
IAS PDS User's Guide

Order Number: AA-H003C-TC

This manual describes the IAS Program Development System (PDS) interface to the IAS operating
system.

Operating System and Version: IAS Version 3.4

May 1990

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1}(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital
Equipment Corporation or its affiliated companies.

Copyright ©1990 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DDIF
DEC
DEC/CMS
DEC/MMS
DECnet
DECUS
DECwindows
DECwrite
DIBOL

IAS
MASS BUS
PDP
PDT
RSTS
RSX
ULTRIX
UNIBUS
VAX

VAXC
VAXcluster
VAXstation
VMS
VR150/160
VT

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

PREFACE xv

CHAPTER 1 INTRODUCTION- TO IAS 1-1

1.1 INTERACTIVE APPLICATIONS SYSTEM 1-1

1.1.1 Interactive Processing 1-1
1.1.2 Batch Processing 1-1
1.1.3 Real-Time Processing 1-1

1.2 DIFFERENT TYPES OF IAS SYSTEM 1-2

1.2.1 Real-Time System 1-2

1.2.2 Multiuser System 1-3
1.2.3 Timesharing System 1-3

1.3 THE USER INTERFACE 1-3

1.3.1 The Program Development System (PDS) 1-4

1.4 SYSTEM ACCESS SECURITY 1-5

1.5 PROGRAMMING LANGUAGES 1-5

1.5.1 MACR0-11 1-5

CHAPTER 2 KEYBOARD OPERATION 2-1

2.1 THE INTERACTIVE TERMINAL 2-1
2.1.1 Typing Input 2-1
2.1.2 Keyboard Functions 2-1
2.1.3 Control Character Functions 2-4

2.2 CORRECTING INPUT ERRORS 2-5
2.2.1 Cancelling a PDS Command 2-5

2.2.2 Deleting Characters 2-5
2.2.3 Deleting a Line 2-6

Ill

Contents

2.2.4 Using Upper- and Lowercase 2-6

CHAPTER3 A SAMPLE INTERACTIVE SESSION 3-1

3.i iNTRODUCTiON 3-1

3.2 SAMPLE INTERACTIVE SESSION 3-1

3.3 LOGGING IN 3-3

3.3.1 Control C 3-3

3.3.2 The Username 3-3

3.3.3 The Password 3-3
3.3.4 The PDS Prompt 3-4

3.4 THE CREATE COMMAND 3-4
3.4.1 Correcting Input Errors 3-4
3.4.2 Canceling a Line 3-5

3.4.3 Closing the New File 3-5

3.5 THE TYPE COMMAND 3-5

3.6 THE FORTRAN COMMAND 3-5

3.7 THE LINK COMMAND 3-6

3.8 THE RUN COMMAND 3-7

3.9 THE DIRECTORY COMMAND 3-7

3.10 THE RENAME COMMAND 3-8

3.11 THE DIRECTORY/BRIEF COMMAND 3-8

3.12 THE LOGOUT COMMAND 3-9

Iv

CHAPTER 4 ISSUING PDS COMMANDS

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

INTRODUCTION

PDS COMMANDS
4.2.1
4.2.2
4.2.3

Command Strings
Abbreviated Input
Underline Convention

COMMAND PARAMETERS
4.3.1 Parameter Lists
4.3.2 Parameter Prompts
4.3.3 Optional Parameters

COMMAND AND PARAMETER QUALIFIERS

INVALID COMMANDS OR SYNTAX
4.5.1
4.5.2
4.5.3
4.5.4

Active Tasks
Subsystems
Errors
Length of Command Line

PDS COMMAND PRIVILEGE
4.6.1 PDS Command Masks

PDS TIMESHARING TASK PRIVILEGE

USE OF I CTRUC I
4.8.1 Effect of I crRuc I on Type-ahead
4.8.2 Effect of I crnuc I on Indirect Command Flies

PDS DIALUP SUPPORT

CHAPTER 5 BATCH PROCESSING

5.1 INTRODUCTION

Contents

4-1

4-1

4-1
4-1
4-2
4-2

4-2
4-2
4-3
4-3

4-3

4-4
4-4
4-4
4-4
4-5

4-6
4-6

4-10

4-10
4-11
4-11

4-11

5-1

5-1

v

Contents

5.2 BATCH COMMANDS 5-1

5.3 BEGINNING AND ENDING A BATCH JOB 5-1
5.3.1 The $JOB Command 5-2
5.3.2 The $EOJ Command 5-2

5.4 THE SUBMIT COMMAND 5-2

5.5 BATCH EDITING 5-3

CHAPTER 6 FILE HANDLING 6-1

vi

6.1

6.2

INTRODUCTION

THE IAS FILE SYSTEM
6.2.1
6.2.2
6.2.3

Volumes
File and Volume Protection
RMS-11 Files Management in IAS

6-1

6-1
6-1
6-2
6-3

6.3 FILE SPECIFICATIONS 6-3

6.4

6.3.1 File Specification Defaults 6-6
6.3.1.1 Changing Default Values • 6-7
6.3.1.2 Displaying Default Values (Timesharing Systems Only) • 6-7

6.3.2 Wildcards 6-8
6.3.2.1 Input Files • 6-8
6.3.2.2 Output Files • 6-8

6.3.3 Valid File Specifications 6-9

DEVICE MANAGEMENT
6.4.1
6.4.2

5.4.3
6.4.4
6.4.5
6.4.6
6.4.7

System Devices
Accessing a Non-System Device
6.4.2.1 Logical Device Names • 6-10
6.4.2.2 Logical Units • 6-10
Mounting a Volume on a Device
Dismounting a Volume
Allocating a Device (Timesharing Systems Only)
Deallocating a Device (Timesharing Systems Only)
Assigning Logical Unit Numbers to a Device (Timesharing
Systems Only)

6-9
6-9

6-10

6-11
6-12
6-12
6-13

6-13

Contents

6.5 FILE MANAGEMENT 6-14

6.5.1 Creating Files 6-14
6.5.1.1 Using the Editor to Create a Sequential File • 6-14
6.5.1.2 User File Directories • 6-14

6.5.2 Manipuiating Files 6-15
6.5.2.1 The APPEND Command • 6-15
6.5.2.2 The COPY Command• 6-16
6.5.2.3 The RENAME Command• 6-18
6.5.2.4 The MERGE Command • 6-18

6.5.3 Listing Files 6-18
6.5.3.1 Listing Files on the Line Printer • 6-18
6.5.3.2 Printing Files on Varied Stationery • 6-19
6.5.3.3 Listing Files at an Interactive Terminal • 6-19
6.5.3.4 The DUMP Facility • 6-19

6.5.4 Deleting Files 6-20

CHAPTER 7 IAS EDITORS 7-1

7.1 INTRODUCTION 7-1

7.2 THE TEXT EDITOR (EDI) 7-1

7.3 BATCH EDITING 7-1

7.4 THE DEC EDITOR (EDT) 7-1

7.5 THE KEYPAD EDITOR (KEO OR K52) 1~1

CHAPTER 8 INTRODUCTION TO PROGRAM CONTROL 8-1

8.1 INTRODUCTION 8-1

8.2 PROCESSING MODES 8-1

8.3 INDIRECT COMMAND FILES 8-1

8.4 USER LIBRARIES 8-2

vii

Contents

8.4.1 Macro Libraries
8.4.2 Object Module Libraries

8.5 CREATING SOURCE FILES

ft ,..

o.o THE CREATE COMMAND

8.6.1 The EDIT Command

8.7 ERROR STATUS RETURNED TO PDS
8.7.1 Conditional Command Execution

CHAPTER 9 BASIC-11

9.1 INTRODUCTION

9.2 THE BASIC COMMAND

9.3 I CIBLLC I

9.4 TERMINATING A BASIC SESSION

9.5 EXAMPLE

CHAPTER 10 COBOL

10.1

10.2

10.3

viii

INTRODUCTION

CREATING SOURCE FILES

THE COBOL COMMAND

10.3.1 Compiiing COBOL SOUiCe Files

10.3.2 COBOL Command Qualifiers
10.3.3 COBOL Compiler Switches
10.3.4 Compiler Error Messages

8-2
8-2

8-3

8-3
8-4

8-5
8-5

9-1

9-1

9-1

9-1

9-2

9-2

10-1

10-1

10-1

.. ft ..
IU-1

10-1

10-2
10-2
10-3

10.4 LINKING OBJECT FILES
10.4.1 The LINK Command

10.4.1.1 Options • 10-3
10.4.1.2 Object Module Libraries • 1 Q--4

10.4.1.3 Output Files~ 1o-4
10.4.1.4 Example• 1o-4

10.5 RUNNING THE TASK

CHAPTER 11 FORTRAN

11.1 INTRODUCTION

11.2 CREATING SOURCE FILES

11.3 THE FORTRAN COMMAND
11.3.1 Compiling Source Files
11.3.2 FORTRAN Command Qualifiers
11.3.3 FORTRAN Compiler Switches
11.3.4 Examples

11.4 LINKING OBJECT FILES
11.4.1 The LINK Command

11.4.1.1 Options • 11-3
11.4.1.2 Object Modules • 11-4
11.4.1.3 Output Files • 11-4
11.4.1.4 Example • 11-4

11.5 RUNNING THE TASK

CHAPTER 12 MACR0-11

12.1 INTRODUCTION

12.2 CREATING SOURCE FILES

12.3 THE MACRO COMMAND

Contents

10-3
10-3

10-5

11-1

11-1

11-1

11-1
11-2
11-2
11-2
11-3

11-3
11-3

11-5

12-1

12-1

12-1

12-1

Ix

Contents

12.4 ASSEMBLING MACR0-11 SOURCE FILES
12.4.1 MACR0-11 Command and File Qualifiers

12.5 LINKING OBJECT FILES
12.5.1 The LINK Command

12.5.1.1 Options • 12-3
12.5.1.2 Object Module Libraries • 12-3
12.5.1.3 Output Files • 12-3
12.5.1.4 Example • 12-4

12.6 RUNNING THE TASK

12.7 DEBUGGING
12.7.1 The Online Debugging Technique
12.7.2 User-Written Debugging Aids

CHAPTER13 CORAL66

x

13.1

13.2

13.3

13.4

~., c,,

INTRODUCTION

CREATING SOURCE FILES

THE CORAL COMMAND
13.3.1 Compiling Source Files
13.3.2 CORAL Command Qualifiers
13.3.3 Examples

LINKING OBJECT FILES

13.4.1 The LINK Command
13.4.1.1 Options • 13-3
13.4.1.2 Object Modules • 13-4
13.4.1.3 Output Files • 13-4
13.4.1.4 Example • 13-4

12-1
12-2

12-2
12-2

12-4

12-4
12-4
12-5

13-1

13-1

13-1

13-1
13-1
13-2
13-2

13-3
13-3

13-4

Contents

CHAPTER 14 PDS COMMAND DESCRIPTIONS 14-1

14.1 INTRODUCTION 14-1

14.2 PDS COMMAND FORMAT 14-1

14.3 PDS COMMAND DESCRIPTIONS 14-3

14.4 PDS COMMAND LIBRARY 14-3
ABORT 14-5
ALLOCATE 14-7
APPEND 14-9
ASSIGN 14-12
BASIC 14-14
CANCEL 14-16
COBOL 14-18
COMPARE 14-24
CONTINUE 14-27
COPY 14-30
CORAL 14-35
CREATE 14-39
DCL 14-45
DEALLOCATE 14-46
DEASSIGN 14-48
DELETE 14-50
DIRECTORY 14-54
DISABLE 14-57
DISMOUNT 14-59
DUMP 14-62
EDIT 14-66
ENABLE 14-69
$EOD 14-70
$EOJ 14-72
FIX 14-73
FORTRAN 14-75
GOTO 14-80
HELP 14-82
IDENTIFY 14-84
INITIALIZE 14-86
INSTALL 14-91
$JOB 14-94
LIBRARIAN 14-96
LINK 14-108
LOGOUT 14-118
MACRO 14-120
MCR 14-125
MERGE 14-127
MESSAGE 14-129

xi

Contents

MOUNT 14-131
ON 14-136
PRINT 14-139
QUEUE 14-141
REMOVE 14-147
RENAME 14-149
RUN 14-151
SET 14-159
SHOW 14-173
SORT 14-179
STOP 14-182
SUBMIT 14-184
TRUNCATE 14-186
TYPE 14-188
UNFIX 14-190
UNLOCK 14-192
VERIFY 14-194

INDEX

FIGURES
1-1 Real-Time System 1-2
1-2 Multiuser System 1-3
1-3 Timesharing System 1-4
2-1 LA30/VT05 Layout 2-2
2-2 LA36/VT50 Layout 2-2
2-3 VT52 Layout 2-3
2-4 VT100 Layout 2-3

TABLES
2-1 Keyboard Functions 2-4
2-2 Control Character Functions 2-4
4-1 PDS Command Privilege Classes 4-6
4-2 PDS Command Privileges 4-7
6-1 User Categories 6-2
6-2 IAS Device Mnemonics 6-4
6-3 Standard IAS File Types 6-5
6-4 File Specification Defaults 6-7
6-5 Summary of File Handling Commands 6-20
14-1 COBOL Switches 14-19
14-2 CORAL 66 Switches 14-36
14-3 Duplicate and Update Combinations 14-41
14-4 Use of CREATE Qualifiers with Different Fiie Organizations 14-43

xii

Contents

14-5 Response Choices for the /CONFIRM Qualifier 14-51
14-6 FORTRAN-IV Switches 14-76
14-7 FORTRAN-IV Plus Switches 14-78
14-8 DOS and RT11 Initialization Qualifiers 14-86
14-9 RT11 Qualifier 14-87
14-10 RT11 Qualifier 14-87
14-11 Maximum Files Per Device 14-88
14-12 Command Qualifiers and Defaults 14-111
14-13 Task Builder Options 14-115
14-14 Values for MACRO Switches IDS and /EN 14-122
14-15 Values for MACRO Switches /LI and /NL 14-122
14-16 MOUNT Command Qualifiers 14-134
14-17 Required Privileges for the SHOW Commands 14-173

xiii

Preface

Manual Objectives and Reader Assumptions
The IAS PDS User's Guide is intended for users of the program development system (PDS). The
manual is organized as an introduction to PDS and assumes no prior knowledge of the IAS system.
Chapter 14 contains a description of each nonprivileged PDS command and assumes a knowledge
of the information covered in the preceding chapters.

Document Structure
This book is organized into the following chapters:

1 Introduction to PDS

2 Keyboard Operation

3 A Sample Interactive Session

4 Issuing PDS Commands

5 Batch Processing

6 File Handling

7 IAS Editors

8 Introduction to Program Control

9 BASIC-11

10 COBOL

11 FORTRAN

12 MACR0-11

13 CORAL 66

14 PDS Command Descriptions

Associated Documents
The !AS Master Index and Documentation Directory lists and summarizes all the associated IAS
documents and intended readership.

xv

1 Introduction to IAS

1.1 Interactive Applications System

1.1.1

1.1.2

1.1.3

The interactive applications system (IAS) is a multifunction operating system designed for the
_larger PDP-lls. IAS supports the following modes of operation:

1 Interactive

2 Batch

3 Real-time

IAS permits mixed mode processing; that is, it allows the concurrent processing of real-time, batch,
and interactive tasks.

Interactive Processing
Interactive applications involve user and system interaction. You communicate with IAS by means
of an interactive terminal. At a terminal you run a task, for example, a compiler, or a utility
program. Under IAS, interactive tasks can:

1 Be under control of the IAS scheduler - see the /AS System Management Guide.

2 Be swapped, that is, brought in and out of memory; see the /AS System Management Guide.

3 Communicate with other tasks.

4 Use common utility programs.

Batch Processing
Batch applications are applications that require no user/system interaction after the batch job has
been started. A batch job, for example, can involve compiling (assembling), linking, and running a
program. Under IAS, batch jobs:

1 Have the same facilities as interactive tasks.

2 Are scheduled with, but at a level below interactive tasks.

3 Have no external communication except with Shareable Global Areas (SGAs), see the lAS
Executive Faciliti,es Reference Manual.

See Chapter 5 for a description of batch processing.

Real-Time Processing
Real-time applications require a response to actual events. The response depends on the specific
real-time application. For example, the application can be used to monitor a temperature-critical
chemical process in a refinery. On meeting the critical temperature, the response might be to
sound a warning, a~ust a valve, or relay information to a control console.

1-1

Introduction to IAS

Real-time processing often involves multiprogramming where tasks can interact with each other.
For example, a real-time task might activate or provide data for another real-time task. Under
IAS, real-time tasks have the following characteristics:

1 Software priority between 1 (low) and 250 (high).

2 Normally checkpointable (that is, can be brought in and out of memory). See the IAS System
Management Guide for a description of checkpointing.

1.2 Different Types of IAS System

1.2.1

IAS systems are available in three different types:

1 Real-time

2 Multiuser

3 Timesharing

The system manager decides whether IAS is to be a real-time, multiuser, or timesharing system at
system generation time. See the IAS Installation and System Generation Guide for a description of
the system generation procedure.

See Sections 1.2.1 and 1.2.3 for descriptions of the different types of system.

Real-Time System
The real-time system is the simplest form of IAS system. The real-time system contains neither an
IAS scheduler nor the timesharing control primitives (TCP). Consequently, this type of system is
suitable only for real-time and single-user applications. Figure 1-1 illustrates a real-time system.

Figure 1-1 Real-Time System

Executive

l
l l l

Interactive Batch Real-time

I I

1-2

1.2.2

1.2.3

Introduction to IAS

Multiuser System
The multiuser system includes the !AS scheduler but not TCP. This type of system is suitable for
multiuser development, but because it does not have the access, regulation, control, and protection
facilities of TCP it is only suitable for use in a "safe" environment. Figure 1-2 illustrates a
multiuser system.

Figure 1-2 Multiuser System

Multiuser)
l

Executive

Scheduler

l l
Interactive Batch

Low Priority High Priority
Real-time Real-time

Timesharing System
The timesharing system has both an IAS scheduler and TCP. It is, therefore, intended for
installations running interactive and batch processing, together with a low level of real-time
processing. TCP provides the protection and privilege control facilities typically required in a
timesharing environment. Figure 1-3 illustrates a timesharing system.

1.3 The User Interface
Under IAS, the user interface is one of the following:

1 Program development system (PDS).

2 Monitor console routine (MCR). See the IAS MCR User's Guide for a full description of this
interface.

1-3

1.3.1

Introduction to IAS

Figure 1-3 Timesharing System

(Timesharing)

I
Executive

Scheduler

TCP

r

Interactive Batch
Low Priority High Priority
Real-time Real-time

3 A user-written command language interpreter (CLI). See the IAS Guide to Writing a Command
Language Interpreter.

The Program Development System (PDS)
PDS is the CLI normally used in IAS. The PDS user communicates with IAS by issuing PDS
commands from an interactive terminal (see Chapters 2, 4 and 14). PDS commands enable the
user to enter and leave IAS, create, compile, link and run programs and obtain information about
system status (see Chapter 3 for a sample interactive session). In addition, PDS supports an MCR
mode that simulates the MCR interface, while using a terminal with PDS as the CLI. See the
MCR command in Chapter 14, and see the IAS MCR User's Guide for descriptions of the MCR
commands.

PDS includes system manager commands issued at the console terminal. The console terminal
prompts SCI> (system control interface) instead of PDS>, but any user can log in at the console
provided the system manager has assigned that user PR.SCI privilege. For convenience, the
term SCI is used throughout the IAS manual set to describe the PDS system manager commands
and interface. See Chapter 4 for a description of command privilege, and see the !AS System
Management Guide for descriptions of the SCI commands.

1-4

Introduction to IAS

1.4 System Access Security
PDS ensures system security by requiring that you enter your user name and password before
you can access the system. The system checks your user name to make sure that it is authorized
and your associated password is checked for validity. If both your user name and password are
acceptable, you can access IAS and issue PDS commands. The system manager gives you your
user name and password.

1.5 Programming Languages

1.5.1

IAS supports the programming languages FORTRAN-77 and MACR0-11. The MACR0-11
assembler and FORTRAN compiler are provided with IAS.

Because they produce intermediate code run by an interpreter, BASIC programs can be executed
immediately after translation. Source language compilers produce machine-language code and,
therefore, require the additional step of linking.

MACR0-11
The programmer who wants to work closely with the PDP-11 hardware and IAS can use the
MACR0-11 assembler. In addition to enabling the user to invoke machine-language instructions,
MACR0-11 enables you to write instructions in machine-language and to define macros to save
repetitive coding sequences.

1-5

2 Keyboard Operation

This chapter describes the layout and operation of an interactive terminal. See Chapters 3 and
Chapter 4 for information about logging into IAS and using PDS.

2.1 The Interactive Terminal

2.1.1

2.1.2

You type data directly into the system from an interactive terminal (for example, a DECwriter
or a visual display unit (VDU)). The keyboard layout of an interactive terminal is very similar to
the layout of an ordinary typewriter. The number and letter keys are the same as a typewriter;
however, the position of punctuation, special character, and function keys can differ from one type
of terminal to another (see Figures 2-1, 2-2, 2-3, and 2-4).

Typing Input
You enter data one line at a time and end each line with a carriage return (jRETI) or ALTmode
(IESCI). Carriage return is shown on the keyboards as ~ or I RETURN I. ALTmode is shown on
the keyboards as IALTj or IESCI. Your terminal echoes your text for verification and editing. An
additional feature of IAS is typeahead mode, which allows you to enter new data while the system
is processing previous input. After the previous input is processed, the system accepts the input
that you typed ahead. Input in typeahead mode is not echoed on the screen until the system
accepts it. For further information, see the IAS Device Handlers Reference Manual.

Keyboard Functions
Use function keys to format and edit a line or to access the upper of two characters that appear
on a key. Further keyboard functions become available when you press jCTRLI and a letter key
simultaneously. (See Tables 2.1.2 and 2.1.3 for a detailed description of these functions). Typing
a IRETI (CR or RETURN) causes the system to store the current line or to carry out an action (for
example, prompt for input).

2-1

Keyboard Operation

Figure 2-1 LA30NT05 Layout

Figure 2-2 LA36NT50 Layout

2-2

Keyboard Operation

Figure 2-3 VT52 Layout

Figure 2-4 VT100 Layout

2-3

2.1.3

Keyboard Operation

Table 2-1 Keyboard Functions

Key Description

DELETE or
RUBOUT

LINE FEED or
LF

~

I SHIFT LOCK I

I CAPS LOCK I

I SPACE BAR I
ITABI

Transmits the current line to the computer and performs a carriage return and line feed.
I RETURN I also causes prompting for mandatory input when you type it after a PDS command
string.

First part of a number of special two-key combinations called control functions (for example,
I CTRUZ O. See Section 2.1.3 for a fuii description.

Erases the last character typed. You can use this key repeatedly to erase a number of
characters. On a VDU, the current printing position moves to the left and erases the deleted
character. On other terminals, the string of deleted characters is echoed between an initial
backslash (\) and a final backslash (\).

Similar in operation to IRETI . When you press IRETI after a PDS command string, the system
prompts for input (either mandatory or optional). In MCR mode, any MCR command you
terminate with IESCI causes the suppression of the PDS» prompt until you type I CTRUC ~ The
character can echo as $ on some installations.

Has no control effect under IAS.

Selects the uppermost of two characters appearing on a key or selects uppercase on an upper­
and lowerca~· terminal. You press the key while you holdlSHIFTldown. If you use ISHIFTlwith
keys that have only one character, it has no effect.

Alternately locks and unlocks I SHIFT~
Alternately locks and unlocks uppercase letters. While I CAPS LOCK I is in effect all letters are
upper case, whether or not you press I SHIFT I. Other keys are not affected.

Advances the current typing position one space at a time.

Causes the current typing position to move to the next tab stop on the line (normally 8 spaces).

Control Character Functions
Typing a character key while pressing ICTRL! invokes one of the functions listed in Table 2-2. The
combination oflCTRLI and another character key is called a control character; for example,ICTRUZI.

Table 2-2 lists the control characters supported under IAS and their associated functions.

Table 2-2 Control Character Functions

Control
Character

ICTRUCI

jCTRUBI

!CTRUKI

ICTRULI

2-4

Function

Invokes PDS if you issue it before logging in. Returns control to PDS if you issue it while a task
is running. Cancels a command if you issue it between the PDS prompt andlRETI.

On a terminal with a low-speed paper tape reader, I CTRUB I signals the computer to start reading
the tape.

Causes the current typing position to move to the next tab stop on the line (performs the same
action as !TAB!).
Advances the current line to the next vertical tab stop (equivalent to a linefeed).

Advances continuous stationery to the next top of form (equivalent to a formfeed).

Keyboard Operation

Table 2-2 (Cont.) Control Character Functions

Control
Character

ICTRLJOI

CTRL/O
CTRL/S

jCTRLJRI

jCTRUTI

ICTRLJUI

ICTRLJVI

ICTRUZI

Function

Interrupts and suppresses output to the terminal. Successively pressing I CTRL/O I causes the
suppression and resumption of output. For example, if you want a directory listing on your
terminal and the first few lines give you the information you need, I CTRL/O I suppresses the rest
of the directory.

You use these keys in conjunction with each other. I CTRL/S I suspends output to the terminal.
I CTRL/Q I resumes output to the terminal. You can stop and start output without losing any
characters.

Retypes the current line, removing any deleted characters.

On a terminal with a low-speed paper tape reader, I CTRUT I stops reading from the tape. I CTRL/T I
can be present on the tape, or you can switch the reader off and type I CTRLJT I on the keyboard.

Deletes the current input line. The prompt, if any, is then repeated.

Flushes all characters typed ahead of a read. If a read is in progress I CTRL/V I has no effect. For
typeahead modes, see the /AS Device Handlers Reference Manual.

Terminates a file input from a terminal; that is, signals "end of file".

2.2 Correcting Input Errors

2.2.1

2.2.2

Before you terminate a line, you can correct typing errors or change the line completely by using
I DELETE I or I CTRL/U I. However, once the line has been terminated and transmitted to the computer,
you cannot correct any errors in that line. If the input is held in a file, you can correct it by means
of an editing program.

Cancelling a PDS Command
Typing I CTRL/C I or I CTRL/U I cancels a PDS command that has not yet been terminated.

Deleting Characters
On a VDU, pressing I DELETE I deletes the most recent character displayed. I DELETE I has no effect
when the current line is empty. Each deleted character is removed from the screen, and the cursor
returns to the position it occupied before you typed the character. For example, to change ACCDE
to ABCDE press I DELETE I four times to erase CCDE, then type the sequence BCDE. The result
displays as follows:

AB COE

On a hard copy terminal, each deleted character is echoed. The deleted characters are delimited by
backslashes (\). Using the previous example, the deleted string CCDE echoes as:

ACCOE\BDCC

After you type the sequence BCDE, the string appears as follows:

ACCOE\BDCC\BCDE

NOTE: Note that the final backslash is added when a character other than I DELETE I is
typed.

2-5

2.2.3

2.2.4

Keyboard Operation

For both the VDU and hard copy terminal, ABCDE is the string accepted and sent to the computer
when the line is terminated.

Deleting a Line
Pressing I CTRUU I has the following effect:

1 Deletes all the characters on a line.

2 Echoes with "U.

3 Performs a carriage return/line feed.

You can then enter the correct text. For example, if you type ACCDEFGHI, but meant to type B
for the first C, pressing I RUBOUT I eight times would be tedious and the result confusing on a hard
copy terminal. It would be easier to press I CTRUU I and start again. The latter procedure would
appear as follows:

ACCDDQRI "O
ABCDDQRI

After using I DELETE I to correct a line, but before terminating the line, you can ensure that the final
result is correct. To display the line as it is to be sent to the computer, simply press I CTRIJR t you
can make further corrections at this point if necessary. With I CTRIJR I and I CTRUU L the prompt, if
any, is repeated.

Using Upper- and Lowercase
PDS can accommodate both upper- and lowercase, provided the terminal is upper- and lowercase.
The lowercase characters echo as uppercase (depending on the terminal); see the IAS Device
Handlers Reference Manual.

2-6

3 A Sample Interactive Session

3.1 Introduction
This chapter introduces PDS by demonstrating its use in a session at an interactive hardcopy
~erminal. Section 3.2 records the session, which is then described line by line in the remaining
sections of this chapter. The development session covers the following procedures:

1 Logging in

2 Creating a file

3 Correcting typing errors

4 Cancelling a line

5 Closing a file

6 Displaying the contents of a file

7 Translating a source to an object module

8 Linking a program

9 Running a program

10 Obtaining directory information

11 Renaming files

12 Logging out

NOTE: The line numbers at the left margin in Section 3.2 are for reference and are not
part of the actual session.

3.2 Sample Interactive Session
This section records a short program development session, where a small program to add three
numbers is written in FORTRAN.

01 I Ctrl/C I

02 Username? CAROL

03 Password?

04 IAS PROGRAM DEVELOPMENT SYSTEM VERSION 3.4

17:09:08 15-MAY-90

05 USER CAROL UIC [200,22] TT05: 17:09:21 15-MAY-90

06 PDS> CREATE ADD.FTN

READY FOR INPUT

07 TYPE 1

0 8 1 FORMAT (' ENTER TWO NUMBERS')

3-1

A Sample Interactive Session

3-2

10 ACCEPT 2,K,L

11 2 FORMAT
(22\2\I5)

12 PRINT"U

13 TYPE 3,K+L

3 FORM.l\.T (' THE SUM IS

15 STOP

16 END

17 "Z

18 PDS> TYPE ADD.FTN

TYPE 1

' Ti:;\ ' -- '

19

20

21

22

1 FORMAT (, ENTER TWO NUMBERS')

ACCEPT 2,K,L

2 FORMAT (2I5)

23 TYPE 3;K+L

24

25

3 FORMAT (' THE SUM IS ' , IS)

STOP

26 END

27 PDS> FORTRAN ADD

28 17:17:41 SIZE: lOK CPU: 0.10

29 PDS> LINK ADD

30 17:18:38 SIZE: llK CPU: 12.06 STATUS: SUCCESS

31 PDS> RUN ADD

32 17:30:51

33 ENTER TWO NUMBERS

34 12, 78

35 THE SUM IS 90

36 JOB160 -- STOP

37 17:31:14 SIZE: 7K CPU: 0.02

38 PDS> DIRECTORY

39 DIRECTORY DBO: [200,22]

40 15-MAY-90 17:36

41 ADD.OBJ;l 2.

42 ADD.FTN;l 1.

15-MAY-90 17:17

15-?A_Z\Y-90 17: 17

43 ADD.TSK;l 32. C 15-MA.Y-90 17:18

44 TOTAL OF 35./35. BLOCKS IN 3. FILES

45 PDS> RENAME ADD.*;* ADDTWO.*;*

46 PDS> DIRECTORY/BRIEF"U

47 PDS> DIRECTORY/BRIEF

48 DIRECTORY DBO: [200,22]

49 ADDTWO.OBJ;l

50 ADDTWO.FTN;l

51 ADDTWO.TSK;l

52 PDS> LOGOUT

A Sample Interactive Session

53 USER CAROL UIC [200,22] TT05: 17:45:01 15-MAY-90

54 CONNECT TIME 14 M SYSTEM UTILIZATION 12 MCTS

55 BYE

3.3 Logging In

3.3.1

3.3.2

3.3.3

The following sections describe the steps shown in the sample development session in Section 3.2.

One method of giving instructions to a computer is to type commands to a "command-line
interface". PDS is the command-line interface for IAS. PDS interprets the commands you give
to IAS. When PDS is ready, you can issue commands. When you complete the following login
procedure, PDS will be ready to receive commands.

Control C
To begin the login procedure, hold down ~ and press §. This key sequence is called "CONTROL
C", and is written lctrllCI or "C.

The Username
In response to I CTRUC L the Username prompt displays as follows:

Username?

The username is a unique 1 to 12 character alphanumeric string that uniquely identifies the user.
Enter your username at this prompt.

The system manager assigns your username, which is then registered with IAS. If you do not have
a username, or have forgotten it, consult the system manager.

The Password
After you type in your username, the password prompt displays as follows:

Password?

Enter your password to this prompt. The password is an alphanumeric string of from 1 to 6
characters that is associated with your username. The characters you enter do not appear on the
screen.

The password is an additional security rneasur~ that prevents unauthorized access to the system.
You can change your password by using the SET PASSWORD command. See Chapter 14 for more
information.

3-3

3.3.4

A Sample Interactive Session

If the password you provide is incorrect, PDS displays the Password? prompt again. You have
three chances to type the password correctly before PDS exits and displays "BYE". If, after
three attempts, the correct password has not been provided, a warning message indicating an
unsuccessful login attempt displays at the system console.

The PDS Prompt
If you supply your password correctly, the system completes the login procedure and determines
your user attributes (UIC, privileges, and so on). (See Chapter 6 information on UICs, and
Chapter 4 for information on command privileges.) PDS then displays the login banner, followed
by your username, UIC, terminal number, and the time and date. For example:

!AS PROGRAM DEVELOPMENT SYSTEM VERSION 3.4

17:09:08 15-MAY-90

USER CAROL UIC [200,22] TTOS: 17:09:21 15-MAY-90

The system then displays the PDS prompt (PDS>) to indicate that it is ready to accept PDS
commands. Any system notices to be displayed when users log in display before the PDS prompt.

If nothing is typed for several minutes after logging in, and no program is :running, PDS becomes
inactive or "times out", and your account will is logged off (the exact number of minutes depends
on the installation). When timeout occurs, the system displays the following message:

TIMEOUT
BYE

You must then type I CTRUC I to reactivate PDS.

3.4 The CREATE Command

3.4.1

The CREATE command is used to create a file. In the session illustrated in Section 3.2, the
CREATE command is used to create a file called ADD.FTN (line 6). ADD is the file name and
.FTN is the file type; the file type describes the contents of the file. In this case, it indicates that
the file contains a FORTRAN source program. See Table 6-3 for a list of IAS file types.

After terminating the CREATE command by pressing I RETURN ~ you can enter the source program.
The first typing position on each line is equivalent to position 1 on a coding sheet or punched card.
Use the function keys to format the lines. (See Chapter 2 for more information.) For example, you
can use ITABI to skip eight spaces to position the text "TYPE 1" in line 7. I RETURN I terminates each
line and moves the typing position 1 of the next line.

Correcting Input Errors
On line 9, an error is made is corrected by using I DELETE ~ You must press the key three times to
delete E, P, and P again. The characters deleted are echoed on the terminal as follows:

APPE\EPP

Each time you press the key, the system deletes the rightmost character. Video display terminals
erase each deleted character from the screen and move the printing position to the left. Hardcopy
terminals use a backslash character (\)to indicate deleted characters.

3-4

3.4.2

3.4.3

A Sample Interactive Session

In this example, the user presses I CTRUR I to display the corrected text on a clean line Oine 10). For
example:

APPE\EPP"'R
A

The user then completes the line correctly and terminates it with I RETURN ~

ACCEPT 2,K,L

If, instead of I CTRUR I, the user had typed the amended letters CCEPT on the same line, the system
would first have closed the string of deleted characters by a second backslash. For example:

APPE\EPP\CCEPT 2,K,L

On line 11, I DELETE I is used once more to delete the second 2.

2 FORMAT(22\2\I5)

Canceling a Line
By mistake the user types PRINT on the next line, then presses I CTRUU I to cancel the line and start
again on line 13. I CTRUU I deletes a line that has not been terminated by I RETURN I and advances
the typing position to the beginning of the next line. The user can then enter the text that was
originally intended.

PRINT"'U
TYPE 3,K+L

Closing the New File
The last statement of the source program is END (line 16). After entering the last statement, the
user types ICtrllZI to indicate to the system that the file ADD.FTN is complete. The system displays
"Z, closes the file, then prompts PDS> on the next line.

3.5 The TYPE Command
At the PDS> prompt (line 18) the user issues the TYPE command to display the file ADD.FTN
as it appears after corrections. The system responds by printing the contents of the file Oines 19
through 26).

3.6 The FORTRAN Command
After checking that the source program is correct, the user decides to run the program. However,
the program must first be translated into instructions that the computer can understand.

In IAS, the FORTRAN command is used to translate a FORTRAN source program. On line 27, the
user types the following:

PDS> FORTRAN ADD

In this case the file is specified as ADD rather than ADD.FTN. The FORTRAN command asswnes
the file type to be FTN if it is not supplied.

NOTE: The user should ensure that the relevant language compiler is installed before
attempting to use that compiler.

3-5

A Sample Interactive Session

After translating the program, the system prints the following text on line 28:

17:17:41 SIZE: lOK CPU: 0.10

The figures "17:17:41" refer to the time the system finished translating the program. Line 28 also
shows the size of the program just completed, which in this example is the FORTRAN compiler.
"0.10" indicates that the translation required one tenth of a second of CPU time.

The system automatically places the translated FORTRAN program, called an "object module", in
a file named ADD.OBJ. The file type .OBJ indicates that the file contains an object module.

3.7 The LINK Command
The purpose of the LINK command (line 29) in this session is to couple the object module contained
in ADD.OBJ with the FORTRAN subroutines that it needs. FORTRAN programs use a set of
subroutines to perform the required functions. For example, the FORTRAN statements TYPE
and ACCEPT require the subroutines for input/output functions. The system maintains these
subroutines in object module form so that they do not have to be translated each time they are
used. The format of a LINK command is:

PDS> LINK ADD

The file type is assumed to be .OBJ. If there is no file called ADD.OBJ, the system returns an
error message. This might occur, for instance, if a user tries to link an untranslated FORTRAN
program. (See the note at the end of this section.)

Line 30 displays statistics about the completed execution of the LINK command.

The linked, executable program (the translated program linked with the required subroutines) is
then placed in a file called ADD.TSK. The file type TSK stands for "task", which is IAS terminology
for an executable program.

NOTE: FORTRAN programs always require a FORTRAN library. Usually the FORTRAN
library is installed as part of the system library (SYSLIB) and is, therefore, automatically
linked. However, some IAS installations might not include the FORTRAN library in
SYSLIB. In this case, your program will not link correctly and an error message displays.
If this happens, use the following procedure:

1 Contact your system operator.

2 Ask which FORTRAN compiler (FORTRAN IV or FORTRAN IV-PLUS) is the system
default. ·

3 Ask what the name of the corresponding FORTRAN library file in the system UFD
[1,1] is.

4 Enter the following LINK command, substituting the correct library file name:

PDS> LINK
FILE? ADD, [1,l]library name/LIB

3-6

A Sample Interactive Session

3.8 The RUN Command
After the source program is prepared for execution, you issue the RUN command to activate the
task as follows:

PDS> RUN ADD

Again, the file type can be omitted; it is assumed to be .TSK.

Line 32 shows what time the program began to run.

The FORTRAN program ADD is interactive. ADD requests the user to enter two numbers, then
adds them together and displays the result (lines 33 to 35):

ENTER TWO NUMBERS
12, 78
THE SUM is 90

When you write interactive programs, you must remember to prompt for input. If no prompts
appear, you do not know what data to enter, or at what point to .enter the data. This program uses
the statements on lines 19 and 20 to display the prompt:

ENTER TWO NUMBERS

The numbers 12 and 78 are entered, the input is terminated by I RETURN I. The program then
executes the program statements on lines 23 and 24 by adding the numbers and declaring the sum
to be 90. The STOP statement (line 25) then causes the program to stop and the system to display
the following line:

JOB160 -- STOP

The name "JOBnnn" is a name given to the job by the system each time it is run.

The information displayed on the next line is similar to that on line 28 and 30 described in previous
sections.

3.9 The DIRECTORY Command
In the session so far, the user has created one file and the system has created two more, as follows:

• ADD.FTN

• ADD.OBJ

• ADD.TSK

NOTE: The system never deletes a file automatically; all three files will still exist. Only
the system manager, the owner of the file, or users authorized by the file owner can
delete a file.

The DIRECTORY command (line 38) causes the system to display a list of files currently held in
the Users File Directory (UFD). Line 39 identifies the UFD as [200,22]:

DIRECTORY DBO: [200,22]

The 200 identifies the user group and the 22 identifies the user number within the group. The text
"DBO:" indicates that the directory resides on a volume mounted on a disk drive named DBO:.

Line 40 states the date and time that the library was requested.

3-7

3.10

3.11

A Sample Interactive Session

The next three lines list the directory information:

ADD.OBJ;l
ADD.FTN;l
ADD.TSK;l

2. 15-MAY-90 17:17
1. 15-MAY-90 17:17
32. C 15-MAY-90 17:18

The number ";l" that appears after the file type is the file's version number and indicates that each
file listed is the first version of the file. If the command FORTRAN ADD was issued again, the
FORTRA!'~ translator would produce a second object file called ADD.OBJ;2. The old versions can
be deleted or retained as security against the loss of later versions.

The. value in the second column indicates the number of 512 byte blocks occupied by each file on
the disk. The next columns show the data and time each file was created. The "C" that appears
on the third line between the number of blocks and the date indicates that the blocks within
ADD.TSK;l are "contiguous" (that is, they can be read in a single disk access).

The RENAME command
The RENAME command enables you to change the name of a file without changing its contents or
location. The RENAME command is issued to rename all three files named ADD at the same time:

PDS> RENAME ADD.*;* ADDTWO.*;*

The asterisks (*) that appear in the above line enable all three files to be specified at once. An
asterisk or "wildcard", is equivalent to "all". ADD.*;* includes all files that have ADD as a file
name, disregarding the file type and version number. In this case, ADD.*;* refers to the files
ADD.FTN;l, ADD.OBJ;l, and ADD.TSK;l. Because all the files have the same version number but
different file, these files could also be referred to as follows:

• ADD.*;1

The command issued on line 45 changes the filename from ADD to ADDTWO. The wildcards in
the text "ADDTWO. *;*" indicate that the renamed files retain their original file types and versions.
The files are now called:

• ADDTWO.FTN;l

• ADDTWO.OBJ;l

• ADDTWO.TSK;l

The DIRECTORY/BRIEF Command
When the user reissues the DIRECTORY command (lines 46 and 4 7) the system lists the files with
their new filenames.

NOTE: A I CTRL'U I was issued to cancel line 46 because of a typing error.

The DIRECTORY command includes the text "/BRIEF", a qualifier that modifies the action of the
command. The /BRIEF qualifier causes the system to list only the names of the files and to omit
information about blocks and time of creation.

Most commands have one or more qualifiers. A slash (I) always precedes the qualifier name.
When more than one qualifier is specified, slashes separate one qualifier from the next.

3-8

3.12

A Sample Interactive Session

The LOGOUT Command
To end the interactive session, you must issue the LOGOUT command (line 52). The system then
displays user and accounting information on the next two lines and the text "BYE" on the third
line. The terminal is now inactive.

3-9

4 Issuing PDS Commands

4.1 Introduction
This chapter covers the following topics to describe the use of PDS commands:

1 Commands and parameters

2 Abbreviating input

3 Qualifiers

4 Error conditions

5 Command and task privileges

4.2 PDS Commands

4.2.1

You communicate with the system by issuing commands to PDS. You issue commands at an
interactive terminal or by submitting a file of commands to a batch queue. A command comprises
a command name that describes the action the system is to take (for example, COPY or LOGIN),
and usually one or more parameters. Parameters either describe the items on which the command
is to operate or further define the function of the command. For example:

PDS> SHOW STATUS
PDS> SHOW DEVICES

You can enter commands at an interactive terminal only when the system is prompting PDS>.
Some PDS commands (for example, EDIT and BASIC) invoke a program that accepts its own set
of commands. These commands are valid only while that program is running. Furthermore, PDS
commands are not valid while that program is running; to issue PDS commands, you must first
return control to PDS. The descriptions of EDIT and BASIC in Chapter 14 explain how execution
is terminated and control is returned to PDS.

Command Strings
Command strings can specify the command name followed by the parameters or can specify only
the command name (in which case you supply the parameters in response to prompts). Command
strings issued by batch users must specify the command names and parameters on a single or
continued line.

In both batch and interactive mode, when two or more parameters are on one line you must
separate them by spaces, a comma, and/or tabs.

If a command string is longer than one line, a hyphen (-) as the last character on the line causes
the command to continue on the next line.

An exclamation mark (!) after the last character of a command line indicates the start of a
comment. The comment text appears after the exclamation mark.

4-1

4.2.2

Issuing PDS Commands

Abbreviated Input
You need only enter enough of a PDS command to distinguish it from all other PDS commands.
For example, you can abbreviate the DEALLOCATE command to DEAL. However, DEA is not
acceptable because it does not distinguish between DEALLOCATE and DEASSIGN.

Underline Convention
To increase legibility, some qualifiers have an underline character where two or more words have
been joined together. For example:

PDS> MOUNT/FILE_PROTECTION: (code)

When such qualifiers are abbreviated, the underline is treated in the same way as alphabetic
characters. The following examples are acceptable, since they identify this qualifier uniquely
among the MOUNT qualifiers. The underline convention does not apply to the prefix NO.

PDS> MOUNT/FILE PROT:(code)
PDS> MOUNT/FI: (~ode)

4.3 Command Parameters

4.3.1

Most PDS commands require parameters. For example, the COPY command requires an input file
specification and an output file specification, which you can supply as follows.

In Interactive Mode:

PDS> COPY RISE.MAC WORK.MAC

PDS> COPY RISE.MAC, WORK.MAC

PDS> COPY
FROM? RISE.MAC WORK.MAC

PDS> COPY RISE.MAC
TO? WORK.MAC

PDS> COPY
FROM? RISE.MAC
TO? WORK.MAC

In Batch Mode:

$COPY RISE.MAC WORK.MAC

$COPY RISE.MAC,WORK.MAC

Batch mode is described in Chapter 5.

Parameter Lists
You can replace some parameters by enclosing a list of parameters in parentheses, separating the
parameters by spaces, tabs, and/or a comma. You do not need parentheses when the list replaces
the last or only parameter in the command. For example:

4-2

PDS> APPEND (FILEA.FTN,FILEB.FTN) FILEC.FTN

$DELETE AB.CBL;l AB.OBJ;l

4.3.2

Issuing PDS Commands

Parameter Prompts
Parameter prompts request specific input to complete a command. The CREATE command
demonstrates how PDS prompts for command parameters at an interactive terminal. For example:

PDS> CREATE
FILE?

Because the file specification was not supplied with the CREATE command, PDS prompts for the
file specification. Parameter prompts can reduce the number of input errors made by users who
are unsure of the correct command parameters.

The more experienced user may be fami1iar with the commands and may not need the parameter
prompts. Therefore, prompts are suppressed when necessary parameters are supplied. Refering to
the previous example, if a file specification had been provided, the FILE? prompt would not have
displayed., and the CREATE command would have been immediately executed.

Optional Parameters
Interactive PDS commands prompt for both mandatory and optional parameters. 'lb display the
prompt for an optional parameter, however, you must use IESCI rather than I RETURN I after the last
mandatory parameter. For example:

PDS> MOUNT (RETURN(
DEVICE? DK: tP~TURN(

VOLUME-ID? CHARLY (Esq
LOGICAL NAME? AB

where LOGICAL NAME? is a prompt for an optional parameter of the form AB.

To suppress the prompt LOGICAL NAME?, you must press carriage return after CHARLY. For
example:

PDS> MOUNT DK2: CHARLY (RETURN(

If you have invoked an optional prompt by mistake, you must type I RETURN I immediately after the
prompt. For example:

PDS MOUNT DK2: CHARLY (RETURN!

