
IAS
User's Guide

Order No. DEC-11-01 UGA-C-D

IAS
User's Guide

Order No. DEC-11-0IUGA-C-D

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754.

digital equipment corporation · maynard, massachusetts

First Printing, December 1975
Revised: May 1976
Revised: September 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright C 1975,1976,1977 by Digital Equipment Corporation

The postage prepaid REl\DER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
CO MT EX
DDT
DEC COMM

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
IND AC
LAB-8
DECSYSTEM-20

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-10
TYPESET-11

CHAPTER 1

INTRODUCTION TO !AS

1.1 !AS

IAS (Interactive Applications System) is a multifunction operating
system for the PDP-11 computers. !AS supports the concurrent
execution of three processing modes: Interactive, Batch and
Real-time. Real-time operates on a priority basis, while Interactive
and Batch are timeshared. All three processing modes are made
available through commands issued at a user's terminal. Final control
of the system's resources is retained by the system mane 7er.

This manual provides a guide to the user's terminal interface with the
system.

Every user identifies himself to the system by supplying a unique User
Name when he logs in at a terminal. The user must also supply a
password that has been previously associated with the User Name.

Also associated with each user name are User Identification Code (UIC)
and the user's privilege masks. The UIC consists of two parts, which
represent a group of users and the user's identity in the group. The
system uses the UIC to control access to programs and data within and
between groups. With privilege masks the manager can specify that
various sets of commands be made available to a particular user.

1.1.l Real-time Processing

IAS provides the same real-time capabilities as DIGITAL's RSX-llD
multiprogramming system. These capabilities are designed for
applications that require response to physical events as they occur.
Typical real-time applications include manufacturing process control,
laboratory data acquisition, and communications.

1.1.2 Interactive Processing

Ooerating from an interactive terminal, a user may create and run
programs interactively or submit them to a batch stream:
alternatively, the user may exploit other users' programs or standard
programs provided by the system (if his UIC grants him acce$s). Even
though many users benefit from sharing programs and files, the system
preserves the individual user's privacy and shields the activities of
other users.

Interactive processing offers 2-way communication with the computer.
The user initiates activities and remains in control but regulates

1-1

INTRODUCTION TO IAS

those activities according to information that the system feeds back
to him.

The interactive user communicates with the system by typing commands
at the keyboard of a terminal. The standard IAS command language for
the general user is PDS (Program Development System), which is
described in this manual; but the user has the option of creating
other command interfaces to suit particular applications.

1.1.3 Batch Processing

A batch job i's a coll.ec.tion of commands that, once submitted to the
batch stream, will continue to completion without user intervention.
Under IAS, programs can be created and tested interactively, and then
submitted to a batch stream for execution; or again, creation,
testing and execution might all

In batch mode, as in interactive, programs can be compiled or
assembled, linked, and executed; devices can be claimed and released,
and messages can be sent to the operator. All of these services are
invoked by the same commands used for interactive processing. In
interactive mode, the user can store these commands in a file which is
then submitted to the batch processor. Alternatively, the batch
commands may be submitted on punched cards.

Since batch requirements vary from installation to installation, and
even from day to day, the !AS batch facility can be readily adjusted
to meet the needs of a particular installation. For example, consider
a system manager faced with a large number of daytime interactive
users and a number of large batch jobs. The system manager could
allocate 90% of the system's resources to interactive use during the
day, and reverse the allocation at night. This would allow some batch
jobs to be run during the day and some interactive jobs at night.

1.2 IAS COMMAND LANGUAGE

The standard IAS interface for all terminal and batch users is
provided by the Program Development System (PDS).

1.2.l PDS Commands

Under PDS, interactive users may create, compile, link and run
programs; submit jobs to a batch stream; use various peripheral
devices and obtain information about the system.

PDS is a command interpreter. After PDS is activated at a terminal,
either automatically or by CTRL/C (Control C), PDS invites the input
of a command by issuing the prompt "PDS>". The user must provide
identification to the system by logging in (entering User Name and
password) before beginning terminal activity. After logging in, the
user is able to make use of those !AS facilities allocated to him by
the system manager (see Section 1.2.3).

1-2

INTRODUCTION TO IAS

A typical sequence of activities during a terminal session might
involve entering a source program, translating it into
machine-executable form, and then running the program. The user
requires the services of a number of system programs to do these
things: an editor to enter the source program and to correct
typographical and other errors; a language translator to convert the
source program into object code; and, for most programs, the Task
Builder to create an executable task.

Commands input to PDS invoke the services of these programs. PDS
checks to ensure that input commands are meaningful in the current
context. For example, the FORTRAN command may only be issued after a
user has logged in.

1.2.1.1 Indirect Commands Rather than type a set of terminal
commands interactively, the user can create a file and enter the
commands for future use. Such a file can be edited to allow for
corrections or second thoughts. It can also save time with commonly
used sequences of commands.

To execute th~ commands the user types @ followed by the name of the
file. In this way the command sequence is still initiated under the
control of the user~

1.2.1.2 Batch Commands
stream. Batch commands
position of the line,
interactive user, can
run programs, and to use

Most PDS commands can be used in a batch
always contain a dollar sign ($) in the first
e.g. $RUN. The batch user, like the

use PDS commands to create, compile, link and
various peripherals.

An interactive user may create a file of batch commands and submit the
file to a batch stream; alternatively the batch job could be
submitted on cards.

Interactive and batch commands are described in parallel in Part 2.
The parameters of an interactive PDS command may be either prompted
for, supplied as one line (with continuation characters where
necessary), or issued in a combination of both methods; whereas all
the parameters of a batch command must be supplied as one string,
using continuation characters between lines when necessary. The
command descriptions provide examples of both interactive and batch
usage.

1.2.3 Restricting the Use of PDS Commands

An IAS user may discover that the system does not allow him to issue
certain commands from an interactive terminal or within a batch job.
This situation can occur because cvc~y manager of au IAS System
determines the groups of commands that each user is allowed to issue.
See Chapter 4 of this manual.

For instance, the manager may decide that a certain user may only
program in BASIC, and therefore allocates that user only the commands
necessary for developing and running BASIC programs.

IAS allows the system manager to control the way the command language
is used so that the installation's work can be carried out as
efficiently as possible.

1-3

INTRODUCTION TO !AS

1.3 PROGRAMMING LANGUAGES

!AS supports several programming languages, including BASIC, COBOL,
FORTRAN, CORAL 66 and MACR0-11. The MACR0-11 Assembler is shipped
with !AS, whereas translators for the other languages are optional.

BASIC programs can be executed immediately after translation, because
they produce intermediate code which is run by an interpreter.
FORTRAN, CORAL 66, COBOL and MACR0-11 produce machine-language code
and therefore require the additional step of linking.

l. 3 .1 BASIC

BASIC is easy to learn and use, and has found wide acceptance in
educational, business, and scientific applications. BASIC-ll's
"immediate" mode allows each statement to be executed as it is typed
in; the computer can be used like a desk calculator. Alternatively,
a program can be entered, edited and then run as a unit.

1. 3. 2 COBOL

COBOL (COmmon Business Oriented Language) is a pseudo-English
programming language designed primarily for business use. PDP-11
COBOL conforms to the American National Standard 1974 level-1 COBOL
standard, with many high-level features. COBOL is an optional feature
of !AS.

COBOL can be used in both batch and interactive applications. For
situations where the terminal is the only input device, PDP-11 COBOL
provides a simple, terminal-or.iented line format. Several utility
programs are provided with COBOL, including a report-generating
program and a reformatting program.

1.3.3 FORTRAN

The FORTRAN (FORmula TRANslation) language is especially useful in
scientific and mathematical applications. PDP-11 FORTRAN conforms to
the specifications of American National Standard FORTRAN {X3.9-1966),
with substantial extensions to that standard.

The FORTRAN system consists of a compiler, a library of functions, and
an object time system COTS). The compiler produces object code from
the source program. The OTS consists of routines that are selectively
linked with the user's program to perform certain arithmetic, I/O, and
system-dependent service operations. The OTS also detects and reports
run-time error conditions.

There are two FORTRAN compilers supported on !AS: FORTRAN-IV and
FORTRAN IV-PLUS.

1-4

INTRODUCTION TO !AS

1.3.4 MACR0-11

The programmer who wishes to work closely with the PDP-11 hardware and
IAS may use the powerful MACR0-11 assembler. In addition to allowing
the user to invoke machine-language instructions, MACR0-11 allows the
programmer to define "macros" which may be invoked to generate
repetitive coding sequences. The MACR0-11 language can be used both
in interactive and batch processing applications.

1.3.5 CORAL

CORAL 66 (Computer On-line Real-time Applications Language) is a
general purpose programming language based on ALGOL ~0. with some
features from CORAL 64, JOVIAL, and some FORTRAN. It is the standard
implemention language for British military and government applications
and has gained widespread acceptance in the OEM fields for the
implemention of real time and transaction processing systems. The
language itself is designed to generate efficient code and, although
high-level in concept, it has low-level features (such as embedded
machine code) to ensure total flexibilty.

1-5

CHAPTER 2

A SAMPLE INTERACTIVE SESSION

This chapter introduces the user to PDS by demonstrating its use in a
typical session at an interactive terminal. Section 2.1 records the
session, which is then described line by line in the following
sections.

The line numbers at the left hand margin of the page are for reference
purposes and are not part of the actual session. Underlining
indicates text printed by the system.

2.1 SAMPLE SESSION

01 IAS PROGRAM DEVELOPMENT SYSTEM VERSION 2

17:09:08 15-MAY-77

02 PDS> LOGIN/NONOTICE

03 USER NAME? CAROL

04 PASSWORD?

05 USER CAROL UIC [200,22] TT05: JOB-ID 160 17:09:21 15-MAY-77

06 PDS> CREATE ADD.FTN

07

08

09

10

11

12

13

14

15

READY FOR INPUT

1

2

3

TYPE 1

FORMAT(' ENTER TWO NUMBERS')

l!PPE\EPP'"'R

ACCEPT 2,K,L

FORMAT {22\2\IS}

PRINT"'U

TYPE 3,K+L

FORMAT(' THE SUM IS ',IS)

STOP

2-1

A SAMPLE INTERACTIVE SESSION

16 END

17 ... z

18 PDS> TYPE ADD.FTN

19 TYPE 1

20

21

22

23

24

25

26

1 FORMAT (1 ENTER TWO NUMBERS')

ACCEPT 2,K,L

2 FORMAT (2!5)

TYPE 3,K+L

3 FORMAT ('THE SUM IS ',IS)

STOP

END

27 PDS> FORTRAN ADD

28 17:17:41 SIZE: 10K CPU: 0.10

29

30

31

32

PDS> LINK

17:18:38

PDS> RUN

17:30:51

ADD

SIZE: llK

ADD

33 ENTER TWO NUMBERS

34 12, 78

35 THE SUM IS 90

36 JOB160 -- STOP

CPU: 12.06

37 17:31:14 SIZE: 7K CPU: 0.02

38 PDS> DIRECTORY

39 DIRECTORY DB0: [200,22)

15-.MAY-77 17:36

ADD.OBJ;l

ADD.FTN;l

2.

1.

STATUS: SUCCESS

15-MAY-77 17:17

15-MAY-77 17:17

40

41

42

43

44

ADD.TSK;l 32. C 15-MAY-77 17:18

TOTAL OF 35./35. BLOCKS IN 3. FILES

2-2

A SAMPLE INTERACTIVE SESSION

45 PDS> RENAME ADD.*;* ADDTWO.*;*

46 PDS> DIREXCTORY/BRIEFAU

47 PDS> DIRECTORY/BRIEF

48 DIRECTORY DB0: [200,22J

49 ADDTWO.OBJ;l

50 ADDTWO.FTN;l

51 ADDTWO.TSK;l

52 PDS> LOGOUT

53 USER CAROL UIC [200,22J TT05: JOB-ID 160 17:45:01 15-MAY-77

54 CONNECT TIME 14 M SYSTEM UTILIZATION 12 MCTS

55 BYE

2.2 INVOKING PDS

The Program Development System (PDS) is the standard IAS interface the
user has to the computer. The installation's system manager
determines who may use PDS and decides which terminals will support
it.

Therefore, in order to issue PDS commands at a terminal, a user must
be authorized to do so, and the terminal must support PDS. If these
two conditions have been satisfied, then the following steps should be
taken to invoke PDS:

1. Check that the terminal's power is on.

2. Set the LOCAL/REMOTE switch to REMOTE.

3. Consult installation instructions for additional
terminal settings and dial-up instructions.

required

4. Press CTRL/C (that is, type C while holding down the CTRL key).

The system responds to CTRL/C by displaying a PDS identifier, the
current time and date. For example:

IAS PROGRAM DEVELOPMENT SYSTEM VERSION 2

17:09:08 15-MAY-77

PDS>

The prompt PDS> is then displayed at the beginning of the next line to
indicate that the system is ready to receive PDS commands. If a
notice is to be printed at log in, this will be displayed before the
next PDS> prompt (see Section 2.3.1).

2-3

A SAMPLE INTERACTIVE SESSION

In some instances the user may discover that a terminal is already
prompting for PDS commands even though no one else is currently using
that terminal. A user can then log into the system immediately since
PDS has already been invoked.

PDS is designed to time out after several minutes (the exact number of
minutes depends on the installation) if nothing has been typed and no
program is running. When this happens, the system displays the
messages

TIMEOUT

BYE

The user must then type CTRL/C to re-activate PDS.

2.3 PDS COMMANDS

2.3.l The LOGIN Command

Once PDS is prompting, the user initiates an interactive session by
typing

LOGIN <CR>

The symbol <CR> represents carriage return, which may be activated
either by the carriage return key (<CR> or RETURN) or by the altmode
key (ESC or ALT). One of these keys must be pressed to terminate a
command string or any other line of input and to transmit the line to
the system. The carriage return key and the altmode key can have
different effects in certain contexts. The differences are discussed
in Chapter 4, Section 4.1.2.

2.3.1.1 The User Name - In response to LOGIN, PDS displays the prompt

USER NAME?

which asks the user to supply his User Name. The User Name is a
unique 1- to 12-character alphanumeric string that identifies the
individual user to the system. The system then finds the user's User
Identification Code (UIC) given when the user was authorized. The UIC
determines whether the user is allowed to read or manipulate any file
he attempts to access. See Chapter 6, Section 6.1.3 for further
details.

NOTE

The system manager assigns each user a
User Name, which is then registered with
IAS. A user who does not have a User
Name or has forgotten it should consult
the system manager.

2-4

A SAMPLE INTERACTIVE SESSION

2.3.l.2 The Password - An additional security measure to prevent
unauthorized access to the system is the user's password. Once the
user has entered a User Name by activating carriage return, PDS
prompts

PASSWORD?

at the beginning of the next line. The user must then type in a 1- to
6-character alphanumeric string, i.e. a password, that has previously
been associated with the unique User Name.

A user may change his password with the SET PASSWORD command (see
Part 2).

Since the purpose of the password is to verify a user's identity, it
should be kept secret. PDS respects the user's private password by
not displaying the characters typed in after the PASSWORD? prompt.

If the password given is incorrect, PDS prompts PASSwORD? again. The
user has three chances to type the password correctly before PDS exits
and prints the text EYE. To begin again, the user must type CTRL/C
and then LOGIN. When the user types the correct password, IAS
responds by displaying the following information (line 5):

USER CAROL UIC [200,22] TT05: JOB-ID 16~ 17:09:21 15-MAY-77

The JOB-ID number is assigned to the session by IAS and is normally
significant only to the system manager or operator who oversees the
running of the whole computer system.

The above line is followed by a new line beginning with PDS> to
indicate that the system is ready to receive further commands.

2.4 THE CREATE COMMAND

After successfully logging in, the user creates a file called ADD.FTN
(line 6). The CREATE command is one of several PDS commands that can
be used to create a file. "ADD" is the filename and "FTN" is the file
type, which describes the contents of the file. In this case, the
f iletype indicates that the file contains a FORTRAN source program
(see Table 6-2 for IAS default filetypes).

After terminating the CREATE command by pressing carriage return, the
user starts to enter the source program lines from the keyboard. The
first typing position on each line is equivalent to position 1 on a
coding sheet or punched card. The various function keys (described in
Chapter 3) must be used to format the liries as required. For example,
the TAB key may be used to skip 8 spaces to position the text "TYPE l"
in line 7. Carriage return terminates each line and moves the typing
position to position 1 of the next line.

