DECUS — Asrils 1980
RSTS/E
HANDOUTS

RSTS/E V7.0
Terminal Service

Internals

Andy Riebs

DEC - Merrimack

U. S. DECUS
Spring, 1980

Chicago

Components of Terminal Service

TTDVR

0 The heart of Terminal Service
o Distributed in source
o Assembled during SYSGEN

o Primary subject of this discussion

TTDINT

o Defines most Terminal Service tables

o Defines device interrupt vector dispatch
o Distributed in source

o Assembled during SYSGEN

o Table of Contents shows physical/logical KB assignments

TRM

o UUO (SYS call) processing for
o Set terminal characteristics
o Hangup/enable dataset
o Disable terminal

o Distributed in binary form

0 Always included in the system

TTSYST

o Special "“T "mini-systat" code
o Distributed in binary form

o Optionally linked in

+1

+5

+7

+11

+13
+15
+17

+21

+23

+25

+27

+31

+33

+35

+37

Fixed Terminal DDB layout

| i 1
' DDSTS i DDIDX H
! | !
P
| DDUNT i DDJBNO i
! | |
T
! DDTIME i
| |
T
i DDCNT 1
i i
PR
! DDFLAG i
i i
\ DDBUFC /
< (Output buffer chain control area; >
/ 3 words) \
D D P P WD D WD D TR WD GD D YD WD GD WD WD AR G ED G D G W D S WD D D D S el - S G e . . - - -
i i i
i DDHORC i DDHORZ i
i i i
\ TTINPT /
< (Input buffer chain control area; >
/ 3 words) \
P
i TTESCC i TTDLMC |
] i]
] i]
T
' TTPDLM | TTMODE i
i ! i
P
| TTCHAR !
| |
| i
| TTINTF !
1 [}

[End of fixed DDB]

+0

+2

+4

+6

+10

+12
+14
+16

+20

+22

+24

+26

+30

+32

+34

+36

[Echo Controll

- D - D G G WD R G ST G NS R T G WP WD WE S S TI W G G R GER G GRS G R R GE D D S S . . -

\ TTINEC /
< (Echo control buffer control area; >
/ 3 words) \
] EKOPNT i EKOCTW !
i i]
! 1 I

[Modem Support]

]]]
] } [}
i [Ring value: TTFCNT] | [Ring value: DDHORC] |
]] 1
! I i
i [Ring value: DDFLAG] |
] !
1]
[Always present]
Voo TTTTTTE T
t]
! TTFCNT i
| i
[Multi-TTY Support]
! TTMSCN |
] |
] I

DDS.KB:: Defines size of a terminal DDB in bytes

STANDARD TERMINAL DDB LAYOUT

%% Fixed Region #¥#

DDIDX: Driver index (IDX.KB = 2)
DDSTS: Status and access control byte
DDJBNO: Owner job number times 2 (0 if free)
DDUNT: Device unit number
DDTIME: Time assigned or opened
DDCNT: Open count and assignment control
DDFLAG: Device dependent flags
DDBUFC: Buffer chain control area (output)
DDHORZ: Horizontal position, kept as

DDHORC -~ (positions from left margin)
DDHORC; Characters per line + 1
TTINPT: Buffer chain control area (input)
TTDLMC: Delimiter counter
TTESCC: Incoming ESCAPE SEQUENCE control
TTMODE : Current OPEN MODE
TTPDLM: Terminal's private delimiter
TTCHAR: Terminal's characteristics
TTINTF: Terminal interface type

%#%% Variable Region #¥#%

TTINEC: Buffer chain control area (type-ahead
for Echo Control)

EKOCTW: Echo Control field size and mode

EKOPNT: Paint character and "Field Active" flag

ST2741: 2741 control and status

TTPARM: Interface parameter word

TTAUXP: Pointer to DM11BB CSR or DZ BREAK byte

MODCLK: Modem timing and status

TTFCNT: Fill characteristics

TTMSCN: Base KB number for round-robin multi-TTY

scan

DDPRVO:
DDSTAT:

DDCONS:
DDASN:

TTLFRC:
TTNBIN:
TTRSX1:
TTDDT:
TAPE:
NOECHO:
LCLCPY:
TT2741:
TTRSX2:
TTHUNG:
TTDFIL:
TTMSG:
RUBOUT;
TTSXOF:
TTXOFF:
TTSTOP:

DDSTS (V7.0 assignments)

Ownership requires privileges
Junk programmed output (CONTROL/O)

DDCNT (V7.0 assignments)

Device is the console device
Device assigned through command

DDFLAG (V7.0 assignments)

TTRSX1

Set after force/broadcast
OQutput next in Binary mode
RSX mode (see below)

DDT sub-mode

TAPE mode

Inhibit echoing

Local echo

2741 type terminal

RSX mode (see below)

Terminal "hang" pending

Delay fill to next character
Processing incoming message
Processing RUBOUT's

Send XOFF as soon as possible
An XOFF was sent

Output temporarily stopped (CONTROL/S)

RSX Flags in DDFLAG
TTRSX2 Meaning

0 Not in RSX mode

1 "Extra <LF> Mode" -- Don't print
<LF> if user's next request
specifies TO.PRE

0 "Normal" RSX mode

1 RSX mode -- Need a <LF> before
another character is printed

TTMODE (Terminal's OPEN mode)
(V7.0 assignments)

TTBIN: Binary input mode

TTTECO: TECO mode (reserved; subject to change)

TTCRLF: No auto CR/LF mode

TTECTL: Echo Control mode

TTGARD: Guarded terminal mode

TTPCOL: Check incoming XON/XOFF mode

TTTECS: TECO Scope mode (reserved; subject to
change)

TTCHAR (Terminal's characteristics)
(V7.0 assignments)

TTXANY: Do "XON"™ on any character

TTFUNC: Disable special function characters
TTESC: Terminal has real ESCAPE

TTSCOP: Scope type terminal

TTESCI: Allow incoming ESCAPE Sequences
TTLCOU: Allow lower case output

TTPODD: Desired parity is odd

TTPRTY: Check and send with parity

TTUPAR: Prefix control characters with uparrow
TTSYNC: Stop output if XOFF received

TTXON: Sending XOFF will stop input

TTFORM: Hardware FORM FEED/VERTICAL TAB exists
TTTAB: Hardware HORIZONTAL TAB exists

TTLCIN: Allow lower case input

DH11: TTPARM defined as follows:

<1-0> Character length (0->5, 1->6, 2->7, 3->8.) *

<2> Stop bit (0->1, 1->2)

<3> 0

<4> Parity Enable (0->no parity, 1->parity)
<5> 0dd parity (0->even parity, 1->odd parity)

<9-6> Input speed code ¥*#*
<13-10> Output speed code #¥#¥
<15-14> 0

DZ11: TTPARM defined as follows:

<2-0> Subline number
<4-3> Character length (0->5, 1->6, 2->7, 3->8) *

<5> Stop bits (0->1, 1->2)

<6> Parity Enable (0->no parity, 1->parity)
<T7> 0dd parity (0O->even parity, 1->odd parity)
<11-8> Speed code ##

12> Receiver Clock Enable

<15-13> 0

* This field refers to the length of the data portion
of the character, exclusive of parity bits, if any.

%¥*¥ Hardware dependent; refer to the description of the
Line Parameter Register for the DH11 or DZ11 in the
"DIGITAL Terminals and Communications Handbook."

Note that the TTYSET UUO (SYS call) passes data in
the DH11 format; TRM will do any necessary conver-
sion for other device types.

Choracter In (TCMuMJl Inderrapts drsw&/ea{)

[og error

Make It
1¢

 Enswre
XON

J

| Thne char
counter

Chorgeter In

PrND-JCQ
delimiter
exist

Clenr ’E‘\Q_

parity bit sleep

A

C LNO&:*Q‘ IV\

Jtore char ia ’ f
O

‘ Eﬂd RuLau‘t
wode

Cancel

?2 | Sleep

on char -

C‘\arac‘:e(IV\

TTINST:®

Conkeol
char

No

Incomin .
E;c:\'F"\C > Yes | Piocess gt exit
se%uenct

4

Jee “Ccho

Cantgol” detni |

_ Mpcase i+

Chotacter ITn -

Control
cCharacter

Eclo Control 09‘6&1/

Inc {,feld

char Couv\{‘

Is

charhctar

fo cast
7

Priat Tos¢
<BEWL™ Characker
This checks for

fell expired in

“normal "moole,

Twsert Make ok

< FF> runnao e

-

This checks for
£leld ex,cileo(N
“Ke;‘/qu\Ck» o

”

Usec [evel T/O Di.spa{cL

Did 0%
Aetack from
ﬂm‘s? K8

Make ;)o‘r.\
hikernate

@ Exit

L(:\er [Gve/ T/o Dispo*c,'\«

key bord
0L§§ a‘o IEA

Clear echo
Cord"rol Moole.

Yo

User Level Iv\p\rj\ Service

TTISER::
—_———

Ensure not
'MwH'i-m CA//

See “Mulh -
TTY Scom '

Kill jog

(/(Se(Cevel IV\PJY gerwce,

XN X ¢

(e Gmu.est

5«{\5?@& ’

<

Yes

Puk char in
users bwﬂ’ef

Clear ©DT

Sub-mode

?

Make o

TURR G B \E

Cexit)

User Level Input Service ~ STaw

STALL
och, ‘ nft .
TECO, or eas
B‘“;fs Yes one char NS Clear ODT Make ok Ex it
M; ¢ QQ;A.(Suk-moo(e, TWV\V\Q\D\L
No No
Set é-"mant
(woit) value

IS
Field
glecloued_

Jes
Mu*\"; ¥
:\\'T‘i °r . Yes «f &rror -
No stull t
<zbw95t Exi
7
No
Log\geo\ Editor w.
> Yes Uait es | kil 305
? 7
No No

A)

(wait for
i

User Leve/ I,.F.J Service - M\«/)L/’TT;V S can

this oo
Own kB8

Get last k8
AAWGR 7 rcm\rd;‘ol

‘ Poi'\‘\’ to)QS
next KB

(wok for .

Put KB number
PRI 149 \b‘-ﬁfe(

-

User Levef Ov:(Pui Sewice

Point to
|2 “slave" K8,
TTOMWUL:! Clear TO

User Level Ow{pui Service

Print
<CR>

4

€at awny
'Qad"ﬁé < CR>

Set <LF>
r\lQOLQ"L

¥ .

Fat extra Force. “pref”
<

LF> Call fo et <pf»>

Force “normal
RsX " wode,

Echo
Control

w\oole
set

Flag stop when
<z 2 chars /eft

Echo
fiel

dec [aration

User Level OA'PJ\‘ Cervice

Mo (&
thars to
priat

to
detected

g(‘«a

field
declare

No

Print <cR> Move chars
?ro&«eo\ux
suhler 4o
A pud buf(f,l
y
Set «<LRk» R Flog come
weeded back lotev

Yeg

Get char

~
T rom \ASev

Call olnﬂtpmf

rOV* N

¥

Adiust XRB

Disk Internals and SAVE/RESTORE

Nancy Covitz
Chicago DECUS
April, 1980

Disk Internals and SAVE/RESTORE Page 2
Introduction ’ :

1.8 INTRODUCTION

Prior to the release of RSTS/E V7.8, RSTS/E users had no way of making
a fast copy of a disk with bad blocks. Many of our customers were
extremely unhappy with the existing BACKUP package. While it offers
several important features, notably a high degree of flexibility, it
may be quite slow. The BACKUP dialogue is also fairly complex. In
many cases, users have misunderstood a BACKUP question and proceeded
to transfer the wrong set of files.

A conscientious installation should back up its production disks at
least once a week, preferably more often. Bypassing a regular backup
procedure could lead to the loss of weeks, or even months of work in
the event of a disk crash. Extremely long BACKUP times have made it
nearly impossible for some wusers . to back up large disks in an
acceptable amount of time.

It was apparent that the advent of newer, increasingly larger disks
would raise the 1level of discontent among current customers even
higher. It was also felt that potential customers were being
discouraged by the lack of a fast backup facility on RSTS/E.

Several items were considered to be major goals of the development
effort. Specifically, SAVE/RESTORE had to be

reliable

fast

easy to use, and

capable of handling bad blocks

If these goals could be met, SAVE/RESTORE would provide RSTS/E
customers with a high-speed, volume backup capability.

The next section describes the RSTS/E on-disk structure. This
information 1is important for two reasons: First, the existing BACKUP
package is written in BASIC-PLUS and, therefore, utilizes the system
file processor for file transfers. As can be seen by examining the
Structures described in the ensuing sections, this can be an extremely
long process if large numbers of files need to be selected and
transferred. More importantly, any program which properly handles bad
blocks on a non-file structured RSTS/E disk must be able to
"understand" the on-disk directory structure. In particular, if a
transfer would cause a bad block to be included in a file, the data in
the file must be moved to a new location and all directory pointers
changed accordingly.

Note that some of the information included in this document 1is not
specifically needed by SAVRES (e.g., various status bits or accounting
data). 1In addition, some information which follows the description of
the on-disk structure 1is not directly related to the directory
structure. These "extras" are included to give you a complete picture
of the directory structure, as well as some indication of why certain
elements of SAVRES "are the way they are".

Disk Internals and SAVE/RESTORE Page 3
Introduction

2.0 DISK STRUCTURE OVERVIEW

Access to disk media under RSTS/E is normally controlled by the file
processor (FIP) and by wuser 1level disk I/0 routines. In order to
access disk data, the file processor must be called to associate the
disk data (e.g., a disk file, a disk directory, or a whole disk) with
a channel. FIP does access and existence checking and then '"opens"™
that channel. Read/write access is checked and handled by the user
level I/0 routines. These routines rely on FIP having set wup: enough
information to map logical user I/0 requests (e.g., a "GET" statement
in BASIC-PLUS) into physical medium read/writes. When processing 1is
done, it is again FIP who "closes" the file and releases the channel.

The sections which follow describe the on-disk information structure
that permits FIP to subdivide a disk into files.

2.1 Physical Disk Subdivisions

The following terminology is used to describe the basic subdivisions
of a RSTS/E disk itself. These definitions are referenced by many
other sections and are the global basis for the on-disk structure.
The primary users of the terms described here are the disk drivers and
FIP.

2.1.1 Block - A block is 256 words of disk data.

2.1.2 Logical Block (LB) - All disks are divided (either by the disk
hardware itself or artifically by the software) into a collection of
LB's. A LB is the smallest unit of disk data addressable by software
under RSTS/E.

2.1.3 Logical Block Number (LBN) - Each LB 1is assigned a unique
23-bit LBN. LBN's start at @ and increase by +1 all LB's have been
assigned a LBN. LBN's are ordered such that the data of LBN n+1 is
physically adjacent to and immediately after the data of LBN n.

