
PDP-11/40 Technical Memorandum # 18 

TITLE: 

AUTHOR (S) : 

INDEX KEYS: 

DISTRIBUTION 
LIST: 

REVISION: 

OBSOLETE: 

DATE: 

The Execute Instruction 

Ad van de Goor 

Execute 
Interruptability 
Addressing Modes 

PDP-ll/40 Group 
PDP-II/60 Architecture Review Committee 
Jud Leonard 
Jeff Scott 
Richard De Morgan 

None 

None 

Septembe~ 21, 1970 



- 1 -

0.0 ABSTRACT 

(This is the abstract of PDP-ll/40 Technical Memorandum 
#18, dated September 21, 1970, total pages 7 .) 

The use of the execute "XCT" instruction is discussed and 
from that an implementation derived. 

Interruptability considerations resulted in a non-interruptable 
execute sequence. (This was the simplest solution hardware 
wise. ) 

considerations of the addressing modes used by the XCT in­
structions led to the rule that when the -(R), (R)+ and 
(R)A modes are used, the instruction to be executed is 
"thought of" as being one l6-bit word long, independent 
of the actual length of the instruction to be executed. 

In order to have no surprises or side effects in the 
instructions to be executed, the machine is required to 
have two program counters: 

1) The PC, which is the regular program counter. 
Upon completion of the XCT sequence, it usually 
points to the instruction following the XCT 
instruction. 

2) The du:nuii:y program counter "DPC", which is 
only used fOr the address computation in the 
instruction to be executed. 

The only instructions which cannot be executed are Execute 
and Repeat. 



- 2 -

1.0 BASIC CONSIDERATIONS 

In order to determine .. the way the Execute "XCT II instruction 
should be implemented, the usage of the XCT instruction 
should be given some attention. The main reasons for 
its existence are twofold: 

1. To facilitate the writing of reentrant code. 
This is accomplished by having the lIimpure" 
part of the code ·stored as data. Instruction 
stored that way can be executed through the 
XCT instruction. The net effect of using 
XCT this way should be the same as if the 
executed instruction would have been executed 
in line, i.e. in the place of the XCT in­
struction. 

2. To allow for the execution of a selected 
instruction. The effect of using XCT this 
way is. that of the execution of a one word 
subroutine (except for the RTS instruction). 

2.0 A POSSIBLE IMPLEMENTATION 

The format of the Execute "XCT" instruction is as.shown 
below: 

1 
10 6 

OC D 

The OC field 'specifies the XCT instructions. The D 
field is a regular destination field pointing to the 
instruction to be executed. Interaction with the 
to-be-executed instruction is po~sible when the (R)+, 
-(R), and @(R)+ moaes are used in the D field of the 
XCT instruction. 

The evaluation of the D field is done in the same way 
as a JMP instruction, i.e. the instruction to be exe­
cuted starts at the location indicated by the effective 
address of the D field of the XCT instruction. 



- 3 -

2 . 1 INTERRUPTABILITY 

There are three alternative ways in which an instruction 
sequence can be interrupted. (The following discussion 
is only with relevance to the XCT instruction.) 

1) Interrupt in the middle of the instruction and 
resume where left off. 

The XCT sequence consists of at least two 
instructions (namely the XCT instruction 
itself and the instruction to be executed) . 
An interrupt in the middle of this sequence 
which allows for continuation from that 
point requires two addresses to be stored: 

a) The address of the next instruction, 
i.e. the instruction following the 
completion of the XCT sequence. 

b) The address of the instruction which 
had to be executed next in the XCT 
sequence. 

Besides having two addresses to be saved upon 
an interrupt, a status bit has to be set indicating 
that this happened. Considering the complexity of 
having to deal with a possible third word (i.e. the 
PC, PS, and the second address) and a status bit 
indicating the presence of the third word this 
alternative has to be rejected. 

2) Abort instruction and start over. Because of the 
address modifications which can occur when the 
-(R), (R)+ and @(R)+ modes are used on the 11/40, 
starting over is not possible. 

3) Finish Current Instruction. This means that 
interrupts are only allowed between complete 
instructions or complete instruction sequences. 

Because the other two alternatives are too 
complicated or not possible, this will be the 
way XCT instructions will be interruptable 
(namely they are not interruptable). 



- 4 -

Having chosen the third alternative, chains of XCT 
instructions (like allowed in the PDP-lO) should not 
be allowed in order to cut down the lIinterrupt response" 
time. Considering this constraint, an XCT sequence 
consists of two instructions only. Furthermore, it 
should be remembered that the XCT instruction can add 
a three memory cycle time (when the XCT instruction 
uses the @(R)+ or the @A(R) addressing modes) to the 
execution time of the instruction to be executed, as 
far as the "interrupt response" is concerned. 

3.0 ADDRESSING MODES OF THE XCT INSTRUCTION 

There are eight possible addressing modes because of 
the D field of th~ XCT instruction. 

