RSTS/E
Programming Manual

Order No. DEC-11-ORPMA-A-D

digital equipment corporation - maynard. massachusetts

First Printing, July 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance to the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
Digital.

Copyright (:) 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM

LIMITED RIGHTS LEGEND

Contract No.

Contractor or Subcontractor: Digital Equipment Corporation

All the material contained herein is considered limited rights data
under such contract.

6/76-14

CONTENTS

PREFACE

CHAPTER DISKS

SYSTEM ACCOUNTS

MFD Account [1,1] on the System Device
MFD on Non-System Disks

System Library Account [1,2]

System Account [0,1] on the System Device
Allocating Disk Storage Space

System Overlay File and DECtape Directory
System Operations File

Error Messages File

Saving Information After a Crash

System Account [0,1] on Non-System Disks

e e o o o
BWWwWwWwwwN =~
e o o s e .
G W el

PRIVILEGE

Unlimited File Access

Creation and Modification of Privileged
Programs

1.2.3 Use of Privileged Features of System
Programs

NN R e e e

N =

1.3 NON-FILE STRUCTURED DISK OPERATION

1.4 UPDATE OPTION FOR DISK FILES

SNDING DATA TO A DISK FILE
FLOPPY DISKS

1 Sector Mode

.2 Block Mode

.3 Deleted Data Marks

.7 DEFAULT BUFFER SIZES
CHAPTER 2 MAGTAPE

THE FILE STRUCTURED MAGTAPE OPEN FOR INPUT
1 Searching for a Record
2 Rewinding the Tape
3 DOS and ANSI Format Labels
4 Example of OPEN FOR INPUT Statement

THE FILE STRUCTURED MAGTAPE OPEN FOR OUTPUT
1 Searching for a Record

2 Writing a Record

.3 Extending a File

4 Rewinding the Tape

5 DOS and ANSI Format Labels

iii

o)
lg
o

[N
"

P H e
IR RN 1
NNNNNOeWW e e

o oo

@

H OB e e

=
=
o wn

[
[
]

N

I\)NNNt?)
111
WwWwN N | o

[L |

MOV
]
Noaounint s

CHAPTER

CHAPTER

NNDODNNNDNODNN
« o o ¢« o o o s o o

00 Q0 0O 00 0O GO 00 00 OO

e e o s s e

wo~JaUndawh -

[JSIN S ST S I

« o

O W YWY

. .
oW N

2.10

CONTENTS (Cont.)

Example of OPEN FOR OUTPUT Statement
THE FILE STRUCTURED MAGTAPE OPEN
THE FILE STRUCTURED MAGTAPE CLOSE
THE NON-FILE STRUCTURED MAGTAPE OPEN
THE NON-FILE STRUCTURED MAGTAPE CLOSE

THE MODE SPECIFICATION IN NON-FILE STRUCTURED
PROCESSING

THE MAGTAPE FUNCTION IN NON-FILE STRUCTURED
PROGRAMMING

Off-Line (Rewind and Off-Line) Function
WRITE End-of-File Function

Rewind Function

Skip Record Function

Backspace Function

Set Density and Parity Function

Tape Status Function

Return File Characteristics Function
Rewind on CLOSE Function

MAGTAPE ERROR HANDLING

PARITY (Bad Tape) ERROR

RECORD LENGTH ERROR

OFF-LINE ERROR

WRITE LOCK ERROR

THE KILL AND NAME AS STATEMENTS

LINE PRINTER

SPECIAL CHARACTER HANDLING

SPECIAL OPERATIONS

TERMINALS

CONDITIONAL INPUT FROM A TERMINAL

BINARY DATA OUTPUT AND INPUT

MULTIPLE TERMINAL SERVICE ON ONE I/O CHANNEL
ESCAPE SEQUENCES

Output Escape Sequences

Input Escape Sequences

VT05 CURSOR CONTROL AND SPECIAL CHARACTERS
VT50 CURSOR CONTROL AND SPECIAL CHARACTERS

PSEUDO KEYBOARD OPERATIONS

iv

2-13
2-13
2-13
2-14
2-14
2-15
2-15
2-16
2-18
2-20

2-21
2-21
2-21
2-22
2-22

CHAPTER

CHAPTER

CHAPTER

5

6

6.

6

~J

NN

NN NN
* o s e e o s

NN
« o e o .

N

.

NN SNNNNNSNSNNNNNNNNNNINN
e o e e s e & s e e e & e o o s ®

.
NN N
. .

e e e

HE e

« e

MDNONNNDNDNDNDNDNDMDNDNDNDNDNDND
e o e o e o o o * s e 4 e o e e

.

DD N

.

w N =

.

(S JC R0, RO RO NS, B0, T, S, I St St S -~ St - SN -y
. . . « o e

NN

.

v W=

.

o e

.

.

OV WN -

=10 00 ~Jo
o

Noyrde wN -

CONTENTS (Cont.)

NON-FILE STRUCTURED DECTAPE
CARD READER

ASCII MODE

PACKED HOLLERITH MODE
BINARY MODE

SETTING READ MODES

SYS SYSTEM FUNCTION CALLS AND THE PEEK
FUNCTION

GENERAL SYS SYSTEM FUNCTION CALLS

SYS System Function Formats and Codes
General SYS System Function Calls
Cancel "0 Effect on Console Terminal
Enter Tape Mode on Console Terminal
Enable Echoing on Console Terminal
Disable Echoing on Console Terminal
Enable Single Character Input Mode (ODT
Submode) on Console

Exit to Editor with No READY Message
FIP Function Call

Get Core Common String

Put Core Common String

Exit to Editor and Set Up NONAME Program

SYS SYSTEM FUNCTION CALLS TO FIP (FUNCTION
CODE 6)

Building a Parameter String
Unpacking the Returned Data
Notation and References Used in FIP Call
Descriptions

General Utility SYS Calls to FIP
File Name String Scan

Return Error Message
Assign/Reassign Device

Deassign a Device

Deassign All Devices

Zero a Device

CTRL/C Trap Enable

Privileged Utility SYS Calls
Special Shutup Logout

Date and Time Changer

Hang Up a Dataset

Broadcast to a Terminal

Force Input to a Terminal
Disable Further Logins

Enable Further Logins

Disk Pack and Terminal Status

~
I 1

1
U wwwH- -~ [ad

N NN NN
| LI |

|
(Vo lNoo BEN BEN BE e)}

NNNNNY
|

7-10
7-10
7-11

7-14
7-20
7-20
7-29
7-30
7-32
7-33
7-34
7-36
7-38
7-38
7-39
7-40
7-41
7-42
7-43
7-44
7-45

e o o »
=W N | el sl
N O

s e e s & o ° o s o o
. e o o

e o o o s o o

. o
NN N
N

. o

MR HRERHRERHEROONNNOOOAOOUTIO W

NNHHFEFFHFEPFFOOO

e o o o e

« e s e o e
« .
N

NN O NNNNNNNNNNNNNNNNNNaS
o e .
RN Y

. o o
« o
wN

P,
N T el e e el e
OO UIULEWRN
. .
0=

NN N

NN N NNNNNNNNNS
« o e .
U WwWN

¢« s o & o e o o o
NN
e o o o » e e e s o o
« o o o o o e
wN

NN N NNNSNNNN
Ui Wi

PHRHEEREEEB P
O WOV I~

CONTENTS (Cont.)

Clean Up a Disk Pack

Change Password/Quota

Kill Job

Disable Terminal

Job Scheduling SYS Calls to FIP

Priority, Run Burst and Size Maximum Changer

Set Special Run Priority
Lock/Unlock Job in Memory
Drop Temporary Privileges

Account Creation and Deletion SYS Functions

Create User Account

Delete User Account

Set Terminal Characteristics

Change File Statistics

LOGIN and LOGOUT SYS Calls

LOGIN

LOGOUT

Detach, Attach, and Reattach SYS Calls
Detach

Attach

Reattach

Send and Receive Messages

Declaring a Receiver and Receiving a
Message

Send a Message

Removing a Receiver

Poke Core

Set Logins

Accounting Information

Read or Read and Reset Accounting Data
Accounting Dump

Directory Look Up

Directory Look Up on Index

Special Magtape Directory Look Up
Disk Directory Look Up by File Name
Disk Wild Card Directory Lock Up
General Guidelines for Usage of Directory
Look Up Calls

Monitor Tables and FCB or DDB Information
Get Monitor Tables - Part I

Get Monitor Tables - Part II

Get Open Channel Statistics

Enabling and Disabling Disk Cacheing
Run-Time System Control

Name a Run-Time System

Add a Run-Time System

Remove a Run-Time System

Load a Run-Time System

Unload a Run~-Time System

vi

7-48
7-49
7-51
7-52
7-54
7-54
7-56
7-58
7-59
7-60
7-60
7-62
7-64
7-170
7-72
7-72
7-74
7-75
7-75
7-717
7-79
7-81

7-82
7-85
7-87
7-88
7-89
7-90
7-90
7-93
7-94
7-95
7-97
7-100
7-101

7-103
7-104
7-105
7-107
7-108
7-109
7-110
7-110
7-111
7-113
7-114
7-116

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

NN
Wwwww
. o e
NN

o]

o 0 00 0o
e o e
LN W -
« .
w N

A

o
.—l

.
.

.

.
NN NN NN
.
b
.

b g i B B 4
a w . [. v . .
w
s

)

CONTENTS (Cont.)

THE PEEK FUNCTION
Fixed Locations in Monitor
Useful Routines

7-117
7-118
7-118

Finding the Current Porject-Programmer Number 7-118
Determining an ATTACHED or DETACHED Condition 7-119

PROGRAMMING CONVENTIONS AND HINTS

8-1

RUNNING A PROGRAM FROM A LOGGED OUT TERMINAL 8-2

DESIGNING A PROGRAM TO RUN BY A CCL COMMAND

CHANGING LOGIN TO SET A DIFFERENT SWAP

MAXIMUM

PROGRAMMING HINTS
Storage Space Overhead
Decreasing Access Time
String Manipulation
MAGTAPE LABEL FORMATS

DOS MAGTAPE FORMAT
DOS Labels

ANSI MAGTAPE FORMAT

ANSI Labels

Volume Label

Header 1 Label (HDR1)
Header 2 Label (HDR2)

End of File 1 Label (EOF1)
End of File 2 Label (EOF2)
ZEROING MAGTAPES

CARD CODES

RADIX-50 CHARACTER SET
ASCII CHARACTER CODES
ERROR MESSAGES

USER RECOVERABLE

NON-RECOVERABLE

vii

[}
1
w

[os)
1
w

o 00 O
11
O 00

) 1 1 1
W e

wtfﬁ’wif o
HWYOOJo U

>
!

A-11

E-7

INDEX-1

PREFACL

This manual describes RSTS/E special programming technigues, many of
which are not available prior to Version 6 (RSTS/E) systems. Included
in this manual are instructions and helpful hints for programming
devices that RSTS/E supports. These technigues permit the programmer
full control over input and output operations on specific devices;
for this reason they are called device dependent operations.

System accounts and the concept of privileged users are also
discussed. Chapter 7, as it appeared originally in the RSTS/E System
Manager's Guide, discusses SYS functions, both for privileged and for
non-privileged users.

The material covered in this manual assumes familiarity with the
BASIC-PLUS Language Manual and the RSTS-11 System User's Guide, in
addition to a thorough knowledge of the BASIC-PLUS language. For this
reason, Senior Programmers and Application Programmers will be most
interested in this manual.

For information on all of the current manuals pertaining to RSTS/E
operation, consult the RSTS/E Documentation Directory.

ix

CHAPTER 1

DISKS

1.1 SYSTEM ACCOUNTS

RSTS/E systems have three system accounts which are essential to the
operation of the system. The Master File Directory (MFD) account
[1,1] is used on the system device and other disk devices 1in the
system to control access. It 1is described in Section 1.1.1. The
system library account [1,2] is used by the RSTS/E system to manage a
library of generally available and restricted use system programs and
message and control files. It is described in Section 1.1.2. System
account [0,1] contains RSTS/E Monitor files and routines which are
critical to the operation of the system. System account [0,1] is
described in Section 1.1.3.

1.1.1 MFD Account [1,1] On The System Device

Access to the RSTS/E system Iis controlled by the use of
project-programmer numbers and passwords. The system manager,
operating under his privileged account, creates a new account by using
the system program REACT. The project-programmer number and password
of the new account are given, along with other information, to allow a
user access to system facilities.

When a new account is created, the new account information is stored
on the system device under the MFD account [1,1]. The password is
stored in packed Radix-50 format. When the new user first creates a
file, an area 1is created on the system device which is related
directly to the user's account (project-programmer number). This area
is called the User File Directory or UFD. The UFD contains
information concerning the files created under that account number.

The account [1,1] contains a catalog of information of all User File
Directories on the system and is called the Master File Directory or
MFD. When a user attempts to gain access to the RSTS/E system by
giving his account and password, the system program LOGIN runs
automatically. LOGIN checks the MFD on the system device to determine
whether the account number and password given compare with one stored
in the MFD. 1If so, the user is allowed access to the system.

1-1

DISKS

Other account information is stored in the MFD for each account in the
system. This information is summarized in Table 1-1.

The account information in the MFD is accessed by various system
programs. The LOGIN program has already been mentioned. The MONEY
system program references the accumulated system accounting
information. The system manager uses the MONEY system program to
print and reset this accounting data. The disk storage information is
referenced by the LOGOUT system program. The system manager can
change the disk quota by use of the UTILTY system program.

Table 1-1
Account Information Stored in the MFD on the System Device

Type Description Explanation
Identification Project-programmer Refer to Chapter 9 of
number (account) the BASIC-PLUS Language
Manual.
Password 6 characters stored within
2 words in Radix-50
format.
Accumulated Central Processor Processor time the account
Usage Unit (CPU) time has used to date in tenths
(Run Time) of a second.
Connect time Number of minutes the user
(login time) has been connected to the

system via a terminal or
remote line.

Kilo-core-ticks Core usage factor. One
(KCT's) KCT 1is the usage of 1K
words of memory for one
tenth of a second.

Device time Number of minutes of
peripheral device time the
account has used.

Disk Storage Quota Number of 256-word blocks
the wuser 1is allowed to
retain at log out time.

DISKS

Using System Function calls, the system manager can write programs
which access the information in the MFD. See the description of the
system function calls in Chapter 7.

1.1.1.1 MFD On Non-System Disks - The system disk exists in what is
called the public structure. Additional disk devices can be added to
the public structure or can be added as private packs. Each disk that
is added to the system also contains its own MFD. The MFD of each
additional disk is created when the system manager uses the
initialization option DSKINT. The MFD of a disk contains account and
storage information for that device only.

The MFD on public disks is treated differently from the MFD on private
disks. The RSTS/E system allocates space for a user's file on the
disk in the public structure that has the most free space. If the
user's account is not in the MFD of the disk with the most free space,
his account number is added dynamically into the MFD of that disk and
a UFD 1is created for the user on that disk. If a user desires to
create a file on a private pack he cannot do so if his account number
does not already exist in the MFD of that device. The system manager
or a privileged user grants access to a private disk by entering the
account information on the desired disk with the REACT system program.

The MFD on a disk device contains that disk's pack label. The pack
label information consists of pack cluster size, pack status (private
or public), and pack identification (id). The pack id 1is the
6-character name 1in Radix-50 format given at the time the disk was
initialized via the initialization option DSKINT. The pack id is
utilized whenever the disk is logically mounted via the system program
UTILTY or via INIT. (A distinction must be made between physical
mounting and logical mounting. The disk is mounted physically by
making the hardware ready to use the disk. The disk must be mounted
logically by the system program UTILTY or UMCUNT or from commands in
the START.CTL or CRASH.CTL files by the INIT system program. The disk
must also be logically dismounted before it is physically dismounted
to avoid corruption of the file structures.)

1.1.2 System Library Account [1,2]

The system library account [1,2] 1is created on the system device
during the DSKINT operation of building the system disk. During the
library build procedures, the system manager creates the contents of
the system library account [1,2]. This section describes briefly the
contents of account [1,2]. The entire content of the account is
tabulated in the RSTS/E System Manager's Guide.

The system library catalogs system programs which are available to
general wusers and to privileged wusers. It also contains text and
control files used by system programs.

For operational purposes, the system library is accessed automatically
during normal system start-up. As a result of specifying the START

1-3

DISKS

option when RSTS/E is bootstrapped into memory, the console keyboard
is logged 1in automatically under account [(1,2]. At this time, the
commands in the file START.CTL or in another command file, stored
under account [1,2], are executed by the INIT system program, which is
also stored under account [1,2]. Unless the system manager desires to
modify or add to the contents of the system library after the system
disk has been built, he should not log into the system under account
[1,2].

For automatic restart purposes, the system library file CRASH.CTL is
used by the INIT system program when recovering from system crashes.
When automatic restart mode is entered, the RSTS/E system performs
actions similar to those described above for normal start-up, except
that the commands in the CRASH.CTL file are executed.

Two files, HELP.TXT and NOTICE.TXT, are provided to supply information
to the user. The HELP.TXT file is printed automatically by LOGIN if a
user types HELP at a logged-out terminal. The NOTICE.TXT file is
printed automatically by LOGIN after a user has typed a valid account
number and password during the log-in procedure. The NOTICE.TXT file
provides a means by which the system manager can communicate
up-to-date installation information to users. Another system 1library
information file, PIP.TXT, is printed out when the user types /HELP
while running the related system program, PIP.

The file GRIPE.TXT is created dynamically when a user runs the GRIPE
system program. The system manager has read and delete access to the
GRIPE.TXT file by means of the GRIPE system program.

The file QUEUE.SYS is the system queue file and contains user requests
created by the QUE program. The system queue manager program QUEMAN
creates the file and initializes it. All spooling programs running on
the system receive their requests from the QUEUE.SYS file through the
QUEMAN program.

The ERRLOG.FIL file contains a history of hardware errors logged on
the RSTS/E system. The ERRCPY program transfers the error data from
monitor storage to the file ERRLOG.FIL. The system manager gains
information on its contents and deletes its contents by running the
ERRDIS program.

1.1.3 System Account [0,1] on the System Device

The system account [0,1], like the system library account, is created
on the system device during the DSKINT operation of building the
system disk. Account [0,1] has a password identical to the pack id,
and it contains name and retrieval information for system files.
Account [0,1] is used solely by the RSTS/E Monitor to execute various
operational and control actions. In this respect, it is a direct
access account for use by the RSTS/E Monitor, and no user need be
concerned with referencing its contents. This section describes the
contents of the account, for a better understanding of the internal
operations of the system.

1-4

DISKS

The system manager creates and organizes the files stored under
account [0,1] when he rebuilds the system disk using the REFRESH
option. The possible contents of account [0,1] are described in the
following paragraphs.

1.1.3.1 Allocating Disk Storage Space - the file SATT.SYS is the
mechanism by which RSTS/E controls the allocation and deallocation of
storage space for the disk. The file maps the entire space on the
disk in a bit map called a SAT (Storage Allocation Table). Each bit
in a SAT represents either allocated or unallocated space. The system
sets a bit in the SAT to 1 when that space is allocated for any
purpose.

The system allocates storage space in terms of clusters. Each bit in
the OSAT represents one cluster of disk space. A cluster is a fixed
number of contiguous 256-word blocks of storage on the disk. The
cluster size, or cluster factor, defines how many contiguous 256-word
blocks are contained in the cluster.

Cluster sizes in RSTS/E are defined for disks, directories, and files.
Table 1-2 presents the types of clusters and related information.

Table 1-2
Valid Cluster Size Ranges

Minimum Max imum
Cluster Size Size Size When Defined
Pack (for non- 1 (RF11/RK05) 16(10) At initialization time
system disk, 2(RP02/RP03) via DSKINT option
public and 4 (RP04) (stored in MFD)
private)
Directory (both Pack 16(10) At creation of the
for MFD and Cluster directory via either
UFD) Size the DSKINT
initialization option,
REACT, or SYS system
function.
File Pack 256 (10) At creation of the file
Cluster via either an OPEN or
Size OPEN FOR OUTPUT.

DISKS

The system manager specifies the cluster size of the disk when he
initializes it and gives a value in response to the PACK CLUSTER SIZE
question. The pack cluster size defines the number of contiguous
256-word blocks a cluster comprises and, therefore, the extent of
contiguous space represented by each bit in the SAT. A pack cluster
size of 1 means that one 256-word block of storage is allocated for
each bit set to 1. A pack cluster size of 2 means that two contiguous
256-word blocks are allocated for each bit set to 1. Allowable pack
cluster sizes for an RF or an RK type disk are 1, 2, 4, 8, or 16; for
an RP02/RP03 type disk, 2, 4, 8, or 16; and for an RP04 type disk, 4,
8 or 16.

The pack cluster size affects the efficiency of storage space
allocation. A large size improves access time to system program and
user files, but may waste disk space. For example, 1if the pack
cluster size is 16, a one block file on the disk has allocated one
cluster of 16 contiguous blocks. Fifteen blocks are wasted. A 15
block file also requires one cluster but only one block is wasted.
Thus, the system manager must choose the pack cluster size which best
fits the type of processing and the access requirements of the local
installation.

A directory cluster size is defined for both a master file directory
(MFD) and user file directory (UFD) and its minimum value is the pack
cluster size. The system manager specifies the MFD cluster size when
he initializes the disk; he specifies the UFD cluster size when he
creates an account. A directory cluster size is equal to the pack
cluster size or a power of 2 to a maximum of 16. Thus, for a pack
cluster size of 2, the directory cluster size on that device can be 2,
4, 8, or 16. For a pack cluster size of 8, a directory cluster size
on that device can be 8 or 16.

The directory cluster size limits the size to which a directory can
expand. A “directory, whether an MFD or a UFD, expands to catalog
accounts or files but can occupy a maximum of seven clusters. For an
MFD on the system disk, the cluster size determines how many accounts
the system can handle. The following formula gives the number of user
accounts, A, for each allowable MFD cluster size, MC.

(217 x MC) -1

= A
2

The minimum number of accounts (A) is 108 for an MFD cluster size of 1
and the maximum is 1735 accounts for an MFD cluster size of 16.

The UFD cluster size determines how many files a user can create under
one account. The following formula gives the number of user files,
UF, for each allowable UFD cluster size, UC. (The formula assumes
that all files are a minimum size between 1 and 7 clusters.)

(217 x uC) -1

= UF
3

DISKS

The minimum number of user files (UF) is 72 for a UFD cluster size of
1 and the maximum UF is 1157 for a UFD cluster size of 16.

1.1.3.2 System Overlay File and DECtape Directory - The files OVR.SYS
and BUFF.SYS are crucial to RSTS/E system response time. Optimum
efficiency is gained when these files reside on a fast access, fixed
head disk. If the system disk is not a fixed head disk, the system
manager can use the REFRESH option and cause a copy of the
non-resident (overlay) code to be created, placed in the file OVR.SYS,
and stored on the fast access disk, if available. On systems with
only a moving head disk, it may be more efficient to create the file
OVR.SYS and optimally position it.

DECtape processing is expedited by the use of BUFF.SYS. When a file
on DECtape 1is opened, the directory of the DECtape is written to the
file BUFF.SYS. The BUFF.SYS file requires three 256-word blocks for
each DECtape drive on the system. Any updates to the DECtape
directory which arise during processing cause the system to manipulate
the copy 1in BUFF.SYS. This technique eliminates the need for
continuous winding and rewinding of DECtape. The copy of the DECtape
directory 1in BUFF.SYS is read back to the DECtape when the last file
open on the DECtape unit is closed or any output file is closed. By
use of the REFRESH option, the BUFF.SYS file can be placed on a fast
access type disk or can be optimally positioned on the moving head
system device.

1.1.3.3 System Operations File - The RSTS/E Core Image Library
resides in the file RSTS.CIL on the system disk. This file contains
all executable code for system operations, resident and non-resident,
and optionally contains the stand-alone program ROLLIN.

1.1.3.4 Error Messages File - A copy of the BASIC-PLUS error messages
from the CIL (RSTS.CIL) can be kept in the file ERR.SYS, which can be
accessed and medified.

1.1.3.5 Saving Information After a Crash - The CRASH.SYS file can be
created to retain a copy of valuable contents of memory at the time of
a system crash. '

1.1.4 System Account [0,1] on Non-System Disks

The system account [0,1] on non-system disks contains only a BADB.SYS
file and a SATT.SYS file. The system account on non-system disks is
created when the user initializes the disk.

DISKS
1.2 PRIVILEGE

Certain accounts in the RSTS/E system have special capabilities
outlined in this section. An account having these special
capabilities is called a privileged account. (In the same way, when a
user 1is assigned a privileged account, he is a privileged user.) The
system manager, operating under his own privileged account, designates
other users as privileged by assigning them an account with a project
number 1 when he creates it with REACT. The system library account
[(1,2], discussed in a preceding section of this section of his
chapter, is an example of a privileged account. The available
privileged account numbers are [1,3] through [1,254]. Privileged
accounts have the following special capabilities:

a. Unlimited file access. See Section 1.2.1.

b. Creation and modification of privileged programs. See
Section 1.2.2.

c. Use of privileged aspects of system programs. See Section
1.2.3.

d. Use of privileged SYS functions and the PEEK function. See
Chapter 7.

The above listed capabilities are described in the remaining sections
of this chapter and in Chapter 7. It must be emphasized that there is
no fail safe and that no error messages are generated if the use of
such special <capabilities is to result in destruction of the system.
For this reason, it 1is suggested that the system manager assign
privileged accounts sparingly. It is recommended that the system
manager create additional non-privileged accounts for himself and
perform most of his functions under them. The system manager should
use a privileged account only when necessary.

1.2.1 Unlimited File Access

No file in the RSTS/E system can be protected against the wuser of a
privileged account. A privileged user can create and delete files
under any account number and can access files on LOCKED disks. Under
such circumstances, no protection violation occurs.

1.2.2 Creation And Modification Of Privileged Programs

A program is privileged when it has a protection code of <192> or
greater. Protection code <192> means that the privileged protection
<128> and the compiled file protection <64> are set. Both protection
code values must be set for a program to have privileged status. The
system manager or privileged user designates a program as privileged
by assigning to 1its compiled form a protection code of <192> or
greater with the NAME-AS command. For example:

NAME "FILE.BAC" AS "FILE.BAC <232>"

1-8

DISKS

designates the <compiled program FILE as privileged with write
protection against the owner's group and all others not in the owner's
group. Refer to Chapter 9 of the BASIC-PLUS Language Manual for the
definition ¢of protection codes.

If a program is designated privileged, any user can run the program
with privileged program status (provided he has READ access to the
file). The privileged program status exists only for the duration of
the program run. Privileged program status means that system
operations normally reserved to a user of a privileged account can be
executed while running under a non-privileged account. If the user
running a privileged program interrupts execution of the program by
typing CTRL/C, the program loses its privileged status.

The ability to designate a program as privileged allows the system
manager to extend use of privileged functions to non-privileged users.
For example, the program TTYSET allows a user to change

characteristics of his terminal. Such an action is a privileged
system function executable only by owners of privileged accounts.
With the privileged program status, execution of the function by the
owner of a non-privileged account does not cause the normal program
trap.

The same TTYSET program additionally allows a privileged user to
change characteristics of a terminal other than his own. A check is
built into the program to ensure that a user attempting to change the
characteristics of a terminal other than his own 1is indeed a
privileged user. As a result, the execution of privileged functions
is made available to the non-privileged wuser but some privileged
features are restricted. The system manager likewise can control the
use of privileged operations.

1.2.3 Use Of Privileged Features Of System Programs

The owner of a privileged account can execute the privileged features
of system programs. Since the list of privileged features is lengthy,
an entire chapter in the RSTS/E System Manager's Guide is devoted to
explaining them. Certain programs, such as TTYSET, SYSTAT, and MONEY,
are privileged but contain features helpful to the general user.
These programs are therefore described in the RSTS-11 System User's

Guide for the non-privileged user.

Two of the programs, TTYSET and MONEY, have privileged features about
which the non-privileged wuser 1is not informed in the User's Guide.
TTYSET is discussed in Chapter 4 of the RSTS/E System Manager's Guide.
MONEY 1is discussed in Chapter 7 of this manual. Another program,
SYSTAT, is discussed in Chapter 4 of the Manager's Guide and Chapter 7
of this manual, although it contains few explicit privileged features.

1-9

DISKS
1.3 NON-FILE STRUCTURED DISK OPERATION

In non-file structured processing of disks, the wuser program can
access specific physical blocks on the disk. The unit on which a disk
is being processed in non-file structured mode may or may not be
logically mounted. To 1initiate non-file structured processing, the
program gives only a device designator in the OPEN statement. Of the
three conventional forms of the OPEN statement, OPEN FOR INPUT, OPEN,
and OPEN FOR OUTPUT, only two are valid. The following two sample
statements,

100 OPEN "DK1l:" FOR INPUT AS FILE 1%
and
100 OPEN "DK1:" AS FILE 1%

are equivalent statements because both reading and writing of physical
blocks on the device are permitted. A third sample statement:

100 OPEN "DK1:" FOR OUTPUT AS FILE 3%
is invalid since it attempts to create a file.

Subsequent to opening a disk device for non-file structured
processing, GET and PUT statements can retrieve and write specific
physical blocks on the device by means of the RECORD option. The
record number 1is interpreted as a device cluster number. The device
cluster size is the same as the minimum pack cluster size for that
device type. The default buffer size 1is the device cluster size
multiplied by 512 bytes. The following example reads the 1last 2
blocks of an RPO03.

100 OPEN "DPl:" AS FILE 1%:GET #1%, RECORD 30000% + 9999%

Device clusters are numbered starting at 0. Device cluster 0 can be
accessed only immediately following an OPEN statement. The GET or PUT
statement used to access device cluster 0 must either include RECORD 0
or omit the RECORD option. Once device cluster 0 has been accessed,
omitting the RECORD option or specifying RECORD 0 in a GET or PUT
statement accesses the next sequential device cluster. The only way
to access device cluster 0 again is to close the device and reopen it
for non-file structured access.

NOTE

In file structured disk operations, file
blocks are numbered form 1 to the last
block of the file. A GET or PUT
statement that omits the RECORD option
or specifies RECORD 0 accesses the next
sequential block in the file, since
RECORD 0 of a file does not exist.

1-10

DISKS

A user can access a disk in non-file structured mode without logically
mounting it. The disk can be accessed by a user (either privileged or
non-privileged) for reading and writing, once the disk is physically
inserted in the disk drive.

A non-privileged user cannot access a disk in non-file structured mode
if some other wuser is accessing it. Attemping to access the disk
under these condition results in a PROTECTION VIOLATION (ERR = 10)
error for a non-privileged user. A privileged user can read the disk
in non-file structured mode, regardless of how many users are
accessing the disk; but the privileged user cannot write on the disk
in non-file structured mode if it is being accessed by another user.

Once the disk is logically mounted, a privileged user is granted only
read privileges in non-file structured mode. A non-privileged user is
granted neither write nor read access in non-file structured mode,
when the disk is logically mounted.

1.4 UPDATE OPTION FOR DISK FILES

In the description of disk files up to this point, the concept of
simultaneous user access to a single file has been largely ignored.
The system permits several users to read from a single file
simultaneously, but a problem arises when multiple users attempt to
write onto a single file simultaneously. Two users could conceivably
try to write the same record of the file, resulting in a loss of data.
To avoid this conflict, the system normally permits only one user at a
time to have write privileges on any given file. Thus, a user may
fail to obtain write privileges even if the file is not protected
against writing. If this occurs the user must close the file and
reopen it at a later time, after the other user has finished with the
file and closed it.

In certain applications (for example, sales order-entry applications)
it might be normal for multiple users to be updating a single master
file. In such cases it is not satisfactory to constantly close and
reopen the file to obtain write privileges; this is a time~consuming
operation. For this reason a special UPDATE option is available that
permits multiple users to have write access to a file while guarding
against simultaneous writing of a single record.

To indicate that a file 1is being opened for UPDATE, the MODE 1%
specification is used when the file is opened. For example:

100 OPEN "MASTER" AS FILE 1%, MODE 1%

when used with a disk file indicates that the file is opened for
UPDATE (1) .

In this case the program is granted write privileges

(1)The RECORDSIZE option may not be used on files that are opened for
UPDATE because only one block (512 bytes) can be locked on a given
channel at a time by a user.

1-11

DISKS

unless such access is specifically prohibited by the protection code
of the file.

A file cannot be simultaneously open for UPDATE by one user and open
in normal (non-UPDATE) mode by another user. Attempting to open a
file for UPDATE if it is already open in normal mode, or attempting to
open a file in normal mode if it is already open for UPDATE, results
in a PROTECTION VIOLATION error.

Once a file has been opened for UPDATE, any read operation of a
specific record puts that block in a special "locked" state. This
means that no other user is permitted to read or write that record
until it 1is released (or unlocked) by the program that locked it.
Attempting to read or write a record that another user has locked
results in a DISK BLOCK IS INTERLOCKED (ERR = 19) error which can be
trapped with an ON ERROR GOTO command. There are five ways for a
program to unlock the record:

1. The next write operation on the file unlocks the record.
2. Executing an UNLOCK statement. This statement has the form:
line number UNLOCK # <expr>

where <expr> is the internal channel number of the file that
is opened for UPDATE.

3. Any error encountered while accessing the file unlocks the
RECORD.

4. Reading another record unlocks the currently locked record.
Any read operation locks the record just retrieved.

5. Executing a CLOSE statement on the file unlocks the record.

DISKS

To illustrate UPDATE, consider a simple 1inventory application where
operators on several terminals can access one file to enter a part
number and order quantities. Assume that the file 1is sequenced so
that each part number actually corresponds to the record number that
contains information about the part, and that the first four
characters of the 512-byte record contain the gquantity available as a
(2-word) floating-point number. For this example, the remaining 508
characters are ignored. A program to update the quantity available is
as follows:

100 ON ERROR GOTO 1000 {FIND OUT ABOUT ERRORS
200 OPEN "INVENT.ORY" AS FILE 1, MODE 1 {OPEN FILE IN UPDATE MODE
300 FIELD #1, 4 AS CS$ IC$ IS QTY IN FILE
400 INPUT "PART NUMBER";N;"QUANTITY";Q IGET PART # AND QTY
500 GET #1, RECORD N ! READ APPROPRIATE RECORD
600 X=CVTSF(C$)-Q ICOMPUTE QTY REMAINING
700 IF X>=0 THEN 800 { ENOUGH ON HAND?
710 UNLOCK #1 !PERMIT OTHER ACCESSES
720 PRINT "ONLY" CVTS$F(CS$) "ITEMS LEFT" ! REPORT STOCK LEVEL
730 GOTO 400 {REVISE ORDER?
800 LSET CS$=CVTFS$ (X) ISTORE NEW QTY ON HAND
850 PUT #1, RECORD N !REWRITE INTO FILE
900 GOTO 400 !NEXT TRANSACTION
1000 IF ERR <>19 THEN ON ERROR GOTO 0 ! IGNORE NON-INTERLOCK

' ERRORS
1100 PRINT "WAITING" !LET HIM KNOW WE'RE HERE
1200 SLEEP 5 {WAIT FOR CURRENT ACCESS
1300 RESUME 500 ! TRY AGAIN
1400 END

A privileged user can write into a UFD/MFD only by using MODE 16384%
in the OPEN statement. For example,

OPEN "DK1:[5,10]" AS FILE 2%, MODE 16384%

allows a privileged user to read and write into the UFD of account
[5,10].

Specifying MODE 5% (1%+4%) in an OPEN statement reguires a record to
be already 1locked (via a previous GET statement) for a PUT statement
to be executed. If the record is not locked, attempting to execute
PUT results in a PROTECTION VIOLATION (ERR = 10) error.

1.5 APPENDING DATA TO A DISK FILE

To write data to a new block following the current end of file in a
disk file, specify the MODE 2% option in the OPEN statement. Mode 2%
should be used only with Record I/0 files. For example,

100 OPEN "DATA" AS FILE 1%, MODE 2%

The system opens the file DATA under the current account on the system
disk. The next output operation creates a new block and appends it to
those currently allocated to the file. Any fill characters in the
previous last block of the file remain when the system appends the new
last block. Do not use the OPEN FOR OUTPUT form of the OPEN
statement, as it deletes the existing file.

1-13

DISKS
1.6 FLOPPY DISKS

The RX11/RX01 Floppy Disk can be used only as a non-file structured
device. The device name for the floppy disk is DX. Unit numbers for
the floppy disk drive start at 0. The current floppy disk
implementation allows only a single .BAS file to be stored on floppy
disk unit 1, for example, with the SAVE command:

SAVE DX1:

It can be read from the disk or run by the following respective
commands:

OLD DX1l:
and
RUN DX1:
A floppy disk is divided into 77 tracks (numbered 0 through 76), each
of which consists of 26 sectors (numbered 1 through 26).
Consequently, there are 2002 (77 x 26) 128-byte records (numbered 0
through 2001) on each disk.

A floppy disk can be opened and accessed in either of two modes:
sector mode or block mode.

1.6.1 Sector Mode

In sector mode the buffer size is 128 bytes. Open the floppy disk on
unit 3 in sector mode with the following statement:

OPEN "DX3:" AS FILE 1%, MODE 16384%

When the GET and PUT statements are used, track and sector numbers can
be calculated once the RECORD number is known. If the desired record
number is specified as N (any number from 0 through 2001), the track
and sector accessed can be determined as follows:

TRACK = INT (N/26)

SECTOR = N - INT(N/26)%*26 + 1
A GET statement reads a 128-byte record from the disk. The RECORD
option, if present, defines a specific record on the disk. If the
RECORD option is omitted or RECORD 0% is included, the next sequential
record is read.

100 GET #1%, RECORD N%
In the above statement, N% is the record number and can be any number

from 1 through 2001. (Record 0 can be accessed only by the first GET
statement after the file has been opened.)

1-14

DISKS
If -32768% (formed by 32767% + 1%) is included in the RECORD option
(e.g., RECORD N%-32767%-1%), sectors are interleaved according to the
algorithm discussed in Section 1.6.2.
A PUT statement writes a 128-byte record on the disk.

200 PUT #1%, RECORD N%, COUNT C%

In the above statement, N% is the record number. The RECORD option
can also include -32768% for interleaving (see Section 1.6.2) and

16384% to write a Deleted Data Mark with each of the records (see
Section 1.6.3). C% must be a multiple of 128.

1.6.2 Block Mode

In block mode the buffer size 1is 512 bytes, equivalent to four
128-byte records. The four sectors are interleaved according to the
following algorithm where N is the value specified in RECORD:

TEMP1

INT(N/26)

TEMP2

N - INT(N/26)*26

TEMP2 = TEMP2 * 2

TEMP2 = TEMP2+1 IF TEMP2 >=26
TEMP2 = TEMP2 + 6*TEMP1
TRACK = TEMP1 + 1

SECTOR = TEMP2 - INT(TEMP2/26)*26 + 1

The above interleaving algorithm is standard for other PDP-11
operating systems for the floppy disk (e.g., RSX-11M, RT11l). Track 0
is unavailable in order to reserve its use for IBM-compatible labels.