2.4.1 Correcting Input Errors

On line 9, the user makes a typing error, corrected by means of the
DELETE key (sometimes labelled RUBOUT). The user presses the key
three times to delete E, P and then P again. The characters deleted
are echoed on the terminal as follows:

APPE\EPP

2-5

A SAMPLE INTERACTIVE SESSION

Each time the key is pressed, the system deletes the rightmost
chatacter. Display units actually erase each deleted character from
the screen and move the printing position to the left.

In this example, the user presses CTRL/R (by typing R while the CTRL
key is held down) to display the corrected text on a clean line (line
10) as follows:

APPE\EPP~R

A

The user then completes the line correctly and terminates it as usual
with carriage return.

ACCEPT 2,K,L

If instead of CTRL/R the user had typed the amended letters CCEPT on
the same line, the system would first have closed the string of
deleted characters by a second backslash, thus:

APPE\EPP\CCEPT 2,K,L

On line 11, the DELETE key is used once more to delete the third 2.

2 FORMAT(22\2\I5)

2.4.2 Cancelling a Line

By mistake the user p~oceeds to type "PRINT" on the next line, but
then presses CTRL/U to cancel the line and start again on line 13.
CTRL/U (U pressed while the CTRL key is held down) deletes a line that
has not been terminated by carriage return and advances the typing
position to the beginninq of the next line. The user can then enter
the text that was oriqinally intended.

TYPE 3,K+L

CTRL/U is a useful way to correct a line whenever it is inconvenient
to use the DELETE key.

2.4.3 Closing the New File

The last statement of the source program is "END" (line 16). After
entering the last statement, the user types CTRL/Z (types Z while
holding down the CTRL key) to indicate to the system that the file
ADD.FTN is complete. The system displays ~z and then prompts "PDS>"
on the next line.

2.5 THE TYPE COMMAND

In response to the prompt (line 18) the user issues the TYPE command
to display at the terminal the file ADD.FTN as it appears after
corrections. The system responds by printing the contents of the file
on lines 19 through 26.

2-6

A SAMPLE INTERACTIVE SESSION

2.6 THE FORTRAN COMMAND

After checking that the source program is correct, the user decides to
run it. But the program must first be translated into instructions
that the computer can understand. The translated source program is an
"object module" of machine instructions.

In IAS, the FORTRAN command is used to translate a FORTRAN source
program. So on line 27, the user types the following:

FORTRAN ADD

In this case the user specifies the file as ADD rather than ADD.FTN.
The FORTRAN command assumes the filetype to be FTN if it is not
supplied.

After translatina the program, the system prints the following text on
line 28. ~

17:17:41 SIZE: 10K CPU: 0.10

The figures "17:17:41" refer to the time at which the system finished
translatinq the proqrarn. Line 28 also shows the amount of memorv and
CPU time u~ed. "i.l~" indicates that the translation required- one
tenth of a second compute time.

The system automatically places the translated FORTRAN program, now an
object module, in a file named ADD.OBJ. (The filetype OBJ implies
that the file contains an object module.)

2.7 THE LINK COMMAND

FORTRAN programs use a standard set of subprograms to perform certain
functions. For examole the FORTRAN statements TYPE and ACCEPT reauire
the subprograms for -input/output functions. The system maintains
these subprograms in object module form so that they do not have to be
translated each time someone uses them.

The purpose of the LINK command Cline 29) in this sample session is to
couple the object module contained in ADD.OBJ with the FORTRAN
subprograms that it needs.

LINK ADD

The omitted filetype is assumed to be .OBJ. If there is no file
called ADD.OBJ, the system returns an error messaoe. This miqht occur
if a user tries to link an untranslated FORTRAN piogram, for instance.

Line 30 displays statistics about the completed execution of the LINK
command.

The linked: executable program (the translated program linked with the
required subprograms) is then placed in a file called ADD.TSK. The
filetype TSK stands for "task" which is IAS terminology for an
executable program.

2-7

A SAMPLE INTERACTIVE SESSION

2.8 THE RUN COMMAND

The FORTRAN and LINK commands have prepared the source
execution. The user then issues the FUN command
activate it.

RUN ADD

program for
on line 31 to

Again, the filetype may be omitted. In this case the system assumes
it to be .TSK. Line 32 shows the time the program began to run.

The FORTRAN program ADD is interactive; it requests the user to enter
two numbers, then adds them together and displays the result (lines 33
to 35)

ENTER TWO NUMBERS

12, 78

THE SUM IS 90

Writers of interactive programs must remember to prompt the user. If
no prompts appear, the user cannot know what data to enter or at what
point to enter it. This program uses the statements on lines 19 and
20 to display the prompt

ENTER TWO NUMBERS

The user supplies the numbers 12 and 78 on the next line and presses
carriage return to terminate the input. The program then obeys the
program statements on lines 23 and 24 by adding the numbers and
declaring the sum to be 90~ The STOP statement (line 25) then causes
the program to stop and the system to print the following line:

JOB160 STOP

The job number is the number assigned to the interactive session when
the user logged in (see line 5).

The information displayed on the next line is similar to that on line
28 and 30 described in previous sections.

2.9 THE DIRECTORY COMMAND

In the session so far, the user has specifically created one file and
caused the system to create two more, namely:

- ADD.FTN
- ADD.OBJ
- ADD.TSK

The system never automatically deletes a file, so all three must still
exist. Only the system manager, the owner of the file or users
authorized by the file owner can delete a file.

The DIRECTORY command (line 38) causes the system to display a list of
the user's existing files. File information is stored in
"directories". Line 39 identifies the user's directory as [200,22].

2-8

A SAMPLE INTERACTIVE SESSION

DIRECTORY DB0: [200,22]

The 2e0 identifies the user's group and the 22 identifies the user's
number within the group. The text "DB€:" indicates that the directory
resides on a volume mounted on a disk drive named DB0:

Line 40 states the date and time that the listing was requested.

The next three lines list the directory information:

ADD.OBJ;l 2. 15-MAY-77 17:17
ADD.FTN;l 1. 15-MAY-77 17:17
ADD.TSK;l 32. C 15-MAY-77 17:18

Notice that ";l" appears at the end of each file name. The number 1
is the file's version number and indicates that each file listed is
the first version of the file. If the user were to issue the command
FORTRAN ADD again, the FORTRAN translator would produce a second
object file called ADD.OBJ;2. Users can either delete old v.ersions or
retain them as security against the loss of later versions.

The value in the second column indicates the number of 512 byte blocks
occupied by each file on the disk. The date and time show when each
file was created. The "C" that appears on the third line between the
number of blocks and the date declares that the blocks within
ADD.TSK;l are "contiguous"; that is, they are physically located one
next to the other.

2.10 THE RENAME COMMAND

The RENAME command allows the user to change the name of a file
without changing its contents or location. The user now issues the
command to rename all three files named ADD at the same time (line 45)

RENAME ADD.*;* ADDTWO.*;*

The asterisks (*) that appear in the above line are the mechanism that
allow the user to specify all three files at once. An asterisk or
"wild-card", is a shorthand notation for "all". ADD.*;* means all the
files that have ADD as a filename, disregarding the filetype and
version number. In this case, ADD.*;* refers to the files ADD.FTN;l,
ADD.OBJ;l and ADD.TSK;l. The user could also refer to these three
files in the following manner:

ADD.*;l

since all the files have the same version number but different
filetypes. The command issued on line 48 changes the files' name from
ADD to ADDTWO. The wild-cards in the text "ADDTWO.*;*" mean that the
renamed files retain their original types and versions. The files are
now called

- ADDTWO.FTN;l
- ADDTWO.OBJ;l
- ADDTWO.TSK;l

2-9

A SAMPLE INTERACTIVE SESSION

2.11 THE DIRECTORY/BRIEF COMMAND

When the user reissues the DIRECTORY command (lines
system lists the files with their new filenames.
was pressed to cancel line 46 because of a typing
description of CTRL/U in Section 2.4.2).

46 and 47) the
(Note that CTRL/U
error. See the

This instance of the DIRECTORY command includes the text "/BRIEF", a
"qualifier" which modifies the action of the command. /BRIEF causes
the system to list only the names of the files and to omit information
about blocks and time of creation.

Most commands have one or more qualifiers. A slash (/) always
precedes the qualifier's name. When a user specifies more than one,
the slashes separate one from the next.

2.12 THE LOGOUT COMMAND

To end the interactive session, the user issues the LOGOUT command
(line 52). The system then displays user and accounting information
on the next two lines and the text "BYE" on the third line.

The terminal is now inactive and CTRL/C must be pressed to invoke PDS
once more.

2-10

CHAPTER 3

KEYBOARD OPERATION

The purpose of this chapter is to acquaint the user with the
layouts of interactive terminals and to describe the
functions and how to use them under !AS. Instructions on how
into the system and to use PDS are contained in Chapter 4.

3.1 THE KEYBOARD

keyboard
keyboard
to log

The interactive user types data directly into the s~stem from a
terminal (for example, a DECwriter or a display unit) instead of
supplying input data on punched cards or paper tape. The keyboard
layout of an interactive terminal is very similar to the layout of an
ordinary typewriter. The number and letter keys are in the
traditional typewriter format, but punctuation marks, special
characters and function keys may differ in position from one type of
terminal to another (see Figures 3-1 and 3-2).

3.1.l Keyboard Functions

The user types the input text one line at a time, terminating each
line with carriage return (CR or RETURN) or altmode (ALT or ESC). The
system either prints the terminal input on the terminal printer or
displays it on the screen of a display unit (except when the user
types a password, see Chapter 2, Section 2.3.1.2).

Function keys can be used to format a line (Space Bar, TAB), to edit a
line (RUBOUT/DELETE), or to access the uppermost of two characters
that appear on a key (SHIFT, SHIFT LOCK). The CTRL key, when pressed
simultaneously with a letter key, provides further keyboard functions:
these functions are described in detail in Section 3.1.2. Typing a
carriage return (CR or RETURN) causes the system to store the current
line or to carry out some specified action.

Table 3-1 describes the function keys and the effects of their use
under IAS.

3-1

w
I

"'

rn rn GJ w rn Cfil rn m rn rn 0 8 Q rn
~B@J~0~CU0~ITJ@J0[i]~0
B~00~0@JCBJ00ITJITJW~
~E~00@J0~0~~~rnaw

Figure 3-1
LA30/VT05 Layout

~ rn [!] rn rn rnJ 1~ rn rn rn rn ~ rn CIJ ~ a
~@J~[§:JC§J[!J0~CD@J0WW~B

I CTRL I ~~~~ 0 0 ~ [£] ~ [BJ 0 ITlJ [1J D CJ DJ I RETURN I

'SHIFT! 0 0@] 0 [§] ~ ~ ~ ~ rn 'SHIFT' 'REPEAT'

Figure 3-2
LA36/VT50 Layout

Key

CR or RETURN

CTRL

DELETE
RUBOUT

; ESC or ALT

LINE FEED or
LF

SHIFT

SHIFT LOCK

SPACE BAR

TAB

KEYBOARD OPERATION

Table 3-1
Keyboard Functions

Description

Carriage return. Transmits the current line to
the computer and performs a carriage return line
feed.

When keyed after a PDS command string, causes PDS
to issue the next prompt for mandatory input. PDS
omits intervening prompts, if any, for optional
input.

Is part of several 2-key combinations that produce
a variety of functions. See Section 3.1.2.

Deletes the last typed character.
May be used repeatedly.

On a display unit, the current printing position I
moves to the left and the deleted character is
erased. On other terminals the string of deleted
characters is echoed between an initial
backslash (\) and a final backslash (\).

See Section 3.2.

When keyed after a PDS command string, it causes
PDS to prompt for the next input, whether optional
or mandatory. This character can be echoed as $,
depending on the installation.

Has no control effect under IAS.

Prints or displays the uppermost of two characters
appearing on a key typed while SHIFT is held down.
SHIFT has no effect when used with keys that have
only one character.

Alternately locks and unlocks SHIFT mode.

Advances the current typing position one space at
a time.

Causes the current typing position to move to the
next tab stop on the line. A line conventionally
contains tab stops every 8 spaces.

3-3

KEYBOARD OPERATION

3.1.2 Control Key Functions

Typing a character key while pressing the control key (CTRL) invokes
one of the functions listed in the following table. The combination
of CTRL and another character key is called a control character. In
this manual a control character is written "CTRL/X" where X is the
variable character key.

The effect of a control character sometimes depends on the activity
that the terminal is currently supporting.

Table 3-2 lists the control characters supported under IAS and their
associated functions.

Control
Character

CTRL/C

CTRL/B

CTRL/I

CTRL/K

CTRL/L

CTRL/O

Table 3-2
Control Key Functions

Function

Before a user has logged in, invokes PDS.

and returns control to PDS. CTRL/C will terminate
the DIRECTORY and DELETE commands.

Cancels a command if issued between the PDS>
prompt and carriage return.

On a terminal set with low-speed paper tape reader
support, CTRL/B signals to the computer to start I
reading the tape, the reader beinq already
switched on. - 1

Causes the current typing position to move to the
next tab stop on the line.

Performs the same action as the TAB key.

Advances the current line to the next vertical tab
stop. Equivalent to a Line Feed.

Advances continuous stationery to the next top of
form. Equivalent to a Form Feed.

Interrupts and suppresses output to the terminal.
Successive pressings of CTRL/O cause output to be
suppressed and to resume. For example, if a
directory listing on the terminal is requested and
the first few lines present the desired
information, CTRL/O can suppress the rest of the
directory.

(continued on next page)

3-4

Control
Cha.racter

CTRL/Q
CTRL/S

CTRL/R

CTRL/T

CTRL/U

CTRL/V

CTRL/Z

KEYBOARD OPERATION

Table 3-2 (Cont.)
Control Key Functions

Function

These two keys correspond to 'transmission on'
(XON) and 'transmission off' (XOFF) respectively.
Pressing CTRL/S (XOFF) stops output to the
terminal until CTRL/Q (XON) is pressed. Unlike
CTRL/O, the XOFF/XON function stops and starts
output without any loss of characters.

Retypes the current line with any
characters removed. See Section 3.2.2.

deleted

On a terminal set with low-speed paper tape reader
support, CTRL/T stops a read. CTRL/T can be
present on the tape, or the reader can be switched
off and then CTRL/T typed at the terminal.

Deletes the current input line. The prompt, if
any, is then repeated. See Section 3.2.3.

Typing CTRL/V flushes all characters typed ahead
of a read. If a read is in progress CTRL/V has no
effect. For type-ahead modes see the IAS/RSX-110
Device Handlers Reference Manual, Chapter 2.

Terminates a file input from a terminal, that is,
signals "end of file".

3.2 CORRECTING INPUT ERRORS

Before terminating a line, the user can correct typing errors or
change the line completely by using RUBOUT or DELETE or CTRL/U.
However, once the line has been terminated and thus transmitted to the
computer, it can be corrected only by means of an editing program.

3.2.1 Cancelling a PDS Command

Typing CTRL/C cancels a PDS command that has

3.2.2 Deleting Individual Characters

The DELETE or RUBOUT key deletes the most
current line for each pressing of the key.
the current line is empty.

not been terminated.

recent character on the
DELETE has no effect when

On a hard-copy terminal, each deleted character is echoed. The string

3-5

KEYBOARD OPERATION

of deleted characters is enclc·~>ed between an initial and a final
backslash (\). The final backslash is added when a new text character
is typed in place of DELETE. It is omitted in the case when CTRL/R is
used to make a 'fair copy' of the line as typed so far (Section
3.2.3).

On a Visual Display Unit (VDU) each deleted character is removed from
the screen, and the cursor returns to where it was before the
character was typed.

For example, to change ACCDE to ABCDE, the user presses DELETE or
RUBOUT four times to override the CCDE. On a hard-copy terminal the
string now appears as

ACCDE\EDCC

The user then enters the correct sequence BCDE.
terminal, the string now appears as

ACCDE\EDCC\BCDE

On a display unit the screen will show the string

ABC DE

On the hard-copy

In both cases ABCDE is the string accepted and sent to the cowputer
when the line is terminated.

3.2.3 Deleting a Line

CTRL/U deletes all characters on the line, prints ftu and performs a
carriage return. The user can then enter the text correctly.

For example, if a user types ACCDEFGHI, but meant to type B for the
first C, pressing the RUBOUT key eight times would be tedious and the
result confusing on a hard copy terminal. It would be easier to press
CTRL/U and start again. The latter solution would appear as follows:

ACCDEFGHI "'U
ABCDEFGHI

After using the RUBOUT or DELEtE key to correct a line and before
terminating the line, the user can ensure that the final result is in
fact correct. To display the line as it will be sent to the computer,
simply press CTRL/R. With CTRL/R and CTRL/U the prompt, if any, is
repeated.

