by AT
L ~ ‘
T4 ""ﬁ‘ CE:- The PODP=11 Flouting Point Unit
PDP-11/40 Technical Memo ¥31 35 poges
Authors: Ad van de Guor, Len Hughes .
Date: . February 1971 p :
Revision: No. 2 _— Obsolete; 23 and 23A/
Index Key: Floating Point Instructions
Virtuai Address Space
Physical Address Space
Bus Option
Internal Gprion
Distribution: PDP-11/40 Working List

The purposs of ¥ m memo is 1o descride the noture of the Floating Point Unif "FPU". The FPU is
) =~

designed vo be © Unibus opiion for the 11/05 and the 11/20. For the 11/40, the FPU is planned

The FPU is capable of executing singie and double precision (I.e. 32 and 64~bii) floating point
instructions and is capabie of reading and writing its own operands from and info memory. QOnce

an FPU insiruction has baen started, it can continue without CPU inte ervention, leaving the CPU
FPU) instructions.

-{3
(¢4
@
—-
¢
[¢
*
G
(¢
L
G
57
e
b3
o3
(]
D
]
T
<G
N
5

0.0 INTRODUCTION

The position of the PDP=11 in the market is such that some fﬁoa:ing point arithmetic capa=
bilities are ¢ very desircbie, if nof necessary. Considering the complexity, and therefore
the price of a floating point unit "FPU", it should be availabie as an option only.

Some quastions o ia«: ans we.n,d concerning the FPU Op’flﬁﬂ are listed below and elaborated
on in the foiiowing seciions

internai versus Bus. Option

FPU = CPU inveruction

The FPU's {nstruction and Data Formats
The FPU's Ins*ruchon Set

ESSK AR S
N N N Sar”

1.0 INTERNAL VERSUS BUS OPTION

The FPU is thought of as a fairly independeny processor, i.e¢. when started if is supposed to
finish ¢the instruction independeni of the CPU. This inciudes reading and writing data from
and info memory. Therefore, the FPU has fo be connected to the bus.

e
i N N M .,
soat be connsciabie To tho Unibus in ordar 1o make it

Eg)
¥

he nexy quesiion o b soived in'd
or pnysic"i address space. Fig
virtuai cadiess space. [

The virival address space is defined a iddress space the user runs in; the physical
address space is defined as the set of core iocations aciuciiy addressed. For o machine
which does nof have addres e.g. relocate protect) the virfual address space

3
is identical to the physical address space.

73
j“,
©
O

Locking ot the sulution of Figure 1-2, the following comments con be made:

1) The addresses of the operands have fo be wsseci o fae FPU as physical addresses.
! *. tion, r should recognize certain
fnsvead, H should foke the daia {on the data
' if it were an address. This
requires special controls and cfcr '?ns in the relocate protect option.

~.

[RS]
S

h mi ght have to

?

!

o

cum:cww in the r?U., or'the i’(~zoe¢.:<./?rmm.; ogiion hc.s fo hav 2 Knowgeage rele-

vant o the use of the virtuel cddresses it reiccares.

odes (R)+ or =(R) address violations can oceur which can be detected
by the Relocare/Protoct option.

(M)

g
=
o @
2oe
e
2o
o
["‘:‘.
~
Ua

The soiution of Figure i~
s LI

d acvun'rcsc:es. in %—?gum«
S

i r"'u‘a":‘ memory, has none of the cbove
x is i‘r@aﬁ'ma in i'i'.e sc.'ma'way as the CPU for which the Re!ocoi'e/
& It can i: : stated that the FPU shouid operate

4

in vir‘u i space.

Because of mechanical limitations and resirictions on the Tast bus, it is most desirable that the
FPU take up no more than one system unit if the solution of Figure 1-1 is implemented.

.

- R
®
;
g 1
d d
W oy
¢ i
. g S ot
! PPY !
§
!
! !
%
i |
i
i

Relocate

Protact

fid AN BT TP o PRGD o NP S 25 S o W B
SILUre ol LONVIGURaTIGn with "y

Opsrating in VIKTUAL Adoress Space
(Precuming an open=coiiecior internai bus.)

0311

H
o
c

Bus

1

g
T f .
| : Relocate i
i Poaoo |) . i .
L cpuU o # e
; : ¢ Protect
: i

Figure 1-2 Configuration with FPU Operating in
Q PHYSICAL Address Space
NOTE: =F&= = Viriual Address Lines
—P— = Physical Address Lines

(2N

-

e R A e e b
FPU~-Cru | ACTION

S DEPTRE Sl o} TR . -
BEaULg vae i"i"J WL o OGN ind: Juf.x‘w¢:. iy

startec insiruction indepangent of
of Two ways,

! il B Dot L . [P R S it 1 - * &r A o - -, e o
fhe CPU s deciered bugy walic the FPU cawles out its operation. Tnis nas the advani=-

-
~—

“

age fhat it wouid aeteriorate the inferuot .W,Jonw time (cccouse Tisating point opera=-
tions tend to fuke ¢ relatively long execution time). i aiso prohibits the CPU from
executing oi“ner, i.e. non~ficating, instruciions.

2) Allow the CPU to continue executing non~floating instructions once the FPU is set up
i.e. ready fo start execut mg) This ailows the CPU to carry out subscript computation,

point waﬁ“ruwzo thus i improving the
ts descrioed advantages.

