RSTS/E
Text Editor Manual

Order No. DEC-11-UTEMA-A-D

RSTS/E
Text Editor Manual

Order No. DEC-11-UTEMA-A-D

digital equipment corporation - maynard, massachusetts

First Printing, May 1976

The information in this document is subject to change without notice and should not be construed as a commit-
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors

that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance

with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment

that is not supplied by DIGITAL.

Copyright © 1976 by Digital Equipment Corporation

The postage prepaid READER’S COMMENTS form on the last page of this document requests the user’s critical

evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10
DEC DECtape

PDP DIBOL
DECUS EDUSYSTEM
UNIBUS FLIP CHIP
COMPUTER LABS FOCAL
COMTEX INDAC

DDT LAB-8

DECCOMM DECsystem-20

MASSBUS
OMNIBUS
0s/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-10
TYPESET-11

9/76-15

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.34

2.1

2.1.1
21.2
2.1.3
2.14
2.1.5
22

2.2.1
222
223
224
225
226
2.2.7
2.3

2.3.1
2.3.2
233
234

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

4
4.1
4.2
4.3

CONTENTS

..

INTRODUCTION i et e
EDIT OVERVIEW e
EDIT TERMS AND DEFINITIONS
RUNNING EDIT. e e e e e e e
Loading EDIT i e
Temporary Backup Files
Creatinga File
Opening a Currently Existing File for Editing

READING INPUT TEXT INTO INTERNAL BUFFER
TRANSFERRING TEXT TOBUFFERccouin....
Read and Edit Read Commands
Listing Lines of Text
Verifying Location of Dot it
Dividing Text Into Pages,
Editing Multiple-Page Files
CHARACTER SEARCH COMMANDS
Get Command e
Searching Primary Input File
Whole Command i i

Searching Secondary Input File
Edit Whole Command

Setting Dot to Beginning of Buffer
Moving Dot by Character 00t
Moving Dot by Line i,
Temporary Reference Point i,

CHANGING TEXT STOREDINBUFFER
DELETING CHARACTERS i e
DELETING LINES OF TEXT it
INSERTING TEXTot e e e e e

OUTPUTTING EDITED TEXT it e i e
TERMINATING EDIT e
WRITING LINES OF TEXT TO OUTPUT FILES
CLOSING PRIMARY FILESONLY,

iii

Page

1-1
11
1-1

APPENDIX

APPENDIX

APPENDIX

FIGURE

TABLE

1-1

1-1
1-2
2-1
C-1

CONTENTS (Cont.)

Page
EDIT EXAMPLES ittt it e it it A-1
SUMMARY OF COMMANDS e et eas B-1
ERROR MESSAGES i i e it C-1
FIGURES
Editing Operation Overview i 1-1
TABLES
Classes of EDIT Commandso iun et ittt 1-2
Command ArgUMENtS i ittt e e s 1-3
Commands Used With Mark Argument 2-10
EDIT Command Error Messages. v oot i i et ittt it i iiieee e C-1

iv

PREFACE

This manual describes the features and operation of EDIT, a BASIC-PLUS program distributed with the RSTS/E
standard system library. The manual is written for the RSTS/E user with little or no knowledge of character
editors.

For more information on RSTS/E guides and manuals, consult the RSTS/E Documentation Directory.

For a quick reference to a subject in this guide, use the following list.

If you need to know about See Section
Loading EDIT 13.1
Creating a new file 1.3.3
Dividing text into pages 2.14
Editing multiple-page files 2.1.5
Locating the text to be edited 2.2
Moving the location of the reference pointer 23
Deleting text stored in the buffer 3.1,3.2
Inserting text in the buffer 33
Changing text in the buffer 34,35
Terminating EDIT 4.1

CHAPTER 1
INTRODUCTION

1.1 EDIT OVERVIEW

EDIT is a character-oriented text editing program writ-
ten in BASIC-PLUS for use under the RSTS/E opera-
ting system. Text editing involves two programs: 1)
EDIT, which manages input and output; and 2)
EDITCH, which processes commands. For clarity,
however, this manual refers to only one program,
EDIT. EDIT, which is operated by use of commands
typed at the terminal, reads ASCII files from any input

device, makes specified changes, and writes on any out-

put device. The basic editing process can be divided
into three sequential steps:

1. Reading of input text into an internal
buffer

2. Changing the text stored in the buffer

3. Outputting the revised text to a new file

These steps are described in Chapters 2, 3, and 4. The
following sections list EDIT terms and definitions and
describe the process of running EDIT.

NOTE
The EDIT program conforms to the stan-
dards of the DOS/BATCH Text Editor

program, EDIT, except where noted in
the description.

1.2 EDIT TERMS AND DEFINITIONS

The EDIT system program enables a user to perform
editing operations on ASCII text. (To edit other types
of data, the ODT system program can be used.) The
program stores the text to be edited in an intermediate
area of memory called a buffer. It does not alter text
in the input files.

To begin editing operations (after the input and out-
put specifications have been typed), the user must
transfer text from the input file(s) to the buffer. After
text in the buffer is edited, the user must transfer the
result to the output file(s). During the editing session,
the user can store text in a special location called a save
buffer, which permits him to transfer text from the
save buffer to any location or locations in the main
buffer. This procedure simplifies moving text from
place to place and reduces the amount of typing re-
quired to insert similar material in separate places in the
text. Additionally, text in the save buffer can be treated
as an EDIT command line. This capability serves as a
macro function whereby the user can run a series of
EDIT commands stored in the save buffer by typing
only one other EDIT command. Figure 1-1 is an over-
view of editing operations.

PRIMARY PRIMARY
INPUT Bf’f;\F/ER OUTPUT
FILE FILE
)
——— EDIT EDIT EDIT
— = COMMANDS BUFFER COMMANDS
\
SECONDARY SECONDARY
INPUT OUTPUT
FILE FILE

Figure 1-1 Editing Operation Overview

1-1

Introduction

To facilitate editing operations, EDIT recognizes differ-
ent units of text. A form feed (FF) character termi-
nates a page of text. A page is the most convenient unit
of text to transfer into and out of the buffer. A car-
riage return (CR) and line feed (LF) character sequence;
a LF, CR, and NUL character sequence; or the escape
(ESC or ALTMODE) character terminates a line! of
text. A character is the smallest unit of text that can be
operated on by EDIT.

EDIT refers to text in the buffer by using a character
location pointer called Dot. Dot is considered to reside
between any two characters. At the start of editing
operations, Dot precedes the first character in the
buffer. Dot is moved during editing operations accord-
ing to the type of editing operation being performed.
The user can refer to text in the buffer as so many
characters or lines preceding or following Dot.

Additionally, a temporary reference pointer called
Mark can be used to refer to text. Mark remembers a
location by moving to Dot and conditionally remaining
there while Dot moves on to some other place in the
text. The user can refer to an amount of text between
Dot and Mark. This type of reference does not require
the user to specify the number of characters or lines
involved in the editing operation.

To edit text, the user specifies a command or series of
commands in response to the asterisk printed by EDIT.
The commands are classed according to the type of
operation they perform. Table 1-1 describes the classes
of EDIT commands.

Some EDIT commands accept an argument that speci-
fies either the particular portion of text to be affected
or the number of times to perform the command. The
interpretation of the argument depends on the type of
command. Table 1-2 shows the possible arguments and
their meanings.

Many EDIT commands are character-oriented. That is,
they affect a specified number of characters preceding
or following Dot. The argument of such commands
specifies the number of characters in the buffer on
which to operate. The number of characters specified
by the argument n is the same forward as backward
(-n). LF, CR, and NUL characters, although not print-
ed, are embedded in text lines, counted as characters in
character-oriented commands, and treated as any other
text characters.

Some EDIT commands are line-oriented. The argument
of such commands specifies the number of lines on
which to operate. Because EDIT counts the line-termi-

Table 1-1
Classes of EDIT Commands

Class Description

Transfers text into and out of
the buffer. Also prints the con-
tents of the buffer at the
terminal.

Input and
Output

Dot Moves the character location
Manipulation pointer, Dot, without altering
text within the buffer. Also
establishes the temporary
pointer, Mark.

Character
Search

Finds a specified occurrence of
text within the buffer to facil-
itate editing. Additionally,
positions the pointer in relation
to the specified text.

Adds to and removes from the
buffer characters or lines of
text.

Character
Manipulation

Miscellaneous | Performs related editing opera-
tions such as opening and
closing files, transferring text
to and from the save buffer,
and executing predefined

series of EDIT commands.

nating characters to determine the number of lines on
which to operate, an argument n does not affect the
same number of lines forward (positive) as it affects
backward (-n). For example, the argument -1 applies
to the line beginning with the first character following
the second previous end-of-line and ending with the
character preceding Dot. The argument 1 in a line-
oriented command, however applies to the text begin-
ning with the first character following Dot and ending
at the first end-of-line. Thus, if Dot is at the center of
the line, the argument -1 affects one and one-half lines
backwards from Dot and the argument 1 affects one-
half line beyond Dot.

Character search and manipulation commands operate
in either of two modes: Command mode or Text
mode. The modes are merely different ways of speci-
fying a text object following a command. The text

L This line is the same unit used by BASIC-PLUS and defined in Section 5.3 of the BASIC-PLUS Language Manual.

1-2

Introduction

Table 1-2

+
Command Arguments

Argument Description

n A decimal number between 1 and
32767, it is assumed to be positive
unless preceded by a minus (-)
character. The absence of n implies
al (or-1if a - character precedes
a command). n can be the number
of characters or lines forward or
backward (-) or the number of
times to execute the operation.

0 Indicates the text between the
beginning of the current line and
Dot.

@ Refers to the text between Mark
and Dot.

/ Refers to the text between Dot
and the end of the text in the
buffer.

object can be a single character, a group of characters
(called a string), or several lines of characters. In no
case, however, can a single line of a text object exceed
255 (decimal) characters.

If the text does not contain CR or LF characters and is
small enough to fit on a single typed line, Command
mode can be used to specify the text object. In Com-
mand mode, EDIT expects the first character following
a search or manipulation command to be a delimiting
character for the desired text object. EDIT uses as the
text object the characters between the delimiter and
the next occurrence of the delimiter. The delimiting
character, therefore, cannot appear within the text
object. Additionally, neither a CR nor a LF character
can appear in the text object.

To specify the word INPUT as the text object in Com-
mand mode, the following string can be used with the
search or manipulation commands.

/INPUT/

EDIT uses as the text object the characters INPUT
between the / delimiters.

