
MUMPS-11
Language Reference Manual

Order No. DEC-11-MMLMA-D-D

MUMPS-11
Language Reference Manual

Order No. DEC-11-MMLMA-D-D

digital equipment corporation • maynard. massachusetts

First Printing,
Revised:

November 1972
October 1973
October 1974

February 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright 0 1972, 1973, 1974, 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-10
DECtape
DIBOL
EDU SYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECsystem-20

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-10
TYPESET-11

5/77-17

CONTENTS

PREFACE

ACKNOWLEDGMENT

FOREWORD

DOCUMENT CONVENTIONS

CHAPTER l

1.1
l. 2
l. 3
l. 3 .1
l. 3. 2
l. 4
l. 4 .1
l. 4. 2
1.5
l. 6
l. 6 .1
l. 6. 2
l. 6. 3
l. 6. 4
l. 6. 5
l. 6. 6
1.6.6.l
1.6.6.2
l. 6. 7
1.6.7.l
1.6.7.2
l. 6. 8

CHAPTER 2

2.1
2.2
2.3
2.3.l
2.3.2
2.3.3
2.3.4

ELEMENTS OF THE LANGUAGE

CHARACTER SET
PROGRAMMING MODES
PROGRAM STRUCTURE

Step Number
Part Numbers

DATA MODES
Numbers
Strings

IDENTIFIERS
EXPRESSING DATA VALUES

Literals
Constants
Variables
Subscripts and Arrays
Sparse Arrays
Local Variables
Simple Variables
Subscripted Variables
Global Variables
Structure
Naked Reference
System Variables

EXPRESSIONS

RULES FOR FORMING EXPRESSIONS
DATA MODES
RULES FOR EXPRESSION EVALUATION

Order of Evaluation
Setting Precedence
Automatic Data Mode Conversion
Data Mode of Results

iii

Page

vii

ix

xi

xiii

1-1

1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-5
1-5
1-5
1-5
1-6
1-7
1-7
1-7
1-7
1-8
1-8
1-9
1-10

2-1

2-3
2-3
2-3
2-4
2-4
2-5
2-5

2.3.5
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7

CHAPTER 3

3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3. 3. 4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.3.13
3.3.14
3.3.15
3.3.16
3.3.17
3.3.18
3.3.19
3.3.20
3.3.21
3.3.22
3.3.23
3.3.24
3.3.25
3.3.26
3.3.27
3.3.28
3.3.29

CHAPTER 4

4.1
4 .1.1

CONTENTS (CONT.)

Trailing Operator
OPERATOR DESCRIPTIONS

Arithmetic Operators
Relational Arithmetic Operators
Relational Equality Operator
Relational String Operators
String Concatenation Operator
Boolean Operators
Trailing Data Mode Operators

COMMANDS

RULES FOR COMMAND SYNTAX
FORMAT CONTROL
DESCRIPTIONS OF MUMPS COMMANDS

ASSIGN Command
BREAK Command
CALL Command
DO Command
ELSE Command
ERASE Command
FILE Command
FOR Command
GO Command
GOTO Command
HALT Command
HANG Command
IF Command
KILL Command
LOAD Command
LOCK Command
MODIFY Command
OVERLAY Command
PRINT Command
QUIT Command
READ Command
SET Command
START Command
TYPE Command
UNASSIGN Command
UNLOCK Command
VIEW Command
WRITE Command
XKILL Command

FUNCTIONS

INTRODUCTION
Nesting of Functions

iv

Page

2-5
2-6
2-6
2-8
2-10
2-11
2-14
2-14
2-16

3-1

3-1
3-3
3-3
3-7
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-20
3-21
3-22
3-23
3-24
3-27
3-30
3-31
3-34
3-35
3-37
3-39
3-41
3-43
3-45
3-46
3-47
3-48
3-49
3-52
3-53

4-1

4-1
4-1

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

TABLE

4 .1. 2
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.2.13
4.2.14
4.2.15
4.2.16

A

B

c

D

E

1-1
1-2
2-1
2-2
3-1
4-1

CONTENTS (CONT.)

Syntax Rules for MUMPS Functions
FUNCTION DESCRIPTIONS

$ALTERCASE Function
$CREATE Function
$DEFINE Function
$EXTRACT Function
$FIND Function
$HIGH Function
$INTEGER Function
$LENGTH Function
$M Function
$NEXT Function
$PIECE Function
$QUERY Function
$ROOT Function
$STEP Function
$TEXT Function
$VIEW Function

GLOSSARY OF TERMS

MUMPS CHARACTER SET

EXPLANATION OF MUMPS MESSAGES

SYMBOL USAGE

CONVERSION TABLES

TABLES

Special MUMPS Control Characters
MUMPS System Variables
Summary of Numeric Expression Operators
Summary of String Expression Operators
Functional Relationship of MUMPS Commands
Summary of Functions

v

Page

4-1
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-15
4-16
4-18
4-19
4-20
4-21
4-22

A-1

B-1

C-1

D-1

E-1

1-2
1-11
2-2
2-2
3-4
4-2

PREFACE

The MUMPS-11 Language Manual is a reference manual designed to provide
the MUMPS-11 programmer with complete and easily accessible
information about all aspects of the MUMPS-11 Language. New users
should refer to the Introduction to MUMPS-11 Language tutorial manual.

Chapter 1 describes the elements of the language including: the
character set, programming modes, program structure, data modes,
numbers, strings, literals, constants and variables.

Chapter 2 describes how to form expressions in MUMPS-11 and how they
are evaluated.

Chapter 3 describes each MUMPS-11 Command including: its syntax,
arguments, meaning and examples of use. This chapter is arranged for
quick reference; each command begins on a new page with the command
name in large bold type in the upper corner. Chapter 4 describes each
MUMPS-11 Function including: its syntax, arguments, meaning and
examples of use. This chapter is presented in the same format as
Chapter 3.

Appendices provided include: Glossary of Terms, Character Set, Error
Messages, Symbol Usage and Conversion Tables.

Associated Documents include:

Getting Starte~ With MUMPS-11
DEC-11-MMGSA-A-D

Introduction to MUMPS-11 Language - Tutorial Manual
DEC-11-MMLTA-C-D

MUMPS-11 Proqrarruner's Reference Card
DEC-ll-MMPCA-C-C

MUMPS-11 Programmer's Guide
DEC-11-MMPGA-D-D

MUMPS-11 Operator's Guide
DEC-11-MMOPA-D-D

vii

ACKNOWLEDGMENT

MUMPS-11 is an integrated system comprised of an interactive
programming language, a data management facility and a multi-user time
sharing executive, developed by Digital Equipment Corporation for the
PDP-11. Meditech Corporation contributed to the original development
of MUMPS-11. Interpretive Data Systems, Inc., assisted in the Version
4 developments.

The language is a dialect of MUMPS (Massachusetts General Hospital
Utility Multi-Programming System) which was developed at the
Laboratory of Computer Science at Massachusetts General Hospital and
is supported by Grant HS-00240 from the National Center for Health
Services Research and Development.

ix

FOREWORD

MUMPS-11 is an interactive single language, multi-user time-sharing
system that allows access to a common data base. The capabilities of
the system are heavily oriented towards string manipulation using a
high level language. The system relieves the user of any concern for
programming peripheral devices or for structuring data bases in the
traditional sense.

Language processing by the system is in every sense interpretive.
Each line of code undergoes identical processing each time it is
executed (intermediate code is not generated). The MUMPS application
programmer is relieved of all the burdens associated with driving
peripheral equipment or the programming of assembly language. He may
concentrate his energies to the analysis aspects of his problem. His
major problems are concerned with developing proper 109ical hierarchy
for his data base, and developing efficient logic for his data
processing requirement.

The MUMPS language is supported by a stand-alone operating system. In
addition to implementing the MUMPS language and providing all
operating system capabilities, the system affords the user a unique
data base structure and access method. Data which is referred to
symbolically is automatically stored and linked in a tree structure.
The physical allocation of mass storage for the tree structured data
base is accomplished by the operating system. The data base thus
created is available to other users in the system.

xi

Symbol

bve

gvar

lvar

nve

pnam

spn

sve

svl

......

{ }
11

DOCUMENT CONVENTIONS

Definition

A Boolean valued expression is an expression which is
interpreted as either TRUE or FALSE depending on
whether its result is a non-zero or zero value
respectively. The standard value for TRUE created by
MUMPS is -.01.

A global variable is a variable which is an element of
a global.

A local variable is a variable which is temporary and
resides in the user's partition.

A numeric valued expression is an
when evaluated, yields a numeric
range of valid MUMPS-11 numbers.

A program name consists of any legal
first character of which may be
library program name.

Any valid Step or Part number.

expression which,
result within the

identifier, the
a % to ir~icate a

A string valued expression is an expression which
results in a string of ASCII characters which does not
exceed maximum string length of 132 characters.

A string variable or literal (a more specific case of
sve).

Universal symbol for line terminator. Line terminators
for terminals are either Carriage Return or ALTMODE.

A single space •

Fields described within braces are optional.

Vertical bars are used to contain a list of options
among which a single choice must be made.

(Continued on next page)

xiii

Symbol

UPPER CASE/
lower case
characters

, ...

UNDERLINING

Definition

Upper case characters indicate elements of the language
which must be used exactly as shown. Lower case
characters indicate user supplied elements (sve, nve,
etc.) or letters in a command name which may be
omitted.

The punctuation characters , .. , are used to indicate
optional continuation of a command argument list in the
form of the last specified argument.

All examples showing keyboard (i.e., Direct Mode) input
are underlined.

xiv

CHAPTER l

ELEMENTS OF THE LANGUAGE

A MUMPS-11 program is a sequence of symbolic statements which the
MUMPS Language Interpreter translates for execution by the operating
system.

A command is the basic unit of expression in the MUMPS Language.
Commands have one or more elements. The first is a mnemonic which
characterizes or symbolizes the action to be performed. Examples:
GOTO, SET. The other elements in a command are called arguments, and
they specify the objects of the action to be performed.

There are six functional categories of MUMPS commands.

Category

Assignment Commands

Control Commands

Input/Output Commands

Editing Commands

Debugging Command

Timesharing Commands

General Function

Assign values to symbolic representations.

Govern the seq~ence in which commands are
executed.

Direct the input and output of
from the various devices in
environment.

data to and
the hardware

Permit the examination, modification, and
storing of programs.

Facilitate the creation and mainte\11ance of
MUMPS programs.

Permits database timesharing protection.

The format and syntax of MUMPS commands are described in detail in
Chapter 3.

1.1 CHARACTER SET

All MUMPS-11 programs are constructed of symbolic characters which
form the elements of the language. MUMPS programs use the
64-character graphic subset of ASCII, along with the special control
characters listed in Table 1-1. Characters that are used as data may
be selected from the entire 128-character ASCII set. Ordinarily,
however, those listed in Table 1-1 will appear in language elements
only. Appendix B lists the ASCII character set.

1-1

ELEMENTS OF THE LANGUAGE

Table 1-1
Special MUMPS Control Characters

Name

NOL

Carriage RETURN

ALTMODE

Line Feed

Form Feed

Vertical Tab

DEL(Rubout)

CTRL U

CTRL 0

CTRL C }
BREAK Key

1.2 PROGRAMMING MODES

Function

Line Terminator (internal)

Line Terminator (external)

Line Terminator (external)

Line Terminator (external)

Line Terminator (external)

Line Terminator (external)

Delete Character (prior to typing
terminator)

Delete Line (prior to typing terminator)

Suppress output to terminal

Sign-on signal by interrupt current
operation

There are two operating modes available to the programmer: Indirect
Mode and Direct Mode. Indirect Mode is the mode in which MUMPS
executes a stored program. Most MUMPS commands may also be
interpreted outside the context o~ a stored program. In Direct Mode,
such commands are executed immediately after entry from a terminal,
much like the operation of a desk calculator. Direct Mode is used
when creating, modifying, or storing MUMPS programs.

1.3 PROGRAM STRUCTURE

A MUMPS program consists of one or more uniquely numbered lines of
commands and arguments, and comments. These lines, called Steps, are
terminated by either Carriage RETURN, ALTMODE, or ESCape (symbolized
in this manual by a _)). Each program Step is stored in the user's
memory partition for subsequent execution in Indirect Mode. The
general format for a step is:

{step Number'-'} {command'-'arguments}'-'···{;comment}~J
A line of commands not having a Step Number is called a command line
and is executed in Direct Mode immediately after it is entered from a
terminal. Neither a Step nor a command line may contain more than 132
characters. Specific rules for command syntax are provided in Chapter
3.

1-2

ELEMENTS OF THE LANGUAGE

1.3.1 Step Numbers

A Step Number is use~ to identify each line of a MUMPS program. Step
Numbers establish the f~nda~ental sequence of program execution.
Within a given Part (Section 1.3.2), each line of a program is
executed sequentially in ascending Step Number order (assuming, of
course, that no Control Commands (Section 3.3) were encountered).

A Step Number is a positive number in the range 0.01 through 327.67.
The fractional part of a step number must be non-zero (e.g., 1.00,
198.00, etc., are illegal). Unless explicitly stated in the
appropriate command argument, user program execution begins with the
Step having the lowest non-zero integer. Step numbers in the range
.0.01 through 0.99, though normally used to contain program comments,
can contain executable commands; however, control must be explicitly
transferred to these steps via arguments to the commands: GOTO, DO,
CALL, OVERLAY, and START.

Examples 9f valid Step Numbers are:

34.87
1.01
.76
08.88

1.3.2 Part Numbers

All Steps having a common integer base form a Part. Parts are used to
form program modules, each module specifying a particular procedure
within a program. A program may have one Part or many Parts, as the
programmer desires. Each Part is a distinct entity with regard to
program execution. Execution control is limited to those steps within
a Part, and Control Commands such as GOTO, DO, OVERLAY, etc., must be
used ~o effect transfer of control outside of a Part. All Steps in a
Part ~ay.b~ collective~y referenced by the Part Number alone.

For example:

The series of Steps:

2.01
2.04
2.10
2.87
2.99

can be referred to as Part 2. The command GOTOL.-12 .would cause all
Steps in Part 2 to be executed.

1.4 DATA MODES

~UMPS-11 interprets all data in one of two ways: either as numeric
quantities~ such as might be used for calculation, or as strings which
simply impart their inherent symbolic meaning, such as names and
~dd~ess~s.

1-3

ELEMENTS OF THE LANGUAGE

1.4.1 Numbers

Numbers in MUMPS are signed, fixed-point, two-rilace decimal quantities
in the range +21474836.47 [or -(231 -l)/100<n<(2 1 -1)/100). - --
On input from a terminal or other device, numeric strings used
arithmetically which are outside the spec if ied range, are flagged with
the following error messages:

MXNUM Integer portion too large
MINIM Fractional portion more than 2 places

Numbers that are stored internally as intermediate results during
processing must also conform to the specification, except that decimal
fractions are truncated to two places. (No error is created within
the system.)

On output, a sign is printed only for negative quantities. Integer
quantities are printed without decimal point and trailing zeroes in
the fractional part. Decimal fractions are printed with a single
leading zero in the form: O.nn.

Examples of legal numbers are:

• 8
0.25

100.00
-.01

025.
-73256

1. 4. 2 Strings

A string is any contiguous sequence of legal MUMPS characters which is
to be considered a single identifiable entity of data. Examples of
strings are:

HELLO. MY NAME IS:
55 seconds
2,000,345,876,743.4738501
When in the course of human events •..
@$#%¢764908!1PoutSFCerhcmAdAtwhS

1. 5 IDENTIFIERS

An identifier is a string consisting of one to three alphanumeric
characters. Identifiers are formed from the characters 0 - 9, the
upper case alphabetics A through Z, and the percent (%) character.
The first character must be either an alphabetic character or the %
character. Remaining characters may be either alphabetic or numeric
characters (the % character is legal in the first character position
only). Identifiers are used as symbolic names for variables and
programs as described later. Identifiers for System Library Programs
and Library Globals, however, must use % exclusively as the first
character.

1-4

ELEMENTS OF THE LANGUAGE

Examples of inentifiers are:

TST
A4R
zzo

%B6
%11

M
%X

1.6 EXPRESSING DATA VALUES

Program data values may be expressed in several ways in a MUMPS
program. The basic units - string literals, numeric constants, and
variables - represent single entities of data having either string or
numeric values. Literals and constants cannot be altered during a
program's execution; variables have whatever values are currently
assigned to them. New values may be computed from known values of
these data elements using MUMPS commands, functions, and operators
which are described in succeeding chapters.

1.6.1 Literals

A literal is used to specify a string of characters which does not
change from one execution of a program to the next. A literal may
comprise any valid string of characters enclosed in quotation marks
{""). A literal may not contain any of the following characters:

Quotation Mark
Carriage RETURN
ALTMODE
CTRL U

Examples of literals are:

"1234.1098+="
"THE ANSWER IS:"
"G$536svfjri'&PPkl;"

1.6.2 Constants

CTRL C
DEL (Rubout)
NUL

Line Feed
Form Feed
Vertie! Tab
CTRL 0

A constant is used to express a numeric quantity which does not change
from one execution of a program to the next. A constant may consist
of any valid MUMPS number (+21474836.47).

Example of constants are:

23.90
.08

00578.99
-37.69

1.6.3 Variables

A variable is a symbolic representation of a logical storage location.
Unlike literals and constants, variables are used to store data which
may be altered during a program's operation. Variables may contain
either numeric or string data. Numeric data must be within the legal
range for MUMPS numbers +21474836.47. String data must conform to the
requirements for MUMPS character strings. Variables must be assigned
symbolic names which are legitimate identifiers (see Section 1.5).

1-5

ELEMENTS OF THE LANGUAGE

Three types of variables can be created in MUMPS: Simple Variables,
Subscripted Variables, and Global Variables. Variables are created,
modified, and deleted using the SET, READ, KILL, and XKILL commands
described in Chapter 3.

Examples of variables are:

A
X37
SDF
M4Z
%X

System Variables are ~ fourth type of variable in the MUMPS system.
These variables, maintained by the operating system, contain general
system information for use by all MUMPS programs. System variables
are "read only" 1 variables and cannot be altered as can normal
variables. These variables use a dollar sign ($) as the first
character of their names.

1.6.4 Subscripts and Arrays

A subscript is a numeric valued expression (nve) enclosed in
parentheses that is appended to a variable name to uniquely identify a
data element residing under that variable name. All the subscripted
variables residing under a common name are collectively referred to as
an array. An array may consist of either subscripted local variables
or subscripted global variables (Sections 1.6.6.2 and 1.6.7.1).

The following is an example of an array with a single level of
subscripting:

DOG (0 .1)
DOG (3. 5)
DOG (34. 76)

DOG (nnnn.nn)

An example of a global array with multiple subscripting levels is:

tACT (1,1)
tACT (1,1,1)
+ACT (1,2)
+ACT (1,2,1)
+ACT (1, 2, 2)
tACT (1,3)

The value of a subscript must be a positive number in
through 20,971.51. 2 Subscripts may consist of

1. Exception: $Error is "read/write".

the range: 0
constants, other

2. The $HIGH function (Section 4.2.6) permits an exception to this
rule.

1-6

ELEMENTS OF THE LANGUAGE

variables (which may be subscripted), and expressions (described in
Chapter 2). In addition, string variables and literals (svl) may also
be used for subscripting. However, the $CREATE function (described in
Chapter 4) must be used to convert the string to a unique number.

1.6.5 Sparse Arrays

A sparse array is an array in which only those elements that are
explicitly defined or that are required to support the array structure
actually exist. Unlike other languages that may require a declaration
of the maximum size of an array to preallocate storage space, MUMPS
dynamically allocates storage for all arrays only as needed, thus
conserving storage space. If a program defines an array which has the
following elements,

A (4)
A (102)
A (345)

only these three elements actually occupy storage space. A program is
penalized for occupying too much space when, indeed, there is no space
left.

A local array can only have one level of subscripting.

1.6.6 Local Variables

Local variables are variables which reside in the same partition as
the commands or Steps which created them. . These variables are
accessible only to that partition. Local variables are normally used
to contain intermediate or transient data which is not to be saved
from one execution of a program to the next. There are two types of
local variables: simple and subscripted.

1.6.6.1 Simple Variables - A simple variable is a local variable
which is not subscripted. Examples of simple variables are:

ABC
HAT
R45
x
%0

1.6.6.2 Subscrieted Variables - A subscripted variable is a local
variable which 1s followed by one subscript and can be used to form a
one-dimensional array. Both subscripted variables and local variables
may share a common name. Thus, it is possible for both the array ABC
as well as the simple variable ABC to exist simultaneously. The
progranuner should exercise caution when naming variables in this way,
since the KILL Conunand does not distinguish between the two types when
no subscript is specified (see Section 3.4.14).

Examples:

AGE (AGE)
AGE (2.45)
AGE (A+3. 2/T)

AGE (ABC(DEF))
ABC (2876)
ABC (4+B(C*F)/0.89)

1-7

ELEMENTS OF THE LANGUAGE

1.6.7 Global Variables

1.6.7.l Structure - MUMPS uses one or more disk devices as the
primary data storage medium. Access to this storage is gained through
the use of global variables (or global nodes). Like local variables,
they are created simply by reference in a program or command line.
Global variables can be either simple or subscripted. When they are
subscripted, the resulting arrays are sparse arrays. Unlike local
variables, global variables provide permanent storage and can be
accessed by more than -0ne user. 1 Furthermore, there is no limit to
the number of levels of subscripting that can be used in forming
global arrays permitting the creation of hierarchical data structures
that schematically look like inverted trees. Global variables may
possess either a string or a numeric data value. In addition, when
used in an array, they may also serve as pointers to variables at a
lower level in the tree structure.

The naming conventions for global variables are the same as for local
variables, except that a circumflex (A) or up-arrow (t) must precede
the name. Multiple subscripts are separated from each other by a
comma. The following example should clarify this discussion.

In the array tABC, assume the following elements are defined:

Variable Contents

+ABC
+ABC (1) "ABC"
~ABC (1,2,1) "AGE"
+ABC (1,2,2) "NAME"
+ABC (2) "VALUES"
tABC (2,4) 364.9
+ABC (2,4.50) 832.01
tABC (3,87) "ZZZ II

A diagram of this array would look like this:

1. As described in MUMPS-11 Programmer's Guide.

FIRST LEVEL OF
SUBSCRIPTING

ELEMENTS OF THE LANGUAGE

(3)

SECOND LEVEL OF
SUBSCRIPTING (I, 21 (2,4.50)

832.01

(3,87)

"zzz"

THIRD LEVEL OF
SUBSCRIPTING (1, 2,1)

"AGE"

(1, 2,2)

"NAME"

(TOTAL NUMBER OF BLOCKS• S. EXCLUDING THE DIRECTORY BLOCK l
t1-2548

Note that there are some global nodes which exist solely to point to a
node which contains data. Such is the case with tABC, tABC (3) and
+ABC (1,2). These nodes are defined implicitly. Other variables such
as tABC (1) and tABC (2) contain both data and a pointer to data at a
lower level. Still other variables, those at the lowest level of a
branch in the tree, may contain only data. Such is the case with tABC
(1,2,1), +ABC (1,2,2), tABC (2,4), etc.

A secondary feature of globals is that the top or highest node
global, in addition to storing the global name and pointers to
levels, can be used to store auxiliary numeric or string data,
any other variable. Thus:

SETt....1tABC="THIS GLOBAL CONTAINS SALARY DATA"

of a
lower
like

1.6.7.2 Naked Reference - The naked reference is a facility within
the language that permits the programmer to avoid excessive disk
accesses during program operation, Each time a regular global
variable reference is made (e.g., SET A=tABC (1,2,1)), a physical
disk access is performed to bring the disk block containing that
global variable into memory. Since global variables at the same level
of subscripting reside in the same or a related disk block, a physical
access is not always necessary when accessing globals at the same
level. Using the naked reference, disk accesses are made only when
the subscripting level is changed, or when a "continuation block" at
the same level must be read-in to locate the desired variable.

In form, only the up-arrow and subscripts are explicitly stated: the
global name is assumed from the last global reference made. The first
stated subscript in the naked reference replaces the last subscript
stated in the previous reference. The first stated subscript is
assumed to be at the same level as that of the previous one. Thus, in
the last example, if a reference to fABC (2) has been made and tABC
(1) is to be accessed next, only the subscript need be specified as
in:

SET.......A= t(1)

1-9

ELEMENTS OF THE LANGUAGE

Similarly, if +ABC (1,1,2) is to be accessed next, then:

SET'-'A= t (1, 1, 2)

is all that is required. In this case, however, a disk access is
required since the subscripting level has changed.

By far the most common errors that occur in the use of global arrays
stem from the incorrect use of the naked reference. The following
examples illustrate some of the problems that may be encountered.
These examples represent only a few of the many possibilities for
producing erroneous results when using the naked reference. It is a
powerful tool, but one that must be used cautiously.

Example

>IF $D(.ACI,J)):fJ SET t(J):VAL

In this case, the user is testing the status of +A (I,J) by means of
the $DEFINE function. If $DEFINE returns a zero value, that node is
undefined. The user then reasons that since $DEFINE has brought him
to the desired level, he is safe in using the naked variable.
Incorrect!! The user has no way of knowing where the search has ended
and thus cannot know the current level. For example, the search may
have ended at the first level if no +A (I) node was defined. To be
safe, the user should use the full reference as in:

>IF SDCtACI,J>>:VAL

Of course, if $DEFINE teturns a non-zero result, the use of naked
variables is perfectly safe.

Example

2 .fl I SET tG CI .J .K): HK>+ I

This command string is legal, but the result will not be what the user
desires if his intent is to increment the global specified to the left
of the equal sign. The problem lies in the order of evaluation that
MUMPS uses for processing a SET command string. The first side of the
equal sign (~) to be evaluated is the right side. The naked reference
in this case will access the level last reached, which is not
necessarily the same as tG (I,J,K) on the left side of the equal sign.

The correct form is:

2.fll SET tCK):tGCI,J,K)+l

Further information on the structure and use of globals is provided in
Introduction to MUMPS-11 Language and MUMPS-11 Programmer's Guide.

1.6.8 System Variables

A number of special "reference only" variables are defined within the
system to control the flow of information and to provide system
information to MUMPS application programmers and users. These
variables, called System Variables, are maintained and updated by the
system. They can be examined by various MUMPS commands (TYPE, SET,

J.-10

ELEMENTS OF THE LANGUAGE

etc.) but, except for
or READ commands. When
only the dollar sign
(e.g., TYPE $I). Table

$Error, they cannot be directly altered by SET
referencing System Variables in MUMPS programs

and the first character after it need be used
1-2 defines the System Variables.

Variable Name

$Address

$Byte

$Date

$Error

Table 1-2
MUMPS-11 System Variables

Description

$A is used with device I/O. When DECtape is the
currently ASSIGNed device, $A contains an
integer which is the address of the next
character to be read or written (range of
$A=0-294,911). When magtape is the currently
ASSIGNed device $A contains an integer whose bit
pattern displays the Magtape Hardware Status
Register (drive status register for the TJU16).
When the Sequential Disk Processor is the
currently assigned device, $A contains either
the current disk block address or the error
status. When a terminal is the currently
assigned device, $A contains the error status.
When another processor (CPU) is the currently
ASSIGNed device, the low order byte of $A
contains a count of unsuccessful I/O
transmission (message state only) , and the high
order byte describes error conditions (message
and terminal state). Refer to the MUMPS
Programmer's Guide, for bit assignments.

When the Sequential Disk Processor is the
currently assigned device, $8 and $H contain the
location (byte address) of the next character to
be read or written, according to the formula.

ADR = $H*256+$8
Where $H = O or 1 (page)
and $8 = n, 0 <n<255 (byte in page)

$Date contains the date as an integer in the
form:

(yy*SOO)+ddd

where:

yy = Year - 1900
ddd = Number of days since Dec 31

This value is incremented by
variable is incremented to
seconds) .

one when
midnight

the $T
(86,400

The system sets the contents of $E to negative
nve which denotes the type of error incurred.
The programmer may optionally set this variable
to an spn to control his own error processing.
Refer to the MUMPS-11 Programmer's Guide for
details.

1-11

Variable Name

$Half

$I/O device

$Job Status

$Location

$Random

$Storage

$Time

$Where

$X coordinate }
$Y coordinate

ELEMENTS OF THE LANGUAGE

Table 1-2 (Cont.)
MUMPS-11 System Variables

Description

See $Byte.

$I contains an integer which is the number of
the device which is currently ASSIGNed (i.e., as
specified by the last argument of the last
ASSIGN command issued). At log-in time, ·$I
contains the I/0 device number of that terminal
(Principal I/0 Device). After a System Error,
or UNASSIGN and ASSIGN commands, $I is set to
the number of the principal device.

$J contains a number, some of the bits of which
specify the current status of programming mode,
CTRL C/BREAK recognition, and timed READ
overruns. In addition, the ASSIGN and PRINT
Commands can be used to alter the bits in $J
that control the reception or inhibition of CTRL
C or BREAK, the updating of Library Programs and
Library Globals, and the writing of memory or
disk locations via the VIEW Command. Refer to
the MUMPS-11 Programer's Guide for $J bit
ass.ignments.