-

ZiTa)

FPU=11/20 INTERACTION

e

5

In previous memos the FPU wes wetivated by the ‘i'i/Qu rhvough @ sequence of MOV instruce
tions, as cescribed in Technicel Memos 25 and 23-A. A typicai sequence iooked like the
cne given below for the case of the instruction MULF A{Rx), ACI :

-

g

ADD FA, Rx ; compute addrass |

SUB F3R, PC ; test for FPU busy (FBR)=4 when FFU busy else
MOV PC, FRC ; save PC

MOV Rx, FIR+F Oa.,-i-AC move operand addrass and start FPU
The cbove ssquence "ﬁkes words and has o be repeated for every FPU insiruciion of the
above iype.

The new scheme requires that every FPU instruction (;me- MULF A{RZ), ACI) is preceded
by a JSR. The JSR aiiows the FPU fo take coniroi over the CPU. The FPU uses the CPU

for address computation, stack poinfer adjusiments, efc., und acts iike a nherdwired inter-
preter. The JSR instruction has fo be the foilowing, "JSR R7, FPU" where FPU is on address
in the 1/O area. An example of this is given below. (next page)-

!

JSR R7, FPU
MULF AR2), ACI

- ; fypical call seguence in

'3 user's program

—— - el v T S e G50 e SN W e A L S G Sl SRy S G A AT AU S o G S Y o

BR.
FPU—"
TSMOV (R6) + , FRA*

; the I/O address FPU contains

. "BRe when the FPU is busy

’- ; otherwise it contains "MOV (R4) + ,FRA"

@(FRA)—3 FIR*

(FRA) +2— FRA
MOV R2, FDA
(FRA) + (FRA)=s3FDA*

(FRA) + 2—FRA

2 or 4 data fetches

MOV FRA, PC

* FRA means Floating Return Address

; When the lafter instruction is executed
; the return cddress is popped off
; the stack into the FPU's FRA register
; The instruction is fetched, under |
; hardware controf, and loaded in the
; FIR register and FRA is incremented
; The CPU's register R2 is read
; The index computaiion "A+HR2)"

; is done under hardware conirol

; and FRA is incremented

; Depends on the mode of the FPU
; Control is transferred back to the
; CPU while the FPU does the

; required operation

R

* FIR means Floating Instruction Regi§fer'

* FDA means Fioating Data Address

GIVEDN oliow .,

0314

This sequencs of CPU insiructions is i savea with FPU ot
of the FPU hurdwars for ¢ greater wiricienay . A complet can be
divided inio 6 sub-cycics as shown in Figure 21 be.aow.
. RFRT
:
b b {0 o j
 R=R7
—
A B c D E | ‘
SEQUENCE FOR MOST INSTRUCTIONS
; ’“",7 4
P i i —_— i
R=R7 |
¥ 4
A B

(£
i
b

. C D
GQUENCE FOR CERTAIN CONVERT INSTRUCTIONS

A = instruction Fatch

5 = Operand Address a,urwu*"’(.w, twe paths depending on R=R7/R#R7
ol H = e e
C = Daia Fetches/Stores

D = Transfer Conirel from FPU back to CPU

m
It

Execution)

FIGURE 2-1, FPU instruction Subseguences
Below is the sequence of FPU issued instructions and FPU actions which ere reguired for the address
compurm ion cmd finci execution of mast FPU instruciions. The capital iefters preceding the seciions
correspond o the subseguences of Figure 2-1.

A: FPU:—BR. ; FPUbusy locp

MOV (k&) +,FRA ; Get return address
(FRA)—FIR ; Get instruction, both paris
(FRA) +2_FRA ; done by FPU haraware

MODE ({continued) 0315

N S ST
IS, A e R

Cr

v ™
\. X\."U i T RA

(\m) ‘:‘(FDA)«-—-»,: 'A

7 @ AR) “6(FRA)—> FDA
*{FRA} +2—5 FRA
*(FRA) + (FDA)~ FDA
*a')-'l-DA)—-g- DA

s N . i 4
B O S v e o my e f e, m s
C. Ol Qavd SHCE/ STCTSS

Tl s e s i e Sl Bncpumt
| nase h&y;‘:wn AV Enilrivy 1eveEs 7

- 1t RS R S B T Bt et WO A S A e 0 S B D L g W S S U S VR TR A SR8 Wy o e (D G WU U0 G N o S S S S e U e e S Y A e o G S S SO S S S et g P NS e G S S 0 R S b O W S S

D. MOV FRA, PC ; transfer conirol back o CPU
', to execufé non FPU initiared
; instructions

4

the FPU instruction, i.e. perform the acivai multipiication, etc.

2.1, OO CONDITION CODES .

s C,IN,Z, and V wmch existed just prao, io the FPU instruction,
s caused by ihe instructions the FPU issues to the CPU.

has it own set of condifion code bifs, ”FC, FN, FZ, and FV". These can be trans-
ne CPU's wnd‘i ion code bits under coniroi of a special instruction Copy Floating

o~

Cond:?son HCECCh.

oo Bty e S des [St I e 3
2.1.2 BRICRITY LEVEL OF THE ?— j

On the 17/05 and rhe 11/20 the FPU will be a Unibus option. The wriority level of the FPU

In order not to increase NPR latency, ihe FPU wili monitor the NPR hne and give up the bus
 between memory cycles.

The 11/20 bus priority arbitrator rgqua" ss @ MSYN signal o iransfer Bus Mastership between
per:ph@msi. in cerfain special cases this could iead to the execution of an instruction be=
fore the bus would be recrbitrated to another requastmrr, device (e.g. the FPU). The execu-
tion of an out of secuence instruction would be in confiict with the correct cperation of the
FPU, as wili be ciear from Section 3.0. This is p.evenrua oy "feeding" the CPU a "BR "
instruction when the above condition occurs and the FPU iz in coniroi.

