This drawing and soeacifications, herein, are the prop-
erty of Digital Equ'~men* Cor-orat'on and ghall not be
reproduced or cop'e * or used in w o'e or in part as
the basis for the manufacture or saie of items without

written permission.

PDP~K Technical Memoranda E 2
st————

Title: Extension of ppp-11 Instruction St
Author (s) : Ad van de Goor
Index Keys: Ingstruction Sets

Opcode Space

Modes

Stack Operations
Distribution Keys: K -
Revision: Nohe
Obsolete: None

Date: 21 January 1970

2.0

ABSTRACT

Sever 1l methods of extending the PDP-1ll instruction
set are discussed. Coding comparisons are made.
Subject to the trivial weighting scheme used, two
solutions were excluded from further analysis
because of their poor performance. The "multiply/
divide" subsolution as discussed in sections 4.4
and 5.4 was the best performer.

1.0

INTRODUCTION

A more elaborate version of the PDP-11/20 is
considered as a possible candidate for the
PDP-K. It is felt that if the PDP-K is a
member of the PDP-11 family, substantial
gains could be obtained from:

1.1

1.2

Upwards Program Compatibility

For DEC this would mean a lower total
software investment, and new machines
could be introduced more easily as
present PDP-11 software would run on
PDP-K.

For customers this would mean that they
could move to a larger machine without
the direct need for reprogramming.

Peripheral Compatibility

Only one line of péripheral devices has

" to be built. The introductions of a

new machine could be done more easily
for this reason. Any new peripheral :
device would be available for the whole
family. ; o ‘

[&)

-3

PROBLEMS IN ADAPTING THE PDP-11 ARCHITECTURE TO

A BIGGER MACHINE

™wo important problems of the PDP-ll have to be
solved in order to meet the PDP-K requir ements.

2.1 Limited number of instructions and limited

) amount of opcode space left. For the PDP-K
" three more classes of instructions are
considered:

2.1.1. BAE instructions, i.e., rotate/
shift and multiply/divide for
16-bit words.

2.1.2 Double Precision Integer Arithmetic
Instrnctions. , , N

2.1.3 Floating Point Arithmetic Instructions.
2.2 Limited Address Space

The total amount of addressable cors memory
on the PDP-11/20 is 65K (1K = i{s 1024) bytes,
or 32K 16-bit words. For a big 32-bit
version of the PDP-1ll this would only mean
16X 32-bit words could be addressed, which
is certainly not adsquate for such a

machine.

3.0

PURPOSE OF MEMORANDUM

Tha purpose of this memorandum is to examine the
suggested methods of solving the first problems:
extending the basic PDP-1l instruction set. An
acceptable solution, subject to several constraints,
will be sought.

3.1 Program campatxbllzty at least on the assembly |
lancuage 1@v¢1, .

3.2 Simplicity in programminq by minimizing the

number of instruction formats and restrictions
imposed on instructions.

" 3.3 Opcode space left for future expansion.

3.4 Opcodes of the largest member of the family
have to £it in the added instruction set, thus
minimizing the number of formats, and making
programming easier.)

POSSIBLE SOLUTIONS

Four possible solutions to the opcode space problem are
shown below. They are followed by a discussion in
section 5:.0.

4.1 Implement new instructions as “pure stack"
instructions (i.e., zero address). Each new"
instruction can now be spacified with one
combination out of 216, rThis allows for hundreds
of new instructions. Any binary operation (like
maltiply, divide, etc.), would take the two ’
operands from the top of the stack, and leave the
result on the top of the stack. Register 6
would be used as the implied stack pointer.

4.2 Introduce a fliag to indicate that the remainder
of the word containing the flag (note: remainder
can be = ¢) and the next word form a new
instruction. Depending on the length of the
flag, two cases exist, «)

4.2.1 Full Word Flag

‘Insggggtion
Word N Word N + 2
16-Bit ﬁlag New Instruction

4.2.2 Ppartial word Plag

Ingtryction
\ 7 T & § _
Word ? ’ Word N + 2
— '
Flag ¥ New Instruction

The advantage of this technique is that
the new instructions can have the same
source-destination format as the standard
(i.e., currrent ¥OP-11/20), instructicns.