$L contains the number of the program step
currently being executed.

$R contains an integer in
to 32767. The value of
~ffective1y random and
reference of $R.

the closed interval 0
$R in this interval is
changes with each

$S contains an integer which is the number of
free byte (character) locations remaining in the
user's partition.

$T contains an integer which is the number of
s~conds elapsed since midnight (range = 0 -
86,399). $T is incremented each second.

The system sets $W to the value of $L when an
error occurs and the user had previously SET $E.
If the user does not SET $E, $W contains 0.

$X and $Y are the x and y coordinates (output
only) of the print-head or cursor position on
non-mass storage I/O devices, such as the
terminals, line printer and paper-tape punch.

When a CPU-CPU device operating in message state
is the currently assigned device, $X contains
the current message number in the range 1 - 15.
This number is incremented by one each time a
message is transmitted successfully. When the
count reaches 15, the next successful
transmission resets the count to O. $Y is not
used and does not contain meaningful
information.

1-12

CHAPTER 2

EXPRESSIONS

The term expression refers to the whole range of value descriptions
which can be made in the MUMPS language. An expression is any legal
combination of elements (operands) and operators. Expression
elements include such basic language elements as literals, constants,
simple variables and subscripted variables (including Global Variables
and System Variables). Also included in this category are function
references (defined in Chapter 4), and subexpressions, which are
simply expressions enclosed in parentheses.

The following are examples of expression elements:

123.34
ABC
"ABCD"
MX (5)
tXYZ (2,45.2,D)
$ROOT (PQR)
(A+B (C/D))

Constant
Simple Variable
Literal
Local Subscripted Variable
Global Variable
Function Reference
Subexpression

The operators in an expression serve to represent various arithmetic,
string, and logical operations of the MUMPS language. All operators
except minus (-) and Boolean NOT (') are binary operations and
therefore require two operands. The minus (-) and Boolean NOT
operators are unary operations and require one operator only. Tables
2-1 and 2-2 list the MUMPS-11 expression operators.

The following are examples of MUMPS expressions:

A
234.53
A*B- (C/D)
"10 CATS"@"SUP BOTTLES"
"15 DOLLARS"+AMT/NET
TOT=6.21/CD- ($ROOT (G*RT/MQ))
A=C+V&X>S-T!AMT=5

2-1

Type

Arithmetic

Relational

Boolean

Type

Relational

Concatenation

EXPRESSIONS

Table 2-1
Summary of Numeric Expression Operators

Symbol

+
-
*
I

\
-
<
>
=
<= l or
=<
>= } or
=>
<>

! or

><

&
!
'(apostrophe)

Operation

Addition
Subtraction
Multiplication
Division
Modulo
Integer Division
Minus (Unary)

Less Than
Greater Than
Equality

Less Than or Equal To

Greater Than or Equal To

Greater Than or Less Than or Not
Equal To

AND
OR
NOT (Unary)

Table 2-2
Summary of String Expression Operators

Symbol Operation

[Contains
l Follows
? Pattern Verification
= Equality

@ Concatenation

Intervening spaces between expression elements and operators are not
permitted.

2-2

EXPRESSIONS

The following paragraphs explain the rules that govern the formation
of expressions like those above and how MUMPS interprets them.

2.1 RULES FOR FORMING EXPRESSIONS

The following rules apply to the formation of all expressions:

1. Literals, constants, variables, functions, and subexpressions
are expressions.

2. If A and B are expressions, then the
expressions:

following are

a. A binary operator B

b. Unary operator A

c. (A)

3. There are no expressions except those defined by 1.
above.

and 2.

2.2 DATA MODES

In the MUMPS language there are essentially two types or modes of
data, numeric and string. Each of these data types is defined in
Chapter 1. To summarize, numeric data are signed fixed-point
quantities with two decimal places and are within the range
+21474836.47. String data are simply ASCII character g~oupings of 132
~haracters or less •.

Internally, MUMPS uses a third format commonly denoted double
precision floating point format for storing the results of a $M
function calculation. In the description on the following pages of
expression evaluation, wherever a numeric to string value conversion
is indicated, a floating point number is allowed, and the floating
point value would be converted to a string value. However, conversion
of a floating point number to a fixed decimal number is not allowed.
Thus, although floating point numbers can be used ·with string
opera.tors, a floating point number cannot be used with arithmetic
operators outside of a $M function, and care should be taken when
using the equality operator with a floating point number.

All expression operators except concatenation produce numeric results.
In the case of expressions which use Relational or Boolean operators,
evaluation produces either a True or a False result, which is
represented in numeric form as either -0.01 (True) or 0 (False).

2.3 RULES FOR EXPRESSION EVALUATION

2.3.1 Order of Evaluation

All MUMPS expressions are evaluated in strict
There is no precedence among the expression
unary minus is evaluated before a Boolean NOT
adjacent operators.

2-3

left to right order.
operators except that a

when they appear as

EXPRESSIONS

2.3.2 Setting Precedence

Additional precedence is established through the use of parentheses.
Parentheses are used to form subexpressions which are evaluated as a
single element of the expression in which they appear. Within
parentheses, evaluation is performed as described above.

Example:

(Where: R=interrnediate result)
in the expression B+C/D*E evaluation is:

B-+ R 0
R0 +C:+ R1

R1 /D-+ R2
R2 *E-r R 3

Adding parentheses to the same expression, B+(C/D)*E results in the
division being performed prior to the addition as shown below:

B-+ R0

C/D-+ R1
Ro+R1-+ R2
R2 *E -+R 3

Additional levels of precedence can be achieved by the nesting of
subexpressions.

Although there is no logical limit to the depth of nesting, there are
physical limits. These are:

1. Physical line length - not more than 132 characters can be
used to construct the command line in which the expression
resides.

2. Size of partition in which program is running - each level of
nesting uses four words of storage during evaluation.

Example:

Where: (R=intermediate result)
in the expression .B+((C/D)*E), evaluation is:

B-+ R0

C/D -+R1
R1 *E -+R 2
Ro +R2 -+ R3

The precedence of evaluation between several subexpressions at the
same level in an expression is also strictly from left to right.

Example:

Where: (R=interroediate result)
in the expression C-(X*Y)+W/(E-M), evaluation is:

C-+ R0

X*Y-+ R1
Ro -R1 +R2
R2 +W -+R 3
E-M -+R 4
R3 /R4 -+Rs

2-4

EXPRESSIONS

2.3.3 Automatic Data Mode Conversion

During expression evaluation, operands are converted as required from
numeric to string data and vice-versa to conform to the data mode
requirements of the associated operator. This process does not,
however, alter the original mode of stored data (i.e., data in
variables, literals, or constants).

Numeric values are converted to the equivalent string representation
for string operations. A numeric value of 123.4 would be converted to
the characters: 123.4.

String values are converted to numeric values for numeric operations.
All leading numeric characters in the string, including +, - and
decimal point (.), are changed to the corresponding numeric quantity
within the range of MUMPS numbers. The first character that does not
conform to the format of a MUMPS number terminates the conversion
process; the accumulated value is taken as the result. Any leading
zeroes in the resulting numeric value are discarded. Strings that do
not contain leading numeric characters produce a 0 result. Thus:

12ABC -+ 12
ABC12 -+0
-1.0llA -+MINIM error

-l.52A.B+-+ -1.52
.52A-+0.52
002.SX-+2.5

2.3.4 Data Mode Of Results

The last operator in an expression determines the data mode of the
result, either numeric or string.

Examples:

A/B@C-+ String Result

last operator

A@B/C -+Numeric Result
t.__

last operator

2.3.5 Trailing Operator

An expression may contain a trailing
the final result of evaluation from
A plus (+) sign causes conversion to
at (@) sign, which is also the
conversion to a string value.

2-5

operator to effect a change in
numeric to string and vice-versa.
a numeric value and a commercial
concatenation operator, causes

EXPRESSIONS

2.4 OPERATOR DESCRIPTIONS

The following paragraphs specifically define the operations performed
by each operator and Show the data modes of both the operands and the
results. Examples are also included where additional clarification is
necessary. The mnemonics listed below are used as a shortharid
notation in each description.

Mnemonic

nv

Definition

Numeric Value - this is a numeric quantity which may
be either an intermediate or a final result.

sv String Value - this is a string quantity which may be
either an intermediate or a final result.

nvel Numeric Valued Expression ELement - this is a single,
identifiable numeric quantity that may be indicated
by a local or global variable, a literal, or result
from evaluation of a function or sub-expression.

svel String-Valued Expression ELement
identifiable string quantity that may
a variable or literal, or result from
function or sub-expression.

a single
be indicated by
evaluation of a

2.4.l Arithmetic Operators

The arithmetic operators permit arithmetic computations
performed. The symbols are defined as follows.

to

Legend:

Symbol

+

*
I

\

Operation

Addition
Subtraction
Multiplication
Division
Modulo - When bbth arguments of
positive, the resulting value is
integer division. More formally,
oe

this operator are
the remainder after
A#B is defined to

A-{A\B*B) + (absolute value of B if A<O)

The result is insensitive to the sign of B, and it is
always positive.
Integer .Division - The result is the same as normal
division except that the decimal portion is
truncated.

Binary Forms:

nv

+

*
I

\

nvel-+- nv

~direct evaluation of the nvel is made.
The operation is performed and a numeric
result produced.

2-6

be

+

nv
*
I

\

+

sv
*

\

+

sv
*
I

\

Unary Forms:

svel-+ nv

nvel-+ nv

svel -+ nv

EXPRESSIONS

The svel is evaluated and the result is
converted to a numeric value. The
operation is performed and a numeric
result produced.

The sv is converted to a numeric value.
The operation is performed, and a numeric
result produced.

The sv is converted to a numeric value.
The svel is evaluated and the result
converted to a numeric value. The operation
is performed, and a numeric
result produced.

When the minus (-) is used as a unary operator to indicate negation,
it may prefix any element in an expression. Thus:

-nvel-+ nv The resulting nv has a different sign but the same
absolute value.

-svel -+ nv The svel is converted to a numeric value then treated
as above.

Examples:

Where: A=3; 8=5; C=l2; D~6

1. A+B- (C/D) -+ 6

2. A+B-C/D-+ -0. 66

3. 3#5-+3

4. -3#5 -~ 2

5. 3.4\1.4 -+2

6. "3214 MAIN ST"-802 -+ 2412

Analysis:

"3214 MAIN ST" -+ 3214
3214-802 .+-2412

7. 23*"CAT" -+ 0 Since there are no leading numeric characters
in "CAT", it is evaluated as numeric 0.

2-7

Analysis:

"CAT"-+ 0
23*0-+ 0

EXPRESS IONS

8. "1234ABCDE6789~/"0002POIU" -+617

Analysis:

"1234ABCDE6789" -+1234
"0002POIU" -+ 2
1234/2-+ 617

2.4.2 Relational Arithmetic Operators

The relational arithmetic operators permit the comparison of numeric
or string quantities in an arithmetic manner. The results of
expressions using these operators are either -0.01 to represent a True
relation or 0, to represent a False relation.

Legend:

Forms:

Symbol

<
>

~;}
=<

~~}
=>

~/}
><

Operator

'Less Than' comparison
'Greater Than' comparison

'Less Than or Equal To' comparison

'Greater Than or Equal To' comparison

'Greater Than or Less Than' or 'Not Equal To'
comparison

< A direct evaluation of the nvel is
> made and the operation is performed.

nv >= nvel -+True or False A numeric result is produced. -0.01
<= (True) or 0 (False).
< >
><

< The svel is converted to a numeric
> value and the operation is

nv >= svel-+ True or False performed. A numeric result
< > is produced. -0.01 (True) or 0
>< (False).

< The sv is converted to a numeric
> value and the operation is

sv <= nvel -+True or False performed. A numeric result is
>= produced. -0.01 (True) or 0 (False).
< >
><

2-8

EXPRESSIONS

< The sv and svel are converted to
> numeric values and the operation

sv >= svel-+ True or False is performed. A numeric result is
>= produced -0.01 (True) or
< > 0 (False).
><

Examples:

Where: A=3; B=5; C=l2; D=6; X=lO

1. A+B>C/D -+O (False)

Analysis:

A+B-+ 8
8>C -+ 0
0/D + 0

2. A+B>(C/D) +0.01 (True)

Analysis:

A+B-+ 8
C/D -+2
8>2 -+0.01 (True)

3. "3214 MAIN ST" <=802-+ 0 (False)

Analysis:

II 3214 MAIN ST"-+ 3214
3214<=802 -+O (False)

4 • 2 5 * "CAT " < > 6 -+ - 0 • 0 1 (Tr u e)

Analysis:

"CAT" -+ 0
25*0 -+O
0< >6 +-0.01 (True)

5. "23TSV"+"XYZ"<"78.04FARGH"+3 +2.99

Analysis:

II 23TSV" -+2. 3
"XYZ" -+O
23+0 +23
"78.04FARGH" +78.04
23<78.04+ -0.01 (TRUE)
-0.01+3 -+2.99

6. X>A>B ~o (False)

Analysis:

10>3-+ -0. 01 (True)
-0.01>5+0 (False)

2-9

EXPRESSIONS

2.4.3 Relational Equality Operator (Arithmetic or String)

Relational Equality operations are signified by the use of the equal
sign (=), and can be considered either arithmetic or string in nature,
depending upon the type of operands used. The results of expressions
using this operator are either -0.01 (True equivalence) or 0 (False
equivalence).

Care should be taken when using a floating point number (created by a
$M function) with the equality operator. In such cases, the following
rules govern.

1. If the 1st argument is a floating point number, it i~
interpreted as a string value.

2. If the 2nd argument is a floating point number and the 1st
argument value is a fixed decimal numeric value, a MIXED
error is generated.

3. If the 2nd argument is a floating point number and the 1st
argument's value is a string value, a string conversion of
the 2nd argument occurs.

The definition of equality when used with strings or fixed decimal
numbers is given below.

Legend:

Symbol Operation

Forms:

nv

nv

sv

sv

Numeric or String Equivalence

nvel-+ True or False

svel-+ True or False

nvel ~True or False

svel -+True or False

A direct evaluation of the nvel is
made and the operation is
performed. A numeric result is
produced, -0. 01 (True) or 0
(False).

The svel is converted to a numeric
value and a numeric comparison is
made. A numeric result is produced
-0. 01 (True) or 0 (False).

The sv is converted to a numeric
value and a numeric comparison is
performed. A numeric result is
produced -0.01 (True) or 0 (False).

The svel is compared with the sv on
a character-by-character basis. A
numeric result is produced -0.01
(True) or 0 (False).

NOTE

The > or < operator cannot be used to
make non-numeric string comparisons.

2-10

EXPRESSIONS

Examples:

Where: A=3; B=5; C=l2; 0=6

1. A+B=C/D +O (False)

Analysis:

A+B + 8
8=12 + 0 (False)
0/6 + 0

2. A+B=(C/D) +O (False)

Analysis:

A+B +8
C/D +2
8=2 +O (False)

3 • 11 5 DOG s 11 * 5 = 2 5 + - O . 01 (True)

Analysis:

II 5DOGS" + 5
5*5+ 25
25=25 + -0. 01 (True)

4. -3+2= 11 ABCD234 11 +O (False)

Analysis:

-3+2 + -1
"ABCD234 II + 0
-1=0 + 0 (False)

5. 11 JACOBS 11 = 11 JACOB 11 +O (False)

Analysis:

The string JACOBS is not equal to the string JACOB.

2.4.4 Relational String Operators

The relational string operators provide facilities for determining the
characteristics of string data. Results of expressions using these
operators are either -0.01 to represent a True relation or 0 to
represent a False relation.

Symbol Operation

String Contains - The string specified by left operand is
examined for the occurrence of the string specified by the
right operand. If a match is found the result is True
(-0. 01); otherwise the result is False (0).

String Follows - The string specified by the left operand is
compared character-for-character with the string specified
by the right operand to establish relative position
according to the MUMPS collating sequence. (Refer to

2-11

Symbol

EXPRESSIONS

Operation

Appendix B.) If the string specified by the le£t operand
"follows" that specified by the right operand, the result is
True (-0.01); otherwise the result is False (0).

? Pattern Verification - The string specified by the left
operand is examined for the occurrence of the character
patterns specified by the Pattern Specification Codes (psc)
contained in the right operand. If a matching condition
exists the result is True (-0.01), otherwise the result is
False (0). Pattern Specification Codes may be preceded by a
single decimal integer (n) in the range 0 - 9 to specify the
number of occurrences of a particular character type. If 0
is specified, the associated character type is ignored. If
no number is specified an indefinite number of characters of
the specified type are accepted.

Forms:

nv

nv

sv

Code Meaning

A Verify upper case alphabetics
B Verify lower case alphabetics
C Verify upper and lower case alphabetics
D Verify numerics
M Verify numerics and upper case alphabetics
N Verify numerics and lower case alphabetics
0 Verify numerics and upper and lower case alphabetics
P Verify punctuation
Q Verify punctuation and upper case alphabetics
R Verify punctuation and lower case alphabetics
S Verify punctuation and upper and lower case

alphabetics
T Verify numerics and punctuation
U Verify numerics, punctuation and upper case

alphabetics
V Verify numerics, punctuation and lower case

alphabetics
W Verify any character

All characters which are not strictly alphabetic or numeric
are considered to be punctuation. Literals may also be used
to verify the occurrence of specific characters in a string.

The nv is converted into its string
nvel +True or False equivalent. The nvel is evaluated

and the result converted into its
string equivalent. The comparison
is made, and a numeric result
produced: -0. 01 (True) or 0
(False).

The nv is converted into its string
svel +True or False equivalent, the comparison is made

and a numeric result produced:
-0. 01 (True) or 0 (False) .

The nvel is evaluated and the
nvel _,.True or False result is converted to its string

equivalent, the comparison made,
and a numeric result produced:
-0.01 (True) or 0 (False).

sv

EXPRESSIONS

The comparison is made and a
svel-+ True or False numeric result produced:

-0.01 (True) or 0 (False).

CAUTION

If the svel is not a variable or literal
(i.e., it results from the evaluation of
a function or subexpression) , there is a
possibility that the internal string
accumulator used by the expression
evaluator, may overflow thus terminating
program operations with a MXSTR error.

sv?n psc1 n psc 2 ••• -+True or False The string is examined in
accordanc~ with the pattern
specifica~ion code(s) to the
right of the operator and a
numeric result is produced:
-0. 01 (True) or 0 (False) .

nv?n psc1 n psc2 ••• +True or False The nv is converted to its
string equivalent, the string
is examined in accordance with
the pattern specification
code(s), and a numeric result
is produced: 0.01 (True) or 0
(False).

Examples:

1. Where: A = 3; B 500

A+B [50 -+True

Analysis:

A+B-+ 503
503-+ 503

50-+ 50
503(50-+-0.0l (True)

convert numeric to string
convert numeric to string
string 503 contains 50

2. Where: A = "ADAMS JQ"
B = "ADAMS JA"

A]B-+ -0.01 (True)

Analysis:

The left string is compared on a character for
character basis to the right string. The result is
True since "Q" follows "A" in the collating sequence.
(Refer to Appendix B.)

Where: A = "JONES J"
B = "JONES J"

A] B-+ False

Analysis:

The comparison is made as above but a False result is
produced since the strings are identical. To
absolutely establish equality, a relational equality
operation must be performed. Thus A=B -+True.

2-13

EXPRESSIONS

3. Where: DAT = "04/23/72"
DAT?2D"/"2D"/"2D-+ -0.01 (True}

Analysis:

The string contained in DAT is examined for a pattern
consisting of 2 numeric characters followed by a
slash (/} followed by 2 numeric characters followed
by another slash (/} followed by 2 numeric
characters. Note the use of literals to verify
specific characters.

2.4.5 String Concatenation Operator

The string concatenation operator (@} permits the joining together
(concatenation} of expression elements to form strings. The string
vaue represented by the right operand is appended to the string value
represented by the left operand.

Forms:

nv@nvel -+ sv

nv@svel-+ sv

sv@nvel -+ sv

sv@svel sv

Examples:

The nv is converted to its string equivalent. The
nevel is evaluated and the result is converted to
its string equivalent. The operation is performed
and a string result produced.

The nv is converted to its string equivalent and
the svel is evaluated. The operation is performed
and a string result produced.

The nvel is evaluated and the result is converted
to its string equivalent. The operation is
performed and a string result produced.

The svel is evaluated, the operation performed,
and a string result produced.

1. "CAT"@"SUP" -+CATSUP

2. Where: MO 4
DA 22
YR 72

MO@"/"@DA@"/"YR -+4/22/72

3. Where: B 6
c = 2

"THE RESULT IS "@(B>C} -+THE RESULT IS -0.01

2.4.6 Boolean Operators

The operators described
expressions using the
(logical complement).

below permit the
AND (conjunction},

2-14

construction of Boolean
OR (disjunction} and NOT

EXPRESS IONS

Operator Operation

& AND - forms the Boolean AND (logical product) of
the operands
OR - forms the Boolean inclusive OR (logical sum)
of the operands

'(apostrophe) NOT - forms the logical complement of the operand
(unary operation)

Boolean Truth Table

Where: True = -0.01
False = 0
N any number including True and False
M = any nonzero number

AND OR NOT

True & True=True True! True=True 'True=False
True & False=False True! False=True 'False=True
False & True=False False! True=True 'M=False
False & False=False False! False=False
N &True N! True

True & N
N & False

False & N

=N

=False

True! N
N ! False

False! N

=True

=N

The AND and OR operations are performed on a bit-by-bit basis on two
32-bit quantities which allows either simple evaluation of True and
False quantities or complex masking operations (by knowledgeable
system programmers). The NOT operator is a logical rather than a
bit-by-bit complement. As shown above, the complement of a False (0)
value is True (-0.01) but, by convention, the complement of any
non-zero quantity, including True, is always False (0). A true
bit-by-bit complement of a value can be accomplished using unary
minus, thus:

-N-0.01

All operands used with Boolean operators are assumed to be numeric.
Operands which are string values are evaluated and converted to a
numeric value in accordance with the rules for mode conversion (see
Section 2.3.3). The results of Boolean operations are always numeric.

Binary Forms:

&
nv nvel -+ nv

nv I~ I svel-+ nv

sv nvel-+ nv

sv svel -+ nv

The operation is performed and a numeric
result produced.

The svel is evaluated and the result
converted to a numeric value. The
operation is performed and a numeric result
produced.

The sv is converted to a numeric value; the
operation performed, and a numeric
result produced.

The sv is converted to a numeric value. The
svel is evaluated and the result is converted
to a numeric value. The operation is
performed and a numeric result produced.

2-15

EXPRESSIONS

Unary Forms:

NOT is a unary operator and may prefix any element in an expression.

'nvel +nv

'svel +nv

Examples:

The nvel is evaluated and, if the result is
~ither True or False, its sense is reversed.
Any other value of the nvel produces False.

The svel
converted
is either
reversed.

is evaluated and its result is
to a numeric value. If the value

True or False, its sense is
Any other value produces False.

Where: A = 4; B = 2; X = 8; C = 3

1. (A>B) & (A<X)-+ -0.01 (True)

Analysis:

4>2+-0.01 (True)
4<8 +-.0.01 (True)
True & True -+ -0. 01 (True)

2. '(A+C) ! ('X- 1 C) ! ("12CATS">"l0") + -0.01 (True)

Analysis:

4+3 + 7
I 7 + 0
'8 + 0
'3 + 0
o-o + 0
O!O +False
"12CATS" +12
12>10 +-0. 01 (True)
0!-0.01+-0.0l (True)

2.4.7 Trailing Data Mode Operators

A trailing operator may be
expression to ensure the
expression.

appended to the last element in any
data mode of the final results of the

Operator

@

+

Forms:

sv+ +nv

nv+ +nv

nv@ +sv

,.
:.:Dtkii,;: ~'

Operator

Convert the data mode of the expression result to
a string value.

Convert the data mode of the expression result to
a numeric value.

The sv is converted to its numeric equivalent.

The operation is ignored since the opeiand is
already numeric.

The nv is converted to its string equivalent.

2-16

sv@-+ sv

Examples:

EXPRESSIONS

The operation is ignored since the operand is
already a string.

Where: A 100, B = 2, C = "00"

1. A+B@-+"102"

2. A>B@-+ "-0.01"

3. A/B@C+-+ 5000

2-17

CHAPTER 3

COMMANDS

INTRODUCTION

A command is the principal algorithmic component of the MUMPS language
and consists of one or more elements the first of which is a mnemonic
that characterizes the action or procedure to be performed.

Examples:

GOTO,READ,SET,OVERLAY

Any remaining elements in a command are arguments and their
delimiters, and special symbols. Arguments specify a logical entity,
such as a variable or expression to or upon which the action of the
command is directed.

3.1 RULES FOR COMMAND SYNTAX

1. Commands which are to be executed immediately
do not use Step Numbers. The first character
is the first character on the line following
right angle bracket (>) prompting symbol.

(Direct Mode)
of the command

the system's

2. Commands which are to be executed as part of a stored program
(Indirect Mode) are preceded by a Step Number. A command is
separated from a Step Number by a single space.

3. Each command may be abbreviated to its first letter.
Furthermore, to do so saves partition space since only the
first character is necessary but all succeeding characters up
to the next space (&....1) character are stored. Care should be
used when abbreviating commands to avoid confusing certain
commands which are executable only in Direct Mode with others
which can only be executed in Indirect Mode. For example:

In Direct Mode it means: ERASE step 2.5. In Indirect Mode
it is read as: ELSE, and produces a syntax error, since 2.5
is not a valid command.

4. A command is separated from its argument or argument list by
a single space.

5. Multiple arguments to a command are separated from each other
by commas.

3-1

COMMANDS

6. Multiple commands on a line must be separated from each other
by a single space.

7. Certain commands permit the optional use of an argument or
argument list. Note that the ELSE command is an exception,
only one intervening space is allowed. If such a command is
not the last command on a line, and is to be used with no
argument list, it must be separated from the next command by
two spaces.

8. Program comments may be appended to say command line. When
used, they must be preceded by a semicolon (;). The
semicolon may be separated from the preceding command
argument list or Step Number by an optional space.

9. The indirection syntax operator, symbolized by either
underscore () or back arrow (~), provides dynamic command
argument definition. In form, a command's argument is
replaced by the symbol ~ or + immediately followed by a
variable name. The variable must contain a string that is a
syntactically correct argument or argument list. The
argument(s) can be followed by one or more commands and their
arguments (excluding the QUIT command). During execution,
the contents of the variable are interpreted accordingly. 1

10.

Example: where: ARG = "15+3/6"

1.20._,TYPE._,+ARG - The contents of ARG are
evaluated as the argument and the result is 3.

An optional Boolean Valued Expression preceded
(:bve) can be used to specify conditional
certain commands and command arguments.

by a colon
execution of

Examples: 2.03._,GOT0&...13:A>B - control is transferred to Part
3 if the contents of 'A' is greater than the contents of 'B'.

l0.21._,wRITE:A=B&,...12 - If A=B, all the Steps in Part
2 are written out to the currently assigned I/O
device.

11. The colon can also be used to specify alternate forms of
certain commands.2

Example: 6.30&...1READ&...1X:5 - is a 'timed' READ.

1. Refer to Section 3.3.13 for further information on the indirection
syntax.

2. Refer either
(Sections 3.3.1
this feature.

to Table 3-1 or to the specific command descriptions
through 3.3.27) to determine the applicability of

3-2

COMMANDS

3.2 FORMAT CONTROL

The following special symbols are used with the PRINT, READ, and TYPE
commands to effect format control:

Symbol

?

Description

Number sign is used as a format control
character to initiate a Page Feed or a FORM
Feed on an output device.

Exclamation point is used as a format control
character to initiate a Carriage-RETURN-LINE­
FEED (CRLF) sequence on an output device.

Question mark specifies borizontal tabulation
(output only) on devices such as the
terminals, line printer and paper-tape punch.
The ? symbol is followed by a nve to specify
the number of spaces from the absolute left
margin. Form: ?nve.

When these symbols appear consecutively on
commas, normally required to separate
omit tea.

a line, the intervening
command arguments, can be

3.3 DESCRIPTIONS OF MUMPS COMMANDS

MUMPS commands fall into six functional groups as shown in Table 3-1
below. The following paragraphs desc~ibe each command and its
argument. Examples are provided for clarification. The commands are
presented in alphabetical order for easy reference.

3-3

COMMANDS

Table 3-1
Functional Relationship of MUMPS Commands

Assignment Commands Assign and deassign values to symbolic
representations.

Set { :bve} '-' var=expression, ..•

Kill { :bve} { '-' variable, ••• } '-'

Xk:ill { :bve} '-'lvar, •••

Control Commands Govern the sequence in which commands Steps,
Parts, and related programs are executed.

Goto {:bve} '-' spn {: bve} , .••

Do {: bve } '-'
spn
svl { :bve} I ' ...

If bve, ..• next command

For i var= { nve 1 {:nve 2 :nve3} , •.• }

!WHILE I
UNTIL '-' bve} '-' next command

Else next command

Call { :bve } pnam {: spn} , ...

