PRO/FMS-11
Documentation Supplement

Order No. AA-P103B-TK

May 1983

This supplement describes the differences between PRO/FMS-11 and FMS/
RSX-11. PRO/FMS-11 may be used with the Professional 300 Series Developer’s

Tool Kit to write application software to run under the Professional Operating Sys-
tem (P/OS).

OPERATING SYSTEM AND VERSION: VAX/VMS V3.2 or later
RSX-11M V4.1 or later
RSX-11M-PLUS V2.1 or later

SOFTWARE VERSION: Professional Developer’s Tool Kit
V1.5
PRO/FMS-11 V1.0

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754

First Printing December 1982
Revised May 1983

The information in this document is subject to change without notice and should
not be construed-as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may only
be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by DIGITAL or its affiliated companies.

The specifications and drawings, herein, are the property of Digital Equipment Cor-

poration and shall not be reproduced or copied or used in whole or in part as the
basis for the manufacture or sale of items without written permissijon.

Copyright © 1982, 1983 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTIBUS MASSBUS Rainbow

DEC PDP RSTS
DECmate P/OS RSX
DECsystem-10 PRO/BASIC Tool Kit
DECSYSTEM-20 PRO/Communications UNIBUS
DECUS Professional VAX

DECwriter PRO/FMS VMS

DIBOL PRO/RMS VT

i g i[t]al] PROSE Work Processor

PROSE PLUS

CONTENTS

1.0
2.0
3.0
4.0

5.0

6.0
7.0
8.0
9.0

FIGURE
1

TABLES

1
2

Page

RELATED DOCUMENTATION. 1
PRO/FMS-11 1
PRO/FMS-11 PROGRAMDEVELOPMENT 1
THEFORMSEDITOR. e 4
41 TerminalEmulation 4
4.2 Attribute Differences 4
THEFORMDRIVER. 5
5.1 The Professional Keyboard And The Form Driver. 5
5.2 Task Building With The Form Driver Object Library 6
5.2.1 Editingthe CommandFile. 6
5.2.2 Editingthe DescriptorFile 7
HELP . . . 9
FLOPEN. 10
INSTALLATIONPROCEDURES. 11
SAMPLE PRO/FMS-11PROGRAMS 12
9.1 ToolKitBASIC-PLUS-2. 12
9.2 ToolKitCOBOL-81 15
9.2.1 Passing Variablesby Reference 15

9.2.2 Passing Variables by Descriptor 21

9.3 ToolKitFORTRAN-77 i 26
9.4 ToolKitMACRO-11. 33
9.5 ToolKitPASCAL. 39
PRO/FMS-11 DevelopmentCycle 3
Keyboard Differences—AllRegions 5
Keyboard Differences—Scrolled Regions 5

PRO/FMS-11
DOCUMENTATION SUPPLEMENT

1.0 RELATED DOCUMENTATION

This manual supplements two manuals: FMS-11/RSX Software Reference
Manual and FMS-11/RSX Release Notes. Both these manuals are included in
the Tool Kit Documentation Directory. The FMS-11/RSX Mini-Reference is not
included in the Tool Kit documentation set, but may also be useful when you are
developing PRO/FMS-11 applications.

2.0 PRO/FMS-11

PRO/FMS-11 is a development tool based on FMS-11. A forms-oriented video
I/0 management system, PRO/FMS-11 runs on the Professional Developer’s
Tool Kit host systems: RSX-11M/11M-PLUS and VAX/VMS. This supplement
describes the differences between FMS-11 applications designed for
minicomputer/VT100 systems and PRO/FMS-11 applications designed for the
Professional.

The material here is intended for experienced FMS-11 programmers. If you
have not previously programmed with FMS-11, you should start with the FMS/
RSX-11 documentation.

3.0 PRO/FMS-11 PROGRAM DEVELOPMENT
You can develop PRO/FMS-11 applications in the following Tool Kit languages:

Tool Kit BASIC-PLUS-2
Tool Kit COBOL-81
Tool Kit FORTRAN-77
Tool Kit MACRO-11
Tool Kit PASCAL

O0O0ooao

2 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

For specific restrictions and examples, turn to the section, “Sample PRO/
FMS-11 programs” at the end of this manual.

Two PRO/FMS-11 files, DEMLIB.FLB and FMSDBG.MSG, are supplied on dis-
kette with the Tool Kit. You will need these files to run the sample programs
and debug your own applications. To copy them to your Professional, follow the
steps in this manual’s section “Installation Procedures.”

The program development cycle for PRO/FMS-11 applications is as follows:

1.

10.

Using a VT 100, or a Professional in Terminal Emulation Mode, create
forms on the host system with the PRO/FMS Forms Editor (PROFED).
Toinvoke PROFED on RSX, type:

:RUN $PROFED

On VMS, type:

Create a form library on the host system with the PRO/FMS Form Utility
(PROFUT). To invoke PROFUT on RSX, type:

*RUN $FROFUT

On VMS, type:
$RUN SYS&5YBTEM: PROFUT

Write a source program; include the necessary Form Driver calls in the
source code.

Note: Use the debug version of the Form Driver (FDVDBG.OLB) to debug at
the Professional. Use the non-debug version (FDV.OLB) when program is error-
free.

Compile (or assemble) the program.

Following the instructions in this manual, include the Form Driver in the
overlay descriptor (.ODL) file.

Task build the program.
Write the application Installation file.

Copy the form library, task image, and application installation file to the
Professional.

Install the application onto a P/OS menu.

Run the program.

Figure 1 illustrates the development cycle.

Figure 1

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 3

HOST SYSTEM WORKSTATION
TERMINAL
st L to Host
HOST cgonforios EMULATION MODE
FMS-11 Write
Development Source Code
Compile or Assemble
Create Forms Source Program
File. MAP .
Memory ESk Build Symbol Tables
Allocation ™| Togram — Language Libraries
With PAB
Map
. Application
Form Li
Create Form Library Task Image(s)
Application
Files

File Transfer to

3 LOCAL MODE

Write Application
Installation File (.INS)

Workstation

Professional
FAST INSTALL
(Disk to Disk)

Optional Terminal
Attached for
Debugging

PRO/FMS-11 Development Cycle

Run Application
Diskette Builder

0
‘O

DISKETTE

4 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

4.0 THE FORMS EDITOR

PRO/FMS-11 allows fixed decimal fields to include a comma in place of a period
for European applications.

4.1 Terminal Emulation

To run PROFED in terminal emulation, you must set your terminal to VT102
emulation mode. If you want to use DEC multinational 8-bit mode characters,
then you must also:

[1 Setthe Professional to Terminal Emulator 8-bit mode.

[0 Setthe host to 8-bit mode. On RSX systems use the command:

EET /EBLC=TI:

On VMS systems use the command:

SET TERMINAL/EIGHT.BIT
The default is 7-bit mode.
The following features are available once your system is in 8-bit mode:

[J Field-marker characters can include characters 241-277 octal.

[0 Background text can include the entire DEC Multinational Character
Set.

[0 During application execution, PROFED forms (named data, form wide
attributes, and field attributes) will accept the DEC Multinational Char-
acter Set as input where any displayable character is requested.

Note that the DEC Multinational Character Set uses 8-bit codes: if you want to
use 8-bit codes in form descriptions, you must create the forms on a Profes-
sional. (See the Terminal Subsystems Manual for more information on the DEC
Multinational Character Set.) Otherwise you can create forms on a VT100,
using the full printable ASCII character set.

4.2 Attribute Differences

Three attributes operate differently with PRO/FMS-11 on the Professional from
FMS/RSX-11 ona VT100:

Bold field—supported in wide-screen (132-column) mode.

Bold reverse video field—Not recommended.

Blink field—Can detract from PRO/FMS-11 performance if used exces-
sively.

These differences may affect Professional system performance or form reliabil-
ity. You should avoid these attributes when you create PRO/FMS-11 applica-
tions.

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 5

5.0 THE FORM DRIVER

The form library file specifications must have the following format:
device:[directorv1file,tvyrliversionl

The directory must be enclosed in square brackets. Only the version is optional.
To determine the device and directory where the application resides, use PRO-
LOG services (a P/OS service) to translate the logical APPL$DIR. See the P/OS
System Reference Manual for more details on PROLOG services.

5.1 The Professional Keyboard And The Form Driver

PRO/FMS-11 uses different keys for some field terminators and interactive
functions involving the Form Driver. The following tables list these differences.

Table 1
Keyboard Differences—All Regions

Function VT100

Enter form ENTER/RETURN DO, ENTER/RETURN
Move to next field TAB F12

Move to previous field BACKSPACE F11

Cursor left = G

Cursor right s =

Erase character DELETE <Xl

Erase field LINEFEED REMOVE
Insert/Overstrike PF1 F13

Help PF2 HELP

Repaint screen CTRL/W F20

Table 2

Keyboard Differences—Scrolled Regions

Function VT100 Professional
Move to previous line t 1

Move to next line 1} i

Exit field backward PF1 F17

Exit field forward PF2 F18

When a help form is displayed, the RESUME key can be used instead of the DO
key, and the NEXT SCREEN key can be used instead of HELP.

6 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

5.2 Task Building with the Form Driver Object Library

The Form Driver object library must be task built with your application program.

Note: Because the Form Driver requires P/OS User Interface Service Rou-
tines support, you must perform the procedure described in the section in the
Tool Kit User’s Guide on the Professional Application Builder.

For example, if your source code is in BASIC-PLUS-2, the BASIC-PLUS-2 com-
piler will generate a command file (filename.CMD) and an overlay description
file (filename.ODL) when you enter the BUILD command. You must edit the
command file and the overlay description file to include the Form Driver object
library.

