
BASIC-11 
Language Reference Manual 

Order No, DEC-11-LI 888-A-D 

digital equipment corporation · maynard. massachusetts 



First Printing, September 1976 

The information in this document is subject to change without notice 
and should not be construed as a commitment by Digital Equipment 
Corporation. Digital Equipment Corporation assumes no responsibility 
for any errors that may appear in this document. 

The software described in this document is furnished under a license 
and may be used or copied only in accordance with the terms of such 
license. 

Digital Equipment Corporation assumes no responsibility for the use or 
reliability of its software on equipment that is not supplied by 
DIGITAL. 

Copyright @ 1976, by Digital Equipment Corporation 

The postage prepaid READER'S COMMENTS form on the last page of this 
document requests the user's critical evaluation to assist us in pre­
paring future documentation. 

The following are trademarks of Digital Equipment Corporation: 

DIGITAL 
DEC 
PDP 
DECUS 
UNIBUS 
COMPUTER LABS 
CO MT EX 
DDT 
DECCOMM 

DECsystem-lo 
DECtape 
DIBOL 
EDU SYSTEM 
FLIP CHIP 
FOCAL 
IND AC 
LAB-8 
DECsystem-20 

10/80-14 

MASS BUS 
OMNIBUS 
OS/8 
PHA 
RSTS 
RSX 
TYPESET-8 
TYPESET-10 
TYPESET-11 



CONTENTS 

PREFACE 

DOCUMENTATION CONVENTIONS 

CHAPTER 1 

1.1 
1. 2 
1.3 
1.4 
1. 5 
1. 5 .1 
1.6 
1. 7 
1.8 

CHAPTER 2 

2.1 
2.2 
2.2.1 
2.2.2 
2.2.3 
2.3 
2.3.1 
2.3.2 
2.3.3 
2.3.4 
2.4 
2.4.1 
2.4.2 
2.4.3 
2.4.4 
2.5 
2.6 
2.6.1 

CHAPTER 3 

3.1 
3 .1.1 
3 .1. 2 
3 .1. 3 
3.2 
3.2.1 
3.2.2 
3.2.3 

CHAPTER 4 

4.1 
4 .1.1 

PROGRAMMING IN BASIC 

INTRODUCTION 
STRUCTURE OF A BASIC PROGRAM 
BASIC CHARACTER SET 
LINE FORMAT 
STATEMENTS 

Single and Multi-Statement Lines 
DOCUMENTING PROCEDURES (REM STATEM£NT) 
ENTERING BASIC PROGRAMS 
USING BASIC WITHOUT WRITING A PROGRAM 
(IMMEDIATE MODE) 

ELEMENTS OF BASIC 

TERMINOLOGY 
CONSTANTS 

Numeric Constants 
Integer Constants 
String Constants 

VARIABLES 
Numeric Variables 
Integer variables 
String Variables 
Subscripted Variables 

FORMING EXPRESSIONS 
Arithmetic Expressions 
String Expressions 
Relational Expressions 
Functions 

ASSIGNING VALUES TO VARIABLES (LET STATEMENT) 
ARRAYS 

Dimensioning Arrays (DIM Statement) 

INPUT AND OUTPUT 

SUPPLYING DATA 
INPUT Statement 
LINPUT Statement 
READ, DATA, and RESTORE Statements 

CHECKING OUTPUT (PRINT STATEMENT) 
Printing Zones - ·rhe Comma and the Semicolon 
Output Format for Numbers and Strings 
Printing with the TAB Function 

CONTROL STATEMENTS 

SHIFTING CONTROL OF THE PROGRAM 
Unconditional Transfer (GO TO Statement) 

iii 

Page 

vii 

ix 

1-1 

1-1 
1-1 
1-2 
1-3 
1-4 
1-5 
1-6 
1-7 
1-9 

2-1 

2-1 
2-1 
2-1 
2-3 
2-3 
2-4 
2-5 
2-5 
2-6 
2-7 
2-8 
2-8 
2-10 
2-11 
2-12 
2-13 
2-14 
2-16 

3-1 

3-1 
3-1 
3-4 
3-5 
3-8 
3-9 
3-12 
3-13 

4-1 

4-1 
4-1 



4.1.2 

4 .1.3 

4.2 
4.2.1 
4.2.2 
4.3 

4.4 
4.4.1 
4.4.2 

CHAPTER 5 

5.1 
5.2 
5.2.1 

5.2.2 
5.2.2.1 
5.2.2.2 

5.2.2.3 
5.2.2.4 
5.2.2.5 
5.2.3 

5.3 
5.3.1 
5.3.1.1 

5.3.1.2 

5.3.1.3 

5.3.1.4 

5.3.2 
5.3.2.1 

5.3.2.2 

5.3.2.3 

5.4 

5.5 

CHAPTER 6 

6.1 
6.2 
6.2.1 
6.2.2 
6.3 
6.3.1 

6.3.2 

6.3.3 

6.3.4 

CONTENTS (Cont.) 

Multiple Branching (ON GO TO and ON THEN 
Statements) 
Conditional Transfer (IF THEN and IF GO TO 
Statements 

EXECUTION OF LOOPS 
FOR and NEXT Statements 
Nested Loops 

STOPPING PROGRAM EXECUTION (END AND STOP 
STATEMENTS) 
SUBROUTINES 

GOSUB and RETURN Statements 
ON GOSUB Statement 

FUNCTIONS 

TYPES OF FUNCTIONS AVAILABLE 
NUMERIC FUNCTIONS 

Trigonometric Functions (SIN, COS, ATN, and 
PI Functions) 
Algebraic Functions 
Square Root Function (SQR Function) 
Exponential and Logarithm Functions (EXP, 
LOG, and LOGlO Functions) 
Integer Function (INT Function) 
Absolute Value Function (ABS Function) 
Sign Function (SGN Function) 
Random Numbers (RND Function and RANDOMIZE 
Statement) 

STRING FUNCTIONS 
String Manipulation Functions 
Finding the Length of a String (LEN 
Function) 
Trimming Trailing Blanks Off a String 
(TRM$ Function) 
Finding the Position of a Substring (POS 
Function) 
Copying Segments from a String (SEG$ 
Function) 
Conversion Functions 
Character and ASCII Code Conversions (ASC 
and CHR$ Functions) 
Numbers and Their String Representation 
Conversions (VAL and STR$ Function} 
Binary and Octal to Decimal Conversions 
(BIN and OCT Functions) 

USER-DEFINED FUNCTIONS (DEF STATEMENT AND FN 
FUNCTION) 

DATE AND TIME FUNCTIONS (DAT$ AND CLK$ 
FUNCTIONS) 

WORKING WITH DATA FILES 

INTRODUCTION TO DATA FILES 
FILE CONTROL STATEMENTS 

Opening a File (OPEN Statement) 
Closing a File (CLOSE Statement) 

USING SEQUENTIAL FILES 

Page 

4-3 

4-3 

4-6 
4-7 
4-11 
4-12 

4-13 
4-14 
4-17 

5-1 

5-1 
5-1 
5-2 

5-4 
5-4 
5-4 

5-6 
5-8 
5-9 
5-9 

5-12 
5-12 
5-12 

5-13 

5-13 

5-15 

5-16 
5-17 

5-18 

5-20 

5-21 

5-26 

6-1 

6-1 
6-1 
6-2 
6-3 
6-4 

Reading Data from a Sequential rile 
and LINPUT # Statements) 

(INPUT # 6-4 

Storing Data in a Sequential File 
(PRINT # Statement) 
Checking for the End of Input File 
(IF END # Statement) 
Restoring a File to the Beginning 

iv 

6-5 

6-7 

6-8 



6.4 
6.4.1 

6.5 
6.6 

CHAPTER 7 

7.1 
7.2 
7.2.1 
7.2.2 

7.2.3 

7.2.4 
7.2.4.1 

7.2.4.2 
7.2.4.3 
7.2.4.4 
7.2.5 
7.2.6 
7.3 

7.3.1 
7. 3. 2 
7. 3. 3 
7.3.4 
7.3.5 
7.4 

7. 4 .1 
7. 4. 2 
7.5 
7.5.1 
7.5.2 

CHAPTER 8 

8.1 
8 .1.1 

8.2 
8.3 

CHAPTER 9 

9.1 
9.2 

9.3 

9.4 
9.5 

9.6 
9. 6 .1 

9.6.2 

~.6.3 

CONTENTS (Cont. ) 

(RESTORE # Statement) 
USING VIRTUAL ARRAY FILES 

Dimensioning Virtual Arrays (DIM # 
Statement) 
RENAMING A FILE (NAME STATEMENT) 
DELETING A FILE (KILL STATEMENT) 

FORMATTED OUTPUT - THE PRINT USING STATEMENT 

INTRODUCTION TO PRINT USING 
PRINTING NUMBERS WITH PRINT USING 

Specifying the Number of Digits 
Specifying the Location of the Decimal 
Point 
Printing a Number That is Larger Than the 
Field 
Printing Numbers with Special Symbols 
Printing Numbers with a Trailing Minus 
Sign 
Printing Numbers with Asterisk Fill 
Printing Numbers with Floating Dollar Signs 
Printing Numbers with Commas 
Printing Numbers in E Format 
Fields Which Exceed BASIC's Accuracy 

PRINTING STRINGS WITH THE PRINT USING 
STATEMENT 

1-Character String Fields 
Printing Strings in Left-Justified Format 
Printing Strings in Right-Justified Format 
Printing Strings in Centered Fields 
Printing Strings in Extended Fields 

SUMMARY OF THE PRINT USING STATEMENT 
FORMAT 

Format of Numeric Fields 
Format of String Fields 

PRINT USING STATEMENT ERROR CONDITIONS 
Fatal Error Conditions 
Nonfatal Error Conditions 

PROGRAM SEGMENTATION 

SEGMENTING PROGRAMS WITH THE CHAIN STATEMENT 
Preserving Variables Through CHAIN 
(COMMON Statement) 

MERGING PROGRAM SEGMENTS (OVERLAY STATEMENT) 
CALLING A ROUTINE WRITTEN IN ANOTHER LANGUAGE 
(CALL STATEMENT) 

BASIC-11 COMMANDS 

KEY COMMANDS 
LISTING YOUR PROGRAM (LIST AND LISTNH 
COMMANDS) 
EXECUTING A PROGRAM (RUN AND RUNNH 
COMMANDS) 
DELETING PROGRAM LINES (DEL COMMAND) 
ERASING THE PROGRAM (NEW, SCR, AND CLEAR 

COMMANDS) 
PROGRAMS IN FILES 
Saving the Program in a File (SAVE and REPLACE 
Commands) 
Restoring a Program from a File (OLD and 
APPEND Commands) 
Running a Program from a File 

v 

Page 

6-8 
6-9 

6-10 
6-11 

7-1 

7-1 
7-2 
7-3 
7-3 

7-4 

7-5 
7-5 

7-6 
7-6 
7-7 
7-8 
7-8 
7-8 

7-9 
7-9 
7-9 
7-10 
7-11 
7-11 

7-13 
7-14 
7-15 
7-16 
7-16 

8-1 

8-1 
8-3 

8-6 
8-9 

9-1 

9-1 
9-2 

9-3 

9-3 
9-4 

9-4 
9-5 

9-6 

9-7 



9.6.4 
9.7 
9.8 
9.9 
9.10 
9 .11 

APPENDIX A 

APPENDIX B 

B.l 
B.2 
B.3 

APPENDIX C 

INDEX 

FIGURE 

TABLE 

8-1 

8-2 
8-3 

2-1 
2-2 
2-3 

2-4 
2-5 
7-1 

7-2 

9-1 
A-1 
A-2 
A-3 
B-1 
B-2 
B-3 
B-4 
C-1 

CONTENTS (Cont. ) 

Deleting a Program File (UNSAVE Command) 
CHANGING THE PROGRAM NAME (RENAME COMMAND) 
EDITING A LINE (SUB COMMAND) 
RESEQUENCING A PROGRAM (RESEQ COMMAND) 
SAVING A COMPILED PROGRAM (COMPILE COMMAND) 
CHECKING THE LENGTH OF A PROGRAM 
(LENGTH COMMAND) 

ERROR MESSAGES 

SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND 
COMMANDS 

SUMMARY of BASIC-11 STATEMENTS 
SUMMARY of BASIC-11 FUNCTIONS 
SUMMARY of BASIC-11 COMMANDS 

ASCII CHARACTER SET 

Page 

9-8 
9-8 
9-9 
9-10 
9-13 
9-13 

A-1 

B-1 

B-1 
B-5 
B-7 

c...:1 

Index-1 

FIGURES 

Segmenting a Program 
with the CHAIN Statement 
CHAIN with COMMON 
Segmenting a Program with the 
OVERLAY Statement 

TABLES 

Number Notations 
Arithmetic Operators 
Arithmetic Operator 
Precedence 
Arithmetic Relational Operators 
String Relational Operators 
Format Characters for 
Numeric Fields 
Format Characters for 
String Fields 
BASIC-11 Key Commands 
Abbreviated Error Messages 
BASIC-11 Error Messages 
Error Conditions in Functions 
Summary of Statements 
Summary of Arithmetic Functions 
Summary of String Functions 
Summary of Commands 
ASCII Character Set 

vi 

8-2 

8-4 
8-7 

2-2 
2-9 
2-10 

2-11 
2-12 
7-13 

7-1!5 

9-1 
A-2 
A-3 
A-11 
B-1 
B-5 
B-6 
B-8 
C-1 



PREFACE 

This manual describes the features of the BASIC-11 language. This 
manual assumes you are familiar with the standard Dartmouth BASIC 
language and have a knowledge of programming concepts. If you are 
totally unfamiliar with BASIC, you should read an introduction to 
BASIC before reading this manual. 

This manual describes: 

• Structure of BASIC-11 programs 

• Elements of BASIC-11 

• BASIC-11 statements 

• BASIC-11 functions 

• BASIC-11 commands 

• BASIC-11 error messages 

This manual describes the features common to all versions of BASIC-11, 
but it does not document system-dependent features and procedures. 
For this information, see your system's BASIC-11 user's guide. 

vii 





DOCUMENTATION CONVENTIONS 

These are the documentation conventions which are used throughout this 
manual. 

The following symbols have special meaning. 

Symbol Meaning 

While pressing the CTRL key, type the letter indicated 
after the slash 

Type the RETURN key 

Type the RUBOUT key 

In addition, this manual uses certain conventions when describing the 
format of statements, functions, and commands. 

These are: 

Convention 

[ ] 

{ } 

Items in 
capital 
letters and 
special 
symbols 

Items in 
lower case 
letters 

Meaning 

The enclosed elements are optional. For example: 

[LET] variable=expression 

A choice of one element among two or 
possibilities, for example: 

more 

IF relational expression {
THEN statement } 
THEN line number 
GO TO line number 

Preceding element can be repeated as indicated. 
For example: 

CLOSE #exprl,#expr2, ... 

Type these elements exactly as they appear in the 
format, for example: 

LET 
RUN 

# 

Items in capital letters are called keywords. 

Replace these elements according to the 
description provided in text. See below for list 
of commonly used lower case items. 

This list describes some lower case items commonly used in format 
descriptions. The general meaning of each item is given. Unless a 
specific format description places restrictions on an item, its 
general meaning applies. 

ix 



DOCUMENTATION CONVENTIONS (Cont.) 

Lower 
Case Item 

expression 

file specification 

integer 

line number 

string 

variable 

Abbreviation 

expr 

int 

var 

Meaning 

Any valid BASIC-11 
expression. It is always a 
numeric expression (see 
Section 2.4.1) unless the 
description specifically 
states that it can be a 
numeric or string expression 
(see Section 2.4.2). For 
example: (S*SIN(X))"Y 

A file specification in the 
format described in your 
BASIC-11 user's guide. 

Any positive integer number 
constant or any positive 
numeric constant that could 
be an integer if a percent 
sign was put after it. For 
example: 5%, 3%, 2, 7 

Any line number as described 
in Section 1.4. For 
example: 10, 100, 32767 

Any string expression (see 
Section 2.4.2). For 
example: "ABC", 
C$+SEG$(A$,3,4) 

A floating point, integer or 
string variable (see Section 
2.3) 

If there is more than one lower case word in a format, the words are 
numbered 1, 2, 3, etc •• For example: 

CLOSE #exprl,#expr2,#expr3, •.. 

Throughout this manual, the term BASIC means BASIC-11 or any BASIC-11 
system. 

To differentiate between what BASIC prints and what you type, the user 
type-in is printed in red ink. For example: 

i:::.uNNH 

WHAT NUMBERS? 5~10 
THE SUM IS 1~=.=; 

i:::.r::1~DY 

All user type-in is terminated by the 
indicates a different terminator. 

x 

key unless the text 



CHAPTER 1 

PROGRAMMING IN BASIC 

1.1 INTRODUCTION 

BASIC (Beginner's All-purpose Symbolic Instruction Code) is a computer 
language developed at Dartmouth College under the direction of 
Professors J. G. Kemeny and Thomas E. Kurtz. It is one of several 
compiler languages used to translate symbolic language programs into a 
form that a computer can execute. Because the BASIC language is 
composed of easily understood statements and commands, it is one of 
the simplest programming languages to learn. 

BASIC provides an interactive human/machine relationship by allowing 
you to communicate directly with its processor. It is a 
conversational programming language which uses simple English-like 
statements and familiar math notations to perform an operation. 

BASIC-11, a BASIC language available on PDP-11 systems, is an 
outgrowth of Dartmouth BASIC. It encompasses both the elementary 
statements used to write simple programs and many new and advanced 
features. These new features, not found in standard Dartmouth BASIC, 
allow you to write and execute more complex and efficient programs. 

1.2 STRUCTURE OF A BASIC PROGRAM 

A BASIC program consists of a set of statements using certain language 
elements and syntax described in the following chapters. Expressions, 
line numbers, and statements are joined to solve a particular problem, 
with each line containing instructions to BASIC. 

A BASIC program can be one line or several lines long. 
complete program: 

10 PRINT "THIS IS A 1-LINE PROGRAM.• 

This is a 

Each line begins with a number that identifies the line as a statement 
and indicates the order of statement execution. Each statement starts 
with a word specifying the type of operation to be performed. 

Examine the following program. What is the result of adding the value 
of the variable B to the value of the variable C? 

10 FOR I=l TO 5 
20 INPUT e,c 
30 LET A=B+C 
40 PRINT "B+C= ";A 
50 NEXT I 
60 END 

1-1 



PROGRAMMING IN BASIC 

Look at the structure of this program. There are line numbers, 
calculations, instructions, and a statement to stop the program. 

In lines 10 and 50, you establish a loop through which the program 
runs five times and then stops. 

:l. () F J F'. J :::: :I. "i' D ~.'.'.i 

·.-:.iu NC>:'.T l 

In line 20, the program requests input from you. You supply the 
values of the variables B and C during program execution. 

In line 30, you place the result of the addition in variable A. 

'·,; i .. C .. i (:·1::.:f:+C 

Without line 40, your program would run but you would not see the 
results. 

Line 60 ends your program. The END statement is optional. 

Shifting and transferring control, looping and supplying data are all 
part of a BASIC program. 

1.3 BASIC CHARACTER SET 

If you look closely at a BASIC program, such as the one previously 
shown, you will notice that it consists of letters, numbers, and 
symbols arranged in a certain syntax. These characters can be 
considered the alphabet of the BASIC language. 

BASIC uses the full ASCII (American Standard Code for Information 
Interchange) character set for its alphabet (see the ASCII Table in 
Appendix C). This set consists of: 

1. Upper-case letters A through z 

2. Lower-case letters a through z 

3. Numbers 0 through 9 

4. Special characters 

5. Nonprinting characters 

This character set enables you to include any ASCII character as part 
of a program. BASIC translates what you type. Some characters are 
processed and some are ignored. 

BASIC translates characters in the following manner: 

1. Letters a through z - BASIC translates all lower-case ASCII 
characters to upper-case characters. 

1-2 



PROGRAMMING IN BASIC 

2. Non-printing (i.e., control characters) and null characters 
(i.e., space, tab) - BASIC ignores them. 

3. All other characters - BASIC 
unchanged. 

accepts these characters 

String constants are a different matter (as described in Section 
2.2.3). Everything you ·type into a string constant is interpreted 
literally by BASIC. Consequently, in a string constant: 

1. All lower-case alphabetics (a,b,c) remain lower-case. 

2. All non-printing and null characters are accepted, including 
spaces and tabs. 

BASIC also accepts all characters in a REM statement (see Section 
1. 6) • 

System editing characters affect terminal output format only. 
Therefore, you need not be concerned, at this point, with the way 
BASIC handles them. (System editing characters, such as CTRL/U are 
described in Section 9.1.) 

1. 4 LINE FORMAT 

The format of a line in a BASIC program is as follows: 

line 
number 

10 

statement 
keyword 

LET 

statement 
body 

R=SQR(X"2+Y"2) 

line 
terminator 

Every line in a BASIC program must begin with a number. This number 
must be a positive integer within the range 1 to 32767 inclusive. A 
BASIC line number is a label that distinguishes one line from another 
within a program. Consequently, each line number in the program must 
be unique. 

Leading zeroes, as well as spaces, have no effect on the number. For 
example, these numbers are all the same to BASIC: 

00010 
10 

0 1 0 

There are several reasons why BASIC requires line numbers: 

1. To tell BASIC the order in which to execute the program. 

2. To aid you in correcting and updating a program. 

3. To provide a reference for conditional and unconditional 
transfers of control. (See Chapter 4) 

1-3 



PROGRAMMING IN BASIC 

You can use consecutive line numbers like 1,2,3 and 4. For example: 

l f:):::::::i 
::.~ I·::::: :I. 0 
:3 C::::A+B 
4 END 

however, a useful practice is to write line numbers in increments of 
10. This method allows you to insert additional statements between 
existing lines. The following program illustrates line number 
increments. 

?O );:{::::JO 
30 C::::r:':J+B 
40 END 

This program assigns values to two variables, adds them, and places 
the result in variable C. If you want the program to print the 
results of line 30, add the PRINT statement with a line number in the 
range 31 to 39 inclusive. For example, if you add a line numbered 33, 
the program looks like this: 

J 0 (l :::: ~:_:; 

:·.; () B:::: :I. t.._) 

3() C::::ti+B 
33 pi::: INT (" 

40 END 

Unlike integer constants (see Section 2.2.2), line numbers cannot have 
a percent sign (%). 

BASIC ignores blanks, spaces, and tabs within a line (unless in a 
string enclosed by quotation marks or in a REM statement). Therefore, 
you need not worry about typing spaces in a program. For example: 

l 0 LET A::::B+C 

can also be typed 

:L 0 l ... ET1'.':\::::B+C 

or 

:I. 0 I... E T ::::B + 
These three lines are the same to BASIC; they will all be listed as: 

:I. 0 LET A::::D+C 

In BASIC, you terminate a line by pressing the RETURN key. 
this key provides a carriage return/line feed sequence. 

1.5 STATEMENTS 

Pressing 

BASIC statements consist of English-like words called keywords (words 
recognized by BASIC) that you use in conjunction with the elements of 
the language set: constants, variables, operators, and functions. 
These statements divide into two major groups: executable statements 
and non-executable statements: 

1-4 



1. 

PROGRAMMING IN BASIC 

Executable statements specify the action of 
telling BASIC what operation to perform (i.e. 
READ} • 

a program by 
PRINT, GO TO, 

2. Non-executable statements describe the characteristics and 
arrangement of data, editing information, and statement 
functions that you include in your program (i.e., DATA and 
REM} • 

1.5.1 Single and Multi-Statement Lines 

You have the option, with BASIC, of writing either one statement or 
many statements on one line. However, you cannot continue a BASIC 
statement from one line to the next. 

A single statement line consists of: 

1. A line number from 1 to 32767 

2. A statement keyword 

3. The body of the statement 

4. A line terminator (RETURN key} 

When typing your program, end each line by pressing the RETURN key. 

This is a single statement line: 

To enter more than one 
line}, separate each 
backslash symbol is the 
type it after every 
line. For example, the 
statements: 

statement on a single line (multi-statement 
complete statement with a backslash (\). This 
statement separator (or terminator). You must 
statement except the last in a multi-statement 
following line contains three complete PRINT 

10 PRINT A \ PRINT V \ PRINT G 

There is only one line number for a multi-statement line. 
Consequently, you should take this into consideration if you plan to 
transfer control to a particular statement within a program. For 
instance, in the previous example, you cannot execute just the 
statement 

PRINT V 

without executing PRINT A and PRINT G. 

Most statements can appear in a multi-statement line. The exceptions 
are noted in the discussion of individual statements in this manual. 

1-5 



PROGRAMMING IN BASIC 

A multi-statement line consists of: 

1. A line number from 1 to 32767 

2. A statement keyword 

3. The body of the statement 

4. A backslash (\} 

5. As many repetitions of 2, 3, and 4 as you want 

6. A statement keyword 

7. The body of the statement 

8. A line terminator (RETURN key} 

1.6 DOCUMENTING PROCEDURES (REM STATEMENT) 

BASIC allows you to document your methods, insert notes and comments, 
or leave yourself messages in your program. This type of 
documentation is known as a remark or comment. BASIC provides the REM 
statement for this purpose. The REM statement has the following 
format: 

REM comment 

where: 

comment is anything you want to say. 

You may place a REM statement anywhere in your program because it does 
not affect program execution. Remarks do, however, use memory area 
which you may need for exceptionally long programs. 

The REM statement can be either the only statement on the line 

10 REM THIS IS AN EXAMPLE 

or it can be one of several statements in a multi-statement line. 

20 LET A~5 \ PRINT A \ REM THE VALUE OF A IS 5 

BASIC ignores anything in a line following the keyword REM until it 
reaches a backslash (\} or a line terminator. The backslash 
terminates the REM statement as it does all other statements in BASIC. 
Obviously, the only printing character you should not include in a 
remark is a backslash. 

You can use the line number of a REM statement in a reference from 
another statement (i.e., GO TO}; however, in this case, BASIC ignores 
the REM statement and proceeds to execute the next non-REM statement 
following the line referenced. (See Section 4.1.1 for the GO TO 
statement.) 

Remember that BASIC prints the remarks on the terminal only when you 
list the program. (See Section 9.2 for a description of the LIST 
command.) 

1-6 



PROGRAMMING IN BASIC 

1.7 ENTERING BASIC PROGRAMS 

It is very easy to enter BASIC programs. Simply type the program 
lines in the format described in Section 1.4. (Start each line with a 
line number and terminate with the RETURN key.) You can type the lines 
in any order, BASIC stores them in numeric order by line number. For 
example, you can type: 

10 A=5 
20 B=lO 
30 C=A+B 
40 PRINT C 
50 END 

Or you can type: 

50 END 
20 B=lO 
40 PRINT c 
10 A=5 
30 C=AtB 

They are equivalent to BASIC. 

If you type a line and want to change it, simply type a new line 
the same line number. BASIC replaces the old line with the new. 
example, if you type the program listed above and want to change 
30 to be A*B instead of A+B, simply type: 

with 
For 

line 

If you want to delete a line completely, simply type the line number 
followed by a RETURN key. To delete line 50, the statement that ends 
the program, type: 

50 

If you are typing a line and realize that you have made a mistake 
before you type the RETURN key, there are two ways to correct the 
error. You can type the RUBOUT key, which deletes the last character 
that you typed, until you have deleted the characters which were 
errors and then retype the rest of the line. Or you can type CTRL/U 
which tells BASIC to ignore the entire line. See Section 9.1 for more 
information on these and other key commands. 

BAS~C stores your program in an area in the computer's memory. Each 
time you enter a new line, BASIC stores it in your area. Each time 
you delete a line, BASIC erases it from your area. Each time you 
replace a line, BASIC erases the existing line and stores the new 
line. 

BASIC has a set of commands which allow you to list, execute, or 
modify the program in your program storage area. BASIC commands 
consist of a keyword followed by optional specifications. Do not type 
a line number before a command. (See Section 1.8 for a description of 
immediate mode statements, statements which are not preceded by a line 
number.) 

One BASIC command is the LIST command. If you want to see the program 
lines that you have already entered, type the LIST command. Type 

LIST 

1-7 



PROGRAMMING IN BASIC 

BASIC prints out a header line followed by the lines you have typed. 
When it is done, it prints the READY message. The READY message means 
that BASIC is ready to accept a program line, command, or immediate 
mode statement. For example: 

LIST 

NDNAME 

:1.0 A::::::.:; 
?O B:::: :I. 0 
;·:~O C::::,~*B 

40 p1:~INT C 

F:Ef.tDY 

Another BASIC command is the RUN command. If you want BASIC to 
execute your program, type the RUN command. After BASIC executes your 
program, it prints the READY message. For example: 

1:~UN 

NON AME 30-JUL-76 15:43:44 

'.::io 

If you want BASIC to list the program lines or to execute your program 
without printing the header line, type LISTNH or RUNNH, respectively 
(NH stands for No Header). 

BASIC has commands to: 

• List your program (LIST and LISTNH) . 

• Execute your program (RUN and RUNNH) • 

• Delete program lines (DEL). 

• Erase your program (NEW, SCR, and CLEAR). 

• Save your program (SAVE and REPLACE) to a file. 

• Restore your program (OLD and APPEND) from a file. 

• Delete programs saved in files (UNSAVE). 

• Change the program name (RENAME) • 

• Edit a line· that you have entered (SUB). 

• Resequence the line numbers in your program (RESEQ). 

• Save a compiled program (COMPILE). 

• Find out how big your program is (LENGTH). 

See Chapter 9 for a complete description of these commands. 

BASIC always prints the READY message when it completes execution of a 
command. 

1-8 



PROGRAMMING IN BASIC 

1.8 USING BASIC WITHOUT WRITING A PROGRAM (IMMEDIATE MODE) 

You do not have to write a program to use BASIC. BASIC can execute 
most ·statements as soon as you type them. To have BASIC execute a 
statement immediately, type the statement without a line number. 
Statements typed without a line number are called immediate mode 
statements. Immediate mode statements differ from commands in that 
you can type the same statement with a line number ·but a command with 
a line number is meaningless. 

If you type the statement PRINT 4+5 with a line number, BASIC stores 
the program line for later execution. For example: 

:I. 0 Pl:~ I NT 4+~'.) 

But if you type the line without a line number BASIC executes the line 
and then prints the READY message. 

PRINT 4+~.:; 
<"j 

You can enter several immediate mode statements in a row. For 
example: 

LET (.%::::~'.) 

1::,:i:::,~DY 

i::-1:~JNT A*:l.2 
60 

Or you can enter several immediate mode statements on one line. 
Separate each statement with a backslash. When you type the RETURN 
key, BASIC executes all the statements on the line. For example: 

A=5 \ B=:l.4 \ C=.3729 \ PRINT A*BvSIN<C> 
70 

You can use BASIC as a powerful calculator by using immediate mode. 
For example after typing the previous immediate mode statement, type: 

p1:;:INT "THE HEIGHT :i:s 11 il B*SIN < c >+Av 11 METE::i:rn 11 

THE HEIGHT JS 10~1004 METERS 

1-9 



PROGRAMMING IN BASIC 

You can use FOR-NEXT loops (see Section 4.2.1) in immediate mode if 
you can enter the entire loop on one line. For example: 

FOR I= 1 TO 10 \ PRINT 1, SQRCI> \NEXT I 
1 1 
2 
3 
4 

6 
7 
8 
9 
10 

READY 

1t41421 
1t73205 
2 
2+23607 
2+44949 
2+64575 
2+82843 
3 
3+16228 

Another use of immediate mode is to debug (find and correct the errors 
in) your program. First you execute your program with a RUN command. 
Then you can use immediate mode PRINT statements to find the values of 
variables in the program. You can also use the LIST command to look 
at the program lines. After making any needed changes you can 
continue the program with an immediate mode GO TO statement (see 
Section 4.1.1). Por more information on program debugging, see the 
description of the STOP statement in Section 4.3 and the description 
of error messages in Appendix A. 

You can use most BASIC statements in immediate mode. You can not use 
the INPUT or LINPUT statement (see Sections 3.1.1 and 3.1.2) in 
immediate mode. If you do, BASIC prints the ?ILLEGAL IN IMMEDIATE 
MODE (?!IM) error message. Certain other immediate mode statements, 
though they do not cause an error message, are ignored by BASICG 
These immediate mode statements that are ignored are COMMON, DATA, 
DEF, and DIM. 

1-10 



CHAPTER 2 

ELEMENTS OF BASIC 

2.1 TERMINOLOGY 

In order to write programs in BASIC, you must be familiar with the 
terms and phrases used to describe the program elements. You will 
probably recognize most of these terms from previous experience; 
however, the following sections define these terms within the context 
of BASIC. 

2.2 CONSTANTS 

A constant is a quantity with a fixed value. In BASIC, you can enter 
a constant as part of a program or have BASIC read it from another 
file during program execution. 

There are three types of constants in the BASIC language: 

1. Numeric constants (floating point numbers also called real 
numbers) 

2. Integer constants (whole numbers) 

3. String constants (alphanumeric and/or special characters) 

2.2.1 Numeric Constants 

A numeric constant is one or more decimal digits, either positive or 
negative, in which the decimal point is optional. BASIC assumes a 
decimal point exists to the immediate right of the number if you do 
not include one. For example, the numeric constant 

184 

is equivalent to 

184. 

The following are all valid numeric constants: 

5 42861 
74 -125 

6. .95 

2-1 



ELEMENTS OF BASIC 

BASIC accepts numeric constants within the approximate range 

where n is the numeric constant you specify. 

If you type a numeric constant in a program that is outside this 
range, BASIC prints a fatal error message to that effect. This means 
that your program will not execute until you replace the numeric 
constant with one in the proper range. 

However, you can input very large numbers and very small numbers 
(within this range) by using a method similar to scientific notation. 
Use the following format: 

5~24016E-3 

where: 

+ or - is the sign of the number. 
with positive numbers; 
with negative numbers. 

The plus sign (+) is optional 
the minus sign (-) is mandatory 

x is a digit from 0 to 9. 

is the decimal point. 

E represents the words "times 10 to the power offl. 

nn is the 2-digit exponential value (the power of 10). 

This method of mathematical shorthand is called E notation. It is 
BASIC 0 s way of representing scientific notation. To use this format, 
append the letter E to the number. Then follow the E with an 
optionally signed whole number. The integer constant is the exponent. 
It can be O but never blank. Thus you can type: 

6000000 as 6E6 and .000005 as 5E-6 

You are actually positioning the decimal point internally by using E 
notation. A positive exponent moves the decimal point to the right; 
a negative exponent moves the decimal point to the left. For 
instance, if you type the number 

5.2041E-3 

BASIC interprets it as .0052041. 

Table 2-1 shows the different methods of writing the same number. 

STANDARD NOTATION 

1000000 
10000000 
100000000 
1000000000000 

Table 2-1 
Number Notations 

SCIENTIFIC NOTATION 

1 x 10A6 
1 x 10~7 
1 x 10A8 
1 x 10Al2 

2-2 

E NOTATION 

l.OOOOOE+06 
l.OOOOOE+07 
l.OOOOOE+fr8 
l.OOOOOE+l2 



ELEMENTS OF BASIC 

BASIC uses floating point format when storing and calculating most 
numbers. Integers, however, are handled in a slightly different 
manner. (See Section 2.2.2.) 

The following are examples of numeric constants: 

.84103E-06 
6.64 

-9.4177 

-377 
5E+03 

6562 

-12345 
8.0E-03 
25 

BASIC stores numbers to a certain degree of accuracy (or precision). 
See your BASIC-11 user's guide for the accuracy of numbers. 

2.2.2 Integer Constants 

An integer constant is a whole number (no fractional part) written 
without a decimal point. BASIC adds a decimal point internally to the 
right of the integer. Therefore, to distinguish a numeric constant 
(floating point number) from an integer constant (whole number), type 
an integer constant as one or more decimal digits terminated by a 
percent sign (%). For example, the following numbers are all integer 
constants (whole numbers) : 

29% -8% 
3432% 1% 
12345% 205% 

The following are not integer constants: 

1.6 .08% 
754.2% 5.2041E+06 
34 1/2 95 

You should use integers instead of floating point numbers to store 
whole numbers because integer storage requires less memory and integer 
arithmetic operations take less execution time than the equivalent 
floating point operations. Saving space is most important when you 
are using large arrays (see Section 2.6). 

In BASIC you can type integer constants within the range 

-32768% to +32767% 

If you specify a number outside this range, BASIC prints a fatal error 
message telling you that you must replace the number with one within 
the proper limits. 

2.2.3 String Constants 

A string constant (also called a literal) is one or more alphanumeric 
and/or special characters enclosed by double quotation marks (''text'') 
or single quotation marks ('text'). You can include double quotation 
marks within a string constant delimited by single quotation marks and 
vice versa. 

Each character in a string constant can be a letter, a number, a 
space, or any ASCII character except a line terminator (RETURN key). 
The value of the string constant is determined by all the characters 
between the delimiters including spaces. 

2-3 



ELEMENTS OF BASIC 

BASIC prints every character between quotation marks exactly as you 
type it into the source program, including: 

1. Lower-case letters (a-z) 

2. Leading, trailing, and embedded spaces 

3. Tabs 

Note, however, that BASIC does not print the delimiting quotation 
marks when the program is executed. 

l...ISTNH 
10 PRINT "DIGITAL" 
20 END 

PEf.~1DY 

1~-~UNNH 

DIGITAi... 

l~:Er~DY 

In order to make BASIC print quotation marks, you must enclose them 
within another pair of quotation marks, either double or single. 

l...ISTNH 
10 PRINT 'HE SAID, "GOOD MORNING!"' 
20 END 

i:i:EriDY 
1:~l.JNNH 

H E ~:; (.) I D y II G Cl Cl [I MC) 1:~ N I NG ! II 

Here are some examples of string constants: 

"THIS IS A STRING CONSTANT." 
'SO IS THIS.' 
"TONY'S TENNIS RACKET" 

Include both the starting and ending delimiters when typing a string 
constant in a program. These delimiters must be of the same type 
(both double quotation marks or both single quotation marks). 

These examples are incorrect: 

"WRONG TERMINATOR' 
'SAME HERE" 
"NO TERMINATOR 

2.3 VARIABLES 

A variable is an unknown quantity that may change during program 
execution. In BASIC, each variable refers to a distinct location in 
the computer's memory. Each location holds one value at any one time. 
The number it holds is the value of the variable corresponding to the 
location. 

2-4 



ELEMENTS OF BASIC 

Depending on the operations you specify in a program, the value of a 
,variable may change from line to line. BASIC uses the most recently 
assigned value of a variable when performing calculations. This value 
remains the same until a statement is encountered that assigns a new 
value to that variable. 

BASIC accepts three types of variables: 

1. Simple numeric variables (floating point) 

2. Integer variables 

3. String variables 

2.3.1 Numeric Variables 

A numeric variable is a named location in which a single numeric value 
(floating point number) is stored. You name a numeric variable with a 
single letter or a single letter followed by a single digit. For 
example, the following are simple numeric variables: 

Cl L 
M BS 
F6 Z2 

The following are not numeric variables: 

6 A.2 
BC .E 
4D 25 

Before program execution, BASIC sets all numeric variables to 0. If 
you require an initial value other than 0, you can assign it with the 
LET statement (Section 2.5). Otherwise, you can declare the value 
implicitly by just typing the variable in a program. 

NOTE 

Because other BASIC implementations may 
not set all variables to 0 before 
program execution, you should not rely 
on this feature. A good programming 
practice to follow is to set all 
variables to 0 at the beginning of the 
program. You can do this with a series 
of LET statements (see Section 2.5) or 
by using READ and DATA statements (see 
Sect ion 3 .1. 3) • 

You can assign a new value to a variable at any point in your program. 
BASIC always uses the most recent value that you have assigned. 

2.3.2 Integer Variables 

An integer variable (like a numeric variable) is a named location in 
which a single value can be stored. Using an integer variable in yoi 
program indicates that the value forthcoming is a whole number ~. 
fractional part) . 