The statement shown below opens the floppy disk on wunit 3 in block
mode on I/0 channel 1.

OPEN "DX3:" AS FILE 1%
A GET statement reads a 512-byte block from the disk. The RECORD
option, if present, defines a specified sector starting point for the

read. If the RECORD option is omitted or RECORD 0% is included, the
next segquential block is read.

1-15

DISKS
100 GET #1%, RECORD N#%

In the above statement, N% is the number of the sector at which the
block begins. It can be any number from 1 through 493. (The first
block on the disk can be accessed only by the £first GET statement
after the device is opened.)

A PUT statement writes a 512-byte block on the disk.
200 PUT #1%, RECORD N%, COUNT C%

In the above statement, N% is the number of the sector at which the
block begins. It can also include 16384% to write a Deleted Data Mark
with each of the sectors (see Section 1.6.3). C% must be a multiple
of 128.

Block mode operations can be performed in sector mode by opening the
disk with this statement:

OPEN "DX3:" AS FILE 1%, RECORDSIZE 512%, MODE 16384%
and using the GET (or PUT) statement as follows:
GET #1%, RECORD N%*4% + 32767% + 1%

In the above statement, 32767% + 1% specifies sector interleaving and
N$*4% defines 512-byte blocks at 4-sector intervals.

1.6.3 Deleted Data Marks

Each sector of a floppy disk contains a bit called the Deleted Data
Mark, in addition to its 128 bytes of data. When an INPUT or GET
operation from the disk encounters a Deleted Data Mark, the DATA
FORMAT ERROR (ERR = 50) occurs.

In the case of a GET operation, the contents of the buffer are valid
even if this error occurs. So it is possible to examine the contents
of the record containing the Deleted Data Mark. When the recordsize
specified 1is larger than 128 bytes (e.g., block mode operation), the
last 128 bytes read into the buffer are the data that had the Deleted
Data Mark. The RECOUNT variable reflects the amount of data read up
to and including this mark.

1.7 DEFAULT BUFFER SIZES

The devices shown below have

DISKS

the following default characteristics:

Device Device Default Buffer Max imum
Clustersize | Size (non-file Record No.

structured) in

Bytes
DFO: 1 512 RECORD (#platters*1024)-1
DKO: - DK7: 1 512 RECORD 4799
DPO0: - DP7: 2 1024 RECORD 39999
DBO: - DB7: 4 2048 RECORD 41799
DX0: - DX7: 1 128 RECORD 2001

CHAPTER 2

MAGTAPE

Magtape I/0 is processed under RSTS-11 in one of twe forms: file
structured magtape and non-file structured magtape. 1In addition to
this distinction, RSTS/E supports magtape files both in DOS-11 and in
ANSI formats. (See Appendix A for detailed information on DOS vs.
ANSI magtape file labels.)

NOTE

For accurate results, all files stored
on a given magtape should be written in
the same format (DOS-11 or ANSI).
Mixing file types on one tape can result
in illogical interpretations.

A user program controls file structured magtape operations by the MODE
specification in the OPEN statement. MODE determines how the system
searches for a file with each of the three forms of the OPEN statement
described in Section 9.2 of the BASIC-PLUS Language Manual. It also
controls the system action when the file is subsequently closed.

The following sections describe magtape operations in some detail.
Sections 2.1 through 2.3 describe the use of MODE with each of the
forms of the OPEN statement. Section 2.4 describes magtape operation
on a CLOSE statement. The remainder of this chapter discusses
non-file structured magtape operations, the MAGTAPE function, and

error handling techniques.

2.1 THE FILE STRUCTURED MAGTAPE OPEN FOR INPUT

Once a filename is specified in the OPEN statement, that magtape file
is opened for file structured processing. For example:

100 OPEN "MTO0:ABC" FOR INPUT AS FILE N%, MODE M$%

The OPEN FOR INPUT statement searches for a specified file on a
designated magtape unit. A BASIC-PLUS program executes the statement
so that it can subsequently perform input from the file. (Unlike disk
operation, OPEN FOR INPUT on magtape permits read access only.)

2-1

MAGTAPE

In the above example, the system associates magtape unit 0 with the
channel designated by N% and searches for file ABC under the current
account according to the value of M% in the MODE specification.

The meanings shown below can be attached to MODE values used 1in an
OPEN FOR INPUT statement. The MODE value can be the sum of any
combination of these single values, as long as they are not mutually
exclusive.

MODE Meaning
0% Read record at current tape position.
2% Do not rewind tape when searching for specified file.
32% Rewind tape before searching for specified file.
64% Rewind tape upon executing a CLOSE.

16384% Search for a DOS formatted label.

24576% Search for an ANSI formatted label.

If the file is found, it 1is open for read access only. A GET

statement subsequently executed on channel N% makes a block of the
file available to the program in the channel's buffer. Since the file
is open solely for input, a PUT statement subsequently executed on the
channel generates the PROTECTION VIOLATION error (ERR = 10). If the
system detects a logical end of tape before finding a file, the CAN'T
FIND FILE OR ACCOUNT error (ERR = 5) occurs.

To open a file stored on the magtape under an account other than the
current account, simply supply the proper project-programmer number in
the OPEN statement. Since the system does not check protection codes
for files on magtape, any user can access a magtape file.

2.1.1 Searching For A Record

Omitting the MODE specification or using a MODE 0% specification reads
the record at the current position of the tape. If the system finds a
label record and its file name and account match those of the file
specified in the OPEN statement, the system generates the NAME OR
ACCOUNT NOW EXISTS error (ERR = 16). No match causes the system to
rewind the tape and check successive label records until the record is
found or the logical end of tape is detected. The system does not
rewind the tape when the program executes a CLOSE statement on channel
N%.

2.1.2 Rewinding The Tape

As mentioned before, MODE 0% reads the tape from its current position.
If the filename specified 1in the OPEN statement does not match the
record label, the system automatically rewinds the tape to the first
label record and begins reading labels file by file.

To override this automatic rewind feature, include the MODE value 2%
in the OPEN statement. In this case, the system reads the tape from
its current position and, if no match occurs, continues reading label
records from that position forward until either the file is found or
until the logical end of tape is detected. The system normally does
not rewind the tape when it performs a CLOSE operation.

MAGTAPE

MODE 32% rewinds the tape to the first label record before reading any
label. Once again, no match causes the system to check successive
label records until the file is found or until the logical end of tape
is detected. The system does not rewind the tape when it performs the
CLOSE operation on channel N%. Finally, 1including MODE value 64%
rewinds the tape when a CLOSE statement is executed on channel N%.

2.1.3 DOS and ANSI Format Labels

Including MODE 16384% in the OPEN FOR INPUT statement searches for the
magtape file whose filename is specified. 1In addition, the file must
be written in DOS format (i.e., preceded by a DOS label) for the
search to be considered successful.

When the user omits the MODE value 16384%, the system assumes record
labels on the tape, either DOS or ANSI, are in the default format
specified by the system manager when he starts time-sharing
operations. The default format can also be defined with an ASSIGN
statement.

Including MODE 24576% in the OPEN FOR INPUT statement searches for the
magtape file whose filename is specified. 1In this case, the file must
be written in ANSI format (i.e., preceded by an ANSI 1label) for the
search to be considered successful.

The system reads the tape at its current position. If the file is not
found, it rewinds the tape and reads label by label until it finds the
correct file. If the logical end of tape is detected, the CAN'T FIND
FILE OR ACCOUNT error (ERR = 5) occurs.

Once again, omitting the MODE value 24576% in the OPEN FOR INPUT
statement assumes record labels are in the format originally specified
by the system manager.

2.1.4 Example of OPEN FOR INPUT Statement

The values for MODE discussed above can be combined in any combination
as long as they are not mutually exclusive. (For example, MODE 16384%
is incompatible with MODE 24576%, so MODE 16384%+24576% causes
illogical results.)

Consider the following line:
10 OPEN "MT1:MARKIE" FOR INPUT AS FILE 3%, MODE 24772%

This line opens the file MARKIE on magtape unit 1 and associate it
with channel 3%. MODE 24772% 1is actually the sum of MODE
32% + 64% + 24576%.

When the above line is executed, the system rewinds the tape to the
first record 1label (MODE 32%) and begins to read successive record
labels until the file is found or the logical end of tape is reached.
The search 1is successful only if the system finds the file MARKIE,
written in ANSI format (MODE 24576%).

MAGTAPE

When the search is successful, the file MARKIE is available for input,
via GET statements. Remember, since the file is open for input only,
attempting to execute PUT statements results in a PROTECTION VIOLATION
error.

A subsequent CLOSE statement rewinds the tape (MODE 64%).

2.2 THE FILE STRUCTURED MAGTAPE OPEN FOR OUTPUT

The OPEN FOR OUTPUT statement searches for a specified file on a
designated magtape unit. A BASIC~PLUS program executes the statement
so that it can subsequently perform output to the file. For example:

10 OPEN "MTO0:ABC" FOR OUTPUT AS FILE N%, MODE M%

The system associates magtape unit 0 with the internal channel
designated by N% and searches for the file ABC on the current account
according to the value M% in the MODE specification.

If the file is not found, the system writes a magtape label record for
the file at the 1logical end of tape and leaves the unit open with
write access only. A PUT statement subsequently executed on channel
N% writes the channel's buffer to the magtape. Since the file is open
solely for output, a GET statement executed on channel N% generates
the PROTECTION VIOLATION error (ERR = 10).

The search is successful when the specified file 1is located. The
value of M% in the MODE specification determines how the system
searches for the file and acts upon the file when it 1is found. The
following meanings can be attached to the MODE values used in an OPEN
FOR OUTPUT statement. The MODE value used can be the sum of " any
combination of these single values, as long as they are not mutually
exclusive.

MODE Meaning
0% Read record at current tape position.
2% Do not rewind tape when system searches for the

magtape file.

16% Write over existing file. (Destroy any subseguent
files currently on the tape.)
32% Rewind tape before searching for the magtape file.
64% Rewind tape upon executing the CLOSE statement.

128% Open for append.

512% Write new file label group without searching.
16384% Search for a DOS formatted label.
24576% Search for an ANSI formatted label.

MAGTAPE
2.2.1 Searching for a Record

Omitting the MODE specification or using a MODE 0% specification reads
the tape at its current position. If the system finds a label record
and its file name and account match those of the file specified in the
OPEN statement, the system generates the NAME OR ACCOUNT NOW EXISTS
error (ERR = 16). No match causes the system to rewind the tape and
to check successive magtape label records until either a match is made
or until the logical end of tape is detected. If the system detects
the logical end of tape, the search is unsuccessful. As a result, the
system backspaces over the logical end of tape, writes a label record
for the file, and allows write access to the file. The system does
not rewind the tape when the program executes a CLOSE statement on
channel N%.

2.2.2 Writing A Record

As mentioned before, a search is successful when the system finds the
specified file on the magtape. The NAME OR ACCOUNT NOW EXISTS error
occurs when this happens. This is a precaution to prevent the user
from writing a file at this point. (Doing so will write over the
current file and erase all subsequent files on the tape.) A value of
16% included in the MODE specification suppresses this error message
and causes the system to write over an existing file on magtape.

NOTE

MODE 16% causes any files following the
overwritten file to be lost.

When 16% appears alone in the MODE specification, the system initially
reads the magtape at 1its current position. If the system finds a
label record and the file name in the label record matches the file
name in the OPEN FOR OUTPUT statement, it backspaces over the label
record, writes a new label record over the existing label and allows
the user program write access to the file. If the logical end of tape
is at the current position, the system backspaces one record and
writes a new label record and allows write access to the file. No
match causes the system to rewind the tape and to check label records
until either the file is located or until the logical end of tape is
detected. Detecting the logical end of tape before locating the file
causes the system to backspace one record and write a tape label for
the file and to allow the user write access to the file.

A CLOSE statement for a magtape open with MODE 16% writes trailing EOF
records, backspaces two records, but does not rewind the tape.

When 512% is included in the value for the MODE option, the system
writes a label record at the current tape position. No label record
reading occurs. The system simply writes a new label record, erasing
all subsequent files on the tape. Only the value 32%, which causes
the tape to rewind (see Section 2.2.4), takes precedence over 512%.
Therefore, when 512% 1is used in conjunction with any combination of
values, not including 32%, the system writes a record 1label at the
current tape position.

NOTE

Any MODE value which includes 512%
causes files following an overwritten
file to be lost. The overwritten file
is always the one at which the tape is
currently positioned except when 32% is
also included in the MODE value.

The FILESIZE and CLUSTERSIZE options have effect only when the file
specified in the OPEN FOR OUTPUT statement is in ANSI format. The
general form of this statement with options is:

OPEN "MTO0:ABC" FOR OUTPUT AS FILE N%, FILESIZE P%,
CLUSTERSIZE Q%, MODE M%

The system associates magtape unit 0 with the internal channel
designated by N%. The value P% in the FILESIZE option designates the
block size and the value Q% in the CLUSTERSIZE option designates the
record size, format and file characteristics. See Section 2.8.8 for
explanations of format and file characteristics.

2.2.3 Extending A File

When 128% is included in the value for the MODE option, the system
attempts to open an existing file and append information to it. The
file must already exist; if it does not exist, a CAN'T FIND FILE OR
ACCOUNT error (ERR = 5) occurs. The file must also be the last file
on the tape before the logical end of tape. If it 1is not the last
file on the tape, the system cannot locate the trailing EOF records
and a PROTECTION VIOLATION error (ERR = 10) occurs. As 1is the case
for all other MODE option values, 128% <can be used alone or in
conjunction with any combination of values.

2.2.4 Rewinding The Tape

As mentioned before, MODE 0% reads the tape at its current position.
If the file name specified in the OPEN statement does not match the
record label, the system automatically rewinds the tape to the first
record label and begins reading labels file by file.

To override this automatic rewind feature, include the MODE value 2%
in the OPEN statement. 1In this case, the system reads the tape from
its current position and, if no match occurs, continues reading 1label
records from that position forward until either the search is
successful or until the logical end of tape is detected. The system
does not rewind the tape when it performs a CLOSE operation. MODE 32%
rewinds the tape to the first record label before reading any 1label.
Once again, no match causes the system to check successive label
records until the file is found or until the logical end of tape Iis
detected. The system does not rewind the tape when it performs the
CLOSE operation on channel N%.

MAGTAPE

Finally, including MODE value 64% rewinds the tape when a CLOSE
statement is executed on channel N%.

2.2.5 DOS and ANSI Format Labels

Including MODE 16384% in the OPEN FOR OUTPUT statement searches for a
magtape file whose file name is specified. 1In addition, the file must
be written in DOS format (i.e., preceded by a DOS 1label) for the
search to be considered successful.

When the user omits the MODE value 16384%, the system assumes record
labels on the tape, either DOS or ANSI, are in the format specified by
the system manager when he starts time-sharing.

Including MODE 24576% in the OPEN FOR OUTPUT statement searches for
the magtape file whose file name is specified. 1In this case, the file
must be written in ANSI format (i.e., preceded by an ANSI 1label) for
the search to be considered successful. If the file is found, the
system returns the NAME OR ACCOUNT NOW EXISTS error (ERR = 16).

The system reads the tape from its current position. If the file is
not found, it rewinds the tape and reads label by label until it finds
the correct file. 1If the logical end of tape is detected, the system
automatically backspaces over two EOF records, writes an ANSI label
record for the file, and allows write access to the file.

Once again, omitting the MODE value 24576% in the OPEN FOR OUTPUT
statement assumes record labels are in the default format originally
specified by the system manager.

2.2.6 Example Of OPEN FOR OUTPUT Statement

The values for MODE mentioned above can be combined in any combination
as long as they are not mutually exclusive. Consider the following
line:

10 OPEN "MTO:LLL317" FOR OUTPUT AS FILE 2%, MODE 16466%

This line opens the file LLL317 on magtape unit 0 and associates it
with channel 2%. MODE 16466% 1is actually the sum of MODE
2% + 16% + 64% + 16384%.

MAGTAPE

When the above line is executed, the system determines whether the
current record label is in DOS format (MODE 16384%). If the file is
not found, the system does not rewind the tape (MODE 2%), but instead
continues to search for labels in DOS format from the next record on.
If the correct label record is found (i.e., LLL317 exists), the system
backspaces one record and writes the new label over the existing label
(MODE 16%). If the logical end of tape is found first, the system
backspaces one EOF record and writes the new label, allowing write
access to the new file.

Once the new record label is written, the file LLL317 is available for
output, via PUT statements. Remember, since the file is open for
output only, attempting to execute GET statements results in a
PROTECTION VIOLATION error.

A subsequent CLOSE statement rewinds the tape (MODE 64%).

2-8

MAGTAPE
2.3 THE FILE STRUCTURED MAGTAPE OPEN

The OPEN statement performs an OPEN FOR INPUT operation for a
designated file on a specific magtape unit. For example,

10 OPEN "MTO0:ABC" AS FILE N%, MODE M$

The system associates magtape unit 0 with the internal channel
designated by N% and searches for the file ABC on the current account
as if an OPEN FOR INPUT statement were specified with M% in the MODE
specification. An OPEN statement without a MODE specification is
treated as if MODE 0% had been given. If the OPEN FOR INPUT operation
succeeds, the program has read access to the file on the channel's
buffer.

An unsuccessul OPEN FOR INPUT operation causes the system to perform
an OPEN FOR OUTPUT operation using the MODE M$% specification. The
OPEN statement is not a recommended method for processing magtape
since the program cannot immediately determine which type of OPEN
statement was executed.

2.4 THE FILE STRUCTURED MAGTAPE CLOSE

The CLOSE statement terminates processing of a magtape file. If the
file is open for input, the system skips to the end of the file (if it
is not already there), and frees the buffer space for other usage
within the program. If the file is open for output and the file label
is in ANSI format, the system writes a trailer 1label group (see
Appendix A). The system writes three EOF records to mark the logical
end of tape, regardless of the file label format. It then backspaces
the tape over two of the EOF records to position the tape for
subsequent output, and frees the buffer space for other usage within
the program.

Additionally, the system rewinds the tape if the value 64% was
included in the MODE specification. Unless 64% is specified, the
system does not rewind the tape.

2.5 THE NON-FILE STRUCTURED MAGTAPE OPEN

In non-file structured processing there are no special file label
records written on the tape. Essentially, the system passes the data
directly between the magtape and the user program. Tapes of any
format can be read or written with non-file structured magtape
operations, as long as the program is set up to handle the actual tape
format correctly. Only records 14 bytes or longer can be accessed.
Attempting to write a record shorter than 14 bytes results 1in the
ILLEGAL BYTE COUNT FOR I/O error (ERR = 31).

In the OPEN statement, only the magtape unit is specified to indicate
non-file structured processing; no filename is included. There are
three types of OPEN statements, as before. These are:

100 OPEN "MTO:" FOR INPUT AS FILE 1%

or

100 OPEN "MTO:" AS FILE 1%

MAGTAPE

OPEN FOR INPUT and the simple OPEN statements are eguivalent. No
magtape movement occurs and both reading and writing of records is
permitted. The third form is slightly different:

100 OPEN "MTO0:" FOR OUTPUT AS FILE 1%

In this example, the OPEN FOR OUTPUT permits writing only. This 1is
the normal way of opening a magtape for writing.

2.6 THE NON-FILE STRUCTURED MAGTAPE CLOSE

CLOSE has no special action on non-file structured magtapes unless
OPEN FOR OUTPUT was used. On a magtape that was OPEN FOR OUTPUT, the
CLOSE statement causes trailer EOF records to be written, followed by
backspacing over two of these EOF's, to position the tape correctly
for subsequent output operations.

In any case, if the magtape was open for non-file structured
processing, it is not rewound on CLOSE.

2.7 THE MODE SPECIFICATION IN NON-FILE STRUCTURED PROCESSING
The MODE specification with non-file structured magtape processing can
be used with either 7-track or 9-track devices. When used with
7-track drive, MODE indicates both tape density and parity. When used
with a 9-track TUl0 drive, MODE indicates parity only, since a 9-track
TU10 drive reads and writes only at 800 BPI. When used with a 9-track
TU16 drive, MODE also can indicate 1600 BPI phase encoded mode.
MODE in the OPEN statement is evaluated by the following algorithm:
MODE E+D*4+P
where:
E (phase encoded) in bits per inch (BPI) is:

256
0

1600 BPI, phase encoded mode
values of D and P (see below)

D (density) in bits per inch (BPI) is:

200 BPI (7-track only)
556 BPI (7-track only)
800 BPI (7-track only)
800 BPI, dump mode

WO
wu nu

P (parity) 1is:

odd parity
even parity

P
on

2-10

MAGTAPE

If mode is not specified in the OPEN statement, the tape is processed
in odd parity at 800 BPI dump mode, or with a MODE of 0%+3%*4%+0%.

Dump mode indicates that the system dumps from memory the actual
representation of the data. Since there are 8 bits in one PDP-11
byte, 9-track drives, which have 8 data tracks, always operate in dump
mode. For a 7-track drive, which contains space for only six data
bits per frame, the dump mode means one PDP-11 8-bit byte is written
to and read from two frames on the tape. The system uses one tape
frame to hold bits 0 through 3 of a byte and a second frame to hold
bits 4 through 7 of the byte.

Other values for density are in non-dump mode and apply only to
7-track drives. On output operations, the system writes bit 0 through
5 of each PDP-11 8-bit byte to a frame on the tape. Two bits, 6 and
7, are lost on each write operation. On input operations, the system
transfers the data bits of a frame into bits 0 through 5 of a PDP-11
byte and sets bits 6 and 7 to zero. In this manner, bit formats other
than the 8-bit byte format can be read from and written to 7-track
magtape.

Effectively, MODE for a 9-track TUlO drive can only be a 0 or 1 since
the system operates at 800 BPI dump mode with 9-track TUl0 drives. If
any other values are used, the system recognizes only the parity
specification.

MODE for a 9-track TUl6 drive can indicate 1600 BPI phase encoded
operation. Parity is always odd for phase encoded operation.

To allow read and write access to a tape, use the OPEN or OPEN FOR
INPUT statement. For example:

OPEN "MTO:" AS FILE 1%, MODE 5%

or
OPEN "MTO:" FOR INPUT AS FILE 1%, MODE 5%

Either statement makes the tape on the 7-track drive (set at unit 0)
available for execution of GET and PUT statements on channel 1%. The
system accesses tape with a density of 556 BPI and even parity. The
system performs no tape positioning nor status checking. The user
must perform such operations using the MAGTAPE function described in
Section 2.8.

To allow only write access to a tape, use the OPEN FOR OUTPUT. For
example:

OPEN "MT1:" FOR OUTPUT AS FILE 1%, MODE 12%

If the unit is write locked (the write enable ring on the reel is
missing), the system generates the DEVICE HUNG OR WRITE LOCKED error
(ERR = 14) and does not open the device. Otherwise, the statement
makes the tape on unit 1 available for execution of PUT statements on
channel 1%. Since the device is open solely for write access, an
attempt to execute a GET statement on the channel causes the
PROTECTION VIOLATION error (ERR = 10). The system writes records in
odd parity at a density of 800 BPI, dump mode. The user program must
check the status of the device and control the device by use of the
MAGTAPE function described in Section 2.8.

2-11

MAGTAPE

To read and write records larger than 512 bytes on magtape, include
the RECORDSIZE option in the OPEN statement as described in the
BASIC-PLUS Language Manual 1in Section 9.2.1. Subsequent GET
operations read records of maximum size equal to RECORDSIZE. RECOUNT
contains the actual number of bytes read. PUT operations which are
not modified by the COUNT modifier write records whose size is
specified in the RECORDSIZE option.

To write records smaller than 512 bytes, use the COUNT option
described in the BASIC-PLUS Language Manual in Section 12.3.2. If
smaller records are read, the RECOUNT variable contains the number of
bytes.

MAGTAPE

2.8 THE MAGTAPE FUNCTION IN NON-FILE STRUCTURED PROGRAMMING
The MAGTAPE function provides flexibility in non-file structured
processing by permitting the program control over all magtape
functions. The general form of the MAGTAPE function is as follows:

I$ = MAGTAPE (F%,P%,U%)
where:

F% is the function code (1 to 9)

P% is the integer parameter

U$ 1is the internal channel number on which the selected
magtape is open

I3 is the value returned by the function

The effect of the MAGTAPE function is determined by the function code,
Fg. These functions are described in the sections that follow. 1In
all examples in these sections, assume that magtape unit 1 has been
opened on internal channel 2. That is, prior to executing the MAGTAPE
function, the following statement was executed.

100 OPEN "MT1:" AS FILE 2%

The following discussion of each of these functions includes the word
IMMEDIATE or WAIT. IMMEDIATE indicates that the monitor initiates the
action and returns control to the program immediately; WAIT indicates
that the program must wait for the operation to be completed before
continuing.

2.8.1 Off-Line (Rewind and Off-Line) Function

IMMEDIATE
Function code =1
Parameter = unused
Value returned = 0

The Off-Line function causes the specified magtape to be rewound and
set to OFF-LINE (thus clearing READY). For example:

200 I% = MAGTAPE(1%,0%,2%)

rewinds and sets the magtape open on internal channel 2 to OFF-LINE.

2.8.2 WRITE End-of-File Function

WAIT
Function code = 2
Parameter = unused
Value returned = 0

2-13

MAGTAPE

The WRITE End-of-File function writes one EOF record at the current
position of the magtape. For example:

200 I% = MAGTAPE(2%,0%,2%)

writes an EOF on the magtape that is open on internal channel 2.

2.8.3 Rewind Function

IMMEDIATE
Function code =3
Parameter = unused
Value returned = 0

The Rewind function rewinds the selected magtape. For example:
200 I% = MAGTAPE(3%,0%,2%)

rewinds the magtape open on internal channel 2. (This function does
not cause the magtape to be set to OFF-LINE.)

2.8.4 Skip Record Function

WAIT
4
number of records to skip (1 to 32767)
number of records not skipped
(0 unless EOF or physical EOT is encountered)

Function code
Parameter
Value returned

nwwn

The Skip Record function advances the magtape down the tape. The tape
continues to advance until either the desired number of records is
skipped (in which case the value returned by the function is 0) or an
EOF record 1is encountered (in which case the value returned is the
specified number of records to skip minus the number actually
skipped) . (1) For example, to skip from the current tape position to
just past the next EOF, use the following function:

200 I% = MAGTAPE (4%,32767%,2%)
This assumes there are fewer than 32767 records before the next EOF.

In Section 2.8.7, a more complex example using the MAGTAPE function
shows how to skip an entire file regardless of the number of records.

2-14

MAGTAPE

2.8.5 Backspace Function

WAIT

[~
~

number of records to backspace (1 to 32767)
number of records not backspaced (0 unless EOF
or beginning-of-tape is encountered)

Function code
Parameter
Value returned

wonu

The Backspace function is similar to the Skip function, except that
tape motion is in the opposite direction. The beginning-of-tape (BOT
or Load Point) as well as EOF records can cause premature termination
of the Backspace operation (in which case the value returned is the
specified number of records to backspace minus the number actually
backspaced).(2) The BOT 1is neither skipped nor counted as a skipped
record. For example:

200 I% = MAGTAPE(5%,1%,2%)

backspaces one record on the magtape opened on internal channel 2,
unless the tape was already at BOT.

2.8.6 Set Density And Parity Function

IMMEDIATE
Function code =6 (Insignificant)
Parameter = E+D*4+P
Value returned = 0
where:
E = Phase Encoded
256 = 1600 BPI, phase encoded mode
= values of D and P (see below)
D = Density
0 = 200 BPI (7-track only)
1 = 556 BPI (7-track only)
2 = 800 BPI (7-track only)
3 = 800 BPI, dump mode
P = Parity
0 = odd
1 = even

(1)The system counts the EOF record as a record skipped.

(2)The system counts the EOF record as a record actually backspaced.

2-15

MAGTAPE

Magtape drives are set to the system default density/parity when first
assigned (with an ASSIGN statement) or when first opened. This
function changes the density and/or parity of a magtape drive
according to the value given as the parameter. The function
interprets the parameter exactly as MODE value (see Section 2.7). For
example,

10 OPEN "MT0:" AS FILE 2%
20 I%=MAGTAPE (6%, 2%*4%+1%, 2%)

changes the density and parity of the 7-track magtape drive open on
channel 2 to 800 BPI, even parity, non-dump mode. The density and
parity specified in the parameter is in effect until channel 2 |is
closed. The system sets 1% to 0 to indicate successful completion.

By adding 8192% to the parameter value (making it 8192%+2%*4%+1%, in
the above example), the new density/parity setting is in effect even
after the associated channel has been closed. A subsequent OPEN
statement, associating any channel number with magtape unit 0, opens
it with that new density/parity setting automatically. Only a
DEASSIGN statement to a previously assigned unit or another parameter
specified in this function can revert the density/parity setting for
the magtape unit back to the system default value.

The sample routine shown below in immediate mode sets magtape unit 2
to 800 BPI, dump mode, odd parity, using DOS labels. Once channel 3
is closed, in this example, the new density/parity setting is now in
effect and remains in effect until a DEASSIGN statement is executed on
magtape unit 2.

ASSIGN MT2:.DOS

OPEN "MT2:" AS FILE 3%

I%$=MAGTAPE (6%, 8192%+3%*4%,3%)

CLOSE 3%

2.8.7 Tape Status Function

IMMEDIATE
Function code =7 (Insignificant)
Parameter = unused
Value returned = status

The Tape Status function returns the status of the specified magtape
as a 16-bit integer, with certain bits set, depending on the current
status. The format is shown in Table 2-1. The example shown below
obtains the status of the magtape opened on internal channel number 2:

200 I% = MAGTAPE(7%,0%,2%)

2-16

MAGTAPE

Table 2-1

Magtape Status Word

Bit Test Meaning
15 I%$ < 0% Last command caused an error
14-13 (I% AND 24576%)/8192% Density: 0 = 200 BPI
1l = 556 BPI
2 = 800 BPI
3 = 800 BPI, dump mode
12 (I% AND 4096%) = 0% 9-track tape
(I% AND 4096%) <> 0% 7-track tape
11 (I%$ AND 2048%) = 0% 0dd parity
(I%$ AND 2048%) <> 0% Even parity
10 (I%$ AND 1024%) <> 0% Magtape is physically write locked
9 (I% AND 512%) <> 0% Tape is beyond end-of-tape marker
8 (I%$ AND 256%) <> 0% Tape is a beginning-of-tape (Load
Point)
7 (I$ AND 128%) <> 0% Last command detected an EOF
6 (I% AND 64%) <> 0% The last command was READ and the
record read was longer than the I/0
buffer size (i.e., part of the
record was lost).
5 (I%$ AND 32%) <> 0% Unit is non-selectable (OFF-LINE)
4 (I%$ AND 16% <> 0% Unit is TUle
3 (I$ AND 8%) <> 0% 1600 BPI, phase encoded mode (for
TU16)
2-0 (I$ AND 7%) Indicates last command issued:

OFF-LINE

READ

WRITE

WRITE EOF

REWIND

SKIP RECORD
BACKSPACE RECORD

AN WO
LI I | R | N T A 1

MAGTAPE

When the value of I% returned is 17,409 decimal (or 42001 octal), the
magtape is 800 BPI, 9-track, odd parity, write protected, and the last
command issued was READ. This can be determined by testing the value
of I%, bit by bit, against Table 12-1, as follows:

I%

17,409 (decimal)

4 2 0 0 1 (octal)

100 010 000 000 001 (binary)
The test for density uses bits 14 and 13: (I% AND 24576%)/8192%
I$ 100 010 000 000 001
AND 17409% 110 000 000 000 000
Result 100 000 000 000 000

Dividing the result of (I% AND 24576%) (in this case, that result is
16384%) by 8192%, the quotient can equal 0, 1, 2, or 3. In this case,
16384/8192 = 2, indicating that the tape density is 800 BPI.

The results of (I% AND 4096%) and (I% AND 2048%) are both zero,
indicating a 9-track tape with odd parity. (I% AND 1024%) results in
a non-zero number in this case, so the magtape is physically write
locked.

Bits 9 through 3 of I% in this example are all zero, but (I% AND 7%)
results in 1%, indicating bit 0 is set and the last command issued was
READ.

Another magtape status function can advance to the next EOF (i.e.,
skip over the current file). The Skip Record function can do this
unless the file is longer than 32,767 records -- in which case several
skip record functions must be executed -- or an EOT is detected within
a file. The following statements execute a Skip Record function until
the next EOF is encountered.

200 I% = MAGTAPE(4%,32767%,2%):
IF (MAGTAPE (7%,0%,2%) AND 128%) = 0% THEN 200

2.8.8 Return File Characteristics Function

IMMEDIATE
8 (Insignificant)
unused
file characteristics

Function code
Parameter
Value returned

This function returns the status of the specified file structured
magtape as a 16-bit integer, with certain bits set depending on the
current file characteristics. The format is shown in Table 2-2.
Non-zero integers are returned for DOS files; zero is returned for
ANSI files.

For example, to obtain the characteristics of a file on a magtape
opened on channel 2:

400 1I% = MAGTAPE(8%,0%,2%)

MAGTAPE

When the value of I% returned is 16,464 decimal (40120 octal), the
magtape file 1is in ANSI format F, carriage control is embedded 'M',
and the record length is 80 bytes. This can be determined by testing
the value of I%, bit by bit, against Table 2-2, as fellows:

I% 16,464 (decimal)

0 4 0 1 2 0 (octal)

0 100 000 001 010 000 (binary)

The test for ANSI format type is (SWAP%(I%) AND 192%)/64%, where 192%
= 128% + 64%.

SWAP% (I%) 0 101 000 001 000 00O
AND 192% 11 000 000
Result 1 000 000
Dividing the result of SWAP%(I%) AND 192% (in this case, that result
is 64%) by 64%, the quotient equals 64%/64% = 1, indicating that the
magtape is under ANSI format F.

The result of (I% AND 12288%)/4096% is 0 in this example, indicating
that the carriage control is embedded 'M'.

Finally, the result of (I% AND 4095%) yields 80 in this case, so the
record length is 80 bytes.

MAGTAPE

Table 2-2
Magtape File Characteristics Word

Bit Test Meaning

15-14 | (SWAP%(I%$)AND 192%)/64% | ANSI format: U (undefined)
F (fixed length)
D (variable length)

0
1
2
3 S (spanned(l))

13-12 | (I%$ AND 12288%)/4096% Format U operation:
0 (default)
Format D, S and F operation:
0 (carriage control embedded 'M')
1 (FORTRAN carriage control 'A')
2 (implied LF/CR before record' ')

11-0 I%$ AND 4095% Format U operation:
0 = (default)

Format F operation:
Record length

Format D operation:
Maximum record length

Format S operation:

unused
2.8.9 Rewind On CLOSE Function
IMMEDIATE
Function code =9 (Insignificant)
Parameter = unused
Value returned = 0

The Rewind on CLOSE function causes the selected magtape to be rewound when
the CLOSE statement is executed. For example:

I% = MAGTAPE (9%,0%,2%)

rewinds the magtape open on internal channel 2 when CLOSE is executed from
a program or when CLOSE is executed in immediate mode.

The Rewind on CLOSE function must be used after the OPEN statement and
before the CLOSE statement. This function overrides all MODE
specifications which, in the OPEN statement, instruct the system not to
rewind on closing the file. Once the Rewind on CLOSE function is executed,
it cannot be cancelled.

(1)ANSI format S is not supported by RSTS/E systems.

MAGTAPE
2.9 MAGTAPE ERROR HANDLING

It is important to consider details of the system's handling of magtape
error conditions. These are: parity error, record length error, off-line
(not ready) error and write lock error.

2.9.1 PARITY (Bad Tape) ERROR

If an error is detected on a read attempt, the system attempts to re-read
the record up to 15 times. If the error condition persists, a USER DATA
ERROR ON DEVICE error occurs. In this case, the read has been completed,
but the data in the I/O buffer cannot be considered correct. On an output
operation, if the first attempt to write a record fails, the system
attempts to rewrite the record up to 15 times using write with Extended
Interrecord Gap to space past a possible bad spot on the tape. If the
error condition persists, a USER DATA ERROR ON DEVICE error occurs. 1In
both cases, the tape is positioned just past the record on which the error
occurred.

2.9.2 RECORD LENGTH ERROR

This error can occur only during a read operation when the record on the
magtape 1is longer than the 1I/0 buffer size, as determined by the OPEN
statement. The extra bytes in the record are not read into memory but are
checked for possible parity errors. If a parity error occurs, an error
message is returned to the user program, and bit 6 of the magtape status
word 1is set. Therefore, if a program is reading records of unknown length

from magtape, it is necessary to check for possible record 1length errors
after every read operation. This can be done as follows:

200 PRINT "RECORD TOO LONG" IF MAGTAPE (7%,0%,2%) AND 64%
Note that in the above example if bit 6 is set in the magtape status word
the IF condition tests as TRUE. The error, MAGTAPE RECORD LENGTH ERROR

(ERR = 40), occurs when the tape block is too long, in file-structured or
non-file structured magtape.

2-21

MAGTAPE
2.9.3 OFF-LINE ERROR

The status of the magtape unit is determined by testing bit 5 of the
returned value of the magtape status function shown in Table 2-2. If bit 5
is set, the magtape unit is off-line. A MAGTAPE SELECT ERROR (ERR = 39)
occurs if an attempt to access an off-line drive is made.

2.9.4 WRITE LOCK ERROR

Attempting any write operation on a magtape that is physically write locked
(i.e., a tape that does not have the write enable ring inserted) results in
a "DEVICE HUNG OR WRITE LOCKED" error.

2.10 THE KILL AND NAME AS STATEMENTS

The KILL and NAME AS statements described in the BASIC-PLUS Language Manual
are applicable only to disk and DECtape files; they cannot be used with
magtape files.

CHAPTER 3
LINE PRINTER
3.1 SPECIAL CHARACTER HANDLING
Certain characters have special significance on line printer output.

Table 3-1 summarizes LP1l and LS1l operation under RSTS/E for each of
these special characters.

Table 3-1

LS11 and LP1ll Commands

Character LS11l Function LP11 Function
CHRS (7) BELL Ignored by driver
(A 2-second audible tone)
CHRS (9) TAB - Horizontal Tab TAB - Horizontal Tab
l. Spaces over to next 1. Spaces over to next
tab position (columns tab position (columns
1, 9, 17, 25, etc.) 1, 9, 17, 25, etc.)
CHRS (10) LF - Line Feed PF - Paper Feed
1. Print line 1. Print line
2. Carriage return 2. Carriage return
3. Advances paper one line 3. Advances paper one line
CHRS (11) VT - Vertical Tab VT - Vertical Tab
1. Advances paper to the next | 1. Ignored by driver
hole position in Channel 5

3-1

LINE PRINTER

Table 3-1 (Cont.)
1LS11 and LPll Commands

Character LS11 Function LPll Function
CHRS (12) FF - Form Feed FF - Form Feed
1. Print line 1. Print line
2. Carriage return 2. Carriage return
3. Advances paper to the next | 3. Advances paper to the
hole position in Channel 7 third 1line of the next
(see Section 3.2) form (hardware top of
form, see Section 3.2)
CHR$ (13) CR - Carriage Return CR - Carriage Return
1. Print line 1. Print line
2. Carriage return 2. Carriage return
. No line feed (may be used 3. No 1line feed (may be
for overprint) used for overprint)
CHRS (14) ELONG - Elongated Character ELONG - Elongated Character
1. Doubles the horizontal 1. 1Ignored by driver
printing axis
CHRS (17) SEL - Select SEL - Select
1. Allows the software to put |[1l. 1Ignored by driver
the printer on-line
CHRS$ (19) DSEL - Deselect DSEL - Deselect
1. Allows the software to put [1l. 1Ignored by driver
the printer off-line
CHRS (96)
to 1. Lower case printing 1. Lower case printing
CHRS (126) characters, converted characters, conver ted
to upper case to upper case except on
an upper case/lower
case printer.
CHRS$ (127) | DEL - Delete DEL - Delete
1. Ignored by driver 1. Ignored by driver
3.2 SPECIAL OPERATIONS
The MODE specification in the OPEN statement allows the wuser to
control line printer operations. For example:
OPEN "LP:" AS FILE F%, MODE M%
The system associates line printer unit 0 with the channel designated

by F%.

