0>

~ df l
~~

jsop
I ! !

brop
! !

sd dd

df
I I

df , I

I I

I I

binary OP<Jode fomat

80u""e fie La
sourae mode - 3 hits

80UP"e defep bit
source raegister - 3 bits

destination fieLd

&'stination mode - 3 bits

destinaf;ion defe" bit

de8tination register' - 3 bits

unary op 'lode (aPith., logi"al, shifts)

see binary op f01'l'TKIt

jsr fo:rmat

see binary or fomat

bmn"h fomat

offset va'tue

tpap fomat

extended """ode for>rr>at
e:r:tended register

extended source field

mode

defer

register

floating or format

register desnnation

soupce

binary operand (2 operands) format

unary operand (1 operand), JMP format

JSR format

branch format

value := sign-extend (offset)

trop
! I I

1/1 unused VI trap format

eop er esf extended operation format

fop fr fsf floating op fonnat

215

.£/Udress-lncrement<l: 0> :- (

..., Byte"'op .. 2;

Byte-op .. 1)

Byte-op :- (MOVB V BICB V BISB V BITS V CLRB V

CIJIII V IRCB V DECB V 'IIEGB V ADCB V

8BCB V TSTS V, 1I0l1B V 1I0LB V ABIlIl V

ABLB V SWAB)

lleserve4-lnstructlOD :- «1·) V (1 =) V ••• V(l·)) unused ~_ctions

1I8g1.B1;e!'S and Tkrta Adib<esssd via Inst1'UCtion Format Specifications

.... /next-word<15: 0> :- I!If[PC] used in ape'l'and dstermination

l1V·jnext-word·<15:0>:. (Mw[PC]; PC p PC + 2) with sids eff.ats

1w/1ast-word<15: 0> := Mw[PC - 2] undoes Bids effects

110<15:0> :- lI[sr)<15:0> the SOU'l'Ce 'l'6g1.ste!'

Rd<15:0> := R[dr)<15:0> the dsstination 'l'Bgistero

Op<o'l'and Determination foro SOlAMe and Destination
ruo types .of apenznds a'l'B used: S', D', Sb' and Db' - for opemnde. that cause sids-effe,

(i.e., othe!' 'l'6gistel'S a'l'B clu:mgsd; and S, D, Sb'and Db fo1' Q{Jerands that do not cause sids
sffeats. ruo gensi'aZ'pzooceOJare" flo' and flo..,... used todstermine these apemnde foro side ef­
fecte and no Bids effscts, l'BspectiveZy

S'<:15: 0> :- Oprd'<15:0>(Mw, 2,sm,sr)

5<15:0> := Oprd<lS: O>(Mw, 2,sm,sv)

Sb'<7: 0> :- Oprd'<7:0>(Mb, 2. SID.,sr)

Sb<7:0> :- Oprd<7: 0> (Mb, i,sm.,sr)

D'<lS:O> :- Oprd '<15: O>(Mw, 2.eIm,dr)

11<15:0> := Oprd<15: O>(Mw, 2.dm.dr)

J)b'<7':O> := ~'<7:O>(Mb, 1. eIm,dr).

Db<7:0> :- .Oprd<7: O>(Mb., ,1, dm.dr)

Genel'ilZ Op<o'l'and Catcutation _ss (.nth Sids Effeats)

Oprd'<Jrl:O>(M.al rg) :- «

Rr<15:0> :- R[ra]

(... 0) .. Rr<orl: 0>;

(_2) " (r,g.7) .. (M[Rr]; next

Rr'" Rr + al);

(_2) " (rg-7) .. ow'<)r1: 0>;

(..-4) .. (Rr'" Rr - .1; next

M[Rr»;

(_) " (r,g.7) .. M[.... • + Rr];

(.... 6) " (r8'!'7) .. M[ow' + PC];

(... 1) ;. M[Rr];

(.... 3) 1\ (r,g.7): .. (M[Mw[Rr]J; next

Rr p Rr + 2);

(... ~) 1\ (.. g-7) .. M[nw'];

(... 5) .. (Rr p Rr - :al; next

M[I!If[RrlJ);

216

souzoce oorod operand sids-effects

SOUl'CB oorod operands no side-effect.

