FORTRAN
Debugging Technique

Order Number: AA-HOG9A-TC

September 1978

This document describes the purpose and use of the FORTRAN
Debugging Technique.

FORTRAN
Debugging Technique

Order Number: AA-HOBSA-TC

SUPERSESSION/UPDATE INFORMATION: This is a new document.
OPERATING SYSTEM AND VERSION: RT-11 VO3

SOFTWARE VERSION: FDT V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01764

digital equipment corporation - maynard, massachusetts

First Printing, September 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET~-11
DECCOMM DECSYSTEM-20 TMS-11

ASSIST-11 RTS-8 ITPS-10

CONTENTS

Page
CHAPTER 1 INTRODUCTION 1-1
1.1 USING FDT 1-1
1.2 FDT COMMAND TYPES 1-2
1.2.1 Program Control Commands 1-2
1.2.2 Information Transfer Commands 1-3
1.2.3 FDT Control Commands 1-3
1.3 FDT CONVENTIONS AND TERMINOLOGY 1-3
1.3.1 Syntax Conventions 1-3
1.3.2 Current Procedure 1-4
1.3.3 The Location Specification 1-4
Offset Location 1-5
Named Location 1-5
Relative Location 1-6
Subscripted Name Location 1-6
1.3.4 Mode Codes 1-7
1.3.5 FDT Pause Definition 1-9
1.4 CAUTIONS AND PITFALLS 1-10
CHAPTER 2 DESCRIPTION OF THE FDT COMMANDS 2-1
2,1 ACCEPT 2-2
2.2 CONTINUE 2-5
2.3 DIMENSION 2-6
2.4 ERASE 2-7
2.5 GOTO 2-8
2.6 Ir 2-9
2.7 MACRO 2-10
2.8 NAME 2-12
2.9 PAUSE 2-13
2.10 RESET - 2-16
2.11 START 2-17
2.12 STEP 2-18
2.13 8STOP 2-19
2.14 TYPE 2-20
2.15 WATCH 2-21
2.16 WHAT 2-22
CHAPTER 3 ADVANCED TECHNIQUES -

NAMED COMMON
HOW FDT GENERATES ADDRESSES
.1 Octal Offsets
.2 Names
.3 Relative Addressing
.4
.5

1

Subscript Addressing
Indirect Addressing

uwwwc;aww w
S WwWw NN Ll

iii

www
s o o
oW

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

INDEX

TABLE 1-1

CONTENTS (CONT.)

FORMAT CONVERSION ROUTINES

ON-LINE DEBUGGING TECHNIQUE (ODT)
EXECUTION SPEED

FDT COMMAND SUMMARY

FDT LOCATION SPECIFICATION FORMATS
FDT MODES

FDT ERROR MESSAGES

TABLES

FDT Mode Codes

iv

Page

wciuw
U1 > >

d
—

B-1
c-1
D-1

Index~-1

CHAPTER 1

INTRODUCTION

The FORTRAN Debugging Technique (FDT) is a sophisticated interactive
debugging tool for FORTRAN IV programs. FDT gives you step-by-step
control of the execution of your program and the ability to examine
and change the contents of any variable in your program during program
execution,

FDT runs on any PDP-1ll with FORTRAN IV under the RT-11 or RSTS/E
operating system. FDT requires approximately 2K words of memory space
during a debugging session.

To use FDT successfully, you need to know the FORTRAN IV programming
language. You do not need to know details of internal data formats,
machine operation, or the FORTRAN compilation process.

1.1 USING FDT

If you have a program that does not work, follow these steps to begin
an FDT debugging session:

1. Compile your FORTRAN program. You must use the FORTRAN
compiler option that produces threaded code; FDT does not
work with inline code. Do not use the compiler option that
suppresses internal statement numbers because FDT needs them.
Obtain a source program listing and a storage map listing.
You do not need the generated code listing.

2. Link your program units. Include FDT among the input files
to be 1linked. If you are using overlays, place FDT in the
root segment of your program. Generate a linker map if vyour
program has named common blocks or assembly language
subroutines that you might need to examine.

3. Run your FORTRAN program. FDT takes control and executes an
automatic FDT pause before the first executable statement of
the program. The following message appears on the terminal:

FDT V02-01

FDT PAUSE AT ISN xx IN mainprog
1

-

INTRODUCTION

The variable components of the message are:

XX The internal statement number of the first
executable statement in the FORTRAN program.

mainprog The main program being debugged. FDT refers to
the main program with the name assigned to it in
the FORTRAN PROGRAM statement. If you do not use
the PROGRAM statement to name the program, FDT
uses the default main program name, .MAIN.

The prompt FDT issues to indicate it is ready to
accept a command.

NOTE

If you do not follow the instructions,
FDT may not be able to get control, and
the FORTRAN program will then run
without FDT. Sometimes FDT gets only
partial control (as happens when the
main program is compiled without
internal statement numbers) and cannot

continue. In this case, FDT issues the
message FDT START FAIL, and exits to the
, monitor.

4. Begin debugging your program. Type in the FDT commands that
you have decided to use to start solving your problem. At
this point, you must type in at least one command that causes
an FDT pause, or else the program runs to completion without

allowing you to enter any FDT commands. If you want to
execute your program without FDT intervention, type CONTINUE
or START.

1.2 FDT COMMAND TYPES

There are three classes of FDT commands:
® Program control commands
e Information transfer commands

e FDT control commands

1.2.1 Program Control Commands

Program control commands allow you to control the execution of your
FORTRAN program. You can use the program control commands to halt
program execution, to continue with the next executable statement or
restart from the beginning, to step through the program one or more
statements at a time, or to end a debugging session and exit to the
operating system monitor. The program control commands are START,
STOP, CONTINUE, STEP, PAUSE, RESET, and WATCH.

INTRODUCTION

1.2.2 Information Transfer Commands

Information transfer commands allow you to examine the contents of any
variable or array element in your program and to modify its value. As
part of the command, you can define the data type of the variable, so
that the contents of the variable appear in familiar notation (see
Section 1.3.4 on mode codes and Section 1.3.3 on location
specification). The information transfer commands are NAME,
DIMENSION, TYPE, ACCEPT, and ERASE.

1.2,3 FDT Control Commands

FDT control commands allow you to control the operation of sequences
of FDT commands, Using these commands, you can define and execute
macros composed of FDT commands, and can branch, conditionally or
unconditionally, to another FDT command. The FDT control commands are
GOTO, IF, MACRO, and WHAT,

1.3 FDT CONVENTIONS AND TERMINOLOGY

The following sections describe syntax conventions and terminology
that you should be familiar with in using FDT.

1.3.1 Syntax Conventions

The general form of an FDT command is the command name followed by its
parameters, A simple example is:

STEP 3

where STEP is the command name and 3 is the parameter. You can enter
a command whenever FDT has issued its exclamation-point prompt.

The syntax conventions for entering FDT commands appear in the
following paragraphs:

® Spaces between the prompt and the command are optional. You
can place the command directly after the prompt, or you can
separate the command from the prompt by any number of spaces.

The following forms are correct:

{command
! command

e FDT recognizes only the first three letters of any command.
You can abbreviate any FDT command name to its first three
letters. There cannot be any blanks between the letters in
the command name.

The following examples are correct:
ISTART

1STA
{STAT FDT interprets this command as STA.

INTRODUCTION

The following examples are incorrect:

IST A There is an embedded space in the command.
1CO The abbreviation is too short,

® Spaces are required between a command name and its
parameter (s). Some FDT commands can accept parameters. You

must leave at least one space between the command name and the
parameter.

The following examples are correct:

IMACRO 1
!PAUSE .MAIN,,20 MACRO 2 AFTER 10

The following example is incorrect:
IMACRO1

® There are two formats for a series of FDT commands. You can
enter the commands as a list with one command on each line, or
you can enter several commands on a line, separating the
commands with semicolons.

The following example shows two commands on a line:
{MACRO 1; TYPE I,Jd

e The maximum command length 1is one 1line, There 1is no
continuation character to permit a command longer than one
line. MACRO definitions (but not the MACRO command) can
continue onto more than one line (see Section 2.7).

If you type a command that is incorrectly spelled or incorrectly
spaced, FDT prints the error message ?UNDEFINED and prompts for a new
command.

