

~DmDDmD

processor
. handbook

digital equipment corporation

Copyright 1973 by
Digital Equipment Corporation

PDP, UNIBUS, DIGITAL are registered trademarks
of Digital Equipment Corporation

ii

The PDP·l1 is a family of upward·compatible computer systems.
We believe that these systems represent a significant departure from
traditional methods of computer design.

The initial design step was the development of a totally new
language, notation, and theory of computers called the Instruction Set
Processor (ISP). This language provides a concise and powerful general·
ized method for defining an arbitrary computer system and its operation.
Along with the development of ISP, a PDp·IO program was written for
simulating the operation of any computer system on the ba3is of its
ISP-description. With the aid of ISP and the machine simulation program,
benchmark comparison tests were run on a large number of potential
computer designs. In this manner it was possible to evaluate a variety
of design choices and compare their features and advantages, without
the time and expense of actually constructing physical prototypes.

Since the main design objective of the PDp·l1 was ,to optimize
total system performance, the interaction of software a:1d hardware was
carefully considered at every step in the design process. System pro·
grammers continually evaluated the efficiency of the code which would
be produced by the system software, the ease of coding a program, the
speed of real·time response, the power and speed that could be built
into a system executive, the ease of system resource management,
and numerous other potential software considerations.

The cUl::rent PDp· I I Family is the result of this design effort. We
believe that its general purpose register and UNIBUS organization
provides unparalleled power and flexibility. This design is the basis for
our continuing commitment to further PDp·ll product development.

Thus the PDp·ll Family is at once a new concept in computer
systems, and a tested and tried system. The ultimate proof of this new
design approach has come from the large and rapidly increasing number
of PDp·l1 users all around the world.

Kenneth H. Olsen
President,
Digital Equipment Corporation

iii

iv

CONTENTS

CHAPTER 1· INTRODUCTION

1.1 PDp·ll FAMILY ...
1.2 GEN ERAL CHARACTERISTICS .
1.3 PERIPHERALS AND OPTIONS
1.4 SOFTWARE.

CHAPTER 2· SYSTEM ARCHITECTURE

2.1 INTRODUCTION.
2.2 THE UNIBUS
2.3 CENTRAL PROCESSOR
2.4 FLOATING POINT PROCESSOR ..
2.5 MEMORY
2.6 SYSTEM INTERACTION
2.7 PROCESSOR TRAPS.
2.8 MUL TI·PROGRAMMING

CHAPTER 3· ADDRESSING MODES

3.1 SINGLE OPERAND ADDRESSING.
3.2 DOUBLE OPERAND ADDRESSING
3.3 DIRECT ADDRESSING.
3.4 DEFERRED ADDRESSING
3.5 USE OF PC .
3.6 USE OF STACK POINTER.

1

1
1
5
6

9

9
10
11
14
15
19
22
24

25

26
26
27
32
35
38

CHAPTER 4 . INSTRUCTION SET. 41

4.1 INTRODUCTION. 41
4.2 INSTRUCTION FORMATS. 42
4.3 BYTE INSTRUCTIONS 43
4.4 SINGLE OPERAND INSTRUCTIONS. 45
4.5 DOUBLE OPERAND INSTRUCTIONS. 65
4.6 PROGRAM CONTROL INSTRUCTIONS. 77
4.7 MISCELLANEOUS INSTRUCTIONS 118
4.8 CONDITION CODE OPERATORS. 126

v

CHAPTER 5 . ADVANCED PROGRAM!v1ING TECHNIQUES 127

5.1 THE STACK .. 127
5.2 SUBROUTINE LINKAGE 131
5.3 INTERRUPTS .. , 135
5.4 REENTRANCY 137
5.5 POSITION INDEPENDENT CODE , j •••••••••• 140
5.6 RECURSION ... -: 140
5.7 CO·ROUTINES .. 141

CHAPTER 6· MEMORY MANAGEMENT .. 143

6-.1 BASIC ADDRESSING LOGIC 143
6.2 VIRTUAL ADDRESSING 144
6.3 INTERRUPT CONDITIONS UNDER MANAGEMENT

CONTROL .. 145
6.4 CONSTRUCTION OF A PHYSICAL ADDRESS 145
6.5 MANAGEMENT REGISTERS.. 147
6.6 FAULT RECOVERY REGISTERS ... 150
6.7 EXAMPLES 154
6.8 TRANSPARENCY 159
6.9 MANAGEMENT REGISTER MAP 160

CHAPTER 7· flOATING POINT PROCESSOR 163

7.1 INTRODUCTION .. 163
7.2 OPERATION : .. 163
7.3 ARCHITECTURE : .. 164
7.4 flOATING POINT DATA FORMATS : 165
7.5 FPP STATUS REGiSTER , ... 166
7.6 FEC REGISTER 168
7.7 FPP INSTRUCTION ADDRESSING 168
7.8 INSTRUCTION TIMING 169
7.9 FPP INSTRUCTIONS 169

CHAPTER 8· SYSTEM OPERATOR'S CONSOLE 195

8.1 CONSOLE ELEMENTS ... 195
8.2 SYSTEM POWER SWITCH ... 196
8.3 CPU STATE INDICATORS 196
8.4 ADDRESS DISPLAY REGISTER ... 197
8.5 ADDRESSING ERROR DISPLAY 198
8.6 DATA DISPLAY REGISTER' 198
8.7 SWITCH REGISTER 198
8.8 CONTROL SWITCHES .. 199

vi

APPENDIXES

APPENDIX A - INSTRUCTION SET PROCESSOR (ISP)

APPENDIX B - INSTRUCTION TIMING

APPENDIX C - MEMORY MAP .. .

APPENDIX D - PROGRAM INTERRUPT REQUESTS.

APPENDIX E - MEMORY PARITY

INDEXES

GENERAL INDEX

INSTRUCTION INDEX ...

vii

203

217

. 229

235

237

239

240

viii

CHAPTER 1

INTRODUCTION

The PDP-ll/45 is a powerful 16-bit computer representing the large
c6mputerend of the PDP-ll family of computers_ It is designed as a
powerful computational tool for high-speed real-time applications and for
large multi-user, mUlti-tas.k applications requiring up to 124K words of
addressable memory space_ It will operate with solid state and core
memories, and includes many features not normally associated with
16-bit computers_ Among its major features are a fast central processor
with choices of 300 or 450 nanosecond memory, an advanced Floati:lg
Point Processor, and a sophisticated memory management scheme ..

1:1 THE PDP·ll FAMILY
The PDP-ll family includes several processors, a large number of
peripheral devices and options, and extensive software. PDP-ll machines
arearchitecturaliy similar and hardware and software upwards com­
patible, although each machine has some of its own characteristics. New
PDP-ll systems will be compatible with existing family members. The
user can choose the system which is most suitable to his application, but
as needs change or grow he can easily add or change hardware. The
major characteristics of PDP-ll family computers are summarized in
Table 1-1 at the end of this chapter.

1.2 GENERAL CHARACTERISTICS
1.2.1 The UNIBUS
All computer system components and peripherals connect to and com·
municate with each other on a single high·speed bus known as the UNI­
BUS--the key to the PDP-U's many strengths. Since all system ele·
ments, including the central processor, communicate with each other in
identical fashion via the UNIBUS, the processor has the same easy ac­
cess to peripherals as it has to memory.

With bidirectional and asynchronous communication on the UNIBUS, de·
vices can send, receive and exchange data independently without pro­
cessor intervention. For example, a CRT display can refresh itself from
a disk file while the central processor unit (CPU) attends to other tasks.
Because it is asynchronous the UNIBUS is compatible with devices
operating over a wide range of speeds.

Device communications on the UNIBUS are interlocked. For each com·
mand issued by a "master" device, a response signal is received from a
"slave" completing the data transfer. Device·to-device communication is
completely independent of physical bus length and the response times
of master.cand slave devices. Interfaces to the UNIBUS are not time·
dependent; there are no pulse·width or rise-time restrictions to worry

1

about. The maximum transfer rate on the UNIBUS is one 16-bit word
every 400 nanoseconds, or 2,500,000 words per second.

Input/ output (I/O) devices transferring directly to or from memory are
given highest priority, and may request bus mastership and "steal" bus
cycles during instruction operations. The processor resumes operation
immediately after the memory transfer. Multiple devices can operate
.simultaneously at maximum direct memory access (DMA) rates by steal­
ing bus cycles. The UNIBUS is further explained in Paragraph 2.2, Chap­
ter 2, and is covered in considerable detail in the PDP-ll Peripherals
and Interfacing Handbook. .

1.2.2 Central Processor
The central processor, connected to the UNIBUS as a subsystem, con­
trols the allocation of the UNIBUS for peripherals and performs arith­
metic and logic operations and instruction decoding. It contains multiple
high-speed general-purpose registers which can be used as accumulators, .
pointers, index registers, or as autoindexing pointers in autoincrement or
autodecrement modes. The processor can perform data transfers directly
between I/O devices and memory without disturbing the registers; does
both single- and double-operand addressing; handles both·16-bit word
and 8-bit byte data; and, by using its dynamic .stacking technique, allows
nested interrupts and automatic reentrant subroutine calling.

Instruction Set
The instruction complement uses the flexibility of the general-purpose
registers to provide over 400 powerful hard-wired instructions-the most
comprehensive and powerful instruction repertoire of any computer in
the 16-bit class. Unlike conventional 16-bit computers, which usually
have three classes of instructions-memory reference instructions, 'op­
erate or AC control instructions, and I/O instructions-all operations in
the PDP-ll are accomplished with one set of instructions. Since periph­
eral device registers can be manipulated-as flexibly as core memory by
the central processor, instructions that are used to manipulate data in
core memory may be used equally well for data in peripheral device
registers. For example, data in an external device register can be tested
or modified· directly by the CPU without bringing it into memory or dis­
turbing the general registers. One can add data directly to a peripheral
device register, or compare contents with a mask and branch. Thus all
PDp·ll instructions can be used to create a new dimension in the treat­
ment of computer I/O and the need for a special class of I/O instructions
is eliminated. PDP·ll/45 instructions are described in Chapter 4. .

The following example contrasts the rotate operation in the PDp·ll with
a similar operation ina conventional computer:

ROR A

PDP·ll Approach Conventional Approach .,
;rotate contents
of memory location
A right one place

LOA A

ROT

. STAA

2

;Ioad contents of memory
location A into
AC

;rotate contents of AC
right one place

. ;store contents of AC
in location A

The basic order code of the PDP-ll uses both single and double op­
erand address instructions for words or bytes_ The PDP-ll therefore per­
forms very efficiently in one step such operations as adding or subtract­
ing two operands, or moving an operand from one location to another:

PDP-ll Approach

ADD A,8 ;add contents of
location A
to location B

Priority Interrupts

LDAA

ADD 8

STA 8

Conventional Approach

;Ioad contents of memory
location A into AC

;add contents of
memory location 8

;store results at location 8
to AC

A multi-level automatic priority interrupt system permits the processor
to respond automatically to conditions outside the system, or in the
processor itself_ Any number of separate devices can be attached to
each level.

Each peripheral device in the PDp·ll system has a hardware pointer to
its own pair of memory words (one points to the device's service routine,
and the other contains the new status information). This unique identifi­
cation eliminates the need for polling of devices to identify an interrupt,
since the interrupt servicing hardware selects and begins executing the
appropriate service routine, after having automatically saved fhe status
of the interrupted program segment.

The devices interrupt priority and service routine priority are independent.
This allows adjustment of system behavior in response to real-time con­
ditions, by dynamically changing the priority level of the service routine.

The interrupt system allows the processor to continually compare its own
priority level with the level of any interrupting devices and to acknowl­
edge the device with the highest level above the processors priority level.
Servicing an interrupt for a device can be interrupted for servicing a
higher priority device. Service to the lower priority device is resumed
automatically upon completion of the higher level servicing. Such a pro­
cess, called nested interrupt servicing, can be carried out to any level,
without requiring the software to worry about the saving and restoring
of processor status ~t each level.

The interrupt scheme is explained in Paragraph 2.6, Chapter 2.

Reentrant Code
80th the interrupt handling hardware and the subroutine call hardware
are designed to facilitate writing reentrant code for the PDP·1l_ This type
of code allows use of a single copy of a given subroutine or program
to be shared by more than one process or task. This reduces the amount
of core needed for multi-task applications such as concurrent servicing
of many peripheral devices.

3

Addressing
Much of the power of the PDP-ll is derived from its wide range of ad­
dressing capabilities. PDP-ll addressing modes include list sequential
addressing, full address indexing, full I6-bit word addressing, 8-bit byte
addressing, and stack addressing_ Variable length instruction formatting
allows a minimum number of bits to be used for each addressing mode.
This results in efficient use of program storage space. Addressing modes
are described in Chapter 3.

Stacks
In a PDP· 11, a stack is a temporary data storage area which allows a
program to make efficient use of frequently accessed data. The stack is
used automatically by program interrupts,subroutine calls, and trap in·
structions. When the processor is interrupted, the central processor
status word and the program counter are saved (pushed) into the stack
area, while the processor services the interrupting device. A new status
word is then automatically acquired from an area in core memory which
is reserved for interrupt instructions (vector area). A return from the
interrupt instruction restores the original processor status and returns
control to the interrupted program without software intervention. Stacks
are explained in Chapter 5.

Direct Memory Access
All PDp·11s provide for direct access to memory. Any number of DMA
devices may be attached to the UNIBUS. Maximum priority is given to
DMA devices thus allowing memory data storage or retrieval at memory
cycle speeds. Latency is minimized by the organization and logic of the
UNIBUS which samples requests and priorities in parallel with data
transfers.

Power Fail and Restart
Power fail and restart, not only protects memory whe'n power fails, but
also allows the user to save the existing program location and status
(including all dynamic registers), thus preventing harm to devices, and
eliminating the need for reloading programs. Automatic restart is accom­
plished when power returns to safe operating levels, enabling remote or
unattended operations of PDP·11 systems.

1.2.3 Memories
Memories with different ranges of speeds and various characteristics can
be freely mixed and interchanged in a single PDp·ll system. Thus as
memory needs expand and as memory. technology grows, a PDP-11 can
evolve, with none of the growihg pains and obsolescence associated with
conventional computers. See Paragraph 2.5, Chapter 2.

1.2.4 Floating Point Processor
An advanced-design Floating Point Processor functions as an integral part
of the PDP-11145 central processor. Floating point instructions overlap
CPU inStructions and can continue without CPU intervention, leaving
the CPU free to execute other instructions. Floating Point Processor in·
structions are described in Chapter 7.

4

1.2.5 Memory Management
PDP-ll/45 memory management is an advanced memory extension, relo­
cation and protection feature which will:

extend memory space from 28K to 124K words

provide effective protection of memory pages in multi-user environ­
ments.

Memory Management is explained in Chapter 6.

1.3 PERIPHERALS OPTIONS
Digital Equipment Corporation designs ana manufactures many of the
peripheral devices offered with PDP-lIs. As a designer and manufacturer
of peripherals, DIGITAL can offer extremely reliable equipment, lower
prices, more choices, and quantity discounts_

Many processor, input/output, memory, bus, and storage options are
available. These devices are explained in detail in the Peripherals and
Interfacing Handbook_

1.3.1 I/O Devices
All PDP-ll systems are available with Teletypes as standard equipment.
However, their I/O capabilities. can be increased with high-speed paper
tape readers-punches, line printers, card readers or alphanumeric dis­
play terminals. The LA30 DECwriter, a totally DIGITAL designed and built
teleprinter, can serve as an alternative to the Teletype_ It has several ad­
vantages' over standard electromechanical typewriter terminals, including
higher speed, fewer mechanical parts and very quiet operation.

PDP-ll terminals include:

DECterminal alphanumeric display

DECwriter teleprinter

High-speed line printers

High-speed paper tape reader punch

Teletypes

Card readers

1.3.2 Storage Devices
Storage devices range from convenient, small-reel magnetic tape units to
mass storage magnetic tapes and disk memories. With the UNIBUS, a
large number of storage devices, in any combination, may be connected
to a PDP-ll system. TU56 DECtapes, highly reliable tape units with small
tape reels, designed and built by DIGITAL, are ideal for applications with
modest storage requirements. Each DECtape provides storage for 174K
16 bit words. For applications which require handling of large volumes
of data, DIGITAL offers the industry compatible TUI0 Magtape.

Disk storage devices include fixed head disk units and moving-head re-

5

movable cartridge and disk pack units. These devices range from the
65K RS64 DECdisk memory, to the RP02 Disk Pack system which can
store up to 93.6 million words. PDP-ll storage devices include:

DECtape

Magtape

RS64 64K-256K word fixed head disk

RF11 256K-2M word fixed head disk

RK03 I-2M word moving head disk

RP02 10M word moving head disk

1.3.3 Bus Options
Several options (bus switches, bus extenders) are available for extending
the UNIBUS or for configuring multi-processor or shared-peripheral
systems.

1.4S0nwARE
Extensive software, consisting of disk and paper tape systems, is avail-.
able for PDP-11 Family systems. The larger the PDP-ll configuration,
the larger and more comprehensive the software package that comes
with it.

1.4.1 Disk Operating System Software
The Disk Operating System software includes:

Text Editor (ED-11)

Relocatable Assembler (PAL-11R)

Linker (LlNK-11)

File Utilities Packages (PIP)

On Line Debugging Technique (ODT-llR)

Librarian (UBR-11)

1.4.2 Higher Level Languages
PDP-ll users needing an interactive conversational language can use
BASIC which can be run on the paper tape software system with only
4.096 words of core memory. A multi-user extension of BASIC is available
so up to eight terminal users can access a PDP-ll with only 8K of core.

RSTS/E
The PDP-ll Resource Timesharing System (RSTS/E) with BASIC-PLUS,
an enriched version of BASIC, is available for up to 32 terminal users.

FORTRAN
PDP-II FORTRAN is an ANSI-standard Fortran IV compiler with elements
that provide easy compatibility with IBM 1130 FORTRAN.

Paper tape software is available on systems without disks.

6

1.5 DATA COMMUNICATIONS
The advanced architecture of PDP-ll family machines makes them ideal
for use in data communications applications_ For example the UNIBUS
performs like a multiplexer and multiple single-line interfaces can be
added without special multiplexing hardware: byte handling, the key to
communications applications, is accomplished easily and efficiently by
the PDP-ll_ To provide total systems capability in the communications
area DIGITAL has developed a full line of communications hardware and
communications-oriented software.

1.6 DATA ACQUISITION AND CONTROL
The PDP-ll, modular process interfaces, and special state-of-the art soft­
ware (RSX-llD real-time executive) combin~ to provide efficient, low-cost
and reliable systems for industrial data acquisition and control (IDACS)
applications. IDACS-ll hardware is described in the Peripherals and In-
terfacing Handbook_ . .

Central
Processor
General Purpose
Registers.
Instructions

Memory
Management
Hardware
Stacks
Stack overflow
Detection
Automatic Priority
Interrupts

. Overlapped
Instructions •

Extended
Arithmetic

Floating Point

Basic Memory

TABLE 1-1
PDP-ll Family Computers

PDP-ll/05 PDP-ll/15 PDP-ll/20

KDll KCll KAll

8 8 8
Basic Set Basic Set Basic Set

No No No

Yes Yes Yes

Fixed Fixed Fixed

Single-Line, Single-Line Multi-Line
Multi-Level Multi-Level Multi-Level

(four line
optional)

No No No

Option Option Option

Software Software Software

Core Core Core

7

PDP-ll/45

KBll

16
Basic Set and:
MUL,DIV,
XOR.
ASH, ASHC,
MARK,
SXT, SOB,
SPL, RTT
MTPX, MFPX

Optional

Yes

Variable

Multi-Line
Multi-Level

Plus
7 Software

Levels

Yes

Standard

Internal to
CPU

Core, MOS or
Bipolar

8

CHAPTER 2

SYSTEM ARCHITECTURE

2.1 INTRODUCTION
The PDP·ll/45 is a medium scale general purpose computer designed
around the basic architecture of all PDP-ll family machines_

The Central Processing Unit has a cycle time of 300 nsec and performs
all arithmetic and logical operations required in the system_ A Floating
Point Processor (described in Chapter 7) mounts integrally into the
Central Processor as does a Memory Management Unit which provides a
full memory management facility through relocation and protection (des­
cribed in Chapter 6).

The PDP-ll/45 hardware has been optimized towards a multi-program­
ming environment and the processor therefore operates in three modes
(Kernel, Supervisor, and User) and has two sets of General Registers_

r --- ---------------------------,
I I

UNIBUS

UNIBUS

I ,
I ,

I POP-1f145 CENTRAL PROCESSOR I
L _________________________ ~

Figure 2-1 PDP-ll/45 System Block Diagram

The PDP-ll/45 communicates with its options through a bidirectional,
asynchronous bus, the UNIBUS.

9

2.2 THE UNIBUS
All devices are connected through hardware registers to the UNIBUS.

Figure 2-2 The UNIBUS

Any device (except memory) can dynamically request the UNIBUS to
transfer information to another using a scheme based on real and simu­
lated core locations. All device registers are located in the uppermost 4K
words of address space (124K-128K). Thus, the Central Processor can
look on its peripherals as if they. were locations in memory with special
properties, and operate on them using the same set of instructions it
uses to operate on memory.

112K 120K. 124K 12BK

Figure 2-3 Location of Device Registers

The UNIBUS provides the communications path for address, data, and
control information for all devices on the bus through its 'bidirectional
lines. Therefore the same device registers can be used for both input and
output functions.

Devices communicate on the UNIBUS in a master-slave relationship.
During any bus operation, one device has control of the bus. This device,
called the master, controls the bus when communicating with another,
called the slave.

The relationship is dynamic, thus the Central Processor as master could
send control information to a disk (slave) which then could obtain the
bus as a master to communicate with memory, the slave.

The UNIBUS is used by the processor and all I/O devices. A priority struc­
ture determines which device has control of the bus at any given instant
of time. Therefore, every device capable of becoming bus master has an.­
assigned priority; and when two devices request the bus at the same
time, the device with the higher priority will receive control first.

Communication on the UNIBUS is interlocked between devices. For each
control signal issued by the master, there is a response from the slave;
thus, communication is independent of physical bus length and the re­
sponse time of the master and slave devices_ The maximum transfer rate
on the UNIBUS is one 16-bit word every 400 nsec or 2,5 million 16-bit

10

words per second. The UNIBUS is fully described in the PDP-l1 Periph­
erals and Interfacing Handbook.

2.3 CENTRAL PROCESSOR
The PDP-ll/4S performs all arithmetic and logical operations required in
the system. It also acts as the arbitration unit for UNIBUS control by
regulating bus requests and transferring control of the bus to the re­
questing device with the highest priority.

The central processor contains arithmetic and control logic for a wide
range of operations. These include high-speed fixed point arithmetic with
hardware multiply and divide, extensive test and branch operations, and
other control operations. It also provides room for the addition of the
high-speed Floating Point Processor, and Memory Management Unit.

The machine operates in three modes: Kernel, Supervisor, and User.
When the machine is in Kernel mode a program has complete control of
the machine; when the machine is in any other mode the processor is
inhibited from executing certain instructions and can be denied direct
access to the perpiherals on the system. This hardware feature can be
used to provide complete executive protection in a multi-programming
environment.

The central processor contains 16 general registers which can be used
as accumulators, index registers, or as stack pointers. Stacks are ex·
tremely useful for nesting programs, creating re-entrant coding, and as
temporary storage where a Last-In First-Out structure is desirable. A spe­
cial instruction "MARK" is provided to further facilitate re-entrant pro·
gramming and is described in Chapter 5. One of the general registers is
used as the PDp·ll/4S's program counter. Three others are used as Pro­
cessor Stack Pointers, one for each operational mode.

The CPU is directly connected to the high-speed memories as well as to
the general purpose registers and the UNIBUS and UNIBUS Priority Ar­
bitration Unit.

Figure 2·4 illustrates the data paths in the CPU .

MEMORY _M£NT
~---l UNIT

.
CENTRAL PROCESSOR ORGANIZATION

UNIBUS

ARITHMETIC
AND

LOGICAL
PROCESSOR

,.
GENERAL

REGISTERS

Figure 2·4 Central Processor Data Paths

11

The CPU performs all of the computer's computatio~ and logic opera­
tions in a parallel _binary mode through step by step execution of indi­
vidual instructions_ The instructions are stored in either core or solid
state memory_ '

.2.3.1 General Registers
The general registers can be used for a variety of purposes; the uses
varying with requirements. The general registers can be used as accumu·
lators, index registers, autoincrement registers, autodecrement registers,
or as' stack pointers for temporary storage of data. Chapter 3 on Address­
ing describes these uses of the general registers in more. detail. Arith­
metic operations can be from one general register to another, from one
memory or device register to another, or between memory. or a device
register and a general register. .

GENERAL
REGISTER
SET 1

KERNEL
STACK POINTER

R6

R0

Rl

R2

R3

R4

R5

SUPERVISOR
STACK POINTER

PROGRAM
COUNTER

R6

R0

Rl

R2

R3

R4

R5

R7

Figure 2-5, The General Registers

GENERAL
REGISTER
SET 0

USER
STACK POINTER

R6

R7 is used as the machine's program counter (PC) and contains the ad­
dress of the next instruction to be executed_ It is a general register
normally used only for addressing purposes and not as an accumulator
for arithmetic operations. .

The R6 register is normally used as the Processor Stack Pointer indicat­
ing the last entry in the appropriate stack (a common temporary storage
area with "Last·ln First-Out" characteristics); (For information on the
programming uses of stacks, please refer to Chapter 5.) The three stacks
are called the Kernel Slack, the Supervisor Stack, and the User Stack.
When the Central Processor is operating in Kernel mode it uses the
Kernel Stack, in Supervisor mode, the Supervisor Stack, and in User
mode, the User Stack. When an interrupt or trap occurs, the PDP-ll{45
automatically saves its current status on the Processor Stack selected
by the service routine. This stack-based architecture fac'ilitates reentrant
programming.

12

The remaining 12 registers are divided into two sets of unrestricted regis­
ters, RO-R5. The current register set in operation is determined by the
Processor Status Wo.rd.

The two sets of registers can be used to increase the speed of real-time
data handling or facilitate mUlti-programming. The six registers in General
Register Set 0 could each be used as an accumulator and/ or index
register for a real-time task or device, or as general registers for a Kernel
or Supervisor mode program. General Register Set 1 could be used by
the remaining programs or User mode programs. The Supervisor can
therefore protect its general registers and stack from User programs, or
other parts of the Supervisor.