-8~

5

Whan the CPU wanis u nﬂr:..m

than 7 (i.c. PRLY).

fwrity level shovid be less 0316

rae Sus master, bew

ausz the CPU's PR:? is con i cause the CPU to be inan
infinite ioo p*'"x"ﬂcuz'} iy Yhe "BR LA fruc s cascribea aoove, once it ries to

execute an FPU in

$2.1.3 ALTERNATIVE F#U~11/20 INTERACTION

1 e

The method of Section 2.1 requires every FPU insfruciion fo be preceded by a JSR. An
alternciive method is to issue the FPU insiruciion “as is" and have a trap service routine
to transfer control to the FPU, An exampie of such a routine is given below. (It should
be nofed ihat all FPU OP codes start with a #17".)

e g A T cemilon W3R e
N § R eie) service routing o hangig oFU in

SUB ﬁ?.’ @&RE ; decrement saved PC
Civip # x7Gu o0, MG (R&) ; test for FPU CP code
BLO E\On

MOV @RS, -(RG) ; make 3 top words of stack
MOV 4{R8), 2{R&) ; FPU, PS and PC

MOV Ré 4(R6)

MOV TEPU, @RS

RTI ; end of FPU wrap handier

NOT FPU: ADD #2, @Ré

2.1.4 INTERRUPTABILITY

A spaciai deadiock condition can arise when the CPU is executing FPU suppiied instructions
ond an inferrupt occurs by ¢ device which aiso wants to make use of the FPU. At the time
the CPU was executing FPU supplied insiructions, it we comxczer sd "bugy". TheCPU is .
interrupicble af that pcmr becauuse it is running af @ a;:ur;i‘y ievel lower than 7. If the
interrupting device wouid go off and use the FPU without festing, the CPU would start an
infinite icop of "BR .** insiructions because the FPU was busy

This foop is executred at the | ,rmmy ieve] of the inferrupiing device. In opder for the FPU
zo beceme free, it has o continue supplying CPU insiructions until subsequence D of Figure

-

-1 has been completed, i.e. when the FPU dismisces the CPU.

A special hardware aid is builf into fhe FPU to discover this state. The FPU has a register
calied the Floating Interrupi Vector "FINTV" and a bit called the Floating Interrupt CPU
Dismissed "FICD" in the Floating Program Stetus "FPS" word. The FICD bit is set when
ever ¢ non-zero vaiue i ioaded info FINTV. The operation is as foliows: Whenever the
subsequence D of Figure 2-1 is executed, and fhe FICD bif of the FPS is ser, the FPU will
cause an interrupt using as mi'erruoi' vecior (FINTV).

A possibie roufine preventing the deadlock making use of the above hardware, is shown
on the next page. This cede is nwart of the interrupt service routine of the inrerrupfing
device which wants to use the FPU.

2.2

Q)
<
2%
b
(&)
~4
[
e
I
:' 3
[a)
e
$)
:
5
s
-
&
=11
-
C

MOV FINTV, TEMP ; save old FINTV
MOV NEW.INTV, FINTV ; set up new inrerrup? vecior

*MOV 2{R&), TEMPI ; seve oid PS
*MOV NEW.PS,2(R6) ; install new PS
RTI . ; dismiss current inferrupt
; and start FPU
FREE: SAVE FPU STATUS
USETHE FPU

MOVE TEMP, FINTV

resiore oid FINTV

~s

*MOVE TENMPT, 2(R6) ; resiore oid PS
RTI ; dismiss inerrupt

It shouid be notea that any inferrupt vecter can be loeded into FINTV. [f, for example,

the interrupt vector of the interrupting device is loaded info FINTV, then upon the first
RTiin above sode,. ihe interrupt wili be dismissed uniil the FPU has dismissed the

he
CPU. At that point, the FPU will request an inferrupt with the interrupt vector of the
{ inferrupting device,s»thus simulaiing the oid interrupt.

FPU-11 /"*= INTERACTION

The use of the FPU with the 11/05 is essenticiiy the same as with the 11/20 except for
the JSR greceding an FPU i:‘;;s"rucﬁon, which is not n;c;u‘is'ed with the 11/05. The 11/05
will execuie code making use of the JSR, however, Yor compatibility reasons.

When ihe ??/05 ferches on instruciion which steris with a "17" (i.e. an FPU OP code) it
will not trap, bui execute the following sequence.

TST FPUO5 ; test is FPU is busy
BEQ .~4 ~; loop is busy

MOV PC, FPUO542
MOV IR, FPUQS+

MOV FPUBS+H5, PC start fetching insiructions from the FPU

~s

The above s@wbnc'a is not executed with PDP-11 instructions as shown above, but i in
11/05 micro code which is done 6t a much greater speed. This aliows the FPU instructions
to be given without a JSR, thus eliminating the space and time consuming JSR and ?he
Instruciion Fetch subsequence "A" of Figure 2-1.

*These instruciions are only necessary when the FPU has o proceed with the interrupted

instruction at a different priority level.

-10=-

- g T PR Ty SAN 1 S e [. b
.ne B i"u ‘e“/i DL CONNMEeCTEd 7O NG i /w0 Vil J Girely &t w W :.QS POTRESE 1R8N VIG the
o "’7."~ e VU SURS S A § oo - oy o sma e § - Y -
Ui’HDue. LIS IS reQUIITCa TOT The A Cs.«.u“i' cosration of the au;mcn.‘u‘:a“n upi‘l(‘:ﬂ, ee
Lo

The required address computation wili be done by the 'i /40 hardware. The riead to have
1i/40 with toe instructions is ihereby eliminated. The 11/40 condition
ffecied by the FPU uniess the E‘ns? uciion is CFCC.