1.3.2 Current Procedure

An important concept in using FDT is the "current procedure." As its
name implies, the current procedure is the procedure (main program,
subroutine, or function) being executed at a given time. FDT defines
the current procedure as the procedure being executed when an FDT
pause occurs (see Section 1.3.5). You need to know what the current
procedure 1is when you are defining locations for FDT (see Sections
1.3.3, 1.3.4, and 3.2).

1.3.3 The Location Specification

The FDT information transfer commands require you to specify the
location of a variable or array element in the FORTRAN program. The
location specification consists of two parts, the location itself, and
the data type for the location.

There are several ways to specify a location. For a variable, you can
use an offset location, a named location, or a relative location. For
an array element, you use a subscripted name location.

INTRODUCTION

Offset Location
The most direct way of specifying a variable's location is to give its
offset. The offset 1is the difference between the address of the
variable and the base location of the current procedure's data block.
The offset for any variable appears in the storage map produced by the
FORTRAN compiler.
You specify the offset of a location by typing an octal number:

nnn
where nnn is the offset of the variable as shown on the FORTRAN
storage map. (The offsets in the storage map are expressed in octal
bytes.) You need not enter leading zeros,
The following is a fragment from a FORTRAN IV storage map:
FORTRAN IV Storage Map for Program Unit .MAIN.

Local Variables, .PSECT $DATA, Size = 000322 (105. words)

Name Type Offset Name Type Offset Name Type Offset
DAY I*2 000306 I I*2 000314 14 I*2 000312
J I*2 000316 MONTH I*2 000304 YEAR I*2 000310

The offset of the variable DAY is 306; the offset of the variable
YEAR is 310.

You can specify the offset of a location only for unsubscripted
variables 1in the current procedure. You cannot use a location offset
specification for subscripted array elements, variables in common, or
variables in a FORTRAN routine that is not the current procedure. The
two exceptions to this rule are for variables in blank common and
variables in the main program. (Section 3.1 describes special
techniques for specifying the offsets of variables in named common.)

1. Variable Offsets in Blank Common

To specify an offset location for a variable in blank common,
type:

.BCOM. +nnn

where nnn is the offset of the variable (as shown in the
FORTRAN storage map).

2. Variable Offsets in the Main Program

Any variable in the main program can be referenced at any
time by typing:

mainprog+nnn

where mainprog is the name of the main program and nnn is the
offset of the variable,

Named Location

You can specify the location of a variable by using a name that you
have associated with the location. You use the NAME command in FDT to
define a name and associate it with a location (see Section 2.8).
Once you have defined a name, you can use it in any location
specification. The name is valid in any procedure,

1-5

INTRODUCTION

Relative Location

You can specify the location of a variable relative to a previously
named variable,. To specify a location relative to a previously
defined name, you enter the name and the displacement of the variable
from the named 1location. This practice is useful primarily for
referencing sequences of variables in consecutive locations.

The format of the specification is:
name+nnn
The components of the specification are:s
name The named location previously defined in a NAME command.

nnn The displacement in octal between the location to be
specified and the location associated with the name. (The
displacement is the difference between the address of the
variable and the address of the named location.)

Subscripted Name Location

You can specify the location of an array element by using a
subscripted name. The FDT DIMENSION command allows you to define a
subscripted name and associate it with the location of a FORTRAN
array. Once you have defined a subscripted name and associated it
with an array, you can specify the location of any element within the
array with the subscripted name and the appropriate subscripts in
parentheses. For example:

ARRAY (3,7)
There are two ways to specify the subscript of an array element:
® Use an integer constant.

@ Use a name defined in a previous NAME command. If you use a
name as a subscript, FDT assumes that the variable associated
with the name has an integer value.

There are certain conventions you must follow for using a subscripted
name location:

e Each subscript value must be within the range defined for that
dimension. If the subscript value is outside this range, FDT
prints the following warning message:

$SUBSCR OUT OF BOUNDS

Since the message is only a warning, FDT references the
location using the subscripts specified.

® The number of subscripts you specify in a subscripted name
must be less than or equal to the number of dimensions in the
DIMENSION command that defined the name. If the number of
subscripts is equal to the number of dimensions, FDT uses the
FORTRAN subscript reference algorithm to locate the array
element. If the number of subscripts is less than the number
of dimensions, FDT assumes that the missing subscripts have a
value of 1. For example, if ARRAY is defined as a
three-dimensional array, ARRAY (3) is equivalent to
ARRAY (3,1,1).

1.3.4

INTRODUCTION

A subscripted name retains its association with a location
regardless of whether that location 1is in the current
procedure. The name loses its association with the location
only when you redefine the name with another NAME or DIMENSION
command or when you cancel the name with an ERASE command.
Mode Codes

The second major component of a location specification is the data

type or

mode for the location.

To specify a mode for a location, type:

loc[/mode]

The components of the location specification are:

loc The locatinn (see Section 1.3.3).
mode The FDT mode code for the location. The PFDT modes are
similar to FORTRAN data types. The default mode for a
location is I, corresponding to the INTEGER*2 data type in
FORTRAN, Table 1-1 1lists the FDT modes and the nearest
corresponding FORTRAN data type.
Table 1-1
FDT Mode Codes
Mode FORTRAN Type Description
I INTEGER*2 16-bit value displayed in decimal
J INTEGER*4 32 bits, first 16 bits displayed in
decimal
L LOGICAL*4 32 bits, displayed as T or F
M LOGICAL*1 8 bits, displayed as T or F
E REAL*4 32 bits, scientific notation
D REAL*8 64 bits, scientific notation
C COMPLEX 64 bits, real and imaginary parts
B BYTE 8 bits, displayed in decimal
R ———— 16 bits, displayed as three RAD50
characters
0 ——— 16 bits, displayed in octal
An ———— A string of n ASCII characters (where
n is in the range 1 to 255)
7 —_—— ASCIZ string (as used in the FORTRAN
string handling package)
P —— Dummy variable mode

1-7

INTRODUCTION

When you need to indicate that the associated variable is a parameter
(dummy variable), you can use the letter P preceding any of the FDT
modes. In fact, you must specify this form for any variable listed as
a parameter in the attributes section of the FORTRAN storage map.

Examples:
Specification Meaning
204/E A REAL*4 variable at offset 204.
16/P1 An INTEGER*2 parameter variable at offset 16.
POWER/C A COMPLEX variable at a location associated with
the name POWER.
Any location specification can include a mode specification. For
example:
TYPE 202/E

The offset of the location is 202 and the data type of location offset
202 is REAL*4,

If a location specification occurs without a mode, there are two
possible actions.

1. If the specification does not involve a name, then FDT
assumes the default mode I. For example,

TYPE 202
is the same as
TYPE 202/

2. If the specification includes a name (a named location or a
subscripted name) then FDT assumes the mode associated with
that name. (The mode becomes associated with the name when
you define the name in an FDT NAME or DIMENSION command.)

For example,

NAME PI,202/E
TYPE PI

has the same result as
TYPE 202/E
Similarly,

NAME ANGLE, 202
TYPE ANGLE

has the same result as

TYPE 202

INTRODUCTION

The original mode definition can be overriden in subsequent commands.
For example, if the name definition is:
NAME PI,202/E

the following commands have the effects shown:

TYPE PI/D Uses mode D for output.
TYPE PI Uses originally defined mode E for output.
TYPE 202 Uses the default mode I for output.

The mode code is important for subscripted names in a DIMENSION
command because the mode code determines how FDT locates the required
array element. You can use the default mode in a DIMENSION command.
However, it is better practice to specify the intended mode explicitly
in the DIMENSION command,

You canh specify a mode only in a location specification. Subscripts
and other command parameters are not location specifications, so you
cannot associate modes with them.

1.3.5 FDT Pause Definition

FDT contains a pause feature similar in operation to a FORTRAN PAUSE
statement: the FDT pause halts execution of the program and allows
the program to be continued by further commands. When the pause
occurs, you can enter FDT commands. (Do not confuse the FDT pause
with the FORTRAN pause. The FORTRAN PAUSE statement cannot cause an
FDT pause.)