LOGICAL NAME? (RETURN!

Batch users can either omit the optional parameter from the command string (if it is the last
parameter), or replace the optional parameter with two commas if there are further parameters to
be specified. For example:

$SHOW TASK/ACT,,ALL

4.4 Command and Parameter Qualifiers
Command qualifiers modify the function of a command. The PRINT command illustrates the use
of commands and qualifiers. The main purpose of the PRINT command is to output one or more
specified files on a line printer. To delete the file or files is an option that you indicate by specifying
the command qualifier /DELETE. For example:

PDS> PRINT/DELETE FILE.LST

You can abbreviate each qualifier by supplying enough characters to distinguish it from any other
legal qualifier for this command.

4-3

Issuing PDS Commands

File specifications can also have qualifiers; these qualifiers describe properties the file has or is
to have. For example, the /PROTECTION qualifier can modify the file specification supplied with
the CREATE command, see Chapter 6. The qualifier determines the protection code applied to the
newly-created file. For example:

$CREATE NEWFILE.DAT/PROTECTION: (SY:RWED,OW:RWED,GR:R,WO:R)

4.5 Invalid Commands or Syntax

4.5.1

4.5.2

4.5.3

PDS may not be able .to execute a command for one of the following reasons:

1 There are too many tasks already active on the terminal.

2 A subsystem, for example, BASIC, is being used.

3 There has been a user or system error.

4 The command line is too long.

Active Tasks
If you type I CTRUC I when a task is active, the task will be interrupted, and PDS will reprompt
PDS>. At this point you can issue further commands which initiate another task. You can repeat
this process until you reach your task limit. This limit is set by the System Manager, the default
is one interruptable task. When this limit is reached and an attempt to run another interruptable
task is made the system will report the following errors:

COMMAND NOT ALLOWED - TASK SUSPENDED
(Timesharing systems)

or

COMMAND NOT ALLOWED - MAXIMUM NUMBER OF TASKS ALREADY ACTIVE.
(Multi-user systems)

You may issue any non-interrupt.able command aft.er these messages, in particular ABORT to
abandon, or CONTINUE to resume, the latest task activated. See Section 4.8 and Table 4-2 for a
description of non-interruptable/interruptable commands.

Subsystems
PDS commands are not valid when you are operating within a subsystem such as BASIC or the
Line Text Editor. You must first return control to PDS and then issue a PDS command.

Errors
When a command fails, PDS displays an error or diagnostic message that indicates where the
problem lies. The following interactive session includes examples of command failures and the
resultant system responses. Asterisks have been added to responses that indicate a failure.

4-4

4.5.4

Issuing PDS Commands

lCTRL/Cl
USER NAME? SMITJ
PASSWORD? (The terminal does not display the password.)
*USER NAME NOT AUTHORIZED

ICTRL/cl
USERNAME? SMITH
PASSWORD? (The terminal does not display the password.)
*PASSWORD?
*PASSWORD?
USER SMITH UIC (100,100] TT07 TIME 16:29:10 15-MAY-84

PDS> COPY
FROM? A$B
*A - ILLEGAL DEVICE
*ILLEGAL FILE - SPECIFICATION

The reasons for failure are as follows:

1 USER NAME NOT AUTHORIZED - The user name (SMITJ) you supplied did not grant you
access to PDS because you had mistyped the last character.

2 PASSWORD? - By repeating the password prompt, the system indicated that the user SMITH
had not typed the correct password.

3 A - ILLEGAL FILE-SPECIFICATION - $is not a valid character within a file specification.

4 A - ILLEGAL DEVICE ILLEGAL FILE-SPECIFICATION - A is not a valid IAS device name.

Common errors are:

1 Mistyping characters within a command.

2 Not leaving a space where it is needed to distinguish between command components.

3 Not supplying parameters in the correct order.

4 Not specifying the correct devices.

Length of Command Line
PDS expands command lines to include all default devices and UFDs. When you are using certain
system tasks (for example, language compilers) this can cause the command line to exceed the
limit of 80 characters and the system displays the message:

COMMAND TOO LONG

To overcome this, do one of the following:

1 Reduce the length of your files names.

2 Split the command into two (or more) separate, shorter commands.

3 Enter MCR mode if you have the appropriate privilege, (see the MCR command in Chapter 14
and enter the command line using MCR. See the !AS MCR User's Guide for further details.

4 Install the system task as a $$$task, if you have the appropriate privilege (see Table 4-1, and
enter the command line directly.

4-5

Issuing PDS Commands

4.6 PDS Command Privilege

4.6.1

PDS command privilege governs the right of an individual user to issue a specific command or set
of commands via PDS. These rights are assigned or withheld by the system manager when the
user is authorized.

PDS Command Masks
Each user is allocated two PDS command masks on authorization. One mask is for interactive
terminal use and the other for batch use. Each mask consists of 16 bits. A bit is set to 1 to make
the corresponding command(s) available. Tables 4-1 and Table 4-2 list the bits and the associated
symbolic name and command.

Table 4-1 PDS Command Privilege Classes

Bit Symbol Command or Class of Commands

0 PR.FIL File Manipulation Facilities

1 PR.RUN Task Manipulation

2 PR.BAS BASIC

3 PR.COB COBOL

4 PR.COR CORAL

5 PR.FOR FORTRAN

6 PR.LIN LINK

7 PR.MAC MACRO

8 PR.SCI SCI Privilege

9 PR.SUB SUBMIT (to Batch)

10 PR.MCA MCR Mode

11 PR.DEV Device Management

12 PR.OUM DUMP

13 PR.LIB LIBRARIAN

14 PR.SYS System Library Tasks ($$$xxx)

15 PR.ATC Real-time Commands

Several commands are available to all logged-in users. These are marked ANY in Table 4-2 and
are independent of the privilege masks. Table 4-2 shows the privilege required for each command.

4-6

Table 4-2 PDS Command Privileges

Command Privilege

ABORT/TIMESHARING ANY

ABORT/REALTIME PR.ATC

ALLOCATE PR.DEV

APPEND PR.FIL

ASSIGN (timesharing) PR.RUN

ASSIGN/TASK PR.ATC

BASIC PR.BAS

CANCEL PR.ATC

COBOL PR.COB

COMPARE PR.FIL

CONTINUE/TIMESHARING ANY

CONTINUE/MESSAGE PR.ATC

CONTINUE/REAL TIME PR.ATC

COPY PR.FIL

CORAL PR.CCR

CREATE (file) PR.FIL

CREATE/DIRECTORY PR.FIL

DCL ANY

DEALLOCATE PR.DEV

DEASSIGN PR.RUN

DEASSIGN/TASK PR.ATC

DELETE PR.FIL

DIRECTORY PR.FIL

DISABLE PR.ATC

DISMOUNT PR.DEV

DUMP PR.OUM

EDIT PR.FIL

ENABLE PR.ATC

EOD NIA

EOJ NIA

FIX PR.ATC

lnterruptable/
Nonlnterruptable 1

NI

NI

NI

I

NI

NI

NI

I

NI

NI

NI

NI

NI

NI

NI

NI

NI

NI

I

I

NI

NIA

NIA

NI

Issuing PDS Commands

1 An asterisk (*) indicates special features; see the particular command description under Technical Notes for further
information.

4-7

Issuing PDS Commands

Table 4-2 (Cont.) PDS Command Privileges

Command

FORTRAN

GOTO

HELP

IDENTIFY

INITIALIZE

INSTALL

JOB

LIBRARIAN

LOGOUT

MACRO

MCR

MERGE

MESSAGE

MOUNT

ON

PRINT

QUEUE

REMOVE

RENAME

RUN (timesharing)

RUN (realtime)

SET BOOTSTRAP

SET DEFAULT

SET END_OF _FILE

SET [NO)OUIET

Privilege

PR.FOR

ANY

ANY

ANY

PR.DEV

PR.ATC

NIA

PR.LIB

NIA

PR.MAC

PR.MCA

PR.Fil

ANY

PR.DEV

ANY

PR.Fil

PR.FIL

PR.ATC

PR.Fil

PR.RUN

PR.RUN,
PR.ATC

PR.DEV

ANY

PR.FIL

ANY

lnterruptable/
Nonlnterruptable 1

NI

NI

NI

NI

NIA

NIA

NI

I

NI

NI

NI

NI

NI

I

NI

1 An asterisk(*) indic.ates special features; see the particular command description under Technical Notes for furthsr
information.

4-8

Table 4-2 (Cont.) PDS Command Privileges

Command Privilege

SET NOREALTIME_CONTROL PR.ATC

SET PASSWORD ANY

SET PRINTING ANY

SET PRIORITY PR.ATC

SET PROTECTION PR.FIL

SET TERMINAL attribute ANY

SET TERMINAL:(TTm, ... ,TTn) (1, 11

SETUIC PR.ATC
(multi-user only)

SHOW CU ANY

SHOW DAYTIME ANY

SHOW DEFAULT ANY

SHOW DEVICES ANY

SHOW GLOBAL_AREAS ANY

SHOW l_O_QUEUES ANY

SHOW LUNS PR.ATC

SHOW MEMORY ANY

SHOW PARTITIONS ANY

SHOW SHAREABLE_ GLOBAL ANY

SHOW STATUS ANY

SHOW SWITCH_REGISTERS ANY

SHOW TASKS ANY

SORT PR.FIL

STOP ANY

SUBMIT PR.SUB

TRUNCATE PR.FIL

TYPE PRFIL

UNFIX PR.ATC

UNLOCK PR.FIL

USERS (1, 1]

VERIFY PR.DEV

lnterruptable/
Nonlnterruptable 1

NI

NI

NI

NI

I

NI

NI

NI

NI

NI

NI

NI

NI

NI

NI

I

NI

NI

NI

NI

NI

NI

NI

I

NI

Issuing PDS Commands

1 An asterisk (*) indicates special features; see the particular command description under Technical Notes for further
information.

4-9

Issuing PDS Commands

4.7 PDS Timesharing Task Privilege
Privilege controls the execution of timesharing tasks. A task can be executive or directive
privileged. See the !AS Executive Facilities Reference Manual and the !AS System Directives
Reference Manual.

PDS users who wish to run tasks in timesharing mode need the requisite bits to be set in their
PDS Timesharing Task Privilege Mask (TPl). This mask is set up by the system manager when
the user is authorized (see the !AS System Management Guide).

If a PDS user tries to initiate a task that is executive privileged, and is not authorized to run such
tasks, the command is rejected before execution begins.

If a PDS user runs a task in timesharing mode that issues privileged directives, and is not
authorized with directive privilege, each privileged directive is rejected as it is met but the task
continues to execute.

Note that all tasks executing in real-time mode are given directive privilege (and can be executive
privileged) independently of the user's timesharing task privilege mask. You must have real-time
privilege in order to start a real-time task.

4.8 Useof1cTRuc1
I CTRUC I is used to alert PDS or to cause some immediate action:

1 If PDS is not active at the terminal, CT/C activates it.

2 If a command is being typed, CT/C cancels all that has been typed and returns to the PDS
prompt.

3 If a task is being run, it will be interrupted and PDS will prompt.

When I CTRUC I is used to interrupt a task, the precise effect depends upon the type of system:

1 On a timesharing system the task is suspended. It will not perform any further processing
until the CONTINUE command is used to resume the task.

2 On a multi-user or real-time system, the task continues to run. The task may terminate
while commands are being issued to PDS. However, PDS will not recognize that the task has
terminated until the CONTINUE or ABORT command is issued.

You can issue any legal PDS command in response to the PDS> prompt after typing I CTRUC I.
However, the system will only accept non-interruptable commands (see Table 4-2 if you have
reached your task limit. This task limit is set by the System Manager; the default is one
interruptable task.

An interruptable task is any timesharing task which is affected by I CTRUC I. You can invoke these
tasks by means of RUN or indirectly by means of an interruptable command, for example, MACRO.
The effect of I CTRUC I depends on the system as described above.

A non-interruptable task is any task which is invoked as a result of a non-interruptable
command, see Section 4.6. These commands and tasks are not affected by I CTRUC I. In general
non-interruptable commands are those which take a short time to complete, for example, INSTALL,
or which produce a comparatively small amount of terminal output, for example, SHOW. You can
suppress the output from such commands by typing I CTRUO I.

4-10

4.8.1

4.8.2

For example, with a task limit of 1 interruptable task:

1. Timesharing System

PDS> RUN MYTASK
ICTRL/CI
TASK SUSPENDED
PDS> DIR [1,100)
COMMAND NOT ALLOWED - TASK SUSPENDED
PDS> INS [11,l]MTAACP
PDS> SHOW STATUS
USER LEN UIC[l,1] TT03: 09:55:21 30-JUN-78
JOB212 SIZE:4K CPU:0.00
FILES OR DEVICES ASSIGNED
FILE OR DEVICE REDIRECTED LUNS
TT3: NOLUNS
DBO: IAS306 NOLUNS
LPO: NOLUNS
PDS> CONTINUE

2. Multi-User System

PDS> RUN MYTASK
ICTRL/CI
PDS> DIR[l,100)

Issuing PDS Commands

COMMAND NOT ALLOWED - MAXIMUM NUMBER OF TASKS ALREADY ACTIVE
PDS> INS [11,l]MTAACP
PDS> SHOW STATUS
USER MIKE UIC[200,200] TT22: 10:31:22 4-JUL-90
TT22A
PDS>CONTINUE

Effect of 1crRuc1 on Type-ahead
This may be set at system generation time or on a per terminal basis by the system manager. The
default is:

1 On a timesharing system, I CTRUC I will flush type-ahead.

2 On multi-user or real-time systems type-ahead will not be flushed.

Effect of 1crRuc1 on Indirect Command Files
When you type I CTRUC I during the processing of an indirect command file, the command active at
that moment is suspended. However, if you then enter CONTINUE the remainder of the indirect
command file is not executed because the remaining commands are flushed after typing I CTRUC I.

4.9 PDS Dialup Support
If a dialup line is lost during an interactive session while you are logged in, the job is not lost but
remains attached to the same line. If a task is running it will be suspended. If any user dials up
and is connected to the same line, the following message is printed, followed by a PDS prompt:

USER username ALREADY LOGGED IN [~ITH SUSPENDED TASK]

where:

• username =the name of the user currently logged in.

4-11

Issuing PDS Commands

At this point, only two commands are valid:

• LOGOUT - to log out the user and free the terminal

• CONTINUE - to enter normal interactive mode. If there is a suspended task, the task will be
continued and I CTRUC I will have to be typed to suspend the task again. Before continuing, PDS
prompts "PASSWORD?" and checks the user's password.

If no user is connected to the suspended line within the timeout limit set for PDS by the system
manager, the user is logged out and the line disconnected. This also happens if the suspended task
exits for any reason while the line is lost (for example, if it completes a mark time directive and
exits).

If the running task attempts to perform input or output to the terminal during the short period
(about one second) between the loss of the dialup line and the suspension of the task, it receives an
error. Some commands (for example, the DIRECTORY command) terminate.

To keep the dialup line connected to a terminal after you have logged out, specify the LOGO/KEEP
qualifier. You do not then have to dial in again before next logging in.

4-12

5 Batch Processing

5.1 Introduction
This chapter describes batch processing under IAS. Batch jobs are tasks that run from start
to finish without user intervention. Section 5.2 describes the use of batch command. Sections
Section 5.3 and Section 5.4 describe how to begin, end, and submit a batch job.

5.2 Batch Commands
Most PDS commands apply to both interactive and batch processing. (Refer to the command
descriptions in Chapter 14.) Jobs executed using batch processing begin with the $JOB command
and end with the $EOJ command. Batch commands must always begin with a dollar sign ($) in
the first postion of a line.

As a batch user, you can submit a job in either of the following ways:

1 From an interactive terminal

2 By means of a card reader

When you submit the job from an interactive terminal, you must issue the SUBMIT command.
This command submits a file of batch commands to the batch processor. See Section 5.4 for a full
description of the SUBMIT command.

When submitting a job by means of a card reader, you include the batch commands in the input
stream. For example:

$JOB GRAHAM CATJOB 3
$COBOL JOB
$EOJ

This example invokes the COBOL compiler to compile the source program held in the file
JOB.CBL.

Jobs submitted to batch are placed in the queue and processed in priority order. If the system is
configured for multistream batch (up to eight streams are available), the job is run in the first free
batch stream. Subsequent jobs are assigned to batch streams, until all streams are exhausted.
Other jobs remain in the queue until a batch stream is free.

If a single batch stream is in use, a job remains in the queue until all preceding jobs have been
compieted.

5.3 Beginning and Ending a Batch Job
The $JOB and $EOJ commands begin and end a single batch job.

5-1

5.3.1

5.3.2

Batch Processing

The $JOB Command
The $JOB command marks the beginning of a batch job. Parameters to the $JOB command consist
of:

1 User name

2 Job name

4 Job command mode (optional) in the following form:

$JOB/MCR or $JOB/DCL

If you do not specify MCR or DCL, the system assumes default mode. The system manager
defines the default at system generation.

5 The batch password (optional) of the form:

$JOB/PASSWORD:password

An example of a $JOB command is:

$JOB CATHY TEST 3

In this example, CATHY is the user name and TEST is the job name. The number 3 instructs the
system to terminate the job after it has used 3 minutes of elapsed time.

Your user name is a 1- to 12-character alphanumeric string that is unique to you; it is identical to
your user name parameter to the LOGIN command. See Chapter 3.

The job name is a 1- to 12-character alphanumeric string that uniquely identifies the job. This
prints on the operator console when the job starts (and on the batch log). The system does not use
the job name.

If your user identity has a batch password associated with it, you must specify this in the $JOB
command before the system can accept the job. For example:

$JOB/PASSWORD:SECRET SYSTEM ACCOUNTS 30

To change the command mode for a batch job within the job, use the $MCR or $DCL commands.
However, if the batch job contains mostly MCR mode commands, use the /MCR qualifier.

The $EOJ Command
The $EOJ command terminates a batch job. The command has no parameters.

5.4 The Submit Command
The SUBMIT command submits a file of batch commands to the batch queue from an interactive
terminal. For example:

PDS>SUBMIT BATCHJOB

Submit the file BATCHJOB to the batch queue for processing.

5-2

Batch Processing

5.5 Batch Editing
IAS provides a batch-oriented editor to create and maintain source language files and data files on
disk. This editor, called the source language input program (SLIPER), is described in Chapter 7.

5-3

6 File Handling

6.1 Introduction
In IAS, the file is the basic unit of information storage. This chapter describes IAS file handling,
its associated commands, and their use.

A file is defined as an ordered collection of information. To store information (for example, a source
program), you must create a file and enter the source program into the file. Any subsequent
attempt to access or manipulate the source program must be made by identifying the file that
contains it (that is, by supplying a file specification). A file specification provides the system with
all the information it needs to identify the file, namely:

1 The device where the file is stored

2 The file directory

3 The file name

4 The file type

5 The version num her

6.2 The IAS File System

6.2.1

The standard IAS file system for disks, DECtapes, and magnetic tapes is the Files-11 system.
Files-11 magnetic tapes conform to American National Standard Magnetic Tape Labels and File
Structure for Information Interchange, X3.27-1969. See the !AS 1/0 Operations Reference Manual
for a detailed description of the Files-11 file system.

PDS commands default to Files-11. However, by using qualifiers (for example, DOS and RTll), a
number of commands can use other file systems. The command descriptions in Chapter 14 explain
these commands.

Volumes
The magnetic media where you store files are called volumes and include disks and magnetic tapes.
To access a file held on a volume, you must mount the volume; that is, you must physically load
the volume on a disk or tape drive and relate it to your task or terminal by using the MOUNT
command (see Section 6.4.3). All references to this volume, in PDS commands, are then made by
using the device name of the device where it is mounted. For example:

PDS> MOUNT DKO: MYDISK
PDS> COPY DKO: [200,200]MYFILE.DAT
TO? SYO: [100,lOO]THISFILE.DAT

You must mount volumes that do not hold files in Files-11 format, using the qualifier /FOREIGN.

6-1

6.2.2

File Handling

File and Volume Protection
IAS protects individual user privacy and system security by providing a facility to restrict access to
a volume. Magnetic tapes written in Files-11 format have a volume-level protection code; that is,
the protection assigned to the volume applies equally to every file within it. Disks and DECtapes,
however, have both an overall protection code for access to the volume and individual protection
codes for each file within the volume.

For the purpose of assigning protection codes, iAS defines four types of access:

1 Read (R}-Read access.

2 Write (W}-Write access.

3 Extend (E}-Extend access. (You need extend access to install or run a task.)

4 Delete (D}-Delete access.

IAS defines four categories of user:

1 System

2 Owner

3 Group

4 World

The protection code identifies the type of access associated with each user category. The user
categories are listed in Table 6-1.

Table 6-1 User Categories

User
Category Access Privilege

SYSTEM All tasks that run under a system U!C (or group code of less then 10 octal).

OWNER All tasks that run under the UIC of the owner of the file or volume.

GROUP All tasks that run under a UIC that has the same group number as the UIC of the owner of the file
or volume.

WORLD All tasks.

The system uses the UIC to determine file ownership. The system determines your UIC from the
user profile file (PDSUPF.DAT), which is defined by the system manager when you are authorized.
The code is not necessarily unique to you.

Initially, the system manager applies volume protection when initializing the volume. However,
you can respecify volume protection by using the MOUNT command. See Chapter 14 for a
description of the MOUNT command.

You apply a file protection code when you create the file. If you do not explicitly specify a protection
code for a new file, the system automatically applies the vo]ume default code. This is normally
SYSTEM:RWED, OWNER:RWED, GROUP:RWE, WORLD:R. You can subsequently modify the
code by using the SET PROTECTION command. For example:

6-2

PDS> SET PROTECTION
FILE? MYFILE.DAT
PROTECTION? (SYS:RWED,WO:,G:RW)

6.2.3

File Handling

The example above changes the protection code of the fl1e MYFILE.DAT so that the system (SYS:)
has all four types of access: world (WO:) is denied all types of access; group (G:) has read and write
access; the allowed access of the owner does not change. Any category that is not mentioned keeps
the access rights as previously allocated. You can specify the categories in any order. The above
example illustrates the following conventions:

1 You must always enclose the protection code in parentheses.

2 You specify the four user categories using codes followed by colons. You can abbreviate the
codes to one or more letters.

RMS-11 Files Management in IAS
IAS supports the record management system (RMS-11). RMS-11 is a suite of routines that
manages three types of file organization.

1 Sequential

2 Relative

3 Indexed Sequential

The three types differ in the way the records within a file are accessed. The record is the basic
unit of information handled by RMS-11.

1 Sequential is the default organization in IAS. To find a particular record, for example, when
you use an IAS editor, you must access each record in sequential order until you locate the one
you require.

2 Relative is an organization by block number. It enables you to access individual records directly
and randomly.

3 Indexed sequential (indexed) enables you to handle, copy, or sort records, depending on the
contents of previously specified fields (KEYS) within each record.

See the RMS-11 User's Guide for a full description of these types of file organization. The PDS
commands APPEND, COPY, CREATE, and MERGE manipulate file organization.

See Chapter 14 for a description of these commands. For a description of the interlace at program
level, see the RMS-11 MACRO Reference Manual.

6.3 File Specifications
The file specification provides the system with the information it needs to perlorm the following
functions:

1 Create a file.

2 Identify an existing file stored on a volume.

3 Read a file from (or write a file to) a device.

The format of a file specification is as follows:

dev: [ufd]narne.typ;ver

6-3

File Handling

where:

dev: Device name that specifies the name of the device where the volume holding the required file is mounted.
These are listed in Table 6-2.

A logical name can replace the device field. See Section 6.4.2.1.

[ufd) User file directory (UFO) of the form [m,n], where m and n are octal numbers from 1 to 377 characters long.

name Name of the file; an alphanumeric character string from 1 to 9 characters long. . ., ...
'It"

ver

1 to 3 alphanumeric character fi!stype that usually identifies some aspect of the file contents. Table 6-3 lists
standard file types for IAS files. For example, the file type FTN indicates that the file contains a FORTRAN
source program.

Version number; an octal number in the range 1 to 77777. The number distinguishes versions of the same
file. For example, when you first create a file, the system assigns the file a version number of 1. If you
subsequently open that file for editing the editor retains the original file for backup by creating the new file
with the same file name and type, but with a version number of 2.

Table 6-2 IAS Device Mnemonics

Mnemonic Device Type

AD AD01 AID converter

AF AFC1i Ana.iog input

CI Console Input

CL Console Log

CO Console output

CR Card reader

CT Cassette

DB RP04/5/6 disk

DD TU58 cartridge

OF RF11 disk

DK RKOS disk

DL RL01/2 disk

OM RK06/7 disk

DP RP02/3 disk

DR RM02/RM03/RM05 disk

OS RS03/4 disk

OT DECtape

DU RASO, RA70, RASO, RA81, RA82, RA90, R031/32, RD51/52/53/54, RXS0/33, RC25 disk

DY RX02 floppy disk

DX RX01 floppy disk

LB Device holding system library files

LP line printer

LS LPS AID converter

MM TU16, TE16, TU45, TU77 magnetic tapes

MO Message output

MS TS11, TS05 magnetic tape

6-4

File Handling

Table 6-2 (Cont.) IAS Device Mnemonics

Mnemonic Device Type

MT TU10, TE10, TS03 magnetic tapes

MU TU81, TU81-PLUS, TK50 magnetic tapes

NL Null device

PP Paper tape punch

PR Paper tape reader

SP Device holding spooled 1/0 files

SY User's system disk

Tl User's data input stream

UD UDC11 Universal Digital Control

WK Fast-access device for work files

The mnemonics CI, CL, CO, LB, MO, NL, SP, SY, TI, TO, and WK, are logical device names
(pseudo-devices), that can be made to refer to particular physical devices according to the needs of
the installation. The null device is particularly useful for program testing. A program written to
do I/Oto a real device can temporarily be assigned to the null device (NL), while other parts of the
program are being tested.

TI and TO are logical device names for your input and output data streams. For example, if you
want to read from the terminal, specify TI:

PDS> COPY
FROM? TI:
TO? MYFILE.DAT

The above command transfers the input text typed at the terminal to the file named MYFILE.DAT.
Table 6-3 lists all the standard IAS file types.

Table 6-3 Standard IAS File Types

Type Description

BAS A BASIC language source file

BP2 A BASIC-PLUS-2 compiler

BIS A batch command file

CBL A COBOL language source file

CMD A file containing a list of commands

COR A CORAL language source file

DAT A data file

DIR A directory file

EML An editor macro Library

FLB A form library file (for use with FMS-11)

FMD A form description file (for use with FMS-11)

FAM A form file (for use with FMS-11)

FTN A FORTRAN or F4P language source file

6-5

6.3.1

. File Handling

Table 6-3 (Cont.) Standard IAS File Types

Type Description

LST A file in print-image format (listing)

MAC A MACR0-11 assembly language source file

MAP A file containing a memory allocation map

MLB A maciO librniy file

OBJ An object module (output from MACR0-11, COBOL,FORTRAN, or CORAL)

ODL An overlay description file

OLB An object module library file

SAV A saved system memory image file

SML A system macro library file

SPA A spooled output file

SAT A SORT specification, input, or output file

STB A symbol table file

SYS A file for system use

TMP A temporary file

TSK A task image file produced by the task builder and suitable for execution

File Specification Defaults
You can omit the device name and UFD fields of a file specification. The system replaces the
omitted fields with your default values. The following example outputs the file MYFILE.DAT;l
on the terminal. This file is held in UFD (100,100] on the volume mounted on device DKO (RK05
unit).

PDS> SET DEFAULT DKO: [100,100]
PDS> TYPE MYFILE.DAT;l

You can also omit the version number. The system will assume the following:

1 The highest existing version number for an input file specification.

2 The highest existing version number increased by one for an output file specification or 1 if no
previous version number exists.

Initially, the device and UFD defaults are determined as follows:

1 The system manager determines the default device for each user.

2 The default UFD is equivalent to the UIC associated with the user name (provided when
logging in).

To modify these defaults on a timesharing system, use the SET DEFAULT command. See
Chapter 14. You can change the default UIC/UFD on a multiuser system by using the SET UIC
command. See Chapter 14.

6-6

File Handling

Table 6-4 File Specification Defaults

Field Default

device-name Your system device when logging in. You can subsequently change this on a timesharing system
by using the SET command. The new default device must have a volume mounted on it and you
must have access to it. A multiuser system user cannot specify a default device.

uf d

name

filetype

version

The default UFO is equivalent to your UIC when logging in. You can subsequently change this by
using the SET DEFAULT or SET UIC command. You must have access to any UFO selected as
a default.

Cannot be defaulted.

Can be defaulted in the appropriate context. IAS has standard file types (see Table 6-3) that it
uses as defaults in defined contexts.

For input specifications, the highest version number. For output specifications, the highest
version increased by 1 , or 1 if no previous version exists.

6.3.1.1 Changing Default Values
You can change the default device or UFD used in file specifications on a timesharing system at
any time by using the SET command; see Chapter 14.

To change the default device on a timesharing system, type the following command:

PDS> SET DEFAULT device-name

where device-name is the new default device.

To change the default UFD on a timesharing system, type the following command:

PDS> SET DEFAULT uf d

where ufd is the new default UFD in the format [m,n] and m and n are octal numbers between 1
and 377. See Chapter 14 for a complete description of the SET command.

You cannot change the default device on a multiuser system. To change the default UFD with the
default UIC, type the following command:

PDS> SET UIC uic

where uic is the new default UIC in the format [m,n]. m and n are octal numbers between 1 and
377.

6.3.1.2 Displaying Default Values (Timesharing Systems Only)
At an interactive timesharing terminal, you can dispiay the current defauli values for the device
and UFD field by using the SHOW command. For example:

PDS> SHOW DEFAULT

The system responds by displaying your default device and UFD.

6-7

6.3.2

File Handling

Wildcards
Wildcards, denoted by an asterisk (*), enable you to specify more than one file in a single file
specification.

You can only use wildcards in certain commands, as described in Chapter 14. Generally, these are
file manipulation commands (for example, COPY).

6.3.2.1 Input Files
You can use a wildcard in any field of an input file specification except the device field. The
following examples show the use of wildcards in input file specifications:

• DEL CATH.DAT;*-Delete all versions of the file named CATH.DAT stored on the default
device and UFD.

• DIR DK1:[200,200]*.LST-Display information about all the highest versions of files on DKl:
in UFD [200,200] that are of type LST.

• PRINT [30,4]* .MAC;*-Print all versions of the files on the default device in UFD [30,4] that
are of type MAC.

• DELETE [*, *]TONY.DAT;*-Delete all versions of the file named TONY.DAT in every directory
on the user's default device.

• DELETE [200,200]*,*;*-Delete all files in UFD [200,200] on the user's default device.

• COPY *[90,4]FORT.FOR;*-11legal specification. The device field cannot be wild.

6.3.2.2 Output Files
When you use a wildcard to replace a field in an output file specification, the wildcard instructs the
system to replace the field with the corresponding field in the input file specification. You can place
an asterisk in any field of an output file specification except the device field. For example:

PDS> COPY CATH.DAT
TO? DK2:*.*

This example copies the highest version of the file CATH.DAT from the default device to DK2:.
This file will also have the name CATH and the type DAT. If no version of CATH.DAT exists in the
output file UFD, the version number of the output file is 1. If the output file UFD already contains
one or more versions of CATH.DAT, the newly copied CATH.DAT is given a version number one
greater than the previous highest version.

By placing a wildcard in the version of the output file specification, you instruct the system to
retain the same version number as the input file. The system returns an error message if the
output file UFD contains a file with the same name, type, and version number as the output file.

For example:

6-8

PDS> COPY
FROM? CATH.DAT
TO? DK2:*.*;*

6.3.3

File Handling

Valid File Specifications
The fields of a file specification that you must supply depend on the type of file you are describing.
The two types of files are:

1 Retrievable files written to or stored on disks, DECtapes or magnetic tapes. These files are
called named files because they have file names that the system can access.

2 Files that are read from or written to record-oriented devices; for example, a card reader or a
line printer, or files held on unlabelled tapes. These files are called unnamed files.

You must always supply the filename field of a named file; that is, you must give an alphanumeric
filename or a wildcard (*). Many commands have a default value for the file type field. However,
with any command that has no such default, you must always supply the file type field of a named
file. The device, UFD, and version fields can be omitted because they have default values. See
Section 6.3. You can also replace the device field with a logical name. See Section 6.4.2.1.

The use of wildcards in a file specification depends on the IAS command with which the file
specification 'is issued. Where applicable, the command descriptions in Chapter 14 describe
restrictions on the use of wildcards.

The specification of an unnamed file consists only of the device field, which can be a specific device
or a logical name. See Section 6.4. If you supply any other field, the system ignores it because
UFDs, file names, file types, and versions have significance only for named files. The device field
cannot be wild.

6.4 Device Management

6.4.1

Before you can access any information held on a volume (disk or magtape), you must physically
load the volume on a device. The device must be known to the system (use the SHOW DEVICES
command to list all known devices). You must mount the volume (using the MOUNT command),
except for system devices, which are allocated and mounted for all users.

NOTE: No device protection is enforced on multiuser systems. Therefore, if you have a
volume mounted on a device, all users have access to the volume.

Volumes are mounted on devices and any data held on those volumes is referred to by PDS by the
device name and the device unit number. Record-oriented devices (LP and CR) are referred to by
device name. Hence, data is sent to or received from the device itself.

If a device is available, you gain access to it by "allocating" it (that is, by issuing a command that
requests the system's permission to use it); see Section 6.4.2. An exception to this procedure occurs
when you access a system device.

System Devices
A system device is allocated to all users by the system manager. For example, your system disk
and the line printer are norma11y system devices.

A device such as a line printer cannot be shared by two users simultaneously; however, many users
can access it at the same time. The system manager can therefore use a technique called spooling.
In the case of a line printer, spooJing causes all output written to the printer to be queued. The
system creates disk files of all line printer output, maintains a queue containing a list of these
files, and prints them one at a time.

6-9

6.4.2

File Handling

You can defer the printing of queued files hy m~ing the command SET PRINTING DEFERRED (see
Section 6.5.3.1). Deferred printing can be made the default at installations where, for example, the
line printer is remote from you. In this case files to be printed are held in a user queue until you
issue the SET PRINTING NODEFERRED command and log out. This causes all files in the line
printer output queue to be added to the list of files to be printed.

Accessing a Non-System Device
To access a non-system device, you must meet the following requirements:

1 Have a means of obtaining access to the device (the ALLOCATE command, timesharing only,
and the MOUNT command).

2 Have a means of keeping commands, especially in batch mode, independent of a particular
physical device (logical device names).

3 Have a means of keeping the input/output statements in a program independent of a particular
physical device (logical unit numbers).

On a timesharing system, you obtain access to a non-system device by issuing the ALLOCATE
and/or the MOUNT command (see Chapter 14. Some devices, such as disk drives; are shareable,
Thus, you can mount a disk even though it has already been mounted by another user (assuming
the device is not allocated). The volume ceases to be known to the system when the last accessed
user dismounts the volume.

On a multiuser system, when a volume is mounted on a device for one user it is automatically
available for all users of the system. Any user can then dismount the volume if no files are
currently being accessed.

You are granted exclusive access to nonshareable devices (for example, magtape).

6.4.2.1 Logical Device Names
IAS uses logical device names to enable your commands to be independent of a particular physical
device. For example, you can specify TA: and use it in place of the corresponding physical device.

Once a logical device name is associated with a physical device name, you can use the logical
device name in any command. If a logical device name is the same as a physical device name; !.AS
assumes that the reference is to the logical device name.

Logical device names can be defined in ALLOCATE (timesharing only) or MOUNT commands. A
logical device name has the following syntax:

XX [nn]:

where XX represents two alphabetic characters and nn is an optional unit number (an octal
number ranging from 0 to 77). If you omit nn, 0 is assumed. You can use logical device names
only in PDS commands. You cannot use them from within a program or in file specifications input
directly to a program.

6.4.2.2 Logicai Units
All program I/O is performed on logical units. Logical units are identified by logical unit numbers
(LUNs). Before you can use a logical unit for I/O, you must assign a physical device or file, Since
different devices or files can be assigned to the logical units on successive runs of a program, the
program itself can be device-independent.

You can assign logical units in three ways:

1 By using the ASG option during task build (LINK command).

6-10

6.4.3

File Handling

2 By issuing an ASSIGN command (timesharing only).

3 By establishing the assignment within the program before the file in question is accessed.

You can use the LINK option and the ASSIGN command to assign a physical or logical device to a
logical unit. From within a program, however, you can assign a named file to a logical unit. See
one of the following manuals for further details:

• The IAS Executive Facilities Reference Manual

• The appropriate IAS FORTRAN User's Guide

.• ThePDP-11 MACR0-11 Reference Manual

Mounting a Volume on a Device
To access a file held on magnetic media, you must physically load and mount the volume where it
is held. System devices that are already mounted when a user logs in are automatically mounted
for you. On a timesharing system, for all other volumes, you must issue a MOUNT command to
make the device available and gain access to the resident volume. However, on a multiuser system,
once a volume has been mounted for one user it is available to all other users. For example:

PDS> MOUNT
DEVICE? DK2:
VOLUME-ID? TESTER

This example mounts the volume labeled TESTER on DK2:. You can now access any file on the
mounted volume, as long as the file protection code permits access.

In this example, the MOUNT command indicates that the volume is in Files-11 format. Volumes
in Files-11 format have a volume-identification on the medium itself. This is set when the volume
is initialized. The volume-identification is used when the volume is mounted or dismounted.

On a timesharing system, you can omit the unit number in the device specification if you do not
know or care on which unit the volume is to be mounted. If you omit the unit number in batch
mode, you must then supply a logical name for the device; the logical name replaces the device
name in subsequent file specifications. For example:

$MOUNT DK: TESTER AAO:

You assign the logical name AAO: to the unknown unit. You can now use the logical name instead
of the physical device name in subsequent commands. In interactive modej the system displays a
message giving the unit where the volume was actually loaded.

You must specify the unit number on a multiuser system.

Files-11 disks and DECtapes are shareable volumes that more than one user can mount and
access. Only one user ai a iime, however, can mount and access magnetic tape.

Only one user at a time can mount a foreign volume and must inform the system that it is foreign.
Volumes that you mount foreign are normally referred to by some external label visible to the
operator. For example:

PDS> MOUNT/FOREIGN
DEVICE? DTO:
VOLUME-ID? TAPEA

6-11

6.4.4

6.4.5

File Handling

The command qualifier /FOREIGN informs the system that TAPEA is not. to he accessed as a
Files-11 volume and prevents other users from mounting the volume. The operator mounts the
volume, with external label TAPEA, on drive DTO:. When a foreign volume is mounted, the system
cannot check that the label is correct and that the right physical volume has been mounted.

If the foreign volume is in DOS or RT-11 format, file qualifiers to the COPY, DELETE, and
DIRECTORY commands enable you to access files held on the volume. Otherwise, most PDS
commands do not apply to foreign files. See the specification of the MOUNT command in
Chapter 14 for further infonnation.

Dismounting a Volume
When you have finished accessing a volume, issue the DISMOUNT command to dismount the
volume and make the device available for other users.

On a timesharing system, the DISMOUNT command automatically deallocates the device (if it was
allocated) unless you specify the qualifier /KEEP. For example:

• Example 1:

PDS> DISMOUNT
DEVICE? DKO:

• Example 2:

$DISMOUNT OTO: TAPEA

On a multiuser system, any user can dismount the mounted volume. The volume is dismounted
for all users and no protection is enforced by the system unless another user is currently accessing
a file.

The parameters for DISMOUNT are the device specification or logical name of the device you want
to dismount and the volume identification. You can omit the volume identification.

Allocating a Device (Timesharing Systems Only)
If a device is not a system device and it cannot be mounted, you must use the ALLOCATE
command to access the device. This is only applicable to timesharing systems. For example:

PDS> ALLOCATE
DEVICE? LPl:

The above example allocates a line printer to the user. No one else can use this line printer until
the user who allocated it issues a DEALLOCATE command. See Section 6.4.6.

You can also use the ALLOCATE command to obtain exclusive access to a shareable device. For
example:

$ALLOCATE DK: MCO:
DK3: ALLOCATED
$MOUNT MCO VOLl

In the above example, a batch user has allocated an RK05-type disk drive and assigned it the
logical name MCO:. No one else can to access that drive until is has been deallocated. PDS ·
announces which physical device has been allocated for exclusive use to the user, in this case DK3.

6-12

6.4.6

6.4.7

File Handling

Once a device has been allocated, you can mount several volumes one after the other. For example:

$ALLOCATE DK: DVl:
$MOUNT DVl: VOLl

$DISMOUNT/KEEP DVl:
$MOUNT DVl: VOL2

$DISMOUNT DVl:

In this example, the user obtains exclusive access to a disk drive using the ALLOCATE command.
A volwne labeled VOLl is then mounted on the drive. When the user dismounts VOLl, the /KEEP
qualifier retains the user's exclusive access to the disk. When VOL2 is dismounted, however, the
disk is deallocated as the user has not specified the /KEEP qualifier.

Deallocating a Device (Timesharing Systems Only)
After issuing an ALLOCATE command to obtain exclusive use of a nonmountable device, for
example, a line printer, you must issue the DEALLOATE command to free the device. This is
applicable only to timesharing systems. For example:

$ALLOCATE/DEVICE LPl:

$DEALLOCATE/DEVICE LPl:

The DISMOUNT command automatically deallocates an allocated mountable device uniess you
specify the /KEEP qualifier. For example:

$ALLOCATE/DEVICE DK: MCO:
$MOUNT MCO: CATH

$DISMOUNT/KEEP MCO:
$DEALLOCATE MCO:

Assigning Logical Unit Numbers to a Device (Timesharing Systems
Only)
Use the .ASSIGN command to associate a logical or physical device with a logical unit. This is
applicable only to timesharing systems. See Section 6.4.2.1 and Section 6.4.2.2 for a definition of
logical devices and logical units. For example:

PDS> ASSIGN
DEVICE? LPO:
LUN? 6

This command assigns LPO: to the logical unit 6. For example, if a program writes to logieal unit
6 via the FORTRAN statement WRITE, the results of the write are printed on the line printer.

6-13

6.5

6.5.1

File Handling

File Management

Creating Files
Both batch and interactive users can use the CREATE command to create files.

If you are an interactive user, type CREATE and supply a file specification (no wildcards are
allowed). You can optionally modify the file specification by the /PROTECTION qualifier. If you
do not specify the /PROTECTION qualifier, the new file is assigned the default file protection
associated with the volume. For example:

PDS> CREATE
FILE> FORT.FTN/PRO: (OW:RWED SY: GR: WO:)

The system uses default values for the device, UFD, and version fields. See Section 6.3.1.

Once you have terminated the command string, you type input to the new file line by line.

When terminated, each line is sent to the file exactly as formatted at the terminal. When the file
is complete (that is, you have typed all the required input), you close the file by typinglCTRUZI.

If you are a batch user, you supply the command name optionally modified by /DOLLARS and a file
specification (no wild-cards are allowed). You can optionally modify the file specification by using
the /PROTECTION qualifier. The qualifier /DOLLARS indicates that the file will be closed by the
$EOD command. Otherwise, any batch command terminates the file. Therefore, you must specify
the·/DOLLARS qualifier whenever a record in the file you are creating contains a $in position 1.
See Chapter 14 for further information on the CREATE command qualifiers. For example:

• Example 1:

$CREATE/DOLLARS FORTRAN.FTN/PRO:(OW:RWED SY: GR: WO:)

$EOD

• Example 2:

$CREATE DK2:[30,4)CALCULATE.MAC

6.5.1.1 Using the Editor to Create a Sequential Fiie
You can also create files by means of the EDI command. See Chapter 7 for a description of the
editors available with IAS.

6.5.1.2 User File Directories
To create a file on a volwne, you must mount the volume (see Section 6.4.3), and you must have
write access to a user file directory (UFD) on the volume. A UFD is a file that contains details of
all the files that have been created on that volume under the UFD identifier.

You can issue the DIRECTORY command to display the contents of a UFD. In batch mode, the
listing is output on the batch log; in interactive mode, the listing is output to the terminal.

6-14

PDS> DIRECTORY

DIRECTORY DBO: [200,22]

15-MAY-90 17:20

ADD.OBJ;l
ADD.FTN;l
ADD.TSK;l

2. 15-MAY-90 17:17
1. 15-MAY-90 17:17
32. C 15-MAY-90 17:18

6.5.2

File Handling

TOTAL OF 35~/35. BLOCKS IN 3. FILES

If you do not supply a parameier, the system displays information about your current default UFD.
However, by supplying one or more file specifications, you can list other directories or specific files.
For example:

PDS> DIRECTORY ADD.OBJ

DIRECTORY DBO: [200,22]

15-MAY-90 17:20

ADD.OBJ;l 2. 15-MAY-90 17:17

TOTAL OF 2./2. BLOCKS IN 1. FILE

To list DOS or RT-11 files, you modify the file specification with the /DOS or /RTll file qualifier.
For example:

PDS> DIRECTORY ESC
FILE? RTFILE.MAC/RTll

A UFD, like any other file, has a protection code that determines who has access to it. A file can
be created under any UFD where you have write access.

Manipulating Files
You can manipulate files to perform the following functions:

1 Append one or more files to an existing file.

2 Copy a file.

3 Rename an existing file.

4 Merge a file with an existing INDEXED or RELATIVE file.

6.5.2.1 The APPEND Command
Use the APPEND command to add one or more files onto the end of an existing file. For example:

• Example 1:

PDS> APPEND (A.CBL, B.CBL)
TO? C.CBL

Append files A.CBL and B.CBL to the end of the file C.CBL.

• Example 2:

$APPEND MYFILE.MAC YOURFILE.MAC

Append MYFILE.MAC to the end ofYOURFILE.MAC.

You must have extend access to a file before the file can be appended.

You specify the input file (or files) first and then the output file. If more than one input file is
specified, enclose these in parentheses.

You can retrieve input files from a mounted volume, from a record-oriented device (for example, a
card reader) or typed in from an interactive terminal. When you supply more than one input file,
the system appends the files in the order specified.

6-15

File Handling

If one of the files is to be input from your terminal (Tl), the system transfers everything typed at
the terminal after the command string, until you type ICtrVZI to close the file. For example:

• Example 1:

$APPEND (FILEl.MAC, FILE2.MAC), FILE3.MAC

The system appends the input files FILEl.MAC and FILE2.MAC to the file FILE3.MAC.

• Example 2:

PDS> APPEND
FILE? JUD.CBL
TO? GRAVES.CBL

The file JUD.CBL is appended to the output file GRAVES.CBL.

