RSTS/E
System Manager’s Guide

Order No. DEC-11-ORSMD-A-D

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation - maynard. massachusetts

First Printing, July 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is fur
and may only be used or copied in accordance t
license.

nished under
o th

S
-
the t m

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
Digital.

Copyright C) 1975 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION pages, located at the back of
this document, explain the various services available to Digital soft-
ware users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM

LIMITED RIGHTS LEGEND

Contract No.

Contractor or Subcontractor: Digital Equipment Corporation

All the material contained herein is considered limited rights data
under such contract.

CONTENTS
Page
PREFACE vii

CHAPTER 1 RSTS/E SYSTEM STRUCTURE AND SYSTEM MANAGEMENT

[
|
[

SYSTEM HARDWARE
1 Processors and Related Options
2 Disk Devices
3 Terminals
4 Additional Peripheral Devices

Lo
N Ry ey

2 SYSTEM SOFTWARE

2.1 System Code

2.2 Language Processors
2.3 System Program Code

1.3 DISK ORGANIZATION
1.3.1 File Structure
1.3.2 Disk Optimization

[
(oo JENIEN |

1.4 SYSTEM OPERATION CONCEPTS

L el el el e el
[0 (<)), 8]

1.5 SYSTEM MANAGEMENT

I
{(e]

CHAPTER 2 SYSTEM START UP, SHUT DOWN, AND AUTOMATIC RESTART

N
]
—

2.1 STARTING UP RSTS/E: BOOTSTRAPPING RSTS/E
INTO MEMORY
Bootstrapping RSTS/E via a Hardware Bootstrap

Loader
Bootstrapping RSTS/E After a System Halt

1 Requesting a Memory Dump and Automatic Restart
2 Requesting an Initialization Option
Bootstrapping RSTS/E from ROLLIN
Starting Time Sharing - START Example

N
| |

I
B WwhNE =

NNkl)NNN

2.2 HALTING THE RSTS/E SYSTEM 2-7

2.3 AUTOMATIC RECOVERY AND RESTART FACILITIES 2-9
2.3.1 Nature and Causes of Catastrophic Errors and
System Crashes 2-9
1 Configuration Errors 2-9
2 Privileged-Account Programming Errors 2-1
3 Hardware Malfunctions 2-1
4 System Software Malfunctions 2-1
Automatic Recovery from Catastrophic Errors
and Crash Dump 2-10
2.3.3 Automatic Restart Mode Initialization 2-11
CHAPTER CONTROLLING TIME SHARING 3-1
CONTROLLING SYSTEM START UP - INIT 3-1
INIT Program Commands 3-2
Creation and Usage of Control Files 3-6
1 START.CTL File Example 3-8
2 CRASH.CTL File Example 3-9
3 Simplified CRASH.CTL File Example 3-1
4 1Indirect Control File Example 3-1

iii

3.2 PERFORMING SYSTEM SHUT DOWN - SHUTUP 3-11
3.3 SETTING JOB PRIORITY, RUN BURST AND MAXIMUM
SIZE - PRIOR 3-13
3.3.1 Running PRIOR 3-14
3.3.2 Changing LOGIN to Set Maximum Job Size 3-15
CHAPTER 4 ACCOUNT CREATION AND ACCOUNT STATISTICS 4-1
4.1 CREATING AND DELETING USER ACCOUNTS - REACT 4-1
4.1.1 Creating Individual Accounts - ENTER Function 4-1
4.1.2 Deleting Accounts - DELETE Function 4-4
4.1.3 Automatic Creation of User Accounts - STANDARD
Function 4-4
4.2 PERFORMING SYSTEM ACCOUNTING OPERATIONS -
MONEY 4-6
4.3 DISK SYSTEM CATALOG - SYSCAT 4-11
CHAPTER 5 SPOOLING OPERATIONS 5-1
5.1 OPERATING THE QUEUE MANAGER - QUEMAN 5-3
5.2 LINE PRINTER SPOOLING PROGRAM - SPOOL 5-10
5.2.1 Recovery from Line Printer Errors 5-12
5.2.2 Line Printer Output 5-13
5.2.3 Job Error Messages 5-14
5.3 BATCH PROCESSOR PROGRAM - BATCH 5-16
5.4 TERMINATING AN INDIVIDUAL SPOOLING PROGRAM 5-17
CHAPTER 6 SYSTEM ERROR DETECTION 6-1
6.1 MANAGING ERROR LOGGING - ERRCPY, ERRCRS, AND
ERRDIS 6-1
6.1.1 Operating and Using the Error Copy Program -
ERRCPY 6-1
6.1.2 Use of the Error Crash Program - ERRCRS 6-2
6.1.3 Operation and Use of the Error Display

Program - ERRDIS 6-3
Running and Terminating ERRDIS 6-3
Recommended Usage of ERRDIS 6-7

oo
N
=
.
ww
.
N

6.2 ANALYZING SYSTEM CRASHES - ANALYS 6-10
6.3 OCTAL DEBUGGING TOOL - ODT 6-12
6.3.1 Running and Terminating ODT 6-17
6.3.2 Opening and Closing Locations in the Address

Space (/ and \) 6-18
6.3.2.1 Opening the Preceding Location (tor ") 6-20
6.3.2.2 Opening a PC Relative Location (+« or _) 6-20
6.3.2.3 Opening an Absolute Location (@) - 6-21
6.3.2.4 Opening a Relative Branch Offset Location (>) 6-21
6.3.2.5 Returning to an Interrupted Sequence (<) 6-22
6.3.3 Printing the Contents of Locations 6-22
6.3.3.1 Printing ASCII Format (") 6-22
6.3.3.2 Printing Radix-50 Format (%) 6-23
6.3.4 Relocation Registers 6-23
6.3.5 Interpretive Address Quantities (Q and .) 6-24
6.3.6 Error Procedures 6-25

iv

CHAPTER

APPENDIX

2

NN NN NN

e e e o o o & o

[
. .

~
N

~J
.
w

¢ o e o o .
* e o e .
o

WWwWwwwwwwww
.

RN NDNONDN
¢« o o

NN NNNNNNNaON
.
.
OOV WN -

~
-

]
.
[-3
.
—

. .
o b
. .
wN

~J
.
>
.
o>

SYSTEM UTILITY OPERATIONS

GENERAL UTILITY OPERATIONS - UTILTY

Running and Terminating UTILTY

Principles of Disk Management

Preparing a Disk for Use on a Drive

Removing Files from an Account

Changing Quota and/or Password of an Account
Operational Control of the System

Run Time System Control

MONITORING SYSTEM STATUS - SYSTAT

DYNAMIC DISPLAY OF SYSTEM STATUS - VTS5DPY
AND VTS50PY

Running and Terminating VTS5DPY and VT50PY
Screen Layout

Header Line

Job Status

Memory Status

Disk Structure

Busy Device Statistics

Message Receiver Statistics

Free Buffer Status

Run Time System Statistics

DETERMINING TERMINAL AND REMOTE LINE
CHARACTERISTICS - TTYSET

Establishing the Terminal Speed Characteristics

File - TTYSET.SPD

TTYSET Privileged Feature - KBn: Command
Automatic Setting of Terminal
Characteristics

Setting Terminal Characteristics of Remote
Lines - /RING

INITIALIZING A DISK DURING TIME SHARING -
DSKINT

OPTIMIZING DISK DIRECTORIES - REORDR
PROCESSING USER COMMENTS - GRIPE
COMMUNICATING WITH OTHER TERMINALS - PLEASE
AND TALK

Sending a Message to the Console Terminal -
PLEASE

Sending a Message to Another Terminal - TALK
HARDWARE BOOTSTRAP PROCEDURES

BM873-YA PROCEDURE

BM873-YB PROCEDURE

MR11-DB PROCEDURE

BM792-YB PROCEDURE

Page

~
|

[|
HFWOWVWWOAOOK |

NN NN NN

APPENDIX B RSTS/E CONSISTENCY ERROR MESSAGES

B.1 CILUS PHASE ERRORS
B.2 OPTION PHASE FRRORS
APPENDIX C AUXILIARY SYSTEM PROGRAM FILES
Cc.1 CHARACTER GENERATION FILE - CHARS.QUE
C.2 BATCH COMMAND DECODING FILE - BATCH.DCD
APPENDIX D NUMBER CONVERSION
FIGURES
Number
3-1 Sample SHUTUP Printout
TABLES
Number

Initialization Option Summary

Control File Commands

REACT System Program Functions
Responses to ENTER Function Queries
Responses to DELETE Function Queries
MONEY Program Options

MONEY Program Output

QUEMAN Commands

QUEMAN Error Messages

SPOOL Commands

ERRDIS Options

ERRDIS Option Switches

System Crash Error Code

ODT Characters and Symbols

ODT File Question Responses

UTILTY Commands

Procedures for Using Disk Packs and Cartridges
VT5DPY and VT50PY Commands

Run Time System (RTS) Statistics
Summary of Hardware Bootstrap Addresses

aa\x\:\l\l?\mc\oxc\mmmn.b»b.bww
[| UL
R WNHOBWNHFHFWOHFEO® W

vi

g

o]
O

1

BB B W
]

w

-

| I N T B |
= o @

NN NN FRPENUTHEOUINOS S W W

PN OO Ut Ul

PREFACE

This guide describes the procedures necessary to operate and manage a
RSTS/E Version V06A-02 system. The reader should be familiar with the
structure and programming of RSTS/E and should have a firm knowledge
of time sharing software and hardware. The basis for the material in
the manual is a set of programs having privileged status and programs
having privileged features. The contents of this guide are of concern
only to the RSTS/E system manager and users whom he designates as
privileged. Any other individual should not have access to this guide
without the consent of the system manager.

For more information on RSTS/E guides and manuals, consult the RSTS/E
Documentation Directory.

For a quick reference to a subject in this guide, use the following
list.

If you need to know about See Section

Starting time sharing

Preparing a disk for use

Making a disk ready to use

Creating user accounts

Deriving system accounting data
Terminating time sharing

Gauging system performance
Determining causes of hardware errors
Reporting system troubles

Creating the TTYSET.SPD file
Specifying terminal characteristics
Controlling time sharing start up
Managing spooled operations
Changing LOGIN job size default

N e

I
AN N
Ko o~ o .
[0 2N~ NN
v e
[\ O]

Wk b0
.

guide

WU WNNUOUAIN S BIIN
« o s e .

.

NN -

.
N

vii

CHAPTER 1

RSTS/E SYSTEM STRUCTURE AND SYSTEM MANAGEMENT

RSTS/E (Resource Sharing Time Sharing System/Extended) runs on a
PDP-11/70, a PDP-11/40 or PDP-11/45 computer and allows simultaneous,
time shared access to PDP-11 hardware resources and to RSTS/E system
software components through either 1local or remote terminals. A
RSTS/E user performs time sharing operations using the full
computational and data processing power of the BASIC-PLUS language.

The current version of RSTS/E employs the same file structure and
programming language of previous versions but provides the capability
of compiling and running COBOL programs. This chapter introduces the
system manager to the hardware and software structures of RSTS/E and
provides references to further descriptions of the philosophy and uses
of RSTS/E.

1.1 SYSTEM HARDWARE

RSTS/E runs on several PDP-11 processors and supports many types of
mass storage and peripheral devices. The system manager can readily
change the system software to add new hardware and new software
options. The RSTS/E system therefore may initially be small but can
be expanded as 1installation requirements increase. The following
sections describe typical RSTS/E hardware.

1.1.1 Processors and Related Options

The PDP-11/70 processor provides the highest performance for a RSTS/E
system with a large number of users. All PDP-11/70 processors include
the following features:

1K words of bipolar cache memory that buffers data from main
memory to provide fast program execution.

UNIBUS Map which translates UNIBUS addresses to physical memory
addresses.

Memory Management Unit to allow expanded memory addressing and
hardware relocation and protection.

Optional with the PDP-11/70 is the Floating Point Processor to perform
either single or double precision floating point arithmetic operations
and floating integer conversion in parallel with the CPU. RSTS/E
supports up to 1024K words of main memory on PDP-11/70 systems.

1-1

RSTS/E SYSTEM STRUCTURE AND SYSTEM MANAGEMENT

The PDP-11/70 cache, main memory, and Input/Output structure is
designed for fast program execution and high I/0 throughput. Main
memory is connected to the cache through a 32-bit memory bus. The
cache transfers instructions and data to the central processor unit
over a 16-bit data path. High speed RH70 peripheral controllers
communicate with main memory over a separate 32-bit data bus. Slower
peripheral controllers are connected through the UNIBUS. This
multiple bus structure allows several high speed data transfers to
occur in parallel.

The PDP-11/45 processor offers an intermediate RSTS/E system for a
moderate number of users. The Memory Management Unit is a hardware
option but is required for operation of the RSTS/E software. The
PDP-11/45 optionally provides the Floating Point Processor (FPP) and a
maximum of 32K words of MOS or bipolar semiconductor memory to enhance
per formance. Semiconductor memory is connected to the central
processor unit through a high speed data path internal to the
PDP-11/45 processor. Core memory and all peripheral devices are
connected to the UNIBUS. RSTS/E supports the maximum amount of memory
(124K words) possible for a PDP-11/45.

The PDP-11/40 processor provides an economical time sharing system for
a smaller number of users. The Extended Instruction Set (EIS) and
Memory Management Unit are hardware c¢ptions but are required for
operation of the RSTS/E software. Core memory can be expanded to 124K
words. All memory and peripheral devices are connected through the
UNIBUS.

The PDP-11/70 and PDP-11/45 FPP units support either 2-word (32 bit)
or 4-word (64 bit) precision. The wunits substantially improve
per formance for scientific applications requiring double precision
floating point calculations and for business applications which
utilize 4-word scaled arithmetic available in BASIC-PLUS.

The PDP-11/40 FIS unit provides high speed 2-word floating point
calculations.

Two- or four-word (including scaled arithmetic) software routines are
available for systems which éo not include a hardware floating point
processor. The hardware can of course te added at any time to improve
system performance.

RSTS/E systems require a hardware bootstrap 1loader. Either the
BM873-YA or the BM873-YB 1is available. The BM873-YB is necessary
either to bootstrap an RP04 disk and TM02/TUl6é magtape or to bootstrap
a non-zero disk unit.

RSTS/E reguires a system clock. Either the KWwll-L Line Frequency
Clock or the KW1lP Programmable Clock is available. The KW1lP can
generate interrupts based on either line frequency or
crystal-controlled oscillator.

RSTS/E SYSTEM STRUCTURE AND SYSTEM MANAGEMENT
1.1.2 Disk Devices

RSTS/E supports the following types and numbers of disks.

Type Number
RJP04 Moving (1) A maximum of 8 RP04 40 million
Head Disk System word disk pack drives
(RH70/RP04 or
RH11/RP04)
RP11-C/RP03/RP02 (1) A maximum of 8 RP03 20 million word disk
Moving Head pack drives. (The 10 million word RP02
Disk System disk pack can be used.)
RK11/RK03 or A maximum of 8 RKO3 or RKO05 1.2 million
RK05 Moving Head word disk cartridge drives.

Disk System

RJS04 and RJSO03 The RJS03 and RJSO04 are expandable by
Fixed Head adding either RS03 (256K words) drives
Disk System or RS04 (512K words) drives. RSTS/E
(RH70/RS03/RS04 or supports any combination of drives not
RH11/RS03/RS04) to exceed 4 (for swapping and non-
resident code only).

RF11/RS11 A max imum of 8 disk drives to
Fixed Head serve as system disk or storage
Disk System for swapping and non-resident code.

The RSTS/E system disk can be either an RP04, RP03, or RP02 disk pack;
an RKO03 or RKO5 disk cartridge; or an RF1l fixed head disk. The
system disk can be used for swapping and non-resident monitor code as
well as for system and user files. The optimal disk configuration,
however, includes at least one moving-head disk as the system disk
(and as the first unit of the public structure) and an auxiliary
fixed-head disk as storage for swapping.

A disk configuration must provide adequate storage space for both
system and user files. For example, a system with an RK11C/RK05 disk
system only and no tape or other secondary storage must have at least
two RK05 drives for adequate capacity and for system generation from
software distributed on disk cartridges. Auxiliary disk units may be
present to supplement secondary storage capacity. See the section
entitled "Disk File Organization" for more information on
configuration and storage requirements.

(1) RSTS/E supports either the RJP04 or the RP11-C/RP03/RP02 moving
head disk systems but not both on the same computer.

1-3

RSTS/E SYSTEM STRUCTURE AND SYSTEM MANAGEMENT
1.1.3 Terminals
The RSTS/E terminal service supports a wide variety of 1local and

remote terminals connected through many types of interfaces. The
following terminals are available with RSTS/E.

DECwriters LA36, LA30S (serial) and LA30P (parallel)
hard copy terminals

Scopes VTS50, VTO05B, and VTO0S5 alphanumeric display
terminals

Teletypes ASR33, KSR33, ASR35 and KSR35 Teletype
terminals

2741 IBM 2741 Compatible Terminals

Special RT02 Numeric Display Terminal, GT40 Graphic

Display System
Others Definable through system function calls.

Inter faces for local ASCII terminals can be either KL11, DL11lA, DL11B,
DL11C, DL11D, DL1lE (null modem), DC1ll (null modem), and LC1ll (for the
LA30P DECwriter) for single lines or the DH11 16-line multiplexer.
ASCII terminals on remote, dial-up lines can be connected through DL1l
and DC1ll single line interfaces or through the DH1l multiplexer and a
DM11-BB modem control multiplexer.

Interfaces for local 2741-type terminals (which are non-ASCII) can be
either DL11D, DL11E (null modem) and DCll (null modem) for single
lines or the DH1l multiplexer. Remote 274l1-type terminals can be
connected through either the DL11E and DCll interfaces for single
lines or through the DH11 and DM11-BB multiplexers. The RSTS-11
System User's Guide describes the terminals which have been tested
under RSTS/E.

1.1.4 Additional Peripheral Devices

RSTS/E supports a variety of additional peripheral devices including
two magtape systems, DECtape, several types of line printers, card
readers and paper tape devices. The following are the types and
numbers of magtape devices.

TJU1l6 Magtape(l) A maximum of 8 TUl6 drives

System

TM11 Magtape (1) A maximum of 8 TUl0 drives

System

TC1ll DECtape A maximum of 8 TU56 single drives
System

A maximum of 8 in any combination of the following line printers are
supported.

(1)RSTS/E supports either the TJUl6 Magtape system or the TM11/TUl0
magtape system but not both on the same computer.

RSTS/E SYSTEM STRUCTURE AND SYSTEM MANAGEMENT
LP1l High Speed 230, 300, or 1200 lines per minute;
Line Printer either 80 or 132 columns; either upper-case
only or upper- and lower-case.

LS Line 60 lines per minute dot-matrix; upper-case
Printer only; 132 columns.

A single card reader from one of the following types is supported.

Cbh1ll 1000 or 1200 cards per minute punched card
reader

CR11 300 cards per minute punched card reader

CM11 300 cards per minute mark sense card reader

The PCll High Speed Paper Tape punch and PR1l High Speed Paper Tape
Reader are also supported.

Each of the above peripheral devices is fully available during time
sharing. Any unit can be assigned to any time sharing job as needed.

1.2 SYSTEM SOFTWARE

RSTS/E system software exists as either system code, language code, or
system program code. The system code and part of the language code is
tailored at system generation time according to the hardware
configuration on which the system runs and the software features which
are chosen by the system manager. Once the system is generated, the
system code and part of the language code are frozen and alterable
only by patching or by generating new code. The system program code
exists 1in a library of programs executable by the system software or
by individual users on the system. The library of programs 1is
alterable and expandable during time sharing without requiring
regeneration of the system.

1.2.1 System Code

The RSTS/E system code is stored on the system disk as a core image
library (CIL). A core image library, when loaded into memory, is
immediately executable by the PDP-11 computer. The system code
comprises many distinct elements which are either resident in memory
or on disk during time sharing. Permanently resident elements are the
following:

interrupt and trap vectors

small and large system buffers
system information and data tables
disk and device drivers

file processor modules

The following are disk resident (overlay) elements.
file processor modules

infrequently used utility routines
system initialization code

RSTS/E SYSTEM STRUCTURE AND SYSTEM MANAGEMENT

RSTS/E operations start when the system disk is bootstrapped. The
bootstrap routine 1loads the initialization code which performs many
consistency checks to ensure the integrity of the software. When
checking is completed, the initialization code remains resident and
allows many options described in Chapter 3 of the RSTS/E System
Generation Manual.

When time sharing operations are started, the initialization code is
overlaid by the permanently resident system code and the BASIC-PLUS
compiler and Run Time System. As time sharing operations proceed,
infrequently used overlay code and system and user programs are loaded
from disk as needed.

1.2.2 Language Processors

The language processors reside on the system disk in machine
executable form and can be either permanently resident in memory or
temporarily resident (swappable). The following are the permanently
resident elements.

BASIC-PLUS text editor and analyzer
BASIC-PLUS incremental compiler
BASIC-PLUS run time system

The temporarily resident elements are the following:

RTSLIB auxiliary run time system
COBOL compiler and object time system
PDP-11 SORT11l program

The BASIC-PLUS code is loaded into memory at the start of time sharing
operations and remains resident during the session. The code analyzes
all BASIC-PLUS statements and dgenerates and executes intermediate
(compiled) code. Many monitor services are available to a BASIC-PLUS
program through system function calls.

The auxiliary runtime system RTSLIB is loaded into memory only when a
request is made to execute the COBOL compiler and object time system
or the SORT1l program. RTSLIB remains resident until all COBOL or
SORT11 requests are satisfied and afterwards is overlaid by system and
user programs. The COBOL compiler and SORT1l program are swapped out
to disk with the user job image.

1.2.3 System Program Code

A library of programs is produced and stored on disk during the system
library build procedures. Both the system and users execute these
programs to perform system housekeeping and common utility functions.
The system manager can use the programs to monitor and regulate system
usage. Some library programs can be tailored by altering the source
statements supplied by DIGITAL and recompiling to replace the current
copy on the system disk.

RSTS/E SYSTEM STRUCTURE AND SYSTEM MANAGEMENT
1.3 DISK ORGANIZATION
1.3.1 File Structure

A logical structure of files controls all access to system and user
data on the RSTS/E system. The file structure is flexible enough so
that it can control and access any type of information. The file
structure design 1is based on the need to control and access data and
code on disk.

The logical disk structure is divided into two types: public and
private. The public disk structure consists of a system disk and
additional public disk packs or disk cartridges. All public disks
must be physically on-line and logically mounted whenever the system
is running and must be accessible to all wusers during time sharing
operations. ~

The system disk contains the system code, language processors, and the
library of system programs. The system disk may also be used for
storage of active user jobs which are temporarily swapped out of
memory. Remaining space on the system disk and all space on other
public disks is available for general storage of user programs and
data files.

If the system disk is a moving head device, an auxiliary fixed head
disk can be used as the swapping device. In such cases, the swapping
device is a logical extension of the system disk and can be configured
to contain, 1in addition to the swapping files, other frequently used
system files to improve speed of access.

Any disk drives not devoted to the public structure can be devoted to
private disk packs or disk cartridges. Private disks can be logically
mounted and dismounted and interchanged as needed during time sharing
operations. A private disk provides a means to restrict disk storage
to a defined set of users. The file structure on a disk, whether it
is designated public or private, is the same.

Access to files in the RSTS/E system is accomplished by two structures
called a Master File Directory and a User File Directory. A Master
File Directory, or MFD, exists on each disk initialized for use on the
RSTS/E system. The MFD 1is treated as an account on the disk and
catalogs other accounts on the disk. The MFD on the system disk is a
special <case, since it maintains a catalog of the accounts which can
be used to log into the system. MFDs on other disks contain entries
of accounts which can create files on that disk. Any user can access
any file on any disk if the protection code of the file permits.
However, only those users whose accounts are entered in the MFD of the
private disk can create files on the disk.

One User File Directory, or UFD, exists for each user account on a
disk. (The UFD 1is not actually created until a file is created for
the related account.) The UFD catalogs all program and data files
under an account and maintains accounting and access information for
the files. The UFD contains all retrieval information for the files
because each file 1is pure data and has no linkage nor structural
information.

RSTS/E SYSTEM STRUCTURE AND SYSTEM MANAGEMENT
1.3.2 Disk Optimization

Whenever a file is opened on the public structure, the directories on
every public disk are searched. The search either verifies the
existence of the file or ensures its nonexistence. The overhead of
searching more than one disk can be avoided by placing the file on a
private disk.

It is advantageous to dedicate an entire private disk to a single
large production file. This organization ensures an efficient
directory structure and minimizes overhead to access file data. When
more than one file is on the same private disk, it is best to dedicate
a whole account to each production file. This organization minimizes
directory search overhead. If more than one file is under the same
account on the same disk, the large files should be created before the
small ones to ensure better organization of the directory structures.

In an environment where distinct data files must be accessed by the
same program, the optimal organization 1is to keep each file con a
different private disk. If a program must access more than one file
on the same disk, overhead is increased because disk head movement is
required whenever a current reference to a file is not to the same
file as the preceding reference. A large percentage of execution
time, therefore, is spent in moving the disk head back and forth. 1If,
however, each file referenced by the program exists on a distinct
private disk, head movement 1is not required whenever the program
references another file. Head movement is restricted to locating the
data itself.

1.4 SYSTEM OPERATION CONCEPTS

Immediately after logging into the system, a user's terminal is in
edit mode (BASIC-PLUS command level) and is returned to edit mode when
any program execution is completed or whenever a CTRL/C 1is typed at
the terminal. 1In edit mode, the system examines each ASCII text line
entered by the user and determines whether that 1line is a system
command, a BASIC-PLUS immediate mode statement, or a BASIC-PLUS
numbered statement. System commands are executed immediately after
being entered as described in Chapter 2 of the RSTS-11 System User's
Guide.

An immediate mode statement 1is first translated into intermediate
code, which is placed in the user's job area and executed immediately
by BASIC-PLUS. (Immediate mode operations are described in Chapter 4
of the BASIC-PLUS Language Manual.) Program statements preceded by
line numbers are analyzed and stored 1in their ASCII form in a
temporary disk file named TEMPnn.TMP stored under the user's account.
Each program statement is also compiled into 1its intermediate code
representation and is placed in the user's area of memory.

Intermediate code created in the wuser's Jjob area upon entry of
numbered statements is not executed automatically. The related
program statements can be changed. A copy of the intermediate code of
the program can be transferred to disk storage (as a file with a BAC
filename extension) or to an external storage medium.

The user job area is initialized at log in time and set to a size of
2K words (K = 1024). The job area can grow in increments of 1K words
to a maximum size set by the system manager at the start of time
sharing operations.

1-8

RSTS/E SYSTEM STRUCTURE AND SYSTEM MANAGEMENT

A user leaves edit mode when he types the RUN system command or the
CHAIN immediate mode statement. In run mode, BASIC-PLUS
interpretively executes the intermediate code stored in the user's job
area. Following program execution, the user's terminal is returned to
edit mode, signalled by printing of the READY message. The user can
interrupt BASIC-PLUS by typing CTRL/C, which also returns the user's
terminal to edit mode.

The RSTS/E system allows jobs to run one at a time. A job runs until
it either enters an I/0 wait state or exhausts the time guantum
assigned by either the system or the system manager. When the
currently running job ceases to run, the scheduler finds the next job
that is ready to run and begins running that job. Meanwhile, the
interrupt-driven I/0 device handlers are processing requested data
transfers. Upon completion of a transfer, the scheduler marks the job
that requested the transfer as ready to run again and starts it from
the point at which execution ceased.

RSTS/E attempts to keep as many jobs in memory as possible. When more
memory is required to run a Jjob than 1is available, the system
temporarily moves some jobs out of memory and stores them in one of
four files <called SWAP0.SYS, SWAPl.SYS, SWAP2.SYS, and SWAP3.SYS.
This operation is called swapping. When a job is again eligible to
run, it is swapped back into memory. Jobs waiting for keyboard input
and jobs waiting for device I/0 completion are most likely stored in
the swapping files, while jobs currently running or involved in disk
or magtape data transfers are necessarily in memory.

As the system processes each job, it maintains accounting information
in memory concerning that job. When the job is logged off the system,
this information is used to update the accounting information stored
on the disk for that account.

1.5 SYSTEM MANAGEMENT

Management of RSTS/E begins with providing properly tailored hardware
and software configuration, proceeds through initializing the software
at system generation time, and continues with the daily functioning of
time sharing. To ensure that these steps of management are
efficiently performed, the manager of a RSTS/E system should be
familiar with time sharing concepts and practices or should have a
close working relationship with a senior programmer or analyst who is
experienced in time sharing.

To begin managing well, the person responsible for RSTS/E operation
must have knowledge of 1local processing and the capabilities and
structure of his systenm. The information supplied in the RSTS/E
System Generation Manual explains <critical aspects of hardware and
software options and provides memory requirements to assist in
configuring a RSTS/E system.

After RSTS/E software is generated, many 1initialization options are
available to structure and control system elements. A few of the
initialization options are complex and sophisticated and their
efficient usage at system generation time is of paramount importance.
Once time sharing begins, certain restructuring capabilities become
more difficult to employ. The manager or his designate should be

1-9

RSTS/E SYSTEM STRUCTURE AND SYSTEM MANAGEMENT

careful about the first-time initialization of RSTS/E. Unfortunately,
no cookbook approach can attain proper system initialization.

To manage daily time sharing efficiently, an individual must know data
processing functions, implement time sharing utility operations, and
be familiar with RSTS/E concepts and structure. A full set of utility
programs described in this manual and in the RSTS-11 System User's
Guide is available to perform necessary tasks.

To ensure tha

TC ensu t responsible individuals are kept informed, the manager
should designate an individual responsible for current documentation
of the system, including both locally generated and DIGITAL-supplied
procedures and guides. That responsible individual should ensure that
delegated members of the staff receive the latest information. In too
many cases, improper utilization of resources results from responsible
individuals not being aware of published information.

If special facilities are required, a set of privileged programming
features is available to the developer at the local installation. The
system library can be expanded with tailored utility programs.
Auxiliary libraries are available for special groups of users. The
descriptions of special features can be located by consulting the
RSTS/E Documentation Directory.

CHAPTER 2

SYSTEM START UP, SHUTDOWN, AND AUTOMATIC RESTART

2.1 STARTING UP RSTS/E: BOOTSTRAPPING RSTS/E INTO MEMORY

Starting up RSTS/E is a two step operation. The first step requires
loading the RSTS/E initialization code into memory and the second step
involves using one of the RSTS/E initialization options.

The initialization code in RSTS/E exists in the system file RSTS.CIL
on the system disk. The code is loaded into the lower 28K words of
memory and overlaid after its execution by system and user programs.
The following sections describe the ways that initialization code can
be bootstrapped into memory. Chapter 3 of the RSTS/E System
Generation Manual describes and explains the RSTS/E initialization
options. Section 2.1.4 of this manual summarizes the options and
shows how to start time sharing.

2.1.1 Bootstrapping RSTS/E via a Hardware Bootstrap Loader

The procedures to follow when bootstrapping RSTS/E depend on the type
of hardware bootstrap loader and the type of disk used as the system
device. The following steps explain the procedure.

1. Make sure that the system disk is physically mounted on a
disk wunit. (This does not apply if the system disk is an RF
type disk.)