5.2.1 Editing the Command File—You must edit the command (.CMD) file for
your PRO/FMS-11 application for the language you are using. See your lan-
guage documentation for details. The command (.CMD) file generated by the
BASIC-PLUS-2 compiler for an application named “TEST1” would look some-
thing like this once it had been edited for BASIC-PLUS-2:

SY:TEST1/CP=8Y:TEST1/MP

TASK = tasK-name

UNITS = 18

ASG = TI:13:15

ASG = 8Y:5:6:7:8:9:10:11:12
EXTTSK= 8952

CLSTR = PBESML :RMSRES sPOSRES:RO

EXTSCT = MN$BUF:43540 i static sindle choice menu
EXTSCT = DM$BUF:4540 i dvnamic sindle choice menu
EXTSCT = MM$BUF:1000 i multi-screen menu

EXTSCT = HL$BUF:3410 i helrp text/menu

EXTSCT = FL$BUF:4310 i file selection/sprecification
GBLDEF = MN$LUN:20 i menu frame file

GBLDEF = HL$LUN:21 i help frame file

GBLDEF = MS$LUN:1GB i messade frame file

GBLDEF = TT$LUN:15 i terminal I/0

GBLDEF = TT$EFN:1 i terminal I/0 event flag
GBLDEF = WC#%LUN:22 i directory searches for OLDFIL and NEWFIL

5 routine or callable Print services
/7

You must also edit the command file to use it with PRO/FMS-11. Follow these
steps:

[0 FDV uses Logical Unit 5 for input and output to the terminal. Find the
lines beginning with “ASG” and edit them to read:

ASG = TI:13:15:5
ASG SY:B6:7:8:9:10:11:12

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 7

[J Setthe extend section (EXTSCT) command as follows:

EXTSCT = HL$BUF:3410 i help text/menu

If your application uses the P/OS Help services (described in the
next section of this supplement), compute your frame size and set
the extension to this value if it is larger than the current value. See
Chapter 2 of the Tool Kit User’s Guide for information on calculat-
ing frame size.

The fully edited command file for “TEST1” would look like this (changed lines
are shaded):

SY:TEST1/CP=SY:TEST1/MP

TASK = tasKk-name

UNITS = 18

ABE = T1:13:15:5

ASG = SY:B6:7:8:9:10:11:12
EXTTSK= 8952

CLSTR = PBESML +RMSRES:POSRES:RO

EXTSCT = MN%BUF:43540 i static sindle choice menu
EXTSCT = DM$BUF:4340 i dvnamic sindle choice menu
EXTSCT = MM$BUF:1000 i multi-screen menu

EXTSCT = HL%BUF:3500 i hele text/menu

EXTSCT = FL$BUF:4310 i file selection/specification
GBLDEF = MN$LUN:ZO i menu frame file

GBLDEF = HL$LUN:Z21 i help frame file

GBLDEF = MS$LUN:16 i messadge frame file

GBLDEF = TT$LUN:15 i terminal I/0

GBLDEF = TT$EFN:1 i terminal I/0 event flag
GBLDEF = WC$LUN:Z22 i directory searches for OLDFIL and NEWFILE

i routine or callable Print services
/7

5.2.2 Editing The Descriptor File—Your application must reference the PRO/
FMS-11 Form Driver, either the non-debug version (FDV) or the debug version
(FDVDBG). To do this, edit the overlay descriptor (.ODL) file to include the Form
Driver as part of the root segment of the program, concatenated with the object
module. For example, to include the non-debug Form Driver in a BASIC-
PLUS-2 .0ODL file, you would change the first line from this:

.ROOT BASIC2-RMSROT-USER sRMSALL
To this:

+ROOT BASICZ-RMSROT-USER-FDU:RMSALL

8 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

In addition, you must add a new .FCTR line after the LIBR: line of your .ODL file:

[0 BASIC-PLUS-2: For the non-debug version of the Form Driver, add the
line:

FDV: +FCTR LB:[1,53IHLLBPZ2-LB:[1,5IFDU/LB

For the debug version of the Form Driver, add the line:
FDU: +FCTR LB:1,5IHLLBP2-LB:[1,5IFDUDBG/LB

[J COBOL-81: Your edit to a COBOL-81 file will depend on whether your
program passes variablés by descriptor or by reference. Look at the
section "Tool Kit COBOL-81" in this manual for more information and

sample programs. If variables are passed by descriptor and you are
using the non-debug version of the Form Driver, add the line:

FDV: +FCTR LB:[1:;51HLLCOB-LB:L1:51FDV/LB
If variables are passed by descriptor and you are using the debug ver-
sion the Form Driver, add the line:
FDY: +FCTR LB:[1+51HLLCOB-LB:[1,51FDVDBG/LB
If variables are passed by reference and you are using the non-debug
version of the Form Driver, add the line:
FDV: +FCTR LB:[1,5IHLLCBL-LB:C1:51FDV/LB
If variables are passed by reference and you are using the debug ver-
sion of the Form Driver, add the line:
FDY: LFCTR LB:[1:5IHLLCBL-LB:C1,+51FDUDBG/LB

[0 FORTRAN-77: For the non-debug version of the Form Driver, add the
line:

FDWV e +FCTR LB:[1,5IHLLFOR-LB:LC1,3IFDV/LB

For the debug version of the Form Driver, add the line:

FDV: +FCTR LB:L1,:5IHLLFOR-LB:L[1+51FDVYDBG/LB

[0 MACRO-11: For the non-debug version of the Form Driver, add the line:

FDU: +FCTR LB:[1,:51IFDV/LB

For the debug version of the Form Driver, add the line:
FDV: JFCTR LB:[1,51FDYDBG/LB

[0 PASCAL: PASCAL uses the FORTRAN version of the PRO/FMS-11
Form Driver. For the non-debug version of the Form Driver, add the line:

FDU: +FCTR LB:[1:5SIHLLFOR-LB:L1:51FDU/LB

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 9

For the debug version of the Form Driver, add the line:

FDV: +FCTR LB:[1,5IHLLFOR-LB:L[1:51FDUDBG/LB

The original .ODL file for a BASIC-PLUS-2 application named “TEST1”
would look like this:

+ROOT BASICZ-RMSROT-USER:RMSALL
USER: +FCTR SY:TEST1-LIBR
LIBR: +FCTR LB:[1,51PBEQOTS/LB
BLB:L1,51PBEIC1
ELB:L1,3IRMERLX

+END

Edited to reference the non-debug version of the PRO/FMS-11 Form
Driver, the BASIC-PLUS-2 .0ODL file would look like this (new lines are
shaded):

+ROOT BASICZ-RMSROT-USER-FDV ;RMSALL

USER: +FCTR SY:TEST1-LIBR
LIBR: +FCTR LB:[1,51PBEOTS/LB
FDV: +FCTR LB:[C1,+5IHLLBP2-LB:[1,5]IFDV/LB

@LB:C1,531PBEICI
@BLB:C1,53IRMSRLX
+END

The debug version of the edited BASIC-PLUS-2 .ODL would look like
this:

+ROOT BASICZ2-RMSROT-USER-FDV,RMSALL

USER: +FCTR SY:TEST1-LIBR
LIBR: sFCTR LB:[1:51PBEOTS/LB
FDV: +FCTR LB:[1,+5]HLLBPZ-LB:L1,51FDVDBG/LB

BLB:C1,51PBEICI
@BLB:L1,5IRMERLX
+END

See the programs at the end of this manual for sample edited .ODL files.

6.0 HELP

PRO/FMS-11 applications can use P/OS help frames in addition to regular FMS

help forms.

When the end user first presses the HELP key, help is displayed from the
sources in the following order:

1.

A one-line help message for current field
The Help form specified by current form

The P/OS help frame specified in the Named Data section of the current
form

10 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

When the end user presses the HELP key again or presses the NEXT SCREEN
key, help is displayed from the sources in this order:

1. The help form specified by current form

2. The P/OS help frame specified in the Named Data section of the last
form displayed

To provide P/OS Help services with PRO/FMS-11, follow these steps:

1. Use the Frame Development Tool (FDT) to create help frame files.

2. Runthe PRO/FMS-11 Forms Editor (PROFED) and retrieve the form.
Enter the NAME command. PROFED will display the Named Data Entry
Form.

3. InNamed Data Entry Form, enter “.HELP.” in the Name field and the
frame identifier (frameid) in the Data field.

4. Edit your source code so that it includes calls to P/OS Help services to
open the Help file before the Form Driver is called, and to close the Help
file before the program exits.

5. Make sure you have edited the command file according to Section 5.2.1
of this supplement.

6. Runthe PRO/FMS-11 Forms Utility (PROFUT) and replace the old form
with the new one.

A completed Named Data Entry form would look something like this:

Name Data

+HELP. INFOZ

You may use a maximum of 60 forms per library, with up to 4 libraries open at
one time.

See the Tool Kit User’s Guide for a description of the Frame Development Tool
and information on creating Help definition files.

7.0 FLOPEN

FLOPEN, the FMS command to open a specified form library file, always
returns a successful completion message, regardless of the call’'s actual suc-
cess or failure. Error messages will result if the file was in fact not open by the
FLOPEN call.

You should check the file’s status when issuing subsequent calls. Use the
FSTAT call to determine whether the file was opened.

8.0

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 11

INSTALLATION PROCEDURES

On the RX50 diskette (volume label PRO/APP DSKT BLDR V1.5) supplied, with
the Tool Kit, in directory PROFMS, are two PRO/FMS-11 files:

O

O

DEMLIB.FLB—Contains forms for the sample PRO/FMS-11 programs
supplied with the Tool Kit. You will need this file on your Professional to
run the sample programs.

FMSDBG.MSG—Contains error messages for PRO/FMS-11 programs
built against FDVDBG. You will need this file on your Professional to run
debug versions of your programs.

To copy the files from the diskette to SYSDISK:[001,002] on your Professional,
follow these steps:

o~ 0=

10.
11.

12.

13.

14.

Insert the diskette in a diskette drive slot.

Go to the Main Menu. Select File Services. Press DO.

The File Services menu will appear. Select Copy File and press DO.
Press ADDTNL OPTIONS.

The Additional Options menu will appear. Select Choose a different
directory/volume and press DO.

The Directory Selection menu will appear. Select the directory
PROFMS from the volume Toolkit and press DO.

The File Selection menu will appear. Select the file from the list of files,
either DEMLIB.FLB or FMSDBG.MSG. Press DO.

The Name a File Form will appear. Press ADDTNL OPTIONS.

The Additional Options menu will reappear. Select Choose a different
directory/volume. Press DO.

The Directory Selection menu will appear. Press ADDTNL OPTIONS.

The Additional Options menu will appear. Select Choose a System
Directory. Press DO.

The Directory Selection menu will appear. Select 001002. Press DO.
The Name a File Form will reappear. Type in the filename of the file you
selected, for example, DEMLIB.

When the file has been copied to the disk directory 001002, the File
Services menu will reappear.

To install the other file, repeat this procedure from step 3. To display the
Main Menu, press MAIN SCREEN.

12 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

9.0 SAMPLE PRO/FMS-11 PROGRAMS

A sample PRO/FMS-11 program in each of the Tool Kit languages is included
with the Tool Kit. After the Tool Kit has been installed on your host system, you
can find these program in directory LB:[1,5]. Copy the files to your own area if
you wish. You'll find the accompanying forms in the file DEMLIB.FLB on the dis-
kette distributed with the Tool Kit. Use the instructions in this manual, in the sec-
tion on installation procedures, to copy the file to your Professional. The rest of
this section contains listings of the sample programs, with any restrictions or
comments you may need.