2.3.2 Processor Status Word

NOT USED

~1110

CURRENT MODE~J r
PREVIOUS MODE~'------'-

~~~Ert;, rE""G""'S"-'TE=:R'----___ -' 

*MODE:00;KERNEL 
01 ; SUPERVISOR 
11 ;USER 

PRIORITY 

8 7 5 4 3 2 

Figure 2-6 Processor Status Word 

o 

The Processor Status Word, located at location 777776, contains infor­
mation on the current status of the PDP-ll/45. This information includes 
the register set currently in use; current processor priority; current and 
previous operational modes; the condition codes describing the results -
of the last instruction; and an indicator for detecting the execution of an 
instruction to be trapped during program debugging. 

Modes 
Mode information includes the present mode, either User, Supervisor, or 
Kernel (bits 15, 14); the mode the machine was in prior to the last in­
terrupt or trap (bits 13, 12); and which register set (General Register Set 
o or 1) is currently being used (bit 11). 

The three modes permit a fully protected environment for a multi-pro­
gramming system by providing the user with three distinct sets of 
Processor Stacks and Memory Management Registers for memory map­
ping. In all modes except Kernel a program is inhibited from executing 
a "HALT" instruction and the processor will trap through location 4 if 
an attempt is made to execute this instruction. Furthermore, the proces­
sor will ignore the "RESET" and "SPL" instructions. In Kernel mode, the 
processor will execute all instructions. 

A program operating in Kernel mode can map users' programs anywhere 
in core and thus explicitly protect key areas (including the devices regis­
ters and the Processor Status Word) from the User operating environ­
ment. 

13 



Processor Priority 
The Central Processor operates at any of eight levels of priority, 0-7. 
When the CPU is operating at level 7 an external device cannot interrupt 
it with a request for service_ The Central Processor might be operating at 
a lower priority than the priority of the external device's request in order 
for the interruption to take effect. The current priority is maintained in 
the processor status word (bits 5-7)_ The 8 processor levels provide an 
effective interrupt mask, which can be dynamically altered through use 
of the Set Priority Level (SPL) instruction which is described in Chapter 
4 and which can only be used by the Kernel. This instruction allows a 
Kernel mode program to alter the Central Processor's priority without 
affecting the rest of the Processor Status Word. 

Condition Codes 
The condition codes contain information on the result of the -last CPU 
operation. They include; a carry bit (C), which is set by the previous 
operation if the operation caused a carry out of its most significant bit; 
a negative bit (N) set if the result of the previous operation was negative; 
a zero bit (Z), set if the result of the previous operation was zero; and 
an overflow bit (V), set if the result of the previous operation resulted in 
an arithmetic overflow_ 

Trap 
The trap bit (T) can be set or cleared under program control. When set, 
a processor trap will occur through location 14 on completion of instruc­
tion execution and a new Processor Status Word will be loaded. This bit 
is especially useful for debugging programs as it provides an efficient 
method of installing breakpoints. 

Interrupts and trap instructions both automatically cause the previous 
Processor Status Word and Program Counter to be saved and replaced 
by the new values corresponding to those required by the routine serv­
icing the "interrupt or trap. The user can, thus, cause the central proces­
sor to automatically switch modes (context switching), register sets, alter 
the CPU's priority, or disable the Trap Bit whenever a trap or interrupt 
occurs. 

2.3.3 Stack Limit Register 
All PDP-ll's have a Stack Overflow Boundary at location 400. The Kernel 
Stack Boundary, in the PDP-ll/45 is a variable boundary set through 
the Stack Limit Register found in location 777774. 

Once the Kernel stack exceeds its boundary, the Processor will complete 
the current instruction and then trap to location 4 (Yellow or Warning 
Stack Violation). If, for some reason, the program persists beyond the 
16-word limit, the processor will abort the offending instruction, set the 
stack pointer (R6) to 4 and trap to location 4 (Red or Fatal Stack Viola­
tion)_ A description of these traps is contained in Appendix C. 

2.4 FLOATING POINT PROCESSOR 
The PDP-ll/45 Floating Point Processor fits integrally into the Central 
Processor. It provides a supplemental instruction set for performing 
single and double precision floating point arithmetic operations and float­
ing-integer conversions in parallel with the CPU. It is fully described in 
Chapter 7. 

14 



2.5 MEMORY 
Memory is the primary storage medium for instructions and data. Three 
types are available for the PDP·1l/45: 

SOLID STATE: 

Bipolar Memory with a cycle time of 300 nsec. 

MOS Memory with a cycle time of 450 nsec. 

CORE: 

Magnetic Core Memory with a cycle time of 850 ns, access at 350 
ns (450 ns at the UNIBUS). 

Any system can be expanded from the basic 4.096 words to 126,9'76 
words in increments of 4,096 words. The system can be configured with 
various mixtures of the three types of memory, with a maximum limit of 
32,768 words of Solid State Memory. 

2.5.1 Solid State Memory 
The Central Processor communicates directly with the MOS and Bipotar 
memories through a very high speed data path which is internal to the 
,PDp·ll/45 processor system. The CPU can control up to two independ­
entSolid State Memory controllers, each of which can have from one to 
four 4,096 word increments of MOS memory (16,384 words) per can· 
troller, or one 4,096 word increment of Bipolar memory per controller. 
Each controller can handle MOS or Bipolar memory but not a mixture 
of the two. The user can therefore have a-total of 32K of MOS, or 8K of 
Bipolar, or 16K of MOS and 4K of Bipolar. 

Each controller has dual ports and provides one interlace to the CPU 
and another to a second UNIBUS. 

SSM= SOLID STATE MEMORY MATRIX (4K MOS OR lK BIPOLAR) 

Figure 2·7 Memory Configuration 

There are two UNIBUSes on the PDP·1l/45 but in a single processor 
environment the second UNIBUS is generally connected into the first 

15 



and become part of it. The existence _of a second UNIBUS becomes sig' 
nificant where a high speed device would like to directly access the solid 
state memory. A device using the second UNIBUS must include a UNI· 
BUS Priority Arbitration Unit, and the bus thus lends itself to multi·pro· 
cessor environments. . 

UNIBUS t 

Figure 2·8 Multiprocessor Use of the Second UNIBUS 

The UNIBUS and data path to th.e Solid State Memory are independent. 
While the Central Processor is operating on data in one Solid State Mem' 
ory controller through the direct data path, any device could be. using the 
UNIBUS to transfer information to core, to another device, or to the 
other Solid State Memory Controller. This autonomy significantly in· 
creases the throughput of the system. 

2.5.2 Memory Retention 
MOS memory bits have a capacitance which is charged to denote a 1 
and uncharged to denote a O. The entire MOS memory must be refreshed 
periodically, or the data will be lost. On the PDP·ll/45, 1/32nd of the 
memory is refreshed every 60 microseconds. This process consumes 
only one solid state memory cycle. 

The power required to refresh MOS memory is significantly less than that 
required for operation of the memory. Bipolar memory, on the other 
hand, does not require a refresh cycle but does require the same power 
to retain information as to operate. -

2.5.3 Core Memory 
The Central Processor communicates with core memory through the 
UNIBUS. 

Each memory bank operates independently from other banks through its 
own controller which interfaces directly to the UNIBUS. Core memory 
can be continuously attached to the UNIBUS until the system contains 
a total of 124K (126,976 words) of memory. 

An external device may use the UNIBUS to read or write core memory 
completely independent of, and simultaneously with the Central Pro· 
cessor's access of solid state memory. Furthermore, core memory and 
solid .state memory may be used by the processor interchangeably. 

2;5.4 Memory Interleaving 
Generally; memory locations are numbered consecutively in a memory 

16 



bank. Thus, when the address register is incremented on successive 
memory cycles the same bank is addressed and a full memory cycle 
must be completed before the new address can be used. The maximum 
data transfer rate for a device using memory is therefore limited by 
memory cycle time. Memory interleaving is a technique that places con· 
secutive word addresses in different memory banks and thus allows the 
write cycle in one memory to be overlapped with the read cycle in 
another. 

The PDP·1l/45's architecture with a controller inherent to each memory 
bank lends itself to memory interleaving, and mixing memories with dif· 
ferent cycle times. The standard core memory has a basic cycle time of 
850 nsec and is interleaved in pairs of 8,192 ward units. A 16K system 
would be fully interl~aved, whereas a 24K system (3 controllers) would 
only have 16K interleaved. Interleaving this memory provides the user 
with an effective cycle time of 650 nsec for consecutive accesses to se· 
quential word locations. 

The MOS memories are interleaved on an equal number of MOS blocks 
on each controller. Bipolar is not interleaved. 

Memory interleaving is completely transparent to the computer pro· 
grammer. 

2.5.5 Mixing Memory 
The PDP·1l/45 can be used with the memory mix best suited to a user's 
needs. He can not only mix high speed solid state memories. iNith mag· 
netic core memories, but he can also choose core memori~s of different 
speeds. This is possible because of the independent nature of the core 
memory controllers. 

The PDp·1l/45 provides the user with an additional degree of freedom. 
in mixing memories. The programmer need not address all of his solid 
state memory consecutively, but can intermix solid state and core 
physical addresses. Each solid state memory can address a 16K consecu· 
tive segment (32K- when MOS is interleaved) beginning on a 16K boun· 
dary. If the controller contains a full 16K complement of MOS then the 
MOS will use up the full 16K address space; however, if there is less 
than 16K of MOS on the controller the user can intermix 4K blocks ot 
cQre in with the 4K blocks of MOS. 

When a program is using Memory Management (Chapter 6) this manip· 
ulation of physical addresses is up necessary as it may be done in the 
mapping of virtual space into physical space. 

The user can reduce the cost of his system by buying only as much high 
speed memory as required; and he can increase system performance 
through the independence of data transfers on the UNIBUS and the CPU 
connection to the Solid State Memories. 

2.5.6 Memory Parity 
Memory Parity is optional for core and solid state memory. Parity words 
are extended to 18 bits and the last two bits (17, 18) contain the parity 
indicators for the two bytes. Parity is generated when a word is· written 
and checked when the word is read. Parity errors cause the Central Pro· 

17 



cessor either to trap through location 4 or to halt. The user is referred 
to Appendix E for more information on memory parity. ' 

2.5.7 Memory Organization 
PDP-ll memories and instructions are designed to handle both l6-bit 

'words, and 8-bit bytes. Therefore, since every word contains two bytes, 
a 4,096 word block contains 8,192 byte locations. Consecutive words are 
therefore found in even numbered addresses. 

15 

HIGH BYTE 

LOCATION 

00000 

00001 

00002 

,00003 

017775 

017776 

017777 

LOW 

HIGH 

LOW 

HIGH 

HIGH 

LOW 

HIGH 

LOW BYTE 

6 7 

WORO 0 

WORD 1 

Figure 2-9 Memory Organization 

I 
o 

Certain memory locations have been reserved by the system tor interrupt 
and trap handling, and processor stacks, general registers, and peripheral 
device registers. Kernel virtual -addresses from 0 to 3708 are always re­
served and those to 7778 are reserved on large system configurations for 
traps and interrupt handling. The top 4,096' word addresses from 
7700008 up) have been reserved for general registers and peripheral de­
vices. Appendix C presents a detailed memory address map. 

A 16-bit word used for byte addressing can address a maximum of 32K 
words. However, the top 4,096 word locations are traditionally reserved 
for peripheral a'f1d .r:register addresses and the user therefore has 28K 
of -core to program. To expand above'28K the user must use the Memory 
Management Unit. This device, described' in detail in Chapter 6, pro­
vides the, programmer with an l8·bit effective memory address which 
permits him to address up to 126,976 words of actual memory. The 
unit also provides a memory management facility which permits indi­
vidual user programs up to 64K in length (32K of instructions; 32K of 
data) and provides a relocation and protection facility through three sets 
01-16 registers_ 

18 



2.6 SYSTEM INTERACTION 
System intercommunication is carried out through the UNIBUS. 

A device will request the UNIBUS for one of two purposes: 

To make a non·processor (NPR) transfer of data. (Direct Data 
Transfers such as DMA), or 

To interrupt program execution and force the processor to branch 
to a service routine. 

There· are two sources of interrupts, hardware and software. 

2.6.1 Hardware Interrupt Requests 
A hardware interrupt occurs when a device wishes to indicate to the 
program, or Central Processor, that a condition has occurred (such as 
transfer completed, end of tape, etc.). The interrupt can occur on any 
one of the four Bus Request levels and the processor responds to the 
interrupt through a service routine. 

2.6.2 Program Interrupt Requests 
Hardware interrupt servicing is often a two-level process. The first level 
is directly associated with the device's hardware interrupt and consists 
of retrieving the data. The second, is a software task that manipulates 
the raw information. The second process can be run at a lower priqrity 
than the first, because the PDP-ll/45 provides the user with the means 
of scheduling his software servicing through seven levels of Program 
Interrupt Requests. The Program Interrupt Request Register is located 
at address 777772. An interrupt is generated by the programmer setting 
a bit in the high order byte of this register. 

The .reader is referred to Appendix D for more detailed information. 

2.6.3 Priority Structure 
When a device capable of becoming bus master requests use of the bus, 
handling of the request depends on the hierarchical position of that 
device in the priority structure. 

The relative priority of the request is determined by the Processor's 
priority and the level at which the request is made. 

The processor's priority is set under program control to one of eight 
levels using bits 7-5 in the processor Status Word. Bus requests are 
inhibited on the same or lower levels. 

Bus requests from external devices can be made on anyone of the 
five request lines. A non-processor request (NPR) has the highest 
priority, and its request is granted between bus cycles of an in­
struction execution. Bus Request 7 (BR 7) is the next highest 
priority and Bus Req.uest 4 (BR 4) is the lowest. The four lower 
priority level requests (BR 7-BR 4) are granted by the processor 
between instructions providing that they occur on higher levels 
than the processor's. Therefore an interrupt may only occur on a 
Bus Request Level and not on a Non Processor Request level. 

Any number of devices can be connected to a specific BR or NPR 
line. 

19 



If two devices with the same priority request the bus, the device 
physically closest to the processor on the UNIBUS has the higher 
priority. . 
Program Interrupt· Requests can be made on anyone of 7 levels 
(PIR 7-PIR 1). Requests are granted by the processor between 
instructions providing that they occur on higher levels than the 
processor's. 
Program Interrupt Requests take precedence over equivalent level 
Bus Requests. 

PROCESSOR STATUS WORD 

CPU 
PRIORITY 

PROCESSOR STATUS WORD 

=7===~--PI-R-7------NPR----~--r-.--------~-. .------

-6--------------BR7----------~~-,------------

----- PIRG LJ 
-5 -BRs--..L--,------"--T"-I-
-----PIR5 D D 
-4 -BR5-1--.--------r--1-----,-1-
----- PIR 4 L--.J LJ LJ 
3 
---- PIR3 
2 
---PIR2 , 
-----PIR' 
o 

BR4----c5 . ~ 

DECREASING PRIORITy 

Figure 2-10 UNIBUS Priority Structure 

2.6.4 Non-Processor Data Transfers 

ANY NUMBER 
OF HARDWARE 
DEVICES/LEVEL 

ONE' PROGRAM/ 
PIR LEVEL 

Direct memory or direct data transfers can be accomplished between 
any two peripherals without processor supervision. These Non·Processor 
transfers, called NPR level data transfers, are usually made for Direct 
Memory Access (memory to/from mass storage) or direct device trans­
fers (disk refreshing a CRT display). 

A NPR device provides extremely fast access to the UNIBUS and can 
transfer data at high rates once it gains control of the bus. The state of 
the processor is not affected by this type of transfer, and, therefore, the 
--processor can relinquish bus control while an instruction is still in prog­
ress. The bus can be released at the end of any bus cycle, except during 
a read-modify-write cycle sequence. (This occurs for example in destruc­
tive read-out devices such as core memory for certain instructions.) 

20 



In the PDP-ll/45 an NPR device can gain bus control in 3.5 microseconds 
or less (depending on the number of devices on the UNIBUS), and can 
transfer 16-bit words to memory at the same speed as the effective cycle 
time of the memory being addressed. 

2.6.5 Using the Interrupts 
Devices that gain bus control with one of the Bus Request Lines (BR 7· 
BR 4), can take full advantage of the Central Processor by requesting an 
interrupt. In this way, the entire instruction set is available for manipulat· 
ing data and status registers. 

When a service routine is to be run, the current task being performed by 
the central processor is interrupted, and the device service routine is 
initiated. Once the request has been satisfied, the Processor returns to 
its former task. Interrupts may also be used to schedule program exe· 
cution by using the Program Interrupt Request. 

2.6.6 Interrupt Procedure 
Interrupt handling is automatic in the PDp·llj45. No device polling is 
required to determine which service routine to execute. The operations 
required to service an interrupt are as follows: 

1. Processor relinquishes control of the bus, priorities permitting. 

2. When a master gains contro( it sends the processor an interrupt 
command and a unique memory address which contains the address 
of the device's service routine in Kernel virtual address space, called 
the interrupt vector address. Immediately following this pointer ad­
dress is a word (located at vector address +2) which is to be used 
as a new Processor Status Word. 

3. The processor stores the current Processor Status Word (PS) and the 
current Program Counter (PC) into CPU temporary registers. 

4. The new PC and PS (the interrupt vector) are taken from the speci­
fied address. The old PS and PC are then pushed onto the current 
stack as indicated by bits 15,14 of the new PS and the previous 
mode in effect is stored in bits 13,12 of the new PS. The service 
routine is then initiated. 

These oper-ations are performed in 2.5 .usec from the time the control 
processor receives the interrupt command until the time it starts execut· 
ing the first instruction of the service routine. This time interval assumes 
no NPR transfer occurred during this time interval. 

5. The device service routine can cause the processor to resume the 
interrupted process by executing the Return from Interrupt (RTI or 
RTT) instruction, described in Chapter 4, which pops the two top 
words from the current processor stack and uses them to load the 
PC and PS registers. 

This instruction requires 1.5 .usec providing there is no NPR request. 

A device routine can be interrupted by a higher priority bus request any 
time after the new PC and PS have been loaded. If such an interrupt 
occurs, the PC and the PS of the service routine are automatically stored 

21 



in the temporary registers and then pushed onto the new current stack, 
and the new device routine is initiated. 

2.6.7 Interrupt Servicing 
Every· hardware device capable of interrupting the processor has a unique 
set of locations (2 words) reserved for its interrupt vector. The first word 
contains the location of the device's service routine, a·nd the second, 
the Processor Status Word that is to be used by the service routine. 
Through proper use of the PS, the programmer can switch the opera­
tional mode of the processor, alter the General Register Set in use (con­
text switchil}g), and modify the Processor's Priority level to mask O'ut 
lower level interrupts. 

There is one interrupt vector for the Program Interrupt Request_ It will 
generally be necessary in a multi-processing environment to determine 
which program generated the PIR and" where it is located in memory. 
Appendix D provides an example of how this is done. 

2.7 PROCESSOR TRAPS 
There area series of errors and programming conditions which will cause 
the Central Processor to trap to a . set of fixed locations. These include 
Power Failure, Odd Addressing Errors, Stack Errors, Timeout Errors, 
Memory Parity· Errors, Memory Management Violations, Floating Point 
Processor Exception Traps, Use of Reserved Instructions, Use of the T 
bit in the Processor Status Word, and use of the lOT, EMT, and TRAP 
instructions. 

Stack Errors, Memory Parity Errors, and the T bit Trap have already 
!:leen discussed in this chapter. Segmentation Violations and Floating 
Point Exception Traps are described in Chapters 6 and 7 respectively. 
The lOT, EMT, and TRAP instructions are described in Chapter4. 

2.7.1 Power Failure 
Whenever AC power drops below 95 Volts for llOv power (190 volts for 
2~Ov) or outside a limit of 47 to 63 Hz, as measured by DC power, the 
power fail sequence is initiated. The Central Processor automatically 
traps to location 24 and the power fail program has 2 msec. to save all 
volatile information (data in registers), and to condition peripherals for 
power fail. 

When power is restored the processor traps to location 24 ami executes 
the power up routine to restore the machine to its state prior to power 
failure. 

2.7.2 Odd Addressing Errors 
This error occurs whenever a program attempts to execute a word in­
struction on an odd address (in the middle of a word boundary). The 
instruction is aborted and the CPU traps through location 4. 

2.7.3 Time-out Errors 
These errors occur when a Master Synchronization pulse is placed on the 
UNIBUS and there is no slave pulse within 5 !,sec. This error usually 
occurs in attempts to address non-existent memory or peripherals. 

The offending instruction is aborted and the processor traps through 
I"ocation 4. 

22 



2.7.4 Reserved Instructions 
There is a set of illegal and reserved instructions which cause the proces· 
sor to trap through Location 10. The set is fully described in Appendix C. 

2.7.5 Trap Handling 
Appendix C includes a .Iist of the reserved Trap Vector locations', and 
System Error Definitions which cause processoLtraps. When a trap oc­
curs, the processor foilows the same procedure for traps as it does for 
interrupts (saving the PC and PS on the new Processor Stack etc .... ) . 

. In cases where traps and interrupts occur concurrently, the processor 
will service the conditions according to the priority sequence iliustratEld 
in Figure 2-11. 

Odd Addressing Error 

Fatal Stack Violations (Red) 

Memory Management Violations 

Timeout Errors 

Parity Errors 

Floating Point Processor Transfer Request 

Memory Management Traps 

Warning Stack Violation (Yellow) 

Power Failure 

Processor Priority level 7 

Floating Point Exception Trap 

PIR 7 

BR 7 

PIR 1 

Processor 0 

Figure 2-11 Processor Service Hierarchy 

Appendix C includes more details on the Trap sequence and Trap/ 
Interrupt interaction. 

23 



2.8 MULTIPROGRAMMING 
The PDP-11/45's architecture with its three modes of operation, its 
two sets of general registers, its Memory Management capability and its 
Program Interrupt Request facility provides an ideal environment for 
multi-programming systems. 

In any multi-programming system there must be some method of trans­
ferring information and control between programs operating in the same 
or different modes. The PDP-11/45 provides the user with these com­
munication paths. 

2_8.1 Control Information 
Control is passed inwards (User, Supervisor, Kernel) by all traps and 
interrupts. All trap and interrupt vectors are located in Kernel virtual 
space. Thus all traps and interrupts pass through Kernel space to pick 
up their new PC and PS and determine the new mode of processing. 

Control is passed outwards (Kernel, Supervisor, User) by the RTI and 
RTT instructions (described in Chapter 4). 

2_8.2 Data 
Data is transferred between modes by four instructions Move From Pre­
vious Instruction space (MFPI), Move From Previous Data space (MFPD), 
Move To Previous Instruction space (MTPI) and Move To Previous 
Data space (MTPD). There are four instructions rather than two as 
Memory Management distinguishes between instructions and data (Chap­
ter6). The instructions are fully described in Chapter 4. However, it 
should be noted that these instructions have been designed to allow 
data transfers to be under the control of the innermost mode (Kernel, 
Supervisor, User) program and not the outermost, thus providing pro­
tection of an inner program from an outer. 

2_8.3 Processor Status Word 
The PDP 11/45 protects the PS from implicit references by Supervisor 
and User prograrPIs which could result in damage to an inner level 
program. 

A program operating in Kernel mode can perform any manipulation of 
the PS. Programs operating at outer levels (Supervisor and User) are 
inhibited from changing bits 5-7 (the Processor's Priority). They are 
a.lso restricted in their treatment of bits 15, 14 (Current Mode), bits 13, 
12 (Previous Mode), and bit 11 Register Set); these bits may only be 
set, they are only cleared by an interrupt or trap. 

Thus, a programmer can pass contro~ outwards through the RTI and 
RTT instructions to set bits in the mode fields of his PS. To move in­
wards, however, bits must be cleared and he must, therefore, issue a 
trap or interrupt. 

The Kernel can further protect the PS from explicit references (Move data 
to location 777776--the PS) through Memory Management. 

24 



CHAPTER 3 

ADDRESSING MODES 

Data stored in memory must be accessed, and manipulated. Data han­
dling is specified by a PDP-l1 instruction (MDV, ADD etc.) which usually 
indicates: 

the function (operation code); 

a general purpose register to be used when locating the source 
operand and/or a general purpose register to be used when locating 
the destination operand; . 

an addressing mode (to specify how the selected register(s) is/are 
to be used_ 

Since a large portion of the data handled by a computer is usually 
structured (in character strings,· in arrays, in lists etc.), the PDP-II has 
been designed to handle structured data efficiently and flexibly. The 
general registers may be used with an instruction in any of the follow­
ing ways: 

as accumulators. The data to be manipulated resides within the 
register. 

as pointers. The contents of the register are the address of the 
operand, rather than the operand itself. 

as pointers which automatically step through core locations. Auto­
matically stepping forward through consecutive core locations is 
known as autoincrement addressing; automatically stepping back­
wards is known as autodecrement addressing. These modes are 
particularly useful for processing tabular data. 

as index registers. In this instance the contents of the register, and 
the word following the instruction are summed to produce the ad­
dress of the operand. This allows easy access to variable entries 
in a list_ 

PDP-l1's also have instruction addressing mode combinations which 
facilitate temporary data storage structures for convenient handling of 
data which must be frequently accessed. This is known as the "stack." 
(see Chapter 5) 

In the PDP-l1 any register can be used as a "stack pointer" under pro­
gram control; however, certain instructions associated with subroutine 
linkage and interrupt service automatically use Register 6 as a "hard­
ware stack pointer." For this reason R6 is frequently referred to as 
the "SP." 

25 



R7 is used by the processor as its program counter (PG). It is recom· 
mended that R7 not be used as a stack pOinter. 

An important PDP-ll/45 feature, which must be considered in conjunc-
. tion with the addressing modes, is the register arrangement; 

Two sets of general purpose registers (RO-R5) 

three hardware stack pointers (R6) 

a single Program Counter (PC) register (R7). 

Register R7 is used as a common program counter ·(PC). At any point 
in time only one register set is active. Thus a programmer need only 
concern himself with the existence of multiple register sets for those 
special supervisory tasks which involve Kernel, Supervisor, User com­
munications (e.g. MTPX, MFPX); otherwise he need never worry about 
which R3 or R6 an instruction will reference, the choice is automatic 
and transparent to his program. 

Instruction mnemonics and address mode symbols are sufficient for 
writing machine language programs. The programmer .need not be con­
cerned about conversion to binary digits; this is accomplished auto­
matically by the PDP-ll/45 assembler. 

3.1 SINGLE OPERAND ADDRESSING 
The instruction format for all single operand instructions such as .clear, 
increment, test) is: 

** * *** 
MODE Rn 

~1~5 __________ -y __________ ~6J \5 4 

OP CODE -----' -t 
DESTINATION ADDRESS ---------------------~ 

*-SPECIFIES DIRECT OR INDIRECT ADDRESS 
**-SPECIFIES HOW REGISTER WILL BE USED 

***-SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS 

0, 

Bits 15 through 6 specify the operation code that defines the type of 
instruction to be executed. 

Bits 5 through 0 form a six· bit field called the destination address field. 
This consists of two subfields: 

a) Bits 0 through 2 specify which of the eight general purpose registers 
is to be referenced by this instruction word. 

b) Bits 4 and 5 specify how the selected register will be used (address 
mode). Bit 3 indicates direct or deferred (indirect) addressing. 

3.2 DOUBLE OPERAND ADDRESSING 
Operations which imply two operands (such as add, subtract, move and 
compare) are handled by instructions that specify two addresses. The 

26 



first operand is called the source operand, the second the destination 
operand." Bit assignments in the source and destination address fields 
may specify different modes and different registers. The Instruction 
format for the double operand instruction is: 

**. ~ *** ** * 

OP CODE I MODE Rn MODE I 
15 12 ,t1 10 9 8 6, ,5 3 

SOURCE ADDRESS t ~ DESTINATION ADDRESS 

*-DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS 
**'SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED 

***,SPECIFIES A GENERAL REGISTER 

*** 
Rn 

0, 

The source address field is used to select the source operand, the first 
operand. The destination is used similarly, and locates the second 
operand and the result. For example, the instruction ADD A,B adds the 
contents (source operand) of location A to the contents (destination 
operand) of location B. After execution B will contain the result of the 
addition and the contents of A will be unchanged. 

Examples in this section and further in this chapter use the following 
sample PDp·ll instructions: 

Mnemonic Description Octal Code 

CLR clear (zero the specified destination) 0050nn 

CLRB clear byte (zero the byte in the specified lO50nn 
destination) 

INC increment (add 1 to contents of destination) 0052nn 

INCB increment byte (add 1 to the contents of lO52nn 
destination byte) 

COM complement (replace the contents of the 0051nn 
destination by their logical complement; 
each 0 bit is set and each 1 bit is cleared) 

COMB complement byte (replace the contents of the. lO51nn 
destination byte by their logical complement; 
each 0 bit is set and each 1 bit is cleared). 

ADD add (add source operand to destination 06mmnn 
operand and store the result at destination 
address) 

3.3 DIRECT ADDRESSING 
The following t?lble summarizes the four basic modes used with direct 
addressing. 

27 



Binary 

000 

010 

100 

110 

Name 

Register 

Autoincrement 

Autodecrement 

Index 

3.3.1 Register Mode 

DIRECT MODES 

Assembler Function 
Syntax 

Rn Register contains operand 

(Rn) + Register is used as a pointer 
to sequential data then in· 
cremented. 

-(Rn) Register is decremented and 
then used as a pointer. 

X(Rn) Value X is added to (Rn) to 
produce address of operand. 
Neither X nor (Rn) are modi· 
fied. 

aPR Rn 

With register mode any of the general registers may be used as simple 
accumulators and the operand is contained in the selected register. 
Since they are hardware registers, within the processor, the general reg· 
isters operate at high speeds and provide speed advantages when USed 
for operating on frequently·accessed variables. The PDp·II assembler 
interprets and assembles instructions of the form aPR Rn as register 
mode operations. Rn represents a general register name or number and 
aPR is used to represent a general instruction mnemonic. Assembler 
syntax requires that a general register be defined as follows: 

RO= %0 

Rl = %1 

R2 = %2, etc. 

(% sign indicates register definition) 

Registers are typically referred to by name as RO, RI, R2, R3, R4, R5, 
R6 and R7. However R6 and R7 are also referred to as SP and PC, 
respectively .. 

Register Mode Examples 
(all numbers in octal) 

Symbolic 

1. INC R3 

Octal Code 

005203 

Instruction Name 

Increment 

Operation: Add one to the contents of general register 3 

1111 II 

10000 0 0 010 ojo[o 'I~~ 
L,~1~5:~~:~~~~:~~:~~:~::~:~~:~6~J~,~5--4~"~--~'o~J 
OP CODE (lNC(0052))~ J 
DESTINATION FIELD ------------' 

II. DIRECT ADORES S 
**sREGlSTER MODE 

28 

R0 

RI 

R2 . R3 

R4 

R5 

R6(SP) 

R7 (PC) 



2. ADD R2,R4 060204 Add 

Operation: Add the contents of R2 to the contents of R4. 

BEFORE AFTER 

R21 L.. __ 0_00_00_2--> R2 =1 ===0=0:::0=00:::2== 

R4 LI __ o_0_OO_0_4~ R4 LI __ 0....:0_0_00...:.6~ 

3. COMB R4 105104 Complement Byte 

Operation: One's complement bits 0·7 (byte) in R4. 
(When general registers are used, byte in· 
structions only operate on bits 0·7; i.e. byte 
o of the register) 

BEFORE AFTER 

R4 I 022222 R41r-L... -_ -_ -_-.;..02;::2;::'5:;:5== 

3.3.2 Autoincrement Mode 
OPR (RnH 

This mode provides for automatic stepping of a poi nter through sequen­
tial elements of a table of operands. It assumes the contents of the 
selected general register to be the address of the operand. Contents of 
registers are stepped (by one for bytes, by two for words, always by two 
for R6 and R7) to address the next sequential location. The autoincre­
ment mode is espeCially useful for array processing and stacks. It will 
access an element of a table ang then step the pointer to address the 
next operand in the table. Although most useful for table handling, this 
mode is completely general and may be used for a variety of purposes. 

Autoincrement Mode Examples 
Symbolic Octal Code Instruction Name 

1. CLR (R5H 005025 Clear 

Operation: 

BEFORE 
ADDRESS SPACE 

20000 I 005025 

30Ca7 !1'i'!6 

Use contents of R5 as the address of the 
operand. Clear selected operand and then 
increment the contents of R5 by two. 

REGISTER 

I R5 I 030000 120000 

~ I 30000 

AFTER 
ADDRESS SPACE 

005025 

000000 

REGISTER 

R5 L.I __ 03_0_00_2--1 

2. CLRB (R5)+ 105025 Clear Byte 

Operation: Use contents of R5 as the address of the 
operand. Clear selected byte operand and 
then increment the contents of R5 by one. 

29 



BEFORE 
AOORESS SPACE 

20000 105025 R5 

30000 

30002 

3. ADD (R2)+, R4 

Operation: 

BEFORE 

AFTER 
REGISTER ADDRESS SPACE REGISTER 

20000 105025 R51 030001 

30000 ttl 000 

30002 

062204 Add 

The contents of R2 are used as the address 
of the operand which is added to the can· 
tents of R4. R2 is then incremented by two. 

AFTER 
ADDRESS SPACE REGISTERS ADDRESS S~CES REGISTERS 

10000 I 062~0' ~002 

~ .01 010000 

10000 I 062204 R2 1 100004 

R41 020000 

1000021 010000 1 1000021 010000 

3.3.3 Autodecrement Mode 
CPR-eRn) 

This mode is useful for processing data in a list in reverse direction. 
The content~ of the selected general register are decremented (by two 
for word instructions, by one for byte instructions) and then used as 
the address of the operand. The choice of postincrement, predecrement 
features fqr the PDP·ll were not arbitrary deCisions, but were intended 
to facilitate hardware! software stack operations (See Chapter 5 for 
complete discussions of stacks). 

Autodecrement Mode Examples 
Symbolic Octal Code Instruction Name 

1. INC-(RO) 

Operation: 

BEFORE 
ADDRESS SPACE 

1000 1,-_00_5_24_0_-, 

17774 1'-_00_0_°00_---' 

2. INCB-(RO) 

Operation: 

005240 Increment 

The contents of RO are decremented by two 
and used as the address of the operand. 
The operand is increased by one. 

AFTER 
REGISTERS aDDRESS SPACE REGISTER 

R0 IL __ 01_7_77_G_-, 1000 1L--:00=5=24=0=::!._..:.R:.::0~1==0::':::777;...:..'_...J 
~ 

17774 I 000001 

105240 Increment Byte 

The contents of RO are decremented by one 
then used as the address of the operand. 
The operand byte is increased by one. 

30 



BEFORE AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE 

1000 1 105240 R01 017776 1000 1 105240 R0 

17774 000 

: 
000 17774 

17776 17776 

3. ADD-(R3),RO 064300 Add 

Operation: 

BEFORE 

ADDRESS SPACE 

10020 L.1 __ o_6_4_30_0_-, 

77774 11-__ °_°_°o_5_°_.., 
77776 .... ____ ---' 

3.3.4 Index Mode 

The contents of R3 are decremented by 2 
then used as a pointer to an operand 
(source) which is added to the contents of 
RO (destination operand). 

AFTER 

REGISTER ADDRESS SPACE REGISTER 

R0 L.I __ 0_0_0_02_0_-, 10020 LI __ 0_64_3_0_0_-, R01 0000070 

R31 
'--------' 

077776 ~4 
777741 000050 I 
77776 .... ____ ...-I. 

OPR X(Rn) 

The contents of the selected general register, and an index word follow· 
ing the instruction word, are summed to form the address of the op· 
erand. The contents of the selected register may be used as a base for 
calculating a series of addresses, thus allowing random access to ele· 
ments of data structures. The selected register can then be modified 
by program to access data in the table. Index addressing instructions 
are of the form OPR X(Rn) where X is the indexed word and is located 
in the memory location following the instruction word and Rn is the 
selected general register. 

Index Mode Examples 
Symbolic 

1. CLR 200(R4) 

Operation: 

BEFORE 

ADDRESS SPACE 

Octal Code 

005064 
000200 

Instruction Name 

Clear 

The address of the operand is determined by 
adding 200 to the contents of R4. The loca· 
tion is then cleared. 

AFTER 

REGISTER ADDRESS SPACE REGISTER 

R4 ... 1 __ 0_0_10_0_0_--, 1020 
1--------\ 

R4 ... 1 __ 0_0_10_0_0_....1 1020 1----......., 
1022 

1024 
1--------\ 

1000 
~~ 
r~ --,200 1200 177777 

1202 

1022 1----......., 
1024 L-____ ...J 

1200~ 

31 



2. COMB 200(R1) 

Operation: 

BEFORE 

ADDRESS SPACE 

105161 
000200 

Complement Byte 

The contents of a location which is deter­
mined by adding 200 to the contents of R1 
are one's complemented (Le. logically com· 
plemented). 

AFTER 

REGISTER ADDRESS SPACE REGISTER 

1020 
1------1 

1022 1--'-'-'-'-'---1 

Rt I 017177 '020 
1---...,---1 

R' I 017777 

~
017777 

+200 
020177 

201761 < 011 1000 I 
20200 : 

3. ADD 30(R2), 20(R5)066265 
000030 
000020 

'0221-___ --1 

Add 

Operation: The contents of a location which is deter­
mined by adding30 tothe contents of R2 are 
