IAS Device Handlers
Reference Manual

Order Number: AA-H004B-TC

This manual describes the use and characteﬂstics of IAS device handlers.

Operating System and Version: IAS Version 3.4



May 1990

The information in this document Is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document Is furnished under a license and may be used or copled only in
accordance with the terms of such license,

Restricted Rights: Use, duplication, or disclosure by the U.S. Government Is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 2562.227-7013,

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital
Equipment Corporation or its affiliated companies.

Copyright ©1990 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user’s critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DDIF IAS VAX C

DEC MASSBUS VAXcluster
DEC/CMS PDP VAXstation
DEC/MMS POT VMS
DECnet RSTS VR150/160
DECUS RSX vt
DECwindows ULTRIX

DECwrite UNIBUS ~
DIBOL VAX kgl al1

This document was prepared using VAX DOCUMENT, Version 1.2



Contents

PREFACE ' xvil
CHAPTER 1 INTRODUCTION 1-1
1.1 DEVICE HANDLER TASKS 1-1
1.2 QIO SYSTEM DIRECTIVES 1-1
13 HANDLER TASK/USER TASK INTERACTION 1-1
14 SPECIFYING THE PHYSICAL DEVICE 1-2
1.5 QIO MACROS 1-3
1.6 FUNCTION CODES (NCN-MASS STORAGE) 1-3
1.6.1 Attach/Detach 1-3

1.6.2 Read Logical/Read Virtual Block 1-4

1.6.3 Write Logical/Write Virtual Block 1-5

1.6.4 Cancel (KILL 1/O) 1-5

1.7 FUNCTION CODES FOR MASS STORAGE DEVICES 1-5
1.7.1 Direct Mode 1-5

1.7.2 Mounting for Direct Mode 1-6

1.7.3 Attach/Detach 1-7

1.7.4 Read/Write Logical Block 1-7

1.7.5 Compatibility 1-7

1.7.6 Status Returns 1-8

1.8 DEVICES SUPPORTED 1-8

1.8.1 Characteristics Words 1-8




Contents

CHAPTER 2 TERMINAL HANDLERS 2-1
2.1 TERMINAL SUPPORT 2-1
2.1.1 Interface Support 2-1

2.2 CHARACTER INPUT FROM A TERMINAL 2-1
221 Special Characters 2-1

222 Type-ahead 2-4

2.3 CHARACTER OUTPUT TO A TERMINAL 2-5
2.3.1 Escape (ALTMODE) 2-5

23.2 Form Feed 2-5

233 Horizontal Tab 2-5

234 Line Feed 2-6

235 Lower Case 2-6

2.3.6 Vertical Tab 2-6

24 FUNCTION CODES 2-6
241 Read 2-6

2.4.2 c2_Write 2-9

243  Set/Get Terminal Characteristics 2-12

25 OTHER FUNCTIONS AFFECTING TERMINALS 2-20
2.6 SUPPORT OF DIALUP LINES 2-26
2.7 AUTO-BAUD DETECTION 2-27
2.71 Dial-in Interface 2-27

2.7.2 How to Enable Auto-baud Detection 2-27

2.8 ESCAPE SEQUENCE SUPPORT 2-27
2.8.1 Types of Escape Sequence Support 2-28

2.8.2 Valld ANSI escape sequences 2-28

283 input of Escape Sequences 2-32

284 Output of Escape Sequences 2-33

29 SUPPORT OF BLOCK-MODE TERMINALS 2-33

iv



Contents

2.10 LOW SPEED PAPER TAPE READER SUPPORT 2-34
2.11 OTHER SUPPORTED FEATURES 2-34
2.11.1  Parity Support 2-34

2.11.2  Character Silo Support 2-34

2.11.3  Fll Characters 2-35

2.11.4 Support of Other Manufacturers’ Terminals 2-35

2.11.5 Full Duplex Operation 2-35

2.11.,6  Binary Terminals 2-36

2.11.7 Reading Control Characters 2-36

2.11.8 Remote Terminals 2-36

2.12 THE SINGLE-TERMINAL HANDLER (TTO1) 2-37
CHAPTER 3 AFC11, ADO1 ANALOG TO DIGITAL CONVERTERS 3-1
3.1 INTRODUCTION TO AFC-11, ADO1 3-1
3.2 FUNCTIONAL CHARACTERISTICS 31
3.2.1 Single-Sample Mode (Function Code 10.R1C) 3-1

3.2.2 Multi-Sample Mode (Function Code 10.RBC) 3-1

3.23 QIO System Macro Format 3-2

3.24 AFC/ADO1 Status Returns 3-3
CHAPTER 4 DISK HANDLERS 4-1
4.1 DISK I/O HANDLERS 4-1
411 RS03 Fixed-Head Disk 4-3

4.1.2 RM02/RM03/RM05/RM80 Disk Pack 4-3

413 RP04, RPO5, FiP06, and RP0O7 Disks 4-3

414 RK11/RK05 or RKO5F Cartridge Disks 4-3

4.1.5 RL11/RLO1 or RLO2 Cartridge Disk 4-3

4.1.6 RK611/RK06 or RK07 Cartridge Disk 4-4

4.1.7 RX11/RX01 Flexible Disk 4-4

4.1.8 RX211/RX02 Flexible Disk 4-4

4.1.9 KDAS50, UDA50/RA60/RAB0/RA81 Disks 4-4

4.1.10 RC25 Disk Subsystem 4-5




Contents

4.1.11 RD31 Fixed 5.25-Inch Disk 4-5

4.1.12 RX33 5.25-Inch Half-Height Disk 4-5

4.1.13 RD51 Fixed 5.25 Disk/RX50 Flexible 5.25 Disk 4-5

4.1.14 RD52 Fixed 5.25-Inch Disk 4-6

4.1.15 RD53 Fixed 5.25-Inch Disk 4-6

4.1.16 RD54 Fixed 5.25-Inch Disk 4-6

4.2 FUNCTION CODES 4-6
4.2.1 Standard QIO Functions 4-6

422 Device-Specific QIO Functions 4-7

4.3 DISK STATUS RETURNS 4-7
4.4 UNIBUS MAPPING REGISTERS 4-8
4.5 ERROR RECOVERY IN DB, DM AND DR HANDLERS 4-9
4.6 CHARACTERISTICS WORDS FOR DISK DEVICES 4-9
4.6.1 Characteristics Word 2 4-9

4.6.2 Characteristics Word 3 4-10
CHAPTER S5 UDC-11 HANDLER 5-1
5.1 INTRODUCTION TO UDC-11 5-1
5.2 SOURCE FILE MACROS 5-1
5.2.1 Macros Referenced by .MCALL 5-1

5.2.2 Creating an Installation-Specific UDC Handler Task 5-2

5.3 INTERRUPT/NONINTERRUPT UDC MODULES 5-3
5.4 FUNCTION DESCRIPTIONS 5-3
5.4.1 Analog Output - A633 Modules 5-3

5.4.2 Single-Shot Digital Output - M687 and M807 Modules ____ 5-3

5.4.3 Latching Digital Output - M685, M803 and M805 Modules _ 54

54.4 Contact Sense Digital Input - W731 and W733 Modules __ 5-5

vi



Contents

5.5 CONTACT INTERRUPT DIGITAL INPUT - W733 MODULES 5-5
5.5.1 Change of State (COS) Output 5-6
5.5.2 Contact Interrupt Functions Connect/Disconnect 5-6
5.6 TIMER (COUNTER) - W734 MODULE 5-6
5.7 ANALOG/DIGITAL CONVERTER - ADUO1 5-7
5.8 FORTRAN INTERFACE 5-8
5.8.1 ISTS 58
5.8.2 ASUDLN 5-8
5.8.3 AOSC 5-8
5.8.4 AO/AOW 59
5.8.5 DOSM 5-9
5.8.6 DOM/DOMW 59
5.8.7 DOFM 5-9
5.8.8 DOSL 5-9
5.8.9 DOFL 5-10
5.8.10 DOL/DOLW 5-10
5.8.11 RBCD 5-10
5.8.12 DIFCS 5-10
5.8.13 DIDIW 5-10
5.8.14 RCSPT 5-11
5.8.15 RCIPT 5-11
5.8.16 CDTI 5-11
5.8.17 RDDI 5-11
5.8.18 DFDI 5-11
5.8.19 SCTI 5-12
5.8.20 RSTI 5-12
5821 CTTI 5-12
5.8.22 RDTI 5-12
5.8.23 DFTI 5-12
5.8.24 ADUO1 5-13
5.9 SAMPLE FORTRAN PROGRAM 5-13
5.10 UDC STATUS RETURNS 5-19

vii



Contents

CHAPTER 6 DECTAPE HANDLER 6-1
6.1 DECTAPE HANDLER FUNCTIONS 6-1
6.2 FUNCTION CODES 6-1

6.2.1 READ/WRITE Logical Functions 6-1
6.2.2 ATTACH, DETACH, and REWIND Functions 6-2
6.2.3 DECtape Transfers 6-2
6.2.4 DECtape READ/WRITE 6-2
6.3 UNIBUS MAPPING REGISTERS 6-2
6.4 ERROR HANDLING 6-2
6.5 DT STATUS RETURNS 6-3
6.6 CHARACTERISTICS WORDS FOR DECTAPE 6-3
CHAPTER 7 MAGNETIC TAPE HANDLERS 7-1
74 MAGTAPE HANDLER FUNCTIONS 7-1
7.1.1 TE10/TU10/TS03 Magnetic Tape 7-4
7.1.2  TE16/TU16/TU45/TU77 Magnetic Tape 7-4
7.1.3  TS11/TUBDO Magnetic Tape 7-4
714  TS05 Magnetic Tape 7-4
71.5 TK25 Magnetic Tape 7-4
7.1.6 TKS0 Magnetic Tape 7-4
71.7 TU81 Magnetic Tape 7-5
7.2 FUNCTION CODES 7-5
7.2.1 READ/WRITE Logical Functions 7-5
7.2.2 ATTACH, DETACH, REWIND, and EOF Functions 7-5
7.2.3 Read Logical Block 7-5
7.24 Write Logical Block 7-6
7.2.5 Rewind and Turn Unit Off Line 7-6
7.2.6 7-6

viil

Rewind Magnetic Tape Unit



Contents

7.3 DEVICE CONTROL FUNCTION CODES 7-6
7.3.1 Skip n Records 7-6
7.3.2 Skip n Files 7-7
733 Set Characteristics 7-7
7.3.4 Read Characteristics 7-8
7.3.5 Verify Beginning of Tape and Set Characteristics 7-8
7.3.6 Logical End-of-Volume (EOV) 7-8
7.4 MT STATUS RETURNS 7-9
7.5 UNIBUS MAPPING REGISTERS 7-13
CHAPTER 8 LABORATORY PERIPHERAL SYSTEM HANDLER (LPS11) 8-1
8.1 LPS11 FUNCTIONS 8-1
8.1.1 Digital /O 8-1
8.1.2 Real-Time Clock 8-2
8.1.3 12-Bit A/D Converter 8-2
8.2 SYSTEM GENERATION OPTIONS 8-2
8.3 QIO MACROS 8-2
8.3.1 Standard QIO Function 8-2
8.3.2 Device-Specific QIO Functions (Immediate) 8-3
8.3.3 Device-Specific QIO functions (Synchronous) 8-5
8.3.4 Device-Specific QIO Function (10.STP) 8-7
8.4 FORTRAN INTERFACE 8-8
8.4.1 The isb Status Array 8-8
8.4.2 Synchronous Subroutines 8-8
8.4.3 FORTRAN Subroutine Summary 8-9
8.4.4 ADC: Reading a Single A/D Channel 8-10
8.4.5 ADJLPS: Adjusting Buffer Pointers 8-11
8.4.6 ASLSLN: Assigning a LUN to LSO: 8-12
8.4.7 CVSWG: Converting a Switch Gain A/D Value to
Floating-Point 8-12
8.4.8 DRS: Initiating Synchronous Digital Input Sampling _____ 8-13
8.4.9 HIST: Initiating Histogram Sampling 8-14




Contents

8.4.10 IDIR: Reading Digital Input 8-15

8.4.11 IDOR: Writing Digital Output 8-15

8.4.12 IRDB: Reading Data from an Input Buffer 8-16

8.4.13 LED: Displaying in LED Lights 8-16

8.4.14 LPSTP: Stopping an In-Progress Synchronous Function _ 8-17

8.4.15 PUTD: Putting a Data Item into an Output Buffer 8-17

8.4.16 RELAY: Latching an Output Relay 8-17

8.4.17 RTS: Initiating Synchronous A/D Sampling 8-18

8.4.18 SDAC: Initiating Synchronous D/A Output 8-19

8.4.19 SDO: Initiating Synchronous Digital Output 8-20

8.5 STATUS RETURNS 8-21
8.5.1 IE.RSU 8-23

8.5.2 Second I/O Status Word 8-24

8.5.3 10.ADS and ADC Errors 8-24

8.5.4 FORTRAN Interface Values 8-25

8.6 PROGRAMMING HINTS 8-25
8.6.1 The LPS11 Clock and Sampling Rates 8-25

8.6.2 importance of the I/O Status Block 8-26

8.6.2.1 Buffer Management - 8-26

8.6.3  Use of ADJLPS for Input and Output 8-27
CHAPTER 9 CARD READER HANDLER TASKS 9-1
9.1 DEVICES SUPPORTED 9-1
9.2 CARD READER FUNCTIONS 9-1
9.3 DATA FORMATS 9-1
9.3.1 Alphanumeric Format 9-1

9.3.2 Binary Format 9-2

9.4 RUN TIME SERVICE 9-4
9.5 CONTROL CHARACTERS 9-5
9.6 1/0 FUNCTIONS 9-5



Contents

9.7 RECOVERY PROCEDURES 9-6
9.7.1 Device Errors 9-6

9.7.2 Power Failure Recovery 9-6

9.8 CR STATUS RETURNS 9-6
9.9 UNIBUS MAPPING REGISTER (UMR) ALLOCATION 9-7
CHAPTER 10 LINE PRINTER HANDLER 101
10.1 PRINTER FUNCTIONS 10-1
10.2 SYSTEM GENERATION OPTIONS 10-1
10.3 FUNCTION CODES 10-2
104 ILP STATUS RETURNS 104
10.5 CHARACTERISTICS WORDS FOR LINE PRINTER 10-4
CHAPTER 11 MESSAGE OUTPUT HANDLER 11-1
1.1 MESSAGE OUTPUT HANDLER (MO) 11-1
11.1.1  User Task Interface To MO Handler 11-1

11.1.2 String Descriptors 11-2

11.1.3 Parameter List 11-2

1.2 MO TASK OPERATION 11-2
1.3 MESSAGE CONSTRUCTION 11-2
11.3.1  Message File 11-5

1.4 MESSAGE MACRO DESCRIPTIONS 11-9
11.4.1 MOUTS 11-9

xi



Contents

11.42 MOUTS$C 11-11

11.43 MOUTSS 11-11

11.4.4 User Definition of Action and Destination 11-12

11.4.5 Uses of the MO WAIT FOR Macro 11-13

11.5 MESSAGE DPB FORMAT 11-14
11.6 MESSAGE FORMAT RETURNED TO USER BUFFER 11-14
1.7 ERROR CONDITIONS 11-15
11.8 MO STATUS RETURNS 11-16
CHAPTER 12 PAPER TAPE READER/PUNCH HANDLER 12-1
121 DEVICES SUPPORTED 12-1
12.2 FUNCTION CODES 121
12.3 TAPE LEADER/TRAILER 12-2
12.3.1 Sequential File Device 12-2

12.4 PT STATUS RETURNS 12-3
CHAPTER 13 CASSETTE HANDLER 131
13.1 INTRODUCTION 13-1
13.2 QIO MACRO 13-1
13.2.1 Standard QIO Functions 13-1

13.2.2 Device-Specific QIO Functions 13-2

13.3 STATUS RETURNS 13-2
13.3.1 Cassette Error Recovery Procedures 13-3

xh




Contents

134 STRUCTURE OF CASSETTE TAPE 13-3

13.5 PROGRAMMING INFORMATION 13-5

13.5.1 Importance of Rewinding 13-5

13.5.2 End-of-File and 10.SPB 13-5

13.5.3 The Space Functions, |10.SPB and 10.SPF 13-6

13.5.4 Verification of Write Operations 13-6

13.5.5 Block Length 13-6

13.5.6 Logical End-of-Tape 13-6

CHAPTER 14 NULL DEVICE HANDLER 14-1
14.1 INTRODUCTION 141

14.2 EXAMPLE 141

14.3 PREREQUISITES 14-2
CHAPTER 15 DECTAPE Il HANDLER 151
15.1 INTRODUCTION 15-1

15.1.1 TUS58 Hardware 15-1

15.1.2 TUS58 Handler 15-1

15.2 QIO MACRO 15-1

15.2.1 Standard QIO Functions 15-1

15.2.2 Device-Specific QIO Functions 15-2

15.3 STATUS RETURNS 15-3

15.4 CHARACTERISTICS WORDS FOR DECTAPE Ii 15-3

xili



Contents

APPENDIX A LISTING OF QIOMAC A1

INDEX

EXAMPLES
11-1 Example Using Counts In the Format String 11-6
1-2 Example Using V in the Format String 11-7
11-3 Example of Format From a Disk File 11-8

FIGURES
3-1 A/D Conversion Control Word 3-3
7-1 Set/Sense Characteristics Status Word 7-9
7-2 TU10 Parity/Density Determination 7-10
7-3 TU16 Parity/Density Determination 7-11
7-4 Logical End of Volume (EOV) 7-12
8-1 Synchronous Subroutines 8-9
9-1 Binary Data Format 48 Bits (3 words, 4 card columns) 9-2
131 One Possible Structure of Cassette Tape 13-4

TABLES
2-1 Vertical Format Control Characters 2-9
2-2 Characteristics and their Names 2-13
2-3 Valid Terminal Types 2-16
2-4 Valid Terminal Speeds 2-18
2-5 /0 Function Codes 2-25
2-6 Handling of Dialup Lines 2-26
2-7 Encoding of VT52-type Escape Sequences 2-30
4-1 Standard Disk Devices 4-1
4-2 Device-Specific Functions for Disks 4-7
4-3 Characteristics Word 2 (U.C2), Bits 8-15 4-10
7-1 Standard Magnetic Tape Devices 7-1
8-1 Device-Specific QIO Functions for the LPS11 (Immediate) 8-3
8-2 Device-Specific QIO Functions for the LPS11 (Synchronous) 8-5
8-3 Device-Specific QIO Function for the LPS11 (I0.STP) 8-7
8-4 Contents of First Word of ish 8-8
8-5 FORTRAN Interface Subroutines for the LPS11 8-10
8-6 LPS11 Status Returns 8-22
8-7 Returns to Second Word of I/0 Status Block 8-24
8-8 FORTRAN Interface Values 8-25

xiv




9-1

10-1
10-2
111
13-1
13-2
13-3
15-1
15-2
15-3

Contents

PDP-11 Punched Card Codes 9-3
Line Printer Models 10-1
Vertical Format Control Characters 10-2
Format String Codes 1-4
Standard QIO Functions for the Tape Cassette Handler 13-1
Device-Specific QIO Functions for the Tape Cassette Handler _____ 13-2
Tape Cassette Handler Status Returns 13-2
Standard QIO Functions for the TU58 15-1
Device-Specific QIO Functions for the TU58 15-2

TUS58 Handler Status Returns 15-3

Xv






Preface

Manual Objectives and Reader Assumptions

The IAS Device Handlers Reference Manual provides a reference source for users of the device
handler tasks that service the peripheral devices supported by Digital. You should be familiar with
PDP-11 assembler language and with the appropriate user’s guide.

Structure of the Document

Chapter 1 describes most of the characteristics common to each handler task. The remaining
chapters describe either an individual handler task or a set of closely related handler tasks.
Appendix A is a list of QIOMAC.MAC, the macro that defines queue I/O directive function values
and status return values. If you want more information about writing a device handler, consult the
IAS Guide to Writing a Device Handler Task.

Associated Documents

Documents that provide related information are described in the IAS Master Index and
Documentation Directory.

xvii






1.1

1.2

1.3

Introduction

Device Handler Tasks

IAS provides a flexible, device-independent, and function-independent I/0 capability that can
support standard PDP-11 peripherals and special purpose devices. Peripheral device support is
provided by privileged device handler tasks and is not an integral part of the Executive. Device
handler tasks can be developed with a minimum knowledge of the Executive code.

Device handlers must be installed with task names of dd...., where dd corresponds to the two letter
mnemonic of the device(s) that the handler services. The tasks must be resident and initialized
before they can be used. This is effected using either of the following commands:

MCR>LOA
or
PDS> RUN/HANDLER
See the IAS MCR User’s Guide or the IAS PDS User’s Guide for further details.

QIO System Directives

User tasks make I/O requests to device handlers by issuing a QIO system directive. System
directives are discribed in the IAS System Directives Reference Manual. The arguments of the
system directives determine the following:

1 The type of I/0 desired via the function code specified,

2 The physical device on which the I/O request is to be performed via the logical unit number
(LUN) argument, see Section 1.4,

3 The importance of the I/0 service (via the priority of the request),

4 The execution mode of the I/O request relative to the user task: the request is performed either
synchronously or asynchronously with the issuing user task. Execution mode is indicated by
event flag and asynchronous system trap (AST) arguments.

Handler Task/User Task Interaction

When a standard QIO directive macro is specified in a user’s program, the MACRO-11 assembler
generates a directive parameter block (DPB) that holds the appropriate values, or generates code
that pushes the DPB onto the stack at run time.

When a user task executes a QIO directive, the Executive takes the arguments from the DPB and
creates an I/0 request node in system common space. The system queues the request node (adds to
a priority structured list of such nodes) to the device handler specified for service. When the user
task’s request node is the highest priority node capable of service, the handler task that services
that device dequeues and processes the I/0 request specified.

1-1



1.4

Introduction

I/0 requests are completed only if the DPB contains the proper arguments. After the device
handler completes an I/0 request, the Executive performs one or more of the following actions for
the user task depending on the arguments in the QIO DPB.

1 Declares a significant event and sets a specified event flag. These functions allow the user
program to perform synchronous I/O operations in the following manner:

a. Issue a QIO system directive specifying an event flag (this immediately clears the event
flag).

Optionally execute some code within the user program.

Issue a WAITFOR or STOPFOR system directive specifying the same event flag. This
suspends the user program until completion of its I/O (allowing lower priority tasks to
run). STOPFOR should be used if the I/O request may take a significant amount of time (a
second or more), and the task can safely be checkpointed or swapped during this time.

Alternatively, the user program can issue a QIO AND WAITFOR (QIOW$) system directive
specifing an event flag.

The QIOW$ is to be preferred when the task is waiting only for an I/O request which
should complete quickly. The QIOW$ both reduces the number of directives performed and
enables the executive to know why the task is waiting.

2 Saves current user task status, declares an asynchronous system trap (AST), and starts the
user task at the AST address specified in the DPB. These functions allow the user program to
perform asynchronous 1I/0 operations in the following manner:

a. Issue a QIO directive specifying the starting address of the AST service routine within the
user task.

Execute other instructions (including any further QIO directives).

Execute its AST code transparently to the user’s normal code when the 1/0 is completed
(similar to an interrupt service routine). This feature permits user task multi-I/O streams
to occur in parallel with the user task’s execution.

3 Returns the status of the I/O operation from the device handler to a 2-word user status buffer
defined in the DPB. This status code enables the user task to monitor the success or failure of
its I/0. The status buffer format is as follows.

* wordl - Byte 0 = I/O status code (see Appendix A, Byte 1 = 0 (normally unused)

* word2 - For transfer requests, word2 holds the total number of bytes involved in the
transfer.

* For other requests, some handlers use this word to return status information. See the
descriptions of individual handlers.

Specifying the Physical Device

Logical unit numbers have no connection to physical devices until the programmer or operator
makes device assignments for a particular task. Device assignments tell the system that, for
example, logical unit number 1 for user task A is associated with DECtape unit 3.

The system makes a correspondence between physical devices and logical unit numbers by means
of a logical unit table (LUT) in the task’s header. The LUT contains a user-specified number of
entries, each of which corresponds to a logical unit number. Each entry contains a pointer to the
Physical Unit Directory (PUD) entry for the device last assigned to that LUN. When a task issues

1-2



1.5

1.6

1.6.1

Introduction

a QIO directive for a specified LUN, the system locates the physical device using the appropriate
LUT entry. For example the physical device currently assigned to LUN 2 is identified using the
gsecond LUT entry.

Each user task has a set of logical unit assignments that can be created or altered in the following
ways (alteration of logical unit assignments within one user task does not affect any other user
task):

1 Using the MCR REASSIGN function or the DCL ASSIGN command, see the IJAS MCR User’s
Guide and the IAS PDS User’s Guide.

2 At user task build (link) time via the ASG option.

3 At run time via the ASSIGN LUN system directive issued by the program.

In the first two cases, the user task is unaware of the physical devices that correspond to its logical
units. The task issues QIO system directives, specifying appropriate LUNs, while the actual 1/0
takes place interchangeably on a wide variety of system peripherals.

In the third case, the user task is aware of its physical device assignments, but not of any
redirection done to the device.

QIO Macros

The QIO system directive is usually issued in the form of a system defined macro with fixed
argument fields.

The forms of IAS directive macros are fully described in Section 1.5.1 of the IAS System Directives
Reference Manual. The format of the QIO and QIOW macros is described in Chapter 4 of the same
manual.

Function Codes (Non-Mass Storage)

The full range of global function codes available to a user task is specified in Appendix A. Seven
function codes are common to most I/O operations and to almost every non-mass storage device.
This basic subset of function codes is described in the following sections.

Attach/Detach

QIO$ IO.ATT, lun,ef,pri,iosb,ast ; ATTACH
QIO$ IO.DET, lun,ef,pri,iosb,ast ; DETACH

In a real-time or multi-user system, attach and detach I/O requests permit an eligible task to
gain and release exclusive use of a peripheral device. These functions enable input and output to
be processed in an unbroken stream; therefore, they are especially useful on sequential devices
(non-file-structured devices; for example, terminal, line printer, card reader, paper tape). Attach
causes a device to be dedicated to the task that issued the attach; Detach releases the device for
use by other task.

The only tasks that can “break through” an attach by a user task are those running under a UIC
of the form [1,n] through [7,n]. Such a UIC is called a “system UIC”. A system UIC can have its
requests dequeued, but it cannot take over the attach.



1.6.2

Introduction

To attach a device, the QIO request is issued with a function code of IO.ATT. The attach remains
in effect until a detach request code I0.DET is issued by the same task, specifying the LUN
associated with the attach. While an attach is in effect, the I/O handler for the specified device
dequeues only QIO directives issued either by the task that issued the attach or by tasks with

a UIC of [1,n] through [7,n]. Should the task be aborted or exit before doing the detach, the
Executive automatically detaches the device.

The attach/detach facility provides an automatic queueing mechanism for exclusive access to a
device. If one task attempts to gain exclusive access to a device while it is attached to another
task, the attach request will remain in the queue for the device until the currently attached task
detaches. Thus several tasks may have attach requests in the queue at once, and exclusive access
to the device will be granted to each in turn. However, this will not work for tasks running under
a system UIC, because attach requests issued by such tasks will be dequeued immediately and
then rejected by the handler, with a status of IE.DAA (device already attached).

In a timesharing system, devices can be attached in the same manner as described above, but by
real-time tasks only. Further, a device to be attached must not be among those made available to
timesharing users at timesharing start up.

In a timesharing system a device that is available for timesharing can be allocated to an individual
terminal by the PDS> ALLOCATE command (see the IAS PDS User’s Guide). Allocation gives the
terminal the exclusive use of the device.

Real-time exclusive use and timesharing exclusive use of devices should be separated as far as
possible. However this is not practical in many cases. Timesharing tasks can use the attach
mechanism if the device is not already attached and not already allocated, or if the device is
already allocated to the terminal for which the task is running. If the device is already attached to
another task or allocated to another terminal, the attach request will remain in the queue for the
device, as previously described.

When a terminal is attached, the opportunity can be taken:

1 In a real-time or multi-user system, to specify a task’s response to CT/C, in place of a return to
MCR or PDS.

2 In any type of system, to provide a response to unsolicited input at the terminal.

In these cases the function code I0.ATA is used in place of IO.ATT and either or both of two further
AST entry point parameters are supplied in the QIO call. See Chapter 2, Sections “I0.ATA” and
“I0.DET”.

Read Logical/Read Virtual Block

QIO$ IO.RLB, lun,ef,pri,iosb, ast,<stadd,size,p3> ; Read Logical
QIOS$ IO.RVB, lun,ef,pri,iosb, ast,<stadd,size,p3> ; Read Virtual

where:

Parameter Meaning

stadd Virtual starting address of the user’s buffer for data input.

size Size of the data buffer in bytes.

p3 Optional parameter(s) to specify special read modes or further arguments for certain devices.

1-4



1.6.3

1.6.4

1.7

1.7.1

Introduction

The read logical block function reads an absolute block from a device, while read virtual block
reads a relative block within a file. On a sequential device like the terminal or card reader, there
is no difference in the functions.

Write Logical/Write Virtual Block

QIO$ IO.WLB, lun,ef,pri,iosb,ast,<stadd,size,p3> ;Write Logical
QIO$ IO.WVB, lun, ef,pri,iosb, ast,<stadd,size,p3> ;Write Virtual

where:

Parameter Meaning

stadd Virtual starting address of the user’s buffer for data output.

size Size of the data buffer in bytes.

p3 Optional parameter(s) to specify special write modes or further arguments for certain devices.

The write logical block function writes an absolute block to a device, while write virtual block
writes a relative block within a file. On a sequential device like the terminal or line printer, there
is no difference in the functions.

It is suggested that the write virtual block function (I0.WVB) be used for writes to all
non-file-oriented devices because the system performs an access check under I0.WVB, but not
in the case of IO.WLB. With I0.WLB a write can destroy the contents of a disk if output is
accidentally directed to the wrong device by an executive privileged task.

Cancel (KILL I/O)

QIO$ IO.KIL, lun,ef,pri,iost,ast

The 10.KIL function is issued in special cases where a user task cancels all of its requests (pending,
active and attach) for a particular device. This function is useful in releasing devices from which
responses are overdue.

Function codes for Mass Storage Devices

Mass storage devices (that is, DECtape, magnetic tape and disks) are used in two modes of
operation: Files-11 and direct. The use of Files-11 in a user task is described in the IAS I/0
Operations Reference Manual. The following sections describe the use of the direct mode in a user
task.

Use of direct mode I/0O on a device that has a Files-11 volume mounted cah result in destruction of
information or corruption of the Files-11 directories on that volume.

Direct Mode

Direct mode operation of a mass storage device is used for either of the following situations:

1 The mass storage device has a non-Files-11 format (for example, DOS format handled by
FILEX),



1.7.2

Introduction

2 The mass storage device is unformatted (for example, device used to dump data acquired by an
A/D converter).

When the MOUNT command (described below) is used to mount the device as FOREIGN, a user
task may perform I/O operations directly to any logical block on the device. The concept of a
virtual block no longer exists, since the system does not recognize the existence of files on the
device. When this mode of operation is entered, the I/O functions described in Section 1.7.3 and
Section 1.7.4 are available for use by a task.

For real-time or multi-user systems, any task has this access to a volume mounted as FOREIGN.
In timesharing systems, a user who mounts a volume as FOREIGN gains sole access.

Mounting for Direct Mode

In both of the cases mentioned above, the mass storage unit must be mounted as a foreign volume
before use, and dismounted after use by employing one of the following sets of commands. See also
the IAS PDS User’s Guide and the JAS MCR User’s Guide.

DCL Commands

To mount a volume:

PDS> MOUNT/FOREIGN xxn: volume
where:
¢ MOUNT - Is the DCL MOUNT command
* /FOREIGN - Specifies that the volume is foreign and does not have Files-11 file structure
* xx - Is the device name (for example, DT, DK,)
* n - Is the device unit number in the range 0 through 7

¢ volume - Is the volume identification
To dismount a volume:

PDS> DISMOUNT xxn: volume
where:
¢ DISMOUNT - Is the PDS DISMOUNT command
* xx - Is the device name (for example DT,DK,)
* n - Is the device unit number (0-7)

¢  volume - Is the volume identification

MCR Commands

To mount a volume:

MCR>MOU xxn:/CHA=[FOR]
where:
¢ MOU - Is the MCR MOUNT command

* xx - Is the Device name (for example DT, DK)

1-6



1.7.3

1.7.4

1.7.5

Introduction

* n - Is the Device unit number (0-7)
e CHA - Is the characteristics option

¢ [FOR] - Specifies that the volume is foreign and does not have Files-11 - file structure. The
brackets are mandatory.

To dismount a volume:

MCR>DMO xxn:
where:
e DMO - Is the MCR DISMOUNT Command
* xx - Is the Device name (for example DT, DK)

¢ n - Is the Device unit number (0-7)

Attach/Detach

These functions are identical to the functions described in Section 1.6.1.

Read/Write Logical Block

I/0 requests for mass storage devices in direct mode are issued via the QIO$ system macros whose
formats are:

QIOS IO.RLB, lun,ef,pri, iosb, ast,<stadd, size, comp,blkh,blkl>
QIOS I0.WLB, lun, ef,pri,iosb, ast,<stadd, size, comp,blkh,blkl>

where:

Parameter Meaning

stadd Virtual starting address of user’s buffer for data input or output. (This parameter must be on a
word boundary and in some cases (for example RP03) an even word boundary.)

size Size of the data buffer in bytes. The size must be even. For some peripherals it must also be a
multiple of 4 bytes, or of 1000 bytes (256 words).

comp 0 (retains compatibility with non-mass storage logical read/write functions)

blkh, bikl Block-high, block-low. Double precision number indicating the first logical block on the mass
storage device on which the transfer is to take place; this forces block structure on word-oriented
mass storage devices. The maximum value of each parameter depends upon the mass storage
capacity of the unit.

Compatibility

Direct mode operation of mass storage devices promotes system compatibility and device

independence. The QIO system macro format for the logical write function is similar for both

the disk and the line printer. Therefore, a user task that dumps large streams of text to a disk via
a logical write function would not be affected by the reassignment of its LUN to the line printer
if some condition makes this transfer of devices necessary. The parameters stadd and size are the
same for the disk and line printer; however, the parameter, comp=0, implies no carriage control

1-7



1.7.6

1.8

1.8.1

Introduction

on the line printer (above that already imbedded in the text). The parameters, blkh and blkl are
ignored by the line printer handler task.

Status Returns

The symbolic status return codes are used to determine the success or failure of a QIO system
macro. The symbolic codes are compared with the value returned in the low order byte of the I/0
status block. Status return codes have a two letter prefix of either IE or IS, a period and a three
letter suffix. For example, IE.DNR is the symbolic code for the status return that means Device
Not Ready. Each device handler chapter contains a list of the symbolic status return codes for the
handler. Appendix A contains a complete list of the symbolic codes and their definitions.

Devices Supported

The chapters that follow in this manual explain in detail the I/O support provided for the standard
IAS devices listed below:

*  Terminals

* AFC-11 and ADO1 analog/digital converters

* Disk

e UDC-11

e DECtape

¢ DECtape II

¢ Magnetic tape
e LPS-11

¢ Card Reader

* Line Printer

* MO pseudo device

* Paper Tape Reader/Punch
* Cassette Tape

*  Null Device

Characteristics Words

Each device unit in IAS has four characteristics words that are set or implied at system generation
by the DEV directive. These words are stored in the system’s Physical Unit Directory (PUD) with
offsets U.C1, U.C2, U.C3 and U.C4 from the address of the PUD entry for the particular unit. For
task access to the PUD, PUD layout and the layout of words 1 and 4 (offsets U.C1 and U.C4) see
the IAS Guide to Writing a Device Handler Task, Chapter 2 and Appendix B.

The layout of words 2 and 3 (offsets U.C2 and U.C3) depends on the nature of the device, for
example whether the device is random-access or not. Words 2 and 3 are described in the relevant
chapters of this manual for devices for which they are defined. For devices for which words 2 and
3 are not described these words are reserved for use by the IAS system.



2.1

2.1.1

2.2
2.2.1

Terminal Handlers

Terminal Support
Terminal support is provided by the following handlers:

1 The single-terminal handler (TT01) supports one Teletype®-compatible terminal on a DL-11
line with very limited features. (It has no typeahead, no [Ctd/O] no [CtiR], no XON/XOFF). It
should be used only on minimum configurations where space is at a premium.

The single-terminal handler TTO01 is NOT supported in multiuser and timesharing systems.

2 The multiple-terminal handler (TT) supports many terminals on all types of interface and has
a large number of additional features.

TTO1 is described in Section 2.12.
Where more than one terminal is required TT must be used (See sections 2.2 through 2.10).

The terminal handler is installed with TT.... as the task name.

Interface Support

The following standard Communication Line Interfaces are supported:
¢ KL11 (at 300 baud or less)

* DL11-A,-B,-C,-D,-E

e DJi1

* DHI11

e DHI11/DM11-BB

* DCI11 (at 300 baud or less)

e DZ11, DZQ11, DZV11

e DHV-11, DHV11, DHQ11, DHF11

Character Input From A Terminal
Special Characters

Most characters are passed directly to the program performing input. Control characters and
certain others are used for special purposes and are described below (see Section {Cti/B]’ to
Section“Other Special Characters” together with Section “Lower Case Characters”).

To input a control character, for example [CtlT], press and while this key is still down press the
key indicated, in this case [}

® Registered Trademark of the Teletype Corporation.



Terminal Handlers

(Start Paper Tape Input)

On a terminal set with low-speed paper tape reader support, signals to the computer to start
reading the tape.

The general function of [CtiC]| is to alert the operating system.

The effect of depends upon the CLI (Command Language Interpreter) allocated to the
terminal, and upon the application tasks running at that terminal.

In a real-time or multi-user system, if MCR is allocated to the terminal, MCR will prompt for
command input. If DCL (PDS) is allocated to the terminal, it will be activated or, if it is already
active, it will prompt for further input.

In a timesharing system, on an inactive (logged-out) terminal, [CtVC] activates the Command
Language Interpreter (CLI) allocated to the terminal, for example, PDS. On an active terminal the
effect is CLI-dependent. Typically, any currently active task is suspended and the CLI will prompt
for command input.

In either case, a task running at the terminal may claim [Ct¥C] using either the attach-with-ASTS
QIO (see Section “IO.ATA”), in real-time or multi-user systems, or the facilities of the Timesharing
Control Services (TCS), in timesharing systems. The IAS Guide to Writing Command Language
Interpreters describes the TCS facilities.

can affect type ahead in one of two ways:

1 There is no effect. Type-ahead (see Section 2.2.2) remains intact and any read currently under
way is unaffected.

2 All type-ahead is flushed. If there is a read under way all characters typed so far are discarded.
The read is terminated with a status of IS.CC. If output has been suspended by [CulS] it is
resumed as though [Ct/Q] had been typed.

Method (1) is normal for real-time and multi-user systems and method (2) for timesharing systems.
However, this may be changed for each terminal either at system generation, or dynamically using
the appropriate command (see the IAS PDS User’s Guide or the IAS MCR User’s Guide.

[CwiK], [CtiL] [Ctr]

These characters may be used in place of vertical tab, form feed and horizontal tab respectively, on
terminals which do not have the corresponding keys.

While terminal output is in progress, typing suppresses further output from the same task
until one of the following occurs:

1 Another is typed. Alternate have the effect of suppressing and enabling output.
2 Another task performs a write to the terminal.

3 A successful attach or detach QIO is performed.
4 A write and cancel [Ct/0] (10.CCO) is performed.

(XON)
To be used to resume output after it has been suspended by [Cti/S] (see Section ‘{CtWS]’).

2-2



Terminal Handlers

The effect of [CtVR] depends on whether or not a read is currently being processed.

If a read is being processed, a “clean copy” is printed of all that has been typed on the line so far
with no trace of erased characters. This is particularly useful on hardcopy terminals after many
erasures have been made. On timesharing systems, the retyped line is preceded by the prompt, if
any.

If there is no read under way, may be used to check the current line of type-ahead. If
“immediate-processing” type ahead is in use (See Section 2.2.2, mode 3), the line currently being
typed will be printed.

There is no limit to the number of times may be typed for a single line.

(XOFF)

Typing at any time will temporarily suspend output from the terminal. Unlike [CklO] [Cui/S]
does not result in the loss of any output. Output is resumed by typing [Ct/Q] (or see Section
{GHIZY).

(Terminate Paper Tape Input)
See Section 2.10.

Typing [CtrVU] will cancel all characters typed on the line so far while a read is in progress. On
timesharing systems, the prompt (if any) is repeated. The line may then be started again.

Typing will flush all type-ahead. There is no other effect. If there is a read in progress [Ct/V]
has no effect.

On only real-time and multi-user systems typing will invoke a terminal-specific task called
TTYNxx, where xx is the terminal number. If a task of this name is not installed there is no effect.
Any read or type-ahead remains unaffected.

This character terminates the current input line with a status of IE.EOF (end-of-file), and echoes
as “AZ”. Any characters already typed in the line are passed to the program doing the read.

On a VT61 set in escape sequence mode, Ctrl/? has the effect of ALTMODE (see Section “Altmode”).
Carriage Return

This character terminates the current line of input, with a status of IS.CR.

ALTMODE (Escape)

This character also terminates the current line of input, but with a status of IS.ESC. Some older
Teletype* devices produce a non-standard character when the “ALTMODE” key is pressed. For this

to be recognized the terminal must have been set up appropriately (at system generation or by the
TER (MCR) or SET TERMINAL (DCL) commands).

2-3



2.2.2

Terminal Handlers

Normally this character is echoed as “$” followed by carriage-return. However, when the handler
is built as part of the system generation process it is possible to specify that no echo at all be
produced.

This gives compatibility with earlier versions of IAS and RSX-11D, and RSX-11M.

A terminal may be set up as an “escape sequence” terminal. In this case the effect of escape is as
described in Section 2.8. See also Section {Ctl?]".

Rubout

This character erases the last character typed on the current input line. Each time it is typed, a
further character is erased, until all characters on the line have been removed. On a hard-copy
terminal, the characters erased are enclosed between backslashes (a horizontal tab is printed as
backslashes two spaces). On a VDU, the character is physically removed, and the cursor is left
where it was before the character was typed.

Other Special Characters
All remaining special characters can be divided into two groups:

1 Characters that are echoed (as themselves) and passed to the program that requested the read.
This group consists of (bell), form feed, vertical tab and line feed.

2 Characters that are ignored. This group includes all other characters whose ASCII code is less
than 40 (octal).

Lower Case Characters

Lower case characters in this context are those that are in the 96-character ASCII set, but not in
the 64-character set. This includes not only the lower case letters but also “”, “{”, 4}”, “ | ”, and “~”.

If the terminal is set as “NOLOWERCASEKEYBOARD?”, all lower case characters are converted to
their upper case counterparts (the non-alphabetic characters become “@”, “”, “[”, “J”, “\”, and “/”,)
as they are read.

If the terminal is set as “LOWERCASEKEYBOARD”, and “NOLOWERCASEINPUT”, characters
are normally converted to upper case as they are read. If type-ahead [Ctr/R] is used, the characters
will be printed in lower case even though they will be seen as upper case by the reading program.
If a read with no case conversion (TF.RNC) is used, lower case characters will be passed.

If the terminal is set as “LOWERCASEINPUT”, lower case characters will be echoed and passed
on as such to tasks doing input, even if they do not specify TF.RNC.

Type-ahead

The name “type-ahead” refers to characters that are typed while there is no read in progress from
the terminal. The terminal handler can be set, for each terminal, to process type-ahead in one of
three ways:

1 Ignore type-ahead. Any typed-ahead characters result in a “BELL” code being sent to
the terminal, but are otherwise ignored. This mode of operation is the most suitable for
inexperienced users who may find other modes confusing.

2 Store type-ahead exactly as typed and process it only when it is obtained by a read request
(“deferred processing” mode). This is the simplest mode to understand. It means, for example,
that if rubouts or [CtU] are typed ahead, they are echoed exactly as though they had been
typed in response to the prompt. Type-ahead is ineffective since the character

2-4



2.3

2.3.1

2.3.2

2.3.3

Terminal Handlers

is not processed until the read is under way. A maximum of 80 (decimal) characters may be
typed-ahead.

3 Perform some processing as characters are typed, but echo only when they are read by a
task (“immediate processing, deferred echo” mode). Characters such as|Ct/U] and rubout
are processed immediately, so that when the line is echoed a “clean copy” is seen. This mode
produces the cleanest, most legible log of console operation and makes it clear which type-ahead
has been read and which is still in the handler’s buffer. If a user believes that a typing mistake
may have been made, the type-ahead facility can be used to inspect the current line.