There are five ways to cause an FDT pause. The pause name indicates
the situation causing the pause:

e automatic. pause
® entry pause

® statement pause
® step pause

® watch pause

The automatic pause occurs before the first executable statement in
the main program. (There is no FDT command for invoking the automatic
pause.) The automatic pause occurs only during the first run of the
program in a debugging session and not during subsequent runs. That
is, subsequent FDT START commands or monitor START or REENTER commands
do not invoke the automatic pause.

An entry pause occurs at the entry point of a subroutine or function.
You use the PAUSE command to specify the procedure name, and FDT
pauses before the procedure begins executing.

A statement pause occurs before execution of a particular FORTRAN
statement. Using a PAUSE command, you specify the statement where you
want the pause to occur, and FDT pauses when that statement 1is the
next one to be executed.

A step pause occurs after a defined number of FORTRAN statements have
executed. You specify the number of statements wusing the STEP
command.

INTRODUCTION

A watch pause occurs when the value of a variable being watched
changes. You specify the variable to watch using the WATCH command.

When an FDT pause occurs, FDT prints the following message on the
terminal:

FDT PAUSE AT ISN nnn IN proc
1

The variable components of the message are:

nnn The internal statement number of the next executable
FORTRAN statement.

proc The name of the procedure in which the FDT pause
occurred. A procedure is a main program, subprogram,
or function. FDT defines procedure proc as the
current procedure. This procedure remains the current
procedure until the next FDT pause occurs.

1.4 CAUTIONS AND PITFALLS

The following are some general cautions you should observe while using
FDT:

e Correct use of spaces is important in FDT.

e Invalid location specifications or constants out of range
cause unpredictable results.

e Under the RT-11 SJ operating system, the ends of long lines of
text printed at the terminal may be lost when the terminal
reaches its right margin. FDT does not provide automatic
carriage return or line feed.

e For purposes of subscripting and copying, FDT considers
locations with ASCIZ mode (/Z) to have a length of one byte.
For example, the command

ACCEPT NAME/Z=INPUT

copies only the first character from INPUT to NAME. To copy
an ASCIZ string, use mode An, where n is equal to the maximum
possible length of the ASCIZ string, including the terminating
zero byte., For example, the command

ACCEPT NAME/A25=INPUT
copies 25 bytes from INPUT to NAME.

e An FDT error message does not indicate that an entire command
was aborted. Some action may have occurred before discovery
of the error. In this case, side effects can result. For
example, the command

PAUSE SUBR+12

produces the error message ?UNDEFINED, but it acts like the
command PAUSE SUBR.

INTRODUCTION

FDT ignores any commands following CONTINUE, START, or STEP.
For example, if you type the command line:

STEP 3 ; TYPE INDEX

FDT executes three FORTRAN statements and then pauses, without
typing anything. However, commands following CONTINUE, START,
or STEP are executed if FDT control branches around CONTINUE,
START, or STEP. For example, if you type:

IF SPY<50;CONTINUE; TYPE INDEX

then FDT resumes execution if SPY is less than 50, but types
the contents of INDEX and waits for another FDT command if SPY
is greater than or equal to 50.

You cannot place an FDT pause on the GO TO of a logical IF
statement, For example, suppose the FORTRAN source listing
contains the following statements:

0008 NEXT=NOW+1
0009 IF (ITEMS (NEXT) .GT.ITEMS (NOW)) GO TO 50
0011 TEMP=ITEMS (NOW)

You cannot place an FDT pause on internal statement 10. That
is, the FDT command:

PAUSE ,10
never causes a pause.

However, an FDT pause on statement 10 would be wvalid if the
source listing contained the following statements:

0008 DO 50 NEXT=1,N
0009 IF (ITEMS (NEXT).GT.MAX) MAX=ITEMS (NEXT)
0011 50 CONTINUE

In this case, the FDT pause occurs before the value of MAX
changes if the condition is true. If the condition is false,
no FDT pause occurs.

CHAPTER 2

DESCRIPTION OF THE FDT COMMANDS

The FDT commands are described in the following sections. The commands
are arranged alphabetically for convenient reference. Appendix D
contains a reference summary of the commands.
Useful commands for a new FDT user are:

e PAUSE, STEP, and CONTINUE to control execution

e NAME to refer to variables

e TYPE and ACCEPT to display and change values

DESCRIPTION OF THE FDT COMMANDS

ACCEPT

2.1 ACCEPT

The ACCEPT command assigns new values to FORTRAN variables. There are
three forms of arguments for the ACCEPT command. You can mix all
three forms freely within a macro definition. (The third form is not
valid outside a macro.) You can specify as many arguments as fit on a
single command line. The arguments must be separated by commas.
The first form is:
ACCEPT loc=value
The arguments are:
loc The location whose value is to be changed.
value The new value to be assigned to loc. The new value may
be a constant in the same data format as the mode of
loc, or it may be a previously defined name or
subscripted name.
The second form is:
ACCEPT 'text'
The argument is:
'text' The literal string to be printed.
This form of the ACCEPT command is identical in function to the
analogous form of the TYPE command. The FORTRAN conventions
for text literals apply.

The text literal form of ACCEPT is useful for FDT macros, where
you can use the text as a prompt to enter new values.

The third form is:
ACCEPT loc
The argument is:

loc The location specification for a value entered from the
terminal.

This form of the ACCEPT command is valid only in FDT macros.
It requires an input value from your terminal, and prompts for
the value with a question mark. The value you enter must
follow the same conventions required for other forms of the
ACCEPT command.

DESCRIPTION OF THE FDT COMMANDS

The following mode conventions apply to the values in the ACCEPT

command:
The value may be a previously defined name. If it |1is,
FDT copies its contents into loc. When you use a name as
the value, its mode should match the mode of 1loc¢, but
need not. If the modes of loc and name are different,
the mode of loc determines the number of bytes copied
from name into loc (see Table 1-1).
For example:
Mode of loc Data Type Number of
Bytes Copied
I INTEGER*2 2
J INTEGER* 4 4
E REAL*4 4
D REAL*8 8
Z ASCIZ 1
When you use a name as a value, FDT ignores the mode of
name and uses name only to find the address of the value
to be copied. FDT never does conversions from one mode
to another.
String-mode constants (/Z or /An) must appear enclosed in
single quotes. The FORTRAN conventions for text literals
apply. '
RAD50 constants and logical constants (/R, /L, and /M)
must be preceded by the character # to indicate that they
do not represent names. For example, the logical
constants T and F are represented by #T and #F.
Complex constants appear as two real constants separated
by a comma, in the order real, imaginary.
Nonstring constants may include at most 40 characters.
The number of characters represented by a string constant
is limited by the length of the input line.
Examples:
Command Meaning
ACCEPT 202=1 Sets the INTEGER*2 value at offset 202
to the value 1.
ACC DELTA=EPSILON Replaces the contents of DELTA with
the contents of EPSILON.
ACC 'DELTA=',DELTA Prints DELTA=? on the terminal and

waits for an input value. (Valid only
within an FDT macro.)

DESCRIPTION OF THE FDT COMMANDS

Command

ACC 1=0,J=1,244/E=3.14159

ACCEPT I=12,'J=',J

Both ACCEPT

Meaning

Sets the values of locations named I
and J to 0 and 1 respectively; sets
the REAL*4 variable at offset 244 to
3.14159.

Sets the 1location named I to 12;
prints J=? on the terminal and waits

for input to set the location named J.
(Vvalid only within an FDT macro.)

NOTE

and TYPE wuse subroutines

that are loaded by FORTRAN to process
FORMAT statements. If you are debugging

a program without D, E, F, or G FORTRAN
format specifications, then some of the
format conversion routines are not
loaded and FDT cannot accept or type
variables with modes C, D, or E. If you
attempt to use modes C, D, or E when the
format conversion routines are not
present, FDT prints the error message
?NO CONVERSION and continues execution.
Section 3.3 describes a way to avoid
this problem.

DESCRIPTION OF THE FDT COMMANDS

CONTINUE

2.2 CONTINUE

The CONTINUE command resumes program execution after any FDT pause.
The next statement executed is the statement whose internal statement
number and procedure name appeared in the last pause message. When it

executes a CONTINUE command, FDT ignores any commands remaining on the
line.

If the current FDT pause occurred as the result of a PAUSE command,
the CONTINUE command can have one optional parameter called the
execution count. FDT ignores the execution-count parameter if the
current pause is an automatic pause or if it occurred as a result of a
STEP or WATCH command.