In Command mode, any printable ASCII character that
does not appear in the text object can be used as a
delimiter. For example, if the string /INPUT/ is the
text object, the character A could be used as a delimi-

ter, as shown in the following string:
A/INPUT/A

EDIT uses the A as the delimiter and treats the inter-
vening characters [INPUT/ as the text object. If the
delimiting character appears in the text object, EDIT
attempts to interpret the remaining characters as com-
mands.

If the text object contains CR and LF characters or is
too long to fit on a single typed line, Text mode must
be used to specify the text object. The user causes
EDIT to enter Text mode by pressing the RETURN key
following the command requiring a text object. EDIT
enters Text mode by generating a carriage return/line
feed. This action allows the text object to be typed at
the start of a new line.

In Text mode, EDIT accepts as part of the text object
each line typed. Pressing the RETURN key in Text
mode causes EDIT to generate a carriage return/line
feed sequence and to enter a CR and a LF character as
part of the text object. To terminate the text object,
simply press the LINE FEED key. The LF character is
not entered as part of the text object. EDIT prints the
asterisk prompting character again.

NOTE
To insert a LF character as part of the text
object, the LINE FEED key must be
pressed as the first character of the text
object. EDIT generates a carriage return/
line feed sequence but additionally enters
the LF character in the buffer. The
second time the LF key is pressed, EDIT
terminates Text mode normaily and
does not enter the second LF character
as part of the text object.

1.3 RUNNING EDIT

1.3.1 Loading EDIT

To load EDIT, type the following command while at
BASIC-PLUS command level:

RUN SEDIT

1-3

Introduction

EDIT runs and prints its version number and the num-
ber sign (#) character to indicate that it is ready to
accept input and output specifications. This informa-
tion should be entered in the following format:

#OUT1.EXT,QUT2.EXT<IN1.EXT,IN2.EXT/B

IN1.EXT and OUT1.EXT are the primary input and
output files, respectively; IN2.EXT and OUT2.EXT
are the secondary input and output files. The input
and output files can be denoted by any valid RSTS
file specification, including a device, filename, exten-
sion, project-programmer number, and protection
code. If no extension exists in an input file specifica-
tion, EDIT assumes an extension of BAS. If an output
file is not specified, EDIT creates the input file, and
destroys any existing file with the same name. If no
extension is given to an output file, EDIT creates the
output file with a BAS extension.

The /B option in the file specification conditions the
EDIT program to treat a line feed (LF) character in
the text as a BASIC-PLUS line continuation character."
The program treats a LF character in the text, there-
fore, as a line feed/carriage return without requiring
the presence of the carriage return (CR) character in
the file. For files with an explicit BAS extension or
with an assumed BAS extension, EDIT automatically
enables the /B option. Specify the /B option when
EDIT is required to handle BASIC-PLUS continuation
lines in a file with an extension other than BAS.

1.3.2 Temporary Backup Files

If the primary input and output files have the same
filename and extension, EDIT creates a backup file

by renaming the primary input file after editing is
complete. During editing operations, the program uses
a temporary filename of EDITnn.TMP for the primary
output file. The designation nn is the job number under
which EDIT runs. Upon termination of the editing
session, the program gives the primary input file an
extension of BAK to signify the backup version of the
file. EDIT renames the file EDITnn. TMP with the
specified filename and extension to signify the new,
edited version. If the primary input and output have
the same filename and extension (implicit or explicit),
EDIT creates the backup version of the file and re-
names the edited version with the specified filename
and an extension of BAK.

If EDIT encounters any errors while accessing the
specified files, it prints the related BASIC-PLUS error
text in the following format:

error text - ERROR

EDIT then prints the number sign (#) character, after
which the user can type another response. 2

If no errors are encountered, EDIT chains to the
EDITCH program, which prints a blank line followed
by the asterisk (*) character. The asterisk is a prompt-
ing indicator that signifies EDIT is ready to accept
commands from the user. The following sample dia-
logue shows the procedure.

#FILE .BAS<FILE.BAS/B

*

EDIT accesses FILE.BAS under the current user’s
account, opens it for input, opens the file EDITnn.TMP
for output, and chains to EDITCH, which prints the
prompting indicator. An output file must be specified
when attempting to edit an existing file. If an output
file is not specified, EDIT creates the input file and
destroys any existing file with the same name.

1.3.3 Creating A File

If the purpose of an editing session is to create a file
for which there is no input file, the user need not
specify a primary input device. When the text has been
inserted, edit the text or close the file by specifying

appropriate commands. The format for creating and
closing a file is:
RUN SEDIT
(version number of EDIT)
#dev:filename.ext<prot>
*[<CR>
text <CR>

<LF>
*EX <CR>

#77

READY

L rhis action differs from the DOS/BATCH EDIT program. See Section 2.3.2 of the BASIC-PLUS Language Manual for a descrip-

tion of continuation lines in BASIC-PLUS statements.

2BASIC-PLUS error messages are summarized in Appendix C of both the BASIC-PLUS Language Manual and the RSTS-11 System

User’s Guide.

Introduction

EDIT prints the number sign (#) character and waits
for the user to specify 1) a device on which the file
will be created and 2) the name, extension, and pro-
tection code of the file. If no device is specified, EDIT
automatically creates the file on the system disk. The
program automatically assigns a BAS extension if no
extension is given. EDIT opens the file for output and
thus destroys any currently existing file with the same
name if the protection code permits. The primary
input file is the user’s keyboard.

If EDIT encounters no errors, it prints a blank line
followed by an asterisk (*) character indicating its
readiness to accept a command. Type the I command,
indicating text is to be inserted, and the carriage return
(CR) key. Lines of text may then be inserted, each
terminated by the CR key, which enters a carriage
return (CR) and a line feed (LF) character in the buff-
er. Pressing the line feed (LF) key terminates the I
command but does not enter a LF character in the
buffer. EDIT responds with an asterisk (*) character
indicating command level. Type the Exit (EX) com-
mand to close the editing session. The CTRL/Z com-
bination terminates EDIT and returns control to the
system monitor.

1.3.4 Opening a Currently Existing File for Editing
Reopen a file for editing, if necessary, by either of the
following methods:

Example 1:

RUN $EDIT
(version number of EDIT)
filename ext<prot> <filename.ext

*R
*/L

or
Example 2:
EDIT filename.ext

*|L

If the file was created with an extension other than
BAS, the extension must be specified after the file-
name.

The R command in Example 1 instructs EDIT to read
the first page of the specified file into the buffer.
EDIT positions Dot at the beginning of the buffer.
EDIT then returns to Command mode by printing an
asterisk (*) character to which the user can respond
with a desired EDIT command. The /L command
prints the contents of the buffer on the user’s terminal.

In Example 2, when the user types the filename and
extension on the same line as the CCL command
EDIT!, EDIT opens for input the file in the current
account, creates a backup file, and automatically reads
the first page into the buffer. The R command need
not be typed. EDIT prints an asterisk (*) character
indicating its readiness to accept EDIT commands. By
typing the /L command, the entire contents of the
buffer are listed on the terminal.

Typing the EX command ends the editing session. In
Example 1, control returns to EDIT, which prints the
#icharacter. In Example 2, typing EX returns control to
the system monitor, which prints READY.

! This feature is optional and may not be available on all RSTS/E systems. If it is not available on the system, the monitor prints

the WHAT? error message.

1-5

CHAPTER 2
READING INPUT TEXT INTO INTERNAL BUFFER

2.1 TRANSFERRING TEXT TO BUFFER

This section describes the commands and procedures
required to read text from the input files to the buffer,
list the contents of the buffer on the terminal, verify
the location of Dot, divide text into pages, and edit
multiple-page files. See Appendix A for some examples
of the uses of EDIT, Appendix B for a summary of
EDIT commands, and Appendix C for an explanation
of EDIT error messages.

2.1.1 Read and Edit Read Commands

Before editing can be performed on text, the input file
must be read into the buffer. The Read (R) and Edit
Read (ER) commands provide two ways of transferring
text to the buffer for editing. The command R reads
text from the primary input file; the command ER reads
text from the secondary input file. For example, when
the user loads EDIT by way of a RUN $EDIT command
and specifies the input and output files, the R com-
mand reads the first page of the primary input file into

the buffer and editing operations can begin. EDIT trans-
fers text to the buffer until one of the following condi-
tions occurs:

1. A FF character is encountered.

2. The buffer is 500 characters from
being full,

3. An end-of-file is encountered.

EDIT reads text from the input files and appends it to
the current contents of the buffer. There are no argu-

ments with the Read and Edit Read commands. Each

command thus reads a page of text at a time from the
appropriate input file. Following execution of an R or
an ER command, the program positions Dot and Mark
at the beginning of the buffer,

The following is an example of creating a file using the
R and ER commands. Each comment refers to the ap-
propriately marked lines in the example:

HFAULSELEARNOR. EATHY

QO *r L

@ Reads the first page of the primary input file, ELEANOR.BAS, into the buff-
er. Dot is placed at the beginning of the buffer. The contents of the buffer

THIS IS FAGE (OHE
UF THE FREIMARY
LHFUT FILE.
@ kL

THIS IS PAGE ONE
UF THE FPEINARY
IHFUT FILE.

THIS IS FPAGE THO

0F THE FRIMARY
LMFUT FILE.

® +ER/L
THIS IS PAGE ONE
OF THE FRIMARY
INPUT FILE.

are listed on the terminal beginning at Dot and ending with the last character
in the buffer.

@ Reads the second page into the buffer and appends it to the current contents.
The contents of the buffer are listed on the terminal beginning at Dot and
ending with the last character in the buffer. >

@ The first page of the secondary input file, KATHY.BAS, is read into the buff-
er and is appended to the current contents of the buffer. The contents of the
buffer are listed on the terminal beginning at Dot and ending with the last
character in the buffer.

(continued on next page)

2-1

Reading Input Text into Internal Buffer

(continued from previous page)

THIS IS FHGE THO
0¥ THE FEIMAEY
INFUY FILE.
THIS IS FPAGE 1
(F THE SECONDAEY
IHFUT FILE.
@ *En (@ The editing session is ended and the contents of the buffer are written to the
primary output file. The result is a file named PAUL.BAS containing the con-
tents of the buffer and any remaining text in the primary input file.

2.1.2 Listing Lines of Text

The List (L) command prints at the terminal lines of text
as they appear in the buffer. An argument preceding the
L command indicates the portion of text to print. For
example, the command, 2L, prints on the user’s termi-
nal the text beginning at Dot and ending with the sec-
ond end-of-line character. Neither Dot nor mark is al-
tered by the L command. Arguments and their effect
upon the List command are described as follows:

nL Prints at the terminal n lines beginning at Dot
and ending with the nth end-of-line character.