• Example 3:

PDS> APPEND TI: FRED.MAC
;THESE LINES ARE TO BE
;APPENDED TO THE FILE
;FRED.MAC
I Ctrl/z I
PDS>

6.5.2.2 The COPY Command
The COPY command creates a duplicate of the contents of an input file in a specified output file. If
you omit the version number from the input file, the highest version number is used. If you omit
the version number from the output file, the system uses the highest version number plus one.
If the file does not already exist in the destination UFD, a version number of 1 is used. Optional
command qualifiers allow the output file to be modified in various ways. For example:

• Example 1:

• Example 2:

PDS> COPY
FROM? MT2:FRED.MAC
TO? DK2 : JIM. M.Z\C

$COPY MT2:FRED.MAC,DK2:JIM.MAC

The examples above copy the highest version of FRED.MAC on MT2: to DK.2: and change the file
name to JIM on DK.2:. In addition to copying from one device to another, you can use the COPY
command to copy a file from one UFD to another. For example:

PDS> COPY [30,4]FRED.MAC
TO? [100,lOO]FRED.MAC

This example copies the file FRED.MAC in [30,4] to UFD [100,100]. The :filename remains
unchanged.

Four of the COPY command qualifiers are:

• iALLOC.A:TION:n

• /CONTIGUOUS

• /OWN

• /REPLACE

6-16

File Handling

These (and the full list of COPY command qualifiers) are described in detail in Chapter 14.
Examples of their use are as follows:

• Example 1:

$COPY/ALLOCATION:20 DK2:0LDFILE.DAT DKO:OLDFILE.DAT

Copy OLDFILE.DAT from DK2: to DKO: and make the output file 20 blocks long. The
/ALLOCATION qualifier is useful for copying a file and changing its size.

• Example 2:

PDS> COPY/CONTIGUOUS
FROM? MT2:TU71.MAC DKl:*.*

Copy TU71.MAC from MT2: to DKl: and make the output file contiguous. The wildcards (*)
indicate that the fields of the output specification where they occur take the corresponding field
values of the input file specification; that is, the output file will also be named TU71.MAC.

• Example 3:

PDS> COPY/OWN DBO: [120,71]*.TXT
TO? DB1:[136,120]*.TXT

Copy all files of the file type .TXT from the UFD [120,71] on DBO: to the UFD [136,120] on
DBl:, and make UFD [136,120] the owner of these copies.

• Example 4:

$COPY/REPLACE MT1:SAME.OBJ;4 DK2:SAME.OBJ;4

The /REPLACE qualifier indicates that the output file overrides a file in the user's default
UFD that has the same name, type, and version number. That is, if a file called SAME.OBJ;4
already exists on DK2: in the default UFD, it is deleted and replaced by the new one copied
from MTl:.

Two file qualifiers that enable you to copy files to or from an RT-11 or DOS formatted volume are
available with the COPY command: /RTll and /DOS. The qualifier must modify the specification of
the file currently in DOS or RT-11 format. When a DOS or RT-11 file is copied, the output filename
and file type are always taken from the input file. Therefore, the filename and file type fields of
the output file specification must always be wild.

• Example 1:

PDS> COPY
FROM? DK2:FRED.DAT/RT11
TO? *·*

Copy the RT-11 file FRED.DAT from the foreign volume on DK2: to the user's default device
and UFD.

• Example 2:

$COPY TEST.MAC;8 DTO:*.*/DOS

Copy the Files-11 file TEST.MAC;8 to a DOS-formatted foreign volume on DTO:.

6-17

6.5.3

File Handling

6.5.2.3 The RENAME Command
The RENAME command changes the name of a file. The following examples change the file name
DEBUG.MAC;l to RUN.MAC;l.

• Example 1:

• Example 2:

$RENAME DEBUG.MAC;l RUN.MAC;l

PDS> RENAME
OLD? DEBUG.MAC;l
NEW? RUN.MAC;l

6.5.2.4 The MERGE Command
The MERGE command merges a sequentially indexed or relative file (known as the transaction
file) with an indexed or relative file (known as the target file). For example:

• Example 1:

PDS> MERGE ANN.DAT KATHY.DAT/RELATIVE

Merge the file ANN.DAT with the relative file KATHY.DAT.

• Example 2:

PDS> MERGE/LOG
FILE? JEN.DAT/INDEXED
INTO? JOHN.DAT/INDEXED

Merge the indexed file JEN.DAT with the indexed file JOHN.DAT. The /LOG qualifier sends an
error log, giving details of records that could not be merged, to the user's terminal.

Listing Files
You can list sequential files on a line printer or at your terminal. You can use either the PRINT,
TYPE or DUMP command; the choice depends on the type of listing you want and whether you are
operating in interactive or batch mode.

6.5.3.1 Listing Flies on the Line Printer
You can use the PRINT command to print files on a line printer. The system might queue all line
printer output until all output previously submitted to the queue has been processed. Normally,
the output files are printed in the order they were submitted to the queue. However, you can
specify that files are only to be printed after a certain time by using the command qualifier
I AFTER: time.
The PRINT command is the simplest way to queue a file to the line printer. For example:

• Example 1:

PDS> PRINT
FILE? FILE1.DAT,FILE2.DAT,FILE3.DAT

• Example 2:

$PRINT LIST .?-A.AP

• Example 3:

PDS> PRINT/AFTER:l0:30 FILE.LST

6-18

File Handling

You specify the file or files to be printed after the command. The PRINT command always prints
the file on the system default line printer, selected by the system manager. You must use the
QUEUE command to print on any other device.

The PRINT command provides an option to delete files after they have been printed. You invoke
this option by supplying the command qualifier /DELETE. For example:

$PRINT/DELETE MYFILE.DAT

You can defer printing by issuing the SET PRINTING DEFERRED command. Printing then
begins when you log out (by choice or timeout) or you issue the SET PRINTING NODEFERRED
command.

6.5.3.2 Printing Files on Varied Stationery
A single printer can have up to seven print queues. Each queue can be associated with a particular
type of continuous stationery; for example, fan-fold, graph plotter paper, and pay slips. These
queues are referred to by a number, with a value from 0 to 6. 0 is always the default queue.
Values 1 to 6 can be used only by means of the PRINT or the QUEUE command or the PRINT$
MACRO directive.

When output spooling is enabled, the system first prints all the 0 queue on the CL device. If
printing is queued with other values of n, the system informs the operator by means of the system
console whenever a change of stationery is required.

6.5.3.3 Listing Files at an Interactive Terminal
The TYPE command causes one or more specified files to be printed on your interactive terminal.
For example:

• Example 1:

PDS> TYPE
FILE? FIRST.MAC,SECOND.MAC

• Example 2:

PDS> TYPE TYPE.CBL

If you specify batch mode, the file is listed in the batch log.

6.5.3.4 The DUMP Facility
The DUMP command outputs a specified file on your terminal (TO) or sends the listing to a
specified output file. The output shows the internal form of the file, byte by byte; it does not list
the file. Command qualifiers modify the form of the listing. For example, you might specify that
the file be dumped in ASCII mode. The DUMP facility is useful for debugging programs and for
displaying nonprintable characters in ASCII or octal format. See the full specification of the DUMP
command in Chapter 14 for all the available options. For example:

• Example 1:

PDS> DUMP /ASCII
FILE? DUMP.CBL

List the file DUMP.CBL in ASCII format on the user's terminal.

• Example 2:

$DUMP/BYTE/OUTPUT:DK2:DISKFILE.DAT OBJECT.OBJ

Send a listing of the file OBJECT.DAT in byte octal format to a file named DISKFILE.DAT on
DK2:

6-19

6.5.4

File Handling

• Example 3:

PDS> DUMP/OUT:LPO: FILE.DAT

List the file FILE.DAT in word octal format (the default) on the line printer.

Deleting Files
The DELETE command deletes files held on Files-ii disks or DECtapes, or RT~ i1 or DOS fiies heid
on foreign disks or DECtapes.

You must modify specifications of DOS or RT-11 files by a file qualifier, either /DOS or /RTll as
appropriate.

Wildcards (*) (see Section 6.3 are allowed in the file specification. If you omit the version field, you
can supply the command qualifier /KEEP:n to preserve the highest n versions of the file or files
specified. For example:

• Example 1:

PDS> DELETE/KEEP:2
FILE? MATRIX.DAT

Delete all versions of the file MATRIX.DAT less than or equal to m-n + 1, where m is the
latest version of the file. If the latest version of MATRIX.DAT is 100, this example deletes all
versions up to and including version 98. Versions 99 and 100 are kept, but if version 99 does
not exist, then only version 100 is kept.

• Example 2:

$DELETE ROW.OBJ;4 COLUMN.MAC;4 PEEK.*;*

Delete all files named PEEK and the fourth version of the files ROW.OBJ and COLUMN.MAC.

• Example 3:

PDS> DELETE DK2:DOSFIL.DAT/DOS

Delete the file DK2:DOSFIL.DAT, which is in DOS format.

You can use the PRINT command modified by the /DELETE qualifier to delete files that have been
submitted to the line printer. See Section 6.5.3.1 for further details.

Table 6-5 Summary of File Handling Commands

Command

ALLOCATE

APPEND

ASSIGN

COMPARE

COPY
"l""\r- A"T'r'
vMCl'\IC

DEALLOCATE

DEASSIGN

DELETE

6-20

Function

Allocate a specified device to the user (timesharing systems only).

Add one or more files to the end of a specified sequential file.

Assign a LUN to a device (timesharing systems only).

Compare two files and produce a summary of differences found.

Copy an input fiie to a specified output fiie.

Create a me as specified.

Deallocate a specified device (timesharing systems only).

Deassign a LUN from a device (timesharing systems only).

Delete specified file.

Table 6-5 (Cont.) Summary of File Handling Commands

Command

DISMOUNT

DUMP

EDIT

INITIALIZE

MERGE

MOUNT

QUEUE

PRINT

RENAME

SET
END_ OF _FILE

SET
PROTECTION

SORT

TRUNCATE

TYPE

Function

Dismount a specified volume.

List the contents of a file in internal form.

Edit an existing file or create a new file.

Initialize a volume.

Merge a file with an existing indexed or relative file.

Make a volume available to the user (all users on a multiuser system).

Enter a file into a queue.

Print one or more files on the line printer.

Change the name of an existing file.

Specify a file's end_of_file position.

Assign a specified protection code to a file.

Sort contents of a file into a specified sequence.

Truncate one or more files back to their logical end_of_file points.

List a file at the user terminal.

File Handling

6-21

7 IAS Editors

7 .1 Introduction
This chapter introduces the four IAS editors:

1 The text editor (EDI), primarily for interactive use.

2 The source language input program and editor (SLIPER), a batch-oriented editor.

3 The DEC editor (EDT), an alternative interactive editor.

4 The keypad editor (KED or K52), another interactive editor.

7.2 The Text Editor (EDI)
The EDIT command automatically invokes the text editor (EDI) unless you specify the qualifiers
/SLIPER, /EDT, /KED, or /K.52. EDI is an interactive, context-editing program that uses editor
commands to create and modify source programs and other files containing ASCII data. The
RSX-JIM IM-PLUS Utilities Manual contains a complete description of the text editor (EDI).

7.3 Batch Editing
The source language input program and editor (SLIPER) is a batch-oriented editing program used
to create and maintain source language files on disk.

The IAS Utilities Manual contains a complete description of SLIPER.

7.4 The DEC Editor (EDT)
The DEC editor (EDT) is a text editor that includes, among other features, the following functions:

• Optional keypad editing.

• Journaling facility.

• Startup command files.

• User-defined key functions.

The DEC Editor (EDT) is fully described in the EDT Editor Manual.

7.5 The Keypad Editor (KEO OR K52)
The keypad editor (KED or K52) is a text editor. You use KED on a VflOO terminal and K52 on a
VT52 terminal. The keypad editor is described in detail in the PDP-11 Keypad Editor User's Guide.

7-1

8 Introduction to Program Control

8.1 Introduction
This chapter introduces language-independent aspects of running programs under IAS. The next
five chapters, one on each language, describe the use of IAS commands for transforming source
programs into executing programs or tasks. The languages described are:

1 BASIC-11-Chapter 9

2 COBOL-Chapter 10

3 FORTRAN-Chapter 11

4 MACR0-11-Chapter 12

5 CORAL 66-Chapter 13

MACR0-11 is part of IAS; the other language translators are optional.

8.2 Processing Modes
The two processing modes are interactive and batch. The decision to use batch or interactive mode
depends on the nature of the job and the installation requirements. Interactive mode is convenient
for complicated editing of source programs or the execution of programs that require small amounts
of input data. Batch processing is better suited to processing large amounts of data (for example, a
payroll or accounts receivable package).

8.3 Indirect Command Files
An indirect command file is a sequential file containing command input. For example, rather than
repeatedly typing commonly used command sequences, you can type the sequence once and store
it in a file. 'lb execute the sequence, you type an@ character followed by the file specification. You
can invoke the indirect file from any position within the command string, but any characters that
follow the indirect file specification are ignored. The system then retrieves the indirect file and
executes the commands. For example:

PDS> EDIT FILE.CMD
[CREATING NEW FILE]

FORTRAN/OBJECT/LIST:CPROG CPROG
LINK CPROG
RUN CPROG
lRETURNj

*EXIT
PDS>

PDS> @FILE

The indirect file called FILE.CMD, created by means of the line text editor, contains commands to
compile, link, and run the source program CPROG.FTN.

8-1

Introduction to Program Control

Wben you invoke the file, you can execute these commands by typing @FILE in response to the
PDS prompt. CMD is the default file type for indirect files.

In batch mode, you can create and invoke the same command sequence in the following manner:

$CREATE/DOLLARS FILE.CMD
$FORTRAN/OBJECT/LIST:CPROG CPROG
$LINK CPROG
$RUN CPROG
Ct:'Ar'I
.,,~....,,..,,,

$@FILE

The $CREATE command string must include the qualifier /DOLLARS, so that the system
recognizes the following text as input and not as further batch commands to be processed. The
$EOD command terminates the file to be created.

You can subsequently invoke the command file by the command line $@FILE.

Both batch and interactive users can invoke indirect files up to three levels. An indirect file can
itself invoke another indirect file; the second file can invoke a third; but the third file cannot invoke
a fourth indirect file.

8.4 User Libraries

8.4.1

8.4.2

The LIBRARIAN command enables you to create and maintain your own libraries of
commonly-used macros (macro libraries) and routines (object module libraries).

Macro Libraries
MACR0-11 macros can be held in source (text) form in a macro library. Each macro is identified
by its macro name. To use one or more macros contained in a macro library file, you must supply
the library file specification, modified by the qualifier /LIBRARY, in the list of input files to the
MACRO command. See the description of the MACRO command in Chapter 14. You must specify
the macro library before the calling module. For example:

PDS> MACRO/LI:CAROL/OBJECT MYLIB.MLB/LIB+NEWPROG

This example assembles the source program in NEWPROG.MAC and uses macros defined in
MYLIB.MLB.

Object Module Libraries
You can store commonly used routines in object module libraries. You can store source code that
has been assembled or compiled to form object modules in a library, then incorporate it into a task.

If you use a library object module, you must ensure that the module is linked at task build time.
The task builder automatically searches all system libraries; however, it only searches user-written
libraries that have been explicitly specified in the LINK command. See the des\;1~ption of the LINK
command, Chapter 14. For example:

PDS> LINK/MAP:FRANK PROG,MYLIB/LIB: (COMRTN)

This example links object modules PROG and COMRTN (stored in MYLIB) to create task
PROG.TSK and FRANK.MAP.

8-2

Introduction to Program Control

The IAS Task Builder Reference Manual describes object module libraries in detail. The
specification of the LIBRARIAN command in Chapter 14 describes how to create and maintain
the libraries.

8.5 Creating Source Files
You can use the CREATE or EDIT commands to create source files. The EDIT command has the
advantage that it provides immediate access to all its editing facilities. However, to correct errors
made while using the CREATE command, you must rely on keyboard facilities or close the file and
then issue the EDIT command.

8.6 The CREATE Command
To create a source file with the CREATE command, you must take the following steps:

Batch Mode

1 Issue the $CREATE command, optionally modified by the qualifier /DOLLARS, followed by a
file specification of the file to be created.

2 Insert the source program immediately after the command line.

3 Terminate the source file either by another batch command or, if /DOLLARS has been specified,
by the command $EOD.

Interactive Mode

1 Issue the $CREATE command, followed by the file specification of the file to be created.

2 Input the source program at the beginning of the next line.

3 Close the file by typing I Ctrl/Z ~

The CREATE command is described in detail in Chapter 14. The following example shows the use
of the CREATE command in batch and interactive modes:

• Batch mode:

$CREATE/DOLLARS COBOL.CBL

00078 IF NF-DELIMITER = CR
00079 PERFORM READ-TRAN-LINE
00080 IF EOFFOUND GO TO G5999
00081 ELSE GO TO GSS
00082 IF CHAR-COUNT ZERO
00083 IF INMARKER <TRAN-LINE-LIMIT GO TO G25.

$EOD

• Interactive mode:

8-3

8.6.1

Introduction to Program Control

PDS> CREATE
FILE? TEST.FTN

SUBROUTINE PROCI
C FIRST DATA PROCESSING ROUTINE
C COMMUNICATION REGION

COMMON/DTA/A(200),I

T"loP.I,,, ,.,.
ri..C.J.Uri.1,.

END
ICTRL/ZI

The EDIT Command
The EDIT command enables interactive users to create and edit a source file by means of the text
editor. Batch users should use the CREATE command to create a source file, which can be edited
subsequently in either interactive or batch mode; see Chapter 7.

When the EDIT command specifies a nonexistent file, the line text editor creates a file and prompts
for input. For example:

PDS> EDIT
FILE? NEWSOURCE.CBL
[CREATING NEW FILE]
INPUT

You then begin to enter the source file beginning at the first position of the next line after "INPUT".

See Chapter 7 for details on how the text editor is used to edit the new file as it is being created.

To close the new file, you must type carriage return as the first character in the line. This action
causes the Editor to display an asterisk (*), which indicates that it expects an editor command
rather than further input to the file because the command mode has changed from insert to edit.
To close the file and exit to PDS, use the EXIT command. If you want to create further files,
reissue the EDIT command. For example:

8-4

PDS> EDIT
FILE? TONY.FTN
[CREATING NEW FILE]
INPUT

SUBROUTINE REPORT
C INTERIM REPORT PROGRAM
C COMMUNICATION REGION

COMMON/DTA/A(200),
RETURN
END

I RETURN I
*EX
[EXIT]
PDS>

Introduction to Program Control

8.7 Error Status Returned to PDS

8.7.1

When certain tasks exit, it is possible for the system to notify PDS (and hence the user) of the
worst error found during execution. The system relies on the task using the Exit with Status
Directive (see the !AS System Directives Reference Manual). The status of the task is recorded as
one of the following:

• SUCCESS

• WARNING

• ERROR

• SEVERE_ERROR

If you do not implement exit-with-status in the task, no status is recorded.

One of the following messages is received:

1 SUCCESS-Indicates that results are as expected.

2 WARNING-Indicates that the task has succeeded but results might not be as expected.

3 ERROR-Stronger than WARNING: results are unlikely to be as expected.

4 SEVERE_ERROR-lndicates one or more fatal errors or that the task was aborted.

If you invoke the task interactively, the termination message to your terminal includes the status.
For example:

ON ERROR GOTO ERRPR
LINK /MAP:MYPROG MYPROG
ERRPR:PRINT MYPROG.MAP

If you invoke the task by means of an indirect command or in batch, you can use the status to
control subsequent steps in the command file or batch job, (see Section 8.7.1).

Conditional Command Execution
Indirect and batch command files can include the following control commands:

• ON status action

• STOP

• GOTO label

• CONTINUE

Of these, ON is a conditional command; that is, the ON action takes place only if a particular
condition is satisfied. The condition can be satisfied either by the status returned by a task (by
means of exit-with-status), or as a result of a PDS command. For example:

8-5

Introduction to Program Control

$ON WARNING GOTO LABl
$MAC/LI:MYPROG MYPROG
$ON ERROR GOTO LAB2
$LANK/MAP:MYPROG MYPROG
$GOTO LAB3
$LAB1: PRINT MYPROG
$GOTO LAB3
'$LAB2 : DIR MYPROG. *
$LAB3:
$EOJ

In this example, if a warning error is returned from the assembly (MACRO) of MYPROG,
MYPROG.LST is printed and the job terminated. If the assembly is succesful, because the next
command contains an error (that is, LANK instead LINK) a directory listing of MYPROG.* is
printed (LAB2:) and the job terminates.

The ON command should be positioned (in the command stream) before any command(s) to which
the condition and action apply. For example:

$DIR *·*
$ON ERROR STOP
$MAC MYPROG
$LINK MYPROG
$RUN MYPROG

In this example, a directory of the default UFD is always listed. However, if an error occurs during
the assembly or task build (MACRO or LINK), the default condition and action is:

[$]ON ERROR STOP

If no ON command was specified and an error was encountered during execution, no further
commands are executed.

The ON command condition and action remains in force until any of the following actions occurs:

• Another ON command is specified.

• PDS terminates ($EOJ and LOGOUT).

• In interactive mode, the top level of command input (that is, command files other than indirect
command files) is entered.

If an ON command string contains an error (for example, ON ERRRR CONTINUE) the statement
is ignored. If the error is in the action to be taken (for example, ON WARNING CONTINUE) the
default condition (ON ERROR STOP) is taken (when this action is required). For example:

• Example 1:

8-6

ON ERROR TYPE MESFIL.CMD
MAC MYPROG
ON ERRRR CONTINUE
MAC YOURPROG

The second ON statement is ignored and MESFIL.C:MD ty-ped if an error is encountered during
assembly of either MYPROG or YOURPROG.

Introduction to Program Control

• Example 2:

ON ERROR CONTINUE
MAC MYPROG

If an eITor is encountered during assembly of MYPROG, the command file is terminated
because, on meeting the condition and attempting to "CONTINUE", PDS reverted to the
default ON ERROR STOP.

ON cannot specify the action to be taken during the execution of a task or actions which depend on
the outcome of a previous command.

The action set by the ON command can be any legal PDS (DCL) command. However, the following
three commands are commonly used with the ON command:

1 STOP.-Prevents all further commands in the file or job being executed.

2 CONTINUE.-Causes the job to continue as though the condition had not occurred (used to
override previous conditions set or the default).

NOTE: When CONTINUE is used in a command file, it does not imply that a task has
been previously suspended.

3 GOTO label.-Continues execution from the command immediately following the label
specified. A labelled command line is of the form:

label: command

The label specified in a GOTO command must appear in the command stream as a label to
another command. The labeled command line must occur after any GOTO statement that
references it, because the GOTO statement cannot go back through the command stream.

If no action is required when an eITor is met, specify the following:

ON SEVERE ERROR CONTINUE

8-7

9 BASIC-11

9.1 Introduction
This chapter introduces BASIC-11. For details about BASIC-11 and BASIC-PLUS-2, see the
!AS/RSX BASIC User's Guwe and the BASIC-PLUS-2/RSX-llM/IAS/VMS User's Guide.

BASIC-11 provides immediate translation and storage of a user program while it is being input
from an interactive terminal. The PDS user invokes the BASIC interpreter by typing the command
BASIC. You cannot use BASIC systems in batch mode under IAS.

The interactive nature of BASIC removes the need for separate steps in the development of a
program. Once you have invoked BASIC, you can create, translate, and run a program in a single
session.

This chapter describes how to invoke BASIC, create and execute a program, then terminate a
session. The following manuals describe the BASIC language:

• BASIC-11 Language Reference Manual

• IAS I RSX BASIC User's Guide

9.2 The Basic Command
When you issue the BASIC command, BASIC displays the following:

PDS> BASIC

!AS BASIC V02-01

READY

The text READY indicates that BASIC is ready to receive a command or program line.

The BASIC command has no parameters or command qualifiers.

9.3 lctrVCl

If you type ICtrVCI while a BASIC program is running, the system stops executing after the
current line and displays the number of the last line executed. You can then issue further BASIC
commands.

Typing lctrVCI during the execution of a BASIC LIST, SAVE command, or immediate mode statement
stops the execution of those commands or statements. ICtrVC I has no effect on the execution of other
BASIC commands.

9-1

BASIC-11

9.4 Terminating a Basic Session
To terminate a BASIC session and return control to PDS, you must type BYE on a new line. The
system then prints information about the session and prompts for further PDS commands. For
example:

BYE

15:57:32 SIZE:14K CPU:l0.24

PDS>

9.5 Example
PDS> BASIC
READY
OLD MYBASIC
LISTNH
10 REM PROGRAM TO TRANSLATE MONTH NAMES TO NUMBERS
50 T$ = "JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC"
100 PRINT "TYPE THE FIRST 3 LETTERS OF A MONTH";
110 INPUT M$
120 IF LEN (M$) <>3 GO TO 200
130 M=(POS(T$,M$,1) + 2) /3
140 REM CHECK IF MONTH IS SPELLED CORRECTLY
150 IF M <> INT (M) GO TO 200
160 PRINT M$" IS MONTH NUMBER"M
170·GO TO 100
200 PRINT "BAD MONTH" GO TO 100
READY

RUNNH
TYPE THE FIRST 3 LETTERS OF A MONTH? NOV
NOV IS MONTH NUMBER 11
TYPE THE FIRST 3 LETTERS OF A MONTH? DEC
DEC IS MONTH NUMBER 12
TYPE THE FIRST 3 LETTERS OF A MONTH? JAN
JAN rs MONTH NUMBER 1
TYPE THE FIRST 3 LETTERS OF A MONTH? AUD
BAD MONTH
TYPE THE FIRST 3 LETTERS OF A MONTH? ~

STOP AT LINE 110
READY
BYE
12:39:27 SIZE:14K CPU:0.76
PDS>

In this example the user first invokes BASIC by issuing the BASIC command. BASIC indicates
that it is ready to accept BASIC program lines and commands by printing READY. The user
then retrieves an existing BASIC program by entering the OLD command. The LIST and RUN
commands respectively print and execute t1'is program. Since t1'is program is written as a loop
(that is, after executing line 200 it loops back to line 100) it executes indefinitely. By enterinir
ICtrL'CL the user terminates the program execution. BASIC then prints the line ~umber where­
execution stopped. The BYE command terminates the BASIC session.

9-2

10

10.1

10.2

10.3

COBOL

Introduction
COBOL is the acronym for COmmon Business Oriented Language. You perlorm four steps to
produce an executable task from a COBOL source program:

1 Create one or more source files.

2 Compile the source files.

3 Link the compiled (object) modules to form an executable task.

4 Run the task.

This chapter describes how to use IAS commands to perlorm these steps. You can create the file
to compile, link, and run the task in a single batch job. See the following manuals for information
about programming in COBOL on the PDP-11:

• PDP-11 COBOL Language Reference Manual

• PDP-11 COBOL User's Guide

Creating Source Files
Use the CREATE or EDIT commands to create source files. The EDIT command has the advantage
that it enables an interactive user immediate access to all its editing facilities. However, to correct
errors made while using the CREATE command, you must rely on keyboard facilities or close the
file, then issue the EDIT command.

The COBOL Command
By default, the COBOL command compiles a source program and produces an object file. For
example:

PDS> COBOL
FILE? SOURCE.CBL

This command string compiles the program SOURCE.CBL and produces an object file named
SOURCE.OBJ. If you omit the file type field in the specification of the source file, the COBOL
compiler asswnes it to be CBL.

10.3.1 Compiling COBOL Source Files
You can only specify one source file with each COBOL command. For example:

• Example 1:

PDS> COBOL
FILE? COBSRC

10-1

COBOL

• Example 2:

$COBOL COBSRC

• Example 3:

PDS> COBOL COBSRC

Each of the command strings above instructs the system to compile the source file specified and to
produce compiler output as the defaults dictate.

By default, the compiler performs the following functions:

1 Produces an object file with the name of the source file and OBJ as the file type.

2 Compiles the source file according to the compiler's default switches. See the description of the
COBOL command in Chapter 14 for further details.

3 Produces a skeleton .ODL file used during program linking if file processing features that use
RMS-11 facilities are used. The PDP-11 COBOL User's Guide describes this facility in detail.

10.3.2 COBOL Command Qualifiers
The qualifiers to the COBOL command are:

• /OBJECT[:filespec]

• /NOOBJECT

• /LIST[:filespec]

• /NO LIST

• /SWITCHES:(switches)

The compiler produces an object file unless you specify /NOOBJECT. You can specify a name for
the object file after /OBJECT or leave the object file to be named by default. See the description of
the COBOL command in Chapter 14 for further details.

You can specify /LIST to obtain a listing. The rLJIST :filespec qualifier enables you to store the
listing in a file; otherwise, the listing file is printed at the line printer, then deleted.

10.3.3 COBOL Compiler Switches
The PDP-11 COBOL compiler provides switches to enable you to tailor the compilation to particular
needs. You specify the switches by means of the /SWITCHES qualifier to the COBOL command.
For example:

$COB/SWITCHES: (/MAP) SOURCE.CBL

The specified switches must be enclosed in parentheses. For example:

PDS> COBOL/SWITCHES(/ERR;2/MAP/CVF)/LIST:ACCOUNT.LST
FILE? ACCTS. CBL

If you do not specify switches, the default switches are as follows:

(/ERR:O/ACC:l/NOMAP)

The COBOL command specification in Chapter 14 lists and describes all the compiler switches.

1~2

COBOL

10.3.4 Compiler Error Messages

10.4

The compiler generates error messages (diagnostic, warning, and fatal) whenever an error is
detected in the source program. Any error detected by the compiler results in the associated
message being embedded within the source program listing. The compiler prints the error message
either before or after the erroneous source program statement. If the statement in error cannot be
identified, the errors are flagged at the end of the listing. See the PDP-11 COBOL User's Guide for
a detailed description of error messages.

Linking Object Files
Issue the LINK command to link COBOL object files to create an executable task.

10.4 .. 1 The LINK Command
The LINK command invokes the IAS task builder to build an executable task from object files. You
can generate object files directly by using the COBOL command, or you can extract them from the
user-written system library files; see Chapter 8. In particular, you must specify the system module
libraries COBLIB.OLB and RMSLIB.OLB.

The IAS Task Builder Reference Manual contains a complete description of the task builder. The
LINK command is described in Chapter 14.

To link one or more COBOL programs using the system default task builder switches and options,
issue the LINK command followed by the list of object files to be linked together into an executable
task. For example:

LINK/OPTIONS PRODUCTS STOCKS [1,l]COBLIB/LI [1,l]RMSLIB/LI
OPTIONS?

The above example links together the COBOL object files PRODUCTS.OBJ and STOCKS.OBJ, and
routines in COBLIB and RMSLIB.

10.4.1.1 Options
The qualifier /OPTIONS enables you to specify task builder options. In interactive mode, the
presence of the qualifier /OPTIONS in the command qualifier list causes the task builder to prompt
OPTIONS? after the input files have been specified. For example:

PDS> LINK/OPTIONS
FILE? PROG.OBJ,REPORT.OBJ, [1,l]COBLIB/LI, [1,l]RMSLIB/LI
OPTIONS?

You then enter the options one line at a time. A slash (I) as the first character in a line then
terminates the option input. For example:

PDS> LINK/OPTIONS
FILE? MYCOB.OBJ,PROG.OBJ, [1,l]COBLIB/LI, [1,l]RMSLIB/LIB
OPTIONS? UNITS=9
OPTIONS? ASG=DT1:7:8:9
OPTIONS? /

In batch mode, the presence of the /OPTIONS qualifier in the command qualifier list causes
the task builder to expect one or more options to be specified on one or more lines immediately
following the command string. A line containing a slash (I) in the first character position
terminates the list of options. For example:

10-3

COBOL

$LINK/OPTIONS PROG REPORT [1,l]COBLIB/L [1,l]RMSLIB/L
UNITS=9
ASG=DT1:7:8:9
I

The use of the /OPTIONS qualifier also inhibits the task builder from building the task to the
system resident library (SYSRES). This library is inappropriate for COBOL programs since the
library contains commonly used file control services (FCS) routines, rather than RMS-11 routines.

The task builder options are summarized in a table in the LINK command (Chapter 14).

10.4.1.2 Object Module Libraries
The file qualifier /LIBRARY specifies a library file that contains the user-written object modules to
be incorporated in the task.

In addition, you must specify the supplied object module libraries COBLIB.OLB COBOL programs
in that order.

PDS> LINK/OPTIONS CBLPROG [1,l]COBLIB/LI[l,l]RMSLIB/LI
OPTIONS?

The task builder automatically searches system object module libraries for referenced modules.

If the .ODL file generated by the COBOL compiler or a user supplied .ODL file is used for a
complex structured program, the library specifications for COBLIB and RMSLIB must be included
in the .ODL file. See the PDP-11 COBOL User's Guide for further details.

10.4.1.3 Output Files
The task builder does not generate any output files, other than an executable task image, unless
you specifically request them by supplying the relevant qualifiers. The possible output files and
their associated qualifiers are:

Output Fiie Qualifier

Task Image file /TASK[:filespec]

/MAP[:filespec]

/SYMBOLS[:filespec]

Memory allocation map file

Symboi definition file

10.4.1.4 Example
The following example links three object files.

PDS> LINK/TASK:WAGES/MAP:WAGES/OPTIONS
FILES? PAY,PEOPLE,MONTH[l,l]COBLIB/LI, [1,l]RMSLIB/LI
OPTIONS? UNITS = 5
OPTIONS? ASG=DT2:1:2,TI:3,MT:4:5
OPTIONS? /)
PDS>

The LINK command links the three object files to create a task image file named WAGES.TSK and
a map file named WAGES.MAP.

10-4

10.5

COBOL

Running the Task
A COBOL programmer compiles and links a task in separate operations. The programmer then
uses the RUN command to execute the task image created by the LINK command. 'lb run a linked
COBOL task, issue the RUN command and specify the task image file generated by the LINK
command. For example:

• Example 1:

• Example 2:

PDS> RUN
FILE? WAGES

$RUN WAGES

Both examples instruct the system to run the task named WAGES.TSK.

10-5

11

11.1

FORTRAN

Introduction
FORTRAN is the acronym for the FORmula TRANslation language. You perform four steps to
produce an executable task from a FORTRAN source program:

1 Create one or more source files.

2 Compile the source files.

3 Link the compiled (object) modules to form an executable task.

4 Run the task.

This chapter describes how to use IAS commands to perform these steps. See the following
manuals for information about programming in FORTRAN IV or FORTRAN IV-PLUS:

• IAS/RSX, VAX/VMS FORTRAN N User's Guide

• FORTRAN N-PLUS User's Guide

• PDP-11 FORTRAN Language Reference Manual

11.2 Creating Source Files
You can use the CREATE or EDIT commands to create source files. See Section 8.5. The EDIT
command has the advantage that it provides you with immediate access to all its editing facilities.
However, to coITect eITors made while using the CREATE command, you must rely on keyboard
facilities or close the file and then issue the EDIT command.

11.3 The FORTRAN Command
The basic function of the FORTRAN command is to compile one or more FORTRAN source
programs. Command qualifiers, including compiler switches and options, determine the form
of the output to be generated by the compiler. The system manager determines which compiler is
to be the default compiler. To use the nondefault compiler, qualify the FORTRAN command with
the task name. For example:

• FORTRAN/FOR MYPROG (for the FORTRAN IV compiler)

• FORTRAN/F4P MYPROG (for the FORTRAN IV PLUS compiler)

• FORTRAN MYPROG (for the default FORTRAN compiler)

11-1

FORTRAN

11.3.1 Compiling Source Files
You can specify only one source file with each FORTRAN command. For example:

• Example 1:

e Example 2:

• Example 3:

PDS> FORTRAN
FILE? INVERT

$FORTRAN INVERT

PDS> FORTRAN INVERT

Each of the command strings above instructs the system to compile the source file specified and to
produce compiler output as the defaults dictate.

By default, the compiler does the following:

1 Produces an object file that has the name of the source file and the OBJ as the file type.

2 Compiles the sour<.'.e file according to the compile:r's default switches. See the deaeription of the
FORTRAN command in Chapter 14.

11.3.2 FORTRAN Command Qualifiers
Command qualifiers, each preceded by a slash (I), immediately follow the command name. For
example:

PDS> FORTRAN/LIST/OBJECT/SWITCHES:(/CK) SOURCE.FTN

You specify command qualifiers to modify the function of the FORTRAN command according to
the needs of the program. You can also specify qualifiers to affirm default compiler actions. For
instance, the example above specifies /OBJECT even though the FORTRAN command produces an
object file by default.

11.3 .. 3 FORTRAN Compiler Switches
FORTRAN compiler switches are listed after the /SWITCHES: qualifier. The list of switches must
be enclosed in parentheses. The preceding slash separates each switch from the next within the
list. For example:

$FORTRAN/SWITCHES: (/CK/C0:7/TR:LINES) PROGl.FTN

The switches differ, depending on whether the programmer is using FORTRAN IV or FORTRAN
IV-PLUS. Both sets of switches are listed in the specification of the FORTRAN command in
Chapter 14.

11-2

11.3.4 Examples
The following commands compile a FORTRAN source file:

• Example 1:

$FORTRAN/OBJECT/LIST:PRINT RDIN

FORTRAN

Compile the source program RDIN.FTN, create an object file name RDIN.OBJ and create a
listing file called PRINT.LST.

• Example 2:

$FORTRAN RPRT.FTN

Compile the source program RPRT.FTN to create an object file named RPRT.OBJ.

The file specification to the /LIST qualifier need not include a file type. In this case, the system
assumes a file type of LST.

11.4 Linking Object Files
The LINK command links FORTRAN object files to create an executable task.

11.4.1 The LINK Command
The LINK command invokes the IAS task builder to build an executable task from object files. You
can generate these objects directly by using the FORTRAN command or you can extract them from
the user-written system library files. See Section 8.4.

The IAS Task Builder Reference Manual contains a complete description of the task builder. The
LINK command is described in Chapter 14.

To link one or more FORTRAN programs using the system default task builder switches and
options, issue the LINK command followed by the list of object files to be linked together into an
executable task. For example:

LINK PERFECT NUMBER

This links together the FORTRAN object files PERFECT.OBJ and NUMBER.OBJ.

11.4.1.1 Options
The qualifier /OPTIONS enables you to specify task builder options. In interactive mode, the
presence of the qualifier /OPTIONS in the command qualifier list causes the task builder to prompt
OPTIONS? after the input files have been specified. For example:

PDS> LINK/OPTIONS
FILE? PROG.OBJ,REPORT.OBJ
OPTIONS?

You then enter the options one line at a time. A slash (I) as the first character in a line terminates
the option input. For example:

11-3

FORTRAN

PDS> LINK/OPTIONS
FILE? FORT.OBJ,PROG.OBJ
OPTIONS? ACTFIL=B
OPTIONS? MAXBUF=160
OPTIONS? UNITS=9
OPTIONS? ASG=DT1:7:8:9
OPTIONS? /

In batch mode, the presence of the /OPTIONS qualifier in the command qualifier list causes
the task builder to expect one or more options to be specified on one or more lines immediately
following the command string. A line containing a slash (I) in the first character position
terminates the list of options. For example:

$LINK/OPTIONS PROG.OBJ,REPORT.OBJ
ACTFIL=8
MAXBUF=160
UNITS=9
ASG=DT1:7:8:9
I

See the task builder Options table in the LINK command (Chapter 14) for a summary of the
task builder options. The table indicates with an F the options that are relevant to FORTRAN
programs.

11.4.1.2 Object Modules
The file qualifier /LIBRARY specifies a library file that contains the user-written object modules
to be incorporated in the task. The task builder automatically searches system object module
libraries for referenced modules. For example:

$LINK (FORT.OLB/LIBRARY: (MOD1,MOD2),FORTRAN.OBJ)

11.4.1.3 Output Files
The task builder does not generate any output files other than an executable task image, unless
you specifically request them by supplying the relevant qualifiers. The possible output files and
the associated qualifiers are as follows:

Output Fiie Quallfler

Task image file /TASK[:filespec]

/MAP[:filespec]

/SYMBOLS[:filespec]

Memory allocation map file

Symbol definition file

11.4.1.4 Example
The following example links three object files:

PDS> LINK/TASK:CALC/MAP:CALC/OPTIONS
FILES? RDIN.OBJ,PROCl.OBJ,RPRT.OBJ
OPTIONS? UNITS=S
OPTIONS? ASG=DT2:1:2,TI:3,MT:4:5
OPTIONS? /
PDS>

The LINK command links the three object files to create a task imaee file named CALC.TSK and a
map file named CALC.MAP. -

11--4

FORTRAN

11.5 Running the Task
A FORTRAN programmer compiles and links a task in separate operations.

To run a linked FORTRAN task, issue the RUN command and specify the task image file generated
by the LINK command.

• Example 1:

• Example 2:

PDS> RUN
FILE? CALC

$RUN CALC

Both examples instruct the system to run the task named CALC.TSK.

11-5

12

12.1

12.2

12.3

12.4

MACR0-11

Introduction
MACR0-11 is an assembly language for use on the PDP-11. Perform the following four steps to
produce an executable task from a MACR0-11 source program:

1 Create one or more source files.

2 Assemble the source files.

3 Link the assembled (object) files, to form an executable task.

4 Run the task.

This chapter describes how to use IAS commands to perform these steps. It also introduces the
online debugging technique (ODT), a system program that aids in debugging assembled and linked
object programs.

See the PDP-11 MACR0-11 Reference Manual for information about programming in MACR0-11.

Creating Source Files
Use the CREATE or EDIT commands to create source files. See Section 8.3. The EDIT command
has the advantage that it provides you with immediate access to all its editing facilities. However,
to correct errors made while using the CREATE command, you must rely on keyboard facilities or
close the file and then issue the EDIT command.

The MACRO Command
The MACRO command assembles one or more source files containing MACR0-11 statements into a
single, relocatable binary object file. Command qualifiers, including assembler switches, determine
the output to be generated by the assembler.

Assembling MACR0-11 Source Files
The following command string assembles the source files LOCATE.MAC and FIND.MAC:

• Example 1:

PDS> MAC
FILE? LOCATE+FIND

• Example 2:

$MACRO LOCATE+FIND

Each of the command strings above instructs the system to assemble the source files specified and
to produce assembler output as the defaults dictate. Note that the MACRO command requires the
source files to be concatenated with a plus sign (+). By default, the assembler produces an object
file that has the name of the last source file specified but with OBJ as the filetype.

12-1

12.4.1

12.5

MACR0-11

MACR0-11 Command and File Qualifiers
The qualifiers to the MACRO command are:

• l[NO]LIST[:filespec]

• l[NO]OBJECT[:filespec]

• /SWITCHES:(swlist)

• l[NOJCROSSREFERENCE

The file qualifiers are:

• /LIBRARY

• /PASS:n

• /SWITCHES:(swlist)

Specify file qualifiers immediately after the relevant file specification. For example:

$MAC MACLIB.MLB/LIB+TEST

The LIBRARY qualifier instructs the assembler to treat l\fACLIB.MLB as a macro library file.

Specify command and file qualifiers to modify the function of the MACRO command according
to the needs of your program. You can also specify qualifiers merely to affirm default assembler
actions. See the MACRO command (Chapter 14) for a list of MACRO command qualifiers and
defaults.

The specification of the MACRO command in Chapter 14 lists all the possible command and file
qualifiers. Consult the PDP-11 MACR0-11 Reference Manual for a full description. For example:

PDS> MACRO/OBJECT:FINAL
FILE? ROUT.MAC+MAIN.MAC

This code assembles the source programs ROUT.MAC and MAJN.MAC to produce an object file
named FINAL.OBJ.

Linking Object Files
The LINK command links MACR0-11 object files to create an executable task. See Section 12.7 for
information about debugging linked object programs.

12.5.1 The LINK Command
The LINK command invokes the IAS task builder to build an executable task from object files
generated by the FORTRAN or MACRO command and/or from object modules held in user-written
and system library files.

The iAS Tnsk Builder Reference Manual contains a complete description oi the task builder. This
section gives information to help you use the LINK command.

To modify the action of the task builder, specify various options. To link one or more MACR0-11
programs with the system default task builder switches and options, issu,e the LINK command,
followed by the list of object files to be linked together into an executable task. For example:

$LINK REALTIME ADCONVERT

12-2

MACR0-11

This code links together the object programs REALTIME.OBJ and ADCONVERT.OBJ.

12.5.1.1 Options
The /OPTIONS qualifier enables you to specify task builder options. In interactive mode, the
presence of the qualifier /OPTIONS in the command qualifier list causes the task builder to prompt
OPTIONS? after the input files have been specified. For example:

PDS> LINK/OPTIONS
FILE? PROG.OBJ, REPORT.OBJ
OPTIONS?

You then enter the options one line at a time. A slash (I) as the first character in a line terminates
the list of options and the tASK bUILDER Resumes executing. For example:

PDS> LINK/OPTIONS
FILE? MAIN.OBJ, PROG.OBJ
OPTIONS? TASK=SYSMAN
OPTIONS? UIC=[l,1]
OPTIONS? SGA=SYSRES:RO
OPTIONS? /)

In batch mode, if the /OPTIONS qualifier is in the command qualifier list, the task builder expects
one or more options to be specified on one or more lines immediately following the command string.
You must specify a single option on each line. A card or line containing a slash (I) in the first
character position terminates the list of options. For example:

$LINK/OPTIONS PROG.OBJ, REPORT.OBJ
TASK=SYSMAN
UIC=[l,1]
SGA=SYSRES:RO
/)

Chapter 14 contains a summary of the task builder options in the specification of the LINK
command. The summary marks the options relevant to MACRO programs with the letter M.

12.5.1.2 Object Module Libraries
The file qualifier /LIBRARY specifies the library files that contain the user-written object modules
to be incorporated in the task. The task builder automatically searches system object module
libraries for referenced modules. For example:

$LINK MACRO.OLB/LIBRARY: (MAC1,MAC2) MACRO.OBJ

12.5.1.3 Output Files
The task builder does not generate any output files, other than an executable task image, unless
you specifically request them by supplying the relevant qualifiers. The possible output files and
the associated qualifiers are:

Output Fiie

Task image file

Memory allocation map file

Symbol definition file

Qualifier

/TASK[:filespec]

/MAP[:filespec]

/SYMBOLS[:files pee]

12-3

12.6

MACR0-11

12.5.1.4 Example
The following example links three object files to form a task named CALC.TSK.

PDS> LINK/TASK:CALC/MAP:CALC/DEBUG/OPTIONS
FILE? (SEG1.0BJ,SEG2.0BJ,MACRO.OBJ)
OPTIONS? UNITS=S
OPTIONS? ASG=DT2:1:2,TI:3,MT:4:5
OPTIONS? /)
PDS>

The command string above links the three object files to create a task image file named CALC.TSK
and a map file named CALC.MAP. The /DEBUG qualifier instructs the task builder to include a
debugging aid (that is, the ODT program), and task builder options assign logical unit numbers.

Running the Task
A MACR0-11 programmer assembles and links a task in separate operations. The programmer can
then use the RUN command to begin execution of the task image created by the LINK command.

When you use it to execute a MACR0-11 task, the RUN command has no qualifiers and only one
parameter (the file specification of the task to be run). The file containing the executable task is
the task image file generated by LI!~"K. For example:

• Example 1:

PDS> RUN)
FILE? CALC.TSK

• Example 2: ·

$RUN CALC.TSK

Both examples instruct the system to run the task named CALC.TSK.

12.7 Debugging

12.7.1 The Online Debugging Technique
IAS provides the online debugging technique (ODT) to help you debug assembled and linked object
programs. To incorporate ODT in the linked program, you specify the /DEBUG qualifier to the
LINK command, see Section 12.5.1.1. For example:

$LINK/DEBUG MACRO.OBJ

The task builder then automatically includes ODT in the task image.

