
MUMPS-11
Programmer's Guide

Order No. DEC-11-MMPGA-E-D

MUMPS-11
Programmer's Guide

Order No. DEC-11-MMPGA-E-D

digital equipment corporation · maynard. massachusetts

First Printing, October 1972
October 1973

November 1974
January 1976

April 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright @ 1972, 1973, 1974, 1976, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
CO MT EX
DDT
DECCOMM

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECsystem-20

3/78-14

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-10
TYPESET-11

CONTENTS

Page

ACKNOWLEDGMENT ix

FOREWORD xi

PREFACE xiii

CHAPTER 1 INTRODUCTION 1-1

1.1 SYSTEM OVERVIEW 1-1
1.2 SYSTEM HARDWARE 1-4
1.2 .1 Minimum Hardware Requirements 1-5
1. 2. 2 Optional Hardware 1-7
1. 2. 3 The System Device 1-8
1. 3 SYSTEM SOFTWARE 1-8
1. 3.1 Operating System 1-9
1.3.1.1 Executive 1-9
1.3.1.2 Input/Output Monitor 1-10
1.3.1.3 Log-In Processing and the Language

Interpreter 1-10
1. 3 .-1. 4 Data Base Supervisor 1-11
1. 3. 2 Utility Programs 1-13

CHAPTER 2 USING THE TERMINAL 2-1

2.1 INTRODUCTION 2-1
2.2 TERMINAL TYPES 2-1
2.3 PRELIMINARY OPERATIONS 2-2
2.4 SPECIAL KEYBOARD CONTROL CHARACTERS 2-4
2.5 LOGGING-IN TO THE SYSTEM 2-5
2.6 LOGGING-OUT OF THE SYSTEM 2-7
2.7 ENTERING COMMANDS 2-7
2.8 SUMMARY OF COMMAND AND FUNCTION SYNTAX RULES 2-8
2.9 SUMMARY OF RULES FOR EVALUATION 2-10
2.10 CREATING PROGRAMS 2-10
2.11 STORING PROGRAMS 2-11
2.12 LOADING PROGRAMS 2-11
2.13 STARTING AND STOPPING A PROGRAM 2-13
2.14 CHANGING, REFILING, AND DELETING PROGRAMS 2-13
2.15 ERROR PROCESSING 2-14

CHAPTER 3 USING I/O DEVICES 3-1

3.1 INTRODUCTION 3-1
3.2 I/O DEVICE NUMBERS 3-1
3.3 ASSIGNING I/0 DEVICES 3-2
3.4 I/O COMMANDS 3-4
3.5 OUTPUT FORMATTING 3-5
3.5.1 Form Control Characters 3-5
3.5.2 Margin Control 3-7
3.5.3 $X and $Y System Variables 3-8
3.6 I/O ERROR PROCESSING 3-8

iii

3.7
3.7.1
3.7.1.1
3.7.1.2
3.7.1.3
3.7.1.4
3.7.1.5
3.7.2
3'.7.2.1
3.7.2.2
3.7.2.3
3.7.2.4
3.7.2.5
3.7.3
3.7.3.l
3.7.3.2
3.7.3.3
3.7.3.4
3.7.3.5
3.7.4
3.7.4.1
3.7.4.2
3.7.4.3
3.7.4.4
3.7.4.5
3.7.5
3.7.5.1
3.7.5.2
3.7.5.3
3.7.5.4
3.7.5.5
3.7.6
3.7.6.1
3.7.6.2
3.7.6.3
3.7.6.4
3.7.6.5
3.7.6.6
3.7.7
3.7.7.1
3.7.7.2
3.7.7.3
3.7.7.4
3 .'7. 7. 5
3.7.8
3.7.8.1
3.7.8.2
3.7.8.3

CHAPTER 4

4.1
4 .1.1
4 .1.2

4 .1. 3
4.1.3.1
4.1.3.2

CONTENTS (Cont.)

I/O DEVICE CHARACTERISTICS
Terminals
General Description
Device Numbers
Applicable Commands
Special Characters and Functions
Error Conditions
Paper Tape Reader/Punch
General Description
Device Number
Applicable Commands
Special Characters
Error Conditions
Line Printer
General Description
Device Number
Applicable Commands
Special Characters and Functions
Error Conditions
DECtape
General Description
Device Numbers
Applicable Commands
Special Characters and Functions
Errors
Magnetic Tape
General Description
Device Numbers
Applicable Commands
Operations and Tape Formats
Error Conditions
CPU-CPU Device
General Description
Device Numbers
Applicable Commands
Message State Operation
Error Conditions
Examples
Sequential Disk Processor
General Description
Device Numbers
Applicable Commands
Special Characters and Functions
Error Conditions
In Core Job Communication
General Description
Device Numbers
Applicable Commands

LIBRARY UTILITY PROGRAMS AND GLOBALS

LIBRARY UTILITY PROGRAMS
Features
Developing and Filing Library Utility
Programs
Running Utility Programs
Starting Programs
Stopping Programs

iv

Page

3-9
3-9
3-9
3-9
3-10
3-10
3-12
3-13
3-13
3-13
3-13
3-13
3-13
3-14
3-14
3-14
3-14
3-15
3-15
3-15
3-15
3-15
3-16
3-16
3-16
3-16
3-16
3-17
3-17
3-19
3-21
3-29
3-29
3-29
3-29
3-30
3-32
3-34
3-34
3-34
3-37
3-37
3-37
3-38
3-38
3-38
3-39
3-39

4-1

4-1
4-1

4-3
4-3
4-3
4-4

4.1.3.3
4 .1. 4
4.1.4.1
4.1.4.2
4.1.4.3
4.1.4.4
4.1.4.5
4.1.4.6
4.1.4.7
4.1.4.8
4.1.4.9
4.1.4.10
4.1.4.11
4.1.4.12
4.1.4.13
4.1.4.14
4.1.4.15
4.1.4.16
4.1.4.17
4.2
4.3
4.3.1
4.3.2
4.3.2.1
4.3.2.2
4.3.2.3
4.3.2.4
4.3.2.5
4.3.2.6
4.3.3
4.3.4
4.3.5

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.3
5.4
5.5

5.6
5.7
5.7.1
5.7.2
5.8
5.9
5.9.1
5.9.2
5.9.3
5.10

CONTENTS (Cont.)

Error Detection and Recovery
Library Utility Program Descriptions
Calendar Dpte Subroutine (%D)
Fast Program Directory Lister (%FD)
Global Directory Lister (%GD)
Global Lister (%GL)
Global Restore (%GR)
Global Save (%GS)
Global Trace Program (%GT)
Global Utilization Program (%GU)
Global View·Program (%GV)
I/O Device Assignment Subroutine (%IO)
IN USE Message Program (%IU)
Octal/Decimal Conversion Program (%OD)
User to Operator Communicator (%OP)
Program Directory Lister (%PD)
Program Load (%PL)
Program Save (%PS)
Time of Day Subroutine (%T)

LIBRARY GLOBALS
THE EDITOR

Introduction
Editing Program Lines
General
The Dot.Dot.Dot Feature
The AGAIN Feature
The SEARCH Feature
The CHANGE EVERY Feature
The RE-NUMBER Feature
Editing Globals
Entering MUMPS-11 Commands from the Editor
Summary of Editor Questions

PROGRAMMING TECHNIQUES

MASKING
$J SYSTEM VARIABLE

CTRL/C and BREAK Recognition
Timed READ or LOCK Overrun

WRITING ERROR PROCESSING ROUTINES
VIEW COMMAND AND $VIEW FUNCTION PROTECTION
USE OF THE IF COMMAND AND INDIRECTION SYNTAX
TO RETRIEVE GLOBAL DATA
DEBUGGING PROGRAMS
PROGRAM SIZE CONSIDERATIONS

Conserving Available Space
Segmenting Programs to Conserve Space

GLOBAL ACCESS CONSIDERATIONS
GLOBAL DESIGN CONSIDERATIONS

String Data Storage
Downward Pointers
Storing Large Amounts of Data

USING SWITCH REGISTER SWITCHES FOR PROGRAM
CONTROL

v

Page

4-4
4-5
4-5
4-5
4-5
4-6
4-8
4-8
4-8
4-9
4-9
4-9
4-11
4-11
4-12
4-14
4-14
4-15
4-15
4-16
4-16
4-16
4-17
4-17
4-18
4-20
4-20
4-20
4-21
4-21
4-22
4-22

5-1

5-1
5-3
5-3
5-4
5-4
5-6

5-7
5-9
5-9
5-10
5-12
5-12
5-13
5-13
5-14
5-15

5-18

APPENDIX A

1\.PPENDIX B

APPENDIX c

C.l
C.2
C.3
C.4

APPENDIX D

APPENDIX E

APPENDIX F

F.l
F. 2
F.3
F.4
F.5
F.6
F.7

APPENDIX.G

G.l
G.2
G.2.1
G.2.2
G.2.3
G.2.4
G.2.5
G. 3
G.3.1
G.3.2
G.3.3
G.3.4
G.3.5
G.3.6

APPENDIX H

APPENDIX I

I.l
I.1.1
I.1.2
I.2
I.2.1
I.2.1.l

I.2. 2
I.2.3
I.2.3.1

CONTENTS (Cont.)

GLOSSARY OF TERMS

MUMPS CHARACTER SET

EXPLANATION OF MUMPS CHARACTERS

MUMPS PROGRAMMING ERROR MESSAGES
VOLUNTARY PROGRAM TERMINATION
DEBUGGING AID MESSAGE
MUMPS OPERATING SYSTEM ERROR MESSAGES

SYMBOL USAGE

CONVERSION TABLES

REFERENCE DATA FOR SYSTEM TABLES

INTRODUCTION
THE SYSTEM TABLE (SYSTAB)
DEVICE TABLE (DEVTAB)
USER CLASS IDENTIFICATION TABLE (UCITAB)
PARTITION TABLE (PARTAB)
THE JOB TABLE (JOBTAB)
DEVICl!: DESCRIPTOR.BUFFER (DOB)

SYSTEM DATA STRUCTURES

INTRODUCTION
DISK DATA STRUCTURES

Global Data
Bit Maps
Global Directories
Program Directories
Programs

PARTITIONS
Program Vector
Line Buffer/String AC
Program Buffer
User Stack
Free Memory
Symbol Table

CRC REFERENCE SUBROUTINE

WRITING AND INTERFACING I/O DEVICE DRIVERS

INTRODUCTION
Device Driver Functions and Routines
System Global Variables and Routines

INTERPRETER-CALLED ROUTINES
Device ASSIGNment--Routine Name: RESASG
Handling Optional Syntax on the ASSIGN
Command
Device UNASSIGNment--Routine Name: RSUASG
Buffers
Internal Buffers

vi

Page

A""'l

B-1

C-1

c-2
C-4
C-4
C-4

D-1

E-1

F-1

F-1
F-2
F-7
F-7
F-8
F-10
F-11

G-1

G-1
G-1
G-3
G-10
G-10
G-10
G-12
G-12
G-13
G-13
G-13
G-16
G-16
G-17

H-1

I-1

I-1
I-1
I-3
I-6
I-6

I-7
I-8
I-9
I-9

INDEX

FIGURE

I.2.3.2
I.2.3.3
I.2.3.4
I. 2. 4

I.2.4.1
I.2.4.2
I.2.4.3
I. 2. 5

I.2.5.1
I.2.5.2
I. 2.6
I. 3
I.3.1
I. 3. 2
I.4

1-1
1-2
3-1
3-2
4-1
4-2
4.-3
4-4
4-5
4-6
4-7
5-1
F-1
F-2
F-3
F-4
F-5
G-1
G-2
G-3
G-4
G-5
G-6
G-7
G-8
G-9
G-10
G-11
G-12

G-13
G-14
G-15
G-16
G-17

CONTENTS (Cont.)

64-Character Buffers
512-Character Buffers
Unpacking Buffers
Interpreter Call for Input--Routine Name:
XXXIN
Hanging a Job on Input
Handling Timed READS
Sample Input Routine Flowchart
Interpreter Call for Output--Routine Name:
XXXOUT
Hanging a Job on Output
Sample Output Routine Flowchart
Error Reporting--Routine Name: XXX$A

INTERRUPT SERVICE ROUTINES
Error Reporting
Waking the Job

DRIVER INTERFACING

Page

I-9
I-10
I-10

I-11
I-12
I-13
I-15

I-16
I-16
I-17
I-18
I-19
I-19
I-20
I-20

Index-1

FIGURES

MUMPS-11 Memory Layout
MUMPS Minimum Hardware Requirements
ANSI Standard Labels
Variable Length Record Format
%GL Output Format
Example Global Layout
Example of %GL Output
Sample Global Trace
Sample Global View Dump
Sample Global Utilization
%PD Output Format
Basic Partition Layout
Relative Table Position
Device Table
UCI Table
Partition Table
Job Table (JOBTAB)
Basic Disk Data Block
System Disk Block Layout
Global Array Structures
Single Numeric Node
Single Numeric with Pointer Node
Double Numeric Node
Double Numeric with Pointer Node
Pointer Node
String Node of "N" Characters
String of "N" Characters with Pointer Node
Double Precision Floating Point Format
Double Precision Floating Point Numeric
Datum
Bit Map Example
Internal Program Format
MUMPS-11 Partition Layout
Program Buffer Layout
MUMPS-11 Symbol Table Data Codes

vii

1-3
1-6
3-27
3-27
4-6
4-7
4-7
4-8
4-10
4-11
4-14
5-10
F-1
F-7
F-7
F-9
F-10
G-1
G-2
G-4
G-5
G-6
G-6
G-7
G-7
G-7
G-8
G-9

G-9
G-11
G-12
G-13
G-16
G-17

TABLE

G-18

G-19

G-20

I-1 •

1-1
1-2
2-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
5-1
5-2
5-3

F-1
F-2

F-3

F-4

G-1
G-2
I-1
I-2

CONTENTS (Cont.)

FIGURES

Symbol Table Containing Three (Simple}
Variables
Symbol Table Containing a Simple Variable
and 3-Element Array
Array Entries Having a Datum Associated with
the Array Name
Driver Operation

TABLES

System Utility Program Summary
Library Utility Program Summary
VT50 Baud Rate Switch Settings
MUMPS I/O Device, Table
$A Bit Assignments for Data Set Devices
Magtape ASSIGN Switches
Legal ASSIGN Switch Combinations
Magtape Control Codes
Magtape Device ~A Bit Assignments
CPU-CPU Device $A Bit Assignments
Bit Ma.sk Values
$J Bit Assignments
MUMPS. SWITCH REGISTER Assignments and
Bit Masks
System Table
Device Descriptor Buffer for Devices 1,
4-19
Device Descriptor Buffer for Devices 64-111
(DHll)
Device Descriptor Buffer for Devices 64-111
(DZll)

MUMPS-11 Data Type Codes
Program Vector Layout
Global Routines and Variables
System Global Variables and Routines Called
by Interpreter-Called Driver Routines

viii

G-18

G-19

G-20
I-3

1-14
1-15
2-3
3-3
3-12
3-24
3-25
3-26
3-ZB
3-33
5-1
5-3

5-19
F-3

F-11

F-13

F-15
G-3
G-14
I-4

I-5

ACKNOWLEDGMENT

MUMPS-11 is an integrated system comprised of an

interactive programming language, a data manage­

ment facility and a multi-user time sharing execu­

tive, developed by Digital Equipment Corporation

for the PDP-11. Meditech Corporation contributed

to the original development of MUMPS-11 and Inter­

pretive Data Systems, Inc., assisted in the Ver­

sion 4A developments.

The language is a dialect of MUMPS (~assachusetts

General Hospital. ~tility ~ulti-~rogramming ~ystem)

which was developed at the Laboratory of Computer

Science at Massachusetts General Hospital and is

supported by Grant HS-00240 from the National Cen­

ter for Health Services Research and Development.

ix

FOREWORD

MUMPS-11 is an interactive, interpretive language, multi­

user operating system for the PDP-11 that allows access to

a common data base. The capabilities of the system are

heavily oriented towards string manipulation using a

high level language. The system relieves the user of

any concern for programming peripheral devices or for

structuring data bases in the traditional sense.

Language processing by the system is in every sense inter­

pretive. Each line of code undergoes identical processing

each time it is executed (intermediate code is not gener­

ated). 'The MUMPS applications programmer is relieved of

all the burdens associated with driving peripheral equipment

or assembly language programming. He may concentrate his

energies on the analytical aspects of his problem. His

major problems are: developing proper logical hierarchy

for his data base, and developing efficient logic for his

data processing requirement.

The MUMPS language is provided with its own stand-alone

operating system. In addition to supporting the MUMPS

language and providing all operating system capabilities,

the system affords the user a unique data base structure

and access method. Data which is referred to symbolically

is automatically stored and linked in a tree structure.

The physical allocation of mass storage for the tree­

structured data base is accomplished by the operating system.

The data base thus created can be made available either to

all system users or to a class of system users.

xi

PREFACE

The MUMPS-11 Programmer's Guide is a reference manual

designed to give the programmer all the information required

to create, execute, and save MUMPS Language programs in

the MUMPS-11 system environment. Chapter 1 provides a

system overview which includes information on the MUMPS

System Software/Hardware environment and the functions

performed by the various modules of the operating system.

Chapter 2 provides complete information on the use of the

MUMPS terminal. Specific subject areas covered are, log-in/

log-out procedures and how to create, modify, run, save,

and delete programs.

Chapter 3 contains general information on the use of I/O

devices in MUMPS programs and specific operating informa­

tion on each.

Chapter 4 describes the MUMPS Library Utility Programs,

their functional characteristics and how to run them. In

addition, information is provided which describes how to

create Library Programs and Globals.

Chapter 5 discusses various programming considerations and

techniques for the application and system programmers.

Included are data base design considerations and the use of

special elements of the MUMPS-11 language.

Appendices A through E are general reference sections for

the application programmer, including a glossary, the

system's error messages, and useful tables. Appendices F

and G describe the internal system structure for the

system programmer. Appendix I describes the conventions

and characteristics of an I/O device driver for those

users who wish to add devices to the system.

xiii

The MUMPS-11 Language Reference Manual is a prerequisite

to complete understanding of this manual. The MUMPS-11

Operator's Guide contains information of specific interest

to system operators and managers. The Introduction to

MUMPS-11 Language is a tutorial manual that describes the
MUMPS-11 language and data base in a step-by-step manner.

The following symbols are used throughout this manual:

Symbol

I
)

{ }

CTRL

UNDERLINING

+u or "u

\

BREAK

Definition

Revision bar. Indicates differences
between this manual and the previous
edition.

Universal symbol for line terminator.
Line terminators for terminals are
either Carriage RETURN or ALT MODE.

A single space.

Fields described within braces are
optional.

Vertical bars are used to contain a
list of options among which a single
choice must be made.

Used with special system control
characters. Depress CTRL key while
striking designated character.

All examples of user-typed terminal
input are underlined.

Echo for CTRL/U keyboard command.

Backslash - echo for RUBOUT keyboard
command.

Operation of BREAK key.

xiv

1.1 SYSTEM OVERVIEW

CHAPTER 1

INTRODUCTION

The MUMPS-11 system is a multi-user, time-sharing system which runs

on the PDP-11 computer. Utilizing the high-level, interactive, string­

oriented MUMPS-11 interpretive language, the system permits up to 40

simultaneous users, operating on any of the system's 65 terminals, to

interact with a common tree-structured data base. The system is

specifically designed to manipulate strings of data and to increase or

decrease the size of data storage areas on the disk.

Additional features include:

• Variable length data elements and logical records

• Random access of data using multiple keys

• Variety of terminal and peripheral devices

• System utilities for backup, validation and reporting.

The PDP-11 is used as the Central Processor. It has a 16-bit word

length and can be expanded from 49,152 to 245,760 bytes of memory.

Both fixed-head and removable disk pack systems are used for on-line

storage of user programs, the data base, and system utility programs.

The maximum on-line storage that the system can provide is approxi­

mately 417 million words.

A variety of terminals and printers are also supported, including:

ASR-33 and ASR-35 Teletypes 1 , LA30, LA36 DECwriters, LA180 matrix

printers and VT05, VT50, VT52, and VT55 video terminals. In addition,

the system can utilize other Teletype-like devices which can be

connected to DIGITAL KLll, DLll, DCll, DHll or DZll controllers.

Other standard peripherals supported by MUMPS-11 include industry­

compatible disk, magnetic tape, DECtape, paper tape reader/punch,

and line printer.

1Teletype is a registered trademark of Teletype Corporation.

1-1

The MUMPS Language contains a large repertoire of capabilities.

The basic orientation of MUMPS-11 is procedural, much like FORTRAN

or COBOL. Its capabilities are primarily directed toward the proc­

essing of variable length string data. In addition, standard

algebraic and Boolean operations are also available. Data is

represented in either string or numeric form, and mixed mode

operations are expressly permitted. The language also allows

assembly language-like bit manipulation operations.

Language processing is in every sense interpretive. Each line of

a MUMPS command undergoes identical processing each time it is

executed (intermediate code is not generated). The language inter­

preter has two operating modes: program execution mode (Indirect

Mode) and program creation mode (Direct Mode). In Direct Mode,

programs can be created, modified, debugged, and stored. Indirect

Mode operation permits the execution of these programs.

The operating system is highly modular and resides permanently in

memory (Figur~ 1-1). The system uses between 22K and 40K bytes of

memory, depending on the hardware configuration. During system

generation, the remaining memory is subdivided into user partitions 1

which are used to contain user programs. A partition holds one active

user's program, local data, and system overhead data. There is no

fixed correspondence between terminals and partitions. Assignment

is performed dynamically at log-in time. The recommended size for

partitions is approximately 4096 bytes each, but they do not all have

to be the same size. A user's terminal is assigned the next available

partition.

Each active user requiring CPU time obtains a time slice in turn. A

checkpoint form of timesharing is utilized whereby a program is

allowed to execute until its time slice has expired, plus any additional

time required to complete a current operation. Control then passes

to the next job (in priority order) requiring service.

1 Machines with no more than 28K words of memory may have a maximum of
18 partitions. Machines with more than 28K bytes of memory may have
a maximum of 40 partitions.

1-2

SYSTEM BUFFERS
DATA BASE SUPERVISOR

INTERPRETER
I/o MONITOR AND DRIVERS

EXECUTIVE

Figure 1-1 MUMPS-11 Memory Layout

PARTITION
SPACE

OPERATING
SYSTEM

~he data management features of the system allow local data utilized

by a program to be referenced symbolically. Storage space for this

data is allocated as needed. Local data is that set of variables

established within the domain of a particular partition and is defined

only for programs within that partition. This form of storage is used

for scratch or transient data. These local data arrays are treated

as if they are intended to be sparse. That is, only subscripts for

which data are defined are allocated space. A symbolic variable used

in a program may be given either a numeric value or a variable length

string value. When it has a string value, only that space actually

required by the string is allocated.

This philosophy is extended to the management of data on the random

access disk system. All elements stored in 'data files are referenced

symbolically; the file name is similar to that of a symbolic local

variable name in a program. Records in the data file are treated as

array elements and are referenced by means of subscripts; subrecords

are referenced by appending additional subscripts. Data files on

the disk thus comprise an external system of arrays, which provide a

common data base available to all programs within a given user

class. The arrays which make up this external system are called

global arrays. Each global array is identified by a unique name.

The structure of global arrays is hierarchical. Any element within

an array tree may possess a numeric or string data value and (or) be

a pointer to a lower level in the tree. Data may be stored at any

1-3

level. There are no constraints upon the dimension or the size of an

array. In addition, the number of subscripts in an array is dynamic,

so that its content and structure may change during usage.

In addition to storing global data files, the disk is also used to

contain MUMPS Language programs including the System Utility Pro­

grams and user-created programs.

The availability of programs and global data to users is controlled

by the system's protection scheme. Up to sixteen classes of users

can be defined within tP,e system. Each user class has access only

to those programs and globals residing in that class. Furthert

specially named library programs residing in UCI #1 (the System UCI)

can be accessed by all users. Using an easily modifiable password

at log-in time allows access to an associated user class. This

password, called a User Class Identifier (UCI) 1 , allows Indirect Mode

Operation; i.e., programs can be run, but not changed, and global

data can be read or written by these programs. An additional code

called the Programmer Access Code (PAC) 1 can be used with any UCI

code to permit Direct Mode operation. This allows programs and

global files in a particular user class to be created and modified.

A set of MUMPS Language Utility Programs provides the user with

the tools to maintain and service the system efficiently. The

functions performed fall into four major categories: data base

integrity, system and data base backup, system parameter changes,

and utility subroutines. Data base integrity utilities enable the

user to validate the structure of his data base(s). System and

data base backup utilities enable the user to copy disk images and

to save and restore individual programs and globals. System parameter

change utilities allow the user to modify the system configuration

as required. Utility subroutines are a set of programs which provide

commonly used operations, such as printing the date and time.

1.2 SYSTEM HARDWARE

The MUMPS system is defined within the limits of a particular PDP-11

hardware system configuration; i.e., memory size requirements,

necessary features, and types and numbers of peripheral devices. The

1The PAC and UCI codes are assigned by the system manager at System
Generation time as described in the MUMPS-11 Operator's Guide.

1-4

system is distributed on magnetic tape (7-track or 9-track), and RKOS
or RK06 disks. It requires at least one type of the four disk systems

available. During system operation, disk, DECtape, magnetic tape,
or paper tape is used for backup storage. Figure 1-2 shows the MUMPS
minimum hardware requirements.

1.2.1 Minimum Hardware Requirements

The minimum equipment configuration necessary for MUMPS operation
includes:

• PDP-11/10 Central Processing Unit

• 24K words of Memory

• Extended Arithmetic Unit (KEllA or KEllB) or Extended
Instruction Set for 11/34, 11/40 (KEllE)

e Real Time Clock (KWll-P or KWll-L)

• Bulk Storage (ROM) Bootstrap Loader (MRll-DB)

• Communications Interface (DLllA or KLllA)
Console Terminal (VTOS, VTSO, VT52, VTSS, LA30, LA36,
LA180, ASR33, or ASR35)

• Tapes 1

Magtape Control (TMll)
Magtape Transport (TUlO or TS03) 7- or 9-track)

OR

Magtape Control (TJU16)
Magtape Transport (TU16) 9-track

OR

DECtape Control (TCll)
Dual DECtape Drive (TU56)

• Disks:

DECpack Control (RKll)
DECpack Drive (RK03/RKOSJ), 1.2 million words

OR

Disk Pack Control (RK611)
Disk Pack Drive (RK06) , 7 million words

1Tape is not necessary if your system includes 2 RKOS or RK06 drives.

1-5

I-'
1
G\

gJ REAL
TIME

CLOCK

ANY ONE OR A COMBINATION OF DISKS•

RK03
RK05
1-Sdisks

*Due to system restrictions, only one of either the RK611,
RF11, or RH11 (RS04) disks can be used. RP02, 03 disks
and RP04, 05, 06 cannot be combined on the same system.

RP02
RP03
1-Sdisks

RP04
RP05
1-Sdisks

EAE
OR
EIS

UNIBUS

RPO&
1-4disks

RS04
1·8disks

CPU

DECTAPE

BK

EITHER DECTAPE
MAGTAPE OR BOTH***

r .l ~

~
I
I

1'
I

MAGTAPE

0--J I 4 I -0 L __

TU56 TS03, TU10
ORTU16

**An RP06 disk counts as 2 RP04 or RP05 disks in MUMPS.

***If 2 RK05 or RK06 drives are used, no magtape o~ dectape
is necessary.

Figure 1-2 MUMPS Minimum Hardware Requirements

OR

Disk Pack Control (RPll)

Disk Pack Drive (RP02 or RP03), 10.24 million words
or 20.48 million words

OR

Disk Pack Control (RHll)

Disk Pack Drive (RP04, RP05) 44 million words
Disk Pack Drive (RP06), 88 million words.

1.2.2 Optional Hardware

The following hardware, in addition to that previously specified, is

also supported by MUMPS:

• Memory: Core, MOS, or Bipolar Memory up to 124K words.

• Floating Point Processor for 11/45, 11/55, or 11/70
(FPll-B:-0r FPll-C) .

• Memory Management Option (KTll -c or -D) .

• Communications Interface (DLll-E) , connected to a Bell
System type Dataset (max 1800 baud), 1 per terminal.

• Communications Controller (DMC-11), direct connection
from CPU to CPU via a 20 milliamp current loop, or connected
to one or more synchronous modems.

• Terminals (maximum 16 single-line controllers - DLllA or
DLllC), ASR33 or ASR35 teleprinters, LA30, LA36 DECwriters,
or VT05, VT50, VT52 and VT55 video terminals.

• Three multiplexers (DHll-AA or AC), or six multiplexers
(DZll) , with a maximum of 16 terminals per DH multiplexer
or a maximum of 8 terminals per DZ multiplexer (2 DZll's
are equivalent to 1 DHll; DZ's and DH's may be mixed on
the same system) 1 •

• High Speed Paper Tape Reader/Punch (PCll).

• Punched Card Reader (CRll) and Mark Sense Card Reader (CMll).

• Line Printer (LPll), LA180 matrix printer.

• DECtape Control (TCll).

• Two Dual DECtape Drives (TU56).

1See Table 3-1 for further information.

1-7

• Magtape Control (TMll) with up to 4 Magtape Drives {TUlO
or TS03), 7- or 9-track, or Magtape Control (TJU16) with
up to 4 Magtape Drives (TU16), 9-track.

• Disk Pack Control (RFll) with up to 8 Disk Pack Drives
(RSll), 209.72 million words total.

• DECpack Control (RKll) with up to 8 DECdisk Drives (RKOSJ),
9.6 million words total.

• Disk Pack Control (RK611) with up to 8 Disk Pack Drives
(RK06), 56 million words total.

• Disk Pack Control (RPll-C) with up to 8 Disk Pack Drives
(RP02/RP03), 81.92 million or 163.84 million words total.

• Disk Pack Control (RHll) with up to 8 Disk Pack Drives
(RP04, RPOS) 351.84 million words total; or up to 4 Disk
Pack Drives (RP06), 351.84 million words total ll RP06
is equivalent to 2 RP04's or RPOS's; RP04's, OS's, 06's,
may be mixed in the same system).

• Disk Pack Control (RHll) with up to 8 Disk Pack Drives
(RS04), 419.43 million words total.

NOTE

BA-11 ExpandeP Boxes aPe PequiPed to pPovide
poweP to pePiphePaL deviaes and a DB-11 Bus
RepeateP is aiso needed if mope than 18 Loads
aPe attaahed to the UNIBUS. This haPdwaPe
pPesents no additionai pPogPamming aonsidePation
but shouid be inaZuded as PequiPed to suit
speaifio haPdWaPe aonfiguPation.

1.2.3 The System Device

The System Device is the disk memory device on which the MUMPS software re­
sides. Specifically, the system resides on physical unit 0 of any one

of the allowable disk systems (see Section 1.2.1). Thus, either RKO,

RFO, RPO, or RJO can be used. The software occupies up to the first
50 blocks on the system device, while the remaining portion as well

as all other disk units in the configuration are used to store MUMPS
programs and data, including Sequential Disk Processor files.

1.3 SYSTEM SOFTWARE

The software which comprises MUMPS consists of the MUMPS Operating

System and the MUMPS Library and System Utility Programs.

i ... a

1.3.l Operating System

The Operating System contains all software necessary to operate MUMPS

in the hardware environment of the PDP-11. The software is entirely

core resident and consists of the four subsystems described below:

•

•

•

•

Executive

I/O Monitor -

Language
Interpreter

Data Base
Supervisor

Supervises the timesharing/multipro­
gramming operations of the system.

Supervises terminal and peripheral
device I/O and interrupt procesBing.

Implements and provides execution con­
trol of MUMPS Language programs.

Performs all logical and physical con­
trol of the data base.

The paragraphs which follow describe the operational features of
each.

1.3.1.1 Executive - The Executive implements the time-sharing

aspects of the system and permits partitioned multiprogramming

using dynamic assignment of user partitions. The Executive is
used to pass control from one user to another in order to utilize

the central processor as much as possible. As a result of memory

partitioning, the Executive can switch from user to user in minimum

time.

The Executive uses a set of priority-weighted queues to administer

its scheduling algorithm including one or more Wait-Queues and a

Run-Queue. Initially a job starts at the end of the highest
priority Wait-Queue. Upon reaching the front of this queue, the

job is placed in the Run-Queue and allowed to execute for the duration

of its time slice. If the job is processor-bound at the end of its

time slice, the Executive drops it from the Run-Queue and places it

at the end of the next lower priority Wait-Queue. When the job

reaches the front of this queue, the Executive doubles the job's

time slice and places it in the Run-Queue. If the job remains

processor-bound, it is placed in the lowest priority Wait-Queue upon

expiration of its time slice. When it reaches the front of this

queue, it is allocated a triple time slice and is pla·ced in the

Run-Queue. Thereafter the Executive circulates the job between the

lowest Priority Wait-Queue and the Run-Queue. When the job
becomes input/output bound, the Executive places the job in an

1-9

'I/O hung' state to await completion of the requested input/output

task. Completion of the task causes the Executive to place the

job at the end of the highest priority Wait-Queue.

The Exe cu ti ve runs jobs from lower priority Wait-Queues only when

the higher priority Wait-Queues are empty. This technique pro­

duces the most favorable response time for the interactive parts

of any job by servicing input/output bound tasks very quickly but

taking longer to service CPU-bound tasks.

1.3.1.2 Input/Output Monitor - Once a job becomes input/output

bound, the Executive places the job in the appropriate 'hung' state

and the Input/Output Monitor initiates and processes the input/output

activity through its interrupt handlers. The MUMPS Interpreter and

the I/O Monitor commilnicate through buffers for terminal input/

output character processing, but the I/O Monitor supervises the

asynchronous filling and emptying of these buffers so as to over-

lap output with that program's processing whenever possible.

The Input/Output Monitor creates a terminal-independent environment

in which an application program can run with any terminal of the

hardware syst~m regardless of its specific speed and formatting

characteristics. At terminal log-in, a partition initially 'owns'

one terminal; it may subsequently acquire other terminals in the

system or it may release the original terminal and continue as a

background job.

The I/O Monitor also supervises the peripheral input/output devices

of the system, including the magtape and DECtape drives, the paper

tape reader-punch, line printer, etc.

1.3.1.3 Log-in Processing and the Language Interpreter - During

terminal log-in, a user is assigned an available partition. User

Class Identifier codes and the Programmer Access Code are checked

for validity, resulting in either authorization or denial of access

to associated programs and global files. Since terminal programming

of application packages is allowed, stringent checks are performed

by the Interpreter to safeguard the system's service operations

from all programming activities. If the user intends to program,

his partition is initialized and control is passed to the Interpreter

for the subsequent programming session. If the user desires activa­

tion of a service program, the requested program is loaded from the

1-10

disk into his partition and execution of that program commences. In

either case, the user retains his partition until he logs-off the

system.

All application programs are written in the MUMPS language. This

language allows an application programmer to write a program and

debug, edit, run, and modify it in a single interactive session at

a terminal. This minimizes the programmer's time in solving a

problem, the computer time needed in checking it out, and, most

important, the elapsed time required to obtain a final running
application program. The Interpreter itself is an integral part of

the system. The Executive and I/O Monitor have been specifically

tailored to work efficiently with the Interpreter.

The Interpreter examines and analyzes all MUMPS Language statements,

executing, in turn, the desired operations. Each MUMPS Language

statement undergoes identical processing each time it is examined

(executed) by the Interpreter; intermediate code is not generated.

Comprehensive error checking is also performed to assure proper

language syntax.

In addition, the Interpreter also files and loads programs via the

disk stora~e system. During program execution, it automatically

overlays external program segments invoked by an active program.

Proper linkages are set up to return to the invoking program when

execution of the segments terminates.

A number of major advantages are obtained from the use of the Inter­

preter as the maj.or components of the MUMPS system. First, programs

written in an interpretive language do not require any compiling or

assembling. Error comments during execution are printed at the pro­

grammer's terminal and allow quick recovery, modification of the pro­

gram, and re-execution of it. All program debugging and modification

operations are performed in the MUMPS language directly at the terminal.

This makes modification convenient, particularly in a service environ­

ment where the trouble-shooting necessary to interface a program with

an application area is a time-consuming process. The MUMPS environment

allows a programming session to take the form of a conversational

dialogue between the programmer and the terminal device.

1.3.1.4 Data Base Supervisor - The Data Base Supervisor consists of a

group of routines which provide physical as well as logical control of

the various disk systems which form the data base.

1-11

In MUMPS, all file information is referenced symbolically, in the con­

text of hierarchical global variables and arrays. This replaces the

classical manner of sequentially accessing record files on secondary

memory devices. Instead, an attempt is made to logically map the

content and structure of the tree-like symbol tables into the physical

storage medium of the system. The Data Base Supervisor maps logical

information at a specific level of an array into directories of fixed

size b~ocks. These blocks are chained together in a linear fashion to

contain all the data values stored at that specific level, as well·· as

the pointer words which link it to chains of the next lower level.
The data base devices used in the system are some combination of fixed

head disks ,and/or moveable head disk packs. The organization of either

an individual platter of the fixed head disk or a cylinder of the

moveable head disk pack is two-dimensional, wherein any physical

block has a track and segment coordinate.

Maps of addresses of unused disk blocks (storage allocation maps) 1

are maintained to facilitate the dynamic allocation of disk storage

space to files. whenever a continuation or a header block is to be

allocated, a block in the map, whose segment address is a few segments

away, is utilized. This method ensures that the time requi~ed to
retrieve a particular datum is kept to a minimum. When data is up­

dated, care is given to repacking, and sometimes reorganizing the

individual data elements within a chain, to ensure maximum utilization

of space for variable length data.

Once a block of data accommodating a given level of subscripting is

referenced, its address is placed in the partition's overhead area

and the block remains in memory until a reference to a different

block is made. This permits considerable time savings when the

'naked' syntax is used in referencing globals 2 •

When a level is reached, often no further disk access need be made to

reference associated information. If any block in a disk is altered,

it is written back on the disk.

When a part of a global structure is deleted, it is attached to a

'Garbage Chain'. The Garbage Collector routine removes blocks from
the tree-like chain and refills the Storage Allocation Maps with the

1The Storage Allocation Maps are bit maps where there is a correspon­
dence between map address and bit position within the map, and the
disk add~ess of the block.

2Appendix G provides a detailed description of the structure of
global data.

1-12

addresses of the expunged blocks. This is done during periods of low

CPU activity to avoid competition with active programs.

1.3.2 Utility Programs

The MUMPS Utility Programs are a package of programs written in the

MUMPS Language which are supplied as a part of the MUMPS software

package. These programs are provided to assist both the MUMPS

System Programmer and the MUMPS System Manager in developing and

maintaining the software and data for their particular application.

The Utility Programs consist of two functionally distinct groups:

System Utility Programs and Library Utility Programs. The System

Utility Programs provide functions for use by the System Manager;

they reside on the disk under the control of the system UCI (UCI #1)

and are accessible only to those individuals possessing the System

UCI Code. Library Utility Programs provide general services which

are available to all system users, regardless of UCI 1 • These programs

also reside under UCI #1 but employ a naming convention which

distinguishes them from System Utilities. The main difference

between the System Utilities and the Library Utilities is that only

users logged-in under the System UCI code (UCI #1) may use the former,

while all users, regardless of their UCI codes, may use the latter.

Tables 1-1 and 1-2 briefly describe the MU.MPS-11 Utility Programs.

Further information about Library Utilities is provided in Chapter 4.

The MUMPS-11 Operator's Guide describes the System Utilities.

1The Global Place Program (%GP) is an exception to this rule.
Though functionally a system utility, it resides in the system
as a library utility because of the nature of its operation.
%GP is documented in Chapter 4 of the MUMPS-11 Operator's Guide.

1-13

Name

BCS

CTK

DAT

DBT

DMP

KTR

MSP

RKC

RSJ

RST

SDP

SIF

SS

SSD

Table 1-1

System Utility Program Sunnnary

Description

Broadcast Program
Allows the operator to send messages to all or
specified terminals.

System Caretaker Program
Collects system error statistics.

Date Routine (or Date Set)
Sets the $D system variable to the current date.

Disk Block Tally Program
Calculates the number of disk blocks available for
each disk (logical and physical) , updates Disk Stor­
age Allocation Table, tallies and reports errors.

Disk Block Dump Program
Lists the contents of disk blocks or gives an
analysis report of the system's crash block.

Caretaker Reporter Program
Lists error statistics collected by the caretaker.

Modify System Parameters Program
Alters UCI codes, terminal types, number and
size of partitions, Programming Access Code,
Magtape default mode.

RI< Copy
Used in RK05 distribution to physically copy one
RK05 to another.

Restore Job
Allows jobs that are either in a wait queue or in an
I/O hung state to be restored to the system.

Restore Devices
Releases devices either owned by a job or disabled
by a syste1 crash.

Sequential Disk Processor
Space Allocation/Deallocation Program.

Status Information Program
Provides system status information
(calls the SS program) and· system partition size
assignments.

System Status Program
Provides information about the current users (UCI's)
in the system, the status of their jobs, and utiliza­
tion of system resources.

System Shutdown
Gives instructions to the operator on how and when
to "HALT" the system.

Continued on next page

1-14

Name

STU

SYS GEN

TIM

TPl
through
TP8

%GP

Name

%D

%FD

%GD

%GL

%GR

%GS

%GT

Table 1-1 (Cont.)

System Utility Program Summary

Description

System Startup
Initializes the system when disk bootstrap
loading is performed.

System Generator Program
Tailors the basic MUMPS Operating System for
specific hardware configuration.

Time Routine
Sets the $T System Variable to the current time.

System Test Package
Provides basic test programs to help verify
that a MUMPS system is operational.

Global Place
Allows the system user to position global files on
a specific unit and cylinder of a disk drive.

Table 1-2

Library Utility Program Summary

Description

Date subroutine
Reports the current (system maintained) date
on the specified I/O device.

Fast Program Directory Lister
An abbreviated high-speed version of %PD,
%.FD lists only program names.

Global Directory
Lists the names of all globals of the current
UCI onto the designated output device.

Global Lister
Lists the structure and content of a specified
global file on the designated I/O device.

Global File Restore
Restores all or specified Global Files onto the
data base, entering their names in the Global
Directory of the current UCI.

Global File Save
Copies all or specified global files listed in
the global directory or the current UCI onto
the designated output device.

Global Trace Program
Lists global nodes, their location, level, data type
and contents for the current UCI.

1-15

Name

%GU

Table 1~2 (Cont.)

Library Utility Program Sununary

Description

Global Utilization Program
Analyzes a global, giving the number of nodes,
total bytes, bytes/block and % utilization for
each data type, for system overhead and for each
free area in a global.

%GV Global View Program
Dumps a global disk block as seen by the system;
prints subscript, pointer, data type and data
for each node.

%IO I/O Device Assignment Subroutine
Assigns specified I/O device if available and
informs the calling program of result.

%IU In Use Message Program
Displays the message "IN USE" on the currently
assigned device.

%OD Octal/Decimal Conversion Program
Converts octal or decimal values to their decimal or
octal equivalents.

%OP User to Operator Communication Program
Allows a terminal user to send messages
to the console terminal.

%PD Program Directory Lister
Lists the contents of the Program Directory,
the starting disk block number, and the length
of each program of the current UCI on the desig­
nated I/O device.

%PL Program Load
Loads programs residing on paper tape, DECtape,
or maqtape, which were saved via %PS, onto the
disk, and enters their names in the Program
Directory of the current UCI.

%PS Program Save

%T

Copies specified programs listed in the Program
Directory of the current UCI onto the designated
output device.

Time Subroutine
Reports the current (system maintained) time
on the specified I/O device.

1-16

2.1 INTRODUCTION

CHAPTER 2

USING THE TERMINAL

MUMPS terminals are not only data input and output devices to be

used with application programs, they are also the means by which
MUMPS programs are created and executed.

This chapter describes how to use MUMPS 11 terminals for developing

MUMPS application programs. In particular, the chapter describes

how to: log-in and log-out; enter commands; correct typing errors;

and store, load, and modify programs. The last section of this

chapter describes MUMPS error processing.

Operating at a terminal, the programmer can:

• Execute MUMPS commands immediately;

• Input the steps of a program;

• Run programs and access global files listed in the
directories of the current UCI;

• Run Library Utility Programs 1 •

2.2 TERMINAL TYPES

There are many types of terminals used in MUMPS systems, but most

have typewriter-like keyboards that do not vary significantly from

one to another. The main differences between terminals are: choice

of hard or soft copy, speed of operation, and the location of special

control characters on the keyboard.

As described in Chapter 1, individuals who are permitted to run

MUMPS programs are given an appropriate UCI code. With this code,

they can run any program in the UCI's program directory. They can

not, however, modify or create programs: a UCI alone does not allow

access to Direct Mode. The system's Programmer Access Code (PAC)

permits entry into Direct Mode through which programs can be created

and modified and individual MUMPS commands can be executed.

1Library Utility Programs are described in Chapter 4.

2-1

2.3 PRELIMINARY OPERATIONS

Before attempting to log-in, the user should make sure that the

power on his terminal is turned ON and the terminal is ON-LINE. The

procedure varies from terminal to terminal, but for Teletypes and

DEC-manufactured terminals it is as follows:

• Teletypes - Turn the LINE-OFF-LOCAL switch to
LINE. The teleprinter's motor
should start.

• LA30 DECwriter - Set the circuit breaker on the
left of the back panel to ON. The
motor should start and the READY light
should be lit.

• LA36 DECwriter II - Operate the switches at the left
side of the keyboard as follows:

POWER ON/OFF to ON
LINE/LOCAL to LINE
BAUD RATE to match the applicable
baud rate of the hardware controller.

• VTOS Video Terminal - Set the ON-OFF switch on
the right side of the keyboard to ON;
then set the LOC/REM switch to REM.
The blinking cursor should appear on
the screen after a few moments.

• VTSO, VT52, and VT55 Terminals - Set the POWER ON/OFF
switch located in the recessed portion
of the right side of the cover to ON.
Set switches Sl and- S2 to match the
applicable baud rate of the hardware
controller as shown in Table 2-1.

2-2

Table 2-1
VT50 Baud Rate Switch Settings

Baud Rate
Mode Transmit Receive Switch Sl* Switch S2**

Local 9600 9600 1 G
4800 4800 1 F
2400 2400 1 E
1200 1200 1 D
600 600 1 c
110 110 1 B

Full Duplex with 9600 9600 2 G
Local Copy 4800 4800 2 F

2400 2400 2 E
1200 1200 2 D
600 600 2 c
110 llO 2 B

Full Duplex 9600 9600 3 G
4800 4800 3 F
2400 2400 3 E
1200 1200 3 D
600 600 3 c
300 300 4 A
150 150 5 A
llO llO 3 B
75 75 6 A

Full Duplex 300 9600 4 G
(Split Speeds) 150 9600 5 G

75 9600 6 G
300 4800 4 F
150 4800 5 F
75 4800 6 F
300 2400 4 E
150 2400 5 E
75 2400 6 E
300 1200 4 D
150 1200 5 D
75 1200 6 D
300 600 4 c
150 600 5 c
75 600 6 c

*Switch Sl Labels **Switch S2 Labels
1 Local A Bell System type 103 dataset
2 1/2 B 110 Baud
3 = Full Duplex c = 600 Baud
4 = 300 Baud D 1200 Baud
5 150 Baud E = 2400 Baud
6 = 75 Baud F = 4800 Baud ,.. 9600 Baud "

2-3

2.4 SPECIAL KEYBbARD CONTROL CHARACTERS

The following control characters have special significance to MUMPS

terminals. CTRL characters are formed by depressing the CTRL key

while striking the associated character key as with CTRL/C and

CTRL/U.

e BREAK and CTRL/C - The BREAK button on the Teletype
and the CTRL/C function on all terminals are used
interchangeably to request use of a terminal or to
attempt to interrupt the current operation. The
use of BREAK and CTRL/C as interrupting characters
is discussed under ~he ASSIGN command in the MUMPS-11
Language RefePenae Manual and in paragraph 2.5 of
this manual.

• Carriage RETURN/ALT MODE/ESC - These characters are used
interchangeably as line terminators for terminal input.
They are represented internally by the NUL (~~~) ASCII
code. Note that this usage of ESC is different from that
for the VT52 (described in Section 3.7.1.4).

• RUBOUT - Deletes single characters in the current line
starting with the rightmost character. Each time the
key is depressed one character is deleted and a
backslash (\) is echoed. (A RUBOUT on VTOS erases
the last character typed.) This command is effective
only if a line terminator has not been typed for the
line in question.

Example:.

1.25 T "FORESOCRE

Given that the final 'E' has just been typed, the
above misspelling can be corrected by typing seven
RUBOUTs followed by the correct letter sequence.

1.25 T "FORESOCRE\\\\\\\URSCORE

2-4

• CTRL/U - Deletes the entire line. Like RUBOUT,
CTRL/U works only on lines which have not been
terminated. Thus, typing CTRL/U rathe.r than
RUBOUT in the previous example would delete the
whole line. MUMPS echoes tu followed by a
Carriage RETURN/LINE FEED.

• CTRL/O - Suppresses terminal output printing. Typing
CTRL/O again restores output printing if there is
any more output to the terminal. The system auto­
matically restores output printing when: returning
to Direct Mode; the terminal is ASSIGNed; an error
occurs; or a BREAK or CTRL/C is received and the
terminal is unowned.