Overlay { :bve} pnam {:spn}

Start {:bve} '-' pnam { (nve)} {: spn}

Quit {:bve}

Hang { :bve} '-' nve { :bve} ' ...

Halt { :bve } '-'

3-4

I • • •

COMMANDS

Table 3-1 (Cont.)
Functional Relationship of MUMPS Commands

Input/Output Commands

Type { :bve}

Read { : bve } ..._.

Print { :bve} ..._.

Write { :bve }

Assign {: bve} '--'

Direct the input and output of data to and
from the various devices in the hardware
environment.

~ {expression l
..._. format (l ~riable J

lvar {:nve}
literal
format

nve
literal ' ...
format

i ..._. spn 1
{:spn2} t ..._.

I • • •

, ...

I • • • }
nve 1

{ I 'sve { mve,{ 'nve,}}
: nve 2 { : nve a }

O:bve
I i

I • • •

Unassign {: bve} ..._. nve, •..

Editing Commands

Modify {: bve} ._,

Erase { :bve}

Load {:bve }

File { :bve}

Permit the examination, modification, and
storage of MUMPS programs.

spn: sve I
spn: sve 1 sve 2

{ 1....1spn ' i t '--' ..._. l : spn f , ... l
lk~m I l
l 1 ~p~me ' . • • I }

3-5

COMMANDS

Table 3-1 (Cont.)
Functional, Relationship of MUMPS Commands

Debugging Commands

Break

Go { :bve }

System I/O Command

Facilitate the creation and maintenance of
MUMPS programs.

Permits privileged modification of core and
disk memory by MUMPS System Programs.

View {:bve} nve1 {:nve 2} , ••.

Timesharing Commands

Lock { :bve }

Permits database protection through a
hierarchical interlock by applications
program convention.

I gvar
. (gvar , ... {=rive}

,gvar, .••) { :nve}

Unlock { : bve} &,..I,

3-6

-------- --~----~-- -----~·----·----···

COMMANDS

ASSIGN

3.3.l ASSIGN Command

Mode: Direct or Indirect

Syntax:

Assign {:bve}L.-1

Description:

O:bve
l :sve {:nve3 J:nve .. }}

:nve2 {:nve , ...

This command permits one or more I/O devices (DECtape, Magtape, Paper
Tape, Line Printer, Sequential Disk Processor and terminals) to be
reserved for the exclusive use of a program (Indirect Mode) or
programmer (Direct Mode). The last device specified in the argument
list is made 'current' by setting the partition's $I System Variable
to that number (refer to Section 1.6.8). This means that subsequent
I/O commands, such as READ, TYPE, WRITE, and PRINT, are directed to
the 'current' device. Other devices specified in the argument list
though not 'current' are 'owned' and are not available for use by.
other programs in different partitions.

Each device is assigned in the sequence specified by the argument
list. If all assignments are successful, the next command on the line
is executed. If an assignment is not successful (i.e., a device is
"owned" by another job), this job is suspended and the remainder of
the argument list is not processed. When the device becomes
available, job suspension terminates and argument list processing is
resumed.

NOTE

Devices not currently "owned" should be
assigned in numerically ascending order
to avoid conflicts with other jobs
competing for the same devices. failure
to follow this procedure can cause two
or more of the competing jobs to hang.

(nve1) must specify a legal device number (refer to
Programmer's Guide). Device 0 always refers to the
Device (i.e., the terminal that initiated program
The use of illegal device number or numbers for

Each argument
the MUMPS-11
Principal I/O
operation) •
nonexistent
termination.

devices causes a NODEV error and immediate program

The use
depends

of
on

the
the

optional arguments 11 nve 2 ",

device specified by nve1•

3-7

11 nve 3 11 , and 11 nve .. 11

If nve1 is a terminal

COMMANDS

(device 1-19 and 64-111), then nve 2 may be used to control the right
margin of output to the terminal. It specifies the maximum number of
characters to output on any given line. Margin control remains in
effect until either an UNASSIGN command or another ASSIGN command
(nve 2 = 0) is issued. If the user wishes to affect margin control for
the Principal I/O Device, nve 1 must be the actual device number of
that terminal - not device 0.

If nve 1 is a CPU-CPU device, the optional ":bve" may be used to
change the state of the CPU driver. If the bve is True (non-zero
result}, the CPU driver enters the message state. If the bve is False
(zero result), the CPU driver enters the terminal state. The default
state is terminal state. The device remains in its current state
until another ASSIGN directing a change of state is executed. When
the device is UNASSIGNed, it is reset to the terminal state.

If nve 1 is a DECtape device, then nvei may be used to specify the
location (byte) of the next character to be read or written. The
specified value is entered in the $A System Variable. Legal values
for :nve 2 for DECtape are in the range 0-294,911 (integer). When
reading or writing sequential records, nve 2 need not be specified in
subsequent ASSIGN commands since the system keeps track of the current
tape position automatically,

If nve 1 is a magtape device, then sve may be used to modify the tape
format for subsequent Magtape I/O. Each character in sve represent a
switch according to the following table.

Switch Character

A
D
E
F
L
s
u
v

digit

Effect

ASCII character set
DOS-11 compatible format
EBCDIC character set
Fixed lenoth loqical record
Standard Labeling (ANSI or IBM)
Stream data format
Unlabeled
Variable length logical records (ANSII
"D", IBM "V" format)
Density bits specification

Nve 3 may be used to specify a fixed length logical record size in
bytes; a 0 in nve3 is used for stream or variable length records.
Nve 3 is required if the fixed length record option is being used.
Nve. may be used to specify the physical block size in bytes of data
blocks. Nve 4 can range from 140 through 512. When the Assign
command is used to establish ownership of a magtape drive, a default
tape format is assumed which can be immediately modified for the
duration of ownership by the optional Assign arguments. Optional
arguments of subsequent Assigns which merely route I/O to the drive
are ignored.

Further information regarding the effect of the Assign command on
Magtape operations can be found in the Magtape section of the MUMPS-11
Programmer's Guide.

If nve 1 is a Sequential Disk Processor, then nve 2 may be used to
specify the location (byte address) of the next character to be read
or written. Legal values for nve 2 for the Sequential Disk Processor
are in the range 0-511. The specified value is entered in the $B and
$H System Variables according to the formula:

3-8

COMMANDS

ADR=$H*256+$B
where $H=O or 1 (page)
and $B=n, O~n~255 (byte in page)

If nve, is a Sequential Disk Processor and nve 2 is specified, the
optional argument 'nve 3 ' may be used to specify the disk block
address. The value is entered in the $A System Variable according to
the formula.

nve3=TYP*2,097,152+(UNT*262,144)+BLK

where TYP (device type)=

UNT(unit number)=m,O~m~7

0 for RKll
1 for RFll
2 for RPll
3 for RJP04

ELK (block address on unit)=n,O~n~

4 799 for RKll
1023 for RFll
79,000 for RPll(RP03)
39,999 for RPll(RP02)
170,543 for RJP04

As with the DECtape operation, the system also keeps track of the
position of the current record on the SOP device after the initial
ASSIGN command. Thereafter, nve 2 and nve 3 need not b~ specified
in subsequent ASSIGNS when performing sequential I/O.

The "O:bve" argument permits enabling and disabling of the CTRL C 11nd
BREAK control characters originating from the Principal I/O Device and
from all currently "owned" terminals. When a user logs into the
system using the Programmer Access Code (PAC) , CTRL C and BREAK are
enabled. When the PAC is not used, CTRL C and BREAK are disabled. If
the :bve is True (i.e., non-zero result), CTRL C/BREAK are enabled.
If the :bve is False (i.e., zero result), CTRL C and BREAK are
disabled. The $J System Variable contains a status bit that is set
whenever a CTRL C or BREAK is issued. This bit is reset whenever an
AL-10:bve command is executed.

In Direct Mode, an ASSIGN makes the specified device "current" only
for commands executed on the remainder of the line. When all commands
are executed, $I is automatically reassigned to the Principal Device.
The assigned device is, however, still "owned".

3-9

COMMANDS

Examples:

1. 1.2A12

2.

3.

4.

5.

6.

7.

8.

9.

3.85 A 2,3,55:5008

>A 0:1:2

> F I: I : I : I 00 A 2 R TMP A 3 T TMP

>; A:"TEST" A 3
> A
TEST
>

>A 46,58t512 W

7.~5 A 59:210:2400 T X,I

4.3 A 4:0 T "HELLO''.! A 4: I R REP:20

3.7 A 47:"AVL"

3-10

reserves device 12 and
sets $I to 12 to roake the
device 'current'.

reserved
and 55,
DECtape) ,
'current'
5000 to
DECtape
command.

devices 2, 3,
(which is a
makes 55

and sets $A to
position the

for the next I/O

disables terminal
interrupts of currently
owned terminals and makes
the principal I/O device
'current'.

reads 100 lines, one at a
time, from device #2, and
outputs them to device
#3.

outputs the string 'TEST'
to the principal I/O
device, since all
commands did not reside
on the same line. Device
3 is still owned,
however.

reserves device 46 to
View core, and reserves
DECtape unit 3,
positioning the tape at
the head of the second
tape block (512 bytes per
block); makes the
DECtape device "current"
and writes the contents
of the program buffer
onto the DECtape.

assigns the first (of
four) Sequential Disk
Processor and types the
contents of X starting at
byte 210 of block 2400 on
RKll unit 0, followed by
a carriage-return, line
feed.

assume device 4 is a CPU
device; send the text
"HELLO" to the CPU in
terminal state, switch to
message state and wait 20
seconds for a reply.

reserves Magtape drive 0
and specifies the ANSII
standard "D" format.

COMMANDS

10. 2.65 A 47:"EUF" :80:240

3-11

reserves Magtape drive 0
and specifies unlabeled
EBCDIC SO-character fixed
length records and 240
byte blocks (3 records
per block).

COMMANDS

BREAK

3.3.2 BREAK Command

Mode: Indirect

Syntax:
{. :bve}

Break "'-'""""

Description:

This command is used to stop a program at a specified point to
debugging during program development. The prime purpose
command is to permit the examination of program variables at
states in a program's operation.

assist
of the

various

When performed, the command interrupts execution of the program,
reassigns $I to 0 (frincipal I/O Device) , and prints out a question
mark (?) followed by the word "BREAK" and the Step number containing
the BREAK command. ·Control returns to the user in Di1ect Mode. At
this point the program is still consi~ered to be running, but in a
suspended state. Any attempt to modify the program will cause an
error. If modification is desired, type a CTRL C, make the
modification, and restait.the program from the beginning.

The GO command
after a BREAK.
will cause the
subsequent GO.

Examples:

1. 2,51 B:X<l0

2. 6.1 B

(Sectio~ 3,3.9) is used to continue program execution
However, the occurrence of any error, or typing CTRL C

BREAK to he "lost", thereby preventing execution of a

a BREAK will occur only if X is
less than 10

an unconditional BREAK will occur

3 • 3. 15 S A =B A 2 BL,;.J ..._, T B the remainder of the line is not
executed after the BREAK until a
subsequent GO is issued.

3-12

COMMANDS

CALL

3.3.3 CALL Command

Mode: Direct or Indirect

Syntax: Call {: bve}, pnam {: spn} ' ...
Description:

The CALL command initiates execution of a program residing in either
the user's Program Directory or the System Library. Program execution
begins where specified or at the lowest non-zero Part.

When the program that was called is finished executing (i.e., no more
Steps to do or a QUIT statement encountered), the original calling
program is read back into the partition and re-entered at the point
immediately following the invoking CALL command.

NOTE

The calling program must be FlLEd
(Section 3.3.7) or MUMPS will be unable
to return to it after the CALLed program
has terminated. This results in a NOPGM
error message.

When a program is called, all the local variables in the pa-rtition are
preserved and available to it. The local variables remain unchanged
except for changes which the called program may make. Execution of
the program begins at the first non-zero Part unless a Part or Step
number was specified by the optional ':spn'. The CALL command takes
an average of two disk access times, one to bring in the called
program and one to return to the calling program. CALL effectively
increases the size of a program that can run in a given partition, but
trades on execution time to do it.

Each program named in the CALL command is loaded and executed one at a
time, in the order of appearance in the CALL command.

Example:

This command line points out the features of the CALL command:

6·35 CALL A1SAM12·501ABE:S1%T

1. Calls program A and executes it.

2. Calls program SAM and executes it, startina at Step 2.50.

3. Calls program ABE and executes it, starting at Part 5.

4. Calls the Time Subroutine %T and executes it.

3-13

COMMANDS

DO

3.3.4 DO Command

Mode: Direct or Indirect

Syntax: Do {: bve} .._. spn {: bve}

Description:

The DO command
Direct Mode,
execution of
partition.

initiates execution of the specified argument. When in
the DO command provides the only means for initiating
command strings currently held within the user's

An argument may be:

1. a Step number

2. a Part number

3. an svl that contains either 1. or 2. above.

If control returns to the next DO command, the argument is in the mode
in which the command was issued. In particular, if there is no other
DO command argument and the DO command was issued in Direct Mode, the
next command on the line is executed. Control ultimately returns to
Direct Mode. If there is no other DO command argument, and the DO
command was issued from Indirect Mode, control returns to the command
following the DO. If no command follows the DO, control returns to
the next (numerically greater) Step in that part (or back to the FOR
command, if the DO was invoked in the range of a FOR). If there is no
numerically greater Step in that Part, the program is terminated, and
either control returns to Direct Mode, if the terminal user was logged
in with a Programmer Access Code (PAC), or the terminal session is
ended if the user was logged in simply to run the program. 1

Examples:

1. 1.50 IF' A:B I CC>D) DO 4

2 • 3. 612l FOR X: I : 5: 45 DO 3. 12, 5, 10. 01

3. Jl2l.12ll FOR K:2,3 DO 6:'CA:B),3.24

Transfer out of the range of a DO using the GOTO command is legitimate
and effectively alters the range of the DO to include all Steps and
Parts specified by the GOTO.

1. See the QUIT command, Section 3.3.19, for a discussion of the
logical levels of program executiQn.

3-14

COMMANDS

ELSE

3.3.5 ELSE Command

Mode: Indirect

Syntax: Else1...1next command

Description:

The command provides a means for testing the Boolean sense of the last
IF command executed (Paragraph 3.3.13). When the sense of the last IF
is False (0), commands following the ELSE on the same line will be
executed. Otherwise, control will pass to the next program Step.

Note that the use of the ELSE command (like the IF command with no
argument), is different from the classical use of this command in
other high level languages. Instead, its action is completely
dependent on the Boolean truth value established by the execution of
the last IF command and in no way related to its position with respect
to other IF commands.

Example:

3.26 I AGE>19 T "THANKS,! D 50 E T "NO ENTRY" ,I Q

3.26 E T "NO GOOD" ,I Q
3.29 T "DONE" , I
50.10 I $DCtAGECAGE)) S tCAGE>:tCAGE>+l Q

In this example, if the condition in 3.26 is True, Part 50 is
executed. Otherwise, the message "NO GOOD" is output. In Part 50,
another IF condition is tested. Regardless of the outcome, control
returns to the ELSE command in 3.26. If the Part 50 condition was
False, the message "NO ENTRY" is output. If the condition is True,
control passes to the ELSE in 3.28 which, in turn, passes control to
3.29 causing the message "DONE" to be output.

NOTE

An attempt to use ELSE from Direct Mode
is interpreted as ERASE since only the
first letter of a command is
interpreted.

3-15

COMMANDS

ERASE

3.3.6 ERASE Command

Mode: Direct

Syntax: Erase {: spn} , ..• }

Description:

This command will delete an individual Step or Part, a range of Steps
or Parts, or an entire program in the user's partition. Arguments
must either be legal Step or Part numbers or be number value
expressions (nve) which result in legal spn. The optional second spn
is used to specify a range (inclusive). An ERASE with no arguments
(terminated simply by EOM or two spaces if other commands exit on the
line) deletes the entire program.

Examples:

1. > ~__b.fil

2. >ERPSE 2.01:4.1~
3. >E 4
4. >r-
5. ,.£ L A D I

erase Step 2.01
erase Step 2.01 through Step 4.10
erase Part 4
erase entire program
erase entire program, load program A and
start it at Part 1.

3-16

COMMANDS

FILE

3.3.7 FILE Command

Mode: Direct or Indirect

Syntax: File

Description:

The FILE command stores (files) the program steps currently residing
in the user's partition on the disk and enters the program name (pnam)
in the program directory associated with his UC!. If the FILE command
does not have an argument, the current program name is assumed.

After a program has been filed, it still remains within the program
buffer. The user can continue to run it, modify it, and refile it.
Every time a FILE command is issued under the same program name, the
program steps currently present in the program buffer complete.Ly
replace the previous program filed on disk.

Example:

Filed programs are deleted by filing a dummy program of zero length
with the same name as the program to be deleted. This is accomplished
by erasing the contents of the program buffer and subsequently filing
that empty buffer under the program name to be deleted.

Examples:

1. >E F' A9L Deletes program A9L
2. >E F SAM,ABE,A Deletes programs SAM, ABE and A

3-17

COMMANDS

FOR

3.3.8 FOR Command

Mode: Direct or Indirect

Syntax: For......,lvar= l nve, { :nve 2 :nve, } , .. · l { nve, :nve 2 ._.

where: lvar Index Variable

WHILE
UNTIL

where: Initial value of lvar

......,bve} ._.next command

nve 1

nve2
nves

= Value by which lvar is incremented
Limit value of lvar

Description:

The FOR command produces efficient looping (iteration) by repeating
commands residing on the same line for a specific set of variable
values. In operation, the local variable (lvar) is set to the value
specified by the first argument (nve 1) and the commands on the
remainder of the line are executed. The process is repeated for each
new value (if any) of the first argument then the second, third, etc.,
until the lvar has been set to all values in the argument list.

The WHILE and UNITL clauses can be used to test the status of logical
conditions external to the FOR loop. Only one of these clauses can be
used at a time and must be the last argument.

Iteration is terminated in one of several ways:

1. The argument list becomes exhausted

2. A QUIT or GOTO command is encountered
3.3.10)

(Sections 3.3.20 and

Upon termination, the index variable contains the last value assigned
prior to termination.

The arguments used (nve 1 , nve 2 , and nve 3) may be assigned any
value in the legal range of MUMPS numbers (see Section 1.4.1)
including negative values. However, if the increment value (nve 2)
is given a value of zero, an interminable looping condition will occur
unless either the "WHILE/UNTIL" syntax is being used or a QUIT or GOTO
is executed.

There are two distinct forms for FOR command arguments which can be
used either separately or together, as required. The first is the
list format which excludes the optional nve's (nve 2 :nve 3). With
this format, each argument represents one specific-value to which lvar
is assigned.

3-18

--------------------··------------- ··---. ---

COMMANDS

Thus:

FOR~lvar=nve,nve,nve, ••.

The second form is the range
(nve 1, : nve 2) are used.
values·.

format in which the optional nve's
Each argument may represent a range of

Thus:

Both forms can also be intermixed:

FOR1-.1lvar=nve 1 ,nve ,nve b:nve 2 :nve 3 , •••
ia 1

Examples:

NOTE

The indirection syntax operator (3.1)
may not be used with arguments of a FOR
command (e.g., 'F~+') causes a SYNTX
error.

1. List Format

fOR X = l , 4, Hl TYPE "X", X

The loop will be repeated three times with X taking on the values 1,4,
and 10.

2. Range Format

FOil X=l:l:l0 TYPE "X",X

The loop will be repeated 10 times with X starting at 1 and increasing
by 1 each time until it is equal to 10.

FOR X:J:l WHILE Z>X TYPE "X",X

This loop will be repeated until x becomes equal to or larger than z.

3. Range and List Formats

FOR !:5,8,33:6:57 TYPE I+CI/3),!

In this case, I will take the values 5, 8, 33, 39, 45, 51, and 57.

4. Special Cases

FOR I=A: 1 :Y DO 3

FOR I:l:-1:-2 DO l.05

FOR I:l:A:l0 D 3.21

if A initially greater than Y part 3 is
never done

step 1.05 is 'done' four times (for I=l, 0,
-1 and -2)

if A=O, an interminable loop on step 3.21
is initiated.

3-19

COMMANDS

GO

3.3.9 GO Command

Mode: Direct

Syntax: Go {:bve}

Description:

The GO command is used to restart a MUMPS program which has been
interrupted by the BREAK command (Section 3.3.2). This command can
only be used after a BREAK has been executed and while it is still in
effect. This means that GO cannot be successfully executed after a
CTRL C has been typed or after the occurrence of any MUMPS error.

3-20

COMMANDS

GOTO

3.3.10 GOTO Command

Mode: Indirect

Syntax: GOTO { :bve} _, spn (:bve} ' ...

Description:

This command permits transfer of control from the current Step
sequence to the specified Part or Step number. Once the change in
control is effected, program execution progresses in the normal
ascending Part/Step number sequence. GOTO can also be used to
prematurely exit from a FOR command loop. However, GOTO cancels all
previous FOR commands up to the last DO or CALL, and execution
proceeds from that DO or CALL (refer to Section 3.3.4).

The argument can be either an actual Step or Part number or nume~ic
valued expression (nve) which evaluates to a legal Step or P.1rt
number. Each argument in the list can be modified by an optional
Boolean valued expression. It is reasonable to have multiple
arguments only if they are modified using :bve's; otherwise the first
argument would be the only one considered.

Example:

I.50 G 2.I:X<I0,3.l:X>l0,4.I Step
to 3.1

and to

Control is transferred to
2.1 if X is less than 10;
if X is greater than 10;
4.1 in all other cases.

3-21

COMMANDS

HALT

3.3.11 HALT Command

Mode: Direct or Indirect

Syntax: Halt {:bve} a...1 L-1

Description:

This command terminates a MUMPS job and causes terminal sign-off.

Examples:

Direct Mode:

>.!:!.

Indirect Mode:

NOTE

The difference between HALT and HANG is
that HALT takes no arguments (:bve is
not considered to be an argument) .

3,51 I A>B H In both of these examples, HALT is executed if A
is greater than 8.

!r/J,rll2 H:A>B

3-22

COMMANDS

HANG

3.3.12 HANG Command

Mode: Direct or Indirect

Syntax: Hang {: bve} "-' nve {:bve} ' ...

Description:

This command suspends program execution for a specified time interval.
The time interval (nve) is specified in seconds and must be a positive
MUMPS number. The number is evaluated as an integer (i.e., the
decimal point is ignored). If the nve equals zero, the remainder of
the program's time slice (time sharing interval) is given up. When
the specified time has elapsed, program execution resumes at the
command following HANG. The maximum value which may be specified by
nve is 65,535. If nve evaluates to a larger value, the maximum value
is used and no error is generated.

This facility is especially useful in applications where the
programmer periodically wants to check the status of a variable and
take action when the variable has changed.

Example:

J.01 I $T<X H 300 G $L

1.21 C 7.DL

If the number of seconds since midnight
($T) is less than X, suspend program
execution for 5 minutes and then check
$T again; otherwise, call ~rogram %DL.

3-23

COMMANDS

IF

3.3.13 IF Command

Mode: Direct or Indirect

Syntax: . IF'-' ~e, ... '-' I next command

Description:

This command is used to effect a change in a program's operation based
on the validity of one or more Boolean Valued Expressions. Each bve
in the argument list is evaluated. If all expressions are True
(non-zero) , command processing continues with .the next command on the
line. If any expression is False (zero), command processing for the
remainder of the line is discontinued and the next Step is executed.
IF may also be used without arguments, in which case the condition to
be tested is the sense of last executed IF statement. The ELSE
command is used to test the logical reverse of an IF (see Section
3.3.5).

Example:

2.08 IF fl.:B!CC:>D),~AM:"JACK" DO 3

6.1113 IF' GOTO 14.36 ·

If A equals B, or C is greater than or equal to D, and NAME equals the
string JACK, all the commands in Part 3 are executed. Assuming this
is the case, (True) and there ar~ no other intervening IF statements
which result in a False condition, the execution of 6.03 will result
in control passing to step 14.36.

When the Indirection Syntax is used, it must be the last argument.
Further, the variable referenced by the indirection (i.e., +variable)
may contain commands, as well as additional arguments to the IF
Command.

Example:

Where: a, b and c are arguments
x, y and z are commands ·

1.1 S'-'D="a,b,c'-'x'-'y'-'z"
1. 2 IF'-' + D
1 • 3 ••••••

As with IF without indirection, each argument is processed until a
False result is obtained or a command is reached. Once a False
argument is reached, the remainder of the line is skipped and
processing continues on the next line. When an indirect reference is

1. Excluding the FOR Command

3-24

COMMANDS

used, the commands which may follow on the same line are no longer
dependent upon the logical result of the IF.

Example:

Where: a,b,c, and d are arguments, and
x and y are commands

3.1 SET1-1D= 11 c,d1-1y 11

3.2 IF1-1a,b,+D._.x

If a and b are True, command x will always be executed, regardless of
the truth value of arguments c and d, as long as y is not a GOTO or
HALT command.

If nested indirection is used, the basic process remains the same.
Suppose there are three levels of nesting (three indirect references).
If all arguments up to the first indirect reference are True, the
commands following on that line will be executed after the truth value
of lower levels has been determined, and any lower level commands have
been executed.

If all arguments up to the second indir~ct reference are True,
commands following on that line will be executed after the truth value
of lower levels has been determined, and any lower level commands have
been executed. In general if all arguments on all levels are True,
all commands on all levels will be executed, beginning at the deepest
level.

EXCEPTION

Any GOTO or HALT Command will prevent
execution of commands at all levels
above it.

If one of the arguments contained in the second indirect reference
happens to be False, the rest of the arguments on that line as well as
the commands and arguments specified by the third indirect reference
will not be processed. Rather, any commands following the second
indirect reference will be executed followed by the first indirect
reference.

Example:

Where: b, e, h, k and 1 are arguments
c, f, i, m and n are commands (other than GOTO)

6. l1-1Sl...IA= 11 b1-1c 11

6. 21-1S1....1D= 11 e,+A1-1f 11

6. 31....1S1....1G= 11 h ,+D1....1i II

6. 41IIF11-1k, l ,+G......m1-1n

If k and 1 are True, m and n will always be executed. If h is True, i
will always be executed. If e is not True, the commands and arguments
in A will not be reached and f will not be executed. If k, 1, h, e
and bare all True, c, f, i, m and n will be executed in that order.

Examples:

1. l. lL...1S&....1P= 11 A>B1-1S1-1A=B 11

l.21...1R1-1"A= 11 ,A,! , 11 8= 11 ,B, !1....1IF1-1+P1-1T1-1B

3-25

COMMANDS

In this example, the variable P is set to a string which is
to be used as an argument to the IF in Step 1.2. Step 1.2
requests values for A and B; then the IF is evaluated. If A
is greater than B, A is SET to the value of B. The value of
B is typed regardless of the logical outcome.

This example is a variation of Step 1.2 in the example above,
in which a second IF has been added to permit the typing of B
only if A is greater than B.

3. This example is taken from a MUMPS System Program. The
variables RK, RF and RP (i.e., RK03, RFll and RPll) have been
previously set to the number of disk drives of each type in
the system, or zero if there are none.

Step 1.1 is a string which is to be used in a subsequent
indirect reference by means of the $STEP Function. The
string could not be contained in a variable since the string
itself contains a literal which must be delimited by
quotation marks.

Step 2.2 requests the name of the System Disk placing the
response in SD.

Step 2.3 contains an IF command with two arguments (a) and
(b) , and a GOTO (c) .

l.1'-'+SDL...1E1...1T1...1"THERE ARE NO",SD,"DISKS IN THE SYSTEM\,_,GL...12.2

2.21...1R1...1"TYPE THE NAME OF THE SYSTEM DISK",!,SD
2. 31...1IF&....1 (SD="RK") ! (SD="RF") ! (SD="RP") ,+,$S (l. l),1...1,GOT0&....14,

(a)
2.41...1T1...1!,"RK, RF OR RP",!&....1G1...12.2

Analysis:

(b) (c)

1. SD contains the response obtained in Step 2.2. In 2.3 SD is
tested to determine whether it contains the string RK, RF, or
RP. If it is none of these, control passes to Step 2.4 and
the indirect reference is never executed.

2. If the response is correct, the indirect reference is
reached. It ensures that the specified disks exist. The
first element in 1.1 is another indirect reference which
permits testing of the contents of SD. This results in a
Boolean evaluation of the contents of one of the variables:
RK, RP or RF, to see if it is non-zero (i.e., some disks of
the desired type exist). Since there are no commands in SD,
commands following the second indirect reference are
executed. The ELSE Command tests the outcome of the IF and
causes the message beginning "THERE ARE ••• " to be output if
False condition exists.

3. If a True condition results, control returns to Step 2.3 from
the indirect commands in 1.1 and the 'G1...14' is executed.

3-26

COMMANDS

KILL

3.3.14 KILL Command

Mode: Direct or Indirect

Syntax: Kill {: bve}

Description:

The KILL command is used to delete both local and global variables.
When used without arguments, all locally defined variables are
deleted. Examples of this syntax are as follows:

10 0 50 K S A:50

all local variables are deleted

When KILL is used on a subscripted variable, it is possible to delete
any one of the array variables by its full name or all the variables
by simply stating the array name. Simple variables need only be
named.