Further corrections can be made at this point if necessary.

3.3 USE OF UPPER AND LOWER CASE

On terminals that are equipped with upper and lower case letters, PDS
commands may be entered in either case. In general, lower case
characters can be converted, and echoed, to upper case, depending on
the characteristics currently defined for the terminal. The
conversion can also be performed for individual tasks as required.
See the IAS/RSX-llD Device Handlers Reference Manual, Chapter 2.

3-6

CHAPTER 4

ISSUING PDS COMMANDS

4.1 COMMAND NAMES AND PARAMETERS

The user communicates with the system via PDS, by issuing commands at
an interactive terminal or by submitting a file of commands to a batch
queue. A command consists of a command name which describes the
action the system is to take (COPY or LOGIN, for example), usually
accompanied by one or more parameters. Parameters either describe the
items on which the command is to act or further define the function of
the command.

Commands can only be entered at an interactive terminal when the
system is prompting "PDS>". Some PDS commands (EDIT and BASIC, for
example) invoke a program that accepts its own set of commands, valid
only while that program is running. In turn, PDS commands are not
valid while that program is running: the user must first return
control to PDS. The specifications of EDIT and BASIC in Part 2
describe how to terminate the invoked program's execution.

4.1.1 Command Strings

Batch command strings contain the command name and parameters in- a
single or continued line. Interactive users can either supply the
command name followed by the parameters on one line or enter the
parameters in response to prompts (see Section 4.1.3 below). In both
batch and interactive mode, when two or more parameters are on one
line, they must be separated by a comma, spaces and/or tabs.

If a command runs to more than one line, a hyphen (-) as the last
character on the line or card causes the command to be continued onto
the next line.

An exclamation mark (!) after the last character of any command line
indicates the start of a comment. The comment text appears after the
exclamation mark.

4.1.2 Parameters

The parameters to the COPY command (see Chapter 6, Section 6.4.2.2),
which are an input file specification and an output file
specification, can be input in any one of the following ways.

4-1

ISSUING PDS COMMANDS

In interactive mode:

1. PDS> COPY RISE.MAC WORK.MAC

2. PDS> COPY RISE.MAC , WORK.MAC

3. ~ COPY

FROM? RISE.MAC WORK.MAC

4. PDS> COPY RISE.MAC

TO? WORK.MAC

5. PDS> COPY

FROM? !USE.MAC

TO? WORK.MAC

In batch mode:

1. $COPY RISE.MAC WORK.MAC

2. $COPY RISE.MAC,WORK.MAC

3. $COPY RISE.MAC, WORK.MAC

4.1.3 Parameter Prompts

The LOGIN command demonstrates how PDS prompts for command parameters
at an interactive terminal (See Chapter 2, Section 2.2). The
prompting facility greatly minimizes input errors by interactive users
who are unsure of the command parameters.

The more experienced user may be very familiar with the commands and
not need the prompts. PDS therefore suppresses prompts for parameters
that are included on the previous line. For example, the LOGIN
command may be input as follows:

~ LOGIN WILSOH

PASS WO Rm>

Because the User Name (WILSON) was typed on the same line as LOGIN,
separated from the command by a space, PDS suppresses the prompt
USER-ID? and displays the next one, i.e. PASSWORD?.

NOTE

The user should not type the password on
the same line as the LOGIN command so
that it is not echoed on the terminal.

4-2

ISSUING PDS COMMANDS

4.1.4 Optional Parameters

Interactive PDS commands prompt for both mandatory and optional
parameters. To display the prompt for an optional parameter, however,
the user must use ALTmode (ESCape} rather than carriage return after
the last mandatory parameter~ For example:

PDS> MOUNT <CR>

DEVICE? DK· <CR>

VOLUME-ID? CHARLY <ALT>

LOGICAL NAME? AB

where LOGICAL NAME? is an optional prompt.

To suppress the prompt LOGICAL NAME?, the user must press carriage
return after CHARLY. For example:

PDS> MOUNT DK2: CHARLY <CR>

NOTE

Carriage return and ALTmode have the
same effect on a command line when not
used immediately before an optional
prompt.

If an optional prompt has been invoked by
carriage return immediately after the prompt.

PDS> MOUNT DK2: CHARLY <ALT>

LOGICAL NAME? <CR>

mistake, simply press
For example:

Batch users may either omit the optional parameter from the command
string if it is the last parameter, or replace the optional parameter
with two commas if there are further parameters to be specified.

4.1.5 Parameter Lists

Some parameters may be replaced by a list of parameters enclosed in
parentheses and separated by spaces, tabs and/or a comma. Parentheses
are not required, however, when the list replaces a parameter that is
the last or only parameter in the command. Examples:

1. PDS> APPEND (FILEA.FTN,FILEB.FTN) FILEC.FTN

2. $DELETE AB.CBL;l, AB.OBJ;!

4-3

ISSUING PDS COMMANDS

4.2 ABBREVIATED INPUT

A user only needs to enter enough of a command to distinquish it from
all other PDS commands. All command names can be uniquely abbreviated
to four letters.

For example, the LOGIN command may be shortene~ to:

LOG!

and still be accepted by the system: but LOG is not acceotable
because it does not distinguish LOGIN from LOGOUT.

4.3 COMMAND AND FILE QUALIFIERS

The command string

PDS> PRINT/DELETE

is an example of the PRINT command (see Chapter 6, Section 6.4.3.1).
The command requests the system to output on the line printer the file
specified on the next line, and to delete the file after it has been
printed.

Command qualifiers modify the function of the command. The main
purpose of the PRINT command is to output one or more specified files
on a line printer. To delete the file or files is an option that the
user indicates by specifying the command qualifier /DELETE.

For example, the qualifiers to the FORTR~N command (see Chapter 11
Section 11.2), which invokes the FORTRAN compiler, determine the form
of the output generated by the compiler.

Each qualifier may be abbreviated by supplying enoµgh· characters to
distinguish it from any other possible qualifiers.

File specifications may also have gualif iers: ~hese qualifiers
describe properties the file has or is to have. For example, the
/PROTECTION qualifier may modify the file specification supplied with
the CREATE command (see Chapter 6, Section 6.4.1.2). The qualifier
determines the protection code applied to the newly-created file.
Example:

$CREATE NEWFILE.DAT/PROTECTION: (SY:RWED, OW:RWED,GR:R, WO:R)

4.3.1 Underbar Convention

To increase legibilty, some qualifiers have an
where two or more English words hav~ been
example:

PDS> MOUNT/FILE_PROTECTION: (code)

underbar character
joined together, for

When such aualif iers are abbreviated, the underbar is treatep in the
same way as the alphabetic characters. Thus

PDS> MOUNT/FILE_PROT: (code)

or

4-4

ISSUING PDS COMMANDS

PDS> MOUNT/FI: (code)

are acceptable, since they determine this qualifier uniquely among the
MOUNT aualifiers.

The underbar convention does not apply to the oref ix NO.

4.4 UNACCEPTABLE COMMANDS OR SYNTAX

There are many reasons why PDS may not be able to execute a command.

4.4.1 Effect of Tasks Run from a Terminal

In IAS terms, a running program is called a "task". The IAS Executive
Reference Manual, Volume One describes tasks in detail.

When a task is running from an interactive terminal, the user may not
issue any PDS commands until the task has terminated or been
suspended. To suspend the task, the user must press CTRL/C. The user
might then issue the SHOW STATUS command to check on the progress of
the task. Depending on the information displayed, the user would
either issue the ABORT command to abandon the task or the CONTINUE
command to resume execution.

Most PDS commands cannot be issued while a task is suspended. If the
user tries to issue an unacceptable command, !AS displays the message:

COMMAND NOT ALLOWED SUSPENDED TASK

The user must either issue ABORT to abandon the task or CONTINUE to
resume it.

4.4.2 Subsystems

PDS commands are not valid when the user is operating within a
subsystem such as BASIC or the Line Text Editor. The user must first
return control to PDS and then issue a PDS command.

4.4.3 Error Messages

When a command fails, PDS displays an error or diagnostic message that
indicates where the problem lies.

The following interactive session includes examples of command
failures and the resultant system responses. Asterisks have been
added to responses that indicate failure of one sort or another.

PDS> LOG

*PLEASE LOGIN (OR TYPE HELP)

PDS> LOG!

USER NAME? SMITJ

4-5

ISSUING PDS COMMANDS

PASSWORD? (The terminal does not display the password)

*USER NAME NOT AUTHORIZED

PDS> LOG! SMITH

PASSWORD? (The terminal does not display the password.)

*PASSWORD?

*PASSWORD?

USER SMITH UIC [100,100] TT07 JOB-ID 40 TIME 16:29:10 15-MAY-77

PDS> COPY

FROM? A$B

*A - ILLEGAL FILE-SPECIFICATION

PDS> DIRECTORY <ALT>

FILE? A:B

*A ILLEGAL DEVICE

*ILLEGAL FILE-SPECIFICATION

The reasons for failure are as follows:

1. PLEASE LOGIN (OR TYPE HELP) - The user did not type enough of
the command to make it unique. The system could not tell
whether LOG was a shortened form of LOGIN or LOGOUT.

2. USER NAME NOT AUTHORIZED - The User Name (SMITJ) supplied did
not grant the user access to PDS because the user had
mistyped the last character.

3.

4.

PASSWORD? - By repeating the password
indicated that the user SMITH had
password (see Section 3.3.1.2).

A ILLEGAL FILE-SPECIFICATION

prompt, the system
not typed the correct

"$" is not a valid character within a file specification.

5. A - ILLEGAL DEVICE

ILLEGAL FILE-SPECIFICATION

"A" is not a valid IAS device name.

Common errors include:

mistyping characters within a command

not leaving a space where it is needed to distinguish between
command components

4-6

ISSUING PDS COMMANDS

providing parameters in an incorrect order

specifying incorrect devices

4.5 PDS COMMAND PRIVILEGE

PDS Command Privilege governs the right of an individual user to issue
a specific command or set of commands via PDS.

These rights are given or withheld by the system manager when the user
is authorized.

4.5.1 PDS Command Masks

Each user is allocated two PDS Command Masks on authorization. One
concerns interactive terminal use and the other batch use. Each mask
consists of 16 bits. A bit is set to 1 to make the corresponding
command(s) available. The bits are referred to by symbolic names.
These are used in the following two tablese

Bit

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Table 4-1

PDS Command Privilege Classes

Symbol

PR.FIL
PR.RUN
PR.BAS
PR.COB
PR.COR
PR.FOR
PR. LIN
PR.MAC
PR.400
PR.SUB
PR.RES
PR.DEV
PR.OUM
PR. LIB
PR.SYS
PR.RTC

Command or Class of Commands

File manipulation facilities
Task manipulation
BASIC
COBOL
CORAL
FORTRAN
LINK
MACRO
Not allocated
SUBMIT (to Batch)
Reserved
Device management
DUMP
LIBRARIAN
System library tasks ($$$xxx)
Real time commands

Certain commands are available to all logged-on users. These are
marked ANY in Table 4-2, and are independent of the command masks.

The privilege required for each command is shown in Table 4-2. A few
commands require two privileges. A few require that the user has an
associated UIC of [1,1) and are so marked. Of these, the USERS
command is described in the !AS System Management Guide.

4-7

ISSUING PDS COMMANDS

Table 4-2
PDS Command Privileges Required

Command PDS Command Privileges
Required

ABORT (timesharinq) ANY
ABORT/REALTIME PR.RTC
ALLOCATE PR.DEV
APPEND PR.FIL
ASSIGN (timesharing) PR.RUN
ASSIGN/REALTIME PR.RUN, PR.RTC

BASIC PR.BAS

CANCEL PR.RTC I COBOL PR.COB
COMPARE PR.FIL
CONTINUE {timesharing) ANY
CONTINUE/MESSAGE PR.HTC
CONTINUE/REALTIME PR.RTC
COPY PR.FIL
CORAL PR.COR
CREATE PR. FIL

DEALLOCATE PR.DEV

I
DEASSIGN PR.DEV
DELETE PR. FIL
DIRECTORY PR. FIL
DISABLE PR.RTC
DISMOUNT PR.DEV
DUMP PR.DOM

EDIT PR.FIL
I ENABLE PR.RTC

EOJ N/A

FIX PR.RTC
FORTRAN PR.FOR

GOTO ANY

HELP N/A

INITIALIZE PR.DEV
INSTALL PR.RTC

JOB N/A

LIBRARIAN PR.LIB
LINK PR.LIN
LOGIN N/A
LOGOUT N/A

MACRO PR.MAC
MERGE PR.FIL
MESSAGE ANY
MOUNT PR.DEV

ON ANY

(continued on next page)

4-8

ISSUING PDS COMMANDS

Table 4-2 (Cont.)
PDS Command Privileges Required

PRINT

QUEUE

REMOVE
RENAME

Command

RUN (timesharing)
RUN (real time)

SET DEFAULT
SET [NO]QUIET
SET PASSWORD
SET PRINTING
SET PRIORITY
SET PROTECTION
SET TERMINAL attribute
SET TERMINAL:TTn attribute
SET TERMINAL: (TTm, ••• ,TTn)
SHOW CLI
SHOW DAY'I'IME
SHOW DEFAULT
SHOW DEVICES (other than
SHOW DEVICES /POD
SHOW GLOBAL AREAS
SHOW LONS -
SHOW MEMORY
SHOW PARTITIONS
SHOW STATUS
SHOW TASKS
SORT
STOP
SUBMIT

TYPE

UNFIX
UNLOCK
USERS

4.6 PDS TIMESHARING TASK PRIVILEGE

I PDS Command Privileqes
Required -

PR.FIL

PR.FIL

PR.RTC
PR.FIL
PR.RUN
PR.RUN, PR.RTC

ANY
ANY
ANY
ANY
PR.RTC

I
PR a FIL
ANY
(1,1]

attribute [1, 11

I
ANY
ANY
ANY

/PUD) ANY
(1, 11
ANY
PR.RTC
ANY
ANY
ANY
ANY
PR.FIL
ANY
PR.SUB

PR.FIL

PR.RTC
PR.FIL
[1,1]

!AS can also restrict the execution of timesharing tasks.

A task can be built to map part of its virtual address space en to
SCOM, the !AS System Communications Area. Such a task is said to be
'executive privileged'. (See the !AS Task Builder Reference Manual,
under LINK/PRIVILEGED, and the IAS Executive Reference Manual Volume
_!.!).

Also, a program can be written using the directives noted as
privileged in the Executive Reference Manual, Volume II. The
resulting task is then said to be 'directive privileged=.

4-9

ISSUING PDS COMMANDS

PDS Users who wish to run such tasks in timesharing need certain bits
to be set in their PDS Timesharing Task Privileqe Mask. This mask is
set up by the system manager when the user is authorized.

If a PDS user tries to initiate a task that is executive privileged,
and the user is not authorized to run such tasks, the task is rejected
before execution begins.

If a PDS user runs a task in timesharing that issues privileged
directives, and the user is not authorized with directive privilege,
each privileged directive is rejected as met but the task continues to
execute.

Note that all tasks executing in real-time mode are given directive
privilege and can be executive privileged, independently of the
initiating user's timesharing task privilege mask.

4.7 PDS DIALUP SUPPORT

If a dialup line is lost durinq an interactive session while the user
is logged in, the job is not lost but remains attached to the same
line. If a task is running it will be suspended. If any user dials
up and is connected to the same line, the following message is
printed, followed by a PDS prompt:

USER username ALREADY LOGGED IN [WITH SUSPENDED TASK]

where

user name is the name of the user cur~ently logged in

At this point, only two commands are valid:

LOGOUT

CONTINUE

to logout the user and free the terminal

to enter normal interactive mode. If there is a
suspended task, it will be continued and it will
be necessary to type CTRL/C to suspend it again.
Before continuing, PDS prompts 'PASSWORD?' and
checks the user's password.

If no user connects to the suspended line within the timeout limit set
for PDS by the System Manager, the user will be logged out and the
line disconnected. This also happens if the suspended task exits for
any reason while the line is suspended (for example, if it completes a
Mark Time directive and exits).

If the task which is running attempts to perform input or output to
the terminal during the short period (about one second) between the
loss of the dialup line and the suspending of the task, it will
receive an error. Some commands (for example, DIRECTORY) will
terminate.