2.5 LOGGING-IN TO THE SYSTEM

Each user of a MUMPS terminal gains access to the system's programs

using a special log-in sequence which involves one or two access

codes (depending on the privileges allowed the user). These codes,

provided by the MUMPS System Manager, are the User Class Identifier

code or UCI, and the Programmer Access Code, or PAC. The MUMPS-11

System can have up to sixteen UCI's (classes of users). The UCI

code must be entered by all terminal users. It allows access to

the programs and globals listed in the Program and Global Directories

assigned to that UCI. A user who is permitted simply to run programs

needs to know only the UCI code and the names of those programs which

he is permitted to use. Users who are allowed to create or modify

programs and global files must know the system's PAC •. This code

permits system operation in Direct Mode whereby a programmer can

execute MUMPS commands at the keyboard, as well as create, modify,

and delete global data and programs associated with a specified

UCI. The following procedures describe the steps to be used for

system log-in:

a. Type either CTRL/C or BREAK. MUMPS will respond with

MUMPS-11 Vnn nn

where: vnn version of system
nn =terminal's device number

On the next line, MUMPS types

UCI:

2-5

b. The terminal user should respond in one of two ways.
If a UCI·and a program name are specified, that program
will be loaded and started upon a successful log-in.
If a UCI and the PAC are specified, MUMPS will enter
Direct Mode. The response must be in the following
form:

uci: lprogl)
pac

where: uai = the user's UCI aode

= delimiter

pac the Programmer Aacess Code (PAC)

prog = the name of a program to be run
residing in the Progl'am DirectoPy
of the UCI.

If the user does not respond within 20 seconds, he is
automatically logged-out and must again type CTRL/C
or BREAK to reinitiate the log-in sequence.

c. After the codes have been typed, depress either Car­
riage RETURN or ALT MODE. If the codes are le9.itimate,
MUMPS will either run the requested proqram, if a_pro•
gram name was specified, or type the right angle bracket
(>) prompting symbol to signify its readiness to accept
commands in Direct Mode, if the PAC was specified.

d. If log-in was not successful, an error message is
printed and the terminal is logged-out.

The following are examples of system log-in sequences (user

responses underlined):

a. Log-in to Run a Program (Indirect Mode operation only)

CTRL/C
MUMPS ·l l V3B
.UCI : NAM: %X
10:38AM
EXIT

16
Enter UCI and program name
Program runs to aompietion
User is iogged-out

2-6

b. Log-in to Create, Modify and Run Programs (Direct or
Indirect Mode Operation)

CTRL/C
MU:'lll'S-11 V3B
UCI: SAM:QYV
>

•
•

•

#6

2.6 LOGGING-OUT OF THE SYSTEM

Enter UCI and PAC
User is given control in Direct Mode

User performs desired tasks

Log-out

When the user wishes to end his session at the terminal, one of

the following procedures can be used.

a. If a program is running (i.e., Indirect Mode is in
effect), type a CTRL Cora BREAK.

If the user did not log-in with the PAC and program
interrupt is enabled 1 , the message "EXIT" is printed
and the terminal is logged off automatically. If pro­
gram interrupt is not enabled, the job may determine
the action to be taken. 2 If the user had logged-in
with the PAC, control is returned to Direct Mode and
a '>' is printed.

b. If the user is operating in Direct Mode, log-out is
accomplished simply by typing:

immediately after the '>' character. The "EXIT" mes­
sage is printed and the terminal is logged off.

2.7 ENTERING COMMANDS

Once a terminal user has logged-in to the MUMPS system using the

Programming Access Code, almost any MUMPS Command or Function can

be executed from the keyboard in Direct Mode. Exceptions are:

OVERLAY, BREAK, ELSE, and GOTO.

1See ASSIGN Command in the MVMPS-11 Language Reference Manual.
2 See paragraph 5.2 on the $J System Variable.

2-7

2.8 SUMMARY OF COMMAND AND FUNCTION SYNTAX RULES

The following is a list of the rules of syntax as presented in the

MUMPS Ldnguage Referenae Manual.

• Commands which are to be executed immediately
(Direct Mode) do not use Step Numbers. The
first character of the command is the first
character on the line.

• Commands which are to be executed as part of a stored
program (Indirect Mode) are preceded by a Step Number.
The first command on a line is separated from the
Step Number by a single space.

• Each command may be abbreviated to its first letter
(first letter after the '$' for a function). Fur­
thermore, to do so saves partition space since
only the first character is necessary, but all suc­
ceeding characters up to the next space char-
acter are stored. Care should be used when abbre­
viating commands to avoid confusing certain commands
which are executable only in Direct Mode with others
which can be executed only in Indirect Mode.

Example:

E1-12.5

In Direct Mode, it means: 'ERASE Step 2.5'. But:
in Indirect Mode, it is read as: 'ELSE' and pro­
duces a SYNTX error, since 2.5 is not a valid com­
mand.

• A command is separated from its argument or argument
list by a single space.

• Multiple arguments to a command or function are
separated from each other by single commas.

• Multiple commands on the same line are separated
by single spaces.

• Certain commands permit the use of an argumentor
argument list to be optional. If such a command is
to be used with no argument list and it is not the
last command on the line, it must be separated from
the next command by two spaces. If there are no
commands following it on the line, the spaces must
be omitted. Note that the ELSE command is an excep­
tion: only one space is allowed.

• Program comments may be added to any command line.
When comments are used, they must begin with a semi~
colon (:). The semicolon must be separated from the
preceding command argument list or Step Number by a
space.

2-8

• The indirection syntax operator, symbolized by
underscore () or back arrow (+) , provides
dynamic command argument definition. In form,
the command argument is replaced by a variable
name. During execution, the contents of that
variable name are taken as the argument.

Example:

where: A=l, B=2 and C=3
ARG = "B+C-A II

>TYPE .,.ARG
4
>

• An optional Boolean-valued expression preceded by a colon
(:bve) can be used to specify conditional execution of
certain commands and command arguments (see Appendix D).

Examples:

2.03 GOTO 3:A>B

Control is transferred to Part 3 if the contents
of 'A' is greater than the contents of 'B'.

11.21 W: A= B 2

If A=B, all the steps in part 2 are written out
to the cur~ently assigned I/O device.

The colon is also used as a field delimiter in the
arguments of FOR, MODIFY and ASSIGN commands.

Example:

I • 09 F' I =I : I : I 0 D X

The colon can also be used to indicate the presence of
an optional expression appended to some command arguments.

Example~

6.30 REflO X:S is a 'timed' Read.

• Function arguments are enclosed in parentheses
and immediately follow the function name.

• Functions which produce string valued results
may NOT be nested. Further, where the argument
to any function is required to be a string, it
must be in the form of a string variable or
literal (svl).

2-9

2.9 SUMMARY OF RULES FOR EVALUATION

The following is a summary of the rules for expression evaluation:

• Sequence of operations in an expression is strictly
from left to right, except that a unary minus is
evaluated before a Boolean NOT when they appear as
adjacent operators. Parentheses can be used to
cause operations to be evaluated in a different order
than would be allowed by the normal sequence of
operations.

• Expression elements are variables (global, local, and system),
literals, constants, functions, and subexpressions
(expressions enclosed in parentheses).

• Automatic data mode conversion is employed to
convert a string datum to numeric datum and vice
versa as required to complete any particular
operation.

2.10 CREATING PROGRAMS

To create a program, the terminal user logged in under a PAC simply

enters a Step Number at the beginning of a command line. This signals

the system to store the line in the program buffer of the user's

partition rather than to execute it immediately.

Example:

>1 .03 TYPE l+C2*3>-C5/10)

The programmer may type in as many program Steps as the size of

his partition will permit. If too many Steps are input, however,

a PGMOV error will occur. The $S System Variable can be interro­

gated to determine the number of characters (bytes) of storage

remaining in the partition.

Example:

>T $S
44~-

>

44 10 characters of storage remain

2-10

2.11 STORING PROGRAMS

There are several choices available to a programmer who wishes to store

a program within a user partition:

• The program can be stored on the disk.

• The program can be stored on a secondary storage
device such as magtape, DECtape, or paper tape.

To store a program on the disk, use the 'FILE1...1pnam' command (pnam

is a MUMPS identifier with a 3-character limit).

Example:

files the program called 'AJC' and
plaaes its name in the Program Di­
reatory of the aurrent UGI.

There is also an argumentless FILE command, which assumes the current

program name.

The ASSIGN and WRITE commands are used to save a program on a sec­

ondary storage device.

For example, the following command line writes the program currently

in the user's partition onto DECtape unit 1, starting at address 2,56~:

>A 56:256~ W U 56

Note that the UNASSIGN is necessary to write the last buffer onto

the DECtape, as well as to free the device for other users.

2.12 LOADING PROGRAMS

There are several ways to load programs. The techniques are just

the reverse of those used to store programs, with the following

addition. If the programmer merely wishes to run a program re­

siding on the disk, loading can be effected by logging-in with the

program name.

2-11

For example: to run the program 'B23' which is entered in the

Program Directory of UCI 'BOB', log-in as follows:

CTRL(_C
MU'l'JPS-11 V3B I 6
UCI: 008; 823

.
EXIT

Program B23 runs to eompZetion,
then exits .

If the programmer wishes to make alterations to a program, continue

development, fix bugs, etc., he may load the program in one of the

following ways using the LOAD command.

If the program 'A3C' is listed in the Program Direc­
tory of the current UCI,

>LOAD A3C

brings the program into the partition's program buffer.

The CALL command may also be used for disk-stored programs,
however it causes automatic program execution.

If the program to be loaded is on a secondary storage
device, the LOAD command without the program name
argument will load a program from the currently ASSIGNed
r/o device.

The following example loads a program from the Paper
Tape Reader (device 2) :

>A 2 LOA[) U 2

Note that a LOAD of this form merges the program being
loaded with the program, if any, currently in the par­
tition. Steps of the program being loaded replace Steps
of the same number currently in the partition. If a merge
is not desired, ERASE should be issued before the LOAD, as:

>E A 2 L U 2

2-12

2.13 STARTING AND STOPPING A PROGRAM

The DO command can be used to start a program currently residing

in the user's partition. The programmer can specify an entire

Part:

>DO 1

or individual Steps or groups of Steps:

>D 5 .32

>D 6. 112l, 4, 1 .12l.3

The entire Part, Step, .or group of Steps will be executed and con­

trol then returned to the programmer at the terminal.

NOTE

A DO command does not effect complete
execution of a program having more than
one Part unless a GOTO command is also
used within each Part to effect trans­
fer of control from one Part to the next.

Programs are normally stopped by:

• Executing a HALT;

• Executing a QUIT at the lowest (outermost) pro­
gram nesting level;

• Running out of Step Numbers in the current Part
or reaching the end of a Step if 'DOing' a Step;

• Typing a BREAK or CTRL/C from the Principal I/O
Device if CTRL C/BREAK recognition is enabled.

2.14 CHANGING, REFILING, AND DELETING PROGRAMS

Program creation takes place in Direct Mode. Once a program is

resident in the user's partition, the programmer can:

• Add new Steps by typing them in;

• Replace existing Steps by entering a Step with the
same number;

2-13

• Delete one or more Steps using the ERASE command;

• Modify Steps using the MODIFY command;

• Print out the e~tire program or parts thereof
using the WRITE command.

• Modify the Program through use of the Editor (cf.
Section 4.3).

After a program has been FILEd it remains in the partition until:

it is ERASEd, the session at the terminal is HALTed, or another

program is loaded from the disk. The programmer can continue to

run, modify, and refile it.

Each time a FILE command is executed, the program currently present

in the partition replaces any program previously FILEd having the

same name.

Deleting a FILEd program is accomplished by FILing an empty Program

Buffer. Simply issue an ERASE Command followed by a 'FILE pnam'

Command (where pnam is the name of the program to be deleted).

This will remove the program from the disk and delete that program's

name from the current UCI's Program Directory.

Example:

To delete program 'JOE', type:

>E F JOE

Changing a program's name involves a like procedure. First LOAD the

program which is to have its name changed. Then FILE it using the

new name. Last, delete the old program by issuing an ERASE followed

by a FILE using the old program name. To keep several versions of

a program, give each one a different name.

2.15 ERROR PROCESSING

The standard MUMPS error processing procedure considers all language

syntax, program or system operation errors fatal. MUMPS normally

reports errors by:

2-14

• setting the $I System Variable to the Principal I/O
device number (the device at which the user logged-in)

• printing an appropriate message on the Principal I/O Device
• halting the program

If the user logged-in under a PAC, control returns to the user in Direct

Mode. If the user logged-in simply to run a program, the user is

automatically logged-out. Appendix c describes the MUMPS error

messages.

The user may write an application program which performs its own error

processing and avoids interrupting the job with a fatal error, by

using the $E System Variable. Refer to Paragraph 5.3 for further

information.

2-15

3.1 INTRODUCTION

CHAPTER 3

USING 1/0 DEVICES

MUMPS timesharing allows multiple users to have access to the same

central processor via separate remote terminals. It also allows

one user to have access to many terminals from one program. In.

additiort to terminals, MUMPS systems also include ancillary Input/

Output devices such as the high-speed paper tape reader and punch

and DECtape transports. Each I/O device has a unique identification

number within the system.

'OWnership' of a device is established by using the ASSIGN Command.

In a timesharing environment, many programs may be competing for

the use of a single device. Thus, before attempting input or out­

put to a device other than the terminal with which the program is

associated, an ASSIGN command must be issued.

Once ownership of a device is established, I/O may proceed using

the I/O commands available. In general, the programmer need not

be concerned with specific characteristics of MUMPS I/O devices

since data trans~ers consist of ASCII lines of not more than 132

characters. There are, however, certain physical operating charac­

teristics of these devices which may be of interest to the program­

mer: for example.,· how to rewind a magtape or access a particular

location on DECtape. These characteristics are discussed in later

paragraphs.

When an I/O device is no longer needed, it should be released for

use by other programs by means of the UNASSIGN Command.

3.2 I/O DEVICE NUMBERS

The unique identification number of each MUMPS I/O device always

represents the same device regardless of the hardware configuration

of a particular system. For example, the line printer is always

Device Number 3. If a particular system does not have a line printer,

then Device Number 3 is nonexistent and any attempt to use (ASSIGN)

3-1

it results in a 'NODEV' error message. The system reports a 'NOTSY'

error when the user references a device for which there is no associ­

ated driver in the system. For example, a reference to device number

55 in a system not built for DECtape I/O causes a NOTSY error.

Table 3-1 shows the complete list of MUMPS-11 I/O device assignments.

Note that device numb~rs 20 through 45 are specified as Program Inter­

locks. There are no physical devices associated with these numbers;

instead, they are to be used for inter-program communication. Through

the use of the ASSIGN and UNASSIGN commands, MUMPS application programs

can signal one another. The significance of any particular interlock

being 'owned' by any pa:i:-ticular program is, of course, ·established by

user's conventions (i.e., assignment of these 'dummy' devices has no

particular significance to the MUMPS operating system). Typically,

one Program Interlock would be associated with each UCI.

3.3 ASSIGNING I/O DEVICES

In all MUMPS programs, input and output operations are directed to the

I/O device whose number is contained in the $I system Variable. When

the user logs-in to the system, $I contains the terminal's Device

Number. All error messages are directed to this device, unless the

program controls its own error processing in another manner. Standard

error processing resets. $I to the principal I/O Device. Thus, the

terminal at which a user signs in is called his Principal I/O Device.

Ownership of each device which a program is to use, other than the

Principal I/O Device, must be established by the use of the ASSIGN

Command. This command permits a program to reserve any number of

I/O devices. Further, the command causes the last device number

specified in its argument string to be the 'current device' by setting

the $I System Variable to that device number.

Thus:

reserves deviaes 3, 4, and 5
and makes deviae 5 aurrent.

The device being current simply means that, in addition to be being

owned, its identification number is stored in the $I System Variable.

This $I may be referenced in any expression but can only be changed by

ASSIGN. Each I/O Command is directed to the device whose number is

in $I. A program may not communicate with more than one device at a

time.

3-2

Number

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

79
80

95
96

111

Table 3-1

MUMPS I/O Device Table

Device

Console Terminal
Paper Tape Reader/Punch
Line Printer
Terminal #1 (Single line)
Terminal #2
Terminal #3
Terminal #4
Terminal #5
Terminal #6
Terminal #7
Terminal #8
Terminal #9
Terminal #10
Terminal #11
Terminal #12
Terminal #13
Terminal #14
Terminal #15
Terminal #16
Program Interlock #1

Program Interlock #26
VIEW Command 'Device' (memory only)
Magtape Drive #%
Magtape Drive #1
Magtape Drive #2
Magtape Drive #3
Reserved Device #%
Reserved Device #1
Reserved Device #2
Reserved Device #3
DECtape Drive #%
DECtape Drive #1
DECtape Drive #2
DECtape Drive #3
Sequential Disk Processor #%
Sequential Disk Processor #1
Sequential Disk Processor #2
Sequential Disk Processor #3
VIEW Command 'Device'

. . .
DH Multiplexer #1, Term.

DH Multiplexer #1, Term. #1 l
#lJ

DH Multiplexer #2, Term. . . .
DH Multiplexer #2, Term.

#1 l
#16J

DH Multiplexer #3, Term. . . .
DH_Multiplexer #3, Term.

#1 }

#16

or: 2 DZ mult.*
(device #1 and
#2) with 8
terminals on
each = 16
or: 2 more DZ
mult.* (device
#3 and #4) with
8 terminals on
each = 16
or: 2. more D.Z
mult.* (device
#5 and #6) with
8 terminals on
each = 16

*Device number assignments are based on the assumption that DH and DZ
multiplexers are not combined in one system. If they are combined,
DH multiplexers get the lowest device number assignments.

3-3

Table 3-1 (Cont.)

MUMPS I/O Device Table

Number Device

112 In core job communication,
transmitter for Unit O,

113 In core job communication,
receiver for Unit 0

127 In core job communication,
receiver for Unit 7

When the terminal user or program issues an ASSIGN ~ command, I/O is

directed to the Principal I/O Device. When MUMPS detects a program

error and the user has not set the $E System Variable, the value of $I

is changed to the Principal I/O device number so that error messages

can be output to the terminal at which the user logged-in.

When a device is no longer required by a program, the UNASSIGN command

should be used to release it for use by other programs. This command

performs the reverse operation of ASSIGN. Each device specified is

released and the value of the $I System Variable is changed to that of

the Principal Device. However, in the case of multiple device ASSIGN­

ments, UNASSIGNing a device does not automatically change the value of

$I to that of the Principal Device. For example:

A 5, 3 u 5 T II Hi II

sends "Hi" to the printer.

In the case of output devices, the command is not honored until the

current output operation has terminated. Also, when a program is

HALTed, or the user at the terminal ends a session, all currently

owned devices are automatically UNASSIGNed.

3.4 I/O COMMANDS

The commands which effect input and output operations to the terminals

and ancillary devices are: TYPE, READ, PRINT, WRITE, and LOAD. These

commands may be used freely with any device except for illegal opera­

tions such as trying to READ from a Line Printer.

The TYPE command is used to- output both local and global data, as

well as literals, constants, and format control characters. The READ

3-4

command is used to input data into local variables as well as to out­

put text literals and format control characters. Programs can be

saved and restored by the WRITE and LOAD commands, respectively.

WRITE causes the program currently in the partition to be output to

the device specified in the last ASSIGN command. LOAD reads the pro­

gram residing on the current I/O device into the partition.

The PRINT command is used primarily to take advantage of special

features of certain I/O devices, which are specified, generally,

by non-printing ASCII codes. The PRINT command accepts numeric

arguments, the low-order seven bits of which are taken as the

decimal representation of an ASCII code. The code is transmitted

without conversion to the currently assigned I/O device. Examples:

a. to ring the bell on a teleprinter, type:

>PRINT 7

b. to output a LINE FEED without a Carriage RETURN, type:

>PRI~T 12

c. to rewind Magtape, type:

>A 47 P 5

Refer to paragraph 3.7.1.4 for the special PRINT command ASCII

codes.

3.5 OUTPUT FORMATTING

Three facilities in MUMPS provide for the formatting of output data.

These are the form control characters, the ASSIGN command and the

$X and $Y System Variables.

3.5.l Form, Control Characters

Three special form control characters can be used as arguments to

the TYPE, READ, and PRINT commands:

?nve

Page Feed (FORM Feed)

Carriage RETURN/LINE FEED sequence (line
terminator)

Horizontal TABulation - positions the PRINT
mechanism 'nve' spaces from the absolute left
margin.

When the characters immediately follow one another in an argument

list, no intervening commas are necessary (i.e., #!?3 !!! or##

is legal) 3-5

Examples:

>TYPE ##?65,ffPAGE ff,PAG,! outputs two FORM FEEDs followed by:
65 spaces, the a,tPing PAGE, the
value of the VaPiable PAG, and a
CaPPiage RETURN/LINE FEED sequence.

when output to a telepPinteP
causes two CaPPiage RETURN/LINE
FEED sequences, followed by two
Pings of the bell, and a '>'
chaPacteP.

When using the TYPE and PRINT commands to a terminal or the line

printer, each line output should be terminated by a'!' form control

character to prevent overprinting on the device. When output is to

a storage device (paper tape, magtape when the DOS format is selected,

DECtape, or sequential disk processor) omission of a terminating '!'

causes the concatenation of the line with the one which follows it.

-
On the paper tape punch, concatenated lines should not exceed 132 char-

acters; otherwise, an 'LBOV' error occurs on input-. The sequential disk

processor (SDP), DECtape, and magtape force an EOM condition if more

than 132 characters are input. Except when the "V" magtape format is

selected, the next input request starts where the last terminated; thus

no data is lost. Therefore, to conserve space on a tape, it may be de­

sirable to concatenate lines.

Examples:

>S Ll=ffNOW IS THE TIME FOR ff

>S L2=ffALL GOOD MEN"

1.20 A 55:2000 T L1,!,L2,I U 55
1.312! A 55:2000 R X1,X2 U 55
1 • 4 0 T " X 1 = " , X 1 , ! , " X2 =ff , X2 , I
>!L!.
Xl=NOW IS THE TIME FOR
X2=ALL GOCD MEN

1.212! A 55:2000 T L1 ,L2, I U 55
1.30 A 55:2~00 R Xl,X2 U 55
I • 4r: T "X 1=",X1 , ! , "X2 =", X2, I
>n I
Yl=~J0\.1 If THE" TIME FOR ALL Goon l"'F"J
')('=next line from the input device

3-6

the contents of both L1
and L2 aPe terminated by
the ' ! ' duPing output to
DECtape (device 55) and
are thus read back on in­
put as two sepaPate lines.

since there is no tePmina­
tor between L1 and L2, they
are tPeated as one concate­
nated line and on input X1
contains the original con­
tents of L2 and L2 while X2·
contains whateveP line foZ­
Zowed these on the tape.

The horizontal tabulation character '?' is particularly useful when

formatting columns of data for output to terminal devices (device

numbers 1, 4-19, 64-111. 1 Because tabulation is relative to the

absolute left margin, each successive tabulation on a line must show

an increasing number of spaces in order to effect a change in column

position.

Example:

>TYPE 710,"A",?10,"B"

results in

(10 spaces)AB

not

(10 spaaes)A(10 spaces)B

However,

>TYPE 710,"A",?21,"B" produces the second result

In any line of text, if one string overlaps the starting position

for a '?nv~' formatted string, the '?nve' string starts on the next
available character position.

Examples:

>SET A=17

>TYPE A,?6,"METERS"
1 7 METERf'

or

>SET A=-•• SEVENTEEN.....,.".

>TYPE A,?6,"METERS"
~EVENTEEN METERS

3.5.2 Margin Control

The programmer may set a right margin for terminal devices (devices 1,

4-19, 64-111) and the line printer (device 3) when he ASSIGNS the device.

When the device is UNASSIGNed, the system cancels margin control. The
MUMPS-11 Language Reference Manual discusses the use of the ASSIGN command.

Examples:

A $I:72

A 3:80

sets the right margin of the Principal
I/O Device to character position 72

sets the right margin of the line printer
to character position 80

~~~~~~~~~~ 

1The horizontal tabulation character can also be used to send a speci­
fic number of blanks through the in-core job communication devices, 
for example: 

A 112 T ?5 send through 5 blanks. 

3-7 



3.5.3 $X and $Y System Variables 

The $X and $Y System Variables provide the following information to 

assist the ~ser in formatting output lines on terminal-type devices: 

$X contains the running total of the number of char­
acters output since a Carriage RETURN or FORM FEED 
on the current I/O device. 

$Y contains the running total of the number of line 
feeds sent since the last Page or FORM FEED on the 
current output device. $Y is automatically reset 
to O when the 66th line is reached. 

3.6 I/O ERROR PROCESSING 

MUMPS considers DECtape, line printer, and disk I/O errors fatal. 

MUMPS reports an appropriate Operating System Error Message (Appendix 

C) on the Principal I/O Device and halts the program. 1 The program­

mer may choose to handle his own error processing and write a routine 

using the $E system variable (see 5.3). 

MUMPS does not consider I/O errors associated with terminals, 

paper tape reader/punch, sequential disk processor, or CPU-CPU 

devices fatal. MUMPS reports the hardware status for the currently 

assigned device in the $A System Variable after each request 2 • The 

user must check $A after each I/O operation 3 to determine if it was 

successful, and if not, to determine what kind of error occurred. 

MUMPS does not consider line printer or magtape I/O errors fatal 4 un­

less the user SETs the $E System Variable. If .$E is not used, the 

system only reports an error in the $A System Variable. If $.E is used, 

the system generates an 'MTERR' or 'LPERR' and passes control to the 

user's error processing routine. 

1 If an error occurs during output to DECtape, MUMPS attempts to write 
out the contents of the current buffer before the program halts. 

2 If an error occurs during an I/O transfer to a terminal device, the 
current line of data being transferred is lost. If a BREAK or CTRL/C 
is received, the data being transferred is lost unless the programmer 
controls interrupts when using the $J System Variable. 

3 If the programmer wishes to check the hardware status of a device 
before the first I/O request (for example, to check a line printer­
not-ready condition), he must use the $VIEW function to interrogate 
the hardware status register in memory. 

4 If an error occurs during output to magtape, MUMPS attempts to write 
out the contents of the current buffer before reporting the error. 
If an error occurs during either input or output, the system positions 
the tape after the block causing the error, unless an error occurs on 
the backspace or erase portion of a retry. 

3-8 



3.7 I/O DEVICE CHARACTERISTICS 

The following paragraphs describe the programming characteristics of 

MUMPS I/O devices. Users interested in specific hardware characteris­

tics should refer to the PDP-Li PeripheraZs and Interfacing Handbook. 

3.7.1 Terminals 

3.7.1.l General Description - Terminals in MUMPS-11 systems include, 

but are not limited to, ASR33 Teletypes, VT05/VT50/VT52 1 /VT55 Video 

Terminals, and LA30/LA36 DECwriters. The system may have up to 17 

remote or local single-line terminals, and up to 48 local or remote 

terminals on 3 DHll multiplexer lines or 6 DZll multiplexer lines, 

or a combination of both (see Section 3.7.1.2 following). Any one of 

the single-line devices 4-19 may be a CPU-CPU device. 

3.7.1.2 Device Numbers -

Number Device 

1 Console Terminal 
? 

4 Terminal #1 (single-line) 

+ + 
19 Terminal #16 

64 Terminal #1, DH Multiplexer 11 { 2 DZ multiplexers' 
+ + or (device #1 and 

#2) with 8 ter-
79 Terminal #16, DH Multiplexer #1 minals on each. 

80 Terminal #1, DH Multiplexer t2 { 2 DZ multiplexers 
+ + r (device #3 and 

0 #4) with 8 ter-
95 Terminal #16, DH Multiplexer #2 minals on each. 

96 Terminal #1, DH Multiplexer B { 2 DZ multiplexers 
+ + (device #5 and 

or #6) with 8 ter-
111 Terminal #16, DH Multiplexer #3 minals on each. 

1A special set of ESCape sequences can be used with the VT52. Refer 
to Section 3.7.1.4 for further information. 
2 The device assignments for the DZ multiplexers assume that DZ and DH 
multiplexers are not used in combination. When used in combination 
DH multiplexers get the lowest device number assignments. ' 

3-9 



3.7.1.3 Applicable Commands -

output 

WRITE 

TYPE 

PRINT 

Input 

READ 

LOAD 

3.7.1.4 Special Characters and Functions - The special keyboard func­

tions shown in the following list cannot be input as data from MUMPS-11 

terminals, since these functions are used to provide the user with 

program and data I/O control. (Paragraph 2.4 describes in detail the 

operation of the control character functions.) 

Function 

CTRL/C 

BREAK 

CTRL/U 

RUBOUT 

ALT MODE 

OR 

Carriage RETURN 

CTRL/0 

Line Feed 

CTRL/S 

CTRL/Q 

Description 

Request to log-in or attempt to 
terminate a running program. (See 
the ASSIGN command in the MUMPS-11 
Language RefePence Manuai for a 
discussion on enabling BREAK and 
CTRL/C.) 

Delete input line if it has not been 
terminated by a Carriage RETURN. 

Delete last character typed if previous 
character was not a Carriage RETURN. 

Terminates input lines from the 
terminal. 

Suppresses or restores output printing 
on terminal. 

Ignored by MUMPS (not echoed) • 

Stops printing at terminal until a 
CNTL/Q is hit. (CTRL/S is equivalent 
to X OFF on some terminals.) 

Resumes printing at last character of 
output. (CNTL/Q is equivalent to X ON 
on some terminals•) 

In addition to the control (CTRL) character functions, there are a 

special set of functions, used solely with the VT52, which use key­

board characters in combination with the ESC key. These combinations 

are called ESCape sequences. 
3-10 



The ESCape sequence is input to the computer in a different manner 

than the CTRL characters (see Section 2.4). The ESC key is pressed, 

but is then released before the associated character key is pressed. 

Whenever an ESCape sequence is input, the $H system variable is set 

to a unique code (see Table 2-2) • On input of a Carriage RETURN or 

an ALT MODE, $H is set to zero. 

The following character codes have special meaning to the terminals 

and can be used with the PRINT command. 

Teletypes: 

(not all codes 
have meaning 
to all ver­
sions of 
Teletypes) 

VT~S Displays: 

VTSliJ' Displays: 

Decimal 
Code 

~7 
~9 
l~ 
11 
12 
13 

~7 
~8 
~9 
l~ 
11 
13 
14 

24 
26 
29 

3~ 
31 

Description 

BELL 
Horizontal TAB 
LINE FEED 
Vertical TAB 
FORM Feed 
Carriage RETURN 

BELL (produces an audible sound) 
Backspace (cursor left one space) 
Horizontal TAB 
LINE FEED 
Cursor Down (one line) 
Cursor RETURN 
Enter cursor addressing mode and 
accept the ASCII value of the next 
two characters as the Y and X coor­
dinates of the new position of the 
cursor. 1 

Cursor Right (one space) 
Cursor Up (one line) 
Home (cursor to top line, first 
character position) 
Erase to end-of-line 
Erase to end-of-page 

The VTSO display has a number of 
device-dependent capabilities that 
are accessed via an ESCape sequence 
protocol. This information is 
contained in the VT50 Programmers' 
Reference Manual, DEC-OO-OUT5A-A-D 
and in DECscope Use~'s Manual, 
EK-VT5X-OP-001.. 

1 Refer to the VT05 Reference Manual, DEC-OO-H4AC-D for further information. 

3-11 



VT52 Displays: 

Decimal 
Code Description 

The VT52 display has a number of 
device-dependent capabilities that 
are accessed via an ESCape sequence 
protocol. This information is con­
tained in the DECscope User's Manual, 
EK-VTSX-OP-001. 

NOTE 

See Section 3.7.1.4 for an additional 
set of ESCape sequences which work 
in conjunction with $H system variable. 

(Used exclu­
sively with 
the PRINT 
command) 

VT55 Displays: 

{ 

27, 61 

27,62 

Causes alternate mode to be entered 
which will generate the following 
sequences. Keys 0-9 will set $H to 
0 to 9. 
Switches back out of alternate mode. 

The VT55 display has a number of 
device-dependent capabilities that 
are accessed via an ESCape sequence 
protocol. This information is con­
tained in the VT55 DECgraphic Scope 
User's Manual, EK-VT55A-TM-002. 

3.7.1.5 Error Conditions - If the currently ASSIGNed terminal is a data 

set, MUMPS reports its hardware status in the $A System Variable. Table 

3-2 lists the bit assignments for the data set hardware status register. 

Table 3-2 

$A Bit Assignments for Data Set Devices 1 

First Word* Second Word* 

Bit Meaning when Set to 1 Bit Meaning when Set to 1 

0 Reader Enable 2 0-1 Disconnected 
1 Terminal Ready 2 Secondary Received Data 2 

2 Request to Send 3 Receiver Active 
3 Secondary Transmitted Data 2 4 Carrier Detection 
4 Unused 5 Clear to Send 
5 Data Set Interrupt Enable 6 Ring Indicator 
6 Receiver Interrupt Enable 7 Data Set Status Change 
7 Receiver Done or Ready 9-15 Unused 

R-lO Unused 
11 Busy 
12 Receive Data Parity Error 
13 Framing Error 3 

14 Data Overrun 
15 Data Error 

*The number obtained from $A is a 2-word number (i.e., a double numeric 
datum). Bits can be tested using procedures described in 5.1. 
1CPU-CPU device $A bit assignments are discussed in paragraph 3.7.6. 
2 Not relevant. 
3Treated as a BREAK character by MUMPS. 

3-12 



Local single-line terminals use only bits 7, 11, 15 of the first 

word• Multiplexer terminals also use bits 12-14 of the first word. 

Remote single-line data set terminals use all assigned bits for status 

reporting. If the data set is disconnected, MUMPS sets bits 0-7 

in the second word of $A. If the data set terminal is the currently 

ASSIGNed device and is disconnected without being UNASSIGNed, the 

program is hung. If there is no activity on the disconnected data 

set line for 15 seconds, MUMPS halts the program, unassigns the ter-, 

minal and disconnects the data set from the telephone line. 

3.7.2 Paper Tape Reader/Punch 

3.7.2.1 General Description - The PCll High Speed Reader/Punch station 

reads and punches folded-form 8-channel, oil-less, grey, 1-inch paper 

tape. Data resides on paper tape as 7-bit ASCII characters, one 

character per frame. Unless parity checking (even) is requested during 

system generation, parity is not computed and bit 8 (parity bit) is 

always punched. The ~eader/punch is programmed in the same way as 

are terminals. 

3.7.2.2 Device Number - The reader/punch is device number 2. 

3.7.2.3 Applicable Commands -

Output 

TYPE 
WRITE 
PRINT 

READ 
LOAD 

3.7.2.4 Special Characters - CTRL/C (003) may be read from paper 

tape to effect job stream control and log-in. 

3.7.2.5 Error Conditions - Errors are ignored on output. An error 

on input will force an EOM, thus ending the input. 

3-13 



In general, the errors generated by the reader/punch are 'not-ready' 

conditions: the punch is out of tape or the power is off; the reader 

is out of tape, off-line, or the power is off. MUMPS reports an 

error condition by setting bit 15 in the $A System Variable. After 

the programmer issues an I/O request, he may check the status as 

illustrated in the following example: 

6.45 IF $A/100&327.68 (go proaess error) 

The user can check for an initial 'not-ready' condition on the punch 

before issuing any I/O requests by $VIEWing the device's hardware 

status register. The address of the status register for the punch is 

65388 10 ; for the reader, 65384 10 • For both, bit 15 is set (to 1) if 

an error condition exists. The following command line checks the 

punch for a 'not-ready' condition. 

4.3~ IF $VC653f8)/100&327.68 (go proaess error) 

If parity checking (only even) was requested at system generation, the 

user may check for parity errors by testing out bit 12 in the $A 

System Variable after the I/O request. 

2.10 IF $~/100&40.96 (go proaess error) 

3.7.3 Line Printer 

3.7.3.l General Description - The MUMPS System operates with any 

one of the following four line printer models: 

~ 

LPllF 
LPllH 
LPllJ 
LPllK 
LPllR 
LPllS 

Characters/Line 

80 
80 

132 
132 
132 
132 

Graphic 
Character Set 

64 
96 
64 
96 
64 
96 

3.7.3.2 Device Number - The device number for the line printer 

is 3. 

3.7.3.3 Applicable Commands -

Output 

TYPE 
WRITE 
PRINT 

3-14 



3.7.3.4 Special Characters and Functions - The following codes can 

be output with the PRINT command to effect format control as follows: 

Code 

l~ 
12 
13 

Description 

Line Feed 
FORM Feed (Top of Form) 
Carriage RETURN 

3.7.3.5 Error Conditions - When one or more of the following error 

conditions occur, the $E System Variable is set to a value of -0.38: 

OFF LINE 
OUT OF PAPER 
YOKE OPEN 
POWER OFF 

If the $E System Variable is not being used, the programmer should 

first check the line printer status by using the $VIEW function to 

check the error bit (bit 15) of the device's Status Register. The 

address of the Status Register is 65356 10 • The following command 

line checks this error bit. 

R.66 IF $VC65356)/J00&327.68 

3.7.4 DECtape 
(go process error) 

3.7.4.1 General Description - Up to two TU56 Dual DECtape transports 

can be used on MUMPS systems, providing up to four logical units. 

DECtape is used as a linear storage device, similar to paper tape. 

The tape is organized into 578 contiguous blocks of 512 characters 

each, providing up to 295,936 characters of storage. 

On output, MUMPS lines are packed into a 512-byte buffer. The buffer 

is output to the tape drive when it is determined that the next 

character of a line to be packed would exceed the size of the buffer. 

The null byte at the end of each line is discarded. On input, Carriage 

RETURNS are converted to nulls. 

3.7.4.2 Device Numbers -

Number 

55 
+ 

58 

Device 

DECtape Unit ~ 
+ 

DECtape Unit 3 

3-15 



3.7.4.3 Applicable Commands -

Output 

TYPE 
WRITE 
PRINT 

Input 

READ 
LOAD 

3.7.4.4 Special Characters and Functions -

a. Positioning the DECtape: 

DECtape is positioned through use of the special 
':nve' syntax of the ASSIGN command. This argument 
specifies the address in bytes of the next character 
position to be read or written. The address must be 
a positive integer between ~ and 295,935. This address 
is placed in the $A System Variable. Thus, it is 
really $A that specifies the DECtape address. If 
no address is specifieq in an ASSIGN command, $A 
ts not changed, and the drive is enabled for sub­
sequent I/O transfers. $A is updated by the DECtape 
driver to the current address after each I/O 
request. The user can interrogate $A as needed. 

b. Buffers 

DECtape is a buffered device. A 256-word buffer is allocated 
on an ASSIGN and deallocated on an UNASSIGN. Further, part 
of the deallocation process is the writing of a partially 
filled buffer if the last I/O request was a WRITE, TYPE, or 
PRINT. Since a buffer is written oub on the tape only when it 
is full, an UNASSIGN should be used to terminate the OUTPUT 
sequence to prevent the loss of data remaining in the last 
buffer. This same sequence is automatically performed on a 
HALT or a terminal error. If, however, the error originates 
from the DECtape unit, the last buffer may not be written out. 

3.7.4.5 Errors - The 'DTERR' error message results from these error 

conditions: 

3.7.5 Magnetic Tape 

DECTAPE OFF J.INE 

NOT WRITE ENABLED 

UNIT NUMBER NOT SELECTED 

HARDWARE ERROR ON TAPE 

3.7.5.1 General Description - Magnetic tape devices which are compat­

ible with the MUMPS system are the TJU16 and the 7- or 9-track models 

of the TUl~. Up to four logical transports can be used, but TUl~s and 

TJU16s cannot both be utilized on the same system. The recording mode 

is either industry standard 9-channel m6de or 7-channel dump mode. The 

800 bpi and lower densities use NRZI recording whereas 1600 bpi is phase 

encoded. 

3-16 



Labeling conventions, character sets (ASCII or EBCDIC), data formats, 

and physical block size are program selectable. Default values for 

these parameters may be modified by the MSP (modify system parameters) 

program. One possible default value is a DOS-11 compatible format. 

Thus the former MUMPS magtape handler which only permitted a DOS-11 

compatible format is upwards compatible with the new MUMPS magtape 

handler. 

Once a magnetic tape unit has been used for either input or output it 

must continue to be used for that same function until either the uni~ 

is UNASSIGNed or a backspace, forward space, or rewind (PRINT 1, 2, 

or 5) has been issued. Failure to use the unit in this manner results 

in an error. 

3.7.5.2 Device Numbers -

Number 

47 

' 50 

3.7.5.3 Applicable Commands -
Assignment 

a. ASSIGN Command 

ASSIGN 
UNASSIGN 

Input 

LOAD 
READ 

Output 

PRINT 
TYPE 
WRITE 

Device 

Magtape Unit {J 

' Magtape Unit 3 

'The format of the ASSIGN command for magtape is as fol­
lows: 

When the ASSIGN command is used to establish device 
ownership, the tape format parameters for subsequent 
I/O are established. The tape format which is used 
for the ASSIGN is the default format (specified by 
the MSP program) modified by the optional arguments 
of the ASSIGN command. The optional arguments in 
future ASSIGNS of the unit are ignored until the unit 
has been UNASSIGNed. The specification of a tape 
format which is different from the default format 
remains in effect only until the unit is UNASSIGNED. 

3-17 



Each character of the optional string (sve) represents a for­
mat switch. The effect of each of these switches is described 
in Table 3-3. Not all switch combinations are permissible; 
Table 3-4 indicates which switches are allowable. 

The variable nve3 specifies a fixed-length logical record 
size in bytes. Its value must be • if a fixed-length record 
format is not being used, and its value must be within the 
range of 1 through 132. The variable nve4 specifies a physi­
cal block size in bytes. Its values may range from 14• 
through 512 but must be an even value. An odd value will 
give a magtape error. 

Examples: 

3.51 A 47 

4 • 5 A 4 7 : II AVL II 

4.9 A 47:"EUF":8J:24J 

reserves magtape unit S with 
the default format 

reserves magtape unit S and 
specifies the ANSI standard 
"D" format (labeled) 

reserves unit S and specifies 
unlabeled EBCDIC with 8J­
character fixed-length rec­
ords and 24J byte blocks (3 
records per block) 

An ASSIGN which establishes ownership of a magtape unit 
will poll that unit to determine its status, and that 
status is used for the $A reserved word. Subsequent 
ASSIGNS do not poll the drive, and $A then refers to the 
last I/O operation of the unit. 

b. UNASSIGN Command 

An implicit "PRINT 9" (write anEOF label) is performed 
if the program has been performing output. That is, the 
current contents of the buffer (if any) is output and 
then, if the unit is not on a tape mark, an EOF label 
is written. Note that an UNASSIGN immediately following 
a "PRINT -8" (write a file header label), for a non-DOS 
labeled format, does not perform additional output since 
the buffer is empty and the unit is on a tape mark. 

c. PRINT Command 

The control codes shown in Table 3-5 may be used as 
arguments to the PRINT command to effect special tape 
functions. 

d. LOAD and READ Commands 

An implicit "PRINT 7" (read a label) is performed on 
input if the tape is at the beginning-of-tape (BOT). 

e. TYPE and WRITE 

An implicit "PRINT 8" (write a header label) is per­
formed on output if the tape is at the beginning-of­
tape (BOT) . 

3-18 



3.7.5.4 Operations and Tape Formats -

a. Normal Usage: 

To output a single file to magtape, a program should 
simply ASSIGN the unit, issue a "PRINT 5" to rewind 
the tape if it is not already at the beginning of the 
tape, output the data, and then either UNASSIGN the 
unit or use "PRINT 5" to rewind the tape. A partially 
filled output buffer is written, and the appropriate 
labeling is automatically performed. The volume and 
header labels are automatically skipped on input, if 
the tape is at the beginning of tape location, and a 
tape mark condition indicates the end of a file's data. 

b. Labels: 

There are four labeling options: 

1. DOS-11 compatible label 

A 7-word label appears at the beginning 
of the tape and a tape mark appears at 
the end of the file. 

2. ANSI standard label 

Figure 3-1 illustrates a single and a 
multiple file tape using ANSI standard 
labels. 

3. IBM standard EBCDIC label 

With the exception of minor internal 
field differences and the EBCDIC char­
acter set, this labeling convention is 
the same as the ANSI standard. 

4. Unlabeled 

ANSI standard. labels are generated if the ASSIGN switches 
"L" and "A" are present (or are default switches). IBM 
standard labels are generated if the "L" and "E" switches 
are present (or are default switches). The volume identi­
fier is "MUMPSl", and the file identifier for every file 
on the tape is "MUMPS.SEC". The file sequence number of 
the first file is 1. The sequence number is incremented 
by one for each subsequent file on the tape. 

DOS-11 compatible labels use the file name "MUMPS . .0'.0'1". 

c. Multiple Files: 

To write multiple labeled ANSI standard or IBM 
standard files, the following sequence should be 
used . 

... write file 1 PRINT 9,1,8 write file 
x- x 

Note that if nothing is output for file , a subse­
quent UNASSIGN or rewind wiil not prope,ly close 
that file. A "PRINT 9", however, will still properly 
close that null file. 

3-19 



To read multiple labeled ANSI standard or IBM 
standard files, the following sequence should be 
used . 

•.• read file 1 , read the tape mark PRINT 7,7 read file 
x- x 

d. Data Formats: 

Any of three data formats can be selected. 

1. Stream 

Characters are sequentially packed into 
blocks. On output, a carriage return/ 
line feed sequence is translated to a 
line feed, and if a line cannot fit into 
a block, the block is padded with NUL 
characters and the line is the first line 
of the following block. On input, line 
feeds, form feeds and vertical tabs are 
converted to EOMs 1 , and carriage returns 
are discarded. On input, a NUL character 
is interpreted as the end of a block and 
input for that READ continues with the 
first character of the following block. 

2. Variable Length Record 

Figure 3-2 illustrates the variable length 
format. Each string is preceded by a 4-
byte numeric character off set whose value 
is the byte-length of the data string plus 
4 for the offset length. If the next string 
plus offset cannot fit into the block, a 
caret (A} appears in the first character 
position of what would qave been the next 
offset, and th~ string and its offset ap­
pear in the following block. This format 
is the ANSI standard "D" format, and it is 
selected by the ASSIGN switches "A" and "V". 

The ASSIGN switches "E" and "V" select the 
EBCDIC version of the ANSI standard "D" format. 
The EBCDIC version is the same except that 
every data block begins with a 4-byte numeric 
character block off set. This block off set 
equals the length of all of the strings and 
their off sets that are in the block plus 4 
for the block offset length. 

On output, each argument of the TYPE command 
is treated as a separate string, and the EOM 
character is not output. There is no char­
acter translation, other than EBCDIC transla­
tion if that switch option was selected. 

1End-of-message for which, internally, MUMPS uses a NUL character. 

3-20 



3. Fixed Length 

The fixed-length data format requires the specifica­
tion of record length (from 1 to 132 characters) in 
the ASSIGN command. Input occurs until the speci­
fied number of characters is read or until a NUL 
character is encountered. After a NUL character is 
encountered, the remaining characters in that record 
are skipped, and input resumes at the beginning of 
the next record. Output uses the same format as the 
stream format; there is no padding of record length. 
Thus, programs may output individual fields of a 
logical record at different points in a program. 
The specification of block size should be an integer 
multiple of the record size. 

e. Status Register: 

MUMPS uses the $A System Variable to communicate to the 
user the results of each magnetic tape operation. Table 
3-6 defines the meaning of each bit when set to 1. $A 
represents the status of the unit at the completion of 
the last physical I/O operation, except when an ASSIGN 
command which establishes ownership of the unit is issued 
(see Section 3.7.5.3a). $A bit assignments for the TU16 
are different from those for the TUl~ or TS~3. 

f. Buffers: 

A buffer is allocated for the magtape unit on an ASSIGN 
and deallocated on an UNASSIGN. Part of the deallocation 
process is the writing of a partially filled buffer if the 
last I/O request was a WRITE, TYPE, or PRINT. Since only 
full buffers are written on the tape, it is essential that 
the last request in an output sequence be an UNASSIGN or 
one of the special functions, "PRINT 9" (write an EOF) 
or "PRINT 5" (rewind) or, in the case of a DOS-11 label 
format, "PRINT 3" (write a tape mark). Otherwise, the 
contents of the last buffer will be lost. This same 
sequence is automatically performed on a HALT. 

g. Compatibility with the Former MUMPS Magtape Handler: 

Version 3 of the MUMPS magtape handler permitted 
only a DOS-11 compatible format. The old handler is up­
ward compatible with the current handler through selec­
tion of the DOS-11 compatible format as the defiault 
format. 

3.7.5.5 Error Conditions - No magtape errors are terminal unless 

the user has set the $E System Variable; they are reported back to 

the user in the $A System Variable. When $E is used, control trans­

fers to the specified step or part for user-supplied error processing. 

If $E is not used, the user should interrogate $A after each I/O 

request to ensure that the request was successful. 

3-21 



• A logical error is a programming error which can re­
sult from an attempt to mix input and output. Once a 
tape has been selected for reading or writing, it must 
be used for the same function until either the unit is 
unassigned or a PRINT command argument- of 1, 2, or 5 is 
issued. 

A logical error can also be caused by an error in the 
record or block size off set characters which are used 
in a data block which was recorded with the variable 
length data format. 

• A tape-not-ready condition is caused by the following: 
the unit is not selected, the power is off, or ap at­
tempt is made to WRITE on a WRITE-protected tape. It 
is possible to check the latter before issuing the I/O 
request, as detailed in the examples· below. 

• The following errors usually indicate 
a hardware problem if they occur repeatedly: 
nonexistent memory, bus grant late, and cyclical 
redundancy. 

• Bad tape and parity errors most likely indicate a 
physically bad tape. 

• An EOF terminates an input operation. 

For all errors except logical error and tape-not-ready conditions, the 

magtape is left positioned after the block that caused the error. 

On input, the detection of an error forces an EOM and return to the 

user. In most cases, this results in a null string being returned~ at 

best, only a partial string is returned. 

If an error occurs during an output operation, the output buffer re­

tains its data and may be output, after consideration of tape position 

and correction of the error condition, by "PRINT 4". The first suc­

cessful output operation or a TYPE or WRITE, whichever occurs first, 

will zero the buffer. 

To determine the presence of an error or EOT, $A must be interrogated 

after each I/O request. Each bit can be indjvidually examined by 

using the masking procedure described in paragraph 5.1. 

3-22 



Examples for use with the TUlO drive: 

• To check the tape on unit ~ for a not-ready 
condition: 

3.33 A 47 IF $A/I20&327.68 

• To check unit ~ for any error: 

22.~2 A 47 IF $A/l~0&485.22 

• To check for an EOT on unit ~: 

3.56 A 47 IF $A/100&1~.24 

(go proaess error) 

(go proaess error) 

(go proaese end­
of-tape aondition) 

To ensure that a tape is write-enabled, check the magtape hardware 

status register before issuing the output request. The address is 

62800 10 for the TUlO and 62762 10 for the TJU16. Bit 2 for the TUlO 

or bit 11 for the TJU16 is set if the tape is Write-protected. 

Example for the TUlO: 

6.~9 IF $VC6?.800)/J00&.04 (go proaess error) 

3-23 



Switch 
Character 

A 

D 

E 

F 

L 

s 

u 

v 

Table 3-3 

Magtape ASSIGN Switches 

Meaning 

ASCII 

DOS-11 Compatible 

EBCDIC 

Fixed Length Records 
Data Format 

Standard Labeling 

Stream Data Format 

Unlabeled 

Variable Length 
Records Data Format 

Effect 

Selects ASCII character set. 

Uses DOS-11 labeling, the ASCII 
character set, and the stream 
data format. 

Translates ASCII characters to 
EBCDIC on output, and EBCDIC 
characters to ASCII on input. 

Assumes fixed length logical rec­
ords for input, and uses the 
stream data format for output. 
Thus, there is no automatic pad­
ding of record length on output. 
This switch requires the presence 
of an additional argument on the 
ASSIGN command which specifies 
record length. 

Uses ANSI standard labels with 
the ASCII character set. Uses 
IBM standard EBCDIC labels with 
the EBCDIC character set. 

On output, packs characters se­
quentially into the buffer, and 
CR-LF translates to LF. Strings 
are not split across block bound­
aries; instead, the buffer is 
padded with null bytes. On in­
put, treats LFs, VTs, and FFs as 
string delimiters, and ignores 
CR. Thus, on output, data is 
effectively concatenated until 
terminated by a CR-LF. 

Does not provide labels. Pro­
grams that need a tape mark out­
put at the end of a file must 
issue a "PRINT 3" after writing 
the file. 

This data format corresponds to 
the ANSI standard "D" format or 
the EBCDIC "V" format, depending 
upon whether the ASCII or the 
EBCDIC character set has been se­
lected. Each argument of a TYPE 
command corresponds to a logical 
record which can be read as a 
single argument of a READ com­
mand. 

3-24 



Table 3-3 (Cont.) 

Magtape ASSIGN Switches 

switch 
Character Meaning Effect 

digit Density The low order bits of the digit 
are used as the density bit pat-
tern specification for the mag-
tape unit. Note that there is 
no special translation to 6-bit 
characters for 200 or 556 bpi. 

For the TJU16, a "3" specifies 
800 bpi, and a "4" specifies 1600 
bpi. 

Table 3-4 

Legal ASSIGN Switch Combinations 

Switch combinations denoted by an "X" are permissible. 

SWITCH A D E F L s u v digit 

A x x x x x x x x 
D x x x x 
E x x x x x x x 
F x x x x x x 
L x x x x x x x 
s x x x x x x x 
u x x x x x x x 
v x x x x x x 

digit x x x x x x x x x 

3-25 



Code 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Table 3-5 

Magtape Control Codes 

Function Effect 

Backspace Backspaces one record. 1 

Forward Space Spaces forward one record or tape mark. 
If the format is DOS-11 compatible and 
the tape is at BOT, the label is skipped 
before the forward space is performed. 1 

Write Tape Mark Writes a tape mark on the tape. 2 

Write Block Writes out the current buffer. If the 
format is DOS-11 compatible and the tape 
is at BOT, a volume label is output be­
fore the buffer. 

Rewind If the last function was an output opera­
tion, an implicit "PRINT 9" is performed. 
The tape is then rewound. 1 

Read Block Either the next block is read into the 
buffer or a tape mark is read. If the 
format is DOS-11 compatible and- the tape 
is at BOT, the volume label is skipped 
before reading the block. 

Read Label If the DOS-11 format is selected., one 
block is read. If any other labeled 
format is selected, blocks are read un­
til a tape mark is encountered. The 
buffer pointers are set to indicate that 
the buffer is empty. This code may be 
used for volume labels, file header 
labels, and EOF labels. 

Write Header Label If the DOS-11 format is selected, a 

Write EOF Label 

DOS-11 label is output. If any other 
labeled format is selected, the sequence 
"HDR1,HDR2,tape mark" is output and that 
sequence is preceded by a volume label 
if the tape is at the beginning of tape 
(BOT). This code is ignored for unlabeled 
formats. 

I£ the DOS-11 or an unlabeled format is 
selected, outputs a tape mark. Other­
wise, outputs the sequence "tape mark, 
EOF1,EOF2,tape mark,tape mark". 2 

1The execution of this code clears the read only/write only switch. 
Subsequent magtape I/O establishes the new mode for that switch. 

2 If the last function was an output operation and data remains in the 
buffer, the contents of the buffer are written out before any other 
decisions are made or actions are taken. 

3-26 



Single File 1 

VOL,HDR1,HDR2* ... data .•. *EOF1,EOF2** 

Multiple Files 1 

VOL,HDR1,HDR2* ... data .•. *EOF1,EOF2*HDR1,HDR2* ••• data ••• 
*EOF1,EOF2*HDR1 ••• EOF2** 

1Each asterisk represents a tape mark. VOL, HDRl, HDR2, EOFl, and 
EOF2 are each ANSI-specified 8~-character blocks. 

Figure 3-1 ANSI Standard Labels 

A data block for the ANSI Standard "D" Format (selected by the ASSIGN 
switch combination "AV •.. ") 

string1 

--- RL1 

string2 I 

---RL 
2 

one physical block 

stringxl"··· 

---RL x 

A data block for the IBM standard "V" Format (selected by the ASSIGN 
switch combination "EV ... ") 

string1 1 ~R_L_2_~s_t_r_i_·n_g_2_, 
-RL 

1 
-----RL-

2 

BL 

one physical block 

RL 
x str ingx I" ... 

---- RL _...,. x 

Figure 3-2 Variable Length Record Format 

3-27 



Table 3-6 

Magtape Device $A Bit Assignments 

Bit 

.0 
1 
2 
3 
4 

5 
6 
7 
8 
9 

1,0 
11 
12 
13 
14 
15 

TtJl.0 Assignment 

*Logical Error 1 

Tape write protected 

7-channel operation (,0 
indicates 9-channel) 

Beginning of tape 

*Nonexistent memory 
*Bad tape error 2 

Record length error 
End of tape3 

*Bus Grant late 2 

*Parity error 
*Cyclical redundancyz 
Tape Mark 

*Tape not ready 

*error condition 

TU16 Assignment 

*Logical error 
Beginning of tape 
Tape mark 

Phase encoded 

Drive ready 

End of tape3 

Tape write protected 

*Any error condition 

1 A logical error is the software condition resulting from either an at­
tempt to mix input and output or a record or block size error. 

2 The syste~ retries 13 times before giving this error. If it is a 
WRITE operation, the retry attempts are made with an extended record 
gap. 

3 This bit is set on detection of an EOT. It stays set until a REWIND 
or BACKSPACE occurs. The user may continue. 

3-28 



3.7.6 CPU-CPU Device 

3.7.6.1 •General Description - The CPU-CPU device allows a MUMPS-11 pro­

gram to communicate with a program running on another central processor 

(CPU). This device is an asychronous, half-duplex, serial communications 

line that connects the MUMPS-11 CPU to another CPU. 

The CPU-CPU device has two operating modes or states: terminal state 

and message state. In terminal state the device operates exactly as 

if the remote CPU were a MUMPS-11 terminal with a 72-character 

maximum line length. In message state the device transmits and 

receives data as formatted messages. The state of the device is set 

by using the conditional syntax of the ASSIGN command: 

At.....n:bve 

where: n = CPU-CPU device number 

:bve = True (-.~l) = Enter message state 

False (~) = Enter terminal state. 

The default state for the device is terminal state. An UNASSIGN command 

directed to the device causes it to enter terminal state. 

3.7.6.2 Device Numbers - A CPU-CPU device may use any one of the device 

numbers (4 through 19) allocated for terminal use as established by 

the system manager during system generation (described in the MUMPS-11 

Operator's Guide). 

3.7.6.3 Applicable Commands -

Output 

WRITE 

TYPE 

PRINT 

Input 

READ 

LOAD 

3-29 



3.7.6.4 Message State Operation - In general, the CPU-CPU driver 
handles all communication operations, other than error detection and 
correction. The device does not attempt to interpret any special 
system characters, for example, CTRL/O or CTRL/C. 

a. Data Transmission Protocol 

1. The remote application program must send a complete message 
in the form shown in (h.) below, using a single output command. 
If the remote program transmits a message in several parts, 
the operating system may swap the program out between parts. 
The rec~iving program's message reception time interval may 
expire causing· it to report that the remainder of the message 
was lost in transmission. 

2. The two communicating programs must agree on the conditions 
that determine whP.n each program becomes the sender or 
receiver. If hoth programs attenpt to send messages 
simultaneously, an interlock occurs and neither program can 
complete a message transroiRRion. 

3. The receiving prograM must acknowledge the rece·ipt of each 
message. A positive acknowledgment message (ACK - see 
below) is sent when a message from the other computer is 
received correctly. A negative acknowledgment message (NAK -
see below) is sent if a nesRage is not received correctly. 
When the sending program receives positive acknowledgment 
it may transmit another message. If the program receives 
a negative acknowlP.0gment, it must retransmit the laRt message. 
In order to determine if a message was transmitted correctly, 
the remote receiving program must verify the message format and 
perform cyclic redundancy chec~ (CRC) calculation. These tasks 
are performed automatically by the :MUMPS-11 C"PU-CPU device. 

b. Message Formats 

1. The CPU-CPU device buffer for I/O data is 80 characters 
(ASCII) long. The application program may, therefore, trans­
mit messages in blocks no larger than 80 characters. The 
standard CPU-CPV <levice ~essage format includes header and 
trailer information, as indicated below. 

SOH 
Message Number 
Character Count 
STX 
Data 

. 
ETX 
BCCl 
BCC2 

Start of Header (001) 
n-17 Octal 
Number of characterR of data 
Start of Text (002) 

l Numher of characters as specified 
( in the ~haracter count 

Enn of Text (003) 

} 
16-hit cyclic redundancy ~heck (CRC) 
generated from all previous characters 
in the message. 

3-30 



2. An acknowledgment message is in the format shown below: 

SOH 
ACK, Message Number 

-or-
NAK, Message Number 

BCCl 
BCC2 

Start of Header (001) 
Acknowledge Message -408 OR'ed with 
message number 
Negative acknowledge -1208 OR'ed with 
message number 

} 16-bit CRC for the two previous 
characters 

c. Calculating the Cyclic Redundancy Check (CRC) 

The CRC is a method for verifying the accuracy of message data. 
For further information, see the subroutine which calculates the 
CRC in Appendix H. 

d. Message Terminator 

MUMPS normally interprets the character 11 ! 11 as a format control 
character that initiates a Carriage RETURN/LINE FEED sequence 
on an output device. If the device is in terminal state and it 
encounters an "!" in an output message, it interprets the 
character as the standard message terminator and sends the 
message and an EOM (null string) to the recipient CPU. In 
message state, however, the device formats all output text. Each 
TYPE command argument initiates a new message. Thus, 'l\....aA,B,! 
generates three messages; one for A, one for B and one for the 
!. Similarly, T&....1A@B,! generates two messages; one for A@B, and 
one for the !. In an output message, the "!" is transmitted as 
a separate message. The device passes the ASCII code for 
Carriage Return (octal 15 or decimal 13) to the application 
pro9ram running on the other CPU. The programmer should not, 
thet"efore, use the "!" as a message terminator when the driver 
is in message state. 

e. Message Transmission Count 

The $X System Variable is used to report the current message 
number when the driver is in message state. The message count 
is incremented by 1 each time that a message has been 
successfully transmitted and acknowledged. The count can have 
a value in the range 0 - 178 (or 1510). When the upper limit 
is reached, the count is automatically reset to o. The user 
should first examine $X in order to determine if a transmission 
has been received correctly in message state. If its contents 
have been incremented by one since it was last checked, the 
transmission was successful. If its contents have not changed, 
and if bit 15 of the $A (see below) is zero, then the trans­
mission is currently under way. If the contents of $X have not 
changed and if bit 15 of $A is set, then the transmission was 
not completed and bits 8 - !'()°of $A will indicate the exact 
nature of the error. 

3-31 



3.7.6.5 Error Conditions - MUMPS reports the error conditions 

associated with a CPU device in the $A System Variable after the 

I/O operation is requested. Table 3-7 lists the bit assignments for 

$A. 

The low byte of $A is meaningful only if the driver is in message 

state; it contains the number of unsuccessful transmissions which 

occurred before a successful one was achieved. This byte can provide 

a rough indicator of the quality of the communications link between 

the two CPUs. 

The high byte of $A represents the driver error status byte. If the 

high bit of $A is not set, then no errors were encountered and the 

latest transmission can be assumed to have been successfully completed. 

If, however, the high bit is set, then the other bits in the high 

byte can be consulted to determine the exact nature of the error. The 

contents of $A remain intact until the driver processes the next 

I/O for that device. 

3-32 



Bits 

0-7 

8 

9 

10 

11-14 

15 

Table 3-7 

CPU-CPU Device $A Bit Assignments 

Meaning 

Unsuccessful transmission. 

Correct message too large 
for buffer. 

Synchronization error 

Maximum number of retries 
exceeded 

Unused 

CPU driver error indicator 

3-33 

Explanation 

Message state only. 

Messages are limited to 
72 characters in message 
state, and 80 characters 
in terminal state. Any 
lines longer than these 
maximum values will be 
ignored. 

In message state, the 
synchronization of appli­
cation programs is strictly 
the responsibility of the 
users. If both sides of 
the communications link 
attempt to transmit data 
simultaneously, an.error 
message is sent to the job 
that initiates output when 
input is active. In 
terminal state, the driver 
observes the usual MUMPS 
conventions for transmission 
priority (i.e., if output 
is active input is ignored). 

Bit 10 is set to indicate 
that a message was sent 8 
times without reception of 
an acknowledgment (ACK). 

NOTE 

A situation in which bits 
0-7 and bit 15 are set 
indicates that retries are 
still in process. A 
maximum time of 10 seconds 
elapses between retries 
when there is no response 
from the receiving end. 

Bit 15 is set whenever an 
error occurs in the I/O 
operations of the CPU 
driver. 



3.7.6.6 Examples -

a) The following MUMPS command line would send a message to the 
remote CPU, wait for a response, and type the response on 
the system console. The CPU-CPU device number is 10 and the 
driver is in the message state. 

1. Ol1-1A&....110 :-2L...1TL...1"TYPE IN A NUMBER"L...1R&....1X'-'A'-'la...irL...1! ,X 

b) The following command line would place the driver in 
terminal state and transmit the integers from 1 to 100: 

c) The following example shows how one MUMPS system might 
sign-on another MUMPS system and start an application 
program. 

MACH. #1 

Contains program PGl 
(listed below) under 
UCI #2 (EDP). The 
CPU-CPU device is #6. 

a.1 ;PG! SIGN-ON FOR a:iu DEV 

1 .1 A 6 P 3 ; SEND CTR LI C 
1 .2 R MSG , UC! ; GET TEXT 
1.3 ;MSG="MUMPS-11,ETC." 
1.4 ;UCI="UCI:" 
1 • 5 T " USR: PG2" , I 
1.6 A 6: -.01 R TXT: 69 
1. 7 G 2: TXT=""; ERROR IF NULL 
1.8 ;ETC., ETC. 

2.1 ; ERROR PROCESSOR 

3.7.7 Sequential Disk Processor 

MACH. #2 

Contains program PG2 
(listed below) under 
UCI #4 (USR). The 
CPU-CPU device is #4. 

1.1 ;PG2 START a='U- CPU I/O 

1.11 A 4:-.11 T I ,"HI THERE:• 
1.12 ;a='U- a='U INTERACTION 
1.13 ;CXJMMENCES, RELATIVE TO 
1.14 ;WHAT THE APPLICATION 
1 .15 ; <DNVENTIONS ARE, STARTING 
1.Z6 ;AT LINE 1.6 OR 1.7 OF 
1.rn ;PG 1 IN OTHER a='U 

3.7.7.1 General Description - The Sequential Disk Processor (SDP) 

allows the user to physically access the disk as an ASSIGNable 

sequential I/O device. The SDP can only access disk space that is 

explicitly set aside for its use; other disk space, including global 

data base, cannot be accessed. Disk space for SDP use is allocated 

by the SDP System Utility program described in the MUMPS-11 Operator's 

Guide. SDP allows the user to impose any file structure on his SOP 

disk space that he wishes to implement. Each SDP 'device' (up to 4 

can be used) requires one 256-word buffer from the system's buffer 

pool when ASSIGNed. SDP transfers disk data in 256-word blocks to or 

from a buffer to permit access of any block or byte within a block. 

3-34 



I/O operations using the SDP are similar to DECtape I/O. The SDP 

antici~ates two kinds of ASSIGN: explicit or implicit. The explicit 

ASSIGN tells the SDP driver specifically which device, which disk type 

and block, and which byte within the block to begin the I/O operation. 

The implicit ASSIGN is used subsequent to an explicit ASSIGN and 

assumes sequential addressing through the allocated disk space, begin­

ning at the disk location currently pointed to for that device. 

Hence, if a MUMPS program using an SDP device accesses the disk in an 

indexed or random manner, each previous I/O operation would provide 

some type of key information which, in turn, would be presented as an 

explicit ASSIGN prior to the next I/O operation. Similarly, a MUMPS 

program may access the disk in a sequential manner; once the beginning 

disk block address had been requested in an explicit ASSIGN, each 

subsequent ASSIGN would be implicit, referring only to the device 

number, and the SDP would access blocks continuously until the MUMPS 

program terminated I/O, or until an attempt was made to exceed the 

allocated SDP space. 

= Device number (59-62) 

Byte within block (0-511) 

= Disk block address 

The Disk Block Address can be calculated by the formula 

TYP*2,097,152+(UNT*262,144)+BLK 

Where: 

TYP = 0 for RK drives (RK03 or RK05) 

UNT 

BLK 

1 for{~'or}drives (RK06, RSll, or RS04) 

2 for RP drives (RP02 or RP03) 
3 for RJ drives (RP04, RP05, and RP06) 

Disk unit # (0-7) 

Block #, on unit 

0-N where N = 4,799 for RK05 
1,023 for RFll 
2,047 for RS04 

26,928 for RK06 
39,999 for RP02 
79,999 for RP03 

170,543 for RP04 or RP05 
341,086 for RP06 

3-35 



When a user's program issues a READ or LOAD command, SDP reads from 

the disk beginning at the disk block address specified in the ASSIGN 

command. SDP transfers data to the current user's partition line 

buffer until a logical EOM or until the line buffer is full. If an 

EOM is not detected or the line buffer is not full and the 256-word 

buffer boundary is reached, SDP reads the next contiguous disk block 

and transfer continues from byte 0 of the new 256-word block. 

When the user's program issues a WRITE or.TYPE command, SDP writes on 

the disk according to the following conventions: 

• the transfer of data will exceed the size of the buffer, 

• the device is UNASSIGNED, 

• prior to a read, when the previous operation to the disk 
block was an output which did not exceed the 256-word 
buffer boundary. 

When SDP writes a block because the output exceeds the size of the 

256-word buffer, the SDP reads the next contiguous disk block into 

the 256-word buffer after the write, and continues the transfer into 

the 256-word buffer at byte ~. 

When a job requests an I/O operation the SOP transfers data beginning 

at the specified byte within the block and continues from that 

block to each contiguous disk block until: 

• a null byte is detected, 

• the next contiguous disk block is not allocated to SDP, 

• the physical limit for one unit of the disk type being 
accessed is reached. 

SDP requires that .the MUMPS program detect these conditions and 

perform the logical operation desired at the MUMPS program level. 

This gives the MUMPS user full control of the disk access being 

requested and allows for the implementation of any access al~orithm 

the user might desire. 

3-36 



3.7.7.2 Device Numbers - The device numbers 59-62 are reserved for 

use by the SDP driver. Ea~h device number is associated with a 

control block, resident in memory. The disk type and unit to be 

accessed are determined by the number provided inthe explicit ASSIGN 

syntax as 'nve3 •. On each explicit ASSIGN, information regarding 

the disk block being requested is initialized in the control block. 

On each implicit ASSIGN, information regarding the disk block being 

requested is obtained from the control block. On each UNASSIGN the 

information is set to zero. 

Once an ASSIGN is granted, no other user is permitted to affect the 

user control block pointed to by the device number until ownership , 
is released with an UNASSIGN. 

Once use of a disk block is granted, no other SOP user is permitted 

to affect the block until the block is free again. It may become 

free by the accessing of another block or by UNASSIGN. 

3.7.7.3 Applicable Commands -

OUTPUT 

WRITE 
TYPE 

INPUT 

READ 
LOAD 

3.7.7.4 Special Characters and Functions - SOP reports the disk 

block address of the block currently in the 256-word buffer in the 

$A system variable as an integer after each ASSIGN or I/O operation. 

SOP reports the byte within the disk block where the next I/O 

will begin in the $B and $H system variables. A disk block can 

be pictured as two pages, each of which is 256 bytes long (~-255). 

The $B variable will report the address in the page and the $H 

will report the page (0 or 1). The equation ADR = $H*256+$B 

can be used to determine the byte address within the 512-byte 

(256-word) block. 

3-37 



3.7.7.5 Error Conditions - In the explicit ASSIGN of an SOP device, 

a 'MXNUM' error is generated if the 'nve2 • (byte within the block) is 

greater than 511 and a 'MINUM' error if the nve2 is less than~- Speci­

fication of a disk block address (nve3 ) which does not exist will re­

