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ABSTRACT 

The parameters of a buffer memory to be used in a PDP-ll!40 
are discussed. The objective is to reasonably constrain the 
variables involved' so that a simulation program may be written 
a~d the proposed buffer performance can be evaluated. 

The parameters of major interest are cache size, block size, 
nwnber of sets, and write-back algorithms. The present guess 
is that the cache will likely be about 512 words in 8 word 
blocks, with 2 or 4 sets of congruently mapped blocks. 



- 1 -

1. PHYSICAL PARAMETERS 

1.1 Buffer Size - Buffer size refers to the total word 
capacity of the cache memory, irrespective of the 
mapping algorithme (Refer to Figure 1.) Buffer 
sizes of 256, 512, and 2048 16-bit words will be 
simulated. These values were chosen to provide in­
sight and direction. The final choice is not limited 
to these values. It is interesting to note that the 
IBM 360/85 employs a ca.che with 16K 8-bit bytes, ex­
pandable to 32K bytes. 

1.2 Block Size - Block size refers to the number of 
words transferred from main to cache memory for 
each word requested which is not in cache memory. 
Transferring a number of words for each reques.t 
is normally done to give a pseudo prefetch capability 
to the buffer. Block sizes of 4, 8, and 32 16-bit 
words will be simulated. The general comments of 
Section 1.1 are applicable. Again, using IBM as 
a guide, their block size is 64 8-bit bytes. The 
block size of 1 will be tried for one configuration 
to provide a basis for comparison with the simulation 
work done for the PDP-BF. This is expected to be a 
relatively unoptimum solution because of the absence 
of prefetch and the requirement of an associative 
address bit with each cache word. 

1.3 Mapping Algorithms - (Refer to Figure 1) 

1.3.1 

1.3.2 

Full Associative - This method makes the 
most efficient use of the buffer space. 
However, address tags are larger than other 
schemes thus increasing hardware costs. Also, 
all buffer addresses must be checked, thus 
decreasing buffer performance. 

Congruent - Congruent mapping restricts the 
transfer of blocks of a core memory area 
partitioned by rows and columns to one block 
of buffer memory which corresponds with the 
on!3 (and only one) row a f core memory. A 
fe',ver number of buffer address (tag) bits 



1.3.3 

1.3.4 

1.3.5 
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are necessary since the desired block is either 
in a specific row of the buffer or it must be 
requested from core memory_ Hardware costs 
are reduced and performance is improved. 
Congruent mapping will be simulated as a 
special case of Set Associative Mapping 
(Section 1.3.3) where there is only one 
IIset. II 

Set Associative - Set Associative mapping is 
similar to Congruent with the added sophisti­
cation of allocating two or more buffer blocks 
to the same core memory row. This technique 
reduces the conflict of contention for the same 
block in buffer memory when the program refer­
ences two or more blocks in the same row of 
core memory. Simulation will be performed 
for sets of 1, 2, and 4 blocks of buffer 
memory per row of core memory. 

Hyorid - Any combination of the above mapping 
algorithms is a hybrid. IBM 360/85 uses the 
Full Associative algorithm to map large sections 
of core (lK bytes) onto the buffer memory, but 
not all bytes are loaded into the buffer. Blocks 
of 64 8-bit bytes within the mapped section (called 
sector) are Congruently mapped and a control bit 
is set signifying which block of the sector con­
tains valid information. Consideration of a 
hybrid system is pending the results of the 
simulation of the more straight forward methods. 

Special - The idea of mapping instructions 
separate from data was considered and rejected 
on the ground that the PDP-II instruction 
architecture does not complement this scheme. 
MO:3t of the PDP-II instructions are multiple 
word instructions, thus it is typical for data 
to immediately follow the instruction. Separating 
the instruction and data into separate maps does 
not appear to have any advantage, especially if 
more than one word per block is used as in 1.2. 
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FULL ASSOCIATIVE 
Any core memory block 
maps into any cache 
memory block. 

CONGRUENT 
Any block from one row 
of core memory maps into 
a row dedicated cache 
memory block. 