2-5 



ELEMENTS OF BASIC 

You name an integer variable with a single letter or a single letter 
and a single digit, terminated by a percent sign (%). For example, 
the following are integer variables: 

A% 
Bl% 

C8% 
0% 

The following are not integer variables: 

A B2 
1B% 123% 

If you include an integer variable in a program, then the value you 
supply for it must be an integer constant. If a numeric constant 
(floating point number) is assigned to an integer variable, BASIC 
drops the fractional portion of the value. The number is not rounded 
to the nearest integer; it is truncated. Consider the following 
example: 

B% = 5.7 

BASIC assigns the value 5 to the integer variable, not 68 
Consequently, you should not assign a nonintegral value to an integer 
variable, but if you do you must be aware how the truncation will 
affect your calculations. 

You can use an integer variable anywhere that you can use a numeric 
variable as long as you only plan to store whole number values in the 
range -32768 to 32768. 

If you assign an integer constant to a numeric variable, BASIC prints 
the integer value as an integer but stores the real number internally. 
This method takes more storage space because of the fraction that 
BASIC must maintain. 

NOTE 

You can use numeric and integer 
variables with the same leading 
alphanumerics in the same program. Ol 
and 01% represent two different 
variables. 

2.3.3 String Variables 

A string variable is a named location used to store alphanumeric 
strings. You name a string variable with a letter 7 an optional digit, 
and a dollar sign ($) . The dollar sign ($) must be the last character 
in the name. The following are examples of string variables: 

Cl$ 
L$ 
Z2$ 
M$ 
F6$ 

2-6 



ELEMENTS OF BASIC 

These are not string variables: 

Cl 
L 
2Z$ 
$M 
F6 

The dollar sign ($) not only represents a string variable to BASIC, 
but it also indicates a string variable to anyone who reads the 
program. 

BASIC initializes all string variables to a length of 0 (null string) 
before the start of each program execution. During execution, the 
length of a character string associated with a string variable can 
vary from 0 (signifying a null or empty string) to 2SS characters. 

Note that a simple numeric variable, an integer variable, and a string 
variable that begin with the same alphanumeric characters can 
represent three distinct variable names. The following names are all 
legal within a single BASIC program: 

AS a simple numeric variable 
AS% an integer variable 
A5$ a string variable 

2.3.4 Subscripted Variables 

A subscripted variable is a numeric variable, an integer variable, or 
a string variable with one or two subscripts appended to it. The 
subscripts can be any positive expression (see Section 2.4.1). The 
value of the subscript can be 0 to 32767. 

The subscript, in a subscripted variable, is a pointer to a specific 
location in a list or table in which an unknown value is stored. (See 
Section 2.6 for more information on lists and tables, also known as 
arrays.) You designate the pointer with either one or two subscripts 
enclosed by parentheses. If there are two subscripts, separate them 
with a comma. The value stored can be numeric, integer, or string 
data. 

To name a subscripted variable, start with a simple numeric, integer, 
or string variable name: 

A A% A$ 

To refer to an element in a list (one dimension), follow the variable 
name with one subscript within parentheses. For example: 

A ( 6) A%(6) A$(6) 

A ( 6) refers to the seventh item in this list because the lists start 
with the item with a 0 subscript: 

A ( 0) A ( 1) A ( 2) A ( 3) A ( 4) A ( 5) A ( 6) 
11) 21) 31) 40-" so- 60 7fJ 

To refer to an element in a table (two dimensions) follow the variable 
name with two subscripts. The first subscript designates the row 
number, and the second subscript designates the column number. 

2-7 



ELEMENTS OF BASIC 

Separate the two subscripts with a comma. For example: 

A(7,2) A%(4,6) A$(17,23) 

In the following table, the arrow indicates the element pointed to by 
the subscripted variable A%(4,6): 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 o--~~~A%(4,6) 

Notice that all the elements in this table have a value of O. 

BASIC accepts the same alphanumeric characters for a simple 
variable and a subscripted variable within the same program. 
do not use the same alphanumeric characters for two arrays 
2.6) with a different number of subscripts. 

This is acceptable in the same program: 

D simple numeric variable 

D ( 8) subscripted variable 

This is not acceptable in the same program: 

D ( 8) one subscript 

0(3,6) two subscripts 

2.4 FORMING EXPRESSIONS 

numeric 
However, 
(Section 

An expression is a symbol or a group of symbols that BASIC can 
evaluate. These symbols can be numbers, strings, constants, 
variables, functions (Section 2.4.4), array references (Section 2.6), 
or any combination of these, separated by one of the following: 

1. Arithmetic operators (to form arithmetic expressions) 

2. Relational operators (to form relational expressions) 

3. String operators (to form string expressions) 

2.4.1 Arithmetic Expressions 

BASIC allows you to perform addition, subtraction, multiplication, 
division, and exponentiation with the following operators: 

~ Exponentiation 
* Multiplication 
I Division 
+ Addition, Unary + 
- Subtraction, Unary -

Performing an operation on two arithmetic expressions of the same data 
type yields a result of that same type. For example: 

A%+B% 
G3*M5 

an integer expression 
a floating point expression 

2-8 



ELEMENTS OF BASIC 

If you combine an integer quantity with a floating point quantity, the 
result will be floating point. For example: 

A*B% = a floating point expression 

6.8*5% 34.0 

The value of an integer expression is truncated. For example 3%/5% is 
equal to 0% not .6. 

Table 2-2 provides examples of arithmetic operators and their meaning. 

OPERATOR EXAMPLE 

+ A + B 

- A - B 

* A * B 

I A/B 

~ A"B 

Table 2-2 
Arithmetic Operators 

MEANING 

Add B to A 

Subtract B from 

Multiply A by B 

Divide A by B 

Calculate A to 

A 

the power B 

Note that in general, 
consecutively in the 
minus. For example: 

you cannot place 
same expression. 

two arithmetic operators 
The exception is the unary 

A*-B is valid and A*{-B) is valid. 

BASIC evaluates expressions according to operator precedence. Each 
arithmetic operator joining an expression has a predetermined position 
in the hierarchy of operators. The operatorjs position tells BASIC 
when to evaluate the operator in relation to the other operators in 
the same expression. 

In the case of nested parentheses {one set of parentheses within 
another), BASIC evaluates the innermost expression first, then the one 
immediately outside it, and so on. The evaluation proceeds from the 
inside out until all parenthetical expressions have been evaluated. 
For example: 

B = (25+{16*(9"2))) 

Because {9~2) is the innermost parenthetical expression, 
evaluates it first, then (16*81), and then {25+1296). 

BASIC 

Table 2-3 lists the arithmetic operators in the order BASIC evaluates 
them: 

2-9 



ELEMENTS OF BASIC 

Table 2-3 
Arithmetic Operator 

Precedence 

- (unary minus) 

*,/ 

+,-

HIGHEST 

LOWEST 

Operators shown on the same line have equal precedence. BASIC 
evaluates operators of the same precedence level from left to right. 
Note that BASIC evaluates AABAC as (A-B)AC. 

BASIC evaluates expressions enclosed in parentheses first even when 
the operator enclosed in parentheses is on a lower precedence level 
than the operator outside the parentheses. Consider the following 
example: 

BASIC evaluates this expression in five ordered steps: 

1. (35*8) 280 Parenthetical expression 

2. 15-2 = 225 Exponentiation (left-most expression) 

3. 12n2 144 Exponentiation 

4. 225+144= 369 Addition (left-most expression) 

5. 369-280= 89 Subtraction 

2.4.2 String Expressions 

BASIC provides the plus sign (+) (and the equivalent ampersand (&)) as 
an operator for string expressions. By using this operator you can 
attach one string to the end of another. This operation is called 
concatenation. 

Consider the following example: 

LISTNH 
10 C$="GOOD"+"BYE" 
20 pr;: I NT c~1; 

30 END 

F:E(~DY 

r~UNNH 

GOODBYE 

A$ + B$ or A$ & B$ both mean concatenate string B$ to the end of 
string A$. 

2-10 



ELEMENTS OF BASIC 

2.4.3 Relational Expressions 

A relational operator is a symbol used 
variable or expression to another 
creating a relational expression. As 
relational expressions with the 
conditional transfers. 

to compare one value of a 
within a BASIC program, thus 

explained in Section 4.1.3, use 
IF THEN statement to create 

NOTE 

It is illegal to compare a numeric or 
integer expression to a string 
expression using a relational operator. 
In a relational expression, both 
expressions being operated on must be of 
the same data type, string or numeric. 
But you can compare an integer 
expression to a floating point 
expression and vice versa. 

Table 2-4 provides examples of arithmetic relational operators and 
their meaning. 

Table 2-4 
Arithmetic Relational Operators 

OPERATOR EXAMPLE MEANING 

= A = B A is equal to B 

< A < B A is less than B 

> A > B A is greater than B 

<=, =< A<= B A is less than or equal to B 

>=, => A>= B A is greater than or equal to B 

<>, >< A<>B A is not equal to B 

BASIC accepts =< but converts it to <=; => to >= and >< to <>. 

When you use a relational operator to compare the value of one or more 
alphanumeric characters, you create a relational string expression. 
BASIC uses the ASCII character collating sequence to determine which 
character is greater or lesser in value than the other. (See Appendix 
C for the ASCII Table.) The comparison is made, character by 
character, left to right, according to the ASCII values until BASIC 
finds a difference in value. 

When applied to strings, relational operators compare characters for 
alphabetic sequence. Consider the following program: 

10 A$~"ABC" 
20 B$="DEF" 
30 IF AS<BS GO TO 50 
40 PRINT B$ \ GO TO 60 
50 PRINT A$ 
60 END 

2-11 



ELEMENTS OF BASIC 

When BASIC executes line 30, it compares strings A$ and B$ to 
determine if A$ occurs first in alphabetic sequence. In this case, it 
does, and the program snifts control to line 50 (see Section 4.1 for 
shifting control of a program). If string B$ occurred before string 
A$, program execution would continue to the next statement following 
the comparison (i.e., line 40) . 

BASIC compares strings just as you compare words in alphabetical 
order. BASIC compares the first two characters, A and D. The letter 
A precedes the letter D in the ASCII table~ therefore, string A$ 
precedes string B$ in alphabetic sequence. If the first two 
characters are equal, BASIC proceeds to the second two characters, 
until a difference is found. For example: 

ABC 
AEF 

BASIC compares A to A and finds them equal in value. Then BASIC 
compares B and E and finds B less than E. The comparison ends here, 
and BASIC ccmcludes that ABC occurs before AEF in alphabetic sequence. 

Table 2-5 provides examples of string relational operators and their 
meaning. 

Table 2-5 
String Relational Operators 

OPERATOR EXAMPLE MEANING 

= A$ = B$ Strings A$ and B$ are equal 

< A$ < B$ String A$ occurs before string B$ in 
alphabetic sequence 

> A$ > B$ String A$ occurs after string B$ in 
alphabetic sequence 

<=,=< A$<=B$ String A$ is equal to or precedes string 
8$ in alphabetic sequence 

>=,=> A$>=B$ String A$ is equal to or follows string 
B$ in alphabetic sequence 

<>,>< A$<>B$ String A$ is not equal to string B$ 

When comparing strings of different lengths, BASIC treats the shorter 
string as if it were padded with trailing blanks to the length of the 
longer string. This means that "DIGITAL'1 is equal to 11 DIGITAL " 

2.4.4 Functions 

Functions perform a series of mathematical or string operations. You 
provide the arguments, the input to the function, and the function 
computes the result. You can use functions instead of doing tedious 
calculations yourself. 

2-12 



ELEMENTS OF BASIC 

To use a function, simply include the function name and argument list 
in any expression. The function name is usually three letters, for 
example, SQR, SIN, and POS. The argument list follows the function 
name and is enclosed in parentheses. The number and type of arguments 
are listed in the description. You use a function in an expression in 
the same way that you include a constant or a variable in an 
expression. 

The function calculates 
continues to evaluate 
result in place of the 
which demonstrate the 
the argument. 

and returns the result to BASIC. BASIC 
the expression as if you had specified the 

function. Consider the following examples 
SQR function which returns the square root of 

Program with SQR Function Program with .Numeric Constant 

l...IBTNH 
10 A=10%SQRC49)f5 
20 PHINT A 

1:;~EADY 

F~UNNH 

l...IflTNH 
:I. 0 A:::: :I. 0 % 7 + !:.:; 
20 PJ=~JNT A 

F~EADY 

F~UNNH 

The square root of 49 is 7. In the example on the left, BASIC treats 
the 7 that the function returns in the same way that it treats the 7 
specified by the user in the program on the right. 

BASIC provides mathematical and string functions and, in addition, 
lets you define your own functions. See Chapter 5 for a complete 
description of all BASIC functions. 

2.5 ASSIGNING VALUES TO VARIABLES (LET STATEMENT) 

The LET statement enables you to assign a value to a variable. The 
LET statement has the following format: 

[LET] variable = expression 

where: 

variable is assigned a new value. 

expression specifies the new value. 

The variable and expression can either both be numeric or both be 
string data types. (The keyword LET is optional.) 

The LET statement replaces the variable on the left of the equal sign 
(=) with the value on the right. Hence, the equal sign (=) signifies 
the assignment of a value and not algebraic equality. Here is an 
example: 

:I. 0 l ... ET f.1::::4B2 ,,. ~:5 

This statement gives the value 482.5 to the variable A. You can also 
write the statement this way: 

2-13 



ELEMENTS OF BASIC 

BASIC also evaluates any formula you assign: 

:I. 0 A:::: < X + Y ) ···· B 4 

BASIC calculates the expression (X+Y)-84 and then assigns the 
resulting value to the variable A. 

In addition, BASIC converts the mode of the value to whatever the mode 
of the variable is, floating point or integer. For example, 

is the same as 

:I. 0 A i:: :::: <,;> 

Refer to Section 2.3 for a desc£iption of variables. 

You can also assign a string expression to a variable as well as a 
numeric expression. However, you cannot mix strings and numeric 
expressions in the same LET statement. If you do, BASIC prints the 
?NUMBERS AND STRINGS MIXED (?NSM) error message. The following is an 
example of a string assignment: 

l. .. ISTNH 
:i. 0 A~1;.:::: II HELLO II 

20 PF~ I NT A~I; 

::so END 

RF1~DY 

F:UNNH 

l·IEl...l...Cl 

Refer to Sections 2.2.3 and 2.3.3 for information on strings. 

Note that you can place a LET statement anywhere in a multi-statement 
line: 

10 DIM A<7> \ I=42 ' PRINT I 

2.6 ARRAYS 

An array is like a group of variables. Each element in the array, 
like a variable, is an unknown quantity. BASIC stores the current 
value of each element of the array in a location in memory in the same 
way that it stores a value for a variable. An element of an array is 
different from a variable in that all the elements of an array share 
the same name but each variable has its own name. You specify which 
element you want in an array by specifying its subscript (see Section 
2.3.4). 

Arrays break down into two types: lists and matrices. A list is a 
horizontal or vertical group of items Cl-dimensional); a matrix is a 
table of items consisting of rows and columns (2-dimensional). Both 
types can store either numeric or string data. 

You should reserve space for any array you use with a DIM statement. 
But if you do not reserve space, BASIC reserves space for arrays with 
a maximum subscript(s) of 10 (i.e., A(lO) and A(l0,10). 

2-14 



ELEMENTS OF BASIC 

BASIC starts counting elements from 0, not l; therefore, you have an 
additional element for a list and an additional row and column for a 
table. 

For example, dimensioning the array A(6) gives you seven storage areas 
in the list, not six: 

ROW 0 A(O) 
1 A (1) 
2 A( 2) 
3 A( 3) 
4 A ( 4) 
5 A ( 5) 
6 A ( 6) 

Array B(3,3) contains storage space for 16 elements. 
layout of array B(3,3): 

COLUMN U 

ROW 0 

1 

2 

3 

B(0,0) 

B(l,0) 

B(2,0) 

B(3,0) 

1 2 

B(O,l) B(0,2) 

B(l,l) B(l,2) 

B(2,l) B(2,2) 

B(3,l) B(3,2) 

Figure 2-1 ARRAY B 

3 

B(0,3) 

B(l,3) 

B(2,3) 

B(3,3) 

This is the 

Note that if you reference an array with the wrong number of 
subscripts, BASIC prints the ?INCONSISTENT NUMBER OF SUBSCRIPTS (?INS) 
message. 

You should use an array instead of many variables when you are going 
to be doing the same operations to each element. This allows you to 
use loops (see Section 4.2) to perform the operation. Consider these 
two examples: 

Program with Array 

::.:.; J.IJM t1<:l.C1 ) 

:I. 0 F U F: I :::: 0 T 0 :i. 0 
:::.) 0 !... ET (.:1 ( J ) :::: I 
.. '.·'...J NEXT I 

Program with Separate Variables 

:=s 1:) ====O 
:1.0 B====:I. 
20 C::::2 
:3 () )):::::·~ 

40 [::::4 

~::;o F:::::'.'.i 
/;0 (3::::6 

'?() H====? 
so I :~::fl 

90 ,J::::9 
:I. () 0 J :::: :I. 0 

As you can see, the program with the array is much shorter. (See 
Section 2.6.1 for a description of the DIM statement.) With larger 
arrays the difference would-be even greater. Arrays also require less 
memory to store than an equivalent number of variables. 

2-15 



ELEMENTS OF BASIC 

Remember that it is possible to use the same alphanumerics to name 
both a simple variable and an array within the same program. But 
using the same name for two arrays with a different number of 
subscripts is illegal within the same program (i.e., A(5) and A(3,4) 
are illegal in the same program) . 

2.6.1 Dimensioning Arrays (DIM Statement) 

The DIM statement allows you to set up the dimensions of an array in 
your program. By using the DIM statement, you reserve storage space 
to be filled with values of either numeric or string data. 

The DIM statement has the following format: 

line number DIM list 

where: 

list is a list of array specifications separated by 
commas. Each array specification is in the form: 

variable(integerl [,integer2]) 

where each integer must be a whole number constant 
(no decimal point) but does not have to have a 
percent sign. 

In the DIM list, you are specifying: 

1. The name of the array 

2. The number of subscripts (one or two) 

3. The maximum value of each subscript 

Here is an example of a DIM statement: 

10 DIM A(25) ,8(3,5) ,C%(7,16) ,D$(15) 

No array can have more than two subscripts. If you do not specify a 
subscript in the second position, only one subscript is permitted for 
that variable name in future references. 

Arrays are stored as if the right-most subscript varied the fastest. 
For example: 

provides storage space like this: 

0,0 0,1 0,2 0,3 0,4 0,5 

When using the DIM statement to set 
subscripts, you are not obligated 
allocate. 

1,0 1,1 2,4 2,5 

the maximum values for the 
to fill every storage space you 

Because the DIM statement is not executed, you may place it anywhere 
in the program. It can also be one of several statements in a 
multi-statement line. 

2-16 



ELEMENTS OF BASIC 

The following example sets up storage for a matrix with 20 elements: 

:1.0 DIM 1~<:3v4) 

The storage addresses look like this: 

0,0 0,1 0,2 0,3 0,4 

1,0 1,1 1,2 1,3 1,4 

2,0 2,1 2,2 2,3 2,4 

3,0 3,1 3,2 3,3 3,4 

Notice that reading across left to right, the second subscript 
increases first. 

As stated previously, the first element of every array begins with a 
subscript of O. If you dimension a matrix C(6,10), you set up storage 
for 7 rows and 11 columns. The 0 element is illustrated in the 
following program: 

l...I!:>TNH 
10 REM MATRIX CHECK PROGRAM 
20 DIM C<6v:l.0) 
;3 0 F Cl F( I :::: 0 T Cl 6 
4 0 1... ET C < I v 0 ) :::: I 
~'50 FOF( J::::() TO :I. 0 
6 0 1... ET C < 0 v • .J ) :::: ,J 
"i' 0 PF~ I NT C ( I v ,.J ) v 
80 NEXT J \ PRINT \ NEXT I 
90 END 

1:~E1t.1DY 

F~UNNH 

() :I. 
:I. () 

2 0 
3 0 
4 0 
~:5 () 

6 () 

r(E!''.:\DY 

'') 
.•: .. :·:) 

0 () 

0 0 
() 0 
() 0 
() () 

() () 

4 ~::; f., "i' B 
() () () 0 () 

() () () () () 

() 0 () () () 

() () 0 0 () 

() () 0 () () 

0 () 0 () 0 

9 :1.0 
() () 

0 () 

() () 

() () 

() 0 
() () 

Notice that a variable has a value of 
value. 

2-17 

0 until you assign it another 



ELEMENTS OF BASIC 

You can also dimension string arrays with the DIM statement, for 
example: 

1...ISTNH 
1.0 DIM A$(~)) 

20 FDi:~ I::::() TO ~::; 

:30 INPUT A~I~ <I) 
40 NEXT I 
50 PRINT A$(0)~A$(5) 

r~EADY 

F\UNNH 

T NAME 
'!, ACCOUNT 
'i' AGE 
·11 BAl ... ANCE 
!' STATUS 
'? LOCATION 
NAME l ... OCATIDN 

2-18 



CHAPTER 3 

INPUT AND OUTPUT 

3.1 SUPPLYING DATA 

BASIC has three methods of supplying data to a program: 

1. The INPUT statement - requires that you interact with the 
computer while the program is running. 

2. The READ, DATA, and RESTORE statements - require that you 
build a data block within the program. 

3. The file statements - require that you manipulate files 
outside the main program. See Chapter 6 for information on 
file input and output. 

3.1.1 INPUT Statement 

The INPUT statement allows you to enter and process data while the 
program is running. 

The INPUT statement has the following format: 

INPUT variablel [,variable2, variable3, .. .J) 

where: 

variable(s) are assigned the value(s) that you enter. 

The variables can be numeric, integer, string, or subscripted 
variables or any combination of these separated by commas. Consider 
the INPUT statement as another means of assigning values to variables. 

When you run your program, BASIC stops at the line designated by the 
INPUT statement and prints a question mark (?). BASIC then waits for 
you to type one value for each variable requested in the INPUT 
statement. Separate the values with commas. Press the RETURN key 
after you finish typing all the values. 

3-1 



INPUT AND OUTPUT 

The following example requires that you type three values after the 
question mark (?). 

l ... I~:>TNH 
:1.0 INPUT AYBYC 
20 END 

F~EADY 

i:~UNNH 

Your Response 

The INPUT statement tells BASIC to accept the forthcoming data from 
the user terminal. B~SIC accepts the values left to right. When you 
type all the necessary data, type a line terminator ~ • The 
program continues using the values you supply. Therefore, in the 
previous example 

A=5 
B=6 
C=7 

You must supply the same number of values as there are variables in 
the INPUT request. If you do not type enough data, BASIC lets you 
know by printing another question mark (?) when you press the RETURN 
key. 

l...JSTNH 
:1.0 INPUT AYB 
20 END 

F~E(.)1DY 

1:~UNNH 

On the other hand, if you supply more values than there are variables 
to be defined, BASIC ignores the excess and prints a warning message 
to that effect. 

I... I~:;TNH 
:1.0 INPUT r:":)YBYC 
:l.~'.'.i PF~INT 1~YBYC 
::.~o Ei'.!D 

f~Er:":)DY 

E:UNNH 

? !.::iy6:1/'vB 
?EXCESS INPUT IGNORED AT l...INE 10 

? 

The extra value entered (8) is ignored. 

3-2 



INPUT AND OUTPUT 

The values you supply must be the same data type as the variables in 
the INPUT statement, (i.e., strings for string variables, integers for 
integer variables). You can type strings with or without quotation 
marks. For example, 

1...I~:;TNH 

:I. 0 I NP UT A ~· B 11; Y C 
20 PF~ I NT A+C il B:I; 
30 INPUT Ail> :i Bil; 
40 PF~ I NT A~I> 
~:50 Pi:~JNT f~il> 

REi\:1DY 
1:~UNNH 

? ~::.i :i DOGS :i "'l 
:I. 2 DOG~:; 

T If {1F~E II !I FED 
t11:;:i;:: 

FED 

If you include quotation marks delimiting a string, be sure to type 
both beginning and ending delimiters. If you forget the end quotation 
mark, BASIC reads the rest of the line as the entire string. You will 
also receive an ?INPUT STRING ERROR (?!SE) message. For example: 

I.. J~:;TNH 
JO INPUT t~H=·~H 
;;~o END 

F;:E1{~D Y 
r;~UNNH 

? II t1DC !' ~::i 
?INPUT STRING ERROR AT LINE :1.0 

BASIC reads ABC,5 as the string for variable A$, and then requests 
data for variable B. 

If you type a string without quotation marks, BASIC ignores any 
leading or trailing spaces. 

You must specify a whole number (with or without a percent sign) for 
an integer variable. If you specify a number with a decimal point or 
a fraction for an integer variable, BASIC prints the ?BAD DATA RETYPE 
(?BRT) error message and requests the input again. 

You may wonder how you can tell what kind of data to respond with when 
all you see is a question mark (?). By adding a PRINT statement (see 
Section 3.2) you clarify the program's request for data. This is 
useful because 

1. You may not remember the number of variables or their type 
(numeric or string). 

2. Someone else may be running your program and does not know 
what the program is asking. 

3-3 



INPUT AND OUTPUT 

Preceding the INPUT statement with a PRINT statement is good 
programming practice. Following the INPUT statement with a PRINT 
statement allows you to see the results of your computations. 

LISTNH 
20 PRINT "PLEASE TYPE 3 INTEGERS"~ 
30 INPUT B%vC%vD% 
35 A%=B%+C%+D% 
40 PRINT A% 
50 END 

READY 
RUN NH 

PLEASE TYPE 3 INTEGERS? 25v50v75 
150 

READY 

NOTE 

The INPUT # statement (see Section 
6.3.1) is used to input values from a 
file. Logical unit 0 is the user 
terminal. 

10 INPUT tOv XvYvZ 

is equivalent to 

10 INPUT XvYvZ 

except that a question mark (?) does not 
print on the terminal with the first 
form. 

3.1.2 LINPUT Statement 

The LINPUT statement has essentially the same function as the INPUT 
statement. However, LINPUT is used exclusively for string data. Use 
the following format: 

LINPUT string variable! [,string variable2, ••. ] 

where: 

string variable(s) assigned the value(s) of all the characters 
you type up to the line terminator(s). 

All variables must be string variables in a LINPUT statement. 

3-4 



INPUT AND OUTPUT 

The LINPUT statement accepts and stores all characters including 
quotation marks and commas except the line terminator. The terminator 
is not stored with the string. 

1...ISTNH 
:I. 0 I ... INPUT n:1; 
2 () P 1:~ I NT B ~Ii 
::so END 

F~Er:":\DY 

F~UNNH 

? "NOWv LOOK HERE! "v SAID JOHN+ 
"NOW, LOOK HERE!"v SAID JOHN~ 

F:E~1DY 

If you try to type the string shown above, in response to an INPUT 
statement, you will receive a ?EXCESS INPUT IGNORED (?EII) error 
message from BASIC. The INPUT would take the comma after the word 
"HERE!", as the delimiter of the string. 

3.1.3 READ, DATA, and RESTORE Statements 

Another way you can supply data to a program is to build a data block 
for BASIC to read during execution. This means that you do not 
interact with BASIC while the program is running. Instead, you supply 
a pool of data to the program in advance. Two statement keywords are 
involved in this process: READ and DATA. 

The READ statement has the following format: 

READ variablel[,variable2,variable3, ... ] 

where: 

variable(s) are assigned the value(s) listed in the DATA 
statements. 

All variables should be separated by commas. 

10 READ Av B%v C$v DC5)v E 

The READ statement directs BASIC to read from a list of values built 
into a data block by a DATA statement. 

The DATA statement has the following format: 

line number DATA constant! [,constant2,constant3, ... ] 

where: 

constant(s) can be numeric, integer, or string (quoted or 
unquoted) constants. 

The order of the data types of the constants must be the same as the 
data types of the variables when they are read. The format of the 
constant is the same format you use for the INPUT statement. 

3-5 



INPUT AND OUTPUT 

The program will run faster with READ and DATA statements as opposed 
to the INPUT statement simply because you do not have to wait the 
extra time it takes for BASIC to stop and request data. The data is 
already within the program. 

A READ statement causes the variables listed in it to be given the 
next available constants, in sequential order, from the collection of 
data statements. BASIC has a data pointer to keep track of the data 
being read by the READ statement. Each time the READ statement 
requests data, BASIC retrieves the next available constant indicated 
by the data pointer. 

A READ statement is not legal without at least one DATA statement. 
However, you can have more than one DATA statement as long as there is 
one READ statement in the program. 

10 READ AvB,CvDvE,F 
20 F'RINT C 
30 Di:~T(.1 :I.'?, 2~::;, ;30 
40:? DAT(.i 4;·5, "7f.i, 29 

A READ statement can be placed anywhere in a multi-statement line. 

A DATA statement, however, must be the last or only statement on a 
line. 

If you build your READ statement with more variables than you include 
in the data block, BASIC prints the ?OUT OF DATA (?OOD) error message. 

The following is ~n example of a READ and DATA sequence. 

10 READ AvB,C1vD2YE4vY$vZ$vZ1$ 
20 DATA 2.3,-4.2f.i54v3v-6v:l.2v"CAT"vDOG,"MOUSE" 
30 F'RINT AvB-c1,D2vE4vY$vZ$vZ1$ 

BASIC assigns values as follows: 

A=2.3 
B=-4.2654 
Cl=3 
D2=-6 
E4=12 
Y$=CAT 
Z$=DOG 
Zl$=MOUSE 

When you run the program, you get the following results: 

F~l..INNH 

2~3 

Cf1T 
····4. ~:.~6!'54 
DOG 

;·5 ····6 
MO UDE 

:1.2 

READ and DATA are useful to initialize the values of variables and 
arrays at the beginning of your program. To do this place your READ 
statements at the beginning of the program. You can put the DATA 
statements anywhere in the program but it is useful to put them all at 
the end of the program just before the END statement. 

3-6 



INPUT AND OUTPUT 

You can read a numeric constant into a string variable. For example: 

l...IBTNH 
:I. 0 1:~EAD A~li 

20 PHINT f.'.'1~1> 
;30 DAT1~ flt 2::5 
40 END 

1:~Ef~1DY 

1:~l..INNH 

F(EADY 

But if you try reading a string constant into a numeric variable or a 
floating point number into an integer variable, BASIC prints the ?BAD 
DATA READ (?BDR) error message. 

In some programs you may need to read the same data more than once. 
BASIC provides the RESTORE statement for this purpose. 

The format of the RESTORE statement is: 

RESTORE 

The RESTORE statement resets the data pointer to the beginning of the 
first DATA statement in the program. The values are read as though 
for the first time; therefore, the same variable names may be used 
the second time through the data. Consider this example: 

:I. 0 F~ E ti D B :.• C :i D 
20 F:E~:>TCJF(E 

30 F~Ef.1D i:;:,r,n 
40 DATA 6,3,4,7,9,2 
::so END 

The READ statement in line 10 reads the first three values in the DATA 
statement, line 40. 

B=6 
C=3 
D=4 

Then the RESTORE statement on line 20 resets the pointer to the 
beginning of line 40, so that the second READ on line 30 reads the 
first three values. BASIC reads these values as though for the first 
time. 

E=6 
F=3 
G=4 

If RESTORE was not there, READ on line 30 would read the last three 
values. 

E=7 
F=9 
G=2 

3-7 



INPUT AND OUTPUT 

NOTE 

The RESTORE # statement (see Section 
6.3.4) is used to restore files to their 
beginning. 

3.2 CHECKING OUTPUT (PRINT STATEMENT) 

Another useful statement to include in your program is the PRINT 
statement. The PRINT statement has the following format: 

PRINT ~is~ 

where: 

list contains the items to be printed. They can be any 
string or numeric expressions or TAB functions (see 
Section 3.2.3) and can be separated by commas or 
semicolons (see Section 3.2.1). 

The PRINT statement prints a list of elements on the terminal when you 
execute your program. In this way, you can see the results of your 
computations or add comments to clarify your requests for input. (The 
PRINT statement can be placed anywhere in a multi-statement line.) 

Using the PRINT statement without arguments causes a blank line to 
appear in the output. 

1...ISTNH 
to r:·1:;: :i: NT 11 TH :i:~:; EXAMPLE LEA~)E~:; A BLAN!\ LI NE 11 

20 Pl:~ I NT 
30 PRINT 11 BETWEEN TWO l...INES 11 

40 END 

1:;:Er-)DY 
1:~UNNH 

THIS EXAMPLE LEAVES A BLANK LINE 

BETlJ,fEEN T~JD I... INES 

You can print blank lines to improve the readability of your output. 

When an element in the list is an expression rather than a simple 
variable or constant, BASIC evaluates the expression before printing 
the value. Therefore, the PRINT statement performs two functions in 
one, calculating expressions and printing the results. For example: 

l ... ISTNH 
:I. 0 ft:·:: 4 !:.:.i \ B :::: ::.:;!:.) 
::.~o p1:;: I NT 1~+ B 
30 END 

F:Fi!:iDY 
l:(lJNNH 

:!. 00 

3-8 



INPUT AND OUTPUT 

After running this program, BASIC prints 100 on your terminal, not 
45+55. If you put quotes around the variables this is what happens: 

LISTNH 
10 A=45 \ B=55 
20 PRINT "A+B" 
30 END 

READY 
RUNNH 

A+B 

READY 

If you plan to have someone else run your program, 
your requests for input with a PRINT statement. 
3.1.1 for more information on the INPUT statement.) 
strings (Section 2.2.3) as in the following example: 

10 PRINT "WHAT ARE YOUR VALUES OF XvY, AND Z"; 
20 INPUT x,y,z 
30 LET R=SQR<x~2+y~2+z~2) 
40 PRINT "THE RADIUS VECTOR EQUALS"; 
45 PRINT R 
50 END 

When you run this program, BASIC prints: 

RUNNH 

WHAT ARE YOUR VALUES OF x,v,z? 25v40v50 
THE RADIUS VECTOR EQUALS 68.7386 

READY 

you can clarify 
(Refer to Section 
Include literal 

Notice that you enclose the strings in quotation marks so that BASIC 
prints them exactly as you type them in. In line 40 of the previous 
example, a semicolon ends the list of expressions. Placing a 
semicolon or a comma after the string makes BASIC print the 
expressions in the next PRINT statement (line 45) on the same line as 
the string. If the separator is not there, BASIC performs a carriage 
return/line feed and begins printing in the first column of the next 
line. 

THE RADIUS VECTOR EQUALS 
68.7386 

See Section 3.2.1 for more information on commas and semicolons. 

3.2.1 Printing zones - The Comma and the Semicolon 

A terminal line consists of an integral number of zones, each zone 
containing 14 spaces. When you use the PRINT statement, you can 
control the placement of your output within these zones by using the 
legal separators, comma (,) and semicolon (;). (See Section 7.1 for a 
description of the PRINT USING statement for more flexibility in 
formatting output.) 

3-9 



INPUT AND OUTPUT 

The comma signals BASIC to move the printing element to the beginning 
of the next print zone and begin printing there. If the last print 
zone on the line is filled, BASIC prints the output beginning at the 
first print zone on the next line. For example: 

1 ... IE>TNH 
5 INPUT AvBvCvDvEvF 
10 PRINT AvBvCvDvEvF 
20 END 

i:;:E1~DY 

PUN NH 

? 5v10v15v20v25v30 
5 10 
;·3 () 

F~E1~DY 

If .you place more than one comma between list elements, you will skip 
one print zone for each extra comma. The following example prints the 
value of A in the first zone and the value of B in the third zone. 

LI3TNH 
:1. o ()=::=!=s \ r.:::::: :1. o 
20 PF.:INT f.~v vB 
JO END 

r::Et1DY 
r::l.JNNH 

:I.() 

To print an output line in a more compact format, use the semicolon as 
the separator between variables. A semicolon in a PRINT statement 
causes no motion of the printing element. 

l...IflTNH 
:I. 0 l1 :::: !:=; \ B :::::I. 0 
20 PF: INT I~ v H 
30 END 

1:::Et1DY 
F<UNNH 

Placing a comma or semicolon after the last item in a PRINT statement 
causes the terminal printer to remain at the same line in anticipation 
of another PRINT statement. 

3-10 



INPUT AND OUTPUT 

In the following example, BASIC prints the current values of X,Y and z 
on the same terminal line because a comma appears as the last item in 
line 20: 

L..JSTNH 
:1.0 INPUT XvYv:Z 
20 Pl:~INT Xv Y v 
;·~o Pl:~ I NT 2'. 
40 END 

F~EADY 

l~UNNH 

? ~)v:l.Ov:l.!'.5 
:::; :I. 0 

The following example illustrates the three options you have for 
placing either a comma, a semicolon, or nothing after the last item of 
the PRINT statement: 

1...JSTNH 
:I. 0 FOi:~ I:::: :I. TD :I. 0 
~::~O PF~ I NT I 
30 NEXT I \ PRINT 
40 FOF~ J:::: :I. TD :I. 0 
!'.'.iO Pl:~: I NT ,J :.i 

60 NEXT J \ PRINT 
'7 0 F Cl F~ I\ :::: :I. T Cl :I. 0 
DO PF~INT I\? 
90 NEXT I\ 
:I. 00 END 

F~Et'.1DY 

F~UNNH 

'') 
... · .. 

6 
? 
B 
9 
:1.0 

:I. 
(!) 

:I. ::.~ ;·~ 

'') ... · .. 
? 

4 !:5 6 

;3 
B 

? B 9 :l.O 

3-11 

4 
9 :L 0 



INPUT AND OUTPUT 

Commas and semicolons also allow you to control the placement of 
string output. For example: 

l ... ISTNH 
10 PRINT "FIRST ZONE",Y"THIRD ZONE"YY"FIFTH ZONE" 
20 END 

HEADY 
RUNNH 

FI F~!:>T ZONE 

Because of the extra comma between strings, BASIC 
printing zone before stopping to print each 
semicolon between string constants is optional.) 

3.2.2 Output Format for Numbers and Strings 

FIFTH ZONE 

skips every other 
string. (Placing a 

BASIC prints numbers and strings according to a specific format. 
Strings are printed exactly as you type them with no leading or 
trailing spaces. (Quotation marks are not printed unless delimited by 
another pair.) 

l ... ISTNH 
:1. o i::-1:~ I NT •· Pi:;: :i: N r I NG " c~ u o TAT :i: o N 11 MA F~ '' s ' 
20 END 

F;:EADY 
i:~UNNH 

PRINTING "QUOTATION" MARKS 

BASIC precedes negative numbers with a minus sign and positive numbers 
with a space. A space is always placed after the right-most digit of 
a number. BASIC does not print a percent sign after printing an 
integer. 

l...InTNH 
JO F'F::INT .... :1. 

~:.~ 0 P F: 1 N T ;.:.~ ~:=; ~; :=:; () '.Y.: 

:Jo END 

1:::1::.r.)DY 
i:::l.JNNH 
... :I. 

:?!:.:; ::.'.i() 

BASIC does not add any spaces to strings. 

The number of spaces occupied by the decimal representation of a 
number varies according to the magnitude and type of the number~ 
BASIC prints the results of computations as decimal numbers either 
integer or numeric if they are within the range 

.Ol<n<999999 

where n is the number BASIC prints. Otherwise, BASIC prints them in E 
notation. 

3-12 



INPUT AND OUTPUT 

BASIC prints decimal digits as illustrated below: 

Value You Type 

.01 

.0099 
999999 
1000000 

Value BASIC Prints 

.01 
9.90000E-03 
999999 
1. OOOOOE06 

If more than six digits are generated during a computation, BASIC 
prints the result of that computation in E notation. 