When the H/frO ferches an FPU instruction, it 'ijez;'é‘s if the FPU is busy while it aliows for
higher priority bus requests. Once the FPU is free, the 11/40 wiii do the required
address cunpuw'é ion and noflfy i'iﬂe FPU. The FPU ;H then sirobe in the required data
from the 11/40% lnternol re %, iisC.\, do the 'ﬁquired data fetches
(stores from) info memaory cnd aliows the PU to groceed while it execuies the FPU
insfruction.

THE FPU's INSTRUCTION & DATA FORMATS

The FP“U has, except for its seraich, address and status registers, & general purpose datra

: §aCG A\.cummcsmrs "AC's", They are nomed ACH through AC5 and are inter=
reted to be 32 or bd=biis ;oag 0»{3’*% ing on tha instruciion. In case of ¢ 32-bit instruc=
tion, Oﬂ*“/ the top (i.e. ieft most) 3Z-bits are ¢ ae,a, whiie the remaining (i.e. nghi‘ 32-
bits) of the AC remain unéffectad. See Figure 3~1

/

2C FRS FINTV TDA |

W
~

4)

C7 are reserved for internal use.

used to contain the following status registers:
FPC "Floating PC" = points to the word following the.
first word of the FPU instruction.

FRA “Floating Return Address" - points to the

next instruction to be executed.

FINTV "Flcating Interrupt Vector" - a 16 bit interrupt
vector used by the FPU upon completion of the address
computation part of an instruction when (FINTV)A0.

This is only used on the 11/05 and 11/20.

FEC “"Floating Exception Code" - A number which identifies
the cause cof the interrupt.

FIGURE 3-1 Accumulator Layout

-12-

0320

g divided in five formats as shown in Figure

o)
B o e e o ey = E.
LOSTIGCTLSo e, rormac
z 3

The FPU instructicn set i
3=-2. Pormat Fl1 is used bv

¥

3

v the binary Ifloating
F2 is used by the unary fioating instructions. crmat F3 i1s used
by the load and store convert to and from Iateger instructions. For-
mat F5 is used oy some special structions like Copy Ficating Condition

Code.

The fields of the formats of FPigure 3-2 are interpreted in the follow-
ing way.

oC "Operation Code
Thae OC field of all FPU instructions is 4 cits long
and contains a "17".

FOC "Floating Operation Code"

.

This field of the format specifies the specific
floating pG;ﬂt ooeratlon.

FSRC "Floating Source"
The floating socurce specifies the source operand of
the instruction. The interpretation of the addressing
modes is as shown below:

(‘t

MODE INTERPRETATION
0 AC-AC5 contain the data. The “data" is considered 32
or 64 bits depending on the mode of the FPU (i.e. Float-
ing or Extended). :

When AC6 or AC7 are specified, an OP code errcr will
be given unless the instructicn is & STX instruction.

1 RE-R7 contain the address of the data. When R=R7 the
data is considered to be oniy 1 word long (i.e. 16 bits).

2 RF-R7 contain the address of the data. After the
data has been fetched RF-R6 are incremented with 4 or
8 depending on the mode of the FPU. When R=R7, the
data is considered to be 1 word long and therefore,
R7 will be incremented with 2.

3 RF-R7 contains the address of the address of the data.
RF-R7 are incremented by 2. '

4 RF~-R6 are decremented by 4 or 8, depending on the FPU
mode. After that they contain the address of the data.
When R=R7, R7 is decremented by 2 and contains tﬁe
address o a 1 word data item.

~13~

o
[

F2

F3

0321

15 12 1l 87 6 5 0
> i7 i ; B
oC FOC AC FSRC o
FDST
15 12 11 6 5 0
; 17 ! P ?
oc FOC FDST
15 12 11 87 65 G
5 17 ! i :
oc FOC AC SRC
DST
15 12 11 6 5 0
I 17 | ‘
ocC FOC SRC
DST
i5 12 11 0
: 17 i
- oC FOC

FIGURE 3-2. FPU INSTRUCTION FORMATS

MCDE
5 RE-R7 ars
address oI
6 The adaress of the data is detvermined by the regular
index computation.
7 The address of the data is determined by the regular
deferred index computation.

FDST "Floating Destination™) :
The interpretation of this field is identical to that
of the-source.

AC "Accuriaiatoxr”

This is a 2 bit field specifying ACF-AC3.

SRC "Source" ,

Regular PDP-1l1l source field
DST "Segtination®

-

Regular PDP-11l destination field.

3.1 TEE FPU'S DATA FORMATS

The FPU hezandles two types of floating point data: Floating “p"
which ls 32 bits long, and Extended "E" which is 64 bits long.

1
e 3Z o
Both formats assume normalized anumbers only. The fraction is
represented in sign-magnitude notation with the binary radix
poinit to the left. The most significaat bit of the fraction
is not stored because it is redundant. This bit is always a
1 except when the exponeant is 0, then the number is declared
to be zero. The F and E format are shown in Figure 3-3 below.

WORD N ' . WORD N+2
F PFPormat 31 30 23 22 10 i5]
B v i B ' ! N 1
| S| mxXp | FRA i i CTION !
1 8 23
E Format WORD N WORD N+2 WORD N+4 WORD N+6
63 62 55 54 48 47 32 31 16 15 0
H . h - e — - .
| S| EXD | FR | __ac | ___7I | L___ox]
1 8

S=8ign of fraction
EXP=8 bit exponent, in excess 200, notation, radix =2
FRACTION=23 or 55 bit fraction in~ sign-magnitude notation, radix p01nt

to the left
FIGURE 3-3 Flo§ﬁ%gg Point Data Format

e b e INETL N O TR
PRUYS INSTRUCTION s@@w

TH

&4

Appenaix A llsts tﬁe Campiﬁﬁe FRPU instruction set, a descriptiion

eXa W L.J..Oa.i tines .
THE F2U PRCGRAM STATUS REGISTER

The FPU's program status register in shown in Figure 4-1. It
has four mode bits: ,
1) PP, the FPU's Truncate Mode Bit. This bit, when
set, causes the result of any floating point operation

-

to be truncated rather than rounded.