added to the contents of a location which is 
determined by adding 20 to the contents of 
R5. The result is stored at the destination 
address, i.e. 20(R5) 

BEFORE AFTER 
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

'020 , 066265 R2 I 001100 1020 , 066265 R21 001100 

1022 , 000030 1022' 000030 

1024 L 000020 R5 I 002000 
1024' 000020 R51 002000 - I 

1130 I 000001 1130 I 000001 

2020 I 00000' 2020 I 000002 

1100 2000 
+30 +20 

"'i"i3O 2020 

3.4 DEFERRED (INDIRECT) ADDRESSING 
The four basic modes may also be used with deferred addressing. 
Whereas in the register mode the operand is the contents of the selected' 
register, in the register deferred mode the contents of the selected 
register is the address of the operand. 

In the three other deferred modes, the contents of the register selects 
the address of the operand rather than the operand itself. These modes 
are therefore used when a table consists of addresses rather than op­
erands. Assembler syntax for indicating deferred addressing is "@". 
The following table summarizes the deferred versions of the basic 
modes: 

32 



Binary Name 
Code 

o 0 1 Register Deferred 

Assembler 
Syntax Function 

@Rn or (Rn) Register contains the ad­
dress of the operand 

01 1 Autoincrement Deferred @(Rn)+ Register is first used as 
a pointer to a word con­
taining the address of 
the operand, then incre­
mented (always by 2; 
even for byte instruc­
tions) 

101 Autodecrement Deferred @~(Rn) 

1 1 1 Index Deferred @X(Rn) 

Register is decremented 
(always by two; even for 
byte instructions) and 
then used as a pointer 
to a word containing the 
address of the operand 

Value X (stored in a word 
following the instruction) 
and (Rn) are added and 
the sum is used as a 
pointer to a word con­
taining the address of the 
operand.· Neither X nor 
(Rn) are modified. 

Since each deferred mode is similar to its basic mode counterpart, sep­
arate descriptions of each deferred mode are not necessary. However, 
the following examples illustrate the deferred modes. 

Register Deferred Mode Example 
Symbolic Octal Code Instruction Name 

CLR @R5 

Operation: 

BEFORE 
ADDRESS SPACE 

005015 Clear 

The contents of location specified in R5 are 
cleared. 

AFTER 
REGISTER AOORESS SPACE REGISTER 

1
1700
617 ~-__ ----l R5 L.I _OO~1700~--J 

1677
1 1700 1-. -o-oooo--o--l 

R5 I 001700 

. 000100 

Autoincrement Deferred Mode Example 
SymboliC Octal Code Instruction Name 

INC @(R2>+ 

Operation: 

005232 Increment 

The contents of R2 are used as the address 
of the address of the operand. 
Operand is increased by one. Contents of 
R2 is incremented by 2. 

33 



. BEFORE AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

~ R21· 0'0300 
'0'0 000025 / 

'~ 
'O'O~ 
1012~ 

R2 LI __ O_'_03_0_2_-, 

10300 1 00' 0'0 I 10300 11-_0 __ 0_'_0'_0_-; 

Autodecrement Deferred Mode Example 
Symbolic Octal Code Complement 

COM @-(RO) 

Operation: 

BEFORE 
ADDRESS SPACE 

005150 

The contents of RO are decremented by two 
and then used as the address of the address 
of the operand. Operand is one's comple­
mented. (i.e. logically complemented) 

AFTER 
REGISTER ADDRESS SPACE REGISTER 

10100 012345 
f-------i 

10102 

R0 IL __ o_'_0_7_76_-, '0'00 ~ __ '6_5_43_2_--l~1 R01 o,o774 

10774
1 '0776 f-------i L-___ --' 

010100 

10102 ~ 

~=== 
'0~1 -o-,-o-,o-o---t 

10776 L-___ --' 

Index Deferred Mode Example 
Symbolic OctalCode Instruction Name 

ADD @1000(R2),Rl 

Operation: 

BEFORE 
ADDRESS SPACE 

R, 

067201 
001000 

Add 

1000 and contents of R2 are summed to 
produce the address of the address of the 
source operand the contents of which are 
added to contents of Rl; the result is stored 
in Rl. 

AFTER 
REGISTER ADDRESS SPACE REGISTER 

001234 1020 R' OQ1236 

'022 
1024 

R2 ~I :::0:0:01:0:0::= 
1022 

1024 
R2 I 000'00 

1050 I 000002 I 
,,~o 001050 1000 

~+'oo 1100 

1050 I 000002 

'100 I 001050 

34 



3.5 USE OF THE PC AS A GENERAL REGISTER 
Although Register 7 is a general purpose register, it doubles in function 
as the Program Counter for the PDP-ll. Whenever the processor uses 
the program counter to acquire a word from memory, the program 
counter is automatically incremented by two to contain the address of 
'the next word of the instruction being executed or the address of the 
next instruction to be executed. (When the program uses the PC to 
locate byte data, the PC is still incremented by two.) 

The PC responds to all the standard PDP-ll addressing modes. However, 
there are four of these modes with which the PC can provide advantages 
for handling position independent code (PIC-see Chapter 5) and un­
structured data. When regarding the PC these modes are termed imme­
diate, absolute (or immediate deferred), relative and relative deferred, 
and are summarized below: 

Binary 
Code 

010 

01 1 

110 

111 

Name Assembler 
Syntax 

Immediate # n 

Absolute @ # A 

Relative A 

Relative Deferred @A 

Function 

Operand follows instruction. 

Absolute Address follows in­
struction. 

Address of A, relative to the 
instruction, follows the in­
struction. 

Address of location contain­
ing address of A, relative to 
the instruction follows the 
instruction. 

The reader should remember that the special effect modes are the 
same as modes described in 3.3 and 3.4, but the general register 
selected is R7, the program counter. 

When a standard program is available for different users, it often is 
helpful to be able to load it into different areas of core and run it there. 
PDP-ll's can accomplish the relocation of a program very efficiently 
through the use of position independent code (PIC) which is written by 
using the PC addressing modes. If an instruction and its objects are 
moved in such a way that the relative distance between them is not 
alt~red, the same offset relative to the PC can be used in all positions in 
memory. Thus, PIC usually references locations relative to the current 
location. PIC is discussed in more detail in Chapter 5. 

The PC also greatly facilitates the handling of unstructured data. This 
is particularly true of the immediate and relative modes which are dis­
cussed more fully in Paragraphs 3.5.1 and 3.5.2. 

3.5.1 Immediate Mode 

OPR #n,DD 

Immediate mode is equivalent to using the autoincrement mode with the 
,PC. It provides time improvements for accessing constant operands by 

35 



including the constant in the memory location immediately following the 
instruction word. 

Immediate Mode Example 
Symbolic Octal Code Instruction Name 

ADD # lO,RO 062700 Add 
000010 

Operation: 

BEE"ORE 

The value 10 is located in the second word 
of the instruction and is added to the con· 
tents of RO. Just before this instruction is 
fetched and executed, the PC points to the 
first word of the instruction. The processor 
fetches the first word and increments the 
PC by two. The source operand mode is 27 
(autoincrement the PC). Thus, the PC is used 
as a' pointer to fetch the operand (the second 
word of the instruction) before being incre· 
mented by two to poi nt to the next in· 
struction. 

AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

t020 062700 ",R0 1 000020 1020 062700 R0 1 000030 

1022 000010 1022 OOOOtO 
,...---PC PC 

1024 f024 

3.5.2 Absolute Addressing 

. OPR @ # A 

This mode is the equivalent of immediate deferred or autoincrement 
deferred using the PC. The contents of the location following the instruc· 
tion are taken as the address of the operand. Immediate data is inter­
preted as an absolute address (i.e., an address that remains constant 
no matter where in memory the assembled instruction is executed). 

Absolute Mode Examples 
Symbolic Octal Code Instruction Name 

1. CLR @#1100 

Operation: 

BEFORE 
ADDRESS SPACE 

20 
r---:-,-:-:-:,.,.----j 

22 
r----r---j 

1100 ~ __ 17_77_7_7_-l 

1102 L-___ ----' 

PC 

005037 
001100 

Clear 

Clear the contents of location 1100. 

36 

AFTER 

ADDRESS SPACE 

20 005037 
r-------I 

221-~00:..1:..'0:..0 _ _l/PC 

24 
1-------1 

1100 ~--'-OO:..:O-=-OO:..:O'------l 
1102 L. ____ -' 



2. ADD @ # 2000, R3063703 
002000' 

Operation: Add contents of location 2000 to R3. 

BEFORE AFTER 

ADDRESS SPACE REGtSTER ADDRESS SPACE REGISTER 

000500 20 063703 I R31 001000 

22 002000 J/PC 
24 I 

2000 , 000300 

20 f-__ '----i~R3 ~I ____ ....I 
22 PC 

24 
f--::=--~ 

-<=, --------l 
2000 000300 

3.5.3 Relative Addressing 
OPR A or 

OPR X(PC) ,where X is the location of A relative to the instruction. 

This mode is assembled as index mode using R7. The base of the ad· 
dress calculation, which is stored in the second or third word of the 
instruction, is not the address of the operand, but the number which, 
when added to the (PC), becomes the address of the operand. This mode 
is useful for writing position independent code (see Chapter 5) since 
the location referenced is always fixed relative to the PC. When instruc· 
tions are to be relocated, the operand is moved by the same amount. 

Relative Addressing Example 
Symbolic Octal Code Instruction Name 

INC A 

Operation: 

BEFORE 

ADDRESS SPACE 

005267 
000054 

Increment 

To increment location A, contents of memory 
location immediately following instruction 
word are added to (PC) to produce address 
A. Contents of A are increased by one. 

AFTER 

ADDRESS SPACE 

1020 f---"OO::..;5:.::,26-=-7_--l 

1022 000054 ~ 
10,24 PC 

1020 f-_O::..;0-,-05;.:2c:..67_--l 

1022 000054 
f------i 

1024 _PC 
f------i 

1026 1---___ ---1 1026 1--___ ----1 

1024 

101~'~;~ 1100 ~1 __ oo_O_O_Ol_.....J 

3.5.4 Relative Deferred Addressing 

OPR@ or 
OPR@X(PC), where x is location containing address of A, relative to the 
instruction. 

This mode is similar to the relative mode, except that the second word 
of the instruction, when added to the PC, contains the address of the 
address of the operand, rather than the address of the operand. 

37 



Relative Deferred Mode Example 
Symbolic Octal Code 

CLR @A 005077 
000020 

Instruction Name 

Clear 

Operation: Add second word of instruction to PC to pro­
duce address of address of operand. Clear 
operand. 

BEFORE AFTER 

ADDRESS SPACE ADDRESS SPACE 

0020 1--"":':":':'''':''----1' 
1022 ~PC 

1020 

0022 

1024 

1044 1 010'00 

10100 I 000000 

1024 1--___ --1 

oo~ :0~6 ~ ~'044 
10100 I 100001 I 

3_6 USE OF STACK POINTER AS GENERAL REGISTER 
The processor stack pointer (SP, Register 6) is in most cases the gen­
eral register used for the stack operations related to program nesting. 
Autodecrement with Register 6 "pushes" data on to the stack and auto­
increment with Register 6 "pops" data off the stack_ Index mode with 
the SP permits random access of items on the stack. Since the SP is 
used by the processor for interrupt handling, it has a special attribute: 
autoincrements and autodecrements are always done in steps of two_ 
Byte operations using the SP in this way simply leave odd addresses 
unmodified. Use of stacks is explained in detail in Chapter 5. 

On the PDP-ll/45 there are three R6 registers selected by the PS; but 
at any given time there is only one in operation. 

The following table is a concise summary of the various PDP-ll address­
ing modes 

Binary 
Code 

000 

010 

100 

110 

Name 

Register 

Autoincrement 

Autodecrement 

Index 

DIRECT MODES 

Assembler 
Syntax 

Rn 

(Rn) + 

-(Rn) 

X(Rn) 

38 

Function 

Register contains operand. 

Register contains address 
of operand. Register con­
tents incremented after 
reference. 

Register contents decre­
mented before reference 
register contains address 
of operand. 

Value X (stored in a word 
following the instruction) is 
added to (Rn) to produce 
address of operand. Nei­
ther X nor (Rn) are modi­
fied. 



Binary Name 
Code 

001 Register Deferred 

DEFERRED MODES 

Assembler 
Syntax 

Function 

@Rn or (Rn) Register contains the ad­
dress of the operand 

011 Autoincrement Deferred @(Rn) + Register is first used as 
a pointer to A word con­
taining the address of 
the operand, then incre­
mented (always by 2; 
even for byte instruc­
tions) 

101 

111 

010 

011 

110 

111 

Autodecrement Deferred @-(Rn) 

Index Deferred 

Immediate 

Absolute 

Relative 

Relative Deferred 

@X(Rn) 

PC ADDRESSING 

#n 

@#A 

A 

@A 

39 

Register is decremented 
(always by two; even for 
byte instructions) and 
then used as a pointer 
to a word containing the 
address of the operand 

Value X (stored in a word 
following the instruction) 
and (Rn) are added and 
the sum is used as a 
pointer to a word con­
taining the address of 
the operand_ Neither X 
nor (Rn) are modified 

Operand follows instnic­
tion 

Absolute address follows 
instructi9n 

Address of A, relative to 
the Instruction, follows 
the instruction. 

Address of location con­
taining address of A, rela­
tive to the instruction fol­
lows the instruction. 



40 



CHAPTER 4 

INSTRUCTION SET 

4.1 INTRODUCTION 
This chapter describes the PDP·ll/45 instructions in the following 
order: 

Single Operand (4.4) 
General 

Shifts 

Multiple Precision 

Rotates 

Double Operand (4.5) 
Arithmetic Instructions 

General Register Destination 

Logical Instructions 

Program Control Instructions (4.6) 
Branches 

Subroutines 

Traps 

Miscellaneous (4.7) 

Condition Code Operators (4.8) 

The specification for each instruction includes the mnemonic, octal code, 
binary code, a diagram showing the format of the instruction, a symbolic 
notation describing its execution and the effect on the condition codes, 
timing information, a description, special comn1'ents, and examples. 

MNEMONIC: This is indicated at the top corner of each page. Wnen the 
word instruction has a byte equivalent, the byte mnemonic is also shown. 

INSTRUCTION FORMAT: A diagram accompanying each instruction shows 
the octal op code, the binary op code, and bit assignments. (Note that 
in byte instructions the most significant bit (bit 15) is always a 1.) 

OPERATION: The operation of each instruction is described with a single 
notation. The following symbols are used: 

( ) = contents of 

src = source address 

41 



dst = destination address 

loc = location 

~= becomes 

t = "is popped from stack" 

'" = i'is pushed onto stack" 

A = boolean AND 

v = boolean OR 

v = exclusive OR 

,-. = boolean not 

Reg or R = register 

B = Byte 

INSTRUCTION TIMING: The minimum execution time, including the fetch 
of the next instruction, is specified for each instruction. The instruction 
is assumed to reside in bipolar memory; both source and destination are 
assumed to be general purpose registers. For example, MOV is assumed 
to be from a general register to a general register, and JMP is assumed 
to be in register deferred mode. For detailed timing information consult 
Appendix B. 

ISP-The Instruction Set Processor (ISP) notation has been used with 
each instruction. It is a precise notation for defining the action of any 
instruction set and is described in detail in Appendix A. It was included 
for the benefit of PDP·ll users who wish to gain an in depth under· 
standing of each instruction. However, understanding ISP is not essen· 
tial to understanding PDP-ll instructions. 

4.2 INSTRUCTION FORMATS 
The major instruction formats are: 

Single Operand Group 

OP Code dst 

I I 
15 6 5 o 

Double Operand Group 

OF Code Src dst 
I I 

15 12 11 6 5 o 

Condition Code Operators 

o o 

42 



Register·Source or Destination 

Subroutine Return 

o 

Branch 

OP Code 
I 

o 

4.3 BYTE INSTRUCTIONS 

o 

offset 

Src/dst 
I 

reg 

The POp·ll processor includes a full complement of instructions that 
manipulate byte operands. Since all POP·l1 addressing is byte· oriented, 
byte manipulation addressing is straightforward. Byte instructions wIth 
autoincrement or autodecrement direct addressing cause the specified 
register to be modified by one to point to the next byte of data. Byte 
operations in register mode access the low·order byte of the specified 
register. These provisions enable the POP·l1 to perform as either a word 
or byte processor. The numbering scheme for word and byte addresses 
in core memory is: 

HIGH BYTE 
ADDRESS 

OOZOOI 

OOZ003 

BYTE 1 

BYTE 3 

BYTE 0 

BYTE 2 

'AORD OR BYTE 
AOORESS 

OOZOOO 

OOZOOZ 

The most significant bit (Bit 15) of the instruction word is set to indicate 
a byte instruction. 

Example: 

CLR 
CLRB 

Symbolic Octal 

005000 
105000 

43 



44 



4.4 SINGLE OPERAND INSTRUCTIONS 
4.4.1 Single Operand Arithmetic Instructions 

General: CLR DEC INC NEG TST COM 
CLRB DECB INCB NEGB TSTB COMB 

Shifts: ASR ASL ASH ASHe 
ASRB ASLB 

Multiple Precision: ADC SBC SXT 
ADCB SBCB 

Rotates: ROl ROR SWAB 
ROlB RORB 

45 



300 ns 

CLR 
CLRB 

Clear dst 

1°/1 1 0. ° 
15 

Operation: 

Condition Codes: 

De!ij:ription: 

Example: 

° ° 

(dst)~ 

N: cleared 
Z: set 
V: cleared 
C: cleared 

d 

6 5 

n05000 

d d d 

° 

Word: Contents of specified destination are reo 
placed with zeroes. 

Byte: Same 

Before 
(R1) = 177777 

NZVC 
1 1 1 1 

46 

CLR R1 

After 
(R1) = 000000 

NZVC 
0100 



Decrement dst· 

o o 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

0 o : 1 1 I d d d d 

6 5 

(dst) ~(dst)-l 

N: set if result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 

300 ns 

DEC 
DECB 

n053DD 

·d 
d I 
0 

V: set if (dst) was 100000; I cleared otherwise 
C: not affected 

Word: Subtract 1 from the contents of the destina­
tion 
Byte: ,Same 

Before 
(R5) = 000001 

NZVC 
1000 

47 

DEC R5 

After 
(R5) = 000000 

NZVC 
0100 



300 ns 

INC 
INCB 

Increment dst 

1°/1 1 ° ° ° 
15 

Operation: 

Condition Codes: 

Description: 

Example: 

° d d d 

6 5 

(dst) ~(dst) + 1 

N: set if result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 

n052DD 

d 

° 

V: set if (dst) held 077777; cleared otherwise 
C: not affected 

Word: Add one to contents of destination 
Byte: Same 

Before 
(R2) = 000333 

NZVC 
0000 

48 

INC R2 

After 
(R2) = 000334 

NZVC 
0000 



Negate dst 

1°/' 1 ° 00 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

° d 

6 5 

(dst) +-(dst) 

750 ns 

NEGB 
NEG 

n005400 

d d 
I 

d 

° 

N: set if the result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: set if the result is 100000; cleared otherwise 
C: cleared if the result is 0; set otherwise 

Word: Replaces the contents of the destination ad­
dress by its two's complement. Note that 100000 is 
replaced by itself (in two's complement notation the 
most negative number has no positive counterpart). 
Byte: Same 

Before 
(RO) = 000010 

NZVC 
0000 

49, 

NEG RO 

After 
(RO) = 177770 

NZVC 
1001 



300 ns 

151 
1518 

Test dst 

1011 I ° 
15 

Operation: 

° ° 

Condition Codes: 

Description: 

Example: 

n05700 

1 : 1 d d d d 
I ° 

6 5 ° 
(dst) ~(dst) 

N: set if the result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: cleared 
C: cleared 

Word: Sets the condition codes Nand Z according 
to the contents of the destination address 
Byte: Same 

Before 
(R1) = 012340 

NZVC 
0011 

50 

TST R1 

After 
(R1) = 012340 

NZVC 
0000 



300 ns 

COM 
COMB 

Complement dst n05100 

o o 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

o d d d d 

6 5 o 

(dst) ~'-' (dst) 

N: set if most significant bit of result is set; cleared 
otherwise 
Z: set if result is 0; cleared otherwise 
V: cleared 
C: set 

Replaces the contents of the destination address 
by their logical complement (each bit equal to 0 
is set and each bit equal to 1 is cleared) 
Byte: Same 

Before 
(RO) = 013333 

NZVC 
0110 

51 

COM RO 

After 
(RO) = 164444 

NZVC 
1001 



4.4.2 Shifts 
Scaling data by factors of two is accomplished by the shift instructions: 

ASR-Arithmetic shift right 

ASL-Arithmetic shift left 

ASC-Multiple shift one word 

ASC-Multiple shift one word 

The sign bit (bit 15) of the operand is replicated in shifts to the right. 
The low order bit is filled with 0 in shifts to the left. Bits shifted out 
of the C bit, as shown in the following examples, are lost. 

52 



300 ns 

ASR 
ASRB 

Arithmetic Shift Righ~ dst n06200 

10/11 a a o· 1 

15 

Operation: 

Condition Codes: 

Description: 

6 5 a 

(dst) ~(dst) shifted one place to the right 

N: set if the high-order bit of the result is set (re­
sult < 0); cleared otherwise 
Z: set if the result = 0; cleared otherwise 
V: loaded from the Exclusive OR of the N-bit and 
C-bit (as set by the completion of the shift op­
eration) 
C: loaded from low-order bit of the destination 

Word: Shifts all bits of the destination right one 
place_ Bit 15 is replicated_ The C-bit is loaded from 
bit 0 of the destination_ ASR performs signed divi­
sion of the destination by two_ 
Word: 

C;S~I-~I~~~~~~~~ol-0-

M CooAooR~S 1-tJ 
o 

53 



300 ns 

ASL 
ASLB 

Arithmetic Shift left dst n06300 

10/'1 0 0 0 

15 

Operation: 

Condition Codes: 

Description: 

00:1 'Id d d d d dl 
6 5 o 

(dst) +-(dst) shifted one place to the left 

N: set if high-order bit of the result is set (result 
< 0); cleared otherwise 
Z: set if the result = 0; cleared otherwise 
V: loaded with the exclusive OR of the N-bit and 
C-bit (as set by the completion of the shift opera­
tion) 
C: loaded with the high-order bit of the destination 

Word: Shifts all bits of the destination left one 
place_ Bit 0 is loaded with an 0_ The C-bit of the 
status word is loaded from the most significant bit 
of the destination_ ASl performs a signed multi­
plication of the destination by 2 with overflow in­
dication_ 
Byte: Same 
Word: 

Byte: 

54 



750 ns + 150 ns x absolute value shift count 

ASH 

Shift Arithmetically 072RSS 

IQ ... 1 

15 

Operation: 

Condition Codes: 

Description: 

9 8 6 5 o 

R~ R Shifted arithmetically NN places to right 
or left 
Where NN = (src) 

N:set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if sign of register changed during shift; 
cleared otherwise 
C: loaded from last bit shifted out of register 

The contents of the register are shifted right or left 
the number of times specified by the source op· 
erand. The shift count is taken as the low order 6 
bits of the source operand. This number ranges 
from -32 to +31. Negative is a right shift and 
positive is a left shift. 

cLJl------L-L-~'------L--L-L--.l.--..l.-~ 

0-~1 ~~~~~~~~~~ 
15 

-- 1-0 I 

OR 0 

1_ 0 

0 

55 



750 ns + 150 ns x absolute value shift count 

ASHe 

Arithmetic Shift Combined 073RSS 

I 0 I 1 

15 

Operation: 

Condition Codes: 

Description: 

o 
9 8 6 5 o 

R, Rvl ~R, Rvl The double word is shifted NN 
places to the right or left, where NN = (src) 

N: set if result <0; cleared otherwise 
Z: set if result =0; cleared otherwise 
V: set if sign bit changes during the shift; cleared 
otherwise 
C: loaded with high order bit when SC>O; loaded 
with low order bit when SC<O (loaded with the last 
bit shifted out of the 32·bit operand) 

The contents of the register and the register ORed 
with one are treated as one 32 bit word, R + 1 
(bits 0·15) and R (bits 16·31) are shifted right or left 
the number of times specified by the shift count. 
The shift count is taken as the low order 6 bits of 
the source operand. This number ranges from -32 
to +31. Negative is a right shift and positive is 
a left shift. 
When the register chosen is an odd number the reg· 
ister and the register OR'ed with one are the same. 
In this case the right shift .becomes a rotate. The 
16 bit word is rotated right the number of bits 
specified by the shift count. 

OR 

56 



4.4.3 Multiple Precision 
It is sometimes necessary to do arithmetic on operands considered as 
multiple words or bytes. The PDp·ll makes special provision for such 
operations with the instructions ADC (Add Carry) and SSC (Subtract 
Carry) and their byte equivalents. 

For example two. 16·bit words may be combined into a 32·bit double 
precision word and added or subtracted as shown below: 

32 BIT WORD , 
OPERAND I AI '\1/1 

31 t6 IS , 
OPERAND I BI BI/I 

31 16 15 

RESULT 

31 IS .. ·15 

Example: 

The addition of -1 and -1 could be performed as follows: 

·-1 = 37777777777 

. 
I 

0 . 
I 

0 

I 
0 

(R1) = 177777 (R2) == 177777 (R3) == 177777 (R4) = 177777 

ADD Rl, R2 
ADC R3 
ADD R4,R3 

1. After (Rl) and (R2) are added, 1 is loaded into the C bit 

2. ADC instruction adds C bit to (R3); (R3) = 0 

3. (R3) and (R4) are added 

4. Result is 37777777776 or -2 

57 



300 ns 

AOC 
AOCS 

Add Carry dst 

10/10 a 
I , 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

a 

n055DD 

a 1 I d d d 

6 5 

(dst) ~(dst) + (C) 

N: set if result <0; cleared otherwise 
Z: set if result =0; cleared otherwise 

d d 

o 

V: set if (dst) was 077777 and (C) was 1: cleared 
otherwise 
C: set if (dst) was 177777 and (C) was 1; cleared 
otherwise 

Adds the contents of the C-bit into the destination. 
This permits the carry from the addition of the low­
order words to be carried into the high-order result. 
8yte: Same 

Double precision addition may be done with the 
following instruction sequence: 
ADD AO,80 ; add low·order parts 
ADC 81 ; add carry into high-order 
ADD AI,81 ; add high order parts 

58 



300 ns 

SBC 
SBCB 

Subtract Carry dst n0560D 

1011 ° ° 
- I I 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

° ° 
(dst) ~(dst)-(C) 

° I d 

6 5 

d" d d 
I 

N: set if result <0; cleared otherwise 
Z: set if result 0; cleared otherwise 

d 

lfJ: set if result is 100000; cleared otherwise 

o 

C: cleared if result is 0 and C = 1; set otherwise 

Word: Subtracts the contents of the C-bit from the 
destination. This permits the carry from the sub­
traction of two low-order words to be subtracted 
from the high order part of the result_ 
Byte: Same 

Double preCision subtraction is done by: 

SUB AO;BO 
sec B1 
SUB Al,B1 

59 



300 ns 

SXT 

Sign Extend dst 

15 

Operation: 

o 

Condition Codes: 

Description: 

Example: 

o t I d 

6 5 

(dst) (-- 0 if N bit is clear 
(dst) (-- -1 N bit is set 

N: unaffected 
Z: set if N bit clear 
V: cleared 
C: unaffected 

0067DD 

d d I d d 

o 

If the condition code bit N is set then a -1 is 
placed in the destination operand: if N bit is clear, 
then a 0 is placed in the destination operand. This 
instruction is particularly useful in multiple preci­
sion arithmetic because it permits the sign to be 
extended through multiple words. 

Before 
(A) = 012345 

NZVC 
1000 

60 

SXTA 

After 
(A) = 177777 

NZVC 
1000 



4.4.4 Rotates 
The rotate instructions operate on the destination word and the C bit as 
though they formed a 17·bit "circular buffer." These instructions facili· 
tate sequential bit testing and detailed bit manipulation. . 

61 



300 ns 

ROL 
ROLB 

Rotate Left dst 

1011 ° ° I I 

15 

° 

Condition Codes: 

Description: 

Example: 

Word: 

n06100 

° 1 I d d d 

6 5 o 

N: set if the high-order bit of the result word is set 
(result <0): cleared otherwise 
Z: set if all bits of the result word = 0; cleared 
otherwise 
V: loaded with the Exclusive OR- of the N-bit and 
C-bit (as set by the completion of the rotate op­
eration) 
C: loaded with the high-order bit of the destination 

Word: Rotate all bits of the destination left one 
place_ Bit 15 is loaded into the C-bit of the status 
word and the previous contents of the C-bit are 
loaded into Bit 0 of the destination. 
Byte: Same 

dst 

G-~I ~~~~:~~~~~I L! __ ~15~ __________________________________ ~tO 

Bytes: 

62 



300 ns 

ROR 
RORB 

Rotate Right dst n060DD 

10/1 I 0 I 0 I 0 I 1 d d I 
, I . 

15 

Condition Codes: 

Description: 

Example: 
Word: 

Byte: 

6 5 o 
N: set if the high-order bit of the result is set 
(result < 0); cleared otherwise 
Z: set if all bits of result = 0; cleared otherwise 
V: loaded with the Exclusive OR of the N-bit and 
C'bit (as set by the completion of the rotate 
operation) . 
C: loaded with the low-order bit of the destination 

Rotates all bits of the destination right one place. 
Bit 0 is loaded into the C-,/:)it and the previous 
contents of the C-bit are loaded into bit 15 of the 
destination_ 
Byte: Same 

I I I I 
L,,-,-
,5fl....-.L-_...J.-_-'-0......L.c --'-I--, :~-:-:-Ir 7t L..--I~I--. _r 

63 



SWAB 

Swap Bytes dst 

15 

Opl!ration: 

Condition Codes: 

Description: 

Example: 

ISP: 

300 ns 

0003DD 

6 5 o 

Byte 1/ Byte 0 ~Byte 0/ Byte 1 

N: set if high-order bit of low-order byte (bit 7) of 
result is set; cleared otherwise 
Z: set if low-order byte of result = 0; cleared 
otherwise 
V: cleared 
C: cleared 

Exchanges high-order byte and low-order byte of 
the destination word (destination must be a word 
address)_ 

Before 
(Rl) = 077777 

NZVC 
1 111 

64 

SWAB Rl 

After 
(Rl) = 177577 

NZVC 
0000 



4.5 DOUBLE OPERAND INSTRUCTIONS 
Double operand instructions provide an instruction (and time) saving 
facility since they eliminate the need for "load" and "save" sequences 
such as those used in accumulator-oriented machines. 

General: MOV ADD SUB CMP 
MOVB CMPB 

Register Destination: MUL DIV XOR 

Logical: BIS BIT BIC 
BISe BITB BICB 

4.5.1 Double Operand General Instructions 

65 



300 ns 

MOY 
MOYB 

Mov src. dst 

1011. ° ° s d d d 

• 

n1SSDD 

d 

15 12 11 6 5 

Operation: (dst) <f-(src) 

Condition Codes: N: set if (src) <0; cleared otherwise 
Z: set if (src) = 0; cleared otherwise 
V: cleared ' , 
C: not affected 

Description: Word: Moves the source operand to the destination 
location. The previous contents of the destination 
are lost. The contents of the source address are 
not affected. 
Byte: Same 'C as MOV. The MOVB to a register 
(unique among byte instructions) extends the most 
significant bit of the low order byte (sign elden­
sion). Otherwise MOVB operates on bytes exactly 
as MOV operates on words. 

Example: MOV XXX,R1 ; loads Register 1 with 
the contents of memory location; XXX represents 
a programmer-,defined mnemonic used to represent 

, a memory location 

MOV #20,RO ; loads the number 20 
into Register 0; .. #" indicates that the value 20 is 
the operand 

MOV @#20,-(R6) , ; pushes the operand 
contained in location 20 onto the stack 

MOV (R6)+,@#177566 ; pops the operand off 
a stack and moves it into memory location 177566 
(terminal print buffer) 

MOV R1,R3 
terregister transfer 

; performs an in-

MOVe @ # 177562,@.# 177566 ; moves a charac-
"ter -from terminal' keyboard buffer to terminal 

buffer 

66 



Add src. dst 

I 0 1 t 
I , 

s s: s s I d d 

300 ns 

ADD 

06SSDD 

d d d 
I 

15 12 11 6 5 o 

Operation: 

Condition Codes: 

Description: 

Examples: 

(dst) +-(src) + (dst) 

N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if there was arithmetic overflow as a result 
of the operation; that is both operands were of the 
same sign and the result was of the opposite sign; 
cleared otherwise 
C: set if there was a carry from the most significant 
bit of the result; cleared otherwise 

Adds the source operand to the destination operand 
and stores the result at the destination address. 
The original contents of the destination are lost. 
The contents of the source are not affected. Two's 
complement addition is performed. 

Add to register: ADD 20,RO 

Add to memory: ADD Rl,XXX 

Add register to register: ADD Rl,R2 

Add memory to memory: ADD @#17750,XXX 

XXX is a programmer-defined mnemonic for a mem­
ory location. 

67 



300 ns 

SUB 

Subtract src. dst 16SSDD 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

d 

12 " 6 5 

d d 
I 

d 

o 

(dst) -E-(dst)-(src) [in detail (dst) -E-(dst) + (src) 
+ 1] 

N: set if result <0; cleared otherwise 
Z: set if result =0; cleared otherwise 
V: set if there was arithmetic overflow as a result 
of the operation, that is if operands were of oppo­
site signs and the sign of the source was the same 
as the sign of the result; cleared otherwise 
C: cleared if there was a carry from the most sig· 
nificant bit of the result; set otherwise 

--Subtracts the source operand from the destination 
operand and leaves the result at the destination 
address. The original contents of the destination 
are lost. The contents of the source are not af· 
fected. In double· precision arithmetic the C·bit, 
when set, indicates a "borrow" 

Before 
(Rl) = 011111 
(R2) = 012345 

NZVC 
1 1 1 1 

68 

SUB Rl, R2 

After 
(Rl) = 011111 
(R2) = 001234 

NZVC 
0000 



300 ns 

CMP 
CMPB 

Compare src. dst n2SSDD 

1011 I ° 
15 

Operation: 

Condition Codes: 

Description: 

s s I d d d d - d 

lZ II 6 5 

(src)-(dst) [in detail, (src) + ,- (dst) + 1] 

N: set if result <0; Cleared otherwise 
Z: set if result =0; cleared otherwise 

0· 

V: set if there was arithmetic overflow; that is, op­
erands were of opposite signs and the sign of the 
destination was the same as the sign of the result; 
cleared otherwise 
C: cleared if there was a carry from the most sig­
nificant bit of the result; set otherwise 

Compares the source and destination operands and 
sets the condition codes, which may then be used 
for arithmetic and logical conditional branches. 
Both operands are unaffected. The only action is 
to set the condition codes. The compare is cus­
tomarily followed by a conditional branchinstruc­
tion. 
Note that unlike the subtract instruction the order 
of operation is (src)-(dst), not (dst)-(src). 

69 



3.3 p's 

MUL 

Multiply 

I 0 I 1 

15 

Operation: 

Conditon Codes: 

Description: 

Example: 

070RSS 

s s I 
6 5 

R, Rvl ~ R x(src) 

N: set if product is <0; cleared otherwise 
Z: set if product is 0; cleared otherwise 
V: cleared 

o 

C: set if the result is less. than _2T5 or greater 
than or equal to 215_l. 

The contents of the destination register and source 
taken as two's complement integers are multiplied 
and stored in the destination register and the suc· 
ceeding register (if R is even). If R is odd only the 
low order product is stored. Assembler syntax is: 
MUL S,R. 
(Note that the actual destination is R, Rvl which 
reduces to just R when R is odd.) 

I6·bit product (R is odd) 

CLC ;Clear carry condition code 
MOV #400,RI 
MUL #lO,RI 
BCS ERROR ;Carry will be set if 

;product is less than 

Before 

(RI) = 000400 

70 

;_215 or greater than or equal 
to 215 

;no significance lost 

After 

(RI) = 004000 



Divide 

I 0 I 1 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

6.9 /Ls-7.5 /LS 

DN 

071RSS 

o 0 , I r s , s I 
9 8 6 5 o 

R, Rvl +-RA, Rvl I (src) 

N: set if quotient <0; cleared otherwise 
Z: set if quotient =0; cleared otherwise 
V: set if source =0 or if the absolute value of the 
register is larger'than the absolute value of the 
source. (In this case the instruction is aborted be­
cause the quotient would exceed 15 bits.) 
C: set ·if divide 0 attempted; cleared otherwise 

The 32-bit two's complement integer in Rand 
Rvl is divided by the source operand. The quotient 
is left in R; the remainder in Rvl. Division will be 
performed· so that the remainder is of the same 
sign as the dividend. R must be even. 

CLR RO 
MOV #20001,Rl 
DIV #2,RO 

Before 
(RO) = 000000 
(Rl) = 020001 

71 

After 
(RO) = 010000 
(Rl) = 000001 

Quotient 
Remainder 



300 ns 

XOR 

Exclusive Or 

o 1 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

074RDD 

a 0 I r 
9 8 6 5 

(dst) ~Rv(dst) 

N: set if the result <0; cleared otherwise 
Z: set if result =0; cleared otherwise 
V: cleared 
C: unaffected 

o 

The exclusive OR of the register and destination 
operand is stored in the destination address. Con­
tents of register are unaffected. Assembler format 
is: XOR R,D 

Before 
(RO) = 001234 
(R2) = 001111 

72 

XOR RO,R2 

After 
(RO) = 001234 
(R2) = 000325 



4.5.2 Logical Instructions 
These instructions have the same format as the double operand arith­
metic group. They permit operations on data at the bit level. 

73 



300 ns 

BtS 
BlSS 

Bit Set src. dst 

1011, 1 0 

n5SSDD 

SSS ddddddl 

15 12 II 650 

Operation: 

Condition Codes: 

Description: 

Example: 

(dst) +-(src) v (dst) 

N: set if high·order bit of result set, cleared other· 
wise 
Z: set if result = zero; cleared otherWise 
V: cleared 
C: not affected 

Performs "Inclusive OR" operation between- the 
source and destination operands and leaves the re­
sult at the destiriation address; that is, correspond­
ing bits set in the source are set in the destination. 
The content of, the destination are lost. 

Before 
(RO) == 001234 
(R1) = 001111 

NZVC 
0000 

74 

BIS RO,R1 

After 
(RO) = 001234 
(R1) = 001335 

NZVC 
0000 



300 ns 

BIT 
BITB 

Bit Test src. dst n3SSDD 

1011, 0 

15 

Operation: 

Condition Codes: 

Description: 

Example:. 

s s' d d d d d d I 
12 11 6 5 0 

(dst)A(src) 

N: set if high-order bit of result set; cleared other­
wise 
Z: set if result =0; cleared otherwise 
V: cleared 
c: not affected 

Performs logical "and" comparison of the source 
and destination operands and modifies condition 
codes accordingly. Neither the source nor destina­
tion operands are affected_ The BIT instruction may 
be used to test whether any of the corresponding 
bits that are set in the destination are also set in 
the source or whether all corresponding bits set in 
the destination are clear in the source. 

BIT #30.R3 

BEQ HELP 

75 

test bits 3 and 4 of R3 
to see if both are off 

BEQ to HELP will occur 
if both are off 



300 ns 

BIC 
BICB 

Bit Clear scr. dst n4SSDD 

1011, 1 o 0 I s d d d 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

12 11 6 5 o 

(dst)~,...., (src)A(dst) 

N: set if high order bit of result set; cleared other­
wise 
Z: set if result =0; cleared otherwise 
V: cleared 
C: not affected 

Clears each bit in the destination that corresponds 
to a set bit in the source. The original contents of 
the destination are lost. The contents of the source 
are unaffected. 

Before 
(R3) = 001234 
(R4) = 001111 

NZVC 
1 1 1 1 

76 

BIC R3,R4 

After 
(R3) = 001234 
(R4) = 000101 

NZVC 
0001 



4.6 PROGRAM CONTROL INSTRUCTIONS 
4.6.1 Branches 
The instruction causes a branch to a location defined by the sum of 
the offset (multiplied by 2) and the current contents of the Program 
Counter if: 

a) the branch instruction is unconditional 

b) it is conditional and the conditions are met after testing the 
condition codes (status word). 

The offset is the number of words from the current contents of the PC. 
Note that the current contents of the PC point to the word following 
the branch instruction. 

Although the PC expresses a byte address, the offset is expressed in 
words. The offset is automatically multiplied by two to express bytes 
before it is added to the PC. Bit 7 is the sign of the offset. If it is se"t, 
the offset is negative and the branch is done in the backward d;rection. 
Similarly if it is not set, the offset is positive and the branch is done 
in the forward direction. 

The 8·bit offset allows branching in the backward direction by 200, 
words (400, bytes) from the. current PC, and in the forward direction 
by 1778 words (3768 bytes) from the current PC. 

The PDp·ll assembler handles address arithmetic for the user and 
computes and assembles the proper offset field for branch instructions 
in the form: 

Bxx loc 

Where "Bxx" is the branch instruction and "Ioc" is the address to 
which the branch is to be made. The assembler gives an error indica· 
tion in the instruction if the permissible branch range is exceeded. 
Branch instructions have no effect on condition codes. 

77 



600 ns 

BR 

Branch (unconditiqnal) 0004 loc 

15 

Operation: 

Description: 

Example:' 

xxx: 

OFFSET 

" 8 7 o 

PC ~ PC + (2 x offset) 

Provides a way of transferring program' control 
within a range of-128 to +127 words with a one 
word instruction. 

001000 
001002 
001004 
001006 
001010 

BR xxx 

78 



Simple Conditional Branches 
BEQ 
BNE 
BMI 
BPL 
Bes 
Bee 
BYS 
Bye 

79 



300 ns-no branch 
600 ns-branch 

BEQ 

Branch on Equal (zero) 0014 offset 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

OFFSET 
I. 

8 7 o 

PC <-- PC + (2 x offset) if Z = 1 

Unaffected 

Tests the state of the Z-bit and causes a branCh if 
Z is. set. As an example, it is used to test equality 
following a CMP operation, to test that no bits set 
in the destination were also set in the source fol­
lowing a BIT operation, and generally, to test that 
the result of the previous operation was zero. 

CMP A,B 
BEQ C 

will branch to C if A = B 
and the sequence 

ADDA,B 
BEQ C 

; compare A and B 
