DEC-11-IRSAA-A-D

RSX11A
programmer’s
reference manual

For additional copies, order No. DEC-11-IRSAA-A-D from
Software Distribution Center, Digital Equipment Corporation,
Maynard, Massachusetts 01754

: First Printing, March,

Your attention is invited to the last two pages
of this document. The "How to Obtain Software
Information" page tells you how to keep up-to-
date with DEC's software. Completion and return
of the "Reader's Comments" page is beneficial to
both you and DEC; all comments received are ac-
knowledged and are considered when documenting
subsequent manuals.

Copyright (:) 1973 by Digital Equipment Corporation

The software described in this manual is furnished to pur-
chaser under a license for use on a single computer system
and can be copied (with inclusion of DIGITAL's copyright
notice) only for use in such system, except as may other-
wise be provided in writing by DIGITAL.

The material in this document is for information purposes
only and is subject to change without notice. DIGITAL
assumes no responsibility for the use or reliability of
software and equipment which is not suppliied by it.
DIGITAL assumes no responsibility for any errors which
may appear in this document.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

CDP DIGITAL KAl0 QUICKPOINT
COMPUTER LABS EDUSYSTEM LAB-8 RAD-8
COMTEX-11 FLIP CHIP OMNIBUS RSTS

DDT FOCAL 0s/8 RSX

DEC GLC-8 SABR
DECTAPE IDACS PDP TYPESET-8
DIBOL INDACS PHA UNIBUS

Teletype is a registered trademark of the Teletype
Corporation.

ii

1973

PREFACE

RSX1lA is a small real-time multiprogramming operating system
for Digital Equipment Corporation's PDP-11 family of
computers. It will perform well in any real-time environment
where multiprogramming, time-dependent scheduling, and low
core residency are prime requirements. Typical applications
include laboratory automation, process control, and dedicated
remote or satellite processing.

The primary intent of this manual is to provide a source of
reference = for this system, although specific information on
how to use and generate the system is also included. Chapter
1 contains a general description of the overall system,
Chapter 2 describes executive (programmed) requests., Chapter
3 explains operator communication via the operator's console.
Chapter 4 contains sample tasks. Chapter 5 is dedicated to
system generation. Appendices are included to summarize
executive requests, error definitions, device dependent
information, operating system data structures, and the
structure of the 8K core-only RSX11A load module available
from the Software Distribution Center.

A thorough knowledge of PDP-11 assembly language is assumed
throughout the manual.

iii

Chapter

Chapter

Chapter

w NNN

TABLE OF CONTENTS
1l - General Description

1.1 Introduction

1.2 Hardware Configuration
1.3 Terminology

1.4 System Overview

1.5 Manual Conventions

2

- Executive Communication

General Description
1 Summary of Executive Requests
2 Executive Request Calling Sequence
Detailed ER Descriptions ‘
Task Termination
1 Terminate Task Execution
2 Delete Task From System
Timer
Request Timed Wait .
Request Timed Interrupt
Cancel Timed Interrupt Request
Request Time of Day
Request Date
Task Initiation
Request Task Execution
Request Synchronous Periodic Task Execution
Request Asynchronous Periodic Task Execution
Request Task Execution at Time of Day
Task Synchronization
Suspend Task
Activate Task
Test and Set Task Group Lock Return Immediate
Test and Set Task Group Lock Wait
Reset Task Group Lock
Intertask Communication
Send Message to Task
Receive Message From Task
Input/Output
Request I/O Operation
End Action Control
End Action Wait
End Action Return
List Manipulation
Define List
Remove Entry From List
Make Entry In List
Dynamic Storage
1 Request Buffer Block
2 Release Buffer Block
Miscellaneous
.1 Set Error Trap Address
.2 Set Alternate Stack Address
.3 Set TRAP Trap Address

SR SN SN SN SN SN S N R g

@ o & ¢ s 0 e o o o+ @

AW U W N

s o o o o
N [N Ui W N

NNMNOMNNNMONNNNNODOIONNNNMNNNNDONNDNODODONDNODDNNNND DN
¢ o
W N =

® 0 85 e 6 2 0+ 4 B 0 & S P e 6 2 2 0 + * & 4 0 P % e e e v & @
® & 8 0 0 B e 6 * o & o 4 s 6 0 & 6 © o B 6 8 L 6 & 6 6 6 e e @

Operator Communication

3.1 General Description
3.1.1 Functions Provided
3.1.2 Error Handling

PAGE

[| | L L I A T B I
HEWOWOA UL E W

o

[

NNMNNNNNNI\')MNNNNNNN

I
R e
O W=

2-17
2-17

2-40
2-40
2-42

ww
N

® o o o o o

. e e 0
RO NDNNNNDNDN NN

WWWWWwWwWwwwwwwwww

.] . L]
HHFRHEOVOUOO B WN - W

WO

Command Syntax
Keyins
Examine Memory
Deposit Memory
Enter Date
Enter Time
Request Task Execution

Activate Task
Suspend Task
Delete Task
Ioad Task
Breakpoint Trap

Chapter 4 - Sample Tasks

Lo

wn

Chapter

[SIE SN R, NS, NS,

Appendices

A

OoOmEZprUHmradmnoow

1
2

Sample Task #1
Sample Task #2

System Generation

General Description
Partition Table Definition
Task Table Definition
Parameter File Definition
Assembling The System
Linking The System

Sample System Generation

Executive Request Summary

Device Dependent Information
Error Messages and Meaning
General Queuing Space

Device Table

Task Control Table

Resource Allocation Table
Partition Table

Sleep Queue

Partition Status Table

Operator's Console Command Data Block
Task Stack Frames

Software Configuration Parameters
Panic Dump Routine

Specification for 8K System

I/0 Handler Interface

Request Asynchronous Periodic Task Executicn
Request Synchronous Periodic Task Execution
Request Task Execution at Time of Day

wwwwwwwciowwwmwww

UL
> wwo N

L

)
HWOWVWLELJIYoO oW

bl
[
b et

:r:mnjt;it:ow

[I |
o e e e e e

|

'UOZ‘ZL"?E‘LIH

1.1

1.2

CHAPTER 1

GENERAL DESCRIPTION

INTRODUCTION

RSX11lA is a small real-time multiprogramming operating system
for Digital Equipment Corporation's PDP-11 family of
computers. Major features include fixed priority scheduling,
time dependent task initiation, and modest core residency
requirements.

Support is provided for any number of tasks in either a
core~only (core resident tasks) or core-disk environment
(core and disk resident tasks).

RSX11A provides users with an operating gystem that is well
suited for dedicated applications. Typically these include
laboratory automation (single or multiple instruments),
process control, and remote satellite processing.

No background capability is provided; however, any number of
priority levels (one per task) are available and lower levels
may be used tc run nonessential or background tasks without
interfering with higher priority foreground tasks.

RSX11A supports only tasks written in assembly language.
System generation and actual task development must be carried
out under other PDP-1ll operating systems (i.e., DOS).

‘Tasks may be loaded into the system on-line via the

operator's console task.

System generation options allow generation of systems
requiring from 2 to 5K (K=1024) words of core memory.

Support is provided for RC, RF, and RK disks in a non-file
structured format.

HARDWARE CONFIGURATIONS

RSX11A will run on any PDP-11 family processor. Support is
provided for the extended arithmetic element (EAE), and I/0
device handlers are provided for the following peripherals:

a) Teletype and Teletype compatible devices, including the
LA=-30, interfaced as the computer console terminal or via
a KL1l. The Teletype handler supports up to 16 Teletypes
simultaneously (low-speed reader on ASR Teletypes is not
supported).

b) PCll high-speed paper tape reader.

c) PCll high-speed paper tape punch.

d) RC1l1l fixed head disk controller.

e) - RF11l fixed head disk controller.
f) RK1ll disk cartridge controller.
g) AFCll low level analog-to~digital convertor.
h) AD01-D high level analog-to-digital convertor.
1) UDC1ll universal digital control unit.
j) LPll line printer
The minimum hardware configuration required to run RSX11lA is:
a) A PDP-1l family central processor.
b) 4K of read/write core merwory.
c) GR Teletype or PCll high-speed paper tape reader.
d) KuWwli-L line frequency clock.
NOTE
Segmentation on the PDP-11/45 is not
supported.
1.3 TERMIWOLOGY
Tasks:
A task is defined as any set of program 1logic that, when
executed, produces a desired result or accomplishes a
specific job. Available core space is the only limit to the
number of tasks that may be defined in RSX11lA. Each task
requires a minimum of eight or ten words of core resident

storage. These words are used to define
and must be allocated at system gencraticn

The following information is stored in the

a) Periodic or lonperiodic - A task may be
executed at a regular frequency or may
executed only on demand.

b) TImmediate or Delayed Execution - A task may be

immediately when

the task data base
time.

task data base:
periodic and

be nonveriodic and

executed

the system is loaded or may be delayed

until a specific request is made for its execution.

Core or Disk Resident = If the
systen, then tasks may

core or disk resident.

only when requested; the core used is
tiiey terminate.

systen
only be core resident.
system is a core-disk system, then tasks
Core resident tasks always remain
in core whereas disk resident tasks are loaded into

is a core-only
If the
may be either

core
then released when

d) Privileged or Nonprivileged - A privileged task is given
privileges that, if used improperly, may destroy any
other task in the system or the system itself. For
example the nonresident task loader is given the
privilege to request I/0 transfers into any part of
memory. A nonprivileged task is given privileges that,
if used improperly, can only destroy other tasks in its
task group (see below for definition of task groups).

e) Task Group - The number assignéd to the group to which a
particular task belongs (see below).

f) Message Queue - A queue for receiving messages from other
tasks.

g) Task Name - A 4-character ASCII name used to identify the
task.

h) Execution Partition -~ The number assigned to the core
partition from which the task executes. - :

i) Common Data Partition = The number assigned to the core
partition used as a common area for communication with
other tasks.

j) Disk Address and Device - A nonresident task in a
core-disk system is stored on a particular device at a
specific starting address. Only one access is required
to load the task into the system,

k) Entry Address - The transfer address at which execution
of the task begins.

Tasks consist of code, data, and stack segments. The entry
address is also defined as the starting stack address (i.e.,
the value that will be loaded into register 6 when the task
is executed). At least 9 stack words must immediately
preceed the entry address. Since stack overflow is a serious
matter and is difficult to detect, a standard task structure
is recommended. This structure is not mandatory, but ensures
that the task will probably destroy itself before it destroys
another task or the system. The following structure is
suggested:

Highest Core Address of Task

Entry Point: JMP Starting Point

Stack Segment

Data Segment

Starting Point: Code segment

Lowest Core Address of Task
Task Groups:

The concept of a task group is used in RSX11lA to define a
community of tasks that cooperate and share common resources.
A task is given the privilege to affect the action of members
of 1its own task group but not of other task groups. For
example, a task cannot suspend the execution of another task
unless that task is a member of the same task group.

The justification for task groups 1is not for protection
alone. Groups provide the means whereby parallel tasks can
be synchronized to access a common resource. Such resources
include core tables, a disk file directory, or even a record
within a file. The test and set executive requests are based
on the group concept and provide a very general facility to
accomplish synchronization.

Partitions:

The core allocated for tasks under RSX11lA is divided into
fixed partitions. Each partition 1is defined at system
generation time and its size and position never change. As
many as 256 distinct partitions of any size may be defined.
Partitions may not overlap each other or define core areas
that are not present.

Tasks may execute from only one partition. This partition is
termed the task's execution partition and is initialized when
the task is executed. A task may also have a common data
partition that is shared with other members of its task group
(and may also be shared with other task groups). If a task
does not have a common data partition, then its execution
partition also serves this purpose.

Besides providing execution and data sharing areas,
partitions also provide protection boundaries. A task may
only request I/0 transfers in or out of either its execution
partition or its common partition. In addition, all
executive request arguments must lie within one of the task's

partitions. Thus the executive uses the partition bounds for
address checking. An address check error occurs when a task
makes a request that specifies information that is not in
either of its partitions.

The following schematic is a typical core memory layout for a
16K system that supports both core and disk resident tasks.

16K ABSOLUTE LOADER AND EXECUTIVE
DYNAMIC CORE AREA

15.4K 4.4K PARTITION
TASKS A,B, AND C

10K .
2K PARTITION
TASKS D AND E

8K
2K PARTITION
TASKS F AND G

e C

6K 1K PARTITION

TASKS H AND I

5K é 1K PARTITION
j COMMON DATA TASKS
A,B,C,F, AND G

4K 1K PARTITION

COMMON DATA TASKS
D,E,H, AND I

3K ; TASK LOADER TASK
OPERATOR'S CONSOLE TASK
NULL TASK

2K

o - - - - — = ————— - -

EXECUTIVE AND
EXECUTIVE TABLES

VECTORS AND EXECUTIVE STACK

1.4 SYSTEM OVERVIEW
General:
An RSX11A system has the following features:

a) Multiprogramming of as many tasks as will fit into core
at once,

b) Fixed priority scheduling.

c¢) Small core requirements.

d) Minimum executive overhead.

e) Support of a multi-user environment.
f) Thorough error checking facilities.

g) I/O0 efficiency with complete user control and
flexibility.

h) Support of core=-only or core-disk environments.
Multiprogramming:

Most real-time systems consist of a group of programs or
tasks that run at varying times or frequencies and alternate
between being compute bound and I/0 bound. To efficiently
use the central processor, these tasks cannot be run in
series since the central processor will be poorly utilized
during the periods that tasks are I/O bound. In addition,
real-time tasks are time-dependent in one sense or another
and in general cannot wait for a slow, less important I/0 or
compute bound task to finish before starting execution,
Multiprogramming and some sort of priority scheme for
scheduling the central processor are thus required.

Multiprogramming allows many tasks to be in some state of
execution simultaneously. When one task cannot use all the
available central processor time because it must wait for an
I/0 operation or is blocked by some other condition, the
central processor can be switched to another task to make use
of the available time. It 1is ©possible even in a
multiprogramming environment that there may not be a task in
an executable state +to utilize this available time. While
this is certainly possible, it is less likely to occur than
in a uni-programming environment.

Fixed Priority Scheduling:

A priority scheme is needed to distinguish the relative
importance of the various tasks in the system. It must be
possible to interrupt the execution of a less important task
to execute a critical real-time program. A fixed priority
scheme has been chosen. Fixed priority meets the above
requirement, is simple and adequate, and requires low
scheduling overhead.

Core Residency:

The low core residency requirements of RSX1lA were achieved
mainly in two ways. The carefully designed modularity
permits modules to function for many different purposes.
Sections of code that are inseparable from a module (for
efficiency reasons) but are not needed if a particular
service is not included, may be conditionally assembled.
This allows the generation of an absolute minimum system,

Modularity in the above context is defined as the separation
of functions (or groups of inseparable functions) into
individual software modules. Each module then has a well
defined interface and function fo perform. This structure
allows functions to be easily included or excluded from the
system depending on whether or not they are required. System
generation then can provide maximum confiquration
flexibility. The maintenance "and extendability of such a
system is also improved. :

An attempt has been made to leave the system as open ended as
possible so that users may generate a system that exactly
fits their needs. Various tables are controlled by the user
either by direct specification or by allocation of amount of
table space. Examples of such tables include the task table,
the generalized queuing space, and the core allocation table.
Most system constants are also user specifiable. By
constucting the system in this fashion a larger spectrum of
users and applications can.-be served.

Minimum Overhead:

RSX11A was designed to require low overhead. This
requirement manifests itself in many areas of the executive
and precludes the use of .any "sophisticated"™ heuristic
algorithms that might otherwise be employed. Straight
forwvard simple algorithms have been used in an effort to
obtain maximum execution speed. : .

A good example can be found in the task scheduler. A major
reason for choosing fixed priority scheduling was because of
its low overhead requirements. ’

Multi-User Environment:

Many real-time systems must support several simultaneous user
environments, leading to a need for some kind of protection
between these environments. The ideal way to accomplish this
is wvia the appropriate protection hardware. Unfortunately
most PDP-11 processors do not have this hardware protection
‘and therefore the burden of protection is placed solely on
the software. One might argue that this is impossible in an
environment where each user can essentially destroy the
system if he so desires, but in a cooperative controlled
environment acceptable protection can be implemented and
enforced.

RSX11lA presents a so called "friendly" environment where
tasks rmust follow certain rules. If these rules are
followed, then the greatest possible protection (within the
~limits of the software) is provided. The system guarantees

that no task can cause a system failure by passing bad
parameters to the executive. For example, a task cannot
transfer data into another task area by passing an improper
address in an I/0 request.

This type of protection, although not complete, works as long
as users follow the rules and does provide aid to some extent
in the debugging of new tasks.

Error Handling:

Too often systems have been designed that provide
insufficient error checking facilities. Errors then manifest
themselves as obscure system failures usually of a
nonreproducible nature. While RSX11lA cannot claim to check
for all possible errors, it does provide an adequate error
checking facility. The executive not only checks on the user
environment, but also checks on itself at critical points
that have proven to be major sources of errors. If the
executive detects an error that has been made by the
executive itself, a fatal system error is declared and the
system is gracefully shut down. This occurs at one central
peoint in the system and thus provides a convenient place to
insert user code to initiate any application dependent action
necessary.

Task errors may or may not be fatal to the task that caused
the error. These errors include illegal executive requests,
processor errors (i.e., odd word addresses or illegal
instructions), and task stack overflow. If the task is
enabled to handle its own errors, the occurrence of a task
error ‘causes a trap to the erring task's error routine.
Otherwise, an erring task is disabled from further execution.

At the very least, adequate error checking enhances system
integrity, facilitates new task development and checkout, and
helps isolate hardware errors, It is well worth the core and
execution time expended.

I/C Facility:

Real-time systems typically require large amounts of
specialized 1I/0. Therefore the I/0 facilities of such a
system must be efficient and place as few restrictions as
possible on wuser flexibility and user control. For these
reasons RSX11lA provides a central I/0 facility that is
entirely under task control. Buffering may occur to any
depth without the threat of system invoked I/0 waits. 1/0
transfers can be made in series or in parallel with the
execution of the requesting task. Optionally a task may also
specify an end action address that is to be trapped to when
the requested I/0 operation has been completed. The end
action routine is executed at the software priority of the
requesting task and not at the hardware interrupt 1level of
the device, All systems services are available from the end
action routine.

All I/0 requests are queued by the priority of the requesting
task, Device handlers then empty their request queues at the

rate of the individual devices. The only 1limit as to the
number of I/O operations that may be queued is the amount of
queuing space that has been allocated for this purpose.

To summarize, the I/O facility of RSX11A has attempted to
provide centralized routines with maximum possible user
control and flexibility. No assumptions have been made about
buffering as this is left to the individual tasks. Tasks may
synchronize I/0 transfers in any way they desire; however,
facilities have been provided for this purpose.

Core and Disk Residency:

RSX11lA may be generated as a core-only system or as a
core-disk system. The core-only system supports only core
resident tasks; however, mass Storage device handlers may
also be included for storage of data and/or task overlays on
a mass storage device.

The core-disk system supports both core resident and disk
resident tasks. Disk resident tasks are brought into core
whenever requested and upon exit release the core they were
occupying. Such tasks are designated to execute out of a
particular partition. More than one disk resident task may
execute out of a single partition. If multiple requests are
received for a particular partition that is currently busy,
they are queued by the priority of the individual tasks
requesting the partition. When the partition is freed the
highest priority waiting task is given "~ ownership of the
partition. The task is then swapped into core and executed.
Core-disk systems must .contain at least one mass storage
device handler. If more than one mass storage device is
present, then disk resident tasks may be stored on either or
both devices.

1.5 MANUAL CONVENTIONS

Several conventions are used throughout this manual to avoid
confusion, In text, octal and decimal numbers are
distinguished by the presence or absence of a leading '#',
Octal numbers are preceded by '#' whereas decimal numbers are
not, In the context of an assembly language example,
however, the assembly rules apply for octal and decimal
numbers.

The PDP-11 core memory is byte addressable and confusion
often arises over the addressing of the Ith item of an array.
The convention adopted herein is to use the word "index" only
when the value of the index can be applied directly to
address the Ith item of an array. The array so addressed may
be a byte, word, or multiword array. The word "number", on
the other hand, is used to refer to the Ith item of an array,
but not to its address. For example the fifth member of a
word array is referred to as "number" 5 and "index" #12,

All external address symbols are appended with a dollar sign
(s). Equated external symbols are preceded by a dollar sign
and executive request macro names have a dollar sign as their
second character, These are exactly the same conventions
that are used in the RSX11A software itself, '

CHAPTER 2

EXECUTIVE COMMUNICATION

2.1 GENERAL DESCRIPTION

A user communicates with the executive via programmed
operators. These operators are termed Executive Requests and
are referred to as ER's. ER's provide a set of centralized
services that are generally applicable to all real-time
systems.

Services may be classified as serially reusable or reentrant;
however, in either case they are shared by all users of the
system, The difference between serially reusable and
reentrant services is that they run on different stacks.
Serially reusable services run on the system stack and are
noninterruptible. Their execution will be completed before a
context switch may take place. Noninterruptible does not
mean that they run with interrupts locked out. On the
contrary, interrupts are left on as much as possible,
Reentrant services run on the user stack and therefore may
require additional stack space. These services are
interruptible and a context switch may take place at any time
during their execution. As many services as possible are
reentrant in order to provide maximum response to dynamic
changes in the system.

2.1.1 Summary of Executive Requests

Executive requests are classified into ten classes. Each
class represents a logically complete set of functions to
afford tasks maximum flexibility. Following is a synopsis of
the classes and services included therein.
1) Task Termination:

a) Terminate task execution.

b) Delete task from system,
2) Timer:

a) Request timed wait.

b) Request timed interrupt.

c) Cancel timed interrupt request,

d) Request time of day.

e) Request date.

3) Task Initiation:

a) Request task execution.

b) Request synchronous periodic task execution.
c) Request asynchronous periodic task execution.

d) Request task execution at time of day.

4)

5)

6)

7)

8)

9)

Task Synchronization:

a) Suspend task execution.

b) Activage task execution.

c) Test and set task group lock
d) Test and set task group lock
e) Reset task group lock.
Intertask Communication:

a) Send message to task.

b) Receive message from task.
Input/Output:

a) Request I/0 operation.

End Action Control:

a) End action wait.

b) End action return.

List Manipulation:

a) Define list,

b) Remove entry from list.

c) Make entry in list.

Dynamic Storage:

a) Request buffer block,

b) Release buffer block.

return immediate.

wait.

2.1.2

10) Miscellaneous:
a) Set error trap address.-
b) Set alternate stack address.

c) Set TRAP trap address.

Executive Request Calling Sequence

One generalized «calling sequence is used to call the
executive, All parameters pertinent to the requested
operation are passed to the executive via the task stack.

The user's registers RO to R5 are always preserved across the
call.