Examples:

1. 3.01 K ABCC.3) Local array element 3 is
deleted from the array ABC.

2. 6.58 K tDEFC5),tDEFC6),tDEFC7) Global array elements 5, 6 and
7 are deleted from the array
DEF.

3. I .99 K ABC Deletes all elements in the
array ABC.

4. >K X The local variable X is
deleted.

If both a simple variable and a local array are defined under the
same name, a KILL referencing that name deletes the array as well
as the simple variable.

The KILL command, when applied to global variables, can kill all
the data in a global or "prune" the global array at any specified
node.

3-27

5. >K AABC

(1,1,1)

6. > K A ABC (1, 2)

COMMANDS

BEFORE COMMAND

DIRECTORY ENTRY
FOR ARRAY "ABC"

(1, 1, 2) (1, 2, 1)

BEFORE COMMAND

(SAME AS ABOVE)

(1, 2, 2 l

(1, 1, 1l

3-28

AFTER COMMAND

THE ENTIRE GLOBAL ARRAY,
AS WELL AS ITS DIRECTORY
ENTRY IS DELETED

AFTER COMMAND

DIRECTORY ENTRY
FOR ARRAY "ABC"

(1 l

(1, 1, 21

7 • > K A ABC' (1)

(1, 1, 1)

COMMANDS

BEFORE COMMAND

DIRECTOR ENTRY
FDR ARRAY "Ase"

(1)

(1' 1, 2)

3-29

AFTER COMMAND

DIRECTORY ENTRY
FOR ARRAY "ABC"

LOAD

3.3.15 LOAD Command

Mode: Direct

Syntax: Load

Description:

{: bve}

COMMANDS

l 1....1pnam
....... 1--1

}

This command loads a program from the disk into the user's partition.
If a program name (pnam) is specified, the user's Program Directory is
searched, his program buffer is ~rased, and the program is loaded. If
no argument is given, loading occurs from the device specified in the
previous ASSIGN command on the same line (i.e., the current value of
the $I System Variable). In this case, the program buffer is not
erased and the loaded program is merged with the contents of the
program buffer. Steps in the loaded program take precedence over
Steps in the program buffer having the same number. In either case,
all local variables in the partition are preserved.

Examples:

1. >LOAD SAM

2. >A 2 l FILE SAM

loads program SAM from user's program library

loads program from device #2 (paper-tape
reader), then files it under the name SAM.

3-30

COMMANDS

LOCK

3.3.16 LOCK Command

Mode: Direct or Indirect

{:nve ~ Syntax: LOCK {:bve}
L-' gvar

Description:

The LOCK command provides ownership of global variables on a node
level. After execution of the LOCK command, the LOCKed node, all
global variables in the tree structure directly below the LOCKed node
or global variables above it in a direct path to the top of the global
are unavailable for locking by other users. Use of the LOCK command
is not mandatory; protection is provided only through applicati)n
programming convention, and only when all users also use the LOCK
command. The LOCK command does not require any use of the disc.

Example:

Given the global fA below,

3-31

COMMANDS

(1)

(1,1)

(1,2,3,1) (1,2,3,4)

After execution of LOCKtA(l,2,3), the following nodes are unavailable
for LOCKing while nodeiA(l,2,3) is locked:

tA(l,2,3,4)
tA (1, 2, 3, 1)
tA(l,2)
tA (1)
tA

The following nodes of fA would be available for LOCKing by other
users while node fA(l,2,3) is LOCKed:

tA (2)
tA (2, 1)
tA (1, 1)
tA(l,2,1)
tA (1, 2, 4)

The execution of a LOCK command unlocks all global variables that were
previously LOCKed by the user.

For example, after this series of commands are executed:

1.20 LOCK tA(l,2)
1.30 LOCK (fA(2,l) ,tA(l,l) ,tA(l,2,4))
1.40 LOCK (tA(l,l),fA(l,2,3,4))

only global variables tA(l,l) and tA(l,2,3,4) would be LOCKed.

,When using the multiple argument form of the LOCK command care must be
taken to enclose multiple arguments in parentheses. If there are no
parentheses the command will be interpreted as multiple LOCK
directives rather than as one LOCK directive with multiple arguments.

3-32

COMMANDS

For example, the following command:

1.10 LOCK tA(l,2,3) ,tB(4) ,tABC(3,l)

would be the same as this sequence of commands:

locks tA<l,2,3) 1.10 LOCK tA(l,2,3)
1.15 LOCK t8(4)
1.20 LOCK tABC(3,l)

unlocks tA(l,2,3), locks tB(4)
unlocks tB(4), locks tABC(3,l)

and only global variable tABC(3,l) will be locked after execution of
the commands.

If a global variable is unavailable (LOCKed by someone else) when a
LOCK request is made, the job will hang without any LOCKed nodes until
the requested node(s) is free. If multiple arguments were used in the
request, MUMPS will not LOCK any of the global variables until they
are all available to be LOCKed.

The optional parameter (:nve) permits the MUMPS programmer to specify
how long the system can wait to be able to LOCK the specified global
variable(s) if they are unavailable when the request is initiated.
The :nve must be a positive MUMPS integeL, the decimal fraction is
ignored. If MUMPS is unable to LOCK all the specified global
variables before the specified time interval has elapsed, none of the
globals will be LOCKed and control will be returned to the user.

The MUMPS programmer may check the result of a timed LOCK by
inspecting bit 4 of the $JOB system variable. Bit 4 will be set to
one if MUMPS was unable to perform the LOCK.

Example of a timed LOCK:

LOCK (fA(l,2) ,fB(3)) :5

If MUMPS is unable to LOCK both +A(l,2) and tB(3) in a five second
time frame, then neither global variable will be LOCKed, bit 4 of $JOB
will be -set to one, and control will be returned to the program. If
the LOCK was successful then both +A(l,2) and fB(3) are LOCKed and bit
4 of the $JOB will be set to zero.

The following issues are important aspects of the LOCK command.

1. Use of LOCK is not required; protection is only through
application programming convention.

2. LOCK does not use the disc. Furthermore, the LOCKed nodes do
not have to correspond to existing nodes on the disc.

3. When performing a LOCK, all nodes for that user are first
automatically UNLOCKed.

4. All arguments of the LOCK command must be full global
references; naked expressions are not allowed.

5. The gvar expressions do not affect the naked global level.

6. A LOCK only pertains to the user's UCI. LOCKS under other
UIC's are not affected.

3-33

COMMANDS

MODIFY

3.3.17 MODIFY Command

Mode: Direct or Indirect

Syntax:

Description:

Modify {: bve}"-' spn: x sve ix sve 2

spn: sve

The MODIFY command provides program editing capabilities by altering
the contents of a Step. The command causes a search within the
specified Step for sve 1 and if found, replaces it with sve2.
Argument delimiters, specified by x, may be any character. The only
restriction is that the character used to delimit sve 1. and sve 2

should not be included in either expression.

NOTE

Step numbers cannot be changed with the
MODIFY command.

If sve 1 is null
beginning of the
xsve 1 xx), sve 1

is used to display

Example:

(i.e., xxsve 2x), sve 2 will be
Step command line. lf sve 2

will be deleted from the Step. The
the altered Step.

old line

inserted at the
is null {i.e.,
WRITE command

1.01 R "NAME" ,NAM,!
> M 1 • 01 : I'" I'" YO UR I
>u.J.j.
J.01 R "YOUR NAME",NAM,"

modify the line
write it out
new line

When MODIFY is used in Indirect Mode, the spn of the Step containing
the MODIFY command must be less than the spn specified in the command.
If it is not, a PROTect error is generated. Further, MODIFY cannot be
used to increase the size of a program.

The second version of the MODIFY command is used for step creation.
This version creates the step specified by spn and uses the value of
sve for the step's contents. The spn must be previously undefined.

Example:

M 2 .12:". S"-'A""B"

creates the step

2. 12 "-' SL...JA=B

3-34

COMMANDS

OVERLAY

3.3.18 OVERLAY Command

Mode: Indirect

Syntax: Overlay {:bve} pnam {:spn}

Description:

This command loads and starts programs residing in the user's Program
Directory as well as the System Library. Program execution begins at
the lowest non-zero Part unless a Step or Part number (spn) is
specified. When spn is used, execution starts where specified.

NOTE

If a non-existent :spn is specified, a
NOPGM error is generated. The name of
the program and the next higher spn
available is printed out following the
NOPGM message.

Local variables remain unchanged unless the overlaying program changes
them.

When the currently controlling program control command is a DO and an
OVERLAY is executed, that DO is effectively converted into a CALL for
the remainder of its duration. That is, execution of a QUIT in the
program which is OVERLAYed would result in a return to the DO in the
program which contained the OVERLAY command.

OVERLAY is similar to the GOTO command except that the program flow is
transferred to another program. The program flow does not return to
the program containing the OVERLAY command unless the OVERLAY was
executed when a DO was the currently controlling program control
command.

The ·ovERLAY command takes an average of one disk access
specified program and is therefore faster than the CALL
takes two disk accesses. This should be taken into
designing a system of application programs.

Example:

to load the
command which
account when

7.61 OVERLAY SAMrl.52 brings program SAM into memory
starts it at Step 1.52.

and

When using OVERLAY, it is more efficient to execute the command at a
point where the current program segment becomes 'I/O bound'. Th~s
permits the time taken by the overlaying process to be 'submerged' by
the I/O processing time.

3-35

COMMANDS

Example:

Assume that a program consisting of two overlays called AB and BA
requires input from a terminal at some point in its operation. This
can be accomplished as shown in either A or B (below}. However, the
time taken to type out "PATIENT ID", as shown in B, is also used to
submerge the time needed to effect the overlay of BS as well.

A

B

[Over_!ay AB

Overlay BA

(process data input by AB)

I Overlay ABl = :J
[9.!0 ;y;; l"PATIEN~: __ .. O !::1

Overfay BA2

1.01 READ ID

•
•
•
•

(process data input by BA2)

3-36

COMMANDS

PRINT

3.3.19 PRINT Command

Mode: Direct or Indirect

Syntax: Print {:bve}

Description:

nve
literal
format

, ...

This command is used primarily to output device dependent control
characters to the currently assigned I/O device ($I System Variable).
Device dependent data is output using nve to represent a decimal
integer value whose 7 low-order bits are accepted as ASCII. The
fractional portion of the nve (if any) is ignored. Thus, the
programmer can take advantage of the control functions of a particular
device.

Example:

1.03 PRINT 7,13,12

7.23 p 29,31

will (on a teleprinter) ring the bell,
return the carriage without a LINE FEED,
and FORM Feed.

will, on a VT05, move the cursor to the
upper left corner of the screen and
clear the screen.

Arguments to the PRINT command may also be MUMPS-11 format control
characters (#,?nve,!) or literals. For example, the command

6.50 PRINT l,7,?20,"YOU WIN" causes a teleprinter to:
perform a FORM Feed, ring the
bell, tabulate 20 spaces from
the left margin, and type:
YOU WIN

Special nve arguments to the PRINT command
change system protection parameters in the
effect control functions for magnetic tape
protection arguments are:

allow the programmer to
$J System Variable and to
I/O operations. System

1. PL...11024 enables Library Program and Global update.

2. PL...12048 disables Library Program and Global
update •1,

3. PL...1256 enables memory or disk write with VIEW
command.

4. PL...1512 disables
command . 1

memory or disk write with VIEW

1. System default condition.

3-37

COMMANDS

If an error occurs (SYNTX, PROT, etc.) after a P.....,1024 or a P...._,256 is
issued, these parameters are reset to the system default condition
(P.....,2048 and P.....,512). The MUMPS Programmer's Guide provides more
details on the use of the $J System Variable.

Special arguments to control magnetic tapes are also described in the
MUMPS-11 Programmer's Guide.

3-38

COMMANDS

QUIT

3.3.20 QUIT Command

Mode: Direct or Indirect

Syntax: Quit {: bve}

Description:

The QUIT command terminates a logical process, including the execution
of a Step, Part or program. The command is often used to prematurely
terminate operations which are executed within the range of the DO,
FOR, and CALL commands.

To understand the QUIT command, it is useful to think of a program's
execution as occurring at different logical levels. The first or
lowest level is simply operation in Indirect Mode itself. Higher
levels are attained by the use of the DO, FOR, and CALL commands and
their subsequent nesting. Each time one of those commands is
encountered within its own range or that of another, the level is
raised by one. The normal termination of these commands lowers the
level by one. When QUIT is executed, the current level is also
l~wered by one and the associated DO, FOR, or CALL command is
terminated. When the terminal user is logged-in to the system with a
Programming Access Code (PAC), a QUIT at the lowest level switches
control to Direct Mode. When logged-in simply to run a program (i.e.,
UCI:pnam..)), QUIT at the lowest level ends the session at the
terminal.

Examples:

1. I .fill FOR I:l: l: 100 S A:A+I Q:A>X
1.02

In this program if A becomes greater than X, the QUIT
prematurely terminates the FOR loop and control passes to
Step 1.02. Otherwise, the FOR loop terminates normally after
100 iterations.

2. B.lfll FOR X:3:33:330111 D 9 I X+P:A Q

L 2nd level L 3rd level

8.3
9.10 I PR:<l.2 Q

4th levi L return to 2nd level

9 0 12 CALL A Q

In this program, the level is raised by one when the FOR loop
is entered. When the "D._.9" in 8.1 is executed, the level is
raised to 3. When PR=<l.2, the QUIT returns to the 2nd level

3-39

COMMANDS

and the rest of the FOR loop is performed. If PR is not
=<1,2, program A is called, raising the level to 4. l·Jhen
program A completes its operation or a QUIT is executed from
within it, control returns to the QUIT command following the
CALL, which returns control to the 2nd level. When X+P=A,
QUIT restores level 1 and Step 8.3 is executed.

3-40

COMMANDS

READ

3.3.21 READ Command

Mode: Direct or· Indirect

lvar ll:nve}
'--' literal

format
I • • • Syntax: Read {:bve}

Description:

This command is used to input one or more lines of characters into
specified local variables (lvar) from the currently ASSIGNed input
device (value of $I System Variable). Literals and format control
characters (Section 3.2) can also be output to the device, provided
that it is capable of accepting output (a NODEV error r€sults if it is
not).

Each string input is assigned to the specified lvar.
data input is string-valued so the MUMPS programmer
data must provide the necessary checks on input
example, see Section 2.4.4 on pattern verification.)

Note that all
wishing numeric
strings. (For

The optional argument (:nve) permits timed reading by specifying the
number of seconds for which the command is to be effective. Each
argument in the command can use this feature. It is particularly
beneficial when an applications program must deal with terminals which
are infrequently attended or unattended.

The :nve must be a positive MUMPS integer; the decimal fraction is
ignored. If no input is detected before the specified interval has
elapsed, a null string is returned in the lvar, bit 4 of the $J System
Variable is set, and the next command on the line is executed. If
input occurs before the interval expires, the interval is repeated
until one of the following conditions exists:

1. No input has ocurred since the last interval (a null string
is returned).

2. A Carriage RETURN or ALT MODE is received.

In the case of (a.), all accumulated characters
discarded and a null string is returned;
characters in the input line are returned.
Examples:

l. 1.32 READ l,"NAME?",NAMCI>,l,"AGE:",AGECI>

up to time-out are
with (b.) however, all

In this example, the command requests two consecutive lines
of input from the terminal. The lvar AGE(!) is assumed to be
a one or two digit numeric character string, and the program
must convert this if it is desired to store it as numeric
data. Automatic mode conversion will be employed when the
lvar is used subsequently in the program, however, this does
not affect the data mode of the data in AGE(!) unless it is

3-41

COMMANDS

directly altered as in: S"'-'AGE(I)=AGE(I)+.
Section 2.3.3 for more information.)

2. 1.36 R "ANYONE TH£RE?",1,RES:20 I SJ&.16 H

(Refer to

In this example, the message "ANYONE THERE?" followed by a
Carriage RETURN/LINE FEED sequence is output. If there is no
response within 20 seconds or the operator took more than 20
seconds to type a character of input, the program will halt.

3-42

COMMANDS

SET

3.3.22 SET Command

Mode: Direct or Indirect

Syntax: Set {:bve} variable=expression, •••

Description:

The SET command assigns the result of an expression to a specified
variable. The variable can be simple, subscripted, or global. The
variable is followed by an equal sign (=) which in turn is followed by
any expression that conforms to the rules for forming expressions (see
Chapter 2). The expression is evaluated and the variable is set to
the result.

The list of variables and associated expressions is evaluated and
assigned from left to right. If a variable used in an expression is
set by a previous argument, the value used is that most recently
assigned.

Example:

1.10 S A:2
1.20 S A:3,B:A*2 B is SET to 6

Automatic mode conversion is employed during expression evaluation.
The ultimate mode of an expression - string or numeric (including
Boolean values) - is determined by the type of the last operator in
the expression. It may be a trailing operator. Legal trailing
operators include: concatenation (@) to force a string valued result
and addition (+) to force a numeric result. (See Section 2.4.7).

WARNING

Special care should be exercised to
avoid omitting the equal sign (=) since
this situation is not detected as an
error. Instead, the command is
interpreted to be a START command in
which the variable name to the left of
the missing equal sign is taken as the
name of the program to be STARTed. If a
program of that name exists, it is
loaded and started; otherwise a NOPGM
error results.

3-43

COMMANDS

Example:

1.32 S A:B,DATf,_D_l _______ _

missing '=' sign

This Step is interpreted as:

SET A = 3, then START a program called DAT at Part 1

Example:

20.5 S ERR:$E,$E:30

sets the $E System Variable so that
MUMPS errors {except GARB errors)
trap to Step 20.5 for analysis by
application.

all
wUl

the

saves the contents of $E { a value in
the range 0 through -0.36 denoting a
specific MUMPS error) and resets $E to
trap to spn 30 in case any error occurs
prior to completion of application error
processing.

3-44

COMMANDS

START

3.3.23 START Command

Mode: Direct or Indirect

Syntax: Start { :bve} pnam { {nve)} {: spn} ' ...

Description:

This command permits a currently executing program to load and start
one or more programs that run concurrently in separate partitions.
The optional nve specifies the partition size in integer multiples of
128 words. The optional :spn specifies the Step or Part number at
which execution is to begin; otherwise, execution begins at the
lowest non-zero Part.

NOTE

If a non-existent :spn is specified, a
NOPGM error is generated. The name of
the program and the next higher spn
available is printed out following the
NOPGM message.

Each STARTed program must ASSIGN all required I/0 devices.
Furthermore, STARTed programs share the Principal I/O Device of the
starting program. Before a STARTed program can use the Principal I/O
Device, however, the starting program or any other STARTed program
must UNASSIGN (U....,O) the device.

Error messages which result from a STARTed program are output to the
starting program's Principal I/O Device regardless of the current
ownership of that device. However, if a STARTed program is to give up
its partition, the Principal I/0 Device must be available.

Example:

3.24 START %DV,%LX:5,ACLr2

1·5 S tPI=3•14 S RADCB>:10·25

3-45

loads and starts %DV, %LX
beginning at Part 5 and ACL
beginning at Part 2, each in a
separate partition.

sets a global variable PI
equal to 3.14 and starts a
program RAD at Step 10.25 in a
lK partition. Refer to the
MUMPS Operator's Guide for
details on partition sizes and
availability.

TYPE

3.3.24 TYPE Command

Mode: Direct or

Syntax: Type {:bve}

Description:

COMMANDS

Indirect

l~ l
expression
format
variable
.......

l '. . . }
The TYPE command outputs data to the currently ASSIGNed device ($I
System Variable). Arguments can be expressions or the format control
characters (#,?nve or !) described in Section 3.2. If no arguments
are specified, the current values of all local and System Variables
are output.

Examples:

1.36 TYPE "VALUE=",A,I

2.50 TYPE #1,"A+B*C:",A+B*C

3-46

results in 'VALUE=contents of
A' followed by a Carriage
RETURN,LINE FEED sequence.

types out the contents of all
local and system variables.

types FORM Feed, Carriage
RETURN, LINE FEED sequence,
'A+B*C=results of a+b*c.'

COMMANDS

UN ASSIGN

3.3.25 UNASSIGN Command

Mode: Direct or Indirect

Syntax: Unassign {: bve} '-' nve, •..

Description:

The UNASSIGN command releases the specified I/O device(s) and
associated buffers from the ownership of the current job for use by
other programs (i.e., it reverses the effect of the ASSIGN command).
At least one argument must be specified or a syntax error is
generated. Arguments which reference nonexistent devices or devices
not previously ASSIGNed are ignored. The nve is interpreted as an
integer; decimal fractions are ignored.

A program's Principal I/O Device (device on which terminal user
logged-in) may also be UNASSIGNed to permit its use by other programs.
The operating system automatically reassigns it when an error is
detected or Direct Mode is entered.

Example:

>U 1,3,63 Unassigns devices 1,3 and 63.

3-47

COMMANDS

UNLOCK

3.3.26 UNLOCK Command

Mode: Direct or Indirect

Syntax: UNLOCK { :bve} '-' '-'

Description:

The UNLOCK c.ommand
the current job
effect of the LOCK
will be UNLOCKed.

releases the global variable(s) from ownership of
for use by other programs (i.e., it reverses the
command). All previously LOCKed global variable(s)

An UNLOCK is automatically performed when a job is HALTed.

3-48

COMMANDS

VIEW

3.3.27 VIEW Command

Mode: Direct or Indirect

Syntax: View {:bve} nve 1 I • • •

Description:

This is a special purpose command permitting both reading and writing
of disk storage blocks in the system's data base, as well as the
writing of memory locations. The command aids in the creation of
MUMPS application and system programs where the direct modification of
disk or memory is required. It is assumed that the user of VIEW is
familiar with the system's file structure and the memory-resident
system tables described in the MUMPS-11 Programmer's Guide,
particularly the system table (SYSTAB). Further, the use of VIEW is
restricted by several levels of protection, since its use by
unqualified individuals could seriously degrade system operation.

The function performed by VIEW depends upon the presence of the
optional nve 2 • When nve 2 is not specified (and device No. 63 is
assigned), VIEW operation is directed to disk. The address of a disk
block to be accessed and the logical disk number is specified by
nve1. If nve1 is positive, the specified disk block is read; if
negative, the block is written. Only the integer part of the nve's
are used by VIEW; fractions are ignored.

NOTE

When using VIEW to write to the disk, no
other jobs should be running, including
the "Garbage Collector" .1 The
MUMPS-11 Operator's Guide describes
procedures for establishing this
condition.

When accessing disk, the following expression must be used for forming
nve 1 :

nve 1 = TYP*2,097,152+(UNT*262,144)+BLK

0 for RKll
where TYP(device type)= 1 for RFll

2 for RPll
3 for RJP04

UNT(unit number)=m,O~m~7

1. The Garbage Collector
Programmer's Guide.

routine is

3-49

described in the MUMPS-11

COMMANDS

BLK(block address on unit)= n,osn~
4 799 for RKll
1023 for RFll
79,999 for RPll (RP03)
39,999 for RPll (RP02)
170,543 for RJP04

When using VIEW to read or write disk blocks, input from and output to
the disk is directed to a special buffer in memory called the VIEW
Device Buffer. Each transfer by VIEW causes an entire disk block (256
words) to be read or written from this buffer. The VIEW Device Buffer
is accessed by the user via VIEW (to write memory) and the $VIEW
Function (to read memory) • 1 The address of the VIEW Device Buffer is
obtained from the System Table entry labelled "UTLBUF". The address
of the System Table is contained in location 44 10 • Using $VIEW, the
buffer address can be obtained as follows:

Where: OFF = OFFSET TO 'UTLBUF' in System Table.

1,20 S ADR:VCVC44)+0FF>
'-v-'

~
2

'---y---.J
3

1. Get address of System Table.

2. Add OFFSET TO 'UTLBUF' to obtain the 'UTLBUF' address.

3. Get the address of the 'VIEW' Device Buffer.

When nve 2 is specified (and device No. 63 or No. 46 is assigned),
VIEW operation is directed to memory. The address of the memory
location is specified by nve 1 , and its contents by nve 2 • Since
VIEW operates on word (as opposed to byte) addressing, if nve 1 is
odd, it is interpreted internally as an even number by subtracting 1.
Both nve 1 and nve2 must always be positive when addressing memory.

NOTE

The VIEW command allows access to 28K
words of memory. For systems with more
than 28K words of memory, references to
address locations (nve 1) 40960 2 -57342
are interpreted as address locations
0-16382 beginning at the base of the
current partition.

There are three levels of protection that control the use of VIEW:

1. The user or program must "own" the
ASSIGNed either device No. 63
either memory or disk, or device
directed to memory only (Paragraph

1. Described in Section 4.2.16.

use of VIEW
for operations

No. 46 for
3.3.1).

2. This would vary as to how the system is built.

3-50

by having
directed to

operations

COMMANDS

2. To read disk blocks either:

a. The user must be logged in with the System's UCI
described in the MUMPS-11 Programmer's Guide, or

b. the program must be a Library Program (i.e., % symbol
must be the first character in the program's name).

3. To write a memory or disk:

a. Conditions 1 and 2 (above) must be met; and

b. The Print command, P~256, must be issued.

Examples:

1. This program zeroes out the VIEW Device Buffer:

1·01 A 46 S VBF=SV<SV<44>+0FFl
1.02 F I:0:2:510 VIEW VBF+I:0

2. The following is part of a program that could be used to copy
one unit of an RK03/RK05 Disk Pack to another. N and M are
the physical device numbers (RKO, RKl, etc.). Each device
has 4800 data blocks.

1.01 R "INPUT RK UNIT:" ,N,l ,"OUTPUT RK UNIT:" ,M,I
1.05 A 63 P 256 F I=ltlt4800 V N•262144+I,-C~•262144+I>
l.l<'l U 63 P 512 T "DONE",!

3-51

COMMANDS

WRITE

3.3.28 WRITE Command

Mode: Direct or Indirect

Syntax: Write { :bve}

Description:

This command is used to output MUMPS programs or individual Steps and
Parts residing in the Program Buffer of the user's partition to the
currently ASSIGNed I/0 device ($I System Variable). WRITE essentially
performs the opposite function of the LOAD conunand. 1 If no arguments
are specified, the entire program (all Steps) is output. The optional
Boolean expression (:bve) establishes conditional execution.

Spn 1 specifies individual Step or Part numbers, while :spn 2

specifies a range of Steps or Parts between spni and spn 2

inclusive. Both Parts and Steps can be intermixed in the same command
or its arguments.

P.xamples:

1.36 w 4.2,1.13,6:7

Write out all Steps on the
Line Pr inter (device #3).

Output Steps 4.20, 1.13 and
Parts 6 and 7.

Output Steps 7.14 through 7.30
and 1.55 throuah 2.03.

1. LOAD also inputs programs from the user's Program Directory on
disk. FILE must be used to save programs on disk.

3-52

COMMANDS

XKILL

3.2.29 XKILL Command

Mode: Direct or Indirect

Syntax: Xkill {: bve }, 1 V<:lr, •••

Description:

The XKILL (exclusive KILL) command deletes all local variables and
their associated arrays, except those specified in the argument list.
This command is an extension to the more general KILL command. Note
that subscripted variables are illegal arguments and cause a SYNTX
error.

Example:

3.26 X A,B,C G 11.10 Kill all local variables except A, B and
C then GOTO step 11.10,

3-53

CHAPTER 4

FUNCTIONS

4.1 INTRODUCTION

A function is a component of an expression that invokes an algorithm
the result of which is an expression element. Each MUMPS function is
identified by a unique mnemonic, the first character of which is
always the dollar sign ($). There are two types of functions:
numeric and string. Numeric functions return numeric values (nv),
while string functions return string values (sv). The value returned
is not named and can never be explicitly referenced. The returned
value internally replaces the function designation and its arguments
within the expression.

4.1.1 Nesting of Functions

MUMPS functions may be nested to the same extent that functions which
produce numeric results may be nested within any other function.
Functions which produce string valued results may NOT be nested.
Furthermore, where the argument to any function is required to be a
string value, it must be in the form of a string variable or literal
(svl) .

4.1.2 Syntax Rules for MUMPS Functions

1. Functions names may be abbreviated to the first character
after the dollar sign ($).

2. Arguments are enclosed in parentheses and immediately follow
the function name.

3. Multiple arguments are separated by commas.

4-1

Type

Numeric

FUNCTIONS

Table 4-1
Summary of Functions

Name

$Create (svl)

$Define (I lvarl) gvar

$Fina (svl1,svl2 {,nve})

$High (lvar (subscript)) . gvar I
$Integer (nve)

$Length (svl)

+
-
*
I
>
<

$M (marg i < = marg2···
>=
=>
<=
=<
<>
><

I

$Next (nve)

$Query (gvar)

4-2

+
-
*
I
>
<
=
>=
=>
<=
=<
<>
><

Actior

Creates
from
string.

unique number
3-character

Checks data type of a
variable.

Finds the position of a
given character within
a string.

Obtains the next
element in an array.

Truncates
fractional part
decimal number.

the
of a

Calculates length of a
string.

I

marg)) Al lows floating n . calcula-point
tions.

Obtains next step after
nve.

Finds next (physical)
global node.

