BASIC-PLUS
LANGUAGE MANUAL

DEC-11-ORBPB-A-D

BASIC-PLUS
LANGUAGE MANUAL

DEC-11-ORBPB-A-D

July, 1975

digital equipment corporation - maynard. massachusetts

PREFACE

PART I

CHAPTER

CHAPTER

CHAPTER

1

CONTENTS

RSTS/E AND THE BASIC-PLUS LANGUAGE
AN INTRODUCTION TO RSTS-11
INTRODUCTION TO PROGRAMMING
INTRODUCTION TO TIME-SHARING

THE BASIC-PLUS PROGRAMMING LANGUAGE
CONVENTIONS USED IN THIS MANUAL

FUNDAMENTALS OF PROGRAMMING IN
BASIC-PLUS

EXAMPLE BASIC PROGRAM

LINE NUMBERS

STATEMENTS

Multiple Statements on a Single Line
A Single Statement on Multiple Lines
SPACES AND TABS

EXPRESSIONS

Numbers

Variables

Mathematical Operators

Relational Symbols

Logical Operators

ELEMENTARY BASIC STATEMENTS

REMARKS AND COMMENTS

LET STATEMENT

PROGRAMMED INPUT AND OUTPUT

READ, DATA, and RESTORE Statements
PRINT Statement

INPUT Statement

UNCONDITIONAL BRANCH, GOTO STATEMENT

CONDITIONAL BRANCH, IF-THEN AND IF-GOTO

STATEMENTS

iii

PART II

CHAPTER

CHAPTER

CHAPTER

w w w
« o o
(oAl e N))
PR
N =

wwww
NN
o .
W

wWwww
« s s e
o0 00 o 00
« o e
w N =

CONTENTS (Cont.)

PROGRAM LOOPS

FOR and NEXT Statements
Subscripted Variables and the DIM
Statement

MATHEMATICAL FUNCTIONS

Examples of Particular Intrinsic Functions
RANDOMIZE Statement

User-Defined Functions
SUBROUTINES

GOSUB Statement

RETURN Statement

Nesting Subroutines

STOP AND END STATEMENTS
BASIC-PLUS ADVANCED FEATURES
IMMEDIATE MODE OPERATIONS

USE OF IMMEDIATE MODE FOR STATEMENT
EXECUTION

PROGRAM DEBUGGING

MULTIPLE STATEMENTS PER LINE
RESTRICTIONS ON IMMEDIATE MODE
PROGRAM INTERRUPTION BY CTRL/C
CHARACTER STRINGS

CHARACTER STRINGS

String Constants

Character String Variables
Subscripted String Variables
String Size

Relational Operators

ASCII STRING CONVERSIONS, CHANGE STATEMENT
STRING INPUT

STRING OUTPUT

STRING FUNCTIONS
User-Defined String Functions

INTEGER AND FLOATING POINT OPERATIONS
INTEGER CONSTANTS AND VARIABLES

INTEGER ARITHMETIC

iv

S wNdND = [

CONTENTS (Cont.)

6.3 INTEGER I/0
6.4 USER DEFINED INTEGER FUNCTIONS
6.5 USE OF INTEGERS AS LOGICAL VARIABLES
6.6 LOGICAL OPERATIONS ON INTEGER DATA
6.7 MIXED MODE ARITHMETIC
6.8 FLOATING POINT AND SCALED ARITHMETIC
CHAPTER 7 MATRIX MANIPULATION
7.1 BASIC-PLUS ARRAY STORAGE
7.2 MAT READ STATEMENT
7.3 MAT PRINT STATEMENT
7.4 MAT INPUT STATEMENT
7.5 MATRIX INITIALIZATION STATEMENTS
7.6 MATRIX CALCULATIONS
7.6.1 Matrix Operations
7.6.2 Matrix Functions
CHAPTER 8 ADVANCED STATEMENT FEATURES
8.1 DEF STATEMENT, MULTIPLE LINE FUNCTION
DEFINITIONS
8.2 ON-GOTO STATEMENT
8.3 ON-GOSUB STATEMENT
8.4 ON ERROR GOTO STATEMENT
8.4.1 RESUME Statement
8.4.2 Disabling the User Error Handling Routine
8.4.3 The ERL Variable
8.5 IF-THEN-ELSE STATEMENT
8.6 CONDITIONAL TERMINATION OF FOR LOOPS
8.7 STATEMENT MODIFIERS
8.7.1 The IF Statement Modifier
8.7.2 The UNLESS Statement Modifier
8.7.3 The FOR Statement Modifier
8.7.4 The WHILE Statement Modifier
8.7.5 The UNTIL Statement Modifier
8.7.6 Multiple Statement Modifiers
8.8 SYSTEM FUNCTIONS AND STATEMENTS

PART III

CHAPTER

CHAPTER

9

RNV
P
e
I
N =

v

O O W W OO
.
(SN T S

10.1
10.2

10.3

10.3.
10.3.
10.3.
10.3.
10.3.

10.4
10.4.
10.4.
10.4.
10.5

10.6

U s W

wN -

CONTENTS (Cont.)

BASIC-PLUS DATA HANDLING
DATA STORAGE CAPABILITIES

FILE STORAGE
Auxiliary Libraries
Public and Private Disks

OPEN STATEMENT

RECORDSIZE Option

CLUSTERSIZE Option

FILESIZE Option

MODE Option

File Structured Vs. Non-File Structured
Devices

CLOSE STATEMENT

NAME-AS STATEMENT, FILE PROTECTION AND
RENAMING

KILL STATEMENT

CHAIN STATEMENT

BASIC-PLUS INPUT AND OUTPUT OPERATIONS
READ AND DATA STATEMENTS

RESTORE STATEMENT

PRINT STATEMENT

Formatted ASCII I/0

Output to Non-Terminal Devices
PRINT-USING Statement

MAT PRINT Statement

PRINT Functions

INPUT STATEMENT

MAT INPUT Statement

Input from Non-Terminal Devices
Opening the User Terminal as an I/O
Channel

APPENDING DATA TO DISK FILES

PROGRAMMING EXAMPLE

vi

CHAPTER

CHAPTER

11
11.1
11.2
11.3
11.3.1
11.3.2
11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.5
12
12.1
12.2
12.3
12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.4
12.4.1
12.4.2
12.4.3
12.4.4
12.4.5
12.5
12.6

12.7

CONTENTS (Cont.)

VIRTUAL DATA STORAGE
VIRTUAL CORE DIM STATEMENT
VIRTUAL CORE STRING STORAGE

OPENING AND CLOSING A VIRTUAL CORE FILE
Pre-Extending a Virtual Array
Closing a Virtual Core File

VIRTUAL CORE PROGRAMMING CONVENTION
Array Storage

Translation of Array Subscripts into
File Addresses

Access to Data in Virtual Arrays
Allocating Disk Storage to Virtual Files
Simultaneous Access of a Virtual Core
Array by Several Programs

PROGRAMMING EXAMPLE
RECORD I/O

OPENING A RECORD I/O FILE
CLOSING A RECORD I/O FILE

THE GET AND PUT STATEMENTS
The RECOUNT Variable

The COUNT Option

The RECORD Option

BUFSIZ Function

STATUS Variable

WORKING WITH RECORD I/0 FILES
Extending Disk Files

The FIELD Statement

LSET and RSET Statements

Differences Between the LET Statement
and the LSET/RSET Statement

Update Option for Disk Files

CVT CONVERSION FUNCTIONS
EXAMPLES OF RECORD I/O USAGE

THE XLATE FUNCTION

vii

11-3
11-4
11-5
11-6

11-6
11-7
11-8
11-12
11-15

11-16

11-17

12-8
12-8
12-9
12-12

12-13
12-14

12-16
12-21

12-24

APPENDIX A
A.l
A.2
A.3
A.4
APPENDIX

APPENDIX

U o o 0O 0w
N

APPENDIX

APPENDIX E

BIBLIOGRAPHY

INDEX

CONTENTS (Cont.)

Page
BASIC-PLUS LANGUAGE SUMMARY A-1
SUMMARY OF VARIABLE TYPES A-1
SUMMARY OF OPERATORS A-1
SUMMARY OF FUNCTIONS A-2
SUMMARY OF BASIC-PLUS STATEMENTS A-6
BASIC-PLUS COMMAND SUMMARY B-1
ERROR MESSAGE SUMMARY c-1
USER RECOVERABLE ERRORS c-1
NON-RECOVERABLE ERRORS C-6
SYSTEM IDENTIFICATION MESSAGE c-11
BASIC-PLUS CHARACTER SET D-1
BASIC-PLUS CHARACTER SET D-1
ASCII CHARACTER CODES D-3
RSTS FLOATING-POINT AND INTEGER FORMATS E-1
FLOATING-POINT FORMATS E-1
INTEGER FORMAT E-3
BIBLIO-1
INDEX-1

viii

CONTENTS (Cont.)

FIGURES
Number Page
2-1 Example BASIC Program 2-2
3-1 Modulus Arithmetic 3-29
11-1 Virtual Array File Layout 11-11
11-2 Jirtual Array Accessing Algorithm 11-13
12-1 Record I/0 Example #1 12-21
12-2 Record I/0 Example #2 12-22
12-3 FIELD Statement Example 12-23
12-4 CVT Function Example 12-23
TABLES
Number Page
3-1 Mathematical Functions 3-23
5-1 Relational Operators Used with String
Variables 5-4
5-2 ASCII Character Codes 5-6
5-3 String Functions 5-13
8-1 User Recoverable Errors 8-6
8-2 System Functions 8-24
9-1 Device Designations 9-2
9-2 Reserved File Extensions 9-3
9-3 Protection Codes 9-4
9-4 Default Device Buffer Size 9-10
9-5 Use of RECORDSIZE 9-11
11-1 Virtual Array Storage Capabilities 11-7
12-1 Device Record Characteristics 12-3
12-2 RSTS Variable STATUS 12-7
12-3 CVT Conversion Functions 12-17

ix

PREFACE

This manual describes the BASIC-PLUS programming language. In-
formation is organized for the benefit of the beginning programmer, as
it allows the reader to gradually acquire increased programming capa-

bilities.

The BASIC-PLUS language is an extension of BASIC! as originally
developed at Dartmouth College. The experienced BASIC programmer may
find the appendices sufficient for his use. However, BASIC-PLUS offers
many features not found in standard Dartmouth BASIC or any other ver-
sion of BASIC.

While it is always good programming practice to use the % charac-
ter to indicate integer format of variables, as described in Chapter
6, the sample programs in this manual do not always follow this
convention. For the sake of clarity in illustrating various program-
ming concepts, the % character is omitted occasionally in these
examples, but should be included in user programs to save storage
space as well as computing time.

For information on all of the current manuals pertaining to
RSTS/E operation, consult the RSTS/E Documentation Directory.

I1BASIC is a registered trademark of the Trustees of Dartmouth College.

xXi

First Printing, July 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright <:) 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAlO QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0s/8 RT-11
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

9/76-14

PART I

RSTS/E AND THE BASIC-PLUS LANGUAGE

Thls first Part descrlbes the RSTS/E system, its hardware and-

user features, and the sxmplest level of the BASIC language.(_BASIC

N

as descrlbed here is essentlally Dartmouth BASIC as orlglnally
“developed. Eart II describes the extended capabllltles of BASIC—
IHPhUS. As part of the 1ntroductory material, the reader will flnd
references to some of the extended capabllltles.' Part III descrlbes
vthe complete range of BASIC-PLUS I/O, 1ncludlng Record I/0 and
1nformatlon on partlcular I/O dev1ces.

As a 1anguage, BASIC is easyfto learn. BASIC-PLUS'provides,
many advanced features Wthh allow BASIC to be a useful tool for

the more experlenced programmer., BASIC does not, however, penal—*

‘ize the beginning user. Almost any. problem can be solved w1th ‘the
statements available in Part I. The statements and features in
¢

Parts II and III allow ‘the user to write more eff1c1ent code to

better use mach;ne tlme and core space.

CHAPTER 1

AN INTRODUCTION TO RSTS-11

In this manual, the RSTS-11 user need only be concerned with
the writing and execution of correct programs in the BASIC-PLUS
language. A description of the various RSTS-11 commands (NEW, OLD,
LIST, RUN, etc.) can be found in the RSTS-11 System User's Guide.

1.1 INTRODUCTION TO PROGRAMMING

For the benefit of the new programmer approaching his first com-

puting experience, there are four phases in programming a computer:

a. writing the computer program,

b. entering the program to the computing system,
c. testing and debugging the program, and

d. running the finished program.

BASIC-PLUS is the language in which the user writes programs de-
signed for the RSTS-11 system. Input of the completed program is
generally performed from the terminal keyboard on RSTS-11.

A program can be input through various peripheral devices, such as

the paper tape reader, magnetic tape, DECtape, or punched cards; how-
ever, the initial creation of a BASIC program is usually performed

on-line to the computer from the terminal keyboard.

Ideally a program runs correctly as written; but in practice
this is seldom the case. A program can contain simple typing mis-
takes or complex logical errors. Typing and syntactical errors are
detected as the program is typed at the keyboard and appropriate er-
ror messages are printed. BASIC~-PLUS also evaluates the entire pro-
gram for commonly made errors and generates messages which explain
the mistakes to the user. Program errors are corrected on-line from

the terminal keyboard.
The testing and debugging process is continued until the program

appears to execute correctly. This is a good time to explain to the

new user that a computer program only does what the programmer has

1-1

written. The calculations performed by the computer are not necessar-
ily those that will produce the correct results. In order to obtain
correct results from a computer, the user must write a program which
is not only free of detectable errors, but one which correctly ana-

lyzes his problem.

RSTS~11 provides keyboard commands which enable the user not
only to create and execute his program but also to save the program
within the system for later retrieval and execution or modification.

This saving process is known as storing or filing the program.

1.2 INTRODUCTION TO TIME-SHARING

RSTS-11 is a time-sharing system. This means that when a user

is working with RSTS, he has the illusion that he is the only user on
the computer,

Many users can be on-line to RSTS at one time because RSTS con-
trols the scheduling of execution times, RSTS has one or more users
in core at one time. Users are brought into core from disk, allowed
to execute for a short time, and returned to disk. This process is
called swapping. RSTS takes note of the state at which execution

stops and is able to resume operation at that point.
1
Each user is allotted a block of core between 2K and 16K for stor-

age of his particular program. This block is swapped between core
and disk. If only one user job is active in the system at a given
time, that job is allowed to execute without interruption until

another program is ready.

1.3 THE BASIC-PLUS PROGRAMMING LANGUAGE

BASIC is one of the simplest of all programming languages because
of the small number of powerful but easily understood statements and
commands and its easy application to problem solving. The wide use
of BASIC in scientific, business, and educational installations at-
tests to its value and straightforward application. (For a bibliog-
raphy of texts on BASIC and other elementary computing texts, see
Appendix G.)

BASIC is similar to many other programming languages in various
respects but is especially suited for time-sharing because of its
conversational nature. A conversational language is one which allows
the user to communicate with the language processor by typing on the

terminal keyboard. BASIC responds by printing on the terminal,
providing for an interactive man/machine relationship.

1
The term "K" refers to 1§24 (decimal) words of storage in a computer
Hence, 2K=2048 words and 8K=8192 words.

BASIC-PLUS contains both the elementary statements used to write
simple programs and many new advanced programming features and state-
ments to produce more complex and efficient programs. The key word
here is efficient. As the user progresses and gains programming ex-
perience, he will naturally find himself becoming more efficient and
able to use the more sophisticated data manipulations. Almost any
problem can be solved with the simple PASIC statements. Later in the

user's programming experience, the advanced techniques can be added.

1.4 CONVENTIONS USED IN THIS MANUAL

Certain documentation conventions are used throughout this manual
to clarify examples of BASIC syntax. Each BASIC statement is de-

scribed at least once in general terms using the following conven-

tions:
a. Items in italic type (formula, variable, etc.) are supplied
by the user according to rules explained in the text. Items
in capital letters (LET, IF, THEN, etc.) must appear exactly
as shown because they form the vocabulary of the BASIC language.
b. The term line number used in examples indicates that any

line number is valid.

c. Angle brackets indicate essential elements of the statement
or command being described. For example:

line number{LET}<variable> = <expression>
d. Square brackets indicate a choice of one element among two

or more possibilities. For example:

THEN <statement>
line number IF <expression> | THEN <line number>
GOTO <line number>

e. Braces indicate an optional statement element or a choice
of one element among two or more optional elements:

THEN <statement> {ELSE <statement> }
line number IF <expression> THEN <Iine number>|' ELSE <line number>
GOTO <line number>

The use of some terms in this document may be unfamiliar to the
new user. The following definitions and explanations are valid
throughout this manual:

a. BASIC prints on the teleprinter whereas the user types
on the keyboard.

A statement is a single BASIC language instruction. Each
BASIC program line is preceded by a line number and termi-
nated by the RETURN key. A program line may contain a
single statement or several statements separated by colons
(see Section 2.3.1).

Commands cause BASIC to perform some operation im-
mediately and are not preceded by a line number.
A command is terminated by typing the RETURN key.

A user program consists of a series of statements
written by a person using the BASIC-PLUS language.

The RSTS-11 terminal is in some cases an ASR-33
Teletype!. However, RSTS-11l can accommodate a wide
variety of other terminals such as a DECwriter or
VT@5 display. The RSTS-11 user terminal is alter-
natively referred to as terminal, teleprinter, or
keyboard, depending upon whether a part or the
whole device is indicated. The use of terminals
and other peripheral devices is described in the
RSTS-11 System User's Guide.

The term BASIC is used interchangeably to indicate
the BASIC language and the BASIC Interpreter (the
system program which accepts and executes BASIC
programs) .

1

Teletype is a registered trademark of the Teletype Corporation.

CHAPTER 2
FUNDAMENTALS OF PROGRAMMING IN BASIC-PLUS
2.1 EXAMPLE BASIC PROGRAM

The program in Figure 2.1 is an example of a user program writ-
ten in the BASIC-PLUS language. It illustrates the syntaf’and ele-

ments of the language as well as standard formatting of statements

and the appearance of terminal output.

The user program (the lines numbered 10 through 200) may at this
time mean little, although the remark in the first line (line 10)
and the printed results (following the word RUNNH) show that the pro-

gram computes interest payments.

A user program is composed of lines of statements containing
instructions to BASIC. Each line of the program begins with a line
number that serves to identify that line as a statement and to in-
dicate the order in which statements are to be evaluated for execution.
Each statement starts with a word specifying the type of operation to

be performed.

2.2 LINE NUMBERS

Each BASIC program line is preceded by a line number. Line
numbers:

a. indicate the order in which statements are normally
evaluated;
b. enable the normal order of evaluation to be changed;

that is, the execution of the program can branch or
loop through designated statements (this is explained
further in the sections on the GOTO, GOSUB, and
IF-THEN statements in Chapter 3); and

c. enhance program debugging by permitting modification
of any specified line without affecting any other
portion of the program.

Line numbers are in the range 1 to 32767. BASIC maintains pro-
grams in line number sequence, rather than the order in which lines
are entered to the system. It is good programming practice to num-
ber lines in increments of 5 or 10 when first writing a program, to
allow for insertion of forgotten or additional lines when debugging

thevprogram.

!The syntax of a language is the collection of rules governing the
combination of language elements.

2-1

LISTNH

18 REMARK - THIS PROGRAM COMPUTES INTEREST PAYMENTS
280 INPUT "INTEREST IN PERCENT" sJ

38 LET J=J/l1@@

48 INPUT "AMOUNT OF LOAN"; A

58 INPUT "NUMBER OF YEARS"; N

6@ INPUT "NUMBER OF PAYMENTS PER YEAR": M

78 LET NzNxM: I:zJ/M: B=l+]

88 LET R=zAX1/(l=-1/BtN)

$2 PRINT

18@ PRINT " AMOUNT PER PAYMENT ="3; INT(R*108t2+,5)/1012

1186 PRINT " TOTAL INTEREST =" 3 INTC(R*N=-A)*1812+,5)/1012
128 PRINT

138 LET B=A

149 PRINT "INTEREST APP TO PRIN BALANCE OF PRIN"

158 LET L=Bxl: P=R-L: B=B-P

168 PRINT INT(L*1212+,5)/10t2, INT(Px1@12+.5)/1812,
INT(B*13t2+,5)/1812

178 IF B>=R GOTO 158

188 PRINT INTC(BxI)*10t2+,5)/18t2, INT((R-BxI)*1812+,5)/1012

198 PRINT "LAST PAYMENT ="; INT((B*I+B)*1012+.5)/1012

208 END

READY

RUNNH

INTEREST IN PERCENT? 7.5
AMOUNT OF LOAN? 2500

NUMBER OF YEARS? 2

NUMBER OF PAYMENTS PER YEAR? 4

AMOUNT PER PAYMENT = 3395.44

TOTAL INTEREST 215,51
INTEREST APP TO PRIN BALANCE OF PRIN
46.88 292,56 2287.44

41,39 298,85 1569,39

35.8 383,64 1685.75

32.11 309,33 1296, 42

24,31 315,13 981,28

18.4 321.084 §62.24

12,38 327.086 333,18

6,25 333,19
LAST PAYMENT = 339,43

READY

Figure 2-1

Example BASIC Program

When a program is executed (with the use of the RUN command),
the BASIC processor evaluates the statements in the order of their
line numbers, starting with the smallest line number and going to the

largest.

2.3 STATEMENTS

Each line number is followed by a BASIC statement. The first
word of a BASIC statement identifies the type of statement and informs
BASIC of the operation to be performed and how to treat the data
(if any) which follows the word.

2.3.1 Multiple Statements on a Single Line

More than one statement can be written on a single line as long
as each statement (except the last) is terminated with a colon or a
backslash. Thus only the first statement on a line can (and must)

have a line number. For example:
18 INFUT A.E.C
is a single statement line, while:
28 LET M=M+1: PRINT X, Y, 2% IF Y=2 GOTO 1@

is a multiple-statement line containing three statements: a LET, a
PRINT, and an IF-GOTO statement.

Any statement can be used anywhere in a multiple-statement line

except as noted in the discussion of the individual statements.

2.3.2 A Single Statement on Multiple Lines

A single statement can be continued on successive lines of the
program. To indicate that a statement is to be continued, the line
is terminated with the LINE FEED key instead of the RETURN key. The
LINE FEED performs a carriage return/line feed operation on the ter-
minal and the line to be continued does not contain a line number.
For example:

18 LET WP=cW-RHd®ZisiZ-R/
CA-BI-172

where the first line was terminated with the LINE FEED key is equiva-
lent to:
18 LET WF=(W-@d®Zis{Z-A S HA-B1-172

Note that the LINE FEED key does not cause a printed character to
appear on the page.

The length of a multiple~line statement is limited to 255 charac-

ters. 2-3

Where the LINE FEED key is used, it must occur between the ele-
ments of a BASIC statement. That is, a BASIC verb or the designation
of a subscripted array element (see Section 3.6.2), for example,
cannot be broken with a LINE FEED.

186 IF A1=8
THEN 186

is acceptable where a LINE FEED follows @, but:

18 IF H
1=8 THEN 166
ILLEGAL COMDITIONAL CLAUSE

is not acceptable nor is:

18 IF Ad1=8 THEM 1
aa
MODIFIER ERRCOR AT LINE 16

and each illegal form generates an error message. A number of multi-
word elements are processed as one word and cannot be broken by a
LINE FEED. For example, AS FILE, FOR INPUT AS FILE, FOR OUTPUT AS
FILE, GO TO, INPUT LINE, and ON ERROR GO TO are each treated by the
system as one word.

2.4 SPACES AND TABS

Spaces can be used freely throughout the program to make state-

ments easier to read. For example:

18 LET B = Dz + 1

instead of;

1BLETR=D*2+1
or

The above statements are identical in effect.

TABS, like spaces, are used to make a program easy to read.
An example follows:

19 FOR K=1 TO 3

2n FOR I=1 TO 19

30 FOR J=1 TO 14

40 A(lsJ) = K/CI+J=1)+AC1,J)
54 NEXT J

674 NEXT I

73 NEXT K

2.5 EXPRESSIONS
An expression is a group of symbols which can be evaluated by
BASIC. Expressions are composed of numbers, variables, functions, or

a combination of the preceding separated by arithmetic, relational,
or logical operators.

The following are examples of expressions acceptable to BASIC-

PLUS:
Arithmetic Expressions Logical Expressions
4 X<y
A7*(B4+2+1) ((A>B) OR (C=D)) AND A/B<>C/D

Not all kinds of expressions can be used in all statements, as is ex-
plained in the sections describing the individual statements. In the
following sections the reader is introduced to the elements which

compose BASIC expressions.

2.5.1 Numbers

Numbers, called numeric constants because they retain a constant
value throughout a program, can be positive or negative. Appendix F
explains the integer and floating-point number formats. Numeric

constants are written using decimal notation, as follows:

+2
-3.675
1234.56
-123456
-.gp9001

The following are not acceptable numeric constants in BASIC:

However, BASIC can find the decimal expansion of those two mathemati-

cal formulas as shown below:

%i is expressed as 14/3
v 7 1is expressed as SQR(7)

These formats are explained in later sections.

Scientific notation allows further flexibility in number
representation. Numeric constants can be written using the

letter E to indicate "times ten to the power," thus:

.@P@@123456 can be written in BASIC as 123.456E-6
12345600049. can be written in BASIC as 123456E4
~1234567899¢. can be written in BASIC as =-1.2345679ELy

The E format representation of numbers is very flexible since a number
such as .001 can be written as 1E-3, .0lE-1, 100E-5, or any number of
ways. If more than six digits are generated during any computation,
the result of that computation is automatically printed in E format.
(If the exponent is negative, a minus sign is printed after the E;

if the exponent is positive, a space is printed: 1E-g4; 1E @g4.)

The combination E7, however, is not a constant, but a variable.
The term 1lE7 is used to indicate that 1 is multiplied by lO7

The range of floating-point numbers is (approximately) as follows:

X=g or in the range 10_38 < ABS(X) < lO+38

2.5.2 Variables

A variable is a data item whose value can be changed by the
program. A numeric variable is denoted by a single letter or by a
letter followed by a single digit. Thus BASIC interprets E8 as a
variable, along with A, X, N5, L@, and Ol. (Subscripted, integer, and

character string variables are described in later sections.)

Variables are assigned values by LET, INPUT, and READ statements.
The value assigned to a variable does not change until the next time

a LET., INPUT or READ statement is encountered that contains a new

value for that variable or when the variable is incremented by a FOR
statement. (These conditions are explained further in later sections.)
All variables are set equal to zero (f) before program execution.

It is only necessary to assign a value to a variable when an initial
value other than zero is required. However, good programming prac-
tice would be to set variables equal to # wherever necessary. This

ensures that later changes or additions will not misinterpret values.

2.5.3 Mathematical Operators
BASIC automatically performs the mathematical operations of ad-

dition, subtraction, multiplication, division and exponentiation.
Formulas to be evaluated are represented in a format similar to stan-
dard mathematical notation. There are five arithmetic operators used

to write such formulas; they are as follows:

Operator Example Meaning
+ A+B Add B to A
- A-B Subtract B from A
* A*B Multiply A by B
A/B Divide A by B
4 A+B Calculate A to the B power, AB

BASIC-PLUS permits the operator ** in place of +* to denote the

exponentiation operation. For example:
A**B

indicates the quantity A raised to the B power, AB. The ** operator
is included for compatibility with some other BASIC processors. The
symbol 4 is generally considered the BASIC symbol for exponentiation

and is used throughout this manual.

Unary plus and minus are also allowed, e.g. the - in -A+B or the

+ in +X-Y. Unary plus is ignored. Unary minus is treated as explained

below.

When more than one operation is to be performed in a single formu-
la, as is most often the case, rules are observed as to the precedence
of the above operators. The arithmetic operations are performed in

the following sequence, with (a) having the highest precedence:

2-7

a. Any formula within parentheses is evaluated before the
parenthesized quantity is used in further computations.
Where parentheses are nested, as follows:

(A+(B* (D42)))

the innermost parenthetical quantity is calculated first.

b. In the absence of parentheses in a formula, BASIC performs
operations as follows:

1. exponentiation

2. unary minus

3. multiplication and division
4, addition and subtraction

Thus, for example, -A4B with a unary minus, is a legal

expression and is the same as - (A4B). This implies that
-242 evaluates as -4. The one extension of this rule is
that the term A+-B is allowed and is evaluated as A+ (-B).

c. In the absence of parentheses in a formula involving more
than one operation on the same level in (b) above, the
operations are performed left to right, in the order that
the formula is written. For example:

A/B/C 1is evaluated as (A/B)/C
A*B/C 1is evaluated as (A*B)/C
The expression A+B*C4D is evaluated as follows:

first, C is raised to the D power
second, the result of the first operation is multiplied by B
third, the result of the previous operation is added to A.

Parentheses are used to indicate any other order of evaluation. For
example, if it is the product of B and C that is to be raised to the
D power, the expression would look as follows:

A+ (B*C) 4D
If it is desired to multiply the quantity A+B by C to the D power:

(A+B) *C4D

The user is encouraged to use parentheses even where they are not
strictly required in order to make expressions easier to read. Am-
biguities can exist only in the programmer's mind, the computer always

performs the operations as explained above.

2.5.4 Relational Symbols

Relational symbols are used in IF-THEN statements (see Section 3.5);
in conditional FOR loops (see Section 8.6); and in IF, UNLESS, WHILE
and UNTIL clauses (see Sections 3.5, 8.5, and 8.7) where it is neces-
sary to compare values. The relational symbols are as follows (where

A and B are variables or expressions):

Mathematical BASIC

Symbol Symbol Example Meaning
= = A=B A is equal to B
< < A<B A is less than B
< <= A<=B A is less than or equal to B
> > A>B A is greater than B
> >= A>=B A is greater than or equal to B
<> A<>B A is not equal to B
X == A==B A is approximately equal to B.

The term "approximately equal to" means that the two quantities

look the same when printed. Within the computer, floating-point
numbers can differ by a miniscule amount in the last decimal place
but still be considered equal for all practical purposes. This last
decimal place within the computer does not always cause two numbers

to have a different value when printed. Numbers are carried inter-
nally at greater than 6 digits of precision, but are rounded to 6
digits for output or a ¥ comparison. Thus, two numbers identical
when rounded to 6 digits of precision are approximately equal, whereas
two numbers equal to the internally carried limits of precision are

truly equal (=).

2.5.5 Logical Operators

Logical operators are used in IF-THEN and such statements (see
Section 3.5) where some condition is used to determine subsequent
operations within the user program. For this discussion, A and B

are relational expressions having only TRUE (-1) and FALSE (d)

values. Logical operators can also be used in certain logical
operations involving integers. (See Section 6.5 and 6.6.) The
logical operators are as follows:

Operator Example Meaning
NOT NOT A The logical negative of A. If A is true,

NOT A is false.

AND A AND B The logical product of A and B. A AND B has
the value true only if A and B are both true
and has the value false if either A or B is
false.

OR A OR B The logical sum of A and B. A OR B has the
value true if either A or B is true and has
the value false only if both A and B are
false.

XOR A XOR B The logical exclusive OR of A and B. A XOR B
is true if either A or B is true but
not both, and false otherwise.

IMP

EQV

A IMP B

A EQV B

The logical implication of A and B. A IMP
B is false if and only if A is true and B is
false; otherwise the value is true.

A is logically equivalent to B. A EQV B has
the value TRUE if A and B are both true or
both false, and has the value false otherwise.

The following tables are called truth tables and describe graphi-
cally the results of the above logical operations with both A and B
given for every possible combination of values.

A B A AND B
T T T
T F F
F T F
F F F
A B A XOR B
T T F
T F T
F T T
F F F
A B A IMP B
T T T
T F F
F T T
F F T

Lo IS T = I
H A3 1 3w

M3 3 3

oo LES T T I b
o3 M 43w

Ao om oA o

A NOT A

CHAPTER 3

ELEMENTARY BASIC STATEMENTS

This Chapter describes the simplest forms of the more elementary
BASIC statements. These statements are sufficient, by themselves, for
the solution of most problems. Once these statements are mastered,
the user can investigate the more advanced applications of these state-
ments and the additional statements and features explained in Parts
IT and III.

The reader should understand that any problem which can be
solved with the more advanced techniques can also be solved with the
simpler statements, although the solution may not be as efficient.
As long as the user understands the details of his problem he can
represent it in BASIC on a number of levels ranging from the simple
to the sophisticated.

3.1 REMARKS AND COMMENTS

It is often desirable to insert notes and messages within a user

program. Such data as the name and purpose of the program, how to
use it, how certain parts of the program work, and expected results at
various points are useful things to have present in the program for

ready reference by anyone using that program.

There are two ways of inserting comments into a user program:

a. the REMARK statement, and

b. use of the exclamation mark (!)

The word REMARK can be abbreviated to REM for typing convenience,
and the message itself can contain any printing characters on the key-
board. BASIC completely ignores anything on a line following the let-
ters REM. (The line number of a REM statement can be used in a GOTO
or GOSUB statement, see Sections 3.4 and 3.8.1, as the destination of

a jump in program execution.) Typical REM statements are shown below:

13 REM = THIS PROGRAM COMPITES THE
11 REM - ROOTS 0OF A QYJADRATIC EQ{JATION

The exclamation mark is normally used to terminate the executable

part of a line and begin the comment part of the line. The ! character

3-1

can also begin the line, in which case the entire line is treated as a

comment. For example:

125 LET R=z+4*SQRCC) 'SET A EGUAL TO INITIAL “WHLLUE

138 PRINT A/2+1 'PRINT SECOND CALCULATED VALUE

140 'COMMENT
In every statement other than the DATA statement, BASIC ignores every-
thing on the line following the exclamation mark. An exclamation mark
must not appear on the same line as a DATA statement unless it is part
of an item in the DATA statement. (Tabs are useful for inserting space

between the statement and comment parts of a line to improve readability.)

Messages in REMARK statements are generally called remarks, those
after the exclamation mark, comments. Remarks and comments are printed

when the user program is listed but do not affect program execution.

The lines below indicate three ways of putting the same remark on
two lines. Lines 10 and 11 are REM statements. Line 20 is one REM
statement broken into two lines with the LINE FEED key. Line 30 is
one comment (begun with a !) and broken into two lines with the LINE
FEED key.

18 REM THIS FPROGRAM COMPUTES THE
11 REM ROOTS IF A ®UADRATIC EQUATION

28 REM THIS FPROGRAM COMFUTES THE
rROQTS OF A GUADRATIC EQUATION

@ ! THIS PROGRAM COMFUTES THE
ROOTS OF A GQUADRATIC EQUATION

3.2 LET STATEMENT
The LET statement assigns a numeric value to a variable. Each

LET statement is of the form:

line number{LET!}<variable>=<expression>

This statement does not indicate algebraic equality, but performs the
calculations within the expression (if any) and assigns the numeric
value to the indicated variable. For example:

18 LET H=¥+1

286 LET W2={A4-RHIZIx*(Z-A-ED
In line 10, the old value of X is increased by one and becomes the new
value of X. 1In line 20, the formula on the right hand side is evalu-

ated and the numeric value assigned to W2.

3-2

The LET statement can be a simple numerical assignment, such as
58 LET A=Z5

or require the evaluation of a formula so long that it is continued on

the next line (see Section 2.3.2).

BASIC-PLUS allows the user to completely omit the word LET from
the LET statement. The user may find it easier to type:

18 K=12#%iS+70
than
18 LET H=12#0S5+72

This is a convenience and does not alter the effect of the statement.

The LET statement can be used anywhere in a multiple statement

line, for example:

19 X=44: Y=X42+Y1l: B2=3,5*A

The LET statement allows the user to assign a value to multiple

variables in the same statement. For example:

18 LET X, ¥.2 = 5. 7

causes each of the three variables to be set equal to 5.7.

3.3 PROGRAMMED INPUT AND OUTPUT

This Section describes the techniques used in performing BASIC
program I/O (an abbreviation for the term Input/Qutput which includes
the processes by which data is brought into and sent out of the computer).
The most elementary forms of the PRINT, INPUT, READ, and DATA statements
are presented here so that the user is able to create simple BASIC

programs,

Using the LET statement, already described, and the following
executable statements, the user can easily write a BASIC programn,
If he should want to try his program, these simple I/0 statements

provide a means of obtaining tangible output.

More advanced I/O techniques are described in Part III.

3.3.1 READ, DATA, and RESTORE Statements

READ and DATA statements are used to enter information into the
user program during execution. A READ statement is used to assign to
the listed variables those values which are obtained from a DATA state-

ment. Neither statement is used without the other.

A READ statement is of the form:

line number READ <variable list>
A DATA statement is of the form:

line number DATA <vqlue list>

A READ statement causes the variables listed to be assigned se-
guential values in the collection of DATA statements. Before the
program is run, BASIC takes all DATA statements in the order they
appear and creates a data block. Each time a READ statement is
encountered in the program, the data block supplies the next value.
If the data block runs out of data, the program is assumed to be fin-
ished and an OUT OF DATA message is printed by BASIC.

READ and DATA statements appear as follows:

158 READ ¥, Y. 2,51, Y, B8
228 LATA 4,2:1. 7
348 DATA €. PZE-3, ~-1F4. X214, I 1445827

Note that only numbers are used in this particular DATA statement.
(Input of string data is treated in Section 5.3.) The assignments

performed by line 15§ are as follows:

X=4

Y=2

2=1.7
X1=6.73E-3
Y2=-174.321

Q9=3.1415927

Since data must be read before it can be used in a program, READ
statements normally occur near the beginning of a program. The loca-
tion of DATA statements is arbitrary, as long as they occur in the

correct order. A good practice is to collect all DATA statements

near the end of the program. A DATA statement must be the only state-
ment or the last statement on a line, while a READ statement can be

placed anywhere in a multiple statement line.

NOTE

Comments are not permitted at the end of
a DATA statement.

If it should become necessary to use the same data more than
once in a program, the RESTORE statement makes it possible to recycle
through the complete set of DATA statements in that program, beginning
with the lowest numbered DATA statement. The RESTORE statement is of

the form:

line number RESTORE
For example:
33 RESTOURE

causes the next READ statement following line 3¢ to begin reading data
from the first DATA statement in the program, regardless of where the

last data value was found.

The same variable names can be used the second time through the
data or not, as is most convenient, since the values are being read
as though for the first time. 1In order to skip unwanted values, dummy

variables must be read. 1In the following example, BASIC prints:

4 1 2 3

on the last line because it did not skip the value for the original

N when it executed the loop beginning at line 45.

LISTNH

12 REM PROGRAM TO ILLUSTRATE USE OF RESTORE
15 READ N: PRINT "VALUES OF X ARE:"

2@ FOR I=1 TO N: READ X: PRINT X,

25 NEXT I

32 RESTORE

35 PRINT: PRINT "SECOND LIST OF X VALUES"
48 PRINT "FOLLOWING RESTORE STATEMENT:"
45 FOR I=1 TO N: READ X: PRINT X,

5¢ NEXT 1

62 DATA 4,1,2

70 DATA 3,4

28 END

REACY

RUNNH
VALUES OF ¥ ARE:

1 2 3 4
SECOND LIST OF X VALUES
FOLLOWING RESTORE STATEMENT:

4 1 2 3
READY

3.3.2 PRINT Statement

The PRINT statement is used to output data onto the terminal
teleprinter. The general format of the PRINT statement is:
line number PRINT {li{st}

where the list can contain expressions, text strings, or both. As
the braces indicate, the list is optional. Used alone, the PRINT
statement:

25 PRINT
causes a blank line to be printed on the teleprinter (a carriage

return/line feed operation is performed).

PRINT statements can be used to perform calculations and print
results. Any expression within the list is evaluated before a value
is printed. Consider the following program:

LISTNH
18 LET A=zl: LET B=2: LET C:=3+A
28 PRINT
38 PRINT A+B+C
READY
RUNNH
7

READY
All numbers are printed in the form:

space?
E p_ j <number> <space>

The PRINT statement can be used anywhere in a multiple statement

line. For example:

18 Azl: PRINT A: A=A+5: PRINT: PRINT A

would cause the following to be printed on the terminal when executed:

RUNNH
I

6

READY

Notice that the teleprinter performs a carriage return/line feed at the
end of each PRINT statement. Thus the first PRINT statement causes a 1
and a carriage return/line feed, the second PRINT statement is respon-
sible for the blank line, and the third PRINT statement causes a 6 and

another carriage return/line feed to be output.

BASIC considers the terminal printer to be divided into five zones
of fourteen spaces each!. When an item in a PRINT statement is followed
by a comma, the next value to be printed appears in the next available
print zone. For example:

19 LET A=3: LET B=2
2¢ PRINT A,B,A+B,A*B,A-B,B-A

When the preceding lines are executed, the following is printed:

3 2 5 6 1
-1
Notice that the sixth element in the PRINT list is printed as the

first entry on a new line, since a 72-character line has five print zones.

Two commas together in a PRINT statement cause a print zone to be

skipped. For example:

LISTNH
18 LET A=l: LET B=2
20 PRINT A,B,,A+B

READY

RUNNH
1 2 3

READY

If the last item in a PRINT statement is followed by a comma, no
carriage return/line feed is output, and the next value to be printed
(by a later PRINT statement) appears in the next available print zone.
For example:

LISTNH

I@ A=l:B=2:C:=3

20 PRINT A,:PRINT B: PRINT C
READY

RUNNH
1 2
3

READY

!Terminals with greater than 83 columns have additional print zones
in units of fourteen spaces.

3-7

If a tighter packing of printed values is desired, the semicolon
character can be used in place of the comma. A semicolon causes no
further spaces to be output. A comma causes the print head to move
at least one space to the next print zone or possibly perform a car-

riage return/line feed. The following example shows the effects of

the semicolon and comma.

LISTNH

180 LET Azl: B=2: C=3
28 PRINT A;B;C;

32 PRINT A+13B+1;3C+!
42 PRINT A,B,C

READY

RUNNH
1 2 3 2 3 4
1 2 3

READY

The PRINT statement can be used to print a message, either alone
or together with the evaluation and printing of numeric values. Charac-
ters are indicated for printing by enclosing them in single or double
guotation marks (therefore each type of quotation mark can only be
printed if surrounded by the other type of quotation mark). For
example:

LISTNH
12 PRINT "TIME'S UP"
2@ PRINT ""NEVERMORE™'

REABY

RUNNH
TIME'S UP
"NEVERMORE"™

READY

As another example, consider the following line:

48 FPRINT "AYERAGE GRADE IS": X

which prints the following (where X is equal to 83.4):

AYERAGE GRADE I& B8Z. 4

When a character string is priunted, only the characters between
the quotes appear; no leading or trailing spaces are added. Leading
and trailing spaces can be added within the quotation marks using the
keyboard space bar; spaces appear in the printout exactly as they are
typed within the quotation marks.

3-8

When a comma separates a text string from another PRINT list item,
the item is printed at the beginning of the next available print zone.
Semicolons separating text strings from other items are ignored. Thus,

the previohs example could be expressed as:

49 PRINT *“AVERAGE GRADE IS" X

and the same printout would result. A comma or semicolon appearing
as the last item of a PRINT list always suppresses the carriage re-

turn/line feed operation.

The following example demonstrates the use of the formatting

characters, and ; with text strings:

127 PRINT “STIDENT NIJMBER"X,'"GRADE ="G3"AVE. ="A3
134 PRINT "NOe. IN CLASS ='""N

could cause the following to be printed (assuming calculations were

done prior to line 130):

STJDENT NIMBER 119454 GRADE = 87 AUE. = 85.44 NO. IN CLASS = 26

3.3.3 INPUT Statement

The second way to input data to a program is with an INPUT state-
ment. This statement is used when writing a program to process data
to be supplied while the program is running. During execution, the
programmer can type values as the computer asks for them. (Non-
terminal INPUT is described in Part III.) Depending upon how many
values are to be accepted by the INPUT command, the programmer may
wish to send himself a message reminding him what data is to be
typed at what time (this can be done with the PRINT or INPUT statement).

The INPUT statement is of the form:
line number INPUT <list>
For example:
190 INPIYT ALR,C
causes the computer to pause during execution, print a question mark,
and wait for the user to type three numeric values separated by

commas. The values typed are entered to the computer by typing the
RETURN key or the ESCAPE key (ESC on some terminals, ALT MODE on others).

In the example program following, four questions are asked at
execution time: INTEREST IN PERCENT?, AMOUNT OF LOAN?, NUMBER OF
YEARS?, and NO. OF PAYMENTS PER YEAR?. The programmer knows which
value is requested and proceeds to type and enter the appropriate

value.

LISTNH

18 REM PROGRAM TO COMPUTE INTEREST PAYMENTS
15 INPUT "INTEREST IN PERCENT"; J

28 LET J=J/1¢8

25 INPUT "AMOUNT OF LOAN"; A

3@ INPUT "NUMBER OF YEARS™; N

35 INPUT "NO, OF PAYMENTS PER YEAR"; M

A@ N=NxM: I=J/M: Bz=i+l: R=AXxI/(l1-1/BtN)

45 PRINT: PRINT "AMOUNT PER PAYMENT ="3R

5@ PRINT " TOTAL INTEREST =" sRxN-A

55 PRINT: B:=A

6@ PRINT "INTEREST APP TO PRIN BALANCE OF PRIN"
65 L=Bxl: P=R-L: B=B-P

67 PRINT L,P,E

7% 1F B>=R GOTO 65

75 PRINT BxI,R-BxI

3@ PRINT "LAST PAYMENT WAS "BxI+B

85 END

READY

RUNNH

INTEREST IN PERCENTI? S
AMOUNT OF LOAN? 2580

NUMBER OF YEARS? 2

NO. OF PAYMENTS PER YEAR? 4

AMOUNT PER PAYMENT = 344,96l
TOTAL INTEREST = 259.688

INTEREST APP TO PRIN BALANCE OF PRIN

56.25 288,711 2211.29
49,754 295,207 1916.08
43,1119 581,849 1614.,23
36,3202 308,641 1385.59
29,3758 315,585 996.087
22,2752 322,686 667,521
15,8147 329,946 337.375
7.59293 337.37

LAST PAYMENT WAS 344,966
READY

As in the previous program, the question mark generated by BASIC
is grammatically useful if a printed question is to prompt the typing

of the input values.