Most ER's require one or two parameters; however, some
require none., All parameters are validity checked to ensure
that the user does not violate system rules or cause the
executive to crash because of an illegal parameter (i.e., a
nonexistent memory address).

Several ER's have skip and nonskip returns depending upon the
availability of resources. The skip return is considered to
be the start of an instruction sequence. The nonskip return,
however, is considered to contain a "place to go" address.
This enables an effective "jump" to any address in memory for
a nonskip return.

ER's are actually implemented via the EMT instruction. The
following instruction sequences illustrate the manner in
which a user calls the executive for zero-, one-, and
two-parameter ER's:

Zero~-parameter ER
EMT Function Code
One-parameter LR

MOV #P1l,-(sP)
EMT Function Code

Two-parameter ER

MOV #P2,~(SP)
MOV #P1l,-(SP)
EMT Function Code

If the CR has a skip return, the word immediately following
the EMT is interpreted as a "place to go" address for the
nonskip case. This sequence is as follows for a
two~-parameter ER:

MOV #P2,-(SP)

MOV #P1,~(SP)

EMT Function Code

.WORD Place to Go Address

2.2

A macro definition is supplied for all ER's. Macro arguments
are always taken as values and never as registers. The macro
definitions for ER's are distinguishable by the existence of
a dollar sign ($) as the second character in the macro name.
The general form of the macro call is:

MSNAME P1,P2,Place to Go

The above macro call represents a two-parameter ER with a
skip return.

The following subsections define each ER in detail and
present the macro name and calling sequence.

Performance data is included for each ER. The sizes given
assume maximum size and may be smaller if certain
configuration parameters are selected. All ER's are system
generatable with the exception of Terminate.

ER's that are group dependent may be executed without regard
to group by privileged tasks. For example, a privileged task
may request the execution of any other task in the system.

DETAILED ER DESCRIPTIONS

2.2.1 Task Termination

2.2.1.1 Terminate Task Execution

Functional Description:

Terminate the execution of the requesting task.

If the tasks's execution request flag is set when this ER is
executed, one or more execution requests were received for
the task while it was already in execution. The flag is
cleared, the task's stack is reinitialized and the task is
immediately restarted from it's transfer address.

In core-disk systems the terminate ER also results in a
release of the task's execution partition, if the task is a
non-resident task., For this case, the partition wait queue
is examined to see if any tasks are waiting to be loaded. If
no tasks are waiting, the partition status is simply set to
not busy. However, if there is a task waiting, it is removed
from the partition wait queue and inserted in the task loader
queue., An execution request 1is then placed for the task
loader.

If the terminating task is asynchronous periodic, then its
next execution time is computed as the current time of day
plus the task's period. The task is then inserted in the
sleep queue so its execution will be requested at the
computed time., '

The final step in terminating a task is to set the task
inactive and to place a schedule request at the priority of
the terminating task. ‘
Request syntax:
The macro calling sequence is:
TSERM
The assembly language generatéd‘from the macro expansion is:
EMT 0
Parameters:
No parameters are required for this ER.
Error anditions:
Outstanding I/O requests pending.
Outstanding end action requests pending.,
Performance Data:
Runs on system stack.
Required ER and not generatable.

Core requirements: 127 words.

Additional routines required: BILDS, QUEUE, LOCKS, RQLCB,
REQSB, and SQUE.

User stack requiréments: 19 words.
Program example:
Terminate the execution of the current task.

TSERM

2.2.1.2 Delete Task From System
Functional Description:

Delete from the system any task in the requestor's task
group. The requesting task specifies the ASCII name of the
task to be deleted. v -

If the specified task is currently in execution, then the
requesting task's stack is not cleared and a nonskip return
is executed. Otherwise all pending requests for the
specified task are removed from the system., The
corresponding task table entry is declared undefined thus
deleting the task from the system.

The requesting task's stack is cleared and a return is

executed.

Request Syntax:
The macro calling sequence is:

DSELT TNAME,BUSY
The assembly language generated from the macro expansion is:

MOV #TNAME,=- (SP)

EMT 2
.WORD BUSY
Parameters:
TNAME: The address of the 4-character ASCII name of the

task to be deleted.

BUSY: The nonskip "place to go"™ address if the task is

currently in execution.

Error Conditions:
Address check on task name.

Undefined task or illegal task group if requesting task is

not priviledged.
Performance Data:
Runs on system stack.
Core requirements: 41 words.
Additional routines required: GETID, RQLCB, and RMTSK.

User stack requirements: 19 words.

Program Example:
Delete the task CATR.,
DSELT TNAME

.ASCII /CA/ ;TASK NAME

TNAME
.ASCII /TR/ ;

.

2.2.2 Timer

2.2.2.,1 Request Timed Wait

Functional Description:

Delay the execution of the requesting task for a specified

interval of time.

The next execution time for the task is computed as the
current time of day plus the specified interval. The task is
inserted into the sleep queue sO it will resume execution
after the interval has elapsed. The task is blocked and a

schedule request is placed at the priority of the requesting
task.

If the request cannot be accepted because there is no room in
the sleep queue, the requesting task's stack is not cleared
and a nonskip return is executed. Otherwise the requesting
task's stack is cleared and a skip return is set up for when
the task comes out of the sleep queue.
Request Syntax:
The macro calling sequence is:
WSAIT INT ,NORM
The assembly language generated from the macro expansion is:
MOV #INT,-(SP)
EMT 3
. WORD NORM

Parameters:

INT: The address of a two-word time delay expressed in line
frequency units,

NORM: The nonskip "place to go" address if there is no room
in the sleep queue.

Error Conditions:
Address check on time delay interval.

- Performance Data:

Runs on system stack.

Core requirements: 33 words.

Additional routines required: ACHCK, - REQSB, RQLCB, and SQUE.
User stack requirements: 19 words.

Program Example:
Delay the execution of the current task for one second.

WSAIT INT ,NORM

INT: « WORD 60. ;LOW ORDER TIME
«WORD 0 sHIGH ORDER TIME

NORM: Start of no room coding.

2.2.2.2

Request Timed Interrupt

Functional Description:

Request an interrupt trap to an end action address after a
specified interval of time has elapsed.

The code executed at the end action .address is executed at
the software priority of the task and not at the hardware
level of the clock interrupt. A return to the interrupted
place in the task may be accomplished with an end action
return ER.

The time of day that the trap is to occur is computed as the
current time of day plus the specified interval. An entry
specifying the computed time of day is placed in the sleep
queue. When the current time of day becomes equal to that
time, a trap to the end action address will occur.

If the request cannot be accepted because there is no room in
the sleep queue, the requesting task's stack is not cleared
and a nonskip return is executed. Otherwise the requesting
task's stack is cleared and a skip return is executed.

Request Syntax:

The macro calling sequence is:
R$STINT INT,ENDA,NORM

The assembly language generated from the macro expansion is:

MoV $ENDA , - (SP)
MOV #INT,-(SP)
EMT 4

« WORD NORM

Parameters:

ENDA: The end action "place to go" address to be trapped to
after the specified time interval has elapsed.

INT: The address of a two-word time interval expressed in
line frequency units.,

NORM: The nonskip "place to go" address if there is no room
in the sleep queue.

Error Conditions:

Address check on time interval.

Address check on end action address.

Performance Data:

Runs on system stack.

Core requirements: 40 words.

Additional routines required: ACKCK, RQLCB and SQUE.

User stack requirements: 19 words.

Program example:

2,2,2.3

Interrupt the current task after 100 milliseconds have
elapsed.

R$TINT INT,ENDA,NORM

INT: .WORD 6 ;LOW ORDER TIME
.WORD O ;HIGH ORDER TIME

ENDA: Start of routine to be trapped to.

NORM: Start of no room coding.

Cancel Timed Interrupt Request

Functional Description:

Cancel all timed interrupt requests for the requesting task.

The sleep queue is searched for timed interrupt requests for
the requesting task. All such entries are removed from the
sleep queue and a return to the requesting task is executed. .

Request Syntax:

The macro calling sequence is:
CSTINT
The assembly language generated from the macro expansion is:

EMT 5

Parameters:

None,

Error Conditions:

None.

Performance Data:

Runs on system stack.

Core requirements: 7 words.

- Additional routines required: SQUE.

User stack requirements: 19 words.

Program Example:

Cancel all timed interrupt requests for the current task.

CSTINT

2.2.2.4 Request Time of Day
Functional Description:
Request the current time of day.

The time of day is returned to the requesting task, expressed
as clock ticks past midnight, on the top two words of the

task's stack.
Request Syntax: ‘
The macro calling sequence is:
RSTOD

The assembly language generated from the macro expansion is:

CHP -(sP) ,-(SP)
ST 6

Parameters:
None.
Error Conditions:
None.,
Performance Data:
Runs on user stack.
Core requirements: 10 words.
Additional routines required: None.
User stack requirements: 19 words.
Program Example:

Obtain the current time of day.

RSTOD
MoV (SP)+,R0 ; LOW ORDER TIME
MOV {(sP)+,R1 ;HIGH ORDER TIME

2,2.2.5 Request Date
Functional Description:
Request the current date.
The date is returned to the requesting task, expressed as a
Julian date relative to the year 1972, on the top two words
of the task's stack.
Request Syntax:
The macro calling sequence is:
R$DATE

The assembly language generated from the macro expansion is:

CMP -(sP) ,~-(SP)
EMT 7

Parameters:
None.
Error Conditions:
None.
Performance Data:
Runs on user stack.
Core requirements: 10 words.
Additional routines required: None.
User stack requirements: 19 words.
' Program Example:

Obtain the current date:

RSDATE
MOV (SP)+,R0 ;JULIAN DAY
MOV (SP)+,R1 ; YEAR RELATIVE TO

31972

2,2.,3 Task Initiation

2.2.3.1 Request Task Execution

Functional Description:

Request the execution of any task in the requestor's task
group. The requesting task specifies the ASCII name of the
task to be executed.

If the request cannot be accepted because no queuing space is
available or because the requested task is disabled from
executing, then the requesting task's stack is not cleared
and a nonskip return is executed. Otherwise the requesting
task's stack is cleared and a skip return is executed.
Request Syntax:

The macro calling sequence is:

RSQEX TNAME ,NORM
The assembly language generated from the macro expansion is:

MOV #TNAME, - (SP)

EMT 10

.WORD NORM

Parameters:

TNAME: The address of the 4-character ASCII name of the
task to be executed.

NORM: The nonskip "place to go" address if no queuing space
is available or the requested task is disabled.

Error Conditions:
Address check on task name.

Undefined task or illegal task group if requesting task is
not priviledged.

Performance Data:
Runs on system stack.
Core requirements: 27 words.
Additional routines required: GETID, REQSB, and SQUE.
User stack requirements: 19 words.
Program example:
- Request the execution of the task ONCE.
RSQEX TNAME , NORM

TNAME: .ASCII /ON/ ; TASK NAME
.ASCII /CE/ H

NORM: Start of no room coding.

2.2.3.2

Request Synchronous Periodic Task Executicn

Functional Description:

Request the synchronous periodic execution of any task in the
requestor's task group. The requesting task specifies the
ASCII name of the task to be synchronously executed and the
interval of periodicity.

Synchronous periodic execution of a task provides an
execution request for that task each time the specified
interval of time has elasped. An execution request is
immediately placed to execute the specified task. The next
request time is computed as the current time of day plus the
specified time interval, and an entry is placed in the sleep
queue, When the current time of day becomes equal to that
time, a request will be placed to execute the specified task
and another entry placed back in the sleep gueue. Another
request will then be placed at that time of day.

If the request cannot be accepted because the requested task
is disabled from executing or there is no room in the sleep
queue, then the requesting task's stack is_not cleared and a
nonskip return is executed. Otherwise the requesting task's
stack is cleared and a skip return is executed.

Request Syntax:

The macro calling sequence is:
R$QSX TNAME , INT ,NORM

The assembly language generated from the macro- expansion is:

MOV #INT ,-(SP)
MOV #TNAME , - (SP)
EMT 11

. WORD NORM

Parameters:

TNAME: The address of the 4=-character ASCII name of the
task to be synchronously executed,

INT: The address of a two-word periodic interval in 1line
frequency units.

NORM: The nonskip "place to go" address if there is no room
in the sleep queue or the requested task is disabled.

Error Conditions:

Address check on task name.
Address check on periodic interval.,

Undefined task or illegal task group if requesting task is
not privileged.

Performance Data:

Runs on system stack.
Core requirements: 57 words.

Additional routines required: GETID, RQLCB, RMTSK, SQUE, and
REQSB.

User stack requirements: 19 words.

Program Example:

2.2.3.3

Request the synchronous periodic execution of the task REPT
with a period of 100 milliseconds.

R$QSX TNAME , INT ,NORM

TNAME: .ASCII /RE/ ; TASK NAME
.ASCII /PT/ ;

INT: «WORD 6 ; LOW ORDER TIME
. WORD 0 ;HIGH ORDER TIME

NORM: Start of no room coding.

Request Asynchronous Periodic Task Execution

Functional Description:

Request the asynchronous periodic execution of any task in
the requestor's task group. The requesting task specifies
the ASCII name of the task to be asynchronously executed and
the interval of periodicity.

Asynchronous periodic execution of a task provides an
execution request for that task after the specified interval
of time has elapsed from the termination of the task. In
other words, the period of execution is specified as the time
interval from the termination of one execution to the start
of the next.

An execution request is immediately placed to execute the
specified task. When it terminates, its next execution time
will be computed as the current time of day plus the
specified interval and an entry will be placed in the sleep
queue. When the current time of day becomes equal to that
time, another request will be placed to execute the task.

If the request cannot be accepted because the requested task
is disabled from executing or there is no room in the sleep
queue, then the requesting task's stack is not-cleared and a
nonskip return is executed. Otherwise the requesting task's
stack is cleared and a skip return is executed.

Request Syntax:
The macro calling sequence is:
RSQAX TNAME , INT ,NORM

The assembly language generated from the macro expansion is:

MOV #INT,- (SP)
MOV #TNAME , - (SP)
EMT 12

+WORD NORM
Parameters:

TNAME: The address of the 4-character ASCII name of the
task to be asynchronously executed. .

INT: The address of a two-word periodic interval in 1line
frequency units.

NORM: The nonskip "place to go" address if there is no room
in the sleep queue or if the requested task is
disabled.

Error Conditions:
Address check on task name.

Address check on periodic interval.

Undefined task or illegal task group if requesting task is
not privileged.

Performance Data:
Runs on system stack.
Core requirements: 37 words.
Additional routines required: ACKCK, GETID, RMTSK, and REQSB.
User stack requirements: 19 words.
Program Example:

Request the asynchronous periodic execution of the task FAST
with a period of 200 milliseconds.

RSQAX TNAME , INT , NORM

TNAME: LASCII /FA/ ; TASK NAME
.ASCII /SsT/ H
INT: « WORD 12, ;LOW ORDER TIME
’ « WORD 0 sHIGH ORDER TIME

NORM: Start of no room coding,

2.2.3.4 PRequest Task Execution at Time of Day
Functional Description:

Request the execution of any task in the requestor's task
group at a specific time of day. The requesting task
specifies the ASCII name of the task and the time of day that
it is to be executed.

The time of day is expressed in 1line frequency units past
midnight and is used directly to make an entry in the sleep
queue. VWhen the current time of day becomes equal to that
time, an execution request will be placed for the specified
task.

If the request cannot be accepted because the requested task
is disabled from execution or if there is no room in the
sleep queue, then the requesting task's stack is not cleared-
and a nonskip return is executed. Otherwise, the requesting
task's stack is cleared and a skip return is executed.

Request Syntax:
The macro calling sequence is:

R$SQTX TNAME , TOD ,NORM

The assembly language generated from the macro expansion is:

MOV #TOD, - (SP)
MOV #TNAME ,- (SP)
EMT 13

« WORD NORM
Parameters:

TNAME: The address of the 4~-character ASCII name of the
task to be executed at a specific time of day.

TOD: The address of a two-word time of day expressed in
line frequency units.

NORM: The nonskip "place to go" address if there is no room
in the sleep queue or the requested task is disabled.

Error Conditions:
Address check on task name,

Address check on time of day.

Undefined task or illegal task group if requesting task 1is
not privileged.

Performance Data:
Runs on system stack.

Core requirements: 40 words.

Additional routines required: ACHCK, GETID, RQLCB, and SQUE.
User stack requirements: 19 words.

Program Example:
Request the execution of the task FLOP at 8:30 AM.

R$QTX TNAME,TOD,NORM

TNAME: .ASCII /FL/ ; TASK NAME
.ASCII /OP/ ;

TOD: « WORD 792. ;LOW ORDER TIME
. WORD 28, ;HIGH ORDER TIME

NORM: Start of no room coding.

2.2.4 Task Synchronization

2.2.4.1 Suspend Task
Functional Description:

Suspend the execution of any task in the requestor's task
group. The requesting task specifies the ASCII name of the
task to be suspended.

The operation of suspending a task simply sets a blocking bit
in the specified task's status word. This bit, when set,
blocks the execution of the task and makes it unrunnable.
The task will remain unrunnable until the bit is cleared (see
Activate Task below). The setting and clearing of this bit
is completely independent of any other state the task may
already be in.

Suspending a task does not prevent execution requests from
being accepted; even task loading (disk system only) can take
place. The task, however, will not execute one instruction
until it is reactivated by clearing the blocking bit.

The requesting task's stack is cleared and a return is
executed.

Request Syntax:
The macro calling sequence is:
SS$PND TNAME
The assembly language generated from the macro expansion is:

MoV $TNAME , - (SP)
EMT 14

2-17

Parameters:

TNAME: The address of the 4-character ASCII name of the
task to be suspended.

Error Conditions:
Address check on the task name.

Undefined task or illegal task group if the requesting task
is not privileged.

Performance Data:
Runs on system stack.
Core requirements: 9 words.
Additional routines required: GETID and REQSB.
User stack requirements: 19 words.
Program Example:
Suspend the execution of the task STOP.
SSPND TNAME

TNAME: JASCII /ST/ ;s TASK NAME
.ASCII /oP/ i

2,2.4.2 Activate Task
Functional Description:

Activate the execution of any task in the requestor's task
group. The requesting task specifies the ASCII name of the
task to be activated.

The operation of activating a task simply clears the blocking
bit that is set by the suspend task ER. Removing this
blocking condition makes the specified task immediately
eligible to run on the processor provided it is already in
execution and not blocked by any other blocking condition.

The requesting task's stack is cleared and a return is
executed.

Request Syntax:
The macro calling sequence is:
ASCTV TNAME
The assembly language generated from the macro expansion is:

MOV $TNAME ,- (SP)
EMT 15

Parameters:

TNAME: The address of the 4-character ASCII name of the
task to be activated.

Error Conditions:
Address check on task name.

Undefined task or illegal task group if requesting task is
not privileged.

Performance Data:
Runs on system stack.
Core requirements: 8 words.
Additional routines required: GETID and REQSB.
User stack‘requirements: ‘19 words.
Program Example:
Activate the execution of the task REAL.
ASCT TNAME

TNAME: LASCII /RE/ ;s TASK NAME
.ASCII /AL/ ;

2.2.4.3 Test and Set Task Group Lock Return Immediate
Functional Description:

Test and set a task group lock and return control immediately
regardless of whether the operation is successful. The
requesting task specifies an 8-bit key which identifies the
lock to be tested and set.

The use of this and other group lock ER's may be best
understood if group locks themselves are explained. Task
group locks provide the means whereby a task group may share
up to 256 group specified resources. Each resource is
assigned a unique 8~bit key. Example resources might be a
core buffer pool in a common area or a file on a disk.
Nonsimultaneous access to a shared resource (one that has
been assigned a key) can be guaranteed by using the task
group lock ER's (see also Test and Set Wait and Reset ER's).

A lock can be owned by only one task at a time. Thus when a
lock 1is set, it is considered to be owned and no other task
may become owner until the current owner resets the lock.
Tasks may only retain ownership of a lock during their
execution. Executing a terminate ER results in the resetting
of all locks that the task owns.

The relationship between a particular key and a resource may
be decided ahead of time or tasks may dynamically specify the

correspondence at execution time. The system places no
definition upon a key. The definition is the task group's
alone. The usage of the task group lock ER's to ensure
nonsimultaneous access to a shared device is very simple.
Each time a member of the task group wishes to gain access to
a shared resource, it specifies the corresponding key and
executes one of the test and set ER's. If the operation is
successful, then the task has gained ownership of the
designated lock and may access the resource. When the task
has finished its operation, a reset lock ER is executed, thus
making the lock available for ownership by other tasks in the
group. If, on the other hand, the operation was not
successful, then the lock is already owned by another task
and the requesting task may not safely use the shared
resource.

The understanding of the group lock ER's can be increased
further if an important distinction is drawn. The group lock
ER's do not themselves prevent simultaneous access to shared
resources. Rather they provide the means necessary whereby
tasks themselves may guarantee nonsimultaneous access to a
shared resource.

The test and set task group lock return immediate ER enables
a task to test and set a particular lock and regain control
immediately. If the operation is successful, then the
requesting task's stack is cleared and a skip return is

executed. Otherwise the requesting task's stack is not
cleared and a nonskip return is executed.

Request Syntax:
The macro calling sequence is:
TSSETI KEY,BUSY
The assembly language generated from the macro expansion is:
MOV #KEY, - (SP)
EMT 20
. WORD BUSY
Parameters:
KEY: An 8-bit group lock identifier.

BUSY: The nonskip "place to go" address if the operation is
unsuccessful.

Error Conditions:
None,
Performance Data:
Runs on system stack.
Core requirements: 1 word.

Additional routines required: LOCKS.

User stack requirements: 19 words.
Program Example:
Test and set the task group lock whose key is 99,
T$SETI 99.,BUSY

BUSY: Start of lock busy coding.

2.2.4.4 Test and Set Task Group Lock Wait
Functional Description:

Test and set a task group lock and suspend the requestor's
execution if the operation is unsuccessful. The requesting
task specifies an 8-bit key which identifies the lock to be
tested and set. :

The specified group lock is tested and set. If the operation
is successful (task has become owner of lock), then the task
stack is cleared and a skip return is executed. Otherwise an
attempt is made to insert the requesting task into the group
lock wait queue for the specified lock. If there is no room
in the queue, the requesting task's stack is not cleared and
a nonskip return is executed. Otherwise the requesting
task's stack is cleared and a skip return is set up for when
the task becomes owner of the lock.
Request Syntax:

The macro calling sequence is:

TSSETW KEY,NORM
The assembly language generated form the macro expansion is:

MOV #KEY,- (SP)

EMT 21

+«WORD NORM

Parameters:
KEY: An 8-bit group lock identifier.

NORM: The nonskip "place to go" address if no queuing space
is available.

Error Conditions:
None.
Performance Data:
Runs on system stack.