Type

String

FUNCTIONS

Table 4-1 (Cont.)
Summary of Functions

Name

$Root (nve)

$View (nve)

$Altercase (svl)

$Extract (svl,nve1 {,nve2})

Action

Finds square root.

Returns the contents of
core location.

Converts upper case
ASCII to lower and vice
versa.

Extracts characters
from specified
positions in a string.

$Piece (svl1,svl2,nve 1 {,nve2})

$Step (nve)

$Text (nve)

4.2 FUNCTION DESCRIPTIONS

Extracts fields within
a string.

Obtains contents of a
step.

Converts
ASCII.

numbers to

The following paragraphs define the purpose and use of MUMPS
functions. The symbols used to define the syntax of each function are
the same as those used in Chapter 3. Definitions of these symbols can
be found under the Document Conventions section of this manual.
Function descriptions are presented in alphabetic order for ease of
reference.

4-3

FUNCTIONS

$ALTERCASE

4.2.l $ALTERCASE Function

Type: String

Syntax: $Altercase (svl)

Description:

The $A function is used to convert alphabetic characters from lower
case to upper case and v1ce~versa. When converting lower case to
upper case, lower case character codes in the rarige 97 through 122
(14la - 172 8) are mapped to their upper case equivalents in the
range 65 through 90 (101 8 - 132a). When converting upper case to
lower case, upper case character codes are converted to equivalent
lower case codes; mapping is the reverse of that specified above.
Conversion is performed on a character-by-character basis. The
programmer may not nest $A functions in a command string.

Example:

Assuming: NAM(l) = "uncle", NAM(2)="hYpOCraTes",NAM(3)="thomas"

I.10 F !=1:1:3 S NAM(!)=$ACNAM(l)) T NAM(!)

The above program converts the
variables to their alternate case.

UNCLE
HyPocRAtES
THOMAS

4-4

strings
Thus:

contained in three

FUNCTIONS

$CREATE

4.2.2 $CREATE Function

Type: Numeric

Syntax: $Create (svl)

Description:

This function creates a unique positive 21-bit MUMP~ number, in the
range 0.00-20,971.51, from the first three characters of a specified
string. Each charactEl-1'." is converted from 8 to 7 bits to permit
storage within the 21-bits. Conversion is performed using the
following formula:

N= ((c (1) * 2 (14) + (c (2) * 2 (7)) +C (3)) I 10 0

Where: N=resulting number
C1 decimal character code for 1st character
C2 = decimal character code for 2nd character
Ca = decimal character code for 3rd character

The relationship of the characters to the resulting number is shown
below:

BIT r-3-1 -------22T2_1 ------14..-1_3 _____ 1-.-6 ____ _...;_,0

0 tst CHAR (C1l 2nd CHAR (Cz I 3rd CHAR (C3 I

If fewer than three characters are available, the characters are left
justified within the resulting numbers. The programmer can use the
$Text function (Section 4.2.15) to convert the created number back to
ASCII.

Example:

$C can be used to create subscripts from strings allowing data to be
stored in subscript form. The following command line might be used to
create subscripts for a program to maintain a telephone book. Assume
three levels of subscripting based on the first nine characters of a
last name (S 1 contains the first three characters, S 2 the second
group of three and Sa the last three characters and NUM=telephone
number).

>SET tTELC$CCSC1)>,$CCSC2>),$CCSC3))):NUM

4-5

FUNCTIONS

$DEFINE

4.2.3 $DEFINE Function

Type: Numeric

Syntax: $Define (11. var I) gvar

Description:

The $DEFINE function checks the data type of either local or global
variables. The argument to the function is the name of the variable
to be checked. There are eight possible data type values returned:

Data Type Definition

0 undefined variable
1 single numeric datum
2 string datum
3 double numeric datum
4 pointer to structure at lower level or

local array name
5 pointer or local array name and single

numeric valued datum
6 pointer or local array name and string

valued datum
7 pointer or local array name and double

numeric datum
8 4-word floating point numeric (resultant

from $M)

Examples:

1. If local variable B contains a numeric quantity less than
327.68, its data type is 1.

>T $DCBC2>>
1

2. If global variable t ABC(X,Y) contains the string "JOHN DOE"
and has no lower level associated with it, its data type is
2.

>S C=$DCtABCCX,Y>>

>T C
2-

4-6

FUNCTIONS

$EXTRACT

4.2.4 $EXTRACT Function

Type: String

Syntax: $Extract (svl,nve 1 {,nve 2 })

Description:

The $EXTRACT function extracts all the characters from the specified
string variable or literal (svl) that are between character positions
specified by nve 1 and nve2 inclusive. If nve 1 is greater than
nve 2 , $EXTRACT returns a 'null string'. If nve2 is equal to
nve 1 or if nve 2 is omitted, $EXTRACT returns the character
specified by nve1. Values of nve1 which are less than 1 are
interpreted as 1. If the length of the string is such that $E runs
out of characters before satisfying nve 2 , then the function returns
all characters between nve 1 character and the end of the string.
Only the integer part of nve 1 and nve 2 are considered.

Example:

NOTE

1. If the string argument (svl) is a
global variable, no other arguments
may be global variables.

2. Nesting $E functions in a command
string is illegal.

Assume that the string variable NAM="JOHN DOE" is to be changed
to the form: last-name, comma, first-name. The following
statements will do it, using the concatenation operator (@) and
the $FIND function (Section 4.2.5):

>S NAM="JOHN DOE"
>

>l.36 S LST:$ECNAM,$F"CNAM," ",l),$L<NAM))
>l,38 S F"IR=$ECNAM,l,$F(NAM," ",0)-2)
>l,412J S NAM=LST@","@FIR

>.!L!.
>l___NAM
OOE;JffifN

4-7

FUNCTIONS

$FIND

4.2.5 $FIND Function

Type: Numeric

Syntax: $Find (svl 1 ,svl 2 { 1 nve})

Description:

character
The search

unless the
at the nveth
found, then

The $FIND function returns a number representing the
position of the character following sve2 within svl 1 •

for svl 2 within svl 1 begins at the first character
optional nve is given, in which case the search begins
character in sv1 1 : If nve is negative or svl 2 is not
$FIND returns zero (O).

Example:

.s

>T
2

NOTE

Only one of the arguments can be a
global variable.

STR="'ABCDEFGHIL"

$FCSTR 1"A",1)
returns 2

>T $F<STR,"A") returns 2
2

>T
0

>T
I fil

>T
0

H<STR, .. A",3)

$F(STR 1 "GHI")

$F <STR, ''HI J")

returns 0, since "A" does not occur
after third character in the string

returns 10

returns O. String does not contain
string, HIJ.

4-8

4.2.6 $HIGH Function

Type: Numeric

Syntax:

Description:

$High (ll var

FUNCTIONS

$HIGH

gvar [
(subscript))

The $HIGH function is used to locate the next numerically greater
subscripted variable in either a local or a global array. $HIGH
compares the value of the subscript in the argument to the values of
all other subscripted variables in the array (at the same subscripting
level). When the variable having the next higher subscript is found,
($HIGH returns the value of that subscript. If there is no higher
subscript,) $HIGH returns-0.01. A negative subscript value is used in
the argument to determine the existence of a variable with a subscript
of zero. If $H detects a subscript that is higher by an increment of
0.01, it terminates the search and returns that value since 0.01 is
the smallest allowable increment between two subscripts. For this
reason, the use of contiguous subscript values having increments of
0.01 can provide improvements in program execution speed when many
$HIGH's must be performed.

Examples:

1. Given local array: A(l) ,A(2.5) ,A(3.68)

$H(A(l))
$H(A(2.5))
$H(A(l.5))
$H(A(3.68))

returns 2.5
returns 3.68
returns 2.5
returns -0.01

2. Given global array:+B(l) ,+B(l,l.) ,+B(l,2) ,+B(l,1,1) ,+B(l,1,3),
tB(l,1,3,0)

$H(tB(l)) returns -0.01
$H(tB(l,l)) returns 2
$H(tB(l,2)) returns -0.01
$H(tB(l,l,l)) returns 3
$H(tB(l,l,2)) returns 3
$H(tB(l,l,3)) returns -0.01
$H(tB(l,l,3,-l)) returns 0

4-9

FUNCTIONS

$INTEGER

4.2.7 $INTEGER Function

Type: Numeric

Syntax: $Integer (nve)

Description:

The $INTEGER function returns the integer portion of the specified
numeric valued expression (nve). The fractional part of the nve is
truncated.

Example:

This program checks for
discard any remainder
numbers are equal after
the number is even.
that are input.

odd and even numbers by
resulting from division

multiplying the result by
$I is also used to discard

>l,1121 READ "TYPE A NUMBER -",A,! S A=$ICA)
>1,20 IF $ICA/2)*2=A T "EVEN",! G 1,1
> 1 ,:50 TYPE ''ODD", l G 1, 1

:>D 1
TYPE A NUMBER -1.
ODD
TYPE A NUMBER -56
EVEN
TYPE A NUMBER -£..1_!
ODD
TYPE A NUMBER -2346,1212
EVEN
TYPE A NUMBER -

using $I to
by 2. If the
the divisor,
any fractions

FUNCTIONS

$LENGTH

4.2.8 $LENGTH Function

Type: Numeric

Syntax: $Length (svl)

Description:

The $LENGTH function returns the number (quantity) of characters
contained in the specified string variable or literal (svl). The
length of a string may range from 0 to 132 characters.

Example:

The following steps use $L to format an output line.

1.32 READ l,"NAME:",NAM," ADDRESS:",ADR,I G 1
1.34 TYPE "NAME: ",NAM,?C$LCNAMH22>,"ADDRESS: ",ADR,I GI

>D I

NAME=ELSIE PFLUGG ADDRESS:34 GUELPH COURT
NAME: ELSIE PFLUGG ADDRESS: 34 GUELPH COURT RT

4-11

FUNCTIONS

$M

4.2.9 $M Function

Type: Numeric

+ +
Syntax:

* *
$M(marg 1 I marg 2 ... I margn

> >
< <
= =
>= >=

·=> =>
<= <=
=< =<
<> <>
>< ><

Description:

The $M function allows standard arithmetic and relational arithmetic
operations to be performed on numbers outside the normal range of
MUMPS numbers. $M expressions produce four-word, double precision
floating-point results in the absolute value range .14Xl0- 38

<n<l.7Xl0 38 with an accuracy of 17 significant digits. $M
expressions produce either a floating-point or fixed-point result
depending on the last operation performed. When the last operator is
an arithmetic operator, the expression result is a floating-point
number which is stored as a data type 8 datum (see $D function
description). When the last operator is a relational arithmetic
operator, the result is a fixed-point (MUMPS) number, either -0.01 for
True relations or 0.00 for False relations.

When a floating-point result is converted to
floating-point data is in the form:

a

O.nn ... nD mm for positive numbers greater than 1

string, the

O.nn ... nD -mm for positive nu~bers greater than 0 and less than
1
-0.nn ... nD mm for negative numbers less than -1
-0.nn .•. nD -mm for negative numbers less than 0 and greater than
-1

Expression operands (marg) must be within the subset of standard
operands shown below:

1. A constant

2. A simple variable that contains a character
representation of either a MUMPS number or a
floating-point number. Except for the floating-point

4-12

string
valid

output

FUNCTIONS

formats shown above, mixed alphanumeric strings (e.g.,
"123ABC") are interpreted as zero value.

3. A simple local variable or a global variable that contains
the results of a previous $M operation.

4. A subexpression.

Illegal use of $M expressions may produce MODER or $MERR error
messages.

Examples:

The following are examples of legal $M expression operands:

STR where:

M where:

STR ="-6.123D 5"
STR = "5"
STR =".15672"
STR ="67651.98"
M =0.12D-14
M =-0.373468004

12.
19.7346
478655.l
-14. 07
X + 4.43*(3.27+Z)

where: X 0.12D-03
z = "0.173654210-07"

Wherever a string interpretation of a numeric quantity is indicated, a
floating-point datum is permitted. However, conversion of a
floating-point datum to a fixed-point number is not allowed. Thus,
although floating-point numbers can be used with string operators, a
floating-point number cannot be used with arithmetic operators outside
of a $M function, and care should be taken when using the equality
operator with a floating-point numeric.

The following examples
floating-point number.

ill us tr ate

>S....,.A = $M(2*4)@....,.T....,.A,!,$D(A)
0.80....,.01
2

string conversion of a

The following examples demonstrate the use of $M with the TYPE
command:

>S A•"2°.tB="4"1C•"IA"1P• ... lD 2"

>T SMCA>•" "• SM<A•4>•" "• $MCA•F!>." "• SMCC>•"
e.20 01 0e8D 01 0o8D 01 0.0 Ille 0ol0 02
>

"• !MC 0)

>S E•SMCA+CB•2>•5> T E
0·5D 01

>S G•SMCA·B•l0000> T SMCG•l000000)
-0.20 ll

>

>S G•SMCA•B/18000> T G
-0.20-03 ..

>

>S J•2 T SMC J>

MOOER>0 e

4-13

FUNCTIONS

>S tH(l, l)sSMCO•A+CB/2)/£>; T tHC 1.1 >
0.366666666666666670 01
>

>T SMC2>." "•$MC123456.t234>." ''•SM<o25D 2>
0.20 01 0.12345612340 06 0.250 02

>S H•SMCB>A>. I•SMCA+S•B>
•0e0l B>A
0 IT'S FALSE
>

H TH•" B>A"• ! I 'I T I•" IT'S FALSE"

4-14

FUNCTIONS

$NEXT

4.2.10 $NEXT Function

Type: Numeric

Syntax: $Next (nve)

Description:

The $NEXT function returns the Step number of the first Step following
the Step specified by nve. If there are no Steps following the value
of nve, $NEXT returns zero (0).

Example:

If a program has the following steps:

1.01
1. 32
4.91

10.13
then:
$N(l.01)
$N(l.32)
$N(2.35)
$N (4. 91)
$N(l0.13)

returns 1.32
returns 4.91
returns 4.91
returns 10.13
returns 0

4-15

FUNCTIONS

$PIECE

4.2.11 $PIECE Function

Type: String

Syntax: $Piece (svl 1 ,svl 2 nve 1 { ,nve 2 })

Description:

The $PIECE function examines the string specified by svl 1 , which is
assumed to be divided into "fields" delimited by the first character
of svl2. $PIECE returns the string value contained in the fields
specified by the two arguments nve 1 and nve 2 , inclusive.

If nve2 is not specified:

1. a null string is returned where nve 1 ~0

2. the (nve 1th) field is returned (without delimiters) where
nve 1>0.

If nve 2 is specified:

1. and nve 1 ~O,nve 1 is set to 1.

2. a null string is returned where nve 2<nve 1.

3. the (nve 1th) field is returned (without delimiters) where
nve2 = nve1.

If $PIECE
characters
string.

Examples:

Given:

runs out of fields before reaching
between the delimiter (svl 2)

nve 2 , it returns any
and the end of the

1.

NOTE

If sve 1 is a global
other argument can
variables.

variable, no
be global

2. Nesting $P functions is illegal.

STR="34,6.09,JOHN DOE,BOSTON,JUN,22"
DEL=","
X=7
Y=3

4-16

1. $PIECE (STR,DEL,3)
2. $P (STR,",",Y,X-Y)
3. $PIECE (STR,"0",4)
4. $P (STR,","8)

5. $P (STR, " ",l)

FUNCTIONS

returns 'JOHN DOE'
returns 'JOHN DOE, BOSTON
returns 'ST'
returns a null string since there is no
8th field in sve(l)
returns '34,6.09,JOHN'

4-17

FUNCTIONS

$QUERY

4.2.12 $QUERY Function

Type: Numeric

Syntax: $Q (gvar)

Description:

This function allows global nodes at a given level to be sequentially
processed in the physical order in which they appear. This is
particularly useful when used with the naked global syntax. $Q first
searches for the node indicated by gvar, and then returns the next
physical subscript within that same block (or continuation block). $Q
returns -0.01 when the subscript indicated by gvar is the last
physical subscript at that level. If a nonexistent global node is
indicated by gvar, $Q returns the value -0.02. If the last subscript
indicated in gvar is negative, $Q returns the first (physical)
subscript at that level.

Example:

This example lists all the nodes of global +M at the 5th level in the
physical order in which they appear:

>I.IS A:-1
>1.2 S A:$Q<tM<9,9,8,4,A)) I A>-.01 T A,"**".tCA>.! ~

Note the use of the $L System Variable.

>D I. I
H'.l0** 100
l**TOM
2**3452
5**243
G**ALFREn
7**789
8**7UU
10**WH.34
3**2ALFRED NEMBHH
4**435 KL! PCH ST
9**JACK O'C

>

4-18

FUNCTIONS

$ROOT

4.2.13 $ROOT Function

Type: Numeric

Syntax: $Root (nve)

Description:

The $ROOT function returns the square root (numeric value) of nve, to
two decimal places of accuracy. The nve must be positive, otherwise a
MINUS error is generated.

Examples:

1. >T $RC64)
8
>

2. >T $R C2)
1.41
>

4-19

FUNCTIONS

$STEP

4.2.14 $STEP Function

Type: String

Syntax: $Step (nve)

Description:

The $STEP function returns a string value which is the contents of the
Step specified by nve. The string begins with the first character
following the space after the Step number, and ends with the last
character in the line. This function is useful when programs need to
store certain data in non-executable Parts. Nesting $S functions is
illegal.

Example:

The program segment below shows what might be part of a command
evaluator. The program asks the user for an option number. If a
? is typed, the program types a 'menu' of the options available.
The menu is stored under its own part number and each entry is
contained within a step as a literal. This part is never
executed. The FOR loop indexes on the step numbers containing
the 'menu', and $Step extracts each literal, in turn, to be
output.

>l.10 READ "OPTION? ".X QUIT:X=""
>l.20 IF XC"?" F !=10.1:.1:10 0 5 TYPE !,$S(I)

>10.rn 1 ALPHA SEA RC!:!
>10.20 2 NUMERIC fE8BC!:!
>10.30 3 PAYROLL ~Q. SQBI
>10.40 4 FILE MERGE
>10.50 5 OUTPUT TRANSACTION

>!Ll.
OPTION? 1

1 ALPHA SEARCH
2 NUMERIC SEARCH
3 PAYROLL NO. SORT
4 FI LE MERGE
5 OUTPUT TRANSACTION FILE
>

FILE

4-20

FUNCTIONS

$TEXT

4.2.15 $TEXT Function

Type: String

Syntax: $Text (nve)

Description:

The $TEXT function translates the numeric argument nve to return up to
four ASCII characters, one per byte. Each byte is masked to 7 bits,
starting with the high-order byte. If it is null, it is simply
ignored.

$TEXT is primarily for use by system programmers who are familiar with
the internal data formats of the MUMPS system. $TEXT is often used in
conjunction with the VIEW command to convert the contents of a
location known to contain ASCII data. Nesting $T functions is
illegal.

Examples:

1. This command line types out the characters contained in the
1st word of the UC! Table .1

>1,2 A 63 T TCVCVCVC44)+8))/llil0)

2. Step 1.2 A reconverts a subscript, created in Step 1.1 by $C,
back to a string.

>l,llil S B:$CC"TST">
>l,20 T $TCB/16384)@$TCCB/128>&2,55)@$TCB&Z,55)

>D I
TST
>

1. Described in the MUMPS Programmer's Guide.

4-21

FUNCTIONS

$VIEW

4.2.16 $VIEW Function

Type: Numeric

Syntax: $View (nve)

Description:

The $VIEW function returns an integer that is the decimal value of the
contents of the memory location specified by the nve. The function
operates on a word (as opposed to byte) address basis. Therefore,
even if the nve is an odd number, it is interpreted internally as an
even number by subtracting one. (See also the VIEW command, Section
3.3.25.) Only the integer portion of the nve is accepted, decimal
fractions are ignored.

The use of $VIEW is restricted to users who are logged
system's User Class Identifier code (UC! number 1)
that reside under the control of UC! number 1 (either
programs or Library Programs).

Examples:

NOTE

1. Protection features do not apply
when referencing locations in the
PDP-ll's External Page (locations
57344 10 through 65535 10) •

2. The $VIEW function allows access to
28K words of memory. For systems
with more than 28K words of memory,
any references for address locations
(nve) 40960 57342 will be
interpreted as address locations 0 -
16382 beginning at the base of the
current partition

in under the
and to programs
System UtiH ty

l. $V (0) Examine memory location 0 as a word

2. $V (16.62) Examine memory location 1610 as a word (note
decimal fraction is ignored)

3. $V (3) Examine memory location 2 as a word

4-22

Array

Binary Operator

Boolean Valued Expression

Command

Concatenation

Constant

Data Base

Direct Mode

APPENDIX A

GLOSSARY OF TERMS

An array, which can consist of either
local or global variables, is a group of
subscripted variables that have a common
identifier.

A binary operator is an operator that
requires two operands (expression
elements}.

A Boolean Valued Expression (bve} is an
expression, which, when evaluated,
produces either a True (-0.01) or False
(0) result.

A command is the principal algorithmic
component of the MUMPS Language. MUMPS
commands consist of a set of keywords
that ·characterize actions. (e.g., GOTO,
SET, HALT, RUN, etc.}.

Concatenation is the process of linking
together two or more string data
elements to form a single string.
Concatenation is a string expression
operation that is designated by the
commercial "at" sign (@}.

A constant is a quantity within the
range of legal MUMPS numbers
(±21474836.47) explicitly stated in an
argument to a command or as an operand
in an expression.

Data base is that body of disk-stored
information residing in global arrays.

Direct Mode is
operation which
to:

that mode of system
enables the programmer

1. enter commands and/or functions for
immediate execution

2. create or modify steps of a user's
program

A-1

Directory

Double Numeric Quantity

Expression

Expression Element

Floating Point Numeric

Function

Global

Global Variable

GLOSSARY OF TERMS

A directory is a disk resident table
which can contain the names and disk
starting addresses of either programs or
global files. Each User Class
Identifier in a MUMPS-11 system is
associated with two directories; a
program directory, and a global
directory.

This term refers to MUMPS numbers whose
absolute values lie in the range ±327.68
through 21474836.47 which are stored by
the operating system in two consecutive
words. (See also Single Numeric
Quantity.)

An expression is any legal combination
of operands (elements) and operators.
Legal expression elements include:
literals, constants, variables,
subexpressions, and function references.
An expression may consist of a single
element an element/operator combination
or a series of element/operator
combinations.

An expression element is the operand
component of a MUMPS expression. An
expression element may be a constant, a
simple variable, a literal, a local
subscripted variable, a global variable,
a function reference, or a
subexpression.

A 4-word floating point number in the
range ±0 .14*1038 to tl. 7*10 38 The
MUMPS $M function allows floating point
numbers to be used with the operators +
- * / <> =. A Floating Point number may
be stored only as a local variable which
is not the name of an associated array
(i.e., pointer variables are excluded)
or as a global variable.

A function is a MUMPS expression
component that invokes an algorithm, the
result of which is an expression element
(operand) . Each MUMPS function is
assigned a unique mnemonic, the first
character of which is the dollar sign
($) symbol.

A global is a tree-structured data file
stored in the common data base on the
disk. Globals comprise an external
system of symbolically referenced
arrays.

A global variable is a subscripted
variable that forms an element (or node)
of a global array.

A-2

Identifier

IF Switch

Indirect Mode

Indirect Reference

Job

Library Program

Literal

GLOSSARY OF TERMS

An identifier is a name consisting of
one to three alphanumeric characters.
The first character must be either an
alphabetic character or the percent (%)
symbol. Identifiers are used as names
for variables, programs, library (or
system) programs, and globals. The
percent symbol is reserved for naming
Library Programs and Globals, though any
local variable can use percent as the
first character of its name.

The IF Switch is a logical switch that
resides in the Program Vector area in
each user's partition. This switch is
set to the logical result of the last
executed IF statement, either True
(-0.01) or False (0). Note that an IF
without arguments or an ELSE only tests
the logical value of the IF Switch and
does not change it.

Indirect Mode is that
operation in which the
program are executed.
operation, commands
from the terminal and
created or modified.

mode of system
steps of a stored
In this mode of

cannot be entered
programs cannot be

An indirect reference is a feature of
the language that permits a string
variable to represent a command's
argument or argument list. In
operation, the string value of the
variable is taken as the argument or
argument list. The indirection symbol,
back arrow (+) or underscore (~), must
precede the variable reference.

A job is any user activity which
requires the use of a partition. For
example, logging in or STARTing a
program are Jobs.

This term refers to those programs that
are listed in the Program Directory of
the System UCI (UCI #1) and have a
percent symbol (%) as the first
character of their names. Programs
residing in the system in this way can
be run by any user regardless of UCI.

A literal is an element of the language
that permits the explicit representation
of character strings in expressions and
in command and function arguments by
delimiting them with quotation marks
(""). Literals may not contain:

quotation marks
Carriage RETURN
ALTMODE
RUBOUT (DEL)

A-3

CTRL 0
CTRL C
CTRL U
NUL

Line Feed
Form Feed
Vertical Tab

Local Variable

Naked Reference

Node

Numbers

Numeric Valued Expression

Operator

Part Number

Partition

GLOSSARY OF TERMS

A local variable is a variable that
resides in the partition of the program
that created it (as opposed to a global
variable}.

The naked reference is a feature that
provides an abbreviated method for
accessing global variables to reduce
disk access time. This permits
subsequent references to a global to be
made simply by specifying an up-arrow
(t) followed by one or more subscripts.
The variable name is assumed from the
last global reference in which a name
was explicitly stated. The first
subscript in the naked reference
replaces last subscript in the previous
reference (either naked or complete).
Using the naked reference reduces disk
access time since the search for the
specified node begins at the
subscripting level attained by the last
global reference rather than at the
global directory level.

A node is a global array
addressed by a subscript.

element

Numbers in MUMPS are signed fixed-point
quantities in the range ±21474836.47.
Decimal fractions greater than two
plac~s are truncated to two places.

A numeric valued expression (nve} is an
expression which, when evaluated,
produces a numeric result.

An operator is a component of a MUMPS
expression that invokes an algorithm to
perform either arithmetic, string, or
Boolean manipulations. (See binary
operator and unary operator).

A part number is the integer portion of
a step number and is used to refer
collectively to all steps having a
common integer base.

A partition is the memory area within
which a job resides. A partition is
allocated to a job either at terminal
log-in time or upon execution of the
START command. A partition contains
both program and local variable storage
areas as well as program state
information necessary for timesharing
operation.

A-4

Pattern Verification

Principal I/O Device

Program Name

Programmer Access Code

Queue

Run Queue

Secondary Storage

Single Numeric Quantity

Sparse Array

Step Number

String

GLOSSARY OF TERMS

Pattern verification is a feature of the
language which permits evaluation of
text strings for the occurrence of
desired combinations of alphabetic,
numeric, and punctuation characters.
Pattern verification is specified by the
"?" operator followed by Pattern
Specification Codes (psc).

This term refers to the keyboard
terminal that initiated the job. This
is the device to which control returns
when an error message is to be output or
when an ASSIGN.._.o command is issued.

A program name is an identifier that is
associated with a particular program.
System Library program names must use
the percent symbol (%) as the first
character.

The Programmer Access Code (PAC) is a
three-character code, created at System
Generation time, that allows the
terminal user to enter Direct Mode.

A queue is an ordered list in which the
first item to be entered is the first
item to be removed (first-in-first-out
sequence).

The Run Queue is a System Queue which
contains the number of the job currently
executing in its time slice. This queue
is effectively a one entry queue.

This term refers to
which are not used to
data base (non-disk),
magtape, or DECtape).

all I/O devices
contain the global
(i.e., paper tape,

This term refers to MUMPS numbers in the
range ±327.67 which are stored by the
operating system in one 16-bit word.
(See also Double Numeric Quantity).

A sparse array refers to the method of
storage allocation used for local and
global arrays in which space is
allocated only as variables are
explicitly defined (unlike other
languages which require dimension or
size statements for preallocation of
storage).

A step number is a number used to
identify each line of a MUMPS program.
A step number must be in the range 0.01

327.67, excluding all numbers in this
range that are integers.

A string is a contiguous combination of
any of the ASCII characters. (132
characters maximum)

A-5

St~ing Concatenation

String Valued Expression

Subexpression

Subscripts

Subscripted Variable

System Program

System Queues

System UCI

System Variable

Time Slice

GLOSSARY OF TERMS

See Concatenation.

A string valued expression (sve)
expression which produces a
result upon evaluation.

is an
string

A subexpression is an expression element
that consists of any legitimate
expression enclosed in parentheses.

A subscript is a numeric valued
expression or expression element which
is appended to a local or global
variable name to uniguely identify
specific elements of an array.
Subscripts are enclosed in parentheses.
Multiple subscripts must be separated by
commas.

A subscripted variable is
which a subscript is
subscript and variable).
and local variables
subscripted variables.

a variable to
affixed (see

Both global
are forms of

A System Program is a program either
supplied by DEC or created by the MUMPS
user which is used to assist the MUMPS
system owner in the operational
maintenance of the system. System
Programs normally reside under the
protection of the System UCI (UCI #1) .