80lAMe byte·

Destination opemnde

,.,.Zue fo>, "",rod Ol' byte ape'l'and; di",
addzresBing: >It indicates tength; I
.mode. and zog l'Bgistero

.secont1mry definition -for 'l'6gi.8ter

0, use the 'l'6gi.8ter, ~ as ope'l'and

8, direct aut""';'ncrement (increment

Rr); WJua tty used {;n pop stack

8, d{;rect; ~.-zod is. inrrtediate
ap.'l'and

4, direct; aftero auto dsarement

UlJuatty l.UIed as PUSH Btack

6, aozoeat; inds:t:ed via R ... uses nut·
irJorod

6. d-tzteat; N l.a:tuJe. to PC; usss nez
"",rod vaZue for "",rod operand dsfero
addzre8s{;ng

1, dsfero th1'ough R:t>

3, defsl' through M.>[Rl'] lusuatty st.

auto-inorement
3, dsfel' via nut;lOrod; abBoZute
adii7'eBBing

6, dsfer through stack aj'tero auto

dsc nt

(-7) 1\ (rrJ7) .. M[lIv[mr' + Rr]];

(,...7) 1\ (r8"7) .. M[lIv[nw' + PCll; ,

);

(rg=6) 1\ «m=4) V (.... n) 1\

(SP < 4008» .. (Stack-overflow ~ 1)

)

1, dsfel' ini/e",ed via Rr'

1, dsfel' ..etative to PC

end. caZauZation pl'OCsss

check if stack ovel'fZor.ls

end opemnd ""ZauZation 'pZ'CCeee

Gene Z Opemnd CaZauZation Process (",,'1;hout Sids Effects)

Oprd<wl: D>(M,al,m,rg) :-

Rr<15: 0> :- R(rg]

(,...0) .. Rr<wl:O>;

(m=2) 1\ (r",7) .. Mw[Rr - ail;

(... 2) 1\ (rg=7) .. lw<wl: 0>;

(1D"4) "M[Rr];

(m=6) 1\ (rg/o7) .. M(lw + Rr];

(..-6) 1\ (r8"7) .. M[lw + P,C];

(_1) .. M[Rr];

(m=3) 1\ (rrJ7) .. M[lIv[Rr - 2ll;

(... 3) 1\ (r8"7) .. M[lw];

(_5) .. M[lIv[Rr]];

(... 7) 1\ (rrJ7) .. M[lIv[lw + Rr]];

(... 7) 1\ (rrJ7) .. M[lIv[lw + PC]])

Destination addresses for JMP and JSR

Da<lS: 0> :- «
(_0) .. (7; 'Illegal-instruetion ~ 1);

(_2) 1\ (dr{o7) .. (Rd; Rd ~ Rd + 2);

(_2) 1\ (dr-7) .. (PC; PC ~ PC + 2);

(_) .. (Rd ~ Rd - 2; DllXt Rd);

(~) 1\ (dr{o7) .. (..... + Rd);

(cf0p06) 1\ (d ... 7) .. (..... + PC);

(_1) .. IIw[Rd];

(_3) 1\ (dr{o7) .. (Mw[Rd]; Rd ~ Rd + 2);

(_3) 1\ (dr-7) .. av';

(.... 5) .. (Rd ~ Rd - 2; next Mw[Rd]);

(-7) 1\ (dr{o7) .. Mw[nw + Rd];

(_7) 1\ (dr-7) .. Mw[nw' + PCD; next

undo pzoevioUB sids-e ff.cts

undo p..evious .ids-effects

undo pl'6viou8 aids-effeets

undo pI'evious sids-effects-

undo pI'Bvious Bids-effects

undo pzoevious sids-eff""ts

undo pl'BviOUB sids-effects

undo Pl'8VWUS Bids-eff.cts

di..ecta:

it't4gat l'6gistel' address

auto~~~t

'nun
auto~ 4ecrement

~'nde:I:ed

.... tau'!> ..

dsfe'l'B:

via'l'BgisteI'

via auto-incl'emBnt
absolute addl'ess

auto4ecrement
via inde:t:

..eZativ" to PC

(dr-6) 1\.., «_0) V (_3) V (-7» 1\ (SP < 4008) .. (check fol" stack OVSl'j'7.oI4

stoek-overflow ~ 1»

Data Type Pormats

by/b'1t~71 0>

v/vord<15: 0>

wi/vo:rd.lIIteger<15: 0>

bybot/b'1te. boolean-veetor<7: 0>

wbv/word.boolean-veetor<15: 0>

d/d.v/double.word<31: 0>

217

f/d.f/ double.vord.floating<31: 0>

fsl floatiag.Bign :- £<31>
fe/floatiag.exponent<7:0> :- £<30:23>

fm/floatiag.manUB.a<22:0> :- f<22:0>

t/triple.vord<47: 0>

q/quadruple.vord<63:0>

'If/ quadruple.vord.f1oatiag-point<63: 0>

qfB :- '1£<63>

qfe :- '1£<62:55>

'1fm := '1£<54:0>

IIO Devices and Intel'l'upte, State InfomaH<m

Deviee[O: 11-1)

Deviee-....... [J)<15:0> := J

Device-interrupt-location[J)<15:0> := K

N IIO dev1:oes - assume device J

numbe~ to which device responses and
is adlJrtessed

eaah device has a vatue~ K.J lJhich it
USBS as an address to interrupt proess

dob/device-output-buffer[J)<15: 0> prog:rpnl o<mtzootZed device data

dib/ device-input-buffer[J)<15: 0>

d./device-8tatuB[J)<15:0> a .. egiste .. .nth device IJ<mt1'Ol-"state

derr/ device-error-flags [J]<3: 0> :- ds [J)<15: 12> """""'"

dbusy/device-busy[J) := d8[J)<l1> status

dunit/device-unit-8election[J)<2:0> :~ d8[J)<10:8> assignments

ddone[J) :- d8[JJ<7>

deob/device-done-interrupt-eDRble := d.[J)<6>

derrenb/devlce-eTro'r-tnterrupt-enable :- de [J]<5>

clme/device_ry-extension[J]<4:3> := do[J)<4: 3>

dfnc/device-function[J]<2:O> :- ds [J]<2: 0>

dintrq/device-interrupt-request[JJ :- (

(ddone[JJ 1\ deob[J) V «derr[J) .; 0) 1\ derreob[J»)

dill device-interrupt -level [J)<7: 4> eaoh deviIJe is assigned to 1 Of 4 leve l

Napping of Devices into M. Each device's l'egiste .. sa1'e rrapped into prima1'y >lOrd memo"1/, e.g.,
Telet7Jpe

M' (1775608) :- tko/dB[TTY-keyboard)

M' (1775628) := tkb/dib[TTY-keyboardJ

M' [1775648) :- tpB/do[TTY-printerJ

M' [1775668) := tpb/dob[TTY-printerJ

Intsl'l'Upt Requests
br/bus .. request-for-lnterrupt<7 :4> :­

(dintr'l[O) ... dil[O» V

(dintr'l[l) .. d11[l)) V •••

(dintr'l[J) _ d11[J]) V ...

(dintrq[HJ - d11[H)))

lnterrupt-rq :- (intr'll :. p)

intrql!interrupt4\-e'lue8t-level<2: 0> :­

br<7> • T;

., br<7> 1\ br<6> • 6;

., br<7> 1\ ., br<6> 1\ ., br<5> 1\ br<4> .. 4)

218

keyboard status
keyboard input cfata

teleprints .. status

teleprints .. data to print

OR of all devilJe ""'lU6sts

intel'l'Upt if a ""'luest is :. pnority/p

Ins_Uon InterpNtaUon ProttetH>

Interrupt-rq 1\ Run;lO (NDrmal-interpretation);

Normal ... interpretatioD := (I Mw[PC] i PC PC + 2 next

Instruction-execution; next

I-flag ~ (State-change(14S); T-flag ~ 0»

Interrupt-rq ", Off ~ (

s tate-change (Device-interrupt -loea tion[J]) ;

P ... intrql);

off .. ();