The
actions the system performs at the line printer.

value of M%

in the MODE specification determines the

The following MODE

values generate the action described at the line printer unit.

3-2

LINE PRINTER

MODE Value Action
1 to 127 Sets form length in number of lines per page for

software formatting (512%) and/or automatic page
skip (2048%). This is the LPFORM option.

128 Change the character 0 to the character O.

256 Truncate lines which are longer than the unit was
configured for. This action is done in place of
printing the remainder of the 1line on the next
physical line on the page.

512 Enable software formatting. Forms control
characters are >128.

1024 Translate lower case characters to upper case
characters. Applies only to upper and lower case
line printers.

2048 Skip six lines (i.e., over perforation 1line) at
the bottom of each form.

4096 Moves paper to top of hardware form. CHRS$ (12%).

(See discussion, below.)

The MODE value 512% allows a program to control non-standard 1length
forms in the line printer(l). To accomplish this action, the program
must include a MODE value between 1 and 127 to indicate the number of
lines per page on the printer. For example,

100 OPEN "LPO:" AS FILE 1%, MODE 542%

The statement sets the form length to 30 lines per page (512%+30, or
542%). If neither the 512% nor the value for form length is given,
the system uses 66 lines per page as the form length. Lines are
numbered from 1 to the length specified. Thus, in this example, lines
are numbered from 1 to 30.

As a result of enabling the software formatting with MODE 512%,
certain special characters that the program sends to the line printer
determine the number of the line on which the system prints data. The
system skips to this line by sending the proper number of LINE FEED
characters to the printer. It determines the line on which to print
by subtracting 127 from the decimal value of the special character the
program sends to the printer. For example,

PRINT #1, CHRS$(147%);

This statement causes the system to evaluate the difference between
147 and 127. 1If the difference is greater than the page length

(1)The hardware option on the LP1l High Speed Printer to automatically skip
over perforations must be disabled for this option to execute properly.

3-3

LINE PRINTER

specified in the MODE value or more than 66 when no page length is
specified, the system ignores it. If the difference is less than the
page length in effect but greater than the current line number, the
printer skips to that 1line number on the current page. If the
difference is less than or egual to the number of the current line,
the system skips the printer to the appropriate line on the next page.

NOTE

To enable the program to properly
perform software formatting of print
lines using special characters, the user
must load the paper in the line printer
with the top of form at the arrows and
with the tractors set at their top of
form position. See the RSTS-11 System
User's Guide for line printer operating
procedures.

The system treats characters whose values lie between 0 and 127 as the
standard ASCII eguivalents as shown in Appendix D. 1In addition, a LF
character sent to the printer advances the form to the first print
position of the next 1line (i.e., LF implies CR). If a form length
other than 66 is specified but MODE 4096% is not specified, a CHR$(12)
in the data passed by the program to the line printer translates to a
sufficient number of line feed characters to move the page to the top
of (software) form. If the form length is 66 or zero (the default
value which results in 66) or MODE 4096% 1is specified, CHR$(12)
remains untranslated and positions the printer paper at the top of the
hardware form.

A value of 128 in the MODE specification causes the system to print
all 0 characters as O characters. This feature 1is valuable in
commercial applications where there can be no possibility for
confusion. For example,

10 OPEN "LPO:" AS FILE 1%, MODE 706%

The statement indicates software formatting (512%) and translation of
0 to O (128%) is to be performed on line printer unit 0 with a form
length of 66. That is, MODE 706% is equivalent to MODE 5123%+1283%+66%.

To truncate lines greater than the width of the line printer, the user
program includes 256% in the MODE value. For example,

10 OPEN "LPO:" AS FILE 1%, MODE 962%
The statement implements the MODE value of 66%, 128%, 256% and 512%,
on line printer unit 0 and discards excess characters from each line
printed (MODE 256%). Without 256% in MODE, the system prints excess
characters on a second physical line.

To translate lower case characters to upper case characters, the user
program includes 1024 in MODE. For example,

10 OPEN "LPO:" AS FILE 1%, MODE 1986%

LINE PRINTER

This statement implements the MODE values 66%, 128%, 256% and 512%
and, in addition, causes the system to translate all characters with
representations between CHR$(96) and CHR$(122) to their equivalents
between CHR$(6%) and CHR$(90). This feature is always set for an
upper case only printer.

To skip six lines at the bottom of each form, the user program
includes 2048 in MODE. For example,

10 OPEN "LPO:" AS FILE 1%, MODE 4034%

The statement implements the MODE values 66%, 128%, 256%, 512%, 1024%,
and also skips six lines when the system advances the page to top of
form. With this value in effect, the system does not print on the
last six 1lines of each form. This feature is useful when generating
continuous listings to be placed in horizontal binders. If the user
loads the 1line printer as such that the top of form is the third
physical line on the page, the system leaves three blank lines at the
beginning of the next page. When the listings are subsequently placed
in binders, printed material 1is located three 1lines from the
perforations of the page to facilitate easy access.

The system handles the actual transfer of data from user storage to
the 1line printer by means of an intermediate storage called small
buffers. This allows the faster computational process to continue
unhindered by the slower output action at the line printer. Thus, for
each output request in a wuser program, the system transfers the
related program data from program storage to small buffers. At the
same time, at its own speed, the line printer software extracts the
data from the intermediate small buffers and performs the output to
the device.

An error condition at the line printer causes the system to interrupt
the transfer of data both from the buffers to the device and from the
program to the buffers. Since any number of indeterminate events such
as a ribbon jam or a paper tear can cause an error condition, the
system retains the unprinted data in the buffers until either the
error is cleared (the unit becomes ready again) and the user program
executes a CLOSE operation.

The system checks the status of the line printer every ten seconds,
and, upon detecting the ready condition again, continues output from
the small buffers without loss of data. If the user program closes
the 1line printer while the error is still pending, the system returns
the small buffers to the pool without printing their contents. The
data transferred from the program but not yet printed is lost.

If the user program disregards the error condition and continues
processing, the system does not transfer more data to additional small
buffers. No output occurs at the 1line printer while the error
condition remains in effect.

3-5

LINE PRINTER

To prevent loss of data, a user program must properly detect a line
printer error condition and execute efficient error handling. The
system indicates the line printer error by generating the DEVICE HUNG
OR WRITE LOCKED error (ERR = 14). The first time this error is
returned after an output request (e.g., PUT), the data is fully
buffered by the monitor. No data 1is lost, but the buffered data

cannot be sent to the printer due to the error
seconds the monitor checks the printer's

printing when the error condition is rectified.

monitor free space, subsequent output
immediately without any further data buffering
the error condition persists. When the output
error, the printer error condition is cleared.

The sample program shown below demonstrates code

following actions:

a. opens the line printer, inputs a line

condition. Every 10
status. It will resume

To prevent filling up
reguests are returned
and with ERR=14 while
request returns without

which performs the

from the disk file, and

performs output to the line printer, and

b. performs efficient error handling as described above.
10 ! HOUSEKEEPING
20 OPEN "DATA.DAT" FOR INPUT AS FILE 1
30 OPEN "LPO:" AS FILE 2, RECORD SIZE BUFSIZ(1%)
40 FIELD #1, BUFSIZ(l%) AS IS
50 FIELD #2, BUFSIZ(2%) AS 0$
60 E$ = 0%
70 ON ERROR GOTO 200
100 ! DATA MOVING LOOP
110 GET #1
120 C% = RECOUNT
130 LSET 0$ = IS
140 PUT #2, COUNT C%
150 E% = 0%
160 GOTO 100
200 ! ERROR HANDLING
210 IF ERR=11 AND ERL=110 THEN RESUME 400
220 IF ERR=14 AND ERL=140 THEN RESUME 300
230 ON ERROR GOTO 0
300 ! PRINTER ERRORS
310 IF E$ THEN 350
320 ! FIRST TIME ERRORS (DATA WAS BUFFERED)
330 E$ = ~1%
340 GOTO 100
350 ! SUBSEQUENT ERRORS (DATA NOT BUFFERED)
360 PRINT "?LINE PRINTER ERROR?"
370 SLEEP 10%
380 GOTO 140
400 ! DONE
410 CLOSE 1, 2
999 END

3f6

CHAPTER 4

TERMINALS

Several features are available to facilitate processing on keyboard devices
using Record I/0 statements.

4.1 CONDITIONAL INPUT FROM A TERMINAL

Sometimes a program must execute an input regquest from a terminal without

waiting for data to be available. (The terminal may be opened on a
specific I/0 channel or may be one of many terminals opened on one I/0
channel - see Section 4.3.) Normally, the system stalls the program

executing an input request until data is available in the keyboard input
buffer (i.e, a line terminator is typed at the keyboard). To avoid
stalling, the program can execute a statement similar to the following:

GET #1%, RECORD 8192%

If data is available from the terminal open on channel 1, the system makes
it accessible to the program in the channel 1 buffer. The number of bytes
read from the terminal input buffer is given by the RECOUNT variable. If
no data 1is available, the system generates the USER DATA ERROR ON DEVICE
error (ERR = 13). In both cases, the system reports the results
immediately.

4.2 BINARY DATA OUTPUT AND INPUT
To perform binary data output to a terminal, either opened on its own I/0
channel or opened as one of many terminals on one I/0 channel, execute a
statement of the following form:

PUT #N%, RECORD 4096%, COUNT M%

or

PUT #N%, RECORD 1%, COUNT M$%

TERMINALS

The statement transfers the number of bytes specified by M% to the output
buffer of the terminal open on channel N%. No special form of the output
statement is required. As a result of specifying RECORD 4096% or RECORD 1%
in the PUT statement, all output formatting on the terminal is disabled.

A user program can obtain binary input from a keyboard by executing the
OPEN statement with a MODE 1% option. For example,

10 OPEN "KB6:" AS FILE N%, MODE 1%

The statement associates channel N% with keyboard number 6 in binary input
mode. As a result, characters received are not echoed by the system and
are not altered in any way. In this manner, a program can read binary data
from a terminal paper tape reader, from the terminal itself, or from any
device connected to the system through a keyboard interface.

To initiate a transfer of data, use the GET statement. For example,
GET #N%

The system transfers some number of characters from the keyboard open on
channel N% to the buffer for that channel. If no data is available, the
system stalls the operation until data is received from the keyboard. When
data is received, the program is made runnable and the data is available in
the buffer. The BASIC-PLUS program must execute GET statements frequently

enough to avoid losing data from the transmitting device.

The number of characters received is always at least one and never more
than the channel buffer size. The default buffer size for keyboards is 128

characters. The user can override the default buffer size by the
RECORDSIZE option in the OPEN statement. The RECOUNT variable contains the
actual number of characters received.

Since the system accepts and does not alter any characters received from a
terminal open for binary input, typing "C on such a terminal has no effect.
For this reason, the system disables binary input mode under the following
conditions.

a. The period for a WAIT statement expires

b. Executing a statement on channel zero when the user's keyboard is
open for binary input

TERMINALS

c. Executing an OPEN statement in normal mode on the device but on a
different channel

d. Executing a CLOSE statement on any channel associated with a
keyboard open for binary input

For condition a, the system disables binary input mode if time for a WAIT
is exhausted. For example,

10 WAIT 10%
20 GET #1%

If the system does not detect data within 10 seconds on channel 1, which is
open for binary input, it disables binary mode in addition to generating
the KEYBOARD WAIT EXHAUSTED error (ERR = 15). The keyboard remains open
for normal ASCII data transfers.

For condition b, the system disables binary input mode when the program
executes a statement on channel (0 and the user's keyboard is open for
binary input on a non-zero channel. For example,

10 OPEN "KB:" AS FILE 1%, MODE 1%
20 GET #1%

40 PRINT "MESSAGE";

The statement at line 10 opens the user's keyboard for binary input on a
non-zero channel (channel 1). The statement at line 20 performs binary
input from the keyboard. At line 40, however, the system executes a PRINT
statement on the user's keyboard (channel 0) which disables binary input
mode. The user's terminal remains open on channel 1 for normal ASCII data
transfers.

For condition c, the system disables binary input on a channel if the
program executes a normal OPEN on the same device but on a different
channel. For example,

10 OPEN "KB6:" AS FILE 1%, MODE 1%

iOO OPEN "KB6:" AS FILE 2%

As a result of statement 100, the system disables binary input on keyboard
6. If statement 100 contained MODE 1%, the system would open keyboard 6
for binary input on channel 2. Keyboard 6 would therefore be open for
binary input on both channels.

For condition d, the system disables binary input if the program executes a
CLOSE statement on any channel associated with a keyboard open for binary
input. For example,

10 OPEN "KB6:" AS FILE 1%, MODE 1%
20 OPEN "KB6:" AS FILE 2%, MODE 1%

.

.

100 CLOSE 2%

TERMINALS

At line 100, the CLOSE statement disassociates channel 2 from keyboard 6
but also disables binary input on channel 1. Keyboard 6 remains open in
normal mode on channel 1.

The recommended method of using binary input mode is to open a device other
than the wuser's terminal for binary input on any non-zero channel. The
program interacts normally with the user's terminal by executing standard
INPUT and PRINT statements and gathers data from the binary device on the
non-zero channel by executing GET statements.

Since binary input disables all special character handling, the system
cannot detect an end of file on a terminal transmitting binary data.

4-4

TERMINALS
4.3 MULTIPLE TERMINAL SERVICE ON ONE I/O CHANNEL

The multiple terminal feature allows one program to interact with several
terminals rather than merely having each terminal open for input or output.
This feature is useful in applications such as order entry, inventory
control, and query-response where the same function is performed on several
terminals but a separate job for each terminal is undesirable or
inefficient.

To implement control of several terminals, the BASIC-PLUS program must
first establish a master terminal by opening a keyboard on a non-zero
channel. Two forms of the OPEN statement are possible. For example,

10 OPEN "KB:" AS FILE N%
or
10 OPEN "KB4:" AS FILE N%

The first form associates channel N% with the current keyboard and defines
it as the master terminal. The second form associates channel N% with
keyboard number 4 and defines it as the master terminal.

The program exercises control of additional, or slave, terminals, through
special forms of the Record I/0O GET and PUT statements. The terminals must
be reserved to the job but must not be open in the program. The user can
establish the terminals as slave terminals with the ASSIGN immediate mode
command before he runs the program. Alternatively, the program can assign

these terminals by executing the number 10 SYS system function call to FIP.
The program can control any number of these additional terminals up to the

maximum number of terminals on the system.

To perform input and output operations, the program uses GET and PUT
statements in a special manner. The RECORD option specifies a particular
action and keyboard number.

A PUT statement of the following form performs output to a keyboard, either
master or slave.

TIAT

10 PUT #1%, RECORD 32767%+1%+K%, COUNT N3

The variable K% in the RECORD option is the unit number of the keyboard to
which output is directed. As a result, the number of characters specified
by N% in the COUNT option is transferred from the buffer on channel 1 to
the designated keyboard. The only special error which can occur is NOT A
VALID DEVICE (ERR = 6), indicating that the terminal addressed is neither
the master keyboard nor a slave keyboard reserved to the program. Other
possible errors such as I/0 CHANNEL NOT OPEN (ERR = 9) work in the standard
fashion.

TERMINALS

A GET statement of the following form performs input from a keyboard,
either master or slave.

10 GET #1%, RECORD 32767%+1%+K%

The variable K% in the RECORD option 1is the unit designator (keyboard
number) of the terminal from which input is requested. The GET statement
transfers the data from the terminal input buffer to the buffer for the
designated channel. The first character in the buffer contains the number
of the keyboard from which the input came. The total number of characters
transferred, including the keyboard number, is given by the RECOUNT
variable. The program accesses the data by use of the standard FIELD
statement. Since the first character of the I/0 buffer is the keyboard
number, the length of the data input is given by RECOUNT-1%. If no input
is available Ffrom the designated terminal, the USER DATA ERROR ON DEVICE
error (ERR = 13) results. Since this error is recoverable, the program can
execute an appropriate ON ERROR GOTO routine.

The following form of the GET statement requests input from any one of the
multiple terminals.

10 GET #1%, RECORD 32767%+1%+16384%+5%

If input is pending from any terminal, the contents of that terminal's
buffer are transferred to the buffer for the designated channel. The first
character in the buffer is the keyboard number of the terminal from which
input came. As described above for input from a specific keyboard, the
FIELD statement can access the sending keyboard number and the data sent.
The variable S% can have the following values:

Value Meaning
S%$=0% GET statement waits until input is available from any

one of the terminals. The system waits indefinitely if
no input is pending. When input is available, the
system transfers the data and the program accesses the
data as described above. A USER DATA ERROR ON DEVICE
error (ERR =13) may occur due to a race condition with
CTRL/C. No data is lost; simply re-issuing the GET
statement continues operation.

1%<5%<255% GET statement waits up to S% seconds for input from any
terminal. If no input is available from any terminal
in S% seconds, the USER DATA ERROR ON DEVICE error
(ERR = 13) occurs.

S$=4096% Binary data (see Section 4.2)
S%=8192% If no input is pending from any of the terminals, the

USER DATA ERROR ON DEVICE error (ERR = 13) occurs
immediately (see Section 4.1).

TERMINALS

A CTRL/C combination typed at any one of the slave terminals passes a
CHR$(3) character to the program but does not terminate the program. The
RECOUNT variable contains the value 2% representing the keyboard number and
the CTRL/C character. The program can process the CTRL/C character as a
special character. If CTRL/C is typed at the master terminal, the system
terminates the program in the standard fashion.

A CTRL/Z combination typed at a master or at a slave terminal causes the
END OF FILE ON DEVICE error (ERR = 11) to occur. The unit number of the
keyboard causing the error is returned as the first character in the buffer
on the channel. The value of the RECOUNT variable is meaningless.

When the value 4096% is also included in the RECORD option, binary data can
be output using this multiple terminal service. For example,

100 PUT #N%, RECORD 32767%+1%+4096%+K%, COUNT M%

is used to output the number of bytes of binary data specified by M% to the
keyboard whose unit number is the variable K%.

4-7

TERMINALS

4.4 ESCAPE SEQUENCES

4.4.1 Output Escape Seguences

When sending an escape sequence to a terminal, use the value CHR$(155) (233

octal) for the escape character rather than CHR$(27) (033 octal). The
system translates CHR$(27) to CHR$(36) (044 octal) which is the dollar sign
($) character. The system translates neither the CHR$(155) character nor

the character following it. This process allows the terminal to interpret
the escape sequence transmitted.

4.4.2 Input Escape Sequences

There are two I/0 operating modes which are set by the TTYSET system
program: NO ESC SEQ mode and ESC SEQ mode. In NO ESC SEQ mode, an
incoming ESC character -- CHR$(27) (033 octal) -- acts as a delimiter. The
system echoes a CHRS(36) (044 octal), which is the dollar sign ($)
character.

In ESC SEQ mode, however, an incoming CHR$(27) merely sets a flag
indicating that the next input character 1is special; no character is
echoed when CHR$(27) is input in ESC SEQ mode. The next character input
after ESC acts as a delimiter, but does not echo. This second character
clears the previously set flag. The system then reverses the order of the
last two characters and translates the CHRS$(27) to CHRS$(155) (233 octal).

For example, in ESC SEQ mode, if the two incoming characters are:
ESC P (CHR$(27) ,CHRS(80))
the system transposes this to:
P ESC (CHRS$(80) ,CHRS (155))
In this way, the character input immediately after ESC is retained and can

be used or tested by the user program. Some terminals (see following
sections) and other devices respond to escape sequences.

4-8

TERMINALS
4.5 VTO05 CURSOR CONTROL AND SPECIAL CHARACTERS
The VTO05 alphanumeric display terminal recognizes certain control

characters that are not used on other terminals. These are summarized in
Table 4-1.

Table 4-1
VT05 Special Display Characters

Character String Meaning

CHRS (8) BACKSPACE (move cursor left one character).
CHRS (11) CURSOR DOWN (one line, same position).

CHRS (14) Direct cursor control

The next two characters give x- and y-coordinates of
the new cursor position on the 20-line by 72-character
VT05 screen.

The characters following CHRS (14) are, first,

CHRS (32+Y) and second, CHRS (32+X) . Y is the
y-coordinate (0 to 19), and X is the x-coordinate (0 to
71).

CHRS (24) CURSOR RIGHT (one character)

CHRS (26) CURSOR UP (one line, same position).

CHRS (29) HOME UP (move cursor to upper left hand corner of
display screen).

CHRS (30) ERASE EOL (erase to end of line).

CHRS (31) ERASE EOS (erase to end of screen).

In the statements shown below, X% is the column number (X-axis) and Y% is
the 1line number (Y-axis). The upper left-hand corner is defined by the
coordinates, (0,0). The following statement shows how direct cursor
control (CHRS$(14)) is used to position the cursor to (X%,Y%):

PRINT #N%, CHRS$ (14%); CHRS (32%+Y%); CHRS (32%+X%);
The semicolons prevent automatic carriage return.

The statement shown below combines CHR$ (14) and CHRS (32). The cursor is
positioned to (X%,Y%) and the screen is cleared.

PRINT #N%, CHR$(14%); CHRS (32$+Y%); CHRS (32%+X%); CHRS$(31%);

4-9

TERMINALS
4.6 VTS0 CURSOR CONTROL AND SPECIAL CHARACTERS

The Full Duplex/Full Duplex with Local Copy switch on the VT50 specifies
the source of data received in Remote mode. When this switch is set to
Full Duplex with Local Copy, data entered at the keyboard is transmitted to
the terminal's receiver at the same time it is sent to the host computer.
when the switch is set to Full Duplex, data transmitted from the keyboard
goes to the computer only. This data may be echoed from the computer back
to the terminal to give a visual image of the information transmitted.

Because it permits an interactive relationship between the VT50 and the
RSTS-11 system, Full Duplex is the most versatile of the two settings. For
example, in Full Duplex the user can create unigue escape seguences; the
receipt of ESC 1 (27 49) from the terminal can call one routine, ESC 2
another, and so on.

TERMINALS

The VT50 alphanumeric display terminal recognizes certain control
characters that are not used on other terminals. These are summarized in
Table 4-2.

Table 4-2
VT50 Special Display Characters

Character String Character Meaning
CHRS (8) BACKSPACE (move cursor left one character).
CHRS (11) CURSOR DOWN (one line, same position).

ESC (CHRS$ (155)) Followed By:

CHRS (65) A CURSOR UP (one line, same position).

CHRS$ (67) C CURSOR RIGHT (one character).

CHRS (72) H HOME UP (moves cursor to upper left hand
corner of display screen).

CHRS (74) J ERASE EOS (erase to end of screen).

CHRS (75) K ERASE EOL (erase to end of line).

CHRS (90) Z Requests the terminal to identify itself.

The VT50 terminal will respond with ESC
(27 47 65). The VT50 terminal with copier
will respond with ESC (27 47 66).

CHRS (91) [Enables Hold Screen Mode.

CHRS (92) \ Disables Hold Screen Mode.

TERMINALS
4.7 PSEUDO KEYBOARD OPERATIONS

A pseudo keyboard is a non-physical device which allows one job to control
other jobs on the system. The number of pseudo keyboards on the system 1is
determined at system generation time. The system denotes a pseudo keyboard
by a device designator of PK and associates each pseudo keyboard unit to a
keyboard unit number but not to a physical terminal device.

The pseudo keyboard device has the characteristics of a terminal but has no
physical device associated with it. As such, the pseudo keyboard has both
input and output buffers to which user programs send input and from which
they extract output. The output buffer of the pseudo keyboard is the input
buffer for the keyboard unit and vice versa, yet no physical device 1is
involved.

The system transfers data to the pseudo device in full duplex mode. This
mode means that strings transmitted by PUT statements are echoed by the
system and available to the program by GET, INPUT or INPUT LINE statements.
In addition, a CR character (CHR$(13)) sent to the PK buffer is returned
from the KB buffer as a CR and LF character sequence.

Use of a pseudo keyboard involves a controlling job and a controlled job.
The controlling job initiates operations by performing output operations to
the pseudo keyboard unit. It utilizes the pseudo keyboard to perform
output to and receive input from the controlled job. The controlled job
performs input/output operations on its own terminal, KB:. In effect, the
controlled job does not know it 1is using a pseudo keyboard; only the
controlling job is specifically using a pseudo keyboard.

A controlling job accesses a pseudo keyboard unit by the OPEN statement
with the device designator PKn:, where n is the unit number of the pseudo
keyboard. For example,

10 OPEN "PKO:" AS FILE 1%

The OPEN statement associates pseudo keyboard unit 0 with internal channel
number 1. If the device 1is assigned to or opened by another job, the
ACCOUNT OR DEVICE IN USE error (ERR = 3) occurs. Otherwise the program can
subsequently perform GET and PUT operations on the device by means of the
buffer on channel 1.

To obtain data output from the controlled program, the controlling program
executes a Record 1I/0 GET statement on the proper internal channel. For
example,

40 GET #1

makes data from the pseudo keyboard available in the buffer for channel 1
of the controlling program. If no input is available, an END OF FILE ON
DEVICE error (ERR = 1l1l) occurs. When no error occurs, the BASIC-PLUS
variable RECOUNT contains the number of bytes in the buffer. The response
from a GET statement 1is immediate. The controlling program is never
stalled pending data availability. This means that when a GET is executed,
the contents of the buffer is returned to the controlling job - whether it
is a single message, multiple messages, or a message fragment.

If the controlled job performs output faster than the controlling Jjob can
execute GET statements, the keyboard output buffer fills. Consequently,
the controlled job enters an output wait state (TT) as if it were waiting
for a real terminal. When the stall occurs, the system makes the
controlling job eligible to run if it was in the SLEEP state so that it can

TERMINALS
execute GET statements and receive the output from the controlled job.

To perform output to a pseudo keyboard, the controlling program executes a
Record 1I/0 PUT statement with a coded value in the RECORD option. For
example,

100 PUT #N%, RECORD R%, COUNT C%

The value N% is the internal channel number on which the PK device is open.
The value C3% 1is the number of bytes the program sends from the buffer to
the PK device. The data sent from the buffer must be as one would type it
at a keyboard. For example, 1if the controlling job sends a line which
would normally be terminated by the RETURN key, the line sent must include
only the CR character (CHRS$ (13)) and the value C% must reflect the CR
character in the total number of bytes sent. The system automaticaly
appends a LF character to a line terminated by a CR character. (The user
normally does not type the LINE FEED key when he enters a 1line by typing
the RETURN Kkey.)

The value R% in the RECORD option determines the actions the system
performs for the specific PUT statement. R% is a decimal integer whose
value the system interprets on a bit by bit basis. The system examines
only the 1low order four bits numbered 0 through 3 counting from right to
left in the 16-bit word. The system executes the PUT statement depending
upon whether certain bits in the value R% are on or off.

The flowchart of Figure 4-1 shows the actions the system performs by
testing each bit in the RECORD R% option. For example, bit 0 (value =1)
determines whether the system attempts to send data or performs tests
before it sends data. Bit 1 (value = 2) is used to indicate whether the

pseudo keyboard is waiting for a system command or is waiting for program
input. Bit 2 (value = 4) actually sends data to the pseudo keyboard (if
bit 0 is one) or simply returns control to the user program. Lastly, bit 3
(value = 8) tells the system, upon encountering a lack of small buffers,
either to return an error or to wait until small buffers are available.

By alternately using PUT and GET statements, the controlling program starts
a controlled Jjob on the pseudo keyboard device. RECORD 1% sends data to
the keyboard and can send LOGIN system program commands. A GET statement
can retrieve output from the controlled job. For example, in response to
the string "HELLO 10/10"+CHR$(13) sent to the pseudo keyboard, the system
runs the LOGIN program. A subsequent GET statement can retrieve the echo
and the PASSWORD: message printed by LOGIN. The controlling program can
then send the proper password string and ensure that LOGIN accepted it.

Once the controlled job is running, the controlling program can send system
commands, program commands, and program responses to the PK device using
various RECORD option values in the PUT statement. The program should send
only one line at a time and retrieve each program or system response.
Also, the controlling program must not send a line unless the PK device is
waiting for keyboard input. The controlling program should always check
the PK device status before attempting to send data.

The RECORD 6% option (values 4 and 2) in a PUT statement can ensure that
the controlled job is in editor mode (BASIC-PLUS command level). If it is
waiting for KB input but is not in editor mode, the system denerates error
number 28. The user program must then force a CTRL/C combination to the
controlled job. Otherwise, control is returned to the user program which
can then transmit a system command.

Now to execute a program under the controlled job, the controlling program

TERMINALS

sends the RUN command with the program name to the PK device. To ensure
that the controlled job is in the KB state awaiting keyboard input, the
program first uses the RECORD 6% option in the PUT statement. If the
controlled job is waiting for input, control is returned to the user
program. Otherwise, the system generates error number 3.

NO ERR=5
(JOB IS NOT
LOGGED 1IN)

ERR =3
(DEVICE IN
USE)

JOB

IN EDITOR

WAIT
?

ERR=28

(JOB IN KB
WAIT BUT NOT
EDITOR)

BIT DO NOT
2 SEND ANY
? DATA

SEND
CHARACTERS
TO KB:

ERR=4 RETURN

(NO ROOM FOR CONTROL EXIT
INPUT ON KB:) TO USER

WAIT UNTIL
ROOM IS
AVAILABLE

——

Figure 4-1
PUT Statement Actions for PK Output

4-14

CHAPTER 5

NON-FILE STRUCTURED DECTAPE

In non-file structured processing of DECtapes, the user program can access
specific physical blocks on the DECtape. To initiate non-file structured
processing, the user program gives only a device designator in the OPEN
statement. Of the three conventional forms of the OPEN statement, OPEN FOR
INPUT, OPEN, and OPEN FOR OUTPUT, only two are valid. The following two
statements,

100 OPEN "DT1l:" FOR INPUT AS FILE 1%
and
100 OPEN "DT1:" AS FILE 1%

are equivalent because both reading and writing of physical blocks on the
device are permitted. The following statement:

100 OPEN "DT1l:" FOR OUTPUT AS FILE 3%

is invalid since it attempts to create a file.

After opening a DECtape device for non-file structured processing, GET and
PUT statements can retrieve and write specific physical blocks on the
device by means of the RECORD option. The record number specified is
interpreted as a block number. When the RECORD option specifies a negative
block number, the designated block is accessed backwards. {(Block 0 cannot
be accessed backwards.) For example:

200 GET, #1% RECORD -4%
reads block 4 of the file opened on channel 1% backwards.

In writing non-file structured DECtape files, the user can specify how
blocks should be accessed. But a file on a file structured DECtape is
written on every fourth block (i.e., Block N, N+4, N+8, etc.) of the
DECtape by the RSTS/E system. This procedure optimizes DECtape access
time. When the system reaches the last block of the tape, it begins to
write blocks backwards 1in intervals of four. It then repeats the entire
process to fill in the available blocks on the DECtape. Therefore, to read
a file structured DECtape in non-file structured mode, read every fourth
block of the tape and use the RECORD -N% option to read alternate blocks
(in the order in which they were written) backwards. Repeat this procedure
to read the remaining blocks on the DECtape.

In file structured mode, since the blocks are not contiguous, the first
word of each block of a file is a pointer to the next logical block of the
file. These blocks are linked by these pointers. The DECtape format

NON-FILE STRUCTURED DECTAPE

diagram (Figure 5-1) shown on the next page is provided so that non-file
structured DECtape access time can be minimized.

5-2

79
71
72
73

74

76
77
198
g1
192
143

194

1977

NON-FILE STRUCTURED DECTAPE

RESERVED FOR BOOTSTRAP

LINKED FILES

MASTER/PERMANENT BIT MAP

LINKED FILES

256
words

MFD BLOCK #2

RSTS does not read or check
DECtape UIC's.

When zeroing a DECtape RSTS
enters a UIC of [1,1].

UFD_BLOCKS

.
RSTS ignores - LOCK Bits, USAGE COUNT, wiigs
and END BLOCK entries in the UFD.

RSTS checks the "TYPE" bit (bit 15)

and will allow a "CONTIGUOUS"™ file

to be OPENed.

wWhen creating a DECtape file, RSTS
writes a protection code of 233g (for
DOS-11'compatibility). But RSTS does
not read or check DECtape protection
codes.

256

words

A DECtape has 576 blocks of 256 words each.

The first word in every block of a linked file is a pointer to the next
logical block of that file.
of the next logical block; it is positive for forward tape motion and
negative for backward tape motion.)

{The pointer contains the physical block #

The remaining 255 words are data.
DECtape directory structure can catalog and map a maximum of 56 files.

FILE BIT MAPS FOR FILES 1-7 -
FILE BIT MAPS FOR FILES 8-14 ’/’/
FILE BIT MAPS FOR FILES 15-21 | _-~~
FILE BIT MAPS FOR FILES 22-28
MAPS FOR FILES 29-35 | > 256
FILE BIT LE! . words
FILE BIT MAPS FOR FILES 36-42 s
~
~
FILE BIT MAPS FOR FILES 43-49 SN
~N
~
FILE BIT MAPS FOR FILES 5§-56 AN
.
MFD BLOCK #1 o L
MFD BLOCK #2 o
UFD BLOCK #1 o 256
words
UFD BLOCK #2 “l

Each File Bit Map has 36
FILE BIT MAP (36 WORDS) FILE 22 words (=576 bits)
FILE BIT MAP (36 WORDS) FILE 23
Each bit maps 1 block
FILE BIT MAP (36 WORDS) FILE 24 of the DECtape. (A set
bit means an allocated
FILE BIT MAP (36 WORDS) FILE 25 block; a clear bit means
FILE BIT MAP (36 WORDS) FILE 26 | 2 ree block.)
FILE BIT MAP (36 WORDS) FILE 27
Each File Bit Map maps
FILE BIT MAP (36 WORDS) FILE 28 the entire DECtape.
(4 WORDS UNUSED}
1st word: 1@1g (link to MFD block #2)
2nd word: 4 (interleave factor)
3rd word: 1@4g (pointer to lst Master Bit Map)
4th word: 1@4g (pointer to non-existant 2nd
Master Bit Map)
252 words unused

word: @ (link to non-existant MFD block #3)

uIC

POINTER TO UFD
START BLOCK (1#2g)

OF WORDS PER
UFD ENTRY (=9)

up to 63 4-word entries
each with format shown

\.remainder unused. 2

flst word: 1@3g (link to next UFD block) or @ (end of
chain)

FILENAME (PART 1) RADS{#

28 file entries (max) FILENAME (PART 2) RADSS

9 words each with this EXTENSION RADS@
format:
1 CREATION DATE
t = File Type P .UéA.Gé‘
1.
= Linked Lock COUNT
1 = Contiguous START BLOCK #
LENGTH
END BLOCK #
PROTECTION
\3 words unused copE

4 word header

36 word bit map of entire DECtape (a logical
ORing of all File Bit Maps)

Figure 5-1
DECtape Format

CHAPTER 6

CARD READER

Standard (80-column) data processing cards can be read in any one of three
modes: ASCII, packed Hollerith, or binary. One card can be read (and the

information on it stored) in any mode.

6.1 ASCII MODE

The card reader reads cards punched with the standard ASCII codes, as shown
in Appendix B. One of three sets of codes may be used: 029, 026, or 1401
EBCDIC. The code set for the system is specified during system generation.
Cards punched in other formats are not acceptable to RSTS/E. The
end-of-file card for RSTS/E contains a 12-11-0-1 or a 12-11-0-1-6-7-8-9
punch in card column 1. Reading an end-of-file card causes an END OF FILE
ON DEVICE error (ERR = 11) to occur, which can be trapped with an ON ERROR
GOTO statement.

The RECOUNT variable (see Section 12.3.1, BASIC-PLUS Langquage Manual)
contains the number of characters read following every input operation. 1In
the ASCII read mode, trailing spaces are ignored and carriage return and
line feed characters are appended making the value of the RECOUNT variable
two more than the number of punched columns per card. Consequently, the
RECOUNT variable can have a value between 2 (for a blank card) and 82 (for
80 columns of data). For example, consider a card punched as follows:

(columns 1 to 26 are punched, 27 through 80 are blank); the following
program executes as shown:

CARD READER

100 OPEN "CR:" AS FILE 1%
110 INPUT LINE #1%, AS
120 PRINT LEN(AS)

130 PRINT ">" AS$ "<"

140 END

RUNNH

28
>ABCDEFGHIJKLMNOPQRSTUVWXYZ
<

In this example the trailing spaces in card columns 27 through 80 are
deleted, and the two characters, carriage return and line feed are added,
making a total of 28 characters in the string AS.

Cards can be read with INPUT, INPUT LINE or GET statements. If a card is
misread, or contains any illegal punches, a USER DATA ERROR ON DEVICE error
occurs. If the card is read with a Record I/0 GET statement, the buffer
contains data for each column punched, and any columns that contain illegal
punches are stored as RUBOUT (ASCII 127) codes. Therefore, the program can
determine in which column(s) the error(s) occurred.

CARD READER
6.2 PACKED HOLLERITH MODE
In the packed Hollerith read mode, the value of the RECOUNT variable is
always 80, since each of the 80 card columns corresponds to a single data

byte and trailing spaces are not ignored. The value of each byte 1is the
sum of the punched row positions, as shown in Figure 6-1.

Associated Values of Rows

#12 —_— 128
#11 64

Rows

H= 3 M S S 3k G 3 3
W OO WO
H O NGO WwWN

d

Columns

BIT 7 6 5 4 3 2 1 0

ROW 12 11 | @ 9 8 1-7

VALUE 128 64 32 16 8 4 2 1

D1AGRAM #1

Figure 6-1
Packed Hollerith Read Mode

Notice that the associated values of rows 1 through 7 are simply 1 through
7 respectively. Only one of these seven rows can be punched per column.
If none of these seven rows is punched, the value of the byte is 0.

CARD READER
6.3 BINARY MODE
The binary read mode associates two data bytes with each <card column.
Therefore, the value of the RECOUNT variable is always 160. Once again,

the value of each byte is the sum of the punched row positions, as shown in
Figure 6-2.