; branch if they are equal 

(A - B = 0) 

; add A to B 
; branch if the result = 0 

will breach to C if A + B = O. 

80 



300 ns-no branch 
600 ns-branch 

BNE 

Branch Not Equal (Zero) 0010 offset 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

OFFSET 

8 7 

PC +- PC + (2 x offset) if Z = 0 

Unaffected 

o 

Tests the state of the Z-bit and causes a branch if 
the Z-bit is clear_ BNE is the complementary opera­
tion to BEQ_ It is used to test inequality following a 
CMP, to test that some bits set in the destination 
were also in the source, following a BIT, and gen­
erally, to fest that the result of the previous opera­
tion was not zero_ 

CMP A,B ; compare A and B 
BNE C ; branch if they are not equal 

will branch to C if A = B( 
and the sequence 

ADD A,B 
BNE C 

; add A to B 
; branch if the result not equal 

to 0 

will branch to C if A + B = 0 

81 



300 nS-no branch 
600 ns-branch 

BMI 

Branch on Minus 1004 offset 

OFFSET 

15 8 7 o 

Operation: 

Condition Codes: 

Description: 

PC +- PC + (2 x offset) if N = 1 

Unaffected 

Tests the state of the· N·bit and causes a branch if 
N is set. It is used to test the sign (most significant 
bit) of the result of the previous operation). 

82 



Branch on Plus 

15 

Operation: 

Description: 

300 ns-no branch 
600 ns-branch 

BPL 

1000 offset 

OFFSET 
! , 

8 7 o 

PC +- PC + (2 x offset) if N = 0 

Tests the state of the N·bit and causes a branch 
if N is clear. BPL is the complementary operation 
of BMI. 

83 



300 ns---no branch 
600 ns-branch 

BCS .. 

Branch on Carry Set 1034 offset 

L' 0 0 0 0 

15 8 7 

OFFSET 

o 

Operation: 

Description: 

PC ~ PC + (2 x offset) if C = 1 

Tests the state of the C·bit and causes a branch if 
C is set. It is used to test for a carry in the result 
of a previous operation. 

84 



300 ns-no branch 
600 ns-branch 

Bee 

Branch on Carry Clear 1030 offset 

15 

Operation: 

Description: 

OFFSET. 

8 7 o 

PC ~.PC + (2 x offset) if C = 0 

Tests the state of the C·bit and causes a branch 
if C is clear. BCC is the complementary operation 
to BCS 

85 



300 ns-no branch 
600 ns-branch 

BVS 

Branch on Overflow Set 1024 offset 

15 

Operation: 

Description: 

o 0 
I 

o OFFSET 

8 7 

PC ~ PC + (2 x offset) if V = 1 

o 

Tests the state of V bit (overflow) and causes a 
branch if the V bit is set. BVS is used to detect 
arithmetic overflow in the previous operation. 

86 



300 ns-no branch 
600 ns-branch 

Bve 

Branch on Overflow Clear 1020 offset 

o 

15 

Operation: 

Description: 

OFFSET I 
8 7 o 

PC ~ PC + (2 x offset) if V = 0 

Tests the state of the V bit and causes a branch if 
the V bit is clear. BVC is complementary operation 
to BVS. 

87 



Signed Conditional Branches 
Particular combinations of the condition code bits are tested with the 
signed conditional branches. These instructions. are used to test the 
results of instructions in which the operands were considered as a 
signed (two's complement) values. 

Note that the sense of signed comparisons differs from that of unsigned 
comparisons in that in signed 16-bit, two's complement arithmetic the 
sequence of values is as follows: 

largest 

positive 

negative 

smallest 

077777 
077776 

000001 
000000 
177777 
177776 

100001 
100000 

whereas in unsigned 16-bit arithmetic the sequence is considered to be 
highest 177777 

lowest 

000002 
000001 
000000 

The signed conditional branch instructions are: 

BlT BGE 
BlE BGT 

88 



300 ns-no branch 
600 ns-branch 

BLT 

Branch on Less Than (Zero) 0024 offset 

I 0 I 0 o 

15 

Operation: 

Description: 

I 
OFFSET o I 0 o 

8 7 o 

PC ~ PC + (2 x offset) if N v V = 1 

Causes a branch if the "Exclusive Or" of the Nand 
V bits are 1. Thus BLT will always branch following 
an operation that added two negative numbers, 
even if overflow occurred. 
In particular, BLT will always cause a branch if it 
follows a CMP instruction operating on a negative 
source and a positive destination (eJen if overflow 
occurred). Further, BL T will never cause a branch 
when it follows a C:v1P instruction operating on a 
positive source and negative destination. BL Twill 
not cause a branch if the result of the previo:Js 
operation was zero (without overflow). 

89 



300 ns-no branch 
600 ns-branch 

BGE 

Branch on Greater than or Equal (zero) 0020 offset 

o I 0 o o 
15 

Operation: 

Description: 

o o OFFSET 

8 7 

PC <c- PC + (2 x offset) if N v V = 0 

Causes a branch if N and V are either both clear or 
both set. BGE is the complementary operation to 
BL T. Thus BGE will always cause a branch ·when 
it follows an operation that caused addition to two 
pcsitive numbers. BGE will also cause a branch on 
a zero result. 

90 



300 ns-no branch 
600 n3-branch 

BlE 
Branch on Less than or Equal (zero) 0034 offset 

15 

Operation: 

Description: 

OFFSET 

8 7 o 

PC <- PC + (2 x offset) if Z v(N v V) = 1 

Operation is similar to BL T but in addition will 
cause a branch if the result of the previous op­
eration was zero. 

91 



300 ns-no hranch 
600 ns-br .. nch 

BGT 

Branch on Greater Than (zero) 0030 offset 

15 

Operation 

Description: 

OFFSET 

8 7 o 

PC <-- PC + (2 x offset) if Z v(N v V) = 0 

,Operation of BGT is similar to BGE, except BGT 
will not cause a branch on a zero result. 

92 



Unsigl'!ed Conditional Branches 
The Unsigned Conditional Branches provide a means for te5ting the 
result of comparison operations in which the operands are considered as 
unsigned values. . 

BHI 
BLOS 
BHIS 
BLO 

93 



300 ns-no branch 
600 ns-branch 

BHI 

Branch on Higher 1010 offset 

1 I 0 o 0 

15 

Operation: 

Description: 

o o OFFSET 

8 7 o 

PC ~ PC + (2 x offset) if C = a and Z = 0 

Causes a branch if the previous operation caused 
neither a carry nor a zero result. This will happen 
in comparison (eMP) operations as long as the 
source has a higher unsigned value than the 
destination. 

94 



300 ns-no branch 
600 ns-branch 

BLOS 

Branch on lower or Same 1014 offset 

1 I 0 o 0 

15 

Operation: 

Description: 

o 0 OFFSET 

8 7 o 

PC <--- PC + (2 x offset) if C v Z = 1 

Causes a branch if the previous operation caused 
either a carry or a zero result. BlOS is the com­
plementary operation to BHI. The branch will occur 
in comparison operations as long as the source is 
equal to, or has a lower unsigned value than the 
destination. 

95 



300 ns-no branch 
600 ns-branch 

BlO 

Branch on Lower 1034 offset 

L1 0 0 0 0 OFFSET 

15 

Operation: 

Description: 

o 

PC <-- PC + (2 x offset) if C = 1 

BLO is same instruction as BCS. This mnemonic is 
included only for convenience. 

96 



300 ns-no branch 
600 ns-branch 

BHIS 

Branch on Higher or Same 1030 offset 

11 0 0 0 0 
.' I OFFSET 

15 

Operation: 

Description: 

8 7 o 

PC ~ PC + (2 x offset) if C = 0 

BHIS is the same instruction as BCC. This mne· 
monic is included only for convenience. 

97 



4.6.2 Subroutine Instructions 
The subroutine call in the PDP-ll provides for automatic nesting of 
subroutines;reentrancy, and multiple entry points_ Subroutines may call 
other subroutines (or indeed themselves) to any level of nesting without 
making special provision' for storage or return addresses at each level 
of subroutine call. The subroutine calling mechanism does not modify 
any fixed location in memory, thus providing for reentrancy. This allows 
one copy of a subroutine to be shared among several interrupting pro­
cesses. For more detailed description of subroutine programming see 
Chapter 5. 

98 



1.5 !-'s 

JSR 

Jump to Sub Routine 004 reg. dst 

15 

Operation: 

Description: 

001,:, ,Id d d 
9 8 6 5 o 

(tmp) ..... (dst) (tmp is an internal processor register) 

-J,(SP) ..... reg (push reg contents onto processor 
stack) 

reg ..... PC (PC holds location following JSR; this ad· 
dress 

PC ..... (tmp) (now put in reg) 

In execution of the JSR, the old contents of the 
specified register (the "LINKAGE POINTER") are 
automatically pushed onto the processor stack and 
new linkage information placed in the register. 
Thus subroutines nested within subroutines to any 
depth may all be called with the same linkage reg­
ister. There is no need either to plan the maximum 
depth at which any particular subroutine will be 
called or to include instructions in each routine to 
save and restore the linkage pointer. Further, since 
all linkages are saved in a reentrant manner on the 
processor stack execution of a subroutine may be 
interrupted, the same subroutine reentered and 
executed by an interrupt service routine. Execution 
of the initial subroutine can then be resumed 
when other requests are satisfied. This process 
(called nesting) can proceed to any level. 

In both JSR and JMP instructions the destination 
address is used to load the program counter, R7. 
Thus for example a JSR in destination mode 1 for 
general register R1 (where (Rl) = 100), will ac­
cess a subroutine at location 100. This is effectively 
one level less of deferral than operate instructions 
such as ADD. 

A subroutine called with a JSR reg,dst instruction 
can access the arguments following the call with 
either autoincrement addressing, (reg) +, (if argu­
ments are accessed sequentially) or by indexed 

99 



addressing, X(reg), (if accessed in random order) 
These addressing modes may also be deferred, 
@(reg) + and @X(reg) if the parameters are op­
erand addresses rather than the operand them­
selves_ 

JSR PC, dst is a special case of the PDP-ll sub­
routine call· suitable for subroutine calls that trans­
mit parameters through the general registers. The 
SP and the PC are the only registers that may be 
modified by this call. 

Another special case of the JSR instruction is JSR 
PC, @(SP) + which ·exchanges the top element of 
the processor stack and the contents of the pro­
gram counter. Use of this instruction allows two 
routines to swap program control and resume op­
eration when recalled where they left off. Such rou­
tines are called "co-routines." 

Return from a subroutine is done by the RTS in­
struction. RTS reg loads the contents of reg into 
the PC and pops the top element of the processor 
stack into the specified register. 

100 



Mark 

I 0 0 0 0 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

900 ns 

MARK 

0064nn 

0 0 0 n, n I 
.6 5 0 

SP<,-PC + 2xnn nn = number of parameters 
PC~R5 

R5<,-(SPH 

unaffected 

Used as part of the standard PDP-ll subroutine 
return convention. MARK facilitates the stack clean 
up procedures involved in subroutine exist. Assem­
bler format is: MARK N 

MOV 
MOV 
MOV 

R5,-(SP) 
Pl,-(SP) 
P2,-(SP) 

MOV PN,-(SP) 

;place old R5 on stack 
;place N parameters 
;on the stack to be 
;used there by the 
;subroutine 

MOV =MARKN,-(SP) ;places the instruction 
;MARK N on the stack 

MOV SP ,R5 ;set up address at Mark N 
instruction 

JSR PC,SUB ;jump to subroutine 

At this point the stack is as follows: 

OLD R5 

PI 

PN , 

MARK N j 
OLD PC 

And the program is at the address SUB which is 
the beginning of the subroutine. 

SUB: 

RTS R5 

101 

;execution of the subroutine it­
self 

;the return begins: this causes 



the contents of R5 to be placed in the PC which 
t!1en results in the execution of the instruction 
MARK N. The .Contents old PC are placed inR5 

MARK N causes: (1) the stack pointer to be ad­
justed to point to the old R5 value; (2) the value 
now in R5 (the old PC) to be placed in the PC; and 
(3) contents of the old R5 to be popped into 
R5 thus completing the return from . subroutine. 

Note: If Memory- Manageme.nt is in use a stack 
must be in I and D spaces (Chapter 6) to execute 
the MARK instruction. 

102 



1.2 /lS 

RTS 

Return from Subroutine 00020 Reg 

I 0 1 0 o 

15 

Operation: 

Description: 

o I 0 o o 

PC <-reg 
reg <-(SP)j 

o > o I 0 o 
3 2 o 

Loads contents of reg into PC and pops the top 
element of the processor stack into the specified 
register. 
Return from a non-reentrant subroutine is typically 
made through the same register that was used in 
its call. Thus, a subroutine called with a JSR PC, 
dst exits with a RTS PC and a subroutine called 
with a JSR R5, dst, may pick up parameters with 
addressing modes (R5)+, X(R5), or @XCR5) and 
finally exits, with an RTS R5. 

103 



4.6.3 Program Control Instructions 
SPL 
JMP 
SOB 

104 



600 ns 

SPL 

Set Priority Level ··00023N 

I 0 I 0 o 
15 

Operation: 

Condition Codes: 

Description 

o ,0 o 0 o o 

PS (bits 7-5) ~Priority 

not affected 

o n 

:3 2 o 

The least significant three bits of the instruction 
are loaded into the Program Status Word (PS) bits 
7-5 thus causing a changed priority. The old priority 
is lost_ 
Assembler syntax is: SPL N 

Note: This instruction is a no op in User and 
Supervisor modes. 

105 



600 ns 

JMP 

Jump 

I 0 I 0 o 

15 

Operation: 

Condition Codes: 

Description: 

o I 0 o o 

PC <-Cdst) 

not affected 

0:0 1 I d 

6 5 

00010D 

d d I d d 

o 

JMP provides more flexible program branching 
than provided with the branch instructions. Control 
may be transferred to any location in memory (no 
range limitation) and can' be accomplished with 
the full flexibility of the addressing modes, with 
the exception of register mode O. Execution of a 
jump with mode a will cause an "illegal" instruc­
tion" condition. (Program control cannot be trans­
ferred to a register.) Register deferred mode is 
legal and will cause program control to be trans­
ferred to the address held in the specified register. 
Note that instructions are word data and must 
therefore be fetched from an even-numbered ad­
dress. A "boundary error" trap condition will result 
when the processor attempts to fetch an instruc­
tion from an odd address. 

D~ferred index mode JMP instructions permit trans­
fer of control to the address contained in a select­
able element of a table of dispatch vectors_ 

106 



750 ns-no branch 
600 ns-branch 

SOB 

Subtract One and Branch 077R offset 

15 

Operation: 

Condition Codes: 

Description: 

9 B 6 5 

R~ R -1 if this result 
offset) 

unaffected 

OFFSET 
I 

o 

o then PC ~ PC -(2x 

The register is decremented. If it is not equal to 0, 
twice the offset is subtracted from the PC (now 
pointing to the following word). The offset is inter· 
preted as a six bit positive number. This instruction 
provides a fast, efficient method of loop control. 
Assembler syntax is: 

SOB R,A 

Where A is the address to which transfer is to be 
made if the decremented R is not equal to D. Note 
that the SOB instruction can not· be used to trans· 
fer control in the forward direction. 

107 



4.6.4 Traps 
Trap instructions provide for calls to emulators, I/O monitors, debugging 
packages, and user·defined interpreters. A trap is effectively an interrupt 
generated by software. When a trap occurs the contents of the current 
Program Counter (PC) and Program Status Word (PS) are pushed onto 
the processor stack and replaced by the contents of a two-word trap 
vector containing a new PC and new PS. The return sequence from a 
trap involves executing an RTI or RTT instruction which restores the old 
PC and old PS by popping them from the stack. Trap vectors are located 
permanently assigned fixed .address. 

TRAP 
EMT 
BPT 
lOT 
RTI 
RTT 

108 



· Emulator Traps 

1 I 0 o 
15 

Operation: 

Condition Codes: 

Description: 

o o I 0 I 

!(SP)~PS 
!(SP)~PC 
PC~(30) 

PS~(32) 

8 7 

N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded· from trap vector 
C: loaded from trap vector 

2.25 p'S 

EMT 

104000-104377 

o 

All operation codes from 104000 to 104377 are 
EMT instructions and may be used to transmit in­
formation to the emulating routine (e.g., function 
to be performed). The trap vector for EMT is at 
ad,dress 30. The new PC is taken from the word at 
address 30; the new central processor status (PS) 
is taken from the word at address 32. 

Caution: EMT is used frequently by DIGITAL system 
software and is therefore not recommended for gen­
eral use. 

109 



2.25 /LS 

TRAP 

Trap 

1 I 0 o 
15 

Operation: 

Condition Codes: 

Description: 

o I 1 o o 

}(SP) <--PS 
}(SP) <--PC 

PC <--(34) 
PS <--(36) 

8 7 

N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

104400 to 104777 

o 

Operation codes from 104400 to 104777 are TRAP 
instructions. T-RAPs and EMTs are identical in op­
eration, except that the trap vector for TRAP is at 
address 34. 

Note: Since DEC software makes frequent use of 
EMT, the TRAP instruction is recommended for 
general use. 

110 



2.25 IlS 

8PT 

Breakpoint Trap. 000003 

15 

Operation: 

Condition Codes: 

Description: 

HSP)~PS 
HSP)~PC 
PC~(l4) 

PC~(16) 

N: loaded from-trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

o 

Performs a trap sequence with a trap vector ad­
dress of 14_ Used to call debugging aids. The user 
is cautioned against employing code 000003 in pro- . 
grams run under these debugging aids. 
(no information is transmitted in the low byte.) 

III 



2.25 P.s 

lOT 

I/O Trap 

I 0 0 0 

15 

Operation: 

Condition Codes: 

Description: 

o 0 
I 

o 

HSP) <-PS 
t(SP) <-PC 

PC <-(20) 
PS<-(22) 

o 0 

N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from t~ap vector 
C: loaded from trap vector 

000004 

o 
o 

Performs a trap sequence with a trap vector ad· 
dress of 20. Used to call the I/O Executive routine 
lOX in the paper tape software system, and for 
error reporting in the Disk Operating System. 
(no information is transmitted in the low byte) 

112 



1.5 p'S 

RTI 

Return from Interrupt 000002 

o 

15 

Operation: 

Condition Codes: 

Description: 

o o o 

PC~(SP)t 
PS~(SP)t 

o 0 0 
I 

N: loaded from processor stack 
Z: loaded from processor stack 
V: loaded from processor stack 
C: loaded ·from processor stack 

o 

Used to exit from an interrupt or TRAP service rou· 
tine. The PC and PS are restored (popped) from the 
processor stack. 

113 



1.5 p,s 

RTT 

Return from Trap 000006 

15 

Operation: 

Condition Codes: 

Description: 

PC't""(SP)t 
PS <-(SP)t 

N: loaded from processor stack 
Z: loaded from processor stack 
V: loaded from processor stack 
C: loaded from processor stack 

o 

This is the same as the RTI instruction except that 
it inhibits a trace trap, while RTI permits a trace 
trap. If a trace trap is pending, the first instruction 
after the RTT will be executed prior to the next 
''T'' trap. In the case of the RTf instruction the 
"T" trap Will occur immediately after the RTf. 

114 



Reserved Instruction Traps-These are caused by attempts to execute 
instruction codes reserved for future processor expansion (reserved in­
structions) or instructions with illegal addressing modes (illegal instruc­
tions)_ Order codes not corresponding to any of the instructions de­
scribed are considered to be reserved instructions. JMP and JSR with 
register mode destinations are illegal instructions. Reserved and illegal 
instruction traps occur as described under EMT, but trap through vectors 
at addresses 10 and 4 respectively. 

Stack Overflow Trap 
Bus Error Traps-Bus Error Traps are: 

1. Boundary Errors-attempts to reference instructions or word 
operands at odd addresses_ 

2_ Time-Out Errors-attempts to reference addresses on the bus 
that made no response within 5 p's in the PDP-11/45_ In general, 
these are caused by attempts to reference non-existent memory, 
and attempts to reference non-existent peripheral devices. 

Bus error traps cause processor traps through the trap vector address 4. 

Trace Trap--Trace Trap enables bit 4 of the PS and causes processor 
traps at the end of instruction executions. The instruction that is ex­
ecuted after the instruction that set the T-bit will proceed-to completion 
and then cause a processor trap through the trap vector at address 14. 
Note that the trace trap is a system debugging aid and is transparent 
to the general programmer. 

The following are special cases and are detailed in subsequent para-
graphs_ . 

1. The traced instruction cleared the T-bit. 

2. The traced instruction set the T·bit. 

3. The traced'instruction caused an instruction trap. 

4. The traced instruction caused a bus error trap. 

5. The traced instruction caused a stack overflow trap. 

6. The process was interrupted between the time the T-bit was set 
and the fetching of the instruction that was to be traced. 

7. The traced instructi'on was a WAIT. 

8. The traced instruction was a HALT. 

9. The traced instruction was a Return from Trap. 

Note: The traced instruction is the instruction after the one that s!'!ts 
the T-bit. 

An instruction that cleared the T-bit-Upon fetching the traced instruc­
tion an internal flag, the trace flag, was set. The trap will still occur at the 
end of execution of this instruction. The stacked status word, however, 
will have a clear T·bit. 

115 



An instruction that set the T-bit-Since the T-bit was already set, setting 
it again has no effect. The trap will occur. 

An instruction that caused an Instruction Trap--The instruction trap is 
sprung and the entire routine for the service trap is executed. If the 
service routine exits with an RTI or in any other way restores the 
stacked status word, the T-bit is set again, the instruction following the 
traced instruction is executed and, unless it is one of the special cases 
noted above, a trace trap occurs. 

An instruction that caused a Bus Error Trap--This is treated as an In­
struction Trap. The only difference is that the error service is not as 
likely to exit with an RTI, so that the trace trap may not occur. 

An instruction that caused a stack overflow-The instruction completes 
execution as usual-the Stack Overflow does not cause a trap. The 
Trace Trap Vector is loaded into the PC and PS, and the old PC and 
PS are pushed onto the stack. Stack Overflow occurs again, and this 
time the trap is made. 

An interrupt between setting of the T-bit and fetch of the traced instruc­
tion-The entire interrupt service routine is executed and then the T·bit 
is set again by the exiting RTf. The traced instruction is executed .(if 
there have been no other interrupts) and, unless it is a special case 
noted above, causes a trace trap. 

Note that interrupts may be acknowledged immediately after the loading 
of the new PC and PS at the trap vector location. To lock out all inter­
rupts, the PS at the trap vector should raise the processor priority to 
level 7. 

A WAIT-The trap occurs immediately. 

A HALT-The processor halts. When the continue key on the console 
is pressed, the instruction following" the HALT is fetched and executed. 
Unless it is one of the exceptions noted above, the trap occurs imme­
diately following execution. 

A Return from Trap-The return from trap instruction either clears or 
sets the T·bit. It inhibits the trace trap. If the T·bit was set and RTT 
is the traced instruction the trap is delayed until completion of the next 
instruction. 

Power Failure Trap-is a standard PDP-ll feature. Trap occurs when­
ever the AC power drops below 95 volts or outside 47 to 63 Hertz. Two 
milliseconds are then allowed for power down processing. Trap vector 
for power failure is at locations 24 and 26. 

Trap priorities-in case multiple processor trap conditions occur simul­
taneously the following order of priorities is observed (fror.1 high to low): 

1. Odd Address 
2. Fatal Stack Violation 

116 



3. Segment Violation 
4. Timeout 
5. Parity Error 
6. Console Flag 
7. Segment Management Trap 
8. Warning Stack Violation 
9. Power Failure 

The details on the trace trap process have been described in the trace 
trap operational description which includes cases in which an instruction 
being traced causes a bus error, instruction trap, or a stack overflow 
trap. 

If a bus error is caused by the trap process handling instruction traps, 
trace traps, stack overflow traps, or a previous bus error, the processor 
is halted. 

If a stack overflow is caused by the trap process in handling bus errors, 
instruction traps, or trace traps, the process is completed and then the 
stack overflow trap is sprung. 

117 



4.7 MISCELLANEOUS 

HALT 

WAIT 

RESET 

MTPD 

MTPI 

MFPD 

MFPI 

118 



HALT 

Halt 000000 

100000000:00000000 

15 

Condition Codes: 

Description: 

o 

not affected 

Causes the processor operation to cease. The con· 
sole is given control of the bus. The console data 
lights display the contents of RO; the console ad· 
dress lights display the address after the halt in· 
struction. Transfers on the UN IBUS are terminated 
immediately. The PC points to the next instruction 
to be executed. Pressing the continue key on the 
console causes processor operation to resume. No 
INIT signal is given. 

Note: A halt issued in Supervisor or User Mode 
will generate a trap. 

119 



WAIT 

Wait for Interrupt 000001 

15 

Condition Codes: 

Description: 

o 0 0 o o 0 0 o o I 0 o 

not affected 

Provides a way for the processor to relinquish use 
of the bus while it waits for an external "interrupt. 
Having been given a WAIT command, the processor 
will not compete for bus use by fetching instruc­
tions or operands from memory. This permits 
higher transfer rates between a device and mem­
ory, since no processor-induced latencies will be 
encountered by bus requests from the device. In 
WAIT, as in all instructions, the PC points to the 
next instruction following the WAIT operation. Thus 
when an interrupt causes the PC and PSW to be 
pushed onto the processor from the interrupt rou­
tine (Le. execution of an RTI instruction) will cause 
resumption of the interrupted process at the in­
struction following the WAIT. 

120 



10 ms 

RESET 

Reset External Bus 000005 

I 0 o· 0 0, 0 0 0 0: 0 0 0 0 0 o 1 I 
15 o 

Condition Codes: not affected 

Description: Sends INIT on the UNIBUS for 10 ms. All devices 
on the UNIBUS are reset to their state at power up. 

121 



900 ns 

MTPI 

Move to Previous Instruction Space 006600 

15 

Operation: 

Condition Codes: 

Description: 

(temp) +-(SP)t 
(dst) <-(temp) 

6 5 0 

N: set if the source <0; otherwise cleared 
Z: set if the source =0; otherwise cleared 
V: cleared 
C: unaffected 

The address of the destination operand is deter· 
mined in the current address space. MTPI then 
pops a word off the current stack and stores that 
word in the destination address in the previous 
mode's I space (bits 13. 12 of PS). 

122 



900 ns 

MTPD 

Move to Previous Data Space 106600 

15 

Operation: 

Condition Codes: 

Description: 

o I : I 

(temp) ~(SP)t 
(dst) ~(temp) 

o I d d 

6 5 

d I d d 

o 

N: set if the source <0; otherwise cleared 
Z: set if the source =0; otherwise cleared 
V: cleared 
C: unaffected 

The address of the destination operand is deter­
mined in the current address space as in MTPI. 
MTPO then pops a word off the current stack and 
stores that word in the destination address in the 
previous mode's 0 space. 

123 



1.2 }J.s 

MFPI 

Move from Previous Instruction Space 00658S 

15 

Operation: 

Condition Codes: 

Description: 

(temp) +- (src) 
J,(SP) +-(temp) 

6 5 

s I S S I 
o 

N: set if the source <0; otherwise cleared 
Z: set if the source =0; otherwise cleared 
V: cleared 
C: unaffected 

This instruction is provided in order to allow inter­
address space communication when the PDPll/45 
is using the Memory Management unit. The address 
of the source operand is determined in the current 
address space. That is, the address is determined 
using the SP and memory pages determined by 
PS<15:14>. The address itself is then used in the 
previous I space (as determined by PS<13:12:> 
to get the source operand. This operand is then 
pushed on to the current R6 stack. 

124 



1.2 ,us 

MFPD 

Move from Previous Data Space 1065SS 

o 0 0 

.15 

Operation: 

Condition Codes: 

Description: 

(temp) ~(src) 
HSP) ~(temp) 

6 5 

s I S 

N: set if the source <0; otherwise cleared 
Z: set if the source =0; otherwise cleared 
V: cleared 
C: unaffected 

o 

This instruction is provided in order to allow inter­
address space communication when the PDP-ll/45 
is using the Memory Management unit_ The address 
of the source operand is determined in the current 
address space_ That is, the address is determined 
using the SP and memory pages determined by 
PS<15:14>. The address itself is then used in the 
previous D space (as determined by PS<13:12>' 
to get the source operand. This operand is then 
pushed on to the current R6 stack. 

125 



4.8 Condition Code Operators 600 ns 

ClN 
CLl 
ClV 
ClC 

SEN 
SEZ 
SEV 
SEC 

Condition Code Operators 0002XX 

I 0 1 0 ! o' 0 I 0 0 0 I 0 : t 0 I 1 

15 

Description: 

Mnemonic 
Operation 

ClC Clear C 

ClV Clear V 

ClZ ClearZ 

ClN Clear N 

SEC Set C 

SEV Set V 

SEl Set Z 

SEN Set N 

SCC Set all CC's 

CCC Clear all CC's 

Clear V and C 
No Operation 

Set and clear condition code bits. Selectable com· 
binations ,of these bits may be c~eared or set to· 
gether. Condition code bits corresponding to bits 
in the cORdition code operator (Bits 0·3) are modi­
fied according to the sense of bit 4, the set/clear 
bit of the operator .. i.e. set the bit specified by bit 
0, 1, 2 or 3, -if bit 4 is a 1. Clear corresponding 
bits if bit 4 = O. ' 

OPCode 

000241 

000242 

000244 

000250 

000261 

000262 

000264 

000270 

000277 

000257 

000243 
000240 

Combinations of the above set or clear operations may be ORed together 
to form combined instructions. 

126 



CHAPTER 5 

ADVANCED PROGRAMMING TECHNIQUES 

In order to produce programs which fully utilize the power and flexibility 
of the PDP·11!45, the reader should become familiar with the various 
programming techniques which are part of the basic design philosophy 
of the PDp·l1. Although it is possible to program t!;e PDp·ll!45 along 
traditional lines such as "accumulator orientation" this approach does 
not fully exploit the architecture and instruction set of the PDp·ll!45. 

5.1 THE STACK 
A "staCk," as used on the PDp·ll, is an area of memory set aside by 
the programmer for temporary storage or subroutine! interrupt service 
linkage. The instructions which facilitate "stack" handling are useful 
features not normally found in low·cost computers. They allow a program 
to dynamically establish, modify, or delete a stack and items on it. 
The stack uses the "Iast·in, first·out'~ concept, that is, various items may 
be added to a stack in sequential order and retrieved or deleted from 
the stack in reverse order. On the PDp·l1, a stack starts at the highest 
location reserved for it and expands linearly downward to the lowest 
address as items are added to the stack. 

HIGH ADDRESSES "",=,,.---,.,== 

LOW ADDRESSES 

Figure 5·1: Stack Addresses 

To keep track of the last item added to the stack (or "where we are" in 
the stack) a General Register always contains the me:-nory address 
where the last item is stored in the stack. In the PDp·l1 any register 
except Register 7 (the Program Coul1ter·PC) may be used as a "stack 
pointer" under program control; however, instructions associated with 
sU'llroutine linkage and interrupt service automatically use Register 6 
(R6) as a hardware "Stack Pointer." For this reason R6 is frequently 
referred to as·the system "SP". 

Stacks In the PDp·1I may be maintained in either full word or byte 
units. This is true for a stack pointed to by any register except R6, 
which must be organized in full word units only. 

127 



WORD STACK 

ITEM #1 

ITEM #2 

ITEM #3 

007100 

007076 

007074 

007072 

007070 

007066 

007064 

r-_IT_E_M_#_4_--i - SP .... 1 __ 0_0_7_07_2.....,...--1 

007100 

007077 

007076 

007075 

BYTE STACK 

ITEM #1 

ITEM #2 

ITEM #3 

ITEM #4 

NOTE: BYTES ARE 
ARE ARRANGED IN 
WORDS AS FOLLOWING 

1 BYTE , I BYTE 8 1 

~SPLI __ o_O_7_0_75_--I 

Figure 5·2: Word and Byte Stacks 

Items are added to a stack using the autodecrement addressing mode 
with the appropriate pointer register. (See Chapter 3 for description of 
the autoincrement/ decrement modes). 

This operation is accomplished as follows: 

MOV Source,-(SP) ; MOV Source Word onto the stack 

or 

MOVB Source,-(SP) ; MOVB Source Byte onto the stack 

This is called a "push" because data is "pushed onto the stack." 

To remove an item from a stack the autoincrement addressing mode with 
the appropriate SP is employed. This is accomplished in the following 
manner: 

MOV(SP) +, Desti nation . ;MOV Destination Word off the stack 

or 

MOVB(SP) +, Destination ;MOVB Destination Byte off the stac. 

Removing an item from a stack is called a "pop" for "popping from the 
stack." After an item has been "popped," its stack location is considered 
free and available for other use. The stack pointer points to the last· 
used location implying that the next (lower) location is free. Thus a stack 
may represent a pool of shareable temporary storage locations. 

128 



HIGHMEMORY~ ~ -SP 

1. E0 -SP 
STACK 
AREA 

LOW MEMORY . 

Ed 
'~SP 

1. AN EMPTY STACK 2. PUSHING A DATUM 
AREA ONTO THE STACK 

~0 
El 

• E2 -SP 

4 ANOTHER PUSH 

§ E3 

[0 

E1 _ .... SP 

7 POP 

EdE2 
~~SP 
5_ POP 

3 PUSHING ANOTHER 
DATUM ONTD THE 
STACKS 

~0 
E 1 

• E3 -SP 

6_ PUSH 

Figure 5-3: Illustration of Push and Pop Operations 

As an example of stack usage consider this situation: a subroutine 
(SUBR) wants to use registers 1 and 2, but these registers must be 
returned to the calling program with their contents unchanged_ The 
subroutine could be written as follows: 

Address 

076322 
076324 
076326 
076330 

076410 
076412 
076414 
076416 
076420 
076422 
076424 

Octal Code 

010167 SUBR: 
000074 
010267 
000072 

016701 
000006 
016702 
000004 
000207 
000000 
000000 

Assembler Syntax 

MOV Rl,TEMPI ; save Rl 

* 
MOV R2,TEMP2 ;save R2 

MOV TEMP1,Rl ;Restore Rl 
* 
MOV TEMP2,R2 ; Restore R2 

* 
RTS PC 
TEMPI: 0 
TEMP2: 0 

"Index Constants 

Figure 5-4: Register Saving Without the Stack 

129 



OR: Using the Stack 

Address 

010020 
010022 

010130 
010132 
010134 

Octal Code 

010143 SUBR: 
010243 

012301 
012302 
000207 

Assembler Syntax 

MOV Rl. -(R3) ;push Rl 
MOV R2. -(R3) ;push R2 

MOV (R3)+.R2 ;pop R2 
MOV (R3}+.R1 ;pop Rl 
RTS PC 

Note: In this case R3 was used as a Stack Pointer 

Figure 5·5: Register Saving uSing the Stack 

The second routine uses four less words of instruction code and two 
words of temporary 'stack" storage. Another routine could use the same 
stack space at some later point. Thus. the ability to share temporary 
storage in the form of a stack is a very economical way to save on 
memory usage. 

As a further example of stack usage. consider the task of managing an 
input- buffer from a terminal. As characters come in. the terminal user 
may wish to delete characters from his line; this is accomplished very 
easily by maintaining a byte stack containing the input characters. When· 
ever a backspace is received a character is "popped" off the stack and 
eliminated from consideration. In this example. a programmer has the 
choice of "popping" characters to be eliminated by using either the 
MOVB (MOVE BYTE) or INC (INCREMENT) instructions; 

001011 

001010 

001007 

001006 

001005 

001004 

001003 

001002 

001001 

C 

U 

S 

T 

0 

M 

E 

R 

Z 

MOV (R3) + • de5t. 

OR 

INC SP 

001001 

C 

U 

S 

T 

0 

M 

E 

R 

Figure 5·6: Byte Stack used as a Character Buffer 

001002 

NOTE that in this case using the increment iristruction (INC) is prefer· 
able to MOVB since it would accomplish the task of eliminating the un· 
wanted character from the stack by readjusting the stack pointer without 
the need for'B destination location. Also. the stack pointer (SP)-used in 
this example cannot be the system stack pointer (R6) because R6 may 
only point to word (even) locations. ' 

130 



5.2 SUBROUTINE LINKAGE 
5.2.1 Subroutine Calls 
Subroutines provide a facility for maintaining a single copy of a given 
routine which can be used in a repetitive manner by other programs 
located anywhere else in memory. In order to provide this facility, gen· 
eralized linkage methods must be established for the purpose of control 
transfer and information exchange betwe~n subroutines and calling 
programs. The PDP·ll instruction set contains several useful instruc· 
tions for this purpose.. 

PDp·ll subroutines are called by using the JSR instruction which has 
the following format. 

a general register (R) for linkage 
JSR R,SUBR 

an entry location (SUBR) for the subroutine 

When a JSR is executed, the contents of the linkage register are saved 
on. the system R6 stack as if a MOV reg,-(SP) had been performed. 
Then the same register is loaded with the memory address following the 
JSR instruction (the contents of the current PC) and a jump is made 
to the entry location'specified. 

BEFORE 

(R5)- 000132 
{ReI·00IH6 

{PCI'{R7)'001000 

Address 

001000 
001002 

.001064 

~02000 nnnnn"n 

001776 mmmmmm 

001774 

001772 

Assembler Syntax Octal Code 

JSRR5,SUBR 004567 
index constant for SUBR 000064 

SUBR: .MOV A,B Olnnmm 

Figure 5·7: JSR using R5 

AFTER 

{R5)O001004 
{Re)'001774 

{PC)o{R7)'OOI064 

002000 

"'--00-'-77-6--'1 001776 

001774 

. 001772 I 

Figure 5·8: JSR 

n nnn n n 

mmmmmm 

000132 001774 

Note that the instruction JSR R6,SUBR is not normally considered to be 
a meaningful combination, . 

5.2.2 Argument Transmission 
The memory location pointed to by the linkage register of the JSR in· 
struction may contain arguments or addresses of arguments, These argu· 
ments may be accessed from the subroutine in several ways, Using 
Register 5 as the linkage register, the first argument could be obtained 
by using the addressing modes indicated by (R5),(R5)+,X(R5) for actual 
data, or @(R5)+, etc, for the address of data. If the autoincrement 

131 



mode is used. the linkage register is automatically updated to point to 
the next argument. 

Figures 5·9 and 5·10 illustrate two possible methods of argument trans· 
mission. 

Address Instructions and Data 

JSR R5. SUBR 010400 
010402 
010404 
010406 

Index constant for SUBR 
arg #1 

SUBROUTINE CALL 
ARGUMENTS 

020306 SUBR: 
020310 

arg #2 

MOV (R5H.Rl 
MOV (R5H.R2 

;get arg # 1 
;get arg # 2 Retrieve Arguments 
from SUB 

Figure 5·9: Argument Transmission-Register Autoincrement Mode 

Address Instructions and Data 

010400 JSR R5. SUBR 
010402 Index constant for SUBR SUBROUTINE CALL 
010404 077722 Address of arg # 1 
010406 077724 Add ress of arg # 2 
010410 077726 Address of arg #3 

077722 arg # 1 
077724 arg #2 arguments 
077726 arg #3 

02030fi SUBR: MOV @(R5)+.Rl ;get arg #1 
020301 MOV @(R5)+.R2 ;get arg #2 

Figure 5-10: Argument Transmission-Register Autoincrement 
Deferred Mode 

Another method of transmitting arguments is to transmit only the ad­
dress of the first item by placing this address in a general purpose 
register. It is not necessary to have the actual argument list in the same 
general area as the subroutine call. Thus a subroutine can be called to 
work on data located anywhere in memory. In fact. in many cases. the 
operations performed by the subroutine can be applied directly to the 
data located on or pointed to by a stack without the need to ever actually 
move this data into the subroutine area. 

132 



Calling Program: MOV 
JSR 

SUBROUTINE ADD 

ADD 

POINTER, Rl 
PC,SUBR 

(Rl) + ,(R1) ;Add item #1 to item #2, place 
resu It in item # 2, R 1 poi nts 

etc. 
or 

(Rl),2(Rl) 

to item # 2 now 

;Same effect as above except 
that Rl still points to item # 1 
etc. 

~_'T_E_M_. __ '~---R'LI ________ ~ 
ITEM # 2 

Figure 5·11: Transmitting Stacks as Arguments 

Because the PDp·11 hardware already uses general purpose register R6 to 
point to a stack for saving and restoring PC and' PS (processor status 
word) information, it is quite convenient to use this same stack to save 
and restore intermediate res.ults and to transmit arguments to and from 
subroutines. Using R6 in this manner permits extreme flexibility in nest· 
ing subroutines and interrupt service routines . 

. Since arguments may be obtained from the stack by using some form 
of register indexed addressing, it is sometimes useful to save a temporary 
copy of R6 in some other register which has already been saved at the 