-6

The disadvantage .is that every new
instruction takes two words. The
partial word flag case offers the
advantage of a greater number of
new instrud¢tions at the expense of
somewhat more complicated hardware.

4.3 Modes

4.4

A mode iz a (hardware) state of the processor
to allow instructions to be interpreted -
differently. Basically two kinds of modes
have to be recognized:

4.3.1 Enter and leave modes only with dedicated
commands (i.e., only switch modes when
an instruction specifies to do so).

4.3.2 Enter modes for a spacified number of
instructions after which the mode is
switched back to the standard mode
automatically.

The advantage 'of modes is that instructions

in any mode are only 1 word long. The
disadvantage is that special instructions have
to be given to enter, and in the case of 4.3.1,
to leave the mode.

Use Raserved Multiply/Divide Space

These two opcode spaces are not used in the
PDP-11/20. The to-be-added two-operand
instructions can be implemented as source-
destination instructions where the -stack is
one implied operand, and the second operand
is specified with the full 6-bit destination
field of the instruction. One of these 6
bits can be used as a direction bit such that
operationd can have either their source or
destination as the implied stack. This allows
for 32 nnw instructions to be specified.

5.

-

EVALUATION OF PROPOSED SOLUTIONS

When evaluating the proposed solutions, the implementation
of a 32-bit version of the pPDP-11 should be included. Fcr
such a machine, double-precision floating point instructions,
together with EAE instructions, operating on 32-bit
registers ace desirable, {(assuming that these instructions
can operate on registers). This means that opcode space

for those instructions has to be reserved to provide for
their efficient operation.

Simplicity in programming and machine organization dictzte
that the number of instruction formats for the three
classes of new instructions, (as discussed in section
2.1), should be minimal. In order to make the extended
instruction set more acceptable, it is very desirable to
make the added instructions fit in currently existing
formats, or add at most a szingle new format. Several
coding comparisons are done to assist in the evaluaticn
The five problems below (Pl-P5), are considered
representative. The assumptions made in ccding the
problems can bhe deduced from the listed code in Appendixes
A-D. The variables A, B, C, D and B are considered
single precision floating point (32~bit numbers).

Pl: A€—BaC ' : /simple case

P2: A€——(B+C) » (D+E) . /temporary variable case
P3: A(i)e—B(i)»C(i) /eubscripted case
P4: A(i)e—B(i+3) =»C{ix*5) /mixed arithmetic case

P5: A(i,J)e—a(i,])+B(i,k)»C(k, j) /multi-dimensional
array case

P5 is an example of the inner-loop statement of the
array multiplication: [Rle—[Bl * [c] 1t is assumed
that the array bounds are declared from o to u. For
array B this would bes: Real Array B (0 - bul, 0 - bu2).
The first index of B goes to bul, the second tc bu2.

It will be assumed that the indexes are in registers

R:, Rj, and Rk.

Assuming that the indexes i and j are in register Ri
and Rj, the value B (i,j) will be address as follows:
Location of B{i,j) = location of B (i.e., starting
location of matrix) + isbul+y).

5.1 Pure Stack Operations

In order to make the pure stack operations efficient,
one of the opcode spaces reserved for multiply/divide
has to bhe used for a double move (MOVD' instructions.

MOVD:Move 2 words (32 bite) from S{ou-ce) Dlestination).
This instruction is required especiaily in a 32-bit
machine. The one binary opcode spaca left can be
used to implement the EAE instructicns.l The.
ingtruction format would be as follows:

OPERATION DESTINATION
SP— g ——, M———\
1 3 3 3 6
\\-mm"-——-"
RFGISTER

This same format is used for the JSR (subroutine call)
instructicn. The EAr instructions are made to opurate
on registers only. The regisier involved is
specifisd by tha 3 “"register” bits.