Core requirements: 6 words.

Additional routines required: LOCKS.
User stack requirements: 19 words.
Program Example:
Test and set the task group lock whose key is 45.
T$SETW 45.,NORM

MORM: Start of no room coding.

2.2.4.5 Reset Task Group Lock
Functional Description:

Reset a task group lock. The requesting task specifies an
8-bit key which identifies the lock to be reset.

The specified lock is reset. If there are any tasks waiting
to become owner of the lock, then the highest priority
(first) task is removed from the corresponding group lock
wait queue. This task is given ownership of the lock and is
reactivated by clearing its resource wait bit.

The requesting task's stack is cleared and a return is
executed.

Request Syntax:
The macro calling seqﬁence is:
RSSET KEY
The assembly language generated from the macro expansion is:

MoV #XEY ,- (SP)
EMT 22

Parameters:
KEY: An 8-bit group lock identifier.
Error Conditions:
None.
Performance Data:
Runs on system stack.
Core requirements are: 10 words.
Additional routines required: LOCKS.

User stack requirements: 19 words.

Program Example:
Reset the task group lock whose key is 29.

RS$SET 29,
2.2.5 1Intertask Communication

2.2.5.1 Send Message To Task

Functional Description:
Send a message to any task in the requestor's task group.
The requesting task specifies a two-word message and the
ASCII name of the task that is to receive it.
An attempt is made to insert the message in the specified
task's message queue. If sufficient queuing space is not
available, the requesting task's stack is not cleared and a
nonskip return is executed. Otherwise the requesting task's
stack is cleared and a skip return is executed.

Request Syntax:
The macro calling sequence is:

SSEND TNAME ,MPKT ,NORM

The aésembly language generated from the macro expansion is:

MOV #MPKT ,- (SP)
MOV #TNAME , - (SP)
EMT 23

.WORD NORM
Parameters:
MPKT: - The address of a two-word message.

TNAME: The address of the 4-character ASCII name of the
task that is to receive the message.

NORM: The nonskip "place to go" address if no queuing space
is available.

Error Conditions:
Address check on message.
Address check on task name.

Undefined task or illegal task group if requesting task is
not privileged,

Performance Data:
Runs on system stack.
Core requirements: 23 words.
Additional routines required: ACHCK, GETID, and QUEUE.
User stack requirements: 19 words.
Program Example:
Send a message to the task GARB.

SSENT TNAME , MPKT , NORM

TNAME: .ASCII /GA/ ;s TASK NAME
.ASCII /RB/ i

MPKT: «WORD 55. ; TWO WORD
«WORD 46. ;s MESSAGE

NORM: Start of no room coding.

2.2.5.2 Receive Message From Task
Functional Description:
Remove a message from the requestor's message queue.
An attempt is made to remove a message from the requesting
task's message queue. If there are no entries in the queue,
the requesting task's stack is cleared and a nonskip return
is executed. Otherwise the first message is removed and
placed on the top of the requesting task's stack and a skip
return is executed.
Request Syntax:
The macro calling sequence is:
RSCEIV NONE
The assembly language generated from the macro exapnsion is:
cMP -(spP) ,~(sP)
EMT 24
+-WORD NONE

Parameters:

NONE: The nonskip "place to go" address if there are no
messages in the task's message queue.

Error Conditions:

None,

2,2,6

Performance Data:

Runs on user stack.
Core requirements: 17 words,
Additional routines required: QUEUE.

User stack requirements: 14 words.

Program Example:

Remove a message from current task's message queﬁe.
RSCEIV NONE
MOV (sp)+,R0 sFIRST WORD
MOV (SP)+,R1 $SECOND WORD

NONE: Start of empty queue coding.

Input/Output

2.2.6.,1 Request I/O Operation

Functional Description:

Request an I/O operation (i.e., a device control function or
transfer of information between core memory and a peripheral
device). One general interface is provided for all devices.
This interface is termed an I/O packet, the general form of
which is nine words. Six words are device independent and
the remaining three are device dependent. All device
dependent information is given in Appendix B. -

An I/0 packet specifies control information, the function to
be performed, the I/O channel on which the function is to be
performed, and an item count and buffer address if the
specified function involves a data transfer. Depending on
the device, additional device dependent information may also

be required. '

I/0 operations may be processed in series or in parallel with
the execution of the requesting task. This is termed with or
without "hold" respectively. An I/O operation that is to be
performed in series with the execution of the requesting task
results in the I/O operation being queued and the task's
execution suspended until the operation has been completed.
I/0 operations that are to be processed in parallel with the
execution of the requesting task result in the I/0 operation
being queued and control returned immediately to the
requesting task. In either case, the status byte in the I/0O
packet will remain busy until the I/O operation is actually
completed (see general I/O packet format below).

An end action "place to go" address may be specified for all
I/0 operations. When the 1I/0 operation is complete, the
execution of the requesting task is trapped to the end action

address., The code executed at the end action address is
termed end action coding. This code 1is executed at the
software priority of the task and not at the interrupt level
of the specified device. Control is returned to the
interrupted place in the task via the end action return ER
(see 2.2.7.2).

Different end action "place to go" addresses may be specified
with each I/O request. All end action requests, as they
occur, are processed "last-in-first-out", and therefore end
action coding may itself be interrupted to process other end
action requests. Multiple I/O requests that specify the same
end action address must be processed by reentrant end action
coding.

End action and its purpose may be more fully understood if
the sequence of operations that @ occur is described. The
first operation that must occur is for a task to make one or
more I/O requests specifying an end action address. As each
of these I/0 requests is completed, a new program state 1is
stored on the requesting task's stack. This program state
consists of a set of register values, the end action "place
to go" address, and a processor status word of zero.
Register RO is loaded with the address of the original I/O
packet, Rl with the final software status of the operation,
and R2 with the untransferred item count. Registers R3 thru
R5 are set to zero. When the task becomes the highest
priority task that is runnable, the first set of context is
loaded and execution begins in the task at the end action
address. The task returns control to the next set of context
by executing an end action return ER, This ER effectively
discards the current set of context and causes the next set
to be loaded.

Nine stack words must be allocated on the task stack for each
nested level of end action that is desired., If the stack is
also used for temporary operands in the end action coding,
this space must also be allocated. The nine words are
necessary for each context push, Before a context push is
executed, the task stack is address checked to see if it
would underflow either the task's execution or common
partition. If stack overflow would occur, then a switch is
made to the task's alternate stack and a trap to the error
routine is set up.

Before an end action return ER is executed, the task must
ensure that the task stack 1is cleared of all temporary
operands that were placed on the stack during end action
coding (i.e., the task stack must point exactly to the same
address that it did when the end action coding was entered).
If this restriction is not followed, unpredictable results
will occur.

It should be noted that I/O hold and end action are distinct
functions and are not dependent upon each other in any way.
I/0 hold blocks the execution of the requesting task until
that specific I/O request is completed. End action does not
block the execution of the requesting task and may occur at
any time the task is in a runnable state (not blocked in any
way). In order to understand the distinction an "example is
in order. Suppose that four I/0 requests were made that

specified only end action and a fifth reguest was made that
specified both end action and hold. Nc:e of :he end action
coding could actually be executed until :he task becomes
runnable at the completion of the I/0O request specifying
hold. Assuming that the four end action requests were all
completed before the hold request, each set of end action
coding would be executed one after another. Each end action
return ER would return control to the next set of end action
coding., The fifth end action return ER would return control
to the interrupted place in the task.

Now that an understanding of how end action works has been
established, the questions may be asked: why end action; how
does one use it? Why may be answered very simply; it enables
a task to implement parallel processing of I/0 devices. 1In
other words, each transfer propagates the next transfer by
trapping the task whenever a transfer has been completed.

The answer to the second question of how does one use it
requires examples. Suppose that one task is to handle input
from more than one terminal simultaneously and that it is
undesirable to solicit input from each terminal without hold
and then poll the I/O packets periodically to see if any
lines of input have been typed. Rather input is solicited
from each terminal without hold but with end action. An end
action wait ER (see subsection 2.2.7.1) is then executed. The
end action wait ER causes the execution of the task to be
blocked until one of its end action requests occurs (i.e.,
one of the terminals finishes typing a line of input). The
task is then wunblocked and its execution is trapped to the
end action address. The end action coding queues the line of
input for processing, solicits more input with end action,
and executes an end action return ER. Control is then
regained in normal coding whereupon the task processes the
line of input and executes another end action wait ER to wait
for the next line of input.

As a second example, suppose that multiple level buffering is
desired on output to a device. One way that this could be
accomplished is to have a pool of I/0O packets and buffers.
Each time a buffer full of information is ready to be
transferred, the I/0 packet pool is searched for a packet
that is not busy. The I/O packet is then initialized and an
I/0 request is made without hold. This could continue wuntil
all I/0 packets are busy, since multilevel I/0 queuing is
provided in the executive. When this condition occurs, one
of two alternatives can be executed. An I/0 request to the
same device for a transfer of zero items could be executed
with hold. Executing this alternative would cause the
execution of the task to be blocked until all I/0O packets
were not busy. This would accomplish the desired result, but
would defeat the purpose of multilevel buffering when all I/0
packets were busy. The second alternative would be to
execute a timed wait ER with a time interval equal to .the
time it takes to unload one buffer. When control is
regained, another search of the I/0 packet pool is conducted.
This continues until one of the I/O requests is complete.
The desired multilevel buffering is accomplished in all
conditions, but unnecessary execution time is expended to
search the packets periodically until one becomes free. A
second way to handle multilevel buffering is to use end

action. As each I/0 request 1is executed, end action is
specified. As each end action request is processed, the I/0
packet and buffer are returned to a free pool to be used
again, If the situation is encountered in which no I/0
packets or buffers are available, an end action wait ER is
executed. This guarantees that the task will only regain
control when a buffer is free. No unnecessary execution time
is expended and the desired multilevel buffering is
accomplished. This example can be carried to as many devices
simultaneously as desired.

One problem should be recognized and fully understood before
attempting multilevel end action (i.e., more than one
simultaneous I/O request that specifies the same end action
address) . The end action coding must be reentrant with
respect to both itself and normal task coding. The most
common reentrancy problem in end action coding is that of
list manipulation. For this reason several ER's have been
provided to ease this problem. These ER's are explained in
subsections 2.2.8.1, 2.2.8.2, and 2.2.8.3.

It should be noted that a task may execute any ER from end
action coding, since the task is executing at its software
priority level with a complete set of context. Care should
be exercised, however, to ensure that the exit from end
action coding is via the end action return ER.

1/0 packets, once verified, are not copied into auxiliary
storage in the executive; therefore extreme caution should be
exercised so as not to modify an I/0 packet before the
operation is complete. Ignoring this restriction will cause
unpredictable results.

An I/0 request, after being verified, may or may not be
accepted depending on whether queuing space is available. If
a request cannot be accepted, the requesting task's stack 1is
not cleared and a nonskip return is executed. Otherwise the
I/0 request is gqueued, the requesting task's stack is
cleared, and a skip return is setup. If I/0 hold was
specified, the task is placed in I/O wait and a schedule
request is placed at the priority of the requesting task.
Otherwise the skip return is executed.

Request Syntax:
The macro calling sequence is:
RSQIO PKT ,NORM
The assembly language generated from the macro expansion is:
MOV #PKT , - (SP)

EMT 30
. WORD NORI!M

PET: The address of a 9-word I/0 packet. Not all 1I/0
packets recuire nine words.

NORM: The nonskip "place to go" address if no queuing space
is available,

Actual packet formats are given in Appendix B. The general
form of the 9-word I/O packet is as follows:

Word O (PKT-4)

Bits 15 to 0 - The end action address if end action
is specified, If end action is not specified,
this word does not have to be present.

Word 1 (PKT=2)

Bits 15 to 0 - The final untransferred item count.
This word is set at the completion of an I/O
transfer. For control functions this word is
meaningless but must be present.

Viord 2 (PKT)

Bits 15 to 8 = The current packet status. This
byte reflects the current state of the I/0
packet and is set by the various I/O routines.
The status of a packet may be:

0 = The packet is not busy and the 1/0
operation has been completed without errors.

1 = The packet is busy and the I/0 operation
has not been completed.

2 = The packet is not busy and the I/0
operation ended in error. Words 7 and 8 of
the I/0 packet contain the final hardware
status for those devices that have more than
one error state.

3 = The packet 1is not busy and the I/0
operation timed out before being completed.

4 = The packet is not busy and the specified
device is down.

Bit 7 = I/0 hold specification.
0 = The I/0 operation is to be performed in
parallel with the execution of the requesting
task.
1 = The I/O operation is to be performed in
series with the execution of the requesting
task.

Bit 6 - End action specification.

0 = No end action address is provided in word
0.

1 = Word 0 contains an end action "place to
go" - address that is trapped to when the I/0
operation is complete.

Bits 5 to 4 - Empty and not used, but must be zero,
Bit 3 - Control function specification.

0 = The function provided in bits 2 to 0 is a
data transfer function and the block of
information to be transferred must be address
checked.

1 = The function provided in bits 2 to 0 is a
control function and no address check need be
performed.

Bits 2 to 0 = The function code of the 1/0
operation to be performed.

Word 3 (PKT+2)
Bits 15 to 8 - Immediate mode specification.

0 = Immediate mode is not specified and the
item count and buffer address are contained in
words 4 and 5 respectively.

Not equal to 0 = Immediate mode is specified
and this byte contains the number of items to
be transferred. The buffer address is the
address of word 4.

NOTE

Immediate mode is not
legal for all devices.
Appendix B 1lists those
devices.

Bits 7 to 0 - The I/0 channel on which the I/C
operation 1is to be performed. Specify the
absolute device number,

Word 4 (PKT+4)

Bits 15 to 0 - If immediate mode is specified, this
word is the start of the input or output
buffer, Otherwise this word contains the
number of items to be transferred. The size
of an item is dependent upon the device on
which the transfer 1is to take place. For
character devices such as the paper tape
reader, the item count is in bytes. For word
devices such as the various disks, the item
count is in words.

Vord 5 (PKT+6)

Bits 15 to 0 ~ If immediate mode is specified, this
is the second word of the input or output

buffer. Otherwise +this word contains

starting address of the input or output
buffer. The address must be on a boundary
that is in agreement with the type of device.

For example, transfers to and

word-oriented devices cannot occur on byte

boundaries.

Words 6 to 8 (PKT+8 to PKT+12)

Bits 15 to 0 - Device dependent information.

Error Conditions:

Address
Address
Illegal
Illegal
Illegal
Performance

Runs on

check on I/0 packet.

check on end action address.
device specification.

I/0 function.

immediate mode specification.
Datas

system stack.

Generatable ER.

Core requirements: 132 words.

Additional routines required: ACHCK, QUEUE, and REQSB.

User stack requirements: 19 words.

Program Example:

Transfer a'buffer of data to device number 2 (i.e., a paper

tape punch) with hold and end action.

PKT:

NORM:

ENDA:

R$QIO PKT ,NORM

+WORD ENDA ;sEND ACTION ADDRESS
LWORD 0 ;

+BYTE SHOLD+SEA+S$WR, 0 ;FUNCTIONS

.BYTE 2,0 ; DEVICE

«WORD 100 ;s ITEM COUNT

+« WORD BUF ;s BUFFER ADDRESS

Start of no room coding.

Start of end action coding.

2.2,7

End Action Control

2.2.7.1 End Action Wait

Functional Description:

Suspend the execution of the requesting task until
outstanding end action requests is satisfied.

The end action request count is tested. If the
nonzero, the task 1is placed in end action wait
return is set up for when the task is reactivated.
a nonskip return is executed.

Request Syntax:

The macro calling sequence is:

ESACTW NONE

one of its

count 1is
and a skip
Otherwise

The assembly language generatecd from the macro expansion is:

EMT 34
.WORD NONE

Parameters:

NONE: The nonskip "place to go" address if there are no

outstanding end action requests.

Error Conditions:

None,

Performance Data:

Runs on user stack.
Core requirements: 17 words.
Additional routines required: REQSB.

User stack requirements : 21 words.

Program Example:

Wait for first outstanding end action request.
ESACTW DMNOHNE

NONE: Start of no outstanding requests coding.

o

-32

2.2.7.2 End Action Return

Functional Description:

Return control to the interrupted place in the requestor from
end action coding.

The current context is discarded and the next context is
loaded from the task's stack. A return is executed.

Request Syntax:
The macro calling sequence is:
ESACTR
The assembly language generated from the macro expansions is:
EMT 35
Parameters:
None.
Error Conditions:
None.
Performance Data:
Runs on user stack.
Core requirements: 6 words.
Additional routines required: None.
User stack réquirements: 10 words.
Program Example:
Return from end action coding.

ESACTR
2.2.8 List Manipulation

2.2.8.1 Define List
Functional Description:

Generate a list structure. The requesting task specifies a
descriptor that describes the list to be generated.

Lists generated via this ER may be manipulated with the make
entry in and remove entry from list ER's. .

A list descriptor contains five words. Three words are
specified by the requesting task and contain the length of
each list entry, the starting address of the 1list, and the
length of the list area. The other two words are filled in
by the ER routine with the addresses of the first and last
entries in the generated list.

Each entry in the generated list is linked to the next entry
in the 1list via an address in the first word of the entry.
The last entry in the list contains a link of zero. As many
list entries are generated as will fit in the defined list
area.

This ER can be used to generate a buffer pool. The buffer
pool would be considered as a list of empty buffers. The
make entry in and remove entry from list ER's can then be
used for the operations of returning buffers to and
requesting buffers from the pool.

The specified list is generated, the requesting task's stack
is cleared, and a return is executed.

Request Syntax:
The macro calling sequence is:
DSLIST DESC
The assembly. language generated from the macro expansion is:

MOV #DESC, - (SP)
EMT 36

Parameters:

DESC: The address of a five-word list descriptor with the
following format:

Word 1 (DESC)

Bits 15 to 0 — Filled by the ER code with the
address of the first entry in the list.

Word 2 (DESC+2)

Bits 15 to 0 - Filled by the ER code with the
address of the last entry in the list.

Word 3 (DESC+4)

Bits 15 to 0 - The number of words in each list
entry.

Word 4 (DESC+6)

Bits 15 to 0 - The 1length of the core area
allocated for the list in bytes.

Word 5 (DESC+10)

Bits 15 to 0 - The starting address of .the 1list
(must be on a word boundary).

Error Conditions:
Address check on list description.
Address check on list area.
Performance data:
Runs on user‘stack.
Core requirements: 34 words.
Addition routines required: ACHCK.
User stack requirements: 21 words.
Program Example:

Define a list with four-word entries starting at the address
LT. The length of the list area is 050 bytes.

DSLIST DESC

DESC: - WORD 0 ;FILLED WITH LT
« WORD 0 ;FILLED WITH LT+40
« WORD 4 ; LENGTH OF ENTRY
« WORD 50 ;LENGTH OF LIST AREA
« WORD LT s START OF LIST

The resulting list would appear as follows:

LT: «WORD LT+10

LT+10: .WORD LT+20

LT+20: .WORD LT+30

LT+30: L.WORD LT+40

LT+40: ,WORD 0
NOTE

For the special cases where there is
insufficient space specified to generate
any list entries or +the 1length of an
entry is defined as zero, the filled
descriptor words take on a different
format. The address of the first entry
in the 1list is returned as zero
indicating there are no entries in the
list. The address of the last entry in

the 1list is returned as the address of
the first word of the descriptor. This
format is perfectly legal and is used to
describe an empty list for all of the
list manipulation ER's.

2.2.8.2 Remove Entry From List
Functional Description:

Remove the first entry from a 1list. The requesting task
specifies a two-word list descriptor.

This ER runs on the system stack and is therefore
noninterruptible, making it especially useful for
manipulating lists from end action coding where reentrancy
may be a problem,
An attempt is made to remove the first entry from the
specified list. If there are no entries in the list, the
requesting task's stack is cleared and a nonskip return is
executed. Otherwise the address of the entry is placed on
the top of the requesting task's stack and a skip return is
executed.
Request Syntax:
The macro calling sequence is:
RSMOV DESC ,NONE
The assembly language generated from the macro expansion is:
MOV #DESC,-(SP)
EMT 37
. WORD NONE
Parameters:

NONE: The nonskip "place to go" address if there are no
entries in the list.

DESC: 'The address of a two-word list descriptor. The
format of these words is as defined for the first two
words of the define list ER (i.e., the addresses of the
first and last entries in the list).

Error Conditions:
Address check on list descriptor.
Address check on address of first entry in list.
Address check on address of last entry in list,

Performance Data:

Runs on system stack.

Core requirements: 26 words.

Additional routines required: ACHCK.

User stack requirements: 19 words.
Program Example:

Remove the first entry from the 1list described by the
descriptor DESC. '

R$SMOV DESC,NONE

MOV (sP)+,R0 sADDRESS OF FIRST
DESC: - VIORD FIRST ;ADDRESS OF FIRST
« WORD LAST ;ADDRESS OF LAST

NONE: Start of empty list coding.

2,2.8.3 Make Entry In List
Functional Description:

Add a new entry to the end of a list. The requesting task
specifies a two-word list descriptor.

This ER runs on the system stack and is therefore
noninterruptible, making it especially useful for
manipulating lists from end action coding where reentrancy
may be a problem.
The new entry is placed at the end of the specified 1list,
The requesting task's stack 1is cleared and a return is
executed.

Request Syntax:
The macro calling sequence is:

M$ENT DESC,ENT

The assembly language generated from the macro expansion is:

MOV #ENT , - (SP)
MOV #DESC, - (SP)
EMT 40

Parameters:

ENT: The address of the entry to be added to the end of the
list. The first word of this entry must be free as it
will be used to link the entry into the list.

DESC: The address of a two-word 1list descriptor. The
format of these words is as defined for the first two
words of the define list ER (i.e. the addresses of the
first and last entries in the list).

Error Conditions:
Address check on list descriptor.
Address check on address of first entry in list.
Address check on address of last entry in list.
Address check on address of new entry.
Performance Data:
Runs on system stack.
Core requirements: 26 words.
Additional routines required: ACHCK.
User stack requirements: 19 words.
Program Example:

Add the entry at address ENT to the end of the list described
by the descriptor Dl.

MSENT DI1,ENT

Dl: -WORD FIRST ;ADDRESS OF FIRST
« WORD LAST ;ADDRESS OF LAST
ENT: . WJORD LINK ; LINK WORD
. DATA ; ENTRY DATA
DATA

.WORD DATA

~e wo

2.2.9 Dynamic Storage

2.2.9.1 Request Buffer Block

Functional Description:

Request a buffer block from the dynamic storage pool. The
requesting task specifies the size of the block required in
8-word units.