The following example shows how BASIC prints various numbers: 

l...If.iTNH 
:I. 0 FDt=~ I:::: :I. TD 20 
20 PRINT 2-c-:r.>,:i:v2-r 
:·50 NEXT I 
40 END 

F~E(.:1DY 

F~UNNH 

y 062!'.) 
• 0 :·5 :I. 2 :=s 

• 0 :I. :=.=; 6 2 :=.:; 

? • B :I. 2!'.'.iOE·· .. O::~ 
;3. s>of.:.2:::;E .... 0;3 
:I. • 9 !:=; ;;~ :I. 3 E .... 0 3 
9. "/6!:56:·5i;:: .... 04 
4. BB2D:I. i;:: .... 04 
2. 44 :I. 4 :I. i;:: .... 04 
:I.. 220'70E .... 04 
6. :1. 0;·5!:s2E·· .. o::s 
3 y 0!:5:1. ?6E .... 0!:5 
:I.. !'.)2!'."iBBE .... o:::; 
? • 629::~9E· .. ·06 
:3. B :I. 4 "/OE· .. ·Of.> 
:I. • 90'7::~!'5E .... 06 
9. ~.'i:'56 '7 4E .... 0·7 

F~EADY 

:I. 

6 
7 
H 
9 
:I. 0 
:1.:1. 
:1.2 
:1.:3 
:1.4 
:1.::.:; 
:1.6 
:I.'? 
:1.n 
:1.9 
20 

'') ... · .. 
4 
B 
:1.6 
:·52 
64 
:l.2B 
2!'.'.if.> 
::.:;:1.2 
:1.024 
2040 
4096 
B:l.<J2 
:l.63B4 
:·527e.)n 
(~)!:.:;::.=;:·56 

:1.3:1.072 
~:.~62 :I. 44 
~524200 
:I. • 04B!'.)DE+06 

3.2.3 Printing with the TAB Function 

Another method of positioning the terminal printer is to use the TAB 
function in conjunction with the PRINT statement. 

This function has the following format: 

PRINT TAB(expression); 

where expression is the number of the desired printing position. 
BASIC evaluates the expression and truncates the result to an integer. 

The TAB function does not cause anything to be printed; it positions 
the terminal print head. Then the PRINT statement takes over and 
begins printing in the column denoted by the argument with the TAB. 

3-13 



INPUT AND OUTPUT 

With the TAB function, you move the terminal printer to the right to 
any desired column. The first column at the left margin is column O. 
Therefore, n can be 0 to whatever the right margin is on your 
terminal, or anywhere in between. 

The TAB function can only be used to position the terminal printer 
from left to right, not right to left. If you specify a column that 
is to the left of the current column position BASIC ignores the TAB. 

You can use more than one TAB function in the same PRINT statement by 
placing them between elements. 

The following is an example of several TAB functions in conjunction 
with one PRINT statement: 

LiflTNH 
10 PRINT "NAME";TABC15)0"ADDRESS"OTABC30);"PHONE NO~" 
20 END 

READY 
1:~UNNH 

Nr:":\i'1E 

F(EADY 

t 

f.)DDl:(E!:;s PHONE 

t t 
Column 0 Column 15 Column 

Without tabs 15 and 30, BASIC would print 

RUNNH 

NAMEADDRESSPHONE NO. 

READY 

Here is an example of printing numbers: 

USTNH 
10 A~100 \ B~29 \ C~35 

20 PRINT A;TAB<10>0BOTABC4Q);C 
30 END 

1:::Et1DY 
RUN NH 

PEtiDY 
t t 
Column 0 Column 10 

ND~ 

30 

t 
Column 40 

Notice that semicolons act as separators in the preceding example. 

3-14 



Compare the 
separators; 

l ... :t:BTNH 
:I. 0 A:::: :I. 0 0 
20 B:::::;!,()() 

:30 C::::;300 

INPUT AND OUTPUT 

following examples. The first 
the second one uses semicolons. 

40 PRINT AvTAB(7)vB,TAB<14),C 

t:~EADY 
1=~UNNH 

:I.()() 200 

one uses commas as 

The extra commas move the printer to the next zone (see Section 
3.2.1), then the printer is past the position indicated by TAB and 
BASIC ignores the TAa. 

Change line 40 to: 

40 PRINT A;TABC7)~B~TABC14);C 
F~UNNH 

:I.()() 200 

3-15 



CHAPTER 4 

CONTROL STATEMENTS 

4.1 SHIFTING CONTROL OF THE PROGRAM 

In a BASIC program, control ordinarily passes from one statement to 
the next statement in ascending order according to line numbers. 

10 A=5*942 \ B=116/7 \ C=A*B 
20 PRINT "C = ";C 
30 PRINT 
40 END 

However, you may alter the normal sequence of statement execution to: 

1. Repeat a set of statements 

2. Stop and check the values 

3. Terminate the program 

You can divert execution from the main stream to another portion of a 
program; execution will continue from that point. This transferring 
of control is known as branching. 

The following sections describe the statements that allow you to shift 
control and change the sequence of execution. 

4.1.1 Unconditional Transfer (GO TO Statement) 

The GO TO statement causes the statement which it identifies to be 
executed next, regardless of that statement's position within the 
program. 

The format of the GO TO statement is: 

GO TO line number 

where: 

line number specifies the next program line to be executed. 

The specified line number can be smaller or larger than the line 
number of the GO TO statement. Thus, you have the option to skip any 
number of lines in either direction. 

BASIC executes the statement at the line number specified by GO TO and 
continues the program from that point. Consider the example: 

30 GO TO 110 

4-1 



CONTROL STATEMENTS 

When BASIC executes line 30, it branches control to line 110. BASIC 
interprets the statement exactly as it is written. Go to line 110. 
It is a simple imperative instruction. There are no rules or 
conditions governing the transfer. 

Consider the following sample program with a GO TO statement: 

LISTNH 
10 A=2 
20 GO TO 40 
30 A=SQRCAt14) 
40 PRINT AvA*A 
50 END 

READY 
RUNNH 

READY 

4 

In this program, control passes in the following sequence: 

1. BASIC starts at line 10 and assigns the value 2 to the 
variable A. 

2. Line 20 sends BASIC to line 40. 

3. BASIC executes the PRINT statement. 

4. BASIC ends the program at line 50. 

Notice that line 30 is never executed. 

Make sure that the GO TO statement is either the only statement on the 
line or the last statement in a multi-statement line. If you place a 
GO TO in the middle of a multi-statement line, BASIC does not execute 
the rest of the statements on the line. 

25 A=ATNCB2> \ GO TO 50 \ PRINT A 

BASIC never executes the PRINT statement on line 25 because the GO TO 
statement shifts control to line 50. 

If you specify a non-executable statement in a GO TO statement such as 
a REM statement, BASIC transfers control to the next executable 
statement after the one specified. For example: 

LISTNH 
10 A=2 
20 GO TO 40 
30 A=SQRCAt14) 
40 REM NOW PRINT THE RESULTS 
50 PRINT AvA*A 
60 END 

READY 
RUN NH 

READY 

4 

At line 20, BASIC transfers control to line 40. Line 40 is a REM 
statement, a nonexecutable statement. BASIC executes the next 
sequential statement, line 50. So that the statement GO TO 40 in this 
case is equivalent to a statement GO TO 50. 

4-2 



CONTROL STATEMENTS 

NOTE 

Before you use the GO TO statement, be 
sure you know how to use the CTRL/C k~y 
command to stop your program from 
running in an infinite loop. See 
Section 9.1 for information on CTRL/C. 

4.1.2 Multiple Branching (ON GO TO and ON THEN Statements) 

The ON GO TO statement is another means of transferring control within 
a program. Like the GO TO statement, ON GO TO allows you to transfer 
control to another line of the program; howeyer, ON GO TO_ also allows 
you to specify several line numbers as alternatives depending on the 
result of a numeric expression. 

The ON GO TO statement has the following format: 

ON expression {GO TO}line numberl [,line number2, .. ] 
THEN 

where the expression is any le~~l BASIC numeric expression. The 
keywords GO TO and THEN are interchangeable. Line numbers must be 
separated by commas. 

The ON GO TO statement is also· known as a computed GO TO because of 
its dependency on the value of the numeric expression. When BASIC 
executes the ON GO TO statement, it first evaluates the numeric 
expression. The value is then truncated to integer (if necessary). 
If the value of the expression is equal to 1, BASIC passes control to 
the first line number in the list; if the value of the expression is 
equal to 2, BASIC passes control to the second line number in the 
list; and so on. If the value is less than 1 or greater than the 
number of line numbers in the list, BASIC prints the ?CONTROL VARIABLE 
OUT OF RANGE (?CVO) error message. 

Consider this example: 

200 ON A GO TO 50,20v100v300 

If A=l, go to line 50 (first 'line number in the list). 
If A=2, go to line 20 (second line number in the list). 
If A=3, go to line 100 (third line number in the list). 
If A=4, go to line 300 (fourth line number in the list). 

If A<l} 
or BASIC prints an error message. 

If A>4 

As you can see, the line numbers in the list can be in any order. 

4.1.3 Conditional Transfer (IF THEN and IF GO TO Statements) 

The IF THEN statement provides a transfer of control depending on the 
truth of a relational expression (see Section 2.4.3). 

The format of the IF THEN statement is: 

{

GO TO line number} 
IF relational expression THEN line number 

THEN statement 

4-3 



where: 

relational expression 

CONTROL STATEMENTS 

is the condition to be tested. 
either be an arithmetic or 
relational expression. 

It can 
string 

line number specifies the line to be executed if the 
condition is true. 

statement is executed if the condition is true. 
The statement can be any BASIC statement 
including another IF THEN statement. 

If you specify a line number and the value of the relational 
expression is true, then control is transferred to the specified line 
number. For example: 

20 J F A:::::·~ THEN 200 

When A is equal to 3 (the relation is true), control passes to line 
200. The implication is that when A is not equal to 3, control does 
not pass to line 200. Instead, control passes to the next sequential 
statement after line 20. 

You can also use string expressions as in this example: 

300 IF C!f;,,,, 11 OUTPUT 11 no TO :1. o 

If the value of the string variable C$ is equal to the ASCII value of 
"OUTPUT", control passes to line 10. See Section 2.4.3 for string 
relational expressions. 

If you specify a statement after THEN and the value of the relational 
expression is true, the statement is executed. If the value of the 
relational expression is false, the statement is not executed and 
control is passed to the next program line. For example: 

l 0 1 F" {) :::: :I. THEN pi:;: I NT II (.) :::: :I. II 

Here is a complete program illustrating the IF THEN statement: 

L. I !HNH 
5 REM PROGRAM TO COMPARE TWO NUMBERS 
10 PRINT "INPUT VALUE OF A11 0 \ INPUT A 
20 i::·RJNT II INPUT VALUE OF B II 0 \ INPUT B 
:·~ () I F (~ :::: fl THEN p F~ I NT II (:·, E Cl u ti I... !::. B II \ G 0 T Cl B () 
4 0 J F <'.:i<D THEN 60 
::'i(' PF: I NT "B :i: n 1...cE;n TH1'.:iN ti 11 

\ GO ro ao 
()() pi:;: INT II I~ JS l...EBS THAN B II 

no END 

F~EtiDY 

F:UNNH 

INPUT VALUE OF A? 2 
J NPUT \Jf~i...UF ClF f.<? .... 3 
B I !:i LESE> THt1N A 

Care should be taken 
multi-statement line. 
control: 

placing the 
The following 

4-4 

IF THEN statement in a 
rules govern the transfer of 



CONTROL STATEMENTS 

1. If THEN is followed by a line number: 

If the THEN clause contains a line number and the condition 
is true, control passes to that line number. If, however, 
the condition is false, control passes to the statement 
following the THEN clause. For example: 

LISTNH 
10 A=5 
20 IF A=2 THEN 30 \ PRINT A \ GO TO 40 
30 PRINT "THE CONDITION IS TRUE~" 
40 END 

READY 
RUN NH 

READY 

Because the condition is false, BASIC executes the statement 
following the THEN clause. If you interpret the backslash, 
in this case, to mean "otherwise", you can see the 
alternatives: 

If A is equal to 2, transfer control to line 30; 
otherwise, print the value of A and then transfer 
control to line 40. 

2. If THEN is followed by a statement: 

Execution of the physically last THEN clause determines 
the execution of the rest of the statements on the line. 
If the THEN clause is executed, the next statement or 
statements following it are executed. If the THEN 
clause is nqt executed, the statements following it are 
not executed, and control passes to the next line 
number. For example: 

5 INPUT A 
10 IF A=l THEN PRINT A; \ PRINT "TRUE CASE" \ GO TO 20 
15 PRINT "NOT=l" 
20 END 

If A is equal to 1, BASIC prin~s: 

RUN NH 

1 1 

1 TRUE CASE 

READY 

4-5 



CONTROL STATEMENTS 

Because the relation is true, BASIC executes the rest of line 
20, which includes a branch to line 20. 

If A is not equal to 1, BASIC prints: 

l=\:UNNH 

NCl'f:::::I. 

Because the relation is false, BASIC skips the rest of the 
statements on line 10 following the keyword THEN and proceeds 
to execute line 15. 

All other THEN clauses are considered to be followed by the 
next line of the program: 

:1.0 INPUT (ivBYC 
20 IF A>B THEN IF B<C THEN PRINT "B<C" \ GO TO 30 
25 PRINT "A<~B OR B>=C" 
30 END 

The statement GO TO 30 is executed only if A is greater than 
B and B is less than C. If A is either less than or equal to 
B or B is greater than or equal to C, then line 25 is 
executed. 

? :I. () ~ :I. ::-; v 2 () 
ti<====B OF;: f:)::::C 

4.2 EXECUTION OF LOOPS 

At some point, you may find that you are typing the same statements 
many times in a program. Instead of typing them over and over again, 
make BASIC execute them over and over again. You can accomplish this 
by building a loop in your program. 

A loop is the repeated execution of a set of statements. Placing a 
loop in a program saves you from duplicating and enlarging a program 
unnecessarily. 

4-6 



CONTROL STATEMENTS 

For example, consider the following two programs to print the numbers 
from 1 to 10. 

Program Without 
Loop 

l...IBTNH 
:1.0 PF~J:NT :I. 
20 Pl:~ I NT :~~ 
;·:)0 Pl:~ I NT ;:~ 

40 PF~INT 4 
~'.'.iO Pl:~ I NT :::; 
60 PF~INT 6 
'70 p1:~ I NT '? 
BO Pl:( I NT B 
90 PHINT•<f 
:I. 00 Pl:~ I NT :I. 0 
:1.:1.0 END 

F~Ef.~DY 
F~UNNH 

:I. 

<t 
:I.() 

F:EADY 

Program With 
Loop 

L.IBTNH 
:1.0 If.::::::f.% 
20 PF~INT I% 
30 I%:::: I:;.:;+ :I.% 
40 IF I%<=:1.0% THEN 20 
:=so END 

1:~EADY 

1:~UNNH 

:I. 

6 
·7 
B 
<t 
:1.0 

The program on the right first initializes a control variable, I%, in 
line 10. It then executes the body of the loop, line 20. Finally, it 
increments the control variable in line 30 and compares it to a final 
value in line 50. 

The following section shows you how to build a loop with the FOR and 
NEXT statements. 

4.2.1 FOR and NEXT Statements 

Without some sort of terminating condition, a program can run through 
a loop indefinitely. The FOR and NEXT statements allow you to set up 
a loop wherein BASIC tests for a condition automatically each time it 
runs through the loop. You decide how many times you want the loop to 
run, and you set the terminating condition. 

The FOR statement has the following format: 

FOR variable = exprl TO expr2[STEP expr~ 

4-7 



where: 

variable 

exprl 

expr2 

expr3 

CONTROL STATEMENTS 

is a simple numeric variable known as the loop index. 

is the initial value of the index and can be any 
numeric expression. 

is the terminating condition and can be any numeric 
expression. 

is the incremental value of the index. The STEP size 
is optional; if specified, it can be positive or 
negative. If not specified, the default is +l. Expr3 
can be any numeric expression. 

The NEXT statement has the following format: 

NEXT variable 

where: 

variable must be the same variable named in the corresponding 
FOR statement. 

For example: 

:::_:: 0 F 0 F;: M 
~.:.=_;o NE:<T M 

M is given the initial value of 30, and BASIC tests to determine if M 
is less than or equal to the terminating value of 90. The loop is 
executed because M is less than 90. When the NEXT statement is 
encountered, the value of M is incremented by 3. BASIC tests again to 
see if M is greater than 90. When BASIC reaches the NEXT statement 
and M has a value of 87, BASIC adds 3 to M and tests the result 
against the terminating value. The result, 90, is not greater than 
the terminating value, also 90, so BASIC executes the loop again. 
When ~ASIC reache~ the NEXT statement again, it adds 3 to M, producing 
93. Because this is greater than the terminating value, BASIC 
terminates the loop. BASIC terminates the loop by subtracting 3 from 
M, which returns M to its last value used in the loop, 90, and then by 
transferring control to the next sequential statement after the NEXT 
statement. 

The FOR and NEXT statements must be used together. You cannot use one 
without the other. If you do, an error condition results. The FOR 
statement defines the beginning of the loop; the NEXT statement 
defines the end. You are actuallly building a counter in your program 
to determine the number of times the loop is to execute. 

4-8 



CONTROL STATEMENTS 

Place the statements you want repeated in between the FOR and NEXT 
statements. Consider the following example: 

LISTNH 
10 FOR I% = 1% TO 10% 
20 PRINT I%~ 

30 NEXT I% 
40 PRINT I% 
50 END 

READY 
RUNNH 

1 

3 
4 
5 
6 
7 
8 
9 
10 
10 

READY 

In this program, the initial value of the index variable is 1. The 
terminating value is 10, and the STEP size is +l (the default). 

Every time BASIC goes to line 30, it increments the loop index by 1 
(the STEP size) until the terminating condition is met. Therefore, 
this program prints the values of I% ten times. When the loop is 
completed, execution proceeds to line 40. 

Notice that when control passes from the loop, the last value of the 
loop variable is retained. Although BASIC increments the control 
variable until it is greater than the terminating value, BASIC 
subtracts the STEP value to return the control variable to the value 
last used in the body of the loop. Therefore, I% equals 10 on line 
40. 

You can modify the index variable within the loop. 

10 FOR I = 2 to 44 STEP 2 
20 LET I = 44 
30 NEXT I 
40 END 

The loop in this program only executes once, because at line 20 the 
value of I is changed to 44 and the terminating condition is reached. 

If the initial value of the index variable is greater than the 
terminal value, the loop is never executed. 

10 FOR I = 20 TO 2 STEP 2 

4-9 



CONTROL STATEMENTS 

This loop cannot execute because you cannot decrease 20 to 2 with 
increments of +2. You can, however, accomplish this with increments 
of -2. 

10 FOR I = 20 to 2 STEP -2 

The STEP size can also be a number with a fractional part. 

10 FOR K = 1.5 TO 7t7 STEP 1.32 

NOTE 

You cannot transfer control into a loop 
that has not been initialized with a FOR 
statement. The following is illegal in 
a BASIC program: 

10 REM THIS IS ILLEGAL 
20-GD TO 40 
;·5 0 F 01:~ I :::: :I. T 0 2 0 
40 Pl:;:INT I 
:::;o NEXT I 
60 END 

Line 20 shifts 
bypassing line 
BASIC. 

control to line 40, 
30. This is illegal in 

You can place the FOR and NEXT 
multi-statement line. For example: 

statements anywhere 

l...ISTNH 
10 FOR I=l TD 10 STEP 5 \NEXT I \PRINT "I =";I 
20 END 

F~EADY 

i:;'.UNNH 

I :::: 6 

in a 

The calculation of the index values (initial, final, and step size) is 
subject to precision limitations inherent in the computer. These 
index values are represented in the computer by binary numbers. When 
the values are integer, they can be represented exactly in binary; 
however, it is not always possible to represent decimal values exactly 
in binary when they contain a fractional part. Consider the following 
example: 

LISTNH 
20 FOR X=O TO 10 STEP .1 
:·~;() T::::X+T 
40 NEXT X 
50 PRINT "X=";XY"T=";T 

1:~Et1DY 

1::~UNNH 

)(:::: <_:> ~ 9 

4-10 



CONTROL STATEMENTS 

The loop established in line 20 executes 100 times instead of 101 
because the internal value of 0.1 is not exactly 0.1. After the lOOth 
execution of the loop and X is incremented, X is not exactly equal to 
10. It is slightly larger than 10, so the loop stops. Whenever 
possible, it is advisable to use indices that have integer values 
because the loop wiil then be executed the correct number of times. 

BASIC evaluate~ all expressions in the FOR statement before it assigns 
a value to the loop variable. For example: 

:I. 0 J:::: :I. 0 
20 FOR I~1 TO 1*2 
30 NEXT I 

BASIC evaluates I*2 in line 20 and calculates a value of 20 before it 
assigns a value of 1 to I. The previous example is equivalent to 

20 FOR I~:I. TO 10*2 
30 NEXT I 

4.2.2 Nested Loops 

A loop can contain one or more loops provided that each inner loop is 
completely contained within the outer loop. Using one loop within 
another is called nesting. Each loop within a nest must contain its 
own FOR and NEXT statements, and the inner loop must terminate before 
the outer loop, i.e., the one that starts first must be completed 
last. Loops cannot overlap. 

The following example shows legal and illegal forms of nested loops: 

LEGAL 

[ 20 
30 

LEGAL 

F Cl F( B :::: ::.:.'. T Cl ::.~ 0 
NEXT B 
FOF~ C'..~;::::'..':) TD :·:)0 
FCJF( [1::::4 TD 40 
F CJ i:;: E :::: ~'.'j T Cl ~'S 0 
NEXT E 
NEXT D 
NEXT c:.:;; 

4-11 

ILLEGAL 

~ 
:I. 0 FDF~ M:::: :I. TD '!. 0 
20 Foi::: N:::::? TD 20 
30 NEXT M 
40 NEXT N 



CONTROL STATEMENTS 

The following is a program with a nested loop: 

l...ISTNH 
:I. 0 PR I NT n I" ll a ,J 11 

1~) PfUNT 
20 FCJI~ I%:::: :L TCl ::.~ 

;30 FOR ,J%:::::1. TO 3 
40 PFHNT I%,,,J% 
!~;() NEXT ..J% 
60 NEXT I% 
70 END 

r~EADY 
1:~UNNH 

:r .J 

:I. :I. 
:I. '') 

"'" .. 
:L ;3 
::! :I. 
'') ... · .. :~ 

2 ;3 

} INSIDE LOOP 

} INSIDE LOOP 

} INS IDE LOOP 

l OUTSIDE LOOP 

} OUTS IDE LOOP 

FOR and NEXT statements are commonly used to initialize arrays as 
illustrated in this example: 

l...ISTNH 
:=.=;DIM X<~:;v:l.0) 
:I. 0 F Cl 1:~ A :::: :I. T 0 :=.:; 

20 FOR B=2 TO 10 STEP 2 
::rn X (Av B) ::::A+I~ 
40 NEXT B 
::.:;o NEXT A 
:=s:::i Pl:~ I NT X (::=;,,:I. 0) 
6() END 

F~EADY 

HUNNH 

4.3 STOPPING PROGRAM EXECUTION (END AND STOP STATEMENTS) 

There are three methods of halting program execution: 

1. Using the END statement 

2. Executing the program line with the highest line number (the 
end of the program) 

3. Using the STOP statement 

The END statement has the following format: 

END 

4-12 



CONTROL STATEMENTS 

The END statement is optional. If you include an END, it must have 
the largest line number in the program. Transferring control to an 
END statement via a GO TO or IF THEN statement terminates program 
execution and closes all files (see Chapter 6 for a description of 
data files). 

An END statement does not cause BASIC to print a message on the 
terminal. If a message is 1 desired, use the STOP statement. 

If you do not execute a STOP or an END statement in a program, 
executing the last statement of the program terminates program 
execution and closes all files. This is equivalent to executing an 
END statement. 

The STOP statement has the following format: 

STOP 

This statement causes program execution to halt, at which point BASIC 
prints a message: 

STOP AT LINE n 

where n is the line number of the STOP statement. 

You can place several STOP statements at various points in a single 
program. The flow of logic can then be seen throughout the program. 
This is a useful debugging tool in determining program flow in large 
programs. 

After execution of a STOP statement, you can print variables, change 
values of variables, and then continue execution with an immediate 
mode GO TO statement. (See Section 1.8 for a discussion of immediate 
mode commands.) 

The STOP statement halts execution but it does not close files. To 
cause BASIC to close files after program termination, use the END 
statement or no terminating statement. 

4.4 SUBROUTINES 

A subroutine is a block of statements that performs an operation and 
then returns control of the program to the point from which it came. 
Including a subroutine in a program allows you to repeat a procedure 
in several places without writing the procedure several times. 

Subroutines are like functions (Section 2.4.4) in that you reference 
them in another part of the program. However, unlike functions, you 
do not name a subroutine or specify an argument. Instead, you include 
the GOSUB and RETURN statements which transfer control of the program 
to a subroutine and then return control from that subroutine to the 
normal course of program execution. 

In BASIC, you can enter more than one subroutine in the same program. 
Subroutines are easier to locate (for debugging purposes) if you place 
them near the end of the program, before any DATA statements, and 
before the END statement (if present). Also, assign distinctive line 
numbers to subroutines. For example, if the main program has line 
numbers ranging from 10 to 190, begin the subroutines with line 
numbers 200, 300, 400 and so on. 

4-13 



CONTROL STATEMENTS 

The first line of a subroutine can be any legal BASIC statement. 
including a REM statement. Note that you do not have to transfer to 
the first line of the subroutine. Instead, you can include several 
entry points and returns in and out of the same subroutine. 
Similarly, you can nest subroutines (one subroutine within another) up 
to 20 levels. 

The following sections describe the building of subroutines with the 
GOSUB and RETURN statements. For more flexibility in using 
subroutines, see Section 4.4.2, the ON GOSUB statement. 

4.4.1 GOSUB and RETURN Statements 

The GOSUB statement has the following format: 

GOSUB line number 

where: 

line number specifies the entry point in the subroutine. 

When BASIC executes the GOSUB statement, it stores the location of the 
next sequential statement after the GOSUB statement and then it 
transfers control to the line specified. 

BASIC executes the subroutine until it encounters a RETURN statement, 
which causes BASIC to transfer control back to the statement 
immediately following the calling GOSUB statement. (A subroutine can 
exit only through a RETURN statement.) 

The RETURN statement has the following format: 

RETURN 

BASIC has a table where it can store up to 20 locations of statements 
following a GOSUB. Each time a GOSUB is executed, BASIC stores 
another location on the list. Each time a RETURN is executed, BASIC 
retrieves the last location entered on the list and transfers control 
to it. In this way, no matter how many subroutines there are or how 
many times they are called, BASIC always knows where to transfer 
control. For example: 

1 ... IETNH 
:1.0 INPUT AvBvC 
15 IF ~=~9999 GO TO 70 
:,:~o Gn~:1UB 40 
:.·:~O PF;: I NT D 
;·~~5 GO TCl :I. 0 
40 i:::EM ········THIS IG A BUB1:;;0UTINF 
~'50 I)::::f.'1*B····C 
60 F(ETU1:::N 
"70 END 

!=(E1~DY 
i:;:UNNH 

? ····9999 y 0 y 0 

4-14 



CONTROL STATEMENTS 

When BASIC executes line 2Q, it stores the location of the next 
statement, PRINT D. Then it transfers control to line 40. When it 
reaches the RETURN statement at line 60, it transfers control to the 
statement after the GOSUB '(e.g., the PRINT D statement). 

i 
The following is an exampl~ of several calls to the same subroutine: 

:1.0 (1::::() 

20 GD!:;un r.:.o \ ,~::::!'.:.i 

30 GOSUB 60 \ A=6 
40 GDBUB (~·)o 

!'.'.i 0 G 0 T 0 :I. :I. 0 
'? 0 F 01:;: J :::: :I. TD !'.:i 
no 1... E r ti::::,~~+ n < I > 
(?O NEXT I 
(?!'.'i PF~ I NT (1 

:1. 00 Fi'.ETUF:N 
:I.JO E::ND 

The same subroutine on lin~ 60 is called three times. 
only one RETURN statement is necessary. 

4-15 

Notice that 



CONTROL STATEMENTS 

The following program is another illustration of the GOSUB and RETURN 
statements: 

LISTNH 
10 REM -- THIS PROGRAM ILLUSTRATES GOSUB AND RETURN 
20 DEF FNA<X>=ABSCINT<X>> 
30 PRINT "THIS SUBROUTINE USES THE QUADRATIC FORMULA.• 
40 PRINT "ENTER THREE COEFFICIENTsu; 
::rn INPUT A,e,,c 
::.:;~5 Pl~ I NT 
60 PRINT "SOLUTIONS FOR COEFFICIENTS ENTERED ARE" 
70 PRINT "SHOWN FIRSTv THEN SOLUTIONS FOR ABSOLUTE" 
80 PRINT " VALUE COEFFICIENTS+" 
B!'.) PF~ I NT 
90 GOSUB :I. f.>O 
:I. 00 LET A::::FNA <A) 
:I. :I. 0 l ... ET e~~:FNA < B) 
120 l ... ET C:::FNA CC) 
:I. 30 PF~ I NT 
:I. 40 GOSUB :I. f.>0 
:I. 4!'5 PR I "'-'T 
1 !'.'.iO GO TO :·~:I. 0 
160 REM--THIS SUBROUTINE PRINTS OUT THE SOLUTIONS 
170 REM--OF THE EQUATION A*X~2+B*X+C=O 
:I. 8 () p IU NT n THE E CWA TI 0 N Is n v A ; H * x ,., 2 ·+--- u YIH " * x + " ; c 
190 LET D=B*B-4*A*C 
200 IF D<>O THEN 230 
210 PRINT "ONLY ONE SOLUTION ••• X=";-B/C2*A> 
220 F~Eru1:~N 

230 IF D<O THEN 270 
240 PRINT "TWO SOLUTIONS ••• X=C"P 
250 PRINT (-B+SQRCD))/(2*A>P") AND ("v(-B-SQR(D))/(2*A)vH)U 
260 !=~ETUl~N 

270 PRINT "IMAGINARY SOLLJTION ••• X=C"; 
280 PRINT -B/C2*A>;"+";SQRC-D)/C2*A>~"I>" 
285 PRINT " AND <"; 
290 PRINT -B/<2*A>;"-";SQRC-D)/C2*A>;"*I>"; 
300 F~ETUF~N 

3:1.0 END 

THIS SUBROUTINE USES THE QUADRATIC FORMULA. 
ENTER THREE COEFFICIENTS? 3,-5,-6 

SOLUTIONS FOR COEFFICIENTS ENTERED ARE 
SHOWN FIRSTv THEN SOLUTIONS FOR ABSOLUTE 

VALUE COEFFICIENTS~ 

THE EQUATION IS 3 *X~2 + -5 *X + -6 
TWO SOLUTIONS ••• X=C 2.47481 ) AND <-.808143 

THE EC~UATION IS 3 *X'''2 + ~'.'i *X + 6 
IMAGINARY SOLUTION ••• X=C-.833333 t 1+1426:1. I> 

AND C-.833333 - :1..14261 *I> 

F~EADY 

For more versatility in using subroutines, see the next section, the 
ON GOSUB statement. 

4-16 



QONTROL STATEMENTS 

4.4.2 ON GOSUB Statement 

The ON GOSUB statement is used to conditionally transfer control to 
one of several subroutines or to one of several entry points into one 
or more subroutines. The ON GOSUB statement has the following format: 

ON expression GOSUB line number1[,line number2, ••• ] 

where the expression is any legal BASIC expression. Line numbers must 
be separated by commas. 

The ON GOSUB statement works like the ON GO TO statement (Section 
4.1.2). When BASIC executes the ON GOSUB statement, it first 
evaluates the numeric expressidn. The value is then truncated to 
integer, if necessary. If the value of the expression is 1, control 
passes to the first line number specified; if it is 2, control passes 
to the second line number specified; if it is 3, control passes to 
the third line number specified; and so on. If the expression is 
less than 1 or greater than~the number of line numbers in the list, 
BASIC prints the ?CONTROL VARIABLE OUT OF RANGE (?CVO) error message. 
The following is an example of an ON GOSUB statement: 

20 ON 

If A+B=l, 
list) • 

If A+B=2, 
list). 

If A+B=3, 
list) . 

If A+B<l 
or 

If A+B>4 

,~~+B uonuB 200 v :300 v :I. 20 

enter the subroutine at line 200 (first line number in 

enter the subroutine at line 300 (second line number in 

enter the subroutine at line 400 (third line number in 

} BASIC prints an error message. 

The line numbers to which BASIC branches can be either the first line 
of a subroutine or an entry point to a subroutine. 

4-17 



CHAPTER 5 

FUNCTIONS 

5.1 TYPES OF FUNCTIONS AVAILABLE 

Functions perform a series of numeric or string operations on the 
arguments you specify and return a result to BASIC (see Section 
2.4.5). BASIC provides mathematical functions, string functions, 
functions that you can define, and functions that give you the current 
day and time. 

5.2 NUMERIC FUNCTIONS 

BASIC provides numeric functions to perform standard mathematical 
operations. For example, it is often necessary to find the sine of an 
angle. You can do this by looking it up in a table of sine values or 
by using BASIC's SIN function. If you are not familiar with the 
mathematical functions described in: this chapter, see a trigonometry 
or algebra textbook. · 

BASIC provides the following trigonometric functions: 

1. Sine function (SIN) 
2. Cosine function (COS) 
3. Arctangent function (ARC) 

In addition BASIC provides a special function, PI, which returns the 
value of pi ( TI ) , a frequently used trigonometric constant. 

BASIC provides algebraic functions to find: 

1. The square root of a number (SQR) 
2. The value of e, an algebraic constant, raised to any power 

(EXP) 
3. The logarithm of a number (LOG and LOGlO) 
4. The integral part of a number (INT) 
5. The absolute value of a number (ABS) 
6. The sign of a number (SGN) 

BASIC ~lso provides a function RND which returns a random number. You 
can use this function when you are trying to simulate an unpredictable 
situation with a BASIC program. 

5-1 



FUNCTIONS 

All BASIC's numeric functions return floating point values, not 
integer values. It is important that these functions return values in 
floating point format to determine whether an e~pression is integer or 
floating point (see Section 2.4.1). All functions have a 6-digit 
accuracy. 

5.2.1 Trigonometric Functions (SIN, COS, ATN, and PI Functions) 

BASIC provides functions, SIN and COS, to find the sine and cosine of 
an angle. In addition you can use the ATN function to find the 
arctangent of a number, the angle whose tangent is equal to the 
number. BASIC also provides the PI function, which returns a value of 
3.14159, an approximation of pi. Pi is a transcendental number and 
can only be approximated in a decimal fraction. The format of these 
functions are: 

SIN(expression) 
COS(expression) 
ATN(expression) 
PI 

Note that the PI function cannot have an argument. If you specify an 
argument with PI, BASIC prints the ?SYNTAX ERROR (?SYN) message. 

Although BASIC does not have a tangent function, you can find the 
tangent of a number by using the following trigonometric equation: 

sine (angle) 
tangent (angle) = 

cosine (angle) 

BASIC requires that the arguments for the SIN and COS function be 
expressed as angles in radian measure. It also returns the value of 
the arctangent in radians in the range -pi/2 to pi/2 radians. (There 
are 2 *pi radians in a full circle.) If you want to measure angles in 
degrees (360 degrees in a full circle), you can use the following 
equation: 

degrees *pi 
radians 

180 

Consider the following program which converts an angle in degrees to 
an angle in radians and then calculates and prints the sine, cosine, 
and tangent of the angle. Finally the program prints the arctangent 
of the value returned by the tangent function. The arctangent should 
be the same as the original angle. 

5-2 



FUNCTIONS 

I ... ISTNH 
10 PRINT "SUPPLY AN ANGLE IN DEGREES" 
20 PRINT "ENTER -9999 TO END" 
;.~ :=.=; P 1:~ I NT 
30 PRINT "ANGLE"v"SIN"v"COS"v"TAN","ATN" 
40 PRINT "IN RADIANS"vvvv"IN RADIANS" 
4:'.'.i Pl:~INT 
50 PRINT "ANGLE IN DEGREES"; 
60 INPUT X 
65 IF X=-9999 THEN 32767 
'/O F~::::X*P I I:!. 80 
80 IF ABS<COS<R>><.01 THEN 200 
90 T=SIN<R>ICOSCR) 
100 PRINT Rv SINCR>v COSCR)v T~ ATNCT) 
1:I.0 GO TO :=50 
200 PRINT "COSINE IS TOO CLOSE TO ZERO" 
2 :I. 0 GD TO ~:.=;o 

:32767 END 

1:~EADY 
F~UNNH 

SUPPLY AN ANGLE IN DEGREES 
ENTER -9999 TO END 

(~NGl ... E SIN 
IN !=~f.1D J 1~NS 

ANGLE IN DEGREES? 0 

cos 

0 0 1 
ANGLE IN DEGREES? 45 

.785398 .707107 .707107 
ANGLE IN DEGREES? 10 

.174533 .:1.73648 .984808 
ANGLE IN DEGREES? 89.99 
COSINE IS TOO CLOSE TO ZERO 
ANGLE IN DEGREES? -9999 

F~Ef.1DY 

ATN 
IN F~AD I ANS 

() () 

At lines 50 and 60, BASIC requests that you enter an angle in degrees. 
At line 65 BASIC checks to see it you have entered -9999 to end the 
program. If you have not entered -9999, BASIC converts the angles to 
radians, at line 70. At line 80 BASIC checks to see if the cosine of 
the angle is close to 0 (this happens when the angle is close to pi/2 
or 90 degrees). If the cosine is close to O, calculating the tangent 
would involve division by O, which would produce the ?DIVISION BY ZERO 
(?DVO) error message. Next BASIC calculates the tangent of the angle, 
at line 90. Finally, BASIC prints the angle in radians, its sine, 
cosine and tangent, and the arctangent of the tangent (which should 
equal the angle) • 

NOTE 

When using this program, you type -9999 
to terminate it. -9999 was chosen 
because it is unlikely to be entered as 
a value in this context. Throughout 
this chapter many examples include this 
method of program termination. 

5-3 



FUNCTIONS 

5.2.2 Algebraic Functions 

BASlC provides the following algebraic functions: 

Square root function (SQR) 
Exponential function (EXP) 
Logarithm function (LOG and LOGlO) 
Integer function (INT) 
Absolute Value function (ABS) 
Sign function (SGN) 

~.2.2.l Square Root Function (SQR Function) - The 
returns the square root of the expression you specify. 
of a number times itself (squared) equals the original 
format of the SQR function is: 

SQR(expression) 

SQR function 
A square root 
number. The 

You use this function in BASIC instead of the mathematical notation 
for square root (~) . 

If the value of the expression is negative, BASIC prints the nonfatal 
message ?NEGATIVE SQUARE ROOT (?NGS) and returns a value of O. For 
example: 

I ... I ST NH 
:I. 0 pi:;: J NT II THE SC~U1t.iF~F II ' II Is II 
20 PF~ I NT II F~OOT OF II 

3 0 Pi::; I NT :I. 6 , ~:l C~ 1:;: < :I. <~) :1 

40 PRINT -:1.oo,SQR(-:1.00) 
so x~3:1..6228*3:1..6228 

60 PRINT x,sQRCX) 

fi:EADY 
r;:UNNH 

TH[ nc~U1-:':ir;:E 

F:OOT OF 
4 

.... :1.00 ?NEGATIVE SQUARE ROOT AT LINE 40 
() 

:I. 000 

Notice that when BASIC tries to calculate the square root of -100 it 
prints the error message and then prints 0 on the next line. 

5.2.2.2 Exponential and Logarithm Functions (EXP, LOG, and LOGlO 
Functions) - The exponential function returns e, an algebraic constant 
raised to the power specified. For example EXP(l) is equal to e , 
approximately 2.71828, and EXP(2) is equal to e~2. The format of the 
EXP function is: 

EXP(expression) 

The LOG function returns the logarithm to the base e of the specified 
expression. The format of the LOG function is: 

LOG(expression) 

5-4 



FUNCTIONS 

EXP and LOG are related functions. Specifically, EXP is the inverse 
of LOG. The following formula descr.ibes their relationship. 