SET ASSOCIATIVE 
Given M as the number 
of sets, up to and in­
eluding M blocks from one 
row of core memory may be 
mapped into any row 
dedicated block of cache 
memory. 

Each square represents a block of N words in both 
main and cache memory_ 

Buffer capacity is the pro~uct N . M · X. 

FIGURE I-MEMORY MAPPING SCHEMES 
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1.4 Program/Buffer Ratio - Program/Buffer Ratio is defined 
in this paper as the ratio of the number of core blocks 
containing progra~m information to the total number of 
buffer blocks. There was some concern that the simula­
tion parameters may be biased such that the test program 
would always fall into one column of the core memory 
matrix. It is necessary to insure that this does not 
happen. The program should reside in a number of columns 
to increase the likelihood of contention for one buffer 
block. 

If there is no discontinuity in the program address 
space, the number of core blocks is easily defined as: 

= M. 
13" where M = Program size (words) 

B = Block size (words) 

Similarly, the number of buffer blocks is defined as: 

N - A b-ij where A = Buffer size (words) 

program/Buffer ratio is therefore: 

or simply the ratio of program size to buffer size. 
This ratio should be calculated and used as an indicator 
for all programs used in the simulation. 

2. PLACEMENT & PURGING ALGORITHMS 

2.1 Core Image Update - It is intuitive, considering the 
influence of I/O transfers and multiprocessors, that 
cache memory and the blocks of core that it represents 
be exact images of one another at all times. This is 
philosophically ideal, but hardware-wise extremely 
difficult and maybe even impossible if the overall 
performance of the system is not to be significantly 
degraded. 

Except for consideration in sections 2.1.3 and 2.1.5, 
the core image update schemes outlined below will have 
no bearing on the operation of our simulated cache system. 



2.1.1 

2 .. 1.2 

2.1.3 
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write back an entire block at replacement time. 
Core is not updated until its associated 
block is replaced in cache memory_ At that 
time the entire block is written to core 
memory_ 

The problems inherent to this scheme are: 

1. Data channel outputs concerned with data 
updated in cache memory must avoid passing 
on stale data. 

2. Multi-processors must somehow avoid accessing 
stale information that is used to control 
synchronization between themselves. 

3. The processor must delay the amount of time 
necessary to transfer an entire block to 
core before the new block can begin to be 
transferred to the cache. 

write back all modified words of a block at 
replacement time. This scheme also has problems 
1 and 2 of the scheme in 2.1.1. The delay at 
replacement time to write to memory is decreased 
as non-modified registers are not transferred. 

Immediate core update on stores to cache. This 
method has the obvious benefit of keeping core 
memory as current as possible thus avoiding 
problems with: 

1. Data Channel outputs 
2. Multi-processor synchronization 
3. Block updates at replacement time 

However, it has the negative effect of holding 
up cache memory cycling on each store that is 
preceded within one memory cycle by another store. 
The delay is until the memory cycle has completed. 
IBM, on the 360/85, has given the processor the 
capability of buffering one instruction request­
ing the storing of information into core memory 
in an attempt to improve this situation. 
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The FORTRAN program, to simulate cache memory 
systems, will also keep track of the number of 
cache memory cycles that would be gained if a 
one word buffer were utilized as intermediate 
storage to core memory. Any improvement caused 
by the one word buffer will be a function of: 

1. The proximity of stores. 
2. The replacement of any block in 

cache memory which necessitates 
the emptying of the one word 
buffer before the replacement 
can take place. 

The simulation will assume that l¢ cache cycles 
equal 1 memory cycle and if a second store occurs 
within l¢ cache cycles of the preceding store, 
the cycle gain will be registered as l¢ minus 
the number of intervening cycles: 

e.g. let Sn = store cache cycle 
x = non-store cache cycle 

8lXXX82 the gain here would be 6 cache cycles 
as 82 could be buffered rather than 
delayed until the 81 memory cycle. was 
completed. 