2. Make sure that the system disk drive is READY and is in the
WRITE ENABLE condition.

3. Ensure that the console terminal is on line.
4. Refer to Appendix A for the proper bootstrap operation.

When the initialization code is loaded, it prints the system header
and installation name followed by the OPTION: message. If no
messages appear after performing the bootstrap operation, ensure that
the console terminal is on line and retry the bootstrap procedure. 1If
the initialization code prints the message FATAL ERROR OCCURRED DURING
CILUS PHASE, chances are the system disk is not in the WRITE ENABLE
condition. To recover, write enable the disk and retry the bootstrap
procedure.

If the automatic restart facility is to be enabled, set the CPU Switch
Register to 777777; that 1is, all switches are in the up position.
The automatic restart facility remains enabled as 1long as the CPU

SYSTEM START UP, SHUTDOWN, AND AUTOMATIC RESTART

Switch Register remains set to 777777, If any switch between
positions 15 and 0 is set to its 0 position (that 1is, to its down
position), the automatic restart facility is disabled for the duration
of this condition.

This method of bootstrapping the initialization code is independent of
any previous contents of memory and requires only that the system
image be the first Core Image Library (CIL) module in the CIL file and
that a special bootstrap routine reside in the first 256 words of the
system disk. The RSTS.CIL file can never be moved from its place on
the system disk. These conditions apply on all RSTS/E systems.

2.1.2 Bootstrapping RSTS/E After a System Halt

If the RSTS/E system halts as a result of the SHUTUP program being run
or as a result of a catastrophic error or system crash, the halt
address is always 54. The address lights indicate 56 in such a case,
since the program counter contains the address of the next sequential
instruction. (See Section 2.3.1 for a description of catastrophic
errors and system crashes.) The manner in which the the system can be
handled in such a situation depends upon the configuration and the
results desired. The alternatives are described in the following
sections.

2.1.2.1 Requesting a Memory Dump and Automatic Restart - If the
RSTS/E system halts at address 54 and the crash dump facility was
enabled at the start of time sharing operations, a memory dump and

automatic restart can be performed. The following procedures
prescribe the steps to accomplish a memory dump and automatic restart.

1. Ensure that the CPU is in a halt state as described in
Section 2.2.

2. Ensure that the CPU HALT/ENABLE switch is set to its ENABLE
position.

3. Set the CPU Switch Register to 000052.
4. Depress the CPU LOAD ADRS switch.

5. Set the CPU Switch Register to 777777.
6. Depress the CPU START switch.

After RSTS/E starts from address 52, it checks to determine if the CPU
Switch Register is set to 777777. If the Switch Register is set to
777777, the system writes the contents of all critical memory into the
CRASH.SYS file. The system then bootstraps the RSTS/E initialization
code into memory in the special automatic restart mode described in
Section 2.3.2.

If the crash dump facility was enabled at the start of time sharing
operations but, after starting from address 52, the system finds the
Switch Register set to something other than 777777, a halt immediately
occurs again at address 54. If the crash dump facility was not
enabled at the start of time sharing operations, the system halts
immediately at address 54. It is impossible to obtain a crash dump.
The system can be restarted as described in Section 2.1.2.2.

SYSTEM START UP, SHUTDOWN, AND AUTOMATIC RESTART

2.1.2.2 Requesting an Initialization Option - If the RSTS/E system
halts at address 54, the initialization code can be bootstrapped in
the normal start up mode. The procedures to request an initialization
option are as shown below.

1. Ensure that the CPU is in a halt state as described in
Section 2.2.

2. Ensure that the CPU HALT/ENABLE switch is set to its ENABLE
position.

3. Set the CPU Switch Register to 000050.
4. Depress the CPU LOAD ADRS switch.
5. Depress the CPU START switch.

Control is passed to the initialization code, which prints the system
installation name followed, on the next line, by the OPTION query.
See Section 2.1.4 for the valid responses to the OPTION query. If the
system halts at address 54 after a system crash and if the Switch
Register was set to something other than 777777, simply pressing the
CONT switch bootstraps the initialization code in the normal start up
mode.

2.1.3 Bootstrapping RSTS/E from ROLLIN

If the stand-alone program ROLLIN is in memory and if the RSTS/E
system disk 1is physically mounted on unit 0, in the READY condition
and in the WRITE ENABLE condition, the RSTS/E system can be
bootstrapped into memory. The /BO:dev switch described in Chapter 4
of the PDP-11 ROLLIN Utility Program document, DEC-11-OROAA-B-D,
bootstraps unit 0 of the device specified. After RSTS/E is
bootstrapped into memory, it prints the system installation name on
the console keyboard printer followed, on a second line, by the OPTION

query.

SYSTEM START UP, SHUTDOWN, AND AUTOMATIC RESTART

2.1.4

When the system disk is bootstrapped,
The user

message 1is printed.
Table 2-1.

Starting Time Sharing - START Example

the system heading and OPTION:
has available the options summarized in

Table 2-1

Initialization Option Summary

Short Form of
Operator Response

Section in

Meaning SYSGEN Manual

PA

DS

RE

SE

DE

ST or LINE FEED key

UN

BO

LO

AS
VT
LA

Alter the RSTS/E
System Code to cor-
rect problems.

3.2

Initialize and 3.3
optionally format a
disk.

Create or rebuild 3.4
the system files in
account [0,1] on
the system disk.

Set keyboard defaults 3.5
for disabling lines
and for enabling DHI1l
lines as local or with
modem control.

Establish or change de-
fault start up conditions|

Start time sharing
operations.

Diagnostic aid used 3.8
in conjunction with
the START option to
bypass the enabling

of all terminal inter-
faces except the con-
sole interface.

Bootstrap a device. 3.9

Load a stand-alone 3.10
program from the
RSTS/E CIL.

Set the fill factor 3.11
of the console termi-
nal to that of the
device specified.

The initialization options are described in Chapter 3 of

System Generation Manual.
of the START option.

the RSTS/E

The following sample printout shows the use

SYSTEM START UP, SHUTDOWN, AND AUTOMATIC

RSTS VBER-02 SYSTEM #zez7

OFTION: STARET

YOU CURRENTLY HAVE: JOEBE MAX = 2@, SWAF MAX = 2&K.
JOB MAX OR SWAF MAX CHANGES 7 OLD

ANY MEMORY ALLOCATION CHANGES 7 OLD

CRASH DUMF?Y OLD

I3 E NG R S
oA e LI

e

1
HH:MM? 15:6%

2=JUN=-75

SYSTEM INITIALIZATION FROGRAM YOEA-8%

COMMAND FILE MNAME? MONDAY. CTL
DETACHING. . .

-
HELLD 1 ~/ &

FPASSHORD :

JOB(S» 1 ARE DETACHED UNDER THIS ACCOUNT

JOB NUMBER TO ATTACH TO7?

1 OTHER USEE<{S> RRE LOGGED IN UNDER THIS ACCOUNT

RERDY

REARDY

SYSTEM UTILITY PROGRAM “UTILTY VYEBER-B8Z
? RDD RTSLIE

? LOAD RTSLIBARDDR:116

? UNLOADL RTSLIE

T ERIT

FERDY

~“C
RUN $GQUEMAN

RERDY

BUEMAN VYOEA-8F - RETS VBER-82 SYSTEM #z@27
STARTED AT: 15:65 ON 12-JUN-F5

*~DE

DETRCHING. . .

RESTART

SYSTEM START UP, SHUTDOWN, AND AUTOMATIC RESTART

~p

HELLO 1~ &
FRASSHORD:

JOBECS» 1 4 ARE DETACHED UNDER THIS ACCOUNT
JOEBE MUWEER TO ATTACH TO7
2 OTHER USER{S» ARE LOGGED IN UNDER THIS ACCOUNT

RERDY

~C
RELUMN $SFOOL

RERDY
SFOOL YRER-09 - RSTS YOER-82 SYSTER #2227

LF UNIT #7 8
DETACHIHG. .

GUEMAM MESSAGE: LFBSFL ¢ 2 » PUT ONLINE AT 13:85
-
HELLO 1/ 2

FASSWORD:

JOB(S: 4 2 4 ARE DETACHED UNDER THIS ACCOUNT

JOE NUMEBER TO RTTRCH TO7

T OTHER USER<S» RRE LOGGED IN UNDER THIS RCCOUNT

FEADY

o
RUN $EARTCH

FEARDY
EATCH YBER-18
EATCH WMIT BAR?

ESTSSE IS HWOW OMW THE AIR..
CETACHING. .

DUEMAN MESSAGE: BATCHZ ¢ I » PUT ONLINE AT 15:86
e

HELLD 1~ 2

FAZSWORD:

JOE<S> 1 2 Z 4 ARE DETACHED UNDER THIS ACCOUNT
JOE NUMEBER TO ATTACH TO? 1

ATTRCHING TO JOEBE 1

FUMN fFERRECFEY

RERDY

ERRCFY YHER-E81
FETRUHING

SYSTEM START UP, SHUTDOWN, AND AUTOMATIC RESTART
2.2 HALTING THE RSTS/E SYSTEM

A halt in the RSTS/E system is caused by an orderly occurrence of
events or by randomly setting the CPU console HALT/ENABLE switch to
its HALT position. The PDP-11/70 and PDP-11/45 are considered in a
halt state when both the RUN and PAUSE indicators on the CPU console
panel are not lit. Otherwise, the CPU is running. For the PDP-11/40,
consult the following chart to determine the state of the CPU based on
the condition of the Console Status Lights.

Condition
RUN CONSOLE
light light Meaning
OFF OFF CPU is powered down or bus is hung.
OFF ON Impossible or bus is hung.
ON OFF CPU is running.
ON ON CPU is halted.

The SHUTUP program described in Section 3.2 shuts down the RSTS/E
system in an orderly fashion. SHUTUP eventually halts the CPU at
address 54. The program ensures that all files are properly closed
and that system accounting information is accurately updated. The
halt leaves the program counter loaded 1in such a fashion that
depressing the CONT switch on the CPU console panel causes the RSTS/E
initialization code to be bootstrapped into memory from the RSTS.CIL
file stored on the system disk.

Halting RSTS/E by moving the HALT/ENABLE switch on the CPU console
panel to its HALT position is dangerous. Clean-up operations may not
be completed; disk storage allocation tables and file directories may
be 1left in obsolete states; file data can consequently become
corrupted; and accounting information may be lost. The only way to
recover from such a disorderly halt and to salvage possibly vital file
information is to raise the HALT/ENABLE switch back to 1its ENABLE
position before any other action is taken, to depress the CONT switch,
and thereby to return the RSTS/E system to the state in which it was
before the halt occurred.

The following is a sample printout of the SHUTUP system program.

2-17

SYSTEM START UP, SHUTDOWN, AND AUTOMATIC RESTART

LM &CHUTUR
AUTOMATIC SYSTEM SHUTDOWN FROGRAM

HOH MANY MIMUTES UNTIL SYSTEM SHUTDOWN? 5

HOW MANY MINUTES EETWEEM WARNING MESSAGEST 1

S MIMUTE WARNING MESSAGE SENT

FURTHER LOGINS ARE NOW DISRELED

HIMUTE WARNING HMESSAGE SENT

T MINUTE WARMING MESSAGE SENT

& MINUTE WARNING MESSAGE SENT

MINUTE WARNING MESSAGE SENT

FIRST GUEMAN MESSAGE SENT

GUEMAN MESSAGE: SHUTDOWN EEGUN - GUEMAN WILL FROCESS NO MORE GUE COMMANDS
OUEMAN MESSAGE: LFBSFL ¢ & » REQUESTED OFF-LINE -- TAKEN OFF-LINE AT 15:15
FINAL HARNING MESSAGE SENT

GUEMAN MESSAGE: EBATCHI ¢ I 7 REQUESTED OFF-LINE -- TAKEN OFF-LINE AT 135:13
FASS 1 OF LOCKING FOR STILL ACTIYE JOES

GUEMAN MESSAGE: FINAL SHUTDOWN FHASE -- KILLING SFPOOLERS

SECOMD GQUEMAN MESSAGE SENT

QUEMAN MESSAGE: GUEMAN SHUTTING DOWN

FROM NOW ON JOES WILL CONLY BE “KILLEDS

FASS 2 OF KILLING STILL RCTIVE JOES

UMLOADING RTSLIE RTE

REMOVING RTSLIE RETS

NOM-SYSTEM [ISKS WILL NOW BE DISHMOUNTED

ALL (DISMOUNTAELE? NON-SYSTEM [ISKS ARE NOW DISMOUNTED

£

(=9

ALL SET TO FROCEED WITH SYSTEM SHUTDOWN

FLEASE WAIT FOR THE COMFUTER TO ACTUALLY “HALT”
WMHEN IT DOES, PRESSING “CONT’ MWILL EBOOT BACK RSTS/E

SYSTEM START UP, SHUTDOWN, AND AUTOMATIC RESTART

2.3 AUTOMATIC RECOVERY AND RESTART FACILITIES

2.3.1 Nature and Causes of Catastrophic Errors and System Crashes

A catastrophic error or a system crash is an error-trap to vector 4 or
vector 10. (For information on error traps, see Section 5.3 in the
PDP-11/70 Processor Handbook and Section 2.7 in either the PDP-11/40
Processor Handbook or the PDP-11/45 Processor Handbook.) Such traps
can be caused, for example, by referring to a nonexistent (or
non-responding) UNIBUS address (bus time-out trap), by referring to an
odd address with an instruction that requires a word address, or by
attempting to execute a reserved or nonexistent instruction.

Catastrophic errors and system crashes, therefore, can be due to any
of four types of problems: (a) configuration errors, (b) privileged
account programming errors, (c) hardware malfunctions, and (d) system
software malfunctions. Each of these is discussed individually below.

2.3.1.1 Configuration Errors - If the software configuration and the
hardware configuration do not correspond exactly, bus time out traps
occur whenever the software attempts to address a peripheral interface
which, for the software, logically exists but which for the hardware
does not physically exist. Thus, RSTS/E SYSGEN program configuration
questions must be answered accurately to reflect the actual hardware
on which the system runs.

A common configuration error results from reporting a device as
present when the device 1is not on the system. This type of error
condition is not detected until a reference 1is made to the device
during time sharing. When a reference is made to the nonexistent
device, a trap through location 4 is made and the system crashes.
Refer to the discussion of T4 errors in Section 6.2.

Another type of configuration error involves not reporting a device
that is in fact attached to the computer. 1If the unreported device is
part of the floating address and vector scheme, the floating address
and vector assignments of other devices are incorrect. This type of
configuration error usually results in the disabling of devices that
are present. Messages are printed at the start of time sharing to
report devices which are being disabled. If any devices reported
disabled are actually attached to the system, chances are that the
floating address and vector assignments are incorrect. The user must
determine what device 1is not reported and must regenerate RSTS/E
properly. For more information on this type of problem, see the
discussion entitled "Terminal Interface Considerations" in Section 2.7
of the RSTS/E System Generation Manual.

Another type of configuration error 1is made when the devices are
reported correctly but the jumpers are improperly cut. As a result,
the hardware vector and addresses are incorrect. The tables in
Appendix G of the RSTS/E System Generation Manual give the correct
fixed and floating address and vector assignments.

SYSTEM START UP, SHUTDOWN, AND AUTOMATIC RESTART

2.3.1.2 Privileged-Account Programming Errors - The RSTS/E system
software is designed to protect 1itself against programming errors
perpetrated under non-privileged accounts. The system itself, upon
detecting such an error, aborts execution of the potential error and
reports a corresponding error message to the guilty user.

The RSTS/E software is vulnerable, however, to certain types of errors
perpetrated under privileged accounts. By intent and design, the
system manager (and those to whom he assigns any [1,*] account) have
been given extensive power s which are not available under
non-privileged accounts. Refer to the RSTS/E System Programming
Manual for a discussion of privilege. These powers allow privileged
users to modify System Library programs or to create utility programs
in such a fashion that they can access parts of memory. Extreme care
must be used when programming with privileged SYS system functions. A
mistake can cause the system to take an error trap.

2.3.1.3 Hardware Malfunctions - Hardware mal functions can be
responsible for crashing the system. If unexplainable and random-type
system crashes or catastrophic errors occur (particularly on systems
which hitherto have been functioning well), it 1is likely that a
hardware problem has arisen. Hardware can be diagnosed by examining
the error 1logging printouts. Refer to Sections 6.1 and 6.2 for
information on error logging.

2.3.1.4 System Software Malfunctions - Although every attempt has
been made to detect and eliminate system software errors, the paths
through the RSTS/E software are incalculably numerous. It is possible
that, given certain conditions and certain sequences, the RSTS/E
software can trap to vector 4 or vector 10. 1If a problem of this type
is discovered (it should be reproducible in a defined environment and
under defined conditions), a DIGITAL Software Specialist should be
contacted. If new problems of this type become known, DIGITAL reports
them as described on the next to last page of this guide.

2.3.2 Automatic Recovery from Catastrophic Errors and Crash Dump

Whenever a trap to vector 4 or vector 10 occurs, the system
distinguishes the trap as one of two categories: it is either (a) a
catastrophic error which affects only one particular user or (by a
system crash for which some software or hardware problem is possibly
responsible. The handling of system crashes is treated below.

The handling of catastrophic errors 1is as follows. The system
determines which user was responsible for the error-trap. It flags
that user's job with a special code which causes the system to
reinitialize that user's job area completely when it is next his turn
to run. The system prints on that wuser's terminal the message
CATASTROPHIC ERROR or some other fatal system error message followed
by the text PROGRAM LOST-SORRY. The reinitialized user is in the same
state as he would be if he had just logged into the system. The
system resumes normal time sharing operations.

SYSTEM START UP, SHUTDOWN, AND AUTOMATIC RESTART

When the system detects a condition from which it cannot recover, it
performs an automatic restart only if both of two conditions are
fulfilled:

e crash-dump facility must have been enabled at system
tart up time (possible only when the CRASH.SYS file exists),
nd

2. The CPU's Switch Register must currently be set to 777777.

If either condition is not fulfilled, the system does not take the
automatic restart path but simply halts at address 54.

If the system halts at address 54, the operator may choose one of two

procedures.

1. He depresses the CPU Console CONTinue switch, which causes
the system to be bootstrapped into normal system start up
mode.

2. The operator starts the CPU at address 52 with CPU Switch
Register set to 777777 (see Section 2.1.2.2). This causes
the system first to write the contents of memory onto the
CRASH.SYS file (provided the crash-dump facility had been
enabled) and then to be bootstrapped from disk in the special
automatic restart mode described below.

If the system takes the automatic restart path, no halt occurs.
Instead, the system first writes the critical contents of memory into
the CRASH.SYS file and then bootstraps itself into memory from the
system disk. After the system has been bootstrapped into memory,
control jumps to the initialization routines. At this point the
system recognizes the fact that it was not activated through a normal
system start up but rather through an automatic restart and
consequently initializes itself 1in automatic restart mode. If two
system crashes occur within the same minute (more accurately stated,
two error-traps within the same minute), the system halts at address
54. This protects the system against an infinite loop of error-traps
caused by some repeating hardware malfunction.

2.3.3 Automatic Restart Mode Initialization

When the system is initialized in automatic restart mode, control
by-passes all parts of the initialization code which call for operator
intervention and initializes the system using information already
stored in memory. The system logs Job 1 into the system on KBO:
under account [1,2] and causes it to run the System Library program
INIT beginning at 1line 100. Since, in automatic restart mode, INIT
begins at line 100 (rather than at its lowest line number), it takes
directions from the CRASH.CTL System Library file (rather than from
the START.CTL file). The CRASH.CTL file must contain INIT commands
which perform all operations the system manager considers necessary in
the case of an automatic restart. See Section 3.1 concerning the
control of system start up.

The printout which appears on the console terminal is similar in
format to the following. Section 3.1 explains why most of these lines
appear.

SYSTEM START UP, SHUTDOWN, AND AUTOMATIC RESTART
SYSTEM HAS BEEN RELOADED; ATTEMPTING AUTO-RESTART.
READY

SYSTEM INITIALIZATION PROGRAM

RUN SERRCPY
READY

P WL 0% 8 I BAY

CHAPTER 3

CONTROLLING TIME SHARING

3.1 CONTROLLING SYSTEM START UP - INIT

The system manager can control system start up by means of the system
program INIT. System start up occurs when the START option of the
initialization code is executed or when automatic restart occurs. At
start up, the monitor runs INIT which, in turn, executes special
commands from a control file. The actions which occur can be
controlled by tailoring these commands to local reguirements.

To control system start up efficiently, the system manager must
understand the conditions in effect at start up time. The following
conditions pertain.

l. Login attempts are prohibited (the monitor disables the login
capability).

2. The monitor logically mounts only the system disk.
3. No output is made to any terminal.

4. The monitor logs the console terminal (KBO:) onto the system
under the system library account [1,2].

5. At the console terminal, the monitor executes the command
equivalent to CHAIN "INIT" or CHAIN "INIT" 100.

INIT runs as a consequence of condition (5).

If INIT runs as a result of the START option, it executes from the
lowest 1line number and prints the following question at the console
terminal.

SYSTEM INITIALIZATION PROGRAM V06A-03
COMMAND FILE NAME?

The name of the control file to execute must be typed. The control
file must exist on the system disk (SY0:) under account [1,2]. If
only the RETURN key is typed, INIT uses START.CTL on the system disk
(SY0:) under account [1,2].

If INIT runs as a result of a system crash and automatic restart, it
executes from line 100 and does not print a question. It reads the
file CRASH.CTL on the system disk (SY0:) under account [1,2].

Any error encountered when INIT accesses the control file generates
messages in the following manner.

CONTROLLING TIME SHARING
<text> - ERROR IN READING <spec>
READY

INIT prints the BASIC-PLUS error message text and the specification of
the file it attempted to read. INIT terminates but the console
terminal remains logged into the system. After the error 1is fixed,
initialization can be restarted by typing RUN SINIT.

A control file contains special commands for initializing the system
for ime sharing, recovering system crash information, and performing
other locally reguired operations. The following sections describe
the INIT commands and their usage.

3.1.1 INIT Program Commands

The RSTS/E system is not fully initialized until INIT runs and
executes commands in the control file. The INIT commands are
described in Table 3-1. For example, the system possibly uses other
disk devices in addition to the system disk. By means of the MOUNT
command, the system manager can make such devices in the public and in
the private structure immediately available to users before they can
log into the system. The local start up procedures must include
making the specified devices physically ready on the proper drive
units.

To execute other actions on the system, the system manager can cause
INIT to execute BASIC-PLUS commands and programs. The LOGINS command
enables further logins on the system. The LOGIN command automatically
logs a specified job onto the system at a designated terminal to allow
execution of commands and programs. For example, the FORCE command
can run the TTYSET system program at the terminal and can subsequently
execute commands to establish terminal characteristics of certain
keyboards. The SEND command prints text on all on-line terminals.

CONTROLLING TIME SHARING

Table 3-1
Control File Commands

lalat s o rey M
Loliitalia N

ame
and Format(1l) Use

LOGINS Allows users at both 1local and remote
terminals to enter the system.

SENDLaxXxX Transmits the text xxx to all keyboards
currently on 1line except on the console
keyboard (KBO:).

@name Causes INIT to process the indirect control
file specified by name. INIT returns to the
next command in the current control file when
indirect file is completed. Indirect control
files can contain @ commands to allow nesting
to ten levels.

LOGINwuKBn:s[{n,m] Logs the terminal specified by KBn: onto the
system wusing the account indicated by [n,m].
INIT automatically looks up the password.

NOTE
Unless INIT has been detached, the
LOGIN KBn: command cannot be used on
KBO: because INIT is already running
on that terminal.

FORCEwuKBN : XXX Causes the text xxx to be placed in the input
buffer of the terminal specified by KBn: and
executed as if typed at that terminal. The
text can be any BASIC-PLUS command or system
command.

NOTE

If the ~ character 1is the first
character of the text xxx, a CTRL/C
is placed in the terminal buffer
ahead of the specified text xxx.
However, INIT generates an error if
an attempt 1is made to force a "C to
KBO:.

(1)The notation wu indicates that a space character is required.

3-3

CONTROLLING TIME SHARING

Table 3-1 (Cont.)
Control File Commands

Command Name

and Format(1l) Use

MOUNTwdev:id Causes the disk unit specified by the device
designator dev: and by the pack
identification (id) to be logically
recognized by the RSTS/E system.

Additionally, the MOUNT command as used 1in
the control file causes a clean operation (if
necessary) and an unlock operation. After a
clean operation, INIT prints the message
CLEAN COMPLETED. Refer to Section 7.1.2 for
information concerning mount, clean and
unlock operations.

DETACH Causes INIT to detach from the console
terminal and print the message DETACHING.
This action allows the console terminal to be
used for other programs while INIT runs.
INIT is reattached by the ATTACH command.

ATTACH Attaches INIT to the console terminal which
can not be in wuse by another job. This
action allows INIT to be terminated normally.

BYE or END Causes execution of the INIT system program
to be terminated. BYE causes the job running
under account {1,2] to be 1logged out, thus
freeing the <console keyboard for other use
and preventing unauthorized use of account
[1,2]. END must be used in place of BYE when
running ERRCPY since END does not logout the
job running ERRCPY under account [1,2]. See

Section 6.1 for a description of ERRCPY.

(1)The notationwa indicates that a space character is reguired.

CONTROLLING TIME SHARING

The following sample START.CTL file and accompanying explanation show
the usage of INIT commands.

MOUNT DK1:PACK1 (line a)
MOUNT DKZ2:PRIV1 {line b)
LOGINS (line c)
LOGIN KB1l: [1,5] (line 4d)
FORCE KB1l: RUN STTYSET (line e)
FORCE KBl: KB1l: (line f)
FORCE KBl: VTO05B (line q)
FORCE KBl: EXIT (line h)
FORCE KBl: BYE F (line 1)
@COPY (line 3j)
FORCE KBO: RUN SERRCPY (line k)
SEND RSTS/E IS NOW ON THE AIR... (line 1)
END (line m)

Other disks are made available on the system by the commands at lines
a and b. The sample commands assume unit 0 is being used as the
system disk. Line a causes the system to recognize the additional
disk cartridge PACKl of the public structure on RK1l drive unit 1.
all public disks (except the system disk) must be mounted 1in this
manner if all user files are to be available immediately. The system
also cleans (if necessary) and unlocks PACKl so that users can create
files on it.

Line b causes the same results as line a but for the disk cartridge
PRIV1 in the private structure.

Logins must be enabled before attempting to log a terminal onto the
system. The LOGINS command at line c¢ is required to enable logins and
to allow users access to the system.

The command at line 4 logs in a job at keyboard number 1 under account
[1,5]. INIT automatically looks up the password of the account. 1In
this manner, password secrecy is maintained.

The commands at lines e through h run the TTYSET system program to set
terminal characteristics. For more information on TTYSET, see Section
6.7.

At line i, keyboard number 1 is 1logged off the system to prevent
unauthorized use of the account. At line j, the indirect control file
COPY.CMD is run.

The command at line k causes the console terminal (KBO:) to run the
ERRCPY system program under account [l1,2]. This action enables the
RSTS/E system to take advantage of hardware error 1logging on the
system.

The SEND command notifies users that time sharing operations have
begun. The message is printed on all terminals on line to RSTS/E.

The END command at line m terminates the INIT program running at the
console terminal. However, the command leaves KBO: logged intce the
system so that the command forced into the keyboard buffer at 1line j
can be executed. Since ERRCPY detaches from the terminal, KBO: does
not remain logged into the system after initialization.

The commercial at character (@) with a file specification 1in the
control file causes INIT to close the current control file, open the

CONTROLLING TIME SHARING

indirect control file specified, and process 1its commands. The
indirect <control file can contain INIT commands like those in the
START.CTL and CRASH.CTL files. When INIT completes processing the
commands in the indirect control file, it closes the file, reopens the
calling control file, and continues processing the remaining commands.

If an extension and account are not specified 1in the control file
specification of the @ command, INIT employs an extension of CMD and
searches for the file in the system 1library account 1in the public
structure. The following seguence of commands shows the procedure.

MOUNT DK1:PRIV
@DK1:[1,35]CONTL
END

INIT mounts the private disk PRIV on RK unit 1 and processes commands
in the indirect control file CONTL.CMD on account [1,35] of that disk.

INIT discards an END or a BYE command in an 1indirect control file.
The END or BYE command in the primary control file terminates the
processing of INIT commands.

3.1.2 Creation and Usage of Control Files

The INIT system program control files must contain commands to
properly 1initialize the RSTS/E system. The control files must be
stored on the system disk which can be mounted on any drive. The
files 1included 1in the RSTS/E system generation kit are only samples
and, without modification, may not execute properly on a given system.
The system manager must ensure that the files include the necessary
commands to initialize the local installation. To replace the sample
START.CTL file supplied with the RSTS/E kit, run PIP and proceed as
follows:

RUN S$SPIP
PIP RSTS V06A-02 SYSTEM #880
#SY0:START.CTL<KB:/FA

(Enter new INIT commands.)

~

2
#

The procedure shown ensures that the new file is created on the system
disk (SY0:). The SY0: designator is critically important on systems
with multiple disks in the ©public structure. Its use explicitly
indicates the system disk. The file must reside on the system disk
since, when INIT runs, only the system disk is mounted.

It is important that both control files perform the following
functions:

1. Mount all non-system public disks,

2. enable logins,

3. set keyboard characteristics for non-ASR33 terminals,
4. run error logging and spooling programs, and

5. establish the auxiliary run time system RTSLIB.

CONTROLLING TIME SHARING

Since, at start up time, the system sets the characteristics of all
terminals to those of an ASR33-type terminal, the TTYSET system
program should be run to set the correct characteristics. For
example, 1if keyboards 1 and 3 are LA30S-type terminals to run at 300
baud, if keyboard 2 is an ASR33-type terminal, and if keyboard 4 is a
VI05B to run at 2400 baud; the system manager can specify the
following sequence of commands to properly set the characteristics.

LOGIN KB4: [1,5]

FORCE KB4: RUN STTYSET
FORCE KB4: KB4:

FORCE KB4: VT05B

FORCE KB4: KB1l:

FORCE KB4: LA30S

FORCE KB4: KB3:

FORCE KB4: LA30S

FORCE KB4: EXIT

This sequence of INIT commands shows the optimum use of a fast
terminal on which to execute commands. Before forcing the next
command to a terminal, INIT waits until the terminal output buffers
are empty and the job is in the keyboard input wait state.

Therefore, it is advantageous to force commands to a terminal which
generates output at the highest speed since that terminal's output
buffers empty most quickly. Note, in the example, that keyboard 4 is
established as a VT05B whose default output speed is 2400 baud.
(Refer to the table of TTYSET macro commands in Section 4.5 of the
RSTS-11 System User's Guide for the default characteristics of
different terminal devices.) The interface speed 1is the important
factor since it is not necessary that a terminal actually be connected
to the interface unless a visual record of the start up procedure 1is
desired.

In the case of INIT running as a result of a system crash, it is
important that commands be executed to obtain crash-dump information.
To discover the cause of a system crash, the system manager can
specify that INIT run the crash analysis program ANALYS. The
following commands inserted in the CRASH.CTL file ensure that the
analysis occurs.

LOGIN KB4: [1,5]

FORCE KB4: RUN S$SANALYS
FORCE KB4: [0,1]CRASH.DMP
FORCE KB4:

For more information on ANALYS, see Section 6.2.