.nL Prints at the terminal n lines beginning at the
nth end-of-line character preceding Dot.

OL Prints the current line up to Dot.
@L Prints the text between Dot and Mark.

/L Prints the text between Dot and the end of the
buffer.

In the following example, EDIT is loaded, an input and
an output file are specified, the first page of the input
file is read into the buffer, and the first line of the file
is listed.

FEUN $EDIT ’
EDIT veSB-11

#FEKCFEK

*F
wL
1@ FRINT "R",
*

CSINCRDY, “COSCRD"

2.1.3 Verifying Location of Dot

The Verify (V) command prints at the terminal the en-
tire line in which Dot is located. It provides a ready
means of determining the location of Dot after a search
is completed and before any editing commands are given.
(The V command combines the two commands OLL.)
Also, V can be typed after an editing command to allow
proofreading of the results. No arguments can be speci-
fied with the V command. The locations of Dot and
Mark are not changed.

2.1.4 Dividing Text Into Pages

The Form Feed (F) command merely inserts a FF char-
acter immediately after the current location of Dot in
the buffer. Dot and Mark are not altered. No arguments
can be specified with the F command. The F command
can be used to organize text in the buffer into pages to
make later editing operations easier. For example, the
following series of commands sets up a file comprised
of two pages:

WFOEM

LB

THIS IS AN EXAMFLE OF CREATING H

+F
#1

THIS SENTENCE IS EBEING CREATED ON

HEH

#

FILE OM SEYERAL FRGEZ.

A SEFARATE FAGE.

2-2

Reading Input Text into Internal Buffer

This series of commands creates a file named
FORM.BAS. The text is inserted, as indicated by the 1
command, and the line feed (LF) character returns
EDIT to Command mode. The user inserts a form feed
by typing the F command. (The form feed is printed as
four consecutive blank lines.) Text is inserted following
the form feed in the buffer and the editing session is
ended. The result is a two-page file.

2.1.5 Editing Multiple-Page Files

The Next (N) command writes the contents of the buff-
er to the primary output file, deletes the buffer, and
reads the next page of the primary input file into the
buffer. Dot and Mark are positioned at the beginning of
the buffer. If the argument n is specified with the N
command, the sequence is executed n times.

If EDIT encounters the end of the primary input file
when trying to execute an N command, it prints N? to

indicate that no further text remains in the primary in-
put file. The contents of the buffer are transferred to

the primary output file and the buffer is cleared.

The N command alone is a quick method of writing
edited text to the primary output file and setting up the
next page of text in the buffer, Also, use of the N com-
mand with an argument is a convenient means of quick-
ly setting up text in the buffer, provided its page loca-
tion in the primary input file is known. The N command
operates in a forward direction only; therefore, negative
arguments cannot be specified preceding an N command.

In the following example, an N command copies a pri-

mary input file with more than one page of text to the

primary output file. Each comment refers to the appro-
priately marked lines in the example.

#FUBCFUER

OEL"

THIG IS PRGE ONE OF A THWO-PAGE

@ #N/L

THIG I&

Q) #N/L

H7»

@ xEx

#

FRGE THO

OF A THWO-FAGE

FILE.

@ Reads the first page of the primary input
file, FUB.BAS, into the buffer and lists the
entire page on the terminal.

@ Transfers the contents of the buffer to the
primary output file, clears the buffer, and
reads the next page into the buffer.

FILE.

@ Transfers the current contents of the buffer
to the output file, clears the buffer, and en-
counters the end of the file. Because the N
sequence cannot be completed, EDIT prints
the related N command followed by a ? on
the terminal. The buffer is empty and the
entire primary input file is appended to the
primary output file.

@ EDIT returns to Command mode as indicated
by the *. Typing the EX command ends the
editing session.

2.2 CHARACTER SEARCH COMMANDS
Certain EDIT commands search for text in the buffer.
These commands require a text object.

2.2.1 Get Command

The Get (nG) command is the basic search command in
EDIT. The command searches for the nth occurrence of
the specified text object starting at the current location

of Dot. If the modifier n is not given, EDIT searches for
the first occurrence of the text object. The search termi-
nates when EDIT either finds the nth occurrence or en-
counters the end of the buffer. If the search is successful,
EDIT positions Dot to follow the last character of the
text object. EDIT notifies the user of an unsuccessful
search by reprinting the related G command followed by
a question mark (?) character. In this instance, EDIT
positions Dot after the last character in the buffer.

Reading Input Text into Internal Buffer

Examples of arguments used with the G command follow:

nG/text/ Searches the current buffer beginning at
Dot for the nth occurrence of the speci-
fied text object (text). If the search is suc-
cessful, Dot is placed immediately after
the text object. If the search is unsuccess-
ful, Dot is placed at the end of the buffer.
If the modifier n is not specified, EDIT
searches for the first occurrence of the
text object.)

If the specified text object contains no carriage return or
line feed characters, it can be set off from the nG com-
mand by delimiters. For example, assume Dot is at the
beginning of the buffer shown below.

10 READ A$,B$,C$,DS,ES

The command 2G/$/ searches for the second occurrence
of the character $ following Dot. The slash (/) character
is used as the delimiter because it does not occur in the
specified text object.

10 READ A$,B$+,C$,D$,E$
Dot after 2G/$/

If the text object is long or contains a CR and LF se-
quence, the G command can be used in Text mode. For
example, assume Dot is at the beginning of the buffer
shown below:

5 DIM A 25$
10 PRINT INPUT LINE 25%
15 T$=5NC 25% (A25%)
20 CHANGE A25% TO A25%
25 A25% (J25%) = A25% (X25%)

If the user desires EDIT to position Dot at line 25 and to
ignore all other occurrences of 25, the following command
can be used:

*G<CR>
<CR>
25<LF>

*

The G command is opened in Text mode. The search
string is a carriage return-line feed followed by 25. Press-
ing the line feed key following the text object, 25, causes

24

EDIT to terminate the search string and to search for
the occurrence of the string, 25, following an end-of-line
(carriage return-line feed). EDIT positions Dot following
the line number, 25.

2.2.2 Searching Primary Input File

Two commands, the Whole command and the Position
command, perform a search through the whole primary
input file for the nth occurrence of the specified text ob-
ject. The difference between them is that the Whole com-
mand transfers the searched text to the primary output
file, whereas the Position command deletes the contents
of the searched buffer.

2.2.3 Whole Command

The Whole (nH) command reads each page of the pri-
mary input file into the buffer until the nth occurrence
of the specified text object is found. EDIT begins at Dot
and searches the current buffer until the nth occurrence
of the text object is found or the end of the buffer is
reached. If EDIT finds the text object, it places Dot im-
mediately following it. If the nth occurrence is not found
in the current buffer, EDIT writes the buffer to the pri-
mary output file, clears the buffer, reads the next page
of the primary input file into the buffer, and continues
the search. The search is unsuccessful when the nth oc-
currence is not found and the end of the primary input
file is reached. EDIT indicates an unsuccessful search by
reprinting the related H command followed by a ques-
tion mark (?) character. Upon an unsuccessful search,
EDIT copies the entire contents of the primary input
file to the primary output file and positions Dot at the
beginning of an empty buffer. The Whole command op-
erates only in a forward direction; therefore, a minus
sign (-) character cannot be specified preceding the argu-
ment n.

The user can employ an H command to copy all remain-
ing text from the primary input file to the primary out-
put file by specifying a nonexistent text object. The H
command performs the same function as the EX com-
mand except that the H command does not end the edit-
ing session.

The following is an example of performing a search
through the primary input file for the first occurrence
of the character, Q. Each comment refers to the appro-
priately marked lines in the example.

Reading Input Text into Internal Buffer

#STEYECSTEYE. REC

3

oA l.~‘ L

FORMAT A, B, &, 0, D
e #HA0
@ *uL

FORMART A, B, GEX

@ Reads the first page of the primary input file, STEVE.BAS, into the buffer.
(The R command need not be specified prior to an H command unless the
user desires the contents of the buffer listed prior to the search.)

(@ Lists the contents of the buffer on the terminal.

@ Performs a search through the whole primary input file for the first occurrence
of the character, Q. A successful search is indicated by the asterisk character.
EDIT places Dot following the searched character.

(@ Lists the line up to Dot. The EX command transfers the contents of the buff-
er and the remainder of the primary input file to the primary output file
and closes the editing session.

2.2.4 Position Command

The Position (nP) command is identical to the Whole
(H) command with one exception. The P command de-
letes the contents of the buffer after it is searched,
whereas the H command transfers the contents of the
buffer to the primary output file. The nP command
searches each page of the primary input file for the
nth occurrence of the text object starting at Dot and
ending with the last character in the buffer. If EDIT
finds the nth occurrence, it positions Dot following
the text object and positions Mark at the beginning of
the page containing the searched object. If the search
is successful, EDIT deletes all pages preceding the one
containing the text object and positions the page con-
taining the text object in the buffer. If the user then

ends the editing session, EDIT copies the page con-
taining the text object and all subsequent pages to the
output file. If the search is unsuccessful, EDIT clears
the buffer and no text is transferred to the output file.
EDIT notifies the user of an unsuccessful search by
reprinting the related P command followed by a ?
character.

If the purpose of the editing session is to create a new
file out of the second half of the primary input file, the
P search saves time. The following shows the procedure
for creating a file from the second half of the primary
input file. Each comment refers to the appropriately
marked lines in the example.

HEEBCZIF, AAA

#FSES
w80

FAGE Z+EX

@ Searches the primary input file, ZIP.BAS, for the first occurrence of the text
object, 3. EDIT positions Dot after the text object.

@ Lists on the terminal the current line up to Dot. The EX command transfers
the page containing the text object and any subsequent pages to the output
file, BBB.BAS, and ends the editing session.

2.2.5 Searching Secondary Input File
A search through the whole secondary input file can be

2.2.6 Edit Whole Command
The nEH command performs a search through the sec-

ondary input file for the nth occurrence of the specified
text object starting at Dot in the buffer. If the nth oc-
currence is not found in the current buffer, EDIT writes
the buffer to the primary output file, clears the buffer,
reads the next page from the secondary input file to the

made by specifying one of two commands: 1) the EDIT
Whole command transfers searched buffers to the prima-
ry output file;and 2) the Edit Position command
deletes the contents of the buffer after an unsuccessful
search.