beginning of a subroutine. In the previous example R5 may be used to 
index the arguments while R6 is free to be incremented and decremented 
in the course of being used as a stack pointer. If R6 had been used 
directly as the base for indexing and not "copied," it might be difficult 
to keep track of the position in the argument list sin"ce the base of the 
stack would change with every autoincrement/ decrement which occurs. 

org #1 

erg #2 

SP--. erg #3 

erg:/l: 2 is af source 
-2 (SP) 

but when another Item 
TO is pushed "g .. , 

arg :/I: 2 

erg #- 3 

TO 

org '* 2 IS at source 
-4 (SP) 

Figure 5·12: Shifting Indexed Base 

However, if the contents of R6 (SP) are saved in R5 before any argurn~nts 
are· pushed onto the stack, the position relative to R5 would remain 
constant. 

133 



org # 1 ~_af9_._'_-I""R5 
SP org #2 - org '*2 

SP..... oro' #3 

arg#21$ at 2 (R5) QI'Q*2.s stlllat2(R5) 

Figure 5·13: Constant Index Base Using "R6 Copy" 

5.2.3 Subroutine Return 
In order to provide for a return from a subroutine to the calling program 
an RTS instruction is executed by the subroutine. This instruction should 
specify the same register as the JSR used ilJ the subroutine call. When 
executed, it causes the register specified to be moved to the PC and the 

- top of the stack to be then placed in the register specified. Note that if 
anRTS PC is executed, it has the effect of returnillg to the address 
specified on the top of the stack. 

Note that the JSR and the JMP Instructions differ in that a linkage reg· 
ister is always used with a JSR; there is no linkage register with it JMP 
and no way to return to the calling program. 

When a subroutine finishes, it is necessary to "clean·up" the stack by 
eliminating or Skipping over the subroutine arguments. One way this can 
be done is by insisting that the subroutine keep the number of argu· 
ments as its first stack item. Returns from subroutines would then in· 
volve calculating the amount by which to reset the stack pointer, 
resetting the stack pointer, then restoring the original contents of the 
register which was u.sed as the copy of the stack pointer. The PDP·ll/45, 
however, has a much faster and simpler method of performing these 
tasks. The MARK instruction which is stored on a stack in place of 
"number of argument" information may be used to automatically per· 
form these "clean·up" chores. (For more information on the MARK 
instruction refer to Chapter 4.) 

5.2.4 PDp·ll Subroutine Advantages 
There are several advantages to the PDp·II subroutine calling procedure. 

a. arguments can be Quickly passed between the calling program and 
the subroutine. 

b. if the user has no arguments or the arguments are in a general reg· 
ister or on the stack the JSR PC,DST mode can be used so that none 

.of the general purpose registers are taken up for linkage. 

c. many JSR's can be executed without the need to provide any saving 
procedure for the linkage information since all linkage information is 
automatically pushed onto the stack in sequential order. Returns can 
simply be made by automatically popping this. information from the 
stack in the opposite order of the JSR's. 

Such linkage address bookkeeping is called automatic "nesting" of sub· 
routine calls. This feature enables the programmer tq construct fast, 

134 



efficient linkages in a simple, flexible manner. It even permits a routine 
to call itself in those cases where this is meaningful (e.g. SQRT in 
FORTRAN SQRT(SQRT(X». Other ramifications will appear after we 
examine the PDP-ll interrupt procedures. . 

5.3 INTERRUPTS 
5.3.1 General Principles 
Interrupts are in many respects very similar to subroutine calls. How­
ever, they are forced, rather than controlled, transfers of program 
execution occurring because of some external and program-independent 
event (such as a stroke on the teleprinter keyboard). Like subroutines, 
interrupts have linkage information such that a return to the interrupted 
program can be made. More information is actually necessary for an 
interrupt transfer than a subroutine transfer because of the random 
nature of interrupts. The complete machine state of the program im­
mediately prior to the occurrence of the interrupt must be preserved in 
order to return to the program without any noticeable effects. (Le. was 
the previous operation zero or negative, etc.) This information is stored 
in the Processor Status Word (PS). Upon interrupt, the contents of the 
Program Counter (PC) (address of next instruction) and the PS are auto­
matically pushed onto the R6 system stack. The effect is the same as if: 

MOV PS ,-(SP) 
MOV R7,-(SP) 

had been executed. 

;Push PS 
;Push PC 

The new contents of the PC and PS are loaded from two preassigned 
consecutive memory locations which are called an "interrupt vector." 
The actual locations are chosen by the device interface designer and are 
located in low memory addresses of Kernel virtual space (see interrupt 
vector list, Appendix C). The first wore} contains the interrupt service 
routine address (the address of the new program sequence) and the 
second word contains the new PS which will determine the machine. 
status including the operational mode and register set to be used by the 
interrupt service routine. The contents of the interrupt service vector 
are set under program control. 

After the interrupt service routine has been completed, an RTI (return 
from interrupt) is performed. The two top words of tire stack are auto­
matically "popped" and placed in the PC and PS respectively, thus re­
suming the interrupted program. 

5.3.2 Nesting 
Interrupts can be nested in much the same manner that subroutines 
are nested. In fact, it is possible to nest any arbitrary mixture of sub­
routines and interrupts without any confusion. By using the RTI and 
RTS instructions, respectively, the proper returns are automatic. 

1. Process 0 is running; 
SP is pointing to loca­
tion PO. 

135 



2. Interrupt stops process a 
with PC= PCO, and 
status = PSO; starts process 1. 

3. Process 1 uses stack for 
temporary storage (TEO, TEl). 

PO~ pso 

SP~ pco 

PO 1-____ --1 
PSO 

PCO 

TEO 

a 

4. Process 1 interrupted with PC = PCl PO 

and status = PSI; process 21s started 

5. Process 2 is running and does a. 
JSR R7 .. A to Subroutine A with 
PC = PC2. 

6. Subroutine A is running 
and uses stack for 
temporary storage. 

136 

SP-+ 

o 

PO 

SP_ 

o 

PO 

SP_ 

o 

PSO 

PCO 

TEO 

TEl 

PSl 

PCl 

PSO 

pco 

TEO 

TEl 

PSl 

PCl 

PC2 

PSO 

PCO 

TEO 

TEl 

PS 1 

PCl 

pe2 

TAl 

TA2 



7. Subroutine A "releases the temporary 
storage holding TAl al)d TA2. 

PO 

o 

PSO 

PCO 

TEO 

TE I 

PS I 

p.el 

PC2 

8. Subroutine A returns control to process" PO 

2 with an RTS R7,PC is reset to PC2. 

9. ProceSs 2 completes with an RTI 
instruction (dismisses interrupt) PC 
is reset to PC I and status is reset to 
PSI; process I resumes. 

10. Process 1 releases the temporary 
storage holding TEO and TEL 

11. Process 1 completes its operation 
with an RTI is reset to PCO and status 
is reset to PSO. 

PSO 

PCO 

TEO 

TEl 

PSI 

PC I 

PO I----...,Ps-o--I 

pco 
TEO 

Figure 5·14: Nested Interrupt Service Routines and Subroutines 

Note that the area of interrupt service programming is intimately in· 
volved with the concept.of CPU and device priority levels. For a full dis· 
cussion of the uses of the PDP·ll/45 priority structure, refer to Chapter 
2, System Architecture. 

5.4 REENTRANCY 
Further advantages" of stack organization becomes apparent in complex 
situations which can arise in program systems that are engaged in the 
concurrent handling of several tasks. Such multi-task program environ· 

137 



ments may range· from relatively simple single-user applications which 
must manage an intermix of I/O interrupt service and background com­
putation to large complex multi-programming systems which manage a 
very intricate mixture of executive and multi-user programming situa­
tions. In all these applications there is a need for flexibility and time/ 
memory economy_ The use of the stack provides this economy and 
flexibility by providing a method for allowing many tasks to use a single 
copy of the same routine and a simple, unambiguous method for keep­
ing track of complex program linkages. 

The ability to share a- single copy of a given program among users or 
tasks is called reentrancy. Reentrant program routines differ from ordi­
nary subroutines in that it is unnecessary for reentrant routines to finish 
processing a given tasJ< before they can be used by another task. Mul­
tiple tasks can be· in various stages of completion in the same routine 
at any time. Thus the following situation may occur: 

MEMORY 

PROGRAM t t------I 
PROGRAM 2 SueROUTINE A 

PROGRAM 3 I----~ 

PDP-ll Approach 

Programs I, 2, and 3 can 
share Subroutine A. 

MEMORY 

PROGRAM 2 ;?SUBROUTlI'(E -'!l:'l 

PROGRAM 3 ~SUBRCAJT[~~. I!<Z 

Conventional Approach 

A separate copy of Subroutine A 
must be provided for each program. 

Figure 5-15: Reentrant Routines 

The chief programming distinction between a non-shareable routine and 
a reentrant routine is that the reentrant routine is composed solely of 
"pure code," i.e., it contains only instructions and constants. Thus, a 
section of program code is reentrant (shareable) if and only if it is 
"non self-modifying," that is it contains no information within it that is 
subject to modification_ 

Using reentrant routines, control of a given routine may be shared as 
illustrated in Figure 5-16. 

REENTRANT 
ROUTINE 10----' 

Q 

Figure 5-16: Reentrant Routine Sharing-

138 



1. Task A has requested processing by Reentrant Routine Q. 

2. T<\sk A temporarily relinquishes control (is interrupted) of Reentrant 
Routine Q before it finishes processing. 

3. Task B starts processing in the same copy of Reentrant Routine Q. 

4. Task B relinquishes control of Reentrant Routine Q at some point in 
its processing. 

5. Task A regains control of Reentrant Routine Q and resumes process-
ing from where it stopped. 

The use of reentrant programming allows many tasks to share frequently 
used routines such as device interrupt service routines, ASCII-Binary 
conversion routines, etc. In fact, in a multi-user system it is possible, for 
instance, to construct a reentrant FORTRAN compiler which Can be used 
as a Single copy by many user programs. 

As an application of reentrant (shareable) code, consider a data process­
ing program which is interrupted while executing a ASCII-to-Binary sub­
routine which has been written as a reentrant routine. The same 
conversion routine is used by the device service routine. When the device 
servicing is finished, a return from interrupt (RTI) is executed and 
execution for the processing program is then resumed where it left off 
inside the same ASCII-to-Binary subroutine. 

Shareable routines generally result in great memory saving. It is the 
hardware implemented stack facility of the PDP-II that makes shareable 
or reentrant routines reasonable. 

A subroutine may be reentered by a new task before its completion 
by the previous task as long a~ the new execution does not destroy any 
linkage information or intermediate results which belong to the previous 
programs. This usually amounts to saving the contents of any general 
purpose registers, to be used and restoring them upon exit. The choice 
of whether to save and restore this information in the calling program or 
the subroutine is quite arbitrary and depends on the particular applica­
tion. For example in controlled transfer situations (Le. JSR's) a main 
program which calls a code-conversion utility might save the contents of 
registers which it needs and restore them after it has regained control, 
or the code conversion routine might save the contents of registers 
which it uses and restore them upon its completion. In the case of 
interrupt service routines this savel restore process must be carried out 
by the service routine itself since the interrupted' program has no warn­
ing of an impending interrupt. The advantage of using the stack to save 
and restore (Le. "push" and "pop") this information is that it permits 
a program to isolate its instructions and data and thus maintain its 
reentrancy. 

In the case of a reentrant program which is used in a multi-program­
ming environment it is usually necessary to maintain a separate R6 
stack for each user although each such stack would be shared by all the 
tasks of a given user. For example, if .a reentrant FORTRAN compiler 
is to be shared between many users, each time the user is changed, 

139 



R6 would be set to point to a new user's stack area as illustrated in . 
Figure 5-17_ 

Figure 5-17: Multiple R6 Stack 

5.5 POSITION INDEPENDENT CODE-PIC 
Most programs are written with some direct references to specific ad­
dresses, if only as an offset from an absolute address origin. When it is 
desired to relocate these programs in memory, it is necessary to change 
the address references and/ or the origin assignments. Such programs 
are constrained to a specific set of locations. However, the PDP-ll 
architecture permits programs to be constructed such that they are not 
constrained to specific locations. These Position Independent programs 
do not directly reference any absolute locations in memory_ Instead all 
references are "PC-relative" i.e. locations are referenced in terms of 
offsets from the current location (offsets from the current value of the 
Program Counter (PC». When such a program has been translated to 
machine code it will form a program module which can be loaded any-
where in memory as required. -

Position Independent Code is exceedingly valuable for those utility rou­
tines which may be disk-resident and are subject to loading in a dy­
namically changing program environment. The supervisory program may 
load them anywhere it determines without the need for any relocation 
parameters since all items remain in the same positions relative to each 
other (and thus also to the PC)_ 

Linkages to· program routines which have been written in position inde­
pendent code (PIC) must still be absolute in some manner. Since these 
routines can be located anywhere in memory there must be some fixed 
or readily locatable linkage addresses to facilitat~ access to these rou­
tines. This linkage address may be a simple pointer located at a fixed 
address or it may be a complex vector composed of numerous linkage 
information items . 

. 5.6 RECURSION 
It is often meaningful for a program routine to call itself as in the 
case of calculating a fourth root in FORTRAN with the expression 
SQRT(SQRT)(X». The ability to nest subroutine calls to the same sub­
routine is called recursion. The use of stack organization permits easy 
unambiguous recursion. The technique of recursion is of great use to 
the mathematical analyst as it also permits the evaluation of some 
otherwise non~computable mathematical functions. Although it is beyond 
the scqpe of this chapter to· discuss the concept of recursive routines in 
detail, the reader should realize that this technique often permits very 
significant memory and speed .economies in the linguistic operations 
of compilers and other higher-level software programs. 

140 



5.7 CO-ROUTINES 
In some situations it happens that two program routines are highly 
interactive. Using a special case of the JSR instruction i.e., JSR PC, 
@(R6)+ which exchanges the top element of the Register 6 processor 
stack and the contents of the Program Counter (PC), two routines may 
be permitted to swap program control and resume operation where they 
stopped, when recalled. Such routines are called "co-routines." This 
control swapping is illustrated in Figure 5-18. 

Routine # 1 is operating, it then executes: 

MOV # PC2,-(R6) 

JSR PC,@(R6)+ 
with the following results: 

1) PC2 is popped from the stack 
and the SP autoincremented 

2) SP is autodecremented and the 
old PC (i.e. PCl) is pushed 

3) control is transferred to the 
location PC2 (i.e. routine # 2) 

Routine #2 is operating, it then executes: 

JSR PC, @(R6)+ 

with the result-the PC2 is exchanged 
for PCl on the stack and control is 
transferred back to routine # 1. 

sp-~ 

~~ PC2 
sp-

PC2 

~ 

Sp-~j 

Figure 5-l8-Co-Routine Interaction 

141 



142 



CHAPTER 6 

MEMORY MANAGEMENT 

The PDP-ll/45 Memory Management Unit provides the hardware facili­
ties necessary for complete memory management and protection_ It is 
designed to be a memory management facility for systems where the 
system memory size is greater than 28K words and for multi-user, 
multi-programming systems where memory protection and relocation 
facilities are necessary. 

In order to most effectively utilize the power and efficiency of the 
PDP-ll/45 in medium and large scale systems it is necessary to run 
several programs simultaneously. In such multi-programming environ­
ments several user programs would be resident in memory at any given 
time. The task of the supervisory program would be: control the execu­
tion of the various user programs, manage the allocation of memory 
and peripheral device resources, and safeguard the integrity of the sys­
tem as a whole by careful control of each user program. 

In a multi-programming system, the Memory Management Unit provides 
the means for assigning memory pages to a user program and prevent­
ing that user from making any unauthorized access to these pages out­
side his assigned area. Thus, a user can effectively be prevented from 
accidental or willful destruction of any other user program or the system 
-executive program. 

The basic characteristics of the PDP-ll/45 Memory Management Unit 
are: 

• 16 User mode memory pages 
• 16 Supervisor mode memory pages 
• 16 Kernel mode memory pages 
• 8 pages in each mode for instructions 
• 8 pages in each mode for data 
• page lengths from 32 to 4096 words 
• each page provided with full protection and relocation 
• transparent operation 
• 6 modes of memory access control 
• memory extension to 124K words (248K bytes) 

6.1 PDp·l1 FAMILY BASIC ADDRESSING LOGIC 
The addresses generated by all PDP-ll Family Central Processor Units 
(CPUs) are 18-bit direct byte addresses. AI_though the PDP-ll Family 
word length and operational logic is all 16,bit length, the UNIBUS and 
CPU addressing logic actually is 18-_bit length. Thus, while the PDP-ll 
word can only contain address references up to 32K words (64K bytes) 

143 



the CPU and UNIBUS can reference addresses up to 128K words (256K 
bytes). These extra two bits of addressing logic provide the basic 
framework for expanded memory operation. 

In addition to the word length constraint on basic memory addressing 
space, the uppermost 4K words of address space is always reserved 
for UNIBUS I/O device registers. In a basic PDp·1l/45 memory config· 
uration (without the Memory Management Option) an address references 
to the uppermost 4K words of 16 bit address space (170000·177777) 
are converted to full 18·bit references with bits 17 and 16 always set to 
1. Thus, a 16 bit reference to the 110 device register at address 173224 
is automatically internally converted to a full 18·bit referenCe to the reg· 
ister at address 773224. Accordingly, the basic PDP·11/45 configuration 
can directly address up to 28K words of true memory, and 4K words of 
UNIBUS 1/0 device registers. Memory configurations-beyond this require 
the PDp·11/45 Memory Management Unit. . 

6.2 VIRTUAL ADDRESSING 
When the PDp·11/45 Memory Management Unit is operating, the normal 
16 bit direct byte address is. no longer interpreted as a direct Physical 
Address (PA) but as a Virtual Address (VA) containing information to be 
used in constructing a new 18·bit physical address. The information 
contained in the Virtual Address (VA) is combined with relocation infor· 
mation contained in the Page Address Register (PAR) (see 6.4) to yield 
an 18-bit Physical Address (PA). Using the Memory Management Unit, 
memory can be dynamically allocated in pages each composed of from 
1 to 128 integral blocks of 32 words. 

32K 

o 

VIRTUAL INSTRUCTION/DATA 
ADDRESS SPACE 

VIRTUAL ADDRESS 
(168ITS) 

--'00 

:.---
----0 

PAR 7 

PAR 6 

PAR 5 

PAR 4 

PAR 3 

PAR 2 

PAR 1 

PARD 

PAGE 
ADDRESS 
REGISTERS 

128K 

~ 
.~ 

0 

PAR = Page Address Register 

PHYSICAL 
ADDRESS SPACE 

PAGE 5 

PAGE 6 

PAGE 7 

PAGE 4 

PHYSICAL ADDRESS 
(188ITS) 

Figure 6-1 Virtual Address Mapping into Physical Address 

The starting physical address for each page is an integral multiple of 32 
words, and each page has a maximum size of 4096 words. Pages may be 
located anywhere within the 128K Physical Address space. The deter-· 
mination of which set of 16 page registers is used to form a Physical 

144 



Address is made by the current mode of operation of the CPU, i.e., Ker· 
nel, Supervisor or User mode. 

6.3 INTERRUPT CONDITIONS UNDER MEMORY MANAGMENT 
CONTROL . 
The Memory Management Unit relocates all addresses. Thus, when 't is 
enabled, all trap, abort, and interrupt vectors are considered to be in 
Kernel mode Virtual Address Space. When a vectored transfer occurs, 
control is transferred according to a new Program Counter (PC) and 
Processor Status Word (PS) contained in a two-word vector relocated 
through the Kernel Page Address Register Set. Relocation of trap ad­
dresses means that the hardware is capable of recovering from a 
failure in the first physical bank of memory. 

When a trap, abort, or interrupt occurs the "push" of the old PC, old 
PS is to the User/Supervisor/ Kernel R6 stack specified by CPU mode 
bits 15,14 of the new PS in the vector (bits 15,14: 00 = Kernel, 01 = 
Supel")lisor, 11 = User). The CPU mode bits also determine the new PAR 
set. In this manner it is possible for a Kernel mode program to have 
complete control over service assignments for all interrupt conditions, 
since the interrupt vector is located in Kernel space. The Kernel program 
may assign the service of some of these conditions to a Supervisor or 
User mode program by simply setting the CPU mode bits of the new 
PS in the vector to return control to the appropriate mode. 

6.4 CONSTRUCTION OF A PHYSICAL ADDRESS 
All addresses with memory relocation enabled either reference informa­
tion in instruction (I) Space or Data (D) Space. I Space is used for all 
instruction fetches, index words, absolute addresses and immediate 
operands, 0 Space is used for all other references. I Space and 0 Space 
each have 8 PAR's in each mode of CPU operation, Kernel, Supervisor, 
and User. Using Status Register #3 (6.6.4), the operating system may 
select to disable D space and map all references (Instructions and 
Data) through I space, or to use both I and 0 space. 

The basic information needed for the construction of a Physical Address 
(PA) comes from the Virtual Address (VA), which is illustrated in Figure 
6-2, and the appropriate PAR set. 

15 13 12 

I APF I 
ACTIVE PAGE 

FIELD 

OF 

DISPLACEMENT FIELD 

Figure 6-2: Interpretation of a Virtual Address 

The Virtual Address (VA) consists of: 

o 

1. The Active Page Field (APF). This 3-bit field determines which of 
eight Page Address Registers (PARO-PAR7) will be used to form the 
Physical Address (PA)_ 

2_ The Displacement Field (OF). This 13-bit field contains an address 
relative to the beginning of a page. This permits page lengths up to 

145 



4K words (2, 3 = 8K bytes). The OF is further subdivided into two 
fields as shown in Figure 6·3. 

'2 6 5 o 
BN OIB .j 

BLOCK NUMBER DISPLACEMENT IN BLOCK 

Figure 6·3: Displacement Field of Virtual Address 

The Displacement Field (OF) consists of: 

1. The Block Number (BN). This 7·bit field is interpreted as the block 
number within the current page. 

2. The Displacement in Block (DIB). This 6·bit'field contains the dis· 
placement within the block referred to by the Block Number (BN). 

The remainder of the information needed to construct the Physical Ad· 
dress comes from the 12·bit Page Address Field (PAF) (part of the 
Page Address Register (PAR» and specifies the starting address of the 
memory page which that PAR describes. The PAF is actually a block 
number in the physical memory, e.g. PAF = 3 indicates a starting ad· 
dress of 96 (3 x 32) words in physical memory. 

The formation of a physical address (PA) takes 90 ns. Thus in situations 
which do not require the facilities of the Memory Management Unit, it 
should be disabled to permit time savings. 

The formation of the Physical Address (PA) is illustrated in Figure 6·4. 

The logical sequence involved in constructing a Physical Address (PA) 
is as follows: 

1. Select a set of Page Address Registers depending on the space 
being referenced. 

2. The Active Page Field (APF) of the Virtual Address is used to select 
a Page Address Register (PARO·PAR7). 

3. The Page Address Field (PAF) of the selected Page Address Register 
(PAR) contains the starting address of the currently active page as a 
block number in physical memory. 

4. The Block Number (BN) from the Virtual Address (VA) is added 
to the block number from the Page Address Field (PAF) to yield the 
number of the block in physical memory (PBN·Physical Block Num· 
ber) which will contain the Physical Address (PA) being constructed. 

5. The Displacement in Block (DIB) from the Displacement Field (OF) 
of the Virtual Address (VA) is joined to the Physical Block Number 
(PBN) to yield a true 18·bit PDP·ll/45 Physical Address (PA). 

146 



15 13 12 o 
VA I APF OF 

17 

I 

Figure 6·4: Construction of a Physical Address 

6.S MANAGMENT REGISTERS 
The PDP· 11 145 Memory Management Unit implements three sets of 32 
sixteen b1t registers. One set of registers is used in Kernel mode, another 
in Supervisor, and the other in User mode. The choice of which set is to 
be used is determined by the current CPU mode contained in the Proces· 
sor Status word. Each set is subdivided into two groups of 16 registers. 
One group is used for references to Instruction "(h Space, and one to 
Data (D) Space. The I Space group is used for all instruction fetches, 
index words, absolute addresses and immediate operands. The 0 Space 
group is used for all ether references, providing it has not been disabled 
by Status Register #3 (6.6.4). Each group is further subdivided into 
two parts of 8 registers. One part is the Page Address Register (PAR) 
whose function has been des<:ribed in previous paragraphs. The other 
part is the Page Descriptor Register (PDR). PARs and PDRs are always 
selected in pairs by the top three bits of the virtual address. A PARI PDR 
pair contain all the information needed to describe and locate a cur· 
rently active memory page. 

The various Memory Management Registers are located in the upper· 
most 4K of PDp·l1 physical address space along with the UNIBUS I/O 
device registers. For the actual addresses of these registers refer to 
Paragraph 6.9, Memory Management Unit-Register Map. 

147 



I I PROCESSOR STATUS WORD 

f5 I f4 

~ 
KERNEL(OO) SUPERVISOR (Of) 

1 
USER(ff) 

PAR PDR PAR POR PAR POR 

~+--+~"---I [ SPACE 

PAR POR PAR POR PAR POR 

~+--+-~-IO SPACE 

Figure 6-5: Active Page Registers 

6_5_1 Page Address Registers (PAR) 
The Page Address Register (PAR) contains the Page Address Field (PAF), 
a 12-bit field, which specifies the starting address of the page as a 
block number in physical memory_ 

15 12 " o 
PAF 

Figure 6-6: Page Address Register 

Bits 15-12 of the PAR are unused and reserved for possible future use. 

The Page Address Register (PAR) which contains the Page Address 
Field (PAF) may be alternatively thought of as a relocation register con­
taining a relocation constant, or as a base register containing a base 
address. Either interpretation indicates the basic importance of the Page 
Address Register (PAR) as a relocation tool. 

6.5_2 Page Descriptor Register 
The Page Descriptor Register (PDR) contains information relative to 
page expansion, page length, and access control. 

148 



87654320 

PLF 

f'igure 6-7: Page Description Register 

6.5.2.1 Access Control Field (ACF) 
This three-bit field, occupying bits 2-0 of the Page Descriptor Register 
(PDR) contains the access rights to this particular page. The access 
codes or "keys" specify the manner in which a page may be accessed 
and whether or not a given access should result in a trap or an abort 
of the current operation. A memory reference which cause~ an abort is 
not completed while a reference causing a trap is completed_ In fact, 
when a memory reference causes a trap to occur, the trap does not 
occur until the entire instruction has been completed. Aborts are used 
to catch "missing page faults," prevent illegal access, etc.; traps are 
used as an aid in gathering memory management information. 

In the context of access control the term "write" is used to indicate 
the action of any instruction which modifies the contents of any ad­
dressable word. "Write" is synonymous with what is usually called a 
"store" or 'modify" in many computer systems. 

The modes of access control are as follows: 

000 non-resident abort all accesses 

001 realbonly abort on write attempt memory man-
agement trap on read 

010 read-only abort on write attempt 

011 unused abort all accesses-reserved for future 
use 

100 read/write memory management trap upon com-
pletion of a read or write 

101 read/write memory management trap upon com-
pletion of a write 

110 read/write no system trap/ abort action 

111 unused abort all accesses-reserved for future 
use 

It should be noted that the use of I Space provides the user with a 
further form of protection, execute only. 

6.5.2.2 Access Information Bits 
A Bit (bit 7)-This bit is used by software to determine whether or not 
any acccesses to this page met the trap condition specified by the 
Access Control Field (ACF). (A = 1 is Affirmative) The A Bit is used in 
the process of'gathering memory management statistics. 

149 



W Bit (bit 6)-This bit indicates whether or not this page has been 
modified (i.e. written into) since either the PAR or PDR was loaded. 
'(W = 1 is Affirmative) The W Bit is useful in applications which involve 
disk swapping and memory overlays. It is used to determine which pages 
have been modified and hence must be saved in their new form and 
which pages have not been modified and can be simply overlaid. 

Note that A and W bits are "reset" to "0" whenever either PAR or PDR 
is modified (written into). 

6.5.2.3 Expansion Direction (ED) 
This one-bit field, located at bit 3 of the Page Descriptor Register (PDR), 
specifies whether the page expands upward from relative zero (ED = 0) 
or downwards toward relative zero (ED = 1). Relative zero, in this case, 
is the PAF (Page Address Field). Expansion is done by changing the Page 

, length Field (6.5.2.4). In expanding upwards, blocks with higher relative 
addresses are added; in expanding downwards, blocks with lower rela­
tive addresses are added to the page. Upward expansion is usually used 
to add more program space, w.hile downward expansion is used to add 
more stack space. 

6.5.2.4 Page Length Field (PLf) 
The seven·bit field,' occupying bits 14-8 of the Page Descriptor Register 
(PDR), specifies the number of blocks in the page. A page consists of at 
least one' and at most 128 blocks, and occupies contiguous core loca· 
tions. If the page expands upwards, this field contains the length of the 
page minus one (in blocks). If the page expands downwards, this field 
contains 128 minus the length of the page (in blocks). 

A length Error occurs when the Block Number (BN) of the virtual ad­
dress (VA) is greater than the Page length Field (PlF), if the page ex­
pands upwards, or if the page expands downwards, when the BN is less 
than the PlF. 

6.5.2.5 Reserved Bits 
Bits 15, 4 and 5 are reserved for future use, and are always O. 

6.6 FAULT RECOVERY REGISTERS 
Aborts and traps generated by the Memory Management hardware are 
vectored through Kernel virtual location 250, Status Registers #0, #1, 
# 2 and # 3 are used in order to differentiate an abort from a trap, deter· 
mine why the abort or trap occurred, and allow for easy program restart· 
ing. Note that an abort or trap to a location which is itself an invalid 
address will cause another abort or trap. Thus the Kernel program must 
insure that Kernel Virtual Address 250 is mapped into a valid address, 
otherwise a loop will occur which will require console intervention. 

6.6.1 Status Register #0 (SRO) (status and error indicators) 
SRO contains error flags. the page number whose reference caused the 
abort, and various other status flags. The register is organized as shown 
in Figure 6-8. 

150 



15 t4 13 12 It to 9 8 7 6 5 4 3 2 

I I I I'rfd 
ABORT·NON 
ABORT-PA 
LENGTH'ER 

ABORT-RE 
ACCESS V10UI 
TRAP-MEMORY 
NOT USED 

~~J ROR} 

AD ONLY} 
:nON 

MANAGEMENT 

EMORY MANAGEMENT TRAP 
NOT USED 
ENABLE M 
MAINTENANCE 
INSTRUCTI 
PAGE MOD 
PAGE ADDR 
PAGE NUM 
ENABLE RE 

MODE 
ON COMPLETED 
E 
ESS SPACE I/O 
BER 
LOCATION 

I..........,--. ~ 

Figure 6·8: Format of Status Register #0 (SRO) 

o 

Bits 15·12 are the error flags. They may be considered to be in a 
"priority queue" in that "flags to the right" are less significant· and 
should be ignored. That is, a "non·resident" fault service routine would 
ignore length, access control, and memory management flags. A '.!page 
length" service routine would ignore access control and memory man· 
agement faults, etc. 

Bits 15·13 when set (error conditions) cause Memory Management to 
freeze the contents of bits 1·7 and Status Registers #1 and #2. This 
has been done to facilitate error recovery (discussed in 6.6.5). 

Bits 15·12 are enabled by a signal called "RELOC." "RELOC" is true 
when an address is being relocated by the Memory Management unit. 
This implies that either SRO, bit 0 is equal to 1 (relocation operating) or 
that SRO, bit 8 (MAINTENANCE) is equal to 1 and the memory refer· 
ence is the final one of a destination calculation (maintenance! destina· 
tion mode). 

Note that Status Register #0 (SRO) bits 0, 8, and 9 can be set under 
program control to provide meaningful control information. However, 
information written into all other- bits is not meaningful. Only that infor· 
mation which is automatically written into these remaining bits as a 
result of hardware actions is useful as a monitor of the status of the 
Memory Management Unit. Setting bits 15·12 under program control will 
not cause traps to occur; these bits however-must be reset to 0 after an 
abort or trap has occurred in order to resume status monitoring. 

6.6.1.1 Abort~Non·Resident 
Bit 15 is the "Abort-Non· Resident" bit. ,It is set by attempting to 
access a page with an Access Control Field (ACF) key equal to 0, 3, or 7. 
It is also set by attempting to use Memory Relocation with a processor 
mode of 2. 

151 



6.6.1.2 Abort-Page Length 
Bit 14 is the "Abort Page Length" bit. It is set by attempting to access 
a location in a page with a block number (Virtual Address bits, 12·6) 
that is outside the area authorized by the Page Length Field (PLF) of the 
Page Descriptor Register (PDR) for that page. Bits 14 and 15 may be 
set simultaneously by the same access attempt. 

6.6.1.3 Abort-Read Only 
Bit 13 is the "Abort-Read Only" bit. It is set by attempting to write 
in a "Read·Only" page. "Read·Only" pages have access keys of 1 or ~. 

6.6.1.4 Trap-Memory Management 
Bit 12 is the 'Trap-Memory Management" bit. It is set by a read opera· 
tion which references a page with an Access Control Field (ACF) of 1 or 
4, or by a write operation to a page with an ACF key of 4 or 5. 

6.6.1.5 Bits 11, 10 
Bits 11 and 10 are spare locations and are always equal to O. They are 
unused Clnd reserved for possible future expansion. 

6.6.1.6 Enable Memory Management Traps 
Bit 9 is the "Enable Memory Management Traps;' bit. It can be set or 
cleared by doing a direct write into SRO. If bit 9 is 0, no Memory Man· 
agement traps will occur. The A and W bits will, however, continue to 
log potential Memory Management Traps. When bit 9 is set to 1, the 
next "potential" Memory Management trap will cause a trap, vectored 
through Kernel Virtual Address 250. 

Note that if an instruction which sets. bit 9 to 0 (disable Memory Man· 
agement Trap) causes a potential Memory Management trap in the 
course of any of its memory references prior to the oile actually chang· 
ing SRO, then the trap will occur at the end of the instruction anyway. 

6.6.1. 7 Maintenance/ Destination Mode 
Bit 8 specifies Maintenance use of the Memory Mallagement Unit. It is 
provided for diagnostic purposes only and must not be used for other 
purposes. 

6.6.1.8 Instruction Completed 
Bit 7 indicates that the current inst"ruction has been completed. It will 
be set to a during T bit, Parity, Odd Address, and Time Out traps and 
interrupts. This provides error handling routines with a way of determin­
ing whether the last instruction will have to be repeated in the course of 
an error recovery attempt. Bit 7 is Read-Only (it cannot be written). It is 
initialized to a 1. Note that EMT, TRAP, BpT, and lOT do not set bit 7. 

6.6.1.9 Processor Mode 
Bits 5, 6 indicate the CPU mode (User/Supervisor/Kernel) associated 
with the page causing the abort. (Kernel = 00, Supervisor = 01, User 
= 11). If an illegal mode (10) is specified, bit 15 will be set and an 
abort will occur. 

6.6.1.10 Page Address Space 
Bit 4 indicates the type of address space (lor D) the Unit was in when 
a fault occurred (0 = I Space, 1 = D Space). It is used in conjunction 
with bits 3·1, Page Number. 

152 



6.6.1.11 Page Number 
Bits 3·1 contain the page number of a reference causing a Memory 
Management fault. Note that_pages, like blocks, are numbered from 
a upwards. 

6.6.1.12 Enable Relocation 
Bit a is the "Enable Relocation" bit. When it is set to I, all addresses 
are relocated by the unit. When bit a is set to a the Memory Management 
Unit is inoperative and addresses are not relocated or protected. 

6.6.2 Status Register # 1 (SRI) _ 
SRI records any autoincrement/ decrement of the general purpose reg­

-isters, including explicit references through the PC. SRI is cleared at 
the beginning of each instruction fetch. Whenever a general purpose 
register is _either autoincremented or autodecremented the register num· 
ber and the amount (in 2s complement notation) by which the register 
was modified, is written into SRI. 

The information contained in SRI is necessary to accomplish an effective 
recovery from an error resulting in an abort. The low order byte is writ­
ten first and it is not possible for a PDP-ll instruction to autoincrement/ 
decrement more than two general purpose registers per instruction be: 
fore an "abort·causing" reference. Register numbers are recorded 
"MOD 8"·; thus it is up to the software to determine which set of reg· 
isters (User/Supervisor/Kernel-General Set a/General Set 1) was modi­
fied, by determining the CPU and Register modes as contained in the 
PS at the time of the abort. The 6-bit displacement on R6(SP) that can 

. be caused by the MARK instruction cannot occur if the instruction 
is aborted. 

15 

AMOUNT CHANGED 
(2'5 COMPLEMENT) 

11 10 B 7 

REGI STER AMOUNT CHANGED 
NUMBER (2's COMPLEMENT) 

3 2 

REGISTER 
NUMBER 

Figure 6·9: Format of Status Register # 1 (SRI) 

6.6.3 Status Register #2 

o 

SR2 is loaded with the I6·bit Virtual Address (VA) at the beginning of 
each instruction fetch, or with the address Trap Vector at the beginning 
of an interrupt, "T" Bit trap, Parity, Odd Address, and Timeout traps. 
Note that SR2 does not get the Trap Vector on EMT, TRAP, BPT and lOT 
instructions. SR2 is Read·Only; it can not be written. SR2 is the Virtual 
Address Program Counter. 

6.6.4 Status Register # 3 
The Status Register # 3 (SR3) enables or disables the use of the D 
space PAR's and PDR's. When D space is disabled, all references use 
the I space registers; when D space is enabled, both the I space and D 
space registers are used. Bit a refers to the User's Registers, Bit 1 to 
the Supervisor's, and Bit 2 to the Kernel's. When the appropriate bits 