4-le

CHAPTER 5

BATCH PROCESSING

5.1 INTRODUCTION

Almost all IAS commands are applicable to both interactive and batch
processing. Batch users, however, begin and.end a job with the $JOB
and $EOJ (End of Job) commands, rather than with LOGIN and LOGOUT (see
Chapter 2). Batch commands roust always begin with a dollar sign ($)
in the first position of a line.

Batch users may submit a job either:

1. From an interactive terminal, or
2. Via a card reader

The first method requires the PDS command SUBMIT, which submits a file
of batch commands to the batch processor. The processor queues the
submitted job until all the jobs preceding it in the queue have
terminated. See Section 5.3 for a full description of the SUBMIT
command.

When submittinq a job via a card reader, the user includes the batch
commands in the input stream.

For example:

$JOB GRAHAM CATJOB 3
$COBOL JOB.CBL
$EOJ

This example invokes the COBOL compiler to compile the source program
held in the file JOB.CBL.

5.2 BEGINNING AND ENDING A BATCH JOB

The $JOB and $EOJ commands delimit a single batch job.

5.2.l The $JOB command

The $JOB command marks the beginning of a batch job. Parameters to
the command consist of, in the following order, the User Name, a job
name and a time limit in minutes for the job's elapsed time.

For example:

$JOB CATHY TEST 3

5-1

BATCH PROCESSING

CATHY is the User Name and TEST is the job name. The number 3
instructs the system to terminate the job after it has used 3 minutes
of elapsed time.

The User Name is a 1- to 12-character alphanumeric string that is
unique to the individual user; it is identical to the User Name
parameter to the LOGIN command (see Chapter 2, Section 2.3.1.1.) and
must be a current USER-ID in the systerr..

The job name is a 1- to 12-character alphanumeric string that
identifies the job.

For jobs that are to be run for users who have restricted batch access
to their user-name, the $JOB command may also take an optional
PASSWORD qualifier:

For example:

$JOB/PASSWORD:SECRET SYSTEM ACCOUNTS 30

5.2.2 The $EOJ Command

The $EOJ command terminates a batch job. It has no parameters.

5.3 THE SUBMIT COMMAND

The SUBMIT command submits a file of batch commands to a batch queue
from an interactive terminal. When batch is activated to process
entries from the batch queue, it begins with existing queue entries
and then processes any jobs submitted while it is still active.

For example:

PDS> SUBMIT BATCHJOB.CMD

Submit the file BATCHJOB.CMD to the PDS batch processor.

See Chapter 6, Section 6.4.1, for instructions on creating a file to
contain the batch commands.

5.4 BATCH EDITING

IAS provides a batch-oriented editor to create and maintain source
language files and data files on disk. This editor, called the Source
Language Input Program (SLIPER), is described in Chapter 7.

5-2

CHAPTER 6

FILE HANDLING

6.1 INTRODUCTION

All the information that is stored in a computer system is held in
logical units called files. A file is defined as an ordered
collection of information. In order to store information, a source
program, for instance, a user must create a file and input the source
program to it.

Any subsequent attempts to access or manipulate the source program
must be made in terms of the file that contains it, that is, by
supplying a file specification. A file specification gives the system
all the details it needs to identify the file: the device on which it
is stored, the directory of the file, the file name, the filetype and
the version.

This chapter describes IAS file handling commands and how to use them.

6.1.l !AS File System

The standard IAS file system for disks, DECtapes and magnetic tapes is
the Files-11 system. Files-11 magnetic tapes conform to American
National Standard Magnetic Tape Labels and File Structure for
Information Interchange, X3.27-1969. A detailed description of the
Files-11 file system is contained in the IAS Executive Reference
Manual - Volume II and the IAS/RSX I/O Operations Reference Manual.
Most PDS commands can only operate on Files-11 files.

6.1.2 Volumes

The magnetic media on which files are stored are called volumes, for
example, disks, magnetic tapes. In order to access a file held on a
volume, that volume must be mounted, that is, physically loaded on a
disk or tape drive and related to the user's task or terminal by the
MOUNT command (see Section 6.3.1). Volumes that do not hold files in
Files-11 format must be mounted using the qualifier /FOREIGN.

6.1.3 Volume and File Protection

IAS protects the individual user's privacy and the system's security
by providing a facility to restrict access to a volume. Magnetic
tapes written in Files-11 format have a volume level protection code:
that is, the protection assigned to the volume applies equally to

6-1

FILE HANDLING

every file within it. Disks and DECtapes, however, have both an
overall protection code for access to the volume and individual
protection codes for each file within it.

For the purposes of assigning protection codes, IAS defines four types
of access, read (R), write (W), extend (E) and delete (D), and four
categories of user, system, owner, group, world. The protection code
designates the kind of access each user category is allowed. The user
categories are defined as follows:

User Description

SYSTEM: All tasks that run under a system User Identification
Code (UIC).

OWNER:

GROUP:

WORLD:

All tasks that run under the UIC of the owner of the
file or volume.

All tasks that run under a UIC that has the same group
number as the UIC of the owner of the file or volume.

All tasks.

The system uses the User Identification Code to determine file
ownership. The system identifies a user's UIC from his User Name.
The code is not necessarily unique to each user.

Volume protection is applied when the volume is initialized by the IAS
system manager and can be re-specified via the MOUNT command (see the
specification of MOUNT in Part 2).

A file's protection code is applied when the file is created and the
code may subsequently be modified by the SET PROTECTION command. If
the user does not explicitly specify a protection code for a
newly-created file, the system automatically applies the volume's
default code.

Example:

PDS> SET PROTECTION

FILE? MYFILE.DAT

PROTECTION? {SYS:RWED, WO:, G:RW)

The example above changes the protection code of the file MYFILE.DAT
so that the system (SYS:) has all four types of access, the world
(WO:) is denied all types of access, the group (G:) has read and write
access, and the allowed access of the owner does not change. This
example illustrates the following rules:

1. The protection code must always be enclosed in parentheses.

2. The four user categories are represented by codes followed by
colons. The codes may be abbreviated to one or more letters.

6-2

FILE HANDLING

The codes are:

SYSTEM:

OWNER:

GROUP:

WORLD:

3. The four types of access are represented by single letters:

R Read

w Write

E Extend

D Delete

4. Each category that is mentioned is allocated the types of
access specified after the code and denied any type of access
not specified; for example, GR:RW gives group members read
and write access only. If no types of access are specified
after a category, all types of access are denied to it, for
example, WO:

5. Any category not mentioned keeps the access privileges
previously allocated to it.

6. The user categories and types of access may be specified in
any order.

6.1.4 RMS-11 Files Management in !AS

Digital's Record Management System is supported by IAS. RMS-11 is a
suite of routines for managing three types of file organization. The
three differ in the way the records within a file are accessed. The
record is the basic unit of information handled by RMS-11. Examples
are the input at a terminal delimited by carriage returns, or the
contents of a single punched card.

'Sequential' is the default organization in IAS. To find a particular
record, for example when using the IAS editor, each record must be
accessed in sequential order until the required one is located.

'Relative' is an organization by block number and allows individual
records to be accessed directly and randomly.

'Indexed Sequential' or, more shortly, 'Indexed' allows records to be
handled, copied or sorted depending upon the contents of the record in
nrou;nnc:::lu cno,-.;r;ori r;olnc f'J(FVC::\ .t""'"• -,_,.. __ J -I:''-_...,_..., __ - -- -- , ... ___ I •

These concepts are described in the Introduction to RMS-11 manual.
They are implemented for IAS by the PDS commands:

APPEND CREATE

COPY MERGE

As described in Part 2. For the interface at program level see the
IAS/RSX-llM RMS-11 MACRO Programmer's Reference Manual.

6-3

FILE HANDLING

6.2 FILE SPECIFICATIONS

A file specification provides the system with all the details it needs

to create a file

to identify an existing file stored on a volume

to read a file from or write a file to a device such as a
line printer or a card reader

The basic format of a file specification is as follows:

where

dev: [ufd]name.typ7ver

dev: is a device name of the form XXnn: where XX is a
2-letter mnemonic for the device (see Table 6-1) and nn
is a 1- or 2-digit octal number from 0 to 77.

[ufd]

The device mnemonics are listed in Table 6-1.

The device field may be replaced by a logical name (see
Section 6.3.1).

is the UFD (User File Directory) of the form [m,n]
where m and n are octal numbers from 1 to 377.

name is the name of the file, an alphanumeric character
string from 1- to 9-characters long.

typ is a 1- to 3-alphanumeric character filetype that
usually identifies some aspect of t_he file contents.
Table 6-2 lists standard f iletypes for !AS files. For
example, the filetype FTN indicates that the file
contains a FORTRAN source program.

ver is the version number, an octal number in the range 1
to 77777 used to differentiate among versions of the
same file. For example, when a file is created, the
system assigns the file a version number of 1. If that
file is subsequently opened for editing, the ed i tc~
retains the original file for backup by creating the
new file with the same filename and type, but with a
version number of 2.

Table 6-1 lists the 2-~haracter mnemonics conventionally used in the
device name field of file specifications.

Eight of these mnemonics, namely co, LB, MO, SP, SY, TI, TO and WK,
are logical device names, (npseudo-devices"), which can be made to
refer to particular physical devices according to the needs of the
computer installation.

6-4

Mnemonic

AD
AF
co
CR
CT
DB
DF
DK
DM
DP
DS
DT
DX
LB
LP
LS
MM
MO
MT
SP
SY
TI
TO
UD
WK

FILE HANDLING

Table 6-1
IAS Device Types

Device Type

AD01 A/D converter
AFCll Analog input
Console output
Card reader
Cassette
RP04 disk
RFll disk
RK05 disk
RK06 disk
RP02 or RP03 disk
RS03 or RS04 disk
DECtape
Floppy disk
Device holding system library files
Line printer
LPS A/D converter
TU16 magnetic tape
Message output
TU10 magnetic tape
Device holding spooled I/O files
User's system disk
User's data input stream
User's data output stream
UDCll Universal Digital Control
Fast-access device for work files.

TI and TO are logical device names for a user's input and output data
streams. For example, when a user wishes to read from his terminal he
specifies TI:

PDS> COPY

FROM? TI:

TO? MYFILE.DAT

transfers the input text typed at the user's terminal to the file
named MYFILE.DAT.

6-5

FILE HANDLING

Table 6-2 lists all the standard IAS file types.

Table 6-2
Standard !AS File Types

File Types Description

BAS A BASIC language source file
BIS A batch command file
CBL A COBOL language source file
CMD A file containing a list of commands (indirect file)
CCR A CORAL language source file
DAT A data file
DIR A directory file
FTN A FORTRAN language source file
LST A file in print-image format
MAC A MACR0-11 assembly language source file
MAP A file containing a memory allocation map
MLB A macro library file
OBJ An object program (output from MACR0-11 or FORTRAN)
ODL An overlay description file
OLB An object library file
SAV A saved system memory image file
SML A system macro library file
SPR A spooled output file
SRT A SORT specification file
STB A symbol table file
TMP A temporary file
TSK A task image file produced by the Task Builder and

suitablefor execution.

6.2.1 Defaults

A user may omit the device name and/or the UFD field of any file
specification. In this case, the system replaces the null fields with
the user's default values.

The version number may also be omitted, in which case, the system
assumes:

1. The highest version number for an input file specification
or

2. The highest version increased by one for an output file
specification or 1 if no previous version exists.

The device and UFO defaults are determined initially as follows:

1. The default device is determined for each user by the system
manager.

2. The default UFO is equivalent to the UIC (see Section 6.1.3)
associated with the user's User Name (submitted at log in).

6-6

FILE HANDLING

The following table lists the default values, if any, of the various
fields.

Table 6-3
File Specification Defaults

Field Default

device name At log in, the user's system device. May be changed
subsequently by the SET command. The new default
device must be mounted and the user must have access to
it. Not to be defaulted when the file specified is to
be written to or read from a record-oriented device
(see Section 6.2.3)

ufd At log in, the default UFD is equivalent to the user's
UIC. May be changed subsequently by the SET DEFAULT
command. A user must have access to any UFD selected
as a default.

name None

f iletype May be defaulted in the appropriate context. IAS has
standard filetypes (see Table 6-2) that it uses as
defaults in defined contexts.

version For input specifications, the highest version number.
For output specifications, the highest version
increased by 1 or 1 if no previous version exists.

6.2.1.l Changing Default Values (The SET Command) The default
device or UFD used in file specifications may be changed at any time
by the SET command.

To change the default device:

PDS> SET DEFAULT device-name

where device-name is the new default device.

To change the default UFD:

PDS> SET DEFAULT ufd

where ufd is the new default UFD in the format [m,n] and m and n are
octal numbers between 1 and 377. See Part 2 for a complete
description of the SET command.

6;2el:2 Displaying Default Values (The SHOW Command} The current
default values for the device field and UFD field can be displayed at
an interactive terminal by using the SHOW command (see Part 2) as
follows:

PDS> SHOW DEFAULT

The system responds by displaying the user's default device and ufd.

6-7

FILE HANDLING

6.2.2 Wild-cards

6.2.2.1 Input Files The user may specify more than one file in a
single input file specification by using an asterisk (*) convention
called a wild-card. An asterisk may be placed in any field of a file
specification except the device field.

The asterisk causes many commands to ignore the contents of the "wild"
field and to select all the files that satisfy the remaining fields.

Examples:

DEL CATH.DAT:*

DIR DKl: [200,200]*.LST

PRINT [30,4)*.MAC:*

DELETE [*,*)TONY.DAT:*

COPY *[90,4]FORT.FOR:*

Delete all versions of the
named CATH.DAT stored on
default device and UFD.

file
the

Display information about all the
highest versions of files on DKl:
in UFD (200,200) that are of type
LST.

Print all versions of the files on
the default device in UFO (30,4)
that are of type MAC.

Delete all versions of the file
named TONY.DAT in every directory
on the user's default device.

Illegal specification. The device
field cannot be wild.

6.2.2.2 Output Files When a wild-card (*) replaces a field in an
output file specification, it instructs the system to replace the wild
field with the corresponding field in the input file specification.
The device field may not be wild.

Example:

PDS> COPY CATH.DAT

TO? DK2:*.*

Copy the highest version of the file CATH.DAT from the default device
to DK2:. If no version of CATH.DAT exists in the output file UFO, the
version number of the output file is 1. If the output file UFO
already contains one or more versions of CATH.DAT, the newly-copied
CATH.DAT is given a version number one greater than the previously
highest version.

Example:

PDS> COPY

FROM? CATH.DAT

TO? DK2:*.*:*

6-8

FILE HANDLING

By placing a wild-card in the version field of the output file
specification the user instructs the system to retain the same version
number as the input file. The system returns an error message if the
output file UFO contains a file with the same name, type and version
number as the output tile.

6.2.3 Valid File Specifications

The fields of a file specification that must be supplied, depend on
the type of file being described. There are two types of file:

1. Retrievable files written to or stored on disks, DECtapes or
magnetic tapes. These files are called named files because
they have file names that the system can access.

2. Files that are
devices (for
files held on
unnamed files.

read from
example, a
unlabelled

or written to record-oriented
card reader or a line printer) or

tapes. These files are called

The filename field of a named file must always be supplied; that is,
the user must give an alohanumeric filename or a wild-card(*). Many
commands have a default vaiue for the filetype field. However, with
any command that has no such default; the filetype field of a named
file must always be supplied. The device, UFO and version fields may
be omitted because they do have default values (see Section 6.2.1).
The device field may also be replaced by a logical name (see Section
6.3.1).

The use of wild-cards in a file specification depends on the IAS
command with which it is issued. Where it is relevant, the command
descriptions in Part 2 describe restrictions on the use of wild-cards.

The specification of any unnamed file, a file read from or written to
a record-oriented device, consists only of the device field, which may
be a specific device or a logical name (see Section 6.3.1). If any
other field is supplied, it is ignored by the system because UFOs,
file names, f iletypes and versions have significance only for named
files. The device field may not be wild.

6.3 DEVICE MANAGEMENT

Before a batch or interactive user can access a device, the device
must be available. In other words, the device must be attached to the
system and, in the case of a removable volume, the volume must be
physically loaded. Also, if the device is nonsharable, no-one else
must be using it. For example, if all tape drives are already in use,
the system cannot grant a new request for a tape drive.

If the conditions are such that a device is availabler the user then
gains access to the device by "allocating" it, that is, by issuing a
command that requests the system's permission to use it (see Section
6.3.2). An exception to this procedure occurs when the user wants to
access a system device.