Problems may arise in connection with programs such as ODT which use read-pass-all (Section
“TF.RAL”) to perform their own non-standard character processing. When the handler detects
a read-pass-all request, it temporarily switches to “deferred processing” mode. If characters are
typed ahead before the program runs, then and rubout, in particular, will be processed in
“immediate processing” mode. This situation is unlikely to arise a great deal in practice, but if
it does, “deferred processing” mode may be more appropriate.

The normal default mode is (3), “immediate processing”, but this may be changed during system
generation.

Regardless of read-ahead type, the characters [Ctl/C], [CtlVO], [CtVS] (XOFF) and (XON) are
effective as soon as they are typed. Section 2.11.7 describes additional ways of processing these
characters.

Character Output to a Terminal

Most characters are simply copied directly from the user’s buffer to the output device or from
the user’s input in the case of echo. Some characters are treated specially by the handler as
described below. For a “write pass all” request (Section “TF.WAL”) all characters are passed with
no interpretation.

Escape (ALTMODE)

Escape, character code 33 (octal), is passed unchanged to the terminal.

Form Feed

This character is normally replaced by six line feeds. However, a terminal may be set to simulate
form feed so that the effect is as it would be on a lineprinter. It is also possible to specify that the
device has hardware form feed, in which case no interpretation is provided.

Horizontal Tab

For terminals which do not have hardware horizontal tab, this character is simulated to provide
tab stops every eight character positions across the page. Rubout after horizontal tab causes the
handler to remove the necessary number of spaces on a scope.

If a terminal is specified as having hardware horizontal tabs, the handler assumes that tab stops
are at every eight spaces, unless the terminal is also specified as having non-standard tabs.

2-5



2.3.4

2.3.5

2.3.6

2.4
2.4.1

Terminal Handlers

The VT05 and VT5x show rubout over tab correctly on the screen except when the tab is in one of
the last eight character positions in the line. On VDUs with non-standard hardware tabs, rub out
removes one space. If true cursor positioning is essential in such cases the terminal should be set
as having no hardware tabs, so that the tabs are simulated by software.

Line Feed

This character normally has an implicit Carriage Return associated with it. To advance the paper
without returning the print position to the left hand margin the character must be output in
write-pass-all mode (see Section “TF.WAL").

Lower Case

As described in Section “Carriage Return”, “lower case” includes certain non-alphabetic characters
as well. If the terminal is set as “LOWERCASEOUTPUT”, lower case characters are passed intact
but otherwise they are translated to their upper-case counterparts.

Vertical Tab

This character is normally replaced by four line feeds. If form feed simulation is in effect the
number of linefeeds necessary to reach the next vertical tab stop is output. Vertical tab stops are
assumed to be every six lines, except at the bottom of the page.

Function Codes
Read

The basic read function is I0.RLB (Read Logical Block). The general format of a read request is:

QIO$ fc,lun,ef,pri, iosb,ast,<stadd, size,tmo>
where:
* “stadd” - is the start address of the user buffer and may be odd or even.
¢ ‘“gize” - is the buffer size in bytes, which must be non-zero and less than 8128 (decimal).
*  “tmo” - is the timeout for the read, in units of approximately ten seconds (with TF.TMO only).

The I0.RLB function may be modified by “or”ing it with one or more of the following sub-function
codes using the logical “or” operator (“!”).

TE.RAL (Read pass all)

All characters, including control characters, null and rubout, will be placed in the user buffer.
Since no characters are recognised as terminators the read will only complete when the buffer is
full or if an error condition arises. For most purposes therefore the buffer size should be just one
byte. If all eight bits of the characters are to be passed in the buffer, the terminal characteristic
“P8B” should be set, otherwise the parity bit will be removed. The characters [Ct¥C], [Ctr/O], [Cr/Q),
[Ct/S] and [Ctr/X] will not however be passed to the requesting task, but will have their usual effect.
This may be altered by setting the terminal as “BINARY”, see Section 2.11.6.

2-6



Terminal Handlers

TF.RNE (Reacl with No Echo)

No characters are echoed, not even carriage return. Rubout and [Ct/U] have their usual effect
but produce no output. has no effect. This function may be used when a program wishes
to perform its own echoing (normally in conjunction with read-pass-all, above), or where the
information being input must be kept secure, for example, passwords.

TF.RNC (Read with No Case Conversion)

If the terminal is set to LOWERCASEKEYBOARD and NOLOWERCASEINPUT, lower-case
characters will normally be converted to upper case. This function code overrides the conversion so
that lower-case characters may be read.

TF.TMO (Reacl with Timeout)

“TMO?” is the time, in units of approximately ten seconds (plus or minus 0.5 seconds), which may
be allowed to elapse between successive characters being typed. If this time is exceeded the read is
terminated with a status of IS.TMO. All characters previously typed are passed in the buffer. Only
the low byte of “tmo” is significant. The high byte is reserved for future use and must be zero.

If a task issues a read request with “tmo” set to zero, the request will always be completed
immediately. If one or more completed records of type-ahead are available, the first will be read
in the usual way. Otherwise, all available characters will be read, with a status of IS. TMO.
This facility may be used, for example, to ascertain whether input is available without waiting
if it is not, or, by using it repeatedly until no more characters are returned, to flush and ignore
type-ahead.

Features of Read Function Codes
The function code I0.RVB (read virtual block) may be used instead of I0.RLB.

With IO.RLB any of the modifiers may be combined, using the logical “or” operator (“1”), except
that if TF.RAL is specified the only other values permitted are TF.RNE and TF.TMO.

A read request is terminated by one of the following events:
1 The user buffer is filled. The status in the first word of the I/0 status block is IS.SUC.

2 One of the terminator characters carriage-return or altmode is typed. The status values are
IS.CR and IS.ESC, respectively.

3 An escape sequence is typed. See Section 2.7 for a discussion of escape sequences.
4 The timeout limit is reached between characters (TF.TMO only). The status return is IS. TMO.

One of the error conditions described in Section “Read Error Conditions” is detected.

The second word of the I/0 status block a]v&;ays contains the number of bytes transferred into the
user buffer, even after an error condition.

If the number of characters input before a terminator is exactly equal to the buffer size, the request
will be terminated with a status of IS.SUC. A subsequent read will receive a status corresponding
to the terminator, with a character count of zero.

Read Error Conditions
The following error conditions may arise for a read request:

¢ IE.ABO - The handler was unloaded while the request was pending or the request was aborted
by IO.KIL.

2-7



Terminal Handlers

IE.BCC - A framing error occurred. IE.BCC will be returned if:
1 the line becomes disconnected from the terminal

2 the “break” key is depressed

3 the line connecting the terminal to the computer is faulty
4 the terminal speed is set incorrectly

IE.DAO - A data overrun error occurred, that is the characters were received from the terminal
more quickly than the computer could handle them. IE.DAO normally indicates that the
processor is severely overloaded.

IE.DNR - The request was made to a dialup line which is not connected.
IE.EOF - This is not strictly an error. It means that [CuVZ] has been typed at the terminal.

IE.FHE - An internal buffering error has occurred in the handler. This may occur if the
handler has been built with too small a node pool.

IE.OFL - The terminal was specified in System Generation Phase 1 and has a PUD entry, but
its interface is not physically present in this configuration.

IE.SPC - The specified buffer (or prompt string) is wholly or partially outside the user’s address
space or is longer than 8128 (decimal) bytes.

IE.VER - A character had incorrect parity. The offending character is lost.

Read with Prompt (10.RPR)
The basic read-with-prompt function code is IO.RPR. The general format is:

QI0$ fc,lun,ef,pri,iosb,ast,<stadd,size,tmo,pradd,prsize>

where:

stadd - is the start address of the user buffer and may be odd or even.

size - is the buffer size in bytes, which must be non-zero and less than 8128.

tmo - is the timeout for the read, in units of approximately ten seconds.

pradd - is the start address of a user buffer containing a prompt string. It may be odd or even.

prsize - is the length, in bytes, of the prompt string. It must be non-zero and less than 8128,

All the subfunctions and error returns noted in Sections “I'F.RAL” through “Read Error Conditions”
apply equally to IO.RPR as to IO.RLB. For example, to issue a read-with-prompt and timeout, you
specify the TF.TMO subfunction (See Section “TF.TMO”).

The function I0.RPR performs a read immediately preceded by a prompt. It has the following
advantages over performing a separate write before the read:

1

Only a single QIO is needed, reducing both the complexity of the program and the system
overhead.

There is no possibility of two tasks simultaneously prompting and trying to read, leaving the
user unsure which task is receiving the input, since the prompt and the read are not separable.

If the user types or the prompt will be repeated. It will also be repeated if the read
is interrupted by a write (see Section “TF.WBT”).



24.2

Terminal Handlers

There is no implicit carriage control in the prompt. In particular, if the prompt is to appear on a
new line, it must include the characters carriage return and line feed.

IO.RPR is NOT equivalent to a write (I0.WLB) followed by a read (I10.RLB).

1 The handler assumes that the prompt string will be fairly short and does not take the same
precautions against running out of internal buffer space as it does for a write.

2 The prompt will be repeated under the circuamstances noted above.

3 There is no provision for a vertical format character in the prompt.

The following example will perform a read-with-prompt (INPUT:). If no input is received in ten
minutes, the read will be terminated.

PROMPT: .ASCII < 15 >
< 12 > /INPUT: / ;PROMPT
PRSIZE=.~PROMPT

.EVEN
TMO=10,*6 ; TIMEOUT = 10 MINUTES
IOSB: .BLKW 2
BUF: .BLKW 100.
BSIZ=,-BUF
START:

QIOWSS #IO.RPR!TF.TMO, #5, #1,, #I0SB, , <#BUF, #BSI1Z, #TMO, #PROMPT, #PRSIZE>

c2_Write
The basic write function is I10.WLB (write logical block). The format of a write request is:

QIO$ fc,lun,ef,pri,iosb,ast,<stadd,size,vfc>
* “gtadd” - is the start address of the buffer (which may be odd)
* ‘“gize” - is the buffer size in bytes, which must be less than 8128 (decimal)

s “vfc” - is the vertical format character, which specifies the paper spacing action to be taken
for this write. The legal values are described in Table 2-1. It may also be an escape sequence
identifier; see Section 2.7.2.

The I0.WLB function may be modified by “or”ing it with one or more of the sub-function codes that
follow in Sections “TF.WAL” to “TF.SYN”".

Table 2-1 Vertical Format Control Characters

Octal

Value Character Meaning ,

040 blank SINGLE SPACE: - Outpdt a line feed, print the contents of the buffer, and output a
carriage return.

060 0 (zero) DOUBLE SPACE - Output two line feeds, print the contents of the buffer, and

output a carriage return. The buffer contents are printed two lines below the
previously printed line.

All other vertical format characters are interpreted as space (octal 040).

2-9



Terminal Handlers

Table 2—-1 (Cont.) Vertical Format Control Characters

Octal

Value Character Meaning

061 1 (one) PAGE EJECT - Output a form feed, print the contents of the buffer and output a
carriage return normally. The contents of the buffer are printed on the first line of
the next page. See Section 2.3.2.

053 + (plus) OVERPRINT - Print the contents of the buffer and perform a carriage return,
normally overprinting the previous line.

044 $ (dollar sign) PROMPTING OUTPUT - Output a line feed and print the contents of the buffer.

This mode of output is intended for use with a terminal where a prompting
message is output and input is then read on the same line. However it is
recommended that the I0.RPR function be used to perform a read where a
prompt is required.

000 null INTERNAL VERTICAL FORMAT - The buffer contents are printed without addition
of vertical control characters. In this mode, more than one line of guaranteed
contiguous output can be printed per I/O request queued.

All other vertical format characters are interpreted as space (octal 040).

TE.WAL (Wrlte Pass All)

All characters in the buffer are passed directly to the terminal. It is the user’s responsibility to
provide filler characters where required, to simulate tab functions and so on. This function must be
used to output cursor control sequences where the characters do not have their usual significance.
After a write-pass-all request, the handler loses track of the horizontal and vertical position. Also,
if a read follows and is to start on a newline, a line feed must be output explicitly. If the terminal
is set for parity generation, bit 8 of the character will be replaced by the parity bit for bits 0-7.
Otherwise, all eight bits are passed to the terminal.

TF.CCO (Cancel

If is in effect it is cleared before the write is commenced. This ensures that the output will
appear on the terminal.

TF.WMS (Write Message)

Normally a task running under [1,1] can perform a write to another terminal even if it is set in
“NOMESSAGES” mode (see Section “Features of Write Function Codes”. By using this variant of
the write function the request is treated as though it came from a task not running under [1,1].

TF.SYN (Synchronous Mode)

Normally, “I/O done” is performed for a write request as soon as it is queued (see below). However,
for some applications it is important to know when the final character has been output, for
example, so that the time at which a following read begins can be known accurately. If the
subfunction code TF.SYN is set, I/O completion will not occur until the last character has

been output. The IO.KIL function issued before completion has occurred will abort the write
immediately.

2-10



Terminal Handlers

TF.WBT (Write Break Through)

The subfunction TF.WBT causes a write to be processed even if a read is under way and some
characters have been typed. The action is:

1 ARis printed at the end of the characters typed so far.
2 The write is performed.

3 The previously typed characters are repeated (unless the read specified no echo), preceded by
the prompt, if any.

“If output at the terminal has been suspended by TF.WBT will not cause it to be resumed.
Only typed at the terminal has this effect.

Features of Write Function Codes
The function code I0.WVB (Write virtual block) may be used instead of I0.WLB.
More than one modifier may be combined on a single request, using the logical “or” operator.

The handler normally buffers the characters to be written internally, and is able to complete the
request as soon as it is issued. This means that the event flag (if any) specified in the QIO will be
set as soon as the directive is issued, and the AST (if any) will be obeyed as the next instruction
after the directive. A user task must not depend on a delay between issuing the request and
being notified of its completion. Exceptionally, if the handler is heavily loaded and buffer space
is limited, there may be a delay. On timesharing systems only, checks are made before a write
request is performed. If the terminal is set in “NOMESSAGES” mode, only write requests from

a task running on that terminal or from tasks running under [1,1] will be accepted. Other write
requests will be rejected with a status of [E.PRI.

If a read request is outstanding on a terminal when a write is issued, the read may be suspended
while the write is performed. This will only occur if nothing has been typed on the keyboard for
this read. If the read was a read-with-prompt (I0.RPR), the prompt will be repeated when the
write is complete.

On the operator’s terminal, that is, the terminal to which Console Output (CO) is redirected,
a write will break through a read at any time. This will also happen if the write specified the
subfunction TF.WBT (Write Break Through) (see Section “TF.WBT”).

When a write request is completed, the first word of the 1/0 status block contains the success or
failure code (see Section “Write Error Conditions”), and the second word contains the number of
bytes transferred.

Write Error Conditions
The following error codes may be returned for a write request:

¢ JE.ABO, IE.DNR, IE.OFL, IE.SPC - These have the same meaning as for a read (see Section
“Read Error Conditions”)

¢ JE.PRI - The terminal was set in “NOMESSAGES” mode.

2-1



2.4.3

Terminal Handlers

Set/Get Terminal Characteristics

This group of functions allows a user task to discover the characteristics of a terminal or to change
them dynamically. There are a number of different functions which are discussed separately below.
The general format is:

QI0$ fc,lun,efn,pri,iosb,ast,<pl,p2,p3,pd,p5,p6>

Features of Set/Get Characteristics

To avoid the proliferation of highly specific function codes, the names of these functions are of
the form SF.xxx. These symbols and all others specific to this section are defined in the module
TTSYM which is automatically extracted from SYSLIB, if required. These symbols may also be
defined locally using the macro TTSYM$ which may be defined using the MCALL directive.

When a set characteristics (as distinct from get characteristics) is performed, the current state of
the terminal characteristics will be saved by the handler, unless this has already been done. This
means that a user can change the terminal characteristics but they can subsequently be restored,
for example on logout, by the function SF.RDF (Section “SF.RDF”).

It may be necessary to make a permanent change in characteristics, for example, if a terminal is
replaced with a different model. This is done by “OR”ing the value SF.DEF and the function code.
There is an implicit restore defaults (SF.RDF) before the change is made, in this case.

Only a task running on a terminal, or one running under a UIC of a [1,1], is allowed to set
the characteristics of that terminal. Only a task running under [1,1] may change the default
characteristics.

The set of characteristics is listed in Table 2-2. Each has a name of the form TC.xxx by which
it is always referenced. Many characteristics are binary valued, that is their value must be 0
or 1. Others may take a value in a range. The terminal type (TC.TTP) and line speed (TC.RSP
and TC.XSP) must have values selected from the symbolic names in Table 2-3 and Table 24
respectively.

Some characteristics can be read but cannot be changed dynamically. These are indicated as “fixed”
in Table 2-2.

A set or get characteristics function is always performed immediately, even if the terminal has a
read or a write in progress. If a set characteristics request immediately follows a write request,
the write should normally include the function qualifier TE.SYN (“TF.SYN”) to ensure that all
characters have been output before any change is made.

2-12



Table 2-2 Characteristics and their Names

Terminal Handlers

Max. Val. Depends on
Name Description (Note 1) Fixed? (Note 2) Note
TC.ABD Autobaud detection B N $$ABD
TC.ACR An automatic carriage return/line B N
feed is to be supplied when a
character to be printed would go
beyond the end of the physical line.
TC.EDT Terminal performs edit functions. B N
TC.ALT Terminal requires recognition of the N
alternative aitmode characters 175
and 176 (octal). B
TC.ANI ANSI CRT terminal B N
TC.ANS Terminal is to operate in ANSI B N 15
escape sequence mode. If ANS is
not set then VT52 escape sequence
mode is used.
TC.AVO VT-100-family terminal display B N
TC.BIN If terminal is set in deferred B N 14
processing mode, all characters
are passed for a read-pass-all.
TC.BLK The terminal is a VT61 and is to B N B$$LCK 11
operate in block mode.
TC.BSP Terminal recognizes and is able to B N B$$SP 8
interpret the "back space” character
TC.CEQ It ESQ is specified and CEQ is B N E$$SEQ
set, escape sequences are to be
input in compatible mode (see
Section 2.7.1).
TC.CCF [CHrIC] flushes all input (see Section B N
‘{cwsl)
TC.CSQ If terminal is set in deferred B N 14
processing mode, all characters
except and are passed
for a read-pass-all.
TC.CTC If terminal is set in deferred B N 14
processing mode, all characters
except [Clr/C], [CtrUS] and [CtrlQ] are
passed for a read-pass-all.
TC.DEC Digital CRT terminal B N
TC.DLU Line is a dialup line B Y D$S$IAL
TC.EDT Terminal performs editting functions. B N
TC.EPA If PAR is specified and EPA is set, B N
parity should be even, otherwise it
should be odd.
TC.ESQ Terminal requires escape sequerce B N E$$SEQ

support (see Section 2.7).

2-13



Terminal Handlers

Table 2-2 (Cont.) Characteristics and their Names

Max. Val. Depends on
Name Description (Note 1) Fixed? (Note 2) Note
TC.FDX Terminal is to operate in full duplex B N
mode (see Section 2.11.5).
TC.FRM The terminal is a VT61 and is to B N B$$LCK 11
operate in forms mode.
TC.HFF Terminal recognizes and is able to B N
. interpret form feed and vertical tab.
TC.HFL Horizontal fill requirement. 7 N 7
TC.HHT Terminal recognizes and is able to B N 8
interpret horizontal tab, and does not
require software simulation.
TC.HLD The terminal is a VT5x or a VT61 B N E$$SEQ or 1
and is to operate in hold screen H$$OLD
mode.
TC.IMG Messages sent from a task running B N 12
at another terminal are to be
rejected.
TC.IsL Subline on interface. 15 Y
TC.LCP Device has local copy, i.e. echoes B N
every character itself as typed.
TC.LPP Length of page in lines. 255 N S$$FF
TC.LVF Terminal is an LA36 with vertical B N
format option. Form feed and
vertical tab will be followed by 66
null fillers.
TC.NEC Echo suppressed B N
TC.NKB Terminal is not enabled for input; B N
read requests will be rejected.
TC.NL Terminal generates “newline” instead B N N$$L
of “carriage return’.
TC.NPR Terminal is not enabled for output; B N
write requests will be rejected.
TC.NST Terminal has the “HHT" attribute B N
but does not provide the standard
interpretation (tab stops every 8
spaces).
TC.PAR Line requires parity checking on B N 10
input and parity generation on
output.
TC.P8B All 8 bits of the character will be B N
passed for a read- pass-all request.
The terminal should also be set to
“deferred processing” read ahead
mode
TC.RAT Read-ahead type. 2 N 5

2-14



Table 2-2 (Cont.) Characteristics and their Names

Terminal Handlers

Max. Val. Depends on
Name Description (Note 1) Fixed? (Note 2) Note
TC.RGS Terminal supports REGIS B N
instructions
TC.REM Line is remote. B Y D$$IAL
TC.RSP Receiver speed (keyboard speed of N 4
terminal).
TC.SCP Scope (rubout can physically erase B N
characters).
TC.SFF Full simulation of form feed and B N S$$FF
vertical tab should be provided
instead of providing just a “token”.
TC.SMO Enable lower-case output. B N
TC.SMP Force lower-case input. B N 9
TC.SMR Enable lower-case input. B N 9
TC.TAP The terminal has a low speed paper B N T$$SAPE
tape reader. See Section 2.9.
TC.STB E:xtra stop bit required. B N
TC.TTP Terminal type. N 6
TC.UCO User-definable characteristics B N 13
through
TC.UC9
TC.VFL Vertical fill (6 nulls) required after line B N
feed, form feed or vertical tab.
TC.WID Width of page or screen in 255 N 3
characters.
TC.XSP Transmitter speed (receiver speed of N 4
terminal).
TC.8BC Pass eight bits on input, even if not B N

binary input mode.

Notes referred to by number in columns 3, 5 and 6 of Table 2-2.

1 The minimum value of every characteristic is 0. “B” indicates that the characteristic is binary
with a value of 0 or 1.

2 If the assembly parameter specified in column 5 is zero, this characteristic is not available and
any attempt to reference it will return an error of SE.NIH.

3 The value specified or returned is actually one greater than the width in characters of the
device, for example, 81 for an LA30.

The value of a line speed characteristic must be one of the values in Table 2—4.

The value specified or returned corresponds to one of the three read-ahead types described in
Section 2.2.2, that is:

0 - ignore type-ahead

1 - deferred processingy

2-15



Terminal Handlers

¢ 2 - immediate processing

6 The value specified or returned corresponds to the values in Table 2-3. Note that simply
setting this characteristic, by SF.SSC or SF.SMC, will not perform the implicit changes
described in Section “SF.STT, SF.STS”.

7 If this value is in the range 1-6, it specifies the number of null fillers to be supplied after a
carriage return. If it is zero, no fill is supplied. If it is 7, the fill is suitable for an LA30S,
provided the assembly parameter L$$30S is non-zero. See also note 8.

8 If TC.HFL, the horizontal fill count, is non-zero, a single null fill will be supplied after the
character.

9 TC.SMR corresponds to “LOWERCASEKEYBOARD” and TC.SMP to “LOWERCASEINPUT".
See Section “Lower Case Characters”.

10 This characteristic is only available on interfaces which perform hardware parity checking and
generation.

11 If a terminal which is not of one of the stated types has this characteristic set to 1, no error
will be returned but there will be no effect.

12 This corresponds to NOMESSAGES mode. See Section “Features of Write Function Codes”.

13 These characteristics are available for user modifications to the terminal handler. In the
Digital-supplied version, they are not given specific meanings.

14 See Section 2.11.7 for description of effects of reading control characters from terminals with
these characteristics.

15 The terminal must also be set to have escape sequence support (TC.ESQ set) and the terminal
handler parameter E$$SEQ must be non-zero. See also Section 2.8.

Table 2-3 Valid Terminal Types

Terminal implicit Characteristics Speed
Name Type (Note 1) Width Length (baud)
T.AS33 ASR33 TC.HFL=1, TC.STB 72 66 110
T.KS33 KSR33 TC.HFL=1, TC.STB 72 66 110
T.AS35 ASR35 TC.HFL=1, TC.STB 72 66 110
T.L30S LA30S TC.HFL=7 80 66 300
T.L30P LA30OP none 80 66 300
T.LA36 LA36 TC.ACR, TC.BSP, TC.LVF, TC.SMO, 132 66 300
TC.SMR
T.LA34 LA34 TC.HFL, TC.BSP, TC.SMO, TC.SMR, 132 66 300
TC.ACR ]
T.LA38 LA38 TC.HFL, TC.BSP, TC.SMO, TC.SMR, 132 66 300
TC.ACR
T.LA100 TA100 TCHFL, TC.HFF, TC.BSP, TC.SMO 132 66 1200
TC.SMR, TC.ACR
T.VT05 VT05 TC.ACR, TC.BSP, TC.HHT, TC.SCP, 72 20 2400
TC.VFL
T.VT50 VTS50 TC.ACR, TC.BSP, TC.HHT, TC.SCP 80 12 9600

2-16



Terminal Handlers

Table 2-3 (Cont.) Valid Terminal Types

Terminal Implicit Characteristics Speed

Name Type (Note 1) Width Length (baud)

T.VT52 VT52 TC.ACR, TC.BSP, TC.HHT, TC.SCP, 80 24 9600
TC.SMO, TC.SMR

T.VT85 VTSE5 TC.ACR, TC.BSP, TC.HHT, TC.SCP, 80 24 9600
TC.SMO, TC.SMR

T.VT61 VT61 TC.ACR ,TC.BSP ,TC.HHT ,TC.SCP, 80 24 9600
TC.SMO, TC.SMR

T.L180 LA1805 TC.HFF, TC.HFL=6, TC.SMO 132 66 2400

T.L120 LA120 TC.ACR, TC.BSP, TC.LVF, TC.SMO, 132 66 1200
TC.SMR

T.V100 VT100 TC.ACR, TC.BSP, TC.HHT, TC.SCP, 80 24 9600
TC.SMO, TC.SMR, TC.ANI, TC.DEC

T.V101 VvT101 TC.SCP, TC.HHT, TC.BSP, TC.ACR, 80 24 9600
TC.SMR, TC.SMO, TC.ANI, TC.DEC

T.V102 VT102 TC.SCP, TC.HHT, TC.BSP, TC.ACR, 80 24 9600
TC.SMR, TC.SMO, TC.ANI, TC.DEC,
TC.EDT

T.V105 VT105 TC.SCP, TC.HHT, TC.BSP, TC.ACR, 80 24 9600
TC.SMR, TC.SMO, TC.ANI, TC.DEC,
TC.RGS

T.V125 VT125 TC.SCP, TC.HHT, TC.BSP, TC.ACR, 80 24 9600
TC.SMR, TC.SMO, TC.ANI, TC.DEC

T.V131 VT131 TC.SCP, TC.HHT, TC.BSP, TC.ACR, 80 24 9600
TC.SMR, TC.SMO, TC.ANI, TC.DEC

T.V132 VT132 TC.SCP, TC.HHT, TC.BSP, TC.ACR, 80 24 9600
TC.SMR, TC.SMO, TC.ANI, TC.DEC,
TC.BLK

T.v2XX VT2XX TC.SCP, TC.HHT, TC.BSP, TC.ACR, 80 24 9600

TC.SMR, TC.SMO, TC.ANI, TC.DEC,
TC.AVO, TC.EDT

T.USRO (Note 2)
through
T.USR4

Notes on Table 2-3:

1 Unless otherwise stated, the following characteristics are set to 0 (or “NO”) whenever an
SF.STT or SF.STS request is made:

2 TC.BSP, TC.ESQ, TC.HFF, TC HFL, TC.HHT, TC.LCP, TC.LVF, TC.NL, TC.NST, TC.SCP,
TC.SFF, TC.SMO, TC.SMR, TC.STB, TC.VFL.

3 These names correspond to user-defined terminal types which may be included when the
terminal handler is built (see the IAS Installation and System Generation Guide).

2-17



Terminal Handlers

The value for the TC. RSP and TC.XSP characteristics must be one of the following symbols.

Table 2-4 Valid Terminal Speeds

Name Speed (baud)

S.0 0 (line disabled)

S$.50 50

S.75 75

$.100 100

S.110 110

S.134 134.5

S.150 150

$.200 200

$.300 300

$.600 600

S.1200 1200

$.2000 2000

$.2400 2400

$.3600 3600

$.4800 4800

$.7200 7200

$.9600 9600

S.EXTA DH11 External speed rate A
S.EXTB DH11 External speed rate B

SF.SSC (Set Single Characteristic)
This sets a single characteristic to a specified value. The parameters are:
¢ pl - characteristic name

* p2 - value to which it should be set
SF.SMC (Set Multiple Characteristics)

This sets several characteristics in a single operation. It is essential where two or more
characteristics must be changed simultaneously. For example it must be used to change the

line speed, represented as the two separate characteristics transmit speed and receive speed, on an
interface that cannot handle split-speed lines. The parameters are:

¢ pl - address of a buffer containing a list of characteristic/value pairs (see below)

* p2 - length in bytes of buffer (must be even, non-zero and less than 8128 (decimal)).

The buffer is a list of byte pairs of the form:
* . BYTE - characteristic name
e BYTE - new value

2-18



Terminal Handlers

SF.STT, SF.STS (Set Terminal Type)

This sets the terminal type (name TC.TTP) and also sets all other characteristics to the appropriate
value for that terminal type, for example width, length and fill requirements. SF.STS also sets the
line speed to the default value for that terminal type, for example 300 baud for an LA30. SF.STT
does not affect the line speed. The parameters are:

* pl - terminal type (see Table 2-4)
SF.GSC (Get Single Characteristic)

This function is complementary to SF.SSC. It enables a program to sense the value of a single
characteristic. The parameters are:

¢ pl - name of characteristic to sense

The current value of the specified characteristic is returned in the second word of the I/0O status
block.

SF.GMC (Get Multiple Characteristics)

This function is complementary to SF.SMC. It enables a program to sense the values of several
characteristics simultaneously. The parameters are:

¢ pl - address of a buffer in the format described below

¢ p2 - length, in bytes, of buffer (must be even, non-zero and less than 8128 (decimal).

The buffer format is a list of byte pairs of the form:
* _.BYTE - characteristic name

¢ _BYTE - space to receive value

SF.GAC (Get All Characteristics)

This function dumps all the characteristic settings for a terminal into a specified 16 word

buffer. It is intended to be used in conjunction with SF.SAC (below) for programs which modify
characteristics and want to reset them on exit even though their value may not be the default. The
characteristics are returned in their internal binary format which cannot be interpreted by a user
program; the significance of the individual bits varies depending upon the parameters used when
the handler is built. The parameters are:

¢ pl - address of 16 word buffer to receive characteristics

SF.SAC (Set All Characteristics)

This function takes a buffer filled by SF.GAC (above) and sets all characteristics (except those
which cannot be changed) accordingly. The parameter is:

* pl - address of 16 word buffer

Restore Defauit Characteristics

This function, which takes no parameters, restores the default values of the characteristics saved
“ when the first “set characteristic” was performed. If no default value has been saved, because no
changes have been made, this function has no effect.

2-19



2.5

Terminal Handlers

Error Conditions of Set/Get Characteristics

Some errors may occur which are common to those reported for other functions. These are:

IE.IFC - The handler has been built without the specified function (see the IAS System
Generation and Startup Guide).

IE.PRI - The requesting task is not running on the same terminal or not running under [1,1].

IE.OFL - The terminal was specified in system generation phase 1 and has a PUD entry, but
its interface is not physically present in this configuration.

IE.SPC - The specified buffer is wholly or partially outside the user’s address space, is zero
bytes long or is larger than 8128 (decimal) bytes.

Other errors are specific to this set/get group of functions. These are distinguished by an error
code of IE.ABO in the low byte of I/O status block word 1, with an error qualifier in the high byte.
These qualifiers are:

SE.ICN - Illegal characteristic name. A characteristic name was not one of the symbols
“T'C.xxx"” specified in Table 2-2.

SE FIX - Attempt to change one of the characteristics specified in Table 2-2 as being fixed.
SE.BIN - The value specified for a binary characteristic is not 0 or 1.

SE.VAL - The value specified for a non-binary characteristic is outside the permitted range.

SE.TER - The terminal type specified in an SF.STT or SF.STS function is not one of the
“T.xxxx” symbols specified in Table 2-3.

SE.SPD - An attempt has been made to set the speed of a line to a value which is not available
on the interface to which it is connected.

SE.SPL - An attempt has been made to set a different value for the receive and transmit
speeds on an interface which does not support split-speed lines.

SE.PAR - An attempt has been made to set a parity-checking type that is not supported by the
line interface involved.

SE.LPR - Some other parameter has been changed which cannot be supported by the interface
for a line.

SE.NSC - A line parameter change (for example, speed) has been specified but the interface
does not have settable characteristics.

SE.UPN - The handler does not have enough internal buffer space to save the default
characteristic settings.

SE.NIH - The specified characteristic does not exist in this handler. The parameter file used
when the handler was built indicated that this characteristic was not required.

After one of the “multiple characteristic” functions (SF.SMC and SF.GMC) I/O status block word 2
contains the offset in the user’s buffer of the name of the offending characteristic. If the handler is
unable to detect which characteristic caused the error, a value of -1 will appear instead.

Other Functions Affecting Terminals

The functions Attach Terminal, Detach Terminal, Get Terminal Support, Kill Outstanding
Requests, and Disconnect Dialup Line are also supported.

2-20



Terminal Handlers

I0.ATT and I0.ATA (Attach Terminal with AST Notification)

This is an ATTACH function and specifies asynchronous system traps (ASTs) to process unsolicited
TT input. Control passes to the AST. When the task receives an unsolicited character (other than
[cwvQ), [CtVS], [CuiX], or [CtO]). When specifying a AST on a timesharing system, the AST will
be checked for the required privileges before the AST address is passed to the TCP (Timesharing
Control Primatives). Thus, it is not necessary to include the CTC$T call to TCP in your application
task. when you detach your terminal, TCP will cancel the [CtrVC] AST.

This QIO is presented in two formats. The first format, Unsolicited Input Line AST, provides only
notification of completed, unsolicited lines. The second format, Unsolicited Character AST, passes
each character as it received.

The format for Unsolicited Input Line is:

QI0$ IO.ATA,lun,ef,pri, iosb,ast,<ccae,uiae>
where:

® ccae - is the address of the AST entry point to be entered if is typed at the terminal.
In this case the will not re-activate the command level program. Therefore, this facility
should be used with extreme caution, since if the program loops, it will not be possible to
use commands to abort it from the same terminal. For timesharing systems, this parameter
requires [Cd/C| privileges. '

® uiae - is the address of the AST entry point to be entered if a line of unsolicited input is typed,
such that a read request will be completed immediately.

When a [CtiiC] or unsolicited input AST occurs, the task’s stack will contain the following values:
* SP+14 - Event flag mask word for flags 1 to 16

* SP+12 - Event flag mask word for flags 17 to 32

* SP+10 - Event flag mask word for flags 33 to 48

¢ SP+06 - Event flag mask word for flags 49 to 64

e  SP+04 - PS of task prior to AST

e  SP+02 - PC of task prior to AST

¢ SP+00 - Task’s Directive Status word

No extra parameters are put onto the task’s stack, and an ASTX$ directive is sufficient to return
control to the task. See the IAS Executive Facilities Reference Manual for a description of AST
service routines.

The validity of the AST entry points is not checked when the attach request is made. If an AST
entry point is odd or not in the address space of the program, the program will fail when the AST
occurs. I0.ATA can be used to change the AST entry point address even though a task is already
attached. An AST entry point address of zero means that no AST is required.

The “unsolicited input AST” facility works only if the terminal is in “immediate processing
type-ahead” mode (Section 2.2.2, mode 3). Programs that use “read-pass-all” (including tasks
linked with ODT) temporarily disable “immediate processing” so that unsolicited input ASTs will
not occur until a normal read has been performed.

2-21



Terminal Handlers

The format for Unsolicited Character AST is:

QIO IO.ATT,...<[AST], [PARAMETER2] [, [AST2]>
where:

e AST - specifies the entry point for a routine that is entered when an unsolicited character other

than [Ct/Q), [CtI/S], [CkiiX], or [CtUO] is received.

¢ PARAMETER? - identifies a terminal in a multi-terminal environment. It is placed into the
high byte of the first word on the stack (sp+00) when the trap occurs. The low byte contains
the unsolicited character.

* AST2 - specifies the entry point for a routine that is entered when an unsolicited [Ct¥C] is
received.

When a or unsolicited input AST occurs, the task’s stack will contain the following values:
¢ SP+16 - Event flag mask word for flags 1 to 16

* SP+14 - Event flag mask word for flags 17 to 32

* SP+12 - Event flag mask word for flags 33 to 48

* SP+08 - Event flag mask word for flags 49 to 64

* SP+06 - PS of task prior to AST

* SP+04 - PC of task prior to AST

* SP+02 - Task’s Directive Status word

¢ SP+00 - Low byte = data;High byte = parameter

One extra parameter is put onto the task’s stack, and must be removed before exiting the AST

routine. See the IAS Executive Facilities Reference Manual for a description of AST service
routines.

The validity of the AST entry points is not checked when the attach request is made. If an AST
entry point is odd or not in the address space of the program, the program will fail when the AST
occurs. I0.ATA can be used to change the AST entry point address even though a task is already
attached. An AST entry point address of zero means that no AST is required.

The “unsolicited input AST” facility works only if the terminal is in “immediate processing
type-ahead” mode (Section 2.2.2, mode 3). Programs that use “read-pass-all” (including tasks
linked with ODT) temporarily disable “immediate processing” so that unsolicited input ASTs will
not occur until a normal read has been performed.

If one or more parameters are omitted, the function reverts to that of Unsolicited Input Line. See
Section 1.6.1 on attaching a peripheral in general. Using QIO ATT will provide the same function
as QIO ATA, Unsolicited Input Line version. In timesharing systems, a terminal is not actually
attached although the IO.ATT function will succeed.

If the TF.NOT subfunction is used, the function is treated as above.

This support is a conditional assembly specified by setting the parameter U$$CHA in
[311,114]PARAMS.MAC.

2-22



Terminal Handlers

I0.ATT (Attach Terminal)

See Section 1.6.1on attaching a peripheral in general. In timesharing systems, a terminal is not
actually attached although the 10.ATT function will succeed.

When attaching to a terminal you can specify at the same time an AST (asynchronous system
trap) to be entered when a complete line of unsolicited input (that is type-ahead) is entered, or,
for real-time and multi-user systems only, when is typed. This is done by using the function
code 10.ATA instead of I0.ATT.

I0.DET (Detach Terminal)

See Section 1.6.1. Any or unsolicited input AST entry point specified in Attach QIO (see
above) is discarded.

10.KIL (Kill Outstanding Requests)

All outstanding requests for this task on this terminal are aborted. The effect upon any requests
depends on the terminal handler assembly parameter D$$KIL (see IAS Installation and System
Generation Guide):

* D$$KIL=0 The request is terminated in the usual way, with a status of IE.ABO. If the request
is for a read, any characters read so far are placed in the buffer and the number of characters
read is placed in the second word of the I/0 status block. Note however that no notification is
given if the request has not yet been dequeued by the terminal. Thus, a program should not
depend on the event flag being set or the AST occurring. For a task running at a priority less
than the terminal handler (normally 248 decimal) notification will have occurred as soon as
execution resumes after the directive is issued.

¢  D$$KIL=1 No notification is given of request termination, i.e. the I/O status block remains
clear, the event flag is not set and the AST does not occur.

The former method (D$$KIL=0) is the default and is compatible with RSX-11M. The latter method
(D$$KIL=1) is included for compatibility with earlier versions of RSX-11D and IAS.

Buffered output that is the result of a write request which has already been marked as done will
not be affected.

I0.HNG (Disconnect (hangup) Dialup Line)

This function may be used to force a connected dialup line to disconnect.

NOTE: In some countries the line will not become free until the caller hangs up.
There are three possible error conditions:

e IE.DNR - Line not connected

¢ JE.IFC - Line is not a dialup line

¢ IE.OFL - Interface not present for line

10.GTS (Get Terminal Support)

This function can be used to determine the facilities available in the terminal handler in use in the
current system. It is fully compatible with the same function in RSX-11M.

I0.GTS takes a single parameter, which is the address of a 4-word buffer. These words are bit
gignificant, and are set as follows:

2-23



Terminal Handlers

word 1:

F1.ACR

F1.BTW
F1.BUF
F1.UIA

F1.CCO
F1.ESQ
F1.HLD
F1.LWC
F1.RNE

F1.RPR
F1.RST
F1.RUB
F1.8YN

F1.TRW
F1.UTB
F1.VBF

word 2:

F2.8CH

F2.GCH

F2.DCH

F2.DKL

F2.ALT

F2.SFF
F2.CUP
F2.FDX

automatic carriage-return/line feed may be
supplied (TC.ACR is available)

(provided for compatibility with RSX-11M)
intermediate buffering available
unsolicited input AST available

“cancel [CrVO]" subfunction (TF.CCO)
escape sequence recognition available
terminal hold mode support available
lower case conversion available

read-no-echo (subfunction TF.RNE)
available

read-with-prompt available
read-with-spacial terminators available

character-deleting rubout on scope available

terminal synchronisation support
(XON/XOFF) available

(Provided for compatibility with RSX-11M)
(provided for compatibility with RSX-11M)
(provided for compatibility with RSX-11M)

set characteristics functions available
(SF.SSC, SF.SMC, SF.STT, SF.STS)

get characteristics functions available
(SG.GSC, SG.GMC)

dump characteristics functions available
(SF.SAC, SF.GAC)

set if I/O kill aborts the current request
without providing any status information

set if altmode is echoed as “$"<CR>
form feed can be fully simulated
(provided for compatibility with RSX-11M)
(provided for compatibility with RSX-11M)

words 3 and 4 are reserved.

10.RST (Read with Special Terminator)

This function reads characters from a TT until the input buffer is filled or any character in the

ranges 0-037 or 171-177 base 8 is received.

The format of the request is:

where:

QIOS IO.RST,...

* stadd - is the address of the receiving buffer.

2-24

always 1

always 0
always 1
always 1
always 1
depends on E$$SEQ

depends on H$$OLD or E$$SEQ

always 1
always 1

always 1
always 0
always 1
always 1

always 1
always 0
always 1
depends on S$$CHR
depends on G$$CHR
depends on D$$CHR

depends on D$$KIL

depends on E$$ALT
depends on S$$FF
always 0

always 1

,<stadd, size [,tmo]>



Terminal Handlers

* gize - is the buffer length in bytes.

* tmo - is an optional time-out count in 10-second intervals for the full-duplex driver. If 0 is
specified, no time-out can occur. Time-out is the maximum time allowed between two input
characters before the read is aborted.

This support is a conditional assembly specified by setting the parameter I$$RST in
[311,114]PARAMS.MAC.

10.RTT (Read with Terminator Table)

This function reads characters from a tt until the input buffer is filled or a user-specified character
(in the range 0-377) is received.

The format of the request is:

QIOS$ IO.RTT,...,<stadd, size [,tmo], table>
¢ gstadd - is the address of the receiving buffer.
* gize - is the buffer length in bytes.

* tmo - is an optional time-out count in 10-second intervals for the full-duplex driver. If 0 is
specified, no time-out can occur. Time-out is the maximum time allowed between two input
characters before the read is aborted.

Table is the address of a sixteen-word table that specifies the end-of-read characters. Each bit in
the table represents an ASCII character. The first word represents the ASCII character codes 0-17.
the bits of the second word represent the ASCII codes 20-37, and so forth.

This support is a conditional assembly specified by setting the parameter I$$RST in
[311,114]PARAMS.MAC.

/0 FUNCTION CODES

The I/0 function codes in the table below are also available. These function codes are the “logical
OR” of system macros (either the standard read logical block (I0.RLB) or the write logical block
(I0.WLB)) and function codes.

Table 2-5 1/0 Function Codes

1/0 Function Code System Macro Function Code
10.CCO IO.WLB TF.CCO
10.RAL I0.RLB TF.RAL
I0.RNE 10.RLB TF.RNE
10.WAL I0.WLB TFWAL
I0.WBT IO.WLB TFWBT
I0.WMS IO.WLB TFWMS
10.RNC 10.RLB TRF.RNC

2-25



2.6

Terminal Handlers

Support of Dialup Lines

Whether a terminal is connected via a dialup line is not usually apparent to a program. The
handler establishes the line and disconnects it when the caller hangs up. There are however a few
special features of dialup lines on which a program can take action.

1 If a read or write request is made to a line which is disconnected or if the line becomes
disconnected while a request is in progress an error status of IE.DNR is returned.