are set D space is enabled; when clear, it is disabled. Bits 3-15 are 
unused. On initialization this register is set to a and only I space is 
in use. 

153 



15 3 2 o 

KERNEL ____ t--Jt 1 
SUPERVISOR -
USER------------------~ 

Figure 6-10: Format of Status Register #3 (SR3) 

6.6.5 Instruction Back-Up/Restart Recovery 
The process of "backing-up" and restarting a partially completed in­
struction involves: 

1. Performing the appropriate memory management tasks to alleviate 
the cause of the abort (e.g. loading a missing page, ·etc_) 

2. Restoring the general purpose registers indicated in SRI to their 
original contents at the start of the instruction by subtracting the 
"modify value" specified in SRI. 

3. Restoring the PC to the "abort-time" PC by loading R7 with the con­
tents of SR2, which contains the value of the Virtual PC at the time 
the "abort-generating" instruction was fetched_ 

Note that this back-up! restart procedure assumes that the general pur­
pose register used in the program segment will not be used by the 
abort recovery" routine. This is automatically the case if the recovery 
program uses a different general register set_ 

6.6.6 Clearing Status Registers Following Trap! Abort 
At the end of a fault service routine bits 15-12 of SRO must be cleared 
(set to 0) to resume error checking_ On the next memory reference fol­
lowing the clearing of these bits, the various Status Registers will re­
sume monitoring the status of the addressing operations (SR2), will 
be loaded with the next instruction address, SSR1 will store register 
change information and SRO will log Memory Management Status 
information_ 

6.7 EXAMPLES 
6.71 Normal Usage 
The Memory Management Unit provides a very general purpose memory 
management tool. It can be used in a manner as simple or complete as 
desired_ It can be anything from a simple memory expansion device to 
'a very complete memory management facility. 

The variety of possible and meaningful ways to utilize the facilities of­
fered. by the Memory Management Unit means that both single-user and 
multi-programming systems have complete freedom to make whatever 
memory management decisions best suit their individual needs. Although 
a knowledge of what most types of computer systems seek to. achieve 
may indicate that certain methods of utilizing the Memory Management 
Unit will be more common than others, there is no limit to the ways to 
use these facilities_ 

154 



In most normal applications, it is assumed that the control over the 
actual memory page assignments and their protection resides in a super­
visory type program which would operate at the nucleus of a CPU's 
executive (Kernel mode). It is further assumed that this Kernel mode 
program would set access keys in such a way as to protect itself from 
willful or accidental destruction by other Supervisor mode or User mode 
programs. The facilities are also provided s'uch that the nucleus can 
dynamically assign memory pages of varying sizes in response to sys­
tem needs. 

6.7.2 Typical Memory Page 
When the Memory Management Unit is enabled, the Kernel mode pro· 
gram, a Supervisor mode program and a User mode program each have 
eight active pages described by the appropriate Page Address Registers 
and Page Descriptor Registers for data, and eight, for instructions. Each 
segment is made up of from 1 to 128 blocks and .is pointed toby the 
Page Address Field (PAF) of the corresponding Page Address Register 
(PAR) as illustrated in Figure 6-11. 

VA 157111-

VA 144777 316777 

...... -----------'.PA 312000 

VA J.ioooo{ PAR6~~ PAF 

PDRS ."""';;:m,..s.47:-s.,.10..,..10-,WA>777> ..... 0"T1-'-,1 
PLF A W ED ACF 

Figure 6-11: Typical Memory Page 

The memory segment illustrated in Figure 6-11 has the following attri­
. butes: 

1. Page Length: 40 blocks. 

2. Virtual Address Range: 140000-144777. 

3. Physical Address Range: 312000-316777. 

155 



4. No trapped access has been made to this page. 

5., Nothing has been modified (i.e. written) in this page. 

6. Read·Only Protection. 

7. Upward Expansion. 

These attributes were det,ermined according to the following scheme: 

1. Page Address Register (PAR6) and Page Descriptor Register (PDR6) 
were selected by the Active Page Field (APF) of the Virtual Address 
(VA). (Bits 15-13 of the VA = 6 8 ,) 

2. The initial address of the page was determined from the Page Ad­
dress Field (PAF) of APR6 (312000 = 3120 8 blocks X 408 (32, 0) 
words per block x 2 bytes per word). 

Note that the PAR which contains the PAF constitutes what is often 
. referred to as a base register containing a base address or a reloca­
tion register containing relocation constant. 

3 . .The page length (478 + 1 = 40'0 blocks) was determined from the 
Page Length Field (PLF) contained in Page Descriptor Register pDR6. 
Any attempts to reference beyond these 40, 0 blocks in this' page 
will cause a "Page Length Error," which will result in an abort, vec­
tored through Kernel Virtual Address 250. 

4. The Physical Addresses were constructed according to the scheme 
illustrated in Figure 6-4. 

5. The Access bit (A-bit) of PDR6 indicates that no trapped access has 
been made to this page (A bit = 0). When an illegal or trapped refer­
ence, (Le. a violation of the Protection Mode specified by the Access 
Control Field (ACF) for this page), or a trapped reference (Le. Read 
in this case), occurs, the A·bit will be set to a 1. 

6. The Written bit (W-bit) indicates that no locations in this page have 
been modified (Le. written). If an attempt is made to modify any 
location in this particular page, an Access Control Violation Abort 
will occur. If this page were involved in a disk swapping or memory 
overlay scheme, the W·bit would be used to determine whether 
it had been modified and thus required saving before overlay. 

7. This page is Read-Only protected; i.e, no locations in this page may 
be modified. In addition, a memory management trap will occur upon 
completion of a read access. The mode of protection was specified 
by the Access Control Field (ACF) of PDR6. 

8. The direction of expansion is upward (ED = 0). If more blocks are 
required in this segment, they will be added by assigning blocks 
with higher relative addresses. 

Note that the various attributes which describe this page can all be 
determined under software control. The parameters describing the page 
are all loaded into the appropriate Page Address Register (PAR) and Page 
Descriptor Register (PDR) under program control. In a normal applica-

156 



tion it is assumed that the particular page which itself contains these 
registers would be assigned to the control of a supervisory type program 
operating in Kernel mode. 

6.7.3 Non-Consecutive Memory Pages . 
·It should be noted at this point that although the correspondence be­
tween Virtual Addresses (VA) and PAR! PDR pairs is such that higher 
VAs have higher PAR! PDR's, this does not mean that higher Virtual 
Addresses (VA) necessarily correspond to higher Physical Addresses 
-(PA). It is quite simple to set up the Page Address Fields (PAF) of the 
PAR's in such a way that higher Virtual Address blocks may be . located 
in lower Physical Address blocks as illustrated in Figure 6-12 . 

PAR7 rrmmr-----, 

PAR" 

PAR0 

VA 037777 ...------...,PA 467777 

VA 02CI001).;------'PA 450000 

VA 017777 ...-------.PA 560777 

VA OOCIOOl)....4o-lL--------'I'A 541000 

Figure 6-12: Non-Consecutive Memory Pages 

Note that although a single memory page must consist of a block 
of contiguous locations, memory pages as macro units do not have to 
be located in consecutive Physical Address (PA) locations. It also should 
be realized that the assignment of memory pages is not limited to con­
secutive non-overlapping Physical Address (PA) locations. 

6.7.4 Stack Memory Pages 
When constructing PDP-ll!45 programs it is often desirable to isolate 
all program variables from "pure code" (i.e. program instructions) by 
placing them on a register indexed stack. These variables can then be 
"pushed" or "popped" from the stack area as needed (see Chapter 3, 
Addressing Modes). Since all PDP-ll Family stacks expand by adding 

157 



locations with lower addresses, when a memory page wh~h contains 
"stacked" variables needs more room' it must "expand down," i.e. 
add blocks with lower relative addresses to the current page. This mode 
of expansion is specified by setting the Expansion Direction (ED) bit 
of the appropriate Page Descriptor Register (PDR) to a 1. Figure 6·13 
illustrates a typical "stack" memory page. This page will have the fol­
lowing parameters: 

PAR6: PAF = 3120 

PDR6: PLF = 1758 or 125'0 (128'0-3) 

ED = 1 

A = Oor 1 

W = 0 or 1 

ACF = nnn (to be determined by programmer as the need dictates). 

note: the A,. W bits will normally be set by hardware . 

VA 157777 ....--------,PA 331777 

VA 157500 331500 

VA 140000 31Z000 

Figure 6-13: Typica1 Stack Memory Page 

In this case the stack begins 128 blocks above the relative anglO of 
this memory page· and extends downward for a length of three blocks. 
A "PAGE LENGTH ERROR" abort vectored through Kernel Virtual Ad· 
dress (VA) 250 will be generated by the hardware when an attempt is 
made to rliloference any location below the assigned area, i.e. when the 
Block Number (BN) from the Virtual Address (VA) is less than the Page 
Length Field (PLF) of the appropriate Page Descriptor Register (PDR). 

158 



6.8 TRANSPARENCY 
It should be clear at this point that in a multiprogramming application 
it is possible for memory pages to be allocated in such a way that a 
particular program seems to. have; a complete 32K basic PDP-1l/45 
memory configuration. Using Relocation, a Kernel Mode supervisory-type 
program can easily perform all memory management tasks in a manner 
entirely transparent to a Supervisor or User mode program. In effect, a 
PDp·11/45 System can utilize its resources to provide maximum through· 
put and response to a variety of users each of which seems to have.a 
powerful system "all to himself." 

159 



6.9 MEMORY MANAGEMENT UNIT-REGISTER MAP 

REGISTER 

Status Register #O(SRO) 
Status Register # I(SR1) 
Status Register # 2(SR2) 
Status Register # 3(SR3) 

User I Space Descriptor Register (UISDRO) 

User I Space Descriptor Register (UISDR7) 

User D Space Descriptor Register (UDSDRO) 

User 0 Space Descriptor Register (UDSDR7) 

User I Space Address Register (UISARO) 

User I Space Address Register (UISAR7) 

User D Space Address Register (UDSARO) 

User 0 Space Address Register (UDSAR7) 

Supervisor I Space Descriptor Register (SISDRO) 

Supervisor I Space Descriptor Register (SISDR7) 

Supervisor D Space Descriptor Register (SDSDRO) 

Supervisor D Space Descriptor Register (SDSDR7) 

Supervisor I Space Address Register (SISARO) 

Supervisor I Space Address Register (SISAR7) 

160 

ADDRESS 

777572 
777574 
777576 
772516 

777600 

777616 

777620 

777636 

777640 

777656 

777660 

777676 

772200 

772216 

772226 

772236 

772240 

772256 



REGISTER 

Supervisor D Space Address Register (SDSARO) 

Supervisor D Space Address Register (SDSDR7) 

Kernel I Space Descriptor Register (KISDRO) 

Kernel I Space Descriptor Register (KIDSR7) 

Kernel D Space Descriptor Register (KDSDRO) 

Kernel D Space Descriptor Register (KDSDR7) 

Kernel I Space Address Register (KISARO) 

Kernel I Space Address Register (KISAR7) 

Kernel D Space Address Register (KDSARO) 

Kernel D Space Address Register (KDSAR7) 

161 

ADDRESS 

772260 

772276 

772300 

772316 

772320 
'. 

772336 

772340 

772356 

772360 

772376 



162 



CHAPTER 7 

FLOATING POINT PROCESSOR 

7.1 INTRODUCTION 
The PDp·l1 Floating Point Processor is an optional arithmetic processor 
which fits· integrally into the PDP·11/45 Central Processor. It performs 
all floating point arithmetic operations and converts data between in· 
teger and floating point fo.rmats. 

The hardware provides a time and money saving alternative to the use 
of software floating point routines. Its use can result in many orders of 
magnitude improvement in the execution of arithmetic operations. 

The features of the unit are: 

• Overlapped operation with central processor 
• High speed . 
• Single and double precision (32 or 54 bit) floating point modes 
• Flexible addressing modes 
• Six 54-bit floating point accumulators 
• Error recovery aids. 

7.2 OPERATION 
The Floating Point Processor is an integral part of the Central Processor. 
It operates using similar ..address modes, and the same memory man­
agement facilities provided by the Memory Management Option, as the 
Central Processor. Floating Point Processor instructions can reference 
the floating point accumulators, the Central Processor's general registers, 
or any location in memory. 

When, in the course of a program, an FPP Instruction is fetched from 
memory, the FPP will execute that instruction in parallel with the" CPU 
continuing with its instruction sequence. The CPU is delayed a very short 
period of time during the FPP instruction's Fetch operation, and then is 
free to proceed independently of the FPP. The interaction between the 
two processors is automatic, and a program can take full advantage of 
the parallel operation of the two processors by intermixing Floating 
Point Processor and Central Processor instrudions. 

Interaction between Floating Point Processor and Central Processor in­
structions is automatically taken care of by the hardware. When an FPP 
instruction is encountered in a program, the machine first checks the 
status of the Floating Point Processor. If the FPP is "busy," the CPU 
will wait until it is "done" before continuing execution of the program. 

LDD (R3)+,AC3 

ADDLP: LDD (R3)+,ACO 

;Pick up constant operand and place it in 
AC3. 

;Load ACO with next value in table 

163 



MUL AC3,ACO 

AOOO ACO,ACI 

- SOS R5,AOOLP 

STCOI AC1,@R4 

;and multiply by constant in AC3 

;and add the result into ACI 

;check to see whether done 

;done, convert double to integer and store 

In the above example the Floating Point Processor would execute. the 
next three instructions. After the "AOOO" was fetched into the FPP, the 
CPU would execute the "SOS" and then wait for the FPP to be "done" 
with the "AOOO" before giving it the "LOO" or "STCOI" instruCtion. 

As can be. seen from this example, autoincrement and autodecrement 
addressing automatically adds or subtracts the correct amount to the 
contents of the register depending on the modes· represented by the 
instruction. 

7.3 ARCHITECTURE 
The Floating Point Processor contains scratch registers, a Floating Ex­
ception Address pointer (FEA), a Program Counter, a set of Status and 
Error. Registers, and six general purpose accumulators (ACO-AC5). 

Each accumulator is interpreted to be 32 or 64 bits long depending on 
the instruction and the status of the Floating Point Processor. For'32-bit 
instructions only the left· most 32 bits are used, .while the remaining 32 
bits remain unaffected. 

r- ---6-;-8;--------- ----, 
ACCUMULATOR 
~ 
32 BIT 

ACCUMULATOR ,.----.-.., 
AC0 

1----+----1 
AC1 

1----+----1 
AC2 

1-~----1f--~--I FLOATING POINT 

AC3 I ---+---r--~ ARITHMETIC t- AND 
AC4 CONVERSION 

1------1f-----I UNIT 
AC5 

1----+----1 
SCRATCH 

UNIBUS 

SOLID STATE 
MEMORY 

Figure 7-1: Floating Point Processor 

The six Floating Point Accumulators are used in numeric calculations 
and interaccumulator data transfers; the first four (ACO-AC3) are also 
used for all data transfers between the FPP and the General Registers or 
Memory. . . 

164 



7.4 FLOATING POINT DATA FORMATS 
The FPP handles two types of floating point data: Single Precision or 
Floating Mode (F) which is 32 bits long, and Double Precision (D) which 
is 64 bits long. The exponent is stored in excess 128 (200.) notation. 
Exponents from -128 to +127 are therefore represented by the binary 
equivalent of 0 to 255 (0·377.). Fractions are represented in sign­
magnitude notation with the binary radix point to the left. Numbers are 
assumed to be normalized and, therefore, the most significant bit is not 
stored because it is redundant. It is always a 1 except where the ex­
ponent is zero, then the complete number is declared to be O. 

F Formats: 

D Formats: 

S = Sign of Fraction 

EXP = Exponent in excess 200. notation 

FRACTION = 23 bits in F Format, 55 bits in D Format, + one hidden 
bit (normalization). Binary Radix point to the left. 

The results- of a Floating Point operation may be either truncated or 
rounded off. "Rounding" rounds away from zero and thus increases the 
absolute value of the number. 

The FPP provides for conversion of Floating Point to Integer Format and 
. vice·versa. The processor thus recognizes single precision integer (I) and 

double precision integer long (L) numbers. 

The numbers are stored in standard two's complement form. 

I Format: 

~I II 

NUMBER 
! f , , , I 

:514 0 

L Format: 

I , f I I I BER 
I I 

NUM 

1514 0 15 0 

S = Sign of Number 

NUMBER = 15 bits in I Format, 31 bits in L Format .. 

165 



7.5 FLOATING POINT UNIT STATUS REGISTER 
This register provides mode control for the floating point unit, as well as 
the condition code and error recovery information from the execution 
of the previous instruction. 

Four bits Cb.ntrol the modes of operation: 

Sir'lg!e/Doubl,e---;-floaUng Point numbers can be either single or 
double precision. 

Long/Short-Integer numbers can be 16 bits or 32 bits long. 

Truncate/Round-The result of Floating Point operation can be 
either truncated or rounded off. 

Normal/ Maintenance-a special maintenance "mode is available. 

There are four condition codes: 

BIT 

15 

14 

Carry, overflow, zero, and negative, which are equivalent to the 
CPU condition codes, and five error interrupts which can be dis­
abled individually or as a group. 

NAME 

Floating Error (FER) 

Interrupt Disable (FlO) 

DESCR1PTION 

Floating Point Error .flag. The re­
sult of the last operation resulted 
in a Floating Point Exception and 
the individual interrupt (FIUV, 
FlU, FIV, FIC) was enabled. . 

All FPP interrupts disabled when 
this bit is set. 

13 Not Used 

12 Not Used 

11 Interrupt on Undefined Variable (FIUV) 
When set and a -0 is obtained 
from memory, an interrupt will 
occur. When clear, -0 can be 
loaded and used in any arith­
metic operation. 

10 Interrupt on Underflow (FlU) When set, Floating Underflow· 
will cause an interrupt. The re­
sult of the operation, causing 
the interrupt, will be correct ex­
cept for the exponent which will 
be off by +4008 , If t~e bit is re­
set and the underflow occurs, the 
result will be set to zero. 

166 



BIT 

9 

NAME 

Interrupt on Overflow (FIV) 

DESCRIPTION 

When set, Floating Overflows 
will cause an interrupt. The re­
sult of the operation causing the 
interrupt -will be correct except 
for the exponent which will be 
off by +4008 . .If the bit is reset, 
the result of the operation will 
be the .same as detailed above 
but no interrupt will occur. 

S Interrupt on Integer Conversion Error (FIC) 
When set, and the STCFI (Store 
and Convert Floating to Integer) 
instruction causes FC to be set, 
an interrupt will occur. If the in­
terrupt occurs, the destination is 
set to ° and all other registers 
are left untouched. If the bit is 
reset, the result of the operation 
will be the same as detailed 
above, but no interrupt will occur. 

7 Floating Double Precision Mode (FD) 

6 Floating Long Integer Mode (FL) 

Determines the precision that is 
used for Floating· Point calcula­
tions. When set, Double preci­
sion is assumed; when reset 
Floating precision is used. 

Active in conversion between In­
teger and Floating Point format. 
When set, the Integer format as­
sumed is Double Precision two's 
complement (i.e. 31 bits + sign). 
When reset, the integer format 
is assumed to be Single Preci­
sion two's complement (i.e. 15 
bits + sign). 

5 :; Floating Truncate Mode (FT) When set, causes the result of 
any arithmetic operation to be 
truncated. When reset, the reo 
suits are rounded. 

4 Floating Maintenance Mode (FMM) 

3 Floating Negative (FN) The result of the last operation 
was negative. 

2 Floating Zero (FZ) 

1 Floating Overflow (FV) 

167 

The result of the last operation 
was zero. 

The result of the last operation 
resulted in an arithmetic. over­
flow. 



BIT 

o 
NAME 

Flo,ating Carry (FC) 

DESCRIPTION 

The result of the last· operation 
resulted in a carry of the most 
significant bit. This can only oc­
cur in integer-Floating conver· 
sions. 

7.6 FEC REGISTER: ERROR DETECTION 
One Interrupt vector is assigned to take care of all floating point excep· 
tions (location 244). The eight possible errors causing the trap are 
coded in a four bit register, the FPP's Exception Code, "FEC," Register_ 

The error assignments are as follows: 

0 Not used 

2 Floating OP Code Error 

4 Floating Divide by Zero 

6 Floating Integer Conversion Error 

8 Floating Overflow 

10 Floating Underflow 

12 Floating Undefined Variable 

14 Maintenance Trap 

7.7 FLOATING POINT PROCESSOR INSTRUCTION ADDRESSING 
Floating Point Processor instructions use the same type of addressing as 
the Central- Processor instructions_ A source or destination operand is 
specified by designating one of eight addressing modes and one of 
eight central processor general registers to be used in the specified 
mode_ The modes of addressing are the same as those of the central 
processor except for mode O. In mode 0 the operand is located in the 
designated Floating Point Processor Accumulator, rather than in a Cen­
tral processor general register_ The modes of addressing: 

o = Direct Accumulator 

1 = Deferred 

2 = Auto·increment 

3 = Auto·increment deferred 

4 = Auto-decrement 

5 = Auto·decrement deferred 

6 = Indexed 

7 = Indexed deferred 

Autoincrement and autodecrement operate on increments and decre· 
ments of 4 for F Format and 1O~ for D Format. 

168 



In mode 0, the user oon make use of all six FPP accumulators (ACO­
AC5) as his source or destination. In all other modes,which involve 
transfer of data from memory or the general register, the user is reo 
stricted to the first four FPP accumulators (ACO-AC3). 

In immediate addressing (Mode 2, R7) only 16 bits are loaded or stored. 

7.S FLOATING POINT PROCESSOR INSTRUCTION TIMING 
The following table represents execution times of the Floating Point 
Processor for AC-AC operations (Address Mode 0). 

Instruction Execution Time in Microseconds 
Single Precision Double Precision 
min max min max 

ADDX 3.2 4.6 3.8 6.2 
SUBX 3.2 4.6 3.8 6.2 
MULX 4.6 6.6 6.6 12.0 
DIVX 4.6 10.0 6.6 18.4 

Minimum and maximum times for FPP instruction execution are given 
in this chapter USing the definition Mode O-AC operations 'operating in 
bipolar memory . 

. For more detailed information on FPP instruction timing and FPP!CPU 
interaction consult Appendix B. 

7.9 FLOATING POINT INSTRUCTIONS 
Each instruction that references a floating point number can operate 
on floating or double precision numbers depending on the state of the 
FD mode bit. In a similar fashion, there is a mode bit FL that deter­
mines whether a 32-bit integer (FL = 1) or a 16-bit integer (FL = 0) 
is used in conversion between integer and floating point representation. 
FSRC and FDST use floating point addressing modes, SRC and DST 
use CPU addressing Modes. 

Floating Point Instruction Format 
Double Operand Addressing 

OC FOC 

15 12 11 

Single Operand Addressing 

OC 

15 12 11 

OC = Op Code = 17 

FOC = Floating Op Code 

AC = Accumulator 

FOC 
I 

8 

FSRC, FDST use FPP Address Modes 

SRC, DST use CPU Address Modes 

]69 

AC IFSRC,FDST,SRC,DST 
, , I ! 

7 6 5 0 

FSRC, FDST, SRC, DST 
! I I I 

6 5 0 



General Definitions: 
XL = largest fraction that can be represented: 

~_2-24; FD = 0 

1-256; FD = 1 

XLL = smallest number that is not identically zero 2- 128 

XUL = largest number that can be represented: 2 127*XL 

JL = largest integer that can be represented: 

~15-1 if FL. = 0 23 '-1 If Fl = 1 

170 



2.77 ILS 
2.97 ILS 

LDF 
LDD 

Load Floating! Double 172(AC + 4)FSRC 

15 

Operation: 

Condition Codes: 

Description: 

1 I O! 1 0 I 1! AC 

12 11 8 7 6 5 

AC <,- (FSRC) 

FC<'-{) 
FV<,-{) 
FZ~l if (AC)=O else FZ<,-O 
FN <,-1 if (AC)<O else FN <,-{) 

FSRC 
I 

o 

Load Single or Double Precision Number into 
Accumulator 

171 



2.15 ~s 
2.15 ~s 

STF 
STD 

Store Floating/ Double 

11 I 1 11 0 0 0 I AC 

15 12 11 

Operation: FDST ~(AC) 

Condition .Code3:- FC~FC 
FV~FV 

FZ~FZ 

FN~FN 

876 5 

174ACFDST 

o 

Description: Store Single or Double Precision Number from 
Accumulator 

172 



5.17 J,tS 

6.47 J,tS 

ADDF 
ADDD 

Add Floating/ Double 172ACFSRC 

I f I f 

15 

Operation: 

Condition Codes: 

Description: 

I I O! 1 0 I 0 I AC 

12 II 8 7 6 5 o 

AC+-(AC) + (FSRC) If [(AC) + (FSRC)]>XLL or 
FlU = 1, else AC~ 

FC~ 
FV+-1 If (AC»XUL else FV~ 
Fl+-l If (AC)=O else FZ+-O 
FN+-l If (AC)<O else FN~ 

Add the contents of FSRC to the contents of ac­
cumulator. In Single or Double Precision result is 
in accumulator unless Underflow occurs and the 
interrupt is not enabled; in this case AC is set to O. 

173 



5.17 itS 
6.47 itS 

SUBF 
~UBD 

Subtract Floatingl Double .1?3ACFS~(: 

l' , 1 

15 

Operation: 

Condition Codes: 

Description: 

AC 

12 11 8 7 6 5 

FSRC , 
o 

ACr(AC)-(FSRC) If [(AC)-(FSRC)]-XLLpr.F'lj ::::; 
1 else ACrO 

FCrO 
FVrl If (AC»XUL else FVrO 
FZr1 If (AC)=O else FZrO 
FNrl If (AC)<O else FNrO 

Subtract the contents of FSRCfrom the accumu· 
lator in Single or Double Precision. Result is in 
accumulator unless Floating Underflow occurs and 
the interrupt is not enabled, in this case AC is set 
to O. 

174 



Negate Floating! Double 

15 12 11 

Operation: FDST +--(FDST) -

Condition Codes: ' Fe +-0 
FV+-O 

6 5 

FZ +-1 If (FDST) = else FZ+-O 
FN+-1 If (FDST)<O elseFN+-O 

2.97 .... 5 
2.97 .... 5 

NEGF 
NEGD 

1707FDST 

FOST 
I 

o 

Description: Negate Floating or Double Precision number, store 
result in same location. (FDST) 

175 



7.17 J.ts 
10.97 J.tS 

MULF 
MULD 

Multiply Floating/ Double 171ACFSRC 

11 I 1 

15 

Operation: 

Condition Codes: 

Description: 

o I AC 

12 11 8 7 6 5 o 

AC~(AC)*(FSRC) If [(AC),:'(FSRC)]>XLL or FIU=l, 
else AC~ 

FC+-O 
FV~l If AC>XUL else FV+-O 
FZ+-l If (AC) = 0 else FZ+-O 
FN +-1 If (AC) <0 else FN ~O 

Multiply the contents of the selected accumulator 
by the contents of FSRC. Store result in accumul· 
lator unless Floating Underflow occurs without the 
interrupt enabled in this case AC is set to O. 

176 



8.17 J.tS 
11.87 J.tS 

DIVF 
DIVD 

Divide Floating/ Double 174(AC + 4)FSRC 

11 11 1! 1 11 ! 0 ! 0 1 1 AC FSRC 
1 

15 12 11 8., 6 5 o 

Operation: 

Condition Codes: 

Description: 

If (FSRC) = 0 
AC<E-(AC)/(FSHC) If [(AC)/(FSRC)]>XLL or FIU=I, 
else AC-E-O 
If (FSRC) = 0 registers, including AC, untouched 

FC-E-O 
FV<E-l If (AC»XUL else FV<E-O 
FZ<E-! If (AC)=O else FZ<E-O 
FN<E-l If (AC)<O else FN<E-O 

If the contents of FSRC are not equal to zero, divide 
the accumulator by (FSRC) and IOtore the result in 
the accumulator unless Floating Underflow occurs 
and the interrupt is not enabled in this case the AC 
is set to O. If attempt is made to divide by zero, 
accumulator is left unchanged and FEC Register is 
set to 4. 

177 



4.17 itS 
4.37 itS 

CMPF' 
CMPD 

Compare Floating/Double 173(AC + 4)FSRC 

11 I 1 1 I 0 ! 1 ! 1 I' AC 

15 ' 12 11 B 7 6 5 

Operation: . (FSRC) - (AC) 

Condition Codes: FC ~ 
FV~ 

FSRC 
I 

Fb-l If (FSRC)-(AC) = 0 else FZ~ 
FN~l If (FSRC)-(AC)<O else FN~ 

o 

Description: Compare ·the contents of FSRC with theaccumu· 
lator. Set the appropriate flloating point condition 
codes: FSRC and the accumulator' are left un·' 
changed. 

178 



7.87 JA.S 
15.27 JA.S 

MODF 
MODI) 

Multiply and Integerize Floating/ Double 171(AC + 4)FSRC 

Ii '1'1 

15 

Operation: 

Condition Codes: 

Description: 

" 16 0 1 I 1 r A,C' 

12 11 8 7 6 5 

FSRC 
I 

o 

AC v 1 +-1 nt[(AC)*(FSRC)] If [(AC)*(FSRC)]>XLL 
or FlU = 1, else AC v 1 <f-Q . 
AC+-(AC)*(FSRC)-(AC v 1) If [(AC)*(FSRC)]>XLL 
or FlU = 1, else AC<f-Q ' 

FC<f-Q 
FV+-1 If (AC»XUL else FV<f-Q 
FZ+-1 If (AC)=O else FZ<f-Q 

FN+-1If (AC)<O else FN<f-Q 
The product of (AC) and (FSRC) is produced to 48 
bits in Floating Mode and 59 bits in Double Mode. 
The integer part Int[(AC)*(FSRC)] of the product is 
then found and stored in AC v 1. AC v 1 is the FPP 
Accumulator OR'd with 1. The fractional part is 
then obtatned and stored in AC. Thus if even· 
numbered Accumulators (0 or 2) are used this 
instruction uses two accumulators (0 and 1; 2 and 
3); whereas if odd·numbered accumulators are used 
only one Accumulator is used (1:3) and all that is 
left is the fra'ctional part of the operation. If under· 
flow occurs and the interrupt is not enabled, AC 
and AC v 1 are loaded with zero. 

NOTE: Multiplication by 10 can be done with zero 
error allowing decimal digits to be "stripped off" 
with no loss in precision. 

179 



3.27 itS 
3.27 its 

LDCDF 
LDCFD 

Load and convert from Double to Floating 
or from Floating to Double 177(AC + 4)FSRC 

I 1 I 1 

15 

Operation: 

Cohdition Codes: 

Description: 

1 I 1 1 1 I AC 

12 11 8 7 6 5 

FSRC 
I 

o 

AC~C,,(FSRC) If [(FSRC)]>XLL or FlU = 1, else 
AC~O Where C,y specifies conversion from floating 
mode x to floating mode y, and x = F and y = D If 
FD = 0, or x = D and y = F If FD = l. 

FC~O 

FV~I If (AC»XUL else FV~O 
FZ~I If (AC)=O else FZ~O 
FN ~ 1 If (AC) <0 else FN ~ 

If the current mode is Floating Mode (FD= 0) the 
. source is assumed to be a double·precision number 
and is converted to'single precision. If the Floating 
Truncate bit is set the number is truncated, other­
wise the number is rounded. If the current mode is 
Double Mode (FD = 1) the source is assumed to 
be a single-precision number and is loaded left 
justified in the AC. The lower half of the AC is. 
cleared. 

180 



2.97 f.lS 
3.57 f.lS 

STCFD 
STCDF 

Store and convert from Floating to Double 
or from Double to Floating 176ACFDST 

15 

Operation: 

Condition Codes: 

Description: 

1 11 o 0 AC 

12 11 876 5 o 

FDST +-C,y(AC) where C,y specifies conversion from 
floating mode x to floating mode y and x = F and 
y = D If FD.= 0, or x = D and y = F If FD = 1 

FC+-O 
FV+-l If (AC»XUL else FV+-O 
FZ+-l If (AC)=O else FZ+-O 
FN+-l If (AC)<O else FN+-O 

If the current mode is Floating, the .Accumulator 
is stored left justified in FDST and the lower half 
is cleared; otherwise in Double Precision, the con­
tents of the accumulator are converted to single 
precision, truncated or rounded depending on the 
state of FT and stored in FDST. 

181 



5.37 J.l.S 
5.57 J.l.S 
5.97 J.l.S 
6.27 J.l.S 

LOCIF 
LOCI~, 
tOCL.F 
LOtLO 

Load and Convert Integer or Long Integer to 
Floating or Double Precision 177ACSRC 

11 , 1 

15 

Operation: 

Condition Codes: 

Description: 

1 I t ! t ,t , 0 L A; 

12 11 8 7 6 5 

SRC 
I 

o 

AC<-C;,(SRC) where C;, specifies conversion from 
integer mode j to floating mode x and j = I if FL 
= 0 or L if FL = 1 and x = F if FD = 0, or D if 
FD = l. 
FC<-O 
FV<-O 
FZ<-1 If (AC) = 0 else FZ<-O 
FN <-1 If (AC)<O else FN <-0 

Conversion is performed on the contents of SRC 
from a 2's compliment Integer with precision j to a 
floating point number of precision x. Note that j and 
x are determined by the state of the mode bits FL 
and FD: Le. J = I or L, and X = F or D. 
When a 32 bit Integer is specified (L mode) and 
(SRC) has an addressing mode of 0, or immediate 
addressing mode is specified, the 16 bits of the 
source register are left justified and the remaining 
16 bits loaded with zeros before conversion. In the 
case of LDCLF the fraction is truncated and only 
the highest 24 significant bits are used. 

J;82 



5.17 J.tS 
5.97 J.tS 
5.97 J.tS 
5.97 J.tS 

STCFI 
STCFl 
STCDI 
STCDL 

Store and Convert from Floating or Double to 
Integer or Long Integer 175(AC + 4)DST 

15 

Operation: 

Condition Codes: 

Description: 

1 11 0 I! AC 
12 11 8 7 6 5 

DST 
I 

o 

DST~C,;(AC) If-JL-1<C,;(AC)<JL, else DST~O 
where C,; specifies conversion from floating mode x 
to integer mode j and j = I if FL = 0 or L if FL = 
1 and x = F if FD = 0, or D if FD = 1 

C~FC~O If-JL-l<C,j(AC)<JL else FC~l 
V~FV~ 

Z~FZ~1 If (DST) = 0 else FZ~O 
N~FN~1 If (DST)<O else FN~ 0 

Conversion is performed from a floating point 
representation of the data in the accumulator to 
an integer representation. When the conversion is 
to a 32 bit word (L mode) and an address mode 
of 0, or immediate addressing mode, is specified, 
only the most significant 16 bits are stored in the 
destination register. If the operation is out of the 
integer range selected by FL, FC is set to 1 and 
the contents of the DST are set to o. 
Numbers to be converted are always truncated 
(rather than rounded) before conversion. This 
is true even when the truncate mode bit is cleared 
in the Floating Point Status Register. 

183 



2.77 lotS 

lDEXP 

Load Exponent 176(AC + 4)SRC 

11 I 1 

15 

Operation: 

Condition Codes: 

Description: 

1 11 o 1 I AC 

12 11 8 7- 6 5 

AC SIGN ~(AC SIGN) 
AC EXP~(SRC) + 200 

FC~O 

FV~ 
FZ~l If (AC) = 0 else FZ~O 
FN ~l If (AC)<O else FN ~O 

SRC 
I 

o 

Load Exponent Word from SCR into Accumulator. 
Convert (SRC) from 2's complement to excess 200x 
notation. -

184 



3.67 itS 

STEXP 

. Store Exponent 175ACDST 

\1 I 1 1 1, o AC , 
15 12 II 8 7 6 5 

Operation: DST~AC EXPONENT -200 

Condition Codes:. C ~FC ~ 
V~FV~ 

- OST 
I 

Z~FZ~1 if (DST)=O else FZ~ 
N~FN~1 if (DST)<O else FN~ 

,J 
o 

Description: Store accumulator's exponent in DST, convert it 
frOm excess 200 8 notation to 2's complement. 

185 



2.37 [.Is 

2.57 [.IS 

CLRF 
CLRD 

Clear Floating/ Double 

15 

Operation: 

Condition Codes: 

12 11 

FDST~O 

FC~O 
FV~O 

FZ~1 
FN~O 

6 5 

1704FDST 

FDST 
I 

o 

Description: Set FDST to O. Set FZ condition code. 

186 



2.97 J.ts 
2.97 J.ts 

ABSF 
ABSD 

Make Absolute Floating/ Double 1706FDST 

o I FDST 
I 

15 12 11 6 5 o 

Operation: 

Condition Codes: 

Description: 

FDST ~-(FDST) If (FDST)<O else FDST ~(FDST) 

FC~ 
FV~ 
FZ~l If (FDST) = 0 else FZ~ 
FN~ 

Set the contents of FDST to its absolute value. 

187 



2.77 IlS 
2.77 IlS 

T5TF 
T5TO 

Test Floating/ Double 1705FDST 

11 I 1 

15 

Operation: 

Condition Codes: 

Description: 

1 10, 0 I 0 I 1 0 1 I 
12 11 6 5 

FDST +-(FOST) 

FC+-O 
FV+-O 
FZ+-l IF (FDST) = 0 else FZ+-O 
FN+-l IF (FDST)<4 else FN+-O 

FDST 
I 

o 

Set the Floating Point Processor's Condition Codes 
according to the contents of FDST. 

188 



2.37 /1S 

SElF 

Set Floating Mode 170001 

I, I ' o o I 0 o o o 0 o 10 o 
15 o 

Operation: FD~O 

Description: Set the FPP in Single Precision Mode 

2.37/1s 

SElD 

Set Floating Double Mode 170011 

1100000 000 o 0 1 I 
15 o 

Operation: FD~l 

Description: Set the FPP in Double Precision Mode 

189 



2.37 p.s 

SEll 

Set Integer Mode 170002 

I t I I 110000000°°1° 1,01 
15 ° 

Operation: FL+-O 

Description: Set the FPP for Integer Data 

2.37,",s 

SElL 

Set Long Integer Mode 170012 

11 I 1 
15 12 II o 

Operation: FL:~1 

Description: Set the FPP for Long Integer Data 

190 



Load FPPs Program Status 

l' I 1 
1 j a a a a a 1 I 

15 12 11 6 5 

Operation: FPS<-(SRC) 

Description: Load FPP's Status from SRC. 

Store FPPs Program Status 

l' I 1 
15 12 11 6 5 

Operation: DST<-(FPS) 

Description: Store FPP's Status in DST 

191 

SRC 
I 

DST 
I 

lDFPS 

1701SRC 

a 

2.15 itS 

STFPS 

1702DST 

a 



2.571's 

5T5T 

Store FPPs Status 17030ST 

11 I 1 

15 

Operation: 

Description: 

. 2.37 I'S 

CFCC 

12 11 

OST+-(FEC) 
OST + 2 +-(FEA) 

6 5 

DST 
I 

o 

Store the FEC and then the FPP's Exception Ad· 
dress Pointer in OST and DST + 2 

Note: If destination mode specifies a general reg· 
ister or immediate addressing, only the FEC is 
saved . 

'Copy Floating Condition Codes 170000 

11 I 1 
15 

Operation: 

Description: 

12 11 

C+-FC 
V+-FV 
Z+-FZ 
N+-FN 

o o I 0 

6 5 

o o I 0 o 
o 

Copy FPP Condition Codes into the CPU's Condition 
Codes. 

192 



193 



Fig..Jre 8 -1 System Operat or's Con so le 



CHAPTER 8 

THE SYSTEM OPERATOR'S CONSOLE 

The PDP-ll/45 System Operator's Console is designed for convenient 
system control. A complete set of function switches and display indi­
cators provide comprehensive status monitoring and control facilities_ 

The System Operator's Console is illustrated in Figure 8_L 

8.1 CONSOLE ELEMENTS 
The PDP-ll/45 System Operator's Console provides the following 
facilities: 

1) A System Key Switch (OFF/ON/LOCK) 

2) A bank of 7 indicator lights, indicating the following Central Processor 
states: RUN, PAUSE, MASTER(UNIBUS), USER, SUPERVISOR, KER­
NEl,DATA_ 

3) An 18-bit Address Register display 

4) An Addressing Error indicator light (ADRS ERR) 

5) A 16-bit Data Register display 

6) An 18-bit Switch Register 

7) Control knobs 

. a) Address Display Select 

1. USER I VIRTUAL 

2_ USER 0 VIRTUAL 

3_ SUPERVISOR I VIRTUAL 

4_ SUPERVISOR 0 VIRTUAL 

5_ KERNEL I VIRTUAL 

6_ KERNEL 0 VIRTUAL 

7. PROGRAM PHYSICAL 

8. CONSOLE PHYSICAL 

b) Data Display Select 

1. DATA PATHS 

2. BUS REGISTER 

3. FPP ~ADRS.CPU ~ADRS. 

4_ DISPLAY REGISTER 

195 



8) Control Switches 

a) LOAD ADRS (Load Address) 

b) EXAM (Examine) 

c) REG EXAM (Register Examine) 

d) CONT (Continue) 

e) ENABLE/ HALT 

f) S·INST/S·BUS CYCLE (Single Instruction/Single Bus Cycle) 

g) START 

h) DEPOSIT 

i) REG DEPOSIT (Register Deposit) 

8.2 SYSTEM POWER SWITCH 
The System Power Switch controls Central Processor power as follows: 

OFF 

POWER 

PANEL LOCK 

Power off for CPU. 
Solid·State Memory still receives power 
in order to insure data retention. 

Power ON for CPU-normal use all 
console controls operable. 

Power ON for CPU. 
All console controls not operable ex· 
cept switch register. 

Note: Since the theory of operation of high speed solid state memory 
involves the retention of a capacitive charge, it is essential that power 
be continually supplied in order to insure full data retention during those 
periods when the CPU power is OFF. When this facility is not required, 
Memory Power may be discontinued by flipping the Master Power switch 
in the rear of the CPU mounting cabinet to OFF. 

8.3 CENTRAL PROCESSOR STATE INDICATORS 
This bank of indicator lights shows the current major system state as 
follows: 

RUN 

PAUSE 

The CPU is executing program instruc' 
tions. If the instruction being executed 
is a WAIT instruction, the RUN light 
will be on. The CPU will proceed from 
the WAIT on receipt of an external in· 
terrupt, or on console intervention. 

The CPU is inactive because: 

1) The current instruction execution 
has been completed as far as possible 
without more data from the UNIBUS 
and the CPU is waiting to regain con· 

196 



MASTER 

USER 

SUPERVISOR 

KERNEL 

DATA 

trol of the UNIBUS (UNIBUS master­
ship) (see MASTER state.) 

OR 
2) The CPU has been HALTed from the 
System Operator's Console. 

The CPU is in control of the UNIBUS 
(UN IBUS Master). The CPU relin­
quishes control of the UNIBUS during 
DMA and NPR data transfers. . 

The CPU is executing program instruc­
tions in USER mode. When the Mem­
ory Management Unit is enabled all 
address references are in USER Virtual 
Address Space 

The CPU is executing program instruc­
tions in SUPERVISOR mode_ When the 
Memory Management Unit is enabled, 
all address references are in SUPER­
VISOR Virtual Addressing space. 

The CPU is executing program instruc­
tions in KERNEL mode_ When the Mem­
ory Management Unit is enabled, all 
address references are in KERNEL Vir­
tual Addressing space_ 

If on, the last memory reference was 
to D address space in the current CPU 
mode_ If a 0, the last memory refer­
ence was to I address space in the· 
current CPU mode. 

8.4 ADDRESS DISPLAY REGISTER 
The Address Display Register is primarily a software development and 
maintenance aid. The contents of this l8-bit indicator are controlled by 
the Address Select knob as follows: 

VIRTUAL 

PROGRAM PHYSICAL 

The Address Display Register indicates 
the current address reference as a 16-
bit Virtual Address when the. Memory 
Management Unit is enabled, otherwise 