2.1.4 Cluster - A cluster is a collection of LB's with sequential
LBN's, i.e., a series of contiguous blocks. The number of LB's in a
cluster is always a power of 2 and may range from 1 to 256 inclusive.

Disk Internals and SAVE/RESTORE Page 4
Disk Structure Overview

2.1.5 Device Cluster (DC) - All RSTS/E disks are divided into DC's,
which are the primary storage wunit of a RSTS/E disk. A DC is the
smallest allocatable unit of disk data.

2.1.6 Device Cluster Number (DCN) - Every DC is assigned a unique
16-bit DCN. DCN's start at @ and increase sequentially until all LB's
of the disk are contained in a DC.

2.1.7 Device Cluster Size (DCS) - Every disk type has a permanently
assigned DCS. The DCS 1is always a power of 2 and between 1 and 16
inclusive. The DCS assigned to any given disk type 1is chosen such
that the maximum DCN remains a 16-bit number. The following table
lists the DCS for all disks currently supported by RSTS/E.

Disk DCS Device Size Device Size
in 256-wd blks in bytes
RS64 1 256% (# of platters)
RS11 1 1024*%(# of platters)
RS@3 1 1924 524,288
RS@Y4 1 2048 1,048,580
RK@5 1 L4800 2,457,600
RK@5F 1 48@@F per unit;2 units per drive
RL@1 1 10220 5,232,640
RL@2 1 20440 10,465, 300
RK@6 1 27104 13,877,200
RK@7 1 53768 27,529,200
RP@2 2 Loooo 20,480,000
RP@3 2 80000 49,960,000
RM@2/RM@3 y 131648 67,403,800
RP@G4/RPAS y 167200 85,606, 400
RP@6 8 334400 171,213,000

Disk Internals and SAVE/RESTORE Page 5
Disk Structure Overview

2.1.8 FIP Block Number (FBN) - FBN's are used internally by the file
processor. FBN's are a special set of block numbers arranged such
that FBN 1 corresponds to the first block of DCN 1 (the file
structure's root 1is the MFD which always starts at DCN 1). While
there is a unique LBN for every FBN, there are always (DCS-1) LBN's
not describable by FBN's. These blocks are "lost" on file structured
disks. Since at most (DCS-1) blocks are not describable by FBN's, the
FBN is a 23-bit number.

The following equation relates the above terms.
FBN = (DCS ¥ (DCN-1)) + 1

This is the major conversion wused by FIP to convert 1its on-disk
storage of retrieval information (which is always 16-bit DCN's) into
its internal 23-bit FBN's.

-

2.2 Logical Disk Subdivisions

The following terms describe logical subdivisions of a RSTS/E disk.

2.2.1 Pack Cluster Size (PCS) - When a disk 1is initialized to the
RSTS/E file structure, an additional cluster factor called the Pack
Cluster Size (PCS) is superimposed on the structures defined above.
The PCS Size 1is also a power of two between 1 and 16 and must be
greater than or equal to the DCS.

2.2.2 Pack Cluster (PC) - A Pack Cluster is a contiguous group of n
blocks where n = PCS. The PC is the smallest unit of storage which
can be allocated on the RSTS/E disk. Each PC is represented by one
bit in the Storage Allocation Table, which is discussed later.

2.2.3 Pack Cluster Number (PCN) - Every pack cluster 1is given a
unique 16-bit number called the Pack Cluster Number (PCN). PCN's
start at @ and increase sequentially by 1. PCN @ is always aligned
with DCN 1. The LB's contained in DCN @ are not described by a PCN.

2.2.4 Files, Virtual Blocks, and Virtual Block Numbers - All data
accessible through file structured disk operations are contained in a

"file". A file is an ordered set of virtual blocks, where a virtual
block 1is equal in size to a disk block. The virtual blocks of a file

of size n are consecutively numbered from 1 to n. The number assigned
to a virtual block is called its Virtual Block Number (VBN). All file
structured access to file data is by VBN. For example, in BASIC-PLUS

Disk Internals and SAVE/RESTORE Page 6
Disk Structure Overview

one might access the sixth virtual block of a file via a command of
the form "GET #1%, RECORD 6%". The file processor, in turn, maps the
specified VBN to a unique LBN.

2.2.4.1 File Cluster Size (FCS) - The blocks of a file are also
grouped into <clusters. A file's cluster size is specified when the
file is created and may contain 1, 2, 4, 8, 16, 32, 64, 128, or 256
blocks. In general, the effect of a large file cluster size is to
decrease access time to file data, possibly at the expense of wasted
disk space. ‘

2.3 Clustersize Restrictions

The previous sections described device clusters, pack clusters, and
file <clusters. Two others types of clusters, MFD clusters and UFD
clusters will be detailed in the sections which follow. Before
introducing these items, the overall restrictions on cluster sizes
should be noted (maximum cluster size for each type 1is shown in
parentheses):

MFD Cluster Size (16)
DCS (16) <= PCS (16) <= UFD Cluster Size (16)
File Cluster Size (256)

2.4 Cluster Alignment

the alignment of 1lb's, de¢'s, and pc's can be confusing and 1is best
described by a drawing. the following figure shows alignment and
boundary conditions for a hypothetical disk whose MLBN (Maximum LBN)
is 28 (i.e., total disk size is 29 blocks). Hypothetical DCS's of 1
and 4 are shown.

Disk Internals and SAVE/RESTORE

Disk Structure Overview

LBN

DCS=1
FBN

DCN

PCS=1
PCN

PCS=2
PCN
PCS=4
PCN
PCS=8
PCN
PCS=16
PCN

LBN

DCS=4
FBN

DCN
PCS=4
PCN
PCS=8
PCN
PC3S=16
PCN

[[Ry N [[DU [DU (R [N DU DU DR R U U (R (PO U TP TN TP UGN DY (U IR D N
101010'@131@g1@1Q1@1@1 1111011111011 01111212121 212121210101
1@111213141516 1718191111213 141516107181Q1g11121314151617181
e e R el o e B B B B B B R B o L T ISy iy [y R [oy Ay jy gy e |
M
F
D
I S LR RN R S S R RS N E RN P E R N R R A P R0 T N oy ey gy |
1912131131911 @111 11111111 8112121212121212101201%
111121314151 617 18191111213 14151617181G1g11121314151617181
R e e e o e e R e e R e e e e B B e e R I e R R e b |
1010110131 2101@10131 1T 1101011010109 12121212121212120121
1111203141516 718191Q1 112131415161 718191Q1112131415161718!
R e R R R R RN R R R R R B PO BE P RN R 0 o Ry oy Dy
Yx1@I@Ialalgralagtalgiagr T 2121212121212121
IXI@PT112130415161 7181910 1112131415161718191111213141516171
L R A R R R e B B B R R R e B B e o B R L % = I i B |
Ixt gt 112131415 16 7 08109 1 18 111 12! 13!
I S R L LR RN N N P R S P N R o o R5 DUy DUy DUy [N U) Ry [y [y o
I1x! /] ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 !
R R e R e e e e R R B B R ol o I R [DU IR PO R R R
Ix! @ ! 1 ! 2 ! X
I_!_!_l_l_!_l_!_l_!_!_!_l_!_!_!_'_!_l_!_l_!_l_l_l_!_l_l_l_!
'x!] ! X
!_!_l_l_!_l_'-l_l-!_'_l_l_!_'_'-l_!_'_l_i_!_l_!_l_!_l_!_!_l
B
0
0
T
L A L o R R P S DS P RO P I B S a0 R ISR IRy R R R I

1010101010101 @1@@gt1trTIr I r212121212121212121
1PI1I213141051617T18191G 1121314151617 18191@11121314151617181

I_l_l-l_!_!_l_l_l_l_l_l_l_!-l_l-'_'_'_l- _l_l_l_l_l_l_l_l_

M

F

D
R e AR N N o S P R R R R B R R L o Rl R P P (PR Ry oy e s |
1@ xIxIx1@l@gl@gtagigtagtgigtar i1t 111212121212121
T@IxIXIX!TI213 1415161718191 111213141516 171819111121314151
IR RS RS RN RN S U R JENy [N JUny [[P (NSNS Q) RO QUG [N NN RN R R UG e -
! @ ! 1 ! 2 ! 3 ! L ! 5 ! 6 !' X
L O il o Rl I U IR R SE U QR QN Ry [Py QR (S 0 [ey ey U R g
'x x x x! @ ! 1 ! 2 ! 3 ! 4 ! 5 ! X
L e e S S LR L R P P R R RO RN L8 8 IS [y (N I [QU Ry P A N S e b
I'x x x x! @ ! 1 ! 2 ! x
l_!_!-!_!_l_l_l_l_l_!-'_!_l_!_l_!_l_!-l_!_l_!_l_!_l_l_!_!_!
'x x x x! @ ! X
l_l_I_l_'_t_!_l_l_'_l_l_!_l_l_l_!_l_l_l-!_l-!_l_l_!_!_l_!_l

Disk Internals and SAVE/RESTORE Page 8
Disk Structure Overview

2.5 Use of Disk Subdivisions

LBs are the fundamental units that all RSTS/E disk drivers deal with.
All non-driver modules, however, deal exclusively with FBNs. These
modules pass the disk driver dispatcher a starting FBN, along with the
number of blocks to read or write. The dispatcher computes the
correct LBN from the FBN, using a table lookup to find the disk's DCS.
The resulting LBN (along with the number of blocks to read/write) is
then passed on to the correct disk driver for the actual physical
operation. It is the disk driver's responsibility to calculate the
correct physical disk address needed by that type of disk controller.
Note that the whole file processor works on a logical entity (the FBN)
that can be manipulated without regard to the actual disk type.

All on-disk information that describes the location of ("points to")
further disk data is in terms of DCN's. The upper limit of a DCN is
fixed at the largest 16-bit number (65535) so that the on-disk storage
of DCN's is confined to a single word per DCN.

The PC is the primary unit of storage allocation and the PCN is used
as a pointer to a bit in the Storage Allocation Table.

SAVE/RESTORE uses most of these units in one way or another. For
example, FBN's are used to retain certain bad block information, DCNs
are used in directory scans and updates, and PCNs play the major role
in SAVE/RESTORE's transfer algorithms.

It should also be noted here that much of the complexity of the
on-disk structure stems from the development of large disks which
necessitated some form of mapping for block numbers greater than
16-bits. Rather than <creating a new file structure which would
invalidate disks already existing in the field, extensions were made
to the original RSTS/E on-disk structure.

Disk Internals and SAVE/RESTORE Page 9
RSTS/E Directories

3.8 RSTS/E DIRECTORIES

The RSTS/E disk structure uses a two 1level directory hierarchy to
organize user accounts and files. The primary directory structure is
the Master File Directory (MFD) which catalogues accounts. There 1is
one (and only one) MFD on each disk pack. The second level structure
is the User File Directory (UFD) which catalogues user files. There
is one UFD for each account which may contain user files. This
section defines directory terminology, presents detailed descriptions
of directory entries, and discusses the implications of the directory

structure.

3.1 Directory Terminology

This section defines the terms used throughout the discussion of the
RSTS/E directory structure.

3.1.1 Directory Clusters, Blocks, and Entries - RSTS/E directories
are files consisting of @ to 7 clusters. The maximum directory
cluster size is 16, which implies that each Directory Cluster may
contain 1, 2, 4, 8, or 16 blocks, subject to the restrictions
mentioned earlier. Each directory block is further subdivided into 32
Entries of 8 words each. Entries come in many flavors depending on
the type of directory (either MFD or UFD) and the function of the
entry. The format of each type of entry is detailed in the sections

which follow.

3.1.1.1 MFD Cluster Size (MCS) - As with any RSTS/E directory, the
MFD Cluster Size may be 1, 2, 4, 8, or 16. The MFD Cluster Size 1is
specified when the disk 1is initialized. The MFD Cluster Size
determines an upper limit on the number of user accounts which can be

catalogued on the disk.

3.1.1.2 UFD Cluster Size (UCS) - Like the MFD Cluster Size, the UFD
Cluster Size may also be 1, 2, 4, 8, or 16. The UFD Cluster Size is
specified when the account is created and determines the number and
size of files which can be catalogued by the UFD.

Disk Internals and SAVE/RESTORE Page 10
RSTS/E Directories

3.2 Master File Directory (MFD)

Disks on a RSTS/E system fall into three categories: system, public,
and private. The system disk, which contains such things as the
initialization code and the installed monitor, is itself a part of the

public structure.

Each disk on the system, regardless of <category, contains an MFD
account in [1,1]. The MFD contains account and storage information
for each account on the disk, as well as pointers to the UFD for the
account. In addition to storing various accounting statistics the MFD
also contains the information needed when mounting the disk (e.g.,

Pack ID).

In order for a user to gain access ("login") to the system, he or she
must have an account catalogued on the system disk. If this is the
case, the user may create files on any of the disks in the public
structure. The system normally allocates files on the public disk
which has the most free space. 1If a file is created on a public disk
other than the system disk, the user's account is dynamically added to
the MFD for that disk if it does not already reside there.

The MFD for a disk is <created either by running an on-line disk
initialization program (DSKINT) or by using the DSKINT option of the
RSTS/E initialization code. The disk initialization process creates a
minimal MFD consisting o¢f +twc acccunts ([@,11 and [1,1]) fer
non-system disks, or three accounts ([@,1], [1,1], and [1,2]) for
system disks. Account [@,1] 1is the system files account which is
required on all disks to contain the bad block file (BADB.SYS) and the
Storage Allocation Table file (SATT.SYS). Account [1,1] is the MFD
itself (the MFD serves as the UFD for account [1,1]). Account [1,2]
is the standard system 1library account. The system manager or a
privileged user may create additional accounts during normal
timesharing.

Since the MFD is the root of the whole directory structure, the first
cluster of the MFD 1is 1located in a fixed location on all disks.
(Aside from the bootstrap, this is the only part of RSTS/E which must
reside at a specific location.) The MFD always begins at FBN 1, which
is also DCN 1. Other clusters of the MFD may reside anywhere on the
disk. The MFD contains one 1label (or home) entry, a name and an
accounting entry for each account, attributes entries, unused entries,
and cluster maps to describe the MFD. The MFD may also catalogue
files for account [1,1]. The sections which follow describe each of
the MFD entries. SAVE/RESTORE needed to understand most of these in
order to scan and/or update directory information.

Disk Internals and SAVE/RESTORE Page 11
RSTS/E Directories

3.2.1 MFD Label Entry - The MFD label entry stores basic information
required to mount and access the pack. There is one MFD label entry
per disk, and it is always the first physical entry in MFD Cluster @.
The MFD label entry is created when the disk is initialized by DSKINT.

+1 ! Link to 1st Name Entry in MFD ! +0 ULNK
e e e e e e e e e ———————)

+3 ! -1 (to mark entry in use) ! 42
N !