LOG(EXP(X)) = X 

Consider the following examples. Note that the output from one 
example is used as input for the other. 

EXP Function 

I... J ~:~TNH 
:I. 0 INPUT X 
15 IF X = -9999 THEN 100 
20 p1:::INT EXP< X) 
:30 GO TO :I. 0 
:I. 00 END 

READY 
F~UNNH 

T 4 
!'.:j4. !!.)9fl :I. 

T :1.0 
22026. !::; 

'? 9 .. 42:1.00 
:I. 2::)44 <· C_i) 

T .... 9999 

F~EADY 

LOG Function 

l...ISTNH 
:1..0 INPUT X 
15 IF X = -9999 THEN 100 
~.~O Pl:~INT LOG ( X) 
:·50 GO TO :I. 0 
100 END 

F~EADY 
F~).JNNH 

; 

4 
'!) 22026 .. 4 '7 

:1.0 
'!1 :I. 2 :3 4 !:5 

9 .. 4 2 :I. 0 :I. 
T .... 9999 

You can convert logarithms to the base e to any other base log by 
using the following formula: 

loga(N) = 
loge(N) 

loge(a) 

where you are trying to find the log of N to the base a. Consider the 
following examples which calculate logs to any base. 

LISTNH 
10 REM - CONVERT BASE E LOG TO ANY BASE LOG. 
20 PRINT "WHAT BASE"; 
:·:)0 I Nr:·UT B 
40 PRINT "VAl...UE"v"BASE r l...OG"v"BASE";B;"LOG" 
~:.:;o INPUT X 
60 IF X = -9999 THEN 200 
70 PF:: INT X ~ 
no pi::: INT l...DG ( x) !1 

?O PF~INT l...DG(X)./l...OG<B) 
:I. 00 GO TCJ 30 
:?00 END 

f.:Ef-:·1DY 
FWNNH 

t~IH1:~: ··1 BtinFT 2 
'.)(11...UF Bt1SE F 1...0G 
T 4 

:I. <·60<.;.'44 
T •H•9999 

BAnE 2 LOG 

5-5 



FUNCTIONS 

However, you need not use this formula to find the logarithm to the 
base 10 of a number. BASIC provides the LOGlO function which does 
this. The form of the LOGlO function is: 

LOGlO(expression) 

You use the LOGlO the same way that you use the LOG function. The 
only difference is that LOGlO returns the logarithm to the base 10 
instead of to the base e. 

If you specify an expression in the LOG or LOGlO function whose value 
is negative or equal to O, BASIC prints the nonfatal message ?BAD LOG 
(?BLG) and the function returns a value of O. 

5.2.2.3 Integer Function (INT Function) - The integer function 
returns the value of the greatest integer that is less than or equal 
to the expression you specify. The format of the integer function is: 

INT(expression) 

For example: 

LISTNH 
10 PRINT INTC34+47) 
20 PRINT INTC33000.9> 

READY 
RUN NH 

34 
33000 

READY 

The INT function always returns the value of the greatest integer that 
.is less than or equal to the specified expression. A consequence of 
this is that when you specify a negative number, INT produces a number 
whose absolute value is larger. For example: 

LISTNH 
10 PRINT INTC-23.45) 
20 PRINT INTC-14.7) 
30 PRINT INT<-11) 

READY 
RUNNH 

-24 
.... 1 '.:.:.i 

-11 

READY 

Note that the value returned by INT is a whole number in floating 
point format, not an integer. 

5-6 



FUNCTIONS 

You can use the INT function to round 
integer by adding 0.5 to the argument. 

1 ••• ISTNH 
10 PRINT INTC34.67t.5) 
20 PRINT INTC-5.lt.5) 

REf.1DY 
1:;~l.JNNH 

off numbers 
For example: 

to the nearest 

You can also use INT to round off a number to any given decimal place 
or any integral power of 10. Do this by using the formula: 

number rounded off = INT(number*lO~P+.5)/lO~P 

where P represents the number of places of accuracy. 

Consider the following example which rounds numbers to the number of 
decimal places specified by the· user. Note that P should have a 
positive value (tested in line 135). in the formula (which is in line 
150) for P to determine the digits of accuracy to the right of the 
decimal point. 

LISTNH 
50 REM PROGRAM TO ROUND OFF DECIMAL NUMBERS 
100 PRINT "WHAT NUMBER DO YOU WISH TO ROUND OFF"; 
:I. :I. 0 INPUT N 
115 IF N = -9999 THEN 100 
120 PRINT "TO HOW MANY PLACES"; 
:I. :·50 INPUT P 
:I. 40 PF< INT 
:1.~:50 1...ET f.1::::INT<N*10'"'P+.~:5)/(:l.0'"'P) Round the number 
160 PRINT N"="A"TO"P"DECIMAL PL.ACES." 
:I. /0 Pl:(INT 
:I. 80 GO TCl :I. 00 
:1.000 END 

r::EADY 
1:~UNNH 

l.~H(1T NUMBEF< DO YOU vJ I !:>H TO F~OlJND OFF? ~:56. :I. 2:·57 
TO HOW MANY PL.ACES? 2 

56.:1.237 = 56.:1.2 TO 2 DECIMAL .PL.ACES. 

WHAT NUMBER DO YOU WISH TO ROUND ClFF? 8.449 
TO HOW MANY PL.ACES? 1 

8.449 = 8.4 TO :I. DECIMAL PLACES. 

1...,IH1-:":)T NUMBEH DO YOU l1JISH TO F~ClUND OFF·? .... 999<;> 

5-7 



FUNCTIONS 

And consider this program which prints numbers to the nearest 
thousandth (10A3). Note that in this program, P has a constant value 
of -3 in the formula (on line 40). Because P is negative, the 
accuracy is three digits to the left of the decimal point, that is the 
numbers are rounded to the nearest thousand. 

1...I~:>TNH 

10 REM PROGRAM TO ROUND TO NEAREST 1000 
20 PRINT "WHAT NUMBER DO YOU WANT TO ROUND? 
:;:;o INPUT N 
35 IF N=-9999 THEN 1000 
40 A=INT<N*10-<-3>+.5>110-(-3) 
50 PRINT N;"="tA;"TO THE NEAREST THOUSAND" 
!:5!:5 PF~ I NT 
60 GO TO 20 
1000 END 

1:~E(.~DY 

r::uNNH 

WHAT NUMBER DO YOU WANT TO ROUND? 34339 
34339 = 34000 TO THE NEAREST THOUSAND 

WHAT NUMBER DO YOU WANT TO ROUND? 11749 
11749 = 12000 TO THE NEAREST THOUSAND 

WHAT NUMBER DO YOU WANT TO ROUND? -9999 

5.2.2.4 Absolute Value Function (ABS Function) - The ABS function 
returns the absolute value of the specified expression. The form of 
the ABS function is: 

ABS(expression) 

The absolute value of a number, by mathematical definition, is always 
positive. The absolute value of a positive number is equal to the 
number, but the absolute value of a negative number is equal to -1 
times the number. For example: 

l...ISTNH 
:1.0 INPUT X 
15 IF X=-9999 THEN 100 
20 X::::ABB < X) 
:30 Pf(INT X 
40 GO TO :I. 0 
100 END 

1:;:EADY 
r::l.JNNH 

'!> .... ;·5!:.:; + '7 
:3!:5 + 7 

? 2!=.=;i:::20 
2 + !=.=;0000E+21 

T .... 1 0 !=.:; !:.) ~:; !'.) 6 '7 
:I. ,. 0 !'.:.i !:5 !=.:; 6 E + 0 '7 

'~) .... 9999 

5-8 



FUNCTIONS 

Note that the ABS function returns a floating point number even if the 
argument is an integer. In that case, it returns a whole number in 
floating point format. 

5.2.2.5 Sign Function (SGN Function) - You can use the sign function 
to determine if an expression is positive, negative, or equal to O. 
The format of the SGN function is: 

SGN(expression) 

If the expression you specify is po~itive, SGN returns a +l: if it is 
negative, SGN returns a -1: and if it is equal to 0, SGN returns a O. 
For example: 

LISTNH 
10 A=-7.32 
20 B=.44 
30 C=O 
·40 PRINT "A=";A,"B=";B~"c=~;c 
50 PRINT "SGNCA>=";SGNCA)v 
60 PRINT "SGN<B>=";SGN<B>v 
70 PRINT "SGN(C)=";SGNCC) 

READY 
RUNNH 

A=-·7.32 
SGN<A>=-1 

READY 

B= .44 
SGN<B>= 1 

C= 0 
SGNCC>= 0 

Note that SGN returns these values as real numbers, not integers. 

5.2.3 Random Numbers (RND Function and RANDOMIZE Statement) 

It is often useful to get a series of random numbers in a BASIC 
program. A series of random numbe~s is a series of numbers which are 
not related to each other in any way. You can use random numbers in 
simulating a situation in the world which is not predictable. 

It is impossible for a computer to produce a series of totally random 
numbers because computers always produce the same results given the 
same starting comditions. Instead, BASIC uses complex calculations to 
produce a predictable series of numbers that seem unrelated. This is 
called a pseudo-random series. 

The RND function returns a number from this pseudo-random series each 
time you use it. It starts from the beginning of the series whenever 
you initialize your program (OLD, NEW, SCR, or RUN command or CHAIN 
statement). 

In addition, BASIC provides the RANDOMIZE statement. Every time that 
BASIC executes the RANDOMIZE statement it starts the RND function at a 
new, unpredictable (based on the current time of day) location in the 
series. When you are testing and changing your program you should not 
use the RANDOMIZE statement. If you do, you will not know if changes 
in the results are caused by changes in the program or the series 
starting off in a new location. If, on the other hand, you have 
tested your program and are using it, use the RANDOMIZE statement 
because it produces less predictable series. 

5-9 



FUNCTIONS 

The format of the RND function is: 

RND 

The function returns a random number in the open range 0 to 1. (An 
open range means the extremes, O and 1 in this case, are never 
reached.) 

You can also specify an expression in RND, for example, RND(O), but do 
not do this. BASIC ignores the expression and only allows it because 
you may have written a program with another version of BASIC which 
requires an expression after RND. 

The format of the RANDOMIZE statement is: 

RANDOMIZE 

Consider the following examples which contrast RND without and with 
RANDOMIZE. 

RND without RANDOMIZE 

l...ISTNH 
10 PRINT RND,RNDvRND,RND 

READY 
F~UNNH 

+ 04073:1. 9 

l~Et:':iDY 

RUNNH 

+ 0407:':LI. 9 

1:::E1~DY 

F(l.JNNI-1 

• 04()'?:3:1. 9 

• BO~~:I. 72 

+ 064:391 ~5 

As you can see, every time the program without RANDOMIZE is run, RND 
produces the same series of values. 

RND with RANDOMIZE 

L.IBTNH 
~:5 r~ANDOM I ZE 
10 PRINT RNDvRNDYRNDvRND 

1:::Ef.1DY 
l:(UNNH 

F(E{1DY 
1:::LJNNH 

REf.1DY 
1:~UNNH 

.. 494162 

HEADY 

+4:1.9'7:1.2 +4'7'742'7 

• '76:1.4B~5 

+ BBB~5B4 

5-10 

• OB'? :1. !:s·n 

+ :307006 



FUNCTIONS 

Each time the program with RANDOMIZE ~s run, RND produces a different 
random series of numbers. · 

You can also use the RND function to produce a series of random 
numbers over any given open range. To produce random numbers in the 
open range A to B, use the following general expression: 

(B-A) * RND+A 

For example, to produce 10 numbers in the open range 4 to 6, use this 
program 

l ... IBTNH 
:I. 0 FD 1:;: I :::: :I. T 0 :I. 0 
20 PRINT (6-4>*RND+4v 
:30 NEXT I 

r::EtiDY 
1:~UNNH 

4vOB:l.46 
4 (• "7:"546 :I. 

F~Ef.1DY 

~:.:.i y () !::; 6 ~:_:; 9 
!:5 • !:.:; 6 l :I. l 

!:.:.i y 6()6:34 
4 y "79:1.!:54 

4.:1.20"/'B 
4v644"7 

4 v :·5:1.!'.)6:1. 
4 y 744:·:):·5 

Note that in line 20 of the program the general expression is used 
with a value of 4 for B and a value of 6 for A. 

To obtain a series of random integers in the range of 0 to 40, use the 
expression 

INT ( ( 41- 0 ) * RND+ 0 ) 

or the equivalent 

INT ( 41 * RND) 

41 is used instead of 40 so that the expression can return a value of 
40. 

The following example produces 15 random integer values in the range 0 
to 40. 

l ... ISTNH 
:1.0 FDR I ~ :I. TO :1.5 
20 PRINT INTC4:1.*RND)v 
:·50 NEXT I 

r~EADY 

Hl.JNNH 

32 
:1.6 
:·5!:.=; 

5-11 

2 6 
:I.::) :I.!:.) 
:1.6 26 



FUNCTIONS 

5.3 STRING FUNCTIONS 

BASIC provides string functions that allow you to examine and modify 
strings and perform certain string to numeric conversions. 

String functions that return a string have a dollar sign ($) at the 
end of their name. String functions that return floating point or 
integer numbers do not have a dollar sign. 

5.3.1 String Manipulation Functions 

BASIC's string operations allow you to concatenate and to compare 
strings, but only by also using the string manipulation functions can 
you analyze what a string is composed of. You can use string 
functions to: 

1. Determine the length of a string (LEN). 

2. Trim off trailing blanks from a string (TRM$). 

3. Search for the position of a set of characters within a 
string (POS). 

4. Copy a segment from a string (SEG$). 

5.3.1.1 Finding the Length of a String (LEN Function) - You can use 
the LEN function to find the length, or number of characters, of a 
string. The LEN function returns an integer value equal to the length 
of the string you specify. The format of the LEN function is: 

LEN(string) 

Consider the following example which prints the length of a string 
containing all the letters in the alphabet: 

1...ISTNH 
10 A$="ABCDEFGHIJKl...MNOPQRSTUVWXYZ" 
20 PF~ I NT l ... EN < t-111;) 

i:;:EADY 
F:UNNH 

2c~) 

5-12 



FUNCTIONS 

5.3.1.2 Trimming Trailing Blanks Off a String (TRM$ Function) - The 
TRM$ function returns the same string that you specify except that any 
trailing blanks are removed. The format of the TRM$ function is: 

TRM$(string) 

Consider the following example in which two strings are concatenated 
and printed, both before and after trailing blanks have been trimmed: 

LISTNH 
10 A$="ABCD 
20 B$="EFG" 
30 PRINT "BEFORE TRIMMING:"vAS+BS 
40 PRINT "AFTER TRIMMING:"vTRM$CAS>+BS 

READY 
RUNNH 

BEFORE TRIMMING: ABCD EFG 
AFTER TRIMMING: ABCDEFG 

READY 

5.3.1.3 Finding the Position of a Substring (POS Function) - Use the 
POS function to find the location of a group of characters, or 
substring, within a string. The format of the POS function is: 

POS(stringl,string2,expression) 

where: 

stringl is the string being searched. 

string2 is the substring. 

expression is the character position at which BASIC starts the 
search. 

The POS function searches for and returns the first occurrence of 
string2 in stringl starting with the character position specified by 
expression. If POS finds the specified substring, it returns the 
character position of the first character of the substring. If POS 
does not find the specified substring, it returns a 0. 

The POS function always returns an integer value. 

5-13 



FUNCTIONS 

Consider the following example which translates each name of a month 
to its numeric equivalent (e.g., DEC to 12): 

l...ISTNH 
10 TS=nJANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC" 
1.00 Pl~INT "TYPE THE FIRBT 3 L.ETTEF~S OF A MONTH" Y 
:1. :1.0 INPUT M!I> 
:1.20 IF MS="END" THEN 32767 
:1.30 IF LEN<MS><>3 THEN 200 
:1.40 M=<POS<TSvMSv:l.>+2>13 
:1.50 IF M<>INTCM) THEN 200 
160 PRINT M$;" IS MONTH NUMBERn;M 
:I. /'O GO TO :I. 00 
200 PRINT "INVALID ENTRY - TRY AGAIN" \GO TO 100 
:32767 ENH' 

1:~EADY 

1:?.l.JNNH 

TYPE THE FIRST 3 LETTERS OF A MONTH? NOV 
NOV JS MONTH NUMBEF~ :I. :I. 
TYPE THE FIRST 3 LETTERS OF A MONTH? MAY 
MAY IS MONTH NUMBER 5 
TYPE THE FIRST 3 LETTERS OF A MONTH? JUD 
INVALID ENTRY - TRY AGAIN 
TYPE THE FIRST 3 LETTERS OF A MONTH? END 

F~EADY 

In line 140 the POS function returns the position of the input string, 
M$, in the string containing the first three letters of each month, 
T$. 

If the program finds the month you specify, it prints the number of 
the month. If it does not find the month, it requests you to try 
again. 

Using the POS function to translate a string to a number corresponding 
to the string's location in a larger string is called a table look-up. 
The table string is string! and the string to be mapped is string2 in 
the POS function format. 

There are certain possible error conditions dependent on the values of 
the strings and the expression: 

1. If string2 (the substring) is null and string! (the table 
string) is nonnull then the function returns the lesser of 
the value of the expression and the length of string! plus 1. 

2. If string! is null, then the function returns 0. 

3. If the expression has a value less than 1, then the function 
assumes a value of 1 and starts the search at the first 
character. 

4. If the value of the expression is greater than the length of 
string! and string2 is nonnull, then the function returns 0. 

5-14 



FUNCTIONS 

5.3.1.4 Copying Segments from a String (SEG$ Function) - Use the SEG$ 
function to copy a segment (or substring) from a string. The SEG$ 
function returns a string consisting of the characters in the string 
you specify between the character positions you also specify. The 
original string is unchanged. The format of the SEG$ function is: 

SEG$(string,expressionl,expression2) 

where: 

string is the string from which the segment is copied. 

expression! specifies the starting character position of the 
segment 

expression2 specifies the last character position 
segment. 

For example: 

LIE>TNH 
10 PRINT SEG$C"ABCDEF"v3v5) 

F:FADY 
F~UNNH 

CDE 

of the 

There are several error conditions based on the values of the 
expressions and the string: 

1. If expression! is less than 1, BASIC assumes a value of 1. 

2. If expression! is greater than expression2 or the length of 
string, SEG$ returns a null string. 

3. If expression2 is greater than the length of the string, SEG$ 
returns the characters from expression! to the end of the 
string. 

4. If expression! equals expression2, then SEG$ returns the 
character at position expression!. 

By using the SEG$ function and the string concatenation operator (+), 
you can replace a segment of a string. Consider the following 
example: 

l...ISTNH 
:I.() A!~:::: II ABCDEFG II 

20 Cl=SEG$CA$v1v2)t"XYZ 11 +SEG$CA$v6v7) 
30 pi:;: I NT C!I> 

1:;:EADY 
1:::UNNH 

AHXYZFG 

F~E(.1DY 

5-15 



FUNCTIONS 

Line 20 replaces the characters CDE in the string A$ with XYZ~ 
Examine line 20: 

20 C$=SEG$(A$,l,2)+"XYZ"+SEG$(A$,6,7) 

You can use similar string expressions to replace any given characters 
in a string. 

A general formula to replace the characters in positions n through m 
of string A$ with B$ is: 

C$=SEG$(A$,l,n-l)+B$+SEG$(A$,m+l,LEN(A$)) 

For example, to replace the sixth through ninth characters of the 
string "ABCDEFGHIJK" with "123456", enter the following program: 

LISTNH 
10 AS="ABCDEFGHIJK" 
20 B$="123456" 
30 C$=SEG$CA$v1v5)tBStSEGS<ASv10vLENCA$)) 
40 PRINT CS 

READY 
RLJNNH 

ABCDE123456JK 

READY 

The following formulas are more specific applications of the general 
formula. 

To replace the first n characters of A$ with B$: 

C$=B$+SEG$(A$,n+l,LEN(A$)) 

To replace all but the first n characters of A$ with B$: 

C$=SEG$(A$,l,n)+B$ 

To replace all but the last n characters of A$ with B$: 

C$=B$+SEG$(A$,LEN(A$)-n+l,LEN(A$)) 

To replace the last n characters of A$ with B$ 

C$=SEG$(A$,l,LEN(A$)-n)+B$ 

To insert B$ in A$ after the nth character in A$: 

C$=SEG$(A$,l,n)+B$+SEG$(A$,n+l,LEN(A$)) 

5.3.2 Conversion Functions 

BASIC provides several string functions to convert strings to numbers 
and numbers to strings. 

5-16 



FUNCTIONS 

You can use BASIC's functions to make the following conversions: 

1. Character to ASCII code (ASC) 

2. ASCII code to character (CHR$) 

3. Number to its string representation (NUM$) 

4. String representation of a number to a number (VAL) 

5. String representing a binary number to a decimal number (BIN) 

6. String representing an octal number to a decimal number (OCT) 

These functions provide flexibility in manipulating both strings and 
numbers. 

5.3.2.1 Character and ASCII Code Conversions (ASC - ·and CHR$ 
Functions) - BASIC uses the ASCII code to represent characters 
internally. The ASC function returns the decimal ASCII code of a 
1-character string that you specify. The CHR$ function returns the 
1-character string which has the ASCII value you specify. Both 
functions handle eight-bits of internal representation (decimal 0 to 
255). The ASC and CHR$ functions can be used with the SEG$ function 
to analyze the character in a string. 

The format of the ASC function is: 

ASC(string) 

where string must be a 1-character string. If string is a null string 
or contains more than one character, BASIC prints the ?ARGUMENT ERROR 
(?ARG) error message. 

The ASC function returns an integer value. 

The format of the CHR$ function is: 

CHR$(expression) 

Only one character is generated at a time. 

The expression must be 0 or greater. BASIC treats arguments greater 
than 255 modulo 256 (e.g., BASIC treats 256 as a O, 257 as a 1, etc.). 

5-17 



FUNCTIONS 

Consider the following example: 

LISTNH 
10 REM THIS PROGRAM WILL RETURN AN INPUT LETTER AND THE 2 
20 REM FOLLOWING IT ALPHABETICALLY 
30 PRINT "ENTER A LETTER A THRU Zv ENTER END WHEN FINISHED" 
40 PRINT "LETTER"v"NEXT LETTER"v"3RD LETTER" 
~SO INPUT X~I> 

55 IF X$="END" GO TO 999 
60 IF X$<"A" GO TO 190 
70 IF X$>"Z" GO TO 190 
80 FOR F=ASCCX$) TO ASCCX%>+2 
90 IF CHR$CF>>"Z" GO TO 150 
100 PRINT CHR$CF)y; 
:I. :1.0 NEXT F 
:I. 20 PF~ I NT 
130 GO TO ~:so 

150 PRINT "END OF ALPHABET" 
:I. 60 GO TO ~'SO 

Returns ASCII value of X$ 
Uses CHR$ to produce next 
character 

:1.90 PRINT "ENTRY IS NOT A LETTER A THRU Z" 
~.>:I. 0 GO TO 30 
999 END 

F'.EADY 
F.:UNNH 

ENTER A LETTER A THRU Zv ENTER END WHEN FINISHED 
LETTER NEXT LETTER 3RD LETTER 
T 1.··· 

.. I 

... 

•"!) i~ 
ti 
.. !:- y 
y 7. END OF ALPHABET 
'!) :3 
E:NTF~Y IE) NOT r.~ LETTEF~ A THF::u Z 
ENTER A LETTER A THRLJ Zv ENTER END WHEN FINISHED 
1 ... FTTEF~ NEXT 1...ETTEF:: 3F;D LETTEF~ 

T END 

NOTE 

The CHR$ function produces all printing 
and non-printing characters with ASCII 
values from 0 to 127. ASCII values 
between 127 and 255 produce the same 
character as the ASCII value minus 128, 
but the string produced is not equal and 
differs in the internal representation. 

5.3.2.2 Numbers and Their String Representation Conversions (VAL and 
STR$ Function) - Two functions, VAL and STR$, convert numbers to their 
string representation and vice versa. You can use these functions 
when you want to input a numeric value in a string variable or to 
print a number without the spaces around it. 

5-18 



FUNCTl!ONS 

Consider these programs: 

String Representations 

LISTNH 

Numbers 

1...nnNH 
:I.() PR :t: NT II;.~~:.) II 

20 p1:~INT "2~5+:1. II 

1:;:Ei:':iDY 
1:;:UNNH 

2~5+:1. 

:I. 0 pf:~ I NT 2~7i 

20 Pl:~ I NT 2~5+ :I. 

1:~EADY 

FWNNH 

The program on the left prints the string representation of numbers, 
but the program on the right prints the numbers themselves. Note how 
the "25+1" on the left is printed as it is while the 25+1 on the right 
is evaluated to be 26. 

The VAL function returns the number represented by the specified 
string. The format of the VAL function is: 

VAL(string) 

where: 

string may contain the digits 0 through 9, the letter E 
(for E notation) and the symbols + (plus), -
(minus) , and • (decimal point) and must be a 
string representation of a number. The string 
must be a numeric constant not a numeric 
expression. 

The STR$ function converts a number to its string representation. The 
format of the function is 

STR$(expression) 

The STR$ function returns the value of expression as it would be 
printed by a PRINT statement but without a leading or trailing space. 
Use the STR$ function when you want to print a number without spaces 
before and after it or when you want to perform string operations or 
functions on a number. 

5-19 



FUNCTIONS 

Consider the following example: 

1...ISTNH 
5 PRINT "PROGRAM TO CALCULATE 5% INTEREST" 
10 PRINT "TYPE IN AMOUNT"; 
20 INPUT M!I:· 
30 IF POSCM$v"$"vl><>1 THEN 100 
40 A$=SEG$CM$v2vl...ENCM$)) 
~:.:;o M ::::VA I... ( A !I; ) 
60 I:::: t 0~'5*M 

?O I!l;::::STi:~~1; <I) 
80 l$=SEG$(I$v1Y2tPOSCI$v"t"v1)) 
n::s 1:;:EM 
90 PRINT "5% INTEREST OF";Ms; 
100 PRINT "IS $";I$ 
32?6? END 

i:~E::ADY 
1:\:UNNH 

r:"F~OGl:~AM TD Cf.11...CUl ... ATE :=.=;'..:{. I NTEl:~EST 
TYF'E IN AMOUNT'!' %:30B + 90 
5% INTEREST OF $308.90 IS $15t44 

Input string in form $xxx.xx. 
Check to see that a $ is present. 
Strip $ from number. 
Convert string to number. 
Compute interest. 
Convert it to string. 
Truncates interest to 

dollars and cents. 
Print results. 

Note that there is 
no space before 15.44. 

5.3.2.3 Binary and Octal to Decimal Conversions (BIN and OCT 
Functions) - The BIN function returns the decimal value of a binary 
number. The binary number is represented as a string of ls, Os, and 
spaces. The BIN function ignores spaces, allowing convenient spacing 
of the digits. The format of the BIN statement is: 

BIN(string) 

The BIN function returns an integer value. 

The binary number is treated as a signed 2's complement integer and 
its absolute value may not be larger than 2Al5-l. For example: 

1... IBTNH 
10 PRINT BIN <"100101001") 
::.'. 0 p F\: I NT H I N ( II :I. :I. :I. :I. :I. :I. :I. :I. :I. 1 1 :I. :I. :I. :I. :I. " ) 

PEt1DY 
i:;.:UNNH 

... :1. 

The OCT function returns the decimal value of an octal number. The 
octal number is represented as a string containing the digits from O 
to 7 and spaces. The OCT function ignores spaces allowing convenient. 
grouping of the digits. The format of the OCT function is: 

OCT(string) 

The OCT function returns an integer value. 

5-20 



FUNCTIONS 

The octal number is treated as a signed 2's complement integer. Its 
absolute value may not be larger than 2~15-1. 

For example: 

LISTNH 
10 PRINT OCTC"451") 
20 PRINT OCTC"177 777") 

READY 
RUN NH 

297 
-1 

READY 

5.4 USER-DEFINED FUNCTIONS (DEF STATEMENT AND FN FUNCTION) 

In some programs you may want to execute the same sequence of 
mathematical formulas in several places. You can define a sequence of 
operations as a user-defined function and can use this function as you 
use the functions BASIC provides, such as SIN and SEG$. 

Names of user-defined functions consist of the letters FN, followed by 
a third letter, and optionally followed by a percent sign or a dollar 
sign. If you end the function name with a percent sign, it returns an 
integer. If you end the function name with a dollar sign, it returns 
a string. If you do not end the function name with either a percent 
sign or a dollar sign, then it returns a floating point number. 

Legal User-Defined 
Function Names 

Illegal User-Defined 
Function Names 

FNA 
FNC% 
FNR$ 

FNl 
FNA2 
FNA%$ 

You must define each user-defined function once in a program with a 
DEF statement. You can define it anywhere in the program. The format 
of the DEF statement is: 

DEF FNletter [{:}] (list)=expression 

where: 

letter 

% 

$ 

is an alphabetic character that becomes part of 
the function name. 

indicates the function returns an integer and 
becomes part of the function name. 

indicates the function returns a string 
becomes part of the function name. 

and 

neither $ nor % indicates the function returns a 
real number. 

5-21 



FUNCTIONS 

list contains between one and five dummy variables. 
These can be integer, floating point, or string 
variables. The List is in the format: 

variable! [,variable2, .•• ,variable5] 

expression is evaluated each time the function is used. It 
may contain any of the dummy variables or any 
other variables in the program. 

Ensure that the expression is the same data type, string or numeric, 
as indicated by the function name. If the expression is real and the 
function name is integer or vice versa, BASIC converts the expression 
to the type specified by the function name. 

Once you have defined the function anywhere in the program, you can 
use (or call) the function. The format for calling the function is: 

FNletter [{:~ (expression! [,expression2, •.• ,expressions]> 

where the number of expressions must be the same as the number of 
dummy variables in the DEF statement. 

Each expression in a function call corresponds to a dummy variable in 
the DEF statement. When BASIC evaluates a function call, it evaluates 
the defining expression in the DEF statement with the expressions 
listed in the function call in the place of the corresponding dummy 
variables. 

For example, the line: 

10 DEF FNACS)=S~2 

causes a later statement: 

20 LET F~::::FNf.1 ( 4) 

to assign a value of 16 (4~2) to R. 

Consider the following two programs: 

Program #1 

l ... ISTNH 
:I. 0 DEF FNS (A) ::::A'"'A 
20 FOF( I:::: :I. TO ::5 
30 PRINT IvFNSCI) 
40 NEXT I 
:=.:;o END 

i::~Ef.~DY 

F~l.JNNH 

:I. :I. 
2 4 
3 ::.~/ 

4 2:'56 
!'.) 3:1.2::.:; 

F'.EADY 

Program #2 

l...ISTNH 
:1.0 DEF FNS<X>=x~x 
20 FOF~ I:::: :I. TO ::_:; 
30 PRINT IvFNS<I> 
40 NEXT I 
:::;o END 

1:(EADY 
m.JNNH 

:I. :I. 
'") 
J\· •• 4 
3 2l 
4 2:'.')6 
::_:; :·):1.2::.:; 

!'.(EADY 

5-22 



FUNCTIONS 

As you can see, these two programs produce the same output. The 
actual names of the arguments in the DEF statement have no 
significance; they are strictly dummy variables. But the data types 
of the variables are significant. If the DEF statement specifies a 
string variable, the corresponding argument must be a string. If the 
DEF statement specifies a numeric variable, the corresponding argument 
must be numeric. BASIC converts, as necessary, a numeric argument to 
the type, floating point or integer, specified by the name in the DEF 
statement. 

The defining 
BASIC-supplied 
example: 

expression 
function, 

can 
or 

10 DEF FNACX>=x-2+3*X+4 

contain 
another 

any constants, variables, 
user-defined function. For 

20 DEF FNBCX>=FNACX)/2tFNA<X> 
30 DEF FNCCX>=SQR<X+4>+1 

You can include any variables in the defining expression. If the 
expression contains variables that are not in the dummy variable list, 
they are not dummy variables. That is, when the user-defined function 
is evaluated, the variables have the value currently assigned to them. 

Consider the following example: 

1...ISTNH 
10 DEF FNB<AvB>=A+x-2 
20 X:::::I. 
30 PRINT FNBC14v87) 
40 X::::2 
50 PRINT FNBC14v87) 
:·~27f.>7 END 

F~E(.)DY 
1:WNNH 

:I.~) 

:1.8 

Define function. 
Assign value to x. 
Evaluate function. 
Change value of x. 
Evaluate function again. 

14 + 1"2 
14 + 2"2 

Note that in this example the second argument (the dummy variable B 
and the actual argument 87) is unused. 

The expression does not have to cortain any of the variables. For 
example: 

1...InTNH 
10 DEF FNA <X>=4+2 
20 LET R=FNAC10>+1 
:30 Pl:~ I NT F~ 

40 END 

F~E(.iDY 
1:~UNNH 

... , ,. 

!=~EADY 

Note this function always returns 
a value of 6 no matter what 
the value of the argument 
is. 

5-23 



FUNCTIONS 

Consider the following example: 

L.ISTNH 
1 REM MODULUS ARITHMETIC PROGRAM 
5 REM FIND X MOD M 
10 DEF FNMCXYM>=X-M*INTCX/M) 
:I.~:; F~EM 

20 REM FIND A+B MOD M 
25 DEF FNACAPBvM)=FNMCA+BvM) 
30 1:~EM 

35 REM FIND A*B MOD M 
40 DEF FNB<AvBvM>=FNM<A*BvM) 
4:1. 1:i:EM 
4 ::.:.i P 1::: I NT 
50 PRINT "ADDITION AND MULTIPLICATION TABLES MOD M" 
55 PRINT "GIVE ME AN M"; \ INPUT M 
60 PRINT\ PRINT "ADDITION TABLES MOD";M 
6::5 GOSUB 800 
70 FOR I=O TO M-:1. 
'? ~.:s p 1::.: I NT I !) II " ;l 

80 FOR J=O TO M-:1. 
n !:.'.i PF J NT F NA ( J ~· ,.J v M ) v 
90 NEXT ,..1 \ Pl:~ I NT \ NEXT I 
:1.00 PRINT \ PRINT \ 
:I. :I. 0 P 1::: I NT 11 MU I ... T I PL I CA T I Cl N TABLES M 0 D " v M 
:1.20 c-;onuB noo 
130 FOR I=O TO M-:1. 
1·40 PRINT Iv" "!o 
:l.50 FOR J=O TO M-1 
160 PRINT FNB(JyJvM>; 
170 NEXT J \ PRINT \ NEXT I 
:I. no GO TO :·5276'7 
800 REM SUBROUTINE FOLLOWS: 
8:1.0 PRINT\ PRINT TAB<5>00P 
820 FOR I=O TO M-:1. 
n3o Pr::INT I 9 \ NEXT I \ PFi:INT 
840 FOR I=:I. TO 3*M+4 
850 PRINT "-"; \NEXT I \PRINT 
fl(,() i:::E ruF~N 
~:~; ::.~ / 6 "'/ E N D 

5-24 

Define FNM to find 
X MOD M. 

Define FNA to find 
A+B MOD M using FNM. 

Define FNB to find 
A*B MOD M using FNM. 

Call FNA. 

Call FNB. 

Subroutine prints 
table headings. 



FUNCTIONS 

ADDITION AND MULTIPLICATION TABLES MOD M 
GIVE ME AN M'!> 7 

ADDITION TABLES MOD 7 

0 1 2 3 4 5 6 

0 () :I. ~:.~ :3 4 ~'.j 6 
:I. :I. ~:.~ 3 4 ~:; 6 0 
2 2 :3 4 ::=; 6 0 :I. 
:3 :·5 •4 ::=; 6 () :I. ~.~ 
4 4 ::=; 6 () :I. ::.~ :3 
!:5 !:5 6 0 :I. '') 

,,.,,. ... :3 4 
f.> 6 () :I. 2 ~5 4 :=:; 

MULTIPLICATION TABLES MOD 7 

() :I. 2 3 4 5 6 

() 0 0 0 () 0 () 0 
:I. () :I. ~:.~ :3 4 !'.) 6 
'') 
A"., 0 2 4 6 :I. :3 ::=; 
:3 () :·5 6 ::.~ :::; :I. 4 
4 () 4 :I. ~::; ~:.~ 6 3 
::s 0 :=:; :·5 :I. t.) 4 ~:.~ 

6 () 6 ~'.) 4 :3 ~.~ :I. 

1:::EADY 

You can put DEF statements anywhere in a program. They do not have to 
appear before the functions are used. BASIC defines functions when a 
program is run. Consider this example: 

:1.0 DEF FNA<X>=x-2 Enter DEF statement 
PRINT FNAC3) Try calling function in 

immediate mode 
?UNDEFINED FUNCTION Error message produced. 

F~EADY 
RUNNH Run program, causing 

Pr~JNT FNAC:3) 
<,;> 

function to be defined. 

Now it works! 

If you enter a DEF statement in immediate mode, BASIC ignores it. 

If the same function is defined more than once in a program, BASIC 
prints the ?ILLEGAL DEFINE (?IDF) error message. Note that FNA, FNA%, 
and FNA$ are all different functions. 

5-25 



FUNCTIONS 

5.5 DATE AND TIME FUNCTIONS (DAT$ AND CLK$ FUNCTIONS) 

BASIC provides two functions to return the current date and time. The 
format of these functions are: 

DAT$ 
CLK$ 

For example: 

1 ... ISTNH 
10 PRINT "TODAY IS";DATS 
20 PRINT "THE TIME IS";CLKS 

F~EADY 

r:~UNNH 

TODAY IS 2'7· .. ·MAY·· .. '76 
Tl·IF TI ME IS :I. 0: ~:.:;~.=;: ~~() 

l:::Ef.~DY 

5-26 



CHAPTER 6 

WORKING WITH DATA FILES 

6.1 INTRODUCTION TO DATA FILES 

You can use files to store data for future use. If you store data in 
your area of memory (such as with DATA statements), the data is lost 
each time you enter a new program. Data stored in files on peripheral 
devices can be used by many different programs, can be saved for 
future use, and can even be taken to another computer system. 

There are two different kinds of BASIC data files, sequential files 
and virtual array files. 

BASIC treats sequential files in the same way that it treats terminal 
input and output. When BASIC executes an INPUT statement, it requests 
a value from you through the terminal. When BASIC executes an INPUT # 
statement, it requests a value from a sequential file. When BASIC 
executes a PRINT statement, it writes data on the terminal. When 
BASIC executes the PRINT # statement, it writes data in a file. One 
difference between sequential files and terminal input and output is 
that once a file has been written BASIC can read the data. 

BASIC treats virtual array files in the same way that it treats arrays 
in your area of memory. As you can access the elements in an array in 
memory in any order, you can access the elements of a virtual array 
file in any order. This is called random access. For comparisons of 
sequential files and virtual array files and arrays in memory and 
virtual array files, see Section 6.4. 

This chapter describes data files. It is also possible to store BASIC 
programs in files (see Section 9.6). 

6.2 FILE CONTROL STATEMENTS 

Before you can access a sequential or virtual array file, you must 
open it, that is, associate the file with a channel number. Use the 
OPEN statement to do this. 

If you open any files in your program, you should close them, that is, 
disassociate them from their channel numbers, when the program 
terminates. use the CLOSE statement to do this. 

6-1 



WORKING WITH DATA FILES 

6.2.1 Opening a File (OPEN Statement) 

The OPEN statement can either open an existing file or create a new 
one. The OPEN statement associates the file with a channel number, 
which you use to access the file. 

The format of the OPEN statement is: 

OPEN string 

where: 

string 

FOR INPUT 

FOR OUTPUT 

expression 

[{
FOR INPUT }]AS FILE[#]expression 
FOR OUTPUT 

is a file specification. It can be any string 
expression. See your BASIC-11 user's guide for a 
complete description of the file specification 
format. 

specifies opening an existing file. 

specifies creation of a new file. 

is the channel number of the file. The channel 
number can have any integer value between 1 and 
the maximum allowed by the system (see your 
BASIC-11 user's guide). If the value of the 
expression is not an integer, BASIC truncates it 
to an integer. 

