4
!

' SUBJ:

gmn INTEROFFICE Msmommw

pick Clayton - | . DATE: September 13, 1974
Jega Arulpragasam o .
FROM: Craig Mudge

~ DEPT: 11 Engineering
| | EXT: 5064 LOC: 5-5
Summary of 11/VAX Architecture.

 Enclosed is the report you requested. Detaiied schedule
for VAX is the following:

Overall Summary 9713

Architectural Spec 9/27
Software & other .
Impllcatlons ~10/15

Effect of Implementatlon

-~ on 11/44 9/27
Engineering Mgrs. : Product Line Managers
rGE%aon gefi R ~Irwin Jacobs ,
Roger Cady R -Ed. Kramer '
Dick Clayton Bill Long
Bruce Delagi = - - Julius Marcus
Bill Demmer _ 2 ~* Brad Vachon

" Robin Frith : . po
- Andy Knowles . Software
Phil Laut Ron ‘Brender
Al Sharon - Dave Cutler
Steve Teicher - Frank Hassett
» S o - Pete Van Roekens

DRAGON Engrs. ~ Garth Wolfendale
Sas Durvasula o ‘ Denhy Pavlock
Bab Giggi
Bob Gray

Kent Griggs
Dave Ives

‘John Levy

yf}.~ T RN S R P ~ Craig Mudge
i | , | 9/13/74

'SUMMARY OF ll/VAX‘ARCHITECTURE

I. DESIGN GOALS
1. Implementable over a range.

The architecture must be efficiently implementable over
‘a cost and performance range. The range should span from an.
11/05~-type-cost machine to an 1l1/55-successor-type-performance
machine. In addition the hooks necessary on the Basic Machine
should be minimal - no more than a few IC's. The option itself
“may exceed the current KT in cost. ‘ :

2. A substantial increase in virtual address, it iﬁjﬁf

. e

. i V2
Mﬁﬂﬂ The new address length should be between 24 and 32Vbits,

’bLoﬁ not just an extra bit or two over today's 16 bits.

3. Use kmown art.

Segmentation, whose strengths and limitations are known,
should be used. New methods, domains and capabllltles, for ex~-
ample, should not be explored : .

4. Compatlble w1th today s PDP 11.

_ WM&QW?/ Ex1st1ng user programs must run unmodlfled
t4'vﬂfbf b) Existing user subroutines must be callable from new
v : programs which exploit extended. addre551ng. =
- ©) Existing system code, except for the code that loads
" " the KT1l mapping registers, must run unmodified. '
d) The scheme must be compatlble with the KTll memory
‘management unit. '
; R * The goal of running most system code as well as’ all user
S - code is unusually strong. : :

5. No loss of performance.'

L v,,a)_’I*stream ,
‘ : ‘Within a loop, the number of I-stream bits passed
‘must be no more than in today's 1l. Extra I-stream
| bits for loop set up are allowed. -
! ' ~b) Address translation '
' ' No more time added above conventlonal dynamlc address
translatlon schemes.

6. 'Flex1ble name'space (program space)- management.

The following programming needs must be met:

a) Program modularity.
b) Varying-size data structures.

c) Protection.
d) Sharing, without the confllct whlch derlves from,the

8-segment KTll

———

o ’.Craig Mudge
-2- 9713774

' IT. THE 11/VAX ARCHITECTURE
1., Extended addresses.

~In today's 11 a processor generates a. 16-bit v1rtua1 o
address. A register always takes part in this address calculat~ =

‘tion. For example, in the instruction CLR (R4) + , the address
mode is 2 (auto-increment) and the contents of R4 is the operand,_ 5

~ address. In MOV B, -(SP), the source operand addressing is by
~mode 6, register 7 and the destrnatxon 0perand addres81ng is by
mode 4, reglster 6. :

11/VAX exp101ts this fact that a general reglster always

takes part in address formation and simply extends each register
to 32 bits. The 32~b1t address has two components:.

16 - 16

c¢= chapter number '
d= dlsplacement w1th chapter

. A single chapter is exactly equlvalent in size and structure to f‘
‘the 64K bytes of today s 11 virtual address space. S ‘

et The 16 b1t register extensmon of register R1 is called
. RiX. The deflnltlon of . the address mode 1s as in today s 11..