The form of the command and parameter is:
CONTINUE [ntimes]
The parameter is:

ntimes The execution count. The execution count is an integer
specifying the number of times the FORTRAN program must
reach this point before another FDT pause can occur
here. If you omit the ntimes parameter or if ntimes =
l, an FDT pause occurs the next time control reaches
this point (unless the PAUSE command is replaced or
cancelled by subsequent commands).

DESCRIPTION OF THE FDT COMMANDS

DIMENSION

2.3 DIMENSION

The DIMENSION command associates a name and a list of dimensions with
the FORTRAN array you want to define, allowing the name to be used as
a subscripted name. FDT cannot access FORTRAN virtual arrays. The
DIMENSION command is the subscripted-name equivalent of the NAME
command.

The form of the DIMENSION command is:
DIMENSION name(i,j,...) [,locC]
The parameters are:
name The FDT name to be associated with the array.

(i,3700) The list of dimensions associated with the array.
There may be at most seven dimensions. Each
dimension value in the list must be an integer in
the range 1 through 32767.

loc The location specification for the first element
(base) of the array. The offset for the base of
the array appears in the FORTRAN storage map.
Offsets for FORTRAN virtual arrays are not valid
loc parameters. If you omit the loc argument, FDT
erases the name specified (see ERASE command,
Section 2.4).

The mode code is an important part of the location specification for
subscripted names. You can default the mode in a DIMENSION command.
However, it is better practice to specify the intended mode explicitly
in the DIMENSION command. FDT uses the specified mode in all
subscript calculations referring to the array.

ASCII mode (/An) is not valid in a DIMENSION command because it has no
meaning when used in subscript calculation. No error message appears
if you specify ASCII mode in a DIMENSION command. However, when you
attempt to use the subscripted name, FDT responds with the error
message ?UNDEFINED.

Examples:

Command Meaning

DIMENSION DATA (10,10),46/E A REAL*4 array named DATA with 10
by 10 dimensions at offset 46.

DIM COLUMN(10) ,DATA(1,3)/E A one-dimensional REAL*4 array
COLUMN equivalenced to the third
column of the array DATA.

The following example shows a useful trick for naming one element of
an array.

NAME W,DATA (5,5)/E A REAL*4 variable W equivalenced
to array element (5,5) of DATA
(see NAME command in Section
2,8).

2-6

DESCRIPTION OF THE FDT COMMANDS
ERASE

2.4 ERASE

The ERASE command cancels the association of a name and a location,
and frees the space in FDT's internal tables.

The ERASE command has the following form:
ERASE namel[,name2,...]

You can specify as many names or subscripted names in an ERASE command
as can fit on a single line. The names must be separated by commas.
Subscripted names must appear without subscripts; subscripts are
invalid in the ERASE command. It is not possible to erase the name
for part of an array.

Examples:

ERASE TIME
ERASE SPEED,DIST,DATA,ICOUNT

ERASE does not change the values of the variables whose associated
names are erased.

DESCRIPTION OF THE FDT COMMANDS

GOTO

2.5 GOTO

The GOTO command changes the order of execution of commands within an
FDT macro. It causes an unconditional transfer of control, analogous
to that caused by the FORTRAN GO TO statement. (Do not confuse the
FDT GOTO and the FORTRAN GO TO; the FDT GOTO cannot change the order
of execution of FORTRAN statments.) Like the FORTRAN GO TO, the FDT
GOTO requires numeric statement labels.

The form of the GOTO command is:
GOTO 1label

(Remember that FDT command names must not contain spaces; GO TO is an
invalid FDT command.)

The parameter is:

label The numeric label of the command to which control is
transferred by the GOTO command. The label must be an
integer in the range 1 to 32767. Embedded spaces are not
valid.

If two or more labels have the same value, FDT uses the first
occurrence of the 1label. If the label you reference does not exist
within the current macro, FDT prints the error message ?LABEL.

You can use the IF command and the GOTO command to create loops of FDT
commands analogous to simple FORTRAN loops or to FORTRAN DO loops (see
Sections 2.6 and 2.7). For example, if the first command in the 1loop
has the label 100, the last command in a loop might be IF NEXT<>0;GOTO
100. The only loops you can do are on conditions or values; there is
no way to increment an index in FDT.

If FDT is executing an infinite loop, you can terminate execution only
by typing CTRL/C twice to return to the monitor. The monitor's START
or REENTER commands can then operate in the same way as the START
command in FDT. However, in some cases, you will have to use the RUN
command to reload the FORTRAN program and start the debugging session
from the beginning.

Defining a Label

You label a command by preceding it with an integer. The label must
follow either the 1left parenthesis that marks the beginning of the
macro definition or the semicolon that delimits the preceding command.
The label may be set off by spaces in its defining occurrence.

The following macro definition contains a label:

MACRO 1(TYPE MAX; 10 ACCEPT 'INIT=',INIT ;IF INIT>MAX;
GOTO 10; S 3)

DESCRIPTION OF THE FDT COMMANDS

IF

2,6 1IF
The IF command requests conditional execution of another FDT command.
You wuse IF to specify that another FDT command is to be executed only
if a given condition is met.
The form of the command is:

IF loc<rel>value;FDT command

The parameters are:

loc The location specification for the wvalue to be
compared. The mode of loc must be E, I, or J.

<rel> The logical relation tested. The parameter <rel>

is one of the six logical relations: = (equal),

<> (not equal), > (greater than), >= (greater
than or equal), < (less than), or <= (less than
or equal).

value The value to be compared to loc. The value
parameter may be either a constant in the same
mode as loc, or a previously defined FDT name.
Subscripted names are valid. The mode of the
name should (but need not) match the mode of loc.
FDT assumes that name has the same mode as loc,
and ignores the actual mode of name. It compares
the contents of loc and name in the mode defined
by loc. FDT never does conversions from one mode
to another. (See also the discussion of mixed
mcdes in the ACCEPT command, Section 2.1.)

FDT command The single FDT command that is executed only if

the logical relation specified between loc and
value is true.

The entire IF command must fit on one line.
The IF command compares the value in loc to the value specified. If
the relation is true, FDT executes the FDT command specified. If the
relation is not true, FDT does not execute the command but skips to
the next command.
Example:

IF PARM/I>5;WATCH COUNT;STEP
If PARM is greater than 5, FDT sets a watch on the 1location named

COUNT, and executes the next FORTRAN statement; otherwise, FDT simply
executes the next FORTRAN statement.

2-9

DESCRIPTION OF THE FDT COMMANDS
MACRO

2.7 MACRO

The MACRO command allows you to define, execute, or delete an FDT
macro. An FDT macro is a sequence of FDT commands that is executed as
a unit. Thus, an FDT macro is analogous to a FORTRAN subroutine or
function subprogram.

1. Defining a macro

You can Ccreate a new macro, or change an existing macro, with a MACRO
command by typing:

MACRO m(FDT commands)
The parameters are:

m The number of the macro where m is a value in the
range 0 to 7.

FDT commands Any valid FDT command or series of commands.

There is no space between the macro number (m)
and the 1left parenthesis. The FDT commands
appear within the parentheses, separated by
semicolons. There is no limit to the number of
commands defining a macro. The definition may
continue on as many 1lines as necessary. FDT
prompts for each new line. The end of the macro
is defined by the closing right parenthesis.

Examples:

The following example prints the values of the variables associated
with the names TIME, SPEED, and DIST, and the first two elements of
the array named DATA:

MACRO 3 (TYPE TIME,SPEED,DIST,DATA(1l) ,DATA(2))

The following example shows a multiple-line macro definition. The
macro accepts a floating-point value VAR from the terminal, and tests
whether VAR is within the limits required by the program, If VAR is
outside the limits, FDT goes to the command labeled "100" and prompts
for another value.

Previous definitions:

NAME VAR, 234/E
NAME TOP,240/E

Macro definition:

MACRO 5(100 ACCEPT 'VAR=',6VAR; IF VAR<12.; GOTO 100;
IF VAR>TOP; GOTO 100; CON)

DESCRIPTION OF THE FDT COMMANDS

2. Executing a macro
You can execute a macro either automatically or manually:
FDT executes a macro automatically whenever it executes an FDT pause
that was set up by a PAUSE command containing a MACRO parameter (see
Section 2.9).
You can execute a macro manually by typing the following command:
MACRO m
The parameter is:
m The number of the macro to be executed. The value of

m is a number in the range 0 to 7.