sult in a OKHER error. To test whether an existing disk block has been 

allocated to an SOP file, however, the $A system variable should be 

examined. 

The $A system variable contains access code violations that occur 

during an ASSIGN or I/O operation. $A is set t0 -1 (all bits set) 

if the disk block address requested has not been allocated for 

use by the SOP. The error can occur on an explicit ASSIGN and 

during the logical overflow from one contiguous block to the next. 

$A is set to -2 (all bits on except bit O) if, during the contiguous 

access of the next disk block, the physical end of the unit is 
reached. 

The $A access violation errors do not destroy any SOP user control 

block information. The MUMPS program should examine $A after each 

assign or I/O operation to detect the result of a requested access. 

Examples: 

2.81 I $A/1H&.ll T I," BLOCK NOT ALLOCATED" 

2.li I $A/1H&.112 T !,"END OF' PHYSICAL DISK UNIT" 

3 • 7 . 9 In Cor~ .Tnb Communication 

3.7.8.1 General Description - In core job corrmunication permits jobs 

to send information to other jobs without having to use the disk. 

Communication occurs through a series of pseudo-devices which occur 

in pairs; even-numbered devices are "transmitters" and odd-numbered 

devices are "receivers". 

To send information, a job ASSIGNs a transmitter and outputs a message. 

Another job ASSIGNs the corresponding receiver and reads the message. 

Transmission occurs through an intermediate 64-character ring buffer 

which is permanently attached to the device pair. Transmission is 

fully buffered; i.e., messages may be output whether or not the cor­

responding receiver is ASSIGNed, and READs may be issued whether or 

3-38 



not the corresponding transmitter has output any messages or is even 

ASSIGNed. Furthermore, several jobs may ASSIGN a particular trans­

mitter, output a message, and UNASSIGN the transmitter before earlier 

messages are read through the receiver. 

An attempt to output characters after the buffer has become full will 

suspend the output job until the receiver has removed one or more 

characters. Similarly, an attempt to read characters when the buffer 

is empty will temporarily suspend the input job. 

The transmitter is output only and the receiver is input only. An 

attempt to receive input from a transmitter will result in a null 

string being returned; an attempt to output on a receiver will have 

no effect, and the job will continue as if output has occurred. 

3.7.8.2 Device Numbers -

Number Device 

112 Transmitter for Unit 
113 Receiver for Unit ~ 
114 Transmitter for Unit 

127 Receiver for Unit 7 

3.7.8.3 Applicable Commands -

Output 

TYPE 
WRITE 
PRINT 

Input 

READ 
LOAD 

a) TYPE and READ 

~ 

1 

Every argument of the TYPE command by the output job 
corresponds to an argument of the READ command by the 
input job. The data that is received is thus an image 
copy of the transmitted data. For example, execution 
of the following code will result in A="HELLO", 
B="AGAIN", C=carriage return/line feed characters. 

3-39 



b) PRINT 

In general, arguments of the PRINT command are treated the same 
as arguments of the TYPE command. However, a "PRINT l" has the 
special control effect of resetting the buffer to an empty con­
dition. It is thus possible for a program to insure that an in­
put job will not receive residual data left unreceived by an 
earlier program. "PRINT l" may be issued to the transmitter or 
the receiver of the incore job communication device. 

3. 7. 9 DMC-11 

3.7.9.l General Description - The DMC-11 microprocessor is designed 

to provide for effective computer-computer communication thus permitting 

data base networking. Although it serves the same function as the 

CPU-CPU handler, it is more effective because: 

• The microprocessor (DMC-11) handles all the line protocol 
including cyclic redundancy calculation, acknowledge/not 
acknowledge, retransmission, message sequencing. 

• It is a direct memory address (OMA) device thus freeing up 
all CPU time until all messages are received/transmitted and 
fully checked. 

A MUMPS system may not have both a CPU-CPU and a DMC-11 handler. Early 

experience suggests a limit of 4 DMC's due to both space and bus loading. 

Each DMC requires 256 words of buffer space and 128 words of scratch 

space in main memory. Data is exchanged a message at a time where the 

maximum message length is 132 characters. 

3.7.9.2 Device Numbers - The DMC's will be assigned numbers in the 

range 4-19 and will be in sequence after DC's, KL's, DL's and non­

standard devices. The actual device numbers are determined at SYSGEN 

time. The user must also provide vector and hardware address. 

3.7.9.3 Applicable Commands 

OUTPUT 
TYPE/PRINT 

INPUT 
READ 

3.7.9.4 Error Conditions - Error conditions will be reported by the 

system variable, $A. Error statistics can also be derived from the 

scratch memory used by each DMC. A precise layout of this region and 

the $A variable will be published in future release notes. 

3-40 



CHAPTER 4 

LIBRARY UTILITY PROGRAMS AND GLOBALS 

This chapter describes the facilities provided to the MUMPS pro­

grammer by the Library Utility Programs and Globals. Section 4.1 

describes the Utility Programs; Section 4.2 discusses utilization 

of Library Globals. 

4.1 LIBRARY UTILITY PROGRAMS 

Library Utility Programs are listed in the Program Directory of the 

System UCI (UCI #1) and may be modified only by programmers having 

access to the system via that UCI and the PAC. These programs are 

accessible in a 'run-only' state for all users of the system, regard­

le_ss of UCI. The naming conv~ntion which states that a Library 

Utility program name begins with the percent symbol (%) allows for the 

distinction between the utilities and all other programs filed under 

UCI #1 that are not accessible via other UCis. 

4.1.l Features 

The Library Utility Programs supplied with the MUMPS-11 system 

satisfy some of the basic needs of the MUMPS applications program­

mer1. FouD of the programs currently provided, %T, %D, %OD, and 

%IO, are subroutines which can be called from other MUMPS programs. 

The remaining programs provide the capability for performing logical 

backup and restoration of program and global files as well as the 

ability to examine Program and Global Directory contents, and logical 

global structures and contents. 

The Library Utility Programs and their features are summarized below. 

1Special System Utility Programs, which are available to the System 
Manager and operator only, are described in the MUMPS-11 Operator's Guide. 

4-1 



Program 

%0 

%FD 

%GD 

%GL 

%GR 

%GS 

%GT 

%GU 

%GV 

%IO 

%IU 

%OD 

%OP 

%PD 

%PL 

%PS 

Description 

Subroutine to format the date kept in the $D 
System Variable for output to the currently 
ASSIGNed output device. 

Program to provide a brief directory listing 
of the programs stored under the current UCI. 

Programs to provide a directory listing of the 
globals filed under the current UCI. 

Program to list the logical structure and data 
of specified global files. 

Program to restore globals saved by %GS to the 
directory of the current UCI. 

Program to save global files, listed in the 
Global Directory of the current UCI on paper 
tape, magtape or DECtape. 

Program to list global nodes, their locations, 
levels, data types and contents for the current 
UCI. 

Program to analyze a global; gives the number 
of nodes, total bytes, bytes per block and % 
utilization for each data type, for system 
overhead and for each free area in a global. 

Program to dump a global disk block as seen by 
the system; prints the subscript, pointer, data 
type and data for each node. 

Subroutine to assign a specified I/O device, 
if available. Upon return from this routine, 
an IF command with no arguments may be used to 
determine whether the device was assigned (TRUE) 
or was not assigned (FALSE) . 

Program to display the message "IN USE" on the 
currently assigned device. 

Program to convert octal or decimal values to 
their decimal or octal equivalents. 

Program to allow a terminal user to send 
messages to the console terminal. 

Program to list the contents of the current 
UCI's Program Directory. 

Program to restore user programs to the cur­
rent UCI's Program Directory using a tape 
created by %PS. 

Program to copy any program listed in the 
program directory of the current UCI to a 
specified output device. 

4-2 



Program 

%T 

Description 

Subroutine to format the time of day kept in 
the $T System Variable for output to the cur­
rently ASSIGNed output device. 

4.1.2 Developing and Filing Library Utility Programs 

Although DIGITAL supplies a number of Library Utility Programs, each 

installation will probably require additional programs to suit its 

particular applications. Library programs are no different from 

other MUMPS programs except that they may use the VIEW command and 

$VIEW function. This means that a program must be completely debugged 

before incorporating it into the system, since the integrity of the 

entire system can be seriously affected by the careless use of VIEW 

and $VIEW. 

Another difference is external and results from the way Library Utility 

Programs are named and filed. By employing a special naming convention 

in which the percent character (%) is always used as the first character 

of a Library Program name, these programs can be uniquely identified 
by the operahing system. To file a Library Program, the System 

Manager simply logs-in to the system with the System UCI and the PAC, 

issues a PRINT.....,1024 command and a 'FILE.....,program name' command. The 

filed program is then accessible to all system users. 

4.1.3 Running Utility Programs 

This section describes the common operating characteristics of the 

various utility programs supplied with the MUMPS-11 system. Except 

for the %T, %D, and %IO subroutines, all Library Utility Programs 
I 

are completely interactive and provide the user with complete text 

messages. Loading procedures are similar for each program 

as are the methods of error processing. By convention, Part ~ of 

each MUMPS System Utility Program contains a complete description 

of the program for user reference. 

4.1.3.1 Starting Programs - There are several methods by which 

Library Utility Programs can be loaded and started. 

a. Any user who has logged-in to the system using 
the Programming Access Code (PAC) may CALL a program: 

>CALL 7.PD aauses the Direatory Lister 
to be loaded and started. 

4-3 



b. Programs can also be loaded using the log-in syntax: 

CTRL/C 
MUMPS- 11 V3B 
UCI: JOC: %GL 

#6 

loads and starts the Global 
Listing Program 

Library subroutines including %T, %D, %OD, and %IO can be 
called by other programs using either the CALL or the 
OVERLAY command. The other utility programs could also be 
loaded this way but except for very specific circumstances 
it would make little sense. For example: 

t.03 C ZD T" " C ZT T !!,"THIS PROG ••• " causes the Date and Time 
to be output to the cur­
rently ASSIGNed device, 
followed by the message 
"THIS FROG . . . II 

>D l 
4 OCT 73 ll:31AM 

THIS PROG ••• 

4.1.3.2 Stopping Programs - A program's operation can be terminated 

at any time by either typing CTRL/C or depressing the BREAK key, 

provided that this feature is enabled 1 • If this is done while the 

program is processing some data, or while I/O is in progress, the 

user can be reasonably certain that the results produced are at 

best incomplete. In any case, the program cannot be restarted from 

the point of termination and must be either reloaded or started by 

a Direct Mode DO Command referencing the Step or Part which begins 

the program. 

4.1.3.3 Error Detection and Recovery - Errors which occur during 

program operation are typing errors, program detected errors, 

or system errors. 

Typing Errors - A typing error can be corrected, 
prior to line termination, by using 
RUBOUT to delete a single character 
or CTRL/U to delete the entire 
line. 

Program 
Detected 
Errors 

System 
Detected 
Errors 

- All MUMPS Library Utility Programs per­
form error checking to assure the validity 
of user responses. When an error occurs, 
the program types an appropriate message 
and waits for the user to type a correct 
response. 

- System error processing and messages 
are discussed in paragraph 2 .15 and 
Appendix C. 

1 Refer to ASSIGN command in MUMPS-11 Language Reference Manual. 

4-4 



4.1.4 Library Utility Program Descriptions 

The paragraphs which follow describe the functional operation of the 

Library Utility Programs. Detailed descriptions of operations are 

not given since all programs use similar loading and error process­

ing techniques. Further, these programs tend to be highly interac­

tive and normally contain lengthy text messages of explanation. 

Details are provided here only if the program does not provide the in­

formation. 

4.1.4.1 Calendar Date Subroutine (%0) - The %0 subroutine formats 

the representation of the calendar date contained in the $D System 

Variable and outputs this value to the currently ASSIGNed output 

device. The calling program must perform all desired page for-

matting (see paragraph 3.5). 

shown below: 

The date is output in the form 

dd mmm yy 

Example: 

where: dd 
mmm 

yy 

day of month (1-31) 
name of month (JAN, FEB, eta~) 
year count minus 1900 (for 
19?4J yy = ?4) 

The following command line outputs the current date 
on the 30th line of a page, 35 spaces from the left margin: 

34.98 TYPE H F I:1:1:29 T ! 
34.99 TYPE 1?35 C 7.D 

4.1.4.2 Fast Program Directory Lister (%FD) - The %FD program gives 

the user a brief (name only) listing of the programs filed under his 

UCI, on the currently assigned (calling) terminal. 

4.1.4.3 Global Directory Lister (%GD) - The %GD program lists the 

names of all the globals listed in the Global Directory of the current 

UCI. Either the calling terminal or the line printer may be selected 

as the output device. 

4-5 



4.1.4.4 Global Lister (%GL) - The %GL program allows the contents 

of one or more global files, listed in the Global Directory of the 

calling program's UCI, to be listed on the line printer or calling terminal. 

The program facilitates the development and debugging of globals 

by providing not only a listing of the data outlined therein, but 

also a graphic representation of the logical structure itself. 

Once the last response has been typed, the program initiates the 

listing operation on the specified output device. The listing 

output contains the subscript for each node as well as the 

data value. The format of the listing is shown in Figure 4-1 
below. 

-s D 
--s D 
---s D 

---~1[4th 
~3rd 

2nd 
L-.---P .. 1 st 

where: 

level of subsaripting 
level of subsaripting 
level vf subsaripting 
level of subsaripting 

S subsaript value at given level 
D data value of the subsaript 

Figure 4-1 %GL Output Format 

When the current listing operation is complete, %GL restarts, if the 

'S' option (list selected globals) was selected, and requests another 

name. If no further globals are to be listed, the program can be 

terminated by typing a Carriage RETURN in response to the request for 

another global name. If the program was operating under the 'A' 

option (list all globals), termination automatically occurs when all 

globals have been listed. 

For example, if the structure and contents of global A were as shown 

in Figure 4-2, the output listing of %GL would appear as shown in 
Figure 4-3. 

4-6 



If 24 

( 1 't) 

(" '~""'~'·" 
(2,1) (2,2) (2,3) (2,4) 

(1,3,t) (1,3,2) 

11-1448 

Figure 4-2 Example Global Layout 

Figure 4-3 

A. 

- I J 1 
- 2 12 
- 3 13 

1 131 
2 132 

- 4 14 
2 
- 1 21 
- 2 22 
- 3 23 
- 4 24 

END OF LISTI NG 

Example of %GL Output 

4-7 



4.1.4.5 Global Restore (%GR) - The %GR program restores the global 

files residing on DECtape, magtape, or paper tape to the disk under 

the Global Directory of the UCI of the calling terminal. The pro­

gram accepts only tapes created by the %GS program. When DECtape or 

magtape is used, the tape must be mounted on the selected unit of the 

appropriate drive. As each global file is restored, its name is 
output to the calling terminal. 

4.1.4.6 Global Save (%GS) - The %GS program permits all or selected 

global files listed in the Global Directory of the calling termi-

nal's UCI to be saved on DECtape, magtape or paper tape. If globals 

are to be saved on DECtape or magtape, mount the tape on an appropriate 

drive. The save operation begins at the beginning of the tape (address 

~ for DECtape). As each global is saved its name is output to the call­

ing terminal. 

4.1.4.7 Global Trace Program (%GT) - The %GT program traces down 

each node of all or selected globals contained in the current UCI, 

and produces a listing on the line printer or currently assigned 

device. The·listing indicates the physical level, the block address 

in decimal, and the contents and data type of each node, in the 

format illustrated by the example shown in Figure 4-4. 

GLOBAL NAME? ABC 

NODE LEYEL TYPE BLOCK # DATA 

ABC 1 6 4194605 THIS JS A GLOBAL 
1 2 6 4195359 ABC 
2 3 4 4195433 
1 4 6 4195407 AGE 
2 5 4 4195472 
2 6 2 4195306 NAME 
2 2 6 4195359 YALU ES 
4 3 3 4195443 364. 90 
2 3 4 4195443 
4. 50 4 3 4195417 832. 01 
3 2 4 4195359 
87 3 2 4195453 zzz 

Figure 4-4 Sample Global Trace 

4-8 



The program is useful. for locating the cause of a corrupted data base. 

If the Disk Block Tally program (described in the MUMPS-11 Operator's 

Guide) does not show any discrepancies in the disk block structure, 

the user may check his globals by calling this program. The block 

address is given in decimal so that it may be used with the $VIEW 

function. 

4 .1. 4. 8, Global Utilization Program (%GU) - The %GU program allows the user 

to analyze a global. This can be helpful in determining if a globalhas 

been designed efficiently. %GU will request a global name which should 

be entered without the preceding t (up arrow). A listing is produced 

which contains the number of nodes, total bytes, bytes/block, and % 

utilization for system overhead, and for each data type and free area 

in a global. For the format of the listing, see Figure 4-5. 

4.1.4.9 Global View Program (%GV) - The %GV program dumps a giobal 

disk block as seen by the system, and prints a listing containing the 

subscript, pointer, data type and data for each node, as shown in 
< 

Figure 4-6. This program is very useful in locating the cause of a 

corrupted data base. When called, %GV will ask for a global reference 

which can be either a global node name, or the MUMPS block number in 

decimal. 

4.1.4.10 I/O Device Assignment Subroutine (%IO) - The %IO subrou­

tine permits the user to assign an I/O device and still retain 

control, even if the device is not available (unlike the operation 

of the ASSIGN command). Before calling %IO, the user must create 

a variable called %IO and assign to it the number of the device 

to be assigned (e.g., SET %I0=3, specifies the Line Printer). The 

progr?m uses the IF command described in the MUMPS-11 Language 

Referenae Manual to set an internal condition which may be tested 

by the programmer. If the device assignment is successful, the 

internal condition is set to TRUE (-.01). If the assignment can 

not be made (device is busy or nonexistent), the internal condition 

is set to FALSE (0). In either case, control is returned to the 

calling program. To test the status of the device assignment, the 

program should use an IF command without arguments or an ELSE 

command following the %IO call. 

4-9 



GLOBAL ,.:EFERENCE: r.SYS<1> 

GLOBAL [/LIMP OF DISK BLOCK: 4194416 
OFFSET: 258 CONTINUATION BLOCK: 0 

SLIBSC:,.:. POINTER $D DATA 
~(1 2 f':P 
r. ( 2 1 2 
~o 1 0 
~(4 1 1 
~( 4. 50 1 0 
r.( 5 2 N 
~(6 2 5 
~c? 2 2 
r. ( 8 1 0 
~(9 1 0 
r. (1(1 2 1 
~(4.01 1 0 
r.( 4. (12 1 0 
r.(4.0]: 1 0 
r.( 4. (14 1 0 
r.(4.(15 1 0 
r.(4. 06 1 0 
r.(4.07 1 0 
r.(4.(18 1 0 
r. ( 0 1 8 
r.(0. 01 1 6 
r.( 0. 02 1 201 
r.(11 2 N 
~( 0. 05 1 0 
~( 0. 06 1 0 
r.(0. 07 1 0 
~( 0. 01: 1 1 
r.( 12 2 19 
~<u 1 1:2 
~(200 4194719 0 
~<18. 10 3 1:7921 
r. ( 19 1 0 
r-(: 22 1 0 
r. ( 20 4194729 1 0 
~c:21 1 0 
~(40 1 0 
~(41 1 0 
r"( 50 1 0 
r.( 51 1 0 
r.( 60 1 0 
r.( 61 1 0 
r.( 18. 20 1: 3:8210 
r.( S0 419473:9 1 14 
~01 :s 48578 
~( 18. 30 ]: 491:51 
r.(18 ]: 3:8210 

EFF IC: I ENC~' = 50;:-; 

Figure 4-5 Sample Global View Dump 

4-10 



Example: 

The following program attempts to assign the paper tape punch. 
If the paper tape punch is busy, the program types BUSY and 
quits. 

4.43 SET %!0:2 C %IO ELSE TYPE !,"BUfY" Q 

C >.:GU 

GLOBAL NAl'IE S\>S 
GLOBAL UTILIZATION FOR S\>5 

TOTAL NUl'IBER OF BLOCKS 5 

SYSTEM O\.'ERHEAI> 
SINGLE NUMERIC 
STRING 
l>OUBLE NUMERIC 
FLOATING POINT 
FREE AREA 

GLOBAL NAME 
> 

NO OF NOl>ES 
2 
39 
24 
10 
0 

TOTAL NUMBER OF NOl>ES 75 

TOTAL BYTES 
315 
78 
256 
40 
0 
1871 

BYTES/BLOCK 
63 
15. 60 
51. 20 
8 
0 
374. 20 

Figure 4-6 Sample Global Utilization 

r. UTI L 
12. 3:0 
3. 04 
10 
1. 56 
0 
73:. 08 

4.1.4.11 IN USE Message Program (%IU)- The %IU program displays the 

message "IN USE", followed by the date and time, on the currently 

ASSIGNed device. This is a means of warning other users that a 

seemingly idle terminal is in use. 

4.1.4.12 Octal/Decimal Conversion Program (%OD) - The %OD program 

converts integer octal values to their decimal equivalents or converts 

integer decimal values to their octal equivalents. When the program 

starts, it checks for the existence of a variable called "%OD". If 

the variable i~ defined, its contents are taken as the number to be 

converted; if %OD is a string variable, the program assumes it is an 

octal number and reports its decimal equivalent in the %OD variable. 

If %OD is a numeric value, the conversion program assumes it is a 

decimal number and reports its octal equivalent in the %OD variable. 

4-11 



Examples: 

9 • 2 7 S 7.0 D : 12 3 C 7.0 D T 7.0 0 

3.45 $ 7.00:"123" C 7.00 T 7.00 

(the oatai number 173 is TYPEd on 
the aurrentZy assigned deviae) 
(the deaimai number 83 is TYPEd on 
the currently assigned deviae) 

If the %OD variable is not defined, the program will operate inter­

actively with the terminal user. The program prints an asterisk (*) 

to request that the user enter a number for conversion. If the number 

is preceded by an "O", the program assumes octal to decimal conversion. 

If the number is preceded by a "D", decimal to octal conversion is 

assumed. To stop the program, the user presses RETURN key when another 

value is requested. 

4.1.4.13 User to Operator Communicator (%OP) - The %OP program allows 

a terminal user to communicate with the system operator at the console 

terminal (device number 1) • Communication can be established only if 

the console terminal is not in use. To improve the readability of the 

messages, the program encloses messages being sent in double angle 

brackets (.<<message>>), messages being received in triple angle brackets 

(<<<message>>>), and messages being sent by %OP itself in single angle 

brackets (<message>). 

The program begins operation at the user's terminal by printing two 

left angle brackets (<<) to signal the user that it is ready to accept 

a message. Messages are sent one line at a time; each message is 

terminated by a Carriage RETURN. %OP notifies the user when a message 

is received at the console terminal by printing: 

<OPERATOR NOTIFIED> 

The program then waits for the operator to reply. 

Messages received at the console terminal are prefaced by a preamble 

consisting of the.current time and the calling terminal's device 

number. The operator can respond to a message by typing: 

• a responding message 

• Carriage RETURN only (null message) 

• CTRL/C to terminate program operation 

4-12 



> 

If the operator types a responding message, the program sends it to 

the user, then waits for a reply. If a null message is typed, the 

program sends the message: 

<OPERATOR'S ANSWER WAS NULL> 

to the calling terminal, then waits for the user to reply. The user 
can type:' 

• another message to continue the communication 

• Carriage RETURN only, or CTRL/C to terminate communication 

If the console terminal is in use, %OP sends the message: 

<OPERATOR BUSY - PLEASE WAIT> 

to the calling terminal, then attempts to send the message at 

5-second intervals. ,If the console terminal remains busy after 60 

seconds have elapsed, %OP sends the message: 

<OPERATOR STILL BUSY - TRY LATER> 

to the calling terminal, then quits. 

Example: 

The following example shows user/operator dialog while 
running %OP: 

User Dialog Operator Dialog 

> C 7.0P 

<<PLEASE t()UNT MY MAGTAPE>> 

<OPERATOR BUSY • PLEASE WAIT> operator busy 

<OPERATOR STILL BUSY - TRY LATER> 

> C 7.0P 

<<PLEASE MOUNT MY MAGTAPE>> >H 

<OPERATOR BUSY • PLEASE WAIT> 
<OPERATOR NOTIFIED> 

EXIT 
<9:41AM MESSAGE FROM DEVICE NUMBER 6> 
<<<PLEASE MOUNT MY MAGTAPE>>> 

<<<GIVE NAME & SETUP STATUS>>> 
<<GIVE NAME AND SETUP STATUS>> 

4-13 



ccJ, O'CONNOR - WRITE ENABLED>> 
<OPERATOR NOTIFIED> 

<<<OK. VOUR TAPE ON DRIVE 2>>> 

c<T~ANKS>> 
<OPERATOR NOTirIED> 

<OPERATOR'S ANSWEH WAS NULL> 

c<>> 

<9:42A~ MESSAGE FROM DEVICE NUMBER 6> 
<<<J. O'CONNOR - WRITE ENABLED>>> 

<<OK. YOUR TAPE ON DRIVE 2>> 

<9:42A~ MESSAGE fROM DEVICE NUMBER 6> 
<<<T\.fANKS>>> 

<<>> 

4.1.4.14 Program Directory Lister (%PD) - The %PD program lists the 

contents of the Frogram Directory of the current UCI. Either the 

calling terminal or the line printer can be selected~as the listing 

device. 

The directory listed output by %PD is in the format shown in 

Figure 4-7. 

PROGRAMS FILED FOR YOUR UCI DATE TIME 

PROGRAM NAME LENGTH DISK BLOCK 

xxx 

where: 

MMMM NNNNNNN 

xxx one to three-aharaater program name 
nnn : disk bloak on whiah the program begins 
mmm program length in words 

Figure 4-7 %PD Output Format 

When the listing is complete, %PD exits automatically. 

4.1.4.15 Program Load (%PL) - The %PL program allows programs resid­

ing on DECtape, magtape or paper tape to be loaded into the system 

and entered in the Program Directory of the current UCI. The program 

accepts only input tape which was created by the %PS program. 

4-14 



Before loading %PL, the user must observe the following prerequisites: 

a. The user must have logged-in to the system, using 
the PAC. 

b. If the program being input are library programs, the 
user must log-in to the system using the System UCI 
code and the PAC. 

c. When DECtape is used, the starting address of the 
programs to be restored must be specified. This 
is the address that was originally specified to 
the %PS program when the programs were saved. 

During operation, the program prints the name of each program restored 

at the calling terminal. 

4.1.4.16 Program Save (%PS) - The %PS program allows either selected 

programs or all programs residing in the Program Directory of the 

calling program's UCI to be saved on DECtape, magtape, or paper tape, 

or to be listed on the terminal or line printer. Before loading 

%PS, the user must have logged-in to the system using the PAC. When 

DECtape or magtape is used the tape must be mounted on drive ~ of the 

tape unit. 

During operation, %PS prints the name of each program on the calling 

terminal. If the programs are saved on DECtape, remember to save the 

starting address specified in response to the program's question: 

"WHAT IS DECTAPE STARTING ADDRESS?". This address must be used when 

restoring the programs to the disk via the %PL program. The %PS 

program does not allow multi-reel saves. 

4.1.4.17 Time of Day Subroutine (%T) - The %T subroutine formats 

the current time of day value contained in the $T System Variable 

and outputs this value to the currently ASSIGNed output device. 

The routine does not perform any page formatting (i.e., tabulating, 

indenting, etc.) This must be done by the calling program's use 

of the standard format control characters: # and ?nve • 

The time is output in the following form: 

hh:mmJ~JM where: hh 
mm 

4-15 

hours (/1-12) 
minutes (/1-59) 



Example: 

Assume the time to be half-past four in the afternoon: 

1 • 0 6 TY P E # 72 ~ , " THE TI ME I ~ : " C 7o T 

Execution of the above line results in the output of a FORM Feed 

followed by a tabulation of 20 spaces from the left margin, followed 

by: 

THE TIME IS: 4:3e PM 

4.2 LIBRARY GLOBALS 

Library Globals are like other globals in the MUMPS-11 system except 

that they can be read by all UCI users. Library Globals permit the 

MUMPS applications programmer to create common data bases for in­

formation retrieval between different UCI's and their associated 

application systems. Library Globals use the same naming scheme as 

the Library Utility Programs (i.e., % is the first character in the 

name) and are afforded the same type of protection (i.e., they can 

be modified only by the System UCI user). All globals are referenced 

in MUMPS commands using the up-arrow prefix ("or t). 

4.3 THE EDITOR 

4.3.1 Introduction 

The MUMPS-11 Editor supplies the user with an easy means of editing 

MUMPS-11 programs and globals. It enables the user to make all of 

the changes allowed by the MODIFY command and it also offers several 

other features, notably the ability to modify globals, perform searches, 

and change every occurrence of a particular string within a program. 

Prior to using the MUMPS-11 Editor, the user should LOAD the program 

to be modified if it is not already in core. The Editor itself may 

be invoked .. by typing the following command (all user input is under­

lined): 

>DL..{'% 

4-16 



The Editor will then output its prompting message and wait for the 

user to enter a command 

EDIT: 

The following sections describe the various editing options available. 

Note that entering a null command in response to the Editor's prompt 

will return the user to direct mode. 

4.3.2 Editing Program Lines 

4.3.2.1 General - The instruction for editing a single program line is 

of the following general form 

In the above example, SPN specifies the step to be changed, sve1 pin­

points the characters'to be replaced (R), and sve2 defines what sve1 
will be replaced with (W) . 

As an example, suppose that in the following line 

l. lr....iTr....i! "HERE IS AN EXAMPLE" 

the "IS" is to be replaced with "WAS". The instruction needed to ac­

complish this change is 

EDIT:r....il.l..Jr....iRr....iIS..Jr....iWr....iWAS..J 
1. lr....iTr....i! "HEREr....iWASr....iANr....iEXAMPLE" 
EDIT: 

Note that after any editing command has been executed the MUMPS-11 

Editor echoes the new line and outputs its prompting message. 

The user may delete characters or add new characters to the beginning 

of a line by omitting sve1 or sve2 • Specifically, if sve1 is null, 

sve2 will be inserted at the beginning of the specified step~ if sve2 
is null, sve1 will be deleted from the step. The following is an ex­

ample of how this can be done. 

4-17 



2.8....,TL...1! 11 CHANGE.....CHANGE1....1THIS1....1LINE 11 

EDIT: ..... 2. 8_l...._.R ...... .) ..... w ..... r ..... x..) 
2. 81....1IL...1XL...1TL...1! '1 CHANGEL...1CHANGE1....1THIS....,LINE" 
EDIT:L...12.8~L...1RL...1CHANGEL...1.)1....1WL...1_} 
2. 8 ..... I ..... x ..... T ..... 1 11 cHANGE ..... THISL...ILINE 11 

EDIT: 

The user may also wish to add a string of characters to the end of a 

line. The END feature may be used to do this: 

18. 35 T ! ,X, Y, 11 L...1IS" 
EDIT: 18.35_.} R END W ,A,B.) 
18. 35 T ! ,x., y, ....... rs" ,A,_B ___ _ 
EDIT: 

4.3.2.2 The Dot.Dot.Dot Feature - The dot.dot.dot feature of the 

MUMPS-11 Editor allows the user to modify lines with a minimum amount 

of typing. The command which incorporates this feature is of the form 

EDIT:L...1SPN~ ..... R1:~:: :snl..J...._.w ..... sve2.J 

... s 
n 

The Editor will insert sve2 in place of the string of characters from 

the first occurrence of s 1 to the subsequent first occurrence of Sn. 

To remove the SET clause from the step 

3.1 ..... s ..... x=$E(Y,A,lO)L...1IL...1tA(3,4)L...1G1....14 

the user might do the following 

EDIT:L...13.1_; ..... R ..... s ..... x=$E(Y,A,lO)L...1I_;....,w ...... I..) 
3. l1....1I1....1tA ( 3, 4) L...1G1....14 -­
EDIT 

However, considerable typing time, and possibly typing errors, could 

be avoided by the use of the dot.dot.dot feature: 

EDIT :L...13 .1~ ..... R ..... s •.. I..J ...... w ...... I.) 
3. 11....1IL...1tA ( 3. 4) L...1G1....14 
EDIT: 

4-18 



Either s1 or s 2 or both may be of length greater than one. Utilizing 

this fact can insure that the desired string is the one modified. For 

example, suppose the user wished to change the line 

4. h .. ..1T&....1 ! "THIS&....1TESTS&....1THE&....1TERMINAL" ,X, Y 

to 

4.l&....1T&....1!"THIS IS RIGHT",X,Y 

the command· 

would cause the line to read 

4.l&....1IS&....1RIGHT",X,Y 

This could be prevented by instead typing 

EOIT:&....14.1.J&....1R&....1TE ••• L&....1W&....1IS&....1RIGHT..) 
4 .1 T&....1! "THIS IS RIGHT" ,X, Y 
EDIT: 

The user also has the option of omitting either s 1 or Sn. If no start­

ing point (S 1 ) is indicated, the beginning of the line is assumed: 

5.3 S X=3, Y=$E(Z,l,4) G4 
EDIT :&....15. 3....)'--'R&....1 ••• 3~ ....)&....1W&....1I.....,~ 
5.3 I&....1Y=$E(Z,l,4) G 4 
EDIT: 

Likewise, omitting the ending point (S ) implies that the end of the 
n 

line should be assumed: 

7.9 S M=N*P,Y=$E(Z,l,M) D 9 
EDIT: &....17. 9 ..J&....1R&....1$ . • • ..) &....1W&....1A+B&....1G1....19..J 
7.9 S M=N*P,Y=A+B G 9 
EDIT: 

4-19 



As. in the general editing command, omitting sve2 causes the string 

sl'''sn to be deleted. 

6. 45L...1SL...1X=Y+Z I R=S*YL...ITL...1 ! "THE RESULTING ANSWER IS" I (X+R) 
EDIT a .. ..J 6. 45.)L...1RL...1RE ... '--'_)'--'w'--' ....J 
6. 45L...1SL...1X=Y+Z I R=S*YL...ITL...1 ! "THEL...1ANSWERL...1IS II I (X+R) 

4.3.2.3 The AGAIN Feature - Frequently, several changes may have to 

be made to the same line. The AGAIN option saves the user from re­

peatedly having to retype the step number of a line undergoing multiple 

changes. After the first modification has been made, an "A" may be 

typed in place of the step number. The Editor prints the step number 

before outputting its normal replace (R) request. As an example: 

19.27L...1TL...1SUML...1IL...1RL...1QL...114.97 
EDIT :'--'19. 27)'--'R'--'I _) '--'W'--'D....J 
19.27L...1TL...1SUML...1DL...1RL...1QL...114.~ 
EDIT :'--'A ....J L...119. 27L...1RL...1Q.)L...1WL...1G.) 
19.27L...1TL...1SUML...1DL...1RL...1GL...114.97 ~­
EDIT: 

4.3.2.4 The SEARCH Feature - By responding to the Editor's prompt with 

an S, the user can direct the Editor to search for all occurrences of 

a particular string of characters. If the Search feature has been 

specified, the Editor outputs a prompt (SEARCH FOR:) for the desired 

string, performs the search, and prints all lines in which the string 

occurred. As an example, consider the following: 

EDIT :L...1S _) 
SEARCH FOR:L...1 AQRS.) 
1.4 S'-'tQRS(Q)=Q+R*S 
2. 6 SL...1R=R+lL...1IL...1tQRS (R)L...1GL...17.2 
8.41 KL...1tQRS 

4.3.2.5 The CHANGE EVERY Feature - The MUMPS-11 Editor gives the user 

the capability of changing all occurrences of a particular string with­

in all or part of a program. To utilize this feature, the user should 

first type a "C" in response to the Editor's prompt. 

EDIT: L...1C....) 
CHANGE EVERY :L...1SVE1,..JL...1TO :L...1SVE ....J 
FROM LINE :L...1SPN 1_JL...1THROUGHL...1LI~E :'-' SPN 2 ....J 

4-20 



In the interr.hange that follows, the user must specify the string to 

be changed (sve1 ), the string which is to replace it (sve2), and the 

range of lines (spn1 through spn2) over which the change should be 

made. Note that if spn1 is null, the modifications will begin at the 

first line in the program; if spn2 is null, the Editor will continue 

through the end of the program. The Editor will echo each line that 

is modified. Suppose that in a. program all references to program TST 

are to be changed to refer to program NEW: 

EDITa ..... c....) 
CHANGE EVERY :1....1TST ..J1....1TO :1....1NEW _) 
FROM LINE:1....1~1....1THROUGH LINE:1....1 :J 
3.2 S X=~,Y=A+B C NEW ~ 
4.98 0 NEW:3 

4.3.2.6 The RE-NUMBER Feature - By responding to the Editor's prompt 

with an R, the user can direct the Editor to renumber a line. The 

Editor outputs a prompt (LINE TO BE RENUMBERED:), and the user responds 

with a valid line number (spn1). The Editor then outputs the prompt 

(NEW LINE NUMBER:) and the user responds with a second line number 

(spn2) that does not currently exist in the program. The line speci­

fied by spn1 is then renumbered to spn2 and the old spn1 is erased. 

EDIT: 1....1R.J 
LINE TO BE RE-NUMBERED: ...... spn i ..J 
NEW LINE NUMBER: 1....1spn2..J 

4.3.3 Editing Globals 

The MUMPS-11 Editor can also be used to edit globals consisting of 

string data. The procedure for editing global data is the same as the 

procedure for editing a single program line except that a full level 

global reference, rather than a step number, is the proper response to 

the computer's "EDIT:" prompt. Note that the "END", "AGAIN", and the 

"dot.dot.dot" features of the editor apply both to program steps and 

global nodes (see sections 4.3.2.1, 4.3.2.2, and 4.3.2.3). 

As an example of editing a global node, assume the following 9lobal 

is defined: 

ALDP(3)="TOWARE1....1ED1....1BLDG" 

4-21 



This node may be edited in the following manner: 

EDIT:r.....1ALDP (3).) r.....1Rr.....1AREr.....1ED.Jr.....1Wr.....1ERr.....1 .) 
ALDP(3)="TOWERr.....1BLDG" ------

EDIT :r.....1A.Jr.....1 ALDP ( 3 )r.....1 Rr.....1 ••• G.Jr.....1Wr.....1INGr.....1INFERNO.J 
ALDP(3)="'I'OWERINGr.....1INFERNO"-

EDIT:r.....1A.J ....... ALBP (3)r.....1 Rr.....1 ••• T_,lr.....1Wr.....1THEr.....1T.) 
ALDP(3)="THEr.....1TOWERING ..... INFERNO" 

4.3.4 Entering MUMPS-11 Commands from the Editor 

MUMPS-11 commands may also be executed from the Editor. This capability 

allows the programmer to perform calculations, examine and modify local 

and global data, and execute almost any command which could be invoked 

in direct mode, without having to leave the Editor. As an example, 

consider the following: 

>Dr.....1A%..) 
EDIT:r.....1Lr.....1ABCr.....1Wr.....13_} 
3.1 S X=3 K DG 
EDIT :r.....13 .1_)._, Rr.....13 ••• D.-J ..... wr.....13, Y=Cr.....1K ..... AB, D_) 
3.1 ..... s ..... x=3,Y=Cr.....1Kr.....1AB,DG 
EDIT:r.....1Fr.....1ABC.) 
EDIT:_;-
> 

4.3.5 Summary of Editor Questions 

USER SYSTEM 

EDIT: 

Step Number R 
or Global_} 
Node 

MEANING 

MUMPS-11 
Editor 
invoked 

Replace 
string that 
follows R 

4-22 

LEGAL RESPONSE 

1. Null entry, exits to 
direct mode. 

2. Line Number for editing 
a line. 

3. Global Node. 
4. "S" for Search. 
5. "C" for Change Every. 
6. "R" for Renumber. 
7. "A" for Again, which 

repeats previous EDIT. 
8. A valid line of MUMPS 

code. 

1. A string of characters 
derived from the program 
or global node being 
edited. 

2. A string containing 
three consecutive dots; 
e.g., A ••• B or c ... or 
••• D. 



USER 

s./ 

SYSTEM 

w 

SEARCH FOR: 

MEANING 

String to 
replace R 
string 

entry will 
be searched 
for 

LEGAL RESPONSE 

3. The word END. 
4. A null entry; causes 

insertion at the be­
g inning of the line. 

1. A string of characters. 
2. A null entry; causes 

the R string to be 
deleted. 

A string of characters. 

CHANGE EVERY: All occurrences 
of entry will 
be changed •... 

A string of characters. 

TO: 

FROM LINE: 

THROUGH 
LINE: 

LINE TO BE 
RENUMBERED: 

NEW LINE 

Previous 
Step # or 
Previous 
Global Node R 

• . . to the 
following 

A string of characters • 

Lower limit 
of CHANGE 
EVERY 
question 

1. A Step Number. 
2. A null entry; causes 

1st Step to be assumed. 

Upper limit 
of CHANGE 
EVERY 
question 

1. A Step Number. 
2. A null entry; causes 

last Step to be assumed. 

This line wil 
will be re­
numbered .... 
with this line. 

Allows re-edit 
of previous Step 

A valid Step Number. 

A valid Step Number. 

Any response used for R. 

ERROR MESSAGES MEANING 

1. ?? 

2. TOO LONG 

A. Invalid step number. 
B. The step does not contain the char­

acters which were to be replaced. 
c. A global node was specified that 

does not have defined data. 

If editing had taken place, result 
would have exceeded the maximum 
string length. 

4-23 



ERROR MESSAGES 

3. THE GLOBAL (g) 
IS EQUAL TO (n) 
TO EDIT, USE 
THE SET COMMAND 

where: 

g global name 
n = numeric quantity to 

which global was set 
equal 

MEANING 

This message will be output if an 
attempt is made to edit a global 
containing numeric data. 

4-24 



CHAPTER 5 

PROGRAMMING TECHNIQUES 

This chapte~ provides the MUMPS programmer with supplemental informa­

tion on several elements of the MUMPS Language. Sections 5.1 through 

5.5 discuss particular elements of the language, including the $J 

and $E System Variables, the VIEW command and $VIEW function, and 

a method for retrieving global data. Sections 5.6 and 5.7 discuss 

two considerations for program design: debugging and program size. 

The last sections are concerned with the use and design of globals. 

5.1 MASKING 

The programmer may extract individual bits of a word in storage by 

using the AND operator 1&), which performs true Boolean AND. 

Table 5-1 lists the mask value for each bit. 

Bit Mask J l 
0 .01 
1 .02 
2 .04 
3 .08 
4 .16 
5 .32 
6 .64 
7 1.28 
8 2.56 
9 9.12 

10 10.24 

Bit 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Table 5-1 
Bit Mask Values 

Mask 

20.48 
40.96 
81.92 

163.84 
327.68 
655.36 

1310. 72 
2621. 44 
5242.88 

10485.76 
20971. 52 

Bit Mask 

22 41943.04 
23 83886.08 
24 16 7772 .16 
25 335544.32 
26 671088. 64 
27 1342177.28 
28 2684354.56 
29 5368709.12 
30 10737418.24 
31 21474836.48 

If the bit to be examined is in a word stored as a MUMPS number, the 

programmer simply ANDs the word with the appropriate mask value for 

that bit. For example, the following MUMPS command returns a True 

(-0.01) or False (0) result, depending on whether bit 4 of the $J 

System Variable contains a 1 or a 0 value. 

IF $J&.16 

If the bit to be examined is in a word not stored as a MUMPS number, 

the word must first be divided by 100, (e.g., values obtained from 

the $A System Variable or from use of the $VIEW function). For 

example, the following command return a True or False result, depending 

on whether bit 15 in $A contains a 1 or 0 value. 

I $A/100&327.68 

5-1 



To prepare a location for bit manipulation, first divide by 100 (if 

the word is not stored as a MUMPS number) as follows: 

$V($V(44)+46)/100 

To shift right (end off), divide by corresponding powers of 2: 1 

2x where x is bit positions to shift 

21 =2 shift 1 bit 

22 =4 shift 2 bits 

28 =256 shift 8 bits (high byte to low byte) 

I.e. , 

$V($V(44)+46)/(100*256); shift high byte into low byte 

$V($V(44)+46)*256; shift left 8 bits 

To mask, logically "AND" or "OR" using standard MUMPS masks. For 

example: 

$V($V(44)+46)/100&10.24; check if bit 10 set 

Add masks together to check multiple bits: 

$V($V(44)+46)/100&(5.12+10.24); check if bits 9 & 10 set 

$V($V(44)+46)/100&2.55; check for any bit set in low 
byte 

Combining operations: 

$V($V(44)+46)/25600&2.55; shift high byte to low byte 
and check for any bit set in 
that byte 

1 To shift left (zero fill), multiply by corresponding powers of 2. 

5-2 



The following routine checks the status of any given bit in the $A 

System Variable by shifting the contents of the word to the right 

(dividing by 2) for successive bit positions. The selected bit 

position is determined by the value SET to N. 

Given: S N=l5 

4.1 S A=$A/100 
4.2 F I=O:l:N S A=A/2 
4.3 I A&.01 (go process error) 
4.4 (otherwise, continue I/O operations) 

5.2 $J SYSTEM VARIABLE 

The $J System Variable is available to the MUMPS programmer as a job 

status word for special applications checking. $J is stored as a 

MUMPS number and contains three bits which are of interest to the 

programmer. Table 5-2 describes these assignments. 

Table 5-2 

$J Bit Assignments 

Bit Meaning When Set to 1 

2 Recognition of CTRL/C and BREAK for 
currently ASSIGNed terminals is enabled. 

3 A CTRL/C or BREAK has been received 
on the Principal I/O Device (cleared 
when the ASSIGN O:bve syntax is 
invoked.) 

4 Timed READ or LOCK overrun. 

5.2.1 CTRL/C and BREAK Recognition 

Bits 2 and 3 of the $J System Variable allow a programmer to control 

processing of CTRL/C and BREAK, to determine the status of a partic­

ular job. For example, if the user logged-in simply to run a 

program, CTRL/C and BREAK are normally disabled. The program itself 

may check bit 2 to determine if this is the case, and enable them if 

it is necessary. In another situation, a program might disable 

CTRL/C and BREAK during a particular processing operation and use 

bit 3 to monitor attempts to use CTRL/C or BREAK. The program 

could notify the operator that special processing is taking place. 

5-3 



5.2.2 Timed READ or LOCK Overrun 

The programmer may check the value of bit 4 in $J for a timed READ or 

a LOCK overrun. 

Bit 4 is set when the specified interval in the READ command expires 

and either 

• no response was detected, or 

• input was detected, but the user took more than the speci­
fied interval to type another character or a line termina­
tor. 

In either case, MUMPS returns a null string to the program. A timed 

READ in which the user successfully entered the data, or a non-timed 

READ, would clear bit 4. 

Example: 

Assume that device number 17 is a data set terminai, and the 
user wishes to discontinue processing if the terminai is dis­
connected on a request for input. 

4.1 A 17 R !"ARE YOU READY?", !,X:3ll"Q:$J&.16 
4.2 (process data from remote terminaZJ 

Bit 4 can also be set if the optional timeout argument is present on a 

LOCK command argument. If the specified number of seconds pass and the 

system has not "locked" the requested argument, then bit 4 is set and 

the program continues execution. If the system had succeeded in "lock­

ing" the argument, or if there was no time switch on the LOCK, bit 4 

would be cleared. 

Example: 

4.1& .. ~L._.tA(l,2,3) :2._.I._.$J&.161......1T !"NOT AVAILABLE"!& .... .1G1......13 

5.3 WRITING ERROR PROCESSING ROUTINES 

The programmer may write his own error-processing routines using 

the $E System Variable. MUMPS normally considers all errors 

listed in Appendix C 1 fatal. If one of these errors occurs, MUMPS 

enters an error index (in the range O to -.38) in the $E 

System Variable and reports the error on the Principal I/O Device. 

1Except GARB errors. 
sets $E. 

MUMPS reports MTERR or LPERR only if the user 
5-4 



If the programmer has set the $E System Variable to a Step or 

Part nwnber and an error occurs, the system: 

• sets the $W System Variable to the value of $L when the 
error occurred 

• sets the $E System Variable to the error index for the 
error encountered (in the rage O to -.38) 

• transfers program control to the step or part number 
referenced by $E 

• resets the user stack, causing currently active DO, CALL 
and FOR commands to be lost. 

The programmer examines $E to determine which error occurred and 

examines $W to determine where the error occurred. Note that the 

programmer must reset $E to a Step or Part number to control further 

error processing in his program; otherwise, error processing reverts 

to system control. 

If $E contains any negative MUMPS number or ~' MUMPS performs its 

standard error processing when an error occurs (see 2.15). In this 

manner, the programmer may "turn off" applications error processing. 

EXAMPLE 1 

A programmer wishes to output expliait error messages for his 
appliaation programs. He areates an error message program named 
'ERR' with 38 parts, one part for eaah error generated by MUMPS. 
The error proaessing routine in his appliaation program aalls the 
part of 'ERR' whiah aorresponds to the error index in $E. For 
example, part number 15 aorresponds to the ePror index -.15, whiah 
indiaates the illegal use of a MUMPS aommand. 

'PRG' 

1.10 S $E=2 
1. 20 
1. 30 
1. 40 
1.50 

2.10 C ERR:-$E*l00 

'ERR': 

Suppose this line aontains 
an invalid aommand 

0.01 ERROR PROCESSOR 

15.10 A 0 T !"SORRY, BUT LINE",$W," CONTAINS AN INVALID COMMAND!",!! 

5-5 



EXAMPLE 2 

In this case, the programmer wishes to control error processing 
only when a DECtape error occurs. 

3.1 S $E=7 
3.2 A 56:3166 T "LABEL" S $E=O 
3.3 (continue I/O processing) 

7.1 S X=$E,Y=$W G Y:X<>-.3 A 0 T !"UNIT NOT READY!!",! 
7.2 T "CHECK IF OFF-LINE OR NOT WRITE ENABLED.",! 
7.3 T "IF NEITHER TYPE 'N' TO HALT PROGRAM; REPORT HARDWARE MALFUNCTION' 
7.4 R "OTHERWISE, CORRECT AND TYPE 'Y' <,CR>",!,Z I Z="Y" G Y 
7.5 H 

5.4 VIEW COMMAND AND $VIEW FUNCTION PROTECTION 

Several levels of protection are applied to the use of the VIEW 

command and $VIEW function. The highest level of protection is 

applied to the VIEW command when used to write into internal memory 

or onto disk. The lowest level is applied to $VIEW, which can only 

read memory locations. 

The following protection applies to the VIEW command: 

• Using VIEW to write to disk or memory: 

a. The user must be logged-in under the System UCI. 

OR 

The command must be executed from a Library 
Utility Program (see Chapter 4). 

b. For writing memory, the device number ASSIGNed must 
be either 63 or 46. For writing to the disk, 
device number 63 must be ASSIGNed. 

c. The "PRINT'--'256" command must be issued prior to using VIEW. 

• Using $VIEW to read from a disk or using $VIEW to read from memory: 

a. The user must be logged-in under the System UCI 

5-6 



OR 

The command must be executed from a Library 
Utility Program (see Chapter 4). 

b. For reading memory, the device number ASSIGNed must 
be either 63 or 46. For writing to the disk, device 
number 63 must be ASSIGNed. 

NOTE 

The VIEW aommand is not proteated for 
addresses residing in the 'externat memory 
page' of the PDP-11 (i.e., an address greater 