The output for the program begins after the word RUNNH and in-
cludes a verbal description of the numbers. This verbal description
on the output is optional with the programmer, although it has a def-

inite advantage in ease of use and understanding.

When the correct number of variables have been typed in answer
to the printed ? character, type the RETURN key to enter the values to
the computer. If too few values are listed, the computer prints
another ? to indicate that more data is requested. If too many values

are typed, the excess data on that line is ignored.

Messages to be printed at execution time can be inserted within
the INPUT statement itself. The message is set off by single or dou-
ble guotes from the other arguments of the INPUT statement. For example

10 INPUT "YOUR AGE IS ";aA

is equivalent to

1@ PRINT "YOUR AGE IS "3
20 INPUT A

The use of the comma or semicolon character (or no character) to

separate a character string to be printed from input variable names is
analogous to the PRINT statement (see Section 3.3.2).

3.4 UNCONDITIONAL BRANCH, GOTO STATEMENT

The GOTO statement is used when it is desired to unconditionally
transfer to some line other than the next sequential line in the pro-
gram. In other words, a GOTO statement causes an immediate jump to a
specified line, out of the normal consecutive line number order of

execution. The general format of the statement is as follows:
line number GOTO <line number>

The line number to which the program jumps can be either greater than
or less than the current line number. It is thus possible to jump

forward or backward within a program.

Consider the following simple example:

18 LET A=2
28 GOTO 5@
38 LET A=SQR(A+14)
52 PRINT A,AxA
When executed, the above lines cause the following to be printed:

2 4

When the program encounters line 20, control transfers to line 50;
line 50 is executed, control then continues to the line following line

50. Line 30 is never executed. Any number of lines can be skipped in
either direction.

When written as part of a multiple statement line, GOTO should
always be the last statement on the line, since any statement fol-

lowing the GOTO on the same line is never executed. For example:

110 LET A=ATN(R2): PRINT A: GOTO 57

3.5 CONDITIONAL BRANCH, IF-THEN AND IF-GOTO STATEMENTS

The IF-THEN and IF-GOTO statements are used to transfer condition-
ally from the normal consecutive order of statement numbers, depending
upon the truth of some mathematical relation or relations. The basic
format of the IF statement is as follows:

THEN<s tatement>
line number IF <condition> THEN<line number>

GOTO<line number>

The specified condition is tested. If the relationship is found false,
then control is transferred to the statement following the IF state-
ment (the next sequentially numbered line). If the condition is true,
the statement following THEN is executed or control is transferred to
the line number given after THEN or GOTO. (An extension of this state-

ment, the IF-THEN~ELSE statement, is described in Section 8.5.)

The deciding condition can be either a simple relational expres-
sion in which two mathematical expressions are separated by a rela-
tional operator, or a logical expression in which two relational or

logical expressions are separated by a logical operator. For example:

Relational Expression Logical Expression
A+2>B A>B AND B<=SQR(C)

Both types of condition, when evaluated, are either true or false; no
numeric value is associated with the results of an IF statement. The
relational and logical operators are described in Sections 2.5.4 and

2.5.5 and are presented in Appendix A for reference.
75 IF A*B>=B*x(B+1) THEN LET D4=D4+1

In the above line the quantities A*B and B*(B+l) are compared. If the
first value is greater than or equal to the second value, the variable
D4 is incremented by 1. If B*(B+l) is greater than A*B, D4 is not incre-

mented and control passes immediately to the next line following line 75.

When a line number follows the word THEN, the IF-THEN statement
is the same as the IF-GOTO statement. The word THEN can be followed
by any BASIC statement, including another IF statement. For example:

25 IF A>3 THEN IF B>C THEN PRINT "A>B>C"
25 IF A>B AND B>C THEN PRINT "A>B>C"

The preceding two lines are logically equivalent and perform the fol-

lowing operation:
if B is both less than A and greater than C, the message
A>B>C

is printed, otherwise the line following line 25 is executed.

In the following example, the IF-GOTO statement in line 20 is
used to limit the value of the variable A in line 10. Execution of
the loop continues until the relationship A>4 is true, then immediately
branches to line 55 to end the program. (A program loop is a series
of statements which are written so that, when the statements have been
executed, control transfers to the beginning of the statements. This

process continues to occur until some terminal condition is reached.)

LISTNH

18 LET AzA+l: X:=At2

22 IF A>4 GOTO 55

25 PRINT X

38 PRINT "VALUE OF A IS" A
40 GOTO i@

55 END

READY

when the above loop is executed, the following is printed:

RUNNH
|

VALUE OF A 1S 1
U:LUE OF A IS 2
VzLUE OF A IS 3
VAEUE OF A IS 4

READY

(The novice BASIC programmer is advised to follow the operation of the

computer through these short example programs.)

In IF statements, the following priorities are associated with
each operator, in order to provide unambiguous evaluation of the con-
ditions specified (where a. has the highest priority):

a. expressions in parentheses

b. intrinsic or user-defined functions

c. exponentiation (%)

d. unary minus (-), that is, a negative number or
variable such as -3, -A, etc.

e. multiplication and division (* and /)

f. addition and subtraction (+ and -)

g. relational operators (=, <, <=, >, >=, ==, <>)

h. NOT

i. AND

j. OR and XOR

k. IMP

1. EQV

Within the operators indicated in any one group above, operations pro-

ceed from left to right.

Examples of IF-THEN statements follow:

14 IF A>B THEN 100 !SIMPLE COMPARISON
20 IF A=B OR B=C THEN 209
32 IF A>B THEN A=-B 'ASSIGNMENT BY A LET STATEMENT

a4p IF X>Y IMP Y>7Z THEN PRINT "QED"

An IF statement would normally be the last statement on a multiple
statement line (to avoid confusion); however, the following rules
govern the transfer path of the IF statement in other positions:

a. The physically last THEN clause is considered to be fol-
lowed by the next statement (or statements) on the line:

17 IF A=1 THEN PRINT A;:PRINT "TRUE CASE'": GOTO 29
15 PRINT "NOT = 1"

where A#1, the following line is printed:
NOT =1

where A=1, the following line is printed:
1 TRIIE CASE

b. All other THEN clauses are considered to be followed
by the next line of the program:

20 IF A>B THEN IF B>C THEN PRINT "RB>C": GOTO 30
25 PRINT "A<=3"

Only in the case where "B>C" is printed is the state-~
ment GOTO 3f seen and executed.

3.6 PROGRAM LOOPS

Loops were first mentioned in the section on the IF-THEN
and IF~GOTO statement. Programs frequently involve performing cer-
tain operations a specific number of times. This is a task for which
a computer is particularly well suited. With simple tasks, such as
computing a list of prime numbers between 1 and 1,000,000, a computer
can perform the operations and obtain correct results in a minimal
amount of time. To write a loop, the programmer must ensure that the

series of statements is repeated until a terminal condition is met.

Programs containing loops can be illustrated by using two ver-
sions of a program to print a table of the positive integers 1 through
100 together with the square root of each. Without a loop, the first

program is 101 lines long and reads:

1@ PRINT 1, SQRC1)
27 PRINT 2, SQR(2)
38 PRINT 35 SQR(3)

S9@ PRINT 99, SQR(99)
1200 PRINT 108, SQRC13a)
1210 END

3-15

With the following program example, using a simple sort of loop,

the same table is obtained with fewer lines:

19 LET X=1

20 PRINT XsSOR(X)

30 LET X=X+1

49 IF X<=100 THEN 20
53 END

Statement 10 assigns a value of 1 to X, thus setting up the initial
conditions of the loop. In line 20, both 1 and its square root are
printed. 1In line 30, X is incremented by 1. Line 40 asks whether X
is still less than or equal to 100; if so, BASIC returns to print the
next value of X and its square root. This process is repeated until
the loop has been executed 100 times. After the number 100 and its
square root have been printed, X becomes 10l. The condition in line 40
is now false so control does not return to line 20, but goes to line 50

which ends the program.
All program loops have four characteristic parts:

a. initialization, the conditions which must exist for the
first execution of the loop (line 10 above);

b. the body of the loop in which the operation which is
to be repeated is performed (line 20 above);

c. modification, which alters some value and makes each
execution of the loop different from the one before
and the one after (line 30 above):;

d. termination condition, an exit test which, when satisfied,
completes the loop (line 40 above). Execution continues to
the program statements following the loop (line 50 above).

3.6.1 FOR and NEXT Statements
The FOR statement is of the form:

line number FOR <variable>=<expression> TO <ezpression> {STEP <ezpression>}

For example:
186 FOR K=2 TO z@& STEF ¢

which causes program execution to cycle through the designated loop
using K as 2, 4, 6, 8,..., 20 in calculations involving K. When K=20,
the loop is left behind and the program control passes to the line fol-
lowing the associated NEXT statement. The variable in the FOR state-

ment, K in the preceding example, is known as the control variable.

The control variable must be unsubscripted, although a common use
of such loops is to deal with subscripted variables using the control
variable as the subscript of a previously defined variable (this is
explained in further detail in Section 3.6.2). The expressions in the
FOR statement can be any acceptable BASIC expression as defined in

Section 2.5.

The NEXT statement signals the end of the loop which began with
the FOR statement. The NEXT statement is of the form:

line number NEXT <variable>

where the variable is the same variable specified in the FOR statement.
Together the FOR and NEXT statements describe the boundaries of the
program loop. When execution encounters the NEXT statement, the com-
puter adds the STEP expression value to the variable and checks to see

if the variable is still less than or equal to the terminal expression
value. When the variable exceeds the terminal expression value, con-
trol falls through the loop to the statement following the NEXT statement.

If the STEP expression is omitted from the FOR statement, +1 is
the assumed value. Since +1 is a common STEP value, that portion of the

statement is frequently omitted.

The expressions within the FOR statement are evaluated once upon
initial entry to the loop. The test for completion of the loop is made
prior to each execution of the loop. (If the test fails initially, the

loop is never executed.)

The control variable can be modified within the loop. When control
falls through the loop, the control variable retains the last value used
within the loop.

The following is a demonstration of a simple FOR-NEXT loop. The
loop is executed 10 times; the value of I is 10 when control leaves the
loop; and +1 is the assumed STEP value:

14 FOR I=1 TO 1&
20 PRINT I

33 NEXT 1
400 PRINT I

The loop itself is lines 10 through 30. The numbers 1 through 10 are
printed when the loop is executed. After I=10, control passes to line

40 which causes 10 to be printed again. If line 10 had been:
12 FOR I = 1@ TO 1 STEP -1

the value printed by line 40 would be 1.

17 FOR 1 = 2 TO 44 STEP 2
20 LET 1 = 44
32 NEXT 1

The above loop is only executed once since the value of I=44 has been

reached and the termination condition is satisfied.

If, however, the initial value of the variable is greater than
the terminal value, the loop is not executed at all. A statement
of the format:

18 FOR I = 2 TG 2 STEP 2

cannot be used to begin a loop, although a statement like the follow-

ing will initialize execution of a loop properly:
19 FOR I=2p TO 2 STEP -2

For positive STEP values, the loop is executed until the control
variable is greater than its final value. For negative STEP values,
the loop continues until the control variable is less than its final

value.

FOR loops can be nested but not overlapped. The depth of nesting
depends upon the amount of user storage space available (in other
words, upon the size of the user program and the amount of core each
user has available). Nesting is a programming technique in which one
or more loops are completely within another loop. The field of one
loop (the numbered lines from the FOR statement to the corresponding

NEXT statement, inclusive) must not cross the field of another loop.

ACCEPTABLE NESTING UNACCEPTABLE NESTING
TECHNIQUES TECHNIQUES

Two Level Nesting

FOR I1 = 1 TO 1¢ FOR I1 = 1 TO 14
EFOR I2 =1 TO 1f FOR I2 = 1 TO 1¢
NEXT I2 NEXT Il
EFOR I3 =1 TO 19 NEXT I2
NEXT I3
NEXT Il
Three Level Nesting
- FOR Il = 1 TO 1¢ FOR I1 = 1 TO 14
FOR I2 = 1 TO 10 FOR I2 = 1 TO 1¢
FOR I3 = 1 TO 1f FOR I3 = 1 TO 1¢
NEXT I3 NEXT I3
FOR I4 = 1 TO 1¢ FOR I4 = 1 TO 1¢
NEXT I4 NEXT 14
NEXT I2 NEXT Il
\— NEXT Il —— NEXT I2

3-18"

An example of nested FOR-NEXT loops is shown below:

5 DI¥ X(5,18)

14 FOR A=1 TO 5

20 FOR B=2 TO 18 STEP 2
37 LET X(AsB)= A+B

47 NEXT B

50 NEXT A

55 PRINT X(S5,19)

Upon execution of the above statements, BASIC prints 15 when line

55 is processed.

It is possible to exit from a FOR-NEXT loop without the control
variable reaching the termination value. A conditional or uncondition-
al transfer can be used to leave a loop. Control can only transfer
into a loop which had been left earlier without being completed, en-

suring that termination and STEP values are assigned.

Both FOR and NEXT statements can appear anywhere in a multiple

statement line. For example:

1¢0 FOR I=1 TO 19 STEF S5: NEXT I: PRINT "I="31

causes:

to be printed when executed.
Neither the FOR nor NEXT statement can be executed conditionally in
an IF statement. The following statements are incorrect:

15 IF I<>J THEN NEXT I
16 IF I=J THEN FUR I=1 TOU J

3.6.2 Subscripted Variables and the DIM Statement

In addition to the simple variables which were described in

Chapter 2, BASIC allows the use of subscripted variables. Subscripted
variables provide the programmer with additional computing capabili-
ties for dealing with lists, tables, matrices, or any set of related

variables. In BASIC, variables are allowed one or two subscripts.

The name of a subscripted variable is any acceptable BASIC vari-
able name followed by one or two integer expressions in parentheses.

For example, a list might be described as A(I) where I goes from 1

to 5 as shown below (all matrices are created with a zero element,

even though that element is never specified):
A(g), A(1), A(2), A(3), A(4), A(5)
This allows the programmer to reference each of six elements in the

list, which can be considered a one dimensional algebraic matrix as
follows:

A(9)
A(l)
A(2)
A(3)
A(4)
A(5)

A two dimensional matrix B(I,J) can be defined in a similar man-

ner and graphically illustrated as follows:

B(g.9) | g, 1) | Bg,2) | B(g,3) / / |sup.

B(1,) | B(1,1) | B(1,2) | B(1,3) / / B(1,J)

B(2,9) | B(2,1) | B(2,2) | B(2,3) / / B(2,J)

m 83,1) | 83,2 | 833 [/ B(3,J)
Y

; ’4
B(I,g) | B(I,1) B(I,2) B(I,3) | N\ —N\ B(I,J)

Subscripts used with subscripted variables throughout a program can

be explicitly stated or be any legal expression.

It is podssible to use the same variable name as both a sub-
scripted and an unsubscripted variable. Both A and A(I) are valid
variables and can be used in the same program. However, BASIC does
not accept the same variable name as both a singly and a doubly sub-
scripted variable name in the same program (A(I) and A(I,#) would
refer to the same data item).

A dimension (DIM) statement is used to define the maximum
number of elements in a matrix. ("Matrix" is the general term
used in this manual to describe all the elements of a subscripted

variable.) The DIM statement is of the form:

3-20

line number DIM <variable (n)>,<variable(n,m)>,...

Where the variables specified are indicated with their maximum sub-

script value(s).

For example:

19 DIM X(5)s Y(4,2), ACIZ,10)
12 DIM 14C130)
Only integer values (such as 5 or 5070) can be used in DIM
statements to define the size of a matrix. Any number of matrices
can be defined in a single DIM statement as long as their

representations are separated by commas.

If a subscripted variable is used without appearing in a DIM
statement, it is assumed to be dimensioned to length 10 in each dimen-
sion (that is, having eleven elements in each dimension, g through 1f).
However, all matrices should be correctly dimensioned in a program.

DIM statements are usually grouped together among the first lines of

a program.

The first element of every matrix is automatically assumed to
have a subscript of zero. Dimensioning A(6,10) sets up room for a
matrix with 7 rows and 11 columns. This zero element is illustrated

in the following program:

LISTNH
18 REM - MATRIX CHECK PROGRAM
2@ DIM A(6,18)

38 FOR I:=0 TO 6

4¢ LET ACI,@) = I

5¢ FOR J=@ TO 19

68 LET AC@,J) = J

70 PRINT ACI,J);

88 NEXT J: PRINT: NEXT I

9% END

READY
RUNNH

DN DHB NN —D
LS RGS LS IGS IS IS B
o e=N
[SE SR SE-SESRS NI
(SIS SIS SIS N
[SESESESN SR SR
LSS SRS LSS W0 ,Y
LSS RSN S SRR
LSS SR SENE SNl
SIS IS IS S IV
DN —

READY

Notice that a variable has a value of zero until it is assigned a

value.

If the user wishes to conserve core space he may make use of
the extra variables set up within the matrix. He could, for
example, say DIM A(5,9) to obtain a 6 x 10 matrix which would then
be referenced beginning with the A(f,0) element.

The size and number of matrices which can be defined depend

upon the amount of user storage space available.

Additional information on matrices can be found in Chapter 7.

A DIM statement can be placed anywhere in a multiple statement
line. A DIM statement can appear anywhere in the program and need
not appear prior to the first reference to an array, although DIM
statements are generally among the first statements of a program
to allow them to be easily found if any alterations are later

required.

3.7 MATHEMATICAL FUNCTIONS

Within the course of a user's programming experience, he
encounters many cases where relatively common mathematical operations
are performed. The results of these common operations can often be
found in volumes of mathematical tables; i.e., sine, cosine, square
root, log, etc. Since it is this sort of operation that computers
perform with speed and accuracy, such operations are built into
BASIC. The user need never consult tables to obtain the value of
the sine of 23° or the natural log of 144. When such values are

to be used in an expression, intrinsic functions, such as:

SIN(23*PI/184)
LOG (144)

are substituted.

The various mathematical functions available in BASIC-PLUS
are detailed in Table 3.1.

Table 3«1
Mathematical Functions

Function
Code Meaning

ABS (X) returns the absolute value of X

SGN (X) returns the sign function of X, a value
of 1 preceded by the sign of X, SGN(f#)=@

INT (X) returns the greatest integer in X which is
less than or equal to X, (INT(-.5)=-1)

FIX(X) returns the truncated value of X,
SGN(X) *INT (ABS (X)), (FIX(-.5)=§)

C0S (X) returns the cosine of X in radians

SIN(X) returns the sine of X in radians

TAN (X) returns the tangent of X in radians

ATN (X) returns the arctangent (in radians) of X

SQR (X) returns the square root of X

EXP (X) returns the value of e+X, where e=2.71828...

LOG (X) returns the natural logarithm of X, log X

LOG1g (X) returns the common logarithm of X, loglgx

PI has a constant value of 3.1415927

RND (X) returns a random number between § and 1;
the same sequence of random numbers is
generated each time a program is run
requiring the use of the random number
generator. The value of X is ignored.

RND alternate form for calling the random number

function. B

Most of these functions are self-explanatory. Those which are

not are explained in the following section.

3.7.1 Examples of Particular Intrinsic Functions

Sign Function, SGN(X)

The sign function returns the value +1 if X is a positive value,

@ if X is 0, and -1 if X is negative. For example: SGN (3.42) = 1,
SGN (-42) = -1, and SGN(23-23) = ¢.

LISTNH

1% REM - SGN FUNCTION EXAMPLE

22 READ A,B

25 PRINT "A:="A,"B:="B

3@ PRINT "SGNCA)="SGN(A)," SGN(B) =" SGN (B)
40 PRINT "SGNCINT(A))="SGNC(INT(A))

50 DATA -7.32, .44

60 END

READY

RUNNH

Az-7,32 B= .44
SGN(A)=-1 SGN(B)= 1

SGN(INT(AY)=-1
READY

Integer Function, INT (X)

The integer function returns the value of the greatest integer

not greater than X. For example, INT(34.67) = 34. INT can be used
to round numbers to the nearest integer by asking for INT(X+.5). For
example, INT(34.67+.5) = 35. INT can also be used to round to any

given decimal place, by asking for
INT (X*1¢4 D+.5) /191D

where D is the number of decimal places desired, as in the following

program:

LISTNH

18 REM= INT FUNCTION EXAMPLE

28 PRINT "NUMBER TO BE ROUNDED";
38 INPUT A

48 PRINT "NO. OF DECIMAL PLACES™;
5@ INPUT D

60 LET B=INT(A*18tD+,5)/1081D

7@ PRINT "A ROUNDED ="

88 GO TO 2@

S3 END

READY

RUNNH

NUMBER TO BE ROUNDED? 55,65342
NO, OF DECIMAL PLACES? 2

A ROUNDED = 55,65

NUMBER TO BE ROUNDED? 78.375
NO., OF DECIMAL PLACES? =2

A ROUNDED = 109

NUMBER TO BE ROUNDED? 67.89
NO. OF DECIMAL PLACES? -1

A ROUNDED = 78

NUMBER TO BE ROUNBED? tC

READY

For negative numbers, the largest integer contained in the number
is a negative number with the same or a larger absolute value. For
example: INT(-23)= -23, but INT(-14.39) = -15.

NOTE

4C in the above program terminates
program execution. See the RSTS-11
System User's Guide.

Random Number Function, RND (X)

The random number function produces a random number between 0 and
1. The numbers are reproducible in the same order for later checking
of a program. The argument X in the RND(X) function call can be any

number, as that value is ignored.

LISTNH

10 REM - RANDOM NUMBER EXAMPLE
25 PRINT "RANDOM NUMBERS"

3¢ FOR 1=l TO 32

4@ PRINT RND(2),

50 NEXT 1

62 END

READY

RUNNH

RANDOM NUMBERS
771827 »78183 75174 473969 + T81555E~-1
203217 «5159 266445 «955597 «335541
412872 « 457387 «2835@8E-1 «538825E-1 «6765T5E~1
921722 921417 233082 « 185255 534515
+259796 « 748138 .152665 1708746 668488
474213 .828888 785414 « 172491 2286224

READY

In order to obtain random digits from 0 to 9, change line 40 to read:

40 PRINT INTC(1@%RND(@)),

and tell BASIC to run the program again. This time the results are:

RUNNK
RANDOM NUMBERS

7 7 7 4 ¢
2 5 2 9 3
4 4 0 o o
S 9 2 ! 5
2 7 I ! 6
4 8 7 7 2
READY

It is possible to generate random numbers over any range. For exam-

ple, if the range (A,B) is desired, use:
(B-A) *RND(g) +A

to produce a random number in the range A<n<B.

Since the parameter X in RND(X) is ignored, there is an alternate
means of calling the random number generator having no arguments: RND.
The following line is, therefore, acceptable:

48 PRINT ENL.
Similarly, if a number in the range (A,B) is desired, the formula:

(B-A) *RND+A

can be used.

3.7.2 RANDOMIZE Statement
The RANDOMIZE statement is written as follows:

line number RANDOMIZE

or, alternatively:

line number RANDOM

If the random number generator is to calculate different random
numbers every time a program is run, the RANDOMIZE statement is used.
RANDOMIZE is placed before the first use of random numbers (the RND
function) in the program. When executed, RANDOMIZE causes the RND
function to choose a random starting value, so that the same program
run twice gives different results. For this reason, it is a good
practice to debug a program completely before inserting the RANDOMIZE

statement.

To demonstrate the effect of the RANDOMIZE statement on two runs
of the same program, we insert the RANDOMIZE statement as statement 15
in the following program:
LISTNH
15 RANDOMIZE

28 FOR I=1 TO 5
25 PRINT “VALUE™ I " IS™ RND(®)

3@ NEXT 1

35 END

READY

RUNNH

VALUE | 1S ,797943
VALUE 2 IS ,3008@7S
VALUE 3 IS ,618988
VALUE 4 IS ,132141E-1
VALUE 5 1Is ,5@083%2
READY

RUNNH

VALUE 1 1S ,27384l
VaLUE 2 IS .225372
VALUE 3 IS .894867
VALUE 4 IS ,34@851
VALUE 5 IS .,991383
READY

The output from each run is different.

3.7.3 User-Defined Functions

Tn some programs it may be necessary to execute the same sequence
of statements or mathematical formulas in several different places.
BASIC allows the programmer to define his own functions and call these
functions in the same way he would call the square root or trig

functions.

These user-defined functions consist of a function name: the
first two letters of which are FN followed by any valid variable name.

For example:

FNA
FNAL

The function can be defined anywhere in the program, even be-
fore its first use. The defining or DEF statement is formed as
follows:

line number DEF FNo(arguments) = <expresston (arguments)>
where o is any legal variable name. The arguments may consist of
zero to five dummy variables. The expression, however, need not con-
tain all the arguments and may contain other program variables not

among the arguments. For example:
14 DEF FNA(S) = S42
causes a later statement:
2¢ LET R = FNA(4)+1
to be evaluated as R=17. As another example:

EF FNE:A, B = AH+X72
=FHB 14, 4, RE2

- <

causes the function to be evaluated with the current value of the
variable X within the program. In this case the dummy argument B

{(which becomes the actual argument R3 in the function call) is unused.

3-27

The two following programs

Program #1:
LISTNH
18 DEF FNS(A) = AtA
2@ FOR I=1 TO 5
38 PRINT I, FNS(I)
48 NEXT I
5¢ END

READY
Program #2:
LISTNH
18 DEF FNS(X) = X1*X
26 FOR I=1 TO 5
3@ PRINT I, FNS(ID
48 NEXT 1
5@ END

READY

cause the same output:

RUNNH

1 1

2 4

3 27

4 256
5 3125

READY
The arguments in the DEF statement can be seen to have no signif-
icance; they are strictly dummy variables. The function itself can
be defined in the DEF statement in terms of numbers, variables, other
functions, or mathematical expressions. For example:
18 DEF FNACKY

28 DEF FNBCH?
38 DEF FNCik>

HUE+IwK
FNACXI /2 + FNACR)
SRR(K+dI+1

noaon

The statement in which the user-defined function appears can have
that function combined with numbers, variables, other functions, or

mathematical expressions. For example:
48 LET R = FHACE+Y+Z3NACY T 2+00

A user-defined function can be a function of zero to five vari-

ables, as shown below:
2% DEF FHLOH. Y, 23 = SORCST2 + Y72 + 2720

A later statement in a program containing the above user-defined

function might look like the following:
29 LET B = FML<D, L, R2

where D, L, and R have some values in the program.

3-28

LISTNH

| ! MODULUS ARITHMETIC PROGRAM
5 ! FIND X MOD M

18 DEF FNM(X,M) = X-MkINT(X/M)
15 1

20 ! FIND A+B MOD M

25 DEF FNACA,B,M) = FNM(A+B,M)
3B

35 | FIND AxB MOD M

43 DEF FNB(A,B,M) = FNM(AX*B,M)
41 !

45 PRINT

S@ PRINT "ADDITION AND MULTIPLICATION TABLES, MOD M"
55 INPUT "GIVE ME AN M" M

66 PRINT: PRINT "ABDITION TABLES MOD "M
65 GOSUB 880

78 FOR I=8 TO M-I

75 PRINT 13" ";

82 FOR J=0 TO M-I

85 PRINT FNA(I,J,M

98 MEXT Je: PRINT: NEXT I

128 PRINT: PRINT

112 PRINT "MULTIPLICATION TABLES MOD " M
128 GOSUB 848

130 FOR 1:=8 TO M-l

148 PRINT I;" "

158 FOR J=@ TO M-l

168 PRINT FNB(I,J,M;

178 NEXT J: PRINT: NEXT I

186 STOP

80@ !SUBROUTINE FOLLOWS:

818 PRINT: PRINT TAB(4);0;

828 FOR I=1 TO M-1

832 PRINT Ig3: NEXT I: PRINT

840 FOR I=1 TO 2%M+43

85¢ PRINT "-"3: NEXT Is PRINT
868 RETURN

870 END

READY

Figure 3-1

Modulus Arithmetic

3-29

RUNNH

ADDITION AND MULTIPLICATION TABLES, MOD M
GIVE ME AN M? 7

ADDITION TABLES MOD 7

NN —R NV DS
HBWN—BONO WV
VWDHBWN—aOn

2 1 2 3 4 5 6

@ @ % © 2 © 2 @
1 g 1 2 3 4 5 6§
2 g 2 4 6 | 3 5
3 g 3 6 2 5 1 4
4 g2 4 1 5 2 6 3
5 g 5 3 1 6 4 2
8 g 6 5 4 3 2 1
STOP AT LINE 188
READY

Figure 3-1 (Cont.)

Modulus Arithmetic

3-30

The number of arguments with which a user-defined function is
called must agree with the number of arguments with which it is de-

fined. For example:

I DEF FNA (X) = Xx2 + xX/2
23 PRINT FNAC(3,2)

will cause an error message:

ARGUMENTS DON'T MATCH AT LINE 20
In a DEF statement or function reference, where a function has

zero arguments, the function name can be written with or without

parentheses. For example:

18 DEF FHA = =72
28 RL1 = FMNEO:

When calling a user-defined function, the parenthesized arguments
can be any legal expressions. The value of each expression is sub-

stituted for the corresponding function variable. For example:

line 30 causes 16 to be printed.

If the same function name is defined more than once, an error

message is printed.

18 DEF FN
ZBDEF FNXX) =y
ILLEGAL FN REGEFINITION AT LINE 2@

The function variable need not appear in the function expression

as shown below:

10 DEF FNA (X)) = 4 +2
24 LET R = FNAC1@)+1
3% PRINT R
42 END
RUNNH

7

The program in Figure 3.] <ontains examples of a multi-variable

DEF statement in lines 10, 25, and 40.

3-31

3.8 SUBROUTINES

When a particular mathematical expression is evaluated several
times throughout a program, the DEF statement enables the user to
write that expression only once. The technique of looping allows the
program to do a sequence of instructions a specified number of times.
If the program should require that a sequence of instructions be ex-
ecuted several times in the course of the program, this is also

possible.

A subroutine is a section of code performing some operation re-
quired at more than one point in the program. Sometimes a compli-
cated I/0 operation for a volume of data, a mathematical evaluation
which is too complex for a user-defined function, or any number of

other processes may be best performed in a subroutine.

More than one subroutine can be used in a single program, in
which case they can be placed one after another at the end of the
program (in line number sequence). A useful practice is to assign
distinctive line numbers to subroutines; for example, if the main
program uses line numbers up to 139, use 200 and 300 as the first

numbers of two subroutines.

LISTNH

1 REM - THIS PROGRAM ILLUSTRATES GOSUB ANDP RETURN
18 DEF FNA(X)= ABSCINT(X))

20 INPUT A,B,C

38 GOSUB 100

48 LET A=FNA(A)

58 LET B=FNA(B)

68 LET C=FNA(C)

72 PRINT
8@ GOSUB 1@8
98 STOP

1@@ REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS

118 REM - OF THE EQUATION: AXt2 +BX + C = @

120 PRINT "THE EQUATION IS ™ A "#Xt2 + " B "X + " C
13@ LET D=B*B - 4%A%C

140 IF D<>@ THEN 172

'S8 PRINT "ONLY ONE SOLUTION,,, X ": -B/(2%A)

168 RETURN

17¢ 1F D<@ THEN 2080

188 PRINT " TWO SOLUTIONS...X ="}

185 PRINT (-B+SQR(D))/(2%A); "AND X ="3 (-B=SQR(D))/(2%A)
19¢ RETURN

2@0 PRINT "IMAGINARY SOLUTIONS... X = ("3

265 PRINT -B/(2%A) ","™ SQR(-D)/(2%A) ") AND ("

287 PRINT -B/(2%A) ",": -SQR(-D)/(2%A) ")"

218 RETURN

988 END

READY

3-32

RUNNH

? 1,:5,-.5

THE EQUATION IS I xXt2 + .5 %X + =.,5
TWO SOLUTIONS,..X = .5 AND X ==1

THE EQUATION IS I *Xt2 + @ *xX + |
IMAGINARY SOLUTIONS... X = (¢ 8 , 1) AND (8 ,-1)
STOP AT LINE 5@

READY

Lines 100 through 210 constitute the subroutine. The subroutine
is executed from line 30 and again from line 80. When control returns
to line 90 the program encounters the STOP statement and terminates
execution.

3.8.1 GOSUB Statement
Subroutines are usually placed physically at the end of a program

before DATA statements, if any, and always before the END statement.

The program begins execution and continues until it encounters a GOSUB

statement of the form:
line number GOSUB <line number>
where the line number following the word GOSUB is the first line num-

ber of the subroutine. Control then transfers to that line in the

subroutine. For example:

50 GOSUB 220

Control is transferred to line 2@# in the user program. The first
line in the subroutine can be a remark or any executable statement.

3.8.2 RETURN Statement
Having reached the line containing a GOSUB statement, control
transfers to the line indicated after GOSUB; the subroutine is proc-

essed until the computer encounters a RETURN statement of the form:

line number RETURN

which causes control to return to the statement following the orig-
inal GOSUB statement. A subroutine is always exited via a RETURN

statement.

Before transferring to the subroutine, BASIC internally records
the next sequential statement to be processed after the GOSUB state-
ment; the RETURN statement is a signal to transfer control to this
statement. In this way, no matter how many subroutines or how many

times they are called, BASIC always knows where to go next.

3-33

3.8.3 Nesting Subroutines

Subroutines can be nested; that is, one subroutine can call
another subroutine. If the execution of a subroutine encounters a
RETURN statement, it returns control to the line following the GOSUB
which called that subroutine. Therefore, a subroutine can call
another subroutine, even itself. Subroutines can be entered at any
point and can have more than one RETURN statement. It is possible
to transfer to the beginning or any part of a subroutine; multiple

entry points and RETURNs make a subroutine more versatile.

The maximum level of GOSUB nesting is dependent on the size of
the user program and the amount of core storage available at the

installation. Exceeding this limit results in the message:

MAXIMUM CORE SIZE EXCEEDED AT LINE XXX

where xxx is the line number of the line containing the error.

3.9 STOP AND END STATEMENTS

The STOP and END statements are used to terminate program execu-

tion. The END statement is the last statement in a BASIC program.
The STOP statement can occur several times throughout a single pro-
gram with conditional jumps determining the actual end of the program.

The END statement is of the form:
line number END

The line number of the END statement should be the largest line num-
ber in the program, since any lines having line numbers greater than
that of the END statement are not executed and are not retrieved

by the OLD command (although they are saved with the SAVE command).

NOTE

A program will execute without an END statement;
however, an error messade is printed if a pro-
gram is recalled having been saved without an
END statement.

The STOP statement is of the form:

line number STOP

3-34

and causes:

STOP AT LINE line number
READY

to be printed when executed. A CONTINUE command entered at this point
resumes execution at the statement following STOP.

Execution of a STOP or END statement causes the message:

READY

to be printed by the teleprinter. This signals that the execution of
a program has been terminated or completed, and BASIC is able to ac-
cept further input. The execution of an END statement also closes
all files in a BASIC program.

3-35

PART II

* BASIC-PLUS ADVANCED FEATURES

This part of the\manual describes the special features'of»BASIC—
PLUS which make the language a superior tool for all manner ‘of data,‘
manipulation. Addltlonal capabllltles of the statements prev1ously'
described are included, .along" with new statements, character strlng
manipulating fa0111t1es, 1nteger mode varlables and arlthmetlc, and
intrinsic matrix functlons. Also descrlbed 1s ‘the lmmedlate mode of
operatlon whlch causes BASIC to treat 51ngle statements as commands.

) In general, the new technlques presented here allow the user to
erte programs whlch conserve core space and reduqe executlon t1me.~
With ‘the ablllty to manlpulate character strlngs, the\user can wrlte

‘sophlstlcated programs to handle a w1de range of data. .
- ~The’matrix functions allowithe user to perform matrix I/0 and
the matrix operations of ‘addition, subtraction, multiplication,

inversion and transposition.

IT

CHAPTER 4

IMMEDIATE MODE OPERATIONS

4.1 USE OF IMMEDIATE MODE FOR STATEMENT EXECUTION

It is not necessary to write a complete program to use BASIC-PLUS.
Most of the statements discussed in this manual can either be included
in a program for later execution or be given on-line as commands, which
are immediately executed by the BASIC processor. This latter facility
permits the RSTS~1l user to have an extremely powerful desk calculator

available whenever he is on-line.

BASIC-PLUS distinguishes between lines entered for later execution
and those entered for immediate execution solely on the presence {or
absence) of a line number. Statements which begin with line numbers
are stored; statements without line numbers are executed immediately

upon being entered to the system. Thus the line:
1% PRINT “THIS IS A PDP-11"

produces no action at the console upon entry, while the statement:

PEINT "THIS IS A phE-11"
THIS IS A PDF-11

HEALY
when entered causes the immediate output shown above. The READY mes-

sage is then printed to indicate the system readiness for further in-

put.

4.2 PROGRAM DEBUGGING

Immediate mode operation is especially useful in two areas : pro-

gram debugging and the performance of simple calculations in situations
which do not occur with sufficient frequency or with sufficient com-

plications to justify writing a program.

In order to facilitate debugging a program, the user can
place STOP statements liberally throughout the program. Each STOP
statement causes the program to halt, printing the line number at which
the STOP occurred; at which time the user can examine various data

values, perhaps change them in immediate mode, and then give the

CONT

command to continue program execution. However, a syntax error in
immediate mode or one of several other conditions could prevent

continuation of program execution with the CONT command.

When using immediate mode, nearly all the standard statements

can be used to generate or print results.

The user can also halt program execution at any time by typing
CTRL/C. Immediate mode can then be used to examine and/or change
data values. Typing the CONT command resumes program execution.

Whenever execution cannot be continued, the message:
CAN®*T CONTINUE
KREADY

is printed upon entering the CONT command.

4.3 MULTIPLE STATEMENTS PER LINE

Multiple statements cannot be used on a single line in immediate

mode. For example:

A=1t PRINT A
ILLEGAL IN IMMEDIATE MODE

.READY

The use of the FOR modifier (and all other modifiers described
in Section 8.7) is allowed. Thus a table of square roots can be

produced as follows:

PRINT I, SQR(I) FOR I=1 TO 1@
1
l.41421
1.73285
2
2.,23607
2.44949
2,64575
2,82843
3

2 3.16228

— QRN NDWNDWN—

READY

4-2

4.4 RESTRICTIONS ON IMMEDIATE MODE

Certain commands make no logical sense when used in immediate

mode. Commands in this category include:

DEF
FNEND
DIM
DATA
FOR
NEXT

When any of these is given, the message ILLEGAL IN IMMEDIATE MODE is
printed.

4.5 PROGRAM INTERRUPTION BY CTRL/C

When a program is interrupted by typing the CTRL/C combination,
the integer variable LINE contains the line number of the statement
being executed when the interrupt occurred. The PRINT command is
used to display the contents of LINE.

+C

READY

PRINT LINE

389
READY

5.1 CHARACTER STRINGS

CHAPTER 5

CHARACTER STRINGS

The previous chapters describe the manipulation of numerical in-

formation; however, BASIC also processes information in the form of

character strings.

ters treated as a unit.

A string, in this context, is a sequence of charac-

A string can be composed of any combination

of the characters in Table 5-2.

Without realizing it, the reader has already encountered character

strings.

month, given its number:

LISTNH

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

Consider the following program which prints the name of a

INPUT “TYPE A NJMBER BETWEEN | AND 12";N
N<! OR N>12 THEN PRINT 'NUMBER OUT OF RANGE":u0TO 19

IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

END

READY

RUNNH
TYPE A NUMBER BETWEEN 1 AND 12?7 9
THE 9 TH MONTH IS SEPTEMBER

READY

N>3 THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

VRN LD WO -

222222222

nnunununnuw

N

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

“THE" N “TH MONTH IS "3

"“THE FIRST MONTH IS JANUARY"
"THE SECOND MONTH IS FEBRIJARY"
"THE THIRD MONTH IS MARCH"
“"APRIL"

I.MAY"

'ld"JNE"

I'JULYII

"AYGHST®

"SEPTEMBER"

1@ THEN PRINT '"OCTOBER"
N=11 THEN PRINT
N=12 THEN PRINT

"NOVEMBER"
"DECEMBER"

In Chapter 3 the INPUT and PRINT statements were shown printing

messages along with the input and output of numeric values (see lines
10 and 15 above). These messages consist of character string constants
(just as 4 is a numeric constant).

In a similar way, there are char-
acter string variables and functions.

5.1.1 String Constants

Just as numbers can be used as constants or referenced by vari-

able names, BASIC-PLUS allows for character string constants.

Charac-
ter string constants are delimited by either single or double quotes.
For example:

145 LET Y$ = "FILE4"
33 B1$ = 'CAN'
8g IF A$ = "YES" GOTO 258

where "FILE4", 'CAN' and "YES" are character string constants.

5.1.2 Character String Variables

Variable names can be introduced for simple strings and for both

lists and matrices composed of strings (which is to say one and two
dimensional string matrices). Any legal name followed by a dollar
sign ($) character is a legal name for a string variable. For example:

AS
C7s$

are simple string variables. Any list or matrix variable name fol-

lowed by the §$ character denotes the string form of that variable.
For example:

Vs (N) M2$ (N)
C$ (M,N) G1l$ (M,N)

(where M and N indicate the position of that element of the matrix
within the whole) are list and matrix string variables.

The same name can be used as a numeric variable and as a string
variable in the same program with the restriction that a one and a
two dimensional matrix cannot have the same name in the same program.

For example:

A A(N)
A$ A$ (M,N)

can all be used in the same program, but
A(N) and A(M,N)
cannot. Likewise,
A$(N) and AS$(M,N)
cannot both occur in Fhe same program.
Just as numeric variables are automatically initialized to # when a
program is run, string variables are initialized to a null string

containing zero characters (the character string constant "").

5.1.3 Subscripted String Variables

String lists and matrices are defined with the DIM statement, as

are numerical lists and matrices. For example:

19 DIM S13%(5)

indicates the S1 is a string matrix with six elements, S1$(@) through
S1$(5), which can be separately accessed. If a DIM statement is not
used, a subscripted string variable is assumed to have a dimension of
10 (11 elements including the zero element) in each direction. Note
that the dimension of a string matrix specifies the number of strings
and not the number of characters in any one string. For example, if

the first statements in a program are:

18 FOR I=1 TO 7
29 LET B$(I)="PDP-11"
33 NEXT 1

they would cause a list B$(n) to be created having 1l accessible ele-
ments, B$(@g) through B$(1@). The elements B$(1l) through BS$(7) are set
equal to "PDP-11" and the others would be null strings (have no char-
acters). As a general rule, all lists and matrices should be dimen-

sioned to the maximum size being referenced in the program.

5.1.4 String Size

A character string can contain any number of characters limited
only by the amount of core storage available. However, the
LINE FEED key cannot be used to type a string on two or more terminal
lines. Since core storage is limited, strings can also be saved in

files on the system disk (see Section 9.6.2).

5.1.5 Relational Operators

When applied to string operands, the relational operators indi-

cate alphabetic sequence. For example:
55 IF A3CI) < A$CI+1) GOTO 100

When line 55 is executed the following occurs: AS$S(I) and AS$(I+l) are
compared; if A$(I) occurs earlier in alphabetical order than AS$(I+l),
execution continues at line 100. Table 5-1 contains a list of the

relational operators and their string interpretations.

Table 5-1

Relational Operators Used With
String Variables

Operator Example Meaning

= AS = BS The strings A$ and B$ are equivalent.

< A$ < BS The string A$ occurs before B$ in alpha-
betical sequence.

<= AS$ <= BS The string AS$ is equivalent to or occurs
before B$ in alphabetical sequence.

> AS$ > BS The string AS$ occurs after B$ in alpha-
betical sequence.

>= A$ >= BS$ The string A$ is equivalent to or occurs
after BS in alphabetical sequence.

<> AS <> BS The strings AS$ and B$ are not equivalent.

== A$ == BS$ The strings A$ and B$ are identical.

This operator is not available
prior to Version 5B (RSTS/E)
systems.

In any string comparison (except ==), trailing blanks are ignored.
That is to say "YES" is equivalent to "YES ". Where two strings of un-
equal length are compared, the shorter is padded with trailing blanks
to the length of the longer string. A null string (of length zero) is
considered to be completely blank and is less than any string of length
greater than zero unless that string consists of all blanks in which

case the two strings are equivalent.

5.2 ASCII STRING CONVERSIONS, CHANGE STATEMENT
Individual characters in a string can be referenced through use
of the CHANGE statement. The CHANGE statement permits the user pro-

gram to transform (the entirety of) a character string into a list of
numeric values or a list of numeric values into a character string.
Each character in a string can be converted to its ASCII equivalent
or vice versa. Table 5-2 describes the relationship between the ASCII

characters and their numerical values.

As an illustration, consider the following:

LISTNH

19 DIM X(3)

15 LET A$ = "CAT"

20 CHANGE AS TO X

25 PRINT X(B)3X(1)3X(2)3X(3)
3@ END

READY

RUNNH
3 67 65 84

READY

X (1) through X(3) take on the ASCII values of the characters in the
string variable A$. The first element of X, X(#8), becomes the number
of characters present in A$. If more characters are present in the
string variable than can be accommodated in the numeric list, the
message SUBSCRIPT OUT OF RANGE is printed. The first element of

the list becomes the number of characters in the string which have
been successfully transformed into numeric values, and is less than
or equal to the dimension of the list. Notice that line 10, above,
created a 4-element array, X. A DIM statement must be used in this
instance; otherwise, the system creates a default 12l-element array,

leading to possible illogical results.