+5 ! "} ! +4
e e e e em '

+7 !] ! +6
e e e e e '

+11 ! Pack Cluster Size (PCS) ! +10
!

+13 1! Pack Status ' +12
e e e e e !

+15 ! Pack ID (Part 1 of RAD5@ Name) ! +14
e e !

+17 ! Pack ID (Part 2 of RAD5@ Name) ! +16
N !

+0 Link to 1st Name Entry in MFD WORD ULNK

This word is the root of the 1list of MFD name entries. This
particular link will never be null since disk initialization creates a
minimal file structure consisting of two accounts (i.e., there are at
least two name entries in the list).

+2 {marker) WORD

This word must be non-zero to mark this entry in use. It has no other
use.

+4 (Not Used) WORD
+6 (Not Used) WORD
+10 Pack Cluster Size WORD

The Pack Cluster Size (PCS) was defined earlier. Briefly, PCS is the
size of a Pack Cluster (PC) and a PC is the smallest unit of storage
which can be allocated on this pack (i.e., each PC is represented by
one bit in the SAT). PCS is specified and stored in the MFD label
entry at DSKINT time.

Disk Internals and SAVE/RESTORE Page 12
RSTS/E Directories

+12 Pack Status WORD

This word contains pack status bits interpreted as follows:

<15> Bit 15 is set to 1 on a "mount" and cleared to @ on a
dismount. This bit provides some level of pack protection.
If a non-mounted disk has bit 15 set to 1, then it was not
properly dismounted and needs torbe "cleaned" (e.g., the
system crashed, or the pack was physically dismounted before
it was logically dismounted).

<14> This is the Public/Private bit. A pack is declared public
or private at DSKINT time. Bit 14 = 1 indicates the pack is
private, otherwise it is public. System disks are always
created as private; when used as a system disk, they are
treated as public, but when mounted on another system, they
are treated as private.

<13> Currently not used.

<12> This bit is the "New Files First" (or Link-to-Top) bit.

<11> This bit is the "Data of Last Write" bit. This bit governs
the use and meaning of the UDLA field in a file's Accounting
Entry. This 1is described when Accounting Entries are

introduced.

<10:8> Currently not used.
+14 Pack ID (Part 1 in RADS5@) WORD
+16 Pack ID (Part 2 in RAD5®) WORD

The Pack Id is a name specified at DSKINT time and used at mount time
to verify that the correct pack has been physically mounted. The Pack
Id can also be used as a logical device name so that the actual
physical unit need not be known by applications code. The Pack ID may
be up to 6 characters in length and is stored in two words in RAD5@
format. The first three characters are packed into word +14, and the
last three characters use word +16. SAVRES accesses these words when
determining the pack id of input RSTS disks or outputting the pack id
to RSTS disks.

Disk Internals and SAVE/RESTORE Page 13
RSTS/E Directories

3.2.2 MFD Name Entry - One MFD Name Entry exists for each account
catalogued by the MFD. The name entry contains information needed to
identify an account and to control login access to the system under
this account.

+1 é Link to Next Name Entry in MFD ! +8 ULNK
.3 g'EEﬁ’EFSEEZE'ﬁ """ { PPN Programmer F 1 2 UNAM
i5 1 asswora (rart 1 in mabs®) o
o7 g"""E;;;;SFS'EE;FE_E'I;'§RBEé§"""'; +6

UPROT +11 | Provesiion Code 1 Status Byte ! 410 USTAT
+13 é'""-“""'XZZZQQ'ESGSE""""”“_—'—; +12 UACNT
+15 1 Link to Accounting Entry 14 UAA
17 ; """"" DCN of 1st UFD Cluster 5 +16 UAR

+0 Link to Next Name Entry in MFD WORD ULNK

As stated earlier, MFD name entries are chained together as a singly
linked list. The last name entry in the list will have a null link.

+2 PPN Programmer Number BYTE UNAM
+3 PPN Project Number BYTE

These two bytes store the account Project Programmer Number (PPN).
The PPN is specified and stored when the account is created. The PPN
cannot be [@,*] (except for [@,1]), [*,255], or [255,%].

+4 Password (Part 1 in RAD5@) WORD
+6 Password (Part 2 in RADS#) WORD

These two words store the account password in RAD5#. Passwords can be
1 to 6 characters 1in length. The first 3 characters are stored in
word +4, and the last 3 characters are stored in word +6. The account
password is specified and stored when the account is created but may
be changed through a FIP directive.

Disk Internals and SAVE/RESTORE Page 14
RSTS/E Directories

+1@ Status Byte BYTE USTAT
+11 Protection Code BYTE UPROT

These fields contain status and protection bits used to control read
and write access to the UFD. The protection byte is currently ignored
since using the MFD or a UFD as a file is a privileged operation and
the normal protection mechanisms do not apply. A future potential use
for these bits might be to limit cataloguing access to directories.
Status bits have nearly identical interpretations in the MFD and UFD
name entries. Bit level descriptions of these bytes are included
later in this document.

+12 Access Count WORD UACNT

The current access count signals whether or not this account is in
use. It is 1incremented by 1 every time the UFD is opened as a file
and decremented upon each close. U@@(octal) is added for each 1login
under the account and 400 (octal) subtracted each logout.

+14 Link to Accounting Entry WORD UAA

This link points to the accounting entry for this account. Since each
account has an accounting entry, this link will never be null.

+16 DCN of 1st UFD Cluster WORD UAR

This word is a pointer to the first cluster of the UFD for this
account. It is a Device Cluster Number (DCN). This word will be zero
if the UFD does not exist. This is the case when an account is first
created since the UFD is not created until a file is stored under the
account.

Disk Internals and SAVE/RESTORE Page 15
RSTS/E Directories

3.2.3 MFD Accounting Entry - One MFD Accounting Entry exists for each
account catalogued by the MFD. The accounting entry stores
accumulated resource usage information for the account. CPU time,
connect time, Kkilo-core-ticks, and device time counters in the
accounting entry have counterparts in the Monitor's on-line tables.
While the job exists, the in-memory counters are maintained by the
monitor. On 1logout (or when the job 1is killed) the in-memory
statistics are added to the accumulators in the MFD Accounting Entry.

1 1 Link to Attributes Entry !@1@!1B!1! +@ ULNK
b e e e e e '

+3 ! Accumulated CPU Time (LSB) ! 42 MCPU
b e e e e e e '

+5 1 Accumulated Connect Time (Minutes) ! +4 MCON

+7 ! Accumulated Kilo-Core-Ticks (LSB) ! +6 MKCT

+11 !} Accumulated Device Time (Minutes) ! +19 MDEV

+13 ! CPU Time (MSB) ! Kilo-Core-Ticks (MSB)! 412 MMSB

+15 1 Logout Quota of Disk Blocks ! +14 MDPER
d e e e e e e e '
+17 1 UFD Cluster Size (UCS) ! +16 UCLUS
e e e e e e e e !
+0 Link to Attributes Entry WORD ULNK

For compatibility with the UFD accounting entry, this word is reserved
for a 1link to an attributes entry, and 4 flag bits. The four flag
bits are interpreted as follows:

<@> This bit is always set in the MFD accounting entry to mark
this entry in use.
<1 If this bit is set, the UFD contains a bad block.

<2:3> Currently not used.

Disk Internals and SAVE/RESTORE Page 16
RSTS/E Directories

+2 Accumulated CPU Time (LSB) ' WORD MCPU
+12<15:10> Accumulated CPU Time (MSB) 6 Bits MMSB

Accummulated CPU time is stored in tenths of a second. Word +2
contains the 1least significant 16 bits of CPU time, and bits 15
through 180 (inclusive) of word +12 contains the most significant 6
bits. The 22 bit counter will store 4,194,303 ticks or 116.5 hours of
CPU time. 1In earlier versions only a 16 bit counter was kept and it
overflowed frequently. The high order bits were added to increase the
time before overflow occured. The only word available in the
accounting entry (word +12) was used to hold the high order bits of
CPU time and KCT's.

+4 Accumulated Connect Time (Minutes) WORD MCON

Connect Time is the number of minutes that a job owns a console
terminal. The 16 bit counter stores 65,535 minutes or 45.5 days of
connect time. Connect time is updated in memory on logout, kill, and
detach. Thus, when the accumulated connect time stored here is
updated (on logout and kill) it will reflect the actual connect time.

+6 Accumulated Kilo-Core-Ticks (LSB) WORD MKCT
+12<9:0> Accumulated Kilo-Core-Ticks (MSB) 1% Bits MMSB

Kilo-Core-Ticks are a measure of CPU time used biased by the amount of
memory required for the job. KCT's is CPU time in tenths of a second
(ticks) multiplied by the (instantaneous) size of the job in K words.
Word +4 contains the least significant 16 bits, and bits 9 through #
(inclusive) of word +12 contain the most significant 10 bits. The 26
bit counter will store 67,108,863 KCT'S which is equivalent to 116.5
hours of CPU time at 16 K. The size of this counter (26 bits) was
chosen to correspond to the maximum CPU time which can be accumulated
multiplied by an average job size of 16 K. The KCT counter was also a
16 bit counter in early versions. KCT's overflowed much faster than
CPU time, of course. The extra 10 bits were added when CPU time was
expanded to 22 bits.

Disk Internals and SAVE/RESTORE Page 17
RSTS/E Directories

+1@ Accumulated Device Time (Minutes) WORD MDEV

When a device is assigned (either by explicit assignment or a utilty
assign), the time assigned is recorded in the DDB. When the device is
deassigned (which may be forced by logout), the time assigned is
subtracted from the current time of day, midnight correction applied
if necessary, and the resulting device time is added to the in-memory
accumulated device time. Device time, therefore, is the total number
of minutes that devices (except the job's console) were used by the
job. The 16 bit counter can record 65,535 minutes or 45.5 days of
device time. Admittedly, usage of an expensive magtape drive should
be weighted heavier than wusage of something like a floppy. RSTS/E
makes no attempt to weight device time by device type and does not
store usage time for each device.

+14 Logout Quota of Disk Blocks WORD MDPER

This word stores the number of blocks which may be retained by this
account at 1logout time. The logout quota . is specified when the
account is created but may be changed by a FIP Directive. The quota
can have any value from @ to 65535 blocks. A zero quota is
interpreted as an infinite quota - the account is permitted to own any
number of disk blocks. No quota enforcement is done by the RSTS/E
monitor. The RSS utility LOGOUT enforces the quota by not permitting
a Jjob to 1log out until the account is below quota. The user must
delete files before he can log out.

+16 UFD Cluster Size (UCS) - WORD UCLUS
The UFD Cluster Size is specified when the account is created and

cannot be changed without deleting the account. UCS limits the number
and size of files which can be catalogued by the UFD.

Disk Internals and SAVE/RESTORE Page 18
RSTS/E Directories

3.2.4 MFD Cluster Map Entry - The MFD cluster map entry contains the
retrieval pointers required to access the clusters of the MFD. There
is one cluster map entry in each block of the MFD beginning at offset
768 (octal). The cluster maps 1in each directory block are all
identical. Each time a directory is extended (which c¢an occur a
maximum of 7 times in the life of the directory), all of the cluster
maps (up to 16 * 7 = 112 of them) are updated. Directory links break
down into 3 bits which select one (out of 7) retrieval pointer from
the cluster map, and bits which select block within cluster, and the
addressed entry within the block. Given a link and the cluster map,
only one disk access is required to move from one MFD block to any
other MFD block.

+1 i MFD Cluster Size (MCS) !' +0
e DCN of MFD Cluster 8 ; +2
+5 ; """"" DCN of MFD Cluster 1 v
o DCN of MFD Cluster 2 ! +6
11 ; """"" DCN of MFD Cluster 3 é 10
a3t DCN of MFD Cluster & SE
N DCN of MFD Cluster 5 a1
17 E """"" DCN of MFD Cluster 6 L 416
+9 MFD Cluster Size . WORD

The MFD cluster size is stored in this word in every cluster map 1in
every block of the MFD. It is used when a new link is created to an
entry in the MFD. MCS is not needed to interpret a Link. MCS 1is
specified at DSKINT time and may not be changed.

+2 to +16 DCN of nth MFD Cluster WORDS

These are the retrieval pointers to the clusters of the MFD.
Non-existent MFD clusters are indicated by a zero DCN. Note that the
cluster map is never sparse (i.e., if the DCN of cluster n <> @, then
the DCN's of every cluster < n are <> @ also).

Disk Internals and SAVE/RESTORE Page 19
RSTS/E Directories

3.2.5 Unused Entries - MFD and UFD entries are allocated and
deallocated as required. Obviously, there must be some way to
determine which entries are in use and which are free. By convention,
if the first two words of an entry are both zero, the entry is not
currently in use and may be put into service as a name entry,
accounting entry, or whatever. You should note in the descriptions of
the various types of entries, that the first two words are never zero.
The remaining 6 words in an unused entry are irrelevant.

+1 i] ! +0
+3 : -------------------- 6 ------------------ § +2
+5 : --------------------------------------- : +4
O L
+11 é --------------------------------------- : +10
+13 i --------------------------------------- i +12
+15 ; --------------------------------------- : +14

+17 ! ' i +16

Disk Internals and SAVE/RESTORE Page 20
RSTS/E Directories

3.3 USER FILE DIRECTORY (UFD)

The User File Directory catalogues files. It stores sufficient file
identification information, retrieval pointers, protection and status
information to provide access to and protection of file data.

The general structure of the UFD is identical to the MFD so that
common code can be used to process either type of directory. 1In the
descriptions of UFD entries which follow, note that, whenever
possible, similar entities such as links and retrieval pointers are
located at the same offsets used in the corresponding MFD entries.
Note also that the UFD contains name entries, accounting entries, and
cluster maps like the MFD. The UFD, however, also contains retrieval
entries which were not found in the MFD account describing entries.
These entries are used when the actual data of a file 1is accessed.
SAVE/RESTORE uses these file retrieval pointers, along with those in
MFD and UFD cluster maps, to determine if "pieces" of a larger cluster
have been moved.

The MFD name entry and the MFD accounting entry for an account are
created when the account is created. The UFD is not created, however,
until the first file is created under the account.

Disk Internals and SAVE/RESTORE . Page 21
RSTS/E Directories

3.3.1 UFD Label Entry - The UFD label entry serves only as the root
for the list of UFD name entries. The label entry is created when the
UFD is created (i.e. when the first file is stored under the
account). There 1s one UFD 1label entry per UFD and it is always
located in the first physical entry in UFD cluster @.

+1 ! Link to 1st Name Entry in UFD (or E) !' +0 ULNK

+3 ! -1 Lv2
+5 : ------------------- 5 ------------------- i +4
+7 : ------------------- 6 ------------------- : +6
+11 ; ------------------- 5 ------------------ : +10
+13 5 ------------------- 5 ------------------- ; +12

+15 1! PPN Project # ! PPN Programmer # i +14

+17 1 "UFD" (in RAD5@) ! +16

+@ Link to 1st Name Entry in UFD WORD ULNK

This word is the actual root of the list of UFD name entries. Like
the MFD name entries, UFD name entries are chained together as a
singly linked list. The link in the UFD name entry will be null if
all files are removed from the account.