The system manager can specify commands to be executed on KBO: even
though INIT runs at the console terminal. The system assigns job
number 1 to INIT since it is the first job to run at start up time.
Because INIT runs at the console terminal, commands forced to KBO:
are not executed until INIT terminates. To prevent premature
termination, INIT does not allow a CTRL/C combination to be forced to
the console terminal. Therefore, the "~ character must not be used
alone in a FORCE command on the console terminal. Other character
combinations such as "Z are allowed.

If the system manager wishes to run a certain job as job number 1, he

can specify the proper commands to the console terminal. For example,
it is often desired to run the ERRCPY system program as job 1. The

3-7

CONTROLLING TIME SHARING
following command in the control file ensures this action.
FORCE KBO: RUN SERRCPY

ERRCPY runs and detaches immediately after INIT terminates as the
result of the END command.

The system manager can initialize the system to handle the auxiliary
run time system by commands to run the UTILTY system program. The
commands in the control file show the procedure.

FORCE KBl: RUN SUTILTY

FORCE KBl: ADD RTSLIB

FORCE KBl: LOAD RTSLIB/ADDR:56
FORCE KBl: UNLOAD RTSLIB

FORCE KBl: EXIT

Without these commands in the control file, users on the system can
not execute programs using the auxiliary run time system. For more
information on these UTILTY commands, see Section 7.1.4.

INIT allows a choice of control file on normal start-up to initialize
the system in alternate ways. For example, if the system disk is
mounted on unit 1 instead of unit 0, an alternate control file can
mount other public and private disks on proper units. Moreover,
separate control files can be used to perform other than daily tasks.
For example, a special control file can be used to run the REORDR
program once a week before normal time sharing commences.

Any alternate control file must reside on the system disk under
account [1,2] for the same reasons START.CTL and CRASH.CTL must reside
there. If the control file specified is not on account [1,2] on the
system disk, INIT begins initialization and encounters the error. To
recover, INIT must be rerun from the console terminal and a standard
control file must be specified. Alternate control files can be
created and properly transferred to the system disk under normal time
sharing.

3.1.2.1 START.CTL File Example ~ The following is an example of a
START.CTL file which sets keyboards 1 and 2, starts the spooling
programs SPOOL and BATCH, initializes the auxiliary run time system,
and runs the ERRCPY program.

MOUNT DK1:PRIV1

MOUNT DKZ2:PRIV2

LOGINS

LOGIN KBl: [1,2]

FORCE KBl: RUN STTYSET
FORCE KBl: KBl:

FORCE KB1l: VTO5B

FORCE KBl: KB2:

FORCE KB1l: LA30S

FORCE KBl: EXIT

FORCE KB1l: RUN SQUEMAN
FORCE KB1l: \DE

LOGIN KBl: [1,2]

FORCE KB1l: RUN S$SPOOL
FORCE KB1l: O

LOGIN KBl: [1,2]

FORCE
FORCE
LOGIN
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE

SEND RSTS/E IS NOW ON THE AIR ...

END

3.1.2.2 CRASH.CTL File Example - The following is
which

CRASH.CTL file

KB1:
KB1:
KB1:
KB1:
KB1:
KB1:
KB1l:
KB1:
KB1:
KBO:

CONTROLLING TIME SHARING

RUN S$BATCH

[1,2]
RUN SUTILTY

ADD RTSLIB

LOAD RTSLIB/ADDR:56

UNLOAD RTSLIB

EXIT
BYE/F
RUN SERRCPY

MOUNT DK1:PRIV1
MOUNT DK2:PRIV2

SEND RSTS/E RECOVERING FROM A CRASH...

LOGINS
LOGIN
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
LOGIN
FORCE
FORCE
LOGIN
FORCE
FORCE
LOGIN
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE
FORCE

SEND RSTS/E IS NOW ON THE AIR...

END

KB1:
KB1:
KB1:
KB1l:
KB1:
KB1:
KB1:
KB1:
KB1l:
KB1:
KB1l:
KB1:
KB1:
KB1l:
KB1l:
KB1l:
KB1l:
KB1:
KB1l:
KB1l:
KB1:
KB1l:
KB1l:
KB1:
KB1:
KB1:
KB1:
KB1:
KB1:
KB1:
KB1l:
KB1:
KB1:
KB1:
KBO:

(1,2]

RUN STTYSET
KB1l:

VTO05B

KB2:

LA30S

EXIT

RUN SANALYS

ANALYS.TMP
RUN SERRCRS
ERRCRS.TMP

RUN SERRDIS
ERRCRS.TMP

ERRDIS.TMP

ALL/S

ALL

/K

RUN SQUEMAN
\DE

(1,2]

RUN $SPOOL

0

[1,2]

RUN S$BATCH

(1,2]
RUN SUTILTY
ADD RTSLIB

LOAD RTSLIB/ADDR:56

UNLOAD RTSLIB

EXIT
BYE/F
RUN SERRCPY

3-9

an

example

of

a

runs the appropriate programs to recover crash
information and initializes the system for time sharing.

CONTROLLING TIME SHARING

3.1.2.3 Simplified CRASH.CTL File Example - The following is an
example of a CRASH.CTL file which runs the appropriate programs to
recover crash information and executes the indirect command to
initialize the system for time sharing.

SEND RSTS/E RECOVERING FROM A CRASH...
LOGINS

FORCE KBl: “SET VTO05B
LOGIN KBl: [1,2]

FORCE KBl: RUN S$SANALYS
FORCE KB1:

FORCE KBl: ANALYS.TMP
FORCE KBl: RUN SERRCRS
FORCE KBl: ERRCRS.TMP
FORCE KB1:

FORCE KBl: RUN SERRDIS
FORCE KBl: ERRCRS.TMP
FORCE KB1:

FORCE KBl: ALL/S

FORCE KBl: ALL

FORCE KBl: /K
@$START.CTL

END

3.1.2.4 Indirect Control File Example - The following 1is a sample
CRASH.CTL file which runs appropriate programs to recover crash
information, processes an indirect control file to initialize the
system for time sharing, and queues the crash information files for
printing.

SEND RSTS/E RECOVERING FROM A CRASH...
LOGINS

FORCE KBl: "SET VTO05B
LOGIN KBl: [1,2]

FORCE KBl: RUN SANALYS
FORCE KB1:

FORCE KBl: ANALYS.TMP
FORCE KB1l: RUN SERRCRS
FORCE KBl: ERRCRS.TMP
FORCE KBl: [0,1]CRASH.SYS
FORCE KBl: RUN SERRDIS
FORCE KBl: ERRCRS.TMP
FORCE KBl: ERRDIS.TMP
FORCE KBl: ALL/S

FORCE KBl: ALL

FORCE KBl: /K

@SSTART.CTL

LOGIN KB1l: [1,2]

FORCE KB1l: QUE ANALYS.TMP/D,ERRDIS.TMP/D
FORCE KBl: BYE/F

BYE

CONTROLLING TIME SHARING
3.2 PERFORMING SYSTEM SHUT DOWN - SHUTUP

The shut down procedures for the RSTS/E system are critically
important. If system shut down is not conducted in an orderly and
careful fashion, valuable user data can be 1irretrievably 1lost. To
fully understand shut down procedures, knowledge of other RSTS/E
system procedures is necessary. The system manager should familiarize
himself with the concepts presented elsewhere in this manual under the
titles "On-Line System Control", "Disk Management", "Monitoring System
Status" and "Spooling Operations”.

To perform orderly shut down procedures, the system manager must run
the SYSTAT and SHUTUP system programs. SYSTAT is described in Section
7.2. By running SYSTAT, the system manager can determine the active
jobs on the system and the disk and assignable devices in use. Any
active, detached jobs can be attached to a terminal prior to shut
down. SHUTUP is run to perform the orderly shut down procedures.

The SHUTUP system program can be run only from the console terminal.
The program should be stored in 1its compiled form in the system
library with protection code <124>. Figure 3-1 shows the wuse of
SHUTUP.

FUN $SHUTUF
AUTOMATIC SYSTEM SHUTDOWN FROGRAM

HOW MANY MINUTES UNTIL SYSTEM SHUTDOWNT &

HOW MANY MINUTES BETWEEN MWARNING MESSRGEST 1

5 MINUTE WARRENING MESSRGE SENT

FURTHER LOGINS ARE NOW DISAEBLED

4 MINUTE WARENING MESSAGE SENT

3 MINUTE WARNING MESSHGE SENT

2 MINUTE WARNING MESSHGE SENT

1 MINUTE WARNING MESSHGE SENT

F1IRST QUEMAN MESSRGE SENT

QUEMAN MESSAGE: SHUTDOMN EBEGUN - GRUEMAN WILL FROCESS MO MORE GUE COMMAMDS

OUEMAN MESSAGE: LFGSPL ¢ & » REQUESTED OFF-ILINE ~-- THEEN OFF-LIME AT 15:13
FINAL WARNING MESSHGE SENT

GUEMAN MESSAGE: BRTCHE ¢ 3 » RERUESTED OFF-LINE —-- TAREEMN OFF-LIME AT 135:13
FHSS 14 OF LOOKING FOR STILL ACTIVE JOBS

QUEMAN MESSAGE: FINAL SHUTDOWN PHASE -- KILLING SFOOLERS

SECOND GUEMAN MESSRGE SENT

GUEMAN MESSAGE: GQUEMAN SHUTTING COHN

FROM NOW OM JOBS WILL ONLY EBE “KILLEDS

FRSS 2 OF KILLING STILL ACTIVE JOEBS

UNLORDING RTSLIEB RTS

FEMOWING RETSLIE RTE

HON-SYSTEM LISKS WILL NOW BE DISMOUNTED

ALL CDISMOUNTAELEY NON-SYSTEM DISES RRE HOW BISMOUNTED

ALL SET TO PROCEED WITH SYSTEM SHUTDOWN
FLERSE MWRIT FOR THE COMPUTER TO ACTUALLY “HRLTS
WHEN IT [OES, FPRESSING “CONT WILL BOOT BRCE RSTSAE
Figure 3-1
Sample SHUTUP Printout

When SHUTUP runs, it prints its header line, followed by the first of
two qgueries. The first query asks for the number of minutes before
the system can be shut down, and the second query asks the intervals
between warning messages. After the two queries are answered, the

3-11

CONTROLLING TIME SHARING

SHUTUP program proceeds with its actions. Further logins are disabled
to prevent more users from entering the system. Messages are sent to
all on-line terminals at the interval specified by the system manager.
Each message tells how many minutes are left until system shutdown.
When no time is left, any terminal still logged into the system |is
automatically logged out. Jobs still active are terminated. All
non-system disks are then dismounted. When SHUTUP terminates, it
actually halts the machine at address 54.

On systems running QUEMAN and spooling programs, the SHUTUP program
includes procedures for communicating with the QUEMAN program. SHUTUP
notifies QUEMAN that time sharing operations are stopping. QUEMAN, in
turn, notifies the spooling programs which kill themselves when they
are finished. When all spooling programs terminate, QUEMAN sends a
message to SHUTUP and immediately terminates itself. Unless otherwise
specified, SHUTUP does not proceed with the system shut down until it
receives this message from QUEMAN.

On systems with the auxiliary run time system, SHUTUP unloads the
module and removes its entry from the table of run time systems. This
procedure enables SHUTUP to dismount the disk on which the module
resides.

It is necessary to establish administrative procedures governing
RSTS/E system operational hours. All users can be kept informed by
means of the NOTICE.TXT file which is printed when a user successfully
logs into the system. If system shut down times are fixed, users can
plan a work load and properly complete their processing within the
allotted hours of scheduled time sharing.

CONTROLLING TIME SHARING

3.3 SETTING JOB PRIORITY, RUN BURST AND MAXIMUM SIZE - PRIOR

The PRIOR system program reports the priority, run burst and maximum
size assigned to an existing job. The system manager can change any
of the current values to increase or decrease the chance of gaining
run time in relation to other running jobs, to determine how much CPU
time the job can have when it is compute bound and to 1increase the
area a job can occupy.

The system runs jobs on the basis of priority. The higher a job's
priority, the better are its chances of obtaining run time in relation
to other running jobs. Priority is determined by an 8-bit priority
byte, as shown below.

X X X X X X X X
~ - —~ ~/ M~——
sign User Definable System Definable

bit Portion Portion

By running PRIOR, a privileged user can set the user definable portion
of the priority byte for his own job or for another job on the system.
Since the three system definable bits are normally =zero, standard
priorities are multiples of 8 between -120 (lowest priority) and +120
(highest priority). Zero is a legal priority. When PRIOR changes a
priority, it truncates any value not a multiple of eight to the next
lowest legal priority. For example, if the system manager specifies a
priority of +10, PRIOR sets the value to +8.

All of the system definable bits are normally off (zero). The least
significant bit is set when a keyboard delimiter is typed and the job
was waiting for keyboard input. Keyboard delimiters are the CR, LF,
FF, CTRL/Z, and ESC (or ALT) characters. The next significant bit is
set whenever the CTRL/C combination is typed and can be set at any
time. Finally, the most significant bit of the system definable
portion is set by a SYS system function call. All system definable
bits are cleared when another program is chained or when the system
prints READY.

The system definable portion of the priority byte 1is always less
significant than the wuser definable portion. Therefore, the system
definable bits affect priority only within the user definable priority
range. If two Jjobs are running under priority -8, for example, the
user who types the CTRL/C combination has a higher priority (that 1is,
priority -6 in this case) than the wuser who does not type that
combination. On the other hand, a third user with priority 0
supersedes two other users whose priorities are -8 and -6.

When a user first logs in on a system, LOGIN is run with priority O.
LOGIN automatically sets the user's job to priority -8. This is the
default priority with which most or all of the jobs are run. Only in
unusual circumstances should priorities other than -8 be assigned.

On occasion, the user may want to run a non-urgent program that
requires a great deal of computation. If time is not a factor in
obtaining results, the privileged user can decrease the job priority
to improve efficiency for the other users on the system. Conversely,
infrequently used detached programs often have higher priorities
(typically priority 0) since they must run quickly when needed but do
not run compute bound for an extended period and do not run often.

CONTROLLING TIME SHARING

Run burst is the maximum time a Jjob can run compute bound before
another job obtains access to the CPU. Each unit of run burst time is
egual to 1/60th or 1/50th of a second, depending on the system's power
line frequency. (Systems running with the KW11lP clock at crystal
speeds, rather than at line frequency, have a run burst unit of 1/50th
of a second.) If the system is operating off a 60 Hz power line, one
run burst unit equals 1/60th of a second. In that case, six units
egual 1/10th of a second, which is the run burst default value.

If a specific job is assigned a run burst of 6 wunits but does not
require that much compute bound time, the system automatically
transfers control to the next user before the six wunits have been
used. One tenth of a second is generally considered the best run
burst time period to insure efficient overall system operation. If a
job is gquaranteed to become I/O bound (that is, I/O stalled) after a
certain amount of computations, PRIOR can be used to specify a run
burst period larger than 6. In many cases, a run burst of greater
than 6 units has a significant effect on long computational programs.

For scheduling efficiency and accounting data accuracy, run bursts can
only be set to multiples of 1/10th of a second. For example, the
permissible values for run burst on a 60 Hz system are 6,12,18, and
upward. PRIOR automatically rounds any specified run burst value to
the next lowest 1/10th second multiple.

The maximum size assigned to a job refers to the available memory
space. By specifying the maximum size of a job up to 16K words of
memory, a system manager can allow certain jobs to run programs larger
than 8K words. This assigned 1limit does not affect privileged,
compiled programs. Thus, a user with a small amount of space can
still run system programs that would normally exceed the memory limit.

Se s 4 olniil i

PRIOR is called as follows.

RUN SPRIOR
'PRIOR' PRIORITY, BURST, MAXIMUM CHANGER

The first query line printed is:
ENTER ANOTHER JOB NUMBER?

If the current job is to be checked, type the CR key alone. If,
however, the job to be checked is not the one under which PRIOR is
running, type the job number to be considered. A job number less than
1 or greater than the maximum number of assignable jobs returns the
error message ILLEGAL JOB NUMBER ENTERED. Only active, running jobs
can be referenced; unassigned job numbers return the above error
message.

PRIOR now prints the current priority, run burst
and maximum size assigned to the specified job. For example:

CURRENT STATISTICS ARE
-8 PRIORITY
6 RUN BURST
16K SIZE MAXIMUM

CONTROLLING TIME SHARING
The next guery line is:

ANY CHANGES?

If any or all of this information is to be changed, type Y in response
to this query. Typing N or the CR key alone automatically ends the
program.

If the user indicates that changes are to be made, PRIOR prints a
guery line for each parameter in turn. If the value assigned to any
parameter is not to be changed, type N or the CR key alone to skip to
the next query line. When the typed response to the query line is Y,
the message CHANGE IT TO? is printed. Type the new specification as
shown below in the sample dialog.

RUN S$PRIOR
'"PRIOR' PRIORITY, BURST, MAXIMUM CHANGER
ENTER ANOTHER JOB NUMBER?

CURRENT STATISTICS ARE:

-8 PRIORITY
6 RUN BURST
16K SIZE MAXIMUM

ANY CHANGES? Y
CHANGE PRIORITY? Y
CHANGE IT TO? -16
CHANGE RUN BURST? N
CHANGE SIZE MAXIMUM? Y
CHANGE IT TO? 8

CURRENT STATISTICS ARE:
-16 PRIORITY
6 RUN BURST
8K SIZE MAXIMUM

ANY CHANGES? N

READY

N

Once the last query line has been answered, PRIOR prints the new
statistics for verification and prints the message:

ANY CHANGES?

Typing Y allows the user to make additional changes to this
information. Typing N or the CR key alone ends the program.

3.3.2 Changing LOGIN to Set Maximum Job Size

The LOGIN system program sets the swap maximum to 8K words for all
users except those whose project numbers are one. This action means
that privileged users run with a swap maximum of 16K words. Since, on
many systems, programs must run under nonprivileged accounts in job

3-15

CONTROLLING TIME SHARING

areas larger than 8K words, it is necessary to modify LOGIN to set a
swap maximum larger than 8K words.

To modify the LOGIN.BAS program, the system manager must alter the
J% = 8% statement in the first physical line of the multiple statement
line at line number 15010 and compile the program on the system
library account. The following statement sets the priority, run

burst, and swap maximum factors.

15010 J% = 8%
J%$ = 16% IF (A% AND -256%) - 256%
I$ = SYS(CHRS(6%)+CHRS (-13%)+CHRS (-1%)+
CHRS (-1%) +CHRS (-2%) +
CHRS(0%)+CHRS(6%)+
CHRS (-1%)+CHRS (J%))
: RETURN

Change the value 8% in the statement J% = 8% to any value less than or
equal to the current default swap maximum used at system start up
time. Compile the program on the system library account and set the
protection code to <232> as follows:

COMPILE SYO:S$SLOGIN

READY

NAME "SLOGIN.BAC" AS "SLOGIN.BAC<K232>"

READY

It is recommended that the system manager not replace the original
source file LOGIN.BAS with the modified version.

3-16

CHAPTER 4

ACCOUNT CREATION AND ACCOUNT STATISTICS

4.1 CREATING AND DELETING USER ACCOUNTS - REACT

The system manager or a privileged user creates and deletes accounts
by use of the REACT system program. The REACT system program enters
user accounts on and deletes user accounts from either the system
device in the public structure or individual private disk devices.

REACT is called by using the RUN command as is shown below.
RUN SREACT

REACT responds by printing the following message which reguests that
the user specify a function.

'REACT' SYSTEM ACCOUNT MANAGER
FUNCTION?

The three valid functions are described in Table 4-1, and explained in
the following sections.

4.1.1 Creating Individual Accounts - ENTER Function

The ENTER function creates individual user accounts. When the system
manager runs REACT, he invokes the ENTER function by typing E in
response to the request for a function. Upon recognition of the E
response, REACT prints a series of questions. A response to each
question must be typed by the user before the appearance of the next
guestion. The questions are explained in Table 4-2.

ACCOUNT CREATION AND ACCOUNT STATISTICS

Table 4-1
REACT System Program Functions

Function Abbreviation Purpose

ENTER E To enter individual accounts on system
disk or a private disk.

DELETE D To delete individual accounts from the
system disk or a private disk.

STANDARD S To create standard user accounts on the
system disk from the ACCT.SYS file at
system generation time.

The following is a sample dialogue for the ENTER function.

RUN SREACT

'REACT' SYSTEM ACCOUNT MANAGER
FUNCTION? E

PROJ,PROG? 100,100

DISK: PASSWORD? DEMO

QuUOTA 500

CLUSTER SIZE? O

~

PROJ, PROG? Z
READY

If the system manager enters an account on a private disk, he permits
the owner of the account to create files on that disk. Prior to using
REACT, the pack must be logically mounted and placed in the unlock
state by means of the UTILTY system program. Refer to the discussion
under the title "Disk Management" in Section 7.1.2.

If the system manager enters an account on the system disk, he permits
the owner of that account access to the RSTS/E system and use of
storage space within the public structure. When a new account is
created, REACT also places an entry for the new account in the
ACCT.SYS file.

ACCOUNT CREATION AND ACCOUNT STATISTICS

Table 4-2
Responses to ENTER Function Queries

Question | Response Format Meaning
PROJ, PROG? n,m The user account number to be entered
in the MFD, where 1<=n<=254 and
0<=m<=254.
CTRL/Z The user terminates the dialogue and

REACT by typing the CONTROL key and 2
combination simultaneously.

DISK: PASSWORD?| passwd To enter a password for an account on
the system disk MFD, where password is
from 1 to 6 alphanumerics. No value
for DISK need be specified since the
system disk is assumed.

dev: passwd To enter a password to an account on a
private disk, where dev is the device
designator and passwd is from 1 to 6
alphanumerics.

For example:

DK1:PASS

The disk specified must be logically
mounted and in the unlock state by
means of the UTILTY program prior to
invoking REACT.

QUOTA? n The number of 256-word blocks of disk
storage the user account is allowed to
retain at LOGOUT time where
0<=n<=65,535 and 0 means no quota is
imposed wupon the user's account.
Therefore, a value of 0 limits disk
storage retention only by the amount
imposed by the UFD clustersize.
LOGOUT is the only DIGITAL-supplied
program that checks the quota and,
moreover, monitors storage retention
only on the public structure.

CLUSTER SIZE? | n The account UFD cluster size where n
is 0, 1, 2, 4, 8, or 16. If 0 is
specified, the pack «cluster size is
used. If non-zero, the value for n
must be at least the pack cluster
size. Cluster sizes of 1,2, or 4 are
recommended for most accounts. The
maximum number of files a user 1is
allowed to create is approximated by
multiplying the UFD cluster size by
72.

ACCOUNT NAME? | x Optional. Used by GRIPE system
program to identify account owner.

4-3

ACCOUNT CREATION AND ACCOUNT STATISTICS
4.1.2 Deleting Accounts - DELETE Function

The DELETE function removes individual user accounts from the system
disk or from a private disk. As in the case of the ENTER function, a
private disk must be logically mounted and in the unlock state prior
to deletion of an account. 1In addition, before an account is deleted,
the UFD of that account must contain no files. To remove all files
from the UFD, the ZERO command of the UTILTY system program or the /ZE
switch of the PIP system program must be used. See the description of
the UTILTY system program in Chapter 7 of this guide and of PIP in
Chapter 4 of the RSTS-11 System User's Guide.

The DELETE function is invoked by typing D in response to the reguest
for a function. The REACT program prints a series of questions
explained in Table 4-3.

Table 4-3
Responses to DELETE Function Queries

Question Response Format Meaning

PROJ, PROG? n,m The user account number to be deleted
from the MFD.

CTRL/Z The user terminates the dialog and
REACT by typing the CONTROL key and Z
key combination simultaneously.

DISK? null By typing the RETURN key, the system
device is specified.

dev: The device designator of a private
disk. For example:

DK1:

The disk must be logically mounted and
in the unlock state by means of the
UTILTY system program prior to running
REACT.

The following is a sample dialog for the DELETE function.

RUN SREACT
'REACT' SYSTEM ACCOUNT MANAGER
PROJ,PROG? 100,100

DISK? DKl:
PROJ, PROG?

~

Z

READY

4.,1.3 Automatic Creation of User Accounts - STANDARD Function

The STANDARD function in the REACT system program 1is provided to
facilitate automatic creation of a large number of user accounts when
the system disk is built. Explanation of the STANDARD function is
presented in detail 1in Section 4.4 of the RSTS/E System Generation
Manual. A few ancillary remarks are made here.

ACCOUNT CREATION AND ACCOUNT STATISTICS

The user creates the ACCT.SYS file as shown in Section 4.3.5 of the
RSTS/E System Generation Manual. The file ACCT.SYS is stored in the
system library account [1,2]. ACCT.SYS is an ASCII text file, each
line of which is formatted with the following: the items which would
be specified by the user in response to the questions of the ENTER
function and a name item. Each line of the file represents a single
account to be created. The general format is as follows.

proj,prog,passwd,quota,cluster ,name

The items proj, prog, passwd, quota, and cluster are described under
the ENTER function. The name can contain any additional information
about the account such as the owner's name. The name item is not used
by REACT but 1is wused by GRIPE. The item, name, must contain no
commas, single quotes, or double guotes. The accounts (1,1} and [1,2]
can appear in the ACCT.SYS file although they have been created
previously during the REFRESH action of the system generation
procedure. These account entries in ACCT.SYS are only used by the
GRIPE system program.

ACCOUNT CREATION AND ACCOUNT STATISTICS
4.2 PERFORMING SYSTEM ACCOUNTING OPERATIONS - MONEY

The MONEY system program enables the system manager to extract system
accounting information for all accounts in the system or for selected
accounts. MONEY can be run by a non-privileged user to obtain his own
account information (excluding password) as described in Chapter 4 of
the RSTS-11 System User's Guide.

MONEY is called by typing the following command while logged into the
RSTS/E system.

RUN S$MONEY
'MONEY' SYSTEM ACCOUNTING PROGRAM

If the caller is a privileged user, a sequence of option queries is
printed at the keyboard. Typing an answer to one query causes the
next one to be printed. The queries and the explanation for each are
given in Table 4-4. The account data given as output for each account
is described in Table 4-5.

The MONEY system program can be run during normal time sharing. No
conflicts arise if the system attempts to update a user's accounting
information while the MONEY program is accessing it. When the RESET
option 1is used, MONEY reads and resets to zero the user's accounting
information before any system action can update the values being read
and reset. Thus, no user accounting information is lost.

Some of the items output can be used to weigh billing or evaluate
usage. The item KCT, in effect, reflects system usage more accurately
than CPU-TIME. For example, two users may each exhaust one minute of
CPU-TIME 1in an accounting period. However, one user may tie up 2K
words of memory while the other may occupy 6K words each time he runs.
The first wuser's KCT value is incremented by 2 for each tenth of a
second his 2K job is running. With the 6K user, each tenth of a
second he runs, his KCT value is incremented by 6. The 6K user is
tying up more system resources and this is reflected in his higher KCT
value. Thus, a user's average job size can be gained by dividing the
number of KCT's reflected for the accounting period by the number of
tenths of seconds derived from the value of CPU-TIME. Referring to
the example of values in Table 4-5, user [100,100] average job size of
3.6K 1is computed by dividing the number of KCT's, 3000, by the number
of tenths of seconds derived from CPU-time, 832.

4-6

ACCOUNT CREATION AND ACCOUNT STATISTICS

Table 4-4
MONEY Program Options

Option Query Reply Explanation

OUTPUT DEVICE? dev:filename.ext| A file structured or non-file
structured device can be specified.
Indicating a disk file reduces
processing time.

For example:

MONEY.DMP

MONEY writes the data to the file
which can later be queued for

printing.
RETURN key Output is printed at the terminal.
PRINT PASSWORDS?|YES Typing YES (or any string beginning

with Y) causes passwords to be
printed. Typing anything else
omits passwords.

RESET? NO Typing NO (or any string not
beginning with Y) causes the
accumulated accounting data to be
preserved.

YES Typing YES (or any string beginning

with Y) causes the following items
to be reset to zero.

CPU-TIME
KCT's
CONNECT TIME
DEVICE TIME

The data 1is reset after the
information is dumped.

DISK? dev: Type the specific disk device
designator with wunit number n to
select the accounting data from a
private pack. (1)

RETURN key The accounting data selected is for
all public disks.

(1)Meaningful accounting data on a private disk 1is account number,
number of blocks occupied, disk guota, and UFD cluster size. The
system updates only the system disk MFD with CPU time, KCT's, connect
time, and device time.

ACCOUNT CREATION AND ACCOUNT STATISTICS

Table 4-4 (Cont.)
MONEY Program Options

Option Query Reply Explanation

SELECTIVE? NO Typing NO (or any string not
beginning with Y) causes accounting
data for all accounts (on the
private pack or on the system,
whichever the reply to the DISK?
query indicates) to be dumped.

YES Typing YES (or any string beginning
with Y) causes an additional query
ACCOUNT?
ACCOUNT? n,m The account query appears 1if the

reply to the SELECTIVE? query is
YES. Accounting data is dumped for
the account specified by the

project-programmer number [n,m],
following which, the query 1is
repeated.

CTRL/C Typing CTRL/C or CTRL/Z

CTRL/Z terminates the program run.

4-8

ACCOUNT CREATION AND ACCOUNT STATISTICS

Table 4-5
MONEY Program Output

Header Example Description
ACCT 100,100 Project-programmer number
(account)
PASSWORD DEMO Account password given at
login time
CPU-TIME 1:23.2 (one minute, Number of hours:minutes:
23.2 seconds seconds.tenths of a ’

second of processor time
the account has used
since the last reset.

KCT's 3000 Core usage factor
(kilo-core-ticks). One
KCT is the usage of 1K of
core for one tenth of a

second.
CONNECT 2:34 (2 hours, Number of hours and
34 minutes minutes (hh:mm) of

terminal connect time.

DEVICE 20 (20 minutes) Number of hours and
minutes (hh:mm) of device
usage time, excluding
disks.

DISK 100 Number of 256-word blocks
of disk storage
allocated.

QUOTA 500 Number of 256-word blocks
the account is allowed to
retain at logout time.

UFD 2 UFD cluster size

The value under the header description DISK reflects the actual number
of blocks tied up in file allocation on disk. It is not necessarily
the same value reported by the CATALOG system command. A file may
occupy 1 block on a disk as reflected by the CATALOG command, but ties
up 3 additional blocks of disk storage if the file cluster size 1is 4
blocks. In essence, the user is depriving the system from claiming
four contiguous blocks in the cluster although the file 1is currently
occupying only one block.

The information given under the header UFD is the user file directory
cluster size. No other system program returns this value which the
system manager specifies when the account is created by REACT. The
cluster size is provided in the MONEY output for information purposes
only and has no accounting value.

4-9

ACCOUNT CREATION AND ACCOUNT STATISTICS

It is advised that the system manager periodically execute the RESET
option to prevent overflowing the accounting values stored on disk.
The following list shows the maximum times that can be stored for each
statistic without an overflow.

On Disk In Memory
Device Time 1092 hours 1092 hours
Connect Time 1092 hours 68 hours
CPU Time 116 hours 29 hours
KCT's 116 hours at 29 hours at

16K words 16K words

At logout time, the system updates the values on the disk with
accumulated values from memory. Thus to prevent loss of accounting
data, the user must log a job off the system before any of the values
in memory overflow. 1In like manner, the system manager must execute
the RESET option before the values on disk overflow. The sizes of the
accounting data fields on disk allow approximately one week of
continuous system operation without overflow. Therefore, MONEY must
be run with the RESET option at least once per week. The MONEY
program indicates reset is in effect by adding the text WITH DATA
BEING RESET to the accounting printout header line.