9.1

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

[T N N T o N B OV T ST N T A I S O
N @ U
o D oo D U

[dx N dn R ds B s R s]

is]
0 o> M

-3

300
301
302
303
304
305
306
307
308
309
310
311

Tool Kit BASIC-PLUS-2
REM

REM BASDEM.BZS

REM

REM

REM COPYRIGHT «<C>» 189789 BY
REM DIGITAL EQUIPMENT CORPORATION: MAYNARD:
REM

REM

REM MODULE: BASDEM

REM

REM VERSION: V0O1.00

REM

REM AUTHOR: Medan

REM

REM DATE: 10-APRIL-79

REM

REM MODIFIED: Ducharme

REM

REM DATE: 11-MARCH-1983 Chanded Command and
REM

REM BASIC Plus 2 V2,0 demonstration prodram for FMS
REM simple form-drivens: data entry application.
REM

REM Below is an example of a command and ODL file to
REM this demonstration Prodram.

REM

REM i

REM i BASDEM.CMD

REM SY:BASDEM/CP/FP:BASDEM/-SP=8Y:BASDEM/MP

REM TASK = BASDEM

REM UNITS = 19

REM ASG = TI:13:15:5

REM ASG = S5Y¥:1:6:7:8:9:10:11:12

REM EXTTSK= 852

REM CLSTR=PBESML »POSSUM:POSRES +RMSRES:RO

REM EXTSCT=MN$BUF:0 iSINGLE CHOICE MENU

REM EXTSCT=DM&BUF:0 SDYNAMIC SINGLE CHOICE
REM EXTSCT=HL$BUF:3410 FHELP

REM EXTSCT=MS$BUF:3100 iMESSAGE

odl file

illustrating a

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 13

312 REM EXTSCT=MM$BUF:0 iMUTLI-CHOICE MENU
313 REM EXTSCT=FL$BUF:0 iMULTI-CHOICE MENU
314 REM GBLDEF=MN$LUN:22 iMENU

315 REM GBLDEF=HL$LUN:Z20 iHELP

316 REM GBLDEF=MS$LUN:21 iMESSAGE

317 REM GBLDEF=TT$LUN:15 STERMINAL I/0 LUN
318 REM GBLDEF=WC$LUN:23 iFILE LUN

319 REM GBLDEF=TT$EFN:1 iI/0 EVENT FLAG
320 REM //

321 REM

421 REM 3§

422 REM i TKB command file to build BASDEM
423 REM 3

424 REM +ROOT BASICZ2-RMSROT-USER-FDV,RMSALL
425 REM USER: +FCTR SY:BASDEM-LIBR

426 REM LIBR: +FCTR LB:[1,51PBEOTS/LB

427 REM FDV: +FCTR LB:[1,51HLLBP2-LB:[1,51FDV/LB

428 REM @LB:[1.,51PBEICI
429 REM @LB:[1,51RMSRLX

430 REM +END

440 REM

450 REM

500 REM Defined Variables.

501 DIM I%4(1500)

502 C$=STRING$(2%,65%)
S03 F1$=STRING$(6%,32%)
S04 F2%=STRING$(13%,32%)
505 A$=STRING$(255%:32%)

510 REM VARIABLE DESCRIPTION

520 REM

530 REM C% Choice specified by the user
550 REM S% FDY status

560 REM T% Terminator code

370 REM F14% The initial form name of the series
580 REM F2Z% The output file name

590 REM F3% The current form name

600 REM

610 REM Initialize Form Driver and opren librarv.

620 REM

625 CALL WTQID(7B8% 3% :5%)

630 CALL FINITC(I%Z()+1500%)

635 CALL FLCHAN(B%Z) \ GOSUB 2000

640 CALL FLOPEN("LB:[1.,21DEMLIB") \ GOSUB 2000

650 REM

860 REM Show the menu form for operator to select the data
B70 REM collection series, Get the first form name from
680 REM named data.

690 REM

700 CALL FCLRSH("FIRST") \ GOSUB 2000

710 CALL FGET(C%.T%4,"CHOICE") \ GOSUB 2000

720 CALL FNDATA(C$:F1%$) \ CALL FSTAT(S8%) \ IF 8%>0% GO TO 770
730 CALL FPUTL("Illedal choice") \ GO TO 710

14 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

740 REM

730 REM If form name is " EXIT."s terminal operator is done.
760 REM

770 IF F1$=",EXIT." GO TO 1290

780 REM

790 REM Get the output file name from named data and oPen it.
800 REM

810 CALL FNDATA(TRM&(C$)+"F" F2%)

820 OPEN F2% FOR OUTPUT AS FILE#1%,FILESIZE 10%

830 REM

840 REM THIS IS THE DATA COLLECTION LOOP

850 REM

860 REM Set current form = first form in series.

870 REM

880 F3%=F1%

890 REM

900 REM Show the form.

910 REM

920 CALL FCLRSH(F3%) \ GOSUB 2000

930 REM

940 REM Get data for current form and output it.

950 REM

960 CALL FGETAL(A%$) \ GOSUB 2000

970 PRINT#17%Z,,TRM$(A%)

980 REM

990 REM Get name of next form. If founds; loop for more data.
1000 REM

1010 CALL FNDATA("NXTFRM" :F3%)

1020 IF F3%<>»",NONE." GO TO 920

1030 REM

1040 REM End of the form series. Show LAST to determine if
1050 REM we’re done or not.

1060 REM

1070 CALL FCLRSH("LAST") \ GOSUB 2000

1080 CALL FGET(C$:TZ"CHOICE") \ GOSUB 2000

1090 REM

1100 REM If reseponse = "1", repeat data collection loor.
1110 REM

1120 IF Cs%="1" GO TO 880

1130 REM

1140 REM Get named data corresponding to response.

1150 REM Get field adain if illegal response.

1160 REM Close output file for valid response other than 1.
1170 REM

1180 CALL FNDATA(C$+F3%) \ CALL FSTAT(S5%4) \ IF S%Z>0% GO TO 1200
1190 CALL FPUTL("Illegal choice") \ GO TO 1080

1200 CLOSE#1%

1210 REM

1220 REM If named data is ".EXIT."s terminal operator is done:s else
1230 REM display menu form adain.

1240 REM

1250 IF F3%$<>" .EXIT." GO TO 700

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 15

1260 REM Close form library and exit

1270 REM

1280 REM

1290 CALL FLCLOS \ GO TO 9999

2000 REM

2010 REM Dutput messade and exit if I/0 error returned from
2020 REM Form Driver, This is the only error expected in a
2030 REM debuggded application.

2040 REM

2050 CALL FSTAT(SZ)

2060 IF S%:>0% THEN RETURN

2070 CALL FPUTL("Fatal I/0 Error") \ STOP

9999 END

9.2 Tool Kit COBOL-81

When calling PRO/FMS-11 from a COBOL-81 program, you can pass variables
either by descriptor or by reference.

[0 Use the By Reference method for numeric data type parameters, such
as the starting line parameter of FCLRSH or the LUNSs for the FLCHAN
call.

[0 Use the By Descriptor method for character type parameters.

The method used will determine which interface you specifiy in your .ODL file.
See the section of this manual on editing the descriptor file for details. The fol-
lowing sample programs demonstrate each method.

9.2.1 Passing Variables By Reference—This COBOL program passes all
variables by reference to the Form Driver. It uses the interface HLLCBL.

CBLDEM.CBL

COPYRIGHT (C) 18789 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

MODULE?: CBLDEM

VERSION: Yo1.,00

AUTHOR: MEGAN

DATE: 1-APRIL-79

MODIFIED: DUCHARME -- To run on the Professional
DATE: 3-MARCH-83

COBOL demonstration program for FMS illustrating a
simple form-drivens data entry application.

sk ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok k ok ok Xk

16 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

The followind is a brief description on compiling and
building CBLDEM.

The command to compile the Prodram is:
MCR PROCB1 CBLDEM,CBLDEM=CBLDEM
Below is an example of a TKB command file to build
this demonstration Prodram.
CBLDEM,.CMD

TKB command file to build CBLDEM

ar ws ae oam an

iTKB COMMAND FILE CREATED ON 01-MAR-83 AT 14:16:02
CBLDEM/CP/-FP,CBLDEM/-SP=CBLDEM/MP

TASK=CBLDEM

CLSTR=CB1LIBPOSRES +RMSRES:RO

H)

EXTSCT=MN$BUF:0
EXTSCT=DM$BUF : 0
EXTSCT=HL$BUF:3410
EXTSCT=MS$BUF:3100
EXTSCT=MM$BUF:0

iSINGLE CHOICE MENU
iDYNAMIC SINGLE CHOICE
iHELP

iMESSAGE

FMUTLI-CHOICE MENU

EXTSCT=FL$BUF:0 FMULTI-CHOICE MENU

GBLDEF=MN$LUN:22 iMENU
GBLDEF=HL$LUN:Z20 FHELP
GBLDEF=MS$LUN:21 iMESSAGE

GBLDEF=TT$LUN:15 iTERMINAL I/0

GBLDEF=WC$LUN:23

GBLDEF=TT$EFN:1 iI/0 EVENT FLAG
i

UNITS = 18

ASG = TI:13:15:5

ASG = SY:B:7:8:89:10:11:12
//

* ok Kk ok Kk ok ok k ok ok ok ok ok ok ok ok ok ok ok

%*

Below is an example ODL file to build the Demonstration Prodram
SMERGED ODL FILE CREATED ON O01-MAR-83 AT 14:16:02
BCBLDEM.SKL
5COBJ%: .FCTR CBLDEM.OBJ
@LB:L1+1IRMSRLX.0DL
+NAME RMS$TR
RMSTR$: .FCTR RMS$TR-RMSALL
RMS%: +FCTR RMSROT
SCLIB%: .FCTR LB:[1,11CB1LIB/LB
0BJRT$: .FCTR SCOBJ%-FDY-SCLIB%$-RMS%
FDV: +FCTR LB:[1,:5]1HLLCBL-LB:C1,51FDV.0LB/LB

* %k ok ok Xk &k *k ok ok k ok Kk ok

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 17

+ROOT OBJRT$:RMSTR$
+END

* Kk ok ok

IDENTIFICATION DIVISION.,
PROGRAM-ID. CBLDEM.

TEST PROGRAM

* ok ok ok ok ok

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT OUTPUT-FILE ASSIGN TO "SY:",
DATA DIVISION.

FILE SECTION.

* Create a sequential file for output of form data.

FD OUTPUT-FILE
LABEL RECORDS ARE STANDARD
VALUE OF ID IS ANSWERZ,

o1 POOL PIC X(256).