Table 5-2

ASCII Character Codes

ASCII ASCII ASCII
Decimal Char- RSTS Decimal Char- RSTS Decimal Char- RSTS
Value acter Usage Value acter Usage Value acter Usage

@ NUL FILL character 43 + 86 A4

1 SOH 44 , 87 W

2 STX 45 - 88 X

3 ETX CTRL/C 46 . 89 Y

4 EOT 47 / o@ Z

5 ENQ 48) 91 [

6 ACK 49 1 92 \

7 BEL BELL 58 2 93]

8 BS 51 3 94 ~or *

9 HT HORIZONTAL TAB 52 4 95 — or «

19 LF LINE FEED 53 5 96 ~ Grave accent
11 vT VERTICAL TAB 54 6 97 a

12 FF FORM FEED 55 7 98 b

13 CR CARRIAGE RETURN 56 8 99 [+]

14 so 57 9 199 a

15 SI CTRL/O 58 : 191 e

16 DLE 59 ; 192 £

17 DC1 68 < 193 g

18 DC2 61 = 194 h

19 DC3 62 > 185 i

20 DC4 63 ? 1g6 j

21 NAK CTRL/U 64 e 197 k

22 SYN 65 A 198 1

23 ETB 66 B 199 m

24 CAN 67 o 11p n

25 EM 68 D 111 o

26 SUB CTRL/Z 69 E 112 P

27 ESC ESCAPE! 78 F 113 q

28 FS 71 G 114 r

29 GS 72 H 115 s

3g RS 73 I 116 t

31 Us 74 J 117 u

32 SP SPACE 75 K 118 v

33 ! 76 L 119 w

34 " 77 M 12¢ X

35 # 78 N 121 y

36 $ 79 0 122 z
37 % 8g P 123 {

38 & 8l Q 124 | Vertical Line
39 ' 82 R 125 }
ag (83 S 126 ~ Tilde

41) 84 T 127 DEL RUBOUT
42 * 85 U

ALTMODE (ASCII 125) or PREFIX (ASCII 126) keys which appear on some terminals are
translated internally into ESCAPE.

NOTE

The decimal values 128 through 255 can appear in character strings. For most
practical purposes, the characters represented by N and N+128 (decimal) are the
same. However, the characters CHRS (N) and CHRS (N+128) do not test as equal if com-
pared. Users should be careful when performing output of these values since they may
have some significance in certain device-dependent operations (see Chapter 12).

5-6

Another program which transforms a character string into a list

of numeric values is shown below:

LISTNH
1@ DIM A(65)
15 READ AS

28 CHANGE AS TO A

25 FOR 1:=8 TO A(®)

3¢ PRINT A(CI)3sNEXT I

35 DATA ABCDEFGHIJKLMNOPQRSTUVWXYZ
42 END

READY
RUNNH
26 65 66 67 68 695 718 71 72

B2 83 84 85 86 87 88 8% 90
READY

Notice that A(f) = 26.

73

14

75

76 77

78

79 88 8l

To change numbers into string characters, CHANGE is used as

follows:

LISTNH

12 FOR 1=0 T0 5

15 READ A(I)

20 NEXT I

25 DATA 5,65,66,67,68,69
38 CHANGE A TO ag

35 PRINT A
49 EN5 $
READY

RUNNH
ABCDE

READY

This program prints ABCDE because the numbers 65 through 69 are

the code

numbers for A through E.

Before CHANGE is used in the matrix-to-string direction, the pro-

grammer must indicate the number of characters in the string as the

zero element of the matrix. In line 15 of the previous program, A (@)

is read as 5. The following is another example of a numeric list to

character string conversion:

LISTNH

1§
15

DIM V(128)

INPUT "HOW MANY CHARACTERS"™ ;V (@)
FOR 1=1 TO V(@)

INPUT V(D)

NEXT 1

CHANGE V TO AS

PRINT AS$

END

READY

RUNNH
HOW MANY CHARACTERS? 3
? 67
7 64
? 817

cev

READY
Numbers which have no character equivalent in Table 5-2 do not
cause a character to be printed.

5.3 STRING INPUT

The READ, DATA and INPUT statements can be used to input string

variables to a program. For example:

18 READ AS, B, C, D
2@ DATA 17, 14, 13,4, CAT

causes the following assignments to be made:

AS = the character string "17"
B = 14
C = 13.4

reading D as CAT causes the message ILLEGAL NUMBER AT LINE 1§
to be printed.

Quotation marks are necessary around string items in DATA state-

ments only when the string contains a comma, or when leading, trail-

ing or embedded blanks within the string are significant, or when

lower case letters are to be preserved. Quotes (single or double)

are always acceptable around string items, even though not always

necessary. For example, the items in line 40 in the following pro-

gram are all acceptable character strings and would be read as printed.

5-8

LISTNH

18 READ AS$,BS,CS,DS$,ES

28 PRINT A$;BS$;CS$;D$;ES

3@ PRINT AS,BS$,CS$,D$,ES$

49 DATA "MR. JONES" ,MISS SMITH, "MRS. BROWN", "MISS™, '"MR"'

READY

RUNNH

YR+ JONESMISSSMITHMRS, BROWNMISS" MR"

YR. JONES MISSSMITH MRS. BROWN MISS "MR"
READY

A READ statement can appear anywhere in a multiple statement line,

but a DATA statement must be the last statement on a line. See also
the MAT READ statement which reads matrices (either numeric or string),
Section 7.2.

NOTE

The data pool composed of values from the
programmed DATA statements is stored in-
ternally as an ASCII string list. Where

a numeric variable is read, the appropriate
ASCII to numeric conversions are performed.
Where a string variable is read, the string
is used as it appears in the DATA statement.
If the item did not appear in quotes, lead-
ing, trailing and embedded spaces are ig-
nored. If the item did appear in quotes,
the string variable is equated to the en-
tire string within the gquotes.

The INPUT statement is used to input character strings exactly

as though accepting numeric values. For example:

16 INPUT "YOUR HAME": N#: "YOUR AGE". A
is functionally equivalent to:

PRINT "YOUR NRME";
INFUT N#

FRINT "YOUR RGE";
INFUT R

- A P o
DRI oS e

Another feature of the INPUT statement when used with character
string input is the INPUT LINE statement of the form:

line number INPUT LINE <string variable>

For example:

18 INFUT LINE A%

which causes the program to accept a line of input from the terminal
with embedded spaces, punctuation characters, or quotes. Any charac-
ters are acceptable in a line being input to the program in this man-
ner. The program can then treat the line as a whole or in smaller seg-
ments as explained in Section 5.5 which describes string functions.

No text string can be output with the INPUT LINE statement, this
facility is only available in the INPUT statement. For example:

1@ INPUT LINE "TExT"; A%
SYHNTRX ERRORE AT LINE 18

An INPUT LINE statement reads the entire line as typed by the
user, including the line terminating character. The line terminator
is one of the following:

a. Carriage return/line feed, generated by typing the
RETURN key (appends the ASCII values 13 and 1§ to
the character string);

b. Line feed, generated by typing the LINE FEED key
(appends the ASCII values 1f, 13 and # to the char-
acter string); or

c. ESCAPE, generated by typing the ESCAPE, ALT MODE

or PREFIX key, depending upon the terminal (appends
an ASCII 27 to the character string).

5.4 STRING OUTPUT

When character string constants are included in PRINT statements,
only those characters within quotes are printed. No leading or trail-
ing spaces are added. For example:

LISTNH

16 H=1 B:V=Z 91 AE="Ff="
26 FRINT A$; K" B="y

3@ FRINT "DONE"

48 END

READY

FUNKH
A= 1 b= 2 @1
DONE

RERDY

Semicolons separating character string constants from other list items
are optional. For example, in line 20 (above) note that the variable
Y is not separated from the character string " B=" by a semicolon.

Character string output can also contain the string functions de-
scribed in Section 5.5.

5.5 STRING FUNCTIONS

Like the intrinsic mathematical functions (e.g., SIN, LOG), BASIC-
PLUS contains various functions for use with character strings. These
functions allow the program to concatenate two strings, access part of
a string, determine the number of characters in a string, generate a
character string corresponding to a given number or vice versa, search
for a substring within a larger string, and perform other useful opera-
tions. (These functions are particularly useful when dealing with
whole lines of alphanumeric information input by an INPUT LINE state-
ment.) The various functions available are summarized in Table 5-3,.

5.5.1 User-Defined String Functions

Character string functions can be written in the same way as
numeric functions. (See Sections 3.7.3 and 8.1.) The function is
indicated as being a string function by the $ character after the
function name.

User-defined string functions return character string values,
although both numeric and string values can be used as arguments to
the function. For example, the following multiple-line function (see
Section 8.1) returns the string which comes first in alphabetical
order:

5-11

1% DEF FNF$(A%,B3)
20 FNF$=A%

3% IF A$>BS THEN FNF$=8B%
4% FNEND

The following function combines two strings into one string:

19 DEF FNC3(X3,Y3)I=X5+Y$

Numbers cannot be used as arguments in a function where strings

are expected or vice versa. Line 80 is unacceptable:

19 DEF FNA$(A%) = CHRS(LENCA$)+1)
82 LET Z=FNA$(4)

The message:

ARGUMENTS DON'T MATCH AT LINE 84

is printed.

The following code is a string function which returns the leftmost

five characters from the sum of three arguments:

LISTNH
75 DEF FNAS$(XsYs7) = LEFT(NIMS(X+Y+Z7)»5)
834 PRINT FNA%(109,2%,3)

READY

RUNNH
123

READY

NUMS$ (123) is a five-character string, as follows:

L1}

" (space) 123 (space)

Table 5-3

String Functions!?

Function Code

Meaning

LEFT (A$,N%)

RIGHT (A$,N$%)

MID (AS$,N1%,N2%)

LEN (AS)

CHRS (N%)

ASCII(AS)

DATES (N¢%)

Indicates a substring of the string A$ from the first
character through the NtB character (the leftmost N
characters of the string A$). For example:

PRINT LEFT(A$,7%)

ABCDEFG
Indicates a substring of the string A$ from the Nth
character through the last character in A$ (the right-
most characters of the string AS$ starting with the
Nth character). For example:

PRINT RIGHT(A$,202%)
THVWXYZ

Indicates a substring of the string A$ starting with
character N1, and N2 characters long (the characters
between and including the N1 through N1+N2-1 characters
of the string AS$). For example:

PRINT MID(A$,15%55%)
OPARS

Indicates the number of characters in the string A$
(including trailing blanks). For example:

PRINT LENC(AS$)
26

Indicates a concatenation operation on two strings.
For example "ABC"+"DEF" is equivalent to "ABCDEF".
"12"+"34"+"56" is equivalent to "123456".

Generates a one-character string having the ASCII
value of N (see Table 5-2). For example: CHRS$ (65) is
equivalent to "A". Only one character can be generated.

Generates the ASCII value of the first character in
A$. For example, ASCII("X") is equivalent to 88, the
ASCII equivalent of X. If B$ = "XAB", then ASCII (BS)
= 88.

where N=f§, this function returns the current date in
the form:
12-Aug-72

This quantity can be printed on output by simple ref-
erence to the function. It should be noted that dates
are output using both upper and lower case letters.
When the output device is not capable of generating
lower case letters, the ASCII values still imply

lower case. Where N#@, the function translates N into
a date string. (See Section 8.8.)

!'A$ in the immediate mode examples is assumed to be:
"ABCDEFGHIJKLMNOPQRSTUVWXYZ" .

Table 5-3 (Cont.)

String Functions

Function Code

Meaning

INSTR(N1%,AS$,BS)

SPACES (N%)

NUMS$ (N)

VAL (AS)

TIMES (N)

Indicates a search for the substring B$ within
the string A$ beginning at character position
Nl. Returns a value of @ if B$ is not in AS,
and the character position if B$ is found to be
in A$ (character position is measured from the
start of the string with the first character
counted as character 1). For example:

PRINT INSTR(5%,A%,"0P")
15

If BS is a null string (B$ = ""), the INSTR
function returns the value 1. The null string
is a proper substring of any string and is
treated conventionally as the first element of
A$ in null string search operations. In addi-
tion, if both A$ and B$ are null strings, the
INSTR function returns the value 1

Indicates a string of N spaces, used to insert
spaces within a character string.

Indicates a string of numeric characters
representing the value of N as it would be
output by a PRINT statement. NUMS (n)=(space)n
(space) if n>@ and NUMS$ (n)=-n(space) if n<f.
For example:

PRINT NUMS(C1+20)"A"
1 A

Computes the numeric value of the string of
numeric characters A$ (may include digits, +,
-, . and E). If AS$ contains any characters not
acceptable as numeric input with the INPUT
statement, an error results. For example:

PRINT VAL('1.5E1")
15

Where N=@, this function returns the current
time-of-day as a string of the form:

1:30 PM

where N<>@, the function translates N into a

time string (See section 8.8). If the
system was generated using the 24-hour time
option, 1:30 PM is returned as 13:30.

Table 5-3 (Cont.)

String Functions

Function Code

Meaning

STRINGS (N1,N2)

CVTS$S (S$,M%)

Creates a string of length N1 and characters
whose ASCII decimal value is N2. For example,
to create a string Y$ composed of 10 space
(blank) characters CHR$ (32%), execute the
following statement:

Y$ = STRING$(108,32)

See Table 5-2 for the decimal values of ASCII
characters.

Converts the source character string
S$ according to the decimal value of
the integer M%. For a complete explana-
tion of this function, see Section 12.5.

CHAPTER 6

INTEGER AND FLOATING POINT OPERATIONS

Numbers on the system can be represented and manipulated in either
integer or floating point format as described in Section 2.5.1. The
implications of representing numbers in a certain format and the
resultant benefits are described in this chapter. Certain operations
involving integer numbers are more efficient if performed using a
forced one-word integer format. The specification of a forced integer
format and the possible integer operations are described in Section
6.1 through 6.6. The results of performing operations by mixing the
formats are described in Section 6.7. Operations using standard
floating point arithmetic and floating point scaled arithmetic are
performed as described in Section 6.8.

6.1 INTEGER CONSTANTS AND VARIABLES

Normally, all numeric values (variables and constants) specified
in a BASIC program are stored internally as floating-point numbers.
If operations to be performed deal with integer numbers, significant
economies in storage space can be achieved by use of the integer data
type (which uses only one computer word per value). Integer arithmetic
is also significantly faster than floating-point arithmetic. Integer
variables (and constants) can assume values in the range -32768 to +32767.

A constant, variable or function can be specified as an integer
by terminating its name with the % character. For example:

100% A% FNX$% (Y)
-4% Als% FNL$% (N%,L%)

The user is expected to indicate where an integer constant is to be
generated by using the % character. Otherwise a floating-point value

is normally produced.

When a floating-point value is assigned to an integer variable,
the fractional portion of that number is lost. The number is not
rounded to the nearest integer value. (A FIX function is performed
rather than an INT function.) For example:

A=-1 ol

causes A% to be assigned the value -1.

6.2 INTEGER ARITHMETIC

Arithmetic performed with integer variables is performed modulo
2416. The number range -32,768 to +32,767 is treated as continuous,
with the number after +32,767 equal to -32,768. Thus, 32767% + 2% =
-32767% and so on.

Integer division forces truncation of any remainder; for example
5%/7%=0 and 199%/100%=1. Operations can be performed in which both
integer and floating-point data are freely mixed. The result is

stored in the format indicated as the resulting variable, for example:

25 LET X7%Z = NZ + FNA(R)*2

The result of the expression on the right is truncated to provide an
integer value for X%. The result of mixing integer and floating-point
data is explained in Section 6.7.

Where program size is critical, the use of the % character to

generate integer values is encouraged as it uses significantly less
storage space. For example:

12 FOR 1%=12 TO 1972
takes less storage space and executes faster than:

160 FOR I=1 TO 19

6.3 INTEGER I/0

Input and output of integer variables is performed in exactly the
same manner as operations on floating-point variables. (Remember that
in cases where a floating-point variable has an integer value it is
automatically printed as an integer but is still stored internally as
a floating-point number and hence takes more storage space.) It is
illegal to provide a floating-point value for an integer variable
through either a READ or INPUT statement. For example:

LISTNHK

1@ READ A, B%, C, D%, E
20 PRINT A, B%Z, C, D%, E
30 DATA 2+7,3,4,5:7,6.8

READY

RUNNH
DATA FORMAT ERROR AT LINE 18

READY

when line 3¢ is changed to
38 DATA 2.7,3,4,5,6.8
the following is printed:

RUNNH
2.7 3 4 5 6.8

READY

6.4 USER DEFINED INTEGER FUNCTIONS

Functions can be written to handle integer variables as well as
floating-point variables (see Sections 3.7.3 and 8.1). A function is
defined to be of integer type by following the function name with the

% character.

A function to return the remainder when one integer is divided
by another is shown below:

10 DEF FNRZ(IZ,J%Z) = I1%-J% * (1%/J%)

and could be called later in a program as follows:
109 PRINT FNRZ(A%Z,11%)
Integer arguments can be used where floating-point arguments are

expected and vice versa as the system performs the necessary conver-

sions. However, strings cannot be used where numbers are required (or
vice versa).

75 DEF FNAZ(X%) =X7Z-17%
83 LET ZZ=FNAZ(12.34)

is acceptable. Z eguals 11 after line 80 has been executed.

6.5 USE OF INTEGERS AS LOGICAL VARIABLES

Integer variables or integer valued expressions can be used with-
in IF statements in any place that a logical expression can appear.
An integer value of @% corresponds to the logical value FALSE, and
any non-zero value is defined to be TRUE. The logical operators (AND,
OR, NOT, XOR, IMP, EQV) operate on logical (or integer) data in a
bitwise manner. The integer -1% (which is represented internally as
sixteen binary ones) is normally used by the system when a TRUE value
is required.

Logical values generated by BASIC always have the values ~-1%
(TRUE) and @#% (FALSE).

The following Immediate Mode sequence illustrates the use of in-

tegers in logical applications in an IF statement:

§gugxz THEN PRINT " TRUE" ELSE PRINT "FALSE"

READY

IF =17 AND 8% THEN PRINT " TRUE" ELSE PRINT "FA "
FALSE INT LSE

READY

IF 47 AND 27 THEN PRINT " TRUE"™ ELSE PRINT "FALSE"
FALSE

READY

;;U:IZ IMP -17 THEN PRINT "TRUE"™ ELSE PRINT "FALSE"
[

READY

%;Ué<ﬂ XOR =17 THEN PRINT " TRUE" ELSE PRINT "FALSE"

READY

6.6 LOGICAL OPERATIONS ON INTEGER DATA

BASIC-PLUS permits a user program to combine integer variables
or integer valued expressions using a logical operator to give a

bit-wise integer result .

An integer value is represented internally in two's complement
notation as a sign bit and 15 data bits. Refer to Appendix F for the
description of the internal format of an integer. 1In a logical
operation, the corresponding bits of two integer values are combined
on a bit-by-bit basis determined by the logical operator used. The

logical operators are defined in Section 2.5.5.

For the purpose of logical operations, A and B as defined in the

truth tables shown in Section 2.5.5 are modified. A becomes the

6-5

condition of one bit in one integer value, and B becomes the condition
of the bit in the corresponding bit position of another integer value.
The truth tables are as follows.

A B |A AND B A B |A OR B
T 1 1 T 1 I

1 g g 1 9 1

g 1 g /) 1 1

g g g g 2 g

A B |[A XOR B A B |A EQVB
1 1 g 1 1 1

1 g 1 1 g g

g 1 1 g 1 g
g9 g g g 1

A B {A IMP B A [NOT A

1 1 1 1 [/}

1 '] g 1

g 1 1

g g 1

The result of a logical operation is an integer value generated
by combining the corresponding bits of two integer values according
to the rules shown in the truth tables above. For example, the
following command prints the logical product of the integers 85 and
28.

PRINT 8S5% AND 28%
20

READY

Each bit in the internal representation of 85% is combined with each
corresponding bit in the internal representation of 28% according

to the rules in the AND truth tables. By consulting the AND (logical
product) truth table, it can be seen that a bit is generated in the
bit position of the result only if both bits are 1 in the correspond-
ing bit position of the integer values 85% and 28%. The resultant
value of 2@ printed by BASIC is the integer value of the bits set in
the internal representation of the logical product.

The following command prints the logical sum of 85% and 28%.

PRINT 85% OR 28%
93

READY

From the OR (logical sum) truth table, it can be seen that a bit is
generated in the bit position of the result if either the corres-
ponding bit of the internal representation of 85% or 28% is a 1.
The resultant value of 93 printed by BASIC is the integer value of
the bits set in the internal representation of the logical sum.

The result of any logical operation can be assigned to an
integer variable. For example, the following statement assigns a
logical product to an integer variable which, in turn, can be printed.

LISTNH
186 Cx = 85% AND 282
20 PRINT C%

READY

RUNNH
29

READY

The logical operation can be used to mask a particular bit
pattern. For example, the following BASIC-PLUS statement is used to
generate the value of the low order eight bits, L%, of an integer
word, W%.

10 L% = W& AND 255%

The internal representation of 255% is such that the low order eight
bits (bits @ through 7) are all 1, and the high order eight bits
(bits 8 through 15) are all @. The AND operation (logical product)
generates a bit in L% only if a bit appears in the corresponding bit
position of both W% and 255%. Since 255% is known to contain all
zeros in the high order bits and all ones in the low order bits, the
result L% reflects the presence of bits set and cleared in the low
order eight bits of W%. Such a use of a bit pattern is called
masking, where the internal representation of 255% is such that it

provides a mask to hide one portion of a bit pattern (the high order
bits of W%) and reveals another portion of a bit pattern (the low
order bits of W%).

In summary, integer values can be combined as described in
Section 6.2 using arithmetic (mathematical) operators to give arith-
metic results. Integer values can be compared using relational
operators (see Section 2.5.4) and can be combined using logical
operators (see Section 2.5.5) to give either a TRUE or FALSE result
as described in Section 3.5 or to give 0% for false or -1% for true
as described in Section 6.5. 1In any case, the results of all rela-
tional and logical operations are integer values. When a logical
operation is performed in conjunction with arithmetic and relational
operations, the priority scheme as described in Section 3.5 is used
to determine the hierarchy of operations.

Thus, with the feature described in this section, integer
variables and integer valued expressions can be operated on by AND,
OR, XOR, EQV, IMP and NOT to give a bit-wise integer result.

6.7 MIXED MODE ARITHMETIC

The user can perform arithmetic operations using a mix of integer
and floating point numbers. To force a floating point representation
of an integer constant, terminate it with a decimal point. Use the %
character as described in Section 6.1 to force an integer representa-
tion of a constant. Constants without a decimal point or % character
are termed ambiguous. The remainder of this section describes the
results of arithmetic operations using a mix of numbers.

If both operands of an arithmetic operation are either explicitly
integer or floating point, the system generates, respectively, integer
or floating point results. If one operand of an arithmetic operation
is an integer and another is floating point, the system converts the
integer to a floating point representation and generates a floating
point result. For example,

PRINT 1R%/2%3 17243 1%/2¢3 14/72%
@ +5 +5 5

READY

In the first two operations, the system generates the explicit results;
in the second two, the system converts the explicit integer and gener-
ates floating point results.

When an ambiguous constant appears in an arithmetic expression
(for example, 10 as opposed to 10% and 10.), the system represents it
in integer format if an integer variable (for example, I%) or an in-
teger constant (for example, 3%) occurs anywhere to the left of the
constant in the expression. Otherwise, the system treats the ambiguous
constant as a floating point number. The system performs the opera-
tion according to the rules described above. For example,

PRINT 1%/72;5 1/2%3 1/2
@ «5 .5

READY

In the first operation, the system treats the 2 as an integer because
an explicit integer representation appears to the left in the expres-
sion. 1In the next two operations, the system treats the ambiguous
constants as floating point numbers since no explicit integer variable
or constant appears to the left of the ambiguous constant in the
expression.

Since the format of the results determines the results of many
operations, the user must explicitly impose the correct format by use
of the per cent sign or the decimal point. For example, compare the
following calculations, assuming A(2%)=0 in each expression.

PRINT A(2%2)+(32767+2)5 A(2%) + (32767.+2)
-32767 32769

READY

The result of the first expression is guided by the appearance of the
per cent sign and forces an integer result. The decimal point in the
second expression forces results in floating point format. The same
principle applies in the following example.

PRINT 1% + 1723 1. + 1725 1 + 1/2
1 15 1.5

READY

The explicit per cent sign and the decimal point determine the format
of the result and enables the user to control the result.

6.8 FLOATING POINT AND SCALED ARITHMETIC

Floating point numbers occupy either two 16-bit words or four
16-bit words of storage in memory. With the single precision package,
2 words are used; with the double precision package, 4 words are used.
Appendix F describes the internal format of the two packages.

With the 2-word format, the user can accurately represent numbers
up to six decimal digits, and, with the 4-word format, numbers up to
15 decimal digits. Both formats allow numbers in the range 10-38 to
10+38 approximately. An attempt to assign or compute a number outside
the allowed range causes the FLOATING POINT ERROR condition (ERR = 48).

The system performs output of numeric results of floating point
calculations as described in Section 2.5.1. To perform output of
numbers larger than six digits, the user can tailor the format as
described in Section 10.4.1 for the PRINT USING statement.

Since all fractional numbers cannot be represented exactly in
binary notation, certain calculations in floating point result in an
accumulated error. For example, the following calculation, run in

standard four-word floating point, results in an accumulated error.

6-10

LISTNH

18 X = @

20 X = X + .81 FOR 1%=1% TO 1000902
30 PRINT X - 108: END

READY

RUNNH
-+177636E-11

READY

If no accumulated error exists, the result is 0. Running the example
code on a system using the two-word format generates a much greater
accumulated error (approximately .00295).

To perform decimal calculation on a system having the double pre-
cision floating point (4-word) math package, the user can employ the
scaled arithmetic feature to avoid accumulated error. Systems with
two word precision do not have scaled arithmetic. The user can specify
the number of decimal places in fractional numbers by use of the SCALE
command. (See the description of the SCALE command in Section 2.8 of
the RSTS-11 System User's Guide).

With the scaled arithmetic feature, the user can select a scale
factor between 0 and 6. The system uses the scale factor to preserve
the accuracy of fractional numbers to that number of decimal places.
The value 0 is a special scale factor which disables the scaled arith-
metic feature and allows the system to perform calculations using
standard double precision floating point arithmetic.

With a scale factor of n between 1 and 6 in effect, the system,
upon input of a floating point number, internally moves the decimal
point n places to the right and rounds it to an integer. The sys-
tem performs all subsequent calculations with the floating point
integers and, in turn, translates the result of each arithmetic opera-
tion into a floating point integer with the scale factor n. On output,
the system moves the decimal point to the left n places (descales) and
passes the result to the PRINT or PRINT USING routines to format.

A scale factor between 1 and 6 determines the accuracy of frac-
tional numbers. For example, with a scale factor of 2 in effect, the
following statement, upon input,

XO-OI

causes the system to move the decimal point 2 places to the right. If
any rounding is necessary, the system does it at this point. The
system then converts the result, 1, to a floating point representation.
Similarly, .l becomes 10 internally; and all numbers less than .005
become g.

The scaled arithmetic conversion thus avoids the loss of preci-
sion inherent in representing fractional numbers in binary notation
since the system can represent the integer accurately in floating
point format. This feature, therefore, allows more predictable arith-
metic results. For example, running the following calculation with a
scale factor of 2 yields a 0 result.

LISTNH

10 X =0

20 X = X + 01 FOR 12=1%2 TO 1060%
3@ PRINT X ~ 10@: END

READY

RUNNH
)

READY

The scaling factor of 2 eliminates the inaccuracy in representing a
fraction two places to the right of the decimal point.

The range of integer numbers which can be represented accurately
decreases according to the scale factor in effect. For example, with
a scale factor of 2 in effect, two of the 15 digits must be used to
represent the two digits of fraction. There remains 13 places to
accurately represent the integer portion of the number.

With a scale factor in effect, the system handles output by PRINT
and PRINT USING statements in the standard manner. The PRINT state-
ment still handles 6 digits or less and uses the E format for numbers
larger than 6 digits. The PRINT USING statement formats numbers
according to the specified string.

The mathematical functions described in Section 3.7 can be used
in conjunction with the scaled arithmetic feature. With a non-zero
scale factor in effect, the system automatically descales the number
passed, computes the value of the function, and converts, with any
necessary rounding, the value returned to an appropriately scaled

floating point integer.

CHAPTER 7

MATRIX MANIPULATION

This Chapter deals with BASIC-PLUS matrix manipulation commands. Ma-

trices can be composed of variables of any type. A single matrix, how-
ever, is composed of a single type of data: floating-point, integer,

or character string. The MAT operations do not set the zero elements

[A(ﬂ» or B(#,n) and B(n,@)] of the specified matrix to conform with

the requested operation.

7.1 BASIC-PLUS ARRAY STORAGE

A BASIC-PLUS program can define the size of a matrix in one of
two ways: explicitly, by including the matrix in a dimension state-
ment, or implicitly, where the matrix does not appear in any dimension
statement. Implicitly dimensioned matrices are assumed to have ten
elements in each dimension referenced (size 10 for a one-dimensional
matrix and size 10 by 10 for a two-dimensional matrix, with each
dimension also having a zero row and column). Implicitly dimensioning
the matrix A(I,J), for example, has the same effect as explicitly in-

cluding the following statement:

19 DIM A(106,10)

Dimensioning a matrix (explicitly or implicitly) establishes two
quantities for the system: the default number of elements in each
row and column and the maximum number of elements in the matrix.
Through use of the MAT commands, described in this Chapter, the program
can alter the number of elements in each row and the number of columns
in the matrix as long as the total number of elements does not exceed
the number defined when the matrix was dimensioned. Changing the num-
ber of elements in either or both dimensions is termed redimensioning

the matrix.

When a matrix is redimensioned, the user program should take
care not to reference elements outside the currently dimensioned
range of the matrix. For example, if the range of matrix A is 5 by 7,
referencing A(3,8) is improper and, although no error is generated,
generally results in some element elsewhere in the matrix being

destroyed.

7.2 MAT READ STATEMENT

The MAT READ statement is used to read the value of each element
of a matrix from DATA statements. The format of the statement is as

follows:
line number MAT READ <list of matrices>

Each element in the list of matrices indicates the maximum amount of
the matrix to be read (which cannot be greater than the dimensioned
size of the matrix). The individual elements are separated by commas.
If the matrix name is used without a subscript, the entire matrix is

read. For example:

13 DIM A(20,20)
23 MAT READ A

The above lines read a twenty by twenty matrix of floating-point data.
Data is read row by row; that is, the second subscript varies most

rapidly. If line 20 had read:

20 MAT READ A(5,15)

a five by fifteen matrix would be read and the matrix A would be re-

dimensioned.

7.3 MAT PRINT STATEMENT

The MAT PRINT statement prints each element of a one or two

dimensional matrix. The statement is of the form:
line number MAT PRINT <matrix name> {;}

If the matrix name consists of an unsubscripted matrix name, the
entire matrix is printed. If the matrix name is subscripted, then
the subscript indicates the maximum size of the matrix to be printed
(but does not redimension the matrix). Only one matrix can be out-
put by a single MAT PRINT statement.

If the matrix name is followed by a semicolon (;), the data
values are printed in a packed fashion. If the matrix name is
followed by a comma (,), the data values are printed across the

line with one value per print zone. If neither character follows

the matrix name (the null case), each element is printed on a

separate line.

13 DIM AC193,10),B(20,20)

120 MAT PRINT Aj 'PRINT 10*103 MATRIX,PACKED FORMAT
139 MAT PRINT B(N.M), 'PRINT N*M MATRIX, 5 ELEMENTS
'PER LINE

One dimensional arrays can be printed in either row or column
format.

MAT PRINT V

where V is a singly dimensioned array, prints the array V as a
column matrix, and

MAT PRINT V.,
prints the array V as a row matrix, five values per line.
MAT PRINT V;

prints the array V as a row matrix, closely packed. For example:

LISTNH

180 DIM AC7)>X(5)

2@ MAT READ A,X

3% MAT PRINT A3 :PRINT:MAT PRINT X

40 DATA 21,22,23,24535536537551552,53,54,55
5@ END

READY

RIJNNH
21 22 23 24 35 36 37

51
52
53
54
55

7.4 MAT INPUT STATEMENT

The MAT INPUT statement is used to input the value of each

element of a predimensioned matrix. The statement is of the form:

line number MAT INPUT <list of matrices>

Input is read from the keyboard, as with a normal INPUT statement,

and a ? character is printed when the program is ready to accept the
input. The LINE FEED key can be used to continue typing data on suc-
ceeding lines. The RETURN or ESCAPE key is used to enter the data to
the system. MAT INPUT does not affect row zero or column zero of the

matrix.

The MAT INPUT statement allows input of integer, floating-point
or character string values depending upon the variable names. Where
more than one matrix is to be input by the same MAT INPUT statements,

the names are separated by commas. For example:

19 DIM AZ(2A),B(15)
20 MAT INPIT AZsB

causes the program to input twenty integer elements for the array

A% and fifteen floating-point values for the array B.
Where an array or matrix element is specified, for example:

200 MAT INWIIT NZ%(25)

only 25 elements of the array are input, regardless of the number of
elements originally specified when the array was dimensioned. The

array is then redimensioned. For example:

5% DIM A(20,20),8B%(2,2)

120 MAT INPJT A(2,51)
119 MAT INPUT B%,C3

The matrix A is redimensioned in line 1#g@. The INPUT statement pro-
ceeds to accept input until the entire matrix has been read or the
RETURN or ESCAPE delimiter is encountered. Several lines can be
input by terminating the physical keyboard line with a line feed to
indicate continuation on the following line.

Following the input of a matrix, the two variables NUM and NUM2
contain the number of elements input. NUM contains the number of
rows input or, for a one dimensional matrix, the number of elements
entered. NUM2 contains the number of elements in the last row. For
example, the following program inputs a variable size matrix (up to
10x10):

50 DIM AC103510)

108 INPUT "TYPE MATRIX DIMENSIONS'";N,M

110 MAT INPUT ACN,M)

120 !CHECK TO SEE IF ENTIRE MATRIX WAS ENTERED
139 IF NUMxNUM2=N*M THEN 1000

143 PRINT *"YOU DIDN'T ENTER THE WHOLE MATRIX"
150 GOTO 100

Unlike the INPUT statement, no text string can be output with the MAT
INPUT statement. For example:

109 MAT INPUT "TEXT' AZ
SYNTAX ERROR AT LINE 109

7.5 MATRIX INITIALIZATION STATEMENTS

A matrix initialization statement allows the user to create ini-
tial values for the elements of a matrix. The statement is of the

form:

{(DIM1,DIN2),

line number MAT <name>=<value> (DIM1)

The name specified is the name of a predimensioned matrix, and the op-
tional DIMI and DIM2 specifications indicate the size of the matrix
to be initialized. When specified, DIM1 and DIM2 cause the matrix to

be redimensioned. The value can be one of the following:

Value Meaning

ZER Sets all elements of the matrix to @ (this is
true of all matrices when they are first cre-
ated) . (Function does not set row @ or column
g.)

CON Sets all elements of the matrix to 1. (Function
does not set row g or column #.)

IDN Sets up an identity matrix (all elements are #
except for those on the diagonal, A(I,I), which
are 1). (Function does not set row § or column
g.)

If no dimensions are indicated (DIM1 and DIM2 are not specified)
in a matrix initialization statement, the existing dimensions of the

matrix are assumed to be unchanged. For example:

1 DIM A(175183)5B(15),C(203,20)

20 MAT A=ZER !SETS ALL ELEMENTS OF A=0

32 MAT B=CONC1®) !'SETS FIRST 10 ELEMENTS OF B=1l
4% MAT C=IDNC(10,103)

It should be noted that these instructions do not set row zero

or column zero.

7.6 MATRIX CALCULATIONS

Mathematical operators and two intrinsic functions are available

for use with matrices.

7.6.1 Matrix Operations

The operations of addition, subtraction, and multiplication can

be performed on matrices using the common BASIC mathematical symbols.

Each of the matrix operation statements is begun with the word
MAT and followed by the expression to be evaluated. Each of the ma-
trices involved must be predefined in a DIM statement. The subscripts
of the matrices need not be indicated on the statement. The matrices
indicated for any operation must be conformable to that operation. A

subset of one matrix cannot be indicated as part of an operation.

148 DIM ACSAY, BOZG:. COS@:

128 MAT C=AR+E

F:UNNH

MATEIX DTIMENSION ERROR RT LINE 12
RERDY

In order for line 120 to execute properly, line 110 should read:

118 DIM ACSAX BOSEY, COSE

Multiplication of conformable matrices is indicated as follows:

16 DIW Doda, S0, 005, 1680, Fdo18. 167
206 MAT R = [«C

By conformable matrices is meant that the number of columns in matrix
D is equal to the number of rows in matrix C. The dimensions of the
matrix R must be large enough to contain the number of columns in D
and the number of rows in C. The operation MAT A=A*B or MAT A=B*A

is illegal.
Scalar multiplication of a matrix is performed as follows:
1145 MAT C = C(E»*A

Each element of matrix A is multiplied by the scalar value (constant,

variable, or formula) K, indicated in parentheses.

7-6

The form MAT A=(K)*A is legal. Matrix A can be copied into matrix C

(providing sufficient space is available in matrix C) as shown below:

128 MAT C=R

7.6.2 Matrix Functions

Functions exist for the performance of transposition and inver-

sion of matrices.
158 MAT C=TREHNCAH?

causes matrix C to be set equal to the transpose of matrix A. That
is, C(1,J3)=A(J,I) for all I,J; matrix C is redimensioned if necessary.

For example:

16 DIM Kod5, 250, NOG, 1@, MO5, 5
VS MAT K=TREHIN:
15@ MAT H=INV M2

causes N to be computed as the inverse of matrix M (M must be a square
matrix). After the inversion is complete, the function DET is set to
the value of the determinant of matrix M. (If the matrix being in-
verted is sufficiently singular to make it impossible to complete the in-
version, the message CAN'T INVERT MATRIX is printed.) The value of DET,

then, can be used as a variable in any formula. For example:

288 MAT A INWCRY Di=DET
218 MAT E INVERY . DE=DET
2Z@8 1F Di=1/0% GOTO 468 ELSE FRINT "RELATIOMSHIF TEUE®

ion

Matrix inversion, like the other BASIC-PLUS matrix operations,
does not operate on the elements of the row g and column g of the
matrix; however, inversion destroys the previous contents of these
elements. The operation MAT A = INV(A) is legal.

CHAPTER 8

ADVANCED STATEMENT FEATURES

8.1 DEF STATEMENT, MULTIPLE LINE FUNCTION DEFINITIONS

In Chapter 3 the DEF statement is described as having the ability
to create a one-line function which the user can call as an element in
a BASIC statement. The user has, by now, probably felt the need for a
user-defined function which can extend onto more than one line; such
a facility is available. The format for a multiple-line function

definition is as follows:

line number DEF FN<identifier><(dummy arguments)>
<body of definition>

line number FNEND

The multiple-line DEF function is distinguished from the one-line
user functions by the absence of an equal sign following the func-
tion name on the first line. (From zero to five arguments of any
type or mixture of types can be used.) The value returned by the
function is the value of FN<identifier> at the time the FNEND state-
ment is encountered. Somewhere within the multiple-line definition

there must be a statement of the form:

line number {LET} FN<identifier> = <expression>

It is the value of this expression which is returned as the value of
the function. (There may be more than one such statement, as in the

example below.)

The function example below determines the larger of two numbers
and returns that number. The use of the IF-THEN statement is fre-

quently found in multiple line functions as follows:

CEF FHNMOH, Y
LET FNM=¥

IF Yd=4 THEN S@
LET FHM=¥

FHREND

o
DUl Wy I]

DXL I S
DxXiEne)

As another example, the following is a recursive! function that com-

putes N-factorial:

LISTNH

10 DEF FNF((MZ)

29 1F MZ=1% THEN FNF=1 ELSE FNF=MZ*FNF(M%-12)
39 FNEND

35 INPIT "VALUJE FOR FACTORIAL';i¥

40 PRINT M"FACTORIAL EQUALS'FNF (M)

5@ END

READY

RUNNH
VALUE FOR FACTORIAL? 4
4 FACTORIAL EQUALS 24

READY

Any variable referenced in the body of a function definition which is
not an argument of that multiple line DEF function has its current
value in the user program. Multiple-line DEF functions can be nested
(one multiple-line definition can reference another multiple-line
definition or itself). There must not be a transfer from within the
definition to outside its boundaries or from outside the definition
into it. The line numbers used by the definition must not be refer-

enced elsewhere in the program.

The parameters with which a user-defined function is called are
strictly formal; attempts by the program to modify them are cancelled

when the function exits to its calling program:

LISTNH

1@ DEF FNB(X)

20 X=0: FNB=10
39 FNEND

40 A=1: B=FNB(A)
59 PRINT A,B

63 END

READY

RUNNH
1 10

READY

!The term recursive refers to an inherently repetitive process in which

the result of each cycle is dependent upon the result of the previous
cycle.

A is not set to @ by the function FNB(A). However, any variable ref-
erenced in the body of the function definition which is not one of the
function arguments will retain, after exit from the function, any value

assigned to that variable during the execution of the function.

Functions can be written in any type and can contain any variety

of argument types. For example:

LISTNH

19 DEF FNAS$(A,B,C%)

2n IF A>B GOTO 40

3% FNAS=CHRS(A+1): GOTO 50

49 FNAS=CHRS(A+CZ)

50 FNEND

60 INPUT "VALTJES FOR A,B,C2"3A,3,C%

70 PRINT "FNA$(AsB,CZ) = "FNAS(A,B,C%)
&0 END

READY

RTIUNNH

VALUJES FOR A5B,C%? 3657.5,24
FNAS(A,B,CZ) = <

READY

RUNNH

VALUES FOR A»BsC%? 4525546758
FNA$CALB,CZ) = 5

READY

8.2 ON-GOTO STATEMENT

The simple GOTO statement allows the user to unconditionally
transfer control of the program to another line number. The ON-GOTO
statement allows control to be transferred to one of several lines
depending on the value of an expression at the time the statement is

executed. The statement is of the form:

line number ON <expression> GOTO <list of line numbers>

The expression is evaluated and the integer part of the expression is

used as an index to one of the line numbers in the list. For example:

53 ON ¥ GOTO 190,200,300

transfers control to line number 1g@ if the value of X is 1, to line
number 20@¢ if X is 2, and to 3¢@g if X is 3. Any other values of X
(other than 1, 2, or 3 in this example) cause an error message to be
printed (or a transfer to an ON ERROR-GOTO routine with ERR=58).

8.3 ON-GOSUB STATEMENT

The GOSUB and RETURN statements are used to allow the user to
transfer control of his program to a subroutine and return from
that subroutine to the normal course of program execution (see
Section 3.8 for details). The ON-GOSUB statement is used to condi-
tionally transfer control to one of several subroutines or to one
of several entry points to one (or more) subroutine(s). The state-

ment is of the form:

line number ON <expression> GOSUB <list of line numbers>

Depending on the integer value (truncated if necessary) of the ex-
pression, control is transferred to the subroutine which begins at
one of the line numbers listed. Encountering the RETURN statement
after control is transferred in this way allows the program to resume
execution at the line following the ON-GOSUB line.

An example of the statement follows:

83 ON X-Y GOSUB 900,933,1014

When line 80 is executed, the value of X-Y being either 1, 2, or 3
causes control to transfer to line 900, 933 or 1014, respectively.

If the quantity X-Y is not equal to 1, 2 or 3, the error message:;

ON STATEMENT OUJT OF RANGE AT LINE 89

is printed (or the user can transfer to an ON ERROR-GOTO routine with
ERR=58).

Since it is possible to transfer into a subroutine at different
points, the ON-GOSUB statement could be used to determine which por-

tion of the subroutine should be executed.

8-4

8.4 ON ERROR GOTO STATEMENT

Certain errors can be detected by BASIC while executing a user
program. These errors fall into two broad areas: computational
errors (such as division by) and Input/Output errors (reading an
end-of-file code as input to an INPUT statement). Normally the
occurrence of any of these errors causes termination of the user

program execution and the printing of a diagnostic message.

Some applications may require the continued execution of a user
program after an error occurs. In these situations, the user can
execute an ON ERROR GOTO statement within his program. This state-
ment tells BASIC that a user subroutine exists, beginning at the
specified line number, which will analyze any I/0 or computational
error encountered in the program and possibly attempt to recover

from that error.

The format of the ON ERROR GOTO statement is as follows:

line number ON ERROR GOTO {<line number>}

This statement is placed in the program prior to any executable
statements with which the error handling routine deals. If an error
does occur, user program execution is interrupted and the user

written error subroutine is started at the line number indicated. The
variable ERR, available to the program, assumes one of the values listed
in Table 8-1. Table 8~1 is also contained in Appendix C, the com-
plete RSTS error message summary.

When an error is encountered in a user program, BASIC checks to
see if the program has executed the ON ERROR GOTO statement. If this
is not the case, then a message is printed at the user's terminal and
the program proceeds (if the error does not cause execution to
terminate). If the ON ERROR-GOTO statement was executed previously,
then execution continues at the specified line number where the
program can test the variable ERR to discover precisely what error

occurred and decide what action is to be taken.

Table 8-1

User Recoverable Errors

(C) indicates that program execution continues, following printing of

the error message,

if an ON ERROR GOTO statement is not present.

Otherwise, execution terminates and the system prints the READY mes-

sage.

ERR

Message Printed

Meaning

1

10

BAD DIRECTORY FOR DEVICE

ILLEGAL FILE NAME

ACCOUNT OR DEVICE IN USE

NO ROOM FOR USER ON DEVICE

CAN'T FIND FILE OR ACCOUNT

NOT A VALID DEVICE

I/0 CHANNEL ALREADY OPEN

DEVICE NOT AVAILABLE

I/0 CHANNEL NOT OPEN

PROTECTION VIOLATION

The directory of the device refer-
enced is in an unreadable format.