Associated Values of Rows

#12 —_— _ N -
#11 - 4
#0 SECOND BYTE —_—2
#1 | — vV _ U |
2 - 128
3 64
Rows # 4 —_— 32
#5 —_____1le
6 FIRST BYTE T s
#7 4
#8 2
$#9 |— — — — 1

Columns

BIT 15 14 13 12 11 10 9 8 7 6 5 3 2 1 0

ROW g | | g g|2|ln|lg| 1] 2] 3|4 |6|7|8] 9
SECOND BYTE FIRST BYTE
DIAGRAM #2
Figure 6-2

Binary Read Mode

6-4

CARD READER

6.4 SETTING READ MODES

A read mode is specified in an OPEN statement (with the MODE option) or a
GET statement (with the RECORD option). The difference between specifying
the read mode in a MODE option and in a RECORD option is discussed below.
The corresponding values of the expressions in the MODE and RECORD options
are listed in Table 6-3. The default mode is 0 (ASCII). When a MODE or
RECORD option is used, the expression parameter must be specified; failure
to do so results in an error message.

6-5

CARD READER

Table 6-3
Specifying Read Modes

MODE or RECORD Expression Specified Read Mode
MODE 0 ASCII
OPEN MODE 1 Packed Hollerith
Statement MODE 2 Binary
RECORD 256 ASCII
GET RECORD 257 Packed Hollerith
Statement RECORD 258 Binary

For example:

60 OPEN "CR:" FOR INPUT AS FILE 2%, MODE 1%
110 GET #2%, RECORD 258

Line 60, above, specifies the packed Hollerith read mode and 1line 110
specifies the binary read mode of operation for inputting the information
on the first card.

A read mode specified in an OPEN statement supersedes previous read mode
specifications. A read mode specified in a GET statement, however,
overrides previous read mode specifications in the program for one card
only. These concepts can best be illustrated by an example. Consider the
program segment shown below.

CARD READER

Specified Read Mode
at This Point

100 OPEN "CR:" FOR INPUT AS FILE 1%, MODE 1% Hollerith
200 GET #1%, RECORD 256% ASCII

300 GET #1% Hollerith
350 CLOSE 1% ! OPTIONAL CLOSE IN THIS CASE

400 OPEN "CR:" FOR INPUT AS FILE 6%, MODE 0% ASCII

500 GET #6% ASCII

600 GET #6%, RECORD 258% Binary

700 CLOSE 6%

After line 100, above, sets the read mode to Hollerith, line 200 overrides
it, setting the read mode to ASCII temporarily. When line 300 is executed
without a RECORD option, however, the read mode reverts to the OPEN
mode -- in this case, Hollerith. The next OPEN statement (line 400)
supersedes the previous one, setting the read mode to ASCII permanently.
Line 500 is executed without a RECORD option, so the next card is read also
in ASCII read mode. Closing a CR file (line 700), of course, cancels the
card reader's read mode. When a file has been closed, executing an OPEN
statement is the only way to re-establish a read mode.

6-7

CHAPTER 7

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.1 GENERAL SYS SYSTEM FUNCTION CALLS

S5YS system function calls allow a user program to perform special 1I/0
functions, to establish special characteristics for a job, to set terminal
characteristics, and to cause the monitor to execute special operations.

The specified SYS format is employed for two reasons. One, the calls are
unique to the BASIC-PLUS implementation of the BASIC language. As such,
the calls are system dependent and have calling format different from any
BASIC language call. Second, the SYS format allows the usage of a variable

number of parameters.

SYS calls are separated into two classes: privileged and non-privileged.

The privileged calls can be used only by a privileged user or by a
privileged program. The non-privileged calls can be used by anyone and are
completely safe in the sense that their misuse can do no damage to other

programs.

7.1.1 8SYS System Function Formats And Codes

The general format of the SYS call is as follows:
V$ = SYS(CHRS(F) + 0OS)

where:
Vs is the target string returned by the call
F is the SYS system function code

0s$ is the optional (by function code) parameter string passed
by the call

Function codes denoted by F in the general format are from zero through
nine, inclusive. SYS calls which specify a code outside of these numbers
or which pass a zero length string generate the ILLEGAL SYS() USAGE error
(ERR = 18). The following list summarizes the codes and their usages. The
subsequent pages describe the usage, calling format, and purpose of the
calls.

Function
Code (F)

0

1

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Usage

Cancel "0 effect on console terminal
Enter tape mode on console terminal
Enable echoing on console terminal
Disable echoing on console terminal

Enable single character input mode (ODT submode)
console terminal

Exit to editor with no READY message
SYS call to the file processor

Get core common string

Put core common string

Exit to editor and set up NONAME program

on

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.1.2 General SYS System Function Calls

7.1.2.1 Cancel "0 Effect On Console Terminal - Not Privileged (F=0)

Data Passed:

Byte (s) Meaning
1 CHRS$ (0%) , the cancel "0 effect code
2 Optional. If specified, CHR$ (N%) where N% is the
number of the channel on which the system executes
the call.

Data Returned: The target string is equivalent to the passed string.
Discussion:

This call cancels the effect of the user typing a CTRL/O combination
at the program's console terminal. If the call is in the form
SYS(CHR$ (0%) + CHR$(N%)), the system performs the action on the
terminal open on channel N%. See Section 3.7 of the RSTS-11 System
User's Guide for a description of the CTRL/O combination~

7.1.2.2 Enter Tape Mode On Console Terminal - Not Privileged (F=1)

Data Passed:

Byte (s) . Meaning
1 CHR$ (1%), the enter tape mode code
2 Optional. 1If specified, CHR$(N%) where N% is the
number of the channel in which the system executes
the call.

Data Returned: The target string is equivalent to the passed string.
Discussion:

The action of this call is the same as that of the TAPE command
described in the RSTS-11 System User's Guide. If the call is in the
form SYS(CHRS$ (1%) + CHRS(N%)), the system performs the action on the
terminal open on channel N%.

7-3

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.1.2.3 Enable Echoing On Console Terminal - Not Privileged (F=2)

Data Passed:

Byte (s) Meaning
1 CHRS$ (2%), the enable echoing code
2 Optional. 1If specified, CHR$(N%) where N% is the
number of the channel on which the system executes
the call.

pData Returned: The target string is equivalent to the returned string.
Discussion:
This code cancels the effect of SYS calls with codes 1 and 3. If the

form of the call is SYS(CHRS (2%) + CHR$(N%)), the action is performed
on the terminal open on channel N%.

7-4

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.1.2.4 Disable Echoing On Console Terminal - Not Privileged (F=3)

Data Passed:

Byte (s) Meaning
1 CHR$ (3%), the disable echoing code
2 Optional. 1If specified, CHR$(N%) where N% is the
number of the channel on which the system executes
the call.

Data Returned: The target string is equivalent to the passed string.

Discussion:

This call prevents the system from echoing information typed at the
console terminal. As a result, information such as a password is kept
secret but accepted as valid input by the system. If the form of the
call 1is SYS(CHR$(3%) + CHRS(N%)), the action is performed at the
terminal open on channel N%.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.1.2.5 Enable Single Character Input Mode (ODT Submode) On Console
Terminal - Not Privileged (F=4)

Data Passed:

Byte (s) Meaning
1 CHR$ (4%), the enable single character input mode
code
2 Optional. If specified, CHR$(N%) where N% is the
number of the channel on which the system executes
the call.

Data Returned: The target string is equivalent to the passed string.
Discussion:

Allows a single character to be accepted as input from the terminal.
Normally, the system waits until a line terminated by a RETURN, LINE
FEED, FORM FEED, or ESCAPE character has been typed before accepting
input. In single character mode, a character typed at the terminal is
passed immediately to the program by the next keyboard input request
statement without waiting for the delimiting character.

This function must be enabled prior to every input request statement
that passes a single character to the program. A GET statement is
used as the input request statement. (INPUT or INPUT LINE statements
cause repeated generation of the input request until a line terminator
is detected and, therefore, must not be used.)

If a program performs other lengthy operations before it executes
either another SYS <call and GET statement or other input/output
operation at the terminal, it allows time for the user to type more
than one character. To provide for such a possibility, the program
should examine the system variable RECOUNT after executing each GET
statement. This procedure determines how many characters the user
typed between keyboard input operations and enables the program to
process all the characters without losing any.

Since this function is used in the system program ODT.BAS, it |is
sometimes referred to as "ODT submode". If the form of the call is
SYS (CHRS$ (4%) + CHRS$ (N%)), the action is performed on the terminal open
on channel N%.

7-6

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.1.2.6 Exit To Editor With No READY Message - Not Privileged (F=5)
Data Passed:
Byte (s) Meaning

1 CHRS$ (5%), the exit with no READY code

Data Returned: No data is returned.
Discussion:
This call causes the same effect as the END statement, except that it

can appear anywhere in the program and does nct cause a READY message
to be printed.

7.1.2.7 FIP Function Call - Both Privileged and Not Privileged (F=6)

See Section 7.2 for a description of SYS calls to the file processor.

7.1.2.8 Get Core Common String - Not Privileged (F=7)
Data Passed:
Byte(s) Meaning

1 CHR$ (7%) , the get core common string code

Data Returned: The target string is the contents of the core common
area.

Discussion:

Allows a program to extract a single string from a data area loaded by
another program previously run by the same job. The data area is
"called the core common and is from 0 to 127 8-bit bytes long. Refer
to SYS function code 8.

7-7

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.1.2.9 Put Core Common String - Not Privileged (F=8)

Data Passed:

Byte (s) Meaning
1 CHRS (8%), the put core common string code
2-128 The string to put in the core common area

Data Returned: The target string is the passed string.
Discussion:

Allows a program to load a single string in a common data area called
core common. This string can be extracted later by another program,
running under the same job and called via the CHAIN statement. The
string is from 0 to 127 8-bit bytes long. If the string to be put
into the core common area is longer than 127 bytes, the system sets
the length of the core common string to 0. Refer to SYS function code
7.

This function provides a means for passing a limited amount of
information when a CHAIN statement is executed. If a larger amount of
information is to be passed, it must be written to a disk file and
read back by the later program.

7-8

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.1.2.10 Exit To Editor And Set Up NONAME Program - Not Privileged
(F=9)

Data Passed:
Byte(s) Meaning

1 CHRS$ (9%), the exit and set up NONAME code

Data Returned: The target string is equivalent to the passed string.

Discussion:

This function causes the same actions as the END statement placed in
the code, and, in addition, clears the program out of memory. This is
the proper method of stopping a program that is not to be rerun.
Also, the same action is performed by the command NEW NONAME.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2 SYS SYSTEM FUNCTION CALLS TO FIP (FUNCTION CODE 6)
The SYS function call whose code is 6 is a more specialized case of
the general system function call. It is specialized by a subfunction
code called the FIP code. The FIP code causes a dispatch call to be
made to special resident or non-resident code that performs File
Processing.
The format of the call is:

VS = SYS(CHRS$(6%) + CHRS(F0) + OS)
where:

v$ is the data (target) string returned by the call

FO is the FIP function code

0$ is the optional (by function) parameter string

The general format of the target variable (V$) is:

Byte (s) Meaning
1 Job number times 2
2 Value of Internal Function called (meaningless to
general user)
3-30 Data returned
NOTE

Thirty bytes are always passed back.
Unused bytes are either internal data or
0.

The proper use of the FIP system function call requires that the wuser
program build a parameter string to pass and that the program later
extract the data from the returned string, called the target string.
Each call returns a string of 30 bytes, each byte (or character) of
which may or may not contain useful information. The descriptions of
the FIP codes specify the contents of each useful byte in the string,
from which the user determines whether the information contained is of
interest.

7.2.1 Building A Parameter String

Some FIP calls require no parameters except the function and
subfunction codes; other FIP calls require either variable length
parameter strings or very simple parameter strings. For such FIP
calls, it 1is usually easiest to set up and execute the function call
in a single statement. The following sample statements show the
procedure.

A$ = SYS(CHRS$(6%) + CHRS$(-7%))
{ENABLE CTRL/C TRAP

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

! (NO PARAMETER STRING)

A$ = SYS(CHR$(6%) + CHRS$(-10%) + "DKO:FILE.EXT")
IFILE NAME STRING SCAN
! (VARIABLE LENGTH
! PARAMETER STRING)

A$ = SYS(CHRS$(6%) + CHRS(-8%) + CHRS(1%))

|FCB/DDB INFORMATION
! FOR FILE OPEN ON
CHANNEL 1

(SIMPLE PARAMETER
STRING)

Many FIP calls require more complex data formats. For example, the
kill a Jjob FIP call, FO = 8, requires byte 3 to be the job number to
kill, byte 27 to be 0, and byte 28 to be 255. A recommended method of
building the complex parameter string to pass to a function is to
dimension a 30 byte list (an integer array) and set the items 1in the
list to values which map into those required in the parameter string
format. The list can later be set to a character string by the CHANGE
statement before it 1is passed as the parameter string of the FIP
system function call. The resulting character string is in proper
format and contains the correct byte values so that it can be placed
as the parameter string of the FIP system function call. For example,

10 DIM A%(30%) !the string is 30 bytes

20 J% = 4% 'kill job number 4

30 A%(I%) = 0% FOR I% = 0% TO 30% !ZERO UNUSED ENTRIES

fq A%(0%) = 30% 10th element is length of
ist

50 A%(l%) = 6% 1SYS call code 6 (FIP call)

60 A%(2%) = 8% IFIP code 8 (kill job)

70 A%(3%) = J% !job number to kill

80 A%(27%) = 0% !this byte must be 0

90 A%(28%) = 255% !this byte must be 255

Following the code which builds the list is the CHANGE statement and
the call itself, as shown below.

100 CHANGE A% TO AS !generates character
. !string from the
. linteger list
200 BS = SYS (AS) linvoke system function call

7.2.2 Unpacking The Returned Data

In the example above, the action performed (kill a job) rather than
the data returned is of importance. However, many FIP calls return a
data string which is the primary interest of the user. In such a
case, the data in the string must be unpacked.

As in the case of building the parameter string, there are two
recommended methods of wunpacking the returned string. If the user
needs only a few pieces of the data, it may be easiest to operate
directly on the returned string. For example, if the user wants only
the 4-byte Radix-50 representation of a 6-byte string, the filename
string scan FIP call (FIP code -10) can be used as follows:

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
AS = MID(SYS(CHRS(6%) + CHRS(-10%) + SS$), 7%, 4%)

to extract bytes 7 through 10 of the returned string. To extract
numeric data, ASCII or CVT$% functions can be used.

In some cases, many pieces of the returned data are needed. In other
cases, the string returned by the FIP call is needed later to set up
another FIP call. 1In such cases, the user program can transform the
returned string to a 30-byte list using a CHANGE statement,

CHANGE AS$ TO A%
or
CHANGE SYS(...) TO A%

When the returned string has been converted in this manner, it is
necessary to do further conversions in order to get numeric data into
a usable form. Take, for example, the data returned by a FIP code of
15 (directory 1lookup on index). The 1layout of the data returned
specifies that bytes 11 and 12 are the filename extension encoded in
Radix-50 format. In order to convert those bytes into an ASCII
string, to OPEN the file, for example, the RAD$ BASIC-PLUS function
must be wused on the two bytes converted to a single integer. The
integer representation of each byte, however, occupies a full word, 16
bits in 1length. Thus, 1list items number 11 and 12 appear as the
following:

15 7)
A% (11) [] L, Byte 11 J

15 7 g
A%(12) [@ l Byte 12 I

A%(ll) contains the low byte portion of the Radix-50 word; A%(12)
contains the high byte portion of the Radix-50 word. The two bytes
must be combined into a single word and converted to the proper
character string representation. This 1is accomplished by the
following:

S$ = RADS (A% (11l) + SWAP%(A%(12)))
The SWAP% function reverses the bytes (the low byte takes the high

byte position and vice-versa) in an integer word. Graphically, the
operation appears as follows:

15 7 g 15 7 g
L g Byte 12 — |swaps (A%(12)) - [7 Byte 12 2]

Thus, byte 12 takes the high byte position in the word. The two words
are then combined by the + operator to form one word. The RADS
function performs the conversion on that one integer word to produce
the 3-character string representation of the file name extension.

7-12

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

The character string is assigned to the character variable S$ and 1is
in ASCII format.

To convert a longer string from Radix-50 to ASCII format, the above
procedure must be applied to each two bytes in the string. For
example, the filename from FIP call 15 is returned in bytes 7 through
10. In order to convert these bytes to ASCII format, use the
following routine.

AS = RADS (A%(7%) + SWAP% (A% (8%))
B$ = RADS (A%(9%) + SWAPS% (A% (10%)
F$ = AS + BS

or, in a single statement,

F$ = RAD$(A%(7%) + SWAP%(A%(8%))

)+
RADS (A% (9%) + SWAP% (A%(10)))

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.3 Notation And References Used In FIP Call Descriptions
Many FIP calls reguire that a project-programmer number (PPN) be
specified in the calling string, and several return a PPN. Where such
is the case, the PPN field is in the following general form.

Bytes X-(X+1) PPN
The value X is odd. The intended meaning of this notation 1is that
byte X in the string holds the programmer number, and byte (X+1) holds
the project number. For example, to set up a FIP call to zero an
account on a disk (FIP code 13), the calling format shows

Bytes 5-6 Project-programmer number

If the call is to be set up in a 30-entry list, A%, then the format
requires that

A% (5%)
A% (6%)

programmer number
project number

Many of the FIP calls described in this chapter return or require
integer data in two (consecutive) bytes of the returned data string.
When this is the case, the field in the returned string 1is described

in the format:

Bytes X-(X+1) integer value
If the return string is to be processed directly (that 1is, without
changing it to an integer array), then the integer value of the two
bytes can be obtained using the following statement.

1% = SWAP% (CVTS$%(MID(AS$,X,2%)))

where AS$ holds the returned string. If the returned data string is
first transferred to an integer array, A%, using the CHANGE statement,

then the integer value can be obtained using the statement below.

I$ = A%(X) + SWAPSR (A% (X+1%))
For example, the Get Monitor Tables (Part I) FIP call (FIP code -3)
returns the address of monitor's job table in bytes 11 and 12. If AS
holds the returned string, then either of the following two routines
put the address of the job table into the integer variable I%.

I$ = SWAP% (CVTS$$ (MID(AS,11%,2%)))

or

CHANGE A$ TO A%
I% = A%(11%) + SWAP%(A%(12%))

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

In some integer fields in the FIP calls, the value is a full 16-bit
unsigned integer between 0 and 65535. The sign bit indicates an extra
power of two rather than positive or negative. Since an integer value
in BASIC-PLUS 1is between -32768 and +32767; any value greater than
32767 must be stored as a floating point value. Assume that in some
SYS call, an unsigned integer is returned in bytes 5 and 6, and that
the returned string has been changed to an array, A%. As always, the
high byte of the integer is in byte 6, the low byte in byte 5. The
statement

Q = 256.*A%(6%) + A%(5%)

gets the full 16 bit value into the floating point variable, Q. Q 1is
always positive. Note that replacing the 256.* with SWAP%() causes
the expression to be first evaluated as a normal integer expression,
and then changed to a floating point value. The resulting value is
between -32768 and +32767. The 256.* forces the expression to be
evaluated as a floating point number.

To convert an unsigned integer to two bytes to pass to a SYS call also
requires special processing. Assuming that Q holds the unsigned
value, and that the value is to be placed in A%(5%) (low order) and
A%(6%) (high order), then the most direct method of transformation is:

A% (6%)
A% (5%)

Q/256.
Q-A%(6%) *256.

On PDP-11 computers without FIS or FPP (floating-point hardware),
division operations are relatively slow. On these machines, a faster
method is:

10 IF Q<32768.THEN Q% = Q
ELSE IF Q = 32768. THEN Q% = 32767% + 1%
ELSE Q = Q-65536.

20 A%(5%) = Q% AND 255%

30 A%(6%) = SWAP% (Q%) AND 255%

The disadvantage of this second method is that it requires more code.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

The filename string scan SYS function (FIP code -10) is wuseful as a
"front-end" for many FIP functions. Most of the FIP calls which
require device or filename information in their parameter strings
expect information in the format which the FIP -10 call returns it.
For example, FIP code 17, lookup a file by name, expects its calling
string to be passed in exactly the same format as that returned by the
FIP -10 call, with a change of only four data bytes. The following
routine sets up and executes the 1lookup call on the file
DKO:INVENT.DAT[10,20] using the filename string scan FIP call.

10 DIM A%(30%) ! SET UP LIST ARRAY.
20000 A$="DKO:INVENT.DAT[10,20]" ! SET UP VARIABLE.
20010 CHANGE SYS (CHRS (6%)+CHR$ (-10%)+AS$) TO A%

DO THE FNS CALL TO
SET UP ARRAY PROPERLY.
SET UP FOR 30 LONG.
THIS IS A FIP CALL
DISK LOOKUP BY NAME.
SET INDEX TO ZERO.
SET UP AS A STRING
AND DO THE CALL.

20020 A%(0%)=30%

20030 A%(1%)=6%

20040 A% (2%)=17%

20050 A%(3%) ,A%(4%)=0%
20060 CHANGE A% TO AS
20070 CHANGE SYS(AS$) TO A%
32767 END

S

In order to avoid redundancy in the descriptions in Section 7.2, any
field for any of the calls which are either passed to or returned from
the function in the same format as that returned by FIP code =10 are
identified by a + superscript after the field specification. For a
detailed explanation of fields so identified, see Section 7.2.4.1.

Table 7-1 is a quick reference index of the FIP functions in order of

FIP code (F0). For detailed information on each of the functions,
refer to the Section shown beside the name in the table.

7-16

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

This page left blank intentionally.

7

17

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Table 7-1

FIP SYS Calls (by Sub-function Code)

FUNCTION PRIVILEGED
CODE (F0) STATUS FUNCTION NAME PAGE
=23 No Terminating file name string scan 7-20
-22 Yes Set special run priority 7-56
=21 Yes Drop (temporary) privileges 7-59
-20 Yes Lock/unlock job in core 7-58
-19 Yes Set number of logins 7-89
-18 Yes Add run-time system 7-111
Yes Remove run-time system 7-113
Yes Load run-time system 7-114
Yes Unload run-time system 7-116
-17 Yes Name run-time system 7-110
-16 Yes System shutdown 7-38
-15 Yes Accounting dump 7-93
-14 Yes Change system date/time 7-39
-13 Yes Change priority/run burst/job size 7-54
~-12 No Get monitor tables - Part II 7-107
~-11 Yes Change file backup statistics 7-70
-10 No Filename string scan 7-20
-9 Yes Hangup a dataset 7-40
-8 No FCB/DDB Information 7-108
-7 No CTRL/C Trap enable 7-36
-6 Yes (1) Poke core 7-88
-5 Yes Broadcast to terminal 7-41
-4 Yes Force input to terminal 7-42
-3 No Get monitor tables - Part I 7-105
-2 Yes Disable logins 7-43
-1 Yes Enable logins 7-44
0 Yes Create user account 7-60
1 Yes Delete user account 7-62
2 Yes Clean up a disk pack 7-48
3 Yes Disk packs 7-45
Yes TTYSET 7-64
4 Yes Login 7-72
5 Yes Logout 7-74
6 Yes Attach 7-77
Yes Reattach 7-79
7 Yes Detach 7-75
8 Yes Change password/quota 7-49
Yes Kill job 7-51
Yes Disable TTY 7-52
9 No Return error messages 7-29
10 No Assign/reassign device 7-30
11 No Deassign device 7-32

(1)Poke core can be executed only from account [1l,1].

7-18

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Table 7-1 (Cont.)
FIP SYS Calls (by Sub-function Code)

FUNCTION PRIVILEGED
CODE (F0) STATUS FUNCTION NAME PAGE
12 No Deassign all devices 7-33
13 Both Zero a device 7-34
14 Both Read or Read and Reset Accounting
Data 7-90
15 No Directory lookup on index 7-95
No Special magtape directory lookup 7-97
16 Yes Set terminal characteristics 7-64
17 No Disk directory lookup on filename 7-100
No Disk wildcard directory lookup 7-101
18 No Send a message 7-85
Yes Declaring a receiver and receiving
a message 7-82
Yes Remove from receive table 7-87
19 Yes Enable/disable disk cacheing 7-109
- Yes PEEK function 7-117

The privileged status column indicates whether the SYS call can be
used only by a privileged user or by any user. A non-privileged user
who attempts to call a privileged SYS function always receives the
ILLEGAL SYS() USAGE error (ERR = 18). The notation BOTH in the
privileged status column indicates that some facilities of the
specified function are available to a non-privileged user, while the
privileged user has a more power ful set,

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.4 General Utility SYS Calls To FIP

The SYS calls to the file processor described in this section are
available to both privileged and non-privileged users.

7.2.4.1 File Name String Scan - Not Privileged (F0=-10)

(FO=-23)
Data Passed:
Byte (s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHRS$ (-10), the filename string scan code.

CHRS (-23) is the same as CHR$(-10) except that the
scan terminates on certain characters. See
discussion.

3-2 Character string to scan; can be any length.

Data Returned: Sets the STATUS variable and returns the following.

Byte (s) Meaning

1-4 Internal coding

5-6 Project-programmer number (0 means the current
account)

7-10 File name in Radix-50 format

11-12 Filename extension in Radix-50 format

13-20 Not used

21 If no protection code is found, this byte is 0.

Otherwise, this byte is 255 and byte 22 contains
the protection

22 Protection code when byte 21 is 255

23-24 Device name in ASCII format or 0 if none is found.
For example, DK and DT

25 Device unit number if byte 26 is 255

26 If this byte is 0, no explicit unit number was
found for the device. 1If this byte is 255, the
value in byte 25 1is the explicitly specified
device unit number. The 255 value here indicates
that a zero in byte 25 is explicitly unit 0 of the
device.

7-20

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Byte(s) Meaning
27-28 First flag word. See discussion.
29-30 Second flag word. See discussion.

Possible Errors:

Meaning ERR Value

ILLEGAL FILE NAME 2
The character string scanned
contains unacceptable characters.
See Section 9.1 of the BASIC-
PLUS Language Manual for a
description of a file specification.

Discussion:

The file name string scan function determines specific file syntax
information (for example, whether a given file name is valid) and
returns information in the format required for all other file and
device related SYS calls. In addition, it provides a means of packing
a string in Radix-50 format.

The STATUS variable (see Section 12.3.5 of the BASIC-PLUS Language
Manual) is set for the device type found in the string scanned.

The following example demonstrates how a string can be converted to
Radix-50 format by a user defined function and the file name string
scan SYS call.

10 DEF FNPO$ (A$) = MID (SYS (CHRS (6%) +
CHRS (-10%)+AS) ,7%,4%)
! PACK 6 CHARACTERS TO RADIX-50

The function FNPOS returns a 4-character string which is the Radix-50
representation of the first six characters of AS. {Note that no error
handling is included and that errors can occur.) The file name string
scan call 1is the only function in BASIC-PLUS which packs a string in
Radix-50 format. To pack strings longer than six characters, the user
must make multiple calls to the SYS function.

The two words in bytes 27 and 28 and in bytes 29 and 30 hold easily
accessible flags 1indicating exactly what fields in the source string
were found and what kind of information they contained. For the
purposes of the discussion, it is assumed that the returned string was
converted by a CHANGE statement to an integer array, M%(30%). The
flag words are then created by doing the proper arithmetic operations
on the bytes, as shown:

flag word 1: S0%
flag word 2: S1%

M% (27%)+SWAPS% (M3 (28%))
M% (29%) +SWAP% (M% (30%))

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Once these two words are created, the data coded into them is
accessible by means of an AND operation between the word and the bit
relating to a particular piece of information (see Section 2.8.7 for
information about the AND operation). Each bit of the PDP-11 word can
be used to hold a YES or NO answer. In the case of S0%, only the
high-order 8 bits are used. 1In the case of S1%, all 16 bits are used.

Flag word 1 is redundant; that is, all information returned in flag
word 1 is also in flag word 2. Flag word 2 holds much more
information than flag word 1.

In the following discussion, it is assumed that bytes 27 and 28 have

been put into S0% and bytes 29 and 30 have been put into S1% as
described above.

7-22

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Flag word 1:

Bit

8

10

11

12

13

15

Com

where S0% =

parison

S0 AND 256%<>0%

S50%

S0%

S0%

S0%

S0%

S0%

S0¢%

S0%

S0%

S0%

50%

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

50%<0%

256% = 0%

512%<>0%

512% = 0%

1024%<>0%

1024% = 0%

2048%<>0%

2048% = 0%

4096%<>0%

4096% = 0%

8192%<>0%

8192% = 0%

M% (27%)+SWAPS (M% (28%))

Meaning
Filename was found in the source string
(and is returned in Radix-50 format in
bytes 7 through 10)
No filename found
A dot was found in source string
No dot was found in

implying that no extenson
been specified either

source string
could have

A project-programmer number was found in
source string

No project-programmer number was found

A left angle bracket (<) was found in
source string implying that a protection
code was found

No left angle bracket (<) was found (no
protection was specified)

A colon (but not device
name) was found

necessarily a

No colon was found 1implying that no

device could have been specified

Device name was specified and specified
device name was a logical device name

Device name (if specified) was an
absolute (non-logical) device name (if
device name was not specified, this will
be 0)

string contained wild card
(either ? or * or both) in
extension or project-
programmer number fields. 1In addition,
the device name specified, though a
valid logical device name, possibly does
not correspond to any of the logical
device assignments currently in effect.
The user program must extract the device
name and attempt to access the unit.
(See Section 7.2.16.4 for a description
of wild card file specifications.)

Source
characters
filename,

7-23

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Flag Word 2: where S1% = M%(29%)+SWAP% (M%(30%))

Bit Compar ison Meaning
0 S1% AND 1%<>0% File name was found in the source string
S1% AND 1% = 0% No file name was found (and the

following two comparisons return 0)

1 S1% AND 2%<>0% File name was an * character and is
returned in bytes 7 through 10 as the

Radix-50 representation of the string
NRP2722" .,

S1% AND 2% = 0% File name was not an * character
2 S1% AND 4%<>0% Filename contained at least one ?
character
S1% AND 4% = 0% Filename did not contain any ?
characters
3 S1% AND 8%<>0% A dot (.) was found
S1% AND 8% = 0% No dot was found 1implying that no
extension was specified (and the

following three comparisons return 0)

4 S1% AND 16%<>0% An extension was found (that 1is, the
field after the dot was not null)

S1% AND 16% = 0% No extension was found (the field after
the dot was null - the following two
comparisons return 0)

5 S1% AND 32%<>0% Extension was an * character and is
returned in bytes 11 and 12 as the
Radix-50 representation of the string

ll???"
S1% AND 32% = 0% Extension was not an * character
6 S1% AND 64%<>0% Extension contained at least one ?
character
S1% AND 64% = 0% Extension did not contain any ?
characters
7 S1% AND 128%<>0% A project-programmer number was found
S1l% AND 128% = 0% No project-programmer number was found

(the following two comparisons return 0)

10

11

12

13

14

15

(1)Note that if the project-programmer number was of the
8 and bit

then

SYS

S1% AND

S1% AND

S1% AND

AND
AND
AND

AND

AND

S1% AND

S1% AND

S1% AND

S1% AND

S1% AND

S1% AND

51%<0%

both bit

values.

SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

256%<>0%

256% = 0%
512%<>0% (1)

512% = 0%
1024%<>0%
1024% = 0%

2048%<>0%

2048% = 0%

4096%<>0%

4096% = 0%

8192%<>0%

8192% = 0%

163843<>0%

16384% = 0%

Project number was an * character (that
is the projelct-programmer number was of
the form [*,PROG]) and 1is returned 1in
byte 6 as 255

Project number was not an * character
Programmer number was an * character
(that 1is, the project-programmer number
was of the form [PROJ,*] and is returned
in byte 5 as 255

Programmer number was not an * character
A protection code was found

No protection code was found

The protection code currently set as
default by the current job was used

The assignable protection code was not
used (protection code given is either
the system default, 60, or that found in
the source string)

A colon (:), but not necessarily a
device name, was found in the source
string

No colon was found (no device could have
been specified); the following three
comparisons return 0

A device name was found

No device name was found; the following

two comparisons return 0

Device name specified was a logical
device name
Device name specified was an actual
device name
The device name specified was logical
and 1is not assigned to some actual
device; the logical name is returned in
bytes 23 through 26 as a Radix-50
string.

form [*,*],

9 of the data byte returned are non-zero

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

S1%>=0% The device name specified, if any, was
either an actual device name, or a
logical device name to which a value has
been assigned; the physical device name
is returned in bytes 23 through 26 as
described above

Since flag word 2 contains all the information returned in flag word 1
plus more information, it is the more useful of the two words. The
following program uses this word. It prints out a 1list of all the
bits returned in the word.

S DIM MH<z0H> ' SET UFP AN ARRAY TO RETURMN TO
10 PRINT "STRING TO SCAN";

20 INPUT LINE S¢

20 Se=CYTSE$CSS, -1 ! GET RID OF GRAREAGE EYTES

40 CHANGE SYSC(CHR$C(EXLI+CHR$(-1@%Y+SE> TO ME

S0 SAU=MHCZIXI+SUARK(MICZEN))

100 IF S4¥ AND 1% THEN FRINT "FILENAME FOUNC®

11@ IF S41¥% AND 2% THEN FRINT "FILENAME MWAS AN #¢

128 IF S1X RAND &% THEN FRINT “FILENAME HAD - 77 &

130 IF S1¥ AND &% THEN FREINT "0OT (. > FOUND"

148 IF S1¥% AND 16% THEN FRINT "NON--NULL EMTENSIOM FOUND®
158 IF S1X AND zzX THEN FRINT "EXTENSION WAS “#7 "

16@ IF S1X AND €4% THEN FREINT "EMTENSION HAD 777 &"

178 IF S1¥ AND 1z&X THEN FEINT “FFPN FOUND®

186 IF S1X RAND z2Séx THEN FEINT "FPROJECT NUMEER MWAS < #7 "
190 IF S1X AND 51z THEN FREINT "PROGEAMMER NUMEBER MWAS <%

200 IF S1¥ AND 16242 THEN FREINT "PROTECTION CODE FOUND®
210 IF S1X AND zed4gX THEN FREINT "ASSIGN'D PROTECTION USELD"
220 IF S1X AND 4896 THEMN FREINT "COLON <@ FOUND®

2368 IF S1¥ AND 2192 THEMN FEINT "DEVICE NAME FOUMD"

240 IF S1X AND 16ZE847 THEN FRINT “DEVICE NAME WAS LOGICAL"

258 IF Six<ey THEN FEINT "DEYICE MNAME WAS NOT ASSTIGNS [
260 IF S1X AND 4896 THEN
IF S1ux6d THEN FEINT "7 STATUSY HAS BEEN SET"

490 FRINT FOR IX=1X TO 2%
560 GOTO 1@
2767 END

The following examples show some of the above messages:

STRING TO SCANT RECDEF. EX
FILENRME FOUND

DOT <. » FOUND

NON-NULL EXTENSION FOUNC

STRING TO SCAN? SY:FILENM. DEX
FILENARME FOUND

bOT <. » FOUND

NON-NULL EXTENSION FOUND
COLON <:> FOUND

DEVICE NAME FOUND

"STARTUSY HARS BEEN SET

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

STRING TO SCAN? SY:FILENM. EXT[1, 23]
FILENAME FOUND

DOT ¢. > FOUND

NON=-NULL EXTENSION FOUND

PPN FOUND

COLON <:> FOUND

DEVICE NAME FOUND

“STATUS’ HAS BEEN SET

STRING TO SCAN? SY:FILENM EXTLZ, 182 1¢S5a>
FILENAME FOUND

pOT <. » FOUND

NON-NULL EXTENSION FOUND

FPN FOUND

PROTECTION CODE FOUND

COLON <:» FOUND

DEVICE NAME FOUND

“STATUS” HAS BEEN SET

STRING TO SCAN? SY:FILENNM EXTL+, 2611
FILENAME FOUND

0OT <. » FOUND

NON-NULL EXTENSION FOUND

PPN FOUND

PROJECT NUMEBER WAS <%~

COLON <:» FOUND

DEVICE NAME FOUND

"STATUSY HAS BEEN SET

STRING TO SCAN? SY:A. *
FILENAME FOUND

DOT (. » FOUND

NON-NULL EXTENSION FOUND
EXTENSION WAS 7 %7

COLON :>» FOUND

DEVICE NAME FOUND

“STRTUS” HAS BEEN SET

STRING TO SCAN?

STRING TO SCAN? SY:FILE??. EXT
FILENAME FOUND

FILENARME HAD ~ 7/ S

DOT <. > FOUND

NON-NULL EXTENSION FOUND
COLON <:» FOUND

DEVICE NAME FOUND

“STATUS” HAS BEEN SET

STRING TO SCAN? :A
FILENAME FOUND

COLON <:> FOUND
“STATUS’ HAS BEEN SET

7-27

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

The STATUS variable is set or not set depending on the presence or
absence of a device in the string scanned. The following three
conditions pertain.

a. When no device name is found in the string (no colon Iis
found), the STATUS is random. This condition pertains when
bit 12 of flag word 2 tests as equal to 0.

b. When the device name is logical and untranslatable (an actual
device 1is not assigned), STATUS is random. This condition
pertains when bits 12, 13 and 14 of flag word 2 test as not
equal to 0 and bit 15 tests as on (S1%<0%).

c. When the device name is either an actual device name or is
logical and translatable (an actual device is assigned),
STATUS is set for the device. This condition pertains when
bit 12 tests as not equal to 0 and bit 15 tests as equal to 0
(S1%>=0%) .

Line 260 of the sample program shows the test to determine when STATUS
is set by the call.

The file name string scan using CHR$(-23%) in place of CHRS$(-10%)
terminates without error on the following characters.

{equality sign)

/ (slant)

H (semi-colon)
’ (comma)

end of string

The number of unscanned characters 1is returned in the BASIC-PLUS
variable RECOUNT. For example,

S$=SYS (CHR$(6%) + CHRS$(-23%) + "SY:[1,4]ABC<40>")

returns the data as described above for CHR$(-10%) and RECOUNT equals
0. The following call

SS = SYS(CHR$(6%) + CHR$(-23%) + "SY:[1,4]ABC<40>,DT:DEF")

returns the data described above for the string "SY:[1,4]ABC<40>" with
RECOUNT equals 7. (The scan terminates on the comma between file
names.)

Any other characters, 1including the angle bracket character (<),
generate an error and none of the data is returned. Thus, the call
with CHR$ (-23%) simplifies the task of decoding command strings with
multiple file names.

7-28

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.4.2 Return Error Message - Not Privileged (F0=9)

Data Passed:

Byte (s) Meaning
1 CHR$ (6%), the SYS call to FIP
2 CHRS$ (9) , the return error message code
3 CHRS (E%) , where E% is the RSTS ERR variable number

and is between 0 and 127

4-30 Not used

Data Returned:

Byte (s) Meaning
1 The current job number times 2
2 The current keyboard number times 2
3-30 Error message padded to length 28 with CHRS$(0%)

characters.
Possible Errors: No errors are possible.