If the request cannot be accepted because a contiguous block
of memory the size requested 1is not available, then the
requesting task's stack is cleared and a nonskip return is
executed. Otherwise the address of the block is placed on
the top of the requesting task's stack and a skip return is
executed,

Request Syntax:
The macro calling sequence is:
G$BUF SIZE ,NOBF
The assembly language generated from the macro expansion is:
MOV #SIZE,- (SP)
EMT 41
« WORD NOBF

Parameters:

SIZE: The size of the buffer block desired expressed in
8-word units.

NOBF: The nonskip "place to go" address if enough
contiguous core is not available.

Error Conditions:

.Requesting task not privileged.
Performance Data:

Runs on system stack.

Core requirements: 15 words.

Additional routines required: RQLCB.

User stack requirements: i9 words.
Program Example:

Request a buffer block 16 words in length.

G$BUF 2 ,NOBF
MOV (sP)+,R0) ; BUFFER ADDRESS

NOBF: Start of no available buffer coding.

2.2.9.2 Release Buffer Block
Functional Description:

Release a buffer block to the dynamic storage pool. The
requesting task specifies the address and size of the block
to be released in 8-word units.

The specified buffer block is released, the requesting task's
stack is cleared, and a return is executed.

Request Syntax:
The macro calling sequence is:
R$BUF SIZE ,BUF

The assembly language generated from the macro expansion is:

MOV #BUF, - (SP)
MOV #SIZE,-(SP)
EMT 42

Parameters:

SIZE: The size of the buffer block to be released in 8-word
units.

BUF: The starting address of the buffer block to be
released.,

Error Conditions:
Requesting task not privileged.
Illegal buffer block address.
Performance Data:
Runs on system stack.
Core requirements: 33 words.
Additional routines required: RQLCB.
User stack requirements: 19 words.
Program Example:

Release a buffer block 32 words in length whose address is
ALFA,

R$BUF 4,ALFA
2.,2.,10 Miscellaneous

2;2.10.1 Set Error Trap Address
Functional Description:

Set error trap address so requestor may handle its own
errors. The requesting task specifies the address that is to
be trapped to when an error occurs,

Errors that may cause traps include illegal ER's (parameters,
codes, etc.), processor errors (odd word address, illegal
instruction, or nonexistent memory), and stack overflow. All
error traps occur at the software priority of the task. When

an illegal ER or processor error occurs, the task is trapped
to with the stack in a state such that it can determine why
the trap occurred. The task is given control with register
RO loaded with the error code (see Appendix C) and the stack
in the following state:

SP+14 PS-processor status at time of error.
SP+12 PC-program address at time of error.
SP+10 RO-register 0 at time of error.
SP+8 Rl-register 1 at time of error.
SP+6 R2-register 2 at time of error.
SP+4 R3-register 3 at time of error.
SP+2 R4-register 4 at time of error.
Sp R5-register 5 at time of error.

Stack overflow is handled in much the same manner; however,
the state of the stack when the overflow occurs is somewhat
indeterminate. The alternate stack is switched to when stack
overflow is detected and a trap to the task is constructed on
this stack. The task gains control with register RO loaded
with the error code 030 (stack overflow) and register Rl
loaded with the address of the top of the old stack just
before the overflow occurred. In general the task will
probably not be able to recover properly from this situation.
The error trap address is inserted into the partition status
table, the requesting task's stack is cleared, and a return
is executed.

Request Syntax:
The macro calling sequence is:

ESRSET ERRA

The assembly language generated from the macro expansion is:

MOV #ERRA , - (SP)
EMT 51

Parameters:

ERRA: The address to be trapped to when the requesting task
cormits an error.

Error Conditions:
Address check on error trap address.
Performance Data:
Runs on user stack.
Core requirements: 11 words.
Additional routines required: None.

User stack requirements: 21 words.

Program Example:

2,2,10.2

Set the error trap address to GOGO.
ESRSET GOGO

GOGO: Start of error handling code.

Set Alternate Stack Address

Functional Description:

Define an alternate stack to be used in case stack overflow
is detected while the requestor is in execution. The
requesting task specifies the starting address of the
alternate stack. The alternate stack must be at least 9
words in length.

When a task is initialized the alternate stack address for
the task is defined to be the same as its starting stack
address. Therefore, 1if stack overflow 1is detected, the
overflow will occur onto the stack already in use. This
destroys information on the stack and is probably undesirable
in most cases. Stack overflow should be avoided if at all
possible. However, if it can occur, this ER should be used
to define an alternate stack so information on the stack in
use will not be lost.

The alternate stack address is set, the requesting task's
stack is cleared, and a return is executed.

Request Syntax:

The macro calling sequence is:
ASLSET ASTK
The assembly language generated from the macro expansion is:

MOV #ASTK,- (SP)
EMT 52

Parameters:

ASTK: The starting address of the alternate stack.

Error Conditions:

Address check on alternate stack.

Performance Data:

Runs on user stack.
Core requirements: 12 words.

Additional routines required: ACHCK.

User stack requirements: 21 words.

2=42

Program Example:
Set alternate stack address to ALTS.
ASLSET ALTS

o=.+22 » ;s RESERVE SPACE
ALTS: : ;START OF STACK

2.2.10.3 Set TRAP Trap Address
Functional Description:

Set address to be trapped to if a TRAP instruction is
executed from the requestor. The requesting task specifies
the address to be trapped to.
When a task is initialized the TRAP trap address 1is set to
the illegal instruction error exit. A task may enable the
trap to itself by executing this ER. The trap occurs

 directly to the task with the old processor status and
program counter on the top of the stack.

The TRAP trap address is set, the requesting task's stack is
cleared, and a return is executed.

Request Syntax:
The macro calling sequence is:
SSTRAP TRPA |
The assembly language generated from the macro expansion is:

MOV #TRPA ,- (SP)
EMT 53

Parameters:

TRPA: Address to be trapped to if a TRAP instruction is
executed from the requesting task.

Error Conditions:
Address check on trap address.
Performance Data:
Runs on user stack.
Core requirements: 11 words.
Additional routines required: ACHCK.

User stack requirements: 21 words.

Program Example:
Set TRAP trap address to TERP.
SSTRAP TERP

TERP: start of TRAP trap coding.

CHAPTER 3

OPERATOR COMMUNICATION

3.1 GENERAL DESCRIPTION

A user may communicate directly with the system via the
operator's console task. Communications may occur on any
terminal (Teletype, VI05, etc.) that has been defined as an
operator's console (see device dependent information in
Appendix B). Commands (keyins) are processed serially and
thus only one terminal may communicate with the operator's
console task at a given time,

A communication is kegun by typing a character (any character
will suffice) on a terminal. If no other task is currently
soliciting input on the terminal, then a message is sent to
the operator's console task specifying that terminal,

The operator's console task receives the message, outputs an

asterisk (*), and solicites one line of input. The keyin is
then entered followed by a carriage return.

3.1.1 Functions Provided

The following functional capabilities are provided by the
operator's console task via keyins:

a) Examine memory.

b) Deposit memory.

c) Enter date,

d) Enter time of day.

e) Request execution of a task.

f) Request asynchronous periodic execution of a task.
g) Request synchronous periodic execution of a task.
h) Request execution of a task at a specific time of day.
i) Activate execution of a task.

j) Suspend execution of a task.

k) Delete a task from the system.

l) Load a new task into the system from paper tape.

m) Execute a breakpoint trap (for ODT).

3-1

3.1.2 Error Handling

All input parameters for a particular keyin are verified
before the command is actually executed. An appropriate
error message is printed if an error is detected. The
following error messages are defined.

a) INSF PRM - An insufficient number of parameters has been
supplied.

b) LATER - The requested function cannot be executed at the
current time (i.e., queue full, no buffers, etc.).

c) 1ILL PARM NN - NN represents an illegal parameter. It may
be of the wrong type or of improper magnitude. Parameter
00 is defined as the command mnemonic itself.

d) 1ILL REQ - The requested function caused an illegal
operation to be executed (i.e., undefined task,
nonexistent memory, etc.).

e) LOAD ERR - An error was encountered during task loading
(checksum, bad transfer, etc.).

3.1.3 Command Syntax

A command consists of a command mnemonic and may be followed
by one or more parameter fields. Pields are separated from
one another by a comma; a blank or carriage return at the end
of a field terminates the scan of the keyin.

Command parameters may be either numeric or alphanumeric and
are error checked to ensure that the proper type of parameter
occurs within a given field. Alphanumeric parameters may
contain alphabetic (A thru 2) or numeric (0 thru 9)
characters and may start with either. Numeric parameters may
contain only the characters 0 thru 9 (7 if octal field).
Decimal fields may be positive or negative; octal fields are
distinguished by a leading '#' sign.

The following example illustrates a command with 3
parameters. The first parameter is alphanumeric and the
remaining two are numeric.

CMND,ALPF,+1000,#177776

3.2 KEYINS

The following subsections describe each keyin that is
available via the operator's console task.

3.2.1 Examine Memory

Functional Description:
Examine the contents of one or more memory locations. The
address and contents of each memory location are printed in
octal format.

Keyin Syntax:
EXAM,FIRST
or
EXAM,FIRST,LAST
or
EXAM,FIRST,COUNT

Parameters:

EXAM: The command mnemonic.

FIRST: The address of the first memory 1location to be
exanined.

LAST: The address of the last memory location to be examined.
COUNT: The number of memory locations to be examined.
Error Conditions:
Nonegistent memory address.
0dd memory address.
Keyin Example:

Examine the contents of memory locations #10, #12, #14, and
#l6.

_ EXaM, #10,#16.
or
EXAM, #10,4
The resultant printout:
000010 xxxxXX
000012 xxxxxx
000014 xxxxxx
000016 xxxxxx
3.2.2 Deposit Memory

Functional Description:

Deposit one or more values into consecutive memory locations.
The address and stored contents of each memory location are

3-3

printed in octal format. Up to 15 values may be specified
with a single keyin.

Keyin Syntax:
DEPO,ADDR,V1,V2,V3,...,Vn
Parameters:
DEPO: The command mnemonic. - _
ADDR: The address of the memory locétion in which the first
value is to be stored. Other values are stored in

consecutive locations thereafter.

vi,v2,v3,...VN: A series of values that are to be stored in
memory.

Error Conditions:
Nonexistent memory address.
0dd memory address.

Keyin Example:

Deposit the values 100, #10, #15, 199, and 205 into
consecutive memory locations starting at #5776.

DEPO, #5576,100,#10,#15,199,205
The resultant printout:

005776 000144

006000 000010

006002 000015

006004 000307
006006 000315

3.2.3 Enter Date
Functional Description:
Enter the Julian date into the system.
Keyin Syntax;
DATE, DAY ,YEAR
Parameters:
DATE: The command mnemonic.

DAY: The Julian day of the year (i.e., 1 thru 365 or 366 1if
leap year).

YEAR: The current year expressed as a two-digit number (i.e.,
72 for 1972). ’

Error Conditions:
Illegal day.
Illegal year.
Kéyin Example:
Set the system date to March 23, 1972.

DATE, 83,72

3.2.4 Enter Time
Functional Description:
Enter the time of day into the system in military format.
Keyin Syntax:
TIME ,HOUR
or
TIME ,HOUR,MINUTE
or
TIME ,HOUR,MINUTE, SECOND
Parameters:
TIME: The cormmand mnemonic.
HOUR: The hour of the day.
MINUTE: The minute of the hour.
SECOND: The second of the minute.
Error Conditions:
Illegal hour.
Illegal minute.
Illegal second.
Keyin Example:
Set the system time of day to 1:45 PM and 30 seconds.

TIME,13,45,30

3.2.5 Request Task Execution
Functional Description:
Request the execution of any task in the system.
Keyin Syntax:
RQEX, TNAME
Parameters:
RQEX: The command mnemonic.
TNAME: The alphanumeric name of the task to be executed.
Error Conditions:
Undefined task.
Keyin Example:
Request the execution of the task FLOP.

RQEX,FLOP

3.2.6 Request Asynchronous Periodic Task Execution
Functional Description:

Request the asynchronous periodic execution of any task in
the system.

Keyin Syntax:

RQAX,THAME ,PERIOD
Parameters:

ROAX: The command mnemonic.

TNAME: The alphanumeric name of the task to be executed
asynchronous periodic.

PERIOD: The period of execution expressed in line frequency
units.

Error Conditions:
Undefined task.
Keyin Example:

Request the asynchronous periodic execution of the task REPT
with a period of 2 minutes.

ROAX, REPT,7200

3.2.7 Request Synchronous Periodic Task Execution
Functional Description:

Request the synchronous periodic execution of any task in the
system.

Keyin Syntax:

RQSX,TNAME , PERIOD
Parameters:

RQSX: The command mnemonic.

TNAME: The alphanumeric name of +the task to be executed
synchronous periodic. '

PERIOD: The period of execution expressed in 1line frequency
units. '

Error Conditions:
Undefined task.
Keyin Example:

Request the synchronous periodic execution of the task AGAN
with a period of 100 milliseconds.

RQSW ,AGAN, 6

3.2.8 Request Task Execution at Time of Day
Functional Description:
Request the execution of any task at a specific time of day.
Keyin Syntax:
ROTX, TNAME , TIME
Parameters:
RQOTX: The command mnemonic,

TNAME: The alphanumeric name of the task to be executed at
the specified time of day.

TIME: The time of day that the task 1is to be executed
expressed as time past midnight in line frequency units.

Error Conditions:

Undefined task.

Keyin Example:
Request the execution of the task SCHD at 8:45 PM,
RQTX,SCHD, 4482000

NOTE: 4482000=(20 hours*60 minutes+45 minutes)*60 seconds*60
line frequency units.

3.2,9 Activate Task
Functional Description:
Activate the execution of any task in the system:
Keyin Syntax:
ACTV,TNAME
Parameters:
ACTV: The command mnemonic.
TNAME: The alphanumeric name of the task to be activated.
Error Conditions:
Undefined task.
Keyin Example: A
Activate the execution of the task FOOL.

ACTV, FOOL

3.2.10 Suspend Task
Functional Description:
Suspend the execution of any task in the system.
Keyin Syntax:
SPND, TNAME
Parameters:
SPND: The command mnemonic.
TNAME: The alphanumeric name of the task to be suspended.
Error Conditions:

Undefined task.

Keyin Example:
Suspend the execution of the task CROW.

SPND,CROW

3.2.11 Delete Task
Functional Description:

Delete any task from the system. The specified task cannot
currently be in execution or the request will be denied.

Keyin Syntax:
DELT , TNAME
Parameters:
DELT: The command mnemonic.
TNAME: The alphanumeric name of the task to be deleted.‘
Error Conditions:
Undefined task.
Keyin Example:
Delete the task GONE from the systém.

DELT , GONE

3.2.12 Load Task

Functional Description:
Load a new task into the system from the high-speed paper
tape reader. The load module must be in absolute loader
format and may have been produced by either the assembler or
linker.

Keyin Syntax:
If core-only task system:
LOAD, TNAME , PRI ,GRP ,EXP,CMP,PRV,IMD
If core-disk task system:
LOAD,TNAME , PRI ,GRP ,EXP,CMP,PRV,IMD,RES (,DADR,DEV)

Parameters:

LOAD: The command mnemonic.

TNAME: The alphanumeric name of the task to be loaded.

3-9

PRI: The priority of the task expressed as the position in
the task table (i.e., priority 2 for the second position
in the table).

GRP The group of which the task is to become a member.

.

.

EXP: The number of the partition that the task is to execute
out of.

CMP: The number of the task's common data partition. If the
task does not have a common data partition, CMP should
be set equal to EXP.

PRV: The alphanumeric designation of the task's privilege
status. 'PV' means privileged and anything else means
nonprivileged,

IMD: The alphanumeric designation of the task's execution
status. 'IM' means immediate execution at system
startup and anything else means no execution at startup.

RES: The alphanumeric designation of the task's residency
status. 'RS' means the task 1is core resident and
anything else means the task is disk resident. This
parameter is required only in core-disk task systems.

DADR: The starting disk address of the area on the disk to
which that the task is to be written. This parameter is
required only if RES is not equal to 'RS'.

DEV: The device number of the disk on which the task 1is to
be written. This parameter is required only if RES is
not equal to 'RS',

Error Conditions:
Task name already defined.
Task table entry occupied,

Undefined priority (i.e., no such position in table).

Undefined execution of common partition (i.e., no such
position in table).

Illegal device number (not a disk or undefined).
‘Keyin Examples :

Load the task DEMO into the system. The task is to have a
priority of 3 (occupies 3rd task table entry), be a member of
group 25, have an execution and common partition of 6, be
nonprivileged, no immediate execution and be core resident.
A core-only task system is assumed.

LOAD,DEMO,3,25,6,6,NP,NI
Load the task SWAP into the system, The task is to have a
priority of 4, be a member of group 31, have an execution

partition of 5, have a common partition of 10, be privileged,
no immediate execution, and be disk resident. It is to be

3-10

written to device 8 starting at disk address 5.

task system is assumed.

LOAD,SWAP,4,31,5,10,PV,NI,NR,5,8

PROGRAMMING NOTE

The user must allocate all disk space
used for nonresident tasks. When a
nonresident task is to be loaded into the
system, it is first 1loaded into the
actual execution partition and then
written to the disk. The entire
execution partition is written, thus the
task can be read into core via a single
disk access. Care should be taken to
ensure that enough disk space has been
allocated since the entire execution
partition 1is written to the disk. Disks
are addressable by logical sector and
space should be allocated in these units
(256 words/logical sector).

3.2.13 Breakpoint Trap

Functional Description:

Execute a breakpoint trap instruction (code 3)

ODT.

This keyin provides a controlled entry into ODT.

A core=-disk

to trap to

Execution

of the system may be continued via a proceed keyin to ODT.

Keyin Syntax:

BKPT

Parameters:

BKPT:

The command mnemonic.

Error Conditions:

None.

Keyin Example:

Break to ODT.

BKPT

4.1 SAMPLE TASK #1

The following task is a paper tape copy program using hold

1/0.

™ W Wme WS W8 W e

CONsQ
PTR=}
PTPs2

PKT13
PKT21

PKT31

PKT4t

PKTS:

PKTe$

CHAPTER 4

SAMPLE TASKS

«TITLE PAPER

«CSECT

VERSION Vg

MINIMUM SYSTEM PAPER TAPE COPY PROGRAM

DEFINITIONS

I1+/0 PACKET DEFINITIONS

2 WORD
+wQARD
WBYTE
«BYTE
2ASCII
«BYTE

+EVEN

s WORD
.BYTE
«BYTE
+WOKD

« WORD
«BYTE
«BYTE
«WORD
«WORD

+WORD
«BYTE
«BYTE
«WORD
+WORD

2
2
SwR+SHOLD,Q

CON,PKT3=PKT?2
/PUT TAPE IN READER AND DEPRESS CR!/}

15,12

2
$RD+SHOLD, D
CON, 1

2

2
$RD+SHOLD, 2
PTR,Q

RUFL

BUF

2
SwReSHOLD,®
PTP,Q

BUFL

BUF

TCONSOLE UNIT NUMBER
IPAPER TAPE READER UNIT NUMBER
JPAPER TAPE PUNCH UNIT NUMBRER

!
; ‘
JSOLICITATION QUTPUT
!

!
!

'
3SOLICITE INPUTY
i
H

4
IREAD PAPER TAPE
!
'
4

1
JWRITE PAPER TAPFE
H
[
3

«WORD o
PKT712 «BYTE SWR+SHOLD, @
«BYTE CON,PKT9=PKTS8
PKT8S «ASCII /FUNCH ERROR/
«BYTE 15,12
PxT91
+EVEN

: « WORD e
PKT10: (BYTE SwReSHOLD, @

PAPER TAPE TRANSFER ERROR

we e wn ws we we

4
IFINAL MESSAGE

«BYTE CON,PKT12=PKT11 ¢
PKT11: LASCII /THAT*S aLL FOLKSI/}

«BYTE 15,12

PKT123 H
+EVEN

1

’ PAPER TAPE INPUT CUTPUT BUFFER

!

BUF 3209

BUF: Fo*BUFL

!

L STACK AREA

H

IR YTN 120 WORLS OF STaCk SPACE (NECIMAL)

H

I STARY OF COPY PROGRAM

CoPYs R$GIOQ PKT{,COPYe4
COPY!: RS$QIO PKT4,COPYL#d
COPY2: RS$QIQ PKRTS,COPYe+d

MOV #olUFL,RE
sus PRTS5=2,RE
REQ COPY4
MOV RO,PKTE*U
COPY3: R$QID PKT6,COPY3+4
TSTp PKToe+}
BNE COPYS
T8TB PKTS54}
: BEQ COPYe
COPY4 R$QID PKTIQ,CO0PYdwd
TEERM
COPYS: RSQIO PKT7,C0PY5%4
THERM

+END COPY

FOUTPUT SOLICITATION MFSSAGE
FSCLICITE INPULT

iREAD AN INPUT BUFFER
JGET BUFFER LENGTH

PSUB BYTES NOT TRANSFERED
1IF EW NONE

JSET BYTES TO PUNCH
JPUNCH QUT BUFFER

JTEST FINAL FUNCH STATUS
7 IF NE ERROK

JTEST FINAL KEAD STATUS
JIF Ey MORE TU PUNCH
JOUTPUT FINAL MESSAGF
JTERMINATE TASK

JOUTPUT ERRCR MESSAGE
JTERMINATE TASK

H

4,2 SAMPLE TASK #2

The following task is a paper tape copy program which
use of end action ERs,

«TITLE PAPCOP
«CSECT
]
1
! PAPER TAPE COPY TASK
]
! USES END ACTION ER’'S
H
H DEFINITIONS
H
BUFL=10209
CN=Q JCONSOLE TTY
PR={ “JPAPER TAPE READER
PPs¢ fPAPER TAPE PUNCH
H
! 1/0 PACKETS
!
«WORD 2 1FOR ADDRESS CHECK ERROR
«WORD 2 ! '
PKT1$ « WORD SHOLD+SWR JOUTPUT SOLICITATION
«BYTE CN,PKT3=PKT2 !
PKT21 «ASCII *PUT TAPE IN READER AND TYPE (CR)*}
«BYTE 12,15 B
PKT31: L)
+EVEN
+WORD 2 !
PKT4s «wORD $SHOLD#SRD ISOLICITE INPUT
«BYTE CNy i H :
PKTS! +WORD] |
+WORD CUPS H
«WORD e H
PKTel +WORD SEA+SRD JREAD TAPE wWITH END ACTION
«BYTE PR, Q ! .
«WORD 176 !
<« WORD 2 H
«WORD COP4& !
+WORD a H
PKTT? «WORD SEA+SWR JARITE TAPE WITH END ACTION
«BYTE PP, !
L WORD 176 H
«WORD 2 '
+WORD 2 ?
PKTa? «WORD SHOLD+SWR JEND OF JOB
«BYTE CN,PKT12=PKTS ?
PKT9S +ASCII *TAPE COPIED* H
PKTi@:]
+EVEN

makes

-

L8YD1:

LSTDe:

RFLGS
WFLG1

START:
corol

corP2:

CoP3:

LIST OESCRIPTORS

+WORD 2

« WORD]
JWORD 190
JWORD BUFL
«WORD BUF
«WORD 2

« WORD LSTDe

READ/WRITE BUFFER

23 *BUFL

ROUTINE BUSY FLAGS

+WORD
«WORD

-1
-1

STACK SPACE

STARY OF TASK

R$QI0 PKT1,START#4
RSQI0 PKT4,COPQ+4
DSLIST LS8TDIY

MOV #=1,RFLG

MOV %oy, WFLG

JSR PC,READ
ESACTw COP3

BR COPe

R$QIO PKTB,COFP3+4
TSEKM

'
}

1SILE OF ENTRIES IN WORDS

JLENGTH OF LIST AREA

JSTARTING ADDRESS OF LIST AREA

i
!