than or equat to 160000 8 or 58444 10 ;. 

The $VIEW Function can be used under the following conditions: 

• The user must be logged-in under the System UCI 

OR 

• The command must be executed from a Library Utility 
Program (see Chapter 4). 

5.5 USE OF THE IF COMMAND AND INDIRECTION SYNTAX TO RETRIEVE 
GLOBAL DATA 

This section outlines the elements of a program designed to retrieve 

global data. The programmer may wish to write a similar program 

if the application system occasionally requires an unusual type of 

data search. A program of this type does not, however, retrieve 

data quickly. It may be useful in a particular application 

situation only because the programmer does not have to spend time 

writing an efficient program to search for the needed data. 

The retrieval program first issues a "READ....X" command so that 

the user may enter the parameters on which to base the selection. 

The user's input entirely determines the record selection. A 

record usually has several data fields which may serve as the 

parameters. The user input is in the form of a parameter name, 

followed by a Boolean condition and the parameter value, followed by 

any other parameters. For example, a patient record may include 

the patient's age, sex, blood type and activity code. In an 

unusual situation, the user may need to know the name of all 

5-7 



female patients over 30 who have blood type AB and are going into 

surgery. The input line might be: 

paT'ameteT's 

AGE=>30&(SEX=" 

Boolean Condition t,,l' 
"&(TYP="AB"&(ACT="S"))) =X 

paT'ameteT' 
value 

""-" 

successive condi&ions aT'e 
enclosed in paPentheses 
as nested Boolean functions 

OR, since all subsequent parameters are "AND" conditions, 
the input line could be: 

AGE=>30,SEX="F",TYPE="AB",ACT="S" 

wheT'e the commas aT'e implied "ANDs" 
foT' the IF command (see below) 

The program then enters a loop which gets a record and sets up the 

local variables to compare with the user-selected parameters. For 

example: 

1.3 S N=l7538 
1.4 S N=N+l I N=l7968 Q 

1.5 S AGE=tAGE(l,N),SEX=tSEX(l,N), ••• 

-this line gets T'ecoT'ds 
17,539 thT'OUgh 17,968 

-this line sets up the 
local vaT'iables. 

The program next compares the contents of the local variables with 

the parameters stored in the local variable 'X' by using the IF 

command and indirection syntax. When the indirection syntax is 

used to determine the argument of an IF command, the execution of 

commands on the remainder of the line is not dependent on the 

logical result of the IF. To test the result of the IF, the programmer 

must use the ELSE command. For example: 

1. 6 I +X ELS~ GOTO 1. 4 if the T'ecord does not match, 
go get another T'ecoT'd 

If the selected record does fit the parameters, the lines following 

the IF command lines process the record, and then return control 

to the Step or Part which gets another record. 

5-8 



5.6 DEBUGGING PROGRAMS 

Often the programmer may wish to interrupt the operation of his 

program at predetermined points to examine his program data in 

detail. After examination, he may wish to resume the normal sequence 

of operation from the point of interruption. This technique is 

especially useful in the early steps of program debugging. 

The BREAK command can be inserted anywhere in a stored program. 

Upon execution of the BREAK, the program is suspended and a '?' 

is printed, followed by the Step number where the BREAK was found, 

followed by the message 'BREAK'. The programmer has the option of 

examining and changing the contents of variables or of writing 

out all or part of the program. The program itself may not be 

changed until after a CTRL/C has been typed to remove the program 

from the BREAK state. If the programmer attempts to modify the 

program in the BREAK state a PROT error is generated. 

The GO command causes program execution to resume from the point 

where the BREAK occurred. 

If an error occurs while in the BREAK state or if CTRL/C is 

typed, continuation is not possible using the GO command, since 

system error processing removes the BREAK state from the user's 

partition. 

5.7 PROGRAM SIZE CONSIDERATIONS 

After System Generation, the amount of core space allocated to the 

user's partition is fixed and therefore is the critical factor 

which limits the size of a core resident program. Each MUMPS 

program must fit into the Program Buffer of the partition in which 

it is to run 1 • 

The following paragraphs discuss the factors which affect the size 

of MUMPS programs and the techniques to use the available internal 

memory efficiently. 

1 During system generation, the System Manager/Operator may 
specify a standard partition size and one or more non-standard 
sizes. The programmer may select the partition size in which 
a program is to run by using the optional syntax of the START 
command. 

5-9 



As mentioned earlier, during execution MUMPS programs reside in the 

Program Buffer which is part of the user's partition. Since the 

size of each partition is fixed, so is the amount of space available 

for a program. This significant factor limits the size of an 

executable program. Although the user does not have the ability to 

increase his partition size, there are a number of programming 

techniques to efficiently utilize available space. If a program has 

reached an irreducible size and is still too big, the user must 

consider segmentation, using the CALL and OVERLAY commands. 

5.7.1 Conserving Available Space 

The ultimate size of a program depends on: (1) the actual number of 

characters in the program, ( 2) the number of local va·riables, ( 3) the 

amount of data stored in these variables, (4) the manner in which 

these various elements are used with respect to one another. 

In order to create programs that make efficient use of space, the 

programmer should understand the basic structure of his partition 

and the dynamic nature of some of its component parts. Figure 

5-1 shows a simplified diagram of a MUMPS partition. 

LOW MEMORY OVERHEAD AREA 

PROGRAM 
~ ~~~~ _ __, t DIRECTl.ON OF GROWTH 

HIGH 

r-~s~_:_r~c~_, +DIRECTION OF GROWTH 

FREE MEMORY 

MEMORY ~~;;:-T-;:;-8-;:-E- L DIRECTION OF GROWTH 

11-1414 

Figure 5-1 Basic Partition Layout 

There are three areas in the user's partition which compete for 

free memory: the Program Buffer, the User Stack, and the Symbol 

Table. The Program Buffer is the area which contains the actual 

MUMPS-11 program. The User Stack contains transient information 

used by the operating system in processing the user's program. The 

Symbol Table is the area where all locally defined symbols reside. 

All three of these areas in the partition are dynamic; they grow 

and shrink in response to program operation. Both the Program 

5-10 



Buffer and the User Stack grow toward high memory, and the Symbol 

Table grows from the upper limit of the partition toward low memory. 

The area between the top of the Symbol Table and the bottom of the 

User Stack is free memory which can be utilized by any of these 

areas. Specific factors which directly affect the amount of storage 

required for each of these areas are discussed below. 

The size of the Program Buffer increases and decreases, within the 

limits of available free memory, in response to LOAD, CALL, and 

OVERLAY commands. Since all elements of a MUMPS program are brought 

into the Program Buffer, the size of a program can directly depend 

on the way it is constructed. 

a. To reduce the space required for a program: 

• Abbreviate all commands and function calls 
to the legal limit. 

• Omit leading and trailing zeroes from all 
numeric strings. 

• Keep program names, variable names, and 
comment lines as short as possible. 

• Put as many commands on a line as possible 
to reduce the total number of individual 
Step Numbers which must be stored. 

• Do not duplicate arguments or literals 
unnecessarily. Whenever an argument string 
or literal is used more than twice in a 
program, store it in a local variable and 
make multiple references to it (use the 
Indirection Syntax Operator in the case of 
arguments). 

b. To conserve User Stack space: 

• Avoid deep nesting of DO, CALL, and FOR 
commands by employing a different algorithm. 

• Use the XKILL command judiciously; use KILL 
instead, if possible. 

c. To save Symbol Table space: 

• If time is less important than available space, 
store variables in Global Files. 

5-11 



• If a large number of local variables are re­
quired, it may advantageous to concatenate 
them into one large string for storage as one 
variable and to extract each via the $Extract 
Function when needed. 

5.7.2 Segmenting Programs to Conserve Space 

The amount of space allocated to the partitions in which pro­

grams run is fixed in size, and each program must fit into this 

space. However, through the use of the CALL and OVERLAY commands, 

a program can cause the loading and execution of other programs 

in the UCI's Program Directory as well as Library Utility Programs 

riled in the System UCI's Program Directory. When a program is 

brought in by either CALL or OVERLAY, it replaces the invoking program 

and, unless otherwise specified, execution begins at the first non-zero 

part. A program accessed in such a way is treated like any other 

program; it may CALL or OVERLAY still more programs. This allows the 

effective size of a program to be extended indefinitely. However, 

because ~ocal variables remain intact on execution of a CALL or OVERLAY, 

a size problem may exist if the incoming program is larger than the one 

invoking it. While developing a program, the user may want to CALL 

another FILEd program (OVERLAY can only be used in Indirect Mode) • The 

programmer must be sure that he has FILEd the program currently in his 

partition before using CALL; otherwise the original program is destroyed. 

5.8 GLOBAL ACCESS CONSIDERATIONS 

The scheduling algorithm used by the system's Executive (paragraph 

1.3.1.1) is designed to give jobs performing Global accesses (disk 

I/O) preference over other jobs in the system. When a disk input/ 

output task has completed, the requesting job is given an additional 

short time slice to process its next command. During this time 

slice the job retains control of the disk. This enables the job to 

perform another disk access, if desired, without having to wait 

for other jobs to complete their disk tasks. The programmer should 

exercise care when using this feature, since it is possible, through 

faulty programming techniques, to completely lock-out other MUMPS 

jobs from use of the disk. This prevents other programs from 

accessing Globals, and terminal users from filing and loading programs. 

In particular, a high frequency of disk I/O requests or interminable 

program loops containing disk I/O requests should be avoided. 

5-12 



The programmer must assiduously avoid the creation of interminable 

loops which request disk input/output or lengthy disk I/O functions 

such as result from many global accesses. 

a. 1.2 G $L:$DCtA(J)) H 0 

The above command line causes an interminable 
disk access loop if tA(I) is defined. The 
'HANG'-'~', intended to effect a job swap-out 
will not be executed. The correct procedure 
is shown below.· 

b. 1.2 H 0 G $L:$DCtA(I)) 

This command line will cause the job to be 
swapped-out prior to each Global reference, 
thereby allowing other jobs to obtain use of 
the disk. 

5.9 GLOBAL DESIGN CONSIDERATIONS 

The following paragraphs describe some of the methods for creating 

and designing globals. The programmer should refer to the 

Introduction to MUMPS Language tutorial manual and Appendix G in 

this manual for detailed discussions on how MUMPS stores data 

in globals. 

5.9.l String Data Storage 

As mentioned in paragraph 5.8, simultaneously running jobs compete 

with each other for disk access time. MUMPS makes at least one 

disk access each time a job references a global variable using 

full syntax. A particular job using a large number of global 

variables for its processing operations, therefore, takes a long 

time to run when there are many other jobs on the system. 

If a particular application program processes a large amount of 

string data, the programmer may reduce the number of necessary 

disk accesses by storing as much string data as possible in a 

global variable. The programmer may then store the contents of 

the global variable in a local variable to extract and process the 

relevant data. 

A global variable may contain many individual string data fields 

as long as the total length of all the fields does not exceed 

the maximum string length of 132 characters. 

5-13 



The programmer should store the fixed length string data fields 

in the first part of a global variable. This allows him to use 

the $EXTRACT function to retrieve any particular field. The 

programmer may then store variable length fields, set off by 

delimiting characters, after the fixed length fields in the 

global. The programmer may use the $PIECE function to extract 

the individual variable length fields. 

As an example, suppose that a patient's hospital record contains 

a billing code, ward name, room number, doctor code, blood type, 

Rh factor, name, and activity~ Each of these fields could be 

stored as separate global variables in the same global, or even 

as separate globals. The following command, however, stores all 

information in one global variable. 

billing code blood type delimiters 
,__....._ ,.-..., ~ / 

S tREC(l700,97)="04580BS13228AN/NARTEN,SUSAN/BILIRUBIN/" 
............. "--r' y -----......----~ 

ward ) \ name activity 

room J 
doctor 

code 
~ 

fixed length 
fields 

variable length 
fields 

If the user wished to find the names of all the patients in the 

obstetrics ward (OBS), he could use some form of the following 

command: 

IF $E(X,5,7)="0BS" T !,$P(X,"/",2) 

where "X" is a local variable containing one of the records in the 

global variable tREC. 

5.9.2 Downward Pointers 

The disk block address stored with a global variable that points 

to global variables on lower levels is called a downward pointer. 

MUMPS chooses downward pointers by using an algorithm that takes 

advantage of the rotational latency of the disk. In the time it 

takes to perform a disk READ operation, the disk turns to the 

block on the lower level. The position of the global variable 

containing the downward pointer is therefore critical. If the 

5-14 



global variable containing the downward pointer is moved onto 

a continuation block, the optimal rotational latency value is 

lost. This increases the amount of time it takes to search down 

the levels of a global. 

In order to maintain the proper rotational latency between the 

blocks, the user should ensure that the global variable containing 

the downward pointer is never moved onto a continuation block by: 

• storing data in the global variable, if any, before 
creating the first global variable at a lower level 

• storing only fixed length data in the global variable 
containing a downward pointer 

NOTE 

Occasionally it is necessary to make major 
modifications of a global's structure or 
contents. The user can restore the optimal 
block allocation by saving the global data 
using the Global Save Utility Program, 
killing the global, and then restoring the 
global using the Global Restore Utility Program. 

5.9.3 Storing Large Amounts of Data 

The two primary considerations involved when storing large amounts 

of data are access speed requirements and storage limitations. 

The following paragraphs discuss the ways to balance these conditions. 

The fewer the number of physical disk block accesses required to 

retrieve data, the faster the retrieval time. The fastest way 

to retrieve data is by searching down the levels of a global. If 

there are no continuation blocks on any one level of a global, 

MUMPS accesses only one block for each downward pointer. For 

example, a three-level global that uses no continuation blocks 

requires only three block accesses to retrieve any particular 

global variable, excluding the directory block access. 

Each level of a global adds at least one block to the number of 

blocks required to store the data. If the amount of storage 

space is limited, the user may wish to store data on as few levels 

as possible, though he increases retrieval time. 

The following example illustrates the method for calculating the 

number of block accesses and the number of blocks required to store 

global data. Using this method, the programmer may design a 

global structure appropriate for his application situation. 

5-15 



Example: 

A user has 1000 records containing string data. Each record is 45 

bytes long. If one record is stored per global variable, there will 

be 1000 global variables containing data, and each variable will 

occupy 50 bytes of storage. 1 

A disk block is 512 bytes long. MUMPS uses six of those bytes to 

store system information. There remain 506 bytes per block in 

which to store global variables. 

global variables in one block, it 

all the data (i.e., 506 bytes per 

variable). 

Since it is possible to store 10 

will take 100 blocks to store 

block divided by 50 bytes per 

The user may choose to store all the data on one level as a series 

of continuation blocks, requiring only the 100 disk blocks. The 

average number of blocks accessed to retrieve any particular global 

variable is 100 blocks divided by 2, or 50 blocks (excluding the 

directory block access). 

The user may also choose to create a 2-level global where the first 

level contains 2 pointers, each pointing to a group of 500 global 

variables. Each group of 500 nodes resides on 50 continuation 

blocks. For example, the first level might contain two pointer 

nodes tA(l) and +A(2). The second level would then contain 1000 

global nodes, +A(l,n) and +A(2,n) where n = 1 - 500. The two 

pointer nodes would reside in one block; the total number of blocks 

required to store the global is 101. The average number of block 

accesses required to retrieve any particular global variable is 50 

blocks per pointer divided by 2, plus 1 block for the pointer, or an 

average of 26 accesses (excluding the directory block access). 

If the user creates a 3-level global, he might have 4 pointers 

on the first level, each pointing to a group of 25 pointers on 

the second level, each of which, in turn, points to a single block 

containing 10 global variables storing data on the third level. 

This global requires 100 blocks to store the data, plus 

5 block to store the pointers -- one block for the first level 

1The programmer should refer to Appendix G in this manual to determine 
the number of bytes required to store any particular data type. 

5-16 



pointers, and 4 blocks for the second level pointer--or a total 

of 105 blocks for the entire global. The maximum number of blocks 

accessed to retrieve any global variable is only three (once again 

excluding the directory level access). It is evident that increasing 

the number of blocks required to store a global can significantly 

decrease the retrieval time. 

The user may also try another possible arrangement. In the 2-level 

structure described above, the "data" nodes reside in two groups 

of 50 continuation blocks each. The large number of continuation 

blocks account for the major portion of the retrieval time. If 

the user decreases the number of continuation blocks, he can 

decrease the average retrieval time. 

A global variable which contains a downward pointer and no other 

data requires only 6 bytes of storage space. It is therefore 

possible to put as many as 84 "pointer" nodes in one disk block. 

If the user creates a 2-level global with 100 pointers on the first 

level which each p0int to a block on the second level containing 

the 10 global variables, he needs only 2 blocks to store the 

100 pointers. The entire global requires only 102 blocks of 

storage space. The number of blocks accessed to retrieve any 

global variable on the second level is either 2 or 3, depending 

on whether MUMPS has to read the continuation block on the second 

level to find the proper pointer. Most of the time only 2 blocks 

will be accessed because most of the pointers are in the first 

block. This compromise is the most effective solution for this 

particular data base. 

5-17 



5.10 USING SWITCH REGISTER SWITCHES FOR PROGRAM CONTROL 

In addition to being used to initialize and control the operation of 

the MUMPS system software 1 , the PDP-11 console SWITCH REGISTER 

switches can also be used to effect control of any MUMES program. 

Many of the system utility programs described in the MUMPS Operator's 

Guide use this feature. 

The. console SWITCH REGISTER consists of sixteen switches (~ thru 15). 

Several of the switches perform specified predefined functions in 

the operating system (Table 5-3). In general, these switches, 

except for switch number 6, should not be used since their primary 

function could conflict with the user's intended application. The 

programmer should instead use switch number 6 to effect a shut-

down of the application system software. The switches that have 

no specific MUMPS system assignment can be used, but are subject 

to future assignment by DIGITAL. The use of a switch to cause program 

shutdown is particularly important for STARTed programs that are not 

controlled through a device keyboard or other logical input. Unless 

switch control is used, programs of this sort can only be stopped by 

actually HALTing the MUMPS operating system. 

Since the SWITCH REGISTER switches are a form of input device, they 

communicate with the processor through a status word in the PDP-ll's 

'external page' at address 77757~ (octal) or 654~~ (decimal). Each 

bit in the status word corresponds to one of the switches. For 

example: bit ~ corresponds to switch ~, bit 1 corresponds to switch 

1, etc. When a switch is ON (raised) its status word bit is set to one. 

Using the $V function, MUMPS programmers can obtain the current 

status of the switches. The appropriate bit or bits can be examined 

in a Boolean expression that uses the bit masking techniques described 

in 5.1. The last column in Table 5 shows the masks for each bit. 

The following examples below show how the switch status can be obtained. 

1 Described in Chapter 4 of the MUMPS-11 Operator's Guide. 

5-18 



Table 5-3 

MUMPS SWITCH REGISTER Assignments and Bit Masks 

Switch Number Bit Mask MUMPS System Function 

fJ • {Jl Console Terminal Control 

1 • {J2 t 
2 • {J4 Unused 

3 . {J8 i 
4 .16 Garbage Collector Control 

5 . 32 Unused 

6 .64 System Shutdown Control 

7 1. 28 l 8 2.56 

9 5.12 Unused 

l{J l{J.24 l 11 2_0'.48 

12 4_0'.96 Partition Grant Control 

13 81. 92 System Processing Control 

14 163.84 Unused 

15 327.68 Interpreter Control 

Examples: 

1. To see if switch number 6 is ON: 

6.23 I 'C$VC65400)/J00&.64=.64) T "RAISE SWITCH NO. 6",! G $L 

2. To HALT if both, switch number 6 and switch number 1 are ON: 

3.45 I $VC65400)/100&.66:.66 H 

5-19 





Array 

Binary Operator 

Boolean Valued Expression 

Command 

Concatenation 

Constant 

Data Base 

Direct Mode 

Directory 

Double Numeric Quantity 

Expression 

APPENDIX A 
GLOSSARY OF TERMS 

An array, which can consist of either local or global variables, is a group of 
subscripted variables that have a common identifier. 

A binary operator is an operator that requires two operands (expression 
elements). 

A Boolean Valued Expression (bve) is an expression, which, when evaluated, 
produces either a True (-0.01) or False (0) result. 

A command is the principal algorithmic component of the MUMPS Language. 
MUMPS commands consist of a set of keywords that characterize· actions. 
(e.g., GOTO, SET, HALT, RUN, etc.) 

Concatenation is the process of linking together two or more string data 
elements to form a single string. Concatenation is a string expression 
operation that is designated by the commercial "at" sign (@). 

A constant is a quantity within the range of legal MUMPS numbers 
(±21474836.47) explicitly stated in an argument to a command or as an 
operand in an expression. 

Data base is that body of disk-stored information residing in global arrays. 

Direct Mode is that mode of system operation which enables the programmer 
to: 

a. enter commands and/or functions for immediate execution 
b. create or modify steps of a user's program 

A directory is a disk resident table which can contain the names and disk 
starting addresses of either programs or global files. Each User Class Identifier 
in a MUMPS'! I system is associated with two directories; a program 
directory, and a global directory. 

This term refers to MUMPS numbers whose absolute values lie in the range 
±327.68 through 21474836.47 which are stored by the operating system in 
two consecutive words. (See also Single Numeric Quantity.) 

An expression is any legal combination of operands (elements) and operators. 
Legal expression elements include: literals, constants, variables, 
subexpressions, and function references. An expression may consist of a 
single element, an element/operator combination or a series of 
element/operator combinations. 

A-1 



Expression Element 

Floating Point Numeric 

Function 

Global 

Global Variable 

Identifier 

IF Switch 

Indirect Mode 

Indirect Reference 

Job 

Library Program 

An expression element is the operand component of a MUMPS expression. 
An expression element may be a constant, a simple variable, a literal, a local 
subscripted variable, a global variable, a function reference, or a 
subexpression. 

A 4-word floating point number in the range ±0.14*1038 to ±1.7*1038 • The 
MUMPS $M function allows floating point numbers to be used with the 
operators + - * / (}=.A Floating Point number may be stored. only as a local 
variable which is not the name of an associated array (i.e., pointer variables 
are excluded) or as a global variable. 

A function is a MUMPS expression component that invokes an algorithm, the 
result of which is an expression element (operand). Each MUMPS function is 
assigned a unique mnemonic, the first character of which is the dollar sign ($) 
symbol. 

A global is a tree-structured data file stored in the common data base on the 
disk. Globals comprise an external system of symbolically referenced arrays. 

A global variable is a subscripted variable that forms an element (or node) of 
a global array. 

An identifier is a name consisting of one to three alphanumeric characters. 
The first character must be either an alphabetic character or the percent (%) 
symbol. Identifiers are used as names for variables, programs, library (or 
system) programs, and globals. The percent symbol is reserved for naming 
Library Programs and Globals, though any local variable can use percent as 
the first character of its name. 

The IF Switch is a logical switch that resides in the Program Vector area in 
each user's partition. This switcp is set to the logical result of the last 
executed IF statement, either True (-0.01) or False (0). Note that an IF 
without arguments or an ELSE only tests the logical value of the IF Switch 
and does not change it. 

Indirect Mode is that mode of system operation in which the steps of a stored 
program are executed. In this mode of operation, commands cannot be 
entered from the terminal and programs cannot be created or modified. 

An indirect reference is a feature of the language that permits a string variable 
to represent a command's argument or argument list. In operation, the string 
value of the variable is taken as the argument or argument list. The 
indirection symbol, back arrow (+-) or underscore (.__), must precede the 
variable reference. 

A job is any user activity which requires the use of a partition. For example, 
logging in or STARTing a program are Jobs. 

This term refers to those programs that are listed in the Program Directory of 
the System UCI (UCI #1) and have a percent symbol(%) as the first character 
of their names. Programs residing in the system in this way can be run by any 
user regardless of UCL 

A-2 



Literal 

Local Variable 

Naked Reference 

Node 

Numbers 

Numeric Valued Expression 

Operator 

Part Number 

Partition 

Pattern Verification 

Principal 1/0 Device 

A literal is an element of the language that permits the explicit representation 
of character strings in expressions and in command and function arguments 
by delimiting them with quotation marks(""). Literals may not contain: 

quotation marks 
Carriage RETURN 
ALT MODE 
RUBOUT (DEL) 

CTRLO 
CTRLC 
CTRL U 
NUL 

Line Feed 
Form Feed 
Vertical Tab 

A local variable is a variable that resides in the partition of the program that 
created it (as opposed to a global variable). 

The naked reference is a feature that provides an abbreviated method for 
accessing global variables to reduce disk access time. This permits subsequent 
references to a global to be made simply by specifying an up-arrow (t) 
followed by one or more subscripts. The variable name is assumed from the 
last global reference in which a name was explicitly stated. The first subscript 
in the naked reference replaces last subscript in the previous reference (either 
naked or complete). Using the naked reference reduces disk access time since 
the search for the specified node begins at the subscripting level attained by 
the last global reference rather than at the global directory level. 

A node is a global array element addressed by a subscript. 

Numbers in MUMPS are signed fixed-point quantities in the range 
±21474836.47. Decimal fractions greater than two places are truncated to 
two places. 

A numeric valued expression (nve) is an expression which, when evaluated, 
produces a numeric result. 

An operator is a component of a MUMPS expression that invokes an 
algorithm to perform either arithmetic, string, or Boolean manipulations. (See 
binary operator and unary operator.) 

A part number is the integer portion of a step number and is used to refer 
collectively to all steps having a common integer base. 

A partition is the memory area within which a job resides. A partition is 
allocated to a job either at terminal log-in time or upon execution of the 
START command. A partition contains both program and local variable 
storage areas as well as program state information necessary for timesharing 
operation. 

Pattern verification is a feature of the language which permits evaluation of 
text strings for the occurrence of desired combinations of alphabetic, numeric 
and punctuation characters. Pattern verification is specified by the "?" 
operator followed by Pattern Specification Codes (psc ). 

This term refers to the keyboard terminal that initiated the job. This is the 
device to which control returns when an error message is to be output or 
when an ASSIGN L-J 0 command is issued. 

A-3 



Program Name 

Programmer Access Code 

Queue 

Run Queue 

Secondary Storage 

Single Numeric Quantity 

Sparse Array 

Step Number 

String 

String Concatenation 

String Valued Expression 

Subexpression 

Subscripts 

Subscripted Variable 

System Program 

A program name is an identifier that is associated with a particular program. 
System Library program names must use the percent symbol (%)as the first 
character. 

The Programmer Access Code (PAC) is a three-character code, created at 
System Generation time, that allows the terminal user to enter Direct Mode. 

A queue is an ordered list in which the first item to be entered is the first 
item to be removed (first-in-first-out sequence). 

The Run Queue is a System Queue which contains the number of the job 
currently executing in its time slice. This queue is effectively a one entry 
queue. 

This term refers to all 1/0 devices which are not used to contain the global 
data base (non-disk), (i.e., paper tape, magtape, or DECtape). 

This term refers to MUMPS numbers in the range ±327.67 which are stored 
by the operating system in one 16-bit word. (See also Double Numeric 
Quantity.) 

A sparse array refers to the method of storage allocation used for local and 
global arrays in which space is allocated only as variables are explicitly 
defined (unlike other languages which require dimension or size statements 
for preallocation of storage). 

A step number is a number used to identify each line of a MUMPS program. 
A step number must be in the range 0.01 - 327.67, excluding all numbers in 
this range that are integers. 

A string is a contiguous combination of any of the ASCII characters. 
(132 characters maximum) 

See Concatenation. 

A string valued expression (sve) is an expression which produces a string 
result upon evaluation. 

A subexpression is an expression element that consists of any legitimate 
expression enclosed in parentheses. 

A subscript is a numeric valued expression or expression element which is 
appended to a local or global variable name to uniquely identify specific 
elements of an array. Subscripts are enclosed in parentheses. Multiple 
subscripts must be separated by commas. 

A subscripted variable is a variable to which a subscript is affixed (see 
subscript and variable). Both global and local variables are forms of 
subscripted variables. 

A System Program is a program either supplied by DEC or created by the 
MUMPS user which is used to assist the MUMPS system owner in the 
operational maintenance of the system. System Programs normally- reside 
under the protection of the System UCI (UCI #1). 

A4 



System Queues 

System UCI 

System Variable 

Time Slice 

Unary Operator 

User Class Identifier (UCI) 

Variable 

Wait Queues 

This term refers to the set of queues used by the MUMPS Operating System 
to control the allocation of system resources (see Run Queue and Wait 
Queue). 

The System User Class Identifier (UCI) code is that UCI code assigned to the 
first entry in the system's UCI table. The Program and Global Directories 
associated with the System UCI are used to contain both System and Library 
programs and globals. 

A System Variable is a variable that is permanently defined within the 
operating system. These variables provide system and control information to 
all programs. The first character of a System Variable is always a dollar sign 
($). System Variables are maintained and modified by the operating system 
and/or system manager only. 

This term refers to the period of time allocated by the operating system to 
process a particular partition's program. This term is synonymous with 
'timesharing interval'. 

A unary operator is an operator that requires a single operand (expression 
element). 

A UCI is a three-character c-ode used at terminal log-in time to permit access 
to the group of programs and global files with which it is associated. When 
used with the Programmer Access Code, the UCI allows these programs to be 
modified and new programs to be created. 

A variable is the symbolic representation of a logical storage location. Specific 
types include local, global, simple and subscripted variables. Variables are 
symbolically referenced by means of identifiers. 

The Wait Queues are a group of System Queues which contain the numbers of 
the jobs awaiting service by the operating system. 

A-5 





APPENDIX B 
MUMPS CHARACTER SET 

The following table shows, with the corresponding octal and decimal equivalents, the 128-character set of 7-bit 
ASCII code used by MUMPS for data, command, and control purposes. In addition, the order of the character set as 
shown establishes the MUMPS collating sequence used by the system's Expression Evaluator when establishing string 
relationships. 

For command and control purposes, MUMPS uses the 64-character graphic subset. The system also uses the control 
codes sl\own in brackets ( [ ] ). These codes may not be used as input data. The NUL, code 000, is used internally as 
a logical end-of-message and cannot be used. Characters shown in braces ( { } ) are part of the 1963 ASCII Character 
Set and may appear in the character set of some terminals. 

All characters may be used for data input and output except for these mentioned above. The system does not 
perform any character conversion. It is the programmer's responsibility to perform all upper/lower-case letter 
conversions or mappings which are required for the particular application. 

CHARACTER SET 

Octal Code Decimal Code Character Octal Code Decimal Code Character 

000 000 NUL [025 021 NAK(CTRL U)*] 
001 001 SOH (Backspace)t 026 022 SYN 
002 002 STX (Forward space )t 027 023 ETB 
003 003 ETX (CTRL C)*(Write tape mark)t 030 024 CAN 
004 004 EOT (Write block)t 031 025 EM 
005 005 ENQ (Rewind)t 032 026 SUB 
006 006 ACK (Read block)t (033 027 ESC (ALT MODE)*] 
007 007 BELL (Read label)t 034 028 FS 
010 008 BS* (Write header label)t 035 029 GS 
011 009 HT (Write EOF label)t 036 030 RS 

[ 012 
010 

~] 
037 031 us 

013 011 040 032 Space 
014 012 FF 041 033 ! 
015 013 CR 042 034 
016 014 so 043 035 # 

[ 017 015 SI(CTRL O)*] 044 036 $ 
020 016 DLE 045 037 % 
021 017 DCl 046 038 & 
022 018 DC2 047 039 
023 019 DC3 050 040 ( 
024 020 DC4 051 041 ) 

*Asterisk denotes the control function for MUMPS terminals, if different from specified or other use. 

t Dagger denotes the control function for magtape devices. 

B-1 

I 



CHARACTER SET (Cont) 

Octal Code Decimal Code Character Octal Code Decimal Code. 

052 042 * 125 085 
053 043 + 126 086 
054 044 127 087 
055 045 130 088 
056 046 131 089 
057 047 I 132 090 
060 048 0 133 091 
061 049 1 134 092 
062 050 2 135 093 
063 051 3 136 094 
064 052 4 137 095 
065 053 5 140 096 
066 054 6 141 097 
067 055 7 142 098 
070 056 8 143 099 
071 057 9 144 100 
072 058 145 101 
073 059 146 102 
074 060 < 147 103 
075 061 150 104 
076 062 > 151 105 
077 063 ? 152 106 
100 064 @ 153 107 
101 065 A 154 108 
102 066 B 155 109 
103 067 c 156 110 
104 068 D 157 111 
105 069 E 160 112 
106 070 F 161 113 
107 071 G 162 114 
110 072 H 163 115 
111 073 I 164 116 
112 074 J 165 117 
113 075 K 166 118 
114 076 L 167 119 
115 077 M 170 120 
116 078 N 171 121 
117 079 0 172 122 
120 080 p 173 123 
121 081 Q 174 124 
122 082 R 175 125 
123 083 s 176 126 
124 084 T 177 127 

*Asterisk denotes the control function for MUMPS terminals, if different from specified or other use. 
tDagger denotes the control function for magtape devices. 

B-2 

Character 

u 
v 
w 
x 
y 

z 
[ 
\ 
l 

~ ~:J 
\ 

a 
b 
c 
d 
e 
f 
g 
h 

j 
k 
I 
m 
n 
0 

p 
q 

u 
v 
w 
x 
y 
z 
{ 

I 
I 

} } (ALT MODE)* 
- (ALT MODE)* 
DEL(RUBOUT)t 



APPENDIX C 
EXPLANATION OF MUMPS MESSAGES 

When execution of a MUMPS program is terminated by either an error, a CTRL C, or by pressing the BREAK key, 
the program executive outputs a short message to indicate the reason for termination. This message is followed by 
the number of the Step being executed and the program name unless the error occurred while in Direct Mode. The 
error message format is: 

? message> spnl....-..lpnam 

MUMPS messages are categorized as follows: 

1. MUMPS Programming Error Messages - result from errors associated with programming problems (either 
incorrect language syntax or semantic misunderstandings). 

2. Voluntary Program Termination Message - there is only one message of this type. 

3. Debugging Aid Message - indicates that a BREAK command has been encountered in the program. 

4. Operating System Error Messages - result from various troubles which are detected by the operating 
system and which are beyond the control of the MUMPS application programmer. 

MUMPS errors are considered terminal unless the user's program Sets the $E System Variable for application 
program control of error processing. The programmer may Set $E to a Step or Part number (S L....J$E=spn) to which 
control will go if an error occurs (except GARBO - GARB4 errors which are reported only on the console terminal, 
and do not terminate a running job). When $E is set to an spn and an error occurs, the system transfers controi'to 
the spn and resets $E to an index in the range 0 through-0.38 which indicates the type of error encountered (e.g., 0 
= INRPT, -0.01 = MXNUM - see below). The number of the Step that contains the error is entered in the $W 
System Variable. The system also cancels all currently active DO, FOR, and CALL commands. It is the user's 
responsibility to reset $E to an spn if he wishes to control further error processing; otherwise, error processing 
reverts to system control. 

If an error occurs and $E is not set by the programmer, the action taken by the system depends on the mode in 
which the user signed on at log-in. If the programming access code (PAC) was used, control is returned to Direct 
Mode after the error message is output. Otherwise, the job is aborted after typing the error and 'EXIT' messages and 
the terminal is automatically logged-out. 

Each of the messages is explained on the pages which follow: 

C-1 



C.1 MUMPS PROGRAMMING ERROR MESSAGES 

Message $E Index 

CMMND -0.15 

DIVER -0.19 

DKSER -0.04 

FRACT -0.08 

FUN CT -O.o7 

LBOV -0.14 

$MERR -0.36 

MINIM -0.03 

MINUS -0.12 

MODER -0.23 

MXNUM -0.01 

MXSTR -0.02 

Meaning 

Indicates illegal use of a command: 

a. Command is undefined in the language; 
b. An argument has been omitted where required. 

Indicates an attempt to perform division by zero. 

If not a system software error (C.4), this user software error indicates an 
attempt to: 

a. use VIEW command to access a block number larger than size of 
the referenced disk, or a nonexistent disk; or 

b. use the disk (e.g., creating global variables, issuing the FILE, 
LOAD, etc., commands) under a UCI that has no associated 
directories. 

Indicates that a fractional number was encountered when the process being 
executed was expecting a integer number. Also involved when a Step number 
has no fractional part. 

Indicates that the function is undefined in the language. 

Indicates an attempt to input or output a line greater than 132 characters. 

Indicates that an error occurred in $M processing. 

a. exponent overflow 
b. exponent underflow 
c. division by 0 
d. illegal trap instruction (system error) 

Indicates that a number has more than two digits following the decimal point. 

Indicates that a negative or zero number was encountered when a positive 
number was expected. For example, MUMPS causes a MINUS error if the user 
references a subscripted variable with a negative subscript. Only positive 
subscripts are allowed, except when using the $HIGH function 

a. 
b. 
c. 

An nve was encountered where an svl was expected or vice versa. 
Argument to $TEXT is not numeric. 
Argument to $VIEW is not numeric. 

Indicates that the value of a number has exceeded the integer bounds set by 
the MUMPS system. The maximum value for a number is ±21474836.47. 

Indicates that the string has exceeded maximum length allowed (132 
characters). 

C-2 



Message $E Index 

NAKED -0.29 

NOD EV -0.13 

NOPGM -0.28 

NOTSY -0.34 

NXMEM -0.05 

PGMOV -0.24 

PROT -0.06 

SBSCR -0.09 

SPNER -0.17 

STKO¥ -0.10 

STKUN -0.11 

SYMOV -0.16 

Meaning 

Indicates that the present user attempted to reference a global variable using 
"naked" syntax: 

a. prior to any full syn tax reference; or 

b. after another user KILLed the global variable. 

Indicates an attempt to ASSIGN a nonexistent device or the use of an illegal 
device number. 

Reference is made to a program name that does not exist in the program 
directory for this UCI and is not in the directory of Library (%) Programs. 

Indicates that the referenced device or function is not in the system (it may 
not have been linked at system generation). 

Non-Existent Memory was referenced in VIEW command or $VIEW function. 

Indicates that there is insufficient space available in the partition. Caused by: 

a. 'too many program steps in the program being created via the 
terminal or in the program being loaded; (LOAD, CALL and 
OVERLAY commands) 

b. too many local variables; 

c. expression or subscript nesting too deep. 

Indicates that an attempt was made to use either the VIEW Command or the 
$VIEW Function from a non-Library (%)Program or when not logged in 
under the System UCL Also indicates that the MODIFY command issued 
from Indirect Mode specified an spn smaller than the current spn. 

Indicates illegal subscript usage: 

subscript out of range; 
negative subscript. 

Indicates that an illegal or nonexistent Step or Part number was used. 

Indicates that the available stack space is used up. Generally indicates nesting 
is too deep in DO or CALL statements • 

Indicates execution of the Overlay command from Direct Mode (stack 
underflow). 

Symbol Table Overflow occurred on an attempt to create or change a local 
variable. 

C-3 



Message $E Index 

SYNTX -0.27 

UNDEF -0.21 

Meaning 

Indicates that the current Step being executed has an error in syntax. Syntax 
errors include illegal punctuation, illegal use of operators, illegal use of 
parentheses, as well as errors encountered in editing a Step. Syntax errors 
comprise a great majority of errors made in the MUMPS system and usually 
the user will be able to determine the exact cause of the error by merely 
looking at the Step concerned. 

Indicates a reference to an undefined local or global variable. 

C.2 VOLUNTARY PROGRAM TERMINATION 

Message $E Index 

INRPT 0 

Meaning 

Signifies interruption of program execution caused by typing CTRL C or 
pressing the BREAK key. 

C.3 DEBUGGING AID MESSAGE 

Message $E Index 

?nBREAK None 

Meaning 

Indicates that program control has reached a BREAK command at Step n. 
BREAK commands are used to interrupt execution of the program for 
debugging purposes. The GO command may be typed to resume operation. 

C.4 MUMPS OPERA TING SYSTEM ERROR MESSAGES 

Message 

GARBO 

GARB I 

GARB2 

GARB3 

GARB4 

DBDGD 

DKDER 

$E Index Meaning 

None 

None 

None 

None 

None 

-0.31 

-0.33 

Disk error while reading a data block. 

Disk error while writing a data block. 

Disk error while reading a bit map. 

Disk error while writing a bit map. 

Disk error, an attempt to deallocate a bit map or data block not yet allocated. 

NOTE 
The above errors are disk errors detected by the system's 
Garbage Collector routine. The message is output to the 
console terminal. GARB I and GARB3 result in suspension of 
all disk I/O until system restart. Notify system manager. 

Indicates a data base degradation. The system attempted to read a block that 
was not actually allocated. Notify system manager. 

Indicates that a disk I/O error occurred on an attempt to write a global data 
buffer. The error is not given until the write is actually attempted. 

C-4 



Message $E Index 

DKFUL -0.26 

DKHER -0.20 

DKSER -0.04 

DSKDG -0.18 

DTE RR -0.30 

1PERR -0.38 

MTERR -0.37 

PLDER -0.35 

SWAP -0.32 

SYSDG -0.25 

SYSER -0.22 

Meaning 

Indicates that there is no more room on the disk for global or program 
storage. Caused by SET and FILE commands. Notify system manager. 

Indicates disk hardware error. Notify system manager. 

In addition to conditions listed under C.l, this may indicate that disk block 
pointers in the global data base reference nonexistent or invalid disk blocks. 
Notify system manager. 

Indicates disk degradation. Attempt was made to allocate bit map for data 
storage. The system corrects the bit map subsequent to this error. Notify 
system manager. 

Indicates DECtape hardware or operator error. Common causes are: 

a. not set to ON LINE; 
b. not set to WRITE ENABLE; 
c. unit number not selected. 

Indicates a line printer hardware error. Common causes are: 

a. device off line 
b. out of paper 
c. yoke open 
d. power off. 

Indicates magtape hardware or operator error as determined by the current 
contents of the $A System Variable. The system generates this error only if 
the user SET the $E System Variable. 

The system cannot retrieve the program being LOADed, CALLed, or 
STARTed. The FILE command did not complete writing the program. The 
user must re-FILE the back-up copy of the program. 

Indicates 
a. that the previous swap-out overflowed the user partition stack. The 

error is not reported until the next swap-in. 

b. imminent system stack overflow, May be caused by faulty programming 
techniques, for example: 

1.10 FI=! :1:1000 D 2 
2.10 DI 

Indicates that the table in main memory which represents the bit maps on a 
physical disk unit (Disk Storage Allocation Table) does not correspond to the 
block allocation specified by the disk's bit maps. The Disk Block Tally Utility 
Program allows recovery from this error. Notify system manager. 

System stack underflow on swapout. Notify system manager. 

C-5 





APPENDIX D 
SYMBOL USAGE 

The following special symbols are used by MUMPS in addition to the logical operators described in Chapter 2. 

Symbol 

# 

? 

Definition 

Number sign is used as a format control character to initiate a Page Feed or a FORM FEED on an 
output device. 

Exclamation point is used as a format control character to initiate a Carriage RETURN/LINE 
FEED sequence on an output device. 

Question mark is multiply defined: 

a. as an output format control character for terminals, line printer and paper-tape punch, 
it is followed by an nve to indicate the number of spaces to tabulate in from the 
absolute left margin (e.g., ?5=5 spaces from the left margin); 

b. as an expression operator, it is followed by a Pattern Specification Code (psc). 

c. it is the first character printed when a BREAK command or error interrupts a 
program's execution. 

Comma is used as the term separator in an argument list. 

Space is multiply defined: 

a. A command followed immediately by two spaces indicates the command has no 
arguments; 

b. One space separates a command from its arguments, or the last argument of a 
preceding command from the next command on the line. 

D-1 



Symbol 

> 

$ 

% 

+-or 

tor A 

Definition 

Colon is multiply defined: 

a. a delimiter for field separation in the argument of FOR, MODIFY, and ASSIGN 