+2 (marker) A WORD

Since the link to the 1st UFD name entry may be zero, this word must
be non-zero to mark this entry is use.

+4 to +12 (Zeroes) WORDS

These words are currently not used but are reserved and must be 8.

+14 PPN Programmer Number BYTE

+15 PPN Project Number BYTE

The PPN of the UFD is stored here.

—
on

" WORD

ey
&)
lwr)

Disk Internals and SAVE/RESTORE Page 22
RSTS/E Directories

The RADS@ of "UFD"™ is stored here.

Disk Internals and SAVE/RESTORE Page 23
RSTS/E Directories

3.3.2 UFD Name Entry - One UFD name entry exists for each file
catalogued by the UFD. Each name entry contains the basic information
needed to identify and control access to a file.

+1 s Link to Next Name Entry in UFD ! +0 ULNK
o File Name (pare 1 in masdy T .2 UNAM
o5 1 TRiLe Wame (Part 2 in mADSD) 1
v T File Neme Extension (RADSE) 1 +6

UPROT 411 §';;;;;;;;;;'a;a;"'g‘5;;z;;‘a;;; """" 16 USTAT
P13 1T Hile meeess comme T TTTTTTTY 412 uact

+15 ! Link to Accounting Entry for File !' +14 UAA

+17 ! Link to 1st Retrieval Entry for File ! +16 UAR

+0 Link to Next Name Entry in UFD WORD ULNK

UFD name entries are chained together as a singly 1linked 1list. The
last name entry (last file in the directory) will have a null link.
New files are normally added to the end of the list and hence, files
are catalogued 1in historical order of creation (i.e., the name entry
for the most recently created file will appear at the end of the
list). Note that no system code depends on the historical ordering.
We could change to alphabetical or reverse historical ordering in the
future.

+2 File Name (Part 1 in RAD5@) WORD UNAM
+4 File Name (Part 2 in RAD5@) WORD
+6 File Name Extension (RADS5@) WORD

These three words store the file name and extension. File names may
be 1 to 6 characters in length. The first three characters are stored
in word +2, and the second three characters are stored in word +4.
The file name extension may be @ to 3 characters. If there is no
extension, word +6 will be zero. Since the file name is required to
have at least one character, the word at +2 must be non-zero. This is
important since the link word may be zero and this entry must not
appear to be an unused entry.

Disk Internals and SAVE/RESTORE Page 24
RSTS/E Directories

+10 Status Byte BYTE USTAT
+11 Protection Code BYTE UPROT

The status and protection fields control read and write access to the
file. The interpretation of bits in these fields is nearly identical
for the MFD and UFD name entries. Bit definitions are described
later.

+14 File Access Count WORD UACNT

This word is incremented when the file is opened and decremented when
the file 1is closed. If this file is a Run-Time System, the access
count is also incremented on the RTS "ADD" and decremented on
"REMOVE" . The access count controls file deletion. On a request to
delete a file, if the access count is non-zero, the file is marked for
deletion by setting USTAT <7>. The file will not be deleted until
access count goes to zero, i.e. the file is deleted after the <close
which causes the access count to go to zero.

+14 Link to Accounting Entry WORD UAA

This link points to the accounting entry. The link will never be null
since each file has an accounting entry.

+16 Link to 1st Retrieval Entry WORD UAR

This word is the root of the 1list of retrieval entries for this file.

This 1ink will be null only for a null only length file (i.e., no
retrieval entries currently exist).

Disk Internals and SAVE/RESTORE Page 25
RSTS/E Directories

3.3.3 UFD Accounting Entry - One UFD Accounting Entry exists for each
file catalogued by the UFD. The accounting entry stores access,
length, and some static information about the file.

+1 : Link to Attributes Entry !Q!G!B!1i +0 ULNK

o3 4T Last Aocess Date T .2 UDLA

.5 ;'“'“"a;;;;;;';;‘gz;;;;';;‘;;zg """" L us1z

T G e pate L6 unc

i T Grention Time T ! +10 UTC
. 13 ;'a;;:;;;,:;;;;;;,;'a;,;;'z;;;;'rz;';xag&s} “12 URTS
' +15 1 Run-Tine Systen Name (Part 2 in RADSD)! 14

ar T File Cluster size (Fosy T 16 ueLUS

+@<15:4> Link to 1st Attributes Entry WORD ULNK

RMS file structures require attribute entries to store record and file
attributes. If the file has attributes, this word contains the link
to the first attributes entry. The 12 bit link field will be null if
there are no attribute entries. This word also contains four flag
bits as defined below.

<@> This bit is always set in the UFD accounting entry to mark
this entry in use.

<1> If this bit is set, the file contains a bad block.

<2:3> Currently not used but must be zero.

+2 Last Access Date WORD UDLA

The last access date is set equal to the system date when the file 1is
opened. The date 1is stored in RSTS/E internal format. Last access
date is important to backup utilities which can do selective Dbackup
and possibly delete files which have not been used for some period of
time. If the pack label indicates "Date of Last Write (DLW), this
word contains the date the file was last modified.

Disk Internals and SAVE/RESTORE Page 26
RSTS/E Directories

+4 Number of Blocks in File (LSB) WORD USIzZ

The number of blocks in the file is set to one when the first cluster
is allocated and incremented by the file cluster size on each
subsequent allocation of a cluster. During normal file creation and
extension (i.e., the file is not pre-extended), USIZ will be smaller
than the actual number of blocks in the file by some number of blocks
less than or wequal to FCS-1. USIZ is updated to reflect the actual
number of blocks written when the file is closed. The number of
blocks allocated to the file (but not necessarily written yet) is

given by:
of Allocated Blocks = FCS ¥ INT [(USIZ+FCS-1)/FCS]

Note that USIZ is never smaller than the actual number of blocks
allocated to the file by more than FCS-1 blocks.

Note also that USIZ is the complete file size on a small file system.

+6 Creation Date WORD ubDC

This word is set equal to the system date when the file 1is created.
The date is stored in internal RSTS/E format.

+10 Creation Time WORD UTC

This word is set equal to the system time of day when the file is
created. Time is stored in RSTS internal format.

+12 Run-Time System Name (Part 1 in RAD5@) WORD URTS
+14 Run-Time System Name (Part 2 in RAD58) WORD

or (large file system only)

+12 Zero WORD URTS
+14 Number of Blocks in File (MSB) BYTE

All executable files (UPROT <6> = 1) must have an associated Run-Time
System. These two words store the 1 to 6 character RTS name in RADSQ.
On a small file system, both words are ignored for non-executable
files. On a 1large file system (which may have files greater than
65535 blocks), a zero in the first word and a non-zero value in the
second indicate that this is a "large file" (large files may only be
non-executable). In this case, the actual size of the file is

USIZ + (MSB*65536.)

™o

le must use these
[¢] S

le fi to store the
System name. Hen

Note that s
may not be larger

associated Run
than 65535.

1o
v

Disk Internals and SAVE/RESTORE Page 27
RSTS/E Directories

On any run command, the Monitor will grab the RTS name from the UFD
accounting entry, 1lookup the RTS in its 1list of Run-Time System
descriptor blocks, load the named RTS (if found and the RTS is not
already in memory), and finally open the file on channel #15 so the
RTS can load and execute it. '

+16 File Cluster Size WORD UCLUS

File cluster size is specified when the file is created and cannot be
changed without recreating the file. File cluster size can be any
power of two up to 256.

Disk Internals and SAVE/RESTORE Page 28
RSTS/E Directories

3.3.4 UFD Attributes Entry - RMS file structures require attribute
entries to store record and file attributes. Each attribute entry
will hold seven words of attribute information.

+1 i Link to Next Attributes Entry !9!0!'0!1! +0 ULNK

+3 ! Word 1 s +2

o0 word 2 e

T word 3T o6

i1 word 4 410

iz T wora 5T a2

b5t word 6 o

+17 : _____________ Wword 7 : +16
+@<15:4> Link to Next Attributes Entry WORD ULNK
Attribute entries are chained together as a singly linked 1list. The

12 bit 1link field will be null in the last attribute entry in the
list. This word also contains four flag bits as defined below.

<@> This bit is always set in the UFD attribute entry to mark
this entry in use.

<1:3> Currently not used but must be zero.

+2 to +16 Attributes

These words hold the file attributes. They are read and written
through FIP directives. The actual contents of the attribute words is
not defined by the RSTS/E file structure. The contents of these words
are inlcuded here for completeness.

Word 1 Bits are defined as follows:

<P:3> Record format
Undefined
Fixed length records

Variable length records
VFC (Variable with fixed control)

Stream ASCII

ELWwN -
i nnwu

Disk Internals and SAVE/RESTORE Page 29
RSTS/E Directories

<12:15>

Word

Word

Word

Word

Word

Word

Word

Word

Word

<Y:7>

<8:11>

2

10

File organization
@ = Sequential

1 = Relative

2 = Indexed

Print control

1 = FORTRAN
2 = Carriage Return
4 = VFC records contain print control
18 = Does not span blocks
Unused

Record size (actual size for fixed length records or maximum
size for variable records.

Highest virtual block number (MSB)

Highest virtual block number (LSB) (corresponds to the file
size accounting entry)

EOF block number (MSB).

EOF block number (LSB) (block that is the 1logical end of
file)

Offset to first usable byte in EOF block.
(These are in the second attributes entry)

Number of bytes in fixed control area (high byte).
Bucketsize in blocks (low byte).

Maximum length of record actually read by RMS

Default extension quantity.

Disk Internals and SAVE/RESTORE Page 30
RSTS/E Directories

3.3.5 UFD Retrieval Entry - Retrieval entries provide the necessary
information to access the blocks of the file. They store retrieval
pointers in the form of Device Cluster Numbers (DCN's) required to map
a Virtual Block Number (VBN) to a Logical Block Number (LBN). LBN's
are translated to physical disk addresses of file data by the disk
subsystem. ‘

+1 i Link to Next Retrieval Entry !0!0!B!g ! +0 ULNK

+3 g DCN of File Cluster N+@ % +2 UENT
+5 : --------- DCN of File Cluster N+l : +l

o7 : --------- DCN of File Cluster N+2 : +6

11 : --------- DCN of File Cluster N+3 ! +10

+13 % --------- DCN of File Cluster N+4 ; +12

+15 g --------- DCN of File Cluster N+5 E +14

#17 g --------- DCN of File Cluster N+6 E +16

+0 Link to Next Retrieval Entry WORD ULNK

Retrieval entries are also chained together as a singly linked list.
The list can be as long as required to describe the file consistent
with the capacity of the UFD. The last retrieval entry for the file
has a null link.

This word also contains four flag bits as defined below.v

<@> Zero.

<1> Indicates one or more at the described clusters contains a
bad block.

<2:3> Currently not used, but must be zero.

+2 to +16 DCN of File Cluster N+(@-6) WORDS UENT

Each retrieval pointer is a DCN of one file <cluster of FCS Dblocks.
Each retrieval entry can hold up to 7 DCN's which implies that each
entry can map up to 7¥FCS virtual blocks of the file.

Disk Internals and SAVE/RESTORE Page 31
RSTS/E Directories

When a file is opened, the seven DCN'S contained in the first
retrieval entry are copied into the Window Descriptor Block (WCB) or
Small Control Block (SCB - small file system) in memory. (Note that
on RSTS/E V7.8, an SCB on a small file system replaces the old FCB.)
These seven DCN's (or the area of the WCB or SCB which contains them)
are termed a "window". With this window in memory, the first 7 * FCS
blocks of the file can be accessed without any further reference to
the directory. A reference to a VBN which cannot be mapped by the
in-memory window will cause another window to be loaded into the WCB
(possibly requiring one or more disk accesses to find the proper
directory block). The process of loading a new window into the WCB or
SCB is called a "window turn".:

Disk Internals and SAVE/RESTORE Page 32
RSTS/E Directories

3.3.6 UFD Cluster Map Entry - The UFD cluster map performs the same
function as the MFD cluster map. It contains the retrieval pointers
required to access the clusters of the UFD. There is one UFD cluster
map entry in each block of the UFD beginning at offset 760 (octal).
As was the case with the MFD cluster maps, the maps in each UFD block
are identical. Each time the UFD is extended, all of the cluster maps
are updated. Given a link and any UFD cluster map, only one disk
access is required to move from one UFD block to any other UFD block.

+1 UFD Cluster Size (UCS) ! +0@
3 VT IoN of UFD Claster @ TTTTTT D
s 1T Do of UFD Clmster 1. T Lol
a1 Don of UFD Cluster 2 T L
o """"" DCR of OFD oluster 3T 10
a3 T DoR of UFD cluster & T RE
b5 1T DCR of UFD Cluster 5 Ty a1
e """"" Den of UFD Cluster 6 T 16
+0 UFD Cluster Size (UCS) WORD

The UFD cluster size is stored in this word of the cluster map in
every block of the UFD. It is used when a new link is created to
point to another entry in the UFD (UCS is not needed to interpret a
link). UCS 1is specified and stored in the MFD accounting entry when
the account is created. It is copied to the UFD cluster maps when the
UFD 1is created (i.e., when the first file 1is stored under the
account).

+2 to +16 DCN of Nth UFD Cluster WORDS

These are the retrieval pointers to the clusters of the UFD.
Non-existent UFD clusters are noted by a zero DCN. As was the case
with the MFD cluster map, the UFD cluster map is never sparse, i.e.,
if the DCN of cluster n is <> @, then the DCN's of every cluster < n
are <> @#. Note also that these seven words of the UFD cluster map are
identical in format to a file's retrieval entry.

Disk Internals and SAVE/RESTORE Page 33
RSTS/E Directories

3.4 Directory Status and Protection Bytes

The status and protection bytes in the file and account name entries
control read and write access to file data or directory information.
Most of the bits apply to "files" but the status bits are meaningful
in an account name entry if +the UFD 1is opened as a file. The
protection byte is ignored in a an account name entry since opening a
UFD as a file 1is a privileged operation which bypasses the normal
protection mechanisms. The bit definitions are consistent for ©both
the file and account name entries. Wherever qualification specific to
a file or an account name entry is necessary, notes are added preceded
by "FILE:" or "ACCT:" as appropriate.

+10 Status Byte BYTE USTAT
This byte contains status bits interpreted as follows:

<@> US.OUT File data space is physically on another disk ("Out of
SAT").

ACCT: Always @.

FILE: The system files SWAPn.SYS, OVR.SYS, ERR.SYS, and
BUFF.SYS could historically reside on a swapping
disk. Swapping disks were considered 1logical
extensions of the system disk. Files residing on
a swapping disk are included in the UFD for
account [@,1] on the system disk.