PREAD ROUTINE
IWRITE ROUTINE

ISOLICITE INPUT
i

JUEFINE LIST
IRESET FLAGS

i

IREAD FIRST BUFFER
JWALIT FOR END ACTION
I

JOUTPUT FINAL MESSAGE
JTERMINATE TASK

COP4:

WRITS

WRITY:
WRIT2:
WRIT3:

WRIT4:

COPS:

COPes

READ?S

READ1:
READZ:
READ3:

READ4:

END ACTION CODE FOR PUNCH REQUEST

MoV
sus
MOV
EMT
JSR
JSR
ESACTR
INC
BNE
RSMOY
ADD
MOV
R$Q10
CLR
RTS
MOV
RTS

PKT7+6,=(SP)
22, (SP)
#LSTD1,=(8P)
4@

PC,READ
PCowRITY

WFLG

WRIT3
LSTD2,WR]IT4
$2, (SP)
(SP)+,PKTT¢e
PKT7,wWR1IT2¢4
WFLG

PC

#=1,WFLG

PC

JRELEASE BUFFER TO POOL
PADJUST FOR LINK wORD

H

H

JSTART NEXT READ

ISTART NEXTY WRITE
IRETURN FROM END ACTION
JROUTINE BUSY?

11F NE YES

§REMOVE NEXT BUFFER
3STEP OVER LINK WURD
JINSERT BUFFER ADDRESS
PPUNCH BUFFER QUT
JOON’T ALLOW OVERFLO
IRETURN :
FRESEY BUSY FLAD
IRETURN

END ACTION CODE FOR REAU REQUEST

MOV
SuB
7878
BNE
MQV
EMT
JSR
JSR
ESALTR
MOV
EMT
ESACTR
INC
BNE
RgMQV
ADD
MOV
R$QI0
CLR
RTS
MOV
RTS

<END

PKTeo+6,=(5P)
#2, (SP)
PKTe#+1

COPe
#_.STD2,=~(SP)
4y

PL,wRIT
PC.&kEAD1

*.STD1,=(SP)
49

RFLG

READ3
LSTDY1,READY
ge, (SP)
(SP)#,PKTh+k
PKTe,READ2+4
RKLG

PLC

#=1,RFLG

PC

START

IMAKE LIST ENTRY
JADJUST FOR LINK wORD
3G00D TRANSFER?

JIF NE NO

JSPECIFY PLUNCH LIST

H

$START PUNCHING

IREAD NEXT BUFFER
TEND ACTION RETURN
SSPECIFY BUFFER PUOL
:

PRETUKN FROM END ACTION
IROUTINE BUSY?

$1F NE YES

JGET a FREE PUFFER
ISTEP DVFR LINK WQRD
FINSERT BUFFER ADDRESS
;READ NEXT gUFFER
JDON"T ALLOw UVERFLOW
IRETURN

IRESET BUSY FLAG
PRETURN

H

CHAPTER 5

SYSTEM GENERATION

5.1 GENERAL DESCRIPTION

A wide variety of hardware/software configurations may be
generated for RSX11lA, These configurations are selected via
the definition of appropriate system generation parameters.
The interactive program GENFIL has been provided to aid in
the definition process. The output of this program is a
parameter definition file (CONFIG) and specific directions
for assembling and linking the desired system.

System generation is considered a four-step process.

1) The definition of memory partitions and any tasks that
are to be linked directly into the system load module.

2) The execution of the interactive program GENFIL to
generate the configuration parameter file and obtain
assembly and linking directions,

3) The assembly of all specified modules.

4) The linking of the resultant object modules to form the
desired load module of RSX11lA.

5.2 PARTITION TABLE DEFINITION

The partition table (see Appendix H) describes the allocation
of core memory in fixed .partitions. Up to 256 distinct
partitions of any size may be defined. Entries in the
partition +table must be in ascending order of core address;
care must be taken to ensure its accuracy.

The system is supplied with definitions for three partitions

(i.e. null, operator's console, and nonresident task loader

tasks). User-defined partitions must immediately follow.
Definition Syntax:

- The partition table is located in the module TABLS and the
following macro call is used to define entries:

PART BSY,BAS
The assembly language generated from the macro expansion is:

.CSECT AREAl
.BYTE $NQ+1,BSY+177

SNQ=$NQ+1
.CSECT AREA2
.WORD BAS
.CSECT AREA3
.WORD 0
.CSECT

Where:

BSY: The partition status flag. If a core resident task is
to be 1linked directly into the partition, then BSY=1;
otherwise, BSY=0 (i.e., the partition is free).

BAS: The base address of the partition (i.e., the lowest
address in the partition).

The following example illustrates the generation of partition
table entries.

Example:

Four partitions are to be defined and one will be occupied by
a core resident task that is linked directly into the system
load module. The partition sizes are to be: a) the size of
the core resident task (starting address is STADRS and ending
address is ENADRS), b) 1K, c¢) 2K, d) a partition that
occupies the remainder of core memory. The following macro
calls define these partitions.

.GLOBL ENADRS
.GLOBL STADRS

PART 1,STADRS

PART 0 ,ENADRS+2
PART 0,ENADR$+4002
PART 0,ENADR$+14002

TASK TABLE DEFINITION

Undefined (empty) entries may be generated in the task table
via the configuration parameter T$$SLT. Subsequently tasks
may be loaded into these entries using the LOAD keyin of the
operator's console task. If, however, tasks are to be linked
directly into the system load module, the task table must be
modified and an appropriate entry placed in the partition
table (see above).

Definition Syntax:

The task table 1is 1located in the module TABLS and the
following macro call is used to define entries in this table:

TASK TLBL,STAT,ENTR, GRP, NAML ,NAM2 , EXPT,
CMPT, DEVN , DADR '

The assembly language generated from the macro expansion is:

.GLOBL ENTR
.CGLOBL TLBL
.CSECT TSK1
TLBL=.-TSK1$
.WORD STAT
.CSECT TSK2
.WORD ENTR
.CSECT TSK5
.BYTE GRP,S$NQ+1

SNQ=$NO+1
.CSECT TSK6
.ASCIT NAML
.CSECT TSK
.ASCII NAM2
.CSECT TSK8

+WORD 0
.CSECT TSK9
«WORD 0

.CSECT TSK1l1l
.BYTE EXPT,CMPT
- IFDF DS$SISC
.CSECT TSK12
.BYTE 0,DEVN
.CSECT TSK13
.WORD DADR
.ENDC

Where: *

TLBL: An external label that is to be defined as the index
of the task (i.e., SCNTSK for the operator's console
task).

STAT: The initial status of the task (see Appendix F for bit
definitions).

ENTR: The external entry point of the task.

GPP: The number (0 to 255) of the group of which the task is
to be a member.

NAMl: The first two ASCII characters of the task name.
NAM2: The second two ASCII characters of the task name,

EXPT: The number of the partition in which the task is to
execute,

CMPT: The number of the partition in which the task 1is to
have access as a common data area.

DEVN: The number of the device on which the task resides.
This parameter need only be defined in core~disk task
systems. If the task is core resident, a definition of
zero will suffice.

DADR: The logical starting disk address of the disk area in
which the task is stored. This parameter need only be
defined in core-disk task systems. If the task is core
resident, then a definition of zero will suffice.

PROGRAMMING NOTE

The position of an entry in the task
table determines the priority of the
task defined by that entry; the closer
to the front of the table, the higher
the priority. Care must be taken to
ensure that the property priority is
assigned to tasks via their placement in

the task table. Undefined (empty)
entries may be defined via the following
macro call., This call should be used to
space task table entries where
‘appropriate (priority considerations):

TASK $NLTSK,S$TDF,NULLS,0,t/';;'/,4/":;"'/
,0,0,0,0

The mapping of tasks into execution and
common data partitions is also very
important. A task may have only one
execution and common data partition.
The mapping is via the position of the
target partition in the partition table.
For example, if a task's execution
partition is the fourth entry and its
common data partition is the tenth entry
in the partition table, then the
parameters EXPT and CMPT are defined as
4 and 10 respectively. If a task does
not have a common data partition, then
CMPT is defined equal to EXPT.

This mapping seems very complicated at first, but it provides
a high degree of flexibility. The following example helps to
clarify this mapping. A complete task and partition table is
given. The entries that are provided with the system are
marked as SYS; additional entries added for the example are
marked EXP,

Example:

A system is to be generated that will contain the operator's
console task, the nonresident task loader, and three
user-defined tasks. Two of the user-defined tasks are to be
linked directly into the system load module. These tasks are
to occupy partitions of 3K and 4K respectively. The
remaining task will be loaded as needed via the LOAD keyin of
the operator's console task and will occupy the partition
formed from the remaining memory. None of the tasks are to
have a common data partition and all are to be members of
group 5.

Partition Table Definitions:

PART 1,NLSTS SYS
« IFDF CS$SNSL SYS
Cp=1 SYS
PART 1,CNSTS SYS
« ENDC SYS
+« IFDF D$SISC SYS
LP=2 SYS
PART 1,LDSTS SYS
« ENDC SYS
P1=3 EXP
PART 1,INITLS EXP
P2=4 EXP
PART 1,INITL$+14000 EXP
P3=5 EXP
PART 1,INITL$+14000+4000 EXP

Task Table Definitions:

.IFDF . DS$SISC SYS
TASK $LDTSK,0,LOADS, 0,4/ ;: '/, 4/ i: '/, SYs
~ LpP,LP,0,0 SYS
+ENDC sYS
.IFDF C$$NSL SYs
TASK $CNTSK,0,CONSS$,0,4/"::'/,4/ 35/, SYS
cp,CP,0,0
.ENDC) SYS
TASK $TASK1,0,ENT1S$,5,'TS','K1', EXP
P1,P1,0,0
TASK $TASK2,0,ENT2$,5,'TS','K2"', EXP
p2,P2,0,0
TASK $NLTSK, $TDF,NULLS,0,4/':: '/, A/ 11"/, EXP
: 0,0,0,0
TASK SNLTSK, $TEX,NULLS,0,4/'::'/,N/"::"/, SYS
0,0,0,0

The task not linked into the load module would be loaded into
the system via the following LOAD keyin:

LOAD,NAME,4,5,5,5,NP,NI,RS
and executed with the keyin:

RQEX,NAME
NOTE

All tables are numbered from zZero
upward. Thus the first entry in a table
is number 0.

5.4 PARAMETER FILE GENERATION

A parameter file is required to define system generation
parameters. The interactive program GENFIL has been provided
to aid in the generation and definition of this file.

GENFIL runs under DOS and is supplied in object module form.
It must be linked for the target DOS configuration and then
executed. As GENFIL executes, it solicits the definition of
parameters that will become the body of the parameter file.
Solicitation responses may be 'Y', a number, or a carriage
return. A 'Y' or number response (whichever is appropriate)
implies an affirmative answer while carriage return always
implies a negative answer.

The command input/output of GENFIL is to/from the 1logical
devices CMI/CMO respectively with a physical default of KB
for both. Two output files are generated: 1) TXTOUT to
logical device TXT with physical default LP, 2) CONFIG to
logical device PFL with physical default KB, The file TXTOUT
contains instructions specifying which modules to assemble’
and link to generate the desired system. CONFIG 1is the
parameter file and contains the parameter definitions that
were specified during the dialog.

GENFIL asks four sets of questions.

The first set deals with executive requests and are answered
with 'Y' or carriage return.

The second set deals with I/O drivers. All but two of these
questions are also answered with 'Y' or carriage return. The
exceptions are: 1) Multi-terminal driver - answered with
the number of terminals minus one or carriage
return, 2) UDCll driver - answered with the number of
functional modules or carriage return.

The third set of questions deals with table sizes and
additional functional capabilities. All but two of these
questions are answered with a number or carriage return. The
exceptions are: 1) nonresident task support - answered with
'Y' or carriage return, 2) EAE support - answered with a
'Y' or carriage return 3) console task answered with a 'Y' or
carriage return.

The fourth set of questions concerns operator's console task
keyins, These questions are answered with 'Y' or carriage
return. .

The questions in all four sets are self explanatory (see
example below) except in the case of the third set. The
responses to this set are numbers and need further
explanation. The solicitation dialog and a detailed
explanation of each response follows (for numeric respanses
only).

PANIC DUMP (DEV CSR OR CR)

If the panic dump routine is desired, answer with the
address of the control status register of the dump
device. Legal devices are: 1) Line
printer, 2) Paper tape punch, 3) Terminal devices
(i.e., Teletype, VT05, or LA30).

Otherwise, answer with carriage return,
HUM 8 WD BLKS IN DYNAMIC POOL (NUM OR CR)

If the default value (32 blocks) is not desired, answer
with the number of 8-word blocks that are to be
allocated to the dynamic storage pool. Care must be
taken +to ensure the proper value of this parameter.
This area is allocated in the initialization code from
the top of memory down and is taken out of the last
(highest) partition. Sleep queue entries (8 words),
partition status tables (16 words), and operator's
console buffers (72 words) are allocated from this
storage pool. 1If there is either an overlap between the
next-to~last partition and the dynamic storage pool
(last partition too small or dynamic area too big) or if
there is insufficient space to allocate partition status
tables for resident tasks that have been linked into the
system load module, the initialization routine will
print out an error message and halt.

Otherwise, answer with a carriage return.
DEV TIME OUT CYCLE (NUM OR CR)

If the default value (100 milliseconds) is not desired,
answer with the time interval in line frequency units
between time out cycles (i.e., 6 for 100ms at 60 cycle,
The time out cycle is defined as the frequency at which
an attempt will be made to time out devices (i.e., a
scan through the device list to find and time out active
devices).

Otherwise, answer with a carriage return.
NUM QUEUE SLOTS (NUM OR CR)

If the default value (10 slots) is not desired, answer
with the number of queuing slots desired. Care must be
exercised in selecting this parameter. Queue slots are
used to queue I/O requests, intertask messages, and
tasks waiting for resources. In general there should be
enough available gqueue slots to satisfy the dynamic
requirements of the system approximately 95% of the time
(may be higher in certain systems).

Otherwise, answer with a carriage return.

~

SZ ‘RESOURCE ALLOC TBL (NUM OR CR)

If the default value (1 entry) is not desired, answer
with the number of entries that are to be generated for
the resource allocation table. The resource allocation
table is used to hold group lock information of active
keys and their owners. The number of entries generated
for this table should be equal to the maximum number of
group lock keys that are to be active simultaneously.

Otherwise, answer with a carriage return.

EXTRA TASK SLOTS (NUM OR CR)
If additional undefined (empty) task slots are desired,
answer with the number of undefined (empty) task slots
that are to be generated. The generation of empty task
slots allocates space so tasks may be loaded into the
system at a later time.

Otherwise, answer with a carriage return.

5.5 ASSEMBLING THE SYSTEM
The TXTOUT output file of GENFIL specifies the modules that
must be assembled to generate the desired system (see Section
5.7 for an example of system generation).

Source module names are specified as

NAME.SRC

Vhere:
NAME: The name of the module.

SRC: The extension of the module name. 'SRC' signifies a
source file,

All source modules must be assembled with the MACRO-11
assembler under DOS.

5.6 LINKING THE SYSTEM

The object modules produced from the assembly process must be
linked according to the directions output by GENFIL to create
a load module of the desired system. This 1is accomplished
via LINK~-1l under DOS.

5.7 SAMPLE SYSTEM GENERATION
System Features:

‘The following example illustrates the generation of the basic
RSX11lA system. Features of this system are:

a) The operator's console task.

b) Two extra task slots for loading new tasks into the
systenm.

c) Multi-terminal driver (one terminal used).
d) Paper tape reader driver.
e} Paper tape punch driver.

f) Four partitions--one each for the operator's console and
null tasks and two for 1loading new tasks into the
systemn.

Generation Procedure:
STEP 1 = Partition table definition

The following partition definiticns are inserted in the
file TABLS. Two additional partitions are defined
(partitions for the operator's console and null task are
already defined). One partition is 512 words in length
and starts at the first available memory location above
the operator's console task. The other partition starts
512 words thereafter and occupies the remainder of core
memory.

PART 0,INITLS
PART 0,INITLS$+2000

STEP 2 = Task table definition

Mo tasks are to be linked into the system 1load module,
thus the two extra task slots can be generated via the
system generation parameter T$SSLT (see dialog below).

STEP 3 = Parameter file definition

The parameter file definition program GENFIL is run
under DOS. The following dialog is carried out with
this program. All programmer responses are underscored;
if no response is indicated a carriage return was typed.

GENFIL Dialog:

RSX11A PARAMETER -
FILE GENERATOR
VOOlA JAN. 12, 1973

All questions are to be answered with a number, 'Y(ES)',
or carriage return. A number or 'Y' implies an
affirmative answer and a carriage return implies a
negative answer. Decimal numbers may be preceded with a
plus or minus (+ is assumed), and octal numbers are
designated by a preceding '#' sign. If an incorrect
reply is received, the question will be repeated.

The following questions pertain to executive requests.
If a particular request is desired, answer with a 'Y¥Y';
otherwise, answer with a carriage return.

ACTIVATE-SUSPEND (Y OR CR)
*

REQ-RLS BUFFER BLOCK (Y OR CR)
*Y

CANCEL TIMED INT (Y OR CR)
* .
DELETE TASK (Y OR CR)

*y ‘ i
DEFINE LIST (Y OR CR)

*

END ACTION RETURN (Y OR CR)
%*

END ACTION WAIT (Y OR CR)

*

TASK GROUP LOCK REQS (Y OR CR)
*

LIST MANIPULATION (Y OR CR)
*

RECEIVE MESSAGE (Y OR CR)
*Y

EEQUEST DATE (Y OR CR)

EEQ TIMED INT (Y OR CR)

EEQ ASYNC EXEC (Y OR CR)

EgQ TASK EXECUTION (Y. OR Ck)

REQ I-O OPERATION (Y OR CR)
*y

REQ SYNC EX (Y OR CR)
*

REQ TOD EXEC (Y OR CR)
*

REQ TIME OF DAY (Y OR CR)
*

SET ALTERNATE STACK (Y OR CR)
*

SEND MESSAGE (Y OR CR)
*

SET ERROR TRAP ADDR (Y OR CR)
*Y

SET TRAP TRAP ADDR (Y OR CR)
*

REQ TIMED WAIT (Y OR CR)

%*

The following questions pertain to I-0 drivers.
particular driver is desired, answer with
number (whichever 1is appropriate); otherwise,
with a carriage return. ,

ADO1-D A-D CONVT (Y OR CR)
*

AFCll A-D CONVT (Y OR CR)
*

TERMINALS (NUM=-1 OR CR)

*0

PCll PAPER PUNCI (Y OR CR)
*y

PCll PAPER READER (Y OR CR)
*y

RC11l DISK (Y OR CR)
*

a

If
'Yl

a
or

answer

RF1l DISK (Y OR CR)
*

RK11l DISK (Y OR CR)
*

UDC1ll (NUM MODULLS OR CR)
*

LPll LINE PRINTER (Y OR-CR)
*

The following parameters define table sizes or
functional capabilities. If a particular feature is
desired, answer with a 'Y' or number (whichever is
appropriate); otherwise, answer with a carriage return.

PANIC DUMP (DEV CSR OR CR)
*

NUM 8 WD BLKS IN DYNAMIC POOL (NUM OR CR)
*15

DEV TIME OUT CYCLE (NUM OR CR)
*6

NUM QUEUE SLOTS (NUM OR CR)
*10

SZ RESOURCE ALLOC TBL (NUM OR CR)
*0

EXTRA TASK SLOTS (NUM OR CR)
*2

DISK RES TASK SUPPORT (Y OR CR)
*

EAE SUPPORT (Y OR CR)
*

CONSOLE TASK (Y OR CR)

*y

The following questions pertain to console keyins. If a
particular keyin is desired, answer with a 'Y';
otherwise, answer with a carriage return.