Discussion:

This SYS system function call extracts error message text from the
file ERR.SYS stored under account [0,1] or in the RSTS.CIL file if
ERR.SYS does not exist. The text is associated with the value of the
ERR variable passed as byte 3 of the call. The number in byte 2 of
the returned string is two times the number of the keyboard involved
in generating the error. This is an exception to the conventional
contents of byte 2 which usually contains the job number times 2. A
sample usage of the call is to print the system header line containing
the system name and the local installation name. To do this, the
character representation of the ERR value of 0% is used in the call.

10 INPUT "ERROR NUMBER";E%

20 S$=SYS (CHR$ (63%)+CHRS (9%)+CHRS$ (E%))

30 S1$=MID(S$,3%,INSTR(3%,S$,CHRS (0%))-3%)
40 PRINT S1$

50 PRINT FOR I%=1% TO 2%

60 GOTO 10

32767 END

To extract the message text from the data returned by the SYS call,
the program executes an INSTR function based on the NUL byte (FILL
character) indicating the end of the text. The MID substring of the
returned data string, starting at byte number 3, extracts the number
of bytes according to the value returned by the INSTR function.

Error numbers used in the call <can include those associated with
recoverable and non-recoverable errors.

RUNNH
ERROR NUMBER? 0
RSTS VO06A-01 SYSTEM #880

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.4.3 Assign/Reassign Device - Not Privileged (F0=10)

Data Passed:
Byte(s)

1

2

3-6

Data Returned:

Meaning
CHRS (6%), the SYS call to FIP
CHR$ (10%), the assign/reassign device code
Not used

Must be 0 for assign; for reassign, must be
job number to reassign the device to

Must be 0

Not used

Device name (DT, PR, PP, MT, CR, LP, KB)
Unit number

Unit number flag

Not used

No meaningful data is returned.

the

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Possible Errors:

Meaning
For the assign call

NOT A VALID DEVICE
The device name specified in bytes 23
and 24 is a logical device name which
is currently not assigned.

DEVICE NOT AVAILABLE
The device specified is currently
assigned or in use by another job.

For the reassign call

ACCOUNT OR DEVICE IN USE
The device specified is currently
open or has an open file.

NOT A VALID DEVICE
The device name specified in bytes 23
and 24 is a logical device name which
is currently not assigned.

DEVICE NOT AVAILABLE
The device specified is currently
assigned to another job or is in
use by another job.

Example:

10 A$ = SYS(CHRS$ (6%)+CHRS (10%)+SPACES (4%) +

CHRS (0%)+CHRS (0%) +SPACES (14%) +

"LP" + CHR$ (1%)+CHRS (255%))

{ ASSIGN LPl: TO CURRENT JOB.
20 X$=4%

30 A$=SYS(CHR$ (6%)+CHRS (10%)+SPACES (4%) +

CHRS$ (X%)+CHRS (0%) +SPACES (14%) +
"LP"+CHRS (1%)+CHRS (255%))
! REASSIGN LPl: TO JOB # X%.

ERR value

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.4.4 Deassign A Device - Not Privileged (F0=11)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHRS$(11%), the deassign a device code

3-6 Not used

7-8 Must be 0

9-22 Not used
23-24+ Device name

25+ Unit number

26+ Unit number flag
27-30 Not used

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value
NOT A VALID DEVICE 6

The device name specified in bytes 23
and 24 is not a valid device name.

Discussion:

This call performs the same action as the DEASSIGN system command
described in the RSTS-11 System User's Guide.

Example:

The following statement deassigns 1line printer unit 1 which |is
assigned to the current job.

10 AS$ = SYS(CHRS(6%) + CHR$(11l%) + SPACES (4%) +
CHRS (0%) + CHR$(0%) + SPACES$ (14%) +
"LP" + CHR$(1%) + CHRS$(255%))
! DEASSIGN LP1l:

7-32

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.4.5 Deassign All Devices - Not Privileged (F0=12)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHRS$ (12%), the deassign all devices code
3-30 Not used

Data Returned: No errors are returned.

Possible Errors: No errors are returned.

Example:

The following statement deassigns all devices currently assigned
the job.

10 A$ = SYS(CHRS(6%) + CHR$ (12%))

to

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.4.6 Zero A Device - Both Privileged and Not Privileged

Data Passed:

(F0=13)

Byte (s) Meaning
1 CHRS$ (6%) , the SYS call to FIP
2 CHRS (13%), the zero a device code
3-4 Not used
5-6 Project-programmer number (see note 1)
7-10 Volume ID for volume label (ANSI format MT only)
11-22 Not used
23-24+ Device designator (Disk, magtape, or DECtape)
25+ Unit number
26+ Unit number flag
27-30 Not used

Data Returned:

Possible Errors:

No meaningful data is returned.

Meaning ERR Value

INVALID FILENAME 2
The device specified is a magtape set to
ANSI format, and the volume ID specified
in bytes 7-10 is either missing or invalid.

CAN'T FIND FILE OR ACCOUNT 5
The device specified is disk and the
account specified in bytes 5 and 6
does not exist on the device

NOT A VALID DEVICE 6
The device name specified is a
logical name which is not currently

assigned

DEVICE NOT AVAILABLE
The device is currently assigned or in
use by another job or has a file open

DEVICE NOT FILE STRUCTURED
The device specified does not allow
access by file name.

30

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Note 1:

Only privileged users can specify an account other than their own
account to be zeroed. Any values a non-privileged user specifies in
bytes 5 and 6 are forced to the caller's own project-programmer
number. Zeroes in bytes 5 and 6 indicate the project-programmer
number of the calling program.

Note 2:

When the zero a device SYS call is specified on magtape or DECtape,
the entire medium is zeroed without regard to any project-programmer
number. On DECtape, the directory is cleared. On magtape, the tape
is rewound to LOAD POINT, three end of file marks are written, and the
tape is rewound (See Section A.3.).

Example:

10 AS$=SYS(CHRS (6%)+CHRS$ (13%)+SPACES (2%)+
CVT%S (0%) +SPACES (16%) +"SY"+CVT%S (0%))
! ZERO MY OWN ACCOUNT ON THE SYSTEM.
20 PO0%=10% : P2%=20% IWANT TO ZERO [10,20]
30 A$=SYS(CHRS$(6%)+CHRS (13%)+SPACES (2%)+
CHRS (P1%) +CHRS$ (P0%) +SPACE$ (16%)+"SY"+
CVT%$ (0%))
! ZERO [10,20] ON THE SYSTEM.
! IF PROGRAM IS NON-PRIVILEGED, ZEROES
! CURRENT ACCOUNT
40 A$=SYS(CHRS$ (6%)+CHRS (13%)+SPACES (20%)+
"MT"+CVT%S$ (0%))
! ZERO MT:

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.4.7 CTRL/C Trap Enable - Not Privileged (F0=-7)

Data Passed:

Byte (s) Meaning
1 CHRS (6%), the SYS call to FIP
2 CHRS$ (-7%), the CTRL/C trap enable code
3-30 Not used.

Data Returned: No meaningful data is returned.
Possible Errors: No errors are possible.

Discussion:

After this FIP function is executed in the user program, the Run Time
System treats the first CTRL/C subsequently typed on any terminal
belonging to the job as a trappable error (ERR=28). Upon execution of
the trap, control 1is immediately passed to the numbered program
statement which has been designated as the error-handling routine by
the 1last execution of an ON ERROR GOTO statement. After the trap,
CTRL/C trapping is disabled. If it is desired that CTRL/C trapping
remain in effect, the SYS call must be executed again.

Such trapping of CTRL/C, however, guarantees only that a defined set
of statements is executed when CTRL/C is typed. It is not possible to
resume execution at the exact point where the CTRL/C occurred.

If certain critical sections of BASIC-PLUS code are to be completely
immune to possible CTRL/C aborts, three actions must occur.

a. The job must detach itself from its terminal. See the
description of FIP code +7.

b. The program must have CLOSED all channels on which other
terminals in the job had been OPENed.

c. The job must have DEASSIGNed any terminal which had been
previously ASSIGNed to it. See the description of FIP code
+11. :

If the three actions occur, program execution under the Jjob proceeds
immune to any CTRL/C. ‘

After the job has completed its critical processing in the detached
state, one of three actions can occur.

a. The job can kill itself by means of FIP code +8.
b. The job can find a free terminal (presumably the one from

which it detached 1itself) and "force" into that terminal
input buffer the character strings needed for logging into

7-36

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

the system and attaching the job to the terminal. (See the
descriptions of FIP codes -4, +4, and +6.)

c. The job can find a free terminal and use the REATTACH SYS
call to attach itself to the terminal. (See the description
of FIP code +6.)

The following sample program shows the procedure.

GET SET TO TRAP
ENABLE "C TRAPPING

10 ON ERROR GOTO 100

20 A$=SYS (CHRS (6%)+CHRS (-7%))
30 PRINT "HI ";

40 SLEEP 10% ! WAIT AWHILE
50 GOTO 30

100 IF ERR<>28% THEN ON ERROR GOTO 0

ELSE RESUME 110 ! LOOK FOR A CTRL/C
110 PRINT ""C TRAPPED"
120 SLEEP 10%
130 GOTO 20 ! GO BACK TO LOOP
32767 END

The program prints "HI" at the keyboard every ten seconds until a
CTRL/C is typed. Then it prints the ""C TRAPPED" message and a sleep
operation for ten seconds before reenabling the CTRL/C trap and
printing "HI". The SLEEP statement before reenabling the trap is
included to allow the user to type a second CTRL/C and actually stop
the program.

Ordinarily, two CTRL/C characters typed very quickly at a terminal
stop a program even 1if CTRL/C trapping is enabled. However, on a
lightly loaded system, it is sometimes possible for the program to
react quickly enough to the first CTRL/C that the second one can also
be trapped. 1In this situation, the only means of stopping the job is
through the kill job SYS call (or the KILL command in the UTILTY
program). Thus, after the original trap, the user can stop the
program by typing CTRL/C within ten seconds. It is recommended that
programs which trap CTRL/C characters be designed to include a certain
amount of time after a trap in which a second CTRL/C actually stops
the program.

When a CTRL/C is input from a terminal, further output 1is inhibited,
similar to the effect of the CTRL/O. This is true whether the error
condition caused by CTRL/C is processed directly by the BASIC-PLUS
editor or is handled by the user's program itself. When the CTRL/C
error condition is processed by the editor, it reenables output Jjust
prior to printing READY. When the CTRL/C error condition is trapped
into the user's own error handling routine, the output to the terminal
is reenabled just before executing the ON ERROR GOTO statement.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.5 Privileged Utility SY¥S Calls

The FIP calls described in this section are privileged calls; that
is, they can be called only by a privileged user or by a privileged
program. (See Section 1.2 for a discussion of privilege.) Any
attempts to execute these calls by non-privileged users or programs
result in the error ILLEGAL SYS() USAGE (ERR = 18). Other errors are
specified in the individual descriptons. The functions described in
Sections 7.2.5.2 through 7.2.5.11 are used by the UTILTY system
program. Examples of their usage can be found in the source code of
that program.

7.2.5.1 Special Shutup Logout - Privileged (F0=-16)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%) , the SYS call to FIP
2 CHR$ (-16%), the special shutup logout code
3-30 - Not used

Data Returned: No meaningful data is returned

Errors Returned: Refer to the discussion.

Discussion:

This system function logs the current job off the system (as does the
FIP system function call code 5) but, in addition, brings the CPU to
an orderly halt at address 54 after the job is logged off the system.

Before this FIP call can execute properly, several system conditions
must be true. First, one and only one job can be running on the
system when the SYS call is invoked. Next, the number of 1logins
allowed on the system must be 1 (that is, LOGINS DISABLED. See
Section 7.2.5.6). Next, no disks except the system disk can be
mounted. Finally, no files can be open on the system disk.

If all of these conditions are fulfilled, the system shuts down. If
any are not true, any attempt to invoke this SYS call results in the
error ILLEGAL SYS() USAGE (ERR = 18).

This SYS call is used by the SHUTUP program.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.5.2 Date And Time Changer - Privileged (F0=-14)

Data Passed:
Byte (s)

1

2

7-30

Data Returned:

Discussion:

This function changes the monitor date and time of day

Meaning
CHRS$ (6%) , the SYS call to FIP
CHR$ (-14%), the date and time changer code
CHRS$ (D%) where D% is in the required format to
generate the date by the function DATES (D%) . See

Section 8.8 of the BASIC-PLUS Language Manual for
a description of the DATES function.

-

CHRS (SWAP% (D%)) where D% is the same value used in
byte 3. This generates the high byte of the value
used by the DATES (0%) function.

CHRS$ (T%) where T% is in the required format to
generate the time by the function TIMES (T%). See
Section 8.8 of the BASIC-PLUS Language Manual for
a description of the TIMES function.

CHRS$ (SWAP% (T%)) where T% is the same value used in
byte 5. This generates the high byte of the value
used by the TIMES (0%) function.

Not used.

No meaningful data is returned.

value
are returned by the DATES$(0%) and TIMES(0%) functions in BASIC-PLUS.

7-39

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.5.3 Hang Up A Dataset - Privileged (F0=-9)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHRS (-9%), the hang up a dataset code
3 CHRS$ (N%) where N% is the keyboard number of the

line to hang up

4 CHRS (S%) where S% is the number of seconds to wait
before hanging up the line

5-30 Not used.

Data Returned: No meaningful data is returned.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.5.4 Broadcast To A Terminal - Privileged (F0=-5)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHR$ (-5%), the broadcast to a terminal code
3 CHRS$ (N%) where N% is the keyboard number of the

terminal to receive the message

4-? M$ is the message to broadcast; LEN(MS) can be
greater than 27. The string must not be null.

Data Returned: No meaningful data is returned.

Possible Errors:
Meaning ERR Value

ILLEGAL SYS () USAGE 18
Generated if LEN(MS) is 0.

Discussion:

The data broadcast is printed on the destination keyboard. The
received message affects any output formatting being performed on the
destination keyboard. System programs which wuse this function are
TALK, PLEASE, BACKUP, and QUEMAN and UTILTY.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.5.5 Force Input To A Terminal - Privileged (F0=-4)

Data Passed:

Byte(s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHRS (-4%) , the force input to a terminal code
3 CHRS (N%) where N% is the keyboard number of the

terminal to receive the forced input
4-2 I$ is the input string to force to the terminal.

The string must not be null. LEN(I$) can be
greater than 27.

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value

ILLEGAL SYS() USAGE 18
Generated if LEN(IS$) is O.

Discussion:

The data forced is seen as input by the system. Other system programs
besides UTILTY which use this function are BUILD, INIT, and CONTRL.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.5.6 Disable Further Logins - Privileged (F0=-2)

Data Passed:

Byte (s) Meaning
1 CHR$ (6%) , the SYS call to FIP
2 CHR$ (-2%) , the disable further logins code
3-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value

ILLEGAL SYS() USAGE 18
A non-privileged user attempts
to execute this call.

Discussion:

This call sets the number of logins allowed on the system to 1. If no
jobs are active on the system, one user can successfully log into the
system. However, once one user is logged in, any delimiter typed at a
logged out terminal returns the NO LOGINS message. This call is used
by the UTILTY and SHUTUP programs.

7-43

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.5.7 Enable Further Logins - Privileged (F0=-1)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%) , the SYS call to FIP
2 CHRS(-1%), the enable further logins code
3-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value

ILLEGAL SYS() USAGE 18

A non-privileged user attempts
to execute this call.

Discussion:

This call sets the number of logins allowed to the number specified at

start-up time - JOBMAX. The enable logins call is used by the UTILTY
and INIT programs.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.5.8 Disk Pack And Terminal Status - Privileged (F0=3)

Data Passed:
Byte (s)

1

2

For Mount,

23-24+
25+
26+

For Mount
7-10+

?

Data Returned:

Meaning
CHRS (6%), the SYS call to FIP
CHRS (3%), the disk pack and terminal status code

CHR$ (N3%); the following values of N% determine
the resultant action.

Value Action
Any 0dd Set terminal status.
See FIP call 16.
0 Mount a disk pack or cartridge
2 Dismount a disk pack or cartridge
4 Lock out a disk pack or cartridge
6 Unlock a disk pack or cartridge

Dismount, Lock, and Unlock
Device name
Unit number

Must be 255.

Pack identification label in Radix-50 format

All bytes not specified are ignored.

No meaningful data is returned.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
Possible Errors:
Meaning

ACCOUNT OR DEVICE IN USE
An attempt to dismount a
disk which has an open file

NOT A VALID DEVICE
Device name specified is not
valid.

DEVICE HUNG OR WRITE LOCKED
An attempt to mount a disk
which is not write enabled

ILLEGAL SYS() USAGE
An attempt by a non-privileged
user to execute this call; or an
attempt to mount a disk which is
aready mounted or which resides
in a non-dismounted drive; or disk
specified is the system disk.

PACK IDS DON'T MATCH
An attempt to mount a disk with
an incorrect pack label.

DISK PACK IS NOT MOUNTED
An attempt is made to lock, unlock
or dismount a disk which is not
mounted.

DISK PACK NEEDS 'CLEANING'
The storage allocation table on the
disk needs to be restructured since
the disk was not properly dismounted
when it was last used. Disk is logically
mounted but cannot be accessed until
cleaned by the CLEAN command of UTILTY
system program or by the FIP call with
code 2.

FATAL DISK PACK MOUNT ERROR
The disk is beyond recovery. For
example, the cluster size is larger
than 16 or the storage allocation
table is unreadable.

DEVICE NOT FILE STRUCTURED
An attempt to lock, unlock, or
dismount a disk currently opened
in non-file structured mode.

ERR Value

3

14

18

20

21

25

26

30

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
Discussion:

Note that if byte 3 contains any odd value, the call is interpreted as
a set terminal characteristics call and is exactly equivalent to FIP
call 16 discussed in Section 7.2.8. This call is used by the SHUTUP,
UMOUNT, and BATCH system programs. (The terminal characteristics form
of the call is used by the TTYSET program.) For a discussion of disk
management on RSTS/E, see Section 7.1.2 of the RSTS/E System Manager's
Guide.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.5.9 Clean Up A Disk Pack - Privileged (F0=2)

Data Passed:

Byte (s) Meaning
1 CHR$ (6%) , the SYS call to FIP
2 CHRS$ (2%), the clean up a disk pack code
3-22 Not used
23-24+ Device name

A zero in both bytes means the system disk

25+ Unit number
26+ Unit number flag
27-30 Not used

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value
ILLEGAL SYS () USAGE 18
An attempt to use this call by
a non-privileged user; the

device specified is not a disk;
the disk is not locked; a file
is open on the disk.

DISK PACK IS NOT MOUNTED 21
The disk is not yet mounted.

CORRUPTED FILE STRUCTURE 29
The link words in the directories
are destroyed or completely meaningless.

Discussion:

A clean operation on an RK disk cartridge takes up to 30 seconds and
on an RP03 disk pack takes up to five minutes. See Section 7.1.2 of
the RSTS/E System Manager's Guide, for a discussion of disk management
and the clean operation.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.5.10 Change Password/Quota - Privileged (F0=8)

Data Passed:
Byte (s)

1

2

3-6

13-14

15-20

21

23-24+
25+

26+

N
e ¢]

29-30

Data Returned:

Meaning
CHRS$ (6%) , the SYS call to FIP

CHRS$ (8%) , the change password/guota, kill job, and
disable terminal code

Not used

Project-programmer number. Zero for both values
means the current account. See Section 7.2.3 for
an explianation of the valiue of each byte.

New password in Radix-50 format. All zeroes mean
no change. See Section 7.2.4.1 for a description
of converting strings to Radix-50 format.

CHRS (N%) +CHRS (SWAP% (N%)) , where N% is the number
of blocks for the quota. Zero in this word means
unlimited quota if byte 21 is 255. Otherwise,
zero means no change.

Not used

CHR$ (255%) if the quota of 0 specified in bytes 13
and 14 is valid rather than no change.

Device name

Unit number

Unit number flag
Not used

Must be CHRS (0%)

Not used.

No meaningful data is returned.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Possible Errors:

Meaning ERR Value

CAN'T FIND FILE OR ACCOUNT 5
The account is not present on
the disk specified.

NOT A VALID DEVICE 6
Device specified is not valid.

ILLEGAL SYS () USAGE 18
An attempt by a non-privileged user
to execute this call or the device
specified is not a disk.

Discussion:

Either the password or the guota can be changed individually. Also
both can be changed in the same call.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.5.11 Kill Job - Privileged (F0=8)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHRS$ (8%), the change password/quota, kill job, and
disable terminal code
3 CHR$ (N%) where N% is the number of the job to kill
4-26 Not used
27 Must be CHR$(0%); this byte differentiates the
kill job call from the disable terminal call
28 Must be CHRS(255%)
29-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value

ILLEGAL SYS() USAGE 18
The job number specified is 0
or is greater than the system
JOB MAXIMUM value. An attempt
by a non-privileged user to
execute this call.

Discussion:

There is only one proper way for a 3job to terminate itself under
programmed control. The job must execute the kill FIP call on its own
job number. The kill does all of the clean-up that the logout FIP
call (F0=5) does, but this function can be executed under program
control by any (privileged) program, whereas the logout call requires
certain special conditions. Examples of this SYS call can be found in
the ERRCPY, BATCH, SPOOL, and QUEMAN programs.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.5.12 Disable Terminal - Privileged (F0=8)

Data Passed:

Byte (s) Meaning
1 CHRS (6%), the SYS call to FIP
2 CHRS$ (8%), the change password/quota, kill job, and
disable terminal code
3 CHRS$ (N%) , where N% is the keyboard number of the
terminal to disable
4-26 Not used
27 Must be CHR$(255%) to differentiate this call from
the kill job call
28 Must be CHRS$ (255%)
29-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:
Meaning ERR Value

ILLEGAL SYS () USAGE 18
Keyboard number is greater than the
number of terminals on the system
(NULINE) ;

Keyboard number corresponds to a line
used by a pseudo keyboard;

Keyboard number relates to a terminal
on a DH1l multiplexer line;

The terminal is currently opened or
assigned by a job; or

The keyboard is the system console
terminal (KBO:).

Discussion:

This FIP call disables a keyboard line. After this function has been
executed, no input from the disabled keyboard is processed or echoed
by the system, and output generated for the terminal 1is ignored.
There 1is no complementary function in RSTS/E. Once a keyboard is
disabled, it remains disabled until the next time the system starts
time sharing.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Note that this function only disables keyboards connected to the
PDP-11 with single line interfaces (KL11l, DL1ll, etc.).

No system program (including UTILTY) currently uses this call. It is
included at this point because of its relationship to the change
password and kill job FIP calls.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.6 Job Scheduling SYS Calls To FIP

7.2.6.1 Priority,
(F0=-13)

Data Passed:
Byte(s)

1

2

Run Burst And Size Maximum Changer - Privileged

Meaning
CHRS$ (6%), the SYS call to FIP

CHRS$ (-13), the priority, run burst, and size
max imum changer

CHRS (J%), where J% is the job number affected or
is -1 to denote the current running job

CHRS (A%) where A% is 0% to indicate no change to
the parameter in byte 5 or is non-zero to indicate
a change to the parameter as specified in byte 5.

CHRS (P%) where P% is the value of the running
priority and ranges from -128 to +128 in steps of
8.

CHRS (A%) where A% is 0% to indicate no change to
the parameter in byte 7 or is non-zero to indicate
a change to the parameter as specified in byte 7.

CHRS (R%) where R% is the run burst.

CHRS (A%) where A% is 0% to indicate no change to
the parameter in byte 9 or is non-zero to indicate
a change to the parameter as specified in byte 9.

CHRS$ (S%) where S% 1is the maximum size, in
1024-word units, to which a job can expand and is
between 2 and the current value for SWAP MAX on
the system.

Data Returned: No meaningful data is returned.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
Possible Errors:
Meaning ERR Value

ILLEGAL SYS() USAGE 18
An attempt by a non-privileged user
to execute this call.

Discussion:

This system function allows a privileged user to give a running job an
increased or decreased chance of gaining run time in relation to other
running jobs, and to determine how much CPU time the job can have if
it is compute bound. The CPU time is termed the job's run burst and
is measured by the number of clock interrupts during which the job can
run if it is compute bound.

The size of a job at log in time is set at 2K and can grow during
processing to a size limited by the value of SWAP MAX. SWAP MAX is
determined at the start of time sharing operations by the system
manager. (Refer to the description of SWAP MAX given in the START and
DEFAULT option discussed in Chapter 3.) The maximum size to which a
job can grow can never be greater than the currently assigned value of
SWAP MAX, which must be between 8K and 16K words. Therefore, the
privileged user has the option of limiting the size to which a job can
grow by specifying a value for S% between 2 and the maximum of SwAP
MAX.

Values for each of the variables in the parameter string must be
specified. The value for A preceding the related parameter variable
determines whether that parameter changes or remains unchanged.

The PRIOR system program provides a direct example of the use of this
FIP call. The call is also used by the LOGIN, SPOOL, and RJ2780
system programs.

No error-checking is done by the system on the data passed by the
user. Values are used as passed even if they generate illogical
results. For instance, if a priority is specified which is not a
multiple of 8, its value is truncated to the next lowest multiple of
8. A priority greater than 128 is considered negative. Setting a
job's run burst to 0 prevents the job from obtaining any run-time.
Setting a (compute-bound) job's run-burst to some high number tends to
lock out other jobs. However, setting S% to 255, or any value greater

than the system SWAP MAX does not override the system maximum.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.6.2 Set Special Run Priority - Privileged (F0=-22)

Data Passed:
Byte (s)

1

2
3-30

Data Returned:

Meaning
CHRS$ (6%), the SYS call to FIP

CHRS (-22%), the set special run priority call

Not used.

No meaningful data is returned.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Possible Errors:

Meaning ERR Value

ILLEGAL SYS () USAGE 18
An attempt by a non-privileged
user to execute this call.

Discussion:

This SYS function sets the special run priority bit in the job
priority word. This action raises the priority of the job slightly
above that of other jobs in its priority class. The priority bit is
cleared whenever the job returns to the READY state. Thus, a
privileged job can raise its priority without protecting against a
user typing CTRL/C and retaining the higher priority. This FIP call
is used by the QUE system program.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.6.3 Lock/Unlock Job In Memory - Privileged (F0=-20)

Data Passed:

Byte(s) Meaning
1 CHRS$ (6%) , the SYS call to FIP
2 CHRS$ (-20%), the lock/unlock job in memory code
3 CHRS (N%) where N% is 0 for lock and is 255 for
unlock
4-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:
Meaning ERR Value

ILLEGAL SYS() USAGE 18
An attempt by a non-privileged user to
execute this call.

Discussion:

This call prevents unnecessary swapping by forcing the Jjob executing
the call to remain in memory. This action is performed without
affecting the job priority or run burst. The call merely eliminates
the swapping time between run bursts.

A program having certain time sensitive routines can lock itself in
memory. The duration of the locked time must be very short to prevent
degradation of system performance. Depending on the memory
configuration, a locked job can prohibit the system from swapping any
other job into memory. If the job expands its size in memory, the
system can swap it out of memory regardless of its locked status.

The following sample code demonstrates the lock and unlock procedure.

10 AS$ = SYS(CHRS(6%) + CHR$(-20%) + CHR$(0%))
! LOCK JOB IN MEMORY

100 AS$ = SYS(CHRS(6%) + CHRS(-20%) + CHRS$ (255%))
! UNLOCK JOB FROM MEMORY

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.6.4 Drop Temporary Privileges - Privileged (F0=-21)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHRS$ (-21%), the drop temporary privileges code
3-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:
Meaning ERR Value

ILLEGAL SYS() USAGE 18
An attempt by a non-privileged user
to execute this call.

Discussion:

This call allows a compiled program which has a privileged protection
code to drop its temporary privileges. A program normally executes
this call after it has used the special privileges to set itself up.
The program can take advantage of built-in monitor protections (for
example, file protection code arbitration) which are otherwise
overridden by a program's temporary privileges. The call does not
affect the permanent privileges of an account. Both the QUE and PIP
system programs use this call.

The folliowing sample code shows how a program might drop its temporary
privileges.

10 A$ = SYS(CHRS$ (6%) + CHRS$(-22%)
! SET SPECIAL RUN PRIORITY

20 OPEN "SYSTEM.FILS" AS FILE 1%
! OPEN REFERENCE FILE, REGARDLESS OF PROTECTION

30 AS = SYS(CHRS$(6%) + CHRS(-21%)
! DROP TEMPORARY PRIVILEGES

40 OPEN "ACCT.FIL" AS FILE 2%
! THIS FAILS IF FILE IS PROTECTED AGAINST THE
! CURRENT ACCOUNT

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.7 Account Creation And Deletion SYS Functions

7.2.7.1 Create User Account - Privileged (F0=0)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHRS$ (0%), the create user account code
3-6 Not used
7-8 Project-programmer number; see Section 7.2.3.

The project number can be between 1 and 254; the
programmer number can be between 0 and 254.

9-12 Password in Radix-50 format; see Section 7.2.4.1
for a description of converting a string to
Radix-50 format.

13-14 Disk Quota. See Section 7.2.3 for a description
of unsigned numbers. Zero means unlimited quota.
15-22 Not used
23-24+ Device name
25+ Unit number
26+ Unit number flag
27-28 User file directory (ufd) cluster size; 0 means

use the pack cluster size.

29-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:
Meaning ERR Value

ILLEGAL FILE NAME 2
Password is missing in the call

NO ROOM FOR USER ON DEVICE 4
The directory currently has the maximum
number of accounts.

PROTECTION VIOLATION 10
The project-programmer number is [0,0] or
either the project or programmer number
is 255.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

NAME OR ACCOUNT NOW EXISTS 16
The account specified in the call currently
exists on the device specified.

ILLEGAL CLUSTER SIZE 23
The cluster size specified in the call
is either greater than 16 or is non-zero
and less than the pack cluster size.
See Section 5.4.3 for a discussion
of valid cluster size values.

DEVICE NOT FILE STRUCTURED 30
The device specified is not a disk
or the disk is open in non-file
structured mode.

Discussion:

This call is used by the REACT system program to create accounts.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.7.2 Delete User Account - Privileged (F0=1)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHRS$ (1%), the delete user account code
3-6 Not used
7-8 Project-programmer number. This call generates an

error if account [0,0], [0,1], or [1,1] is
specified. See Section 7.2.3 for an explanation
of the value of each byte.

9-22 Not used

23-24+ Device name; must be a disk
25+ Unit number

26+ Unit number flag

27-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:
Meaning ERR Value

ACCOUNT OR DEVICE IN USE 3
The account contains files (it has not
been zeroed) or a user is currently
logged into the system under the
account.

CAN'T FIND FILE OR ACCOUNT 5
The account specified does not exist.

PROTECTION VIOLATION 10
Account specified is either [0,0], [0,1],
or [1,1].

DEVICE NOT FILE STRUCTURED 30
Device specified is not a disk or is a
disk open in non-file structured mode.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Discussion:

The REACT system program uses this call to delete user accounts. To
prevent error number 3, the user must first zero the account using
either the /ZE option in the PIP system program or the ZERO command of
the UTILTY system program. The FIP call (F0=13) can also zero an
account.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.8 Set Terminal Characteristics Privileged (F0=16)

Data Passed:
Byte(s)

1

2

Meaning
CHRS (6%) , the SYS call to FIP

CHRS$ (16%), the set terminal characteristics code;
if CHRS$(3%), byte 3 must be odd.

If byte 2 is CHR$(3%), this byte must be CHRS$ (N%)
where N% is an odd value.

CHRS (N%) where N% is 255% for the current keyboard
or 1is the keyboard number of the terminal to
alter.

CHRS (N%) where N% is 0% for no change or is the
terminal width plus 1. The call sets the number
of characters per line to N-1 where N% can be
between 2 and 255. The WIDTH n command sets this
byte.

CHRS (N%) where N% is:
0 for no change
128 to enable hardware horizontal tab feature.
The TAB command sets this characteristic.
(Device must have the requisite hardware.)
255 to enable software horizontal tab
positions which are set every 8 character
positions, beginning at position 1. The
NO TAB command sets this characteristic.

CHRS$ (N%) where N% is:

0 for no change

128 to enable the software to perform form
feed and vertical tab operations by
executing four line feed operations. The
NO FORM command sets this characteristic.

255 to enable hardware form feed and vertical
tab. The FORM command sets this
characteristic.

CHRS (N%) where N% is:

0 for no change

128 to allow terminal to receive and print
lower case alphabetic characters. The LC
OUTPUT command sets this characteristic.

255 to have the system translate lower case
alphabetic characters to upper case before
transmitting to a terminal. The NO LC
OUTPUT sets this characteristic.

[
<«

SYS

SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

CHRS$ (N%) where N% is:
0 for no change

128 to have terminal not respond

CHRS (17) and XOFF CHR$(19)
because it lacks the requisite
The NO XON command
characteristic.

255 Terminal has requisite hardware to respond

to XON and XOFF characters.

stops sending characters when it
and resumes

a CHR$(19) character (XOFF)
sending characters when it

CHRS$ (17) character (XON). The XON command

sets this characteristic.

CHRS$ (N%) where N% is:
0 for no change
128 to have characters typed at the

sent to the computer only.
echoes (transmits back to the

necessary translation. The

command sets this characteristic.
255 to have the terminal (or its

coupler) locally echo the

typed. The computer does not
characters received. The

CHRS (N%) where N% is:
0 for no change

128 Terminal does not have features of a video
display terminal. The NO SCOPE command

sets this characteristic.

255 Terminal is a video display,
ray tube (CRT) type, and
following features:

a. Responds to synchronization

described by byte 17.

b. The system executes a DL
(RUBOUT) by sending a
space, and a backspace
terminal.

c. Any location on the screen
addressed by direct cursor placement.

The SCOPE command sets

characteristic.

characters
hardware.

The computer
terminal)
what it receives and performs

characters

LOCAL ECHO
command sets this characteristic.

character
backspace, a

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

12 CHRS (N¢%)
0
128

255

13 CHRS (N%)
0
n

255

14 CHRS (N%)
0
n

255

15 CHRS (N§)
0
1

2

where N% is:

for no change

System treats certain characters received
as follows:

a. Translate CHRS$(125) and CHR$(126) into
the ESC character CHRS$(27).

b. Translate lower case characters to
upper case characters.

Set by NO LC INPUT command.

Terminal transmits the full ASCII
character set and system treats special
characters as follows:

a. Treat only CHR$(27) as an escape
character (echoed as the $ character
and handled as a line terminating
character) .

b. Treat CHR$(125) and CHRS (126) as
printed characters and

c. Do not translate lower case characters
to upper case format.

Set by LC INPUT command.

where N% is:

for no change

Set fill factor of terminal to N%-1. The
command FILL n determines this value.
Set fill factor for an LA30S (serial)
DECwriter. The command FILL LA30S sets
this characteristic.

where N% is:

for no change

The internal speed value to determine the
baud rate at which the terminal receives
characters. If byte 16 is 0, this wvalue
also determines the transmit (output) baud
rate. If byte 16 is 255, this byte must
be 255. For a DH1ll line, n is between 1
and 16. For a DCll line, n is between 1
and 4, See the PDP-11 Peripherals
Handbook for the related baud rates.
2741-type terminal. Byte 16 must also be
255%.

where N% is:

for no change

Do not set the output parity bit. This
value is set by the NO PARITY command.

Set the output parity bit for even parity
format. The EVEN PARITY command sets this
value.

Generate an output parity bit for odd
parity format. The ODD PARITY command
sets this value.

16

17

18

19

20

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

CHRS (N%) where N% is:

0 Both the receive (input) and transmit
(output) speeds are determined by n in
byte 14.

n The internal speed value to determine the

baud rate at which the terminal transmits
characters when a split speed setting is
used. For a DH1ll1l line, n is between 1 and
16; for a DC1ll1l line, n is between 1 and
4.

255 2741-type terminal. (See description of
byte 20.) Byte 14 must also be 255%.

CHRS (N%) where N% is:

0 for no change

128 Terminal ignores synchronization standards
described for 255% value. The NO STALL
command sets this characteristic.

255 Terminal obeys the synchronization
standard as follows. The computer stops
sending characters if the terminal
transmits a CHR$(19) character (XOFF, or
the CTRL/S combination). Computer resumes
sending characters when the terminal
transmits a CHRS$(17) character (XON, or
the CTRL/Q combination). The STALL
command sets this characteristic.

CHRS$ (N%) where N% is:

0 for no change

128 System echo prints a control character
received as the up arrow (~ or) character
followed by the eqguivalent printable
character. For example, the CTRL/D
combination is printed as "D, CHRS(94)
followed by CHRS$(68). The UPARROW command
sets this characteristic.

255 System treats control characters as such.
The NO UPARROW command sets this
rharactar c!—ic.

CHRS$ (N%) where N% is a value between 1 and 30 and
determines the maximum number of characters in a
burst for a DH1ll line. For low speed lines, this
is set to 30; for VT50 lines, it is set to 12.
The DH BURST n command sets this value.

CHRS$ (N%) where N% depends on the values of two
other bytes. 1If bytes 14 and 16 are both 255, the
value of this byte applies to the 2741-type
terminal as follows:

n = 8 + DATA+STOP+PARITY

21

22

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

where:
DATA is 0 for 5 bits per character
1 for 6 bits per character
2 for 7 bits per character
3 for 8 bits per character

STOP is 0 for
4

stop bit per character
for stop bits per character
or 1.5 bits if DATA=0.

N =

PARITY is 0 for no parity bit.

16 for even parity format
48 for odd parity format.

If either byte 14 or 16 is other than 255, this
byte is not used. The 2741 command determines the
value of this byte.

CHR$(N%) where N% is:

255

CHRS (N%)
0

128

255

for no change

Set the ring list entry for a terminal
attached to a DCll, DL11E or DH11l line
inter face to default to permanent
characteristics when modem is answered.
The /RING option with a TTYSET KBn:
command determines this value.

where N% is:

for no change
The system software treats an incoming ESC
CHRS$ (27%) character as a line terminating
character and echoes it as the $
character. The NO ESC SEQ command sets
this value.
The software treats an incoming ESC
CHRS$ (27%) character and the next incoming
character as a special escape sequence.
The software does not echo either
character but transposes the characters
and changes the ESC character to a
CHRS (155%) character. That 1is, 1if the
incoming data is:

ESC X
27 XXX

then the user receives:

X ESCAPE
XXX 155

The ESC SEQ command sets this value.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value

ILLEGAL SYS() USAGE 18
The keyboard number specified in byte 4
of the call is out of range of the valid
keyboard numbers.

Discussion:

If the terminal specified by the keyboard number in byte 4 of the call
either is disabled (as a result of the system initialization procedure
or of executing the disable terminal SYS call) or 1is a pseudo
keyboard, the call is not executed by the system.

The TTYSET system program employs this call to set terminal
characteristics. Refer to the discussion of TTYSET in Section 4.5 of
the RSTS-11 System User's Guide.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.9 Change File Statistics
Privileged F0=-11)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%) , the SYS call to FIP
2 CHRS$ (-11%), change file statistics code
3 CHRS$ (N%) where N% is the internal channel on which
the file 1is open. Must be between 1 and 12,
inclusive
4-5 Desired date of last access
6-7 Desired date of creation
8-9 Desired time of creation
10-30 Not used

Data Returned: No meaningful data is returned.