6-9

FILE HANDLING

6.3.1 System Devices

A system device is a device allocated to all users by the system
manager. For example, the user's system disk, the line printer and
the card reader are normally system devices.

A device such as a line printer cannot be shared by two users
simultaneously, but many users may want to access it at the same time.
The system manager may therefore choose to adopt a technique called
spooling. In the case of a line printer, spooling causes all output
written to the printer to be queued. The system then creates disk
files of all line printer output, maintains a queue containing a list
of these files and prints them one at a time.

Optionally, the printing of queued files can be deferred by the user
via the command SET PRINTING DEFERRED (see 6.4.3.1). Deferred
printing can be made the default at installations where, for example,
the line printer is remote from the user.

6.3.2 Accessing a Device

In order to use a non-system device, three mechanisms are required:

1. A means of obtaining access to the device (the MOUNT and
ALLOCATE commands).

2. A means of
independent
Names).

keeping commands, especially in batch mode,
of a particular physical device (Logical Device

3. A means of keeping the Input/Output statements in a program
independent of a particular physical device (Logical Unit
Numbers).

Access to a non-system device is obtained by issuing the ALLOCATE
and/or the MOUNT command. Some devices, such as disk drives, are
shareable. Thus a user may mount a disk even though it has already
been mounted by another user. The volume is physically unloaded when
the last user to access it dismounts it.

A user is granted exclusive access to non-shareable devices.

Note that access to any volume is subject to the normal protection
restrictions (see Section 6.1.3).

6.3.2.1 Logical Device Names IAS uses logical names to permit the
commands written by a user to be independent of a particular physical
device. If, for example, an installation has two tape drives called
MT0: and MTl:, specifying MT0: in batch commands or indirect command
files would prevent the user from using the other tape drive without
changing the commands. The user may define a logical device name,
TA:, for example, and use it in place of the corresponding physical
device name in all subsequent commands.

Once an equivalence has been established between a logical device name
and a physical device name, the logical device name may be used in any
command. If a logical device name is the same as a physical device
name, IAS assumes that the reference is to the logical device name.

6-10

FILE HANDLING

Logical device names may be defined in ALLOCATE or MOUNT commands. A
logical name has the syntax:

XX[nn]:

where XX represents two alphabetic characters and nn is an optional
unit number, an octal number ranging from 0 to 77. If nn is omitted 0
is assumed.

6.3.2.2 Logical Units All program Input/Output (I/O) is performed
on logical units, which are identified by numbers (logical unit
numbers or luns). Before a logical unit can be used for I/O, a
physical device or file must be assigned to it. Since different
devices or files may be assigned to the logical units on successive
runs of a program, the program itself can be device-independent.

Users may assign logical units in three ways:

1. By using a LINK option during task buildo

2~ By issuing an ASSIGN command.

3. By establishing the assignment within the program before the
file in question is accessed.

The LINK option and the ASSIGN command may be used to assign a
physical or logical device to a logical unit. From within a program,
however, the user may assign a named file to a logical unit. See one
of the following manuals for further details:

1. The !AS Executive Reference Manual - Volume II

2. The appropriate !AS FORTRAN User's Guide

3. The PDP-11 COBOL Language Reference Manual

4. The BASIC-11 Language Reference Manual

5. The IAS/RSX-11 MACR0-11 Reference Manual

6.3.3 The MOUNT command

In order to access a file held on magnetic media, the volume on which
it is held must be physically loaded and mounted. System devices that
are already mounted when a user logs in are automatically mounted for
him. For all other volumes, however, the user must issue a MOUNT
command to make the device available and gain access to the volume
---.:....::1.:: __ -- .:~
Lit::'~.&.u.&.uy vu .&.1...e

Example:

PDS> MOUNT

DEVICE? DK2:

VOLUME-ID? TESTER

The command above mounts the volume labelled "TESTER" on DK2:. The

6-11

FILE HANDLING

user can now access any file on the mountea volume, as long as the
file's protection code permits the attempted access.

Here the simple MOUNT command indicates that the volume is in IAS's
Files-11 format. Volumes in Files-11 format have a
volume-identification on the medium itself. This is set when the
volume is initialized. The volume-identification is used when the
volume is mounted or dismounted.

The unit number in the device specification may be omitted if the user
does not know or care on which unit the volume is to be mounted. If
the unit number has been omitted in batch mode, the user must then
supply a logical name for the device: the logical name replaces the
device name in subsequent file specifications. In interactive mode,
the system displays a message giving the unit on which the volume was
actually loaded.

Example:

$MOUNT DK: TESTER DR0:

The user assigns the logical name DR0: to the unknown unit. The
logical name can now be used instead of the physical device name in
subsequent commands.

Files-11 disks and DECtapes are shareable volumes which can be mounted
and accessed by more than one user. Magnetic tape, however, can only
be mounted and accessed by one user at a time.

The system considers any volume not in Files-11 format to be
"foreign". A foreign volume can only be mounted by one user at a time
and the system must be told that it is foreign. Volumes mounted
"foreign" are normally referred to by some external label visible to
the operator.

Example:

PDS> MOUNT/FOREIGN

DEVICE? DT0:

VOLUME-ID? TAPEA

The command qualifier /FOREIGN tells the system that TAPEA is not to
be accessed as a Files-11 volume and prevents other users from
mounting it. The operator mounts the volume, with external label
TAPEA, on drive DT0:

If the foreign volume is in DIGITAL's DOS or RT-11 format, file
qualifiers to the COPY, DELETE and DIRECTORY commands allow the user
to access files held on the volume. Otherwise, most PDS commands do
not apply to foreign files.

See the specification of the MOUNT command in Part 2 for further
details.

6.3.4 The DISMOUNT Command

When a user has finished accessing a volume, the DISMOUNT command
should be issued in order to dismount the device and make it available
for other users.

6-12

FILE HANDLING

The DISMOUNT command automatically deallocates the device unless the
user specifies the qualifier /KEEP. See the command specification in
Part 2 for further details.

Examples:

1. PDS> DISMOUNT

DEVICE? DK0:

2. $DISMOUNT DT0: TAPEA

The parameters to DISMOUNT are the device specification or logical
name of the device to be dismounted and the volume identification.

6.3.5 The ALLOCATE Command

If a device is not a system device and it cannot be mounted, the
ALLOCATE command must be used to access it.

Example:

PDS> ALLOCATE

RESOURCE? DEVICE

DEVICE? LPl:

The above example allocates a line printer to the user. No one else
can use the printer until the user who allocated it issues a
DEALLOCATE command (see Section 6.3.5).

The ALLOCATE command may also be used to obtain exclusive access to a
shareable device.

Example:

$ALLOCATE DEVICE DK: MC0:

DK3: ALLOCATED

$MOUNT MC0 VOLl

In the above example, a batch user has allocated a DK type disk drive
and assigned it the logical name MC0:. No one else is allowed to
access that drive until is has been deallocated. PDS announces which
physical device has been allocated for exclusive use to the user, here
DK3.

Once a device has been allocated, several volumes may be mounted one
after the other.

For example:

$ALLOCATE DEVICE DK: DVl:

$MOUNT DVl: VOLl

6-13

FILE HANDLING

$DISMOUNT/KEEP DVl:

$MOUNT DVl: VOL2

$DISMOUNT DVl:

In this example, the user obtains exclusive access to a disk drive via
the ALLOCATE command. A volume labelled VOLl is then mounted on the
drive. When the user dismounts VOLl, the /KEEP qualifier retains the
user's exclusive access to the disk. When VOL2 is dismounted,
however, the disk is deallocated since the user does not specify
/KEEP.

6.3.6 The DEALLOCATE Command

After issuing an ALLOCATE command to obtain exclusive use of a
non-mountable device (a line printer or card reader, for example), a
user must issue the DEALLOCATE command to free the device.

Example:

$ALLOCATE DEVICE LPl:

$DEALLOCATE DEVICE LPl:

The DISMOUNT command automatically deallocates an allocated mountable
device unless the user specifies the /KEEP qualifier.

Example:

$ALLOCATE DEVICE DK: MC0:
$MOUNT MC0: CATH

$DISMOUNT/KEEP MC0:

$DEALLOCATE DEVICE MC0:

6.3.7 The ASSIGN Command

The ASSIGN command is used to associate a loqical or physical device
with a logical unit. (See Section 6.3.2 for a definition of logical
devices and logical units.)

6-14

FILE HANDLING

Example:

PDS> ASSIGN

FILE? LP0:

LUN? 6

This command assigns LP0: to the logical unit 6. If a program writes
to logical unit 6 via The FORTRAN statement WRITE (6 ••• , for example,
the results of the write will be printed on the line printer.

6.4 FILE MANAGEMENT

Section 6.5 describes the management of sequential files, that is, of
the default file organization in IAS. For the extensions applying to
Relative and Indexed files, compare Section 6.1.4 above and the
commands APPEND, COPY, CREATE and MERGE in Part 2 of this manual.

6.4.l Creating Files

6.4.1.1 User File Directories To create a file on a volume, the
volume must be mounted (see Section 6.3) and the user must have write
access to a User File Directory (UFO) on the volume. A UFO is a file
that contains details of all the files that have been created on that
volume under the UFD identifier (i.e. [m,n] where m and n are octal
numbers from l to 377).

Interactive users can issue the DIRECTORY command to display the
contents of a User File Directory at the terminal. In batch mode, the
directory information is sent to the user's output stream (TO).

Example:

PDS> DIRECTORY

DIRECTORY DB0: [200,22]

15-MAY-77 17:20

ADD.OBJ;! 2.
ADD.FTN;l 1.
ADD.TSK;l 32.

15-MAY-77 17:17
15-MAY-77 17:17

c 15-MAY-77 17:18

TOTAL OF 35.i35. BLOCKS IN 3. FILES

If no parameter is supplied, the system displays information about the
user's current default UFO. However, by supplying one or more file
specifications the user can interrogate other directories or specific
files.

6-15

FILE HANDLING

Example:

PDS> DIRECTORY ADD.OBJ

DIRECTORY DB0: [200,22]

15-MAY-77 17:20

ADD.OBJ;l 2. 15-MAY-77 17:17

TOTAL OF 2./2. BLOCKS IN 1. FILE

To interrogate DOS or RT-11 files, modify the file specification with
the /DOS or /RTll file qualifier.

Example:

PDS> DIRECTORY <altmode>

FILE? RTFILE.MAC/RTll

A User File Directory is like any other file: it has a protection
code which determines who has access to it. A user may therefore
create a file under any UFO to which he has write access.

6.4.1.2 The CREATE Command Both batch and interactive users may
create files by using the IAS command CREATE.

The interactive user types CREATE and supplies a file specification
(no wild-cards allowed), optionally modified by the /PROTECTION
qualifier. If the /PROTECTION qualifier is not specifically supplied,
the new file is assigned the default file protection associated with
the volume.

For example:

PDS> CREATE

FILE? FORT.FTN/PRO: (OW:RWED SY: GR: WO:)

The system uses default values (see section 6.2.1) for the device, UFO
and version fields.

Once the command string has been terminated, the user types input to
the new file, line by line.

When terminated, each line is sent to the file exactly as it has been
formatted at the terminal. The user then closes the file by typing
CTRL/Z.

The batch user supplies the command name optionally modified by
/DOLLARS and a file specification (no wild-cards allowed), optionally
modified by the /PROTECTION qualifier. The qualifier /DOLLARS tells
the system that the file will be closed by the $EOD command.
Otherwise, any $ (i.e. batch) command terminates the file.
Therefore, the /DOLLARS qualifier must be specified whenever a record
in the file being created contains a $ in position 1. See Part 2 of
this manual for other CREATE command qualifiers.

6-16

FILE HANDLING

Examples:

1. $CREATE/DOLLARS FORTRAN.FTN/PRO: (OW:RWED SY: GR: WO:)

$EOD

2. $CREATE DK2: [30,4]CALCULATE.MAC

6.4.1.3 Usinq the Editor to Create a Sequential
also create files by means of the EDIT command.
description of the IAS text editors.

6.4.2 Manipulating Files

File Users can
See Chapter 7 for a

This section describes how to use various IAS commands to manipulate
existing files in the following ways:

To append one or more files to an output file

To copy a file

To rename an existinq file

To merge a file with an existing INDEXED or RELATIVE file.

6.4.2.1 The APPEND Command The APPEND command may be used to aod
one or more files onto the end of an existing file.

Examples:

1. PDS> APPEND (A.CBL, B.CBL)

TO? C.CBL

Append files A.CSL and B.CBL to the end of the file C.CBL.

2. $APPEND MYFILE.MAC YOURFILE.MAC

Append MYFILE.MAC to the end of YOURFILE.MAC.

NOTE

A user to a file
before appending to it=

The user specifies the input file or files (enclosed in parentheses if
more than one) first and then the output file.

Input files may be retrieved from a mounted volume, input from a
record-oriented device (for example, a card reader) or typed in from
an interactive terminal. When more than one input file is supplied,
the system appends the files in the order in which they are specified.

6-17

FILE HANDLING

If one of the files is to be input from the user's terminal (TI), the
system transfers to the input file everything typed at the terminal
after the command string until the user types CTRL/Z to close the
file. ·

Example:

1. $APPEND (FILEl.MAC, FILE2.MAC), FILE3.MA~

The system adds the input files FILEl.MAC and FILE2.MAC to
the file FILE3.MAC.

2. PDS> APPEND

FILE? JUO.CBL

TO? GRAVES.CSL

The file JUD.CBL is appended to the output file GRAVES.CBL.

6.4.2.2 The COPY Command The COPY command creates a duplicate of
the contents of an input file in a specified output file. Optional
command qualifiers qllow the output file to be modified in various
ways.

Examples:

1. PDS> COPY

FROM?MT2:FRED.MAC

TO? DK2:yIM.MAC

2. $COPY MT2:FRED.MAC, DK2:JIM.MAC

The examples above copy the highest version of FRED.MAC on MT2: to
DK2: and change the file name to JIM on DK2:. As well as copying
from one device to another, the COPY command can be used to copy a
file from one User File Directory to another.

Example:

1. PDS> COPY [30,4]FRED.MAC

TO.? [100,l00]FREO.MAC

This example copies the file FRED.MAC in (30,4] to UFO [100,100]. The
filename rema~ns unchanged.

6-18

FILE HANDLING

Four of the possible command qualifiers are:

/ALLOCATION:n

/CONTIGUOUS

/OWN

/REPLACE

These are explained in detail in Part 2, but some examples of their
use are shown below:

1. $COPY/ALLOCATION:20 DK2:0LDFILE.DAT DK0:0LDFILE.DAT

Copy OLDFILE.ONE from DK2: to DK0: and make the output
file 20 blocks long. The /ALLOCATION qualifier is useful
for copying a contiguous file and changing its size.

2. PDS> COPY/CONTIGUOUS

FROM? MT2:TU71.MAC DKl:*.*

Copy TU71.MAC from MT2: to DKl: and make the output file
contiguous. The wild-cards (*) indicate that the fields of
the output specification in which they occur take the
corresponding field values of the input file specification
(ie. the output file will also be named TU71.MAC.}.

3. $COPY/REPLACE MTl:SAME.OBJ;4 DK2:SAME.OBJ;4

The /REPLACE qualifier indicates that the output file
overrides a file in the user's default UFD that has the same
name, type and version number. That is, if a file called
SAME.OBJ;4 already exists on DK2: in the default UFD, it is
deleted and replaced by the new one copied from MTl:

There are two file qualifiers available with the COPY command, /RTll
and /DOS, that allow the user to copy files to or from an RT-11 or DOS
formatted volume. The qualifier must modify the specification of the
file currently in DIGITAL'S DOS or RT-11 format. DOS and RT-11 files
cannot be renamed within IAS; therefore, the filename and filetype
fields of the output file specification must always be wild.

Examples:

1. PDS> COPY

FROM? DK2:FRED.DAT/RT11

TO? * *

Copy the RT-11 file FRED.DAT from the foreign volume on DK2:
to the user's default device and UFD. The /RTll qualifier
instructs the system to translate the RT-11 file into
Files-11 format.

2. $COPY TEST.MAC;8 DT0:*.*/DOS

Copy the Files-11 file TEST.MAC;8 to a DOS-formatted foreign
volume on DT0:.