The simulator must also factor in the effect of 
strings of stores: 

e. g. S lXXX82XX83XXX84 

without a buffer, the delays would be: 

D2 = 6 cache cycles 
D3 = 7 cache cycles 
D4 = 6 cache cycles 

However, the use of a buffer will not gain 19 
cache cycles because there would still be delays 
at 8 3 and 84 due to the buffer being occupied: 
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Therefore, the actual gain would be l~ cache 
cycles. 

As block replacements require the buffer to be 
emptied before proceeding, this must also be 
considered. 

e.g. let R = start of block replacement 

without a buffer, the delays would be 

D2 = 6 
])3 = 7 

D4 = 6 

DS = 7 

with a buffer, the delays would be 

D3 = 3 
D4 = 6 
DS = 17 (to complete the writing of 8 3 which 

bega~ at 84 and then write 84) 

showing no actual gain by using a one-word 
buffe;c. Note that the cycle flows chosen were 
purely for explanatory reasons and that it will 
be the task of the analysis program working 
with actual flows to determine the cost performance­
benefits of employing a one word buffer. 

Another pertinent point is that the use of an 
intermediate buffer causes the immediate core 
update scheme to no longer be immediate in the 
sense that core is a true image of the cache at 
all times. This brings the problems of: 

1. Data channel outputs, and 
2. Multi-processor synchronization 

to the limelight again. 
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A thought to put away for future consideration 
is that the increase of buffer words from 1 to 
N may really payoff in applications where a 
significant amount of floating point calculations 
are psrformed. As the processor time for a 
floating point operation is relatively long, this 
time would be available for the emptying out of 
buffers that had been previously filled. 

2.1.4 Core modifications to cache. The inverse of the update 
of core with current cache data is the updating of the 
cache with current core data that came to be via: 

1. Data channel inputs, and 
2. Multi-processor stores. 

Again, this does not affect our simulation, but 
certainly must be considered and solved in the hardware. 

2.1.5 No cache activity if st.ore not in cache. Whenever a 
store is rl3qu.ested, to a block not currently in the 
cache, the store will be made directly to core memory 
requiring no cache activity whatsoever. This is a 
significant point relative to the simula~ed cache 
system as it becomes a major qualifying factor in 
determining when block replacements are to be made 
and thus, in the performance of · .. the total system 
under evaluation. 

2.2 purging Algorithms. The algorithm used to select the 
buffer block into which the next core image is to be 
placed is usually referred to as a purging algorithm. 
A number of them are listed below and unless there is 
strong feeling to the contrary, 2.2.1 will be used 
for the simulation. It is relatively easy to implement 
and again, the 360/85 uses it. The rest are listed for. 
in forma tiOll. 

2.2.1 
2.2.2 
2.2.3 

Least recently used. 
Least frequently used. 
FIFO: First in, First out. 
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2.2.4 Random 

2.2.4.1 Pure 

2.2.4.2 Weighted; block presently being used 
and/or perhaps most frequently used is 
not purged. 

3. CACHE IN A PAGING SEGMENTATION ENVIRONMENT. 

It is becoming 
the paging and 
buffer memory. 
configurations 
memory, and· 2) 

increasingly obvious that the interaction of 
Segmentation hardware is intimate with the 

In focusing attention on the problem, two 
were considered: 1) Buffer next to core 
Buffer next to cpu. 

3.1 Buffer between core memory and the pis hardware. 
The disadvantage of this scheme is that the buffer 
tag address must contain the ex~ra bits necessary 
to specifY all possible core addresses and thus 
require extra hardware to implement. The advantage 
is that in a time sharing environment the monitor 
can reside in a fixed physical address so when users 
are swapped in and out of core, the monitor image 
in the buffer is not changed. 

3.2 Buffer between the CPU and the pis hardware. This 
scheme has the advantage of being fast and requiring 
only enough tag address bits to specify the virtual 
memory. However, the disadvantages are that every 
change to the pis hardware would require an update of 
buffer memory. Also, core memory modifications ·from 
sources other than the CPU (such as I/O and multi­
processor) would be very difficult to reflect in the 
buffer memory, the pis hardware would have to check 

. the memory address as well as flag the buffer memory, 
if applicable. 