Data follows.

WORKING-STORAGE SECTION.

* Svystem form librarv.

01 DEMLIB PIC X(25) VALUE "#LB:[1,21DEMLIB.FLB%",
* Logical unit number for FMS library file.

01 LUN PIC 99 COMP VALUE 6.

* ImPure area.

01 IMPURE PIC X(2000).

* Size of impure area.

01 ISIZE PIC 8999 COMP VALUE 2000,

01 INUM PIC 998 COMP VALUE 768.

01 UN PIC 9 COMP VALUE 5.

*

* Special worK area.

* ANSWER1 -> The initial form name of the series.
* ANSWERZ -> The output file name.

* ANSWER3 -> The current form name.

*

01 ANSWER1.

02 'PART PIC X(B).

02 FILLER PIC X(7).
01 ANSWERZ PIC X(13).
01 ANSWER3.

02 PART PIC X(B).

02 FILLER PIC X(7).

18 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

* Fieldf used to create a field name.
*
01 FIELDF.
02 DAT PIC X.
02 FILLER PIC X(5) VALUE "F ",
01 FIELD PIC X(B).
* Status
*
01 STAT PIC 99 COMP.
01 STATZ PIC 99 COMP.

*
* Error message on Prodram errors:
*
01 ERR1.
02 PARTI1 PIC X(22) VALUE "FATAL I/0 ERROR: STAT=".
02 ERR-STAT PIC ZZZZ9- DISPLAY.
02 PARTZ2 PIC X(B) VALUE ", STATZ=",

02 ERR-STATZ2 PIC ZZZZ9- DISPLAY.
01 ILL-CHOICE PIC X(1B6) VALUE "#ILLEGAL CHOICE=".
*

*

* FORM DESCRIPTION STARTS HERE
*

*

COPY "LB:[1,51:DEMLIB.LIB".

*

*

*

*

PROCEDURE DIVISION.
MAIN-CONTROL SECTION.

P1.
* Attach the terminal.
CALL "WTQIO" USING INUM: UNs UN.
* Initialize and orPen the librarv.
CALL "FINIT" USING IMPURE: ISIZE.
CALL "FLCHAN" USING LUN.
PERFORM STATUS-CHECK-
CALL "FLOPEN" USING DEMLIB.
PERFORM STATUS-CHECK.
* Display first form.
PG.

CALL "FCLRSH" USING FORM-FIRST.

PERFORM STATUS-CHECK.
Show the menu form for orperator to select the data
collection series. Get the first form name from

* named data.

P2,

P4,

P3.

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 19

CALL "FGET" USING
D-FIRST-CHOICE:s STATs» N-FIRST-CHOICE.
PERFORM STATUS-CHECK.
MOVE D-FIRST-CHOICE TO FIELD.
MOVE SPACES TO ANSWER1.
CALL "FNDATA" USING
FIELD» ANSMWERI1,
CALL "FSTAT" USING STAT.
IF STAT NOT > 0O
CALL "FPUTL" USING ILL-CHOICE
PERFORM STATUS-CHECK

GO TO P2,
If form name is "L,EXIT."s terminal oprperator is done.
IF PART OF ANSWER1 = ",EXIT." GO TO LIB-CLOSE.

Get the output file name from named data and open it.

MOVE D-FIRST-CHOICE TO DAT OF FIELDF.
MOVE SPACES TO ANSWERZ.

CALL "FNDATA" USING

DAT OF FIELDF:s ANSWERZ.

PERFORM STATUS-CHECK.

OPEN OQOUTPUT OUTPUT-FILE.

This is the data collection loor.

MOVE ANSWER1 TO ANSWER3.
Show the form.

CALL "FCLRSH" USING ANSWER3.
PERFORM STATUS-CHECK.

Get data for current form and outPut it.

MOVE SPACES TO POOL.

CALL "FGETAL" USING POOL.
PERFORM STATUS-CHECK.
WRITE POOL.

Get name of next form. If found:s loor for more data.

MOVE "NXTFRM" TO FIELD.

CALL "FNDATA"™ USING

FIELD» ANSMWER3.

PERFORM STATUS-CHECK.

IF PART OF ANSWER3 NOT = ".NONE." GO TO P3.

20 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

*
* End of the form series. Show last to determine if
* we’re done or not.
*
CALL "FCLRSH" USING FORM-LAST.
PERFORM STATUS-CHECK.
PS5.
CALL "FGET" USING
D-LAST-CHOICEs STAT:s N-LAST-CHOICE.
PERFORM STATUS-CHECK.
MOVE D-LAST-CHOICE TO FIELD.
*
If response = "1", repeat data collection loor.
*
IF FIELD = "1" GO TO P4.
*
* Get named data correspondind to response.
* Get field agdain if illegal response.
* Close output file for valid response other than 1.
*
CALL "FNDATA" USING FIELD: ANSWER3.
CALL "FSTAT" USING STAT.
IF STAT NOT > O
CALL "FPUTL" USING ILL-CHOICE
PERFORM STATUS-CHECK
GO TO PS.
CLOSE OUTPUT-FILE.
*
* If named data is ".EXIT."s terminal oPerator
* is dones else display menu form adain,
*
IF PART OF ANSWER3 NOT = ".EXIT." GO TO PG.
*
* Close form librarvy and exit.
*
LIB-CLOSE.
CALL "FLCLOS".
PERFORM STATUS-CHECK.
STOP RUN.
*
* Output messagde and exit if I.0 error returned from
* Form Driver., This is the only error expected in a
* debudgged arplication,
*

STATUS-CHECK SECTION.

SC1.

CALL "FSTAT" USING STAT, STATZ.

IF STAT » 0 GO TO SC2.

MOVE STAT TO ERR-STAT.

MOVE STATZ TO ERR-STATZ.

DISPLAY ERR1 AT LINE 1 AT COLUMN 1+ ERASE TO

END OF SCREEN.

scz.

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 21

DISPLAY "Press RESUME to continue." AT LINE 3 AT COLUMN 1.
CALL "WTRES".
STOP RUN

EXIT.

9.2.2 Passing Variables By Descriptor—This COBOL program passes data
variables by descriptor to the Form Driver. (Numeric variables are passed by
reference.) It uses the interface HLLCBL.

sk sk ok ok sk sk sk sk ok ok ok sk ok sk ok sk sk ok sk ok ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok %k ok ok ok ok ok Xk

CBLDESDEM.CBL

COPYRIGHT (C) 1979 BY
DIGITAL EQUIPMENT CORPORATION: MAYNARD. MASS.

MODULE: CBLDESDEM

VERSION: V01,00

AUTHOR: MEGAN

DATE: 1-APRIL-79

MODIFIED: DUCHARME -- To run on the Professional
DATE: 3-MARCH-83

COBOL demonstration Prodram for FMS illustrating a
simple form-drivens data entry application. This Prodgram
demonstrates the Call By Descriptor method to call the
Form Driver.

The following is a brief description on compiling and
building CBLDESDEM.

The command to compile the Pprogram is:

MCR PROCB1 CBLDESDEM.CBLDESDEM=CBLDESDEM

Below is an example of a TKB command file to build

this demonstration Program.

CBLDESDEM.CMD

TKB command file to build CBLDESDEM

as ws ae ws s

iTKB COMMAND FILE CREATED ON O1-MAR-83 AT 14:16:02
CBLDESDEM/CP/-FP,CBLDESDEM/-SP=CBLDESDEM/MP
TASK=CBLDEM

CLSTR=CB1LIB,»POSRES »RMSRES:R0O

22 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

* 3

* EXTSCT=MN$BUF:0 §SINGLE CHOICE MENU

* EXTSCT=DM$BUF: 0 iDYNAMIC SINGLE CHOICE
* EXTSCT=HL$BUF:3410 SHELP

* EXTSCT=MS4BUF:3100 FMESSAGE

* EXTSCT=MM$BUF: 0 iMUTLI-CHOICE MENU

* EXTSCT=FL$BUF:0 FMULTI-CHOICE MENU

* GBLDEF=MN$LUN:22 SMENU

* GBLDEF=HL$LUN:20 iHELP

* GBLDEF=MS$LUN:21 iMESSAGE

* GBLDEF=TT$LUN:15 iTERMINAL I/O

* GBLDEF=WC$LUN:23

* GBLDEF=TT$EFN:1 iI/0 EVENT FLAG

* i

* UNITS = 19

* ASG = TI:13:15:5

* ASG = 8Y:6:7:8:9:10:11:12

* /7

*

B e e e e e e e e - ——
*

* Below is an example ODL file to build the Demonstration Prodram
*

* SMERGED ODL FILE CREATED ON O0O1-MAR-83 AT 14:16:02
* @CBLDESDEM.SKL

* SCcOBJ$: FCTR CBLDESDEM.OB.J

* eLB:C[1+1IRMSRLX.0DL

* +NAME RMS$TR

* RMSTR$: FCTR RMS$TR-RMSALL

* RMS%: +FCTR RMSROT

* SCLIB$: FCTR LB:[1,11CB1LIB/LB

* OBJRT$: .FCTR SCOBJ%$-FDV-SCLIB%$-RMS$

* FDV: +FCTR LB:[1,51HLLCOB-LB:[1,51FDV.0LB/LB
* +ROOT OBJRT$:RMSTR%

* +END

*

*

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLDEM.

TEST PROGRAM

* ok ok ok ok Xk

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

INPUT-0UTPUT SECTION.

FILE-CONTROL .

SELECT OUTPUT-FILE ASSIGN TO "SY:".
DATA DIVISION.

FILE SECTION.

PRO/FMS-11 DOCUMENTATION SUPPLEMENT

Create a sequential file for outPput of form data.

FD QUTPUT-FILE
LABEL RECORDS ARE STANDARD
VALUE OF ID IS ANSWERZ.

01 POOL PIC X(2356).

Data follows.

WORKING-STORAGE SECTION.

* System form librarv,

01 DEMLIB PIC X(25) VALUE "LB:[1,2ZIDEMLIB.FLB".
* Logical unit number for FME library file.

01 LUN PIC 99 COMP VALUE 6.

* Impure area.

01 IMPURE PIC X(2000).,

* Size of impPpure area.

01 ISIZE PIC 9989 COMP VALUE Z000,

01 INUM PIC 999 COMP VALUE 768,

01 UN PIC 9 COMP VALUE 5.

*

* Special worK area.

* ANSWER1 -> The initial form name of the series.
* ANSWERZ ->* The output file name.

* ANSWER3 -> The current form name.