commands. 

b. used to indicate the presence of an optional expression appended to a command or the 
argument of a command (where allowed). 

c. used to indicate the presence of an optional bve appended to a command (:bve may 
not be appended to FOR, ELSE or IF commands). If the bve is true, the command is 
executed. If the bve is false, control is passed to the next command on the line or the 
next line (whichever is applicable). The "next command on the line" is identified by 
skipping to the second space following the bve. If a bve is appended to a command no 
argument of that command may contain a space (i.e., a string literal enclosed in 
quotes). 

Semicolon is used as a delimiter to indicate that the remainder of a line is a comment. 

Right caret is the prompting character used by MUMPS-11 when operating in Direct Mode to 
signal to the user that the system is ready to accept a command; that is, commands and functions 
may be entered for immediate execution, or program steps may be entered for program execution. 

Dollar sign is multiply utilized. 

a. precedes the first character of a System Variable. 
b. precedes the first character of a function name. 

Percent sign is used as the first character of a library program or library global name. 

Quotation marks are used to delimit literals. 

Back arrow or underscore is used to specify the indirection operation used for command argument 
replacement. 

Up-arrow or up caret precedes a global variable reference. 

D-2 



3 
·46 
575 

7 346 

APPENDIX E 
CONVERSION TABLES 

2x IN DECIMAL 
x 2' x 2' x 2· 

0.001 1.00069 33874 62581 0.01 1.00695 55500 56719 0.1 1.07177 34625 36293 
0.002 1.00138 72557 11335 0.02 1.01395 94797 90029 0.2 1.14869 83549 97035 
0.003 1.00208 16050 79633 0.03 1.02101 21257 07193 0.3 1.23114 44133 44916 
0.004 1.00277 64359 01078 0.04 1.02811 38266 56067 0.4 1.31950 79107 72894 
0.005 1.00347 17485 09503 0.05 1.03526 49238 41377 0.5 1.41421 35623 73095 
0.006 1.00416 75432 38973 0.06 1.04246 57608 41121 0.6 1.51571 65665 10398 
0.007 1.00486 38204 23785 0.07 1.04971 66836 23067 0.7 1.624 50 4 7927 12471 
0.008 1.00556 05803 98468 0.08 1.05701 80405 61380 0.8 1.74110 11265 92248 
0.009 1.00625 78234 97782 0.09 1.06437 01824 53360 0.9 1.86606 59830 73615 

10±" IN OCTAL 
10° n 10-0 10° n 10-0 

I 0 1.000 000 000 000 000 000 00 112 402 762 000 10 0.000 000 000 006 676 337 66 
12 I 0.063 146 314 631 463 146 31 I 351 035 564 000 11 0.000 000 000 000 537 657 77 

144 2 0.005 075 341 217 270 243 66 16 432 451 210 000 12 0.000 000 000 000 043 136 32 
I 750 3 0.000 406 111 564 570 651 77 221 411 634 520 000 13 0.000 000 000 000 003 4li 35 

23 420 4 0.000 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000 000 000 000 000 264 II 

303 240 5 0.000 002 476 132 610 706 64 34 327 724 461 500 000 15 0.000 000 000 000 000 022 01 
641 100 6 0.000 000 206 157 364 055 37 434 157 115 760 200 000 16 0.000 000 000 000 000 001 63 
113 200 7 0.000 000 015 327 745 152 75 5 432 127 413 542 400 000 17 0.000 000 000 000 000 000 14 
360 400 8 0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 18 0.000 000 000 000 000 000 01 
545 000 9 0.000 000 000 104 560 276 41 

n log10 2, n log2 10 IN DECIMAL 
n n log 1o 2 n log2 10 n n log10 2 n log 2 10 
l 0.30102 99957 3.32192 80949 6 1.80617 99740 19.93156 85693 
2 0.60205 99913 6.64385 61898 7 2.10720 99696 23.25349 66642 
3 0.90308 99870 9.96578 42847 8 2.40823 99653 26.57542 47591 
4 1.20411 99827 13.28771 23795 9 2.70926 99610 29.89735 ?.8540 
5 1.50514 99783 16.60964 04744 IO 3.0I029 99566 33.21928 09489 

ADDITION AND MULTIPLICATION TABLES 
Addition Multi plication 

Binary Scale 

o+O= 0 0 x 0 = 0 
O+I=I+O= I 0 x J=cJxO=O 

I+ I = IO I x I = I 

Octal Scale 

0 01 02 03 04 05 06 07 I 02 03 04 05 06 07 

02 03 04 05 06 07 IO 2 04 06 IO 12 I4 16 

2 03 04 05 06 07 IO II 3 06 11 14 I7 22 25 

3 04 05 06 07 10 11 12 4 IO I4 20 24 30 34 

4 05 06 07 10 II 12 I3 5 12 17 24 31 36 43 

5 06 07 10 II 12 13 14 6 14 22 30 36 44 52 

6 07 IO 11 12 13 14 15 7 16 25 34 43 52 61 

7 10 11 12 13 14 15 16 

MATHEMATICAL CONSTANTS IN OCTAL SCALE 
" -- 3.11037 5524211 e= 2.557150 5213051 i = 0.44742 147707 8 

;;--1 = 0.24276 3015561 e-1 = 0.27426 53066lo In i = - 0.43127 2336021 

,,-:; = 1.61337 611067, ''e= 1.51411 230704a log2.., = - .0.62573 0306451 

In"= 1.11206 4044351 log10 e = 0.33626 7542511 \12= l.32404 746320, 

log2" = l.51544 1632231 log2 e = l.34252 166245a In 2 = 0.54271 027760, 

\110 = 3.12305 4072671 log2 10 = 3.24464 7411361 In 10 = 2.23273 067355, 

E-1 



I 
2 
4 

1 
2 

2 
4 

n 
2 

2 
4 
8 

16 
32 
64 

128 
256 
512 
024 

2 048 
4 096 
8 192 

16 384 
32 768 
65 536 

131 072 
262 144 
524 288 
048 576 

2 097 152 
4 194 304 
8 388 608 

16 777 216 
33 554 432 
67 108 864 

134 217 728 
268 435 456 
536 870 912 

1 073 741 824 
2 147 483 648 
4 294 967 296 
8 589 934 592 

17 179 869 184 
34 359 738 368 
68 719 476 736 

137 438 953 472 
274 877 906 944 
549 755 813 888 

I 099 511 627 776 
2 199 023 255 552 
4 398 046 511 104 
8 796 093 022 208 

17 592 186 044 416 
35 184 372 088 832 
70 368 744 177 664 

140 737 488 355 328 
281 474 976 710 656 
562 949 953 421 312 
125 899 906 842 624 
251 799 813 685 248 
503 599 627 370 496 

9 007 199 254 740 992 
18 014 398 509 481 984 
36 028 797 018 963 968 
72 057 594 037 927 936 

144 115 188 075 855 872 
288 230 376 151 711 744 
576 460 752 303 423 488 
152 921 504 606 846 976 
305 843 009 213 693 952 

4 611 686 018 427 387 904 
9 223 372 036 854 775 808 

18 446 744 073 709 551 616 
36 893 488 147 419 103 232 
73 786 976 294 838 206 464 

147 573 952 589 676 412 928 
295 147 905 179 352 825 856 
590 295 810 358 705 651 712 
180 591 620 717 411 303 424 
361 183 241 434 822 606 848 
722 366 482 869 645 213 696 

POWERS OF TWO 

-n 
n 2 
0 
l 
2 
3 
4 
5 

1.0 
0.5 
0.25 
0.125 
0.062 
0.031 

5 
25 

6 0.015 625 
7 0.007 812 5 
8 0.003 906 25 

0 001 953 125 
0.000 976 562 5 

9 
10 
I 1 
12 
13 
14 

0.000 488 281 25 
0.000 244 140 625 
0.000 122 070 312 
0.000 061 035 156 

5 
25 

15 0.000 030 517 578 125 
16 0.000 015 258 789 062 5 
17 0.000 007 629 394 531 25 
18 0.000 003 814 697 265 625 
19 0.000 001 907 348 632 812 5 
20 0.000 000 953 674 316 406 25 
21 0.000 000 476 837 158 203 125 
22 0.000 000 238 418 579 101 562 5 
23 0.000 000 119 209 289 550 781 25 
24 0.000 000 059 604 644 775 390 625 
25 0.000 000 029 802 322 387 695 312 5 
26 0.000 000 014 901 161 193 847 656 25 
27 0.000 000 007 450 580 596 923 828 125 
28 0.000 000 003 725 290 298 461 914 062 5 
2~ 0.000 000 001 862 645 149 230 957 031 25 
30 0.000 000 000 931 322 574 615 478 515 625 
31 0.000 000 000 465 661 287 307 739 257 812 5 
32 0.000 000 000 232 830 643 653 869 628 906 25 
33 pooo ooo ooo 116 415 321 826 934 814 453 125 
34 0.000 000 000 058 207 660 913 467 407 226 562 5 
35 0000 000 000 029 103 830 456 733 703 613 281 25 
36 0000 000 000 014 551 915 228 366 851 806 640 625 
37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 
40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 
42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 
43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 
44 0.000 000 000 000 056 843 418 860 808 014 869 689 94~ 406 25 
45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 
47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 
48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 
50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 
51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 
52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 
53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25 
54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625 
55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 5u7 812 5 
56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25 
57 0.000 000 000 000 000 006 938 893 903 907 228 377 ,647 697 925 567 626 953 125 
58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5 
59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25 
60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625 
61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5 
62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25 
63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125 
64 0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 640 043 497 085 571 289 062 5 
65 0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25 
66 0.000 000 000 000 000 000 013 552 527 156 068 805 425 093 160 010 874 271 392 822 265 625 
67 0.000 000 000 000 000 000 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812 5 
68 0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 290 002 718 567 848 205 566 406 25 
69 0.000 000 000 000 000 000 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125 
70 0.000 000 000 000 000 000 QOO 847 032 947 254 300 339 068 322 500 679 641 962 051 391 601 562 5 
71 0.000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 25 
72 0.000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 625 169 910 490 512 847 900 390 62! 

E-2 



0000 
to 

0777 
(Octal) 

0000 
to 

0511 
(Decimal) 

Octal Decimal 
10000- 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

1000 I to 
1777 

(Octal) 1 

0512 
to 

1023 
(Decimal) 

OCTAL-DECIMAL CONVERSION 
OCTAL-DECIMAL INTEGER CONVERSION TABLE 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

0000 0000 0001 0002 0003 0004 0005 0006 0007 0400 0256 0257 0258 0259 0260 0261 0262 0283 
0010 0008 0009 0010 0011 0012 0013 0014 0015 0410 0264 0265 0266 0267 0268 0269 0270 0271 
0020 0016 0017 0018 0019 0020 0021 0022 0023 0420 0272 0273 0274 0275 0276 0277 0278 0279 
0030 0024 0025 0026 0027 0028 0029 0030 0031 0430 0280 0281 0282 0283 0284 0285 0286 0287 
0040 0032 0033 0034 0035 0036 0037 0038 0039 0440 0288 0289 0290 0291 0292 0293 0294 0295 
0050 0040 0041 0042 0043 0044 0045 0046 0047 0450 0296 0297 0298 0299 0300 0301 0302 0303 
0060 0048 0049 0050 0051 0052 0053 0054 0055 0460 0304 0305 0306 0307 0308 0309 0310 0311 
0070 0056 0057 0058 0059 0060 0061 0062 0063 0470 0312 0313 0314 0315 0316 0317 0318 0319 

0100 0064 0065 0066 0067 0068 0069 0070 0071 0500 0320 0321 0322 0323 0324 0325 0326 0327 
0110 0072 0073 0074 0075 0076 0077 0078 0079 0510 0328 0329 03:10 0331 0332 0333 0334 0335 
0120 0080 0081 0082 0083 0084 0085 0086 0087 05~0 0336 0337 0338 0339 0340 0341 0342 0343 
0130 0088 0089 0090 0091 0092 0093 0094 0095 0530 0344 0345 0346 0347 0348 0349 0350 0351 
0140 0096 0097 0098 0099 0100 0101 0102 OIOJ 0540 0352 oj53 0354 0355 03'55 0357 0358 0359 
0150 0104 0105 0106 0107 0108 0109 0110 Olli 0550 0360 0361 0362 0363 0364 0365 0366 0367 
0160 0112 0113 0114 0115 0116 0117 0118 0119 0560 0368 0369 0370 0371 0372 0373 0374 0375 
0170 0120 0121 0122 0123 0124 0125 0126 0127 0570 0376 0377 0378 0379 0380 0381 0382 0383 

0200 0128 0129 0130 0131 0132 0133 0134 0135 0600 0384 0385 0386 0387 0388 0389 0390 0391 
0210 0136 0137 0138 0139 0140 0141 0142 0143 0610 0392 0393 0394 0395 0396 0397 0398 0399 
0220 0144 0145 0146 0147 0148 0149 0150 0151 0620 0400 0401 0402 0403 0404 0405 0406 Q407 
0230 0152 0153 0154 0155 0156 0157 0158 01~9 0630 0408 0409 0410 0411 0412 0413 0414 0415 
0240 0160 0161 0162 0163 0164 0165 0166 0167 0640 0416 0417 0418 0419 0420 0421 0422 0423 
0250 0168 0169 0170 0171 0172 0173 0174 0175 0650 0424 0425 0426 0427 0428 0429 0430 0431 
0260 0176 0177 0178 0179 0180 0181 0182 0183 
0270 0184 0185 0186 0187 0188 0189 0190 0191 

0660 0432 0433 0434 0435 0.436 0437 0438 0439 
0610 0440 0441 0442 0443 0444 0445 0446 0447 

0300 0192 0193 0194 0195 0196 0197 0198 0199 
0310 0200 0201 0202 0203 0204 0205 0206 0207 
0320 0208 0209 0210 0211 0212 0213 0214 0215 
0330 0216 0217 0218 0219 0220 0221 0222 0223 
0340 0224 0225 0226 0227 0228 0229 0230 0231 
0350 0232 0233 0234 0235 0236 0237 0238 0239 
0360 0240 0241 0242 0243 0244 0245 0246 0247 
0370 0248 0249 0250 0251 0252 0253 0254 0255 

0700 0448 0449 0450 0451 0452 0453 0454 0455 
0710 0456 0457 0458 0459 0460 0461 0462 0463 
0720 0464 0465 0466 0467 0468 .0469 0470 0471 
0730 0472 0473 0474 0475 0476 0477 0478 0479 
0740 0480 0481 0482 0483 0484 0485 0486 0487 
0750 0488 0489 0490 0491 0492 0493 0494 0495 
0760 0496 0497 0498 0499 0500 0501,0502 0503 
0770 0504 0505 0506 0507 0508 0509 0510 0511 

0 I 2 3 4 5 6 7 0 I 2 3 4 5 6 7 

1000 0512 0513 0514 0515 0516 0517 0518 0519 
1010 0520 0521 0522 0523 0524 0525 0526 0527 
1020 0528 0529 0530 0531 0532 0533 0534 0535 
1030 0536 0537 0538 0539 0540 0541 (1542 0543 
1040 0544 0545 0546 0547 0548 0549 0550 0551 
1050 0552 0553 0554 0555 0556 0557 0558 0559 
1060 0560 0561 0562 0563 0564 0565 0566 0567 
1070 0568 0569 0570 0571 0572 0573 0574 0575 

1400 0768 0769 0'170 0771 0772 0773 0774 0775 
1410 0776 0777 0778 0719 0780 0781 0782 0783 
1420 07!14 0785 0786 0787 0788 0789 0790 0791 
1430 0792 0793 0794 0795 0796 0797 0798 0799 
1440 0800 0801 0802 0803 0804 0805 0808 0807 

1450 0808 080!1 0810 0811 0812 0813 0814 0815 
1460 0816 0817 0818 0819 0820 0821 0822 0823 
1470 0824 0825 0826 0827 0828 0829 0830 0831 

1100 0576 0577 0578 0579 0580 0581 0582 0583 
1110 0584 OS85 0586 0587 0588 0589 0590 0591 
1120 0592 0593 0594 0595 0596 0597 0598 0599 
1130 0600 0601 0602 0603 0604 0605 0606 0607 
1140 0608 0609 0610 0611 0612 0813 0614 0615 
1150 0616 0617 0618 0619 0620 0621 0622 0623 
1160 0624 0625 0626 0827 0628 0629 0630 0631 
1170 0632 0633 0634 0635 0636 0637 0638 . 0639 

1500 0832 0833 0834 0835 0836 0837 0838 0839 
1510 0840 0841 0842 0843 0844 0845 0846 0847 
1520 0848 0849 0850 0851 0852 0853 0854 0855 
1530 0856 0857 0858 0859 0860 0861 0852 0863 
1540 0864 0865 0866 0867 0868 0869 0870 0871 
1550 0872 0873 0874 0875 0876 0877 0878 0879 
1560 0880 0881 0882 0883 0884 0885 0886 0887 
1570 0888 0889 0890 0891 0892 0893 089" 0895 

1200 0640 0641 0642 0643 0644 0645 0646 0647 
1210 0648 0649 0650 0651 0652 0653 0654 0655 
1220 0656 0657 0658 0659 0660 0661 0662 0663 
1230 0664 0665 0666 0667 0668 0669 0670 0671 
1240 0672 0673 0674 0675 0676 0677 0678 0679 
1250 0680 0681 0682 0683 0684 0685 0686 0687 
1260 0688 0689 0690 0691 0692 0693 0694 0695 
1270 0696 0697 0698 0699 0700 0701 0702 0703 

1600 0896 0897 0898 0899 0900 0901 0902 0903 
1610 0904 0905 0906 0907 0908 0909 0910 0911 
1620 0912 0913 0914 0915 0916 0917 0918 0919 
1630 0920 0921 0922 0923 0924 0925 0926 0927 
1640 0928 0929 0930 0931 0932 0933 0934 0935 
1650 0936 0937 0938 0939 0940 0941 0942 0943 
1660 0944 0945 0946 0947 0948 0949 0950 0951 
1670 0952 0953 0954 0955 0956 0957 0958 0959 

1300 0704 0705 0706 0707 0708 0709 0710 0711 
1310 0712 071! 0714 0715 0716 0717 0718 0719 
1320 0720 0721 0722 0723 0724 0725 0726 0727 
1330 0728 0729 0730 0731 0732 0733 0734 0735 
1340 0736 0737. 0738 0739 0740 0741 0742 0743 
1350 0744 0745 0746 0747 0748 0749 0750 0751 
1360 0752 0753 0754 0755 0756 0757 0758 0759 
1370 0760 0761 0762 0763 0764 0765 0766 0767 

1700 0960 0961 0962 0963 0964 0965 0966 0967 
1710 0968 0969 0970 0971 0972 0973 0974 0975 
1720 0976 0977 0978 0979 0980 0981 0982 0983 
1730 0984 0985 0986 0987 0988 0989 0990 0991 
1740 0992 0993 0994 0995 0996 0997 0998 0999 
1750 1000 1001 1002 1003 1004 1005 1006 1007 
1760 1008 1009 1010 1011 1012 1013 1014 1015 
1770 1016 1017 1018 1019 1020 IOZI lOZZ 1023 

E-3 



0 

2000 1024 
2010 1032 
2020 1040 
2030 "1048 
2040 1056 
2050 1064 
2060 1072 
2070 1080 

2100 1088 
2110 1096 
2120 1104 
2130 1112 
2140 1120 
2150 1128 
2160 1136 
2170 1144 

2200 1152 
2210 1160 
2220 1168 
2231) 1176 
2240 1184 
2250 1192 
2260 1200 
2270 1208 

2300 1216 
~310 1224 
2320 1232 
2330 1240 
2340 1248 
2350 1256 
2360 1264 
2370 1272 

0 

3000 1536 
3010 1544 
3020 1552 
3030 1560 
3040 1568 
3050 1576 
3060 1584 
3070 1592 

3100 1600 
3110 1608 
3120 1616 
3130 1624 
3140 1632 
3150 1640 
3160 1648 
3170 1656 

3·200 1664 
3210 1672 
3220 1680 
3230 1688 
3240 1696 
3250 1704 
3260 1712 
3270 1720 

3300 1728 
3310 17.36 
3320 1744 
3330 1752 
3340 1760 
3350 1768 
3360 1776 
3370 1784 

OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued) 

1 2 3 4 5 6 7 0 I 

1025 1026 1027 1028 1029 1030 1031 2400 1280 1,281 
1033 1034 1035 1036 1037 1038 1039 2410 1288 1289 
1041 1042 1043 1044 1045 1046 1047 2420 1296 1297 
1049 1050 1051 1052 1053 1054 1055 2430 1304 1305 
1057 1058 1059 1060 1061 1062 1063 2440 1312 1313 
1065 1066 1067 1068 1069 1070 1071 2450 1320 1321 
1073 1074 1075 1076 1077 1078 1079 2460 1328 1329 
1081 1082 1083 1084 1085 1086 1087 2470 1336 1337 

1089 1090 1091 1092 1093 1094 1095 2500 1344 1345 
1097 1098 1099 1100 1101 1102 1103 2510 1352 1353 
1105 1106 1107 1108 1109 1110 1111 2520 1360 1361 
1113 1114 1115 1116 1117 1118 1119 2530 1368 1369 
1121 1122 1!23 1124 1125 1126 1127 2540 1376 1377 
1129 1130 1131 1132 1133 1134 1135 2550 1384 1385 
1137 1138 1139 1140 1141 1142 1143 2560 1392 1393 
1145 114G 1147 1148 1149 1150 1151 2570 1400 1401 

1153 1154 1155 1156 1157 1158 1159 2600 1408 1409 
1161 1162 1163 1164 1165 1166 1167 2610 1416 1417 
1169 1170 1171 1172 1173 1174 1175 2620 1424 1425 
1177 1178 1179 1180 1181 1182 1183 2630 1432 1433 
1185 1186 1187 1188 1189 1190 1191 2640 1440 1441 
1193 1194 1195 1196 1197 1198 1199 2650 1448 1449 
1201 1202 1203 1204 1205 1206 1207 2660 1456 1457 
1209 1210 1211 1212 1213 1214 1215 2670 1464 1465 

1217 1218 1219 1220 1221 1222 1223 2700 1472 1473 
1225 1226 1227 1228 1229 1230 1231 2710 1480 1481 
1233 1234 1235 1236 1237 1238 1239 2720 1488 1489 
1241 1242 1243 1244 1245 1246 1247 2730 1496 1497 
1249 1250 1251 1252 1253 1254 1255 2740 1504 1505 
1257 1258 1259 1260 1261 1262 1263 2750 1512 1513 
1265 1266 1267 1268 1269 1270 1271 2760 1520 1521 
1273 1274 1275 1276 1277 1278 1279 2770 1528 1529 

l 2 3 4 5 6 7 0 1 

1537 1538 1539 t540 1541 1542 1543 3400 1792 1793 
1545 1546 1547 1548 1549 1550 1551 3410 1800 1801 
1553 1554 1555 1556 1557 1558 1559 3420 1808 1809 
1561 1562 1563 1564 1565 1566 1567 3430 1816 1817 
1569 1570 1571 1572 1573 1574 1575 3440 1824 1825 
1577 1578 1579 1580 1581 1582 1583 3450 1832 1833 
1585 1586 1587 1588 1589 1590 1591 3460 1840 1841 
1593 1594 1595 1596 1597 1598 1599 3470 1848 1849 

1601 1602 1603 1604 1605 1606 1607 3500 1856 1857 
1609 1610 1611 1612 1613 1614 1615 3510 1864 1865 
1617 1618 1619 1620 1621 1622 1623 3520 1872 1873 
1625 1626 1627 1628 1629 1630 1631 3530 1880 1881 
1633 1634 1635 1636 1637 1638 1639 3540 1888 1889 
1641 1642 1643 1644 1645 1646 1647 3550 1896 1897 
1649 1650 1651 1652 1653 16J4 1655 3560 1904 1905 
1657 1658 1659 1660 1661 1662 1663 3570 1912 1913 

1665 1666 1667 1668 1669 1670 1671 3600 1920 1921 
1673 1674 1675 1676 1677 1678 1679 3610 1928 1929 
1681 1682 1683 1684 1685 1686 1687 3620 1936 1937 
1689 1690 1691 1692 1693 1694 1695 3630 1944 '1945 
1697 1698 1699 1700 1701 1702 1703 3640 i952 1953 
1705 1706 1707 1708 1709 1710 1711 3650 1960 1961 
1713 i714 1715 1716 1717 1718 1719 3660 1968 1969 
1721 1722 1723 1724 1725 1726 1727 3670 1976 1977 

1729 1730 1731 1732 1733 1734 1735 3700 1984 1985 
1737 1738 1739 1740 1741 1742 1743 3710 1992 1993 
1745 1746 1747 1748 1749 1750 1751 3720 2000 2001 
1753 1754 1755 1756 1757 1758 1759 3730 2008 2009 
1761 1762 1763 1764 1765 1766 1767 3740 2016 2017 
1769 1770 1771 1772 1773 1774 1775 3"50 2024 2025 
1777 1778 1779 1780 1781 1782 1783 3760- 2032 2033 
1785 1786 1787 1788 1789 1790 1791 3770 2040 2041 

E4 

2 3 4 

1282 1283 1284 
1290 1291 1292 
1298 1299 1300 
1306 1307 1308 
1314 1315 1316 
1322 1323 1324 
1330 1331 1332 
1338 1339 1340 

1346 1347 1348 
1354 1355 1356 
1362 1363 1364 
1370 1371 1372 
1378 1379 1380 
1386 1387 1388 
1394 1395 1396 
1402 1403 1404 

1410 1411 1412 
1418 1419 1420 
1426 1427 1428 
1434 1435 1436 
1442 1443 1444 
1450 1451 1452 
1458 1459 1460 
1466 1467 1468 

1474 1475 1476 
1482 1483 1484 
1490 1491 1492 
1498 1499 1500 
1506 1507 1508 
1514 1515 1516 
1522 1523 1524 
1530 1531 1532 

2 3 4 

1794 1795 1796 
1802 1803 1804 
1810 1811 1812 
1818 1819 1820 
1826 1827 1828 
1834 1835 1836 
1842 1843 1844 
1850 1851 1852 

1858 1859 1860 
1866 1867 1868 
1874 1875 1876 
1882 1883 1884 
1890 1891 1892 
1898 1899 1900 
1906 1907 1908 
1914 1915 1916 

1922 1923 1924 
1930 1931 1932 
1938 1939 1940 
1946 1947 l948 
1954 19:,5 1956 
1962 1963 1964 
1970 1971 1972 
1978 1979 1980 

1986 1987 1988 
1994 199S 1996 
2002 2003 2004 
2010 2011 2012 
2018 2019 2020 
2026 2027 2028 
2034 2035 2036 
2042 2043 2044 

5 6 

1285 1286 
1293 1294 
1301 1302 
1309 1310 
1317 1318 
1325 1326 
1333 1334 
1341 1342 

1349 1350 
1357 1358 
1365 1366 
1373 1374 
1381 1382 
1389 1390 
1397 1398 
1405 1406 

1413. 1414 
1421 1422 
1429 1430 
1437 1438 
1445 1446 
1453 1454 
1461 1462 
1469 1470 

1477 1478 
1485 1486 
1493 1494 
1501 1502 
1509 1510 
1517 1518 
1525 1526 
1533 1534 

5 6 

1797 1798 
1805 1806 
1813 1814 
1821 1822 
1829 1830 
1837 1838 
1845 1846 
1853 1854 

1861 1862 
1869 1870 
1877 1878 
1885 1886 
1893 1894 
1901 1902 
1909 1910 
1917 1918 

1925 1926 
1933 1934 
1941 1942 
1949 1950 
1957 1958 
1965 1966 
1973 1974 
1981 1982 

1989 1990 
1997 1998 
2005 2006 
2013 2014 
2021 2022 
2029 2030 
2037 2038 
2045 2046 

7 

1287 
1295 
1303 
1311 
1319 
1327 
1335 
1343 

1351 
1359 
1367 
1375 
1383 
1391 
1399 
1407 

1415 
1423 
1431 
1439 
1447 
1455 
1463 
1471 

1479 
1487 
1495 
1503 
1511 
1519 
1527 
1535 

7 

1799 
1807 
1815 
1823 
1831 
1839 
1847 
1855 

1863 
1871 
1879 
1887 
1895 
1903 
1911 
1919 

1927 
1935 
1943 
1951 
1959 
1967 
1975 
1983 

1991 
1999 
2007 
2015 
2023 
2031 
2039 
2047 

2000 1024 
to to 

2777 1535 
(Octal) (Decima 

Octal Decimal 
10000. 4096 
20000. 8192 
30000 . 12288 
40000 . 16384 
50000 . 20480 
60000 . 24576 
70000 . 28672 

3000 
to 

3777 
(Octal) 

1536 
to 

2047 
(Decim; 



OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued) 

4000 
to 

4777 
(Octal) 

2048 
to 

2559 
(Decimal) 

Octai Decimal 
10000. 4096 
20000. 8192 
30000. 12288 
40000 . 16384 
50000 . 20480 
60000 - 24576 
70000. 28672 

5000 
to 

5777 
(Octal) 

2560 
to 

3071 
(Decimal) 

4000 
4010 
4020 
4030 
4040 
40~0 

4060 
4070 

4100 
4110 
4120 
4130 
4140 
4150 
4160 
4170 

4200 
4210 
4220 
4230 
4240 
4250 
4260 
4270 

4300 
4310 
4320 
4330 
4340 
4350 
4360 
4370 

5000 
5010 
5020 
5030 
5040 
5050 
5060 
5070 

5100 
5110 
5120 
5130 
5140 
5150 
5160 
5170 

5200 
5210 
5220 
5230 
5240 
5250 
5260 
5270 

5300 
5310 
5320 
5330 
5340 
5350 
5360 
5370 

0 

2048 
2056 
2064 
2072 
2080 
2088 
2Q96 
2104 

2112 
2120 
2128 
2136 
2144 
2152 
2160 
2168 

2176 
2184 
2192 
2200 
2208 
2216 
2224 
2232 

2240 
2248 
2256 
2254 
2272 
2280 
2288 
2296 

0 

2560 
2568 
2576 
2584 
2592 
2600 
2608 
2616 

2624 
2632 
2640 
2648 
2656 
2664 
2672 
2680 

2688 
2696 
2704 
2712 
2720 
2728 
2736 
2744 

2752 
2760 
2768 
2776 
2784 
2792 
2800 
2808 

I 2 3 

2049 2050 2051 
2057 2058 2059 
2065 2066 2067 
2073 2074 207~ 

2081 2082 2083 
2089 2090 2091 
2097 2098 2099 
2105 2106 2107 

2113 2114 2115 
2121 2122 2123 
2129 2130 2131 
2137 2138 2139 
2145 2146 2147 
2153 2154 2155 
2161 2162 2163 
2169 2170 2171 

2177 2178 2179 
2185 2186 2187 
2193 2194 2195 
2201 2202 2203 
2209 2210 2211 
2217 2218 22i9 
2225 2226 2227 
2233 2234 2235 

2241 2242 2243 
2249 2250 2251 
2257 2258 2259 
2265 2266 2267 
2273 2274 2275 
2281 2282 2283 
2289 2290 2291 
2297 2298 2299 

1 2 3 

2561 2562 2563 
2569 2570 2571 
2577 2578 2579 
2585 2586 2587 
2593 2594 2595 
2601 2602 2603 
2609 2610 2611 
2617 2618 2619 

2625 2626 2627 
2633 2634 2635 
2641 2642 2643 
2649 2650 2651 
2657 2658 2659 
2665 2666 2667 
2673 2674 2675 
2681 2682 2683 

2689 2690 2691 
2697 2698 2699 
2705 2706 2707 
2713 2714 2715 
2721 2722 2723 
2729 2730 2731 
2737 2738 2739 
2745 2746 2747 

2753 2754 2755 
2761 2762 2763 
2769 2770 2771 
2777 2778 2779 
2785 2786 2787 
2793 2794 2795 
2801 2802 2803 
2809 2810 2811 

4 5 6 7 

2052 2053 2054 2055 
2060 2061 2062 2063 
2068 2069 2070 2071 
2076 2077 2078 2079 
2084 2085 2086 2087 
2092 2093 2094 2095 
2100 2101 2102 2103 
2108 2109 2110 2111 

2116 2117 2118 2119 
2124 2125 2126 2127 
2132 2133 2134 2135 
2140 2141 2142 2143 
2148 2149 2150 2151 
2156 2157 2158 2159 
2164 2165 2166 216'7 
2172 2173 2174 2175 

2180 2181 2182 2183 
2188 2189 2190 2191 
2196 2197 2198 2199 
2204 2205 2206 2207 
2212 2213 2214 2215 
2220 2221 2222 2223 
2228 2229 2230 2231 
2236 2237 2238 2239 

2244 2245 2246 2247 
2252 2253 2254 2255 
2260 2261 2262 2263 
2268 2269 2270 2271 
2276 2277 2278 2279 
2284 2285. 2286 2287 
2292 2293 2294 2295 
2300 2301 2302 2303 

4 5 6 7 

2564 2565 2566 2567 
2572 2573 2574 2575 
2580 2581 <:5'82 2583 
2588 258\1 2590 2591 
2596 2597 2598 2599 
2504 2605 2606 2607 
2612 2613 2614 2615 
2620 2€21 2622 2623 

2628 2629 2630 2631 
2636 2637 2638 2639 
2644 2645 2646 2647 
2652 2653 2654 2655 
2660 2661 2662 2663 
2668 2669 2670 2671 
2676 2677 2678 2679 
2684 2685 2686 2687 

2692 2693 2694 2695 
2700 2701 2702 2703 
2708 2709 2710 2711 
2716 2717 2718 2719 
2724 2725 2726 2727 
2732 2733 2734 2735 
2740 2741 2742 2743 
2748 2749 2750 2751 

2756 2757 2758 2759 
2764 2765 2766 2767 
2772 2773 2774 2775 
2780 2781 2782 2783 
2788 2789 2790 2791 
2796 2797 2798 2799 
2804 2805 2806 2807 
2812 2813 2814 2815 

E-5 

0 I 2 3 4 5 

4400 2304 2305 2306 2307 2308 2309 
4410 2312 2313 2314 2315 2316 2317 
4420 2320 2321 2322 2323 2324 2325 
4430 2328 2329 2330 2331 2332 2333 
4440 2336 2337 2338 2339 2340 2341 
4450 2344 2345 2346 2347 2348 2349 
4460 2352 2353 2354 2355 2356 2357 
4470 2360 2361 2362 2363 2364 2365 

4500 2368 2369 2370 2371 2372 2373 
4510 2376 2377 2378 2379 2380 2381 
4520 2384 2385 2386 2387 2388 2389 
4530 2392 2393 2394 2395 2396 2397 
4540 2400 2401 2402 2403 2404 2405 
4550 2408 2409 2410 2411 2412 2413 
4560 2416 2417 2418 2419 2420 2421 
4570 2424 2425 2426 2427 2428 2429 

4600 2432 2433 2434 2435 2436 2437 
4610 2440 2441 • 2442 2443 2444- 2445 
4620 2448 2449 2450 2451 2452 2453 
4630 2456 2457 2458 2459 2460 2461 
4640 2464 2465 2466 2467 2468 2469 
4650 2472 2473 2474 247.5 2476 2477 
4660 2480 2481 2482 2483 2484 2485 
4670 2488 2489 2490 2491 2492 2493 

4700 2496 2497 2498 2499 2500 2501 
4710 2504 2505 2506 2507 2508 2509 
4720 2512 2513 2514 2515 2516 2517 
4730 2520 2521 2522 2523 2524 2525 
4740 2528 2529 2530 2531 2532 2533 
4750 2536 2537 2538 2539 2540 2541 
4760 2~44 2545 2546 2547 2548 2549 
4770 2552 2553 2554 2555 2556 2557 

0 I 2 3 4 :, 

5400 2816 2817 2818 2819 2820 28?. I 
5410 2824 2825 2826 2827 2828 2829 
5420 2832 2333 2834 2835 2836 2837 
5430 2840 2841 2842 2843 2844 2845 
5440 2848 2849 2850 2851 2852 2853 
5450 2856 2857 2858 2859 2860 2861 
5460 2864 2865 2866 2867 2868 2869 
5470 2872 2873 2874 2875 2876 2877 

5500 2880 2881 2882 2883 2884 2885 
5510 2888 2889 2890 2891 2892 2893 
5520 2896 2897 2898 2899 2900 2901 
5530 2904 2905 2906 2907 2908 2909 
5540 2912 2913 2914 2915 2916 2917 
5550 2920 2921 2922 2923 2924 2925 
5560 2928 2929 2930 2931 2932 2933 
5570 2936 2937 2938 2939 2940 2941 

5600 2944 2945 2945 2947 2948 2949 
5610 2952 2953 2954 2955 2956 2957 
5620 2960 2961 2962 2963 2964 2965 
5630 2968 29G9 2970 2971 2972 2973 
5640 2976 2977 2978 2979 2980 2981 
5650 2934 2985 2986 2987 2938 2989 
5660 2992 2993 2994 2995 2996 2997 
5670 3000 3001 3002 3003 3004 3005 

~700 3008 3009 3010 3011 3012 3013 
5710 3016 3017 3018 3019 3020 3021 
5720 3024 3025 3026 3027 3028 3029 
5730 3032 3033 3034 3035 3036 3037 
5740 3040 3041 3042 3043 3044 3045 
5750 3048 3049 3050 3051 3052 3053 
5760 3056 3057 3058 3059 3060 3061 
5770 3064 3065 3066 3067 3068 3069 

6 7 

2310 2311 
2318 2319 
2326 2327 
2334 2335 
2342 2343 
2350 2351 
2358 2359 
2366 2367 

2374 2375 
2382 2383 
2390 2391 
2398 2399 
2406 2407 
2414 2415 
2422 2423 
24 30 2431 

2438 2439 
2446 2447 
2454 2455 
2462 24~3 
2470 2471 
2478 2479 
2486 2487 
2494 2495 

2502 2503 
2510 2511 
2518 2519 
2526 2527 
2534 2535 
2542 2543 
2550 2551 
2558 2559 

6 7 

2822 2823 
2830 2831 
2838 2839 
2846 ;:947 
2854 285S 
2862 2863 
2870 2e11 
2878 287\l 

2886 2887 
2894 289~ 

2902 2903 
2910 2911 
2918 2919 
2926 2927 
2934 2935 
2942 2943 

2950 2951 
2958 2959 
2966 2967 
2974 2975 
2982 2983 
2990 2991 
2998 2999 
3006 3007 

3014 3015 
3022 3023 
3030 3031 
3038 3039 
3046 3047 
3054 3055 
3062 3063 
3070 3071 



6000 
6010 
6020 
6030 
6040 
6050. 
6060 
6070 

6100 
6110 
6120 
6130 
6140 
6150 
6160 
6170 

6200 
6210 
6220 
6230 
6240 
6250 
6260 
6270 

6300 
6310 
6320 
6330 
6340 
6350 
6360 
6370 

7000 
7010 
7020 
7030 
7040 
7050 
7060 
7070 

7100 
7110 
7120 
7130 
7140 
7150 
7160 
7170 

'1200 
7210 
7220 
7230 
7240 
7250 
7260 
7270 

7300 
7310 
'7320 
7330 
7340 
735:> 
'7380 
'370 

OCTAL-DECIMAL INTEGER CONVERSION TABLE (continued) 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

3072 3073 3074 3075 3076 3077 3078 3079 6400 3328 3329 3330 3331 3332 3333 3334 3335 
3080 3081 3082 3083 3084 3085 3086 3087 6410 3336 3337 3338 3339 3340 3341 3342 3343 
3088 3089 3090 3091 3092 3093 3094 3095 6420 3344 3345 3346 3347 3348 3349 3350 3351 
3096 3097 3098 3099 3100 3101 3102 3103 6430 3352 3353 3354 3355 3356 3357 3358 3359 
3104 3105 3106 3107 3108 3109 3110 3111 6440 3360 3361 3362 3363 3364 3365 3366 3367 
3112 3113 3114 3115 3116 3117 3118 3119 6450 3368 3369 3370 3371 3372 3373 3374 3375 
3120 3121 3122 3123 3124 3125 3126 3127 6460 3376 3377 3378 3379 3380 3381 3382 3383 
3128 3129 3130 3131 3132 3133 3134 3135 6470 3384 3385 3386 3387 3388 3389 3390 3391 

3136 3137 3138 3139 3140 3141 3142 ll43 6500 3392 3393 3394 3395 3396 3397 3398 3399 
3144 3145 3146 3147 3148 3149 3150 3151 6510 3400 3401 3402 3403 3404 3405 3406 3407 
3152 3153 3154 3155 3156 3157 3158 3159 6520 3408 3409 3410 3411 3412 3413 3414 3415 
3160 3161 3162 3163 3164 3165 3166 3167 6530 3416 3417 3418 3419 3420 3421 3422 3423 
3168 3169 3170 :'1171 3172 3173 3174 3175 6540 3424 3425 3426 3427 3428 3429 3430 3431 
3176 3177 3178 3179 3180 3181 3182 3183 6550 3432 3433 3434 3435 3436 3437 3438 3439 
3184 3185 3186 3187 3188 3189 3190 3191 6560 3440 3441 3442 3443 3444 3445 3446 3447 
3192 3193 3194 3195 3196 3197 3198 3199 6570 3448 3449 3450 3451 3452 3453 3454 3455 

3200 3201 3202 3203 3204 3205 3206 3207 6600 3456 3457 3458 3459 3460 3461 3462 3463 
3208 3209 3210 3211 3212 3213 3214 3215 6610 3464 3465 3466 3467 3468 3469 3470 3471 
3216 3117 3218 3219 3220 '3221 3222 3223 6620 3472 3473 3474 3475 3476 3477 3478 3479 
3224 3225 3226 3227 3228 3229 3230. 3231 6630 3480 3481 3482 3483 3484 3485 3486 3487 
3232 3233 3234 3235 3236 3237 3238 3239 6640 3488 3489 3490 3491 3492 3493 3494 3495 
3240 3241 3242 3243 3244 3245 3246 3247 6650 3496 3497 3498 3499 3500 3501 3502 3503 
3248 3249 3250 3251 3252 3253 3254 3255 6660 3504 3505 3506 3507 3508 3509 3510 3511 
3256 3257 3258 3259 3260 3261 3262 3263 6670. 3512 3513 3514 3515 3516 3517 3518 3519 

3264 3265 3266 3267 3268 3269 3270 3271 6700 3520 3521 3522 3523 3524 3525 3526 352'7 
3272 3273 3274 3275 3276 3277 3278 3279 6710 3528 3529 3530 3531 3532: 3533 3i34 3535 
3280 3281 3282 3283 3284 3285 3286 3287 6720 3536 3537 3538 3539 3540 3541 3542 3543 
3288 3289 3290 3291 3292 3293 3294 3295 6730 3544 3545 3546 3547 3548 3549 3550 3551 
3296 3297 3298 3299 3300 3301 3302 3303 6740 3552 3553 3554 3555 3556 3557 3558 3559 
3304 3305 3306 3307 3308 3309 3310 3311 6750 3560 3561 3562 3563 3564 3565 3566 3567 
3312 3313 3314 3315 3316 3317 3318 3319 6760 3568 3569 3570 3571 3572 3573 3574 3575 
3320 3321 3322 3323 3324 3325 3326 3327 6770 3576 3577 3578 3579 3580 3581 3582 3583 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

3584 3585 3586 3587 3588 3589 3590 3591 
3592 3593 3594 3595 3596 3597 3598 3599 
3600 .3601 3602 :f603 3604 3605 3606 3607 
3608 3609 3610 3611 3612 3613 3614 3615 
3616 ~617 3618 3619 3620 3621 3622 3623 
3624 3625 3626 3627 3628 3629 3630 3631 
3632 3633 3634 3635 3636 3637 3638 3639 

7400 3840 3841 3842 3843 3844 3845 3846 3847 
7410 3848 3S49 3850 3851 3852 3853 3854 3855 
7420 3856 3857 3858 3859 3860 3861 3862 3863 
7430 3864 3865 3866 3867 3868 3869 3870 3871 
7440 3872 3873 3874 3875 . 3876 3877 3878 38'79 
7450 3880 3881 3882 3883 3884 3885 3886 3887 
7460 3888 3889 3890 3891 3892 3893 3894 3895 

3640 3641 3642 3643 3644 3645 3646 3647 7470 3896 3897 3898 3899 3900 3901 3902 3903 

3648 3649 3650 3651 3652 3653 3654 3655 7500 3904 3905 3906 3907 3908 3909 3910 3911 
3656 3657 3658 3659 3660 3661 3662 3663 7510 3912 3913 3914 3915 3916 3917 3918 3919 
3664 3665 3666 3667 3668 3669 3670 3671 7520 3920 3921 3922 3923 3924 3925 3926 3927 
3672 3673 3674 3675 3676 3677 3678 3679 7530 3928 3929 3930 3931 3932 3933 3934 3935 
3680 3681 3682 3683 3684 3685 3686 3687 7540 3936 3937 3938 3939 3940 3941 3942 3943 
3688 3689 3690 3691 3692 3693 3694 3695 7550 3944 3945 3946 3947 3948 3949 3950 3951 
3696 369'7 3698 3699 3700 3701 3702 3703 7560 3952 3953 3954 3955 3956 3957 3958 3959 
3704 3705 3706 3707 3708 3709 3710 3711 7570 3960 3961 3962 3963 3964 3965 3966 3967 

3712 3713 3714 3715 3716 3717 3'718 3719 7600 3968 3969 3970 3971 3972 3973 3974 3975 
3720 3721 3722 3723 3724 3725 3726 3727 7610 3976 3977 3978 3979 3980 3981 3982 3983 
3728 31129 3730 3731 3732 3733 3734 3735 7620 3984 3985 3986 3987 3988 3989 3990 3991 
3736 3737 3738 3739 3740 3741 3742 3743 7630 3992 3993 3994 3995 3996 3997 3998 3999 
3744 3745 3746 374'7 3748 3749 3750 3751 7640 4000 4001 4002 4003 4004 4005 4006 4007 
3752 3753 3754 3755 3756 3757 3758 3759 7650 4Q08 '4009 4010 4011 4012 4013 4014 4015 
!1760 3761 3762 3763 3764 3765 3768 3787 7660 4016 4017 4018 4019 4020 4021 1022 4023 
3768 3769 3770 3771 3772 3773 3774 3775 7670 4024 4025 4026 4027 4028 4029 4030 4031 

3776 3777 3778 3779 3780 3781 3782 3783 7700 4032 4033 4034 4035 4036 4037 4038 4039 
3784 3785 3786 3787 3788 3789 3790 3791 '7710 4040 4041 4042 4043 4044 4045 4046 4047 
3792 3793 3794 3795 3796 3797 3798 3799 7720 4048 4049 4050 4051 4052 4053 4054 4055 
3800 3801 3802 3803 3804 3805 3806 3807 7730 4056 4057 4058 4059 4060 4061 4062 4063 
3808 3809 3810 3811 3812 3813 3814 3815 7740 4064 4065 4066 4067 4068 4069 4070 4071 
3816 39,7 3818 3819 3820 3821 3822 3823 7750 4072 4073 4074 4075 4076 4077 4078 4079 
3824 3825 3826 3827 3828 3829 3830 3831 7760 4080 4081 4082 4083 4084 4085 408& 4087 
3832 3833 3834 3835 3836 3837 3838 3839 7770 4088 4089 4090 4091 4092 4093 4094 4095 

E-6 

6000 3072 
to to 

6777 3583 
(Octal) (Decimal) 

Octal Decimal 
10000- 4096 
20000- 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

7000 3584 
to to 

7777 4095 
(Octal) (Decimal) 



OCTAL-DECIMAL FRACTION CONVERSION TABLE 

Octal Decimal Octal Decimal Octal Decimal Octal Decimal 

.000 .OOQOOO • 100 • 125000 • 200 • 25.0000 • 300 • 375000 

.001 • 001953 • 101 • 126953 .201 • 251953 .301 • 371i953 
• 002 .003906 .102 .128906 .202 . 253906 . 302 • 378901; 
.003 • 005859 • 103 .130859 .203 • 255859 .303 .380859 
• 004 • 007812 .104 .132812 • 204 . 25i812 .304 .382812 
. 005 • 009765 .105 .134765 • 205 . 259765 .305 • 384 71i5 
. 006 .011718 • 106 • 136718 . 206 .2Gi718 • 306 .386718 
• 007 . 013671 • 107 • 138671 . 207 . 263671 • 307 .388671 

. 010 .015625 .110 • 140625 .210 . 265625 .310 • 390625 

. Oil • 017578 • 111 .142578 . 211 . 267578 • 311 • 392578 

.012 .019531 • 112 • 144531 . 212 . 269531 .312 .394531 
• 013 .021484 .113 • 146484 .213 • 271484 .313 . 396484 
• 014 .023437 , 114 .148437 .214 . 273437 .314 • 398437 
• 015 • 025390 .115 .150390 .215 . 275390 .315 • 400390 
.016 .027343 • 116 .152343 . 216 • 277343 .316 .402343 
• 017 • 029296 .117 • 154296 .217 . 279296 .317 .404296 

.020 .031250 .120 • 156250 • 220 • 281250 .320 .406250 

.021 • 033203 • 121 • 158203 .221 • 283203 .321 .408203 

.022 • 035156 • 122 .160156 . 222 . 285156 • 322 .410156 

.023 • 037109 • 123 • 162109 . 223 • 287109 .323 .412109 

.024 • 039062 • 124 • 164062 • 224 • 289062 • 324 • 414062 

.025 • 041015 • 125 • 166015 • 225 • 291015 .325 • 41G015 

.026 • 042968 .126 • 167968 • 226 • 292968 . 326 . 417968 

.027 • 044921 • 127 • 169921 • 227 • 294921 .327 .419921 

. 030 • 046875 • 130 • 171875 . 230 • 296875 • 330 • 421875 

.031 . 048828 • 131 .173828 .231 . 298828 .331 . 423828 

. 032 • 050781 • 132 • 175781 . 232 .300781 . 332 . 425781 

.033 • 052734 • 133 •. 1n734 • 233 .302734 • 333 • 427734 

.034 • 054687 • 134 • 179687 • 234 . 304687 .334 .429687 

.035 • 056640 • 135 . 181640 • 235 • 306640 ,335 .431640 

.036 • 058593 • 136 • 183593 . 236 .308593 . 336 .433593 

. 037 • 060546 • 137 • 185546 . 237 .310546 • 337 .435546 

. 040 • 062500 • 140 • 187500 . 240 .312500 • 340 .437500 

. 041 . 064453 . 141 . 189453 . 241 .314453 . 341 .439453 

.042 . 066406 . 142 • 191406 . 242 • 316406 . 342 .441406 

. 043 .068359 . 143 .193359 .243 • 318359 . 343 .443359 

. 044 . 070312 . 144 • 195312 .244 .320312 .344 .445312 

. 045 . 072265 • 145 .197265 . 245 • 322265 . 345 • 447265 

.046 .074218 • 146 • 199218 .246 • 324218 • 346 .449218 

. 047 .076171 . 147 .201171 • 247 .326171 .347 .451171 . 

.050 • 078125 • 150 . 203125 • 250 • 328125 . 350 .453125 

.051 . 080078 • 151 .205078 .251 • 330078 .351 .455078 

.052 .082031 • 152 • 207031 • 252 • 332031 .352 • 457031 

. 053 • 083984 • 153 • 208984 • 253 • 333984 • 353 • 458984 

. 054 • 085937 • 154 .210937 • 254 • 335937 • 354 • 460937 

.055 .087890 • 155 • 212890 .255 • 337890 .355 .462890 

.056 • 089843 • 156 • 214843 .256 • 339843 • 356 • 464843 

.057 • 091796 • 157 .216796 • 257 .341796 • 357 • 466796 

.060 • 093750 • 160 .218750 • 260 • 343750 .360 .468750 

. 061 • 095703 • 161 • 220703 • 261 • 345703 • 361 • 470703 

.062 • 097656 • 162 • 222656 • 262 • 347656 • 362 ,472656 

.063 • 099609 • 163 • 224609 • 263 • 349609 • 363 ,474609 

. 064 . 101562 .164 • 226562 • 264 • 351562 • 364 • 476562 

. 065 • 103515 • 165 • 228515 .265 .353515 .365 .478515 

.066 . 1054b8 • 166 • 230468 .266 • 355468 .366 • 460468 

.067 • 107421 • 167 . 232421 • 267 • 357421 .367 .482421 

.OiO • 109375 • 170 . 234375 • 270 • 359375 ,370 .484375 

. 071 • 111328 • 171 .236328 .271 .361328 .371 ,486328 

.072 • 113281 • 172 • 238281 • 272 ,363281 • 372 ,48821!1 

. 073 . 115234 • 173 • 240234 • 273 .365234 • 373 ,490234 

. 074 .117187 • 174 . 242187 • 274 • 367187 • 374 • 492187 

.075 . 119140 • 175 • 244140 • 275 • 369140 ,375 ,494140 

.076 • 121093 • 176 • 246093 • 276 • 371093 • 376 .496093 

.077 .123046 • 177 . 248046 • 277 • 373046 .377 ,498046 

E-7 



OCTAL-DECIMAL FRACTION CONVERSION TABLE (continued) 

Octal Decimal Octal Decimal Octal Decimal Octal Decimal 

.000000 .000000 .000100 .000244 .000200 • 000488 .000300 • 000732 

.000001 • 000003 .000101 .000247 • 000201 .000492 • 000301 .000736 

.000002 ,000007 .000102 .000251 .000202 .000495 ,000302 • 000740 
,000003 • 000011 ,000103 .000255 .000203 • 000499 .000303 ,000743 
.000004 • 000015 ,000104 ,000259 ,000204 .000503 .000304 • 000747 
,000005 • 000019 .000105 • 000263 .000205 .000507 • O•J0305 • 000751 
,000006 • 000022 ,000106 .000267 .000206 • 000511 ,000306 .000755 
• 000007 • 000026 ,000107 • 000270 .000207 • 000514 ,000307 .000759 

.000010 • 000030 I 000110 • 000274 • 000210 ,000518 ,000310 ,000762 
• 000011 • 000034 • 000111 • 000278 ,000211 • 000522 • 000311 .000766 
,000012 • 000038 • 000112 • 000282 ,000212 • 000526 .ooo:a2 ,000770 
,000013 • 000041 • 000113 • 000286 • 000213 .000530 ,000313 • 000774 
,000014 • 000045 • 000114 ,000289 • 000214 ,000534 ,000314 • 000778 
• 000015 • 000049 • 000115 ,000293 ,000215 • 000537 ,000315 ,000782 
.000016 • 000053 • 000116 ,000297 ,000216 ,000541 ,000316 • 000785 
,000017 • 000057 • 000117 .000301 ,000217 .000545 .000317 • 000789 

• 000020 • 000061 • 000120 • 000305 • 000220 • 000549 • 000320 ,000793 
.000021 • 000064 • 000121 .000308 • 000221 • 000553 ,1)00321 • 000797 

.000022 • 000068 .000122 • 000312 • 000222 • 000556 • 000322 • 000801 

.000023 • 000072 • 000123 ,000316 • 000223 • 000560 .000323 ,000805 

• 000024 • 000076 ,000124 • 000320 • 000224 • 000564 .000324 ,000808 

.000025 • 000080 .000125 .000324 ,000225 • 000568 ,000325 • 000812 
• 000026 • 000083 • 000126 ,000328 • 000226 • 000572 • 000326 • 000816 

.000027 • 000087 ,000127 • 000331 • 000227 • 000576 ,000327 • 000820 

• 000030 • 000091 ,000130 • 000335 .000230 • 000579 .000330 ,000823 

• 000031 • 000095 ,000131 ,000339 • 000231 • 000583 ,000331 • 000827 
• 000032 • 000099 .000132 .000343 • 000232 • 000587 ,000332 ,OQQ831 

• 000033 • 000102 • 000133 ,000347 .000233 • 000591 ,000333 • 000835 
• 000034 • 000106 .000134 .000350 • 000234 .000595 .000334 .000839 
• Oll0035 • 000110 • 000135 ,000354 .000235 • 000598 ,000335 .000843 
• 000036 • 000114 .000136 ,000358 ,000236 ,000602 .000336 • 000846 
,000037 • 000118 .000137 .000362 .000237 ,000606 .000337 • 000850 

.000040 • 000122 • 006140 ,000366 .000240 • 000610 .000340 .000854 
• 000041 • 000125 • 000141 ,000370 • 000241 .000614 ,000341 ,000858 
• 000042 .000129 ,000142 • 000373 • 000242 .000617 ,000342 .000862 
.000043 • 000133 ,000143 ,00037T • 000243 • 000621 ,000343 • 000865 

• 000044 • 000137 ,000144 ,000381 ,000244 .000625 ,000344 ,000869 

.000045 • 000141 • 000145 • 000385 • 000245 • 000629 • 000345 ,000873 

.000046 • 000144 .000146 • 000389 • 000246 • 000633 ,00034t. • (.'00877· 

• <.'00047 • 000148 • 000147 • 000392 • 000247 • 000637 .000347 • 000881 

,OOOO!iO • 000152 ,000150 ,000096 ,000250 • 000640 ,000350 .000885 

• 000051 • 000156 • 000151 ,000400 .000251 • 000644 • 000351 • 000888 

• 000052 • 000160 .000152 • 000404 .000252 .000648 • 000352 • 000892 

,000053 • 000164 ,000153 ,000408 .000253 ,000652 .000353 .000896 
,000054 • 000167 • 000154 ,000411 ,000254 • 000656 ,000354 .000900 

.000055 • 000171 • 000155 ,000415 ,000255 .000659 .000355 .000904 

• 000056 • 000175 .000156 .000419 ,000256 • 000663 ,000356 • 000907 

• 000057 • 000179 • 000157 .000423 ,000257 • 000667 .OOOS&1 • 000911 

• 000060 ,000183 .000160 ,000427 .000260 • 000671 ,000360 .000915 
,000061 • 000186 ,000161 .000431 ,000261 • 000675 .000361 • 000919 

• 000062 • 000190 • 000162 ,000434 • 000262 • 000679 ,000362 • 000923 

• 000063 • 000194 .000163 ,000438 • 000263 • 000682 .000363 ,000926 

,000064 • 000198 • 000164 .000442 • 000264 • 000686 ,000364 .000930 

• 000065 ,000202 .000165 ,000446 .000265 • 000690 • 000365 ,000934 

• 000066 • 000205 ,000166 .000450 • 000266 • 000694 ,000366 .000938 

,000067 ,000209 ,000167 .000453 • 000267 • 000698 ,000367 • 000942 

,000070 • 000213 • 000170, • 000457 ,000270 ,000701 • 000370 • 000946 

.000071 • 000217 ,000171 ,000461 ,000271 .000705 • 000371 • 000949 

,000072 .000221 • 000172 ,000465 ,000272 • 000709 • 000372 • 01\0953 

• 000073 • 000225 • 000173 .000469 .000273 .000713 .000373 ,000957 

• 000074 • 000228 .000174 • 000473 .000274 ,000717 ,000374 • 000961 

• 000075 ,000232 ,000175 ,000476 .000275 .000720 • 000375 • 000965 

.000076 • 000236 ,000176 .000480 ,000276 .000724 ,000376 ,000968 

.000077 • 000240 ,000177 .000484 .000277 ,000728 .000377 ,000972 

E-8 



OCTAL-DECIMAL FRACTION CONVERSION TABLE (continued) 

Octal Decimal Octal Decimal Octal Decimal Octal Decimal 

.000400 • 000976 .000500 • 001220 • 000600 • 001464 ,000700 • 001708 
• 000401 • 000980 • 000501 • 001224 .000601 • 001468 • 00(1701 .001712 
• 000402 • 000984 • 000502 .001228 .000602 • 001472 • 000702 • 001716 
,000403 • 000988 .000503 • 001232 • 000603 • 001476 • 000703 .001720 
,000404 • 000991 • 000504 • 001235 • 000604 ,001480 .000704 • 001724 
,000405 ,000995 ,000505 • 001239 • 000605 • 001483 • 000705 ,001728 
.000406 • 000999 • 000506 • 001243 • 000606 • 001487 • 000706 ,001731 
,000407 • 001003 .000507 • 001247 • 000607 . 001491 • 000707 • 001735 
. 000410 ,001007 • 000510 .001251 • 000610 • 001495 ,000710 .001739 
• 000411 • 00101C • 000511 .001255 • 000611 • 001499 • 000711 .001743 
,000412 • 001014 .000512 . 001258 • 000612 • 001502 .000712 ,001747 
• 000413 • 001018 • 000513 .001262 • 000613 • 001506 • 000713 .001750 
,000414 .001022 • 000514 • 001266 • 000614 • 001510 • 000714 • 001754 
.000415 • 001026 • 000515 • 001270 • 000615 • 001514 • 000715 ,001758 
• 000416 • 001029 • 000516 • 001274 .000616 .001518 • 000716 .001762 
• 000417 • 001033 • 000517 • 001277 • 000617 • 001522 .000717 .001766 

,000420 • 001037 • 000520 .001281 • 000620 • 001525 ·• 000720 .00177'0 
.000421 • 001041 .000521 .001285 • 000621 • 001529 • 000721 ,001773 
,000422 • 001045 • 000522 • 001289 • 000622 • 001533 • 000722 .001777 
.000423 • 001049 • 000523 • 001293 • 000623 • 001537 . 000723 .001781 
,000424 • 001052 • 000524 • 001296 • 000624 • 001541 • 000724 -,001785 
,000425 • 001056 ,000525 • 001300 • 000625 • 001544 • 000725 .001789 
,000426 ,001060 .000526 ,001304 .000626 • 001548 • 000726 . 001792 
• 000427 • 001064 .000527 . 001308 • 000627 .. oo 1552 . 000727 .001796 

.000430 • 001068 ,000530 • 001312 .000630 .001556 ,000730 .001800 
• 000431 • 001071 .000531 • 001316 .000631 . 001560 • 000731 . 001504 
• 000432 • 001075 • 000532 .001319 .000632 .001564 .000732 ,001808 
.000433 • 001079 • 000533 • 001323 .000633 ,001557 .000733 .001811 
• 000434 • 001083 • 000534 • 001327 . 000634 .001571 • 000734 .001815 
• 000435 .001087 .000535 • 001331 • 000635 .001575 • 000735 . 001819 
,000436 • 001091 • 000536 • 001335 • 000636 .001579 • 000736 • 001823 
.000437 • 001094 • 000537 • 001338 • 00063 7 • 001583 . 000737 ,001827 

• 000440 • 001098 .000540 • 001342 • 000640 • 001586 . 000740 ,001831 
.000441 • 001102 .000541 ,001346 • 000641 • 001590 .000741 • 001834 
.000442 • 001106 • 000542 • 001350 . 000642 . 001594 . 000742 .001838 
.000443 • 001110 .000543 • 0'01354 . 000643 .001598 • 000743 .001842 
.000444 • 001113 • 000544 .001358 • 000644 .001602 • 000744 ,001846 
.000445 • 001117 • 000545 .001361 • 000645 • 001605 . 000745 ,001850 
• 000446 • 001121 .000546 ,001365 • 000646 • 001609 • 000746 .001853 
• 000447 . 001125 • 000547 • 001369 .000647 • 001613 • 000747 .001857 

.000450 • 001129 .000550 • 001373 • 000650 .001617 .000750 .001861 
,000451 • 001132 .000551 • 001377 .000651 .001621 • 000751 ,001865 
• 000452 • 001136 .000552 ,001380 .000652 • 001625 ,000752 • 001869 
. 000453 • 001140 • 000553 . 001384 • 000653 • 001628 • 000753 • 001873 
• 000454 • 001144 • 000554 • 001388 • 000654 • 001632 • 000754 .001876 
.000455 • 001148 • 000555 • 001392 • 000655 • 001636 • 000755 • 001880 
• 000456 • 001152 • 000556 • 001396 . 001l656 • 001640 • 000756 '001884 
• 000457 . 001155 ,000557 • 001399 • 000657 . 001644 • 000757 ,001888 

• 000460 • 001159 ,000560 • 001403 • 000660 ,001647 • 000760 ,001892 
• 000461 • 001163 • 000561 • 001407 .000661 .001651 ,000761 • 001895 
.000462 • 001167 .000562 • 001411 • 000662 • 001655 ,000762 ,001899 
.000463 • 001171 ,000563 • 001415 • 000663 .001659 ,000763 • 001903 
• 000464 : 001174 ,000564 • 001419 000664 .001663 .000764 • 001907 
.000465 • 001178 • 000565 • 001422 • 000665 .001667 ,000765 • 001911 
,000466 • 001182 • 000566 • 001426 .000666 • 001670 • 000766 .001914 
,000467 • 001186 • 000567 • 001430 .000667 • 001674 • 000767 ,001918 

• 000470 • 001190 • 000570 • 001434 .000670 • 001678 • 00-0770 • 001922 
,000471 • 001194 • 000571 • 001438 • 000671 • 001682 • 0()0771 • 001926 

• 000472 • 001197 • 000572 • 001441 • 000672 • 001686 • 000772 • 001930 

• 000473 • 001201 • 000573 • 001445 • 000673 • 001689 • 000773 • 001934 
,'000474 • 00120:; • 000574 • 001449 • 000674 .001693 • 000774 ,001937 

• 000475 • 001209 • 000575 • 001453 • 000675 • 001697 • 000775 • 001941 
• 000476 • 001213 • 000576 • 001457 • 000676 • 0017.lll .000776 • 001945 
• 000477 • 001216 • 000577 • 001461 • 000677 • 001705 • 000777 .001949 

E-9 





F.l INTRODUCTION 

APPENDIX F 

REFERENCE DATA FOR SYSTEM TABLES 

This Appendix provides reference data on the various information 

tables which reside in the MUMPS-11 Operating System. These tables 

are physically contiguous and reside in low memory below the system's 
time-sharing Executive (Figure F-1). 

MEMORY 

SYSTEM 
0 

INTERRUPT 
VECTORS 

SYSTEM STACK 

SYSTEM TABLE 

DEVICE TABLE 
SYSTEM TABLES 

UC I TABLE 

PARTITION TABLE 

JOB TABLE 

EXECUTIVE 

REMAINDER OF 
SYSTEM SOFTWARE: 
1/0 MONITOR, 
INTERPRETER, 
DATA BASE 
SUPERVISOR 

---r'P'ARTIT~ ~L...::..: ____ "..:_j _ _.16K UP TO 128K 

11-1416 

Figure F-1 Relative Table Position 

These tables are maintained by various routines in the Operating 

System and contain system control and status information including: 

general system configuration data, time and date values, base 

addresses for other tables, I/O device and partition utilization, 

User Directory areas, and job status. All table information is 

essential for system operation. Also., some of this information may 

be especially useful to the MUMPS System Manager/Programmer, 

for developing and troubleshooting MUMPS application system programs 

and the system itself. 

F-1 



Using the special system features of the MUMPS Language which include 

the VIEW Command and the $VIEW function, the System Manager/Operator 

c·an access and alter table data as required. Modification of internal 

memory (or disk) by careless or inexperienced individuals can have 

disastrous results on system operation. 

The following paragraphs describe the System Table, the Device Table, 

the UCI Table, the Partition Table, and the Job Table. 

The System Table specifies a number of system constants and param­

eters. The Device Table sp~cifies current I/O device information 

including the device being used ('owned') and devices not physically 

present. The UC! Table contains all legal UC! codes (input during 

system generation or modification) and the addresses of associated 

Global and Program Directories. The Partition Table specifies the 

size and location of each partition in the system. The Job Table 

specifies job status. 

A word of explanation about the term "job" is in order at this point. 

A job as defined by MUMPS-11 is any user activity which requires the 

use of a partition. Thus, logging-in to the system initiates a job. 

A program started in another partition via the START command is also 

deemed a job. 

F.2 THE SYSTEM TABLE (SYSTAB) 

The System Table (Table F-1) is the repository of basic system constants, 

indicators, control information, and special buffer addresses. In 

addition, it contains address pointers to all other system tables. 

This is important to note, since the specific addresses of these 