<1> US.PLC File (or UFD) has been "placed".
2> US.WRT File (or UFD) has given write access to someone.

<3> US.UPD ACCT: Always @
FILE: File currently in update mode.

<4> US.NOX File may not be extended.
ACCT: Always 1.

FILE: This bit protects the system files from extension
under normal timesharing. A 1 means the file is
) contiguous.
5> US.NOK File may not be killed (no delete and/or rename).

ACCT: Always 1.

FILE: This bit protects the system files from deletion

and rename under normal timesharing. Only the
Initialization Code c¢can delete the eritical

e vaeadaaad v “TaTUuT L avaloo

system files.

Disk Internals and SAVE/RESTORE Page 34
RSTS/E Directories

<6> US.UFD This bit when set indicates this is an account name
entry which contains information about an account, as
opposed to a file name entry which contains information
about a file. This allows files to be stored under
account [1,1], which is actually the MFD.

ACCT: ALWAYS 1.

FILE: ALWAYS 4.

<7> US.DEL File marked for deletion.

ACCT: Always @.

FILE: Files may not be deleted until the access count
goes to zero (i.e., UACNT in the UFD name entry
must be zero). FIP will honor a delete directive
when UACNT > @ by setting this bit. On the

(last) close which decrements UACNT to @, the
file will be deleted.

+11 Protection Code BYTE UPROT

This byte contains file or UFD protection code bits as defined below.
These bits are meaningful in the MFD name entry if the UFD is opened
as a file.

<8>' UP.RPO Read protect against owner.

<9> UP.WPO Write protect against owner.

<18> UP.RPG Read protect again group.

<11> UP.WPG Write protect against group.

<12> UP.RPW Read protect against world.

<13> UP.WPW Write protect against world.

<14> UP.RUN ACCT: Always d@.
FILE: Executable file.

<13> UP.PRV ACCT: Always @.
FILE: Executable file is privileged or wipe out on
delete.

Disk Internals and SAVE/RESTORE Page 35
RSTS/E Directories

3.5 Directory Links

Links were mentioned throughout the discussion of the directory
structures. They are pointers to other directory entries and serve to
tie the whole directory structure together. Given a 1link and a
cluster map, it 1is possible to move from one directory block to any
other directory block with only one disk access. The fields contained
in a link are described below:

sun o

Block <15:12> These 4 bits (UL.BLO) select the block within the
directory cluster. Since the maximum directory
cluster size is 16, the legal range of values for
this field is @ to 15.

Cluster <11:9> These 3 bits (UL.CLO) select the 1 out of 7 possible
directory <clusters. They actually select one of
seven DCN's from the directory cluster map. The
legal range of values is @ to 6.

Entry <8: 4> These 5 bits (UL.ENO) select the entry within the
directory block. The legal range of values is 1 to
30 (1@) for block @ of cluster @ (i.e. the 1label
entry 1is never the target of a link). The legal
range for all other blocks and clusters 1is @ to
3¢ (19). Note that there are 32 entries in a
directory block numbered @ to 31 (18). The cluster
map entry 1is the 31st entry in each block and is
never the target of a link.

Flags <3:0> These 4 bits are normally zero so that the entry
number in bits <8:4> can be wused directly as an
index into the directory block (i.e., the range of
possible values of bits <8:0> is @ to 74@ (8) in
multiples of 200 (8). There is one exception to this
rule 1in the ULNK word of the MFD and UFD accounting
entries where the low four bits of the link are used
for flags. The flag bits have the following
meanings when set:

<@> UL.USE This bit marks the entry in use.
Required in MFD and UFD accounting
entries since the link fields may be
zero (i.e., no link).

<1> UL.BAD File or UFD contains a bad block.
<2> UL.CHE Cache (Name Entry), Sequential

M is e il \VE=L S0 8

r h

(Accounting Entry).
<3> UL.CLN Reserved for CLEAN.

Disk Internals and SAVE/RESTORE Page 36
RSTS/E Directories

3.6 DIRECTORY STRUCTURE EFFECT ON FILE ACCESS TIME

The linked structure of directories may have a detrimental effect on
file access time. As accounts and files are created and destroyed,
RSTS/E directories become fragmented - the unused entries become
scattered throughout the existing clusters of the directory. Since
files tend to be created and deleted more frequently than accounts,
the effects of fragmentation are more apparent in UFDs.

As noted previously, given a link and a cluster map, it is possible to
access any directory block in the UFD with one disk access. FIP owns
and manages a single 256 word buffer (FIBUF) for transient processing
of directory blocks. FIBUF 1is a system resource shared among all
users.

As file directories become fragmented, it becomes necessary to create
directory entries 1in different directory blocks. Attempts to open
files in fragmented accounts will require several separate reads. Any
attempt to transfer several files from the same account would make the
increase in access time even more obvious.

Disk Internals and SAVE/RESTORE Page 37
Minimal File Structure

4.9 MINIMAL FILE STUCTURE

When a disk is initialized to the RSTS/E file structure by DSKINT, a
minimal file structure 1is recorded on the disk. This structure
includes a boot block, MFD entries for the MFD itself ([1,1]), the
system account ([®,1]), and the system library account if the disk is
to be used as a system disk. Disk initialization also creates a bad
block file and a storage allocation table

4.1 BOOT Block

A bootstrap is located at LBN @ on all RSTS/E disks. On a system disk
this block contains the secondary bootstrap responsible for loading
the Initialization Code. On non-system disks, the boot block contains
a message printing routine which asks the user to "to please boot from
the system disk".

4.2 BAD Block File

The bad block file 1is catalogued in account [@,1] as the file
BADB.SYS. The DSKINT routines of the Initialization Code extract
factory bad blocks (those determined by manufacturing to be unsafe)
and can also perform pattern tests to detect additional bad blocks.
Since the minimum unit of disk storage allocation is the pack cluster,
any PC which contains a bad block is allocated to the bad block file.

BADB.SYS is clustered at the PCS and is a standard non-~-contiguous file
except that the file "data" is of no consequence. DCN's contained in
retrieval entries serve as a 1list of clusters which contain bad
blocks. An additional initialization code option permits BADB.SYS to
be extended to include clusters which are found to be defective during
normal timesharing operations.

Disk Internals and SAVE/RESTORE Page 38
Minimal File Structure

4.3 STORAGE ALLOCATION TABLE (SAT)

The Storage Allocation Table is a bit map used to control allocation
of space on a RSTS/E disk. It is catalogued in account [@,1] as the
file SATT.SYS. The (contiguous) file 1is created by DSKINT and
initially reflects only the space allocated to the minimal MFD, the
UFD for account [#,1], any bad blocks detected by DSKINT, and the
space allocated to the SAT itself. Each bit in the SAT represents one
Pack Cluster on the disk. The appropriate bit is set to one when the
PC is allocated and cleared to zero when the PC is deallocated.

Since the SAT controls allocation for the disk on which it resides,
its size 1is dependent on the size of the disk and the pack cluster
size. There are 256 words or 4096 bits per SAT block. The device
clustering scheme described previously ensures that there are never
more than 65535 pack clusters, which further implies that there are
never more than 16 blocks in any SAT.

Bits are numbered starting at # up to the maximum pack cluster number
of the disk. The PCN serves as a bit level index -into the SAT with
fields broken down as shown below.

! Block in Sat !

- ! !
! Block in Sat ! Byte in Block !Bit in Byte!
R e e T e R et !

Disk Internals and SAVE/RESTORE Page 39
SAVRES Notes

5.9 SAVRES Notes

One of the major goals for SAVE/RESTORE was that it be "fast". In
order to be "fast", therefore, SAVRES had to avoid one the overhead of
the file processor. FIP transfers imply that a file must first be
located in the directory structure (conceivably several separate
reads) and then have the data pointed to by retrieval entries
transferred.

Since the Storage Allocation Table provided an extremely easy way of
finding all allocated blocks on a disk, it was chosen as the "way to
go". By checking the SAT, SAVE/RESTORE could determine which pack
clusters were allocated on the disk (ignoring those that were not
allocated), and then use read or write routines to input or output the
data immediately. Thus, this method became the basis of the design
for the program.

it was decided that SAVE/RESTORE should perform three main functions:

SAVE - transfer allocated disk clusters sequentially to an
intermediate device (magnetic tape or disk)

RESTORE - recreate a RSTS/E disk from a "SAVE Set", and

IMAGE Copy - produce a functionally equivalent copy of a RSTS/E
disk

Before a complete design of these routines could be attempted,
however, several other problem areas had to be tackled.

SAVE/RESTORE was to be designed so that it produced bootable media,
thus allowing wusers to restore data they had SAVEd. 1In order to do
this, the output media would have to contain both a bootstrap program
and a program which would be loaded and run by the bootstrap when the
device was booted. Since the media could only be booted while the
RSTS/E system was not running, the loaded program would have to be
capable of running in an off-line environment.

SAVE/RESTORE also had to run on-line, under normal timesharing, so
that wusers could create copies of disks on the system. The SAT-based
transfer we chose necessitated two restrictions on the types of disks
that could be used as input. First, the disk must be physically but
not logically mounted (i.e., users could not access or change the disk
in any manner while it was being copied). If this restriction were
not imposed, files could be created or deleted after the transfer had
started, thus making the SAT we were working with obsolete.

This restriction lead to the second. Namely, the system disk itself,
which cannot be logically dismounted while a RSTS/E system is running,
could not be copied on-line. Since back up of this disk was extremely
critical, it amplified the need for SAVE/RESTORE to run off-line.

Disk Internals and SAVE/RESTORE Page 40
SAVRES Notes

5.1 Initialization Code

In the RSTS/E environment, being able to run off-line wusually means
being able to run as a part of the RSTS/E initialization code.

The boot block of a RSTS/E system disk (or distribution medium)
contains pointers to the initialization code ([@,1]JINIT.SYS). When
the device is booted, the initialization code is loaded 1into memory.
The Initialization code ([@,1]JINIT.SYS, or simply "INIT") is a
collection of routines used to create the file structure, system
files, and start-up conditions required for the normal operation of
RSTS/E timesharing. INIT routines, called "options", allow the user
to do such things as simulate hardware bootstraps (BOOT), copy system
files to a RSTS/E disk (COPY), and initialize and perform pattern
checks on disks (DSKINT).

The INIT code is essentially one large stand-alone program (written in
RT-11 MACRO) with many functions. Since INIT is too large to be run
in one piece, it is overlaid using the RT-11 overlay structure. The
program is broken into pieces (each no larger than 8K words) which are
assembled separately. The assembled pieces are then 1linked together
with an overlay handler. One segment of the program is called the
"root" and must reside in memory at all times when the program is
running. The root contains various information needed by other
segments ¢of the program, which are called the overlay segments. Some
of the items in the root are the overlay handler, frequently used
subroutines, a mini file processor, and buffers. When an INIT segment
which 1is not resident 1is referenced, the overlay handler reads the
segment into memory, overlaying another segment which is not currently
needed. Note that communication between separate segments must be
through the root, which, as mentioned before, 1is always resident.
While a few of the INIT options are in the root, most are in overlays.

It was conceivable, therefore, that SAVE/RESTORE could be run off-1line
by writing it in RT-11 MACROC and making it an INIT option. As such,
it would allow the system disk to be copied off-line. In addition, if
an appropriate boot and a copy of INIT were placed on SAVE/RESTORE
output media, a user could indeed have an instant recovery medium.

in order to reduce duplicated code and maintenance problems,
SAVE/RESTORE was structured in a manner quite similar to INIT itself.
A root segment (SROOT) was written to contain data structures, device
information, buffers, and other information which would be needed by
different portions of the program but which would be 1lost when
overlaying was performed. Off-line, this root was combined (linked)
with the existing INIT root.

Since overlay regions in INIT are, by RSTS/E convention, restricted to
8K, each main portion of the program would be made a separate overlay
segment. The main portions were defined to be the dialogue and
initial mount routines (DIA), the SAVE operation (SAV), the
corresponding restore operation (RES), and the disk image copy
operation (IMA).

Off-line, a single new option (SAVRES) was added to INIT. When this

Disk Internals and SAVE/RESTORE Page 41
SAVRES Notes

command 1is specified, INIT calls the dialogue overlay to ask all
required questions and mount the specified devices.

One overlay cannot directly call a routine in a separate overlay; the
root must be wused for such a transfer of control. The dialogue
routine, therefore, sets up a flagword indicating the operation
requested and calls a special routine in INIT to dispatch to the
proper transfer overlay. Upon completion of the transfer, SAV, RES or
IMA returns control to the INIT main-line so that the procedure can be
repeated if the user wishes to backup a diferent disk.

If this was how it was to be done off-line, a means of doing the same
thing on-line was needed. This was possible by creating a special
routine called the ONLine SAV and restore emulator (ONLSAV) which
exists in the same overlay region as SROOT. ONLSAV routines perform
the same control operations. When the on-line version of the program
is run, ONLSAV sets wup various items before calling the dialogue
routines. As above, the dialogue is carried out and control passed
back to ONLSAV so that the transfer itself can be performed.

This overall structure allows a large amount of common code to be
used. Specifically, the DIA, SAV, RES, and IMA modules, all of which
are quite complex, are exactly the same both on and off-line.

5.2 ONLSAV - The On-line Emulator

The structure described above serves another purpose besides the use
of common code. Many things which can be done successfully off-line
‘are either prohibited or must be done in a different manner on-line.
ONLSAV provides a repository of special routines to handle these
differences.

ONLSAV contains all 1I/0 routines and data manipulation/conversion
routines required by the on-line version of SAVRES. Frequently these
are exact copies of routines in INIT. In addition, it handles three
major INIT capabilities which are not normally available on-line.

5.2.1 Accessing the first disk device cluster - On RSTS/E, a user
must "open a channel" in order to access a device. Off-line, the
first device cluster of a disk (which contains the boot block) can be
accessed at any point after the corresponding channel has been opened.
On-line, however, it is necessary to bypass FIP for
non-file-structured operations, particularly those involving the boot
block. One may access this cluster only with the first I/0 request to
the disk.

SAVRES needs to access this cluster at several times, notably when
updating the boot block at the END of a transfer. As previously
mentioned, the boot block contains pointers to [@,1]JINIT.SYS. SAVRES
does not fill in these pointers until the end of a transfer since part
of the file may have been relocated because of bad blocks. Because of

Disk Internals and SAVE/RESTORE ' Page 42
SAVRES Notes

this requirement, the disk I/0 routines in ONLSAV make a special check
to see if the block being read or written contains the disk's first
device cluster. If it does, the disk is reset (closed then re-opened)
so that the I1/0 request can succeed.