2 It is possible to force the disconnection of a dialup line by the IO.HNG function (see Section
“IO.HNG (Disconnect (Hang up) Dialup Line)”.

3 When a line is connected, the handler behaves as though [Ct/'C] had been typed. The CLI
allocated to the terminal is started, or a event is declared if the CLI is already active.

4 In timesharing systems only, if a CLI is active when a line is disconnected, a [CtIC] event is

declared.

The entire process of answering a telephone line and disconnecting from it at the end of the call is
controlled by the terminal handler. However it may be useful to know the exact steps involved in
terms of events on the telephone line. These are summarized in Table 2—6.

Table 2-6 Handling of Dialup Lines

Event

Action

Telephone rings
End of M$$ANS time

Ring seen

Caller applies carrier
Carrior is lost

Carrier recovery time expires

Handler enters a wait period of M$$ANS seconds (note 1) during which time
further ring signals are ignored. See also note 2.

Handler waits for another ring. If this is not seen in M$$RNG seconds, the line is
dropped since the caller is assumed to have hung up.

The phone is answered. After a pause of M$$CAR seconds carrier is applied.
The handler then waits for M$$WIC seconds for the caller to apply carrler. If this
period expires the line is dropped.

The line has been established. Transfer requests will be accepted.

(XOFF) is simulated to minimize the amount of data lost on output. The
handler will wait for M$$WCR seconds for carrier to be recovered. If it is, |CtrVQ[
(XON) is simulated to resume output and the carrier loss is transparent to the rest
of the system except possibly for a few garbled characters. See also note 3.

The connection has been lost. The line becomes “not ready” again.

2-26



2.7

2.7.1

2.7.2

2.8

Terminal Handlers

Notes on Table 2—6.

1 Names of the form “M$$xxx” refer to assembly parameters defined in the fille PARAMS.MAC.
See IAS Installation and System Generation Guide.

Lines connected via DZ11 interfaces are answered as soon as the first ring signal is seen.

Certain countries (for example, the UK) require that a line be dropped within a very short time
of carrier loss. If the assembly parameter M$$UK is non-zero, M$$WCR is the time to wait in
ticks.

Auto-Baud Detection

The Terminal Handler now can automatically detect the line speed of a terminal connected to a
dial-in line.

The Terminal Handler samples the line’s input character, determines the incoming caller’s baud
rate, and sets the interface speed accordingly.

Dial-in Interface

When you dial into the system, you will not receive the customary PDS WELCOME (time Sharing)
message or the customary MCR display. Your terminal will display nothing at first: you must

press [RETURN] several times so your baud rate can be determined. The system will then send you
the customary log in banner. Note that you no longer may press|Ct/C] when you dial into a system:

you must press | RETURN |

Previously, if the response to the USER NAME prompt was blank, PDS would hang up the dial-in
line. Now if you type too many [RETURN[s PDS will redisplay the USER NAME prompt.

How to Enable Auto-baud Detection

The TER comnmand allows a user logged in under [1,1] to change the characteristics of a specified
terminal. Auto-baud detection can be enabled with MCR with the command

MCR>TER /AUTO

or under PDS with the commmand

PDS> SET TERM:TTN AUTOBAUD

If you attempt to set a line to auto-baud that is not a dial-in line, you will receive the following
error message:

<Characteristic cannot be modified for this line>

Escape Sequence Support

- If a terminal has characteristic TC.ESQ set Table 2-2, then “escape” (octal code 33) will be treated

not as a read terminator but as the start of an “escape sequence”. In this case characters have
special meanings. Escape sequences are used to extend the number of terminal control functions
and special characters available without increasing the number of character codes.

2-27



2.8.1

2.8.2

Terminal Handlers

Terminals can only be set for escape sequence recognition if the terminal handler is configured

to include support for the escape sequence type required. Section 2.8.1 describes the types of
escape sequence support which can conditionally be included in the terminal handler by setting the
parameter E$$SEQ. The IAS Installation and System Generation Guide describes how to configure
the handler.

Types of Escape Sequence Support

The effect of setting characteristics TC.ESQ and TC.ANS for a terminal depend on the type of
escape sequence supported by the active terminal handler as follows:

1 No escape sequence supported by terminal handler (E$$SEQ=0)
¢ Terminals cannot be set to pass escape sequences.

2 VT52-type sequences only supported by terminal handler (E$$SEQ=1)
e If TC.ESQ is set for a terminal then, on input,

* escape sequence characters in Table 2-7 are translated by the handler into a single
negative byte to form part of status return to a task. The codes for the negative byte
values are given in column 1 of Table 2-7. If the terminal handler does not recognise the
sequence, the input characters are placed exactly as issued in the user’s buffer, preceded by
the byte “33”. The value of TC.ANS is ignored.

3 ANSI sequences only supported by terminal handler (E$$SEQ=2)

e If TC.ESQ is set for a terminal then, on input, valid ANSI sequences are passed for the
terminal but are not translated. The whole input sequence is simply placed exactly as
issued in the user’s buffer preceded by the byte “33”. The value of TC.ANS is ignored.

4 Both sequence types supported by terminal handler (E$$SEQ=3)

¢ If TC.ESQ is set and TC.ANS is zero the action is as described for TC.ESQ in 2 above, If
both TC.ESQ and TC.ANS are set the action is as described in 3 above.

5 Both sequence types supported by terminal handler with no translation (E$$SEQ=4)

e If TC.ESQ is set and TC.ANS is zero then VI'52-type sequences are passed but are not
translated. The sequence is simply placed exactly as issued in the user’s buffer preceded by
the byte “33”. If both TC.ESQ and TC.ANS are set the action is as 3 above.

Valid ANSI escape sequences
The handler allows the following valid sequences for a terminal with characteristic TC.ANS:

1 Escape sequences

ESC (IC)...(IC) (FC)
where:
¢ (IC) - is a character in the range 40 to 57 (octal) inclusive.
®* (FC) - is a character in the range 60 to 176 (octal) inclusive.

2 Control sequences
ESC [ P(1)...P(n)I(1)...I(m) (FC)

2-28



Terminal Handlers

where:

* [ -is the bit combination 133 (octal)

* P(i) - is a character in the range 60 to 77 (octal) inclusive.

* I(j) - is a character in the range 40 to 57 (octal) inclusive.

®* (FC) - is a character in the range 100 to 176 (octal) inclusive.

Graphic characters

ESC N (FC)

where:

® N - is the bit combination 116(octal).

* (FC) - is a character in the range 41 to 176 (octal) inclusive.

Further graphic characters

ESC O (FC)
where:
® O - is the bit combination 117 (octal).
® (FC) - is a character in the range 41 to 176 (octal) inclusive.

2-29



Terminal Handlers

Table 2-7 Encoding of VT52-type Escape Sequences

Name of

Code Description Sequence Notes
ES.CUP Cursor up A

ES.CDN Cursor down B

ES.CRT Cursor right C

ES.CLF Cursor left D

ES.EGR Enter graphics mode F

ES.XGR Exit graphics mode G

ES.HOM Cursor home H,PQ 1
ES.DES Erase (delete) to end of screen J,PZ 1
ES.DEL Erase (delete) to end of line K,PX 1
ES.FFD Forward field R

ES.BFD Backward field Q

ES.EHS Enter hold screen [,PU 1
ES.XHS Exit hold screen \,Pu 1
ES.EKL Enter keyboard lock OE

ES.XKL Exit keyboard lock Oe

ES.EAL Enter alarm mode oG

ES.XAL Exit alarm mode Og

ES.ERV Enter reverse video oJ

ES.XRV Exit reverse video Oj

ES.DLD Delete line down ON

ES.ILU Insert line up (0]0)

ES.SSA Start selected area OP

ES.ESA End selected area oQ

ES.TSA Transmit selected area os

ES.TAL Transmit all ov

ES.TCC Transmit cursor character ow

ES.TOB Terminal overflow buffer OX

ES.SON Terminal switched on of

ES.RTS Request to scroll (o]

ES.SOV Screen overflow (o)}

ES.PDL Paragraph delimiter PA 2
ES.TCL Transmit cursor line PB 2
ES.WRU Write the ruler PC 2
ES.DLU Delete line up PD 2
ES.CEM Change emphasis PE 2
ES.ILD Insert line clown PF 2
ES.EIM Enter insert mode PI

2-30



Table 2-7 (Cont.) Encoding of VT52-type Escape Sequences

Terminal Handlers

Name of

Code Description Sequence Notes
ES.XIM Exit insert mode Pi

ES.TMS Transmit message PM 2
ES.TDT Transmit data PN 2
ES.CJF Clear and justify PR 2
ES.DCH Delete character PS,?7p 1,2
ES.CMD Command delimiter PT 2
ES.JFY Justify PV,7q 1,2
ES.ETX Cursor to end of text PW 2
ES.TCM Transmit command 7s

ES.USO User sequence 0 0 3
ES.US1 User sequence 1 1 3
ES.US2 User sequence 2 2,7w 1,3
ES.US3 User sequence 3 3,7x 1,3
ES.US4 User sequence 4 4,7t 1,3
ES.USS User sequence 5 57u 1,3
ES.US6 User sequence 6 6 3
ES.US7 User sequence 7 7 3
IES.Us8 User sequence 8 8 3
ES.Us9 User sequence 9 9 3
ES.CLN Copy line V,Pb 1,2
ES.EPC Enter printer control w

ES.XPC Exit printer control X

ES.CSC Copy screen ]

ES.EAC Enter autocopy A

ES.XAC Exit autocopy _

ES.PSC Print screen PH 2
ES.PLN Print cursor line PJ 2
ES.EAP Enter auto print PY

ES.XAP Exit auto print Py

ES.ELA Enter linear addressing ocC

ES.XLA Exit linear addressing Oc

EES.EAT Enter auto-tab mode ol

ES.XAT Exit auto-tab mode Oi

ES.EAK Enter alternate keypad PK

ES.XAK Exit alternate keypad Pk

ES.KRC Clear receive checksum Of

ES.KTC Clear transmit checksum O\

2-31



2.8.3

Terminal Handlers

Table 2-7 (Cont.) Encoding of VT52-type Escape Sequences

Name of

Code Description Sequence Notes
ES.KRT Transmit receive checksum O]

ESKTT Transmit transmit checksum or

ES.AIN Initialize abort flag o_

ES.ATR Transmit abort flag o

ES.ANO No output aborted Ox

ES.ACO Copier aborted Oy

ES.APR Printer aborted Oz

ES.ENT Enter ™

Notes referred to by number in last column of Table 2-7:

1 Alternative sequences are shown separated by a comma. Either sequence will be accepted and
will produce the corresponding translation. The first mentioned sequence will be produced on
output.

2 The final letter may be in either upper or lower case.

3 The meaning of these sequences is not defined. User-written software is free to use them for
any purpose.

Input of Escape Sequences

This section describes how the terminal handler processes escape sequence translation, on input,
for non-block mode terminals. The handler translates escape sequences either when E$$SEQ=1 or
when E$$SEQ=3 with TC.ANS=0 (see Section 2.8.1). The handler’s actions are as follows:

1 If the sequence has a single-byte translation the request is terminated. The low byte of the
first word of the I/0 status block contains IS.SUC. The high byte contains the code for the
escape sequence. The second word contains the number of characters placed in the buffer.

2 If there is no single-byte translation, the byte “33” is placed in the buffer followed by the
characters comprising the escape sequence. The termination code IS.ESQ is placed in the first
word of the I/O status block. The byte count placed in the second word includes the escape
sequence.

3 If there is not enough space in the buffer to hold an escape sequence as described in (2), the
current request is terminated with a status of IS.SUC. The handler starts to pass the sequence
on the next read. If the buffer is still too small the sequence will be returned in sections, each
of which except the last will have a status of IS.PES (partial escape sequence). The last read
has a status of IS.ESQ.

4 If an invalid escape sequence is received, it is passed to the user as in (2), but the termination
code is IE.IES. If the sequence has to be split as in (3) only the last section will have this error
return.

For compatibility with RSX-11M and earlier versions of IAS, it is possible to force all escape
sequences to be treated as in (2) (or (3) if necessary) above. If the terminal characteristic TC.CEQ
(“COMPATIBLE” to the TER (MCR) or SET TERMINAL (DCL) commands) is set to 1, an escape
sequence is never translated into a single byte even if such a translation exists.

2-32



2.8.4

Terminal Handlers

Output of Escape Sequences

To output escape sequences you place the escape character (octal 33), followed by the constituent
characters, in the buffer of a write request. Additionally, if the terminal handler is configured to
support translation of VI52-type escape sequences, you can output the sequences which have a
single-byte translation by using the translation as the “vertical format character” of a write QIO.
In this case the escape sequence will be output after all the characters in the write buffer. If you
wish to output just an escape sequence you should issue the write QIO with a buffer size of zero,
but the buffer address must still be a valid address in the user’s task (for example, 0).

Support of Block-Mode Terminals

This section assumes familiarity with the facilities provided by the VI61, and should be read in
conjunction with the VI61 User’s Manual. If a VT61 terminal is set in block mode (TC.BLK, or the
BLOCKMODE option to TER or SET TERMINAL), the terminal transmits data a block at a time.
A typical application for this would be a text editor, where a page of data is sent to the terminal,
edited locally without involving the computer, then retransmitted to the computer, at an operator
command, when editing is complete.

Programming for such a block-mode terminal is very similar to programming for a normal
terminal. Qutput is performed in exactly the same way. Input is performed in the same way,
one “line” at a time into a record-sized buffer. The handler breaks up the block of input supplied
by the terminal into these smaller records, which are terminated in the usual way by carriage
return or an escape sequence. A block-mode terminal must be set in escape sequence mode to
function properly.

The single major programming difference occurs because a VT61 is operated in “transmit request”
mode. This means that when the operator depresses one of the “enter” or “transmit” keys the
terminal merely sends the corresponding escape sequence, rather than actually transmitting a
block of data. It is up to the application program to detect this escape sequence (which is one of
the translatable subset described in Section 2.7), by keeping a read QIO permanently in progress.
The same escape sequence should then be transmitted back to the terminal, and further read QIOs
issued to read the block of data. The first read will always be terminated with a status of IS.EOT,
and will contain no characters. This should be ignored. The last record of the block will also be
terminated with a status of IS.EOT, after which no further reads should be issued except to wait
for the next “request to transmit”.

It is possible, depending upon the application, that an escape sequence will occur in the middle of

a “line”, for example “enter reverse video mode”. In this case the escape sequence will terminate a
read and the remainder of the line must be read by a subsequent QIO. A particular example of this
is an application which uses the “transmit command” facility of the VI'61. Such a command will be
prefixed by the “command delimiter” escape sequence (ES.CMD) which will result in the first read

obtaining a zero length record with this terminator.

As an alternative to using normal read QIOs to read single records, the “read-pass-all” function
(I0.RAL) may be used to read the entire block in one operation. In this case the specified buffer
should be large enough to contain an entire block of input. If it is not, the block will be returned
in sections, each of which except the last will have a termination code of IS.SUC. The last, or only,
gection will have a termination code of IS.EOT. For I0.RAL to work correctly, the handler must be
built with a large enough node pool to contain an entire block at one time. See the description of
assembly parameter N$$ODS in the IAS Installation and System Generation Guide.

Operation of a VI61 in forms mode (TC.FRM, FORMSMODE option) differs from the above only in
the respect that the horizontal tab character will also terminate a read, with a status of IS. TAB.

2-33



2.10

2.1

21141

2.11.2

Terminal Handlers

There is no support for the checksum facility of the VT'61. Block mode terminals made by other
manufacturers are not supported unless they are compatible with the VT61. In particular:

1 They must respond to the characters XOFF and XON (octal codes 21 and 23 respectively) to
suspend and resume transmission.

2 A block of data, unless it is a single escape sequence, must be preceded by STX (octal 2) and
terminated by EOT (octal 4).

3 The terminal must expect every transmission from the computer (correponding to a single
write QIO) to be bracketed as in 2.

4 " The syntax of valid escape sequences (see Table 2-7) must be the same.

Low Speed Paper Tape Reader Support

If the assembly parameter T$$APE is non-zero, the terminal handler will support low speed
paper-tape reader attachments to terminals. The paper-tape reader must respond to the characters
XON ([CtiQ], start reading tape) and XOFF (CtlS], stop reading tape). The terminal must have
been set in TAPE mode using the TER /TAPE (MCR) or SET TERMINAL TAPE (DCL) commands.
If there is a tape in the reader, which must be switched on, typing [Ctr/B] will start reading the tape.

The character either punched on the tape or entered by turning the reader off and typing,
will stop reading the tape and resume input from the keyboard. No characters read from the tape
will be echoed. Prompts supplied as part of a read request (using the IO.RPR subfunction) will not
be printed.

Other Supported Features

This section covers support of Parity, Character Silo, Fill Character, Other Manufacturers’
Terminals, Full Duplex operation, Binary Terminals and Remote Terminals.

Parity Support

The terminal handler supports the hardware parity generation and detection feature of the DH11,
DJ11, DL11 and DZ11 interfaces. For interfaces with settable line parameters (DH11 and DZ11),
parity type (odd, even or none) is a settable characteristic. On DJ11 and DL11 interfaces, parity
type is determined by jumpers or switches on the interface.

Parity generation on output for such terminals is automatic. On input, an error status of IE.VER
is returned if a parity error is reported by the interface.

There is no parity support for the DC11, DL11A, DL11B or KL11 interfaces.

Character Silo Support

Some multiplexer interfaces (DH11, DZ11) have a dynamically variable silo alarm level. This
means that they can be set to cause an interrupt only after a certain number of characters have
been received. The Terminals and Communications Handbook contains a full description of this
facility under the appropriate interfaces.

2-34



2.11.3

2.11.4

2115

Terminal Handlers

The terminal handler uses this facility to reduce the number of read interrupts, and their
associated overhead, when a large volume of input is being received (unless the assembly
parameter R$$INT is zero). This process is normally transparent to the user and the programmer
alike. However, if the input rate drops sharply, for example at the end of a transmission from a
high-speed block mode terminal, a short pause, never more than one second, may occur between
typing characters and their being echoed. This is a normal and unavoidable part of handler
operation and should be ignored.

Fill Characters

Some terminals, particularly older hard-copy terminals, require that some characters that require
an exceptional amount of time to process, for example carriage return, be followed by “fill”
characters which do not require any action. The terminal handler offers the following support
for fill characters.

1 Fill after carriage return. If the characteristic TC.HFL is in the range 1-6, that same number
of null fill characters will be supplied after a carriage return. If TC.HFL is equal to 7, the
number of fill characters is designed to be suitable for the LA30S DECwriter, and depends on
the current horizontal position.

NOTE: A fill value of 7 must NOT be used with any terminal other than an LA30S.

2 Fill after backspace and horizontal tab. If the characteristic TC.HFL is non-zero, each of these
characters will be followed by a single null fill character.

3 Fill after line feed. If the characteristic TC.VFL is equal to 1, line feed will be followed by 6
null characters. This is intended to be used with VT05 terminals at 2400 baud.

4 LA36 forms feed option fill. If the characteristic TC.LVF is equal to 1, the characters vertical
tab and form feed are followed by 66 null fill characters. This is intended to be used with the
LA36-KV forms feed option.

Support of Other Manufacturers’ Terminals

The terminal handler fully supports all terminals mentioned as supported in the IAS Software
Product Description. The handler has been designed to be as flexible as is reasonably practical in
other respects, but with the many hundreds of terminal products on the market it is not possible
to provide the facilities necessary to support all of them. This applies particularly to fill character
requirements (see Section 2.11.3. Further, the handler will not cope with terminals which use
control characters other than in the way defined by the ASCII and ISO standards.

Full Duplex Operation

It is possible to operate a terminal in “full duplex” mode, in which input and output operate
completely independently. This is likely to be useful, for example, if the terminal handler is used
to interface to an intelligent terminal or to another computer. Full Duplex is enabled at task level
by setting to 1 the characteristic TC.FDX. The corresponding terminal commands are

MCR>TER /FULLDUPLEX
oxr

PDS> SET TERMINAL FULLDUPLEX

2-35



2.11.6

2.11.7

2.11.8

Terminal Handlers

In this mode, reads and writes can be performed simultaneously on the same terminal, either by
the same task or by different tasks. There is no interaction at all between reading and writing,
except for certain control characters (see below). Also, no echoing is performed.

In full duplex operation, the five characters [Ct/C], [CuVO], [Ct/Q] (XON), (XOFF) and
continue to have their usual significance on input. In particular, [CtUS] and [CtQ] can be used by
the terminal to control output from the computer in the case of buffer overflow.

Binary Terminals

It may be necessary to receive all characters sent by a terminal, including the special control
characters [Cti/C], [Ct/O], [CtVQ], [Ct¥/S] and [Ctr/X]. This may be done by setting the terminal in
“binary” mode (characteristic TC.BIN set to 1). In this case these characters will be passed to any
task which performs a read-pass-all request (sub-function TF.RAL). The terminal must also be set
to “defered processing” read-ahead mode.

Reading Control Characters

Normally the terminal handler does not pass the control characters|Ctr/C], |CtrlO], ICtVS| and [Ctr/Q)]
to a program which reads from a terminal even if the terminal is set in deferred processing mode
(see Section 2.2.2).

A program can be passed some or all of these control characters when all the following conditions
are satisfied:

* The terminal is set in deferred processing mode (see Section 2.2.2).
¢ The program performs a read-pass-all (see Section “TF.RAL”),

¢ One (and only one) of the terminal characteristics TC.BIN, TC.CSQ or TC.CTC is set for the
terminal.

The three characteristics have the following effect:

Terminal Characteristic Characters Passed

TC.BIN All characters.

TC.CsQ All characters except and (this is useful for applications such as
terminal synchronization on a VT100 with smooth scrolling).

TC.CTC All characters except [Ctri/C], [Ctr/S] and [CtI/Q].

Remote Terminals

When a terminal is connected via modems through a private line (as opposed to a switched
network), it can be specified as “REMOTE” when the terminal handler is configured (see the IAS
Installation and System Generation Guide). If the terminal is specified as “REMOTE”, “Request to
Send” and “Data Terminal Ready” will be set for the line when the terminal handler is loaded. The
line can then be used as if it were a directly connected line.

NOTE: The special support for dialup lines described in Section 2.8 does not apply to
remote lines.

2-36



Terminal Handlers

2.12 The Single-Terminal Handler (TT01)

This handler supports only a single terminal (normally the console) on a DL11 line, and has very
limited features.

Only the following special characters are recognized on input:

(see below)
[ctiT] (see Section ‘{Ct/U]')
[CtiiX] (see Section ‘{Cti/X]")

[CtriJ]
[CtriX]

(see Section ‘[CHiiZ]")
ALTMODE  (see Section "ALTMODE")

RUBOUT {see below)

is always processed as in method 1 of Section {CtI/C]", that is, any current input is unaffected.
MCR is always invoked; there is no facility for specifying a [CtI/IC] AST.

RUBOUT is always echoed as a single backslash “\” if there is a character to be rubbed out.
There is no read-ahead support. No fill characters are supplied.

Only the following function codes are supported:

I0.RLB, IO.RVB, I0.RPR, I0.WLB, 10.RAL, 10.RNE, 10.ATT, I0.DET, 10.KIL

There is no “set characteristics” function in TTO1.

2-37



3.1

3.2

3.2.1

3.2.2

AFC11, ADO1 Analog to Digital Converters

Introduction To AFC-11, AD01

The AFC-11 and ADO1 devices are used for industrial and laboratory analog data acquisition. The
AFC-11 is a flying multi-channel, multi-gain analog to digital (A/D) multiplexer. Under program
control, the AFC-11 performs a 13-bit A/DD conversion at a rate of 200 samples per second, with

a maximum rate of 20 samples per second per channel. The AFC-11 is capable of multiplexing a
maximum of 1024 differential input analog signals.

The ADO1 is also a multi-channel A/D converter. It differs from the AFC-11 in the following
respects:

* It is capable of much higher sampling rates.
e It performs 10-bit A/D conversions.

¢ It can multiplex up to 64 analog signals.

Functional Characteristics

The AFC-11 and ADO1 handlers have two modes of operation: single-sample, or multi-sample.

Single-Sample Mode (Function Code 10.R1C)

In single-sample mode, both the gain and the channel number are obtained from a control word
in the QIO request node. See Table 3-1. 'The A/D value is placed in the second word of the 1/0
status block. Single-mode allows quick reference to the current analog value of a given channel
and eliminates the need for validating buffers.

Multi-Sample Mode (Function Code 10.RBC)

To function in multi-sample mode, the user must define two buffers of equal size. The first is the
control buffer, which contains the control words needed to perform an A/D conversion per channel
specified. See Figure 3-1.

The second buffer is used to store the results of the conversion. These results are placed in the
corresponding location of the data buffer.

In multi-sample mode the user can sample many channels at approximately the same time without
having to queue multiple I/O requests.

NOTE: Identical channel numbers should not be specified in the multi-sample mode

.when using the AFC-11. Otherwise, timing problems may result.

3-1



3.2.3

AFC11, ADO1 Analog to Digital Converters

QIO System Macro Format

To initiate an A/D conversion, the user task issues a QIO request through a QIO system macro in
the following format:

Single-Sample

QIOS$ IO.R1C,lun,ef,pri,iosb,ast,<cntw>
Multi-Sample

QIO$ IO.RBC, lun,ef,pri,iosb, ast,<stadd,size,stcnta>

For Single-sample mode, cntw specifies the control word (see Figure 3—1. For Multi-sample mode,
the parameter words have the following significance.

e stadd - Address of the start of the data buffer, relative to the user task. The address must start
on a word boundary.

* gize - The size of both the data buffer and the control buffer in bytes. The size must be an even
number of bytes.

e stenta - Address of the start of the control buffer relative to the user task. Each word of the
control buffer must be set up as shown in Figure 3-1. The address must start on a word
boundary.

The control word specifies the channel to be sampled and the gain value to be applied.

As shown in Figure 3-1, this control word is provided either as a parameter in the DPB of the QIO
request or in a control buffer depending on whether single-sample mode or multi-sample mode is
being used.

The maximum number of channels present on the configuration is specified at system generation.
This value is specified in the AFC-11 or AD0O1 entry in the physical unit directory (PUD). If the
value specified for the channel number in the control word is greater than that stored in the
physical unit directory, the AFC-11 or AD01 handler terminates the I/0 request and returns an
appropriate error status.

User requests for time based sampling of a particular channel(s) should be made as follows.

1 The user task queues a sample request to be performed for one or a series of channels. The
channel number(s) and gain(s) must be specified in the control word, as indicated in Figure 3-1.

2 The user task then issues a Mark Time directive for at least three clock ticks to avoid skewing
effects before queuing another sample request. Thus, there is a 20 sample per second per
channel restriction on the sampling rate.

3 If an A/D error occurs, the 1/0 request is terminated and the appropriate error code is placed
in the first word of the user status buffer. The second word in the status buffer contains the
number of valid samples taken prior to the error. Values for prior samples will be found in the
data buffer, as expected.

Note that the A/D gain ranges overlap. The key to successful use of the A/D converters is to

change to a higher gain whenever a positive full scale reading is imminent and to change to

a lower gain whenever the last A/D value recorded was less than half full scale. This method
maintains maximum resolution while avoiding saturation.

3-2



AFC11, ADO1 Analog to Digital Converters

Figure 3-1 A/D Conversion Control Word

Bit Meaning
0-10 Channel number: 0 — 1023 (AFC)
0-63 (ADO1)
12-15| Gain value for this sample, expressed in the bit patterns
shown as follows:
Bits AFC Gain ADO1 Gain
15 14 13 12
0 0 0 0 1 1
0 0 01 1 2
001 0 Illegal 4
0 0 1 1 Illegal 8
01 00 10 Illegal
01 0 1 20 Illegal
0110 Illegal Illegal
01 1 1 Hlegal Illegal
1 0 0 0 50 Illegal
1 0 0 1 100 Illegal
1 01 0 Hllegal Illegal
1 0 1 1 Hlegal Illegal
1 1.0 0 200 Illegal
1 1 0 1 1000 Illegal
1 1 10 Illegal Illegal
1 1 1 1 Illegal Illegal

3.2.4 AFC/ADO1 Status Returns

The lowest byte of the I/0 status block contains a code indicating the disposition of the QIO
request. These status return codes for the AFC/AD(Q1 handler are shown below.

3-3



AFC11, ADO1 Analog to Digital Converters

Symbol Meaning

IS.SUC Successful completion

IE.BAD Bad parameter (illegal channel)
IE.IFC /O function not recognized
IE.DNR A/D timeout on sample

IE.SPC lllegal buffer address or count
IE.PRI Privilege violation

See Appendix A for a complete list of 1/O status returns.

3-4



4.1

Disk Handlers

Disk I/0 Handlers

Table 4—1 contains a brief summary of the characteristics of the disks supported by the disk
handler tasks and relates the devices to the handler tasks that service them. A complete
description of each disk is provided in the PDP-11 Peripherals Handbook.

Table 4-1 Standard Disk Devices

Installed
Controller/ Task Bytes/ Decimal
Drive Name RPM Secs Trks Cyis Drive Biocks
RF11/RS11 DF.... 1800 - 1 128 524,288 1024
RHxx/RS03 DS.... 3600 64' 1 64 524,288 1024
RHxx/RS04 DS.... 3600 64! 1 64 1,048,576 2048
RP11E/RP0O2 DP.... 2400 10 20 200 20,480,000 40,000
RP11C/RP03 DP.... 2400 10 20 400 40,960,000 80,000
RH11/RM02 DR.... 2400 32 5 823 67,420,160 131,680°
RHxx/RMO03 DR.... 3600 32 5 823 67,420,160 131,680°
RHxx/RP04,RP05 DB.... 3600 22 19 411 87,960,576 171,798
RHxx/RP06 DB.... 3600 22 19 815 174,423,040 340,670
RPO7 DB.... 3600 50 32 630° 516,096,000 1,008,000
RM80 DR.... 3600 31 14 550° 124,214,272 242,606
RH70/RM05 DR.... 3600 32 19 823 256,196,608 500,384
RK11/RK05 DK.... 1500 12 2 200 2,457,600 4800
RL11/RLO1 DL.... 2400 40? 2 256 5,242,880 10,240°
RL11/RLO2 DL.... 2400 402 2 512 10,485,760 20,480°
RK611/RK06 DM.... 2400 22 3 411 13,888,512 27,126°
RK611/RK07 DM.... 2400 22 3 815 27,810,800 53,790°
RX11/RX01 DX.... 360 26° 1 77 256,256 494
RX211/RX02 DY.... 360 26* 1 77 512,56124 9884
RA60 DU.... 3600 42 4 2382 204,890,112 400,176

1 The RS03 has 64 words per sector; the RS04 has 128 words per sector.
2 The RLOt and RL02 each have 128 words per sector.

.3 The RX01 has 64 words per sector.

4 These numbers are for a double-density diskette. The RX02 has 128 words per sector when formatted as double
density and 84 words per sector when formatted as single density.

§ The RP07 and the RM80 each have two additional CE cylinders.

6 The last physical track on the pack is reserved for recording bad sector locations. Thus the number of blocks
available to the user is reduced by the number of sectors in a track.



Disk Handlers

Table 4-1 (Cont.) Standard Disk Devices

Installed
Controller/ Task Bytes/ Decimal
Drive Name RPM Secs Trks Cyls Drive Blocks
RA70 DU.... 4000 - - - 280,084,992 547,041
RA80 DU.... 3600 31 14 546 121,325,568 236,964
RA81 DU.... 3600 51 14 1248 456,228,864 891,072
RA82 DU.... 3600 - - - 622,932,480 1,216,665
RAS0 DU.... 3600 - - - 1,216,590,336 2,376,153
RC25 DU.... 2850 31 2 796 26,061,824 50,902
RD31 DU.... - - - - 21,278,720 41,560
RD32 DU.... - - - - 42,600,448 83,204
RD51 DU.... 3600 16 4 306 10,027,008 19,584
RD52 DU.... - - - - 30,965,760 60,480
RD53 Du.... - - - - 71,000,064 138,672
RD54 DU.... - - - - 159,334,400 311,200
RX50 DU.... 300 10 1 80 409,600 800
RX33 DU.... 360 15 160 615 1,228,800 2,400

1 The RS03 has 64 words per sector; the RS04 has 128 words per sector.

2 The RLO1 and RLO2 each have 128 words per sector.

3 The RX01 has 64 words per sector.

4 These numbers are for a double-density diskette. The RX02 has 128 words per sector when formatted as double
density and 64 words per sector when formatted as single density.

5 The RP07 and the RM80 each have two additional CE cylinders.

6 The last physical track on the pack is reserved for recording bad sector locations. Thus the number of blocks
avalilable to the user is reduced by the number of sectors Iin a track.

To optimize the moving head disk handler operations, nondata transfer QIOs and data transfer
QIOs are dequeued according to priority, but they are processed differently. The nondata transfer
QIOs are dequeued, processed and returned immediately to the user task, while data transfer
QIOs are dequeued but are not necessarily processed immediately.

When the disk is ready to perform a data transfer, the disk handler selectively processes the list of
dequeued data requests according to the following rules.

1 The highest priority request at that moment is processed first regardless of the current disk
head position.

2 Requests with the same priority and from the same task are not always processed in the order
which they were queued. For example the DB and DR handlers do not process requests on
a first-in/first-out (FIFO) basis. You should not rely on any specific order of processing 1/0
requests of the same priority.

3 Requests with the same priority, but requested by different tasks are selectively processed
according to the relative destination of the disk head for the requests as compared to the
current disk head position. Rule 2 above is also considered in this section,

Nondata and data QIOs are processed asynchronously.

4-2



4.1.1

4.1.2

4.1.3

4.1.4

4.1.5

Disk Handlers

The following techniques can be used to control processing in a program containing both data and
non-data QIOs.

1 If the order of processing is important to the program, WAITFOR or STOPFOR directives can
be used to ensure that the desired QIO is processed before further QIOs are issued.

2 Nondata transfer QIOs should use an event flag different from the event flag used by data
transfer QIOs when both are contained in the same program. This ensures that a WAITFOR
directive associated with a data transfer QIO is not affected by the setting of an event flag from
a nondata transfer QIO.

RS03 Fixed-Head Disk

The RS03 (RH11-RH70 controller/RS03 fixed-head disk) is a fixed-head disk that offers speed and
efficiency. With 64 tracks per platter and recording on one surface, the RS03 has a capacity of
262,144 words.

The RS04 (RH11-RH70 controller/RS04 fixed-head disk) is similar to the RS03 disk and interfaces
to the same controller, but the RS04 provides twice the number of words per track by recording on
both surfaces of the platter, and thus has twice the capacity.

The RP11 controller/RP02 or RP03 disk pack consists of 20 data surfaces and a moving read/write
head. The RP03 has twice as many cylinders, and thus double the capacity of the RP02. Only an
even number of words can be transferred in a read/write operation.

RMO02/RM03/RM05/RM80 Disk Pack

The RM02/RM03, RM05, and RM80 are MASSBUS disk drives and adapters that use the existing
MASSBUS controller. With a single head per surface, they provide a 1.2-Mb/s data transfer rate.
PDP-11/70 systems use the RM03, RM05, and RM80 with the RH70 controller on PDP-11/70
systems. All other systems use the RM02 with the RH11 controller.

RP04, RP05, RP06, and RP07 Disks

The RP04 or RP05 (RH11-RH70 controller/RP04 or RP05 disk packs) disk packs consist of 19
data surfaces and a moving read/write head. Both offer large storage capacity with rapid access
time. The RP06 disk pack has approximately twice the capacity of the RP04 or RP05. The RP07
fixed-media disk has approximately three times the capacity of the RP06.

RK11/RKO05 or RKO5F Cartridge Disks

The RK11 controller/RK05 DECpack cartridge disk is for medium-volume, random-access storage.
The removable disk cartridge offers the flexibility of large offline capacity with rapid transfers of
files between online and offline units without necessitating copying operations. The RKO5F has
twice the storage capacity of the RK05 and has a fixed (nonremovable) disk cartridge.

RL11/RL0O1 or RLO2 Cartridge Disk

The RLO1 is a low-cost, single-head-per-surface disk with a burst data transfer rate of 512-Kb/s.
The storage capacity of the RL02 is twice that of the RLO1.

4-3



4.1.6

4.1.7

4.1.8

4.1.9

Disk Handlers

RK611/RK06 or RK07 Cartridge Disk

The RK611 controller/RK06 catridge disk is a removable, random-access, bulk-storage system
with three data surfaces. The storage capacity is 6,944,256 words per disk pack. The system,
expandable to eight drives, is suitable for medium to large systems.

The RK611 controller/RK07 cartridge disk is generally similar to the RK611/RK06, except storage
capacity is increased to approximately 13,905,400 words per disk pack. Both RK06 and RK07
disks can use the same RK611 controller; mixing RK06 and RK07 disks on the same controller is
permitted.

RX11/RX01 Flexible Disk

The RX11 controller/RX01 flexible disk is for low-volume, random-access storage. Data is stored
in twenty-six 64-word sectors per track; there are 77 tracks per disk. Data may be accessed by
physical sector or logical block. If logical or virtual block I/O is selected, the driver reads four
physical sectors. These sectors ar interleaved to optimize data transfer. The next logical sector
that falls on a new track is skewed by six sectors to allow for track-to-track switch time. Physical
block I\ O provides no interleaving or skewing and provides access to all 2002 sectors on the disk.
Logical or virtual I\ O starts on track 1 and provides access to 494 logical blocks.

RX211/RX02 Flexible Disk

The RX211 controller/RX02 flexible disk is for low-volume, random-access storage. It is capable
of operating in either an industry- standard, single-density mode (as stated for the RX11/RX01
flexible disk), or a double-density mode (not industry standard). In the single- density mode,
each drive can store data exactly as stated in Section 4.1.7. In the double-density mode, data is
stored in twenty-six 128-word sectors per track; there are 77 tracks per disk. The RX211/RX02
operating in the single-density mode can read disks written by an RX11/RX01 flexible disk system.
In addition, disks written by the RX211/RX02 operating in the single-density mode can be read by
the RX11/RX01 flexible disk system.

KDA50, UDA50/RA60/RA80/RA81 Disks

The KDA50 or UDA50 controller is an intelligent disk controller that contains a high-speed
microprogrammed processor capable of performing all disk functions, including data handling,
error detection and correction, and optimization of disk drive activity and data transfers. The
controller optimizers disk activity by reording QIO$s. Therefore, QIO$ macros may not complete
in the order in which they were issued. The types of drives that can be connected to the KDA50 or
UDAGSO controllers are the RA60 disk drive, which has a removable disk pack, and the RA80, RAS81,
RAS82, and RA90 all of which are fixed media drives. (For data capacities and rates, see Table 4-1.)
Up to four of these drives can be connected to a KDA/UDA, in any desired combinaation.

The KDA/UDA controller can perform an extensive self-test on power-up or initialization.

4-4



4.1.10

4.1.11

4112

4.1.13

Disk Handlers

RC25 Disk Subsystem

The RC256 disk subsystem consists of a fixed-media drive and a removable-media drive, both of
which revolve on the same spindle and share the same head mechanics. Each drive is a logical
unit, so each RC25 disk subsystem consists of two logical units.

The RC25 Subsystem combines, in one package, a controller and a single disk drive that has a
removable disk and a fixed disk. These disks reside in the drive as two separate logical units

on a single spindle. Their size is the same. Both are single 8-inch disks with two surfaces, and
both disks have the same data capacity. But mechanically they are different: One is a removable
front-loading cartridge disk, while the other cannot be removed from the drive. The drive contains
loadable Winchester heads.

RC25 subsystems are available in two types: a master drive that contains its own controller, and
a slave drive, which must be connected to an RC25 master drive. Each RC26 master drive can
support one RC25 slave drive. The added-on disk drive is a slave to the disk subsystem that has
the controller. A master-slave configuration would contain four logical units.

RD31 Fixed 5.25-Inch Disk

The RD31 disk drive is a 5.25-inch fixed disk with Winchester-type heads. The RD31 is soft
sectored and field formattable. The maximum capacity of the RD31 is 20 Mb.

RX33 5.25-Inch Half-Height Disk

The RX33 disk drive is a half-height, 5.25-inch single flexible disk. It operates as a dual speed,
double-sided, diskette drive and has a maximum capacity of 1.2 Mb. The RX33 requires the
RQDX3 disk controller, supports RX33 formatting, and can perform read/write operations for both
RX33 and RX50 diskettes.

RD51 Fixed 5.25 Disk/RX50 Flexible 5.25 Disk

This subsystem consists of a hard disk (RD51) and flexible disk (RX50) combination, and a
RQDX1/RQDX2 controller. In combination, they are a mass-storage medium for small systems.
The basic configuration for this subsystem is an RD51 fixed-disk drive and an RX50 flexible,
dual-disk drive, or both. The RX50 dual disk is addressed as two separate units resulting in
a basic configuration of three disk units. Also, you can add another RD51 to increase storage
capacity. Some of the characteristics of the RD/RX drives are given in Table 4-1 and in the
following paragraphs.

The RD51 disk drive is a 5.25-inch fixed disk with Winchester-type heads. It has two disks with
four data surfaces. The RD51 is soft sectored and field formattable. The headers for each sector
contain the sector’s cylinder number, head number, and sector number. The sector number is the
logical sector number (0-15) that reflects the sector interleave of the disk.

The RX50 dual diskette drive is a compact, mass-storage drive with two access slots. Each slot
can hold a single-sided 5.25-inch flexible disk. These diskettes are firm sectored and are not field

“formattable. Every track has sectors numbered from 1 to 10. The two diskettes share the same

head transport mechanism. '

4-5



4.1.14

4.1.15

4.1.16

4.2

4.2.1

Disk Handlers

RD52 Fixed 5.25-Inch Disk

The RD52 disk drive is a 5.25-inch fixed disk with Winchester-type heads. The RD52 is soft
sectored and field formattable. The maximum capacity of the RD52 is 31 Mb.

RD53 Fixed 5.25-Inch Disk

The RD53 disk drive is a 5.25-inch fixed disk with Winchester-type heads. The RD53 is soft
sectored and field formattable. The maximum capacity of the RD53 is 71 Mb.

RD54 Fixed 5.25-Inch Disk

The RD54 disk drive is a 5.25-inch fixed disk with Winchester-type heads. The RD54 is soft
sectored and field formattable. The maximum capacity of the RD54 is 159 Mb.

Function Codes

I/0 requests serviced by disk handlers are issued using the QIO$ system macro. This section
describes standard and device specific QIO functions for disk handlers.

Standard QIO Functions

Section 1.7 discusses standard function codes for mass storage devices in general. The following
sections provide details of these functions codes when used for disk devices.

READ/WRITE Logical Functions

QI10$ fc,lun,ef,pri,iosb,ast,<stadd,size,comp,blkh,blkl>
fc can have one of the following values:
¢ JO.WLB - Write logical block
¢ JO.RLB - Read logical block

The five parameter words bracketed by left and right angle brackets must be specified and must be
delimited by the angle brackets. They have the following meanings:

Parameter Meaning

stadd Virtual starting address in memory of user's buffer for data input or output (must be on a word
boundary and in some cases (for example, RP03) an even word boundary).

size Size of the data buffer in bytes. The size must be even and non-zero. For RP03 disks it must
also be a multiple of 4 bytes.

comp 0 (retains compatibility with non-mass storage carriage control logical read/write functions).

blkh,blkl Block-high, block-low. Double precision number indicating the first logical block address on the

disk specifying where the transfer starts. The value of the block number is muitiplied by 256 to
locate the proper disk word (for example, block number 3 means disk word 768).

4-6



4.2.2

4.3

ATTACH/DETACH Functions

fc can have one of the following values:

e JO.ATT - Attach disk unit
e JO.DET - Detach disk unit

QIO$ fc,lun,ef,pri,iosb,ast

Device-Specific QIO Functions

Additional function codes are provided by some disk handlers to support functions available for
specific disk types. Table 4-3 lists these functions and shows the disks for which each is available.

Table 4-2 Device-Specific Functions for Disks

Disk Handlers

Format Function Disk
QIO$C I0.RPB,...,<stadd,size,, pbn> Read physical block RX01,RX02
RLO1,RLO2
QIO$C 10.SEC,... Sense diskette RX02
characteristics
QIO$C 10.SMD,...,<density,,> Set media density RX02
(format diskette)
QIO$C 10.WDD,...,<stadd,size,,,pbn> Write physical block RX01, RX02
(with deleted data
mark)
QIO$C I0.WPB,...,<stadd,size,, pbn> Write physical block RX01,RX02
RLO1,RLO2
where:

* stadd - is the starting address of the data buffer (must be on a word boundary).

* sgize - is the data buffer size in bytes (must be even and greater than zero).