2-5

Reading Input Text into Internal Buffer

buffer, and continues the search. The search is termi-
nated when either the nth occurrence of the text object
is found or the end of the secondary input file is reached.

If the modifier n is not specified, EDIT searches for the
first occurrence of the text object. If the search is suc-
cessful, EDIT positions Dot to follow the last character
of the text object. The previously searched buffers are
transferred to the primary output file and the page con-
taining the text object remains in the buffer. Upon an

unsuccessful search, EDIT reprints the related nEH com-
mand followed by a question mark (?) character on the
user’s terminal. In this instance, EDIT writes the whole
secondary input file to the primary output file and
places Dot at the beginning of an empty buffer.

The following set of commands performs a search for
the third occurrence of the dollar sign ($) character in
the secondary input file, SHEILA.BAS. Each comment
refers to the appropriately marked lines in the example.

BALLANCSTEVIE,

#ZEHA &
Rl

SHEILH

@ Searches the secondary input file, SHEILA.BAS, for the third occur-
rence of the dollar sign ($) character. EDIT transfers the searched pages

1.6 FERD HE, BEf, CF+ER of SHEILA.BAS, which do not contain the third occurrence of the $
character, to ALLAN.BAS and positions Dot after the searched charac-
ter in the buffer.

@ Lists the line containing the searched object up to the location of Dot.
The EX command transfers the buffer to ALLAN.BAS, clears the buff-
er, transfers the file STEVIE.BAS to ALLAN.BAS, and ends the edit-

ing session.

EDIT automatically appends the primary input file to

the secondary input file and transfers it to the primary
output file unless the contents are read into the buffer
and killed. For example:

BALLANCSTEVIE, SHEILA

FoL

#THIS IS THE FRIMARY INPUT FILE.
* K

#ZEH E

*EL

1@ READ A%, B¥, CExEX

#

2.2.7 Edit Position Command

The nEP command is identical to the Position command
except that the file searched is the secondary in-

put file. The nEP command searches the secondary in-

2-6

put file for the nth occurrence of the text object. EDIT
deletes the searched pages of the secondary input file,
which do not contain the nth occurrence of the text ob-
ject, and positions the page containing the text object
in the buffer. Dot is positioned after the text object. If
the argument n is not specified, EDIT performs a search
for the first occurrence of the text object.

The EP command can be used to create a file by 1)
using the primary input file and appending text in the
secondary file to it, 2) appending the primary input file
to portions of the secondary input file, or 3) using por-
tions of the secondary input file only. Descriptions of
each method follow.

Example 1:

This example uses the primary input file and a portion
of the secondary input file to create a file. Each com-
ment refers to the appropriately marked lines in the
example.

Reading Input Text into Internal Buffer

BZUFCARAA, AEC

* @ Reads the first page of the primary input file, AAA.BAS, into the buffer.

#*EFATHREES

HEX () Searches each page of the secondary input file for the first occurrence of the
text object, THREE. The current contents of the buffer are not searched.

Upon a successful search, EDIT positions the page containing the text object

in the buffer and positions Dot after the text object. All previously searched

pages are deleted and the unsearched pages of the secondary input file are not
transferred to the buffer.

@ Transfers text in the buffer to the primary output file, transfers the remainder
of AAA.BAS to ZUP.BAS and ends the editing session,

The result is a file named ZUP.BAS, which contains the the secondary input file, ABC.BAS, containing the text
first page of the primary input file, AAA.BAS. Appended object and the remainder of AAA.BAS. For example,
to the first page of the primary input file is the page of the primary output file would contain:

BEUFCEUR

FAGE 1 - FRIMARY INFUT FILE.

N AL
FAGE THREE - SECONDARY INFUT FILE.
FAGE 2 - PRIMARY INFUT FILE.

ML
FRAGE % - PRIMARY INFUT FILE.
#ER

2-7

Reading Input Text into Internal Buffer

Example 2: input file to it. Each comment refers to the appropri-
The following example creates a file by using a portion ately marked lines in the example.
of the secondary input file and appending the primary

#BZUPCARA, HEC

8 #EF/THREE, @ Reads the first page of the secondary input file, ABC.BAS, into the buffer and
L searches for the first occurrence of the text object, THREE. If the search is

unsuccessful, EDIT clears the buffer and reads the next page of the secondary

input file into the buffer. This sequence is repeated until the end of the file is

reached or the searched object is found. Upon a successful search, the page
containing the text object is in the buffer and Dot is positioned after the text
object.

@ Transfers the contents of the buffer to ZUP.BAS, appends AAA.BAS, and ends
the editing session.

The result is a file named ZUP.BAS, comprised of the 2.3 DOT MANIPULATION COMMANDS
page of the secondary input file containing the text ob- Dot is the character location pointer used by EDIT to
ject and appended to it the primary input file. The EX refer to text in the buffer. Several commands are avail-
command automatically transfers the primary input file able to allow a user to manipulate the location of Dot
to the primary output file. An R command need not be without altering the text.
specified.
2.3.1 Setting Dot to Beginning of Buffer
Example 3: The Beginning (B) command sets Dot to precede the
The following sequence of commands uses a portion first character in the buffer. The command allows the
of the secondary input file to create a file. user to establish the initial condition of EDIT (i.e.,
with Dot at the beginning of the buffer) as many times
#SUPCHAA, AEBC as necessary. When text is initially read into the buffer,
Dot resides at the beginning of the buffer. During edit-
L s ing, Dot is moved to different locations in the buffer.
#EFATHREE The B command can be used, therefore, to reset Dot at
#EX the beginning of the buffer, For example, to list the con-
tents of the buffer on the terminal after editing opera-
tions have been performed, type the B command fol-
lowed by a /L command. The B command can also be
The format is the same as Example 2 except that the used to reset Dot upon an unsuccessful search for a text
R/K command reads the primary input file into the buff- object. The Beginning (B) command does not use an
er and kills it prior to the search for the first occurrence argument and does not alter Mark.

of the text object in the secondary input file. If the pri-
mary input file contains several pages, the R/K command ~ 2.3.2 Moving Dot by Character

can be repeated as many times as necessary to kill each The Jump (J) command moves Dot over a specified num-
page of the file. The EP command searches the secon- ber of character locations. If no argument is given, the
dary input file for the first occurrence of the text ob- J command moves Dot one character position forward.
ject, THREE. When EDIT finds the text object, it posi- For example, assume Dot is between characters A and
tions the page containing the text object in the buffer B in the following:

and positions Dot after the text object. The result is a

file named ZUP.BAS, which contains only the page of A+BCDEF

the secondary input file containing the text object.
Dot

2-8

Reading Input Text into Internal Buffer

The command 3J moves Dot three characters forward to
follow the character, D.

ABCD EF
,f
Dot after 3J command

The command -2J moves Dot two characters backward
to precede the character, C.

AB CDEF
f
Dot after -2J command

Arguments and their effect upon the Jump command
are described as follows:

nJ Moves Dot forward n characters.

-nJ Moves Dot backward n characters.

0J Moves Dot to the beginning of the current line.
@) Moves Dot to the location of Mark.

/] Moves Dot to the end of the buffer,

Carriage return, line feed, form feed, space, and tab char-
acters are counted when executing a J command. For ex-

ample, assume Dot is at the beginning of the following
buffer,

ADD 2+3
+

The command 4J moves Dot four characters forward to
precede the fifth character, 2. The space between the D
and the 2 is counted as one character.

ADD 2+3
;r
Dot after 4J command.

To move Dot from the beginning of one line to the end
of the preceding line, the -2J command can be used to
jump backward over the end-of-line characters (CR and
LF).

2.3.3 Moving Dot by Line

The Advance (A) command is a line-oriented command
that moves Dot to precede the first character of the line
determined by the modifier. If no argument is given,
EDIT uses one line forward as the argument. The com-
mand A moves Dot forward past one end-of-line to pre-
cede the first character of the next line. The command

29

3 A moves Dot forward past three ends-of-line to pre-

- Jovn Funana L. FO
cede the first character of the third line from the curient

line. An argument preceded by a minus (-) character pro-
duces a different result. For example, the command

-3A moves Dot backward past three ends-of-line to pre-
cede the first character of what is effectively the fourth
previous line.

Arguments and their effect upon the Advance command
are listed as follows:

nA Advances Dot n ends of line. Dot is positioned
preceding the succeeding line.

-nA Moves Dot backward to precede n+1 ends of
line,

0A Moves Dot to the beginning of the current line.

@A Moves Dot to the location of Mark.,

/A Moves Dot to the beginning of the line follow-

ing the last line in the buffer,

Assume Dot is at the beginning of the following buffer.

erCCORDING TO SCIENTISTS THE WORLD
WILL NOT BE DESTROYED BY A COLLI-

SION WITH ANOTHER HEAVENLY BODY.

The command 2 A moves Dot two ends-of-line to pre-
cede the third line.

ACCORDING TO SCIENTISTS THE WORLD
WILL NOT BE DESTROYED BY A COLLI-

A SION WITH ANOTHER HEAVENLY BODY.
Dot after 2A command. A -2A command at this point
would move Dot to its original location (the beginning
of the buffer).

2.3.4 Temporary Reference Point

The Mark (M) command sets the current location of Dot
as the temporary reference point Mark. The user can
subsequently move the location of Dot and refer to the
intervening text with the commercial at (@) character

as the modifier. Only one location at a time can be saved
as Mark. The format of the Mark command is:

M

Reading Input Text into Internal Buffer

with no arguments. For example, assume Dot is at the
beginning of the following buffer:

ACCORDING TO LEADING SCIENTISTS,

THE WORLD IS ROUND.

*M @ Sets Mark at the current position
*G/,/ of Dot.
*@D

Q) Moves Dot to follow the comma (,)
character but Mark is left at the be-
ginning of the buffer.

@ Deletes the character string between

Dot and Mark. The buffer now reads:

THE WORLD IS ROUND.

Table 2-1 summarizes the commands which can use the
Mark @ argument.

2-10

Table 2-1

Commands Used With Mark Argument

Command Result

@A Moves Dot to the location of Mark.

@C/xxxx/ | Changes the characters between Dot and
Mark to the specified text,

@D Deletes the characters between Dot and
Mark.

@] Moves Dot to Mark.

@K Kills the lines between Dot and Mark.

@L Lists the lines between Dot and Mark.

@w Writes the lines between Dot and Mark
to the primary output file.

@X/xxxx/ | Exchanges the lines between Dot and

Mark to the specified text.

CHAPTER 3
CHANGING TEXT STORED IN BUFFER

Several commands can be used to delete and insert char-
acters and lines of text in the buffer. This chapter de-
scribes each command and gives an example of each.