The IAS ODT Reference Manual contains a complete description of ODT. In brief, however, you
interact with ODT and the object program to perform the following functions:

1 Print the contents of any location for examination or alteration.

2 Run all or any portion oi the task using the breakpoint feature.

3 Search the task for specific bit patterns.

4 Search the task for words which reference a specific word.

5 Calculate a block of words or bytes with a designated value.

6 Fill a block of words or bytes with a designated value.

12-4

MACR0-11

The breakpoint is one of ODTs most useful features. When debugging a program, it is often
desirable to allow the program to run normally up to a predetermined point, at which time the
contents of various registers or locations can be examined and possibly modified. 'lb accomplish
this, ODT acts as a monitor to the user program.

During a debugging session~ the current assembly listing and memory allocation map of the
program to be dubugged must be available at the terminal. You can make minor corrections to
the program online during the debugging session. You can then run the program under control
of ODT to verify any changes made. You must note any major corrections, however, (such as
a missing subroutine) on the assembly listing and incorporate them in a subsequent updated
program assembly.

12.7.2 User-Written Debugging Aids
You can also incorporate a user-written debugging aid in a linked object program. The file
containing the debugging aid is specified with the /DEBUG qualifier. For example:

PDS> LINK/DEBUG: [1,l]DDT/READ_WRITE/SYMBOLS
FILES? MACRO.OBJ

12-5

13

13.1

13.2

13.3

CORAL66

Introduction
CORAL is the acronym for the Computer On-line Real-time Applications Language. Perlorm the
following four steps to produce an executable task from a CORAL 66 source program:

1 Create one or more source files.

2 Compile the source files.

3 Link the object module(s) to form an executable task.

4 Run the task.

This chapter describes how to use IAS commands to perform these steps. Consult the following
manuals for information about programming in CORAL 66:

• !AS/RSX/VMS CORAL 66 User's Guide

• CORAL 66 Language Reference Manual

Creating Source Files
You can use the CREATE or EDIT commands to create source files. See Chapter 8, Section 8.5.
The EDIT command has the advantage that it provides you with immediate access to all its editing
facilities. However, to correct errors made while using the CREATE command, you must rely on
keyboard facilities or close the file, then issue the EDIT command.

The Coral Command
The basic function of the CORAL command is to compile one or more CORAL source programs.
Command qualifiers, including compiler switches and options, determine the form of the output
that the compiler is to generate.

13.3.1 Compiling Source Files
The following command strings compile the source files INVERT.COR and INVERTl.COR.

• Example 1:

PDS> CORAL
FILE? INVERT+INVERTl

• Example 2:

$CORAL INVERT+INVERTl

• Example 3:

PDS> CORAL INVERT+INVERTl

13-1

CORAL 66

Each of the command strings above inst.rnct.s the system to compile the source files specified and to
produce compiler output as the defaults dictate.

By default, the compiler performs the following functions:

1 Produces an object file that is given the name of the first source file and OBJ as the filetype.

2 Compiles the source file according to the compiler's default switches. See the CORAL command
description in Chapter 14.

13.3.2 CORAL Command Qualifiers
Each command qualifier is preceded by a slash (I) and immediately follows the command name.
For example:

PDS> CORAL/LIST/OBJECT/SWITCHES: (/BC) SOURCE.CCR

You specify command qualifiers to modify the function of the CORAL command according to the
needs of the program. You can also specify qualifiers merely to affirm default compiler actions. For
instance, the example above specifies /OBJECT, even though the CORAL command produces an
object file by default.

You enter compiler switches after the /SWITCHES: qualifier. Enclose the list of switches in
parentheses. The slash preceding each switch separates each one within the list. For example, in
batch mode, switches are specified as follows:

$CORAL/SWITCHES: (/BC/OP:2/LI:SRC) PROGl.COR

The switches are listed in the description of the CORAL command; see Chapter 14.

13.3.3 Examples
The following examples demonstrate commands that compile a CORAL source file:

• Example 1:

$CORAL/OBJECT/LIST:PRINT RDIN

Compile the source program RDIN.COR, create an object file name RDIN.OBJ, and create a
listing file called PRINT.LST.

• Example 2:

$CORAL/OBJECT/LIST:LPROC1 PROCl

Compile the source program PROCl.COR, create an object file named PROCl.OBJ, and create
a listing file called LPROCl.LST.

• Example 3:

$CORAL/OBJECT/LIST:READ RPRT.COR

Compile the source program RPRT.COR, create an object file named RPRT.OBJ and create a
listing file called READ.LST.

Note that the file specifications to the /LIST qualifier need not include a file type. In this case, the
system assumes the file type to be LST.

13-2

CORAL66

13.4 Linking Object Files
Issue the LINK command to link CORAL object files to create an executable task.

13.4.1 The LINK Command
The LINK command invokes the IAS task builder to build an executable task from object files.
You can generate object files directly by using the CORAL command, or you can extract them from
user-written and system library files. See Section 8.5.

The lAS 'lhsk Builder Reference Manual contains a complete description of the task builder. See
Chapter 14 for a description of the LINK command.

To link one or more CORAL programs using the system default task builder switches and options,
you issue the LINK command followed by the list of object files to be linked together into an
executable task. The following example demonstrates how to link together the CORAL object files
PERFECT.OBJ and NUMBER.OBJ.

LINK PERFECT NUMBER [11,SO]COROTS/LIB

13.4.1 .1 Options
The qualifier /OPTIONS enables you to specify task builder options. In interactive mode, the
presence of the qualifier /OPTIONS in the command qualifier list causes the task builder to prompt
OPTIONS? after the input files have been specified. For example:

PDS> LINK/OPTIONS
FILE? PROG.OBJ,REPORT.OBJ, [11,SO]COROTS/LIB
OPTIONS?

You then enter the options one line at a time. If you place a slash (I) as the first character in a
line, the option input terminates and the task builder resumes execution. For example:

PDS> LINK/OPTIONS
FILE? CORAL.OBJ,PROG.OBJ, [11,SO]COROTS/LIB
OPTIONS? ACTFIL=8
OPTIONS? MAXBUF=280
OPTIONS? UNITS=9
OPTIONS? ASG=DT1:7:8:9
OPTIONS? /

In batch mode, the presence of the /OPTIONS qualifier in the command qualifier list causes
the task builder to expect one or more options to be specified on one or more lines immediately
following the command string. A line containing a slash (I) in the first character position
terminates the list of options. For example:

$LINK/OPTIONS PROG.OBJ,REPORT.OBJ, [11,SO]COROTS/LIB
ACTFIL=8
MAXBUF=280
UNITS=9
ASG=DT1:7:8:9
I

There is a swnmary of the task builder options in the LINK command in Chapter 14_. Note that
the MAXBUF and FMTBUF options have a special meaning when linking CORAL programs.

13-3

13.5

CORAL66

13.4.1.2 Object Modules
The file qualifier /LIBRARY specifies a library file that contains the user-written object modules
to be incorporated in the task. The task builder automatically searches system object module
libraries for referenced modules. For example:

$LINK COROTS/LIB,COROTS.OLB/LIBRARY: (MOD1,MOD2),CORAL.OBJ

13.4.1.3 Output Flies
The task builder does not generate any output files, other than an executable task image, unless
you specifically request them by supplying the relevant qualifiers. The possible output files and
the associated qualifiers are:

Output Fiie

Task image file

Memory allocation map file

Symbol definition file

Qualifier

/TASK[:filespec)

/MAP :(file spec]

or

IMAP :[filespec/qualifier]

/SYMBOLS(:files pee]

The MAP filespec qualifier can be /FILES, /FULL, /NARROW, /SHORT, /WIDE.

13.4.1.4 Example
The following example links three object files.

PDS> LINK/TASK:CALC/MAP:CALC/OPTIONS
FILES? RDIN.OBJ,PROCl.OBJ,RPRT.OBJ, [11,SO]COROTS/LIB
OPTIONS? UNITS=S
OPTIONS? ASG=DT2:1:2,TI:3,MT:4:5
OPTIONS? /
PDS>

The LINK command links the three object files to create a task image file named CALC.TSK and a
map file named CALC.MAP.

Running the Task
A CORAL programmer compiles and links a task in separate operations. The programmer then
uses the RUN command to execute the task image created by the LINK command.

To run a linked CORAL task, issue the RUN command; then the task image file generated by the
LINK command is run. For example:

• Exaple 1:

• Example 2:

PDS> RUN
FILE? CALC

$RUN CALC

Both examples instruct the system to run the task named CALC.TSK.

13-4

14

14.1

14.2

PDS Command Descriptions

Introduction
This chapter lists and describes all interactive and/or batch commands available to the PDS user.

PDS Command Format
The general format of a PDS command is:

[$]command-name[/quals] [parameter-1] [, ..• ,parameter-n]

In the description of commands in this manual, the following conventions apply:

1 Brackets

• Square brackets []surround optional values; for example:

COPY[/quals]

• Round brackets () are part of the command; for example:

COBOL/SW: (/MAP)

2 Dollar sign [$]

The dollar-sign[$] must appear in position 1 of a command to be executed in batch mode. It
can optionally appear in a command executed in interactive mode.

3 Command names

You can abbreviate the command name to the number of characters that uniquely identifies
that command. For example, you can abbreviate LOGOUT to LOG.

NOTE: You can abbreviate most commands to three letters.

4 Parameters

A parameter describes either a value that a command is to use when executing, or further
defines the action a command is to take. If you are an interactive user, you can supply
parameters in response to prompts. (See Section 4.3). Otherwise, at least one space must
separate the first parameter from the command name. In this case, parameters are then
separated from each other by one or more spaces and/or a single comma (,).

5 Parentheses and ellipses (" ... ")

Some commands enable you to replace a single parameter with a list of values. When you
do this, you can sw-round the list by parentheses. You do not need parentheses when the
parameter you are replacing is the last or only parameter in the command string. The
following examples illustrate this.

• Example 1:

DELETE {A.DAT;2,B.DAT;l,C.DAT;4

In this example, the parentheses are optional.

14-1

PDS Command Descriptions

• Example 2:

APPEND (A.DAT B.DAT) C.DAT

This command specifies that files A.DAT, and B.DAT are to be added to the end of file
C.DAT. You need parentheses because the parameter you are replacing is not the last
parameter.

In the description of a command format, ellipses indicate that a list of values of the same
type can replace a single value.

6 Qualifiers

You use a qualifier to modify the default action of a command. A qualifier always begins with a
slash(/). Both command names and parameters can have associated qualifiers. For example:

PRINT/DELETE MYFILE.DAT
CREATE DAT36.DAT/PROTECT: (WO:RWED)

Many qualifiers have associated qualifier values. You separate the qualifier from the qualifier
value by a colon (:), for example, /KEEP: 1. Whenever a qualifier requires a list of values, you
must enclose the list in parentheses. For example:

/BLOCKS: (m-n)

A qualifier must not contain any spaces.

7 Continuation Character (-)

You use a hyphen (-), optionally followed by spaces and/or a comment, to indicate the
continuation of a command on the next line. For example:

PDS> COPY A.DAT -
>B.DAT

NOTE: Following a continuation character, the system reprompts with a">" on the
following line.

8 Comment Character (!)

An exclamation point (!) delimits the start of a comment. Comments can occur only after the
last character of a command or after a hyphen. Comments are for your information only and
do not affect the processing of the command. For example:

PDS> COPY A.DAT B.DAT ! FILE A TO FILE B

MOUNT/DENSITY:800 MT:- ! MOUNT MY

VOLID3 TUlO: ! TAPE ON ANY TUlO

9 Concatenation Character (+)

A plus sign (+) indicates concatenation; that is, the records in the file specification on the left
of the plus sign are processed, followed by the records in the file specification on the right of
the plus sign. For example:

PDS> MACRO A+B

The MACR0-11 statements in file A.MAC followed by the MACR0-11 statements in file B.MAC
are read.by the MACRO assembler.

14-2

PDS Command Descriptions

14 .. 3 PDS Command Descriptions
The layout of each command description is as follows:

1 Function

This section describes the function of the command.

2 Required Privilege

This section states the privilege requirement(s) you need to issue the command. The system
manager assigns privileges.

3 Format

This section supplies the correct command format, as well as a description of the command
parameters and qualifiers. If the command format is preceded by a[$], the command is also
valid in batch mode.

4 Command Variations

This section details any variation in the use of a command between multiuser and timesharing
systems. See Chapter 1 for a definition of these terms. References to multiuser systems also
include real-time systems.

5 'Thchnical Notes

This section lists any additional information you need to issue the command (for example,
restrictions, default action).

6 Examples

This section supplies working examples and an explanation (if necessary).

14.4 PDS Command Library
The remainder of this chapter contains a description of the following PDS commands.

[$]ABORT
[$]ALLOCATE
[$]APPEND
[$]ASSIGN
[$]BASIC
[$]CANCEL
[$]COBOL
[$]COMPARE
[$]CONTINUE
[$]COPY
[$]CORAL
[$]CREATE
[$]DCL
[$]DEALLOCATE
[$]DEASSIGN
[$]DELETE
[$]DIRECTORY
[$]DISABLE
[$]DISMOUNT
[$]DUMP

14--3

PDS Command Descriptions

[$]EDIT
[$]ENABLE
[$]EOD
[$]EOJ
[$]FIX
[$]FORTRAN
[$]GOTO
[$]HELP
[$]IDENTIFY
[$]INITIALIZE
[$]INSTALL
[$]JOB
[$]LIBRARIAN
[$]LINK
[$]LOGOUT
[$]MACRO
[$]MCR
[$]MERGE
[$]MESSAGE
[$]MOUNT
[$]ON
[$]PRINT
[$]QUEUE
[$]REMOVE
[$]RENAME
[$]RUN
[$]SET
[$]SHOW
[$]SORT
[$]STOP
[$]SUBMIT
[$]TRUNCATE
[$]TYPE
[$]UNFIX
[$]UNLOCK
[$]VERIFY

14-4

ABORT

ABORT

FUNCTION

The ABORT command enables you to abort the execution of a current timesharing or real-time
task.

REQUIRED
PRIVILEGE

ABORTfI'IMESHARING-ANY

ABORT/REALTIME-PR.RTC

FORMAT

PDS> [$]ABORT {lquals] [taskname] [terminal]

parameter
definitions

lquals
Can be any of the following qualifiers:

Quallfler Exp la nation

/TIMESHARING Aborts the currently active timesharing task, which has been suspended bylCtrVC~ The
taskname and terminal parameters cannot be specified.

/(NO]REGISTER_DUMP Used only with the /TIMESHARING qualifier. It causes the contents of the registers to
be displayed when the task is aborted. If a task aborts because of a fault (for example,
an odd address) the register contents are always displayed. Note: This is the default.

/REALTIME Aborts a reai-time task. The taskname must be specified, but the terminai is optionai.

taskname
The installed name of the task to be aborted.

terminal
The terminal where the task to be aborted was activated. Default is the current terminal.

14-5

ABORT

COMMAND
VARIATIONS

The qualifier /[NO]REGISTER_DUMP is not available on multiuser systems.

EXAMPLES

• Example 1:

• Example 2:

• Example 3:

• Example 4:

• Example 5:

14-6

PDS> RUN MYPROG

~
TASK SUSPENDED
PDS> ABORT
09:25:26 SIZE:4K CPU:0.03

PDS> SET QUIET

PDS> RUN MYPROG
I Ctrl/C I
TASK SUSPENDED
PDS> ABORT/TIMESHARING

PDS>

PDS> RUN [270,273]QAMAR1
lctri/cl
TASK SUSPENDED

PDS> ABO/REG
TASK ABORTED
PS 174000
PC 001366
RO 001000
Rl 000000
R2 000000
R3 140551
R4 155300
RS 000000
SP 001000
09:25:26 Size: 4K CPU: 0.04

PDS>

PDS> ABORT/REALTIME RTTSK

PDS> ABORT/REALTIME MYTSK TT6

ALLOCATE

ALLOCATE

FUNCTION

The ALLOCATE command allocates a specified device to you and optionally associates a logical
name with the device.

REQUIRED
PRIVILEGE

PR.DEV

FORMAT

PDS> [$]ALLOCATE {/DEVICE]

DEVICE? devicename1Esc1

[LOGICAL NAME? logicalname]

parameter
definitions

!DEVICE
Allocates a device. This is the default.

devicename
Specification of the device to be allocated to the user.

logical name
Locigal name to be associated with the device. The logical name is in the form xymn, where x and
y are alphabetic characters and m and n are octal digits .

. COMMAND
VARIATIONS

On a multiuser system, the ALLOCATE command is illegal.

14-7

ALLOCATE

TECHNICAL
NOTES

You have exclusive access to the device until either you deallocate the device or the system
deallocates the device. The system automatically deallocates a device when you dismount the
device or deassign the last LUN to which the device is assigned, unless you modify the DISMOUNT
or DEASSIGN command with the qualifier /KEEP.

You cannot explicitly allocate a system device (that is, a device allocated to all users by the system
manager). If devicename does not include a unit number, the system allocates any available device
of the specified type and, in interactive mode, prints at the user's terminal the physical unit
allocated. In batch mode if no explicit unit number is specified, you must define a logical name
in order to refer to that device in subsequent commands. The SHOW DEVICES command can be
issued for a list of available devices.

EXAMPLES

• Example 1:

PDS> ALLOCATE MM tEsq
LOGICAL NAME? NTO:
MMO: ALLOCATED
PDS> MOUNT NTO: VOL75
PDS> DISMOUNT/KEEP NTO
PDS> MOUNT NTO: VOL75
PDS> DISMOUNT NTO:

On completion of this command, the volume is dismounted and the device deallocated.

• Example 2:

• Example 3:

14-8

PDS> ALLOCATE/DEVICE
DEVICE? DKO:

PDS>

$ALLOC MT: LMO:

APPEND

APPEND

FUNCTION

The APPEND command adds records from one or more input files, to the end of an existing file.

REQUIRED
PRIVILEGE

PR.FIL

FORMAT

PDS> [$]APPEND

FROM? [(]infile{lquals] [, infilen][lquals][)]

TO? outfile

parameter
definitions

infile 1,infilen
Input file specifications. If you specify more than one file, you must enclose the list in parentheses.

lquals
Any of the following:

Qualifier

/SEQUENTIAL

/INDEXED
[/KEY:NUMBER:n]

/RELATIVE

outfile

Explanation

Input file is sequential. This is the default.

Input file is an indexed sequential (ISAM) file. You can specify the order records are
appended by using the /KEY:NUMBER qualifier. If you specify /KEY:NUMBER, you can
omit /INDEXED. The default is /KEY:NUMBER:1 (the primary key).

Input file structure is relative.

Output file where the input files are to be appended.

14-9

APPEND

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

If one or more files in a list of input files is in error, the system ignores the files in error and
appends the rest to the output file. All file specifications must include a file name and a file type.
If you do not supply a version number, the system assumes the highest version number for the
input file and the highest version plus 1 for the output file.

If one of the files you have specified is to be input from your terminal (TI:), the system transfers
everything you type in after the completed command string. The transfer continues until you type
I Ctrl/ZI to terminate the input file.

EXAMPLES

• Example 1:

PDS> APPEND (A.OBJ B.OBJ) C.OBJ

• Example 2:

PDS> APPEND
FILE? (ABC.FTN DEF.FTN)
TO? XYZ.FTN

• Example 3:

PDS> APPEND TWO.MAC,ONE.MAC

• Example 4:

$APPEND (ABC.DAT,DEF.DAT),XYZ.DAT

• Example 5:

•

PDS> APPEND ADDIT.DAT/KEY:NUM:3 OLDONE.DAT

Appends all records from the ISAM file ADDIT.DAT to OLDONE.DAT in an order determined
by key number 3 (the second alternate key field).

Example 6:

PDS> APPEND (FILEl.TXT, [200,40]*.TXT) UPDATED.TXT

Appends text fiie FILEl.TXT and aH .TXT :fiies in [200,40] to UPDATED.TXT in the current
UFD.

14-10

• Example 7:

PDS> APPEND TI: BATCHJOB.BIS
$DIR [200,200]
$EOJ
lctrl/ZI
PDS>

Appends the commands $DIR and $EOJ to the end of the BATCHJOB.BIS file.

APPEND

14-11

ASSIGN

ASSIGN

FUNCTION

The ASSIGN command assigns a logical unit number (LUN) to a device.

REQUIRED
PRIVILEGE

ASSIGN device-PR.RUN ASSIGN task-PR.RTC

FORMAT

PDS> [$]ASSIGN {lqualj devicename Jun

parameter
definitions

Iqua/= ITASK:taskname
Installed name of the task for which the installed LUN assignment is to be changed.

devicename
Specification of the device to be assigned to the logical unit. The device must be one mounted for
you by the MOUNT command, or one to which all users have access.

lun
Logical unit number.

COMMAND
VARIATIONS

ASSIGN devicename lun is not available on a multiuser system.

TECHNICAL
NOTES

The ASSIGN devicename lun command assigns a LUN only to the device specified for timesharing
tasks run from your terminal using the RUN command. The ASSIGN/TASK command reassigns
LUNs for the installed task named in the command. The reassignment remains in effect until you
remove the task or issue another ASSIGN/TASK command.

14-12

ASSIGN

You can assign LUNs as follows:

1 By means of the ASSIGN command before a task is run.

2 By means of a task builder option when a task is linked. See the IAS task builder Reference
Manual.

3 From within a program by means of the system directive ALUN$ or OPEN$ or the FORTRAN
subroutines ASSIGN and ASNLUN. See the IAS System Directives Reference Manual.

If the ASSIGN command associates a device name with a LUN, that assignment overrides any
made for that LUN by the task builder. If any executing program assigns a logical unit, that
assignment overrides the action of any ASSIGN command for that LUN. The system automatically
deassigns any LUNs when the device is dismounted or deallocated. You can also issue the
DEASSIGN command to deassign a device from a LUN.

EXAMPLES

• Example 1:

• Example 2:

• Example 3:

• Example 4:

$ASSIGN DPO: 7

PDS> ASSIGN
DEVICE? LPO:
LUN? 6

PDS> ASSIGN DK2:
LUN? 5

PDS> SHO LUN CAROL
**** CAROL
SYO 1,2,3,4
TIO 5
CLO 6

PDS> ASSI/TASK:CAROL
DEVICE? TI:
LUN? 2

PDS> SHO LUN CAROL
**** CAROL
SYO 1,3,4
TIO 2,5
CLO 6

14-13

BASIC

BASIC

FUNCTION

The BASIC command invokes a BASIC language processor.

REQUIRED
PRIVILEGE

PR.BAS

FORMAT

PDS> [$]BASIC {Iqua/]

parameter
definitions

Iqua/
One of the following:

Quallfler

/811

/BP2

Explanation

Invoke the BASIC-11 interpreter. Applicable tc systems that have both BASIC-11 and
BASIC-PLUS-2.

Invoke the BASIC-PLUS-2 compiler. Applicable to systems that have both BASIC-11 and
BASIC-PLUS-2.

If you do not specify a qualifier, the installation's default BASIC processor is invoked.

COMMAND
VARIATIONS

Not applicable.

14-14

TECHNICAL
NOTES

BASIC

The following description relates to the BASIC-11 interpreter only. For details of BASIC-ii, see
the IAS/RSX BASIC User's Guide and the BASIC-11 Language Reference Manual.

For details of BASIC-PLUS-2, see the BASIC-PLUS-2/RSX-llM/ VMS User's Guide and the
PDP-11 BASIC-PLUS-2 Language Reference Manual.

When the BASIC command is issued, BASIC indicates that the interpreter is ready to receive a
command or program line by displaying the following prompt:

READY

To terminate a BASIC session and return control to PDS, type BYE on a new line. The system
then prints information about the session and prompts for further PDS commands. For example:

BYE
15:57:32 SIZE: lOK CPU: 3:09
PDS>

When the BASIC interpreter is executing a program, typinglCtrVCI causes the system to stop
executing after the current line. The terminal displays the number of the last line executed, you
can then issue further BASIC commands.

Typing jCtrVCI during the execution of a BASIC LIST or SAVE command or an immediate mode
statement stops the execution of those commands or statements. It has no effect on the execution
of other BASIC commands.

EXAMPLES

PDS> BASIC

READY
BYE
15:15:21 SIZE: lOK CPU: 3:09
PDS>

14-15

CANCEL

CANCEL

FUNCTION

The CANCEL command cancels the periodic scheduling of requests for a real-time task.

REQUIRED
PRIVILEGE

PR.RTC

FORMAT

PDS> [$]CANCEL

TASK? taskname

[TERMINAL? terminal]

parameter
definitions

taskname
Installed name of the task whose scheduled requests are being canceled.

terminal
Terminal where the task to be canceled was activated. Default is the user's terminal.

COMMAND
VARIATIONS

Not applicable.

14-16

EXAMPLES

• Example 1:

PDS> CANCEL XKE2

• Example 2:

PDS> CAN MYTS TT4

CANCEL

14-17

COBOL

COBOL

FUNCTION

The COBOL command compiles a COBOL source program.

REQUIRED
PRIVILEGE

PR.COB

FORMAT

PDS> [$]COBOL {lquals]

FILE? filespec

parameter
definitions

lquals
One of the following:

Qualllfler Explanation

/OBLJECT[:filespec] Produces an object file, named according to filespec if it is supplied (no wildcards
allowed). The default file type is .OBJ. /OBJECT is the default qualifier.

/NOOBJECT Produces no object file.

/LIST[:filespec) Produces a listing file named according to filespec if it is supplied (no wildcards allowed).
The default filetype is .LST.

/NOLIST Produces no listing file (the default condition).

/SWITCHES:(switches) Applies the specified COBOL switches. Refer to Table 14-1.

file spec
Specification of the file containing the COBOL source program. The specification must contain a
~la """""""" T~ ·n.n.•• ,..,.....~f. f.l..~.,, ~1,.,. f..n...,.,.. f.l..n .,.,.,.,.f...,.,..,..,. .. ,.......,..,. ~f. ,:.,. f"'llT
.L.L.a"' .l..&U.&.U.'\.i. JL.1.. JVU. V.LJ. .. U.\I \l.ll..1.0 .l.lJ..'C '1.) p-.;;;, ".LI.~ OJOll~.L.l.J. Q.OOu.J.J.J.lllO;iO .Ill.' .LO •'-'~LJ.

14-18

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

Defaults

COBOL

Object File-If you specify the qualifier /OBJECT without a file specification, the object file is given
the name of the source file, and the file type .OBJ. The default is /OBJECT.

Listing File-If you supply /LIST without a file specification, the listing file is sent to the line
printer. The system default is /NOLIST.

COBOL V4.1

The following new switches are available on COBOL V4.l: /DE, /FLG:kk, /-SKL, /SUB, and
/TMP:Dev. /-SKL replaces the old switch /ODL, which is no longer available on COBOL V4.1.

COBOL Switches

The COBOL command can include compiler switches that permit you to tailor the compilation to
meet particular needs. Table 14-1 lists the switches and their meaning:

Table 14-1 COBOL Switches

Switch

/HELP

/ERR:n

/ACC:n

Default

/ERR:O

/ACC:1

Meaning

Displays information on your terminal on how to use the compiler switches.

Suppresses the printing of diagnostics with a severity number less than n; n must be
in the range 0 to 2.
where:

0 = Informational diagnostics
1 = Warning diagnostics
2 = Fatal diagnostics

The switch cannot suppress severity 2 (fatal) diagnostics. An entry of 2 suppresses
the printing of aii severity numbers less than 2.

Produces an object program only if the source program contains diagnostics with
severities equal to or less than n; n must be in the range O to 2.

14-19

COBOL

Table 14-1 (Cont.) COBOL Switches

Switch

/MAP

NL

/CVF

/CREF

/CSEG:nnnn

/KER:kk

/OBJ

/ODL

/OV

/PFM:nn

/PLT

/RO

/SYM:n

14-20

Default

/PFM:10

Meaning

Produces special map listings of:

Data Division
Procedure Map
External Subprograms Referenced
Data and Control PSECTs
OTS Routines Referenced
Segmentation Map

Instructs the compiler not to list the source statements copied from a library file. The
resultant source listing contains only the COPY statement.

The source program is in conventional format; that is, SO-character source lines with
Area A beginning in character position 8. The default is that area A begins at position
1.

Includes a cross-reference listing as a part of the listing file output. When you specify
/CREF, data names, procedure names, and source line, numbers are sorted into
ascending order and appended to the end of the compilation listing. Use the symbol
#to indicate lines that contain the lines with the definition of the reference name.

Specifies the maximum size of procedural code PSECT that the compiler is to
produce, where nnnn is the maximum size in decimal bytes. The minimum value of
nnnn is 100.

Instructs the compiler to generate PSECT names using the two-character kernel
specified by kk to make them unique to this compilation. kk is a two-character string
that can contain the numbers 0 to 9 and the letters A to Z.

Prints the object location where the code for each verb of the program is located.
The information is listed on the line preceding the source statement it describes. ·

Generates an ODL file (default condition). To override the default condition, enter
/-ODL. Note that /ODL is no longer valid on COBOL V4.1 but has been replaced by
/-SKL.

Overlays all procedural PSECTs (segments). Consequently, the root or main program
contains no procedural statements.

Defines the maximum number of nested perform statements in the program being
compiled. If you specify this, the compiler generates a nested PERFORM stack equal
in depth to the decimal number specified by nn. The default nested perform size is
10. It is advantageous to use this switch to adjust the nested PERFORM stack size
to the exact number required. This assures maximum use of memory (in that only
the exact amount of PERFORM stack space is generated).

Automatically pools literals to minimize the memory required to store them (default
condiitons). However, pooling literals slows down compiler execution speed. To
bypass literal pooling, for increased compiler speed, enter /-PLT.

Generates read-only PSECTs for the Procedure Division object modules.

Obtains more symbol table space for the compilation. n (an integer in the range of
1 to 4) specifies the space required for the maximum number of data names and
procedure names aiiowed in the compiiation. See beiow for the correspondence
between the integer specified by n, and the number of data names and procedure
names assigned.

/SYM :n Switch Values

COBOL

Table 14-1 (Cont.) COBOL Switches

Switch Default

/-BOU /BOU

/CMS /-CMS

/DE

Meaning

Max.
Data

n Names Max. Procedure Names

7S1 7S1 (default)

2 1021 1021

3 1531 1531

4 2039 2039

Suppresses bounds-checking for subscripts and indexes. If you specify this switch,
the compiler does not generate code to check subscript and index values for
acceptable ranges as defined by the OCCURS clause.

Suppression of bounds-checking can increase execution speed for a program
that executes a large number of subscripted or indexed data references.

NOTE: The results are unpredictable if a program uses out-of-range subscripts
or indexes with the /-BOU switch.

Causes the compiler to interpret COMPUTATIONAL usage as it did in releases before
Version 4.0. The effect is the same as changing all COMPUTATIONAL references to
COMPUTATIONAL-6.

NOTE: COMPUTATIONAL-6 is a data format intended only for u~ in program
conversion from PDP-11 COBOL releases prior to Version 4.0. Therefore, it should
be considered for temporary use only.

Creates offset entries (used by CID, the COBOL Interactive Debugger) in the Data
Map for all program data-names. Otherwise, only data-names referenced in the
Procedure Division are listed with offset entries. /DE also creates symbol table files
(DBG) that are used by Symbolic CID. /DE allows CID to DEPOSIT into index names
and index data-names.

14-21

COBOL

Table 14-1 (Cont.) COBOL Switches

Switch Default

/FLG:kk /-FLG:

14-22

Meaning

Causes the compiler to issue informational diagnostics for all COBOL syntax in this
program that is not in your selected (kk) level of Federal Standard COBOL.

Federal Information Processing Standards Publication 21-1 (FIPS PUB 21-1)
announced the adoption of American National Standaid COBOL, X3.23-1974, as
the Federal COBOL Standard. This publication identifies the following four levels of
Federal Standard COBOL: Low, Low-Intermediate, High-Intermediate, and High.

Use the kk values shown below to monitor your programming and system
development effort. This switch helps protect your investment by informing you
of the language level you are using, thereby promoting a high degree of program
inter-changeability for use on a variety of computer systems.

kk Informational Diagnostics

LO 1. Identifies all source lines containing Digital COBOL language extentions
with diagnostic message:

LI

1142 DEC EXTENSION

2. Identifies all source lines containing COBOL syntax supported by this
compiler in each of the three higher language levels:

1.

a. Diagnostic message for Low-Intermediate Language Level syntax
requiring a Low-Intermediate COBOL compiler:

1143 LOW INTERMEDIATE REQUIRED FOR THIS CONSTRUCT

b. Diagnostic message for High-Intermediate Language Level syntax
requiring a High-Intermediate COBOL compiler:

1144 HIGH INTERMEDIATE REQUIRED FOR THIS CONSTRUCT

c. Diagnostic message for High Language Level syntax requiring a High
Level COBOL compiler:

1145 HIGH LEVEL REQUIRED FOR THIS CONSTRUCT

Identifies all source lines containing Digital COBOL language extensions
with diagnostic message:

1142 DEC EXTENSION

2. Identifies all source lines containing COBOL syntax supported by this
compiler in each of the two higher language levels:

a. Diagnostic message for High-Intermediate Language Level syntax
requiring a High-Intermediate COBOL compiler:

1144 HIGH INTERMEDIATE REQUIRED FOR THIS CONSTRUCT

b. Diagnostic message for High Language Level syntax requiring a High
Level COBOL compiler:

1145 HIGH LEVEL REQUIRED FOR THIS CONSTRUCT

For more information, refer to American Nationai Standard Programming Language
COBOL, X3.23-1974 and Federal Information Processing Standards (FIPS)
Publication 21-1.

COBOL

Table 14-1 (Cont.) COBOL Switches

Switch Default

/-SKL /SKL

/SUB

/TMP:DV

Meaning

SUPPRESSES the generation of an SKL file.

The default (/SKL) causes the compiler to generate an SKL each time it creates
an object file.

Identifies a subprogram. The compiler expects subprograms to contain:

PROCEDURE DIVISION USING [data-name-1, ... data-name-n)

If your subprogram does not have input arguments, you can use the /SUB switch
instead of the USING phrase.

Specifies a 1- to 15-character device name (DV) to contain all temporary files created
by the compiler.

For further information on programming in COBOL, see the PDP-11 COBOL Language Reference
Manual.

EXAMPLES

• Example 1:

PDS> COBOL COBPROG.CBL

This example compiles COBPROG and produces an object module COBPROG.OBJ.

• Example 2:

PDS> COBOL/SWITCHES: (/MAP)/LIST
FILE? COBPROG

This example compiles COBPROG, produces an object module COBPROG.OBJ, and prints the
listing file on the line printer, as well as producing a special map listing.

14-23

COMPARE

COMPARE

FUNCTION

The COMPARE command enables you to compare two files line by line with one another and to
produce any of the following output:

1 A listing of the differences found.

2 A listing of one file with the differences flagged.

3 A SLIPER file that converts one file to the other.

REQUIRED
PRIVILEGE

PR.FIL

FORMAT

PDS> [$]COMPARE [/quals]

OLD FILE? oldfile

NEW FILE? newfile

parameter
definitions

lquals
One of the following:

Qualifier Explanation

/[NO]OUTPUT[:filespec] Outputs all the differences found to the line printer. If you give a file specification, the
output is directed to the specified file. If you specify /NOOUTPUT, the system prints only
the number of differences found,

Default is /OUTPUT.

/CHANGE_BARS[:n] n is the decimal character code to be used. The system prints newfi/e with those lines
that differ from oldfile, marked by the specified character. For example, 124 for vertical
bar (octal 174).

Default is decimal code 33 for exclamation point (I) (octal 41).

14-24

Qua I Hier

/(NO]COMMENT

/(NO]FORM_FEEDS

/LINES:n

/[NO]NUMBERS

COMPARE

Explanation

Includes all comments in the file comparison. Comments are defined as all characters
on any source line preceded by a semicolon(;). If you specify /NOCOMMENT, all
comments are ignored.

Default is /COMMENT.

Includes all form feeds in the file comparison. If you specify /NOFORM_FEEDS, records
that contain only a form feed are ignored.

Default is /NOFORM_FEEDS.

Specifies the number of lines that determine a match. This match means that n
successive lines in each input file have been found to be identical. When a match
is found, all differences that occur before the match are output. In addition, the first line
of the current match is output after the differences to aid in locating the place within
each file at which the differences occurred.

Default is 3 lines.

Specifies that output file lines be preceded by their line number. Line numbers are
incremented by one for each record read, including blank lines.

Default is /NUMBERS.

/(NO]MULTIPLE_BLANKS Includes all multiple blanks (that is, spaces and tabs) in the file comparison. If you
specify /NOMULTIPLE_BLANKS, all multiple blanks are treated as a single space.

Default is /MULTIPLE_BLANKS.

/(NO]TRAILING_BLANKS Includes all trailing blanks in the file comparison. If you specify /NOTRAILING_BLANKS,
all trailing blanks are ignored.

Default is !TRAILING_BLANKS.

/(NO]SLIPER Outputs a SUPER file (specified by /OUTPUT) that converts oldfile to newfile.
Default is /NOSLIPER.

/(NO]BLANK_LINES Includes all blank lines in the file comparison. If you specify /NOBLANK_LINES, all
blank lines are ignored.

Default is /NOBLANK_LINES.

oldfile
The file to be used in the file comparison.

newfile
The new file to be compared with the old file.

The default command is as follows:

COMPARE/OUTPUT/COMMENT/NOROFM FEEDS/LINES:3/MULTIPLE BLANKS
/TRAILING_BLANKS/NOBLANKS/LINE_NUMBERS -

COMMAND
VARIATIONS

Not applicable.

14-25

COMPARE

EXAMPLES

• Example 1:

PDS> COMPARE/NOOUTPUT/NOFORM_FEEDS/NOMULT
OLD FILE? MKX03.MAC;l
NEW FILE? MKX03.MAC

This example compares MKX03.MAC;l and MKX03.MAC (latest version).) Form feeds and
multiple blanks are ignored. Only the number of differences found displays at your terminal.

• Example 2:

PDS> COMPAR/SLIP/OUTPUT:CONVRT.CMD BCPLIO.MAC;l
NEW FILE? BCPLIO.MAC

This example produces a SLIPER command file, CONVRT.CMD. When you use that command
file as input to SLIPER, it makes BCPLIO.MAC;l identical to the latest version.

14-26

CONTINUE

FUNCTION

The CONTINUE command restarts execution of a previously interrupted task.

-REQUIRED
PRIVILEGE

CONTINUEtrIMESHARING-ANY
CONTINUE/DEBUG-ANY
CONTINUE/MESSAGE-PR.RTC
CONTINUE/REALTIME-PR.RTC

FORMAT

Timesharing Format:

PDS> [$]CONTINUE[/TIMESHARING]

Debug Format:

PDS> CONTINUE/DEBUG

Message Output Format:

PDS> CONTINUE/MESSAGE

TASK? taskname

[TERMINAL? terminal]

Real-Time Format:

PDS> CONTINUE/REALTIME

TASK? taskname

[TERMINAL? terminal]

CONTINUE

14-27

CONTINUE

parameter
definitions

taskname
For message output format, installed name of the task to be continued after being suspended by
the guspend form of message output (that is; MO). For real-time format; installed name of the
task being resumed after previously being suspended by the SUSPEND or STOP directive.

terminal
Terminal where the task to be resumed was activated. Default is the user's terminal.

COMMAND
VARIATIONS

CONTINUE/DEBUG is illegal on a multiuser system.

TECHNICAL
NOTES

Timesharing

On a timesharing system~ enter the CONTINUE[trIMESHARING] command after the task has
been suspended by typing lctrVCI. Typing CONTINUE reactivates the currently suspended task.

On a multiuser system, although a task is not actua1ly suspended, type CONTINUE so that PDS
can complete task termination processing for the task last activated.

Indirect or Batch Command Fiie

In an indirect or batch command file, the CONTINUE[trIMESHARING] command has no effect
other than proceeding to the next command. In this context, you can use the command in
conditional statements (for example, ON ERROR CONTINUE).

Debug

CONTINUE/DEBUG enables you to continue a task after typinglCtrVCI and to determine the task's
current memory location. This is useful when you debug a program.

To use CONTINUE/DEBUG, you must first link the task to the on-line debugging technique (ODT).
Otherwise, the task aborts. ODT is described in the IAS ODT Reference Manual.

The current memory location is displayed in the following form:

TE:nnnnnn

where nnnnnn is an octal number.

14-28

CONTINUE

Message Output

The CONTINUE/MESSAGE command continues the execution of a task when the task has
specified the suspend option when it uses the message handler after a message is output. See
the IAS Device Handlers Reference Manual.

Real Time

Use the CONTINUE/REALTIME command to continue the execution of a task that has been
suspended by means of the SUSPEND (SPND$) or STOP (STOP$) directive.

EXAMPLES

• Timesharing example:

TASK SUSPENDED
PDS> CONTINUE/TIMESHARING

• Debug example:

~
TASK SUSPENDED
PDS> CONTINUE/DEBUG
TE:001542

• Real-time example:

PDS>CONT/REALTIME XKEE3 TT2

14-29

COPY

COPY

FUNCTION

The COPY command enables you to copy the contents of a file to another file. See the Technical
Notes for a description of the COPY operations.

REQUIRED
PRIVILEGE

PR.FIL

FORMAT

PDS> [$]COPY {lquals]

FROM? infile[lfilequals]

TO? outfile{lfilequals]

parameter
definitions

lquals
One of the following:

Qualifier

/ALLOCATION:n

/ASCll[:n)

14-30

Explanation

Allocates n blocks to the output file. The maximum value of n is 32767 blocks.

Formatted ASCII (for foreign files)

The transfer is performed as formatted ASCII. Formatted ASCII is defined as ASCII
data records terminated by a carriage return or a form feed.

If you specify n, fixed length record s of size n are generated. Output record is
padded with nulls, if necessary.

if you do not specify n, then variabie iength records are generated. The output record
size equals the input record size,

ASCII data is transferred as 7-bit quantities. The eighth bit of each byte is masked
off before transfer. jctrl!ZI (ASCII 032(8)) is treated as logical end of input file for
formatted ASCII transfers from DOS-11 cassette to Files-11. [NULLs (ASCII 000(8)),
RUBOUTs (ASCII 177(8)) and Vertical Tabs (ASCII 013(8)) are ignored.

Quallfler

/BINARY[:n]

/BLOCK_ SIZE:n

/CONCATENATE

/(NO)CONTIGUOUS

/CREATE_ DIRECTORY

/DATE[:KEEP]
/NODATE

/IMAGE[:n)

/OWN

/REPLACE

/REWIND(:ERASE]
/NOREWIND

/[NO]SPAN_BLOCKS

/UPDATE

/VERIFY

infile

COPY

Explanation

Formatted Binary (for Foreign files)

The output file is to be formatted binary. If you specify n, it indicates the fixed length
size of each record in bytes (512 bytes is the maximum). The command pads records
with nulls to create the specified length. If you do not specify n, standard DOS and
RT-11 formatted binary records are produced.

Specifies the block size for tape output. n =the block size in bytes.

If you do not specify /BLOCK_SIZE, a block size of 128 is assumed. To specify the
block size for other media the qualifier is applied to the appropriate file specification
(see below).

Concatenates a new file from two or more existing files (these must be separated by
a plus sign (+)). This qualifier does not apply to foreign files. The default depends
on the input file specification (see Technical Notes). You cannot use this qualifier with
/DATE[:KEEP].

Makes the output file contiguous. Note that this qualifier has no effect when copying
from magnetic tape.

Creates a User File Directory (UFO) entry on the output device for each input file
UFO, unless the UFO already exists on the output device.

Date of the input file, rather than the date of transfer. :KEEP Is the only valid value
and you can omit it. You cannot use this qualifier with /CONCATENATE. The default
is /NODATE.

Image mode (for foreign files)

The output file is to be in image mode. Image mode forces fixed length records. If
you specify n, it indicates the desired record length (512 bytes is the maximum). The
default value of n is 512.

Makes the destination UFO the owner of the copy or copies. Not applicable to foreign
files. See the file qualifier description, below. See also Technical Notes.

Replaces the existing output file (if any).

Rewinds the magnetic tape and optionally erases it starting the file transfer. You
cannot specify this qualifier for DECtapes. For further information see the Technical
Notes.

Enables you to control whether records copied from disk to magtape (or vice versa)
cross block boundaries. If you specify /NOSPAN_BLOCKS, records do not cross
block boundaries. If you omit it, files are copied with records possibly crossing block
boundaries.

Updates an existing file, destroys existing data in the output file, and replaces it with
the input file data. This qualifier does not delete the existing file before rewriting the
data, and the file identification number (FILE-ID) remains the same. This qualifier
has no default. For the difference between /UPDATE and /CONCATENATE see the
Technical Notes.

Valid only with a CT output file specification. This qualifier causes each record written
to the to be read and verified.

Input file specification. Concatenated files are linked by a plus sign(+).

14-31

COPY

/ti/equals
One of the following:

aualfler

/DENSITY:n

/DOS

/RT11

/SEQUENTIAL

/(NO]SHARED

/INDEXED[/KEY:NUMBER:n]

/RELATIVE

/BLOCK_SIZE:n

outfile
Output file specification.

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

Explanation

Magnetic tape density. :n can have the value 800 or 1600. If you do not specify
/DENSITY:n the magnetic tape density defaults to 800. If you specify /DENSITY:n
with a nonmaanetic taoe device. the densitv is ionored. This fllA oualifi&r Is onlv
-----· . 'tiitl I . ' I - -lfiiil·--- - - - - ···- ---- -.- ------- -- ----~

available for foreign volumes. (See Technical Notes for further details).

File is in DOS format.

File is in RT11 format.

File is a sequential file.

(Input file only)
Enables shared reading of a file that is already open for writing by another user or
task if /SHARED is specified. The default for this qualifier is /NOSHARED. (See the
Technical Notes for further details.)

(Input file only)
The single input file is an indexed sequential (ISAM) file.

The records from the h~exed input fi!e are to be oop!ed In the order determined by
key number n (n>O) to create a new sequential file.

If you specify /INDEXED but not /KEY, the records are copied in the order
determined by key number 1 (the primary key).

(Input file only)
Single input file has RELATIVE organization.

Defines the blocksize for magnetic tapes. Using this qualifier enables larger blocks
to be written onto magnetic tape, thereby saving space taken up by inter-record
gaps.

The CO.t'i command enabies you to perform the foiiowing tasks:

1 Copy a sequential file to another sequential file.

2 Copy a group of sequential files to another group of sequential files (using wildcards).

3 Concatenate of a number of sequential files to a single sequential file.

14-32

COPY

4 Copy records from a single indexed or relative file to a single sequential file. To copy an
indexed or relative file to a file of the same kind, see the MERGE command.

If either infile or outfile has a file name, it must also have a file type.

If you omit the version number from the input file, the highest version number is used. If you omit
the version number from the output file, the highest version number plus one is used. If the file
does not already exist in the destination UFD, the system assumes version number 1.

The default for the /REWIND[:ERASE] qualifier is /NOREWIND if both file specifications are
Files-11, and /REWIND if one of the file specifications is foreign. You can specify this qualifier only
if the infiles and outfiles are DOS or Files-11 (magtape). If you specify /REWIND[:ERASE] with a
nonmagnetic tape file, it is ignored. You can specify the :ERASE option only for Files-11 (ANSI)
magtape.