The filename specified is not ac-
ceptable. It contains embedded
blanks or unacceptable characters.

The specified operation cannot be
performed because the file is al-
ready open by some user. This
message has a general "file in use"
meaning.

Storage space allowed for the cur-
rent user on the device specified
has been used or the device as a
whole is too full to accept further
data.

The file specified or current user
account numbers were not found on
the device specified. This message
has a general "not there" meaning.

Attempt to use an illegal or non-
existent device specification

An attempt was made to open one of
the twelve I/0 channels which had
already been opened by the program.

The device requested is currently
reserved by another user.

Attempt to perform I/O on one of the
twelve channels which has not been
previously opened in the program.

The current user is not allowed to
perform the requested operation on
the specified file. Input may have
been requested from an output-only
device or vice versa. This message
has a general "can't do that" mean-
ing.

ERR

Message Printed

Meaning

11

12

14

15

16

17

18

19

20

21

22

23

24

25

END OF FILE ON DEVICE

FATAL SYSTEM I/0 FAILURE

USER DATA ERROR ON DEVICE

DEVICE HUNG OR WRITE LOCKED

KEYBOARD WAIT EXHAUSTED

NAME OR ACCOUNT NOW EXISTS

TOO MANY OPEN FILES ON UNIT

ILLEGAL SYS() USAGE

DISK BLOCK IS INTERLOCKED

PACK IDS DON'T MATCH

DISK PACK IS NOT MOUNTED

DISK PACK IS LOCKED OUT

ILLEGAL CLUSTER SIZE

DISK PACK IS PRIVATE

DISK PACK NEEDS 'CLEANING'

Attempt to perform input beyond the end
of adata file; or a BASIC source file
is called into memory and is found
to contain no END statement.

An I/0O error has occurred on the
system level. The user has no
guarantee that the last operation
has been performed.

One or more characters may have
been transmitted incorrectly due

to a parity error, bad punch com-
bination on a card or similar error.

User should check hardware condition
of device requested. Possible causes
of this error include a line printer
out of paper or high-speed reader
being off-1line.

Time requested by WAIT statement has
been exhausted with no input received
from the specified keyboard.

An attempt was made to rename a file
with the name of a file which already
exists, or an attempt was made by

the system manager to insert an ac-
count code which is already within
the system.

Only one open DECtape output file

is permitted per DECtape drive. Only
one open file per magtape drive is
permitted.

Illegal use of the SYS system func-
tion.

The requested disk block segment is
already in use (locked) by some other
user.

The identification code for the
specified disk pack does not match
the identification code on the pack.

No disk pack is mounted on the speci-
fied disk drive.

The disk pack specified is mounted
but temporarily disabled.

The specified cluster size is unac-
ceptable.

The current user does not have ac-
cess to the specified private disk
pack.

Non-fatal disk mounting error; use
CLEAN system call.

8-17

ERR

Message Printed

Meaning

26

27

28

29

30

31

32

33

34

35

36

37

FATAL DISK PACK MOUNT ERROR

I/0 TO DETACHED KEYBOARD

PROGRAMMABLE 1C TRAP

CORRUPTED FILE STRUCTURE

DEVICE NOT FILE STRUCTURED

ILLEGAL BYTE COUNT FOR I/0

NO ROOM AVAILABLE FOR FCB

UNIBUS TIMEOUT FATAL TRAP

RESERVED INSTRUCTION TRAP

MEMORY MANAGEMENT VIOLATION

SP (R6) STACK OVERFLOW

DISK ERROR DURING SWAP

Fatal disk mounting error,

I/0 was attempted to a hung up data-
set or to the previous, but now de-
tached, console keyboard for the job.

ON ERROR-GOTO subroutine was entered
through a program trapped CTRL/C.

See a description of the SYS system
function.

Fatal error in CLEAN system call.

An attempt is made to access a device,
other than a disk,DECtape, or magtape
device, as a file-structured device.
This error occurs, for example, when
the user attempts to gain adirectory
listing of a non-directory device.

The buffer size specified in the
RECORDSIZE option of the OPEN statement
or in the COUNT option of the PUT
statement is not a multiple of the
block size of the device being used
for I/0.

When the user accesses a file under
programmed control in RSTS-11, a sys-
tem control structure called an FCB
requires one small buffer and one small
buffer is not available for the FCB.

This hardware error occurs when an
attempt is made to address nonexistent
memory or an odd address using the
PEEK function. An occurrence of this
error message in any other case is
cause for an SPR.

An attempt is made to execute an
illegal or reserved instruction or an
FPP instruction when floating point
hardware is not available. (SPR)

This hardware error occurs when an
illegal Monitor address is specified
using the PEEK function. Generation
of the error message in situations
other than using PEEK is cause for an
SPR.

An attempt to extend the hardware
stack beyond its legal size is
encountered. (SPR)

A hardware error occurs when a user's
job is swapped into or out of memory.

The contents of the user's job area
are lost but the job remains logged
into the system and is reinitialized

to run the NONAME program. (SPR)

ERR

Message Printed

Meaning

38

39

40

41
42

43

44
45

46

47

48

49

50

51

52

53

54

MEMORY PARITY ERROR

MAGTAPE SELECT ERROR

MAGTAPE RECORD LENGTH
ERROR

NO RUN-TIME SYSTEM

VIRTUAL BUFFER TOO LARGE

VIRTUAL ARRAY NOT ON DISK

MATRIX OR ARRAY TOO BIG

VIRTUAL ARRAY NOT YET OPEN

ILLEGAL I/O CHANNEL

LINE TOO LONG

FLOATING POINT ERROR

ARGUMENT TOO LARGE IN EXP

DATA FORMAT ERROR

INTEGER ERROR

ILLEGAL NUMBER

ILLEGAL ARGUMENT IN LOG

IMAGINARY SQUARE ROOTS

A parity error was detected in the
memory occupied by this job.

When access to a magtape drive was
attempted, the selected unit was
found to be off line.

When performing input from magtape, the
record on magtape was found to be
longer than the buffer designated to
handle the record.

Reserved.

Virtual core buffers must be no more
than 512 decimal bytes long.

A non-disk device is open on the channel

upon which the virtual array is
referenced.

In-core array size is too large.

An attempt was made to use a virtual
array before opening the corresponding
disk file.

Attempt was made to open a file on an
I/0 channel outside the range of the
integer numbers 1 through 12.

Attempt to input a line longer than
255 characters (which includes any
line terminator). Buffer overflows.

Attempt to use a computed floating
point number outside the range
|1E-38|<n<|1E38| excluding zero. If
no transfer to an error handling
routine is made, zero is returned as
the floating point value. (C)

Maximum is in the range -89<arg<+88.
Value returned is zero. (C)

A READ or INPUT statement detected

data in an illegal format. For

example, 1..2 is an improperly

formed number, 1.3 is an improperly
formed integer, and X" isan illegal
string. (C).

Attempt to use a computed integer out-
side the range -32767<n<32767. If no
transfer to an error handling routine
is made, zero is returned as the
integer value. (C)

Integer or floating point overflow or
underflow.

Negative or zero argument to log func-
tion. Value returned is the argument
as passed to the function. (C)

Attempt to take square root of a num-
ber less than zero. The value returned

is the square root of the absolute value

of the argument. (C)

8-9

ERR

Message Printed

Meaning

55

SUBSCRIPT OUT OF RANGE

Attempt to reference an array element
beyond the number of elements created
for the array when it was dimensioned,

56 CAN'T INVERT MATRIX Attempt to invert a singular matrix.

57 OUT OF DATA The DATA list was exhausted and a
READ requested additional data.

58 ON STATEMENT OUT OF RANGE The index value in an ON-GOTO or
ON-GOSUB statement is less than one
or greater than the number of 1line
numbers in the 1list.

59 NOT ENOUGH DATA IN RECORD An INPUT statement did not find
enough data in one line to satisfy
all the specified variables.

60 INTEGER OVERFLOW, FOR LOOP The integer index in a FOR loop
attempted to go beyond 32766 or
below -32766.

61 DIVISION BY # Attempt by the user program to divide
some quantity by zero. (C) If no
transfer is made to an error hand-
ling routine, a @ is returned as
the result.

8.4.1 RESUME Statement

After the problem is corrected (if this is both possible and
desired by the program), execution of the user program can be resumed
through use of the RESUME statement (which is placed at the end of
the error handling routine, much like a RETURN statement in a normal
subroutine). The RESUME statement causes the program statement that
originally caused the error to be reexecuted. If execution is to be
restarted at some other point within the program (as might be the case
for a non-correctable problem), the new line number can be specified

in the RESUME statement at the end of the error handling routine.

The format of the RESUME statement is as follows:
line number RESUME {<line number>}
For example:

2009 RESUME
20M1 RESUME 100

The line 2f@@ restarts the user program at the line in which the

error was detected, and is equivalent to the statement:

2000» RESUME @

A RESUME or RESUME @ statement in an error handling routine
passes control to the line containing the statement which caused the
error. If the statement which caused the error is on a multiple
statement line, control is passed to the DIM, DEF, FNEND, FOR, NEXT
or DATA statement immediately preceding it on the line. If none of
these six statements is present on the line, control passes to the

first statement on the line. For example, consider the line:

50 A=A+l : PRINT A : FOR M=1% TO 3% : INPUT X

If an error occurs in the INPUT statement, above, control is passed
to the preceding FOR statement on the same line - not to the first

statement of the line.

For this reason, a DIM, DEF, FNEND, FOR, NEXT or DATA statement
on a multiple statement line with error handling should be the first
statement on a line. Also, the first statement on a line should be
the statement which may generate the trappable error. Such placement
of the statement prevents logic errors and allows any further error
to be handled. Any other placement of the statement causes logic
errors because statements preceding the statement causing the error
are executed as many times as control is passed back to the line. 1If
the error handling routine must also handle errors, the program can
pass control to a RESUME statement which, in turn, can pass control

to the error handling routine.

Line 2001 above restarts the user program at line 100 (which can

be used to print some terminal message for that particular operation).

A RESUME statement should always be included in the error handling

routine.

8

11

8.4.2 Disabling the User Error Handling Routine

If there are portions of the user program in which any errors
detected are to be processed by the system and not by the user program,
the error subroutine can be disabled by executing the following state-

ment:

line number ON ERROR GOTO ¢

which returns control of error handling to the system. An equivalent
form is:

line number ON ERROR GOTO

in which case line @ is assumed. Executing this statement causes the
system to treat errors as it would if no ON ERROR GOTO had ever been
executed.

Generally, the error handling subroutine detects and properly
handles only a few different errors; it is useful to have the RSTS
system handle other errors, if they occur. For this reason, RSTS
allows the ON ERROR GOTO @ statement to be executed within the error
subroutine itself. Special treatment is accorded this case, in that
the disabling occurs retroactively; the error which caused entry to
the error subroutine is then reported and a message printed as though
no ON ERROR GOTO statement had been in effect.

As an example of this feature, consider an application in which
inexperienced users interact with a BASIC program. These users may
not know what to type at the terminal, and the program may want to
prompt them. The program tells the system to allow up to 60 seconds
for the user to respond (via the WAIT function, described in Section
8.8) and then to alert it that the user has not replied. The program

then prints additional information for the user.

The program below requests the user's name with the INPUT
statement on line 30. The ON ERROR GOTO statement is previously
executed on line 10.

12 ON ERROR GOTO 1000 'SET UP ERROR ROUTINE

2n WAIT(69) 'WAIT A% SEC. FOR REPLY
30 INPIIT "YOUR NAME'";N$!GET STUDENT NAME
5¢ STOP

L4
.

©

1309 !'THIS IS THE ERROR HANDLING ROUTINE

1710 1F ERR<>15 THEN ON ERROR GOTO @ !'WAIT ERRORS ONLY
1620 PRINT ISKIP TO NEW LINE

1337 PRINT “PLEASE TYPE YOUR NAME"

1947 PRINT "AND THEN HIT THE 'RETURN®' KEY"

1059 RESUME ITRY AGAIN

In this example, if the call to the error subroutine was caused by
some error other than the KEYBOARD WAIT EXHAUSTED error, the program
would exit via the ON ERROR GOTO # in line 1@1¢. This permits the
appropriate error message to be printed on the user's terminal. Note
that exiting via the RESUME at line 1458 causes the INPUT statement to

be restarted.

8.4.3 The ERL Variable

It is sometimes useful to be able to recognize the line number
at which an error occurred. Following an error detection, the integer

variable ERL contains the line number of the error.

ERL would be used,. for example, to indicate which of several
INPUT statements caused an END OF FILE error.

Care must be taken in use of the ERL variable since changing or
resequencing the line number field of all or some statements within
the program can alter the value of the ERL variable as it appears

within an expression context. For example:

1B ON ERROR GOTO 1648
28 INFUT “TYFE THO NON-ZERO HUMBERSY:A.E

@ LET X=A/B
48 LET H=:+B~H
58 FRIKT &

&8 STOF

1668 IF ERR<>61 THEN ON ERROR GOTO @
11@ PRINT "FIRST HUMEBER WRS &' IF ERL=4@
12@ PRINT "SECOND NUMEER WAE @&" IF ERL=Z#8

If the LET statements in lines 3§ and 4§ were moved to some other line-
numbers, lines 11§ and 12§ would also require a change.

8.5 IF-THEN-ELSE STATEMENT

The IF-THEN statement allows the program to transfer control to

another line or execute a specified statement depending upon a stated
condition.

The IF-THEN-ELSE statement is the same as the IF-THEN statement,
except that rather than executing the line following the IF statement,
another line number or statement can be specified for execution where
the condition is not met. The statement is of the form:

{ELSE<Zine number>

THEN<line number>
ELSE<statement> }

line number IF<condition> THEN<s tatement>
GOTO<line number>,

where the condition is defined as one of the following:

<relational expression> <logical operator> <relational expression>
and a relational expression is defined as:

<expression> <relational operator> <expression>

as described in Section 3.5. The relational condition is tested; if
it is true the THEN/GOTO part of the statement is executed. 1If the
condition is false, the ELSE part of the statement is executed. Fol-
lowing the word ELSE is either a statement to be executed or a line

number to which control is transferred.

As an example of an IF-THEN-ELSE statement:
75 IF K>Y THEN FRINT "GREATER" ELZE FRINT "NOT GREATER"

An IF statement can follow either the THEN or ELSE clause in the above

statement, making it possible to nest IF statement to any desired level.
For example:

188 IF AXE THEN IF EBX>C THEN FRINT “"AxBZC"

LISTNH
10 INPUT AsBsC
20 IF A>B THEN

IF B>C THEN PRINT "A>R>(C"
ELSE IF C>A
THEN PKINT ""C>A>B"
FLEFE PEINT "A>C>R"
ELSE IF A>C THEN PKINT "R>a>(C"
FLSFE IF B>C
THFN PRINT ‘*'B>C>A"
FLSE PRINT *“C>R>A"

3% FEND

FFADY

FIWNNH

?

2,9, 21

C>R>A

KFEADY

EUNNH

?

35651

R>A>C

KFADY

The use of the LINE FEED and TAB characters greatly improves the
legibility of complex program statements such as line 20 above.

The IF-THEN-ELSE statement can appear anywhere in a multiple-

statement line. However, if this statement is followed by any other

statements, the following rules apply:

The physically last THEN or ELSE clause is considered to be
followed by the next statement on the line:

19 IF a=1 THEN 100 FLSF PRINT At PRINT “ONE"

where A#1, the value of A and the text string ONE are printed.

All other THEN or ELSE clauses are considered to be followed
by the next line of the program:

20 IF A>B THEN IF B<C THEN FKINT "B<(C": GO10 30
25 PKINT "A<B"

Only in the case where "B<C" is printed is the statement
GOTO 3@ seen and executed.

If either A<B or B>C, the line "A<B" is printed.

8.6 CONDITIONAL TERMINATION OF FOR LOOPS

In the simple FOR-NEXT loop described in Section 3.6.1, the for-

mat of the FOR statement is given as:
line number FOR<variable>=<expression>TQ<expression>{STEP<expression>}

There are many situations in which the final value of the loop variable
is not known in advance and what is really desired is to execute the
loop as many times as necessary to satisfy some condition. In evaluat-
ing a function, for example, this condition might be the point at which
further iterations contribute no further accuracy to the result.
BASIC-PLUS provides a convenient way of specifying that a loop is to
be executed until a certain condition is detected or while some con-

dition is true. These statements take the forms:

relational>

i . - . Lon> < .
line numberFOR<variable>=<expression>{STEP<expression } WHILE cxpression

and

relational

3 3 =) Lon> < LU
line numberFOR<variable>=<expression>{STEP<expression>}UNTIL expression

The condition has the same structure as specified in an IF statement
(see Section 3.5) and can be just as elaborate, if necessary. Before
the loop is executed and at each loop iteration the condition is tested.
The iteration proceeds if the result is true (FOR-WHILE) or false

(FOR-UNTIL) .

The difference between a FOR loop specified with a WHILE or UNTIL
and one specified with a terminal value for the loop variable is
worth noting, in order to avoid potential pitfalls in the usage of

each. Consider the two loops in the program below:

LISTNH

19 FOR I=1 TO 1@

15 PRINT I

280 NEXT 1

25 PRINT "I="1

5@ FOK I=1 UNTIL I1>10
55 PRINT 1I;

60 NEXT I

65 PRINT "I="1

75 END

READY

RUNNH
it 2 3 4 5 6 7 8 9 10 I= 10
1 2 3 4 5 6 7 8 9 10 I= 11

READY

Each of these loops prints the numbers from 1 to 10. When the loop
at line 10 is done, however, the loop variable is set to the last
value used (that is, 10). In the second loop beginning at line 50,
the loop variable is set to the value which caused the loop to be
terminated (that is, 11).

Next consider the two loops following:

LISTNH

10 X=10

20 FOR I=1 TO X

30 X=Xs/2: PRINT I,X

40 NFXT 1
5@ PRINT
60 X=10
7@ FOR I=1 UNTIL I>X
83 X=X/2: PRINT I,X
90 NEXT I
95 END
READY
RUNNH
1 5
2 2.5
3 1.25
5 « 31925
€ « 15625
7 « 278125
8 « 390 625E-1
9 «195313E-1
i «9TA563E=-2
1 5
2 2¢5
KREADY

In the case of the loop beginning with line 20, the iteration stops
when I exceeds the initial value of X (that is, 10). Even though the
value of X changes within the loop, the initial value of X determines
the performance of the loop. In the second loop, the current value
of X determines when the iteration ceases. Thus, after three itera-
tions, I is greater than X in the second loop and the loop is termin-

ated. (The STEP value when omitted, is still assumed to be 1.)

These forms of loop control are particularly useful in iterative
applications where data generated during the loop execution determines

loop completion.

Consider the problem of scanning a table of values until two

successive elements are both 0, or the end of the table is reached:

.
.

.

120 FOR I=1 UNTIL I=N OR X(I)>=0 AND X(I+1)=0
115 NFXT 1

.

The following two programs also illustrate the FOR-UNTIL and
FOR-WHILE constructions:

LISINH

180 INPUT "LFETTEE IS";Y$%

20 X$='""": FOR I=1 UNTIL X%=Y% Ok X%&="2ZZ"

3@ READ X%: NEXT I

40 DATA AsPsCoDsFsFsCoHs IsJsKsLsMsN»OsPsQs Ry S5 TollsUsWwsXsYslollZ
5% PRINT "LETTEK IS NUMBFER"I-1

99 END

READY

RUNNH
LETTER IS? C
LETTER 1S NUMBEEK 3

READY

RUNNH
LETTER IS? Q
LETTER IS NUMREE 17

READY

LISTNH

180 INPUT "WORD'";Y$

20 X%$='"": FOE I=1 WHILE X%<=Y%

30 READ X%$: NEXT 1

40 DATA AsBsCoDsEsFsGoHs 1o JdoKsLoMsNsOsPs Qs Ry Ss TsUsUsWsXsYsZs»ZZ2
53 PRINT "WORD BEGINS WITH LETTER" 1-2

9¢ END

READY

RUNNH

WORD? FIRST

WORD BEGINS WITH LETTEER 6
READY

RUNNH

WORD? LAST

WORD BEGINS WITH LETTER 12

READY

8.7 STATEMENT MODIFIERS

To increase the flexibility and ease of expression within BASIC-
PLUS, five statement modifiers are available (IF, UNLESS, FOR, WHILE,
and UNTIL). These modifiers are appended to program statements to
indicate conditional execution of the statements or the creation of

implied FOR loops.

8.7.1 The IF Statement Modifier

The form:
<statement>IF<condition>
is analogous to the form:

IF<condition>THEN<statement>

For example:

1@ PRINT X IF X<>0
is the same as:

1® IF X<>3 THEN PRINT X

The statement is executed only if the condition is true.

When a statement modifier appears to the right of an IF-THEN
statement, then the modifier operates only on the THEN clause or the
ELSE clause, depending on its placement to the left or right of ELSE.

For example:

189 IF 1=1 THEN PRINT "HELLO" ELSE PRINT "BYE" IF 1=0

will print:

HELLO

since the test 1=1 1is true. The modifier 1IF 1=§ is false, but

as it applies only to the ELSE clause, it is never tested.

It is not possible to include an ELSE clause when using the

modifier form of IF

Several modifiers may be used within the same statement, For
example:

7@ PRINT X(I,J) IF I=J IF X(1,J)<>@

prints the value of X(I,J) only if the value of X(I,J) is non-zero
and if I equals J. When there is more than one modifier on a line,

the modifiers are executed in a right-to-left order. That is, the

rightmost one is executed first and the leftmost is executed last.

This situation is described by the term "nested modifiers".

An additional operational advantage of IF modifiers is

illustrated in the discussion of FOR modifiers in Section 8.7.3.

8.7.2 The UNLESS Statement Modifier

The form:

<statement> UNLESS <condition>

causes the statement to be executed only if the condition is false.
This particular form simplifies the negation of a logical condition.

For example, the following statements are all equivalent:
12 PRINT A UNLESS A=0@
20 PRINT A IF NOT A=0

39 IF NOT A=0 THEN PRINT A
40 IF A<>0 THFN PRINT A

Do not use the implicit GOTO statement with the UNLESS modifier;
this may cause CATASTROPHIC ERRORS when the condition in the modifier
are met, Instead, use the GOTO statement explicitly, as follows:

IF A=B THEN GOTO 6g# UNLESS C=D
Do not use:

IF A=B THEN 6@gf@ UNLESS C=D

8.7.3 The FOR Statement Modifier

The form:

<statement>FOR<variable>=<expression>TO<expression>{STEP<expression>}

or, the form
WHILE<expression>]

<statement>EOR<variabZe>=<expression>{STEP<empression>}[UNTIL<expression>

can be used to imply a FOR loop on a single line. For example (using
none of the optional elements):
12 PRINT 1, SOQR(I) FOR I=t TO 1A

8-20

This statement is equivalent to the following FOR-NEXT loop:

20 FOR I=1 TO 10
25 PRINT I, SQRC(I): NEXT I

In cases where the FOR-NEXT loop is extremely simple, the necessity
for both a FOR and a NEXT statement is eliminated. Notice that this
implied FOR loop will only modify (and hence execute iteratively) one
statement in the program. Any number of implied FOR loops can be used

in a single program.

As in the case with all modifiers, a FOR modifier in an IF state-
ment operates only on the THEN or ELSE clause with which it is associ-
ated, and never on the conditional expression to the left of the THEN.
Thus, if it was desired to print all non-zero values in a matrix X(1gg),
the following program would not operate properly:

10 DIM X(1088)
15 READ X(I) FOR I=t TO 100
20 IF X(1)<>@ THEN PRINT I,X(I) FOR I=1 TO 100

since the implied FOR loop at line 20 applies only to the THEN PRINT...

part of the statement, and not to the IF... part. The first value of X

tested is X(100), since I remained at 100 from statement 15. To achieve
the desired effect, it is only necessary to state line 20, not as an IF

statement, but rather as a PRINT statement with nested modifiers; for

example:

20 PRINT I,X(I) IF X(1)<>@ FOR I=1 TO 1090

when expressed in the latter form, the nested modifier rule takes effect,
and all the values of X(I) are tested and printed as appropriate.

The WHILE and UNTIL clauses are explained in Section 8.6.

8-21

8.7.4 The WHILE Statement Modifier

The form:
<statement> WHILE <condition>

is used to repeatedly execute the statement while the specified con-

dition is true. For example:
10 LET X=Xt2 WHILE Xt2<1E6
is equivalent to:

18 LET X=Xt12

1S IF X<1E6 THEN 10
The WHILE modifier (and the UNTIL modifier in Section 8.7.5) operates
usefully only in iterative loops where the logical loop structure modi-
fies the values which determine loop termination. This is a significant
departure from FOR loops, in which the control variable is auto-
matically iterated; a WHILE statement need not have a formal
control variable. The following infinite loops never terminate:

18 X=X+1 WHILE 1<1000

15 PRINT 1I,ACI) WHILE ACI)<>Q
In both cases, the program fails to alter the values which are used to
determine when the loop is done.,

A successful application of the WHILE modifier is shown below:

S ITEST OF SQUARE ROOT ROUTINE

10 X=X+1 WHILE X=SQR(Xt2)

20 PRINT X

As in the UNLESS modifier case, use the GOTO statement
explicitly to avoid an error with the WHILE modifier.

8.7.5 The UNTIL Statement Modifier

The form:
<statement> UNTIL <condition>

is used to repeatedly execute the statement until the condition becomes
true; which is to say, while the condition is false. For example:

19 X=X+1 UNTIL X<>SQR(Xt2)

is the same as:

18 ¥=H+1
20 IF ¥=SGRCX72) THEN 1@

As in the UNLESS modifier case, use the GOTO statement
explicitly to avoid an error with the UNTIL modifier.

8-22

8.7.6 Multiple Statement Modifiers

More than one modifier can be used in a single statement. Multiple

modifiers are processed from right to left. For example:

10 LET A=B IF A>@ IF B>0

which is equivalent to:

10 IF B>® THEN IF A>Q THEN A=B

or
10 IF B>3 AND A>8 THEN LET A=R

or
10 IF B<=0 THEN 40
20 IF A<=0 THEN 40
38 LET A=B

A two dimensional matrix (m by n) can be read one row at a time as

follows:

50 READ ACI,J) FOR J=1 TO M FOR I=1 TO N

which is equivalent to:

5 MAT HEAD A(N,M)

and to:

50 FOR I=1 TO N
55 FOR J=1 TO M
6@ READ ACI,J)
65 NEXT J

77 NEXT I

Also see Section 8.7.3 which described the interaction of FOR and IF
modifiers.

8.8 SYSTEM FUNCTIONS AND STATEMENTS

RSTS-11 has several system functions which allow the user to
obtain certain information about or perform operations with the

system. The functions are described in Table 8-2,

Table 8-2

SYSTEM FUNCTIONS

PN
Function

Meaning

Sample Usage

DATES (#)

DATES (N)

TIMES (#)

TIMES (N)

TIME (#)

TIME (1)

TIME (2)

TIME (3)

TIME (4)

returns the current day, month
and year, in the form:

2-Mar-72

Note that the date contains both
upper and lower case characters
(where lower case is not avail-
able on some terminals, only
upper case letters are used but
the ASCII values imply lower
case).

returns a character string cor-
responding to a calendar date.
The formula used to translate
between N and the date is as
follows:

(day of year)+[(number of years
since 1970)*1g9¢]

DATES (1)="@g1-Jan-78"
DATES (286@)="29-Feb-72"

returns the current time of day
as a character string as fol-
lows:

TIMES (@)="@5:38 PM"

or"17:38 "
returns a string corresponding
to the time at N minutes before
midnight, for example:

TIMES (1)="11:59 PM" or "23:59"

TIMES (1448)="12:08 AM" or "@g@g:8¢"

TIMES (721)="11:59 AM" or "11:59"
N must be less than 1441 to
return a valid string.

returns the clock time in sec-
onds since midnight.

returns the central processor
(CPU) time used for this job
in g.1 second quanta.

returns the connect time (time
during which the user has been
logged into the system) for this
job in minutes.

returns the number of
kilo-core ticks (ket's)
used by this job.

returns the device time
for this job in minutes.

PRINT DATE$(@)
10-AUG=-72

READY

155 PRINT X%(1),DATES$(1)

75 IF TIMES(@) >= '"@5:45 PM"
THEN PRINT "TIME TO QUIT"

PEINT TIMESC1)
11:59 PM

READY

PRINT TIME$(14083)
12: 40 AM

READY

25 IF TIME(2)>43200

- THEN PRINT "AFTEENOON®

1@ IF TIMEC1)>>30 THEN STOP

10 IF TIME(2)>1220 THEN STOP

80 PRINT TIME(3)

4@ IF TIME(4)/60>2.5 THEN 90

Table 8-2 (Cont.)

Function Meaning Sample Usage

SWAPS% (I%) causes a byte swap operation to 18 PRINT CHRS$(SWAPZ(IZ))
occur on the integer variable
I%; returns the value of I%
with the bytes swapped.

RADS (I%) converts an integer to a 3- 55 PRINT RADS(CIX)
character string. This func-
tion is used to convert a value
(expression in Radix-5@ format)
back into ASCII. Radix-5f is
explained in Appendix D.

There are also two special system statements that can be used
within a BASIC-PLUS program: SLEEP and WAIT. Both statements
allow the user to suspend his program for a stated interval.

The SLEEP statement is of the form:
line number SLEEP <expression>

SLEEP is used to dismiss the currently running program for the number
of seconds indicated by the expression. At the end of this period
the program is again runnable. Thus, the user is guaranteed at least
this number of seconds idle time, possibly slightly more depending
upon the number of jobs currently active on the system.

To awaken a job from a sleep before the specified number of
seconds has expired, type a delimiter (RETURN, LINE FEED, FORM FEED
or ESCAPE) at any of the job's terminals. The program segment shown
below, however, can be used to override line terminating delimiters
and provide a continuous SLEEP for a specified time.

1¢¢ T=TIME (#)

114 SLEEP T+3@-TIME (#) :

IF TIME(#)-T<3@ GOTO 11¢

12¢g INPUT X
In the above program, the INPUT statement is executed only if the
time elapsed is equal to or greater than 3@ seconds. Otherwise, if
a delimiter is typed, the SLEEP is executed again for the length of
time remaining in the original 3¢ seconds or until another line

terminating character is typed.

A job is also awakened when it has declared itself a receiver
and a message is queued for it through the SEND/RECEIVE system
function calls. (The SEND/RECEIVE system function calls are

privileged and are therefore documented in the System Manager's Guide.)

8-25

The WAIT statement is of the form:
line number WAIT <expression>

WAIT is used to set a maximum period for the system to wait for input
from the user keyboard. If no delimiter is typed at the keyboard
(RETURN, LINE FEED, ESCAPE) within the number of seconds specified by
the expression, the program is restarted and a WAIT EXHAUSTED error
occurs, which can be detected using ON ERROR-GOTO. The WAIT statement

is used in conjunction with the INPUT statement. As an example:

LISTNH

12 ON ERROR GOTO 120
20 WAIT 15

38 INPUT "16 + 16 ='"jA
4¢ VAIT 2

s@ IF A=32 THEN PRINT "RIGHT!"
ELSE PRINT "NO, TRY AGAIN'": GOTC 1€
7% STOP
16@ IF ERR<>1S THEN ON ERROR GOTOC ¢
119 PRINT "WAKE UP!"
120 RESUME 39
13¢ END

READY

RUNNHK

16 + 16 =? WAKE UP!
16 + 16 =2 21

NO, TRY AGAIN

16 + 16 =? 32
RIGHT!

STOP AT LINE 78

READY

In this example line 1@ is executed only if the user fails to
respond within 15 seconds. The use of WAIT @ restores the terminal
to its normal state in which no timeout occurs, but rather the

system waits until a line is entered, however long that may take.

PART III

BASIé;PLUS DATA HANDLING“

ThlS part of the manualvcontalns a complete descrlptlon of all
BASIC-PLUS data handlaag opetatlons.“ A brlef rev1ew 1s made of the
\51mp1e forms of READ, DATA, PRINT, RESTORE and INPUT along w1th the,
‘more advanced forms of these statements. Formatted ASCII files,

Lv1rtual core matr1Ces, and Record I/O operatlons are descrlbed.

Advanced users are. adv1sed to consult the RSTS/E Programm;;g .

'Manual for a dlscu3510n of advanced data handllng technlques and 'f

’ deV1ce dependent operatlons,

S IIT

CHAPTER 9
DATA STORAGE CAPABILITIES

9.1 FILE STORAGE

Previously, techniques have been presented for entering data
into a program as the program is written (via READ and DATA state-
ments or from the user terminal while the program is executing (via
the INPUT statement). Both techniques are inefficient when the amount
of data to be read or-written increases beyond a few items. In order
to improve operation, BASIC-PLUS provides the user with facilities to
define and manipulate Input/Output data files.

A BASIC-PLUS data file consists of a sequence of data items
transmitted between a BASIC program and an external Input/Output de-
vice. The external device can be the user terminal, some other
terminal, disk, line printer, card reader, magnetic tape device, DEC-
tape, or high-speed paper tape equipment.

Each data file has both an external name by which it is known
within the RSTS system (the name of the file on a disk storage
device, for example) and an internal file designator (a channel num-
ber used to reference the file). An OPEN statement (see Section 9.2)
is used to associate an external file specification with an internal

file channel.

An external file specification contains some or all of the
following information:

device:[prog,progl filename.extension<protection>

If the device designator is not present in a file specification, the
system device public structure is assumed. For non-file structured
devices, only the device designator need be specified; any filename,
extension, project-programmer codes, and protection code specified

are ignored. Refer to Table 9-1. Where a device designator appears,

9-1

it can be one of the following:

Table 9-1

Device Designations

Device
Designation

Device

File structured Devices!

DF:, DK:, DP:, DB:, or SY:
Syg:

DFg:

DK@: to DK7

DP@: to DP7:

DB@: to DB7:

DT@: to DT7:?

MT@: to MT7:2'3

Non-File Structured Devices

PRY: 2
PP@:2
LPP: to LP7:2
CR@:?

KB:
KB@: to KB63:

DXf@: to DX7:

RSTS public disk structure as

a whole

System disk

RF1ll disk

RK11/RK@5 disk cartridge units

g through 7

RP11/RP@2/RP@3 disk pack units f#
through 7

RP@#4 disk pack units @ through 7

DECtape units @ through 7

Industry compatible magnetic tape
units @ through 7

High-speed paper tape reader
High-speed paper tape punch
Line printer units @ through 7
Card reader

Current user terminal

Other user terminals on the
system

Floppy disk units @ through 7

IpECtape, magtape, and user disks can also be used as non-file

structured devices.

2Except for KB: and disks, device designation XX: is equivalent to

XXg:.

SMM@: to MM7: are synonyms for MT@: to MT7: when the magtape is a

T™™@2/TUl6.

For file-structured devices, each file is assigned a filename and

extension. The filename is a string of one to six alphanumeric charac-

ters.

The filename extension consists of a dot (.) followed by a one

to three alphanumeric character string, usually specifying the file

type.

A null or blank extension is permitted, in which case the dot

and filename extension field are omitted from the file designation.

Refer to Table 9-2.

are as follows:

Table

9-2

Reserved File Extensions

The extensions recognized by the RSTS-11 system

Automatically Assumed on
Extension Significance Appended on Output Input
.BAS indicates a BASIC-PLUS | to BASIC-PLUS source by the OLD
source program to be programs stored with command,
compiled; stored in a SAVE or REPLACE also assumed
ASCII format. command. by RUN,
CHAIN and
UNSAVE in
the absence
of a .BAC
file of the
same name.
.BAC indicates a compiled to BASIC-PLUS pro- by the RUN,
BASIC-PLUS program; grams on which a CHAIN and
stored in a binary COMPILE command is UNSAVE com-
format, cannot be performed. mands.
altered.
. TMP indicates a temporary no. no.

BASIC-PLUS file.
These files are used
while creating or edit-
ing a BASIC program.
They are deleted when
no longer needed.

The [proj,prog] field (containing the project and programmer numbers)

identifies the owner of the file.

assumed to be the current user.

If it is omitted the owner is
This field is meaningful only for

disk and magtape files; it has no significance for DECtape files or

files on non-file structured devices.

The two numbers forming the

field are decimal numbers between # and 254, separated by a comma, and

enclosed in square brackets or parentheses.

NOTE

The PDP-11 DOS/BATCH Monitor uses octal UIC
values in the range 1,1 to 376,376. Trans-
ferring magtape files between RSTS and DOS/
BATCH causes an effective decimal-to-octal
conversion between RSTS project-programmer
number and DOS/BATCH UIC code. RSTS DECtape
files are assigned a [1,1] UIC code.

Use of the $ character (dollar sign) in the project-programmer field
indicates that the file is stored under the system library account
([1,21).

When creating a disk file (with OPEN or OPEN FOR OUTPUT, see Section
9.2) or renaming a file (with the NAME AS statement, see Section 9.4)
a protection field can be specified. Files can be read and/or write
protected against three classes of users where distinctions are made
on the basis of the project and programmer number of the user attempt-
ing to access the file. The three classes of users are:

a. owner;

b. group, all users having the same project number as the
owner (termed the owner's group); and

c. others, all other users not in the owner's group

Table 9-3 is used to determine the value of the protection code to
achieve the desired file protection.

Table 9-3
Protection Codes

Code Meaning
1 read protect against owner
2 write protect against owner
4 read protect against owner's project
8 write protect against owner's project
16 read protect against all others who do not
have owner's project number
32 write protect against all others who do
not have owner's project number
64 compiled, run-only files
128 privileged program

Protection codes are stored within the system as character strings and
consist of a decimal number within paired angle brackets. The decimal
number is the sume of the desired combination of protection code values
contained in Table 9-3. For example: a protection code of <48> denies
read or write access to anyone logged into the system under an account
number whose project number differs from the owner. The code < 48>

is the sum of 32 (write protect against all others) and 16 (read pro-
tect against all others). Similarly, the code <42> protects a file
against any write operations (32=write protect against all others,
8=write protect against other project members, and 2=write protect
against owner, 42=32+8+2).

The value 64 denotes a compiled file. It is added to the pro-
tection code by the system upon compilation. A protection code of
<124> denies read or write access to everyone but the user. It is the
sum of 64 (compiled file), 32 and 16 (write and read protect against
all other projects), and 8 and 4 (write and read protect against others
in owner's project). A protection code of <104> allows all users to
run the file only (write access is denied), because the read protect
values, 16 and 4, do not pertain.

The value 128 is used only with compiled files to designate a
privileged program.! A protection code of <232>, for example,
denotes a privileged program which can be run but not altered by all
users. Only privileged users can assign protection codes which include
the value 128.

Protection codes are normally specified only in the NAME-AS state-
ment which allows the user to change the name and protection code of
any file which he has previously created (see Section 9.4). However,
protection codes can be specified as an optional part of any filename.

For example,

OPEN "FILE. EXT<482" AS FILE 1%

The file FILE.EXT is created under the current account with a
protection code of <4g> .

!See the RSTS/E Programming Manual for a discussion of privilege.

9.1.1 Auxiliary Libraries

By specifying a certain special character, the user can designate
an auxiliary library account on the system. This feature operates in
a manner similar to the $ character signifying the system library
account [1,2]. The following special characters designate the related

auxiliary library accounts.

Character Account

! (CHR$(33)) [1,3]

% (CHR$(37)) [(1,4]

& (CHR$(38)) {1,5]

(CHR$(35)) [proj, 4]

@ (CHR$ (64)) Assignable account

The user can refer to an account by using a character in any location

where a project-programmer field is valid. Thus, a special character

appearing in a file specification means that the file is stored in the
related auxiliary library account.

The # character is unique because the system interprets it
according to the account under which the user is running. For
example, if the user is running under account [1§,2@] and specifies
the # character, the system interprets it to mean account [1{4,64].
This feature allows each project on the system to have its own
library of files.

How to assign an account to the @ character is explained in
Section 2.7.3 of the RSTS-11 System User's Guide.

9.1.2 Public and Private Disks

The concept of device names for disks was introduced with little
explanation of when a disk is to be referenced by name (e.g., DK2:)
and when simply by default. To clarify this, the concept of public
disks and private disks must be explained.

A private disk is one that belongs to only a few user accounts,

conceivably to a single user account. Files can be created under

these accounts if the user account is one of the accounts on the disk.
Also, files created under these accounts on a private disk can be
read (or written) by other users only if the protection code of the
file permits. A user who does not have an account on a private disk
cannot create a file on it.

A public disk, on the other hand, is a disk on which any user
can create files. Every user has an account on a public disk as
soon as he references it. There is always at least one public disk,
called the "system disk", on the system. All public disks together
on a system are called the "public structure" because the system
treats all of the public disks as one unit. For example, when a
program creates a file in the public structure, that file is placed
on the public disk which has the most unused space. This ensures
proper distribution of files across the disks in the public structure.
The actual determination of which disks on a particular system are
public and which are private is left to the system manager. There-
fore, this allocation varies from system to system.

Private disks are always referenced by a specific name (DK2:, for
example). The public structure is normally referenced by default,
although it has the specific name "SY:". The system disk is referenced
explicitly by the name "SY@:" and may be on any unit. Other disks on
the system, whether public or private, are termed non-system disks.
Referencing public disks by their specific names is not recommended:

a file that exists elsewhere in the public structure might not be
found or might even be deleted. The system does not allow a single

user to store two files in the public structure under the same name.

Private disks may be mounted and dismounted while the system is
running. Normally, private disks are loaded only when needed, but
public disks should be kept permanently mounted so that users can
access all files during time sharing.

9.2 OPEN STATEMENT

The OPEN statement associates a file on a file-structured device
or some non-file structured device with an I/0 channel number internal
to the BASIC program. BASIC-PLUS permits up to 12 files to be open
at a given time, and therefore, permits internal file designators to
be integers between 1 and 12.

The general form of the OPEN statement is as follows:

. . FOR INPUT .
line number OPEN < string> [FOR OUTPUT] AS FILE <expressgion>

One or more of the following specifications can be appended to the

end of the statement (and are described in Sections 9.2.1 through
9.2.4).

[\ RECORDSIZE <expression>) [,CLUSTERSIZE <expression>]

[,FILESIZE <expression>] [/MODE <expression>]

The string field is a character string constant, variable or expres-
sion that contains the external file specification (as described in
Section 9.1) of the file to be opened. The AS FILE expression must

have an integer value between 1 and 12, corresponding to the internal
channel number on which the field is being opened.

There are three distinct forms for the OPEN command:

OPEN<string> FOR INPUT
OPEN<string> FOR OUTPUT
OPEN<string>

The form of the OPEN statement used determines whether an
existing file is to be opened or a new file created.

a. An OPEN FOR INPUT statement causes a search for an
already existing file (since the statement indicates the
file is an input file). If no file is found, the
CAN'T FIND FILE OR ACCOUNT error occurs.

28 OPEN "FILE. DAT" FOR INFUT AS FILE 1

b. An OPEN FOR OUTPUT statement causes a search for an
already existing file which, if found, is deleted.
A new file is then created.

7S OPEN “"DATA. @1<40>" FOR OUTFUT AS FILE =

c. An OPEN statement without an INPUT or OUTPUT designation
attempts to perform an OPEN FOR INPUT operation as
described above. If this fails, a new file is created.

180 OPEN "MATR. TER" AS FILE ¥

The OPEN statement does not control whether the program attempts
to perform input or output on the disk file or whether read and/or

write access to the file is granted!; these privileges are controlled
by the file protection code.

If an assignable device (all devices other than disks are avail-
able or assignable to a single user at any given time) is referenced
in any OPEN statement and that device is already in use by another
user, a DEVICE NOT AVAILABLE error occurs.

When used with disk files, an OPEN FOR INPUT or OPEN FOR OUTPUT
allows either read or write operations on the opened file. The
system allows write access to a file if the protection code permits
and if no other user has write access to the file. For example,
if user 1 opens a file, he has read and write access. When user 2
opens the same file, he has read access only; a PROTECTION VIOLATION
error occurs when he attempts to write on that file. When user 1
subsequently closes the file, no user has write access until the next
open operation. User 3 can now open the file and obtain both read
and write access, because no other user currently has write access
to that file. On DECtape and magnetic tape devices, the FOR INPUT
and FOR OUTPUT clauses restrict operations on that file to the type of
operation specified.

NOTE

Only one user can have write access to a
file at a single time (unless MODE 1% is
used, see Section 10.5.1); and user write
access is always denied to a file with a
.BAC extension, since compiled files can
only be run.

*Magtape and DECtape are exceptions to this rule, see the RSTS/E
System Programming Manual.

9-9

The next four sections in this manual describe the RECORDSIZE,
CLUSTERSIZE, FILESIZE and MODE options of the OPEN statement. As
these are sophisticated file handling tools, it is suggested that the
novice user initially skip these sections and continue with Section
9.2.5.

9.2.1 RECORDSIZE Option

When any file is opened, the system creates a buffer area in the
user's core space to buffer all I/0 to and from the file. Normally
the amount of space reserved is determined by the device, as each
device has a default device buffer size as described in Table 9-4.

Table 9-4
Default Device Buffer Size

Device Default Device Buffer Size
All disks 512 characters (or bytes)!
Floppy disk (DXn:) 128 characters (or bytes)
DECtape (DTn:) 510 characters (or bytes)!
Magtape (MTn:) 512 characters (or bytes)
High-speed reader (PR:) 128 characters (or bytes)
High-speed punch (PP:) 128 characters (or bytes)
Line printer (LP:) 128 characters (or bytes)
Card reader (CR:) 160 characters (or bytes)
User terminal (KB:) 128 characters (or bytes)

!7he default buffer size may differ when the device is used
as a non-file structured device.

With the RECORDSIZE option, the user program can allocate more
buffer space than is provided by the default case. However, in some
cases the particular device driver may not permit additional space
to be used. Table 9-5 shows the buffer size alterations for specific
devices.