, the 7PU's Double Precision Integer Mode Bit.
5 bit is active in coaversion betwesen integer and

point format. When on,the integer format

i 3 'sion 2's compliement (i.e. 32
. When off, the integer format that is assumed
single precision 2°' complement (i.e. 16 bits).

i

3) PFE, the FPU's Extended Precision Mode Bit. This
bit determines the precision that is used for floating
point calculations. When set, extended precision is
assumed - when reset, normal precision is used.

Fhokl R
U =t 0~
w O -
(o]
~ =
o
[oN]

SO
l.i
[¢)
1]

}.J
;)

4y FMM, the FPU's Maintenance Mode Bit. The FMM
enables special maintenance logic. The exact nature
of this logic will be detailed in a later memo.
Along witcn the four mode bits, the status register contains
four condition codes, FC, FV, FZ and FN. These are lcaded
into the CPU's C, V, Z, and N condition codes by the Copy
Floating Condition Codes instruction.

the floating condition

The way in which esach instruction affects
Cfi<lonb. The FC condi-

codes is detailed in the instructicn 4
tion code bit has two meanings:

1) TFor the STCXJ instruction, which converts a floating
point number to an integer, the FC bit is set if the

esululng integer is too large to be stored in the
specified register.

2) In all other cases, the FPC bit indicates that the
absolute value of the floating point result was larger
than the largest integer that can be represented in

M bits, where M is the width of the fraction. In the

-16-

50 LALLIGm

|
~

4)

5)

0324

extended moede, M = 56 bits and in Fficeting mods M =
fhis &llo 8 szgnwmaenitude integer arithmetic
nc;udn g the

The FPU's Program Status Regiétér also contains six interrupt
enable bits. The FPU interrupt vector is at core location 2408.

FIC FLOATING FNWIERRUPT ON THTEGIR

When FIC is set, and the STCXT insgtruction causes PC to be seat,
a trap will occur. If the interrupt occurs, the instruction
is aborted leaving Lne contents of all the registers untouched.

FIV FLOATING INTERRUPT ON OVERFLOW

Waen this bit is set, floating overflows will cause an interrupt.
The result of the operation causing the interrupt will be correct
except for the exponent which will be off by 400 {(octal). 1If

the bit is off, the result of the operation will be the same

as detailed above and no interrupt will occur.

FIU FLOATING INTERRUPT ON UNDERFLOW

When this bit i1s on, floating underflow will cause an interrupt.

The result of the operation, causing the interrupt, will be
correct except for the exponent which will be off by 400 (octal).
If the bit is off and underflow occurs, the result will be set
to zero.

FIOR FLOATING INTERRUPT ON CUT OF RANGE

When this bit is on, and the FC bit is set because the result
is out of integer range, an interrupt occurs. Out of integer
range means that the absolute value of the result is greater
than or equal to 2XL where XL=24 if floating mode,or 56 if
extended mode. '

FIUV FLOATING INTERRUPT ON UNDEFINED

When this bit is on and a -f is obtained from memory, an
interrupt will occur. When this bit is off -Z can be loaded
and used in any arithmetic operation. The result of such
operation is undefined.

-17~

6)

7)

QW IOOULED WNMKH O

P et
W N e

l~..l

.
O

0325

\.
u* '

FICD FPLOATING INTERRUDT OF CPU DISMISSED

The FICD bit, when on, will cause an interrupt tc occuxr when
the address computation performed by the 11/20 and 11/05 is
done. On the 11/40 this bit will be ignored. For a complete
description of the use of this enable, see Section 2.1.4.

FIE FLOATING INTERRUPT ENABLE

All interrupts by the FPU are disabled when this bit is off.

e ;Floating Caxry

FV ;Floating Overflow

FZ ;Floating Zero

FN iFloating Kegative

M ;Floating Maintenance Mode

Y ;Floating Truncate Mode ‘

D ;Ploating Double Precision Mode

FE ;Floating Extended Mode

FIC ;Floating Interrupt on Conversion Error
FIV ;Floating Interrupt on Overflow Errox

FIU ;Floating Interrupt on Underflow Erxor
FIOR ;Floating Interrupt on out of Range FError
FIUGV sFloating Interrupt on Undefined Variable
FICD ;Floating Interrupt on CPU Dismissed

FIE ;Floating Iaterrupt Enable

RUN ;FPU's Run Status

FIGURE 4-1. Layout of FPU Program Status Register

-18-

INSTRUCTICN: Set Fiocating Mode
MNEMONZC: sEm F
OPERATION: FE e '
FORMAT* -
2 l7101010 1]
INSTRUCTION: Set Extended Mode
MNEMONZIC: SETE
OPERATION: FE¢—1
FORMAT:
11701010 12
INSTRUCTION: Integerize Floating/Extended
MNEMONZIC: INTX FSRC
OPERATION: - = AC4 o J(FSRC); ACS«(FSRC) - J (FSRC)
S PC¢—l if ?WSRCi7’23“ else PCE-Z%
e—-g
FZ¢~l if {FSRC)=f elsec Pz&7
FNé&1 if (FSRC)X ¥ else FN¢—F
FORMAT

1 {7 10{ 3 | FSRC)

¢9(FSRC) is the integer part of (FSRC) i.e. {FSRC) is

fixed and then floated. Note that the integer,is obtained

by truncation i.e. 5.9 becomes 5. If irSRC[7’2 “, J (FSRC) =(FSRC) .
Note that the fractional part of (FSRC) is stored in ACS.