This term
used by
control
resources
Queue).

refers to the set of queues
the MUMPS Operating System to
the allocation of system

(see Run Queue and Wait

The System User Class Identifier (UCI)
code is that UCI code assigned to the
first entry in the system's UCI table.
The Program and Global Directories
associated with the System UCI are used
to contain both System and Library
programs and globals.

A System Variable is a variable that is
permanently defined within the operating
system. These variables provide system
and control information to all programs.
The first character of a System Variable
is always a dollar sign ($). System
Variables are maintained and modified by
the operating system and/or system
manager only.

This term refers to the period of time
allocated by the operating system to
process a particular partition's
program. This term is synonymous with
'timesharing interval'.

A-6

GLOSSARY OF TERMS

Unary Operator

User Class Identifier (UCI)

Variable

Wait Queues

A unary operator is
requires a single
element).

an operator that
operand (expression

A UCI is a three-character code used at
terminal log-in time to permit access to
the group of programs and global files
with which it is associated. When used
with the Programmer AcGess Code, the UCI
allows these programs to be modified and
new programs to be created.

A variable is the symbolic
representation of a logical storage
location. Specific types include local,
global, simple and subscripted
variables. Variables are symbolically
referenced by means of identifiers.

The Wait Queues are a group of System
Queues which contain the numbers of the
jobs awaiting service by the operating
system.

A-7

APPENDIX B

MUMPS CHARACTER SET

The following table shows, with the corresponding octal and decimal
equivalents, the 128-character set of 7-bit ASCII code used by MUMPS
for data, command, and control purposes. In addition, the order of
the character set as shown establishes the MUMPS collating sequence
used by the system's Expression Evaluator when establishing string
relationships.

For command and control purposes, MUMPS uses the 64-character graphic
subset. The system also uses the control codes shown in brackets
([]) . These codes should not be used as input data. The NUL, code
000, is used internally as a logical end-of-message and cannot be
used. Characters shown in braces ({ }l are part of the 1963 ASCII
Character Set and may appear in the character set of some terminals.

All characters may be used for data input and output except for these
mentioned above. The system does not perform any character
conversion. It is the programmer's responsibility to perform all
upper/lower-case letter conversions or mappings which are required for
the particular application.

CHARACTER SET

Octal Code Decimal Code Character Octal Code Decimal Code

000 000 NUL [025 021
001 001 SOH (Backspace)t 026 022
002 002 STX (Forward space)t 027 023
003 003 ETX (CTRL C)* (Write EOF)t 030 024
004 004 EQT (Write block)t 031 025
005 005 ENQ (Rewind)t 032 026
006 006 ACK (Read block)t [033 027
007 007 BELL 034 028
010 008 BS* (Read label)t 035 029
011 009 HT 036 030

[012
010

~]
037 031

013 011 040 032
014 012 FF 041 033
015 013 CR 042 034
016 014 so 043 035

[017 015 SI(CTRL OJ*] 044 036
020 016 DLE 045 037
021 017 DC! 046 038
022 018 DC2 047 039
023 019 DC3 050 040
024 020 DC4 051 041

*Asterisk denotes the control function for MUMPS terminals, if different from specified or other use.

t Dagger denotes the control function for magtape devices.

B-1

Cl)iµ-acter

NAK(CTRL U)*J
SYN
ETB
CAN
EM
SUB
ESC (ALT MODE)*]
FS
GS
RS
us
Space
!

$

%
&

MUMPS CHARACTER SET

CHARACTER SET (Cont)

Octal Code Decimal Code Character Octal Code Decimal Code

052 042 * 125 085
053 043 + 126 086
054 044 127 087
055 045 130 088
056 046 131 089
057 047 I 132 090
060 048 0 133 091
061 049 1 134 092
062 050 2 135 093
063 051 3 136 094
064 052 4 137 095
065 053 5 140 096
066 054 6 141 097
067 055 7 142 098
070 056 8 143 099
071 057 9 144 100
072 058 145 101
073 059 146 102
074 060 < 147 103
075 061 150 104
076 062 > 151 105
077 063 ? 152 106
100 064 @ 153 107
101 065 A 154 108
102 066 B 155 109
103 067 c 156 110
104 068 D 157 111
105 069 .E 160 112
106 070 F 161 113
107 071 G 162 114
110 072 H 163 115
111 073 I 164 116
112 074 J 165 117
113 075 K 166 118
114 076 L 167 119
115 077 M 170 120
116 078 N 171 121
117 079 0 172 122
120 080 p 173 123
121 081 Q 174 124
122 082 R 175 125
123 083 s 176 126
124 084 T 177 127

*Asterisk denotes the control function for MUMPS terminals, if different from specified or other use.
t Dagger denotes the control function for magtape devices.

B-2

Character

u
v
w
x
y

z
[
\
J

~ ~~1
\

a
b
c
d
e
f
g
h

j
k
I
m
n
0

p
q

u
v
w
x
y
z
{

I
f

} } (ALT MODE)*
- (ALT MODE)*
DEL (RUBOUT)t

APPENDIX C

EXPLANATION OF MUMPS MESSAGES

When execution of a MUMPS program is terminated by either an error, a
CTRL C, or by pressing the BREAK key, the program executive outputs a
short message to indicate the reason for termination. This message is
followed by the number of the Step being executed and the program name
unless the error occurred while in Direct Mode. The error message
format is:

?message>spn~pnam

MUMPS messages are categorized as follows:

1. MUMPS Programming Error Messages - result from errors
associated with programming problems (either incorrect
language syntax or semantic misunderstandings).

2. Voluntary Program Termination Message - there is only one
message of this type.

3. Debugging Aid Message - indicates that a BREAK command has
been encountered in the program.

4. Operating System Error Messages - result from various
troubles which are detected by the operating system and which
are beyond the control of the MUMPS application programmer.

MUMPS errors are considered terminal unless the user's program Sets
the $E System Variable for application program control of error
processing. The programmer may Set $E to a Step or Part number
(S~$E=spn} to which control will go if an error occurs (except

GARBO - GARB4 errors which are reported only on the console terminal,
and do not terminate a running job) . When $E is set to an spn and an
error occurs, the system transfers control to the spn and resets $E to
an index in the range 0 through -0.37 which indicates the type of
error encountered (e.g., 0 = INRPT, -0.01 = MXNUM - see below). The
number of the Step that contains the error is entered in the $W System
Variable. The system also cancels all currently active DO, FOR, and
CALL commands. It is the user's responsibility to reset $E to an spn
if he wishes to control further error processing: otherwise, error
processing reverts to system control.

If an error occurs and $E is not set by the programmer, the action
taken by the system depends on the mode in which the user signed on at
log-in. If the programming access code (PAC) was used, control is
returned to Direct Mode after the error message is output. Otherwise,
the job is aborted after typing the error and 'EXIT' messages and the
terminal is automatically logged-out.

Each of the messages is explained on the pages which follow:

C-1

EXPLANATION OF MUMPS MESSAGES

C.l MUMPS PROGRAMMING ERROR MESSAGES

Message $E Index

CMMND -0.15

DIVER -0.19

DKSER -0.04

FRACT -0.08

FUN CT -0.07

LBOV -0.14

$MERR -0.36

MINIM -0.03

MINUS -0.12

Meaning

Indicates illegal use of a command:

1. Command is
language;

undefined in the

2. An argument has been omitted where
required.

Indicates an attempt to perform division
by zero.

If not a system software error (Section
C.4) this user software error indicates
an attempt to:

1. use VIEW command to access a block
number larger than size of the
referenced disk, or a nonexistent
disk; or

2. use the disk (e.g., creating global
variables, issuing the FILE, LOAD,
etc., commands) under a UCI that has
no associated directories.

Indicates that a fractional number was
encountered when the process being
executed was expecting a integer number.
Also involved when a Step number has no
fractional part.

Indicates that the function is undefined
in the language.

Indicates an attempt to input or output
a line greater than 132 characters.

Indicates that an error occurred in $M
processinq.

1. exponent overflow

2. exponent underflow

3. division by 0

4. illegal trap instruction (system
error)

Indicates that a number has more than
two digits following the decimal point.

Indicates that a negative or zero number
was encountered when a positive number
was expected. For example, MUMPS causes
a MINUS error if the user references a
subscripted variable with a negative
subscript: Only positive subscripts are
allowed, except when using the $HIGH
function (Section 4. 2. 6) •

C-2

Message

MODER

MXNUM

MXSTR

NAKED

NODEV

NOPGM

NOT SY

NXMEM

PGMOV

EXPLANATION OF MUMPS MESSAGES

$E Index

-0.23

-0.01

-0.02

-0.29

-0.13

-0.28

-0.34

-0.05

-0.24

Meaning

1. An nve was encountered where an svl
was expected or vice versa.

2. Argument to $TEXT is not numeric.

3. Argument to $VIEW is not numeric.

Indicates that the value of a number has
exceeded the integer bounds set by the
MUMPS system. The maximum value for a
number is ±21474836.47.

Indicates that the string has exceeded
maximum length allowed (132 characters).

Indicates that the present user
attempted to reference a global variable
using "naked" syntax:

1. prior to any full syntax reference;
or

2. after another user KILLed the global
variable.

Indicates an attempt
nonexistent device or
illegal device number.

to ASSIGN a
the use of an

Reference is made to a program name that
does not exist in the program directory
for this UCI and is not in the directory
of Library (%) Programs.

the referenced device or
not in the system {it may

been linked at system

Indicates that
function is
not have
generation) •

Non-Existent Memory was referenced in
VIEW command or $VIEW function.

Indicates that there
space available in
Caused by:

is insufficient
the partition.

1. too many program steps in the
program being created via the
terminal or in the program being
loaded; (LOAD, CALL and OVERLAY
commands)

2. too many local variables;

3. expression or subscript nesting too
deep.

C-3

Message

PROT

SBSCR

SPNER

STKOV

STKUN

SYMOV

SYNTX

UN DEF

EXPLANATlvN OF MUMPS MESSAGES

$E Index

-0.06

-0.09

-0.17

-0.10

-0 .11

-0.16

-0.27

-0.21

Meaning

Indicates that an attempt was made to
use either the VIEW Command or the $VIEW
Function from a non-Library (%) Program
or when not logged in under the System
UCI. Also indicates that the MODIFY
command issued
specified an spn
current spn.

from Indirect
smaller than

Mode
the

Indicates illegal subscript usage:

subscript out of range;
negative subscript.

Indicates that an illegal or nonexistent
Step or Part number was used.

Indicates that the available stack space
is used up. Generally indicates nesting
is too deep in DO or CALL statements.

Indicates execution of
command from Direct
underflow) .

Symbol Table Overflow
attempt to create or
variable.

the
Mode

occurred
change

Overlay
(stack

on an
a local

Indicates that the current Step being
executed has an error in syntax. Syntax
errors include illeqal punctuation,
illegal use of operators, illegal use of
parentheses, as well as errors
encountered in editing a Step. Syntax
errors comprise a great majority of
errors made in the MUMPS system and
usually the user will be able to
determine the exact cause of the error
by merely looking at the Step concerned.

Indicates a reference to an undefined
local or global variable.

C.2 VOLUNTARY PROGRAM TERMINATION

Message $E Index

INRPT 0

Meaning

Signifies interruption of program
execution caused by typing CTRL C or
pressing the BREAK key.

C-4

EXPLANATION OF MUMPS MESSAGES

C.3 DEBUGGING AID MESSAGE

Message $E Index

?n BREAK None

C.4 MUMPS OPERATING SYSTEM

Message $E Index

GARBO None

GARBl None

GARB2 None

GARB3 None

GARB4 None

DBDGD -0.31

DKDER -0.33

DKFUL -0.26

DKHER -0.20

DK SER -0.04

Meaning

Indicates that program control has
reached a BREAK command at Step n.
BREAK commands are used to interrupt
execution of the program for debugging
purposes. The GO command may be typed
to resume operation.

ERROR MESSAGES

Meaning

Disk error while reading a data block.

Disk error while writing a data block.

Disk error while reading a bit map.

Disk error while writing a bit map.

Disk error, an attempt to deallocate a
bit map or data block not yet allocated.

NOTE

The above errors are disk errors
detected by the system's Garbage
Collector routine. The message
is output to the console
terminal. GARBl and GARB3
result in suspension of all disk
I/O until system restart.
Notify system manager.

Indicates a data base degradation. The
system attempted to read a block that
was not actually allocated. Notify
system manager.

Indicates that a disk I/O error occurred
on an attempt to write a global data
buffer. The error is not given until
the write is actually attempted.

Indicates that there is no more room on
the disk for global or program storage.
Caused by SET and FILE commands. Notify
system manager.

Indicates disk hardware error.
system manager.

Notify

In addition to conditions listed under
Section C.l, this may indicate that disk
block pointers in the global data base
reference nonexistent or invalid disk
blocks. Notify system manager.

C-5

Message

DSKDG

DTE RR

LP ERR

MTERR

PARER

PLDER

SWAP

EXPLANATION OF MUMPS MESSAGES

$E Index

-0.18

-0.30

-0.38

-0.37

None

-0.35

-0.32

Meaning

Indicates disk degradation. Attempt was
made to allocate bit map for data
storage. The system corrects the bit
map subsequent to this error. Notify
system manager.

Indicates DECtape hardware or operator
error. Common causes are:

1. not set to ON LINE

2. not set to WRITE ENABLE

3. unit number not selected

Indicates a line printer hardware error.
Common causes are:

1. device off line

2. out of paper

3, yoke open

4. power off

Indicates magtape hardware or operator
error as determined by the current
contents of the $A System Variable. The
system generates this error only if the
user SET the $E System Variable.

A parity error occurred on an
referencing an address in the
The job is HALTed, and that
cannot be reused.

11/70 when
partition.
partition

The system cannot retrieve the program
being LOADed, CALLed, or STARTed. The
FILE command did not complete writing
the program. The user must re-FILE the
back-up copy of the program.

Indicates

1. that the previous swap-out
overflowed the user partition stack.
The error is not reported until the
next swap-in.

2. imminent system stack overflow. May
be caused by faulty programming
techniques, for example:

C-6

1.10 F I=l:l:lOOO D 2
2.10 D 1

Message

SYSDG

SYS ER

EXPLANATION OF MUMPS MESSAGES

$E Index

-0.25

-0.22

Meaning

Indicates that the table in main memory
which represents the bit maps on a
physical disk unit (Disk Storage
Allocation Table) does not correspond to
the block allocation specified by the
disk's bit maps. The Disk Block Tally
Utility Program allows recovery from
this error. Notify system manager.

System stack underflow
Notify system manager.

C-7

on swapout.

APPENDIX D

SYMBOL USAGE

The following special symbols are used by MUMPS in addition to the
logical operators described in Chapter 2.

Symbol

?

Definition

Number sign is used as a format
initiate a Page Feed or a
device.

control character to
FORM FEED on an output

Exclamation point is used as a format control character
to initiate a Carriage RETURN/LINE FEED sequence on an
output device.

Question mark is multiply defined:

1. as an output format control character for
terminals, line printer and paper-tape punch, it is
followed by an nve to indicate the number of spaces
to tabulate in from the absolute left margin(e.g.,
?5=5 spaces from the left margin);

2. as an expression operator, it is followed by a
Pattern Specification Code (psc).

3. it is the first character printed when a BREAK
command or error interrupts a program's execution.

Comma is used as the term separator in an argument
list.

Space is multiply defined:

1. A command followed immediately by two
indicates the command has no arguments;

spaces

2. One space separates a command from its arguments,
or the last argument of a preceding command from
the next command on the line.

Colon is multiply defined:

1. a delimiter for field separation in the argument of
FOR, MODIFY, and ASSIGN commands.

2. used to indicate the presence of an optional
expression appended to a command or the argument of
a command (where allowed).

D-1

SYMBOL USAGE

Symbol Definition

>

$

%

1111

+ or

t or "

3. used to indicate the presence of an optional bve
appended to a command (;bve may not be appended to
FOR, ELSE or IF commands). If the bve is true, the
command is executed. If the bve is false, control
is passed to the next command on the line or the
next line (whichever is applicable). The "next
command on the line" is identified by skipping to
the second space following the bve. If a bve is
appended to a command no argument of that command
may contain a space (i.e., a string literal
enclosed in quotes).

Semicolon is used as a delimiter to indicate that the
remainder of a line is a comment.

Right caret is the prompting character used by MUMPS-11
when operating in Direct Mode to signal to the user
that the system is ready to accept a command; that is,
commands and functions may be entered for immediate
execution, or program steps may be entered for program
execution.

Dollar sign is multiply utilized.

1. precedes the first character of a System Variable.

2. precedes the first character of a function name.

Percent sign is used as the first character of a
library program or library global name.

Quotation marks are used to delimit literals.

Back arrow or underscore is used to specify the
indirection operation for command argument replacement.

Up-arrow or up caret precedes a global
reference.

D-2

variable

APPENDIX E

CONVERSION TABLES

2x IN DECIMAL
2' 2' 2'

0.001 100069 33874 62581 0.01 1.00695 55500 56719 0.1 107177 34625 36293
0.002 1.00138 72557 J 1335 0 02 101395 94797 90029 0.2 1.14869 83549 97035
0.003 100208 16050 79633 0.03 102101 21257 07193 0.3 123114 44133 44916
C.004 100277 64359 01078 0.04 1.02811 38266 56067 0.4 1.31950 79107 72894
0 005 1.00347 17485 09503 0.05 1.03526 49238 41377 0.5 1.41421 35623 73095
0.006 100416 75432 38973 0.06 104246 57608 41121 0.6 151571 65665 10398
0.007 1.00486 38204 23785 0.07 104971 66836 23067 0.7 1.62450 47927 12471
0.008 1.00556 05803 98468 0.08 105701 80405 61380 0.8 174110 11265 92248
0.009 1.00625 78234 97782 0.09].06437 01824 53360 0.9 186606 59830 73615

1o:cn IN OCTAL
10" n 10" 10" n 10-0

I 1.000 000 000 000 000 000 00 112 402 762 000 IO 0.000 000 000 006 676 337 66
J2 0 063 J46 314 63J 463 J46 31 I 35J 035 564 000 II 0.000 000 000 000 537 657 77

144 0.005 075 341 217 270 243 66 16 432 45J 210 000 12 0 000 000 000 000 043 136 32
I 750 0.000 406 Ill 564 570 65J 77 22J 411 634 520 000 J3 0.000 ODO 000 ODO 003 411 35

23 420 0.000 032 J55 613 530 704 15 657 J42 036 440 000 14 0.000 000 000 000 000 264 II

303 240 0.000 002 4 76 132 610 706 64 34 327 724 461 500 000 15 0.000 000 000 000 000 022 01
3 641 100 0.000 000 206 157 364 055 37 434 157 115 760 200 000 16 0.000 000 000 000 000 001 63

46 l J3 200 0 000 000 015 327 745 152 75 5 432 127 4J3 542 400 000 J 7 0.000 000 000 000 000 000 14
575 360 400 0.000 000 OOJ 257 J43 561 06 67 405 553 J64 731 000 000 18 0.000 000 000 000 000 000 01

7 346 545 000 0.000 000 000 104 560 276 41

n 10910 2, n 1092 10 IN DECIMAL
n n log'° 2 n log 2 10 n log 1o 2 n log2 10

0.30 I 02 99957 3.32J92 80949 6 1.80617 99740 19.93156 85693
0.60205 99913 6.64385 6J898 7 2.10720 99696 23 25349 66642
0 90308 99870 9.96578 42847 8 2.40823 99653 26.57542 47591
1.204 ll 99827 J3.2877J 23795 9 2.70926 99610 29.89735 ?8540
1505J4 99783 16.60964 04744 JO 3.01029 99566 33.2 J 928 09489

ADDITION AND MULTIPLICATION TABLES
Addition Multiplication

Binary Scale

0 i- 0 0 0 . 0 ~ 0
0 -- J = I -,- 0 c- J 0 ' I I ' 0 0

J -,-1 ·c JO 1 ' 1 - I

Octal Scale

OJ 02 03 04 05 06 07 02 03 04 05 06 07

02 03 04 05 06 07 JO 04 06 IO 12 J4 J6

03 04 05 06 07 JO IJ 06 JI J4 J7 22 25

04 05 06 07 JO JJ J2 JO J4 20 24 30 34

05 06 07 JO]] J2 J3 12 17 24 31 36 43

5 06 07 JO 11 12 J3 J4 14 22 30 36 44 52

07 JO]] J2 13 14 15 16 25 34 43 52 6J

JO JI 12 13 14 15 16

MATHEMATICAL CONSTANTS IN OCTAL SCALE
3.J J037 552421 o e = 2.55760 52J305o 0.44742 147707 B

;;--1 = 0.24276 301556a e-1 = 0.27426 5306610 In; - 0.43J27 233602,

\1:;=- :::::; l.61337 6Il067a \,e-:::..:: l.5J41 J 2307040 log2 ~, .0.62573 0306450

In,-;-= 1 ll206 404435s logrGe = 0.33626 75425Jo \12 = 1.32404 7463200

log2 :-:- = l.5J544 163223 8 log2 e -= 1.34252 !662450 In 2 =- 0.54271 0277600

\ITQ:::::: 3.12305 407267 o log2 10 = 3.24464 741 J36o Jn 10 = 2.23273 067355 8

E-1

CONVERSION TABLES

POWERS OF TWO
n -n

2 n 2
1.0

2 0.5
4 0.25
8

16
32 5
64 6

128 7
256 8
512 9
024 10
048 11

4 096 12
8 192 13

16 384 14
32 768 15
65 536 16

131 072 17
262 144 18
524 288 19
048 576 20
097 152 21
194 304 22

8 388 608 23
16 777 216 24
33 554 432 25
67 108 864 26

134 217 728 27
268 435 456 28
536 870 912 29
073 741 824 30

2 147 483 648 31
4 294 967 296 32
8 589 934 592 33

1 7 l 79 869 184 34
34 359 738 368 35
68 719 476 736 36

137 438 953 472 37
274 877 906 944 38
549 755 813 888 39
099 511 627 776 40
199 023 255 552 41

4 398 046 511 104 42
8 796 093 022 208 43

17 592 186 044 416 44
35 184 372 088 832 45
70 368 744 177 664 46

140 737 488 355 328 47
281 474 976 710 656 48
562 949 953 421 312 49
125 899 906 842 624 50
251 799 813 685 248 51
503 599 627 370 496 52

9 007 199 254 740 992 53
18 014 398 509 481 984 54
36 028 797 018 963 968 55
72 057 594 037 927 936 56

144 115 188 075 855 872 57
288 230 376 151 711 744 58
576 460 752 303 423 488 59
152 921 504 606 846 976 60
305 843 009 213 693 952 61

4 611 686 018 427 387 904 62
9 223 372 036 854 775 808 63

18 446 744 073 709 551 616 64
36 893 488 147 419 103 232 65
73 786 976 294 838 206 464 66

147 573 952 589 676 412 928 67
295 147 905 179 352 825 856 68
590 295 810 358 705 651 712 69
180 591 620 717 411 303 424 70

2 361 183 241 434 822 606 848 71
4 722 366 482 869 645 213 696 72

0.125
0.062
0.031 25
0.015 625
0.007 812
0.003 906 25
0.001 953 125
0.000 976 562
0.000 488 281 25
0.000 244 140 625
0.000 122 070 312
0.000 061 035 156 25
0.000 030 517 578 125
0 000 015 258 789 062
0.000 007 629 394 531 25
0 000 003 814 697 265 625
0000 001 907 348 632 812
0.000 000 953 674 316 406 25
0 000 000 476 837 158 203 125
0 000 000 238 418 579 101 562
0.000 000 119 209 289 550 781 25
0 000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312
0.000 000 014 901 161 193 847 656 25
0 000 000 007 450 580 596 923 828 125
0.000 000 003 725 290 298 461 914 062
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812
0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0 000 000 000 029 103 830 456 733 703 613 281 25
0000 000 000 014 551 915 228 366 851 806 640 625
0 000 000 000 007 275 957 614 183 425 903 320 312
0 000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125
0 000 000 000 000 909 494 701 772 928 237 915 039 062
0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
0.000 000 000 000 113 686 837 721 616 029 739 379 882 812
0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5
0 000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25
0000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
0 000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312
0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125
0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
0.000 000 000 000 000 Ill 022 302 462 515 654 042 363 166 809 082 031 25
0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
0.000 000 ooo ooo 000 027 755 575 615 628 913 510 590 791 702 270 5v7 812 5
0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125
0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562
0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25
0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312
0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
0 000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125
0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 640 043 497 085 571 289 062
0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25
0 000 000 000 000 000 000 013 552 527 156 068 805 425 093 160 010 874 271 392 822 265 625
0 000 000 000 000 000 000 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812 5
0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 290 002 718 51;7 848 205 566 406 25
0 000 000 000 000 000 000 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125
0 000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 500 679 641 962 051 391 601 562
0.000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 25
0.000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 625 169 910 490 512 847 900 390 625

E-2

0000
to

0777
(Octal)

0000
to

0511
(Decimal)

Octal Decimal
10000. 4096
20000. 8192
30000 . 12288
40000. 16384
50000 . 20480
60000 . 24576
70000 . 28672

1000
to

1777
(Octal)

0512
to

1023
(Decimal)

CONVERSION TABLES

OCTAL-DECIMAL CONVERSION
OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 I 2 J 4 5 6 7 0 1 2 J

0000 0000 0001 0002 000;3 0004 0005 0006 0007 0400 0256 0257 0258 0259
0010 0008 0009 0010 0011 0012 0013 0014 0015 0410 0264 0265 0266 0267
0020 0016 0017 0018 0019 0020 0021 0022 0023 0420 0272 027J 0274 0275
OOJO 0024 0025 0026 0027 0028 0029 OOJO 0031 0430 0280 0281 0282 028J
0040 I 0032 OOJ3 0034 0035 0036 0037 0038 0039
0050 0040 0041 0042 0043 0044 0045 0046 0047
0060 0048 0049 0050 0051 0052 005J 0054 0055

0440 0288 0289 0290 0291
0450 0296 0297 0298 0299
0460 OJ04 OJ05 OJ06 OJ07

0070 0056 0057 0058 0059 0060 0061 0062 006J 0470 OJI 2 0313 OJ14 OJI 5

0100 0064 0065 0066 0067 0068 0069 0070 0071 0500 OJ20 OJ21 0322 OJ2J
0110 0072 007J 0074 0075 0076 0077 0078 0079 0510 0328 0329 OJJO OJ31
0120 0080 0081 0082 008J 0084 0085 0086 0087 05<0 0336 OJ37 OJ38 0339
OIJO 0088 0089 0090 0091 0092 009J 0094 0095 0530 OJ44 OJ45 OJ46 OJ47
0140 I 0096 0097 0098 0099 0100 0101 0102 0103
0150 0104 0105 0106 0107 0108 0109 0110 0111

0540 OJ52 OJ5J OJ54 0355
0550 OJ60 OJ61 OJ62 OJ6J

0160 0112 0113 0114 0115 0116 0117 0118 0119 0560 OJ68 OJ69 OJ70 0371
0170 0120 0121 0122 0123 0124 0125 0126 0127 0570 OJ76 OJ77 OJ78 OJ79

0200 0128 0129 01 JO OIJI 01 J2 Ol 3J 0134 OIJ5 0600 OJ84 0385 OJ86 0387
0210 01 J6 O!J7 01 J8 0139 0140 0141 0142 014J 0610 OJ92 039J 0394 0395

022010144 0145 0146 0147 0148 0149 0150 0151
02JO 0152 0153 0154 0155 0156 0157 0158 0159
0240 0160 0161 0162 016J 0164 0165 0166 0167

0620 0400 0401 0402 0403
06JO 0408 0409 0410 0411
0640 0416 0417 0418 0419

0250 0168 0169 0170 0171 0172 0173 0174 0175 0650 0424 0425 0426 0427
0260 0176 0177 0178 0179 0180 0181 0182 018J 0660 04J2 04JJ 04J4 04J5
0270 0184 0185 0186 0187 0188 0189 0190 0191 0670 0440 0441 0442 044J

OJOO 0192 019J 0194 0195 0196 0197 0198 0199 0700 0448 0449 0450 0451
OJIO 0200 0201 0202 020J 0204 0205 0206 0207 0710 0456 0457 0458 0459

I OJ2d 0208 0209 0210 0211 0212 021J 0214 0215
OJJO 0216 0217 0218 0219 0220 0221 0222 022J

0720 0464 0465 0466 0467
0730 0472 0473 0474 0475

OJ40 0224 0225 0226 0227 0228 0229 02JO 02JI 0740 0480 0-181 0482 048J
OJ50 02J2 02J3 0234 0235 0236 02J7 0238 0239 0750 0488 0489 0490 0491
0360 0240 0241 0242 0243 0244 0245 0246 0247 0760 0496 0497 0498 0499
0370 0248 0249 0250 0251 0252 0253 0254 0255 0770 0504 0505 0506 0507