Possible Errors:
Meaning ERR Value

ILLEGAL SYS() USAGE 18
The file open on the channel specified
is not a disk file or is a user file
directory. An attempt by a non-privileged
user to execute this call.

Discussion:

The data passed by this call replaces the related data in the
accounting block of the file open on the channel specified in byte 3.
No error checking is done on the date and time values passed. Since
the call does not supply default values, the user program must supply
all three date and time values each time the call executes. The call
is wused by the BACKDK system program to maintain original date and
time statistics for a file.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

The following is a partial directory listing of a

privileged

account

showing the file whose statistic information is to be changed.

CAT
CTPELD. BAS e

The following program changes the date of creation to 22-July-74,

the date

@B4-SEF-74 @X-MAY-74 @966 FM

on the partial directory listing following the program.

LISTHR

18 OFEN "CTFBLD. BRS"

26 DIM MXIZBH>

xa MdCexr=30%

40 ML1xo=6x

59 MK =-11%

& MECZTHI=1%

7a M Cdr=4263H AND ;55
MU(SH»=SNAPK (4263

fa MEEK=4203H AND 2553

: MAu?kJ=SJHF"4 EIR

20 MECEXI=F20Y AND 2594
MU QL =SHAPK (T ZBH)

16a@ CHANGE M TO n¢

118 ME=E¥YSI M2

X276V END

RERDY

RLUNNH

REARDY

CART

CTPELD. BRS 2 £@

RERDY

AS FILE 1% !

AND 255k

AND 2S5k !

22-JUL-74

GFEN FILE TO

and

and time of last access to 12:00 noon, 22-July-74, as shown

CHAMNGE.
USE THIS ARRAY TO

SET UF CALL

SET UFP FOR CHANGE STATS CRLL

ON CHANNEL 1.
SET UF DARTE
FOR zz-JUL-F4
SE-JUL-F45,

SET

SET UP TIME OF LAST ACCESS
CTIMESCF2BNI=12"

OF C
(DATE$C42BZH =

UF LAST ACCESS TO

FEATION

ZE2-JUL-T4.

T 1z
aa FMo

SET IT UF AS A STRIMNG

AND DO THE MWORE

2e-JUL-74 12048

F

Mook

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.10 LOGIN And LOGOUT SYS Calls

7.2.10.1 LOGIN - Privileged (F0=4)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHRS$ (4%), the LOGIN code
3-6 Not used
7-8 Project-programmer number. Must not be account

[0,1]. See Section 7.2.3 for an explanation of
the value of each byte.

9-12 Password in Radix-50 format. See Section 7.2.4.1
for a description of converting a string to
Radix-50 format.

13-30 Not used.

Data Returned:
Byte(s) Meaning
1-2 Internal data

3 Total number of jobs logged into the system under
this account

4-? Job numbers of each job running detached under
this account. A byte of CHR$(0%) signifies the
end of the list. Only the first 26 Jjob numbers
are returned.

Possible Errors:
Meaning ERR Value

CAN'T FIND FILE OR ACCOUNT 5
The project-programmer number specified
in the call is [0,1], does not exist, or
its password does not match the password of
the account on the system.

7-72

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Discussion:

If the calling job is already logged into the system, this call does
not change the job's account. The data returned in bytes 3 through 30
refers to the same account under which the job is running.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.10.2 LOGOUT - Privileged (F0=5)

Data Passed:

Byte(s) Meaning
1 CHRS$ (6%) , the SYS call to FIP
2 CHRS$ (5%), the LOGOUT code
3-30 Not used

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value

ILLEGAL SYS () USAGE 18
The JFHIBY value is not set when the
call is executed.

Discussion:

This call closes all open channels, deassigns all devices, updates
statistics on the disk, clears the job from the monitor message table
and disassociates the project-programmer number from the job number.
However , none of these actions are performed unless the monitor sets a
special flag called JFHIBY.

The monitor sets JFHIBY only when a user types the HELLO, BYE or
ATTACH commands at a terminal logged into the system or types anything
at a terminal not logged into the system. No way exists for a
BASIC-PLUS program to set JFHIBY. Thus, an already running program
can never log itself off the system.

When the monitor sets the JFHIBY flag, the running program has full
privileges. The drop temporary privileges call resets the JFHIBY flag
to disable the privileges afforded by the flag. The LOGOUT and LOGIN
system programs use the logout call.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.11 Detach, Attach, And Reattach SYS Calls

7.2.11.1 Detach - Privileged (F0=7)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHRS (7%), the detach code
3-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value

ILLEGAL SYS () USAGE 18
The current job is already detached or
its console keyboard is open on a channel
other than channel 0.

Discussion:

This call disassociates the job and its console keyboard. The

following sample program segment prints a message and detaches from
the keyboard.

100 PRINT "DETACHING..."
! NOTIFY THE USER

110 AS$ = SYS(CHR$(6%) + CHRS(7%))
! DO THE DETACH

When data is entered at a RSTS/E terminal, the system activates a job
to handle the input and gives the job the next available job number.
If the data is recognized by the system, certain actions are executed
under that job number, one of which can be logging a user into the
system. (See Sections 2.1 and 4.1 of the RSTS-11 System User's Guide
for the operational details.) When a user is logged into the system,
the activated job is associated by the system with both the terminal
at which he is typing and the account number which he used to identify
himself to the system. The job is then considered active on the
system and in attached mode, or, simply, attached to the terminal.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

A privileged job can become detached from the terminal by executing
this call. Once a job is placed in the detached state, it runs as any
other job logged into the system but it does not employ a terminal
device on channel 0. The detached state 1is advantageous for
non-interactive jobs. The job running detached frees a terminal for
other usage and makes the Jjob immune from interruption by someone
typing a CTRL/C combination.

Wwhen the user desires to attach a detached job to a terminal, he can
log into the system at any free terminal using the account number
under which the detached job was made active and attach that job to
the terminal. (This procedure 1is described in Section 4.1 of the
RSTS-11 System User's Guide.) Since the system associated the Jjob
number of the attached job with the account number under which that
job was made active, it reports the detached job under the same
account number.

This attachment facility is valuable in another manner. A job can be
placed in a detached state by the system when the carrier is dropped
on a remote line. This means that, if the telephone connection 1is
lost while a job is running from a terminal at a remote location, the
content of the job is not lost. The user simply logs into the system
again with the same account number and reattaches to the job he was
previously running.

The ERRCPY, QUEMAN, SPOOL, and BACKUP system programs use this call.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.11.2 Attach - Privileged (F0=6)

Data Passed:
Byte (s)
1

2

11-30

Data Returned:

Possible Error

Meaning
CHRS$ (6%) , the SYS call to FIP
CHRS$(6%), the attach and reattach code. The

of the data passed is quite different.
Section 7.2.11.3 for the reattach format.

code
to attach and reattach is the same but the format

See

The number of the job to attach to the terminal.

Must be 0

Project-programmer number of the job to attach
the terminal. See Section 7.2.3 for a description

of the exact contents of each byte.

to

Password of the account specified in bytes 5 and 6

in Radix-50 format. See Section 7.2.4.1

for

information on converting a string to Radix-50

format.

Not used.

No meaningful data is returned.

S:

Meaning ERR Value

ILLEGAL SYS () USAGE
Each of the following conditions
generates this error:

1.

2.

The job executing the call has an open channel.

The job executing the call 1is a source (BAS)
program rather than a compiled (BAC) program.

The job number specified in byte 3 1is not a
detached job.

The account or password in the call is not valid.

The job executing the call is detached.

18

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
Discussion:

The LOGIN system program is the only program that can execute this
call. See the LOGIN.BAS listing for an example of its usage. Note
that, if byte 3 is the number of the Jjob executing the call, the
system performs the reattach action. See Section 7.2.11.3 for a
description of the reattach process.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.11.3 Reattach - Privileged (F0=6)

Data Passed:

Byte (s) Meaning
1 CHRS (6%), the SYS call to FIP
2 CHRS$ (6%), the attach and reattach code. The code

to attach and reattach is the same but the format
of the data passed 1is quite different. See
Section 7.2.11.2 for the attach format

3 CHRS (J%) where J% 1is the number of the job
executing the call
4 CHRS$ (K%) where K% is the keyboard number of the
terminal to which the <calling job 1is to be
attached
5-30 Not used

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value

ILLEGAL SYS() USAGE 18
Each of the following conditions generates
this error:

1. The job number specified in byte 3 is less than 1
or greater than the JOB MAX value on the system.

2 mh nh
I [

The jo
3. The keyboard number in byte 4 is out of range.

4. The terminal specified by the keyboard number 1in
byte 4 1is currently assigned, opened, or the
console keyboard of some job.

5. The job executing the call has an open file.

6. The job executing the <call 1is a source (BAS)
program rather than a compiled (BAC) program.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Discussion:

A privileged job can execute this form of the attach and reattach
call. The call establishes the terminal specified in byte 4 as the
console keyboard of the detached job executing the call. In this
manner, a job can reattach to a terminal without having to force the
proper data to the desired terminal.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.12 Send And Receive Messages
Both Privileged (F0=18) and Not Privileged

This function call allows a user's job to do the following:

a. declare itself a receiving job,

b. send a message to a receiving job,

c. receive a message from pending messages,

d. stall until a message is pending, and

e. eliminate itself or another job as a receiving job.

The monitor controls eligibility to receive messages by maintaining a
table of receiving jobs. The response to the RECEIVERS query at
system generation time determines the maximum number of jobs eligible
to receive messages at any given time. To be eligible to receive
messages, a job must declare itself and have 1its identification
entered in the table of receiving Jobs. A job sending a message
succeeds only if the job to which the message is sent has an entry in
the table.

Sending and receiving messages on the system uses small buffers. Each
message occupies one small buffer. A Jjob defines, in its first
receive call, the number of pending messages (messages sent to the job
but not yet received by the job) which monitor allows to be queued for
the job at any given time. This maximum can be as high as 127. To
prevent occupying a large number of small buffers, and thereby
degrading system performance, the pending maximum for each receiver
should be small (10 to 15) and each receiving job should extract its
messages quickly.

The system controls message operations on a first-in, first-out (FIFO)
basis. It maintains pending messages as a linked chain of small
buffers. When a job sends a message to an eligible receiving job, the
system appends the related small buffer to the last small buffer in
the chain of messages pending for the job. When a receiving job asks
for a pending message, the system makes available the first message in
the chain and removes the related small buffer from the chain.

The system continues message operations for a receiving Jjob until
either the maximum number of messages are pending or the supply of
small buffers is exhausted. Since such conditions affect system
operations, a receiving job must process its pending messages
freguently to maintain adequate system performance. Since poorly
designed use of the receive mechanism can drastically degrade overall
system performance, the receive operation can be executed only by a
privileged user.

A receiving job must remove itself from the table of receiving jobs or
have another Jjob remove it. To keep non-active jobs from occupying
entries in the table of receivers, both the logout SYS call and the
kill Jjob SYS call remove the job from the table of eligible receiving
jobs.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.12.1 Declaring A Receiver And Receiving A Message - Privileged

(F0=18)
Data Passed:
Byte (s)
1

2

9-30

Meaning
CHRS$ (6%) , the SYS call to FIP
CHRS$ (18%), the send and receive a message code
CHRS (N%) where N% is one of the following values:

1 Attempt to receive a message or declare this
job as a receiver and attempt to receive a
message. Return an error condition if no
messages are pending.

2 Receive with sleep. Similar to 1 except that
the job executes a sleep operation if no
messages are pending. This action occurs 1in
place of generating an error condition.

CHRS (P%+L%) where P% can be either 0 or 128. 1If P
is 0, messages can be received from any sending
job. If P is 128, messages can be received from
and queued only by sending jobs which are
privileged.

L% is the number of messages (between 1 and 127)
which can be simultaneously pending for this
receiving job.

Receiving job logical name in Radix-50 format.
See Section 7.2.4.1 for a description of
converting a string to Radix-50 format.

Not used.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Data Returned:

Byte (s) Meaning
1-4 Not used
5 CHRS$(J%) where J% is the job number times 2 of job
sending the message
6 Must be CHRS (0%)
7-8 Project-programmer number of the pending job. See

Section 7.2.3 for a description of each byte.

9-28 The message string. The system pads any unused
bytes with NUL characters to a length of 20 bytes.

29-30 Not used.

Possible Errors:
Meaning ERR Value

NO ROOM FOR USER ON DEVICE 4
When the job attempts to declare itself
as a receiving job, the monitor table
containing data of eligible receiving
jobs is full or is zero length.

CAN'T FIND FILE OR ACCOUNT 5
For receive only, error indicates no
messages are pending. For receive with
sleep, error indicates no messages were
pending when the receive was executed by
monitor. Error is returned to the program
when monitor awakens job from sleep.

TLLEGAL SYS () USAGE
When the job attempts to declare itself
as a receiving job, either the logical
name is missing from the call (bytes 5
through 8 are not given) or another job
has already declared itself a receiver
with the logical name given.

[#
{
[¢
l
[
o

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
Discussion:

A receive call checks the eligibility of a job to receive messages and
performs both or one of two actions based on the result of the check.
First, if the job is not eligible to receive messages, the call
declares the job as an eligible receiver and attempts to receive a
message. Second, if the job is already eligible, the call attempts to
receive a message. Since the same call performs two actions, it is
important that the user program handle the declaration and receiving
procedure properly.

To check the eligibility of a job to receive messages, the system
determines if the calling job's job number appears in a table in the
monitor part of memory. If the job number is not in the so called
receiver table, the system ensures that the logical name specified in
bytes 5 through 8 of the data passed is not currently being used by
another Jjob. If the 1logical name 1is unique and an empty slot is
available, the system declares the job as a receiver by entering in
the table its job number, its logical name, and other data.
Subsequent to declaring the job as a receiver, the receive call never
refers to the logical name. The logical name exists so that a sending
job can easily refer to a receiver without supplying its job number.

A receive call can not change a logical name in the table of eligible
receivers because the system refers to the job number in the receive
table rather than to the logical name. If the Jjob number of the
current job is in the table, the system considers the job eligible and
has no need to refer to the logical name. This condition is important
if a previous receiver with the same Jjob number as the current
receiver failed to remove itself from the table before terminating
processing. Thus, a logical name already appears in the table for the

current receiver when it attempts to declare itself a receiver.

To eliminate the possibility of a spurious logical name appearing in
the table for the current Jjob, it 1is recommended that a program
execute the call to remove itself as a receiver before it executes the
first receive call to declare itself a receiver. In this manner, the
program ensures that the logical name in the table for the current job
is, in fact, the name declared in bytes 5 through 8 of the call.

When the receive call declares a job as a receiver, it also attempts
to receive a message. Because the system does not queue messages for
a job which is not an eligible receiver, the first attempt to receive
a message always fails.

When the receive call determines that a job is eligible, it attempts
to receive a message. If a message is pending for the job, the call
returns the information in bytes 9 through 28 of the target string.
If no message is pending for the job, the call executes according to
the value of N% in byte 3 of the data passed. If the value of N% |is
1, the call immediately generates a recoverable error (ERR = 5). If
the value of N% is 2, the call puts the job in a SLEEP state (called a
receiver sleep).

The system awakens a job in a receiver sleep if a message becomes
queued for it or if a line terminating character is typed on one of
its keyboards. Since the system presets the recoverable error
condition (ERR = 5) before putting the job to sleep, the receiving
job, upon awakening, detects the error condition. The system does not
pass the message to the job. To obtain the message queued, the job
must execute the receive call again.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.12.2 Send A Message - Both Privileged and Not Privileged (F0=18)

Data Passed:
Byte (s)

1

2

=30

Data Returned:

Meaning
CHRS$ (6%), the SYS call to FIP
CHR$ (18%), the send and receive a message code

CHR$ (-1%); this value indicates that the call is
a request to send a message

CHR$ (J%) where J% is the job number times 2 of the
job to receive the message. If J% is 0, the call
uses the logical name in bytes 5 through 8 to
determine the receiving job

Receiving job name in Radix-50 format. See
Section 7.2.4.1 for a description of converting a
string to Radix-50 format.

Message text to send. Can be a maximum of 20
bytes and the system pads the message with NUL
characters to the length of 20 bytes

Not used.

No meaningful data is returned.

7-85

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
Possible Errors:
Meaning ERR Value

CAN'T FIND FILE OR ACCOUNT 5
The receiving job specified is not in
the monitor table of eligible receiving
jobs.

ILLEGAL SYS() USAGE 18
The receiving job specified is capable
of receiving messages only from
privileged jobs and the sending job is
not privileged.

NO ROOM AVAILABLE FOR FCB 32
One of two conditions is possible.

1. The number of messages pending for
the receiving job is at its declared
maximum. The sending job must try
again. If this condition occurs
frequently, it indicates that the
declared maximum is too low or that the
receiving job is not processing its
messages quickly enough.

2. Also, sending a message requires a
small buffer and one is not available.

Discussion:

The SEND operation sends a message to a declared receiving job in one
of two ways: by either a job number or by a job identification. When
byte 4 of the data passed 1is non-zero, the call 1ignores bytes 5
through 8 and attempts to send the message to the job designated by
the value in byte 4. 1If byte 4 is zero, the call attempts to send the
message to the receiver whose identification matches that given in
bytes 5 through 8.

The sending job can be either privileged or non-privileged. The
sending job must be privileged if the receiver is capable of receiving
messages only from privileged sending jobs. (The receiver determines
this capability by specifying a proper value in byte 4 of the Declare
a Receiver SYS call.) If a non-privileged sender attempts to send a
message to a receiver which is accepting messages only from privileged
sending jobs, the monitor does not queue the message and returns the
ILLEGAL SYS() USAGE error to the non-privileged sender. The sending
job can be either privileged or non-privileged 1if the receiver is
capable of receiving messages from any sending job.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.12.3 Removing A Receiver - Privileged (F0=18)

Data Passed:

Byte(s) Meaning

1 CHRS$ (6%) , the SYS call to FIP

2 CHRS$ (18%), the send and receive a message code

3 CHR$(0%) to remove a receiving job from the
monitor table of receiving jobs

4 CHRS$ (N%) where N% is the number of the job to
remove or is 0 to remove the job executing the
call

5-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:
Meaning ERR Value
ILLEGAL SYS() USAGE 18

An attempt by a non-privileged job to
execute this call.

Discussion:

This function removes the job number and logical name from the receive
table. All pending messages are lost.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.13 Poke Core Privileged (F0=-6)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHRS$ (-6%), the poke core code
5-6 CHRS (A%)+CHRS (SWAPS (A%)) where A% is the address
to charnge

CHRS (V%) +CHRS (SWAP% (V%)) where V3% is the value to
insert at the address specified by bytes 3 and 4.

7-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value

PROTECTION VIOLATION 10
The job executing the call is not
operating under account [1,1] or the
address specified in the call is an
odd value.

Discussion:

This call changes a word in the monitor part of memory to the value
the user specifies. Obviously, this is a very dangerous capability,
and it is, therefore, heavily protected. It can only be called from a
job running on account [1,1].

The poke call allows only full word changes. If the |user desires a
byte change, he must read the word (using the PEEK function), change
the desired byte, and rewrite (using the POKE call) the entire word.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.14 sSet Logins Privileged (F0=-=19)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHR$(-19%), the set logins code
3 CHRS (N%) where N% is the number of logged in jobs
to allow
4-30 Not used
Data Returned: No meaningful data is returned.
Possible Errors:
Meaning ERR Value
ILLEGAL SYS () USAGE 18
An attempt by a non-privileged job to
execute this call.
Discussion:
This function sets the number of allowable logins to the number
specified in byte 3. If N is 0, the number set is 1. If N is greater
than the system JOBMAX set at start up time, then the number set is

the value of JOBMAX.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.15 Accounting Information

7.2.15.1 Read Or Read And Reset Accounting Data -
Both Privileged and Not Privileged (F0=14)

Data Passed:

Byte (s)

5-6

25+
26+

27-30

Meaning
CHRS$ (6%), the SYS call to FIP

CHRS$ (14%), the read or read and reset accounting
data code

CHRS (N%) +CHRS (SWAP$ (N%)) where N% is the index
number of the account to read. If N% is 0, read
the account specified in bytes 7 and 8.

CHRS (N%) where N% is 0 to indicate read only and
is non-zero to indicate read and reset. If the
job executing this call is not privileged, the
system does not access this word and performs only

a read operation.

Project-programmer number. Used only if bytes 3
and 4 are 0. See Section 7.2.3 for a description
of each byte.

Not used

Device name; must be a disk. A zero in both
bytes indicates the system disk.

Unit number
Unit number flag

Not used

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Data Returned:

Byte(s) Meaning
1-4 Internal coding
5-6 Number of blocks owned by the account read
7-8 Project-programmer number of the account read
9-12 Password of the account read; 1in Radix-50 format
13-14 Low order word (16 bits) of the CPU time (in

tenths of seconds) used by the account

15-16 Connect time (in minutes) used by the account

17-18 Low order word (16 bits) of kilo-core ticks used
by the account
19-20 Device time (in minutes) used by the account

21-22 High order bits for CPU time and kilo-core ticks.
See the discussion for an explanation of how the
values are stored.

23-26 Device and unit information unchanged

27-28 Disk quota in number of blocks; 0 means unlimited
quota

29-30 User file directory cluster size.

Possible Errors:
Meaning ERR Value

"IND FILE OR ACCOUNT 5
The project-programmer number specified

does not exist on the disk or the index

specified is greater than the number of

accounts on the disk.

ILLEGAL SYS() USAGE 18
Device specified is not a disk.

Discussion:

This FIP call is the only one provided in RSTS/E to lookup accounts on
a disk. By starting the index (bytes 3 and 4) at 1 and incrementing
it for each call, the user program can retrieve the project-programmer
number of every account on the disk. See the description of the MONEY
system program (Section 6.5) for a discussion of the accounting
information.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

The word returned in bytes 21 and 22 holds the high order bits of CPU
time and kilo-core ticks. The bottom ten bits of this word apply to
kilo-core ticks, and the top six bits apply to CPU time. Graphically,
the word looks like the following:

N ————
High Order Part High Order Part
of CPU Time of KCT

If a non-privileged program executes this call, the system forces the
following bytes in the data passed to the values shown.

3 and 4 0 Look up the account
specified in bytes
7 and 8
5 and 6 0 Read only
7 and 8 current Look up data for
PPN current project-

programmer number

If a privileged program executes this call and bytes 5 and 6 of the
data passed are non-zero, the following account information is read
and reset to zero.

CPU time
kilo-core ticks
connect time
device time

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.15.2 Accounting Dump - Privileged (F0=-15)

Data Passed:

Byte (s) Meaning
1 CHRS (6%), the SYS call to FIP
2 CHRS (-15%), the accounting dump code 3-4

Project-programmer number of the account to which
the system dumps the accumulated usage data. See
Section 7.2.3 for a description of each byte.

If both bytes are zero, the data is dumped to the
current account.

5-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value

CAN'T FIND FILE OR ACCOUNT

The account specified in bytes 3 and
4 does not exist.

Discussion:

This function allows a program to dump accumulated accounting data to
the account specified in bytes 5 and 6. This capability enables user
callable utility programs to run on an account different from the
account which called them and still charge the calling account for the
time accumulated by the utility. For example, the SPOOL program must
run on a privileged account, but is callable by non-privileged users
through the QUE command. It is desirable that the calling wuser be
charged for the time the SPOOL program accumulates processing the job.
The SPOOL program could take advantage of this SYS call to effect this
process. (1)

(1)The version of SPOOL released with RSTS/E does not perform this
function.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.16 Directory Look Up

The SYS function calls described in this section look up file names
under programmed control. Although only two codes are available, four
different types of operation are possible. As a result, four
descriptions appear in this section.

The four types of operation return the data in the same format as
described below.

Data Returned:

Byte(s) Meaning'
1-4 Not used
5-6 Same as data passed. {(Project-programmer number)
7-10 File name in Radix-50 format. See Section 7.2.2

for a description of converting a string in
Radix-50 format

11-12 Extension in Radix-50 format

13-14 Length in blocks or sectors. (Not used for
special magtape look up described in Section
7.2.16.2)

15 Protection code of the file

16 0

17-18 For disk, the date of last access; for tape, the
date of creation

19-20 For disk, the date of <creation; for tape, not
used

21-22 For disk, the time of creation; for magtape, the

project-programmer number of the file

23-26 Same as data passed. (Device name, unit number,
and flag byte)

27-28 For disk, the file cluster size; for tape, not
used
29 Number of entries returned: for disk, 8; for

tape, 6. (Not returned if FO is 17.)

30 Not used.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.16.1 Directory Look Up On Index - Not Privileged (F0=15)

Data Passed:
Byte (s)

1

2

3-4

7-22
23-24+

25+

26+

27-30

Data Returned:

Meaning
CHRS$ (6%), the SYS call to FIP
CHRS$ (15%), the directory look up on index code

CHRS (N%)+CHRS (SWAP% (N%)) where N% is the index of
the file to read. If N% is 0, return the data for
the first file in the directory. If N% is x,
return the data for the x+1 file in the directory.
On magtape, N% must be 0 to rewind the tape before
reading the first file. See Section 7.2.16.2 for
a description of magtape operations. On DECtape,
N% must be 0 to read the directory blocks from the
tape before reading the first file. Subsegquent
calls where N% is not zero read the directory from
the BUFF.SYS file.

Project-programmer number of the directory to look
up. If both bytes are 0 and the device specified
in bytes 23 and 24 is magtape, the <call returns
information for each file read. If the device
specified in bytes 23 and 24 is DECtape, the call
does not use these bytes but returns information
for each file read. See Section 7.2.3 for a
description of these bytes.

Not used

Device name for look up
Unit number

Unit number flag

Not used.

See introductory material for Section 7.2.16.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
Possible Errors:
Meaning ERR Value

CAN'T FIND FILE OR ACCOUNT 5
The account specified does not exist
on the device specified or no more
files exist on the account (the index
value is greater than the number of
files on the account).

DEVICE NOT FILE STRUCTURED 30
The device specified in the call is
not a file structured device.

VARIOUS DEVICE DEPENDENT ERRORS
The call also returns device dependent
errors such as DEVICE HUNG and DISK
PACK NOT MOUNTED.

Discussion:

The CATALOG system command employs the same routines as this call to
print a directory listing. The ordering of the files in the listing
is by index value from the 1lowest to the highest. The user can
therefore determine the index value for a certain file by counting its
position in a CATALOG listing and subtracting one.

If the device specified is magtape, the monitor, after reading a file
label, skips to the end of the file on the tape to determine the
number of blocks in the file.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.16.2 Special Magtape Directory Look Up - Not Privileged (F0=15)

Data Passed:
Byte(s)

1

2

3-4

5-6

7-22
23-24
25+
26+

27-30

Data Returned:

Possible Errors:

Meaning
CHRS$ (6%), the SYS call to FIP
CHRS$ (15%), the directory look up on index code

CHRS (N%)+CHRS (SWAP% (N%)) where N% is the index of
the file to read. 1If N% is 0, return the data for
the first file in the directory. If N% is x,
return the data for the x+1 file in the directory.
On magtape, N% must be 0 to rewind the tape before
reading the first file. See Section 7.2.16.2 for
a description of magtape operation. On DECtape,
N% must be 0 to read the directory blocks from the
tape before reading the first file. Subsequent
calls where N% is not zero read the directory from
the BUFF.SYS file.

Both bytes are CHR$(255%) to execute the special
magtape directory look up

Not used

MT

Unit number

Unit number flag

Not used.

See introductory material for Section 7.2.16.

Meaning ERR Value

CAN'T FIND FILE OR ACCOUNT 5
No more files exist on the tape.

DEVICE NOT FILE STRUCTURED 30
The device specified in bytes 23
and 24 is not file structured.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
Discussion:

The standard directory look up call (described in Section 7.2.16.1)
executed on a magtape unit results in the following actions by the
monitor:

a. Reads one record from the tape (a label record).

b. Spaces the tape forward to the next end of file record and
calculates the number of records in the file.

c. Returns the directory information if the account number of
the file matches the one specified in the call or if both
bytes in the account specification in the call are zero.

When the monitor executes the action described in statement a, the
tape must be positioned immediately before a label record. Otherwise,
an error is generated or garbage information is returned.

In an application program which must search a tape for a specific file
and read each specific file found, the OPEN FOR INPUT statement
necessitates a rewind operation. The OPEN FOR INPUT statement
executed on a file structured magtape generally causes the following
actions.

a. Reads one record from the tape which must be a label record.

b. If the read operation is successful, then opens the file and
returns control to the user progran.

c¢. If the read operation is unsuccessful and this is the first
label read, then rewinds the tape and executes the action
described at a.

d. If the logical end of tape is detected, returns an error.

e. If the label read does not match, skips to the end of this
file and executes the action at a.

The required rewind operations consume time and are clearly unwanted.
To avoid the rewind operations, the application program can execute
the special magtape directory 1look up call and perform certain
actions. By specifying bytes 5 and 6 both as CHR$(255%) in the call,
the program causes the following actions by the monitor.

a. Reads from the tape a record which must be a label record.

b. Backspaces one record which leaves the tape in a position to
read the label record again.

c. Returns the directory information (except for file length) to
the program.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

To take advantage of this special action, the program can perform the
following actions.

a. Determine from the information returned whether the file 1is
the one required.

b. If the file is reqguired, execute the OPEN FOR INPUT statement
using the file name and requesting no rewind. The action
executes without a rewind because the tape 1is positioned
properly. If the file 1is not required, space the tape
forward to the next end of file record (see Section 12.3.7 of
the BASIC-PLUS Language Manual) before executing another
call.

c. After processing the required file, execute a CLOSE statement
to position the tape at the end of file record and to be
ready to execute another call.

The special look up call returns directory information on each file
read regardless of its account number. However, the OPEN FOR INPUT
statement must specify the correct account number if the account
number of the file does not correspond to the current account number.

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.16.3 Disk Directory Look Up By File Name - Not Privileged (F0=17)

Data Passed:

Byte(s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHR$(17%), the disk directory look up by file name

and disk wildcard directory 1look up

code. See

Section 7.2.16.4 for a description of the latter

call.
3-4 Both bytes must be CHRS$ (255%)
5-6 Project-programmer number of the file to look up.

See Section 7.2.3 for a description of each byte.

7-10 File name in Radix-50 format. See Section 7.2.4.1

for a description of converting a
Radix-50 format.

11-12 Extension in Radix-50 format
13-22 Not used
23-24+ Device name; must be disk
25+ Unit number
26+ Unit number flag
27-30 Not used.

string to

Data Returned: See introductory material for Section 7.2.16.

Possible Errors:

Meaning

ILLEGAL FILE NAME
File name in bytes 7 through 10 is
missing.

CAN'T FIND FILE OR ACCOUNT
The device specified in bytes 23 and

24 is not a disk or the file specified
does not exist on the specified disk.

Discussion:

This call works only on disk files and returns information
specified file.

7-100

ERR Value

2

for the

7.2.16.4

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Disk Wild Card Directory Look Up - Not Privileged (F0=17)

Data Passed:

Byte(s)

3-4

7-10

11-

Data Returned:

Possible Errors:

12

Same as that described in Section 7.2.16.3 except for
the following data.

Meaning

CHRS$ (I%) + CHRS (SWAP%(I%)). 1If I% 1is 0, return
the data for the first file which matches the wild
card specification. If I% is x, return the data
for the x + 1 file which matches the wild card
specification.

Radix-50 representation of a wild card file name
specification where an * character can replace the
file name or a ? character can replace any
character in the file name. Used with the
extension in bytes 11 and 12 to create a wild card
file specification. See Section 7.2.4.1 for a
description of converting a string to Radix-50
format.

Radix-50 representation of a wild card extension
specification were an * character can replace the
extension or a ? character can replace any
character 1in the extension. Used with the file
name in bytes 7 through 10 to create a wild card
file specification. See Section 7.2.4.1 for a
description of converting a string to Radix-50
format.

See Introductory material for Section 7.2.16.

Meaning ERR Value
ILLEGAL FILE NAME 2
No file name appears in bytes 7 through
10.
CAN'T FIND FILE OR ACCOUNT 5

DISK

The device specified in bytes 23 and
24 is not a disk or no match exists for
the index value given in bytes 3 and 4.

PACK IS LOCKED OUT 22
The disk is in the locked state and

the account under which the call is

executed is not privileged.

7-101

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Discussion:

This call allows a program to supply a wild card specification and to
increment an index value to gain directory information for all
occurrences of files matching the wild card specification. The
following are typical wild card specifications and their meanings.

FILE??.* All files with FILE as the first four
characters in the name and with any extension
{including no extension)

* BAS All files with BAS extensions

* _BA? All files with BA as the first two characters
in the extension

The program supplies an index of 0 and executes the call. The system
returns directory information for the first file which matches the
wild card specification. The program can increment the index by 1 and
execute the call again to gain directory information for second and
subsequent matching occurrences of files. The system returns error
number 5 to indicate no more matching occurrences exist in the
account. The entire procedure relieves the program of the overhead
required to translate each file name in the directory and to compare
for a match.

7-102

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.16.5 General Guidelines For Usage Of Directory Look Up Calls - The
following conditions apply to executing one of the directory look up
calls described in Section 7.2.16.

If a program specifies either DECtape or magtape, the monitor assigns
the related unit to the calling job while the call executes. The unit
remains assigned after the call completes.

When a program repeatedly executes one of the calls on disk and
increments the index for each repetition, the execution time increases
for each successive call. The increase occurs because the monitor
must read the file name blocks for indices numbered 0 through N-1
before it reads the file name block for index number N. The process
is the only one possible since the index value has no other
relationship to the actual disk address of the file name block.

When a program repeatedly executes one of the calls on a system disk
structure having multiple public disks, the increase in execution time
related to the index value is more critical. Since the monitor has no
means of determining how many files exist on each unit of a multiple
public disk structure, it must read the file name blocks of each unit
beginning at unit 0 until the Nth file is read. Therefore, on such a
system, execution time can be decreased if the program executes the
call repeatedly on each specific unit of the public structure (for
example, DKO:, DKl:, and upward) rather than on the entire public
structure (SY:).

7-103

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.17 Monitor Tables And FCB Or DDB Information

The two monitor table SYS system function calls to FIP return to the
user program either an address or a data value. They are commonly
employed with the PEEK function to read various system parameters and
tables which give configuration and run time information. Because it
is beyond the scope of this manual to describe the monitor, this
section only briefly describes the information returned by the monitor
table functions. Section 7.3 describes the use of the PEEK function
for certain convenient programming operations.

In this section, each item of information described is denoted by a
name in all upper case letters. This name is the same one used to
identify the information in the RSTS/E assembly listings. If the name
is enclosed by parentheses, the information returned is an address of
the data described. If the name is not enclosed by parentheses, the
information returned 1is the actual data value. For example, the get
monitor table (part I) call returns NULINE in byte 3. The value
returned is the number of terminal lines configured on the system.
However, in bytes 11 and 12 is (JOBTBL), the address of the table of
jobs. The user program can inspect the address by using the PEEK
function.

7-104

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.17.1 Get Monitor Tables - Part I - Not Privileged (F0=-3)

Data Passed:

Byte(s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHRS$ (-3%), the get monitor tables (part I)
3-30 Not used.

7-105

code

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

Data Returned:
Byte(s)
1-2

3

21-22

23-24

25-26

27-28
29-30

Possible Errors:

Meaning
Not used

NULINE - the number of keyboards configured on the
system

MAXCNT - the maximum job number allowed during the
current time sharing session

(DEVCNT) - the table of maximum unit numbers for
all devices configured on the system

(DEVPTR) - the table of pointers to device DDBs
(CORTBL) - the memory allocation table

(JOBTBL) - the job table

(JBSTAT) - the job status table

(JBWAIT) - the table of job wait flags

(UNTCLU) - the table of wunit cluster sizes for
mounted disks

(UNTCNT) - the status table of the error counts
and all devices on the system and the count of
open files on each device

(SATCTL) - the table of free block counts for each
disk (other than swapping disks) on the system.
The table SATCTL contains the least significant
word (16 bits) of the double precision unsigned
integer (32 bits) count of free blocks. Each word
applies to a separate disk unit.

(TBLNAM) ~ the program name table

(SATCTM) - the table of free block counts for each
disk (other than swapping disks) on the system.
The table SATCTM contains the most significant
word (16 bits) of the double precision unsigned
integer (32 bit) count of free blocks. Each word
applies to a separate disk unit.

Current date in internal format

Not used.

No errors are possible.

7-106

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.17.2 Get Monitor Tables - Part II - Not Privileged (F0=-12)

Data Passed:
Byte (s)

1

2

3-30

Data Returned:

Byte (s)

7-8

o
[}

10

11-12

13-14

15-16
17-18

19-20

21-22

23-24

25-26

27-30

Possible Errors:

Meaning
CHRS$ (6%), the SYS call to FIP
CHR$ (-12%), the get monitor tables (part II) code

Not used.

Meaning
Not used

(FREES) - the table of free (small and large)
buffer information

(DEVNAM) the device name table

(TTILST)

the keyboard input CSR table

(TTSLST) - the modem default list

(TTYHCT) the number of hung terminal errors
since system start up

(JOBCNT) - current number of jobs, current job
number limit, configured job number limit

Reserved

(ERRCTL) - error logging control data

(TBLMES) - the table of eligible message receiving
jobs

(LOGNAM) - the table of logical names for mounted
disks

(JOBRES) - the table of job residency pointers

(CORMAX) - the word containing the size of memory
physically present on the system. This value is
updated after the RESET command in the TABLE
OPTION is executed.

Not used.

No errors are possible.

7-107

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.17.3 Get Open Channel Statistics - Not Privileged (F0=-8)

Data Passed:

Byte (s) Meaning
1 CHRS (6%), the SYS call to FIP
2 CHRS (-8%), the get open channel statistics code
3 CHRS (N%) where N% is the channel number (between 0

and 15) of either the FCB or DDB

4-30 Not used.

Data Returned:

Byte(s) Meaning
1-2 Not used
3-4 Word 1 of either the FCB or DDB
5-6 Word 2 of either the FCB or DDB
27-28 Word 13 of either the FCB or DDB
29-30 Word 14 of either the FCB or DDB

Possible Errors:
Meaning ERR Value

I/0 CHANNEL NOT OPEN 9
The channel specified in byte 3 of
the call is not open.

Discussion:

The layout of an FCB and DDB for each device configured on the system
is in the 1listing of the TBL.LST file created during system
generation.

The use of this call is rendered obsolete by the STATUS variable
described in Section 12.3.5 of the BASIC-PLUS Language Manual.

7-108

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.18 Enabling and Disabling Disk Cacheing - Privileged (F0=19)

Data Passed:

Byte(s) Meaning
1 CHRS$ (6%) , the SYS call to FIP
2 CHRS$ (19%), the enable and disable disk cache code
3 CHRS$ (N%) where N% is 0 to enable the disk cache

and non-zero to disable the disk cache
4-30 Not used.
Data Returned: ©No meaningful data is returned.