5.2.2 Temporary file - SCRBUF - Off-line, it is possible to access a
single disk block. On-line, the smallest amount of data which can be
accessed 1s a device cluster, which may be up to 8 blocks.
Frequently, for example, while scanning directories, SAVRES needs to
read or write only one block, and, in fact, has no internal buffer
space to access any more. An I/0 buffer was available during such
scans but the information stored in it was important and could not be
lost. A method of saving and restoring this buffer before and after
its use for single block extraction was, therefore, mandatory.

In addition, there are two special 16 block buffers (IOBUFF and
SATBF2), outside the normal address range, which can be accessed
off-line. Several routines (GETSB2/PUTSB2 and GETIOB/PUTIOB) exist
for handling 1I/0 to and from these buffers. On-line, these buffers
cannot directly be used.

In order to solve both of these problems, routines were added to the
ONLSAV to create and handle a 16 block temporary file (SCRBUF). This
file, 1in combination with ONLSAV versions of GETSB2/PUTSB2 and
GETIOB/PUTIOB, emulated the off-line use of IOBUFF and SATBF2. 1In
addition, it could be used as temporary storage during a single block
transfer.

5.2.3 Write-Checks - The scratch file described is also wused 1in
solving the third major problem: SAVE/RESTORE needed to perform a
verify operation ("write-check" that what it had written matched what
it had read). Off-line, a real "write-check" hardware function is
available. On-1line, the hardware "write-check" function is
inaccessible. To overcome this deficiency, the "write-check" function
is emulated by executing a word by word comparison of the data in two
buffers, one of which is SCRBUF.

5.3 Major INIT Changes

5.3.1 Error Handling - As previously noted, the mainline code in
SAVRES frequently calls external subroutines. It was critical that
routines appearing in both ONLSAV and INIT return the exact same
values, be they error codes, flags, or pointers. This posed a problem
because many existing INIT routines that SAVRES needed to use did not
allow errors. In general, they required that certain conditions be
met and aborted if they were not met. For example, several routines

Disk Internals and SAVE/RESTORE Page 43
SAVRES Notes

are used to see if a disk contains a valid RSTS/E file structure. If
it is found that a specified disk does not, a fatal message is printed
and the wuser must start again. When mounting output volumes,
SAVE/RESTORE had to determine if a disk had no file structure, a
RSTS/E file structure, or a SAVE volume file structure. In most
cases, any of these three was perfectly acceptable. Disks not having
a RSTS/E structure could simply be weeded out if the routines
mentioned above could return an error indication rather than failing

completely.

Many other routines, notably those used to scan directories, also had
the same problem. In order to alleviate the situation, all the
routines to be used by SAVRES were modified so that they would return
error indicators if a SAVE/RESTORE operation was in progress and an
unexpected or normally illegal condition occurred.

5.3.2 The use of magnetic tapes - Since SAVRES was to run only on
RSTS/E systems, the input of a SAVE or IMAGE copy operation could be
restricted to RSTS/E formatted disks. Likewise, output of an IMAGE or
RESTORE would also be (reconstructed) RSTS/E formatted disks. The
only major device requirement remaining was what to allow as output of
a SAVE (by default, this covers input of a RESTORE). DECtape are no
longer produced and were,; therefore, removed from the 1list of
possibilities. Floppies are sold but the number required to store an
RP@6 (334000 blocks) would be enormous! Disk seemed an obvious device
to allow. In addition, magnetic tape seemed desirable since they
offer a cost effective media which can be easily stored.

Using tape had one major drawback: its use was not generally
supported off-line. Prior to RSTS/E v7.0, the COPY option was the
only component of INIT which allowed the use of tape (input only).
Since RSTS/E 1is distributed on both tape and disk, COPY contained
simple routines to copy a fixed set of files off of a tape. Since
SAVRES had to both write and read tapes, this was insufficient. One
alternative was to prohibit the use of tape off-line, a choice which
would have enraged many users! Another alternative was to modify
COPY's tape routines and include them in the appropriate SAVRES
routines. This choice would have left three sets of tape routines:
those in COPY, those in off-line SAVRES, and those used by all on-line
programs. In order to minimize maintenance and offer complete
magnetic tape support off-line, it was decided to alter the on-line
tape drivers so that they could be used both on and off-line. This
would remove similar/duplicate code, allow SAVRES to easily use tape
output off-line, and also allow any future INIT modules to utilize
tape input or output.

This use of common drivers had an additional benefit. In the past,
when a tape (normally only RSTS/E distributution tapes) was booted,
the secondary bootstrap was able to load the root segment of INIT
along with 1its first overlay. Since tape is not a random access
device, no further overlays could be 1loaded, and, therefore, no
options which were not contained within the first overlay could be

used. The first overlay contained those components required to

Disk Internals and SAVE/RESTORE Page 44
SAVRES Notes

created a disk-based system (e.g., COPY and DSKINT). After using
these options, a user had to boot the newly created RSTS/E disk if
further action was desired.

This limitation posed a problem to SAVRES. Since it was necessary to
be able to boot the output of a SAVE operation, overlays beyond the
first INIT overlay (e.g., DIA) had to be accessible. This was made
possible by modifications to the overlay code and the BOOT option,
enabling them to use the now common tape drivers.

5.4 Device Bootstraps

The addition of common tape drivers and tape overlay capabilities made
bootable SAVE sets feasible. It was also desirable that disk media be
bootable. If this could be done, the output of a RESTORE or IMAGE
copy operation would supply the user with an almost instant recovery
medium. A user could simply boot his or her new RSTS/E disk, perhaps
containing a copy of a destroyed system disk, and continue timesharing
in a relatively painless manner.

In order to create bootable media, two things are necessary. One must
be able to put the correct boot block on a device (boots for each
device are all different) and, in the case of a disk containing
INIT.SYS, one must be able to "hook" the device, i.e., put pointers in
the boot block to allow INIT to be loaded and started by the bootstrap
program.

The procedure for hooking a RSTS/E disk is fairly straightforward. At
the end of a RESTORE or IMAGE, INIT.SYS on the output device is
located in the directory in order to find the required pointers. (If
INIT does not exist, as is the normal case for a private pack, the
pack would not be hooked.) The pointers are then entered into the
second half of the boot block.

The boot for the first volume of a SAVE set (which is the only volume
that need be bootable), is handled in a similar manner. The volume
does not need to be hooked but does include a boot which "points" to
the program to be loaded.

The other half of the problem 1is obtaining the proper device
bootstrap. Two main methods were considered. The COPY option of INIT
contains a series of boots, corresponding to each device supported by
RSTS/E. Copies of these boots could simply be put into SAVE/RESTORE
code. This, however, would mean that INIT itself would have two
copies of the Dboots. One version could be eliminated by putting
special entry points into INIT so that off-line SAVRES could simply
access the existing COPY boots.

This still left two copies of the boots, one off-line, one on-1line.
This was wundesirable primarily because new devices are added each
release and the boots themselves occasionally change. There would
always be the risk that one set of boots would be updated while the
other set was forgotten. (This did in fact happen during the first

Disk Internals and SAVE/RESTORE Page 45
SAVRES Notes

field test) To allow the on-line version to use the same copy of
boots, special pointers were included in INIT so that SAVE/RESTORE
could 1locate the start of the boot table and scan for the appropriate
boot code. note that this is just one of the reasons savres will not
run on vf@be. -

5.5 Factory Bad Blocks

In general, all output devices were expected to be either RSTS/E file
structured disks or volumes (either disk or tape) which had previously
been used as the output of a SAVE volume. If the wuser's specified
output was any of these, SAVE/RESTORE could find known bad blocks by
examining [0, 1JBADB.SYS on RSTS/E disks or the bad block file on SAVE
sets.

If the user tried to use a disk pack which did not have a RSTS/E
structure, there was no bad block file from which known bad blocks
could be extracted. Many of the newer disk packs have a "Factory Bad
Block" track, located at the end of the disk, which contains a list of
blocks that manufacturing has determined are not safe to use. This
data can be accessed off-line, and is, in fact, used by the DSKINT
option of INIT. If such a pack were mounted off-line, therefore,
SAVRES could get at the same information. On-line, however, the bad
block track is not accessible; it is NOT possible to emulate this
feature. For this reason, a user trying to mount such a pack in the
on-line version is prohibited from doing so, and is told that the pack
has to be initialized before it could be used.

6.4 MORE NOTES

In a SAVE operation, a boot, various labelling information, a copy of
INIT.SYS, and <copies of the input SAT are stored on the first SAVE
volume. All allocated clusters of the input disk are then dumped
sequentially on the output medium. The last SAVE volume also contains
an extra set of directory blocks, the use of which is detailed later.

In a RESTORE operation, the first SAT copy is read 1into an in-core
buffer. (The second is kept in case a bad block appears in the first
copy.) By scanning the SAT, data stored on the SAVE set can be
restored to the same pack cluster it lived in on the original disk.

An IMAGE copy operation, 1is, basically, a combination SAVE and
RESTORE, minus the intermediate volume(s).

6.1 Ease of Use

SAVE/RESTORE had to be "easy to use" for several reasons. As
previously noted, a major reason was problems with the existing backup
package. BACKUP has an exceedingly complex dialogue, including

Disk Internals and SAVE/RESTORE Page 46
More Notes

several non-obvious questions that require careful examination of two
manuals and frequently result in a Backup run that does not quite
match what the user wanted. Since Backups are often the
responsibility of operators, who cannot be expected to delve into
reams of documentation, we wanted to avoid this problem.

In general, the goal was that a user could "RUN SAVRES" and be able to
understand and answer all questions that were asked.

The dialogue for SAVE/RESTORE was, therefore, designed along the
following guidelines. All questions come in both a short and long
form, the default being the short form. 1If a user is not sure what
the question means or what form of answer is required, a carriage
return can be typed. If this is done a more detailed form of the
question is printed.

Most questions also have a default answer, which can be chosen by
typing a line feed.

SAVE/RESTORE also allows a user to accept default answers or back up
to a previous question if necessary.

Detailed error messages are printed if the user types an unacceptable
response. If this occurs, the question is repeated so that a new
response may be entered.

Since even a short series of questions may seem tedious to the
experienced user, alternate methods of instructing the program what to
transfer are also available (switches and single 1line commands).
SAVRES dialogue is described in detail in the RSTS/E System Manager's
Guide.

6.2 "User blunder proof"

There was another SAVE/RESTORE goal which falls somewhere between
"Easy to Use" and "Reliable". That is the goal of making the program
as user error proof as possible. In one sense, this means being
lenient enough to understand an incorrect response and allowing the
user another chance to supply an acceptable answer.

On an even more important level, this means protecting the wuser from
himself. One method of preventing intentional or accidental
destruction is by restricting the use of the program. To this end,
SAVRES 1is a privileged program, meaning it can only be run by users
who have been given privileged accounts by the system manager.
Several other protection mechanisms have been built into SAVRES. Some
of these are described in the following paragraphs.

Since SAVRES can write output volumes, SAVRES can wipe out whatever
information had been previously contained on the specified volume. In
order to prevent the accidental destruction of data, SAVE/RESTORE
identifies each output volume and normally asks if the user is sure
that the volume can be obliterated. This feature can be disabled by

Disk Internals and SAVE/RESTORE Page 47
More Notes

including a /SCRATCH switch on output volumes.

If the user is careless in the use of the /SCRATCH switch, it is
conceivable that a newly written SAVE volume might be reused in the
same SAVE operation. SAVRES prevents this by storing the date and
time on which a run was started on each SAVE volume and prohibiting
the use of any SAVE volume created on the same day at exactly the same
time (matching the date might be easy but getting the time down to
tenths-of-seconds is theoretically impossible).

In order for a RESTORE or IMAGE operation to be successful, there must
be enough space on the output disk to contain all allocated clusters
which existed on the original input disk. When the user performs the
SAVE (or IMAGE) portion of a transfer, SAVRES checks to see what
percentage of the disk is full. If this figure is 90% or more of the
disk, the program prints a warning message for the user. When the
RESTORE is done, SAVRES examines the output disk to see if restoration
of the input disk is even possible. Specifically, it adds the number
of allocated input clusters to the number of known bad blocks on the
output disk to see if there is a chance the operation can succeed.
Again, if this indicates the disk will be more than 90% full the user
is warned. Note that if the original input warning was ignored the
transfer may indeed fail.

A1l RSTS/E disks contain a status word which indicates if the disk was
properly dismounted the last time it was used. If it was not, the
pack is considered to be "dirty". Under certain conditions, packs
which are marked as dirty can contain a corrupted disk structure.
Since it is possible that a user may be purposely copying a corrupted
disk before trying to "un-corrupt" it, SAVRES allows the disk to be
used but warns the user before continuing.

Finally, SAVRES always offers the user one last chance to abort a run.
This 1is done by asking an additional question, "Proceed (Yes or No)?"
before any disks or tapes are erased. This question 1is asked
regardless of the manner 1in which the user answered the dialogue
questions, i.e., even if a full line command was specified.

6.3 "Handle Bad Blocks"

Bad blocks are the major reason why SAVRES had to "understand" the
RSTS/E directory structure. Bad blocks may occur on either an input
or output disk and may be either known (in an existing bad block file)
or previously unknown.

Before proceeding with this discussion one point should be <clarified.
The sections which follow mention that names and accounts are reported
to the user. This reporting actually happens in two steps. During an
actual transfer SAVRES has no idea whether it is moving directory
blocks or file blocks. For this reason, bad blocks are first reported
to the wuser as pack cluster numbers. Upon completion of a transfer
SAVRES scans directories to pinpoint the exact account and file in
which a bad block occurs.

Disk Internals and SAVE/RESTORE Page 48
More Notes

6.3.1 Bad Blocks on Input Disks - Bad blocks can occur on input
RSTS/E disks or on input SAVE sets that reside on disk. Bad blocks
can occur on SAVE sets in two ways. If the error 1is detected while
reading a data block, i.e., data from a file, the block could result
in the output file being corrupt. No corrective action, other than
reporting the name and account of the file, can be made. It should be
noted that such an error indicates that a block has "gone bad" since
the time at which the SAVE set was created. If the error occurred
while reading a directory block, SAVRES does try to correct the
situation. When a SAVE set is written, the last volume of the set is
ended by writing an extra copy of all directory blocks on the original
input disk. If a bad directory block is later encountered on a
RESTORE, the offending directory block is retrieved from the extra
copy at the end of the SAVE set. This step is critical since a bad
block at any point in a directory may render a SAVE set useless. Note
that a bad block in a data block harms only that single file. 1In
order to protect against all possible data corruption, a second copy
of ALL clusters would be necessary.

If a new bad block is detected on an input RSTS/E disk, the user's
copy of a file may contain bad data. In such a case, SAVRES reports
the PCN of the cluster which was bad and proceeds with the transfer.
At the end of the transfer SAVRES scans the input directory (starting
with the MFD and progreesing through each UFD) and reports the name
and account in which the bad block occurred.