ACTIVATE TASK (Y OR CR)
*

BREAKPOINT TRAP (Y OR CR)
*

ENTER DATE (Y OR CR)

*

DEPOSIT MEMORY (Y OR CR)
*y

5-11

DELETE TASK (Y OR CR)
*y

EXAMINE MEMORY (Y OR CR)
*Y

LOAD TASK (Y OR CR)
*y

REQ ASYNC TASK EXEC (Y OR CR)
*

REQ TASK EXECUTION (Y OR CR)
*y

REQ SYNC TASK EXEC (Y OR CR)
*

REQ TOD TASK EXEC (Y OR CR)
*

SUSPEND TASK (Y OR CR)
*

ENTER TIME (Y OR CR)
*

THAT'S ALL FOLKS!
GENFIL output:

The output that results from the above dialog
parameter file (named CONFIG) and directions

assembling and 1linking the systen. The following
parameter file and directions would result fron the

above dialog.
Paranecter file:

COPYRIGHT 1973, DIGITAL EQUIPMINT
CORP., MAYNARD, MASS 01754

D.N. CUTLER 1-12-73
Version V001lA

s wE %s we N wp N Se

RSX11A System Parameter File

BSSUFR=000000
DSSFLT=000000
R$SCLV=000000
RSSQEX=000000
R$SQI0=000000
SSSERR=000000
CS$$NSL=000000
PS$SSAPP=000000
PSSAPR=000000
CS$SORE=000017
DSSCNT=000006
QS$SSLT=000012
R$SSRC=000000
T$SSLT=000002

CS$TSK=000000
K$$DLP=000000
K$$DLT=000000
K$SEXM=000000
K$SLOD=000000
KS$SQEX=000000

Assembly directions for executive requests:

***The following executive request modules must be
assembled*** :

BUFR<RGDEF ,BUFR.SRC

DELT «<CONFIG,RGDEF,DELT.SRC
ER<RGDEF ,ER.SRC

RCEV <RGDEF ,RCEV,.SRC
ROEX<CONFIG,RGDEF,RQEX,SRC
RQIO<RGDEF,RQIO, SRC
SETERR<RGDEF ,SETERR, SRC
TERM<CONFIG,RGDEF,TERM,SRC

Assembly directions for executive routines:

***The following executive routine modules must be
assembled***

ACHCK <RGDEF ,ACHCK, SRC

ALSTK <RGDEF ,ALSTK.SRC

ARITH <RGDEF ,ARITH.SRC

BILDS <RGDEF ,BILDS.SRC

ERGEN <CONFIG,ERGEN,SRC

ERINT <CONFIG,RGDEF,ERINT.SRC
ERRORS <CONFIG,RGDEF ,ERRORS.SRC
EXCEL <EXCEL.SRC

GETID<RGDEF ,GETID.SRC
INITL<CONFIG,RGDEF,INITL.SRC
IOSUB <RGDEF , IOSUB, SRC
LOWCOR<CONFIG,RGDEF, LOWCOR.SRC
QUEUE <RGDEF ,QUEUE,SRC

REQSB <CONFIG,RGDEF,REQSB.SRC
RQLCB <RGDEF ,RQLCB.SRC

SYSUB <CONFIG,RGDEF,SYSUB.SRC
TABLS <CONFIG,RGDEF,TABLS,SRC
TIMES<CONFIG,RGDEF,TIMES,SRC

Assembly directions for I/0 drivers:

The following I-0 driver modules must be assembled#
PTPHND <RGDEF ,PTPHNID.SRC
PTRHND <RGDEF ,PTRHIND.SRC .
TTYHND<CONFIG,RGDEF, TTYHIID,SRC

***The following system tasks must be assembled**#*

ACONTSK<MACRS,CONFIG,RGDEF,CONTSK.SRC
NULTSK<NULTSK.SRC

Linking directions for this system:

***The following linker command strings must be used to link

STEP

STEP

STEP

the system***

RSX11A ,RSX11A<LOWCOR,ERINT
ERGEN, EXCEL, TABLS ,ER
BUFR,DELT,RCEV, RQEX
RQIO,SETERR,TERM,PTPHND
PTRHND , TTYHND ,ARITH,ACHCK
ALSTK,BILDS ,ERRORS,GETID
IOSUB,QUEUE, REQSB, RQLCB
SYSUB,TIMES ,NULTSK,CONTSK
INITL/B:0/E

4 = Assembly

All modules are assembled according to the above

definitions.

5 = Linking

The resultant object modules are linked according to the
above directions and a load module is punched out on a
paper tape.

6 = Loading
The load module is loaded via the absolute loader. As

soon as the system is loaded, RSX11lA will type out its
identification and start running the null task.

APPENDIX A

‘EXECUTIVE REQUEST SUMMARY

Task Termination:
a) Terminate Task Execution

Function: Terminate the execution of the requesting
task.

Parameters:
None.
Macro calling sequence:
TSERM
Assembly language generated from the macro expansion:
EMT 0
"b) Delete Task

Function: Delete any other task in the same task group
from the system. :

Parameters:

TNAME = The address of the 4-character task
name,

BUSY = The nonskip "place to go" address
if the specified task is currently
executing,

Macro calling sequence;

DSELT TNAME ,BUSY

Assembly language generated from the macro

expansion:
MoV #TNAME , - (SP)
EMT 2

+« WORD BUSY
Timer:
a) Request Timed Wait

Function: Delay the execution of the requesting task
for a specified interval.

Parameters:

INT = The address of a two-word time delay
expressed in line frequency units.

NORM = The nonskip "place to go" address if the
request cannot be accepted.

Macro calling sequence:
WSAIT INT,NORM

Assembly language generated from the macro expansion:
MOV #INT,~(SP)
EMT 3
+WORD NORM

b) Request Timed Interrupt

Function: Interrupt the execution of a task and trap to
an end action address after a specified interval of
time has elapsed.

Parameters:

ENDA = The end action "place to go" address that
is to be trapped to.

INT = The address of a two-word time interval
expressed in line frequency units.

HORM = The nonskip "place to go" address if the
request cannot be accepted.

Macro calling sequence:
RSTINT INT,ENDA,NORM

Assembly language generated from the macro expansion:

MOV #ENDA ,- (SP)
MOV #INT,-(SP)
EMT 4

. WORD NORM
c) Cancel Timed Interrupt Request

Function: Cancel all timed interrupt reguests that are
outstanding,

Parameters:
None.
Macro calling sequence:
CSTINT
Assenbly language generated frorm the macro exvansion:

ENT 5

d) Request Time of Day

Function: Obtain the current time of day expressed as
clock ticks past midnight.

Parameters:
None.
Macro calling sequence:
RSTOD
Assembly language éenerated from the macro expansion:

cMP -(sp) ,-(SP)
EMT 6

e) Request Date

Function: Obtain the current date expressed in Julian
relative to the year 1972,

Parameters:
None.
Macro calling sequence:
RSDATE
Assembly language generated from the macro expansion:

CMP -(sP) ,~(SP)
EMT 7

Task Initiation:
a) Request Task Execution

Function: Request the execution of any task in the same
task group. :

Parameters:
TNAME = The address of the 4-character task name.

NORM = The nonskip "place to go" address 1if the
request cannot be accepted.

Macro calling sequence:
RSQEX THAME ,NORM

Assembly language generated from the macro expansion:
Mov #TNAME ,~ (SP)

EMT 10
. WORD NORM

b) Request Synchronous Periodic Task Execution

Function: Request the synchronous periodic execution of
any task in the same task group.

Parameters:
TNAME = The address of the 4-character task name.

INT = The address of a two-word time interval
expressed in line frequency units.

NORM = The nonskip "place to go" address if the
request cannot be accepted.

Macro calling sequence:
R$SQSX TNAME,INT,NORM

Assembly language generated from the macro expansion:

MOV #INT,- (SP)
MOV #TNAME , - (SP)
EMT 11

« WORD NORM
c} Request Asynchronous Periodic Task Execution

Function: Request the asynchronous periodic execution
of any task in the same task group.

Parameters:
TNAME = The address of the 4-character task name.

INT = The address of a two-word time interval
expressed in line frequency units.

NORM = The nonskip "place to go" address if the
request cannot be accepted.

Macro calling sequence:
RSQAX TNAME , INT , NORM

Assembly language generated from the macro expansion:

MOV #INT,~ (SP)
MOV #TNAME , - (SP)
EMT 12

« WORD NORM
d) Request Task Execution at Time of Day

Function: Request the execution of any task in the sarme
task group to begin at a specific time of day.

Parameters:

TNAME = The address of the 4-character task nzame.

TOD = The address of a two-word time of day
expressed in line frequency units.

NORM = The nonskip "plan to go" address if the
requested cannot be accepted.

Macro calling sequence:
RSQTX TNAME , TOD, NORM

Assembly language generated from the macro expansion:

MOV #TOD,- (SP)
MOV #TNAME , - (SP)
EMT 13

- WORD NORM
Task Synchronization:
a) Suspend Task

Function: Suspend the execution (via blocking) of any
task in the same task group.

Paraﬁeters:
TNAME = The address 6f the 4~-character task name.
Macro calling sequence: .
SSPND TNAME
Assembly language generated from the macro expansion:

MOV #TNAME , - (SP)
EMT 14

b) Activate Task

Function: Activate the execution (via wunblocking) of
any other task belonging to the same task group.

Parameters:

TNAME = The address of the 4-character task name,
Macro calling sequence:

ASCTV TNAME
Assembly language generated from the macro expansion:

MOV #TNAME , - (SP)
EMT 15

c) Test and Set Task Group Lock Return Immediate
Function: Test and set a task group lock and return

control immediately regardless of whether the
operation was successful.

Parameters:
KEY = An eight=bit loc¢k identifier.
BUSY = The nonskip "place to go" address if the

specified task group lock was already set when
the request was executed.

Macro calling sequence:
T$SETI KEY,BUSY
Assembly language generated from the macro expansion:
MOV #KEY,-(SP)
EMT 20
«WORD BUSY

d) Test and Set Task Group Lock Wait

Function: Test and set a task group lock and wait until
the requesting task can set the lock.

Parameters :
KEY = An eiqght-bit lock identifier.
BUSY = The nonskip "place to go" address if the

specified task group lock was already set and
no queuing space is available.

Macro calling sequence:
TSSETW KEY,BUSY
Assembly language generated from the macro expansion:
MOV $¥EY, - (SP)
EMT 21
«WORD BUSY
e) Reset Task Group Lock
Function: Reset a task group lock.
Parameters:
KEY = An eight-bit lock identifier.
Macro calling sequence:
RS$SSET KEY

Assembly language generated from tihe macro

expansion:
MOV KLY, - (5P)

EMT 22

i
)]

H
5

Intertask Communication:
a) Send Message to Task

Function: Send a two-word message to any other task in
the same task group. :

Parameters:
NAME = The address of the 4-character task name.

MPKT The address of the 2-word message packet.

NORM = The nonskip "place to go" address if the
request cannot be accepted because no queuing
space is available. :

Macro calling sequence:

SSEND TNAME , MPKT ,NORM

'Assembly language generated from the macro

expansion:
MOV #MPKT , - (SP)
MOV #TNAME , -~ (SP)
EMT 23

+WORD NORM
b) Receive Message From Task

Function: Get two-word message from requesting task's
message queue,

Parameters:

NONE = The nonskip "place to go" address if there
are no messages in the task's message queue.

Macro calling sequence:
R$CEIV KNONE

Assembly language generated from the macro expansion:
CMP -(sP) ,-(3P)
EMT 24
+WORD NONE

Input/Output:
a) Request I/0 Operation

Function: Perform control functions and I/0 transfers
on peripheral devices.

Parameters:

PKT = The address of the I/O specification packet.

NORM = The nonskip "place to go" address if the
request cannot be accepted because no queuing
space is available,

Macro calling sequence:

R$QIO PKT ,NORM

Assembly language generated from the macro

expansion:
MOV #PKT, - (SP)
EMT 30

« WORD NORM
End Action Control:
a) End Action Wait

Function: Wait (via blocking) until any of the
requesting task's end action requests is satisfied.

Parameters:

NONE = The nonskip "place to go" address if there
are no outstanding end action requests.

Macro calling sequence:
ESACTW NONE

Assembly language generated from the macro
expansion:

EMT 34
- WORD NONE

b) End Action Return

Function: Return control from end action coding to the
interrupted place in the requesting task.

Parameters:
None.

Macro calling sequence:
ESACTR

Assembly language generated from the macro
expansion:

EMT 35

List Manipulation:
a) Define List

Function: Define a list and link all entries in the
list together. Can also be used to define a buffer
pool.

Parameters:
DESC = The address of the list descriptor.

Macro calling sequence:

DSLIST DESC

Assembly language generated from the macro

expansion:
MOV #DESC,~ (SP)
EMT 36

B Remove Entry From List

Function: Remove an entry from a first-in-first-out
list,

Parameters:
DESC = The address of the list descriptor.

NIONE = The nonskip "place to go" address if the
list is empty.

Macro calling sequence:
RSMOV DESC,NONE

Assembly language generated from the macro
expansion:

HMov #DESC,~ (SP)
EMT 37
« WORD NONE
c) Make Entry In List
Function: Make an entry in a first-in-first-out list.
Parameters:

DESC = The address of the list descriptor.

ENT = The address of the entry that is to be made
in the first-in-first-out list.

Macro calling sequence:

MSENT DESC,ENT

Assembly language generated from the macro

expansion:

MOV #ENT, - (SP)
MoV #DESC, - (SP)
EMT 40

Dynamic Storage:
a) Request Buffer Block
Function: Request a variable size buffer block from the
system dynamic buffer pool. Only priviledged tasks

may execute this ER.

Parameters:

SIZE = The size of the buffer block expressed in
8-word units.

NOBF = The nonskip "place to go" address if no
buffers are available.

Macro calling sequence:
GS$BUF SIZE ,NOBF

Assembly language generated from the macro

expansion:
Mov #SIZ2E,~ (SP)
EMT 41

«WORD NOBF

b) Release Buffer Block
Function: Release a variable size buffer block to the
system dynamic buffer pool., Only priviledged tasks
may execute this ER.

Parameters:

SIZE = The size of the buffer block expressed in
8-word units.

BUF = The address of the buffer that is to be
released.

Macro calling sequence:
RSBUF SIZE,BUF

Assembly language generated from the macro expansion:

MOV #BUF , - (SP)
MOV #SIZE ,~ (SP)
EMT 42

Miscellaneous:
a) Set Error Trap Address

Function: Set the address to be trapped to for ER,
~processor, and stack overflow errors. '

Parameters:

ERRA = The address to be trapped to if an ER,
processor, or stack overflow error occurs.

Macro calling sequence:
ESRSET ERRA
Assembly language generated from the macro expansion:

MOV #ERRA, - (SP)
EMT 51

b) Set Alternate Stack Address

Function: Set the address of an alternate stack to be
used in case stack overflow occurs.

Parameters:

ASTK = The starting address of the alternate stack.
Macro calling seqﬁence:

ASLSET ASTK
Assembly language.generated from the macro expansion:

MoV #ASTK,=- (SP)
EMT 52

c) Set TRAP Trap Address

Function: Set the address to be trapped to if a TRAP
trap instruction is executed from the task.

Parameters:

TRPA = The address to trap to if a TRAP instruction
is executed.

Macro calling sequence:
SSTRAP TRPA
Assembly language generated from the macro expansion:

MoV #TRPA , - (SP)
EMT 53

A-11

APPENDIX B

DEVICE DEPENDENT INFORMATION

All I/0 packets are address checked assuming a length of 9
words. However, unless the I/0 packet lies at the extreme
bottom or top of the requesting task's partition, only the
packet words that are required need be specified.

a) Teletypes and all Teletype Compatible Devices Interfaced
Via a KLll-"N"

Physical device type:
The physical device type for Teletypes and Teletype
compatible devices is 0 for one Teletype, and n-1
for more than one Teletype.
Core requirements:
I/0 handler: 213 words.
Device table: 10 words per Teletype.
Queue header: 2 words per Teletype.
Device dependent: 8 words per Teletype.
I1/0 packet format:

Words 0 to 5, as described for the general 1I/0
packet, must be specified. There 1is no device
dependent packet information and therefore words 6,
7, and 8 need not be specified.

Ttem size and format:

The item size is one byte and no special format is
assumed.

Legal functions:
Immediate mode is legal for all functions:

0 Read ($RD)

1

Write ($WR)

Device dependent storage:
Each Teletype requires 8 contiguous words of device
dependent storage. These words have the following
format:
Word 1 - (Status)

Bit 15 - Transfer direction.

0

Direction is output.

1 Direction is input.

Word

Word

Word

Word

‘Word

Bit 14 - Input request.

0 = No input request was made during an
output operation.

1 = An input request (key was struck) was
made during an output operation.

Bit 13 - End-of-line.

0 = An end-of-line character has not been
typed yet during an input operation.

1l = An end-of-line character has been
typed during an input operation.

Bit 12 - Console definition.

0 = Teletype is not considered a console
Teletype.

1l = Teletype 1is considered a console
Teletype.

Bits 11 to 8 - Empty and not used but must be
zero.,

Bits 7 to 0 - The last character input during
an input operation.

2 - {Item count)

Bits 15 to 0 - The number of remaining bytes
for an input operation. This word is not
used for output operations,

3 - (Item address)

Bits 15 to 0 - The address where the next byte
is to be stored for an input operation,
This word is not used for output
operations.

4 - (Printer CSR)

Bits 15 to 0 - The address of the teleprinter
control status register.

5 - (Printer DBR)

Bits 15 to 0 - The address of the teleprinter
data buffer register,

6 - (Keyboard CSR)

Bits 15 to 0 - The address of the keyboard
control status register.

Wword 7 - (Keyboard DBR)

Bits 15 to 0 - The address of the keyboard
data buffer register.

Word 8 - (Expansion)

Bits 15 to 0 - Empty and not used but must be
zero,

Special I/0 handler characteristics:

The handling of Teletypes is via half duplex
software; however, the Teletypes themselves must be
full duplex. If a Teletype is in output mode when
a key is struck on the corresponding input
keyboard, then the output is allowed to finish
before the keyin is started. There 1is no
type-ahead capability.

Carriage return is the only line terminating
character that is recognized. Upon encountering a
carriage return during an input operation, both a
carriage return and line feed are echoed and
inserted in the input buffer.

Rubout and line delete are the only implemented
control functions for input operations. Rubout
causes a backslash to be echoed and the last
character in the input buffer to be deleted.
Control U is interpreted as the line delete control
character. A line delete causes no echo; whatever
has been previously typed is deleted.

The position of the carriage is not checked, and
therefore the horizontal tab function is not
inplemented. Form feed and vertical tab are also
not implemented. An input buffer may be of any
size; however, after 72 echoing characters have
been typed, the carriage will not be returned.
When a carriage return is typed the carriage is
returned and the input line is terminated. If more
characters are typed than will fit in the input
buffer, the last character in the buffer is
continuously overlayed until a carriage return is

typed. When this situation occurs, the last
character to appear in the input buffer is a line
feed.

NOTEL

KL1ll interrupt vectors must be
assigned starting at #300 and
the device registers starting
at %176500. Multiple KWlls are
assigned consecutive locations
thereafter.

b) Paper Tape Reader

Physical device type:

Core

The physical device type for the paper tape reader
is 1.

requirements:
I/0 handler: 53 words.

Device table: 10 words.
Queue header: 2 words.

I/0 packet format:

Item

Words 0 to 5, as described for the general 1I/0
packet, must be specified. There is no device
dependent packet information and therefore words 6,
7, and 8 need not be specified.

size and format:

‘The item size is one byte and no special format is

assumed.

Legal functions:

Immediate mode is legal for all functions.

0 = Read (SRD)

Device dependent storage:

None.

Special I/0 handler characteristics:

c) Paper

None.

Tape Punch

Physical device type:

Core

The physical device type for the paper tape punch
is- 2,

requirements:
I/0 handler: 54 words.

Device table: 10 words.
Queue header: 2 words.

I/0 packet format:

Words 0 to 5, as described for the general 1I/0
packet must be specified. There 1is no device
dependent packet information and therefore words 6,
7, and 8 need not be specified.

Item size and format:

The item size is one byte and no special format is
assumed.

Legal functions:
Immediate mode is legal for all functions.
1 = Write ($SWR)
Device dependent storage:
None.
Special I/0 handler characteristics:
None,
d) LPll Line Printer
Physical device type:
The physical device type for the line printer is 3.
Core Requirements
I/0 handler: 116 Words
Device table: 10 Words
Queue header: 2 Words
I/0 packet format:
Words 0 to 5, as described for the general 1I/0
packet must be specified. There is no device
dependent packet information and therefore words 6,
7, and 8 need not be specified.

Item size and format:

The item size is one byte and no special format is
assumed.

Legal functions:
Immediate mode is legal for all functions.
1 = Write (SWR)

Device dependent storage:
None.

Special I/0 handler characteristics:

None.

e)

ADO1-D A/D Convertor

Physical Device Type:

The physical device type for the AaD0O1-D A/D
convertor is 4.
Core requirements:
I/0 handler: 52 words.
Device table: 10 words.
Queue header: 2 words,
I/0 packet format:
Words 0 to 5, as described for the general 1I/0
packet, must be specified. There is no device

Item

dependent information and therefore words 6, 7, and
8 need not be specified.

size and format:

The item size is two consecutive words. These

words have the following format:
Word 0 - (Terminal Connection)
Bit 15 - Empty and not used but must be zero.

Bits 14 to 12 - The hardware gain code of the
gain to be applied to the conversion.

Bit 11 - Empty and not used but must be zero.

Bits 10 to 0 - The multiplexer channel that is
to be converted.
Word 1 - (Data)

Bits 15 to 0 - Receive the converted value,

Legal functions:

Immediate mode is legal for all functions.

0 = Read (SRD)

Device dependent storage:

None.

Special I/0 handler characteristics:

None.

AFCll A/D Convertor
Physical device type:

The physical device type for the AFCll
Convertor is 5.

Core requirements:
I/0 handler: 45 words.
Device table: 10 words.
Queue header: 2 words.

I/0 packet format:

Words 0 to 5, as described for the general

A/D

1/0,

must be specified. There is no device dependent

information and therefore words 6, 7, and 8
not be specified.

Item size and format:

need

The item size 1is two consecutive words. These

words have the following format:

Word 0 - (Terminal connection)

Bit 15 - Empty and not usced bhut must be zero.

Bits 14 to 12 - The hardware gain code of the

gain to be applied to the conversion.

Bit 11 - Empty and not used but must be zero.

Bits 10 to 0 - The multiplexer channel that is

to be converted.

Word 1 - (Data)

Bits 15 to 0 - Receive the converted value.

Legal functions:
Irmmediate mode is legal for all functions.
0 = Read (S$RD)

Device dependent storage:
None,

Special I/O handler characteristics:

The maximum multiplexing rate of the AFCll is

200

channels per second; however, a single channel may

only be sampled at a maximum rate of 20 points

per

second. Failure to observe this restriction will
result in inaccurate data. The AFCll I/O handler
makes no attempt to guard against improper sampling
rates. It is left to the user to ensure that this

does not happen.

g)

UDCl1

Universal Digital Control Unit

Physical device type:

Core

The physical device type for the UDCll universal
Digital Control unit is 6.

requirements:

I/0 handler: 97 words.

Device table: 10 words.

Queue header: 2 words.

Device dependent: 1 word per UDC module.

I/0 packet format:

Item

Words 0 to 5, as described for the general 1I/0
packet, must be specified. There 1is no device
dependent information and therefore words 6, 7, and
8 need not be specified.

size and format:

The item size 1is two consecutive words. These
words have the following format:

Word 0 = (Terminal connection)

Bits 15 to 12 - The field size minus 1 of the
field to be read or written if a special
function is specified. If the function
is a normal read or write, this field is
ignored.

Bits 11 to 8 - The right most bit of the field
to be read or written if a special
function is specified. If the function
is a normal read or write, this field is
ignored.

Bits 7 to 0 - The module number of the module
to be read of written.

Word 1 - (Data)

Bits 15 to 0 ~ This word receives the module
data, right justified and zero filled, on
read functions. For write functions this
word contains the data, right justified,
to be written.

Legal functions:

Immediate mode is legal for all functions.

0 = Full word read (SRD)
1 = Full word write (SWR)
2 = Field read ($SPRD)

3 = Field write ($SSPWR)
Device dependent storage:

One word of storage is reguired for each module.
This word is used to hold the current state of the
module in core.

Special I/O handler characteristics:

The UDCll I/0 handler does not support the
interrupt capability of the UDCll. If this
capability is desired, the user must write his own
interrupt handler. It is impossible to distinguish
between input and output modules in the 1/0
handler. The user, therefore, must ensure that the
proper functions are performed on ‘a particular
module. An attempt to write an input module
results in no operation. Reading an output module
results in zeros being read.

h) RK1l1l Cartridge Disk Control
Physical device type:

The physical device type for the RK1l cartridge
disk control is 7.