Possible Errors:

Meaning ERR Value
ILLEGAL SYS() USAGE 18

An attempt by a non-privileged job to execute this call.

Discussion:

This function enables or disables the disk cache.

7-109

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.19 Run-Time System Control

A privileged user can conduct time-sharing operations with an
auxiliary run-time system supplied by DIGITAL. This section describes
SYS System Function Calls =17 and -18, wused to build auxiliary
run-time systems.

7.2.19.1 Name A Run-Time System - Privileged (F0=-17)

Data Passed:

Byte(s) Meaning
1 CHRS$ (6%), the SYS call to FIP
2 CHRS$ (-17%), the name run-time system code
3 CHRS (N%) where N% is the channel number
4-7 Run-time system name in RAD50
8-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value

I/0 CHANNEL NOT OPEN 9
The channel specified in byte 3 of the call is not open.

ILLEGAL SYS() USAGE 18
An attempt by a non-privileged job to execute this call.

Discussion:

This SYS function provides the association reguired for a specially
tailored module on the system disk to be accessed as a run-time
system. This association is normally made during the system library
build procedure and is not required again wunless the system is
regenerated.

7-110

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.19.2 Add A Run-Time System -~ Privileged (F0=-18)

Data passed:

Byte (s)

11-12
13-14
15-16
17-18
19-20
21-22
23-24
25
26

27-30

Data Returned:

Possible Errors:

Meaning
CHRS$ (6%) , the SYS call to FIP
CHRS$ (-18%) , the run~time system manipulation code
Not used.
Run-time system name in RADS0
Not used.’
Maximum allowed user image size, in K
Maximum allowed user image size, in K
Allowed user image size, in K, at initialization
Reserved; must be 0
Not used.
Device name
Unit number
Unit number flag

Not used

No meaningful data is returned.

Meaning ERR Value

ILLEGAL SYS() USAGE 18
An attempt by a non-privileged job
to execute this call; 1illegal parameters.

NO ROOM AVAILABLE FOR FCB 32
A small buffer is not available for FCB.

NO RUN-TIME SYSTEM 41
Auxiliary run-time system cannot be found

Discussion:

7-111

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

This call adds the appropriate name to the run-time system table in
memory. This action 1is necessary since the initialization code
establishes a new table each time system start-up occurs. This call
ensures that the appropriate name and parameters are entered in the
table.

The maximum and minimum user image sizes of the BASIC run-time system
are set to 16K and 2K, respectively. These values are in reference to

the user's job swappable image, not the size of the run-time system
itself.

Bytes 17 and 18 specify the requested size of the run-time system at
initiatlization. If possible, this space 1is reserved when the
run-time system is initialized.

7-112

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.2.19.3 Remove A Run-Time System - Privileged (F0=-18)

Data Passed:

Byte(s) Meaning
1 CHRS (6%), the SYS call to FIP
2 CHRS (-18%), the run-time system manipulation code
3 CHRS (4%) , remove run-time system
4-6 Not used.
7-10 Run-time system name in RADS50
11-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning

ILLEGAL SYS() USAGE
An attempt by a non-privileged job
to execute this call; 1illegal parameters.

NO RUN-TIME SYSTEM
Auxiliary run-time system cannot be found.

ACCOUNT OR DEVICE IN USE
Removal of the run-time system is not
allowed while it is being used.
PROTECTION VIQLATION

VLA LLUVN

Removal of the default run-time system is
not allowed.

Discussion:

The SHUTUP system program automatically performs the

when

time-sharing operatons are terminated. The

deleted from the run-time system table.

7-113

ERR Value

18

41

[
<

remove action
module entry is

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.19.4 Load A Run-Time System - Privileged (F0=-18)

Data Passed:

Byte (s) Meaning
1 CHRS$ (6%) , the SYS call to FIP
2 CHRS (-18%), the run-time system manipulation code
3 CHRS$ (2%), load run-time system
4-6 Not used.
7-10 Run-time system name in RAD50
11-12 Loading address
13 128=Permanent residency; 0=Temporary residency
14 1=Read/Write system; O0=Read only system.
15-20 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value

ILLEGAL SYS() USAGE 18
An attempt by a non-privileged job
to execute this call; illegal parameters.

NO ROOM FOR USER ON DEVICE 4
Run-time system is too large for available
storage space.

ACCOUNT OR DEVICE IN USE 3
More than one job is attempting to load
a run—-time system at the same time.

NO RUN-TIME SYSTEM 41
Auxiliary run-time system cannot be found.

7-114

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
Discussion:

This call loads the run-time system into memory at the 1K section
specified. The run-time system is loaded from low memory to high
memory at its defined initialized size, if possible. To be 1loaded
without error, enough contiguous user space must be available starting
at that location. The location specified in bytes 11 and 12 1is the
location at which the run-time system is loaded during the current
time-sharing session. A -1 wvalue 1in these bytes specifies the
previous load address of this run-time system, if any.

The section of memory chosen must not fragment the user job space to
prevent the run-time system from executing a job. For example, assume
a system has 24K words of user space available between the 36K and 60K
sections of memory. Assume also that a job requires 18K words of user
space to run and that the run-time system requires 4K words when
resident. If the 1loading address is 36K, the space between 40K and
60K remains available for an 18K job to run. If the loading address
is 42K, however, the user space is fragmented from 36K to 42K and from
46K to 60K. An 18K job area is not available to execute a job using
this auxiliary run-time system.

7-115

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.2.19.5 Unload A Run-Time System - Privileged (F0=-18)

Data passed:

Byte (s)) Meaning
1 CHRS (6%) , the SYS call to FIP
2 CHRS (-18%), the run-time system manipulation code
3 CHRS$ (6%), unload run-time system
4-6 Not used.
7-10 Run-time system name in RADS50
11-30 Not used.

Data Returned: No meaningful data is returned.

Possible Errors:

Meaning ERR Value
ILLEGAL SYS () USAGE 18
An attempt by a non-privileged job
to execute this call; 1illegal parameters.

NO RUN-TIME SYSTEM 41
Auxiliary run-time system cannot be found.

Discussion:

This call frees the portion of memory occupied by the run-time system.
The memory is made available as user job space.

7-116

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.3 THE PEEK FUNCTION

The PEEK function allows a privileged user to examine any word
location in the monitor part of memory. The user program can examine
words in small or large buffers, in the resident portion of the file
processor, and 1in the 1low core and tables section of memory. The
function does not allow a user program to examine the contents of
another user's program.

A privileged program executes the PEEK function in the following
manner .

I%¥ = PEEK(J%)

The function takes an (even) integer argument (J%) and returns an
integer value (I%). The value returned is the contents of the address
in memory specified by the argument. Since, on the PDP-11 computer,
addresses of word locations are always even, and odd addresses
indicate byte locations, the user must always be careful to specify an
even integer address as the argument to PEEK. To examine an odd
address, the program must specify the next lower integer as the
argument to PEEK. The contents of the odd address is the high order
byte of the value returned by PEEK.

The PEEK function is normally used to examine either addresses
returned by get monitor tables calls or addresses of fixed monitor
locations.

The following are possible errors generated by incorrect usage of the
PEEK function. .

Meaning ERR Value

PROTECTION VIOLATION 10
An attempt by a non-privileged user
to execute this call

UNIBUS TIMEOUT FATAL TRAP 33
The address specified as an argument
to PEEK is either odd or out
of range of the allowed addresses.

MEMORY MANAGEMENT VIOLATION 35
The address specified as an argument
to PEEK is illegal (not mapped
in the monitor).

7-117

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION
7.3.1 Fixed Locations In Monitor
The following information is stored in fixed locations in the monitor

part of memory and is obtained by executing a PEEK(X%) where X% is the
address shown.

Address
(decimal) Name Meaning
36 (word) IDATE The date when the system was last
started by START
38 (word) ITIME The time of day when the system was last
started by START
512 (word) DATE Current system date
514 (word) TIME Current time of day
518 (byte) JOB Job number times 2 of the job currently
running (always 1is the user's own job
number)
520 (word) JOBDA Address of the job data block (JDB) of

the currently running job (always the
user's own job data block)

7.3.2 Useful Routines

7.3.2.1 Finding The Current Project-Programmer Number - Two methods
exist for a program to determine the project-programmer number under
which it is running. The first method, the only one available to
non-privileged wusers, 1is to execute the read or read and reset
accounting data FIP function (F0=14). If the index and the
project-programmer number passed in the <c¢all are both 0, the
project-programmer number returned in bytes 5 and 6 is that of the
program executing the «call. This first method is slow because it
requires FIP handling and possibly reguires one or more disk accesses.

The second method, available only to privileged users, is faster and
involves executing the PEEK function to examine two bytes in the job
data block (JDB) of the job. The contents of the JDB bytes 26 and 27
is the project-programmer number of the current job. The high byte
returned by PEEK is the project number; the 1low byte 1is the
programmer number. The address of the JDB of the currently running
job is in the fixed monitor 1location JOBDA (address 520). The
following statement

A% = PEEK(PEEK(520%) + 26%)
puts the project-programmer word into the variable A%. The following
statements put the project number in B$% and the programmer number in
Csg.

B%
C%

SWAP% (A%) AND 255%
A% AND 255%

7-118

SYS SYSTEM FUNCTION CALLS AND THE PEEK FUNCTION

7.3.2.2 Determining An ATTACHED Or DETACHED Condition - Only one
method exists for a program to determine whether or not it is attached
to a terminal. It is beyond the scope of this manual to describe the
mechanics of the method. It is sufficient to say that the method
determines whether or not a console keyboard exists for the job. The
following statements show the procedure.

10 IF ((PEEK(PEEK(PEEK(PEEK(520%)))+2%) AND 255%)=(PEEK(518%) AND 255%)
AND
(PEEK (PEEK (PEEK (PEEK (520%)))+30%) AND 8192%)=8192%)
THEN GOTO 20
ELSE GOTO 30
20 REM: THIS LINE IS REACHED ONLY IF THE JOB IS ATTACHED TO A TERMINAL
25 PRINT "ATTACHED"
¢ STOP
30 REM: THIS LINE IS REACHED ONLY IF THE JOB IS DETACHED
35 STOP

Line 10 determines the attached or detached condition. The
parentheses are important.

Once a program determines that it is attached to a terminal, it
normally is not necessary to find the keyboard number. The program
has normal access to the terminal by executing either an OPEN "KB:"
statement on a free channel or a PRINT or INPUT statement without a
channel specified.

7-119

CHAPTER 8

PROGRAMMING CONVENTIONS AND HINTS

Many RSTS/E system programs are designed to run by methods other than
by the RUN command. The following are some of the alternative
methods.

a. At a logged out terminal by means of LOGIN. For example, SYS
typed at a logged out terminal causes the SYSTAT system
program to run.

b. At a terminal by means of a CCL command. For example, the
standard CCL command QUE runs the QUE system program.

It is useful for the system manager to be able to duplicate some of
these actions in his own utility programs on his system. Also, the
system manager can alter system programs to tailor them to local
installation needs. The guidelines in the following sections describe
how to perform these actions.

PROGRAMMING CONVENTIONS AND HINTS
8.1 RUNNING A PROGRAM FROM A LOGGED OUT TERMINAL

A program runs from a logged out terminal by means of the LOGIN system
program. When the user types characters at a terminal not logged in,
the monitor runs LOGIN which compares the characters typed with those
it is designed to recognize. LOGIN is designed to accept a command
line from a logged out terminal and chain to a system program.

The following discussion employs the SYSTAT system program as an
example of coding both LOGIN and a user program to run at a logged out
terminal. The monitor runs LOGIN at line 32000 if a line is typed at
a terminal not logged into the system. LOGIN extracts the characters
typed and compares the leftmost characters typed with commands in a
set of DATA statements between lines 32200 and 32299. If a command
matches the characters and the third item in the DATA statement is 4,
LOGIN puts the command 1line extracted in the core common area and
chains to line 32000 of the program and account specified in the
second element of the DATA statement. Thus, for SYS typed at a logged
out terminal, LOGIN chains to the SYSTAT program in the system library
account. The following statement in LOGIN ensures that action.

32280 DATA SYS, $SYSTAT, 4

To chain to a certain program, the user can supply a DATA statement in
the same format between lines 32101 and 32199 in LOGIN. For example,
to run a program named HELP under account [2,2] 1in response to a
command named WHAT, insert into LOGIN.BAS a DATA statement similar to
the following. The DATA statement must include an account number
since there 1is no default account when running at a terminal not
logged into the system.

32190 DATA WHAT, "[2,2]HELP", 4

After LOGIN is compiled and stored in the system library account, the
program HELP under account [2,2] starts running at line 32000 whenever
WHAT is typed at a logged out terminal.

The program chained to at line 32000 must contain statements which
process the information passed to it in core common as a command line.
Provision must also be made for resetting variables used as flags and
for initiating error handling. Because a job not logged into the
system has no project-programmer number, the program chained to cannot
assume a default project-programmer number when opening a file. The
CHAIN command in the LOGIN system program does not drop the special
login privileges which are afforded by not being logged in. The
program to which LOGIN chains can therefore read or write any file on
the system because it retains the full privileges. To implement
protection, the program itself must perform the protection check.
When a logged out job terminates, it can print the BYE message to
inform the user that the terminal is still logged out. When the
logged out job executes an END statement or a STOP statement, the
system immediately removes the program from memory and leaves the user
terminal in a logged out state.

PROGRAMMING CONVENTIONS AND HINTS
8.2 DESIGNING A PROGRAM TO RUN BY A CCL COMMAND

By means of the CCL command option at system generation time, the
System manager can specify unigque commands which, when tvped on a
logged in terminal, load and run BASIC-PLUS programs from the system
library account. The monitor maintains a table of such commands and
programs and, by convention, chains to a program at line 30000.

To pass information to the program, the monitor writes to the core
common area the entire line typed at the terminal (after all spaces
have been deleted) including the command typed. The user program must
extract the data from core common and parse the entire line typed.
This action allows the user to design a program to run by several CCL
commands. As a convention, programs supplied by DIGITAL and invoked
by standard CCL commands reserve lines 30000 to 30999 for routines
which parse the command 1line, check for errors, and dispatch to
routines within the program.

8.3 CHANGING LOGIN TO SET A DIFFERENT SWAP MAXIMUM

The LOGIN system program sets the swap maximum to 8K words for all
users except those whose project numbers are one. This action means
that privileged users run with a swap maximum of 16K words. Since, on
many systems, programs must run under non-privileged accounts in job
areas larger than 8K words, it is necessary to modify LOGIN to set a
swap maximum larger than 8K words.

To modify the LOGIN.BAS program, the user must alter the J% = 8%
statement in the first physical line of the multiple statement line at
line number 15010 and compile the program on the system library
account. The following statement sets the priority, run burst, and
swap maximum factors.

15010 J% = 8%
: J% = 16% IF (A% AND -256%) - 256%
: IS = SYS(CHRS (6%)+CHRS (-13%)+CHRS (-1%) +
CHRS (-=1%) +CHRS (-2%) +
CHRS(0%)+CHRS$(6%)+
CHR$ (-1%)+CHRS (J%))
: RETURN

Change the value 8% in the statement J% = 8% to any value less than or
equal to the current default swap maximum used at system start-up
time. Re-compile and re-protect the program on the system library
account with protection code <60> as follows.

COMPILE SYO0:LOGINS

READY

NAME "LOGIN.BACS" AS "LOGIN.BACS$<232>"
READY

It is recommended that the system manager not replace the original
source file LOGIN.BAS with the modified version.

8-3

PROGRAMMING CONVENTIONS AND HINTS
8.4 PROGRAMMING HINTS

These sections describe suggested programming methods in two

categories: reducing overhead storage space in programs and
decreasing required access time for certain operations. Normally,
these are mutually exclusive goals. Space is most often saved at the
expense of time, and vice versa. In the sections that follow, a

discussion of either commodity ignores the other, so it is up to the
user to decide when each of these methods can best be used for a
particular application. Of course, when both space and time are
optimized, as is the case with some of these methods, the entire
RSTS/E system as well as the individual program benefits.

8.4.1 Storage Space Overhead

Certain steps can be taken to reduce overhead significantly. This
section describes some of the most efficient methods to optimize the
storage space available on a RSTS/E system.

Combining statements on a line with the use of colons or backslashes
saves statement header space. When using multiple statement lines,
remember the maximum line length is 256 characters.

Verbs that always require a statement header, regardless of where they
occur, are: DATA, DEF, DIM, FNEND, FOR and NEXT. Whenever possible
these statements should be first on a line to reduce statement header
overhead.

Statements such as INPUT, which may generate errors, should always be
first on a line because a RESUME statement, when executed from an
error handling routine, resumes program execution at the nearest
preceding statement header. Similarly, since a GOTO statement begins
execution only at the first statement of the specified 1line, the
beginning of each routine in a program should be the first statement
on a line.

Use the exclamation point (!) within statement 1lines to indicate
remarks. The REM statement or an exclamation point with its own line
number requires a 1l2-byte statement header.

In addition ot the storage space used when referencing a constant or
variable, separate space is required to store the value. This space
is required for constants every time they are referenced. Once a
variable 1is defined, however, further references generate no more
space. For this reason, frequently used constants should be declared
as variables. For example:

10 A% = 278%: B% = 278%
requires more storage space than:

10 A% = 278%: B% = A%

PROGRAMMING CONVENTIONS AND HINTS

And the following statement, accomplishing the same thing, wuses the
least storage space:

10 A%,B% = 278%

In some cases assigning a temporary variable saves vector addressing
space. For example, consider this program segment:

10 FOR I% = 1% TO N%:

S5 =8 + X(I%): S2 =82 + X(I%) * X(I%)
20 NEXT I%
Assigning a new variable (T), equal to an indexed variable (X(I%))
decreases the number of bytes of storage area as follows:

10 FOR I% = 1% TO N$%:

T = X(I%):
S=8+T: S2 =82+ T*T
20 NEXT I%

In addition, the example shown above executes qguickly since
recalculation of vector addresses is eliminated. Similarly,
previously calculated items should be re-used. For example:

10 D = SQR(B"2 - 4*A*C)/2%*A;
PRINT -B/2%*A + SQR(B"2 - 4*A*C)/2%*A;
~B/2%*A - SQR(B"2 - 4*A*C)/2%*A
obviously should be written:
10 D = SQR(B"2 - 4*A*C)/2%*A:

; -B/2%*

n
A -D

On the other hand, certain intermediate terms should be deleted. For
example:

20A =B +C: D A +E: F=D+G¢G

should be condensed to:
20F =B +C+E + G

unless the variables A and D are to be used independently later in the
program.

Use integer variables when possible, and always denote them with the
percent sign (%). The subscripts in arrays should always be integers,

8-5

PROGRAMMING CONVENTIONS AND HINTS
specified with % signs. Use integers in FOR/NEXT 1loops unless the
STEP function value is not an integer. Every constant should include
a % or a period (.) each time it is used.

Variables with the same first character should be used when possible.
For example:

A, A%, AS, A(...), A%(...), AS(...)
each have the same first character, but A and B do not, and because of
the way BASIC-PLUS stores variables, they use more space. So if the
variable R is used in the program, using R%¥ 1is preferable to using
another integer variable.

Always use as few variables as possible; re-use these wvariables for
even more space savings, since no additional overhead is needed.

Variables do not have to be compared to zero explicitly. For example:
30 IF M%< >0% THEN 80

should be written:
30 IF M% THEN 80

Space can be saved by using subroutines instead of user-defined
functions, but be sure to exit with RETURN (not GOTO) statements.

Individual variable names are often more economical than arrays, since
they require less overhead. But if arrays are used, always dimension
them first and limit the use of MAT statements.

Use implied FOR loops, which require less core and execute faster,
than FOR/NEXT loops. For example:

10 FOR I% = 1% TO 10%:
R$ = R%°2%
20 NEXT I%
can be written:
10 R = R$72% FOR i% = 1% to 10%

Including the implied FOR loop, above, uses approximately 30% less
core and executes faster than the original statements.

Similarly, WHILE and UNITL should be used when possible to replace
loops. The statement,

10 X%

X% * X%: IF X%<L$% THEN GOTO 10
can be written:

10 X%

X% * X% WHILE X3%<L%

PROGRAMMING CONVENTIONS AND HINTS

When using multiple IF statements, always use the compound IF
For example:

100 IF X% = W% THEN 250
110 IF X% = A% THEN 300
120 IF X% = K% THEN 500
130 IF X% = L% THEN 600

can be rewritten as follows:

100 IF X% = W% THEN 250 ELSE

IF X% = A% THEN 300 ELSE
IF X% = K% THEN 500 ELSE
IF X% = L% THEN 600

format.

This compound IF format, above, saves 35% more core than the single IF

format.

When a variable is to be compared to some continuous range of

values,

replace the IF statements with an ON-GOTO statement. For example:

100 IF X% = 4% THEN 250 ELSE
IF X% = 5% THEN 300 ELSE
IF X% = 6% THEN 500 ELSE
IF X% = 7% THEN 600

should be replaced with:

100 ON X%-3% GOTO 250,300,500,600

A similar technique can be used with strings. The following example:

80 IF A$ = "A" THEN GOTO 100 ELSE
IF A$§ = "B" THEN GOTO 200 ELSE
IF A$ = "C" THEN GOTO 300 ELSE
IF AS$ = "D" THEN GOTO 400

can be rewritten:
80 X% = ASCII(AS)-64%: ON X% GOTO 100,200,300,400

Random string responses can be tested also. For example, to
A$ with the letters X,K,B and Y, use the following statement:

80 ON INSTR(1%,"XKBY",A$) GOTO 100,200,300,400

compare

PROGRAMMING CONVENTIONS AND HINTS
8.4.2 Decreasing Access Time

There are a number of ways access time can be saved once data or
programs are stored on disks. The BASIC-PLUS Language Manual
describes some of these methods (for example, see Section 11.5 in that
manual) .

Methods of setting up files are equally important and are discussed in
this section. Most of these methods can be employed by users, but
some of them may require the assistance of the system manager.

Open files at the beginning of a program and pre-extend them to their
maximum size. Also, pre-allocate scratch data files and, when through
using them, simply close them instead of killing them. In this way,
they can be re-used without wasting disk space and, ultimately, access
time. These technigues tend to reduce directory fragmentation,
decreasing access time.

Keep large, frequently used files on separate disks. When two files
are often opened at the same time, they too should reside on separate
disks. Also, production files and accounts should be kept separate
from development and scratch files when possible. If they cannot be
kept on separate disks, they should at least be maintained in separate
accounts.

File and pack clustersizes should be optimized, as mentioned in the
BASIC-PLUS Language Manual and the RSTS/E System Manager's Guide,
respectively.

PROGRAMMING CONVENTIONS AND HINTS
8.4.3 String Manipulation

Pre-extend all strings to their maximum length at the beginning of a
program, as follows:

10 X§ = SPACES$ (L%)

where L% is the maximum length of the string. Then use LSET and RSET
statements (don't re-use LET) to move data into the string.

The difference between LET and LSET can be seen with the diagrams
shown below. Consider the following statements:

10 LET AS$ "ABCD"

N LET ~C = hppan
a4V utilL Ly niru

AS —— » "ABCD"
C$ —_—_ - nEFGu
When the next statement is executed:

30 LET C$ = AS

A$ j_> "ABCD"
C$

C$ points to the same part of the I/O buffer as does AS. The old
string, "EFG", 1is wasted space. Note the effect of the LSET
statement:

40 LSET C$ = AS

AS —— » "ABCD"

nea % =Yadll
Cy ——— ADBC

When a null string is concatenated to A$, the string C$ contains the
contents of A$, but no longer points to the I/O buffer:

50 LET C$ = AS + ""

A§ ——» "ABCD"

C§ ———» "ABCD"

8-9

PROGRAMMING CONVENTIONS AND HINTS

LSET and RSET statements move data; LET statements move pointers.
Proper use of LSET and RSET prevents generation of wasted space, and
execute faster than LET statements.

The following three algorithms truncate trailing blanks from a data
record (for example, a card image). The first two user-defined
functions input a string and return the same string without trailing
blanks and CR/LF.

The slowest algorithm successively reassigns the argument until it
ends with a non-blank:

1000 DEF FNT$ (X$):
S$ = LEFT(X$,LEN(X)-1%)
WHILE RIGHT (X$,LEN(X$)) <= " "
AND LEN(X$)>0%
1010 FNT$ = S$
1020 FNEND

The following algorithm is much more efficient. It scans backwards
until a non-blank character is found. Only one assignment is made.

200 DEF FNWS(X$):
GOTO 2010 IF MID(XS$,X%,1%)>" "
FOR X% = LEN(XS$) TO 0% STEP -1%
2010 FNWS = LEFT(XS$,X%)
2020 FNEND
The most efficient algorithm uses the data buffer directly, avoiding
the assignment caused by the user-defined function. L% is the record
length.
3000 FOR K% = L% TO 1% STEP -1%:
FIELD #2%, K%-1% AS L$, 1% AS LS:
IF L$>" " THEN
FIELD #2%, K% AS L$: GOTO 3020
3010 NEXT K%: LSET L§ = ""
3020 ! DONE

The more efficient algorithms are more cpu-~bound because they do less
swapping.

APPENDIX A

MAGTAPE LABEL FORMATS

A magtape is said to be in DOS format when the tape labels associated
with its files are in DOS format. Similarly, a magtape in ANSI format
is one whose labels are in ANSI format. The following sections
discuss the differences between DOS and ANSI formats, and how the
system handles magtapes written in either format.

A.1 DOS MAGTAPE FORMAT

This section describes the labels and data blocks on a magtape in DOS
format, as well as the order in which these items are placed on the
tape. For purposes of explanation, assume that the particular mag tape
under discussion has three files, each containing ten data blocks.

The first part of the magtape is a physical beginning of tape (BOT), a
reflective (silver) marker. Immediately past this marker is the first
tape label followed, in this case, by ten data blocks and an end of
file (EOF) record.

All magtape files begin with a tape label, contain any number of data
blocks (default size 1is 512 bytes per block), and terminate with an
end of file record. DOS files may even contain zero data blocks, but
a label and end of file record are always required for each file.

(@]

N data blocks —»

[l o - B)

Figure A-1
A DOS Magtape File

MAGTAPE LABEL FORMATS

Following the first file, another label begins the second file. This
label 1is also followed by ten data blocks and an end of file record.
This second file is immediately followed by the third and 1last file,
which consists of a tape label, ten data blocks, and an end of file
record. 1In addition, since the third file on this tape 1is also the
last one, two more end of file records follow. The magtape has three
end of file records at this point, signifying a logical end of tape
(LEOT) .

Logical End of Tape (LEOT)
««——1st file ——|o— 2nd file ——s|e——3rd file ————»I ‘

T L T
A ElA E 2 E|EIE PHYSICAL
Bor |B| 10 data blks |0 |B| 10 data blks |o [B| 10 data blks |o|o| o| INACCESSIBLE INFORMATION o
E E FlE F|F|F
L L L
Figure A-2

DOS Magtape Consisting of 3 Files of 10 Data Blocks Apiece

Once the logical end of tape is written on the magtape, it can be
written over, but it cannot be read over. Therefore, all information
beyond the logical end of tape is inaccessible.

A magtape can contain no files. In that case, three end of file
records simply follow the beginning of tape marker.

MAGTAPE LABEL FORMATS
A.l1.1 DOS Labels
The record label which specifies the beginning of a magtape file in

DOS format is 14 bytes long. Table A-1 identifies the information
contained in each of the record label bytes, numbered from 0 to 13.

Table A-1
DOS Record Label Bytes

Byte Contents Data Format
0,1,2,3 File name 2 words in RADIX 50
4,5 File extension 1 word in RADIX 50
6 Programmer number 1 byte in binary
7 Project number 1 byte in binary
8 Protection code 1l byte in binary (always 155(10))
9 Unused 1 byte of zero
10,11 Creation date 1 word in internal date format
12,13 Unused 1 word of zero

The project-programmer number is the account number of the current
user, unless some other number is specified in the OPEN statement. If
magtapes are to be interchanged with DOS-11 systems, a problem may
occur since RSTS-11 treats project-programmer numbers as decimal
values, and DOS-11 treats this number (called a UIC under DOS-11) as
an octal value. To avoid interchange problems, simply write all files
on the tape with a [1,1] project-programmer number, which is the same
in both decimal and octal. For example:

100 OPEN "MTO:ABC[1,1]" FOR OUTPUT AS FILE 1%

would accomplish this. Note that the project-programmer number is
part of the filename string. There could be several files named "ABC"
on a tape having different project-programmer numbers associated with
them. Often a failure to find a file on a magtape is the result of
forgetting to specify the correct account number.

The protection code written by RSTS/E in the DOS label is always 155
decimal (233 octal) which is acceptable to DOS-11. RSTS-11 and DOS-11
use different protection code values. RSTS-11 ignores the value of
the protection code when reading the file. This avoids interchange
conflicts with DOS-11.

MAGTAPE LABEL FORMATS
A.2 ANSI MAGTAPE FORMAT

This section describes the labels and data blocks on a magtape in ANSI
format. Once again, for purposes of explanation, assume that the
particular magtape under discussion has three files, each containing
ten data blocks.

The first part of the magtape 1is a physical beginning of tape
reflective marker. The next item on the magtape is a volume label.
(A volume is simply a reel of magnetic tape. A volume may contain
part of a file, a complete file, or more than one file.)

The first file actually begins with two labels, called header 1labels
(HDR1 and HDR2). These header labels are followed by an end of file
(EOF) marker. In this case, ten data blocks are written immediately
after the single EOF marker. The data blocks are followed, in order,
by another EOF marker, two trailer labels (EOF1 and EOF2), and yet
another EOF marker.

All files in ANSI format begin with two header labels. An EOF marker
is written on both sides of the data blocks. Two trailer labels
follow, and the file is terminated by another EOF marker. When the
file is created but no data blocks are written, all the above labels
and end of file markers are still present. These labels and end of
file markers are always required for each file.

L L LI|L
Al AI|E E|A|AI|E
B|B| O|«4———N data blocks ——— » O| B|B| O
E E F FI{E|E|F
L| L LIL

? L
H H E E
D D O O
R R F F
1 2 1 2

Figure A-3
An ANSI Magtape File

Following the first file, another set of two headers begins the second
file. The second file is identical to the first one, consisting of
the two header labels, one EOF marker written on each side of ten data
blocks, two trailer labels and an EOF marker.

The third file on the tape is identical to the first and second, and
is followed by two more EOF markers, signifying a logical end of tape
(LEOT) .

MAGTAPE LABEL FORMATS

}'— 1st file —IIA 2nd file 3rd file ———-‘

E| 10 data [E E E| 10 data |E E E| 10 data |E E|E|E INACCESSIBLE Physical
BOT | VoLl 0) 0 0 0 o 0) o|o|o
F| blocks |F F F blocks | F F F| blocks [F F|F(F INFORMATION EOT
L ¥ LR L33 LI iy ———
v H H EE H H EE HH EFE 1
o DD oo DD 00 DD oo .
L R R FF R R FF RR FF ?glciiEg:? of
112 12 12 12 12 12 ape

Figure A-4
ANSI Magtape Consisting of 3 Files of 10 Data Blocks Apiece

Once the logical end of tape is written on the magtape, it can be
written over, but it cannot be read over. Therefore, all information
beyond the logical end of tape is inaccessible.

A magtape must contain at least one complete set of header and trailer
labels. 1In the case where no file exists on the tape (such as a newly
zeroed magtape), a dummy file is present with a complete set of labels
and end of file records.

A.2.1 ANSI Labels

All ANSI labels are 80 bytes long. Each label can be identified by
its first three characters: VOL (volume), HDR (header), and EOF (end
of file). The fourth character in each 1label further defines the
sequence of the 1label within its group. For example, the first and
second header labels are HDR1 and HDR2, respectively.

A.2.1.1 Volume Label -

the magtape

is

MAGTAPE LABEL FORMATS

being used.

Table A-2

Volume Label Format

This label identifies which volume
Table A-2 shows the character position,
field name and contents of each byte (character)

(reel) of

in the volume label.

Character Field Name
Position and RSTS/E Usage Contents
1-3 Label Identifier VOL
4 Label Number 1
5-10 Volume Identifier 1 to 6 alphanumeric
(Volume label; one characters.
to six alphanumerics,
blank padded)
11 Accessibility A space means no
(RSTS/E writes a restrictions.
space)
12-37 Reserved Spaces
38-51 Owner Identifier (1) The contents of this
D%$B4431JJJGGG field are wused for
volume protection.
52-79 Reserved Spaces
80 Label Standard Version 1
(1)The JJJ and GGG in the Owner Identification field represent the

user's project and program numbers, respectively.

They are written as

ASCII digits in decimal notation with leading zeros if needed.

A.2.1.2

MAGTAPE LABEL FORMATS

Header 1 Label (HDR1l) - Table

A-3 shows the

character

position, field name and contents of each byte in the header 1 label.

Table A-3

Header 1 Label Format

Character Field Name
Position and RSTS/E Usage Contents
1-3 Label Identifier HDR
4 Label Number 1
5-21 File Identifier (2 to Any alphanumeric or special
10 characters FILNAM., character in the ASCII code
or FILNAM.EXT; blank table
filled)
22-27 File-set Identifier Volume ID of first volume
(Volume Identifier from in the volume set
the VOL1 1label)
28-31 File Section Number Numeric characters; starts
(0001) at 0001
32-35 File Sequence Number File number within volume
set for this file; starts
at 0001
36-39 Generation Number Numeric characters
(0001)
40-41 Generation Version Numer ic characters
(00)
42-47 Creation Date (SPACE)YYDDD or
Today's date in (SPACE) 00000 if no date
specified format
48-53 Expiration Date (SPACE)YYDDD or
Today's date in (SPACE) 00000 if expired
specified format
54 Accessibility Space
55-60 Block Count 000000
61-73 System Code Name of system which
DECRSTS/E produced the volume. Padded
by spaces.
74-80 Reserved Spaces

MAGTAPE LABEL FORMATS

A.2.1.3 Header 2 Label (HDR2) - Table A-4 shows the character
position, field name and contents of each byte in the header 2 label.

Table A-4
Header 2 Label Format

Character Field Name
Position and RSTS/E Usage Contents
1-3 Label Identifier HDR
4 Label Number 2
5 Record Format F = Fixed
(U is the default) D = Variable
(S is unsupported) S = Spanned
U = Undefined
6-10 Block Length Numer ic Characters
(512 is the default) Settable by FILESIZE option
11-15 Record Length Numer ic Characters
Settable by CLUSTERSIZE option
16-50 System Dependent Bytes 16-36 (Spaces)
(M is the default) Byte 37 = A means first byte of
record contains
FORTRAN

control character

= (Space) means LF/CR
precedes each record

= M means record
contains all form
control information

51-52 Buffer Offset (00) Numer ic characters 00 on files
means PDP-11 produced tapes

53-80 Reserved Spaces

MAGTAPE LABEL FORMATS

A.2.1.4 End Of File 1 Label (EOFl) - The EOFl label is identical to
the HDR1 label except for characters 1-3 and 55-60. Table A-5 shows
the character position, field name, and contents of each byte in the
EOF1 label.

Table A-5
End of File (EOF) 1 Record Format

Character Field Name
Position and RSTS/E Usage Contents
1-3 Label Identifier EOF
4 Label Number 1
5-21 File Identifier (2 to Any alphanumeric or special
10 characters) FILNAM. character in the ASCII code
or FILNAM.EXT; blank table
filled)
22~27 File-set Identifier Volume ID of first volume
(Volume Identifier from in the volume set.

the VOL1 label)

28-31 File Section Number Numeric characters: starts
(0001) at 0001
32-35 File Sequence Number File number within volume
set for this file; starts
at 0001
36-39 Generation Number Numeric characters
(0001)
40-41 Generation Version (00) Numeric characters
42-47 Creation Date (SPACE)YYDDD or
Today's date in (SPACE) 00000 if no date
specified format
48-53 Expiration Date (SPACE) YYDDD or
Today's date in (SPACE) 00000 if expired
specified format
54 Accessibility Space
55-60 Block Count File size in blocks
61-73 System Code Name of system which
DECRSTS/E produced the volume. Padded

by spaces.

74-80 Reserved Spaces.

A.2.1.5
the HDR2

End Of File 2 Label
label

MAGTAPE LABEL FORMATS

(EOF2)
except for <characters

- The EOQF2 label is identical to

1-3. Table A-6 shows the

character position, field name and contents of each byte in the EOF2

label.
Table A-6
End of File (EOF) 2 Record Format
Character Field Name
Position and RSTS/E Usage Contents
1-3 Label Identifier EOF
4 Label Number 2
5 Record Format F = Fixed
(U is the default) D = Variable
(S is unsupported) S = Spanned
U = Variable
6-10 Block Length Numeric Characters
(512 is the default) Settable by FILESIZE option
11-15 Record Length Numer ic Characters
Settable by CLUSTERSIZE
option
16-50 System Dependent Bytes 16-36 (Spaces)
(M is the default) Byte 37 = A means first byte
of
record
contains FORTRAN
control character
= (Space) means
LF/CR
precedes each
record
= M means record
contains all form
control
information
51-52 Buffer Offset (00) Numeric characters 00 on
files mean PDP-11 produced
tapes
53-80 Reserved Spaces

MAGTAPE LABEL FORMATS
A.3 ZEROING MAGTAPES
This section describes how a magtape is zeroed. See Section 4.18.7 of

the RSTS-11 System User's Guide for the procedure for zeroing magtapes
via the Peripheral Interchange Program (PIP).

A magtape written in DOS format is zeroed in the following manner:
1. Magtape is rewound.
2. Three end of file (EOF) records are written on the tape.
3. Magtape is again rewound.

A magtape written in ANSI format is zeroed in the following manner:
1. Magtape is rewound.

2. A volume label (VOL1l) is written on the tape. The volume
identifier is in bytes 7 through 10, in RADS50.

3. Two header labels (HDR1 and HDR2) are written on the tape.
4. Two end of file (EOF) records are written on the tape.

5. Two trailer labels (EOF1 and EOF2) are written on the tape.
6. Three end of file (EOF) records are written on the tape.

7. Magtape is again rewound.

Notice that in the case of magtapes written in ANSI format, the two
header 1labels (HDR1 and HDR2), two EOF records, two trailer labels

(EOF1 and EOF2) and a final EOF record comprise a dummy file. Also,
in both the DOS format and the ANSI format case, three EOF records are
the last items written on the tape. These three EOF records form the
logical end of tape (LEOT).

APPENDIX B

CARD CODES

The RSTS card driver can be configured for one of three different
punched card codes. These are DEC029 codes, DEC026 codes and 1401
(EBCDIC) codes. The RSTS-11 DEC029 and DEC026 codes are the same as
the DOS-11 card codes. The particular set of codes used on the system
is determined by the system manager. 1In all cases, the end-of-file
(EOF) card must contain a 12-11-0-1 punch or a 12-11-0-1-6-7-8-9 punch
in column 0.