You can use wildcards whenever an input file specification does not describe concatenated files. If
any of the file name, file type or version fields of the output file contain a wildcard, all fields must
be wild; you can, however, omit the version field.

If you specify a wild version number in an output file specification, the version numbers for that
file are preserved. If you do not specify a file. name, the system assumes wildcards (that is, *. *;*).

If the input or output file specification is qualified by /DOS or /RTll, and the output file
specification has a wild UFD (*, *), each of the output files is put into a UFD equivalent to that of
the input file.

If /DOS or /RTll modifies either file specification then you can not concatenate the input files, and
the output file name and file type must be wild (that is, you can not rename foreign files.)

When you use the /SHARED qualifier, there is no guarantee that any information you obtain is
correct. This is because the end-of-file pointer might be incorrect when you open the file.

If you enter infile from the terminal (Tl:), the system transfers to the output file all that you type
in after the completed command string. The transfer continues until you typelCtrVZI to terminate
the input file.

If either infile or outfile is not in Files-11 format, you must modify its specification by using either
/DOS or /RTll. The system does not accept any other foreign formats.

If you specify /DENSITY:n for either the input or output file specification, without qualifying them
by /DOS or /RTll, the input file is assumed to be Files-11 and the output file is assumed to be DOS
format.

Because of the unused space at the end of blocks, if a file is copied from disk to magnetic tape it
occupies more blocks on the tape than it did on the disk. Furthermore, when the file is copied from
magnetic tape back to disk, the resulting disk file is also longer than the original disk file.

The /UPDATE qualifier opens an existing fiie and writes in new data from the beginning. The
/CONCATENATE qualifier creates a new file from two or more existing files.

The COPY command is not the best method of making a replica of an indexed sequential file. A
better method is to use the CREATE command. This creates a new, empty file with the same
structure as the original file. You then use the MERGE command to merge the original file into
the new file.

When you use the COPY/CREATE_DIRECTORY, the output filespec must have a UFD of [*, *] or
the new UFD is not created.

14-33

COPY

EXAMPLES

• Example 1:

• Example 2:

• Example 3:

• Example 4:

• Example 5:

• Example 6:

• Example 7:

• Example 8:

14-34

PDS> COPY A.CBL B.CBL

$COPY E.TXT,F.TXT

PDS> COPY
FROM? E.TXT
TO? F.TXT

PDS> COPY/OWN DKO:[*,*]*.*
TO? DKl:[*,*]*.*

PDS> COPY DATA.DAT OTO:*.*

PDS> COPY/IMAGE:lOO/VERIFY DT2:*.*/DOS CT:

PDS> COPY INDEXED.DAT/IND/KEY:NUM:2 SEQUEN.DAT

PDS> COPY/CREATE_DIRECTORY DKO: [100,l]*.MAC DK3: [*,*]*.*

CORAL

CORAL

FUNCTION

The CORAL command invokes the CORAL 66 compiler to compile CORAL 66 source file(s).
Command qualifiers control output file options and subsequent processing.

REQUIRED
PRIVILEGE

PR.COR

FORMAT

PDS> [$]CORAL {lquals]

FILE? filespec+filespec

parameter
definitions

lquals
One of the following:

Qualifier Explanation

/LIST(:filespec) Produce a listing file; named as specified. If the file type is omitted from filespee, the
system assumes it to be .LST.

/NOLIST Do not produce a listing file.

/OBJECT[:filespec] Pmduce an object file; name as specified.

/NOOBJECT Do not produce an object file.

/SWITCHES:(/sw1 .. ./swn) Use specified CORAL 66 switch options.

file spec
Specification of a source program file to be compiled. If the file type is omitted, the system assumes
it to be .COR. No wildcards are allowed.

14-35

CORAL

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

Defaults

1 By default, the compiler produces an object file with the name of the source file and with .OBJ
as the file type.

2 A listing file is sent to the line printer if you specify /LIST with no file name. /NOLIST is the
default qualifier.

CORAL 66 Switches

Table 14-2 CORAL 66 Switches

Switch Default Description

/ll:arglist

/BC

/IS:isv

14-36

/ll:SRC:SYM:STA Specifies the listing options, arglist can be:

/-BC

/IS:dis

ONL to override the language word "NOLIST"

SRC for source list

SYM for symbol table list

MEX for source list and macro expansions

STA for statistics

/NL:arglist (arglist is one of the above arguments) means suppress the
printing of the specified list; for example, /NL:STA means suppress the
printing of statistics.

Checks array, table element, and switch bounds

Specifies instruction set

isv=EAE-For extended arithmetic element

isv=P45-For extended instruction set

isv=FIS-For extended instruction set and floating instruction set

isv=FPP-For floating point processor

dis-Selected at kit installation time.

CORAL

Table 14-2 (Cont.) CORAL 66 Switches

Switch Default

/OP:n /OP:1

/OS:n /OS:O

/SP /-SP

/TE:n /TE:O

/CR /-CR

/IE /-IE

/Wl:n /Wl:132

/RO:n /R0:1

/TR /-TR

Description

Specifies optimization (/OP.) The /OP switch enables code generated by
the compiler to be replaced where possible by more efficient code; n can
be:

0 No optimization of type OP

1 Two passes of OP optimization

2 Iterative passes of OP optimization until no further reduction.

Specifies optimization (/OS). The /OS switch enables the selection of
optimization code constructs, which would not normally be optimized, n
can be:

1 Optimization around an anonymous reference

2 Optimization when an overlay is used

4 Optimization around locations to formal location parameters

With /OS, any combination of the values 1,2,4 can be summed, for
example:

n=3-retain logical registers on meeting anonymous reference or data
overlay

Default value:

nzO-no optimization of type OS

Listing file is queued to the spooler and deleted after it is printed. If
you do not request spooling, the default /-SP is assumed in which case
the listing file is preserved on the device indicated in the listing file
specification.

Conditional Compilation. Compile declarations and statements prefixed
by TEST m, provided n is greater than or equal tom. n is a decimal
integer constant and is positive or zero. If /TE is omitted, TEST
declarations and statements are ignored.

Card reader. This switch is used when columns 73-80 of the input file
contain sequence numbers and are to be ignored.

Non-IECCA keywords. This switch highlights non-IECCA keywords in the
listing file as warning messages.

Sets width. This switch enables the listing file to be set to a specified
width. n is a decimal number in the range 8 through 132.

The read-only qualifier renders instruction PSECTS read-only.

n can be one of the following:

0 All PSECTS are RW

1 PSECT $CORRO RO, all others RW (default)

2 PSECT $CORRO and all instruction PSECTS RO, others RW.

Setting this switch cause3 file and line number information to be printed if
an error occurs at run-time.

14-37

CORAL

EXAMPLES

• Example 1:

PDS> CORAL NEWFILE

• Example 2:

PDS> CORAL/SW: (/BC/OP:2) FILES.CCR

• Example 3:

$CORAL/OBJ:YRFILE.OBJ MYFILE

14-38

CREATE

FUNCTION

The CREATE command enables you to create a file or directory.

·REQUIRED
PRIVILEGE

PR.FIL

FORMAT

General Format

PDS> [$]CREATE [/quals]

FILE? newfile{lfilequals]

Directory Format

PDS> [$]CREATE !DIRECTORY{IALLOCATION:n]

DEVICE AND/OR UFO? [dev:]ufd {lquals]

Name Format

PDS> [$]CREATE/NAME

FROM? fiiename

TO? aliasname

CREATE

14-39

CREATE

parameter
definitions

General Format Paramters:

lqua!s
One of the following:

Qualifier

/DOLLARS

/OWN

/ALLOCATION:n

/REPLACE

newfile

Explanation

Use only when creating a sequential file in BATCH mode. All batch input up to the next
$EOD is used to fill the created file.

Causes the destination UFO to be also the owner of the file.

Forces the file's initial allocation to be n blocks.

Replaces an existing file.

File specification of the file to be created.

lfilequals
One of the following:

Qua I Hier

/ALLOCATION:n

/CONTIGUOUS

/PROTECTION:(code)

/FORMAT:type

/BUCKET _SIZE:m

/RELATIVE

/SEQUENTIAL

[/INDEXED]/KEY:
(parameterlist)

14-40

Explanation

Forces the file's initial allocation to be n blocks.

Forces the file created to be contiguous.

Create the file with the specified protection access code, see Section 6.2.2.

Specifies the record type of the file. You can use this qualifier only with indexed or
relative files. The following types are available:

FIXED:n Fixed length records; n must be specified and is the iength of each
record in bytes.

VARIABLE[:n] Variable length records. You can use n optionally to specify the
maximum length otherwise the default length of 0 is assumed that is,
unlimited length. If you specify RELATIVE you must also specify n.

CONTROLLED[:nVariable length records with a fixed control field. You can specify n
optionally to define the length of a record, if not then the default length
of O is assumed.

You can use this qualifier only with indexed or relative files. It specifies the unit of
allocation of this kind of file. m specifies the number of blocks to be allocated to each
bucket.

Specifies relative file organization.

Specifies sequential file organization. If you do not specify the organization,
SEQUENTiAL is assumed.

Create an ISAM file. If you specify indexed, then NUMBER:1 must appear in one of the
key definitions to specify the primary key field.

Qualifier

CREATE

Explanation

Use /KEY to specify a key field within the records. /KEY has three mandatory and two
optional parameters. Parameters are separated either by spaces, tabs, or a comma.
The parameter list is placed inside round brackets.

Parameter list consists of the following:

NUMBER:i

POSITION:j

SIZE:k

[NO]UPDATE

[NO]DUPLICATE

(Mandatory parameter.) Key field number. i is 1 for the primary
key, 2 for first alternate, 3 for second alternate, and so on.

(Mandatory parameter.) Starting byte of the key within the record.
j=O corresponds to the starting byte (byte 0) of the record.

(Mandatory parameter.) Length of the key field.

Specifies the key field can change during an update process.

Specifies duplicate keyfields can exist in a record. If UPDATE is
specified, DUPLICATE is implicit.

Table 14-3 shows the legitimate combinations of DUPLICATE and UPDATE.

Table 14-3 Duplicate and Update Combinations

Keytype Combination

UPDATE UPDATE NOUPDATE NOUPDATE
DUPLICATE NO DUPLICATE DUPLICATE NODUPLICATE

Primary Error Error Allowed Default

Alternate Default Error Allowed Allowed

Directory Format Paramters:

!DIRECTORY
Specifies that a UFD is being created.

IALLOCATION:n
Number of files for which room is initially allowed in the directory. The file system extends the
directory file as needed, if this value is subsequently exceeded.

dev
Device where the directory is to be created. If it is omitted, the default device is assumed.

uf d
UFD to be created.

lquals
One of the following:

Qualifier

/PROTECTION:(code)

/ALLOCATION:n

Explanation

Create the directory with the specified protection code: See Section 6.2.2.

See the command qualifier above.

14-41

CREATE

CREATE/DIRECTORY
Cannot be interrupted (see Chapter 4).

Name Format Parameters

/NAME
Enables a synomym for a file to be entered in a directory, thus enabling the file to be accessed by
more than one name.

filename
Input file specification.

aliasname
New directory entry file specification.

TECHNICAL
NOTES

General Format

The CREATE command enables you to create a file. If the file is a sequential file, you can copy
input from a terminal or batch stream into it. You can create an empty file suitable for RMS-11
use, then fill it using the MERGE command.

In batch mode, put the text for the new file after the command. Any$ command terminates the
file unless the CREATE command contains the /DOLLARS qualifier, which specifies that only the
command $EOD can terminate the file.

In interactive mode, the CREATE command reads the input to the new file from your terminal.
Typing lctrUZI terminates the file.

For SEQUENTIAL files, the CREATE command has the same function as a COPY command that
specifies TI: as the device in the input file specification.

If you do not specify any organization, SEQUENTIAL is assumed.

You can specify the BUCKET_SIZE file qualifier only for relative and indexed files. A bucket
can contain from 1 to 32 virtual blocks. The default value is one virtual block per bucket. If you
increase the number, file processing usually improves.

The relationship between bucket size and record size is important. Because RMS-11 does not allow
records to cross bucket boundaries, the number of virtual blocks per bucket must conform to one
of the formulas defined in the RMS-11 MACRO Reference Manual under the section BKS-Bucket
Size.

You can use some CREATE command qualifiers and file qualifiers (including BUCKET_SIZE) only
with certain file organizations. These restrictions are shown in Table 14-4.

14-42

Table 14-4 Use of CREATE Qualifiers with Different Fiie Organizations

Sequential
Fiie Organization

/ALLOCATION
/DOLLARS

Command /OWN
Qualifiers /REPLACE

File /ALLOCATION

Qualifiers

/CONTIGUOUS

/PROTECTION

/SEQUENTIAL

COMMAND
VARIATIONS

Not applicable.

EXAMPLES

• Example 1:

PDS> CREATE
FILE? MYDATA.DAT;S
READY FOR INPUT
ABCD
EFGH

~

Indexed Fiie
Organization

/ALLOCATION

/ALLOCATION

/BUCKETSIZE

/CONTIGUOUS

/FORMAT

/INDEXED

/KEY

/PROTECTION

PDS> CREATE ANOTHER.DAT/PROTECTION: (OW:RW)

• Example 2:

• Example 3:

READY FOR INPUT

lctrl/ZI
PDS>

$CREATE/DOLLARS DEBUG.MAC
$EOD

Relative Fiie
Organization

I ALLOCATION

/ALLOCATION

/BUCKETSIZE

/CONTIGUOUS

/FORMAT

/PROTECTION

/RELATIVE

PDS> CREATE JOHN.DOE/KEY: (NUMBER:l,SIZE:lO,POSITION:O)

CREATE

14-43

CREATE

Creat.es JOHN.DOE as an indexed sequential <ISAM) file with variable length records and one
key of reference. The key is 10 (decimal) bytes long and appears in the first byte (byte 0) of
each record.

• Example 4:

PDS> CREATE/DIRECTORY DKl:[ll,17]

This example creates the UFD [11,17] on DKl:.

• Example 5:

PDS> CREATE/DIRECTORY/ALLOCATION:6 LB0:[14,7]

This example creates the UFD [14,7] on LBO: with space initially allowed for 6 files.

• Example 6:

PDS> CREATE/DIR DP0:[200,200]/PRO:(SYSTEM:RWED,OWNER:RWED,WORLD:)

This example creates a UFD of [200,200] on disk DPO. The access is RWED for System, RWED
for Owner ([200,200]), the volume default for Group, and no access for World.

• Example 7:

PDS> CREATE/DIR [123,22]

This example creates a UFD of [123,22] on the user's current default device.

• Example 8:

PDS> CREATE/NAME NAMEl.DAT NAME2.DAT

Creates an alternative name (an aliasname, NAME2.DAT) for referring to the file NAMEl.DAT.

14-44

DCL

DCL

FUNCTION

The DCL command enables you to return to DCL mode from MCR mode. See the !AS MCR User's
Guide for a description of MCR mode.

REQUIRED
PRIVILEGE

PR.ANY

FORMAT

PDS>> [$]DCL

COMMAND
VARIATIONS

Not applicable.

EXAMPLES

PDS> MCR
PDS>> PIP DBO:/FR
DBO: HAS 28931. BLOCKS FREE , 142867 USED OUT OF 171798
PDS>> DCL
PDS>

14-45

DEALLOCATE

DEALLOCATE

FUNCTION

The DEALLOCATE command deallocates a specified device.

REQUIRED
PRIVILEGE

PR.DEV

FORMAT

PDS> [$]DEALLOCATE {!DEVICE]

DEVICE? devicename

parameter
definitions

!DEVICE
Optional command qualifier.

devicename
Physical or logical device specification of the device to be deallocated.

COMMAND
VARIATIONS

On a multiuser system, the DEALLOCATE command is illegal.

TECHNICAL
NOTES

!DEVICE is the only qualifier available to the nonpriviieged user; consequentiy, it is the default
and need not be specified.

14-46

DEALLOCATE

Normally, the system automatica1ly deallocates a device when you dismount the volume on it or
deassign it from a logical unit number. However, when you have issued the ALLOCATE command
to obtain access to a nonmountable device that has not been assigned to a logical unit, you must
use the DEALLOCATE command to release it. You can also use the DEALLOCATE command after
a DEASSIGN/KEEP or DISMOUNT/KEEP command.

EXAMPLES

• Example 1:

PDS> DEALLOCATE DKl:

• Example 2:

$DEALLOCATE/DEVICE DDO:

14-47

DEASSIGN

DEASSIGN

FUNCTION

The DEASSIGN command deletes the association between a device and a logical unit number
(LUN).

REQUIRED
PRIVILEGE

DEASSIGN-PR.RUN
DEASSIGNtrASK-PR.RTC

FORMAT

PDS> [$]DEASSIGN [Iqua/]

LUN? fun

parameter
definitions

Iqua/

Quallfler

/KEEP

/TASK:taskname

lun

COMMAND
VARIATIONS

Explanation

Inhibits any deallocation or dismounting of the associated device.

Deassigns the LUN associated with the specified task.

Logical unit number to be deassigned.

The DEASSIGN and DEASSIGN/KEEP commands are illegal on a multiuser system.

14-48

TECHNICAL
NOTES

DEASSIGN

If the specified LlJN is the last to which a device is assigned, the device is dismounted and
deallocated unless you specify the command qualifier /KEEP.

EXAMPLES

• Example 1:

• Example 2:

• Example 3:

PDS> DEASSIGN
LUN? 7

$DEASSIGN/KEEP 3

PDS> DEASS/TASK:MYTASK 4

14-49

DELETE

DELETE

FUNCTION

The DELETE command deletes one or more specified files.

REQUIRED
PRIVILEGE

PR.FIL

FORMAT

PDS> [$]DELETE {lqua/s]

FILE? file spec 1 {lfilequal][, ... filespecn]

parameter
definitions

lquals
One of the following:

Qualifier

/KEEP[:n]

/[NO)CONFIRM

14-50

Explanation

Deletes files whose version numbers are less than or equal to m-n, where m is the latest
version of a file. DELETE/KEEP keeps version numbers m-n+1 tom, if they exist. If
versions have already been deleted between m-n and m, fewer than n versions are kept.
You can only use DELETE/KEEP when the version field in a file specification is omitted
or wild. If you omit n, it is assumed to be 1.

NOTE: If a DELETE/KEEP is attempted on files that are protected, because of the
directory structure, the system attempts a number of times to delete the file. You should
press I CtrVO I and wait, or abort the operation.

Deletes files selectively if /CONFIRM is specified by prompting you for a response before
deleting (see Technical Notes for response choices). You cannot specify /CONFIRM with
any othei qualifiai. The dsfau!t is /NOCONF!RM.

Lists the names of the deleted files if /LOG is specified. You cannot specify /LOG with
foreign files. The default is /NOLOG.

Qualifier

/FILE_ID:m :n

DELETE

Explanation

Accesses the file by its file identification number. m :n are the file and sequence numbers
(the DIRECTORY/FULL command supplies these). If you specify this qualifier, only a
device can be specified as the filespecification; if you give none, the default device is
assumed.

/[NO]ERROR_MESSAGE Suppresses the error message NO SUCH FILES when attempting to delete non-existent
files if /NOERROR_MESSAGE is specified. You cannot specify this qualifier with foreign
files. The default is /ERROR_MESSAGE.

/NAME

filespec

Remove the file aliasname from a directory (see the CREATE/NAME command).
Only the directory entry is deleted; the file itself remains and can be accessed using
any other directory entries. Use DELETE/NAME only for names you created using
CREATE/NAME.

File specification of a file to be deleted. Wildcards are allowed. You must specify the version field
unless you use /KEEP or the file is foreign, (see also /FILE-ID above).

/ti/equal
/DOS-Modifies the specification of a foreign file in DOS format.

!filequa/
/RT-11-Modifies the specification of a foreign file in RT-11 format.

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

Typing I Ctrl!C I aborts the DELETE command.

Table 14-5 Response Choices for the /CONFIRM Qualifier

Letter

y

y

N

N

a
a

Terminator

I RETURN I
~
I RETURN I
~
I RETURN I
~
I RETURN I
ICtrllZI

Operation

Delete this file and continue.

Delete this file and return to PDS.

Save this file and continue.

Save this file and return to PDS.

Save this file and continue.

Save this file and return to PDS.

Save this file and return to command mode.

Save this file and return to PDS.

14-51

DELETE

Table 14-5 (Cont.) Response Choices for the /CONFIRM Qualifier

Letter Terminator Operation

G I RETURN I Delete this and all remaining candidates, list deleted files, and return to command
mode.

G Delete this and all remaining candidates, list deleted files, and return to PDS.

EXAMPLES

• Example 1:

• Example 2:

• Exampie 3:

• Example 4:

• Example 5:

• Example 6:

• Example 7:

• Example 8:

PDS> DELETE (A.TYP;l, B.TYP;l, DKO:C.*;*)

PDS> DELETE/KEEP:l
FILE? DK1:[200,200]*.XYZ

$DELETE/KEEP DKO: [200,200]*.LIS

PDS> DELETE DTO:TEST.MAC/DOS

PDS> DELETE/F!LE_ID:36242:27

PDS> DELETE/NAME NEWNAME.DAT;*

PDS> DELETE/FILE_ID:36242:27ESC
DEVICE? DKO:

PDS> DELETE/NOERROR_MESSAGE TEST.DAT;l

By specifying /NOERROR_MESSAGE, you do not get an error message if the file TEST.DAT;!
does not exist.

• Example 9:

14-52

PDS> DELETE/CONFIRM [200,200] MYF!LE.DAT;*

DELETE FILE DB1:[200,200) MYFILE.DAT;l [Y/N/G/OJ? Y(~)
DELETE FILE DBl: [200,200] MYFILE.DAT;2 [Y/N/G/OJ? G(~)

THE FOLLOWING FILES HAVE BEEN DELETED:
DBl: [200,200] MYFILE.DAT;2
DB1:[200,200] MYFILE.DAT;3
PDS>

DELETE

Deletes MYFILE.DAT;l and goes to t.he next. candidate MYFILE.DAT;2. De1etes this file and
all remaining versions of MYFILE.DAT. Lists the deleted files and returns you to PDS.

• Example 10:

POS> DELETE/LOG *.OBJ;*

Deletes all files with a filetype of . OBJ and lists all the deleted files.

14-53

DIRECTORY

DIRECTORY

FUNCTION

The DIRECTORY command lists information about a file or group of files within a specified UFD.

REQUIRED
PRIVILEGE

PR.FIL

FORMAT

PDS> [$]DIRECTORY [!quals] [filespec1 [!filequal], . .filespecn]

parameter
definitions

lquals
One of the following:

Qualifier

/OUTPUT:outfi!e

/SUMMARY

Explanation

Lists information in the specified output file.

Specifies that you only need a summary line of the following format:
TOTAL OF nnnn./mmmm. BLOCKS IN xxxx. FILES

where:

nnnn = blocks used (decimal)
mmmm == blocks allocated (decimal)
xxxx = number of files {decimal)

/BRIEF Lists only the name, type and version of the file(s). Not available for DOS or RT11 files.

/[NO]ERROR_MESSAGE Suppresses the error message NO SUCH FILES if /NOERRROR_MESSAGE is
specified when you are manipulating files. You cannot specify this qualifier for files

/CDCC
II II.._._

14-54

on foreign volumes. The default is /ERROR_MESSAGE.

Shows fiee space available on the specified device. If you specify this qualifiei, you can
specify only the device name in the file specification.

Qualifier

/FULL

/WIDTH:n

/PRINT

/FILE_ID:m:n

file spec

DIRECTORY

Explanation

Lists the following file details (not available for DOS or RT11 files):

Name, file type and version.

2 File identification number in the format (file number, file sequence number).

3 Number of blocks used or allocated.

4 File code.

null = non-contiguous
C = contiguous
L =locked

5 Creation date and time.

6 Owner UIC and file protection in the format [group, owner] [system, owner, group,
world]

7 Date and time of the last update and the number of revisions.

Specifies width of the full directory output, (n •the number of characters per line). You
can specify this qualifier only when listing a full directory, and you must specify /FULL
when you specify /WIDTH:n. The default for n is the buffer size of the output device, (n
is decimal). You cannot use this qualifier for DOS or RT-11 files.

Output the directory listing to the line printer.

Access a directory by its file identification numbers. m:n are the file and sequence
numbers. If you specify this qualifier then you can only specify the device name in the
filespec.

File specification that indicates the directory entries to be listed. Wild cards are allowed. If you
omit the filespec, the system lists information about all the files in your default directory.

!ti/equal
!DOS specifies the file is in DOS format.

!ti/equal
/RTll specifies the file is in RT-11 format.

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

By default, the DIRECTORY command lists at your terminal (interactive mode) or in your output
stream (batch mode) the name, file type, version, size, file code, and date and time of creation of all
the files in your current default directory.

You cannot examine the files in a directory for which you do not have read access.

14-55

DIRECTORY

To interrogate the directories of DOS or RT-11 volumes, you must modify the file specification with
the /DOS or /RTll file qualifier.

The directory listing of a DOS or RT-11 file corresponds to the directory format of the foreign
volume. The qualifiers /BRIEF and /FULL are not valid for requesting foreign directory
information.

When a directory listing of a Files-11 (ANSI) magnetic tape is produced, the creation time for all
files appears as 00:00, because there is no place for the creation time of a file in the ANSI file
header label.

Only the device name of the file specificaton is valid with /FILE_ID and /FREE.

Typing lCtrllcl aborts the DIRECTORY command.

EXAMPLES

• Example 1:

• Example 2:

• Example 3:

• Example 4:

PDS> DIRECTORY ESC
FILE? MATRIX.DAT/DOS

PDS> DIR/FULL/OUTPUT:DKO:DIR.DAT ESC
FILE? DK1:[200,200]*.LST

$DIR/BR FRED.*

PDS> DIR

This prints on the terminal the directory information for the user's default directory.

• Example 5:

• Example 6:

14-56

$DIRECTORY DKl:*.*/RTll

PDS> DIRECTORY/FREE ESC
DEVICE? DKO

DISABLE

DISABLE

FUNCTION

The DISABLE command enables you temporarily to inhibit the execution of a named task.

REQUIRED
PRIVILEGE

PR.RTC

FORMAT

PDS> DISABLE

TASK? taskname

parameter
definitions

taskname
Installed name of the task being disabled.

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

Use the DISABLE command to inhibit task execution. Tasks disabled in this manner cannot be
run until they are enabled using the ENABLE command. See the IAS System Directives Reference
Manual.

14-57

DISABLE

EXAMPLES

PDS> DISABLE XKE20

14-58

DISMOUNT

DISMOUNT

FUNCTION

The DISMOUNT command enables you to dismount a volwne on a specified device .

.REQUIRED
PRIVILEGE

PR.DEV

FORMAT

PDS> [$]DISMOUNT [Iqua/]

DEVICE? devicename

[VOLUME-ID? volumeident]

parameter
definitions

Iqua/
One of the following:

Qualifier

/KEEP

/GLOBAL

/REAL TIME

/LOCK

devicename

Exp la nation

Instructs the system not to deallocate the device.

Instructs the system to dismount the globally mounted device (provided no other users
currently have it mounted).

Instructs the system to dismount the device that was mounted for exclusive access by
real time tasks.

Volume is marked for dismount even if the files on it are currently being accessed.
Further access is locked and the volume is dismounted when the current file access is
completed.

Physical or logical name of the device to be dismounted.

volumeident
Optional parameter that specifies the identification of the volume to be dismounted (see the
MOUNT command).

14-59

DISMOUNT

COMMAND
VARIATIONS

On multiuser systems the /GLOBAL, /REALTIME, and /KEEP qualifiers are illegal.

/LOCK is illegal on a timesharing system.

TECHNICAL
NOTES

Timesharing Systems

If you do not specify /KEEP, the system dismounts the volume on the device, deallocates the device,
and deassigns it from any logical unit number.

If the qualifiers /GLOBAi, or /REAl,.TIME are omitted, the default action of the DISMOUNT
command is to dismount the volume for the timesharing user issuing the command. In this case
the system does the following:

1 Dismounts the volume from the device for the user.

2 Deallocates the device if it was previously allocated (unless /KEEP is used).

3 Deassigns the device from any logical unit number(s) that the user has assigned.

Only if the device was allocated to you (by means of the ALLOCATE command) does the command
qualifier /KEEP prevent the system from deallocating the device.

A volume mounted for several users on a shareable device is not unloaded until the last user
accessing the volume issues a DISMOUNT command. This final dismount causes an unload
request to be printed on the system console. However, the unload request for volumes mounted
/GLOBAL or /REALTIME is not issued until an explicit DISM/GLOBAL or DISM/REAL is
specified.

Multiuser Systems

Volumes can be dismounted by anyone; that is, a multiuser system does not provide any form of
device management or protection.

Multiuser and Timesharing Systems

Dismounting any member of a multivolurne magtape set causes all tapes within that set to be
dismounted. See the MOUNT command for further details.

14-60

EXAMPLES

• Example 1:

• Example 2:

PDS> DISMOUNT
DEVICE? MYO:

$DISMOUNT/KEEP TUl: ACCTS

DISMOUNT

14-61

DUMP

DUMP

FUNCTION

The DUMP command produces a listing of the contents of a file.

REQUIRED
PRIVILEGE.

PR.DUM

FORMAT

PDS> [$]DUMP [lquals]

FILE? fi/espec
or:

PDS> [$]DUMP [/quals][lqua/2]

DEVICE? [device_specification]

parameter
definitions

lquals
One of the following:

Qualifier

/ASCII

14-62

Explanation

Specifies that you want a listing of data in ASCII mode. The control characters (0
- 37) are printed as ICtrltl followed by the alphabetic character corresponding to the
character code +100(octal). For example, bell (code 7) is printed as ICtrVI (code 107).
Lower case characters (140-177) are printed as% followed by the corresponding
uppei case chaiactei (chaiactei code minus 40).

Qualifier

/BLOCKS:(m-n)

!BYTE

/DECIMAL

/FORMAT:HEADER

/HEADER

DUMP

Explanation

Specifies that you want a listing of the first (m) to (n) logical or virtual blocks where m
and n are octal numbers. If either m or n is than 16 bits (that is, greater than 177777)
then you must specify it as two numbers, as follows: (a,b) where a is the first 16 bits
and b is the second 16 bits. if you specify the /BLOCKS:(m-n) switch as /BLOCK:O in
file mode, no physical blocks are listed. This is useful when you want to list only the
header portion of the file. (See the /HEADER switch below).

This qualifier is mandatory in device mode as it specifies the range of physical blocks
to be dumped (see the Technical Notes).

Specifies that you want a listing of data in octal byte format.

Specifies that you want the data dumped in decimal word format.

Formats data blocks with Files-11 header structure; outputs other blocks as an
unformatted octal dump.

Results in a listing of the file header as well as the specified portion of the file. If you
only want the header portion of the file, you can specify /HEADER/BLOCKS:O.

/HEADER/FORMAT:FILES-11 Formats the header as a Files-11 header (default).

/HEADER/NOFORMAT Prints the header as an unformatted octal dump.

/HEXADECIMAL Specifies that you want the data dumped in hexadecimal byte format. Note that a
hexadecimal dump reads from right to left.

/LONGWORD

/NUMBER[:n)

/OUTPUT;tilespec

/PRINT

/RADIX_50

/RECORD

/REWIND

/START

/WORD

files pee

Specifies that you want the data dumped in hexadecimal double-word format.

Enables control of line numbers. line numbers are normally reset to zero whenever
a block boundary is crossed. The /NUMBER[:n) qualifier enables you to number lines
sequentially for the full extent of the file, that is, the line numbers are not reset when
block boundaries are crossed. The optional value (:n) enables you to specify the
value of the first line number. The default is 0.

Outputs the listing to the specified file or device.

Outputs the listing to the default printer.

Specifies that you want data to be dumped in RADIX-50 format.

Specifies that you want data to be dumped a record at a time.

Specifies that you want DUMP to issue the rewind command before referencing a
specified tape. You can specify this qualifier at any time to reposition a tape at the
load point (BOT).

Provides the starting block number of the file and an indication of whether or not it is
contiguous. For example:

PDS> DUMP/START DKO:RICKSFILE.DAT;3
STARTING BLOCK NUMBER= 0,135163 C

Flle RICKSFILE.DAT, veision 3, is a contiguous file starting at block 0, 135163. (See
/BLOCKS:(m:n) for a description of block and number format.)

Specifies that you want the data dumped in hexadecimal word format.

Specification of the file or device whose blocks are to be dumped.

qua/2
One of the following:

14-63

DUMP

Quallfler

/DENSITY:n

/FILE-ID:m:n

Explanation

Specifies the density of a TU16 input magnetic tape. The value for n can be 800 or
1600. If you do not specify /DENSITY, the tape is read at the density currently set in the
tape controller. (See the MOUNT command in this manual, and the /AS MCR User's
Guide for a description of the MOUNT command and /DENSITY or /DENS qualifiers).
You must specify the qualifier /BLOCKS and the device specification with this qualifier.

Where m and n are the file number and file sequence number, respectively, of the input
file.

device_ specification
Optional device type and unit number.

COMMAND
VARIATIONS
Not applicable.

TECHNICAL
NOTES

The DUMP command ignores any print formatting characters that can appear in the records. The
listing is printed at your terminal by default. However, you can specify a different output device by
using the /OUTPUT or /PRINT qualifiers.

The DUMP command can operate in one of three modes:

1 File Mode

In file mode, you specify a file. All, or a specified range (/BLOCKS:m-n) of blocks of the named
file are listed. The blocks are numbered from 1 to n, where the first block is 1 and the last
block in the file is numbered n. You must mount the input volume and it must contain named
files. You can not use a wild card in the filename.

2 Device Mode

In device mode, you specify a device; and a specified range /BLOCKS:(m-n) of physical blocks
to be listed.

a. You need the /BLOCKS:(m-n) qualifier.

b. Physical blocks refer to the actual 512-byte blocks on disk and DECtape, and physical
records on magtape and cassette. The DUMP command handles physical records up to
2048 bytes in length.

c. Physical blocks are numbered from 0 to n, where n is the last physical block on the device.

d. You must mount the volume to be listed FOREIGN.

3 Record mode

In record mode, you can dump a whole file or the first part of it. Each record of the file is
printed separately in the specified format. The first block you dump must alway·s be block 1 of
the file, hut you can use any block number for the last block.

14-64

EXAMPLES

• Example 1:

• Example 2:

• Example 3:

• Example 4:

PDS> DUMP MYFILE.DAT

PDS> DUMP/ASCII
FILE? MYDATA.DAT

$DUMP A.MAC;4

PDS> MOUNT/FOR/NOOP DKO: MYDISK

PDS> DUMP/BLOCK:(S-14) DKO:

DUMP

14-65

EDIT

EDIT

FUNCTION

The EDIT command invokes one of the following IAS text editors:

1 The line text editor (EDI), (interactive use).

2 The source language input program and editor (SLIPER), (batch-oriented).

3 The DEC standard editor (EDT), (interactive use).

4 The keypad editor (KED or K52) for users with the FMS-11 optional software (interactive use
on VTlOO or VT52 terminals).

The RSX-llM/ 11-PLUS Utilities Manual describes EDI and SLIPER in full. The EDT Editor
Manual describes EDT in full, and the PDP-11 Keypad Editor User's Guide describes KED and
K52.

REQUIRED
PRIVILEGE

PR.FIL

FORMAT

PDS> [$]EDIT [leditor][lquals]

FILE? filespec

parameter
definitions

/editor
One of the following:

/EDI Invokes the line text editor. This is the default.

/SUPER Invokes the batch editor SUPER.

/EDT Invokes the DEC standard editor.

/KEO Invokes the keypad editor (for use on VT100 terminals).

/K52 Invokes the keypad editor (for use on VT52 terminals).

file spec
Specification of an existing file to be edited or a new file to be created. You must include a filetype.

14-66

EDIT

/quals
One or more command qualifiers. The qualifiers available with each editor are:

Editor Qualifier Default

/EDI

/EDI or /OUTPUT[:filespec) /OUTPUT
/SUPER /NOOUTPUT

/LIST[:filespec] /NOLIST
/NOLIST

/AUDIT(:(params)] /AUDIT
POSITION:m
SIZE:n
REPORT_ TRUNCATION

/NOAUDIT

/BLANK /BLANK
/NOBLANK

/CHECKSUM[:n) /NOCHECKSUM
/NOCHECKSUM

/DOUBLE /NODOUBLE
/NO DOUBLE

/TRUNCATE(:n) /NOTRUNCATE
/NOTRUNCATE

/EDT /COMMAND[:filespec] /COMMAND
/NOCOMMAND

/OUTPUT[:filespec] /OUTPUT
/NOOUTPUT

/JOURNAL[:filespec] /JOURNAL
/NOJOURNAL

/RECOVER /NORECOVER
/NORECOVER

/READONLY /NOREADONLY
/NOREADONLY

/KEO or /OUTPUT[:filespec] /OUTPUT
/K52 /NOOUTPUT

/BLOCKS:n NIA

/EMBEDDED_ CARRIAGE_ CONTROL /IMPLIED_ CARRIAGE_ CONTROL
/IMPLIED_ CARRIAGE_ CONTROL
/FORTRAN_ CARRIAGE_ CONTROL

/INSPECT /NOINSPECT
/NOINSPECT

14-67

EDIT

EXAMPLES

1 Example 1 {SLIPER)

PDS> EDI/SLIP/OUTPUT:YURFILE.MAC MYFILE.MAC
@EDI.CMD
I

SLIPER opens the input file MYFILE.MAC and executes the SLIPER commands contained in
the file EDIT.CMD. The output file is called YURFILE.MAC.

2 Example 2 {EDI)

PDS> EDI
FILE? SUPER.ADV
(00055 LINES READ IN]
[PAGE 1]
*EX
PDS>

3 Example 3 (EDT)

PDS> EDIT/EDT/OUTPUT:PAYROLL.JAM/JOURNAL:REC.ONE PAYROLL.DAT

EDT copies the contents of the file PAYROLL.DAT into the main buffer and opens a journal
file named REC.ONE. When you end the edit session with the EXIT command, EDT saves the
contents of the main text buffer in the file named PAYROLL.JAM. If the editing session ends
in other than a normal exit (such as a system failure), EDT retains the journal file REC.ONE.

4 Example 4 {KED)

PDS> EDI/KEO/INSPECT GAYE.MAC

Opens the file GAYE.MAC for inspection only. This command invokes the Keypad editor for the
VTlOO terminal.

14-68

ENABLE

FUNCTION

The ENABLE command reverses the effect of the DISABLE command.

REQUIRED
PRIVILEGE

PR.RTC

FORMAT

PDS> ENABLE

TASK? taskname

parameter
definitions

taskname
Name of the installed task being enabled.

COMMAND
VARIATIONS

Not applicable.

EXAMPLES

PDS> ENABLE XKE20

ENABLE

14-69

$EOD

$EOD

FUNCTION

The end of data ($EOD) command terminates a data stream or the input to a file created by a
$CREATE/DOLLARS command.

REQUIRED
PRIVILEGE

Not applicable.

FORMAT

$EOD
The $EOD command has no parameters.

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

When you create a file in batch stream using the $CREATE command, the end of file indication
is taken as the next line beginning with a$ character. Use the $CREATE/DOLLARS command if
your file is going to contain a $ character as part of the data. In this case, $EOD is taken as the
end of file specification.

14-70

EXAMPLES

$CREATE/DOLLARS PAYROLL.DAT
; PAYROLL UPDATE FOR 27-JAN
DOE JOHN
$476.32 $46.12 17 p
BLOGGS FRED
$316.41 $96.24 23 R
$EOD

$EOD

·This example uses $EOD to terminate a file of data commands. The /DOLLARS qualifier instructs
the system to accept the following lines of text as input to the file rather than batch commands to
be processed.

14-71

$EOJ

$EOJ

FUNCTION

The End of Job ($EOJ) command terminates a batch job.

REQUIRED
PRIVILEGE

Not applicable.

FORMAT

$EOJ
The $EOJ command has no parameters.

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

The $EOJ command must he the last command in a batch job command stream. Anything in the
batch job after $EOJ is ignored. When the system encounters $EOJ, the batch job is terminated
and, on a timesharing system, any claimed devices are dismounted and released. The batch log
and associated files are queued for printing on the default line printer.

EXAMPLES

14-72

$JOB WILSON TESTRUN 2
$MOUNT DK: TEST DDO:
$ASSIGN DDO: 7
$RUN TEST
$DISMOUNT DDO:
$EOJ

FIX

FUNCTION

The FIX command enables you to fix a task in its installed partition.

REQUIRED
PRIVILEGE

PR.RTC

FORMAT

PDS> FIX

TASK? taskname

[TERMINAL? terminal]

parameter
definitions

taskname
Name of the installed task to be fixed in memory.

terminal

FIX

terminal for which the task is to be It is possible to fix the same task for more than one terminal.

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

14-73

FIX

The advantage you gain by fixing tasks is that there is no delay when you load the task for the
first time. Also, you can prevent memory fragmentation by fixing tasks in a system-controlled
partition. You can fix a task only if you built it as a fixable and non-checkpointable task. See the
IAS task builder Reference Manual and the IAS Executive Facilities Reference Manual.

EXAMPLES

• Example 1:

· PDS> FIX MYTSK

• Example 2:

PDS> FIX MART3 TT4

14-74

FORTRAN

FORTRAN

FUNCTION

The FORTRAN command invokes a FORTRAN compiler to compile a FORTRAN-IV or
FORTRAN-IV PLUS source file. Command qualifiers control output file options and subsequent
processing.

REQUIRED
PRIVILEGE

PR.FOR

FORMAT

PDS> [$]FORTRAN {lquals]

FILE? filespec

parameter
definitions

/quals
One of the following:

Qualifier

/FOR

/F4P

/F77

/LIST(:filespec]

/NOLIST

/OBJECT(:filespec]

/NOOBJECT

Explanation

Invokes the FORTRAN-IV compiler. Applicable to systems that have both FORTRAN
IV and FORTRAN IV PLUS compilers. If omitted, the system invokes its default
compiler.

Invokes the FORTRAN IV-PLUS compiler. Applicable to systems that have both
FORTRAN IV and FORTRAN IV PLUS compilerso If omitted, the system invokes its
default compiler.

Invokes the FORTRAN-77 compiler. If omitted, the system invokes its default compiler.

Produces a listing file named as indicated. If the filetype is omitted from filespec, the
system defaults it to .LST.

Does not produce a listing file.

Produces an object file, named as specified. If the file type is omitted, the system
defaults to .OBJ.

Does not produce an object file.

14-75

FORTRAN

Quallf ler Explanation

/SWITCHES:(/sw1 .. ./swn) Uses specified FORTRAN IV or FORTRAN IV-PLUS switch options. See Table 14-6.

file spec
Specification of a source program file to be compiled. If you omit the filetype, the system assumes
it to be .FTN. Wildcards are not allowed.

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

Defaults

1 By default, the compiler produces an object file with the name of the source file and with .OBJ
as the file type.

2 A listing file is sent to the line printer if /LIST is specified with no file name. /NOLIST is the
default qualifier.

FORTRAN-IV Switches

Table 14-6 and Table 14-7 list the FORTR.Ai'I IV and FORTRAN IV-PLUS switches.

Table 14-6 FORTRAN-IV Switches

Switch

/Ll:n

Default Description

/Ll:3 Specifies the listing options. The argument n is encoded as follows:

/LI :O or List diagnostics only
/NOLI

/Ll:1 or List source program and diagnostics only
/Ll:SRC

/LI :2 or List storage map and diagnostics only
/Ll:MAP

/LI :4 or List generated code and diagnostics only
/Ll:COD

You can specify any combination of the above options by summing the numeric argument
values for the list options you require.

fLl:7 or Requests a source listing, a storage map listing, and a generated code listing. If
/Ll:ALL you omit this switch, the default list option is /Ll:3, source and storage map.

/CD:xxx /CD:THR Selects type of object code to be generated.

14-76

FORTRAN

Table 14-6 (Cont.) FORTRAN-IV Switches

Switch

/DE

/DI

/EX

/ID

/LO

Default

/NODE

/NODI

/NOEX

/NOID

/LO

Description

The valid values are:

EAE (selects code for EAE hardware)
EIS (selects code for EIS hardware)
FIS (selects code for EIS and FIS hardware)
THR (selects threaded code)

Compiles lines with a D in column 1. Default treats these as comment lines.

Enables expanded listings of compiler internal diagnostic information.

Reads a full 80 columns of each record in the source file. Only the first 72 columns are
read by default.

Prints FORTRAN identification and version number. The default (/NOID) prevents the
printing of the identification and version number.

Prints on your terminal the names of program units (from PROGRAM, FUNCTION
SUBROUTINE, and BLOCK DATA statements) as each program unit is compiled. Note that
.MAIN. refers to the main program; and .DATA. refers to an unnamed BLOCK DATA.

/NOOP:xxx /NOOP:xxx Disables optimizations from multiple arguments:

SPD Disables optimization for program speed. Optimization now takes place for minimal
program size.

CSE Disables common subexpression elimination.

STR Disables strength reduction optimization for in-line code generation.

BND Disables global register bindings for in-line code generation.

/OP:xxx /OP:xxx Selects optimizations from multiple arguments:

/RO

/SN /SN

/SP /SP

114 /NOl4

NA NA

/WR /WR

SPD Optimizes for speed of object program execution as opposed to minimal program
size.

CSE Enables common subexpression elimination.

STR Enables strength reduction optimization for in-line code generation.

BND Enables global register bindings for in-line code generation.

Causes pure code and pure data program sections to take the RO (read-only) attribute.

Includes internal sequence numbers (ISN). Reduces storage requirements for generated
code and slightly increases execution speed but disables line number information during
traceback.

Automatically spools listing file.

Two-word default allocation for integer variables. Normally, single storage words are the
default allocation for integer variables not given an explicit length specification, that is,
integer*2 or integer*4, Only one word is used for computation,

Enables vectoring of arrays.

Enables compiler warning diagnostics.

NOTE: Switch default summary:
(/LI:3/NODE/NOEX/NOID/OP/SN/NOI4/VA/WR)

14-n

FORTRAN

FORTRAN-IV PLUS Switches

Table 14-7 FORTRAN-IV Plus Switches

Switch Default

/CK /NOCK

/CO:n /CO:S

/DE /NODE

/ID /NOID

/14 /NOl4

ili:n iLi:2

Description

Generates code to check that all array references are within the array bounds
specified by the program. Individual subscripts are not checked against dimensional
specifications.

A maximum of n continuation lines is permitted in the program, where n is an integer
from 0 through 99. The default value is n=5. Note that you can express n in either
octal or decimal radix. If a decimal point follows the number, it is interpreted in decimal
radix; otherwise, it is interpreted in octal radix.

Compiles lines with a D in column one. These lines are treated as comment lines by
the default /NODE. See the FORTRAN Language Reference Manual.

Print FORTRAN IV-PLUS identification and version number.

Allocates two words for default length of Integer and Logical variables. Normally, single
storage words are the default allocation for all integer or logical variables not given
an explicit length definition, that is, INTEGER*2, LOGICAL*4. See Section 3.3 of the
FORTRAN IV-PLUS User's Guide.