tables and the System Table itself may change from time to time in 

succeeding versions of the Operating System. Thus access to system 

tables should always be made initially through location 44 (54 octal). 

This location will always contain the base address of the System 

Table. The relative position of System Table entries is also fixed 

so that all tables can be located via location 44 and the System 

Table. 

F-2 



Example: 

To obtain the address of the System Table, type: 

>SET A:$VC44) 

To obtain the address of the first entry in the Device 
Table, type: 

>SET B:$VCA+4) 

or to combine the operations: 

>SET A:$VC$VC44)+4) 

Location 
(decimal) 

SYSTAB+s,J' 
+2 
+4 
+6 
+8 
+ls,l' 
+12 

+14 
+16 

+18 

+2s,l' 
+22 
+24 
+26 
+27 

+28 
+29 
+30 
+31 
+32 
+33 
+34 
+36 

+38 
+4s,l' 
+42 

+44 
+46 
+47 

Table F-1 

System Table 

Contents 

Address of Job Table (JOBTAB) 
Address of Partition Table (PARTAB) 
Address of Device Table (DEVTAB) 
Base Address of Device Descriptor Buffers (DDB) 
Address of UCI Table (UCITAB) 
Address of Disk Storage Allocation Table 
Address of Garbage Table +2 (disk blocks to be 

deallocated) 
Address of first 256-word buffer in Buffer Pool 
Count of number of illegal interrupts the sys-

tem has detected 
Disk block address of data contained in UTLBUF 
(SYSTAB+ls,J'~) 
Logical disk number for block in UTLBUF 
Address of Disk Buffer #1 
Address of Disk Buffer #2 
Garbage Indicator (~ = no garbage) 
Physical Disk Overflow Switch for Logical Disk 

s,J' (s,J' = overflow allowed) 
Number of ticks remaining in this second 
Number of ticks per second 
Number of ticks left in current job's time slice 
Initial value of slice (ticks) for current job 
Number of ticks in basic time slice 
~ime in seconds since midnight (high-order bits) 
Time in seconds since midnight (low-order bits) 
Date in the form: (yy*SOO)+ddd 

where: yy = year -1900 
ddd = day count since December 31 

Base address of System Stack 
First available address above device buffers 
Base address of first partition (other parti-

tions follow sequentially) 
Status Register address of system clock 
Number of job in the run queue on system restart 
Number of job in the disk I/O bound queue on 

system restart 

(continued on next page) 
F-3 



Location 
(decimal) 

SYSTAB+48 
+50 
+52 
+55 

+56 

+58 

+61 
-

+62 
+64 
+66 

+68 
+70 
+72 
+74 
+76 
+7& 
+80 
+82 
+84 
+86 
+88 
+90 
+92 

+94 

+96 

+98 

+100 

+102 
+104 
+106 
+108 
+112 
+114 
+116 
+118 
+120 
+122 
+124 

+126 

+128 
+130 
+132 

Table F-1 (Cont.) 

System Table 

Contents 

Line Buff er starting address 
End Address of Symbol Table+l 
Pointer to Global DJ!"ec_t:gry (3 bytes) 
Physical Disk Overflow swIEch (O = overflow 
allowed) 
Buffer Address given to most recent Job 

in Run Queue 
Address of System Information Block on system 

disk (3 bytes) 
Most recent Job in Run Queue (when O, job is 

being Swapped out; error not reported until 
next swap-in) 

Programmer Access Code, initially set 
to CTRL/X CTRL/X CTRL/X 

Disk error tally counter, incremented by 1 for 
each disk I/O hardware error 

Magtape unit 0 buffer address from pool 
Magtape unit 1 buffer address from pool 
Magtape unit 2 buffer address from pool 
Magtape unit 3 buffer address from pool 
Reserved Device #0 
Reserved Device #1 
Reserved Device #2 
Reserved Device #3 
DECtape unit 0 buffer address from pool 
DECtape unit 1 buffer address from pool 
DECtape unit 2 buffer address from pool 
DECtape unit 3 buffer address from pool 
Sequential Disk Processor #0 buffer address 

from pool 
Sequential Disk Processor #1 buffer address 

from pool 
Sequential Disk Processor #2 buffer address 

from pool 
Sequential Disk Processor #3 buffer address 

from pool 
UTLBUF Address of utility buffer (view device) 

from pool 
Magtape Error Count 
DECtape Error Count 
RKll Disk Error Count 
Disk Address of Iates-t error (low order word) 
RKll Hardware Status Register 
RFll Disk Error Count 
Disk Address of Latest error 
Disk Address of latest error (high order word) 
RFll Hardware Status Register 
ru>11-; · RP04 Dis-:K-Error count 
Disk '.Error Aadress:Section iri bits 0-3, 

track in bits 8-12 
Disk Error Address: cycle in bits 0-8, drive 

in bits 10-12 
RPll, R.P04H:ardware Status Register 
Base ____ AdCires·s of Ring Buffer area --
Base Address of Ring Buffer Queue (address of 

next available Ring Buffer) 

(continued on next page) 

F-4 



Location 
(decimal) 

SYSTAB+l34 
+136 
+138 

+146 

+154 
+155 

+156 

+158 

+160 
+162 

+164 
+166 
+168 
+170 
+172 
+174 
+176 
+178 
+180 
+182 
+184 
+186 
+188 
+190 
+192 
+194 
+196 
+198 
+200 
+202 
+204 
+206 
+208 
+210 

+218 
+220 
+222 
+224 
+226 
+228 
+230 

Table F-1 (Cont.) 

System Table 

Contents 

Base Address of All Multiplexer DDB's 
End Address of All Multiplexer DDB's 
RPll Disk Drive Number Remapping Table (each 

byte corresponds to a physical unit (0-7); 
initially assigned to successive logical 
units 0-7 in that order) 

RKll Disk Drive Number Remapping Table (each 
byte corresponds to a physical unit (0-7); 
initially assigned to successive logical 
units 0-7 in that order) 

Number of Jobs waiting to run 
Write-check Switch (if non-zero, all disk write 

operations will be checked) 
Index into System Bootstrap for Disk Descriptor 

Table 
Low limit address for System Stack (LOWSTK); 

normally set to 450 8 , but may be altered 
during system generation. 

Address of First Global Buffer Descriptor 
A,d.dress of Interrupt Service Routine for 

Multiplexer 
Multiplexer #1 Hardware Status Register 
Multiplexer #2 Hardware Status Register 
Start Address of Global Disk Buffers 
Count of logical Disk Reads 
Count of Buffer Swaps 
Count of Physical Disk Reads 
Number of job being killed by RSJ 
Number of Bus errors 
TMll Status Register 
TMll Command Register 
TMll Byte Record Counter Register 
TMll Current Memory Address Register 
TMll Data Buff er 
TMll Read Lines 
DECtape Control and Status Register 
DECtape Command Register 
DECtape Word Count Register 
DECtape Bus Address Register 
DECtape Data Register 
RPll lnterrupt Service Address 
RP04 Interrupt Service Address 
RPll Control Status Register 
RP04 Control Status Register 
RP04 Disk Drive Number Remapping Table 

(each byte corresponds to a physical 
unit, 0+7, initially assigned to suc­
cessive logical units 0+7 in that order) 

RP04 Storage Allocation Table Base Address 
TJU16 Control Status 1 Register 
TJU16 Control Status 2 Register 
TJU16 Drive Status Register 
TJU16 Error Register 
TJU16 Tape Control Register 
Magtape Unit 0 Device Descriptor Buffer 

Base Address 

F-5 



Location 
(decimal) 

SYSTAB+232 
+233 
+234 
+236 
+238 
+240 

+242 
+244 

+246 

+248 

+250 

+252 

+254 

+262 
+264 
+266 
+268 
+270 
+272 
+274 
+276 

+278 
+280 
+282 
+284 

+286 
+288 
+290 
+292 
+294 

+302 
+304 
+306 
+308 
+310 
+312 
+,314 
+316 

Table F-1 (Cont.) 

System Table 

Contents 

11/70 Group of Cache Memory Error Count Cl byte) 
11/70 Group I Cache Memory Error Count Cl byte) 
11/70 Memory Parity Error Low Address Register 
11/70 Memory Parity Error High Address Register 
11/70 Memory Parity Error System Register 
11/70 Memory Parity Error - Job Number of Last 

Hung Job 
Multiplexer #3 Hardware Status Register 
Logical Address of Partition Base Address if 

>28K System (24576 or 20480) 
Address of.EBLMEM Subroutine (used by Bootstrap 

Loader) 
Address of REQJOB Subroutine (used by Bootstrap 

Loader) 
Address of SETJOB Subroutine (used by Bootstrap 

Loader) 
Address of MUMPS~ Subroutine (~sed by Bootstrap 

Loader) 
RP02-RP03 Table (each byte corresponds to a unit, 

non-zero implies an RP02, zero implies an RP03) 
8 bytes 

Status Register Address for DZ-11 #1 
Status Register Address for DZ-11 #2 
Status Register Address for DZ-11 #3 
Status Register Address for DZ-11 #4 
Status Register Address for DZ-11 #5 
Status Register Address for DZ-11 #6 
Beginning Address of DZ-11 DDB's 
Pointer to Card Reader Table if One in System. 

Card Reader Table consists of 3 words, as 
follows: 

.word 6 

.Word 0 

.Word 0 

; SYSGEN Enters CR-11 CSR Address 
; SYSGEN Enters CR-11 Vector Address 
; SYSGEN Enters Device Number of 

Card Reader (must be 51.-54.) 

CSR for DMll-BB Attached to DHll #1 
CSR for DMll-BB Attached to DHll #2 
CSR for DMll-BB Attached to DHll #3 
Interrupt Entry Code for DMll-BB #1 

This Location +14. for DMll-BB #2 
This Location +28. for DMll-BB #3 

Communication Device Flag (O=CPU,l=DMC-11) 
Address of DMC-11 Interrupt Service Routine 
Pointer to Last Byte of RJ Maps in DSKSAT 
Pointer to Last Byte of RK06 Map Area in DSKSAT 
RK06 Drive Remapping Table (each byte corresponds 

to a physical unit (0-7); initially assigned to 
successive logical units 0-7 in that order) 

Address of RK06 Interrupt Service Routine 
Address of Control Status Register for RK06 
Count of RK611 Errors 
RK06 Error Address, Sector # and Track # 
RK06 Error Address, Cyiinder # and Drive # 
RK06 Error Status Register 
RH11/RP04,05,06. Error Status Register (RPER2) 
RH11/RP04,05,06 Error Status Register (RPER3) 

F-6 



F.3 DEVICE TABLE (DEVTAB) 

The Device Table (Figure F-2) is a table of byte entries, one for 

each possible I/O device in the system. The first entry in the 

table (DEVTAB+O) specifies the length of the table; all other entries 

are associated with the various I/O devices in the system. If a 

device is available, its table entry is zero. If a device is being 

used or is 'owned' by a job, the device entry contains the Job Entry 

Number. The ASSIGN Command is used to place job entry numbers in 

the table. When a device does not exist in the system, its table 

entry is set to -1 (equivalent to 3778). 

DEVTAB+O SIZE OF TABLE 
IN BYTES 

UCITAB+D UCI CODE-
CHARACTER 1 

UCI CODE-
CHARACTER 2 +1 DEVICE 1 +1 

UCI CODE-
CHARACTER 3 +2 

UCI #1 
+2 DEVICE 2 

+3 DEVICE 3 +3 

I-GLOBAL -
+4 DIRECTORY 

I-DISK POINTER-

+5 

+6 
UCI #2 

-~ - - ,............_. 

+95 F3 DEVICE 95 

11-1417 11-1418 

Figure F-2 Device Table Figure F-3 UCI Table 

F.4 USER CLASS IDENTIFICATION TABLE (UCITAB) 

The UCI Table (Figure F-3) specifies all legal UCI's acceptable to the 

system and the location of the Global and Program Directories associated 

with each., Each entry in the table is three words long. Up to 16 

entries can be made; one for each UCI. These entries are initially 

set by the MUMPS System Generation Program (SYSGEN) and can be 

modified by the Modify System Parameter Program (MSP). The first 

entry in the table is defined as the System UCI or UCI #1. 

The first three bytes of an entry contain the ASCII representation of 

the UCI code. The fourth, fifth and sixth bytes contain information 

which points to a Global Directory. By convention, the Program Direc­

tory is located in the next contiguous disk block after the Global 

Directory. 

F-7 



F.5 PARTITION TABLE (PARTAB) 

The Partition Table (Figure F-4) specifies the size and base address 

of each partition defined in the system. The entries in this table 

are set during System Generation 1 • The table consists of single-word 

entries. The first entry is a header word, the low (even) byte of 

which specifies the standard partition size in 128-word multiples; 

the high byte specifies the maximum number of partitions that can be 

described by the table. At System Generation, the user may specify 

a maximum of 18 partitions for systems with no more than 28K words of 

memory, or a maximum of 40 partitions with more than 28K words of 

memory. Each of the remaining entries in the table specifies partition 

information. 

The low byte of a partition entry word specifies the size of the 

partition as the number of 128-word increments minus one. For example, 

& 4K-word partition would have an entry of 3110 • (4,096/128=32; 32-1= 

31). The high byte of the partition entry word contains the high-order 

bits of the partition's base address (location of the first word). 

In systems with no more than 28K words of memory, the knowledgeable 
system manager or operator may examine partitions other than the 

one currently owned. To do so, he calculates a partition's base 

address as described below, and then uses the address with the $VIEW 

function to examine locations in the partition. 

A partition's base address is an integer multiple of 256. Therefore, 

the significant digits of the base address (as stored in a binary 

16-bit word), occupy only the high-order byte of the word. To obtain 

the integer address to use with $VIEW, the system programmer must 

zero (mask) the low-order byte of the partition table entry word. 

Example: 

To obtain the address of Partition 2: 

>SET A:$VC$VC$VC44)+2)+4)/25600*25600 
~ ~'--..,--/ 
~ 4 5 

\..._ ____ ~ ____ _...) 

3 

1Described in the MUMPS-11 Operator's Guide. 

F-8 



1. Get the base address of the System Table. 

2. Get the base address of the Partition Table (SYSTAB+2). 

3. Get the entry word for partition #2 (PARTAB+4). 

4. Divide that by 25600 to shift out the low byte (shifts 
one byte to the right) • This works because MUMPS trun­
cates fractional parts to two decimal places and $V 
returns only integers. 

5. Multiply by 25600 to shift one byte to the left to get 
the base address of the partition as an integer for 
later use with $V. 

The memory management characteristics of systems with more than 28K 

words of memory do not allow examination of partitions other than the 

one currently owned. 

Each Partition Table entry corresponds with entries in the Job 

Table (JOBTAB). The job associated with the nth entry in the 

Job Table always uses the partition specifies by the nth entry in 

the Partition Table. The value n is always even and in the 

range: (1 through maximum number of partitions )*2. That is, parti­

tion 2 is the second entry in both tables and its address is 'Table 

base address +4'. In this way, the value of n can be used for indexed 

accesses both to PARTAB and JOBTAB. 

MAXIMUM NO. OF 
PARTAB+O PARTITIONS (1810 

OR 40tol 

HIGH ORDER 
+2 BYTE OF BASE 

ADDRESS 

+4 

+6 

STANDARD SIZE IN 
128-WORD 
INCREMENTS 

PARTITION SIZE 
IN t28-WORD 
INCREMENTS (-1) 

HEADER 
WORD 

PARTITION 
1 

PARTITION 
2 

11-1419 

Figure F-4 Partition Table 

F-9 



F.6 THE JOB TABLE (JOBTAB) 

The Job Table (Figure F-5) is where all system queue information is 

kept. All system queues are contiguous with the Job Table and all 

entry numbers (job numbers) are relative to the base of the Job Table. 

Th€ low (even) bytes of Job Table entries are used for system queue 

space and the high bytes for job hung status. If bit 15 of a Job 

Table entry is set, then the job is in a hung state and by defini­

tion not in a system queue. 

The first word in the Job Table is a header word containing the 

following information: 

(Even) low byte 

(Odd) high byte 

number of currently available partitions 

number of partitions in the system. 

JOBTAB + 0 

+2 

+4 

+6 

+B 
+ 10 

+12 
+ 14 

+ 16 

+ 1B 

+ 20 

+ 22 

+ 24 

+ 26 

+ 28 

+ 30 

+ 32 

+ 34 

HIGH (ODD) BYTE LOW(EVEN)BYTE 

NUMBER OF PARTITIONS NUMBER OF PARTITIONS 
IN THE SYSTEM CURRENTLY AVAILABLE 

JOB NUMBER 1 ENTRY SPACE 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

JOB NUMBER 18 (OR 40)ENTRY SPACE 

REAR POINTER FRONT POINTER RUN 

SHORT 

DISK 1/0 BOUND 

rnSKRESOURCEBOUND 

+ 36 (80) 
+ 38 (82) 

+ 40 (84) 

+ 42 (86) 

+ 44 (88) 

+ 46 (90) 

+ 48 (92) 

+ 50 (94) 

+ 52 (96) 

+ 54 (98) 

+ 56 (100) 

+ 56 (102) 

RING BUFFER RESOURCE BOUND 

BUFFER RESOURCE BOUND 

WAIT NUMBER 1 

WAIT NUMBER 2 

WAIT NUMBER 3 

CLOCK 

REAR POINTER FRONT POINTER PARTITION AVAILABLE 
11-1460 

Figure F-5 Job Table (JOBTAB) 

F-10 



F.7 DEVICE DESCRIPTOR BUFFER (DOB) 

Each terminal device that exists in the system (device number 1, 4-19, 

and 64-111) has an associated 16-word device descriptor buffer (DOB) • 
DDBs also exist for devices 2 and 3, regardless of whether or not they are 

physically present in the configuration. Their format differs, but 

they can be found using the same formula. The DOB is used to contain 

both static and dynamic terminal device information. The base address 

of a terminal's DOB for devices 1, 4-19 is found as follows: 

DOB Address= ((TRM-1)*32) +BASE 

WORD 
(decimal) 

1-2 

3 

4 
5 
6 
7 

8 

where: TRM = Terminal's device number 

BASE = Base address of DOB #1 (contained in 
SYSTAB+6 of the system table) • 

Table F-2 
Device Descriptor Buffer for Devices 1, 4-19 

Location 
(octal) 

DDB+O 

+4 

+6 
+10 
+12 
+14 

+16 

Contents 

contains a "JSR,Rl,ROUTINE" instruction se­
quence. Where: ROUTINE is the address of 
the entry point into the device's interrupt 
service routine. 
Address of the device's first receiver 
register. 
Bit setup for receiver status register. 
Bit setup for transmitter status register. 
Terminal error status ($A data). 
Low byte: Horizontal position in the line 

( $X) • 
High byte: Vertical position on the page 

( $Y) • 
Low byte: Device status 

0 = No activity 
>O = Input 
<O = Output 

200 = CTRL/O typed - suppress output. 

High byte: Device Information 

Bit 

0 

1 

2 

3 
4 

Meaning 

O = Teletype-like terminal 
1 = Video Terminal 
O = Echo Character 
1 = No echo, no BREAKs 
O = Device can input or output 
1 = Device can only output 
1 = LPll line printer 
1 = Modem (DLllE, DHll, or DZll) 

continued on next page 

F-11 



Table F-2 (Cont.) 

Device Descriptor Buffer for Devices 1, 4-19 

WORD 
(decimal) 

8 

9 

10 

11 

12 

13 

14 
15 

16 

Location 
(octal) 

DDB+l6 

+20 

+22 

+24 

+26 

+30 

+32 
+34 

+36 

Contents 

Bit Meaning 

5 1 = CPU-CPU Device 
6 1 = Device on a DZll MUX 
7 0 = No parity 

1 = Compute even parity 
(For a VT52, bits 0 and 3 are set.) 

Low byte: character currently being 
echoed. 

High byte: Data set (if present) status 
indicator. 

Low byte: Number of characters +l to 
stall. 

High byte: If CPU-CPU: CRC 
If not CPU-CPU: 
Bits 0-7, character to output 

when stalling. 
Bit 8, "XL...10FF" in effect if 

=l. 
Pointer to last 

ring buffer. 
character input from 

Pointer to last character output to ring 
buffer. 

Low byte: 
needed (O ~ "Tied" Termi-
Partition size l 
standard size) 

High byte: Index into UCI ~~l Informa-
table ion 

Program name (3 bytes) 
High byte: Right page margin as speci­

fied in ASSIGN command. 
Low byte: $B - Current message counter 

for CPU-CPU Handler. 
High byte: $H - Temporary variable for 

CPU-CPU Device, VT52 ESC code 
character. 

The base address of a terminal's DDB for devices 64-111 is found as 

follows: 

DDB Address= ((TRM-64)*32) +base 

Where: TRM 

BASE 

Terminal's device number 

Base address of DDB's for multiplexers 
(contained in SYSTAB+l34 of the system 
table). 

F-12 



Table F-3 

Device Descriptor Buffer for Devices 64-111 (DHll) 

WORDS 
(decimal) 

1-2 
3 

4 
5 

6 
7 

Location 
(octal) 

DDB+O 
+4 

+6 
+10 

+12 
+14 

Contents 

Unused. 
Line parameter register. 
Bits O,l - Character Length 

00 5 bits 10 7 bits 
01 6 bits 11 8 bits (default-All 
TTY's, LA30, VT05) 

Bit 2 - # Stop bit 
0 - 1 Stop bit 
1-2 for 6-8 bit 

characters, 1.5 for 5 bit characters 
(default) • 

Bit 4 - Parity 
0 - Disable (default) 
1 - Enable 

Bit 5 - Type parity (only if bit 4=1; 
ignored if bit 4=0). 

0 - Even 
1 - Odd 

Bits 6,7,8,9 - Receiver speed 
Bits 10,11,12,13 - Transmitter speed 

0 - Zero baud 10 - 600 baud 
1 - 50 11 - 1200 
2 - 75 12 - 1800 
3 - 110 13 - 2400 
4 - 184.5 14 - 4800 
5 - 150 15 - 9600 
6 - 200 16 - External input 
7 - 300 

Not used. 
Low byte: Use 

output 

A* 
17 - External input 

B* 
*Special order hard-
ware. 

=-1 Stuffing buffer for 

=+l Read hung 
= O Some other state, 

do not wake on inter­
rupt 

High byte: MARSW - Set non-zero 
When outputting CR/LF at right marqin. 
TRMSA - Error Status of terminal. 
Low byte: $X - Indicates horizontal 

position in the line. 
High byte: $Y - Indicates vertical posi­

tion on the page. 

continued on next page 

F-13 



WORDS 
(decimal) 

8 

9 

10 

11 

12 

13 

14 
15 

16 

Table F-3 (Cont.) 

Device Descriptor Buffer for Devices 64-111 (DHll) 

Location 
(octal) 

DDB+l6 

+20 

+22 

+24 

+26 

+30 

+32 
+34 

+36 

Low byte: 

High byte: 
cular to 

Bit 0: 

Contents 

Status-0 
>O 
<O 

200 

= No activity 
= Input 
= Output 
= ~o on to-suppress 

output 
Cond 10: Information parti­

this device. 
0 = TTY 
1 = Video terminal 

Bit 1: 0 = Echo char 

Bit 2: 
Bit 3: 
Bit 4: 

1 = No echo and no breaks 
0 = Input/output device 
1 = LPll 
1 = Modern (DLllE, DHll, or 

DZll) 
Bit 5: 1 = CPU/CPU 
Bit 6: 1 = D_evice on DZ 11 rnul ti­

plexer 
Bit 7: 1 = Compute even parity. 

0 = No parity check 
For VT52, bits 0 and 3 are set. 

Low byte: Echo - Current char being echoed. 
High byte: DATAST - Dataset status. 
Low byte: Stall - Number of characters 

(+l) to stall on FF. 
High byte: (Bits 0-7) STCHAR - The charac­

ter to output when stalling. 
Bit 8 "XOFF" in effect if = 1 

RINGIN - Pointer to last char inputted 
from R.B. 

RINGOUT - Pointer to last char taken from 
R.B. 

Low byte: Size - Partition size needed; 
0 = Standard 

High byte: UCin - Number of UCI 
Pnarne - Program name (3 bytes) 
Low byte: Pnarne 
High byte: Margin - Right margin, as 
specified in 'ASSIGN' CMMD. 
High byte: VT52 ESC code 

The DDB is found by multiplying the device 
number ($I(JOBASE)) by 32 (bytes), the 
length of the buffer, and adding that to 
the base DDB address (MLXBEG). The routine 
"SETUP" in 'UTIL' does the actual 
calculation. 

F-14 



WORD 
(decimal) 

1-2 

3 

4 
5 
6 
7 

8 

Table F-4 

Device Descriptor Buffer for Devices 64-111 (DZll) 

Location 
(octal) 

DDB+O 

+4 

+6 
+10 
+12 
+14 

+16 

Contents 

Contains a "JSR,Rl,ROUTINE" instruction se­
quence. Where: ROUTINE is the address of 
the entry point into the device's interrupt 
service routine. 
Line parameter register. 
Bits O,l - Character Length 

00 5 bits 10 7 bits 
01 6 bits 11 8 bits (default-All 
TTY's, LA30, VT05) 

Bit 2 - # Stop bit 
0 - 1 Stop bit 
1-2 for 6-8 bit 

characters, 1.5 for 5 bit characters 
(default) • 

Bit 4 - Parity 
0 - Disable (default) 
1 - Enable 

Bit 5 - Type parity (only if bit 4=1; 
ignored if bit 4=0). 

0 - Even 
1 - Odd 

Bits 6,7,8,9 -
0 - baud 

Speed 

1 - 50 
2 - 75 
3 - 110 
4 - 134.5 
5 - 150 
6 - 300 
7 - 600 

Internal constant 
DZll CSR Address 

10 - 1200 baud 
11 - 1800 
12 - 2000 
13 - 2400 
14 - 3600 
15 - 4800 
16 - 7200 
17 - 9600 

Terminal error status ($A data). 
Low byte: Horizontal position in the line 

( $X) • 
High byte: Vertical position on the page 

( $Y) • 
Low byte: Device status 

O = No activity 
>O = Input 
<O = Output 

200 = CTRL/O typed - suppress output. 
High byte: Device Information 

Bit -- Meaning 

0 0 = Teletype-like terminal 
1 = Video Terminal 

1 0 = Echo Character 
1 = No echo, no BREAKS 

2 0 = Device can input or output 
1 = Device can only output 

3 1 = LPll line printer 
4 1 = Modem (DLllE, DHll, or DZll) 

F-15 





G.l INTRODUCTION 

APPENDIX G 
SYSTEM DATA STRUCTURES 

This appendix provides reference information on the various data 

structures used internally by the MUMPS Operating System to con­

tain user programs and data both in core and on the disk data base. 

G.2 DISK DATA STRUCTURES 

All data stored on the disk is in 256-word (512-byte) blocks. The 

first word and last two words in each block always contain the same 

type of data, even though the rest of the contents of the block may 

differ widely. The first word is a relative pointer to the first 

available byte in the block. If the block contains data, the 

pointer is always 2 or greater, the 2 being necessary to index around 

the first word itself. The last two words contain the continuation 

pointer to the next block in the chain. A pointer value of zero (~) 

indicates the end of a chain. 

2 =EMPTY 
508 =FULL 

Fiqure G-1 

RELATIVE 
POINTER TO Fl RST 
AVAILABLE BYTE 
IN THIS BLOCK 

i WORD 0 

j 
506 (1,0) BYTES 

FOR DATA 
STORAGE 

I 
I 

CONTIN~ATION POINTER WORD 254 
I 

L-- - -------------

UNUSED l TO NEXT 
BLOCK 
IN CHAIN 

WORD 255 

Basic Disk Data Block 

The five kinds of data blocks generally kept on the system disk are 

global data blocks, bit map blocks, program data blocks, Global Direc­

tory Blocks and Program Directory Blocks. These five types of data 

blocks have a common format, as shown in Figure G-1. In addition, the 

first 104-108 blocks of the system disk contain the system image. The 

contents of these blocks are shown in the system disk block layout 

(Figure G-2). 

G-1 



0 

N 

N + 1 

N+2 

N+3 

N+4 

N+5 

BOOT 

SYSTEM 
MEMORY 

IMAGE 

SYSBLK 

EXTRA 

CRASH 

EXTRA 

EXTRA 

{
Operating System Image 
Where: 
N = 4 x image size in K words 

{ DSKAT - Disk Storage Allocation Table 
GABTAB - Garbage Table 

{ Reserved for Additional 
Crash Block Information 

{Crash Block Information 

between an image N + 6 
Any remaining blocks j 

1-- - - ·- - - - - -I 

size smaller than 96 - UNUSED 
blocks and the directory 

SYSTEM GLOBAL 
DIRECTORY 

blocks. xxx 

SYSTEM PROGRAM 
DIRECTORY 

yyy 

where: 
Disk Type xxx 

RK 102 
RF,RS 106 
RP, RJ or 108 
RM 

{ System Global Directory -
Established by SYSGEN 

{ System Program Directory -
Established by SYSGEN 

yyy 

103 
107 
109 

Figure G-2 System Disk Block Layout 

G-2 



G.2.1 Global Data 

Global data are held in four basic ways: single numeric, double 

numeric, string, and 4-word double precision floating-point numeric. 

Further, each can be combined with a pointer. The data type is 

encoded in bits 5 through 7.of the first byte of each global entry. 

Table G-1 defines these codes. These are the values returned by the 

$D Function 1 • 

Table G-1 

MUMPS-11 Data Type Codes 

Data Code Description 

11 Undefined variable 
1 Single numeric 
2 String 
3 Double numeric 
4 Pointer 
5 Single numeric plus a pointer 
6 String plus a pointer 
7 Double numeric plus a pointer 
8 4-word floating point numeric 2 

A pointer node, if present, points to a block that contains the next 

lower level element in the array. The block can also have a 

continuation pointer in words 254 and 255 that points to more data 

at the same level. To illustrate this, consider the following 

example: 

In the array 'ABC', assume the following elements are defined: 

Variable 

tABC 
+ABC (1) 
tABC(l,2,1) 
tABC(l,2,2) 
tABC(2) 
tABC(2,4) 
tABC(2,4.5;1) 
tABC ( 3, 87) 

Contents 

"ABC" 
"AGE" 
"NAME" 
"VALUES" 
364.9 
832.;11 
"ZZZ II 

A diagram of the array tABC is shown in Figure G-3. 

1 Refer to Chapter 4 of the MUMPS-11 Language Reference Manual. 
2 Stored internally with a data code of zero. 

G-3 



Gl 
I 

""' 

FIRST LEVEL OF 
SUBSCRIPTING 

( 1 BLOCK) 

- - - - - - - - - - - - _,_ - - r - - - - - _, __ -

SECOND LEVEL OF 
SUBSCRIPTING 

( 3 BLOCKS ) 

I 
I 
I 
I 

(2,4) 

364.9 

( 3) 

------,---

(2,4.50) 

832.01 

' I 
I 
I 

I I 

( 3, 87) 
0 zzz 11 

---~-------------~--------

THIRD LEVEL OF 
SUBSCRIPTING 

( 1 BLOCK ) 
( 1, 2,2) 
"NAME" 

(TOTAL NUMBER OF BLOCKS= 5, EXCLUDING THE DIRECTORY BLOCK) 

Figure G-3 Global Array Structures 

11- 1421 



All the data for level 1 are in the same block or in continuation 

blocks (i.e., blocks pointed to by word 255 of the previous block). 

Data for level 2 are pointed to by the data in level 1 and reside 

in a different data disk block. In no case does a disk block contain 

data on more than one level. 

Each mode requires three bytes to specify the data type and subscript. 

The bytes following these are used to store the pointer (three bytes), 

if there is one, and then the data, if any, associated with that node. 

A node cannot exist if it has neither a pointer nor data. Thus, the 

smallest node in the system requires five bytes (either single-numeric 

or null string, and no pointer). 

Figures G-4 through G-10 illustrate all possible configurations of 

global data. 

BIT 7 6 5 4 0 

o o 1I 
- -21 BIT 

SUBSCRIPT ------ -
5 BYTES 

(L) SINGLE 
1-- NUMERIC --

(H) DATUM 

11-1423 

( $0 () returns 1) 

Figure G-4 Single Numeric Node 

The 'L' and 'H' on the numeric datum (the last two bytes) show how the 

datum is represented internally in a word. That is, when the datum 

is assembled into. a word, the first byte becomes the low-order byte 

of the word and the second byte the high-order byte. 

G-5 



BIT 7 6 5 4 0 

1 0 ,1 
- -

21 BIT 
l-S~~£.R_l_P!_ _ 1--

(L) 
1--- -- 8 BYTES 

POINTER 

1---
DATUM --

(H) ,__ ________ 
(L) 

SINGLE NUMERIC 

(H) 
DATUM 

11-1424 

($D () returns 5) 

Figure G-5 Single Numeric with Pointer Node 

(H) 

(L) 

BIT 7 6 5 4 

(L) 

(H) 

(L) 

(H) 

0 1 11 --
21 BIT 
i.§~B~~l~T-

1---
DOUBLE· 

- NUMERIC 
DATUM 

I- -

0 

1--

-

7 BYTES 
-

-

--

11-1425 

( $D () returns 3) 

Figure G-6 Double Numeric Node 

A double numeric datum is assembled into a 2-word grouping for 

internal calculations. The first two byteo shown above constitute 

the high-order word of the grouping; the second pair, the low-order 

word. Within each word, the bytes are assembled as for a single 

numeric datum. 

G-6 



BIT 7 6 5 4 0 

I , 1J -- --
21 BIT 
SUBSCRIPT 
f------- -

(L) 

- -· 
POINTER 
DATUM 

f-- - 10 BYTES 
(.HJ 

- -
DOUBLE 

- NUMERIC --
DATUM 

f-- -

{

(L) 

(H) 

(H) l(L) 

(L) 

(H) 

11-1426 

( $D () returns 7) 

Figure G-7 

Double Numeric with Pointer Node 

Bl T 7 6 5 4 0 

, o ol 
-- -

21 BIT 

1-s~~~~:i:__ -

(L) 6 BYTES 

I-- POINTER - -

1-- DATUM --
(H) 

( $D () returns 4) 

Figure G-8 

Pointer Node 

11-1427 

The three-byte disk pointers are stored with bits 0-7 in the low-byte, 

bits 8-15 in the middle byte and bits 16-23 in the high byte. If 

assembled into two words, the high byte (bits 16-23) of the pointer 

would occupy the low-order byte of the high-order word. The pointer 

bits are assigned as indicated below: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 j 2 1 0 

Type Unit Number Block Number on Unit 

BIT 7 6 5 4 0 

0 I 0 

21 BIT 
SUBSCRIPT ----

OFFSET 

1st CHARACTER 
----

2nd CHARACTER N+ 5 BYTES 
----

3rd CHARACTER 

N +1 BYTES 

Nth CHARACTER 
----

EOM 

( $D () returns 2) , 1-1428 

Figure G-9 

String Node of "N" Characters 

In string data, each character is stored in one 8-bit byte, with a 

null byte ending the string. An offset is stored as a byte at the 

beginning of the string to point to the next string entry. 

G-7 



Nth CHARACTER 

EOM 

11-1429 

EOM=End of message and is held internally 
as a null (0) byte. 

($D () returns 6) 

Figure G-10 String of "N" Characters with Pointer Node 

A double-precision floating-point numeric datum requires 14 bytes of 

storage. The data type and 21-bit subscript are contained in the 

first three bytes. A pointer datum occupies the next three bytes. 

This entry is always present and contains a 0 if there is no lower 

level. The remaining eight bytes (four words) are used to contain 

the double-precision floating-point number as shown in Figure G-12. 

This format is identical to that employed by the PDP-11 Floating 

Point Processor (FPP-llB) and the PDP-11 Floating Point Math Package 

(FPMP-11). 

NOTE 

The format is limited to normalized numbers. 
The high-order bit of the mantissa (which is 
always 1) is omitted in order to allow one 
more bit in the exponent field. 

The sign of the number is bit 15 of the first word (word n). When 

.this bit is set to zero, the number is positive. When it is set to 

one the number is negative. 

G-8 



15 14 7 6 0 

WORO N FIGNI EXPONENT MANTISSA 

15 0 

WORD N+2 I MANTISSA 

15 0 

WORD N +41 MANTISSA 

15 0 

WORD N+6 I MANTISSA 

Figure G-11 Double Precision Floating Point Format 

The exponent of the number is stored in bits 14 - 7 of word n, using 

excess 12810 (200 8) notation. The value of the exponent is obtained 

by subtracting 200 8 from the number formed by these bits. 

The mantissa is stored in the remaining portion of word n and in 

words n+2,·n+4, and n+6 as follows: the high-order portion in 

word n (bits 6 - 0), the intermediate-order portion in words n+2 

and n+4, and-the low-order portion in word n+6. 

The byte representation of a double-precision floating-point datum 

is shown in Figure G-12. 

BIT 7 6 5 4 0 

a 21 BIT--

I- ~UBSCRIP.1. _ 

(L ) 
I- - POINTER --1 

DATUM 
I- _! 0 • no pointer)_ -1 

(H ) 

) EXP MANTISSAco 

SIGN EXPONENT 
~(L WORD N 

(H) 
14 BYTES 

MANTISSA(3) 

MANTISSA(2) 

{
(L) 

WORD N+2 
(H) 

MANTISSA(5) 

MANTISSA(4) 

{
(L) 

WORD N+4 
(H) 

MANTISSA(7) 

MANTISSfltsl 

{
(L) 

WORD N+6 
(Hl 

Figure G-12 Double Precision Floating Point Numeric Datum 

G-9 



G.2.2 Bit Maps 

Bit Maps are used to keep track of which blocks are available for use 

(bit set) and which blocks are in use (bit clear). The exact number of 

maps, words, and the number of bits per word used in a map is dependent 

upon the physical characteristics of the disk being represented. The 

maps are two-dimensional; sach word in a map represents a surface in a 

cylinder, and each bit position, starting at bit O, represents a sector 

(block) on that surface (starting at sector 0). A collection of N con­

tiguous words describe a cylinder and each map is made up of M complete 

cylinders. The number of maps needed to describe a disk is then the 

total number of cylinders divided by M. 

A graphic representation of the bit maps is shown in Figure G-13. 

G.2.3 Global Directories 

A Global Directory is created just like any other node. There may or 

may not be a pointer or other data associated with the node. The only 

difference is that the "subscript" is derived from the ASCII representa­

tion of the global's name. The pointer is to the first level of that 

particular global. If necessary, the block may have a continuation 

pointer in words 254 and 255 to another block of directory entries. 

The directory block itself is pointed to by bytes 3-5 of the UCI Table 

entry. Byte 3 gives the logical disk number, and bytes 4 and 5 contain 

the block number of the first directory block. 

G.2.4 Program Directories 

A Program Directory is in the form of a single numeric datum with a 

pointer node. The pointer is to the first block of the program, and 

the single numeric portion is the two's complement of the program's 

word count. 

The first program directory block is the next higher adjacent block 

from the global directory block. The global directory block number 

is in bytes 4 and 5 of the UCI Table. 

G-10 



-----1 BITS WIDE-----

2 

T T T 

_l_ I 
I 

I 
_l_ J_ 

I 
I I I 
I I I 
I _I I -I I I I 

::::. 
I a: I I 
I §1 I 

w 
.I tn I I 
I I I 

I I I 
177777 (8) 

052525 (8) 

125252 (8) 

100001 (8) 

NO. OF BLOCKS AVAILABLE IN MAP 

N = NUMBER OF SURFACES IN A CYLINDER 
M = NUMBER OF CYLINDERS PER MAP 
I = NUMBER OF SECTORS ON A SURFACE 

0 

0 

T 
I 

_l_ 

I 
I 

I 
I - 0 

cc I cc 
0 0 
t; I I-

u 
w w 
tn I (/) 

I 
I 

WORDO 

WORD 1 (1st SURFACE 
IN A CYLINDER) 

WORD N*M 

WORD 246 } CONSTANTS 
WORD 247 IN EVERY 

WORD 248 BIT MAP 
BLOCK 

WORD 249 

WORD 253 

WORD 254 

WORD 255 

DISK TYPE N M NO. OF MAPS PER - DRIVE/PLATTJ:R 
RK 12 2 100 2 
RF 8 128 1 
RS 16 128 1 
RM 11 6 8 51 
RP 10 20 200 (RP02) 

400 (RP03) 
RJ 11 38 408 

Figure G-13 Bit Map Example 

G-11 



G.2.5 Programs 

Programs are stored on disk blocks in the same format as they are held 

in the Program buffer (Figure G-14). The Step Nwnber is stored in 

two bytes as a 15-bit positive integer. The next byte is an offset 

to the next Step or Part Nwnber. The text starts in the next byte 

and goes on to an EOM (a null byte). The end of the program is 

denoted by a null byte or by a null byte followed by a -1 byte (this 

is necessary to keep word boundaries intact for data following the 

program buffer). 

STEP } 

1---N -_u_M -_eE_R_-1 2 BYTES 

OFFSET 

EOM 

s 
T 
R 
I 
N 
G 

i (NULL) 

STEP 

11-1430 

Figure G-14 Internal Program Format 

On the disk, the first word of a block that contains a program is 

always a 2. This simply indicates that the block does not contain 

global data but is being used. The last two words of the block contain 

a continuation pointer to the next block in the chain or a null (0), 

if there are no more blocks. 

G.3 PARTITIONS 

Memory space above the MUMPS-11 system (executable code and tables) 

is divided into partitions (Figure G-15). The use of memory 

partitioning (as opposed to job swapping to and from secondary 

storage) allows the Executive to switch from one job to another in 

minimal time. Each job, as it enters the system, is assigned a 

memory partition and the job resides within that partition until 

termination (whether job-controlled or system-controlled). A parti­

tion is subdivided into four major subsections: 

• Overhead 

• Program Buffer 

• User Stack 

• Symbol Table 

G-12 



LOW MEMORY 

PARTITION 
BASE ADDRESS 

HIGH MEMORY 

PROGRAM VECTOR 

LINE BUFFER/ 
STRING ACCUMULATOR 

PROGRAM BUFFER 

1---------1 

USER STACK 

f----------1 
FREE MEMORY 

f----------1 

SYMBOL TABLE 

} 
OVERHEAO­

(FIXED LENGTH-

180 WORDS) 

1 SIZE CHANGES 
DYNAMICALLY 

l SIZE CHANGES 
DYNAMICALLY 

1 
SIZE CHANGES 
DYNAMICALLY 

11-1431 

Note that while the direction of growth of the Symbol Table is from 
high to low memory, the actual Symbol Table entries are in ascending 
memory locations. 

Figure G-15 MUMPS-11 Partition Layout 

G.3.1 Program Vector 

The Program Vector (Table G-2) is a section at the beginning of a 

partition which describes the 'status' of the job residing in that 

partition. 

G.3.2 Line Buffer/String AC 

The Line Buffer/String AC is a dual purpose buffer, 133 bytes long. 

It serves both as a buffer to contain lines being input or output 

via the terminal and as an accumulator for string expression 

results. 

G. 3. 3 Program Buf·fer 

The Program Buffer is the storage area for all Steps and Parts of a 

MUMPS-11 program. The contents of the Program Buffer can be modi­

fied in Direct Mode by adding and deleting Steps or Parts. In addi­

tion, commands which cause program loading such as CALL, OVERLAY 

and START affect buffer contents. 

G-13 



Location 

PV+~ 

+2 
+4 
+6 

+8 

+l~ 

+12 

+14 

+16 

+l-8 

+2~ 

+22 

+23 

+24 

+25 

+26 

+30 

Table G-2 

Program Vector Layout 

Contents 

Base address of partition; contains 
address to which control transfers at swap-in 
Temporary location 
Temporary location 
Stack Beginning (always contains a.word address): 
pointer to the front of the stack (will be equal 
to or one greater than PV+l6) 
Stack Pointer (always contains a word address): 
pointer to next free partition stack location 
~note that the partition stack grows from low­
mernory to high memory) 
Line Pointer: 
points to current location in the line buffer/ 
string accumulator 
Character Pointer: 
points to current interpreter character location 

Program Pointer: 
contains address of current Step ($L) 

New Step Pointer: 
pointer to the next available location (byte) 
in the program buffer 
Program Header: 
points to the beginning of the partition's 
Program Buffer 
Symbol Table beginning: 
points to the first byte of the last (top) entry 
in the local Symbol Table 

Principal I/O Device: 
identification number of principal device for current 
job 
Command: 
identifier for command currently being executed 
FOR Switch: 
Counter of the number of levels of nested FOR Commands 
on current line 
Indirection switch: 
Counter of the number of levels of indirection (+) 
on current line 
Global Header: 
pointer to most recently referenced Global Header Block 
Global Block: 
pointer to most recently referenced Global Data Block 

(continued on next page) 

G-14 



Table G-2 (Cont.) 

Program Vector Layout 

Location Contents 

+34 

+35 

+36 

+39 

+40 

+41 

+42 

+44 
+46 

Library Global Switch: 
set non-zero if a Library Global is the last 
referenced global 
Argument Switch: 
byte which indicates whether or not a conunand has 
arguments (~=no). 
Program Name (3 bytes): 
name of the program currently in the user's 
partition 
User Code (1 byte): 
User identification number (set at sign-on) 
Index into UCI table 
I/O device (1 byte): 
identification number of device currently 
assigned ($I) 
IF switch (1 byte): 
value (true or false) of the most recent IF 
conunand expression 
Job Status Word: 
bit~= progranuner mode, when set (i.e., Login with 
bit 1 = software BREAK check; PAC) 

set = got BREAK 
bit 2 = external break enable/disable; 

bit 
bit 
bit 
bit 
bit 
bit 
bit 

bit 

$E 
$W 

set = enable 
3 = CTRL/C received on terminal 
4 = timed READ overrun 
6 = Write via VIEW enabled 
7 = Library Prog.ram and Global Write enable 
12 = (delayed) 11/70 parity error in partition 
13 = swap error 
14 = delayed disk I/O error (error on 

submerged write) 
15 = hardware break interrupt check; 

set = got interrupt 
System Variable 
System Variable 

As shown in Figure G-16, the Program Buffer is byte-oriented. Entries 

consist of the Step Number in the first two bytes (a 15-bit positive 

integer in the range ~-327.67), followed by an offset which points 

to the beginning of the next Step. The remainder of the entry 

consists of up to 132 bytes containing the characters in the Step. 

The last byte of an entry is always a null which is the internal 

representation of an EOM. 

The last byte entry in the Program Buffer contains one of the fol­

lowing two data values: 

a. ~ if the Program Buffer is an even number of bytes in total 
length (in fact, the ~ is the null at the end of the last 
Step) , or 

b. 377 if an extra byte is needed to pad the Program Buffer to 
be an even number of bytes. 

These conditions are necessary because the User Stack, which follows 

the Program Buffer, must begin on a word boundary. 

G-15 



PROGRAM 
BUFFER 

STEP 

NUMBER 

OFFSET 

s 

T 

R 

I 

N 

G 

NULL 

~ 
~ ~ 

STEP 

NUMBER 

OFFSET 

s 

T 

R 

I 

N 

G 

NULL 

I 377 I 

~_(_I!° ~~~U_(_~E_p2_~ 
I I 

I 

} 2 BYTES 

FIRST STEP 

}' "''" 

LAST STEP 

} 
END OF 
BUFFER 

11-1432 

Figure G-16 Program Buffer Layout 

G.3.4 User Stack 

The User Stack dynamically increases and decreases in size relative 

to the requirements of the current Job. Its base address and hence 

the whole stack as a block, shift as a program increases or decreases 

in size, since the stack always follows the Program Buffer. 

G.3.5 Free Memory 

The area between the User Stack and the Symbol Table is defined as 

Free Memory. The amount of Free Memory available at any one time is 

contained in the $S System Variable. The Free Memory area is used to 

permit expansion of the dynamic areas of the partition. The Program 

Buffer and User Stack grows from and shrinks back to the low end of 

Free Memory. The Symbol Table grows from and shrinks back to the 

high end of Free Memory. 

G-16 



G.3.6 Symbol Table 

The Symbol Table contains entries for all defined local variables, 

subscripted or unsubscripted. Its size varies as variables are 

defined (SET Conunand) and deleted (KILL and XKILL Conunands) by the 

job running in the partition. The top of the Symbol Table (i.e. 

next available byte for an entry) is pointed to by PV+2~. A Symbol 

Table entry is variable length. The entry descriptor defines the 

fields of the entry. Decimal numbers in MUMPS-11 are manipulated 

as 2-word quantities; however, they are stored as 1-word quanti­

ties in a Symbol Table entry if their range is %327.67. 

The maximum range of numbers is ±21474836.47. String data in the 

Symbol Table is followed by a null byte to indicate EOM. Arrays 

are stored in the Symbol Table as ordered (but sparse) elements. 

Subscripts are 21-bit quantities, hence the largest subscript is 

20971.51. Arrays in the Symbol Table have an associated simple 

variable preceding them. This simple variable (having the same 

name as the subscripted variable) contains a pointer around the 

array (to facilitate table searches) and may also contain a string 

or numeri'c data. Thus, a subscripted variable array with only a 

single element has an associated simple variable which may or 

may not be explicitly defined. Entries in the Symbol Table for each 

array element, therefore, do not include the array name, but only the 

subscript value followed by associated data. The code bits (high 

order three bits of the first byte of a Symbol Table entry) determine 

the type of entry in the table, as shown in Figure G-17. 

0 SINGLE 
POINTER !----- ----- t NUMERIC 

OR t DOUBLE ARRAY 
BIT t---------- ---------

1 STRING 0 STRING 

l 1-1433 

Data Code DescriEtion 

~ )1 )1 4 word floating point numeric 1 

)1 )1 l Single numeric {signed 15-bi t) 
~ 1 )1 String 
~ 1 1 Double numeric (signed 31-bi t) 
1 ~ ~ Array offset 
1 )1 1 Array offset and single numeric 
1 1 )1 Array offset and string 
1 1 1 Array offset and double numeric 

1 Reported as $D()=8 
Figure G-17 MUMPS-11 Symbol Table Data Codes 

G-17 



Double numeric data are stored in the symbol table in the following 

order: 

high-order word ( ~-=-......_-__,,_..__,,_..----1 

low-order word { ~-=-----__,,_..--,...-----1 

Figures G-18, G-19, and G-20 show the formats of the various types 

of data entries in the Symbol Table. 

BYTE ENTRIES 

LOW MEMORY ~-~---- SYMBEG 

HIGH MEMORY 

1----------

I- - - - 5 - - - -I ( L)}( L) 

t--~-----t (H) 

8-~-----1 
T 

1----------
R 

OFFSET 

s 
---------~ 

0 
1----------

M 
1----------

E 
-- - ------

T 
I---·----- -

H 
1---------

1 

t--- -----
N 

t----6----
1---- -- -- - NULL BYTE AT 

NULL END OF STRING 

~-~---
y 

t--------

1---- --- (L)}(H) 
(H) 

1---- 425.83 ----1 (L) 

--- ----1 (H) }(L) 
~i......._,--..~,.......~~SYMEND 

NOTE 

}

VARIABLE 'A', 
SINGLE-NUMERIC 
VALUE 

VARIABLE 'STR', 
STRING VALUE 

VARIABLE 'xv', 
DOUBLE-NUMERIC 
VALUE 

11-1437 

Assuming an empty Symbol Table as an initial 
aondition, the entries in the table above aould 
have been made by the following aommand string: 

>SET XY:425.83,STR:"SOMETHING",A:5 

Figure G-18 Symbol Table Containing Three (Simple) Variables 

G-18 



LOW MEMORY 

{ 

HIGH MEMORY 

I 

-------

3 ---

A 

B ------
c 

ARRAY 
- - OFFSET --

(1510) 

SUBSCRIPT 
(3) 

30 ----

---- 20 ----

001 

SUBSCRIPT 
(1) 

10 

NOTES 

SYMBEG 

(H) 

(L) 

SY MEND 

VARIABLE 'I' 
SINGLE NUMERIC 
VALUE 

ARRAY 'ABC' 
WITH ELEMENTS 
ABC l 1l 
ABC (2) 
ABC (3) 

11-1436 

The above symbol table could have resulted from 
the following command string: 

>FOR 1=1:1:3 SET ~BCCI):10*I 

1. There is no datum associated with the array 
name. 

2. The array offset is a count of the number of 
bytes contained in the array. 

Figure G-19 Symbol Table Containing a Simple Variable and 3-Element Array 

G-19 



J 
101J A 

B 

c 

I- ARRAY -OFFSET 

-.01 -

1st ELEMENT 

- -....... 
ARRAY 'ABC' WITH AN 
ASSOCIATED SINGLE­
NUMER IC VALUE 

BYTE ENTRIES 

l 
110} L 

M 

N 

ARRAY ..., 
OFFSET 

STRING OFFSET 

s 
T 

R 

I 

N 

G 

(NULL) 

1st ELEMENT -.......... 
ARRAY'LMN' WITH AN 
ASSOCIATED STRING 
VALUE 

NOTES 

l 
111J x 

y 

z 

t- ARRAY ..., 
OFFSET 

t- ..., 

21, 500,63B.06 ..., 

t- ..., 

1st ELEMENT 

--a....-'" 
ARRAY 'xyz' WITH AN 
ASSOCIATED DOUBLE­
NUMERIC VALUE 

11-1438 

1) The datum associated with the array name may have been defined 
(as a simple variable) either before or after the array was 
defined. 

2) This dntum ( single-numeric, string, or double-numeric) imme­
diately follows the array offset, preceding the first element 
in the array. 

3) The array offset (byte count) includes the number of bytes of 
data associated with the array name. 

4) If the array is KILLed, the datum associated with the array nan 
is also KILLed. 

Figure G-20 Array Entries Having a Datum Associated with the Array Name 

G-20 



APPENDIX H 

CRC REFERENCE SUBROUTINE 

CPUDSC RSTS MACRO VM02-10 26-0CT-75 00:17:06 PAGE 29 
CPU SUBROUTINES AND UTILITIES 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 03412 
17 03412 

;*************** 
;*********************** 
iiCRCHK 
; 
;UPDATES CURRENT CRC TOTAL 

; 
;ENTRY: 

< R3) =CHARACTEI:~ 
; Rl POINTS TO THE DDM 
; EXIT: 

; 
CRCHK: 

R3 INCREMENTED BY ONE 

RO,·-<SP) ; SAVE ~~O 

18 03414 
010046 
010546 
11230.5 
042705 
177600 
016100 
000016 
004767 
000046 
012746 
000010 
000241 u: 
006000 
103004 
012705 
120001 
004767 
000024 
005316 2$ 
001367 
005726 
042700 
100200 
010061 

MOV 
MDV 
MOVB 
BIC 

R5, ... <SP) ; SAVE RS 
19 03416 
20 03420 

21 03424 

22 03430 

23 03434 

24 03440 
25 03442 
26 03444 
27 03446 

28 03452 

29 03456 
30 03460 
31 03462 
32 03464 

33 03470 
000016 

34 03474 012605 
35 03476 012600 
36 03500 000207 
37 
38 
39 
40 
41 03502 
42 03502 O:L0546 
43 03504 040016 
44 03506 040500 

;******* 

MOV 

.JSR 

MOV 

CLC 
ROf~ 

BCC 
MDV 

JSR 

DEC 
BNE 
TST 
BIC 

MDV 

MOV 
MDV 
RTS 

<R3)t,R5 iiGET CHAR+ 
#HIBYTEtPARITY,R5 

C'RC <FU ) , RO 

pc,xm~ 

1~0 
2$ 
t120001,R5 

PC, XOF~ 

<SP> 
:I.$ 
<SP>+ 
U002()0,fW 

RO, cr~c < Rl > 

<SP>+,R5 
<SP)+, RO 
PC 

iiGET PREVIOUS CRC 

;PERFORM XOR WITH R5 AND RO 

; SET UP COl.JNTEI~ 

;so BIT 15=0 ON ROR 

; SET UP smmcE 

;xoR THEM 

; LOOP THl~U? 

;pop COUNTER 

;UPDATE CRC 

;RESTORE R5 
iiRESTDRE RO 

;SUBROUTINE TO PERFORM EXCLUSIVE-OR BETWEEN R5 AND RO: 
; 
XOf~: 

MDV 
BIC 
BIC 

F~5, - <SP) 
I~(), <SP) 
R5,l~O 

H-1 



45 03510 052600 
46 03512 000207 
47 
48 
49 

BIS 
RTS 

<SPH,RO 
PC 

H-2 



APPENDIX I 

WRITING AND INTERFACING 1/0 DEVICE DRIVERS 

I.l INTRODUCTION 

The MUMPS-11 system provides the user with the option of expanding the 

system's configuration with up to four additional devices, which may 

be assigned to the reserved device numbers 51-54 •. However, if the card 

reader is to be installed as part of the system configuration, device 

number 54 will be assigned to the card reader. This will mean that de­

vice number 54 cannot be assigned to another user device. The user 

must write his own device drivers in the MACRO Assembly Language to 

handle the I/O operations associated withthe additional devices. 

A MUMPS-11 I/O device driver follows certain system naming conventions 

and uses several MUMPS system (global) routines to perform standard 

operations. The following paragraphs are intended to provide the appli­

cation system programmer with the information necessary to write a de­

vice driver using these conventions and routines. A knowledge of MACR0-