INSTRUCTION: Clear Floating/Extended
MNEMONZIC: CLRX FDST
OPERATION: FDST¢—~§
FC&0
FVEO-
FZé=1
FN¢—-0
FORMAT:

L 17 101l 4 |¥DsT|

* XI, = 24 if FE mode = @
56 1f FE mode =1

INSTRUCTION:
MNEMONIC:
OPERATION:

FORMAT:

INSTRUCTION:
MNEMONIC:
OPERATION:

FORMAT:

INSTRUCTION:
MNEMONIC:
OPERATION:

FORMAT:

INSTRUCTION:
MNEMONIC:
OPERATION:

FORMAT:

*X1,=24 if FE
56 if FE

0327

Loating/Bxtended

FDSTé—~ (FDET) -
FC—l 1 [{FDST)|z2"" else FC 0%
FV¢&i

FZ¢1 if (FDST)=@ else FZ&J
FNe-1 if (FDST) < ¥ else FNeJ

L7 [0 |5 [FDsT

Make Rbsolute Floating/Extended

ABSX FDST

FDST« - (FOST) iZ (F38T) <
~

FC¢1 if [(FDST)|Z2 D &ls
FV¢0

FN-9

1!7 106 [#psST

Test Floating/Fxtended
TSTX FDST

FDST¢— (FDST) :

’ > ! 0y T - -
FC&~1 if | (FDST)|z2XL else wor- 0%
FV-0 '

Fzé&1 if (FDST)=f else F2&J
FN&1 if (FDSTIKO else FNeO

1171017 |rpsg

Load Floating/Extended
LDX FSRC,AC

AC¢—(FSKRC) .
FCel if [(FSRC)|Z 2% else FoeO¥
FVeO

FZ ¢l if (FSRC)=@ else FZ¢&g
FN¢—L if (FSRC)XO0 else FN&Z

L T7T1Tac Fsrcl

mode =1
mode=1

INSTRUCTZION:
MNEMONIC:
OPERATION:

FORMAT':

=
N

SR IO

G Uw
145
+
i

i
(@]
L
B
g
}..J

L7121 [4+ac [FpsT |

22

0325 4

INSTRUCTION: add Floating/Extended

MNEMONIC : ADDX ¥SRC, AC
OPERATION :
else ACg g** XT
Foe=l if | (ac) | 22%F else FC ¢ ¥
FV¢1 if [{AC)|{ ¥ XUL else
FZ &1 if (AC) =0 else FZ g0
FN¢1 if (AC)K @ else FN g1

FORMAT : — ; ———

I...—J
A
[\
by
@
4]
P
@]

INSTRUCTION: Subtract Floating/Extended

MNEMONIC : SUBX ¥SRC, AC
OPERATION:
else AC«g**
FC¢-1 if [(AC) {2 27 else FC ¢—@*
FVé—~1 if [(AC)| v XUL else FV&-O***
Fzé~1 if (AC)=@ else FZ¢-ff

FNE-L if (ACIKY else *N¢-1

XL

FORMAT :

* X, = 24 if FE=f

= 56 if FE=1
**XLL = sm%%éest number that is not identically zero
=2 T=* .

rgest pumber that can be rcpresentud
*(

-23=

FV ¢— Qf‘kv’c*

ACE-(AC) - (FSRC) if | (ac) - (FSRC)| Z

03239

x o P :
AC -—-\A\,) + (¥SRC) if 32\:—@) + (FS.L\\./‘//X.U.L_ OrR FIU=1l

XLL, OR FIU=1l

INSTRUCTION:
MNEMONIC :

OPERATION:

PORMAT &

“MNEMONIC :

OPERATION:

FORMAT :

0330 #

iply: Floating/Extended

*
ci

Wil a

ke
Yy

MULX FSRC, AC

-

AC.{BC)*{FSRC) Lf | (AC)*(FSRC) L;XLL OR PIU=L
else AC—g** <1,

FC&1l if | (AC) | 3277 else Foe—g*

FVé—l 1f |(AC)| »XUL else FV-fre*

FZ{1 if (AC) =f else FZ¢—F

FN¢-1 if (AC) K @ else FN¢—#

- - i -, : - f o

L { / 3 2 : &C [A A
9 F ‘ i

Divide Floatiang/Excended

DIVX FSRC,AC

Case 1 (FSRC) £ ¥

AC¢~(aC)/(FSRC) if |(AC) /(¥SRC)| ZXLL OR FIU=1
cise ACE-g** o

Fee—l if [(ac)| Z 2®F else Fe @

FVe&L if [(AC)| 7 XUL else ¥V —-grwx

FZ¢l if (AC)=§ else Fzé&g

FNiL 1if (AC}K % else FN(-F

Case 2 (FSRC) = g

AC ¢—(AC)

FCé—(FC)

FV &(FV)

FZ <(FZ)
FN¢—(FN)

1 17 13 | 4+AC | FSRC

-24—

INSTRUCTION : Reverse Subtract Floating/Sxtended 0 3 31

MNEMONIC : RSUBX FERC,AC
OPERATION: AC e (FBRTY=(AC) 4¥ | {FIRC)=(ACT i WIL OR
FIU=1 else ACE-0"" ;

FCe—1 if [(AC)| z2®" else FC&-F*
FV&—1 if | (AC) | »XUL else FV&—g*¥%
FZ ¢—1 if (AC)=g else Fz¢-yJ '

FORMAT : .
1 7 4 AC FSRC |
i ; L !