The OPEN statement opens a sequential file unless the channel number 
specified in the OPEN statement is also specified in a DIM# statement 
(see Section 6.4.1). In this case, BASIC opens a virtual array file. 

If you specify FOR INPUT, BASIC opens an existing file and you can 
only read information from it to memory. 

If you specify FOR OUTPUT, BASIC creates a new file. Any existing 
file with the same file specification is superseded when the new file 
is closed (see Section 6.2.2). What actually happens to the old file 
is system dependent; see the BASIC-11 user's guide for your system. 
If you specify FOR OUTPUT for a sequential file, you can only write to 
the file. However, if you specify FOR OUTPUT for a virtual array 
file, you can either write to or read from the file (see Section 6.4). 

Specifying neither FOR INPUT nor FOR OUTPUT for an existing sequential 
file is equivalent to specifying FOR INPUT. If the sequential file 
does not exist, specifying neither is equivalent to specifying FOR 
OUTPUT. 

If you specify neither FOR INPUT nor FOR OUTPUT for an existing 
virtual array file and the file exists, the existing file is opened, 
but, unlike specifying FOR INPUT, you can both write to and read from 
it. To update an existing virtual file, open it with neither FOR 
INPUT nor FOR OUTPUT specified. Specifying neither FOR INPUT nor FOR 
OUTPUT for a virtual array file that does not exist is equivalent to 
specifying FOR OUTPUT. 

Consider these examples of the OPEN statement. 

10 OPEN "DATAl" FOR INPUT AS FILE 11 

Opens the existing file specified by DATAl and associates it 
with channel 1. You can only read from the file. 

6-2 



WORKING WITH DATA FILES 

:1.::'.i N:::::::; 
20 OPEN "MONEY" FOR OUTPUT AS FILE N 

Creates a new file and supersedes any existing 
specified by MONEY and associates it with channel 5. 

file 

Opens the line printer for output and associates it with 
channel 2. Note that to use a write-only device such as the 
line printer, you must specify FOR OUTPUT. 

You can also use some system-dependent options in the OPEN statement. 
These allow greater flexibility in accessing files. The complete 
format of the OPEN statement is: 

OPEN string fjFOR INPUT U AS FILE [#]expr ~OUBLE BUF][RECORDSIZE expr][MODE exp~~FILESIZE exp;J\ 
~FOR OUTPUT~ JI 

The effects of DOUBLE BUF, RECORDSIZE, MODE, and FILESIZE are 
described in your BASIC-11 user's 9uide. 

6.2.2 Closing a File (CLOSE Statement) 

The CLOSE statement closes the files specified and disassociates them 
from their channel numbers. After you close a file, you can not 
access the file until you re-open it. 

All programs that open files should close them before terminating. If 
you do not close your file, you can accidently delete it. An existing 
file with the same file specification is not superseded until the new 
file is closed. 

The format of the CLOSE statement is: 

CLOSE[ [#]express ion, [#]express ion,[# ]expression, ... ] 

where: 

expression specifies the channel number of a file to be 
closed. 

If no expressions are specified, then BASIC closes all open files. 

Consider these examples of CLOSE statements: 

:I. 0 0 CI... Cl n E =II= :I. 

Closes the file associated with channel 1. 

:I. :1.0 B::::4 
l ?O Cl...OGE :11:2 ~ f: ~ 6+ :I. 

Closes the files associated with channels 2,4, and 7. 

:1.30 Cl...CUF 

Closes all open files. 

If a program opens but does not close files, BASIC closes all files 
when it executes a CHAIN (see Section 8.1) or END statement or when it 
terminates the program after executing the highest numbered line in 

6-3 



the program. 
statement. 

WORKING WITH DATA FILES 

BASIC does not close files after executing a STOP 

6.3 USING SEQUENTIAL FILES 

You use sequential files in the same way that you use terminal input 
and output. However, sequential files allow you to manipulate much 
larger amounts of data in a much shorter time than do terminal input 
and output. 

BASIC accesses data stored in sequential files serially; 
read the entire file to read the last item of data. 

you must 

You can open a sequential file for input or for output, but you can 
not do both at the same time. To update an existing sequential file 
you must open it for input, open a new file for output, then read the 
data from the input file and write the data including any changes you 
want to the output file. 

The INPUT #expression and the LINPUT #expression statement (see 
Section 6.3.1) read data from a sequential file opened for input. 
Data is read from the file in the same way that it is read from the 
terminal. 

The PRINT #expression statement (see Section 6.3.2) prints data to a 
sequential file opened for output. The expression after the # (number 
sign} must have the same value as the expression specified in the OPEN 
statement. BASIC stores the same data in a file that it would print 
on a terminal, including spaces and line terminators. 

Once you have opened a data file for input, you can test for the 
end-of-file condition with the IF END # expression statement (see 
Section 6.3.3) and you can restore it to the beginning with the 
RESTORE # expression statement (see Section 6.3.4). 

6.3.l Reading Data from a Sequential File (INPUT # and LINPUT # 
Statements) 

The INPUT # statement reads data from a file and assigns values to the 
specified variables. The format of the INPUT # statement is: 

INPUT #expression,variablel[,variable2,variable3, ... ] 

where: 

expression 

variable(s} 

is the channel number of the file except if the 
value of the expression is 0, the values are input 
from the user's terminal. 

are assigned the value(s} read in from the file. 
The variables can be any string, integer, floating 
point, or subscripted variables. 

You can also use a colon (:} instead of a comma after the expression. 

If the line of data in the file contains more data than there are 
variables, BASIC ignores the excess data. If there is not enough 
data, BASIC looks for more data on the next line. 

Consider the following example which reads 10 numbers from a file and 
prints the sum. 

6-4 



WORKING WITH DATA FILES 

LISTNH 
10 OPEN "NUMBER" FOR INPUT AS FILE 11 
~-~O FOi:;: I :m :I. TO :I. 0 
:30 INPUT :ff=:I. 11 N 
40 T=mT+N 
~rn NEXT :C 
60 PRINT "THE TOTAL IS"~T 
70 CLOSE =R=l 
:l 0() END 

F~EAI:IY 
f~UNNH 

THE TOTAL IS 187+3 

The LINPUT # statement inputs a string from a file. BASIC treats 
LINPUT # just as it treats LINPUT; all characters on the input line, 
including commas and quotation marks, are assigned to the string. The 
format of the LINPUT # statement is: 

LINPUT #expression,variablel[,variable2,variable3, ••. ] 

where: 

expression specifies the channel number of the file except if 
it is O, BASIC inputs a line from the user's 
terminal. 

variable(s) are assigned the value(s) of all the characters 
read from the file up to the line terminator(s). 
The variables can only be string variables or 
subscripted string variables. 

You can also use a colon (:) instead of a comma after the expression. 

NOTE 

The INPUT # statement and the LINPUT # 
statement cannot be used in immediate 
mode. 

6.3.2 Storing Data in a Sequential File (PRINT i Statement) 

The PRINT # statement prints data to the specified file. 
of the statement is: 

The format 

PRINT #expression[, list] 

where: 

expression 

list 

is the channel number of the file except if the 
value of the expression is O, data is printed on 
the user's terminal. 

contains the items to be printed. It can contain 
any numeric and string expressions and TAB 
functions. Items can be separated by commas or 
semicolons with the resulting output format the 
same as the format of the simple PRINT statement. 

6-5 



WORKING WITH DATA FILES 

You can use a colon (:) instead of a comma after the expression. 

If there are no items in the list, BASIC prints a blank line to the 
file. When there are no items in the list, you need not specify the 
comma or colon after the expression. 

Consider the following example, which creates a sequential file from 
data stored in DATA statements. 

1...ISTNH 
10 OPEN "NAMES" FOR OUTPUT AS FILE tl 
20 F(Ef.1D r.1~1; v A 

Opens file. 
Reads data from 
program. 2~5 F~EM 

30 IF AS=""THEN 32000 
3~'5 F;:EM 
40 PRINT t1YA$;"v";A 
4::5 F;:EM 
:'.'iO GO TO 20 
::.:; ~.:; F~ E M 

Checks to see if it 
is the last data. 
Prints two data 
items 
separated by a 
comma. 

2~:.:;000 DriTA "DARAH" y :l.8"7.2v ",.JOE 11 
!I :1.:1."7+4:'.'i 

25010 DATA ",.JANE"v 200v ",.JIM"v 89 
25020 DATA "MALCOLM"v :1.25 
?!5030 DtiTA "II y 0 
:3 2 0 0 0 CI ... Cl n E :II: :I. 
32"76? END 

HEADY 
i:;:UNNH 

Closes the file to 
make it permanent. 

After you run this program, the file specified by NAMES contains: 

SARAH I 18 7 . 2 
JOE, 117.45 
JANE I 200 
JIM, 89 
MALCOLM, 125 

You should print a comma (in a string constant) between each data item 
on a line. If you do not do this, you will not be able to input the 
data items from the file. 

Consider the following example, which reads the data file created in 
the previous program and prints the results on the terminal. 

1 ... J~:)TNH 
:I. 0 OPEN "NtiMEG II (.~S FI l...E :11:2 
20 INPUT :11:2 v N~I; v N 
30 PF~ I NT N~I; v N 
40 DO TD 20 

i:::Er:':iDY 
F:UNNH 

f>t11:< ti H 
,JOE 
Jt1NE 
JIM 
Mtil ... COl...M 

:I. B"?. 2 
:1.1.?. 4!'.'i 
:::.~oo 

09 
:1.2:::; 

TOUT OF Dt1 T1~) 1!:-i T I... I NE 20 

Opens existing file. 
Inputs data from file. 
Prints results. 

All data in file has been read. 

6-6 



WORKING WITH DATA FILES 

Note that the line reading the file has the same number of variables 
as the line printing the file has data values. 

Program line reading the file Program line creating the file 

20 INPUT :11:2 v N~I> v W 40 PRINT llvAS~"v"~A 

See Section 6.3.3 for a way to detect the end of the file before BASIC 
prints an error message. 

The PRINT #expression USING statement prints formatted data to a file 
(see Chapter 7). 

6.3.3 Checking for the End of Input File (IF END i Statement) 

Use the IF END # statement, a special form of the IF statement, to 
check for the end of a file. The form of the statement is: 

{
THEN statement } 

IF END[#]expression THEN li~e number 
GO TO line number 

where: 

expression is the channel number of the file. The value of 
expression can not be 0 and the file associated 
with the expression can not be a terminal. 

If the next attempt to input a value would produce the ?OUT OF DATA 
(?OOD) error message, BASIC executes the statement after the THEN or 
transfers control to the specified line number. Otherwise BASIC 
transfers control to the next statement as it does with an IF 
statement (see Section 4.1.3). 

Consider the following example: 

l...ISTNH 
10 OPEN "NAMES" AS FILE 11 
20 IF END #1 THEN PRINT "END OF FILE" \ GO TO 32000 
::~O INPUT :II: 1 Y A!I> v A 
40 Pl:~ I NT 1~!1> v A 
:=.:.iO GD TD 20 
32000 CL.DEF =11=:1. 

32'76'7 END 

HEADY 
F(l.JNNH 

SAF~10iH 
.JOE 
,JANE 
,JIM 
MALCOLM 
END ClF FILE 

F~EADY 

:I.fl? y 2 
:i. :I.'?<· 4::5 
200 

:1.2::5 

Line 20 checks for the end-of-file condition. 

6-7 



WORKING WITH DATA FILES 

Note that the IF END # statement tests if there is one more data item. 
If there is one data item left when IF END checks and your INPUT # 
statement requests two data items, BASIC prints the ?OUT OF DATA 
(?OOD) error message. 

6.3.4 Restoring a File to the Beginning (RESTORE i Statement) 

The RESTORE # statement resets the specified sequential input file 
from its current position to its beginning. The format of the RESTORE 
# statement is: 

RESTORE #expression 

where: 

expression is the channel number of the file to be restored. 

6.4 USING VIRTUAL ARRAY FILES 

use virtual array files when you want to randomly access the data in a 
file or when an array is too large to fit in memory. 

Virtual array files have several advantages over sequential files: 

1. You can access them in a random, non-sequential manner. The 
last element in a virtual array can be accessed as quickly as 
any element. Contrast this with a sequential file where you 
must read the entire file before reading the last element. 

2. When BASIC stores data in virtual arrays, it does not convert 
them to ASCII characters but rather stores them in internal 
binary representation. Consequently, there is no loss of 
precision caused by data conversion. There is some loss of 
precision with sequential files. 

3 .. You can update virtual array files without copying the entire 
file. 

Virtual array files also have several advantages over arrays stored in 
memory: 

1. Virtual array files allow you to create much larger arrays 
than can be stored in available memory. 

2. Data can be stored in virtual array files. 

Virtual arrays also have several restrictions, which do not apply to 
arrays in memory: 

1. Virtual array files are slower because BASIC must read the 
file before manipulating the data. 

2. Although BASIC strings in memory can have any length (up to 
255 characters), you cannot use these dynamic length strings 
in virtual arrays. Strings in virtual array files have a 
fixed maximum length, which you specify in the DIM # 
statement. The maximum character length can be any number 
from 1 to 255. Strings longer than the maximum are 
truncated. Strings shorter than the maximum are padded with 
trailing nulls. When you access an array element, all 
trailing nulls are removed. 

6-8 



WORKING WITH DATA FILES 

3. You can only have one virtual array dimensioned in each DIM # 
statement. 

4. You cannot use a virtual array element to store a result from 
a CALL statement (see Section 8.3). 

6.4.1 Dimensioning Virtual Arrays (DIM # Statement) 

To use a virtual array file, place a DIM # statement and an OPEN 
statement with the same channel in a program. After the file is 
opened, the elements of the array can be used in the same way as 
elements of an array in memory. 

The form of the virtual array DIM statement is: 

DIM #integerl, array [=integer2] 

where: 

integerl is an integer constant (with or without a percent 
sign)· that specifies the channel number of the 
file. 

array is any 1- or 2-dimensional array. 
format as in the standard 
specifically: 

variable(integer[,integer]) 

It has the same 
DIM statement, 

where the variable can be any string, integer, or 
floating point variable name and the integer(s) 
represents the subscripts. 

integer2 is an integer constant (with or without a percent 
sign) that specifies the maximum length for 
elements in a virtual string array. Its value 
must be in the range 1 to 255. If it is omitted 
for a string array, the maximum length is 16. 

To access the data in an existing virtual 
DIM # statement specifies the same data 
specified in the program that created the 
associated with the file can be different 
it is the same variable type. 

Consider the following examples: 

:1. o n i: M ,11, 1 v (1::·;: ( ::.:.~ooo :i 
:? 0 Cl F' E N 11 I NT D !":1 T '' F U i:;: Cl U. i' f' U .. l ti E F I I... F :I. 

array file, ensure that the 
type and subscripts that are 
file. The variable name 

from the original as long as 

Creates a new 2001-element integer virtual array file. The 
virtual array is named A% in this program. You can assign 
values to the element and then use the values. 

:I. 0 D I M :!I: ;? !·' F 9 ( :I. 0 i) !I :I. () ) 
2 o or· i::: N " 1..J t1 F~ ti Y 11 r o i::.: 1 Ni::· u r ti:::; F :i: 1. .. i::: :ii::.:'. 

Opens an existing 2-dimensional, floating point virtual 
array file. The virtual array is named F9 in this program. 
Only input is allowed; if you try to assign a value to an 
element of the array, BASIC prints the ?ILLEGAL I/O 
DIRECTION (?IID) error message. 

6-9 



WORKING WITH DATA FILES 

10 DIM t2YA$(100)=32 
20 OPEN 11 STRNGS" AS FILE #2 

Opens a I-dimensional string virtual array file where the 
maximum string length is 32 characters. The virtual array 
is named A$ in this program. If the file specified by 
STRNGS already exists, it is opened for updating. If no 
file exists, then a new one is created. 

You should close a virtual file when your program terminates. If you 
do not close an output virtual array, it does not become permanent. 
If you do not close an updated virtual array, the assignments you have 
made may not be incorporated into the file. 

As an example of a use of virtual array files, consider the problem of 
an information retrieval system for a small organization. Assume each 
employee needs a 128-character record containing name, home address, 
home phone, work station and phone extension. If this information is 
maintained in a long sequential file, it would take a long time to 
locate the information for any employee and it would be impossible to 
update without rewriting the file for every update. Alternatively, 
these records can be maintained in a virtual array file. In this case 
some index is needed to associate a particular employee with a record. 

In the example below, an index file containing badge numbers is used 
to find the record in the master file. The employee's badge number is 
in the same position in the index file as the record is in the master 
file. It is faster to search through the index file than to search 
through the master file because the data elements are much shorter and 
less time is spent reading data from the file. This example program 
prints the employee's name based on the badge number. 

10 DIM f1,B%C1000) 
:I. ~.'.:.i i:;:EM 
20 DIM f2,B$(1000)=128 
?'.'.'.i REM 
:.·:::o OPEN "BtiDGE 11 tin F :i: LE '"' :1. 
40 DF'[N II Mf:':-1STEF~ II f.i~:; FI l...E :11:2 
:::i o i::· 1:~ I N T 11 L·J H r.1 T I s r HE n A n n E Nu Mr: Er;: 11 

; 

·:~:·'·..! INPUT N 
70 FOR I%=1 TO 1000 
80 IF H%CI%>=N THEN 200 
90 NE>=:T J :.~;; 

100 PRINT "NO JUCH EMPLOYEE" 
:1.10 GO TO 32/00 
1 :I. ~'.'.i F~FM 

200 PRINT 11 NAME IS 11 0SEG$CB$CI%),:l.0,30) 
32700 CLOSE f:l.,t2 
3::?')'(,7 END 

6.5 RENAMING A FILE (NAME STATEMENT) 

1001 elements in badge 
number file. 
1001 elements in master 
file. 
Open badge file. 
Open master file. 
Specify a badge number. 

Search for a match in 
the badge number 
file. 
If a match is not found 
print message and 
terminate. 
If a match is found, 
get record of employee, 
B$(I%), and extract the 
name from the record 
(the name is stored 
from the 10th to the 
30th characters) . Then 
terminate. 

Use the NAME statement to change the name of data 
statement does not alter the contents of the file. 
NAME statement is: 

files. The NAME 
The format of the 

NAME string! TO string2 

6-10 



WORKING WITH DATA FILES 

where: 

string! is a file specification of the file to be renamed. 

string2 

For example: 

is the new file specification. 
device in string!, you must 
device in string2. 

10 NAME •MONEY• TO "ACCNTS" 

If you specify a 
specify the same 

Changes the name of the file specified by MONEY to ACCNTS. 

See your BASIC-11 user's .guide for information on system dependent 
file specifications. 

6.6 DELETING A FILE (KILL STATEMENT) 

use the KILL statement to delete data files. The format of the KILL 
statement is: 

line number KILL string 

where: 

string is a file specification of the file to be deleted. 

After you delete a file, you can not open or access it in any way. 

For example: 

10 KILL 1 DATA" 

Deletes the file specified by DATA. 

See your BASIC-11 user's guide for information on system dependent 
file specifications. 

6-11 



CHAPTER 7 

FORMATTED OUTPUT - THE PRINT USING STATEMENT 

7.1 INTRODUCTION TO PRINT USING 

When the format as well as the content of output is important, use the 
PRINT USING statement rather than the PRINT statement. The PRINT 
USING statement allows you to control the appearance and location of 
data on the output line, and thus enables you to create formatted 
lists, tables, reports, and forms. 

The following examples print a series of numbers. One program uses 
the PRINT statement and the other uses the PRINT USING statement. 

PRINT PRINT USING 

l ... IBTNH l...IBTNH 
:1.0 PF~ I NT :I. :1.0 Pl:~INT USING II :11::11::11: :11::11: :11::11: t :U: :II: II y :I. 
20 PF~ I NT :I. 00 20 PF~ I NT U~:>ING II :II: :II: :II: :II: :II: '"' :U: t :II: :II: II !1 :I. () () 
;30 PF~INT 
40 Pl:;:INT 
:'.'i() PHI NT 

1:~EADY 

1:~l.JNNH 

:I. 

:l..OOOOOE+06 
:1.00 lo 3 
t ():I. 2;·54:'.'i6 

:I. 00 
:1.tOOOOOE+06 
:I. 00. :·:) 
:I. t 2;·54:'56E .... 02 

F:EADY 

;:}() PF~ I NT 
40 p1:~INT 

!.'50 Pi:~INT 

F~EADY 

F~UNNH 

USING 
UBI NG 
UBI NG 

:I..()() 

:I. 0 0 • () 0 
:I.()()()()()() t ()() 

:I. 00 t 30 
t ():I. 

F~EADY 

II :II: :II: :II: :II: :II: :II: :II: t :II: :II: II Y :I. t OOOOOE+Of.) 
II :II: :II: :II: =It- :II: :II: =I~ t :II: :II: II :1 :1.00 t ;3 
ti :II: :l!::IJ: :11::11::11: :II: t :0: :II: II !I t ():I. 2;·54:'56 

Note that PRINT left-justifies numbers and prints certain numbers in E 
format. These characteristics make it difficult to compare numbers. 
In contrast, PRINT USING allows you to format the numbers so that the 
decimal points are aligned making it much easier to compare the column 
of numbers. 

You can designate the following formats with PRINT USING: 

1. Numbers 

a. Number of digits 
b. Location of decimal point 
c. Inclusion of symbols (trailing minus signs, 

asterisks, dollar signs, commas) 
d. Exponential format 

7-1 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

2. Strings 

a. Number of characters 
b. Left-justified format 
c. Right-justified format 
d. Centered format 
e. Extended field format 

The format of the PRINT USING statement is: 

PRINT USING string, list 

where: 

string is a coded format image of the line to be printed. 
The string is called the format string. If it is 
a string constant, it must be enclosed in double 
quotation marks, not single quotation marks. 

list contains the items to be printed. 

Consider the following example. 

10 PRINT USING "HI 'LLLLL YOU WEIGH ill~i LBS~"v"PALJL"Y145 

The format string is: 

"HI 'LLLLL YOU WEIGH ###.# LBS." 

and the list contains two data items: 

the string constant "PAUL" 
the integer 145 

In the format string there are two fields corresponding to the two 
data items. The first field is 'LLLLL, which corresponds to the first 
data item, 11 PAUL 11 and the second field is ###.#, which corresponds to 
the second data item, 145. When BASIC prints the line it prints each 
data item in the same position as its field and in the format 
specified by the field. The rest of the format string, namely "HI 

YOU WEIGH LBS." is just a message that is printed. The 
output of this example is: 

l...ISTNH 
10 PRINT USING "HI 'LLLLL YOU WEIGH 111~1 LBS.","PAUL"Y145 

1:~:E(~DY 

F~UNNH 

HI PAUL YOU WEIGH 145+0 LBS~ 

F~EADY 

The way to use format strings to print items is described in Sections 
7.2 and 7.3 and is summarized in Section 7.4. 

7.2 PRINTING NUMBERS WITH PRINT USING 

You can use PRINT USING to print numbers in the format that you want~ 
You can specify the number of digits reserved for a number, the 
location of the decimal point, certain special symbols to be printed 
with the number, or that the number be printed in E format. 

7-2 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

7.2.1 Specifying the Number of Digits 

With PRINT USING, you specify the number of places reserved for digits 
in a field. Specify the number of places with a corresponding number 
of number signs (#). 

For example: 

LISTNH 
10 PRINT USING "lll"v123 
20 PRINT USING "lllll"v12345 

READY 
RUN NH 
123 
12345 

READY 

Three digits reserved. 
Five digits reserved. 

If there are not enough digits to fill the field specified, BASIC 
prin~s spaces before the first digit. For example: 

LISTNH 
10 PRINT USING "lltlt"vl 
20 PRINT USING "lllll"r-10 
30 PRINT USING "illlt",1709 
40 PRINT USING "llltl"v12345 

READY 
RUN NH 

1 
-10 

1709 
12345 

READY 

BASIC rounds numbers printed with the PRINT USING statement. For 
example: 

LISTNH 
10 PRINT USING "lll"v126.7 
20 PRINT USING "l"v5.9 
30 PRINT USING "i"v5.4 

READY 
RUNNH 

127 
6 
5 

READY 

126.7 is rounded to 127. 
5.9 is rounded to 6. 
5.4 is rounded to 5. 

7.2.2 Specifying the Location of the Decimal Point 

You can reserve places for any number of digits on both sides of the 
decimal point. Specify the location of the decimal point by placing a 
decimal point in the number signs (#) in a field. BASIC always prints 
the digits to the right of the decimal point even if they are Os. 
Consider the following example: 

7-3 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

LISTNH 
10 PRINT USING "lltltt•,5.72 
20 PRINT USING "il+lll"Y39.3758 

f~EADY 
f\LJNNH 

~'.i.no 
~~<y + ~376 

F~EADY 

Note that BASIC with 5.72 prints spaces to the 
left of the decimal point, as necessary, but 
prints Os to the right of the decimal point. Also 
note that 39.3758 is rounded to 39.376. 

If there are any number signs to the left of the decimal point, BASIC 
prints at least one digit to the left of the decimal point. It is O 
as necessary. 

An exception to this format rule is when you specify only one number 
sign to the left of the decimal point for a number that is negative. 
In that case BASIC prints the minus sign to theieft of the decimal 
point instead of a O. 

7.2.3 Printing a Number That is Larger Than the Field 

If you have not reserved enough digits for a number, BASIC prints a 
percent sign (%) followed by the number and it ignores the format 
specified by the field. BASIC prints the number in the standard PRINT 
statement format. After BASIC prints the number, it completes the 
rest of the PRINT USING statement as usual. Consider the following 
example: 

l...ISTNH 
10 PRINT USING "lii.ii",256.786 
20 PRINT USING "ti.ii"v256.786 

Enough digits reserved. 

F~EADY 
Fi:UNNH 

2~:.:;6 + 7<_;> 
% 2~:56. 706 

F~EADY 

Not enough digits reserved. 

The number is printed correctly (with rounding). 
There are only two number signs to the left of the 
decimal point; therefore, the number does not fit. 
The number is printed in the usual PRINT statement 
format, with a space before and after it and with 
no rounding. 

Be sure to enter a number sign to the left of 
every digit in the number to the left of the 
one extra for the sign if the number may 
alternative method for reserving a place 
Section 7.2.4.1). 

the decimal point for 
decimal point. Also add 
be negative. (For an 
for the minus sign, see 

For ex.ample: 

Field There are enough places for But not enough places for 

###.## 100.569 -100.569 
.#### .12579 -.12579 

7-4 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

A number can also become larger than 
increases the number of places needed. 

its field 
For example: 

because rounding 

LISTNH 
10 PRINT USING ".ttl"v.999 
20 PRINT USING "+ll"v.999 
25 PRINT 
30 PRINT USING "t.tl"v.999 

READY 
RUNNH 

• 999 
% .999 

1.00 

READY 

Enough places reserved. 
Rounds to 1.00; not enough 
places reserved. 
Enough places reserved. 

Format as specified by field . 
% followed by number in PRINT 
statement format. 
Enough places reserved and the 
number is printed, correctly 
rounded. 

7.2.4 Printing Numbers with Special Symbols 

You can use the PRINT USING statement to print a number with a 
trailing minus sign (instead of the minus sign appearing before the 
number), with asterisks filling blanks before the first digit, with a 
dollar sign printed before the first digit or with commas inserted 
every three digits. 

7.2.4.1 Printing Numbers with a Trailing Minus Sign - To print the 
minus sign - for negative numbers after the number instead of before 
it, specify a trailing minus sign in a field. The trailing minus sign 
is often used to indicate a debit but can be used with any numbers. 
You must use the trailing minus sign to print a number in an asterisk 
fill or floating dollar sign field (see Sections 7.2.4.2 and 7.2.4.3). 

If a field contains a trailing minus sign, BASIC prints a negative 
number as the number followed by a minus sign and prints a positive 
number as the number followed by a space. 

Consider the following examples. 

Standard Fields 

LISTNH 
10 PRINT USING "llt.tl"v-10.54 
20 PRINT USING "ttt.tt"v10.54 

READY 
RUN NH 

-10.54 
10.54 

READY 

7-5 

Fields with Trailing Minus Signs 

LISTNH 
10 PRINT USING "lt.tl-"v-10.54 
20 PRINT USING "tt.tl-"vl0.54 

READY 
RUNNH 

10.54-
10.54 

READY 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

7.2.4.2 Printing Numbers with Asterisk Fill - To print a number with 
asterisks (*) filling any blank spaces before the first digit, start 
the field with two asterisks. For example: 

LISTNH 
10 PRINT USING "**ll.tl"v27+95 
20 PRINT USING "**lt.tl"v107 
30 PRINT USING "**lt.tl~v1007.5 

READY 
RUN NH 

**27.95 
*107.00 
1007.50 

READY 

Asterisks fill two blank spaces. 
Asterisk fills one blank space. 
No blank spaces. 

Note that the asterisks cause asterisk fill and reserve places for two 
digits. 

To print a number which can be negative, as well as positive, in an 
asterisk fill field, specify a trailing minus sign in the field. For 
example: 

LISTNH 
10 PRINT USING "**lt.lt-"v27.95 
20 PRINT USING "**tt.tl-"v-107 · 
30 PRINT USING "**ll.tt-"v-1007.5 

READY 
RUNNH 

**27+95 
*107.00-
1007.50-

READY 

If you attempt to print a negative number in an asterisk fill field 
that does not include a trailing minus sign, BASIC halts execution and 
prints the ?PRINT USING ERROR (?PRU) message (see Section 7.5.1). 

7.2.4.3 Printing Numbers with Floating Dollar Signs - To print a 
number with a dollar sign ($) before the first digit, start the field 
with two dollar signs. If the number can be negative as well as 
positive, end the field with a trailing minus sign. Consider the 
following example: 

7-6 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

l ... I~:>TNH 
10 PRINT USING "$$lt.tl"v77.44 
20 PRINT USING "$$lt.tt"v304.55 
30 PRINT USING "$$tl.ll"v2211.42 
3~=.:; Pl:~ I NT 
40 PRINT USING "$$11.11-"v-125.6 
4~:5 F~EM 

4'? F~EM 
50 PRINT USING "$Sit.ti-" 127.82 

1:;:Ef.)DY 
i:;:l.JNNH 

!I;//,. 44 
!1>304. ::5!5 
% 22:1.1+42 

~1; :I. 2 ~=.=; • (~) 0 .... 
!l>:l.2'7. B~? 

There are enough 
places reserved in line 10 
and 20 but not 30. 

Negative value in floating 
dollar sign with trailing 
minus field. 
Positive number in same field 
as line 40. 

There were not enough places 
to print $ and 2211.42. 
Trailing minus printed. 
Trailing space printed. 

Note that the dollar signs reserve places for the dollar sign and one 
digit~ the dollar sign is always printed. Contrast this with the 
asterisk fill field where BASIC prints asterisks only if there would 
have been leading spaces. 

If you attempt to print a negative number in a dollar sign field which 
does not include a trailing minus sign, BASIC halts execution and 
prints the ?PRINT USING ERROR (?PRU) message (see Section 7.5.1). 

7.2.4.4 Printing Numbers with Commas - To have commas, inserted in a 
number, place a comma anywhere in the field to the left of the decimal 
point (including an assumed decimal point). BASIC then prints a comma 
every third digit to the left of the decimal point. If there is no 
digit to be printed to the left of the comma, BASIC does not print the 
comma. For example: 

l...JSTNH 
10 PRINT USING "tt,tlf",10000 
20 PRINT USING "ft,tlf"v759 
30 PRINT USING "$$f,flllf"v25694.3 
40 p1:;: :i: NT u~:> :i: NG "**=II::• =11:=11:=11= 11 

:• '?2~:59 

50 PRINT USING "ftff,f.lf 11 ,25239 

F:F1::iDY 
F\'UNNH 

:1.0,000 

*::f.:7 !' 2~'59 
2 ~:5 !' ::.~ ;3 9 <· () () 

7-7 

Commas can be combined 
with $$ and **· 
A comma can be anywhere 
in the field to the left 
of the decimal point. 

Comma printed. 
Comma not printed because 
no digit would appear 
to its left. 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

7.2.5 Printing Numbers in E Format 

To print a number in E format, place four circumflexes (~~A~, also 
called up-arrows) at the end of the field. The four circumflexes 
reserve space for the capital letter E, followed by a plus or minus 
sign (which indicates a positive or negative exponent, respectively), 
and then the 2-digit exponent. In exponential format the digits to 
the left of the decimal point are not filled with spaces. Instead the 
first nonzero digit is shifted to the leftmost place and the exponent 
is equal to the number of digits that the decimal point is shifted 
from the number in standard notation (see Section 2.2.1). Consider 
the following example: 

l ... IBTNH 
10 PRINT UBING "llt.11-~--n,5 . 
20 PRINT UBING "tll+ll-~--•Y1000 

F~EADY 

RUNNH 

~:'iOO. OOE .... o::.~ 
:I. 00. OOE+O :I. 

Note that 5 is shifted to the 
left but 1 is shifted to the 
right. Each exponent is 
adjusted. 

You must reserve a place for a minus sign to the left of the decimal 
point. 

You cannot use exponential format with asterisk fill, floating dollar 
sign, or trailing minus formats. 

7.2.6 Fields Which Exceed BASIC's Accuracy 

If a field contains more places than there are digits of accuracy, 
BASIC prints Os in all the places following the last significant 
digit. See your BASIC-11 user's guide for the number of digits of 
accuracy in your system. 

7.3 PRINTING STRINGS WITH THE PRINT USING STATEMENT 

By using the PRINT USING statement, you can specify whether strings 
are printed in a left-justified, right-justified, or centered format. 
String fields start with a single quotation mark ('). The single 
quotation mark is optionally followed by a contiguous series of 
uppercase Ls, Rs, Cs, or Es representing left-justified, 
right-justified, centered, and extended string fields, respectively. 

If a string is larger than its specified string field, BASIC prints as 
much of the string as fits and ignores the rest. The only exception 
is that for extended fields BASIC prints the entire string. 

7-8 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

7.3.l !-Character String Fields 

A string field consisting of only a single quotation mark is a 
!-character string field. BASIC prints the first character of the 
string expression corresponding to the !-character string field and 
ignores all following characters. For example: 

LISTNH 
10 PRINT USING " I "~"ABCDE" 

READY 
RUNNH 

A 

READY 

BASIC ignores the characters 
BCDE. 

7.3.2 Printing Strings in Left-Justified Format 

If you specify a left-justified field, BASIC prints the string 
starting at the leftmost position. If there are any unused places in 
the field, BASIC prints spaces after the string. If there are more 
characters than places in the field, BASIC truncates the string and 
does not print the excess characters. 

A left-justified field is specified by a single quotation mark 
followed by a series of capital Ls. For example: 

LISTNH 
10 PRINT USING "'LLLLLL"Y"ABCD" 
20 PRINT USING "'LLLL"Y"ABC" 
30 PRINT USING "'LLLL"Y"12345678" 

READY 
RUNNH 

ABCD 
ABC 
12345 

READY 

BASIC ignores 
characters 678. 

7.3.3 Printing Strings In Right-Justified Format 

the excess 

If you specify a right-justified field, BASIC prints the string so 
that the last character of the string is in the rightmost place of the 
field. If there are any unused places before the string, BASIC prints 
spaces to fill the field. If there are more characters than places in 
the field, BASIC prints the string as if it were in an equivalent 
left-justified string field. 

7-9 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

A right-justified field is specified by a single quotation mark 
followed by a series of capital Rs. For example: 

LISTNH 
10 PRINT USING "'RRRRRR","ABCD 1 

20 PRINT USING "'RRRRRRuv"A" 
30 PRINT USING "'RRRRRR"v"XYZ" 

READY 
RUN NH 

ABCD 
A 

XYZ 

READY 

If there are more characters than places, BASIC left-justifies the 
string and does not print the excess characters. 

7.3.4 Printing Strings In Centered Fields 

If you specify a centered field, BASIC prints the string so that the 
center of the string is in the center of the field. If the string 
cannot be exactly centered, such as a 2-character string in a 
5-character field, BASIC prints the string one character off center to 
the left. If there are more characters than places in the field, 
BASIC prints the string as if it were in an equivalent left-justified 
string field. 

A centered field is specified by a single quotation mark followed by a 
series of capital Cs. For example: 

LISTNH 
10 PRINT USING " 1 CCCCCC"v "A" 
20 PRINT USING "'CCCCCC"v "AB" 
30 PRINT USING "'CCCCCC"v "ABC" 
40 PRINT USING "'CCCCCC"? "ABCD" 
50 PRINT USING "'CCCCCC"v "ABCDE" 

READY 
RUNNH 

A 
AB 
ABC 

ABCD 
ABCDE 

READY 

If there are more characters than there are places in the field, BASIC 
left-justifies the string and does not print the excess characters. 

7-10 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

7.3.5 Printing Strings In Extended Fields 

The extended field is the only field that ensures the printing of the 
entire string. If you specify an extended field, BASIC left-justifies 
the string as it does for a left-justified field. But, if the string 
has more characters than there are places in the field, BASIC extends 
the field and prints the entire string. This extension may cause 
other items to be misaligned. 

An extended field is specified by a single quotation mark followed by 
a series of capital Es. 

Consider the following example which uses extended, left-justified, 
right-justified, and centered fields. 

L.ISTMH 
:1.00 
:I. :I.() 
:I. 20 
:I. ~50 
:1.40 
:I. !'.'.i() 

!:(EADY 
1:~UNNH 

T ABCD 

F B :::: II + + I c cc c + + I EE EE++ ,. 1...1...1...1... + + I F( F~ F~ 1:;: + + II 
INPUT (.)11; 

IF A$="STOP" GO TO 150 
P 1:( I NT U B J NG F !I; v A !I> v A !I> !' () !I> v f.~ !I> 
GOTO :I. :I. 0 
END 

++ABCD ++ABCD ++ABCD ++ ABCD++ 
T ABCDFFG 
++ABCDF++ABCDEFG+tABCDE++ABCDE++ The underlined field has been 

extended. Note how the rest of 
the line is displaced two 
places. 

++ A ++A 
? AB 
++ tiB ++f.iB 
T STOP 

++1~l 

++1~B 

++ A++ 

++ 1~B++ 

7.4 SUMMARY OF THE PRINT USING STATEMENT FORMAT 

The format of the PRINT USING statement is: 

PRINT [#expr,] USING string, list 

where: 

ex pr 

string 

list 

specifies the channel number. If it is omitted 
output is to the user's terminal. 

is a coded format image of the line to be printed. 
The string is called the format string. It can be 
any string expression; however, if it is a string 
constant, it should be delimited with double 
quotation marks, not single quotation marks. 

contains the items to be printed. The items can 
be any string or numeric expressions. They are 
separated by either commas or semicolons. 
Optionally, the list can end with a comma or 
semicolon to suppress the printing of the carriage 
return. 

7-11 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

The format string contains a series of fields corresponding to the 
items in the list. Fields correspond to items based on the order in 
which they appear. BASIC prints the item at the location in the line 
and according to the format specified by its corresponding field. 

The type (string or numeric) of each field must be the same as the 
type of its corresponding i tern. 

The format string is a template of the line to be printed. 
character in a field reserves one place for the data item. 
character not in a field is printed exactly as it is. Consider 
following example: 

LIBTNH 

Each 
Any 
the 

10 PRINT VSING "THERE ARE lilt CHIPS AND ltl 'RRRR."v327v27,"PINS" 

1:~Ef.1DY 

!:~UNNH 

THERE ARE 327 CHIPS AND 27 PINS+ 

Compare the format string and the printed line: 

format string: 
printed line: 

THERE ARE #### CHIPS AND ### 'RRRR. 
THERE ARE 327 CHIPS AND 27 PINS. 

Each column in the format string corresponds to the same column in the 
printed line. (The only exception is when extended string fields are 
used; these fields expand to the size of the string.) 