The specified macro executes until FDT reaches the end of the macro,
at which time FDT prompts you for more commands by printing !, or
until a START, STEP, or CONTINUE command within the MACRO is executed,
at which time FDT resumes execution of the FORTRAN program.

3. Deleting a macro

You can delete a macro by redefining it with a null command string.
The form of the command is:

MACRO m{()
The parameter is:

m The number of the macro in the range 0 to 7.

() Null command string. The left and right parentheses must

not enclose any characters or spaces.

Implicit Macro
MACRO 0 is a special macro number that you cannot associate explicitly
with a PAUSE. Any current PAUSE command that you have not explicitly
associated with another MACRO is implicitly associated with MACRO 0.
MACRO 0 is usually not defined. If you do define MACRO 0, every PAUSE

command without a MACRO parameter executes MACRO 0. You can execute
MACRO 0 manually.

DESCRIPTION OF THE FDT COMMANDS

NAME

2.8 NAME

The NAME command associates a name with a location and a mode.
name must be unique in the first six characters. Any characters af

the sixth are ignored.

The first character of the name must be

letter. The other characters can be either letters or digits.

The form of the NAME command is:

NAME name [,loc]
The parameters are:

name The name to
name you

be associated with the variable. If th

specify has already been defined, this NAM

command redefines the name. The o0ld definition is lost

loc The location specification

1.3.3 and

1.3.4). If you omit the locatio

specification, FDT cancels the name association (se
ERASE command, Section 2.4).

Examples:

Command
NAME I,202
NAM PARM,l6/PI

NAM DELTA,I+2/E

NAM EPSILON,DELTA+4/E

NAM PARM

Meaning
INTEGER*2 variable I at offset 202.
INTEGER*2 parameter PARM at offset 16.

REAL*4 variable DELTA at offset 204.
(Relative location I+2 is location 202+2.)

REAL*4 variable EPSILON at offset 210.

Erases the definition of PARM.

The
ter
a

e
E

(as described in Sections

n
e

DESCRIPTION OF THE FDT COMMANDS

PAUSE

2.9 PAUSE

The PAUSE command defines statement pauses and entry pauses (see
Section 1.3.5).

The PAUSE command marks the statement in your program before which you
want an FDT pause to occur., You mark the statement using its internal
statement number. The pause occurs only when the marked statement is
the next one to be executed.

You can define a statement pause for any executable FORTRAN statement
in your program, even if that statement is located in a procedure that
is nonresident or in a shared library. The location of the pause is
stored internally by FDT. It is not stored in the FORTRAN program
itself.

You can place an entry pause on the entry point of any FORTRAN
subroutine or function. Whenever the procedure is called, FDT issues
the message FDT PAUSE AT ISN 0 IN proc. You can use this feature to
detect calls to a procedure without having to determine the first
executable statement of the procedure.

The PAUSE command requires you to specify the location of the pause.
There are two optional parameters. You can specify the optional
parameters MACRO and AFTER in either order. The complete form of the
PAUSE command is:

PAUSE {[proc] ,isn} [MACRO m] [AFTER ntimes]
proc

The parameters are:

proc,isn The location of the statement to be marked.
proc The name of the procedure in which the pause
occurs, The default value for the procedure

name is the name of the current procedure. The
current procedure is defined as the main
program, subroutine, or function whose name was
printed in the last FDT pause message.

If you specify a subroutine or function as the
procedure and omit the isn parameter, FDT
establishes an entry pause at the entry point of
the FORTRAN procedure you named. You cannot
place an entry pause on the entry point of an
assembly language routine. (Note that "proc,0"
is not equivalent to "proc" because internal
statement number 0 is undefined.)

isn The internal statement number of the FORTRAN
source statement where you want the FDT pause to
occur. The internal statement number appears to
the left of each statement in the source
listing.

DESCRIPTION OF THE FDT COMMANDS

NOTE

FDT does not give an error message if
proc,isn specifies a nonexistent or
nonexecutable statement in the FORTRAN
proygram., The command containing an
invalid internal statement number is
effectively ignored; the nonexistent or
nonexecutable point is not executed by
the program and thus cannot cause an FDT
pause to occur.

MACRO m The FDT macro that 1is executed when the FDT
pause occurs. An FDT macro is a sequence of FDT
commands that is executed as a unit. It is
analogous to a subroutine or function in
FORTRAN. For more information on FDT macros,
see Section 2.7.

The m argument specifies the number of the FDT
macro you want to associate with the FDT pause
you are creating. The macro number must be an
integer in the range 1 to 7.

The MACRO m parameter is valid whether or not
macro m exists. The macro can be defined or
changed at any time without affecting the PAUSE
command. If the macro does not exist when the
pause occurs, FDT operates as if the macro
parameter were not specified.

If the macro does exist when the pause occurs,
FDT executes the macro without issuing an FDT
pause message. If the macro contains a CONTINUE
command,, execution of the FORTRAN program
resumes. If the macro does not contain a
CONTINUE command, FDT prompts for more commands
when it has finished executing the macro.

You can abbreviate the word MACRO to MAC. Only
the first three characters are checked for
spelling accuracy. (Remember that there must be
a space between the word MACRO and the macro
number, m.)

AFTER ntimes The execution count. The ntimes parameter
specifies the number of times that the program
must reach (but not execute) the marked

statement before an FDT pause occurs at that
point, The ntimes value must be an integer in
the range 1 to 32767. The default value for the
AFTER ntimes parameter is 1, which causes an FDT
pause the first time program control reaches the
statement.

2-14

DESCRIPTION OF THE FDT COMMANDS

FDT decrements the execution count each time
control reaches the internal statement number
specified. An FDT pause occurs when the count
is Zero. When the pause occurs, FDT
automatically resets the execution count to the
default value of 1, If you want to override the
default execution count, specify the required
execution count in a CONTINUE ntimes command
(see Section 2.2). (The pause definitions
output by the WHAT command contain the current
value of the execution count, not the initial
value.)

You can abbreviate the word AFTER to AFT. Only
the first three characters are checked for
spelling accuracy. (Remember that there must be
a space between the word AFTER and the execution
count, ntimes.,)

There can be at most eight active PAUSE commands in a program at any

one time. If

you attempt to define more than eight pauses in a

program, FDT prints out the error message ?NO ROOM.

You cannot place
program. If you
pause definition

Statement pauses
command, Section

Example:

two pause definitions at the same point in your
try to place two pauses at the same point, the second
cancels the first.

are disabled when FDT is in step mode (see STEP
2.,12).

The following command line

PAUSE SUBR;PAUSE ,10

places an entry pause on procedure SUBR, and a statement pause on
statement 10 of the current procedure.

2-15

DESCRIPTION OF THE FDT COMMANDS

RESET

2,10 RESET
The RESET command removes pauses created by the PAUSE command.
The form of the RESET command is;
RESET proc,isn
The parameters are:
proc,isn The location in the FORTRAN program for which
the pause was defined. The location specified

must be exactly the same as that which appeared
in the pause definition.

proc The name of the procedure in which the pause was
to occur.
isn The internal statement number of the FORTRAN

source statement where the pause was to occur.
For example, the command line
RESET ,10;RES SUBR

removes the statement pause on statement 10 of the current procedure
and the entry pause on procedure SUBR.

DESCRIPTION OF THE FDT COMMANDS

START

2.11 START

You can issue the START command whenever FDT prints its command
prompt. The FDT START command begins executing your FORTRAN program
at the first executable statement in the main program. However, START
might not work when the system is not in an initial or ready
condition. For example, if there are open files, a START command
causes an error message and FDT returns control to the monitor.

The START command has no parameters. When the START command is
executed, FDT ignores any commands remaining in the line.

2-17

DESCRIPTION OF THE FDT COMMANDS

STEP

2.12 STEP

The STEP command continues execution of your program in step mode, and
indicates the number of statements that you want to execute before the
next FDT pause.