it indicates the true 16-bit Physical 
Address. Bits 17 and 16 will be off un­
less the Memory Management Unit is 
disabled AND the current address ref­
erences some UNIBUS device register 
in the uppermost 4K of basic address 
space (i.e. 28K-32K). 

The Address Display Register indicates 
·the curtent address reference as a true 
IS-bit PhYSical Address. 

197 



CONSOLE PHYSICAL The Address Display Register indicates 
the current address reference as a 16-
bit Virtual Address when the'Memory 
Management Unit is enabled otherwise 
it indicates the true 16-bit Physical 
Address. 

Bits 17 and 16 indicate the contents 
of corresponding bits of the Switch 
Register as of the last LOAD ADRS 
console operation. 

8.5 ADDRESSING ERROR DISPLAY 
This I-bit display indicates the occurrence of any addressing errors. 
The following address references are invalid: 

1. Non-existent memory 

2. Access Control violations 

3. Unassigned memory pages 

(See chapter 6: Memory Management) 

8.6 DATA DISPLAY REGISTER 
The Data Display Register is primarily a hardware maintenance facility. 
The contents of this 16-bit indicator are controlled by the Data Display 
Select knob as follows: 

DATA PATHS The Data Display Register indicates the 
current output of the PDP-ll/45 Arith· 
metic/ Logical Unit subsystem. 

BUS REGISTER The Data Display Register indicates the 
current output of the PDP-ll/45 CPU 
(UNIBUS I, II and the EXPRESS BUS). 

FPP ,uADRS.CPU !tADRS. The Data Display Register indicates the 
current ROM address, FPP control 
micro-program (bits 15·8), and. the 
CPU control micro-program (bits 7-0). 

DISPLAY The Data Display Register indicates the 
current contents of the 16·bit write· 
only "Switch Register" located at 
Physical Address 777570. This register 
is generally used to display diagnostic 
information, although it can be used 
for any meaningful purpose. 

8.7 SWITCH REGISTER 
The functions of this 18-bit bank of switches are determined by: 

1) Control Switches 

2) Address Display Select knob 

198 



These functions will be described in the next section along with the 
appropriate control switch. 

Note that the current setting of the Switch Register may be read under 
program control from" a read·only register at Physical Address 777570. 

8.8 CONTROL SWITCHES 
8.8.1 LOAD ADRS (Load Address) 
When the LOAD ADRS switch is depressed the contents of the Switch 
Register are loaded into the CPU Bus Address Register and displayed 
in the Address Display Register lights" If the Memory Management Unit 
is disabled the address displayed is the true Physical Address. 

If the Memory Management Unit is enabled the interpretation of the 
address indicated by the Switch Register is determined by the Address 
Display Select knob. 

Note that the LOAD ADRS function does not distinguish between PRO· 
GRAM PHYSICAL and CONSOLE PHYSICAL. 

8.8.2 EXAM (Examine) 
Depressing the EXAM switch causes the contents of the current location 
specified in the CPU Bus Address, Register to be displayed in the DATA 
Display Register. 

Depressing the EXAM switch again causes a EXAM-STEP operation to 
occur. The result is the same as the EXAM except that the contents 
of the CPU Bus Address Register are incremented by two before the 
current location has been selected for display. An EXAM-STEP will not 
cross a 32K memory block boundary. 

An EXAM operation which causes an ADRS ERR (Addressing Error) must 
be corrected by performing a new LOAD ADRS operation with a valid 
address_ 

8.8.3 REG EXAM (Register Examine) 
Depressing the REG EXAM switch causes the contents of the General 
Purpose Register specified by the low order five bits of the buS--Elddress 
register to be displayed in the Data Display Register_ 

The Switch Register is interpreted as follows: 

Contents Register Displayed 

0-5 General Registers 0-5 (set 0) 

6 Kernel Mode Register 6 

7 Program Counter 

IOa-15a General Register 0-5 (set 1) 

16a Supervisor Mode Register 6 

17 a User Mode Register R6 

8.8.4 CONT (Continue) 
Depressing the CONT switch causes the CPU to resume executing in-

199 



structions or bus cycles at the address specified in the Program 
Counter (Register 7-(PC»_ The CaNT switch has no effect when the 
CPU is in RUN state_ 

The function of the CaNT switch is modified by the setting of the 
ENABLE!HALT and S/INST-S/ BUS cycles switches as follows: 

ENABLE (up) 

HALT (down) 

8.8.5 ENABLE/HALT 

CPU resumes normal operation under 
program control. 

A. S! INST (up)-CPU executes next 
instruction then stops. 

B. S!BUS cycle (down)-CPU executes 
next address reference then stops. 

The ENABLE! HALT switch' is a two-position switch with the following­
functions: 

ENABLE (up) 

HALT (down) 

The CPU is able to perform normal 
operations under program control. 

The CPU is stopped and is only op­
erable by the console switches. 

The setting of the ENABLE! HALT switch modifies the function of the 
CONTINUE (8.8.4) and START (8.8.7) switches. 

8.8.6 S/INST-S/BUS CYCLE (Single Instruction/Single Bus Cycle) 
The S/INST-S/BUS CYCLE switch effects only the operation of the CON­
TINUE switch as described in section 8.8.4. This switch has no effect 
on any switches when the ENABLE/HALT switch is set to ENABLE. 

8.8.7 START 
The functions of the START switch depend upon the setting of the 
ENABLE/ HALT switch as follows: 

ENABLE 

HALT 

8.8.8 DEP (Deposit) 

Depressing the START switch causes 
the CPU to start executing program in­
structions at the address specified by 
the current contents of the CPU Bus 
Address Register. The START switch 
has no effect when the CPU is in RUN 
state. 

Depressing the START switch ,causes a 
console reset to occur. 

Raising the DEP switch causes the current contents of the Switch Reg­
ister to be deposited into the address specified by the current contents 
of the CPU Bus Address Register. 

Raising the DEP switch again causes a DEP-STEP operation to occur. 
The result is the same as the DEP except that the contents of the CPU 
Bus Address Register are incremented by two before the current location 

200 



has been selected for the deposit operation. A DEP·STEP will not cross 
a 32K memory block boundary. 

A DEP operation which causes an ADRS ERR (addressing Error) is 
aborted and must be corrected by performing a new LOAD ADRS opera· 
tion with a valid address. 

8.8.9 REG DEPOSIT (Register Deposit) 
Raising the REG DEP causes the contents of the Switch Register to be 
d~posited into the General Purpose Register specified by the current 
contents of the CPU Bus Address Register. 

The CPU Bus Address Register should have been previously loaded by 
a LOAD ADRS operation according to the Switch register settings de· 
scribed in REG EXAM (8.8.3). 

NOTE: The EXAM and DEP switches are coupled to enable an EXAM· 
DEP·EXAM sequence to be carried out on a location, without having to 
do a LOAD ADRS. The following sequence is possible: 

EXAM 

DEP ADDRESS A 

EXAM 

STEP EXAM 

DEP ADDRESS A + 1 

EXAM 

8.8.10 ADDRESS SELECT 
The ADDRESS SELECT knob is used for two functions. It provides an 
interpretation for the ADDRESS DISPLAY REGISTER as explained in 
section 8.4. It also determines for EXAM, STEP EXAM, DEP and STEP 
DEP, what set of Page Address Registers, if any, will be used to relocate 
the address loaded by the LD ADRS function. 

KERNEL I, KERNEL D, SUPER I, SUPER D, USER I and USER D posi· 
tions cause the address loaded into the switch register to be relocated 
if the Memory Management Option is installed and operating. Which 
set of the 6 sets of Page Address Registers (PARs) is used is determined 
by the ADDRESS SELECT switch. EXAMs, STEP EXAMs, DEPs and STEP 
DEPs, under these conditions, are relocated to the physical address 
specified by the appropriate PAR. If the action attempted from the 
console is not allowed (for example-attempting to DEP into a READ 
ONLY page) the ADRS ERROR indicator will come on. A new LD ADRS 
must be done to clear this condition. Note that. in the general case, 
the physical location accessed is different from the virtual address 
loaded into the switch register. The ADDRESS DISPLAY REGISTER will 
always, in these 6 positions, show exactly what was loaded from the 
switch register. These positions make it convenient to examine and 
change programs which are subject to relocation, without requiring 
any knowledge of where they have actually been relocated in physical 
memory. 

201 



PROGRAM PHYSICAL. This position is provided to allow one, when 
"single cycling" through a program, to monitor the physical addresses 
being accessed by the program. It is most useful when the accesses are 
being relocated by the Memory Management Option. 'In this case the 
Address shown in Address Display Register is different than that shown 
in the other positions. This position should not be used to perform 
EXAM, STEP-EXAM, DEP or STEP DEP functions. 

CONSOLE PHYSICAL-This position is provided to allow EXAM, STEP 
EXAM, DEP and STEP DEP Functions to physical memory locations 
whether or not the Memory Management option is installed or operating. 
In this position the ADDRESS DISPLAY register indicates the physical 
address loaded from the switch register. 

202 



APPENDIX A 

INSTRUCTION SET PROCESSOR 

ISP is a language (or notation) which can be used to define the action of a 
computer1s instruction set .. It defines a computer~ including c6n'Sole and periph­
erals, as seen by a progranrner. it has two goals: to be precise enough to con­
stitute the complete specification for a computer and to still be highly readable 
by a human user for purposes of reference t such as th is manual. The main part of 
the manual c,oot8ined an English language description of the POP~ll. using ISP ex­
pressions as support in defining each insct"uction. This appendix contains an ISP 
description of the PDP-H, using 8 few English language cormnents as support.. 

The follOWing brieC introduction -to the notation is gillen using examples fro:n 
the PDP-ll ~odel 20 ISP description. The complete PDP-ll descri.ption follows the 
introduction. 

A processor is completely defined at the programming level by giving its 
instruction set and its interpreter in tenns of basic operations, data types and 
the system's mtffilory. For clarity the rsp description is usually gillen in a fixed 
order: 

Declare the system's memory: 

Processor state (the information necessary to restart the processor 
if stopped between instructions. e.g., general registers, PC, index 
registers) 

Primary memory state (the memory directly addressable from the 
processor) 

Console state (any external keys. SWitches, lights. etc •• that 
affect the interpretation process) 

Secondary memory (the disks. drums, dectapes, magnetiC capes, etc.) . 

Transducer state (memory available in any peripheral devices that 
is assumed in the instruc.ti.ons of the processor) 

Declare the instruction format 
Define the· operand address calculation process 
Dec lare the data types 
Declare the operations on the data types 
Define the instruction interpretation process including interrupts, traps, etc. 
Define the instruction set and the instructi.on execution process (provides an 

ISP expression for each instruction) 

Thus, the computer system is described by first declaring memory, data. types and 
primitive data operations. The instruction interpreter and the instruction-set. 
1s then defined in terms of these entities. 

The ISP notation is similar to that used in higher level programming languages. 
Its statements define entities by means of expressions involving other entities in 
the system. For example. an instruction to increment (add·one) to memory would be 

Increment := Ol([x] - ~(xJ + ll; 

This defines an operation, called "increment", that takes the contents of memory 
M at an address, x, and replaces it with a value one higher. The;= symbol simply 
assigns a name (on the left) to stand for the expression (on the right). English 
language CClmlents are given in italics. Table 1 gives a reference list of nota­
tions, which are illustrated below. 

ISP expressions are inherenti y interpreted in parallel, reflecting the under­
lying parallel nature of hardware operations. This. is an important difference 
between {SP and standard progratmling languages, which are inherently serial. For 
example, in 

lThe notation derived and used in the book, Computer Structures: Readings and 
Examples, McGraw·Hill. 1971 by C. ,;ordon Bell and Allen Newell. The book contains 
ISPI s of 14 computers. 

203 



z ,= (H[xJ - 5'+D'; M[yJ - H[x]); 

both rtghthand sides of the data t.ransmission operator (t-) are evaluated in the 
cu-rrent memory state in parallel and then . transmission occurs. Thus the old 
value of M(x] would go" into H[y]. Serial ordering of processing is indicated by 
using the term "next". For example, 

z ,= (H[xJ - 5'+0'; next M[yJ - MlxJ); 

performs the righthand data transmission after the lefthand one. Thus. the new 
value of M[x) would be used for H(y) in this latter case. 

Memory Declarations 

Memory is defined by giving a memory declaration as shown in Table 1. For 
example. 

Mp[0,2k - IJ<IS,a;-, 

declares a memory named, Mp. of 2k words (wherR k has been given a value). The 
addresses of the words in memory are 0.1 •••• ,2 -1. Each word has 16 bi ts and the 
bits are labeled 15~14, •.• ,0. Some other examples of memory declarations are: 

, 
Boundary-error 2) 
Boundary -error 
AI;tivitY3 
N/Negative 
C0<3> 
M[0,2 18 _I)<7,0> 
M[ 0,15 ][0,4095 J<7, 0> 

broP<I., 0>16) 
brop<7, 0>2 

boo lear memories; sc:alar bit alternatives 

t-ernary digit, holding value 0,1, or 
alias, N and Negative ape synonomous 
bit 3 of a register 
veC!tor of 218 8-bit words 
army of 16 x 4096 8-bit WOMS 
alternative UXlys of defining a register 

using base 16 and base 2 

Renaming and Restructuring of Previously Defined Registers 

Registers can be defined in tenns of existing registers. In effect, each 
time the name to the left of the := symbol is encountered, the value is computed 
according to the expression to the right of :=. A process can be evoked to form 
the value and side-effects are possible when the value is computed. 

Examples of simple renaming in part or Whole of existing memory 

N/Negative := CC<3> 
5P<lS,0> ,~ R[6J<IS,O? 

N is name of bit J of register CC 
SP is the same as -register R[6] 

Examples of register fanned by concaten.$tion 

LAC<L,O, 11> ,~ LOAC<O, II.> 
AIK0,47> ,~ A<0,23>rn<0,23> 
Hword [OJ<15, 0> ,~ Mbyte[ OJ<7, O>CMbyte [I J<7, ll> 

Examples of values and registers fo~ed by evaluation of a process 

ail address-increment<l: 0> 
..., byte-op => 2. 

byte-op =0 1) 
Run := (Activity = 0) 

Ins true [ion Format 

value of ai is 2 if --:; byte op, 
else value is 1 

Ru:n=l or> 0 depending on value of Activity 
being 0 Ol'" not 0 

Instruction fonnats are declared in the same fashion 8S memory and are not 
distinguishable as special non-memory entities. The instructions are carried in 
8 register; thus it is natural to declare them by giving names to the various 
parts of the instruction register. Usually only a single declaration is made, 
the instruction/i, follOwed by the declarations of the parts of the instruction; 
the operation code~ the address fields 9 indirect bit, etc. 

'nlis declaration would correspond to the usual box _ diagram: 

204 



Table 1. I$P Character-Set and Expression Forms 

A, .•.• Z.a, ... ,z,.,-, .... ,',",0 •...• 9 

,M~~X:Y'>Z 

n 

a := f{expression) 

b(c, •.. ,e) := g(expression) 

name' h (expression) 

a .... f (expression) 
f (express.ion) - a 

( ) 

[data-type] 

boolean ... expression; 

boolean ~ (expression-l else 
express ion-2); . 

; next 

o 

a/b 

X(:" boolean) ::10 expression; 

name alphabet. This character set is used for 
names, 

comments. Italics are used for comments. 

memory declaration. An n-dimensional memory 
array of words where a: b •.. v:w are the range 
of values for the first and last dimensions. 
The values of the fi rst dimensI-on are, for 
example. a. 8+1 ..... b for a S b (or 
a.a-l ••••• b for a ,b). The word length base, 
z, is nonnally 2 if not specified. The digits 
of the word are x.x+l ••.• y. 

definition. The operator, ;=. defines memory, 
names. process. or operations in terms of 
existing memory and operations. Each occur­
rence of "a" causes the in place substitution 
by f (expression). 

The definition b, tnay have duuwy parameters, 
c •••• ~e. which are used in g(expression). 

side effects naming convention. In this 
description we have used I to indicate that 
a reference to this name will cause other 
registers to change. 

transmission operator. 1he contents in 
register a are replaced by the value of 
the function. ' 

parentheses. Defines precedence and range 
of various operations and definitions 
(roughly equivalent to begin~ and end). 

operator and data-type modifier 

conditional expression; equivalent to ALGOL 
!!. boolean then expression 

equivalent to Algol if boolean then expression-l 
else expression-2 - --

sequential delimiter interpretation is to occur 

concatenation. Consider the registers to the 
left and right of 0 to be one. 

statement delimiter. Separates statements. 

item delimiter. Separates lists of variables. 

division and synonym. Used in two contexts; 
for division and for defining the name, a. 
to be an alias (synonym) of the name, b. 

unknown or unspecified value 

set value. Takes on all values for a digit 
of the given base:, e.g., 1"'2 specifies either 
102 or 112 

(nstruction value definition.. The name X is 
defined to have the value of the boolean. 
When the boolean is true. the exprelllaion 
will be evaluated. 

205 



Table 1. cont'd. 

Common Arithmetic, Logical and Relational Operau>rs 

Arithmetic 
+ add --.r . .:.:-· 

Relational 
=: identical 

.. subtract. also negative 
X multiply 
/ divide 
mod modulo (remainder) 
( )2 squared 
{ )8 expor.entiation 
( ) ta exponentiation 
( )b bas. 
( )lb base 
sqrt ( ) square root 
aba( ) ab.olute vallIe 
sign-extend ( ) 

" and 
V or 
e exc:lusive-or 
;:; equivalence 

~ not identical 
= equal 
; not equal 
~. greater than 
:i?: greater than or equal 

..:::: less than 
s le8s than or equal 

Ui ... , ..... 1",-" 'w.~f .... , .... ' .J..I ..... , , .... ~fJ"., ...J 

i/instruction<15: 0'> 
bo!",3;(t. i<15;12--
6f<5:0'- := i<11:6'~ 

df-.S; 0 - ;= i<5; O· 

Oper.and Address Calculation Process 

the iMtJ4uatic.:"' 
specifies bil'llll'Y (dyadia) upemtiO'[ls 

_ specifies sou",,", (fi1'st) uperorjd 
specifies secc>nd uperand If'I(/ destination 

In 811 processou, instructions make use of operands. In most conventional 
• processors, the operand. is usually in memory or 'in the proce8.or, defined aa M[z], 

where & i8 .. the effective a"drels. In PDP-lI, a destination address, Daddre8s, is 
used in this faahion for only two instructions. It is defined in ISP by giving 
the p-roce •• that calculates it. ntis proc.ess may involve only accesses to primary 
memory (possibly indexed), but it msy aho involve side effects, i.e., the modifica­
tion of either of prilnary lPamory or proc.essor memo-ry (e.g •• by incrementing. reg­
ister), Note that the' effective addTess is calculated whenever its name it en­
countered in evaluating an lSi' expr'!ulsion (either in an instruction or in the inte-r­
pretation expression). That is, it is evaluated .on demand:. Coosequently, any aide 
effects toay be executed more than once. 

Operation Determination ProceBsea 

Instead of effective-addres8, the operands are usually detemined directly. 
For example, the 16 .. bit destination register is just the register selected by-the 
dr field of an instruction, i.e. I 

Rd ;- R(dr] the destination regi,ster 

In one other· c.ae, the operand is just the next word follOWing an instruction. 
This next word ean be defined, 

nv'<l5; It>/next-word :- (Hv(PC]; PC ~ PC + 2) the ned word i. seZeated and PC is moved 

Here, the I show. -that a -reference to ow will cause aide effects, in this case, 
PC'" PC + 2.. For calculating the source operand, S, the procesa is: 

8'<15:1t> ;- < 
<_0) "R( ... ]; 

(_1) .. Hv(R(sr]] 

<_2) /I <8r-7) .. nw; 

vaZue for 80~ upBl'and 

if mode:O then S' is the Register> addroessed 
by i"st1'uation fie td S1' 

if mode=l the S' is indire~t via R sr> 

if mode=2 arid souroe Hjister=FC the" the 
ne:z:t word is the upemrid; this oan be 
seen by substituting the ezpression for> nw' 

206 



An expression is also needed for the operand. 5, which does not cause the side 
effects, and assuming the effects have taken place, counteracts them. Thu.s, S 
would be: 

5<15:11> := ( 

( ..... 0) ~ R[sr]; 

( ..... 1) .. Mw[R[sr]]; 

(sm=2) " (sr=7) ~Mw[PC-21 

''0 side eff""ts ' 

no side effects 

counten:zet P!'f1ViOUB side effeets 

In the ISP description 8 general process is given which determines operands for 
Source-Destination J word-byte J and with-without side-effects. In order to clarify 
what really happens, the s""Iurce operand calculation, for words, with side effects, 
is given below. 

5f<5:0> ;= 1<11;6"'" 

- sf<5:3'> 

;= 5f<3> 

5f<2: Q> 

nw'<15: 0> 

Rs<lS: 0"'> 

(Mw[PC]; PC - PC+2) 

R[sr] 

5'<15:o-//Source := « 
(5m=O) ::, Rs; 

(sm=2) ,,' (srill .. (Mw[Rs] 

Rs - Rs + 2); 

(8aF2) 1\ (sr=7) ;;t nw; 

(SIF4) ;;t (Rs - Rs - 2; next 

Mw[R.]); 

( .... 6) 1\ (ori7) .. Mw[nw' + R.]; 

(sm=t,) 1\ (sr--7) ~ Mw[nw' + PC) i 

(Jmllll) ;;t Mw[Rs]; 

<,,,!!,,,3) 1\ (sri7) • (Mw[Mw[Rs-il]; 

Rs - Rs + 2); 

(8IIP"3) A (sr==7) ... H[nw']; 

(-=5) = (Rs - Rs ... 2; next 

Mw[Mw(Rs]]) ; 

( ..... 7) II (sri7) .. Mwf!lw[nw' + Rs ll; 

lSIIF7) II (8,...7) .. Hw[Mw[nw' + PCll 

(81""6) II «sm=4) V (SllF5» 1\ 

(SP<400S) ::;0 (Stack overflow - 1) 

Datil-Types 

sour~ fiel.d rB-bitsJ of i718tl'uction 

source mode eontr-ol. field 

defelTed addl'e88 contl"ol. 

Nlgietel" 8pecificaticm fOl" source 

nezt IJOM; uBsd as openrnd 

source 't'egiatero apeci}"icatio71 

va!ue fol' the 8ource--direc.-t adcb-essi71g 

use the l'sgistel' Rs a8 oyel'and 

direct auto-inoroement fintTe"""t 

RaJ; u.su.azz.y used as pop 

di1'ecti actuaFy i~ediate operand 

di1"ect; auto-decrement rdecl'eme"lt 

RBJ; usually uBed as PUSH 

dipect; indezed via Rs--u~es 'lezt-lJol'd 

diroect; :relative to PC; ..."sea Ylext-LJord 
value for the aOlAl'cs-dsfiJWd 'lddl"eEHJir.g 

defel" thl"o"'flh Rs 

deleT' thl"Ough stack; auto 

i71CroeMerJt 

" defer via" nezt 1JOt"d; ~solute addressL.'1g 

defe'f' through staal( after altt" 

dee1'e"'Emt 

defer J indezed via Rs 

deler rel.ative to PC 

end cal.culatio71 proceSSj 

eneck.a if stack. overfiOLJeJ fo'!' severa! 
..nie. 

e1'ld source calcu.latior. 

A data-type specifies the encoding of a meaning into an infonuation medium. 
The meaning of the data-type (what it designates or refers to) is called its 
referent (or value). The referent may be anything ranging from highly abstract 
(the uninterpreted bit) to highly concrete (the payroll account for a specific 
type of employee). 

Every data-type has a carrier, into which all its component data-t.ypes can 
be mapped. The carrier is used in storing the data-type in memories and is usually 
• word or multiple thereof. It must be extensive enough to hold all the component 
dat .... types, but may be a larger (having error checking and correcting bits, or 

207 



even unused bits). 'l1l. mapping of the component data-types into the carrier is 
called the format. It i. given as • list which associatea to each component an 
o.p1:e88ion involving the carrier (e.g •• as in the instruction format). 

ISP provides a way of ~ing data-types. which also serves as • basis for 
abbreviations. Some data-types limply have conventional names (e.g~. character/ch, 
floating point numbers/f); others are named by their value (e.g., integer/i). Data­
types which are iterates of • basic component can be named by the component suffixed 
by a length-type. The length-type can be array/a. implying a multi-dimensional 
array of fixed, but unspecified. dimensions; • string/st, implying. singLe sequence, 
of variable length (on Nch occurrence); or a vector/v. implying a one dimensional 
array of a fixed b.ut unspecified number of components. 'The length-type need not 
exist, and then this fOIlD of the naDe is not applicable. 'Thus, iv is the abbrevi­
ation for an integer vector. It is al:lo possible to name a data-type by sim.ply 
listing ita components. 

Data-types are often of a given preciSion and it has become customary to 
measure this in terms of the number of components that are used. e.g., triple 
precision integers. In ISP this is indicated by prefixing the precisiot:1 symbol 
to the basiC data-type name, e.g." di for double precision integer. Note that a 
double preciSion integer, While taking two words, is not the same thing as a two 
integer vector, so that t.he precision and the length-type, thou.gh both implying 
something about the size o~ the carrier I do not express the same thing. 

It. list of c~on data-types and. their abbreviations is given in Table 2. 

Operations on Data-types 

Operations produce results of specific data-types from operands of specific 
data .. types. The data-types themselves determine by and large the possible opera ... 
tions that apply to them. r-:o attempt will be made to define the various opera-
tions here, as they are all familiar.... A reasonably comprehensive list is given in 
Table 1., An operation-mo·';'ifier, enclosed in braces, ( ), can be used to distinguish 
variant operations. The operation-modffier is usually the name of a data-type, e.g., 
A+S(f) is a floating p. int addition. Modifiers can also be a description name ap­
plying to the operati.)o, e.g •• a x2 (rotate}. 

Nev operations can be defined by means of forms._ 'for exam.ple, the various 
add operations qn differing data ... type:s are specified by writing {data-type} after 
the operation. 

Instruction Interpretation Process 

The instruction interpretation expression and the-instruction set consticute 
a sing1.l ISP expression that defines the processor'os action. In effect, this 
single expression is evaluated and all the other parts of the ISP description of 
a processot" are evoked as ind.irect c.onsequences of this evaluation. Simple inter .. 
preter without interrupt facilities show the familiar cycle of fetch-the .. instruction 
and execute-the instruc.tion. 

Example: 
Run ~ (instruction'" M(PC); PC'" PC + 1; next This is a siMple 

Instruction ... execution; next) interrprete1'"J n.ot the 
one fol' the PDP-l1 

In more complex processors the conditions for trapping and interrupting must 
also be dexcribed. The effective address calculation may also be carried out in 
t~e interpreter, prior to executing the instruction. etipecially if it is to- be 
calculated. only once and will have a fixed value independent of anything that 
happens while executing instructions. Console activity can also be described in 
the interpreter~ e.g •• the effect of a switch that permits stepping throug~ the 
program under manual control, or interroga,ting and changing memory. 

The nonnal statement for ·PDP-Il interpretacion is just: 

~ lnterrupt-rq " Run ~ (instruction'" Mw[PC)i PC'" PC + 2; next 
Instruction-execution; next 
'I-flag:;do (State-change<l4a); T-flag ... 0») 

208 

.~etch 

e:reo~te 

tl'a~e mode 



Table 2. CODao~ Ddt."Type. Abbreviatiolls 

Primitive 
bb'i'tOr boolean 
by byte 
ch character 
ex c:am.plex 
df double precision 
dw double word 
d digt't 
f floating 
fr fraction 
hw half word 
i integer 
IIIX mixed number 

floating 

qv quadruple length word 
tv triple length word 
w word 

Strial and Vector 
bv bit. vector 
by.st byte. string 
Ch.8t character. string 

jd j -digit number 

Instruction-Set and Instruction Execution Process 

the instruction set and the- process by which each instruction is executed 
are usually given togethei in a single definition; this process is called 
Instruction-execution in most 15P descriptions. ntls usually includes the defini­
tion of the conditions for execu"tion. i.e •• the operation code, value, the name 
of ~he instruction. a mnemonic alias, and the process for its execution. Thus. 
an individual instruction typically has the fonn: 

HOY (:; bop - 00012 ) .. ( 

r .... 5'; next 

move wrd 

move SOu:t'Ce to intermediate l'egistel' 

N ... r<15>; negative? 

(r<:15: 0> a 0) =t (Z ... 1 else Z ... 0); zero? 

Y ~ 0; 

D ~ r); 

OVBl'f/.ow o~ea.roed 

transmit NSUlt to destination 

With this format for the inatruction, the entire instruction· set is limply 
a list of all the in.tructions. On any particular execution, as evoked by the 
interpretation expression, typically ofte and only one operation code correlation 
w111 be aatisfied, hence one and only one instruction will be executed. 

In the case of PDP-II, the text carries the definition of the individual 
instructiona, hence they are not redefined in the appendix. Instead, the appendix 
defines the condition for executing the instructions. For ezample, io 

HOV :- (bop - 00012 ) 

ia given in the appendix, and the action of MOV 1s defined (1n ISP) in the text. 

209 



THE PDP-ll ISP 

PDP-ll's Primary (Program) Memory and Processor State 
The dsc1.araticm of this memory includes all the state (bits, words, etc.) that a program 

(pmg1'CUfPnefO) has aaaess to in this pal't of the (!ompute.l'. The Qonsole is not included. The 
various SBOondal'Y memol"ies (e. g., disks, tapes) and input-output deviaB state declarations are 
included in a foZlowing section. 

Primary (progmm) Memory 

Mp [0: 2k -1]<15: 0> 

Mw/Mword [x<15 : 0> ]<1~: 0> : = ( 
.., x<0> ~ Mp[x<15: 1>]; 

aatual physiea.l, 1e-bit memorry of a nQ:roticuZar 
system; k = 12, . "J 17 

word-qaC€ssed memopu 

x<0> ~ (?value; Boundary-error'" 1» 

UJoro on even byte bounda1"Y, all 1"ight 

word on odd byte boundary, tr>ap 

Mb/Mbyte[x<15:0>]<7:0> := ( 

.., x<O> ~ Mp [x<15: 1> ]<7:-0> ; 

x<O> ~ Mp[x<15:1>]<15:8» 

Processor State 

R[O:7]<15:0> 

SP<15: O>/Stack:Pointer := R[6] 

PC<15: o>/program-Counter := R[7] 

PS<15: f1>/processor-State-Word 

Unused<7:0>/Undefined :.= PS<15:8> 

P<2: O>/Priori ty 

T/T.-ce 

:= PS<7:5> 

:= PS<4> 

CC<3: rt>/Cond1tion-Codes := PS<3: 0> 

N/Negative := CC<3> 

Z/ZerD CC<2> 

V/Overflow := Cc<l> 

C/Carry := Cc<O> 

by te-aooessed memorry 

take ZOLJ-ol"der bits i.f even 

take hi-order bi ts if odd 

eight, 16-bit rreneral-Registers, used for 
_ aecumulator"B, indexing and stacks 

speeial stack, contl'oZled by RCB) 

location ne:rt instruction, alBo R( 7] 

IB-bit registel' giving rest of state 

mapping of bits into PS 

inteM"upt level control of proces8or 

denotes ~hether trop is to occu!' after" each 
inst:ruction 

set as a fu.nction c.r instpuotion and r'fMuZts 

if result = -

if result = 0 

if resu I t overflows 

if result carried into/borrowed from most 
signifieant bit 

Pl'ocessol'-Contl'Olted Error Flags (roesulting from instrouction-e:recution) 

Boundary-Error set if rJo:rd is accessed on odd byte boundaf'Y 

Stack-OverfloW 

Time -Out - Error 

Illegal- Instrucc.ion 

P1'Oces30ro-activi t~ 
Activity) 

Run (Activity = 
Wait :~ (Activity:=-

Off :- (Activity· 

0) 

1) 

2) 

set if worod accessed, via SP < 4008 
set if non-e.ristent memoryl or device is 
refel'enced 

SRt if a particular cZass of instl'uC!tions is 
exeouted 

terna1'!/, specij'y1-"rJ stat. of proc •• ,.,,>, 

'1O:mt:l l instl"'uction -tnte11'retation 

witing fol' interrupt 

off. dormant 

fiirror-F1.ag. (resulting from b1ithout the processor) 

Power-Fail-Flag 

Power-Up-Flag 

set if power is Zow 

set ",hen pOLJer comes em 

210 



InBt"';ctitm fomtat fieZd deau,,,,,ticnB 
1<15: 1I>/1n8truct1on 

bop<3:11> :- 1<15: 12> 

8f<5: Il> 

... s 
sd 

8rS 
df<5: Il> 

elmS 
dd 

drS 

uop<3: Il>S 
df 

j80P<J: Il> 
B1'; df 

:- 1<11:6> 

:- sf<5: 1'.> 

:- .f<3> 

:- .f<2 :Jl> 

:- 1<5:11> 

:- df<S: 3> 

:- df<3> 

:- df<2:1l> 

:- 1<15:6> 

:- 1<15: 9> 

brop<1: 1l>16 1<15: 8> 

offset<7; 0> :- sign-extend(i<7: (D) 

trop<1:1l>16 :- 1<15:8> 

uDu8ed-trop<1: 11>16 :- 1<7: Il> 

eop<6: II> 

.r<3 :Il> 

eaf<5: 0> 

e ... S 
.ad 

fop<7: Il> 

fr<7: II> 

faf<S: Il> 

15 

:- 1<15:9> 

:- 1<8:6> 

:- 1<5:11> 

:- esf<5: 3> 

esf<3> 

:- esf<2:O> 

:- 1<15:8> 

:- i<7:6> 

:- 1<5:11> 

~ df l 
~~ 

sd dd 

! ,uor df 
! , I 

jsop 
I I , 

df 
, ! 

bina:ry """"de format 
"oura. fie la 

sDuree mode - S hi ts 

souroe aBfe1' bit 

801£1100 Nlgister - 3 bite 

destination fieZd 

destination mode - S bits 

destination defel' bit 

destination register - 3 bits 

una:ry "" t;ode l<ll"ith., logical, shifts) 
see bina:ry op fozomat 

jBl' format 

see bina:ry "" fOl'mat 

bn;mah format 

offeet val". 

tmp format 

..,tended ""aode f01'f1lO.t 

eztended register 

e:I:tendea source fie ld 

mode 

defel' 

register 

floating op fOl"'lat 

roegistel' destination 

source 

binary operan.d (2 operands) format 

unary operand (l operand), .1MP format 

JSR format 

brop 
I , L!=:~~!.rt I I I branch format 

value :- sign .. extend (offset) 

trop 
I ! ! 

eop 

fop 

1/1 

er 

fr 

unused 

esf 

faf 

VI trap format 

extended operation format 

float ina op fonnat 

211 



.1/.cldr ••• -1ncreme~l: 0> :­

...., Byte-op a 2; 

Byte-op .. 1) 

Byte-op :- (MOVB V BICB V BISB V BITB V CLRB V 

cam V INCB V DECB V NEGB V ADCB V 

SBCB V TSTB V RORB V ROLB V ASRR V 

ASLB v SWAB) 

Reserved-instruction :- «1- ) V (1- ) V ••• V(i - » unused inswuctions 

Register's and Data AdtiJtessed via. I7UJtpuetion Fonnat Speeifications 

uw/next-word<J5_: 0> ;- Mw[PC] used in opel'"Q1td determination 

nW'/next-word'<lS:o>:a (Mw[PC); PC ~ PC + 2) .nth side effects 

lw/last-word<IS:O> :a Mw[PC - 2) undoes side effects 

Rs<IS: 0> := R[sr)<15: 0> the sou,.ce ""!lister 

Rd<i5:0> :- R(drj<IS,O> th" destination ,..gister 

Operand Detemrination fop 50uree and Destination 
T!Jo types of operands aN' used: 5' .. D' .. Sb' and Db' - fo1' operands that cause side-effects 

(i.e., other registers are clumged; and S, D, Sb and Db for operands that do not eause side 
effeets. 7W geneztal pJ'OceduJ-es rio' and rio are used to detel'mine these operonds fof' side ef­
fects and no aids effects .. J-espective1.y 

S'<15:0> :=- Oprd '<15:0>(Mw. 2,sm,sr) source "'om opel'a7'Ui side-effects 

5<15:0> :- ,Oprd<IS:O>(Mw, 2,sm,sv) 

Sb'<7:()";:' :- Oprd '<7: O>(Mb, 2, sm.,sr) 

Sb<7:0> :- Oprd<7: 0> (Mb, I,S'ID,8r) 

D'<15: 0> :- Oprd'<IS:O>(Mw, 2,eIm,dr) 

1X15: 0> := Oprd<15: 0> (Mw , 2,dm t dr) 

Ilb'<7: 0> :- Oprd'<7:0>(Mb, I, eIm,dr) 

Db<7:0> :- Oprd<7: 0> (Mb, ,I, chn.dr) 

Gene""'! Operand Cateutation Pro"e •• (bJith Side Effects) 

Opr4'<wl:0>(M,a1,ID,rg) :"'" « 

Rr<15: 0> :- R[rg) 

(_0) .. Rr<WI: 0>; 

(_2) " (rgo7) • (M(Rrl; next 

Rr"'Rr+ai); 

(_2) " (rg-7) - nw'<wl:O>; 

(m-4) .. (Rr'" ar - a1; next 

M(Rr); 

"(..-6) " (r';7) • M[ow' + Rr); 

(_6) " (rg-7) .. M(ow' + PC); 

(..-1) .. M[Rr); 

(_3) " (rgo7) .. (M(Mw(Rr)); next 

Rr ... Rr + 2); 

(..-3) " (rg-7) .. M(ow'); 

(.-5) • (1.1' ... Rr - ai; Ilext 

M[Mw(RrlJ) ; 

212 

sour-ce tJOrd opef'Q.nds no side-effects 

source byte 

Destination opemnds 

vatue fo,. "",rd or byte operand; dirsct 
addressing: .. t indiaates Length; m 
mode, and rg l"6giSt61' 

seoond<zry defi"i tion for register 

0 .. USB the roegister, Rr, as operand 

2, direot auto-incremen.t {increment 

, Rr}; usuatty used in pop .taak 

2, diNct; nut-fJOm is itrmediate 
operand 

4, di-Net; aftel' auto decttement 

usuaHy used as PUSH stack 

6 J di.rect; inds.:ed via Hr uses neu­
bIOrd 

6, dit~ct; l'Bla-tive to PC; uses ne:r:t­
bIOrd vatue fo,. bIOrd operand defer 
aam-e •• ing 

1, defer through R:r> 

3, defer through iI*J(R,,) (usuaHy 8taek), 

auto-increment 

3, defer via next-woPd; ab80lute 
aam-essing 

5, dsfer through staek after .... to 

Mcr-ement 



(-7) 1\ (r8'/o7)" M(!ho[ow' + RrJJ; 

(_7) 1\ (r8"7) .. M(!ho[nw' + PCJJ; 

); 

(r&,"6) 1\ «_) v (..-S» 1\ 

(SP < 4008» .. (Stack-overflow ~ 1) 

?, defer inds~ed via R1' 

7, dsfer relative to PC 

end calcu.lation Pl'OC6B8 

eheek if stack overfZolJ8 

end operand ""Zeulation proeess 

GeneroZ Operand CawulAtion /'roeess ("",thout Sids Effeets) 

OprcKwl: C1>(M,ai,m , rg) :-

Rr<IS:O> := R[rg] 

( .... 0) '" Rr<vl:O>; 

(_2) " (rern .. Mw(Rr - a{J; 

( .... 2) 1\ (rg=7) .. Iv<wl: 0>; 

(ma4) '" M(Rr]; 

( ... 6) " (r8'/o7) '" M(lv + ir]; 

( .... 6) 1\ (r8"7) '" M(lv + PC]; 

(m-l) =t H[Rr]; 

(_3) 1\ (r8'/o7) '" M[Mw(Rr - 2]J; 

( ... 3) 1\ (r8"7) '" M(lvJ; 

(_5) '" M(Mw[Rr]]; 

(-7) 1\ (r8'/o7) .. M[Mw[lv + Rrll; 

<-7) 1\ (r8'/o7) .. M(!ho[lw + PCJ]) 

Destination addresses for JHP and JSR 

D8<15: 0> :- « 
(dm-O) (?; Illegal-instruction ... 1); 

(_2) 1\ (d";7) .. (Rd; ad ~ Rd + 2); 

(_2) 1\ (dr-7) .. (PC; PC ~ PC + 2); 

(dm-4)'", (ad ~ ad - 2; QeXt ad); 

(_6) 1\ (d";7) .. (ow' + ad); 

(_6) 1\ (dr-7) .. (RW' + PC); 

(_1) .. Mw[Rd}; 

(_3) 1\ (d";7) .. (Mw[Rd]; Rd ~ Rd + 2); 

(_3) 1\ (dr-7) .. ow'; 

(_S) .. (Rd ~ Rd - 2; next Mw(Rd}); 

(-7) 1\ (d.q7l '" Hv[nw. + RdJ; 

(_7) 1\ (dr-7) '" Mw[aw' + PC]); next 

undo pJtevious side-effeats 

undo ppevious side-effeats 

undo previou8 side-effeats 

undo p1"6viou.s '8ide-effeats 

undo previous sids-effeets 

undo previous side-effects 

undo proevious sids-effeets 

undo previous sids-effeets 

direc't"." 

iHegaZ register address 

auto~"""!'ef1Ient 

nuU 

auto~ lleerement 

ind=ed 

relAtive 
dsfers: 

via pegister 

via auto-inC'J.'ement 

absolute add'N.88 

auto4ecrement 

via indez 

re IAtive to PC 

(dr-6) "..., «_0) V(_3) v (_7) 1\ (SP < 4008) _( eheek for .tack OVBrf7.c!.> 

stack-overflow ... 1» 

Data Type Fo"""te 

by/byte<7: 0> 

v/vorcl<I5: 0> 

wl/vord.lnteger<15: 0> 

bybv/byte. boolean-vector:::.7; 0> 

vbv/word.boolean-vector<15: 0> 

d/d.v/double.worcl<31: 0> 

213 



f/d. f/ double.vord. n .... tlq<31: 0> 

fa/fl .... tl"ll •• iSft :- f<31> 

fe/n .... ti"ll.exponent<7:0> :- f<30:23> 

fm/ floatl"ll ..... ntl ••• <22: 0> :- f<22: 0> 

t/tripla.vord<47: 0> 

q/quadruple.word<63: 0> 

qfl quadruple. word. fl .... U"II-polnt<63: 0> 

'Ito :- qf<63> 

qf. :- q£<62: 55> 

qflll :- q£<54:(t·· 

I/O Devices and Interrupt"" St!lte tnformation 

Doviee[O:N-l] 

Devlee-naae[J]<15:0> :- J 

Device-interrupt-locaUon[J]<lS:O> :- K 

dob/device-output-buffer[J ]<15: 0> 

dib/deviee-input-buffer(J ]<15: 0> 

d81 device-.tatu. [J ]<15: 0> 

derr/device-error-flas,,[J]<3: 0> :- ds [J]<15: 12> 

dbusy/device-bu8y[J] := ds[J]<l1> 

N I/O dsviaes - assume dsvice J 

numbe1' to ",hia" dsvioo 1'B8p"""eB and 
is addl"6ssed . 

each device has a value, K. which it 
uses a~ an address tc interrupt pl'OtMS80'" 

P1'Ogl"l'l'l """tretzed dsvice data 

a 1'egi8ter IJith dsvi"e """trol state 

"""""'" 
8tatus 

dunit/device-unit-selecUon[J]<2:O> :- d.[J]<lO:8> assignments 

ddone[J] :- ds[J]<7> 

denb/device-done-interrupt-eoable :- do[.I]<6> 

derrenb/devlce-error-lnterrupt-euble :- cl.[J]<5> 

_/device_ry-extensioft[J]<4:3> :- d.[.1]<4:3> 

dfnc/devlce-funcUon[J]<2: 0> :- d8[J]<2: 0> 

dlntrq/device-interrupt-request[J] :- ( 

(ddone[J] "denb[J] Y «derr[J] I< 0) "derrenb[J]» 

dU/ device-interrupt-level [J]<7 :4> each ds"ice is aBsigned to 1 of 4 levels 

lliZpping of Devioos into H. Each dsvioe's zoegiste1'B aNI mapped into pl'imaJoy !JON memozoy. e.g •• 
TeZetwe 

K' [1775608] :- tk./do[tTY-iteyboerd] 

H' [1775628] :- tkb/dib[tTY-keyboard] 

K' [17756481 :- tps/do[tTY-prlnter] 

.K' [17756681 :- tpb/dob[tTY-priliter] 

Inte1'l'upt Requests 

brjbu8 .. requeat .. for .. lllcerrupt<7 ;4> :­

(dintrr[O]"," dU[O]) v 

(dintrq~lJ '" d11[l]) Y ••• 

(dintrq[J] • dU[J]) Y ... 

(dintrq[N] • dU[N]» 

Illterrupt-rq : - (ift.rql " p) 

int'l'ql/ interrupt -requea t-level<2; 0> ;. 

br<7> • 7; 

.., br<7;> " br<6> • 6; 

..., br<7;> " .., br<6> " ..., br<S> " br<4> .. 4) 

214 

Iceyboa1'd status 

keyboa1'd input cl<Zta 

telep1'i7l.te1' status 

.telep1'inter cl<Zta to p1'int 

OR of all a."ice 1'BqueBts 

intBl'l'upt if a 1'equest is " p1'io1'ity/P 



Instrwction IJ'ltertp1'6tation Process 

1nter-rupt·rq It. Run ,"4 (Not'IUl·lnterpretation); 

Normal-interpretation :- (1 Ita Hw[PC]; PC Ita PC + 2 next 

~ Instruction-execution: next 

.fetch-

e:reCu.t./l 

r ... flag .... (S tate-change(l48); T-flag ... 0» 

lntt:rrupt-rq " ...., Off ... ( 

S tate-change(nevlce-intert'Upt-locat'ion[J]) ; 