Table 9-5
Use of RECORDSIZE

Device Possible Buffer Alterations

Disk The disk drivers permit use of any
buffer size that is an integral
multiple of 512 bytes.

DECtape The DECtape driver uses only the
first 510 bytes of the available
buffer space (512 bytes for non-file
structured DECtape).

Magtape The magtape -driver uses only enough
bytes for one physical magtape
record. 14 bytes < physical record
< buffer size.

H%gh-speed reader These non-file structured devices
H}gh-spged punch can use any selected buffer size
Line printer greater than the default size.
User Terminal

Card reader The card reader driver uses only

enough bytes for one card's data.

Floppy disk The floppy disk driver permits use of
any buffer size that is an integral
multiple of 128 bytes.

The RECORDSIZE option has significant advantages when used with
magtape and disk files. RECORDSIZE permits non-file structured
access to magtape records of any length. On a disk file, total
throughput can be improved by using a larger buffer size, as this
permits a single disk transfer to read a large quantity of data.
Specify only an even number of bytes in the RECORDSIZE expression.
For example:

109 OPEN "MASTER.DAT" FOR INPUT AS FILE 1%, RECORDSIZE 2§48%

If the file MASTER.DAT were on an RF1l disk and occupied a contiguous
area on that disk, a 2@48-byte transfer would take about 33ms while
four 512-byte transfers would take about 83ms (on the average). If
the file did not reside in a contiquous disk area, the RSTS Monitor
would break the 2@48-byte transfer into four 512-byte transfers.

Even in this last case, the system overhead to perform the transfer

would be less.

This example raises the gquestion of how to ensure that a file
occupies a contiguous disk area. This can be done by means of the

CLUSTERSIZE option described in the following Section.

9.2.2 CLUSTERSIZE Option

The CLUSTERSIZE option is applicable only to disk files and only
when these files are initially created with an OPEN or OPEN FOR OUTPUT
statement. The CLUSTERSIZE specification is ignored if this is not
the case.

The RSTS system divides each disk into a number of 256-word
blocks. Each block is assigned a unique physical block number
starting at 1!. Physical block numbers are assigned such that block

n is physically contiguous with blocks n+l and n-1.

A number of contiguous blocks taken together as a unit are called
a cluster. RSTS permits clusters to be 1, 2, 4, 8, 16, 32, 64, 128
or 256 blocks long. When the disk is initialized (the process by
which the disk is cleared for use on RSTS) a minimum cluster size
can be established. This minimum cluster size (also called the pack
cluster size) can be 1, 2, 4, 8, or 16 blocks.

For each file on the system, an entry is made in the owner's file
directory (User File Directory or UFD) containing the filename, cluster
size for the file, and a sequential list of blocks belonging to that
file.

A UFD has a fixed maximum size which is determined when the UFD
is created?. A UFD on any one disk cannot exceed 112 (decimal) blocks
(28,672 words). If all files were a minimum size (7 or fewer clusters
long) a UFD clustered as 16 would have room for a maximum of 1157
files. To keep the list of blocks belonging to the file as short as
possible, the UFD contains a one-word entry for the first block of
each cluster. Knowing the first block number of the cluster and the
number of blocks in the cluster is sufficient to determine all of the
blocks in the cluster.

!Block @ of each disk is reserved for a bootstrap record and is not
used by any file.

2The maximum size of a UFD is seven times the cluster size for

that UFD, which is established when the account is created, and may
be 1, 2, 4, 8 or 16 blocks. The figures given in the text assume

a UFD cluster of 16.

9-12

Because of the size limit on the UFD, large files benefit from
the specification of large cluster sizes. In an extreme example, the
UFD would be completely filled by a single file of 24,283 blocks where
the file cluster size is one block. However, with a cluster size of
256 blocks, only 128 words of the UFD are required to describe this
file.

Since most user files are not extremely large, omitting the
CLUSTERSIZE option when creating the file makes little practical
difference. Omitting the CLUSTERSIZE option has the effect of assign-
ing a cluster size equal to the pack cluster size for the disk on
which the file resides.

Once a file is opened on an internal I/O channel, all I/0 re-
quests by the BASIC program are handled by means of a read or write
call from BASIC-PLUS to the Monitor, directed to the nth logical
block of the file. The RSTS system translates the logical block
number into a physical block number. This is done by reading the list
of physical clusters belonging to the file (as kept in the UFD) and
finding the entry corresponding to the nth logical block. To minimize
the overhead involved in reading the UFD, which is stored on the disk,
part of this list of clusters belonging to a file is kept in memory.
This part of the list is called the file window. The file window is
composed of seven entries from the list of file clusters. Since each
entry corresponds to one cluster of the file, with a file cluster size
of one block, 7 blocks (or 1792 words) of the file are described by
the in-core file window. These 7 blocks can then be read or written
without accessing the complete list from the UFD stored on the disk.
Similarly, with a file cluster size of 256 blocks, the file window
describes the location of 1792 blocks of the file, or over 458,008
words. When performing random access I/O to virtual core arrays and
RECORD I/0 files, any of the 1792 blocks would be read or written
without referencing the UFD.

As an example of the use of the CLUSTERSIZE option:

18@6 OPEN "MRT.DAT" FOR QUTFUT RS FILE 1X, CLUSTERSIZE 12&%

In this case the file MAT.DAT is created with a cluster size of 128
blocks. Note that the file is initially 128 blocks long and is ex-
tended as needed in 128-block increments.

Since files with large cluster sizes must be extended by a whole
cluster at a time and since clusters are always contiguous blocks,
it may not always be possible to find sufficient contiguous free
blocks to extend the file. The user should be aware of this possi-
bility whenever he creates a file with a cluster size larger than the
pack cluster size (the minimum cluster size for that disk).

As another example (typing LINE FEED following FILE 1%,):

i@ OPEN “"DATA" FOR OQUTFUT RS FILE 1%,
RECORDSIZE Z@d4&X, CLUSTERSIZE 4%

The RECORDSIZE option improves disk throughput when multiple blocks
can be read or written in a single transfer (see Section 9.2.1).

By creating the file with a cluster size of 4 (1§24 words or 2§48
characters per cluster) the user guarantees that logical blocks 1-4,
5-8, etc., of his file are physically contiguous on the disk.

9.2.3 FILESIZE Option

A disk file (and only a disk file) can be pre-extended by using
the FILESIZE option in an OPEN statement, eliminating the need for a
PUT statement. The format for the FILESIZE option is:
[line number]OPEN < string>[FOR OUTPUT] AS FILE<expr >[,FILESIZE <expr>]
For example:
168 OFEN "VYALUES" FOR OUTPUT AS FILE ZX. FILESIZE Sex

The data file, VALUES is opened and automatically pre-extended
to 50 256-word blocks.

9.2.4 MODE Option

The OPEN statement allows another option: the MODE field. The
format of the OPEN statement, including the MODE field, is as follows:

FOR INPUT

[line number] OPEN <string> [FOR OUTPUT]

AS FILE <expr>

[,RECORDSIZE <expr>] [,CLUSTERSIZE <expr>] [,MODE <expr>]

The MODE option is used to establish device-dependent properties of
the file. MODE @% is assumed by the system when MODE is omitted.

For disk files, MODE indicates that the file is to be updated or
appended (see Section 10.5). For non-file structured magtape opera-
tions, MODE establishes the density and parity settings for magtape.
For line printer operations, MODE is used in conjunction with the
optional forms control to establish the current form length. For

card reader operation, MODE sets a read mode to correspond to specific
data card formats.

9.2.5 File Structured Vs. Non-File Structured Devices

RSTS/E distinguishes between file structured (disk, DECtape and
magtape) devices and non-file structured devices. When a file is to
be found or created on a file structured device, the file specifica-
tion string in the OPEN statement must include both a device desig-
nation (or default public structure) and a filename. On non-file
structured devices, the device name alone identifies a file (filename

and extension, if specified, are ignored). For example:

DTQ: is insufficient information to specify a file.

DT@:FRED is sufficient to specify the file FRED on
DECtape unit 4.

PP: uniquely specifies the high-speed punch.

PP:FILE specifies a file on the high-speed punch,

the filename is ignored.

DX1: uniquely specifies floppy disk unit 1:

9-15

File specification syntax is such that the default device (the public
disk storage area) need not be specified. For example:

SY:QUIZ

is equivalent to:

QuIz

It is also possible to open a file structured device in non-file
structured mode. For example:

OFEN "DK2:" RS FILE Sk

is sufficient to open a disk cartridge in non-file structured mode.

9.3 CLOSE STATEMENT

The CLOSE statement is used to terminate I/0O between the BASIC
program and a peripheral device. Once a file has been closed, it
can be reopened for reading or writing on any internal file designator.

All files must be closed before the end of program execution.
Execution of a CHAIN statement automatically closes any open files,
but does not cause the output of the last blocks to output files.
The format of the CLOSE statement is as follows.

line number CLOSE <expression> [,<expression>...]

The expression indicated has the same value as the expression in the
OPEN statement and indicates the internal channel number of the file
to close. Any number of files can be closed with a single CLOSE
statement; if more than one file is to be closed, the expressions

are separated by commas. For example:

255 CLOSE 2.4
245 CLCSE 1@

Line 255 above closes the files opened on internal I/O channels 2
and 4. Line 345 closes the file open on internal I/O channel 10.

9.4 NAME-AS STATEMENT, FILE PROTECTION AND RENAMING

The NAME-AS statement is used to rename and/or assign protection
codes to a disk or DECtape file, and can only be used on a given
file by someone logged into the system under the account number which
owns the file. The format of the statement is as follows:

line number NAME<string>AS<string>

The specified file (the first string indicated) is renamed (as the
second string indicated). When the file resides on a device other
than the default device (system disk), the device must be specified
in the first string and may optionally be specified in the second
string. No filename extension assumptions are made by NAME-AS; the
filename extension must be specified in both strings if any extension
is present in the old filename or desired in the new filename.

For example:

79 MNAME "0TE:0LD. BAS" AS "NEW BRS®

is equivalent to:
?5 NAME "DT@:0LD. BAS" RS "DT&:NEW. BAS®
but the statement:

96 NAME "FILE1. BRS" RS “"FILEZ"

is not advised since FILE2 has no extension and could not subsequently
be called into core via the OLD or RUN commands (which require file-

name extensions).

A file protection code can be specified within typed angle
brackets as part of the second <string> although it is not required.
If a new file protection code is specified, it is reflected in the
protection assigned to the renamed file. If no new protection code
is specified, the old protection code is retained. See Section 9.1
for a complete description of protection codes.

186 NAME "FILE. EXT" AS "FILE. EXT<4@3"

changes only the protection code of the file FILE.EXT stored on the
system disk.

268 HNAME "0T@.AEBC. BAS" AS "=YI BRI

changes the name of the file ABC.BAS on DECtape unit . Since no
transfer of the file from one device to another can be performed with
the NAME-AS statement, it is not necessary to mention DT{: twice;
that is, the device of the new filename need not be specified. How-
ever, an error is generated if a device other than the old device is

specified.
12z HNAME "HNEW" RS "NEW1®
changes only the name of the disk file NEW. (To transfer a file

between devices, use the PIP system program described in the RSTS-11
System User's Guide.)

9.5 KILL STATEMENT

The KILL statement is of the form:
{Zine number} KILL <string>

and causes the file named string to be deleted from the user's file
area. (The file can no longer be opened, but if it is already open
the file remains available until it is closed.) For example, when
the user has completed all work with the file XYZ (note that the
filename has no extension) on the system disk, he could remove the
file from storage by executing the following statement:

455 KILL "rvYZ"

A user is not allowed to KILL a file that is write-protected
against him. (He must use the NAME-AS statement to change its
protection first.)

The KILL (and NAME-AS) statement can be issued in immediate
mode. It should be noted that KILL is more general than UNSAVE, which
is primarily used to delete source (.BAS) files (see the RSTS-11
System User's Guide). KILL can be used to delete any file, including

a file with a null extension (which the UNSAVE command cannot delete).

9.6 CHAIN STATEMENT

If a user program is too large to be loaded into core and run in
one operation, the user can segment the program into two or more
separate programs. Such programs are called into core for execution
by means of a CHAIN statement. Each program section is assigned a
name and control can be transferred between any two programs. A
CHAIN statement is of the form:

line number CHAIN <string> [<line number>]

and causes the program named by the s¢ring to be called, compiled (if
necessary), and executed. The line number, if specified, designates
the line at which the program is to be started. If the line number
is omitted, the program is started at the lowest numbered line (as
though a RUN command had been used). The CHAIN statement is the last
statement executed in each program segment other than the last seg-

ment. For example:

1088 CHAIN “MAIN. BAC" Ze&a

causes the program MAIN.BAC to be loaded and started at line 2¢4¢g.
Notice that a filename extension is not required. The compiled
form of the program is searched for and, if found, run. If the
compiled form is not found, the non-compiled form is searched for
and, if found, compiled and run. If neither form of the program is

found, an error occurs.

On the other hand, if a filename extension ig specified, and
not found, an error occurs; in this case, no other form of the pro-

gram is searched for.

Chaining to precompiled program files (.BAC files) is con-
siderably more efficient that chaining to BASIC source program files
since .BAS files require compilation upon each call.

Communication between chained programs is performed by means
of user's files or core common.

When the CHAIN statement is executed, all open files for the
current program are closed, the new program segment is loaded, and
execution continues. Any files to be used in common by several

programs should be opened in each program.

The CHAIN statement also implicitly closes all open I/0
channels, which is slightly different from the actions performed as
a result of a CLOSE statement. For example, the line printer drivers
perform two top of form operations when the printer is closed with a
CLOSE statement. To continue printing on the same piece of paper,
do not execute a CLOSE statement on the line printer channel; the
CHAIN statement is sufficient to close the printer without per-
forming top of form operations.

Similarly, an explicit close of the paper tape reader clears
the input buffers and prepares for a new tape. The implicit close
performed by the CHAIN statement does not clear the buffers and the
program subsequently chained may resume where the previous program
stopped. An explicit close of the paper tape punch causes a trailer
to be punched; the implicit close does not.

CHAPTER 10

BASIC-PLUS INPUT AND OUTPUT OPERATIONS

10.1 READ AND DATA STATEMENTS

A READ statement is used to assign to a list of variables values
obtained from a data pool composed of one or more DATA statements.
The two statements are of the form:

line number READ <list of variables>
line number DATA <list of values>

The list of variables can include floating point, integer, sub-
scripted, or character string variables. Data values must correspond
in type with their respective variables, but the "$" character should
not be included in integer values. Integer and floating point values
are interchangeable, although they are stored according to the type
of the variable. The use of quote marks is discussed below.

The data pool consists of all DATA statements in a program.
Values are read starting with the DATA statement having the lowest
line number and continuing to the next higher, etc. The location of
DATA statements in a program is irrelevant, although for simplicity
they are usually kept together toward the end of the program. (The
DATA statements must occur in the proper numeric sequence, however.)
A DATA statement must be the only statement on a line, although a
READ statement can occur anywhere on a line. Comments are not per-
mitted at the end of a DATA statement. If a READ statement is unable
to obtain further data from the data pool, an error message is printed
and program execution is terminated. (This error can be treated
through the ON ERROR GOTO statement, Section 8.4.)

Quotes are necessary in DATA statements only around string items
which contain a comma, when leading, trailing or embedded blanks within
the string are significant, or when lower case letters are to be pre-
served. The data pool, composed of values from the program's DATA
statements, is stored internally as an ASCII string list. When a

10-1

numeric variable is read, the appropriate ASCII to numeric conversions
are performed. When a string variable is read, the string is used as
it appears in the DATA statement. If the item does not appear in
quotes, then leading, trailing, and embedded spaces are ignored. If
the item appears in quotes, the string variable is equated to the
entire string within the quotes.

Matrices are read from DATA statements via the MAT READ state-
ment of the form:

line number MAT READ < matrix>

This reads the value of each element of a predimensioned matrix from
the data pool. Each element in the list of matrices indicates the
maximum dimension of the matrix to be read (which cannot be greater
than the dimensioned size of the matrix). Individual elements are

separated by commas. For example:

18 DIM AC26, 260, BCSED
28 MAT REARLD A
38 MAT READ BCZS0

The above lines read values for the 20 x 20 matrix A and 35 out of
the possible 50 values for the B matrix (remaining elements are zero).
Data is read row by row; that is, the second subscript varies most
rapidly.

10.2 RESTORE STATEMENT

The RESTORE statement reinitializes the data pool of the program's
DATA statements. This makes it possible to recycle through the DATA
statements beginning with the lowest numbered DATA statement. The
RESTORE statement is of the form:

line number RESTORE

For example:

85 RESTORE

10-2

causes the next READ statement following line 85 to begin reading

data from the first DATA statement in the program, regardless of where
the last data value was found. See Section 3.3.1 for an example
program using the RESTORE statement.

The RESTORE statement can be placed in any position on a multi-
ple statement line.

10.3 PRINT STATEMENT

In its simplest form, the PRINT statement:

line number PRINT

causes a carriage return/line feed to be performed on the user ter-
minal. The format:

line number PRINT <Iist>

causes the printing of the elements in the list on the user terminal.
An element in the list can be any legal expression. When an element
is not a simple variable or constant, the expression is evaluated
before a value is printed. The list can also contain character
strings between quotes which are printed exactly as typed between
quotes.

NOTE

If a character string is enclosed in a
PRINT statement with an initial quote
and no terminating quote, a terminating
quote is considered to follow the last
character of that PRINT statement. For
example:

18 PRINT "NAME IS A¢
18 FRINT "HAME IS A$"
28 PRINT "NRME 15 " HA$

Line 14 is shown in two equivalent forms.
Line 2§ is the correct form to generate
the printed line:

NRME IS JOHN [OE

where A$ = "JOHN DOE".

10-3

Elements in the list are separated by commas or semicolons. For
example:

18 A=1: EB=2: C=Z
15 PRINT A, A+Eg+C, C-A, "END"

when executed causes the following line to be printed:

1 & 2 END

A terminal line is considered to be divided into five! print zones of
fourteen spaces each. Use of these zones involves the comma character
which causes the print head to move to the next available print zone
(from 1 to 14 spaces away). If the fifth print zone on a line is
filled, the print head moves to the first print zone on the next

line.

The semicolon character functions as follows:

a. if an integer or floating-point variable, function,
or expression is followed by a semicolon, the value
is printed with a preceding minus sign if the
number is negative, or a preceding space if it is
positive. The number is then followed by a single
space.

b. character strings and string variables followed by a
semicolon are printed with no preceding or trailing
spaces.

Any PRINT statement which does not end with a semicolon or comma
character causes a skip to the next line after printing the elements
in the list. The presence of the punctuation character at the end of
the PRINT list causes the next PRINT statement to continue on the same

line under the conditions already defined.

In general, the output rules for the PRINT statement are:

a. suppression of leading zeros and trailing zeros to
the right of a decimal point. Where a number can be
represented as an integer, printing of the decimal
point is also suppressed.

TThe actual number of print zones is INT (n/14), where n is the size
of the print line.

10-4

b. at most six significant digits are printed, unless
PRINT-USING is used.

c. most numbers are printed in decimal format. Numbers
too large or too small to be printed in decimal format
are printed in exponential format.

d. character string constants are printed without
leading or trailing spaces.

e. extra commas cause print zones to be skipped.

f. semicolons separating character string constants from
other list items are optional; omitting punctuation
has no effect on the output format in this case.

10.3.1 Formatted ASCII I/0

BASIC-PLUS permits access to data files by three methods:

a. Formatted ASCII;
b. Virtual core arrays, described in Chapter 11;
c. RECORD I/0, described in Chapter 12.

Formatted ASCII data files are the simplest method of data storage,
involving a logical extension of the PRINT and INPUT statements to
be used in conjunction with the OPEN statement.

The formats for INPUT and PRINT statements to be used with the
OPEN statement are:

line number INPUT #<expressions,<list>

line number PRINT #<expression>,<list>

where the expression has the same value as the expression in the OPEN
statement (the internal file designator) and the Iist is a list of
variable names, expressions, or constants as explained in the sections
describing the PRINT and INPUT statements.

Output can be directed to a device other than the user terminal

with the following command:

line number PRINT #<expression>,<list>

where the expression is the number of a previously opened output file,
out of 12 possible open files (see Section 9.2). For example:

10-5

18 OFEN "PP:" FOR QUTPUT AS FILE ZX
58 PRINT #ZX, B, I 14, A+7. FNEOE)

causes four values to be punched onto paper tape by the high speed
punch which is opened for output as file 3, of 12 possible files.
0Of course, the above program segment assumes that the function FNX
and the wariables A and B are defined elsewhere in the program.

10.3.2 Output to Non-Terminal Devices

In order to direct output to a device other than the user terminal,
the PRINT command is formatted as follows:

line number PRINT #<expression>,<list>

where the expression is the internal channel number (the internal file
designator) of a previously opened output file (see Section 9.2).

The list of information to be output can include any of the output
information described as applicable to the PRINT statement. For
example:

18 OPEN "DATARi" FOR OUTFUT RS FILE VX
28 PRINT #7X, "STRRET OF DATR FILE"

The above lines open a file called DATAl on the disk with internal
channel number 7 (of 12 possible open files available in the system).
The first line in that file reads: START OF DATA FILE.

To output a table of square roots on the line printer, the
following program could be used:

LISTHH

18 LET I4="LF:"

206 OPEN 1% FOR QUTPFUT HS FILE 1k

X8 PRINT #1X, I,S@RCIY FOR 1=1X TO SX
46 END

RERDY

EUNKK

RERDY

10-6

The result would appear on the line printer as follows:

C41E]

LT EZ8S

U P
PP B

232667

10.3.3 PRINT-USING Statement

In order to perform formatted output, the following statement
is used:

line number PRINT[#<expression>,]USING <string>,<list>

where the expression (which is optional) indicates the internal channel
number of the file or device which is the destination of the output:;
the string is either a string constant, string variable, or string
expression which is an exact image of the line to be printed. This
string is called a format field. The list is a list of items to be
printed in the format specified by the format field. All characters
in the string are printed as they appear except for the special
formatting characters and character combinations described on the
following pages. The string, or portions of the string, are repeated
until the list is exhausted. The string is constructed according

to the following rules:

Exclamation Point

An exclamation point in the format field identifies a one charac-
ter string field. The variable string is specified in the < list>
within the PRINT statement. For example:

18 PRINT USING ©!t'!'", “pmpEB", "CD". "“EF"

which causes:

ACE

to be printed at the user's terminal. The first character from
each of the three string constants or variables is printed. Any

other characters beyond the first are ignored.

10-7

String Field

A variable string field of two or more characters is indicated
in the format field by spaces enclosed between backslashes. The
backslash character (\) is produced by typing SHIFT/L on some keyboards.
Enclosing no spaces indicates a field two columns wide, one space is
equivalent to a field three columns wide, etc. For example:

20 PRINT USING "“S% 5", “AECD", "EFGHI"

causes

REEFGH

to be printed at the user's terminal. The first two backslashes have
no spaces enclosed, hence permit the printing of two characters (AB).
The second two backslashes enclose two spaces and permit the printing
of four characters (EFGH). No spaces are printed unless specifically
planned.

Numeric Field

Numeric fields are indicated with the # character in the format
field. Any decimal point arrangement can be specified and rounding is
performed as necessary (not truncation). For example:

X8 PRINT USING "### ##", 12

aec
&t

W]

causes

to be printed on the user's terminal, while

48 PREINT USIHG “#H#8", 12 245
8 PRINT USINHG “"H#é## . 12 45
68 PRINT USINHG "##", 166

10-8

causes

1z
iz

¥ 108

to be printed on the user's terminal. Numeric fields are right justi-
fied; that is, if a number does not fill the allotted space, leading
blanks precede the number. When the field specified is too small for

a constant or variable to be printed, the % character is printed to
indicate the error. The number is then printed without reference to the
format field. On the other hand, when the format field specified is
more than 20 character spaces larger than required for a constant or
variable to be printed, a PRINT-USING BUFFER OVERFLOW non-recoverable

error may occur.

If the format field specifies a digit as preceding the decimal
point, at least one digit is always output before the decimal point.
If necessary, that digit is zero.
Asterisks

If a numeric field designation in the format field begins with
**, any unused spaces in the format field are filled with asterisks.
For example:

18 A=27. 95 EB=1&7. 8. C=1i@67. Sa@

28 PRINT USING “++#4 ##", A.EB.C

prints the following:

442795
*187. 5@
16087, S@

Notice that the ** characters act as two additional # characters
as well as allowing asterisk fill.

10-9

Exponential format (see below) cannot be used in a field with
leading asterisks. Negative numbers cannot be output using asterisk
fill unless the sign is output following the number (see below).

Exponential Format

When the exponential form of a number is desired, the numeric
format field is followed by the string t+444 (four * characters) which
allocates space for E-xx. Any arrangement of decimal points is per-
mitted. For example:

SOFS="HETT T THEHERSE"
18 A=16680.
28 PRINT USIMNG F#. A,

I

causes

16E AZ 1p60@

to be printed at the user's terminal.
All format positions are used to output a number with an expo-
nent. The significant digits are left justified and the exponent is

adjusted.

Trailing Minus Sign

If a numeric format field designation is terminated with a minus
sign, the sign of the output number is printed following the number,
rather than preceding it. A blank is printed to indicate a positive
number.

18 R=-18. 5
28 PRINT USING "H#. #8- HHHE ##". A.A

which prints:

18. 36~ -1@8. 56

10-10

Note that if the trailing minus is not used, space must be
reserved in the numeric format field for the sign to precede the

number.

Dollar Signs

If a numeric format field begins with $$, a dollar sign is printed
immediately preceding the first digit of the number:

o

18 RA=V7 d44: B=304 55 [=2211 4
28 PEINT USING “$$¥## ##", A, B.C

which prints:
7744
$384. 55
#2211 4 (insufficient space to print C along with $
character)

Note that the $$ characters provide for the printing of two additional
characters in the number. Since one character is a $, the effect is
to allow for one additional # designation beyond the ones typed by the
user.

Exponential format (see above) cannot be used in a field with
leading dollar signs. Negative numbers cannot be output using the
floating dollar character unless the sign is output following the
number (see above).

Commas
If one or more commas appear to the left of the decimal point
(if any) in a numeric format field, then commas are inserted every

three digits to the left of the decimal point. A comma to the
right of the decimal point is considered a printing character.

For example:

18 PREINT WNING "#, SHGHHE B8 BEEE 8.8, 12345 5, 123 456.1

10-11

prints the following:

Insufficient Format

If insufficient format characters are present in a field when a
number is output, a % character is printed in the first position of
the field followed by the number in standard format, usually causing
the field to be widened to the right. The user is guaranteed his
entire number. For example:

18 PRINT USING “#4. #4% ## ##°, 12 245, -12. S

prints the following:

12. 35 H-12. %5

Rounding occurs when digits are dropped at the right of numbers. If
rounding causes the number to exceed the format allowed, the %
character is used. For example:

19 PRINT USIHNG " ## #8", L dico,

Wl
Lo
By

prints the following:

1z "

o
o
U

Format Too Large

If a numeric format field results in an attempt to output more
significant digits than are available for the number, zeros are
substituted for all digits following the last significant digit. Six
significant digits are available with the 2-word, single precision
math package and fifteen digits with the 4-word, double precision
math package. A PRINT-USING BUFFER OVERFLOW error may occur when a
numeric format field results in an attempt to output more than 20
characters before the first significant digit of the number.

10-12

PRINT Statement Punctuation

When the PRINT-USING statement is used, the usual PRINT statement
punctuation characters (commas and semicolons) have no effect on the

output format, except that a semicolon at the end of the PRINT list

inhibits termination of the printed line.

18 PRINT USING "## #% HEv,

prints the following:

As another example:

18 PRINT USING "#. ##", 2 S5
28 PRINT "H"

prints

As another example:

18 LET A=1. 32111: EB=Z 45457
15 LET Fg = " A=#4 #4

4.0 =
ER)

E=#4 ##"

20 OPEN “"LF:" FOUR CQUTPUT AS FILE 4

2% PRINT #4, LUSING F¥, A.E

would cause:

to be printed on the line printer.

10-13

10.3.4 MAT PRINT Statement

The MAT PRINT statement allows for easy printing of a predimen-
sioned matrix. The statement is of the form:

line number MAT PRINT [#<expression>,]<matrix>

for example:

15 DIM ACLlED
25 MRT PRINT AC1G:

If the specified matrix name is unsubscripted, the entire matrix is
printed. If the matrix specification is subscripted, the subscript(s)
indicates the maximum size of the matrix to be printed.

The matrix name can be followed by a semicolon to indicate that
the values are to be printed in a packed fashion, or by a comma to
indicate that each element is printed in its own zone. For example:

i8 DIM A<te@, 162, BE(1@, 262
2@ OPEN "LP:" FOR OUTFUT AS FILE 1

126 MAT PRINT #1, H; 'PRINT MATRIX A IN FACKEDR FORMAT
138 MAT FRINT #1, EBC16, 162, t1@x1@ MATRIX IS PRINTED,
'S WALUES PER LINE

Row and column matrices can also be printed. For example:

18 DIM ARCSy, BoL@D
28 OFEM "LP:" FOR OUTPUT AS FILE 1

X8 MAT PRINT #1, A; 'PRINT ONM ONE LINE ON CHANNEL 1
48 MAT PRINT #1. E PRINT IN COLUMN FORMAT DN
'CHANNEL 1

Line 3§ causes A to be printed as a row matrix, closely packed; line
49 causes B to be printed as a column matrix. The form:

78 MAT PRINT A

10-14

would cause the matrix A to be printed as a row matrix, five values

per line (at the user terminal).

10.3.5 PRINT Functions

In order to aid in formatting simple and complex PRINT statements
the following functions are provided:

Function Meaning

POS (X) Returns the current position on the output
line; where X is the I/0 channel number.
POS () returns the value for the user's
terminal.

TAB (X) Tab to position X in the print record. For
example, a standard terminal has 72 printable
columns numbered @ through 71. TAB (4) causes
sufficient spaces to be output to move the
print head to column 4. If the print head

is currently past position 4, no spaces are
output.

For example:
18 PRINT "K"; TREC16; FOSCES

causes the following to be printed:
¥ 1@

!

9 spaces

position #

10.4 INPUT STATEMENT

The INPUT statement allows data to be entered to a running pro-
gram from an external device, the user's keyboard, disk, DECtape,
paper tape reader, etc. The full form for this statement is:

line number INPUT [#<expression>,] <variable list>
In many cases the simpler form:
line number INPUT <variable list>

is used. This last form causes a ? to be printed at the terminal and
the system then waits for the user to respond with the appropriate

10-15

values of string or numeric variables. If sufficient values are not
typed, the system prints another ?; if too many values are typed,
separated by commas, excess values are ignored. The user can also

insert printed messages between the variables to be input. For
example:

18 INFUT "YOUR MAME [S"; N&, "RCCOUNT NUMEBER™: A "THANE YOU"

when executed would allow the following interaction at the terminal
(the underlined characters are typed by the system):

YOUR NAME IS7% CLYDE
ACCOUNT NUMBER? G55
THARNK You

ON ERROR GOTO statements can be used in a program to trap
recoverable errors which occur during an input sequence. The errors

shown below occur most frequently when an INPUT statement is executed.

Error Meaning Examples
DATA FORMAT ERROR Data input in an 3.4.5 or $2 or #16 or
(ERR = 50) illegal form 2;3 or LORA input for

a numeric variable;
X" or "HELLO" "THERE"
input for a string

variable
ILLEGAL NUMBER Overflow or 3E+66 or --23
(ERR = 52) underflow
END OF FILE ON DEVICE Input CTRL/2 42
(ERR = 11)

The system assigns values to variables as they are input. Multi-
ple variables can be assigned by separating them in the INPUT variable
list by commas. Similarly, use commas or the RETURN key to separate
values as they are input from the keyboard. For example:

18 INPUT .Y,
28 PRINT ¥, ¥,

4l

RUNNH

? 314

7 14, 82

114 14 az
READY

10-16

Do not use commas within a single number; the system ignores
all characters input beyond a comma unless another variable is to be
assigned. For example:

Right Wrong
18 INFUT R 18 INFUT R
78 PRINT F 28 PRINT R
RUNNH RUNNH
? 25,962 7 25%@2

25 25902
READY RERDY

Quotation marks (") should be used with string variables when an
embedded comma is to be preserved. For example:

Right Wrong
10 INPUT M# 10 INPUT M#
28 PRINT HM# 20 PRINT M#
RUNNH RUNNH

? “MOUSE, MICKEY" 7 MOUSE, MICKEY
MOUSE, MICKEY MOUSE
READY READY

Commas can be embedded without using gquotation marks via the
INPUT LINE statement, described below.

The format:
line number INPUT# <expression>, <variable list>

causes input to be read from the file or device indicated in the
expression, by the internal file designation number given when the
file was opened. (See Section 9.2 for a description of the OPEN
statement.) If the value of the expression is non-zero and the
specified file is the user terminal, open as an input device, then
no ? character is printed at the terminal when input is requested.

10-17

For example:

73 OPEN "KB:" FOR INFUT AS FILE 2
80 INPUT #2, A

The system then pauses while the user types a numeric value for the
variable A, although no prompting ? or character string message is
printed on the terminal.

Another format of the INPUT statement allows the user to enter
an entire line of data as a single character string entity, regardless
of embedded spaces or punctuation. This is different from the nor-
mal mode of string input, where the comma, apostrophe, single quote
and double quote characters have special significance. The format

is:

line number INPUT LINE[# expression ,]l<string variable>

For example:

23 INPUT LINE RS$

pauses to allow the user to enter a line followed by the RETURN,
LINE FEED or ESCAPE key (see also Section 5.3). Every character
input, including quotation marks and commas, is present in A$, above.
The end of the line being input is the carriage return/line feed
sequence (or line feed/carriage return/null or ESCAPE, see Section
5.3) which is appended to the data typed by the user. To remove the
CR and LF characters, use the string function LEFT, as described

in Section 5.5. This can be done as follows:

GS$ = LEFT (G$,LEN(G$)-2%)
END OF FILE ON DEVICE (ERR=11l) occurs when CTRL/Z is input.

As another example:

28 OPEN "“F2.DAT" FOR INFUT AS FILE 7
25 INPUT LINE #7. E¥

10-18

These lines cause the system to open a file F2 on the system disk
on channel 7 (of 12 possible channels) and to read a string of
characters up to the next LINE FEED character. (See Table 9-4
for the size of buffers available for each device.)

10.4.1 MAT INPUT Statement

The MAT INPUT statement is used to input the values of a pre-
dimensioned matrix from a specified input device. Where no device is
specified, the input is accepted from the user terminal. For exam-
ple:

288 MAT INFUT ACZE

causes 20 floating-point values to be accepted as elements of the
matrix A. A statement of the form:

line number MAT INPUT{#<expression>,] variable list

causes the input to be read from a file or device previously opened
on the internal channel indicated by the expression.

45 DIM B18, 252
50 OPEN "DT1:DATAR1" FOR INFUT AS FILE 1
55 MAT INPUT #41, EC1@, 250

The above lines cause the file DATAl on DECtape 1 to be opened for
input on channel 1 (of 12 possible channels) and a matrix of values
for the elements of B to be read to fill B(10,25). The zero elements
are not assigned a value. When input is from the user terminal, 2

is printed; however, reference to another device does not cause the
printing of the prompting character. Depending upon the name of

the matrix, the MAT INPUT statement allows input of floating-point,

integer, or character string values.

10.4.2 Input from Non-Terminal Devices

Like the PRINT statement, the INPUT statement can operate upon

10-19

devices other than the user terminal. The form:
line number INPUT #<expression>,<list>

causes input to be accepted from the previously opened file or device
indicated in the expression (see Section 9.2). As long as the value
of the expression is non-zero, the specified file is read through

one of the 12 internal I/O channels. If the expression is zero,

or missing completely, input is from the user terminal. No ? charac-
ter is printed on the terminal when input is requested from a device
other than the user terminal. For example:

18 OPEN “PR:" FOR INFUT AS FILE %
28 INPUT #Z, A% B¥

causes the strings AS$ and B$ to be read from the high-speed paper
tape reader.

Note that the data format is identical to the standard INPUT
format. If the user wants to read numeric or string data from a
file previously created (on disk or DECtape, for example) he should
insert commas and carriage returns in the data when he places the
data in the file. For example:

186 OPEN "DTE:LEN" FOR OUTFUT RS FILE 1X
1108 PRINT #1x, A ", B ", " C

128 CLOSE 1%

13@¢ OPEN "DTE@:LEN" RS FILE 1%

148 INPUT #1X, A.E, C

1568 PRINT A, B, C

is an acceptable sequence to print three values onto a DECtape file,
read them from that DECtape file, and print the three values on the
user terminal. As in the example above, once a file is opened it

can be closed and reopened through the use of a second OPEN statement.
Reopening the file moves the position pointer within the file back

10-20

to the beginning of the file, so that the entire file becomes avail-
able again for sequential referencing.

10.4.3 Opening the User Terminal as an I/0 Channel

The internal file designator (following the # character in the
INPUT or PRINT statements) is always in the range 1 to 12. File
designator # is, by definition, always open as the user's terminal.
Internal file designator @ cannot be closed or opened. Use of file
#2 is indicated below (no OPEN #f statement is necessary or allowed).

18 INPUT #@, A$

is equivalent to:

18 INPUT A¢

It is sometimes useful to be able to request keyboard input
without having the "?" prompting character printed first. This can
be accomplished by opening the user's terminal ("KB:") on some
internal file designator other than . The ? character is only
generated for input requests on file #§, as shown in the following
example:

LISTHH

18 OPEN “"KEB:" RS FILE 1

28 PRINT "WITH USE OF INTERHNAL FILE LESIGNATOR"
%8 PRINT “"TYPE YOUR NAME., FOLLOWED EBY RETURH EEY"
48 TNPUT #1, A$:; “"THANK You"

28 PRINT: PEINT
£0 PRINT "FOR COMFARISON, WITHOUT FILE DESIGHATOR:"

v8 PRINT "TYPE YOUR NAME. FOLLOWEL EY RETURMN KEY"
28 INPUT A%, “"THARME yYou"

38 END

RERDY

FEUNNH

WITH USE OF INTERNAL FILE DESIGHATOR
TYPE YOUR HAME. FOLLOWED EY RETURN KEY
J.F. JONES

THANK You

FOR COMPARISON. WITHOUT FILE DESIGNATOR
TYPE YOUR NAME, FOLLOWED BY RETURN EEY
? J. F. JONES

THANE YOUu

READY

10-21

10.5 APPENDING DATA TO DISK FILES

Information can be added to existing files (appended) by using
the MODE option, described in Section 9.2.4 in the OPEN statement.
Once opened, a data file can be appended simply by using the
PRINT# statement described in Section 10.3.1.

To write data to a new block following the current end of file in
a disk file, specify the MODE 2% option in the OPEN statement. For

example:

188 OPEN "DARTA" AS FILE 1H. HMODE 22X

As a result, the system opens the file DATA under the current account
on the system disk. The next output operation creates a new block
and appends it to those currently allocated to the file. Any fill
characters in the previous last block of the file remain when the
system appends the new last block. Do not use the OPEN FOR OUTPUT
form of the OPEN statement, as it deletes the existing file.

10.6 PROGRAMMING EXAMPLE

Formatted ASCII disk files can be used to store data of variable
length. For example, strings of different sizes can be stored im-
mediately next to each other, making the most efficient use of
storage space on the disk.

The example below illustrates how a programmer stores strings in
a data file called DIARY. He opens the disk file with the MODE 2%
option to append new data to the file when required. The program

shown below is run the first time with the following user responses:

3

1088 REM THIS PROGRAM SETS UF AN ARSCII FILE IN AFFEND MODE.
1ol OFEN "DIARRY® AS FILE Zx, MODE 2

loze FRINT "MEXT LINE":

18Z@ INFUT LINE L¥

1848 IF LEFTOLS, LENCLEX-22 = "END" THEN 1&vé

16858 PRINT #3Zx, L#;:

i@ed GOTO 1eze

1878 CLOSE =X

1888 END

.o
i

10-22

RUNNH

NEXT LINE? JULY & 1e8€
NEXT LINE? DEAR DIARY,
NEXT LINE? ERRLIER TODAY, WHILST REFOSING “MEATH YE OLDE AFPFLE TREE.

NEXKT LINE? I WITNESSED A COMMONFLACE EUT FAINFUL EVENT MHICH METHINES MAY
NEXT LINE? PROWE OF FUELICK INTEREST. TO WIT: A RIFE AND GOOD-SIZED

NEXT LINE? APPLE LOOSENED ITSELF FROM THE TREE FND FELL EARTHMARLD,

NEXT LINE? STRIKING THIS HUMELE NARRATOR UFON THE HEAD AMD CRUSING HIM TO
NEXT LINE? BE DRZED CONSIDERAELY.

NEXT LINE? AS A RESULT. METHINKS THERE IS AN ATTRACTION BETMEEM BOLIES.
NEXT LINE? 1 HERE USE THE WORD ATTRACTION IN GENERAL FOR ANY ENDERYOR

NEXT LINE? WHARTEVYER, WADE BY EBOMIES TO APFPROACH TO EACH OTHER. WHETHER THHT
NEXT LINE? ENDEAYOR ARISE FROM THE ACTION OF THE BODIES THEMSELVES, RS

HEXT LINE? TENDING TO EACH OTHER OF AGITATING EACH OTHER EY SPIRITS

NEXT LINE? EMITTED; OR WHETHER IT ARISED FROM THE ACTION OF THE ETHER OR OF
NEXT LINE? THE AIR, OFR OF ANY MEDIUM WHATEVER, WHETHER CORFOREAL OF

NEXT LINE? INCORFOREAL. IN ANY MANNER IMFELLING EODIES FLACED THEREIN

NEXT LINE? TOWRRDS EACH OTHER. FURTHER, THIS ATTRACTION BETWEEN FARTICLES
NEXT LINE? IS DIRECTLY AS THEIR MASSES AND INYERSELY RS THE SPACE EBETHEEN
NEXKT LINE? THEM MEASURED FROM CENTRE TO CENTRE. THE QUANTITY OF THIS SPACE
NEXT LINE? BEING THENCE MULTIPLIED EBY ITSELF. I CALL THIS ATTRACTION THE
NEXT LINE? LAW OF GRAYITATION (THE THEORY OF RELATIVITY. HAVING A BETTER
NEXT LINE? SOUND, IS TOO OBSCURE:.

NEXT LINE? BUT I HASTEN TO OTHER THINGS.

NEXT LINE?

NEXT LINE? IZ2Y HEWTON

HEXT LINE?

HEKT LINE? —m e o e e e e e e e e e e e e e e e
NEXT LINE? END

RERDY

The file DIARY now contains the strings input above. More than
two but less than three full blocks are used in this file at this
point. The second execution of the above program adds information
to the existing file, beginning at the next empty block (in this
case, block #4).

10-23

RUNNH

NEXT LINE? JULY €, 1€&€
NEXT LINE? DERR DIARY,
NEXT LINE? THE DYNAMICS OF FALLING AFFLES IS HAZARDOUS WORK. HENCE-

NEXT LINE? FORTH I SHALL CONCENTRATE ON INVENTIONS. I FLAN TO INVENT
NEXT LINE? DIFFERENTIAL CALCULUS EBEFORE SUFFER.

NEXT LINE? S0 LONG FOR NOW, DERR DIARY

NEXT LINE?

NEXT LINE? T1Z22Y NEWTON
NEXT LINE? END

RERDY

The following program is run to print the contents of the file
DIARY, from the beginning of the file to the last entry.

16060 REM THIS PROGRAM RERDS THE FILE “"DIARY. "
1616 OPEN "DIARY" AS FILE 4%

1820 ON ERROR GOTO i@e@

1826 INPUT LINE #4x, HM$

1848 PRINT M¢;

1858 GOTO 16@z6

1868 CLOSE 4X

1878 END

10-24

RUNNH
JULY S0 1€8€

DERR DIARY,

ERRLIER TODAY, WHILST REFPOSING “NEATH YE OLLE AFFLE TREE.
1 WITHESSED A COMMONFLACE EUT FAINFUL EVENT WHICH METHINKES MAY
FROYE OF PUBLICE INTEREST. TO WIT: A RIFE AND GOOD-SIZEL
APPLE LOOSENED ITSELF FROM THE TREE ANC FELL EARTHWARL.
STRIKING THIS HUMELE NARREARTOR UFON THE HERAD AND CAUSING HIM TO
EE DAZED CONSIDERAEBLY

AS A RESULT, METHINES THERE IS AN ATTRACTION EETWEEN EODIES
1 HERE USE THE WORD ATTRACTION IN GENERAL FOR ANY ENDEAVOR
WHRTEVYER, MADE EBY EBODIES TO AFFROACH TO EACH QTHER. MWHETHER THAT
ENDERYOR ARISE FROM THE ACTION OF THE EBCGDIES THEMSELVES, FAS
TENDING TO ERCH OTHER OF ARGITATING EACH OTHER EY SFIRITS
FMITTED; OF WHETHER IT ARISED FROM THE ACTION OF THE ETHER OF OF
THE AIR, OF OF ANY MEDIUM WHATEYER, WHETHER CORFOREAL OF
INCORPOREAL, IN ANY MANNER IMPELLING ECOLIES PLACED THEREIN
TOMARRDS EACH COTHER. FURTHER, THIS ATTRACTION BETWEEN FARTICLES
1S DIRECTLY AS THEIR MASSES AND INYERSELY AS THE SFACE EBETHWEEN
THEM MERSUREL FROM CENTRE TO CEMTRE. THE QUANTITY OF THIS SPACE
EEING THENCE MULTIFLIEDR EBY ITSELF. I CALL THIS ATTRACTION THE
LAW OF GRAVYITATION (THE THEORY OF RELATIVITY., HAVING A EBETTER
SOUND, IS TOO OBSCURE:.