.., Interrupt-rq " W'ait = ~);
State-change(x) := (

SP SP ... 2 i next

Mw[SP] ~ PSi ~

SP ... SP ... 2; next

Mw[SP] - PC;

PC - Mw[x];

PS ~ Mw[x+2]

Boundary-Error ~ (state-change(4S); Boundary-error 0)

Time-Dut-Error ... (State-change(4S); Time-out-Error ... 0)

fetell

e:x:ecute

traoo

assume device J interrupts

fol' "tacking state and 1'6store

Power-Fail-Flag =t (state':'change(248); Power-FaiL-Flag ... 0;) prog1"Q11!" must t-Ul'n off oomputer

Power-Up-Flag =t (PC 248 ; Power-Up-Flag'" OJ Activity +- 0) StaPt Up on powep-up

Instl'ucUon...set DefiniUon

Eaah inet1'u"Uon is defined in ISP in the t"",t. thel'efON. it »iU not be roepeated heN.

ia 17 bit result, r,.. u8ed.. only "for desc.riptive purposes

2A p~ime 1a uaed. 1n S (e.g., 5') and 0 (e.g., 0') to indicate that when a word 18 acce.sed in
tbis f.,bloR, aide effecta may occur. That ie, reglate~. of R may be changed.

3!! aU 16 biU of result, r • 0, then Z 1s set to 1 e18e Z 1a aet to O.

"The 8 leaet significant bits are us" to fot1ll • l6-bit positive or negative number by extend­
ing bit 7 into 15~8.

IS. :::I b means: if boolean a 18 true !h!!!. b is executed.

8Mw meane the m.or)' taken .s • work-organized aemory.

219

220

INDEX

Addressing•..... _ •......................... 5.19·34
Addressing Summary ..•............................ 34
Architecture .. 9
Assembly Language 155.165
Automatic Priority Interrupts 4.15.117
Basic .. 8.160.181
Bus .. 2.10
Bytes· .. 40
Central Processor 3.10
Co· Routines .. 114
Communications 8.171.187
COmtex ... 171
Console ... 136.137
Core Memory, 6.13.199
Data Acquisition And COntrol 8 r I75.193
Debugging 159, 166
Device Registers 199
Direct Memory Access 5
Disk Operating System 7,187
DMA ... 5
OOS ... 7,187
EAE .. 143
Editor .. 156,166
Electrical ... I28,135
Environmental : 131,133
Extended Arithmetic Element 143
File Utility Package I66
Floating Point .. , 157
FORTRA"N .. 8.169·
Front Panel 136,137
1/0-Devices ... 6
IDACS ... 8,175.193
Industrial Data Acquisition And
COntrol ... 8.175.193
Input/Output Executive 159
Instructions 3,37~ 108,195
Instruction Timing 38
Instruction Set Processor 40,207
Interleaving .. 15
Interrupt Nesting 118
Interrupt Vectors 199
Interrupts .. 4,15
ISP ... 4O,2Q7
Loaders, Dumps 156
Memories ; 6.13, 199
Memory Map .. 199

221.

Modes .. l9·34
Mounting Box 127·132
Nesting ... 118
Non·Processor Request 5
NPR .. 5
Operator's Console I36, 137
Options ... 6
Paokaging 5,125-135
Paper Tape Software 7,181
PC .•..•.•...•..•••....•....................................... 30
Peripherals ...•....... 6
Physical Requirements 125·136
Position Independent Code 123
Power FaiI/Restart•...... 5, 12
Power .. 128,135
Priority Interrupts ; .. 4,15,117
Processor Status•............... 10,107
Program COunter 3O
Programming .. 109
Rea I Time Executive 175
Recursion ... 114
Reentrancy .. 4, 121
RSTS·l1 : 8,181
RSX·IIC•................ 175
Rugged 11 .. 132
Software 7,151·178
Specifications , 125·136
Stacks : ... 5,34,109
Subroutines 91,113
Timesharing .. 8,181
Timing ... , ... 38
Traps ...•.. 12,93·100
Two"s Complement 145
UNIBUS : .. 2,10

222

	000001
	000002
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222