K ' Vow consider the 11/VAX 1nstructlons needed to manlpulate"
' 32-bit addresses. The instructions to manipulate the d part of
‘the address (c,d) are exactly today s 11 instructions. New in-
structions to load and store RiX, i.e., load and store chapter .
number, have been added. There are also new instructions to do
interchapter jumps (JMPX), and JSRX and RTSX for subroutlne lnvo—
‘cation and return.. : v .

' The v1rtual address space presented to the programmer is
~a classic segmentedl address space: 216 chapters of 21 bytes.
The two component addressing will be exploited by programmers:
logically related entities will be grouped and assigned separate
chapter numbers. For example, a separate chapter number could be
~assigned to each of a) a matrix, b) a row of a large matrix, c) a
large main program, d) ;hlarge subroutine, and e) a group of sub-
routines e.g., the FORT object time system. .The chapter is
thus the loglcal unit of allocatlon for modularity, sharing, and
protectlon in the programmer s logical address space.

Address spec1flcation is- eff1c1ent. Full 32-bit addresses

- will appear in the instruction stream much less frequently than

16-bit addresses, which, in turn, appear much less frequently than
3-bit reglster addresses (spec1fy1ng address-holding registers)

‘1. I have used. the term chapter instead of segment because KT1ll
documentatlon has sometlmes use the terms segment and page 1nter-
.changeably.

; - o cral Mud e et
. =3~ v 9/13/74

2. Mepping.

A Every address generated by the processor is mapped to a
 physical address. ‘Map tables in memory define the mapping for . 5
each process, or task, known to the operating system. See Figure‘ﬁ
1. .Suppose process R”%xecutes the instruction INC (R3) and that

1 . Then Figure 2 shows the address

translatlon.

: This address translation takes 4 memory references. Bee‘.,;‘”
”>cause it is a serial delay which must occur before the processor
can issue a memory reference, it must be speeded up(to about 150

. ‘nsec. on an 11/44 type of machine). Thus a "DAT box" for dynamic

‘address translation will be used in each implementatlon of 11/VAX. -
This will hold a subset of the map table in fast registers. The
goal of a DAT box is to make this subset the most frequently used
parts of the total map. ; ey 5

, A range of 1mp1ementation of DAT is possible.~ from a one-
‘register implementation(slow, cheap - 11/05) to one that has many S
reglsters, associative look-up, and elaborate replacement e&iewu:usow&kms
ing (fast, expensive -11/95) such as the "translatlon buffer - B
memory" on the 5/370.‘, RS , ‘ ‘

B & 5 COMPATIBILI‘IY R D : e,

- To ensure that user programs will run unmodlfled, a sPare
PS bit, PS €087, is used to indicate X or non-X mode. A program
written for today's machine does not know about RiX. The mode e
- bit when zero forces the program to run as it was intended, i.e.,
~as a one-chapter program, by using R7X (PCX) as the value for R1X
 through R6X. With this mechanism an extended program may call a
' “16~b1t" subroutlne by a normal JSR ,as—feiows, . :

; The call 1tse1f is issued from a chapter whose page table
is identical with that required by the subroutine. This is '
: posszble since by definition the subroutine was written to exist
in a 1l6-bit VAS, and there is ho restriction agalnst dlfferent
chapters hav1ng ldentlcal pages. . co ,

: Note that w1th a normal JSR the PCX is not stacked and
the called program, therefore, faces no ambiguity..

v ~ The ll/VAx worklng notes (Verslon 1,-5/2/74) gives full
~details of how the X-mode bit, together with the general mapping
‘concept works for all calls, including examples with the appro-
- priate "linking”Code"’(a COuple of instructions), where necessary.

: To ensure" that our Compatlblllty goals for szstem programs

are met, another spare bit PS'(097 is used to control the stack-
ing and unstacklng of PCX. on 1nterrupts and RTI, return from inter-
upt. All interrupts are returned to Process g, Chapter @#. The :
interrupt vector here, in particular PS (ﬁ97> ,,controls the
stacklng and unstacklng of PCX. ‘

S Cralg Mudge'
-4~ : 9/13/74 .