6.3.2 Bad Blocks on Output Disks - If disk has been specified as the
output of a SAVE operation, a bad block will never affect the
integrity of data being stored. SAVRES writes SAVE sets in a "linear
format". Specifically, the input SAT is scanned for bits which are
set, indicating allocated clusters. If a pack cluster bit is set, the
corresponding input cluster 1is transferred to the output disk. The
cluster corresponding to the next set bit is dumped immediately after
the data of the previous allocated cluster. If an output block is
found to be bad, it is simply skipped, its block number stored in a
file, and the transfer proceeds. Likewise, the file is scanned during
the restore phase and entries skipped as necessary.

Handling a bad block on an output disk in a RESTORE or IMAGE 1is more
complicated. Normally, SAVRES restores data to the same pack cluster
on which it originally existed. Before transferring the data, the
programs checks the output bad block file to see if there was an entry
for the pack cluster needed. If so, the SAT is examined to see if
there is a free cluster available for relocation. If there is, the
sat is updated and entries are made into a pair of relocation tables,
indicating the old and new pack clusters of the data. If a pack
cluster was not in the bad block file, but is found to be bad while
trying to write the data, the cluster is added to an in core bad block
file and the cluster relocated as above.

Upon completion of the transfer, a directory pass must be made in
order to track down accounts or files in which bad blocks occurred.
Because data was moved, links and retrieval entries would now be

Disk Internals and SAVE/RESTORE Page 49
More Notes

pointing to the wrong places. The directory, therefore, must be
updated to reflect all relocated items. The directory is examined,
starting with the first cluster of the MFD. The MFD cluster map is
checked to see if any of the retrieval entries have been moved. If
they were, all copies of the cluster maps are updated.

At this point, SAVE/RESTORE proceeds to scan individual accounts. The
program first reads an MFD name entry into memory. This entry
contains the DCN of the first UFD cluster of the account referenced in
the name entry blockette. If the first cluster of the UFD was moved,
this pointer is updated. The first cluster is then read in, so that
the UFD and the files in the account can be checked

As in the case of the MFD, the UFD cluster map is first checked and
updated as necessary. UFD label name entries are then traversed so
that individual files may be checked. As each label entry 1is read,
links to retrieval entries are followed, the retrieval entries are
examined, and pointers to relocated file clusters are updated.

After an account has been thoroughly checked, the previous MFD name
entry is read so that the link to the next account can be found. Each
account is scanned in the same way, until all relocated clusters have
been found.

This procedure neglects one thing. As was described in the section on
the RSTS/E disk structure, pack clusters may also be parts of larger
entity, e.g., directory clusters or file clusters. It is quite likely
that the single pack cluster relocated because of a bad block was part
of such a larger entity. Therefore, during the scan mentioned above,
an additional check must be done. Entity cluster sizes are extracted
from various parts of the directory. If a relocated item was part of
an entity whose <cluster size was the same as the pack cluster size,
pointers can merely be updated. If, however, it was only a piece of a
cluster, SAVRES must go back to the disk and "re-relocate" the entire
entity cluster. This is done by examining the SAT (after deallocating
the clusters currently allocated to the pieces of the entity) to see
if there are free, contiguous pack clusters which add up to the size
of the needed item (and which meet certain boundary restrictions). If
there is room, the data is moved once again and the retrieval entries
updated accordingly. If there is not, the operation is aborted.

All of the above is handled transparently to the wuser with a few
exceptions. It is possible that data relocated because of bad blocks
were part of contiguous files or fell on the first cluster of a placed
file. If this happens, the file's status byte is altered to indicated
that the file is no longer placed and/or contiguous. Note that it
would be possible to relocate an entire contiguous file. If the file
were quite large, this could take a substantial amount of time. It
might also be impossible to find enough contiguous space on the disk
to move the entire file. 1In addition, there are frequently many files
(such as compiled BASIC-PLUS programs) which were created contiguously

to improve access time but will work even if they are made
non-contiguous. It is for these reasons that contiguous files are

simply "de-contigged". Critical files may be recreated to be
contiguous at a later time.

APPENDIX A

WCB/FCB/SCB Layouts

WCB/FCB/SCB Layouts
Window Control Block (WCB)

A.1 Window Control Block (WCB)

On a large file system, one per open disk channel

]
i
W$STS +1 | Status flags | Driver index
I]
| e e ——- | T e e -
W$FLAG +3 | Flag bits i Job # %2
i |
[it et [Bt kbt dd e
W$NVBM +5 | Next VBN (MSB) | Pending xfers
[}

[o)

+0 Driver Index BYTE
+1 Status bits for file BYTE

Bit definitions for W$STS as a WORD (high byte):

<8> DDNFS - if set, non-file structured.
<9> DDRLO - if set, user may not read file.
<1@> DDWLO - if set, user may not write file.

<11> WC$UPD - if set, the file is open for update.

+0
+2
+4
+6
+10
+12
+14

+16

+22
+24
+26
+30
+32
+34
+36

Page A-2

W$IDX
W$JIBNO
W$PT
W$NVBL
W$FCB
WS$REN
W3$WCB

W$NXT

WSWND

WCB/FCB/SCB Layouts Page A-3
Window Control Block (WCB)

<12> WC$CTG - if set, the file is contiguous.

<13> WC$LCK - if set, the current block is locked.

<14> WCS$UFD - if set, the file is a UFD.

+2 Job number ¥ 2 of owner BYTE W$JBNO
+3 WCB flag bits BYTE W$FLAG

Bit definitions for W$WFLAG:

<@:4> WCS$LLK

Length of current implicit lock.

<5 WCS$EXT - if set, WCB is an extended WCB.

<6> WC$DLW - if set, update file size and date of last write.
<T> WC$NFC - if set, non-file structured in cluster mode.

+4 Pending xfers BYTE W$PT
+5 Next VBN (MSB) BYTE W$NVBM

W$PT is the pending transfer count and W$NVBM is the MSB of the next
virtual block to read/write (FBN if NFS)

+6 Next VBN (LSB) WORD W$NVBL

LSB of the next virtual block to read/write (FBN if NFS)

+10 -> FCB @ F$CLUS WORD W$FCB

Pointer to the FCB for the file at F$CLUS.

+12 Retrieval entry number WORD W$REN

Retrieval entry number of current window.

+14 -> Next WCB this FCB + flags WORD W$WCB

Pointer to the next WCB open on same FCB plus flag bits. Flag bits in
W$WCB (as a word, rest is address):

<@> WC$RR - if set, the file is open 'Read Regardless'.

<1> WC$SPU - if set, the file is open in special update mode.

WCB/FCB/SCB Layouts Page A-Yy
Window Control Block (WCB)

2> WC$AEX - if set, always do a real extend.
<3> WC$CHE - if set, file is open for user data caching.
<4> WC$CSQ - if set, user data caching is sequential.

<5:15> Address of next WCB

+16 FBB of next window WSNXT

+22 Current Retrieval Window WSWND

WCB/FCB/SCB Layouts
File Control Block (FCB)

A.2 File Control Block (FCB)

One per open disk file on large file systen.

+1 E Link to Next FCB this unit

+3 | File ID (Link to Name Entry)
+5 | PPN Project # | PPN Programmer #
o File Name (Part 1 in RAD5@)
oo File Name (Part 2 in RAD5@)
NI File Name Extension (RADSO)

F$PROT +15 | Protection Code

F$RCNT +17 | RR access count

F$SIZM +31 | File Size MSB f FIP unit #
I

+15 | File Cluster Size
]
e e ——————
+17 | Ptr to 1st WCB for this file
]
e e e e e
+0 Link to Next FCB this unit WORD

Pointer to next FCB on this FIP unit.

+2 File ID (Link to Name Entry) WORD
+4 Project, Programmer number WORD
+6 File Name (Part 1 in RAD5®) WORD
+10 File Name (Part 2 in RADS5@) WORD
+12 File Name Extension (RAD5Q) WORD

+14 Status Byte BYTE

Page A-5

+9 F$LINK
+2 F$FID

+4 F$PPN

+6 F$NAM

+10

+12

+14 F$STAT
+16 F$ACNT
+20 F$WFND
+24 F$UFND
+30 F$UNT

+32 F$SIZL
+34 F$CLUS
+36 F$WCB

F$LINK

F$FID

F$PPN

F$NAM

F$STAT

WCB/FCB/SCB Layouts
File Control Block (FCB)

+15 Protection Code

Bit assignments are the same as USTAT and UPROT.

+16 N/U access count
+17 RR access count

BYTE

BYTE
BYTE

Access count for Normal/Update opens and access

Regardless opens.

+20 FBB of 1st Retrieval Entry
+24 FBB of Name Entry

+30 FIP unit number

+31 File Size MSB

F$SIZM is number of FBN's if NFS.

+32 File Size LSB

+34 File Cluster Size

W$FCB points here.

+36 Pointer to 1st WCB for this file

BYTE
BYTE

WORD

WORD

WORD

Page A-6

F$PROT

F$ACNT
F$RCNT

for Read

F$WFND

F$UFND

F$UNT

F$SIZM

F$SIZL

F$CLUS

F$WCB

WCB/FCB/SCB Layouts Page A-7
Small Control Block (SCB)

A.3 Small Control Block (SCB)

On a small file system, one per open disk channel.

i
S$STS +1 E Status flags E Driver index E +0 S$IDX
SSUNT +3 | FIP unit number | Pending xfers | +2 sspr
P size of File | 4 s8512
P Next VBN to Read/Write | +6 SNVB
o First VB in window | +10 S$FVB
S$FLG +13 | Flag bits | Fos -1 | +12 S$CLUS
o NE offset and FBN of UFD block | +14 S$UFND
i et et e i
| |
g"E;;;;;E'ﬁéEFEéJQI‘QIE&S;'QSJ'EIQQE"'g 420 S$WND
; --------------------------------------- ? +22
E Ceeeaes ...ﬁ'.....'. ceeenn cee } -
§i................... } 26
E Ceeeeeaen ceeena SRR Ceeeeeen } 30
gé................... } V32
i Ceeeeeas Ceeee e 6... ceeeen cen } -
{ ettt ARRRRRRREEE Ceeeen E V36
| o e e e e m e i
+9 Driver Index BYTE S$IDX
+1 Status bits for file BYTE S$STS

Bit definitions for S$STS as a WORD (high byte):

<8> DDNFS - if set, non-file structured.
<9> DDRLO - if set, user may not read file.
<1@> DDWLO - if set, user may not write file.

<11> SC$UPD -~ if set, the file is open for update.

WCB/FCB/SCB Layouts Page A-8
Small Control Block (SCB)

<12> SC$CTG - if set, the file is contiguous.

<13> SC$LCK - if set, the current block is locked.

<14> SC$UFD - if set, the file is a UFD.

<15> SC$USE - if set, this user has the write privileges.

+2 Pending Transfers BYTE S$PT
+3 FIP unit number BYTE S$UNT
+4 Size of file WORD S$S1z
+6 Next VBN to Read/Write WORD S$NVB
+10 First VB in window WORD S$FVB
+12 File Cluster size minus 1 BYTE S$CLUS
+13 Flag bits BYTE S$FLG

Bit definitions for S$FLG:
<@:4> SC$LLK - Length of current implicit lock.

<5> SC$RR - if set, the file is open 'Read regardless'.

<6> SC$EXT - SCB is an extended SCB.

<T> SC$DLW - if set, update file size and date of last write.
+14 NE offset and FBN of UFD block WORD S$UFND
+20 Current Retrieval Window + flags S$WND

Flags are:

<@> SC$SPU - if set, the file is open in special update mode
<1> SC$AEX - if set, always do a real extend

2> SC$CHE - if set, file is open for user data caching

<3> SC$CSQ - if set, user data caching is sequential

Using RSTS/E Resident Libraries

Mark Goodrich

April 25, 1980

Spring DECUS U.S. Symposium

II.

III.

IvV.

VI.

INTRODUCTION

A.

Purpose

REVIEW OF CONCEPTS

MoOw>

Address Space

APR

Memory Mapping -
PLAS Directives

TKB

WRITING SHAREABLE CODE

Mmoo

Position-Independent Code (PIC)
R/W Impure Areas

Memory Resident Overlays
Structure of Library

TKB

1. Global Entry Points

2. APR's

CONVERTING EXISTING APPLICATIONS

moQwr

F.

Resident Library vs Run-Time Systems
Overlaid Programs
Higher Level Languages
MACRO Programming
Examples
1. Supported libraries.
2. Converting and editor
a. Separating Code and Data
b. 3-1link Trick
Read/Write Resident Libraries

WRITING NEW APPLICATIONS

A.
B.

Resident Commons
Manual PLAS mapping

SUMMARY

A.
B.

Potentials
Costs

REVIEW OF CONCEPTS

Address Space

The PDP-11 processor handles 16-bit operand addresses, so the
address range is from @ through 2716-1 = 64K bytes, or 32K words.

All RSTS/E systems use the memory management feature available on
PDP-11/34 through 11/7@ processors.

APR

An APR consists of two 16-bit registers. These registers define a
"page" of contiguous memory. The Page Address Register (PAR) defines
an actual memory location where the page begins. The Page Descriptor
Register (PDR) defines, among other things, the maximum length of
the page and how it can be accessed (read/write, read-only).

The PAR is made up of two fields: a 3-bit APR number and a 13-bit
byte offset. Thus, each APR can map a virtual address range of up to
2713 = 8192 bytes, or 4096 words, and there are 8 APR's (@-7) which
map the entire 32K word address space.

Memory Mapping

A job is mapped by at least one and by at most 8 APR's. The job's
low segment is mapped read-write. The job's high segment is usually
mapped read-only. The job's middle segment (Resident Library) is
mapped according to the usage applied by the job to the library.

PLAS Directives

ATRGS$ Attaches the job to a resident library. Specified is the

type of access, and the name of the resident library.

DTRG$

Detaches the job from a previously attached resident
library. Any windows mapped to the library are unmapped
and eliminated.

CRAWS Creates a window (a range of virtual addresses) to be used
to map to a range of actual addresses in an attached
resident library. Windows begin on APR boundaries and can
specify more than a 4K word range.

ELAWS

Eliminates an address window that was created by the job,
unmapping the window if necessary.

MAP$ Maps a previously created address window to an attached
resident library. This relates the virtual address range
defined by a CRAW$ directive to actual locations in

memory within a resident library.

UMAPS$ Unmaps a specified address window from a resident library.
The unmapping does not eliminate the window, nor does it

release the APR's used by the window.

TKB

Resident libraries are built using the "/-HD" switch on the task
file name and a symbol table file must be created to link subsequent
tasks as shown pelow:

TKB>LIB/-HD/PI,LIB,LIB=LIB
TKB>/

TKB>STACK=0
TKB>PAR=LIB:0: 20000

TKB>//

The "/PI" is optional and signifies that the code is
position-independent code. The resultant .TSK and .STB produced are
used by TKB when linking other tasks to the resident library.