¢ pbn - is the physical block number where the transfer starts (no validation will occur).

¢ density - is the media density as follows:

0 = single (RX01-compatible) density
2 = double density

Disk Status Returns

The lowest byte of the I/O status block contains a code indicating the disposition of the QIO
request. These status return codes for the disk handlers are symbolized as shown below:

Symbol Meaning
IE.BBE Bad sector flag set in sector header.
IE.BLK Logical block number too large.



4.4

Disk Handlers

Symbol Meaning

IE.DAA Device already attached.

IE.DNA Device not attached (detach failed).
IE.DNR Device not ready.

IE.FHE Fatal hardware error.

IE.DNR Device not ready.

IE.IFC Invalid functicn code (access violation).
IE.OVR Illegal overlay request.

IE.PRI Privilege violation.

IE.SPC One of:

»  Part of buffer out of user’s address space.
«  User buffer for RP02/03 disk transfer is not on an even word boundary.
* No UMRs avalilable.

|E.SRE Send/receive failure.
IE.VER Parity error on device (irrecoverable error).
IE.WLK Device write protected.

See Appendix Afor a complete list of 1/O status returns.

UNIBUS Mapping Registers

All DMA devices on the UNIBUS of a PDP-11/44, a PDP-11/84, or a PDP-11/70 use UNIBUS
mapping registers (UMRs) to perform DMA transfer if the machine is running in 22-bit mode.
Refer to the appropriate PDP-11 Processor Handbook.

All disk handlers use the standard handler library routines to allocate, load, and deallocate UMRs.
UMRs can either be statically preallocated during the initialization (that is, initial handler loading)
or dynamically allocated when a transfer is requested.

The overlapped seek version of the DK disk handler (DKOVL) statically preallocates eight UMRs
during initialization and keeps them until the handler exits. This handler requests eight UMRs to
enable a maximum data transfer of 32K words.

All other disk handlers do not attempt to preallocate the maximum number of UMRs at
initialization. Each handler preallocates only one UMR. This enables all transfers of up to 4K
words to occur with no dynamic allocation overhead and does not tie up UMRs unnecessarily. If
a transfer of more than 4K words is required, the handler attempts to allocate sufficient UMRs
for the transfer and releases them after the transfer. If sufficient UMRs are not available for a
transfer, the transfer will not occur and an error will be returned to the calling task.

Handlers which use this dynamic mechanism are:

DB.... when running on a PDP-11/44 processor
DK.... non overlapped seek version

DL....

DM....

DP....

DR.... when running on a PDP-11/44 processor
DS.... when running on a PDP-11/44 processor

4-8



4.5

4.6

4.6.1

Disk Handlers

DY....

Since you can SAVE a system with handlers loaded which are not using UMRs and transport the
system to a processor where UMRs are required, the handlers also attempt to acquire UMRs at
system start up and at power recovery.

In both cases, if the handler fails to acquire sufficient UMRs, it declares itself nonresident and
exits.

Error Recovery in DB, DM and DR Handlers

Disks serviced by the DB, DM and DR handlers have Error Correction Code (ECC) facilities
which are used by the handlers when necessary on disk reads. If a read error cannot be corrected
through ECC or the error is on a write to disk, the handlers go through a process of trying again.
This involves several attempts with the head in its current position, and if necessary recalibration
and further tries. On read errors, the handlers will attempt the read by using the track offset
facility of the drives. Track offset is the movement of the read heads to a given distance from the
cylinder center line, which is the optimum position adopted by the heads after a seek. In the DB
and DM handlers, three offset positions are tried on each side of the center line; in the DR handler,
one offset position is tried on each side of the center line. At each offset position, two attempts are
made to read the data. If all read attempts fail, a “hard” error is declared. The DB handler tries
the read a maximum of 6+(6*2) or 18 times. The DM handler tries a maximum of 16+(6*2) or 28
times. The DR handler tries a maximum of 16+(2*2) or 20 times.

Characteristics Words for Disk Devices
Section 1.8.1 describes the general use of the four characteristics words in the PUD.

The format of U.C2 and U.C3 for disks is described in the following sections.

Characteristics Word 2
Word 2 (U.C2) has four fields:

1 Bits 0-3 Settable Flags

2 Bits 4-7 Fixed Flags

3 Bits 8-12 Device Type

4 Bits 13-15 Device Dependant Information

The “settable flags” field is reserved for flags which may be changed dynamically while the system
is running. These are:

bit 0 U2.WCK unit is to have read-after-write checking performed

bits 1-3 reserved

The "fixed flags” field is reserved for flags which are set up as part of System Generation and do not vary. These
are:

- bit 4 U2.MOH device has moving heads
bit 5 U2.RMV device has removable volumes
bit 6 U2.BAD device has factory-supplied bad block information in the last track

4-9



4.6.2

Disk Handlers

bit 7 reserved
The “device type” field is a 5-bit field whose defined values are given in Table 4-3, column 1.

The “device dependant information” field is reserved for use by device handlers. Its layout depends
on the device type. See Table 4-3, column 3.

The symbolic names above are defined in the file [1,1]JEXEC.STB.

Table 4-3 Characteristics Word 2 (U.C2), Bits 8-15

Bits 8-12 Device Type Meaning of Bits 13-15
0 unspecified
1 RF (number of platters)-1
2 RK11 0 unit is RKO5
1 unit is RK03
2 unit is RKOSF
3 RP11 2 controller is RP11C
4 unit is RPO3
4 RP04/5/6 1 unit is RP04 or RP05
2 unit is RP06
(changed dynamically by handler).
5 RS 0 unit is RSO3
1 unit is RS04
6 RK06/7 0 unit is RK06
1 unit is RKO7
7 RXO01 reserved
10 DECtape reserved
1 RMO03/02/05 0 unit is RM02
1 unit is RM03
2 unit is RM05
12 RLO1/2 0 unit is RLO1
1 unit is RLO2
13 TUS58 reserved
14 RX02 reserved

Characteristics Word 3
For all disk devices except RX02, word 3 (U.C3) has two fields:
* Low byte - number of sectors per track.

* High byte - For moving head disks, number of tracks per cylinder. For fixed head disks this
byte is zero.

For RX02 disk devices word U.C3 contains the maximum logical block number.

4-10



5.1

5.2

5.2.1

UDC-11 Handler

Introduction to UDC-11

The UDC-11 handler task provides an interface to the PDP-11 Universal Digital Controller
(UDC-11) front-end devices. The UDC-11 is a single-unit device whose name is UD.

Due to the generality of this device, a prebuilt handler task is not supplied to customers. A
descriptor program (source file) describing a particular UDC-11 module configuration must be
prepared, assembled, and the resultant OBJ file included in the task builder input to produce a
UDC handler task for a given installation.

Source File Macros

The source file consists of a series of macros, one for each module type to be supported. Each
macro takes two arguments:

1 the relative module number of the first module of a type, and

2 the number of modules of the type.

The module number specifies a hardware module position, and effectively defines an external page
address. Module number n corresponds to address 171000+2n for n=0 through n=251. All modules
of a type must have consecutive module addresses. The macro names for each module type are as

follows:

e UDCS$AO - Analog Output

* UDC$CI - Contact Interrupt

¢ UDCS$CS - Contact Sense

e UDCS$DL - Latching Digital Output

e UDCS$SS - Single Shot Digital Output
¢ UDCS$TC - Timer or Counter Modules
e UDCS$AD - ADUO1 A/D Converter

In addition to the above macros, a macro called UD$END must be included as the last macro in
the source to mark the end of the module definition table being assembled.

Macros Referenced by .MCALL

Two additional macros named UD$DST (dispatch table) and UD$MDT (module description table)
must be referred to by the MCALL assembler declaration.

For example, the following module description program (fille UDTB.MAC;n) is assembled to produce
the object module UDTB.OBJ;n.

5-1



5.2.2

UDC-11 Handier

"PROGRAM" TO CONFIGURE AN IAS HANDLER TASK TO
SUPPORT THE FOLLOWING UDC MODULES.

ADR TYPE FUNCTION

171000 W733 CONTACT INTERRUPT POINTS 0-15

171002 W733 CONTACT INTERRUPT POINTS 16-31
171004 W731 CONTACT SENSE POINTS 0-15

171006 W731 CONTACT SENSE POINTS 16-31

171010 M803 DIGITAL OUTPUT LATCHING POINTS 0-15
171012 M805 DIGITAL OUTPUT LATCHING POINTS 16-31
171014 Mé85 DIGITAL OUTPUT LATCHING POINTS 32-47
171016 M807 SINGLE SHOT DIGITAL OUTPUT PTS 0-15
171020 Mé87 SINGLE SHOT DIGITAL OUTPUT PTS 16-31
171022 W734 TIMER MODULE

171024 A633 ANALOG OUTPUT CHANNELS 0-3

Me Ve e Ve Ne s W Ne N3 NG Ne Na Yo Y N e e

.MCALL UDS$DST,UDSMDT

.

UDCSCI  00.,2 ;TWO CONTACT INTERRUPT MODULES
UDC$CS 02.,2 ;TWO CONTACT SENSE MODULES
UDC$DL 04.,3 ;THREE DIGITAL OUTPUT

; LATCHING MODULES

UDC$ss 07.,2 ;TWO SINGLE SHOT DIGITAL
;OUTPUT MODULES

UDCSTC 09.,1 ;ONE TIMER/CLOCK MODULE

UDCSA0 10.,1 ;ONE ANALOG OUTPUT MODULE

UDSEND ;END OF MODULE DEFINITION TABLE

~

.END ;END OF ASSEMBLY

Creating an Installation-Specific UDC Handler Task

The object module UDTB.OBJ;n is created by assembling [11,14]JUDSYMBOLS.MAC,
[11,14]UDMACDEFS.MAC, and UDTB.MAC.

UDTB.MAC is the user module description file, and the other files contain system symbol and
macro definitions (stored on UIC [11,14] of the system disk delivered).

It is linked with appropriate library modules using the task builder to create an
installation-specific UDC handler task. The following task builder commands are used to build
an image of a task named UD.TSK;n.

[11,1]UD.TSK/PR/-AB/-FP/-FX,LP :=UDTB
[1,1)]UDLIB.OLB/LB, [1,1]EXEC.STB

/
TASK=UD....
STACK=1
PAR=GEN
PRI=246
UIC=[1,1]
//

5-2



5.3

5.4

5.4.1

5.4.2

UDC-11 Handler

Interrupt/Noninterrupt UDC Modules

Noninterrupting UDC modules can be set and/or sensed by any task.
Interrupting UDC modules are divided into three classes:

1 digital point (contact interrupt) modules,

2 timer modules, and

3 A/D modules (ADUO1).

All interrupts of the first two classes are serviced by a single task.

NOTE: Functional separation of digital points and time measurements is application
dependent. Therefore, the UDC handler task allows interrupts to be handled by a
non-privileged user-written task.

A task can connect to either (or both) of the first two classes of interrupts by providing a circular
buffer to receive interrupt information, and an event flag number to allow triggering of the task
whenever a buffer entry is made. The third class is synchronous (demand only) and so can be
handled in a manner similar to the noninterrupt modules.

Function Descriptions

The following paragraphs describe the functions supported by the UDC-11 handler task in terms of
an assembly language interface.

Analog Output - A633 Modules

There are four analog output channels per A633 module. The channels are numbered from zero
starting with the first channel on the first analog output module.

To set an indicated channel to the indicated voltage, issue the following QIO macro:

QIO$ IO.SAO,lun,ef,pri,iosb,ast,<ocn,ovr>
where:
* ocn - Output channel number

¢ ovr - Output voltage representation.

The output voltage varies linearly with the binary output to the channel where values from zero to
plus ten volts (+10v.) may be represented by integers from 0 to 1023.

Single-Shot Digital Output - M687 and M807 Modules

There are sixteen 1-shot digital output points per module. The points are numbered from zero
starting with the first point on the first module.

To pulse an indicated output point, issue the following QIO macro:

QIO$ 10.S8S0O,lun,ef,pri,iosb,ast,<opn>

5-3



5.4.3

UDC-11 Handler

where:

¢ opn - Digital output point number.
To pulse a set of up to sixteen points, issue the following QIO macro:

QIO$ I0.MSO,1lun,ef,pri, iosb,ast,<opn,mas>
where:
* opn - First digital output point number

* mas - 16-bit mask

Bit n of the mask corresponds to point number (opn) +n, (n=0-15). For every bit in the mask that
is set, the corresponding point is pulsed.

Latching Digital Output - M685, M803 and M805 Modules

There are sixteen latching digital output points per module. The points are numbered from zero
starting with the first point on the first module.

To set an indicated digital output point to an indicated logical value, issue the following QIO
macro:
QI0$ I0.SLO,lun,ef,pri,iosb,ast,<opn,pp>
where:
¢ opn - Digital output point number
* pp - Logical value (point polarity)

A logical value of . TRUE. implies that contacts are closed and is represented by a word with all
bits set (-1). A logical value of .FALSE. implies that contacts are open and is represented by a word
with all bits cleared (+0).

To open or close a set of up to sixteen points, issue the following QIO macro:

QIO$ I0.MLO,lun,ef,pri,iosb,ast,<opn,pp,dp>
where:
* opn - First digital output point number
® pp - 16-bit mask
* dp - Data pattern
Bit n of the mask/data pattern corresponds to point number (opn) +n (n=0—15). If a bit in the mask

is set, the corresponding point is opened/closed depending on the corresponding bit in the data
pattern being clear/set. If a bit in the mask is clear, the corresponding point is left unaltered.

5-4



5.4.4

5.5

UDC-11 Handler

Contact Sense Digital Input - W731 and W733 Modules

There are sixteen digital input points per module. The points are numbered from zero starting
with the first point on the first module.

To read an indicated digital input point and return the data in the second word of a specified I/O
status block, issue the following QIO macro:

QIO$ TI0.SCS,lun,ef,pri,iosb,ast,<ipn>
where:
* ipn - Digital input point number
The second word of the I/0 status block is set to -1 if the indicated point is .TRUE. (contact closed),
or to zero if the point is .FALSE. (contact open).

To read a field of sixteen digital input points and return the data in the second word of an I/0
status block specified in the QIO DPB issue the following QIO macro:

e  QIO$ I0.MCS lun,ef,pri,iosb,ast

Contact Interrupt Digital Input - W733 Modules

Digital input from contact interrupt mocules is reported in a requester-provided circular buffer.
Each buffer entry is five words long and is of the following format:

* word 00 - Entry existence indicator

* word 01 - Change of state (COS) indication

¢ word 02 - Module data (current point values)

¢ word 03 - Module number (module interrupted)

¢ word 04 - Generic code (interrupting module)

The entry existence indicator is set nonzero when a buffer entry is made. When a requester has
removed or processed an entry, it must clear its existence indicator in order to free the buffer entry
position. Entries are made in a circular fashion, starting at the top (low address), filling in order
of increasing memory addresses to the bottom (high address), and wrapping around from bottom to
top. If input data occurs in a burst sufficient to overrun the buffer, data is discarded and a count
of data overruns is incremented. The nonzero entry existence indicator also serves as an overrun
indicator.

A positive value (+1) indicates no overruns between entries, and a negative value is the two's
complement of the number of times data has been discarded between entries. Word zero of the
buffer is used by the handler task as a pointer into the buffer where the next set of interrupt
information is to be entered. It is expected that the connected task will maintain its own pointer
to that location in the buffer where it is to next retrieve contact interrupt data. When a task is
triggered by the handler, it should process data in the buffer starting at the location indicated

by its pointer and continuing in a circular fashion until the two pointers are equal or a zero
entry existence indicator is encountered. Equality of pointers means that the connected task has
retrieved all the contact interrupt information that the handler has entered into the buffer. The
pointer maintained by the handler is to be thought of as a FORTRAN index into the buffer, i.e., the
first location of the buffer is associated with the number (index) 1. The second location associated
with the module number indicates a module on which a change of state in the direction of interest
has been recognized for one or more discrete points.

5-5



5.5.1

5.5.2

5.6

UDC-11 Handler

Change of State (COS) Output

The change of state (COS) output indicates which point(s) of the module have changed state. The
bit position of an on-bit in the COS output word provides the low order bits (3-0) of a point number
and the module number, word 3, provides the high order bits (15-4).

The module data bits indicate the logical value (polarity) of each point of the module.

Contact Interrupt Functions Connect/Disconnect

Contact interrupt input is reported only to one task. This interrupt is controlled by two UDC
handler task functions:

1 CONNECT a buffer for contact interrupt digital input, and
2 DISCONNECT a buffer from contact interrupt digital input.

To connect a buffer for contact interrupt digital input, issue the following QIO macro:

QIO$ 1I0.CCI,lun,ef,pri,iosb,ast,<buf,size,teve>
* buf - Virtual address of top of buffer
* gize - Length of buffer in bytes
* tevf - Trigger event flag number

If the connection is successful, the second word of the I/0 status block contains .BYTE a,b where
a is the number of words passed per interrupt and b is the initial FORTRAN index into the top of
the buffer.

To disconnect a buffer from contact interrupt digital input, issue the following QIO macro:

QIO$ 10.DCI,lun,ef,pri,iosb,ast

To read contact interrupts statically, issue the following QIO macro:

QIO$ IO.RCI,lun,ef,pri,iosb,ast,<mn>
where:

* mn - Relative point number.

Timer (Counter) - W734 Module

Counter modules are treated in a manner similar to contact interrupts. They can be read,
connected to, and disconnected from interrupts. Counter interrupt information is reported in a
requester provided circular buffer which is handled in a similar manner to the contact interrupt
buffer. Each entry is four words long and is of the following format:

* word 00 - Entry existence indicator
*  word 01 - Module data
*  word 02 - Module number

* word 03 - Generic code



5.7

UDC-11 Handler

To connect a timer, issue the following QIO macro:

QI0$ I0.CTI,lun,ef,pri, iosb,ast,<buf,size,tev,arv>
where:
¢  buf - Virtual address of top of buffer
¢ gize - Length of buffer in bytes
* tev - Trigger event flag number

® arv - Adr of table of initial/reset values.

The buffer of initial/reset values is used to load the timers or to connect and reload them on
interrupt (overflow). The buffer contains one word for each timer module. The contents of the first
word (negative count) is used for the first module, etc. If a timer has a nonzero value at interrupt
time, it is not reloaded, so that self-clocking modules and modules that interrupt on half count can
continue incrementing from the initial value.

To disconnect a timer, issue the following QIO macro:

QIO$ IO.DTI,lun,ef,pri,iosb,ast

To read a timer, issue the following QIO macro:

QIO$ IO.RTI,lun,ef,pri,iosb,ast,<mn>
where:

* mn - Module number
To initialize a timer, issue the following QIO macro:

QI0$ IO.ITI,lun,ef,pri,iosb,ast,<mn,ic>
where:

* mn - Module number

® jc - Initial count

The value of the counter module is returned in the second word of the I/0 status block.

Analog/Digital Converter - ADUO1

There are eight analog input channels per ADU0O1 module. The channels are numbered from
zero starting with the first channel on the first module. Except for timer and contact interrupt
processing, no other UDC function is processed during A/D sampling.

The QIO calls for ADUO1 service are identical to those used for AFC-11. See Chapter 3 for the
macro forms of the READ SINGLE A/D POINT (I0.R1B) and the READ MULTI-CHANNEL
BUFFER (I0.RBC).



5.8

5.8.1

5.8.2

5.8.3

UDC-11 Handler

FORTRAN Interface

The following set of FORTRAN callable subroutines allow FORTRAN programs access to the
UDC-11. Handler tasks are normally of a higher priority than tasks requesting handler service,
thus there is no delay in reading or writing to the UDC-11. 'I'here are implied waits in all
subroutines that issue QIO directives. These WAITFOR directives are NOPs except when the
requesting task is of a higher priority than the UDC handler task.

ISTS

In the following description, ISTS is a 2-word integer array to receive the results of the call.

Word one of this array always contains a status value that is returned in accordance with the ISA
convention as follows:

e ISTS(1) .EQ. 1 - Successful completion
¢ ISTS(1) .GE. 3 - Request failed.

A failure may occur because either the QIO directive was rejected or the handler detected an error
in the request. The following convention is used to distinguish between these conditions.

¢ For ISTS(1) 300, the Queue I/O directive was rejected and the directive status word DSW = -
ISTS(1).

* For ISTS(1) .GT. 300, the request was rejected by the handler task and the handler status word
HSW = - (ISTS(1)-300).

The special case of a +3 error return indicates that the subroutine was unable to generate the QIO

directive.

ISTS(1) is currently set via an I/0 AST internal to the called subroutine. Hence, as a temporary
measure, ISTS(1) should not be tested if AST’s were disabled when the subroutine was called.

ISTS(2) contains the second word of 1/0 status returned by the handler.

For a complete description of the UDC FORTRAN calls, the reader is referred to the IAS
FORTRAN Special Subroutines Reference Manual.

ASUDLN
FORTRAN call:

CALL ASUDLN (LUN, [ISTS])

Assigns the specified LUN to UDO and records it as the logical unit number to be used whenever
the logical unit number is unspecified.

AOSC
FORTRAN call:

CALL AOSC(ICHN, IVOLTS, [ISTS], [LUN])

Sets a given channel to a specified voltage. Voltage is an integer between zero (Ov) and 1023
(+10v).

5-8



5.8.4

5.8.5

5.8.6

5.8.7

5.8.8

UDC-11 Handler

AO/AOW
ISA standard FORTRAN call:

CALL AO (INM,ICONT, IDATA, [ISTS], [LUN])
CALL AOW (INM, ICONT, IDATA, [ISTS], [LUN])

Performs analog output (without or with a WAIT) on several channels. The number of channels is
specified in INM. Channel number and output data are contained in 1-dimensional arrays ICONT
and IDATA respectively.

DOSM
FORTRAN call:

CALL DOSM(IPT, [ISTS], [LUN])

Pulses a single momentary output point. IPT is an integer variable specifying the point number.

DOM/DOMW
FORTRAN call:

CALL DOM (INM, ICONT, IDATA, [IDX], [ISTS], (LUN])
CALL DOMW (INM, ICONT, IDATA, [IDX], [ISTS], [LUN])

Pulses several 16-point fields. INM specifies the number of fields. ICONT is an integer array
containing initial point numbers. The corresponding bit pattern in IDATA specifies which points in
a field are to be pulsed.

IDX is a dummy variable retained for compatibility with existing implementations of this call.

DOFM
FORTRAN call:

CALL DOFM (IPT,IMSK, [ISTS], [LUN])

Pulses one 16-bit string of points. One point is pulsed at each bit position set in IMSK. Bit N
corresponds to point IPT+N.

DOSL
FORTRAN call:

CALL DOSL (IPT,ISWTCH, [ISTS], [LUN])

Activates a latching digital output point (IPT). The point is latched if ISWTCH is .TRUE. (-1) and
unlatched otherwise.

5-9



5.8.9

5.8.10

5.8.11

5.8.12

5.8.13

UDC-11 Handler

DOFL
FORTRAN call:

CALL DOFL (IPT,IDATA,IMSK, [ISTS], [LUN])

Latches or unlatches a field of 16 points. IPT is an integer variable specifying the initial point in
the field. IDATA is an integer variable specifying the points to be latched/unlatched. To change the
state of a point, the corresponding bit in IMSK must be set.

DOL/DOLW
FORTRAN call:

CALL DOL (INM, ICONT, IDATA, IMSK, [ISTS], [LUN])
CALL DOLW (INM, ICONT, IDATA, IMSK, [ISTS], [LUN])

Controls more than one field of latching outputs. The number of fields designated by INM, ICONT,
IDATA, and IMSK are single dimension integer arrays that contain the number of entries in the
output arrays, initial point number, data, and mask.

RBCD
FORTRAN call:

CALL RBCD (IPT,IMSK, ISTS, [LUN])

Reads 16 bits of BCD encoded contact sense input under a mask. IPT is an integer variable
specifying the initial point in the field. Only those points set in the mask word (IMSK) are read.
All other points are input as 0. The result after masking is converted to binary and placed in
ISTS(2).

DIFCS
FORTRAN call:

CALL DIFCS (IPT,IMSK,ISTS, [LUN])

Reads a field of contact sense inputs under a mask. Points not masked are set to zero. The result
is in ISTS(2).

DI/DIW
FORTRAN call:

CALL DI (INM, ICONT,IDATA,ISTS, (LUN])
CALL DIW (INM, ICONT, IDATA, ISTS, [LUN])

Reads several 16-point contact sense fields. The number of fields to be read is specified in INM.
The resultant data is placed in IDATA.

ICONT and IDATA are 1-dimensional arrays. ICONT entries specify initial point number. IDATA
entries contain the resultant data. '

5-10



5.8.14

5.8.15

5.8.16

5.8.17

5.8.18

UDC-11 Handler

RCSPT
FORTRAN call:

CALL RCSPT (IPT,ISTS, [LUN])

Reads the state of a single contact sense point into ISTS(2). IPT is an integer specifying the point
number to be read. The result is set to FALSE. (0) if the point is open or .TRUE. (-1) if the point
is closed.

RCIPT
FORTRAN call:

CALL RCIPT (IPT,ISTS, [LUN])

Reads the state of a single contact interrupt point. IPT is an integer specifying the point number
to be read. ISTS(2) is set .TRUE. (-1) if the point is closed or .FALSE. (0) if the point is open.

CDTI
FORTRAN call:

CALL CDTI (IBUF,ISZ,IEV, [ISTS], [LUN])
Connects a circular buffer (IBUF) to receive contact interrupt data. ISZ is the length of the buffer,
which must exceed fourteen words. The buffer size required to contain N entries follows:
1S2Z=(10+5*N)

IEV is a trigger event variable to be set whenever the handler attempts to place an entry in the
buffer.

RDDI
FORTRAN call:

CALL RDDI (IPT, IVAL, [IVRN])

Reads the contents of the circular buffer. One point is read for each call. IPT is set < 0 if a
valid entry is not found. If the entry is valid, IPT contains the point number and IVAL contains
the state. IVRN is an optional integer to receive the overrun count. This count is supplied as a
positive nonzero value.

DFDI

FORTRAN call:

CALL DFDI ([ISTS], [LUN])

Disconnects a buffer.

5-11



5.8.19

5.8.20

5.8.21

5.8.22

5.8.23

UDC-11 Handler

SCTI
FORTRAN call:

CALL SCTI (IMOD, ITM, [ISTS], [LUN])
Sets timer module IMOD to an initial value (ITM).

RSTI
FORTRAN call:

CALL RSTI (IMOD, ISTS, [LUN])
Reads a single timer module (IMOD). The value is placed in ISTS(2).

CTTl
FORTRAN call:

CALL CTTI (IBUF,ISZ,IEV,IV,{ISTS], [LUN])
Connects a circular buffer (IBUF) to receive timer inputs dynamically. ISZ is the length of the
buffer which must exceed eleven. The buffer size required to contain N entries follows:
1SZ=(8+4*N)

IEV is a trigger event flag to be set whenever the handler attempts to place an entry in the buffer.
IV is an array of initial timer values. One entry is required for each timer module in the system.

RDTI
FORTRAN call:

CALL RDTI (IMOD,ITM, [IVRN})

Reads the contents of the circular buffer. One entry is read for each call. IMOD is set < 0 if the
entry is not valid. If the entry is valid, IMOD contains the module number and ITM contains the
module number value. IVRN is an optional integer to receive the overrun count. Count is supplied
as a positive nonzero value. '

DFTI
FORTRAN call:

CALL DFTI ([ISTS], [LUN])

Disconnects a buffer from timer inputs.

5-12



UDC-11 Handler

5.8.24 ADUO1

5.9

For the ADUO1, the FORTRAN calls are identical to those for the AFC-11 and ADO1. However,
when the FORTRAN A/D sample subroutines AIW AILAIRD and AISQ are used for ADUO1
sampling, the following conditions are required:

1 A LUN must be assigned specifically to the UDC,
2 That LUN must also be specified in the LUN argument of the FORTRAN call.

See the JAS FORTRAN Special Subroutines Reference Manual.

Sample Fortran Program

The following FORTRAN program was written to drive a Demo Panel that implemented the
CANCEL and SYNC directives via illuminated switch buttons and ten-position thumbwheel
switches.

TDS -~ TASK DISPATCHER TASK FOR SCHEDULE SECTION OF DEMO PANEL.

MCR FUNCTION: "TDS"
FILE NAME: "TDS.N"
TASK NAME: "...TDS"

THE FOLLOWING LATCHING DIGITAL OUTPUT (DOL) AND CONTACT
INTERRUPT (CI) POINTS ARE USED TO ILLUMINATE AND DETECT
CLOSURES ON THE BUTTONS

OF THE SCHEDULE SECTION OF THE PANEL.

TASK NUMBER SELECTION

"SELECT" LAMP. DOL #15, SWITCH. CI #15

CANCEL/ SCHEDULE SELECTION

"CANCEL" LAMP. DOL #14, SWITCH. CI #14
"SCHEDULE" LAMP. DOL #13, SWITCH. CI #13

SYNCHRONIZATION UNIT SELECTION

"NOW" LAMP. DOL #12, SWITCH. CI #12
"SECOND" LAMP. DOL #11, SWITCH. CI #11
"MINUTE" LAMP. DOL #10, SWITCH. CI #10
"HOUR" LAMP. DOL #09, SWITCH. CI #09

PERIODIC RESCHEDULING SELECTION

"NO" LAMP. DOL #08, SWITCH. CI #08
"YES" LAMP. DOL #07, SWITCH. CI #07

RESCHEDULE UNITS SELECTION

"TICKS" LAMP. DOL #06, SWITCH. CI #06
"SECONDS" LAMP. DOL #05, SWITCH. CI #05
"MINUTES" LAMP. DOL #04, SWITCH. CI #04
"HOURS" LAMP. DOL #03, SWITCH. CI #03

[cNoNeNeNeNoNeNe NN RN NoNeErNeoNrNoNoNoNeNoNoNoNoNoNsNeNoEe Ee NN NN Eo N Ee e NeRo Ne)

5-13



UDC-11 Handler

EXECUTE-DISPLAYED-SCHEDULING SELECTION
"EXECUTE" LAMP. DOL #02, SWITCH. CI #02

THE TASK NUMBER IS READ FROM THUMBWHEEL
DECADES VIA CONTACT SENSE POINTS 00-11
(THREE BCD CHARACTERS) .

THE TASK NUMBER IS DISPLAYED ON 7-SEGMENT BCD UNITS
WIRED TO THE FOLLOWING LATCHING DIGITAL OUTPUT POINTS:

32-35 -- ONE’S DIGIT,
36-39 -- TEN’S DIGIT.
40-43 -- HUNDRED’S DIGIT.

THE RESCHEDULE INTERVAL MAGNITUDE IS READ FROM THUMBWHEEL DECADES VIA
CONTACT SENSE POINTS 16-27 (THREE BCD CHARACTERS).

e NeNeNoNeNeNeNoNoNeRsNeNeRoNeNoNe Ne!

INTEGER TICKS, SECS,MINS, HOURS
INTEGER CEFG
INTEGER TEFG
INTEGER WEFG
INTEGER ISTS
INTEGER DSW
INTEGER POINT
INTEGER TSKNUM
INTEGER TBUF
INTEGER TSET
LOGICAL LV

DIMENSION IBUF (40), TASK(10),ISTS(2),TBUF(20), TSET (4)

DATA TICKS, SECS,MINS, HOURS/1,2, 3,4/
DATA CEFG/3/

DATA TSET(1)/-140/

DATA TEFG/1/

DATA WEFG/2/

DATA TASK(01) /RSET/
DATA TASK (02) /RCHON/
DATA TASK (03) /RCHREC/
DATA TASK (04) /RCHOFF/
DATA TASK(05) /RTIMO/
DATA TASK (06) /RREGX/
DATA TASK(07)/RTEMP/
DATA TASK (08) /RTASKO8/
DATA TASK(09) /RTASK09/
DATA TASK(10) /RTASK10/

INITIAL ENTRY -- GET MCR COMMAND LINE (NO PARAMETERS ARE
TAKEN, THIS CALL JUST FREES THE MCR COMMAND LINE BUFFER)

[eEeNeNe]

CALL GETMCR (IBUF)

ASSIGN AND RECORD LUN-10 AS UDC

anon

CALL ASUDLN (10)

CONNECT CIRCULAR BUFFER "IBUF" TO RECEIVE CONTACT INTERRUPT INFO.
IF FAILURE TO CONNECT (OTHER TASK CONNECTED). "STOP 1".

aaQaaoaa

CALL CTDI (IBUF,36,TEFG,ISTS)
IF (ISTS(l) .GE. 3) STOP 1

5-14



e NeReNeKe!

SOOOOOOOOOOO
o

[eNeNoNe!

110
112

115

116

117

2 O000

PO aa

[eNeNoNoNoNe!

UDC-11 Handler

CONNECT CIRCULAR BUFFER "TBUF" TO RECEIVE TIMER INFO.
IF FAILURE TO CONNECT (OTHER TASK CONNECTED). "STOP 2".

CALL CTTI (TBUF,20,WEFG,TSET, ISTS)
IF (ISTS(1l).GE. 3) STOP 2

100 -- START OF SCHEDULING SEQUENCE.

(1) TURN OFF 7-SEGMENT (LED) TASK NUMBER DISPLAY, BY SETTING
BCD DIGITS FIFTEEN

(2) TURN OFF ALL BUTTON LAMPS ON SCHEDULE SECTION
OF PANEL (DOL POINTS 2-25)

(3) FLASH "SELECT" BUTTON LAMP (DOL #15) UNTIL BUTTON IS
PRESSED (CONTACT CLOSURE ON CI #15)

CALL DOL (1,32,15,"17)
CALL DOL (1,36,15,"17)
CALL DOL (1,40,15,"17)

110 -- RE-START AFTER SUCCESSFUL SCHEDULE OR CANCEL -- LEAVE
TASK NUMBER DISPLAYED IN 7-SEG LED’S.

DO 112 J=2,15

CALL DOSL (J, .FALSE.)
CALL CLREF (TEFG)
CALL CLREF (WEFG)
ITGL=.TRUE.

CALL DOSL (15, ITGL)
ITGL=IEOR(.TRUE., ITGL)
CALL WFLOR (TEFG,WEFG)
CALL READEF (TEFG, DSW)
IF (DSW.EQ.2) GO TO 132

CALL RDTI (NTM, ITIM)
IF(NTM)116,115,117

CHECK FOR CONTACT CLOSURE ON "SELECT'" BUTTON.

CALL RDDI (POINT,LV)

IF¥ (POINT .LT. O0) GO TO 110

IF (POINT .NE. 15) GO TO 132
IF (LV .EQ. .FALSE.) GO TO 132

140 -- A CONTACT CLOSURE HAS BEEN DETECTED ON THE "SELECT" SWITCH.
WAIT FOR CONTACT BOUNCE TO STOP ("SELECT" BUTTON IS USED AS A
"RESET" KEY THROUGHOUT SCHEDULING SEQUENCE, AND THEREFORE,
CONTACT BOUNCE IS UNDESIRABLE) .
CALL RDDI (POINT,LV)
IF (POINT .GE. 0) GO 70 140
CALL MARK (CEFG,5,TICKS)
CALL WFLOR (TEFG, CEFG)
CALL READEF (TEFG,DSW)
IF (DSW .EQ. 2) GO TO 140

A TASK NUMBER HAS BEEN SELECTED (VIA "SELECT" BUTTON AND THUMBWHEEL
DECADES), TURN "SELECT" BUTTON LAMP ON, AND USE "SELECT" BUTTON

AS A "RESET" KEY. I.E., IF PRESSED DURING SCHEDULE SELECTION
SEQUENCE; THE SEQUENCE IS RESTARTED (AT STATEMENT #100).

5-15



UDC-11 Handler

5-16

[eNeleNe]

(oo Ne]

oMo Ne!

[eNeNoNe N NeNe!

202
204

MNaOoOQOOOOOO

o
o

242
244

aoaoaaq

CALL DOSL (15, .TRUE.)

READ TASK NUMBER FROM THUMBWHEEL DECADE SWITCHES & DISPLAY
TASK NUMBER IN 7-SEGMENT LED DISPLAY UNITS.

CALL RBCD (00,"007777,1ISTS)
TSKNUM=ISTS (2)

"TSKNUM" CONTAINS THE TASK NUMBER THRUOUT SCHEDULING SEQUENCE

NUM=ISTS (2)

N=NUM/100

CALL DOL (1,40,N,"17)
NUM=NUM-100*N

N=NUM/10

CALL DOL (1,36,N,"17)
NUM=NUM-10*N

CALL DOL (1,32,NUM,"17)

SPECIAL CASE: IF TASK NUMBER 000, EXIT TASK DISPATCHER
IF (TSKNUM .EQ. 000) GO TO 900
SELECT TASK SCHEDULING OR CANCELING BY:

(1) TURNING ON BOTH THE "CANCEL" & "SCHEDULE" BUTTON LAMPS AND
(2) WAITING FOR A CONTACT CLOSURE FROM EITHER "CANCEL", "SCHEDULE",
OR "SELECT" BUTTON SWITCHES.

CALL DOSL (13, .TRUE.)
CALL DOSL (14, .TRUE.)

CALL WAITFR (TEFG)

CALL RDDI (POINT,LV)

IF (POINT .LT. 0) GO TO 202

IF (LV .EQ. .FALSE.) GO TO 204
IF (POINT .EQ. 13) GO TO 250
IF (POINT .EQ. 14) GO TO 240
IF (POINT .EQ. 15) GO TO 100
GO TO 204

240 -- A CONTACT CLOSURE HAS BEEN DETECTED ON THE "CANCEL"
BUTTON SWITCH

(1) TURN OFF THE "SCHEDULE" BUTTON LAMP
(2) TURN ON THE "EXECUTE" BUTTON LAMP
(3) WAIT FOR A CONTACT CLOSURE ON EITHER "EXECUTE" OR "SELECT".

CALL DOSL (13, .FALSE.)
CALL DOSL (02, .TRUE.)

CALL WAITFR (TEFG)

CALL RDDI (POINT,LV)

IF (POINT .LT. 0) GO TO 242

IF (LV .EQ. .FALSE.) GO TO 244
IF (POINT .EQ. 15) GO TO 100
IF (POINT .NE. 02) GO TO 244

A CONTACT CLOSURE HAS BEEN DETECTED ON THE "EXECUTE" BUTTON SWITCH.
(1) TURN OFF "EXECUTE" BUTTON LAMP

(2) CANCEL TASK PER "TSKNUM"
(3) RESTART SCHEDULING SEQUENCE.



UDC-11 Handler

CALL DOSL (2, .FALSE.)

CALL CANALL (TASK (TSKNUM),DSW)
IF (DSW .GT. 0) GO TO 110

GO TO 100

250 -- A CONTACT CLOSURE HAS BEEN DETECTED ON THE "SCHEDULE"
BUTTON SWITCH. SELECT SYNCHRONIZATION UNITS AS FOLLOWS.

(1) TURN OFF THE "CANCEL" BUTTON LAMP

(2) TURN ON "HOUR", "MINUTE", "SECOND", & "NOW" BUTTON LAMPS

(3) WAIT FOR A CONTACT CLOSURE ON EITHER "HOUR", "MINUTE", "SECOND",
“NOT", OR "SELECT" BUTTON SWITCHES.

NOOOOOOOOO

50 CALL DOSL (14, .FALSE.)
CALL DOSL (09, .TRUE.)
CALL DOSL (10, .TRUE.)
CALL DOSL (11, .TRUE.)
CALL DOSL (12, .TRUE.)

252 CALL WAITFR (TEFG)

254 CALL RDDI (POINT,LV)
IF (POINT .LT. 09) GO TO 252
IF (LV .EQ. .FALSE.) GO TO 254
IF (POINT .EQ. 15) GO TO 100
IF (POINT .LT. 09) GO TO 254
IF (POINT .GT. 12) GO TO 254

A CONTACT CLOSURE HAS BEEN DETECTED ON A POINT BETWEEN #9 AND
#12 ("HOUR", "MINUTE", "SECOND", OR "NOW" BUTTON SWITCHES) .
CONVERT POINT NUMBER TO SYNC UNITS ("ISYU"), AND TURN OFF
BUTTON LAMPS FOR SYNC UNITS NOT SELECTED.

[eNeNeNeNeNe]

8YU=13-POINT

Q

DO 256 J=9,12

IF (J .EQ. POINT) GO TO 256

CALL DOSL (J, .FALSE.)
CONTINUE

5,1
L.}

SELECT PERIODIC RE-SCHEDULING BY:

(1) TURNING ON BOTH "YES" & "NO" BUTTON LAMPS, AND
(2) WAITING FOR A CONTACT CLOSURE ON EITHER "YES", "NO", OR
"SELECT".

[eNeNeNeNe Ne NN )

CALL DOSL (7, .TRUE.)
CALL DOSL (8, .TRUE.)

262 CALL WAITFR (TEFG)

264 CALL RDDI (POINT,LV)
IF (POINT .LT. 0) GO TO 262
IF (LV .EQ. .FALSE.) GO TO 264
IF (POINT .EQ. 07) GO TO 270
IF¥ (POINT .EQ. 08) GO TO 268
IF (POINT .EQ. 15) GO TO 100
GO TO 264

268 -- A CONTACT CLOSURE HAS BEEN DETECTED ON THE "NO"
BUTTON SWITCH.

(1) TURN OFF "YES" BUTTON LAMP
(2) INDICATE NO RE-SCHEDULING ("IRI"="IRU"=0)

[cNeNeNeNeNe!

5-17



UDC-11 Handler

5-18

68

anNnago

[¢]

NOOOOOQOOOOON

~
o

282
284

N0 o000

286

O(SOOOOOOO
o

302
304

(3) ILLUMINATE AND WAIT FOR "EXECUTE"

CALL DOSL (7, .FALSE.)

IRI=0

IRU=0

GO TO 300

270 -- A CONTACT CLOSURE HAS BEEN DETECTED ON THE "YES" BUTTON
SWITCH. SELECT RE-SCHEDULING INTERVAL UNITS BY:

(1) TURN OFF "NO" BUTTON LAMP

(2) TURN ON "HOURS", "MINUTES", "SECONDS", & "TICKS" BUTTON LAMPS
(3) WAIT FOR A CONTACT CLOSURE ON EITHER "HOURS", "MINUTES",
"SECONDS", OR "SELECT" BUTTON SWITCHES

CALL DOSL (8, .FALSE.)

CALL DOSL (3, .TRUE.)
CALL DOSL (4, .TRUE.)
CALL DOSL (5, .TRUE.)
CALL DOSL (6, .TRUE.)

CALL WAITFR (TEFG)

CALL RDDI (POINT,LV)

IF (POINT .LT. 0) GO TO 282

IF (LV .EQ. .FALSE.) GO TO 284
IF (POINT .EQ. 15) GO TO 100
IF (POINT .LT. 3) GO TO 284

IF (POINT .GT. 6) GO TO 284

A CONTACT CLOSURE HAS BEEN DETECTED ON A CONTACT INTERRUPT POINT
BETWEEN #3 AND #6 ("HOURS", "MINUTES", "SECONDS", OR "TICKS").

(1) TURN OFF BUTTON LAMPS FOR RE-SCHEDULE UNITS NOT SELECTED
(2) CONVERT POINT NUMBER TO TIME UNIT INDICATOR
(3) READ RE-SCHEDULE INTERVAL MAGNITUDE FROM THUMBWHEEL SWITCHES

DO 286 J=3,6
IF (J .EQ. POINT) GO TO 286
CALL DOSL (J, .FALSE.)
CONTINUE

IRU=7-POINT

CALL RBCD (16,"007777,ISTS)
IRI=ISTS (2)

300 -- TASK SCHEDULING PARAMETERS ARE DISPLAYED ON PANEL.
PERFORM OR REJECT BY:

(1) TURNING ON "EXECUTE" LAMP, AND
(2) WAITING FOR A CONTACT CLOSURE ON EITHER "EXECUTE" OR "SELECT".

CALL DOSL (02, .TRUE.)

CALL WAITFR (TEFG)

CALL RDDI (POINT.LV)

IF (POINT .LT. 0) GO TO 302

IF (LV .EQ. .FALSE.) GO TO 304
IF (POINT .EQ. 15) GO TO 100
IF (POINT .NE. 02) GO TO 304



5.10

UDC-11 Handler

A CONTACT CLOSURE HAS BEEN DETECTED ON "EXECUTE" BUTTON
SWITCH, SYNC TASK.

aa0on

IF (TSKNUM .LT. 1) GO TO 100

IF (TSKNUM .GT. 10) GO 70 100

CALL SYNC (TASK(TSKNUM),9,SECS,ISYU,IRI,IRU,DSW)
IF (DSW .GT. 0) GO TO 110

GO TO 100

900 -- SPECIAL CASE: TASK #000 -- EXIT DISPATCHER.