ACCOUNT CREATION AND ACCOUNT STATISTICS
4.3 DISK SYSTEM CATALOG - SYSCAT

The SYSCAT (system catalog) system program prints a current directory
listing of any disk. The system manager or a privileged user must
specify the file or device on which the information is to be printed.
A standard CAT command prints a 1listing of the user's files on a
device. SYSCAT prints a file listing of all files on a given disk.
SYSCAT is called as follows:

RUN S$SYSCAT
The first query line printed is:
OUTPUT CATALOG TO?

Type the device or file on whic
CR key 1is typed alone, S8YS
keyboard.

AT prints the information on the user

h the catalog is to be printed. If the
CAT

The next gquery line printed is:
CATALOG OF?

Type the specification of the disk to be examined. 1If the CR key is
typed alone, SYSCAT prints a catalog of the system disk(s). Shown
below is a sample dialog.

RUN $SYSCAT

OUTPUT CATALOG TO?

CATALOG OF? DKO:

SYSTEM CATALOG OF DKO: ON 18-JUL-74 02:14 PM

SYSCAT prints the name of the disk, the current date and time and
continues with the catalog.

SYSCAT prints each account in the order of its creation date and lists
the quota for each account. The number following the word DISK is the
effective number of blocks used, as a function of cluster size. For
example, if one block 1is wused for a specific file, but the file
cluster size is 8, the number of effective blocks used is 8.

The number following the word UFD indicates the user file directory
cluster size. The first six columns of information in the catalog
listing correspond to the standard CAT printout. The 1last column
indicates the cluster size (in blocks) of each file. After each
account listing, SYSCAT prints the number of files and the number of
blocks used in the account. For example:

2 FILES CLAIMING 7 BLOCKS IN ACCOUNT

The following sample of a partial 1listing of a system disk
demonstrates the format SYSCAT employs.

RUN $SYSCAT

OUTPUT CATALOG TO?

CATALOG OF?

SYSTEM CATALOG OF SYSTEM DISK(S) ON 25-SEPT-74 10:58 AM

4-11

ACCOUNT [1,1]

ACCOUNT [0,1]

BADB .SYS
RSTS .CIL
SATT .SYS
SWAPQO .SYS
SWAP1 .SYS
SWAP2 .SYS
OVR .SYS
ERR .SYS
BUFF .SYS
CRASH .SYS

0
300
10
2048
672
976
28

8

12
52

10 FILES CLAIMING 4106 BLOCKS IN ACCOUNT

ACCOUNT [1,2]

LOGIN .BAC
LOGOUT.SYS
READY

23
15

124
124

ACCOUNT CREATION AND ACCOUNT STATISTICS

QUOTA 0 DISK O
QUOTA 0 DISK 4292
63 29-JUL-74 04-MAR-74
63 19-AUG-74 30-JUL-74
63 06-AUG-74 30-JUL-74
63 28-AUG-74 30-JUL-74
63 30-JUL-74 30-JUL-74
63 20-AUG-74 30-JUL-74
63 30-JUL-74 30-JUL-74
63 22-AUG-74 30-JUL-74
63 10-SEP-74 30-JUL-74
63 23-SEP-74 30-JUL-74
QUOTA 0 DISK 1858
25-SEP-74 01-AUG-74
25-"C

UFD 16

UFD 4

10:00
12:10
12:10
12:10
12:10
12:10
12:10
12:10
12:10
12:10

UFD 16

AM
AM
AM
AM
AM
AM
AM
AM
AM
AM

DN

09:19 AM 4

CHAPTER 5

SPOOLING OPERATIONS

Spoolirc operations on RSTS/E depend upon interjob communication
between a spooling program and a gqueue management program QUEMAN.
Possible spooling programs are SPOOL, BATCH and RJ2780. SPOOL
executes requests for a line printer unit and facilitates more
efficient use of the device. BATCH executes requests on a pseudo
keyboard device and provides non-attended job operations. RJ2780 is
optional on all systems and executes requests for communications
between two computer systems. QUEMAN manages all requests for
spooling programs and ensures that requests are handled properly.

Interjob communication is attained by QUEMAN sending and receiving
messages with the send/receive system function call. A user job must
be privileged to run QUEMAN since it declares itself a receiving job
on the systenm. Spooling programs on the system also employ the
send/receive message facility to communicate with the common receiving
job QUEMAN.

QUEMAN creates a common file QUEUE.SYS on account [1,2] on the system
disk. The file accommodates up to 254 queued requests for spooling
programs. Each request handles a maximum of 14 files. Each Jjob
request queued with the /AFTER option occupies two request slots in
QUEUE.SYS.

The QUEMAN program must have write access to the QUEUE.SYS file since
it creates requests for spooling programs and updates control
information in the file. A spooling program receives regquests by
notifying QUEMAN that it 1is ready to process. QUEMAN, in turn,
accesses the queue file to determine if any requests exist for that
spooling job. If no queued requests exist, the spooling program
performs an indefinite sleep operation until awakened by QUEMAN with a
request to process. In this manner, one program alone is responsible
for maintaining the queue file.

A user creates a reguest for a spooling program by running the QUE
program. When QUE executes a command to queue a request, it sends
messages to the QUEMAN program rather than directly writing the
request to QUEUE.SYS. However, when a user requests to list current
requests, QUE reads the information directly from QUEUE.SYS. This
action possibly confuses a user 1if he tries to 1list a queue
immediately after he types a request. Often QUEMAN is in the process
of parsing the new request when QUE accesses QUEUE.SYS to list pending
requests. For more information on the QUE program, see Section 4.11
of the RSTS-11 System User's Guide.

QUEMAN enters requests in the QUEUE.SYS file based on a priority
number between 1 and 255 specified in the QUE command. QUEMAN inserts

5-1

SPOOLING OPERATIONS

a request with a given priority number ahead of those with lower
priority numbers. Routine requests are assigned a priority of 128. A
privileged user can assign a priority higher than 128 and thus can
cause QUEMAN to process the request before others of lower priority.
All users can assign a priority of less than 128 and can thus cause
QUEMAN to process the request only after all others of higher priority
are processed. 1In this manner, requests of a non-critical nature do
not slow up the processing of routine reguests.

Whenever a spooling program encounters an error, it interrupts
processing and informs QUEMAN of the error. QUEMAN generates a
request for user action and broadcasts the appropriate identifying
information on the system console terminal. A user on the system
handles the request by removing the error condition and typing a reply
to QUEMAN. QUEMAN, 1in turn, clears the request from its internal
tables and sends the reply to the spooling program. The spooling
program, upon receipt of the reply, continues processing based on the
user's regquest. '

For a spooling program servicing a line printer, certain errors are
possibly self-correcting. This situation arises because the device
handler for the line printer tests the ready status of an off line
unit every 10 seconds. If the user removes the cause of the error
(for example, fixes a paper jam) and puts the 1line printer on line
again, the 1line printer software detects the ready status and
automatically continues output. As a result, the spooling program
detects that the error condition is cleared and informs QUEMAN.
Finally, QUEMAN removes the request for user action since the spooling
program has continued processing the gueued request.

Because of the highly interdependent nature of the queue management
and spooling mechanism, it is recommended that the user not terminate
any of the programs involved. Such termination possibly results in
loss of data or destruction of the queue file. The user can leave
terminating of spooling operations to the system shutdown procedures.

The SHUTUP system program executes shutdown procedures which preserve
file integrity. SHUTUP sends two messages to QUEMAN. The first
message initiates QUEMAN's off-line procedure which entails informing
each spooling program to complete processing the current file,
Thereafter, a spooling program closes all files, tells QUEMAN it is
off-line, and kills itself.

QUEMAN waits for all spooling programs to go offline. After SHUTUP
has killed all attached jobs, it sends a second message to QUEMAN
telling QUEMAN to kill all remaining spooling programs and to kill
itself. The text SECOND QUEMAN MESSAGE SENT appears on the terminal.
SHUTUP waits 15 seconds for a reply from QUEMAN. QUEMAN proceeds to
kill any remaining spooling jobs, to send the reply to SHUTUP that all
spooling jobs are killed, and to kill itself. After receiving the
reply from QUEMAN, SHUTUP waits 10 seconds before it begins killing
detached jobs.

If SHUTUP does not recieve a reply from QUEMAN within 15 seconds, it
prints the text QUEMAN NOT RESPONDING - RETRY? Typing NO causes
SHUTUP to proceed shutting down the system. Typing any string not
beginning with N causes SHUTUP to retry the second message to QUEMAN.

SPOOLING OPERATIONS
5.1 OPERATING THE QUEUE MANAGER - QUEMAN

To run QUEMAN, the job must be privileged and the user must type the
following command while at BASIC-PLUS command level.

READY

RUN S$SQUEMAN
QUEMAN V06A-07 - RSTS V06A-02 SYSTEM TEST

STARTED AT 11:31 ON 29-APRIL-74
*

QUEMAN opens the system file QUEUE.SYS. If the file does not exist,
QUEMAN creates and initializes it. QUEMAN notifies the user of this
action by printing the following message.

NO QUEUE FILE FOUND -- WILL INITIALIZE

If the file exists and QUEMAN has write access to the file, it prints
the * character indicating its readiness to accept commands. Another
program having write access to the file causes QUEMAN to print the
message QUEUE FILE OPENED BY ANOTHER PROGRAM ALREADY...CAN'T RUN STOP
AT LINE 30. At this point, the user must determine which job has the
file SQUEUE.SYS open and must terminate that job. By typing the CONT
system command in response to the STOP AT LINE 30 message, the user
causes QUEMAN to retry the open operation.

To cause QUEMAN to DETACH, type \DE in response to the * character.
For example,

*\DE
DETACHING...

As a result, QUEMAN prints the DETACHING message and detaches itself
from the keyboard.

NOTE

On ASR33 tvpe terminals, the backslash
character 1is generated by typing the
SHIFT key and the L key simultaneously.
The system echoes the SHIFT/L
combination by printing the \ character.

In general, QUEMAN should be run in the DETACHed state, except when
some actual interaction with it is required.

To execute QUEMAN commands, the user must attach the QUEMAN program to
the terminal and type the particular command. For example, to
terminate the QUEMAN program, perform the following actions as shown
in the sample dialog.

ATTACH 5

PASSWORD:

ATTACHING TO JOB 5
'QUEMAN' ATTACHED
TYPE \DE TO DETACH
*\EX

READY

5-3

SPOOLING OPERATIONS

The ATTACH command described in Section 4.1 of the RSTS-11 System
User's Guide attaches the job to the terminal. The QUEMAN program
prints the 'QUEMAN' ATTACHED message to indicate that it is attached
to the terminal.

NOTE

At no time should the user type the
CTRL/C combination. Such action
possibly destroys the QUEUE.SYS file and
causes the program to print the QUEUE
FILE ENDANGERED message and to terminate
execution,.

The asterisk character (*) indicates that QUEMAN is ready to execute a
command . To terminate QUEMAN, type \EX. Subseqguently, the program
closes its files and exits to the system monitor as indicated by the
READY message.

Other commands recognized by QUEMAN are listed and described in Table
5-1. A command is preceded by a backslash character to distinguish it
from other possible responses.

Whenever QUEMAN requires help from the user, it performs a standard
procedure. For example, if a spooler encounters a hung line printer,
it sends a message to the QUEMAN program. QUEMAN broadcasts the
standard text on the system console keyboard in the following format:

****QUEMAN (3j) m:n REQUEST: text ?

where:
3j is the job number under which QUEMAN runs.
m is the message identification number between 0 and 255 which
QUEMAN relates to a request for user action.
n is the logical name of the requesting program. Examples of

names are LPnSPL, BATCH or RJ2780. The character n in
LPnSPL denotes the line printer wunit to which the SPOOL
program directs output.

text indicates QUEMAN must process a request from a spooling
program. The text between the colon and the ? characters
is the action message to which the user must respond.

QUEMAN performs no further processing for the designated spooling job
unless the wuser attaches QUEMAN to the terminal and responds to the
request or unless QUEMAN deletes the message for the spooling job.

SPOOLING OPERATIONS

Table 5-1
QUEMAN Commands
Command Meaning
\IN Initialize the QUEUE.SYS file. all pending

jobs for all devices are removed and the
protection is set to <40>.

\EX Immediately close all files, remove QUEMAN
from system receiver table and reset the
priority. It is recommended that the user
terminate all spooling programs before typing
the \EX command. See Section 5.4 for
terminating instructions.

\RE:n Remove the spooling job indicated by the job
number n from QUEMAN internal tables. The
user can determine the proper n for a
spooling program by using the \ST command.

\ME Print at the terminal any pending messages
from spooling jobs. (1)

\ST Print at the terminal the status of spooled
jobs currently running on the system.

\DE Detach QUEMAN from the terminal.

(1) The QUEMAN program does not ordinarily print messages when it 1is
attached to a terminal. When attached to a terminal, QUEMAN prints
messages under the following circumstances.

1. If ten messages have been received since the Jjob was
attached,

2. 1If the user attempts to detach, or

3. If the user types the \ME command.

5-5

SPOOLING OPERATIONS

To respond to a request from QUEMAN, the user must type a line
containing the identification number of the reguest being serviced and
the command to the indicated spooling job. For example:

****QUEMAN (05) 1:LPOSPL REQUEST:LPO0 HUNG?
ATTACH 5

PASSWORD:

ATTACHING TO JOB 5

'QUEMAN' ATTACHED

TYPE \DE TO DETACH

*1 CO
*

The request LP0 HUNG is an error message denerated by the spooling
program SPOOL running for 1line printer unit 0 (LPO:). The request
identification 1 tells the user that this is the first active request
for wuser action. The user can determine the cause of the error
condition and remedy it. He then attaches the QUEMAN job to the
terminal and types a response to the asterisk character printed after
QUEMAN attaches. The user types the identification number of the
request to which he is responding (1) and the proper command (CO) to
the spooling program. QUEMAN prints the asterisk again. The user can
wait to determine if the response to the request is sufficient to
correct the error.

If a line printer error condition is removed before the user types a
response to the reguest, the system automatically resumes printing
according to the option the reguester specified when he queued the
file. The spooling program SPOOL notifies QUEMAN, which deletes the
request. QUEMAN, in turn, notifies the user by printing a message.
The following sample printout shows the action.

**x*QUEMAN (05) 2:LPOSPL REQUEST: LPO:HUNG?
REQUEST #2 DELETED BY LPOSPL

(For more information regarding SPOOL, see Section 5.2.)

QUEMAN handles a response to an action request by passing the text
typed to the spooling program. The spooling program runs and
processes the text. In the example shown, SPOOL executes the CO
command of the SPOOL program. If the user's action properly remedied
the hung condition of line printer unit 0, the CO command causes SPOOL
to perform the defined operation. When the command or the user's
action is not sufficient to continue processing, the spooling program
generates another request message for the QUEMAN program.

If the user types an 1invalid message number, QUEMAN prints text
similar to the following sample.

MESSAGE #n NOT OUTSTANDING

*

The user is allowed to type a command or another response to the
action reqguest.

QUEMAN prints error messages when the user types an invalid command or
response to the * character. These messages are listed and described
in Table 5-2.

The QUEMAN program monitors the activity of spooling programs and
broadcasts information messages to the system console terminal. For

5-6

SPOOLING OPERATIONS

example, if the user runs SPOOL, QUEMAN broadcasts a message similar
to the following.

QUEMAN MESSAGE: LP1SPL (4) PUT ONLINE AT 04:23 PM

This message 1informs the wuser that a spooling program started
execution on line printer unit 1 with job number 4.

When the user types the CTRL/C combination to a SPOOL program, QUEMAN
typically prints the following text.

LP1SPL MESSAGE: ~C TO SPOOLER
QUEMAN MESSAGE: LP1SPL (4) REQUESTED OFF-LINE -- TAKEN
OFF-LINE AT 04:22 PM

SPOOLING OFERATIONS

Table 5-2
QUEMAN Error Messages -
Message Meaning
INVALID RESPONSE -- x The response x typed by user was

JOB n NOT ON-LINE

MESSAGE #n NOT OUTSTANDING

QUEUE FILE ENDANGERED

SPOOLERS ON-LINE -- CAN'T
INIT

BAD JOB NUMBER

neither a response to the action
request nor a valid command.

An attempt was made to release a
job by the \RE:n command and that
job is not running under QUEMAN
control.

The user typed an identification
number indicated by n. QUEMAN
determines the number requires no
user action response, and continues
operation.

QUEMAN detects a CTRL/C and
attempts to exit without destroying
the QUEUE.SYS file.

User types the \IN command, not
executable by QUEMAN since spooling
programs are currently running.

User typed the \RE:n command and
n is not a valid number. For
example, \RE:A.

SPOOLING OPERATIONS

The first line records that the spooling program for LPl: detected a
CTRL/C combination. The second 1line informs the user that QUEMAN
removed the job from its control tables at a specific time.

19}

The BATCH program sends messages to QUEMAN which, in turn, broadcasts
them to the system console terminal. In such a manner, BATCH

maintains a log of the jobs it executes. For example, QUEMAN prints
such a sequence of messages from BATCH.

BATCH MESSAGE: COMPAR: STARTED AT 03:02:22 AM

BATCH MESSAGE: COMPAR: COMPLETED AT 03:08:09 PM

The text BATCH MESSAGE identifies the information as coming from the
BATCH program. The text COMPAR 1identifies the BATCH job name
currently being executed. The remaining portion of each message tells
the time 1in hours, minutes, and seconds for the start and completion
of the job. For more information on BATCH operation, see Section 5.3.

If any messages occur while QUEMAN is attached to a terminal, the
program saves the QUEMAN job messages until the user types either the
\ME command or the \DE command. In this manner, the user can type
responses to requests without interruption from QUEMAN. Additionally,
if new messages are pending and the user types the \DE command, QUEMAN
prints the messages and gives the wuser a chance to respond to an
action request before it detaches itself. For example,

*\DE
ADDITIONAL MESSAGES:
QUEMAN MESSAGE: LP1SPL (4) RELEASED -- TAKEN OFF-LINE AT 05:17 PM

TYPE \DE TO DETACH

*

The user types the \DE command to QUEMAN when new messages are
pending. QUEMAN prints any additional messages (but not all pending
messages) and prints TYPE \DE TO DETACH followed by the * character.
The user can then type a response to the action request or can type a
QUEMAN command.

SPOOLING OPERATIONS
5.2 LINE PRINTER SPOOLING PROGRAM - SPOOL

The line printer spooling program runs without user intervention and
transfers files from disk, DECtape or magtape to a line printer. To
run SPOOL, the user job is logged into the system under a privileged
account. To start SPOOL, type the following command.

RUN $SPOOL

SPOOL runs and checks that the project number of the account is 1. 1If
the account 1is not privileged, the ©program prints the PROTECTION
VIOLATION message and terminates. Otherwise, the program prints two
lines. The first line tells the program and system names and version
nunbers and the second line requests the unit number of the printer.
For example,

SPOOL VO06A-09 - RSTS V06A-02 SYSTEM #8380
LP UNIT#?

SPOOL checks that the unit number entered is between 0 and 7. If the
number is invalid, SPOOL prints the query again.

With the line printer unit number, the user can specify the following
options.

Cption Meaning

/AS Reserve the line printer unit to the Jjob as
if the wuser had typed the ASSIGN LPn:
command .

/LN:nnn Set the default form length to nnn which can

be between 1 and 127. This value is used in
the line printer mode option.

/WI:nn Set the line printer width to nn to properly
adjust the width of the job header pages.
This is useful when 80 column paper 1is used
in a 132-column unit. The option does not
prevent the program from sending lines longer
than nn to the printer. A line longer than
80 characters prints off the page 1if the
printer 1is configured for 132 columns but 80
column paper is used.

For example, to sct the line printer width to 80 columns and assign
line printer unit 1 when SPOOL starts, type the following.

LP UNIT #? 1/WI:80/AS

After entering a valid response to the UNIT # query, SPOCL opens the

character generation file CHARS.QUE on the systen library account. If
the file does not exist, the program prints the message CHARS.BAS HAS
NOT BEEN RUN ~- CAN'T RUN and terminates. The user must run the

CHARS.BAS program described in Appendix C.

The program next determines the width of the printer by inspecting a
parameter in the device data block.

SPOOL next communicates with the QUEMAN program which initializes
entries in its control tables for the related device. If the gueue

SPOOLING OPERATIONS
manager is not running, SPOOL prints the following message:

QUEMAN NOT RUNNING ~- CAN'T ROUN
SPOOL terminates. The user must run QUEMAN as described in Section
5.1 and run SPOOL again. If a spooling program is currently running
for that device, the system generates an error (ERR=18) and the
program prints the following message.

ILLEGAL SYS () USAGE AT LINE 21010 -- SPOOLER WILL HALT

The program attempted to declare the job as an eligible receiver and
determined that SPOOL 1is currently active for that device. As a
result, it terminates. Otherwise, SPOOL subsequently prints the
following message:

DETACHING...

The program then enables CTRL/C trapping and detaches itself from the
terminal.

To properly terminate SPOOL, the user attaches QUEMAN to the terminal
and types the \RE command with the job number of SPOOL. 1If the user
does not know the proper job number, he can type the \ST command to
gain a status report. A typical procedure is shown in the following
dialog.

ATTACH 2

PASSWORD:
ATTACHING TO JOB 2

'QUEMAN' ATTACHED
TYPE \DE TO DETACH

* \ST

2 SPOOLERS ON-LINE

3 LPOSPL LPO 2 0000
4 LP1SPL LP1 2 0000
*\RE: 4

*\DE

ADDITIONAL MESSAGES:

QUEMAN MESSAGE: LP1SPL (4) RELEASED AT 05:17 PM
TYPE \DE TO DETACH

* \DE

DETACHING ...

Before detaching, QUEMAN prints an information message concerning the
LP1SPL job. For more information, see the description of terminating
spooling programs in Section 5.4.

The user can terminate SPOOL by attaching it to a terminal and typing
the CTRL/C combination. This method 1is not recommended since the
SPOOL program possibly is printing a job or QUEMAN 1is currently
sending a print request to the SPOOL program. If the user does
terminate SPOOL by typing the CTRL/C combination, SPOOL kills the job
under which it is running. This action leaves the terminal logged off
the system. QUEMAN subsequently prints the following messages at the
system console terminal.

LP1SPL MESSAGE: “C TO SPOOLER
QUEMAN MESSAGE; LPISPL (4) REQUESTED OFF-LINE--TAKEN
OFF-LINE AT 04:22 PM

SPOOLING OPERATIONS

The first message informs the user that the LPISPL job detected the
CTRL/C combination. The second message reports that QUEMAN has
removed the LP1SPL job from its internal tables.

Normally, the SPOOL program starts when the INIT system program
executes commands in the START.CTL and CRASH.CTL files. For example,
a portion of a typical START.CTL file appears as follows.

FORCE KB9: RUN S$SQUEMAN
FORCE KB9: \DE

FORCE KB12: RUN S$SPOOL
FORCE KB12: 0

These commands assume both keyboards are logged into the system under
privileged accounts. For more information on the INIT system program,
see Section 3.1 of this document.

5.2.1 Recovery from Line Printer Errors

Control of error handling in the spooling process is by interaction
between the spooling program and the QUEMAN program. For example, if
the supply of paper is exhausted or if the paper jams, SPOOL generates
the DEVICE HUNG OR WRITE LOCKED error (ERR=14), sends a message to
QUEMAN, and discontinues processing. QUEMAN prints a message at the
system console terminal (KBO:) similar to the following:

****OUEMAN (02) 3:LPOSPL REQUEST: LPQ: HUNG?

The message tells the user that the spooling job for line printer unit
0 (LPOSPL) has generated request number 3. Before SPOOL can resume,
the user must correct the error. If SPOOL determines that the error
is gone, it continues printing based on the options specified when the
requester gueued the file for printing. In such a case, SPOOL
notifies QUEMAN which, in turn, deletes request number 3 and prints a
message to that effect.

If the user cannot correct the error, or wishes to perform some other
operation, he must leave the line printer off-line, attach the QUEMAN
job to a terminal and type the request number followed by a SPOOL
command . Table 5-3 describes the valid commands. If the user types
an invalid command, SPOOL causes QUEMAN to print the ILLEGAL RESPONSE
message.

SPOOLING COPERATIONS

Table 5-3
SPOOL Commands

Format Operation Meaning
Cco Continue Continues by printing the current job
according to options the user specified to
QUE.
DE Defer Places current job at the end of the gueue to

be rerun at a more convenient time.

RE Restart Continues by printing the entire Jjob again
from the job header page onward.

KI Kill Terminates the current job and removes it
from the queue file.

To respond to a pending action request, 1leave the 1line printer
off-line, note the job number reported in the QUEMAN message, and type
the ATTACH command with the number as follows.

ATTACH 2

PASSWORD:
ATTACHING TO JOB 2
'QUEMAN' ATTACHED
TYPE \DE TO DETACH
*

To restart the job from the beginning, type the request number with
the RE command.

*3 RE

*\DE
QUEMAN passes the string RE to the spooling program related to request
number 3 and prints the asterisk character. The user can then place
the line printer on line. SPOOL runs and begins printing the job from

the Job header. The user then types \DE to detach QUEMAN. For more
detailed information on QUEMAN, see Section 5.1.

5.2.2 Line Printer Output

SPOOL generates job header and file header pages to identify print
jobs and files within a print job. Both types of header page contain
identification and general accounting information. The identification
information consists of large, easily readable, block letters created
from the character generation file CHARS.QUE. The accounting
information is in standard letters and placed on the page according to
the type of header.

The job header identification consists of the account number of the
user requesting the Jjob and the job name the user gave in the QUE
command. If no job appeared in the QUE command, SPOOL prints the
filename of the first file in the reguest as the job name.

SPOOLING OPERATIONS

General accounting information for the job header is centered on the
page and is offset from the identification information by two rows of
special characters. The accounting information contains three lines
of data. The first 1line <consists of the job name, current date,
current time, and reguester's account in the following general format.

JOB name PRINTED ON date AT time FOR USER [n,m]

The second line comprises the date and time when the user created the
request and the device for which he created the request. The third
line gives the QUE options the user specified in the job
identification part of the QUE command. If the user gave no options,
SPOOL prints only /MODE=0.

The file header identification shows, on separate lines, the filename
and extension of the file SPOOL printed. If SPOOL does not print the
file because of an error, the identification and accounting
information are replaced by an error message framed above and below by
five rows of special characters. The error message has the following
format:

FILE filename specification -- RSTS error message

The file specification includes the device, filename, extension and
project-programmer field. The error message is the text generated by
the system wupon encountering such an error. These errors are
summarized 1in Appendix C of both the BASIC-PLUS Language Manual and
the RSTS-11 System User's Guide.

The accounting information for the file header appears below the
identification and is framed, above and below, by two rows of special
characters. The first of two lines of data gives the Jjob name used
when SPOOL printed the file and shows the current date, time, and

account as the job header accounting information does. The second
line gives the complete file specification and the QUE options the
user specified in the file identification part of the QUE command.
The QUE options are preceded by the text SWITCHES=. If the user gave
no options in the QUE command, SPOOL prints the assigned default
values. For more information on the QUE options, see Section 4.11 of

the RSTS-11 System User's Guide.

5.2.3 Job Error Messages

Errors SPOOL encounters during printing are reported in the line
printer output. SPOOL differentiates the error message from reguested
output by framing the text with five rows of special characters.

The text of the error message is split in two parts separated by -
characters. The first part of the text varies according to the type
of error. If the error is other that DEVICE HUNG OR WRITE LOCKED, the
message begins with the RSTS error message text. Otherwise, the text
begins with the line printer device designator followed by the words
HUNG ERROR. The remainder of the first part gualifies the nature of
the error. 1If the error is file related, SPOOL includes the text FILE
followed by the filename specification.

The second part of the text varies according to the operator or system
action taken to recover from the error. The following list shows the
texts and related meanings.

5-14

SPOOLING OPERATIONS

JOB RESUMED Operator used CO command.

JOB DEFERRED Operator used the DE command to defer the
job.

JOB RESTARTED Operator used the RE command to restart the
job or the system automatically restarted the
job.

JOB ABORTED Operator used the KI command to terminate the
print job.

If operator action was involved in the error, the program prints the
text BY OPERATOR following the error text. If, for any reason, SPOOL
cannot continue or restart, it includes the text FAILURE TO RESTART.

SPOOLING OPERATIONS
5.3 BATCH PROCESSOR PROGRAM - BATCH

The batch system program runs without user intervention and executes
files of standardized commands gqueued on the related batch device.
The number of batch devices possible depends upon the number of
pseudo-keyboards available for use by BATCH. To run BATCH, the user
job is logged into the system under a privileged account. To start
BATCH, type the following command.

RUN $BATCH

BATCH runs and checks that the project number of the account is 1. 1If
the account 1is not privileged, the program prints the PROTECTION
VIOLATION message and terminates. Otherwise, the program prints two
lines. The first line gives the program name and version number and
the second line reguests the unit number of the batch device. For
example:

BATCH V06A-10
BATCH UNIT BA?

The user can type the RETURN key to indicate the general batch
processor (BA:) or can type a decimal number to indicate a distinct
batch device (BAl:, BA2:, and onward).

The unit designations for batch processors help to selectively process
jobs. The general batch processor executes only those requests queued
for BA:. Requests gqueued for batch processors BAO: through BA7: are
excuted only by that respective batch unit. Reqguests gqueued for the
general batch processor, however, are executed by any batch unit
running.

To implement selective batch processing, run a certain batch processor
during peak time sharing hours and run a different batch processor
during periods of slower activity. For example, the general batch
processor (BA:) can process batch requests as needed during the day.
In the evening, a disignated batch unit (BAO: through BA7:) can be
started to process non-urgent reqguests queued for it during the day.

BATCH runs and processes messages through the QUEMAN program, which
must be running on the system. For more information on sending
messages through QUEMAN, see Section 4.12.3.8 of the RSTS-11 System
User's Guide.

SPOOLING OPERATIONS
5.4 TERMINATING AN INDIVIDUAL SPOOLING PROGRAM

It is possible to terminate an individual spooling program. However,
it is not recommended since QUEMAN automatically terminates spooling
programs when SHUTUP runs. To terminate a particular spooling job,
the user must attach QUEMAN to a terminal, release the desired
spooling job, and run the UTILTY system program to kill the Jjob. It
is important that the user release the spooling job by QUEMAN because
requests in the QUEUE.SYS file may otherwise be lost.

The following sample dialog shows the proper way to terminate the
BATCH controller program.

ATTACH 2
PASSWORD:
ATTACHING TO JOB 2
'QUEMAN' ATTACHED
TYPE \DE TO DETACH

* \ST
3 SPOOLERS ON-LINE
4 LP1SPL LP1 2 0 0 O
3 LPOSPL LPO 2 0 0 O
5 BATCHS BA* 3 0 0 O
*\RE:5
*\DE

ADDITIONAL MESSAGES:

QUEMAN MESSAGE: BATCH5 (5) RELEASED--TAKEN OFF-LINE AT 12:04 PM
TYPE \DE TO DETACH

*\DE

DETACHING. ..