INSTRUCTION: Compare Floating/Extended

MNEMONIC : CMPX AC, FDST

OPERATION: AC ¢ (AC) <1
FC¢—1'4f | (AC)| 7Z 27" else FC¢— g%
FV &1 if K (AC} | -7 XUL alse FVe—fxix
FZ ¢—1 if (AC)=0 else T Z\——u
FN &1 if (AC)<¢ 7 else FN& P

FORMAT :

ORMA 1 [7 | & | 4+AC FpsT

* XL, = 24 if FE=J

= 56 if FE=1
*FXLL = smallgst number that is not identically zero
=2 -
**%XUL = largest anEer that can be represented
) :

~25-

0332

Reverse Divide Tloatin

INSTRUCTION: g/Extended
MNEMONIC : RDIVX FSRC,AC - s
OPERATION: Case 1 (AC)=p ?
é_(PSRC)/(AC) 1f§(rSRC) / (aC)| z XLL OR
FIV=1 else Ace_iﬁ
Fcé-—l if [(ac) | = 277 else FCe&—f*
FVé—1 if |[(AC) | 7 XUL else FV&—fg*#*
FZé—1 if (AC) = 0 else Fz2 &~
FN¢—1 if (AC) {Z zlse FPN&—F
Case 2 (AC)=0
AC ¢«—(AC)
FC &(FC)
PV ¢ (FV)
FzZ <—(F2)
FN &—{fW)
FORMAT : , ‘ Y
1 7 E 5 AC ;FSRC ;
INSTRUCTION: Load & convert from Extended Floating to
Floating/Extended
MNEMONIC : LDCYX FSRC,AC
OPERATION: AC¢— Cyx(FSRC) if |[(FSRC)1 Z XLL or FIUzl else ACe g¥*
FC -1 if [(ac)| 7 2%l else Feg—p*
FVe¢—1 if [(AC)| »» XUL else FV{—f*¥*
FZ &1 if (AC)=f else FZ &4
FN &1 if (AC)¢ § else FN &g
FORMAT : | L
11 7 4+AC |FSRC -
j— !

* XL, = 24 if FE=0
56 if FEs1l

**¥XTLL = smallest number that is not identically zero

= 2 -128

**AYUL = laﬁ??st number that can be represented

= (1-2"%0 4

K

@

-26=

Cyx(FSRC) is Gefined as

0333

Y
the current mode, i.e. Floating or
sssumed to be opposite to the currenc £ the
current mode iz F and the FEOBIt LS £, are
loaded into AC <3130y . I the FY bit is 1t is rounded
using FSRC <31~7¢ Note that FERC (31:0) i if the current
mode is E, AC {63:32) are loaded from JSRC {31:0) and AC {31:8) are

i
cleared. Similarly, Cxy (FSRC) converts (FSRC) from X to -X mode by
truncating or rounding (FT=l or g when X=E or loading trailing zeros
if X=F. o

i
INSTRUCTION : Store & Convert from Floating/Extended to
Extended/Flcating ‘ -

MNEMONIC: STCXY AC, FDST
; . - A TR S | - rn
OPERATION: FDST4— Cxy (AC) if [Cxy(AC) | z XLL oz '‘IU=1
else FDST & 0** .
FC¢—1 (AC) 1 Z else FC&—O*

* XL = 24 if FE = @
= 56 if FE 1
*RXLL = sm?%%est nunber that is not identically zero
= 2 ’

*%xFXUL = 1?vgest nuxber that can be represented
5 2/(1_2—Xh—l)

-27-

INSTRUCTION : Load & Sonvert Integer/Double to Ficating/Extended

MNEMONIC : LDCSX SRT,AC
OPERATION: AC g Clyr (SRCD XL
‘ T I A (owey | o O s %
BC & :: 1 ; CJX (SRC | &2 else L(..(-—-/J"k
IV ¢

FZ¢—1 if (AC)=Z else FZ(—g
(AC) { ¥ else FN(&-@

FORMAT :

11 7 | 6 | 4 +ac|src |

a 'nteger with precision specified
L precision specified by X, i.e. if

)
s

C gx(SRC) specifies a conversicn fr
by J to a floating point number wi

J=I ana X=F the source is v be a 16-hit 2°'s complement integer

which is converted to a sign magnitude floating point number with a

24 bit fraction. the case of D7 (SRC), the fraction is truncated,
2 igni

Iin
i.e, only the highest

ficant digits are used.
INSTRUCTION: Store Converted from Floating/Extended to Integer/Double
MNEMONIC: STCXS AC, DT
TN m =z ﬂJL z /
OPERATION ¢ DST é_“q\:(hcj if - ._%QXJJXAC)\ 2 -l else DST¢-(DST) *
FC gl if = 7Cxg(AC) >277-1 else FC&—0 *
FVe—P J
FZ&—1 if (DST) =0 else F2&-P
FN &L if (DST) & ¥ else FN&PF
FORMAT : . "
17 7 ac | psT |
*JL=15 if FD mode = &
=31 if FD mode = 1
**%X1,=24 1if FE=J
=56 if FE=
-28—~

INSTRUCTION:

MNEMONIC:

OPERATION:

FORMAT :

INSTRUCTION:

MNEMONZIC:

OPERATION:

FORMAT :

INSTRUCTION:

MNEMONIC:

OPERATION:

FORMAT :

Load FPU's Program Status
LDFPS SRC

FPS&—(SRC)

|1 7 07 4 | SRC

-

t
!
i
i

Store FPU's Program Status

[48]

RO T
TIFPS DET

DSTL(FPS)

17

Store FPU's Exception Code
STFEC DST

DST¢— (FEC) %2

i1 7 7 { 6 | DSt

-

-29~

0335

INSTRUCTION:
MNEMONIC:
OPERATION:

FORMAT :

The ROM cycle ccunter (RCC) decrements each ROM cycle.
mode the next ROM word will not be fetched if the RCC=/.