‘This allows the plac1ng of a current 16-bit supervisor in P_ C ,‘ }
or allows a 3uper Superv1sor705X to reside here and forward inter-,'
ruptions to several different "16-bit" Supervisors exist;ng szmul~"~
taneously in dlfferent individual chapters. : :

-

Reference is again made to the Worklng Notes for full de—‘
tails of how this actually works. Note that Version 2 of the
- Working Notes eliminates a defic1ency/11mitation in this area,

which had been caused by attempting to get by with a single mode
bit. Version 2 recognizes that adding a second mode bit to re~
move that deficiency is a trade-off with a high payback

Iv. WEAKNESSES | the Chapter Scheme T an{ flrar\os@/.‘_:,q?f:"-.”h\\f‘“,‘,’

- 1f we were desifning PDP next, i.e., des;gnlng the size

. and structure of a 32-pit virtual address space from scratch,

we would not proposefa classic segmentation scheme, but the
segment size would be 24, not 16. Other less-than-ideal proper-
~ties of the chapter scheme ;,which derlve from our strlct compati~
bility goal are: ;

a) Access rights appear at two levels - at the chapter
level and the page level - the latter is not only re-~
dundant, but is the wrong place because a page is the
cunlt of allocatlon in the phys;cal space. ‘

b) The page size dlctated by the KT1ll is 4K words, gen—
. erally accepted to be too large.
c) 32-bit index words and 32-bit 1nd1rect addresses in
;memory are not. prov1ded. : ‘ . ’

: The only one of concern is the KTll-derlved page size.
Operatlng systems which support’ 11/VAX on large systems will re-
quire hardware assistance for physical memory mangement. ~In that
- case the page size should be changed. The RSX11l-D group claim .
that that part of the KT1ll compatibility could be sacrificed at
little cost. The other part of KT1ll compatibility is the Kernel/

‘User privilege structure. We could not change that without a
large rewriting effort. We are currently getting a new set of
flgures to quantlfy "little® and "large" . =

pase table base

Fth\ 20

uAbbﬁﬂS WPﬂNmLAT)mw txAMPLt

.‘32~,b:pe« V Adaaat Voo 2 2 g Fﬁ”’(”“w‘/z’ ‘

*chBQ

Sev prutess lS"

FURNE

_

e }/. _ 7
S bFs by

+ﬂbw,bdmﬂ

hfom ir»d-Q (as ’5{:0*/ KT"'D"

J’(’L; :

Cspfry

Appendix l.

‘ Possible Implementatlon on a Medlum Scale 11.”

: It will be noted that each RiX correspends to a single NS
~ chapter which will each have a set of Page Tables corresponding . .
- to it, ldentical in form to todays set of KTll registers. -

. Therefare an implementation could be such that the KTX
optxon itself would hold RiX and a limited set of KT type Regis-
ter sets. Instead of 6 sets for Kernel/Supervisor/User times I/D
space, we would have at most 16 sets (probably only 9) which s

. would be Kernel/User times one for each of the sz. (9 1f the Vi B
 Kernel was essentially single chapter). e

The "hooks" requlred can be seen to be only the provision
- of the Register used on each memory reference (4 lines: 8 registers
plus Kernel/User) and the mechanism for setting RiX on a Load
Address instruction. The latter hook can also be made simple 1f 2
lntegrated at lnltlal design time, , ol

: ‘ Wlth thesa hooks accessing the requlred page table is .
clearly of the same order of speed as for the present KT. Further,\
' replacement of the page tables could be driven from the KTX itself
-.and would run "blinding fast" on a high bandwidth 32-bit wide '
_ memory bus, as loading/storing would be from/to contiguous memory
. locations. In particular, the DRAGON bus would be appropriate.
The extra cost of the hooks on the basic DRAGON is estimated to
S be<$25, if it is specifically designed to shift the cost burden
. . on to the KTX optlon 1tself, wherever poss;ble.v ‘

J

'/br_“