*

01 ANSWER1.

02 PART PIC X(B).

02 FILLER PIC X(7).
01 ANSHWERZ PIC X(13).
01 ANSWER3.

02 PART PIC X(B).

02 FILLER PIC X(7).
*

* Fieldf used to create a field name.
*
01 FIELDF.
02 DAT PIC X.
02 FILLER PIC X(5) VALUE "F "
01 FIELD PIC X(B).
* Status

*

01 STAT PIC 99 COMP.

01 STATZ PIC 99 COMP.

*

* Error messade on Program errors.

*

01 ERR1.,
02 PARTI1 PIC X(23) VALUE "FATAL I/0 ERROR: STAT=",
02 ERR-STAT PIC 22ZZ29- DISPLAY.
02 PARTZ PIC X(B) VALUE ", STATZ=".

23

24 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

02 ERR-STAT2 PIC Z2Z2ZZ9- DISPLAY.
01 ILL-CHOICE PIC X(16) VALUE "ILLEGAL CHOICE".

FORM DESCRIPTION STARTS HERE

* ok ok kK

COPY "LB:[1,5]1DEMLIB.LIB",
*

*

*

*

PROCEDURE DIVISION.
MAIN-CONTROL SECTION.

P1.
* Attach the terminal.
CALL "WTQIO" USING INUM:s UNs UN.
* Initialize and oren the librarvy.
CALL "FINIT" USING BY DESCRIPTOR IMPURE:
BY REFERENCE ISIZE.
CALL "FLCHAN" USING BY REFERENCE LUN.
PERFORM STATUS-CHECK.
CALL "FLOPEN" USING BY DESCRIPTOR DEMLIB.
PERFORM STATUS-CHECK.
* Display first form.
PB.
CALL "FCLRSH" USING BY DESCRIPTOR FORM-FIRST.
PERFORM STATUS-CHECK.
Show the menu form for orperator to select the data
collection series. Get the first form name from
named data.
P2,
CALL "FGET" USING BY DESCRIPTOR D-FIRST-CHOICE,
BY REFERENCE STAT s
BY DESCRIPTOR N-FIRST-CHOICE.
PERFORM STATUS-CHECK.
MOVE D-FIRST-CHOICE TO FIELD.
MOVE SPACES TO ANSWER1.
CALL "FNDATA" USING BY DESCRIPTOR FIELD: ANSHWER1.
CALL "FSTAT" USING BY REFERENCE STAT.
IF STAT NOT > O
CALL "FPUTL" USING BY DESCRIPTOR ILL-CHOICE
PERFORM STATUS-CHECK
GO TO P2,
* If form name is "LEXIT."s terminal orperator is done.
IF PART OF ANSWER1 = ",EXIT." GO TO LIB-CLOSE.

Get the output file name from named data and open it.

P4,

P3.

k ok k%

PS5,

*

* ok k%

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 25
MOVE D-FIRST-CHOICE TO DAT OF FIELDF.
MOVE SPACES TO ANSWERZ.
CALL "FNDATA" USING BY DESCRIPTOR
FIELDF s ANSWERZ2.

PERFORM STATUS-CHECK.
OPEN OUTPUT OUTPUT-FILE.

This is the data collection loor.
MOVE ANSWER1 TO ANSHWER3.

Show the form.
CALL "FCLRSH" USING BY DESCRIPTOR ANSWER3.
PERFORM STATUS-CHECK.,

Get data for current form and output it,
MOVE SPACES TO POOL.
CALL "FGETAL" USING BY DESCRIPTOR POOL.
PERFORM STATUS-CHECK.
WRITE POOL.

Get name of next form, If founds loor for more data.

MOVE "NXTFRM" TO FIELD.

CALL "FNDATA" USING BY DESCRIPTOR FIELD, ANSWER3.
PERFORM STATUS-CHECK.

IF PART OF ANSWER3 NOT = ",NONE." GO TO P3.

End of the form series, Show last to determine if
we’re done or not.

CALL "FCLRSH" USING BY DESCRIPTOR FORM-LAST.
PERFORM STATUS-CHECK.

CALL "FGET" USING BY DESCRIPTOR D-LAST-CHOICE:
BY REFERENCE STAT:
BY DESCRIPTOR N-LAST-CHOICE.
PERFORM STATUS-CHECK.
MOVE D-LAST-CHOICE TO FIELD.

If response = "1", repeat data collection loor.
IF FIELD = "1" GO TO P4,
Get named data correspondind to response.

Get field adain if illedal response.
Close output file for valid response other than 1.

26 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

CALL "FNDATA" USING BY DESCRIPTOR FIELD: ANSWER3.
CALL "FSTAT" USING BY REFERENCE STAT.
IF STAT NOT > O
CALL "FPUTL" USING BY DESCRIPTOR ILL-CHOICE
PERFORM STATUS-CHECK
GO TO PS.
CLOSE OUTPUT-FILE.

*
* If named data is " EXIT.": terminal oPperator
* is dones else display menu form adain.
*
IF PART OF ANSWER3 NOT = ",EXIT." GO TO PG.
*
* Close form library and exit.
*
LIB-CLOSE.
CALL "FLCLOS".
PERFORM STATUS-CHECK.
STOP RUN.
*
* OutpPut messade and exit if I.0 error returned from
* Form Driver. This is the only error expected in a
* debugded application.
*

STATUS-CHECK SECTION.

sC1.
CALL "FSTAT" USING BY REFERENCE STAT: STATZ.
IF STAT > 0 GO TO SC2.
MOVE STAT TO ERR-STAT.
MOVE STATZ TO ERR-STATZ.
DISPLAY ERR1 AT LINE 1 AT COLUMN 1, ERASE TO END OF SCREEN.
DISPLAY "Press RESUME to continue." AT LINE 3 AT COLUMN 1.
CALL "WTRES".
STOP RUN.
SC2.
EXIT.

9.3 Tool Kit FORTRAN-77

FORDEM.FTN

COPYRIGHT (C) 1979 BY
DIGITAL EQUIPMENT CORPORATION: MAYNARD: MASS.

MODULE: FORDEM

VERSION: Vo1.00

Lo B o B o o o T e T o I o o B o R o

OO0 O0OO0oO0O0O0O00O00O000000000000000000000000000000o000o0o0o0ao0ao0

c

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 27

AUTHOR : Medan

DATE: 1-APRIL-79

MODIFIED Ducharme

DATE: 2-MARCH-83 To run on the Professional

FORTRAN demonstration Pprodram for FMS illustrating a

simple form-drivens data entry application.

Below

Below

is an example command file to build this demonstration Program

SY:FORDEM/CP5Y:FORDEM/-5P=5Y:FORDEM/MP
i
TASK = FORDEM

UNITS = 19

i

ASG=TI:5:13:15
ASG=5Y:1:2:7:8:9:10:11:12

i

CLSTR=PROF77 sPOSRES sRMSRES: RO

i

EXTSCT=MN$BUF:0 3iSINGLE CHOICE MENU
EXTSCT=DM$BUF:0 3SDYNAMIC SINGLE CHOICE
EXTSCT=HL$BUF:3410 iHELP
EXTSCT=MS5$BUF:3100 iMESSAGE
EXTSCT=MM$BUF:0 iMUTLI-CHOICE MENU
EXTSCT=FL$BUF:0 iMULTI-CHOICE MENU
GBLDEF=MN$LUN:22 iMENU
GBLDEF=HL$LUN:203HELP

GBLDEF=MS$LUN:21 iMESSAGE
GBLDEF=TT$LUN:153iTERMINAL I/0
GBLDEF=WC$LUN:23

GBLDEF=TT$EFN:1 i1/0 EMENT FLAG
/7

is an example ODL file to build this demonstration Prodram

+ROODT FORDEM-FDV-RMSROT-OTSROT-OTSALL
FDV: +FCTR LB:[L1+5IHLLFOR-LB:L1,51FDV/LB
@LB:[1,51PROF77
@LB:[1+5IRMSRLX

+END

IMPLICIT INTEGER (A-Z)
DIMENSION IMPURE (1000)
BYTE RESP(3), FORM(7), FORM1(7)s» DNAM(3) s FILE(30),» DATA(255)

C Initialize impure area for Form Driver and open form librarvy,

28 - PRO/FMS-11 DOCUMENTATION SUPPLEMENT

c
CALL WTQIO (768:5:5)
CALL FINIT (IMPURE: 1000)
CHAN=2
CALL FLCHAN(CHAN)
CALL ERROR (FLOPEN

c

C Display menu form.

c

10 CALL ERROR (FCLRSH (‘FIRST)

c

C Get input from terminal, Get named data

C series or +EXIT.)

C doesn’t exists inpPut invalid.

c

20 CALL ERROR (FGET (RESP:; TERM:

IF (FNDATA (RESPs FORM1) .GT.
CALL FPUTL (‘Illesgal choice’)
GOTO 20

C

C Check for exit, If choice not exit:

C file and opPen it for outpPut.

)

corresponding to user’s choice.

'ATTACH THE TERMINAL

(’LB:[1:21DEMLIB’))

(name of first form in

If named data

‘CHOICE))

0)

GOTO 30

det name of corresponding

c
30 IF (SCOMP (FORM1., ‘.EXIT.’) «NE. 0) GOTO 40
CALL FLCLOS ! CLOSE FORM LIBRARY
STOP
40 CALL CONCAT (RESP:s ‘F’: DNAM)
CALL FNDATA (DNAM: FILE)
OPEN (NAME=FILE,UNIT=1,S5TATUS='NEW’sINITIALSIZE=10)
c
C Display form and collect data’ write data to output file.
c
50 CALL SCOPY (FORM1:s FORM: B)
60 CALL ERROR (FCLRSH (FORM))
CALL ERROR (FGETAL (DATA))
WRITE (1:70) (DATACI): I=1,:LENGTH(DATA))
70 FORMAT (78A1) !DATA IS BROKEN INTO SEGMENTS FOR OUTPUT
C
C Get name of next form in series. Check for none.
C
CALL FNDATA ('NXTFRM’:s FORM)
IF (SCOMP (FORM: ‘.NONE.’) .NE. 0) GOTO BO
C
C If last form in series dones displavy a menu form.
C Get input from terminal. Get named data corresponding
C to user’s choice. If no named data, invalid inPut.
c
CALL ERROR (FCLRSH (‘LAST’))
80 CALL ERROR (FGET (RESP: TERM: ‘CHOICE’))
IF (FNDATA (RESP: FORM) .GT. 0) GOTO 90
CALL FPUTL (’Illedal choice’)
GOTO 80
c

C If choice = 1 rereat series.