0 I 2 3 4 5 6 7 0 I 2 J

I 000 0512 051 J 0514 0515 0516 0517 0518 0519 1400 0768 0769 077Q 0771
I 010 0520 0521 0522 052J 0524 0525 0526 0527 1410 0776 0777 0778 0779
I 020 0528 0529 0530 0531 0532 053J 0534 0535 1420 0784 0785 0786 0787
1030 0536 05J7 0538 05J9 0540 0541 0542 054J 1430 0792 079J 0794 0795
1040 0544 0545 0546 0547 0548 0549 0550 0551 1443 0830 0801 0802 080J
1050 0552 055J 0554 0555 0556 0557 0558 0559 1450 0808 0.80~ 0810 0811
1060 0560 U561 0562 0563 0564 0565 0566 0567 1460 0816 0817 0818 0819
1070 0568 0569 0570 0571 0572 0573 0574 0575 1470 0824 0825 0826 0827

1100 0576 0577 0578 0579 0580 0581 0582 0583 1500 08J2 08J3 0834 08J5
1110 0584 0585 0586 o;a1 0588 0389 0590 0591 1510 0840 0841 0842 084J
1120 0592 0593 0594 O'.i95 0596 0597 0598 0599 1520 0848 0849 0850 0851
11 JO 0600 0601 0602 060J 0604 0605 0606 0607 l 5JO 0856 0857 0858 0859
1140 0608 0609 0610 0611 0612 0613 0614 0615 1540 0864 0865 0866 0867
115010616 0617 0618 0619 0620 0621 0622 0623
1160 0624 0625 0626 0627 0628 0629 0630 0631
1170 06J2 0633 06J4 0635 0636 06J7 0638 0639

1550 0872 087J 0874 0875
1560 0880 0881 0882 088J
1570 0888 0889 0890 0891

1200 0640 0641 0642 0643 0644 0645 0646 0647 1600 0896 0897 0896 0899
1210 0648 0649 0650 0651 0652 065J 0654 0655 1610 0904 0905 0906 0907
1220 0656 0657 0658 0659 0660 0661 0662 0663 1620 0912 0913 0914 0915
1230 0664 0665 0666 0667 0668 0669 0670 0671 16JO 0920 0921 0922 0923
1240 0672 0673 0674 0675 0676 0677 0678 0679 1640 0928 0929 0930 0931
1250 0680 0681 0682 068J 0684 0685 0686 0687 !650 09J6 0937 09J8 09J9
1260 0688 0689 0690 0691 0692 069J 0694 0695 1660 0944 0945 0946 0947
1270 0696 0697 0698 0699 0700 0701 0702 0703 1670 0952 095J 0954 0955

1300 0704 0705 0706 0707 0708 0709 0710 0711 1700 0960 0961 0962 0963
1 JlO 0712 0713 0714 0715 0716 0717 0718 0719 1710 0968 0969 0970 0971
I J20 0720 0721 0722 072J 0724 0725 0726 0727 1720 0976 0977 0978 0979
I J30 0728 0729 0730 07JI 07J2 07J3 0734 0735 1730 0984 0985 0986 0987
1340 0736 0737 0738 07J9 0740 0741 0742 0743 1740 0992 0993 0994 0995
I J50 0744 0745 0746 0747 0748 0749 0750 0751 1750 1000 1001 1002 1003
I J60 0752 0753 0754 0755 0756 0757 0758 0759 1760 1008 1009 1010 1011
I J70 0760 0761 0762 0763 0764 0765 0766 0767 1770 1016 1017 1018 1019

E-3

4 5 6 7

0260 0261 0262 0263
0268 0269 0270 0271
0276 0277 0278 0279
0284 0285 0286 0287
0292 0293 0294 0295
0300 OJOI 0302 OJ03
0308 OJ09 OJIO OJI I
OJI 6 0317 0318 OJI 9

OJ24 OJ25 OJ26 0327
03J2 OJ33 OJJ4 0335
OJ40 OJ41 OJ42 OJ4J
OJ48 OJ49 OJ50 OJ51
OJ56 OJ57 0358 OJ59
OJ64 0365 OJ66 OJ67
OJ72 OJ73 OJ74 OJ75
OJ80 OJ81 OJ82 OJ8J

OJ88 0389 OJ90 OJ91
OJ96 OJ97 OJ98 OJ99
0404 0405 0406 0407
0412 041 J 0414 0415
0420 0421 0422 042J
0428 0429 0430 04JI
04J6 0437 0438 04J9
0444 0445 0446 0447

0452 0453 0454 0455
0460 0461 0462 0463
0468 0469 0470 0471
0476 0477 0478 0479
0484 0485 0486 0487
0492 049J 0494 0495
0500 0501 0502 050J
0508 0509 0510 0511

4 5 6 7

0772 0773 0774 0775
0780 0781 0782 0783
0788 0789 0790 0191
0796 0797 0798 0799
0804 0805 0806 0807
0812 0813 0814 0815
0820 0821 0822 082J
0828 0829 0830 0831

0836 0837 0838 0839
0844 0845 0846 0847
0852 0853 0854 0855
0860 0861 0852 0863
0868 0869 0870 0871
0876 0877 0878 0879
0884 0885 0886 0887
0892 0893 089~ 0895

0900 0901 0902 0903
0908 0909 0910 0911
0916 0917 0918 0919
0924 0925 0926 0927
09J2 09J3 0934 0935
0940 0941 0942 0943
0948 0949 0950 0951
0956 0957 0958 0959

0964 0965 0966 0967
0972 0973 0974 0975
0980 0981 0982 0983
0988 0989 0990 0991
0996 0997 0998 0999
1004 1005 1006 1007
1012 1013 1014 1015
1020 1021 1022 1023

: 0

2000 I 1024
201011032
2020 1040
2030 I t 048
2040 i 1056
2050 1064
2060 \ 1012
207011080

2100 1088
211011096
212011104
2130 1112
214011120
2150 1128
2160 1136
2170 1144

2200 1152
2210 1160
2220 1168
2230 1176
2240 1184
2250 1192
2260 1200
2270 1208

2300 1216
2310 1224
2320 1232
2330 1240
2340 1248

: 2350 1256
l2360 1264
2370 1272

i 0

3000 11536
3010 i 1544
3020 i 1552
3030 I 1560
304011568
3050 1576
3060 1584
3070 1592

3100 1600
3110 1608

"'T"" 3130 1624
3140 1632
3150 1640
3160 1648
3170 1656

3200 1664
3210 1672
3220 1680
3230 1688
3240 1696
3250 1704
3260 1712
3270 1720

3300 1728
3310\1736
3320 1744
3330 1752
3340 1760

l3350 1768
3360 1776
3370 1784

CONVERSION TABLES

OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued)

1 2 3 4 5 6 7 0 1

1025 1026 1027 1028 1029 1030 1031 2400 1280 1281
1033 1034 1035 1036 1037 1038 1039 2410 1288 1289
I 041 1042 1043 1044 1045 1046 1047 2420 1296 1297
1049 1050 1051 1052 1053 1054 1055 2430 1304 1305
I 057 1058 1059 1060 1061 1062 1063 2440 1312 1313
1065 1066 1067 1068 1069 1070 1071 2450 1320 1321
1073 1074 1075 1076 1077 1078 1079 2460 1328 1329
1081 1082 1083 1084 1085 1086 1087 2470 1336 1337

1089 1090 1091 1092 1093 1094 1095 2500 1344 1345
l 097 1098 1099 1100 1101 1102 1103 2510 1352 1353
1105 1106 1107 1108 1109 1110 1111 2520 1360 1361
1113 1114 1115 1116 1117 1118 1119 2530 1368 1369
1121 1122 1 :23 1124 1125 1126 1127 2540 1376 1377
1129 1130 1131 1132 1133 1134 1135 2550 1384 1385
1137 1138 1139 1140 1141 1142 1143 2560 1392 1393
1145 114G 1147 1148 1149 1150 1151 2570 1400 1401

1153 1154 1155 1156 1157 1158 1159 2600 1408 1409
1161 1162 1163 1164 1165 1166 1167 2610 1416 1417
1169 1170 1171 1172 1173 1174 1175 2620 1424 1425
1177 1178 1179 1180 1181 1182 1183 2630 1432 1433
1185 1186 1187 1188 1189 1190 1191 2640 1440 1441
1193 1194 1195 1196 1197 1198 1199 2650 1448 1449
1201 1202 1203 1204 1205 1206 1207 2660 1456 1457
1209 1210 1211 1212 1213 1214 1215 2670 1464 1465

1217 1218 1219 1220 1221 1222 1223 2700 1472 1473
1225 1226 1227 1228 1229 1230 1231 2710 1480 1481
1233 1234 1235 1236 1237 1238 1239 2720 1488 1489
1241 1242 1243 1244 1245 1246 1247 2730 1496 1497
1249 1250 1251 1252 1253 1254 1255 2740 1504 1505
1257 1258 1259 1260 1261 1262 1263 2750 1512 1513
1265 1266 1267 1268 1269 1270 1271 2760 1520 1521
1273 1274 1275 1276 1277 1278 1279 2770 1528 1529

I 2 3 4 5 6 7 0 1

1537 1538 1539 1540 1541 1542 1543 3400 1792 1793
1545 1546 1547 1548 1549 1550 1551 3410 1800 1801
1553 1554 1555 1556 1557 1558 1559 3420 1808 1809
1561 1562 1563 1564 1565 1566 1567 3430 1816 1817
1569 1570 1571 1572 1573 1574 1575 3440 1824 1825
1577 1578 1579 1580 1581 1582 1583 3450 1832 1833
1585 1586 1587 1588 1589 1590 1591 3460 1840 1841
1593 1594 1595 1596 1597 1598 1599 3470 1848 1849

1601 1602 1603 1604 1605 1606 1607 3500 1856 1857
1609 1610 1611 1612 1613 1614 1615 3510 1864 1865
1617 1618 1619 1620 1621 1622 1623 3520 1872 1873
1625 1626 1627 1628 1629 1630 1631 3530 1880 1881
1633 1634 1635 1636 1637 1638 1639 3540 1888 1889
1641 1642 1643 1644 1645 16<\6 1647 3550 1896 1897
1649 1650 1651 1652 1653 1604 1655 3560 1904 1905
1657 1658 1659 1660 .1661 1662 1663 3570 1912 1913

1665 1666 1667 1668 1669 1670 1671 3600 1920 1921
1673 1674 1675 1676 1677 1678 1679 3610 1928 1929
1681 1682 1683 1684 1685 1686 1687 3620 1936 1937
1689 1690 1691 1692 1693 1694 1695 3630 1944 1945
1697 1698 1699 1700 1701 1702 1703 3640 1952 1953
1705 1706 1707 1708 1709 1710 1711 3650 1960 1961
1713 1714 1715 1716 1717 1718 1719 3660 1968 1969
1721 1722 1723 1724 1725 1726 1727 3670 1976 1977

1729 1730 1731 1732 1733 1734 1735 3700 1984 1985
1737 1738 1739 1740 1741 1742 1743 3710 1992 1993
1745 1746 1747 1748 1749 1750 1751 3720 2000 2001
1753 1754 1755 1756 1757 1758 1759 3730 2008 2009
1761 1762 1763 1764 1765 1766 1767 3740 2016 2017
1769 1770 1771 1772 1773 1774 1775 37 50 2024 2025
1777 1778 1779 1780 1781 1782 1783 3760 2032 2033
1785 1786 1787 1788 1789 1790 1791 3770 2040 2041

E-4

2 3 4

1282 1283 1284
1290 1291 1292
1298 1299 1300
1306 1307 1308
1314 1315 1316
1322 1323 1324
133.0 1331 1332
1338 1339 1340

1346 1347 1348
1354 1355 1356
1362 1363 1364
1370 1371 1372
1378 1379 1380
1386 1387 1388
1394 1395 1396
1402 1403 1404

1410 1411 1412
1418 1419 1420
1426 1427 1428
1434 1435 1436
1442 1443 1444
1450 1451 1452
1458 1459 1460
1466 1467 1468

1474 1475 1476
1482 1483 1484
1490 1491 1492
1498 1499 1500
1506 1507 1508
1514 1515 1516
1522 1523 1524
1530 1531 1532

2 3 4

1794 1795 1796
1802 1803 1804
1810 1811 1812
1818 1819 1820
1826 1827 1828
1834 1835 1836
1842 1843 1844
1850 1851 1852

1858 1859 1860
1866 1867 1868
1874 1875 1876
1882 1883 1884
1890 1891 1892
1898 1899 1900
1906 1907 1908
1914 1915 1916

1922 1923 1924
1930 1931 1932
1938 1939 1940
1946 1947 1948
1954 19:,5 1956
1962 1963 1964
1970 1971 1972
1978 1979 1980

1986 198°1 1988
1994 1995 1996
2002 2003 2004
2010 2011 2012
2018 2019 2020
2026 2027 2028
2034 2035 2036
2042 2043 2044

5 6

1285 1286
1293 1294
1301 1302
1309 1310
1317 1318
1325 1326
13~3 1334
1341 1342

1349 1350
1357 1358
1365 1366
1373 1374
1381 1382
1389 1390
1397 1398
1405 1406

1413 1414
1421 1422
1429 1430
1437 1438
1445 1446
1453 1454
1461 1462
1469 1470

1477 1478
1485 1486
1493 1494
1501 1502
1509 1510
1517 1518
1525 1526
1533 1534

5 6

1797 1798
1805 1806
1813 1814
1821 1822
1829 1830
1837 1838
1845 1846
1853 1854

1861 1862
1869 1870
1877 1878
1885 1886
1893 1894
1901 1902
1909 1910
1917 1918

1925 1926
1933 1934
1941 1942
1949 1950
1957 1958
1965 1966
1973 1974
1981 1982

1989 1990
1997 1998
2005 2006
2013 2014
2021 2022
2029 2030
2037 2038
2045 2046

7

1287
1295
1303
1311
1319
1327
1335
1343

1351
1359
1367
1375
1383
1391
1399
1407

1415
1423
1431
1439
1447
1455
1463
1471

1479
1487
1495
1503
1511
1519
1527
1535

7

1799
1807
1815
1823
1831
1839
1847
1855

11163
1871
1879
1887
1895
1903
1911
1919

1927
1935
1943
1951
1959
1967
1975
1983

1991
1999
2007
2015
2023
2031
2039
2047

2000 I 1024 to to
2777 1535

(Octal) (Decimal)

Octal Decimal
10000. 4096
20000. 8192
30000 . 12288
40000 . 16384
50000 . 20480
60000. 24576
70000 . 28672

3000
to

3777
(Octal)

1536
to

2047
(Decimal)

CONVERSION TABLES

OCTAL~DIECIMAL INTEGER CONVERSION TABLE (continued)

4000 I 2048
to to

4777 2559
(Octal) (Decimal)

Octal Decimal
10000. 4096
20000. 8192
30000 . 12288
40000. 16384
50000 . 20480
60000 . 24576
70000 . 28672

5000 I 2560
to to

5777 3071
(Octal) (Decimal)

I () I 0 8

4000 2048 20·19 2050 2051 2052 2053 2054 2055
4.010 20'.JG 2057 2058 2059 2060 2061 2()62 2063
4(1~0 ?PG•I 2065 2066 2067 2068 2069 2070 20'/l

40JOI 207?. 2073 2074 2075 2076 2077 2078 2079
4040 1 20HO 2081 2082 2083 2084 2085 2086 2087
40'10 i 20R8 2089 2o<JO 2091 2092 2093 2094 2095
1or,ol 2096 2097 2098 2099 2100 2101 2102 2103
10701 '.' 104 210J 2106 2107 2108 2109 2110 2111

4100, 7112 2113 2114 2115 2116 2117 2118 21191
4110(2120 2121 2122 2123 2124 2125 2126 2127
4120' 2128 2129 2130 2131 2132 2133 2134 2135
4130 2136 2137 2138 2139 2140 2141 2142 2143
4140 2144 214S 214G 2147 2148 2149 2150 2151
4150 21 :12 2153 2154 2155 2156 2157 2158 2159
4160 2160 ?.161 2162 2 I 6J 2164 2165 2166 216'7
4170 2168 2169 2170 2171 2172 2173 2174 2175

420012176 2177 2178 2179 2180 2181 2182 2183
4210 2184 2185 2186 2187 21 BB 2189 2190 2191
4220 2192 2193 2194 2195 2196 2197 2198 2199

4230i 2200 2201 2202 2203 2204 2205 2206 2207

42401 2?.08 2209 2210 2211 2212 2213 2214 2215
42501 2216 2217 2218 2219 2220 2221 2222 2223
4260 2224 2225 2226 2227 2228 2229 2230 2231
4270 2232 2233 2234 2235 2236 2237 2238 2239

4300 2240 2HI 2242 2243 2244 2245 2246 2247
4310 2248 22'9 2250 2251 2252 2253 2254 2255
4320 2256 2257 2258 2259 2260 2261 2262 2263
4330 i 2264 2265 2266 2267 2268 22G9 2270 2271
434012272 2273 2274 2275 2276 2277 2278 2279
435012280 2281 2282 2283 2284 2285 2286 2287
4360, t.:'68 2289 2290 2?.91 2292 2293 2294 2295
4 370 i 2296 2297 2298 2299 2300 2301 ~~ -----··--

' '
I 0 6 7 I

2566 25671 500[): 2560 2561 25C2 2563 2564 2565

soi o I 2568 2569 2570 2571 2572 2573 2574 25751
5020 [2576 2577 2578 2579 2580 2581 ::5B2 2583

1 5030: 2584 ?.SSS 2586 2587 2588 258~ 2590 2591
5040: 2592 2593 2594 2595 2596 2597 2598 2599
5050 2600 2601 2602 2603 2S04 2605 2606 2607
5060 2608 2609 2610 2611 2612 2613 2614 2615
5070 2616 2Cl 7 2ol 8 2619 2620 2£21 2622 2623

5100 I 2624 262) 2626 2627 2628 2629 2630 2631
5110:2632 26'.13 2634 2635 2636 2637 2638 2639
5120 '?640 2641 2642 264 3 2644 2645 2646 2647
513o·:G48 2649 2650 2G5 I 2652 2G53 2654 2655
5140: 2656 2G57 2658 2G59 2660 2661 2662 2663
5!50i26G4 2665 2666 2667 2668 2669 2670 2671
51 GO 2672 267 3 2674 267$ 2676 2677 2678 2679

5170 2680 2681 2682 2683 2684 2685 2686 2687

5200 2688 2689 2690 2691 2692 2693 2694 2695
5210 2696 2G97 2698 2699 2700 2701 2702

27031
5220 27U4 2705 2706 :107 2708 2709 2710 271 I
5230 :!I 12 2713 2714 2715 2716 2717 2718 2719
5240 2720 2721 2722 2723 2i24 2725 2i26 2727 I
5250 2723 2729 2730 27Jl 2732 2733 2734 27351
<>260 273G 2737 2738 2739 2740 2741 2742 27431
5270 2744 2745 2746 2747 2748 2749 2750 2751

5300 ?.7S2 2753 ~7J4 275$ 2756 2757 2758 2759

5310 2760 2761 2762 2763 2764 2765 2766 2767

5320 2768 2769 2770 2771 2772 2773 2774 2775
5330 2776 2777 2778 2779 2780 2781 2782 2783
5340 2781 2785 2786 2787 2788 2789 2790 2791
5350 2792 2793 2794 2795 2796 2797 2798 2799

5360 2800 2801 2802 2803 2804 2805 2806 2807

5370 2608 2809 2810 2811 2812 2813 2814 2815

E-5

4400 2304
4410 2312
4420 2320
4430, 2328
4440 I 2336
4450 ! 2344
4460 I 2352
4470 1 2360

450012368
451012376
4520 r 2384
4~30 I 2392
4540 [2400
4550 '1· 2408
456012416
4570. 2424

4600 12432

1

4610 2440
4620 2448
4630 i 2456
4640 2464
4650 I 2472
466012480
4670 I 2488

2305
2313
2321
2329
2337
2345
2353
2361

2369
2377
2385
2393
2401
2409
2417
2425

2306
2314
2322
2330
2338
2346
2354
2362

2370
2378
2386
2394
2402
2410
2418
2426

2433 2434
2441 2442
2449 24 50
2457 2458
2465 2466
2473 2474
2481 2482
2489 2490

2307
2315
2323
2331
2339
2347
2355
2363

2371
2379
2387
2395
2403
2411
2419
2427

2435
2443
2451
2459
2467
2475
2483
2491

2308
2316
2324
2332
2340
2348
2356
2364

2372
2380
2388
2396
2404
2412
2420
2428

2436
2444
2452
2460
2468
2476
2184
2492

2309 2310 2311
2317 2318 2319
2325 2326 2327
2333 2334 2335
2341 2342 23'13
2349 2350 2351
2357 2358 2359
2365 2366 2367

2373 2374 2375
2381 2382 2383
2389 2390 2391
2397 2398 2399
2405 2406 2407
2413 2414 2415
2421 2422 2423
2429 2430 2431

2437
2445
245J
2461
2469
2477
2485
2493

2438
2446
2454
2462
2470
2478
2486
2494

2439
2447
2455
24~3
2471
2479
2487
2495

4700. 2496 2497 2498 2499 2500 2501 2502
4710112504 2505 2506 2507 2508 2509 2510
4720 2512 2513 2514 2515 2516 2517 2518
473012520 2521 2522 2523 2524 2525 2526
4740' 2528 2529 2530 2531 2532 2533 2534

44776500 ',! :~,~~ 2537 2538 2539 2540 2541 2542

2503
2511
2519
2527
2535
2543
2551
2559

"' , 2545 2546 2547 2548 2549 2550
i 4770 i 2552 __ 2_55_3_2_55_4_25_5_5~~5_56_2557 2558

0 I 2 3 4 5 6

f5400!2s16 2817 2818 2819 2820 28?. I 2822

541012824 2825 2626 2827 2828 2829 2830

15420 2832 2333 2834 2835 2836 2837 2838
5430 2840 2841 2842 2843 2844 2845 2846
544012848 2849 2850 2851 2852 2853 2854

545012856 2857 2858 2859 2860 2861 2862
5460 2864 2865 2866 2867 2868 2869 2870

. 547012872 2873 2874 2875 2876 2877 2878

5500 I 2880 2881 2882 2883 2884 2885 2886

551012888 2889 2890 2891 2892 2893 2894
5520 2896 2897 2898 2899 2900 2901 2902
553012904 2905 2906 2907 2908 2909 2910
5540·2912 2913 2914 2915 2916 2917 2918

555012920 2921 2922 2923 2924 2925 2926
5560 2928 2929 2930 2931 2932 2933 2934
5570 2936 2937 2938 2939 2940 2941 2942

I
5600 i 2944 2945 2945 2947 2948 2949 2950
5610 i2952 2953 2954 2955 2956 2957 2958

j 5s20 '2960 2961 2962 2963 2964 2965 2966
, 5630 I 29GB 29G9 2970 2971 2972 2973 2974

I 5640 i 2976 2917 2978 2979 2980 2981 2982
5650 2934 2985 2986 2987 2983 2989 2990
5660 12992 2393 2994 2995 2996 2997 2998

567013000 3001 3002 3003 3004 3005 3006

S700 3008 3009 3010 3011 3012 3013 3014

571013016 3017 3018 3019 3020 3021 3022
5720 3024 3025 3026 3027 3028 3029 3030
5730 3032 3033 3034 3035 3036 3037 3038
5740 3040 3041 3042 3043 3044 3045 3046
5750 3048 3049 3050 3051 3052 3053 3054

5760 3056 3057 3058 3059 3060 3061 3062
5770 3064 3065 3066 3067 3068 3069 3070

7

2823
2831
2839
2847
2855
2863
2E71
287U

2887
289~
2903
2911
2919
2927
2935
2943

2951
2959
2967
2975
2983
2991
2999
3007

3015
3023
3031
3039
3047
3055
3063
3071

0

6000 3072
6010 3080
6020 3088
6030 3096
6040 3104
6050 3112
6060 3120
6070 3128

6100 3136
6110 13144
6120)3152
6130 3160
6140 3168
6150 3176
6160 3184
6170 3192

16200 3200
6210 3208
6220 3216
6230 3224
6240 3232
6250 3240
6260 3248
6270 3256

6300 3264
6310 3272
6320 3280
6330 3288
6340 3296
6350 3304
636013312
6370 3320

0

7000 3584
7010 3592

' 7020 3600
7030 3608
7040 3616
7050 3624
7060 3632
7070 3640

7100 3648
7110 3656
7120 3664
7130 3672
7140 3680
7150 3688
7160 3696
7170 3704

?200 3712
7210 3720
7220 3728
7230 3736
7240 3744
7250 3752
7280 3780
7270 3768

?300 3776
7310 3784
7320 3792
7330 3800
7340 3808
7350 3818
7360 3824
7370 3832

CONVERSION TABLES

OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued)

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

3073 3074 3075 3076 3077 3078 3079 6400 3328: 3329 3330 3331 3332 3333 3334 3335
3081 3082 3083 3084 3085 3086 3087 6410 3335: 3337 3338 3339 3340 3341 3342 3343
3089 3090 3091 3092 3093 3094 3095 6420 3344. 3345 3346 3347 3348 3349 3350 3351
3097 3098 3099 3100 3101 3102 3103 6430 3352" 3353 3354 3355 3356 3357 3358 3359
3105 3106 3107 3108 3109 3110 3111 6440 3360 3361 3362 3363 3364 3365 3366 3367
3113 3114 3115 3116 3117 3118 3119 6450 3368 3369 3370 3371 3372 3373 3374 3375
3121 3122 3123 3124 3125 3126 3127 6460 3376 3377 3378 3379 3380 3381 3382 3383
3129 3130 3131 3132 3133 3134 3135 6470 3384 3385 3386 3387 3388 3389 3390 3391

3137 3138 3139 3140 3141 3142 3143 6500 3392 3393 3394 3395 3396 3397 3398 3399
3145 3146 3147 3148 3149 3150 3151 6510 3400 3401 3402 3403 3404 3405 3406 3407
3153 3154 3155 3156 3157 3158 3159 6520 3408 3409 3410 3411 3412 3413 3414 3415
3161 3162 3163 3164 3165 3166 3167 6530 3416 3417 3418 3419 3420 3421 3422 3423
3169 3170 3171 3172 3173 3174 3175 6540 3424 3425 3426 3427 3428 3429 3430 3431
3177 3178 3179 3180 3181 3182 3183 6550 3432 3433 3434 3435 3436 3437 3438 3439
3185 3186 3187 3188 3189 3190 3191 6560 3440 3441 3442 3443 3444 3445 3446 3447
3193 3194 3195 3196 3197 3198 3199 6570 3448 3449 3450 3451 3452 3453 3454 3455

3201 3202 3203 3204 3205 3206 3207 6600 3456 3457 3458 3459 3460 3461 3462 3463
3209 3210 3211 3212 3213 3214 3215 6610 3464 3465 3466 3467 3468 3469 3470 3471
3217 3218 3219 3220 3221 3222 3223 6620 3472 3473 3474 3475 3476 3477 3478 3479
3225 3226 3227 3228 3229 3230 3231 6630 3480 3481 3482 3483 3484 3485 3486 3487
3233 3234 3235 3236 3237 3238 3239 6640 3488 3489 3490 3491 3492 3493 3494 3495
3241 3242 3243 3244 3245 3246 3247 6650 3496 3497 3498 3499 3500 3501 3502 3503
3249 3250 3251 3252 3253 3254 3255 6660 3504 3505 3506 3507 3508 3509 3510 3511
3257 3258 3259 3260 3261 3262 3263 6670 3512 3513 3514 3515 3516 3517 3518 3519

3265 3266 3267 3268 3269 3270 3271 6700 3520 3521 3522 3523 3524 3525 3528 3527
3273 3274 3275 3276 3277 3278 3279 6710 3528 3529 3530 3531 3532, 3533 3i34 3535
3281 3282 3283 3284 3285 3286 3287 6720 3536 3537 3538 3539 3540 3541 3542 3543
3289 3290 3291 3292 3293 3294 3295 6730 3544 3545 3546 3547 3548 3549 3550 3551
3297 3298 3299 3300 3301 3302 3303 6740 3552 3553 3554 3555 3556 3557 3558 3559
3305 3306 3307 3308 3309 3310 3311 6750 3560 3561 3562 3563 3564 3565 3566 3567
3313 3314 3315 3316 3317 3318 3319 6760 3568 3569 3570 3571 3572 3573 3574 3575
3321 3322 3.323 3324 3325 3326 3327 6770 3576 3577 3578 3579 3580 3581 3582 3583

1 2 3 4 5 6 7 0 I 2 3 4 5 6 7

3585 3586 3587 3588 3589 3590 3591
3593 3594 3595 3596 3597 3598 3599

7400 3840 3841 3842 3843 3844 3845 3846 3847.I
7410 3848 3849 3850 3851 3852 3853 3854 3855

3601 3602 ~603 3604 3605 3606 3607 7420 3856 3857 3858 3859 3860 3861 3862 3863
3609 3610 3611 3612 3613 3614 3615 7430 3864 3865 3866 3867 3868 3869 3870 3871
~617 3618 3619 3620 3621 3622 3623 7440 3872 3873 3874 3875 3876 3877 3878 3879
3625 3626 3627 3628 3629 3630 3631 7450 3880 3881 3882 3883 3884 3885 3886 3887
3633 3634 3635 3636 3637 3638 3639 7460 3888 3889 3890 3891 3892 3893 3894 3895
3641 3642 3643 3644 3645 3646 3647 7470 3896 3897 3898 3899 3900 3901 3902 3903