HELLO 1/100

PASSWORD: .

JOB(S) 2 3 4 5 ARE DETACHED UNDER THIS ACCOUNT
JOB NUMBER TO ATTACH TO?

4 OTHER USER(S) ARE LOGGED IN UNDER THIS ACCOUNT
READY

RUN UTILTYS

'UTILTY' SYSTEM UTILITY PROGRAM
? KILL, 5

? EXIT

READY
BYEF

If the \RE:n command is typed and the spooling program is currently
processing a request, QUEMAN places that request at the beginning of
the queue. When the spooling program starts again, that reguest 1is
immediately restarted from the beginning. However , when SHUTUP
terminates time sharing, the status of jobs terminated depends on the
individual spooling program: SPOOL and RJ2780 jobs are placed at the
beginning of the gqueue and BATCH jobs are deleted from the queue. For
jobs terminated individually wusing the \RE:n command, QUEMAN always
places a currently processing request at the beginning of the queue.

5-17

CHAPTER 6

SYSTEM ERROR DETECTION

6.1 MANAGING ERROR LOGGING - ERRCPY, ERRCRS, AND ERRDIS

Logging of hardware errors is an automatic function of the RSTS/E
monitor. To gain the advantages of error logging, the system manager
must properly employ the ERRCPY, ERRCRS, and ERRDIS system programs.

The ERRCPY program retrieves error-related data logged by the RSTS/E
monitor. Upon occurrence of a hardware error, special routines save
the contents of the device registers in small buffers and effectively
send a message to the ERRCPY program. The system awakens ERRCPY which
transfers the saved data to disk. Since the number of messages which
can be gueued at any given time is limited, ERRCPY must be running to
prevent loss of valuable diagnostic information.

The ERRCRS program retrieves error-related data saved following a
system crash. When a system crash occurs and certain conditions are
in effect, the monitor preserves the contents of certain critical
parts of the system. The system file CRASH.SYS holds this information
along with other error-related device data. The ERRCRS program
transfers the information from the CRASH.SYS file to another disk file
which has the same format as the one created by the ERRCPY program.

The ERRDIS system program produces summaries of error-related data and
formats it for output to a hard copy device. This program provides
the record of errors logged on the RSTS/E systen.

6.1.1 Operating and Using the Error Copy Program - ERRCPY

The error copy system program ERRCPY reads error-related information
stored in the monitor part of memory and writes it to a special disk
file. The system manager must ensure that the proper commands are
created in the START.CTL and CRASH.CTL files as described in Section
3.1 so that ERRCPY 1is started and active during time sharing
operations. The following discussion outlines the entire process of
activating the job which runs ERRCPY.

When the RSTS/E system starts up, commands in either the START.CTL or
CRASH.CTL control file are executed by the INIT system program. If
the command FORCE KB0O: RUN SERRCPY appears in the control file, the
command RUN SERRCPY 1is placed in the input buffer of the console
terminal (KBO:) as if it had been typed at the terminal. Meanwhile,
the accompanying END command in the control file causes termination of
the INIT system program and causes the console terminal to be placed

SYSTEM ERROR DETECTION

at BASIC-PLUS command level (edit mode), as signalled by the READY
message being printed. The console terminal remains logged into the
system under account [1,2].

When the system executes the command RUN $ERRCPY from the input buffer
of KBO:, the ERRCPY program runs and detaches itself from the console
terminal as indicated by the message DETACHING printed at the console
terminal. The console terminal is no longer logged into the system,
but ERRCPY continues running as a detached job under account [1,2].

When ERRCPY is activated, it exists in the SL (sleep) state and
neither occupies memory storage nor uses CPU time until awakened by
the RSTS/E Monitor error logging routines. When error logging detects
a hardware error, it causes ERRCPY to run and write the error-related
information to a special file ERRLOG.FIL. The file 1is stored under
the system library account [1,2] on the system disk. If ERRCPY is not
running, the diagnostic area can overflow and the history of
subsequent errors can be lost. Therefore, the system manager must
properly start the ERRCPY job.

The ERRCPY program automatically kills 1itself whenever logins are
disabled. Therefore, if the system manager disables logins, he should
restart ERRCPY.

The system manager gains information concerning the hardware errors
detected and placed 1in the ERRLOG.FIL by running the ERRDIS system
program as described in Section 6.1.3. If a system crash occurs, the
system manager can retain error data by following the instructions in
Section 6.2.

6.1.2 Use of the Error Crash Program - ERRCRS

The ERRCRS system program retrieves error information saved at the
time of a system crash. When a system crash occurs, critical contents
of memory are written to the system file CRASH.SYS if the user enabled
the CRASH DUMP facility at start up time. The ERRCRS system program
transfers certain error information from the file CRASH.SYS to a user
designated file. The following sample dialog shows the use of ERRCRS.

RUN S$SERRCRS

ERRCRS V06A-01

OUTPUT FILE NAME? FILE.CRS
CRASH DUMP FILE NAME?

READY

ERRCRS is executed by typing the RUN SERRCRS command from a terminal
logged 1into the system under a privileged account. Two queries are
printed. The response to the first query designates the name of a
file to which error informatior will be written. The response to the
second query is simply the RETURN key, designating the file CRASH.SYS
stored under the system account "0,1]. The ERRCRS program writes the
error information to the file named FILE.CRS (in this sample) and
terminates automatically, as signalled by the READY message being
printed.

The system manager can later print a report on the error information
saved 1if he uses the ERRDIS system program as described in Section
6.1.3 and designates the filename specified as output of the ERRCRS

6-2

SYSTEM ERROR DETECTION

program run as the input filename for ERRDIS. It 1is highly
recommended that users place the proper commands in the CRASH.CTL file
so that ERRCRS runs automatically upon initialization of the system
after a system crash.

6.1.3 Operation and Use of the Error Display Program - ERRDIS

The error display program ERRDIS allows the system manager to print a
full or partial history or a full or partial summary of the
error-related information preserved by the ERRCPY or ERRCRS system
programs. ERRDIS prints, in an organized and formatted fashion, the
error-related information read from a disk file according to options
and switches specified by the system manager. The file is created by

either the ERRCPY or ERRCRS system nrogram and exicste under the system

cililcs LT SARLYI O AnxSaunR FAVgLsdin Qi TaLiouLo wiiica

library account [1,2] with protection code <60>. The disk file can
maintain a history of a maximum of 880 errors and can record a maximum
of 100 of any one type of error. If either of these limits is
reached, ERRDIS prints in the output history a message telling how
many errors were missed due to no room or to the limit of 100. The
following two sections describe how to run and terminate ERRDIS and
how to optimally use ERRDIS features.

6.1.3.1 Running and Terminating ERRDIS - The system manager or
privileged user runs the ERRDIS program by typing the following
command while logged into the RSTS/E system.

RUN $ERRDIS

The program responds by printing a program header 1line, followed by
three queries as shown below.

ERRDIS VO06A-03

INPUT FILE NAME (<KCR> FOR DEFAULT)?
OUTPUT TO?

OPTIONS?

The user types the RETURN key in response to the query concerning the
input file name. The default input file name is $ERRLOG.FIL. The
user can specify as input the name of the file created by the ERRCRS
program. If the user types the RETURN key in response to the second
query, the error-related information subsequently requested is printed
at his terminal keyboard printer. To indicate a different output
device, or file, type the proper specification followed by the RETURN
key.

The OUTPUT TO query can be answered with the ? character. This
response creates a file 1in the public structure under the current
account. The name of the file is derived from the current date and
time of day and the extension is LOG.

SYSTEM ERROR DETECTION

If the ? character is typed in response to the OUTPUT TO query,
ERRDIS prints the name and extension of the resultant output file.
For example,

OUTPUT TO? ?

(OUTPUT FILE IS F04N59.LOG)

OPTIONS?
The file name is divided into 4 parts. The first part is a letter
from A to L which denotes the month based on the letter's position in
the alphabet. 1In the example, F is the sixth letter of the alphabet

to denote the sixth month of the year, June. The second part of the
file name is two digits from 01 to 31 to denote the day of the month.
In the example, 04 is the fourth day fo the month. The third part of
the name is a letter from A to X which denotes the hour from 00 to 23
(military time). Thus, the letter N is the example represents the
14th hour for 2:00 p.m. (civilian time). The last part 1is two
numbers based on minutes.

SYSTEM ERROR DETECTION

Table 6-1
ERRDIS Options
Option Option
Type Format Meaning
General ALL Error-related information for all errors 1is
printed in the order 1in which they were
detected and recorded, from the -earliest to
the most recent.
EX Terminate ERRDIS and exit to the Monitor.
HE Print the help file ERRDIS.HLP.
MS Missed errors.
Peripheral DH Prints error-related information
Errors concerning the DH1l multiplexer.
DT TC11/TU56 DECtape.
RF RF11/RS11 fixed head disk.
RC RC11/RS64 fixed head disk.
RK RK11/RKO05 or RKO03 disk cartridge drive.
RP RP11-C/RP03 disk pack drive.
RS RH11/RS03 and RH11/RS04 fixed head disk.
MA RH11/TM02/TUl6 magtape.
RB RH11/RP04 disk pack drive.
RX RX11/RS01 floppy disk drive.
RJ DP11 or DU1l1 interface for RSTS5/2780
software.
CDh Card reader.
MT TM11/TU10 Magtape.
KB Hung Teletype errors by Jjob number and
keyboard line number.

SYSTEM ERROR DETECTION

Table 6-1 (Cont.)
ERRDIS Options

Option Option .
Type Format Meaning
Processor T4 Traps through vector location 4.
Errors
TO Traps through location 000000.
Jo JMP instructions executed to location 000000.
RI Reserved instruction traps.
PF Occurrences of power failure.
CK Checksum errors.
MP 11/45 or 11/40 memory parity.
MM Memory management.
?27? Illegal code.

6-6

SYSTEM ERROR DETECTION

Table 6-2
ERRDIS Option Switches

Switch
Format Meaning

/T Used with ALL option to print error data by type rather
than by historical order of occurrence.

/S Print only a summary of information of the error type
indicated in the option. (Used alone, /S 1is
meaningless.)

/K Delete (kill) information in the error 1logging file.
If the file is $ERRLOG.FIL, the /K option simply zeroes
the file but keeps it in the directory. If the file is
anything other than S$ERRLOG.FIL, the /K option deletes
the directory entry. In either case, ERRDIS terminates
and returns control to READY.

/H Used alone; causes a help file to be printed.

/dd-mmm-yy Prints information concerning the error type indicated
in the option if it was detected on or after the date
designated by /dd-mmm-yy. For example, 19-MAY-73.

/hh :mm Prints information concerning the error type indicated
in the option if it was detected at or after the time
of day designated by /hh:mm. For example, 8:50 or
20:50.

If a date switch appears with a time switch, ERRDIS
prints errors detected at or after the date and time of
day. If a time switch appears without a date switch,
ERRDIS uses the current system date.

After the user designates the output, ERRDIS print P

An option from those given in Table 6-1 can be typed. An option can
be modified by any of several switches as described in Table 6-2.
After output of the option or options specified is completed, the
OPTIONS query is printed again. To terminate the ERRDIS program, type

the EX command in response to the OPTIONS query.

ts the OPTIONS gquery.

OPTIONS? EX
READY

Control is returned to BASIC-PLUS command level, as indicated by the
READY message being printed.

6.1.3.2 Recommended Usage of ERRDIS - The recommended procedure for
using the ERRDIS program 1is to daily request at least two specific
options: ALL/S and ALL. The procedure entails running ERRDIS and
answering the OPTIONS query in the following manner.

OPTIONS? ALL/S
OPTIONS? ALL

SYSTEM ERROR DETECTION

The ERRDIS program first creates a summary (/S) of all error-related
information. The output starts with 4 lines of accounting data. On
the first line, ERRDIS indicates the option requested, followed, on a
second line, by the file name from which the information is taken
(usually SERRLOG.FIL). On the third 1line appears the output
specification wused and, on the fourth 1line, the time of day and
current date. Following the accounting data is the summary of the
total number of errors-recorded and errors missed by type and a tally
of certain disk input and output information.

For the second option requested (ALL), ERRDIS prints the accounting
data and the entire history of the errors logged. Information for
each occurrence of a logged error is printed in chronological order,
beginning with the earliest error and continuing to the most recent
occurrence. The chronological order allows the wuser to find the
occurrence of two catastrophic errors in the same minute. If this
order is not important, the ALL/T options can be wused to print all
errors ordered by type.

For each error logged, a header line is printed which describes the
type of error and the time of day and date of the occurrence.
Following the header line for each error, ERRDIS prints such data as
job number, keyboard number (if a hung Teletype error), processor
status word (PSW) contents, and the contents (in octal) of the device
registers at the time of the error. Consult the PDP-11 Peripherals
Handbook for the meaning of the device register abbreviations and the
types of errors encountered. (A job number of 0 indicates the null
job.) A comment line is appended to some error-related information,
such as that of a hung Teletype.

At the conclusion of the error history, ERRDIS prints the number of
missed errors (if any) and the total number of errors listed of those
logged since the beginning of the error history.

It is recommended that the user specify a disk file to contain the
output of the options. The output can be gained by queuing the file
on an 128 column line printer. The printouts of the complete summary
and the complete history should be inspected and stored in a central
location reserved for them. They provide the basis for planning
preventive maintenance and the means to more readily 1isolate
potentially dangerous hardware problems. The printouts should be
available to the DIGITAL Field Service or Software Support
representative. Periodically, the system manager can delete the
contents of the file $ERRLOG.FIL by specifying the /K option in
response to the ERRDIS program OPTION query.

The system manager should be alert for certain conditions reported by
ERRDIS. Several hung Teletypes are not serious, but a steadily
increasing number of hung Teletypes on a certain keyboard 1line
indicates a possibly dangerous condition which should be remedied.
Any occurrence of a TO0 error 1is serious and indicates that an
interrupting device has presented an incorrect vector location to the
bus. An increasing number of disk errors (particularly on the system
disk) indicates a need for immediate maintenance.

SYSTEM ERROR DETECTION

To obtain error logging printouts automatically, include the proper
commands in the START.CTL file. The commands can run ERRDIS with
output to a disk file and request the ALL/S and ALL/T options. The
standard error logging file ERRLOG.FIL can be zeroed by the /K option.
Also as part of the START.CTL file, commands can queue the ERRDIS
output file for printing on 1line printer. The following sample
commands show the process.

FORCE KBl: RUN $ERRDIS
FORCE KBl: S$ERRLOG.FIL
FORCE KBl: ERRLOG.TMP

FORCE KBl: ALL/S

FORCE KBl: ALL/T

FORCE KBl: /K

FORCE KBl: QUE ERRLOG.TMP/D
FORCE KBl: BYE/F

The commands run ERRDIS, queue the output disk file so that the is
deleted after printing, and 1log off the system. This technique
ensures that error logging data is obtained without operator action
and that error data is not lost due to the error logging file being
filled. The printouts can be used to monitor errors and can be saved
to provide a performance history.

6-9

SYSTEM ERROR DETECTION
6.2 ANALYZING SYSTEM CRASHES - ANALYS

When a system crash occurs in RSTS/E, time sharing operations are
halted. If the required conditions described in Section 2.3 are met,
the critical contents of memory are written into the CRASH.SYS file in
the system account [0,1] and the system disk is bootstrapped in
automatic restart mode.

The occurrence of a later system crash causes the CRASH.SYS file to be
overwritten. Therefore, the system manager is provided with a means
of retaining information in the CRASH.SYS file. This means 1is the
ANALYS system program. The wuse of the ANALYS system program to
document system crashes requires that the CRASH.SYS file be created at
REFRESH time and that the c¢rash dump feature be enabled at system
start up time.

The ANALYS system program is invoked by the following command:
RUN S$ANALYS

In response, a header line and two successive query lines are printed
as follows:

'ANALYS' CRASH DUMP ANALYZER V06A-01

INPUT?
OUTPUT? CRASH.DMP

READY

The first query line requests the name of the file to be analyzed,
which by default 1is CRASH.SYS in account [0,1]. The user need only
type the RETURN key, after which the second query 1line 1is printed.
The second query line requests a disk file or a device designator for
the output medium, which, for example purposes, is CRASH.DMP on the
system disk. Normally, ANALYS takes about 5 minutes to run. Upon
completion of the output, program execution is automatically
terminated and READY is printed at the terminal.

The output of an ANALYS system program run supplies valuable hardware

and software information which can be used by a software specialist to
determine possible causes of system crashes.

6-10

SYSTEM ERROR DETECTION

ANALYS reports an error code in the crash dump data. Table 6-3 shows
the error codes.

Table 6-3
System Crash Error Code
Error (1)
Code (octal) Meaning
-1(177777) Unknown vector
-2(177776) Jump to 0
41 Trap to 4
42 Trap to 10
43 Trap to 250 (Memory management violation)
44 Kernel SP Stack overflow
46 Trap to 114 (Parity memory error)
0 or other Forced dump

The ANALYS output is complemented by the error logging printouts. The
first and second items in the data labelled TOP 8. ITEMS ON KERNAL SP
STACK in the ANALYS printout are the virtual Program Counter and the
Processor Status Word. Use these values to compare with the data
labelled VIRT PC and PSW in the ERRDIS report. If the values match,
the error in the ERRDIS report is one which caused the crash.

The value of the PC minus 2 gives the location of the instruction
being executed at the time of the crash. Refer to the load maps to
find the module containing the instruction.

The PSW tells the current and previous modes of the processor. RSTS/E
does not use supervisor mode. The only valid modes are kernel and

user. If bit 11 of the PSW is 1, the processor is either a PDP-11/70
or PDP-11/45; 1if bit 11 is 0, the processor is a PDP-11/40.

(1) The power fail error has no code associated with it.

6-11

SYSTEM ERROR DETECTION

To obtain crash information printouts automatically, 1include the
proper commands in the CRASH.CTL file. The commands can run ANALYS,
to preserve the crash information, run ERRCRS to extract error
information from the crash file, run ERRDIS to create a report and run
QUE to obtain a listing of the error information. The following
sample commands show the procedure.

FORCE KBl: RUN S$ANALYS
FORCE KBl: [0,1]CRASH.SYS
FORCE KBl: ANALYS.TMP
FORCE KBl: RUN S$ERRCRS
FORCE KBl: ERRCRS.TMP
FORCE KBl: [0,1]CRASH.SYS
FORCE KBl: RUN S$ERRDIS
FORCE KBl: ERRCRS.TMP
FORCE KBl: ERRDIS.TMP
FORCE KBl: ALL/S

FORCE KBl: ALL/T

FORCE KBl: /K

@$START.CTL

FORCE KBl: QUE ANALYS.TMP/D,ERRDIS.TMP/D
FORCE KBl: BYE/F

BYE

The commands run the necessary programs to extract the <crash data,
start time sharing (which starts queuing and spooling operations), and
queue the output file for printing. This technigue ensures that crash
data is obtained without operator action. The printouts can be used
as a diagnasitc aid and saved to provide a performance history.

6.3 OCTAL DEBUGGING TOOL - ODT

The system program ODT opens a file, a peripheral device, or memory as
an address space and allows a user to examine and change word or byte
locations within the address space. As auxiliary operations, the user
can 1list the contents of certain conventional table locations in the

operating system.

The program immediately interprets and executes each character as the
user types 1it. This action is termed ODT submode or ODT character
mode and differs from the procedure used by other system programs
which interpret input only after the user enters an entire line of
characters. Since ODT performs processing based upon single
characters typed at the terminal, its language is highly interpretive
and interactive. It thus provides a quick and efficient means of
finding errors in program and data files and changing data in those
files for testing purposes. Because of the guickness and efficiency
of ODT, it is advised that only experienced user's employ it to
perform testing and error correction on a system's data base.

SYSTEM ERROR DETECTION

The program accesses and manipulates data in word and byte locations
based on octal values. The word is the 16-bit PDP-11 word and can
have a value between 0 (octal) and 177777 (octal), the 1limit imposed
by 16 bits. A word has a high order (odd address) and low order (even
address) byte. A byte can have a value between 0 (octal) and 377
(octal) - the 1limit that can be represented by 8 bits. For the
purposes of clarity in this chapter, the following symbols express the
octal values used by ODT.

Symbol Meaning
n Represents an octal integer between 0 and 17. The

use of 8 or 9 generates an error.

k Represents an octal value up to 6 digits 1in
length. If more than 6 digits are specified or a
value greater than 177777 (octal) 1is specified,
ODT truncates the value to the 1low order
(rightmost) 16 bits. If the octal value 1is
preceded by a minus sign, ODT uses the 2's
complement value of the number.

For example, ODT interprets the following values as shown.

1 000001
-1 177777 (2's complement)
400 000400
-177730 000050 (2's complement)
1234567 034567 (truncated to low-order 16-bits)

The user can represent a location within the permissible address space
by typing an octal value or an expression which reduces to an octal
value. The following are the correct forms and the interpretation by
oDT.

k The 6 digit octal value of k.

n,k The resultant address is the value of k added
to the «contents of the relocation register
specified by n. Relocation registers are

numbered from 0 to 17 (octal). See Section
6.3.4 for more information concerning
relocation registers.

The special characters and symbols in Table 6-4 are recognized by
RSTS/E ODT and explained in the remainder of the section.

SYSTEM ERROR DETECTION

Table 6-4
ODT Characters and Symbols

Character (s)

or Symbols Meaning
/ Open the previously open location as a word
k/ or open the location designated by k as a
word.
\ Open the previously open location as a byte
k\ or open the location designated by k as a
byte.

Give the ASCII representation of the
k" currently open or last previously open
location or of the location specified by k.

% Give the ASCII representation of the Radix-50
k% value in the currently open or last
previously open location or in the location
specified by k.

RETURN key Close the currently open location or modify
k followed by the contents of the currently open location
RETURN key with the value k and close it.

LINE FEED key Close the currently open location and open
k followed by the next sequential location or modify the
LINE FEED key contents of the currently open location with

the value of k before closing it and opening
the next sequential location.

~or ¢t Close the currently open location and open
the preceding sequential location. (On some
terminals, the 4 or ©~ character is typed by
depressing the SHIFT and N keys
simul taneously.)

(continued on next page)

SYSTEM ERROR DETECTION

Table 6-4 (Cont.)
ODT Characters and Symbols

Character (s)
or Symbols Meaning

+ or__ Take the contents of the currently open
location as a PC relative offset and
calculate the next 1location to be opened;
close the currently open location and open
the location thus evaluated.

@ Take the contents of the currently open

k@ location as an absolute address, close the
currently open location, and open and print
the contents of the location thus evaluated.
If @ 1is preceded by k, the value k replaces
the contents of the currently open location
before it is closed.

> Take the low order byte of the currently open
k> location as a relative branch offset and
calculate the address of the next location to
be opened; close the currently open location
and open and print the contents of the
relative branch location thus evaluated. If
> is preceded by k, the value k replaces the
contents of the currently open location
before it is closed.

< Close the currently open location and open
the 1last location explicitly open. Returns
ODT to the origin of a sequence of relative
locations determined by _, @, and > character
operations.

(continued on next page)

SYSTEM ERROR DETECTION

Table 6-4 (Cont.)

ODT Characters and Symbols

Character (s)

or Symbols

Meaning

~

+
space bar

nR

k;nR

Separates a relocation register number from
an octal value. ODT adds the contents of the
specified relocation register to the octal
value following the comma and forms a
relocatable address.

Separates multiple values in a 1list request
using the L character and in a register
operation using the R character.

Specifies the last explicitly open 1location
similar to that wused by the < character
operation.

Add the preceding value and following value
and use the result.

Subtract the following value from the
preceding value and use the result.

Reset all relocation registers to -1
(177777) .

Reset relocation register n to -1 (177777).

Set relocation register n to the value k.

(continued on next page)

SYSTEM ERROR DETECTION

Table 6-4 (Cont.)
ODT Characters and Symbols

Character (s)
or Symbols Meaning

F Set relocation calculation for list requests
using L character.

1F Disable relocation <calculation set by F
character.

C Print out Monitor table symbolic names and
memory addresses.

$S Print out the processor status word.
Q Use the last quantity printed by ODT.
kl;k2L Print contents of locations k1l through k2 at

the terminal.

1;kl;k2L Print contents of location kl through k2 on
line printer unit (0).

2;kl;k2L Print contents of location kl through k2 on
another device. ODT prints DEVICE question,
to which user types the device designator.

6.3.1 Running And Terminating ODT

The user runs ODT by typing the following command.

RUN $ODT
ODT VO06A-02
FILE?

ODT runs and prints the guestion FILE. The user response to this
aguery determines how ODT runs and what address space ODT accesses.
The possible responses are listed and described in Table 6-5.

SYSTEM ERROR DETECTION

Table 6-5
ODT FILE Question Responses
Response Meaning

Type the RETURN Allows read access to memory only if user
key only. is privileged.
Type the ALT MODE Allows read access to the file
key only. CRASH.SYS in account [0,1].
Type the LINE FEED Same as the RETURN key.
key only.
Type a file speci- Allows read access to the file on the
fication followed device specified. If no device is
by the RETURN key specified, the system disk is used.
or the ALTMODE key.
Type the file speci- Allows read and write access to the file
fication followed specified.
by the LINE FEED
key.

ODT determines the address space by the response to the FILE guestion
and indicates 1its readiness to accept commands by printing the *
character. For example,

FILE? ABC.DAT (Terminate with LF)
*

ODT opens for read and write access the file ABC.DAT on the system
disk under the current account. To terminate ODT, type the CTRL/Z
combination in response to the * character. For example,

* "7

READY

ODT closes any file currently open and returns control to BASIC-PLUS
command level.

6.3.2 Opening and Closing Locations in the Address Space (/ And \)

ODT access the address space as either a word or a byte. The user
indicates the type of access by specifying the slant (/) or reverse
slant (\) character. For example,

*1000/

The user types the address 1000 (octal) followed by the / character.
ODT opens the location as a word, generates a space, prints the

SYSTEM ERROR DETECTION

6-digit octal contents of the word, dgenerates another space, and
leaves the 1location open for change. The following demonstrates the
results.

*1000/ 004100

ODT prints the contents of location 1000 as 004100. To close the
location, type the RETURN key. ODT closes that location prints an *
character on the next line, and does not open a new location.

The user specifies the \ character to open a location as a byte. For
example,

*1000\ 000
*

ODT opens location 1000 as a byte, generates a space, prints the
3-digit octal contents of the byte, generates another space, and
leaves the location open for change. To close the location, type the
RETURN key. ODT closes the location, prints an asterisk character on
the next line, and does not open a new location.

To change location 1000, type a new 6-digit octal value followed by
the RETURN key. For example, if location 1000 is open as a word,

*1000/ 004100 004000 (Type RETURN key)
*

ODT replaces the current contents 004100 with the specified contents
004000, closes the 1location, and prints the * character on the next
line.

To determine the contents of the current word location, type the
character. For example, if the current 1location is 1000, the
following occurs.

*/ 004000
ODT opens the current location, generates a space, prints the 6-digit
contents and generates another space.

If the user types the LINE FEED key while a word location is open, ODT
closes the current 1location and opens the next sequential location.
For example, if location 1000 is open as follows,

*1000/ 004000
and the user types the LINE FEED key, the following occurs

*1000/ 004000
001002/ 012345

ODT generates a carriage return and line feed and prints the address
of the next location, followed by the / and space characters and the
contents of the word. The new location 1002 is open. Repetitive use
of the LINE FEED causes ODT to open and display the contents of
sequential locations.

If the user types the LINE FEED key while a byte location is open, ODT

performs the same actions as described for a word location except that
the next location is treated as a byte.

6-19

SYSTEM ERROR DETECTION

6.3.2.1 Opening the Preceding Location (tor ") - Typing the up arrow
(+) character or the circumflex (") character when a location is open
causes ODT to close the «currently open location and to open the
immediately preceding location.

NOTE
On ASR-33 type terminals, type the ~
character by depressing the SHIFT key

and the N key simultaneously.

For example, if two secuential locations are successively opened,
typing the ~ character opens the immediately preceding location.

*1000/ 002345 (Type LF key)
001002/ 012740"
001000/ 002345

Typing the ~ character closes location 1002 and opens location 1000
and prints its contents. If a byte location is currently open, typing
the ~ character opens the immediately preceding byte location. If the
user types a value followed by the " character, ODT replaces the
current contents with the specified value before closing the location.

If the user types the ~ character and a location 1is not currently
open, ODT opens and prints the contents of the last currently open
word or byte location. For example,

*1000/ 002345 (Type RETURN key)
o

001000/ 002345

ODT prints the address and the contents of the word loccation on the
next line.

6.3.2.2 Opening A PC Relative Location (+ or) - Typing the
backarrow (<) character or underline (_) character when a location is
currently open causes ODT to add 2 to the address of the current
location, to add the resultant sum to the contents of the current
location, and to open the location specified by the final sum. For
example,

*1000/ 000040_
001042/ 012345

ODT closes location 1000, adds 2 to the address (1000), and adds the
resultant 1002 to the contents (40) of the current location. As a
result, ODT opens location 1042 and prints its contents. This method
of calculating the next location to open is similar to that used in
relative addressing by the program counter in the PDP-11 computer.
Such a method of address calculation is for position independent code.

If the contents of the current location is an odd value, ODT opens and
prints the contents of the low-order byte of the PC relative location.
If the user types a value followed by the _ character, ODT modifies

the current contents and uses the new value to calculate the PC
relative address.

SYSTEM ERROR DETECTION

6.3.2.3 Opening an Absolute Location (@) - Typing the commercial at
(@) character when a location is currently open causes ODT to take the
contents of the current location as the address of the next location
to open. As a result, ODT closes the current location, opens the
calculated location and prints its contents. For example,

*1006/ 001024 @
001024/ 000500

ODT uses the contents of the current location (1024) as the next
location to open.

NOTE

On ASR-33 type terminals, type the @
character by depressing the SHIFT key
and the P key simultaneously.

If the user types a value followed by the @ character, ODT changes the
contents of the current location to the value and uses the new value
to determine the next location to open. The method is equivalent to
absolute addressing on the PDP-11 computer where the contents of the
location following an instruction are taken as the address of the
operand. The address is absolute since it remains constant regardless
of where in memory the assembled instruction is executed.

6.3.2.4 Opening a Relative Branch Offset Location (>) - Typing the
greater than (>) character when a location is currently open causes
ODT to use the signed value of the low-order byte of the current
location to determine an offset from the current location. ODT uses
the final sum to open the next location and print its contents. For
example,

*1032/ 000407>
001052/ 001456

ODT takes the contents of the low order byte (007) and multiplies by 2
to give 16 (octal). Next, ODT adds 2 to the address of the current
location (1032) to give 1034. Finally, ODT adds these two gquantities
(1034 + 16) to give the address of the word (1052) to open. ODT
closes the currently open location, opens the calculated location, and
prints the address and the contents on the next line.

If the user specifies a value followed by the > character, ODT
modifies the contents of the currently open location and uses the low
order byte of the new value to calculate the relative branch offset
location. For example,

*1032/ 000407 301>
000636/ 000010

ODT interprets the byte value 301 as a negative value since the high
order bit 1is 1. The absolute value of 301 is 77 (octal) which is
multiplied by 2 to give 176 (octal). ODT subtracts the relative
branch offset (176) from the address plus 2 of the current location to
give 636 as the address of the next location to open. ODT opens the
new location and prints its contents.