6-19

6.4.2.3 Renaming Files
the name of a file.
DEBUG.MAC;l to RUN.MAC;l.

FILE HANDLING

The RENAME command may be used to change
The examples below change the file name

1. $RENAME DEBUG.MAC;l RUN.MAC;l

2. PDS> RENAME

OLD? DEBUG.MAC;l

NEW? RUN.MAC;l

6.4.3 Listing Files

Sequential files may be listed on a line printer or at the user's
terminal. One of the commands discussed below should be used; the
choice is dependent on the kind of listing desired and whether the
user is operating in interactive or batch mode.

6.4.3.1 Listing on the Line Printer The PRINT command may be used
to print files on the line printer. The system often queues all line
printer output until all output previously submitted to the queue has
been processed. The output files are normally printed in the order in
which they were submitted to the queue.

The PRINT command is the simplest way to queue a file to the line
printer. For example:

1. PDS> PRINT

FILE? FILEl.DAT, FILE2.DAT, FILE3.DAT

2. $PRINT LIST.MAP

The file or files to be printed are specified after the command.

The PRINT command provides the option to delete files after they have
been printed. The user indicates this option by supplying the command
qualifier /DELETE. For example:

$PRINT/DELETE MYFILE.DAT

The actual printing can be deferred until later by the command
SET PRINTING DEFERRED. Printing will then begin when the user logs
out (by choice or timeout) or when SET PRINTING NODEFERRED is issued.
NODEFERRED is the normal default for the system.

6.4.3.2 Printing on Varied Stationery - There can be up to seven
distinct print queues. Each queue can be associated with a particular
type of continuous stationery, for example, fan-fold, graph plotter
paper, pay slips and so on. Within the system, these queues are
refered to by number, n, say, with values from 0 to 6. Outside the
system, the association of each value of n with a particular
stationery is agreed from time to time according to the installation's
needs.

n=0 is always the default queue. n=l through 6 can be used only via
the PRINT or the QUEUE command or the PRIN~'$ MACRO directive. The
PRINT command directs the file to the CL device, that is, the device

6-20

FILE HANDLING

to which CL was redirected at IAS start up. QUEUE can send a file to
any spooled output device, with CL as the default output device.

When output spooling is enabled, the system firsts prints all the n=0
queue on the CL device. If printing is queued with other values of n,
the system informs the operator via the system console whenever a
change of stationerv is required.

6.4.3.3 Listing Files at an Interactive Terminal The TYPE command
causes one or more specified files to be printed at the user's
interactive terminal.

Examples:

1. PDS> TYPE

FILE? FIRST.MAC, SECOND.MAC

2. PDS> TYPE TYPE.CSL

6.4.3.4 The DUMP Facility The DUMP command lists a specified file
on the user's terminal (TO) or sends the listing to a specified output
file. Command qualifiers modify the form of the listing. For
example, the user may specify that the file be dumped in ASCII mode.
The DUMP facility is useful for debugging programs and for displaying
nonprintable characters in ASCII or octal format. See the full
specification of DUMP in Part 2 for all the available options.

Examples:

1. PDS> DUMP/ASCII

FILE? DUMP.CBL

2.

List the file DUMP.CSL in ASCII format on the user's
terminal.

$DUMP/BYTE/OUTPUT:DK2:DISKFILE.DAT OBJECT.DAT

Send a listing of the file OBJECT.DAT in byte octal format
to a file named DISKFILE.DAT on DK2:

3. PDS> DUMP/OUT:LP0: FILE.DAT

List the file FILE.DAT in word octal format (the default) on
the line printer.

6.4.4 Deleting Files

The DELETE command deletes files held on Files-11 disks or DECtapes,
or DIGITAL's RT-11 or DOS files held on foreign disks or DECtapes.

Specifications of DOS or RT-11 files must be modified by a file
qualifier, either /DOS or /RTll as appropriate.

Wild-cards(*)
specification.

(see Section 6.2.2) are allowed in the file
If the version field is omitted, the command qualifier

6-21

FILE HANDLING

/KEEP:n may be supplied to preserve the highest n versions of the file
or files specified.

Examples:

1. PDS> DELETE/KEEP:2

FILE? MATRIX.DAT

2.

Delete all but the last 2 versions of the file MATRIX.DAT

$DELETE ROW.OBJ;4 COLUMN.MAC;4 PEEK.*;*

Delete all files named PEEK and the fourth version of the
files ROW.OBJ and COLUMN.MAC.

3. PDS> DELETE DK2:DOSFILE.DAT/DOS

Delete the file DK2:DOSFILE.DAT, which is in DIGITAL's DOS
format.

The PRINT command modified by the /DELETE qualifier can be used to
delete files that have been submitted to the line printer. See
Section 6. 4. 3 .1.

6.4.5 Summary of File Handling Commands

Command Function

ALLOCATE

APPEND

ASSIGN

COMPARE

COPY

CREATE

DEALLOCATE

DEASSIGN

DELETE

DISMOUNT

DUMP

EDIT

INITIALIZE

Allocate a specified device to the user.

Add one or more files to the end of a specified
sequential file.

Assign a device to a logical unit.

Compare two files with one another and produce a
summary of the differences found.

Copy an input file to a specified output file.

Create a file as specified. File contents to be
input from an interactive terminal, or, in batch,
to follow immediately after the $CREATE command.

Deallocate a specified device.

Deassign a device from a logical unit.

Delete specified Files-11, DIGITAL's DOS or RT-11
formatted files.

Dismount a specified volume.

List the contents of a file.

Edit an existing file or create a new file.

Initialize a foreign (DOS or RTll) volume.

6-22

MERGE

MOUNT

PRINT

RENAME

SET PROTECTION

SORT

TYPE

FILE HANDLING

Merge a file with an existing indexed or relative
file.

Make a volume available to the user.

Print one or more files on the line printer.

Change the name of an existing file.

Assign a specified protection code to a file.

Sort files into a specified sequence.

List a file at the user's interactive terminal.

6-23

CHAPTER 7

!AS TEXT EDITORS

This chapter provides the user with the basic information needed to
run either of the two !AS editors:

The Text Editor (EDI), primarily for interactive use, and

The Source Language Input Program and Editor (SLIPER), a
batch-oriented editor.

The !AS Editing Utilities Reference Manual contains a complete
description of both editors.

7.1 THE TEXT EDITOR

The EDIT command automatically invokes the Text Editor, also known as
EDI, unless the qualifier /SLIPER has been specified. EDI is an
interactive context-editing program that uses editor commands to
create and modify source programs and other files containing ASCII
data. The specification of the EDIT Command in Part 2 contains a
complete list of editor commands. This section introduces some basic
editing concepts and describes a useful subset of commands.

Editor commands, as in PDS, describe the action to be performed. Each
command consists of a command name followed by a single parameter.
Most command names can be abbreviated to 1, 2 or 3 letters. Some
command names, however, are themselves abbreviations of their function
and cannot be abbreviated further. For example, NP which stands for
Next Print, has no alternative form.

7.1.1 Editing Modes

EDI operates in two modes:
EDI considers all lines
file. This mode is used to
into an existing file~ In
terminal as editor commands
text.

input mode and edit mode. In input mode,
entered at the terminal to be input to the
create a file and to insert lines of text
edit mode: EDI treats lines entered at the
intended to modify or manipulate existing

7-1

IAS TEXT EDITORS

7.1.2 Input Mode

7.1.2.1. Creating a New File if the user specifies a
non-existent file with the EDIT Command, EDI automatically creates a
new file and enters input mode. The specification of the file must
include filetype. For example:

PDS> EDIT NEWFILE.DAT
'"('CREATING NEW FILE]
INPUT

The user then begins to enter text on the next line. All characters
typed are written to the file. The function and CTRL characters are
used to format the lines of text (see Chapter 3).

To enter a blank line into the text, type one or more spaces at the
beginning of a new line, followed by carriage return.

7.1.2.2 The INSERT Command - If EDI is already operating in edit
mode (see 7.1.3, 7.1.3.1), the editor command INSERT, immediately
followed by carriage return, changes the operating mode to input.

7.1.2.3 Changing to Edit Mode - To switch from input to edit mode,
type carriage return as the first character in a line. EDI responds
by displaying an asterisk (*) on the next~ line. The asterisk is the
EDI prompt for editor commands.

7.1.2.4 Closing a File - To close a file when in input mode, switch
from input to edit mode. Wait for the asterisk prompt, then type EXIT
(see Section 7.1.4.3).

7.1.3 Edit Mode

The asterisk (*) prompt indicates that EDI is operating in edit mode,
and is therefore only accepting editor commands.

7.1.3.1 Editing an Existing File - To edit an existing file, supply
the specification of the file with the EDIT command. The
specification must include a filetype. If the version number is
omitted, EDI selects the highest version of the file. EDI then
retrieves the input file and prompts for an editor command. For
example:

PDS> EDIT
FILE? OLDFILE.DAT
rnr.:lNES READ IN]

[PAGE l]
~

where 'n' is the block size or file size,
whichever is the smaller.

7-2

IAS TEXT EDITORS

7.1.3.2 Block Editing - By default, EDI accesses a file in Be-line
blocks, called pages. (This chapter discusses only this method of
access to the file; the alternative method, called line-by-line mode,
is described in the IAS Editing Utilities Reference Manual.) The
editor command SIZE may be used to change the number of lines per page
(see the specification of the EDIT command in Part 2).

7.1.3.3 The Line Pointer - EDI is a context editor; it locates the
line to be edited by means of text contained within the line, rather
than by sequence numbers, as does the batch editor SLIPER, described
in Section 7.2. EDI uses a line pointer to indicate the current line
to be edited.

When edit mode is first entered, the line pointer points to a line
immediately preceding the first line of text in the file. The user
then moves the line pointer by searching for a particular piece of
text or by using commands that reposition the pointer.

For example:

PDS> EDIT NEWFILE.DAT
[CREATING NEW FILE]
INPUT
THIS IS LINE 1 ENTERED
HERE IS LINE 2
LINE 3
LINE 4 WHICH IS ALSO THE LAST LINE
<CR>
~TOF
[00005 LINES READ IN]
[PAGE l]
~LOCATE LINE 1
THIS IS LINE 1 ENTERED
~NEXT
~PRINT
HERE IS LINE 2
!LOCATE ALSO
LINE 4 WHICH IS ALSO THE LAST LINE
~LOCATE ENTERED
[*EOB*]

In this example, the user has created a file consisting of 4 lines.
When the prompt for editor commands (*) appears, the user issues the
TOF (Top of File) command to move the line pointer to the top of the
file. "Top" means the line immediately preceding the first line of
text. The user then types "LOCATE LINE lN to fina the first line that
contains the character string •LINE l". EDI moves the pointer to that
line and prints it. The LOCATE command always searches down the file
beginning at the line immediately following the current line.

The NEXT command is used to advance the line pointer to the next line,
WhlCh is "HERE IS LINE l". The PRINT command then causes EDI to
display the new current line without moving the pointer. "LOCATE
ALSO" cause~ the line pointer to be moved to the fourth line, which
contains the word "ALSO". This line is automatically printed.

The command "LOCATE ENTERED" causes the editor to print
"[*EOB*]. "EOB" is the abbreviation for End of Buffer. Since
the line pointer moves only down the text when searching for character
strings, it encounters the end of the buffer without finding the

7-3

!AS TEXT EDITORS

string "ENTERED." The TOF command could then be used to reposition the
line pointer at the beginning of the text.

7 .1. 4 Editor Commands

This section describes a useful subset of EDI commands. The complete
set is listed in the specification of EDIT in Part 2. The !AS Editing
Utilities Reference Manual specifies all the commands in detail.

The subset of commands is described in alphabetical order. All
commands are separated from their parameters by one or more spaces.
Brackets ([and]) indicate that the enclosed value is optional.

Note that the function keys carriage return (CR or RETURN) and ALTmode
(ALT and ESC) can be used as editor commands. See the description of
the NP Command, Section 7.1.4.8. CTRL/Z may also be used to close the
editing session and return control to PDS; but it is advisable to use
the editor command EXIT for this purpose.

The subset includes:

Commands Sections

CHANGE (Section 7.1.4.l)
DELETE (Section 7.1.4.2)
EXIT (Section 7.1.4.3)
FIND (Section 7.1.4.4)
INSERT (Section 7.1.4.5)
LOCATE (Section 7.1.4.6)
NEXT (Section 7.1.4.7)
NP (Section 7.1.4.8)
PRINT (Section 7.1.4.9)
PLOCATE (Section 7.1.4.10)
RENEW (Section 7.1.4.11)
RETYPE (Section 7.1.4.12)
TOF (Section 7.1.4.13)

7.1.4.1 The CHANGE Command

Format

[n]CHANGE /string-1/string-2[/]

where string is a character string. The slashes (/) delimit each
string, and are therefore called delimiters. The delimiters may be
any matching characters that do not appear in either string. The
first character following the command is considered to be the first
delimiter. The closing delimiter is optional.

n is a positive integer.

The command name may be abbreviated to one or more letters.

7-4

!AS TEXT EDITORS

Function

This command searches for string-1 in the current line and, if found,
replaces it with string-2.

If string-I is given but EDI cannot locate the string in the current
line, EDI prints "NO MATCH" and returns an * prompt. The command can
be reentered using the correct string construct.

If string-1 is null (not given), string-2 is inserted at the beginning
of the line. If string-2 is null, string-I is deleted from the
current line.

The search for string-I begins at the beginning of the current line
and proceeds across the line until a match is found. If string-1
occurs more than once on the current line, only the first occurrence
is changed.

A different command is needed to change every occurrence in the
from string-1 to string-2. This is LC, standing for Line Change.
example 3 below.

line
See

A numeric value n preceding the command CHANGE causes the command to
be obeyed n times. For each repetition, the entire line is rescanned
beginning at the first character in the line. This allows the user to
generate a string of n characters as shown in example 4 below.

If no match occurs, a NO MATCH message is displayed.

The Line Pointer

The CHANG8 command does not change the position of the line pointer.

Examples

1. The current line reads "333". The following command changes
it to "C33":

!C/3/C/

2. The current line reads "DIAGNOSIS".
changes it to read "DIAGNOSTICS":

~CHA II IS "TICS ff

3. The current line contains "ABACAD".
changes it to read "XBXCXD":

-:,.LC/A/X

The following command

The following command

4. The current line contains "A;B;C;D". The following command
changes it to read "A;;;;;B;C;D":

-:,.4C/;/1;

7-5

IAS TEXT EDITORS

7.1.4.2 The DELETE Command

Format

DELETE [n]

where n is a positive or negative integer.

The command name may be abbreviated to one or more letters.

Function

This command causes lines of text to be deleted in the following
manner:

1. If n is positive, the current line and n-1 lines following
the current line are deleted. The line-pointer advances to
the line following the last deleted line.

2. If n is negative, the current line is not deleted, but the
specified number of lines that precede it are deleted. The
line pointer remains unchanged.

3. If n is omitted, the current line is deleted and the line
pointer advances to the next line.

The Line Pointer

See items 1, 2 and 3 in the Function section above for the command's
effect on the line pointer. To print out the line pointed to after
the deletion type DP (Delete and Print} in place of DELETE.

Examples

To delete the previous five lines in the block buffer, type the
following command:

~D -5

To delete three lines and print the resulting line pointed to by the
line pointer, type

~DP 3

7-6

IAS TEXT EDITORS

7.1.4.3 The EXIT Command

Format

EXIT

The command name may be abbreviated to two or more letters.

Function

This command transfers all remaining lines in the block buffer and
input file (in that order) into the output file, closes the file and
causes EDI to exit. The system then prompts for PDS commands.

Example:

~EX
[EXIT]

PDS>

7.1.4.4 The FIND Command

Format

[n]FIND [string]

where n is a positive integer and string is a
begins in the first position of a line.
abbreviated to one or more letters.

Function

character string that
The command name may be

This command searches the block, beginning at the line following the
current line, for string, which must begin in column one of the lines
searched. If string is not specified, the line pointer simply
advances one line. If n is given, EDI searches for the nth occurrence
of string and positions the line pointer at the line that contains it.

FIND is useful for locating FORTRAN statement numbers and MACR0-11
statement labels.

The Line Pointer

If string is not given, the line pointer advances one line.

If string is given, the line pointer moves to the first or nth line
containing string.

Example

~F LOOK
LOOK AT THE FIRST CHARACTER IN THE LINE

The above command causes EDI to search the block for a line beginning
with LOOK and to print the line when it is found.

7-7

!AS TEXT EDITORS

7.1.4.5 The INSERT Command

Format

INSERT [string]

where string is a character string.

The command name may be abbreviated to one or more letters.

Function

This command inserts string immediately following the current line.
If string is omitted, EDI enters input mode.