It is not necessary to have the same number of fields in the format 
string as items in the list. If there are fewer fields than items, 
BASIC uses the same format string again on a new line for the 
remaining items. For example: 

1...IBTNH 
10 X=5 \ Y=10 \ C=17 \ D=185 
20 PRINT USING "II + Ill = 1111",x,y,x+Y,c,n,c+D 

1:~[(.:1f1Y 

1:~UNNH 

!'.'.i + 10 .... :I.~::; 

:I./" + :I. B~S 202 

The format string in line 20 contains three format fields: 

"U + ### 

1 2 

UU" 

3 

but there are six data items: 

x y X+Y C D C+D 

1 2 3 4 5 6 

7-12 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

BASIC prints the first three data items: 

5 + 10 = 15 

and then repeats the format string on a new line for the other three: 

17 + 185 = 202 

But if there are more fields than items, 
fields. Any characters following the 
printed. For example: 

BASIC ignores the excess 
first unused field are not 

LlSTNH 
10 PRINT USING "THERE ARE Ill PADS IN THE 'LLLLL STOCKROOM"v 25 

READY 
RUN NH 

THERE ARE 25 PADS IN THE 

READY 

There are two fields, ### and 'LLLLL, but only one data item. 
Consequently BASIC ignores the second field ('LLLLL) and does not 
print any of the characters after it (STOCKROOM). 

The items in the list are separated by either commas or semicolons. 
It does not matter which you use. 

If the output of a PRINT USING statement is longer than one line, 
BASIC prints the remainder of the statement on the next line. 

7.4.1 Format of Numeric Fields 

Numeric fields are composed of the special characters described in 
Table 7-1. 

Table 7-1 
Format Characters For Numeric Fields 

Character 

# number sign 

. decimal point 

, comma 

** two asterisks 

$$ two dollar signs 

Effect on Format 

Reserves place for one digit. 

Determines location of decimal point • 

Causes a comma to be printed between every 
third digit. 

Cause leading asterisks to be printed before 
the first digit. The field formed is called 
an asterisk fill field. Asterisks also 
reserve places for two digits. 

Cause a dollar sign to be printed before the 
first digit. The field formed is called a 
dollar sign field. Dollar signs also reserve 
places for one dollar sign and one digit. 

7-13 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

Table 7-1 (Cont.) 
Format Characters For Numeric Fields 

Character Effect on Format 

ftftftft four circumflexes Cause number to be printed in E format. 
Circumflexes also reserve four places for the 
E notation. 

- minus sign Causes a trailing minus sign to be printed 
when number is negative. Printing a negative 
number in an asterisk fill or a dollar sign 
field requires that the field also have a 
trailing minus sign. 

Valid fields can be formed by combining these characters in this 
format: 

[{$*$*}] # [1] # [·] # 

Each number sign (#) in the above format represents any number of 
number signs. One exception to this format is that neither two dollqr 
signs nor two asterisks can be combined with four circumflexes. 

For example: 

Valid Fields 

$$###.## 

**#### 

Invalid Fields 

##. #, # 

$$**###.## 

Sample Output 

$1234.50 

****12 

1,242 

20. 72E-02 

Description 

Dollar sign field 

Asterisk fill field 

Comma in field 

E (exponential) format field 

Reason 

** can not be combined with n~An 

Comma is to the right of the decimal point 

$$ can not be combined with ** 

7.4.2 Format of String Fields 

String fields are composed of a single quotation mark optionally 
followed by a contiguous series of capital Ls, Rs, Cs, or Es. These 
characters' effect on the format are described in Table 7-2. 

7-14 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

Table 7-2 
Format Characters for String Fields 

Character 

' single quotation 
mark 

L 

R 

c 

E 

For example: 

Valid String Fields 

'LLLLL 

'CCCCCC 

Invalid String Fields 

'LLRRR 

"RRRR 

'CCCC' 

Effect on Format 

Star ts string field and reserves place 
for one character. 

Causes string to be left-justified and 
reserves place for one character. 

Causes string to be right-justified and 
reserves place for one character. 

Causes string to be centered in field and 
reserves place for one character. 

Causes string to be lef t-j us tif ied, expands 
field, as necessary, to print the entire 
string and reserves place for one character. 

Sample Output 

ABC 

ABC 

A 

Description 

6-character, left-justified 
string field 

7-character, 
centered string 
field 

single character 
string field 

Reason 

Cannot combine two letters in one field. 

Field must start with single quotation 
mark. 

A single quotation mark should only be at 
the beginning of the field. 

7.5 PRINT USING STATEMENT ERROR CONDITIONS 

There are two types of PRINT USING error conditions, fatal and 
nonfatal. When a fatal error occurs, BASIC stops executing the 
program and prints the ?PRINT USING ERROR (?PRU) message. When a 
nonfatal error occurs, BASIC continues to execute the program, 
although the resulting output may not be in the format intended. 

7-15 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

7.5.1 Fatal Error Conditions 

The ?PRINT USING ERROR (?PRU) error message is produced if: 

1. The format string is not a legal string expression. 

2. There are no valid fields in the format string. 

3. A string is printed in a numeric field. 

4. A number is printed in a string field. 

5. A negative number is printed in a floating dollar sign or 
asterisk fill field which does not specify a trailing minus. 

6. The items in the list are separated by characters other than 
a comma or semicolon. 

7.5.2 Nonfatal Error Conditions 

Nonfatal error conditions occur if: 

1. A number does not fit in the field. 

2. A string does not fit in the field. 

3. A field contains an illegal combination of characters. 

4. Text to be printed forms a valid field. 

If a number is larger than the field allows, BASIC prints a percent 
sign followed by the number in the standard PRINT format. 

If a string is larger than any field other than an extended field, 
BASIC truncates the string and does not print the excess characters. 

If a field contains an illegal combination of characters, the first 
illegal character and all characters to its right are not recognized 
as part of the field. They may form another valid field or they may 
be considered text. If the illegal characters form a new valid field, 
this unintended field may cause a fatal error condition. 

7-16 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

Consider the following examples of iQleqal combinations of characters 
in numeric fields. 

Illegal Combinations 

l ... IE)TNH 
10 PRINT USING "SS**ll.ii"v5.4~v 16.30 

1:~EADY 

RUNNH Two dollar signs are combined 
with two asterisks. $$ is a 
complete field and 

S5**16.30 **##.## forms a second valid 
field. $5 is printed by $$ 

READY and **16.30 is printed by 
**##.##. 

l...ISTNH 
10 PRINT USING "SS**ii.ii 'LLL1v5.41v "ABC" 

F~E1~DY 
1:~UMNH 

!I;'.:.) 

?PRINT USING ERROR. AT LINE 10 

l...IBTNH 
10 PRINT USING "t1.1--~"v5.430¢0Et09 

% 5.43000Et09 __ _ 

l...ISTNH 
10 PRINT USING "'1...1...EEE"v"VWXYZ~ 

l..)!.1.JXEFi::: 

7-]7 

The same illegal combination 
appears here, but the next 
data item is a string. BASIC 
produces the fatal error 
message after trying to 
print the string "ABC" in the 
unintended numeric field 
**##.##. 

Field has only three not 
four circumflexes. The 
number does not fit in 
the field ##.#, a percent 
sign and the number are 
printed followed by the 
three circumflexes. 

Two letters can not be 
combined in one field. EEE 
is printed as it is. 



FORMATTED OUTPUT - THE PRINT USING STATEMENT 

Attempting to print characters 
characters form a valid field. 

as text produces 
For example: 

errors when 

10 PRINT USING uTHERE ARE 111 I II PENNY NAILS"v123v4v16,6 

is an attempt to print 

THERE ARE 123 # 4 PENNY NAILS 
THERE ARE 16 # 6 PENNY NAILS 

but instead produces 

RUNNH 
THERE ARE 123 4 16 PENNY NAILS 
THERE ARE 6 

READY 

the 

To correctly print characters that would form a valid field, use a 
string field and place the characters as a string constant in the 
list. For example: 

LISTNH 
10 A$="THE BALANCE OF ACCOUNT '1111 is $$111.11" 
20 PRINT USING Atv"l",5634,107.56 

READY 
RUNNH 

THE BALANCE OF ACCOUNT 15634 is $107.56 

READY 

This is also the only way to print a single or double quotation mark 
character with the PRINT USING statement. For example: 

LISTNH 
10 PRINT USING "HE SAID, 'I'M GOING.'",'"'v"'"v'"' 

READY 
RUN NH 

HE SAID, "I'M GOING." 

READY 

7-18 



CHAPTER 8 

PROGRAM SEGMENTATION 

8.1 SEGMENTING PROGRAMS WITH THE CHAIN STATEMENT 

Segmenting a program is the process of breaking one large program into 
two or more smaller programs. You should segment a program if it is 
too large to fit in your area of memory. Another reason for 
segmenting programs is that it is easier to debug several small 
programs than to debug one large program. Once you have segmented a 
large program, you can debug each segment independently. 

You can use the CHAIN statement to break up a program into segments. 
You create each segment as you create any program except that you end 
each segment (except the last) with a CHAIN statement. When BASIC 
executes the CHAIN statement, it transfers control from the current 
segment to a program segment stored in a file. (See Section 9.6 for 
information about storing programs in files.) 

When BASIC executes the CHAIN statement, it closes any open files, 
changes the program name to the name in the file specification, and 
deletes the current program segment from your area. The program 
segment includes all program lines, variables (floating point, 
integer, and string), arrays, and user-defined functions (see Section 
5.4) but does not include any variables or arrays that are listed in 
COMMON statements (see Section 8.1.1). Then BASIC loads and executes 
the program segment in the file you specify. 

The memory required to run the entire program is the amount of memory 
required by the largest segment. Figure 8-1 shows how a program can 
be broken into three segments and how the memory required by the 
program can be reduced. 

8-~ 



Before 
Segmentation 

Segment 
1 

1----------
Segment 

2 
Memory 
required 
before 

1----------1> segmentation 

Segment 
3 

PROGRAM SEGMENTATION 

Segment 
1 

CHAIN 1-..1 

I I 
I I 

L-~~~c:._J 

After 
Segmentation 

Segment 

2 

CHAIN 

Segment 

3 

I I 
I I 
I I 

1-.1 I Unused I ...______ L-------

Memory 
required 

after 
segmentation 

Figure 8-1 Segmenting a Program with the CHAIN Statement 

Before the large program is separated into segments, the three 
segments are stored in your area of memory at the same time, as 
indicated on the left. After segmenting, the program starts with only 
segment 1 stored in your area of memory. After BASIC runs segment 1, 
segment 1 chains to segment 2, that is BASIC erases segment 1, 
replaces it with segment 2, and then runs segment 2. After BASIC runs 
segment 2, segment 2 chains to segment 3. The entire segmented 
program fits in the amount of memory required by the largest segment, 
segment 2. 

The format of the CHAIN statement is: 

CHAIN string [LINE expression] 

where: 

string is a file specification. It specifies 
containing the next program segment. 
can be any string expression. 

the file 
The string 

expression specifies the line number at which BASIC starts 
execution in the next program segment. 

If BASIC cannot find the file you specify, it closes all open files, 
changes the program name, and prints the ?FILE NOT FOUND (?FNF) error 
message. In this case BASIC does not delete any program lines, 
variables, arrays, or user-defined functions. 

If you omit LINE and the expression, BASIC starts execution at the 
lowest numbered line in the next program segment.. If you specify LINE 
and an expression whose value is not a legal line number (integers 
from 1 to 32767), BASIC prints the ?SYNTAX ERROR (?SYN) error message 
and stops program execution before it reads in the next segment. If 
you specify LINE and an expression and the line number is not found in 
the next program segment, BASIC prints the ?UNDEFINED LINE NUMBER 
(?ULN) error message and stops program execution after it reads in the 
next segment. 

8-2 



PROGRAM S~GMENTATION 

Consider the following example: 

The file specified by "SEGl" conta~ns: 

5 PRINT "SEG1 IS WORKING" 
10 OPEN "DATAl" FOR OUTPUT AS IFILE 11 
20 FOR I=1 TO 100 
:·:~O PF~ I NT :II: :I. Y 2* :r 
40 NEXT :r 
!'50 CLOSE :fl: :I. 
60 CHAIN 11 SEG2 11 

70 END 

The file specified by ''SEG2" contains: 

5 PRINT "SEG2 IS WORKING" 
10 OPEN "DATA:l. 11 FOR INPUT AS FILE 11 
20 FOR I=:I. TO :1.00 
:30 INPUT :II: :I. !I J 
40 'f::::'f+J 
::.:;o NEXT I 
60 PRINT "THE TOTAL IS 11 ;T 
b ~:.:; 1:~ EM 
'?O CLOSE =11=:1. 

BO END 

Prints identifying message. 
Opens output file. 
Writes out all the 
even numbers 2 to 200 
to the file. 
Closes the file. 
Chains to the next 
segment. 

Prints identifying message. 
Opens existing file. 
Inputs the numbers 
from the files 
and adds them together, 
storing the total in T. 
Prints the total on the 
terminal. 
Closes the input file. 

A run of these programs produces the following output: 

F:UN E~EG:I. 
BEG :I. J ~:; l..JOF;:I\ I NG 
BEG2 IS l1JOF~I< I NG 
THE TOTAL IS :1.0:1.00 

Run the first segment. 
Segment 1 executes and 
chains to segment 2. 
Prints the total. 

Remember to save (see Section 9.6.1) a program containing a CHAIN 
statement before running it. Otherwise BASIC erases the program from 
your area in memory and you will not have a copy of it. 

NOTE 

It is faster to chain to programs which 
have been compiled. See Section 9.10 
for a description of the COMPILE 
command. 

8.1.1 Preserving Variables Through CHAIN (COMMON Statement) 

The COMMON statement preserves data when one BASIC program chains to 
another. Any variables or arrays listed in COMMON statements retain 
the same variable names and values after CHAIN is executed. 

COMMON allows one segment of a program to preserve data needed by 
another segment. The only alternative way for chained programs to 
preserve data is by file storage. However, preserving data in memory 
with a COMMON statement is much faster and simpler than first writing 
the data out to a file and then, after chaining, reading it back in. 
Consequently, when you want to preserve data through a CHAIN 
statement, use the COMMON statement. 

8-3 



PROGRAM SEGMENTATION 

Figure 8-2 shows how data is preserved in COMMON after the CHAIN 
s ta temen t. 

COMMON 

Segment 
1 

CHAIN 

COMMON COMMON 

Segment 
2 

Figure 8-2 CHAIN with COMMON 

At the left, segment 1 including the COMMON statements is in memory. 
When BASIC executes the CHAIN statement in segment 1, it erases all of 
segment 1 except the variables and arrays listed in COMMON statements, 
as illustrated in the center. Then, at the right, BASIC brings 
segment 2 into memory and merges it with the preserved variables and 
arrays. 

The format of the COMMON statement is: 

COMMON list 

where: 

list specifies the variables and arrays to be preserved 
after execution of the CHAIN statement. It is in 
the general form: 

When BASIC executes the CHAIN statement all the variables and arrays 
listed in COMMON statements are preserved. 

When BASIC brings in the new program segment, it checks to see that 
the new segment has corresponding COMMON statements. The lists in the 
COMMON statements of the new segments must contain the same variable 
names, data types, and array dimensions in the same order as the lists 
in the previous segment. You can change the line numbers and the 
number of items specified in each list but you cannot change the order 
of the variables and arrays. 

Consider these examples: 

Frog ram 1 

1.0 CD!"'lMUN (1:1H:1C<i:. 

20 COMMON D%(100) 
30 COMMON G.:fi ( 2) 

Program 2 

J 0 COMMON tl v n 
30 COMMON Ct,D%(100),G$C2> 

Program 3 

:::.::o CDMMDN C~li 

:.~i: 0 C 0 M M Cl N C! ~1; ( ::.:.~ ) 

Programs 1 and 2 contain equivalent COMMON statements. However, 
program 3 does not contain equivalent COMMON statements because 
0%(100) appears before C$. 

If in the new program you do not list the variables and arrays in 
COMMON statements as in the original, BASIC prints the ?COMMON OUT o~ 
ORDER (?COO) error message and stops program execution. 

8-4 



PROGRAM SEGMENTATION 

Consider the following examples: 

The file specified by "SEGCl" contains: 

:I. 0 COMMON I ( :I. 00) 
20 DIM ,.J < :1.00) 
;·5() Pl:~ I NT "BEGC 1. 11 

40 FOR K=:I. TO 1.00 
~'.iO I< I\) ::::K*2 
60 ,.J <I\) ::::K*2 
'70 NEXT K 
80 CHAIN "SEGC2" 
:1.00 END 

Preserves the array I(lOO) (in COMMON). 
Dimensions array J ( 100) (not in COMMON) • 
Prints identifying message. 
Assigns the values 
of the even numbers 
between 2 and 200 to 
the elements of each array. 
Chains to the next segment. 

The file specified by "SEGC2" contains: 

:I. 0 COMMON I (:I. 00) 
20 DIM ,J < :1.()0) 
:30 PRINT 11 BEGC2" 
40 FOR K=l TO :1.00 
:'.5 0 T :I. :::: T :I. + I < K ) 
60 T2::::T2+..J ( K) 
'70 NEXT K 
80 PRINT "T:l.= 11 ;T:1. 
90 PRINT "T2= 11 0T2 
:I. 00 END 

COMMON statement equivalent to original. 
Dimensions new array J(lOO). 
Prints identifying message. 
Adds all the elements of 
I (100) and 
J(lOO) stored in Tl 
and T2, respectively. 

A run of these programs produces the following output. 

F~UN F;FGC:I. 
SEGC:I. 
nFGC2 
T :I. :::: :I. 0 :I. 0 0 
T2:::: 0 

Note that BASIC preserves I(lOO) but does not preserve J(lOO). 

It is possible to extend COMMON by placing additional variables and 
arrays after the existing ones. For example, 

Program Segment 1 

10 COMMON AYB%<100) 
20 COMMON c~1; ( :=s) 

Program Segment 2 

10 COMMON AvB%C:l.00) 
20 COMMON C$(5)vF9(:1.00) 
;30 COMMON A~I; < 30) 

Program segment 2 contains the same variables and arrays in COMMON as 
program 1 but also extends program segment l's COMMON statements with 
F9 (100) and A$ (30). 

When program segment 2 chains, BASIC preserves all variables and 
arrays listed in the extended COMMON statements. 

If a program containing COMMON statements chains to a program that has 
no COMMON statement, BASIC erases all the variables and arrays 
including those listed in the COMMON statements. 

If a program segment containing COMMON statements chains to another 
program segment containing COMMON, all the variables and arrays in the 
original COMMON statements should appear in the new statements. But 
if the new COMMON statements contain some of the variables and arrays 
(in the correct order) but not all of them, BASIC does not produce an 

8-5 



PROGRAM SEGMENTATION 

error message. Instead BASIC preserves 
t~e original COMMON statements. Even 
produced, this situation should be 
preserved that do not appear in the 
statements. 

all the variables specified in 
though no error message is 
avoided because variables are 

new program segment's COMMON 

BASIC allows you to list up to 255 variables and arrays in COMMON 
statements. If a program contains more than 255 variable and array 
names, BASIC prints the ?TOO MANY ITEMS IN COMMON (?TIC) error 
message. 

BASIC automatically dimensions arrays specified in COMMON 
If you list an array in a COMMON statement, do not also 
with a DIM statement. If an array is in both a COMMON 
statement, BASIC prints the ?ILLEGAL DIMENSION (?IDM) 
and stops program execution. 

statements. 
dimension it 

and a DIM 
error message 

You cannot specify virtual array files (see Section 6.4) in COMMON 
statements. An alternative is to pass the file specification in a 
string variable listed in COMMON and have the new program reopen the 
virtual array file. 

BASIC erases any existing COMMON area when the user types a RUN, OLD 
or SCR command or when a new program segment has no COMMON statements. 

The COMMON statement is meaningless in immediate mode. 

NOTE 

The COMMON statement does not provide 
any communication with programs written 
in languages other than BASIC (see 
Section 8. 3) . 

8.2 MERGING PROGRAM SEGMENTS (OVERLAY STATEMENT) 

You can use the OVERLAY statement to segment programs as you use the 
CHAIN statement. The OVERLAY statement allows easier communication 
between segments than the CHAIN statements. When you use the OVERLAY 
statement the values of all variables and arrays are preserved and all 
open files remain open. However, you must ensure that the line 
numbers of the segments merge correctly, which you need not do with 
CHAIN. 

The OVERLAY statement merges the current program with a program 
segment stored in a file. 

When BASIC reads a line of the program segment from the file, it 
interweaves the line into the current program. If a line with the 
same line number already exists, BASIC deletes the existing line and 
replaces it with the line from the new program segment. During this 
process all variables and arrays retain their current values, and all 
open files remain open. When all lines of the program segment in the 
file are read into memory and merged with the original program lines, 
BASIC continues execution of the merged program. 

NOTE 

The OVERLAY statement is not a standard 
feature in DIGITAL's BASICS. If you are 
concerned with transportability of 
programs and ease of upgrading, do not 
use the OVERLAY statement. use only the 
CHAIN statement for segmenting programs. 

8-6 



PROGRAM SEGMENTATION 

To segment a program with the OVERLAY statement, break the program 
into one main program and several overlay segments. 

The total memory required by a program segmented with the OVERLAY 
statement is the size of the main program plus the size of the largest 
overlay as illustrated in Figure 8-3. 

Before 
Segmentation 

Main 
Program 

1------------1 
Overlay 

1 
1------------1 

Overlay 
2 

-----------1 
Overlay 

3 

Main 
Program 

Memory 
required 
before 

segmentation 

Main 
Program 

Overlay 
1 

1------------i Overlay 
Statement 

Main 
Program 

Unused 

After 
Segmentation 

Main 
Program 

Overlay 
2 

1---------- .... 
Overlay 

Statement 

Main 
Program 

Main 
Program 

Overlay 
3 

Main 
Program 

Unused 

Memory 
required 

after 
segmentation 

Figure 8-3 Segmenting a Program with the OVERLAY Statement 

You must ensure that all line numbers 
repeated in each subsequent segment. 
previous segment will still be in memory. 

The format of the OVERLAY statement is: 

OVERLAY string [LINE expression] 

where: 

in an overlay segment are 
Otherwise the parts of the 

string is a file specification and can be any string 
expression. 

expression specifies the line to start execution in the new 
program. 

If you omit LINE and the expression, BASIC starts execution at the 
next sequential line number after the OVERLAY statement. Note that if 
you enter the OVERLAY statement on a multi-statement line, BASIC 
ignores all subsequent statements on the line. If you specify LINE 
and an expression but the value of the expression in not a valid line 
number, BASIC prints the ?SYNTAX ERROR (?SYN) error message and stops 
execution before reading the program segment. If you specify LINE and 
an expression but the line number specified does not exist in the 
merged program, BASIC prints the ?UNDEFINED LINE NUMBER (?ULN) error 
message and stops program execution after merging the new segment. 

8-7 



PROGRAM SEGMENTATION 

Consider the following examples: 

The file specified by "MAINPR" contains: 

!'.'i DIM ti(:l.00) 
10 PRINT "MAIN PROGRAM" 
20 FOR I=:I. TO 100 
3 0 f.1 < I ) :::: J * 3 
40 NEXT I 
:::;o pr;: INT "STILi... IN MAIN pi:;:oGF~AM 11 

100 PRINT "SEGMENT 1" 
110 FOR 1=1 TO 100 
:I. :::~ 0 I F (1 < I ) / 2 < > I NT ( 1:':-i ( I ) / ~:.~ ) THE:: N :I. 4 0 
1 3 0 T :::: T + f.) ( I ) 
:I. 40 NEXT I 
1 ~'.'.iO PF: I NT "THE ~:;ur1 :i: ~:;" !IT 
170 OVERLAY "OVl... 11 

~.:.~ 0 0 G D T 0 ~:5 0 
:::)00 END 

The file specified by 11 0VL" contains: 

100 PRINT "SEGMENT 2" 
:1.:1.0 T::::() 
120 FOR I=1 TO 100 
l 30 T::::'f +1~1 ( J) 
:I. ·'10 NEXT I 
:1. ~'.'i o r:· i:;: :i: NT 11 T HE ~:; u M :i: ~:; 11 ~ r 
:I. 60 GD TO 300 

A run of these programs produces: 

i:;:Ui"INH dt1 I NPF.~ 
Mt-1 IN Pr;.'.DDF;:t1M 
STILi... IN MAIN PROGRAM 

ll .. :F '.:)[.JM IF: '7 i'.°>!'50 
r: T J I... I... I N M {\ J N i::· F: 0 G F;: {~ M 
ElFCil"'iFNT 2 
TH F :::::UM I ~:; :I. ~':i :!. ~'.'i 0 

Dimension array A(lOO) 
Print message. 
Fill array A with 
every third number 
from 3 to 300. 
Print message. 
Segment 1 prints message. 

Skip all odd values of A 
Add the rest to T. 

Print result. 
Overlay to second segment. 
End of main 
program. 

Print message. 
Reinitialize T. 
Add all numbers 
in array. 

Print result. 
Go to end. 

After BASIC executes the OVERLAY statement, the program in memory is: 

~ ..... : rt .T l"'i (1 ( l 0 0 ) 
:1. o r:· r;: T N T ., 1'·/; r.1 I N F' 1:;: o u i::: f.1 M " 
20 ~OR I=l TO 100 
.:) u (1 ( J ) :::: I >I<: 3 
<}•) NEXT I 
~'.'.i () p F'. J N T II ::;; T I I ... I... J N M t'l I N p F~ Du F~ (:1 M II 
J 0 0 pi:;~ J N T II ~:; E GM F NT ::.:: II 

:l.:LO 'f::::O 
120 FOR J=1 TO 100 
:I. 30 'f'::::T+t1 (I) 
l 40 j\! 1:::>:T I 
:L '.'.'iO pi:;: J NT "THE '.:)UM I q II ~ T 
:!. /,•.) GD TO 300 
:i. o;:- o o t,,1Fi:;:1... ti "{ 11 n '.J 1... 11 

:::.'. (i 0 C..I Cl T 0 ~.'5 0 
:.:S()() EN:C! 

BASIC continues execution at the next statement after the OVERLAY 
statement, which is line 200. 

8-8 



PROGRAM SEGMENTATION 

Any user-defined function defined in the main program remains defined 
after the OVERLAY statement is executed if the line defining function 
is not replaced by a line in the overlay segment. 

The overlay segment in the file should not contain any DIM or DEF 
statements. BASIC ignores these statements when reading in an overlay 
segment. 

NOTE 

Do not specify a compiled file with the 
OVERLAY statement. BASIC will not be 
able to merge the programs and will 
produce a ?LINE TOO LONG (?LTL) or ?TOO 
LONG TO TRANSLATE (?TLT) error message. 

8.3 CALLING A ROUTINE WRITTEN IN ANOTHER LANGUAGE (CALL STATEMENT) 

The CALL statement causes BASIC to execute a routine written in 
another language. The routine, usually written in assembly language, 
must have been incorporated previously into the BASIC language itself. 
The procedure for incorporating the routines into BASIC and the 
interface for the routines are described in your BASIC-11 user's 
guide. 

The format of the CALL statement is: 

CALL string[(list)] 

where: 

string specifies the name of the routine. The string can 
only be a string constant. 

list is the optional argument list. It can contain 
constants, variables, expressions, and arrays. An 
array is listed as a variable name followed by a 
left parenthesis and a right parenthesis. For 
example; A%() specifies the integer array A which 
can have one or two dimensions. 

Consider these examples: 

Calls the routine AND. The variable list contains three 
integer variables . 

.-·,' I,) c (l 1 ... 1... " z [ 1::: CJ fl ( (1 '.!.: ( ) ) 

Calls the routine ZERO. 
integer array. 

The argument list contains an 

Calls the routine REVERS. The argument list contains the 
string variables A$ and D$ and the array C beginning with 
the ninth element. 

BASIC automatically allocates room for an undirnensioned array when it 
first encounters a reference to it, but BASIC cannot do this when the 

8-9 



PROGRAM SEGMENTATION 

reference to the array first occurs in a 
case, BASIC prints the ?UNDIMENSIONED 
message. 

CALL statement. In this 
ARRAY IN CALL (?UAC) error 

BASIC cannot return a result from a routine to an element of a virtual 
array file. If the routine returns a result in an argument, do not 
specify a virtual array element in that position. It is not possible 
to pass an entire virtual array to a routine for any reason. 

8-10 



CHAPTER 9 

BASIC-11 COMMANDS 

9.1 KEY COMMANDS 

BASIC has a set of key commands that delete characters and lines being 
typed, stop printout from programs, and interrupt execution of BASIC 
programs. Table 9-1 describes the key commands. 

Key 

CTRL/C 

CTRL/O 

CTRL/S 

CTRL/Q 

NOTE 

A CTRL (control) key command is typed by 
pressing the CTRL key while typing the 
appropriate letter. For example, to 
type CTRL/C, press the CTRL key and type 
c. 

Table 9-1 
BASIC-11 Key Commands 

Explanation 

Interrupts execution of a command or program. 
This is the key to type when your program is 
running and you want to stop it. BASIC prints a 
STOP message. CTRL/C also cancels the effect of 
CTRL/O and CTRL/S. Be sure to see your BASIC-11 
user's guide for more information on using CTRL/C 
on your system. 

Stops output to the terminal but does not 
interrupt execution of the program. Printing on 
the terminal resumes after BASIC executes an INPUT 
statement, the program ends, or after you type 
another CTRL/O. Typing CTRL/O cancels any message 
that BASIC is printing. CTRL/O is different than 
CTRL/S. After you type CTRL/O, BASIC continues 
executing the program but you will not see 
anything printed on the terminal. After you type 
CTRL/S, BASIC waits for you to type CTRL/Q. When 
you have typed CTRL/Q, BASIC continues to print on 
the terminal; no information is lost. 

Temporarily interrupts the printing on the 
terminal. Printing resumes after CTRL/Q or CTRL/C 
is typed. (See description of CTRL/O.) 

Continues the printing on the terminal after a 
CTRL/S has interrupted it. 

9-1 



Key 

CTRL/U 

RUBOUT 

BASIC-11 COMMANDS 

Table 9-1 (Cont.) 
BASIC-11 Key Commands 

Explanation 

Deletes the entire line being typed. If you 
notice a mistake on the line you are typing before 
you type the RETURN key, type CTRL/U and BASIC 
ignores the line. CTRL/U can be used when typing 
in program lines or when responding to the INPUT 
or LINPUT statement. 

Deletes the last character typed. If you mean to 
type: 

10 FOR I=l TO 3 

but instead type: 

10 FOR I=3 TO 

press the RUBOUT key four times to delete the 
incorrect characters: 

10 FOR I=3 TO 
tttt (arrows indicate deleted 

characters) 

and then complete the line by typing: 

1 TO 3 

9.2 LISTING YOUR PROGRAM (LIST AND LISTNH COMMANDS) 

Use the LIST command to print the program lines you have entered. To 
list your entire program, type: 

LIST 

BASIC first prints a header line which consists of the program name, 
date, and the BASIC version number. BASIC then prints your entire 
program. After BASIC prints your program, it prints the READY 
message. 

You can also list sections of the program, individual lines, groups of 
lines, or any combination of these. The format of the LIST command 
is: 

LIST[line specification, line specification, ... ] 

where each line specification can be: 

line number Lists specified line. 

line number-line number Lists all lines in range specified. 

line number-

-line number 

Lists all line numbers 
specified line to the end. 

from the 

Lists all the line numbers from the 
beginning to the specified line number. 

The LISTNH command is the same as the LIST command except that BASIC 
does not print the header line. 

9-2 



Consider these examples: 

1 ... IE>TNH 

LIST 2!S 

BASIC-11 COMMANDS 

Lists the entire program without 
header line. 

Lists a header line and line 25. 

a 

LIST 25r50v100-200v500- Lists lines 25 and 50, all lines from 
100 through 200, and all lines from 500 
through the end of the program. 
Remember a comma is equivalent to "and" 
and a dash is equivalent to Hthrough". 

NOTE 

To list a program to a file _or to a line 
printer, use the SAVE command (see 
Sec ti on 9. 6 .1) • 

9.3 EXECUTING A PROGRAM (RUN AND RUNNB COMMANDS) 

After you have entered your program, you can execute it by typing: 

RUN 

When BASIC executes the RUN command, it first prints a header line. 
Then it scans the program, reserving space in memory for all arrays in 
DIM or COMMON statements, defining any user-defined functions in DEF 
statements, and initializing all numeric variables and arrays to O and 
all strings to the null string. Finally BASIC starts executing the 
program at the lowest numbered line. 

The RUNNH command has the same effect as the RUN command except that 
BASIC does not print the header line. 

See Section 9.6.3 for a description of executing a program that is 
stored in a file. 

9.4 DELETING PROGRAM LINES (DEL COMMAND) 

In addition to deleting a line by typing the line number followed by 
the RETURN key, you can delete lines with the DEL command. The format 
of the DEL command is: 

DEL line specification[, line specification, •.. ] 

where the line specification can take the same form that it does in 
the LIST command (see Section 9.2). 

For example: 

DEi... :1.0 Deletes line 10. 

DEi... :1. oo v ~:.:;oo Deletes lines 100 and 500. 

DEL 25v100-150v75v275-300 
Deletes lines 25 and 75 and all the 
lines between 100 and 150, inclusively, 
and between 275 and 300, inclusively. 
Note that the lines do not have to be 
specified in order. 

9-3 



BASIC-11 COMMANDS 

9.5 ERASING THE PROGRAM (NEW, SCR, AND CLEAR COMMANDS) 

The NEW command erases your program storage area in memory. It 
deletes all program lines, variables, arrays, and definitions of 
user-defined functions. It also changes the program name to the one 
specified. 

The format of the NEW command is: 

NEW program name 

where program name can contain the letters A through Z and the digits 
O through 9. 

If you type: 

i'"-·lE[A.I 

without a program name, BASIC requests the new name by printing: 

NEW F J 1...E NAME ........ 

If you type a name, BASIC uses it for the new program name. However, 
if you type the RETURN key, BASIC changes the name to the default 
program name, NONAME. 

After BASIC erases the program and changes the program name, it prints 
the READY message. 

For example: 

NFt·J MONEY Erases all your program information and 
changes the program name to MONEY. 

Be sure to type the NEW command when you start writing a program. It 
erases any existing program lines. 

The SCR or scratch command does the same thing as the NEW command 
except that it always changes the program name to NONAME. use the SCR 
command instead of the NEW command when you do not care what the 
program name is. The format of the SCR command is: 

SCR 

BASIC prints READY when it is finished erasing the program. 

The CLEAR command erases the contents of all variables and arrays but 
does not erase any program lines. The CLEAR command returns the space 
used by arrays so that it can be used for program lines. The CLEAR 
command does not change the program name. 

The format of the CLEAR command is: 

CLEAR 

BASIC prints the READY message when it is done. 

9.6 PROGRAMS IN FILES 

Up to this point, all the commands have manipulated the programs in 
your area of memory (see Section 1.7), but this section describes how 
to transfer programs between your area of memory and a file. You can 
store in a file the program that is in your area, and you can transfer 
a program from a file to your area. 

9-4 



BASIC-11 COMMANDS 

Programs stored in files are in the same format as sequential data 
files but you use different statements and commands to access program 
files and sequential data files (see Chapter 6 for a description of 
data file statements and see your BASIC-11 user's guide for more 
information on differences between program and data files). The 
following list describes the statements which access program files. 

Statement 

CHAIN 

OVERLAY 

Transfers Program 

From a file to your area and executes it. 

From a file to your area and merges it with your 
current program. 

The following list describes the commands which access program files. 

Command 

SAVE 

REPLACE 

OLD 

APPEND 

RUN 

Transfers Program 

From your area to a file. 

From your area to a file, deleting an existing 
file, if necessary. 

From a file to your area. 

From a file to your area and merges it with your 
current program. 

From a file to your area and executes it. 

In addition, you can use the UNSAVE command to delete a program file. 

The COMPILE command transfers a program in a special format from your 
area to a file (see Section 9.10). 

9.6.1 Saving the Program in a File (SAVE and REPLACE Commands) 

The SAVE command saves the BASIC program that is currently in your 
area in memory. BASIC transfers the program from your area to the 
file you specify. BASIC writes to the file the same ASCII characters 
that it would print on the terminal if you typed LISTNH. The format 
of the SAVE command is: 

SAVE [tile specification] 

If you omit the file specification, BASIC uses the current program 
name as a default specification. 

After BASIC saves the file, it prints the READY message. Once you 
save a file, you can read it into memory by typing the OLD or APPEND 
command (see Section 9.6.2). Alternatively, you can run it from the 
file by typing the RUN file specification command (see Section 9.6.3) 
or by having BASIC execute the CHAIN or OVERLAY statement (see 
Sections 8.1 and 8.2). 

For example: 

SAVE PROG1 

SAVE LP: 

Stores the current program in the file 
specified by PROGl. 

Stores (lists) the current program on 
the line printer. 

9-5 



BASIC-11 COMMANDS 

The SAVE command does not delete an existing file with the same file 
specification. If a file with the same specification exists and if 
creating a new file would delete the original one, BASIC prints the 
?USE REPLACE (?RPL) error message. To save the program, you should 
either use a different file specification or use the REPLACE command. 

The REPLACE command is like the SAVE command except that REPLACE saves 
a program even if it means deleting an existing file. This difference 
between the SAVE and REPLACE commands helps to prevent you from 
inadvertently deleting program files that you have previously saved. 

The format of the REPLACE command is: 

REPLACE [file specification] 

If you omit the file specification, BASIC uses the current program 
name as the default specification. 

For example: 

Saves the current program in the file . 
specified by PROGl, deleting any 
existing file with the same file 
specification. 

9.6.2 Restoring a Program from a File (OLD and APPEND Commands) 

The OLD command first erases your area in memory and changes the 
program name (like the NEW command) and then reads in the program from 
the specified file. 

The format of the OLD command is: 

OLD [file specification] 

If you type only: 

C' !... :0 

BASIC requests the file specification by printing: 

Cll...D Fil...E N10iMF···· .... 

Then type the file specification. If you type only the RETURN key, 
BASIC assumes the file specification NONAME (BASIC looks for a program 
stored in the file specified by NONAME) . 

For example: 

Erases the program currently in memory 
and reads in the program in the file 
specified by PROGl. 

NOTE 

If BASIC cannot find the file you 
specify in an OLD command, it changes 
the program name and prints the ?FILE 
NOT FOUND (?FNF) error message. 
However, BASIC does not delete the 
program in your area. 

9-6 



BASIC-11 COMMANDS 

The APPEND command merges the program currently in memory with the 
program in the specified file. BASIC reads in the specified file and 
sorts the new program lines into the current program. If one of the 
new lines has the same line number as an existing line, BASIC deletes 
the existing line. 

The format of the APPEND command is: 

APPEND [file specification] 

If you type only: 

.~~PPEND 

BASIC requests the file specification by printing: 

01...D FI LE N1~ME ........ 

You then type the file specification. If you just type the RETURN 
key, BASIC assumes the file specification NONAME. 

Entering the APPEND command has the same effect as entering the new 
lines at the terminal and also as entering an immediate mode OVERLAY 
statement. 

9.6.3 Running a Program from a File 

If you want to run a program from a file, specify a file after the RUN 
command. 

The format of the command is: 

RUN file specification 

When you specify a file with the RUN command, BASIC erases all program 
lines and the contents of all variables, changes the program name 
(equivalent to the NEW command, see Section 9.5) reads in the 
specified program (equivalent to the OLD command, see Section 9.5) and 
finally starts the execution of the program. 

The RUN file specification command does not print a header li11e and is 
equivalent to the RUNNH file specification command. 

See Section 9.3 for a description of the RUN and RUNNH commands 
without a file specification. 

For example: 

F~UN BPCv.JH Erases the program currently in memory, 
changes the program name to SPCWR, reads 
in the file specified by SPCWR, and 
starts execution of the program. 