SYSTEM ERROR DETECTION

6.3.2.5 Returning To An Interrupted Segquence (<) - Typing the less
than (<) character causes ODT to close the currently open location and
open the last explicitly open location. This command is useful, when
a user has typed the , @, and > characters, or any sequence thereof,
and wishes to open the locations from which ODT calculated subsequent
relative locations. For example,

*1032/ 000301>
000636/ 000010 @
000010/ 123456<
001032/ 000301

After typing the > and @ characters, ODT opens location 10. The user
returns to the 1last explicitly open location by typing the <
character. ODT opens and prints the contents of 1location 1032, the
last location explicitly opened.

6.3.3 Printing the Contents of Locations

The user can type the L character in three ways to print the contents
of locations in the address space open by ODT. For example, to print
the contents of a certain range of addresses, specify the start and
end addresses with the L command as follows.

*0;776L

ODT prints at the terminal, the octal contents of each word between
address 000000 and 000776. Beginning each line of the printout, ODT
prints the address of the first word on the line. The user <can turn
the printing on and off by typing the CTRL/O combination.

To print a listing on line printer unit 0, type the L command as

*1;0;776L

ODT prints, on line printer unit 0, the octal contents of each word
between addresses 000000 and 000776. To specify another unit, type 2
preceding the command.

*2;0;776L
DEVICE? LP1:

ODT prints the DEVICE qguestion, to which the wuser types the device
designator of the line printer unit to be used.

6.3.3.1 Printing ASCII Format (") - Typing the gquotation marks (")
character when a location is currently open causes ODT to print the
ASCII representation of the word or byte. For example,

*1000 101 " A (Type LF key)
001001 103 " C (Type CR key)
*1000/ 41501

If the currently open location 1is open as a word, typing the "
character <causes ODT to print the 2-character representation of the
word. For example,

SYSTEM ERROR DETECTION
*1032/ 034567 w9

The low order byte contains 167 (octal) which is W and the high order
byte contains 071 (octal) which is 9.

If the user types the " character and a location 1is not currently
open, ODT prints the ASCII representation of the previously open
location.

6.3.3.2 Printing Radix-50 Format (%) - Typing the percent (%)

character when a location is currently open causes ODT to print the

3-character ASCII representation of the Radix-50 word. For example,
*1000/ 034567 ¢ IG1

If the user types a value preceding the % character, ODT interprets it

as the address whose contents are to be interpreted and printed. For

example,

*1000 % IG1

ODT interprets 1000 as the address to use. If the user types the %
character and a location 1is not currently open, ODT prints the
3-character ASCII representation of the previously open location.

6.3.4 Relocation Registers

ODT has available 16 relocation registers which the user can employ to
specify relative addresses. ODT 1initially sets the relocation
registers to -1 (177777, the highest possible address) to prevent
inadvertent errors in address calculation. The user sets a relocation
register by typing the relative address, followed by a semicolon and
the specification of one of the eight relocation registers. For
example, to set relocation register 0 to 1000, type the following,
*1000:0R
*
The user can subsequently use the value in relocation register 0 as an
offset or a base address in specifying a location. For example, to
open location 1032, as a word, the user types the following.

*0,32/ 000010

ODT adds the offset 32 to the contents of relocation register 0 to
open the location. Since relocation register 0 contains 1000, ODT
opens location 1032.

To reset the contents of all relocation registers to -1, the user need
type only the R character. For example,

*R
*

ODT generates the carriage return and line feed operation and prints
the * character again. To reset the contents of any one register to
-1, simply specify the register number followed by the R character.

SYSTEM ERROR DETECTION
For example,

*1R
*

The above command resets relocation register 1 to 177777 (octal).

ODT treats registers 0 through 7 differently from 10 (octal) through
17 (octal) when wused with disk files. For registers numbered O
through 7, the leftmost 3 digits specify a block number and the

.
rightmost 3 digits specify a byte location within the block. For
example,

000017

The value designates byte 17 (octal) in block 0 of the file. The
following value:

3412

designates byte 412 (octal) in block 3 of the file. (These registers
are helpful in accessing data which 1is partitioned 1in 512-byte
blocks.) For registers numbered 10 (octal) through 17 (octal), the
value specifies an absolute block number in the disk file. For
example, the value 1000 (octal) specifies block 1000 (octal) of the
disk file.

To print the contents of locations based on a fixed offset from the
relocation registers, type the F character and subseguently use the L
character. For example,

*F
*1;0;3000L
*

The F character conditions ODT to calculate relocated addresses for a
printout. The next command tells ODT to add the offsets from 0 to
3000 to the value of relocation register 0 and print the contents of
those resultant 1locations on line printer unit 0. The procedure is
repeated for the values of relocation registers 1 through 7. The
resultant printout contains a listing of the contents of addresses n,0
through n,3000 where n is between 0 and 7 (the relocation registers).

To turn off calculation of relocation addresses for a printout, type
1F. For example,

*1F

*

Subsequent listing reguests generate printout for actual addresses
rather than relocated addresses.

6.3.5 1Interpretive Address Cuantities (¢ And .)

ODT uses the variable Q to store the last value which it printed at
the terminal. The user can type Q¢ to designate the value so stored.

ODT performs any valid operation requested and automatically extracts
the wvalue from Q. For example, if the user desired to increase the

SYSTEM ERROR DETECTION

value in an open location by a certain increment, he could proceed as
shown in the following sample.

*1342/ 173214 Q+10 (Type RETURN key)
*x/ 173224

The user types 1342/ to open that location as a word. ODT prints the
contents of the location and stores that value in Q. The user
subsequently types Q+10 followed by the RETURN key. ODT adds 10 to
the value in ©Q and modifies the current location with the sum. The
user thus does not have to retype the number or calculate the sum. To
verify that ODT has changed the location properly, the user types the
/ character. ODT opens the 1last previously open location (1342),
prints the contents, and, additionally, updates the value Q with the
most recently printed guantity.

The period (.) character indicates the currently open or last
explicitly open location and can be typed to indicate the current
address for ODT operations. This is the same address used by the <

character described in Section 6.3.2.5. In most cases, the .
character value is the address used by ODT when the user types the /,
\, ", %, and LINE FEED characters. For example, to open as a word a

location 16 bytes from the last explicitly open location, the wuser
types the following,

*,+16/ 012345

ODT adds 16 (octal) to the address given by the . character, opens
the resultant address, and prints its contents.

6.3.6 Error Procedures

If the user types an invalid or unrecognized character, ODT prints a
question mark (?) <character, generates a carriage return and a line
feed, and prints the * character. For example,

*1008?
*

ODT indicates that the character 8 is an error. The user must retype
the number correctly.

If ODT encounters an error while performing output to a device, it
prints the message I/0 ERROR? followed by the * character. The user
must correct the device error and type the command again.

CHAPTER 7

SYSTEM UTILITY OPERATIONS

7.1 GENERAL UTILITY OPERATIONS - UTILTY

While running the UTILTY system program, the system manager has
on-line system control and can perform such operations as:

4.

Enable and disable logins.

Broadcast messages and force strings to any or all keyboards
on the system.

Terminate execution of a job (kill) or cause a remote line to
hang up.

Set and reset system date and time.

The system manager also can perform various disk management operations

such as:

1.

5.

Cause private disk packs to be used or to be prohibited from
use on specified disk drive units (mount and dismount
operations).

Prohibit or allow creation and accessing of files on
specified disk drive units (lock and unlock operations).

Rebuild the storage allocation table on a corrupted disk
(clean operation).

Change the number of blocks of disk storage an account can
retain at LOGOUT time (guota) and change an account password.

Remove all files from a user's account on a specified disk
drive unit (zero operation).

The commands of the UTILTY system progrem are presented in Table 7-1
for reference. The following sections explain the commands according
to their functional uses: program control, on-line system control,
disk management, and run time system control.

SYSTEM UTILITY NPERATIONS

Table 7-1
UTILTY Commands

Command and

Category Format (1) Use
Operational LOGINS Enables users to login to the
Control RSTS/E system.

SETwealLOGINS X Set to x the number of user jobs
which can be 1logged into the
system at any one time.

NOwuLOGINS Prevents further login attempts.

KBn:
SEND wa | ALL JLJXXX

KB:n
FORCE tew| ALL |Lu4XXX

KILLaan
HANGUPwuKBn:
DISABLEw4KBn:

DATEwadd~-mon-yy

TIMEwahh :mm

Causes the text string xxx to be
printed on the keyboard unit n
or all keyboards.

Causes the text string xxxx to
be forced into the input buffers
of keyboard wunit n or all
keyboards as if it had been
typed in. If the character 1is
the first character of the
string, it is replaced by a “C.

Immediately terminates user job
specified by n.

Disconnects the remote line

spaecified by KBn:.

= I ~ ~1

interface

until the
shar ing

Disable the terminal
of keyboard unit n
start of the next time
session.

Sets the RSTS/E system date to
the value of day, month and year
(for example, 13-NOV-72).

Sets the RSTS/E 24 hour clock to
the wvalue of hours and minutes
(for example, 21:52 means 9:52
p.m.).

{(continued on next page)

(1)The notation s indicates that a space character is required.

SYSTEM UTILITY OPERATIONS

Table 7-1
UTILTY Commands

(Cont.)

Command and

Category Format (1) Use
Disk
Management MOUNTwadev:id Logically associates the disk

DISMOUNTwsdev:

LOCKwadev:

UNLOCKuwadev:

CLEANwdev:

residing on the specified drive
unit with the pack
identification label (id) so
that data on the disk «can be
properly accessed by the system.
For example,

MOUNT DK1:PRIVI1

associates the pack PRIV1 with
the physical device designator
DK1:.

Disassociates a disk pack from
its physical drive specified by
dev:. Must be used prior to
removing the cartridge from the
disk drive unit.

Places the disk mounted on drive
unit dev: in a state which
prevents files from being OPENed
by non-privileged users.

Allows non-privileged users to
OPEN files on the disk mounted
on drive unit dev:.

Rebuilds the SAT (Storage
Allocation Table) of the pack
mounted and locked on disk drive
unit dev:. To be used only when
message DEVICE NEEDS CLEANING is
printed and the device is
locked.

(continued on next page)

(1) The notation wu indicates that a space character is reguired.

SYSTEM UTILITY OPERATIONS

Table 7-1
UTILTY Commands

(Cont.)

Command and

Category Format (1) Use
Disk QUOTAwaln,m]eag Sets the quantity of 256-word
Management blocks the user account [n,m] 1is

{(Cont.)
({Cont.)

Run Time
System
Control

CHANGEws[n,m] password

ZEROwdev:ea[n,m]

ADDwaname

REMOVEwaname

LOADwaname/ADDR: XXX

UNLOADwaname

NAMEwaname=file

allowed to retain at logout time

to the decimal number g. A
value for g of zero means

unlimited

guota.

Alters the password or user

account [n,m] to the 6-character
alphanumer ic password.

Deletes all files from user
account [n,m] on the disk drive
unit specified by dev:.

Add to the run time system table
the run time system specified by
name.

Remove from the run time system
table the entry for the module
specified by name.

Load into memory the run time
system specified by name. The
/ADDR:xxxXx option (where xxx 1is a
1X section of memory) appended
to name establishes the default
starting location.

Unload from memory the run
time system specified by name.

Associate name with the run time
system module specified by file.
The standard name is defined
when the system is built. The
designation file is a standard
RSTS/E specification. The
eguals character must separate
name and file.

(continued on next page)

(1)The notation s indicates that a space character is reguired.

SYSTEM UTILITY OPERATIONS

Table 7-1 (Cont.)
UTILTY Commands

Command and

Category Format(1l) Use
Program HELP Prints a list of valid UTILTY
Control commands at the keyboard
printer.

CTRL/C Terminates execution of the
current operation and the UTILTY
run.

CTRL/Z Allows completion of pending
operations before termination of
the UTILTY run.

EXIT Allows completion of pending

operations before termination of
the UTILTY run.

(1)The notation wu indicates that a space character is required.

SYSTEM UTILITY OPERATIONS
7.1.1 Running and Terminating UTILTY

The system manager or a privileged user executes the UTILTY system
program by typing the following command while 1logged in at any
terminal.

RUN SUTILTY

The
foll

program responds by printing one header and one query line as

e
WO e

SYSTEM UTILITY PROGRAM 'UTILTY V06A-03'
>

after which any valid command can be specified. A list of all wvalid
commands is printed if the HELP command is typed. The guery line need
not be present in order to type 1in any subsequent commands. The
program prints the ? character after each command is executed.

Termination of the UTILTY system program can be properly accomplished
by typing either the CTRL/Z combination or the EXIT command. (CTRL/2Z
is echoed by "% being printed on the terminal.) If CTRL/Z or EXIT is
typed at any time, the operations currently pending are properly
completed, and control is returned to the BASIC-PLUS editor. The
completion of the UTILTY run is signalled by READY being printed at
the keyboard.

If the CTRL/C combination is typed in order to terminate the program
run, any operation in progress is interrupted immediately. Control is
returned to the BASIC-PLUS editor. (CTRL/C is echoed at the keyboard
printer by the “C being printed). Typing CTRL/C to terminate a UTILTY
program run is not considered proper termination since the effect of
uncompleted internal system operations is unpredictable. The system
manager is advised to use CTRL/Z or the EXIT command to terminate

TIMTT M7
UllLilX.

7.1.2 Principles of Disk Management

Certain commands of the UTILTY system program are used to manage disks
on the RSTS/E system. Such commands are presented for reference in
Table 7-1 under the category of disk management. To more easily
convey the proper use of individual disk management commands, the
following description of each command is presented with a discussion
of its function and value.

7.1.2.1 Preparing a Disk for Use on a Drive - A disk pack or
cartridge, to be used on the RSTS/E system, must be made known to the
system. The disk is made known to the system by associating 1its
logical name, the pack label (or identification), with the physical
device unit number on which the disk resides. Such a process is
called logically mounting a disk.

Logically mounting a disk asssociates the specific device designator
and the exact pack label of the disk. A new disk must first be
formatted and 1initialized for use on the RSTS/E system by the
initialization option DSKINT. An already formatted disk can be
initialized by the DSKINT system program. The pack label, a

SYSTEM UTILITY OPERATIONS

6-character alphanumeric name assigned to the disk during the DSKINT
dialogue, is required to logically mount the disk.

When the RSTS/E system is started, only the system disk 1is 1logically
mounted. The system manager must ensure that other packs in the
public structure (and perhaps the private structure) are mounted by
commands from the START.CTL or CRASH.CTL file. The same principle
applies to private disks added to the system after system start up.
The system manager can logically mount a private disk on the system by
means of the UTILTY system program MOUNT command or can use the CCL
MOUNT command described in Section 4.14 of the RSTS-11 System User's
Guide. The procedure to mount a disk is summarized in Table 7-2.

Procedures for Usi

Enter a Pack or Cartridge to Remove a Pack or Cartridge from
the System(1) the System
1. Use the SYSTAT system pro- 1. 1Invoke UTILTY and use LOCK
gram to ensure that the drive command on the drive unit
unit is free. containing the pack to be
removed.

2. Place the pack in the drive. 2. Use SYSTAT disk status report

When the drive is READY, to determine the number of

write enable it. OPEN files. If zero, proceed.
If non-zero, walit until all
files are closed before

proceeding.

3. Invoke the UTILTY system 3. With no files open on the
program and use MOUNT com- device unit, use the DISMOUNT
mand to notify system of command to notify system that
new pack. the pack is being removed.

4. Use CLEAN command if 4. Remove pack from disk drive
necessary. unit.

5. Use UNLOCK command to free
device for use.

(1)The disk pack is assumed to have been initialized and formatted
using the DSKINT initialization option or the DSKINT system program
(Section 7.5). See Chapter 3 of the RSTS/E System Generation Manual
for a description of DSKINT initialization option.

SYSTEM UTILITY OPERATIONS

After a public system disk or a file structured private disk is
mounted on the system, it must remain WRITE ENABLED. The system must
be able to update access and job accounting information during time
sharing. If the disk is WRITE PROTECTED, accessing a file on it is
impossible. A WRITE PROTECTED system disk causes the system to crash.
Any other WRITE PROTECTED disk causes the DEVICE HUNG OR WRITE LOCKED
error when an attempt is made to write to it.

Under no circumstances should a public disk be removed from the system
during normal cystem operation. Files are created and accessed in the
public structure without explicit reference tc a device. By removing
a public disk during time sharing, the system manager denies users
access to files which reside on that device.

To properly remove a private disk pack or cartridge from a drive unit,
actions similar to those of preparing the disk for use must be
employed. For example, if the system manager desires to replace a
private disk with another private disk, he must follow a careful
procedure. First, he must ensure that no files are open on the drive
unit. The system manager can do this by requesting a disk status
report through the SYSTAT system program. His next action is to 1lock
the device unit by use of the LOCK command. This action ensures that
non-privileged user programs cannot open any more files on the disk.

When the disk to be removed has no OPEN files and has been LOCKed, the
system manager next must disassociate that disk pack from the drive
unit. He does so by 1logically dismounting the device with the
DISMOUNT command. If any files are open on the disk, UTILTY prints
the ACCOUNT OR DEVICE IN USE error message and does not dismount the
disk. After the dismounting action is completed, the disk pack can
safely be removed from the drive unit. Any pack which is to replace
the pack removed must undergo the procedures previously described for
proper use of the pack.

1f a disk was not dismounted properly after it was last used, UTILTY
encounters the DISK PACK NEEDS 'CLEANING' error (ERR = 25) when the
MOUNT command is executed. UTILTY prints the warning message DEVICE
NEEDS CLEANING. The disk is mounted but locked. SYSTAT prints the
text LOCKED in the disk structure report. The lock condition prevents
nonprivileged jobs from accessing the disk but allows the disk to be
cleaned.

An improperly dismounted disk reguires cleaning because the Storage
Allocation Table (SAT) in the SATT.SYS file does not reflect the
actual allocation of storage. This condition results because the SAT
is manipulated in memory and is not written back to the disk
immediately. Following the proper dismounting procedures ensures that
the SAT is updated on disk before the disk is physically removed from
the drive.

Because the MOUNT command of UTILTY does not clean disks, the CLEAN
command must be used to rebuild the SAT on the disk. The CLEAN
routines read all the directory blocks and create a new SAT truly
reflecting occupied storage. Additionally, all file access counts are
reset to 0 and all files with TMP extensions are deleted. If the
CLEAN command 1is not executed and the disk is dismounted, the error
condition no longer applies but the SAT 1is still wunreliable and
requires cleaning. (The DISMOUNT command assumes the proper
procedures were followed and clears the bit which 1indicates that
cleaning is required.)

7-8

SYSTEM UTILITY OPERATIONS

The MOUNT command of UTILTY does not unlock the disk. To allow
nonprivileged Jjobs access to the disk, the UNLOCK command must be
executed. Nonprivileged jobs can open files on the disk after it 1is
unlocked.

7.1.2.2 Removing Files from an Account ~ Before an account can be
deleted from the RSTS/E system or deleted from a private disk, the
account must contain no files. The ZERO command of UTILTY removes all
files from an account on a device. The REACT program (see Section
4.1.2) is then used to delete the account.

7.1.2.3 Changing Quota and/or Password of an Account - Each user
account in the RSTS/E system has associated with it a quota of disk
storage that the account can retain at 1logout time and a password
which allows access to the system. The gquota and password are
specified by the system manager when the account is created.

The system manager can change the gquota by use of the QUOTA command of
UTILTY. The system manager specifies, in the QUOTA command, the
account number and the decimal number of 256-word blocks of disk
storage the account can retain at logout time. If he specifies zero
for the guota, the account can retain an unrestricted number of
blocks.

The system manager can change the password of an account by using the
CHANGE command.

7.1.3 Operational Control of the System

Certain commands of the UTILTY system program control the operation of
the system. Such commands are listed for reference in Table 7-1 under
the category of operational control. These commands and examples of
their possible usage are described in this section.

When the system manager is on-line in the RSTS/E system, he <can
monitor and <contro system operation. By use of the SYSTAT system

program, he observes the number of free .small buffers. 1f, for
example, the number of free small buffers drops below 10, system
efficiency declines. He can remedy the possible degradation of system
efficiency by preventing more users from logging into the system. The
system manager prevents further logins by using the NO LOGINS command.
The system manager also can use the NO LOGINS command in preparing to
shut down time sharing operations of the RSTS/E System. (1)

The system manager can communicate with a user at his terminal or with
all users by the SEND command. The SEND command causes a specified
text string to be placed in the output buffer of a terminal or all
terminals and, as a result, be printed on the terminal. If a user
assigns a peripheral device for an 1inordinately 1long time, for

(1)Use of the NO LOGINS command causes ERRCPY to terminate. If error
logging is desired, ERRCPY should be run again.

SYSTEM UTILITY OPERATIONS

example, the system manager can transmit a message reguesting the user
to deassign the device. By specifying ALL in place of the device
designator of a single keyboard, the system manager can transmit the
message to each on-line terminal in the RSTS/E system.

If it becomes necessary, during the course of system operations, to
handle troublesome users, the system manager has two capabilities. He
can cause a user's terminal (or all users' terminals) to execute a
text string by the FORCE command. He can also terminate a user's job
by the KILL command. The FORCE command places a text string in the
input buffer of a specified terminal as if it had been typed by the
user. If the first character of the text is the up-arrow character
(+), it 1is replaced by a CTRL/C (4C). The following sequence of two
FORCE commands causes a user's terminal to execute two commands which
log out the job.

? FORCE KB4: “BYE
? FORCE KB4: YES

THE KILL command terminates the user's job. The user is immediately
logged off the system.

If the system manager determines that a dataset line is in use but no
keyboard activity 1is taking place (by SYSTAT job status report), he
can disconnect the dataset. The HANGUP command causes the remote line
specified by KBn: to be disconnected. The hangup capability prevents
a user from monopolizing the line without being charged for connect
time and frees the line for other remote users.

The DATE and TIME commands allow the system manager to set the system
date and the value of the 24-hour clock, respectively. The SET LOGINS
command allows the system manager to control the number of wusers on
the system. The DISABLE KBn: command can remove a terminal interface
from use for the current time sharing session. To disable the
interface for subsequent sessions, the SETKEY option of the
initialization code can be used. (SETKEY is described in the RSTS/E
System Generation Manual.)

7.1.4 Run Time System Control

The run time system control commands described in Table 7-1 allow the
system manager to conduct time sharing operations with an auxiliary
run time system supplied by DIGITAL. The NAME command provides the
association required for a specially tailored module on the system
disk to be accessed by a specified runtime system name. This
association is normally made during the system library build
procedures and is not required again unless the system is regenerated.

For a run time system to function properly during time sharing
operations, certain actions must occur to initialize the system. The
actions are normally effected by commands 1in the START.CTL and
CRASH.CTL files and are altered only if DEFAULT conditions are
altered. The following example shows which control file commands are
necessary and sufficient to initialize RSTS/E to use the auxiliary run
time system.

SYSTEM UTILITY OPERATIONS

FORCE KB1l: RUN SUTILTY

FORCE KBl: ADD RTSLIB

FORCE KB1: LOAD RTSLIB/ADDR:xXx
FORCE KB1l: UNLOAD RTSLIB

AT ve e T

FORCE KBl: EXIT

See Section 3.1 for more information concerning control files. If
these commands are not executed at the start of time sharing, an
attempt to run a dependent program or object time system generates the
NO RUN TIME SYSTEM error.

The ADD command in the control file adds the appropriate name to the
run- time system table in memory. This action is necessary since the
initialization code establishes a new table each time system start up
occurs. The command ensures that the appropriate name and parameters
are entered in the table.

The LOAD command with the /ADDR option in the control file 1loads the
run time system into memory at the 1K section specified. Because 1K
section numbering begins at 0 and ends at n-1 (where n 1is the total
size of memory), the 1K section number in the /ADDR:xx is one less
than the physical section number. For example, to load the run time
system RTSLIB in the 6lst through 64th 1K sections of memory, specify
/ADDR:60. The run time system is loaded from 1low memory to high
memory at 1its defined initialized size. To be loaded without error,
enough contiguous user space must be available starting at that
location. The location specified 1in the /ADDR option becomes the
default location at which the run time system is loaded during the
current time sharing session. The location need be changed only if
the system manager changes the allocation of the section of memory
with either the DEFAULT or the START initialization option.

One precaution is necessary when specifying the address at which the
run time system is loaded. The section of memory chosen must not
fragment the user job space to prevent the run time system from
executing a job. For example, assume a system has 24K words of user
space available between the 36K and 60K sections of memory. Assume
also that a job requires 18K words of user space to run and that the
run time system requires 4K words when resident. If the 1loading
address is 36K, the space between 40K and 60K remains available for an
18K job to run. 1If the loading address is 42K, the user space is
fragmented into two sections - one from 36K to 42K and one from 46K to
60K. Both sections are too small to allow the 18K program to run.

The UNLOAD command in the control file frees that portion of memory
occupied by the run time system. The memory becomes available as user
job space and is not occupied by the run time system until a user
executes the appropriate CCL command during time sharing.

To prevent use of an auxiliary run time system for the current time
sharing session, the system manager can execute the REMOVE command.
This purges the entry from the run time system table. The SHUTUP
system program automatically performs the REMOVE action when time
sharing operations are terminated.

SYSTEM UTILITY OPERATIONS

7.2 MONITORING SYSTEM STATUS - SYSTAT

During normal time sharing operations, the system manager should
monitor the status of the RSTS/E system. He gains information
concerning system status either by use of the system program SYSTAT
or, on systems with sufficient memory storage, by running the VT5DPY
or the VT50PY program. The options and output supplied by the SYSTAT
system program are described in Chapter 4 of the RSTS-11 System User's
Guide. The VTSDPY and VTS50PY program descriptions appear in Section
7.3. The discussion here gives the system manager guidelines on how
and when to use system status information.

Several uses of SYSTAT are described elsewhere in this manual in

conjunction with other system manager operations. Those instances are
listed here.

1. During preparation for system shut down, to determine active
jobs and disk devices and assignable devices in use.

2. In conjunction with the UTILTY system program command HANGUP,
for determining misuse of a remote line.

3. In conjunction with the UTILTY commands NO LOGINS and SET
LOGINS, when the number of free small buffers is less than
10.

Refer to the discussion relevant to the individual system program Ot
system operation for more information on the above uses of SYSTAT.

Further uses of SYSTAT are listed below and discussed in the ensuing
paragraphs.

4. Uncovering malfunctioning keyboards by the HUNG TTY count.

5. Guarding against a disk device filling wup by watching the
FREE block count.

6. Following the progress of user jobs or detached jobs by the
STATE and RUN-TIME items of job status.

Item (4) refers to the HUNG TTY count reported in the SYSTAT buffer
status report. A HUNG TTY count of zero is good. A HUNG TTY count of
non-zero indicates the presence of a malfunctioning terminal or
terminals. The ERRDIS program can identify the device or devices
causing the error count. If the HUNG TTY count increases rapidly, a
field service representative should be consulted.

The FREE block count mentioned in item (5) reflects the apparent
number of free blocks on each disk and is given in the disk status
report of SYSTAT. For practical purposes, however, such as for
allocation a file on the device, all of the free blocks reported by
SYSTAT may not be usable. A NO ROOM FOR USER ON DEVICE message may be
generated although SYSTAT reports that enough FREE blocks exist. The
file cluster size or the number of clusters reguired can prevent a
file from fitting on the device desired. For example, a file whose
cluster size is 16 and whose length is 10 blocks possibly does not fit
on a device which SYSTAT reports to have 50 free blocks of file space
remaining. The cluster size of 16 demands that 16 contiguous blocks
of free space must exist on the device before the file can be
allocated to the device. 1In some cases, 16 contiguous blocks simply

7-12

SYSTEM UTILITY OPERATIONS

do not exist on a device. (It must be pointed out that RSTS/E does
not allow a file to extend to another physical device.)

A further condition exists for showing NO ROOM FOR USER on a device.
The UFD is perhaps full and cannot accommodate the creation of another
file. The UFD cluster size was not made large enough when the account
was created with REACT.

The occurrence of jobs being stalled in a resource sharing system is
detectable by the means presented in item (6). If the system manager
notices that a RUN-TIME value of a job is not increasing (the value is
printed out in a Jjob status report), it indicates that the job is
stalled, waiting for an I/O device. One user job in the system can
ASSIGN a device or keep an assignable device locked by having one file
open on it. The system manager can determine the selfish user job by
examining the device status report which associates the busy device
with the job number of the user controlling that device. The system
manager can request that the user free the device or, if that is not
viable, can use UTILTY commands to force the job off the system.

The status of detached jobs is of interest also. If a detached job is
reported by SYSTAT to be in the HB state (hibernate), it is never
eligible for run time. The HB state indicates that the detached job
generated an error or has completed execution. The problem of a
detached job in the HB state is handled by logging into the system at
a free terminal, by using the attach capability of LOGIN and attaching
the job to a terminal. Once the detached job is attached to a
terminal, messages can be printed.

7.3 DYNAMIC DISPLAY OF SYSTEM STATUS - VTS5DPY AND VTS50PY

The VT5DPY and VT50PY system programs display the system status on a
VT05 and VT50 alphanumeric display terminal and update the status at
given intervals. The programs are stored in the system library with
protection code <232> and require a 14K job area to run. Since the
programs run in such a large job area, it is suggested that they be
used only on systems with ample memory.

Two programs are provided to display system status: VT5DPY (for the
VTO0S alphanumeric display terminal) and VT50PY (for the VTS50

DECterminal). Both programs are the same except for the output
routines. (The hardware commands and screen capacity of the VTO05
differ from those of the VI50.) Each program 1is created at system
generation time by appending the related output routines (VT05.DPY and
VT50.DPY) to a common display program (DISPLY.BAS) and compiling the
result.

The operation of each program is automatic or can be varied at user
option. When the user starts the program, he specifies the interval
at which the information on the screen is updated. The information
displayed 1is similar to that given by the SYSTAT system program.
However, the user can type commands to modify the items displayed.
For more information on SYSTAT, refer to Section 4.3 in the RSTS-11
System User's Guide and Section 7.2 of this guide.

SYSTEM UTILITY OPERATIONS

7.3.1 Running and Terminating VT5DPY and VTS50PY

The command RUN SVTS5DPY should be used on a VT05 terminal and the
command RUN S$VT50PY should be used on a VTS50 terminal.

The program runs and prints the INTERVAL question to which the |user
can type the number of seconds between updates and any combination of
the following modifiers.

Modifier Description

/DET Have the program run detached from
this terminal or from the terminal
specified.

/KBn: Run the program at keyboard unit n if
it is available. If /DET is

specified, run the program detached.

/NO FILL Set the fill factor to O. Improves
program performance when the VTO05 runs
at 300 baud or less.

/PRIORITY Run the program at special priority
rather than at -8 priority.

If the user types only the RETURN key or types no number with a
modifier in response to the INTERVAL question, the program updates the
status every 15 seconds.

Running the program detached allows the user to temporarily interrupt
the program and use the terminal to run other programs. To interrupt
the display, type the CTRL/C combination and the program prints a
message telling the user that the terminal is available. When the
user releases the terminal by logging off the system, the program
automatically displays the status information on the screen again.