The Line Pointer

The line pointer moves to the line in which string is inserted, that
is, the line following the current line.

Example

!I TEXT INSERT IN EDIT MODE

!F ABC

ABC IS THE START OF THE ALPHABET

.!.I <CR>

TEXT INSERT 1 IN INPUT MODE

TEXT INSERT 2 IN INPUT MODE

ETC.

<CR>

*

7.1.4.6 The LOCATE Command

Format

[n]LOCATE [string)

Inserts a
immediately
line.

line of text
after the current

Finds a line beginning with
ABC.

This is the line found.

An I followed by a carriage

return causes EDI to switch

to the input mode and a

series of new lines
input following the
line.

can be
current

An extra <CR> closes the input
and causes a return to EDIT
mode.

Prompt for EDIT mode.

where n is a positive integer and string is a character string.

The command name may be abbreviated to 1 or more letters.

Function

This command causes a search of the buffer beginning at the line
following the current line for string, which may occur anywhere in the

7-8

IAS TEXT EDITORS

line sought. If string is not specified, the line following the
current line is considered a match. A numeric value n preceding the
command results in locating the nth occurrence of string. EDI then
prints the located line.

The Line Pointer

EDI moves the line pointer to the line containing string or the nth
occurrence of string.

Example

See Section 7.1.3.3.

7.1.4.7 The NEXT Command

Format

NEXT [n]

where n is a positive or negative integer.

The command name may be abbreviated to one or more letters.

Function

If n is omitted, this command causes the line pointer to advance one
line.

If n is supplied, the line pointer moves forward n lines if n is
positive, or back n lines if n is negative.

Example

The following command moves the current line pointer back five lines:

!N -5

7.1.4.8 The NP (Next Print) Command

Format

NP [n]

where n is a positive or negative integer.

The command cannot be abbreviated.

Function

This command has the same function as the NEXT command (see Section
7.1.4.7) except that it prints out the new current line.

Note that pressing carriage return (CR or RETURN) performs the same
function as NP 1, and pressing ALTmode (ALT or ESC) performs the same
function as NP -1.

7-9

IAS TEXT EDITORS

Example

The following four lines are contained in the file and the line
pointer is at the first line.

LINE 1 OF THE FILE
LINE 2 OF THE FILE
LINE 3 OF THE FILE
LINE 4 OF THE FILE

If the following command is issued, EDI would return the following
printout

!NP 2
LINE 3 OF THE FILE

7.1.4.9 The PRINT Command

Format

PRINT [n]

where n is a positive integer.

The command name may be abbreviated to one or more letters.

Function

This command prints out the current line and the next n-1 lines on the
terminal. If n is omitted, the command prints the current line.

The Line Pointer

The line pointer is positioned at the last line printed if n is given.
If n is omitted, the line pointer does not move.

Example:

!P3

LINE
LINE
LINE
!P

LINE

7.1.4.10

Format

1
2
3

3

Prints out the current line then the next two
lines.

Prints the current line only (the last line
printed by the previous command).

The PLOCATE (Paqe Locate) Command

(n]PLOCATE [string]

where n is a positive integer and string is a character string.

The command name may be abbreviated to two or more letters.

1-1e

Function

This command searches for
blocks, startinq from the
be positioned anywhere in
specified! EDI searches
containing string is then

IAS TEXT EDITORS

string in the current block and
line following the current line.
the line in which it occurs.

for the nth occurrence of strinq.
printed.

If string is omitted, the line pointer advances one line.

The Line Pointer

successive
String may
If n is

The line

The line pointer advances to the line containing string (or the nth
occurrence of string) or to the line following the current line if
string is omitted.

Example

The following command locates the line "HAPPY DAYS ARE HERE AGAIN",
which occurs somewhere in the file ahead of the current line.

~PL PPY
HAPPY DAYS ARE HERE AGAIN

7.1.4.11 The RENEW Command

Format

RENEW [n]

where n is a positive integer.

The command name may be abbreviated to three or more letters.

Function

If n is omitted, the command writes the current block into the outout
file and reads a new block into the buffer. If n is specified, EDI
reads n-1 blocks into the buffer and then writes them to the output
file. The nth block is then read into the buffer and the line pointer
positioned at the top of it.

Example

~RENEW 10

In this example, ten consecutive blocks are transferred from the input
file to the block buffer. Only nine blocks, however, are transferred
to the output file. The current line pointer is pointing to the first
line in the tenth block which is currently in the block buffer.

7-11

IAS TEXT EDITORS

7.1.4.12 The RETYPE Command

Format

RETYPE [string]

where string is a character string.

The command name may be abbreviated to one or more letters.

Function

This command replaces the current line with string.
omitted, the command deletes the current line.

The Line Pointer

The line pointer does not move.

Example

~RETY THIS IS A NEW LINE

If string is

In this example, the string "THIS IS A NEW LINE" replaces the current
line.

7.1.4.13 The TOF (Top Of File) Command

Format

TOF

The command cannot be abbreviated.

Function

This command returns the line pointer to the top of the input file and
saves all blocks (pages) previously edited. The "top" of the file is
the line that immediately precedes the first line of text in the file.

Example

~TOF

This command causes the previously edited pages to be written into the
output file. The line pointer then moves back to the top of the file.

7 .1.5 Error Messages

Refer to the IAS Editing Utilities Reference Manual for a list of EDI
error messages and recommended responses.

7-12

IAS TEXT EDITORS

7.2 BATCH EDITING

The Source Language Input Program and Editor (SLIPERj is a
batch-oriented editing program used to create and maintain source
language files on disk. It permits the user to:

1. Edit an existing source file. Commands are provided to:

a. Delete

b. Replace

c. Insert

2. Obtain line number listings of files.

SLIPER accepts input from

1. The input stream

2. Any Files-11 volume, i.e. a disk or DECtape in IAS format
(see Chapter 6, Section 6.1.1)

Before starting SLIPER, the user should be aware of the following:

1. Lines can be located either by line number or by character
strings within the line. A current listing must therefore
be at hand, containing the line numbers if these are to be
used.

2. The batch editor does not accept input lines greater than 80
ASCII characters in length. If more than 80 characters are
specified, an error is declared.

3. Line numbers to which the edit commands refer must be in
ascending sequence throughout the SLIPER file. Form feeds
and page directives are treated as part of the text.

The PDS command COMPARE can compare two files line by line and
generate the SLIFER input needed to convert· one file to the other.

7.2.1 Invoking SLIPER

To invoke SLIPER the user must issue the EDIT command modified by the
command qualifier /SLIPER. For example:

$EDIT/SLIPER OLDFILE.MAC

Further EDIT command qualifiers applicable only to SLIPER determine
+-h"" f=,.,.,..tn,,.+.. r.4= +-h"" ,.,. f=;lo.C!
\..J..l~ .a...v-~UI~""' '"'.1... \..1.1.C VU'-l;:'U.\..o .L.6..&.'-t..Je

7-13

IAS TEXT EDITORS

Table 7-1 lists the SLIPER qualifiers and their effects.

Qualifier

Table 7-1
SLIPER Qualifiers

Description

/OUTPUT[:filespec] Produce an output file. Unless filespec
is specified, the file is given the
same name as the input file, with a
version number increased by 1.

/NOOUTPUT Do not produce an output file.

/LIST [: f ilespec J If /OUTPUT has been specified print a
listing of the output file on the line
printer.

/AUDIT

If /NOOUTPUT has been specified, print
a listing of the input file on the line
printer.

If f ilespec has been specified, name
and store a listing file accordingly.

Enable the editing audit trail,
which indicates in the output file the
changes made during the most recent
editing session.

/AUDIT: (parameters)

/NOAUDIT

/BLANK

/NOB LANK

/DOUBLE

/NODOUBLE

POSITION:n Define the position n on the output
file line where the audit trail is to I
be placed. The value n will be rounded
to the nearest tab stop. (Default
position is column 80)

SIZE:m Define the maximum length of the audit
trali string. (Default size is 8)

NOTE: Values for the position and size
of the audit trail must be chosen such
that the line does not exceed 88
characters.

Disable the editing audit trail.

Insert blanks at the end of the text
line (rather than tabs) to
right-justify the audit trail text.

Do not insert blanks at the end of the
text line.

Produce a double-spaced listing file.

Produce a single-spaced listing file.

7-14

Default

/OUTPUT

/LIST

/AUDIT

/BLANK

/NODOUBLE

IAS TEXT EDITORS

7.2.1.1 Obtaining a Listing - Note that to produce a listing of the
file to be edited, the user must specify the /NOOUTPUT qualifier. For
example:

PDS> EDIT/SLI/NOOUTPUT/LIST CHARLES.MAC

The command above prints a listing of CHARLES.MAC on the line printer.
In batch, the default is /LIST, but interactive users must specify
that qualifier to obtain a listing. The listing provides the line
numbers to be used in subsequent editing of CHARLES.MAC.

7.2.2 SLIPER Output Files

When a file is edited, SLIPER produces an output file on disk under
the name specified by the user. If the /AUDIT qualifier is specified
(default condition), the file contains an audit trail, indicating
changes effected by the editing session.

Each line that has been inserted during the last editing session is
flagged by appending the characters :**NEW** to the line. The user
may reset **NEW** to a flag of his own choice.

The line following the inserted line(s) may be flagged by the
characters ;**-n, where n is a decimal value equal to the number of
lines that were deleted from the old file. For example:

;THIS IS A NEW LINE ADDED TO THE FILE :**NEW**
:THIS IS THE NEXT LINE ;**-1

indicates that the new line has simply replaced one of the old lines:
that is, the edit command looked like:

;THIS IS A NEW LINE ADDED TO THE FILE
-m, m

where m is the number of the line that was re~laced. There may also
be entries of the following kind:

;THIS LINE IS A REPLACEMENT :**NEW**
;NEXT OLD LINE :**-16

indicating that a new line has been inserted, but 16 lines have been
deleted immediately preceding the next old line.

Lines may also be flagged with the characters ;**N, with no preceding
new lines, to indicate that lines have been deleted without being
replaced.

If /AUDIT has been specified, the current flags are stripped before
the updated file is output; thus, the flags are reliable indicators
of the most recent update of the fiie.

7-15

IAS TEXT EDITORS

7.2.3 SLIPER Edit Commands

7.2.3.l SLIPER Editing Command Formats

For an insertion:

-location! [,/audit-trail] [; J

For a deletion:

Insert text following the line in the input file given
by location!.

-locationl,location2 [,/audit-trail] [: J

Delete line(s) given by locationl through location2.

where:

location! and location2 are

n n is a line number (decimal)

or

/string/[+n]

or

• [+n]

audit-trail

string is an ASCII string and may occur anywhere
in the line to be located. Within string, three
periods ••• can be used to represent omitted
characters. +n, if used, advances the location a
further n (decimal) lines.

current position [advanced in lines].

is an ASCII string to be appended to each new line
of text if /AUDIT is in force. Default (if /AUDIT
is in force) is the immediately previous setting
of audit-trail.

Initial setting: ;**NEW**

remainder of line following is a comment.

7-16

IAS TEXT EDITORS

7.2.3.2 Location by Line Numbers

Following the initial invoLation of SLIPER (7.2.1), the user enters
text lines, or deletes or corrects lines in the original source file.
Text that is to be inserted at the beginning of the file is entered
immediately following the initial command line. To correct or replace
one or more lines, or to insert text in the middle or at the end of
the file, the user must first specify an edit command in line position
1, followed by a decimal value that refers to a line in the input
file. For example:

-9

The minus sign and line number may appear as the only element on the
line, or they may be followed by a comma and a second line number, as:

-9,12

or

-9,9

SLIPER interprets the user's purpose by examining the edit command~
When a single line number 1s specified (e.g. -9 alone), SLIPER
interprets the user's purpose to be the insertion of new text lines
into the source file. The line number indicates that the new text is
to be inserted following the specified line (in the first example, new
text would be placed in the file following line 9).

When the user provides an edit command in the second format (-9,-12),
SLIFER deletes all text lines from line 9 throuqh line 12,
inclusively. The user can follow the edit command with lines of text,
which will be inserted into the file in the location previously
occupied by the deleted lines (that is, the first new line is the new
line 9).

The edit command (-9,9) indicates that SLIPER is to delete line 9. If
a text line (or lines) follows. It replaces the deleted line.

NOTE

Line numbers must always be specified in
ascending sequence. Thus, -9,8 is
illegal, and an error message is
printed. It is also illegal to refer to
a line number lower than a line number
that was referred to in a prior edit
command.

In place of n the user can specify a single
current

period to mean 'the
line advanced n further current line'. •.+n' means 'the

lines;.

7.2.3.3 Location by Character String - Instead of a line number n the
user can at any time specify a character string occurrinq within the
line. SLIFER locates the next line containing a matching string. The
string itself cannot contain a slash, because slashes are used to
delimit the string in the command. The user can also specify an
advance of a number of lines from the first matching string found.

7-17

IAS TEXT EDITOFS

Instead of a complete string the user can
characters at its beginning and at its end.
be used to represent the omitted characters.

specify one
Three r;>eriods

or more
must

7.2.3.4 SLIFER Edit Control
characters as edit control
position 1:

Characters
characters

SL I PER
when they

recognises four
appear in line

The minus sign (-)

The "less than" sign (<)

The slash (/)

The "at" sign (@)

Table 7-2 describes their use as edit control characters.

7-18

Character

-(minus)

/(slash)

@(at)

<(less than)

IAS TEXT EDITORS

Table 7-2
SLIFER Edit Control Characters

Function

Indicates that an editing function is to be
performed, with reference to the lines
specified by number or character string.

-n Insert text following line n.

-n,n Delete line n.

-n,m Delete lines
inclusively (m
than n).

n through m
must be greater

For the alternatives to n or n,m see 7.2.3.1.

The slash is placed in the first position of
a line to indicate that the editing of a file
is completed.

The @ character is put in the first location
of a line to indicate that SLIPER is to seek
input from an indirect file. The user must
specify the indirect file immediately after
the @ sign; for example:

@DK2:DKSFIL.CMD

instructs SLIPER to read input from the file
DKSFIL.CMD on physical device unit DK2:.
Indirect files are more fully described in
Section 7.2.4. Unless otherwise specified,
the file extension defaults to .CMD.-

The < character is used when entering a line
that begins with one of the special edit
control characters. It causes the line to be
shifted one character to the left, with the
result that the < is deleted, and the desired
control character is entered into the file as
the first character on the line.

7.2.4 Indirect Files

Indirect files can be used to contain both editing commands and
correction lines ~~ ~~~~r~~A ~~~~ ~~~ ~~i~ ~~~~~ ~~~~~A 1c~~

t.J'I;: .1.IJOCA. ._CV .1.11._V' ._UC .L.1..1.C t.JC.l.ll':::f_<;; e \UCC

Chapter 8: Section 8=2~)

7-19

IAS TEXT EDITORS

7.2.5 SLIPER Editing Examples

The following examples show the various editing functions that SLIPER
can perform, and the command formats used.

EXAMPLE A

$EDIT/SL! JONES.MAC

-23,23

Rl=SIZE OF BLOCK TO ALLOCATE IN BYTES

-33

MOV $FRHD,R2 ;GET ADDRESS OF FREE POOL HEADER

-36,36

-39,39

ASR Rl ;CONVERT TO WORDS

I

This example performs the following editing functions:

Line 23 is replaced by a corrected version (i.e.; Rl =SIZE
OF BLOCK TO ALLOCATE IN BYTES.);

EXAMPLE B

A new line is inserted after line 33;

Line 36 is deleted (and not replaced);

Line 39 is replaced by a
ASR Rl ;CONVERT TO WORDS),

corrected

$EDI/SLI CATHS.MAC

-ss,ss

BCS 60$;IF CS YES

-107 ,107

CALL $ERMSG ;OUTPUT ERROR MESSAGE

I

Example B performs the following editing functions:

Line 55 is replaced by a corrected line;

Line 107 is replaced by a corrected line.

7-20

version (i.e.,

IAS TEXT EDITORS

EXAMPLE C

$EDI/SLIP/OUTPUT:CHAS.MAC CATHS.MAC

-15,16
CNTRL: .BYTE

-33,35

$COTO:: MOVB

-38,38

COTB:: MOVB

-43,45

CMPB

BEQ

CMPB

BEQ

-/3$:/,.+3

3$: MOV

I

I 9 I I 0

#'9,CNTRL ;SET DECIMAL LIMIT

#'0,CNTRL ;SET OCTAL LIMIT

#I ,RS ;BLANK?