-EeNeKel

00 CALL DFDI
CALL DFTI

Q

DO 910 J=2,15
910 CALL DOSL (J,.TRUE.)

c
CALL EXIT
c
END
UDC STATUS RETURNS

IOST contains a code indicating the disposition of the QIO request. These status return codes for
the UDC-11 handler are symbolized as shown below.

Symbol Meaning

IS.SUC Successful completion

IE.BAD Bad parameters

{E.PR! Privilege violation

IE.MOD Invalid UDC module

IE.CON UDC connect error

IE.SPC Part of buffer is out of address space
IE.IFC Invalid function code

See Appendix A for a complete list of I/O status returns.

5-19



6.1

6.2

6.2.1

DECtape Handler

DECtape Handler Functions

The TC-11/TU56 DECtape system is controlled by the DECtape handler task. The handler task
supports the TC-11 DECtape controller and up to 4 TU56 DECtape units (that is, 8 DECtape
drives). The handler is a single controller handler, but multiple copies can service additional TC-11
controllers for systems with more than 8 DECtape drives.

The DECtape handler is installed with DT.... as the task name.

Function Codes

I/O requests serviced by the DECtape handler are issued using the QIO$ system macro. See
Section 1.7 for a detailed discussion of function codes for mass storage devices. The QIO$ macro
calls follow.

READ/WRITE Logical Functions

QIO$ fc,lun, ef,pri,iosb, ast, <stadd, size, wd3, wd4, lbn>
fc can have one of the following values.
¢ JO.RLB - Read logical block (forward)
* IO.RLV - Read logical block (reverse)
¢ I0O.WLB - Write logical block (forward)
* JO.WLV - Write logical block (reverse)

The five parameter words bracketed by left and right angle brackets (<>) must be specified and
must be delimited by the angle brackets.

They have the following meaning:

¢ stadd - Address of I/O buffer in user’s virtual space (this value must be even).
* gize - Length of transfer in bytes (this value must be even and nonzero).

* wd3 - Ignored (this value must be represented by a zero).

¢ wd4 - Ignored (this value must be represented by a zero).

* 1bn - Logical block number (0-577. inclusive).

6-1



6.2.2

6.2.3

6.2.4

6.3

6.4

DECtape Handler

ATTACH, DETACH, and REWIND Functions

QIO$ fc,lun,ef,pri,iosb,ast
fc can have one of the following values.
* IO.RWD - Rewind DECtape unit
¢ IO.RWU - Rewind and unload DECtape unit
e JO.ATT - Attach DECtape unit
¢ "I0.DET - Detach DECtape unit

DECtape Transfers

PDP-11 DECtapes are divided into 2566-word blocks. If, on a WRITE, the transfer length is less
than 256 words, a partial block is transferred with zero fill for the rest of the physical block. If,
on a READ, the transfer length is less than 256 words, only the number of words specified are
transferred. If the transfer length is greater than 256 words, more than one physical block is
transferred.

DECtape READ/WRITE

The DECtape handler supports READ/WRITE in reverse direction as well as forward. Normally
a block should be read in the same direction as it was written. If a block is read in the opposite
direction from which it was written, it is reversed in memory; that is, word 256 becomes word 0
and word 264 becomes word 1.

UNIBUS Mapping Registers

All DMA devices on the UNIBUS of a PDP-11/44 or a PDP-11/70 use UNIBUS mapping registers
(UMRs) to perform DMA transfers if the machine is running in 22-bit mode (See the appropriate
PDP-11 Processor Handbook). The DECtape handler attempts to allocate only one UMR because
all transfers are buffered in the handler. If the handler cannot allocate a UMR on initialization, it
exits.

Error Handling

The DECtape handler performs special handling for the select error condition. If a select error
occurs during the execution of a READ, WRITE, or REWIND, the message

*** SELECT ERROR ON DTn

n = unit number

is printed on the command output (CO) device (logical unit 2 for the driver). The DECtape handler
then does not dequeue normal user requests for that unit until the error is remedied by the
operator. The only user request it will dequeue for that unit is Cancel (see Section 1.6.4). Other
errors simply return a negative value in the low byte of the I/O status block.

The specific errors that can be returned by the DECtape handler are listed below.

6-2



6.6

DECtape Handler

DT Status Returns

IOST contains a code indicating the disposition of the QIO request. These status return codes for
the DECtape handler are symbolized as shown below.

Symbol Meaning

IE.BAD Bad parameters.

IE.IFC Invalid function code.

IE.DNR Select error (only occurs if the handler fails to send its select error messages).

IE.VER Fatal error in READ or WRITE (other than Mark Track Error). IOST+2 contains DECtape error
flags. This is normally a parity error; however, the error may also be caused by performing a
multi-block transfer past block 1101 (577.), or in reverse direction past block zero, in which case
the end zone (ENDZ) error flag is set in IOST+2. The operation is tried § times by the handler
befiore an error is reported to the user. See the PDP-11 Pheripherals Handbook.

IE.SPC Part of the user’s buffer is out of user's virtual space, a byte count of zero was specified, or on
the PDP-11/70, insufficient UMRs are available to handle the transfer.

IE.DNA Detach failed.

IE.DAA Attach failed (device already attached).

IE.WLK Write lock error

IE.SRE SEND/REQUEST failure when passing information to FILES-11 interfaces.

IE.ABO Operation aborted (while in Mark Time Wait). Either a handler exit or /O rundown forced

. operation to abort.

1E.PRI Access privilege violation.

IE.BYT Odd transfer address or byte count.

IE.BLK Logical block number greater than 1101 octal (577 decimal).

IE.BBE Bad block error (mark track error on read or write). I0ST+2 contains the number of bytes

transferred at the point of the error so the actual bad block number may be determined. The
operation is tried 5 times by the handler before an error is reported to the user.

Characteristics Words for DECtape

See Section 1.8 for the four characteristics words set or implied at System Generation and stored
in the system’s PUD entry for each individual unit. DECtape is a random-access device so that
words 2 and 3 are laid out in the same way as for disks (See Section 4.6). DECtape is analogous to
a disk with one block per cylinder and having to seek in order to access any block. The settings for
words 2 and 3 are as follows:

word 2 (offset U.C2 from the PUD entry):

bit 0
bits 1-3

bit4

bit 5
bit 6
bit 7

U2.WCK ignored by the DECtape handler
reserved

U2 MOH set

U2.RMV set

U2.BAD clear
reserved

6-3



DECtape Handler

bits 8-12 10 (octal)
bits 13-15 reserved

word 3 (offset U.C3 from the PUD entry):

low byte 1
high byte 1

The normal setting for words 2 and 3 is thus 4060,401 for a DECtape unit.

6-4



7.1

Magnetic Tape Handlers

Magtape Handler Functions

The magtape handlers provide the user with access to the TU10/16, TE10/16, TU77, and TU45
industry-compatible magnetic tape units. Table 7—1 relates the devices to the handler tasks that

reference them.

Table 7-1 Standard Magnetic Tape Devices

Recording
Recording Tape Maximum Transfer
Installed Density Speed Data Method
Device Task (Frames/ (Inches/ Rate (Bytes/
Driver Name Channels Inch) Second) Units Second)
TE10 MT.... 9 7-channel: 45 36,000 NRzi
TU10 7or9 200, 556
or 800
©-channel:
800
"TE16,TU16 MM.... 9 €00/1600 45 800 bpi: NRZI or PE '
36,000
1600 bpi:
72,000
Tu4s MM.... 9 800/1600 75 800 bpi: NRZI or PE '
60,000
1600 bpi:
120,000

! Phase encoded

2 Low speed

% High speed

4 Serial serpentine

% In streaming mode



Magnetic Tape Handlers

Table 7-1 (Cont.) Standard Magnetic Tape Devices

Recording
Recording Tape Maximum Transfer
Installed Density Speed Data Method
Device Task (Frames/ (Inches/ Rate (Bytes/
Driver Name Channels inch) Second) Units Second)
TU77 MM.... 9 800/1600 125 800 bpi: NRZl or PE '
100,000
1600 bpi:
200,000
TS03 MT.... 9 800 15 12,000 NRZI
TS11 MS.... 9 1600 45 72,000 PE'
TUBO MS.... 9 1600 252 40,0002 PE'
100° 160,000°
TUS81 MU.... 9 1600/6250 252 40,000 PE'
75° 120,000 PE'
252 156,000 GCR
75° 469,000 GCR
TS05 MS.... 9 1600 25 40,000 PE'
TK25 MS.... s.8. 8000 55 55,000 Modified
bit-serial GCR
data tracks
recorded
serial
serpentine

' Phase encoded
" 2 Low speed
3 High speed
4 Serial serpentine
5 In streaming mode

7-2



Table 7-1 (Cont.) Standard Magnetic Tape Devices

Magnetic Tape Handlers

Recording
Recording Tape Maximum Transter
Installed Density Speed Data Method
Device Task (Frames/ (Inches/ Rate (Bytes/
Driver Name Channels Inch) Second) Units Second)
TK50 MU.... s.s.t 6667 75° 45,000 Modified
bit-serial FM
data tracks
recorded
serial
serpentine

! Phase encoded

2 Low speed

3 High speed

4 Serlal serpentine

8 In streaming mode

The requesting task can perform reads, writes, and positioning operations at a selectable density
and parity setting. The handlers also provide error recovery facilities that will automatically retry
tape operations a number of times before reporting error status. The handlers can execute any of

the following functions:
1 Read logical record
Write logical record
Attach unit
Detach unit

a & WN

Device Control Functions

Rewind magtape

Skip n files (forward or reverse)

Read tape characteristics

Rewind and turn unit off line

@ ~ 920 0

6 Write End-of-File character

Skip n records (forward or reverse)

Set tape characteristics (parity/density, etc.)

Verify tape is at load point and set characteristics

¢ An End-of-File character (EOF) is a special mark used to separate data sets. ANSI uses
the equivalent term “Tape Mark”.

. When a request fails because the desired unit is off line, the magtape handler prints:
***MAGTAPE SELECT ERROR ON MTn

n = unit number

on the operator console. Operations on other units are allowed to proceed while one unit is held up

due to this select error condition.

7-3



7141

7.1.2

7.1.3

714

7.1.5

7.1.6

Magnetic Tape Handlers

TE10/TU10/TS03 Magnetic Tape

The TE10/TU10/TS03 consists of a TM11 controller with a TE10, TU10, or TS03 transport. It is a
low-cost, high-performance system for serial storage of large volumes of data and programs in an
industry- compatible format. All recording is non-return to zero inverted (NRZI) format.

TE16/TU16/TU45/TU77 Magnetic Tape

The TE16/TU16/TU45/TU77 consists of an RH11/RH70 controller, a TM02 or TM03 formatter, and
a TE16/TU16/TU45/TU77 transport. They are quite similar to the TE10/TU10 but are MASSBUS
devices, with a common controller, a specialized formatter, and drives. Recording is either 800 bits
per inch (bpi) NRZI or 1600 bpi phase encoded (PE).

TS11/TU80 Magnetic Tape

The TS11 and TUS80 are integrated subsystems. Each has a drive, a controller, and a formatter.
The hardware is microprocessor controlled for all operations, including I/O transfers and tape
motion, and it has comprehensive (internal) diagnostic test execution. Recording is 1600 bpi PE.

The TS11 operates in conventional start and stop mode while the TU80 operates at either low
speed (start and stop mode) or high speed (streaming mode). Tape speed is microprocessor
controlled.

TS05 Magnetic Tape

The TS05 tape subsystem runs on UNIBUS or Q-bus subsystems. It is an intergrated subsystem
with a drive, a controller, and a formatter. The hardware is microprocessor controlled for all
operations, including I/O transfers tape motion, and it has comprehensive (internal) diagnostic test
execution. Recording is 1600 bpi PE. The TS05 operates at 25 inches per second.

TK25 Magnetic Tape

The TK25 consists of a TKQ25 controller for the Q-bus and a TK25 streaming tape drive. The
integrated subsystem consists of a tape drive and controller/ formatter. The TK25 uses a DC600A
1/4-inch tape cartridge and stores data on serial data tracks in a serial serpentine recording
method. The TK25 has storage capacity of 60 megabytes (Mb) for 8-kilobyte (Kb) data records.
Data recording is an 8000 bpi, modified GCR (group cyclical recording) method.

TK50 Magnetic Tape

The TK50 is an integrated subsystem that consists of a controller for the Q-bus (TQK50) or a
controller for the UNIBUS (TUK50), and a TK50 streaming tape drive. The controller handles all
error recovery and correction, and internally buffers multiple outstanding commands. The tape
drive and writes data on 1 1/2-inch tape cartridge that is records at 6667 bpi on serial data tracks
in a serial serpentine recording (Modified Frequency Modulation) method. The tape speedis 75
inches per second in streaming mode and the storage capacity is approximately 94 Mb irrespective
of record size. There is one drive for each controller.

7-4



7.1.7

7.2

7.2.1

7.2.2

7.2.3

Magnetic Tape Handlers

TU81 Magnetic Tape

The TUS81 is a 9-track streaming tape drive that reads and writes data at either 6250 bpi (GCR) or
1600 bpi (PE) on 1/2-inch tape. The TUS81 internally buffers multiple outstanding commands. The
tape transport speed is 26 or 75 inches per second and is microprocessor controlled. At 62560-bpi
density, the drive can store up to 140 Mb on a standard 2400-foot reel. The TU81 has its own
UNIBUS controller (one drive per controller).

Function Codes

I/0 requests serviced by the magtape handler are issued using the QIO$ system macro. See
Section 1.7 for a detailed discussion of function codes for mass storage devices. The QIO$ macro
calls follow.

READ/WRITE Logical Functions

QIO$ fc, lun,ef,pri,iosb,ast,<stadd,size>
fc can have one of the following values:
¢ JO.RLB - Read logical block (see Section 7.2.3)
e JO.WLB - Write logical block (see Section 7.2.4)

The two parameter words stadd and size, must be specified and delimited by the angle brackets
(<>). Parameters follow:

¢ stadd - Address of I/O buffer in user’s virtual space (this value must be even)

¢ gize - Length of transfer in bytes (this value must be even and non-zero)

ATTACH, DETACH, REWIND, and EOF Functions

QI0$ fc,lun,ef,pri,iosb,ast
fc can have one of the following values:
e JO.ATT - Attach magtape unit
¢ JO.DET - Detach magtape unit
e IO.RWD - Rewind magtape unit (see Section 7.2.6)
¢ TO.RWU - Rewind and turn unit offline (see Section 7.2.5)
* IO.EOF - Write an end-of-file (EOF) character on the tape to mark the end of a data file.

For Skip, Set Characteristics and Verify Functions see Section 7.3.

Read Logical Block

The read function causes the next record on the magtape to be read into the requesting task’s input
buffer. On completion, IOST+2 contains the length, in bytes, of the record that was read.



7.2.4

7.2.5

7.2.6

7.3

7.3.1

Magnetic Tape Handlers

Note that read returns an error, IE.DAO, if the physical record size exceeds the specified byte count
for the transfer. If this occurs, the first n bytes (where n is the specified byte count) are actually
transferred into memory and the remainder of the record is checked for parity but not transferred.
If the physical record size is less than the size of the specified byte count, only data for that record
is transferred. The byte count is in IOST+2 and a success condition is returned.

Write Logical Block

The write function causes the contents of the I/0 buffer to be written as a single physical record
on the magtape. Note the restriction that the record size (that is, buffer length) must be at least
14 bytes. The maximum record size is 65535 bytes; however, it is not suggested that such large

records be used. A more reasonable upper limit would be 2K bytes.

If the handler detects a parity error when writing a record, the handler backspaces and retries
the write automatically. If the error persists after five retries, the handler attempts to write with
extended interrecord gap. This enables the record to be placed three inches farther down the tape,
past the (presumed) bad spot on the tape. The write with extended interrecord gap operation is
also attempted five times before an error is reported to the requesting task. If, for some reason,
the requesting task wishes to prohibit write with extended interrecord gap from occurring, it may
do so by utilizing the set characteristics functions. (See Section 7.3)

Rewind and Turn Unit Off Line

This command ensures that the unit is turned off line. It is normally used when operator
intervention is necessary (for example, when loading a new tape is required). The operator will
have to turn the unit manually on line before subsequent operations proceed.

Rewind Magnetic Tape Unit

This command causes the magnetic tape unit to rewind. When the rewind is initiated, the handler
immediately issues an 1/0 done status, (IS.SUC) to the user task.

The immediate return of I/0 done allows the user task to continue processing without having to
wait for the rewind to complete.

Additional QIO functions issued to the unit being rewound will not execute until the rewind is
completed.

Device Control Function Codes

The Skip, Set Characteristics and Verify function codes are described in the following separate
paragraphs with figures and charts for clarity.

Skip n Records

For this function I/0 requests serviced by the magtape handler are issued by the QIO$ macro with
the following format:

QIOS$ 1I0.SPB, lun,ef,pri,iosb, ast,<nrs>



7.3.2

7.3.3

Magnetic Tape Handlers

The parameter word must be specified and enclosed by left and right angle brackets (<>). It has
the following meaning:

* nrs - Number of records to skip

The skip-records function causes the tape unit to skip forward or reverse over a number of physical
blocks on the tape. If nrs is greater than zero, it is taken as the number of records to skip in the
forward direction; if nrs is less than zero, then the tape is backspaced nrs records. See Section 7.3.6
for end of volume considerations. If nrs equals zero, the handler task returns a status of IS.SUC.

I0SB+2 contains the actual number of records skipped (counting the EOF character as one record).
‘Note that attempting to backspace over the Beginning-of-Tape (BOT) is not considered an error;
however, backspacing stops at load point on encountering BOT and the actual number of records
skipped is returned in IOST+2.

Skip n Files

For this function /O requests serviced by the magtape handler are issued by the QIO$ macro with
the following format:

QIO$ TIO.SPF,lun,ef,pri,iost,ast,<ncs>

The parameter word must be specified and enclosed with left and right angle brackets (<>). It has
the following meaning:

* ncs - Number of EOF characters to skip

The skip files function causes the tape unit to skip forward or reverse until encountering the
specified nurber of EOF characters. If ncs is greater than zero, it specifies the number of EOF
characters to skip in the forward direction; if ncs is less than zero, the tape is backspaced over
ncs EOF characters. See Section 7.3.6. for end of volume considerations. If ncs is zero, success is
returned in JOST.

Set Characteristics
For this function, I/0 requests serviced by the magtape handler are issued by the QI0$ macro.
The macro has the following format:

QIOS I0.STC, lun, ef, pri, iosb, ast,<cb>

The parameter word must be specified and enclosed with left and right angle brackets (<>). It has
the following meaning:

* ¢b - characteristics bits to set

This function allows a task to set certain characteristics bits. These bits are defined in Figure 7-1.

A task which uses magtape should always set the tape characteristics to the proper value since
it cannot be certain what state they were left in by the previous task. (See Figure 7-2 and

~ Figure 7-3.)

-7



7.3.4

7.3.5

7.3.6

Magnetic Tape Handiers

Read Characteristics
For this function, I/0 requests serviced by the magtape handler are issued by the QIO$ macro.
The macro has the following format:

QIOS JO.SEC,lun, ef,pri, iosb,ast

This function returns the tape characteristics word in IOST+2.

Note that this function always succeeds and never causes the MAGTAPE SELECT ERROR
message to be issued. The fact that the unit is off-line (select error) or is rewinding is reported
in the bits defined in Figure 7-1.

Verify Beginning of Tape and Set Characteristics
The I/0 requests serviced by the magtape handler to verify that the tape is at load point and to set
its characteristics are issued by the QIO$ macro in the following format:

QIO$ IO.SMO,lun,ef,pri,iost,ast,<cb>

The parameter word must be specified and enclosed with left and right angle brackets (<>). It has
the following meaning:

® c¢b - Characteristics bit to set
This function first selects the unit to ensure that it is on line and positioned at load point and then
sets the characteristics bits. See Section 7.1 for a description of the tape characteristics bits.

If the tape is not at load point, an error (IE.FHE) is returned to the requesting task (the
characteristics bits are not set).

Logical End-of-Volume (EOV)

EOV is defined as two EOF characters in immediate succession, See Figure 7—4 for an illustrated
description of how this works.

The EOV state applies to the 10.SPB (Section 7.3.1) and 10.SPF (Section 7.3.2) functions only.
The IE.EOV status return can be used to locate the logical end-of-volume so that a new file can
be added to the tape. In this case, the requesting task executes an 10.SPF where parameter ncs
is greater than the actual number of files on the tape. When logical end-of-volume is detected, an
I0.EOV is returned in IOST and IOST+2 contains a count of the actual number of files skipped.

In special case B Figure 74, use the Read characteristics function, I0.SEC, to determine if the
tape is situated at logical end-of-volume or actually at physical end-of-volume (EOT).

7-8



7.4

Magnetic Tape Handlers

Figure 7-1 Set/Sense Characteristics Status Word

Key

Read Only

Write Only

MEANING

Tape is past logical EOV

Tape is at logical EOV
Tape is at BOT (Load Point)

Unit is 7-Channel(1)

Set to specify 1600 bpi PE(2) (TU16/TE16 only)
Tape is write locked

Unit is rewinding

Select error on unit

Set to inhibit write-with-extended interrecord gap
Set to prohibit writing on unit

Last command encountered EOF record(3)

Tape is past EOT marker(3)

Set to specify even parity operation(4)

B Set to specify core-dump-mode(5)(6)

Set to specify 200 bpi NRZ(7) recording density(5)

Set to specify 556 bpi NRZ recording density(5)

(1) TU16 available in 9—channel only.

(2) Phase encoded.

(3) Cleared by set characteristics.
(4) A unit with even parity set cannot write characters of all zeros so the null

set is translated to 020.

(5) 7—channel drives only. See Figure 7-2. The default status is 000004,

core dump mode. This is the initial setting when the driver is loaded.

(6) For 7—track units, the use of normal mode results in the loss of the

upper 2 bits of each byte.
(7) Non-return—to—zero.

MT Status Returns

IOST contains a code indicating the disposition of the QIO request. These status return codes for
the magtape handler are symbolized as shown below.

7-9



Magnetic Tape Handlers

Figure 7-2 TU10 Parity/Density Determination

Set even parity Set odd parity
for command for command

L

Yes

9—channel

tape?

set 800 BPI Yes
9-channel
for command
Set 800 BPI
T-channel
Yes core dump mode
for command
Y
Set 556 BPI Yes
T-channel
for command
No Set 200 BPI
7—-channel
for command
Set 800 BPI
T—channel
for command

7-10



Magnetic Tape Handlers

Figure 7-3 TU16 Parity/Density Determination

S 9
EVEN
YES PARITY

l SPECIFIE
?

SET EVEN
PARITY
FOR COMMAND

NO

SET ODD
PARITY
FOR COMMAND

NO SET 800 BPI
FOR COMMAND

1600 BPI ?

YES

SET 1600 BPI

L

i

END

7-1



Magnetic Tape Handlers

Figure 7-4 Logical End of Volume (EOV)

EOT

™
DATA ™ DATA ™ DATA ™ | T™™M (

)

A

| If a space forward
past this point is
attempted, the tape
stops at this point
and an EOV error
is returned.

SPECIAL CASE A: TM AT BOT

BOT

™ | ™™

In this case, you cannot space forward from BOT. The only proper function
is WRITE (although READ is also enabled).

SPECIAL CASE B: EOV ATEOT

BOT
3L T
DATA | ™ DATA ™ DATA ‘| TM | DATA : ™ TM(
N
In this case, space forward halts at the first interrecord—-gap past EOT. *
Key: Indicates tape mark, which is an EOF character written on the tape. This

is sometimes referred to as an EOF record. Tape marks are used to separate
two sets of data or to separate sets of data from labels.

7-12



7.5

Magnetic Tape Handlers

Symbol Meaning

IS.SUC Opsration successfully completed.

IE.ABO Operation aborted.

IE.BBE Tape format error.

IE.BYT Odd virtual address or odd byte count.

IE.DAA Device is already attached.

IE.DAO Record length error on read. Record exceeded stated buffer size in which case the final portion
of the record is not read.

IE.DNA Device was not attached (Detach failed).

{E.DNR Device went off-line in the middle of READ/WRITE/WRITE-END-OF-FILE/SKIP functions. This
can be the result of a power failure in the middle of an operation or the operator manually turning
the unit to off line. This is a serious error as the program cannot be certain that the tape is
correctly positioned for subsequent commands.

|E.EOF An End-of-File character was detected in READ or SKIP function. The tape is left positioned in
the gap following the EOF character (or preceding it in the case of backspace).

IE.EOV Logical end-of-volume (that is, two EOF characters in immediate succession; see Figure 7—4
EOV Handling).

IE.EOT The unit has sensed the End-of-Tape (EOT) marker while moving in the forward direction. This
error will persist until the EOT marker is passed in the reverse direction. (Note that after EOT, 10
feet of tape is provided for writing necessary volume trailer labels.)

IE.FHE Fatal hardware error. indicates that the unit may be maifunctioning. 10ST+2 contains the actual
magtape status register bits at the time of the error.

IE.IFC Invalid function code specification.

IE.PRI User task did not have proper access rights.

IE.SPC Validation error in Read/Write functions.

IE.SRE Send/request failed.

IE.VER Parity error in Read/Write or Write end-of-file functions.

IE.WLK Hardware (or software) write lock error in Write or Write-end-of-file functions.

UNIBUS Mapping Registers

When running on an 11/44, the MM.... handler uses the mechanism of dynamic UMR allocation
that is described in Section 4.4.

When used for controlling UNIBUS magnetic tape subsystems (for example, TU10), the MT....
handler initially requests eight UMRs. If it cannot obtain eight, the handler takes as many as are
available. Both read and write operations will be rejected if insufficient UMRs are available to
cover the transfer length.

7-13



8.1

8.1.1

Laboratory Peripheral System Handler (LPS11)

LPS11 Functions
The LPS11 Laboratory Peripheral System is a modular, real-time subsystem that includes the

following:

¢ 12 bit analog-to-digital converter, with sample and hold circuitry and an 8-channel multiplexer
¢ Programmable real-time clock for measuring and counting intervals or events

¢ Display controller to display data in a 4096 by 4096 dot matrix

¢ Digital input/output option (16 digital points and programmable relays)

Built in a compact size and designed for easy interfacing with outside instrumentation, the LPS11
is suited to a variety of applications, including biomedical research, analytical instrumentation,
data collection and reduction, monitoring, data logging, industrial testing, engineering, and
technical education.

The LPS11 handler allows many users to share access to the basic LPS11 facilities listed below;
therefore, the LP511 device cannot be attached to an individual task. The LPS11 handler allows
time-based sampling to be initiated on one channel while sampling is in progress on other
channels. Thus, experiments can be started at any time, independent of the current laboratory
work load.

Digital /O

To support the LPS11 Digital I/0O module (LPSDR) a bit mask word is initialized in the LPS PUD
entry during system generation. Each bit in the mask corresponds to a bit in the digital I/O word,
which in turn corresponds to one of sixteen channels.

A mask bit value of 0 specifies that the digital I/O word bit is never to be set to 1 by the LPS11
handler. A mask bit value of 1 specifies that the digital I/O word bit is set only when sampling is
being done on the corresponding channel as the result of a user request. That is, a value of 1 in
mask bit 4 means that bit 4 of the output word is set only when sampling is in progress on LPS-11
channel 4.

A digital I/O bit set to 1 is a signal to an external device that the LPS11 is ready to accept data
on the channel. For this reason, all external devices sending data to the LPS11 must be under the
control of the central processor that tells the devices when to start and stop.

When a mask bit is equal to 1, sampling of data on the corresponding channel is restricted to one
user prograr to prevent random changes from being made to the bit. When the bit is 0, multiple
users are allowed to read data from the channel since it is impossible for a user program to damage
any other simply by reading data.

NOTE: If the Digital I/O option (LPSDR) is not present on an LPS configuration, the
mask word in the PUD must be 0.



8.1.2

8.1.3

8.2

8.3

8.3.1

Laboratory Peripheral System Handler (LPS11)

Real-Time Clock

The Real-Time Clock module (LPSKW) is set to mode 1 (repeated interval mode) with interrupts
enabled and a base rate of 10kHz. A preset value of -10 remains constant in the buffer throughout
LPS11 handler operation, which means that once every millisecond the handler receives an
interrupt from the clock. Therefore, the highest sampling rate on any channel is 1000 points

per second.

12-Bit A/D Converter

Sampling of channels through the 12-bit A/D Converter (LPSAD-12) is permitted on any channel
whose channel number is less than or equal to the maximum number of channels in the LPS
configuration. This value is stored in the PUD entry created by system generation.

When an interrupt occurs for the real-time clock module, the internal LPS clock queue is examined.
If any samples are due to be taken, the A/D conversion is initiated on the appropriate channel.

When the clock node has been completely processed, the A/D status word is read. If the error bit is
set, a value of -2 is put into the user’s buffer for that sample. If the DONE bit is not set, an A/D
timeout is indicated, and a value of -1 is put into the user’s buffer. If the DONE bit is set, the A/D
value is put into the user’s buffer and the clock queue is again examined for more samples to be
taken.

System Generation Options

At system generation, the user can specify the following characteristics which result in bit settings
in the device PUD:

1 The number of A/D channels in the low-order byte of characteristics word 2.

2 Whether the gain ranging option (LPSAM-SG) is present (bit 15 in characteristics word 2 is set
if present).

3 Whether the D/A option (LPSVC or LPSDA) is present (bit 14 of characteristics word 2) and
how many D/A channels (low 5 bits of the high-order byte of characteristics word 2).

4 The polarity of each A/D channel (unipolar or bipolar). For each channel, the corresponding bit
is set in characteristics word 3 of the PUD if the channel is unipolar; for example, setting bit 0
indicates that channel 0 is unipolar.

Multiple controllers are not supported.

QIO MACROS

This section summarizes standard and device-specific QIO functions for the LPS11 handler.

Standard QIO Function
The only device independent QIO macro that is valid for the LPS11 is as follows:

QIOS$ IO.KIL

This QIO cancels all queued and in-progress I/O requests.

8-2



8.3.2

Laboratory Peripheral System Handler (LPS11)

Device-Specific QIO Functions (Immediate)

All device-specific functions of the QIO macro that are valid for the LPS11 are either immediate or
synchronous except for 10.STP (see Section 8.3.4). Each immediate function performs a complete
operation, whereas each synchronous function simply initiates an operation. Table 8-1 lists the
immediate functions.

Table 8-1 Device-Specific QIO Functions for the LPS11 (Immediate)

Format Function

QIO$C 10.LED.,...,<int,num> Display number in LED lights
QIO$C I0.REL,...,<rel,pol> LLatch output relay

QIO$C 10.8DI,...,<mask> Read digital input register
QIO$C 10.SDQ,...,<mask,data> Write digital output register
where:

* int - is the 16-bit signed binary integer to display.

* num - is the LED digit number where the decimal point is to be placed.
* rel - is the relay number (zero or one).

¢ pol - is the polarity (zero for open, nonzero for closed).

¢ mask - is the mask word.

* data - is the data word.
The following subsections describe the functions listed above.

I0.LED

This function displays a 16-bit signed binary integer in the light-emitting diode (LED) lights. The
number is displayed as five nonzero-suppressed decimal digits that represent the magnitude of the
number. A minus sign precedes a negative number. LED digits are numbered from right to left,
starting at 1.

The number can be displayed with or without a decimal point. If the parameter num is a number
from 1 to 5, the corresponding LED digit is displayed with a decimal point to the right of the digit;
otherwise, no decimal point is displayed.

10.REL

This function opens or closes the programmable relays in the digital I/0O status register.
Approximately 300 milliseconds are required to open or close a relay. The handler imposes no
delays when executing this function. Thus, it is the responsibility of the user to ensure that
adequate time has elapsed between the opening and closing of a relay.

10.SDI

This function reads data qualified by a mask word from the digital input register. The mask word
contains a 1 in each bit position from which data is to be read. All other bits are zero-filled. The
resulting value is returned in the second word of the I/0 status word.



Laboratory Peripheral System Handler (LPS11)

The operation performed is:
RETURN VALUE=MASK.AND.INPUT REGISTER

10.SDO

This function writes data qualified by a mask word into the digital output register. The mask
word contains a 1 in each bit position that is to be written. The data word specifies the data to be
written in corresponding bit positions.

The operation performed is:

NEW REGISTER=<MASK.AND.DATA>.OR.<<.NOT.MASK>.AND.OLD
REGISTER>

8-4



8.3.3

Laboratory Peripheral System Handler (LPS11)

Device-Specific QIO functions (Synchronous)

Table 8-2 lists the synchronous, device-specific functions of the QIO macro that are valid for the
LPS11.

Table 8-2 Device-Specific QIO Functions for the LPS11 (Synchronous)

Format Function

QIO$C 10.ADS,...,<stadd,size,pnt, Initiate A/D sampling
ticks,bufs,chna>

QIO$C I0.HIS,...,<stadd,size,pnt, ticks,bufs> Initiate histogram sampling

QIO$C 10.MDA,...,<stadd,size,pnt, Initiate D/A output
ticks,bufs,chnd>

QIO$C 10.MDI,...,<stadd,size,pnt, Initiate digital input sampling
ticks,bufs,mask:>

QIO$C 10.MDO,...,<stadd,size,pnt, Initiate digital output

ticks,bufs,mask:>

where:
¢ stadd - is the starting address of the data buffer (must be on a word boundary).
* gize - is the data buffer size in bytes (must be greater than zero and a multiple of four bytes).

* pnt - is the digital point numbers (byte 0 - starting input/output point number; byte 1 - input
point number to stop the function).

* ticks - is the number of LPS11 clock ticks between samples or data transfers, as appropriate.
* bufs - is the number of data buffers to transfer.

* chna - is the A/D conversion specification (byte 0 - starting A/D channel number, which must
be in the range 0-63. If the gain ranging option is present the channel number must be in the
range 0-15 and bits 4 and 5 specify the gain code. Byte 1 - number of consecutive A/D channels
to be sampled, which must be in the range 1-64).

¢ chnd - is the D/A output channel specification (byte 0 - starting D/A channel number, which
must be in the range 0-9; byte 1 - number of consecutive channels to output, which must be in
the range 1-10).

¢ mask - is the mask word.
The following subsections describe the functions listed above.

10.ADS

This function reads one or more A/D channels at precisely timed intervals, with or without auto
gain-ranging. If two or more channels are specified, all are sampled at approximately the same
time, once per interval. The auto gain-ranging algorithm causes a channel to be sampled at the
highest gain at which saturation does not occur.

-Sampling can be started when the request is dequeued or when a specified digital input point

is set. A digital output point may optionally be set when sampling is started. Sampling may be
terminated by a program request (10.STP or I0.KIL), by the clearing of a digital input point, or by
the collection of a specified number of buffers of data.

8-5



Laboratory Peripheral System Handler (LPS11)

All input is double-buffered with respect to the user task. Each time a half buffer of data has been
collected, the user task is notified via the setting of an event flag. That data is available to be
processed while the handler fills the other half of the buffer.

The subfunction modifier bits are identical to those described in “IO.HIS”; in addition, setting bit 3
to 1 requests auto gain-ranging. If bits 7 and 6 are both set to 1, the digital input point and digital
output point number are assumed to be the same,

If auto gain-ranging is used, the LPSAM-SG hardware option must be present and specified at
system generation. If the gain-ranging option is present and auto gain-ranging is not specified in
bit 3 of the subfunction code, bits 4 and 5 of the starting channel number specify the gain at which
samples are to be converted. Gain codes are as follows:

Code Gain
00 1

01 4

10 16
1 64

Data words written into the user buffer contain the converted value in bits 0 through 11 and the
gain code, as shown below in bits 12 through 15:

Code Gain
0000 1
0001 4
0010 16
0011 64

If the LPSAM-SG option is present, the baud pass filter jumpers must not be clipped. Also,

each channel must have been defined as unipolar or bipolar at system generation by defining the
corresponding bit (for example, bit 0 for channel 0) in characteristics word 3. Setting a bit indicates
that the channel is unipolar.

I0.HIS

This function measures the elapsed time between a series of events by means of Schmitt trigger
one. Each time a sample is to be taken, a counter is increased and Schmitt trigger one is tested.
If it has fired, the counter is written into the user buffer and reset to zero. Thus, the data item
returned to the user is the number of sample intervals between Schmitt trigger firings.

If the counter overflows before Schmitt trigger one fires, then a zero value is written into the user
buffer. Sampling can be started and stopped as described in “I10.ADS”. All input is double-buffered
with respect to the user task. The subfunction modifier bits appear below. A setting of 1 indicates
the action listed in the right-hand column.

Bit Meaning
0-3 Unused
4 Stop on number of buffers

8-6



8.3.4

Laboratory Peripheral System Handler (LPS11)

Bit Meaning

5 Stop on digital input point clear

6 Set digital output point at start of operation

7 Start on digital input point set (a zero specification means start immediately)
10.MDA

This function writes data into one or more external D/A converters at precisely timed intervals.
If two or more channels are specified, all are written at approximately the same time, once per
interval. Output can be started or stopped as described in “10.ADS”. All output is double-buffered
with respect to the user task.

D/A converters 0 and 1 correspond to the X and Y registers of the LPSVC option. D/A converters 2
through 9 correspond to the LPSDA external D/A option.

The subfunction modifier bits are identical to those described in “I10.HIS”.

10.MDI

This function provides the capability to read data that is qualified by a mask word from the digital
input register at precisely timed intervals. Sampling can be started and stopped as described in
“I0.ADS”. All input is double-buffered with respect to the user task.

The mask word contains a 1 in each bit position from which data is to be read. All other bits are
zero.

The subfunction modifier bits are identical to those described in “I0.HIS”.

10.MDO

This function writes data qualified by a mask word into the digital output register at precisely
timed intervals. Output can be started and stopped as described in “IO.ADS”. All output is
double-buffered with respect to the user task.

The subfunction modifier bits are identical to those described in “10.HIS”.

Device-Specific QIO Function (10.STP)
Table 8-3 lists the device-specific [O.STP function of the QIO macro, which is valid for the LPS11.

Table 8-3 Device-Specific QIO Function for the LPS11 (10.STP)

Format Function
QIO$C 10.STP....,<stadd> Stop in-progress request
where:

* stadd - is the buffer address of the function to stop (must be the same as the address specified
in the initiating request).

10.STP

I10.STP stops a single synchronous request that is in progress. It is unlike IO.KIL in that it only
cancels the specified request. 10.KIL cancels all requests.

8-7



8.4

8.4.1

8.4.2

Laboratory Peripheral System Handler (LPS11)

FORTRAN Interface

The FORTRAN-callable subroutines, described in this section provide FORTRAN programs with
access to the LPS11. Some of these routines can be called from FORTRAN as either subroutines or
functions. All are reentrant and can be placed in a resident library. They are included in SYSLIB
in the distributed version of IAS.

The isb Status Array

The isb (1/0 status block) parameter is a 2-word integer array that contains the status of the
FORTRAN call, in accordance with ISA convention. This array serves two purposes:

1 It is the 2-word I/O status block to which the handler returns an 1/0O status code on completion
of an I/O operation.

2 The first word of isb receives a status code from the FORTRAN interface in ISA-compatible
format, with the exception of the I/O pending condition, which is indicated by a status of zero.
The ISA standard code for this condition is +2.

The meaning of its contents varies depending on the FORTRAN call that has been executed.
Table 8—4 lists certain general principles that apply. The sections describing individual subroutines
provide more details.

Table 8-4 Contents of First Word of isb

Contents Meaning

isb(1) = 0 Operation pending; I/O in progress

isb(1) = 1 Successful completion

isb(1) = 3 Interface subroutine unable to generate QIO directive or illegal time or buffer value
3 < isb(1) < 300 QIO directive rejected and actual error code = -(isb(1) - 3)

isb(1) > 300 Driver rejected request and actual error code = -(isb(1) - 300)

FORTRAN interface routines depend on asynchronous system traps to set their status. Thus, if
the trap mechanism is disabled, proper status cannot be set.

Synchronous Subroutines

RTS, DRS, HIST, SDO, and SDAC are FORTRAN subroutines that initiate synchronous functions.
When they are used, the LPS11 handler and the FORTRAN program communicate by means of a
caller-specified data buffer of the following format:

The buffer header is initialized when the synchronous function initiation routine is called. The
length of the buffer must be an even number of words and no smaller than six words. An even
length is required so that the buffer is exactly divisible into half buffers.

The LPS11 handler performs double buffering within the half buffers. Each time the handler fills
or empties a half buffer, it sets a user-specified event flag to notify the user task that more data is
available or needed. The user task responds by putting more data into the buffer or by removing

the data now available.

8-8



8.4.3

Laboratory Peripheral System Handler (LPS11)

Figure 8-1 Synchronous Subroutines

Buffer Header Current Buffer Pointer

Address of 2nd I/O Status Word

Address of End of Buffer + 1
Address of Start of Data

Start of Data
Half Buffer
End of Buffer

If the user task does not respond quickly enough, a data overrun may result. This occurs if the
handler attempts to put another data item in the user buffer when no space is available (that is,
the buffer is full of data) or if the handler attempts to obtain the next data item from the user
buffer when none is available (that is, the buffer is empty).

All synchronous functions may be initiated immediately or when a specified digital input point is
set (that is, a start button is pushed).

They can be terminated by any combination of a program request, the processing of the required
number of full buffers of data, or the clearing of a specified digital input point (that is, a stop
button is pushed). A digital output point can optionally be set at the start of a synchronous
function. It can be used, for example, as a signal to start a test instrument.

FORTRAN Subroutine Summary

Table 8-5 lists the FORTRAN interface subroutines for the LPS11. S and F indicate whether they
can be called as subroutines or functions.



8.4.4

Laboratory Peripheral System Handler (LPS11)

Table 8-5 FORTRAN Interface Subroutines for the LPS11

Subroutine Function

ADC Read a single A/D channel (F,S)

ADJLPS Adjust buffer pointers (S)

ASLSLN Assign a LUN to LSO: (S)

CVSWG Convert a switch gain A/D value to floating-point (F)
DRS Initiate synchronous digital input sampling (S)

HIST Initiate histogram sampling (S)

IDIR Read digital input (F,S)

IDOR Wirite digital output (F,S)

IRDB Read data from a synchronous function input buffer (F,S)
LED Display number in LED lights (S)

LPSTP Stop an in-progress synchronous function (S)

PUTD Put data into a synchronous function output buffer (S)
RELAY Latch an output relay (S)

RTS Initlate synchronous A/D sampling (S)

SDAC Initlate synchronous D/A output (S)

SDO Initiate synchronous digital output (S)

The following subsections briefly describe the function format of each FORTRAN subroutine call.

ADC: Reading a Single A/D Channel

The ADC FORTRAN subroutine or function reads a single converted value from an A/D channel.
If the gain-ranging option is present in the LPS11 hardware, the channel can be converted at

a specific gain or the handler can select the best gain; that is, the gain providing the most
significance. The converted value is returned as a normalized floating-point number. The call
is issued as follows;

where:

CALL ADC (ichan, [var], [igain], [isb])

* ichan - specifies the A/D channel to be converted.

® var - is a floating-point variable that receives the converted value in floating-point format.

* igain - specifies the gain at which the specified A/D channel is to be converted. The default is
1. If specified, igain may have the following values:

where:
* ichan - specifies the A/D channel to be converted.

® var - is a floating-point variable that receives the converted value in floating-point format.

8-10



8.4.5

Laboratory Peripheral System Handler (LPS11)

* igain - specifies the gain at which the specified A/D channel is to be converted. The default is
1. If specified, igain may have the following values:

igain Gain

0 Autogain-ranging (handler selects gain that provides most significance)
1 1

2 4

3 16

4 64

* igb - is a 2-word integer array to which the subroutine status is returned.

The isb array has the standard meaning described in Section 8.4.1.

When the function form of the call is used, the value of the function is the same as that returned in
var. If this value is negative, an error has occurred during the A/D conversion (see Section 8.5.3).
Otherwise, this value is a floating-point number calculated from the following formula:

var = (64 * converted value) / conversion gain

ADJLPS: Adjusting Buffer Pointers

The ADJLPS FORTRAN subroutine adjusts buffer pointers for a buffer that the LPS11 handler is
either synchronously filling or emptying.

It is usually called when indexing is being used for direct access to the data in a buffer.

When data in a buffer is to be processed only once, the IRDB and PUTD routines can be used. In
some cases, however, it is useful to leave data in the buffer until processing is complete. The user
program can process the data directly and then call ADJLPS to free half the buffer. Use of the
routine for synchronous output functions is quite similar. When a half buffer of data is ready for
output, ADJLPS is called to make the half buffer available.