3.1 DELETING CHARACTERS

The Delete (nD) command is a character-oriented com-
mand that deletes n characters in the page buffer be-
ginning at Dot. If n is not specified, EDIT deletes the
character immediately following Dot. Upon completion
of a D command, EDIT positions Dot at the first charac-
ter following the deleted text.

The following list describes each argument and its effect
on the Delete command.

nD Deletes n characters following Dot. Dot is
placed at the first character following the
deleted text.

-nD Deletes n characters preceding Dot. Dot is posi-
tioned at the first character following the de-
leted text.

OD Deletes the current line up to Dot. Dot is posi-
tioned at the first character following the de-
leted text.

@D Deletes the text between Dot and Mark. Dot is
positioned at the first character following the
deleted text.

/D Deletes the text between Dot and the end of the
buffer. Dot is positioned at the end of the
buffer.

For example, assume Dot is at the beginning of the
following buffer:

*FOUR SCORE AND SEVEBN YEARS AGO

*G/VE/ @ Positions Dot after the VE in the word,
*D SEVEBN.

@ Deletes the B after Dot. The line then

reads:
FOUR SCORE AND SEVE‘rN YEARS AGO.

3.2 DELETING LINES OF TEXT

The Kill (nK) command removes n lines of text (includ-
ing the carriage return and line feed characters), from
the page buffer beginning at Dot and ending with the
nth end-of-line. Dot is placed at the beginning of the line
following the deleted text. The following list describes
each argument and its effect upon the Kill command.

nK Removes the character string (including the
CR and LF sequence) beginning at Dot and
ending at the nth end-of-line.

nK Removes the character string beginning at
the nth end-of-line preceding Dot and
ending at Dot. Thus, if Dot is at the center
of a line, the modifier -1 deletes one and one-
half lines preceding Dot.

0K Removes the current line up to Dot.

@K Removes the characters bounded by Dot
and Mark.

/K Removes the characters beginning at Dot and
ending with the last line in the page buffer.

For example, assume DOT is at the beginning of the
following buffer:

10 READAB,C
20 PRINT A;BC
30 PRINT A,B.C

*2A @ Advances Dot past two ends-of-line
*K to precede the third line.

() Deletes the third line. The buffer now
reads:

10 READAB,C
20 PRINT A;BC

3.3 INSERTING TEXT

The Insert (I) command is the basic command for in-
serting text. The specified text is inserted at Dot and
Dot is placed after the last character of the inserted text.

Changing Text Stored in Buffer

If Mark was located following the text to be inserted,
Dot becomes the new Marked location.

No arguments can be specified with the Insert command.
When EDIT is in Text mode, up to 80 characters per
line can be specified by typing the mnemonic I on one
line followed by the CR key and the text to be inserted
on the following line(s). Execution of the command
occurs when the LINE FEED key is pressed. If the text
does not contain carriage return or line feed characters,
it can be typed on the same line as the I command but
must be set off by delimiters. The following are exam-
ples of using the I command in Command mode and in
Text mode.

INPUT B%C, D

*[/A,/ <CR> Inserts the characters (A,) at the

* location of Dot. The buffer then
or reads:

*[<CR>

A, <LF> INPUT B,A,TC,D

%k

A line feed character is inserted in the text only if it is
typed as the first character following the I command in
text mode. The following example shows how to insert
a line feed in the text. (The example assumes EDIT is
conditioned to treat a line feed as a BASIC-PLUS con-
tinuation line.)

10 A,B,C=10, :PRINT A;B;,C

1;

@ *1<CR>
<LF><tab>
<LF>

Q@ *-LL

(D The I command followed
by the CR places EDIT in
Text mode. A LF character
is typed. EDIT enters it in
the text. The second LF
typed terminates the In-
sert. (The Tab character
improves readability.)

@ The two L commands
print the result as shown:

10 A,BC=10
:PRINT A;B;C

EDIT notifies the user of depleted buffer space by re-

printing the I command followed by a ? character.
For example:

32

*[<CR>
(text to be inserted)

1?
*

All text up to but not including the last typed line is in
the buffer, but the buffer is almost full. A solution is to
create smaller pages by using the F command, ending
the editing session, and restarting it for further editing.

3.4 CHANGING CHARACTERS
The Change (nC) command changes a specified number
of characters following Dot. A C command is equivalent
to an Insert command followed by a Delete command.
EDIT requires a text object to be inserted following the
nC command. Arguments and their effect upon the C
command are described as follows:

nC Replace n characters following Dot with the
specified text. Dot is placed after the inserted
text.

Replaces n characters preceding Dot with the
specified text. Dot is placed after the inserted
text.

0C Replaces the current line up to Dot with the
specified text. Dot is placed after the inserted
text.

@C Replaces the text between Dot and Mark with
the specified text. Dot is placed after the in-
serted text.

/C Replaces the text beginning at Dot and ending
with the last character in the buffer. Dot is
placed after the inserted text.

For example, assume Dot is at the beginning of the
following buffer:

MEN ARE ALL CREATED
EQUAL
*11C/ALL MEN ARE/ Changes the first 11 characters
to ALL MEN ARE. The buffer
now reads:
ALL MEN ARE CREATED
EQUAL

Dot after the 11C com-
mand.

Changing Text Stored in Buffer

The C command can be used in Text mode as shown in
the following example
ALL MEN ARE CREATED
EQULA

+
*4C<CR> Changes the
AL AND ENDOWED BY <CR> characters LA
THEIR CREATOR WITH <CR> and the CR and

CERTAIN INALIENABLE RIGHTS. <CR > LF sequence to
<r> the text shown.
*

3.5 EXCHANGING LINES OF TEXT
The Exchange (nX) command is similar to the Change
command except that lines of text, instead of a speci-
fied number of characters, are changed. The nX com-
mand is identical to an Insert command followed by an
nK command. Arguments and their effect upon the
Exchange command are listed as follows:

nX Replaces n lines including the carriage return
and line feed characters following Dot. Dot is
positioned after the inserted text.

Replaces n lines including the carriage return
and line feed characters preceding Dot. Dot is
positioned after the inserted text.

0X Replaces the current line up to Dot with the
specified text. Dot is positioned after the speci-
fied text.

@X Replaces the lines including the carriage return
and line feed characters with the specified text.
Dot is positioned after the inserted text.

/X Replaces the text beginning at Dot and ending
with the last character in the buffer with the
specified text. Dot is positioned after the in-
serted text.

The Exchange command can be used in Command mode
or Text mode, depending on whether the end-of-line se-
quence is to be removed or preserved. For example, to
remove the end-of-line sequence, use Command mode

as shown in the following example:

NOW 1~EW
ARE ENGAGDE

33

@ Exchanges the text EW
and the CR and LF
characters with the
specified text. This has
the effect of joining the
two lines.

@ *x/We |
*V

(@ NOW WE , ARE ENGAGDE

*

@ Verifies the new line.

Dot follows the new
text.

To maintain the end-of-line sequence, using Text mode,
replace the CR and LF characters, which are removed
by the X command as shown in the following example:

NOW WE ARE ENGAGDE
3

@ *X <CR> @ Exchanges the text DE

ED<CR> <CR> with the text

IN A GREAT CIVIL WAR<CR> ED<CR>IN A GREAT

<LF> CIVIL WAR<CR>, and
@ *B/L maintains the current line

NOW WE ARE ENGAGED sequence.

IN A GREAT CIVIL WAR

* @ Dot is positioned at the

beginning of the buffer
and the buffer is listed
on the user’s terminal.

If the user attempts to insert more characters than the
page buffer can hold, data from the last line may be lost
and text removal does not occur. To avoid this situation
separately execute a Kill command followed by an Insert
command.

3.6 OPENING SECONDARY INPUT FILE

The Edit Open (EO) command closes the secondary in-
put file and reopens it at the beginning. Modifiers may
not be specified with an EO command. An EO command
allows the user to make many passes through the secon-
dary input file; however, EDIT allows only one pass per
job through the primary output file. An EO command
has no effect on the text.

The EO command is useful following an EP or EH com-
mand. The following is an example of performing a
search through the secondary input file for the first oc-
currence of the specified text object, killing the con-
tents of the buffer, and reopening the secondary input
file at the beginning. Each comment refers to the appro-
priately marked lines in the example.

Changing Text Stored in Buffer

#ANGCPTU, 21U

+EF /THREE/
E/L

SECOMNDREY
©OLTa
@D +EO
(5)*EFR/L
SECONDARY

INFUT FILE - FHRGE

THREE

INFUT FILE - FARGE ONE

@ A search through the secondary input file is made
for the first occurrence of the specified text ob-
ject. EDIT positions the page containing the text
object in the buffer and places Dot after the
searched text object. Ali previously searched
pages are deleted and the unsearched pages of
the secondary input file are not transferred to
the buffer.

@ Dot is positioned at the beginning of the buffer
and the buffer is listed on the terminal.

@ The contents of the buffer are deleted.

@ The secondary input file is reopened at the
beginning.

@ The first page of the secondary input file is read
into the buffer and the contents of the buffer are
listed on the terminal.

3.7 SAVE BUFFER

Text can be stored in an external buffer, called a save
buffer, and can subsequently be inserted in several places
in the text. The Save (nS) command copies n lines be-
ginning at Dot into the save buffer. The S command
operates only in the forward direction; therefore, nega-
tive integers cannot be used. Any previous contents of
the save buffer are destroyed; however, EDIT does not
change the location of Dot nor does it change the cur-
rent saved data.

If the user specifies more characters than the save buffer
can hold, EDIT reprints the related S command follow-
ed by a question mark (?) character; none of the speci-
fied text is saved.

The Save command is useful to move blocks of text or
to insert blocks of text in several places.

The Unsave (U) command inserts the contents of the
save buffer at the location of Dot in the main buffer.

34

EDIT places Dot after the last character of the unsaved
text. Arguments are not accepted with the U command.

EDIT does not destroy the contents of the save buffer
following a U command. Text in the save buffer can be
unsaved as many times as desired.

If the data being unsaved contains more characters than
the page buffer will hold, EDIT notifies the user by re-
printing the related U command followed by a question
mark (?) character. EDIT does not execute the U com-
mand in this instance.

The U command can be used to move blocks of text or
to insert the same block of text in several places.

The following is an example of using the S and U com-
mands. Each comment refers to the appropriately
marked lines in the example.

Changing Text Stored in Buffer

$FTLACFILA

@O *E/L
THIS IS AN EXAMFLE OF THE
SAYE AMD UMSAYE COMMANDS.