pita intrql); 

off. ( ); 

..., Interrupt-rq "Wait .... ( ); 

Sute-change(x~ ;- ( 

SP - SP - 2; next 

Mw(SP] ~ PS; 

SP .... SP - 2; next 

Mw[SP] ~ PC; 

PC - Mw(x]; 

PS - Hw[x+2} 

traee 

assume deviee J inteMoupts 

for stacking state and Nstoroe 

Boundary-Error = (state-change(48 ) ; Boundary-error - 0) 

Time-out-Error .... (state-change(48 ) j TiJDe--{)ut-Error-'" 0) 

Power-Fail-Flag. (state-change(24S); Power-Fail-Flag - 0;) pl"Ogmm must turon of! computer' 

Power-Up-Flag • (PC - 24 8 ; Power-Up-Flag - 0; Activity'" 0) Start Up on pOLJero-up 

rYl.st7'uction-Set Del'ini tion 

Each instrouation is defined in ISP in the tezt, thereforoe, it t.till not be Npeated heN. 

ISP for Fl.oating Point Pr-oces80r/FPP 

Device-Interrupt-location [FPP] :- H' [2448 ] 

FEC<U:O:> 

rOCE :- (FEC-2) 

FDZE :- (FEC-4) 

fleE :" (FEOO6) 

FVE :" (FE008) 

ruE :- (FEOO10) 

FUVE :" (FEOO12) 

FAC[O:5]<63:0:> 

Fr<63:0> 

FPO<15:0:> 

FPS1I<15:0:> 

FER : '" FPSR<l.S~ 

FIE :c FPSR<14> 

FIUV:- FPSikll> 

flU :- FPSR<10> 

F'Iv := FPSR<9:'> 

Fie ;- FPSR<8'~ 

FD :c FPSR<1" .. 

FL :" FPSR<6> 

FT :- FPSR<5'> 

FMH :- FPSR<4 .... 

215 

f'LoatinB point processor el'f'or code 
register 

floating op code er1"Or 

[ZoatinB divide by zero 

floating in tegero 
conversion erl'01' 

fl.oatin.g olJeroflorJ 

floating under!~ow 

floati71!J undefined va:riab Ie 

6 floating point acc::umulators 

te11rpONry floating point register 

j7.oating point PC 

floating poi'1t processor status register 

f'Loating errol' 

inur-l'upt enable 

interorupt on undefined variable 

iJ'lte1"l'upt on undel'flotJ 

inte1'l'upt on overflow 

irtte1'l'upt on integer convel'Bion eJ"l'Ol' 

floating double pl'¥2~isit:Jn. mod~ 

fl.oating tong intege,l' mode 

floating truncate mode 

floating nrainterlance modE 



FN : .. FPSR<3> 

FZ : - FPSR<2:> 

FV : ... FPSR<l> 

Fe : = FPSR «I> 

Ins tructiol'l fOmKlt 

OC<3: 0> i<15: 12> 

FOC<3:0> :- i<ll:8".-' 

AC<l: 0> :""" i<7:6> 

Cener'al Definitions 

XL :=, «FIFO) ~ 1_2-2\ 

(FD=I) ~ 1_2-56 ) 

XLL ;. 2- 128 

XUL := 2127 * XL 

JL ;= «Fl.-O) ~ 2 15 _1; 

(FL=I) ~ 2 31 _\) 

Addr'eSB Cal(!uZation. 

FPs<63 :(t> ::z J 

(<Im-O) ~ FAC(dr); 

(d.,fO) .. ( 

(FI>*O) ~ 0<15: O>otw[PC+2]; 

(FD=I) .. 0<15; 1t>01w[PC+2]D 

""[PC-t4 ]C>\w[PC+6 j) 

FPS'<63:0> :"" ( 

(dmaO) =- FAC(dr) ~ 

(d.,fO) ~ ( 

(F[)o=O) ~ D'<15:O'>cnw' 

(F~l) =- D'<15:0>Cbw'cnw'cnw'» 

FPD<63;iJ> ;= FPs<63;iJ> 

FPD'<63:0>:= FPS'<63:0> 

FS'<15:0> ;= D-'<15:D::-

FIX15,o-~ ;. 0<15,0-· 

FD' :15· 0 .... :'"' D'<lS 0> 

Fae FAC(AC) 

1,a 17 bit result, r, used only for descriptive purposes 

floating negative 

j10ating aero 

f'loatit:19 overflow 

j'loating caI"l"Y 

op <!Ode 

fl.oa ting op co~ 

accumulator 

largest fraction 

smallest non-zero number' 

largest n·wnber 

la:t'gest integer' 

floating poin.t processor SOUNe 

floating point prooessor SOUl'ce !.Ji th. 
side effects 

floating point processor destin.ation 

floating pOh1t processor desti11ation with 
side eireets 

floatin3 sou.rce~ CPU mode 

f1.oating SOUl'ee with side effects, 
CPU ",ode . 

fZoating destin.ation~ CPU mode 

floating destination ',IJith side effects~ 
CPU mode 

destination floating register 

2A prime is Ilsed in'S (e.g., S') and D (e.g •• D') to indicate that when a word is a'ccessed in 
this fashiOl:l, side effects may occur. That is. registers of R may be changed. 

3 g all 16 bits of result, r :: O. then Z is set to 1 ~ Z is set to O. 

"The 8 leas-t significant bits are used to form a 16-bit positive or_ ('Iegative number by extend­
ing bit 7 into 15:8. 

sa "" b means: if bool aan a is true ~ b is executed. 

6 Mw means the memory tiken a's a work-organized memory. 

216 



B.1 INSTRUCTION EXECUTION TIME 

APPENDIX B 

INSTRUCTION TIMING 

The execution time for an instruction depends on the instruction itself, 
the modes of addressing used, and the type of memory being referenced. 
In the most general case, the Instruction Execution Time is the sum of a 
Source Address Time, and an Execute, Fetch Time. 

Instr Time = SRC Time + DST Time + EF Time 

Some of the instructions require only some of these times, and are so 
noted. Times are typical; processor timing, with core memory, may vary 
+15% to-lO%. 

B.l.l BASIC INSTRUCTION SET TIMING 
Double Operand 

all instructions, 
except MOV: Instr Time = SRC TIme+ DST TIme 

+ EFTime 
MOV Instruction: Instr Time = SRC Time + EF Time 

Single Operand 
all instructions: Instr Time = DST Time + EF Time or 

Instr Time = SRC Time + EF Time 

Branch, Jump, Control, Trap & Misc 
all instructions: Instr Time = EF Time 

B.1.2 USING THE CHART TIMES 
To compute a particular instruction time, first find the instruction "EF" 
Time. Select the proper EF Time for the SRC and DST modes. Observe 
all "NOTES" to the EF Time by adding the correct amount to basic EF 
number. 
Next, note whether the particular instruction requires the inclusion of 
SRC and DST Times, if so, add the appropriate amounts to correct EF 
number. 

B.1.3 NOTES 
1. The times specified generally apply to Word instructions. In most 

cases Even Byte instructions have the same times, with some Odd 
Byte instructions taking longer. All exceptions are noted. 

2. Timing is given without regard for NRP or BR servicing. Memory 
types MMll-S, MF11-L, and MLll are assumed with memory within 
the CPU mounting assembly. 

3. If the Memory Management (KT11-C) option is installed and oper­
ating, instruction execution times increase by .09 Jl.sec for each 
memory cycle used. 

4. When MMll-S, MMll-L, MF11-L or MLll are used, due to overlap 
of central processor operation with memory cycles, there is no ad­
vantage as far as processor instruction timing is concerned by inter­
leaving memory. 

5. All times are in microseconds. 

217 



8.1.4 SOURCE ADDRESS TIME 

SRCTime 
Memory 

Instruction Source Mode Bipolar MOS Core Cycles 

0 0.00 .00 0.00 0 
1 .30 .45 .83 1 
2 .30 .45 .83 1 

Double 3 .75 1.05 1.81 2 
Operand 4 .45 .60 .98 1 

5 .90 1.20 1.96 2 
6 .60 .90 1.73 2 
7 1.05 1.50 2.71 3 

8.1.5 DESTINATION ADDRESS TIME 

Mode 
DST Time (A) 

Memory 
Instruction Destjnation Bipolar MOS Core Cycles 

0 .00 .00 .00 0 
1 .30 .45 .83(B) 1 

Single Operand 2 .30 .45 .83(B) 1 
and Double Oper- 3 .75 1.05 1.81(B) 2 
and (except MOV, 4 .45 .60 .98 1 
MTP, JMP, JSR) 5 .90 1.20 1.96 2 

6 .60 .90 1.73(B) 2 
7 1.05 1.50 2.71(B) 3 

NOTE (A): Add .15 I-tsec for odd byte instructions, except DST Mode o. 
NOTE (B): Add .07 I-tsec if SRC Mode = 1-7. 

218 



B.l.6 EXECUTE, FETCH TIME 
Double Operand 

Instruction 

SRC Mode 0 
(Use with OST Mode 0 
SRC Time .--EF Time--:---l 

and OST Time) Bipolar MOS Core 

ADD, SUB, .30 .45 
BIC, BIS (D) (D) 

CMP, BIT .30 .45 
(D) (D) 

XOR .30 .45 
(D) (D) 

NOTE (C): Add .23 Itsec if OST is R7. 
NOTE (D): Add .3 Itsec if OST is R7. 

.90 
(C) 

.90 
(C) 

.90 
(C) 

SRC Mode 1·7 
OST Mode 0 

Mem .--ET Time--::-l Mem 
Cyc Bipolar MOS Core Cye 

1 .45 .60 1.05" 2 
(D) (D) (E) 

1 .45 .60 1.05 1 
(D) (D) (E) 

1 - - -

NOTE (E): Add .23 ~sec if OST is R7, add .08 ~sec if OST is odd byte and not R7. 

SRC Mode 0 to 7 
OST Mode 1 to 7 
r-- EF Time---:---l Mem 
Bipolar MOS Core Cyc 

.75 1.05 2.00 2 

.45 .60 1.13 1 

.75 1.05 2.00 2 



I\) 
I\) 
o 

Double Operand (Cont.) 

Instruction 
(Use with DST 

SRC Time) Mode 

0 
0 
1 
2 

MOV 3 
4 
5 
6 
7 

DST 
Register 

0-6 
7 

0·7 
0·7 
0-7 
0-7 
0-7 
0·7 
0-7 

EF Time 
I (SRC MODE = 0) 
Bipolar MOS Core 

_30 .45 .9 
.60 .75 1.13 
.75 1.05 2.00 
.75 1.05 2.00 

1.20 1.65 2.98 
.90 1.20 2.15 

1.25 1.80 3.13 
1.05 1.50 2.90 
1.50 2.10 3.88 

; EFTime~ I I (SRC MODE = 1-7) Memory 
Bipolar MOS Core Cycles 

.45 .60 1.05 1 

.75 .90 1.28 1 

.75 1.05 1.95 2 

.75 1.05 1.95 2 
1.20 1.65 3.05 3 
.90 1.20 2-.03 2 

1.25 1.80 3.13 3 
1.20 1.65 3.05 3 
1.65 2.25 3.96 4 



I\) 
I\) .... 

Single Operand 

Instruction I 
(Use with DST Time) Bipolar 

CLR COM, INC, DEC, ADC, 
ABC, ROL, ASL, SWAB, 
SXT 

NEG 

TST 

ROR,ASR 

ASH, ASHe 

NOTE (F): Add .12 !--tsec if odd byte. 
NOTE (G): Add .23 !--tsec if DST is R7. 
NOTE (H): Add .15 !--tsec if odd byte. 
NOTE (I): Add .15 !--tsec per shift. 
NOTE (J): Ad.d .30 !--tsec if DST is R7. 

.30 
(J) 

.75 

.30 
(J) 

.30 
(J) 

.75 
(I) 

DST MODE = 0 
E F Ti m e ----:----l 

MOS Core 

.45 .90 
(J) (G) 

.90 1.28 

.45 .90 
(J) (G) 

.45 .90 
(J) (G) 

.9 1.28 
(I) (I) 

DST MODE 1 TO 7 
Memory I EF Time--::-1 Memory 
Cycles Bipolar MOS Core Cycles 

1 .75 1.05 2.0 2 

1 1.05 1.40 2.18 2 
(F) 

1 .45 .60 1.13 1 

1 .75 1.05 2.0 2 
(H) 

1 .90 1.05 1.43 1 
(I) (I) (I) 



Single. Operand (Cont.) 

Instruction Memory 
(Use with SRC Times) Bipolar MOS Core Cycles 

MUL 3.30 3.45 3.83 1 

DIV 

by zero .90 1.05 1.43 1 

shortest 6.90 7.05 7.83 1 

longest 8.55 8.70 9.08 1 

Instruction Bipolar MOS Core Memory Cycles 

MFPI 1.05 1.35 2.18 2 . (use with 

MFPD 1.05 1.35 2.18 2 SRC Times) 

DST r-Instruction Time---, 
Instruction Mode Bipolar MOS Core Memory Cycles 

MTPI 0 .90 1.20 2.03 2. 
MTPD 1 1.20 1.65 2.93 3 

2 1.20 1.65 2.93 3 
3 1.65 2.25 4.03 4 
4 1.35 1.80 3.01 3 
5 1.80 2.40 4.11 4 
6 1.65 2.25 4.03 4 
7 2.10 2.85 5.01 5 

Branch Instructiorls 

InstrTime InstrTime 
(Branch) (No Branch) Memory 

Instruction Bipolar .. MOS Core Bipolar MOS Core Cycles 

BR. BNE. BEQ. .60 .90 1.13 .30 .45 .90 1 
BPL. BMI. BVC, 
BVS, BCC, BCS, 
BGE. BLT. BGT, 
BLE, BHI. BLOS, 
BHIS, BLO 

SOB .75 .90 1.13 .60 .75 1.28 1 

222 



Jump Instructions 

Destination r--Instr Time Memory I 
Instruction Mode Bipolar MOS Core Cycles 

l' .90 1.15 1.43 1 
2 .90 1.15 1.43 1 
3 1.20 1.50 2.26 2 

~MP 4 .90 1.15 1.43 1 
5 1.35 1.65 2.41 2 
6 1.05 1.35 2.18 2 
7 1.50 1.95 3.16 3 

1 1.50 1.80 2.63 2 
2 1.50 1.80 2.63 2 
3 1.80 2.25 3.46 3 

JSR 4 1.50 1.80 2.63 2 
5 1.95 2.35 3.61 3 
6 1.50 1.95 3.38 3 
7 2.10 2.70 4.36 4 

Control, Trap, & Miscellaneous Instructions 

~lnstrTime 
Corel 

Memory 
Instruction ipolar MOS Cycles 

RTS 1.05 1.45 2.11 2 

MARK .90 1.20 2.03 2 

RTI, RTT 1.50 1.95 3.16 3 

SET N, Z, V, C 

CLR N, Z, V, C .60 .75 1.13 1 

HALT 1.05 1.05 1.05 0 

WAIT .45 .45 .45 0 WAIT Loop 
for a BR is 
.3 J.l.sec. 

RESET lams 10ms lams 1 

lOT, EMT, 
TRAP, BPT 2.40 3.15 5.26- 5 

SPL .60 .75 1.13 1 

INTERRUPT 2.25 2.85 4.95 4 First Device 

223 



B.2 LATENCY 
Interrupts (BR requests) are acknowledged at the end of the current 
instruction. For a typical instruction execution time of 3 Itsec, the aver· 
age time to request acknowledgement would be one·half this or 1.5 Itsec. 
The worst case (longest) instruction time (Negative Divide with SRC 
Mode 7) and, hence, the longest request acknowledgement would be 
11.79 Itsec max with core (10.2 Itsec with MOS and 9.00 Itsec with Bi· 
polar). . 
The Interrupt service time, which is the time from BR request acknowl· 
edgement to the fetch of the first subroutine instruction, is 4.95 -Itsec 
max with core, 2.85 Itsec with MOS and 2.25 Itsec with Bipolar. 
Hence, the total worst case time from BR request to begin the fetch of 
the first service routine instruction is: 

Normal 

Memory Management 
Operating 

Bipolar 
11.25 

1l.70 

MOS 
12.87 

13.32 

Core 
16.74 

17.90 

The total average time for BR request to begin the fetch of the first serv­
ice routine instruction is: 

Normal 

Memory Management 
Operating 

N PR Latency is 3.5 Itsec worst case. 

224 

Bipolar 
3.95 

4.40 

MOS 
4.85 

5.30 

Core 
8.45 

8.90 



B.3 FLOATING POINT INSTRUCTION TIMING 
Floating point times are calculated in a similar manner to the CPU In· 
struction times. The times involved are preexecution Interaction time, 
source or destination time, execution time, CPU displacement time, and 
the time taken to fetch the next Instruction. 

With the floating point Instructions the CPU and the FPP operate in 
parallel and hence, the Instruction time includes a CPU time and a 
parallel FPP time. These times do not coincide, each unit is free to con­
tinue at a different time with its next operation. 

Instruction Time (CPU) = pre'interaction + source + disengage + 
fetch of the ~ext instruction. 

Instruction Time (FPP) = pre-interaction + source + execution. 

Pre-execution Interaction time: This involves the passing of informa· 
tion between the CPU and the FPP. The total time is 600 ns. The float­
ing pOint unit Interacts only during the last 150 ns_ 

Therefore, the CPU beco:nes active at the time 0, and remains so until 
time 600 ns, while the FPP becomes active at time 450 and remains 
active until the time 600 ns. The FPP could have been active from a 
previous task during the initial 450 ns. 

B.3.1 Source or Destination Times 
These times are .the same whether the calculation is for source or 
destination. The times given are for the address calculation. To this must 
be added memory access time to actually fetch the operands: 
Integer-l word; Long integer and Floating-2 words; 
Double Precision-4 words 

Therefore: SOURCE/DST = Calculation Time + MEMORY ACCESS TIME. 

Calculation Time 

Reg mode 0 
Floating mode 0 

1 
2 
3 
4 
5 
6 
7 

300 ns Bipolar 
(MSll-C) 

1120 
1120 
1260 
1260 
1650 
1260 
1800 
1650 
2080 

450 ns MOS 
(MS11·B) 

1120 
1120 
1260 
1260 
1760 
1260 
1920 
1760 
2300 

MEMORY ACCESS TIME: to be added to all modes except O. 

ADD: 1600 ns for core OR 
ADD: 1100 ns for MOS OR 
ADD: 990 ns for BIPOLAR 

for every memory Access required to fetch the data. 

225 

850 ns Core 
(MM11-S) 

1120 
1120 
1260 
1260 
2100 
1260 
2250 
2100 
3100 



8.3.2 Floating Point Execution 

Floating Point Instructions 

Mnemonic Instruction Time (I's) 

Floating AC-Floating Source Group: OPR FSRC, AC 

MIN MAX 
LDF Load floating 1.5 1.5 
LDD Load floating double 1.7 1.7 
ADDF Add floating 2.4 5.5 
ADDD Add floating double ' 2.6 7.9 
SUBF Subtract floating 2.4 5.5 
SUBD Subtract floating double 2.6 7.9 
MULF Multiply floating 4.7 7.1 
MULD Multiply floating double 6.6 12.8 
DIVF Divide floating 5.4 8.4 
DIVD Divide Floating double- 7.5 13.8 
MODF Multiply and Integerize floating 5.3 7.9 
MODO Multiply and Integerize floating double 7.8 20.2 
LDCDF Load and convert from double to floating 1.7 2.4 
LDCFD Load and convert from floating to double 1.7 2.4 
STF Store floating .88 .88 
STD Store floating double .88 .88 

Floating AC-Floating Destination Group: OPR AC, FDST 

CMPF Compare floating 2.6 3.2 
CMPD Compare double 2.8 3.5 
STCFD Store and convert from floating to double 1.7 
STCDF Store and convert from double to floating 1.7 3.0 

Floating AC-Source Group: OPR SRC, AC 

LDCIF Load and convert from integer to floating 3.6 4.6 
LDCID Load and convert from integer to double 3.8 4.8 
LDCLF Load and convert from long integer to 

floating 3.8 5.7 
LDCLD Load and convert from long integer to 

double 4.1 5.9 
LDEXP Load Exponent 1.5 

226 



Mnemonic Instruction Time (ILS) 

MIN MAX 

Floating AC-Destination Group: OPR AC, DST 

STCFI Store and convert from floating to i,nteger 3.4 4.4 
STCFl Store and convert from floating to long 

integer 4.2 5.2 
STCDI Store and convert from double to integer 4.2 5.2 
STCDl Store and convert from double to long 

integer 4.2 5.2 
STEXP Store exponent 2.4 

Floating Destination Group: OPR FDST 

ClRF Clear floating 1.1 
ClRD Clear double 1.3 
NEGF Negate floating 1.7 
NEGD Negate double 1.7 
ABSF Make absolute floating 1.7 
ABSD Make absolute double 1.7 
TSTF Test floating 1.5 
TSTD Test double 1.5 

Operate Group: OPR SRC 

lDFS load floating program status OPR DST .88 
STFPS Store floating program status .88 
STST Store floating status (exception & code 

and program counter) 1.3 
Copy Condition codes 1.1 

SETF Set floating mode 1.1 
SETI Set integer mode 1.1 
SETD Set double mode 1.1 
SETl Set long integer mode 1.1 

227 



8.3.3 Disengage and Fetch Next Instruction 
This is the time required by the CPU to disengage from the FPP and 
fetch the next instruction. If the instruction is a Floating Point instruc­
tion then the CPU restarts the cycle described-in this section (B.2), other­
wise, it returns to the CPU cycle described in section B.1. 

CPU time only: 

990 ns Core 

600 ns MOS 

450 ns Bipolar 

Example 

ADDF A(R), ACO :a floating point add instruction in indexed 
source mode (6), and in single (32 bit 
precision). 

Pre-Interaction Time: 
CPU 600 itS FPP 150 !J.s 

Source: 300 !J.S Bipolar 
(MSll-C) 

Calculation Time: 1650 

Memory Access 1930 
(2 words) 

3630 

Execution Average 3950 

Disengage 450 
Fetch Next 

CPU Instruction Time: Starting at T = 0 

Bipolar 

MOS 
Core 

FPP Instruction Time: Starting at T = 450 

450!J.s MOS 850 !J.s Core 
(MSll-B) (MMll·S) 

1760 2100 

2200 3200 

3960 5300 

3950 3950 

600 990 

_ 600 + 3630 + 450 = 4880 

600 + 3960 + 600 = 5160 
600 + 530 + 990 = 6890 

Bipolar 150 + 3630 + 3950 = 7730 

MOS 150 + 3960 + 3950 = 8060 

Core 150 + 5300 + 3950= 9400 

228 



APPENDIX C 

MEMORY MAP AND RESERVED LOCATIONS 

000000 

000037 
000040 
000057 
000060 

000377 

770000 

....... 

" ./ 

TRAP VECTORS 

SYSTEM SOFTWARE 
COMMUNICATION WORDS 

INTERRUPT VECTORS 

[PLEASE REFER TO PDP-'~ 
PERIPHERAL HANDBOOK 

PERIPHERALS 
AND 

REGISTERS 

-

The location of trap vectors for processor conditions is as follows: 

Note: all locations are located in Kernel Virtual Address Space. 

Vector Condition 
4 Odd address error-an attempt has been made to reference a word 

at an odd address. The instruction causing the error has been 
aborted (at the microinstruction causing the "bus pause" asso­
ciated with the bad bus cycle). 

4 fatal stack violation (red), warning stack violation (yellow)-an 
attempt has been made to modify (DATlP, DATO, OR DATOS) a 
word whose address is below the final stack boundary (red), or 16 
words before the boundary (yellow) with an R6-related operation. * 
The instruction causing the error is aborted (as above), R6 is set 
equal to the quantity 4 and a trap is taken. Odd address errors 
and timeout associated with R6·related operations will also lead to 
fatal stack violations (instead of their normal sequence). 

* "rite final stack boundary is 16 words beyond the stack limit. 

229 



4 Timeout-no SSYN was seen within 5 I'sec of processor transmis­
sion of MSYN. The instruction causing the error is aborted. 

4 Parity error-incorrect data parity has been detected by a slave 
device during a processor initiated DATA or DATIP. Note that this 
will be acted upon only at the next bus cycle initiated by the pro· 
cessor. 

10 Illegal and reserved instructions-JMP R;JSR M,R; "HALT" in user 
mode; FPP instructions when FPP not available; and the reserved 
instructions are: 

000007·000077 
000210·000227 
007000·007777 
075000·076777 
106400·107777 

NOTE: If FPP is available, illegal FPP instructions trap to Location 244 with an 
exception code of 2. 

14 Opcode 000003 and the T bit trap through this vector. The T bit 
causes this trap whenever it is set and there is no RIT instruction 
in the instruction register. 

20 lOT Trap 

24 Power Fail 

30 Emulator Trap (EMT) 

34 Trap Instruction (TRAP) 

Interrupt Vectors 
240 Programming Interrupt Request 

244 Floating Point Exception 

250 Memory Management vioiations and memory management traps 

Register Locations 
Memory Management: (All Memory Management Registers use 2 Word 

'Locations) . 

777572 through 777577 Memory Management Status Registers 0·2 
772516 through 772517 Memory Management Status Register 3 
777600 through 777617 User Instruction Descriptor Registers 0·7 
777620 through 777637 User Data Descriptor Registers 0·7 
777640 through 777657 User Instruction Address Registers 0·7 
777660 through 777677 User Data Address Registers 0·7 
772200 through 772217 Supervisor Instruction Descriptor Registers 0·7 
772220 through 772237 Supervisor Data Descriptor Registers 0·7 
772240 through 772257 Supervisor Instruction Active Registers 0·7 
77.2260 through 772277 Supervisor Data Address Registers 0·7 
772300 through 772317 Kernel Instruction Descriptor Registers 0·7 
772320 through 772337 Kernel Data Descriptor Registers 0·7 
772340 through 772357 Kernel Instruction Address Registers.0·7 
772360 through 772377 Kernel Data Address Registers 0·7 

230 



Memory Parity Status Registers: 

772110 Memory Parity Status Register 0-8K 
772112 Memory Parity Status Register 8K-16K 
772114 Memory Parity Status Register 16K-24K 
772116 Memory Parity Status Register 24K-32K 
772120 Memory Parity Status Register 32K-40K 
772122 Memory Parity Status Register 40K-48K 
772124 Memory Parity Status Register 48K-56K 
772126 Memory Parity Status Register 56K-64K 
772130 Memory Parity Status Register 64K-12K 
772132 Memory Parity Status Register 12K-80K 
772134 Memory Parity Status Register 80K-88K 
772136 Memory Parity Status Register 88K-96K 
772140 Memory Parity Status Register 96K-I04K 
772142 Memory Parity Status Register 104K-112K 
772144 Memory Parity Status Register 112K-120K 
772146 Memory Parity Status Register 120K-124K 

Processor: 

777570 Console Switch and Display Register 
777772 Program Interrupt Register 
777774 Stack Limit Register 
777776 Processor Status Word 

ORDER OF SERVICE 
In the case of concurrent trap/interrupt conditions_ The PDP-11/45 
service requests in the following order: 

Order Conc!ition Action 

0 Odd Address Trap (4) 

0 Fatal Stack Violation (R.ed) SP4; Trap (4) 

0 Page Violation Trap (250) 

0 Timeout (NXM) Trap (4) 

0 Parity Error Trap (4) 

1 FPP Data XFER Request DO Bus Cycle 

2 Console Flag Console Control 

3 Memory Management Trap Trap (250) 

4 Warning Stack Violation (Yel) Trap (4) 

5 Power/Fail Trap (24) 

u*Processor Priority Level 7*** 

6 FPP Exception Trap Trap (224) 

7 PIRQ 7 Trap (240) 

8 BR7.INTR Interrupt 

231 



9 

10 

17 

18 

NOTES 

u*Proceslor Priority Level 6*** 

PIRQ6 

BR6.INTR 

***Processor Priority Level 5*** 

Trap (240) 

Interrupt 

***Processor Priority Level 1 ***--

PIRQ 1 Trap (240) 

*** Processor Priority Level 0***' 

T-Bit Set and not RTT Trap (14) 

1. Order 0 conditions are mutually Elxclusive and take immediate pre­
cedence over all other conditions. They force immediate interruption 
(abort) of instruction execution when they ~ccur. 

2. Other order conditions permit the instruction in progress (including 
traps) to proceed to completion before being serviced. 

3. Lower order conditions depend on the Processor Status setup by 
previously serviced conditions. Thus power/fail service should (and 
generally would) raise the processor priority to .level 7 to lock out 
interrupts. 

4. The T-bit condition is not locked out by any processor priority level. 

5. Fatal Stack Violations supersede warning stack violations., In case 
both occur during an instruction only the fatal violation is acknowl­
edged. 

6. If a Memory Management Trap and a Fatal Stack Violation occur 
together. the PDP-ll~45 will loop: 

A. The Fatal Stack Violation sequence is exceeded. 

B. The first instruction of the "Trap 4" Service Routine is exe-
cuted setting the SP to O. ' 

C. The 'Memory Management Trap begins but causes a Fatal 
Stack Violation. 

D. Step A. Step B. Step C .... 

7. If power fails before execution of a Fatal Stack Violation Trap 
Sequence: 

A. The PS and PC are taken from the power fail sequence_ 

B. The SP is set to 4. 

232 



C. The previous PC and PS (from the routine causing the stack 
violation) are saved and (pushed into) locations 0 and 2. 

D. Execution of the Power/Fail Service Routine begins-a sug· 
gested beginning is: 

TST SP 
BNE SPOK 
MOV #N,SP ;set up emergency stack 

8. If power failed during (or after) execution of a Fatal Stack Viola· 
tion Trap Sequence: 

A. The Stack Violation Trap Sequence completes-saving the 
PC and PS associated with the violations 0 and 2 and establishing 
a new PS and PC as determined by the vector at 4. 

B. The first instruction of the "Trap 4" service rout~ne is exe· 
cuted. 

C. The Power/ Fail Vector is loaded into the PS and PC. 

D. An attempt is made to push the old PC and PS into the stack. 
The stack pointer however is probably at Oso a Fatal Stack 
Violation occurs. 

E. Operation proceeds as in note # 7. The PC and PS of the 
routine causing the Fatal Stack Violation are overwritten (they 
were saved in locations 0 and 2). The PC and PS for the "Trap 4" 
Service Routine are the same as the contents of the . Power/ Fail 
Vector-also the same as the contents of the current PS and PC. 

9. The vectors for Power/ Fail and Stack Violation Traps (at 24 and 4) 
must raise the processor Priority to level 7 to lock out interrupts. In 
addition they must not set the T·bit. Since there is no stack left, any 
interrupts -or T·Bit Traps will cause Fatal Stack Violation and either: 

A. Loop if the vector at 4 is mis·set. 

B. Loss of the Power! Fail Trap if the vector at 24 is mis·set. 

10. If an interrupt or trap causes a Fatal Stack Violation, the PS and PC 
loaded from the Interrupt Vector are saved in locations 0 and 2. 
The PC and PS of the Interrupted (Main Line) Program are lost. 

11. If any order 0 conditions oq:ur in the Fatal Stack Violation Trap 
Sequence before a new stack is established. The processor will 
enter the loop described in Note 6 above. 

233 



12. If a particular error condition is endangered by the routine to service 
that condition the stack will grow to its limit and then cause a Fatal 
Stack Violation. 

13. Reserved and illegal instructions (including the Floating Point in­
structions when Floating Point Hardware is not implemented as well 
as attempts to halt in User Mode) are treated just as instruction 
traps (e.g., trap, EMT)_ Note however that in the case of Floating 
Point Instructions the PC pushed on the stack points at the instruc­
tion word. 

234 



APPENDIX D 

PROGRAM INTERRUPT REQUESTS 

Program Interrupt Requests 
A request is booked. by setting one of the bits 15 through 9 (for PIR 7-
PIR 1) in the Program Interrupt Register at location 777772. The hard· 
ware sets bits 7-5 and 3-1 to the encoded value of the highest PIR 
bit .set. This Program Interrupt Active (PIA) should be used to set the 
Processor Level and also index through a table of interrupt vectors for 
the seven software priority levels. Figure D·1 shows the layout of the 
PI R Register. 

PIR 7 PIR 1 

I I r' 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Figure D·1 Program Interrupt Request Register 

When the PIR is granted, the Processor will Trap to location 240 and 
pick up PC in 240 and the PSW in 242. It is the interrupt service rou' 
tine's responsibility to queue requests within a priority level and to clear 
thePIR bit before the interrupt is dismissed. 

The actual interrupt dispatch program should look like: 

MOVB PIR,PS 

MOV R5,-(SP) 

MOV PIR,R5 

BIC # 177761,R5 

JMP @DISPAT(R5) 

which requires 15 core locations. 

; places Bits 5-7 in PSW Priority Level 
Bits 

; save R5 on the stack 

; Gets Bits 1-3 

; use to index through table 

235 



236 



APPENDIX E 

MEMORY PARITY 

When memory parity is installed on a system, the user can keep track 
of the status of his· memory through memory status registers. 

There are 16 memory status registers on the PDp·11/45 each one asso· 
ciated with an &K section of memory. (See Appendix C) The status reg­
ister uses the format: 

15 I, 10 9 8 7 o 

I I I I I I '---t' tL..._L_PIARITY DISA8LE 
I - HALT ENABLE 

TYPE OF PARITY 
'-------------PARITY ERROR 

Bit 15 Parity Error 

Bits 11, 10 Type of Parity 

Bit 9 Halt Enable 

Bit 8 Parity Disable 

Bits 11 and 10 are associated with 
the high order 4K and low order 4K 
of this memory address bank. When 
set to a 1 they specify odd parity for 
their respective half banks; when 
clear, even parity_ 

When bit 9 is set the machine will 
execute a halt if a parity error oc­
curs; when clear, the machine will 
perform an effective timeout and 'in­
terrupt' through location 4. 

When this bit is clear, a parity error 
will cause an interrurrt (or halt as 
specified in bit 9); if it is set, no ac­
tion will be taken on a parity error. 

When the machine is powered-up, the status registers have bit 15 set 
to 0, and the remaining bits set to 1: halt, odd parity enable; parity 
disable. 

237 



238 



INDEX 

Absolute Addressing .. 36 
Addressing. . ............... 3,25 
Architecture ................... . .... 9 
Autodecrement Mode .............. 30 
Autoincrement Mode ....... 29 
Branch Instructions ... .. 77 
Bus Options . . ..... 6 
Byt~ Instructions . . . .... 43 
Central Processor . 2, 11 
Co-Routines .... 141 
Communications ... 7 
Core Memory. . .. 16 
Condition Codes ............. .. .... 14 
Condition Code Instructions .. 126 
Console ... .. 1.94 
CPU ................ .2,11 
Data Acquisition and Control .... 7 
Deferred Addressing ..... 32 
Direct Addressing ... .. ... 27 
Direct Memory Access ............. 4 
DMA .. ' .......... 4 
Double Operand Instructions .. 65 
Floating Point Instructions ... 168 
Floating Point Processor 4, 14, 163 
FORTRAN .... 6 
FPP ... . .. 4 
General Registers .. .. .. 12 
Immediate Mode ........... 35 
Index Mode .. . .. .. 31 
Indirect Addressing . .. ........ 32 
Instructions .... .. ..... 2, 41 
Instruction Timing .. 217 
Instruction Set ProCessor 42, 203 
Interleaving.............. .. .... 16 
ISP.. .. .. 42, 203 
Logical Instructions ................ 73 
Memories ........................... 4, 15 
Memory Management ....... 5, 143 
Memory Parity .... 17 
Memory Retention .... 16 
Modes, Addressing .. 25 
Nesting ......... 135 

Operator's. Console ... 194 
Options ... .. ....... 5 
PC .. . ........................ 26 
PDP-11 Family ..................... 1 
Peripherals ........................ 5 
PIC. . ....................... 140 
Position Independent Code .... 140 
Power Fail And Restart .............. 4 
Power Failure ........ 22 
Priority Interrupts ........... 3,19 

. Processor Status Word .. 13, 24 
Processor Traps ....... . ..... 22 
Processor Priority .................... 14 
Program Counter...... ... 26, 35 
Program Control Instructions . 77 
Programming Techniques ...... 127 
PS .. . ................. 13,24 
Recursion ... 140 
Reentrancy .................... .. 137 
Reentrant Code ..... 3 
Register Mode .. 28 
Registers .............. 12 
Relative Addressing .. . 37 
Rotate Instructions ................ 61 
RSTS-ll ... . ................. 6 
Shift Instructions ......... 52 
Single Operand Instructions .... 45 
Software. ... ............ . .. 6 
SolidState Memory.. .. ..... 15 
SP ................ .25 
Stack Limit Register ................ 14 
Stack Pointer... . 25 
Stacks ..... 4, 14, 127 
Storage Devices . . .. 5 
Subroutine Instructions ..... . 98 
Subroutines ...... 131 
System Interaction . "t9 
T Bit .14 
Timing ......................... 217 

. Traps . 14, 22 
Trap Instructions . .. 108 
UNIBUS .... ...................... 1, 10 

239 



INSTRUCTION INDEX 

ADC(B) ................................... 58 
ADD "" .. "."" ... """ .. """ ........... 67 
ASL(B) ...................... .54 
ASH.................. 55 
ASHC. ..56 
ASR(B) ............. . .............. 53 

BCC ............ . ............ 85 
OCS ... .M 
BEQ ......... ,.... .80 
BGE .... .............. 90 
BGT ..... . ......................... 92 
BHI .. ................ 94 
BHIS ....... .................... 97 
BIC(B) ... . ........... 76 
BIS(B) . .'''''''''''' 74 
BIT(B). . ........................... 75 
BLT ...... 89 
BLE .. . ..................... 91 
BLO. , ................ 96 
BLOS . . ............... 95 
BMI............ ................. 82 
BNE . . .................. .' .... 81 
B~ ... ..................... ~ 
BPT .. ............... 111 
BR ...................................... 78 
BVC ..................................... 87 
BVS . """"""'''''''' ............... 86 

CLR(B) 
CMP(B) .......... . 
COM(B) .'"'''''''' 
CONDo CODES. 

DEC(B) 
DIV 

............. 46 
............. 69 

51 
........ 126 

........ 47 
......... 71 

HALT ................... ""'''''''''''''' 119 

INC(B) .................................... 48 
lOT ................................. 112 

JMP ...... ""'''''''''' ......... 106 
JSR ... ................... .. .......... 99 

MARK .............................. 101 
MFPD ......... . .. ....... 125 
MFPI ... .... . ........ 124 
MOV(B) " .. ".""""""""."." 66 
MTPD .,... ................... 123 
MTPI ..... ............... 122 
MUL .... .. 70 

NEG(B) . 

RESET. 
ROL(B) 
ROR(B) 
RTI 
RTS .............. . 
RTI .. 

. ...... 49 

. ... 121 
.......... 62 

"""""" .. 63 
.113 

. .. 10;3 
... .... 114 

SBC(B) ..................... 59 
SOB .... . ....... 107 
SPL ............................. 105 
SUB. . "'''''''''''''' 68 
SWAB ............ ..... 64 
SXT ....... . ...................... 60 

TRAP .... .. 
TST(B) ..... . 

WAIT .. .. 

..110 
.. 50 

........... 120 

EMT ... ....... 109 XOR ...... . .. ....... 72 

240 



FPP INSTRUCTIONS 

ABSD ................... ............ 187 
ABSF .................. ........... 187 
AOOD.... . .............. 1~ 
ADDF ...... . ............... 173. 

CFCC ........ . ................... 192 
CLRD ......... . ................. 186 
CLRF ." .............. 186 
CMPD ................ ................ 178 
CMPF . . .... 178· 

DIVD 
DIVF 

.. 177 
... 177 

LDCDF ...... . .............. 180 
LDCFD ................................. 180 
LDCID .................. .............. 182 
LDCIF .............. 182 
LDCLD ... . ......... 182 
LDCLF ....... .............. ..182 
LDD .......... .. ...................... 171 
LDEXP ........ . .................... 184 
LDF .............. 171 
LDFPS ................................ 191 

MODD .............................. 179 

MODF .............................. 179 
MULD .......................... 176 
MULF ..................................... 176 

NEGD ................................... 175 
NEGF ................................... 175 

SETD ................. 189 
SETF ............................. 1~ 
SETI .......... ...................... 190 
SETL .................................... 190 
STCDF ............................ 181 
STCDI ..................... 183 
STCDL ......... . .. 183 
STCFD ..................... 181 
STCFI............. ........... 183 
STCFL ..................... ............ 183 
STD .. .. ........................ 172 
STEXP ............... .. .............. 185 
STF ... .......... 172 
STFPS ............................. 191 
STST .... .............. ... 192 
SUBD ..... . ......... 174 
SUBF .. . ........ 174 

TSTD 
TSTF 

.......... 188 
........................ 188 

241 



j. 

NOTES 

242 



NOTES 

243 



DIGITAL EQUIPMENT CORPORATION ~DmDD!D WORLDWIDE SALES AND SERVICE 

MAIN OFFICE AND PLANT 

NORTHEAST 
REGIONAL OFFICE: 
2J5 Wyman Street, Waltham, Massachusetts 02154 
Telephone- (617)-690·0320/0330 TWX, 710-324-6919 
WALTHAM 
15 Lunda Street. Waltham. MassachlJsells 02154 
Telephone: (617)-891-1030 TWX: 710·324·6919 
CAMBRIDGE/BOSTON 
699 Main Street. Cambridge, Massachusells 02139 
Telephone: (61/)-491-6130 TWX. 710-320-1167 
ROCHESTER 
130 Aliens Creek RO(ld. Rochester, New York 14616 
Telephone (716)-461-1700 TWX, 710-253-3078 
SYRACUSE 
S656 East Molloy Road, Am. 142, Picard Building 
Syracuse. New York 13211 
Telephone: {315j.455-5987/SS 

CONNECTICUT 
240 rum,'roy Avenue. Mflnden. ConnectIcut 064!>O 
Telephone: (203)·237·8441/7466 TWX: 710.461-0054 

MID-ATLANTIC __ SOUTHEAST 
Rt GJONAL OFFICE 
U S. Routt' t. Prjnceton. New Jersey 08540 
Telephone {6(9)-452-2940 TWX 51O-68!, :!33i:i 
MANHATTAN 
810 ~th Ave 
New York, N.Y. 10019 
Telephone: (212)-582-1300 
NfW YORK 
9~, C;"dnr Lnne. Englewood New J"rs,-,y 07631 
Telephone (201)·671·4964. ('212)·S94-695!i. (212)·i36-0447 
TWX "i10.991.9721 

NEW JERSEY 
lJ!.>!lIl<,)lIle 46, Par!>lpp;my. N"", j"rlH'y Oin!A 
Telephone' (201)-335-3300 TWX 710·987·8319 
PRINel TON 
US floule 1 
Prln<:elon. New lers"y 0&.40 
Tel"pllOlle (6(9) 452-2940 TWX ~10 6!l!,·2338 
METUCHEN 
195 Main St. 
Metuchen, N.!. 00840 
Telephone: (201)-549-4100/2000 

146 Main Slreel, Mliynard, M-/lssachusatts. U.S.A. 01754· Telephone: From Melropol,r,m Basion. 645-8600. Elsewhere (617)-897-5111 
TWX: 7fO-347-0212 Cable. DIGITAL.. MAYN Tel8iC. 54-8457 \. 

UNITED STATES 
MID-ATLANTIC - SOUTHEAST (cont.) 
LONG ISLAND 
1 HuntlnQlon Q"adrangle 
SUlle IS07 Huntington Station. New York 11746 
Telephone: (516)·894-4131. (212}·895·8095 
PHILADELPHIA 
Station Square Three. Paoli. Pennsylvan"l 1930t 
TelC'phone (215)·1i47-49OO/4410 felex ~,10·668·839h 
WASHINGTON . 
Ex,",cllt,ve BUilding 
6311 Kenilwprth Ave .. River"'ale. Maryland 20840 
TC'lephone '(301) 719·16001752-8797 TWX: 710-826-9662 
DURHAM/CHAPEL HilL 
ExeclItive Perk 
3700 Chapel Hill Bll'd. 
Dl:ri)"m. Norlh Carolma 27707 
Telephune (!)19)-4S9·334i T'.VX 510-927-0912 
ORLANDO 
Stille 130. 7001 Lake Ellenor Drive. Orl"ndo. Flonda 32809 
Telephone: (305)-851·4450 TWX· 810·850·0180 
ATLANTA 
2Bl~) Cleurv.ew Place. SUlle 100 
Atl'lI1t,,- GIlorqla 30340 
Telephone: (404)-458-3133/3134/3135 TWX: 810-7514223-
KNOXVillE 
6311 Kmyston PIke. Stllte 21[ 
KnOXVille. lennessee 37919 
Telephone' (615)-588-6571 TWX: 810-583-0123 

CENTRAL 
R[GIONAl OFFICE 
IllS(! Front;Ige Road. Northbrook. ill,no,s 60062 
felepllcne (312)·498-2500 TWX 910-686-0655 
PITTSBURGH 
400 Penn. Center Boulev,~rd 
PIttsburgh. Penrsylv"nIH 1!,235 
Telephone. (412)·243-9404 TWX· 710-797·3657 
CHICAGO 
111:;0 Frontage ROild. Northbrook. Hlinois 00062 
Tel<cphone, (312)-498-2500 TWX 910-6B6·06!J5 
ANN ARBOR I 
230 Huron View Boulevard. Ann Arbor. Mlchlfl~n 48103 
Telephone: (3\3)-761-1150 TWX 610-223-6053 
DETROIT 
'lJ7i7 Greenfield Road. Stllie 189 
Soulhfleld. Micfl,gan 4807:; 
Telepholl" PI3)-559-~i6~; 

CENTRAL (cont.) 
INDIANAPOLIS 
21 Beach"'fay Drive - Suite G 
Ind"mapolls. IndIana 46224 
Telephone: {317)·243-8341 TWX 610·341-3436 
MINNEAPOLIS 
SlIlte 111. 8030 Cedar Avenue South 
MinneapoliS. Mmnesota 55420 
Tel<;phonc. (612)-854·6562·;}4-5 TWX. 910-575-2818 
CL[VElAND 
25000 Euclid Ave 
Euclid. Ohio 44117 
Telephone. (216)-946·8484 TWX: 810-427-2608 
KANSAS CITY • 
532 East 42nd St.. Independence. Missoufl 54055 
Telephone: (616)-461-3440 TWX: 815·461-3100 
ST LOUIS 
SUlle 110, 115 Progreas Parkway, Maryiand Heights, 
M,ss .... ,,,,63043 
Telephone: (314)·678·4310 TWX: 910·764·0831 
DAYTON 
3\01 Kellenng Boulevard. Dayton. Ohio 45439 
Telephone: (5\3)-29+3323 TWX: 810-459-1676 
MILWAUKEE 
8531 W. Capl!ol Drove. MIlwaukee, Wiscon~m 53222 
Telephone' (414)-463-9110 TWX. 910·262·1199 
DAllAS 
8855 North StllmmOnS Freeway. D"lIl1e, Te~a$ 75247 
Telephone: (214}-638·4880 TWX· 910·861-4000 
HOUSTON 
3417 Milam Street. SUite A. Houston. Texas 77002 
Telephone: {713}524-2961 TWX 910·881-1851 
NEW ORLEANS 
3100 R,dgelake Drive. Suite 108 
Met.ltrle, Louisillna 70002 
T~lephone: (504)·837·0257 
ROCKFORD 
500 South Wyma St 
Rockford. Illinois 61101 
Telephone: (915)-965-5557 
TULSA 
31405. Winston 
Winston Sq. Bldg. 
Suite 4 
Tulse, Okla~omil 14135 
Telephone: (916)-749-4476 

WEST 
REGIONAL OFFICE· 
310 Soquel Way, Sunnyvale. Catlfornia 94086 
Telephone: (408).73,,·9200 

SANTA ANA 
2110 S. Anne St. 
Santa Ana. Calif. 92704 
Telephone: (714)-979-2460 
F.S.714·979·2464 TWX'910'391-l189 

WEST lOS ANGELES 
1510 Cotner Avenue. Los Angeles, California 90025 
Telephone' (213)-479-379114318 TWX: 910-342-6999 

SAN DIEGO 
6154 MiSSIon Gorge Ro~d. Suite 110 
San DIego. Calolornla 9:2120 
Telephone: (714)-260-1880, 7970 TWX: 910-335-1230 

SAN FRANCISCO 
1400 Terra Belli!. Mountain View, Callfornie 94040 
Tele~flone, (415)-964·6'200 TWX, 910-313·1266 

OAKLAND 
7850 Edgewaler Dn"e, Oakland. California 94621 
felephone: (415) 635·545317830 TWX: 910-366-7236 

ALBUQUERQUE 
6303 IndIan School Road, N.E., Albuquerque, N.M. 81110 
Telephone: (505)-296-5411/5428 TWX, 91O-98!Hl614 

DENVER 
2305 South Color"do Boulevard, Suite #5 
Denver. Colorado 80222 
Telephone: (303)-757-3332/758·1656/758·1659 
rWX.910-931-2550 

SEATTLE 
1!J21 130th N.E .. Bellevue. Washington 98005 
Telephone. (200)-454-4058/455·5404 TWX: 910-443-2306 
SALT LAKE CITY 
431 South 3rd East, Salt Lake CIty, Utah 84111 
Telephone. (801)·328-9838 TWX, 910-925-5834 

PHOENIX 
4358 East Broadway Road, Phoen"" Arizona BS040 
Telephone {602)-2S8·3488 TWX: 910-950-4691 

PORTLAND 
SUite 168 
531'9 S W Westgate Drive. Portland. OrelO'on 97221 
Telephone: (503)-297-3761/3765 




	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	248
	xBack