When ADJLPS is used for either input or output, care must be taken to ensure that the program
stays in synchronization with the LPS11 handler. If the program loses its position with respect to
the handler, the function must be stopped and restarted. An attempt to overadjust causes a 3 to be
returned in isb (1) and no adjustment to take place.

The call is issued as follows:

CALL ADJLPS (ibuf,iadj, [isb])
where:

¢ ibuf - is an integer array which was previously specified in a synchronous input or output
function.

* iadj - specifies the adjustment to be applied to the buffer pointers. For an input function
this specifies the number of data values that have been removed from the data buffer. For
an output function this specifies the number of data values that have been put into the data
buffer.

* isb - is a 2-word integer array to which the subroutine status is returned.
The isb array has the standard meaning described in Section 8.4.1.

8-11



8.4.6

8.4.7

Laboratory Peripheral System Handier (LPS11)

ASLSLN: Assigning a LUN to LSO:

The ASLSLN FORTRAN subroutine assigns a logical unit number (LUN) to the LPS11. It must be
called before execution of any other LPS11 FORTRAN function or subroutine. Subsequent calls to
other interface routines then implicitly refer to the LPS11 via the LUN assigned.

The call is issued as follows:

CALL ASLSLN (lun, [isb])
where:
* lun - is the number of the LUN to be assigned to the LSO:

* igb - is a 2-word integer array to which the subroutine status is returned.

The isb array has the standard meaning described in Section 8.4.1.

CVSWG: Converting a Switch Gain A/D Value to Floating-Point

The CVSWG FORTRAN function converts an A/D value from a synchronous A/D sampling function
to a floating-point number. Each data item returned by the LPS11 handler consists of a gain code
and converted value packed in a single word (see “10.ADS”). This form is not readily usable by
FORTRAN, but is much more efficient than converting each value to floating-point in the LPS11
handler. This routine unpacks the gain code and value, then converts the result to a floating-point
number. It can be conveniently used in conjunction with the IRDB routine (see Section 8.4.12).

The call is issued as follows:

CVSWG (ival)
where:

® ival - is the value to be converted to floating point. Its format must be that returned by a
synchronous A/D sampling function. The conversion is performed according to the following
formula:

var = (64 * converted value) / conversion gain
For the various gain codes,
var = x * converted value

as shown below:

Gain X
1 64
4 16
16 4
64

8-12



8.4.8

Laboratory Peripheral System Handler (LPS11)

DRS: Initiating Synchronous Digital Input Sampling

The DRS FORTRAN subroutine reads data qualified by a mask word from the digital input register
at precisely timed intervals. Sampling can be started or stopped as for RTS (see Section 8.4.17) and
all input is double-buffered with respect to the user task. Data can be sequentially retrieved from
the data buffer via the IRDB routine (see Section 8.4.11), or the ADJLPS routine (see Section 8.4.5
can be used in conjunction with direct access to the input data. The call is issued as follows:

CALL DRS (ibuf,ilen, imode, irate, iefn, imask,isb, [nbuf],
[istart], [istop])
where:
¢ ijbuf - is an integer array that is to receive the input data values.
* ilen - specifies the length of ibuf (must be even and greater than or equal to six).

* imode - specifies the start, stop, and sampling mode. Its value is encoded by adding together
the appropriate function selection values shown below:

Function

Selection Value Meaning

128 Start on digital input point set
64 Set digital output point at start
32 Stop on digital input point clear
16 Stop on number or buffers

Thus a value of 192 for imode specifies:
¢ The sampling is to be started when a specified digital input point is set.
¢ A digital output point is to be set when sampling is started.

* Sampling will be stopped via a program request.

¢ irate - is a 2-word integer array that specifies the time interval between digital input samples.
The first word specifies the interval units as follows:

irate(1) Unit

1 LPS11 clock ticks
2 Milliseconds

3 Seconds

4 Minutes

The second word specifies the interval magnitude as a 16-bit unsigned integer.

* iefn - specifies the number of the event flag that is to be set each time a half buffer of data has
been collected.

* imask - specifies the digital input points to be read.

* isb - is a 2-word integer array to which the subroutine status is returned.

-+ 8-13



8.4.9

Laboratory Peripheral System Handler (LPS11)

* nbuf - specifies the number of buffers of data to be collected. It is needed only if a function
selection value of 16 has been added into imode.

* igtart - specifies the digital input point number to be used to trigger sampling and/or the
digital output point number to be set when sampling is started. It is needed only if a function
selection value of 128 or 64 has been added into imode.

* istop - specifies the digital input point number to be used to stop sampling. It is needed only if
a function selection value of 32 has been added into imode.

When sampling is in progress, the first word of the isb array is zero and the second word contains
the number of data values currently in the buffer.

HIST: Initiating Histogram Sampling
The HIST FORTRAN subroutine measures the elapsed time between a series of events via Schmitt
trigger one.

Each time a sample is to be taken, a counter is incremented and Schmitt trigger one is tested.
If it has fired, then the counter is written into the user buffer and the counter is reset to zero.
Thus, the data returned to the user is the number of sample intervals between Schmitt trigger
firings. If the counter overflows before Schmitt trigger one fires, a zero value is written into the
user buffer. Sampling can be started and stopped as for RTS (see Section 8.4.17) and all input is
double-buffered with respect to the user task. The call is issued as follows:

CALL HIST (ibuf,ilen, imode,irate,iefn,isb, [nbuf], {istart],
[istop])

where:
* jbuf - is an integer array that is to receive the input data values.
¢ ilen - specifies the length of ibuf (must be even and greater than or equal to six).

* imode - specifies the start, stop and sampling mode. Its value is encoded by adding the
appropriate function selection values shown below:

Function

Selection Value Meaning

128 Start on digital input point set
64 Set digital output point at start
32 Stop on digital input point clear
16 Stop on number of buffers

* irate - is a 2-word integer array that specifies the time interval between samples. The first
word specifies the interval units as follows:

irate(1) Unit

1 LPS11 clock ticks
2 Milliseconds

3 Seconds

8-14



'8.4.10

8.4.11

lLaboratory Peripheral System Handler (LPS11)

irate(1) Unit

4 Minutes

The second word specifies the interval magnitude as a 16-bit signed integer.

¢ jefn - specifies the number of the event flag that is to be set each time a half buffer of data has
been collected.

* isb - is a 2-word integer array to which the subroutine status is returned.

* nbuf - specifies the number of buffers of data to be collected. It is needed only if a function
selection value of 16 has been added into imode.

* istart - specifies the digital input point number to be used to trigger sampling and/or the
digital output point number to be set when sampling is started. It is needed only if a function
selection value of 128 or 64 has been added into imode.

* istop - specifies the digital input point number to be used to stop sampling. It is needed only if
a function selection value of 32 has been added into imode.

The isb array has the standard meaning described in Section 8.4.1.

When sampling is in progress, the first word of the isb array is zero and the second word contains
the number of data values currently in the buffer.

IDIR: Reading Digital Input

The IDIR FORTRAN subroutine or function reads the digital input register as an unsigned binary
integer or as four binary-coded decimal (BCD) digits. In the latter case, the BCD digits are
converted to a binary integer before the value is returned to the caller. The call is issued as
follows:

CALL IDIR (imode, [ivall, [isb])
where:

* imode - specifies the mode in which the digital input register is to be read. If imode equals
zero, then the digital input register is read as four BCD digits and converted to a binary
integer. Otherwise it is read as a 16-bit unsigned binary integer.

* jval - is a variable that receives the value read.

* isb - is a 2-word integer array to which the subroutine status is returned.

The isb array has the standard meaning described in Section 8.4.1.

When the function form of the call is used, the value of the function is the same as that returned
in ival.

IDOR: Writing Digital Output

The IDOR FORTRAN subroutine or function clears or sets bits in the digital output register. The
caller provides a mask word and output mode. Bits in the digital output registers corresponding to
the bits specified in the mask word are either set or cleared according to the specified mode. The
call is issued as follows:

8-15



8.4.12

8.4.13

Laboratory Peripheral System Handler (LPS11)

CALL IDOR (imode, imask, [newval], [isb])

where:

* imode - specifies whether the bits specified by imask are to be cleared or set in the digital
output register. If imode equals zero, then the bits are to be cleared. Otherwise they are to be
set.

* imask - specifies the bits to be cleared or set in the digital output register. It may be
conveniently specified as an octal constant.

* newval - is a variable that receives the updated (actual) value written into the digital output
‘register.

* igb - is a 2-word integer array to which the subroutine status is returned.

The isb array has the standard meaning described in Section 8.4.1.

When the function form of the call is used, the value of the function is the same as that returned
in newval.

IRDB: Reading Data from an Input Buffer

The IRDB FORTRAN subroutine or function retrieves data sequentially from a buffer that the
LPS11 handler is synchronously filling. If no data is available when the call is executed, the
contents of the next location in the data buffer are returned without updating the buffer pointers.
The call is issued as follows:

CALL IRDB (ibuf, [ival])
where:

¢ jbuf - is an integer array which was previously specified in a synchronous input sampling
request (i.e., DRS, HIST, or RTS).

¢ jval - is a variable that receives the next value in the data buffer.

When the function form of the call is used, the value of the function is the same as that returned
in ival.

LED: Displaying in LED Lights
The LED FORTRAN subroutine displays a 16-bit signed binary integer in the LED lights. The
number is displayed with a leading blank (positive number) or minus (negative number), followed
by five nonzero-suppressed decimal digits that represent the magnitude of the number. LED digits
are numbered right to left starting at 1 and continuing to 5. The number can be displayed with or
without a decimal point. The call is issued as follows:

CALL LED (ival, [idec], [isb])
where:
* jval - is the variable whose value is to be displayed.

¢ idec - specifies the position of the decimal point. A value of 1 to 5 specifies that a decimal point
is to be displayed. All other values specify that no decimal point is to be displayed.

8-16



8.4.14

8.4.15

8.4.16

Laboratory Peripheral System Handler (LPS11)

* igb - is a 2-word integer array to which the subroutine status is returned.

The isb array has the standard meaning described in Section 8.4.1.

For example, the following call

CALL LED (-55,2)
would cause -0005.5 to be displayed in the LED lights.

LPSTP: Stopping an In-Progress Synchronous Function
The LPSTP FORTRAN subroutine selectively stops a single synchronous request. The call is
issued as follows:
CALL LPSTP (ibuf)
where:

* ibuf - is an integer array that apecifies a buffer that was previously specified in a synchronous
initiation request.

PUTD: Putting a Data Item into an Output Buffer

The PUTD FORTRAN subroutine puts data sequentially into a buffer that the LPS11 handler is
synchronously emptying. If no free space is available, no operation is performed. The call is issued
as follows:

CALL PUTD (ibuf, ival)

where:

¢ ibuf - is an integer array which was previously specified in a synchronous output request (SDO
or SDAC).

* ival - is a variable whose value is to be placed in the next free location in the data buffer.

RELAY: Latching an Output Relay
The RELAY FORTRAN subroutine opens or closes the LPS11 relays. The call is issued as follows:

CALL RELAY (irel,istate, [isb])
where:
* irel - specifies which relay is to be opened or closed (0 for relay one, 1 for relay two).

* istate - specifies whether the relay is to be opened or closed. If istate equals zero, the relay is
to be opened. Otherwise, it is to be closed.

~* isb - is a 2-word integer array to which the subroutine status is returned.

The isb array has the standard meaning described in Section 8.4.1.

8-17



8.4.17

Laboratory Peripheral System Handler (LPS11)

RTS: Initiating Synchronous A/D Sampling

The RTS FORTRAN subroutine reads one or more A/D channels at precisely timed intervals, with
or without auto gain-ranging. The auto gain-ranging algorithm causes the channels to be sampled
at the highest gain at which saturation does not occur.

Sampling can be started when the interface subroutine is called or when a specified digital input
point is set. A digital output point can optionally be set when sampling is started. Sampling can
be terminated by a program request (stop in-progress request or kill 1/0), the clearing of a digital
input point, or the collection of a specified number of buffers of data.

All input is double-buffered with respect to the user task. Each time a half buffer of data has
been collected, the user task is notified via the setting of an event flag that data is available to be
processed while the handler fills the other half of the buffer. Data can be retrieved sequentially
from the data buffer via the IRDB routine (see Section 8.4.11), or the ADJLPS routine (see
Section 8.4.5) can be used in conjunction with direct access to the input data.

The call is issued as follows:

CALL RTS (ibuf,ilen, imode, irate, iefn, ichan, nchan,
isb, [nbuf], [istart], [istop])

where:
e jbuf - is an integer array that is to receive the converted data values.
¢ ilen - specifies the length of ibuf (must be even and greater than or equal to six).

¢ imode - specifies the start, stop, and sampling mode. Its value is encoded by adding together
the appropriate function selection values as shown below:

Function

Selection Value Meaning

128 Start on digital input point set
64 Set digital output point at start
32 Stop on digital input point clear
16 Stop on number of buffers

8 Auto gain-ranging

* irate - is a 2-word integer array that specifies the time interval between A/D samples. The first
word specifies the interval unit as follows:

irate(1) Unit

1 LPS11 clock ticks
2 Milliseconds

3 Seconds

4 Minutes

The second word specifies the interval magnitude as a 16-bit unsigned integer.

* iefn - specifies the number of the event flag that is to be set each time a half buffer of data has
been collected.

8-18



8.4.18

Laboratory Peripheral System Handler (LPS11)

* ichan - specifies the starting A/D channel of the block of channels to be sampled synchronously
(must be between 0 and 63).

* nchan - specifies the number of A/D channels to be sampled (must be between 1 and 64).
* igb - is a 2-word integer array to which the subroutine status is returned.

* nbuf - specifies the number of buffers of data that are to be collected. It is needed only if a
function selection value of 16 has been added into imode.

* igtart - specifies the digital input point number to be used to trigger sampling and/or the
digital output point number to be set when sampling is started. It is needed only if a function
selection value of 128 or 64 has been added into imode.

* istop - specifies the digital input point number to be used to stop sampling. It is needed only if
a function selection value of 32 has been added into imode.

The isb parameter has the standard meaning described in Section 8.4.1.

When sampling is in progress, the first word of the isb array is zero and the second word contains
the number of data values currently in the buffer.

SDAC: Initiating Synchronous D/A Output

The SDAC FORTRAN subroutine writes data into one or more external D/A converters at precisely
timed intervals. Output can be started and stopped as for RTS (see Section 8.4.17 and all input

is double-buffered with respect to the user task. One full buffer of data must be available when
synchronous output is initiated.

After SDAC has initiated output and the specified event flag has been set to notify the task that
free buffer space is available, the PUTD routine (see Section 8.4.15) can be used to put data values
sequentially into the output data buffer. The ADJLPS routine (see Section 8.4.5) can be used in
conjunction with direct access to the output data buffer. The SDAC call is issued as follows:

CALL SDAC (ibuf, ilen,imode, irate, iefn, ichan,
nchan, isb, [nbuf], [istart], [istop])
where:
¢ ijbuf - is an integer array that contains the output data values.
* ilen - specifies the length of ibuf (must be even and greater than or equal to six).

* imode - specifies the start, stop, and sampling mode. Its value is encoded by adding together
the appropriate function selection values as shown below:

Function

Selection Value Meaning

128 Start on digital input point set
64 Set digital output point at start
32 Stop on digital input point clear
16 Stop on number of buffers

* irate - is a 2-word integer array that specifies the time interval between D/A outputs. The first
word specifies the interval units as follows:



8.4.19

Laboratory Peripheral System Handler (LPS11)

irate(1) Unit

1 LPS11 clock ticks
2 Milliseconds

3 Seconds

4 Minutes

The second word specifies the interval magnitude as a 16-bit unsigned integer.

* iefn - specifies the number of the event flag that is to be set each time a half buffer of data has
been output.

* ichan - specifies the starting D/A channel of the block of channels to be written into
synchronously (must be between 0 and 9).

* nchan - specifies the number of D/A channels to be written into (must be between 1 and 10).
* isb - is a 2-word integer array to which the subroutine status is returned.

* nbuf - specifies the number of buffers of data to be output. It is needed only if function selection
value of 16 has been added into imode.

* istart - specifies the digital input point number to be used to trigger sampling and/or the
digital output point number to be set when sampling is started. It is needed only if a function
selection value of 128 or 64 has been added into imode.

* istop - specifies the digital input point number to be used to stop sampling. It is needed only if
a function selection value of 32 has been added into imode.

The isb array has the standard meaning described in Section 8.4.1.

When sampling is in progress, the first word of the isb array is zero and the second word contains
the number of free positions in the buffer.

SDO: Initiating Synchronous Digital Output

The SDO FORTRAN subroutine writes data qualified by a mask word into the digital output
register at precisely timed intervals. Sampling may be started and stopped as for RTS (see
Section 8.4.17) and all input is double-buffered with respect to the user task. One full buffer
of data must be available when output is initiated.

After SDO has initiated output and the specified event flag has been set to notify the task that
free buffer space is available, the PUTD routine (see Section 8.4.15) can be used to put data values
sequentially into the output data buffer. The ADJLPS routine (see Section 8.4.5) can be used in
conjunction with direct access to the output data buffer. The SDO call is issued as follows:

CALL SDO (ibuf,ilen, imode, irate,iefn, imask, isb,
[nbuf}, [istart], [istop])
where:
* ijbuf - is an integer array that contains the digital output values.

* ilen - specifies the length of ibuf (must be even and greater than or equal to six).

8-20



8.5

Laboratory Peripheral System Handler (LPS11)

° imode - specifies the start, stop, and sampling mode. Its value is encoded by adding together
the appropriate function selection values as shown below:

Function

Selection Value Meaning

128 Start on digital input point set
64 Set digital output point at start
32 Stop on digital input point clear
16 Stop on number of buffers

¢ irate - is a 2-word integer array that specifies the time interval between digital outputs. The
first word specifies the interval units as follows:

irate(1) Unit

1 LPS11 clock ticks
2 Milliseconds

3 Seconds

4 Minutes

The second word specifies the interval magnitude as a 16-bit unsigned integer.

* iefn - gpecifies the number of the event flag that is to be set each time a half buffer of data has
been output.

* imask - specifies the digital output points that are to be written. It may be conveniently
specified as an octal constant.

* igb - is a 2-word integer array to which the subroutine status is returned.

* nbuf - specifies the number of buffers of data to be output. It is needed only if a function
selection value of 16 has been added into imode.

* istart - specifies the digital input point number to be used to trigger sampling and/or the
digital output point number to be set when sampling is started. It is needed only if a function
selection value of 128 or 64 has been added into imode.

¢ istop - specifies the digital input point number to be used to stop sampling. It is needed only if
a function selection value of 32 has been added into imode.

The isb parameter has the standard meaning described in Section 8.4.1.

When sampling is in progress, the first word of the isb array is zero and the second word contains
the number of free positions in the buffer.

Status Returns
The error and status conditions listed in Table 8-6 are returned by the LPS11 handler described in

. this chapter.

8-21



Laboratory Peripheral System Handler (LPS11)

Table 8-6 LPS11 Status Returns

Code Reason

IS.sUC Successful completion
The operation specified in the QIO directive was completed successfully. The second word of the
/O status block can be examined to determine the number of data values processed.

IS.PND /O request pending
The operation specified in the QIO directive has not yet been completed.

IE.ABO Operation aborted
The specified I/O operation was cancelled (via I0.KIL or 10.STP) while in progress.

IE.BAD Bad parameter
An illegal specification was supplied for one or more of the device-dependent QIO parameters
(words 6-11). The second I/O status word is filled with zeros.

IEBYT Byte-aligned buffer specified
Byte alignment was specified for a data buffer but only word alignment is legal for the LPS11.
Alternately, the length of a buffer is not an even number of bytes.

IE.DAO Data overrun
For the LPS11, the handler attempted to get a value from the user buffer when none was
available or attempted to put a value in the user buffer when no space was available.

IE.DNR Device not ready
The physical device unit specified in the QIO directive was not ready to perform the desired /0
operation. For the LPS11, this code is returned if a device timeout occurs while a function is
in progress. The second I/O status word contains the number of free positions in the buffer, as
appropriate.

IE.IEF Invalid event flag number
An invalid event flag number was specified in a synchronous function (that is, an event flag
number that was not in the range 1 to 64).

IE.IFC lllegal function
A function code was included in an I/O request that is illegal for the LPS11.

IE.NOD Insufficient buffer space
Dynamic storage space has been depleted, and there is insufficient buffer space available to
allocate a secondary control block for a synchronous function.

IE.OFL Device off-line
The physical device unit associated with the LUN specified in the QIO directive was not on-line.
When the system was booted, a device check indicated that this physical device unit was not in
the configuration.

IE.ONP Option not present
An option dependent subfunction was requested, and the required feature was not specified
at system generation. For example the gain-ranging option or D/A option is not present. The
second /O status word contains zeros.

IE.PRI Privilege violation
The task which issued the request was not privileged to execute that request. For the LPS11, a
checkpointable task attempted to execute a synchronous sampling function.

IE.RSU Resource in use

8-22



8.5.1

Laboratory Peripheral System Handler (LPS11)

Table 8-6 (Cont.) LPS11 Status Returns

Code Reason
A resource needed by the function requested in the QIO directive was being used (see
Section 8.5.1).

IE.SPC llegal address space

The buffer specified for a read or write request was partially or totally outside the address space
of the issuing task. Alternately a byte count of zero was specified. The second I/O status word
contains zeros.

FORTRAN interface values for these status returns are presented in Section 8.5.4.

IE.RSU

IE.RSU is returned if a function requests a resource that is currently being used. The requesting
task can repeat the request at a later time or take any alternative action required.

Because certain functions do not need such resources, they never cause this code to be returned.
Other functions return this code under the following conditions:

Function When IE.RSU Is Returned

10.8DO One or more specified digital output bits are in use

I0.ADS Digital output point (if specified) is in use

IO.HIS Digital output point (if specified) is in use

10.MDA Digital output point (if specified) is in use

10.MDI Digital output point (if specified) or digital input points to be sampled are in use
10.MDO Digital output point (if specified) or output bits to be written are in use

The following components of the LPS11 are each considered a single resource:

Resource

When Shareable

The A/D converter and clock  Always shareable.

Each bit in the digital output Never shareable.

register

Each bit in the digital input Always shareable when used by 10.SDI or for start/stop conditions (specified in

register

subfunction modifier bits), even when in use by another function; when specified
by a synchronous digital input function, not shareable with another such function.

Each resource is allocated on a first-come-first-served basis (that is, when a conflict arises, the
most recent request is rejected with a status of IE.RSU).

8-23



Laboratory Peripheral System Handler (LPS11)

8.5.2 Second l/O Status Word

On successful completion of a function specified in a QIO macro call, the IS.SUC code is returned
to the first word of the I/O status block.

Table 8-7 lists the contents of the second word of the status block, on successful completion for
each LPS11 function.

Table 8-7 Returns to Second Word of I/0 Status Block

Successful

Function Contents of Second Word

10.KIL Number of data values before 1/0O was cancelled
IO.LED Zero

10.REL Zero

10.8DI Masked value read from digital input register
10.8DO Updated value written into digital output register
I0.ADS Number of data values remaining in buffer
IO.HIS Number of data values remaining in buffer
10.MDA Number of free positions in buffer

10.MDI Number of data values remaining in buffer
10.MDO Number of free positions in buffer

10.STP Zero

When IE.BAD is returned, the second I/O status word contains zero. LPS11 handler functions
return the IE.BAD code under the following conditions:

Function When IE.BAD is Returned

10.REL Relay number not 0 or 1.

10.ADS No /O status block, illegal digital

10.MDA 1/O point number, or illegal channel number.
IO.HIS No /O status block or illegal

10.MDI digital I/O point number.

IO.MDO

8.5.3 10.ADS and ADC Errors

While I0.ADS or the ADC FORTRAN subroutine is converting a sample, two error conditions
can arise. Both of these conditions are reported to the user by placing illegal values in the data
buffer. A -1 (177777 octal) is placed in the buffer if an A/D conversion does not complete within
30 microseconds. A -2 (177776 octal) is placed in the buffer if an error occurs during an A/D
conversion.

8-24



8.5.4

8.6

8.6.1

Laboratory Peripheral System Handler (LPS11)

FORTRAN Interface Values
The values listed in Table 88 are returned in FORTRAN subroutine calls.

Table 8—8 FORTRAN Interface Values

Status FORTRAN
Return Value
1S.SUC +01
IS.PND +00
IE.AABO +315
IE.ADP +101
IE.BAD +301
IE.BYT +319
IE.DAOC +313
IE.DNR +303
IE.IEF +100
IE.IFC +302
IE.ILVU +99
IE.NOD +323
IE.ONP +305
IE.PRI +316
IE.RSU +317
IE.SDP +102
IE.SPC +306
IE.ULN +08
IE.UPN +04

Programming Hints

This section contains information on important programming considerations relevant to users of
the LPS11 handler described in this chapfer.

The LPS11 Clock and Sampling Rates

The basic LP511 clock frequency (count rate) for all synchronous functions is always 10 KHZ.

The ticks parameter in a synchronous function specifies the number of ticks between samples or
data transfers. The value of ticks is a 16-bit number. Thus 65,5636 discrete sampling frequencies
are possible. This provides a maximum single-channel sample rate of 1 sample every 100
microseconds (possible in hardware but impractical in software) and a minimum of 1 sample every

- 429,495 seconds. A single-channel rate greater than 2 KHZ is possible, but not recommended.

8-25



8.6.2

Laboratory Peripheral System Handler (LPS11)

Importance of the I/0 Status Block

An I/0 status block must be specified with every synchronous function. If the first I/O status word
is nonzero, the request has been terminated and the value indicates the reason for termination.
Otherwise, the request is in progress, and the second I/0 status word contains the number of
data values remaining in the buffer (or the number of free positions in the buffer for I0. MDA and
10.MDO).

8.6.2.1 Buffer Management
The buffer unload protocol for synchronous input functions is described below. The user constructs
a 5-word block that contains the following:

IOSB: .BLKW 2 ; I/0 STATUS DOUBLE-WORD
CURPT: .WORD BUFFER ; ADDRESS OF BUFFER

LSTPT: .WORD BUFFER+n ; ADDRESS OF END OF BUFFER
FSTPT: .WORD BUFFER ; ADDRESS OF BUFFER

Two of these words are required for the I/O status block and the remaining three by the user to
unload data values from the buffer.

The user then issues the /0 request with the appropriate parameters and the address of the above
block as the I/0 status block. The QIO directive zeros both 1/0 status words to initialize them.

If the handler accepts the request, it sets up a write pointer to the first word in the user buffer.
Thus the user has a buffer read pointer and the handler has a buffer write pointer. The user and
the handler share the second I/0 status word, which is the number of data words in the buffer that
contain data.

Each time the handler attempts to put a sample value into the buffer, it increments the contents
of the second I/0 status word and compares the result with the size of the buffer. If the result

is greater, buffer overrun has occurred and the request is terminated. Otherwise, the value is
stored in the buffer at the address specified by the handler’s write pointer and the writer pointer is
updated.

If the value stored in the user buffer fills half of the buffer, the event flag specified in the 1/0
request is set in order to notify the user that a half buffer of data is available to be processed.
Each time the user task is activated, it executes the following code:

58 Clear efn ;

10$: TST IOSB+2 ;ANY DATA IN BUFFER?
BEQ 308 ;IF EQ NO
MOV @QCURPT, RO ;GET NEXT VALUE FROM BUFFER
DEC IOSB+2 ;REDUCE NUMBER OF ENTRIES
ADD #2, CURPT ;UPDATE BUFFER READ POINTER
CMP CURPT,LSTPT ;END OF BUFFER?
BLOS 203 ;IF LOS NO
MOV FSTPT,CURPT ;RESET BUFFER READ POINTER
20%: Process data value ;
BR 10$ ; TRY AGAIN
308: TST IOSB sREQUEST TERMINATED?
BNE 405 ;IF NE YES
Waitfor efn ;
BR 5% ;

408: Determine reason for termination

For 10. MDA and I0.MDO, this protocol differs slightly. The user task maintains a write pointer
and the handler a read pointer. The entire buffer must be full when the request is executed.

8-26



Laboratory Peripheral System Handler (LPS11)

8.6.3 Use of ADJLPS for Input and Output

The following FORTRAN example illustrates the proper protocol for using ADJLPS for synchronous
input and output.

Synchronous input:

DIMENSION IBF (1004),IERR(2),INTVL(2)

INITIATE SYNCHRONOUS A/D SAMPLING,

Q0QQ

INTVL (1)=2
INTVL (2)=5
CALL RTS (IBF,1004,160, INTVL, IEFN, 6, 6, IERR, 50, 16, 15)

INITIALIZE HALF BUFFER INDEX

aQa

INDX=4
WAITFOR HALF BUFFER OF DATA
0 CALL WAITFR(IEFN)
CLEAR EVENT FLAG
5 CALL CLREF (IEFN)

PROCESS HALF BUFFER OF DATA

oaoaorQaOQOFEQOOQ0

SUM=0

DO 20 I=1,500

SUM=SUM+CVSWG (IBF (I+INDX))
20 CONTINUE

AVERG=SUM/500

FREE HALF BUFFER FOR MORE DATA

[e e ¢!

CALL ADJLPS (IBF,500)

ADJUST BUFFER INDEX

[eleNe!

INDX=INDX+500
IF (INDX.GE.1004) INDX=4

"CHECK IF ANOTHER HALF BUFFER OF DATA IS AVAILABLE

o000

IF (IERR(2) .GE.500) GO TO 15
IF (IERR(1) .NE.O) GO TO end of sampling
GO TO 10

Synchronous output:

8-27



Laboratory Peripheral System Handler (LPS11)

DIMENSION IBF (1004),IERR(2), INTVL(2)
C
C FIRST BUFFER OF DATA MUST BE AVAILABLE AT START
THIS EXAMPLE ASSUMES FIRST BUFFER IS FULL AT START

START SYNCHRONOUS DIGITAL OUTPUT FUNCTION

[eNeNeNeNe]

INTVL(1)=2
INTVL (2)=5
CALL SDO(IBF,1004,160, INTVL, IEFN,MASK, IERR, 50,16, 15)

INITIALIZE HALF BUFFER INDEX

[eNoKe]

INDX=4
WAITFOR ROOM IN BUFFER
0 CALL WAITFR(IEFN)
CLEAR EVENT FLAG
5 CALL CLREF (IEFN)

CALCULATE VALUES TO PUT IN BUFFER

aoaoaraoaoaorana

X=(Y+2) *2Z
DO 20 I=1,500
IBF (I+INDX)=X**5/A
20 CONTINUE
Cc
C SIGNIFY ANOTHER HALF BUFFER IS FULL
C
CALL ADJLPS (IBF.500)

ADJUST BUFFER INDEX

aaoan

INDX=INDX+500
IF (INDX.GE.1004) INDX=4

CHECK IF ANOTHER HALF BUFFER IS EMPTY

[eMeNe]

IF (IERR(2) .GE.500) GO TO 15
IF(IERR(1) .NE.O) GO TO end of sampling
GO TO 10

In both the above examples, care is taken to ensure that the program stays in synchronlization
with the LPS11 handler, the function must be stopped and restarted since this is the only way to
recover. Caution should a be exercised to ensure that the above program sequence is used to avoid
a possible loss of data.

8-28



9.1

9.2

9.3

9.3.1

Card Reader Handler Tasks

Devices Supported

The card reader handler tasks support the CR11 or the CD11 punched card readers or the CM11
mark sense reader. There is a device handler task for the CD11 hardware (file CRNP.TSK) and
another device handler task to handle either the CR or CM hardware (fille CRBR.TSK). The
selection of hardware to be supported by the CR/CM handler is determined at assembly time by
specifying the hardware type in an assembly statement. The CD handler task services the CD11
hardware only. The card reader handler task is a single controller handler supporting any card
reader assigned to CRn (where n is in the range 0 - 7). A copy of the card reader handler task is
required for each card reader supported.

Card Reader Functions

The card reader handler provides the following types of service to the user:
1 Read cards in DEC026 format énd translate to ASCII,

2 Read cards in DEC029 format and translate to ASCII,

3 Read cards in the binary format described in Section 9.3.2.

The user has the option of specifying which of the functions he desires at assembly time.

Specifically, with a conditional assembly he can specify the types of translation to be allowed,
namely:

1 Read only 026 codes,
2 Read only 029 codes,
3 Read both types of code with 026 as default,
4 Read both types of code with 029 as default.

If no assembly time specification is made, the handler is built to do the following:
1 Read both 026 and 029 code with 029 as default.
2 Prohibit binary reads.

Data Formats

Data is interpreted as being in either alphanumeric or binary format.

‘Alphanumeric Format

The translation from 026 or 029 card codes to ASCII is performed as specified in Table 9-1.



Card Reader Handler Tasks

9.3.2 Binary Format

Binary data is not translated. After data is first converted to a packed form, it is transferred to the
user exactly as read; that is, each four columns = three words. Figure 9-1 below shows only the
first 4 columns on the card. This pattern is repeated for each set of 4 columns read.

Card Column Word 1 Word 2 Word 3

1 bits 15-4

2 bits 3-0 bits 15-8

3 bits 7-0 bits 15-12
4 bits 11-0

Figure 9-1 Binary Data Format 48 Bits (3 words, 4 card columns)

WORD 1 WORD 2 WORD 3
- N7 A o~ 7\

CARD CARD CARD CARD
COLUMN COLUMN COLUMN COLUMN
<+ 1 e 2 —pa— 3 e 4
15 4 3 8 7 015 12 11 0




Card Reader Handler Tasks

Table 9-1 PDP-11 Punched Card Codes

Non

Parity
Character ASCIl DEC029 DECO026
[ 173 120 120
] 175 10 10
SPACE 040 NONE NONE
| 041 1287 1287
" 042 87 08
# 043 83 08
$ 044 183 183
% 045 084 087
AND 046 12 1187
! 047 85 86
( 050 1285 084
) 051 11886 1284
* 052 1184 1184
+ 053 1286 12
, 054 083 083
- 055 11 11
. 056 1283 1283
/ 057 01 01
0 060 0 0
1 061 1 1
2 062 2 2
3 063 3 3
4 064 4 4
5 065 5 5
6 066 6 6
7 067 7 7
8 070 8 8
9 o7 9 9
: 072 82 1182
; 073 1186 082
< 074 1284 1286
= 075 86 83
> 076 086 1186
? 077 087 1282
@ 100 84 84
A 101 12 1 12 1

9-3



Card Reader Handler Tasks

Table 9-1 (Cont.) PDP-11 Punched Card Codes

Non

Parity
Character ASCIH DECO029 DEC026
B 102 122 122
Cc 103 123 123
D 104 124 124
E 105 125 1256
F 106 126 126
G 107 127 127
H 110 128 128
! " 129 129
J 112 11 111
K 113 112 112
L 114 13 113
M 115 14 14
N 116 15 16
(o] 117 116 116
P 120 "7 17
Q 121 118 18
R 122 119 19
S 123 02 02
T 124 03 03
U 126 04 04
v 126 05 05
w 127 06 06
X 130 07 07
Y 131 08 os
Zz 132 09 09
[ 133 1282 1185
\ 134 082 87
] 135 1182 1285
AOR* 136 187 85
<OR _ 137 085 82

Run Time Service

The user can invoke either alphanumeric or binary service via the QIO Directive. The specific type
of alphanumeric translation, 026 or 029, may be defined by the code in the control card that the
user must place in front of each deck of cards (for example, 029 control card for an 029 deck, 026
control card for an 026 deck), and an end of file card.



9.5

9.6

Card Reader Handler Tasks

If the READ BINARY function code is not issued, the handler assumes alphanumeric mode. In
cases where the handler is assembled for both 026 and 029 cards, the type of translation shall be
the last mode invoked, unless the handler is directed otherwise by a special punch in card column
1 of the control card.

Requesting a binary read causes an error return, IE.IFC, if this capability was not incorporated at
assembly time.

Control Characters

The card reader handler task is sensitive to certain control characters. Control characters, when
recognized, are never transferred to the user’s buffer nor are they included in the word count. The
control set consists of the following multipunches:

Punches in card column 1 Meaning

12-11-0-1-6-7-8-9 End of file ASCIl mode. In binary mode these punches must be in
card columns 1 through 8.

12-0-2-4-6-8 029 codes follow,

12-2-4-8 026 codes follow.

I/0 Functions

I/O requests serviced by the card reader handler are issued via the QIO$ system macro with
arguments specified in the following format:

QIO$ fc,lun,ef,pri,iosb, ast, [<stadd, size>]

where fc can have one of the following values:

Symbol Meaning

10.ATT Attach

10.DET Detach

I0.RLB Read Logical Block
10.RVB Read Virtual Block
10.RDB Read Binary

The two parameter words bracketed by left and right angle (<>) brackets apply only to Read
Virtual Block and Read Logical Block. They are optional; however, if the parameter words are
specified they must be delimited by the angle brackets. They have the following meanings:

¢ gstadd - starting address of the buffer

¢ gize - size of the buffer

9-5



9.7

9.7.1

9.7.2

9.8

Card Reader Handler Tasks

Recovery Procedures
Recovery procedures fall into two categories:
1 Device errors,

2 Power fail.

Device Errors

No attempt is made to flag errors on incoming data, that is, on illegal punching. There are two
forms of hardware error message, which are output to the operator’s console.

Hardware error message Action

***CRn—NOT READY Place cards in the input hopper and press the reset switch.

***CRn—READ ERROR, If the only error indicated is PICK CHECK, press the RESET switch. If the only
CHECK HARDWARE error indicated is READ check and the CRBR handler is being used, retrieve the
STATUS last two cards read and place them in front of the cards remaining in the input

hopper. Press the RESET switch.

Otherwise, place the last card read immediately in front of remaining cards in input
hopper. Press RESET switch.

When the CRNP handler (see Section 9.1) is being used, pressing the STOP
switch while a card read order is in progress causes this error message. Refeed
last card read as just described, and press RESET switch. The error message is
repeated. Now press the STOP switch and then the RESET switch.

The request remains pending unless the system indicates that the operator cannot be notified. In
this case, the request is terminated with a status of IE.DNR.

Power Failure Recovery

If power fails, the program checks to see if a card read is in progress. If so, a hardware (device)
error is simulated.

For either device error recovery or power failure recovery the operator must reinsert the last card
read and press reset to restart the reader.

CR Status Returns

IOST contains a code indicating the disposition of the QIO request. These codes are symbolized as
shown below.

Symbol Meaning

IS.SUC Successful completion

IE.BAD Invalid parameters )

IE.IFC Invalid function code (returned only when handler was not assembled to process
binary data and a binary read was requested)

IE.DNR Device not ready

9-6



9.9

Card Reader Handler Tasks

Symbol Meaning

IE.SPC Part of buffer out of user space
IE.EOF End of file or read

IE.PRI User does not have directive privilege
IE.DNA Device not attached

IE.DAA Device already attached

See Appendix A.

UNIBUS Mapping Register (UMR) Allocation

On PDP-11/70 processor systems with more than 124K of memory, the handler requests allocation
of one UMR for DMA access. The UMR is allocated when the handler is loaded into memory and
deallocated when the handler exits. If none is available, the handler declares itself nonresident
and exits.

9-7



1 0 Line Printer Handler

10.1 Printer Functions

The line printer handler task is a single controller handler, supporting any line printer assigned to
LPn, where n is in the range 0-7. The line printer models supported are listed in Table 10-1.

Table 10-1 Line Printer Models

Column
Model Width Characters
LA180 132 96 (medium speed)
LP11-F 80 64
LP11-H 80 96
LP11-J 132 64
LP11-K 132 96
LP11-R 132 64 (heavy duty, high speed)
LP11-S 132 96 (heavy duty, high speed)
LP11-V 132 64
LP11-W 132 96
LS11 130 62 (medium speed)
LV11 132 96 (electrostatic printer-plotter)

The line printer handler task does not support the special features of the LV11 plotter mode.

The line printer handler task LP.... is written as a multi-user task. This means that a separate
copy of the task runs for each printer in the system. The read-only part of the handler code is
shared between all copies.

10.2 System Generation Options

Some types of line printer (for example, LP11-V) need their buffer be cleared before they can
be turned off-line. In these cases, a carriage return code must be explicitly output when one is
implied; there is no wasted print cycle. These types of printer must be specified as LS-types at
system generation (See the description of the DEV directive in the IAS System Generation and
Startup Guide for more detail).

Other types (for example, LP11-R) clear their own buffer when they are turned off-line. In
these cases, a carriage return code need be output only when overprinting is required. Further,
redundant carriage return codes cause wasted print cycles on these types of printer, and they

- should be specified as LP-types at system generation.

For line printers specified as upper case only at system generation, the handler converts any lower
case characters to their upper case equivalents.

10-1



10.3

Line Printer Handler

If an upper case only printer is specified as upper and lower case at system generation, the handler
will not perform this case conversion. Typically, lower case characters will appear as blanks on the
printer.

Function Codes
I/0 requests serviced by the line printer handler are issued via the QIO$ system macro with
arguments specified in the following format:
QIOS$[S] fc,lun,ef,pri,iosb,ast[,<stadd,size,vfc>]
Function codes are:
* JO.WVB - Write Virtual Block (print buffer contents)
» I0O.WLB - Write Logical Block (print buffer contents)
¢ JO.ATT - Attach Printer for Reserved usage
* IO.DET - Detach Printer
The three parameter words bracketed by left and right angle brackets (<>) apply only to Write

Virtual Block and Write Logical Block. When used with these functions, the parameter words must
be delimited by the angle brackets. They have the following meanings:

e gtadd - starting address of the buffer
* gize - size of the buffer

* vfc - vertical format control character. This has one of the values shown in Table 10—2. Note
that the IAS spooler will always translate line feeds into null buffer writes to ensure that the
line feed appears correctly whatever the printer type.

Table 10-2 Vertical Format Control Characters

Octal
Value Character Meaning
040 blank SINGLE-SPACE - The handler outputs a line feed, outputs the contents of the

buffer, and (for an LS-type printer) outputs a carriage return. Normally, printing
immediately follows the previously printed line.

060 0 (zero) DOUBLE SPACE - The handler outputs two line feeds, outputs the contents
of the buffer, and outputs a carriage return. Normally, a blank line is output
followed by buffer contents printed two lines below the previously printed line.

061 1 (one) PAGE EJECT - The handler outputs a form feed, outputs the contents of the
buffer, and outputs a carriage return. Normally, the contents of the buffer are
printed on the first line of the next page.

053 + (plus) OVERPRINT - The handler outputs a carriage return, and outputs the contents
of the buffer. Normally, the contents of the buffer are printed on the same line
as the previously printed line.

044 $ (dollar sign) PROMPTING OUTPUT - The handler outputs a line feed (except for an LS-type
printer), and outputs the contents of the buffer. This mode of output is intended
for use with a teleprinter, where a prompting message is output, and input is
read (echoed) on the same line. Note that the line printer hardware treats a
line feed as a carriage return, line feed (except for LS11).

All other vertical format characters are interpreted as blanks (octal 040).

10-2



Line Printer Handler

Table 10-2 (Cont.) Vertical Format Control Characters

Octal
Value Character Meaning
000 null INTERNAL VERTICAL FORMAT - The handler outputs the contents of the

buffer, and does not output a vertical control character. In this mode, more
than one line of guaranteed contiguous output may be printed per /O request

queued.
All other vertical format characters are interpreted as blanks (octal 040).




Line Printer Handler

10.4 LP Status Returns

IOST contains a code indicating the disposition of the QIO request. These status return codes for
the line printer handler task are symbolized as shown below.

Symbol Meaning

IS.sUC Successful completion

IE.IFC Invalid function code

IE.SPC Part of buffer is out of address space
IE.DNA Device not attached

IE.DAA Device already attached

IE.DAO Output truncated (line too long)

See Appendix A for a complete list of 1/O status returns.

10.5 Characteristics Words for Line Printer

Section 1.8.1 describes the general use of the four characteristics words in the PUD. For
lineprinters the following bits are significant in characteristics word 2:

bit 0 Hi.LC if set printer has lower case
bit 1 H1.LS if set printer is an LS11

These bits are set during system generation and do not vary.

104



11

11.1

11.1.1

Message Output Handler

Message Output Handler (MO)
IAS provides a facility for all outputting user-defined messages. Its goals are:
1 To provide a system-wide standard for message output with emphasis on error reporting.

2 To keep the code per task as small as possible and still provide coherent information.

After issuing a message (error or otherwise), the task that requests the message handler can:
1 Continue

2 Be immediately suspended until the operator continues or aborts the task

3 Do further processing, then be suspended as in b

4 Be immediately aborted

The MO handler (task name = MO....), has two message destinations:
1 SYLOG - the system logging device
2 USBUF - a user specified buffer

You can specify one or both.