Specifies iisting options; n is an integer from 0 through 3. The argument is coded as
follows:

n=O Minimal listing file: diagnostic messages and program section summary only

n=1 Source listing and program section summary

n=2 (Default) source listing, program section summary, and symbol table

n=3 Source listing, assembly code, program section summary, and symbol table

/TR:XXX /TR:BLOCKS Controls the amount of extra code that the compiled output includes for use by the

/TR

/TR:ALL

/TR:LINES

/TR:BLOCKS

ITR:NAMES

/TR:NONE

/NOTR

OTS during error traceback. This code produces diagnostic information and Identifies
which statement in the FORTRAN source program causes the detection of an error
condition at execution.

Same as /TR:ALL

Error traceback information is compiled for all source statements, and function and
subroutine entries.

Same as /TR:ALL option.

Traceback information is compiled for subroutine and function entries and for selected
source statements. The source statements selected by the compiler are initial
statements in sequences commonly called basic blocks. The compiler treats such
a sequence of statements as a unit for performing certain types of optimization. Basic
blocks usually begin at each labelled statement, each DO statement, and so on.

Traceback information is compiled only for subroutine and function entries.

No traceback information is produced.

Same as /TR:NONE.

NOTE:The g~.ritch setting /TR fg ad,risable dUi-ing program development and testing.
The default setting /fR:BLOCKS is advisable for most programs in regular use. You can
use the setting /NOTR for obtaining fast execution and smallest code, but it provides no
information to the OTS for diagnostic message traceback.

14-78

EXAMPLES

• Example 1:

PDS> FORTRAN NEWFILE

• Example 2:

PDS> FORTRAN/SW: (/CK/CO:?) FILES.FTN

• Example 3:

$FORTRAN/OBJ:YRFILE.OBJ MYFILE

FORTRAN

14-79

GOTO

GOTO

FUNCTION

The GOTO command transfers control, in a command file or batch stream, to the next ocCUITence
of a command line prefixed by a specified label.

REQUIRED
PRIVILEGE

ANY

FORMAT

[$]GOTO label

parameter
definitions

label
Alphanumeric string that must begin with an alphabetic character. The label must also appear,
together with a colon, in front of a command later in the file.

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

You can use the GOTO command only in indirect or batch command files; it is ignored if you use it
in interactive mode.

You can use the GOTO command by itself or as an action in an ON command. When control
is transferred, the system ignores all intervening commands. If no matching label is found, no
further processing takes place within the command file or batch job. The GOTO command cannot
transfer control to a command labelled earlier in the file.

14-80

EXAMPLES

$JOB SYSTEM
$ON ERROR GOTO LlO
$MACRO MYPROG
$LINK MYPROG
$RUN MYPROG
$GOTO L20
$L10: RUN OLDPROG
$L20: RUN TEST
$EOJ

GOTO.

In this example, if an error, (that is, ERROR or SEVERE ERROR) is encountered in the MACRO,
LINK or RUN commands, control is passed to LIO and OLDPROG is run. TEST is always run.

14-81

HELP

HELP

FUNCTION

The HELP command enables you to display information about PDS commands.

REQUIRED
PRIVILEGE

ANY

FORMAT

PDS> HELP [command] [parameter]

parameter
definitions

command
The particular PDS command you need information about. If you omit the command, HELP lists
all available PDS commands.

parameter
Parameter of the specified command you need information about. If you omit the parameter, all
parameters and qualifiers of that command are listed.

COMMAND
VARIATIONS

On a multiuser system, HELP lists commands that require privilege PR.SCI. These are identified
by a + sign placed at the beginning of the command.

TECHNICAL
NOTES

The precise information displayed depends on your current state as a user. Before you are logged
in, you can type HELP to display information on how to log in.

When you are logged in, the HELP command provides help at a number of levels:

1 To obtain a terminal listing of all PDS commands, type a HELP command with no parameters.

14-82

HELP

2 'lb obtain information on the format of a specific command, supply the required command name
as a parameter to the HELP command. For example:

PDS> HELP LIBRARIAN

The format of the command (in this example the LIBRARIAN command) and a list of the
relevant qualifiers and parameters is listed.

You can obtain further information about qualifiers and parameters for the command by
supplying the qualifier or parameter name as an additional parameter to the HELP command.
For example:

PDS> HELP LIBR EXTRACT

This command provides full details of the EXTRACT feature of the LIBRARIAN command.

You can supply only those qualifiers and parameters that HELP flags with two asterisks (••)
as the additional parameter.

EXAMPLES

• Example 1:

PDS> HELP
PLEASE LOGIN­
PDS> LOGIN<CR>
USER NAME? USER-NAME<CR>
PASSWORD? PASSWORD<CR>
YOUR USER-NAME AND PASSWORD WILL BE SUPPLIED BY THE SYSTEM MANAGER

This example shows that typing HELP before you log in displays information to help you log
in.

• Example 2:

PDS> HELP DISMOUNT
DISMOUNT [/QUALIFIER] DEV-NAME [VOLUME-LABEL]

/KEEP - DO NOT DEALLOCATE DEVICE
/GLOBAL - DISMOUNT SPECIFIED "GLOBAL" VOLUME
/REALTIME - DISMOUNT VOLUME MOUNTED FOR REALTIME ACCESS

This example displays information about the DISMOUNT command.

14-83

IDENTIFY

IDENTIFY

FUNCTION

The IDENTIFY command displays the identity of the system utility task on your terminal.

NOTE: Not all system utilities can identify themselves.

REQUIRED
PRIVILEGE

ANY

FORMAT

PDS> [$]IDENTIFY

UTILITY? taskname

parameter
definitions

taskname
Three-character utility name (for example: PIP, KED, K52, FLX, and so on).

COMMAND
VARIATIONS

Not applicable.

EXAMPLES

• Example 1:

14-84

PDS> IDENTIFY
UTILITY? PIP
PIP -- PIP VERSION 01332

IDENTIFY

• Example 2:

POS> IDENTIFY FLX
FLX -- FLX VERSION Mll

14-85

INITIALIZE

INITIALIZE

FUNCTION

The INITIALIZE command enables you to initialize a volume.

REQUIRED
PRIVILEGE

PR.DEV

FORMAT

PDS> [$]INITIALIZE {lquals]

DEVICE? devicename

[VOLUME-ID? volumeid]

parameter
definitions

lquals
One of the following:

Table 14-8 DOS and RT11 lnltlalizatlon Qualifiers

Qualifier

/DOS

/AT11[:n]

Explanation

Initializes volume in DOS format.

Initializes volume in AT11 format. n specifies the number of extra words required per
directory entry.

If you do not specify either of these qualifiers, the file is initialized in FILES-11 format.

The following qualifier applies to RTll only.

14-86

INITIALIZE

Table 14-9 RT11 Qualifier

Qualifier

/NUMBER:n

Explanation

Specifies the number of directory segments to allocate to the RT11 volume.
The default is 4.

The following file qualifiers apply to Files-11 only.

Table 14-1 O RT11 Qualifier

'Qualifier

/ACCESSED:n

/BAD:option

/DENSITY:n

/EXTENSION:n

Explanation

Specifies the number of directories to be kept pre-accessed while the volume is in
use. See the /AS Performance and Tuning Guide for a description of pre-accessed
directories. The default is 3. This qualifier is for disk and DECtape only.

Specifies that the bad block file is to be initialized. You can specify known bad blocks by
either of the following options.

AUTOMATl<tJse bad block data left on volume by the BAD BLOCK system task

MANUAL Specify bad blocks after the command.
This qualifier is for disk and DECtape only.

Specifies magnetic tape density to be either 800 or 1600 bpi. The default is 800 bpi.
This qualifier is for magtape only.

Specifies default file extension size in blocks; that is, the amount of space allocated
when you extend a file on a volume. For further information, see the /AS Performance
and Tuning Guide. The default is 5. This qualifier is for disk and DECtape only.

/FILE_PROTECTION:(codQJpecifies the default protection for files created on the volume. See Section 6.2 for a
description of protection codes. This qualifier is for disk an DECtape only.

/HEADERS:n

/INDEX :option

/MAXIMUM_FILES:n

/OWNER:uic

/PROTECTION:(code)

/WINDOW:n

devicename

Specifies the number of file headers to be allocated in the initial index file. The default
is 16 headers. This qualifier is for disk and DECtape only.

Specifies the position of the index file on the volume. Option can be BEGINNiNG,
MIDDLE, END, or n (where n is a logical block number). The default is MIDDLE. This
qualifier is for disk and DECtape only

Specifies maximum number of files allowed on the volume. See Table 14-11 for details
of the maximum number of files per volume for each Files-11 device and for details of
the default allocations. This qualifier is for disk and DECtape only.

Specifies the owner of the volume. The default is [1, 1].

Specifies the volume access privilege. See Section 6.2.2 for a description of protection
codes.

Default window size for file access; that is, the number of retrieval pointers. For further
information, see the /AS Performance and Tuning Guide. The default is 7.

Name of the device where the volume to be initialized is loaded. The unit number must be
specified.

volumeid
Optional volume identification.

14-87

INITIALIZE

COMMAND
VARIATIONS

On a full timesharing system, you can initialize a Files-11 volume if the device where the volume
is loaded is allocated to you. You must not mount the volume.

On a multiuser system, only privileged users (that is, those with a group code less than 10 or
PR.RTC privilege) can initialize a Files-11 volume. The volume must not be mounted.

Table 14-11 shows the maximum files per volume for each Files-11 device.

Table 14-11 Maximum Flies Per Device

Disk Volume Maximum Default Maximum Default Default
Name Size Files Flies lndx Hdrs lndx Hdrs Allocation

DECTAPE 576 278 34 16

DECTAPE II 512 247 30 16

l""\A#"'t"" 400,176 65,500 ""A '-'.' .. "7 l".I 12,308 Ml'\OV .C:'+,O I I .;J

RASO 236,964 65,500 14,629 3 1 7,314

RA81 891,072 65,500 54,815 3 3 51,699

RF 1,024 499 62 16

RK051 4,800 2,357 294 147

RK06 27,126 13,344 1,668 834

RK07 53,790 26,466 3,308 2 1,654

RL01 10,240 5,034 629 314

RL02 20,480 10,074 1,259 629

RM02 131,680 64,798 8,099 3 4,049

RM03 131,680 64,798 8,099 3 4,049

*AMOS 500,384 65,500 30,781 3 2 25,593

RP02 40,000 19,680 2,460 1 1,230

RP03 80,000 39,365 4,920 2 2,460

RP04 171,798 65,500 10,567 3 5,283

RP05 171,798 65,500 10,567 3 5,283

1This device is not backwards-compatible by default.

• MAXIMUM FILES-means the maximum value that can be specified for /MAXIMUM_FILES:n
• DEFAULT FILES-means the default value for /MAXIMUM_FILES:n
• DEFAULT ALLOCATION-means the default value for IHEADERS:n

14-88

Table 14-11 (Cont.) Maximum Files Per Device

Disk Volume Maximum Default Maximum Default
Name Size Flies Files lndx Hdrs lndx Hdrs

RP06 340,670 65,500 20,956 3

RS03 1,024 499 62

RS04 2,048 1,003 125

RX01 494 238 29

RX02 988 481 60

• MAXIMUM FILES-means the maximum value that can be specified for /MAXIMUM_FILES:n
• DEFAULT FILES-means the default value for /MAXIMUM_FILES:n
• DEFAULT ALLOCATION-means the default value for /HEADERS:n

TECHNICAL
NOTES

INITIALIZE

Default
Allocation

10,478

16

16

16

16

To initialize a Files-11 volume, you must physically load it on a device but you must not mount it.

To initialize an RT-11 or DOS volume, you must mount the volwne as foreign (MOUNT/FOREIGN).

You can specify a volume-id only when initializing a Files-11 volume. For disk or DECtape,
the volwne-id is 1 to 12 alphanwneric characters. For magnetic tape, the volume.;.id is 1 to 6
alphanumeric characters.

Protection codes applicable to /PROTECTION and /FILE_PROTECTION are described in
Chapter 6.

EXAMPLES

• Example 1:

• Example 2:

• Example 3:

• Example 4:

PDS> MOUNT/FOREIGN DKO: MYDOSDISK
PDS> INIT/DOS DKO:

PDS> MOUN/FOR DT RTllSOURCE RTl:
PDS> INIT/RT11:6/NUMBER:3 RTl:

PDS> MOUNT/FOR/NOOPER DTO: DOSDECTAPE MYO
PDS> INIT/DOS MYO:

PDS> ALLOCATE DKO:
PDS> INIT DKO: CARFRABLU

14-89

INITIALIZE

• Example 5:

• Example 6:

14-90

PDS> ALLOC/DEVICE DKl: 001:
PDS> INIT/OWN:[200,200]/PROT: (SYS:RWED WO:)/IND:BEG
DEVICE? 001: MYDISKl

PDS> ALLOCATE MMO:
PDS> INIT/DENS:1600 MMO MYTAPE

INSTALL

INSTALL

FUNCTION

The INSTALL command enables you to install a task, a resident library SGA, a common area SGA,
or a region SGA.

REQUIRED
PRIVILEGE

PR.RTC

FORMAT

PDS> [$]INSTALL [lquals]

FILE? filespec

parameter
definitions

lquals
One of the following:

Quallfler

/TASK[:name]

/COMMON[:name]

/LIBRARY[:nams]

/REGION[:name]

/SYSTEM:tname

Explanation

Installs a task and optionally assigns the task name. If you do not specify the name, the
task is installed with the name specified in the task build (LINK), or the name is taken
from .TITLE in the source. /TASK is the default.

Installs an SGA as a common area. name is a 1- to 6-character name that overrides the
name set at link time.

Installs an SGA as a iesident library. name is a 1- to 8-charaeter name that overrides
the name set at link time.

Installs an SGA as a region. name is a 1- to 6-character name that overrides the name
set at link time.

Installs a system library task with the name $$$tname, where tname is a 1-3 character
mnemonic. For example INS/SYS:F4P [11,1)F4P installs F4P as $$$F4P.

You can specify the following qualifiers with any of the above:

14-91

INSTALL

Qualifier

/PARTITION:name

/UIC:uic

Explanation

Installs a task or SGA in the specified partition.

Changes the task UIC or the owning UIC of an SGA.

Defaults for the above are the values as set at link time. See the /AS task builder
Reference Manual.

You can use the following qualifiers when installing a task (fl'ASK/SYSTEM).

Quallfler

/POOL:number

/PRIORITY:number

/INCREASE:

tasksizeincrement

Explanation

Sets the pool limit of the task to be installed. The pool limit value can range from 0
to 255 decimal, and represents the maximum number of 8-word nodes that the task is
allowed to use at any one time.

Sets the execution priority to be assigned to the task. Priority ranges from 1 to 250.

Overrides the EXTTSK option specified in the LINK command. This qualifier specifies
the decimal number of words by which the upper read/write area of the task being
installed is to be extended. The value specified is rounded up to the next 32-word
boundary.

You can use the following qualifier when installing an SGA (/LIB/COM,/REG).

Qualifier

/ACCESS:access

file spec

Explanation

Nonowner access permitted to the SGA being installed. You can express the nonowner
access in the usual form for protection. See Section 6.2.2 for a description of file
protection.

Alternatively, you can specify the following abbreviated protection codes:

NA No access by non-owners, equivalent to (O,RWED,,). This is the default.

RO Read-only access by non-owners, equivalent to (RD,RWED,R,R).

RW Read-write access by non-owners, equivalent to (RWD,RWED,RW,RW).

The system adds delete access to the system and owner protection groups, if you do not
specify it. This prevents an SGA being created that cannot be deleted when required.
The owner always has RW access.

Specification of the file containing the task image to be installed. If you omit the file type, a default
of .TSK is assumed.

COMMAND
VARIATIONS

Not applicable.

14-92

TECHNICAL
NOTES

INSTALL

The INSTALL command causes the system to flnd and note the physical position of a task or
shareable global area (SGA) held on disk. This enables fast loading into memory. A task cannot be
run in real-time processing (see the RUN command) unless it has been installed. A task cannot be
installed until all the SGAs it uses have been installed. The effect of INSTALL is reversed by the
REMOVE command.

At install time, you can take the opportunity to override certain task attributes set at link time,
and can specify non-owner access rights to an SGA. These changes affect only the installed version,
not the task or SGA task image file.

To install a task, you must have extend access to the file containing the task image.

EXAMPLES

• Example 1:

PDS> INSTALL [11,l]PIP

• Example 2:

PDS> INSTALL/TASK:JK304/PRIORITY:200 DKl:COMMS.TSK;3

Install the task image held in file COMMS.TSK;3 on DKl. Give it the installed name JK304
and priority 200.

• Example 3:

PDS> INSTALL/COMMON:COMLOL/ACCESS:RO JK61.TSK;4

Install the SGA held in file JK61.TSK;4 on your default device. Give it the installed name
COMLOL and give Read-Only access to non-owners of the SGA.

• Example 4:

PDS> INSTALL/LIBRARY:SYSRON/ACCESS:RW DK2:JOHN4

Here a library SGA is given read-write access for nonowners.

• Example 5:

PDS> INSTALL/SYSTEM:SSS/INCREASE:2048 SYSTSK.TSK

Here the amount of extra tagk virtual address space n, specified at link time by EXTTSK=n,
is replaced by an allocation of 2048 words for this installed version. The task is installed as
$$$SSS.

• Example 6:

PDS> INSTALL/REGION:MYREG CLC25

Install the SGA CLC25 as a region called MYREG.

14-93

$JOB

$JOB

FUNCTION

The $JOB command initiates a batch job.

REQUIRED
PRIVILEGE

Not applicable.

(PR.MCR is required to issue the MCR qualifier).

FORMAT

$JOB {lmode][IPASSWORD:password] username jobname time/imit

parameter
definitions

/mode
/MCR-Batch job contains MCR mode commands.

/mode
/DCI.r-Batch job contains DCL commands (used if the default mode is MCR).

password
Alphanumeric string 1 to 6 characters long that is your batch password.

username
Alphanumeric string 1 to 12 characters long that is unique to you. Your user name must be valid
(such as the one you use in LOGIN).

jobname
Alphanumeric string 1 to 12 characters long that identifies the job. The system prints the job name
at the beginning and end of the job's printed output.

timelimit
Time limit in minutes the batch job is to ru.'1. time!:imit has a maximum value of1440 (that is,
24 hours). If you omit thls field, the job receives the installation default batch time limit (usually
eight minutes).

14-94

COMMAND
VARIATIONS

Not appHcabie.

TECHNICAL
NOTES

The $JOB command must be the first command in a batch job command stream.

$JOB

A batch log is created for every batch job run and is given the name LP.SPR. The batch log is one
(or more) concatenated file that results from running a batch job. The log is automatically spooled
to CL:. You can identify which job a batch log refers to by looking at the banner pages that include
the job name and user name.

You must not specify /PASSWORD if there is no batch password associated with you.

You can change MCR or DCL mode within the batch job (using $MCR or $DCL). However, if a
batch job contains mostly MCR mode commands, you can use the /MCR qualifier. For example:

$JOB/MCR SYSTEM WAGE 30
$MAC WAGEl,WAGE/-SP/CR=PREl,WAGEl
$TKB @WAGE.CMD
$RUN WAGE
$EOJ

has the same effect as:

or:

$JOB SYSTEM WAGE 30
$MCR
$MAC WAGEl,WAGE/-SP/CR=PREl, WAGEl
$TKB @WAGE.CMD
$RUN WAGE
$EOJ

$JOB SYSTEM WAGE 30
$MCR MAC WAGEl,WAGE/-SP/CR=PREl, WAGEl
$MCR TKB @WAGE.CMD
$MCR RRT WAGE
$EOJ

EXAMPLES

• Example 1:

$JOB PIERCE JOBONE

• Example 2:

$JOB/PASSWORD:SECRET SYSTEM ACCOUNTS 30

14-95

LIBRARIAN

LIBRARIAN

FUNCTION

The LIBRARIAN command enables you to create, delete and maintain object module libraries,
MACR0-11 macro libraries, and UNIVERSAL libraries. The Technical Notes list operations you
can perform with the LIBRARIAN command.

REQUIRED
PRIVILEGE

PR.LIB

FORMAi

Compress Format:

PDS> [$]LIBRARIAN

OPERATION? COMPRESS [/quals]

LIBRARY? libspec

[NEW LIBRARY? newlibspec]

parameter
definitions

lquals
One of the following:

Qualifier

/SIZE:n

/EPT:n

/MNT:n

iibspec

Explanation

Size in 256 word blocks of the compressed file. Default is 100.

Number of entries to a!!ocate in the entry point tab!e {net greater than 4096}. A macro
library has no entry point table, son is set to 0 even if specifically defined. n is rounded
up to the nearest multiple of 64. Defaults are 512 (object),O(macro).

Number of entries to allocate in the module name table (not greater than 4096). n is
rounded up to the nearest multiple of 64. Default is 256.

Specification of the library file to be compressed (no wildcards are allowed).

14-96

LIBRARIAN

newlibspec
Specification of the compressed library file (no wildcards are allowed).

EXAMPLES

PDS> LIBRARIAN COMPRESS/SIZE:150
LIBRARY? PEEK.OLB !Esq
NEW LIBRARY? PEEK2.0LB

The object library file PEEK.OLB is compressed to 150 blocks with 512 EPr entries and 256 MNT
entries by default. The compressed file is called PEEK2.0LB.

FORMAT

Create Format:

PDS> [$]LIBRARIAN

OPERATION? CREATE {lquals]

LIBRARY? libspec

[FILE? [infile-1, ... infile-n]]

parameter
definitions

lquals
One of the following:

Qualifier

/SIZE :n

/EPT:n

/MNT:n

ITYPE:type

/SELECT

/SQUEEZE

Explanation

Size in 256-word blocks of the library file to be created. Default is 100.

Number of entries to allocate in the entry point table (not greater than 4096). A macro
library has no entry point tabie. n is rounded up to the nearest muitipie of 64. Defauits
are 512 (object),O (macro and UNIVERSAL).

Number of entries to allocate in the module name table (not greater greater than 4096).
n is rounded up to the nearest multiple of 64. Default is 256.

Type of library being created. type is either OBJECT, MACRO, or UNIVERSAL.

LINK command uses the file to define required global symbols at task build. (Object files
only).

Reduces the macro file by erasing all trailing blanks and tabs, blank lines and comments
from the source text. (Macro files only).

14-97

LIBRARIAN

Quallfler Exp la nation

/NOENTRY _POINTS library modules are stored in the library, omitting definitions of entry point symbols.

FILETYPE_DEFAULT:type Type is the 3-character default input file type, for the universal library created. If
you do not specify this qualifier, the input file type for universal libraries is .ULB. The
/FILETYPE_DEFAULT:type qualifier does not apply to object or module libraries.

libspec
Specification of the library file to be created (no wildcards allowed).

infile
Specification of a file to be input to the new library file. If you do not supply any input files, an
empty library file is created as the qualifiers dictate.

EXAMPLES

• Example 1:

PDS> LISRARIAN
OPERATION? CREATE/SI:200/EP:1024/MN:512/TYPE:OBJ
LIBRARY? MYLIB. OLB ~
FILE? ONE.OBJ,TWO.OBJ,THREE.OBJ

Creates an object library file named MYLIB.OLB with a size of 200 blocks with 1024 EPr
entries and with 512 MNT entries, and inserts the three input files.

• Example 2:

PDS> LIBRARIAN
OPERATION? CREATE/TYPE:UNIVERSAL/FILETYPE:TXT
LIBRARY? CHRIS.ULB ~)
FILE? GARY, CLIVE

Creates a universal library named CHRIS.ULB. By default the universal library CHRIS.ULB is
100 blocks long, with a module name table for 256 entries. Input file specifications for modules
inserted or replaced in this library have a default file extension of .TXT. Inserts the modules in
the input files GARY.TXT and CLIVE.TXT into the universal library CHRIS.ULB.

FORMAT

Delete Format:

PDS> [$]LIBRARIAN

OPERATION? DELETE {Iqua/]

LIBRARY? libspec

ENTRIES? name1[, ... namen]

14-98

LIBRARIAN

parameter
definitions

Iqua/
One of the following:

Quallfler

/MODULES

/GLOBAL_SYMBOLS

libspec

Explanation

Deletes the specified module (the default qualifier).

Deletes the EPT entries specified.

Specification of the library file that contains the modules or entry points to be deleted.

name1,namen
Module name or the name of an entry in the entry point table.

EXAMPLES

• Example 1:

PDS> LIB DELETE/MODULES
LIBRARY? MYLIB.MLB
ENTRIES? NAMEA,NAMEB,NAMEC

Deletes the macros NA.."l'vlEA, NAMEB, and NAMEC from the macro library file MYLIB.MLB.

• Example 2:

$LIBRARIAN DELETE/GLOBAL MACLIB.OLB NAMEX

Deletes the EPT entry named NAMEX contained in the library file MACLIB.OLB.

FORMAT

Extract Format:

PDS> [$]LIBRARIAN

OPERATION? EXTRACT/OUTPUT: filespec

LIBRARY? libspec

MODULES? modulelist

14-99

LIBRARIAN

parameter
definitions

file spec
File specification of the file to be created. If the output file does not have an explicit file type,
the file type .IVIAC is assigned if the modules are extracted from a MACRO library, and .OBJ is
assigned if from an object library.

modulelist
List of up to 8 modules to be extracted.

EXAMPLES

PDS> LIBR EXTR/OUT:AB MYLIB.MLB A B

This command causes the two modules A and B to be extracted from the Macro library
MYl_.:!B.MLB and placed in a single file caHed AB.MAC.

FORMAT

Insert Format:

PDS> [$]LIBRARIAN

OPERATION? INSERT [Iqua/]

LIBRARY? libspec

FILE? [inti/et [lqua/2][, ... infile n[lqua/2]]

parameter
definitions

Iqua/
One of the following:

Qualifier

/SELECT

/SQUEEZE

14-100

Explanation

LINK command uses the file to define required global symbols at Task Build time.
(Object files only.)

Reduces the macro file by eliminating all trailing blanks and tabs, blank lines and
comments from the source text. (Macro files only).

LIBRARIAN

Qualifier Explanation

/NOENTRY _POINTS Inserts modules without the definitions of the symbols that are entry points.

libspec
Specification of the library file where modules are to be inserted (no wildcards allowed).)

infile
Specification of a file to be inserted into libspec.

qua/2
One of the following, but can only be specified when modules are to be inserted into a universal
library:

Qualifier Explanation

/MODULE:mod mod specifies the module name (up to 6 Radix-50 characters). The default Is the first 6
characters of the file name specified in infile.

/USER_INFORMATION: op specifies optional user descriptive information (up to 6 Radix-50 characters) to be
[(op:op:op:op)] stored in the module header. The default is null. If only part of the information set is

specified, all preceding colons must be specified.

EXAMPLES

• Example 1:

PDS> LIBRA
OPERATION? INSERT/SQUEEZE
LIBRARY? MACLIB.MLB
FILE? ONE.MAC,TWO.MAC

Inserts the modules contained in the files ONE.MAC and TWO.MAC into the library file name
MACLIB.MLB, eliminating blanks and comments.

• Example 2:

$LIBRARIAN INSERT MYLIB.OLB MODULE.OBJ

Inserts the file MODULE.OBJ into the library file named MYLIB.OLB.

• Example 3:

PDS> LIBRARIAN INSERT UNIV.ULB
FILE? CAROL.TXTiMODULE:FRANK/USER: (THIS IS:AUG15:TXT)

Inserts the file CAROL.TXT into the universal library UNiv.ULB as FRANK (module name).
THIS IS, AUG 15, and TXT are stored in the module header.

FORMAT

List Format:

PDS> [$]LIBRARIAN

14-101

LIBRARIAN

OPERATION? LIST {lquals]

LIBRARY? libspec

parameter
definitions

lquals
One of the following:

Quallfler

/OUTPUT:outfile

/ENTRIES

/FULL

iPRINT

libspec

Explanation

Send the output to the specified file.

Produce a directory of all modules and list the entry points for each.

Produce a directory of all modules, giving full module descriptions: size, date of insertion
and version.

Send the output to the Una piintar.

Specification of the library file to be listed (no wildcards allowed).

EXAMPLES

• Example 1:

PDS> LIBRARIAN LIST MYLIB.MLB

Lists at your terminal a directory of all the modules contained in MYLIB.MLB.

• Example 2:

$LIBRARIAN LIST/FULL/PRINT MODLIB.OLB

Lists at the line printer a directory of all the modules and their descriptions contained in the
library file MODLIB.OLB.

FORMAT

Replace Format:

PDS> [$jLiBRARiAN

OPERATION? REPLACE [Iqua/]

LIBRARY? libspec

14-102

LIBRARIAN

FILE? in file 1 {lqua/2]l .. .infilen{lqua/2]]

parameter
definitions

Iqua/
One of the following:

Qualifier

/SELECT

/SQUEEZE

Exp la nation

LINK command uses the file to define required global symbols at task build. (Object files
only.)

Reduces the macro file by eliminating all trailing blanks and tabs, blank lines and
comments from the source text. (Macro files only.)

/NOENTRY _POINTS Replaces modules, omitting definitions of symbols that are entry points.

libspec
Specification of the library file containing the modules to be replaced (no wildcards allowed).)

infile
Specification of a file containing the replacement modules (no wildcards allowed).)

qua/2
One of the following, but can be specified only when modules are to be replaced in a universal
library:

Quallfler Explanation

/MODULE:mod mod specifies the module name (up to 6 Radix-50 characters). The default is the first 6
characters of the file name specified in infile.

/USER_INFORMATION: op specifies optional user descriptive information (up to 6 Radix-50 characters) to be
[(op:op:op:op)] stored in the module header. The default is null. If only part of the information set is

specified, all preceding colons must be supplied.

EXAMPLES

• Example 1:

PDS> LIBRARIAN
OPERATION? REPLACE
LIBRARY? MODLIB.OLB
FILE? NEWMOD.OBJ

Replaces the module in the library file MODLIB.OLB with a module of the same name as that
contained in NEWMOD.OBJ.

• Example 2:

$LIBRARIAN REPLACE OLDLIB.OLB ONELIB.OBJ,TWOLIB.OBJ

14-103

LIBRARIAN

Replaces modules in the library OLDLIB.OLB with modules of the same name in the files
ONELIB.OBJ and TWOLIB.OBJ.

• Example 3:

PDS> LIBRARIAN REPLACE
LIBRARY? BLUND
FILE? CHORL.TXT/USER_INFO: (THIS:IS:SEP4:UPDATE)

Replaces the module CHORL in the universal librar1 BLLT?\TD with the updated module from
the file CHORL.TXT. The optional user information THIS, IS, SEP4, and UPDATE, is stored
in the module header. If the module name is not specified, the default file is taken as the file
name CHORL.

FORMAT

Modify Header Format (Universal Libraries Only):

PDS> [$]LIBRARIAN

OPERATION? MODIFY {Iqua/]

LIBRARY? libspec

MODULE? modname

USER_INFORMATION? (op:op:op:op)

parameter
definitions

Iqua/
One of the following:

Quallfler

/HEADER

libspec

modname

(op :op:op :op)

EXAMPLES

14-104

Explanation

The only qualifier to the MODIFY operation and is, therefore, the default.

Specification of the universal library file containing the module.

Name of the module whose descriptive information is to be specified. (This information
is contained in the module header.)

Specifies the user information (up to 6 Radix-50 characters; to be stored in the module
header. The default for each of the four fields is null, indicating that the corresponding
field is not to be changed. Entering# as op clears the corresponding field.

PDS> LIBRARIAN
OPERATION? MODIFY
LIBRARY? BERT.ULB
MODULE? ACCNTS
USER INFORMATION? (i::FEB21)

LIBRARIAN

Changes the optional descriptive information in the module header for module ACCNTS, in
universal library BERT.ULB, to contain the following information:

default value

no-change

FEB21

no-change

that is, null

that is, previous contents

that is, previous contents

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

Library Types

Libraries can be of the following type:

1 Those containing object modules (object module libraries).

2 Those containing macros (macro libraries).

3 Those containing any type of file (universal libraries).

Object module libraries have a default file type of .OLB. Each object module inserted into the
library has its module name (taken from the .TITLE statement) added to the module name table
(MNT) and its entry points (global symbols) added to the entry point table (EPr). task builder uses
these libraries.

Macro libraries have a default file type of .MLB. Each macro inserted into the library has its
module name (taken from the .MACRO statement) added to the module name table (MNT).
MACRO uses these libraries.

Universal module names are derived from file names that exist when the module is inserted into
the library. You can access a universal library module by using the $ULA routine (see the IAS
System Library Routines Reference Manual).

14-105

LIBRARIAN

Restrictions

The following restrictions apply to the handling of object modules:

1 The size of a module is limited to 65,536 words.

2 The size of the library file is limited to 65,536 words.

3 You must allocate the maximum anticipated size to tables and contiguous space. Expanding
space allocations requires the COMPRESS operation to copy the entire file.

4 A fatal error results if an attempt is made to insert a module into a library that contains a
differently named module with the same entry point.

Compress

The COMPRESS operation physically deletes modules that were logically deleted (by the DELETE
operation) from the library specified. COMPRESS rearranges the file, putting all free space at the
end of the library file, where it is available for the insertion of new modules.

Create

The CREATE operation allocates a contiguous library file on a direct access device (for example, a
disk) and initializes the library header and tables.

Delete

The DELETE operation performs two delete operations:

1 It deletes modules, and all their associated entry points, from the library file tables MNT and
EPT.

2 It deletes specified entries in the entry points table (EPT).

You can delete any number of modules in one DELETE operation. If no module of the specified
name exists in the library, DELETE has no effect on the library. A deleted module is marked as
deleted but remains physically in the file until a COMPRESS operation is performed.

Extract

The EXTRACT operation extracts modules from a library and generates a new file that is the
concatenation of the named modules. You can extract up to eight modules at any one time. The
original library remains unaltered.

Insert

The INSERT operation inserts modules into the specified library file. You can have any number of
input files, and any of these can contain concatenated object modules.

14-106

LIBRARIAN

List

The LIST operation has the following functions:

• Causes a library file directory to print on your terminal by default.

• Sends a library file directory to an output file.

The operation qualifier also determines the amount of detail contained in the directory. By default,
the directory lists all the modules in the library.

Replace

The REPLACE operation replaces old modules in the library with new modules of the same name.
That is, a new module that has the same name as a module already contained in the library
replaces the existing module. The old module remains physically in the file until it is compressed.

Modify Header

This modifies the optional user-specified information stored in the header of universal library
modules.

14-107

LINK

LINK

FUNCTION

The LINK command links object files, compiled or assembled modules, to form an executable task
and produces output as directed by command qualifiers.

The !AS task builder Reference Manual describes the task builder procedures and options in full.

REQUIRED
PRIVILEGE

PR.LIN

FORMAT

PDS> [$]LINK {lquals]

FILE? infile1 {lfilequal][, ... ,inti/en]

parameter
definitions

Iqua ls
One of the following:

Quallfler1

/ABORT
/NOABORT

/CHECKPOINT
/NOCHECKPOINT

/CROSS_REFERENCE
/NOCROSS_REFERENCE

/DEBUG(:filespec]
iNODEBUG

/DEFAULT _LiBRARY:f-s
/NODEFAULT __ LIBRARY

/DISABLE
/NODISABLE

Default

/ABORT

/CHECKPOINT

/NOC ROSS _REFERENCE

/NO DEBUG

/NODEFAULT_LiB:L8:[1,1]SYSUB.OL8

/DISABLE

1 Each qualifier is described in the Technical Notes under Command Qualifiers.

14-108

Quallfler1

/EXIT:n
/NOEXIT:n

/FIX
/NOFIX

/FLOATING_POINT
/NOFLOATING_POINT

/FLUSH_RECEIVE_ QUEUES
/NOFLUSH_RECEIVE_ QUEUES

/FULL_ SEARCH
/NOFULL_ SEARCH

/HEADER
/NOHEADER

/LARGE_ SYMBOL_ TABLE
/NOLARGE_SYMBOL_ TABLE

/MAP[:filespec]
/NOMAP

/MAP:(filespec/qualifier)
/NOMAP

/MULTIUSER
/NOMULTIUSER

/OPTIONS
/NOOPTIONS

/OVERLAY _DESCRIPTION:filespec
/NOOVERLAY _DESCRIPTION

/POSITION_INDEPENDENT
/NOPOSITION_INDEPENDENT

/PRIVILEGED
/NOPRIFILEGED

/READ_WRITE
/NOREAD_WRITE

/RECEIVE
/NORECEIVE

/REQUEST
/NOREQUEST

/RESIDENT_ OVERLAYS
/NORESIDENT _OVERLAYS

/RUN_ TiiviE_SYSTEivi
/NORUN_ TIME_SYSTEM

/SEQUENTIAL
/NOSEQUENTIAL

/SYMBOLS[:filespec]
/NOSYMBOLS

/SYMBOLS:(filespec/qual)
/NOSYMBOLS

Default

/EXIT:1

/NOFIX

/FLOATING_POINT

/FLUSH_RECEIVE_ QUEUES

/NO FULL_ SEARCH

/HEADER

/NOLARGE_SYMBOL_ TABLE

/NOMAP

IMAP :(filespec/WIDE)

NOMULTIUSER

/NOOPTIONS

/NOOVERLAY _DESCRIPTION

/NOPOSITION_INDEPENDENT

/NOPRIVILEGED

/NOREAD_WRITE

/RECEIVE

/NOREQUEST

/NORESIDENT _OVERLAYS

tNORUN_ TiiViE_ SYSTEiVi

/NOSEOUENTIAL

/NOSYMBOLS

/SYM :(ts/UNDEFINED_ SYMBOL)

1 Each qualifier is described in the Technical Notes under Command Qualifiers.

LINK

14-109

LINK

Quallfler1

fT ASK[:filespec]
/NOTASK

!TRACE
/NOTRACE

/WAIT _FOR_NODES
/NOWAIT _FOR_NODES

Default

!TASK

/NO TRACE

/WAIT _FOR_ NODES

1 Each qualifier is described in the Technical Notes under Command Qualifiers.

infile
Specification of an input file. See Input Files below for further information. Wildcards are not
allowed. (You must not include this parameter if you specify the command qualifier /OVERLAY.)

lfilequal
See File Qualifiers for a description of each file qualifier.

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

Input Flies

You can specify input files to the LINK command in one of two ways:

1 In a list of file specifications as a parameter to the command.

2 From within an overlay description file by means of the /OVERLAY command qualifier.

If you use the /OVERLAY qualifier to specify the input files, you must not specify them as a
command parameter (see item 1 above).

The input files can consist of the following elements:

1 Single object modules

2 Concatenated object modules

3 Object module libraries

4 Symbol table files

You must use file qualifiers to identify concatenated module files and library files (see File
Qualifiers below). In addition, the /SELECT qualifier can modify symbol table files; the task
builder then uses the modified file only to resolve required symbol definitions.

14-110

LINK

The task builder provides default file types in the following cases. When specifying single or
concatenated object modules, you can omit the file type field. The task builder then assumes the
file type to be .OBJ. You can also omit the file type field of a library file (a file modified by the
/LIBRARY qualifier) in which case the task builder assumes the file type to be .OLB.

Input symbol table file specifkations have no default file type. Thus, you must specify the file type.
However, symbol table files output from the task builder have the default file type .STB.

Wildcards are not allowed for any type of file specification supplied with LINK.

Fiie Qualifiers

The following list defines all the available file qualifiers:

Fiie Qualifier

/CONCATENATED

/LIBRARY

/UBRARY:[(]mod-1 mod-nD]

/NOCONCATENATED

/SELECT

/MAP

Command Qualifiers

Description

Identifies the file as a concatenated object file.

Identifies the file as an object module library file.

Identifies the file as an object module library file where mod-1 ... mon-n are
entries within that library and instructs the task builder to take only the
modules named.

Instructs the task builder to take only the first module in the file. If it is a
concatenated object module fffe, subsequent modules are ignored.

Instructs the task builder to take only required global symbol definitions
from the file. The modified file can be any object file, but it is normally a
symbol file.

Includes input file in the memory allocation map. The default is /MAP for
object module files, and /NOMAP for system library files and SGAs.

You can negate all the command qualifiers in this section by using the prefix NO. For example, the
qualifier /I'ASK instructs the Task Builder to create a task file; whereas the qualifier /NOTASK
requests the task builder not to produce a task image file.

Table 14-12 Command Qualifiers and Defaults

Qualifier

/ABORT

/CHECKPOINT

/CROSS _REFERENCE

/DEBUG[:filespec]

Default

/ABORT

/CHECKPOINT

/NOCROSS _REFERENCE

/NODE BUG

Explanation

The task can be aborted.

The task can be checkpointed.

Append a global symbol cross-reference to the
end of the memory allocation map.

If filespec is not given, link the task with the
system's debugging aid ([1, 1)CDT.OBJ). If
filespec is given, link the task with the debugging
aid contained in the specified file. The debugging
aid must be in object format.

14-111

LINK

Table 14-12 (Cont.) Command Qualifiers and Defaults

Quallfler Default Explanation

/DEFAULT _LIBRARY:file-spec /NODEFAULT _LIBRARY:LB:
(1 , 1]SYSLIB.OLB

Use the named object module library instead of
current system library file LB:[1, 1]SYSLIB.OLB.

/DISABLE

iEXli:[nj

/FIX

/FLOATING_POINT

/FLUSH_RECEIVE_ QUEUES

/FULL_ SEARCH

/HEADER

/LARGE_ SYMBOL_ TABLE

/MAP(:filespec) or
IMAP[:(fHespec/qualifier)]

14-112

/DISABLE The task can be disabled.

/EXIT:1 Task builder stops executing after n (decimal)
errors. If you do not specify /EXIT, the task
builder continues to find all errors. If you specify
/EXIT without a value, the task builder finishes
after one error.

/NOFIX The task can be fixed in memory.

/FLOATING_POINT The task uses the floating point processor.

/FLUSH_RECEIVE_ QUEUES The task is to have its receive queues (data and
references) flushed each time it exits.

/NOFULL_SEARCH This controls the symbol table search for
matching definition or references in overlaid
tasks having co-trees.

/HEADER The task includes a header. Use /NOHEADER
to produce a non-executable task image (for
example, a shareable global area-resident
library, common area, or region).

/NOLARGE_SYMBOL_TABLE Select a version of the task builder that has a
large internal symbol table. (Considerably slower
than the default task builder.)

/NOMAP Produce a memory allocation map.

If you do not specify filespec after /MAP, the map
file is sent to the line printer.

If you specify filespec, you can omit the file type
field, in which case the task builder assumes it to
be .MAP.

If you qualify the map filespec then you must
enclose the filespec and file qualifiers in
parentheses, for example:
/MAP:(MYMAP/SHORT)

You can attach the following qualifiers to the map
filespec:

/FULL = Includes all modules in map
/FILES = Includes file-by-file breakdown
/NARROW = Makes map in 72-column
format
/SHORT = Makes only summary of map
/WIDE = Makes map in 132-column format
/NOUNDEFINEO _REFERENCES = Do not
print undefined references on Tl:

NOTE: defaults are:
/NOFULL/WIDE/SHORT
/NOF!LES/UNDEFINED _REFERENCES

LINK

Table 14-12 (Cont.) Command Qualifiers and Defaults

Quallfler

/MULTIUSER

/OPTIONS

/OVERLAY _DESCRIPTION:
filespec

Default

/NOMULTIUSER

/NOOPTIONS

Explanation

Build a multiuser task so that more than one copy
of the task can be run at one time.

Apply task builder options specified after the
command string (see the section Task Builder
Options). In interactive mode, the /OPTIONS
qualifier causes the Task Builder to prompt
OPTIONS? after the input files have been
specified. For example:

PDS> LINK/OPTIONS
FILE? PROO, REPORT
OPTIONS?

You then enter the options described in the list
below. A slash (I) as the first character in a line
terminates the list of options and the task builder
begins executing. See the /AS task builder
Reference Manual for details of individual option
syntax. For example:

PDS> LINK/OPTIONS
FILE? MAIN.OBJ, PROO.OBJ
OPTIONS? ACTFIL=8
OPTIONS? MAXBUF-160
OPTIONS? UNITS-9
OPTIONS? ASG ... DT1 :7:8:9
OPTIONS? I

In batch mode, if the command qualifier list
includes /OPTIONS, you must specify at least
one option. Specify options on lines immediately
following the command string.

A line containing a slash (I) in the first character
position terminates the list of options.

If /NOOPTIONS is specified (default) the
system automatically includes the option
SGA=SYSRES:RO, that is, the task is mapped
onto the system library SYSRES.

/NOOVERLAY _DESCRIPTION Link the task according to the overlay structure
defined in the given file, the name of which you
must include with the /OVERLAY _DESCRIPTION
quaiifier. if you omit the fiie type fieid of fiiespec,
the task builder assumes it to be .ODL.

You specify the input files to LINK within the
overlay description file; therefore, you must not
specify the input file parameter list.

See the /AS task builder Reference Manual for
details of ODL files.

/POSITION_INDEPENDENT /NOPOSITION_INDEPENDENT The task code !s position independent.

/PRIVILEGED /NOPRIVILEGED The task is executive-privileged.

14-113

LINK

Table 14-12 (Cont.) Command Qualifiers and Defaults

Quallfler Default

/READ_ WRITE /NOREAD_WRITE

/RECEIVE /RECEIVE

Explanation

Gives Read/Write access to the Read-Only code.

The task is able to receive data sent to it by
the SEND DATA and SEND BY REFERENCE
directives.

/REQUEST /NOREQUEST Data can be sent to the task and
can be requested or resumed by a
non-directive-privileged user.

/RESIDENT_OVERLAYS /NORESIDENT_OVERLAYS The task is to be built with resident overlays.

/RUN_ TIME_SYSTEM /NORUN_ TIME_SYSTEM The task includes the overlay run time system
and its associated control area if it is overlaid.

/SEQUENTIAL /NOSEQUENTIAL Program sections within the task are to be linked
in the order they appear. Otherwise, they are
linked in alphabetical order.

/SYMBOLS[:filespec] or /NOSYMBOLS Produces a symbol table file.
/SYMBOLS:(filespec/ Default filespec qualifier:
NOUNDEFiNED _SYiviBOLS} iUNDEFiNED _SYiviBOLS

/TASK[:filespec] /TASK

/TRACE /NOTRACE

14-114

Unless you specify filespec, the symbol table file
takes the name of the first input file, except that
the file type is .STB.

If you specify filespec, you can omit the file type
field; in which case, the task builder assumes it to
be .STB.

If you qualify the STB filespec then you must
enclose the filespec and qualifier in parentheses.
For example:

/SYMBOL:(MYPROG/NOUNDEANED)

You can supply the following qualifier to the STB
filespec:

/NOUNDEFINED_SYMBOLS

If you use this qualifier, undefined symbols are
ignored. The default is /UNDEFINED_SYMBOLS.

Produces a task image file.

Unless you specify filespec, the task file takes
the name of the first input file (or the name of the
overlay descriptor file) except that the file type is
.TSK.

If you specify filespec, you can omit the file type
field, in which case the task builder assumes it to
be .TSK.