Core requirememts:
I/0 handler: 139 words.
Device table: 10 words.
Queue header: 2 words.

1/0 packet format:
Words 0 to 5, as described for the general 1I/0
packet, must be specified. Words 6, 7, and 8 must
also be specified and have the following format:

Word 6 - (Disk address)

Bits 15 to 0 - The starting 1logical sector
address for I/0 transfer, drive reset,

write lock, and seek functions, This
word need not be specified for the
control reset function. RK11 disk

addresses are specified as logical sector
addresses starting with sector zero of
drive zero and continuing to the last
logical sector of drive 8. Logical
sectors are always 256 words in length.

Word 7 - (Final error status)

Bits 15 to 0 - Receive the final contents of
the error status register.

Word 8 - (Final control. status)

Bits 15 to 0 - Receive the final contents of
the control status register.

Item size and format:

The item size is one word and no special format is
assumed,

Legal functions:
Immediate mode is illegal for all functions.
0 = Read (SRD)
1 = Write (SWR)
2 = Read check ($SPRD)

3 = Write check ($SPWD)

#14 = Seek

#15 = Drive reset
$#16 = Write lock
#17 = Control reset

Device dependent storage:
None.
Special I/0 handler characteristics:
lone,
i} RF1ll Fixed Head Disk Control
Physical device type:

The physical device type of the RFll fixed head
disk control is 8.

Core requirements:

I/0 handler: 80 words.
Device table: 10 words.
Queue header: 2 words.

I/0 packet format:

Words 0 to 5, as described for the general 1I/0
packet, must be specified. Words 6, 7, and 8 must
also be specified and have the following format:

Word 6 ~ (Disk address)

Bits 15 to 0 - The starting logical disk
address. RF11 disk addresses are
specified as logical sector addresses
starting with sector zero of platter zero

and continuing to the last logical sector
on platter 8. Logical sectors are always
256 words in length.

Word 7 - (Final error status)

Bits 15 to 0 - Receive the final contents of
the error status register.

Word 8 - (Final control status)

Bits 15 to 0 - Receive the final contents of
the control status register.

Item size and format:

The item size is one word and no special format 1is
assumed.

Legal functions:
Immediate mode is illegal for all functions.

0 = Read (S$RD)

1 Write (SWR)

3

Write check ($SPWR)
Device dependent storage:
None.
Special I/0 handler characteristics:
None.
j) RC1ll Fixed Head Disk Control
Physical device type:

The physical device type of the RCll fixed head
disk control is 9.

!

Core requirememts:

I/0 handler: 80 words.
Device table: 10 words.
Queue header: 2 words.

I/0 packet format:
Words 0 to 5, as described for the general 1I/O
packet, must be specified. Word 6, 7, and 8 must
also be specified and have the following format:
Word 6 - (Disk address)
Bits 15 to 0 - The starting logical disk

address. RC11 disk addresses are
specified as 1logical sector addresses

starting with sector zero of platter zero
and continuing to the last logical sector
of platter 8. Logical sectors are always
256 words in length.

Word 7 - (Final error status)

Bits 15 to 0 - Receive the final contents of
the error status register.

Word 8 = (Final control status)

Bits 15 to 0 - Receive the final contents of
the control status register.

Item size and format:

The item size is one word and no special format is
assumed.

Legal functions:

Imnmediate mode is illeqgal for all functions.

0 = Read (SRD)
1l = Write (SWR)
3 = Write check ($SPWR)

Device dependent storage:
None.
Special I/0 handler characteristics:

None.

APPENDIX C

ERROR MESSAGES AND MEANING

The general form of all error messages is as follows:

ERR XX SEV X TNAM

Where:

ERR XX = The error number,

SEV X = The severity of the error.

TNAM = The 4-character name of the task that was running

when

the error occurred.

The following error designations are defined.

Error Severity

#1) 1
#1 2
#2 2
#3 2
#4 2
#5 1

Meaning

An illegal ER was executed from a task. TNAM
is the name of the task.

An ER was executed from the executive. TNAM
is the name of the task that was running when
the error occurred, but it is not necessarily
responsible for the error. The system is
stopped after the error message has been
printed.

A call to the set schedule request (SETRQS)
subroutine was executed which specified an
illegal task index. TNAM is the name of the
task that was running when the error occurred,
but it is not necessarily responsible for the
error. The system is stopped after the error
message has been printed.

A call to the execution request (TSKRQS)
subroutine was executed which specified an
illegal task index. TNAM is the name of the
task that was running when the error occurred,
but it is not necessarily responsible for the
error. The system is stoppéd after the error
message has been printed.

A request was made to delete a task whose
status word claimed that this task was in the
sleep queue; however, the task was not in the
sleep gueue. TNAM is +the name of the task
that made the request. The system is stopped
after the error message has beon printed.

An illegal task name was specified in an ER
that uses GETID to obtain the task index of
the requested task. TNAM is the name of the
requesting task.

#6

#7

#10

#11

#12

#13

#14

#16

#17

#20

An address check violation has occurred. This
violation is either due to an out-of-range
address or a byte address when a word address
is expected. TNAM 1is the name of the
requesting task.

An illegal device number was specified in a
request I/0O operation ER., TNAM is the name of
the requesting task.

An illegal I/0 function was specified in a
request I/0 operation ER, TNAM is the name of
the requesting task.

A call to one of the queuing subroutines
(QINSPS, QINSFS$, QOUTPS, QOUTFS) was executed
which specified an illegal gqueue number. TNAM
is the name of the task that was running when
the error occurred, but it is not necessarily
responsible for the error. The system is
stopped after the error message has been
printed.

A complete scan of the task list has occurred
without finding a runnable task. TNAM is the
name of the task that was running when the
error occurred, but it 1is not necessarily
responsible for the error. The system is
stopped after the error message has been
printed.

An unsolicited interrupt has occurred. TNAM
is the name of the task that was running when
the interrupt was received.

An illegal release of a buffer block was
attempted. This may have been caused by a
nonprivileged task attempting to release a
buffer or a bad buffer address. TNAM is the
name of requesting task.

The system stack has underflowed. TNAM is the
name of the task that was running when the
error occurred, but it 1is not necessarily
responsible for the error. The system is
stopped after the error message has been
printed.

An illegal instruction was executed from the
task TNAM.

An illegal instruction was executed from the
executive. TNAM is the name of the task that
was running when the error occurred, but it is
not necessarily responsible for the error.
The system is stopped after the error message
has heen printed.

An 1illegal immediate mode designation was
specified in a request I/0 operation ER. TNAM
is the name of the requesting task.

#24

#26

#30

The UDCll timed out. This is an impossible
happening; occurrence is due to a hardware
failure and the system is stopped after the
error message has been printed.

A terminate task execution ER was executed
while the requesting task still had
outstanding I/0 operations pending. TNAM is
the name of the requesting task.

Task stack underflow has occurred due to an
end action request or a processor error trap.
TNAM is the name of the task that was running
when the error occurred, but it 1is not
necessarily responsible for the error.

The following error messages are typed from the console task.

INSE PRM
ILL PRM XX
LATER

IOAD ERR

Insufficient parameters.

Illegal Parameter xx.

Partition busy.

Task name already defined; task table entry
occupied; undefined priority; attempt to load
in wrong partition.

APPENDIX D

GENERAL QUEUING SPACE

The various queues in the system share one generalized
gueuing space and a corresponding set of reentrant queue
manipulation routines. Queues may be ordered by priority or
simply first-in-first-out. In either case, they are
constructed as single linked lists. The queuinyg space 1is
divided into queue headers and queuing slots. The queue
headers define the individual queues, whereas the queue:slots
are used to form the queues themselves. A list of available
queue slots is maintained as a last-in-first-out 1list. The
head of this 1list is at symbolic 1location QAVLS. The
queueing space consists of three lists. Queue headers only
require entries in two of the 1lists, thus no space is
allocated in the third list for this purpose. Queue slots,
however, require entries in all three lists. The three lists
have the following format:

Queue Headers
List 1 - QSPC1lS$ (First)

Bits 15 to 0 - The index, relative to the beginning
of the lists, of the first entry in the queue.
If the queue is empty, then this word is zero.

List 2 ~ QSPC2$ (Last)

Bits 15 to 0 - The index of the last entry in the
queue. If the queue is empty, then this word
contains the index of the queue header itself,

Queue Entries
List 1 - QSPCl$ (Next)

" Bits 15 to 0 - The index of the next entry in the
queue, If this 1is the 1last entry in the
queue, then this word is zero.

List 2 - QSPC2$ (Priority or Data)

Bits 15 to 0 - If the queue is a priority ordered
queue then this word contains the priority
key; otherwise, this word contains 16 bits of
data.

List 3 - QSPC3$ (Data)

Bits 15 to 0 - 16 bits of data.

APPENDIX E

DEVICE TABLE

The device table is wused to control the transfer of
information between a device and core memory. The table
consists of 10 lists each of which has a one-word entry per
device. Each 1list is addressed by device index (device
number times two) to locate information pertaining to a
specific device. The device dependent, as well as the device
independent, routines access these lists to store temporary
information and to retrieve device parameters. The 10 lists
have the following format:

List 1 - DT1$ (Device Status and Functions)

Bits 15 to 8 - The current device status
-1 = Device is performing an I/O operation.

0 = Device is idle.
+1 = Device is down and out of service.

Bits 7 to 0 - Legal function mask. A bit is set
for every power of 2 that is a legal function
code. For example, if 0 and 3 are the only
legal functions, then the function mask would
be 11.

List 2 = DT2$ (Device Queue and Initial Timeout)

Bits 15 to 8 - The queue number of the primary

device queue. If more than one queue is
required for a particular device (i.e.,
Teletypes), the additional queues are

addressed relative to the primary queue.

Bits 7 to 0 - Initial timeout value in device time-
out units (units are system generatable).

List 3 - DT3$ (I/0 Packet Address)

Bits 15 to 0 - The address of the I/0 packet that
defines the operation currently being
performed.

List 4 - DT4$ (Device Type and Characteristics)

Bits 15 to 8 - The device type.

0 = One Teletype or Teletype compatible
terrinal (i.e., VTO5 or VTO06).

1

Paper tape reader.

2

Paper tape punch.

3 = LP11l Line Printer
4 = ADO1-D high level A/D‘convertor.
5 = AFCll1l A/D convertor.
6 = UDC-1ll universal digital control.
7 = RK1l1l disk cartridge control.
8 = RF1l1l fixed head disk control.
9 = RC11 fixed head disk control.
Bit 7 = Queuing flag. This flag signifies whether
I/0 packets are to be queued before calling

the device handler.

0 = Queue I/0 packets before calling the
device handler.

1 = Do not queue I/0 packets before calling
the device handler.

Bit 6 - Immediate mode flag. This flag signifies
whether immediate mode I/0 is legal for the
device.

0 Inmediate mode I/0 is legal.
1 = Immediate mode I/0 is not legal.
Bits 5 to 2 ~ Empty and not used.

Bits 1 to 0 - The number of bytes contained in each
item to be processed in an I/0 operation.

0 = One byte per item (character oriented
devices).

1l = Two bytes per item (word oriented
devices). .

2 = Four bytes per item (double word devices).

3 = Eight bytes per iterm (quadruple word
devices).

List 5 - DT55% (Task Index)

Bits 15 to 0 - The task index of the task for which
the current I/0 operation is being performed.

List 6 - DT6$ (Physical Index and Timeout)

Bits 15 tc 8 - The physical index of the device.
This index 1s wused by the variocus device
handlers to index information that is only
pertinent to that type pf device.

List

List

List

List

Bits 7 to 0 - Current timeout value in device time
out units. This value is decremented every
device time out unit if the device is active.
If the value is decremented to zero, the
device is timed out.

7 - DT7$ {(Item Count)

Bits 15 to 0 - The number of items remaining or the
initial number of items in the current I/0
operation,

8 - DT8$ (Item Address)

Bits 15 to 0 - The address of the next item or the
initial item address of the current I/O
operation.

9 - DT9$ (Handler Entry Point)

Bits 15 to 0 - The entry point address of the

device handler.

10 - DT10$ (Timeout Entry Point)

Bits 15 to 0 - The timeout entry point address

of the device handler.

APPENDIX F

TASK CONTROL TABLE

The task control table is used by the executive to control
the execution of the various multiprogrammed tasks in the
system. It is composed of 10 lists, each of which has a
one-word entry per task. These lists hold all the necessary
information about a task. Each list is addressed by the task
index to locate information about a specific task. Tasks at
the front of the lists have a higher priority than tasks at
the end of the 1lists. Thus a task's index is also its
priority. The 10 lists have the following format:
List 1 - TSK1$ (Task Status)
Bit 15 - Execution (Blocking)
0 = Task is not in execution.
1 = Task is in execution.
Bit 14 - Periodicity
0 = Task is not periodic.
1 = Task is periodic.
Bit 13 - I/O Wait (Blocking)
0 = Task is not in I/O wait.
1 = Task is in I/0 wait.
Bit 12 - Sleep Queue (Blocking)
0 = Task is not in the sleep queue.
1 = Task is in the sleep queue,
Bit 11 - Suspend (Blocking)
0 = Task is not suspended.
1 = Task is suspended.
Bit 10 - Inhibit (Blocking)
0 = Task is not inhibited.
1 = Task is inhibited.
Bit 9 - Execution Request

0 = No outstanding execution request.

1

Outstanding execution request.

Bit 8 - Resource Wait (Blocking)

0 Task is not in resource wait.

1

]

Task is in resource wait.
Bit 7 - Immediate Execution

0 = Task is not to be executed at
startup.

1 = Task is to be executed at startup.
Bit 6 - Definition (Blocking)

0

[l

task defined for this entry.

1

Task not defined for this entry.
Bit 5 - In/Out (Blocking)
0 = Task is in core.

1

Task is not in core.
Bit 4 - Residency

0 = Task is core resident.

1l Task is disk resident.
Bit 3 - Mode

0

Task is privileged.

1

]

Task is not privileged.

Bit 2 - End Action Wait (Blocking)

0 Task is not in end action wait.

1 Task is in end action wait.

Bit 1 - The Periodic Type Bit. This bit
only has meaning if bit 14 is a 1.

0 = Task is asynchronous periodic.
1 = Task is synchronous periodic.
Bit 0 - Stop Task Bit.

0 = Task is not in the process of
being stopped.

1 = Task is in the process of being
stopped.

List

List

List

List

List

List

List

List

List

2 - TSK2$ (Entry Address)

Bits 15 to 0 - The starting address of the task and
the initial stack register contents.

3 - TSK5% (Group and Message Queues)

Bits 15 to 8 - The queue number of the task's
message queue.

Bits 7 to 0 -~ The group number of the group that
the task is a member of.

4 ~ TSK6S$ (Task Name)

Bits 15 to 0 - The first two ASCII characters of
the task name.

5 = TSK7S$ (Task Name)

Bits 15 to 0 - The second two ASCII characters of
the task name.

6 - TSK8$ (Period)

Bits 15 to 0 - The low-order 16 bits of the task
period in line frequency units. This word
only has meaning if bit 14 of word one is a 1.

7 - TSK9$ (Period)

Bits 15 to 0 - The high-order 16 bits of the task
period in 1line frequency units. This word
only has meaning if bit 14 of word one is a 1.

8 - TSK1l$ (Common and Task Partition)

Bits 15 to 8 - The partition number of the task's
common data partition.

Bits 7 to 0 - The partition number of the task's
execution partition.

9 - TSK12S (Device)

Bits 15 to 8 - The device number of the disk that
the task is stored on.

Bits 7 to 0 - Empty and not used.
10 - TSK13$ (Low Disk)

Bits 15 to 0 - The starting disk address of the
task.

NOTE

TSK12$ and TSK13$ are only needed if
nonresident tasks are being supported.
If the system is assembled as a core-only
system, then these lists are not
allocated any space.

APPENDIX G

RESOURCE ALLOCATION TABLE

The resource allocation table is a dynamic table that is used
to hold interlock keys for the various resources in the
system. The size of the table is system generatable and
therefore enough room may not be available to hold all
resource interlock keys at any one time. Idle resources,
however, require no room in the table. Only when a resource
becomes active (someone is actively using it) does an entry
appear in the table.

Three internal executive functions are provided to manipulate
this table. " These functions are carried to the user level
via 6 ER's. The TSSETI, TS$SETW, and R$SET ER's are provided
for user specified resource interlock keys. Up to 256
interlock keys may be specified per task group. The ISINIT,
ISINTW, and RS$SELS ER's are provided for the system I/0
devices. ’

The resource allocation table is composed of a list with
3-word. entries. The head of the list is at symbolic location
RATBLS$ and each entry has the following format:
Word 1 (Type)
Bits 15 to 8 - The type of entry.

0

Entry is empty.

1

[}

System device entry.
2 = Task specified entry.

Bits 7 to 0 - The format of this byte is dependent
upon the value of bits 15 to 0.

If equal to zero, then this byte is also zero.

If equal to one, then this byte contains the
device number of the device.

If equal to two, then this byte is the group
of _the task that specified the interlock
key.

Word 2 (Key and Queue)

Bits 15 to 8 - The gqueue number of the queue
assigned to the entry,

Bits 7 to 0 - The format of this byte is dependent
upon the value in bits 15 to 8 of RATB1S.

If equal to zero, then this byte does not
contain meaningful information.

If equal to one, then this byte is zero.

If equal to two, then this byte 1is a task
supplied 8-bit interlock key.

Word 3 (Owner)
Bits 15 to 0 - The task index of the current owner

of the interlock key. 1If the entry is empty
this word is not meaningful.

APPENDIX H

PARTITION TABLE

The partition table defines the fixed allocation of core
Memory . The table consists of 3 lists, each of which has a
one-word entry per partition. Up to 256 divisions
(partitions) of core memory may be defined. Each division
can be of any size, however, they may not overlap each other.
All core resident tasks require a partition exclusively to
themselves. Nonresident tasks may share a partition with
other nonresident tasks. The partition table must be ordered
in ascending order of core address. The 3. lists have the
following format:

List 1 - AREAlS (Status and Area Queue)

Bit 15

The busy flag.
0

Partition is not busy and is free to use.

1 = Partition is busy and is currently
occupied by a task.

Bits 14 to 8 - Empty and not used.

Bits 7 to 0 - The queue number of the partition
wait queue. This queue defines the waiting
list of tasks that are waiting to be loaded
into the partition.

List 2 - AREA2S$ (Partition Address)

Bits 15 to 0 - The starting core address of the
partition.

List 3 - AREA3S (Partition Status Table Address)

Bits 15 to 0 - The address of the partition status
table currently assigned to the partition. If
zero, the no partition status table is
assigned.

APPENDIX I

SLEEP QUEUE

The sleep queue is a linked list of tasks ordered by the time
of day that they are to become eligible to run on the.
processor., This list is wused to implement periodic task
execution, time of day task execution, timed interrupt, and
timed wait. A pointer to the head of the list is contained
at symbolic location SLQL$. Core space for the sleep queue
is obtained dynamically from the system buffer pool. An
8-word buffer is wused for each entry. Sleep queue entries
have the following format:

Word 1
Bits 15 to 0 - The address of the next entry in the
list. If this is the last entry in the list,
this word is zero.

Word 2

Bits 15 to 0 - The task index of the pertinent
task.

Word 3
Bits 15 to 0 - The type of entry

0

Timed wait ER.

1

Time interrupt ER.

2 = Asychronous periodic task request.

w
]

Synchronous periodic task request.

Time of day task request.

S
]

Word 4

Bits 15 to 0 - The low-order 16 bits of the time of
day that the request is to occur.

Word 5

Bits 15 to 0 — The high-order 16 bits of the time
of day that the request is to occur.

Word 6

Bits 15 to 0 - The end action "place to go" address
if the entry is a type 1 entry. Otherwise
this word does not contain meaningful
information.

qud 7

Bits 15 to 0 - The address of the partition status
table if the entry is a type 1 entry.
Otherwise this word does not contain
meaningful information.

I-1

APPENDIX J

PARTITION STATUS TABLE

The partition status table is a 16-word block (optional 24 if
16 I/0 channels are selected) of contiguous memory that is
- used to store information about the task that is currently
resident in a partition. A partition status table is
allocated only for those partitions that currently have tasks
resident in them. The partition tables for partitions that
are utilized by nonresident tasks are allocated dynamically
from the dynamic storage pool. The partition status table
for a particular partition is pointed to by the corresponding
partition entry in AREA3S$ in the partition table (see
Appendix H). A partition status table has the following

format:
Word 1 ($SSK)

Bits 15 to 0 - The suspended stack address of the
task that is currently in the partition.

Word 2 (TRP)

Bits 15 to 0 - The address to trap if a TRAP
instruction is executed. This address is
initially set to point to the illegal
instruction exit and may be reset to a task
address via the set trap trap ER.

Word 3 ($ASK)

Bits 15 to 0 - The alternate stack address to be
used if stack underflow is detected. This
address is initially set to the initial stack
address of the task. The address may be set
to point to an alternate stack area via the
set alternate stack ER.

Word 4 ($SIRQ)

Bits 15 to 0 - The total number of outstanding I/0
requests that have been made by the task.

Word 5 ($SERQ)

Bits 15 to 0 - The total number of outstanding end
action requests. that have been made by the
task.

Word 6 ($FAR)

Bits 15 to 0 - The address of the first argument on
the user's stack. This word is used by the ER
code to find the top of the wuser stack on
errors. ’

Word

Word

Word

Word

Word

7 (SERR)

Bits 15 to 0 - The address of the task's error
handling routine for severity 1 errors. This
address is initially set to point to the
system error exit but may be set by a user
task via the set error address ER.

8 (SEAE)

Bits 15 to 0 - If an EAE is present, this word is
used to store the shift count register when
the task is not running. Otherwise, it is not
used.

9 (SEAE+2)

Bits 15 to 0 - If an EAE is present, this word is
used to store the multiplier/quotient register
when the task is not running. Otherwise, it
is not used.

10 (SEAE+4)

Bits 15 to 0 - If an EAE is present, this word is
used to store the accumulator register when
the task is not running. Otherwise, it is not
used.

11 (SRsQ)

Bits 15 to 8 ~ Empty and not used.

Bits 7 to 0 - The gqueue number of the resource wait
queue the task is currently in. If the task

is not in resource wait, this byte 1is empty
and not used.

Words 12 to 15

Word

Bits 15 to 0 - Empty and not used.
16 (SLST)

Bits 15 to 8 - If only 8 I/0 channels are selected,
this byte is empty and not used. Otherwise,
this byte contains the status of I/O channels
8 thru 15. A one bit signifies an assigned
channel, Bits are set only for those channels
that have been assigned.