User Task Interface To MO Handler

Message output is initiated via a QIO Directive to the device MO. The MO task is a device handler,
and as such it is a privileged task, with an entry in the PUD called MO. The user commonly issues
the QIO directive implicitly via one of the macros MOUT$, MOUT$C or MOUT$S described in
Section 11.4.

As with all handlers, a requesting task must assign a LUN to device MO in order to use it. The
LUN can be assigned in three ways:

1 The user task can execute the ASSIGN directive to device MO.

2 The user task can reserve a global memory location using the instruction:

.MOLUN:: .BLKW 1

In this instance, the task builder will put an extra slot in the task’s logical unit table, store its
number in . MOLUN, and assign the LUN to MO.

3 The user can assign the LUN via the task builder command, as:

ASG=MO:n

where n is specified as the LUN value.

The macros which can replace explicit use of a QIO to MO are supplied in the system macro file
RSXMAC.SML.

11-1



11.1.2

11.1.3

11.2

1.3

Message Output Handler

String Descriptors

The first parameter of the macros that issue a message using MO is the address of a string
descriptor (see Section 11.4). When the message is in the user program, the string descriptor is
a pointer to a format string; however, if the message is in a disk file, the string descriptor is a
pointer to a filename string.

The string descriptor is two words long. The first word is the length of the format string or

the filename string. The second word is the address of the format string or the filename string.
Example 11-1 and Example 11-2 show the string descriptor for message format strings included in
the user program. Example 11-3 shows the string descriptor pointing to a filename string.

Parameter List

The message handler has the capability of inserting user arguments into a predefined message.
A pointer to the parameter list is the second parameter in the macro calls and is the address of a
table of sequential arguments to be inserted in the message. The format of the table depends on
the code used for constructing the message. See Section 11.3.

MO Task Operation

After the MO task has dequeued the request node set up by the user QIO Directive, message
processing proceeds as follows.

1 The format string is moved from the user task or specified file to the MO task area.

2 The message string is created (see Section 11.3).

3 If a user buffer is specified, a copy of the message is moved there. (See Section 11.5 for format.)
4

The request node is released declaring I/0 done. Event flag 30 (decimal) is set only if the user
task specified CONTINUE as the following action. Event flag 30 (decimal) is not set if the user
task specified SUSPEND in the macro.

If ABORT was specified, the requesting task is terminated by the ABORT directive.
5 If SYLOG was specified as the destination, the message is sent to the system logging device.

Note that the output of a message to the system logging device on behalf of a user task is
always asynchronous to that task’s execution. If the using task specifies an I/0 status block, a
return code is placed in it. A positive value in the status block indicates a successful return.
A negative value indicates an error return. A successful return to the user means that all
processing up to but not including the output to the system logging device was correct. Status
returns are defined in Section 11.8.

Message Construction

Messages are constructed from formatted strings that can be stored either in the user task space
or in a disk file, with a fixed length of 64-byte records. The format string consists of fixed and
variable characters. In order to construct a message, the user must supply values to be substituted
for the variables. An example of a format string is:

ALPHA: %8A

11-2



Message Output Handler

The format string is scanned and each character is copied into the message buffer until a %
character is encountered. This triggers an interpretation of the next few characters according to
the following syntax:

% count code
or

% V code
or

% %
where:

* count - is a numeric ASCII string that is converted into a positive decimal integer indicating
how many times the action indicated by the code character is to be performed. If not specified,
1 is assumed.

¢ V -is used to indicate that the count is variable and the next word in the parameter list is
interpreted as the count.

* code - is a single letter indicating the action to be performed. The code values are summarized
in Table 11-1.

* % - is used to output % to the message text.

In the example, %8A is interpreted to mean:
Move 8 characters from the buffer whose address is the next item in the parameter list.
In the example %VA, the interpretation is:

Get the count, a variable number, from the current position of the parameter list pointer.
Increment the pointer and move the variable number of bytes or characters as stated above.

In the example below, the first word of the string descriptor STR1, contains the format string
length and the second word contains the format string address. PAR1 is the address of the
parameter list.

To pass format string information to MO the user task proceeds as follows:

1 Assume the formatted message was assembled as:

STR1: . WORD LN1E-LN1 ;LENGTH OF FORMAT STRING
.WORD LN1 ;ADDRESS OF FORMAT STRING

LN1: .ASCIZ /ALPHA:%8A/

LN1E:

2 During program execution a parameter list contains the pointer to the ASCII string.

PAR1: . WORD ASTR
ASTR: .ASCII /ABCDEFGH/

3 The user task issues a macro call:

MOUTS$S #STR1, #PAR1

11-3



Message Output Handler

4 MO responds to the macro call and outputs the following message to the system logging device:

****taskname - CONTINUED
ALPHA:ABCDEFGH

In Table 11-1, the %nT command (FORTRAN Trace-back Chain) takes two arguments: the
trace-back chain listhead and the current statement number. The trace-back chain listhead is
the contents of location $NAMC; the current statement number is the contents of location $SEQC.

The steps corresponding to 2 and 3 above are (with n=20):
2 Set up parameter list:

PARAM : .BLKW 2
STRING: .ASCIZ /%20T/

3 Code and macro call:
MOV $NAMC, PARAM

MOV $SEQC, PARAM+2
MOUTS$S #STRING, #PARAM

Example 11-1 and Example 11-2 show more complex format strings, the macro calls to format
them, and the resulting output string. Section 11.5 describes default values that are used to
construct the DPB when parameters are omitted.

Table 11-1 Format String Codes

Code Meaning

%nA Move n bytes from the buffer whose pointer is taken from the current location of the parameter
list.

%nB Print n bytes as 3-digit octal numbers. The current item in the parameter list gives the address of
the address of the first byte. The bytes are separated by spaces.

%nD Convert n words beginning at the current location in the parameter list. Each word produces a
signed zero-suppressed ASCII string (maximum, five digits) that is a decimal representation of
the word.

Each converted digit string is delimited by a tab. If the sign is omitted, + is implied.

%n0O Convert n words beginning at the current location in the parameter list. Each word produces a
signed, zero-suppressed ASCII string (maximum, five digits) that is an octal representation of the
word.

Each converted digit string is separated by a tab. Omitting the sign implies +.
%nP Same as %n0O except that each word converts to an unsigned 6-digit octal string.

%nR Convert n words beginning at current location in the parameter list. Each word is interpreted
as a RADIX-50 word and converts to three ASCII characters. No spaces are inserted between
converted 3-character strings.

%nF Insert n form feed characters into the output string. Insertion of form feeds does not imply start
of a new record.

%nlL Start a new record in the output buffer. This code implies carriage return, line feed (a CR,LF)
when output is to the system logging device. If n is greater than 1, additional 0 byte records are
inserted in the output buffer.

%nN Insert n line terminators (CR,LF) in the output string. The current record is not terminated.

11-4



11.3.1

Message Output Handler

Table 11-1 (Cont.) Format String Codes

Code Meaning

%nT Trace the FORTRAN traceback chain through n links or untit the link pointer is 0, whichever
comes first.

%nX Insert n filename strings in the output buffer beginning at the current location in the parameter

list. A filename is described by five parameter words:

+  Words 0-2 - Radix-50 filename;
*  Word 3 - Radix-50 file type;
*  Word 4 - Binary version number.

The filename is printed in standard syntax and trailing blanks are suppressed. If the version
number is 0, it is not printed. Each converted filename is delimited by a space.

Message File

Error messages can be stored in a file. In this case the string descriptor in the macro call refers
to a filename string instead of a format string. The default filename type is . MSG. In the example
below, R1 contains the address of the parameter list. R2 contains the record number of the format
string within the file.

11-5



Message Output Handler

Example 11—1 Example Using Counts in the Format String

MOUTSS #STR1, #PAR1

; STRING DESCRIPTOR

STR1: .WORD LN1E-LN1 ; LENGTH OF FORMAT STRING
.WORD LN1 ;ADDRESS OF FORMAT STRING

; FORMAT STRING

LN1: .ASCIZ /ALPHA:%10A,DEC:%3D,0CT:%40/

LN1E:

; PARAMETER LIST

PAR1: .WORD ASTR ;POINTER TO ASCII STRING
.WORD 123. ;ARGUMENTS TO BE USED IN
-WORD 456. ;DECIMAL CONVERSION
.WORD 789.
.WORD 111 ;ARGUMENTS TO BE USED IN
.WORD 222 ; OCTAL CONVERSION
.WORD 333
.WORD 444

ASTR: .ASCII /ABCDEFGHIJ/

.MOLUN::.BLKW 1 ;LUN WILL BE ASSIGNED BY
;THE TASK BUILDER

The resulting message is as follows:

****task name - CONTINUED
ALPHA:ABCDEFGHIJ,DEC:123 456 789,0CT:111 222 333 444

11-6



Message Output Handler

Example 11-2 Example Using V in the Format String

MOUT$S #STR2, #PAR2

STRING DESCRIPTOR

T S Ne S

TR2: .WORD LN2E-LN2 ;LENGTH OF FORMAT STRING
.WORD LN2 ;ADDRESS OF FORMAT STRING

FORMAT STRING

. “o e

LN2: .ASCIZ /ALPHA:%VA,DEC:%VD,OCT:%VO/

LN2E:

;

; PARAMETER LIST

;

PAR2: .WORD 10. H
.WORD ASTR ;POINTER TO ASCII STRING
.WORD 3 H
.WORD 123. ;ARGUMENTS TC BE USED IN
.WORD 456. :DECIMAL CONVERSION
.WORD 789.
.WORD 4 H ‘
.WORD 111 ;ARGUMENTS TC BE USED IN
.WORD 222 ;OCTAL CONVERSION
.WORD 333
.WORD 444

ASTR: .ASCII /ABCDEFGHIJ/

.MOLUN::.BLKW 1 ;LUN WILL BE ASSIGNED BY
; THE TASK BUILDER

The resulting message is as follows:

****task name - CONTINUED
ALPHA:ABCDEFGHIJ,DEC:123 456 789,0CT:111 222 333 444

1-7



Message Output Handler

Example 11-3 Example of Format From a Disk File

MOUT$S $#FILDES,R1,R2

;
7 STRING DESCRIPTOR

;
FILDES: .WORD ENDFIL-FILNAM ;LENGTH OF FILENAME STRING
.WORD FILNAM ;ADDRESS OF FILENAME STRING

FILENAME STRING

o e %o

FILNAM: .ASCIZ /DK1l:[100,100]SAMPLE.MSG;1/
ENDFIL:

11-8



11.4

11.4.1

Message Output Handler

Message Macro Descriptions

This section contains an explanation for each of the macros that are supplied for the users of MO.
The macros are listed below.

MOUTS$
MOUT$C
MOUT$S
MODF$
MOWA$S

‘The argument descriptions for MOUT$ (Section 11.4.1) apply also to MOUT$C (Section 11.4.2) and
MOUT$S (Section 11.4.3). mout$c and MOUT$S have three additional arguments.

Where a suspension is required, whether immediate or deferred, the parameter “act” must be set
to SUSPD. See Section 11.4.5 for details concerning suspension. The operator can reply to the
suspension by typing the MCR commands

CONTINUE tsknam or ABORT tsknam

or the DCL commands

CONTINUE/MESSAGE tsknam or ABORT/REALTIME tsknam

This macro generates the proper Queue I/0 DPB for accessing the MO task.

Macro call:
MOUTS$ str, prm, num, act,dst,buf,siz, iost,lun

Argument Meaning

str Address of a string descriptor in the user area that in turn points to a format string in the user
area or to the dataset specification of the user's file where the record (format string) is found.
See “num”.

prm Prm is a pointer to the parameter list. The parameter list is a sequential list of arguments that are
used in formatting the message format string.

num The value of num determines how str is interpreted. If num is less than or equal to 0, the value
of str is a pointer to a format string in the task’s address space. If num is positive, str is a pointer
to an ASCIl filename, and num's value is a record number index to the format string in the named
file. If num is not specified zero is used by default.

act The value specified for act dictates what action is to be taken after the error message is

formatted. You can specify one of the following string variables:

11-9



Message Output Handler

Argument

Meaning

dst

buf

siz
fost

lun

*+  CONT-—Continue the task that is requesting the error message, immediately or after further
processing.

*  SUSPD—Suspend, immediately or after further processing, the requesting task until the
operator responds (see Section 11.4). The requesting task must also generate a wait on the
special event flag (30 decimal) in order to cause the suspension (see Section 11.4.5).

*  ABORT—AbDort the requesting task.

If the action is not specified, CONT is used by default. An action value not matching one of those
above Is assumed to be described in a user-specified action bit pattern. (See Section 11.4.4.)

One of the following string variables is specified to designate the destination of the error
message.

*  SYLOG--System logging device
*  USBUF—User buffer
*  SYABUF—System logging device and user buffer

If the destination is not specified, SYLOG is used by default.

Output to the system logging device is preceded by a taskname/action header line if the user
specifies the string SYLOG as the destination argument in the macro call. To suppress the
header the user modifies the destination argument by specifying SY$STM in the bit pattern. See
Section 11.4.4, USBUF or SYABUF designates that the message will be sent to a user buffer,
indentified in the buf parameter (see below). The header line is never returned to the user buffer.

A destination value not matching one of those above is assumed to be described in a
user-specified destination bit pattern.

Note that if act was CONT, output to SYLOG is performed simuitaneously with task operation.

Buf points to the user buffer, where the message is sent when destination requires transfer back
to the user task.

The size, in bytes, of the user buffer pointed to by buf. (Maximum = 256/minimum = 6 (decimal).)

This parameter contains a pointer to the user task’s /O status block, which is set on QIO
completion, to indicate success or failure.

This parameter defines the logical unit number to be used for the message. If the task has
defined the global symbol .MOLUN, the task builder initializes the LUN to incorporate the
message output LUN by placing the value of the LUN in location .MOLUN. If the user then
invokes the MOUT$S macro, .MOLUN is the default LUN parameter. Otherwise, lun must be
specified in the mactro call. '

1-10



11.4.2

1.4.3

Message Output Handler

The following symbols are generated for accessing the DPB at run time. They are logically defined
values equal to byte offsets from the start of the DPB to the respective elements:

¢ M.OLUN-—(Length 2 bytes) Logical Unit

* M.OIST—(2) Address of I/O status block

e M.ODST—-(1) Destination

¢ M.OACT—<1) Action

¢ M.ONUM—(2) Record number

* M.OSTR—~(2) Format string descriptor pointer
¢ M.OPRM-—(2) Parameter list pointer

*  M.OBUF-—(2) User buffer pointer

* M.OSIZ—(2) User buffer size

MOUTS$C

The MOUT$C macro generates a Queue I/O DPB in a separate program section named $DPB$$. A
monitor call and, if specified, a wait for event flag 30 are generated in the original program section.

Macro call:

MOUTSC str,prm,num,act,dst,buf,siz,iost, lun, cs, exrr,now

In addition to the macro arguments described in Section 11.4.1, MOUT$C uses the three arguments
described below.

Argument Meaning

cs This parameter only appears with MOUT$C. It should specify the name of the current program
section. (Refer to the IAS System Directives Reference Manual for an explanation of the $C form
of system directives.)

err If a value is given for err, it specifies a location to be called if the Queue I/O directive falils.

now If this parameter is null, the WAIT FOR event flag 30 is generated. If NWAIT is specified, the
WAIT FOR is not generated.

MOUTS$S

The MOUT$S macro generates the code to construct a DPB on the user stack and issue the Queue
I/O directive to the message output task (MO). Provision is included for specifying an error address,
in case the Queue /O directive is unsuccessful, and a WAIT FOR on the special event flag.

Macro call:

MOUTS$S str,prm,num,act,dst,buf,siz,iost, lun, err, now

All arguments, with the following exceptions, are expected to be proper symbols for use in MOV
and MOVB source fields: act and dst are string variables for which a good comparison with the
predefined symbols listed in Section 11.4.1 will cause the proper code generation. The argument
for the WAIT FOR (now) expects the string NWAIT if the user does not want a special WAIT FOR

11-1



11.4.4

Message Output Handler

generated after the QIO. The argument err is a user defined address to be called if the QIO fails.
See Section 11.4.1 and Section 11.4.2 for argument definitions. %RUNOFF-W-IIF, 7| ignored

User Definition of Action and Destination

It might be desirable to use a DPB that has been defined by one of the MOUT$ macros, and then
to change action codes and destinations for different messages at run time. The macro MODF#$ is
provided to define locally the symbols used to achieve this change.

For example, in the following subroutine assume that on entry, RO contains the DPB address. R1
contains a flag which, if negative, means that the task is aborted and that the header line (i.e.,
taskname and action) is printed. If R1 is positive, the task continues and the header line is not
printed.

-MCALL MODF$

MODF$
;
ERRA: TST R1 ;ENTRY POINT
BMI FATAL ;IS THIS A BAD ERROR
MOVB #CSONT, M.OACT (RO) ;NO SO JUSsT
;CONTINUE WITH WARNING
MOVB #SY$STM,M.ODST (RO) ;ON SYSTEM
BR ERRTN +LOGGING DEVICE
7
FATAL: MOVB #ASBRT,M.OACT (RO) ;BAD ERROR SO ABORT

; THE TASK AND ALSO
MOVB #SY$SSTM!HESADR, M.ODST (RO) ;PRINT THE
; HEADER LINE ON
; SYSTEM LOG
ERRTN: RTS PC

The MODF$ macro does not have parameters in the call. All the macro does is define the following
symbols local’

act

CS$SONT Continue the requesting task

S$USP Suspend the requesting task

A$BRT Abort the requesting task

dst

SY$STM System logging device

BUSFFR User buffer

HE$ADR Include taskname/action header line with output.

Note that, as shown in the example, the destination codes can be combined by the logical OR
operator (!).

As was stated in Section 11.4.1, it is possible to suppress the taskname header line. The example
above shows how to suppress the header at run time by moving the destination code SY$STM into
the DPB using the offset M.ODST. The header can also be suppressed by using MODF$ symbols at
assembly time, for example,

11-12



11.4.5

Message Output Handler

-MCALL MODF$, MOUTS$
MODF$
MESDST = SY$STM!BUSFFR

.
’

MOUTS$ str, prm, num, act:, MESDST, buf, siz, iost,lun

The macro MOUT$ sets the destination code of the DPB to the value of the user defined symbol
MESDST (since it is not one of the codes listed in Section 11.4.1 and checked for by MOUTS$).
However, in the example we have defined MESDST to be the inclusive OR of SY$STM and
BUS$FFR, thus omitting the code for taskname header printing. Hence the message goes to the
system logging device and the user buffer without the header line.

Uses of the MO WAIT FOR Macro

The macro MOWAS$S (no parameters) is used with MOUT$ to generate an immediate wait till the
operator acts in response to the message. It is also used with MOUT$, MOUT$C and MOUT$S
when the wait is deferred.

For immediate suspension, use

MOUT$

MOWASS
or

MOUT$C with "now" set to null
or

MOUTSS with "now" set to null

For deferred suspension, use

MOUT$
processing
MOWAS$S
or
MOUTSC  with "now" set to NWAIT
processing
MOWASS
or
MOUT$S with "now" set to NWAIT
processing

MOWASS

11-13



Message Output Handler

1.5 Message DPB Format

The DPB format for Message Output is shown below with its relation to the MOUT$ macro call.
The macro call argument definition has been arranged so that the arguments used most appear
first. Note that macro invocation fixes certain values in the DPB.

WORD 1: DIRECTIVE AND DPB SIZE ;THE SIZE OF THE DPB WILL VARY
FROM 9-12 WORDS DEPENDING ON

SPECIFICATION OF PRM, BUF,

AND SIZ

o No Ne N

WORD 2: 1I/0 FUNCTION ;FIXED TO "WRITE" FUNCTION CODE
WORD 3: LUN ;DEFAULT TO 0 IF EXPANDED BY

MOUTS$ or MOUTS$C, DEFAULT TO

" .MOLUN" IF EXPANDED BY MOUTSS.

~

;
;
WORD 4: EFN,PRIORITY ;FIXED TO EVENT FLAG 30 (DECIMAL),
; PRIORITY O.
WORD 5: IOST sDEFAULT TO 0 (NO STATUS BLOCK)
WORD 6: AST ; FIXED TO "NO AST ENTRY"
WORD 7: ACT,DST ; ACTION DEFAULTS TO CONT[INUE]
; DESTINATION DEFAULTS TO SYLOG
WORD 8: NUM ; MESSAGE NUMBER DEFAULTS TO O
;
WORD 9: STR ;FORMAT STRING POINTER IF NUM

IS NEGATIVE OR ZERO. FILENAME
POINTER TO SYSTEM MESSAGE
FILE IF NUM IS POSITIVE

Ne Se Ne v

WORD 10: PRM ;PARAMETER LIST POINTER DEFAULTS
TO 0 (NO PARAMETER LIST) - FOR-
MAT STRING IS THE MESSAGE)

~

~

WORD 11: BUF ;USER BUFFER POINTER - DEFAULTS
; TO SMALLER DPB SIZE
WORD 12: SIZ ;USER BUFFER SIZE - DEFAULTS TO

; 0 IF BUF IS SPECIFIED.

If the macro is invoked with the symbol $$$GLB defined, the DPB is not generated, and the
symbolic offsets are defined globally.

11.6 Message Format Returned to User Buffer

The message buffer returned to the user is a single transfer of a maximum 512 bytes. The format
of the data is:

11-14



WORD 1 NUMBER OF RECORDS THAT FOLLOW
WORD 2 BYTE COUNT OF RECORD #1
RECORD #1
BYTE COUNT OF RECORD #2
RECORD #2

Message Output Handler

The L code in the format string is a record terminator and causes the byte count of the current
record to be stored as the first word of that record. When necessary, the record is padded with a
zero to ensure an even byte count. Each L code in the action string causes an implied CR,LF on
the system logging device.

If the repeat count for the code L is greater than 1, then additional records of no bytes are created.
The CR,LF is implicit and is not stored in the user buffer. For example, %3L causes the current
record to be terminated plus two zero words indicating two records of length zero.

Error Conditions

The MO task is designed to output messages in spite of error conditions that might arise. Error
conditions are accommodated as follows:

1
2

If destination is not specified, SYLOG is assumed.

If a user buffer is specified in destination, but the DPB size indicates that none was specified,
or if the size of the buffer was less than six bytes, output is forced to SYLOG.

The maximum output buffer size is 256 (decimal) bytes, or the user buffer size (if specified),
whichever is smaller. The maximum input buffer size is 64 (decimal) bytes, or the format
string size, whichever is smaller.

Errors detected during the reading of a format string from a file (CSI, OPEN, GET, CLOSE)
cause an error code to be set in the user status block. The contents of the input buffer are
printed as is.

Errors detected during the processing of a format string cause three question marks to be
appended to the message at the point of the error. An error code is set in the user status block.
Possible errors are:

a. Illegal access to user parameter list,
b. Message buffer overflow,
11-15



Message Output Handler

c. Illegal format directive.
6 The following message is printed on the operator’s console if the MO task was unsuccessful in
declaring itself a handler task.

*xXXMO.... = EXIT*,***
"DECLARE AND SET" ERROR

11.8 MO STATUS RETURNS
The following 1/0 status returns are made by MO:
¢ IS.SUC—Successful MO request

¢ JE.BAD—Invalid format directive encountered, or buffer size less than established minimum,
or invalid destination code.

e IE.IFC—Invalid I/O function code.

¢ IE.SPC—Argument out of user address space.

¢ IE.DAO-—Data overrun (buffer too small for formatted message).
¢ IE.PRI—1/O privilege error.

¢ IE.BNM—Bad filename specified.

In addition, error codes can be generated by the File Control Services Routines during an attempt
to access a message file.

11-16



11 2 Paper Tape Reader/Punch Handler

12.1 Devices Supported
The high speed paper tape reader and punch handler tasks support the following devices:

Device Read Speed Punch Speed

PC11 paper tape reader/punch 300 char/sec 50 char/sec
PR11 paper tape re=der 300 char/sec

(image mode only: no interpretation of data code)

12.2 Function Codes

The I/O requests serviced by the paper tape reader/punch handler task are issued via the QI0$
system macro with arguments specified in the following format:

QIOS$ fc,lun,ef,pri,iosb,ast

fc can have one of the following values.

Symbol Meaning

10.KIL Cancel Request

I0.ATT Attach

10.DET Detach

10.RLB Read Logical Block (paper tape reader only)

I0.wWLB Write Logical Block (paper tape punch only) Read/Write Logical Block passes the tape image to

and from the devices, thus the user task will be able to convert between IAS/RSX format and
foreign formats as described.

121



12.3

12.3.1

Paper Tape Reader/Punch Handler

Tape Leadetr/Trailer

The paper tape reader handler task attempts to read leaders (nulls) from the paper tape when the
device is attached via the QIO function IO.ATT. The paper tape punch handler attempts to punch
100 leaders (nulls) when the device is attached via the QIO function I10.ATT, or punch 100 trailers
(nulls) when the device is detached by the QIO function I0.DET. The handler task returns an
end-of-tape condition (IE.EOF) with the byte count if a punch failure occurs during a write logical
function or if a device not ready condition occurs during a read logical function. Such a condition
can be caused by any of the following:

* No tape,
* Reader off line,
e  Power low,

* Malfunction after read begins.

Sequential File Device

The high speed paper tape reader and punch handlers distributed with the IAS system process
data as sequential block I/O when using FCS or PIP.

You can reconfigure the handlers to use sequential record I/O with ASCII carriage control when
performing read and write virtual functions. The paper tape reader/punch is then treated as

a sequential file device by the file control services (FCS). All Files-11 files carry the record
structure: start of record in word 1, byte count plus 4 in word 2, the actual data records, and

the checksum. The checksum is not included in the byte count; however, it is used to verify the
calculated checksum of the stripped byte count when the data is read back from the reader handler.

To reconfigure the handlers, edit the source code to include a definition of the symbol ASCFMT for
ASCII format 1I/0. To enable sequential block 1/0, define the symbol FILSYS. Both symbols can be
defined in the same handler.

The handler source code is supplied on the binaries distribution under UFD [311,14]. The source
code also contains instructions for assembling and building the handlers.

If you require ASCII processing for read and write virtual functions you must also ensure that the
device characteristics in the handlers’ PUD entries are set correctly. Bits 0 and 1 (carriage control
and record-oriented device) must be set in characteristics word one. Set these during System
Generation or use the MCR OPE command.

122



Paper Tape Reader/Punch Handler

12.4 PT Status Returns

IOST contains a code indicating the disposition of the QIO request. These status return codes for
the paper tape reader/punch handler tasks are symbolized as shown below. (See Appendix A.)

Symbol Meaning

iE.IFC Invalid function code

IE.SPC Part of buffer is out of address space

IE.DAA Device already attached

IE.DNA Device not attached

IE.PRI Privilege violation

IE.EOF End of file

IE.ABO Request terminated

IE.VER Check sum error (This code occurs only if the device Is treated as a sequential file device.)

12-3



13

13.1

13.2

13.2.1

Cassette Handler

Introduction

The cassette handier supports the TA1l magnetic tape cassette (a TA1l controller with a TU60
dual transport). Programming for cassette is quite similar to programming for magnetic tape. The
TA1l system is a dual-drive, reel-to-reel unit which uses Philips-type cassettes.

The maximum capacity of a cassette, in bytes, is 92,000 (minus 300 per file gap and 40 per
interrecord gap). It can transfer data at speeds of up to 562 bytes per second. Recording density is
from 350 to 700 bits per inch, depending on tape position.

QIO MACRO

This section summarizes standard and device-specific QIO functions for the cassette handler.

Standard QIO Functions

Table 13-1 lists the standard functions of the QIO macro that are valid for the tape cassette
handler.

Table 13—-1 Standard QIO Functions for the Tape Cassette Handler

Format Function

QIO$C I0.ATT.... Attach device

QIO$C 10.DET.... Detach device

QIO$C I0.KIL,... Cancel /O requests

QIO$C I0.RLB,...,<stadd,size> Read logical block (read tape into buffer)
QIO$C 10.RVB,...,<stadd,size> Read virtual block (read tape into buffer)

QIO$C I0O.WLB,...,<stadd,size> Write logical block (write buffer contents to tape)
QIO$C I0.WVB,...,<stadd,size> Wirite virtual block (write buffer contents to tape)
where:

* stadd - is the starting address of the data buffer (may be on a byte boundary).

* size - is the data buffer size in bytes (must be greater than zero).

13-1



13.2.2

13.3

Cassette Handler

Device-Specific QIO Functions

Table 13-2 lists the device-specific functions of the QIO macro that are valid for cassette. The
section on programming hints below provides more detailed information about certain functions.

Table 13-2 Device-Specific QIO Functions for the Tape Cassette Handler

Format Function

QIO$C 10.EOF.... Write end-of-file gap
QIO$C I0.RWD,... Rewind unit

QIO$C 10.SPB,...,<nbs> Space blocks
QIO$C 10.SPF....,<nes> Space files

where:

* nbs - is the

®* nes - is the

number of blocks to space past (positive if forward, negative if reverse).

number of EOF gaps to space past (positive if forward, negative if reverse).

Status Returns
The error and status conditions listed in Table 13—3 are returned by the cassette handler described

in this chapter.

Table 13-3 Tape Cassette Handler Status Returns

Code

Reason

1S.8UC

IE.ABO

IE.DAA

IE.DAO

IE.DNA

IE.DNR

IE.EOF

13-2

Successful completion

The operation specified in the QIO directive was completed successfully. The second word of the
1/0 status block can be examined to determine the number of bytes processed, if the operation
involved reading or writing; or the number of blocks or files spaced, if the operation involved
spacing blocks or files.

Operation aborted
The specified I/O operation was cancelled via 10.KIL while still in the I/O queue.
Device already attached

The physical device unit specified in an I0.ATT function was already attached by the issuing task.
This code indicates that the issuing task has already attached the desired physical device unit,
not that the unit was attached by another task.

Data overrun.
The handler was not able to sustain the data rate required by the TA11 controller.
Device not attached

The physical device unit specified by an I0.DET function was not attached by the issuing task.
This code has no bearing on the attachment status of other tasks.

Device not ready

The physical device unit specified in the QIO directive was not ready to perform the desired I/O
operation. This code is returned to indicate that the unit is off line.

End-of-file encountered



Cassette Handler

Table 13-3 (Cont.) Tape Cassette Handler Status Returns

Code Reason

An end-of-file gap was recognized on the cassette tape. This code is returned if an EOF gap is
encountered during a read or if the cassette is physically removed during an /O operation.

IE.EOT End-of-tape encountered

While reading or writing, clear trailer at end-of-tape (EOT) was encountered. Unlike Magtape,
writing beyond EOT is not permitted on cassettes. This condition is always sensed on a write
before it would be sensed on a read of the same section of tape. If IE.EOT is returned during
a write, the cassette head encountered EOT before the last block was completely written. It is
recommended that the user rewrite the block, in its entirety, on another cassette.

|IE.IFC lllegal function
A function code was specified in an I/O request that is illegal for cassette.
IE.SPC Wlegal address space

The buffer specified for a read or write request was partially or totally outside the address space
of the issuing task. Alternately, a byte count of zero was specified on a transfer.

IE.VER Unrecoverable error

This code is returned when a block check error occurs. The cyclic redundancy check (CRC),
a two-byte value located at the end of each block, is a checksum that is tested during all read
operations to ensure that data is read correctly. If an unrecoverable error is returned, the user
may attempt recovery by spacing backward one block and retrying the read operation.

IEZWLK Wirite-locked device

The task attempted to write on a cassette unit that was physically write-locked. This code may
be returned after an 10.WLB, |0.WVB, or |O.EOF function.

13.3.1 Cassette Error Recovery Procedures

If an error occurs during a read or write operation, the operation should be retried several times.
The recommended maximum number of retries is nine for a read and three for a write because
each retry involves backspacing, which does not always position the tape in the same place. More
than three retries of a write operation may destroy previously written data. For example, to retry
a write, it is best to space two blocks in reverse, then space one block forward. This ensures the
tape is in the proper position to rewrite the block that encountered the error.

After read and write functions, the second I/0 status word contains the number of bytes actually
processed by the function. After spacing functions, it contains the number of blocks or files actually
spaced.

13.4 Structure of Cassette Tape

Figure 13-1 illustrates a general structure for cassette tape. A different structure can be employed
if the user desires to do so.

Here the tape consists of blocks of data interspersed with sections of clear tape that serve as leader,
trailer, interrecord gaps (IRGs), and end-of-file gaps.

The logical end-of-tape in this case consists of a sentinel label record, rather than the conventional
group of end-of-file gaps. Each file must contain at least one block. The size of each block depends
upon the number of bytes the user specifies when writing the block.



Cassette Handler

Figure 13-1 One Possible Structure of Cassette Tape

IRGs
BOT A~ EOT
oo Taleedmed Tredlcorrma azer T i

[cLLPG [LR]IREC|RE IReC]|EOF] LR [| REC] REC] EOASLR] [cT]

U — /N - J N\
FILE 1 FILE 2 LEOT
\/
150 FEET




13.5

13.5.1

13.5.2

Cassette Handler

Abbreviation

Meaning

cL
BOT
LPG
LR
REC
EOF
IRG
SLR
LEOT
EOT
cT

Clear leader

Physical beginning-of-tape
lL.oad point gap (blank tape written by driver before the first retrievable record)
File label record
Fixed-length record (data)
End-of-file gap

Interrecord gap

Sentinel label record
Logical end-of-tape
Physical end-of-tape
Clear trailer

Programming Information

This section contains important programming considerations of which users of the cassette handler
described in this chapter should be aware.

Importance of Rewinding

The first cassette operation performed on a tape must always be a rewind to ensure that the tape
is positioned to a known place. When it is positioned in clear tape there is no way to determine
whether it is in leader at the beginning-of-tape (BOT) or in trailer at the end-of-tape (EOT).

End-of-File and 10.SPB

The hardware senses end-of-file (EOF) as a timeout. When I10.SPF is issued in the forward
direction (nes is positive), the tape is positioned two-thirds of the way from the beginning of the
final file gap. In effect, this is all the way through the file gap. When I0.SPF is issued in the
reverse direction (nes is negative), the tape is positioned one-third of the way from the beginning
of the final file gap (that is, two thirds of the way from the beginning of the last file spaced).
Therefore to correctly position the tape for a read or write after issuing I10.SPF in reverse, the user
should issue 10.SPB forward for one block, followed by I0.SPB in reverse for one block.

13-5



13.5.3

13.54

13.5.5

13.5.6

Cassette Handler

The Space Functions, |10.SPB and 10.SPF

I10.SPB always stops in an IRG, I0.SPF in an EOF gap. Neither space function actually takes
effect until data are encountered. For example, suppose the tape is positioned in clear leader at
BOT and the user requests that one block be spaced forward. The drive passes over the remaining
leader until it reaches data, passes one block, and stops in the IRG. Similarly, if the same command
is issued when the tape is at BOT on a blank tape or a tape containing only EOF gaps, the function
does not terminate until EOT.

Verification of Write Operations

Certain errors, such as cyclic redundancy check, are detected on read but not write operations.
Therefore, to ensure reliability of recording, it is recommended that the user perform a read as
verification of every write operation.

Block Length

The user must specify the exact number of bytes per block when requesting read or write
operations. An attempt to read a block with an incorrect byte count causes an unrecoverable
error to occur.

Logical End-of-Tape

The conventional method of signalling logical end-of-tape by multiple EOF gaps is inadequate

for cassettes. This is because multiple EOF gaps are not distinguishable from each other. For
example, two sequential EOF gaps would be read as three instead of two. Also spacing functions,
since they are triggered by encountering data, can not recognize multiple EOF gaps. Consequently,
the use of a sentinel or key record to signal logical end-of-tape is recommended.

13-6



14

14.1

14.2

Null Device Handler

Introduction

IAS provides the facility for input from and output to a “null device”. QIOs to the null device have
the following results:

Qio I/0 Status Returned

Read functions IE.EOF

Write functions IS.SUC

Attach 1S.SUC (if successfully attached)
IE.DAA (if already attached)

Detach IS.SUC (if successfully detached)
IE.DNA (if not attached)

All others IS.SUC

The null device is particularly useful for program testing. A program which is written to do I/O to
a real device can temporarily be assigned to the null device (pseudo device NL:) while other parts
of the program are being tested.

Example

Consider a program TESTPROG which, when tested and run with live data, produces:

* a listing report on lineprinter using LUN 7

* an output data file on magnetic tape using LUN 8

For test purposes the program has debugging dialogue which uses LUN 9 to communicate with the
terminal, TI.

During initial testing the listing report and output data file are not required and the debugging
dialogue only is used:

ASSIGN NL: 7
ASSIGN NL: 8
ASSIGN TI: 9
RUN TESTPROG

14-1



Null Device Handler

During final testing the output files are being checked and the debugging dialogue is disabled:

ASSIGN LPO: 7
ASSIGN MT1: 8
ASSIGN NL: 9
RUN TESTPROG

14.3 Prerequisites

Before the null device facility can be used, the null device handler (NL....) must be installed and
loaded and the pseudo device NL: must have been defined during system generation.

14-2



15 DECtape Il Handler

15.1 Introduction

The DECTAPE II (TU58) driver supports TU58 system hardware, providing low-cost,
block-replaceable mass storage.

15.1.1 TU58 Hardware

Each TU58 DECTAPE II system consists of one or two TUS8 cartridge drives, one tape drive
controller, and one DL11-type serial line interface. Each TU58 drive functions as a random access,
block-formatted mass storage device. Each tape cartridge is capable of storing 512 blocks of 512
bytes each. Access time is 10 seconds, average. All I/O transfers (commands and data) are via the
serial line interface at serial transmission rates of 9600 baud. All read and write check operations
are performed by the controller hardware using a 16-bit checksum. The controller performs up to
8 attempts to read a block, as necessary, before aborting the read operation and returning a hard
error; however, whenever more than one read attempt is required for a successful read, the handler
is notified in order to report a soft error message to the error logger.

15.1.2 TU58 Handler

The TU58 handler communicates with the TU58 hardware via a serial line interface (DL11); no
other interface is required. All data and command transfers between the PDP-11 system and the
TUbG8 are via programmed I/0 and interrupt-driven routines; non-processor (NPR) data transfers
are not supported.

The TUB8 handler is installed with DD.... as the task name.

15.2 QIO MACRO

This section summarizes standard and device-specific QIO functions for the TU58.

15.2.1 Standard QIO Functions

Table 15-1 lists the standard QIO system directive functions of the QIO macro that are valid for
the TUSS.

Table 15-1 Standard QIO Functions for the TU58

Format Function

QIO$C I0.ATT.... Attach device
“QIO$C 10.DET.,... Detach device
QIO$C I0.KIL,... Cancel I/O requests*
QIO$C 10.RLB,...,<stadd,size,, lbn> Read logical block

15-1



15.2.2

DECtape Il Handler

Table 15-1 (Cont.) Standard QIO Functions for the TU58

Format Function

QIO$C I0.WLB,...,<stadd,size,,,Ibn> Write logical block

* /0O operations that are in progress when I0.KIL is received are allowed to complete. I/0 requests
that are queued when IO KILL is received are killed.

where:
e gtadd - is the starting address of the data buffer (must be on a word boundary)
* gize - is the data buffer size in bytes (must be even and greater than zero)

¢ Ibn - is the logical block number on the cartridge tape where the data transfer starts (must be
in the range of 0-777)

Device-Specific QIO Functions

The device-specific QIO functions for the TU58 are summarized in Table 15-2 and described in the
following sections.

Table 15-2 Device-Specific QIO Functions for the TU58

Format Function

QIO$C IO.WLC,...,<stadd,size,, Ibn> Write logical block with check
QIO$C I0.RLC,...,<stadd,size,, Ibn> Read logical block with check
QIO$C 10.BLS,...,<lbn> Position tape

QIO$C 10.DGN,... Run internal diagnostics
where:

e stadd - is the starting address of the data buffer (must be on a word boundary)
¢ gize - is the data buffer size in bytes (must be even and greater than zero)

¢ 1lbn - is the logical block number on the cartridge tape where the data transfer starts (must be
in the range of 0-777)

10.WLC

The I0.WLC function writes the specified data onto the tape cartridge. A checksum verification
is then performed by reading the data just written; data is not returned to the task issuing the
function. An appropriate status, based on the checksum verification, is returned to the issuing
task.

10.RLC

The I0.RLC function reads the tape with an increased threshold in the TU58’s data recovery
circuit. This is done as a check to insure data read reliability.

10.BLS

The I0.BLS function is used for diagnostic purposes to position the tape to the specified 10g1cal
block number.

15-2



154

I0.DGN

DECtape Il Handler

The 10.DGN function is used for diagnostic purposes to execute the TU58's internal (firmware)
diagnostics. Appropriate status information is returned to the issuing task via the I/0 status block.

Status Returns
Table 15-3 lists the error and status conditions that are returned by the TU68 handler.

Table 15-3 TUS58 Handler Status Returns

Code

Reason

I1S.SUC

IE.DNR

IE.IFC

IE.FHE

IE.TMO

IE.VER

IE.WLK

Successful completion

The operation specified in the QIO directive was completed successfully. The second word of the
I/0 status block can be examined to determine the number of bytes processed, if the operation
involved reading or writing.

Device not ready

The physical device unit specified in the QIO directive was not ready to perform the desired I/O
operation.

lllegal function

A function code was specified in an I/O request that is illegal for the TU5S8.

Fatal hardware error

The motor has stopped.

Timeout error

The TUS8 failed to respond to a function within the normal time specified by the handler.
Unrecoverable error

The controller made its standard number of retries (8) after an error, but could not complete the
operation successfully.

Cartridge write-locked
The task attempted to write on a tape cartridge that is physically write-locked.

Characteristics Words for DECTAPE Ii

The format of characteristics words is the same as for disc devices. Chapter 4, Section 4.6 describes
the format fully.



A

Listing of QIOMAC

WOodAhodWwhe

GO UDEEDDDODADWWWWWWWWWRRNNNRNNNNNNNRRERRERRRRBR @S
OB WNHROOVWD®IJANDLWNHOODPJIJAUIDWNROOVODJANDWNROOOdARND WN RO

~

~ N Ne Ne e Ne N

Ne Ve e Ne Se Ne Vo e Na Ve Se N

Ne Yo Se Ne e Se N Ne No N

Ne Ne e N Yo Se Ne Ne Ve Se Ne e N

~

.TITLE QIOMAC - QIOSYM MACRO DEFINITION
DATE OF LAST MODIFICATION:

J.A. KASSON 5~-FEB-80

**xxx*x ALWAYS UPDATE THE FOLLOWING TWO LINES TOGETHER
.IDENT /0340/
QI.VER=0340

COPYRIGHT (C) 1980
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.
DEé ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.
PETER H. LIPMAN 1-0OCT-73
+
MACRO TO DEFINE STANDARD QUEUE I/O DIRECTIVE FUNCTION VALUES
AND IOSB RETURN VALUES. TO INVOKE AT ASSEMBLY TIME (WITH LOCAL
DEFINITION) USE:
QIOSYS ;DEFINE SYMBOLS
TO OBTAIN GLOBAL DEFINITION OF THESE SYMBOLS USE:
QIOSYS$ DEFSG ; SYMBOLS DEFINED GLOBALLY

THE MACRO CAN BE CALLED ONCE ONLY AND THEN
REDEFINES ITSELF AS NULL.