When the program displays the system status, it prints a header 1line
on the top 1line of the screen, skips a line, and fills the leftmost
half of the screen with job status information and the rightmost half
of the screen with, 1in turn, disk structure, busy device, run time
system, free buffer status, and message receiver information. Upon
filling the screen the program moves the blinking cursor to the first
character position on the second line of the screen. This indicates
that the program is idle.

At the interval specified, system tables are interrogated and the
status information on the screen is updated with any changed data.
While executing routines to extract update information, the program
prints the message WORKING ... and leaves the cursor positioned to
the right of the message. After completing the update, the cursor is
returned to its idle position.

While the cursor is at its idle position, the user can type commands
to modify the <contents and arrangement of items on the screen. Any
command typed should be terminated by the ALTMODE key. Although any
line terminator works, ALTMODE 1leaves the cursor positioned on the
blank line. The program takes no action on invalid commands.

SYSTEM UTILITY OPERATIONS
Some commands which add items to the screen can be

sign which indicates taking away the effect of the
lists and describes the commands.

7.3.2 Screen Layout

The program partitions the screen into three parts:

the 1lefthand half and the righthand half. The
parts are defined in the following subsections.

preceded by a minus
command. Table 7-3

the header line,
components of these

SYSTEM UTILITY OPERATIONS

Table 7-3
VT5DPY and VTS50PY Commands

Command
Type Format Description

General C Clear the screen and display new status.

Sn Display memory status in place of job status.
Start with the 8K word section less than or
equal to n. If n is not given, start at the
beginning of memory.

J Display job status in standard manner.

Jn Display job status starting with n+l active
job. Use to overcome physical limitation of
the screen.

Xn Change the interval to n seconds.

X0 Update the display with an interval of 0
seconds (that is, run continuously) but lower
the priority so that other jobs are not
stalled.

Job 0 Display the account number of operator jobs
Status as [OPR]. An operator job has a project
number 1 and a programmer number less than
200.

-0 Replaces OPR in operator account designations
with the actual project and programmer
numbers.

T Display total CPU time each job has expended.
The time 1is displayed as number of hours,
minutes, seconds, and tenths of seconds under
the RUN-TIME column.

+ Display the increment of CPU time each job
has expended since VTS5DPY last updated the
screen. User can return to total CPU time by
typing T.

% Display the amount of CPU time each job has
expended as a percent of the total CPU time
expended. User <can return to total or
increment of CPU time by typing,
respectively, T or +.

J-0 Do not display operator jobe. (Operator jobs
are those running under project number 1 and
programmer number less than 200.)

(continued on next page)

SYSTEM UTILITY OPERATIONS

Table 7-3 (Cont.)
VT5DPY and VT50PY Commands

Command
Type Format Description
Job J+0 Include operator jobs in display.
Status
(Cont.) J-D Do not display detached jobs.
J+D Include detached jobs in display.
P Indicate priority of jobs more exactly than +
and - characters.
~P Indicate priority of jobs with + (for higher
than normal) and - (for lower than normal)
characters.
W Indicate under STATE column, the last WAIT
state rather than actual state.
-W Remove last WAIT state and indicate actual
state of each job.
K Display, under SIZE column, the amount of
memory occupied by each job.
-K Display, under SIZE column, the amount of
memory remaining to each job.
Disk D Display disk structure statistics. If n is
Structure|Dn 1, place item first on the screen. Preceding
-D minus sign removes same from the screen.
L Display, under COMMENTS column, the 1logical
~-L name of each device. Preceding minus sign
replaces logical names with standard PUB,
PRI, NFS, or LCK notations. .
Busy B Display busy device statistics. If n is 1,
Devices Bn place item first on the screen. Preceding
-B minus sign removes same from the screen.
Free F Display free buffer statistics. If n is 1,
Buffer Fn place item first on the screen. Preceding
-F minus sign removes same from the screen.
Message M Display message receiver statistics. If n is
Mn 1, place item first on the screen. Preceding
-M minus sign removes same from screen.
Run Time |R Display Run Time System data. If n is 1,
System Rn place data first on the screen. R preceded
-R by a minus sign removes same from the screen.

7-17

SYSTEM UTILITY OPERATIONS

7.3.2.1 Header Line - The header line 1looks 1like the following
sample.

RSTS VO6A SYSTEM #880 STATUS ON 31-JUL-74 11:15 UP 2:22:22

The header line contains the system identification, the current date
and time of day and the number of hours, minutes and seconds since the
start of time sharing operations. The latter item is termed up time.

7.3.2.2 Job Status - The 3job status consists of job statistics
information similar to that of SYSTAT with the addition of a few
states and a PR column for running priority.

The additional states which can appear in the STATE column are listed
and described below.

Xnn Job is swapped out and occupies slot number
nn in swapping file X. The swapping file is
denoted by letters A, B, C, or D to represent

respectively files SWAPO0.SYS through
SWAP3.SYS.

“C Job is in CTRL/C state, awaiting input to the
monitor.

LCK Job is 1locked in memory for the current
operation.

PK Job is running on a pseudo keyboard rather

than on a physical terminal.

RS Job is runnable and waiting for memory to be
allocated so that the system can swap it in.

SWI Job is currently being swapped into memory.
SWO Job is currently being swapped out of memory.
The PR column can display the following abbreviations.

If -P is in effect:

+ Higher than normal priority

-~ Lower than normal priority

S Special run priority

- CTRL/C temporary priority

K Keyboard delimiter temporary priority

If P is in effect:

+n Positive priority n
0 Zero priority
-n Negative priority n

7-18

SYSTEM UTILITY OPERATIONS

7.3.2.3 Memory Status - The S command causes the program to print a
table 1indicating the wusage of each 1K word portion of memory. This
memory status report replaces the job status report on the 1lefthand
half of the screen. To display the job information again, use the J
command.

Because of the 1limitations of the screens, all memory status
information may not be displayed simultaneously. The Sn command
allows the user to determine the starting 8K section. The display
program prints 8 abbreviations per row on the screen. Each
abbreviation concerns the status of a 1K section of memory. The
starting 1K section 1is in the leftmost position of the first row of
the memory status display table. The number of rows printed, and thus
the extent of memory covered, is limited by the terminal. The VTS50

screen allows 72 1K sections to be displayed; the VTO05 screen allows
168 1K =sections to be displayed. The program indicates the starting

40 1X =SCCLIONs LO De ClaplqayeC. i ploglaill 2NN lecalexs Lie Stallill o)

1K section by printing a header line in the following format.
MEMORY USAGE (STARTING AT nK)
The value n is the 1K section number.
The memory status report uses the following abbreviations.
MON Occupied by RSTS/E monitor
n Occupied by Run Time System n where n is the

position in the Run Time System list. (See
Section 7.3.2.8 in this document.)

n Occupied by job number n

nLK Job number n is locked in this 1K portion
nSsSoO Job number n is being swapped out of memory
nSI Job number n is being swapped into memory
NXM Memory space is locked or nonexistent

END End of physical memory for user jobs

7.3.2.4 Disk Structure - The disk structure report produced by the D
command is the same as that printed by SYSTAT. The COMMENT column can
have the following items.

PRI Cartridge or pack is private.

PUB Cartridge or pack is public.

NFS Disk is open as a non-file structured device.
LK Disk is in locked state.

XXXXXX Logical name of disk (the identification

label or the name associated to the disk by
the ASSIGN command). Appears only if user
types the L command.

7-19

SYSTEM UTILITY OPERATIONS

7.3.2.5 Busy Device Statistics - The busy device statistics are the
same as the ones generated by SYSTAT.

7.3.2.6 Message Receiver Statistics - The message receiver statistics
reflect 1information on jobs using the send/receive system function
call. The program displays the following information.

(PRIV) The s

XKXXXXX RIV haracter logical identification of

a
the receiving job. The designation (PRIV)
indicates the 3job receives messages from
privileged sending jobs.

X char

X Number of the job.

X/X Lefthand number (decimal) shows number of
messages queued for the job and rightmost
number (decimal) shows the declared maximum
number of messages the job can have queued.

7.3.2.7 Free Buffer Status - The free buffer statistics are the same
as those generated by the SYSTAT program.

7.3.2.8 Run Time System Statistics - The statistics for run time
systems are displayed on the righthand portion of the screen. Table
7-4 describes the elements of the display.

SYSTEM UTILITY OPERATIONS

Table 7-4

Run Time System (RTS) Statistics

Item Format Meaning
Name BASIC Denotes the BASIC-PLUS compiler and Run
Time System.

RTSLIB Denotes the auxiliary RTS supplied by
DIGITAL.

Size n The number of 1K sections occupied by
the Run Time System.

Number of n The number of user jobs currently

Users running under control of the Run Time
System.

Comments R-0 The Run Time System allows read only
access.

TEMP The Run Time System occupies user Jjob
space temporarily. Module is unloaded
if no job is running under its control.

R-W The Run Time System allows read and
write access.

LOADING The Run Time System is being loaded into

memory.

7-21

SYSTEM UTILITY OPERATIONS
7.4 DETERMINING TERMINAL AND REMOTE LINE CHARACTERISTICS - TTYSET

The RSTS/E system operates with a variety of terminals. During system
generation, the system manager specifies the numbers and types of
terminal interfaces as part of the hardware configuration. The types
of terminals are intentionally not specified. Since many terminals
can operate in Teletype mode at a speed of 110 baud, the system
automatically sets the default characteristics of all line interfaces
as those of the ASR-33 device. The system manager or privileged user
muct set the characteristics of other types of terminals.

The TTYSET system program sets terminal characteristics. As described
in Section 4.5 of the RSTS-11 System User's Guide, a user can set the
characteristics of his own terminal by TTYSET commands. The system
manager or privileged user can set the characteristics of terminals
other than his own by the privileged TTYSET KBN: command. The
standard method of setting characteristics of local lines is by the
TTYSET commands in the START.CTL file. This procedure sets up all
local lines automatically at the start of each time sharing session.

Two methods exist to set characteristics of remote lines. First, all
remote 1lines can have the default characteristics of the ASR-33
device. Consequently a remote user must log into the system at a
speed of 110 baud and then run TTYSET to set the characteristics of
his terminal. If the remote line is connected to a DCll single line
interface or to a DH1l multiplexer line, the user can type the TTYSET
SPEED command to change the baud rate. The terminal characteristics
revert to those of the ASR-33 device when the user hangs up the line.

The second method for setting characteristics of remote lines involves
setting the so called ring characteristics. The system manager or
privileged user can run TTYSET to set the ring characteristics which
cause the system to automatically use the characteristics so set every
time a call is answered on a particular remote line. By setting ring
characteristics for a remote line, the system manager can establish
certain lines for alphanumeric display terminals running at 300 baud,
for 2741 communications terminals, or for other types of terminals.
The ring characteristics remain in effect for the current time sharing
session unless changed again by TTYSET. TTYSET commands in the
START.CTL file can also establish ring characteristics.

7.4.1 Establishing the Terminal Speed Characteristics File - TTYSET.SPD

The TTYSET system program has a command which sets the baud rate of a
variable speed 1line so that a variable speed terminal can operate at
any of its legal speeds. The command 1is the SPEED command. The
proper functioning of the SPEED command reguires that the system
manager create a file called TTYSET.SPD and store it under the system
library account [1,2]. The TTYSET.SPD file contains entries in ASCII
format which specify the values for the speeds (baud rates) that a
given terminal 1line can handle. Currently, the DCll remote line
interface and the DH11 multiplexer interface are the only RSTS/E
supported devices which support programmable baud rates.

SYSTEM UTILITY OPERATIONS

The system manager creates the TTYSET.SPD file under the system
library account [1,2] by running PIP and specifying values as the
following sample format demonstrates.

RUN SPIP

PIP - RSTS V05B-24 SYSTEM #219

#SY0: STTYSET.SPD<KB:/FA

i, o,50, 75,110,-1,150,200,300,600,1200,1800,2400,4800,9600,-1,-1
12,110,-1,150,300,-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,-1,-1
13, o0,-1, -1,110,-1,150, -1,300,600,1200, ~-1,2400, -1, ~-1,-1,-1
"z

$72
READY

Each line of the file TTYSET.SPD contains 17 entries separated by
commas. The first entry is the keyboard number of the line interface
which allows programmable baud rates. Each of the remaining 16
entries in the line represents the baud rate corresponding to a valid
speed setting of 0 through 15. Speed settings that are not used must
have a value of -1.

The conventional baud rates are shown in the sample format above at
the line beginning with keyboard 1line number 11. The sixth,
sixteenth, and seventeenth entries in the line are not used by TTYSET
and must contain -1. The entries are, on the DH1ll multiplexer, 134.5
baud and two externally controlled baud rates.(l) If a baud rate is
allowed on a keyboard line, its value must appear as an entry in the
line for that keyboard number.

Take, for demonstration purposes, the 1line beginning with keyboard
line number 12 above. The entry for KB1l2 represents values that would
be entered for a typical DC1ll remote 1line interface which |is
established to handle the valid, variable speeds of a VTO5A display
terminal or LA30S serial DECwriter. The DC1ll interface supports four
different speeds. The four entries in the line after the entry for
the keyboard line number are used to define the speeds allowed on that

DC1l1 1line. The VTO0S5A terminal and LA30S DECwriter can handle speeds
of 110, 150, and 300 baud. The entries for those speeds are made in
the relative positions of the 1line fcor KB1l2. The entry for 134.5

(between 110 and 150) is not used by TTYSET(l) and must contain a -1.
All other entries in a line for a DCll must contain a -1.

The line beginning with keyboard line number 13 in the sample format
above represents values that would be entered for a DH1l1 multiplexer
line to handle the valid speeds of a VTO05B display terminal. The DHI1l
interface supports up to 16 different speeds including 0 baud. (A
speed of zero effectively turns the line off.) The VTO05B terminal can
handle speeds of 110, 150, 300, 600, 1200, and 2400 baud; 0 baud and
split speeds are also allowable. (Split speeds means that the
transmit rate differs from the receiver rate.) The entries for those
speeds are made in the proper positions of the 1line for KB13. For
those speeds not supported by or not allowed for the VT05B terminal on
the KB13 line, the user must indicate by making a -1 entry.

(1)Although the 134.5 entry must not appear in the TTYSET.SPD file,
the speed 134.5 is used for 2741 terminals. When the user types the
macro command 2741, the program sets speed 4 (134.5) on the DH1ll 1line
or speed 2 on the DCll 1line but does not check the entry in the
TTYSET.SPD file.

SYSTEM UTILITY OPERATIONS

The system manager ensures that the file TTYSET.SPD is stored in the
system library account [1,2] on the system disk when he types the SYO:
device specification and the dollar sign character ($) preceding the
filename in the PIP command string. The CTRL/Z combination ("Z) typed
on the line following the text for KB13 terminates the entry of text
to the ASCII file TTYSET.SPD and returns control to PIP, signalled by
the # character being printed. The CTRL/Z combination typed on the
line with the # character terminates the PIP run and returns control
to the RSTS/E Monitor. It is recommended that, after creating the
TTYSET.SPD file, the system manager run the TTYSET program and execute

the SPEED command for each line.

7.4.2 TTYSET Privileged Feature - KBn: Command

The system manager sets the characteristics of other terminals in the
RSTS/E system by use of the KBn: command. The system manager, while
logged into the system under his privileged account, calls the TTYSET
system program as follows.

RUN STTYSET
'TTYSET' TERMINAL CHARACTERISTICS PROGRAM

?

The program responds with a header line and a guestion mark character
(?), which indicates that the program is ready to accept commands. If
the system manager wishes to set the characteristics of a VTO05A
terminal at keyboard 3, he types the following commands.

?KB3:

FOR KB3:? VTO05

FOR KB3:?
In response to the system manager typing the KB3: command, TTYSET
prints the FOR KB3: prompting message. This message indicates that
the commands typed apply to keyboard number 3. The VT05 command

immediately sets the characteristics of the line to those of a VTO05A
alphanumeric display terminal. TTYSET prints the prompting message
again. Another KBn: command can be typed to set characteristics of
another keyboard.

The system manager can also change discrete characteristics of a
terminal. If he desires to limit the line length of the terminal at
keyboard unit 4, he types the following commands.

FOR KB3:? KB4:
FOR KB4:? WIDTH 60
FOR KB4:? EXIT

EXIT
As a result of the execution of the above commands, whenever 60
characters are printed on a line at keyboard unit 4, a carriage return

and line-feed operation is performed. The EXIT command terminates
TTYSET.

7-24

SYSTEM UTILITY OPERATICNS
7.4.3 Automatic Setting of Terminal Characteristics

The setting of terminal characteristics in the RSTS/E system applies
only to the current time sharing session. This condition allows for
replacement of an ASR-33 type terminal with another terminal without
having to change the system configuration and, thus, rebuild the
system. Since it is gquite bothersome for the system manager or a user
to set terminal characteristics each time the system is initialized,
the INIT system program can automatically set both 1local and remote
terminal characteristics by commands in the START.CTL and CRASH.CTL
files. Refer to the sample START.CTL and CRASH.CTL files 1in Section
3.1.

7.4.4 Setting Terminal Characteristics of Remote Lines - /RING

A remote line user whose terminal is other than an ASR-33 type
terminal must set the characteristics of his terminal each time he
logs into the system if he wants to ensure recognition of the
characteristics of that terminal by the RSTS/E system. The
characteristics discussed above remain set until either the telephone
is hung wup, the 1line 1is disconnected or the system shuts down or
restarts.

The /RING option relieves the user from the necessity of setting the
characteristics each time he logs into the system on a certain remote
line. For example, to set the characteristics of the remote 1line on
keyboard 14 for the current time sharing session, the system manager
can run TTYSET wunder a privileged account and type commands as
follows.

?KB14:/RING
FOR KB14: (RING)?LA36
FOR KB1l4: (RING)?

When the system manager indicates the /RING option with the KBn:
command, TTYSET prints the prompting message FOR KBn: (RING) after
which any TTYSET command can be typed. The command takes effect
immediately and TTYSET prints the prompting message again. If the
user is not logged into the system under a privileged account or the
characteristics of the line conflict with the command, TTYSET prints
an error message and the prompting message. If TTYSET is successful,
the characteristics for the remote line are set for the duration of
the current time sharing session. Each time a wuser dials the
particular line, the system uses the characteristics for that
terminal.

One caution is in order. The DL1l1E-type interface and the individual
local interfaces (KL11l, DL11-A through DL11-E, and LC1ll) do not have
programmable baud rates. Therefore, the user must not execute
commands to change baud rates on a keyboard line having any of those
interfaces.

SYSTEM UTILITY OPERATIONS
7.5 INITIALIZING A DISK DURING TIME SHARING - DSKINT

The system manager or a privileged wuser can initialize a disk
cartridge with the DSKINT system program rather than the DSKINT
initialization option. DSKINT writes a minimal file structure on a
previously formatted disk. All user files on the disk are destroyed.
All disks must be initialized before they can be used on a RSTS/E

system.

System disk initialization is a wunigue process performed by the
system. The procedures described 1in this section apply only to
non-system disks. Each user can initialize his disk without affecting
other users on the system.

DSKINT is called by using the RUN command as shown below.
RUN $DSKINT
DSKINT responds by printing gquestions reguesting specific information.

Refer to Chapter 3 of the RSTS/E System Generation Manual for detailed
descriptions of these questions. Shown below is a sample dialog.

RUN S$DSKINT

DISK ? RK

UNIT 2 1

PACK ID ? MARK

PACK CLUSTER SIZE ? 16
MFD PASSWORD ? LEVY
MFD CLUSTER SIZE ? 16
PUB OR PRI ? PRI

READY

Because the DSKINT system program does not perform any pattern checks
for bad blocks and cannot format a disk, it is not as versatile as the
DSKINT initialization option. Furthermore, the program does not
create the storage allocation table. After the disk is initialized by
the DSKINT system program, the user must build the SAT by executing
the CLEAN command of the UTILTY system program. See Section 7.1.2 for

a description of the CLEAN command.

SYSTEM UTILITY OPERATIONS
7.6 OPTIMIZING DISK DIRECTORIES - REORDR

The REORDR program reorders blocks in a specified directory on a
RSTS/E file structured disk to give optimum structure for fast access.
The program is stored on the system disk with protection code <124>.
The disk to be employed must be logically mounted. The directories
being reordered must not be accessed while REORDR runs.

REORDR accepts a device and an account specification or several
specifications separated by commas. The device specification must be
explicit. Logical names are acceptable but SY: is not acceptable.
The account specification can contain the wild card specification
character (*). The system account [0,1] and the MFD account [1,1] are
never reordered.

It is suggested that the REORDR program be run once a week or whenever
directory accesses appear to degrade system operation. The safest way
to run the program is from a special INIT control file at system start
up time. The following is a sample control file.

LOGINS

LOGIN KBl: [1,2]

FORCE KBl: RUN SUTILTY
FORCE KB1l: NO LOGINS
FORCE KBl: EXIT

SEND REORDR IS RUNNING
SEND PLEASE STAND BY
MOUNT DK1:PRIV1

MOUNT DK2:PRIV2

FORCE KBl: RUN SREORDR
FORCE KBl: DKl:[*,*],DK2:[*,*]
FORCE KBl: ~

FORCE KBl: LOGINS
FORCE KBl: BYE/F
@START.CTL

END

The commands in the control file mount the disks to be employed and
log a job into the system to run the REORDR program. The UTILTY
program is run to disable further logins and thus prevent users from
accessing the disks during the reordering. A message broadcast to all
terminals can inform users of the action. Following the commands to
reorder all directories on the disk and terminate REORDR, INIT enables
logins again, logs keyboard 1 off the system and transfers to the

standard control file to perform a normal system start up.

By following the recommended procedures, little chance exists for
users to access a directory while it is being reordered. Thus, REORDR
is always run by INIT from a specially tailored control file. The
following dialogue shows the procedure.

SYSTEM INITIALIZATION PROGRAM
CONTROL FILE NAME? REORDR.CTL

INIT then uses the tailored control file REORDR.CTL which contains the
commands to run REORDR.

7-27

SYSTEM UTILITY OPERATIONS
7.7 PROCESSING USER COMMENTS - GRIPE

The RSTS/E system includes a program to allow users of the system to
communicate comments to the system manager. Comments are entered,
under the control of the GRIPE system program, to a common file named
GRIPE.TXT file. The file, GRIPE.TXT, which retains the user comments
for inspection by the system manager, 1is created, expanded, and
deleted on an as-needed basis under the system library account ([1,2].
As an aid in identifying the user who entered the comment, the GRIPE
system program uses a name item supplied in the individual user's
account information in the ACCT.SYS file, also stored in the system
library account [1,2]. However, the name 1item and entry for the
account in the ACCT.SYS file are not required for GRIPE to run. See
Section 4.1.3 for the ACCT.SYS file format.

The system manager or a privileged user invokes the GRIPE system
program in the same manner as the general user. (GRIPE is described
in Chapter 4 of the RSTS-11 System User's Guide.) Once GRIPE prints
its query 1line, the system manager can then examine the contents of
GRIPE.TXT or can clear the contents of GRIPE.TXT.

The *LIST command is used in the following manner to examine the
contents of the GRIPE.TXT file.

RUN S$GRIPE
YES? (END WITH ESCAPE)
*LISTS$ OUTPUT? LP:

READY

The system manager types *LIST and the ESCAPE or ALT MODE key
immediately after the query line. (Typing the ESCAPE or ALT MODE key
on a separate line causes *LIST to be entered as text into the
GRIPE.TXT file.) If the GRIPE.TXT file is empty, the message NO GRIFES

FOUND is printed, followed by the READY message. Otherwise, the GRIPE
program reguests an output device on which to list the contents of the
GRIPE.TXT file. The system manager can type the RETURN key to have
the comments listed at the keyboard printer or can type a device
designator, such as LP: shown in the example above. The output for
each user comment in the GRIPE.TXT file consists of an identification
line (including the account entering the comment, the date and time it
was entered, and an account name taken from the ACCT.SYS file) and the
text of the comment. The program run is automatically terminated upon
completion of the output. Control is returned to BASIC-PLUS. This
action is signalled by printing of the READY message.

The system manager clears the contents of the GRIPE.TXT file by using
the *RFESET command after invoking GRIPE. The following example
demonstrates the use of *RESET.

RUN SGRIPE
YES? (END WITH ESCAPE)
*RESETS

READY

The system manager must type *RESET immediately followed by the ESCAPE
or ALT MODE key. The clearing of the GRIPE.TXT file and termination
of the GRIPE run is signalled by the READY message.

SYSTEM UTILITY OPERATIONS
7.8 COMMUNICATING WITH OTHER TERMINALS - PLEASE AND TALK

A user can communicate with the system console terminal or with
another user's terminal by using the system programs, PLEASE and TALK,
respectively. These programs are discussed individually in the
sections that follow.

Both programs have a protection code of <232>, permitting all users to
run them. The system manager can change the protection code to <124>
so only privileged users can run these programs.

7.8.1 Sending a Message to the Console Terminal - PLEASE

PLEASE enables the user to send a message to the system console
terminal (KBO:). This message, along with the user's job number and
keyboard number, is broadcast directly to the system console terminal.

PLEASE is called as follows:
RUN SPLEASE

PLEASE prints the query line shown below:
YES!!MAY I HELP YOU? (END WITH CONTROL/Z)

Characters are not transmitted until the CR key 1is typed, at which
point the entire 1line 1is broadcast. So type the CR key after each
line.

Since each line of the message is broadcast immediately, no prompting
characters are printed on the sending terminal between the lines of
the message. One line of the message can be typed into the sending
terminal while simultaneously another line is being printed out on the
system console terminal. If the system console terminal is in |use,
each 1line of the message is stored in one of that terminal's buffers
and printed at a later time.

ate th

(0]
ro

e ro

t.

Type the CTRL/C or CTRL/Z combination ram after

the last line of the message has been

o]
Q

O

erm
dca

O
Q -t

NOTE

Do not type the CTRL/C or CTRL/Z
combination to broadcast the last line.
Using either of these combinations
before typing the CR key terminates the
program and the 1last 1line is not
broadcast.

PLEASE prints THANK YOU. to indicate all lines have been broadcast.

Here is an example of a user broadcasting a message to the console
terminal.

RUN $PLEASE
YES!! MAY I HELP YOU? (END WITH CONTROL/Z)

SYSTEM UTILITY OPERATIONS

I WILL BE OUT OF TOWN FOR THE NEXT TWO WEEKS.
WILL LET YOU KNOW WHEN I RETURN.

-- JOHN SMITH
"z
THANK YOU.
READY
The message printed on the system console terminal automatically
includes the sender's job and keyboard numbers as shown below.

JOB 9 KB 15: I WILL BE OUT OF TOWN FOR THE NEXT TWO WEEKS.
JOB 9 KB 15: WILL LET YOU KNOW WHEN I RETURN.
JOB 9 KB 15: --JOHN SMITH

7.8.2 Sending a Message to Another Terminal - TALK

TALK enables users to broadcast messages, line by line, to each
other's terminals. Both the sending and the receiving terminal must
be on-line, but no user need be logged in on the receiving terminal.

TALK is called as follows:

RUN $TALK

The first gquery line printed is:
TO WHICH KEYBOARD (KB)?

Type the number of the keyboard to which the message is to be sent;
then type the CR key. If the receiving terminal is in use, each line
of the message is stored in one of that terminal's buffers and printed
at a later time.

NOTE.

As a general rule, don't broadcast to a
terminal in use before consulting with
that terminal's operator. An
unscheduled message can disrupt an
elaborate printout, sometimes destroying
hours of work.

Typing the number of a non-existent or off-line terminal does not
return an error message. In the case of a nonexistent terminal, the

program terminates when the CR key is typed. Messages sent to an
off-line terminal, however, are broadcast normally, but never
received. 1In this case, typing the CR key does not terminate the
program.

TALK prints the following instructions:

YOU MAY PROCEED - CARRIAGE RETURN SENDS THE LINE
'ALTMODE' ('ESCAPE') SENDS AND TERMINATES THE PROGRAM

To send a message, type the CR key after typing each line. Characters

SYSTEM UTILITY OPERATIONS

are not transmitted until the CR key is typed, at which point the
entire line is broadcast. Since each line of the message is broadcast
immediately, no prompting characters are printed on the sending
terminal between the lines of the message.

The ALT or ESCAPE key, used to terminate the program, can be typed
after the last CR key or instead of it. This key prints an ESC
character (echoed as $) on the sending terminal. When typed instead
of the CR key, the ALT or ESCAPE key also prints an ESC character on
the receiving terminal. When this happens, the system does not
perform a carriage return operation on the receiving terminal.

Shown below is a typical sending terminal dialog between keyboard 12
(sender) and keyboard 9 (receiver).

RUN S$TALK

TO WHICH KEYBOARD (KB)? 9

YOU MAY PROCEED - CARRIAGE RETURN SENDS THE LINE
'ALTMODE' ('ESCAPE') SENDS AND TERMINATES THE PROGRAM
GEORGE

PLEASE MOUNT MY DECTAPE WHEN YOU GET A CHANCE.
THANKS. ..
HERMAN

$
READY

The receiving terminal's printout automatically identifies the sending
device by enclosing it 1in asterisks. No ESC character is printed.
The actual message is printed next to the identification, as follows:

KB12 ** GEORGE
*% KB12 *%

*% KB12 ** PLEASE MOUNT MY DECTAPE WHEN YOU GET A CHANCE.
*% KB12 **

k% KB12 ** THANKS
*% KB12 **

*% KB12 *% HERMAN

7-31

SYSTEM UTILITY OPERATIONS

If at this point, keyboard 9 returns a message, it is done as follows:

RUN STALK

TO WHICH KEYBOARD (KB)? 12

YOU MAY PROCEED - CARRIAGE RETURN SENDS THE LINE
"ALTMODE' ('ESCAPE') SENDS AND TERMINATES THE PROGRAM

OKAY, HERMAN...
YOUR DECTAPE IS MOUNTED ON UNIT #2

SORRY FOR THE DELAY!
GEORGES

READY

Notice that the ESC key was typed instead of the final
above example. This prints the ESC character on both
receiving terminals (see below) .

** KB9 ** OKAY, HERMAN...

x% KBQ9 **

** KB9 ** YOUR DECTAPE IS MOUNTED ON UNIT 2.
** KB9 ** SORRY FOR THE DELAY!

**x KBQ **

k% KB9 ** GEORGES$

7-32

CR key 1in the
the sending and

APPENDIX A

HARDWARE BOOTSTRAP PROCEDURES

Bootstrapping a device involves using the central processor unit (CPU)

console switches to access and initiate a hardware loader. The
hardware loader contains machine instructions for reading a special
record from the device. The record, called a bootstrap record, is

transferred into memory and executes a specially designed software
program. For the bootstrap operation to succeed, the device accessed
must be on line and ready; the medium accessed must contain a proper
bootstrap record; and the console terminal must be on line.

The console switches and their usage are described in Chapter 11 of
the PDP-11/70 Processor Handbook and in Chapter 8 of the PDP-11/45
Processor Handbook and the PDP-11/40 Processor Handbook. The
bootstrap procedure to use depends upon the type of hardware bootstrap
device on the system. Table A-1 summarizes the addresses needed to
bootstrap a device. The detailed procedures to bootstrap a device are
presented according to the types of hardware bootstrap devices
available.