CHARACTER ASCI Il 4 DEC@29 DECB26 1491 || CHARACTER ASCIT, , DECA29 DECA26 1401
{ 123 12 ¢ 12 ¢ UNUSED
} -125 11 ¢ 11 ¢ UNUSED

SPACE 32 NONE NONE ‘NONE c] 64 8 4 8 4 8 4

! 33 12 8 7 12 8 7 11 ¢ A 65 12 1 12 1 12 1
" 34 8 7 g 8 5 g 8 2 B 66 12 2 12 2 12 2
35 8 3 g 8 6 8 3 C 67 12 3 12 3 12 3
S 36 11 8 3 11 8 3 11 8 3 D 68 12 4 12 4 12 4
2 37 g 8 4 g 8 7 g 8 4 E 69 12 5 12 5 12 5
& 38 12 11 8 7 12 F 74 12 6 12 6 12 6
! 39 8 5 8 6 12 8 4 G 71 12 7 12 7 12 7
(49 12 8 5 g 8 4 8 7 H 72 12 8 12 8 12 8
) 41 11 8 5 12 8 4 g 8 7 I 73 12 9 12 9 12 9
* 42 11 8 4 11 8 4 11 8 4 J 74 11 1 11 1 11 1
+ 43 12 8 6 12 g 85 K 75 11 2 11 2 11 2
, 44 2 8 3 g 8 3 g 8 3 L 76 11 3 11 3 11 3
- 45 11 11 11 M 77 11 4 11 4 11 4
. 46 12 8 3 12 8 3 12 8 3 N 78 11 5 11 5 11 5
/ 47 g1 g1 g1 e} 79 11 6 11 6 11 6
' 48 2) 2 P 8g 11 7 11 7 11 7
1 49 1 1 1 Q 81 11 8 11 8 11 8
2 5@ 2 2 2 R 82 11 9 11 9 11 9
3 51 3 3 3 S 83 g 2 g 2 g 2
4 52 4 4 4 T 84 g 3 g 3 g 3
5 53 5 5 5 U 85 g 4 g 4 g 4
6 54 6 6 6 \Y 86 g5 g5 g5
7 55 7 7 7 W 87 g6 g6 76
8 56 8 8 8 X 88 g7 g7 g 7
9 57 9 9 9 Y 89 g 8 g 8 g 8
: 58 8 2 11 8 2 8 5 z 99 g9 g9 g9
; 59 11 8 6 g 8 2 11 8 6 [91 12 8 2 11 8 5 12 8 5
< 60 12 8 4 12 8 6 12 8 6 \ 92 g 8 2 8 7 g 8 6
= 61 8 6 8 3 11 8 7 1 93 11 8 2 12 8 5 11 8 5
> 62 g 86 11 8 6 8 6 + or 94 11 8 7 8 5 unused
? 63 g 8 7 12 8 2 12 @ < or 95 g 85 8 2 12 8 7

EOF is 12-11-g-1 punch or a 12-11-@g-1-6-7-8-9 punch.

APPENDIX C

RADIX-50 CHARACTER SET

Radix-50
Character ASCII Octal Equivalent Equivalent
space 40 0
A-27 101-132 1-32
$ 44 33
. 56 34
unused 35
0-9 60-71 36-47

The maximum RADIX-50 value is, thus,
47*502 + 47*%50 + 47 = 174777

The character/position table provides a convenient means of
translating between the ASCII character set and its Radix-50
equivalents. For example, given the ASCII string X2B, the Radix-50
equivalent is (arithmetic is performed in octal):

X = 113000
2 = 002400
B = 000002
X2B = 115402

Radix-5@ Character/Position Table

Single Char.
or

Second

Third

First Char. Character Character
A 993148 A gopgsg A g9a0d1
B p86208 B £86128 B g860882
c g11348 c 886176 c [J I J K]
D f14448 D B86248 D ge8864
E 617568 E £88318 E gee8885
F 822680 F g84364 F goggde
G 625788 G 66064348 G geag87
H 631448 H 8865068 H g68814
I #34146 I #0848558 I gegg11
J 637288 J #808624 J ga8412
K £42348 K 26678 K £88813
L g45480 L g888748 L ggg814
M g58588 M gg1g1¢4 M ge8815
N #5364880 N g81d68 N gdgdle
o) #56708 0 281138 0 ge6817
P ge2088 P gg1244 P - gagg298
Q g65144 0 841254 Q gggg21
R g78208 R g81324 R gopg22
s #73344 [661374 S g488623
T g76448 T go14448 T gpgg24
U 141588 U gg1514 U gddg25
v 1446404 \% g81568 \% gadd26
W 1877448 1] gg16 34 W goga27
X 113044 X 21784 X #0888 38
Y 1161489 Y g817598 Y gegdg31
z 121244 yA gd2d2¢ A g88832
$ 124344 $ gg287d $ gedg33
. 127444 . gg2144 . ggag34
unused 132584 unused £g2214 unused #@#8435
'} 135604 g gg2264 ') #8084 36
1 14057698 1 #2334 1 g88837
2 1448448 2 gg2444 2 gogg4g
3 1471688 3 gg2458 3 gagdal
4 152244 4 gg2528 4 gggpaz
5 155344 5 #42574 5 gdgagas
6 160494 6 gg2640 6 daddas
7 163544 7 gd2714 7 gdgdas
8 166640 8 gd2768 8 godda6
9 171764 9 go3430 9 gogd47

ASCII CHARACTER CODES

APPENDIX D

ASCII ASCII ASCII
Decimal Char- RSTS Decimal Char- RSTS Decimal Char- RSTS
Value acter Usage Value acter Usage Value acter Usage

g NUL FILL character 43 + 86 v

1 SOH 44 + COMMA 87 W

2 STX 45 - 88 X

3 ETX CTRL/C 46 . 89 Y

4 EOT 47 / 9 z

5 ENQ 48 [/ 91 [

6 ACK 49 1 92 \ Backslash
7 BEL BELL 5@ 2 93]

8 BS 51 3 94 ~ or *

9 HT HORIZONTAL TAB 52 4 95 _or <«

19 LF LINE FEED 53 5 96 <« Grave accent
11 VT VERTICAL TAB 54 6 97 a

12 FF FORM FEED 55 7 98 b

13 CR CARRIAGE RETURN 56 8 99 o]

14 SO 57 9 199 d

15 SI CTRL/O 58 : 191 e

16 DLE 59 ; 192 f

17 DC1 6d < 143 g

18 DC2 6l = 1g4 h

19 DC3 62 > 145 i

20 DC4 63 ? 196 j

21 NAK CTRL/U 64 cl 187 k

22 SYN 65 A 148 1

23 ETB 66 B 149 m

24 CAN 67 C 119 n

25 EM 68 D 111 o

26 SUB CTRL/Z 69 E 112 o)

27 ESC ESCAPE! 79 F 113 q

28 FS 71 G 114 r

29 GS 72 H 115 [

30 RS 73 I 116 t

31 us 74 J 117 u

32 SP SPACE 75 K 118 \'4

33 ! 76 L 119 1

34 " 77 M 129 X

35 # 78 N 121 Yy

36 $ 79 (¢} 122 z

37 % 89 P 123 {

38 & 8l Q 124 l Vertical Line
39 ' APOSTROPHE 82 R 125 }

4@ (83 S 126 T rilde
41) 84 T 127 DEL RUBOUT
42 * 85 U

lALTMODE (ascCII 125) or PREFIX (ASCII 126) keys which appear on some terminals are
translated internally into ESCAPE.

APPENDIX E

ERROR MESSAGES

E.1 USER RECOVERABLE

A (QC)
execution continues, following printing of the error message,
ERROR GOTO statement is not present.
condition, the error message is printed, and the system
The ERR column gives the value of the ERR variable (see

on

prints READY.

in the description of the error message indicates

error

that program
if an ON
Normally, execution terminates

Section 8.4, BASIC-PLUS Language Manual).

ERR

Message Printed

BAD DIRECTORY FOR DEVICE

ILLEGAL FILE NAME

ACCOUNT OR DEVICE IN USE

NO ROOM FOR USER ON DEVICE

CAN'T FIND FILE OR ACCOUNT

NOT A VALID DEVICE

I/0 CHANNEL ALREADY OPEN

Meaning

The directory of the device

referenced is in an unreadable
format.

The filename specified is not
acceptable. It contains
unacceptable characters or the
filename specification format has
been violated.

Removal or dismounting of the
account or device cannot be done
since one or more users are

currently using it.

space allowed for the

user on the device
specified has been wused or the
device as a whole is too full to
accept further data.

Storage
current

The file or account number
specified was not found on the
device specified.

Attempt to wuse an illegal or
nonexistent device specification.

An attempt was made to open one of
the twelve 1I/0 channels which had
already been opened by the program.
(SPR)

10

11

12

13

14

15

16

17

18

ERROR MESSAGES

DEVICE NOT AVAILABLE

I/0 CHANNEL NOT OPEN

PROTECTION VIOLATION

END OF FILE ON DEVICE

FATAL SYSTEM I/0 FAILURE

USER DATA ERROR ON DEVICE

DEVICE HUNG OR WRITE LOCKED

KEYBOARD WAIT EXHAUSTED

NAME OR ACCOUNT NOW EXISTS

TOO MANY OPEN FILES ON UNIT

ILLEGAL SYS() USAGE

The device requested 1is currently
reserved by another user.

Attempt to perform I/0O on one of
the twelve channels which has not
been previously opened in the
program.

The user was prohibited from
performing the requested operation
because the kind of operation was
illegal (such as input from a line
printer) or because the user did
not have the privileges necessary
(such as deleting a protected
file).

Attempt to perform input beyond the
end of a data file; or a BASIC
source file is called into memory
and 1is found to contain no END
statement.

An I/0 error has occurred on the
system level. The user has no
guarantee that the last operation
has been performed. (SPR)

One or more characters may have
been transmitted incorrectly due to
a parity error, bad punch
combination on a card, or similar
error.

User should check hardware
condition of device requested.
Possible causes of this error
include a line printer out of paper
or high-speed reader being
off-line.

Time requested by Wait statement
has been exhausted with no input
received from the specified
keyboard.

An attempt was made to rename a
file with the name of a file which
already exists, or an attempt was
made by the system manager to
insert an account number which |is
already within the system.

Only one open DECtape output file
is permitted per DECtape drive.
Only one open file per magtape
drive is permitted.

Illegal use of the SY¥YS system
function.

19

20

21

22

23

24

25

26

27

28

29

30

31

32

ERROR MESSAGES

DISK BLOCK IS INTERLOCKED

PACK ID'S DON'T MATCH

DISK PACK IS NOT MOUNTED

DISK PACK IS LOCKED OUT

ILLEGAL CLUSTER SIZE

DISK PACK IS PRIVATE

DISK PACK NEEDS 'CLEANING'

FATAL DISK PACK MOUNT ERROR

I/0 TO DETACHED KEYBOARD

PROGRAMMABLE "“C TRAP

CORRUPTED FILE STRUCTURE

DEVICE NOT FILE STRUCTURED

ILLEGAL BYTE COUNT FOR I/0

NO ROOM AVAILABLE FOR FCB

The requested disk block segment is
already in wuse (locked) by some
other user.

The 1identification code for the
specified disk pack does not match
the identification code already on
the pack.

No disk pack is mounted on the
specified disk drive.

The disk pack specified is mounted
but temporarily disabled.

The specified <cluster size is
unacceptable.

The current wuser does not have
access to the specified private
disk pack.

Non-fatal disk mounting error; use
the CLEAN operation in UTILTY.

Fatal disk mounting error. Disk
cannot be successfully mounted.

I/0 was attempted to a hung up

dataset or to the previous, but now
detached, console keyboard for the

job.

ON ERROR-GOTO subroutine was
entered through a program trapped
CTRL/C. See a description of the
SYS system function.

Fatal error in CLEAN operation.

An attempt 1is made to access a
device, other than a disk, DECtape,
or mag tape device, as a
file-structured device. This error
occurs, for example, when the wuser
attempts to gain a directory
listing of a non-directory device.

The buffer size specified 1in the
RECORDSIZE option of the OPEN
statement or in the COUNT option of
the PUT statement is not a multiple
of the block size of the device
being used for 1/0, or is illegal
for the device.

When the user accesses a file under
programmed control in RSTS-11, a
system control structure called an

33

34

35

36

37

38

39

40

41

42

43

44

45

ERROR MESSAGES

UNIBUS TIMEOUT FATAL TRAP

RESERVED INSTRUCTION TRAP

MEMORY MANAGEMENT VIOLATION

SP (R6) STACK OVERFLOW

DISK ERROR DURING SWAP

MEMORY PARITY FAILURE

MAGTAPE SELECT ERROR

MAGTAPE RECORD LENGTH
ERROR

NO RUN-TIME SYSTEM

VIRTUAL BUFFER TOO LARGE

VIRTUAL ARRAY NOT ON DISK

MATRIX OR ARRAY TOO BIG

VIRTUAL ARRAY NOT YET OPEN

FCB requires one small buffer and
one small buffer is not available
for the FCB.

This hardware error occurs when an
attempt is made to address
nonexistent memory or an odd
address using the PEEK function.
An occurrence of this error message
in any other case is cause for an
SPR.

An attempt is made to execute an
illegal or reserved instruction or
an FPP instruction when floating
point hardware is not available.

This hardware error occurs when an
illegal Monitor address is
specified using the PEEK function.
Generation of the error message in
situations other than using PEEK is
cause for an SPR.

An attempt to extend the hardware
stack beyond 1its legal size |is
encountered. (SPR)

A hardware error occurs when a
user's Jjob 1is swapped into or out
of memory. The contents of the
user's Jjob area are lost but the
job remains logged into the system
and is reinitialized to run the
NONAME program.

A parity error was detected in the
memory occupied by this job.

When access to a magtape drive was
attempted, the selected unit was
found to be off line.

When performing input from magtape,
the record on magtape was found to
be longer than the buffer
designated to handle the record.

Reserved.

Virtual core buffers must be 512
bytes long.

A non-disk device is open on the
channel upon which the wvirtual
array is referenced.

In-core array size is too large.
An attempt was made to use a

virtual array before opening the
corresponding disk file.

46

47

48

49

50

51

52

53

54

55

56

57

58

ERROR MESSAGES

ILLEGAL I/O CHANNEL

LINE TOO LONG

FLOATING POINT ERROR

ARGUMENT TOO LARGE IN EXP

DATA FORMAT ERROR

INTEGER ERROR

ILLEGAL NUMBER

ILLEGAL ARGUMENT IN LOG

IMAGINARY SQUARE ROOTS

SUBSCRIPT OUT OF RANGE

CAN'T INVERT MATRIX

OUT OF DATA

ON STATEMENT OUT OF RANGE

Attempt was made to open a file on
an I/0 channel outside the range of
the integer numbers 1 to 12.

Attempt to input a line longer than
255 characters (which includes any
line terminator) . Buffer
overflows.

Attempt to use a computed floating
point number outside the range
1E-38 <n< 1E38 excluding zero.
If no transfer to an error handling
routine is made, zero is returned

3 ¥ e

as the floating point value. (C)
Acceptable arguments are within the

approximate range -89<arg<+88. The
value returned is zero. (C)

A READ or INPUT statement detected
data in an illegal format. For
example, 1..2 1is an improperly
formed number , and 1.3 1is an
improperly formed integer, and X"
is an illegal string. (C)

Attempt to use a computed integer
outside the range -32767<n<32767.

If no transfer to an error handling
routine 1is made, zero is returned

as the integer value. (C)

Integer or floating point overflow
or underflow.

Negative or zero argument to log
function. Value returned 1is the
argument as passed to the function.

(C)

Attempt to take square root of a
number less than zero. The value
returned is the square root of the
absolute value of the argument.
(C)

Attempt to reference an array
element beyond the number of
elements created for the array when
it was dimensioned.

Attempt to invert a singular or
nearly singular matrix.

The DATA list was exhausted and a
READ requested additional data.

The index value in an ON-GOTO or
ON-GOSUB statement is less than one

59

60

61

ERROR MESSAGES

NOT ENOUGH DATA IN RECORD

INTEGER OVERFLOW,

DIVISION BY 0

FOR LOOP

or greater than the number of 1line
numbers in the list.

An INPUT statement did not find
enough data in one line to satisfy
all the specified variables.

The integer index in a FOR loop
attempted to go beyond 32766 or
below -32766.

Attempt by the wuser program to
divide some gquantity by zero. If
no transfer is made to an error
handler routine, a 0 is returned as
the result. (C)

ERROR MESSAGES

E.2 NON-RECOVERABLE

Message Printed Meaning

ARGUMENTS DON'T MATCH Arguments in a function call do not
match, in number or in type, the
arguments defined for the function.

BAD LINE NUMBER PAIR Line numbers specified in a LIST or
DELETE comand were formatted
incorrectly.

BAD NUMBER IN PRINT-USING Format specified in the PRINT-USING

string cannot be used to print one
or more values.

CAN'T COMPILE STATEMENT

CAN'T CONTINUE Program was stopped or ended at a
spot from which execution cannot be
resumed.

CATASTROPHIC ERROR The user program data structures
are destroyed. This normally
indicates a BASIC-PLUS This
normally indicates a BASIC-PLUS
mal function and, if reproducible,
should be reported to DEC on a
Software Performance Report form

(SPR) .

DATA TYPE ERROR Incorrect usage of floating-point,
integer, or character string format
variable or constant where some
other data type was necessary.

DEF WITHOUT FNEND A second DEF statement was
encountered in the processing of a
user function without an FNEND
statement terminating the first
user function definition.

END OF STATEMENT NOT SEEN Statement contains too many
elements to be processed correctly.

EXECUTE ONLY FILE Attempt was made to add, delete or
list a statement in a compiled
(.BAC) format file.

EXPESSION TOO COMPLICATED This error wusually occurs when
parentheses have been nested too
deeply. The depth allowable is
dependent on the individual
expression.

FIELD OVERFLOWS BUFFER Attempt to use FIELD to allocate
more space than exists in the
specified buffer.

ERROR MESSAGES

FILE EXISTS-RENAME/REPLACE A file of the name specified in a
SAVE command already exists. In
order to save the current program

under the name specified, |use
REPLACE, or RENAME followed by
SAVE.

FNEND WITHOUT DEF An FNEND statement was encountered

in the user program without a
previous function call having been
executed.

FNEND WITHOUT FUNCTION CALL A FNEND statement was encountered
in the user program without a
previous DEF statement being seen.

FOR WITHOUT NEXT A FOR statement was encountered in
the user program without a
corresponding NEXT statement to
terminate the loop.

ILLEGAL CONDITIONAL CLAUSE Incorrectly formatted conditional
expression.
ILLEGAL DEF NESTING The range of one function

definition <crosses the range of
another function definition.

ILLEGAL DUMMY VARIABLE One of the variables in the dummy
variable list of user-defined
function is not a legal variable
name.

ILLEGAL EXPRESSION Double operators, missing
operators, mismatched parentheses,
or some similar error has been
found in an expression.

ILLEGAL FIELD VARIABLE The FIELD variable specified is
unacceptable.

ILLEGAL FN REDEFINITION Attempt was made to redefine a user
function.

ILLEGAL FUNCTION NAME Attempt was made to define a

function with a function name not
subscribing to the established

format.
ILLEGAL IF STATEMENT Incorrectly formatted IF statement.
ILLEGAL IN IMMEDIATE MODE User issued a statement for

execution in immediate mode which
can only be performed as part of a
program.

ILLEGAL LINE NUMBER(S) Line number reference outside the
range 1<n<32767.

ERROR MESSAGES

ILLEGAL MAGTAPE () USAGE Improper use of the MAGTAPE
function.
ILLEGAL MODE MIXING String and numer ic operations

cannot be mixed.

ILLEGAL STATEMENT Attempt was made to execute a
statement that did not compile
without errors.

ILLEGAL SYMBOL An unrecognizable character was
encountered. For example, a line
consisting of a # character.

ILLEGAL VERB The BASIC verb portion of the
statement cannot be recognized.
INCONSISTENT FUNCTION USAGE A function is being redefined in a

manner 1inconsistent 1in the number
of type of arguments with one or
more calls to that function
existing in the program.

INCONSISTENT SUBSCRIPT USE A subscripted variable 1is being
used with a different number of
dimensions from the number with
which it was originally defined.

K OF CORE USED Message printed by the LENGTH
command , preceded by the
appropriate number describing the
user program currently in core to
the nearest 1K.

LITERAL STRING NEEDED A variable name was used where a
numeric or character string was
necessary.

MATRIX DIMENSION ERROR Attempt was made to dimension a

~ v neliAane

matriv +n mAara +han Aiman
macifix @ mMerc Thaan owl Gimensions,

or an error was made in the syntax
of a DIM statement.

MATRIX OR ARRAY WITHOUT DIM A matrix or array element was
referenced beyond the range of an
implicitly dimensioned matrix.

MAXIMUM CORE EXCEEDED User program grew to be too large
to run or compile in the area of
core assigned to each user at the
given installation.

MISSING SPECIAL FEATURE User program employs a BASIC-PLUS
feature not present on the given
installation.

MODIFIER ERROR Attempt to use one of the statement

modifiers (FOR, WHILE, UNTIL, IF,
or UNLESS) incorrectly.

NEXT WITHOUT FOR A NEXT statement was encountered in
the user program without a previous
FOR statement having been seen.

ERROR MESSAGES

NO LOGINS Message printed if the system is
full and cannot accept additional
users or 1if further 1logins are
disabled by the system manager.

NOT A RANDOM ACCESS DEVICE Attempt to perform random access
I/0 to a non-random access device.

NOT ENOUGH AVAILABLE CORE The already compiled user program
is too large to run in the area of
core assigned to each user at the
given installation.

NUMBER IS NEEDED A character string or variable name
was used where a number was
necessary.

1 OR 2 DIMENSIONS ONLY ' Attempt was made to dimension a

matrix to more than two dimensions.

ON STATEMENT NEEDS GOTO A statement beginning with ON does
not contain a GOTO or GOSUB clause.

PLEASE SAY HELLO User not logged into the system has
typed something other than a legal,
logged-out command to the system.

PLEASE USE THE RUN COMMAND A transfer of control (as 1in a

GOTO, GOSUB or IF-GOTO statement)
cannot be performed from immediate
mode.

PRINT-USING BUFFER OVERFLOW Format specified contains a field
too large to be manipulated by the
PRINT-USING statement.

PRINT-USING FORMAT ERROR An error was made in the
construction of the string used to
supply the output format in a
PRINT-USING statement.

PROGRAM LOST-SORRY A fatal system error has occurred
which caused the user program to be
lost.

REDIMENSIONED ARRAY Usage of an array or matrix within

the user program has caused
BASIC-PLUS to redimension the array
implicitly.

RESUME AND NO ERROR A RESUME statement was encountered
where no error had occurred to
cause a transfer into an error
handling routine via the ON
ERROR-GOTO statement.

RETURN WITHOUT GOSUB RETURN statement encountered in the
user program without a previous

ERROR MESSAGES

GOSUB statement having been
executed.
SCALE FACTOR INTERLOCK An attempt was made to execute a

program or source statement after
changing the current scale factor.
Use REPLACE and OLD or use RUN to
execute without error.

STATEMENT NOT FOUND Reference 1is made within the
program to a line number which is
not within the program.

STOP STOP statement was executed. The
user can usually continue program
execution by typing CONT and the
RETURN key.

STRING IS NEEDED A number or variable name was used
where a character string was
necessary.

SYNTAX ERROR BASIC-PLUS statement was
incorrectly formatted.

TEXT TRUNCATED No BASIC-PLUS statement can be more
than 255 characters long.

TOO FEW ARGUMENTS The function has been called with a
number of arguments not equal to
the number defined for the
function.

TOO MANY ARGUMENTS A user-defined function may have up

to five arguments.

UNDEFINED FUNCTION CALL BASIC-PLUS interpreted some
statement component as a function
call for which there is no defined
function (system or user).

WHAT? Command or immediate mode statement
entered to BASIC-PLUS could not be
processed. Illegal verb or

improper format error most likely.

WRONG MATH PACKAGE Program was compiled with an
incompatible version of RSTS.
Program source must be recompiled.

Access time, 8-8
Account information, 1-2
Accounting dump, 7-93
Accounting information, 7-90
Accounts, user,

creating, 7-60

deleting, 7-62
Adding run-time systems, 7-111
Addresses, 7-117
Advancing magtape, 2-14
Allowable logins, setting, 7-89
ANSI label, 2-3, 2-7
ANSI labels, A-5
ANSI magtape files, A-4
Appending data, 1-13
ASCII mode, 6-1
Assigning device, 7-30
ASSIGN statement, 2-16
ATTACHED condition, 7-119
Attaching SYS calls, 7-77

BACKSPACE, 4-9, 4-11
Backspace function, 2-15

Bad tape (PARITY) error, 2-21
Baud rate, 7-66
Beginning-of-tape (BOT), 2-15
BELL, 3-1

Binary data output, 4-1
Binary input, 4-3
Binary read mode, 6-4
Bit, output parity, 7-66
Block size, 2-6

BOT (beginning-of-tape), 2-15
Broadcasting, 7-41

Buffer size, default, 1-17

Calls, reattaching, 7-79
Cancelling CTRL/O, 7-3
Card codes, punched, B-1
Carriage return (CR), 3-2
CATALOG system command, 7-96
CCL commands, 8-3
Changing,

date, 7-39

time, 7-39
Changing file statistics, 7-70
Changing passwords, 7-49
Changing quotas, 7-49
Channels, closing, 7-74
Character, ESC CHR$(27%), 7-68

Character, up-arrow (”~ or +), 7-67

INDEX

Characteristics function,

return file, 2-18
Characters,

XON, 7-65

XOFF, 7-65
CHRS (27%) character, 7-68
Cleaning disk packs, 7-48
CLOSE,

file structured magtape, 2-9

non-file structured magtape, 2-10

Closing channels, 7-74
CLUSTERSIZE option, 2-6
Cluster size, 1-5

directory, 1-6

pack, 1-6
Codes, card punched, B-1
Commands, CCL, 8-3
Controlled job, 4-12
Controlling job, 4-12
Conventions, programming, 8-1
COUNT modifier, 2-12
CR (carriage return), 3-2
Creating user accounts, 7-60
CTRL/C trap, 7-36
CTRL/O, cancelling, 7-3
Cursor control, VTO05, 4-9
Cursor control, VTS50, 4-10
CURSOR DOWN, 4-9, 4-11
CURSOR RIGHT, 4-9, 4-11
CURSOR UP, 4-9, 4-11

Data changing, 7-39
Dataset, 7-40

Deassigning device, 7-32
Deassigning devices, 7-74
Declaring a receiver, 7-82

DECtape, non-file structured, 5-1

Default buffer size, 1-17
DEL (delete), 3-2
Delete (DEL), 3-2
Deleted data marks, 1-16
Deleting user accounts, 7-62
Density, 2-15

magtape, 2-10
Density examples, 2-18
Deselect (DSEL), 3-2
DETACHED condition, 7-119
Detaching SYS calls, 7-75
Device assigning, 7-30
Device cluster, 1-10
Device deassignment, 7-32
Device zeroing, 7-34
Device, deassign, 7-74

INDEX-1

Direct cursor control, 4-9
Difference between LET and LSET,

8-9

Directory cluster size, 1-6

Directory,
disk, 7-100
disk wild card, 7-101

general guidelines, 7-101

magtape, 7-97
Directory look up, 7-94
Disabling,

echoing, 7-5

logins, 7-43

terminals, 7-52
Disk,

mounted, 1-11

non-file structured, 1-10

Disk directory, 7-100
Disk pack status, 7-45

Disk packs, cleaning, 7-48

Disk storage, 1-2

Disk wild card directory,

DOS label, 2-3, 2-7
DOS labels, A-3
DOS magtape files, A-1l

Dropping privileges, 7-59

DSEL (deselect), 3-2
Dump mode, 2-11

Echoing, disabling, 7-5
Editing strings, 7-20
Eligible receiver, 7-84

ELONG (elongated character),
Elongated character (ELONG),

END statement, 7-7
EOF record, 2-14
ERASE EOL, 4-9, 4-11
ERASE EOS, 4-9, 4-11
Error handling,
example, 3-6
line printer, 3-6
magtape, 2-21
Error messages,
non-recoverable, E-7
recoverable, E-1
ESCape sequences, 4-8
ESC CHRS$(27%) character,
ESC SEQ mode, 4-8

Example,
file characteristics,

fragmenting job space, 7-115
line printer error handling, 3-6

pseudo keyboard, 4-14

OPEN FOR OUTPUT statement,

UPDATE, 1-13
Examples,
denisty, 2-18

specifying read modes, 6-6

Exiting to editor, 7-9
Extending files, 2-6
Extracting single strings, 7-7

File characteristics,
example, 2-19
function, 2-18
Files, extending, 2-6
FILESIZE option, 2-6
File statistics, changing, 7-70
File structured magtape CLOSE, 2-9
File structured magtape OPEN, 2-9
File structured magtape OPEN FOR
INPUT, 2-1
File structured magtape OPEN FOR
OUTPUT, 2-4
Fill factor, 7-66
FIP call notation, 7-14
FIP code, 7-10
FIP SYS calls, summary, 7-18
First-in, first-output (FIFO) basis,
7-81
Fixed locations, monitor, 7-118
Floppy disks, 1-14
Forcing input, 7-42
Form feed (FF), 3-2, 7-64
Forms, non-standard length, 3-3
Fragmenting job space, example,
7-115
Full duplex, 4-10

General format, SYS functions, 7-1
General guidelines, directory, 7-103

Hold Screen Mode, 4-11
HOME UP, 4-9, 4-11
Horizontal tab (TAB), 3-1

Input ESCape sequences, 4-8
forcing, 7-42
Interleaving algorithm, 1-15

Job scheduling, 7-54

KCT's (kilo-core-ticks), 1-2
Killing jobs, 7-51

KILL statement, 2-22
Kilo-core-ticks, (KCT's), 1-2

INDEX-2

Label, magtape,
ANSI, 2-3, 2~-7, A-5
bpos, 2-3, 2-7, A-3
formats, A-1
LET AND LSET, difference between,
8-9
Library account, system, 1-1, 1-3
Line feed (LF), 3-1
Line printer,
error handling, 3-6
LP1l1l, 3-1
Ls11, 3-1
special operations, 3-2
Loading,
address, 7-115
run-time systems, 7-114
single strings, 7-8
Locking jobs, 7-58
Logged out terminals, 8-2
LOGIN system program, 4-13, 8-2,
8-3
Logins,
allowable setting, 7-89
disabling, 7-43
LOGIN SYS call, 7-72
LOGIN system program, 1l-1
Logout, shutup, 7-38
LOGOUT,
system program, 1-2
SYS call, 7-74
Lower case
characters, 7-64
printing, 3-2
translating, 7-66
LP1ll line printer, 3-1
LS11l line printer, 3-1

Magtape advancing, 2-14
Magtape CLOSE,

file structured, 2-9

non-file structured, 2-10
Magtape density, 2-10
Magtape directory, 7-97
Magtape error handling, 2-21
Magtape, file structured,

open for input, 2-1

open for output, 2-4
Magtape,

7-track, 2-10

9-~-track, 2-10
Magtape file,

ANSI, A-4

DOS, A-1l
MAGTAPE function, 2-13
Magtape label formats, A-1
Magtape non-file structured, 2-13
Magtape OPEN,

file structured, 2-9

non-file structured, 2-9

Magtape parity,
even, 2-10
odd, 2-10
Magtape phase encoding, 2-10
Magtape rewinding, 2-13, 2-14
Magtapes, zeroing, A-11
Master File Directory (MFD), 1-1
Master terminal, 4-5
Message sending, 7-85
Messages,
receiving, 7-81
sending, 7-81
Messages, error,
non-recoverable, E-7
recoverable, E-1
MFD (Master File Directory), 1-1
Minimum length records, 2-9
Mode, ASCII, 6-1
MODE specification, 2-4
magtape, 2-2
MODE 5%, 1-13
MODE 1%, 1-11
MODE 16384%, 1-13
MODE 2%, 1-13
MONEY system program, 1-2
Monitor, 7-88, 7-117
fixed locations, 7-118
Monitor table, 7-104
Multiple users, 1-11
Multiple terminal input, 4-6
Multiple terminals, 4-5

NAME AS statement, 2-22

Naming run-time systems, 7-110

9-track magtape, 2-10

NO ESC SEQ mode, 4-8

NONAME program, 7-9

Non-file structured DECtape, 5-1

Non-file structured disk, 1-10

Non-file structured magtape, 2-13

Non-file structured magtape CLOSE,
2-10

Non-file structured magtape OPEN,
2-9

Non-recoverable error messages, E-7

Non-standard length forms, 3-3

Off-line error, 2-22
Off-line function, 2-13
OPEN,
file structured magtape, 2-9
non-file structured magtape, 2-9
Open for input, file structured
magtape, 2-1
Open for output, file structured
magtape, 2-4
Output ESCape sequences, 4-8
Output parity bit, 7-66

INDEX-3

Pack cluster size, 1-6
Packed Hollerith read mode,
Parity, 2-15
Parity, magtape,

even, 2-10

odd, 2-10
PARITY (Bad Tape) error,
Password, 1-2
Passwords, changing,
PEEK function, 7-117
Phase encoded, 2-15
Phase encoding, magtape,
Poke core, 7-88
Pseudo keyboard, 4-12
Printing special mode,

g's as O's, 3-4
Privilege, 1-8
Privileged features, 1-9
Privilege dropping, 7-59
Privileged utility SYS calls, 7-38
Programming conventions, 8-1
Programming hints, 8-4
Project-programmer number, 7-118

6-3

2-21

7-49

2-10

Project-programmer number (account),

Protection code, 1-8
Punched card codes, B-1
Quota, 1-2

Quotas, changing, 7-49

RADIX-50 characters, C-1
REACT system program, 1-1
Reattaching SYS calls, 7-79
Record I/0 statement, 4-1
REACT system program, 7-63
Receivers, removing, 7-87
Receiving messages, 7-81
Record length error, 2-21
RECORD option, 4-13
Records,
minimum length, 2-9
releasing, 1-12
searching, 2-5
searching for,
unlocking, 1-12
writing, 2-5
RECORDSIZE option,
Record size, 2-6
RECOUNT variable,
7-28
Recoverable error messages,
Releasing records, 1-12
Removing receivers, 7-87
Removing run-time systems,

2-2

2-12

1-16, 2-12, 6-1

E-1

7-113

Return file characteristics function,

2-18

Rewind function, 2-14
Rewinding magtape, 2-13, 2-14
Rewinding tape, 2-2, 2-6
Rewind on CLOSE function, 2-20
Run priority, setting, 7-56
Run-time systems,

adding, 7-111

loading, 7-114

naming, 7-110

removing, 7-113

unloading, 7-116

SAT (Storage Allocation Table), 1-5

Scheduling jobs, 7-54

Searching for records,

SEL (select), 3-2

Select (SEL), 3-2

Sending messages, 7-81,

SEND operation, 7-86

Setting allowable logins, 7-89

Setting read modes, 6-5

Setting run priority, 7-56

Setting terminal characteristics,
7-64

7-track magtape, 2-10

Shutup logout, 7-38

SHUTUP system program, 7-113

Simultaneous user access, 1l-11

Single character input, 7-6

2-5

7-85

Skip record function, 2-14
Slave terminal, 4-5

Small buffers, 3-5, 7-81
Software formatting, 3-4

Special line printer operations, 3-2

file,
7-70

Statistics,
changing,
Status,
disk pack, 7-45
terminal, 7-45
Status variable,
Status word, 2-17
Storage Allocation Table (SAT),
1-5
Storage space, 8-4
String editing, 7-20
String manipulation, 8-9
Summary of FIP SYS calls, 7-18
Swap maximum, 8-3
SWAP% function, 7-12
Synchronization, 7-67
SYS call, LOGIN, 7-72
LOGOUT, 7-74
SYS calls,
attaching, 7-77
detaching, 7-75
privileged utility, 7-38
utility, 7-20

7-28

INDEX-4

SYS system function calls, 7-1 Variable RECOUNT, 7-28
SYS system function formats, 7-1 Vertical tab, 3-1, 7-64
System accounts, 1-1 VTO05 cursor control, 4-9
System function calls, SYS, 7-1 VT50 cursor control, 4-10
System library account, 1-1, 1-3
System program,

LOGIN, 1-1, 8-2, 8-3

LoGgouT, 1-2 Wild card directory, disk, 7-101
MONEY, 1-2 Write lock error, 2-22
REACT, 1-1, 7-63 Writing records, 2-5

SHUTUP, 7-113
UTILITY, 1-2

XOFF characters, 7-65
XON characters, 7-65
Tab,
horizontal (TAB), 3-1
vertical (vVT), 3-1

Table, monitor, 7-104 Zero (@) characters, printing as
TAPE command, 7-3 O characters, 3-4
Tape status function, 2-16 Zeroing,
Terminal, devices, 7-34
characteristics, 7-64 magtapes, A-11

disabling, 7-52
logged out, 8-2
status, 7-45
Translating lower case characters,
7-66
Trap, CTRL/C, 7-36
Truncating lines, 3-4
TU10 drive, 2-10
TUl6 drive, 2-10

Unloading run-time systems, 7-116
Unlocking records, 1-12
Up arrow (~ or 4) character,
7-67
UPDATE option, 1-11
User accounts,
creating, 7-60
deleting, 7-62
User File Directory (UFD), 1l-1
Utility SYS calls, 7-20
privileged, 7-38
UTILITY system program, 1-2

INDEX-5

Please cut a

RSTS/E Programming
Manual
DEC-11-ORPMA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. []]

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

alilgliltlall

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

	001
	002
	003
	004
	005
	006
	007
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	5-01
	5-02
	5-03
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	7-001
	7-002
	7-003
	7-004
	7-005
	7-006
	7-007
	7-008
	7-009
	7-010
	7-011
	7-012
	7-013
	7-014
	7-015
	7-016
	7-017
	7-018
	7-019
	7-020
	7-021
	7-022
	7-023
	7-024
	7-025
	7-026
	7-027
	7-028
	7-029
	7-030
	7-031
	7-032
	7-033
	7-034
	7-035
	7-036
	7-037
	7-038
	7-039
	7-040
	7-041
	7-042
	7-043
	7-044
	7-045
	7-046
	7-047
	7-048
	7-049
	7-050
	7-051
	7-052
	7-053
	7-054
	7-055
	7-056
	7-057
	7-058
	7-059
	7-060
	7-061
	7-062
	7-063
	7-064
	7-065
	7-066
	7-067
	7-068
	7-069
	7-070
	7-071
	7-072
	7-073
	7-074
	7-075
	7-076
	7-077
	7-078
	7-079
	7-080
	7-081
	7-082
	7-083
	7-084
	7-085
	7-086
	7-087
	7-088
	7-089
	7-090
	7-091
	7-092
	7-093
	7-094
	7-095
	7-096
	7-097
	7-098
	7-099
	7-100
	7-101
	7-102
	7-103
	7-104
	7-105
	7-106
	7-107
	7-108
	7-109
	7-110
	7-111
	7-112
	7-113
	7-114
	7-115
	7-116
	7-117
	7-118
	7-119
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	C-01
	C-02
	D-01
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	replyA
	replyB