BUT I HASTEN TO OTHER THINGS.

TZ2ZY NEWTON

JULY €&, 1686
DEARR DIARY,
THE DYMAMICS OF FALLING AFPFLES 1S HAZARDOUS WORK. HENCE-
FOETH I SHALL CONCENTRATE OMN INVENTIONS. I FLAN TO INYENT
DIFFERENTIAL CALCULUS EBEFORE SUFFER
SO LONG FOR NOW., DERE DIARY

I1Z22Y NEWTON

RERDY

10-25

CHAPTER 11

VIRTUAL DATA STORAGE

Many applications require a capability to individually address
and update records on a disk file in a random (non-sequential) manner.
Other applications may require more core memory for data storage than
is economically feasible. BASIC-PLUS fills both these requirements
with a simple random-access file system called virtual core.

The BASIC-PLUS virtual core system provides a mechanism for the
programmer to specify that a particular data matrix is not to be
stored in the computer core memory, but within the RSTS-11 disk file
system instead. Data stored in disk files external to the user pro-
gram remain, even after the user leaves his terminal, and can be
retrieved by name at a later session. Items within the file are indi-
vidually addressable, as are items within core matrices. In fact,
it is the similar way in which data are treated in both core and
random-access files which leads to the name virtual core.

With the virtual array facility, BASIC-PLUS programs can operate
on data structures that are too large to be accommodated in core at
one time. The disk file system is used for storage of data arrays,
and only portions of these files are maintained in core at any given
time.

With virtual data storage, the user can reference any element of
one or more matrices within the file, no matter where in the file that
element resides. This random access of data allows the user non-
sequential referencing of the data for use in any BASIC statement.

The virtual core matrices are read into memory automatically by the
system.

The order in which array elements are referenced can have a

significant effect on the program execution time. This section also

11-1

describes the algorithms used in the virtual array processor, in
order that users concerned with efficiency can optimize their use
of this facility.

Each disk file appears to the user program as a contiguous
sequence of 256-word records. Any position in a file can be specified
internally with a two-component address; the first part being the
relative record within the file, and the second being the position of
the item within the block. One of the functions of the virtual array
processor is to transform, or map, each virtual array reference into

its corresponding file address.

Virtual arrays are stored as unformatted binary data. This
means that no I/0 conversions (internal form-to-ASCII) need to be
performed in storing or retrieving elements in virtual storage. Thus,
there is no loss of precision in these arrays, and no time wasted
performing conversions.

11.1 VIRTUAL CORE DIM STATEMENT

In order for a matrix of data to exist in virtual core, it must
be declared in a special form of the DIM statement. This special
DIM statement is as follows:

line number DIM# < integer constant >,<ligt>

where the integer constant is between 1 and 12 and corresponds to the
internal file designator on which the program has opened a disk file.
The variable list appears as it would in a DIM statement for a core-

resident matrix. Thus, a 1@f by 1@@ matrix could be defined as:

18 DIM #12K, ACL106, 1667

Floating-point constants, integer constants and strings can be stored
in virtual core matrices. More than one matrix can be specified in

one virtual core field. For example:

25 DIM #1¥, ACi@BO). BEXCZOROD), CHEOZHEED

11-2

allocates space for 1@@f floating-point numbers, 2@@fF integer numbers
and 25@@ character strings (16 characters long). However, if a virtual
array is defined in this fashion, future references should always

dimension the arrays to the same size.

11.2 VIRTUAL CORE STRING STORAGE

One of the few differences in data handling between core and disk
matrices occurs in the storage of strings within string matrices in
virtual core. Strings in the computer memory are of variable length
from @ characters to any arbitrary length. Strings in virtual core
matrices are of fixed length from @ characters to a specified maximum
length (all elements of a single string array have the same maximum
length). This fixed length can be defined by the program and varies
from 2 characters to 512 characters. The system forces the maximum
length to be a power of 2; that is, one of the following lengths:

2, 4, 8, 16, 32, 64, 128, 256, 512

Each element in the virtual core string need not use the maximum
length available, even though space is reserved for each element to
be the maximum size. If the user indicates other than one of the

values above, he receives the next higher size. Thus:

18 DIM #1X, H#0182 = &5
is equivalent to:
18 LIM 81X, H$018: = 128

If no length is specified, a default length of 16 characters is
assumed. The maximum length of virtual core strings is specified

as an expression in the DIM statement, using the form:

line number DIM #<integer constant>,<string (dimension(s))>=<integer constant>

For example:

16 DIM #1313, AFC1@8x=3Z20L. EBFO1@@r=4X, CF(1EOD

11-3

where:

AS consists of 1@1 strings of 32 characters each, maximum;
BS consists of 11 strings of 4 characters each, maximum;

C$ consists of 181 strings of 16 characters each, maximum.

If a length attribute is given in a DIM statement for an in-core
string matrix, it is ignored, since core storage is allocated dyna-
mically to hold a string of any length.

11.3 OPENING AND CLOSING A VIRTUAL CORE FILE

In order for the user to reference his virtual core file, he must
first associate a disk file (by name) with an internal channel desig-
nator from 1 to 12 (which is then used in the virtual DIM declaration).
This is done with an OPEN, OPEN FOR INPUT, or OPEN FOR OUTPUT state-
ment:

line number OPEN <string>[§8§ éggggT] AS FILE <exzpression>

where the string is the name of a disk file and the expression speci-
fies an internal file designator (this is the same format described
in Section 9.2); thus:

1% OPEN "RCCT" AS FILE 1X

associates the file named ACCT with internal channel 1. If ACCT
already exists, then the existing file is used. If there is no file
named ACCT, one would be created. If the user wishes to destroy an
old file named ACCT and create a new file of the same name, he can
use the statement:

%5 OFEN "ACCT"™ FOR CUTFUT A FILE 14
which causes the file to be deleted if it already exists and a new file

created (in which case the file is deleted if not used). If the user
wants to be alerted that the file ACCT is not present, he could write:

35 OPEM "ACCT" FOR INFUT AS FILE 1X

11-4

which would cause an error message to be printed if ACCT is not
found.

NOTE

Virtual core arrays do not permit internal
buffers larger than 512 characters; therefore,
the RECORDSIZE option is not used when open-
ing a virtual core array file.

11.3.1 Pre-Extending a Virtual Array

Since the system overhead for extending a file by a single data
element and by many elements is nearly the same, it is much more
efficient to immediately extend a newly created file to its final
length than to extend it many times in increments of a single data
element. Whenever the final size of a file is known, the file should
be extended to its full size in a single operation.

For example:

@@ OFEN "DATA" FOR QUTFJIT AS FILE 1X
288 DIM #1, ACLlB8GG:
188 Ad1l88BHy = @

This extends the virtual core array A to its final length. Virtual
core arrays, however, are not initially zeroed by the system. In the
example given above, A(f) through A(9999) contain indeterminate values.
Unless the user is careful these values could cause a program failure.
The user is advised to first zero the virtual core array. This could
be done as follows:

88 MAT A = ZJERCLIB8EED

which both zeros and extends the file to its maximum size. However,
this uses the more time consuming method of extending the file. A
more optimal approach would be:

B ROlB0BeX =R MAT K = ZERC1GG86:

11-5

which immediately extends the file to its maximum and then zeros it

sequentially. These techniques have frequent practical application.

11.3.2 Closing a Virtual Core File

The CLOSE statement must be used to terminate I/O between the
BASIC program and the virtual array. Once a virtual array has been
closed, it can be reopened for reading or writing on any internal
file designator.

All virtual arrays must be closed before the end of program
execution. The CLOSE statement causes the output of the last data
element to a virtual core file. Execution of a CHAIN statement
automatically closes any open arrays, but does not cause the output
of the last data elements to the array. The format of the CLOSE
statement is as follows.

line number CLOSE <expression> [,<expression>...]

The expression indicated has the same value as the expression in the
OPEN statement and indicates the internal channel number of the array
to close. Any number of arrays can be closed with a single CLOSE
statement; it more than one array is to be closed, the expressions
are separated by commas. The CLOSE statement writes the current
contents of the 1/0 buffer to a virtual core file before closing it
and frees core storage space for the program to open other arrays or
files (a maximum of 12 depending upon available space). For example:

)
[Ea RN a}

inm
e
Pt

Lol PO

$a LN
oo
—

Dont I)

Line 255 above closes the virtual arrays opened on internal I/0
channels 2 and 4. Line 345 closes the array open on internal I/0O
channel 10.

11.4 VIRTUAL CORE PROGRAMMING CONVENTION

Recoverable errors occur when using virtual core if the user

program does any of the following:

1. Reference a virtual core array without first opening
the file.

2. Reference a non-disk file (for example, DECtape or the
line printer) as a virtual core array.

3. Exceed virtual core, that is, define a matrix that is
bigger than the amount of available disk storage on the
system.

It is important to remember that a virtual core file must be closed
before stopping the program (like any other file).

11.4.1 Array Storage

Any data element in a virtual array is completely contained within
a single segment (256 words) of disk storage. This restriction has no
effect on integers and floating-point items, where the size of data
items is fixed (l-word integer, 2- or 4-word floating point numbers),
but does limit the maximum length of a virtual string to 512 characters
(512 bytes). The number of data elements stored in each disk segment
is a function of the size of each element. For virtual strings, the
number of elements is also related to the maximum string length speci-
fied in the DIM# statement. The size of a virtual string is defaulted
to 16 characters, and can be specified as: 2, 4, 8, 16, 32, 64, 128,
256, or 512. Table 11-1 indicates the number of array elements stored
in each segment of a virtual file.

Table 11-1
Virtual Array Storage Capabilities

Number of Elements
Data Type per Segment
Integer (%) 256
2-Word Floating Point 128
4-Word Floating Point 64
String ($) 512/N
(where the maximum length =N)

11

7

Strings in virtual storage occupy pre-allocated space in the
virtual file, and thus differ from strings in core storage, where
space is allocated dynamically. A disk segment containing virtual
strings can be considered to be a succession of fields, each of the
maximum string length. When a virtual string is assigned a new
value, it is stored left-justified in the appropriate field. If the
new string value is shorter than the maximum length, the remainder
of the field is filled with zeros. When the string is retrieved, its
length is computed as the maximum string length minus the number of
zero-filled bytes.

11.4.2 Translation of Array Subscripts into File Addresses

In order to translate an array subscript into a file address,
RSTS-11 computes (a) the relative distance from the specified item
to the first item in the array, and then adds (b) the relative dis-
tance from the first element of the array to the first item in the
file. The first quantity (a) is computed from the array subscript
and the number of elements per block, as shown in Table 11-1. The
second number (b) is a constant for each array in a file, and is

computed from the parameters specified in the DIM# statement.

Since the DIM# statement contains the only information used to
define the structure of a file, it is possible for the user to specify
differently accessing arrangements for the same file in one or more
programs. For example, the user can reference the same data as
either a series of 32-byte strings (A2$) or l6-byte strings (AlS$),
with the following statements:

14 DIM #1,Al1S$(1@99) = 16 116 CHARACTER STRINGS.
2@ DIM #1,A2$(50¢) = 32 132 CHARACTER STRINGS.
3¢ OPEN 'FIL1l' AS FILE 1 IVIRTUAL ARRAY FILE.

The user should keep in mind that in BASIC-PLUS, as in most
BASICs, array subscripts begin with @, not 1. An array with dimension

n, or (n,m) actually contains n+l, or [(n+l)*(m+l)] elements.

11-8

User programs may define two-dimensional virtual arrays as well
as singly dimensioned ones. Two-dimensional arrays are stored on
disk (and in core) linearly, row-by-row. Thus, in the case of an

array (X1,2), the array appears logically as:

X(g,8) X(g,1) X(g,2)
X(1,9) X(1,1) X(1,2)

while physically it is stored as:

X(g,9) lowest address

X(g,1)

X(#,2)
X(1,9)
X(1,1)

X(1,2) highest address

If a virtual array is to be referenced sequentially, it is
usually preferable to reference the rows, rather than the columns,
in sequence. Consider the case in which it is necessary to compute
the sum of each row and column in a two dimensional array. Program

ONE does this far more efficiently than program TWO (see next page.)

11-9

18
28
e

1a
28
8
48
58
&8
v
&a
1]
o5
96
166
119
128
138
146
156
168
1ve
peds]}
=11

FEEM
FEM
FEM
REM
LIM
LINn
GFEN
MAT
MAT
FOR
FOR
Rl
Ced
NE
NER
MAT
MAT
CLG
END

REM
REM
REM
REM
DIM
BIM
OFPEN
MAT
MAT

FROGREAM “ONE® TO
"ARRAY" CONTAINS

COMPUTE SUMS EFFICIEMTLY
VWIRTUARL HRERARY

RoIx IS SUM OF ROW I
Ceds IS SUM OF COLUMW J

#1, Aci6, So>
Eei1@s, CoS@2

"AREEAY" AS FILE
E = ZER
C = ZER

I =1 70 18

J =1 T0 S8

»o= ROIY 4 ACIL, I
»o= Loy o+ ACIL, J3
T dJ
TI

FEINT R

FRINT C;
SE 1
FROGRAM “TWD" HAS

"ARRAY"

RCTo

Cads

#1, Ru16, 563
Reiar, CoS@s

"HEREAY" AS FILE

F = ZER

C = EER

'1a ROWS, S8 COLUMNE

1 'OFEN VIRTUAL FILE
PINITIRLIZE SumM

YOFERATE ROW EBY ROW
YOO EARCH COLUMN IN RO
'TOTAL ACROSS ROW
PTOTARL COWN COLUMN
'NERT COLUMN IN RO
THEXT ROW

PPRINT ROW TOTHLS
TPRINT COLUMN TOTALS

INEFFICIENT USE OF VWIRTURL COR
CONTHINS YIRTURL RERAY
CONTAHINS SUM OF ROW I
CONTARINS SUM OF COLUMN
Y18 ROWS, S@ COLUMNS

1

FEM - REFERENCING ARRERAY ELEMENTS [OWN THE

REM
FOFR
FOR
Rl
cod
NE¥
NEX
MART
MAT
cLo
EHI

- COLUMNS CRUSES
J =1 T0 3@
I =170 18
= ROIx + ACI, J2
o= Cddy + ACI, J2
TI
T

=

FEINT R;
FRINT C;
SE 1

ExXTREA DISK REFERENCES
'OFERATE ONE COLUMN AT
YAND EACH ROW IN COLUMN
'TOTRL ACROSS ROMW
PTOTAL DOWN COLUMN
PNERT ROMW IN COLUMN
INERT COLUMN

11-10

E

J

H

TIME

In virtual core arrays it is permissible to have two (or more)
arrays sharing the same file. That is, the following DIM# statement
is perfectly legal.

199 DIM#1,A(1g@9),B%(999),C(1g00)
The matrix B% begins immediately after the 1g@@gth element of A

and the matrix C begins immediately after B%(999). Therefore, the
disk layout is as shown in Figure 11-1.

A(d)
A(1)

I3
ALY

{2

A(999)
A(1ppd)
B% ()
B% (1)

)L
(¢

- K

AL ¢

B%(998)

B%(999)
C(g)
c(I)

A -
o

)\
<

c1999)
Cc(14¢9)

Figure 11-1 Virtual Array File Layout

There is, however, an exception to this rule. Elements in string arrays
are allocated a fixed number of bytes in the disk file. This is either
2, 4, 8, 16, 32, 64, 128, 256 or 512 bytes of storage. A single string
element must not cross a disk block boundary (where each disk block
contains 512 bytes or 256 words). Consider the following case:

199 DIM A%(2) ,BS(1pgg)=4

11-11

The first three words of the disk block are allocated to A%. If
the array B$ were to begin immediately after A%, one of the elements
of B$ would cross a block boundary. Hence, B$ begins at the start of
the second block in the file rather than immediately after AS.

The rule can be stated as follows: When more than one array is
assigned to a single virtual array file, each array begins immediately
following the last element of the preceding array unless such an
allocation would cause an element of the array to be split across two
disk blocks, in which case the array begins at the start of the next
block of the file, and the remaining words of the current block are
unused.

11.4.3 Access to Data in Virtual Arrays

Only a portion of a virtual array is in core at any given time.
This data is transferred directly between the disk and an I/0 buffer
in the user core area, created when the OPEN statement is executed.
This buffer must be 256 words (one segment) long, and may not be
specified as several segments with the RECORDSIZE option in the OPEN
statement. For each virtual array file, RSTS-11l notes (1) the seg-
ment of the file in the buffer, and (2) whether the data in the buffer

has been modified since it was read into core.

After RSTS-11 translates a virtual array address into a file
address, it checks whether the segment containing the referenced item
is currently in the buffer. If the necessary segment is present the
reference proceeds; but if not, another portion of the file is read
into the buffer. If the current data in the buffer has been altered,
it is necessary to rewrite this dataon the disk prior to reading new
data into the buffer.

The referencing algorithm, which minimizes the number of disk

memory accesses generated when handling virtual arrays, is flow-
charted in Figure 11-2.

11-12

Virtual Arra
Reference

Translate Sub-
script into File
Address

Current
Segment Been

Altered
?

Rewrite Segment
in File
[}
Clear 'Modified'
Indicator
|y
Y
Read New
File Segment

—

Replac-
ing Element

in Buffer
b ?

Set 'Modified"
Indicator

l o 1

Proceed with
Operation

Figure 11-2 Virtual Array Accessing Algorithm

11-13

All references to virtual arrays are ultimately located via file
addresses relative to the start of the file. No symbolic information
concerning array names, dimensions, or data types is stored within
the file. Thus, different programs may use different array names to
refer to the data contained within a single virtual array file. The
user must be cautious in such operations, since it is his responsibility
to ensure that all programs referencing a given set of virtual arrays
are referencing the same data. Consider the following example:

Program ONE contains

26 OFEN "“FILE" NS FILE 1

Program TWO contains

168 DINMEL, 2(1@), Kc1@?
£8 OFEN "FILE"™ HS FILE 1

Whenever program TWO references the array Z, it is using the data
known to program ONE as array X. Both X and Z are the first arrays in
their declarations, both contain floating-point data, and both are

11 elements (X(#),...,X(19)) long. These two arrays, the, correspond
in position, type, and dimension.

References to the array X (in ONE) and to the array X (in TWO) do
not refer to the same data, even though both are using the same virtual
file (FILE). The concept of using relative position, rather than
name, to identify data items is familiar to users of the FORTRAN
common facility.

Within a single BASIC-PLUS program it is possible to open a single
virtual core array file twice on the same channel for the purpose of
reallocating the data within the file. For example:

145 OFEN "CARTA" FuR INPUT RS FILE 1
1356 DINM#L, A$C1@H=4
155 DIM&L, BE$Cdr=1¢

The program now has access to the file DATA through both the array AS
and the array B$. Each element of B$ contains four elements of A$
(B$(@) is equivalent to the elements A$ (@) through AS$(3), etc.).

11-14

Note that the two DIM# statements reference that file on a single

channel number (#1 in this case).
Note also that the two statements:

7O ODIMEL, AC1E:
g8 DIM#EL, BolG:

are not equivalent to the statement:
98 DIM#L, AdCler, Bl

In the first case the arrays A and B are equivalent to each other and
constitute the first array in the file open on channel 1. 1In the
second case the arrays A and B are defined as both existing in the

file open on channel 1.
CAUTION

The user is advised not to open a
single file under two different
channel numbers. For example:

S5 OFeN "wHLUES" RS HILE
55 OPEN “"wHLUES"™ RS FILE

RN

188 DiM#d, H&E02870
tan DIMEzZ, YEO2E0

causes two buffers to be created for

the storage of input to/from channel 1
and to/from channel 2. Data output

to channel 1 is not available to channel
2, etc.

11.4.4 Allocating Disk Storage to Virtual Files

The dimensions indicated in a DIM# statement set maximum allow-
able values for subscripts, and are not used to compute the initial
size of the virtual file to be allocated on disk. Instead, the file

is created with an initial length of @ segments, and segments are

11-15

appended to the file, to accommodate the highest referenced file
address in the array. This permits a user to specify array dimensions
larger than required at the time the program is written; such programs
may eventually operate on larger arrays without modification, and
without tying up disk storage unnecessarily.

Areas of unallocated disk storage are found only at the end of
a file.

As segments are appended to a file, their contents are not
initialized to zero. The data previously recorded in a segment (when
it was part of another file) is available to the new owner of the
segment. Users whose files contain confidential information should
explicitly overwrite all data in such files, prior to file deletion,
in order to protect data contained therein.

To override the dynamic virtual array allocation, reference the
last element in the virtual array file. This causes all segments in
the file, up to and including the last, to be allocated. As noted
above, the contents of these segments as appended to the file is un-
known. Using the MAT ZER command is advisable if the program depends
on array values being initialized to a known (zero) quantity.

11.4.5 Simultaneous Access of a Virtual Core Array by Several Programs

As mentioned in Section 9.2, only the first program to open a
file (array) is given write privileges. When a second program attempts
to modify an array which is already open, the appropriate block is read
from the disk but changed only in the second user's buffer - not on the
disk. When the second program references this array and attempts to
read another block from the disk, a PROTECTION VIOLATION error occurs.
This is because the system attempts to update the disk with the new in-
formation in the current block before the required block is read into
core. Since the second program has no write privileges, the disk
cannot be updated. A CLOSE operation at this point also results in
a PROTECTION VIOLATION error for the same reason. Once the job re-
turns to BASIC-PLUS command level and a NEW, OLD or RUN command is
executed, a CLOSE is performed on all channels. In this case, no

write is attempted so the CLOSE is successful.

11-16

The best way to avoid simultaneous write accessing of a virtual
core array is to determine whether the user program has write priv-
ileges. Do this with the STATUS variable (see Section 12.3.5) as
shown below.

18 OFEN "ARRAY" A4S FILE 1%
28 IF CSUATU: AND 1824X: THEN CWRITE LOUsoDs
ELSE <WRITE OQERY:

MODE 1% should not be used for updating an array by several pro-
grams simultaneously. This is because a user's buffer is modified
when an array is open with the MODE 1% option =-- the disk is not
updated at this time. (Even when the first program unlocks the file,
allowing other programs to access the array, the first program's
modifications exist only in the first user's buffer.) The array is
updated only when the first user accesses data from another block,
as explained above.

11.5 PROGRAMMING EXAMPLE

As an example of virtual core usage, consider the problem of
generating a large array of random numbers. Since a physical disk
block is 256 words, the most efficient array would contain a multipie
of 256 elements. The virtual core file, ARRAY1.DAT, in this example,
contains 512¢ data elements in a 2 x 2560 array. The zero row and
zero column are used, so this array is dimensioned V$%(1%,2559%).
Twenty physical blocks are used to store this array. The program
shown below creates the virtual array V% by assigning a random value
between §# and 1@g@f to each element in the array.

188 OFEN "ARRAYL. DAT" AS FILE X

1816 DIM #3IX, WEOLX, 255952
1826 FOR IX = @5 TO 1X
1036 VYHOIXN, Jir = ENDCLY % 1888 FOR JH = @y To 2559%

16848 NEXT IX
1858 CLOSE ZX
18&@ END

11-17

Now that the file ARRAY1.DAT has been created, the virtual array
can be accessed simply by specifying the elements by their subscripts.

The program shown below prints every 256th value. Notice that the

format of the array in the DIM statement, below, must be identical to

the original format for predictable results. The file's internal

channel number and the array's name can change, but the array must be

formatted the same way every time it is accessed.

1800 OFEN "RRRAYL. DAT" AS FILE 3%

1016 DIM #3%, VZLX, 255972

1920 FOR IX = @x TO iz

1936 FPRINT V21X, J%y; FOR JxZ=87% TO 2559% STEFR 25€6éx
1046 NEXT Ix

10560 PRINT

1868 CLOSE 34

16768 END

READY

RUNNH

204 909 954 B39 65 131 S37 784 714 79s Se5 17x 1ee
468 958 289

READY

Values of array elements can be changed simply by redefining

them in assignment statements (e.g., LET, INPUT, READ) .

the program below changes the value of specified data elements, once

they are defined by subscripts.

1688 OFEN "ARRAYL. DAT" AS FILE 3X
1916 DIM #3IH, VEOLE, 253%#0
1@28 ON ERROR GOTO lo&a

1836 INFUT "ENTER THE I AND J LOCATION OF THE ELEMENT";

1648 NZ = VH(IXR, JRD

1658 INFUT "ENTER THE NEW WALUE"; Ya{I:x, Ji)

1966 FRINT "OLD WALUE WAS: ™ Ni ". NEW YALUE I5: "
16768 GOTO 41B36

1888 CLOSE 3

1698 END

RERDY

11-18

18, Ik

WEROTE, TR

For example,

FUWNH

ENTER THE I AND J LOCARTION OF THE ELEMENT? @&, @
ENTEFE THE NEW VALUE? ZZX

OLD WALUE WRARS: &4 . HNEW YALUE I5: 233

ENTER THE I AND J LOCRTION OF THE ELEMENT? @. 255
ENTER THE NEW WALUE? 22

oLl WALUE WRS: 78 . NEW WRLUE IS: 5233

ENTERE THE I AND J LOCATION OF THE ELEMENTY 1, S8&
EMTER THE HEW WRLUE? 1

oLl VALUE WRS: 26% . NEW YARLUE I&: 1

ENTER THE I AND J LOCATION OF THE ELEMENT? °2
REARDY

Some thought should be given to access methods of virtual arrays.
In the above examples, ARRAY1.DAT was allocated in the following

manner:
Block 1 v(g,q) - v(g,255)
Block 2 vV(g,256) -V(g,511)
Block 3 V(g,512) -V(g,767)
Block 14 V(%,2384) - V(#,2559)
Block 11 vV(1,0) - V(1,255)
Block 24 v(1,23084) - v(1,2559)

Notice that the second subscript varies from @ to 2559 for each
(@ and 1) of the first subscript.
transfers an entire physical record from the disk to core at one time,

of the two values Since the system

only one disk access is performed for each 256 consecutive data
elements (e.g., V(g,256) - v(g,511)).
efficient to access data elements within a given block than to access

It is therefore much more

data elements in different records.

The two programs shown below access, but do not print, each
element in the virtual array. The first access method transfers a new
block to core for each data element accessed, resulting in 5,120 disk
accesses. The second method, however, transfers a new block to core
only once per 256 data elements, resulting in only 20 disk accesses.
The difference in execution time between both methods is very signi-

ficant, as shown below.

11-19

Program #1
(Inefficient)

1666 OFEN "ARRAYL. DAT" AS FILE =X

16816 OIM 83X, VHEOLXH, 255342

1626 T = TIMEC@)

1638 FOR Jx = @x TO 2559%

1848 Dn = VHCIZ, JE» FOR IX = @ TO 1%

1658 NEXT J&

1860 FPRINT "THE FIRST ACCESS TOOK" TIMEC@»-T
1870 CLOSE ZX

1888 END

ONDS.

i
™
e}
[

RERDY

FUNNH
THE FIRST ACCESS TOOK 168 SECONDS

RERDY

Program #2
(Efficient)

16668 OFEN "ARRARYL DAT" AS FILE Zx

16816 DIM #3X, Vadllk, 255940

1626 T = TIMECG>

1836 FOR Ix = 8% TO 1X

1848 DX = VYHCIH, JX» FOR Jx = 8K TO 2556k

168568 NEXT I

1860 FRINT "THE SECOND RCCESS TOOE" TIMEL&>-T " SECONDS. "
1678 CLOSE 32X

18868 END

RERDY

RUNNH
THE SECOND RCCESS TOOK S SECONDS

FERDY

11-20

CHAPTER 12

RECORD I/0

There are three methods of performing I/0 in BASIC/PLUS. For-
matted ASCII I/0 is simple and flexible, but requires conversion of
numbers by the system from an internal form to an externally usable
ASCII representation and does not permit random access to files. 1I/0
to virtual core arrays permits high-speed random access to files but can
be used only on disk files and does not allow true intermixing of
string and numeric elements or use of the RECORDSIZE specification.

The third type of I/0, Record I/O, permits the user program to
have complete control of I/0 cperations. Properly used, Record I/0O
is the most flexible and efficient technique of data transfer avail-
able under BASIC-PLUS. These advantages are obtained at the cost of
the simplicity of the formatted ASCII and virtual array I/0. Less
experienced users should first experiment with the simpler I/0O tech-
niques before attempting Record I/0.

12.1 OPENING A RECORD I/O FILE

To open a file for Record I/O requires an OPEN statement, des-
cribed in Section 9.2. An additional field has been added to the OPEN
statement: the MODE field. The format of the OPEN statement, in-
cluding the MODE field, is as follows:

FOR INPUT

[line number] OPEN<string> [FOR OUTPUT]

AS FILE <expr>
[,RECORDSIZE < expr>] [,CLUSTERSIZE < expr>] [MODE <expr>]

[,FILESIZE <expr>]

12-1

The MODE option is used to establish device-dependent properties of the
file. For disk files MODE indicates that the file is to be opened to
update data (see Section 12.4.5). For non-file structured magtape
operations, MODE establishes the density and parity settings for the
magtape. For line printer operation, MODE is used in conjunction with
the optional forms control to establish the current form length. For
card reader operation, MODE sets a read mode to correspond to specific
data card formats®.

The RECORDSIZE and CLUSTERSIZE options can be specified for Record
I/0 files as described in Sections 9.2.1 and 9.2.2.

12.2 CLOSING A RECORD I/O FILE

Each Record I/O file must be closed once I/0 operations on that
file are completed. Files are closed with the CLOSE statement, as
described in Section 9.3. The CLOSE statement is of the form:

line number CLOSE <expr>[,<expr>]

where the value of the expression(s) specifies one of the twelve I1/0
channels.

Remember, the CLOSE statement for formatted ASCII and virtual
array files causes the the final record of the file to be written
before closing the file. However, all I/O to Record I/0O files is
explicitly performed (with GET and PUT statements). For this reason,
be sure the user program explicitly writes the last record onto a
Record I/0 file before executing a CLOSE.

12.3 THE GET AND PUT STATEMENTS

Input and output to Record I/O files is performed directly
between the device channel and the I/O buffer created by the OPEN
statement. All I/O is specified in terms of single records, using
the GET and PUT statements. GET and PUT are of the form:

line number GET# <exprI> [,RECORD <expr2>]
line number PUT# <exprl> [,RECORD <expr2>] [,COUNT <exprs3>]

!See the RSTS/E Programming Manual for details.

12-2

If the RECORD option (see Section 12.3.3) is not used, the GET
statement reads the next sequential record from the file open on the
channel designated by <exprl>. The record is placed in the I/0 buffer
which was associated with the channel by the OPEN statement. The
size of the record depends upon the characteristics of the device on
which the file resides, as described in Table 12-1. In Record 1/0,
the RECORD option refers to a 512-byte sector, not to a logical data
record.

When the RECORD option is used in a GET or PUT statement, a
specific record, or sector, is accessed. For example,

140 GET #4%, RECORD 8%

reads the eighth sector of the file opened on channel 4 into the user
I/0 buffer. Notice that the preceding 7 sectors of the file need not
be read. This feature, not available in formatted ASCIT files, is
called random access.

Table 12-1
Device Record Characteristics

Device Input Record Characteristics

disk Records (sometimes called blocks or segments)
are always 512 characters long. When the
RECORDSIZE option is specified in the OPEN
statement, and a buffer longer than 512
characters is created, the system reads as

many full records as possible. If several

disk records are read with a single GET state-
ment, the next sequential record is that record
immediately following the last record read.

In non-file structured operation, the minimum
record size is dependent on the device cluster-
size.

DECtape For file structured DECtape, records are always
510 characters long. For non-file structured
DECtape, records are always 512 characters.

magtape When performing file-structured I/0, magtape
records are always 512 characters. With non-
file structured 1/0, magtape records can be

of any length; only one record can be read

per GET statement; and the record length can
not exceed the buffer size as determined by the
RECORDSIZE option.

12-3

Table 12-1 (Cont.)
Device Record Characteristics

Device Input Record Characteristics

keyboard The GET statement obtains one line from the
keyboard, up to the first line delimiter
(CTRL/Z, RETURN, LINE FEED, ESCAPE or

FORM FEED).

card reader A record consists of a single card. The
RECORDSIZE option has no effect on card
reader input.

paper tape RSTS-11 reads a full buffer of input from the
paper tape reader unless an end-of-tape is
detected.

Similarly, if the COUNT and RECORD (see Sections 12.3.2 and
12.3.3) options are not used, the PUT statement writes the contents
of the I/0 buffer for the specified I/O channel onto the next
sequential record of the file. The expression < exprl> specifies the
internal channel number on which the file was opened. PUT writes
a single record on the device, with the exception of disk files which
permit several records to be written with one PUT statement (when
the RECORDSIZE option in the OPEN statement is used to increase I/0
buffer size).

12.3.1 The RECOUNT Variable

Non-file structured devices, as can be seen in the description
of the GET statement, can read less than a full buffer of data. To
permit the program to determine how much data was actually read, a
system variable, RECOUNT, contains the number of characters read

following every input operation.

RECOUNT is used primarily for non-file structured input; however,
it may also be used with file structured devices. On file structured
DECtape and magtape input, RECOUNT is set to the standard record
length (518 characters for DECtape and 512 characters for magtape).

On disk file input, RECOUNT is set to the RECORDSIZE. If the
RECORDSIZE is not an integral multiple of 512, an error message is
printed.

12-4

RECOUNT is set by every input operation on any channel (including
channel @). It is, therefore, essential that the RECOUNT value be
tested immediately following the GET statement.

12.3.2 The COUNT Option

The COUNT option used in a PUT statement with a non-file
structured device specifies the number of characters to write in the
current record. However, the COUNT expression cannot be greater than
the size of the I/0 buffer.

For example, where internal channel 1 is opened as magtape

unit @ (non-file structured magtape), the following statement could
be used to write an 80-character record:

1@d PUT #1X, COUNT gex

When COUNT is not used, the PUT statement writes an entire buffer,
regardless of whether the buffer contains data.

12.3.3 The RECORD Option

With disk files, the user has the capability of performing
random access I/O to any record of the file. Records in a disk
file are always 512 characters long and are logically numbered
within the file from 1 to n, where n is the size of the file.

The RECORD expression provides the logical record number of
the file to GET or PUT. For example, assuming a disk file opened
on internal channel 1, the following statement writes the contents
of the I/0 buffer associated with channel 1 on records 1§ through 99
of that disk file:

288 PUT #1X, RECORD IX FOR Ix=18% 70 =9
More than one physical record or block can be read or written by
assigning a large I/O buffer to the file with the RECORDSIZE option

in the OPEN statement. (The size of the buffer does not affect the
numbering of the records within the file.)

12-5

If the disk file on channel 1 were opened with a RECORDSIZE of
1924 characters (which would cause two 5l2-character records to be
written with each PUT) the PUT statement would be written as follows:

286 FUT #1%, EREECORD IX FOR Ix=18X TO 2

o
X

TEF

v

!
Py
M

After performing a random access GET or PUT on a disk file, the
next GET or PUT statement on that channel accesses the next sequential
record if no RECORD number is specified. For example:

298 OPEN "DATA"™ AS FILE 1k, RECORDEIZE S12X
%88 GET #1X, RECORD 883
%18 PUT #1X

The PUT statement at line 310 writes record 18 of the disk file.

12.3.4 BUFSIZ Function

In certain applications, it is important for a program to
determine the buffer size of an open channel, especially if the
OPEN statement specifies a logical device name. The user program

can execute the integer function BUFSIZ to extract this information.

The BUFSIZ function returns an integer value telling the size
of the buffer for a specified open channel. For example,

Y% = BUFSIZ(N)
The statement returns to Y% the size of the buffer in number of
bytes for channel N. If the channel is closed, the function returns

g to Y%.

12.3.5 STATUS Variable

The variable STATUS contains information concerning the last
channel on which a user program executed an OPEN statement. The
variable is a 16-bit word, each bit of which the user program can test
to determine status. Table 12-2 shows the information, the tests,

and the meaning of each bit.

12-6

Table 12-2
RSTS Variable STATUS

Bit Test Meaning

0-7 (STATUS AND 255%) The first 8 bits of the word contain the
handler index. The following values apply
for various devices.

@ Disk 12 Card Reader
2 Keyboard 14 Magtape
4 DECtape 16 PK:device!
6 Line Printer 18 DX:device!
8 HS Reader 20 RJ:device!
10 HS Punch

8 (STATUS AND 256%)+30% The device is open in non-file structured
mode or is characteristically non-file
structured.

9 (STATUS AND S12%) 0% The job does not have read access to the
device.

10 (sTaTus aNp t024m<:0x | The job does not have write access to the
device.

11 (sTaTus anp 2048w->0x | The device maintains its own horizontal

position. Such devices are keyboard and
line printer type.

12 STATUS AND 4096% Not used.

13,15 |ir status <ox anp 1F Device is a character device which can be
(STATUS AN 81922)<>0% | controlled by variable RECORD <expr >
modifiers. Such devices are keyboard,
line printers, and card readers.

IF STATUS <0% AND IF Device is a random access blocked device
(STATUS anp 81922070% | such as disk and non-file structured DECtape.

IF STATUS »=0% AND IF Device is a character device which cannot
STA" 2% 503 AN
(STATUS AND 81922)+0% | yse RECORD modifiers.

IF STATUS >=0% AND IF Device is sequential blocked such as
(STATUS eND 81720=0% | file structured DECtape and Magtape.

14 IF (STATUS AN Device is an interactive type (keyboard).
16384%) <> O%Z

'Pseudo keyboards always attempt to use handler index 16. If this
slot is filled, however, it proceeds to handler index 18. If both
these slots are filled, it attempts to fill handler index 20.
Finally, if all three of these slots are filled, the system returns
an error message.

The RJ device, if present, always fills handler index 20, but pseudo
keyboards and all other non-standard devices can fill handler index
16, 18 and (if RJ is not present) even handler index 20.

12-7

12.4 WORKING WITH RECORD I/O FILES

Techniques for opening, closing, reading and writing Record
I/0 files have been described. But these techniques apply only to
indivisible I/0O buffers associated with internal channels; no mention
has been made of manipulating data within these buffers. Techniques
for moving data into or out of a buffer are provided by extensions
to the BASIC language. The FIELD, LSET and RSET statements permit the
program to access and modify the contents of an I/0 buffer, character
by character. These statements are discussed in the following

sections.

12.4.1 Extending Disk Files

A disk file that is created by an OPEN FOR OUTPUT (or OPEN)
statement has a length of . As records are written, the file pro-
gressively grows in length; this growth is called extending the file.

A more exact description of file extending is as follows:

a) Is there room in the last cluster! of the file for the
new record?

b) If so, then the file length is increased and previously
unused space in that cluster is used.

¢) If not, then a new cluster is appended to the file.
There is then room in the newest last cluster for the
new record so condition b) applies.

The amount of space actually allocated by the system to a file
may be greater than the file length. For example, if the file
clustersize is 4 and the first 6 records of that file have been
written, the file is of length 6 but is actually allocated 8 records
(2 clusters) of space.

A file is extended by attempting to write beyond the current
end-of-file. Hence, a program must have write privileges in order
to be able to extend a file. There is an exception to the rule that
having write access to a file permits a program to extend the file.
When a file is opened for update (see Section 12.4.5) several pro-

grams can have simultaneous write privileges on a single file.

INote that the file CLUSTERSIZE is the least increment by which a
disk file can be extended. (See Section 9.9.2.)

12-8

Nonetheless, if a program opens a file in this special update mode,
that program may not extend the file. A file can only be extended
when open in normal (non-update) mode.

It is possible to extend a file by a number of records at one
time. For example:

166 OPEN "DATR" FOR OUTFUT AS FILE 1%
260 PUT #13%, RECORD 186X

creates a file DATA and (when line 200 is executed) extends it im-
mediately to 1@ records. Since the system overhead for extending a
file by a single record and by many records is nearly the same, it
is much more efficient to immediately extend a newly created file to
its final length than to extend it many times in increments of a
single record. Whenever the final size of a file is known, the file
should be extended to its full size in a single operation.

12.4.2 The FIELD Statement

The FIELD statement is used to dynamically associate string

names with all or part of an I/0 buffer. The FIELD statement has the
form:

line number TFIELD #<expr>, <exprl> AS «<stringvarl>

[,<expr2> AS <stringvard>...]

where <expr> is an internal channel number associated with some file

by an OPEN statement; <exprl > 1is the length, in characters, of the
associated string variable; and <stringvarl> 1is a unique string
variable name. The names are associated from left to right with suc-
cessive characters in the I/0 buffer assigned to the designated internal

channel number. For example:

7S FIELD #2%, 16X AS A$. 26X AS BE., ZX RS F#

AS B$ F$

00— > la— 20— |«3»|

- 512 -byte buffer

,_\\ﬁ
Y

12-9

As shown in the previous diagram, statement 75 associates three strings,
A$, B$, and F$ in the I/0 buffer, with lengths of 1¢, 28, and 3 charac-
ters, respectively. The total number of characters represented in this
statement is 33. The total number of characters must be less than or
equal to the actual I/O buffer size (which is dependent on the device
and the RECORDSIZE option, as described in Section 9.2.1).

FIELD statements do not move data but rather permit direct access
to sections of the I/O buffer via string variables. The effect upon
a string variable is temporary and is nullified by any attempt to
assign a value to the variable (other than the LSET and RSET, described
in Section 12.4.3). For example:

188 OPEN "FILE" RS FILE 2%
11@ FIELD #z2¥. SX RS A¢
126 LET A% = "ARECDE"

Line 12@ causes the string variable AS$ to be removed from the I/0
buffer. The string ABCDE is not stored in the I/O buffer by line
120.

A FIELD statement is an executable statement, rather than a
compiler directive (such as a DIM statement). To illustrate:
suppose that each record of a disk file contains sixteen 32-character
sub-records and that each sub-record consists of one 5-character
field and one 27-character field. 1In order to extract the eighth
sub-record from the I/0 buffer, the following statement could be
executed:

280 FIELD #1, 224% AS D$, 5% AS E$, 27X AS A$

s A$ |

|=-32 —] !]
bytes B$

12-10

Line 2@f# causes the string variables B$ and AS$ to point to the

desired sub-record. The string D$ is created to permit the first
seven sub-records (7x32=224) to be skipped. An even more general

statement could be used to obtain any of the sub-records in the I/0
buffer, as follows:

188 FOR I& = BX TO 15%
Su8 FIELD #1ix, (IX-LXI#3ZH RS DF, SX RS B#. 27X AS Af
£18 HEKT IX

A L S S . S B .
AS | |A$ | |AS | |AS ||AS [|AS ||AS || AS]]|AS \
})) } })] ! !

1%=| 1%=2 1%=3 1%=4 1%=5 I%=6 1%=7 1%=8 I%=9
I e e

When the statement above is executed, I% should contain the number of
the sub-record that B$ and A$ are to contain, as an integer from 1

to 16. When I%=1, for example, the expression (I%-1%)*32% equals
zero, so B$ points to the first sub-record in the buffer. When I%=2,
however, the expression (I%-1%)*32% equals 32, so B$ now points to the
first sub-record beyond the 32nd character of the buffer. Each single
increment of I% moves B$ 32 characters further into the buffer.

Subscripted string variables can also be used in FIELD statements.
For example, the following statements could be used to allocate the

sub-records, described in the previous example, to two string arrays:

38 DIM A$CLS), EFC15>

%18 FOR Ix = 8% TO 152

320 FIELD #1X., IH#*Z2X AS 0¥, 5K AS EBFCIHI, 27X AS A$CIED
130 MEXT I¥

B$(R) Bls(l) Bl$ (2) B|$(3) q$(4) 813(5) el$(6) Bl$(7)

A$(R) A$(1) A$(2) A$(3) | | A$(4) | |AS(5) | |AS(E) | | AS(T)

—_ 1T

L Do$ | | ; : : : ;

12-11

With each iteration of the FIELD statement at line 32@ the dummy
string D$ increases by 32 characters, making the displacement from
the start of the I/O buffer to the string B$(I%) equal to 32 times
I%$ characters. Once this loop is executed, the position of each
string in the arrays A$ and B$ is fixed, A$(@) and B$(#) pointing to
the first sub-record and A$(15) and B$(15) to the last.

However, virtual array strings must not be defined as string
variables in a FIELD statement. When strings are defined as virtual
arrays they are required to be in a fixed place in both a disk file
and the I/O buffer for that file. Attempting to specify a virtual
array string variable in a FIELD statement has no effect on the

virtual array string.

12.4.3 LSET and RSET Statements

Once the strings have been defined as part of the I/O buffer by
a FIELD statement, values in these strings can be stored without
moving them from the I/O buffer. The LSET and RSET statements store
values in a string without redefining the string position. These
statements are of the form:

line number LSET <stringvar> [,<stringvar>...] = <string>

line number RSET <stringvar> [,<stringvar>...] = <string>
where <stringvar> represents any legal existing string variable name
(multiple string variable names can be separated by commas) and
<string> represents any legal string expression.

LSET and RSET store the value of the string expression into
the designated string or strings. The string previously stored in
the variable is overwritten. The length of the string is not changed;
if the new string is longer than the existing string, the new value
is truncated. If the new string is shorter than the existing string,
it is either padded with spaces on the right by LSET or padded with
spaces on the left with RSET. LSET, then, causes the string to be
left-justified in the field and RSET causes the string to be right-
justified.

12-12

The normal use of LSET and RSET, as described in this section, is
to store data in strings allocated within an I/0 buffer by a FIELD
statement. LSET and RSET can be used to assign a value to any string
variable within a BASIC-PLUS program.

12.4.4 Differences Between the LET Statement and the LSET/RSET
Statement

The LET statement cannot be used to place string values into an
I/0 buffer as it causes the string to be redefined elsewhere. Another
restriction on LET occurs when that statement is used to equate two
strings, as follows:

20 LET R¢=B4

To avoid unnecessary character manipulation, this operation causes
A$ and B$ to reference the same string. Normally, any operation
which alters B$ causes that string to be moved, so no conflict
arises. However, LSET and RSET do not move strings; they alter
existing strings in a fixed position.