When you build a task that links to a resident library, you must
indicate to the. Task Builder the name of the resident library (1- to
6-characters), the type of access desired (read/write or read-only),
and optionally the first APR that TKB is to allocate for mapping the
library into the task's virtual address.

Four options are available for this action:

RESLIB = dev:[p,pnlfilenm/RO:[apr] (User Resident Library)

RESCOM = dev:[p,pnlfilenm/RO:[apr] (User Resident Common)
LIBR = filenm:RO:[apr] (LB: Resident Library)
COMMON = filenm:RO:[apr] (LB: Resident Common)

WRITING SHAREABLE CODE

Position-Independent Code (PIC)

The Task Builder binds one or more modules together to create an
executable task image. Once built, a task can generally be loaded
and executed only at the virtual address specified by the task
builder at link time. Such a task is considered position-dependent.

However, it is possible to write code that is not dependent on the
virtual addresses to which it is bound. Such a body of code is
termed position-independent and can be loaded and executed at any
virtual address. This 1is especially useful when the code is to be
shared in a single physical copy of common code. This allows the
code to be placed anywhere within a task's virtual address Space
when linked to by the task builder.

When two libraries are built non-PIC at the same virtual address
only one can be referenced by any one task. If both libraries, or at
least one of the libraries were built PIC, then both libraries could
be referenced by the same task.

The construction of position-independent code is closely 1linked to
the proper usage of PDP-11 addressing modes.

1. All addressing modes involving only register references are PIC.
MOV (R@)+,2(RY) ;R@ AND R4 ARE ABSOLUTE PTR.

2. Relative addressing modes are PIC when a relocatabe address is
referenced from a relocatable instruction.

MOV #1,FIRST ;FIRST IS RELOCATEABLE.
MOV #1,FIRQB ;FIRQB IS ABSOLUTE.

3. Immediate mode references are PIC only when then value is absolute.

MOV #FIRST, RO ;NON-PIC REFERENCE.
MOV #FIRQB, RO :PIC REFERENCE.

4. Absolute mode addressing is PIC only where an absolute virtual
location is being referenced.

MOV €#FIRQB, RO ; PIC REFERENCE.
MOV €#FIRST, RO ;NON-PIC REFERENCE.

Use MOVPIC macro from COMMON.MAC on distribution kit to <change
non position-independent instruction to position-independent
instruction.

MOV #FIRST, RO ; NON-PIC REFERENCE.
MOVPIC #FIRST,R® ; PIC REFERENCE.
MOV PC, RO ;GET CURRENT PC (GENERATED)

ADD #FIRST-., RO ;ADD IN OFFSET (GENERATED)

R/W Impure Areas

When writing code that is to be shared, don't include read/write
data within the same program section (.PSECT). Separate data into
R/W PSECTs and code into R-O PSECTs. ,

.PSECT CODE,I,RO
.PSECT DATA,D, RW

Memory Resident Overlays

It is 1important to be careful in choosing whether to have
memoryresident overlays in a resident library. Careless use of these
segments can result in inefficient allocation of virtual address
space. This 1is because the task builder allocates virtual address
space in blocks of 4K words. Consequently, the 1length of each
overlay segment should approach that limit if you are to minimize
waste. (A segment that is one word longer than 4K words, for
example, will be allocated 8K words of virtual address space. All
but one word of the second 4K words will be unusable.

The primary criterion for choosing to have memory-resident overlays
is the need to save virtual address space when disk-resident
overlays are either undesirable (because they would slow the system
down), or impossible (because the segments are part of a resident
library). :

Structure of library

A resident library can be shared code, shared data, or both. It can
be read-only or read-write. It can take up only as much physical
address space as virtual address space (with no memory resident
overlays) or consume much more physical address space than virtual
space (with memory resident overlays).

TKB

When creating a resident library, only the global symbols that exist
in a root segment of a memory resident overlay library are put in
the symbol table. In order to access the entrypoints which may be in
the memory resident overlays, the user must add the entrypoints into
the symbol table by use of the GBLREF option.

The format of the GBLREF option is:
GBLREF=symbol-name:..... symbol-name

where symbol-name is a 1-6 character name of a global symbol in
a memory resident overlay.

When assigning APR's, TKB will start from APR 7 and allocated
downward towards the task image. Also, when a run-time system is to

be linked with the task, it must appear first in the options before
any other resident library options.

CONVERTING EXISTING APPLICATIONS

Resident Libraries vs Run-Time Systems

Previous to Resident Libraries, the only way to share code was to
write a run-time system. This had two main drawbacks:

1. learning the secrets of what a run-time system does; and

2. no overlays allowed in run-time systems.
With Resident Libraries, code can be easily made shareable, and
overlays are allowed (memory resident only, still no disk overlays

within Resident Libraries).

In addition, libraries can link to other libraries just like tasks.

Overlaid Programs

To convert an un-overlaid program to a resident library is usually a
simple matter of task building the object modules with the "/-HD"
switch and create the resident library file with MAKSIL. If data is
required by the resident library, then references must be satisfied
at the time of building the library. This wusually means changing
some code in the 1library to eliminate global references to local
data and substitute using pointers to the data instead.

An existing overlaid program requires more careful work to make it
into a shareable resident 1library. This is complicated by the 4K
word boundary condition mentioned previously. Code will usually have
to be re-structured to fit code which previously existed as disk
overlays, into self-contained 4K word modules.

No easy solution exists. Knowing calling sequences between the code
withing the overlays helps tremendously, as does duplicating some
routines within several different memory resident overlays to
satisfy calling sequences within the 4K word boundary.

Higher Level Languages

Languages like BP2, COBOL, and FORTRAN on the PDP-11 do not 1lend
themselves to sharing user-written subroutines. What can be shared
is the Object Time System (OTS) written to support the language
compiler.

There is a released BASICS resident library which allows the BP2
user to share some of the code currently linked into every BP2 task.
This has the potential of reducing the task size by as much as 8K
words in the 1low segment, and a corresponding saving on the disk
image size.

Also, shared R/W COMMONs (ala FORTRAN and BP2) are possible with

resident libraries. BP2 programs can link to a resident library and
access the data using the COMMON or MAP language constructs.

There are no plans for BASIC-PLUS programs to be able to use
resident libraries.

Currently, the full usefullness of resident libraries can only be
exercised by programs written in MACRO.

MACRO programming

With access to the PLAS directives supported through either the RSX
run-time system or the interal Monitor EMT's, a MACRO program can
control more completely the mapping of windows within the task.

TKB will automatically set up calls to map the resident 1libraries
linked to by a task. This does mean, however, that a user is
restricted to the number of libraries that can be accessed by the
task. TKB will not allow linking to more 1libraries than will
simultaneously fit within the task virtual address space. This means
that if a task desires to access two libraries which are linked to
the same APR range, or which together span more than the remaining
virtual address space, TKB will not permit it. However, using the
PLAS directives, a task can manually attach to first one library,
create an address window, map to it, and then attach to another
library and use the same address window to map to the second
library. .

When this approach is taken, then any calls to global entrypoints in
the mapped 1libraries must be accomplished without the help of TKB.
It is simple enough though, to use common vector tables to be able
to access code or data in the library.

For the most part, linking automatically by TKB will serve most
users needs for resident library applications. But if the need
arises for more complex mapping applications, the mechanisms are
provided through the PLAS directive interface.

Examgles

With V7.8 and BP2 V1.6 we now have several examples of working
resident libraries:

1. RMSRES - a 2-APR 24K word memory resident overlay library.
2. RMSSEQ - a 1-APR 4K word sequential resident library.
3 BASICS - a 2-APR 8K word sequential resident library.

These can be routinely linked to by TKB to produce sharing of code
with a corresponding reduction of task image size and potentially
physical memory requirements.

If a user has an existing application that is desired to convert to
a resident library, there are two approaches that can be taken.

Take the case of an editor. What may be desired is the o0ld runtime
approach where a copy of the R-0 code is in memory once, but the R/W
data area is duplicated in each users task. The first approach that
could be tried is to link all the code into a library and link the
task which contains the code separately against the 1library. This
does require that the code in the library must be able to link
without direct reference to the symbols of the impure data area,
since those data program sections were not built with the library.
This could result in considerable conversion to change the code to
access the data in a more general fashion then simply being able to
know the fixed address of the data.

But there is a second approach which lends itself to an easy
solution to this problem. This is the 3-1link trick. This method
allows existing code to remain wunchanged and still access data
symbols in the user's task.

The user first links a .TSK and .STB which contains only the symbols
for the R/W data areas and a call to the entrypoint in the resident
library. For example:

TKB EDT, ,EDT=EDT/LB:DATA:ENTER

This will result in an "UNDEFINED REFERENCE" to the entrypoint in
the 1library but WILL produce a symbol table which reflects all the
global data areas in the task.

Next, the user links all the R-O code into the resident library, and
includes the EDT.STB file produced by the first link. For example:

TKB>EDTLIB/-HD, EDT,EDT=EDT.STB,EDT/LB:CODE
TKB>/

TKB>ENTER OPTIONS:

TKB>STACK=0

TKB>PAR=EDTLIB:40000: 140000

TKB>//
This will result in all code being assembled with external
references to the R/W data satisfied by the EDT.STB from the first

link.

Finally, the user re-links the R/W data task using the library Just
produced to satisfy the global entrypoint in the resident library.
For example:

TKB>EDT, EDT=EDT/LB:DATA:ENTER
TKB>/

TKB>ENTER OPTIONS:
TKB>RESLIB=EDTLIB/RO

TKB>//

This has accomplished what putting the code into a run-time system
used to do but with a 1lot 1less effort. Each user who now runs
EDT.TSK will only duplicate the R/W data and not the code which will
be resident once in physical memory.

Of course the R-0 code in the library now 1is 1linked to absolute
locations in each wuser's task, so anyone else linking to this
resident library to possibly further share the code MUST have the
R/W data areas set up exactly like those in the linked EDT.TSK.

Read/Write Resident Libraries

Another example of adapting existing programs to resident libraries
would be the set of applications which use either SEND/RECEIVE or a
disk workfile to pass data between programs. A R/W resident 1library
could be 1linked to those programs and the information passed
directly into a R/W region of physical memory which is being shared
by those programs which access to the library. There are a few
drawbacks with this approach: namely, even the smallest R/W resident
library will take 4K words minimum out of each tasks virtual memory
since this is the boundary size for each window. Also, there are no
LOCKing or semaphore mechanism to keep each task from writing over
shared data. An explicit locking mechanism has to be code as part of
the R/W data to keep shared information from being overwritten by
mutiple running tasks.

However, if the virtual address space 1lost can be utilized
effectively in a R/W environment, this method could enhance
inter-job communication.

WRITING NEW APPLICATIONS

Resident Commons

In BP2, COMMONs are used effectively to pass information between the
main program and any sub-program linked with the main program. An
extension of the R/W Resident Library can allow the BP2 COMMONs to
map a R/W Resident Library, giving to BP2 programs as well as MACRO
programs a means of communicating between jobs.

This is effected by naming the COMMON to the same name as the .PSECT
name of MACRO program which allocates R/W data space for the
Resident Library. The following example shows the interaction
between a MACRO source which is made into the resident library and a
BP2 program which can then access the data.

MACRO source = BUFFER.MAC

.TITLE BUFFER
fSBTTL RESIDENT LIBRARY DATA BUFFER
)

.PSECT RINGBF,D,RW

)
LOCK:: .WORD -1 ; 2@ = LOCK IN USE

INPTR:: .WORD @ ; INDICATES WHERE TO STORE DATA
RING: : ; RING BUFFER DATA
.REPT 10.
.WORD @ ; CHARACTER COUNT
.BLKB 128. ; LINE BUFFER
. ENDM

RINGSZ=.-RING
.END
BP2 source = READER.B2S

1 EXTEND
20 COMMON(RINGBF) 1lock%,inptr%,ring$(9%)=130%
>3 = lock in use
next free buffer address
ring buffer
ring$ (i%) [1:2] = character count
! ring$(i%) [3:128] = line buffer
100 PRINT "lock="; lock%; " inptr="; inptr%

ten tem su> oum

\ PRINT "index count text"

\ FOR 1%=6% TO 9%

\ count% = SWAP%(CVT$%(LEFT(ring$(i%),2%)))

\ PRINT i%; "™ "; count%; " ". MID(ring$(i%),3%,count%);
\ PRINT IF CCPOS(@%) :

\ NEXT i%

\ GOTO 32767

32767 END

The TKB command files to build the library and the task are:

TKB>BUFFER/-HD/PI, ,BUFFER=BUFFER
TKB>/

TKB>ENTER OPTIONS:

TKB>STACK=¢@
TKB>PAR=BUFFER:@: 4000

TKB>//

TKB>READER,READER:READER,LB:BP2COM/LB
TKB>/

TKB>ENTER OPTIONS:
TKB>RESLIB=BUFFER/RW: 6

TKB>UNITS=12
TKB>ASG=SY:5:6:7:8:9:10:11:12

TKB>//

This example shows the BP2 program reading the contents of the
buffer to see what has been deposited. Any other BP2 program with
the same COMMON statement could equally as well deposit into the
buffer.

The read-write resident library MUST be made PIC (fortunately it's
all data anyway) because only PIC libraries will have the .PSECT
symbol stored in the symbol table as well as the global symbols. The
BP2 program accesses the data by position alone. When linked against
the library, TKB will position the references to the COMMON data in
the BP2 program to coincide with the actual address that reside in
the library.

Manual PLAS mapping

As mentioned previously, MACRO applications have the ability ¢to
extend the virtual address space of the task to include a large
number of resident libraries, but only when circumventing TKB's
automatic allocation of APR's. Manually attaching and mapping to
resident imposes the burden of knowing the structure of the data or
code being mapped. With sufficient memory, whole disk data files
could reside in memory and be accessed by a database package written
to using the mapping directives instead of updating records on disk.

SUMMARY

Potentials

Resident libraries can be used effectively on some of the smaller
systems, being careful to stay away from the memory resident overlay
resident libraries, but the real potential 1is for 1larger systems
with 1lots of memory. The more code or data that resides in memory
can greatly speed up applications which are diskbound due to heavily
overlaid tasks, or applications which can take advantage of the R/W
COMMONs .

Using the PLAS directives and bypassing TKB's automatic loading has
the greatest potential for increasing a program's virtual address
space, but also carries with it the most burden of resolving access
to global symbols by the task itself.

Costs

Memory resident overlay libraries use lots of memory. The RMSRES
library alone uses 24K words. As more and more libraries are used by
a single task, the swapping activity can increase to bring in a task
because all the libraries must be resident when the job is running.
When the job swaps out, then the libraries are candiates to swap out
as well, unless marked as being permanently in memory.

	001
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13

