
COMPANY CONFIDENTIAL

TITLE: PDP-ll CACHE MEMORY SCHEME & CONSIDERATIONS

PDP-ll/40 Tech Memo #20
Date: October 6, 1970
Author{s): Don Vonada, Jim Murphy
Revision: None Obsolete: None
Index Keys: Ca·:::!he Memory, Buffer, Memory, Memory

Prt.)cessor Interaction, Paging/Segmentation

Distribution: PDJ?-ll Master List
PDP-ll Coordinating Committee
PDP-ll!40 Group

ABSTRACT

The parameters of a buffer memory to be used in a PDP-ll!40
are discussed. The objective is to reasonably constrain the
variables involved' so that a simulation program may be written
a~d the proposed buffer performance can be evaluated.

The parameters of major interest are cache size, block size,
nwnber of sets, and write-back algorithms. The present guess
is that the cache will likely be about 512 words in 8 word
blocks, with 2 or 4 sets of congruently mapped blocks.

- 1 -

1. PHYSICAL PARAMETERS

1.1 Buffer Size - Buffer size refers to the total word
capacity of the cache memory, irrespective of the
mapping algorithme (Refer to Figure 1.) Buffer
sizes of 256, 512, and 2048 16-bit words will be
simulated. These values were chosen to provide in­
sight and direction. The final choice is not limited
to these values. It is interesting to note that the
IBM 360/85 employs a ca.che with 16K 8-bit bytes, ex­
pandable to 32K bytes.

1.2 Block Size - Block size refers to the number of
words transferred from main to cache memory for
each word requested which is not in cache memory.
Transferring a number of words for each reques.t
is normally done to give a pseudo prefetch capability
to the buffer. Block sizes of 4, 8, and 32 16-bit
words will be simulated. The general comments of
Section 1.1 are applicable. Again, using IBM as
a guide, their block size is 64 8-bit bytes. The
block size of 1 will be tried for one configuration
to provide a basis for comparison with the simulation
work done for the PDP-BF. This is expected to be a
relatively unoptimum solution because of the absence
of prefetch and the requirement of an associative
address bit with each cache word.

1.3 Mapping Algorithms - (Refer to Figure 1)

1.3.1

1.3.2

Full Associative - This method makes the
most efficient use of the buffer space.
However, address tags are larger than other
schemes thus increasing hardware costs. Also,
all buffer addresses must be checked, thus
decreasing buffer performance.

Congruent - Congruent mapping restricts the
transfer of blocks of a core memory area
partitioned by rows and columns to one block
of buffer memory which corresponds with the
on!3 (and only one) row a f core memory. A
fe',ver number of buffer address (tag) bits

1.3.3

1.3.4

1.3.5

- 2 -

are necessary since the desired block is either
in a specific row of the buffer or it must be
requested from core memory_ Hardware costs
are reduced and performance is improved.
Congruent mapping will be simulated as a
special case of Set Associative Mapping
(Section 1.3.3) where there is only one
IIset. II

Set Associative - Set Associative mapping is
similar to Congruent with the added sophisti­
cation of allocating two or more buffer blocks
to the same core memory row. This technique
reduces the conflict of contention for the same
block in buffer memory when the program refer­
ences two or more blocks in the same row of
core memory. Simulation will be performed
for sets of 1, 2, and 4 blocks of buffer
memory per row of core memory.

Hyorid - Any combination of the above mapping
algorithms is a hybrid. IBM 360/85 uses the
Full Associative algorithm to map large sections
of core (lK bytes) onto the buffer memory, but
not all bytes are loaded into the buffer. Blocks
of 64 8-bit bytes within the mapped section (called
sector) are Congruently mapped and a control bit
is set signifying which block of the sector con­
tains valid information. Consideration of a
hybrid system is pending the results of the
simulation of the more straight forward methods.

Special - The idea of mapping instructions
separate from data was considered and rejected
on the ground that the PDP-II instruction
architecture does not complement this scheme.
MO:3t of the PDP-II instructions are multiple
word instructions, thus it is typical for data
to immediately follow the instruction. Separating
the instruction and data into separate maps does
not appear to have any advantage, especially if
more than one word per block is used as in 1.2.