Bits 7 to0 - The status of I/O channels through 7.
A one bit signifies an assigned channel. Bits
are set only for those channels that have been
assigned.

Words 17 to 24 (or 32) ($CHN)

Bits 15 to 8 - The number of outstanding I/0
requests for the channel.-

Bits 7 to 0 - The device number of the device
assigned to the I/O channel.

NOTE

I/0 channel capability is
not implemented and
therefore words 17 to 24
are neither allocated nox
used.

APPENDIX K

OPERATOR'S CONSOLE COMMAND DATA BLOCK

Commands that are recognized by the operator's console task
are each described by a 6-word data block. These data blocks
are generated via the keyin definition macro KEY (see
operator's console task). Each command data block has the
following format:

Word 1 (Name)

Bits 15 to 0 - The first two ASCII characters of
the command mnemonic.

Word 2 (Name)

Bits 15 to 0 - The second two ASCII characters of
the command mnemonic.

Word 3 (Mask)

Bits 15 to 0 - The parameter type mask. Each bit
from right to left corresponds to one
parameter. A one bit indicates a numeric
parameter and a zero bit an alphanumeric
parameter.

Word 4 (Max,Min)

Bits 15 to 8 — The minimum number of parameters
that are required by the command.

Bits 7 to 0 - The maximum number of parameters that
are allowed by the command.

NOTE

The absolute maxirmm
number of parameters for
all keyins is 16.

Word 5 (Code,Flag)

Bits 15 to 8 - If the keyin translates directly
into an ER, this byte contains a flag to
indicate whether or not the ER has a skip
return. Zero indicates no skip return whereas
nonzero indicates a skip return. If the keyin
does not translate directly into an ER, this
byte may be used to contain auxiliary data.
The data will appear in register Rl when the
command execution routine is entered.

Bits 7 to 0 - If the keyin translates directly into
an ER, this byte contains the ER function
code. Otherwise, this byte may contain
auxiliary data. The data will appear in
register R2 when the command execution routine
is entered.

Word 6 (Address)

Bits 15 to 0 - The starting address of the cormand
execution routine.

APPENDIX L

TASK STACK FRAMES

Each task under RSX11lA has it's own stack area. This is
accomplished via software multiplexing of the stack register
(R6). When the processor is switched frdm one +task to
another, the stack register is loaded with the stack address
of the new task. Control is then given to the task with the
stack register pointing to the top of its stack.

The task stack is used to save the context of an active task
when it is not in control of the central processor. This"
context consists of the general registers RO thru R5 and the
task's PS and PC words. The stored context has the following
format: ‘

SP+16 The processor status word (PS).
Sp+14 The program counter (PC).
SP+12 Register RO.
SP+10 Register Rl.
SP+8 Register R2.
. SP+6 Register R3.
SpP+4 Register R4.
SP+2 Register R5.
SpP+0 A zero word. '

A task must ensure that 9 stack words are always available to
store its context (i.e., a higher priority task could become
runnable at any time). The actual wvalue of the stack
register is stored in the task's partition status table.

Executive requests also cause information to be stored on the
task stack. A minimum of 19 stack words must be reserved by
the task for this purpose (see Executive Requests). These
stack words are used to store the task's and the executive's
registers while the ER is executing. These stack words have
the following format:

SP+40 Second ER parameter if required.

SP+§8 First ER éarameter if required.

SP+36 The processor status word of the task (PS).
SP+34 The program counter of the task (PC) .

(address of ER plus 2).

SP+32° Task register RO.

SP+30
SP+28
SP+26
SP+24
SP+22

SP+20

SP+18

SP+16

SP+14
SP+12
SP+10
SP+8
SP+6
SP+4
SP+2

SP+0

Task register Rl.
Task register R2.
Task register R3.
Task register R4,
Task register R5.

A zero word (used to remove arguments on
to task).

A pointer to the previous first argument
nested ER (normally zero).

The processor status word of the execu
(PS) .

The program counter of the executive (PC).
Executive register RO.

Executive register Rl.

Executive register R2.

Executive register R3.

Executive register R4.

Executive register R5.

A zero wora.

NOTE

The 9 stack words needed to store the

task's
needed to

context and the 19 stack words

execute ER's overlap (i.e.,

9419 words are not required).

[
|
[\

exit

if

tive

APPENDIX M

SOFTWARE CONFIGURATION PARAMETERS

Software configuration parameters allow for generation of
many different software/hardware configurations. These
parameters can be classified into four groups; 1) Those that
select executive requests, 2) Those that define table sizes
and additional functional capabilities, 3) Those that select
I/0 drivers, 4) Those that select operator's console keyins.
All configuration parameters are denoted by symbols whose
second and third characters are both dollar signs. The
following describes the classes of parameters and the
parameters within each class.

1) Parameters That Select Executive Requests

Parameters in this class need only be defined to select the
required service. Each parameter is listed below along with
the subsection(s) in which the request(s) is defined.

AS$SCSP - Activate and suspend task execution (2.2.4.1 and
2.2.4.2). . :

B$$UFR - Dynamic storage .allocation (2.2.92.1 and 2.2.9.2).
CSINT - Cancel timed interrupt (2.2.2.3).

D$SELT - Delete task from system (2.2.1.2).

DSS$LST - Define list structure (2.2.8.1).

ESSACR - End action return (2.2.7.2).

E$SACW - End action wait (2.2.7.1).

G$SLCK - Task group lock manipulation (2.2.4.5).

LS$SSIST - Make/remove entry from list (2.2.8.2 and 2:2.8.3).
R$SCEV - Receive message from task (2.2.5.2).

R$$DAT - Request current date (2.2.2.5).

R$SINT - Request timed interrupt (2.2.2.2).

R$SQOAX - Request asynchronous periodic task execution
(2.2.3.3).

R$SQEX - Request task execution (2.2.3.1).
R$$QIO - Request I/0 operation (2.2.6.1).

R$SQSX - Request synchronous periodic task execution
(2.2.3.2).

R$$OTX - Request task execution at time of day (2.2.3.4).

RSSTOD - Request time of day (2.2.2.4).

S$SASK - Set alternate stack address (2.2.10.2).
S$SEND - Send message to task (2.2.5.1).

SS$SSERR - Set error trap address (2.2.10.1),
S$STRP - Set TRAP trap address (2.2.10,3).
WSSAIT - Request timed wait (2.2.2.1).

2) Parameters That Select I/0 Drivers

Specific I/0 drivers are selected by the definition of the
corresponding parameter.

ASSSD0O1 - AD01-D A/D convertor driver.
ASSFC1l - AFCll A/D convertor driver

C$SNSL - Multi-terminal driver. This parameter must be
defined to the number of terminals minus one,

L$$P11l - LP1l line printer driver

P$SSAPP - PCll paper tape punch driver.

P$SAPR - PCll paper tape reader driver.

R$SSCDS - RCl1l disk controller driver.

RSFDS - RF1ll disk controller driver.

RSSKDS - RK1l1l disk controller driver.

USSDC1 - UDCll Universal digital control unit. = This
parameter must be defined to the number of UDCll

functional modules.

3) Parameters That Define Table Sizes And Additional
Functional Capabilities

In general these parameters must be defined to a specific
value. However, D$$ISC and ESSEAE need only be defined to
select the desired capability.

D$SBGl - The panic dump routine, This parameter must be
defined to the CSR of the device that is to receive
panic dump output (i.e., #177564 for console terminal,
#177554 for PCll paper tape punch, #177514 for the LP11
line printer, etc).

NOTE

Dumps may not be output to block
oriented devices.

CS$SSORE - The number of 8-word blocks that are to be allocated
for dynamic storage allocation. The space for these
blocks is allocated from the top of memory down by the

initialization code and is physically taken out of the
last partition that has been defined in the partition
table. The default value is 32 blocks (256 words).

D$$CNT - The device time out cycle count, This parameter
must be defined to the number of line frequency units
between device time out periods. The default value is 6
(100 milliseconds).

Q$SSLT - The number of general queuing space storage slots.
The default value is 10 slots.

R$$SRC - The number of entries in this resource allocation
table. This - parameter need not be defined if the task
group lock manipulation requests have not been selected.

T$SSLT -~ The number of extra task slots that are to be
allocated in the task table so new tasks may be.loaded
into the system on-1line.

D$$ISC - Selects a core-disk task system,

ESSEAE - Selects support of the extended arithmetic unit.

C$$TSK - Selects console task.

4) Parameters That Select Operator's Console Keyins

Parameters in this class need only be defined to select the

desired keyin. Each parameter is listed below along with the

subsection in which the keyin is defined

KS$ACT - Activate task execution (3.2.9).

K$$BRK -~ Execute breakpoint trap (3.2.13).

K$SDAT - Enter date (3.2.3).

K$SDEP - Deposit memory (3.2.2).

K$$DLT - Delete task (3.2.11).

K$$EXM -~ Examine memory (3.2.1).

K$$LOD - Load task (3.2.12).

K$$QAX - Request asynchronous periocdic task execution
(3.2.6).

K$SSQEX - Request task execution (3.2.5).
K$$0SX - Request synchronous periodic task execution (3.2.7).
K$$QTX

K$$SSPN - Suspend task execution (3.2.10).

Request task execution at time of day (3.2.8).

K$STIM

Enter time of day (3.2.4).

APPENDIX N

PANIC DUMP ROUTINE

The panic dump routine (PANIC) is selected by the
configuration parameter D$$BGl and resides in lower memory
just above the system stack and interrupt vectors. Its
purpose is to provide formatted octal dumps on the device
specified by D$$BGl. :

The panic dump routine is called in two ways: 1) detection
of a fatal system error, 2) _a forced entry via the console
switches (at symbolic address PANS$). On entry the current
processor status and general registers RO through R6 are saved
in an internal save area. Register R6 is then loaded with
the address of a temporary stack and a RESET followed by a
HALT instruction is executed.

The panic dump routine receives its dump limits via the
switch register. After the initial halt, the low dump
address is entered in the switch register, CONT is depressed,
the high dump address is entered in the switch register and
CONT is again depressed. The desired dump will cormence on
the specified device (D$$BGl). When the dump is finished,
the panic dump routine again executes a halt in anticipation
of another set of dump limits.

The first line of output is always the contents of the
processor status word and general registers RO through R6 at
the time the panic dump routine was called. The first word
on this 1line is the address of the internal save area and
should be ignored.

All dump lines have the same format including the 1line with.
the processor status and general registers. An output line
is identified by its starting address followed by the
contents of eight consecutive memory locations. Each
location is edited as a word and as two bytes.

The following example illustrates the use of the panic dump
routinte,

Dump memory from location 0 to location 2000:

Step 1 - Halt the processor.

Step 2 - Enter the address of PAN$ in the switch register and
depress LOAD ADDRESS and then START. The processor will
immediately halt.

Step 3 - Enter 0 in the switch register and depress CONT.
The processor will again halt.

Step 4 - Enter 2000 in the switch register and depress CONT,
The dump will commence on the specified device.

APPENDIX O

SPECIFICATION FOR 8K SYSTEM

An 8K core-only RSX1lA(DEC-11-IRSAA-A-LA, -Pa)System is
available from the Software Distribution Center. This
system includes all the executive routines previously
described. I/O handlers are:

Device Number

1 Teletype - 0
Paper Tape Reader - 1
Paper Tape Punch - 2
LPll Line Printer - 3
ADO1-D A/D Convertor - 4
AFCll A/D Convertor = 5

1 UDCll Universal Digital Control Unit- 6

The Panic Dump is handléd by the line printer. All of the
functions of the console Teletype are enabled.

In addition to the console Teletype task, four tasks may be
installed on-line and four paritions are defined with the
following starting addresses. (Partition number one is
reserved for the console task.)

Partition 2: 21744
Partition 3: 25744
Partition 4: 31744
Partition 5: 35744

Other table sizes and capabilities are:

Number of 8-word blocks in dynamic pool: 50
Device time out cycle: 100 milliseconds
Number of queue slots: 20

Size of resource allocation table: 2

APPENDIX P

I/0 HANDLER INTERFACE

The device handlers and the RSX11lA system interface with one
another through the device tables (in module TABLES). The
‘device tables consist of ten lists with one entry in each
list for each device. Information for the device table is
supplied at assembly time through the DEVICE macro
instruction and at run time from the parameters for the I/O
request, (e.g., the I/0 packets; see section 2.2.6).

The macro DEVICE will generate entries into the device table.
DEVICE is of the form:

DEVICE HENT,IENT,TENT,DLBL,VECT,FMSK,TIME,FLGS,TYPE,INDX
where

"HENT is the I/O handler entry point.

IENT is the I/O handler interrupt point.

TENT is the timeout entry point.

DBL is the global device index or 1label name for the
word index into the device table.

VECT is the interrupt vector address.

FMSK is the legal function mask. A bit is set for each
power of 2 that is a legal function., For example, if 0
and 3 are the only legal functions, the mask would be
ll. :

TIME is the initial timeout value in number of units
(units specified at system generation time).

FLGS is a numeric device type (not currently used).

INDX is the physical index of the device. This index is
used by various device handlers to index information
pertinent to that type of device.

Device handlers are called from module RQIO, request I/O,
with RO containing the word index for that device into the 10
device table lists. A detailed descritpion of the device
table lists is given in Appendix E.

At the initial entry to the device handler a JSR PC,GTPK1l$ is
performed. Global routine GTPK1l$ transfers information from
the I/0 packet to the device tables. Specifically, GTPK1S$
performs the following functions:

1. Checks for device busy. If busy, exits calling
location+2,

2. Checks queue for I/O request for this device. If none,
exits calling location+2.

3. Saves packet address, task index, and sets initial
timeout value.

4, Moves the immediate item count and item address from the
I/0 packet to the device table lists.

5. Sets device index and exits calling location+4.

The I/0 handler performs the I/O operation. After I/O has
been completed (or attempted, but in error), a call is made
to global subroutine IOEND via the PC. The entry conditions
are: RO contains the final packet status and Rl contains the
device index.

RO =0 The I/0 operation was completed without
error.

RO = 2 I1/0 operation ended in error.

RO = 3 I/0 operation timed out before being
completed.

RO = 4 Specified device is down.

IOEND performs the following functions:
1. Sets the device to idle in the device table.
2. Sets the packet status from RO.

3. Clears I/O0 hold or end action wait bits and
reschedules tasks.

Activate task, 2-18

keyin, 3-8
Address for alternate stack, 2-42
Alphanumeric parameters, 3-2
Alternate stack address, 2-42
Array addressing, 1-9
Assembling system, 5-7

Blocking bit, 2-17

Breakpoint trap (keyin), 3-11
Buffer blocks, 2-38, 2-39
Buffer pool, 2-34

Calling sequence for Executive
request, 2-3

Cancel timed interrupt request, 2-9

Carriage return, B-3

Command parameters, 3-2

Commands at console, 3-1

Commands recognized by operator's
console Task, K-1

Command syntax, 3-2

Common data partition (definition),
1-3

CONFIG file, 5-5

Console keyin parameter, M-3

Console Task, operator's, 3-1

Context, 2-33

Control functions, B-3

Conventions in manual, 1-9

- Core memory, H-1

Core residency, 1-7, 1-9

definition of , 1-2

Data block, K-1
Date keyin command, 3-4
Decimal fields, 3-2
Decimal numbers, 1-9
Define list, 2-33 :
Definitions of terms, 1-2
Delayed execution (definition), 1-2
Delete task (keyin), 3-9
Deposit memory (keyin), 3-4
Device dependent information, B-1
Device index, E-1
Device table, E-1
Disk address (definition), 1-3
Disk device (definition), 1-3
Disk residency, 1-9

definition of, 1-2

Dollar sign ($) (writing convention),

1-9
Dynamic storage pool,
5-6

2-38, 2-39,

8K system specification, O0-1
End action control, 2-32

End action purpose, 2-26

End action return, 2-33

End action wait, 2-32

End action wait ER, 2-28

INDEX

Enter date (keyin), 3-4
Enter time (keyin), 3-5
Entry address (definition), 1-3
ER Descriptions, 2-4
delete Task from system, 2-5
dynamic storage, 2-38
end action control, 2-32
Input/Output, 2-25
intertask communication, 2-23
list manipulation, 2-33
miscellaneous, 2-40
Task initiation, 2-11
Task synchronization, 2-17
Task termination, 2-4
timer, 2-6
also see Executive requests
Error handling, 1-8
for keyin, 3-2
Error messages, C-1
typed from console Task, C-3
Errors that cause traps, 2-40
trap address, 2-40
Examine memory (keyin), 3-3
Executive partition (definition),

1-3 v
Executive request, 2-11
flag, 2-4

Executive communication, 2-1

Executive request parameters, M-1

Executive request summary, A-1

Executive requests (ER's), 2-1
calling sequence, 2-3
parameters, 2-3

Features of RSX-11la, 1-1, 1-6

Fixed allocation of core memory,
H-1

Fixed priority of scheduling, 1-6

Four steps to system generation,
5-1 :

Functional capabilities parameter,
M-2

Functions provided by operator's
console task, 3-1

GENFIL program, 5-1, 5-6

Hardware configurations, 1-1
minimum, 1-2
Hardware/software configuration,
5-1
"Hold" I/O operations, 2-25

Idle resources, G-1

Immediate execution (definition),
1-2

Index (definition), 1-9

Index of Task, F-1

Initiation request, 2-11

Input/Output, 2-25

Internal executive functions, G-1

Interruptible services, 2-1
Intertask communication, 2-23
I/0 driver request parameters,
I/0 facility, 1-8

I/0 handler interface,
I/0 hold, 2-26

I/0 packet, 2-25

p-1

Keyin commands
Activate Task,
Breakpoint trap,
Delete Task, 3-9
Deposit memory, 3-3
Enter date, 3-4
Enter time, 3-5
Examine memory,
Load Task, 3-9
Request asynchronous periodic

Task execution, 3-6
Request synchronous periodic Task
execution, 3-7
Request Task execution, 3-6
Request Task execution at time of
day, 3-7
Suspend Task,

3-8
3-11

3-3

3-8

Keyins at console, 3-1
Key to resource, 2-19
Last-in-first-out, 2-26

Line terminating character, B-3
Linking system, 5-8

List descriptor, 2-34

List manipulation, 2-33

Lists, E-1, F-1
Load Task (keyin),
Lock ER's, 2-19

3-9

Macro definition, 2-4
Make entry in list, 2-37
Message queue (definition),
Modularity, 1-7
Multiple level buffering,
Multiprogramming, 1-6
Multi-user environment,

1-3
2-27
1-7

Noninterruptible services, 2-1
Nonperiodic (definition), 1-2
Nonprivileged tasks (definition), 1-3
Nonskip return, 2-3

Numbers, writing convention for, 1-9
Numeric parameters, 3-2

Octal fields, 3-2

Octal numbers, 1-9

Operator communication, 3-1
Operator's console command data

block, K-1
Overhead, minimum, 1-7
Panic dump routine, 5-6, N-1
Parameter fields, 3-2
Parameter file generation, 5-5

Parameters
for ER's, 2-3
that define table sizes and
additional functional
capabilities, M-2
that select executive requests,
M-1
that select I/0 drivers, M-2
that select operator's console
keyins, M-3
Partitions, 1-4
definition of, 1-3
Partition status table, J-1
Partition table definition,
Partition table, H-1
Periodic (definition), 1-2
Periodic task execution request
asynchronous, 2-14
synchronous, 2-13
Peripherals, 1-1
"Place to go" address,
Pound sign (#), 1-9
Priority of Task, F-1
Privileged tasks (definition),

5-1, 5-4

2-3, 2-25

1-3

D-1
5-7, b-1
D-1

Queue headers,
Queue slots,
Queuing space,
Receive message from Task, 2-24
Reentrancy, 2-28
Reentrant services,
Release buffer block, 2-39
Remove entry from list, 2-36
Request asynchronous periodic Task
execution, 2-14
keyin, 3-6

2-1

Request buffer block, 2-38
Request date, 2-11
Request I/O operation, 2-25

Request synchronous periodic task

execution, 2-13
keyin, 3-7
Request task execution, 2-11
keyin, 3-6

Request Task execution at time of
day (keyin), 3-7
Request timed interrupt,
Request timed wait, 2-6
Request time of day, 2-10
Reset Task group lock, 2-22
Residency, core and disk, 1-9
Resource allocation table, 5-7, G-1
Resources, idle, G-1
Responses to GENFIL,

2-8

5-5

Sample Tasks, 4-1

Send message to Task, 2-23
Serially reusable services,
Set alternate stack address,
Set error trap address, 2-40
Set TRAP address, 2-43

2-1
2-42

Skip return, 2-3
Sleep gqueue, I-1
Software configuration parameters, M-1
Special I/0O handler characteristics,
B-3
Stack area, L-1
overflow, 2-40
underflow, 2-26
Status table, positiom, J-1
Summary of Executive requests, 2-1,

A-1
Suspend Task, 2-17
keyin, 3-8
Synchronous periodic task execution,
2-13

System error, fatal, N-1

System generation, 5-1
example, 5-8

System specification, 8K, O0-1

Table size parameters, M-2

Task control table, F-1

Task (definition), 1-2

Task errors, 1-8

Task execution request,
asynchronous, 2-14
synchronous, 2-13

Task groups, 1-4
definition, 1-3

Task initiation, 2-11

Task name (definition), 1-3

Task slots, 5=7 °

Task stack frames, L-1

Task synchronization, 2-17

Task table definitions, 5-2, 5-5

Task termination, 2-4

Terminate Task execution, 2-4

Terminology (definition), 1-2

Test and set Task group lock return,

immediate, 2-19
Test and set Task group lock wait,
2-21

Timed wait ER, 2-27

Time keyin command, 3-5

Time out cycle, 5-7

Timer, 2-6

TRAP trap address, 2-43

TXTOUT file, 5-5

Underflow stack, 2-26
Unrunnable task, 2-17

DEC-11-IRSAA-A-D
RSX-11A Programmers
Reference Manual

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page) .

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
requireé for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)

O
O
O
E] User with little programming experience
(] student programmer

O

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City : State Zip Code
. or
Country

If you do not require a written reply, please check here. [j

——————————————— — FoldHere - - - ——-— — — = — — — — — — — __ _ _

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

dlilgliltiall

Digital Equipment Corporation
Software Information Services
Programming Department

Maynard, Massachusetts 01754

Postage will be paid by:

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS 01754

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	D-01
	E-01
	E-02
	E-03
	F-01
	F-02
	F-03
	G-01
	G-02
	H-01
	I-01
	J-01
	J-02
	J-03
	K-01
	K-02
	L-01
	L-02
	M-01
	M-02
	M-03
	N-01
	O-01
	P-01
	P-02
	X-01
	X-02
	X-03
	replyA
	replyB
	xBack