The forms of the command and its optional parameter are:

STEP [n]}
S [n}

(Notice that the STEP command has the special abbreviation S.)
The parameter is:

n An integer in the range 1 to 32767. FDT executes n FORTRAN
statements before pausing. The default value for n is 1,
which results in single-step operation with a pause before
each statement.

Step mode disables all statement pause definitions. You cancel step
mode and reenable the pause definitions by entering any FDT command
(other than another STEP command). The occurrence of an FDT pause
also cancels step mode.

STEP counts only executable statements. A logical IF statement counts
as one executable statement if it contains a GOTO; otherwise, a
logical IF statement may be one or two executable statements
(depending on the outcome of the IF test). The END statement is an
executable statement. Nonexecutable statements are FORMAT statements,
declaration statements, and SUBROUTINE and FUNCTION statements.

After it executes a STEP command, FDT ignores any commands remaining
in the line.

DESCRIPTION OF THE FDT COMMANDS

STOP

2.13 STOP

You issue the STOP command to end a debugging session. The STOP
command in FDT 1is equivalent to a STOP statement in the FORTRAN
program. The STOP command closes any open logical units, performs
necessary exit actions, and returns control to the operating system.

The STOP command has no parameters.

DESCRIPTION OF THE FDT COMMANDS

TYPE

2.14 TYPE

The TYPE command prints the values of variables in the FORTRAN program
during a debugging session.

The forms of the TYPE command are:
TYPE loc|,more]
or
TYPE 'text'[,more]
The parameters are:

loc The location specification of the variable whose value
you want to examine,

'text' A literal text string to be printed on the terminal.
The FORTRAN conventions for text literals apply to FDT
literals.

more Another loc or text parameter.

Multiple loc or text parameters may appear in a single TYPE command.
The parameters must be separated by commas. The maximum length of the
TYPE command is one line.

FDT finds each location specified and prints the contents of the
location in the mode indicated by the location specification. FDT
prints text literals exactly as you type them (except for the
enclosing quotation marks). If multiple parameters appear in a TYPE
command, FDT separates the values with commas.

Examples:
Command Meaning
TYPE 202 Prints INTEGER*2 variable at offset 202.
TYPE 'HI' Prints HI.
TYPE 'DON''T' Prints DON'T,

TYPE DELTA,EPSILON Prints two values separated by a comma.

TYPE DELTA/O Prints first 16 bits of DELTA in octal.

TYPE 'DELTA=',DELTA Prints DELTA= followed by the value of
DELTA.

TYPE DATA (I,J) Prints the value of the (i,j) array element
in DATA.

DESCRIPTION OF THE FDT COMMANDS

WATCH

2.15 WATCH

The WATCH command directs FDT to watch the contents of a location and
to perform a watch pause whenever the value in that location changes.

The form of the WATCH command is:
WATCH [loc]
The parameter is:

loc The specification of the location to be watched.
(Sections 1.3.3 and 1.3.4 describe how to specify a
location.) Only one location can be watched at any
given time. A new WATCH loc command cancels the
previous WATCH command. A WATCH command without a
location specification cancels the previous WATCH loc
command.,

The location to be watched can have any FDT mode
except Alpha (/An). Only the first character of the
string is watched for locations in ASCIZ string mode

(/2) .

When the value of a watched location changes, FDT prints the message
WATCH PAUSE, and performs an FDT pause at the next executable FORTRAN
statement. The value must actually change. For example, if IVALUE is
equal to 5, then the statement IVALUE=5 does not cause a watch pause.
If another FDT command changes the value of a watched 1location, a
watch pause does occur. For example, you can deliberately trigger a
watch pause by using FDT's information transfer commands to change the
value in a watched location.

Each time a watch pause occurs, FDT cancels the WATCH command that
initiated 1it. You must issue another WATCH command with the same
location specification if you want FDT to continue watching the same
location.

Watch pauses are independent of other FDT pauses. You can place a
watch pause and any other command causing a pause (for example, PAUSE
or STEP) on the same FORTRAN statement. If you do specify a watch
pause and another pause for the same statement, FDT processes the
other pause first. You must resume execution using CONTINUE, STEP, or
START before the watch pause can occur.

Examples of the WATCH command:

WATCH MAX
WATCH ARRAY (3,2)

2-21

WHAT

DESCRIPTION OF THE FDT COMMANDS

2,16 WHAT

The WHAT command displays the current status of the FDT system. When
you type WHAT, FDT returns the following information:

A list of the definitions for all the active pauses. For each
pause, FDT prints the location of the pause (the procedure
name and optional internal statement number), the current
value of the execution count (when it is greater than 1), and
any associated macro number. The pause listing for an entry
pause has no internal statement number.

A list of all currently defined macro numbers and the contents
of the macros.

CHAPTER 3
ADVANCED TECHNIQUES

The following sections describe some advanced techniques that you can
use to extend FDT's power.

3.1 NAMED COMMON

FDT can access variables in a FORTRAN named common block after you
define the block using the NAME command. Use the following procedure:

1l. Locate the address of the named common block.

The absclute address of the named common block appears in the
link map. The name given to the block in the FORTRAN source
code appears in the 1link map under the column labeled
SECTION. The 6-digit number following the name is the
address of the block.,

For RT-11 FB foreground programs, the named common block
address appearing in the link map is a relative address. The
desired absolute address is the sum of the link map relative
address and the foreground 3job 1load address. Obtain the
foreground load address by issuing the FRUN command with the
/P option. (The /P option causes control to return to the
monitor; type RESUME to execute the foreground job.)

2. Describe the named common block to FDT.

A NAME command in the following form defines the block's
location:

NAME block, .ABS.+addr
The arguments are:
block The FDT name of the common block. If the block
name 1is the same as the name of a variable in a
previous NAME command, FDT erases the previous
name. ,

addr - The 6-digit absolute address of the named common
block.

3. Refer to locations in named common.

The location of any variable in named common is expressed as
follows:

block+nnn

ADVANCED TECHNIQUES

The components of the specification are:
block The FDT name of the common block.
nnn The offset of the variable as given in the
FORTRAN storage map.
You can assign FDT names to variables in named common by
using block+nnn as a location in a NAME command.

Examples:

Assume that the name of the FORTRAN named common block is COMBLK
and the link map gives its address as 063524,

Describe the named common block to FDT:
NAME COMBLK, .ABS.+63524

Print the contents of an INTEGER*2 variable at offset 000010 1in
COMBLK:

TYPE COMBLK+10

Name the variable at location COMBLK+10:
NAME INDEX,COMBLK+10

Print the contents of the variable:

TYPE INDEX

3.2 HOW FDT GENERATES ADDRESSES

FDT uses the location specification to generate the address and mode
information of a FORTRAN variable. The manner in which FDT generates
the 16-bit PDP-11 address depends on the information in the 1location
specification. The following section describes the address-generation
process for the five kinds of location specifications.

3.2.1 Octal Offsets
The form of the location specification is:
oct An octal number in the range of 0 to 177777.

When you give an octal number as a location specification, FDT always
interprets the number as an offset from the base address of the
current procedure's data block. In other words, FDT adds the octal
number to the base address to generate the 16-bit address. Thus, you
can use the offsets produced by the FORTRAN compiler to generate
addresses for any locations shown in the FORTRAN storage map.

ADVANCED TECHNIQUES

3.2.2 Names
The form of the location specification is:
name An alphanumeric name unique in the first six characters.

The first character must be a letter. FDT ignores any
characters after the sixth. The NAME command associates
a name with a location. Once the association has been

established, the name refers directly to the location of
the variable,

3.2.3 Relative Addressing
The form of the location specification is:

name+oct An alphanumeric name unique in the first six

characters, a plus sign, and an octal number in the
range 0 to 177777,

This location specification is a form of relative addressing in which
the base address is the location associated with the name. FDT adds
the octal displacement to the base address to determine the location
of the variable. Displacements in the range 100000 to 177777 are
negative displacements. FDT assumes that all octal numbers represent
two's complement binary integers. For example, the displacement
177776 represents a displacement of -2 bytes (the word preceding the
name) . You must determine the displacement yourself. It does not
appear in the storage map.

You could use relative addressing for array subscripts. However, this
is unnecessary because FDT allows you to define subscripted names.
Relative addressing allows you to address variables in named common
blocks once you have supplied the base address of the common block.