FLEASE RERAD THE FOLLOWIMG.

D*zs

R #zk

@)+ ¢

Okt

O+E L
PLERSE RERD THE FOLLOMWI
THIS IS8 AN EXAMFLE OF T
SAVE AND UNSRYE COMHAEND

@D *Ex

#

i
H

NG
E

@ The primary input file, FILA.BAS, is read into the
buffer and the contents of the buffer are listed on the
terminal.

@ The first two lines of the buffer are transferred to the
save buffer.

(® The first two lines of the buffer are then deleted from
the buffer. Deleting the lines prevents EDIT from
transferring them twice to the output file.

@ Dot is advanced to the end of the buffer.
@ The contents of the save buffer are inserted at Dot.

@ Dot is returned to the beginning of the buffer and the
entire buffer is listed on the terminal.

(D The buffer is transferred to the output file, FILA.BAS,
and the editing session is ended.

3.8 EXECUTE MACRO COMMAND

Upon receiving an Execute Macro (nEM) command,
EDIT executes n times the contents of the save buffer,
prior to a carriage return character. To execute a macro

insert it in the page buffer, save it, and then execute it.
For example, the following commands change every re-
ference to the word MODE to MADE. Each comment

refers to the appropriately marked lines in the example.

(a specified sequence of EDIT commands), the user must

$DEREECDERER

@ #RAL
CHARLIE IS A SELF-MODE
MAN. IMN HIS LIFETIHE
HE HALZ MORE OVER $1HM.
RCCORDING TO A FRIEND.
Hi HMODE R EILLING IN
THE MARKET.
1
GAMOGDES-ZJCARS

(D *ESKIEHN
*‘:E:l"lL
CHAELIE IS5 A SELF-MADE

HAM. IN HIS LIFETIME

HE HAS MADE OWVER $1M.

ACCORDING TO A FRIEHWD.
HE MALDE A KILLIMWG INM

THE MARKET.

onTt:

#

@ Reads the first page of the file, DEREK.BAS, into the
buffer and lists the contents of the buffer on the ter-
minal.

@ Inserts the macro in the buffer.

@ Places Dot at the beginning of the buffer. Stores the
macro in the save buffer and deletes it from the buffer.
Executes the macro three times.

@ Places Dot at the beginning of the buffer and lists the
contents of the buffer on the terminal.

@ Transfers the contents of the buffer to the output file
and ends the editing session.

CHAPTER 4
OUTPUTTING EDITED TEXT

4.1 TERMINATING EDIT

To terminate an editing session, type the EX command,
which writes the buffer to the primary output file, trans-
fers the remainder of the primary input file to the out-
put file, closes all open files, and renames the temporary
file as the edited, primary output file. The following
dialogue shows the procedure:

*EX
$°z

EDIT prints the # character (in response to which
further input and output specifications can be typed.)
The CTRL/Z combination terminates the EDIT pro-
gram and returns control to the system monitor.

The user should periodically terminate the editing ses-
sion as described above. EDIT operates in such a manner
that the primary input file remains intact during the
editing session. The temporary file EDITnn. TMP retains
the revised text as edits are made. If the system crashes
during the editing session, the primary input file is not
disturbed, but the edits being made are lost. Therefore,
it is recommended that editing sessions be terminated
frequently to update the primary output file. In the
event that a system crash occurs, the amount of editing
lost is limited to those edits made since the beginning of
the latest session.

4.2 WRITING LINES OF TEXT TO OUTPUT FILES
The Write (W) and Edit Write (EW) commands copy
lines of text from the buffer to the output files. The
Write (W) command copies lines of text from the buffer
and appends them to the primary output file. An Edit
Write (EW) command is the same as a W command ex-
cept that EDIT writes to the secondary output file
rather than the primary output file. The contents of the
buffer are not altered and Dot and Mark are left un-
changed.

The argument given with the W and EW commands de-
termines the lines of text to copy. Arguments and their

41

effect upon the Write and Edit Write commands are
listed as follows:

nW Writes n lines of text beginning at Dot and
ending with n end-of-line characters to the
primary output file.

nEW Writes n lines of text to the secondary out-

put file beginning at Dot and ending with n

end-of-line characters.

-nW Writes n lines of text to the primary output
file beginning at Dot and ending with n+1 p
previous end-of-line characters.

-nEW Writes n lines of text to the secondary out-

put file beginning at Dot and ending with

nt1 previous end-ofine characters.

ow Writes to the primary output file the current
line up to Dot.

OEW Writes to the secondary output file the cur-

rent line up to Dot.

@Ww Writes to the primary output file the text
between Mark and Dot.

@EW Writes to the secondary output file the text

between Mark and Dot.

/W Writes to the primary output file the text
between Dot and the end of the buffer.

/EW Writes to the secondary output file the text
between Dot and the end of the buffer.

Write and Edit Write commands can also be used to
write portions of text in the buffer to different files. For
example, the following set of commands transfers por-
tions of the primary input file to the primary and secon-
dary output files. Each comment refers to the appropri-
ately marked lines in the example.

QOutputting Edited Text

BFILL, FILZ<HALTEE

D +kL
1@FOR I=8 TO S5
1S5FEARD ACT
SUNERT
*4SDATA
Q) *+2HR
(3) #-cH
(4) +Z2EW
(5) #EB~k
(6) *Ex

#

n =

n
1
oy

- e
R

6

o

1, B

L]

T,

T

(D Reads the primary input file, WALTER.BAS, into the
buffer and lists the contents of the buffer on the ter-
minal.

Q) Advances Dot two end-of-line characters to precede
the third line.

@ Writes the two lines preceding Dot into the primary
output file, FIL1.BAS.

(@ Writes the two lines following Dot into the secondary
output file, FIL2.BAS.

@ The B command moves Dot to precede the first char-
acter in the buffer. The /K command removes the char-
acters beginning at Dot and ending with the last char-
acter in the buffer. This action prevents unwanted text
from being transferred to the primary output file. Text
in the primary input file is not destroyed.

@ Closes all open files and terminates the editing session.
EDIT is ready to accept another input/output specifi-
cation.

4.3 CLOSING PRIMARY FILES ONLY

The End File (EF) command closes the primary input
and output files. Further input and output using the

The EF command can be used to create an output file
from a section of a large input file. Modifiers cannot be
specified with an EF command.

primary files is not allowed by EDIT; however, secon-

dary output and input files remain open for further

editing.

The following is an example of the EF command. Each
comment refers to the appropriately marked lines in the
example.

@ R

NOW IS THE TIME
FOR ALL GOOD MEN
TO COME TO THE RID
OF THEIR COUNTREY.
O +ER/L

MOM IS THE TIME
FOR ALL GOODR MEHN
7O COME TO THE RID
OF THEIR COUNTEY
FOUR SCORE AND SEVEN
YEARS RGO,

7MW

©)
@ *EF
wE AL

$ELLEN, TERRYCHARY. BERENDA

@ The first page of the primary input file, MARY.BAS,
is read into the buffer and the contents of the buffer
are printed on the terminal.

@ The first page of the secondary input file,
BRENDA.BAS, is read into the buffer and is appended
to the current contents. The buffer is listed on the
terminal.

@ The contents of the buffer are written to the primary
output file, ELLEN.BAS.

@ The primary input file and the primary output file are
closed.

@ An attempt is made to read the next page of the pri-
mary input file after specifying the EF command.
EDIT responds with the related R command followed
by a question mark (?).

(continued on next page)
42

Outputting Edited Text

(continued from previous page)

R
© #4EH (® The first four lines of the buffer are written to the
6 #E secondary output file, TERRY.BAS.

@ The editing session is ended.

43

APPENDIX A
EDIT EXAMPLES

This appendix supplies three examples of using EDIT.
Each example is comprised of a listing and some expla-
natory comments relative to specific lines of printout.
Example 1 illustrates creating a file, terminating EDIT,

Example 1:

and reopening the file for further editing. Example 2
shows how to edit an existing file without having to
specifically enter it into the buffer. Example 3 illustrates
the merging of two input files inio one output file.

@ RUN $EDIT

ECIT vosBE-11
#nos

@ 1
THE MOSQUETO IS ONE OF MANS
ENEMIES MORE THAM 225 VIRUSES,
FRTAL TO HUMAN BEINGS ARE ENOWN TO

THIS INCREDIELY

*EY

-

g

FERDY

EUN $EDIT
ELIT vese-11

gHos@emMosR

*E
* L
THE MOSQUETO
#®QJCA/T
LS T P
it
THE MOS@QUITO
@ sFL
EMEMIES MORE
#GASATS S
© *4G/TAZC/TAY
EMEHIES. MORE THAN
#HL
FATAL TO

IS GHE OF MANS

O® B® ® ®

IS ONE OF MAN‘S

e
[

THAN YIRUSE

RN -
sad

YIRUS

HUMAN BEINGS ARE KN

ROAFAELE FES
BREED BY THE BILLIONS ALMOST IN EYERY FART OF THE MWORLL.

MOST ANCIENT AND DEADLY
OF THEM POTENTARILLY
EE CHRERIELD EBY
WHOSE z28pe SFECIESS

1=z

T.

HOST ANCIENT AND DEADLY

MOST ANCIENT AND DERDLY

. 1z OF THEM POTENTHRILLY

ES, 1% OF THEM FOTENTIALLY

OWN TO EE CARRIED EY

A-l

Edit Examples

@ E C I
Ean

@ FATAL TO HUMAN BEINGS, ARE KNOWN TO EBEE CARRIED BY
* AL

THIS INCREDIELY ADAFAEBLE FEST, WHOSE @66 SFECIESS

*GAPSIATS

#4G /5 S

o

LAY

THIS INCREDIELY ADAFTAEBLE FEST, WHOSE 2888 SFECIES
#HL

EREED EY THE BILLIONS ALMOST IN EYERY FART OF THE WORLD.
w406,/ S9CAIN ALMOST S

®@ © ©® ® OB

* 4
BREED BY THE EBILLIOGNS IH ALMOST EYERY FART OF THE WORLD.
*ER
72
FEARDY
The following description explains how in Example 1, are the same, EDIT creates the backup file
a file is created, EDIT is terminated, and the file is with a .BAK extension.
reopened for further editing. Each comment refers to 6. When the file has been found, EDIT responds
the appropriately marked lines in the example. with an asterisk (*), indicating Command mode.
The R command reads the first page of the

1. The user loads EDIT and creates the output input file into the buffer. EDIT positions Dot
file, MOSQ.BAS. The keyboard is the de- at the beginning of the buffer.
fault input device. 7. The L command lists the first line of the buffer

2. The Insert command followed by a carriage on the terminal.
return (CR) character instructs EDIT to enter 8. The 9J command moves Dot over nine characters
Text mode. Lines of text are typed and the CR to precede the E character in MOSQUETO. The
key is pressed following each line. The line C command changes the following character to
feed (LF) character following the text to be I. Dot resides after the I character. The slash
inserted instructs EDIT t- insert the text into (/) is used as a delimiter because it does not
the buffer. appear in the text object.