9-7 



BASIC-11 COMMANDS 

NOTE 

If BASIC cannot find the file specified 
in a RUN command, it changes the program 
name and prints the ?FILE NOT FOUND 
(?FNF) error message. However, BASIC 
does not delete the program in your 
area. This may happen if you mistype 
the RUNNH command, such as RUNHN: BASIC 
interprets this as a RUN HN command 
where HN is the file specification. 

If the file specif ica ti on. beg ins with 
NH, BASIC will assume that the NH is 
part of the RUNNH command. For example, 
BASIC interprets a RUN NHT command as 
RUNNH T. To run a program whose file 
specification begins with NH, use the 
RUNNH command. 

9.6.4 Deleting a Program File (UNSAVE Command) 

The UNSAVE command deletes the specified program file. The format of 
the UNSAVE command is: 

UNSAVE file specification 

BASIC deletes the file specified and then prints the READY message. 
When the file is deleted, it cannot be restored. 

For example: 

UNSAVE MONEY Deletes the program file specified by 
MONEY. 

The UNSAVE command has the same effect as the KILL statement except 
that the KILL statement deletes data files instead of program files. 

9.7 CHANGING THE PROGRAM NAME (RENAME COMMAND) 

The RENAME command changes the program name to the one specified but, 
unlike the NEW command, does not erase the program. 

The format of the RENAME command is: 

RENAME{[program name] 

If you just type: 

BASIC requests the new name by printing: 

NEW FILE N1~M[ ........ 

You then type the new program name. If you type only the RETURN key, 
BASIC changes the program name to NONAME. 

9-8 



BASIC-11 COMMANDS 

9.8 EDITING A LINE (SUB COMMAND) 

You can change a program line that you have already 
retyping the whole line by using the SUB command. 
substitutes the specified characters on the specified 
characters. 

typed without 
The SUB command 
line with new 

The format of the SUB command is: 

SUB line number xstringlxstring2[x[integer]] 

where 

line number 

x 

stringl 

string2 

integer 

specifies the line to be edited. 

can be any character to delimit the strings. x 
must not appear in the strings. The character @ 
is a good choice for a delimiting character 
because it is not used in BASIC programs except in 
string constants. 

is the old series of characters to be deleted. Do 
not delimit the string with quotation marks. 

is the new series of characters to be inserted. 
Do not delimit the string with quotation marks. 

specifies the occurrence of stringl in the line. 
If the integer is omitted, the first occurrence is 
substituted. You do not have to type the percent 
sign after the integer. 

After the changes are made, the new line is printed. 

For example, if the current line 10 is: 

L.IBTNH :1.0 
:I. 0 l ... !:::T f.:, .... B*C 

then type the SUB command: 

GUB l 0 rnA·· .. mA::::(r~ 
:t 0 LET r:":-i::::J3*C 

F:Ef.1DY 

BASIC makes the correction to the line and then prints out the new 
line. 

If the current line is 

I ... I GTNH :I. 00 
100 F9=A*SIN<X>+F9 

9-9 



BASIC-11 COMMANDS 

and you want to change the second occurrence of F9 to I%, type the SUB 
command: 

SUB :L OOC!~F9m I %fr~2 
100 F9=A*SINCX>+I% 

SUB can be used to change the line number. For example if the current 
line 20 is: 

1...J ~:>TNH 20 
20 PF:INT (.1,..e,..c;,..[1 

F:Er.1DY 

and you wish to change the line number to 100, type the following SUB 
command: 

GUB 20 m20fr1:I.00fr1 
100 PRINT AvB,..CvD 

BASIC makes the correction and then prints the new line. 
BASIC does not delete the old line but merely copies it. 

Note that 

However, you cannot use the SUB command to delete the entire line 
number (change a program line to an immediate mode statement). If you 
try to do this, BASIC prints the ?SUBSTITUTE ERROR (?SUB) message and 
does not execute the command. This message is also produced if you 
enter the SUB command in the wrong format (such as omitting the 
delimiting character ending stringl). 

BASIC uses the first character after the line number on the SUB 
command as the delimiting character, but it ignores all spaces and 
tabs until it finds a character. Consequently you cannot use space 
nor tab as a delimiting character. Neither can you use a digit as the 
delimiting character, because BASIC will consider it part of the line 
number. 

If BASIC cannot find the old string you specify, it reprints the line 
with no changes. 

NOTE 

You must type stringl exactly as BASIC 
lists it~ consequently, it is useful to 
list a line before entering the SUB 
command. 

9.9 RESEQUENCING A PROGRAM (RESEQ COMMAND) 

You can use the RESEQ command to resequence your program or sections 
of your program. If you have inserted so many lines in your program 
that your line numbers are incremented by 1 and you need to insert a 
new line, you should resequence the program. 

9-10 



BASIC-11 COMMANDS 

When BASIC resequences a program, it changes the line numbers 
specified and it also changes any references to the changed line 
numbers (i.e. in GO TO, ON GO TO, IF THEN, IF GO TO, GOSUB, and ON 
GOSUB statements). 

You can use the RESEQ command to resequence your entire program or a 
segment of the program. You specify the new line number at which you 
want the segment (or the entire program) to start, the range of line 
numbers that you want resequenced (the old line numbers), and the 
increment to be used between each line number. You do not have to 
specify all the values: BASIC uses a default value when you omit one. 

The format of the RESEQ command is: 

RESEQ [new],[ old~fold2] [,increment] 

where 

new specifies the starting new line number. 

oldl specifies the lowest existing line number to be 
resequenced. 

old2 specifies the highest existing line number to be 
resequenced. 

increment specifies the increment to be used between each 
line. 

If you do not specify new, the new starting line number, BASIC uses 
the highest existing line number less than oldl. 

For example if you type 

r~ En En v :1. o ~:s .... 2 o o ~· :1. o 

and the highest line number under 105 is 100, BASIC starts the first 
new line at 100 plus the increment 10, or 110. 

If you do not specify the oldl, BASIC starts resequencing at the 
beginning of the program. 

If you do not specify old2, BASIC resequences the program until its 
end. 

If you do not specify the increment, BASIC uses an increment of 10. 

If you type only: 

BASIC resequences the entire program, giving the first line the line 
number 10 and incrementing each line by 10. 

9-11 



BASIC-11 COMMANDS 

For example, if your current program is: 

LIST NH 
10 PRINT "CHECK BALANCING PROGRAM• 
13 PRINT "LAST BALANCE"O 
14 INPUT B 
15 PRINT •NEXT CHECK"O 
20 INPUT C 
21 IF C=O THEN 135 
25 B::::B··-C 
;30 GO TD :l !5 
135 PRINT "NEXT DEPOSIT"; 
:L40 INPUT D 
141 IF D=O THEN 1000 
:1.4~3 B=~:B+D 

:I. !'.'.iO GD TO :I.:~::; 

1000 PRINT 0 SERVICE CHARGE"; 
:1.001 INPUT S 
1002 B::::B .. ··S 
:1.005 PRINT "BALANCE IS";B 
:I. :I. 00 END 

F~EADY 

The command 

RESEQ 200,:t.35-150v20 

resequences lines 135, 140, 141, 145, and 150 to line numbers 200, 
220, 240, 260, and 280 respectively. Instead of line 21 being IF C=O 
THEN 135, it is changed to IF C=O THEN 200. 

The program now is: 

1...ISTNH 
10 PRINT "CHECK BALANCING PROGRAM" 
13 PRINT "LAST BALANCE"; 
:l4 INPUT B 
15 PRINT "NEXT CHECK"; 
20 INPUT C 
21 IF C=O THEN 200 
2!'5 f!::::B .... C 
::~O GO TO :I.!'.) 
200 PRINT "NEXT DEPOSIT"; 
:no INPUT D 
240 IF D=O THEN 1000 
260 B~:=B+D 

2BO GO TO 200 
1000 PRINT "SERVICE CHARGER; 
:1.00:1. INPUT S 
:I. 002 B:~=B····S 

1005 PRINT "BALANCE IS";B 
:1.0:LO END 

F~EADY 

Note that the old line 150 (now is line 280) is GO TO 200 instead of 
the original GO TO 135. 

If you type: 

HEBEC~ 100 ll ll !'50 

BASIC resequences the entire program with the new starting line of 100 
and an increment of 50. 

9-12 



BASIC-11 COMMANDS 

If you specify a combination of line numbers that would change the 
order of lines, BASIC prints the ?RESEQUENCE ARGUMENT ERROR (?RES) 
message and ignores the command. For example, if in the original 
example in this section you type: 

RES 100v10-30 

BASIC would try to resequence lines 10, 13, 14, 15, 20, 21, 25, and 30 
as lines 100, 110, 120, 130, 140, 150, 160, and 170, respectively. 
But because there is already a line 135, this would change the order 
of the program lines. Consequently, BASIC would print the error 
message. 

9.10 SAVING A COMPILED PROGRAM (COMPILE COMMAND) 

BASIC does not store the program exactly the way you type it but 
instead compresses or compiles each line. This allows you to fit 
larger programs in your area than you could if BASIC did not compile 
each line. Whenever you list or save your program, BASIC actually 
translates the program from the form in which it is stored to the form 
that you entered. 

The COMPILE command saves a copy of the internal image that BASIC uses 
to store programs. Once you have saved this image, BASIC can read it 
into memory much faster than it can read a file saved by the SAVE 
command. 

The format of the COMPILE command is: 

COMPILE [file specification] 

If you omit the file specification, BASIC uses the current program 
name as the default file specification. 

The compiled file can be read in by the OLD or RUN command or by the 
CHAIN statement, but it cannot be read by the APPEND command or the 
OVERLAY statement. 

NOTE 

The file created by the COMPILE command 
should only be used on the same system 
on which it was created. If you want to 
use a compiled file on another version 
of BASIC, you must restore the compiled 
file with an OLD command on the system 
that it was created and then store a new 
file with the SAVE command. The SAVE 
command 6reates files that can be used 
by other versions of BASIC. 

9.11 CHECKING THE LENGTH OF A PROGRAM (LENGTH COMMAND) 

Use the LENGTH command to find the amount of storage required by the 
BASIC program in memory. This information is useful in determining 
the minimum area in which a specific program can run. The form of the 
command is: 

LENGTH 

9-13 



BASIC-11 COMMANDS 

The LENGTH command causes BASIC to produce this message: 

mmm WORDS USED, nnn FREE 

where: 

mmm 

nnn 

is the number of words currently occupied by your 
program. 

is the number of words remaining free in your area 
in memory. 

The number of words in use includes memory currently needed by the 
BASIC program itself, arrays, string variables, and file buffers. To 
determine the size of the program alone, enter the LENGTH command 
immediately after an OLD or CLEAR command. Arrays are created after 
the RUN command, and file buffers are created when the OPEN statement 
is executed. 

The memory required for string variables and string arrays varies with 
the current values of the strings; consequently, the LENGTH command 
returns the current memory requirements, which may be smaller than the 
maximum memory requirements. 

BASIC prints several error messages when the program exceeds the 
amount of memory available: ?ARRAY TOO LARGE (?ATL), ?BUFFER STORAGE 
OVERFLOW (?BSO), ?PROGRAM TOO BIG (?PTB), and ?STRING STORAGE OVERFLOW 
(?SSO). To reduce program size, follow one or more of the following 
procedures: 

1. Eliminate or reduce unnecessary items such as REM statements, 
long printed messages, and optional keywords such as LET. 

2. Make maximum use of multiple statement lines. 

3. Make efficient use of program loops, subroutines, 
user-defined functions, and multiple branching. 

4. Split up large programs into several smaller programs by 
using the CHAIN statement. 

5. Reduce the size of arrays in memory to the size required (DIM 
statement) . 

6. Reduce the number of variables and arrays in 
reusing them when their contents are no 
instead of creating new variables or arrays. 

a program by 
longer needed, 

7. Reduce the number of simultaneously open files by opening a 
file just before it is needed and closing it immediately 
after the last use. 

8. Substitute virtual array files for large arrays in memory. 

After deleting program lines, store the program with the SAVE command 
and restore it with the OLD command to further minimize program memory 
requirements. 

9-14 



APPENDIX A 

ERROR MESSAGES 

When BASIC finds an error in a program line, immediate mode statement, 
or command, it prints an error message. This signals that an error 
has occurred and that you should correct the error. Error messages 
are an aid in debugging your program (see Section 1.9). 

When BASIC detects an error in a program line it prints the error 
message in the format: 

?message AT LINE xxxxx 

where xxxxx is the line number of the statement containing the error. 

When BASIC detects an error in an immediate mode statement or command, 
it prints the error message in the format: 

?message 

Most of the error messages are fatal error messages~ that is, after 
BASIC prints the error message, it interrupts execution of the program 
line, immediate mode statement or command and then prints the READY 
message. 

Certain arithmetic and input errors are nonfatal. When BASIC finds a 
nonfatal arithmetic error, it substitutes a default value for the 
operation causing the error and continues execution. When BASIC finds 
a nonfatal input error, it prints a message and continues execution. 
After certain nonfatal input errors, BASIC requests more input. 

BASIC detects most errors when it is executing a program line, 
immediate mode statement, or command. BASIC does, however, detect 
these errors when you are typing in your program. 

?LINE TOO LONG (?LTL) 
?LINE TOO LONG TO TRANSLATE (?TLT) 
?PROGRAM TOO BIG (?PTB) 

Some versions of BASIC use an abbreviated 3-letter error message. 
These messages and their corresponding long forms are listed in Table 
A-1. See your BASIC-11 user's guide for a description of the error 
messages your system prints. 

Table A-2 lists the long form of the error messages and 
description of each. (The abbreviated forms are 
parentheses.) You can assume an error message is fatal 
first word of the description is "nonfatal.'' 

A-1 

provides a 
listed in 

unless the 



ERROR MESSAGES 

Table A-1 
Abbreviated Error Messages 

Abbreviated 
Form Long Form 

?ARG ?ARGUMENT ERROR 
?ATL ?ARRAY TOO LARGE 
?BDR ?BAD DATA READ 
?BLG ?BAD LOG 
?BRT ?BAD DATA - RETYPE FROM ERROR 
?BSO ?BUFFER STORAGE OVERFLOW 
?CAO ?CHANNEL ALREADY OPEN 
?CCP ?CHECKSUM ERROR IN COMPILE PROGRAM 
?CDF ?CANNOT DELETE FILE 
?CIE ?CHANNEL I/O ERROR 
?CNO ?CHANNEL NOT OPEN 
?COO ?COMMON OUT OF ORDER 
?CVO ?CONTROL VARIABLE OUT OF RANGE 
?DVO ?DIVISION BY ZERO 
?ECC ?ERROR CLOSING CHANNEL 
?EER ?EXPONENTATION ERROR 
?EI! ?EXCESS INPUT IGNORED 
?ENL ?END NOT LAST 
?ETC ?EXPRESSION TOO COMPLEX 
?FAD ?FUNCTION ALREADY DEFINED 
?FAE ?FILE ALREADY EXISTS 
?FNF ?FILE NOT FOUND 
?FOV ?FLOATING OVERFLOW 
?FPV ?FILE PRIVILEGE VIOLATION 
?FSV ?NESTED FOR STATEMENTS WITH SAME CONTROL VARIABLE 
?FUN ?FLOATING UNDERFLOW 
?FWN ?FOR W~THOUT NEXT 
?ICN ?ILLEGAL CHANNEL NUMBER 
?IDF ?ILLEGAL DEF 
?IDM ?ILLEGAL DIM 
?IDT ?ILLEGAL DATA TYPE 
?IEF ?ILLEGAL END OF FILE IN COMPILE PROGRAM 
?!FL ?ILLEGAL FILE LENGTH 
?IFS ?ILLEGAL FILE SPECIFICATION 
?!ID ?ILLEGAL I/O DIRECTION 
?!IM ?ILLEGAL IN IMMEDIATE MODE 
?INS ?INCONSISTENT NUMBER OF SUBSCRIPTS 
?IOV ?INTEGER OVERFLOW 
?IRS ?ILLEGAL RECORD SIZE 
?!SE ?INPUT STRING ERROR 
?ISL ?ILLEGAL STRING LENGTH 
?LTL ?LINE TOO LONG 
?MSP ?MISSING SUBPROGRAM 
?NER ?NOT ENOUGH ROOM 
?NGS ?NEGATIVE SQUARE ROOT 
?NSM ?NUMBERS AND STRING MIXED 
?NVD ?NOT A VALID DEVICE 
?NWF ?NEXT WITHOUT FOR 
?OOD ?OUT OF DATA . 
?PRU ?PRINT USING ERROR 
?PTB ?PROGRAM TOO BIG 
?RES ?RESEQ ARGUMENT ERROR 
?RPL ?USE REPLACE 
?RWG ?RETURN WITHOUT GOSUB 

A-2 



Abbreviated 
Form 

?SOB 
?SSO 
?STL 
?SUB 
?SYN 
?TIC 
?TLT 
?TMG 
?UAC 
?UFN 
?ULN 
?VCU 

ERROR MESSAGES 

Table A-1 (Cont.) 
Abbreviated Error Messages 

Long Form 

?SUBSCRIPT OUT OF BOUNDS 
?STRING STORAGE OVERFLOW 
?STRING TOO LONG 
?SUBSTITUTE ERROR 
?SYNTAX ERROR 
?TOO MANY ITEMS IN COMMON 
?LINE TOO LONG TO TRANSLATE 
?TOO MANY GOSUB'S 
?UNDIMENSIONED ARRAY IN CALL 
?UNDEFINED FUNCTION 
?UNDEFINED LINE NUMBER 
?VIRTUAL ARRAY CHANNEL ALREADY IN USE 

Table A-2 
BASIC-11 Error Messages 

?ARGUMENT ERROR (?ARG) 

Arguments in a function do not match, in number, range, or type, 
the arguments defined for the function. Ensure that there are 
the correct number of arquments, that their values are in the 
correct range, and that they are the correct type. 

?ARRAYS TOO LARGE (?ATL) 

Not enough memory is available for the arrays specified in the 
DIM statements. Reduce the size of the arrays or reduce the size 
of the program (see Section 9.11). 

?BAD DATA READ (?BDR) 

Data item input from a DATA statement or from a file is the wrong 
data type. Ensure that the DATA statement or the file contains 
the same data type as specified in the READ or INPUT # statement. 

?BAD DATA - RETYPE FROM ERROR (?BRT) 

Nonfatal. 
statement 
continue. 

?BAD LOG (?BLG) 

Item entered in response 
is the wrong data type. 

to an INPUT or INPUT #0 
Retype item and program will 

Nonfatal. Expression in LOG or LOGlO function is 0 or negative. 
The function returns 0 and BASIC continues execution of the 
program. 

?BUFFER STORAGE OVERFLOW (?BSO) 

Not enough room available for file buffer in your area. 
program size (see Section 9.11). 

A-3 

Reduce 



ERROR MESSAGES 

Table A-2 (Cont.) 
BASIC-11 Error Messages 

?CANNOT DELETE FILE (?CDF) 

The file specified in a KILL statement or UNSAVE command cannot 
be deleted. See your BASIC-11 user's guide for more information. 

?CHANNEL ALREADY OPEN (?CAO) 

OPEN statement specifies a channel that is already associated 
with an open file. Ensure that OPEN statements specify correct 
channel numbers and that files that should be closed are closed. 

?CHANNEL I/O ERROR (?CIE) 

Accessing data in a file produces an error. Ensure that your 
peripheral devices and their storage media are working correctly. 
One possible cause is that the file accessed has 0 length. 

?CHANNEL NOT OPEN (?CNO) 

A PRINT #, PRINT # USING, INPUT #, IF END #, or CLOSE statement, 
or a reference to a virtual array file specifies a channel number 
not associated with an open file. Check that the OPEN statement 
has been executed and that it specifies the same channel number 
as the program line with the error. 

?CHECKSUM ERROR IN COMPILED PROGRAM (?CCP) 

File produced by the COMPILE command contains a format error. 
use a copy of the program created by a SAVE or REPLACE command. 

?COMMON OUT OF ORDER (?COO) 

Variables and arrays in a COMMON statement are not listed in the 
same order as those in a previous segment. Ensure that all 
segments have equivalent COMMON statements. 

?CONTROL VARIABLE OUT OF RANGE (?CVO) 

Expression in an ON GOTO or ON GOSUB statement is 0 or negative 
or has a value greater than the number of line numbers listed. 
Ensure that expression has a value in the correct range. 

?DIVISION BY ZERO (?DVO) 

Nonfatal. An expression 
substitutes a value of 
execution of the program. 

?END NOT LAST (?ENL) 

includes a 
0 for that 

division by 0. BASIC 
operation and continues 

END statement is not the highest numbered program line. This 
error message is printed when the END statement is executed. 
Ensure that there is only one END statement in program and that 
it has the highest line number. 

?ERROR CLOSING CHANNEL (?ECC) 

Closing a channel produces an error. Ensure that your peripheral 
devices and their storage media are working correctly. 

A-4 



ERROR MESSAGES 

Table A-2 (Cont.) 
BASIC-11 Error Messages 

?EXCESS INPUT IGNORED (?EI!) 

Nonfatal. There are more data items than required by an INPUT or 
INPUT #0 statement. BASIC ignores the excess items and continues 
execution of the program. Ensure that data items did not contain 
an unintended comma (e.g., 1,430 instead of 1.430). 

?EXPONENTIATION ERROR (?ERR) 

Nonfatal. An expression includes the operation of ra1s1ng a 
negative value to a nonintegral power (e.g., (-l)A.5). This 
would produce a complex number, which can not be represented in 
BASIC. This message is also produced when a negative value is 
raised to an integral value that has an absolute value greater 
than 255 (e.g. (-l)n256). In both cases, BASIC substitutes a 
value of O for the operation and continues execution. 

?EXPRESSION TOO COMPLEX (?ETC) 

An expression is too complex for BASIC to evaluate in the area it 
uses for calculations (called the stack). This condition is 
usually caused by including user-defined functions or nested 
functions in an expression. The degree of complexity that causes 
this error varies according to the amount of space available in 
the s~ack at the time. Breaking the statement up into several 
statements containing simpler expressions may eliminate the 
error. 

?FILE ALREADY EXISTS (?FAE) 

Creating a file would cause an existing file to be deleted and 
this deletion is not allowed. See your BASIC-11 user's guide for 
more information. 

?FILE NOT FOUND (?FNF) 

BASIC cannot find the specified file. Ensure that the file 
specification was typed correctly and that the file exists. 

?FILE PRIVILEGE VIOLATION (?FPV) 

This operation includes a restricted file operation. 
BASIC-11 user's guide for more information. 

?FLOATING OVERFLOW (?FOV) 

See your 

Nonfatal. The absolute value of the result of a computation is 
greater than the largest number that can be stored by BASIC 
(approximately 10A38). BASIC substitutes a value of 0 for the 
operation and continues execution of the program. 

?FLOATING UNDERFLOW (?FUN) 

Nonfatal. The absolute value of the result of a computation is 
smaller than the smallest number that BASIC can store 
(approximately lOA(-38)). BASIC substitutes a value of 0 for 
operation and continues execution of the program. 

A-5 



ERROR MESSAGES 

Table A-2 (Cont.) 
BASIC-11 Error Messages 

?FOR WITHOUT NEXT (?FWN) 

The program contains a FOR statement without a corresponding NEXT 
statement to terminate the loop. Ensure that each loop in the 
program is terminated with a NEXT statement. 

?FUNCTION ALREADY DEFINED (?FAD) 

The user-defined function is previously defined. Ensure that 
each function is defined only once and has a unique name. 

?ILLEGAL CHANNEL NUMBER (?ICN) 

The channel specified is not in the range allowed or the IF END 
statement specifies a file on a terminal. See your BASIC-11 
user's guide for information about the range of valid channel 
numbers. 

?ILLEGAL DEF (?IDF) 

There is an error in the DEF statement. Check the format and 
data types in the argument list and defining expression. 

?ILLEGAL DIM (?IDM) 

A subscript in a DIM or COMMON statement is not an integer, an 
array is dimensioned more than once, or an array has more than 
two dimensions. Ensure that an array specification is in the 
correct format and appears only once in the COMMON and DIM 
statements in the program. 

?ILLEGAL END OF FILE IN COMPILED PROGRAM (?IEF) 

File produced by the COMPILE command contains a format error. 
Use a copy of the program created by a SAVE or REPLACE command. 

?ILLEGAL FILE LENGTH (?!FL) 

The FILE LENGTH specified in an OPEN statement is invalid. See 
your BASIC-11 user's guide for information on the valid range of 
FILE LENGTH. 

?ILLEGAL FILE SPECIFICATION (?IFS) 

The file specification is invalid. See your BASIC-11 user's 
guide for information on the format of a file specification. 

?ILLEGAL IN IMMEDIATE MODE (?!IM) 

The INPUT or INPUT # statement cannot be entered in immediate 
mode. Enter the statement in a program line (followed with a 
STOP statement) and execute the statement with an immediate mode 
GO TO statement. 

A-6 



ERROR MESSAGES 

Table A-2 (Cont.) 
BASIC-11 Error Messages 

?ILLEGAL I/0 DIRECTION (?IID) 

Statement attempts to write to an input file or read an output 
file. Ensure that the channel number specified specifies the 
correct file. If the statement assigns a value to an element of 
a virtual array file, ensure that the file 1 s OPEN statement does 
not specify ''FOR INPUT.'' 

?ILLEGAL RECORD SIZE (?IRS) 

The RECORDSIZE specified in an OPEN statement is invalid. See 
your BASIC-11 user's guide for information on the valid range for 
RECORDSIZE. 

?INCONSISTENT NUMBER OF SUBSCRIPTS (?INS) 

The array is dimensioned with one subscript and referenced by 
two, or vice versa. Ensure that the DIM statement and array 
references are consistent. 

?INPUT STRING ERROR (?ISE) 

Nonfatal. A string entered in response to an INPUT statement 
begins with a quotation mark but is not terminated by the 
appropriate end quotation mark. BASIC assigns to the string all 
the characters between the initial quote and the line terminator 
and continues execution of the program. 

?INTEGER OVERFLOW (?IOV) 

An integer variable is assigned a value greater than 32767 or 
less than -32768 or an integer expression produces a result which 
exceeds this range. Change the variable or expression to a 
floating point format. 

?LINE TOO LONG (?LTL) 

The line entered is longer than BASIC allows; the line is 
ignored. If this message occurs when BASIC is reading a program 
from a file, BASIC stops reading the file. A possible cause is 
that you entered a line near the maximum size with no spaces, but 
when you save the program, BASIC adds spaces making the line too 
long. Split the line into several smaller lines. 

?LINE TOO LONG TO TRANSLATE (?TLT) 

Lines are translated as they are entered; the line just entered 
exceeds the area reserved for translating. The line is ignored. 
If this message is produced while BASIC is reading a program from 
a file, BASIC stops reading the file. Split the line into 
several smaller lines. 

?MISSING SUBPROGRAM (?MSP) 

The CALL statement specifies a nonexistent routine name. Ensure 
that the name is typed correctly (it must consist of upper case 
letters) • 

A-7 



ERROR MESSAGES 

Table A-2 (Cont.) 
BASIC-11 Error Messages 

?NEGATIVE SQUARE ROOT (?NGS) 

Nonfatal. The expression in the SQR (square root) function has a 
negative value. The function returns a value of 0. BASIC 
continues execution of the program. 

?NESTED FOR STATEMENTS WITH SAME CONTROL VARIABLE (?FSV) 

A FOR statement specifies the same control variable as that 
specified by a FOR NEXT loop that the FOR statement is inside. 
Change one· of the control variables to a different variable name 
(in both the FOR and the corresponding NEXT statement). 

?NEXT WITHOUT FOR (?NWF) 

A NEXT statement is without a corresponding FOR statement. 
Ensure that each loop starts with a FOR statement and ends with a 
NEXT statement which specifies the same variable. This error 
message is also produced if control is transferred into the 
middle of a loop. FOR NEXT loops should only be entered by 
executing the FOR statement. 

?NOT A VALID DEVICE (?NVD) 

File specification contains an invalid device. See your BASIC-11 
user's guide for information about file specifications. 

?NOT ENOUGH ROOM (?NER) 

There is not enough room for the file. See your BASIC-11 user's 
guide for more information. 

?NUMBERS AND STRINGS (?NSM) 

String and numeric values appear in the same expression or they 
are set equal to each other; for example, A$=2. Change either 
the data type of the variable (e.q., A=2) or the expression 
(e.g., A$=''2 11

) so that they are consistent. 

?OUT OF DATA (?OOD) 

The data list is exhausted and a READ statement requests 
additional data or the end of a file is reached and the INPUT # 
statement requests additional data. Ensure that there is 
sufficient data or test for the end-of-file condition with the IF 
END statement. 

?PRINT USING ERROR (?PRU) 

There is an error in the PRINT USING statement caused when the 
format specification is not a valid string, or is null, or does 
not contain one valid field. The error is also caused when an 
attempt is made to print a numeric value in a string field, a 
string value· in a numeric field, or a negative number in a 
floating asterisk or floating dollar sign field that does not 
also specify a trailing minus sign. The message is also printed 
if the items in the list are not separated by commas or 
semicolons. 

A-8 



ERROR MESSAGES 

Table A-2 (Cont.) 
BASIC-11 Error Messages 

?PROGRAM TOO BIG (?PTB) 

The line just entered causes the program to exceed the user area 
in memory; the line is ignored. Reduce program size (see 
Section 9.11). If this error occurs when BASIC is reading a 
program from a file, BASIC stops reading the file. 

?RESEQUENCE ERROR (?RES) 

Resequencing the program would cause lines to overlap or existing 
lines to be deleted, or would create an illegal line number. 
Reenter the command with different arguments. 

?RETURN WITHOu·r GOSUB (?RWG) 

A RETURN is encountered before execution of a GOSUB statement. 
Do not transfer control to a subroutine except by executing a 
GOSUB or an ON GOSUB statement. 

?STRING STORAGE OVERli'LOW (?SSO) 

Not enough memory is available to store all the strings used in 
the program. Reduce program size (see Section 9.11). 

?STRING TOO LONG (?STL) 

The maximum length of a string in a BASIC statement is 255 
characters. Split string into several smaller strings. 

?SUBSCRIPT OUT OF BOUNDS (?SOB) 

The subscript computed is less than zero or is outside the bounds 
defined in the DIM statement. Ensure that expression specifying 
the subscript is in the corr~ct range. 

?SUBSTITUTE ERROR (?SUB) 

There was no separator between the strinys in the SUB command or 
the command would create an immediate mode statement. Retype SUB 
command. 

?SYNTAX ERROR (?SYN) 

BASIC has encountered an unrecognizable element. Common examples 
of syntax errors are misspelled commands, unmatched parentheses, 
and other typoqraphical errors. This message can also be 
produced by attempting to read in a program from a file 
containing illegal characters, in which case BASIC stops reading 
the file. Retype program line or ensure that file contains a 
valid BASIC program. 

?TOO MANY GOSUBS (?TMG) 

More than 20 GOSUBS have been executed without a corresponding 
RETURN statement. Change the program logic so that less GOSUB 
statements are executed. 

A-9 



ERROR MESSAGES 

Table A-2 (Cont.) 
BASIC-11 Error Messages 

?TOO MANY ITEMS IN COMMON (?TIC) 

There are more than 255 variable and array names 
A(lOO), A%, A%(10, 10), A$, and A$(5) are 
different names). Reduce the number of items 
converting individual variables to elements of 
passing fewer items to the next program segment. 

?UNDEFINED FUNCTIONS (?UFN) 

in COMMON (A, 
all considered 

in COMMON by 
an array or by 

A user-defined function has been used and not defined. Define 
the function. A function is defined only after the RUN command 
or CHAIN statement is executed. 

?UNDEFINED LINE NUMBER (?ULN) 

The line number specified in an IF, GO TO, GOSUB, ON GO TO, ON 
GOSUB, or CHAIN statement does not exist anywhere in the program. 
Ensure that the line number specified exists in the program. 

?UNDIMENSIONED ARRAY IN CALL (?UAC) 

The first reference to an undimensioned array appears in a CALL 
statement. Dimension the array with the DIM statement. 

?USE REPLACE 

Saving the program would have caused 
deleted. Use either a different 
REPLACE command. 

an existing file 
file specification 

?VIRTUAL ARRAY CHANNEL ALREADY IN USE (?VCU) 

to be 
or the 

The DIM # statement specifies a channel number which has already 
appeared in a DIM # statement. Specify another channel number. 

Using BASIC functions improperly causes error messages to be printed. 
Table A-3 lists the functions and describes under which conditions 
BASIC functions produce errors. 

A-10 



ERROR MESSAGES 

Table A-3 
Error Conditions in Functions 

All functions 

The argument used is the wrong type. For example, the argument 
is numeric and the function expects a string expression. This 
condition produces ?ARGUMENT ERROR (?ARG). 

All functions 

The wrong number of arguments is used in a function, or the wrong 
character is used to separate them. For example, PRINT SIN (X,Y) 
produces a syntax error because the SIN function has only one 
argument. This condition produces ?SYNTAX ERROR (?SYN). 

ASC(string) 

String is not a !-character string. 
?ARGUMENT ERROR (?ARG). 

This condition produces 

BIN(string) 

Character other than blank, O, or 1 in string or value is greater 
than 2~16. This condition produces ?ARGUMENT ERROR (?ARG). 

CHR$(expr) 

Expression is not in the range 0 to 32767. 
produces ?ARGUMENT ERROR (?ARG) • 

This condition 

EXP(expr) 

Value of expression is greater than 87. This condition produces 
?EXPONENTIATION ERROR (?EER). 

FNletter 

The function FNletter is not defined (function cannot be 
by an immediate mode statement) . This condition 
?UNDEFINED FUNCTION (?UFN). 

LOG(expr) 

defined 
produces 

Expression is negative or 0. The function returns a value of 0. 
This condition produces ?BAD LOG (?BLG). 

LOGlO(expr) 

Expression is negative or O. The function returns a value of 0. 
This condition produces ?BAD LOG (?BLG). 

OCT(string) 

Character other than blank or digits 0 
string, or value is greater than 2Al6. 
ARGUMENT ERROR (?ARG). 

A-11 

through 7 appears in 
These conditions produce 



PI 

ERROR MESSAGES 

Table A-3 (Cont.) 
Error Conditions in Functions 

An argument is included. This condition produces ?SYNTAX ERROR 
(?SYN). 

SEG$(string,exprl,expr2) 

No additional error conditions. 

SQR (expr) 

TAB 

Expression is negative. The function returns a value of 0. This 
condition produces ?NEGATIVE SQUARE ROOT (?NGS). 

Expression is not in the range 0 to 32767. 
produces ?ARGUMENT ERROR (?ARG) • 

This condition 

VAL (string) 

String is not a numeric constant. 
?ARGUMENT ERROR (?ARG) • 

A-12 

This condition produces 



APPENDIX B 

SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS 

B.l SUMMARY OF BASIC-11 STATEMENTS 

Table B-1 lists the BASIC-11 statements and provides a brief 
description of each. For more information see the section of this 
manual specified on the right. 

Table B-1 
Summary of Statements 

Section 

CALL "routine name" [<argument list)] 3.3 

Calls assembly language routines from a BASIC program. 

CHAIN string [LINE expression] 8.1 

Terminates execution of the program, loads the program 
specified by string, and begins execution at the lowest line 
number or at the line number specified by expression. The 
string is a file specification. 

CLOs{[#]expr 1, [#]expr2 ,[#]expr 3, •• .] 6. 2. 2 
Closes the file(s) associated with the channel number(s) and 
virtual file channel number(s) specified. If no channel 
number is specified, closes all open files. 

COMMON list 8.1.1 

Preserves values and names of specified variables and arrays 
when the CHAIN statement is executed. Both string and 
arithmetic variables and arrays can be passed. The 
statement also dimensions the specified arrays. List is in 
the general format: 

varl [cexpr [.expr] ][var 2 [c expr [,expr]l ·.] 

B-1 



SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS 

Table B-1 (Cont.) 
Summary of Statements 

Section 

DATA list 

used in conjunction with READ to input listed data into an 
executing program. Can contain any mixture of strings and 
numbers. Items must be separated by commas. 

3 .1. 3 

DEF FNletter[{:}]cvarl[,var2, ••• ,var5]l=expression 5.4 

Defines a user function. Letter may be any single letter A 
through z. 

DIM list 

Reserves space in memory for arrays according to the 
subscript(s) specified after the variable name. List is in 
the general format: 

varl (expr [,expr ]l [var 2 (expr [,expr]) , •• .] 

DIM #integerl,variable(integer2[,integer3]>[=integer4] 6.4.1 

END 

Dimensions the virtual array file associated with the 
channel number specified by integer!. Integer4 specifies 
the string size for string virtual arrays. 

Optional. Placed at the physical end of the program to 
terminate execution. 

FOR var=exprl TO expr2 [sTEP expr3] 

Sets up a loop to be executed the specified number of times. 

GOSUB line number 

Unconditionally transfers control to specified line of 
subroutine. 

GO TO line number 

Unconditionally transfers control to specified line number. 

{
THEN statement } 

IF relational expression THEN line number 
GO TO line number 

Conditionally executes the specified statement or transfers 
control to specified line number. When the condition is not 
true and a statement is specified, execution continues at 
the next sequential line. When the condition is not true 
and a line number is specified, execution continues at the 
next sequential statement. The expressions and the 
relational operator must all be string or all be numeric. 

B-2 

4.3 

4.2.1 

4.4.1 

4 .1.1 

4 .1. 3 



SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS 

Table B-1 (Cont.) 
Summary of Statements 

Section 

{

THEN statement } 
IF END #expr THEN line number 

GO TO line number 

Tests for end-of-file condition of input sequential file 
associated with channel number specified by expression. 

6.3.3 

INPUT [#expr ,]var iablel [,var iable2, .. .] 3.1.1 and 6.3.1 

Inputs data from your terminal or from the file 
with the channel number specified by expression. 
may be arithmetic or string. 

KILL string 

Deletes file specified by string. 

[LET] variable=expression 

associated 
variables 

Assigns value of expression to the specified variable. 
variable and expression must be of the same type, either 
numeric or string. 

6.6 

2.5 

LINPUT [#expr ,]string varl[,string var2, •.. ] 3 • 1. 2 and 6 • 3 . 1 

Inputs string data from the terminal or 
associated with channel number specified 
Variables can only be string variables. 

NAME string! TO string2 

from the file 
by expression. 

Renames file specified by string! to name specified by 
str ing2. 

NEXT variable 

Placed at end of FOR loop to return control to FOR 
s ta temen t. 

6.5 

4.2.1 

ON expression GOSUB line numberl[,line number2,line number3, •.• ] 4.4.2 

Conditionally transfers control to subroutine at one line 
number specified in list. Value of expression determines 
the line number to which control is transferred. 

ON expression GO TO line numberl[,line number2,line number3, ... ] 4.1.2 

Conditionally transfers control to one line number in the 
list. Value of expression determines the line number to 
which control is transferred. 

ON expression THEN line numberl[,line number2, ... ] 

Equivalent to ON GO TO. 

8-3 



SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS 

Table B-1 (Cont.) 
Summary of Statements 

Section 

OPEN string~~~: ;~;~iiT] AS FILE ~]expr~OUBLE BUF]~RECORDSIZE expr]~MODE exp~~FILESIZE expr] 

6.2.1 

Opens a file specified by string for input or output as 
specified (assumes input if neither specified) and 
associates file with the channel number specified by exprl. 
String is a file specification. 

OVERLAY string [LINE expression] 

Overlays or merges the program currently in memory with the 
program in the file specified by string, and when overlay is 
completed, transfers control to either the next sequential 
BASIC line number or the line number specified by 
expression. String is a file specification. 

7.2 

PRINT [#expr ,][list] 3.2 and 6.3.2 

Prints items in list on 
associated with channel 
List can consist of string 
the TAB function. Items 
or semicolons. 

the terminal or to the file 
number specified by expression. 
and arithmetic expressions and 
can be separated by either commas 

PRINT [#expr ,] USING string, 1 ist 

Prints items in list on the terminal or to the file 
associated with channel number specified by expr in the 
format determined by string. List can consist of string and 
arithmetic expressions. Items can be separated by either 
commas or semicolons. 