MNEMONIC:

CPERATION:

MNEMONIC:

OPERATION:

FORMAT :

LY S I IR S 5 g 4 0, T i
Malntenance Counter

g

’

|/ R

.~ ,C?'
)

[, T S om E
register 1o &5

}_1

1
1
3
{
T

Lt

}..J

cer in ACH

~30=-

0336

in maintenance

0337

INSTRUCTION: Store Q register in ACE
MNEMONIC: S20d

OPERATION: BR<—{QR)
ACHé&—(BR)
FORMAT : L 7 0B

H [
i . i
3

Ry

S QUSRI

-31i-

0338

ANSTRUCTLON

Copy Floaking
Condition Cod

“s8

Floating Mode

Ui
LY
[

- mxhonded Mode

)

)
o3 3

rond Maintenance
Counter

Stora AR Reglster
in acd

shore BR Register

Lxiended

fniagecize Floating/

APPENDIX A

SUMMARY OF FPU INSTRUCTION SET

SEVE

SR

LDMC

sad

sTed

STOF

INTX FSKC)

CLRX FDST

oP CODE

170000

170001

170002

170010

170011

170012

170013

170300+F3RC

170400 +¥DST

DESCRIPTION

CC @ FCC
FE¢-O

FE¢-1
MC (,,_w.(RO) :
ACH 4~ (&R)
ACY ¢.—(BR)

BR -2 (QR)
‘ACH ¢~ (BR)

AC4 «—integexr part
of {FSRC); ACS5«~fractional
part of (FSRC)

FDST ¢~

A (1)

0339

XNS'TRUCTION

Nagate Floating/
Extended

Maka Absolube

 Floating/Axtended

Past Floatiag/
Exitandad

Load Fleating/

Eetandeaed

Stora Floating/

& Floating/

Floating/

pivide Floating/
mxianded

navearsa Subitract
Floating/Extendad

compare Floating/
LExtended

MNEMONIC
NEGX FDST
ABSX FDST
T8¢ FDST

LD FSRC,AC
STX AC, FDST
ADDX FSRC,ACV
SUBX ﬁsac,AC‘
MUT.X FSRC,AC.
DIVK FSRC,AC
RSUBX FSRC, AC

CMPX AC, FRST

APPENDIX A (continued)

OP_CODE

170500+FDST

170600 +4+FDST

170700+F¥DST

1710C0+AC*100+FESRC

171400+AC*100+FDST

172000+AC*100+FSRC

172300+AC*100+FSRC
173000+AC*100+FSRC
173400 +AC*LOO+FSRC
174000+AC*LO0+FSRC

174400-+AC*1LO0+FSRC

DESCRIPTION

FDST ¢ = (FDST)

FDST éw_(FDSTﬁ

FCCe¢-condition of (FDST)

AC ¢-(¥FSRC)

FDST, <-—-AC

AC 4 (AC) + (FSRC)
AC ¢—(AC) -~ (FSRC)
AC ¢—(AC) * (FSRC)
AC{wv(AC)/(FSRC’
AC ¢ (FSRC) - (AC)

FCC¢-condition of
(FDST)-(AC)

A (2)

ANSTRUCTIC MNEMONTIC
Revaerse Divide
Fleating/Extended RDIVX FSRC,AC
nead & Convart from

b ded/fleating to :
Fljﬂhi“g/wAuﬁnde LDCYX FSRC, AC

2 & Convert from
ating/Extended to
fxbendad/Floating STOKY AC, FDST

ro2d & Convend Inkeger/
povble to Fioating/
ndlad LDOJX 5RC,AC

Sroca & Convert Floating/
fxtondad o Integex/
Douhla ' . 8WCKJT AC,DST

s Sd PPU's Frogwam _
: IDFPS ERC

Coda SyFEEC DST

APPENDIX A (continued)

QP _CODE

175000+AC*100+FSRC

175400+AC*100+FSRC

176000+AC*LO0+FDST

176400 +AC*L00+SRC

]77000+AC?100 SR

1774004-5RC

177500+DST

177600+DST

DESCRIPTION

AC ¢—(FSRC)/(AC)

AC @_converFed (FSRC)
FDST ¢—convertad (AC)
AC ¢—.cconvertaed (SRC)
DST ¢.-converted (AC)

FPS¢—(SRC)

.

DST «--FPS

a(3)

IO

R iy A3
Sadhhina L

An initial analys lo of our DOL
in the executicn times of the table bel
to AC to AC operations.

The following approximation can be used
time for memory referencing operations:

Y i T o oo v DA e L IS T} - : s

below and adi to it {0.25 wssc + nemory

nuiver of memory references. This time
s for

further for possible memorv cyvcles
. oy

(e.g. add 1 memory access time mode

FIOATING. POINT TEECUTION

o

TIMES
T algorithms resulted
w. These times apply

to find the execution
Take time of table

p PP (PO R R
access/oycle time) *

6)i: {

INSTRUCTION FXECUTION TIME INISEC
e - " 1 - Ry
SINGLE PRECISION ! EXTENDEE PRECISTON
i -
. ; 4

ADDX
SUBX i.8 3.5

MULX

DIVX 3.0 6.0

B (1)