3. EDIT returns to Command mode as indicated 9. The 2G command locates the second occurrence
by the asterisk (*) character printed on the ter- of N and the I command inserts an apostrophe
minal. The user can then edit the file by typing (’) after it. Dot is placed after the apostrophe
appropriate commands. If no further editing is character.
desired, the file is closed by typing the Exit 10. The V command verifies the edited line.
command. The CTRL/Z combination termi- 11. The AL combination advances Dot to the
nates the editing session and returns control beginning of the next line and lists the line on
to the system monitor. the terminal.

4, To rerun EDIT, type RUN $EDIT. The ver- 12. The G command finds the first occurrence of
sion number of EDIT is then printed on the S and EDIT positions Dot immediately after
user’s terminal. it. The I command inserts a period (.) at Dot.

S. EDIT prints a number sign (#) character and Dot is placed following the period (.) character.
waits for the user to specify an input and an 13. The 4G command moves Dot to follow the
output file. EDIT searches for the file fourth occurrence of the character T. The 2C
MOSQ.BAS in the user’s current account and command changes the next two characters, Al,
opens it for input. Because the filenames of in POTENTAILLY, to IA for POTENTIALLY.
the primary input and primary output files Dot is placed after the inserted text. The line is

then verified.

A2

Edit Examples

14. The AL combination advances Dot one line 20. The Delete command deletes the character fol-
and lists the line on the terminal. lowing Dot.
15. The user inserts a comma (,) after BEINGS by 21. The V command prints the edited line on the
using the G command to search for the first terminal.
occurrence of S, and the I command to insert 22. The AL combination advances Dot to precede
a comma (,) character following S. Dot is the next line and lists the line on the terminal.
positioned after the inserted text. 23. The character string ALMOST IN is changed to
16. The V command verifies the edited line. IN ALMOST by a Get and a Change command.
17. Dot is advanced one line and the line is listed The fourth space character is found and Dot is
on the terminal. : placed following it. The 9C command changes
18. The user inserts a T between the characters P the following nine characters to IN ALMOST.
and A in ADAPABLE by using the Get and EDIT positions Dot after the T in ALMOST.
Insert commands. The G command positions 24. The V command prints the edited line on the
Dot to follow the P. The I command inserts a terminal.
T at Dot. EDIT positions Dot after the inserted 25. The EX command ends the editing session.
T. 26. The CTRL/Z combination terminates EDIT and
19. The Get command searches for the fourth returns control to the system monitor. RSTS
occurrence of S following Dot and positions responds with a READY message.
Dot after it.
Example 2:

Q@ EDIT DRUG

@ *L
@uuusss HOSBUITOES ARE CONTROLLED., DEADLY EFIDEMICS CAM RESULT.
#EY

READY
The following description explains how in Example 2, 3. EDIT returns to Command mode as indicated
the user can load the EDIT program and read the first by the * character. The EX command terminates
page of the primary input file by specifying only one the editing session and returns control to the
command. This feature is optional and is not available system monitor.
in all RSTS/E systems. Each comment refers to the
appropriately marked lines in the example. NOTE
This method of running EDIT is more
1. Typing the CCL command, EDIT, and the file- efficient than Example 1 for two reasons:
name on the same line loads the EDIT program,
opens the file DRUG.BAS for input, and reads 1. The input file is automatically read
the first page into the buffer. into the buffer; therefore, the R
The R command is not needed. command is not necessary.

2. The EX command automatically

2. When the first page has been read into the buffer, X
restores the system monitor after

EDIT responds with an asterisk (*) character
indicating Command mode. Dot resides at the closing the file. The CTRL/Z com-
beginning of the buffer. The L command lists bination is not needed.

the first line of the buffer on the terminal.

A3

Edit Examples

Example 3:
FUH $EDIT
EDIT VWeSEB-11

#RUGZCMOSE, DREUG

@ *r

@ LTa
THE MOSQUITO
ENEHIES.
FRTRL TO
THIG
BREED

©E1:1Y

@ *ER

@"'W"L
THE MOSQUITO
EHEMIES., MORE THAN 2235
FATAL TO HUMAN EEINGS.
THIS INCREDIBLY ADAFPTAELE FEST, WHO
SFEED EY THE BILLIONS IN ALMOST EVE
UNLESS MOSOUITOES ARE CONTROLLED. D

® *+EX

#

IS ONE OF MANSS
MORE THAN 2% V¥
HUMAN BEINGS,
IHCREGIELY
gy

HOST H
IRUSES, 1Z
ARE ENOWN TO
ROAFTABLE FEST, WHO
THE BILLIONS IN ALMOST EVE

IS ONE OF MAN'S MOST A
YIRUSES, 13X

ARE ENOWN TO

NCIENT AND CGEADLY

OF THEM FOTENTIALLY
EE CARREIEL BY

SE 2888 SPECIES

FY FART OF THE WORLD.

NCIENT AND DERDLY
OF THEM FOTENTIALLY
BEE CARRIELD EY

CE z@@@ SFECIES
EY FART OF THE WORLD.
EADLY EFIDEMICS CAN RESULT.

The following description explains how in Example 3
two input files are merged into one output file. Each
comment refers to the appropriately marked lines in
the example.

1. The first page of the primary input file,
MOSQ.BAS, is read into the input buffer.
The /L command lists the contents of the
buffer on the terminal.
The 5AV combination advances Dot five lines
and verifies the next line. Since there is no
next line, nothing is printed.

2.

A4

The ER command reads the first page of the
secondary input file, DRUG.BAS, and appends
it to the buffer. EDIT positions Dot at the
beginning of the buffer. This has the effect of
merging the two pages in the buffer.

The /L command lists the entire buffer on the
terminal.

The EX command writes the contents of the
buffer to the primary output file, DRUG2 . BAS,
transfers any remaining pages of MOSQ.BAS
to DRUG2.BAS, closes all files, and terminates
the editing session.

This appendix is an alphabetic summary of the com-
mands used in the EDIT program. A / represents any le-
gal text delimiter, a <CR> represents a return character,
a <LF> represents a line feed ch
sents the number of characters or lines to be edited.

COMMAND

Advance

Beginning

Change

FORMAT
nA

-nA

0A

nC/xxxx/

aracter, and an n repre-

APPENDIX B

SUMMARY OF COMMANDS

RESULTS

Moves Dot forward
past n end-of-line
characters to precede
the first character of
the succeeding line.

Moves Dot back-
ward past n end-of-
line characters to
precede n+1 lines.

Moves Dot to pre-
cede the first char-
acter of the current
line.

Moves Dot to the
location of Mark.

Moves Dot to follow
the last character in
the buffer.

Moves Dot to pre-
cede the first char-
acter in the buffer,

Changes n charac-
ters following Dot
to the text, xxxx.
The text object must
be set off by delim-
iters. Moves Dot to
follow the last char-
acter of xxxx. Equi-
valent to a Delete
command followed
by an Insert com-
mand.

B-1

COMMAND

Delete

Edit Open

Edit Position

Edit Read

FORMAT

nC<CR>
xxxx<CR>
<LF>

-nC/xxxx/

nD

EO

nEP/xxxx/
or
nEP<CR>
xxxx<CR>
<LF>

ER

RESULTS

Same as the respec-
tive nC command
above except mul-
tiple lines can be
used to replace n
characters. In this
format, delimiters
are not needed be-
fore and after the
text object. The LF
key terminates the
insert,

Same as respective
nC command above
except n characters
preceding Dot are
changed.

Deletes n characters
following Dot. The

modifiers 0, @, and

/ can be used.

Closes the secondary
input file and opens
it again for input.

Performs a search
through the secon-
dary input file for
the nth occurrence
of the text object.
Dot is placed after
the text object. The
buffer is deleted
upon an unsuccess-
ful search.

Reads the next page
of the secondary in-
put file into the buff-
er. EDIT positions
Dot at the beginning
of the buffer.

COMMAND

Edit Whole

Edit Write

End File

Exchange

Execute Macro

Exit

Form Feed

FORMAT

nEH/xxxx/
or
nEH<CR>
xxxx<CR>
<LF>

nEW

EF

nX/xxxx/
or

nX <CR>

xxxx <CR>

<LF>

nEM

EX

Summary of Commands

RESULTS

Performs a search
through the secon-
day input file for the
nth occurrence of the
specified text object.
Dot is placed after
the text object. The
contents of the buff-
er are transferred to
the primary output
file.

Writes n lines into

the secondary out-
put file. The modi-
fiers -n, 0, @, and /
can be used.

Closes the primary
output and primary
input files to any
further input or out-
put.

Exchanges n lines
for xxxx. Equivalent
to an Insert com-
mand followed by a
Kill command. The
modifiers -n, 0, @,
and / can be used.

Executes the first
line of the save buff-
er as a command
string n times.

Writes the text in
the buffer to the
primary output file,
transfers the remain-
der of the primary
input file to the pri-
mary output file,
closes all files, and
returns to Command
mode.

Writes a form feed
after Dot in the buff-
er.

B-2

COMMAND
Get

Insert

Jump

Kill

List

Mark

Next

FORMAT

nG/xxxx/
or

nG <CR>

xxxx <CR>

<LF>

I/xxxx/

or
I <CR>
xxxx <CR>
<LF>

nJ

nK

nL

nN

RESULTS

Searches for the nth
occurrence of Xxxx
and positions Dot
after it.

Inserts the text ob-
ject at Dot. Moves
Dot to foliow the
text object.

Moves Dot ahead n
characters. The modi-
fiers -n, 0, @, and /
can be used.

Removes n lines of
text. The modifiers
-n,0, @, and / can
be used.

Prints n lines in the
buffer on the user’s
terminal. The modi-
fiers -n, 0, @, and /
can be used.

Sets the current lo-
cation of Dot to the
Marked location,
which subsequently
can be referenced by
the @ modifier.

Writes the contents
of the buffer to the
primary output file,
deletes the contents
of the buffer, and
reads the next page
of the primary input
file into the buffer.
The sequence is re-
peated until n pages
have been read or
until the end-of-file
has been reached.
Dot is positioned at
the beginning of each
page read into the
buffer.