PRO/FMS-11 DOCUMENTATION SUPPLEMENT

C Else close output filei checkK for exit or g0 back to
C initial menu form.
c
90 IF (RESP(1) JEQ. ‘1’) GOTO 50
CLOSE (UNIT=1)
IF (SCOMP(FORM,» ‘. EXIT.’) .NE. 0) GOTO 10
CALL FLCLOS ! CLOSE FORM LIBRARY
STOP
END

SUBROUTINE ERROR (RESULT)
OutPut messade and exit if I/0 error returned from

Form Driver, This is the only error expected in a
debudged arplication.

0Oo0o0o0oon

IMPLICIT INTEGER (A-Z)

IF (RESULT +GT., 0) RETURN
CALL FPUTL (‘Fatal I/0 Error’)
STOP

END

SUBROUTINE SCOPY (SRCs DST: LEN)

Copy a strind of a srpecified lensgth

SRC = source byte string

DST = destination byte string to be ended by a zero
LEN = number of characters to copv

OoOo00o0o0o0ao0

BYTE SRC(1), DST(1)
INTEGER 'LEN

(o]

C Corpy source to destination for lendth

DO 10 I = 1, LEN
DST(I) = SRC(I)
10 CONTINUE
c

(w]

End destination strind with zero bvte

DST(LEN+1) = 0

RETURN

END

INTEGER FUNCTION SCOMP (SRC1, SRC2Z2)

Compare two stringds

SRC1
SRC2 = second comparand byte stringd ended by a zero

first comparand bvyte string ended by a zero

nnooooonon

Value of function is zero for esuals nonzero for not equal

30 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

C Compare returns failure if stringd lendths are not the same
c
BYTE SRC1(1)s SRCZ2(1)
c
C Compare until either string ends in zero bvte or does not match
c

I =1
10 IF (SRC1(I) LE@. O ,AND. SRCZ(I) .EQ. 0) GOTO 20
IF (SRC1(I) .NE. SRCZ(I)) GOTO 30
I =1+ 1
GOTO 10
c
C Return success
c
20 SCOMP = O
RETURN
c
C Return failure
C
30 SCOMP = 1
RETURN
[»
END
SUBROUTINE CONCAT (SRC1s SRCZs DST)
c
C Concatenate two string into a third
C
C SRC1 = first source string ended by a zero
C SRC2 = second source string ended by a zero
C DST = destination strind ended by a zero
C
BYTE SRC1(1): SRCZ(1)s DST(1)
C
C Copy the first string into destinmaticn
c
J =1
I =1
10 IF (SRC1(I) .EQ, 0O) GOTO 20
DST(J4) = SRC1(I)
Jd = 4Jd+ 1
I =1+ 1
GOTO 10
C
C Now for second strind to destination
C
20 I =1
30 DST(J) = SRCZ2(I)
IF (SRC2(I) .EQ., 0) GOTO 40
J = Jd+ 1
I =1+ 1
GOTO 30
c

C Return

PRO/FMS-11 DOCUMENTATION SUPPLEMENT

C
40 RETURN

END

SUBROUTINE INSERT (SRCs DSTs POS)
c
C Replace a portion of one strind with another
c
C SRC = source string ended by d zero
C DST = destination strind ended by a zero
C POS = position in destination for source strind contents
c

BYTE SRC(1)s DST(1)

INTEGER POS
C
C Scan the destination stringd for its end
C

J =1
10 IF (DST(J) .EQ. 0) GOTO 20

J = J + 1

GOTO 10
c

C Copy source into destination at position gdiven
c

20 I =1

30 IF (SRC(I) .EQ. 0) GOTO 40
DST(I+P0OS-1) = SRC(I)
I =1+ 1
GOTO 30

c

C End destination strind if source extends it and return
C
40 IF (I .GT. J) DST(J) = 0O

RETURN

END

INTEGER FUNCTION INDEX (SRCs STR)

C
C Find pPosition of one strind in another
c
C SRC = source string
C 8TR = tardet string
C
C VYalue of function is zero if not found:
C or position of first character of STR in SRC if found
C
BYTE SRC(1),s STR(1)
C
C Look for STR in SRC until end of SRC
C
Jd =0
10 J=J+ 1
I =20

IF (SRC(J) +EQ., 0) GOTO 30

31

32 PRQO/FMS-11 DOCUMENTATION SUPPLEMENT

c
C If end of STR then success
C If not match looK at next Position in SRC
c
20 IF (STR(I+1) .EQ. 0) GOTO 40
IF (SRC(J+I) .NE. STR(I+1)) GOTO 10
I =1+ 1
GOTO 20
c
C Return failure
C
30 INDEX = 0
RETURN
c
C Return successs pPosition of string
C
40 INDEX = J
RETURN
[»
END
INTEGER FUNCTION LENGTH (STR)
[»
C Return lendth of strindg ended by a zero
c
C STR = string ended by a zero
c
C Value of the function is the lendth of the strind without the zero
[
BYTE STR(1)
[»
C Scan for the zero byte
C
I =1
10 IF (STR(I) .EQ. 0) GOTO 20
I =1+ 1
GOTO 10
C
C Return the lendth of the string
c
20 LENGTH = I - 1
"RETURN

END

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 33

9.4 Tool Kit MACRO-11

Copy the files MACDEM.MAC, MACDEM.CMD, and MACDEM.ODL from
your host system to your Professional before you run this sample program.

+TITLE MACDEM - FMS DEMONSTRATION SUBROUTINE

MACDEM . MAC

COPYRIGHT (C) 19789 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD. MASS.

MODULE: MACDEM

VERSION: Yo1.,00

AUTHOR : MEGAN

DATE: 18-NOVEMBER-79

MODIFIED: DUCHARME -- 5GDOO1

DATE: 14-APRIL-1983 -- TO RUN ON THE PROFESSIONAL
Assembly and Compile instructions: (VAX)

WBE IR R 8 AEE BB AEE WBE S MBS BB S AN AEE A8 NS eEE MR WNE B MEE @ e

To assemble tvre:
MCR PMA @B
PMA> MACDEM,MACDEM/-SP=LB:[1:51FMSMAC/MLLB:[1+5IRMEMAC/MLsDEV:LUICIMACDEM

To compPile tvyrPe:
MCR PROTKB
PAB> BMACDEM.CMD

Assembly and Compile instructions: (RSX)

To assemble tvre:
RUN $PMA
PMA> MACDEM :MACDEM/-SP=LB:[1:51FMSMAC/ML +LB:L1,5IRMSMAC/ML ,DEV:LUICIMACDEM

To compPpile tvpPe:
RUN $PROTKB
PAB>» EBMACDEM.CMD

B B mE ABE M ABS BB AES ABE ABE AEE MR S 8@ B an

34 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

ar e e

EXTNAM:
NONNAM:
FSTNAM:
LSTNAM:
CHCNAM:
NXTNAM:
LIBNAM:
MSG1:

MSG2:

ARGLST:
REQLST:

STAT:

VAR1:

FRMNAM:

SAVNAM:
IMPURE:

+ENABL

+MCALL
+MCALL
+MCALL
+MCALL
+MCALL
+MCALL

$FDVUDF

ISIZ=102
IN$CHN=1
OU$CHN=2
+SBTTL

+ASCII
+ASCII
+ASCII
+ASCII
+ASCII
+ASCII
+ASCIZ
+ASCIZ
+ASCIZ
+EVEN

+BLKB
+BLKB

+BLKW

+BLKB

+BLKW

+BLKW

+WORD
+BLKB

LC

$FDV s$FDVDF
QIOW$SEXIT$S +DIRS sALUNS
FAB$B+ RAB$B+ POOL%B

$STOREs $COMPARE: $CREATE

$CONNECT + $DISCONNECT
$PUT,» $CLOSE+ ORGS$

Equated svmbols

4.

Local data

/vEXIT./

/ +NONE ./

/FIRST /

/LAST /

/CHOICE/

/NXTFRM/
/SYSDISK:[1:21DEMLIB/
/Illedal choice/
Fatal I/0 error

Ardument lists and data area

F$ASIZ
F$RSIZ

ISIZ
ISIZ-2

-

-

@E wE aE e s s e wa e

- e s

i Allow lower case source text

RSX I/0 related macros
SGDOO1 RMS related macros
SGDOO1

SGDOO1

SGDOO1

ws B aE as aE s

Size of FDV imPure area

Identify Form Driver macro calls

i Init the Form Driver definitions

InpPut channel number (Form Library)

OQutput channel number (Output File)

Exit name

No more forms in series

ASCII form name

ASCII form name

ASCII field name

ASCII named data field name
ASCIZ library name

Messade for illegal menu choice
Messade with embedded /7

Form Driver argument list
Form Driver required list

Form Driver status blocK

Variable B-bvyte block for deneral

Area for form names

Save area for a form name
Form Driver imPure area

use

i I1/0 section

s

FABADD:

RABADD:

RMS$LUN:

++

O

DEMO:

1%:

+EVEN

FAB$B
F$DEQ
F$ALD
F&FOP
F$FAC
FABSE

+EVEN

RABS$B
R$FAB
R$RAC
RABSE

+EVEN
POOL$B
P$BDB
P$FAB
P$RAB
P$BUF
POOL$E

+EVEN

ALUNS
+EVEN
ORG%
+SBTTL

This is the MACRO demonstration

illustratingd a simple form-driven;

PRO/FMS-11 DOCUMENATTION SUPPLEMENT 35

2

2

FB$SUP
FB$PUT

FABADD
RB$SEQ

LS I I]

OU$CHN, SY» O

SEQ +<CREPUT>

SGD0O0O1 Allocate RMS FAB

SGD0O0O1 Default file extension size
SGDOO1 Allocation size for the file
SGD0OO1 Create new file

SGDOO1 File access operations
SGD0O0O1 End FAB declarations

SGD0O0O1 Allocate RMS RAB
SGD0OO1 Connect to FAB address
SGD0OO1 Record access is seauential

S5GDO0O1 Bedin Pool declarations
SGDO0O1 Allow two buffer desc blockKs
SGDOO1 Only one file will be opPen

SGDO0O1 Need only one RAB

SGDOO1 I/0 Buffer space

SGDOO1 Assign a Lun to the Disk

SGD0O01 Define RMS needed functions

MACDEM - FMS Demonstration Subroutine

FUNCTIONAL DESCRIPTION:

application,

+PSECT

DIRS
QIOWSS
BCC
CALL

Mowv

MACDEM

#RMS$LUN

#I0,ATT »#THSLUN »#TSEFN
1%

LEAVE

#ARGLST »RO

prodram for FMS

data-entry

SGDOO1 Assign the Lun O to the DisK
Attach the terminal
If error then Just leave

Done for now

RO = addr of FDV arg list

36 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

FIRST:

10%:

20%:

30%:

40%:

MoV #REQLST sR1
Moy #STAT+F$STS(R1)
MoV #INSCHN ,F$CHN(R1)
MOV #IMPUREsF$IMP(R1)
$FDV REQ=R1
$FDV FNC=0PN sNAM=#LIBNAM
CALL ERREX
$FDV FNC=CSH :NAM=#FSTNAM
CALL ERREX
$FDV FNC=GET +NAM=#CHCNAM
CALL ERREX
MoV #UAR1 +R1
CALL BLKNAM
MOVB BF$VAL(RO) »UARIL
$FDV FNC=DAT :NAM=#VAR1
CMP STAT :#FS$SUC
BEQ 20%
$FDV FNC=LST sVAL=#MSG1 sLEN=#-
BR 10%
MOV F$UVAL(RO) sR1
MOV #EXTNAMR2
CALL CMPNAM
BNE 30%
JMP LIBCLS
CALL MOUNAM
Moy #FRMNAM +R1
MOV #5AUNAM +R2
+REPT 3

MOV (R1)+,:(R2)+
+ENDR
MOVB #'F,VARL+1
MOV #UAR1 »R1
$FDV FNC=DAT 'NAM=R1
MOV #FABADD »R3
MOV #RABADD R4
$S5TORE F$VAL(RO) sFNAR3
$5TORE F$LEN(RO) sFNSR3
$STORE #0U$CHN,LCH:R3
$CREATE R3
$COMPARE #SU$SUC,STSsR3
BEQ 40¢
CALL LEAVE

$CONNECT R4
$COMPARE #SU$SUC,S5TSR4

BEQ
CALL

60%
LEAVE

P

B I LT} ar P s we wE we e we e s wan

[

mE EE s e e e B e o aam en am

R1 = addr of FDV resuired arg list
Set addr of status block

Set I/0 channel for FDV

Set addr of FDVU impure area
Init required arg list pPointer
Open
Exit

form library
with error

Show
Exit

menu form
if error

Get field
Exit

‘CHOICE”’

if error

R1 = ptr to G-bvte block

BlanK out VARI1

VAR1 =

Get named data with the name beingd
the ‘CHOICE’

Was get successful?

Continue if oK

i Else Pprint messade on line 24

menu choice

response to

Try adain

R1 = addr of name from named data
R2 = addr of exit name
Zero set on match

Continue on match
Else close form library and exit

Save named data
R1 =
Adr to save form name

adr of source name

Save form name
Make Znd letter = F
R1 = addr of G-bvte block

Get named data at VARI

FAB address to R4
RAB address to R4

SGDOO1
SGDOO1
SGDOO1
SGDOO1
SGDOO1
SGDOO1
SGDOO1
SGDOO1
SGDOO1
SGDOO1
SGDOO1
SGDOO1
SGDONY

the
the
the
Move the
Set the LUN in
Create the file
Check RMS Status

if status = 1

Mouve
Move
Move
file name size
the FAB

Continue
Leave on I/0 error
Connect the RAB to
Check RMS Status
if oK

Leave on I/0 error

the FAB

Continue

addr of the file name

60s:

70%:

80%:

90%:

- we e

CHKCLS::

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 37

$FDV ARG=#ARGLST sFNC=CSH NAM=#FRMNAM
CALL ERREX i Exit with error
$FDV FNC=ALL i Get all data from form
CALL ERREX i Exit with error
CALL SAVDAT i Put data in file
$FDV ARG=#ARGLST sFNC=DAT sNAM=#NXTNAM i Get name of next form
CALL MOUNAM i Put form name in FRMNAM
MOV #NONNAM,R1 i Rl = adr of ASCII .NONE.
MOV #FRMNAM sR2 i R2 = adr of returned name
CALL CMPNAM i Zero set on match
BEQ 70% i Display last form on match
BR 60% i Else det data from next form
$FDV FNC=CSH sNAM=#LSTNAM
CALL ERREX i Exit with error
$FDV FNC=GET sNAM=#CHCNAM
CALL ERREX i Exit with error
MOV F$UVAL(RO) »R1 i R1 = adr of answer
CMPB (R1) %1 oIs it = 1
BNE 90%
MoV #5AUNAM R i R1 = source name
MOV #FRMNAMR2 i R2 = dest name
+REPT 3
MOV (R1)+,(R2)+ i Move name
+ENDR
BR 60% i Get more data
MOVB (R1) :VARL i Move into variable for name
MOVB #40,VARL+1 i Make 2nd char blank
$FDV FNC=DAT:NAM=#VUAR1 i Get named data
TST STAT i Check status
BGT CHKCLS i If oK then close file
$FDV FNC=LST ,»VAL=#MS5G1)LEN=#-1 5 Print messagde on line 24
BR 80% i Try agdain

Close the output file

MOV #FABADD »R3
$DISCONNECT R4

$COMPARE #SU%$S5UC:STS:R4
BEQ 95%

CALL LEAVE

- ws

to R3

SGDOO! Move the addr of the FAB
SGDOO0O1 Disconnect the access stream
SGD0OO1 Check RMS Status

SGD0OO1 Branch if Status OK

SGD0OO1 Else I/0 error

38 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

95%: $CLOSE R3 i SGDOOL1 Close output file
Moy #EXTNAM 3R 1 i Name of exit mnamed data
MO #ARGLST sRO i Get ARGLST
Moy F$UVAL(RO) +R2 i RZ = adr of named data
CALL CMPNAM i Zero set if match
BEQ LIBCLS i Exit on match
JMP FIRST i BacKk to start on no match
LIBCLS: $FDV FNC=CLS i Close form library
BR EXIT i And exit

Routine to checKk for error return from Form Driver.

Print messade and exit on error.

P]

ERREX: CMP STAT +#F5%$5UC i Was call oK?

BNE LEAVE

RETURN
LEAVE: $FDV ARG=#ARGLST

$FDV FNC=LST sVAL=#MSG2+LEN=#%#-1 § Print messade on line 24
EXIT: EXIT%S

H
i Subroutine to store data in outPput file
H

SAVUDAT: $STORE F$VAL(RO) :RBF R4 i SGDOO1 Move the addr data to the RAB
$STORE F$LEN(RO) +RSZ:R4 i 5GD0O0O1 Move the len of data to RAB
$COMPARE #0:RSZ:R4 i 5GD0O01 See if the data lendth is zero
BEQ 104 i SGDOO1 If nmot return
SPUT R4 i SGDOO1 Store away the string of data
$COMPARE #SU%SUC:S5TS:R4 i S5GDOO1 ChecKk the RMS Status
BEQ 10% i SGDOO1 Branch if eaual
CALL LEAVE i 5GDOO1 Leave on I/0 error

10%: RETURN

Subroutine to move name and blanK fill to 6 chars

F$VAL(RO) = Addr of source name
F$LEN(RO) = Lendth of source name
FRMNAM = Addr of destination of name

aa ws am s am am

MOUNAM:
MOV #FRMNAMR1 i R1 = addr to store form name
CALL BLKNAM i BlanK out name
MoV F$VAL(RO) sR1 i R1 = addr of named data
MOV #FRMNAM sR2 §f R2 = addr to store form name
Mou F$LEN(RO) sR3 i Lendth of named data

10%: MOVB (R1)+:(R2)+ i Move named data to form name
DEC R3 i Deec char ctr
BNE 10%

RETURN

i S

BLK

S%:

i S

CMP

10%:

9.5

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 39

ubroutine to blank 6 bvtes
R1 = Addr of name to blank

NAM:
MOV #BR2 i R2 = 6
MOVB #4043 (R1)+ i Init name with blanKs
DEC R2 i Dec bvte ctr
BNE 5%
RETURN

ubroutine to compare two B-bvte names
R1+R2 pPoint to names
R3 = 0 if match on return

NAM:
MOV #B5R3 i 6 char comPare
CMPB (R1)+4(R2)+ i Compare 2 bytes
BNE 20% i Leave loorp if no match
DEC R3 i Dec char ctr
BNE 10%
RETURN
+END DEMO

Tool Kit PASCAL

PASCAL is not recommended for use with PRO/FMS-11. However, you can use
PASCAL to access PRO/FMS-11, if you follow these restrictions:

[0 Source code. PRO/FMS-11 calls for PASCAL are in the Tool Kit file
FMS.PAS. After the Tool Kit is installed, you can find this file in directory
LB:[1,5] on your host system. Use the %INCLUDE directive to include
the file in your PASCAL source code:

{ Include PRO/FMS Procedures ¥
#Include ‘LB:C1:5SIFMS,PAS’

O Calling sequence. FMS.PAS consists of SEQ11 procedures, which
pass everything by reference. To determine the appropriate calling
sequences for your application, refer to FMS.PAS and Chapter 3 of the
Tool Kit PASCAL User’s Guide.

Note: PASCAL form and field names must be padded for six spaces. Other-
wise the form or field cannot be accessed by the Form Driver.

40 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

O

Parameters. There are no optional paramaters for PASCAL calls to
PRO/FMS-11. All paramaters must be included. For example, in
FMS.PAS, FCLRSH is declared as a SEQ11 procedure with two param-
eters. If you want to use the FCLRSH call, but you do not want to specify
a new value for the starting line, pass 0 as the first parameter. The form
will display at the starting line specified when the form was designed.

Indexes. When using an FMS.PAS routine that allows indexes, you
must specify an index for the variable. If no index was assigned when
the form was created, assign it an index of 1. For example:

index := 13
field := ‘CHOICE’}

FGET (responses terminators field: index) 3

Variables. PASCAL can pass only variables when calling routines
declared in FMS.PAS. For example, the following source statement
would fail:

FCLRSH(' ‘FIRST ‘7’,0)3

The correct calling sequence for FCLRSH go like this:

UAR Form_Name : Packed Array [1..61 Of Chars
Starting_Line : Inteders

{ Main Program ¥

Form_Name := ‘FIRST ‘3

Starting_Line := 13

FCLRSH(Form_Name sStartind_Line) i

If you want to pass constants as parameters, edit FMS.PAS and assign
the appropriate formal parameters the READONLY attribute. For exam-
ple, if you edited FMS.PAS so that both FCLRSH parameters were
READONLY, you could use the call:

FCLRSH(‘FIRST +1) 3
See Chapter 3 of the PASCAL User’s Guide for details.