Therefore, if the value of B$ in line 5@ above were altered by
an LSET or RSET statement, the value of A$ also changes. For

example:
48@ B = “ABC"
418 A% = B
428 LSET B$ = "xyZ"

Both AS$ and B$ contain "XYZ" following the execution of line 428.

This phenomenon has another ramification; if the string B$ in
this example had been defined by a field statement as being in some
I/0 buffer, the string A$ would also be in the I/O buffer (being
identical to B$). Executing a GET statement to read another record
into the I/O buffer would then change the value of A$ as well as
BS$. For this reason, LSET and RSET should be used only for Record
I/0 operations; using these statements for other purposes may cause
illogical results.

12-13

When it is not desirable for the strings A$ and B$ to be physi-
cally identical, there is a means of causing the string B$ to be moved
into the string A$. This operation is performed as follows:

180 LET A% = Ef + "°

Line number 3@@¢ appends a null string to B$, which has no effect on

the string AS$ but causes the two strings to occupy different storage
areas.

12.4.5 Update Option for Disk Files!

In the description of disk files up to this point, the concept
of simultaneous user access to a single file has been largely ignored.
The system permits several users to read from a single file simul-
taneously. However, a problem arises if multiple users attempt to
write onto a single file simultaneously. Two users could conceivably
try to write the same record of the file, resulting in a loss of data.
To avoid this conflict, the system permits only one user at a time to
have write privileges on any given file. Thus, a user may fail to
obtain write privileges even if the file is not protected against
writing. If this occurs, the user must close the file and reopen it
at a later time, after the other user has finished with the file and
closed it.

In certain applications (for example, sales order-entry applica-
tions) it is often normal for multiple users to be updating a single
master file. In these cases it is not satisfactory to be constantly
closing and reopening the file to obtain write privileges, as this
is a time-consuming operation. For this reason a special MODE option
is available that permits multiple users to have write access to a

file while guarding against simultaneous writing of a single block.

To indicate that a file is being opened for update, the MODE 1%
specification is used when the file is opened. For example:

100 OPEN "MASTER" AS FILE 1%, MODE 1%

lupdate by MODE 1% is an optional feature of RSTS/E and may not be
available in all systems.

12-14

when used with a disk file indicates that the file is opened!. 1In
this case the program is granted write privileges unless such access
is specifically prohibited by the protection code of the file.

A file cannot be simultaneously open for update by one user
and open in normal (non-update) mode by another user. Attempting to
open a file for update if it is already open in normal mode, or
attempting to open a file in normal mode if it is already open for
update, results in a PROTECTION VIOLATION (ERR=1f§) error.

Once a file has been opened for update, any read operation of a
specific physical record puts it in a special locked state. No other
user is permitted to read or write that physical record until it is
released (or unlocked) by the program that locked it. Attempting to
read or write a record that another user has locked results in a
DISK BLOCK IS INTERLOCKED (ERR=19) error which can be trapped with an
ON ERROR GOTO statement. There are five ways for a program to un-
lock the record:

1. The next write operation on the file unlocks the block.
2. Executing the UNLOCK statement. This statement has the
form:

line number UNLOCK <expr>

where <expr>is the internal channel number of the file
that is opened for update.

3. Any error encountered while accessing the file unlocks
the block.

4, Reading another block unlocks the currently locked
block. Any read operation locks the block just
retrieved.

5. Executing a CLOSE statement on the file unlocks the
block.

To illustrate MODE 1%, consider a simple inventory application where
operators on several terminals can access one file to enter a part
number and order quantities. Assume that the file is sequenced in
such a fashion that each part number actually corresponds to the
block number that contains information about the part, and that the
first four characters of the 512-byte block contain the quantity

!The RECORDSIZE option may not be used on files that are opened with
MODE 1%.

12-15

available as a (2-word) floating-point number. For this example, the
remaining 5@8 characters are ignored. A program to update the quantity

available is as follows:

186 ON ERROR GOTO 1464 TFIND OUT AEBOUT EREORS
268 OFEN “"INYENT. ORY" AS FILE 41, MOLDE 1 'OFEN FILE IN UFPDARTE MODE
ipe FIELD #1, 4 RS C# CF IS RTY IN FILE

498 INPUT "FART NUMEBER"; N; "QUARNTITY"; @ !GET FART # AND QTY

568 GET #1i, RECORD N VREAD APFPROPREIATE RECORD
€88 K = CVYTFICr-1 VCOMPUTE 8TY REMAINING
708 IF X>=8 THEN £0@ VENOUGH ON HANDT

¥168 UNLOCK #1 VPERMIT OTHER ALCUESSES
7B FPRINT “ONLY"; CVWT$FoCEr; "ITEMS LEFT" 'REFORT STOCK LEYEL

38 GOTO 4640 'REVISE ORDER?

860 LSET C#% = CVYTF$LR2 VETORE NEW GTY ON HAND
€58 PUT #1, RECORD N 'REWRITE INTO FILE

c@gs GOTO 4e@ TNEXT TRERANSACTION

16686 IF ERR <> 1% THEN ON ERROR GOTO @ 'IGNORE NON-INTERLOCKE ERRORES
1168 FREINT "WRITING" YLET HIM KNG WETRE HERE
1288 SLEEP S 'WHIT FOR CURRENT RCCESS
1388 RESUME S68 'TREY AGRIN

1488 END

MODE 5% (MODE 1%+4%) is used to provide an additional protection
feature. When a file is opened with this special update option, the
user program can write a block only after it has read it. In other
words, a PUT operation can be executed only after a GET operation has
previously input the block into the I/O buffer. Attempting to write
a block that was not previously read results in a PROTECTION VIOLATION

error.

12.5 CVT CONVERSION FUNCTIONS

The FIELD, LSET, and RSET statements allow a program to store
or retrieve string data directly from an I/O buffer. To permit
floating-point and integer values in Record I/0 files, four conversion
functions are provided as described in Table 12-3. A fifth conversion

function facilitates character string manipulation.

12-16

Table 12-3
CVT Conversion Functions

Function Form Operation
AS = CVT%S (I%) maps an integer into a 2-character string.
I% = CVTS$% (AS) maps the first two characters of a string

into an integer. 1If the string has fewer
than two characters, null characters are
appended as required.

AS

CVTF$ (X) maps a floating-point number into a 4- or

8-character string (depending upon whether
the 2-word or 4-word math package, respec-
tively, is being used on the system).

X = CVTSF (AS$) maps the first four or eight characters
(depending upon whether the 2-word or 4-
word math package, respectively, is being
used on the system) of a string into a
floating-point number. If the string has
fewer than the required number of characters,
null characters are appended.

TS = CVT$SS (S$,M%) converts the source character string S$

to the string referenced by the variable
T$. The conversion is performed according
to the decimal value of the integer.
represented by M% as follows:

1% Trim the parity bit.

2% Discard all spaces and tabs.
4% Discard excess characters:
CR, LF,FF, ESC, RUBOUT, and NULL.
8% Discard leading spaces and tabs.
16% Reduce spaces and tabs to one
space.
32% Convert lower case to upper case.
64% Convert [to (and] to).
128% Discard trailing spaces and tabs.
256% Do not alter characters inside
quotes.

12-17

Four of the functions do not affect the value of the data, but rather
its storage format. Each character in a string requires one byte of
storage (8 bits); hence, characters may assume (decimal) values from
g through 255 and no others. A 16-bit quantity can be defined as
either an integer or a 2-character string; 2-word floating-point num-

bers can equally be defined as 4-character strings.

The CVT functions which change storage format perform two impor-
tant functions: first, they permit dense packing of data in records.
For example, any integer value between -32768 and 32767 can be packed
in a record in two characters using CVT%$; this would only be true
for integers between -9 and 99 if the data were stored as ASCII
characters. Second, converting the internal numeric representation
to an ASCII string (as with the NUM$ function) is a more time-
consuming process than that performed by the CVT functions. Thus, the
CVT functions provide the means to speed the processing of a large
amount of data within a file.

The CVT$$ function manipulates a character string and generates
a new character string. This action is unlike other CVT functions
because it does not change the internal format of the data, but
rather alters the contents of the string. The output string is con-
verted according to an integer value given by the user program and
can be any value or sum of any values listed in Table 11-2.

The value 1% in the CVT$$ function removes the parity bit (most
significant bit) from each character in the string. Under RSTS-11,
characters are usually represented with no parity. All comparison
of characters assume no parity. The value 2% removes all space
characters (CHR$(32)) and horizontal tab characters (CHR$(9)) from
the string while values 8%, 16%, and 128% remove only selective
occurrences of space and horizontal tab characters. The terminating
and excess characters removed by the value 4% in the CVT$$ function

usually have no informational value in a string.

The value 32% converts all lower case characters in a string to
upper case. This feature is valuable since some terminals transmit
both forms of alphabetic characters. The lower case characters are
between CHR$(97) and CHR$(122) and upper case characters are between
CHR$ (65) and CHR$ (90).

12-18

The value 64% in the CVT$$ function enables BASIC-PLUS programs
to accept the parenthesis and square bracket characters as delimiters
of a project-programmer number. This action is desirable when handling
account numbers from terminals not having the square bracket charac-

ters since most terminal devices have the parenthesis characters.

The value 256% in the CVT$$ function forbids any alteration of
characters inside quotes, except parity bit trimming - set by M%=1%.
Regardless of other values in the parameter M%, when 256% is included
no operations are performed in the source string on characters within

quotes.

Generally, the precedence of operations performed on the string is
in increasing order of the individual values in the parameter M%.
(The 256% value, however, is the exception; its precedence ranks
between 1% and 2%.) This order implicitly determines which sub-
sequent operations are performed on the string. For example, if the
characters in the source string have their parity bit set and the
parity trimming option is not selected, subsequent comparisons
required by other options are possibly not successful because com-
parisons are made against ASCII characters with no parity. For
example, a space (SP) character, which is CHR$(32) (octal 40) in no
parity or odd parity form, does not compare with a space (SP) charac-
ter which is CHRS$ (160) (octal 240), its even parity form.

Keeping the parity bit in the input character of the string is
important in text processing applications where the parity bit of
each character is possibly a flag rather than a parity bit. As a
result, such flagged characters are not changed or discarded if the

parity trimming option is not selected.

The precedence of operations affects the result of values given
in the CVT$$ function. If the values 2%, 8%, 16%, and 128% (154%
or greater) are given in the CVT$$ function, the values 8%, 16%,
and 128% have no effect on the output string since the first option
performed (2%) removes all space and tab characters from the string
and the remaining values dealing with space and tab characters have
no effect. 1In like manner, the value 16% applies to all space and
tab characters not discarded by the 2% and 8% options. Accordingly,
to maintain at least a single space interval in a string, the user

program must give the 16% value and omit the 2% and 8% values.

12-19

The use of the CVT$$ function in general eliminates the need for
special code in BASIC-PLUS programs handling string input. For
example, the following code at lines numbered 110 through 114 mani-
pulates an input string.

35 DIM REHK(LEBKD

96 N1d = 1X

186 PRINT "TYFE THE INFUT STRING"; : INFLUT LIME RE¥

185 T4 = FNCES$CAES:

118 DEF FNCEFCRE$?

111 CHANGE FAé&$ TG REX: JeK =

112 IF REXCJEX) (=

112 REHIJERY = HEXIKER?

114 HEKT Kéd: REXC@X) = J&eX: CHANGE Hex TO Res:
FRNCE$ = A&$: FNEND

o= NIX TO AEXC8E:
“ THEN 114 ELSE Jex=Jalk+MNiX

115 PRINT "T¢ = "; T#
126 GOTO 166
939 END

Lines 11@ through 114 can be replaced by a single CVT$$ function
statement at line 1@5 as shown in the sample code below.

LI<TNH

188 PRINT "TYFE THE INFUT STRING":: INFUT LIHE H&#
165 T4 = CYT$$CRES, Vi

11% PRINT "T#% = "; T#

1z2@ GOTO 1m@

%93 END

The value 7% in the CVT$$ function is the sum of 1%, 2%, and 4%. The
CVT$$ function with a value 7% causes the same results as the code of
the user-defined function FNC6$. The following sample dialog shows
the effect of the value 7% at line 1f5.

TYPE THE IMFUT STRING? DEY FILFE E®T [d@@, 1648]
14 = DEV:FILE. EXTC166,1867]
TYPE THE INPUT STRING? ~C

12-20

The value 255% in the CVT$$ function at line 1@5 produces the results
shown by the following sample dialog.

TYPE THE INPUT STRING? BEV: FILE. Fo [ieE, 1661
T8¢ = DEV FILE EXToC186, 160>
TYFE THE IHPUT STRING? ~C

{(The value 255% can be replaced by -1% to produce the same results.)

The following sample dialog shows the effect of the value 189%
(1%+43+8%+16%+32%+128%).

TYPE THE INFUT ITRING?T I Fil f G MAH
1% = 1 AM A GOOD MAN.
TYPE THE INFUT STRING? ~C

12.6 EXAMPLES OF RECORD I/0 USAGE

In Figure 12-1, the device KB: is opened with the default size
(128 characters) buffer length by the OPEN statement at line 14.

LISTHNR

16 OFEN "EB:" FOR OQUTPUT AS FILE 1

28 FIELD #1. 1@ AS A%, 16 AS B$, 18 AS CF
B LSET A$="1z2Z40"

48 RSET EB$="&7Eo@"

28 RSET C#="WHRYI"

68 FUT #1, COUNT Zz9

78 END

RERDY

Figure 12-1
Record I/0O Example #1

12-21

The FIELD statement at line 2@ defines three 1lf@-character segments
of the buffer as AS$, B$ and C$. LSET at Line 3@ positions "12345"
in the leftmost 5 of the first 10 characters of the buffer via the
pointer AS$. Similarly the second and third l@-character pieces of
the buffer are set by lines 48 and 5f. When run, this program
generates:

RUNMH
12245 EFeoe ViKY Z
RERDY

Note that no carriage return/line feed was output by the PUT state-
ment. (The Monitor outputs a CR/LF sequence as the first part of the
READY message.)

Figure 12-2 is a program to move data from a file named
"SNOOPY.BAS" in the system library (note the $ in the filename) onto
the line printer. Both the line printer and the disk file buffers
are initialized to 512 characters. The FIELD statements at lines
409 and 5@ set AS$ and BS$ to refer to these buffers. Data read at line
60 is transferred to the line printer buffer by the LSET statement
(RSET would also be acceptable in this one case, since both A$ and B$
are the same length) at line 7@. Then, at line 8@, this data is output
to the line printer. The loop terminates on end-of-file on attempting
to read past the last block of the SNOOPY.BAS file via the ON ERROR
GOTO mechanism.

LISTNH

18 OPEN "$SNOOFY. BAS" RS FILE 1
28 ON ERROR GOTO 10@

38 OPEN "“LP:" FOR OUTPUT AS FILE 2, RECORDSIZE Si2
48 FIELD #1, Siz RS Af

58 FIELD #2, 512 RS EBY¥

60 GET #1

78 LSET B$ = RA#

88 PUT #2

90 GOTO ¢0

i8e@ CLOSE 1,2

150 END

READY

Figure 12-2
Record I/0 Example #2

12-22

FIELD statements can be used to perform blocking and deblocking
of records where appropriate, as in Figure 12-3.

108 GET 42 .

118 FOR K=@ TO 4208 STEF &8

128 FIELD #2. X RS A%, &2 AS B¢
[]

° L
[]
L]
[]
188 NEKXT ¥
198 PUT #2

Figure 12-13
FIELD Statement Example

Figure 12-4 illustrates the use of the CVT functions to store
numerical data in compact form as strings of binary types. The tape
punched by this program has each integer represented on two frames
of tape. A similar program could be written to read this binary tape.

18 DIM A$C(99)

28 OPEN "PP:" FOR OUTFUT AS FILE 1, RECORDSIZE z26@
38 FIELD #1, 2*I AS Z¢, 2 AS A$CI) FOR I=6 TO 29
40 LSET A${IX) = CYTX$CIX) FOR IX=@X TO 99X

58 PUT #1

60 CLOSE 1

999 END

Figure 12-4
CVT Function Example

12-23

12.7 THE XLATE FUNCTION

The XLATE function is provided for use with Record I/O to trans-
late a string from one storage code into another. For example, while
reading a magtape file, it might be necessary to translate from EBCDIC
code to ASCII code so that data could be processed by the PDP-11. The
XLATE function is of the form:

XLATE (<sgtringl>,<string2>)

For example:

X$ = XLATE (A$,BS)

The first argument, <stringl>, is the source string, the second argu-
ment <string2>, is the table string; the string value returned by
XLATE is called the target string. Characters are taken sequentially
from the source string, and the value of each character (§ to 255)

is used as an index into the table string (that is, @ means the first
character of the table string, 1 means the second, etc.). The
character value from the table string is appended to the target string
unless the selected character in the table string has a value of §

or the table string is shorter than the index value. This means that
the target string is equal to or shorter than the source string.

For example, the following program removes all characters except
"g" to "9" and changes the characters "8" and "9" into "A" and "B":

LISTNH

108 T$ = "@1224567AB"

118 T$ = CHR${IZD)+T$¢ FOR Ix=@X TO 47

128 REM - LINE 116 FUT @S CORRESPCNDING TO CODES & TO 47
130 INPUT S# 'GET STRING TO TRANSLATE
148 PRINT KLATE(S$, 7§

158 END

RERDY

RUNMH

? 12XKKI4HWNBIEYEL4ZEd

12348BA7654221

READY

12-24

APPENDICES

The following pages contain a summary of the

BASIC-PLUS language, the ¢6mmands described“

in the RSTS-11 System User's Guide, and error .

‘messages.

APPENDIX A
BASIC-PLUS LANGUAGE SUMMARY

A.l SUMMARY OF VARIABLE TYPES

Type
Floating Point

Integer
Character String

Floating Point
Matrix

Integer Matrix

Character String
Matrix

A.2 SUMMARY OF

Variable Name

single letter
optionally followed by a
single digit

any floating point variable
name followed by a % character

any floating point variable
name followed by a $ character

any floating point variable
name followed by one or two
dimension elements in
parentheses

any integer variable name
followed by one or two dimen-
sion elements in parentheses

any character string variable
name followed by one or two
dimension elements in paren-
theses

OPERATORS

Type
Arithmetic

Relational

Logical

String

Matrix

Operator
- unary minus
4 exponentiation
*,/ multiplication, division
+,- addition, subtraction
equals
less than

<
<= less than or equal to
>

greater than .
>= greater than or equal to
<> not equal to
== approximately equal to

NOT logical negation
AND logical product

OR logical sum

XOR logical exclusive or
IMP logical implication
EQV logical equivalence

+ concatenation

+,- addition and subtraction

of matrices of equal dimen-

sions, one operator per

statement

* multiplication of con-
formable matrices

* scalar multiplication of

a matrix, see Section 7.5.1

Examples

A

I

X3

B%

D7%

M$

R1S

S(4) E(5,1)
N2 (8) Vv8(3,3)
A% (2) 1I%(3,5)

E3% (4) R2%(2,1)

c$(l) 8s(8,5)
A2S$(8) V1s(4,2)

Operates Upon

numeric variables
and constants

string or
numeric variables
and constants

relational ex-
pressions composed
of string or numeric
elements, integer
variables or integer
valued expressions

string constants
and variables

dimensioned vari-
ables. See Sec-
tion 7.6.1 for
further details.

A.3 SUMMARY OF FUNCTIONS

Under the Function column, the functions is shown as:

Y=function

where the characters % and $ are appended to Y if the value returned

is an integer or character string.

A floating value (X), where specified, can always be replaced

by an integer value.

An integer value (N%) can always be replaced

by a floating value (an implied FIX is done) except in the CvVT3s

and MAGTAPE functions (the symbol I%$ is used to indicate the neces-

sity for an integer value).

TXEG

Mathematical

Print

String

Function

Y=ABS (X)
Y=ATN (X)

Y=COS (X)

Y=EXP (X)
Y=FIX(X)

Y=INT (X)
Y=LOG (X)
Y=LOG1f (X)
Y=PI
Y=RND
Y=RND (X)
Y=SGN (X)
Y=SIN (X)

Y=SQR (X)
Y=TAN (X)

Y$=POS (X%)

Y$=TAB (X%)

Y%=ASCII (AS)

Y$=CHRS (X%)

Y$=CVT%S$ (I%)
Y$=CVTF$ (X)
Y$=CVTS$% (AS)

Y=CVTSF (AS)

Explanation

returns the absolute value of X.
returns the arctangent of X where X is
in radians.
returns the cosine of X where X is
in radians.
returns the value of etX, where e=2.71828.
returns the truncated value of X,
SGN (X) *INT (ABS (X))
returns the greatest integer in X which
is less than or equal to X,
returns the natural logarithm of X, logex
returns the common logarithm of X, loglgx
has a constant value of 3.14159
returns a random number between @ and 1,
returns a random number between @ and 1.
returns the sign function of X, a value
of 1 preceded by the sign of X
returns the sine of X where X is in radians
returns the square root of X
returns the tangent of X where X is in
radians

returns the current position of the print
head for I/0 channel X, # is the user's
Teletype. (This value is imaginary for
disk files.)

moves print head to position X in the cur-
rent print record, or is disregarded if
the current position is beyond X. (The
first position is counted as f.)

returns the ASCII value of the first char-
acter in the string AS.

returns a character string having the
ASCII value of X. Only one character
is generated.

maps integer into 2-character string, see
Section 12.5.

maps floating-point number into 4- or 8-
character string, see Section 12.5.

maps first 2 characters of string A$ into
an integer, see Section 12.5.

maps first 4 or 8 characters of string AS
into a floating-point number. See Sec-
tion 12.5.

A-2

Type

String,
cont'd.

System

Function
Y$ = CVTS$S(AS,I%)
Y$ = STRINGS
(N1%,N2%)

Y$=LEFT (AS$,N%)

Y$=RIGHT (AS$,N%)

Y$=MID (AS$,N1%,N2%)

Y%=LEN (AS$)

Y$=INSTR(N1%,AS,BS)

Y$=SPACES (N%)

Y$=NUMS$ (N%)

Y=VAL (AS)

Y$=XLATE (AS$,BS)

Y$=DATES (#%)

Explanation

converts string A$ to string Y$
according to value of I%. See
Section 12.5.

creates string Y$ of length N1 and
characters whose ASCII decimal value

is N2. See Section 5.5.
returns a substring of the string A$

from the first character to the Nth

character (the leftmost N characters)

returns a substring of the string AS$
from the Nth to the last character;

the rightmost characters of the strin

starting with the Nth character.
returns a substring of the string AS$

starting with the N1 and being N2

characters long (the characters

between and including the N1

to N1+N2-1 characters).

returns the number of characters in the
string A$, including trailing blanks.

indicates a search for the substring
B$ within the string A$ beginning at
character position Nl. Returns a
value # if BS is not in A$, and the
character position of B$ if B$ is
found to be in A$ (character posi-
tion is measured from the start of
the string).

indicates a string of N spaces, used
to insert spaces within a character
string.

indicates a string of numeric charac-
ters representing the value of N as
it would be output by a PRINT state

ment. For example: NUMS(1.g@@8)
(space) 1(space) and NUMS (-1.9@9f)
-1 (space) .

computes the numeric value of the
string of numeric characters AS.
If AS$ contains any character not
acceptable as numeric input with
the INPUT statement, an error re-
sults. For example:

VAL ("15")=15

[

translate A$ to the new string Y$
by means of the table string BS,
see Section 12.7.

returns the current date in the fol-
lowing format:

g2-Mar-71

System,
cont'd.

Function

Y$=DATES (N%)

Y$S=TIMESS (%)

Y$=TIMES (N%)

Y=TIME(@%)

Y=TIME (1%)

Y=TIME (2%)

Y=TIME (3%)

Y=TIME (4%)

Y%=STATUS

Y%$=BUFSIZ(N)

Y%=LINE

Y%=ERR

Y%=ERL

Y%=SWAP% (N%)

Explanation

returns a character string correspond-
to a calendar date as follows:
N=(day of year)+ [(number of
years since 1970)*1000]

DATES (1) "@l-Jan-7¢"
DATES$ (125) "g5-May-78"

returns the current time of day as a
character string as follows:

TIMES (@)="@05:38 PM"
or"17:3¢ "

returns a string corresponding to the
time at N minutes before midnight,
for example:

TIMES (1) "11:59 PM" or 23:59 "
TIMES (1449)= "12:¢¢ AM" or @gg:99 !

TIMES (721) "11:59 AM" or 11:59 !

returns the clock time in seconds
since midnight, as a floating point
number.

returns the central processor time
used by the current job in tenths
of seconds.

returns the connect time (during which
the user is logged into the system)
for the current job in minutes.

returns to Y the decimal number of
kilo-core ticks (kct's) used by
this job. See Section 8.8.

returns to Y the decimal number of
minutes of device time used by
this job. See Section 8.8.

returns to Y% the status of the
most recently OPENED statement
executed in the program. See
Section 12.3.5.

returns to Y% the buffer size of the
device or file open on channel N.
See Section 12.3.4.

returns to Y% the line number of the
statement being executed at the
time of an interrupt. See Section
4.5.

returns value associated with the last
encountered error if an ON ERROR
GOTO statement appears in the pro-
gram. See Section 8.4.

returns the line number at which the
last error occurred if an ON ERROR
GOTO statement appears in the pro-
gram. See Section 8.4.3.

causes a byte swap operation on the
two bytes in the integer variable
N%.

Type Function
Y$=RADS (N%)
Matrix MAT Y=TRN(X)

MAT Y=INV(X)

Y=DET

Y%=NUM

Y3=NUM2

Input/Output Y$=RECOUNT

Explanation

converts an integer value to a 3-
character string and is used to con-
vert from Radix-5@ format back to
ASCII. See Appendix D.

returns the transpose of the matrix
X, see Section 7.6.2.

returns the inverse of the matrix X,
see Section 7.6.2.

following an INV(X) function evalua-
tion, the variable DET is equiva-
lent to the determinant of X.

following input of a matrix, NUM
contains the number of rows input,
or in the case of a one dimensional
matrix, the number of elements
entered.

following input of a matrix, NUM2
contains the number of elements
entered in that row.

returns the number of characters read
following every input operation.
Used primarily with non-file
i%rgc%ured devices. See Section

A.4 SUMMARY OF BASIC-PLUS STATEMENTS

The following summary of statements available in the BASIC-PLUS
language defines the general format for the statement as a line in a
BASIC program. If more detailed information is needed, the reader is
referred to the section(s) in the manual dealing with that particular
statement.

In these definitions, elements in angle brackets are necessary
elements of the statement. Elements in square brackets are necessary
elements of which the statement may contain one. Elements in braces
are optional elements of the statement.

Where the term line number ({line number}) is shown in braces,

this statement can be used in immediate mode.
The various elements and their abbreviations are described below:
variable or wvar Any legal BASIC variable as described in A.1l

or Section 2.5.2.

line number Any legal BASIC line number described in
Section 2.2.

expression Or exp Any legal BASIC expression as described in
Section 2.5.

message Any combination of characters.

condition or cond Any logical condition as described in Sec-
tion 3.5.

constant Any acceptable integer constant (need not

contain a % character).
argument(s) or arg Dummy variable names.
statement Any legal BASIC-PLUS statement.

string Any legal string constant or variable as
described in Section 5.1.

protection Any legal protection code as described in
Section 9.1.

value (s) Any floating point, integer, or character
string constant.

list The legal list for that particular statement.

dimension(s) One or two dimensions of a matrix, the maxi-
mum dimension(s) for that particular state-
ment.

Manual

Statement Formats and Examples Section
REM
{line number} REM <message> 3.1
{line numberl{<statement>}!<message>
14 REM THIS IS A COMMENT
15 PRINT {PERFORM A CR/LF
LET
{line number}{LET}<var>{,<var>,<var>...} = <exp> 3.2
55 LET A=4f: B=22
64 B,C,A=4.2 IMULTIPLE ASSIGNMENT
pIn
line number DIM<var(dimension(s)}> 3.6.2
19 DIM A(28), BS$S(5,10), C%(45) 7.1
line number DIM #<constant>,<var(dimension(s))>=<constant> 1ll.1
75 DIM #4, A$(lﬂﬂ)=32,B(5ﬂr5¢)
RANDOMIZE 3.7.2
line number RANDOM{IZE}
55 RANDOMIZE
74 RANDOM
IF-THEN, IF-GOTO THEN<statement>
line number IF <cond> [THEN<Zine number{] 3.5
GOTO<1line number>
55 1IF A>B OR B>C THEN PRINT "NO"
64 IF FNA(R)= B THEN 25§
95 1IF L<X*t2 AND L<>@ GOTO 345
IF-THEN-ELSE 8.5

line number

30
50
75

FOR
line number

20
55

FOR-WHILE, FOR-UNTIL

THEN<statement>
IF <cond>| THEN<line number> ELSE<statement>
GOTO<line number> ELSE<line number>

IF B=A THEN PRINT "EQUAL" ELSE PRINT "NOT EQUAL"
IF A>N THEN 2¢@ ELSE PRINT A
IF B==R THEN STOP ELSE 8§

line number

84
74
#5

NEXT

line number
25

69

FOR <var>= <exp>TO <exp> {STEP<exp>} 3.6.1
FOR I=2 TO 40 STEP 2
FOR N=A TO A+R

WHILE 8.6
FOR <var> = <exp> {STEP<exp>}l yurqr | <cond>
FOR I = 1 STEP 3 WHILE I<X
FOR N = 2 STEP 4 UNTIL N>A OR N=B
FOR B= 1 UNTIL B>1f

3.6.1

NEXT <var>
NEXT I
NEXT N

Manual

Statement Formats and Examples Section

DEF, single line 3.7.3
line number DEF FN<var>(arg) =<exp(argl> 5.5.1
2¢ DEF FNA(X,Y,Z)=SQR(X+2+Y42+242) 6.4
DEF, multiple line
line number DEF FN<var>(arg) 8.1
<statements>
line number FN<var>=<exp>
line number FNEND
19 DEF FNF (M) IFACTORIAL FUNCTION
2¢ IF M=1 THEN FNF=1 ELSE FNF=M*FNF (M-1)
3@ FNEND
GOTO 3.4
line number GOTO <line number>
1@ GOTO 58
ON-GOTO
line number ON <exp> GOTO <list of line numbers> 8.2
75 ON X GOTO 95, 158, 45, 2899
GOSUB
line number GOSUB <line number> 3.8.1
99 GOSUB 209
ON-GOSUB
line number ON <exp> GOSUB <list of line numbers> 8.3
85 ON FNA(M) GOSUB 20¢, 25¢, 4g¢, 375
RETURN
line number RETURN 3.8.2
375 RETURN
CHANGE 5.2
. <array name> [<string var>
{line number} CHANGE <string var;] TO <array name>J
25 CHANGE A$ TO X
78 CHANGE M TO RS
75 CHANGE B TO BS$S
OPEN 9.2
. , NPUT 9.2.1
{line number} OPEN<strzng>{FOR[gUTPUT }AS FILE <exp> 9.2.2
{ ,RECORDSIZE<exp>}{,CLUSTERSIZE <exp>}{,MODE <exp>}
19 OPEN "PP:" FOR OUTPUT AS FILE Bl
2¢ OPEN "FOO" AS FILE 3
3¢ OPEN "DT4:DATA.TR" FOR INPUT AS FILE 1§ 9.3
CLOSE
{line number} CLOSE <list of exp>
199 CLOSE 2
255 CLOSE 1¢, 4, N1
3.3.1
READ 5.3
line number READ <ligt of variables> 6.3
25 READ A, B$, C%, Fl, R2, B(25) 10.1

Manual

Statement Formats and Examples Section
DATA 3.3.1
line number DATA <list of values> 5.3
309 DATA 4.3, "STRING",85,49,75.¢4,1f 6.3
RESTORE 3.3.
line number RESTORE 10.2
125 RESTORE
PRINT 3.3.

{line number} PRINT{{#<exp>,}<list>}

wWwoo U w
« s e 0 e
N WwWw s N

25 PRINT !GENERATES CR/LF 1
75 PRINT "BEGINNING OF OUTPUT";I,A*I i0.
45 PRINT #4,"OUTPUT TO DEVICE"FNM(A)+42;B;A 10.

PRINT USING
{Tine number} PRINT {#<exp>,}USING <string>, <list> 10.3.3
54 PRINT USING "##.##",A
55 PRINT #3, USING"\\###.## \\##+444" ,"A=",A, "B=",B
56 PRINT #7, USING BS$,A,B,C

INPUT 3.3.3
line number} INPUT {#<exp>,}<list> 5.3

25 INPUT "TYPE YOUR NAME ",AS 6.3

55 INPUT #8, A, N, BS 10.4

10.4.1

INPUT LINE 5.3

{7ine number} INPUT LINE {#<exp>,} <string>
49 INPUT LINE RS
75 INPUT LINE #1, ES$

NAME-AS
{7Tine number} NAME <string> AS <string> 9.5
455 NAME "NONAME" AS "FILE1<48>"
279 NAME "DT4:MATRIX" AS "MATAl<48>"
KILL 8.4

{line number} KILL <string>
45 KILL "NONAME"

ON ERROR GOTO
Tine number ON ERROR GOTO {<line number>}
14 ON ERROR GOTO 5¢¢
525 ON ERROR GOTO !DISABLES ERROR ROUTINE
526 ON ERROR GOTO £ IDISABLES ERROR ROUTINE

RESUME 8.4.1
line number RESUME {<line number>}
199@ RESUME IOR RESUME @ ARE EQUIVALENT
655 RESUME 20§
CHAIN
line number CHAIN <string> {<exp>} 9.6

375 CHAIN "PROG2"
5¢@ CHAIN "PROG3" 75
6¢¢ CHAIN "PROG3" A

Manual

Statement Formats and Examples Section
STOP 3.9
line number STOP
75 STOP
END 3.9
line number END
545 END
Matrix Statements
MAT READ 7.2
line number MAT READ <list of matrices>
55 DIM A(20), B$(32), C%(15,19)
99 MAT READ A, BS$(25), C%
MAT PRINT 7.3
line number} MAT PRINT{#<exp>,} <matrix name>
19 DIM A (2¢), B(15,24%)
99 MAT PRINT A; IPRINT 1@*1@¢ MATRIX, PACKED
95 MAT PRINT B(14,5), !PRINT 1@*5 MATRIX, FIVE
{ELEMENTS PER LINE
97 MAT PRINT #2, A; {PRINT ON OUTPUT CHANNEL 2
MAT INPUT 7.4
{7ine number} MAT INPUT{#<exp>,} <list of matrices>
14 DIM BS(48), F1%(35)
2@ OPEN "DT3:FOO" FOR INPUT AS FILE 3
3¢9 MAT INPUT #3, B4, Fl%
MAT Initialization 7.5
ZER
{line number} MAT <matrix name>=|CON|{dimension(s)}
D
1g DIM B(15,19), A(1lg), C%(5)
15 MAT C% = CON !ALL ELEMENTS OF C%(I)=1
2§ MAT B = IDN(14,14) !IDENTITY MATRIX 18*1g8
95 MAT B = ZER(N,M) ICLEARS AN N BY M MATRIX
Statement Modifiers (can be used in immediate mode)
iF 8.7.1
<statement> IF <condition>
1§ PRINT X IF X<>f§
UNLESS
<statement> UNLESS <condition> 8.7.2
45 PRINT A UNLESS A=g
FOR) 8.7.3
<statement> FOR <var> = <exp> TO <exp>{STEP<exp>}
75 LET B$(I) = "PDP-11" FOR I = 1 TO 25
84 READ A(I) FOR I=2 TO 8 STEP 2
WHILE 8.7.4

<statement> WHILE <condition>
14 LET A(I) = FNX(I) WHILE I<45.5

Statement Formats and Examples

UNTIL
<gstatement> UNTIL <condition>
115 1IF B g THEN A(I)=B UNTIL I>5

System statements

<line number> SLEEP <expression>
198 SLEEP 2§ IDISMISS JOB FOR 28 SEC.

<line number> WAIT <expression>
525 WATT A%+5 IWAIT A%+5 SEC. FOR INPUT

Record I/0 Statements

<line number> LSET<string var>{,<string var>l=<string>
94 LSET BS$="XYZ"

<line number> RSET<string var>{,<string var>l}=<string>
258 RSET C$="6789g8"

Manual
Section

8.7.5

12.4.3

12.4.3

<line number> FIELD#<expr>,<expr>AS<string var>{,<expr>AS<string var>}

75 FIELD#2%,10% AS AS$, 20% AS BS

<line number> GET#<expr>{,RECORD<expr>}
184 GET#1%,RECORD 99%

<line number> PUT#<expr>{,RECORD<expr>}{,COUNT<expr>}
S@@ PUT#1%,COUNT 88%

<line number> UNLOCK#<expr>
788 UNLOCK #3%

12.4.2

12.3

12.3

10.5.1

APPENDIX B

BASIC-PLUS COMMAND SUMMARY

Section in
RSTS-11 System
Command Explanation User's Guide

APPEND Used to include contents of a previously 2.4.3
saved source program in current program.

ASSIGN Used to reserve an I/0 device for the use 2.6.3
of the individual issuing the command. The
specified device can then be given commands
only from the job which issued the
ASSIGN. Also establishes a logical name
for a device, establishes an account for
the @ character, and establishes a default
protection code.

ATTACH Attaches a detached job to the current 4.1
terminal.
BYE Indicates to RSTS that a user wishes to 2.1.3

leave the terminal. Closes and saves any
files remaining open for that user.

CAT Returns the user's file directory. Unless 2.5.2
CATALOG another device is specified following the

term CAT or CATALOG, the disk is the

assumed device.

CCONT For privileged users. Same as CONT command, 2.2.9
but detaches job from terminal.

COMPILE Allows the user to store a compiled version of 2.3.3
his BASIC program. The file is stored on disk
with the current name and the extension .BAC.
Or, a new file name can be indicated and the
extension .BAC will still be appended.

CONT Allows the user to continue execution of the 2.2.8
program currently in core following the
execution of a STOP statement.

DEASSIGN Used to release the specified device for use 2.
by others. If no particular device is speci- 2
fied, all devices assigned to that terminal
are released. An automatic DEASSIGN is per-
formed when the BYE command is given. Also
releases any logical name for a device.

DELETE Allows the user to remove one or more lines 2.2.5
from the program currently in core. Follow-
ing the word DELETE the user types the line
number of the single line to be deleted or
two line numbers separated by a dash (-)
indicating the first and last line of the
section of code to be removed. Several
single lines or line sections can be indi-
cated by separating the line numbers, or
line number pairs, with a comma.

B-1

Section in
RSTS-11 System

Command Explanation User's Guide
HELLO Indicates to RSTS that a user wishes to log 2.1.2

onto the system. Allows the user to input
project-programmer number and password.
Also attaches a detached job to the current
terminal or changes accounts without having
to log off the system.

KEY Used to re-enable the echo feature on the user 2.6.2
terminal following the issue of a TAPE com-
mand. Enter with LINE FEED or ESCAPE key.

LENGTH Returns the length of the user's current 2.5.1
program in core, in 1K increments.

LIST Allows the user to obtain a printed listing 2.2.4
at the user terminal of the program cur-
rently in core, or one or more lines of that
program. The word LIST by itself will cause
the listing of the entire user program.

LIST followed by one line number will list
that line; and LIST followed by two line
numbers separated by a dash (-) will list the
lines between and including the lines
indicated. Several single lines or line
sections can be indicated by separating the
line numbers, or line number pairs, with a

comma.
LISTNH Same as LIST, but does not print header con- 2.2.4
taining the program name and current data.
LOGIN Same as HELLO on Version 5 (RSTS/E) systems. 4.1
NEW Clears the user's area in core and allows the 2.2.1

user to input a new program from the terminal.
A program name can be indicated following the
word NEW or when the system requests it.

OLD Clears the user's area in core and allows the 2.4.2
user to recall a saved program from a storage
device. The user can indicate a program name
following the word OLD or when the system
requests it. If no device name is given, the
file is assumed to be on the system disk. A
device specification without a filename will
cause a program to be read from an input-only
device (such as high-speed reader, card

reader) .
REASSIGN Transfers control of a device to another job. 2.6.5
RENAME Causes the name of the program currently in 2.2.6

core to be changed to the name specified after
the word RENAME.

REPLACE Same as SAVE, but allows the user to substitute 2.4.7
a new program for an old program with the same
name, erasing the old program.

Command

RUN

RUNNH

SAVE

SCALE

TAPE

UNSAVE

Section in
RSTS-11 System

Explanation User's Guide
Allows the user to begin execution of the pro- 2.3.1

gram currently in core. The word RUN can be
followed by a file name in which case the file
is loaded from the system disk, compiled (if
necessary), and run; alternatively, the device
and file name can be indicated if the file is
not on the system disk. A device specification
without a file name will cause a program to be
read from an input only device (such as high-
speed reader, card reader).

Causes execution of the program currently in 2.3.1
memory but header information containing the

program name and current data is not printed.

If a filename is used, the command is exe-

cuted as if no filename were given.

Causes the program currently in core to be 2.4.1
saved on the system disk under its current

file name with the extension .BAS. Where

the word SAVE is followed by a file name or

a device and a file name, the program in core

is saved under the name given and on the

device specified. A device specification

without a file name will cause the program

to be output to any output only device (line

printer, high-speed punch).

Sets the scale factor to a designated value 2.8
or prints the value(s) currently in effect
if no value is designated.

Used to disable the echo feature on the user 2.6.1
terminal while reading paper tape via the low-
speed reader.

The word UNSAVE is followed by the file name 2.4.6
and, optionally, the extension of the file to

be removed. The UNSAVE command cannot remove

files without an extension. If no extension

is specified, the source (.BAS) file is deleted.

If no device is specified, the disk is assumed.

Section in
RSTS-11 System
Command Explanation User's Guide

Special Control Character Summary

CTRL/C Causes the system to return to BASIC com- 3.5
mand mode to allow for issuing of further
commands or editing. Echoes on terminal as

tC.

CTRL/O Used as a switch to suppress/enable output 3.7
of a program on the user terminal. Echoes as
t0.

CTRL/Q When generated by a device on which a CTRL/S 3.10

has interrupted output, causes computer to
resume output at the next character.

CTRL/S When generated by a device for which STALL 3.10
characteristics are set, interrupts computer
output on the device until either CTRL/Q or
another character is generated.

CTRL/U Deletes the current typed line, echoes as 1U 3.6
and performs a carriage return/line feed.

CTRL/Z Used as an end-of-file character. 3.9

ESCape or Enters a typed line to the system, echoes on 3.2

ALT MODE the user terminal as a $ character and does

Key not cause a carriage return/line feed.

LINE FEED Used to continue the current logical line on 3.3

Key an additional physical line. Performs a

line feed/carriage return operation.

RETURN Enters a typed line to the system, results in 3.1
Key a carriage return/line feed operation at the
user terminal.

RUBOUT Deletes the last character typed on that 3.4
Key physical line. Erased characters are shown
on the teleprinter between back slashes.

TAB or Performs a tabulation to the next of nine tab 3.8
CTRL/I stops (eight spaces apart) which form the
terminal printing line.

APPENDIX C

ERROR MESSAGE SUMMARY

Wherever possible, RSTS follows an error message with the phrase

AT LINE XxXxXxx

where xxxx is the line number of the statement which caused the error.

For example:

1§ TALK
ILLEGAL VERB AT LINE 1¢
READY

The additional message is not printed when no line number can be as-

sociated with the error.
TALK
WHAT?
READY

An (SPR) in the description of any error message in this Appendix
indicates an error which should never be seen by a user. If such a
message is received, the user should document how he obtained the error
and file a Software Performance Report with DEC, including the perti-

nent output.

C.1 USER RECOVERABLE ERRORS

A (C) in the description of the error message indicates that pro-
gram execution continues, following printing of the error message,
if an ON ERROR GOTO statement is not present. Normally, execution
terminates on an error condition, the error message is printed, and
the system prints READY. The ERR column gives the value of the ERR
variable (see Section 8.4).

ERR Message Printed Meaning
1 BAD DIRECTORY FOR DEVICE The directory of the device refer-

enced is in an unreadable format.

ERR

10

11

12

13

14

Message Printed

ILLEGAL FILE NAME

ACCOUNT OR DEVICE IN USE

NO ROOM FOR USER ON DEVICE

CAN'T FIND FILE OR ACCOUNT

NOT A VALID DEVICE

I/0 CHANNEL ALREADY OPEN

DEVICE NOT AVAILABLE

I/0 CHANNEL NOT OPEN

PROTECTION VIOLATION

END OF FILE ON DEVICE

FATAL SYSTEM I1/0 FAILURE

USER DATA ERROR ON DEVICE

DEVICE HUNG OR WRITE LOCKED

Meaning

The filename specified is not accept-
able. It contains unacceptable char-
acters or the filename specification
format has been violated.

Removal or dismounting of the account
or device cannot be done since one
or more users are currently using it.

Storage space allowed for the current
user on the device specified has been
used or the device as a whole is too

full to accept further data.

The file or account number specified
was not found on the device specified.

Attempt to use an illegal or nonexis-
tent device specification.

An attempt was made to open one of
the twelve I/0 channels which had
already been opened by the program.
(SPR)

The device requested is currently
reserved by another user.

Attempt to perform I/O on one of the
twelve channels which has not been
previously opened in the program.

The user was prohibited from perform-
ing the requested operation because
the kind of operation was illegal
(such as input from a line printer)
or because the user did not have the
privileges necessary (such as delet-
ing a protected file).

Attempt to perform input beyond the end
of adata file; or a BASIC source file is
called into memory and is found to con-
tain no END statement.