3649 3650 3651 3652 3653 3654 3655 750b 3904 3905 3906 3907 3908 !\909 3910 3911
3657 3658 3659 3660 3661 3662 3663 7510 3912 3913 3914 3915 3916 3917 3918 3919
3665 3666 3667 3668 3669 3670 3671 752P 3920 3921 3922 3923 3924 3925 3926 3927
3673 3674 3675 3676 3677 3678 3679 7530 3928 3929 3930 3931 3932 3933 3934 3935
3681 3682 3683 3684 3685 3686 3687 7540 3936 3937 3938 3939 3940 3941 3942 3943
3689 3690 3691 3692 3693 3694 3695
3697 3698 3699 3700 3701 3702 3703

7550 3944 3945 3946 3947 3948 3949 3950 3951
7560 3952 3953 3954 3955 3956 3957 3958 3'959

3705 3706 3707 3708 3709 3710 3711 7570 3960 3961 3962 3963 3964 3965 3966 3967

3713 3714 3715 3716 3717 3718 3719 7600 3968 3969 3970 3971 3972 3973 3974 3975
3721 n22 3723 3724 3725 3726 3727 7610 3976 3977 3978 3979 3980 3981 3982 3983
31129 3730 3731 3732 3733 3734 3735 7620 3984 3985 3986 3987 3988 3989 3990 3991
3737 3738 3139 3740 3741 3742 3743 7630 3992 3993 3994 3995 3996 ~997 3998 3999
3745 3746 3747 3748 3749 3750 3751 7640 4000 4001 4002 4003 4004 4005 4006 4007
3753 3754 3755 3756 3757 3758 3759 7650 4008 4009 4010 4011 4012 4013 4014 4015
3761 3782 3763 3764 3765 3768 3767 7660 4016 4017 4018 4019 4020 4021 1022 4023
3769 3770 3771 3772 3773 3774 3775 7670 4024 4025 4026 4027 4028 4029 4030 4031

3777 3778 3779 3780 3781 3782 3783 7700 4032 4033 4034 4035 4036 4037 4038 4039
3785 3786 3787 3788 3789 3790 3791 '7710 4040 4041 4042 4043 4044 4045 4046 4047
3793 3794 3795 3796 3797 3798 3799 7720 4048 4049 4050 4051 4052 4053 4054 4055
3801 3802 3803 3804 3805 3806 3807 7730 4056 4057 4058 4059 4060 4061 4062 4083
3809 3810 3811 3812 3813 3814 3815 7740 4084 4085 4066 4067 4088 4069 4070 4071
3817 3818 3819 3820 3821 3822 3823 7750 4072 4073 4074 4075 4078 4077 4078 4079
3825 3826 3827 3828 3829 3830 3831 7760 4080 4081 4082 4083 4084 4085 4086 4087
3833 3834 3835 3838 3837 3838 3839 7770 40&8 4089 4090 4091 4092 4093 4094 4095

E-6

6000 I 3072 to to
6777 3583

(Octal) (Decimal)

Octal Decimal
10000- 4096
20000· 8192
30000. 12288
40000 . 16384
50000 . 20480
60000 . 24576
70000 . 28672

7000 I 3584 to to
7777 4095

(Octal) (Decimal)

CONVERSION TABLES

OCTAL-DECIMAL FRACTION CONVERSION TABLE

Octal Decimal Octal Decimal Octal Decimal Octal Decimal

.ooo . ooqooo • 100 . 125000 • 200 • 250000 • 300 • 375000

. 001 • 001953 • IOI • 126953 • 201 • 251953 • 301 . 37G953
• 002 • 003906 • 102 . 128906 . 202 . 25390G . 302 . 378~01,

• 003 . 005859 .103 . 130859 . 203 . 255859 .303 . 380859
• 004 .007812 • 104 . 132812 • 204 . 257812 . 304 .382812
• 005 . 009765 . 105 • 134765 . 205 . 259765 . 305 • 384 7fi5
• 006 . 011718 .106 • 136718 . 206 . 2G1718 .JOG .38G718
• 007 . 013671 . 107 .138671 • 207 • 263671 . 307 • 388G71

• 010 . 015625 • llO . 140625 • 210 . 2G5625 .310 . 390G25
. 011 .017578 • ll l • 142578 • 211 . 267578 . 311 .3n578
. 012 . 019531 • ll2 • 144531 • 212 . 269531 • 312 . 394531
• 013 . 021484 • ll3 • 146484 • 213 . 271484 . 313 . 39G484
.014 • 023437 .114 • 148437 . 214 • 273437 . • 314 . 398437
• 015 • 025390 .115 • 150390 . 215 . 275390 • 315 • 400390
• 016 • 027343 .116 • 152343 .216 . 277343 .316 . 402343
. 017 • 029296 • ll7 • 154296 . 217 . 279296 .317 .404296

• 020 • 031250 .120 • 156250 • 220 • 281250 • 320 . 406250
• 021 • 033203 . 121 • 158203 . 221 • 283203 . 321 . 408203
. 022 • 035156 .122 , 160156 . 222 • 285156 • 322 • 410156

. 023 .037109 .123 .162109 • 223 • 287109 • 323 . 412109

. 024 . 039062 . 124 • 164062 • 224 . 289062 • 324 • 4140G2

.025 . 041015 .125 • 166015 . 225 • 291015 • 325 .41G015

. 026 . 042968 , 126 . 167968 • 226 . 292968 . 326 .417968
• 027 • 044921 • 127 .169921 • 227 • 294921 . 327 . 419921

. 030 . 046875 .130 . 171875 • 230 . 296875 . 330 • 421875

. 031 . 048828 . 131 • 173628 .231 • 298828 • 331 • 423828

. 032 . 050781 .132 • 175781 • 232 • 300781 . 332 • 426781

. 033 . 052734 .133 .1'7734 • 233 . 302734 . 333 • 427734

. 034 . 054687 • 134 • 179687 . 234 . 304687 • 334 .429687

. 035 • 056640 • 135 • 181640 • 235 . 306640 • 335 . 431640

. 036 . 058593 .136 . 183593 . 236 . 308593 . 336 • 433593

. 037 . 060546 • 137 • 18554G . 237 . 310546 • 337 • 435546

. 040 . 062500 • 140 .187500 . 240 • 312500 . 340 . 437500

.041 . 064453 • 141 . 189453 . 241 . 314453 . 341 • 439453

. 042 . 06G406 . 142 . 19140G . 242 . 316406 • 342 • 441406

. 043 . 068359 . 143 • 193359 . 243 .318359 . 343 . 443359

. 044 .070312 . 144 .195312 . 244 • 320312 . 344 . 445312

. 045 . 072265 . 145 . 197265 . 245 • 322265 . 345 • 44 7265
• 046 .074218 • 146 .199218 . 246 • 324218 • 346 . 449218
• 047 .07G171 . 147 .20ll71 . 247 .326171 • 347 ,451171

. o5o . 078125 • 150 .203125 • 250 • 328125 . 350 .453125

. 051 . 080078 .151 • 205078 . 251 • 330078 • 351 • 455078
• 052 . 082031 .152 • 207031 • 252 • 332031 • 352 • 457031
• 053 . 083984 • 153 • 208984 • 253 • 333984 • 353 • 458984
. 054 . 085937 .154 • 210937 . 254 • 335937 • 354 • 460937
. 055 . 087890 • 155 • 212890 • 255 • 337890 • 355 • 462890
• 056 • 089843 .156 • 214843 . 256 • 339843 • 356 .464843
. 057 • 091796 • 157 .216796 • 257 .341796 • 357 ,466'796

. 060 . 093750 • 160 • 218750 . 260 • 343750 .360 • 468750

. 061 . 095703 .161 • 220703 • 261 • 345703 • 361 • 470703

. 062 . 097656 . 162 • 222656 • 262 • 34 7656 • 362 • 4 72656

. 063 . 099609 • 163 • 224609 • 263 • 349609 • 363 ,474609

. 064 . 101562 . IG4 • 226562 . 264 • 351562 • 364 • 476562

. 065 . 103515 . 165 • 228515 • 265 • 353515 . 365 .478515

. OGG . 1054b8 • 166 • 230468 . 266 • 355468 . 366 • 4'30468

. 067 . 107421 • 167 . 232421 . 267 • 357421 • 367 • 482421

. 070 . 109375 • 170 . 234375 • 270 • 359375 • 370 • 484375

. 071 . 111323 • 171 . 236328 . 271 . 361328 • 371 .486328

. 072 .113281 . 172 .238281 • 272 • 3G3281 ,372 .4882Bl

. 073 • 115234 . 173 • 240234 • 273 . 365234 .373 • 490234

. 074 • 117187 . 174 .242187 . 274 • 367187 ,374 ,492187

. 075 . 119140 . 175 .244140 • 275 • 369140 • 375 • 494140

. 076 . 121093 • 176 • 246093 • 276 • 371093 ,376 • 496093

. 077 • 123046 • 177 . 248046 • 277 • 373046 • 377 • 498046

E-7

CONVERSION TABLES

OCTAL-DECIMAL FRACTION CONVERSION TABLE (continued)

Octal Decimal Octal Decimal Octal Decimal Octal Decimal

.000000 • 000000 .000100 • 000244 • 000200 • 000488 • 000300 • 000732

• 000001 • 000003 • 000101 • 000247 • 000201 • 000492 • 000301 • 000736

• 000002 • 000007 • 000102 • 000251 • 000202 • 000495 .000302 • 000740

• 000003 • 000011 • 000103 .000255 • 000203 • 000499 • 000303 • 000743

• 000004 • 000015 • 000104 • 000259 • 000204 • 000503 • 000304 • 000747

• 000005 • 000019 • 000105 • 000263 • 000205 • 000507 • OrJ0305 • 000751

• 000006 • 000022 • 000106 • 000267 • 000206 • 000511 • 000306 • 000755

• 000007 • 000026 • 000107 • 000270 • 000207 • 000514 • 000307 • 000759

• 000010 • 000030 ,000110 • 000274 • 000210 • 000518 • 000310 • 000762

• 000011 • 000034 • 000111 • 000278 • 0002ll • 000522 • 000311 . 000766

• 000012 • 000038 • 000112 • 000282 • 000212 • 000526 • 000~12 • 000770

• 000013 • 000041 • 000113 • 000286 • 000213 • 000530 • 000313 • 000774

• 000014 • 000045 • 000114 ,000289 • 000214 • 000534 • 000314 • 000778

• 000015 • 000049 • 000115 • 000293 • 000215 • 000537 '000315 • 000782

• 000016 • 000053 • 000116 • 000297 • 000216 • 000541 • 000316 • 000785

,000017 • 000057 .000117 • 000301 ,000217 • 000545 ,000317 • 000789

• 000020 • 000061 • 000120 • 000305 • 000220 • 000549 • 000320 .OOO?S3

• 000021 • 000064 • 000121 • 000308 • 000221 • 000553 • 1)00321 • 000797

• 000022 • 000068 • 000122 • 000312 • 000222 • 000556 • 000322 • 000801

• 000023 • 000072 • 000123 • 000316 • 000223 • 000560 • 000323 • 000805

• 000024 • 000076 • 000124 • 000320 • 000224 • 000564 • 000324 • 000808

. 000025 . 000080 • 000125 • 000324 • 000225 • 000568 • 000325 • 000812

• 000026 • 000083 .000126 .000328 • 000226 . 000572 • 000326 • 000816

• 000027 • 000087 • 000127 • 000331 • 000227 • 000576 • 000327 . 000820

• 000030 • 000091 • 000130 .000335 • 000230 • 000579 • 000330 • 000823

• 000031 • 000095 ,000131 .000339 • 000231 • 000583 • 000331 • 000827

• 000032 . 000099 • 000132 • 000343 • 000232 • 000587 • 000332 • 000831

• 000033 • 000102 • 000133 • 000347 • 000233 • 000591 • 000333 • 000835

• 000034 • 000106 • 000134 • 000350 • 000234 • 000595 • 000334 • 000839

. Ou0035 • 000110 • 000135 • 000354 • 000235 • 000598 • 000335 • 000843

• 000036 • 000114 • 000136 • 000358 • 000236 • 000602 • 000336 • 000846

• 000037 • 000118 .000137 • 000362 • 000237 • 000606 ,000337 • 000850

• 000040 • 000122 • 00&140 ,000366 • 000240 • 000610 • 000340 • 000854

• 000041 • 000125 • 000141 • 000370 • 000241 • 000614 • 000341 • 000858

• 000042 • 000129 • 000142 .000373 • 000242 .000617 • 000342 • 000862

. 000043 • 000133 • 000143 • 00037T • 000243 • 000621 • 000343 • 000865

• 000044 • 000137 • 000114 • 000381 • 000244 • 000625 • 000344 • 000869

• 000045 • 000141 • 000145 • 000385 • 000245 • 000629 • 000345 • 000873

• 000046 • 000144 • 000146 • 000389 • 000246 • 000633 • 000341.o • 000877

• 000047 • 000148 • 000147 • 000392 • 000247 • 000637 • 000347 • 000881

• 0000:;0 .000152 • 000150 • 000396 • 000250 • 000640 • 000350 • 000885

• 000051 • 000156 • 000151 • 000400 • 000251 • 000644 • 000351 • 000888

• 000052 • 000160 • 000152 • 000404 • 000252 • 000648 ,000352 • 000892

• 000053 • 000164 • 000153 • 000408 • 000253 • 000652 • 000353 • 000896

• 000054 • 000167 • 000154 • 000411 • 000254 • 000656 .000354 • 000900

• 000055 ,000171 • 000155 • 000415 • 000255 • 000659 • 000355 • 000904

• 000056 • 000175 • 000156 • 000419 • 000256 • 000663 • 000356 • 000907

• 000057 • OOOIT!i • 000157 • 000423 • 000257 • 000667 .ooosn • 000911

• 000060 • 000183 • 000160 • 000427 • 000260 • 000671 .000360 • 000915

• 000061 • 000186 • 000161 • 000431 • 000261 • 000675 • 000361 • 000919

• 000062 • 000190 • 000162 • 000434 • 000262 • 000679 • 000362 .000923

• 000063 • 000194 • 000163 • 000438 • 000263 • 000682 • 000363 .000926

• 000064 • 000198 • 000164 • 000442 • 000264 • 000686 • 000364 ,000930

• 000065 • 000202 • 000165 • 000446 • 000265 • 000690 • 000365 • 000934

• 000066 • 000205 • 000166 • 000450 • 000266 • 000694 • 000366 • 000938

• 000067 • 000209 • 000167 • 000453 • 000267 • 000698 • 000367 • 000942

• 000070 • 000213 .000110 . 000457 • 000270 • 000701 • 000370 .000946

• 000071 • 000217 • 000171 • 000461 • 000271 • 000705 • 000371 • 000949

• 000072 . 000221 .000172 • 000465 .000272 • 000709 • 000372 • 0~0953

• 000073 • 000225 .000173 • 000469 • 000273 • 000713 • 000373 • 000957

• 000074 • 000228 • 000174 • 000473 • 000274 • 000717 .000374 • 000961

• 000075 • 000232 • 000175 • 000476 • 000275 • 000720 • 000375 • 000965

• 000076 • 000236 .000176 • 000480 • 000276 ,000724 • 000376 • 000968

.000077 • 000240 .000177 • 000484 • 000277 • 000728 • 000377 • 000972

E-8

CONVERSION TABLES

OCTAL-DECIMAL FRACTION CONVERSION TABLE (continued)

Octal Decimal Octal Decimal Octal Decimal Octal Decimal I
• 000400 • 000976 • 000500 . 001220 • 000600 • 001464 • 000700 .001708
• 000401 • 000980 • 000501 • 001224 • 000601 . 001468 • 000701 • 001712
• 000402 • 000984 • 000502 .001228 • 000602 • 001472 • 000702 • 001716
• 000403 • 000988 • 000503 .001232 • 000603 .001476 • 000703 .001720
• 000404 • 000991 • 000504 • 001235 • 000604 • 001480 • 000704 .001724
• 000405 • 000995 • 000505 • 001239 • 000605 • 001483 • 000705 .001728
. 000406 • 000999 • 000506 .001243 • 000606 • 001487 • 000706 • 001731
• 000407 • 001003 • 000507 .001247 • 000607 . 001491 • 000707 • 001735

• 000410 ,001007 • 000510 • 001251 .000610 • 001495 . 000710 • 001739
. 000411 • 00101C • 000511 . 001255 • 000611 .001499 • 000711 .001743
• 000412 • 001014 • 000512 .001258 . 000612 . 001502 • 000712 .001747
• 000413 • 001018 • 000513 • 001262 • 000613 . 001506 • 000713 .001750
• 000414 ,001022 • 000514 .001266 • 000614 • 001510 • 000714 .001754
. 000415 • 001026 • 000515 . 001270 • 000615 • 001514 • 000715 .001758
• 000415 • 001029 • 000516 • 001274 • 000616 • 001518 • 000716 .001762
• 000417 • 001033 .000517 .001277 .000617 • 001522 .000717 .001766

• 000420 • 001037 • OOD52D . OD1281 . OD0620 • 001525 • 000720 .001770
. 000421 • OD1041 . 000521 . 001285 .000621 .001529 • 000721 • 001773
• 000422 • 001045 . 000522 • 001289 . 000622 .001533 • 000722 ,D01777

I • 000423 • 001049 • 000523 . 001293 . 000623 • 001537 . 000723 • 001731
• 000424 • 001052 • 000524 . D01296 • OD0624 • 001541 • OOD724 • DOI 785
• 000425 • 001056 • 000525 . 001300 . 000625 .001544 • 000725 .0017~9

• 000426 • 001060 • 000526 .001304 . 000626 .D01548 • 000726 .001792
• 000427 • 001064 • 000527 • 001308 • 000627 .001552 . 000727 . 001796

. 000430 • 001068 • 000530 • 001312 . OOD63D . 001556 . D00730 .ODISDD
• 000431 • 001071 • 000531 • 001316 . 000631 ,00156D . 000731 • D01504
. 000432 • 001075 • 000532 . OD1319 • DOD632 .DOl564 . D00732 . OOlSDS
. DDD433 • 001079 • OOD533 . DDl323 . 000633 . DD1557 . 000733 . OOIS 11
• D00434 • 001083 • 000534 . D01327 . ODD634 . 001571 • D00734 • ODl815
. D00435 . 001087 . 000535 • 001331 • OOD635 .001575 • OD0735 • D01819
• 000436 . 001091 • D00536 • 001335 • OOD636 ,001579 • D00736 ,001823
. OOD43 7 • 001094 • 000537 • 001338 • 00063 7 .ODl583 . OD0737 .ODl827

. ODD440 ,001098 • 00054D • 001342 • 00064D .DOl586 • 000740 • 001831
• ODD441 • 001102 • 000541 • 001346 . ODD64 I . 001590 • 000741 .ODl834
• 000442 . 001106 • DOD542 . OD135D . 000642 .ODl594 . 000742 • 001838
. 000443 . 001110 • 000543 • 001354 • OD0643 • 001598 • 000743 • 001542
• 000444 • D01113 • OD0544 • OD 1358 .D006H • D01602 . 000744 • 0018-16
• 000445 .DD1117 • 000545 • ODl36l . OD0645 • OD 1605 • 000745 • 001850
• 000446 .D01121 • OD0546 • 001365 . 000646 • DO 1609 • D00746 • 001853
• 00044 7 . 001125 • OOD54 7 • 001369 • OOD64 7 • 001613 • 000747 .001857

• 000450 • 001129 • OOD550 • D01373 . 000650 • 001617 . 00075D .001861
. 000451 • 001132 • OD0551 • 001377 • 000651 • 001621 • 000751 • 001865
. 000452 • 001136 • 000552 • 001380 • OOD652 • D01625 . OOD752 . 001869
• 000453 • 001140 • 000553 • D01384 . 000653 • 001628 • 000753 • 001873
• 000454 . 001144 • 000554 .001388 • 000654 • 001632 • 000754 • 001876
• 000455 • 001148 • OD0555 • 001392 • 000655 . 001636 • 000755 • 001880
• 000456 • ODl152 • 000556 • 001396 . 000656 ,001640 • 000756 • 001884
. 000457 . 001155 • OOD557 • 001399 • OD0657 .001644 • 000757 • 001888

. 000460 • 001159 • 000560 • 001403 • OOD66D .OD16H • 000760 .001892

. 000461 • 001163 • 000561 • 001407 • 000661 • ODl651 • 000761 ,001895
• 000462 • 001167 • 000562 ,001411 • 000662 • ODl655 • 000762 • 001899
• 000463 • 001171 • 000563 • 001415 . 000663 • 001659 • 000763 • 001903
• 000464 • 001174 • 000564 ,001419 000664 • ODl663 • 000764 • 001907
• 000465 • 001178 • OOD565 • 001422 • 000665 • D01667 • 000765 • 001911
• 000466 • 001182 • 000566 • OD1426 000666 • 001670 • 000766 • 001914
• 000467 • 001186 • 000567 • 001430 . 000667 . 001674 • 000767 • 001918

• 000470 • 001190 • 000570 • 001434 . 000670 • 001678 • 000770 .001922
• 000471 • 00!194 • 000571 • ooi438 • OOD67 l • 001682 • 000771 • 001926
• 000472 • 00!197 • 000572 • 001441 . 000672 • 001686 • 000772 • 001930
• 000473 • 001201 • 000573 . 001445 • 000673 • 001689 . 000773 • 001934
.il00474 • 0012D> • OOD574 • DOl449 • 000674 • 001693 • 000774 • 001937
• 0004 75 • 001209 • OOD575 • 001453 • 000675 • 001697 • 000775 .001941
. 000476 • 001213 • 000576 • 001457 • 000676 . 0017.Dl • 000776 • 001945
• 0004 77 • 001216 • 000577 .001461 • 000677 • 001705 • 000777 • 001949

E-9

INDEX

$Address, 1-11
$ALTERCASE function, 4-4
Ampersand (&) (Boolean AND),

2-2, 2-14
Apostrophe (') (Boolean NOT),

2-2, 2-16
Arithmetic operations, 2-6, 2-8,

4-12
Arithmetic operators, 2-6

relational operators, 2-8
Arrays, 1-6

sparse, 1-7
ASCII code, B-1
ASSIGN command, 3-5, 3-7
At sign (@),

as concatenation operator, 2-14
as trailing operator, 2-16

Automatic data mode conversion,
2-5

Boolean operators, 2-14
AND, 2-2
NOT, 2-2, 2-16

Boolean truth table, 2-15
Brackets, square ([]), 2-11
BREAK command, 3-12

Call command, 3-13
Characters, control, 1-2
Character set, 1-1, B-1
Command categories, 1-1
Commands,

format control, 3-3
rules for syntax, 3-1
symbology, 3-1

Commas used as separators, 1-5
Comments, 3-2
Concatenation operator (@), 2-14
Constants, 1-5
Continuation block, 1-9
Control characters, 1-2
Conversion tables, mathematical,

E-1
Conversion to/from numeric string

data, 2-5
Conversion, upper/lower case

alphabetic, 4-4
$CREATE function, 4-5

Data mode of results, 2-5
Data modes, 1-3, 2-3

automatic conversion, 2-5

Data types of variables, 4-5
Data values, 1-5
$Date, 1-11
Debugging, 3-12

message, C-4
Decimal fractions, 1-4
$DEFINE function, 4-6
Deletion of step or part, 3-27,

3-53
Deletion,

via KILL corrunand, 3-27
via XKILL command, 3-53

Device assignment, 3-7
Device unassignment, 3-47
Direct mode, 1-2
DO command, 3-14
Dollar sign ($) usage, 1-11

Editing program, 3-27
ELSE command, 3-15
Equal sign (=) usage in relational

operators, 2-8, 2-10
ERASE command, 3-16
$Error, 1-11
Error messages, programming, C-2
Exclamation point (!) (Boolean OR),

2-14
Execution via DO corrunand, 3-14
Expressions, 2-1, 2-2

evaluation of, 2-3
$EXTRACT function, 4-7

FILE command, 3-17
$FIND function, 4-8
FOR command, 3-18
Format control commands, 3-3
Function summary, 4-2

Global nodes, 1-8, 1-9
Global variables, 1-8
Glossary, A-1
GO command, 3-20
GOTO command, 3-21

HALT command, 3-22
HANG command, 3-23
$HIGH function, 4-9

Index-1

INDEX (Cont.)

Identifiers, 1-4
IF command, 3-24
Indirection syntax operator, 3-2
Indirect mode, 1-2
Input via READ command, 3-41
$INTEGER function, 4-10
$IO device, 1-11

$JOB status, 1-12

KILL command, 3-27

Language elements, 1-1
$LENGTH function, 4-11
Levels of subscripting, 1-9
Literals, 1-5
LOAD command, 3-26
Loading via OVERLAY, 3-28
Local variables, 1-7

simple, 1-7
subscripted, 1-7

$Location, 1-11
LOCK command, 3-31
Looping, 3-18

Mathematical conversion tables,
E-1

Messages, C-1
$M function, 4-12
Mnemonics for operators, 2-6
Modes,

of data, 1-3
of programming, 1-2

MODIFY command, 3-34
Multiplication, 2-3

Naked syntax, 1-9
examples, 1-10

Names,
of programs, 1-4
of variables, 1-5

Negative output, 1-4
Nesting,

of functions, 4-1
of subexpressions, 2-3

Nodes (array elements), 1-8, 1-9
processing of global, 4-18

Numbers in MUMPS, 1-4
for parts, 1-3
for steps, 1-3

Numeric data, 1-4
Numeric data mode, 2-3
Numeric operations, 2-1

Operating system error messages,
C-4

Operations, numeric, 2-1
Operators,

arithmetic, 2-6
Boolean, 2-14
indirection syntax, 3-2
relational, 2-8
relational string, 2-11, 2-12,

2-13, 2-14
relative equality, 2-10
string concatenation (A} , 2-14
trailing, 2-5, 2-16

Output commands,
PRINT, 3-37
TYPE, 3-46
WRITE, 3-52

OVERLAY command, 3-35

Parentheses usage in expressions,
2-3

Part numbers, 1-3
Pattern verification, 2-12
$PIECE function, 4-16
Plus sign (+) used as trailing

operator, 2-16
Pointers in arrays, 1-10
Precedence of expression evaluation,

1-5
PRINT command, 3-37
Program loop, 3-24
Programming modes, 1-2

$QUERY function, 4-18
Question mark (?) (pattern verifi­

cation), 2-12
QUIT command, 3-39
Quotation mark (") usage, 1-5

READ command, 3-41
Relational arithmetic operators,

2-8
Relational equalitx operators,

2-10
Relational string operators, 2-10,

2-11, 2-12, 2-13
Restarting via GO command, 3-20
Results, data mode of, 2-5
$ROOT function, 4-19

Search function ($FIND), 4-8
SET command, 3-43

Index-2

INDEX (Cont.)

Simple variables, 1-7
Spaces in expressions, 2-3
Square root function, 4-19
START command, 3-45
Starting via CALL command, 3-13
$STEP function, 4-20
Step numbers, 1-3
Stopping via BREAK command, 3-12
Storage allocation, 1-7
~Storage, 1-12
Storing a program, 3-17
String concatenation operator (@),

2-14
String data, 1-4
String data mode, 2-3
Strings, 1-4

numeric, 1-4
Structure of program, 1-2
Subscripted variables, 1-7
Subscript levels, 1-6, 1-9
Subscripts and arrays, 1-6
Subscript values, 1-6, 4-9
Symbolic names, 1-4, 1-5
Symbols in relational string

operators, 2-11, 2-12
Symbols used by MUMPS, D-1
Symbols used in command formats,

xii
Syntax for commands, 3-1
Syntax rules for functions, 4-1
System variables, 1-5, 1-10

table, 1-11

Termination messages, C-4
Termination of MUMPS job, 3-22
Termination via QUIT command,

3-39
$TEXT function, 4-21
$Time{ 1-12
Trailing data mode operators,

2-16
Transfer of control, 3-21
Truncation of decimal numbers, 1-3
TYPE command, 3-46

Unary minus, 2-2
UNASSIGN command, 3-47
Underline used as indirection

syntax operator, 3-2
UNLOCK command, 3-48
Up-arrow (" or t) character, 1-8

Variables, 1-5
data types of, 4-6
local, 1-7

VIEW command, 3-49
$VIEW function, 4-22

$Where, 1-12
WRITE command, 3-52

$X coordinate, 1-12
XKILL command, 3-53

$Y coordinate, 1-12

Index-3

.
~

~
)

'

READER'S COMMENTS

MUMPS-11
Language Reference
Manual
DEC-11-MMLMA-D-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement •

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer

0 Higher-level language programmer

0 Occasional programmer (experienced)

0 User with little programming experience

0 Student programmer

0 Non-programmer interested in computer concepts and capabilities

Name Date ____________ _

Organization ______________________________ __

Street-----------------------------------
City ______________ state _______ Zip Code _______ _

or
Country

If you require a written reply, please check here. O

·--.------------------------------.. --------------------------· Fold Here---·

·--· Do Not Tear • Fold Here and Staple --·

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Sottware Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

Printed in U .S.A.