There are several predefined names in FDT that you can use as base
addresses for relative addressing. These names are:

.MAIN, The default name assigned by FDT to the base address
of the FORTRAN main program. You can reference any
location in the main program using this base. If you
named your main program with the FORTRAN PROGRAM
statement, then FDT uses that name to find the base
address for a relative address.

.BCOM. The name assigned by FDT to the base address of the
FORTRAN blank common area. Use .BCOM, to reference
variakles in blank common.

.ABS. The zero address of memory. FDT uses this name as the
base address for referencing any absolute memory
location.

For example, the following command prints the contents
of absolute location 56 (octal) in octal format:

TYPE .ABS.+56/0

ADVANCED TECHNIQUES

3.2.4 Subscript Addressing
The form of the location specification is:

name (i,j,k,...) A subscripted name for specifying arrays with at
most seven dimensions. The base address for this
form of addressing is the address of
name(1,1,1,...).

FDT uses the FORTRAN subscripting algorithm to compute the
displacement from the base address and to locate the specified array
element.

3.2.5 Indirect Addressing

When you define a name as a parameter (by specifying its mode as P),
FDT uses the 1location associated with the parameter name as an
indirect address. That is, FDT regards the value associated with the
name as the address of the desired value. For example, if the
location of the parameter PARM contains 2000, and location 2000
contains 1234, then the command

TYPE PARM/I,PARM/PI
prints

2000,1234

3.3 FORMAT CONVERSION ROUTINES

TYPE, ACCEPT, and IF commands use the FORTRAN library format
conversion routines. If the program you are debugging does not have
D, E, F, or G format specifications, then the linker does not load the
routines that FDT requires for C, D, and E modes. If you require C,
D, or E modes you can force the linker to load the required routines
with the following procedure:

1. When you link your program, include the /I switch in the
first linker command line,

2. The linker responds with:
LIBRARY SEARCH:

Type RCI$ (followed by a carriage return) to request the
floating-point conversion routines and a null line (carriage
return only) to end the library search list.

The resulting program contains all the necessary conversion routines.

3.4 ON-LINE DEBUGGING TECHNIQUE (ODT)

If you use assembly language routines with FORTRAN routines, you may
sometimes need to use FDT and ODT at the same time. There is no
interaction between the two debugging techniques except when ODT,
which runs at a higher priority, occasionally interrupts the output of
FDT or of the FORTRAN program. FDT does not use breakpoint or T-bit
traps.

ADVANCED TECHNIQUES

3.5 EXECUTION SPEED

FDT uses the FORTRAN internal statement number traceback £feature to
gain control at the beginning of a FORTRAN program and to execute
PAUSE and STEP commands. Therefore, FDT adds some overhead to the
execution of each FORTRAN statement and slightly reduces the execution
speed of any FORTRAN program.

The amount of FDT overhead time in a main FORTRAN program is difficult
to reduce. However, you can get fully debugged, time-critical
subroutines to run at full speed. You should compile these routines
with the traceback feature disabled. You cannot use FDT within these
routines. However, you can use the entry-pause feature of FDT for
these routines because the entry pause does not require the traceback
feature. If you issue a STEP command immediately before a subroutine
compiled without internal statement numbers, control proceeds to the
next executable FORTRAN statement in a routine with the traceback
feature enabled.

Execution speed with FDT is affected by FDT pauses. Each active pause
slows the execution of all FORTRAN statements., It particularly slows
those with internal statement numbers greater than that of the
statement where the pause occurs. The program runs more quickly if
you reset pauses that are no 1longer necessary. Entry pauses (see
Section 2.9) do not require overhead for traceback and hence are more
time efficient than other PAUSE commands.

3-5

Command

ACCEPT

CONTINUE

DIMENSION

ERASE

GOTO

IF

MACRO

NAME

PAUSE

RESET
START
STEP

APPENDIX A

FDT COMMAND SUMMARY

Parameters
loc=value
'text'
loc
[ntimes]

name(i,j,...) [,loc]

name [,name2,...]

label

Description

Assign value as the new contents
of loc.

Print text on terminal.

Accept a value from the terminal
and assign it to loc.

Resume FORTRAN execution.
Associate a location specifi-
cation and a subscript list with
a name,

Remove name associations.
Unconditional branch command

changes execution sequence within
an FDT macro.

loc<rel>value;FDT command

m(FDT commands)
m
m()

name|[,loc]

Execute the FDT command only if
the condition is true.

Define FDT macro m.
Execute FDT macro m.
Delete FDT macro m.

Associate a location specifi-
cation with a name.

proc,isn [AFTER ntimes] [MACRO m]

proc,isn

[n]

Create an FDT pause at internal
statement number isn of procedure
proc.

Remove an FDT pause,

Begin execution of main program.

Resume execution and execute n
statements.

FDT COMMAND SUMMARY

Command Parameters Description
STOP Return to operating system,
TYPE loc Print value or text on the
'text' terminal.
WATCH loc Cause an FDT pause when the
contents of the specified

location change.

WHAT Print FDT status.

APPENDIX B

FDT LOCATION SPECIFICATION FORMATS

Format
XXX
name
name+xxx
name (i,j,K,e0e)

.MAIN,

.BCOM.

.ABS.

Meaning
Location offset in octal bytes
Named location
Relative addressing
Subscripted name
Base address of the FORTRAN main program (if
the main program was not named in a PROGRAM
statement)

Base address of FORTRAN blank common

The zero address of memory

APPENDIX C

FDT MODES

Mode FORTRAN Type Description

I INTEGER*2 16-bit value displayed in decimal

J INTEGER*4 32 bits, first 16 displayed in decimal

L LOGICAL*4 32 bits, displayed as T or F

M LOGICAL*1 8 bits, displayed as T or F

E REAL*4 32 bits, scientific notation

D REAL*8 64 bits, scientific notation

C COMPLEX 64 bits, real and imaginary parts

B BYTE 8 bits, displayed in decimal

R -——- 16 bits, displayed as 3 RAD50 characters

0 ———— 16 bits, displayed in octal

An ———— A string of n ASCII characters (1 <= n

<= 255)
yA ———— ASCIZ string (as used in the FORTRAN string

handling package).

Any mode in the above table can be preceded by the letter "P" to
indicate that the associated location represents a FORTRAN parameter
variable.

Message
?BAD DIM

?BAD LOC

?BAD MACRO

?BAD SUBS

FDT START FAIL

?FORMAT

?LABEL
?MACRO #
?NO CONVERSION

?NO ROOM

?0NLY IN MACRO

?PAUSE NOT FOUND

$SUBSCR OUT OF BOUNDS

?UNDEFINED

APPENDIX D

FDT ERROR MESSAGES

Description of Error

An invalid dimension limit was specified.

The location specification is not aligned
correctly according to its mode or it
references a location outside the program
bounds.

An attempt was made to redefine a macro while
it was executing.

Subscripts are in an invalid format or
overflow.

cause

Invalid main program, bad start
internal statement numbers not
main program.

address, or
enabled in

The input constant is not in the

mode.

expected

The label specified does not exist.
The macro number is not in the range 0-7.

Floating-point formats are not available with
current FORTRAN program (see Section 3.3).
Not enough memory space to define a
PAUSE, MACRO, or NAME.

new
The operation attempted is valid only within
an FDT macro.

An attempt was made to remove a PAUSE that is
not active.

The specified subscripts exceed the declared

dimensions. (Warning message only.)

Syntax error or undefined name.