The task is traceable,

LINK

Table 14-12 (Cont.) Command Qualifiers and Defaults

Qualifier Default Explanation

/WAIT _FOR_NODES /WAIT _FOR_NODES Tasks can use certain directives that require
data from buffers. Normally, if no nodes are
available, the directive fails and an error message
is returned. The /WAIT _FOR_NODES qualifier
enables the directive (and hence the task) to
attempt to get a node a number of times before it
fails.

Task Builder Options

Table 14-13 lists the task builder options.

Table 14-13 Task Builder Options

Option Meaning lnterest1

ABS PAT Declares absolute patch values. M

ACTFIL Declares number of files open simultaneously. FM

ASG Declares device assignment to logical units. FM

ARTG Declares the number of attachment descriptor blocks to be FM
created in the task header.

BASE Defines lowest virtual address. FM

EXTSCT Declares extension of a program section. FM

EXTTSK Extends task memory allocation at install time. FM

FMTBUF Declares extension of buffer used for processing format F
strings at run time.

In CORAL, set to blkmax*8, where blkmax is the maximum c
number of LUNs used for concurrent asynchronous block
1/0 at any one time.

GBLDEF Declares a global symbol definition. M

GBLPAT Declares patch values relative to a global symbol. MC

GBLREF Declares a global symbol reference. FM

MAXBUF In FORTRAN, declares an extension to the FORTRAN F
record buffer.

In CORAL, set to strmax*140 (decimal), where strmax is c
the maximum number of LUNs associated with stream 1/0
at any one time.

MAX EXT Declares maximum extendable task size. FMC

ODTV Declares the address and size of the debugging aid SST M
vector.

PAR Declares partition name and dimensions. FM

POOL Declares pool usage limit. FM

PRI Declares priority. FM

1 F indicates FORTRAN, MACRO, and CORAL; M indicates FORTRAN and MACRO; C indicates CORAL.

14-115

LINK

Table 14-13 (Cont.) Task Builder Options

Option Meaning lnterest1

RESAPR Reserves APRs for use by memory management directives FM

RESSGA Declares task's intention to access an SGA. FM

SGA Declares task's intention to access an SGA. FM

STACK Declares the size of the task's stack. FM

SYMPAT Declares a patch using task symbols. M

TASK Declares the default installed name of the task. FM

TOP Defines highest virtual address. FM

TSKV Declares the address of the task SST vector. M

UIC Declares the user identification code under which the task FM
runs.

UNITS Declares the maximum number of logical units. FM

VSECT Declares the virtual base address and size of a program FM
section.

~ F indicates FORTRAN, MACRO, and CORAL; M indicates FORTRAN and MACRO; C indicates CORAL.

NOTE:

1 The SGA option supersedes the COMMON and LIBR options in previous versions of
IAS. COMMON and LIBR are still recognized by the Task Builder for compatibility.
Their effect is identical to specifying SGA.

2 The RESSGA option supersedes the RESCOM and RESLIB options in previous
versions of IAS. RESCOM and RESLIB are still recognized by the task builder for
compatibility. Their effect is identical to specifying RESSGA.

14-116

EXAMPLES

• Example 1:

• Example 2:

$LINK/OPTIONS/PRIVILEGED A.OBJ/CONCATENATED
UNITS=9
I

PDS> LINK/OVERLAY:STRUCTURE/MAP:ROUTE

The system does not prompt FILE? as /OVERLAY has been specified.

• Example 3:

PDS> LINK/DEFAULT_LIBR:DKl: [1,l]SYSLIB
FILE? A.OBJ,B.OBJ

LINK

14-117

LOGOUT

LOGOUT

FUNCTION

The LOGOUT command terminates your interactive session and on a full timesharing system
reieases any devices and mounted volumes aHocated to you.

REQUIRED
PRIVILEGE

Not applicable.

FORMAT

PDS> LOGOUT {!HOLD]

parameter
definitions

!HOLD
If the terminal is connected by a dia1up line, this line is not disconnected when you log out. When
you next want to log in, you need not dial in again.

The default is that the line is disconnected when you log out.

The LOGOUT command has no parameters.

COMMAND
VARIATIONS

On a multiuser system, mounted volumes are not released on logout.

TECHNICAL
NOTES

Provided QUIET mode has not been set, the following information is printed when you log out:

1 The volumes and devices dismounted and deallocated (timesharing only).

2 Your user name, UIC, terminal number, and Job-id.

3 The logout time.

14-118

4 The connect time.

5 CPU utilization.

For QUIET mode, see the PDS command SET QUIET.

LOGOUT

If you are using the SET PRINTING DEFERRED command, any spooled files generated from tasks
run from your terminal are printed when you log out.

The message BYE appears and indicates that the terminal is inactive. You must typelCtrVCI to
reactivate the terminal for another session.

EXAMPLES

PDS> LOGOUT

USER CAROL UIC [200,60]TT03: 11:19:30 15-MAY-78
CONNECT TIME 36M SYSTEM UTILIZATION 4 MCTS

BYE

14-119

MACRO

MACRO

FUNCTION

The MACRO command assembles one or more ASCII source files containing MACR0-11 statements
into a single relocatable binary object fiie. The output optionaiiy consists oi a binary object fiie, an
assembly listing, a cross-reference listing, and the symbol table listing.

REQUIRED
PRIVILEGE

PR.MAC

FORMAT

PDS> [$]MACRO [lquals1]

FILE? filespec[!quals2][+ ...]

parameter
definitions

lquals1
One of the following:

auallfler

/OBJECT(:fHespec]

/NOOBJECT

/LIST[:filespec)

/NOLIST

/CROSS_REFERENCE
[:(keyword-iist)]

14-120

Explanation

Produces an object file (the default condition), named according to the filespec
supplied (wildcards are not allowed). Otherwise the file is named by default (see
Defaults below).

Does not produce an object file.

Produces a listing file (the default is /NOLIST), named according to the filespec
supplied (wildcards are not allowed). Otherwise the file is named by default (see
Defaults below).

Does not produce a listing file.

Produces a cross-reference listing, where keyword-list is any of the following:

USER_SYMBOLS-Shows user-defined symbols (default)
MACRO_SYMBOLS-Shows macro symbols (default)
REGISTER_SYMBOLS-Shows register symbols
PERMANENT_ SYMBOLS-Shows permanent symbols

MACRO

Qualifier Explanation

/NOCROSS_REFERENCE Does not produce a cross-reference listing (default).

/SWITCHES:(swlist) Uses the list of switches swlist to control the contents or format of the output files.
See MACRO Switches, below.

filespec Specification of a file that contains MACRO source code. Multiple input file
specifications must be concatenated with a plus sign (+). No wildcards are allowed.
Specifications must include a file name. If you omit the file type, the system assumes
it is .MAC.

/quals2
One of the following:

Quallfler

/LIBRARY

/PASS:n

/SWITCHES:(swlist)

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

Defaults

Explanation

Indicates that the file is a macro library file. You must specify a user macro library file In
the command line prior to the source files that reference the library.

Assembles the associated file during assembly pass 1 or assembly pass 2 only (where
n equals 1 or 2).

Uses the list of switches swlist to control the contents or format of the input files. See
the section MACRO Switches below.

Object File-By default the assembler produces an object file with the name of the last source
file specified and .OBJ as the file type. If you define a filespec without a file type, then .OBJ is
assumed.

Listing File-If you specify /LIST with no filespec, a listing file is sent to the line printer. If you
define a filespec without a file type then .LST is assumed.

14-121

MACRO

MACRO Switches

The following MACRO switches are available by means of the /SWITCHES:(swlist) command
qualifier or file qualifier:

Switch

IDS

/EN

/LI

/NL

Explanation

Disable. Equivalent to the .DISABL directive in the source program.

Enable. Equivalent to the .ENABL directive in the source program.

List. Equivalent to the .LIST directive in the source program.

No List. Equivalent to the .NLIST directive in the source program.

IDS and /EN apply to the object file specification and the source file specifications, and you
can specify them as command qualifiers or file qualifiers. You can follow IDS and /EN by the
switch values shown in Table 14-14. Colons separate the switches from the values, and colons
separate the values from each other (:). For more detailed information, see the PDP-11 MACR0-11
Reference Manual.

Table 14-14 Values for MACRO Switches /DS and /EN

Value

ABS

AMA

CDR

CRF

FPT

LC

LSB

PNC

REG

GBL

Default

Disable

Disable

Disable

Enable

Disable

Disable

Disable

Enable

Enable

Enable

Meaning

Produces absolute binary output in Files-11 format.

Assembles all relative addresses as absolute addresses.

Treats source columns 73 and greater as a comment.

Produces cross-reference output.

Causes floating-point truncation.

Accepts lower case ASCII input.

Permits the enabling or disabling of a local symbol block.

Produces binary output. Disabling this function inhibits binary output until a .ENABL PNC
statement is encountered within the same module.

Applies normal MACR0-11 default register definitions.

Treats all symbol references as default global references.

/LI and /NL apply to the listing file specification, and you specify them as command qualifiers
only. You can follow /LI and /NL by the switch values shown in Table 14-15. Colons separate the
switches from the values, and colons separate the values from each other (:).

Table 14-15 Values for MACRO Switches /LI and /NL

Value Default Meaning

BEX List Binary extensions

BIN List Generated binary code

CND List Unsatisfied conditional coding

COM List Comments

LO No list Listing directives that alter the listing level count

LOC List Current location counter field

14-122

MACRO

Table 14-15 (Cont.) Values for MACRO Switches /LI and /NL

Value

MC

MD
ME

MEB

SEO

SRC

SYM

TOC

TIM

Default

List

List

No list

No list

List

List

List

List

List

Meaning

Macro calls and repeat expansions

Macro definitions and repeat expansions

All macro expansions

Only macro expansions that generate binary code

Sequence numbers of source lines

Source lines

Symbol table of assembled source program

Table of contents during assembly pass 1

Listing output format:

/Ll:TTM 80-column output

/NL:TIM 132-column output

Default: installation-dependent

For further information on the use of MACR0-11, refer to the PDP-11 MACR0-11 Reference
Manual.

EXAMPLES

• Example 1:

PDS> MACRO
FILE? A.MAC+B.MAC;3

Assembles the source files A.MAC and B.MAC;3 to produce an object file named B.OBJ.

• Example 2:

$MACRO/NOLIST FILEA

Assembles the source file FILEA to produce an object file named FILEA.OBJ. No listing file is
produced.

• Example 3:

PDS> MAC/OBJ:C D.MAC+E.MAC

Assembles the source files D.MAC and E.MAC to produce an object file named C.OBJ.

• Example 4:

PDS> MAC MYFILE.MAC/PA:l

Assembles the source file MYFILE.MAC during assembly pass 1 only.

• Example 5:

PDS> MAC/LIST MACLIB.MLB/LIB+MYFILE

Assembles the source file MYFILE and the macro library file MACLIB.MLB. A listing file is
produced on the line printer.

14-123

MACRO

• Example 6:

PDS> MAC/SW: (/DS:LSB/LI:ME) TEST.MAC

Assembles the source file TEST.MAC to produce an object file TEST.OBJ. Local symbol blocks
are disabled, and macro expansions are listed.

• Example 7:

PDS> MAC/LI:FILE/SW:(/LI:TTM) TEST

Assembles the source file TEST to produce an object file TEST.OBJ. A listing file FILE.LST is
produced with 80-column output.

• Example 8:

PDS> MAC/CROSS: (REGISTER_SYMBOLS) TEST.MAC

Assembles the source file TEST.MAC to produce an object file TEST.OBJ. A cross-reference
listing is also produced, showing cross-references to register symbols in the source program.

• Example 9:

PDS> MAC/NOOBJ/SW: (/DS:LSB) TEST.MAC

This example gives the error message:

QUALIFIER VALUE INVALID HERE

because the switch /DS:LSB applies to object file specifications, and in this example no object
file is produced.

• Example 10:

PDS> MAC FRED/SW: (/DS:GBL)

Assembles the source file FRED to produce an object file FRED.OBJ. All undefined symbol
references are flagged with an error code (U) in the assembly listing.

14-124

MCA

MCR

FUNCTION

The MCR command enables you to enter MCR mode. See Chapter 5 of the IAS MCR User's Guide
for a description of MCR mode.

REQUIRED
PRIVILEGE

PR.MCR

FORMAT

Format 1:

PDS> [$]MCA

PDS>>
Remains in MCR mode until you issue the DCL command.

Format 2:

PDS> ($]MCA [MGR command string]

parameter
definitions

MCR command string
A valid MCR command. This has to be less than or equal to 79 characters.

This format enables you to issue a single MCR command without entering MCR mode.

COMMAND
VARIATIONS

Not applicable.

14-125

MCA

TECHNICAL
NOTES

The prompt PDS>> indicates MCR mode. You can enter DCL commands in MCR mode. If the DCL
command has the same name as an MCR command, for example, DIS (DISMOUNT and DISABLE)
and SET, the command is taken as an MCR command. Take care when {ising DCL commands in
MCRmode.

All MCR mod~ commands are interruptable except INS, MOU, and DMO.

MCR mode commands terminated with anlESCI suppress the PDS prompt, which you can reactivate
by typing I CtrVC I.

EXAMPLES

• Exampale 1:

• Example 2:

• Example 2:

14-126

PDS> MCR
PDS>> PIP DKl:/LI
PDS>>

POS> MCR TKB @MYBUILD.CMD
PDS>

PDS> MCR
PDS>> SHOW STATUS

PDS>>

MERGE

MERGE

FUNCTION

The MERGE command merges records from a sequential, indexed or relative file (the transaction
file) with an indexed or relative file (the target file).

REQUIRED
PRIVILEGE

PR.FIL

FORMAT

PDS> [$]MERGE[/LOG[:filespec]]

FILE? transfilel[lqua/1]

INTO? targetfilelqua/2

parameter
definitions

lquals
One of the following:

Qualifier

transfile

lqua/1
One of the following:

Explanation

if specified, sends an error iog to fiiespec or by default to your terminal. The log gives
details of records that cannot be merged. If you specify a filespec, you must include a
file name.

Specification of the file to be merged. You must specify the file name and file type.

14-127

MERGE

Qualifier

/SEQUENTIAL

/INDEXED
[/KEY:NUMBER:n]

iRELATiVE

targetfile

Explanation

Transaction file is sequential (the default).

Transaction file is an indexed sequential (ISAM) file. The order of record extraction can
be specified by the /KEY qualifier and key number. Default is /KEY:NUMBER:1 (the
primary key).

You can omit /INDEXED if you specify /KEY:NUMBER:n.

Specifies a relative structured file.

Target file specification. You must specify the file name and file type.

lqua/2
Must be specified and is one of the following:

/INDEXED
/RELATIVE

COMMAND
VARIATIONS

Not applicable.

EXAMPLES

PD S> ~.ERGE /LOG: FRED • LOG ALF • DAT SID • DAT/ INDEX

14-128

MESSAGE

MESSAGE

FUNCTION

The MESSAGE ~ommand enables you to send a message to another terminal or terminals.

REQUIRED
PRIVILEGE

ANY

FORMAT

PDS> [$]MESSAGE [lquals}

MESSAGE? message

parameter
definitions

lquals
One of the following:

Qualifier

/ALL

/ACTIVE

/CLl:cliname

/USER:username

ITERMINAL:list

/OPERATOR

Exp la nation

Sends the message to all timesharing terminals.

Sends the message to all active timesha_ring terminals.

Sends the message to the terminals allocated to the CU, specified as the three
character cliname.

Sends the message to the terminals logged in as the specified user.

Sends the message to the terminals specified in list. The list of terminals can have the
form:

TTn

Sends the message to the system console (default).

14-129

MESSAGE

message
String of 1 to 65 characters terminated by RET. In batch mode, message is a string written on the
same line as the $MESSAGE command.

COMMAND
VARIATIONS

The qualifiers /ACTIVE, /CLI:cliname, and /USER:username are not available on multiuser
systems.

EXAMPLES

• Example 1:

$MESSAGE/USER:ARTHUR THIS JOB WILL REQUIRE 2 TAPE DRIVES

• Example 2:

PDS> MESSAGE/OPERATOR SWITCH ON LINE PRINTER

• Example 3:

PDS> MESSAGE/TERMINAL:(TT1,TT2,TT3)
MESSAGE? PLEASE DISMOUNT DKO: IF YOU HAVE FINISHED WITH IT.

14-130

MOUNT

MOUNT

FUNCTION

The MOUNT command makes a volume available to you, and optionally associates a logical name
with the volume.

REQUIRED
PRIVILEGE

PR.DEV

FORMAT

PDS> [$]MOUNT [lquals]

DEVICE? devicename

VOLUME-ID? vo/umeident

[LOGICAL NAME? logicalname]

parameter
definitions

Iqua ls
One of the following:

Qualifier

device name

Explanation

Device name or logical name of the device where you are to mount the volume. You can
omit the device unit number, except when you use the /NOOPERATOR quaiifier or when
the device name is a logical name. The system does not prompt for a logical name if
you mount the device using the logical name you assigned to it using an ALLOCATE
command.

14-131

MOUNT

auallfler

volumeident

logical name

14-132

Explanation

If you are mounting the volume as FOREIGN or if you use the /OVERRID:VOLUME
qualifier, the name you supply here identifies the volume for handling by the operator,
(for example, a label written on the volume container). For disk and DECtape, the
volume identification is 1 to 12 characters long. For ANSI labelled magnetic tape, the
identification (ANSI label) is 1 to 6 characters long. For magtape only, you can replace
volume identification with volume label list. This enables you to specify multiple volume
names for multivolume magtapes.

Logical name to be associated with the physical device.

COMMAND
VARIATIONS

MOUNT

On a multiuser system, any mounted device is available for all users; that is, no device
management or device protection is enforced by the system. No operator intervention is
required-INOOP is assumed and cannot be overriden. When mounting a device on a multiuser
system, you must ensure that the volume is physically loaded on the device before issuing
the MOUNT request. In this case, the /GLOBAL, /REALTIME, /NOSHARE, /NOOPERATOR,
/DEVICES, and /NOWRITE qualifiers are illegal. You must always specify a unit number when
mounting a volume on a multiuser system.

To mount a multivolume magtape set on a multiuser system, use the following format:

PDS> MOUNT[/qual] (devl: devn:) (volidl: ..•. volidn)

Where:

dev1 : devn: Devices to be assigned to the multivolume magtape set. If you specify only one device, you
can omit the parentheses. You must, however, specify the unit number.

volid1 : volidn

/qual

TECHNICAL
NOTES

List of volume labels that constitute the magtape volume set.

Any of the valid, magtape command qualifiers listed in Command Qualifiers, below.

1 You obtain exclusive access to magnetic tape volumes, and to any volumes mounted as foreign.
You can share Files-11 and DECtape volumes, that is, once the volume has been mounted,
other users can also MOUNT and use it unless you specify /NOSHARE.

2 You can omit the unit number from the device specification (timesharing only). The operator
can then select the appropriate unit.

You can qualify the MOUNT command only in the following circumstances:

a. when a specified Files-11 disk or DECtape volume is not already mounted in the system.

b. when you mount a magnetic tape or foreign volume.

Command Qualifiers

Table 14-16 lists the command qualifiers.

The system rejects the mount if you specify the command qualifiers in a command that tries to
mount a previously mounted Files-11 disk or DECtape.

14-133

MOUNT

Table 14-16 MOUNT Command Qualifiers

Qualifier Description

/ACCESSED:n1

/CONTROL_FUNCTIONS

/DENS!TY:n 1

/DEVICES:n

/EXTENSION:n 1

/FILE_ PROTECTION:(code) 1

/FOREIGN

/GLOBAL

/NOOPERATOR

/NOSHARE

/NOW RITE

/OVER RI DE :(items)

Number (octal) of preaccessed directories to be kept (Files-11 disk
and DECtape only). See the /AS Perlormance and Tuning Guide for a
description of preaccessed directories.

Enable logical and positioning operations on the volume.

Set magnetic tape density, where n ~ 800 or 1600.

Allocate the stated number of device units for a multivolume magnetic tape
unit set, you can not specify a unit number on the device_name parameter
in this case.

Set default file extension to n (octal) blocks. For further information, see
the /AS Performance and Tuning Guide.

Overrides default file protection code to be given to new files. See
Section 6.2.2.

The volume to be mounted is not to be considered as a Files-11 structured
volume and cannot be shared by other users. The default is Files-11
format. You can not specify this qualifier with /GLOBAL.

The volume mounted on the device is designated as global. This is
a volume characteristic. The system considers the volume mounted.
However, a timesharing user must then explicitly MOUNT this volume
in order to access it. The system operator is not requested to unload
the volume unless an explicit DISMOUNT/GLOBAL command is issued
(provided no users currently have it mounted). A volume that is mounted
globally reserves the device even if no users have it currently mounted.

NOTE: Use this qualifier only when you mount a shareable volume. Do
not use it when you mount a magtape.

Mounts without operator intervention. You must specify the device number
and you should ensure that the required volume is physically loaded on the
specified device.

Mounts a Files-11 volume for exclusive use.

Write protected. The system operator is requested to physically write
protect the volume when it is loaded. The default is write permitted. This
qualifier has no effect if you specify /NOOP, you must make sure that you
enforce hardware write protect.

Where items are one or more of the following separated by commas and
spaces. You can omit parentheses if you only specify one item.

EXPIRATION_DATE-Enables you to overwrite an unexpired magnetic
tape volume.
IDENTIFICATION-Enables you to override the volume identification. As a
result, you can mount a volume without specifying its volume identification.
SET _IDENTIFICATION-Enables you to process tapes with inconsistent
file set identifiers.
VOLUME_IDENTIFICATIONEnables you to override the volume
identification. As a result, you can mount a voiume without specifying
its volume identification_

1This qualifier enables the first user to override parameters set when the volume was initialized.

14-134

MOUNT

Table 14-16 (Cont.) MOUNT Command Qualifiers

Qualifier Description

/PROCESSOR:ACPtask 1 Specifies the ancillary control processor (ACP) to be used for processing
file accesses to the volume. The ACP specified by this qualifier overrides
the default ACP.

/PROTECTION:(code) 1

/REAL TIME

Replaces volume protection with code specified. See Section 6.2.2.

Mounts volume for access by real-time tasks only. You must explicitly
MOUNT (timesharing) the volume in order to access it.

/UNLOCKED

/WINDOW:n1

Leaves index file unlocked (Files-11 disk and DECtape only). The default
is to leave index file locked.

n is the number (octal) of retrieval pointers to be kept in each window
block for each open file on the volume. Increasing this number speeds
access, especially to randomly accessed files, at the expense of system
dynamic memory. See the /AS Performance and Tuning Guide for further
information. You set the volume default when initializing the volume.

1 This qualifier enables the first user to override parameters set when the volume was initialized.

EXAMPLES

• Example 1:

• Example 2:

• Example 3:

• Example 4:

• Example 5:

• Example 6:

• Example 7:

PDS> MOUNT
DEVICE? DT2:
VOLUME-ID? RISE jRETURNj

$MOUNT/FOREIGN MTO: TESTER CFO:

PDS> MOU DK:
VOLUME-ID? SAM ALl:

$MOUNT/DEN:800/NOOPER MTO: VOL163 TAO:

PDS> ALLOC/DEVICE
DEVICE? DT ESC
LOGICAL-NAME? XXO
PDS> MOU/FORXXO DOSVOL2

$MOUNT/DEVICES:4 MM (VOL1,VOL2,VOL3,VOL4)

PDS> MOU/NOOP/GLOBAL DKO: UPDATEMM28B

PDS> MOU DKO: UPDATEMM28B

The volume is now accessible to the user.

14-135

ON

ON

FUNCTION

The ON command specifies the action to be taken if, in a batch or indirect command file, the
compietion of a command returns an error. You must fully specify the ON command on one line.

REQUIRED
PRIVILEGE

ANY

FORMAT

[$JON error-severity {THEN] action

parameter
definitions

error-severity
Any error up to the severity stated, and one of the following:

WARNING
ERROR
SEVERE_ERROR

action
One of the following:

Action

CONTINUE

GOTO label

STOP

Any vaiid DCL
command note

14-136

Function

Ignores the error and continues processing commands in the command file.

Alphanumeric string beginning with an alpha character, that must appear together with a colon
in front of a later command in the file. If the ON condition is satisfied, the GOTO causes all
commands to be ignored until the label is found.

Terminates execution of command file; that is, ignores all further commands. In interactive
mode, controi is returned to PDS.

MCR-mode commands are not valid as an action.

COMMAND
VARIATIONS
Not applicable.

TECHNICAL
NOTES

ON

An ON command remains in force until the next ON command, and is then superseded entirely.
On exit from the command (indirect or batch) file, the default error condition is set (see default
below).

The action specified in the ON statement is not checked for syntax errors until the required
error-severity is encountered. When this occurs and the action is attempted but found to be in
error then the default condition (ON ERROR STOP) is enforced.

If the ON command itself is in error, that is, ON error-severity, this command is ignored and any
previous error condition remains in force. See _Section 8.7.1 for a description of ON and associated
commands.

Default

[$] ON ERROR STOP is assumed by default at the beginning of a terminal session (LOGIN) or the
beginning of a batch job ($JOB).

EXAMPLES

• Example 1:

•

$ON ERROR STOP
$MACRO MYPROG
$LINK MYPROG
$RUN MYPROG

In this example, $ON has no effect on the MACRO assembly itself. If the assembly is
completed with nothing worse than a warning, the job proceeds to $LINK. If the linking is
completed with nothing more severe than a warning, the job proceeds to $RUN. If, at any
stage, an ERROR is received (for example, ERROR or SEVERE ERROR) the job terminates.

Example 2:

$JOB ENGINE3 RUNl 30
$ON WARNING GOTO ELSE
$LINK MYPROG
$RUN MYPROG
$STOP
$ELSE: LINK OLDPROG
$RUN OLDPROG
$EOJ

In this example, if the $LINK of MYPROG produces any errors (warning or worse) then
OLDPROG is linked and run. If no errors are found, MYPROG is run and the job terminates.

14-137

ON

• Example 3:

ON WARNING GOOTO ALTER
MOUNT/NOOP DKO: MYDISK
COPY DKO: (200,200]*.* *·*
GOTO COMMON
ALTER: MESSAGE/OP~R PLEASE LOAD MYDISK ON DKO:
MOU DKO: MYDISK
COPY DKO: (200,200]*.* *·*
COMMON: D!SM DKO:

In this example there is an error in the ON action. Thus, if the MOUNT or COPY command
fails - the command file is terminated by the default condition ON ERROR STOP.

• Example 4:

$JOB/MCR FRANK RUN2 30
$ON SEVERE_ERROR CONTINUE
$PIP (200,200]=[300.300]*.MAC
$ON SEVRER GOTO FINIT
$MAC @FULLMAC.CMD
$TKB @FULLBLD.CMD
$RUN TESTPROG
$FINIT: PRINT *.LST

In this example, the second ON statement is in error and so the previous ON SEVERE_ERROR
CONTINUE remains in force throughout the job. Errors are ignored and all commands
attempted.

14-138

PRINT

PRINT

FUNCTION

The PRINT command enables you to queue one or more specified files for output on the line printer.
You can optionally delete the file or files after they have been printed.

REQUIRED
PRIVILEGE

PR.FIL

FORMAT

PDS> [$]PRINT[/qua/s]

FILE? filespect {, .. .filespecn]

parameter
definitions

lquals
One of the following:

Qualifier

/DELETE

/FORMS:n

/COPIES:n

/PRIORITY:pri

/AFTER:[(date)time[)]

/NOBANNERS

Explanation

Instructs the system to delete the file or files after they have been printed.

Indicates the type of form where the specified files are to be printed. The association of
a value of n with a particular form is installation dependent. n is a digit from O to 6. The
current forms type is set by the system operator. Default is /FORMS:O.

Determines the number of file copies to be printed. n is an integer from 1 to 32. Default
is /COPIES:1.

Enables you to request that a file be printed at a low priority (for example, priority 1). pri
must be between 1 and n, where n is a value defined by the system manager at system
generation time. The default for this value is 100. Default is /PRIORITY:100.

Enables you to specify a time, or a date and time, when the file is printed. The system
keeps the file in the spooler queue until the specified time. The file is then queued for
immediate processing. You specify time in the form hh:mm. You specify the date in the
form dd-mmm-yy. Default is /AFTER:OO:OO (that is, immediately).

Suppresses the printing of the file identification banner pages.

14-139

PRINT

Quallfler

/NOTRANSFER

filespec

COMMAND
VARIATIONS

Explanation

Inhibits the copying of the queued file(s) to the spooling device. The file(s) are printed
direct from the volume where it resides. Take care when using this option to ensure that
the device is not dismounted before printing is complete.

Specifies the file to be printed. Wildcards are allowed. The file type is optional and
defaults to .LST.

On a multiuser system, files are never transferred to the spooled device (/NOTRANS implied).

TECHNICAL
NOTES

If files are queued with a different forms type, a message is sent to the operator when a change of
forms type becomes necessary, in order that the remainder of the queue can be printed.

On a timesharing system, take care when specifying /NOTRANS. Do not dismount the volume
from which the files are printed and do not log out the terminal as this causes the volume to be
automatically dismounted.

EXAMPLES

• Example 1:

PDS> PRINT
FILE? I'J'.iACLIST

• Example 2:

$PRINT FREAN.MAC;3,PEEK.LST;*

• Example 3:

PDS> PRI/DE B4.MAC

• Example 4:

PDS> PRI/AFTER:10:30 FRED

14-140

QUEUE

QUEUE

FUNCTION

The QUEUE command enables you access to the queue to accomplish the following operations:

1 Interrogate the queue (/LIST).

2 Remove an entry from the queue (/REMOVE).

3 Add to the queue (!ADD). This is the default.

4 Display the status of all queue entries (!ALL).

5 Modify the current status or attributes of a file that is queued for printing (/MODIFY).

You can also use the PRINT and SUBMIT commands to add files to the line printer and batch
queues.

REQUIRED
PRIVILEGE

PR.FIL

FORMAT

List Format:

PDS> QUEUE !LIST

[QUEUE? devicename]

parameter
definitions

!LIST
Displays the status of your queue entries.

devicename
If you specify a device, only entries in a queue for that device are listed. If a device is not specified,
user entries in queues for all devices are listed.

14-141

QUEUE

FORMAT

Remove Format:

PDS> QUEUE/REMOVE

SEQUENCE? seqno

parameter
definitions

!REMOVE
Removes the queue entry specified by a sequence number. You display the entries using the
QUEUE/LIST command.

sea no
Seq~ence number of a queue entry to be removed. To find out the sequence number of a queue
entry, enter the QUEUE/LIST command.

FORMAT

Add Format:

PDS> QUEUE/ADD {lquals]

[QUEUE? devicename]

FILE? filespec l]

parameter
definitions

!ADD
Default operation. The /ADD qualifier adds the specified file to the named queue. You can modify
the ADD operation by using the following qualifiers.

lquals
One of the following:

14-142

Qualifier

/FORMS:n

/COPIES:n

/DELETE

/PRIORITY:pri

/AFTER:[(date)timeDJ

/NOBANNERS

/NOTRANSFER

devicename

QUEUE

Explanation

Indicates the type of form where the specified files are to be printed. The association of
a value of n with a particular form type is installation dependent. n is a digit from 0 to 6.
Default is /FORMS:O .

Determines the number of copies to be printed. n is an integer from 1 to 32. Deiault is
/COPIES:1.

Requests the system to delete the specified files after they have been processed.

Enables you to request that a file be queued at a low priority. pri must be between 1
and n, where n is a value defined by the system manager at system generation time.
Default is /PRIORITY:100.

Enables you to specify a time, or a date and time, when the file is to be printed. The
system keeps the file in the queue until the specified time. The file is then queued for
immediate processing. You specify time in the form hh:mm. You specify the date in the
form dd-mmm-yy. Default is /AFTER:OO:OO (that is, immediately).

Suppresses the printing of the file identification banner pages.

Inhibits the copying of the queued file to the spooling device. The file is printed
directly from the volume where it resides. Take great care when using this facility
on a timesharing system, as, if the volume is dismounted before the queue entry is
processed, you can not access the file.

Specifies the relevant queued device. Default is LPO.

files pee
Specification of one or more files to be added to the queue specified. The filespecs must contain a
file name. Wildcards are allowed. The file type is optional and is defaulted to .LST.

FORMAT

All Format:

PDS> QUEUE/ALL

(QUEUE? devicename]

parameter
definitions

!ALL
Display status of entries in all queues or the specified queue.

devicename
Specifies the relevant queued device. If you do not specify it, all entries in all queues are listed.

14-143

QUEUE

FORMAT

Modify Format:

PDS> QUEUE/MODIFY {lqua/s]

SEQUENCE? seqno

parameter
definitions

!MODIFY
Enables you to change the current status or attributes of a file queued for printing or batch job
execution that has not yet started printing or executing.

/quals
One of the following:

Quallfler

/FORMS:n

/COPIES:n

/DELETE

IPRIORITY:pri

/AFTER:((date]time[)]

/DEVICE:dev

seq no

COMMAND
VARIATIONS

Explanation

Indicates the type of form where the specified files are to be printed. The association of
a value of n with a particular form type is installation dependent. n is a digit from 0 to 6.
Default is /FORMS:O.

Determines the number of copies to be printed. n is an integer from 1 to 32. Default is
/COPIES:1.

Requests the system to delete the specified files after they have been processed.

Enables you to request that a file be queued at a low priority. pri must be between 1
and n, where n is a value defined by the system manager at system generation time.
Default is /PRIORITY:100.

Enables you to specify a time, or date and time, when the file is to be printed. The
system keeps the file in the queue until the specified time. The file is then queued for
immediate processing. You specify time in the form hh:mm. You specify the date in the
form dd-mmm-yy. Default is /AFTER:OO:OO (that is, immediately).

Dev is the new device where the entry is to be queued.

Sequence number of the queue entry to be modified. To find out the sequence number
of a queue entry, enter the QUEUE/UST command.

On a multiuser system, files are never transferred to the spooled device (/NORTRANS implied).

14-144

QUEUE

TECHNICAL
NOTES

All QUEUE functions are interruptable except QUEUE/REMOVE.

EXAMPLES

• Example 1:

• Example 2:

PDS> QUE/LIST

DEV ACT ACCOUNT FILE SPECIFICATION SEQ PR! FO CO PBCA

LPO * [123,22] ORO: [123,22]IUG4.DOC;l 100 0 1
TT35 (123,22] DR0:[123,22]IPDS14.DOC;l 1 100 0 1 *

PDS> QUEUE/ALL LPO

DEV ACT ACCOUNT FILE SPECIFICATION SEQ PR! FO CO PBCA

LPO * (123,22] ORO: [123,22]IUG4.00C;l 100 0 1
LPO (122,6] OB0:[122,6]JB11.00C;l 1 100 0 1
LPO [122,6] OB0:[122,6]26770.00C;l 2 100 0 1
LPO (200,130] ORO:[l,4]TCPOEVT.LST;l 3 100 0 1
LPO [23,10] OB0:[23,10]GAMMV4.00C;l 4 100 0 1
LPO (123,40] ORO: [123,40]PRLUG.OOC;l 5 100 0 1 *
AFTER 17:00

The headings shown in examples 1 and 2 have the following meaning:

Heading

DEV

ACT

ACCOUNT

FILE SPECIFICATION

SEQ

PRI

FO

co
PBCA

• Example 3:

Meaning

Device

Active. An asterisk(*) in this column indicates that the file is currently being
printed.

Account

File specification

Sequence

Priority

Forms Type

Copies

Preserve Banners Concatenated After

An asterisk (*) in the P column indicates that the system preserves the file after
printing (that is, does not delete the file).

A letter Nin the B column indicates that the sytem will not print any banners.

A letter C in the C column indicates that the system will concatenate output.

An asterisk (*) in the A column indicates that the system will hold the file until the
time shown on the line after the queue entry has passed.

14-145

QUEUE

• Example 4:

• Example 5:

• Example 6:

• Example 7:

• Example 8:

14-146

PDS> QUEUE/REMOVE 2

PDS> QUEUE/ADD/COPIES:4/DELETE ~
QUEUE'? LPO:
FILE'? LIST.MAP;4

PDS> QUEUE/ADD/PRIO:lO

$QUEUE/PRIORITY:40 LP3 ADD.MAC

PDS> QUEUE/DELETE
FILE'? MYFILE.MAC

PDS> QUEUE/MODIFY/AFTER:09:30
SEQUENCE'? 4 @g]
QUEUE? LPO

REMOVE

REMOVE

FUNCTION

The REMOVE command enables you to remove an installed task, or shareable global area (SGA),
from the system.

REQUIRED
PRIVILEGE

PR.RTC

FORMAT

PDS> REMOVE {lquals]

TASK? name

parameter
definitions

lquals
One of the following:

Qualifier

/COMMON

/LIBRARY

/REGION

/TASK

Explanation

Removes the common area SGA named.

Removes the resident library SGA named.

Removes the installed region SGA named.

Removes the installed task named (default).

You can aiso specify the following quaiifier when removing a task (trASK):

Qualifier Explanation

/NOH EADER Removes a task whose header has been corrupted.

name
Installed name of the task, common area SGA, resident library SGA, or installed region SGA.

14-147

REMOVE

COMMAND
VARIATIONS

Not applicable.

TECHNiCAL
NOTES

Removing a task or SGA reverses the effect of the INSTALL command. You cannot remove a task
if it is active, fixed, or has nodes accounted to it. If there is any outstanding data from SEND
directives to the task, it is returned to the pool.

You cannot remove an SGA until you have removed all the tasks that map onto it.

EXAMPLES

• Example 1:

PDS> REMOVE MYLOL

Removes the task with installed task name MYLOL.

• Example 2:

PDS> REM/COM SYST20

Removes the common area SGA with installed name SYST20.

• Example 3:

PDS> REM/NOHEAD MYCLIB

Removes the task MYCLIB even though its task header has been corrupted.

14-148

RENAME

FUNCTION

The RENAME command enables you to rename an existing file.

REQUIRED
PRIVILEGE

PR.FIL

FORMAT

PDS> RENAME

OLD? oldspec

NEW? newspec

parameter
definitions

old spec
Specification of an existing file.

newspec
New name for oldspec.

COMMAND
VARIATIONS

Not applicable.

RENAME

14-149

RENAME

TECHNICAL
NOTES

Both oldspec and newspec must contain a file name and file type. Wildcards are allowed. The
device field in both file specifications must be the same, because you cannot rename files from one
device to another. If you omit the version field, the normal defaults apply, see Section 6.3.1.

EXAMPLES

• Example 1:

• Example 2:

• Example 3:

• Example 4:

14-150

PDS> RENAME
OLD? MYFILE.OBJ;l
NEW? BACKUP.OBJ;l

$RENAME MYFILE.OBJ;l,BACKUP.OBJ;l

PDS> RENAME
OLD? MYFILE.OBJ;l,BACKUP.OBJ;l

PDS> RENAME CAROL.*;*
NEW? FRED.CBL;*

RUN

RUN

FUNCTION

The RUN command enables you to execute an executable task. You can issue RUN for a
timesharing task (Format 1) or for a real-time task (Formats 2 to 6). See the Technical Notes
for the functions that correspond to these formats.

REQUIRED
PRIVILEGE

RUNtrIMESHARING-PR.RUN

RUN/REAL-TIME-PR.RUN,PR.RTC

FORMAT

1. Timesharing:

PDS> [$]RUN {lquals]

FILE? filespec

parameter
definitions

lquals
One of the following:

Qualifier Explanation

!TIMESHARING Runs the task in the specified file as a runs the task in the specified file as a
timesharing task. This is the default and you can omit it.

/INCREASE:tasksize-increment Overrides the EXTISK option specified in the LINK command. You specify the
decimal number of words by which the upper read/write area is to be extended.
The value you specify is rounded up to the next 32-word boundary.

filespec Specification of a file that contains the task image. The specification must include
a file name. If you omit the file type field, .TSK is assumed.

14-151

RUN

EXAMPLES

• Example 1:

PDS> RUN [200,40]PASCAL.TSK;4

• Example 2:

FORMAT

2. Memory:

PDS> RUN !MEMORY[/options]

TASK? taskname

[DEVICE? terminal]

parameter
definitions

!MEMORY
Indicates that the task is to be run immediately. If sufficient memory is not available to run the
task, and error message is returned.

/options
One of the following:

Option

/UIC:[m,n]

/PARTITION :par

/PRIORITY:pri

/NOPROMPT

/INTERVAL:interval

14-152

Explanation

Specifies the UIC.

Specifies the name of the partition where the task is to run.

Specifies the task priority (decimal).

Suppresses the PDS prompt.

Specifies the time interval at which the task is to be periodically rerun, in the form:
xxt

where:

Option

/REAL TIME

taskname

Explanation

xx= Number of hours, minutes, seconds, or clock ticks.

t =is one of:

H-hours
M-minutes
S-seconds
C-clock ticks

Indicates that the task is to be run as a real-time task (implied by /MEMORY).

Name of the task to be run immediately.

terminal

RUN

TI for which the real-time task is run. If you do not specify TI, the terminal where the RUN
command was issued is used.

EXAMPLES

• Example 1:

PDS> RUN/MEMORY/PART:FILE JK03

• Example 2:

PDS> RUN/MEM/UIC: [100,10] MART6

• Example 3:

FORMAT

3. Synchronize:

PDS> RUN !SYNCHRONIZE:unit{IDELAY:delay}{loptions]

TASK? taskname

[DEVICE? terminal]

parameter
definitions

14-153

RUN

!SYNCRONIZATION:unit
Synchronization clock unit, as follows:

HOURS-hours
MINUTES-minutes
SECONDS-seconds
TICKS-clock ticks

/Dt;LAY:delay
Delay period after synchronization, in the form: xxt (as in Format 2)

/options
One of the following:

Option

/UIC:(m,n)

/PARTITION:par

/PRIORITY:pri

/NOPROMPT

/INTERVAL:interval

/REAL TIME

taskname

Explanation

[m,n] is user identification code.

par is partition name.

pri is priority number (decimal)

Suppresses PDS prompt.

Time interval, as in Format 2.

Task is to be run as a real-time task (implied by /SYNC).

Name of the task to be synchronized.

terminal
TI where the real-time task is run. If you do not specify TI, the terminal where the RUN command
was issued is used.

EXAMPLES

• Example 1:

PDS> RUN/SYNC:HOUR/DELAY:lOM/INTERVAL:25M CAROL

When the time is next an exact number of hours, wait ten minutes, then run task CAROL
every twenty-five minutes.

If the time is now 10.15, then task CAROL runs at 11.10, 11.35, 12.00, 12.25 and so on.

• Example 2:

PDS> RUN/SYNCH:HOUR/DELAY:SM/PART:SYSTEM XK3

Run task XK3 at 5 minutes past the next hour in the SYSTEM partition.

14-154

FORMAT

4. Schedule:

PDS> RUN/SCHEDULE :time[/options]

TASK? taskname

[DEVICE? terminal]

parameter
definitions

!SCHEDULE:time
Absolute time of day the task is to begin execution. Time is expressed as: hh:mm.

/options
One of the following:

Option

/UIC:(m,n)

/PARTITION:par

/PRiORITY:pri

/NOPROMPT

/INTERVAL:interval

/REAL TIME

taskname

Exp la nation

[m,n] is the user identification code.

par is the partition name.

pri is the priority number (decimal).

Suppresses the PDS prompt.

Time interval, as in Format 2.

Indicates that the task is to be run as a real-time task (implied by /SCHED).

Name of the task to be scheduled.

terminal
Name of the terminal where the task is to be scheduled.

EXAMPLES

• Example 1:

PDS> RUN/SCHED:l0:23:00/INTER:30S MKLOL

Run task MKLOL at 10:23:00 and every 30 seconds thereafter .

•
PDS> RUN/SCHED:10:30:00/PRI:l20 MYTSK

Run l\ITTSK at 10:30:00 at priority 120.

RUN

14-155

RUN

FORMAT

5. Delay:

PDS> RUN/DELAY :delay[!SYNCHRONIZE:unit][loptions]

TASK? taskname

[DEVICE? terminal]

parameter
definitions

!DELA Y:delay
Delay period before the task is to be periodically rerun, in the form: xxt (as in Format 2).

!SYNCHRONIZE:unit
See Format 3.

!options
One of the following:

Option

/INTERVAL :interval

/UIC:(m,n)

/PARTITION:par

/PRIORITY:pri

/NOPROMPT

/REAL TIME

taskname

Explanation

Interval at which the task is to run after a delay. See Format 2 for the interval format.

User identification code.

Partition name.

Priority number (decimal).

Suppresses the PDS prompt.

Indicates that the task is to be run as a real-time task (implied by /DELAY).

Name of the task to be run after the delay.

terminal
Name of the terminal where the task is to be run after the delay.

EXAMPLES

PDS> RUN/DELAY:30M/INTERVAL:20S/UIC: [30,2] MYTSK

Wait 30 minutes, then run [30,2]MYTSK every 20 seconds.

14-156

• Example 2:

PDS> RUN/DELAY:2H/PART:GLOBZ XKEE9

Wait 2 hours, then run task XKEE9 in the partition GLOBZ.

FORMAT

6. Real-time:

PDS> RUN !options

TASK? taskname

[DEVICE? terminal]

parameter
definitions
This format enables you to run an installed task as soon as memory is available.

/options
One of the following:

Option Explanation

RUN

/INTERVAL

/UIC:[m,n)

/PARTITION

/PRIORITY:pri

/NOP ROM PT

/REAL TIME

Interval at which the task is to run after a delay. See Format 2 for the interval format.

User identification code.

Partition name.

Priority number (decimal).

Suppresses the PDS prompt.

Indicates that the task is to be run as a real-time task (as implied by any of the previous
options).

taskname
Name of the installed task to be run.

terminal
Name of the terminal the task is to run on.

EXAMPLES

PDS> RUN/NOPROMPT MYTASK

Run MYTASK as soon as memory is available, and suppress the PDS prompt.

14-157

RUN

COMMAND
VARIATIONS

Not applicable.

TECHNiCAL
NOTES

You can issue the RUN command for a timesharing task (Format 1) or for a real-time task
(Formats 2 to 6).

To run a real-time task:

1 You must have installed it in the system (see the INSTALL command).

2 You can reset the task's UIC, partition, and priority from those in force at installation.

3 You can suppress the PDS prompt (for example, to enable terminal dialogue with the task).
ICtrllCl reactivates the PDS prompt. Under /NOPROMPT, PDS is still running and times out in
the usual way unless you type I CtrL'C I.
In the command format for a real-time task, taskname refers to the installed taskname. See
the INSTALL command for further details.

For running real-time tasks, the RUN command has one of the following formats:

•
•

•

•

•

Format 2--Runs a task immediately (/MEMORY) .

Format 3-Synchronizes the running of a task with a time unit, and optionally reschedules the
task after a specified interval (!SYNCHRONIZE).

Format 4-Schedules the task for running at a specified time, and optionally reschedules the
task after a specified interval (/SCHEDULE).

Format 5-Delays the task for a specified period, and optionally reschedules the task to reru.1
periodically (/DELAY).

Format 6-Runs the task as soon as memory is available, (/REALTIME), without any of the
other qualifiers stated above.

14-158

SET

SET

FUNCTION

The SET command enables you to perform the following operations:

1 Suppress the output of information messages (Format 1-SET QUIET).

2 Establish a new default device and/or UFD for subsequent file specifications supplied by you,
available on timesharing systems only. (Format 2-SET DEFAULT).