The valuve of the effsctive addres:s of tha “"destination”
decermines the number of pisitions to be shifted or
rotated. Because the autco-increment and auto-
decrement modes do not apply to these instructions,
one of the 2 mode bits can be used to specify a

single or combined operation, (i.e., see PDP-10

LSH, LSHC, etc.). The remaining spice can be

used to implement instructions like EXCHANGE,

REPEAT, etc.

Appendix A gives the coding examples for the five
probiema. The handling of multi-dimensional arrays
is very cumbersome because the address computations
have to be done on the stack. Introducing a
second set of 16-bit multiply/divide instructions
implemented as the above EAE inatructions will
solve this problem at the expense of a more complex
instruction set. Subcolumn Table 1 MPD of Section
6 shows the improvement gained bv this.

lexcept for 16-bit multiply/divide

5.2 Flagged Instructions

The coding examples shown in Appendix B are the
sane for alternatives 4.2.1 and 4.2.2. 4.2.2 1Is
preferable only if the additionzl opcode space is
needed. It is suggested that the EAE multiply/
divide instruction will be implenented in the
space "reserved" for them. The EAE rotate/shift
instructions have to be implemerted as *“flagged"
instructions, the format would Fa similar tc that
discussed in section 5.1., excert for the flag.
The double precisicn integer anc floating point
instructions would be implemented as full soxr ce~
destination instructions.

5.3 Modes

Before going into detail, proposgal 4.3.2 (satting
the modes for a specific number »f instructions
(N)), will be examined. This is considerec less
attractive because of problams arising in a
string of ¥l instructions to be axecuted ii tha
new mode.

5.3.1 Branching in terms of skipping oves a
group of instructions in the speci’ied
string will cause problems because XN is
not updatad automatically.

5.3.2 Programming will be very difficult because
when branching into a sequance of
instructicns their mode, (in which those
operate), will be difficult to determine.

5.3.3 It will be difficult for a compiler to
set up the right "N" because it wiil
require some kind of *"look-ahead".

5.3.4 In case of interrupts/traps, the remainder
of M has to be saved and restored upon
exit of the intorrupt/tzap service
routme.

Lyhere N is an arbitrary pésitive number .

-10~

For the reasons above, proposal 4.3.2 will be
dropped, and not considered further.

The extended mode, (which contains the floating,
double-precision integer instructions, etc.},

iz entered by the command Enter Extended Mode
(EEM) . The processor stays in this mode until
the instruction Leave Extended Mode (LEM) is
given.

In regard to 4.3.1, subrcutine calls and
interrrupt/traps cause problems typical for modes
in saving/restoring the mode and entering the
routine (subroutine or interrupt/trap service
routine), in the correct mode. The interrupt/
trap case is the easiest one. The mode. can be
preserved in a dedicated bit in the Central
Processor Status Register(PS). Entering the
interrupt/trap service routine in the right mode
can be done similarly by storing the mode of
that routine in the PS interrupt/trap vector.
The correct mode will then be entered
automatically upon interrupt.

Entering a subroutine in the desired mode in a
program compatible way can be done by taking the
lowest bit (bit 0) of the subroutine address as
the mode bit. 1In the current PDP-11/20, this

bit has to be equal zerc because the subroutine
address is a word address. 3y defining a “O"

in pit 0 of the subroutine address as the
standard mode, - program compatibility is preserved.

Saving/restoring the mode upoan a subroutine call/
exit is much more difficult. The only hardware
solution found thus far is to store the mode on
the stack in a separate word. The new JSR would
then store 2 words on the stack: the register

to be saved and the mode. Programs making use

of the knowledge that only 1 word gets stored

on the stack by a JSK have to be modified.

A program compatible.software solution to the
mode problem is to have the called subroutine
take care of the mode handling by restoring the
mode (upon exit), which existed prior to the
call of the subroutine. A possible way of doing
thic is by having the existing mode, prior to

. 5.4

-11e

all calls for a given subroutine, fixed, such
that the subroutine only has to match the mode
upon exit to the existing (fixed) mnode at call
time.

It is suggested that the multiply and divide
instructions, (operating on 16-bit integers),

‘be implemented in the space reserved for them,

and all other instructions be 1mplemented in
the extended mode.