.MACRO QIOSY$ $$SGBL,S$S$SMSG

LIIF IDN, <$$$GBL>, <DEF$G>, .GLOBL QI.VER
.IF IDN, <$$$MSG>, <DEFS$S>

$$S$MAX=0

$$MSG=1

.IFF



Listing of QIOMAC

56 $SMSG=0

57 .ENDC

58 .MCALI. IOERRS$

59 IOERRS$ $$3GBL :I/0 ERROR CODES FROM HANDLERS, FCP, FCS
60 .MCALL DRERRS

61 DRERRS $35$GBL ;DIRECTIVE STATUS WORD ERROR CODES

62 .IF DIF, <$$$MSG>, <DEF$S>

63 .MCALL FILIOS

64 FILIOS$ $53GBL ;DEFINE GENERAL I/O FUNCTION CODES

65 .MCALL SPCIO$

66 SPCIOS $$SGBL ;DEVICE DEPENDENT I/O FUNCTION CODES

67 .MACRO QIOSYS$ ARG,ARG1l,ARG2 ;RECLAIM MACRO STORAGE

68 .ENDM  QIOSY$

69 .ENDC

70 .ENDM  QIOSY$

71

72

73 H

74 DEFINE THE ERROR CODES RETURNED BY DEVICE HANDLER AND FILE PRIMITIVES

e N

15 IN THE FIRST WORD OF THE I/O STATUS BLOCK

76 ; THESE CODES ARE ALSO RETURNED BY FILE CONTROL SERVICES (FCS) IN THE
77 ; BYTE F.ERR IN THE FILE DESCRIPTOR BLOCK (FDB)

78 : THE BYTE F.ERR+1 IS O IF F.ERR CONTAINS A HANDLER OR FCP ERROR CO!
79 H

80 .MACRO IOERR$ $$SGBL

81 .MCALL .IOER.,DEFINS

82 .IF IDN, <$$$GBL>, <DEF$G>

83 .+ .GBL=1

84 .IFF

85 .. .GBL=0

86 .ENDC

87 .IIF NDF, $$MSG, $SMSG=0

88

89

20 H

91 ; SYSTEM STANDARD CODES, USED BY EXECUTIVE AND DRIVERS

92 H

93

94 .IOER. IE.BAD,-01.,<BAD PARAMETERS>

95 .IOER. IE.IFC,-02.,<INVALID FUNCTION CODE>

26 .IOER. IE.DNR,-03.,<DEVICE NOT READY>

27 .IOER. IE.VER,-04.,<PARITY ERROR ON DEVICE>

98 .IOER. IE.ONP,-05.,<HARDWARE OPTION NOT PRESENT>

99 .IOER. IE.SPC,-06.,<ILLEGAL USER BUFFER>
100 .IOER. IE.DNA,-07.,<DEVICE NOT ATTACHED>
101 .IOER. IE.DAA,-08.,<DEVICE ALREADY ATTACHED>
102 .IOER. IE.DUN,-09.,<DEVICE NOT ATTACHABLE>
103 .I0ER. IE.EOF,-10.,<END OF FILE DETECTED>
104 .IOER. IE.EOV,-11.,<END OF VOLUME DETECTED>
105 .IOER. IE.WLK,-12.,<WRITE ATTEMPTED TO LOCKED UNIT>
106 .IOER. IE.DAO,-13.,<DATA OVERRUN> ’
107 .IOER. IE.SRE,-14.,<SEND/RECEIVE FAILURE>

108 .IOER. IE.ABO,-15.,<REQUEST TERMINATED>

109 .IOER. IE.PRI,-16.,<PRIVILEGE VIOLATION>

110 .IOER. IE.RSU,-17.,<SHARABLE RESOURCE IN USE>

111 .IOER. IE.OVR,-18.,<ILLEGAL OVERLAY REQUEST>
112 .IOER. IE.BYT,-19.,<0DD BYTE COUNT (OR VIRTUAL ADDRESS)>
113 .IOER. IE.BLK,-20.,<LOGICAL BLOCK NUMBER TOO LARGE>
114 .IOER. IE.MOD,-21.,<INVALID UDC MODULE #>
115 .IOER. IE.CON,-22.,<UDC CONNECT ERROR>

116 .IOER. IE.BBE,-56.,<BAD BLOCK ON DEVICE>

117 .IOER. IE.STK,-58.,<NOT ENOUGH STACK SPACE (FCS OR FCP)>
118 .IOER. IE.FHE,-59.,<FATAL HARDWARE ERROR ON DEVICE>



Listing of QIOMAC

119 .IOER. IE.EOT,~62.,<END OF TAPE DETECTED>

120 .IOER. 1IE.OFL,-65.,<DEVICE OFF LINE>

121 .IOER. IE.BCC,-66.,<BLOCK CHECK, CRC, OR FRAMING ERROR>
122

123

124 H

125 ; FILE PRIMITIVE CODES

126 ;

127

128 .IOER. IE.NOD,~-23.,<CALLER’S NODES EXHAUSTED>

129 .IOER. 1IE.DFU,-24.,<DEVICE FULL>

130 . IOER. IE.IFU, -25.,<INDEX FILE FULL>

131 . IOER. IE.NSF,-26.,<NO SUCH FILE>

132 .IOER. IE.LCK,-27.,<LOCKED FROM READ/WRITE ACCESS>

133 .IOER. IE.HFU,-28.,<FILE HEADER FULL>

134 .IOER. IE.WAC,-29.,<ACCESSED FOR WRITE>

135 .IOER. IE.CKS,-30.,<FILE HEADER CHECKSUM FAILURE>

136 .IOER. IE.WAT,-31.,<ATTRIBUTE CONTROL LIST FORMAT ERROR>
137 .IOER. IE.RER,-32.,<FILE PROCESSOR DEVICE READ ERROR>
138 .IOER. IE.WER,-33.,<FILE PROCESSOR DEVICE WRITE ERROR>
139 .IOER. IE.ALN,-34.,<FILE ALREADY ACCESSED ON LUN>

140 .IOER. IE.SNC,-35.,<FILE ID, FILE NUMBER CHECK>

141 .IOER. IE.SQC,-36.,<FILE ID, SEQUENCE NUMBER CHECK>

142 .IOER. IE.NLN,-37.,<NO FILE ACCESSED ON LUN>

143 .IOER. IE.CLO,-38.,<FILE WAS NOT PROPERLY CLOSED>

144 .IJOER. IE.DUP,-57.,<ENTER - DUPLICATE ENTRY IN DIRECTORY>
145 .IOER. IE.BVR,-63.,<BAD VERSION NUMBER>

146 .IOER. IE.BHD,-64.,<BAD FILE HEADER>

147 .IOER. IE.EXP,-75.,<FILE EXPIRATION DATE NOT REACHED>
148 .IOER. IE.BTF,~76.,<BAD TAPE FORMAT>

149 . IOER. IE.ALC, -84.,<ALLOCATION FAILURE>

150 .IOER. IE.ULK,~-85.,<UNLOCK ERROR>

151 .IOER. IE.WCK,-86.,<WRITE CHECK FAILURE>

152 . IOER. IE.DSQ,-90.,<DISK QUOTA EXCEEDED>

153

154 ;

155 ; FILE CONTROL SERVICES CODES

156 ;

157

158 .IOER. IE.NBF,-39.,<OPEN - NO BUFFER SPACE AVAILABLE FOR FILE>
159 .IOER. IE.RBG,-40.,<ILLEGAL RECORD SIZE> )

160 .IOER. IE.NBK,-41.,<FILE EXCEEDS SPACE ALLOCATED, NO BLOCKS>
161 .IOER. IE.ILL,-42.,<ILLEGAL OPERATION ON FILE DESCRIPTOR BLOCK>
162 .IOER. IE.BTP,-43.,<BAD RECORD TYPE>

163 . IOER. IE.RAC, -44.,<ILLEGAL RECORD ACCESS BITS SET>

164 .IOER. IE.RAT,-45.,<ILLEGAL RECORD ATTRIBUTES BITS SET>
165 .IOER. IE.RCN,-46.,<ILLEGAL RECORD NUMBER - TOO LARGE>
166 . IOER. IE.2DV,-48.,<RENAME - 2 DIFFERENT DEVICES>

167 .IOER. IE.FEX,-49.,<RENAME - NEW FILE NAME ALREADY IN USE>
168 .IOCER. IE.BDR, -50.,<BAD DIRECTORY FILE>

169 .IOER. IE.RNM,-51.,<CAN’T RENAME OLD FILE SYSTEM>

170 . IOER. IE.BDI,-52.,<BAD DIRECTORY SYNTAX>

171 .IOER. 1IE.FOP,-53.,<FILE ALREADY OPEN>

172 .IOER. 1IE.BNM, -54.,<BAD FILE NAME>

173 . IOER. IE.BDV,-55.,<BAD DEVICE NAME>

174 .JOER. IE.NFI,-60.,<FILE ID WAS NOT SPECIFIED>

175 . IOER. IE.ISQ,-61.,<ILLEGAL SEQUENTIAL OPERATION>

176 .IOER. IE.NNC, -77.,<NOT ANSI "D" FORMAT BYTE COUNT>

177

178 H

179 ; NETWORK ACP CODES

180 ;

181

A-3



Listing of QIOMAC

182 .IOER. IE.AST,-80.,<NO AST SPECIFIED IN CONNECT>

183 .IOER. 1IE.NNN,-68.,<NO SUCH NODE>

184 .IOER. IE.NFW,-69.,<PATH LOST TO PARTNER> ;THIS CODE MUST BE ODD
185 .IOER. IE.BLB,-70.,<BAD LOGICAL BUFFER>

186 .IOER. IE.TMM,-71.,<TOO MANY OUTSTANDING MESSAGES>

187 .IOER. IE.NDR,-72.,<NO DYNAMIC SPACE AVAILABLE>

188 .IOER. IE.CNR,-73.,<CONNECTION REJECTED>

189 .IOER. IE.TMO,-74.,<TIMEOUT ON REQUEST>

190 .IOER. IE.NNL,-78.,<NOT A NETWORK LUN>

191

192 F;

193 ; ICS/ICR ERROR CODES

194 H

195 .IOER. IE.NLK,=79.,<TASK NOT LINKED TO SPECIFIED ICS/ICR INTERRUI
196 .IOER. IE.NST,-80.,<SPECIFIED TASK NOT INSTALLED>

197 .IOER. IE.FLN,-81.,<DEVICE OFFLINE WHEN OFFLINE REQUEST WAS ISSU
198

199

200 H

201 2 TTY ERROR CODES

202 H

203

204 . IOER. IE.IES,-82.,<INVALID ESCAPE SEQUENCE>

205 .IOER. IE.PES,=-83.,<PARTIAL ESCAPE SEQUENCE>

206

207

208 :

209 ; RECONFIGURATION CODES

210 H

211

212 .IOER. IE.ICE,=-47.,<INTERNAL CONSISTANCY ERROR>

213 .IOER. IE.ONL,-67.,<DEVICE ONLINE>

214

215 H

216 ; PCL ERROR CODES

217 ;

218

219 . IOER. IE.NTR, -87.,<TASK NOT TRIGGERED>

220 .IOER. IE.REJ, -88.,<TRANSFER REJECTED BY RECEIVING CPU>
221 .IOER. 1E.FLG,-89.,<EVENT FLAG ALREADY SPECIFIED>

222

223

224 :

225 ; SUCCESSFUL RETURN CODES---

226 H

227

228 DEFINS 1IS.PND, +00. ;OPERATION PENDING

229 DEFINS 1IS.SUC,+01. ;OPERATION COMPLETE, SUCCESS

230 DEFINS 1IS.RDD,+02. ;FLOPPY DISK SUCCESSFUL COMPLETION
231 ;OF A READ PHYSICAL, AND DELETED
232 ;DATA MARK WAS SEEN IN SECTOR HEADER
233 DEFINS 1IS.TNC,+02. ; (PCL) SUCCESSFUL TRANSFER BUT MESSAGE
234 ; TRUNCATED (RECEIVE BUFFER TOO SMALL).
235 DEFINS 1IS.BV,+05. ; (A/D READ) AT LEAST ONE BAD VALUE
236 ;WAS READ (REMAINDER MAY BE GOOD).
237 ;BAD CHANNEL IS INDICATED BY A

238 ;sNEGATIVE VALUE IN THE BUFFER.

239

240

241 3

242 ; TTY SUCCESS CODES

243 H

244

A-4



Listing of QIOMAC

245 DEFINS 1IS.CR,<15*400+1> ;CARRIAGE RETURN WAS TERMINATOR
246 DEFINS 1IS.ESC,<33*%400+1> ;ESCAPE (ALTMODE) WAS TERMINATOR
247 DEFINS 1IS.CC,<3*%400+1> ;CONTROL-C WAS TERMINATOR

248 DEFINS 1IS.ESQ,<233*400+1> ;ESCAPE SEQUENCE WAS TERMINATOR
249 DEFINS 1IS.PES,<200*400+1> ;PARTIAL ESCAPE SEQUENCE TERMINATOR
250 DEFINS IS.EOT,<4*400+1> ;EOT WAS TERMINATOR (BLOCK MODE INPUT)
251 DEFINS IS.TAB,<11*400+1> ;TAB WAS TERMINATOR (FORMS MODE INPUT)
252 DEFINS IS.TMO,+2. ;REQUEST TIMED OUT

253

254

255 ; KEKRKRX

256 ;

257 ; THE NEXT AVAILABLE ERROR NUMBER IS: -90.

258 ; ALL LOWER NUMBERS ARE IN USE !!

259 ;

260 3 hkkkk

261 .IF EQ, $$MSG

262 .MACRO IOERRS A

263 .ENDM IOERRS

264 .ENDC

265 .ENDM  IOERRS$

266

267 H

268 ; DEFINE THE DIRECTIVE ERROR CODES RETURNED IN THE DIRECTIVE STATUS WORD
269 ;

270 : FILE CONTROL SERVICES (FCS) RETURNS THESE CODES IN THE BYTE F.ERR
271 ; OF THE FILE DESCRIPTOR BLOCK (FDB). TO DISTINGUISH THEM FROM THE
272 ; OVERLAPPING CODES FROM HANDLER AND FILE PRIMITIVES, THE BYTE

273 ; F.ERR+1 IN THE FDB WILL BE NEGATIVE FOR A DIRECTIVE ERROR CODE.
274 :

275 .MACRO DRERRS$ $$5GBL

276 .MCALL .QIOE.,DEFINS

2717 .IF IDN, <$$$GBL>, <DEF$G>

278 ...GBL=1

279 .IFF

280 ...GBL=0

281 .ENDC

282 JIIF NDF, $3MSG, $$MSG=0

283 H

284 ; STANDARD ERROR CODES RETURNED BY DIRECTIVES IN THE DIRECTIVE STATUS WOR!
285 H

286 .QIOE. IE.UPN,-01.,<INSUFFICIENT DYNAMIC STORAGE>

287 .QIOE. IE.INS,-02.,<SPECIFIED TASK NOT INSTALLED>

288 .QIOE. IE.PTS,-03.,<PARTITION TOO SMALL FOR TASK>

289 .QIOE. IE.UNS,-04.,<INSUFFICIENT DYNAMIC STORAGE FOR SEND>
290 .QIOE. IE.ULN,-05.,<UN-ASSIGNED LUN>

291 .QIOE. IE.HWR,-06.,<DEVICE HANDLER NOT RESIDENT>

292 .QIOE. IE.ACT,-07.,<TASK NOT ACTIVE>

293 .QIOE. 1IE.ITS,-08.,<DIRECTIVE INCONSISTENT WITH TASK STATE>
294 .QIOE. 1IE.FIX,-09.,<TASK ALREADY FIXED/UNFIXED>

295 .QIOE. IE.CKP,-10.,<ISSUING TASK NOT CHECKPOINTABLE>

296 .QIOE. IE.TCH,-11.,<TASK IS CHECKPOINTABLE>

297 .QIOE. IE.RBS,-15.,<RECEIVE BUFFER IS TOO SMALL>

298 .QIOE. IE.PRI,-16.,<PRIVILEGE VIOLATION>

299 .QIOE. IE.RSU,-17.,<RESOURCE IN USE>

300 .QIOE. IE.NSW,-18.,<NO SWAP SPACE AVAILABLE>

301 .QIOE. IE.ILV,-19.,<ILLEGAL VECTOR SPECIFIED>

302 :

303 :

304 : :

305 .QIOE. IE.AST,-80.,<DIRECTIVE ISSUED/NOT ISSUED FROM AST>
306 .QIOE. IE.MAP,-81.,<ILLEGAL MAPPING SPECIFIED>

307 .QIOE. IE.IOP,-83.,<WINDOW HAS I/O IN PROGRESS>

A-5



Listing of QIOMAC

308 .QIOE. IE.ALG,~84.,<ALIGNMENT ERROR>
309 .QIOE. IE.WOV,-85.,<ADDRESS WINDOW ALLOCATION OVERFLOW>
310 .QIOE. IE.NVR,-86.,<INVALID REGION ID>

311 .QIOE. 1IE.NVW,-87.,<INVALID ADDRESS WINDOW ID>

312 .QIOE. IE.ITP,-88.,<INVALID TI PARAMETER>

313 .QIOE. IE.IBS,-89.,<INVALID SEND BUFFER SIZE ( .GT. 255.)>
314 .QIOE. IE.LNL,-90.,<LUN LOCKED IN USE>

315 .QIOE. IE.IUI,-91.,<INVALID UIC>

316 .QIOE. IE.IDU,-92.,<INVALID DEVICE OR UNIT>

317 .QIOE. IE.ITI,-93.,<INVALID TIME PARAMETERS>

318 .QIOE. IE.PNS,-94.,<PARTITION/REGION NOT IN SYSTEM>
319 .QIOE. IE.IPR,-95.,<INVALID PRIORITY ( .GT. 250.)>
320 .QIOE. IE.ILU,-96.,<INVALID LUN>

321 .QIOE. IE.IEF,-97.,<INVALID EVENT FLAG ( .GT. 64.)>
322 .QIOE. IE.ADP,-98.,<PART OF DPB OUT OF USER’S SPACE>
323 .QIOE. IE.SDP,-99.,<DIC OR DPB SIZE INVALID>

324 ;

325 ; SUCCESS CODES FROM DIRECTIVES - PLACED IN THE DIRECTIVE STATUS WORD
326 P)

327 DEFINS 1IS.CLR,0 ;EVENT FLAG WAS CLEAR

328 ;FROM CLEAR EVENT FLAG DIRECTIVE
329 DEFINS IS.SET,2 ;EVENT FLAG WAS SET

330 ;FROM SET EVENT FLAG DIRECTIVE
331 DEFINS IS.SPD,2 : TASK WAS SUSPENDED

332 ;

333 ;

334 .IF EQ, $$MsSG

335 .MACRO DRERR$ A

336 .ENDM  DRERRS$

337 .ENDC

338 .ENDM DRERRS$

339

340 ;

341 ; DEFINE THE GENERAL I/0 FUNCTION CODES - DEVICE INDEPENDENT
342 ;

343 .MACRO FILIO$ $S$$GBL

344 .MCALL .WORD.,DEFINS

345 JIF IDN, <$$5$GBL>, <DEFS$G>

346 ...GBL=1

347 .IFF

348 <+ +GBL=0

349 .ENDC

350 ;

351 ; GENERAL 1/0 QUALIFIER BYTE DEFINITIONS

352 ;

353 .WORD. IQ.X,001,000 ;NO ERROR RECOVERY

354 .WORD. IQ.Q,002,000 ;QUEUE REQUEST IN EXPRESS QUEUE
355 .WORD. IQ.S,004,000 ; SYNONYM FOR IQ.UMD

356 .WORD. 1IQ.UMD,004,000 ;USER MODE DIAGNOSTIC STATUS REQUIRED
357 ;

358 ; EXPRESS QUEUE COMMANDS

359 ;

360

361 .WORD. IO.KIL,012,000 ;KILL CURRENT REQUEST

362 .WORD. 1IO.RDN,022,000 ;I/O RUNDOWN

363 .WORD. IO.UNL,042,000 ;UNLOAD I/O HANDLER TASK

364 .WORD. IO.LTK,050,000 ;LOAD A TASK IMAGE FILE

365 .WORD. IO.RTK,060,000 ;RECORD A TASK IMAGE FILE

366 .WORD. IO.SET,030,000 ;SET CHARACTERISTICS FUNCTION
367 ;

368 ; GENERAL DEVICE HANDLER CODES

369 ;

370 .WORD. IO.WLB,000,001 ;WRITE LOGICAIL BLOCK

A-6



371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

Ne e Ne

Ne N e

Ne Ne

Ne Ne Ne

Ne Ne N

-WORD .
.WORD.
.WORD.
.WORD.

I0.RLB, 000, 002
10.1LOV, 010, 002
I0.ATT, 000, 003
I0.DET, 000, 004

DIRECTORY PRIMITIVE CODES

.WORD.
.WORD.
.WORD.

IO.FNA, 000,011
IO.RNA, 000,013
IO.ENA, 000,014

FILE PRIMITIVE CODES

.WORD.
.WORD.
.WORD.
.WORD .
-WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
-WORD.
-WORD.
.WORD.

.MACRO
.ENDM
. ENDM

DEFINE THE I/O FUNCTION CODES

.MACRO
.MCALL
. IF

..GBL=1

. IFF

...GBL=0

.ENDC

10.CLN, 000,007
10.ULK, 000, 012
I0.ACR, 000,015
I0.ACW, 000,016
10.ACE, 000,017
I0.DAC, 000, 020
I0.RVB, 000,021
10.WVB, 000, 022
10.EXT, 000,023
I0.CRE, 000, 024
I0.DEL, 000, 025
I0.RAT, 000, 026
I0.WAT, 000,027
10.APV, 010, 030
10.APC, 000,030

FILIOS A
FILIOS
FILIOS

SPCIOS $$S$GBL
.WORD ., DEFINS$

Listing of QIOMAC

;READ LOGICAL BLOCK

;LOAD OVERLAY (DISK DRIVER)
;ATTACH A DEVICE TO A TASK
;DETACH A DEVICE FROM A TASK

;FIND FILE NAME IN DIRECTORY
;REMOVE FILE NAME FROM DIRECTORY
;ENTER FILE NAME IN DIRECTORY

;CLOSE OUT LUN

; UNLOCK BLOCK

;ACCESS FOR READ
;ACCESS FOR WRITE
;ACCESS FOR EXTEND
;DE-ACCESS FILE

;READ VIRITUAL BLOCK
;WRITE VIRITUAL BLOCK
;EXTEND FILE

;CREATE FILE

;DELETE FILE

;READ FILE ATTRIBUTES
;WRITE FILE ATTRIBUTES
;PRIVILEGED ACP CONTROL
;ACP CONTROL

THAT ARE SPECIFIC TO INDIVIDUAL DEVICES

IDN, <$$$GBL>, <DEF$G>

I/O FUNCTION CODES FOR SPECIFIC DEVICE DEPENDENT FUNCTIONS

.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD .
.WORD.
.WORD.
-WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD .

10.WLV, 100, 001
I10.WLS, 010,001
10.WNS, 020,001
10.WAL, 010,001
10.WMS, 020, 001
10.CCO, 040,001
I0.WBT, 100,001
I0.WLT, 010,001
10.WLC, 020, 001
I0.WPB, 040,001
10.WDD, 140, 001
I0.RLV, 100, 002
I0.RST, 001,002
I0.RAL, 010,002
I0.RNE, 020, 002
I0.RNC, 040,002

(DECTARPE) WRITE LOGICAL REVERSE
(COMM.) WRITE PRECEDED BY SYNC TRAIN
(COMM.) WRITE, NO SYNC TRAIN

(TTY) WRITE PASSING ALL CHARACTERS

; (TTY) WRITE SUPPRESSIBLE MESSAGE

; (TTY) WRITE WITH CANCEL CONTROL-O

; (TTY) WRITE WITH BREAKTHROUGH

; (DISK) WRITE LAST TRACK

; (DISK) WRITE LOGICAL W/ WRITECHECK

; (DISK) WRITE PHYSICAL BLOCK

Ne Ne o Ne N

; (FLOPPY DISK) WRITE PHYSICAL W/ DELETED

; (MAGTAPE, DECTAPE) READ REVERSE

; (TTY) READ WITH SPECIAL TERMINATOR
; (TTY) READ PASSING ALL CHARACTERS
; (TTY) READ WITHOUT ECHO

; (TTY) READ - NO LOWER CASE CONVERT

A-7



Listing of QIOMAC

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

-.WORD.
.WORD .
-WORD .
.WORD.
.WORD.
.WORD.
.WORD.
-WORD.
.WORD.
.WORD.
-WORD.
.WORD.
.WORD.
-WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD .
.WORD .
-WORD .
.WORD .
.WORD.
.WORD.
.WORD .
«.WORD .
.WORD.
.WORD .
.WORD.
.WORD.
-WORD.
.WORD.
.WORD.
.WORD.
.WORD .
.WORD .
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD .
.WORD.
.WORD.
-WORD.
.WORD.
.WORD.
-WORD.
-WORD.
.WORD.
.WORD .
-WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
-WORD.

-WORD.

10.RTM, 200, 002
10.RDB, 200, 002
10.SCF, 200, 002
I0.RHD, 010,002
I0.RNS, 020,002
10.CRC, 040, 002
I0.RPB,.040, 002
I0.RLC, 020,002
I0.ATA, 010,003
10.GTS, 000, 005
10.R1C, 000, 005
10.INL, 000, 005
10.TRM, 010, 005
10.RWD, 000, 005
10.SPB, 020,005
10.SPF, 040,005
10.STC, 100,005
10.SMD, 110, 005
10.SEC, 120,005
10.RWU, 140,005
10.SMO, 160, 005
10.HNG, 000,006
I0.RBC, 000,006
10.MOD, 000, 006
I10.HDX, 010,006
10.FDX, 020,006
10.SYN, 040,006
10.EOF, 000,006
10.ERS, 020,006
10.DSE, 040,006
10.RTC, 000,007
10.SAO, 000, 010
10.550, 000,011
I0.RPR, 000,011
10.MSO, 000, 012
I0.RTT, 001,012
10.SLO, 000,013
10.MLO, 000,014
10.LED, 000, 024
10.SDO, 000, 025
10.SDI, 000,026
10.sCS, 000,026
I0.REL, 000,027
10.MCS, 000, 027
10.ADS, 000, 030
10.cCI, 000, 030
10.LOD, 000, 030
10.MDI, 000,031
10.DCI, 000,031
10.XMT, 000, 031
10.XNA, 010,031
10.INI, 000,031
I0.HIS, 000,032
I10.RCI, 000,032
10.RCV, 000, 032
10.CLK, 000, 032
10.CSR, 000, 032
10.MDO, 000, 033
10.CTI, 000,033
10.CON, 000, 033

IO.STA, 000,033

(TTY) READ WITH TIME OUT
(CARD READER) READ BINARY MODE

(DISK) SHADOW COPY FUNCTION

(COMM.) READ, STRIP SYNC

(COMM.) READ, DON’T STRIP SYNC

(COMM.) READ, DON’'T CLEAR CRC

(DISK) READ PHYSICAL BLOCK
(DISK,MAGTAPE) READ LOGICAL W/ READCHECK
(TTY) ATTACH WITH AST'’S

(TTY) GET TERMINAL SUPPORT CHARACTERISTI¢
(AFC,ADO1,UDC) READ SINGLE CHANNEL
(COMM.) INITIALIZATION FUNCTION

(COMM.) TERMINATION FUNCTION

(MAGTAPE, DECTAPE) REWIND

(MAGTAPE) SPACE "N" BLOCKS

(MAGTAPE) SPACE "N" EOF MARKS

SET CHARACTERISTIC

(FLOPPY DISK) SET MEDIA DENSITY

SENSE CHARACTERISTIC

(MAGTAPE, DECTAPE) REWIND AND UNLOAD
(MAGTAPE) MOUNT & SET CHARACTERISTICS
(TTY) HANGUP DIAL-UP LINE

READ MULTICHANNELS (BUFFER DEFINES CHANN
(COMM.) SETMODE FUNCTION FAMILY

(COMM.) SET UNIT HALF DUPLEX

(COMM.) SET UNIT FULL DUPLEX

(COMM.) SPECIFY SYNC CHARACTER
(MAGTAPE) WRITE EOF

; (MAGTAPE) ERASE TAPE

; (MAGTAPE) DATA SECURITY ERASE

;READ CHANNEL - TIME BASED

; (UDC) SINGLE CHANNEL ANALOG OUTPUT

; (UDC) SINGLE SHOT, SINGLE POINT

; (TTY) READ WITH PROMPT

; (UDC) SINGLE SHOT, MULTI-POINT

; (TTY) READ WITH TERMINATOR TABLE

; (UDC) LATCHING, SINGLE POINT

; (UDC) LATCHING, MULTI-POINT

; (LPS11) WRITE LED DISPLAY LIGHTS

; (LPS11) WRITE DIGITAL OUTPUT REGISTER
; (LPS11) READ DIGITAL INPUT REGISTER

; (UDC) CONTACT SENSE, SINGLE POINT

; (LPS11) WRITE RELAY

; (UDC) CONTACT SENSE, MULTI-POINT

; (LPS11) SYNCHRONOUS A/D SAMPLING

; (UDC) CONTACT INT - CONNECT

; (LPAl1l) LOAD MICROCODE

.
’
.
’
.
’
.
’
.
’
.
’
’
’
.
’
.
’
.
’
’
.
’
7
.
’
.
’
’
.
’
-
’
.
’
’
.
’

’
’
’
.
’
’
’

(LPS11) SYNCHRONOUS DIGITAL INPUT
(UDC) CONTACT INT - DISCONNECT
; (COMM.) TRANSMIT SPECIFIED BLOCK WITH AC!
; (COMM.) TRANSMIT WITHOUT ACK
; (LPAl1l) INITIALIZE
; (LPS11) SYNCHRONOUS HISTOGRAM SAMPLING
; (UDC) CONTACT INT - READ
; (COMM.) RECEIVE DATA IN BUFFER SPECIFIED
; (LPAl1l) START CLOCK
; (BUS SWITCH) READ CSR REGISTER
; (LPS11) SYNCHRONOUS DIGITAL OUTPUT
; (UDC) TIMER - CONNECT
; (COMM.) CONNECT FUNCTION
; (VT11l) - CONNECT TASK TO DISPLAY PROCESS(
; (BUS SWITCH) CONNECT TO SPECIFIED BUS
; (LPAl1l) START DATA TRANSFER



497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

Ne ve

~

~e e

~.

N e N

.WORD.
-WORD.

-WORD .
-WORD.
.WORD.
.WORD.
.WORD.

-WORD.
.WORD.
+WORD.

I0.DTI, 000,034
10.DIS, 000,034

10.MDA, 000, 034
10.DPT, 010, 034
10.RTI, 000, 035
10.CTL, 000, 035
10.STP, 000, 035

I0.SWI, 000,035
I0.CNT, 000,036
I0.ITI, 000,036

COMMUNICATIONS FUNCTIONS

.WORD.
.WORD.
.WORD.
-.WORD .
.WORD.
.WORD.
+WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
-WORD.
.WORD.
.WORD.

10.CPR, 010, 033
10.CAS, 020,033
10.CRJ, 040, 033
10.CRO, 110, 033
10.CTR, 210, 033
10.GNI, 010,035
10.GLI, 020, 035
10.GLC, 030, 035
10.GRI, 040,035
10.GRC, 050, 035
10.GRN, 060, 035
10.CSM, 070,035
10.CIN, 100, 035
10.SPW, 110, 035
10.CPW, 120, 035
I0.NLB, 130,035
10.DLB, 140, 035

ICS/ICR I/O FUNCTIONS

.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
-WORD.
+.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.

10.CTY, 000, 007
10.DTY, 000,015
10.LDI, 000,016
10.UDI, 010,023
10.LTI, 000,017
10.UTI, 020,023
10.LTY, 000, 020
10.UTY, 030, 023
I0.LKE, 000, 024
10.UER, 040, 023
10.NLK, 000, 023
10.0NL, 000, 037
10.FLN, 000, 025
I0.RAD, 000, 021

IP11 I/O FUNCTIONS

-WORD.
-WORD.
.WORD.
-WORD.
.WORD.

I0.MAO, 010,007
IO0.LEI, 010,017
I0.RDD, 010,020
I0.RMT, 020,020
I0.LSI, 000,022

Listing of QIOMAC

;(UDC) TIMER - DISCONNECT

; (COMM.) DISCONNECT FUNCTION
; (VT1l)
; (BUS SWITCH) SWITCHED BUS DISCONNECT
; (LPS11) SYNCHRONOUS D/A OUTPUT

; (BUS SWITCH) DISCONNECT TO SPECIF PORT Nt
; (UDC) TIMER - READ

; (COMM.) NETWORK CONTROL FUNCTION

; (LPS11,LPAl1l1) STOP IN PROGRESS FUNCTION
; (VT11l) - STOP DISPLAY PROCESSOR

; (BUS SWITCH) SWITCH BUSSES

; (VT11l) - CONTINUE DISPLAY PROCESSOR
;(UDC) TIMER - INITIALIZE

;CONNECT NO TIMEOUTS

;CONNECT WITH AST

; CONNECT REJECT

;BOOT CONNECT

; TRANSPARENT CONNECT

;GET NODE INFORMATION

;GET LINK INFORMATION

;GET LINK INFO CLEAR COUNTERS
;GET REMOTE NODE INFORMATION
;GET REMOTE NODE ERROR COUNTS
;GET REMOTE NODE NAME

;CHANGE SOLO MODE

;CHANGE CONNECTION INHIBIT
;SPECIFY NETWORK PASSWORD
;CHECK NETWORK PASSWORD.

;NSP LOOPBACK

;DDCMP LOOPBACK

;CONNECT TO TERMINAL INTERRUPTS
;DISCONNECT FROM TERMINAL INTERRUPTS
;LINK TO DIGITAL INTERRUPTS

;UNLINK FROM DIGITAL INTERRUPTS

;LINK TO COUNTER MODULE INTERRUPTS
;UNLINK FROM COUNTER MODULE INTERRUPTS
;LINK TO REMOTE TERMINAL INTERRUPTS
;UNLINK FROM REMOTE TERMINAL INTERRUPTS
;LINK TO ERROR INTERRUPTS

;UNLINK FROM ERROR INTERRUPTS

;UNLINK FROM ALL INTERRUPTS

;UNIT ONLINE

;UNIT OFFLINE

;READ ACTIVATING DATA

;MULTIPLE ANALOG OUTPUTS

;LINK EVENT FLAGS TO INTERRUPT
;READ DIGITAL DATA

;READ MAPPING TABLE

;LINK TO DSI INTERRUPTS

~ DISCONNECT TASK FROM DISPLAY PR(



Listing of QIOMAC

A-10

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
€00
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

N e

~e

Ne Se N

~

e Ve v

~e N

~e

~e ~e

PCL11

.WORD.
.WORD.
.WORD.
.WORD.

10.UEI, 050,023
10.USI, 060,023
10.CSI, 000,026
10.DSI, 000,027

I/0 FUNCTIONS

.WORD,
-WORD .,
-WORD.
.WORD .
.WORD.

.MACRO
. ENDM
. ENDM

1I0.ATX, 000,001
10.ATF, 000, 002
10.CRX, 000, 031
10.DRX, 000, 032
10.RTF, 000, 033

SPCIOS A
SPCIO$
SPCIOS

;UNLINK EVENT FLAGS

;UNLINK FROM DSI INTERRUPTS
;CONNECT TO DSI INTERRUPTS
;DISCONNECT FROM DSI INTERRUPTS

;ATTEMPT TRANSMISSION
;ACCEPT TRANSFER

; CONNECT FOR RECEPTION
;DISCONNECT FROM RECEPTION
;REJECT TRANSFER

DEFINE THE I/0 CODES FOR USER-MODE DIAGNOSITCS. ALL DIAGNOSTIC
FUNCTION ARE IMPLEMENTED AS A SUBFUNCTION OF I/0 CODE 10 (OCTAL).

. .GBL=1

. .GBL=0

-MACRO
-MCALL

.IF IDN <$$5GBL>, <DEF$G>

. IFF

.ENDC

UMDIOS$ $$$GBL
.WORD ., DEFINS

DEFINE THE GENERAL USER-MODE I/O QUALIFIER BIT.

.WORD.

IQ.UMD, 004,000

;USER MODE DIAGNOSTIC REQUEST

DEFINE USER-MODE DIAGNOSTIC FUNCTIONS.

MACRO

-WORD .,
-WORD.
-WORD.
.WORD .
-WORD.
+.WORD.
-WORD.
.WORD.
.WORD.
-WORD.
.WORD.
-WORD.
+WORD.
.WORD .
.WORD.
.WORD.
.WORD .

I0.HMS, 000,010
I0.BLS, 010,010
I0.0FF, 020,010
IO.RDH, 030,010

I0.WDH, 040,010

10.WCK, 050, 010
10.RNF, 060,010
I0.RNR, 070,010
10.1LPC, 100,010
10.RTD, 120,010
10.WTD, 130, 010
10.TDD, 140,010
10.DGN, 150, 010
10.WPD, 160, 010
10.RPD, 170, 010
10.CER, 200, 010
10.CEW, 210,010

REDEFINITION TO NULL

; (DISK) HOME SEEK OR RECALIBRATE

; (DISK) BLOCK SEEK

; (DISK) OFFSET POSITION

; (DISK) READ DISK HEADER

; (DISK) WRITE DISK HEADER

; (DISK) WRITECHECK (NON-TRANSFER)

; (DECTAPE) READ BLOCK NUMBER FORWARD

; (DECTAPE) READ BLOCK NUMBER REVERSE

; (MAGTAPE) READ LONGITUDINAL PARITY CHAR
; (DISK) READ TRACK DESCRIPTOR

;7 (DISK) WRITE TRACK DESCRIPTOR

; (DISK) WRITE TRACK DESCRIPTOR DISPLACED
;DIAGNOSE MICRO PROCESSOR FIRMWARE

; (DISK) WRITE PHYSICAL BLOCK

; (DISK) READ PHYSICAL BLOCK

; (DISK) READ CE BLOCK

; (DISK) WRITE CE BLOCK



Listing of QIOMAC

623 ;

624

625 .MACRO UMDIOS$ A

626 .ENDM

627

628

629 .ENDM UMDIOS

630

631 :

632 ; HANDLER ERROR CODES RETURNED IN I/O STATUS BLOCK ARE DEFINED THROUGH TH
633 ; MACRO WHICH THEN CONDITIONALLY INVOKES THE MESSAGE GENERATING MACRO
634 ; FOR THE QIOSYM.MSG FILE

635 ;

636 .MACRO .IOER. SYM,LO,MSG

637 DEFINS SYM,LO

638 .IF GT, $$MSG

639 .MCALL .IOMG.

640 .IOMG. SYM,LO,<MSG>

641 .ENDC

642 .ENDM .IOER.

643 :

644 ; I/0 ERROR CODES ARE DEFINED THOUGH THIS MACRO WHICH THEN INVOKES THE
645 ; ERROR MESSAGE GENERATING MACRO, ERROR CODES -129 THROUGH -256
646 ; ARE USED IN THE QIOSYM.MSG FILE

647 ;

648 .MACRO .QIOE. SYM,LO,MSG

649 DEFINS SYM,LO

650 .IF GT, $$MSG

651 .MCALL .IOMG.

652 .IOMG. SYM,<LO-128.>,<MSG>

653 .ENDC

654 .ENDM .QIOE.

655 :

656 ; CONDITIONALLY GENERATE DATA FOR WRITING A MESSAGE FILE

657 :

658 .MACRO .ICMG. SYM,LO,MSG

659 .WORD  =-*0O<LO>

660 .ASCIZ ~MSG"

661 .EVEN

662 JIIF LT, ~0<$$ SMAX+<LO>>, $ $SMAX=~~0<LO>

663 .ENDM .IOMG.

664 ;

665 ; DEFINE THE SYMBOL SYM WHERE LO IS IS THE LOW ORDER BYTE, HI IS THE HIGH
666 ;

667 .MACRO .WORD. SYM,LO,HI

668 DEFINS$ SYM,<HI*400+LO>

669 .ENDM .WCRD.

A-11



Index

A

D

ADO1 analog to digital converter

See Analog to digital converter
AFC11 analog to digital converter

See Analog to digital converter
Analog to digital converter

status returns « 3-3
Attach/detach facility « 13

C

Card reader handler « 9—1
control characters * 9-5
devices supported  9--1
error messages * 96
functions « 91
power fallure recovery * 9-6
punched card codes * 9—4
status returns « 9-6
UMR allocation » 9-7

Cassette handler « 131
error and status conditions « 13-2
QIO functions » 13-2

Cassette tape
EOF +13-5
first cassette operation « 13-5
10.SPB+13-5
structure « 13-3

Characateristics words « 1-8

Characteristics word 2 < 4-9

Characteristics word 3 « 4-10

Characteristic words
DECtape Il + 15-3
disk handlers « 4-9
line printer handler » 104

Control characters
card reader handler » -5
line printer handler « 102

DECtape handler » 61
status returns « 6-3
UMR allocation « 62
DECtape Il handler * 15—1
characteristic words « 15-3
error and status conditions ¢ 153
Device handler
null » 14—1
Direct mode operation * 1-5
Disk handler
U.Cc3+4-10
Disk handlers » 4—1
characteristic words « 49
QIO functions « 4-7
status conditions * 4—7
u.c2-4-9

E

Error and status conditions
cassette handler « 13-2
DECtape |l handler » 15-3
laboratory peripheral system handler « 821
Error conditions
message output handier « 11-15
Error messages
Card reader handler - 9-6
Error recover in DB,DM,DR disk handlers « 4-9

F

Function codes (mass storage)
attach/detach » 1-7
direct mode « 1-5
read/write logical block « 1-7
Function codes (non-mass storage)
attach/detach « 1-3
kil VO - 1-5
Read logical/read virtual block « 1—4
write logical/write virtual block « 1-5

Index-1



Index

P

Initializing device handler tasks « 1-1

K

Paper tape reader/punch handler « 12—1
Physical unit directory « 1-3

PUD«1-3

Punched card codes(PDP-11) - 94

KDAS0 disk
description » 44

L

Laboratory peripheral system handler « 8—1
error and status conditions « 821, 8-24
QIO functions (immediate) » 8-3
QIO functions (synch) » 8-5

Line printer handler « 101
characteristic words « 104
control characters « 10—2
functions « 10-1
status returns « 10-4

Logical unit numbers » 1-2

Logical unit table « 1-3

LPS11
See Laboratory peripheral system handler

LUT-1-3

Q

QIO functions

cassette handler » 13-2

DECtape Il handler » 15-2

disk handlers *4-7
QIO functions (immediate)

laboratory peripheral system handler » 8-3
QIO functions (synch)

laboratory peripheral system handler « 8-5
QIO functions for disk handlers « 4—6
QIO system directives * 1-1

Magnetic tape cassette handler

See cassette handler
Magnetic tape handlers
See tape handlers
Mass storage devices
direct mode operation « 1-5
Message output handler « 11—1
error conditions « 11-15
status returns » 11-16

N

Null device handler « 14—1

Index-2

R

RC25 disk subsystem
description « 4-5

RD31 fixed 5.25-inch disk
description + 4-5

RD51 fixed 5.25-inch disk
description « 4-5

RD52 fixed 5.25-inch disk
description « 46

RD53 fixed 5.25-inch disk
description « 4—6

RD54 fixed 5.25-inch disk
description » 4-6

Read logical block function » 1—4

Read virtual block function » 1—4

RK11,RK05,RKO5F cartridge disk
description « 4-3

RK611,RK06,RK07 cartridge disk
description « 44

RL11,RLO1,RLO2 cartridge disk
cartridge disk « 4-3

RM02,RM03,RM05,RM80 disk pack
description « 4-3

RP04,RP05,RP06,RP07 disk pack
description « 4-3



RS03 fixed-head disk
description * 4-3

RX11,RX01 flexible disk
description » 4—4

RX211,RX02 flexible disk
description * 44

RX33 5.25-inch half-height disk
description « 4-5

RX50 flexible 5.25-inch disk
description « 45

S

Index

UDASO disk (Cont.)

description « 44
UDC-11 handler « 5-1
status conditions ¢ 5-19
UMR allocation
card reader handler « 9—7
DECtape handler « 62
disk handlers « 4-8

W

Status conditions
cassette handler « 132
DECtape Il handler « 15-3
disk handler * 4--7
laboratory peripheral system handler - 8-21, 8-24
message output handler « 11-16
UDC-11 handler « 5-19
Status returns
analog to digital converter « 3-3
card reader handler » 9-6
DECtape handler - 6-3
line printer handler « 104
System UIC » 1-3

T

TA11 magnetic tape cassette « 13—1
Tape devices
specifications « 7—1
Tape handlers ¢ 7—1
TC-11 « 61
Terminal handlers « 2—1
TU56 « 6—1
TU58 device driver
See DECtape Il handler

U

uct-1-8
u.c2-1-8, 49
U.C3-1-8, 4-10
U.C4-1-8
UDASO0 disk

Write logical block function « 1-6
Wirite virtual block function » 1-5

Index-3



IAS
Device Handler Reference Manual
AA-H004B-TC

Reader’s This form is for document comments only. Digital will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible
Comments to receive one under Software Performance Report (SPR) service, submit your

comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

O Assembly language programmer
O Higher-level language programmer
O Occasional programmer (experienced)
O User with little programming experience
O Student programmer
O Other (please specify)
Name Date
Organization
Street
City State Zip Code.

or Country



dlilliltial A

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

IAS Engineering/Documentation
Digital Equipment Corporation
5 Wentworth Drive GSF/L20
Hudson, NH 03051-4929

No Postage
Necessary
it Mailed in the
United States
]
L]
]
]
]
I
R
|
|
|
]
|
|

Do Not Tear - Fold Here




	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	12-01
	12-02
	12-03
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	14-01
	14-02
	15-01
	15-02
	15-03
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	Index-1
	Index-2
	Index-3
	replyA
	replyB