3 Defer printing of spooled files (Format 3-SET PRINTING DEFERRED).

4 Change your interactive or batch password (Format 4-SET PASSWORD).

5 Change the characteristics of your terminal. If you are logged in under a user name whose
UIC is [1,1] you can change the characteristics of any terminal (Format 5--SET TERMINAL).

6 Change file protection code (Format 6-SET PROTECTION).

7 Reset the priority of an active task (Format 7--,SET PRIORITY).

8 Set the terminal UIC, available on multiuser systems only (Format 8--SET UIC).

9 Set real-time control, available on timesharing systems only (Format 9-SET
REAL_ TIME_ CONTROL).

10 Write the bootstrap block from the file specified (Format 10-SET BOOTSTRAP).

11 Specify file's end-of-file position (Format 11--,SET END_OF _FILE).

12 Supress the output from indirect command files (Format 12--,SET NO ECHO).

13 Execute SCI commands from a non-monitor console (Format 13--,SET SCI).

REQUIRED
PRIVILEGE

SET BOOTSTRAP-PR.DEV
SET END_OF_FILE-PR.FIL
SET DEFAULT-ANY
SET NO ECHO-ANY
SET [NO] QUIET-ANY
SET [NO] REAL_TIME_CONTROL--PR.RTC
SET PASSWORD-ANY
SET PRINTING-ANY
SET PRIORITY-PR.RTC
SET PROTECTION-PR.FIL
SET [NO] SCI-PR.SCI
SET TERMINAL-ANY
SET TERMINAL:[(]TTm[, ... ,TTn[)]l-[1, 1]
SET UIC-PR.RTC or group code less than 10

14-159

SET

FORMAT

1. Set Quiet:

PDS> [$]SET[NO]QUIET

parameter
definitions

QUIET
Suppresses the output of information (usually accounting) messages. NOQUIET is the system
default.

EXAMPLES

PDS> SET QUIET

FORMAT

2. Set Default (timesharing only):

PDS> [$]SET DEFAULT

[DEVICE AND/OR UFO? [devicename:][UFD]]

parameter
definitions

DEFAULT
Changes your default device and/or UFD to the value you specify. If you omit both device name
and UFD, the system reestablishes your initial default settings (established at LOGIN) for both
values.

EXAMPLES

PDS> SET DEFAULT DKO= [200;200]

14-160

FORMAT

3. Set Printing Deferred:

PDS> [$]SET PRINTING [NO]DEFERRED

parameter
definitions

PRINTING DEFERRED

SET

Defers the printing of spooled files generated by the timesharing tasks run from your terminal.
This defers printing until either you log out or you issue the SET PRINTING NODEFERRED
command (the default).

EXAMPLES

PDS> SET PRINTING DEFERRED

FORMAT

4. Set Password:

PDS> SET PASSWORD {Iqua/]

OLD PASSWORD? oldpassword

NEW PASSWORD? newpassword

parameter
definitions

lquai
/BATCH-enables you to change a batch password.

oldpassword
1- to 6-character alphanumeric password currently associated with your user name.

newpassword
1- to 6-character alphanumeric password that supersedes the old password.

14-161

SET

EXAMPLES

• Example 1:

PDS> SET PASSWORD
OLD PASSWORD? glove
NEW PASSWORD? mitten

This example changes the password from glove to mitten. The :response to the OLD
PASSWORD? and NEW PASSWORD? prompts are not echoed on the screen.

• Example 2:
SET PASSWORD/BATCH
OLD PASSWORD? Sunday
NEW PASSWORD? Monday

This example changes the batch password from Sunday to Monday. The response to the OLD
PASSWORD? and NEW PASSWORD? prompts are not echoed on the screen.

FORMAT

5. Set Terminal:

PDS> SET

FUNCTION? TERMINAL[:(termlist)]

ATTRIBUTE? attribute

parameter
definitions

term list
Can be specified only by [1,1] users and is a list of the terminals to be operated on by attribute.

attribute
One of the following:

14-162

SET

Attribute Explanation

terminaltype One of the following:

ASR33
KSR33
ASR35
LA30S
LA30P
LA36
LA120
VTOS
VTSO
VT52
VT61
VT100
VT200
VT300

SET TERMINAL terminaltype sets the characteristics other than the speed(s) to the default
values listed in the /AS Device Handlers Reference Manual.

option list

If OS is appended to the command line, the speed is also set to the default value.

One or both of:

[NO]option
option :value

separated by spaces.

You can abbreviate each option and any short form listed with it as long as it remains unique
within the list of SET TERMINAL options. You can negate each acceptable form of an option by
using the prefix NO; for example, NOSCOPE. The options are as follows:

Option

ALTMODE

ANSISEOUENCE

BACKSPACE

BLOCKMCDE

BINARY

CARRIAGERETURN
or I RETURN I
COMPATIBLE

CONTROLCFLUSH
or CCF

CONTROLS
orCSQ

DEFAULT

ESCAPESEQUENCE

FORMSMODE

Description

For an old model Teletype that generates 175 or 176 (octal), you press the ALT
key. Either of these characters is treated the same as ESCAPE.

Escape sequences for the terminal are to be in ANSI mode.

Terminal responds to the backspace character.

Terminal is a VT61 and is to be used in block mode.

Terminal is to operate in binary mode.

Lines exceeding the terminal width as set are continued on the following line(s).

Terminal requires RSX-11M compatible escape sequence handling.

Flush typeahead when you type I Ctrl/C I.

When the terminal is in deferred processing mode, terminal is set so that only
ICtrllSI and lctrVOI are processed immediate~y.

Terminal characteristics to system default values as existing at login time. If
you have a UIC of [1 , 1] you can also set new default .values.

Terminal requires escape sequence recognition.

Terminal is a VT61 and is to be used in forms mode.

14-163

SET

Option

FULL DUPLEX

HANGUP

HARDWAREFORMFEED
or HFF

HARDWARETAB
or HTAB

HOLD

KEYBOARD

LOCALCOPY

LOWERCASEKEYBOARD
or LCKEYBOARD

LOWERCASEKEYBOARD

LOWERCASE INPUT

LOWERCASE OUTPUT
or LCOUTPUT
LOWERCASEPRINTER
or LCPRINTER

LVF

MESSAGES

NEWLINE

NONSTANDARDTAB
OR NSTAB

NOPARITY

PASSALLBITS

PRINTER

PROCESSCONTROLC

SCOPE

SIMULATEFORMFEED
or SFF

TAPE

TWOSTOPBITS
orTSB

VERTICALFILL
or VFILL

Description

Invokes full duplex mode, in which input and output operate independently.
For use with intelligent terminals. For details, see the /AS Device Handlers
Reference Manual.

Hangs up dialup line. You cannot negate this.

The characters form feed and vertical tab are recognized and do not need
software simulation.

The character horizontal tab is recognized.

(VT5x and VT61 terminals only) used to enter auto-hold mode. Output from the
computer then stops automatically when the screen becomes full with output
and can be resumed if you press the SCROLL key to enable a further line to
be output. Pressing the SHIFT and SCROLL keys simultaneously enables a
further page to be output. For this facility to work correctly, the terminal must
transmit and receive at the same speed.

Terminal is capable of input.

Terminal echoes all characters as you type them.

Accepts lower case characters. If you use ICtrlll type-ahead, characters are
echoed as lowei case, whethai Oi not they ars procssssd as lowercase.

Can be consistently used with NOLOWERCASEINPUT.

Lower case characters are to be passed to a program performing input even if
the program (for example, EDI) asks for case conversion.

Terminal can print lower case characters.

Requires LA36-type vertical fill for form feed and vertical tab, that is, 66 nulls.

Messages from other terminals are allowed.

Terminal sends newline when the carriage return key is pressed.

Terminal, on receiving tab character, does not space to the next 8-character
boundary.

Does not generate parity bit on character output.

Terminal passes all eight bits of characters read to the user buffer for a
READ _PASS _All request.

Terminal is capable of output.

When the terminal is in deferred processing mode, terminal is set so that only
jCtrVSj, ICtrVOI, and jctrVCI are processed immediately.

Terminal is a VDU and the rubout physically erases characters from the screen.

Form feed and vertical tab are to be software simulated to start a new page
and skip to next six-line boundary respectively.

Terminal has a low speed paper tape reader and interpretslCtrVBI and ICtrVTI
accordingly.

Terminal requires two stop bits as normally required for mechanical printers, for
example, ASR33.

Terminal requires VTOS-type vertical fill.

The option values are as follows:

14-164

Value

FILL:n

LENGTH:n

NAME:name

PARITY:type

Explanation

n is fill required for carriage return.

n = 7 supplies LA30S-type fill.

n is page length in lines.

name can be one of the following:

SET

ASR33, KSR33, ASR35, LA30S, LA30P, LA36, LA 120, VTOS, VT50, VT52, VT55, VT61,
VT100.

This option is for use in "deceiving" a program as to the type of terminal where it is
running, that is, when you want mixed characteristics. The option sets only the location
holding the name of the terminal type; see the /AS Device Handlers Reference Manual.

NOTE: SET TERMINAL NAME:name does NOT set the corresponding characteristics
implicitly.

Type is EVEN or ODD. Set line to generate characters with parity. Note that parity is not
checked on input.

READAHEAD:type Type is one of the following:

SPEED:(m:n)

SPEED:n

WIDTH:n

NONE No read-ahead allowed.

DEFERREDPROCESSING Read-ahead accepted but not examined until a read that
or DP uses it is processed.

IMMEDIATEPROCESSING Read-ahead is processed as it is typed but not echoed
or IP until it is read.

Sets split-speed line. m is the keyboard (lower) speed. n is the printer or display
(higher) speed.

Sets line speed. n can be one of the following:

Speed in baud
134 (meaning 134.5 baud)
EXTA (DA 11 external speed A)
EXTA (DH11 external speed A)
EXTB (DH11 external speed B)

n is the page width in columns.

EXAMPLES

• Example 1:

PDS> SET TERMINAL WIDTH:SO LENGTH:30

The width is set to 50 characters, the length to 30 lines. Lines of more than 50 characters are
continued on the following lines.

• Example 2:

PDS> SET TERMINAL
ATTRIBUTE? SPEED: (150:9600)

Terminal is to send at 150 baud and receive at 9600 baud.

• Exam pie 3:

PDS> SET
FUNCTION? TERMINAL
ATTRIBUTE? VTOS OS

14-165

SET

Terminal is a VT05 and is to run at the corresponding speed (2400 baud).

• Example 4:

PDS> SET TERMINAL NAME:VT61

The terminal type is recorded as being VT61 but no characteristics are thereby changed.

• Example 5:

PDS> SET TERMINAL: (TT3,TT5,TT6) SPEED:300

Terminals 'IT3, TT5 and TT6 are to send and receive at 300 baud.

FORMAT

6. Set Protection:

PDS> [$]SET PROTECTION [!OWN]

FILE? filesnec - - -- - . . ,- - -

[PROTECTION? (code)]

parameter
definitions

!OWN
If you specify /OWN, it changes the ownership UIC of the file to be the same as the UFD under
which the file is stored.

file spec
Specification of the file to which you apply protection code.

code
Protection code to be applied to filespec. See Section 6.2.2. If you specify /OWN, (code) is an
optional parameter.

EXAMPLES

• Example 1:

• Example 2:

• Example 3:

14-166

PDS> SET PROTECTION/OWN CATHS.DAT ESC
PROTECTION? (GRO:R, SY:R, WORLD:, O:RWDEj

$SET PROTECTION TONY.MAC (OW:RWED,SY:,GR:,W:)

PDS> SET PRO MYPROG.COB (SY:RWED,OW:RWDE,WO:DERW,GR:RWED)

• Example 4:

• Example 5:

FORMAT

PDS> SET PRO/OWN FILE.MAC

PDS> SET PROTECTION JUD.CBL
PROTECTION? (WO:! GR:)

7. Set Priority:

PDS> SET PRIORITY

TASK? taskname [terminal] priority

parameter
definitions

taskname
Installed name of the task whose priority you are altering.

terminal
Terminal where the task was activated. The default is the current terminal.

priority
New task priority (that is, a decimal nwnber ranging from 1 to 250).

EXAMPLES

• Example 1:

PDS> SET PRIORITY SCAN TT4 120

Sets the priority of the installed task SCAN running from terminal TT4 to 120.

• Example 2:

PDS> SET PRIORITY XYZ,,130

Sets the priority of the installed task XYZ to 140.

FORMAT

8. Set User Identification Code (multiuser systems only):

PDS> SET UIC

SET

14-167

SET

UIC? UIC

parameter
definitions

uic
Sets the terminal UIC to that specified (multiuser systems only).

EXAMPLES

PDS> SET UIC

UIC? (200,20]

FORMAT

9. Set [No] Real-Time Control (timesharing systems only):

PDS> SET [NO]REAL_TIME_CONTROL
This operation has no parameters. See the TECHNICAL NOTES for a description.

FORMAT

10. Set Bootstrap:

PDS> SET BOOTSTRAP

FILE? filespec

parameter
definitions

file spec
File with a saved IAS System image. You must specify a device in the filespec, and it must be
allocated and mounted for you. See the 'Thchnical Notes for a description.

EXAMPLES

PDS> SET BOOTSTRAP DKO: [11,17]IAS.SAV

14-168

FORMAT

11. Set End-of-File:

PDS> SET END OF FILE - -

FILE? filespec [block:byte]

parameter
definitions

file spec
File for which the end-of-file is to be set.

block
Block number for the placement of the end-of-file pointer. This value is decimal.

byte

SET

Byte location of the end-of-file pointer, or the first unused byte of the block. This value is decimal.

EXAMPLES

PDS> SET END OF FILE
FILE? GAYE.TMP 22:511

NOTE: The EOF pointer cannot be located beyond the highest number of blocks
allocated to the file. The maximum value for byte is 511 (decimal). The default is the
last byte of the last block allocated to the file.

FORMAT

12. Set Echo:

PDS> SET [NO] ECHO

parameter
definitions
This command has no parameters. See Set Echo in Technical Notes for more information.

EXAMPLES

PDS> SET ECHO

14-169

SET

FORMAT

13. Set Sci:

PDS> SET [NO] SCI

parameter
definitions
This command has no parameters for this command. See Set Sci in TECHNICAL NOTES for more
information.

EXAMPLES

PDS> SET NOSCI

COMMAND
VARIATIONS

SET DEFAULT and SET [NO]REAL_TIME_CONTROL are not available on multiuser systems.
SET UIC is not available on timesharing systems.

TECHNICAL
NOTES

Set Default (timesharing only)

The system manager allocates a default device to each user. The default takes effect each time
you log in. The initial default UFD is equivalent to your UIC. You must issue the SET DEFAULT
command to change either or both values for file specifications included in subsequent commands.
The SET DEFAULT command does not affect file specifications written in programs. 'lb reestablish
the default settings in effect at login, issue SET DEFAULT without any other values.

Set Password

The system does not display either the old or the new password when it is prompted for. This
command is not permitted in batch mode.

14-170

SET

Set Batch Password

This command enables you to redefine the batch password to be associated with the account. Until
this command is issued, any user can submit a batch job that could run for and be charged to the
user's account. This command is not permitted in batch mode.

Set Terminal

The SET TERMINAL command enables you to change the characteristics of the terminal. Terminal
characteristics revert to the system defaults when a dialup line is disconnected or when you log
out.

For details of the software facilities associated with characteristics see the !AS Device Handlers
Reference Manual. For the setting of characteristics at system generation, see the !AS Installation
and System Generation.

Set Priority

The SET PRIORITY command enables you to alter the priority of an active task.

Set [No] Real-Time Control (timesharing only)

This command enables CLis and control commands to run at a high priority. This enables users
with PR.RTC privilege to have some control over real-time tasks (for example, so that looping tasks
can be aborted).

Set User Identification Code (multiuser only)

This command changes the UIC in subsequent commands. The SET UIC command does not affect
file specifications written in programs.

NOTE: Instead of the MCR mode SET /UIC command, use SET DEFAULT on a
timesharing system or SET UIC on a multiuser system.

Set Bootstrap

This command writes a bootstrap routine from the specified file onto block 0 of the specified device.
When the device is hardware bootstrapped, the system contained in the specified file becomes
active.

Set Endoffile

This command enables you to specify the end-of-file pointer for a file. This is normally used when
a file has been corrupted. This can happen after a system crash, where the contents of the file are
useful, but the EOF pointers are incorrect and thus prevent you from obtaining the information.

If you are a file owner or have a system level UIC, you can read or change this file attribute. You
can do this without having read or write access. If you are group or world to the file owner's UIC,
you need read-access to read the attribute and write-access to change it.

14-171

SET

If you do not specify the EOF position (block:byte), the EOF is placed at the last byte of the last
block allocation to the file.

Set Echo

This command enables or disables the echo from the execution of an indirect command file.

Set Sci

This command enables or disables the excution of Sci commands from a non-monitor console.

14-172

SHOW

SHOW

FUNCTION

The SHOW command enables you to display specified information at your terminal. The parameter
associated with the SHOW command determines the type of information displayed.

REQUIRED
PRIVILEGE

Table 14-17 Required Prlvlleges for the SHOW Commands

Command Privilege Required

SHOW CU Any

SHOW DAYTIME Any

SHOW DEFAULT Any

SHOW DEVICES Any

SHOW GLOBAL AREAS Any

SHOW LUNS PR.ATC

SHOW EXTENDED Any
TASKSIZE

SHOW MEMORY Any

SHOW PARTITIONS Any

SHOW STATUS Any

SHOW TASKS Any

SHOW CLOCK QUEUE Any

SHOW 1/0 QUEUES Any

SHOW SHAREABLE Any
GLOBAL AREAS

SHOW SWITCH Any
REGISTERS

FORMAT

PDS>SHOW

ATIRIBUTE? parameter

14-173

SHOW

parameter
definitions

parameter
One of the following:

Parameter

CU [cllname]

[DAY]TIME

DEFAULT

DEVICES(/PUD] (device(unit
numberD

EXTENDED_ TASKSIZE_MAXIMUM

GLOBAL_AREAS

LUNS taskname

MEMORY

PARTITIONS

STATUS

TASKS(/ ACTIVE)/MIDDLE
[taskname] [terminal]

14-174

Function

Displays information about all or selected Command Language Interpreters
(Clls) currently running in the system.

Displays the current time and date.

Displays the current user default device and UFO.

displays information about all or selected devices known to the system.
See the Devices section. With /PUD, displays also the PUD address of the
device unit(s).

Displays current extension limit as an octal number of 32 word blocks.

Lists the following description of each installed shareable global area:

Name
Base address (octal)
Size
UIC
Access
Position independent or blank
Creation date
Type codes:

TPA-task pure area
LIB-resident library SGA
COM-common area SGA
IRG-installed region SGA
DAG-dynamic region or task read/write resident overlay region

Displays current assignment of LUNS for an installed task.

Displays the use of the system's memory.

Displays information on system memory partitions. The information listed is
partition name, size (octal) and type. Partitions can be:

SC-system controlled
T-timesharing
UC-user controlled

Displays information about the current status of the user's job.

Displays task name, task status, task type, run priority, partition, and real
memory address and current task size. This is the default.

!f you specify a task name, on!y information about the specified task is
displayed. If you specify a terminal, information is given for tasks running
for that terminal. If you do not specify a terminal the default is the current
terminal.

To display information about all active tasks, replace the taskname with a
comma (,) and specify: PDS> SHO TAS/ACT/MID,,ALL

Parameter

TASKS[/ ACTIVE]!FULL taskname
[terminal]

TASKS[/ ACTIVE]/BRIEF
[taskname] [terminal]

TASKS/FIXED

TASKS/CHECKPOINTABLE

TASKS/INSTALLED

TASKS/TIMESHARING [terminal)

CLOCK_QUEUE

IO_QUEUES

SHAREABLE_GLOBAL_AREAS

SWITCH_REGISTERS

COMMAND
VARIATIONS

SHOW

Function

Displays a full version of the specified task's status information. Task name
is mandatory for the FULL qualifier. The default is /MIDDLE.

Displays a brief version of the active tasks in the system. The information
displayed is task name, task status, task type and terminai name. The
default is /MIDDLE.

Displays all currently inactive fixed tasks in the system.

Displays all checkpointable real-time tasks.

Displays all tasks currently installed in the system. This command
sometimes shows multiple entries for a task, because the System Task
Directory (STD) is changing dynamically while the list of tasks is being
displayed.

Displays all current timesharing tasks, or all timesharing tasks active for
the specified terminal. Timesharing systems only. Note that if a task is not
currently in memory, the CPU time is not available and displays as blank.

Displays the system clock queue.

Displays 1/0 request queues.

Displays the name of all tasks in the STD that are linked to one or more
shareable global areas, and the SGA to which each is linked.

Displays the contents of the switch register on the PDP-11 /34.

SHOW CLI, SHOW TASKStrIMESHARING, and SHOW DEFAULT are not available on multiuser
systems.

On timesharing systems, SHOW STATUS displays default information for the system active tasks,
and all device information (on multiuser systems the device information is not reported).

TECHNICAL
NOTES

Devices

The command SHOW DEVICES causes the system to display the symbolic names of the devices
known to the system. You can choose to print information about one particular device (for example,
DKO); all devices of that type (for example, DK); or all devices (default). The physical unit directory
(PUD) addresses of the units can also be requested. Physical device names are followed by** if
the device handler is resident. System logical device names are followed by the associated physical
device names. In the listing are messages giving additional information about particular devices.
The messages and their meanings are as follows:

14-175

SHOW

Message

GLOBAL

MOUNTED

REALTIME

TIS DEVICE

TIC TCDIUllll.IAI
l/U I ~I llYlll'Wrt.'-

SYSTEM

SPOOLED:n

TIMESHARING:n

Status

Meaning

The device is mounted globally. See the MOUNT command.

The device is mounted.

The device is mounted for real-time activity.

The device is a timesharing device. If followed by an X (see example), the device has
been explicitly allocated to a user.

The terminal ls a timesharing terminal.

The device is a system device.

The device is spooled. n is the current setting of the forms type.

n is the number of timesharing users accessing the device.

Active timesharing tasks are displayed in the order they are initiated. On a timesharing system,
the task name is always that assigned by the system of the form JOBxxx, (see example 4).

On multiuser systems, the task name is the installed task name, or, if you initiated the task by
means of the RUN filespec, the name is of the form Trnnx where TTnn is terminal number and x
is a unique character, (see example 5).

Memory

The command PDS> SHOW MEMORY displays on a VDU terminal (VT05, VT50, VT52, VT55,
VT61, VTlOO, VT200, VT300) the memory usage and task activity of the system provided that the
terminal handler was configured to support escape sequences.

The display appears in two rows of columns (one row on a VT50). Each column refers to a portion
of memory.

All types of task area within the occupied memory are displayed by task name. Shareable global
areas are displayed by name.

Tasks listed down the right side of the screen are real-time tasks waiting for memory to become
available. The number of nodes available and the largest hole are included in the heading
information at the top of the screen. The name of the currently active task, and the terminal
for which it is running, are also displayed only if the SHOW MEMORY task (. .. DEM) is run as a
high priority real-time task.

On the display, at the bottom of each column,

<-> Indicates a task's read/write (impure) area.

[-] Indicates an inactive fixed task.

<•> Indicates a task's read/only (pure) area.

[==] Indicates a shareable global area (SGA) or dynamic region.

<+> indicates a fixed or noncheckpointabie task.

Once the memory diagram is displayed, you can alter the portion of memory being displayed by
using one of the following commands:

NOTE: Do not type !Ctrl!Cj or use the control key with these commands as results are not
predictable.

14-176

SHOW

FORMAT (no prompt):

B[ASE] base

Where:

base

G[RAIN] grain

C[LEAR]

E[XTENT] nK

E[XTENT] ALL

l[NTERVAL] n

x

Beginning of the area of memory whose activity is to be displayed. You can enter base
either in the form: mK that is, mK words (m decimal), or in the form: n that is, n octal
blocks of 32 words or 100 (octal) bytes

Resets the amount of memory referred to by a single column of the display. Grain has
the same syntax as base.

Clears the VDU screen and redisplay. You can use this, for example, to clear an
external message from the screen.

Changes extent of display.

Displays all memory (initial state).

Updates display every n seconds (initially n = 1). n = 0 gives continuous update.

Exit to PDS.

WARNING: If you run SHOW MEMORY with 1=0, particularly on a 9600 baud terminal,
the speed of system performance is reduced. This occurs to a greater degree if you run
SHOW MEMORY as a real-time task; the more terminals running, the greater the speed
reduction.

EXAMPLES

• Example 1:

• Example 2:

PDS> SHOW DAYTIME

1-JUN-78 10:53:41

PDS> SHO DEV

TTO ** T/S TERMINAL
CIO TTO
coo TTO
CLO LPO
TOO TT6
SPO SYO
PIO **
MOO **
MMO ** T/S DEVICE X MOUNTED
DTl ** T/S DEVICE
OTO ** T/S DEVICE
LPO ** SYSTEM SPOOLED:O
TTll ** T/S TERMINAL
TTlO ** T/S TERMINAL
TT7 ** T/S TERMINAL
TT6 ** T/S TERMINAL
TTS ** T/S TERMINAL
TT4 ** T/S TERMINAL
TT3 ** T/S TERMINAL
TT2 ** T/S TERMINAL
TTl ** T/S TERMINAL
DSO ** MOUNTED
DBl ** T/S DEVICE X

TIMESHARING:l

TIMESHARING:8

GLOBAL TIMESHARING:!

14-177

SHOW

• Example 3:

• Example 4:

• Example 5:

• Example 6:

• Example 7:

• Example 8:

14-178

DBO ** SYSTEM MOUNTED GLOBAL TIMESHARING:8
DKl **
DKO ** T/S DEVICE
SYO DBO

PDS> SHOW DEV/PUD DB

DBl 152404 ** T/S DEVICE X TIMESHARING:!
DBO 152470 ** SYSTEM MOUNTED GLOB~.L TIMESHARING~8

PDS> SHO STA (timesharing system)
User SYSTEM UIC [1,1) TT03: 09:52:44 30-MAR-78
JOB212 Size: 4K CPU: 0.00
JOB215 Size: 4K CPU: 0.00
JOB216 Size: 4K CPU: 0.00
FILES OR DEVICES ASSIGNED
FILE OR DEVICE REDIRECTED LUNS
TT3: NO LUNS
DBO: IAS306
LPO:

NO LUNS
NO LUNS

PDS> SHO STA (multiuser system)
USER SYSTEM UIC [1,1] TT04: 09:57:16 30-MAR-78
TT04A
TT04B
TT04C

PDS> SHO TAS/ACT
DB •... WFO RT TTOO
TT •••• WFO RT TTOO
DK .•.. WFO RT TTOO
OT •••• WFO RT TTOO
~ WFO RT TTOO
MO WFO RT TTOO
PI WFO RT TTOO
FllACP SUS RT TTOO
ERRLOG ST4 RT TTOO
... ACT RUN TS TTOO
... PDS STO TS TTOO

PDS> SHO TAS/FU ... PDS
... PDS STO TS TT02 001 GEN 00544300 CURRENT RW SIZE 031400
REGS 174000 013466 000033 000000 000015 030022 000000 004736 000356
EV 1-16 100171 EV 17-32 140400 ATL FLGS 040010 STD FLGS 020100
EV MASKS 000006 000000 000401 000000 MKTM CNT 000 ACT VERS 005
ATL ADDR 113740 STD ADDR 104440 TSK SIZE RO 063600 INITIAL RW 031400
I/O PEND 000 I/O PROG 000 POOL LIM 040 POOL USE 005 REQ TASK PI
REGIONS .PURE. SYSRES
HW PARS 005447 005647 000000 016061 016261 016461 016661 002265
HW PDRS 077406 043406 000000 077402 077402 077402 016402 075002

PDS> SHO EXT/MAX
Maximum Extend Size 002000

SORT

SORT

FUNCTION

The SORT command enables you to sort files into a specified sequence. See the PDP-11
SORT I MERGE Reference Manual before using this command.

REQUIRED
PRIVILEGE

PR.FIL

FORMAT

PDS> [$]SORT !quals 1

FILE? infilespeclquals2

parameter
definitions

lquals
One of-the following:

Qualifier

/OUTPUT:outfilespec

I ALLOCATION :n

/BLOCK_ SIZE:n

/BUCKET_ SIZE:n

/CONTIGUOUS

Explanation

Specifies the output file. The default filetype is .SAT. If you omit /OUTPUT and the
infilespec contains no version number, the output file is assumed to be the same as
the input file, with the version number incremented. If you omit /OUTPUT but give a
full infilespec, the output filespec is assumed to be exactly the same as the infilespec.
That is, the version number is not incremented.

Specifies the initial space allocation for the output file before the sort process begins.
n is the number of bytes (decimal).

For magtape files only, specifies a non-standard tape block size. n is the number of
bytes (decimal).

Specifies the RMS bucket size of the output file. n is the number of bytes (decimal).

Specifies that the initial space allocation for the output file is to be contiguous.

14-179

SORT

Qualffler

/DEVICE:devlce or
/DEVICE:([device:yquals)

/FILES:n

/FORMAT:format(:n]

/KEYS:(abm.n,) or
/KEYS:(abm.n)

/PROCESS:x

Explanation

For applications requiring control of the SORT scratch files, this qualifier specifies the
scratch file device.

device Scratch file device.

/quals One or both of the following:

/ALLOCATION:n
/CONTIGUOUS

For special applications, specifies the number of scratch files to be used by SORT (n
must be between 3 and 8).

Specifies the record format of the output file, if you specify /FORMAT, you must also
specify format, even if it is unknown.

Format is one of:

FIXED
VARIABLE
UNKNOWN

n is optional and specifies:

Record length (with FIXED)
Maximum record length (with VARIABLE or UNKNOWN).

Defines the key fields to SORT, where:

a defines how to treat the data (that is, character, zone, and so on). The default
is character.

bis the general sort order, where

N is normal (ascending)
0 is opposite
The default is N.
m is the first position of key field. You must define this.
n is the length of key field. You must define this.

You can specify a maximum of 10 keys. The major key is the first in the string, and
the minoi key is the last.

You can not specify this qualifier with /SPEC.

Defines the type of SORT process, where xis one of the following:

RECORD (default)
TAG
ADDRESS _ROUTING
INDEX

/SEQUENTIAL Specifies the file organization of the output file or /RELATIVE as sequential or
relative.

/SPECIFICATION:file-spec Control parameters for SORT are contained in the specified file. You cannot specify
this qualifier with /KEYS. The default file type is .SRT.

infllespec Fiie specification of the fiie to be sorted. if you omit the fiie type, the system defaults
to .SRT

lquals2
One or both of the following:

14-180

Qualifier

iFORMAT:format:n

SORT

Explanation

Specifies the record format and iength of input file. format can be FIXED, VARIABLE
or UNKNOWN. You must specify this qualifier.

n specifies record length for FIXED length records and the maximum length of
VARIABLE or UNKNOWN structured records.

/INDEXED_SEOUENTIAL:n Mandatory for an input file with indexed sequential organization, where n is the
number of keys.

COMMAND
VARIATIONS

Not applicable.

EXAMPLES

• Example 1:

PDS> SORT/KEY:Cl.4
FILE? CAROL.DAT/FORMAT:UNKNOWN:130

Sorts the file CAROL.DAT according to the characters in the key. The key is to be taken as
characters and is in position 1 of the record and is 4 bytes long. Name the output (sorted) file
as CAROL.DAT with incremented version number.

• Example 2:

PDS> SORT/SPEC:FRANK.SRT
FILE? MARTIN.DAT;3/FOR:FIXED:124/INDEXED:5

• Sorts the file MARTIN.DAT;3 according to the specifications held in FRANK.SRT. Name the
output (sorted) file as MARTIN.DAT;3, to replace the input file.

• Example 3:

• Example 4:

PDS> SORT/KEYS: (BNl.6 CB.2)/REL
FILE? TELEPHONE.LST/FORMAT:FIXED:40

EDS> SORT/SPEC:STOCK.SRT/DEV: (/ALL:lOO/CO)
FILE? P12709.001/FORMAT:VAR:BO

14-181

STOP

STOP

FUNCTION

The STOP command enables you to prevent all further processing within a file. You can use the
STOP command only in an indirect command file or a batch command file. This command is
ignored in interactive mode.

REQUIRED
PRIVILEGE

ANY

FORMAT

PDS> [$]STOP [/JOB]

parameter
definitions

!JOB
The only valid qualifier for PDS users and you can omit it.

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

You can use the STOP command by itself or as the action in an ON command.

14-182

EXAMPLES

$JOB DEMO
$ON WARNING GOTO LlO
$RUN JOBl
$GOTO L20
$L10: RUN TEST
$STOP
$L20: ON WARNING STOP
$RUN JOB2
$RUN JOB3
$EOJ

STOP

14-183

SUBMIT

SUBMIT

FUNCTION

The SUBMIT command enables you to send a file containing batch commands to the batch

REQUIRED
PRIVILEGE

PR.SUB

FORMAT

PDS> SUBMIT [quals]

FILE? filespec1[, filespec n]

parameter
definitions

quals
One of the following:

Quallfler

/AFTER:[(date]time[)]

/PRIORITY:pri

/NOTRANSFER

filespec

COMMAND
VARIATIONS

Exp la nation

Requests that the file is held in the spooler queue until the specified time, or date and
time. When the specified time has passed, the file is queued for immediate processing.
You specify time in the form hh:mm. You specify the date in the form dd-mmm-yy.

The default value is 00:00; that is, the file is submitted for immediate processing.

Priority at which you submit the file (for example, priority 1). pri must be between 1 and
n. The System Manger determines n at system generation. The default value is 100.

Inhibits the copying of filespec to the spooling device.

Specification of a file containing batch commands. The specification must contain a file
name. The default file type is .BIS.

On a multiuser system, files are not transferred (/NOTRANS implied).

14-184

TECHNICAL
NOTES

SUBMIT

The system submits the file name of the file of batch commands to a queue of jobs for subsequent
processing in batch mode. For every batch job run, a batch log is created and is given the name
LP.SPR. The batch log is one (or more) concatenated file that results from running a batch job. The
log is automatically spooled to CL:. You can identify which job a batch log refers to by looking at
the banner pages that include the job name and user name.

On a timesharing system, unless filespec exists on a system device (that is, available to all
timesharing users) or unless you specify /NOTRANSFER, filespec is automatically copied to device
SP. You can use SUBMIT/NOTRANSFER only when the device where the filespec exists is still
mounted when the job is dequeued.

EXAMPLES

• Example 1:

PDS> SUBMIT
FILE? BATCHFILE.BIS

• Example 2:

PDS> SUBMIT/PRIORITY:6
FILE? BATCH JOB

• Example 3:

PDS> SUBMIT/NOTRANSFER DKl:MYJOB,HISJOB

• Example 4:

$SUBMIT MYJOB

• Example 5:

PDS> SUBMIT/AFTER:14:00 BATCHJOB.BIS

14-185

TRUNCATE

TRUNCATE

FUNCTION

The TRUNCATE command enables you to truncate files back to their logical end-of-file point.

REQUIRED
PRIVILEGE

PR.FIL

FORMAT

PDS> [$]TRUNCATE

Fl LE? filespec 1 [, filespec2 ... , filespecn]

parameter
definitions

file spec
Specification of the file to be truncated. Wildcards are allowed.

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

RMS-11 files other than those that are fixed-length, variable-length. or sequenced cannot be
truncated.

14-186

EXAMPLES

PDS> DIR A.A

DIRECTORY DBO: [1,1]
3-MAR-80 10:54

A.A;2 1. 03-MAR-80 10:53

TOTAL OF 1./10. BLOCKS IN 1. FILE

PDS> TRUNCATE
FILE? A.A

DIRECTORY DBO:[l,1]
3-MAR-80 10:54

A.A;2 1. 03-MAR-80 10:53

TOTAL OF 1./1. BLOCKS IN 1. FILE

TRUNCATE

The file A.A is truncated to the logical end of file. The extra blocks allocated to this file are freed.

14-187

TYPE

TYPE

FUNCTION

The TYPE command enables you to print the contents of one or more specified files at your
terminal. In batch, the file is output directly to the batch log.

REQUIRED
PRIVILEGE

PR.FIL

FORMAT

PDS> TYPE

FILE? filespec1 [, .. .filespecn]

parameter
definitions

file spec
File specification that must contain a file name and file type. Wildcards are allowed.

COMMAND
VARIATIONS

Not applicable.

14-188

TYPE

EXAMPLES

• . Example.1:

PDS> TYPE
FILE? (BARLEY.CBL;2,GRAHAM.CBL;2)

• Example 2:

PDS> TYPE APPLE.DAT

• Example 3:

$TYPE FRED6.CBL

14-189

UNFIX

UNFIX

FUNCTION

The UNFIX command enables you to free a fixed task from memory.

REQUIRED
PRIVILEGE

PR.RTC

FORMAT

PDS> UNFIX

TASK? taskname1esc1

[TERMINAL? terminal]

parameter
definitions

taskname
Installed name of the task to be unfixed from memory.

terminal
Terminal where the task is to be unfixed. The default is the current user's terminal.

COMMAND.
VARIATIONS

Not applicable.

14-190

EXAMPLES

• Example 1:

PDS> UNFIX JK03

• Example 2:

PDS> UNF FRED9 TT6

UNFIX

14-191

UNLOCK

UNLOCK

FUNCTION

The UNLOCK command enables you to unlock a file that was locked as a result of being improperly
closed.

REQUIRED
PRIVILEGE

PR.FIL

FORMAT

PDS> [$]UNLOCK {!FILE]

FILE? filespec1 [, ... ,filespecn]

parameter
definitions

!FILE
The only valid qualifier for ordinary PDS users, and you can omit it.

file spec
Specification of the file you want to unlock. Wildcards are allowed.

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

If a program using File Control Services (FCS) has a file open with write access and exits without
first closing the file, the file is locked against further access as a warning that the information
it contains is possibly invalid. Typically, in such a case, the following information has not been
written to the file:

. 14-192

UNLOCK

1 The current block buffer being altered.

2 The record attributes that contain the end of file information.

By using the UNLOCK command, you can access the file and can determine the extent of the
damage and perhaps take appropriate corrective action.

EXAMPLES

PDS> UNLOCK
FILE? THAMES.MAC;?

14-193

VERIFY

VERIFY

FUNCTION

The VERIFY command enables you to verify the file strncture on a device.

REQUIRED
PRIVILEGE

PR.DEV

FORMAT

on5 "ERlcv r1,. ... ,.,15 1
r LI ' V I I I ll '"f UCl.I '}

DEVICE? devicename

parameter
definitions

lquals
One of the following:

NOTE: All of the following qualifiers except /OUTPUT, /PRINT and /WORK_DEVICE are
equivalent to switches in the file structure verification utility (VFY). The equivalent
switch is given in brackets, and VFY is described in the IAS Unlities Manual.

Qualifier

/OUTPUT:filespec

/PRINT

/UNDELETE

/FREE

/LIST

/LOST _FILES

IREAD _ CHECK[:n]

/RECOVER_BLOCKS

14-194

Explanation

Specifies the file specification for the output listing.

Prints output on line printer.

Resets marked-for-delete indications (equivalent to /DE).

Prints free space on volume (equivalent to /FR).

Lists index file (equivalent to /LI).

Enters lost files in the directory (equivalent to /LO).

Reads every allocated block on the device to see if every block can be read. n is the
blocking factor that indicates the numbei of file blocks to be iead at a time (equivalent to
/RC).

Restores blocks that are marked as allocated but not in use (equivalent to /RE).

Qualifier

/UPDATE_BITMAP

/WORK_DEVICE:dev

COMMAND
VARIATIONS

Not applicable.

TECHNICAL
NOTES

Explanation

Updates the bitmap to show all allocated blocks correctly.

Specifies the work device.

VERIFY

To verify a Files-11 volume, mount it using the /NOSHARED option to ensure that there is no
activity on the volume.

EXAMPLES

• Example 1:

PDS> VER DBO:

• Example 2:

PDS> VER/FREE DKO:

• Example 3:

PDS> VER/UPDATE_BITMAP DKO:

14-195

Index

A
Abbreviating input • 4-1
Appending files

extend access • 6-15

B
BASIC

restrictions • 9-1
Batch job

components of• 1-1
submitting • 5-2
terminating • 5-2

Batch mode • 8-1
Batch processing

priority • 5-1
Batch queue • 5-1
Batch stream

free• 5-1

c
COBOL object file

default name • 10-2
name specification • 10-2

COBOL object files
generation • 10-3

Command and task privileges • 4-1
Command description layout

command variations • 14-3
examples• 14-3
function • i 4-3
required privilege • 14-3
technical notes • 14-3

Command descriptions
brackets, round in• 14-1
brackets, square in • 14-1
brackets in • 14-1
command names in• 14-1
concatenation character in• 14-2
continuation characters in • 14-2

Command descriptions (Cont.)

dollar sign in • 14-1
ellipses in • 14-1
I in• 14-2
parameters in • 14-1
parentheses in • 14-1
qualifiers in • 14-2

Command qualifiers
specification of • 11-2

Commands and parameters • 4-1
Command strings

batch •4-1
Comment character • 4-1
COPY command qualifiers• 6-16

D
Default mode • 5-2
Default print queue • 6-19
Defaults

modifying, multiuser system • 6-8
modifying, timesharing system • 6-8

Deferring printing • 6-19
Device defaults • 6-8
DISMOUNT

parameters • 6-12

E
Editor

batch-oriented • 5-3
Error conditions • 4-1

F
File

definition of • 6-1
Files-11 • 6-1
File specification • 6-1

lndex-1

Index

I
IAS file system

default• ~1
Information

storing• ~1
lnteia.ctive mode= 8-1
Interactive terminal

layout• 2-1
typewriter and • 2-1

L
LIBRARIAN command

compress operation • 14-106
create operation • 14-1 06
delete operation • 14-106
extract operation • 14-106
Insert operation • 14-1 06
library types • 14-105
list operation• 14-107
modify header • 14-107
replace operation • 14-107
restrictions • 14-1 06

LINK command
command qualifiers • 14-111
file qualifiers • 14-111
input files • 14-110

Linked COBOL task
running • 10-5

Linking CORAL programs • 13--3
Logical device names • ~5

M
MACRO command

defaults
listing file • 14-121
object file• 14-121

switches • 14-122
Macros

11c.in,. • A_') ~ ..., ...
Media

magnetic • ~ 1
MERGE command

target file • ~ 18

lndex-2

MERGE command (Cont.)

transaction file • ~ 18
Mixed-mode processing • 1-1

N
Null device= 6-5

0
ON command

default • 14-137
restrictions• 8-7

Options
termination of• 10-3

p
PDS file organization commands • 6-3
Printing

deferred • ~ 10
Privileges

command • 4-1
task• 4-1

Pseudo-devices • ~5

Q
Qualifiers • 4-1

R
RMS file organization • ~

s
SET command

batch password • 14-i 71
bootstrap• 14-171
default, timesharing • 14-170

SET command (Cont.)

endoffile • 14-171
password • 14-170
priority • 14-171
real-time control-timesharing • 14-171
sci• 14-172
terminal • 14-171
UIC-multiuser • 14-171

SHOW command
devices • 14-175
memory • 14-176
status• 14-176

Source code
storing • 8-2

SUBMIT command • 5-1
SYSRES • 10-4
System resident library • 10-4

T
Target file• 6-18
Task execution• 12-4
Terminals

interactive • 2-1
Transaction file• 6-18

u
UFO

directory • 6-14
UFO defaults " 6-6
User name

parameters • 5-2

Index

lndex-3

IAS
PDS User's Guide

AA-H003C-TC

Reader's
Comments

This form is for document comments only. Digital will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible
to receive one under Software Performance Report (SPR} service, submit your
comments on an SPA form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for

improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user /reader that you most nearly represent:

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
0 User with little programming experience
D Student programmer

D Ofufil(P~~es~~~-----------------------

Organization ________________________________ _

Stree..__ ________________________________ ~~

City __________________ State ______ Zip Code _____ _

or Country

·---------------- I>•• :'li<>I ·1·t·ar h>ld lh:r" and Ta pt· ------------------------

mamaamaTM

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 33 MA YN.A.RD MASS

POST AGE WILL BE PAID BY ADDRESSEE

I AS Engineering/Documentation
Digital Equipment Corporation
5 Wentworth Drive GSF /L20
Hudson, NH 03051-4929

I II 111 11 II 1 I I 111 .1.1, I II 111.1 .. 1.1, , .1 .. 11.1 .. I I 111 I

-------------------- l>o :'lint Tt•ar · h>ld lkn·

No Postage

Necessary

11 Mailed 1n the

United States

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	07-01
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	10-05
	11-01
	11-02
	11-03
	11-04
	11-05
	12-01
	12-02
	12-03
	12-04
	12-05
	13-01
	13-02
	13-03
	13-04
	14-001
	14-002
	14-003
	14-004
	14-005
	14-006
	14-007
	14-008
	14-009
	14-010
	14-011
	14-012
	14-013
	14-014
	14-015
	14-016
	14-017
	14-018
	14-019
	14-020
	14-021
	14-022
	14-023
	14-024
	14-025
	14-026
	14-027
	14-028
	14-029
	14-030
	14-031
	14-032
	14-033
	14-034
	14-035
	14-036
	14-037
	14-038
	14-039
	14-040
	14-041
	14-042
	14-043
	14-044
	14-045
	14-046
	14-047
	14-048
	14-049
	14-050
	14-051
	14-052
	14-053
	14-054
	14-055
	14-056
	14-057
	14-058
	14-059
	14-060
	14-061
	14-062
	14-063
	14-064
	14-065
	14-066
	14-067
	14-068
	14-069
	14-070
	14-071
	14-072
	14-073
	14-074
	14-075
	14-076
	14-077
	14-078
	14-079
	14-080
	14-081
	14-082
	14-083
	14-084
	14-085
	14-086
	14-087
	14-088
	14-089
	14-090
	14-091
	14-092
	14-093
	14-094
	14-095
	14-096
	14-097
	14-098
	14-099
	14-100
	14-101
	14-102
	14-103
	14-104
	14-105
	14-106
	14-107
	14-108
	14-109
	14-110
	14-111
	14-112
	14-113
	14-114
	14-115
	14-116
	14-117
	14-118
	14-119
	14-120
	14-121
	14-122
	14-123
	14-124
	14-125
	14-126
	14-127
	14-128
	14-129
	14-130
	14-131
	14-132
	14-133
	14-134
	14-135
	14-136
	14-137
	14-138
	14-139
	14-140
	14-141
	14-142
	14-143
	14-144
	14-145
	14-146
	14-147
	14-148
	14-149
	14-150
	14-151
	14-152
	14-153
	14-154
	14-155
	14-156
	14-157
	14-158
	14-159
	14-160
	14-161
	14-162
	14-163
	14-164
	14-165
	14-166
	14-167
	14-168
	14-169
	14-170
	14-171
	14-172
	14-173
	14-174
	14-175
	14-176
	14-177
	14-178
	14-179
	14-180
	14-181
	14-182
	14-183
	14-184
	14-185
	14-186
	14-187
	14-188
	14-189
	14-190
	14-191
	14-192
	14-193
	14-194
	14-195
	Index-1
	Index-2
	Index-3
	replyA
	replyB