3.1 IIRII - Register Mode 

In this mode the first word of the instruction to be 
executed is located in the l6-bit register denoted by 
R. In case the instruction to be executed consists of 
multiple words, the second, third, etc. words are 
located in the registers R+l, R+2, etc. 

It is interesting to note that in this mode "register 
with register" indexing is possible when the executed 
instruction uses the mode A~), (R)A, or @A(R). 

3.2 "@(R)" 
"A{R) " 
"@(R)+II 
"@A(R) II". _ 

Indirect Register Mode 
Indexed Mode 
Auto Increment Deferred Mode 
Indexed Deferred Mode 
,l' 

The above four modes are handled in the usual manner. 
In;the case of the A (R), @A(R) and @(R7)+ modes, the 
PC is incremented with 2. 

3.3 II (R}+1t 
n_{R)fI 

II (R)A" 

Auto Increment Mode 
Auto Decrement Mode 
Adjusting Index Mode 

These three modes have all one thing in common, namely 
that their operation depends on the data type they operate 
upon. (The to-be-executed instruction has to be considered 
as data as far as the XCTinstr~ction is concerned.) When 
the aJ:>ove modes are normally used, the length of the data 
the irlstruction pperates upon is implied in the instruction. ~ 
The XCT instructJ.on, '~owever, does not contain any inforrna-



- 5 -

tion concerning the length of its data (i.e. the 
instruction to be executed) • 

The adjustment by a variable amount could be desirable 
if, for example, the (R)+ mode were used and a sequence 
of instructions had to be executed through the XCT 
instruction. R would then automatically point to the 
next instruction. 

The idea of an adjustment by a variable amount has to 
be rejected because of the following reasons: 

1) In case of the -(R) mode, the adjustment 
is impossible because the length of the 
to-be-executed instruction Is unknown and 
cannot be determined. 

2)~case- oftne (R) + mode, tnef61lowJ::hg 
sequence of instructions could occur. 

XCT 
XCT 

(Rx) + =::::J> MOV 
(Rx) +~MOV 

(Rx)+,A(Ry) 
#5, Rx 

In order to have the MOV instructions work 
correctly, rue in the XCT instruction has to be 
adjusted before the MOV instruction is executed. 
This means that the to-be~executed instruction 
(MOV in this case) has to be read from memory, 
its length has 'to be analyzed, rue has to be adjusted, 
and finally the MOV can be executed. 

Because of the problems above, it is suggested to have 
a fixed, rathe~ than a variable adjustment. This adjust­
ment should be such that the XCT instruction thinks it 
operates on data of one 16-bitword (i.e. when the -'(R) 
and (R)+ m6des are used the adjustment is 2, when the 
(R)A mode is used L=2) . 

4.0 INSTRUCTIONS TO BE EXECUTED 

Because of the requirements of section 1.0, the PC is 
handled in such a way that upon completion of the XCT 
instruction sequence, the PC points to the instruction 
directly following the XCT instruction, unless a trans­
fer of control instruction has been executed (e.g. a 
Branch, Jump, etc.). 



- 6 -

In trying to Q.ete'rmine how the PC should be handled, 
a few coding examples will be analyzed. 

1) XCT Dest MOV #5, A(R) 

2) XCT Dest ADD #8, PC 

3) XCT Dest JSR R, Dest 

In example 1 we want the next instruction to be executed 
to be the one following the XCT instruction. In example 
2 we want 8 to be added to the "real" PC, i.e. the next 
instruction to be executed will be 4 words down from the 
XCT instruction. The implication of this is that the 
machine needs two program counters. 

1) The program counter "PC". This i"s the regular 
Program counter. It is used exclusively in the 
XCT instruction and in the executed instruction 
only in the execution phase, i.e. not in the 
address computation phase. 

2) The dummy program counter UDPC It
• This DPC is 

only used in the address computation steps of 
the to-be-executed instruction. Its initial 
value is the address evaluated in the XCT in­
struction. 

Having these two program counters, the effect of executing 
a JSR,as in Example 3, will be quite clear. The program 
counter (i.e. return address) saved is the PC (rather than 
the DPC). This way the current subroutine calling con­
ventions are obeyed. 

4.1 INSTRUCTIONS WHICH CANNOT BE EXECUTED 

There is a group of instructions which are not allowed 
to be executed. 

1) Execute uXCT u . This is because of the interrupt 
response time as discussed before. 

2) Repeat "RXX". This should be disallowed because 
of the to-be-expected hardware complexities. 



- 7 -

4.2 QUESTIONABLE INSTRUCTIONS WHICH CAN BE EXECUTED 

There is a group of instructions which affect the flow 
of control in a program. All of these (see list below' 
can be executed (i.e. through the XCT instruction). 

1) Branch 
2) Jump 
3) Subroutine Call "JSR II 

4) Substract and Branch "SOB" 
5) Emulator Trap "EMT" 

I 6) Trap 
7) Return from Interrupt "RTI" 
8) Return from Subroutine "RTS" 