2ppendix C shows the coding examples. They
suggest that an instruction to enter the
extended mode for a single instruction is very
useful. The column EEMl (Enter Extended Mode
for 1 Instruction), of Table 1, Section 6,
shows this.

Use Mutl iply/Divide Space

One of the two binary opcode spaces has to be
used to implement the EAE instructions as
described in section 5.1. The remaining
instructions have to implemented with the
stack as an implied operand as discussed in
secticn 4.4. Coding examples are given in
Appandix D. They show, like the "pure stack”
case, that handling malti-dimensional arrays
is cusbersome. The improvements made by
adding a set of l6-bit multiply/divide
instructions, as suggested in section 5.1,
are shown in aubcalumn MPD of Table 1,
Section 6.

-12-

6.0 COMFARISON OF PROPOSED SOLUTIONS

Table 1 shbws the results of the five problems for the
seven)] proposed solutions. Four quantifiers are used
for each problem to measure the quality of the solutions.

6.1 The Number of Instructions

It is quite well known that the probability of
making a programming error increases more than
linear with the number of instructions, (apart
from their complexity’), thus a "good" solution
should have a low number of inatructions.

6.2 The Number of Words<

This is the number of words needed to coure the
algorithms given in the appendixes. This is

an important criteriug, especially on a small
machine. For a 32-bit:machine the numbers have
to be divided by 2.

6.3 The Number of Memory References

The number of memory references both for a 16
and 32-bit machine are included in the tables
because they are important indicators for the
execution times of the algorithms. The
numbers in Table 1 are derived under the
following agsumptions:

6.3.1 The stack is supposed to be in coxe~
memory. (Section 6.4 discusses the
results when this assumption is not
made) .

6.3.2 For the twec operand extended instructions
the arithmetic unit is supposed to behave
as follows: 1) reads both operands into
its internal registers:; 2} it performs
the required aperation (e.g. FMUL, FADD):
and 3} it stores the results back. In
case of differsnt assumptions the numbers
in the table can be adjusted accordingly.

*

lpour main solutions, three of which have a subsolution.
2yords are considered to be 16 bits long.

-13-

h
PRy

Number of Memory References With A Hardware Stack

The idea is to implement the top Ml words of the
stack in flip-flop registers. From Table 1 it
can be seen that the execution speed increases
for almost all problems and solutions. Those
sclutions making heavy use of the stack gain
most.

leor simplicity M is supposed to be such that in none
of the problems the stack "overflows" into core.

- 28714 j

TABLE 1 ~ CODING RESULTS OF PROBLEMS Pl PS5
VP IBLIM [PURE sTACK MODE » MULTIPLY/DIVID:
»‘L:;;:- BIRS QUANTIFIER (MPD | FLAG EEMI MPD
; 1 ¥ of Instructions {4 4 2 4 4 3 3
‘ & of Words 7 7 8 8 8 6 6
! # of Memory Ref [25/12.51|25.12.5 | 18/9 18/9 18/9 20/10 20/10
¢ f Memory Ref
wWith Hardware
| stack 13/6.51 113/6.5 | 18/9 18/9 18/9 12/6 12/6
b # of Instructions |8 8 5 7 7 6 6
of Words 13 13 17 14 14 11 11 :
of Memory Rdf 51/25.5 |51/25.5 43/21.5 40/20 40/20 41/20.5 41/20.5
of Memory Ref
‘ With Hardware
ctack 23/11.5 {23/11.5 | 35/17.5 | 32/16 32/16 21/10.5 21/10.5
.3 # of Instructions |4 4 2 4 4 3 T3
; # of Words 7 7 8 8 8 6 6
of Memory Ref [25/12.5 |25/12.5 18/9 18/9 18/9 20/10 20/10
: z of Memory Ref :
: with Herdware .
i Stack 13/6.5 13/6.5 18/9 18/9 18/9 12/6 12/6
b4 # of Instructions |10 b 6 10 8 8 7
‘ # of Words 15 13 14 16 14 13 12
of “emory Ref 39/22.5 | 31/15.5 24/12 26/13 24/12 31/16.5 26/13
of Memory Ref .
With Hardware
Stack 21/10.5 | 19/9.5 24/12 26/13 24/12 19/9.5 l6/8
s # of Instructionsj2l 15 i2 18 15 lé6 13
of Words 28 22 21 24 21 23 20
of Momoryv Ref 74/46 46/23 37/18.5 40/20 37/18.5 55/30.5 40/20
~f semory Ref
witch Hardwvare
vt W 29/14.5 | 32/16 29/14.5 | 31/15.5 | 25/