Abbreviations, 1-3, 2-20
uABSo ’ 3_1' 3_3
Absolute address, 3-1
ACCEPT, 1-3, 2-2, 2-10, 3-4
Address,
absolute, 3-1
base, 1-4, 2-6, 3-2, 3-3,
3-4
indirect, 3-4
relative, 3-1, 3-3
/An, 2-3, 2-6, 2-21
Array,
virtual, 2-6
Array element, 1-6, 1-9,
3-4
ASCII mode, 2-6
ASCIZ mode, 1-10, 2-21
Automatic FDT pause, 1-1,
1-9

Base address, 1-4, 2-6, 3-2,
3-3, 3-4
.BCOM,, 1-5, 3-3
Blank common, 1-5, 3-3
BOUNDS,
$SUBSCR OUT OF, 1-6

Code,
FDT mode, 1-7, 1-8
inline, 1-1
mode, 1~7
threaded, 1-1
Command types,
FDT, 1-2
Commands,
FDT control, 1-3
information transfer, 1-3,
1-4, 2-21
program control, 1-2
Commas, 2-2, 2-20
Common,
blank, 1-5, 3-3
named, 1-5, 3-1, 3-3
Conditional transfer of
control, 2-9
Constant,
string, 2-2
CONTINUE, 1-2, 1-11, 2-5,
2~-14, 2-15
Control commands,
FDT, 1-3

INDEX

Convention,
mode, 2-3
Conventions, 2-2
syntax, 1-3, 1-4
Conversion,
format, 3-4
Count,
execution, 2-5, 2-15,
2-17, 2=22
CTRL/C, 2-8
Current procedure, 1-4, 1-7,
1-10

Data type, 1-4, 1-7, 1-8,
1-9

Debugging procedure, 1l-1,
1-2

Defining a label, 2-8
Defining a macro, 2-10
Deleting a macro, 2-11
DIMENSION, 1-3, 1-7, 1-8,
1-9, 2-6
Dimensions, See Subscripts,
number of, 1-6
Displacement, 1-6, 3-3, 3-4
Dummy variable, 1-7

Element,
array, 1-6, 1-9, 3-4
Entry pause, 1-9, 2-15,
2-22, 3-5
Entry point, 1-9, 2-15
ERASE, 1-3, 1-7, 2-7
Error message, 1-4, 1-10,

2-14, 2-17
Executable statement, 2-15,
2-20 :

Executing a macro, 2-11

Execution count, 2-5, 2-15,
2-17, 2-22

Execution speed, 3-5

FAIL,
FDT START, 1-2
FB,
RT-11, 3-1
FDT, 1-1
FDT addressing, 1-4, 1
l1-6, 3-2, 3-3, 3-4

Index-1

FDT command types, 1-2

FDT control commands, 1-3

FDT macro, 2-2, 2-3, 2-10,
2-11, 2-14

FDT mode, 2-21

FDT mode code, 1-7, 1-8

FDT pause, 1-1, 1-2, 1-4,
1-9, 1-10, 2-13, 2-21,
2-22

FDT START FAIL, 1-2

Foreground/background,

RT-11, 3-1

Format conversion, 3-4

Format conversion routines,
3-4

FORTRAN PAUSE, 1-9

FRUN, 3-1

Gorto, 1-3, 2-8, 2-10

IF, 1-3, 2-9, 2-10, 3-4
IF,
logical, 1-11, 2-9, 2-18

Implicit macro, 2-11

Indirect address, 3-4

Indirect addressing, 3-4

Information transfer
commands, 1-3, 1-4,
2-21

Inline code, 1-1

Internal statement number,
i-1, 1-10, 2-5, 2-15,
2-22, 3=5

?LABEL, 2-8
Label,
defining a, 2-8
numeric, 2-8
Library, 2-13, 3-4
Link, 3-4
Link map, 1-1, 3-1
Literal,
text, 2-2
Literal text, 2-20
Location,
named, 1-4, 1-5
offset, 1-5
relative, 1-4
subscripted name, 1-4,
1-6
Location relative, 1-6

INDEX (CONT.)

Location specification, 1l-4,
2-12, 3-=2

Logical IF, 1-11, 2-9, 2-18

Logical relation, 2-9

Loops, 2-8

MACRO, 1-3, 2-10
Macro,
defining a, 2-10
deleting a, 2-11
executing a, 2-11
implicit, 2-11
Main program name, 1-2
.MAIN., 3-3
Map,
link, 1-1, 3-1
storage, 1-1, 1-5, 1-8,
2-6, 3-2
Message,
error, 1-4, 1-10, 2-14,
2-17
Mode, 1-7, 2-3, 2-9, 2-12,
2-20
Mode,
ASCII, 2-6
ASCIZ, 1-10, 2-21
step, 2-18
Mode code, 1-7
Mode convention, 2-3
Module conversion, 2-4, 2-9

NAME, 1-3, 1-5, 1-7, 1-8,
1-9, 2-12, 3-1, 3-3
Named common, 1-5, 3-1, 3-3
Named location, 1-4, 1-5

?NO CONVERSION, 2-4

?NO ROOM, 2-15

Number of dimensions, 1-6
Numeric label, 2-8

oDT, 3-4

Offset, 1-5, 2-6
Offset location, 1-5
Overhead, 3-5

/P option, 3-
Parameter, 1l-
Pause, 1-9

1
4, 1-8, 3-4

Index-2

PAUSE, 1-2, 2-5, 2-11, 2-13,
2-15, 2-21, 3-5 :
Pause, o
automatic FDT, 1-1, 1-9
entry, 1-9, 2-15, 2-22,
3-5 ' '
rpT, 1-1, 1-2, 1-4, 1-9,
1-10, 2-13, 2-21, 2-22
statement, 1-9, 2-15
step, 1-9
watch, 1-9, 2-21
Procedure,
current, 1-4, 1-7, 1-10
Program control commands,
1-2
Program name,
main, 1-2
Prompt, 1-2, 1-3, 2-2, 2-10

RAD50, 1-7, 2-3
RCI$] 3_4
REENTER, 1-9, 2-8
Relation,

logical, 2-9
Relative,

location, 1-6
Relative address, 3-1, 3-3
Relative location, 1-4
RESET, 1-2, 2-16
RESUME, 3-1
RSTS/E, 1-1
RT-11, 1-1
RT-11 FB, 3-1
RT-11 sJ, 1-10
RUN, 2-8

Single job,

RT-11, 1-10
Specification,

location, 1-4, 2-12, 3-2
Speed,

execution, 3-5
START, 1-2, 1~9, 1-11, 2-8,

2-11, 2-17, 2-21

START FAIL,

FDT, 1-2
Statement,

executable, 2-15, 2-20

INDEX (CONT.)

Statement number,
internal, 1-1, 1-10, 2-5,
2-15, 2-22, 3-5

~ Statement pause, 1-9, 2-15
SsTEP, 1-2, 1-9, 1-11, 2-11,

2-18, 2-21, 3-5

Step mode, 2-18

Step pause, 1-9

sTOP, 1-2, 2-19

Storage map, 1-1, 1-5, 1-8,
2-6, 3-2

String constant, 2-2

$SUBSCR OUT OF BOUNDS, 1-6

Subscript, 1-6, 2-9, 3-3

Subscripted name location,
1-4, 1-6

Syntax conventions, 1-3,
1-4

Text,
literal, 2-20
Text literal, 2-2
Threaded code, 1-1
Transfer commands,
information, 1-3, 1-4,
2-21
Transfer of control,
conditional, 2-9
unconditional, 2-8
Two's complement binary,
3-3
TYPE, 1-3, 2-2, 2-20, 3-4

Unconditional transfer of
control, 2-8
?UNDEFINED, 1-4, 1-10, 2-6

Variable,
dummy, 1-7
Virtual array, 2-6

WATCH, 1-2, 1-10, 2-21
Watch pause, 1-9, 2-21
WHAT, 1-3, 2-15, 2~22

Index-3

INDEX (CONT.)

/2, 1-10, 2-3, 2-21 .MAIN,, 3-3
/P option, 3-1
/%2, 1-10, 2-3, 2-21

#, 2-3 ?LABEL, 2-8

$SUBSCR OUT OF BOUNDS, 1-6 ?NO CONVERSION, 2-4

.ABS., 3-1, 3-3 ?NO ROOM, 2-15

.BCOM., 1-5, 3-3 ?UNDEFINED, 1-4, 1-10, 2-6

Index-4

Please cut along this line.

FORTRAN
Debugging Technique
AA-HO69A-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

Oo0o00add

Other (please specify)

Name Date

Organization Telephone

Street

City. State. Zip Code
or

Country

Fold Here

Do Not Tear - Fold Here and Staple

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 152
MARLBOROUGH, MA
01752

Postage will be paid by:

Software Documentation
200 Forest Street MR1-2/E37
Marlborough, Massachusetts 01752

digital equipment corporation

Printed in U.S.A.

	000
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	Index-1
	Index-2
	Index-3
	Index-4
	replyA
	replyB
	xBack