HARDWARE BOOTSTRAP PROCEDURES

Table A-1
Summary of Hardware Bootstrap Addresses

Bootstrap Type

Device to

Bootstrap BM873-YA BM873-YB(1l) | MR11-DB BM792-YB(2)
RF11 disk 773000 773136 773100 777462
RK1l1l disk 773010 773030 773110 777406

car tridge

unit 0

RP03 disk 773100 773350 773154 776716

pack unit 0

RP04 disk - 773320 - -
pack unit 0

RK11l disk - 773032 - -
(unit speci-
fied in SR)

RPO3 disk - 773352 - -
(unit speci-
fied in SR)

RP04 disk - 773322 - -
(unit speci-
fied in SR)

TM11/TU10 773050 773110 773136 See foot-
Magtape note 3.
TM02/TU16 - 773150 - -
Magtape

TC1l1/TU56 773030 773070 773120 777344
DECtape

(1)To bootstrap a non-zero disk unit, set the address in the Switch
Register, press the LOAD ADRS switch, set the unit number in the
switch Register, and press the START switch.

(2)For the BM792-YB loader, set the address 773100 in the Switch
Register, depress the LOAD ADRS switch, set the value from the table
in the Switch Register, and press the START switch.

(3)To bootstrap a magtape, use the 1loading routine described in
Section A.4.

HARDWARE BOOTSTRAP PROCEDURES
A.1 BM873-YA PROCEDURE

If the BM873-YA Restart/Loader is on the system, perform the following
steps.

Move the CPU console ENABLE/HALT switch to its HALT position
and back to its ENABLE position.

Set the CPU Switch Register to one of the following values.

773000 for RF11 disk

773010 for RK11l disk cartridge unit 0
773100 for RP0O3 disk pack unit 0
773050 for TM11/TU10 magtape unit 0
773030 for TC1l1/TU56 DECtape unit 0

Depress the CPU LOAD ADRS switch.

Depress the CPU START switch.

HARDWARE BOOTSTRAP PROCEDURES

A.2 BM873-YB PROCEDURE

I1f the BM873-YB Restart/Loader is on the system, perform the following

steps.

Move the CPU Console ENABLE/HALT switch to its HALT position
and back to its ENABLE position.

Set the CPU Switch Register to one of the following values.

773030
773136
773320
773350

773032

773322

773352

773110
773150

773070

for RK1l disk cartridge unit 0
for RF11 disk

for RP04 disk pack unit 0

for RP03 disk pack unit 0

for RK1l disk unit
Switch Register

specified in

for RP04 disk unit
Switch Register

specified in

for RP03 disk unit
Switch Register

specified in

for RM11/TUl10 magtape
for RM02/TUl6 magtape

for RC1l1/TU56 DECtape

Depress the CPU LOAD ADRS switch.

If necessary, set the CPU Switch Register to the unit

of the disk drive being bootstrapped.

Depress the CPU START switch.

the

the

the

number

HARDWARE BOOTSTRAP PROCEDURES
A.3 MR11-DB PROCEDURE

If the MR11-DB Bulk Storage Loader is on the system, perform the
following steps.

Move the CPU Console ENABLE/HALT switch to its HALT position
and back to its ENABLE position.

Set the CPU Switch Register to one of the following values.

773100 for RF11 disk

773110 for RK1ll disk cartridge unit 0
773154 for RP0O3 disk pack unit 0
773136 for TM11/TUl0 magtape unit 0
773120 for TCll/TU56 DECtape unit 0

Depress the CPU LOAD ADRS switch.

Depress the CPU START switch.

HARDWARE BOOTSTRAP PROCEDURES
A.4 BM792-YB PROCEDURE

If the BM792-YB Hardware Loader is on the system, perform the
following steps.

Move the CPU Console ENABLE/HALT switch to its HALT position
and back to its ENABLE position.

Set the CPU Switch Register to 773100.
Depress the CPU LOAD ADRS switch.

Set the CPU Switch Register to one of the following values.

777462 for RF11l disk

777406 for RK11l disk cartridge unit 0
776716 for RP03 disk pack unit 0
777344 for TCll/TU56 DECtape unit 0

Depress the CPU START switch.

To bootstrap a TM11/TUl0 magtape from unit 0 when the system has
neither the BM873 nor the MR11-DB loader, the user must manually enter
a load routine into memory using the CPU console Switch Register and
the DEP Switch.

To load the routine, perform the following steps.

Move the CPU Console ENABLE/HALT switch to its HALT position
and back to its ENABLE position.

Set the CPU Switch Register to 010000

v Ty 4oL LV ViLvULULUe

Depress the CPU LOAD ADRS switch.

Load the following contents 1into memory using the Switch
Register and DEP switch.

Address Contents
010000 012700
010002 172524
010004 005310
010006 012740
010010 060011
010012 105710
010014 100376
010016 005710
010020 100767
010022 012710
010024 060003
010026 105710
010030 100376
010032 005710
010034 100777
010036 005007

Set the Console Switch Register to 010000.

HARDWARE BOOTSTRAP PROCEDURES
Depress the CPU LOAD ADRS switch.
Depress the CPU START switch.

If the system reads the tape but halts at address 010034, the device
generated a magtape error. The user can try another drive. If the
system appears to take no action and halts, verify the accuracy of the
routine by using the CPU Console EXAM switch. Use the Switch Register
and the DEP switch to correct any erroneous contents. Rewind the tape
to 1its load point before executing the routine again. If no recovery
is successful, it will be necessary to have a DIGITAL Field Service
representative check the drive. If the hardware is working properly,
it will be necessary to use a new magtape reel.

APPENDIX B

RSTS/E CONSISTENCY ERROR MESSAGES

During the execution of RSTS/E initialization routines, many checks
are made to determine the consistency of system structures. The
existing structures are compared to their definitions and references
as they appear in other parts of the system. The checks must always
be successful. If they are not successful, a consistency error has

been detected and the system regquires correction.

The initialization code is executed in two phases: first, the CILUS
phase after the system disk is bootstrapped and before the OPTION:
message is printed; and, second, the option phase during which any of
the initialization options can be executed.

B.1 CILUS PHASE ERRORS

If an error occurs during the CILUS phase, the initialization code
prints a descriptive message and the following text.

FATAL RSTS SYSTEM INITIALIZATION ERROR!

THE FATAL ERROR OCCURRED DURING THE CILUS PHASE
OF SYSTEM INITIALIZATION; THERE IS NO RECOVERY.

The processer i halted so {-hai- if the CPU consonle CONT switch is

wila COonOle LUIND

pressed, the code bootstraps the system disk again. Bootstrapping the
disk, however, is usually not a worthwhile procedure because most of
the errors reflect a serious problem rather than a transient hardware
error. Reloading of the system disk (see Section 2.9 of the RSTS/E
System Generation Manual) is recommended in some cases but
regenerating the system is required in other cases.

The list below gives the descriptive messages followed by a one-word
advice (in parentheses) indicating the recovery procedure. The
following legend briefly summarizes the recovery procedures.

RSTS/E CONSISTENCY ERROR MESSAGES

(reboot) Bootstrap again. If unsuccessful, reload the
system disk.

(reload) Reload the system disk (see Section 2.9 of the
RSTS/E System Generation Manual). If reloading
does not eliminate the error condition,

regenerate the system.

(regen) Regenerate the system and load the new CIL. (See
Section 2.1 of the RSTS/E System Generation
Manual.)

(hard) A hardware adjustment or addition is required.

(spr) File a Software Performance Report. There is no

recovery.

The following are the descriptive messages.

CHECKSUM ERROR IN CIL INDEX. (reboot)
CIL LINE IS MISSING FROM CIL INDEX. (reload)
COMD LINE IN CIL INDEX IS IN INCORRECT FORMAT, (reload)
DEVICE BOOTED DOES NOT MATCH SYSTEM DEVICE. (regen)
DEVICE BCOTED IS NOT A LEGAL RSTS SYSTEM DEVICE. (regen)
DEVICE ERROR WHEN READING CIL INDEX. (reboot)
DOUBLE OCCURRENCE OF SOME SYSTEM IMAGE. (regen)
FORMAT ERROR IN CIL INDEX. (reload)
ILLEGAL BLOCK SIZE IN CILUS BOOTSTRAP PARAMETERS. (regen)
ILLEGAL SWAPPING DISK DETECTED. (regen)
INIT ERROR - SECTION I.BOOT TOO SMALL (spr)

INIT WAS INCORRECTLY ASSEMBLED OR LINKED. (spr)

*** MONITOR IS TOO BIG **¥* (regen)
RSTS/E REQUIRES EIS TO RUN! (hard)

RSTS/E REQUIRES MEMORY MANAGEMENT HARDWARE! (hard)

TOO MANY NON-SYSTEM IMAGES IN CIL (regen)

If the initialization code finds that certain modules are missing, it
prints one of the two sets of messages.

SYSTEM MODULE xxx IS MISSING FROM CIL.
ONE OR MORE CRITICAL MODULES MISSING FROM CIL. (regen)

RUN-TIME SYSTEM MISSING FROM CIL.
ONE OR MORE MODULES MISSING FROM CIL. (regen)

The module name replaces xxx in the message.

RSTS/E CONSISTENCY ERROR MESSAGES

Under certain conditions, the initialization code prints a warning
message followed by the OPTION: message. The user can operate within
the restrictions described in the warning. The following are the
warning messages possible.

WARNING ** THIS PDP-11/70 WILL RUN IN 11/45 MODE
DUE TO THE NUMBER OF UNIBUS NPR DEVICES.

WARNING ** THIS MACHINE DOES NOT HAVE THE CONFIGURED CLOCK!
RSTS/E WILL CRASH IF YOU ATTEMPT TO START TIME-SHARING.

WARNING ** THIS MACHINE DOES NOT HAVE A STACK LIMIT REGISTER!
ALTHOUGH NOT ADVISED, RSTS/E WILL RUN WITHOUT THE OPTION.

WARNING ** THIS RSTS SYSTEM, WHICH WAS NOT BUILT FOR AN 11/70,
WILL CRASH IF PARITY ERRORS OCCUR!

WARNING ** THIS RSTS SYSTEM, WHICH WAS BUILT FOR AN 11/70,
WILL CRASH IF PARITY ERRORS OCCUR!

WARNING ** DBx: IS DUAL PORTED, PROCEED WITH CAUTION!
If the message concerning the dual ported RP04 disk is printed, ensure

that the Controller Select switch on the related drive is in the
correct position (the port connected to RSTS/E).

RSTS/E CONSISTENCY ERROR MESSAGES

B.2 OPTION PHASE ERRORS
If an error occurs during the option phase, the initialization code
prints a descriptive message and halts. The following are the
messages. :

ATTEMPT TO ASK FOR OPTION WHEN CILUS PHASE NOT DONE.

BAD DIRECTORY DETECTED DURING CLEAN.

EXISTING SYSTEM FILE EMPTY OR NON-CONTIGUOUS.

FILE [0,1]BADB.SYS MISSING FROM SYSTEM DISK.

INIT BUG - ATTEMPT TO DELETE NONEXISTENT FILE.

INIT BUG - FAILED TO CREATE RSTS.CIL ON 2ND TRY

INIT BUG - FILE EXISTED WHEN TRYING Tu CREATE.

INIT BUG - INSUFFICIENT DIRECTORY SPACE FOR CREATE.

INIT BUG - INSUFFICIENT DISK SPACE FOR CREATE.

INIT BUG - SATT.SYS NONEXISTENT AT TIME OF WOMP.

INIT BUG - UNABLE TO REBUILD DISK

INSUFFICIENT DIRECTORY SPACE FOR SYSTEM FILES.

INSUFFICIENT DISK SPACE FOR [0.1] DIRECTORY.

PACK CLUSTER SIZE IS NOT 1, 2, 4, 8 OR 16.

REQUIRED FILE BADB

v

SY:

P

. DOES NOT EXIST.

REQUIRED FILE SATT.SYS FILE DOES NOT EXIST.
REQUIRED LIBRARY ACCOUNT [1,2] DOESN'T EXIST.
RSTS CIL IS NOT ON A CLUSTER BOUNDARY.

SYSTEM DISK SAT SIZE NOT EQUAL TO COMPUTED SIZE.

SYSTEM FILE CONTAINS BAD BLOCKS - CANNOT REFRESH.

APPENDIX C

AUXILIARY SYSTEM PROGRAM FILES

Certain auxiliary files are built during the system library build
procedures. The program which builds each file is stored in the
library along with the file. 1If, for any reason, the file is damaged
or destroyed, the file can be created by running the related program
as described in this appendix.

C.1 CHARACTER GENERATION FILE - CHARS.QUE

The 1line printer spooling program SPOOL requires the character
generation file CHARS.QUE. The file is a virtual core array and is
stored on the system disk during system generation by commands in the
SPLER.CTL file. To create the CHARS.QUE file, first ensure that the
old copy is deleted from the system library. The CHARS program
terminates with an error if a file named CHARS.QUE exists in the
system library directory. Next, run the CHARS program by typing the
following command.

RUN $CHARS
READY

After terminating, CHARS returns control to BASIC-PLUS as indicated by
the READY message.

AUXILIARY SYSTEM PROGRAM FILES
C.2 BATCH COMMAND DECODING FILE - BATCH.DCD

The BATCH system program requires the command decoding file BATCH.DCD.
The file 1is a virtual core array and 1is created during system
generation by commands in the SPLER.CTL file. To create the BATCH.DCD
file, first ensure that the old copy 1is deleted from the system
library. Run the BATDCD program while logged into the system under a
privileged account. The program terminates with an error if a file
named BATCH.DCD exists in the system library directory. The following
sample dialogue shows the proper procedure.

RUN S$BATDCD
READY

After terminating, BATDCD returns control to BASIC-PLUS as 1indicated
by the READY message.

APPENDIX D

NUMBER CONVERSION

Many applications require a number based on bit wvalues in a PDP-11
word. The following list shows the octal and decimal values for each
bit in the PDP-11 word.

Bit Octal Decimal
Number Value Value

0 1 1

1 2 2

2 4 4

3 10 8

4 20 16

5 40 32

6 100 64

7 200 128

8 400 256

9 1000 512

10 2000 1024

11 4000 2048

12 10000 4096

13 20000 8192

14 40000 16384
15 100000 32768 (32767+1)

Account,
automatic creation, 4-4
creation, 4-1
deleting files from, 7-4
deletion of, 4-4
determining files in, 4-12
number, 4-3
statistics,
list of, 4-9
maximum limits, 4-10
resetting, 4-7
ACCOUNT OR DEVICE IN USE error
message, 7-8
ADD command, 7-4
/ADDR option, 7-11
ANALYS system program, 6-10
ATTACH command, 3-4
Automatic recovery and restart,
2-9
Automatic restart, 2-11

BATCH.DCD file, C-2

BATCH system program, 5-16

Bit values, D-1

BM792-YB hardware loader, A-6

BM873-YA restart/loader, A-3

BM873-YB restart/loader, A-4

Bootstrap loader, 1-2

Bootstrapping RSTS/E, 2-1, 2-2

Bootstrap procedures, hardware,
A-1

BYE command, 3-4

Cache memory, 1-2
Card reader, 1-5
Catastrophic errors, 2-9
CHANGE command, 7-4
Character,
asterisk (*) in QUEMAN, 5-4
back arrow (+) in ODT, 6-20
backslash in QUEMAN, 5-3
circumflex (*) in ODT, 6-20
commercial at (@),
in INIT, 3-3
in ODT, 6-21
greater than (») in ODT, 6-21
less than (<) in ODT, 6-22
percent (%) in ODT, 6-23
period (.) in ODT, 6-25
question mark (?),
in ERRDIS, 6-3
in TTYSET, 7-24

quotation marks (") in ODT, 6-22
reverse slant (\) in ODT, 6-18

slant (/) in ODT, 6-18

INDEX

Character (cont.),
underline () in ODT, 6-20
up arrow (*1),
in INIT, 3-3
in ODT, 6-20
CHARS.BAS HAS NOT BEEN RUN --
CAN'T RUN, 5-10
CHARS.QUE file, C-1
CILUS phase errors, B-1
CLEAN command, 7-3
usage of, 7-8
CLEAN COMPLETED message, 3-4
Cluster size (UFD),
determining, 4-9, 4-11
setting, 4-3
CO command, 5-13
COMMAND FILE NAME? guestion, 3-1
@name command, 3-3
Configuration errors, 2-9
Connect time, device, 4-9
Consistency (initialization)
error messages, B-1
CONSOLE light, 2-7
Console switches, A-1

Control files (INIT), creation of,

3-6

CPU time, determining, 4-9
CRASH.CTL file example, 3-9
Crash dump, 2-10

enabling, 2-11

requesting a, 2-2
Crash program, (ERRCRS), 6-2
CRASH.SYS file, 6-2

DATE command, 7-2

Debugging tool, 6-12

DE command, 5-13

\DE command, 5-5

DECtape,
hardware bootstrap addresses,

A-2

DELETE function, 4-4

DETACH command, 3-4

Device, connect time, 4-9

Directory structure, 1-7, 1-8
optimizing on disk, 7-27

DISABLE command, 7-2

Disk,
catalog of, 4-11
changing password, 7-4
changing quota, 7-4
cleaning command, 7-3
creating SAT on, 7-26
devices supported, 1-3
dismounting command, 7-3
hardware bootstrap addresses,

A-2

INDEX-1

Disk (cont.),
initializing a, 7-26
locking command, 7-3
management, 7-6

commands, 7-3
mounting command, 7-3
optimization of, 1-8

directory structure, 7-27
organization of, 1-7
preparation procedures, 7-6
prevention from filling up, 7-12
quota on, 4-12
RP04 dual port selection, B-3
statistics of usage, 7-19
storage used on, 4-9
UFD cluster size, 4-12
unlocking command, 7-3

DISK PACK NEEDS 'CLEANING'

7-8

DISMOUNT command, 7-3
usage of, 7-8

Documentation directory, vii

DSKINT system program, 7-26

error,

EIS (Extended Instruction Set),
1-2
END command, 3-4
ENTER function, 4-1
ERRCPY system program,
ERRCRS system program,
ERRDIS system program,
options, 6-5
option switches, 6-7
recommended usage, 6-7
ERRLOG.FIL file, 6-2
Error display program (ERRDIS),
6-3
Error logging, 6-1
Error messages, consistency
(initialization), B-1
Errors,
configuration, 2-9
detection on system, 6-1
privileged-account programming,
2-10
recovery from line printer, 5-12
\EX command, 5-5

DO O
1
W N -

Extended instruction set, (EIS),
1-2

File structure, 1-7

FIs, 1-2

Floating point processor (FPP),
1-2

FORCE command (UTILTY), 7-2

FORCE KBn: command (INIT), 3-3

FPP (Floating Point Processor),
1-2

FREE block count, 7-12

Free buffer statistics, 7-20

GRIPE system program, 7-28

GRIPE.TXT file, 7-28

Halting RSTS/E, 2-7
HANGUP command, 7-2
Hardware, 1-1
bootstrap,
addresses, summary of, A-2
procedures, A-3
malfunctions, 2-10
HUNG TTY count, 7-12

ILLEGAL JOB NUMBER ENTERED

message, 3-14
ILLEGAL SYS () USAGE AT LINE
21010, 5-11

\IN command, 5-5
Indirect command, 3-3
Indirect control file example,

3-10
Initialization option summary,
2-4
INIT system program, 3-1
commands, 3-2
usage of commands, 3-5
Intermediate code, 1-8

Interpretive address quantities
(Q and .), 6-24
Initialization errors, B-1

Job,
altering maximum size, 3-14
changing run burst of, 3-14
hibernate (HB) state of, 7-13
killing by command, 7-2
stalling on system, 7-13
statistics of, 7-18

JOB ABORTED, 5-15

JOB DEFERRED, 5-15

JOB RESTARTED, 5-15

JOB RESUMED, 5-15

Job size,

change by LOGIN, 3-15

KBn: command, 7-24
KCT, 4-9

KI command, 5-13
KILL command, 7-2

Kilo-core-ticks, 4-9

INDEX-2

Language processors, 1-6
L command, 6-22
Line printer,
errors, 5-12
output of spooling, 5-13
spooling a, 5-10
width setting, 5-10
LOAD command, 7-4
LOCK command, 7-3
LOGIN KBn: command, 3-3
LOGIN system program, changing,
3-15
LOGINS command,
in INIT, 3-3
in UTILTY, 7-2
Logins,
disabling, 7-2
setting fixed number of, 7-2
LOGOUT quota,
changing, 7-4
determining, 4-9
setting, 4-3
LP11 line printer, 1-5
LS line printer, 1-5

Magtape,
hardware bootstrap addresses,
A-2
Master file directory (MFD), 1-7
Maximum job size, 3-13, 3-14
\ME command, 5-5
Memory,
dump, 2-2
status of, 7-19
Message receiver statistics, 7-20
MFD, 1-7
setting password, 4-3
MONEY system program, 4-6
MOUNT command,
in INIT, 3-4
in UTILTY, 7-3
usage of, 7-8
MR11-DB Bulk storage loader, A-5

NAME command, 7-4

NO LOGINS command, 7-2

NO QUEUE FILE FOUND -- WILL
INITIALIZE message, 5-3

NO ROOM FOR USER ON DEVICE error
message, 7-12, 7-13

NO RUN TIME SYSTEM error, 7-11

Octal value table, D-1
ODT system program, 6-12
characters and symbols, 6-14,
6-15, 6-16, 6-17, see also
characters

ODT system program (cont.),
currently open location (.),
6-25
error procedures, 6-25
FILE question responses, 6-18
interpretive addresses, 6-24
last value printed, 6-25
opening and closing locations,
6-18
opening locations,
absolute, 6-21
PC relative, 6-20
preceding, 6-20
relative branch offset, 6-21
printing contents, 6-22
ASCII format, 6-22
Radix-50 format, 6-23
relocation registers, 6-23
returning to interrupted
sequence, 6-22
Operational control commands, 7-2

Paper tape, 1-5
Password,

changing, 7-4

determining, 4-9

printing of, 4-7

setting MFD, 4-3
PDP-11/40 processor, 1-2
PDP-11/45 processor, 1-2
PDP-11/70 processor, 1-1
Peripheral controllers, RH70, 1-2
Peripheral devices,

types supported, 1l-4
PLEASE system program, 7-29
Priority, 3-13
PRIOR system program, 3-13
Private structure, 1-7

optimal usage of, 1-8
Privileged-account programming

errors, 2-10

Processors, 1-1
PROTECTION VIOLATION message, 5-10
Public structure, 1-7

QUEMAN NOT RESPONDING - RETRY?,
5-2
QUEMAN NOT RUNNING -- CAN'T RUN,
5-11
QUEMAN system program, 5-3
commands, 5-5
error messages, 5-8
printing messages, 5-5
responding to requests from, 5-6
QUEUE FILE ENDANGERED message, 5-4
QUEUE FILE OPENED BY ANOTHER
PROGRAM ALREADY, 5-3

INDEX-3

QUEUE.SYS file,
initializing,
automatically, 5-3
by command, 5-5
usage of, 5-1
QUOTA command, 7-4
usage of, 7-9

REACT system program, 4-1
Receiver job statistics, 7-20
RE command, 5-13
Relative addresses, 6-23
Relocation registers, 6-23
REMOVE command, 7-4
\RE:n command, 5-5
REORDR system program, 7-27
Restart, automatic recovery and,
2-9
RF11/RS1l disk system, 1-3
RH70 peripheral controllers, 1-2
/RING option, 7-25
RJP04 disk system, 1-3
RJS04 and RJS03 disk system, 1-3
RJ2780, 5-1
RK11/RK0O3 disk system, 1-3
ROLLIN, bootstrapping from, 2-3
RP11-C/RP03/RP02 disk system, 1-3
RTSLIB, 1-6
Run burst, 3-13, 3-14
RUN light, 2-7
Run time system,
control commands, 7-4
load address of, 7-11
preventing usage of, 7-11
statistics for, 7-20
usage of control commands, 7-10

SAT, rebuilding a, 7-8
Semiconductor memory, 1-2
SEND xxx command,
in INIT, 3-3
in UTILTY, 7-2
SET LOGINS x command, 7-2
SHUTUP system program, 3-11
sample printout, 2-7
termination of spooling by, 5-2
SPEED command, 7-22
Spooling program,
assigning a unit to, 5-10
BATCH as a, 5-16
error messages, 5-14
messages through QUEMAN, 5-6
options of, 5-1
output from, 5-13
recovery from errors, 5-12
status of, 5-5

SPOOL system program, 5-10
character generation file, C-1
commands, 5-13
starting automatically, 5-12
terminating, 5-11

\ST command, 5-5

STANDARD function, 4-4

START.CTL file example, 3-8

Storage Allocation Table, see SAT

Swapping disk, 1-3

SYSCAT system program, 4-11

SYSTAT system program, 7-12
use in mounting disks, 7-8

System,
account,

management, 4-1
statistics, 4-6
clock, 1-2
code, 1-5
controlling start up of, 3-1
crash, 2-9
analysis of, 6-10
error codes, 6-11
date, changing, 7-2
disk, 1-3
contents of, 1-7
write enabling a, 7-8
documentation directory, vii
error detection, 6-1
hardware, 1-1
management of, 1-9
operation concepts, 1-8
software, 1-5
malfunctions of, 2-10
structure, 1-1
time, changing, 7-2
System program,
ANALYS, 6-10
auxiliary files, C-1
BATCH, 5-16
code, 1-6
DSKINT, 7-26
ERRCPY, 6-1
ERRDIS, 6-3
GRIPE, 7-28

INIT, 3-1
MONEY, 4-6
oDT, 6-12

PRIOR, 3-13
QUEMAN, 5-3
REACT, 4-1
REORDR, 7-27
SHUTUP, 3-11
SPOOL, 5-10
SYSCAT, 4-11
SYSTAT, 7-12
TTYSET, 7-22
UTILTY, 7-1
VT5DPY, 7-13
VT50PY, 7-13

INDEX-4

TALK system program, 7-29 UFD (User File Directory), 1-7

Terminal, determining cluster size, 4-9
automatic setting of character- insufficient size condition,
istics, 7-25 7-13
changing discrete characteristics setting cluster size, 4-3
of, 7-24 UNLOAD command, 7-4
communication among, 7-29 UNLOCK command, 7-3
determining malfunctioning, 7-12 usage of, 7-9
disabling interface, 7-2 UTILTY system program, 7-1
disconnecting a remote, 7-2 commands, 7-2
forcing commands to, 7-2 Utility operations, 7-1

interfaces, 1-4
ring characteristics of, 7-25
setting characteristics of, 7-22

setting remote lines, 7-25 VT5DPY system program, 7-13
speed characteristics file, 7-22 commands, 7-16
status display on, 7-13 options, 7-14
types supported, 1l-4 VT50PY system program, 7-13
TCll DECtape, 1-4 commands, 7-16
TIME command, 7-2 options, 7-14

Time sharing,
automatic restart, 2-11
controlling jobs during, 3-13
controlling start up, 3-1 ZERO command, 7-4
dynamic status during, 7-13 usage of, 7-9
initialization errors, B-1
management considerations, 1-9
monitoring status of, 7-12
operational control of, 7-9
overview of, 1-8
processing user complaints

during, 7-28
setting terminal characteristics
for, 7-22

starting, 2-1
terminating, 3-11

TJUl6 magtape, 1-4

TM1l magtape, 1-4

TTYSET.SPD, 7-22
storing on system disk, 7-24

TTYSET system program, 7-22
privileged feature, 7-24

INDEX-5

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes software newsletters for the various DIGITAL products.
Newsletters are published monthly, and keep the user informed about cus-
tomer software problems and solutions, new software products, documenta-
tion corrections, as well as programming notes and techniques.

There are two similar levels of service:

. The Software Dispatch
. The Digital Software News

The Software Dispatch is part of the Software Maintenance Service. This
service applies to the following software products:

PDP-9/15
RSX-11D
DOS/BATCH
RSTS/E
DECsystem-10

A Digital Software News for the PDP-11 and a Digital Software News for
the PDP-8/12 are available to any customer who has purchased PDP-11 or
PDP-8/12 software.

A collection of existing problems and solutions for a given software
system is published periodically. A customer receives this publication
with his initial software kit with the delivery of his system. This
collection would be either a Software Dispatch Review or Software Per-
formance Summary depending on the system ordered.

A mailing list of users who receive software newsletters is also main-
tained by Software Communications. Users must sign-up for the news-
letter they desire. This can be done by either completing the form sup-
plied with the Review or Summary or by writing to:

Software Communications
P.O. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to DIGITAL's software should be reported
as follows:

North and South American Submitters:

Upon completion of Software Performance Report (SPR) form remove last
copy and send remainder to:

Software Communications
P.0O. Box F
Maynard, Massachusetts 01754

The acknowledgement copy will be returned along with a blank SPR form
upon receipt. The acknowledgement will contain a DIGITAL assigned SPR
number. The SPR number or the preprinted number should be referenced in
any future correspondence. Additional SPR forms may be obtained from
the above address.

All International Submitters:

Upon completion of the SPR form, reserve the last copy and send the re-
mainder to the SPR Center in the nearest DIGITAL office. SPR forms are
also available from our SPR Centers.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In the
United States, send orders to the nearest distribution center.

Digital Equipment Corporation Digital Equipment Corporation

Software Distribution Center Software Distribution Center
146 Main Street 1400 Terra Bella
Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest

o1 = P R

Digital Field Sales Office or representative.
USERS SOCIETY

DECUS, Digital Equipment Computers Users Society, maintains a user ex-
change center for user-written programs and technical application infor-
mation. The Library contains approximately 1,900 programs for all
DIGITAL computer lines. Executive routines, editors, debuggers, special
functions, games, maintenance and various other classes of programs are
available.

DECUS Program Library Catalogs are routinely updated and contain lists
and abstracts of all programs according to computer line:

. PDP-8, FOCAL-8, BASIC-8, PDP-12
. PDP-7/9, 9, 15
. PDP-11, RSTS-11

. PDP-6/10, 10

Forms and information on acquiring and submitting programs to the DECUS
Library may be obtained from the DECUS office.

In addition to the catalogs, DECUS also publishes the following:

DECUSCOPE ~The Society's technical newsletter, published bi-monthly,
aimed at facilitating the interchange of technical in-
formation among users of DIGITAL computers and at dis-
seminating news items concerning the Society. Circula-
tion reached 19,000 in May, 1974.

PROCEEDINGS OF ~Contains technical papers presented at DECUS Symposia
THE DIGITAL held twice a year in the United States, once a year
EQUIPMENT USERS in Europe, Australia, and Canada.

SOCIETY

MINUTES OF THE -A report of the DECsystem-10 sessions held at the two
DECsystem~-10 United States DECUS Symposia.

SESSIONS

COPY-N-Mail -A monthly mailed commurique among DECsystem-10 users.
LUG/SIG -Mailing of Local User Group {(LUG) and Special Interest

Group (SIG) communique, aimed at providing closer
communication among users of a specific product or
application.

Further information on the DECUS Library, publications, and other DECUS
activities is available from the DECUS offices listed below:

DECUS DECUS EUROPE

Digital Equipment Corporation Digital Equipment Corp. International
146 Main Street (Europe)

Maynard, Massachusetts 01754 P.O. Box 340

1211 Geneva 26
Switzerland

Please vur a

1

RSTS/E System Manager's Guide
DEC-11-ORSMD-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page).

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience

Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you do not require a written reply, please check here. [j

Fold Here

- Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS 01754

	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	D-01
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	replyA
	replyB
	replyC
	replyD
	xBack