-]15u.

Table 2 gives a rating summary of Table 1, the
rating is from 1 (lowest), to 7 (highest). When
two solutions have egual rating, they both get
the same number being the average rating when
they would not have been equal.

The problems Pl -~ P3 are very similar in
nature, therefore a summarized rating is given
in the firet part of Table 2. sSimilarly, for
P4 - P5 in the second part of Table 2. The
third part of Table 2 is a summary of the
previous two tables assuming equal weights for
the two previous groups of problems. Part 4
of Table 2 is merely the sum of the first two
quantifiers of the third part.l For a small
machine, the number of <instructions and the
number of words are the most important criteria.
for selecting the best solution. On a bigger
machine, execution speed is becoming important.
Part 5 of Table 2 is such an indicator. 1Its
entries are the sums of the first, second, and
fourth quantifiers of part 3. It is assumed
that on the bigger machine the top of the
stack is implemented in hardware.

lAgain here, for simplicity rcasons,‘equal waights are

assumed.

-10-

TABLE 2 - RATING

SUMMARY OF CODING PROBLEMS

g?ﬁﬁ? QUANTIFIER PURE STACK MODE MULTZIPLY/DIVIDE
PROBLEMS ’ MPD FLAG EEMI MPD
1 # of Instructionsi{l.5 1.5 7 3.% 3.5 5.5 5.5
¥l o~ P3 # of Words 4.5 4.5 1 2.5 2.5 6.5 €.5
of Memory Ref 1.5/1.% | 1.5/1.5 5/5 6.5/6.5 6.5/6.5 3.5/3.5 3.5/3.%
of Memory Ref
With Hardware
Stack 4.5/4.5 1 4.5/4.5 1/1 2.5/2.5 2.5/2.5% 6.5/6.5 6€.5/6.5
2 # of Instructionsil 4.5 7 2 4.5 3 &
P4 - PS # of Words 1 5 5 2 5 3 2
of Memory Ref {1/1 3/3 6.5/6.5 |[4.5/4.%5] 6.5/6.5 2/2 4.8%/4.8
of Memory Ref »
Wwith Hardware
Stack 2/2 6/6 3.5/3.% |1/1 * 1.5/3.85] 5/5 1/7
3 # of Instructions|2.5 £.0 14 5.9 7.5 8.5 11.%
Pl -~ P& # of Words 5.5 9.5 6 4.5 7.5 9.5 12.8
of Memory Ref [2.5/2.5] 4.5/4.% |[11.5/11.8j11/11 13/13 5.5/5%.8 5/8
of Memory Ref ¢
With Hardware J
Stack 6.5/6.5 10.5/10.5 4.5/4.5% 3.5/3.5 6/6 11.5/11.5 13.%/13.5
4 # of Instructions
+ Number of :
Words 8 15.5% 20 1.0 15.0 i8.0 25
5 # cf Memory Ref
With Hardware
Stack 14.5% 25 24.5 13.5 21.0 29.5 ig.5
i

7.0

-17-

CONCLUSION

Loocking at Table 2, part 4 and 5, it can be consluded
that the suosolutions, (i.e., MPD for "pure stack" and
"multiply/cdivide", and EEMl for "mode"), are a big
improvemen: over their "main" solutions. This,
because f the improved handling of multi-dimensional
arrays, :1e price paid for this, however, is a more
complex iastruction set {i.e., a2dding a duplicate

sat of lé-bit multiply/divide instructions to operate
on regis:er or enter the extended mode for a single
instruction) .