Row

Row

Row

NOTE:

1
2

3

- 3 -

MAIN MEMORY

1 2 3. '.. "¥
r------·;-"'":'--~--' ... ,~~~-. ---- .. " .-.-. '''-' .

~--------~--~--• .-+-....... -~-,- -........... '_ ... _" ..

Column

Column set

CACHE MEMORY

M

!
!---.. - '
I
i ,
~~. ~ .. ~ ~' .. _J~l.

FULL ASSOCIATIVE
Any core memory block
maps into any cache
memory block.

CONGRUENT
Any block from one row
of core memory maps into
a row dedicated cache
memory block.

SET ASSOCIATIVE
Given M as the number
of sets, up to and in­
eluding M blocks from one
row of core memory may be
mapped into any row
dedicated block of cache
memory.

Each square represents a block of N words in both
main and cache memory_

Buffer capacity is the pro~uct N . M · X.

FIGURE I-MEMORY MAPPING SCHEMES

- 4 -

1.4 Program/Buffer Ratio - Program/Buffer Ratio is defined
in this paper as the ratio of the number of core blocks
containing progra~m information to the total number of
buffer blocks. There was some concern that the simula­
tion parameters may be biased such that the test program
would always fall into one column of the core memory
matrix. It is necessary to insure that this does not
happen. The program should reside in a number of columns
to increase the likelihood of contention for one buffer
block.

If there is no discontinuity in the program address
space, the number of core blocks is easily defined as:

= M.
13" where M = Program size (words)

B = Block size (words)

Similarly, the number of buffer blocks is defined as:

N - A b-ij where A = Buffer size (words)

program/Buffer ratio is therefore:

or simply the ratio of program size to buffer size.
This ratio should be calculated and used as an indicator
for all programs used in the simulation.

2. PLACEMENT & PURGING ALGORITHMS

2.1 Core Image Update - It is intuitive, considering the
influence of I/O transfers and multiprocessors, that
cache memory and the blocks of core that it represents
be exact images of one another at all times. This is
philosophically ideal, but hardware-wise extremely
difficult and maybe even impossible if the overall
performance of the system is not to be significantly
degraded.

Except for consideration in sections 2.1.3 and 2.1.5,
the core image update schemes outlined below will have
no bearing on the operation of our simulated cache system.

2.1.1

2 .. 1.2

2.1.3

- 5 -

write back an entire block at replacement time.
Core is not updated until its associated
block is replaced in cache memory_ At that
time the entire block is written to core
memory_

The problems inherent to this scheme are:

1. Data channel outputs concerned with data
updated in cache memory must avoid passing
on stale data.

2. Multi-processors must somehow avoid accessing
stale information that is used to control
synchronization between themselves.

3. The processor must delay the amount of time
necessary to transfer an entire block to
core before the new block can begin to be
transferred to the cache.

write back all modified words of a block at
replacement time. This scheme also has problems
1 and 2 of the scheme in 2.1.1. The delay at
replacement time to write to memory is decreased
as non-modified registers are not transferred.

Immediate core update on stores to cache. This
method has the obvious benefit of keeping core
memory as current as possible thus avoiding
problems with:

1. Data Channel outputs
2. Multi-processor synchronization
3. Block updates at replacement time

However, it has the negative effect of holding
up cache memory cycling on each store that is
preceded within one memory cycle by another store.
The delay is until the memory cycle has completed.
IBM, on the 360/85, has given the processor the
capability of buffering one instruction request­
ing the storing of information into core memory
in an attempt to improve this situation.

- 6 -

The FORTRAN program, to simulate cache memory
systems, will also keep track of the number of
cache memory cycles that would be gained if a
one word buffer were utilized as intermediate
storage to core memory. Any improvement caused
by the one word buffer will be a function of:

1. The proximity of stores.
2. The replacement of any block in

cache memory which necessitates
the emptying of the one word
buffer before the replacement
can take place.

The simulation will assume that l¢ cache cycles
equal 1 memory cycle and if a second store occurs
within l¢ cache cycles of the preceding store,
the cycle gain will be registered as l¢ minus
the number of intervening cycles:

e.g. let Sn = store cache cycle
x = non-store cache cycle

8lXXX82 the gain here would be 6 cache cycles
as 82 could be buffered rather than
delayed until the 81 memory cycle. was
completed.