COMMAND

Position

Read

Save

Unsave

FORMAT

nP/xxxx/
or
nP<CR>
xxxx<CR>
<LF>

nS

Summary of Commands

RESULTS

Performs a search
starting at Dot in
the primary input
file for the nth oc-
currence of xxxx.
The search is con-
tinued until the text
object is found or
the end of the file is
reached. If the search
is successful, Dot is
positioned after the
text object.

Reads a page of the
primary input file
into the buffer. Dot
is positioned at the
beginning of the buf-
fer.

Inserts n lines into
the save buffer.

Copies the contents

of the save buffer in-
to the buffer at Dot.
Dot is positioned af-
ter the inserted text.

B-3

COMMAND

Verify

Whole

Write

FORMAT
\%

nH/xxxx/
or

nH <CR>

xxxx <CR>

<LF>

nW

RESULTS

Prints the line on
which Dot is located.
The location of Dot
is not changed.

Performs a search
through the primary
input file for the nth
occurrence of XXxx.
Each page of the pri-
mary output is
searched until the
text object is found
or the end of the file
is reached. If the
search is successful,
Dot is positioned af-
ter the text object.

Writes n lines begin-
ning at Dot in the
buffer to the primary
output file. The mo-
difiers -n, 0, @, and

/ can be used.

APPENDIX C
ERROR MESSAGES

Prior to executing any commands, EDIT scans the
entire command string for errors in command format
(illegal arguments, illegal combinations of commands,
etc.). If the error occurs after the first command in a
command string, EDIT reprints the command string
with a question mark (?) following the character where
EDIT found the error. Those commands preceding the
command questioned are executed, while those com-
mands following the ? are not executed. For an expla-
nation of a specific error condition detected by EDIT
refer to the section in this manual that describes the
command questioned.

The following is an example of an error message printed
by EDIT:

EDIT moves Dot to the begin-
ning of the buffer, searches for
the second occurrence of the $
character, deletes the character
searched, and tries to read the
next page into the buffer. EDIT
encounters the end of the file
and is therefore unable to execute
the N command. EDIT returns to
Command mode as indicated by
the printed *.

B2G/$/DN?
*

Other error messages which could appear while in
EDIT are listed in Table C-1.

C-1

Table C-1
EDIT Command Error Messages

Message

Meaning

LINE LENGTH OF X
IS TOO LONG

LINE BELOW WILL
BE LOST...

text

HOW MANY
SECONDS TO WAIT
FOR ‘EW’ DEVICE?

*E*XX*IGNORING A
TOO LONG
LINE**%%%

EDIT reads input and finds
line greater than 240
characters and prints this
warning message. Reformat
the line indicated so that

it is less than 240 characters
long.

An assignable device is
specified as a secondary
output but is not available
for execution of an EW
command. If a nonzero
number is typed, EDIT
sleeps and tries the EW
command again. If 0 is
typed, EDIT ignores the
EW command and prints
the * again.

EDIT reads input and
encounters line too long
(ERR=47) error. EDIT
cannot recover lines

longer than 255 characters.

Advance (A) command, 2-9
Asterisk (*), 1-3

Backup files, temporary, 1-4
BAK extension, 1-4
BAS extension, 1-4
BASIC-PLUS line continuation character, 1-4
Beginning (B) command, 2-8
/B option, 1-4
Buffer, 1-1
action upon filling, 3-2
listing contents of, 2-2
reading text into, 2-1
save, 1-1
executing contents of, 3-5
macro command in, 3-5
reading text from, 3-4
storing text in, 3-4
setting Dot at beginning of, 2-8
Buffers,
searching multiple, 2-4

CCL command EDIT, 1-5
Change (nC) command, 3-2
Character, 1-2

changing in text, 3-2

deleting, 3-1

inserting, 3-2
location pointer, 1-2
moving Dot by, 2-8
searching for, 24
Characters, special,
asterisk (¥), 1-4
commercial at (@), 1-3
form feed, 1-2
LINE FEED, 1-4
number sign (¥), 14
question mark (?), C-1
slant (/), 1-3
zero, 1-3
Command mode, 1-2,1-3
Commands,
Advance (A), 2-9
Beginning (B), 2-8
Change (nC), 3-2
Delete (nD), 3-1
Edit Open (EO), 3-3
Edit Position (EP), 2-6

INDEX

Index-1

Commands (Cont.),

Edit Read (ER), 2-1

Edit wHole (EH), 2-5

Edit Write (EW), 4-1

End File (EF), 4-2

EXchange (nX), 3-3

Execute Macro (nEM), 3-5

Exit (EX), 4-1

Form feed (F), 2-2

Get (nG), 2-3

Insert (I), 3-1

Jump (nJ), 2-8

Kill (nK), 3-1

List (nL), 2-2

Mark (M), 2-9

Next (nN), 2-3

Position (nP), 2-5

Read (R), 2-1

Save (nS), 34

Whole (nH), 2-4

Write (W), 4-1

Unsave (U), 34

Verify (V), 2-2
Commands, summary of, B-1
Commands used with mark argument, 2-10
Commercial at (@), 1-3

cominands used with, 2-10

usage with Mark command, 2-9

Delete (nD) command, 3-1

Delimiter, 1-3

Dot, 1-2
as temporary reference point, 2-9
moving by command, 2-8
moving to end of preceding line, 2-9
printing line up to, 2-2
verifying location of, 2-2

EDIT, CCL command, 1-5
EDITCH program, 1-1
EDIT commands,
arguments,
defined, 1-2
list of, 1-3
classes of, 1-2
modes, 1-2
summary of, B-1, B-2, B-3
EDITnn.TMP file, 14

Edit Open (EO) command, 3-3

Edit Position (EP) command, 2-6
error during, 2-6

EDIT program,
classes of commands, 1-2
command summary, B-1
error in specifying file, 1-4
error messages, C-1
error procedure in command, C-1

examples of running, A-1 through A-4

overview, 1-1

running, 1-3

terminating, 4-1
Edit Read (ER) command, 2-1
Edit wHole (EH) command, 2-5
Edit Write (EW) command, 4-1
End File (EF) command, 4-2
Error messages, C-1
Errors,

during file specification, 1-4

during search, 2-3

in I command, 3-2
EXchange (nX) command, 3-3
Execute Macro (nEM) command, 3-5
Exit (EX) command, 4-1

File,
closing primary, 4-2
creatinga, 2-1
creating a new from old, 2-5

creating from portions of existing, 2-6

creating from section of input, 4-2
copying remaining, 2-4
keyboard as primary input, 1-5
opening secondary input, 3-3
reading text from, 2-1
searching entire, 2-4
searching primary, 2-4
searching secondary, 2-5,2-6
using secondary input, 2-8
Form Feed (F) command, 2-2
Form feed, 1.2

Get (nG) command, 2-3
error during, 2-3

INDEX (Cont.)

Index-2

H (wHole) command, 2-4

Input and output specifications, 1-4

Insert (I) command, 3-1
error during, 3-2

Jump (J) command, 2-8

Keyboard,
as primary input file, 1-5
Kill (nK) command, 3-1

Line,
deleting, 3-1
exchanging, 3-3
inserting in save buffer, 3-4
moving Dot by, 2-9
writing to output file, 4-1

Line continuation character, BASIC-PLUS,

LINE FEED, 1-3
inserting into text, 3-2

1-4

LINE FEED character, special treatment, 1-4

LINE FEED key,

to terminate text mode, 1-3
Line of text, 1-2
List (L) command, 2-2

Macro commands, usage of, 3-5
Macro function, 1-1
Mark, 1-2
command (M), 29
commands used with, 2-10

Next (N) command, 2-3
Number, used as argument, 1-3
Number sign (#), 1-4

INDEX (Cont.)

Option, /B, 1-4 Search (Cont.),
Output specifications, input and, 1-4 resetting Dot after unsuccessful, 2-8
primary input file, 2-4
secondary input file, 2-5
Secondary files, 1-4
Page, Slant (/), 1-3
automatic output of, 2.3 Summary of commands, B-1
handling multiple, 2-3
reading next input, 2-3
searching current, 2-3

Page of text, 1.2 Temporary backup files, 1-4
Pages, Temporary reference pointer, 1-2
dividing text into, 2-2 Terminating EDIT, 4-1
listing entire, 2-2 Text,
searching multiple, 2-4 changing characters in, 3-2
Pointer, deleting characters from, 3-1
character location, 1-2 deleting lines from, 3-1
explicit manipulation, 2-8 dividing into pages, 2-2
temporary reference, 1-2 editing multiple pages of, 2-3
Position (nP) command, 2-5 exchanging lines of, 3-3
error during, 2-5 inserting LF in, 3-2
Primary files, 1-4 listing lines of, 2-2

outputting a page of, 2-3
positioning Dot in, 2-8
reading from Save buffer, 34

Question mark (?) as error indicator, C-1 searching for, 2-3

Question mark (?), printed during, writing lines to output files, 4-1
EP command, 2-6 Text mode, 1-2
G command, 2-3 entering, 1-3
H command, 2-4 terminating, 1-3
I command, 3-2 usage in search commands, 24
P command, 2-5 Text object, 1-2,1-3

S command, 3-4

Unsave (U) command, 34
Read (R) command, 2-1
RETURN character,
inserting in text, 3-2
searching for, 24 Verify (V) command, 2-2
RETURN key,
to enter text mode, 1-3

Whole (nH) command, 24
Write (W) command, 4-1

Save buffer, 1-1 Writing lines of text to output files, 4-1
usage of, 3-4

Save (nS) command, 3-4 X (eXchange) command, 3-3

Search, Y, in READY, 1-4
error during, 2-3
Dot after unsuccessful, 2-3 Zero as argument, 1-3

Index-3

Please cut along this line.

RSTS/E Text Editor Manual
DEC-11.UTEMA-A-D

READER’S COMMENTS

NOTE: This form is for document comments only. Problems with software should be reported on a Software
Problem Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this
manual? If not, what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

O Assembly language programmer
[0 Higher-level language programmer
O Occasional programmer (experienced)
0O User with little programming experience
[0 Student programmer
0 Non-programmer interested in computer concepts and capabilities
Name Date
Organization
Street
City State Zip Code
or
Country

If you do require a written reply, please check here. O

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD. MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P.O.Box F
Maynard, Massachusetts 01754

digital equipment corporation

Printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	4-01
	4-02
	4-03
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	C-01
	Index-01
	Index-02
	Index-03
	replyA
	replyB
	xBack