The maii solutions "pure stack” and "mode* have the
lowest rating and can therefore be excluded from
furthe: consideration. -

In order to make a definite commitment to any of the
raemaining five solutions, more research should be
Jone in determining the weights of the problems and
weights of the (uantifiers.

From the results, this far however, the following
can be said:

7.1 The "mode" subsolution has tc look much betterl
in order to be a candidate because of the
mode problems in subroutines. The suggested
hardware solution is such that the price of
storing the mode on the stack has to be paid
ALWAYS. Also, in programs which do not make
use of the mode, (i.e., all current PDP-1ll
software). For this reason the suggested
software solution is a better candidate
because there, the price is only paid when
modes are used.

lwhen the proper weights are found.

-18-

The “flag" sQilution is advisable only when it
is expected that the use of tig "flagged"
instructions (i.e. those of clags 2.1.2 and
2.1.2 of section 2) is low.

The most promising solution this far is the
"multiply/divide" subsolution. It consistently
scored highest or second highest

P2:

P3:

P4:

-19-

APPENDIX A

PURE STACK CODING EXAMPLES

L ——— = 1

i0VD Cc - (SP)
OVD B, - (sSp)
IMUL

vOVD (SP) +,A
Ll (B+C) * (D+E)
M(/D B, -.(Sp)
M{D C, - (SP)
FMD .
MCD D, - (SP)
MO™D E, - (8P
FAD

FN'L -
MC'D (SP) +,A

Al «——p(i)*C(l)

MOV3
MOV)
MU,
MOV)

C(ri), - (sp)
B(Ri), - (sP)

(SP) +, A(Ri)

8{i B (i+3)2xC(in5)

MOV
ADD

MXD

MOV
MOV

IMUL

MOV

MOVD
FMUL
MOVD

Ri, Rs
*3' Rs
B(Rs), - (sP)
Rio haad (39’
#5, - (sP)

(SP)+, Rs
C(Rs), - (SP)

(SP)+, A(RL)

/move C to the stack
/move B to the stack

/floating multiply B#C

/store result in A

/floating add B+C

/£floating add DB
/floating multiply (m;-(a-rc)

/assums index i is in register Ri

/move C(i) to the stack

V/b._i.a a scratch register

/index 14-3' forned

/compute i*% and leave 1 \mx:d result
on top of unck |

/store result

-20-

APPENDIX A {CONT.)

A(i,])-=a A(i,]})+B(i,k)*Cik,])

MOV Ri, - (SP)

MOV #bul, - (sp)

IMUL

MOV {SP)+, Rs

ADD Rk, Rs /Rs contains index for array B
MOVD B{(Rs), - (SP) /put B{i,k) on stack

MOV Rk, - (SP)

IMUL

MOV (SP)+, Rs

ADD Ri, Rs /Rs contains index for array C
MOVD | C{(Rs}, ~(SP)

FMUL .

Mov Ri, - (SP)

MOV #aul, - (SP)

IMUL ' i

MOV {SP}+, Rs

ADD Rj, Rs /Rs contains index for array C
MOVD A(Re), - (SP)

PADD .

MOVD (sP)+, A(Rs) /store rasult

Pl:

P2:

P3:

P4:

P5:

APPENDIX B

FLAGGED INSTRUCTIONS CODING EXAMPLES

A - B*xC

MOVD B,A /move B to A
FMUL C,A

A ¢ (B+C) » (D+E).