The simulator must also factor in the effect of
strings of stores:

e. g. S lXXX82XX83XXX84

without a buffer, the delays would be:

D2 = 6 cache cycles
D3 = 7 cache cycles
D4 = 6 cache cycles

However, the use of a buffer will not gain 19
cache cycles because there would still be delays
at 8 3 and 84 due to the buffer being occupied:

- 7 -

Therefore, the actual gain would be l~ cache
cycles.

As block replacements require the buffer to be
emptied before proceeding, this must also be
considered.

e.g. let R = start of block replacement

without a buffer, the delays would be

D2 = 6
])3 = 7

D4 = 6

DS = 7

with a buffer, the delays would be

D3 = 3
D4 = 6
DS = 17 (to complete the writing of 8 3 which

bega~ at 84 and then write 84)

showing no actual gain by using a one-word
buffe;c. Note that the cycle flows chosen were
purely for explanatory reasons and that it will
be the task of the analysis program working
with actual flows to determine the cost performance­
benefits of employing a one word buffer.

Another pertinent point is that the use of an
intermediate buffer causes the immediate core
update scheme to no longer be immediate in the
sense that core is a true image of the cache at
all times. This brings the problems of:

1. Data channel outputs, and
2. Multi-processor synchronization

to the limelight again.

- 8 -

A thought to put away for future consideration
is that the increase of buffer words from 1 to
N may really payoff in applications where a
significant amount of floating point calculations
are psrformed. As the processor time for a
floating point operation is relatively long, this
time would be available for the emptying out of
buffers that had been previously filled.

2.1.4 Core modifications to cache. The inverse of the update
of core with current cache data is the updating of the
cache with current core data that came to be via:

1. Data channel inputs, and
2. Multi-processor stores.

Again, this does not affect our simulation, but
certainly must be considered and solved in the hardware.

2.1.5 No cache activity if st.ore not in cache. Whenever a
store is rl3qu.ested, to a block not currently in the
cache, the store will be made directly to core memory
requiring no cache activity whatsoever. This is a
significant point relative to the simula~ed cache
system as it becomes a major qualifying factor in
determining when block replacements are to be made
and thus, in the performance of · .. the total system
under evaluation.

2.2 purging Algorithms. The algorithm used to select the
buffer block into which the next core image is to be
placed is usually referred to as a purging algorithm.
A number of them are listed below and unless there is
strong feeling to the contrary, 2.2.1 will be used
for the simulation. It is relatively easy to implement
and again, the 360/85 uses it. The rest are listed for.
in forma tiOll.

2.2.1
2.2.2
2.2.3

Least recently used.
Least frequently used.
FIFO: First in, First out.

- 9 -

2.2.4 Random

2.2.4.1 Pure

2.2.4.2 Weighted; block presently being used
and/or perhaps most frequently used is
not purged.

3. CACHE IN A PAGING SEGMENTATION ENVIRONMENT.

It is becoming
the paging and
buffer memory.
configurations
memory, and· 2)

increasingly obvious that the interaction of
Segmentation hardware is intimate with the

In focusing attention on the problem, two
were considered: 1) Buffer next to core
Buffer next to cpu.

3.1 Buffer between core memory and the pis hardware.
The disadvantage of this scheme is that the buffer
tag address must contain the ex~ra bits necessary
to specifY all possible core addresses and thus
require extra hardware to implement. The advantage
is that in a time sharing environment the monitor
can reside in a fixed physical address so when users
are swapped in and out of core, the monitor image
in the buffer is not changed.

3.2 Buffer between the CPU and the pis hardware. This
scheme has the advantage of being fast and requiring
only enough tag address bits to specify the virtual
memory. However, the disadvantages are that every
change to the pis hardware would require an update of
buffer memory. Also, core memory modifications ·from
sources other than the CPU (such as I/O and multi­
processor) would be very difficult to reflect in the
buffer memory, the pis hardware would have to check

. the memory address as well as flag the buffer memory,
if applicable.