An I/0 error has occurred on the sys-
tem level. The user has no guarantee
that the last operation has been per-
formed. (SPR)

One or more characters may have been
transmitted incorrectly due to a par-
ity error, bad punch combination on

a card, or similar error.

User should check hardware condition
of device requested. Possible causes
of this error include a line printer
out of paper or high-speed reader
being off-line.

ERR
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Message Printed

KEYBOARD WAIT EXHAUSTED

NAME OR ACCOUNT NOW EXISTS

TOO MANY OPEN FILES ON UNIT

ILLEGAL SYS() USAGE

DISK BLOCK IS INTERLOCKED

PACK IDS DON'T MATCH

DISK PACK IS NOT MOUNTED

DISK PACK IS LOCKED OUT

ILLEGAL CLUSTER SIZE

DISK PACK IS PRIVATE

DISK PACK NEEDS 'CLEANING'

FATAL DISK PACK MOUNT ERROR

I/0 TO DETACHED KEYBOARD

PROGRAMMABLE +C TRAP

CORRUPTED FILE STRUCTURE

Meaning

Time requested by Wait statement
has been exhausted with no input re-
ceived from the specified keyboard.

An attempt was made to rename a
file with the name of a file which
already exists, or an attempt was
made by the system manager to in-
sert an account number which is
already within the system.

Only one open DECtape output file
is permitted per DECtape drive.
Only one open file per magtape
drive is permitted.

Illegal use of the SYS system func-
tion.

The requested disk block segment
is already in use (locked) by some
other user.

The identification code for the
specified disk pack does not match
the identification code already on
the pack.

No disk pack is mounted on the
specified disk drive.

The disk pack specified is mounted
but temporarily disabled.

The specified cluster size is unac-
ceptable.

The current user does not have ac-
cess to the specified private disk
pack.

Non-fatal disk mounting error; use
the CLEAN operation in UTILTY.

Fatal disk mounting error.
not be successfully mounted.

I/0 was attempted to a hung up
dataset or to the previous, but now
detached, console keyboard for the
job.

ON ERROR-GOTO subroutine was entered
through a program trapped CTRL/C.
See a description of the SYS system
function.

Fatal error in CLEAN operation.

Disk can-

ERR

30

31

32

33

34

35

36

37

38

39

40

Message Printed

DEVICE NOT FILE STRUCTURED

ILLEGAL BYTE COUNT FOR I/O

NO ROOM AVAILABLE FOR FCB

UNIBUS TIMEOUT FATAL TRAP

RESERVED INSTRUCTION TRAP

MEMORY MANAGEMENT VIOLATION

SP (R6) STACK OVERFLOW

DISK ERROR DURING SWAP

MEMORY PARITY FAILURE

MAGTAPE SELECT ERROR

MAGTAPE RECORD LENGTH
ERROR-

Meaning

An attempt is made to access a de-
vice, other than a disk, DECtape,

or magtape device, as a file-
structured device. This error
occurs, for example, when the user
attempts to gain a directory listing
of a non-directory device.

The buffer size specified in the
RECORDSIZE option of the OPEN
statement or in the COUNT option
of the PUT statement is not a
multiple of the block size of the
device being used for I/O, or is
illegal for the device.

When the user accesses a file under
programmed control in RSTS-11, a
system control structure called an
FCB requires one small buffer and
one small buffer is not available
for the FCB.

This hardware error occurs when

an attempt is made to address
nonexistent memory or an odd address
using the PEEK function. An
occurrence of this error message

in any other case is cause for an
SPR.

An attempt is made to execute an
illegal or reserved instruction
or an FPP instruction when floating
point hardware is not available.

This hardware error occurs when an
illegal Monitor address is specified
using the PEEK function. Genera-
tion of the error message in situa-
tions other than using PEEK is cause
for an SPR.

An attempt to extend the hardware
stack beyond its legal size is
encountered. (SPR)

A hardware error occurs when a
user's job is swapped into or out
of memory. The contents of the
user's job area are lost but the
job remains logged into the system
and is reinitialized to run the
NONAME program,

A parity error was detected in the
memory occupied by this job.

When access to a magtape drive was
attempted, the selected unit was
found to be off line.

When performing input from magtape,
the record on magtape was found to
be longer than the buffer designated
to handle the record.

ERR

41

42

43

44
45

46

47

48

49

50

51

52

53

54

55

Message Printed

NO RUN-TIME SYSTEM

VIRTUAL BUFFER TOO LARGE

VIRTUAL ARRAY NOT ON DISK

MATRIX OR ARRAY TOO BIG

VIRTUAL ARRAY NOT YET OPEN

ILLEGAL I/O CHANNEL

LINE TOO LONG

FLOATING POINT ERROR

ARGUMENT TOO LARGE IN EXP

DATA FORMAT ERROR

INTEGER ERROR

ILLEGAL NUMBER

ILLEGAL ARGUMENT IN LOG

IMAGINARY SQUARE ROOTS

SUBSCRIPT OUT OF RANGE

Meaning

Reserved.

Virtual core buffers must be
512 bytes long.

A non-disk device is open on the
channel upon which the virtual
array is referenced.

In-core array size is too large.

An attempt was made to use a
virtual array before opening the
corresponding disk file.

Attempt was made to open a file
on an I/0 channel outside the
range of the integer numbers 1
to 12,

Attempt to input a line longer
than 255 characters (which includes
any line terminator). Buffer
overflows.

Attempt to use a computed floating
point number outside the range

| 1E-38|<n<|1E38]| excluding zero.
If no transfer to an error
handling routine is made, zero is
returned as the floating point
value. (C)

Acceptable arguments are within the
approximate range -89<arg<+88. The
value returned is zero. (C)

A READ or INPUT statement detected
data in an illegal format. For
example, 1l..2 is an improperly
formed number, and 1.3 is an impro-
perly formed integer, and X" is an
illegal string. (C)

Attempt to use a computed integer
outside the range -32767<n<32767.
If no transfer to an error handling
routine is made, zero is returned
as the integer value. (C)

Integer or floating point overflow
or underflow.

Negative or zero argument to log
function. Value returned is the
argument as passed to the function.
(C)

Attempt to take square root of a
number less than zero. The value
returned is the square root of the
absolute value of the argument. (C)

Attempt to reference an array ele-
ment beyond the number of elements
created for the array when it was

dimensioned.

ERR Message Printed

56 CAN'T INVERT MATRIX

57 OUT OF DATA

58 ON STATEMENT OUT OF RANGE
59 NOT ENOUGH DATA IN RECORD
60 INTEGER OVERFLOW, FOR LOOP
61 DIVISION BY #

C.2 NON-RECOVERABLE ERRORS

Message Printed

ARGUMENTS DON'T MATCH

BAD LINE NUMBER PAIR

BAD NUMBER IN PRINT-USING

CAN'T COMPILE STATEMENT

CAN'T CONTINUE

CATASTROPHIC ERROR

DATA TYPE ERROR

Meaning

Attempt to invert a singular or
nearly singular matrix.

The DATA list was exhausted and a
READ requested additional data.

The index value in an ON-GOTO or
ON-GOSUB statement is less than one
or greater than the number of line
numbers in the list.

An INPUT statement did not find
enough data in one line to satisfy
all the specified variables.

The integer index in a FOR loop
attempted to go beyond 32766 or
below -32766.

Attempt by the user program to
divide some quantity by zero.
no transfer is made to an error
handler routine, a # is returned
as the result. (C)

If

Meaning

Arguments in a function call do not
match, in number or in type, the
arguments defined for the function.

Line numbers specified in a LIST
or DELETE command were formatted
incorrectly.

Format specified in the PRINT-
USING string cannot be used to
print one or more values.

Program was stopped or ended at a
spot from which execution cannot
be resumed.

The user program data structures
are destroyed. This normally indi-
cates a BASIC-PLUS malfunction and,
if reproducible, should be reported
to DEC on a Software Performance
Report form (SPR).

Incorrect usage of floating-point,
integer, or character string for-
mat variable or constant where
some other data type was necessary.

Message Printed

DEF WITHOUT FNEND

END OF STATEMENT NOT SEEN

EXECUTE ONLY FILE

EXPRESSION TOO COMPLICATED

FIELD OVERFLOWS BUFFER

FILE EXISTS-RENAME/REPLACE

FNEND WITHOUT DEF

FNEND WITHOUT FUNCTION CALL

FOR WITHOUT NEXT

ILLEGAL CONDITIONAL CLAUSE

ILLEGAL DEF NESTING

ILLEGAL DUMMY VARIABLE

ILLEGAL EXPRESSION

Meaning

A second DEF statement was encoun-
tered in the processing of a user
function without an FNEND state-
ment terminating the first user
function definition.

Statement contains too many ele-
ments to be processed correctly.

Attempt was made to add, delete or
list a statement in a compiled
(.BAC) format file.

This error usually occurs when
parentheses have been nested too
deeply. The depth allowable is
dependent on the individual
expression.

Attempt to use FIELD to allocate
more space than exists in the
specified buffer.

A file of the name specified in a
SAVE command already exists. 1In
order to save the current program
under the name specified, use
REPLACE, or RENAME followed by
SAVE.

An FNEND statement was encountered
in the user program without a
previous DEF statement being seen.

A FNEND statement was encountered
in the user program without a
previous function call having been
executed.

A FOR statement was encountered in
the user program without a corre-

sponding NEXT statement to terminate

the loop.

Incorrectly formatted conditional
expression.

The range of one function definition

crosses the range of another
function definition.

One of the variables in the dummy
variable list of a user-defined
function is not a legal variable
name.

Double operators, missing operators,

mismatched parentheses, or some
similar error has been found in an
expression.

Message Printed Meaning

ILLEGAL FIELD VARIABLE The FIELD variable specified is
unacceptable.

ILLEGAL FN REDEFINITION Attempt was made to redefine a user
function.

ILLEGAL FUNCTION NAME Attempt was made to define a func-

tion with a function name not sub-
scribing to the established
format.

Message Printed

ILLEGAL IF STATEMENT

ILLEGAL IN IMMEDIATE MODE

ILLEGAL LINE NUMBER(S)

ILLEGAL MAGTAPE () USAGE

ILLEGAL MODE MIXING

ILLEGAL STATEMENT

ILLEGAL SYMBOL

ILLEGAL VERB

INCONSISTENT FUNCTION USAGE

INCONSISTENT SUBSCRIPT USE

K OF CORE USED

LITERAL STRING NEEDED

MATRIX DIMENSION ERROR

MATRIX OR ARRAY WITHOUT DIM

MAXIMUM CORE EXCEEDED

MISSING SPECIAL FEATURE

Meaning

Incorrectly formatted IF statement.

User issued a statement for execu-
tion in immediate mode which can
only be performed as part of a pro-
gram.

Line number reference outside the
range 1<n<32767,

Improper use of the MAGTAPE function.

String and numeric operations cannot
be mixed.

Attempt was made to execute a state-
ment that did not compile without
errors.

An unrecognizable character was en-
countered. For example, a line con-
sisting of a # character.

The BASIC verb portion of the state-
ment cannot be recognized.

A function is being redefined in a
manner inconsistent in the number or
type of arguments with one or more
calls to that function existing in
the program.

A subscripted variable is being used
with a different number of dimensions
from the number with which it was
originally defined.

Message printed by LENGTH command,
preceded by the appropriate number
describing the user program currently
in core to the nearest 1K.

A variable name was used where a
numeric or character string was
necessary.

Attempt was made to dimension a
matrix to more than two dimensions,
Or an error was made in the syntax
of a DIM statement.

A matrix or array element was ref-
erenced beyond the range of an
implicitly dimensioned matrix.

User program grew to be too large
to run or compile in the area of
core assigned to each user at the
given installation.

User program employs a BASIC-PLUS
feature not present on the given
installation.

Message Printed

MODIFIER ERROR

NEXT WITHOUT FOR

NO LOGINS

NOT A RANDOM ACCESS DEVICE

NOT ENOUGH AVAILABLE CORE

NUMBER IS NEEDED

1 OR 2 DIMENSIONS ONLY

ON STATEMENT NEEDS GOTO

PLEASE SAY HELLO

PLEASE USE THE RUN COMMAND

PRINT-USING BUFFER OVERFLOW

PRINT-USING FORMAT ERROR

PROGRAM LOST-SORRY

REDIMENSIONED ARRAY

RESUME AND NO ERROR

Meaning

Attempt to use one of the statement
modifiers (FOR, WHILE, UNTIL, IF,
or UNLESS) incorrectly.

A NEXT statement was encountered in
the user program without a previous
FOR statement having been seen.

Message printed if the system is
full and cannot accept additional
users or if further logins are dis-
abled by the system manager.

Attempt to perform random access 1/0
to a non-random access device.

The already compiled user program is
too large to run in the area of core
assigned to each user at the given
installation.

A character string or variable name
was used where a number was necessary.

Attempt was made to dimension a matrix
to more than two dimensions.

A statement beginning with ON does
not contain a GOTO or GOSUB clause.

User not logged into the system has
typed something other than a legal,
logged-out command to the system.

A transfer of control (as in a GOTO,
GOSUB or IF-GOTO statement) cannot
be performed from immediate mode.

Format specified contains a field too
large to be manipulated by the PRINT-
USING statement.

An error was made in the construction
of the string used to supply the out-

put format in a PRINT-USING statement.

A fatal system error has occurred
which caused the user program to be
lost.

Usage of an array or matrix within
the user program has caused BASIC-
PLUS to redimension the array im-
plicitly.

A RESUME statement was encountered
where no error had occurred to cause
a transfer into an error handling
routine via the ON ERROR-GOTO state-
ment.

Cc-10

Message Printed Meaning

RETURN WITHOUT GOSUB RETURN statement encountered in the
user program without a previous
GOSUB statement having been executed.

SCALE FACTOR INTERLOCK An attempt was made to execute a pro-
gram or source statement with the cur-
rent scale factor. The program executes
but the system uses the scale factor of
the program in memory. Use REPLACE and
OLD or recompile the program to execute
with the current scale factor.

STATEMENT NOT FOUND Reference is made within the program
to a line number which is not within
the program.

STOP STOP statement was executed. The
user can usually continue program
execution by typing CONT and the

RETURN key.

STRING IS NEEDED A number or variable name was used
where a character string was neces-
sary.

SYNTAX ERROR BASIC-PLUS statement was incorrectly
formatted.

TEXT TRUNCATED No BASIC-PLUS statement can be more

than 255 characters long.

TOO FEW ARGUMENTS The function has been called with
a number of arguments not equal to
the number defined for the function.

TOO MANY ARGUMENTS A user-defined function may have up
to five arguments.

UNDEFINED FUNCTION CALLED BASIC-PLUS interpreted some state-
ment component as a function call
for which there is no defined func-
tion (system or user).

WHAT? Command or immediate mode statement
entered to BASIC-PLUS could not be
processed. Illegal verb or improper
format error most likely.

WRONG MATH PACKAGE Program was compiled with an incom-

patible version of RSTS. Program
source must be recompiled.

C.3 SYSTEM IDENTIFICATION MESSAGE

ERR code § is associated with the system installation name
for use by the system programs.

APPENDIX D

BASIC-PLUS CHARACTER SET

D.1 BASIC-PLUS CHARACTER SET

User program statements are composed of individual characters.

Allowable characters come from the following character set:

A through 2
@ through 9
Space

Tab

and the following special symbols and keys:

~

LINE
FEED

0]

Use and Section in BASIC-PLUS Language Manual

Used in specifying string variables (Section 5.1), or
as the System Library file designator (RSTS-11 System
User's Guide).

Used in specifying integer variables (Section 6.1).
Also denotes account [1,4] (Section 9.1.1).

Used to delimit string constants, i.e., text strings
(Section 5.1).

Begins comment part of a line (Section 3.1). Also
denotes account [1,3] (Section 9.1.1).

Separates multiple statements on one line (Section
2,3.1).

Separates multiple statements on one line as the colon
(:) also does.

Denotes a device or file channel number, or is used as
an output format effector (Chapter 7 and Section 10.3.3).
Also denotes account number using current project num-
ber with a programmer number of § (Section 9.1.1).

Output format effector and list terminator
(Section 3.3).

Output format effector (Section 3.3).
Denotes account [1,5] (Section 9.1.1).
Denotes the assignable account (Section 9.1.1).

When used at the end of a line, indicates that the cur-
rent statement is continued on the next line
(Section 2.3.2).

Used to group arguments in an arithmetic expression
(Section 2.5), or to delimit project-programmer number.

Used to group project-programmer number. Equivalent
to ().

Use and Section in BASIC-PLUS Language Manual

Used to delimit file protection codes.
Arithmetic operators (Section 2.5.3).

Replacement operator (Section 3.2). Logical equivalence
operator (Section 2.5.4).

Logical "less than" operator (Section 2.5.4).
Logical "greater than" operator (Section 2.5.4).

Numeric "approximately equal to" operator (Section 2.5.4).
Logical "exactly equal to" string operator
(Section 5.1.5).

D.2 ASCII CHARACTER CODES

ASCIX ASCII ASCII
Decimal Char- RSTS Decimal Char- RSTS Decimal Char- RSTS
Value acter Usage Value acter Usage Value acter Usage
] NUL FILL character 43 + 86 v
1 SOH 44 + COMMA 87 W
2 STX 45 - 88 X
3 ETX CTRL/C 46 . 89 Y
4 EOT 47 / og Z
5 ENQ 48) 91 [
6 ACK 49 1 92 \ Backslash
7 BEL BELL 5¢ 2 93]
8 BS 51 3 94 ~ or ¢
9 HT HORIZONTAL TAB 52 4 95 _or hd
1g LF LINE FEED 53 5 96 <« Grave accent
11 VT VERTICAL TAB 54 6 97 a
12 FF FORM FEED 55 7 98 b
13 CR CARRIAGE RETURN 56 8 99 [e}
14 SO 57 9 199 d
15 SI CTRL/O 58 : 141 e
16 DLE 59 B 192 £
17 DCl] < 193 g
18 DC2 6l = 194 h
19 DC3 62 > 145 i
2¢ pCc4 63 ? 196 3
21 NAK CTRL/U 64 @ 187 k
22 SYN 65 A 148 1
23 ETB 66 B 149 m
24 CAN 67 C 11¢ n
25 EM 68 D 111)
26 SUB CTRL/Z 69 E 112 p
27 ESC ESCAPE! 79 F 113 q
28 FS 71 G 114 4
29 GS 72 H 115 S
3@ RS 73 I 116 t
31 us 74 J 117 u
32 SP SPACE 75 K 118 v
33 ! 76 L 119 w
34 " 77 M 129 x
35 # 78 N 121 y
36 $ 79 o] 122 z
37 % 8@ P 123 {
38 & 81 Q 124 | Vertical Line
39 ' APOSTROPHE 82 R 125 }
ag (83 S 126 T Tilde
41) 84 T 127 DEL RUBOUT
42 * 85 u

! ALTMODE (ASCII 125) or PREFIX (ASCII 126) keys which appear on some terminals are
translated internally into ESCAPE.

Radix-5@ Character/Position Table

Single Char.

or Second Third
First Char. Character Character
A ga31p9 A gpeasg A 2000g1
B 866268 B 6086128 B 288882
c £113464 c 686176 c g808443
D 6144486 D 686248 D g8884d4
E 817568 E 806318 E 2o88485
F g22648 F 8848366 F gg8846
G 625768 G 08864348 G #88807
H 831808 H 686588 H 288814
I 7341484 I 888558 I #8811
J 8372086 J g66624 J 2888812
K g42348 K 888674 K g88813
L g454488 L g4g87468 L 20880614
M #58548 M gd1414 M 288815
N g53688 N gg1d6d N gegdle
0 #56784 o] gg1134 o) ggd817
P ge2408 P 881248 P 288828
Q #65144 Q g41258 Q g88821
R 2782848 R g41324 R ggdg22
S #73344 5 861374 S g88623
T d76488 T gg1448 T gadg24
6] 1415498 U gd1514 U ge8dd25
v 1646448 \Y% gdised v ggdd26
W 187748 17} #8616 34 1 gg88827
X 1138908 X gg81744 X 2098438
Y 1161484 Y gd1754 Y ge0g31
yA 121244 pA ga2424 pA goad32
$ 1243904 $ 802474 $ g89333
. 127444 . 782144 . good34
unused 132544 unused #4221¢4 unused @g4435
['} 135648 '} gg2264d '} go9436
1 149744 1 #2334 1 ge88837
2 144444 2 g62444 2 gdddad
3 147144 3 gag2454 3 gdggal
4 1522684 4 gg2524 4 gggga2
5 155344 5 gd2574 5 gdggas
6 160449 6 dg2644 6 goga44
7 1635484 7 g92714 7 ddddas
8 166649 8 gg2764 8 goddae
9 171744 9 ga3434 9 1.1 1.2%]

APPENDIX E

RSTS FLOATING-POINT AND INTEGER FORMATS

E.l1 FLOATING-POINT FORMATS

RSTS systems use two standard floating-point packages: the
single precision, two-word package or the double precision, four-word
package., The determination of which package will be used is made by
the system manager at the time the RSTS Monitor is built.

The single precision format provides economical storage, while
the double precision format is used for high accuracy. The single
precision format provides up to 24 bits or approximately seven decimal
digits of accuracy. The magnitude range lies between @.29 x l¢—38
and 1.7 x lﬁ38. Double precision calculations have a precision of 56
bits or approximately sixteen decimal digits, with magnitudes in the

same range as for single precision format.

15 14 7 6 0
word: sign exponent high-order mantissa
word+2: low-order mantissa

SINGLE PRECISION FORMAT (2 WORD)

15 14 7 6 0
word: sign exponent high-order mantissa
word+2: low~-order mantissa
word+4: lower-order mantissa
word+6: lowest-order mantissa

DOUBLE PRECISION FORMAT (4 WORD)

The exponent is stored in excess 128 (Zﬁﬂs) notation. Exponents
from -127 to +127 are represented by the binary equivalent of 1 through
255 (1 through 3778). Fractions are represented in sign magnitude no-
tation with the binary radix point to the left. Numbers are assumed to
be normalized and, therefore, the most significant bit is not stored
because it is redundant (this is called "hidden bit normalization"); it
is always a 1 unless the exponent is # in which case it is assumed to
be @#. The value @ is therefore represented by two or four words of

zeroes. For example: +1 would be represented by:

word: gag2gg
word+2: Iy 5455

in the 2-word format, or:

word: g4ap209
word+2: gppeee
word+4: gp0aag
word+6: gpepag

in the 4-word format. -5 would be:
word: 149649
word+2: gogagg

in the 2-word format, or:

word: 140648
word+2: ggeags
word+4: gpgeag
word+6: gogagg

in the 4-word format.

While it is generally possible to run programs written on one
RSTS system on another RSTS system, certain restrictions apply if the

math packages are not the same. These are:
a. Programs depending on 4-word accuracy cannot be run
with the 2-word package.

b. .BAC compiled programs can not be interchanged.
The program source file must be recompiled.

c. Floating-point virtual core array file formats are
not compatible between math packages.

d. Programs using the RECORD I/0 functions CVTS$F and
CVTF$ are not compatible between math packages.

E.2 INTEGER FORMAT

15 14

word: sign

Integers are stored in a two's complement representation. Integer

values must be in the range -32768 to +32767. For example:

+22
-7

pags26
1777718

As a rule, an integer value is assumed by RSTS only where a con-

stant or variable name is followed by a % character. Otherwise, con-

stants and variables are assumed to be floating-point values.

10.

BIBLIOGRAPHY

Programming Time-Shared Computers in BASIC Language

Eugene H. Barnett
Wiley-Interscience Bocks. 1972

An Introduction to Computer Programming BASIC Language

James S. Coan
Hayden Book Company, Inc. 1970

Introduction to Programming: A BASIC Approach

Van C. Hare, Jr.
Harcourt Brace Jovanovich, Inc. 1970

BASIC Programming, Second Edition

John G. Kemeny and Thomas E. Kurtz
John Wiley and Sons, Inc. 1971

Introduction to Computing Through the BASIC Language

R. L. Nolan
Holt, Rinehart & Winston, Inc. 1974

Simplified BASIC Programming

Gerald A. Silver
McGraw-Hill Co. 1974

Programming in BASIC, with Applications

Bernard M. Singer
McGraw-Hill Co. 1973

Teach Yourself BASIC, Volume 1 and Volume 2 (self teaching workbook)

Robert L. Albrecht
Technica Education Corporation. 1970

Fundamentals of Digital Computers (elementary and historical)

Donald D. Spencer
Howard W. Sams and Co., Inc. 1969

Computer Programming in BASIC

Joseph P. Pavlovich and Thomas E. Tahan
Holden-Day Co. 1971

BIBLIO-1

INDEX

ABS function, 3-23 Brackets,

Account, 9-3, 9-4, 9-7 angle (<>), 1-3, 2-8, 2-9
assignable, 9-4 square ([]), 1-3
auxiliary library, 9-6 Buffer size, device, 9-10
number, 9-3 card reader, 9-10

Alphabetic sequence string, 5-4 DECtape, 9-10

ALT mode, 3-9 disk, 9-10

AND operator, 2-2, 3-14 high-speed punch, 9-10

Angle brackets (>), 1-3, 2-8

, 2-9 high-speed reader, 9-10
Arithmetical hierarchy, 2-7, 2-8

line printer, 9-10

Arithmetic expressions, 2-5 magtape, 9-10
Arithmetic, mixed mode, 6-9 user terminal, 9-10
Arithmetic operators, 2-7 BUFSIZ function, 12-6

with matrices, 7-6
Arithmetic, scaled, 6-10

Array, 7-1
storage, 11-7, 11-15, 1l1l-16 Calculations,
variables, 3-19, 3-20 immediate mode, 4-1
virtual, 11-1, 11-20 matrix, 7-6
Array variables, 3-19, 3-20 Card reader, buffer size, 9-10
character string, 5-3 CHAIN statement, 9-19, 9-20
default values, 3-21 CHANGE statement, 5-5
virtual core, 11-4 Channel numbers, 9-7
zero elements, 3-21, 7-5, 7-7 FIELD, 12-9
see also matrix virtual array, 11-2, 11-4
ASCII, Character code, ASCII, 5-6, D-3
character code, 5-6, D-3 Characters,
conversions, 5-5 RADIX-50 set, D-4
formatted I/0, 10-5 special, 9-6
function, 5-13 Character string, 5-1
table, 5-2, D-3 alphabetic sequence, 5-4
Assignable account, 9-4 ASCII conversion, 5-5
Assignable devices, 9-2, 9-9 constants, 5-2
Asterisk (*), 10-9 field, 10-7
** operator, 2-7 functions, 5-11, 5-13, 5-14,
ATN function, 3-23 5-15
Auxiliary library account, 9-6 generating (STRINGS), 5-15
input, 5-8
output, 3-7, 5-10, 5-11
passing (CVT$$), 5-15, 12-17, 12~18
.BAC extension, 9-3 relational operators, 5-4
Backslash (\), 2-3, 10-8 size, 5-4
.BAS extension, 9-3 user-defined, 8-3
BASIC PLUS variables, 5-3, 5-4
command summary, B-1 virtual core arrays, 11-3
language, 1-4 CHRS$ function, 5-6, 5-13
language summary, A-1l CLOSE statement, 9-16
statements, A-6 Record I/0, 12-2
Block, virtual array files, 11-4
data, 3-4 CLUSTERSIZE option, 9-12
disk, 9-12 Codes, protection, 9-4, 9-5
Boolean algebra, 2-9, 6-~4 Ccomma (,), 3-7, 3-8, 3-9, 7-2, 10-11

Braces ({}), 1-3

INDEX-1

INDEX (Cont.)

Commands, DEF statement, 3-27, 8-1
BASIC-PLUS, B-1 immediate mode, 4-3
definition, 1-4 multiple line, 8-1

Comments, DEF FN statement, 3-27
data, 3-5 Depth of nesting, 3-18
program, 3-1, 3-2 Device,

Concatenate, strings, 5-13 assignable, 9-2, 9-19

Conditional FOR loops, 2-8, 8-16 buffer sizes, 9-10

Conditional transfer, 3-12 designation, 9-2

Conditions, 3-13 designator, 9-1
see also relational operators file structured, 9-15

and logical operators non-file structured, 9-15

Conformable matrix, 7-6 Dimensioning,3-21, 11-2

CON function, 7-5 implicit, 7-1

Constants, DIM statement, 3-20, 3-22, 5-3
ambiguous, 6-10, 6-11 immediate mode, 4-3
character string, 5-2 virtual core, 11-2
floating point, 6-10 DIM# statement, 11-2
integer, 6-1 Disk,
numeric, 2-5 appending data, 10-22

CONT command, 4-1, 4-2 blocks, 9-12

Control, buffer size, 9-10
character, special, B-3 private, 9-6, 9-7
variable, 3-17, 3-19 public, 9-6, 9-7

Conventions, documentation, 1-3 STATUS value, 12-6, 12-7

Conversion functions, CVT, 12-16 - update option, 12-14, 12-15

12-21 virtual core, 11-11

COS function, 3-23 Documentation conventions, 1-3

COUNT option, 12-5 Dollar sign ($) character, 9-4,

CTRL/C command, 4-2 10-11

CTRL/Z command, 10-16 Double precisicn, 6-10

CVT conversion functions, 12-16 Dummy variables, 2-38, 8-1

CvVTSs, 12-17, 12-18

E format numbers, 2-6

Data block, 3-4 END statement, 3-34

Data, EQV operator, 2-10, 3-14
appending, 10-22 ERL variable, 8-13
files, 9-1 Error messages summary, C-1
storage, 9-1 Errors,

Data files, 9-1 disabling error control, 8-12
formatted ASCII, 10-5 ERL variable, 8-13
input/output, 9-1 nonrecoverable, C-6
random access, 1ll-1 ON ERROR GOTO statement, 8-5
Record I/0, 12-1 program control of, 8-5
see also virtual array files user recoverable, 8-6, C-1

DATA statement, 3-2, 3-4, 10-1 ERR variable, 8-6
character strings, 5-8, 5-9,10-1 values, 8-6, 8-9
comments, 3-5, 10-1 ESCAPE key, 3-9
data pool storage, 10-1 Equivalent, logically, 2-10
immediate mode, 4-3 Exclamation point (!), 3-1, 10-7
simplest form, 3-4 Exclusive OR operator, 2-9

DATES$ function, 5-13, 8-24 EXP function, 3-23

Debugging, 4-1, 4-2 Exponential format, 10-10

Decimal notation, 2-5 Expressions, 2-5

DECtape, buffer size, 9-10 arithmetic, 2-5

logical, 2-5
relational, 2-9

INDEX-2

INDEX (Cont.)

Extending disk files, 12-8
Extension, 9-3

.BAC, 9-3

.BAS, 9-3

format, 9-2

reserved file, 9-3

.TMP, 9-3

FALSE logical value, 6-4, 6-5
Field,
insufficient, 10-12
numeric, 10-8
string, 10-8
too large, 10-12
FIELD statement, 12-9
File extensions, reserved, 9-3
Filename,
format, 9-2
renaming, 9-17
specification, 9-1
Files, data, 9-1
formatted ASCII, 10-5
random access, ll-1
Record 1/0, 12-1
see also virtual array files
Files, DECtape, 9-2
Files, disk,
extending, 12-8
locked, 12-15
[proj,progl, 9-3

simultaneous multiple users, 12-14

UNLOCK, 12-15

update mode, 12-14

virtual core arrays, 1l1-4
FILESIZE option, 9-14
File-structured device, 9-2
FIX function, 3-23

Floating-point number, 2-5, 6-1,

6-10
FNEND statement, 8-1
immediate mode, 4-3
Format,
E, 2-6
exponential, 10-10
insufficient, 10-12
too large, 10-12

Formatted ASCII data files, 10-5

FOR modifier, 8-20

FOR statement, 3-16
conditional loops, 2-8
conditional termination, 8-16
immediate mode, 4-3
nesting loops, 3-18
test condition, 3-16

Function, definition, multiple-line,

8-1

Function, A-2
conversion, 12-16
mathematical, 3-23
matrix, 7-5, 7-7
PRINT, 10-15
recursive, 8-2
string, 5-11, 5-13
system, 8-24

user-defined, 3-27, 5-11, 6-4,

8-1

Functions, conversion, 12-16

CVT%$, 12-16

CVTS$%, 12-16

CVTF$, 12-16

CVTSF, 12-16

CVTS$S, 12-16
Functions, mathematical,

ABS, 3-23

ATN, 3-23

cos, 3-23

EXP, 3-23

FIX, 3-23

INT, 3-23, 3-24

LOG, 3-23

LOGl0, 3-23

PI, 3-23

RND, 3-23, 3-25

SGN, 3-23

SIN, 3-23

SQR, 3-23

TAN, 3-23

Functions, PRINT, 10-15

POS, 10-15
TAB, 10-15

Functions, string, 5-11,

ASCII, 5-13
CHRS$, 5-13
DATES$, 5-13
INSTR, 5-14
LEFT, 5-13
LEN, 5-13
MID, 5-13
NUM$, 5"14
+, 5-13
RIGHT, 5-13
SPACES, 5-14
STRINGS, 5-15
TIMES, 5-14
VAL, 5-14
XLATE, 12-24

Functions, system,

DATES (#) , 8-24
DATES, 8-24
RADS, 8-25
SWAP%, 8-25
TIMES, 8-24
TIMES (#), 8-24
TIME (g), 8-24

INDEX-3

3-23

5-13

INDEX (Cont.)

Functions, system, (Cont.) INSTR function, 5-14
TIME (1), 8-24 Integer numbers, 6-1
TIME(2), 8-24 arithmetic, 6-1, 6-2
TIME(3), 8-25 constants, 6-1
TIME (4), 8-24 functions, user-defined, 6-4
1/0, 6-3

numbers, 6-1
user-defined functions, 8-3

General hierarchy, 3-14 variables, 6-1
Generating strings (STRINGS), Internal file designators,
5-15 FIELD, 12-9
GET statement, 12-2 user terminal, 9-7
GOSUB statement, 3-33 virtual array, 11-2
immediate mode, 4-3 INT function, 3-23, 3-24
GOTO statement, 3-11 Inversion of matrices, 7-7
conditional branch, 3-12 I/0 program, 3-3
immediate mode, 4-3 complete discussion, Part III
unconditional branch, 3-11 Italic type, 1-3
Hierarchy, Key,
arithmetical, 2-7, 2-8 ALT mode, 3-9
general, 3-14 escape, 3-9
see also priority LINE FEED, 2-3

RETURN, 2-3
KILL statement, 9-18

IDN function, 7-5
IF clause, 2-8

IF-GOTO statement, 3-12, 3-15 Language summary, BASIC-PLUS, A-1
IF modifier, 8-19 LEFT function, 5-13
IF-THEN statement, 2-8, 3-12, LEN function, 5-13
3-15, 8-14 LET statement, 3-2, 3-3, 12-13

IF-THEN-ELSE statement, 8-14 Library,
Immediate mode, 4-1 auxiliary, 9-6

multiple statements, 4-2 system, 9-3, 9-6

restrictions, 4-3 Line, 1-4
Implication, logical, 2-10 multiple statements on single,
Implicit dimensions, 7-1 2-3
IMP operator, 2-10, 3-14 single statement on multiple,
Increments, 2-1 2-3
Input, terminators, 5-10

character strings, 5-8 LINE variable, 4-3

integers, 6-2 LINE FEED key, 2-3

matrices, 7-2, 7-3 Line numbers, 1-3, 2-1
INPUT LINE statement, 5-9, 10-18 range, 2-1

message output, 5-10 Locked file, 12-14
Input/output operations, 10-1 LOG function, 3-23
Input/output, I,0OG10 function, 3-23

data files, 9-1 Logical,

program, 3-3 expressions, 2-5, 2-9, 2-10, 3-13
INPUT statement, implication, 2-10

character string input, 5-9 negative, 2-9

from data files, 10-16 operations, 6-5

from non-terminal devices, 10-19 operators, 2-9, 6-4

message output, 3-11 product, 2-9

simplest form, 3-9 sum, 2-9

value, 2-9, 6-4
variables, 6-4

INDEX-4

INDEX (Cont.)

Logically equivalent, 2-10 NEXT statement, 3-16, 3-17
Loops, program, 3-13, 3-15 immediate mode, 4-3
conditional termination of, Non-file structured devices, 9-2
8-16 RECOUNT variable, 12-4
nested, 3-18 Non-recoverable errors, C-6
LSET statement, 12-12, 12-13 Notation,

decimal, 2-5
scientific, 2-6
NOT operator, 2-9, 3-14

Mathematical functions, 3-22, Null string, 5-3
3-23 NUMS$ function, 5-14
see also functions, mathematical Number, 2-5
Mathematical operators, 2-7 E format, 2-6
MAT INPUT statement, 7-3, 10-19 floating point, 2-5, 6-1, 6-10
MAT PRINT statement, 7-2, 10-14 integer, 6-1
MAT READ statement, 7-2, 10-2 output format, 3-6
Matrix, 3-21, 7-1, 10-2 Number sign (#), 10-8
calculations, 7-6 Numeric constants, 2-5
conformable, 7-6 Numeric field, 10-8

functions, 7-7
initialization statement, 7-5
inverting, 7-7

MAT INPUT, 7-3, 10-19 OLD command, 3-34
MAT PRINT, 7-2, 10-14 ON ERROR GOTO statement, 8-5
MAT READ, 7-2, 10-2 disabling error routine, 8-12
multiplication, 7-6 ON ERROR GOTO @4, 8-12
multiplication, scalar, 7-6 RESUME, 8-9
operations, 7-6 ON-GOSUB statement, 8-4
square, 7-7 ON-GOTO statement, 8-3
string variables, 5-2 Open,
virtual core, 1l1-1 multiple terminals, 11-16
Memory, conserving, 3-22 statement, 9-7, 11-4, 12-1
Messages, program, 3-2 OPEN statement, 9-7, 11-4, 12-1
by INPUT, 3-11 CLUSTERSIZE option, 9-12
by PRINT, 3-8 FOR INPUT, 9-8
MID function, 5-13 FOR OUTPUT, 9-8
Minus sign (-), trailing, 10-10 MODE option, 9-15
Mixed mode arithmetic, 6-9 Record I/0, 12-1
MODE specification, 9-15 RECORDSIZE option, 9-10
MODE 1%, 12-14 user terminal, 10-21
MODE 2%, 10-22 virtual array file, 11-4
Modifiers, 8-19 Operations,
Modules, arithmetic example, 3-29 input/output, 10-1
Multiple lines, 2-3 matrix, 7-6
function, definition, 8-1 Operators, logical, 2-9, A-1
immediate mode, 4-2 AND, 2-9
Multiple statements, 2-3 **% 2-7
modifiers, 8-23 EQV, 2-10
Multiple terminal service, 11-16 IMP, 2-10
NOT, 2-9
OR, exclusive, 2-9
XOR, 2-9
NAME-AS statement, 9-17 Operators, mathematical, 2-7
Negative, logical, 2-9 Operators, relational, 2-8
Nesting, string, 5-4
functions, 8-1 OR operator, 2-9, 3-14
loops, 3-18

subroutines, 3-34

INDEX-5

INDEX (Cont.)

Output,
character strings, 5-11
integers, 6-2
matrices, 7-2
rules for PRINT statement,
10-3
see also PRINT

Pack cluster size, 9-12
Parentheses, 2-8
Passing strings (CVTS$S), 12-17

Percent character (%), 6-1, 10-12

Physical blocks, 9-12
PI function, 3-23
POS function, 10-15
Pound sign (#), 10-8
Precedence rules,
see priority
Print functions, 10-15
PRINT statement, 3-6, 10-3
character string format, 3-8
10-7
comma, 10-11
message output, 3-8
number format, 3-6
output rules, 10-3
performing calculations, 3-6
punctuation, 10-4
semicolon, 10-4
simplest form, 3-6
suppress carriage return/line
feed, 3-9
to data files, 10-5
to non-terminal devices, 10-6
without arguments, 3-6
PRINT-USING statement, 10-7
punctuation, 10-13
Print zones, 3-7
Priority,
general, 3-14
mathematical, 2-7, 2-8
Private disk, 9-6
Product, logical, 2-9
Programs, 1-4
conserving memory space, 3-22
debugging, 4-1, 4-2
line, 1-4
loops, 3-15
Project-programmer codes, 9-1,
9-3
Protection code, 9-1, 9-4
assigning, 9-17
Public disk, 9-6
Punctuation, PRINT statement,
10-13
PUT statement, 12-2

Question mark (?), printed by INPUT,
3-11
Quotation mark ("), 3-8

RADS$ function, 8-25
RADIX-50 character set, D-4
Random access file system, 11-1
see also virtual array files
RANDOMIZE statement, 3-26
RANDOM statement, 3-26
Random number function, RND, 3-25
READ statement, 3-4, 10-1
Record I/0 options, 12-1
CLOSE, 12-2
examples, 12-22
FIELD, 12-9
LSET, 12-12
RSET, 12-12
translation function, 12-24
update, 12-14
RECORD option, 12-5
multiple terminals, 11-6
RECORDSIZE option, 9-10
RECOUNT variable, 12-4
Relational,
expressions, 2-9, 2-10, 8-14, 8-20
through 8-23
operators, 2-8
operators with character strings,
5-4
Remarks, program, 3-2
REMARK statement, 3-1
REM statement, 3-1
Renaming filename, 9-17
Reserved file extensions, 9-3
RESTORE statement, 3-5, 10-2
RESUME statement, 8-10
RETURN key, 2-3
RETURN statement, 3-33, 8-4
immediate mode, 4-3
RIGHT function, 5-13
RND function, 3-23, 3-25
Routine, error handling, 8-11
RSET statement, 12-12
RSTS-11 System User's Guide, 1-1

SAVE command, 3-34

Scalar multiplication, 7-6
SCALE command, 6-11

Scaled arithmetic, 6-10
Scale factor, 6-12
Scientific notation, 2-6
Semicolon, 3-8, 3-9, 7-2
SGN function, 3-23

INDEX-6

INDEX

Simple variables, 3-19

SIN function, 3-23

Single precision, 6-10

Single statement on multiple

lines, 2-3

Size, string, 5-4

SLEEP statement,

SPACE function,

Spaces, 2-4

Special characters,
1, 9-6
%, 6-1,
&, 9-6
#, 9-6, 10-10
$, 9-6, 10-11

Special control characters, B-4

8-25
5-14

9-6, 10-12

SQR square root function, 3-23
Square brackets, 1-3
Square matrix, 7-7

Statement modifiers, 8-19
FOR, 8-19
IF, 8-19
Multiple, 8-23
UNLESS, 8-19
UNTIL, 8-16, 8-19
WHILE, 8-16, 8-19
Statements, 1-4, 2-3

definition of, 1-4

multiple on single line, 2-3
single on multiple lines, 2-3
summary of, A-5

see also specific statement names

Status variable, 12-6
STEP expression, 3-17, 8-16
STOP statement, 3-34, 4-1
Storage, virtual array, 11-3
String,

see character string
STRINGS function, 5-15
Subroutine, 3-32

GOSuUB, 3-32

nesting, 3-34

ON-GOSUB, 8-4
Subscripted variables, 3-19

default values, 3-21
string variables, 5-3

zero elements, 3-21
Sum, logical, 2-9
SWAPS function, 8-24

Symbols, relational, 2-8
Syntax, 2-1
System functions, 8-23, 8-24

System library account, 9-3, 9-6

TAB function, 10-15
Tabs, 2-4
TAN function, 3-23

Terminal input,
see INPUT statement and INPUT
LINE statement

(Cont.)

1-2
8-24

Time-sharing system,
TIMES function, 5-14,
.TMP extension, 9-3
Trailing minus sign, 10-10
Transfer, program
conditional, 3-12
unconditional, 3-11

Transposition, matrix, 7-7
TRUE logical value, 6-4, 6-
Truth table, 2-10, 6-6

UFD (User File Directory), 9-12

Unary operators,
minus, 2-7
plus, 2-7

5

Unconditional program transfer, 3-11

UNLESS statement modifier,
UNLOCK statement, 12-14
UNTIL statement modifier,
8-20
Up-arrow (t) symbol,
Update option, 12-14
User-defined functions,
function names, 3-27
immediate mode, 4-3
integer, 6-4
multiple line,
string, 5-11
User File Directory (UFD),

2-7,

8-1

3-27,

2-8,

10-10

9-12

8-20

2-8, 8-16,

4-3

User's Guide, RSTS-11 System, 1-1

User-recoverable, errors,

VAL function, 5-14
Value, matrix function,
CON, 7-5
IDN, 7-5
ZER, 7-5
Variables, 2-6
character string,
dummy, 3-28, 8-1
ERL, 8-12
ERR, 8-6
floating point,
integer, 6-1
LINE, 4-3
logical, 6-4
numeric, 2-6
RECOUNT, 12-4
simple, 3-19
STATUS, 12-6
subscripted,
types, A-1
Virtual array files, 11-1
example, 11-17
opening, 11-4
string storage,

5-2

2-6

3-19, 3-20,

11-3

INDEX-7

8-6,

5-3,

Cc-1

7-1

INDEX (Cont.)

Virtual core, 11-1
data storage, 11-7
DIM statement, 11-2
opening file, 11-4
string storage, 11-3

WAIT statement, 8-25
WHILE statement modifier, 2-8,
8-16, 8-20

XLATE function, 12-24
XOR operator, 2-9, 3-14

ZER function, 7-5
Zones, print, 3-7

INDEX-8

BASIC-PLUS
Language Manual
DEC-11-ORBPB-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

°

c

1=

1.2

k=

12

2

o

5 Is there sufficient documentation on associated system programs
: required for use of the software described in this manual? If not,
2 what material is missing and where should it be placed?

O

o

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher~level language programmer

User with little programming experience

Student programmer

O
O
E] Occasional programmer (experienced)
O
O
O

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. []

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

: digitai equipment corporation

Printed in U.S.A.

	0000
	0001
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0011
	002
	01-00
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	04-00
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	F-01
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	replyA
	replyB
	xBack