11 Assembly Language is assumed 1 • 

If more than one kind of device is to be added to the system, the user 

must write a separate driver for each particular device. Furthermore, 

he will also have to write the routines for associating the device num­

ber with the appropriate driver. Refer to paragraph I.4 for details. 

Object modules of all user-written device drivers must be incorporated 

(linked) into the MUMPS system during system build. The MUMPS-11 Opera­

tor's Guide describes the linking procedure. 

I.1.1 Device Driver Functions and Routines 

The primary functions of an I/O device driver include: 

• initializing the driver when the device is ASSIGNed 

• handling any special device functions made with an ASSIGNment 

• setting up buffers for the temporary storage of data during 
I/O transfers 

1 For details on the MACRO language, the user may refer to the MACR0-11 
Assembly Language Programmer's Manual (DEC-11-0MACA-A-D). He may also 
find the appropriate PDP-11 Processor Handbook and the PDP-11 Peripherals 
and Interfacing Handbook useful. 

I-1 



• answering calls from the MUMPS-11 Language Interpreter to 
perform an I/O operation 

• transferring data from a device's buffer to a user's 
program partition buffer and vice versa 

• ser~icing device interrupts 

• reporting error conditions 

• cleaning up when the device is UNASSIGNed 

These functions correspond, in general, to the types of routines 

which must be included in the driver. 

In order to interface properly with the MUMPS system, the driver 

must include at least six routines: 

• an initialization routine named RESASG 

• a clean-up routine named RSUASG 

• an input handling routine--named by system convention 
XXXIN (where XXX is a 1 to 3-character mnemonic 
for the device) 

• an output handling routine--named by convention XXXOUT 

• an error reporting routine--named by convention XXX$A 

• device interrupt service routine(s) 

All routines, except the interrupt service routines, are called by the 

MUMPS-11 Language Interpreter when processing the job currently in the 

Run Queue. The specific routine called depends on the I/O operation 

requested by the job. 

The distinction between the routines called by the Interpreter and 

the interrupt service routines is important. If not written as 

distinct routines, a job might enter an indeterminate state if a 

process initiated from one set of routines is interrupted from the 

other before the first processing is finished. The user should 

note, therefore, that jobs may be "hung" only from Interpreter­

called routines and "waked" only from interrupt processing routines 

(see paragraphs I.2.4 and I.3.2). 

I-2 



Interpreter receives 
ASSIGN command and --
links logical I/O 
section with driver 1 

I 
Interpreter receives 
READ, LOAD, WRITE --~ 
TYPE or PRINT command 

I 
Driver receives control 
until I/O tranfer is 
complete 2 and reports 
error status in $A 

l 
Interpreter receives -
UNASSIGN command 

Calls driver routine 
RESASG 

Calls syste1n routine 
INPUT or INPUTH, or 
OUTPUT or OUPUTl which, 
in turn, calls the 
driver routine XXXIN 
or XXXOUT 

Calls driver routine 
RSUASG 

Figure I-1 Driver Operation 

I.1.2 System Global Variables and Routines 

The driver uses several global system routines and variables 

when handling standard operations. Table I-1 lists the global 

system routines and variables which may be used by either Interpreter­

called routines or interrupt service routines. Table I-2 lists 

the globals which may only be used by Interpreter-called routines. 

The global routine named QJOB which "wakes" a job may only be 

called by interrupt service routines (see I.3.2). 

1 The logical I/O section re-establishes the link each time the 
job which issued the ASSIGN command is swapped-in until the 
device is UNASSIGNed. 

2 0n input, driver retains control until the entire line is packed 
into the partition's line buffer. Output may be submerged 
depending on the device and buffer structure. 

I-3 



NAME 

LBSIZE (byte) 

ILGINT (word) 

INHIB 

DEVTAB 

JOB TAB 

SAVREG 

RES REG 

NUMAC ( 2 words) 

Table I-1 

Global Routines and Variables 

FUNCTION 

The maximum number of characters that 
a driver may put in the current job's 
line buffer; the maximum size of a 
line input (13210). 

The number of illegal interrupts which 
have occurred in the system. The 
driver should increment the location 
each time it detects an illegal interrupt. 

The interrupt priority level used to 
shut out interrupts. Only necessary 
for Interpreter-called routines to 
avoid race conditions (interrup,t 
processing routines are normally 
entered at level 6). The driver may 
raise the priority level before 
making checks which may hang the job 
by issuing the instruction: 

MOVB #INHIB,PSW 

The device table (see Appendix F) 

The job table (see Appendix F) 

Routine which saves registers RO-RS 
(see I. 3) 

Routine which restores registers 
RO-RS (see I.3) 

The two-word numeric accumulator 
(see I.2.1.1) 

I-4 



Table I-2 

System Global Variables and Routines Called by 
Interpreter-called Driver Routines 

NAME 

LINPTR (word) 

LBHDR (word) 

$I (byte) 

JBSTAT (word) 

TMPl (word) 

$A (2 words) 

CURRX (byte) 

CURRY (byte) 

LBOV 

ADREVL 

DIVlOO 

RBREQ 

RTNRB 

FUNCTION 

The partition overhead location 
(indexed by R4) which contains 
the address of the line buffer 
within the partition (see I.2.4 and 
I.2.5). 

The base address of the line buffer 
in the current job's partition 
(see I.2.4 and I.2.5). 

The partition overhead location 
(indexed by R4) which contains the 
number of currently ASSIGNed device. 

The partition overhead location 
(indexed by R4) which contains the 
job's status ($J) (see I.2.4.2). 

The partition overhead location 
(indexed by R4) which contains the 
time interval on a timed READ. 

The $A System Variable (see I.2.6). 

The $X System Variable. The driver 
can calculate $X on output if applicable 
to the device. It is handled like $A 
and should be in the XXX$A routine 
(I.2.6). 

The $Y System Variable; same as 
CURRX above. 

The terminal error message processed 
by the system for line buffer overflow. 
The driver may issue it as illustrated 
below, where RS contains the character 
count: 

CMPB #LBSIZE,RS ;too many characters? 
BGE ERROR 

ERROR: LBOV ;yes, terminal error 

Routine which checks for ASSIGN command 
arguments (see I.2.1.1). 

Routine which divides contents of NUMAC 
by 100 (see I.2.1.1). 

Routine which requests a ring buffer 
from the system's buffer pool (see I.2.3.2). 

Routine which returns a ring buffer to the 
pool (see I.2.3.2). 

(continued on next page) 
I-5 

.. 



Table I-2 (cont.) 

System Global Variables and Routines Called by 
Interpreter-called Driver Routines 

NAME FUNCTION 

PACK 

UNPACK 

DQJOB 

CLKIOR 

SWPOUT 

RES DEV 

Routine which transfers one line from 
the job's output buffer to the device's 
buffer (see I.2.3.5). 

Routine which transfers one line from 
the device's buffer to the job's line 
buffer (see I.2.3.4). 

Routine which hangs a job (see I.2.4.1). 

Routine which hangs a job for a timed 
READ (see I.2.4.2). 

Routine which hangs a job for a time 
slice. No calling conditions other 
than it must be called at-priority 
level 6. The programmer may not 
assume that any registers are intact 
on return. Calling sequence: 

MOVB #INHIB,PSW 
JSR PC,SWPOUT 

First of 3 words in IOD module into 
which reserved device handler must 
enter the addresses (in stated order) of 

RESDEV: 
+2: 
+4: 

XXX$A 
XXXIN 
XXXOUT 

routines. These are the locations which 
tie the system routines 'INPUT and 
'OUTPUT' to the appropriate routine in 
the user-created driver. 

I.2 INTERPRETER-CALLED ROUTINES 

I.2.1 Device ASSIGNment--Routine Name: RESASG 

The system calls the driver when the Interpreter receives an 

ASSIGN command for the driver's device. This allows the driver to 

p~rform any initial operations that may be necessary. For example, 

the terminal driver initialization routine turns off the CTRL 0 

feature if it was in effect and processes a right margin specification 

if it is present in the ASSIGN command. If there are several 

reserved device drivers, the routine would also direct a call to the 

appropriate driver for the ASSIGNed device (see I.4): 

I-6 



The routine to process the ASSIGN for a reserved device must be. named 

RESASG and be defined by a .GLOBL statement in the device driver. 

RESASG must perform the operations necessary to initialize the driver 

and the device for the following conditions: 

a. the device is not already 'owned' by the job 
b. the device is already 'owned' by the job. 

on entry to the routine, RS contains the device number in its low 

byte, the exit is accomplished via a 'RTS PC' instruction sequence. 

No return conditions are necessary. 

I.2.1.1 Handling Optional Syntax on the ASSIGN Command 

The ASSIGN command may contain information that the driver must 

process. For example, an ASSIGN command for a DECTape device may 

contain the byte address for the I/O operation. The system's 

global routine ADREVL is used to look at the character immediately 

following the device number in the ASSIGN statement, and to set the 

appropriate condition codes. The command line is currently in the 

partition's line buffer. 

Routine Call: 

JSR PC,ADREVL 

Return: 

+ 

0 

;no entry conditions 

;no colon argument present 

;the colon argument is False 

;the colon argument is True {returns 
a non-zero value) 

No register may be assumed to be intact on return. 

If the driver needs the actual numeric value of the optional 

ASSIGN command argument for further processing, it must call the 

system's global routine DIVlOO to divide the number by 100, since 

it being carried as a MUMPS integer. DIVlOO places the result in 

the numeric accumulator. 

I-7 



Routine Call: 

JSR PC,DIVlOO 

Return: 

NU MAC 

NUMAC+2 

;no entry condition 

;contains high-order numeric value 

;contains low-order value 

No registers may be assumed to be intact on return. 

EXAMPLE: 

The following code sequence sets the right margin on a terminal. 

MUMPS command line: A 1:72 

Driver ASSIGN Code • 

• GLOBL ADREVL,DIVlOO,NUMAC 
MOV Rl,-(SF) 

JSR PC,ADREVL 
BGE DONE 
JSR PC,DIVlOO 

MOV (SP)+,Rl 
MOVB NUMAC+2,MARGIN (Rl) 

;save address of device descriptor 
;buffer (DDB) for terminal 

;get optional argument 
;if there is none, quit 
;otherwise divide argument by 100 

;get the DDB address saved 
;set user-specified margin 

I.2.2 Device UNASSIGNment--Routine Name: RSUASG 

The driver is called when the Interpreter detects an UNASSIGN 

command for that driver's device to allow the driver to perform 

any necessary clean-up operations. For example, when the terminal 

driver's RSUASG routine is called, it sets up a wait condition to 

allow any current operation to finish (since in this case, output 

may be submerged), returns the ring buffer to the system's buffer 

pool, and resets the right margin to zero. 

Any device driver must have a global routine 

it is only a return to the caller. On entry 

contains the device number in the low byte. 

named RSUASG, even if 

to the routine, RS 

Return is through 

RTS PC, and no special conditions are necessary .• 

I-8 



I.2.3 Buffers 

A programmer may provide temporary storage space for I/O data in one 

of three ways: 

1. include the necessary buffers within the driver· itself 

2. request 64-character ring buffers from the system's pool 1 

3. use the 512-character buffers automatically provided by 
the system from the system's buffer pool 

The system supplies the addresses of buffers obtained from the buffer 

pool in System Table entries SYSTAB+76 (device number 51) , SYSTAB+78 

(device number 52), SYSTAB+80 (device number 53), and SYSTAB+82 

(device number 54). 

I.2.3.l Internal Buffers - If the programmer includes buffers within 

the driver and is not going to use buffers from the system buffer pool, 

the driver routine RESASG must pass the buffer address to the system 

when the device is ASSIGNed. The code is: 

MOV #BUFADR,@2(SP) 

When the device is UNASSIGNed, the RSUASG routine must remove the 

buffer address from the system as follows: 

CLR@2(SP) 

I.2.3.2 64-Character Buffers - If the programmer wishes to request 

a 64-character buffer from the system, the driver competes with terminal 

drivers for buffers. Each ring buffer is 64 bytes (32 words) long. 

The last 6 bits of a buffer's starting address contain zeroes. The 

last location in a buffer, therefore, is the starting address plus 

778. 

The driver must request a 64-character·buffer and pass the buffer 

address onto the stack when the RESASG routine is called, and return 

the buffer to the pool when the RSUASG routine is called. The driver 

uses the global routine RBREQ to request a 64-character buffer. 

This routine returns the buffer address in register 5 (RS). This 

address must be placed on the stack. The calling sequence is: 

• GLOBL RBREQ 
JSR PC, RBREQ 
MOV R5,@2(SP) 

1 Buffers obtained from the system's buffer pool must be allocated 
during system generation. 

I-9 



All registers are destroyed. If no buffer is available, the job is 

hung in the proper buffer resource bound state until one is available. 

The driver uses the global routine RTNRB to return the buffer when 

the device is UNASSIGNed. The driver must pass the address of the 

buffer to RTNRB in RS. The calling sequence i~: 

.GLOBL RTNRB 
JSR PC,RTNRB 
CLR @2(SP) ;RS has been set to buffer address before this 

I.2.3.3 Sl2-Character Buffers - If the driver within RESASG did not 

allocate a buffer as described in I.2.3.1 or I.2.3.2, the system 

will then allocate a Sl2-character buffer to the driver when the 

device is ASSIGNed and will automatically return the buffer to the 

pool when the device is UNASSIGNed. The driver competes with magtape, 

DECtape Sequential Disk Processor, and VIEW (disk) command devices 

for buffers. Each buffer is Sl2 bytes (2S6 words) long and always 

starts on a word boundary. 

I.2.3.4 Unpacking Buffers - The global routine UNPACK takes a line 

from the device buffer and puts it into the buffer to which RO 

points. Lines are terminated by legal ASCII line terminators: LINE 

FEEDS (1210), vertical TABs (1310), and FORM feeds (14 10). Carriage 

RETURNS (1S10 ) are ignored. A null (0) causes a return with the N 

bit set. A single call can unpack a maximum of 132 characters. 

To call UNPACK: 

• the address of the line buffer into which the characters 
are to be inserted must be in RO 

• a pointer to a 2-word block (in the driver) must be in R2; 

--word 1 contains a pointer to the device buffer from 
which characters are to be taken 

--word 2 contains a negative count of the number of bytes 
left in that device buffer. 

Calling Sequence: 

.GLOBL UNPACK 
JSR PC,UNPACK ;RO and R2 already set up 

I-10 



On return, the driver may expect: 

• a pointer in RO to the next free location in the line 
buffer just packed 

• the words pointed to by R2 updated: 

--word 1 points to the next character to unpack from 
the device buffer 

--word 2 contains the updated negative count (0 if 
the buffer is empty) 

• the condition codes indicate the following: 

--z bit set means that the exit was successful (i.e., a 
line terminator was encountered) 

--N bit set means line buffer overflow (i.e., no line 
terminator encountered) 

--no bits set means that the buffer is full 

• Rl, R3, R4, RS are the same as on entry; R2 is destroyed 

I.2.4 Interpreter Call for Input--Routine Name: XXXIN 

When the Interpreter detects a READ or LOAD cononand in the current 

job, it does a JSR PC,INPUT to the logical I/O section of the 

system module IOD. The logical I/O section does a JSR PC,XXXIN to 

the I/O driver which was linked to the job when the ASSIGN cononand 

was issued. 

The driver routine may expect the following conditions to exist when 

it is called: 

• the base address of the partition in R4 

• the address of the user partition line buffer in the globally­
tagged location LBHDR in the MUMPS Executive 

• two entries on the stack: the return address to the logical 
I/O section and the value for a timed READ (see below) • The 
programmer should pop both of these entries off inonediately 
to enable eventual return directly to the Interpreter and 
handle time.d READS if necessary. If timed READs are to be 
processed, the second entry must be used as described in 
I.2.4.2. . 

I-11 



MUMPS expects the following conditions when the driver returns to 

the Interpreter: 

• the base address of the partition in R4 (same as entry) 

• the base address of the user partition line buffer in the 
globally-tagged location LINPTR in the user partition 
overhead. The code is: 

.GLOBL LBHDR,LINPTR 
MOV LBHDR,LINPTR(R4) 

• the complete line of input in the user partition line 
buffer (I.2.3.4). This line may contain not more than 
13210 7-bit ASCII characters (one per byte) terminated 
by a null (0) byte. 

• the current error status in the $A System Variable 
(see I.2.6). 

I.2.4.1 Hanging ~Job on Input - In order to allow other MUMPS jobs 

to run, the driver should hang a job when the complete line of input 

is not in the driver's buffer and some device activity (e.g., tape 

rewind) is required to obtain the data. The driver accomplishes this 

by passing a word to DQJOB in RS which contains a unique hang code 

for the device. The word should be in the form: 

• bit 15 set to !--indicates that the job is I/O hung 

• bits 14 through 8 contain a unique code 

• bits 7 through 0 set to 0--the system will put a job 
number in these bits 

NOTE 

The following codes for bits 14-8 are 
already assigned and must not be used: 

1400008 

1420008 

1440008 

terminals 

mag tapes 

DECtapes 

The driver's interrupt service routines should then request the 

Executive to return a job to the run queue when the required device 

activity is completed (see I.3.2). The driver can therefore assume 

upon return from DQJOB that the buffer is full or that a line 

terminator has been received. 

I-12 



Example: 

The following two instructions hang a job until terminal I/O is 

finished. 

HANG: .GLOBL DQJOB 
MOV #140000,RS 
JSR PC,DQJOB 

(BR MORE) 

1terminal hang code 
1hang the job until I/O is done 

1go get more characters 

I.2.4.2 Handling Timed READs - Although the timed READ syntax is 

primarily intended for terminals, any device may use it. Upon entry, 

the driver can expect the second entry on the stack to contain the 

time interval specified with the READ1 if there is none, the stack 

entry is o. 

If the job needs to be hung to wait for input, the driver must put 

the job in the clock queue rather than the I/O bound queue, by 

calling the CLKIOR global routine. By convention, the driver must 

return a null line to the job and set bit 4 in the $J System 

Variable (global tag JBSTAT) if a timed READ fails. 

CLKIOR returns to the driver on one of three conditions: 

• a full buffer was input from the device 

• a line terminator was received from the device 

• the specified time was up 

The first two conditions must be detected by the interrupt service 

routine which must, in turn, signal the executive as shown in I.3.2. 

The driver must distinguish between the first two con·ditions and 

the third. 

Example: 

Suppose that the driver set a word labelled "INPUT" to a non-zero 

value if some data was received from a device1 the driver did not 

pop entries off the stack upon entry. The following code sequence 

will perform a timed READ. 

I-13 



.GLOBL CLKIOR,JBSTAT,LBHDR 
MOV 4(SP),R5 
BEQ HANG 
JSR PC,CLKIOR 
TST INPUT 
BNE MORE 
BIS #20,JBSTAT(R4) 
MOV LBHDR,RO 
CLRB (RO) 
(go to normal exit) 

;non-zero time interval? 
;then go to HANG (as above) 
;else, hang job in clock queue 
;did any input occur? 
;yes--go process it 
;no--set bit 4 in $J 
;reset to beginning of line buffer 
;return null string 

Due to a time-sharing conflict, the system may wake a job prematurely 

that was hung for a timed READ. The time interval, stored in TMPl 

in the partition's overhead, will not be zero. The following code 

expands the previous example to avoid a premature wake condition • 

• GLOBL CLKIOR,TMPl,JBSTAT,LBHDR 
MOV 4 (SP) ,RS 
BEQ HANG 

TIMHNG: JSR PC,CLKIOR 
TST INPUT 
BNE MORE 
MOV TMPl(R4),R5 
BNE TIMHNG 

BIS #20,JBSTAT(R4) 

MOV LBHDR,RO 
CLRB (RO) 
(go to normal exit) 

I-14 

;non-zero time interval? 

;hang job for time out 
;did any input occur? 
;yes, go process it 
;did timed READ time out? (0) 
;go hang for remainder of 
time 

;time overrun, set bit 4 
in $J 

;return null string 



I.2.4.3 Sample Input Routine Flowchart 

N 

PUT CHARACTER 
INTO LINE 
BUFFER 

y 

y 

y 

y 

REQUEST 
INPUT 
FROM 
DEVICE 

FORCE EOM 
-OR­

LBOV ERROR 

I-15 

Note: Portions shown in dashed 
lines are required only 
if timed 'READ's' are 
allowed. 

t STRING 

;= =- J_=- =- -, 
I SET I 

OVERRUN 
I BIT IN $J 
I __ 

SET LINPTR= 
LINE BUFFER 
ADDRESS 

XXX$A 

SET $A 

( RTS PC ) 



I.2.5 Interpreter Call for Output--Routine Name: XXXOUT 

The dispatch to the output routine is the same as that for input, 

except that it is called when the Interpreter detects a TYPE, PRINT, 

WRITE or output in a READ command; they all require the same driver 

activity. 

The driver may expect the following conditions upon entry: 

• R4 contains the base address of the partition 

• RO contains the address plus one of the line buffer 
that contains the line to be output 

• R3 (low byte) contains the first character to be output 

• the return to the logical I/O section on the stack 
(may be discarded immediately) 

MUMPS expects the following conditions when the driver returns: 

• R4 contains the base address of the partition (same as entry) 

• the base address of the line buffer in the word labelled 
LINPTR in the partition overhead; thus: 

.GLOBL LBHDR,LINPTR 
MOV LBHDR,LINPTR(R4) 

• the latest error status in the $A System Variable 

I.2.5.1 Hanging a Job on Output 

The driver needs to hang a job on output only when: 

• the device is currently output active and, therefore, the 
output buffer is busy, or 

• there are more characters to go out than there is room in 
the output buffer (for example, the terminal driver hangs 
the job if there are more than 64 characters in the 
output message) • 

The driver may, therefore, submerge a significant part of the output. 

Whenever the message length exceeds the buffer length or previous 

output is unfinished, however, the job must hang to allow other 

MUMPS jobs to run by using the routine DQJOB, as described in 

paragraph 5.8.4.1. 

I-16 



I.2.5.2 Sample Output Routine Flowchart 

ENTRY 

N 

PUT CHARACTE 
INTO DEVICE 
BUFFER 

GET NEXT 
CHARACTER 

N 

y 

y 

I-17 

KILL ANY 
INPUT 

START 
OUTPUT 

START 
OUTPUT IF 
NECESSARY 

SET LINPTR= 
LINE BUFFER 
ADDRESS 

XXX$A 

SET $A 

c RTS PC ) 



I.2.6 Error Reporting--Routine Name: XXX$A 

The driver must set the $A System Variable to the current error 

status at three different times: 

e when MUMPS calls XXX$A when the device is ASSIGNED 

• when the job is swapped in and the device is still 
current (device number in $!) 

• when the driver finishes I/O processing in the 
XXXIN and XXXOUT routines 

$A may contain two different kinds of information: 

• error status 

• byte or block address 

The terminals and magtape use $A only as an error status register. 

DECtape uses $A to contain the current byte address. The sequential 

disk processor uses $A both as an error status register and to 

contain the c~rrent address, through not at the same time. 

$A is a 2-word system variable which is treated as a 2-word numeric 

value. $A is a global tag; the variable itself is in the system 

module IOD. 

$A -- high-order word 
$A+2 -- low-order word 

Since $A is a numeric value, it must fall within the range of 

legal MUMPS numbers, when multiplied by 100 (±21474836.47). The 

programmer should, therefore, take some care when putting information 

into the high-order word of $A. For example, it is not possible 

to put a device status register which uses bit 15 as an error bit 

in the word $A; it must go in $A+2 or be split between the two words. 

On entry to the XXX$A routine from the system, the device number 

will be in the low-order byte of Rl. Return is through RTS PC, 

and no return conditions are expected. 

I-18 



I.3 INTERRUPT SERVICE ROUTINES 

When the system receives a device interrupt, it calls the driver's 

I/O interrupt service routine. What each routine must do is entirely 

dependent on the device. Two general considerations for both the 

input and output processing routines are: error checking and deciding 

when to inform the system that I/O is complete. 

When the system calls the routine, it accesses the driver through 

the device's interrupt vector. The driver does not know the system 

status; in particular, it does not know whether or not the job 

owning the device is in the system's Run Queue. 

It is suggested that the processor priority level be raised to 6 on 

any interrupts by setting the second word of the device vector to the 

appropriate psw value (e.g., 300 8). The Interrupt Service Routine 

should be brief because interrupts from other devices are shut out 

during interrupt processing. 

The driver must first save the registers using the global routine 

SAVREG. The driver must restore the registers immediately before 

the exit RTI by using the global routine RESREG. The calling 

sequence is the same for both routines: 

JSR RO,SAVING 
-and-

JSR RO,RESREG 

I.3.1 Error Reporting 

The driver reports error conditions in the $A System Variable. 

Interrupt processing routine, however, cannot put the error codes 

directly into $A because the requesting job may not be in the Run 

Queue. The routine should save the error code in a location unique 

to the device, for example, each terminal has a "Device Descriptor 

Buffer" (DDB) to carry this information. The XXX$A routine then 

puts the error code in $A when the job is waked. In general, an 

error should terminate any input or output and wake the job although 

the driver performs more sophisticated error-handling procedures, 

such as performing retries, etc., if the nature of the device 

warrants them. 

I-19 



I.3.2 Waking the Job 

When I/O completes or an error occurs, the driver's interrupt service 

routine must request that the job be placed in the system's Run Queue. 

This operation is the complement of hanging a job in Interpreter­

called routines. 

The interrupt service routine calls the global routine QJOB to wake a 

job. QJOB expects the job's number in the low byte of RS and the 

hang code (as specified to DQJOB) in the high byte of RS. 

Given that the driver knows the device number, it may obtain the job 

number from the system table DEVTAB. The following example wakes the 

job owning the interrupting device, and assumes that RS contains the 

device number • 

• GLOBL DEVTAB,QJOB 
MOVB DEVTAB (RS),RS 

BIS #HNGCOD,RS 
JSR PC,QJOB 

;put job number in RS (note 
that the high byte of RS is 
always 0 because the job 
number is positive) 

;put hang code in high byte 
;wake the job 

There is no I/O hung code when a job is hung on a timed READ. The 

following example passes the correct information to QJOB when waking 

a job from a timed READ • 

WAKJOB: 

• GLO~L DEVTAB,JOBTAB,QJOB 
MOVB DEVTAB(RS) ,RS ;put the job number in RS 
TST JOBTAB(RS) ;bit lS is 0 if in timing state 
BPL WAKJOB 
BIS #HNGCOD,RS 
JSR PC,QJOB 

;put hang code in high byte 
;wake the job 

If the driver calls QJOB and the job is not hung, the system ignores . 
the call. The interrupt processing routines may, therefore, wake the 

job at any time. 

I.4 DRIVER INTERFACING 

A driver is connected to the system software in three ways: 

1) The RESASG and RSUASG routines are globally linked 
to the system's I/O driver module at system 
build time. 

I-20 



2) The XXXIN, XXXOUT, and XXX$A routines. are connected 
to the system in the RESDV table in the IOD module, 
in one of two ways: 

a) automatically by 'once only' initialization code 
in the driver itself probably executed upon the 
first ASSIGN after system startup. 

b) manually by using Mini-ODT to patch memory after 
system generation. 

3) The interrupt service routines are connected to appro­
priate interrupt vectors in core memory: 

a) automatically by absolutely defining the contents 
of the vector before assembly via the .ASECT 
pseudo-op, or 

b) manually by using Mini-ODT to patch the vector after 
system generation. 

Although there are four reserved device numbers, Sl-S4, the system 

provides direct interfacing for only one driver. If more than one 

driver is necessary, the user must write dispatch routines to match 

the device number with the correct driver. This applies to all 

routines for each driver except the interrupt routines. 

The device number specified in the ASSIGN command is either in RS or 

in $I{R4) in the partition overhead. XXXIN, XXXOUT and XXX$A get the 

device number from $I. RESASG ANDRSUASGget the device number from the 

low byte of RS. 

For example, assume that a card reader has been assigned to device 

number Sl and a cassette to S2. User-written drivers for both have 

been linked into the system. The following code performs the correct 

dispatch from RESASG. CDASG is the ASSIGN routine for the card reader 

and is physically located in the card reader driver. CSASG is the 

ASSIGN routine for the cassette driver, and is located in that driver • 

RESASG: 

CSASG: 

• GLOBAL CDASG,RESASG 
CMPB #51.,RS 

BNE CSASG 

JMP CDASG 

;compare card reader device number 
in RS 

;if not equal, go to cassette 
driver routine 

;otherwise, go to card readerroutine 

;ASSIGN routine for the cassette 

The following example shows a dispatch for card reader and cassette 

input routines. The general input routine was linked into the system 

as RESIN. The card reader input routine is CDIN,; the cassette input 

routine is CSIN. 

I-21 



RESIN: 

CSIN: 

.GLOBL CDIN,$I 
CMPB #51.,$I(R4) 
BNE CSIN 
JMP COIN 

I-22 



$A system variable, 3-8, 3-12, 
3-13, 3-14, 3-16 through 
3-23, 3-25 t 3-28, 3-29 I 

3-31 through 3~35, 3-38, 
5-1, 5-2, F-11, F-15 

CPU-CPU device, 3-32, 3-33 
magnetic tape, 3-28 
terminals, 3-12 

Abbreviation of commands, 2-8, 
5-11 

Access codes, 2-5 
Address pointers, F-2 
ALT MODE, 2-4, 3-10 
AND operator, 5-1, 5-2 
Angle brackets, 

communication messages, 4-12 
prompting symbol, 2-6 

Application programs, 1-11 
Argument list, optional, 2-8 
Arrays, 1-3, 1-4, 1-12 

storage, G-17 
ASCII code, B-1 

nonprinting, 3-5 
ASR-33 Teletypes~ 1-1, 1-7, 

3-9 
ASR-35 Teletypes, 1-1, 1-7 
ASSIGN command, 2-11, 3-1, 3-2, 

3-7, 3-13, 3-16 through 
3-21, 4-5, 5-1, F-5, I-7 

Assignment of I/O devices, 3-2 
Automatic data mode conversion, 

2-10 

$B System Variable, 3-37, F-12 
Backslash ( \) , xiv, 2-4 
Bars, vertical, xiv 
Base address, F-2 
Baud rates, 2-3 
BCS (Broadcast program) , 1-14 
Bit assignments, 

$A, 3-11, 3-20, 3-27 
$J, 5-2 

Bit manipulation, 5-2 
Bit maps, G-10, G-11 
Bit masks, 5-1, 5-2, 5-19 

values, 5-1 
Blocks, disk, G-1, G-2 
Boolean AND, 5-1 
Braces ( {}) , xiv 
BREAK, xiv, 3-12 
Break button on Teletype, 2-4, 

3-10 
BREAK command, 5-3, 5-9 
Broadcast Program (BCS) , 1-14 
Buffer layout, G-15, G-16 

INDEX 

Buffers, 
DECtape, 3-15, 3-16 
driver, I-9 
magtape, 3-16, 3-17 
unpacking, I-10 
64-character, I-9 
128-character, I-10 

Calendar Date subroutine (%D), 
4-5 

CALL command, 2-12, 5-10 
Caretaker Reporter program 

(KTR) , 1-14 
Carriage RETURN, 2-4, 3-10 
Carriage RETURN/LINE FEED, 3-5 
Changing program name, 2-14 
Changing programs, 2-13, 2-14 
Character deletion, 2-4 
Characters, 

form control, 3-5 
keyboard control, 2-4 
total number output, 3-7 

Characters and functions, 
special, 

CPU-CPU device, 3-29 
DECtape, 3-16 
line printer, 3-14 
magnetic tape, 3-16 
paper tape reader/punch, 3-13 
sequential disk processor, 

3-34 
terminals, 3-9, 3-10 

Character set, B-1 
Classes of users, 1-4 
Colon use in commands, 2-9 
Command abbreviations, 2-8, 5-11 
Command and function syntax 

rules, 
summary, 2-8 

Command, conditional execution 
of, 2-9, D-2 

Command separation from argument, 
2-8 

Commands, I/O device, 
CPU-CPU device, 3-8, 3-29 
DECtape, 3-15, 3-16 
DMC-11, 3-40 
line printer, 3-14 
magnetic tape, 3-17 
paper tape reader/punch, 3-13 
sequential disk processor, 3-34 
terminals, 3-9 

Comments, 2-8 
Communication, user to operator 

(%OP), 4-12 
example, 4-13 

Index-1 



INDEX (CONT. ) 

Compatibility, magnetic tape/ 
DOS-11, 3-17 

label, 3-19 
Concatenation of lines, 3-5, 3-6 
Conditional execution of 

commands, 2-9, D-2 
Configuration, see Hardware 
Conserving memory, 5-9, 5-10 
Control characters, special 

keyboard, 2-4, 3-13 
Control codes, magtape, 3-18 

summary, 3-19 
Conversion, automatic data 

mode, 2-10 
Conversion, octal/decimal, 4-11, 

4-12 
Conversion tables, mathematical, 

E-1 
CPU-CPU device, 3-29 through 

3-34, F-12 
CRC (Cyclic redundancy check) , 

3-30, 3-31, Appendix H 
Creating programs, 2-10 
CTK (System Caretaker program) , 

1-14 
Current devices, 3-2 
CTRL/C, 2-4, 3-10, 5-3, 5-9 
CTRL/O, 2-5, 3-10 
CTRL/Q, 3-10 
CTRL/S, 3-10 
CTRL/U, 2-5, 3-10 
Cyclic redundancy check, 3-31 

calculating, Appendix H 
CPU-CPU device, 3-30 

DAT (Date routine) , 1-14 
%D (Date subroutine), 1-15, 4-1, 

4-5 
Data, 

formatting, 3-5 
I/O, 3-4 
management, 1-3 
mode conversion, automatic, 

2-10 
output, 3-4 
processing, 1-2 
protection, 1-4 
structures, G-1 

Data Base Supervisor, 1-9, 1-11, 
1-12 

Data, global, G-3 
Datasets, 3-12, 3-13 
Data transmission protocol, 

CPU-CPU device, 3-29 
Date subroutine (%D), 1-15, 4-5 
DBT (Disk Block Tally program) , 

1-14 

DDB (Device Descriptor Buffer) , 
F-11 through F-15 

Debugging, 1-11, 2-12, 5-9 
Decimal numbers, G-17 
DECtape, 3-15 

buffers, 3-16 
DECwriter, 3-9 
Deletion of, 

line, 2-5 
programs, 2-13, 2-14 
single character, 2-4 

Device, 
assignments, I/O, 3-2 
characteristics, 3-8 
descriptor buffer (DDB) , F-11 

through F-15 
drivers, I-1 through I-3 
not available, 3-1, 4-9 
ownership, 3-1, 3-2 
supervision, 1-10 
table, I/O, 3-3, 3-4 

Device, 
current, 3-2 
dummy, 3-2 
peripheral, 1-1 
principal I/O, 3-2, 3-4, 3-8 

Device Assignment (RESASG) 
routine, I-6 

Device numbers, 3-1, 3-2 
CPU-CPU device, 3-29 
DECtape, 3-3, 3-15, 3-16 
line printer, 3-3, 3-14 
DMC-11, 3-40 
magnetic tape, 3-3, 3-17 
paper tape reader/punch, 3-3, 

3-13 
sequential disk processor, 3-3, 

3-34 through 3-37 
terminals, 3-2, 3-3 

Device Table (DEVTAB) , F-7 
Device Unassignment (RSUASG) 

routine, I-8 
Direct mode, I-2, 2-5 

command entry, 2-7 
command execution, 2-8 
log-in/log-out, 2-7 

Directories, 
global, G-10 
program, G-10 

Disk, 
blocks, G-1, G-2 
packs, 1-12 

Disk Block Dump program (DMP) , 
1-14 

Disk Block Tally program (DBT) , 
1-14 

Disk data, 
management, 1-3 
structures, G-1 

Index-2 



INDEX (CONT. ) 

Disk packs, 1-12 
Distribution, system, 1-5 
DMC-11 (Communications Controller) , 

3-40 
DMP (Disk Block Dump program) , 

1-14 
DO command, 2-13 
DOS-11 compatibility, magnetic 

tape, 3-17 
label, 3-19 

Double numeric data, G-3, G-6, 
G-7 

Double-precision floating point 
numeric data, G-8, G-9 

Downward pointer, 5-14, 5-17 
Driver interfacing, I-20 
Drivers, I-1, I-2, I-3 
Dummy devices, 3-2 

$E system variable, 3-8, 3-15, 
5-1, 5-4 through 5-6 

Editing globals, 4-21 
Editing program lines, 4-17 
Editor, 4-16 
Entering commands, direct mode, 

2-7 
ERASE command, 2-14 
Erase program line or characters -

see Deletion 
Error conditions, 

CPU-CPU device, 3-8, 3-32 
DECtape, 3-8, 3-16 
disk, 3-8 
DMC-11, 3-40 
line printer, 3-8, 3-15 
magnetic tape, 3-8, 3-19 
operating system, 2-14, 3-7 
paper tape reader/punch, 3-8, 

3-12 
sequential disk processor, 3-8, 

3-37 
terminals, 3-8, 3-12 
utility programs, 4-4 

Error detection, Library Utility 
Programs, 4-4 

Error messages, C-1 
Error message output device, 

3-2 
Error processing, 2-14, 3-8, 5-4 
Error processing routines, the 

writing of, 5-4 
Error reporting, 

$A system variable, I-18 
Interrupt Service Routines, I-19 

Errors, 
fatal, 3-8 
nonfatal, 3-8 

ESCape key, 2-4, 3-10 through 
3-12 

Evaluation rules for expressions, 
2-10 

Exclamation point (!) as termi-
nator, 3-5 

Executive, 1-9 through 1-11 
Expression elements, 2-10 
Expression evaluation rules, 

2-10 
$EXTRACT function, 5-14 

%FD Fast Program Directory Lister, 
1-15' 4-5 

Fatal errors, 3-8 
FILE pnam command, 2-11 
FILE command, 2-14 
Filing library program, 4-3 
Fixed head disks, 1-12 
Format control, line printer, 

3-14 
Formatting output data, 3-5 
Form feed, 3-5 
Free memory, 5-10, G-16 
Function and command syntax 

rules, summary, 2-8 
Function nesting, 2-9 
Functions, special for devices -

see Characters and functions, 
special 

Garbage chain, 1-12 
Garbage Collector routine, 1-12 
%GD (Global Directory Lister) , 

1-15, 4-5 
%GL (Global Lister), 1-15, 4-6 
Global, 

access, 5-12 
arrays, 1-3 
data, G-3 
data retrieval, 5-7 
design, 5-13 
directories, G-10 
files, 5-11 
variables and routines, 1-11, 

1-12, I-3 
Global Directory Lister (%GD), 

1-15, 4-5 
Global Lister (%GL), 1-15, 4-6 
Global File Restore (%GR), 1-15, 

4-8 
Global File Save (%GS), 1-15, 

4-8 
Globals, Library, 4-16 
Global Place routine (%GP), 1-15 

Index-3 



INDEX (CONT • ) 

Global Trace (%GT) library 
utility program, 1-15, 4-8 

Global Utilization program (%GU) , 
1-16 t 4-9 t 4-11 

Global View program (%GV), 1-16, 
4-9 t 4-10 

Glossary, A-1 
GO command, 5-9 
GOTO command, 2-13, 5-8 
%GP (Global Place routine) , 

1-13, 1-15 ' 
%GR (Global File Restore), 1-15, 

4-8 
%GS (Global File Save), 1-15, 

4-8 
%GT (Global Trace program), 1-15, 

4-8 
%GU (Global Utilization), 1-16, 

4-9 
%GV (Global View), 1-16, 4-9 

$H System Variable, 3-11, 3-12, 
3-37, F-12 

Hanging a job., 
in input, I•l2 
on output, I-16 

Hardware configuration, 1-1, 
1-2 t 1-4 

minimum, 1-5, 1-6 
optional, 1-7 

Hardware status register, 
magtape, 3-21 
paper tape reader/punch, 3-13 

Hung state, 1-9, 1-10, I-12 

$I System Variable, 3-2 
IF command, 5-7, 5-8 
In core job communication, 3-38 

through 3-40 
Indirection syntax operation, 

2-9 t 5-11 
Indirect mode, 1-2 

command execution, 2-8 
log-in, 2-5, 2-6 
log-out, 2-6, 2-7 
operation, 1-4 

Information tables, F-1 
Input call routine, I-11 
Input data, 3-4, 3-5 
Input-output (I/O) , 

commands, 3-4, 3-5 
device assignments, 3-2 through 

3-4 
device characteristics, 3-8 
device numbers, see Device 

numbers 

Input-output (Cont.), 
device, principal, 3-2, 3-4, 

3-7' 3-8 
device supervision, 1-10 
device table, 3-3, 3-4 
hung state, 1-9, 1-10 
Monitor, 1-10 

Input routine flow chart, I-15 
Interlock, program, 3-2 
Internal buffers, I-9 
Interpreter, 1-10, 1-11 
Interpreter-called routines, 

I-6, I-7 
for input, I-11 through I-14 
for output, I-16, I-17 

Interrupt Service Routines, I-19 
Interrupts, user-controlled, 5-3 
IN USE message (%IU) library 

utility program, 1-16, 4-9 
I/O devices - see Device 
%IO (I/O device assignment sub­

routine), 1-16, 4-1, 4-9 
I/O device drivers, I-1 through 

I-3 
%IU (IN USE message program) , 

1-16, 4-9 

$J System Variable, 3-8, 5-1 
through 5-3 

Job communication, 3-38, 3-39 
Job (definition of), F-2 
Job priority, 1-8 through 1-10 
Job scheduling, 5-12 
Job Table (JOBTAB) , F-9 

Keyboard control characters, 2-4 
Key globals, 5-17 
KTR (Caretaker Reporter program) , 

1-14 

LA30/LA36 DECwriters, 2-2, 3-9 
Language Interpreter, 1-10, 

1-11 
Library Globals, 4-16 
Library Utility programs, 1-13, 

1-15, 1-16, 4-1 through 4-3 
Calendar Date subroutine (%D) , 

4-5 
developing and filing, 4-3 
error detection, 4-4 
Fast Program Directory Lister 

(%FD) , 4-5 
features, 4-1 
Global Directory Lister (%GD) , 

4-5 

Index-4 



INDEX (CONT. ) 

Global Lister (%GL), 4-6 
Global Restore (%GR) , 4-8 
Global Save (%GS) , 4-8 
Global Trace (%GT) , 4-8 
Global Utilization (%GU) , 4-9 
Global View (%GV) , 4-9 
IN USE Message (%IU) , 4-9 
I/O device assignment sub-

routine (%IO) , 4-9 
Octal/Decimal conversion 

(%OD) I 4-10 

Maps, bit, G-10, G-11 
Margin control, 3-7 
Masking, 5-1, 5-2, 5-19 
Mathematical Tables, E-1 
Memory, 1-2, 1-3, G-12, G-16 

conservation, 5-9 through 5-11 
Message format, CPU-CPU device, 

3-30 
state, 3-29, 3-30 
terminator, 3-31 
transmission count, 3-31 

Program Directory Lister (%PD), Messages, explanation of, C-1 
Mixed mode operations, 1-2 
Modes of operation, 1-2 

4-12 
Program Load (%PL), 4-13 
Program Save (%PS), 4-14 
running, 4-3 
starting, 4-3 
stopping, 4-4 
summary, 4-2, 4-3 
Time of day subroutine (%T), 

1-16, 4-15 
User to Operator Communicator 

(%OP), 4-10 
Line, 

concatenation, 3-5, 3-6 
deletion, 2-5 
terminators, 2-4, 3-5 

Line Buffer String AC, G-11 
Line feeds, 3-7, 3-10 
Line printer device status 

register, 3-14 
Line printer models, 3-14 
Linking procedure for device 

drivers, I-1 
Listing globals, 4-6 
Listing global names, 4-5 
Listing program names, 4-5 
LOAD command, 2-12, 3-4, 3-5 
Loading programs, 2-11, 2-12 

from %PS created tape, 4-14 
Local data, 1-3 
Lock, overrun, 5-4 
Logical errors, magtape, 3-22 
Log-in, 

direct mode, 2-7 
indirect mode, 2-6 
preliminary operations, 2-2 
processing, 1-10, 1-11 
to system, 2-2, 2-5 through 

2-7 
Log-out from system, 2-7 

Magnetic tape, 3-16 
compatibility with PDP-11, 

DOS-11, 3-16, 3-17, 3-26 
control codes, 3-18, 3-26 
errors, 3-8 

Management of data, 1-3 

direct, 1-2, 1-4, 2-6 through 
2-8 

indirect, 1-2, 1-4, 2-6 through 
2-8 

Modification of program, 1-11 
MSP (Modify System Parameters) 

program, 1-14 
Multiple arguments, 2-8 
Multiple commands, 2-8 
Multiple user access, 3-1 

Naked syntax, 1-12 
Naming Library Utility Programs, 

4-3 
Nonprinting ASCII codes, 3-5 
Nesting, 

of commands, 5-11 
of functions, 2-9 

Numbers, I/O device - see Device 
numbers 

Numeric arguments, 3-4 
?nve string, 3-5, 3-6 

%OD (Octal/Decimal conversiorr) 
library utility program, 1-16, 
4-1, 4-10 

Operating system, 1-2, 1-9 
memory size, 1-2 
error processing, 2-14 

Operator precedence, 2-10 
Optional argument list, 2-9 
%OP (User to Operator communica-

tion) program, 1-16, 4-10 
Output formatting, 3-5 
Output routine flow chart, I-17 
Overlay command, 5-10 
Ownership of device, 3-1, 3-2 

PAC (Programmer Access Code), 
1-4, 1-10, 2-1, 2-6, 2-7, 4-1 

Index-5 



INDEX (CONT • ) 

Page feed, 3-5 
Paper tape punch, concatenation 

on, 3-5, 3-6 
Paper tape reader/punch, 3-13 
Parentheses with function argu-

ments, 2-9 
Partition layout, 5-10 
Partitions, 1-2, F-8, G-8, G-12 
Partition size, F-7 
Partitlon table (PARTAB), F-8, 

F-9 
Part numbers, G-12 
%PD (Program Directory Lister), 

1-16, 4-14 
PDP-11, 1-1 
Percent symbol (%), 4-1 
Peripheral devices, 1-1 
$PIECE function, 5-14 
%PL (Program Load), 1-16, 4-14, 

4-15 
Pointer node, G-6, G-7 
Pointers, 

address, F-2 
downward, 5-14, 5-17 

Precedence of ope:i::ators, 2-10 
Principal I/O device, 3-2, 3-4, 

3-8 
PRINT conunand, 3-5 
Printing, suppression of, 2-5 
Priority, job, 1-8 
Program, 

buffer, 5-11, G-12 
changing, 2-13 
conunents, 2-8 
creation, 1-2, 2-10 
debugging, 1-11, 5-9 
deletion, 2-13 
directories, 4-1, G-10 
execution mode, 1-2 
interlock, 3-2 
loading, 2-11, 2-12, 4-3, 4-4 
modification, 1-11 
name change, 2-14 
norma~ stop, 2-13 
refiling, 2-13, 2-14 
segmentation, 5-10, 5-12 
size, 5-9 through 5-12 
space reduction, 5-12 
start/stop, 2-13, 4-3, 4-4 
storage, 2-11, G-12 
vector, G-13 through G-15 

Program Directory Lister (%PD), 
4-14 

Program Load (%PL), 4-14, 4-15 
Progranuner Access Code (PAC), 

1-4, 2-1, 2-6, 2-7, 4-1 
validity check, 1-10 

Programming techniques, Chapter 
5 (5-1) 

Program Save (%PS), 1-16, 4-15 

Programs, Library Utility, 1-13, 
1-15, 1-16, 4-1 through 4-3 

%PS (Program Save), 1-16, 4-15 

? (Question mark character) 
used in formatting, 3-6 

Queues, 1-8, 1-9, F-9 

READ conunand, 3-4 
Reader/punch, 3-13 
Recording mode, magnetic tape, 

3-16 
Reducing program space, 5-11 
Reference data for system 

tables, F-1 
Refiling programs, 2-13, 2-14 
Restore Devices program (·RST) , 

1-14 
Restoring global files, 4-8 
Restore System Job (RSJ) pro­

gram, 1-14 
RKC (RK copy) , 1-14 
Routines, 

Interpreter called, I-6 
Interrupt Service, I~l9 
system global, I-3 

RSJ (Restore system job) program, 
1-14 

RST (Restore Devices program), 
1-14 

RUBOUT, 2-4, 3-10 
Running utility programs, 4-3 
Run-Queue, 1-9 

Save Global file, 4-8 
Save program (%PS), 1-16, 4-15 
Scheduling jobs, 5-12 
SDP (Sequential Disk Processor), 

1-14, 3-6, 3-34 
Segmentation of program, 5-10, 

5-12 
Semicolon (;) used as conunent 

indicator, 2-8 
Sequential Disk Processor (SDP) , 

1-14' 3-34 
SIF (Status Information program), 

1-14 
Sign-on pr9cessing, see Log-in 
Single numeric data, G-3 through 

G-6 
Size of program, 5-9 through 

5-12 
Software, 1-8 
Space reduction for program, 5-12 

Index-6 



INDEX (CONT. ) 

Spaces in arguments, 2-8 
Sparse array, 1-3 
SS (System Status program) , 1-14 
SSD (System Shutdown) , 1-14 
Stack, G-14 through G-16. 
Starting a Library Utility pro-

gram, 4-3, 4-4 
Starting a proqram, 2-13 
Status Information program (SIF) , 

1-14 
Status register, magtape, 3-17 
Step numbers, 2-8, 2-10, G-12, 

G-15 
Stopping a Library Utility pro-

gram, 4-4 
Stopping a program, 2-13, 4-4 
Storage Allocation maps, 1-12 
Storage on-line, 1-1 
Storing programs, 2-11, G-12 
String data, G-7 

storage, 5-12, 5-14, 5-15, 
5-16 

String node, G-7, G-8 
String value, 1-3 
§TU (System Startup), 1-15 
Supervision, I/O device, 1-9 
Switch Register switches, 5-18 

assignments and bit masks, 
5-19 

Symbolic variable, 1-3 
Symbols used in manual, xiv 
Symbol table, 5-10, G-15 through 

G-19 
space conservation, 5-11 

Symbol usage, xiv, D-1 
Syntax rules for commands and 

functions, 2-8 
SYSGEN (System Generator pro­

gram) , 1-15 
SYSTAB (System Table), F-2 

through F-6 
System, 

data structures, G-1 
device, 1-8 
hardware, 1-1 through 1-8 
memory size, 1-2 
queue information, F-10 
software, 1-8 
tables, reference data, F-1 
UCI (UCI #1), 1-13, 4-1 
Utility programs, 1-13 through 

1-16 
System Caretaker program (CTK) , 

1-14 
System Generator program (SYSGEN), 

1-15 
System Shutdown program (SSD), 

1-14 

System Startup (STU), 1-15 
System Status program (SS), 1-14 
System Status Information program, 

(SIF), 1-14 
System Table (SYSTAB), F-2 through 

F-6 
System Test Package, TPl through 

TP8, 1-15 
System variable, 

$A, 3-8, 5-2 (see also $A sys­
tem variable) 

$B, 3-37 
$E, 3-8, 3-15, 3-21, 5-1, 5-4 

through 5-6 
$H, 3-11, 3-12 
$I, 2-15, 3-2, 3-4, 3-7 
$J, 3-8, 5-2 
$L, 5-5 
$S, 2-10 
$W, 5-5 
$X, 3-5, 3-8 
$Y, 3-5, 3-8 

%T (Time of Day) subroutine, 1-16, 
4-1, 4-15 

Table, 
device (DEVTAB), F-7 
job (JOBTAB), F-10 
partition (PARTAB), F-8, F-9 
system (SYSTAB), F-2 through 

F-6 
user class identification 

(UCITAB) , F-7 
Table position, system tables, 

F-1 
Tabulation, 3-7 
Tape not ready condition, 3-22 
Techniques of programming, Chap-

ter 5 (5-1) 
Teletypes, 

preliminary operations, 2-2 
special characters, 3-10 

Terminals, 1-1, 2-1, 3-9 
Terminal state, CPU-CPU device, 

3-29 
Terminator of line, 2-4, 3-5 
Terms, glossary of, A-1 
Timed READS, I-13 

overrun, 5-4 
Time of Day subroutine (%T), 

1-16, 4-15 
Timesharing, 1-2, 1-8, 1-9, 3-1 
TIM Time routine, 1-15 
TPl through TP8 (System Test 

Package), 1-15 
TYPE command, 3-4 

Index-7 



INDEX (CONT. ) 

tu or Au (CTRL U), xiv 
UCI - see User Class Identifier 
UCITAB, F-7 
Underlines, xiv 
Unpacking buffers, I-10 

Vertical bars Cl>, xiv 
VIEW command, 5-1, 5-5 
$VIEW function, 5-1, 5-2, 5-5, 

5-6, F-8, F-9 

UNASSIGN command, 2-11, 3-1, 3-2, 
VT05/VT50, VT52, VT55 Video 

Terminals, 2-2, 3-9, F-12 
special characters, 3-11, 3-12 3-4, I-8 

Up-arrow symbol (t), 4-15 
User classes within system, 1-4 
User Class Identification 

Table (UCITAB) ' F-7 
User Class Identifier (UCI), 

1-4, 2-1, 2-5 
UCI #1, 1-13, 4-1 
validity check, 1-10 

User stack, 5-10, G-14 
space conservation, 5-11 

User to Operator Communicator 
program (%OP), 1-16, 4-10 

Utility programs, 1-4, 1-12 
running, 4-3 
summary, 1-14 through 1-16 

Validity check, 1-10 
Variables; 

global, 1-3 
symbolic, 1-3 
system global, I-3 

$W system variable, 5-5 
Wait-Queue, 1-9, 1-10 
Waking the job, I-20 
WRITE command, 2-11, 3-4 

$X system variable, 3-5, 3-8, 
F-11, F-13, F-15 

$Y system variable, 3-5, 3-8, 
F-11, F-13, F-15 

Index-8 



READER'S COMMENTS 

MUMPS-11 
Programmer's Guide 
DEC-11-MMPGA-E-D 

NOTE: This form is for document comments only. DIGITAL will 
use comments submitted on this form at the company's 
discretion. Problems with software should be reported 
on a Software Performance Report (SPR) form. If you 
require a written reply and are eligible to receive 
one under SPR service, submit your comments on an SPR 
form. 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
1.; Please make suggestions for improvement. 

c 
1:: 
I.~ 
r:E 
I g> 
I~ ,o 
18 
I a> 

12 
IQ: Is there sufficient documentation on associated system programs 
1 required for use of the software described in this manual? If not, 
1 what material is missing and where should it be placed? 
I 

Please indicate the type of user/reader that you most nearly represent. 

0 Assembly language programmer 

0 Higher-level language programmer 

0 Occasional programmer (experienced) 

0 User with little programming experience 

0 Student programmer 

0 Non-programmer interested in computer concepts and capabilities 

City ______________ State _______ Zip Code _______ _ 

or 
Country 



-------------------------------------------------------------Fold llere------------------------------------------------------------

---------.,--------------------------------------- Do Not Tear - Fold llere and Staple ----------------------------------------------· 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

mnmnomn 
Software Documentation 
146 Main Street MLS-5/E39 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MA YN,\RD, MASS. 



digital equipment corporation 

Printed in U .S.A. 