MOVD B,A
FADD C.,A /A = B+C now

MOVD D,~-(SP)

FADD c, (sP) /top of the stack is C+D
FMUL (sP)+,A

A(i) «@————B{i)=C(i)

MOVD B(Ri), A(Ri) /}nove.B(i) to A(i)
FADD C(Ri}, A(Ri)

A(l) «g————B(i+3)2C(in%) /R8s is a scratch register

MOV Ri, Rs :
ADD #3, Rs /index for B(i+3) computed
MOVD: B(Rs), A(RL)

MOV Ri, Rs

MUL #5, Rs /index for C{i#5) computed
FMUL C(Rs}, A(Ri)

A(i,)) @—A(i,3) + B(LX) « c(x,3)

MOV Rio RS

MUL #bul, Rs T

ADD Rk, Rs . /index for B(i,k) computed
MOVD B(Rs), ~ (SP)

MOV Rk, Rs

MUL #cul, Rs

ADD Ri, Rs /index for C(k,j) computed
FMUL C(Rs), (SP) . ,

MOV Ri, Rs

MUL #aul, Rs

ADD Rj, Rs /index for A(i,3j) computed

FADD (SP) +, A(Rs) -

-22-
APPENDIX C

MODE CODING EXAMPLES

Pl: A «|@————— P#C

EEM ' : /enter extended mode

MOVD B,A

FMUL C.,A

LEM /leave extended mode
P2: A af— {(B+C) *# (D+E)

EEM /enter extended mode

MOVD B,A

FADD C,A

MOVD D,-{SP)

FADD C, (SP)

FMUL {(SP)+,A

LEM /leave extended mode

pi: A(i) <#————B(i)eC(i)

4]
MOVD B{(Ri), A(Ri)
FMUL C(ri), A(Ri)
LEM

M: A(i) a@g————B(1+3) £#C(iw5)

MOV Ri,Rs

ADD #3, Rs

EEM

- MOVD B(Rs), A(Ri)
LEM

MOV Ri, Rs

MUL #5, Rs

EEM

FMUL C(Rs), A(Ri)
LEM

Ph: A(i,)) @——A(i,3) + Bii.k) « C(k,3)

MOV ‘Ri, Rs

MUL #bul, Re :

ADD Rk, Rs. /index for B(i,k) computed
EEM . .
MOVD B(Rs), - (SP)

LEM T

MOV Rk, Rs

MUL #cul, Rs

ADD Rj, Rs /index for C(k,j) computed
EEM :

PHUL Ci{rg), (8P}

P5

-7 3=

AYPENDIX C

MODE CODING EXAMPLES

Cont.

LEM

MOV Ri, Rs

MUL #aul, Rs

ADD Rj, RS

EEM

FADD (sp) +, A(Re)

LEM

/index for A(i,ij) computed

P2:

P3:

P4:

PS:

A ‘..h._. i ——— e ——

MOVD
FMUL
MOVD

A «g

MCOVD
FADD
MOVD
FADD
FMUL
MOVD

AL, -

MOVD
FMUL
MOVD

A{l) -~

MOV
aADD
MOVD
MOV
MU
MCcV
ML

MOVD

A(i,) -

MOV
IMUL
MOV
ADD
MOVD
MOV
IMUL
MOV
ADD
FMUL
MOV
IMUL
MOV
ADD
FADD
MOVD

3xC

R, = (SP)
C, {3P)

(SP) +,A

(B+C) * (D+E)

c, (sp)

D"’(SP)

C, (SP)

(8t +, (SP)
(GPY+,A

B(i) «

B(R1),

c(i)
- (5P)

C(Ri), (sP)
(SP) +,A(R1)

R{(i®3) + C(i®5)

Ri, Rs
#3, Rs
B(Rs),

~-(sp)

a5, (SP)

(SP) +,
C(QS) .
(SE) +,

Rs
(sp)
A(Ri)

‘move B to the stack

/multiply C with top of th
/move result to A

/index i+3

/index iS5

A(i,3) + B{i,k) » C'k,3J)

Ri, -~
itbul,
(sP)+,
Rk, Rs
B(Rs),
Rk, =~
¥cul,
(SP) +,
Rj, PBs
C(Rs),
Ri, -
Faul,

(sp}
(5P)
Rs

- (sp)
(SP)
{(SP)
Rs

(SP)
(SP)
(SP)

{SP}+,Rs

Rj. Rs
A(Rs),
(SP)+,

(SP)
A (Rs)

/index for

/index for

Aindex for

in Rs

in Rs

B(i,k)

C(k,

A(i,

D

computed

computed

computed

. .o
DR