RANDOMIZE 

Causes the random number generator (RND function) to produce 
different random numbers. 

READ var iablel [,var iable2, .. -] 

Assigns values listed in DATA statements to specified 
variables. Variables may be string or numeric, 

REM comment 

No effect on execution of program. 
comments about the BASIC program. 

RESET[#expr] 

Equivalent to RESTORE. 

Contains explanatory 

7.4 

5.2.3 

3 .1. 3 

1.6 

RESTORE[#expr] 3. 1. 3 and 6. 3. 4 

Resets either the data pointer or, when specified, the input 
file associated with the specified channel number to the 
beginning. 

B-4 



SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS 

Table B-1 (Cont.) 
Summary of Statements 

Section 

RETURN 

Terminates a subroutine and returns control to the statement 
following the last executed GOSUB statement. 

STOP 

Terminates execution of the program. 
end(s) of the program. 

B.2 SUMMARY OF BASIC-11 FUNCTIONS 

ARITHMETIC FUNCTIONS 

Placed at logical 

4.4.1 

4.3 

Table B-2 lists the BASIC-11 arithmetic functions and provides a 
description of each. For more information about a function, see the 
section of this manual specified on the right. 

Table B-2 
Summary of Arithmetic Functions 

Section 

ABS(expr) 5.2.2.4 

Returns the absolute value of the expression. 

ATN(expr) 

Returns the arctangent of the expression as an angle in 
radians in the range + or - pi/2. 

5.2.1 

COS(expr) 5.2.1 

Returns the cosine of the angle specified by the expression 
in radians. 

EXP(expr) 5.2.2.2 

Returns the value of e raised to the expression power where 
e is (approximately) 2.71828. 

INT(expr) 5.2.2.3 

Returns the greatest integer less than or equal to the 
expression. 

LOG(expr) 5.2.2.2 

Returns the natural logarithm of the expression. 

B-5 



SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS 

Table B-2 (Cont.) 
Summary of Arithmetic Functions 

Section 

LOGlO(expr) 5.2.2.2 

Returns the base 10 logarithm of the expression. 

PI 5.2.1 

Returns the value of pi (3.141593). 

RND [< expr >] 5.2.3 

Returns a random number between 0 and 1. 

SGN(expr) 5.2.2.5 

Returns a value indicating the sign of expression. 

SIN(expr) 

Returns the sine of the angle specified by expression in 
radians. 

5.2.l 

SQR(expr) 5.2.2.1 

Returns the square root of the expression. 

TAB (expr) 

Causes the terminal 
specified by the 
s ta teme n ts) . 

type head to 
expression 

tab to 
(valid 

column 
only in 

number 
PRINT 

3.2.3 

Table B-3 lists the BASIC-11 string functions and provides a 
description of each. For more information about a function, see the 
section in this manual specified on the right. 

Table B-3 
Summary of String Functions 

Section 

ASC(string) 5.3.2.1 

Returns as a decimal number the 8-bit internal code (ASCII 
value) for the !-character string expression. 

BIN(string) 5.3.2.3 

Converts a string expression containing a binary number to a 
decimal value. Blanks are ignored. 

CHR$(expr) 5.3.2.1 

Generates a !-character string whose ASCII value is the 
low-order 8 bits of the integer value of the expression. 

B-6 



SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS 

Table B-3 (Cont.) 
Summary of String Functions 

Section 

CLK$ 

DAT$ 

Returns the time as a string in the form hh:mm:ss (for 
example 12:30:15). 

Returns the date as a string in the form dd-mon-yr (for 
example 07-FEB-75). 

5.5 

5.5 

LEN(string) 5.3.1.1 

Returns the number of characters in the string. 

OCT(string) 5.3.2.3 

Converts a string expression containing an octal number to a 
decimal value. Blanks are ignored. 

POS(stringl,string2,expr) 5.3.1.3 

Searches for and returns the position of the first 
occurrence of string2 in string!. The search starts at the 
character position specified by expression. 

SEG$(string,exprl,expr2) 5.3.1.4 

Returns the string of characters in position specified by 
expressionl through the position specified by expression2. 

STR$(expr) 5.3.2.2 

Returns the string which represents the numeric value of the 
expression. 

TRM$(string) 5.3.1.2 

Returns string without trailing blanks. 

VAL(string) 5.3.2.2 

Returns the value of the decimal number contained in the 
string. 

B.3 SUMMARY OF BASIC-11 COMMANDS 

Table B-4 lists the BASIC-11 commands and provides a description of 
each. For more information about a command, see the section of this 
manual specified on the right. 

B-7 



SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS 

Table B-4 
Summary of Commands 

Section 

APPEND [file specification] 

CLEAR 

Merges the program in your area in memory with the program 
specified by the file specification. 

Initializ~s all variables to 0 and all string variables to 
nulls and deletes arrays. 

9.6.2 

9.5 

COMPILE [tile specification] 9.10 

Saves a compiled version of the program. 

DEL line specification[,line specification, ... ] 

Deletes specified lines. 

LENGTH 

Prints on your terminal the size of the program in memory 
and the size of the remaining free memory. 

LIST[NH][line specificationl,line specification2, .• J 
Prints on the terminal the specified line(s) of the program 
currently in memory. NH suppresses the printing of the 
header line. 

NEW [program name] 

Erases your storage area and sets the current program name 
to the one specified. 

OLD [tile specification] 

Erases your storage area and inputs the program from the 
specified file. 

RENAME program name 

Changes the current program name to the one specified. 

REPLACE [tile specification] 

Replaces the specified file with the current program. 

9.5 

9.11 

9.2 

9.5 

9.6.2 

9.7 

9.6.1 

RESEQ~ew line number],[old line number.!ll~old line number2],[incrementJ] 
9.9 

Resequences program as specified. 

Executes the program in memory. NH suppresses the printing 
of the header line. 

B-8 

9.3 



SUMMARY OF BASIC-11 STATEMENTS, FUNCTIONS, AND COMMANDS 

Table B-4 (Cont.) 
Summary of Commands 

Section 

RUN[NH]file specification 9.6.3 

Erases your storage area, inputs the program from the 
specified file, and then executes the program. Does not 
print header line in any case. 

SAVE [file specification] 9.6.l 

Outputs the program in memory to the specified file. 

SCR 

Erases your storage area and changes the program name to 
NONAME. 

SUB line numberxstringlxstring2[xinteger] 

Substitutes the integer occurrence of string! with 
on line specified. x is a delimiter and can 
character such as @. 

UNSAVE tile specification 

Deletes specified file. 

Key Commands 

string2 
be any 

9.5 

9.8 

9.6.4 

CTRL/C 9.1 

Interrupts execution of a command or program and causes 
BASIC to print the READY message. See your BASIC-11 user's 
guide for more information about CTRL/C. 

CTRL/0 9.1 

Causes all further terminal output to be discarded. If an 
INPUT statement is encountered, CTRL/O is retyped, or the 
program is terminated, printing resumes. 

CTRL/Q 9.1 

Continues output to the terminal; cancels effect of CTRL/S. 

CTRL/S 9.1 

Temporarily suspends all output to terminal until CTRL/Q is 
typed; allows alphanumeric display terminals to be read or 
photographed before aata is moved off screen. 

CTRL/U 

Deletes the entire current input line (provided the RETURN 
key has not been typed) . 

RUBOUT 

Deletes the last character typed. 

B-9 

9.1 

9.1 



APPENDIX C 

ASCII CHARACTER SET 

The following table shows, with the corresponding octal and decimal 
codes, the 128-character ASCII (American Standard Code for Information 
Interchange) character set. These codes are used to store ASCII data 
in files and to store them internally. 

The BASIC user can convert an ASCII value to the corresponding string 
character with the CHR$ function and can convert a string character to 
the corresponding ASCII value with the ASC function (see Section 
5.3.2.1). 

BASIC also uses the ASCII values of the characters in string 
comparisons (see Section 2.4.3). 

The octal code is provided for reference. BASIC does not support 
octal numbers except through the OCT function (see Section 5.3.2.3). 

ASCII characters are stored internally and in files in eight bits. 
The eighth (high order) bit is normally 0. 

ASCII 
ASCII 7-Bit 

Decimal Octal 
Code Code 

0 000 
1 001 
2 002 
3 003 
4 004 
5 005 
6 006 
7 007 
8 010 
9 Oll 
10 012 
ll 013 
12 014 
13 015 
14 016 
15 017 
16 020 
17 021 
18 022 

Table C-1 
ASCII Character Set 

Character 

NUL (CTRL/@) 
SOH (CTRL/A) 
STX ( CTRL/B) 
ETX (CTRL/C) 
EOT ( CTRL/D) 
ENQ (CTRL/E) 
ACK (CTRL/F) 
BEL ( CTRL/G) 
BS ( CTRL/H) 
HT (CTRL/I or TAB) 
NL (NEW LINE or LINE 
VT (Vertical TAB) 
FF (Form Feed) 
RT (Return) 
so (CTRL/N) 
SI (CTRL/O) 
OLE (CTRL/P) 
DCl (CTRL/Q} 
DC2 (CTRL/R) 

C-1 

FEED) 



ASCII 
ASCII 7-Bit 

Decimal Octal 
Code Code 

19 023 
20 024 
21 025 
22 026 
23 027 
24 lJ 3 0 
25 031 
26 032 
27 033 
28 034 
29 035 
30 036 
31 037 
32 040 
33 041 
34 042 
35 (J 4 3 
36 044 
37 045 
38 046 
39 047 
40 050 
41 051 
42 052 
43 053 
44 054 
45 055 
46 056 
47 057 
48 060 
49 061 
so 062 
51 063 
52 064 
53 065 
54 066 
55 067 
56 070 
57 071 
58 072 
59 073 
6 (J 074 
bl 075 
62 U76 
63 077 
b4 100 
65 101 
66 1(J2 
67 103 
68 104 
69 105 
70 106 
71 107 
72 llO 

ASCII CHARACTER SET 

Table C-1 {Cont.) 
ASCII Character Set 

Character 

DC3 {CTRL/S) 
DC4 {CTRL/T) 
NAK {CTRL/U) 
SYN {CTRL/V) 
ETB {CTRL/W) 
CAN {CTRL/X) 
EM {CTRL/Y) 
SUB {CTRL/Z) 
ESC {ESCAPE) 
FS {CTRL/\) 
GS {CTRL/]) 
RS {CTRLF) 
us {CTRL/) 
SP {space bar) 
! 
" 
# 
$ 
% 
& 
I 

{ 
) 

* 
+ 
, 
-

I 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
: 
; 
< 
= 
> 
? 
@ 

A 
B 
c 
D 
E 
F 
G 
H 

C-2 



ASCII 
ASCII 7-Bit 

Decimal Octal 
Code Code 

73 111 
74 112 
75 113 
76 114 
77 115 
78 116 
79 117 
80 120 
81 121 
82 122 
83 123 
84 124 
85 125 
86 126 
87 127 
88 130 
89 131 
90 132 
91 133 
92 134 
93 135 
94 136 
95 137 
96 140 
97 141 
98 142 
99 143 
100 144 
101 145 
10 2 146 
103 147 
104 150 
105 151 
106 152 
107 153 
108 154 
109 155 
llO 156 
111 157 
112 160 
ll3 161 
ll4 162 
ll5 163 
ll6 164 
ll 7 165 
ll8 166 
119 167 
120 170 
121 171 
122 172 
123 173 
124 174 
125 175 
126 176 
127 177 

ASCII CHARACTER SET 

Table C-1 (Cont.) 
ASCII Character Set 

Character 

I 
J 
K 
L 
M 
N 
0 
p 
Q 
R 
s 
T 
u 
v 
w 
x 
y 

z 
[ 
\ 
l 
-

' 
a 
b 
c 
d 
e 
f 
g 
h 
i 
j 
k 
1 
m 
n 
0 

p 
q 
r 
s 
t 
u 
v 
w 
x 
y 
z 
{ 
I 
} -
RUBOU'r 

C-3 



Abbreviated error messages, A-2 
to A-3 

ABS function, 5-8 
Absolute value function, 5-8 
Accessing data in sequential 

files, 6-4 
Accuracy, digits of, 7-8 
Addition, 2-8 
Algebraic functions, 5-1 
Alphabetical order, comparing 

strings in, 2-11 to 2-12 
Alphanumeric strings, 2-6 
Ampersand, string concatenation 

operator, 2-10 
APPEND command, 9-6 
Area in memory, program storage, 

1-7 
Arithmetic 

expressions, 2-8 to 2-10 
functions, 2-13, 5-1 to 5-11 
functions, summary, B-5, B-6 
operator precedence, 2-10 
operators, 2-8 to 2-10 
relational expressions, 2-11 
relational operators, 2-11 

Arrays, 2-7, 2-14 to 2-18 
compared to virtual array 

files, 6-8 
dimensioning, 2-16 to 2-18 
dimensioning virtual, 6-9 
first element in, 2-15 
initializing, 9-4 
numeric, 2-17 
reserving space for, 2-16 
storage order of, 2-16 
string, 2 ... 18 

ASC function, 5-17 
Ascending order, execution of 

statements in, 1-3, 1-7, 4-1 
ASCII, C-1 

character set, 1-2, C-1 to C-3 
code conversions, 5-17 
values, C-1 to C-3 
values in comparing strings, 

2-12 
Assembly language routines, 8-9 
Assigning values to variables, 

2-13 
Asterisk 

fill in PRINT USING statement, 
7-6 

multiplication operator, 2-8 
ATN function, 5-2 

INDEX 

Backslash, 1-5, 1-6 
Base a log, 5-5 
Base e log, 5-5 
Base 10 log, 5-6 
BASIC, x, 1-1 

character set, 1-2 
program structure, 1-1 

BASIC-11, x, 1-1 
Beginning of arrays, 2-15 
BIN function, 5-20 
Binary functions, 5-20 
Blank lines, printing, 3-8 
Block I/O, 6:_8 
Braces, ix 
Brackets, square, ix 
Branch, computed, 4-3 
Branching, 4-1 to 4-3 
Branching, multiple, 4-3 

C in PRINT USING statement, 7~10 
Calculating expressions in the 

PRINT statement, 3-8 
Calculator, using BASIC as a, 1-9 
CALL statement, 8-9 
Calling 

routines, 8-9 
user-defined functions, 5-22 

Centered format, 7-10 
Centering strings, 7-10 
Chain,preserving variables through, 

8-3 
CHAIN statement, 8-1 to 8-6 
Chaining to compiled programs, 

8-3 
Changing a program line, 1-7, 9-9 
Changing the program name, 9-8 
Channel number, file, 6-2 to 6-5, 

6-7 
Characters 

ASCII, 1-2, C-1 
BASIC, 1-2 
conversion, 5-17 
nonprinting, 1-2 

Checking 
for the end of input file, 6-7 
the length of a program, 9-13 

CHR$ function, 5-17 
Circumflex, exponentiation operator, 

2-8 
CLEAR command, 9-4 
CLK$ function, 5-26 
CLOSE statement, 6-3 

Index-I 



INDEX (Cont.) 

Closing files, 6-3, 6-10 
Closing virtual arrays, 6-10 
Comma in PRINT statement, 3-9 

to 3-12 
Commands, 1-8, 9-1 to 9-14 

APPEND, 9-6 
CLEAR, 9-4 
COMPILE, 9-13 
DEL, 9-3 
key I 9-1 
LIST, 1-8, 9-2 
LISTNH, 9-2 
NEW, 9-4 
OLD, 9-6 
RENAME, 9-8 
REPLACE, 9-5 
RESEQ, 9-10 to 9-13 
RUN, 1-8, 9-3 
RUN file specification, 9-7 
RUNNH, 9-3 
SAVE, 9-5 
SCR, 9-4 
SUB, 9-9 
summary of, B-8 to B-9 
summary of key, B-9 
UNSAVE, 9-8 

Commas in PRINT USING statement, 
7-7 

Comment, 1-6 
COMMON statement, 8-3 to 8-6 

order of, 8-4 
Communicating data between 

program segments, 8-4, 8-6, 
8-9 

Comparing strings, 2-12 to 2-13 
COMPILE command, 9-13 
Compiled programs 

chaining to, 8-3 
efficiency of, 9-13 

Computed 
branch, 4-3 
GO TO statement, 4-3 
GOSUB statement, 4-17 

Concatenation, string, 2-10 
Conditional transfer, 4-3 to 

4-6 
Constants, 2-1 to 2-4 

integer, 2-1, 2-3 
numeric, 2-1 
string, 2-1, 2-3 

Control 
shifting, 4-1 
statements, 4-1 to 4-17 
variable in ON GO TO statement, 

4-3 
Conventions, documentation, ix 

to x 
Conversions 

ASCII code, 5-17 
character, 5-17 
functions, 5-16 to 5-21 

Copying segments from a string, 
5-15 

cos function, 5-2 
Cosine function, 5-2 
Counter in loops, 4-8 
Creating files, 6-2 
CTRL keys 

CTRL/C, 9-1 
CTRL/O, 9-1 
CTRL/Q, 9-1 
CTRL/S, 9-1 
CTRL/U, 9-2 

DAT$ function, 5-26 
Data 

excess, 3-2 
files, 6-1 to 6-11 
items, format of, 3-5 
pointer, restoring the, 3-7 
reading, 3-5 to 3-7 
storing, 6-1, 6-6 to 6-7 
supplying, 3-1 to 3-7 

DATA statement, 3-5 to 3-7 
Date function, 5-26 
Decimal point 

in numeric constants, 2-1 
in PRINT USING statement, 7-3 

DEF statement, 5-21 
Defining functions, 5-21 

in immediate mode, 5-25 
DEL command, 9-3 
Deleting 

data files, 6-11 
program files, 9-8 
program lines, 9-3 

Digits in PRINT USING statement, 
number of, 7-3 

Digits of accuracy, 7-8 
DIM statement, 2-16 to 2-18 
DIM # statement, 6-9 
Dimensioning 

arrays, 2-16 to 2-18 
virtual arrays, 6-9 

Direct I/O, 6-8 
Division, 2-8 
Documentation conventions, ix to x 
Documenting procedures, 1-6 
Dollar signs 

in PRINT USING statement, 7-6 
in string function names, 5-12 
in string names, 2-6 
in user-defined function name, 

5-21 
Double quotation marks, 2-3 
Dummy variables, 5-22 

Index-2 



INDEX (Cont.) 

E format, printing numbers in, 
7-8 

E in PRINT USING statement, 7-11 
E notation, 2-2, 7-8 
E, an algebraic constant, 5-4 
Editing a program line, 9-9 
Efficiency of compiled programs, 

9-13 
Ellipsis, ix 
End of file, 6-7 
END statement, 4-12 
Entering BASIC programs, 1-7 
Entering data, 3-1 
Equal sign 

in LET statement, 2-13 
relational operator, 2-11 

Erasing programs, 9-4 
Error conditions 

in functions, A-11 to A-12 
in PRINT USING statement, 7-3, 

7-15 to 7-18 
Error messages, A-1 to A-12 

abbreviated, A-2 to A-3 
fatal, A-1 
nonfatal, A-1 
summary, A-3 to A-11 

Evaluating expressions, 2-9 
Excess data, 3-2 
Executing a program, 9-3 
Execution 

of loops, 4-6 
stopping program, 4-12 to 4-13 

EXP function, 5-4 
Exponential function, 5-4 
Exponentiation, 2-8 
Expr, x 
Expression, ix 
Expressions, 2-8 to 2-13 

arithmetic, 2-8 to 2-10 
arithmetic relational, 2-11 
evaluating, 2-9 to 2-10 
floating point, 2-8 to 2-9 
in the PRINT statement, 3-8 
integer, 2-9 
mixed mode, 2-9 
relational, 2-11 to 2-13 
string, 2-10 

Extended string fields, 7-11 
Extracting a segment from a 

string, 5-16 

Fatal error messages, A-1 
Fields 

centered, 7-10 
extended, 7-11 
format of numeric, 7-13 
format of string, 7-14 
numeric, 7-3 

Index-3 

Fields (cont.), 
one-character string, 7-9 
string, 7-8 

Files, 6-1 to 6-10, 9-4 to 9-8 
channel number, 6-2 to 6-5, 6-7 
closing, 6-3 
control statements, 6-1 to 6-4 
data, 6-1 to 6-10 
deleting, 6-11, 9-8 
program, 6-1, 8-1, 9-4 to 9-8 
renaming, 6-10 
resetting, 6-8 
restoring program, 9-6 
running programs from, 9-7 
sequential, 6-1 
specification, x, 6-2 
using, sequential, 6-4 
writing, 6-5 

Finding 
a square root, 5-4 
the length of a string, 5-12 
the position of a substring, 

5-13 
First element in arrays, 2-15 
Floating point 

expressions, 2-9 
format, 2-3 
numbers, 1-10, 2-5 

FN function, 5-21 
FOR INPUT in OPEN statement, 6-2 
FOR NEXT loops, 4-7 to 4-12 

in immediate mode, 1-10 
STEP value in, 4-9 to 4-10 
terminating condition of, 4-8 

FOR OUTPUT in OPEN statement, 6-2 
FOR statement, 4-7 to 4-12 
Format 

centered, 7-10 
data items, 3-5 
error messages, A-1 
floating point, 2-3 
line, 1-3 
numeric fields, 7-13 
numeric output, 3-12 
output, 3-12 
string fields, 7-14 
strings, left-justified, 7-9 
strings, right-justified, 7-9 
strings with PRINT, 3-12 

Formatted output, 3-9 to 3-12, 
7-1 to 7-18 

Functions, 2-12 to 2-13, 5-1 to 
5-26 

ABS, 5-8 
algebraic, 5-1, 5-4 to 5-9 
ASC, 5-17 
ATN, 5-2 
BIN, 5-20 
CHR$, 5-17 
CLK$, 5-26 



INDEX (Cont. ) 

Functions (cont.), 
conversion, 5-16 
cos, 5-2 
DAT$, 5-26 
error conditions in, A-11 
EXP, 5-4 
FN, 5-21 
INT, 5-6 
integer, 5-6 
LOG, 5-4 
LOGl,0, 5-6 
numeric, 5-1 to 5-11 
OCT, 5-20 
POS, 5-13 
RND, 5-9 
SEG$, 5-15 
SGN, 5-9 
SIN, 5-2 
SQR, 5-4 
STR$, 5-18 
string, 5-12 to 5-21 
summary of arithmetic, B-5 
summary of string, B-6 
TAB, 3-13 
trigonometric, 5-1 to 5-3 
TRM$, 5-13 
types of, 5-1 
user-defined, 5-21 to 5-23 
VAL, 5-18 

GO TO statement, 4-1 to 4-3 
computed, 4-3 

GOSUB statement, 4-14 
Greater than or equal to 

relational operator, 2-11 
Greater than relational operator, 

2-11 

Halting program execution, 4-12 
Header lines, 1-Bi 9-2, 9-3 
Highest line number in program, 

4-12 

IF END # statement, 6-7 
IF THEN statement, 2-11, 4-3 to 

4-6 
Immediate mode statements, 1-9 

to 1-10 
defining a function in, 5-25 

Index values in FOR NEXT loop, 
4-10 

Infinite loop, 4-3 
Initializing 

arrays, 2-5, 9-4 
program storage, 9-4 

Index-4 

Initializing (cont.), 
variables, 2-5, 9-4 
your area, 9-4 

Input 
entering, 3-1 
leading spaces in string, 3-3 
string,, 3-4 

INPUT statement, 3-1 to 3-3 
INPUT # statement, 6-4 
INPUT #.0 statement, 3-4 
Int, x 
INT function, 5-6 
Integer, x, 1-10, 2-3, 2-5 

constants, 1-10, 2-3 
constants, range of, 2-3 
expression, 2-9 
function, 5-6 
random, 5-11 
variables, 2-5 

Items 
in capital letters, ix 
in lower-case letters, ix 

Key commands, 9-1, B-9 
CTRL/C, 9-1 
CTRL/O, 9 ... 1 
CTRL/Q, 9-1 
CTRL/S, 9-1 
CTRL/U, 9-2 
RUBOUT I 9 ... 2 

Keywords~ ix, 1-3, 1-4 
KILL statement, 6-11 

L in PRINT USING statement, 7-9 
Leading spaces in string input, 3-3 
Left angle bracket relational 

operator, 2-11 
Left-justified format strings, 

7-9 
Length of a string, 5-12 
Less than or equal to relational 

operator, 2-11 
Less than relational operator, 

2-11 
LET statement, 2-13 
Letters 

lower-case, 1-2 
upper-case, 1-2 

Line 
format, 1-3 
multi-statement, 1-6 
number, x, 1-3 
single statement, 1-5 
terminator, 1-3 

LINPUT statement, 3-4 
LINPUT # statement, 6-5 



INDEX (Cont. ) 

LIST command, 1-8, 9-2 
Listing programs, 9-2 
LISTNH command, 9-2 
Lists, 2-7, 2-14 
LOG function, 5~4 
LOGl~ function, 5-6 
Logarithm functions, 5-4 
Logic, program, 4-1 
Loops 

execution of, 4-6 
FOR NEXT, 4-7 
infinite, 4-3 
nested, 4-11 
overlapping, 4-11 
STEP value in FOR NEXT, 4-10 

Lower-case letters, 1-2 

Mathematical functions, 2-13, 
5-1 to 5-11 

Matrices, 2-14 
Memory 

program storage area in, 1-7 
saved by reducing program 

size, 9-14 
saved by segmenting programs 

with CHAIN, 8-1 
saved by segmenting programs 

with OVERLAY, 8-7 
Merging program segments, 8-6 
Messages 

error, A-1 
fatal, error, A-1 
nonfatal, error, A-1 
READY, 1-8 
STOP, 4-13 

Minus sign 
subtraction operator, 2-8 
trailing, 7-5 
unary, 2-8 

Mixed mode expressions, 2-9 
Multi-statement line, 1-6 
Multiple 

branching, 4-3 
GOSUB statement, 4-17 

Multiplication, 2-8 

NAME statement, 6-10 
Nested 

loops, 4-11 
parentheses, 2-9 

NEW command, 9-4 
NEXT statement, 4-7 
NONAME program name, 9-4 
Nonfatal error messages, A-1 
Nonprinting characters, 1-2 

Index-5 

Not equal to relational operator, 
2-11 

Notations, numeric, 2-2 
Number 

of digits in PRINT USING state­
ment, 7-3 

of subscripts, 2-16 
signs in PRINT USING statement, 

7-3 
Numbers 

floating point, 1-10 
output format of, 3-12 
random, 5-9 
real, 1-10 
rounding off of, 5-7 
string representation of, 5-18 
truncating, 5-6 
whole, 5-6 

Numeric 
arrays, 2-17 
constants, 1-10 
constants, range of, 2-2 
field, 7-3 
field, format of, 7-13 
functions, 5-1 
output format, 3-12 
variables, 2-5 

OCT function, 5-20 
Octal 

ASCII code, C-1 
function, 5-20 

OLD command, 9-6 
One-character string fields, 

7-9 
One-dimensional arrays 1 2-14 
ON GO TO statement, 4-3 
ON GOSUB statement, 4-17 
ON THEN statements, 4-3 
OPEN statement, 6-2 
Opening a file, 6-2 
Operators 

arithmetic, 2-8 
arithmetic relational, 2-11 
equal sign relational, 2-11 
greater than or equal to rela-

tional, 2-11 
greater than relational, 2-11 
left angle bracket relational, 

2-11 
less than or equal to relational, 

2-11 
less than relational, 2-11 
not equal to relational, 2-11 
precedence of arithmetic, 2-10 
right angle bracket relational, 

2-11 



INDEX (Cont. ) 

Operators (cont.), 
string, 2-10 
string relational, 2-12 

Order of 
array storage, 2-16 
common statements, 8-4 
entering program lines, 1-7 
evaluating expressions, 2-10 

Output, 3-8 
format of numbers, 3-12 
format of strings, 3-12 
formatted, 3-9, 3-13, 7-1 to 

7-18 
Overlapping loops, 4-11 
OVERLAY statement, 8-6 
Overlaying programs, 8-6 

Parenthesis, nested, 2-9 
Percent signs 

in integer constants, 2-3 
in integer variable names, 

2-6 
in PRINT USING statement, 7-4 
in user-defined function name, 

5-21 
PI function, 5-2 
Plus sign 

addition operator, 2-8 
string concatenation operator, 

2-10 
unary, 2-8 

POS function, 5-13 
Position of a substring, 5-13 
Precedence of arithmetic opera-

tors, 2-10 
Preserving variables through 

CHAIN, 8-3 
PRINT statement, 3-8 to 3-15 

compared to PRINT USING, 9-1 
separators in, 3-9 

PRINT # statement, 6-5 
Printing, 3-8 to 3-15, 7-1 to 

7-18 
data to a file, 6-5 to 6-7, 

7-11 
quotation marks, 2-4, 7-18 
zones, 3-9 

PRINT USING statement, 7-1 to 7-18 
compared to PRINT, 7-1 
format of, 7-2, 7-11 to 7-15 
error conditions in, 7-15 to 

7-18 
printing numbers, 7-2 to 7-8 
printing strings, 7-8 to 7-10 

Program lines 
deleting, 9-3 
editing, 9-9 
format of, 1-5 
order of entering, 1-7 
spaces in, 1-4 

Programs 
changing the name of, 9-8 
checking the size of, 9-13 to 

9-14 
deleting, 9-8 
in files, 6-1, 8-1, 9-4 to 9-8 
initializing, 9-4 
listing of, 9-2 
logic of, 4-1 
merging, 8-6 
overlaying, 8-6 
reducing the size of, 9-14 
resequencing, 9-10 to 9-13 
restoring, 9-6 
running, 1-8, 9-3, 9-7 
saving compiled, 9~13 
segmentation, 8-1 to 8-10 
stopping, 4-12 to 4-13 
storage area in memory, 1-7 
structure of, x 
termination of, 4-12 to 4-13 

Question mark in INPUT statement, 
3-1 

Quotation marks, 2-3 to 2-4 
in string input, 3-3 
printing, 2-4 
printing with PRINT USING, 7-18 

R in PRINT USING statement, 7-10 
Radians, 5-2 
Random 

access files, 6-8 
integers, 5-11 
numbers, 5-9 to 5-11 

RANDOMIZE statement, 5-9 to 5-13 
Range of 

integer constants, 2-3 
numeric constants, 2-2 
subscripts, 2-7 

READ statement, 3-5 
Reading 

data from a file, 6-4 to 6-5 
data values, 3-5 
program files, 9-6 

READY message, 1-8 

Index-6 



INDEX (Cont.) 

Real numbers, 1-10 
Red ink, x 
Reducing program size, 9-14 
Relational 

arithmetic expressions, 2-11 
expression, 2-11, 4-3 
operators, 2-11 

REM statement, 1-6 
transferring control to, 4-2 

RENAME corrunand, 9-8 
Renaming 

files, 6-10 
programs, 9-8 

REPLACE corrunand~ 9-5 
Replacing a segment of a program 

line, 9-9 
Representation of numbers, 

string, 5-18 
RESEQ corrunand, 9-10 to 9-13 
Resequencing a program, 9-10 

to 9-13 
Reserving 

digits in PRINT USING statement, 
7-3 

space for arrays~ 2-16 
Resetting a file, 6-i 
RESTORE statement, 3-7 
RESTORE # statement, 6-8 
Restoring 

data pointer, 3-7 
files, 6-·8 
program files, 9-6 

Results, printing the, 3-8 
Retrieving program files, 9-6 
RETURN 

key, 3-2 
statement, 4-14 

Right angle bracket relational 
operator, 2-11 

Right-justified format strings, 
7-9 

RND function, 5-9 
Rounding off numbers, 5-7 
Routines, assembly language, 8-9 
RUBOUT key, 1-7, 9-2 
RUN command, 1-8, 9-3, 9-7 

with file specification, 9-7 
RUNNH command, 9-3 
Running a program from a file, 

9-7 

SAVE command, 9-5 
saving 

compiled programs, 9-13 
programs, 9-5 

SCR corrunand, 9-4 
Search, string, 5-13 
SEG$ function, 5-15 

Segmentation function, 5-15 
Segmenting programs, 8-1 to 8-10 

with CALL statement, 8-9 to 8-10 
with CHAIN statement, 8-1 to 8-6 
with OVERLAY statement, 8-6 to 

8-9 
Semicolon in PRINT statement, 3-9 
Separators in PRINT statement, 3-9 
Sequence of statement execution, 

4-1 
Sequential files, 6-1, 6-4 to 6-8 

compared to virtual array files, 
6-8 

SGN function, 5-9 
Shifting control, 4-1 to 4-17 
Sign function, 5-9 
Signed 2's complement integer, 

5-20, 5-21 
Simple numeric variables, 2-5 
SIN function, 5-2 
Sine function, 5-2 
Single quotation marks, 2-3 

in PRINT USING statement, 7-9 
Single statement line, 1-5 
Size, reducing program, 9-14 
Slash, division operator, 2-8 
Spaces in program lines, 1-4 
Special characters, 1-2 
Special symbols, ix 

in PRINT USING statement, 7-5 
Specification, file, 6-2 
SQR function, 5-4 
Square brackets, ix 
Square root function, 5-4 
Statements 

CALL, 8-9 to 8-10 
CHAIN, 8-1 to 8-6 
CLOSE, 6-3 
COMMON, 8-3 to 8-6 
control, 4-1 to 4-17 
DATA, 3-5 to 3-7 
DEF, 5-21 to 5-25 
DIM, 2-16 to 2-18 
DIM#, 6-9 
END, 4-12 
execution sequence of, 4-1 
file control, 6-1 
FOR statement, 4-7 to 4-12 
GOSUB, 4-14 to 4-16 
GO TO, 4-1 to 4-2 
IF END, 6-7 to 6-8 
IF THEN, 2-11, 4-3 to 4-6 
immediate mode, 1-9 to 1-10 
in IF THEN statement, 4-4 
INPUT, 3-1 to 3-3 
INPUT #,0, 3-4 
KILL, 6-11 
LET, 2-13 to 2-14 
LINPUT, 3-4 to 3-5 

Index-7 



INDEX (Cont. ) 

Statements (cont.), 
LINPUT #, 6-5 
NAME, 6-10 
NEXT, 4-7 to 4-12 
non-executable, 1-4 
ON GOSUB,. 4-17 
ON GOTO, 4-3 
OPEN, 6-2 
OVERLAY, 8-6 to 8-9 
PRINT, 3-8 to 3-15 
PRINT USING, 7-1 to 7-18 
RANDOMIZE, 5-9 
READ, 3-5 to 3-7 
REM, 1-6 
RESTORE, 3-7 
R~STORE #, 6-8 
RETURN, 4-14 to 4-,16 
STOP, 4-12 to 4-13 
summary of, B-1 to B-5 

STEP value in FOR NEXT loops, 
4-10 

STOP 
message, 4-13 
statement, 4-12 to 4-13 

Stopping program execution, 4-12 
Storage order of arrays, 2-16 
Storing data, 6-1, 6-5 
STR$ function, 5-18 
String, x, 1-3, 2-3 to 2-6, 2-10 

alphanumeric, 2-6 
arrays, 2-17 
centering, 7-10 
concatenation, 2-10 
constants, 1-3, 2-1, 2-3 to 2-4 
copying segments from a, 5-15 
expressions, 2-10 
extracting segments from a, 5-16 
fields, 7-8 to 7-14 
finding the length of a, 5-12 
functions, 2-13, 5-12 
input, 3-3, 3-4 to 3-5 
input with leading spaces, 3-3 
input with trailing spaces, 3-3 
left-justified format, 7-9 
operators, 2-10 
output format, 3-12 
relational operators, 2-11 to 

2-12 
representation of numbers, 

5-18 
right-justified format, 7-9 
search, 5-13 
summary of functions, B-6 to 

B-7 
variables, 2-5, 2-6 

Structure of a BASIC program, 1-1 
to 1-2 

SUB command, 9-9 
Subroutines, 4-13 

Subscripted variables, 2-7 
Subscripts,, 2-7 

number of, 2-16 
range of, 2-7 

Substring, finding the position 
of a, 5-13 

Subtraction, 2-8 
Summaries 

arithmetic functions, B-5 to B-6 
commands, B-8 to B-9 
error message, A-3 to A-10 
key commands, B-9 
statements, B-1 to B-5 
string functions, B-6 

Supplying data, 3-1, 3-5 to 3-7 
Symbols, special, ix 

asterisk multiplication opera-
tor, 2-8 

backslash, 1-5, 1-6 
braces, v 
circumflex exponentiation 

operator, 2-8 
dollar sign, in string names, 

2-6 
double quotation marks, 2-3 
equal sign in LET statement, 2-13 
equal sign relational operator, 

2-11 
minus sign, unary, 2-8 
plus sign, unary, 2-8 
single quotation marks, 2-3 
slash division operator, 2-8 
square brackets, v 

TAB function, 3-13 
Tables, 2-7 
Tangent function, 5-2 
Terminating 

condition of FOR NEXT loops, 
4-8 

the program, 4-12 
Time functions, 5-26 
Trailing spaces 

in string comparison, 2-12 
in string input, 3-3 
trimming, 5-13 

Transcendental number, 5-2 
Transfers 

conditional, 4-3 to 4-6 
data between program segments, 

8-4 
to a REM statement, 4-2 
unconditional, 4-1 to 4-2 

Trigonometric functions, 5-1 
Trimming trailing blanks on 

strings, 5-13 
TRM$ function, 5-13 
Truncating numbers, 5-6 
Two-dimensional arrays, 2-14 

Index-8 



INDEX (Cont.) 

Type-in, user, x 
Types of functions, 5-1 

Unary 
minus sign,. 2-8 
plus sign, 2-8 

Unconditional transfer, 4-1 
UNSAVE command, 9-8 
Upper-case letters, 1-2 
User-defined function, 5-21 to 

5-25 
Using sequential files, 6-4 

VAL function, 5-18 
Values, ASCII, C-1 to C-3 
Var, x 
Variable, x 
Variables, 2-4 to 2-8 

assigning values to, 2-13 
dummy, 5-22 
initializing, 9-4 
integer, 2-5 to 2-6 
numeric, 2-5 
preserving through CHAIN, 8-3 

Variables (Cont.) 
simple numeric, 2--5 
string, 2-5, 2-6 to 2-7 
subscripted, 2-7 to 2-8, 2-14 

Virtual array files, 6-1, 6-8 
to 6-10 

closing, 6-10 
compared to arrays in memory, 

6-8 
compared to sequential files, 

6-8 
dimensioning, Q-9 

Whole numbers, 2-3, 5-6 
Writing files, 6-5 

Zone, printing, 3-9 to 3-12 

Index-9 



I • 
I~ 
1= 
I~ 
1-:E 
I~ 
1..2 
I~ 
.j 

') 

~ ~ 
10:: 
I 
I 
I 
I 
I 
I 
I 

• 
I 
I 
I 
I 
I 
I 

READER'S COMMENTS 

BASIC-11 
Language Reference Manual 
DEC-11-LIBBB-A-D 

NOTE: This form is for document comments only. Problems 
with software should be reported on a Software 
Performance Report (SPR) form. 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs 
required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

[] Assembly language programmer 

[] Higher-level language programmer 

[] Occasional programmer (experienced) 

[] User with little programming experience 

[] Student programmer 

[] Non-programmer interested in computer concepts and capabilities 

CitY~~~~~~~~~~~~~~State~~~~~~~Zip Code~~~~~~~­
or 

Country 

If you require a written reply, please check here. [] 



- - Do Not Tear- Fold Here and Tape 

11111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

RT/C SOFTWARE PUBLICATIONS ML 5-5/E45 

DIGITAL EQUIPMENT CORPORATION 

146 MAIN STREET 

MAYNARD, MASSACHUSETTS 01754 

No Postage 
Necessary 

if Mai led in the 
United States 

-1 

- - - - DoNotTear-FoldHere - - - - - - - - - - - - - - - - - - - -I 

I 
I 
I 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-01
	C-02
	C-03
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	Index-7
	Index-8
	Index-9
	replyA
	replyB