Library file specification. You must terminate a library file specification
with a NUL character. Without it, PRO/FMS-11 will not be able to
access the library file. For example, this is a correct PASCAL library file
specification:

UAR File_Spec : Packed Arravy [1..151 Of Chari
{ Main Prodram ¥

File_Spec := ‘LB:[1:2ZIDEMLIB’(0)]
FLOPEN(File_Sprec) i

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 41

[0 FPUTL. You must terminate data sent to the FPUTL call with a NUL

character. Without it, random data may be displayed on the screen. For
example, this PASCAL sequence would successfully pass data to
FPUTL:

VAR Messade : Packed Array [1,.18]1 Of Charsi

{ Main Program ¥
Bedin

Messade := ‘Example messade’(0)3]
FPUTL(Messade) i

End.

Impure area and data string restrictions. Using PASCAL with FMS.PAS,
you can define an impure area as large as 1500 bytes and pass a data
string of up to 1500 characters. If you need larger values, increase the
variable MAX_FMS_PAR_LEN in FMS.PAS.

FLCHAN. Be sure to assign any LUN used in an FLCHAN call to
LB: in your command (.CMD) file. The files will be put in the appli-
cation directory [ZZAPnnnnn].

The following is a sample PRO/FMS-11 program in PASCAL, using FMS.PAS.

PROGRAM PASDEM (INPUT,OUTPUT)

{

PASDEM, PAS
Copyridht (C) 1983 By
Digital Eauipment Corporation,» Mavnard: Mass.

Module: PASDEM

Version Y01,00

Author: S, Ducharme

Date: 27-Apr-1983

PASCAL Demonstration prodram for PRO/FMS illustratint
simple Form-Drivens data entry aprlication,

Below is an example command and odl file to build
this demonstration Prodgram,

iPASDEM.CMD

SY:PASDEM/CP/-FP sPASDEM/MA/-SP=8Y:PASDEM/MP
CLSTR=PASRES »POSRES yRMSRES:RO

TASK=PASDEM

UNITS = 20
ABG = TI:5:13:15
ASG = BY:6:7:8:9:10:11:12

EXTSCT = $$HEAP:10000
EXTSCT = MN%$BUF:0
EXTSCT = HL$BUF:3410
GBLDEF = MS$LUN:21
GBLDEF = WC%LUN:23
GBLDEF = HL$LUN:Z20
GBLDEF = MN$LUN:22
GBLDEF = TT$LUN:15
GBLDEF = TT$EFN:1
/7
Example ODL file:
iPASDEM.ODL

+ROOT USER - PASCAL

42 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

USER: +FCTR SY:PASDEM

PASCAL: .FCTR LB:[1:51PASLIB/LB-FDV-RMSROT

FDWV: +FCTR LB:[1,+5JHLLFOR-LB:C1:+51FDYV.0OLB/LB

@LB:[1+5IRMSRLX

+END

Include PRO/FMS Procedures ¥

#Include ‘LB:L1:51FMS5.PAS’

{ Declare tvrpes and variables ¥
TYPE

Impure = PACKED ARRAY [1.,.10001 Of Inteders

Forms = PACKED ARRAY [1..B1 0f Char}

File_Srec = PACKED ARRAY [1..,151] 0f Chars

Buffer = PACKED ARRAY [1..2251 Of Charj

Out_Line = PACKED ARRAY [1..411] Of Char}i

Named_Data = PACKED ARRAY [1..B6B1] O0f Chars

VAR

QI0O_Function: { Qio function code ¥

TT-LUN: { Terminal lun ¥

TT_EFN: { I/0 event flag ¥

Index s { FMS field index ¥

Lendth s { Length of data ¥

Channel s { FMS Library channel ¥

Terminator: { Form terminator >

Startind_Line: { Starting line for forms ¥

Status-1: Status_2: { Status values of FMS calls ¥

Impure_Size: Inteders { FMS ImpPure area ¥

Impure_Area: ImPures { Size of FMS ImpPure area ¥

Librarvy: File_Spreci { Forms librarv ¥

Field: { FMS field name ¥

Response s { User’s response ¥

Next_Form: { Next form to displav ¥

Current_Form: Forms3i { Current form to display ¥

Messade: Out_Lines { Messade for FPUTL call ¥

All_Data: Buffersi { Storage for all data in a form %

Name_Dataz: Named_Datas { Storade for named data ¥

More_Data: Booleani { Flagd for more data ¥

Out_File: Texti { File variable for outfile ¥

{ *¥%#%%¥% Procedure to wait for the RESUME Key *¥¥¥#

This procedure is called in the event that the forms library can not
be opened. This Pprocedure calls the routine WTRES in the P/0S5 callable
library., >

PROCEDURE WTRESS SEQ113
{ *%%%% Procedure to attach the terminal *¥¥¥%
This procedure is called to attach the terminal., The Form Driver
needs the terminal attached. The FORTRAN routine WTQIO is called in
SYSLIB. ¥

PROCEDURE WTQIO(VAR

{Function code for QIO 2
{I/0 Channel ¥
{I/0 Channel ¥

QI0O_Function: Inteders
VAR TT_LUN:
VAR TT_EFN:

)i BEQ113

Intederi
Inteder

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 43

{ #%%%% Procedure to move data in one wvariable to another *%¥¥%
This procedure is called to move tharacter data from one variable
to another vaiable, This is useful if the two variables are of differing
lengths., Three Paramaters are passed., The two variables and the number
of characters that are to be corpied from the first variable to the second
variable, ¥
PROCEDURE MOVE(YAR Yarl: PacKed Arrav[LB1..UP1 : Integerl Of Chars
VAR Var2: PacKed Array[LB2,,UP2 : Integerl Of Char}
VAR Length : Inteder
)i
VAR
I : Intederi
Bedin
I == 13
While I <= Length Do
Bedin
Var2LI1 = VYVarllId}
I := 1 + 1
End
End3j
{ End of Procedure MOVE 3
{ FEEHEXEXEXF Main Prodram #¥FEEFEEER b3
Bedin
{ *¥%¥% Initil
Index == 0
Channel := 73
Impure_BSize 1= 10003
Library = ‘LB:[1,2IDEMLIB (0}
QI0O_Function := 7683
TT-LUN = 51}
TT-EFN == 53i
Starting_Line = 13

ize varaibles *¥¥*¥% ¥
H

Current_Form := '/ ‘3

{ %*#%%% Initilize FMS Impure Area and Open Library #*#*%%% ¥
WTQIO(QIO Function sTT_LUN,TT_EFN) 3 {Attach the terminal
FINIT(ImpPpure_AreasImpure_Size »Status_1)3 {Initilize FMS ImpPpure Area
FLCHAN(Channel) 3 {Set the library channel
FLOPEN(Library)i {0pen demonstration library
Writeln(CHR(27),'L2d7) 3 {Clear the screen

{ Display menu form for oPerator to select the data collection

N

series. This will continue until the operator chposes the exit
selection from either the form called FIRST or the form called LAST 2
While Current_Form <> ‘. EXIT.’ Do

Bedin
Current_Form == ‘FIRST ‘3
FCLRSH(Current_FormsStarting_Line)3j {Display the first form ¥
FSTAT(Status_1:5tatus_2)3 {ChecK the status ¥
If Status_1 = 1 Then
Bedin
Field := ‘CHOICE’}
Status_-1 = 0

End

44 PRO/FMS-11 DOCUMENTATION SUPPLEMENT

Else {Else display error message 1}
Bedin {and exit., ¥
Status—-1 := 13
Next_Form = ‘. EXIT.’}

Lendth := 63
MOVE(Next_Form:Name_DatasLendth)i
Writeln(‘Error opening library files Press RESUME to continue.’);3

Writelni

WTRES {Wait for the oPerator to }
Endi {IF} {read error messade ¥
While Status_-1 <> 1 Do
Bedin

FGET(Response:TerminatorsFieldsIndex) i
FNDATA(Response sName_Data)i
FSTAT(Status_1+Status_2)}

If Status_1 < 0 Then

Bedin
Messade := ‘Illedal Choice (0Ys
FPUTL(Messade)

Endi {IF}

Endi {While Status}
Lendth := 63
MOVE(Name_DatasCurrent_FormsLength) i
If Current_Form <» ' EXIT.’ Then
Bedin
Field := Respronses
Field[21 1= ‘F’3
FNDATA(Field sName_Data)i
Open(Out_File:
Name_Data
)
More_Data := TRUES
While More_Data Do
Bedini
. Next_Form := Current_Formi
While Next_Form <> ‘,NONE.’ Do
Begin
FCLRSH(Next_Form:Startind_Line) 3
FGETAL(ALL_DatasTerminator)3i
Write(Out_FilesAll_Data)i
Field = ‘NXTFRM’}
FNDATA(Field:Name_Data)i
MOVE(Name_DatasNext_Form:Lendgth)3
Endi {While Next Form?}
Status_1 := 03
Field := ‘CHOICE’S
Next_Form := ‘LAST '3}
FCLRSH(Next_Forms:Startind_Line)?®
‘While Status_1 <> 1 Do

PRO/FMS-11 DOCUMENTATION SUPPLEMENT 45

Begin
FGET(ResponsesTerminatorsFieldsIndex)}
FSTAT(Status_1:8tatus_2)3
FNDATA(ResPonse :Name_Data)i
FSTAT(Status_1:5tatus_2)3
If Status_1 < O Then

Bedin
Messagde := ‘Illegal Choice (0)3
FPUTL(Messade)

End {IFZ}

Endj {End While Status}

If Responselll = ‘2’ Then

Bedin
More_Data := FALSE i
Close(Out_File)

Endi {IF}

If Responselll = ‘3’ Then

Begin
More_Data := FALSE]
Close(Out_File)}
Current_Form := ‘.EXIT.’

Endj {IF}

Endj {While More_Data 1}
Ends {IF}

Endi { While Current_Form 2}
FLCLOS3 { Close FMS library file 3
End.

— o — - — — — — — —— — ——— —— — — G S S > > —— —————— i i o T e S o o — — — . — —— —— " S —— — —— ——— —— — —— — —— — — — — o e o " ———

Please cut along this line.

PRO/FMS-11
Documentation Supplement
READER’S COMMENTS Order No. AA-P103B-TK

NOTE: This form is for document comments only. DIGITAL
will use comments submitted on this form at the com-
pany’s discretion. If you require a written reply and
are eligible to receive one under Software Perfor-
mance Report (SPR) service, submit your comments
on an SPR form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.
[J Assembly language programmer
[J Higher-level language programmer
[J Occasional programmer (experienced)
[J User with little programming experience
(0 Student programmer
[J Other (please specify)

Name Date

Organization

Street :

City State Zip Code
or

Country

-——— Do Not Tear - Fold Here and Tape

=-——— Do Not Tear - Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Professional 300 Series Publications
DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET

MAYNARD, MASSACHUSETTS 01754

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