1$;IF EQUAL YES

#HT,RS ;HT?

1$;IF EQUAL YES

RS,R.2 ;SET TERMINAL CHARACTER

Example C performs the following editing functions:

Lines 15 and 16 are deleted and replaced by a corrected
line;

Lines 33 through 35 are deleted and replaced by the line
starting with $CDTD;

Line 38 is replaced;

a line including the string "3$:" and the following 3 lines
are replaced by a single line;

Line beginning with 3$: is inserted.

The output file is created under the name CHAS.MAC.

7-21

CHAPTER 8

IN'I'RODUCTION TC PROGRAM CONTROL

IAS supports several programming languages, including BASIC, COBOL,
FORTRAN, CORAL and MACR0-11. MACR0-11 is a standard feature of IAS;
the other language translators are optional. This chapter is an
introduction to some language-independent aspects of running programs
under IAS. The next five chapters, one on each language, describe how
to use IAS commands to transform source programs into executing
programs or tasks.

8.1 PROCESSING MODES

Whether it is better to operate in batch or in interactive mode
depends on the nature of the programmer's job and the requirements of
the installation. Interactive mode is convenient for comolicated
editing of source programs, for instance, or the execution of programs
that require small amounts of input data. On the other hand, batch
processing is usually the best mode for processing large amounts of
data, for example, a payroll or accounts receivable.

8.2 INDIRECT FILES

An indirect file is a sequential file containing command input. For
example, rather than repeatedly typing commonly used command
sequences, the user can type the sequence once and store it in a file.
To execute the sequence, the user issues an "at" sign (@) followed by
the file specification instead of the first command in the sequence.
The indirect file may be invoked from any position within the command
string, but any characters that follow the indirect file specification
are ignored. The system then retrieves the indirect file and executes
the commands contained therein.

Example:

PDS> EDIT FILE.CMD

[CREATING NEW FILE]

INPUT

FORTRAN/OBJECT/LIST:CPROG

LINK CPROG

RUN CPROG

CPROG

8-1

INTRODUCTION TO PROGRAM CONTROL

<CR>

!EXIT

PDS>

PDS> @FILE

The indirect file called FILE.CMD, created by means of the Line Text
Editor, contains commands to compile, link and run the source program
CPROG.FTN.

These commands are executed when the user invokes the file by typing
@FILE in response to the PDS prompt. CMD is the default f iletype for
indirect files.

In a batch context, the same command sequence could be created and
invoked in the following manner:

$CREATE/DOLLARS FILE.CMD

$FORTRAN/OBJECT/LIST:CPROG CPROG

$LINK CPROG

$RUN CPROG

$EOD

@FILE

Note that the $CREATE command string must include the qualifier
/DOLLARS, so that the system recognizes the following text as input
and not as further batch commands to be processed. The $EOD command
terminates the file to be created.

The command file may be invoked subsequently by the command line
@FILE. No dollar sign ($) is needed.

Both batch and interactive users may invoke indirect files on up to
three levels. An indirect file can itself invoke another indirect
file; the second file may invoke a third; but the third file may not
invoke a fourth indirect file.

See Chapter 6, Section 6.4.l for a description of file creation.

8.3 USER LIBRARIES

The IAS command LIBRARIAN allows users to create and maintain their
own libraries of commonly-used macros (macro libraries) and routines
(object module libraries).

8-2

INTRODUCTION TO PROGRAM CONTROL

8.3.1 Macro Libraries

MACR0-11 macros may be held in source {text) form in a macro library.
Each macro is identified by its macro name. To use one or more macros
contained in a macro library file, the programmer must supply the
library file specification, modified by the qualifier /LIBRARY, in the
list of input files to the MACRO command. (See the description of the
MACRO command in Part 2.) The macro library must be specified before
the module that calls it.

8.3.2 Object Module Libraries

Commonly-used routines are stored in object (that is, compiled or
assembled) code which the user can then incoroorate in a task. The
object code routines are called object modules; ~the files in which
they are held are called object module libraries.

A programmer who invokes a library object module must ensure that the
module is linked at task build time. The Task Builder automatically
searches all system libraries; but it only searches user-written
libraries that have been explicitly specified in the LINK command (see
Part 2, LINK, the file-qualifier /LIBRARY and LINK/OPTIONS).

The IAS Task Builder Reference Manual describes object
libraries in detail.

module

The specification of the LIBRARIAN command in Part 2 describes how to
create and maintain the libraries.

8.4 CREATING SOURCE FILES

Either the CREATE command or the EDIT command may be used to create
source files. The EDIT command has the advantage that it allows the
user immediate access to all its editing facilities. To correct
errors made while using the CREATE command, however, the user must
rely on keyboard facilities or close the file and then issue the EDIT
command.

8.4.1 The CREATE Command

To create a source file with the CREATE command, the user must do one
of two things:

1. In batch mode, issue the command $CREATE, optionally modified
by the qualifier /DOLLARS, followed by a file specification
of the file to be created. Insert the source program
immediately after the command name. The source file is
terminated either by another batch command or, if /DOLLARS
has been specified, by the command $EOD.

2. At an interactive terminal, issue the PDS command CREATE
followed by the file specification of the file to be created.
Begin to input the source program at the beginning of the
next line. Close the file by typing CTRL/Z.

8-3

INl'RODUC'rION TO PROGRAM CON'l'ROL

The CREATE command is described in greater detail in Chapter 6,
Section 6. 4 .1.1.

Examples:

1. $CREATE/DOLLARS COBOL.CBL

00078 IF NF-DELIMITER = CR

00079 PERFORM READ-TRAN-LINE

00080 IF EOFFOUND GO TO G5999

00081 ELSE GO TO GSS

00082

00083

IF CHAR-COUNT ZERO

IF INMARKER < TRAN-LINE-LIMIT GO TO G25.

$EOD

2. PDS> CREATE

FILE? TEST.FTN

SUBROUTINE PROCI

C FIRST DATA PROCESSING ROUTINE

C COMMUNICATION REGION

COMMON/DTA/A(200),I

RETURN

END

CTRL/Z

8.4.2 The EDIT Command

The EDIT command allows the interactive user both to create and edit a
source file via the Text Editor. Batch users should use the CREATE
command to create a source file, which may be edited subsequently in
either interactive or batch mode (See Chapter 7).

8-4

INTRODUCTION TO PROGRAM CONTROL

When the EDIT command specifies a non-existent file, the Line Text
Editor creates one and prompts for input. For example:

PDS> EDIT

FILE? NEWSOURCE.CBL

(CREATING NEW FILE]

INPUT

The user then begins to enter the source file beginning at the first
position of the next line after 'INPUT'.

See Chapter 7 for details on how to use the Text Editor to edit the
new file as it is being created.

To close the new file, the user must type carriage return as the first
character in the line. This action causes the Editor to display an
asterisk (*),which indicates that it expects an editor command rather
than further input to the file because the command mode has chanqed
from insert to edit. To close the file and exit to PDS, use the
command EXIT. If the user wants to create further files, the EDIT
command must be reissued.

Example:

PDS> EDIT

FILE? TONY.FTN

[CREATING NEW FILE]

INPU'I'

SUBROUTINE REPORT

C INTERIM REPORT PROGRAM

C COMMUNICATION REGION

COMMON/DTA/A(200),

RETURN

END
<CR>

!EX

PDS>

8.5 ERROR STATUS RETURNED TO PDS

When certain tasks exit it is possible for the system to notify PDS
and hence the user of the 'worst' error found during execution. The
system relies on the task using the Exit with Status Directive see

8-5

INTRODUCTION TO PROGRAM CONTROL

the Executive Reference Manual, Volume I. The status of the task is
then recorded as one of

SUCCESS
WARNING
ERROR
SEVERE ERROR

If exit with status is not implemented in the task, no status is
recorded.

SUCCESS indicates that results should be as expected.

WARNING indicates that the task has succeeded but results may not be
as expected.

ERROR is stronger than WARNING:
expected.

results are unlikely to be as

SEVERE ERROR indicates one or more fatal errors or that the task was
aborted.

If the task was invoked interactively, the termination message to the
user's terminal includes the status.

If the task was invoked via an indirect command or in batch, the
status can be used to control subsequent steps in the command file or
batch job, see Section 8.5.1.

An Error status is returned by the PDS commands LINK, MACRO and
LIBRARIAN.

Within PDS, failure to load a task, the operations MOUNT, DISMOUNT,
ALLOCATE, DEALLOCATE, ASSIGN, DEASSIGN and failure to parse a command
also return a status of SEVERE ERROR to PDS.

8.5.1 Conditional Command Execution

Indirect Command files and Batch Command files can include the
commands

ON error-severity action
GOTO label
STOP
CONTINUE

Of these, ON is a conditional command which relies on the status
returned by certain tasks to PDS when they exit, or on PDS' own status
return {see 8.5).

ON must be placed before the task(s) to which ON refers. For example,
in a batch job,

$ON ERROR STOP
$MACRO MYPROG
$LINK MYPROG
$RUN MYPROG

Here, $ON has no effect on the MACRO assembly itself. If the assembly
is completed with warnings only, the job continues with the Linking,
and if the linking produces nothing worse then a warning, the task is
run.

8-6

INTRODUCTION TO PROGRAM CONTROL

The action set by ON can be GOTO, STOP, CONTINUE, or any PDS command
that would be valid in the command file. The setting remains in force
until the next ON command, and is then superseded entirely. The
initial (or default) setting is the example used above,
[$]ON ERROR STOP. If an ON statement is found, on attempted
execution, to be itself faulty, PDS reverts to the default setting.

NO'I·E

ON cannot specify action to be taken
during the execution of a task, nor
actions dependent on the outcome of a
previous task.

The command STOP prevents all further conunands in the file or job
being implemented.

CONTINUE is useful, for example, in overriding the default setting,
thus

ON SEVERE ERROR CONTINUE

so that all later error statuses are ignored.

CONTINUE in an indirect or batch file does not imply previous
suspension of a task, as it does in interactive or real-time use.

The label in a GOTO command must appear also, together with a colon,
in front of a later command. For example,

$ON WARNING GOTO ELSE
$LINK MYPROG
$RUN MYPROG
$STOP
$ELSE: LINK OLDPROG
$RUN OLDPROG
$EOJ

Here MYPROG is linked and run, unless the link includes warning errors
or worse, in which case OLDPROG is linked and run. If linking OLDPROG
includes warning errors or worse, the setting of ON causes the command
processor to look ahead for a label ELSE, and on finding none the job
is abandoned.

STOP, CONTINUE and GOTO label can appear as separate commands, as well
as in an ON statement.

8-7

CHAPTER 9

BASIC

9.1 INTRODUCTION

The information in this chapter relates to BASIC-11 only. Details of
BASIC-PLUS-2 should be obtained from the BASIC-PLOS-2 specific
documentation.

BASIC-11 provides immediate translation and storage of a user program
while it is being input from an interactive terminal. The PDS user
invokes the BASIC interpreter by typing the command BASIC. The BASIC
system may not be used in batch mode under IAS.

The interactive nature of BASIC removes the need for separate steps in
the development of a program. Once BASIC has been invoked, a program
may be created, translated and run in a single session.

This chapter describes how to invoke
program and then terminate a session.
the BASIC language itself:

BASIC-11 Language Reference Manual

IAS BASIC User's Guide

9.2 THE BASIC COMMAND

BASIC, create and execute a
The following manuals describe

When the user issues the BASIC Command, BASIC displays as follows:

PDS> BASIC

!AS/RSX BASIC V02-Zl

READY

The text 'READY' indicates that BASIC is ready to receive a command or
program line.

The BASIC command has no parameters or command qualifiers=

9.3 CTRL/C

If the user presses CTRL/C while a BASIC program is running, the
system stops execution after the current line and dislays the number
of the last line executed. The user may then issue further BASIC
commands.

9-1

BASIC

CTRL/C typed during the execution of a BASIC LIST or SAVE command or
an immediate mode statement stops the execution of those commands or
statements. It has no effect on the execution of other BASIC
commands.

9.4 TERMINATING A BASIC SESSION

To terminate a BASIC session and return control to PDS, the user must
type 'BYE' on a new line. The system then prints information about
the session and prompts for further PDS commands. For example:

BYE

15.57.32 SIZE:l4K CPU:l0.24

PDS>

9.5 EXAMPLE

PDS> BASIC
READY
OLD MYBASIC
LISTNH
10 REM PROGRAM TO TRANSLATE MONTH NAMES TO NUMBERS
50 TS = •JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC"
100 PRINT "TYPE THE FIRST 3 LETTERS OF A MONTH";
110 INPUT M$
120 IF LEN CM$) <>3 GO TO 200
130 M=(POS(T$,M$,l) + 2) /3
140 REM CHECK IF MONTH IS SPELLED CORRECTLY
150 IF M <> INT (M) GO TO 200
160 PRINT M$" IS MONTH NUMBER"M
170 GO TO 100
200 PRINT "BAD MONTH" GO TO 100
READY

RUNNH
TYPE THE FIRST 3 LETTERS OF A MONTH?
NOV IS MONTH NUMBER 11
TYPE THE FIRST 3 LETTERS OF A MONTH?
DEC IS MONTH NUMBER 12
TYPE THE FIRST 3 LETTERS OF A MONTH?
JAN IS MONTH NUMBER 1
TYPE THE FIRST 3 LETTERS OF A MONTH?
BAD MONTH
TYPE THE FIRST 3 LETTERS OF A MONTH?
STOP AT LINE 110
READY
BYE
12.39.27 SIZE:l4K CPU:0.76
PDS>

NOV

DEC

JAN

AUD

CTRL/C

In this example the user first invokes BASIC by issuing the BASIC
command. BASIC indicates that it is ready to accept BASIC program
lines and commands by printing READY. The user then retrieves an
existing BASIC program by entering the OLD command. This program is
printed and executed by the LIST and RUN commands respectively. Since

9-2

BASIC

this program is written as a loop, that is, after executing line 200
it loops back to line 100, it will execute indefinitely. By entering
CTRL/C the user terminates the program execution. BASIC then prints
the number of the line at which execution was stopped. The BYE
command terminates the BASIC session.

9-3

CHAPTER 10

COBOL

A COBOL programmer must complete four steps to transform a COBOL
source program into an executing task:

1. Create one or more source files;

2. Compile the source files;

3. Link the compiled, i.e. object, -F;loc• and ,

4. Run the executable task.

This chapter describes how to use !AS commands to perform these
See Chapter 5 for a description of the SUBMIT command, which
the user to create a file of IAS commands to be submitted to a
stream. Consult the following manuals for information
programming in COBOL on PDP-11 machines:

PDP-11 COBOL Language Reference Manual

PDP-11 COBOL User's Guide

10.l CREATING SOURCE FILES

steps.
allows

batch
about

Either the CREATE command or the EDIT command may be used to create
source files. See Chapter 8, Section 8.3. The EDIT command has the
advantage that it allows the interactive user immediate access to all
its editing facilities. To correct errors made while using the CREATE
command, however, the user must rely on keyboard facilities or close
the file and then issue the EDIT command.

10.2 THE COBOL COMMAND

By default, the COBOL romrnand compiles a source program, and produces
an object file. For example:

PDS> COBOL

FILE? SOURCE.CBL

This command string compiles the program SOURCE.CBL. and produces an
object file named SOURCE.OBJ. If the user omits the file type field
in the specification of the source file, the COBOL complier assumes it
to be CBL.

10-1

COBOL

10.2.1 Compiling COBOL Source Files

Only one source file may be specified with each COBOL command. The
following command strings all compile the source file COBSRC.CBL.

1. PDS> COBOL

FILE? COBS RC

2. $COBOL COBS RC

3. PDS> COBOL COBS RC

Each of the command strings
source file specified and

above instructs the system to compile the
to produce compiler output as the defaults

dictate.

By default, the compiler:

1. Produces an object file which is given the name of the source
file and OBJ as the filetype.

2. Compiles the source file according to the compiler's default
switches. (See the COBOL command specification in Part 2 for
a description of the compiler switches.)

3. If file processing features which use RMS-11 facilities are
used, the compiler produces a skeleton .ODL file that should
be used when linking non-trivial COBOL programs. This
facility is described in detail in the COBOL User's Guide.

le.2.2 COBOL Command Qualifiers

The qualifiers to the COBOL command are:

/OBJECT[:filespec]
/NOOBJECT
/LIST[:filespec]
/NOLI ST
/SWITCHES: (switches)

The compiler produces an object file unless the user specifies
/NOOBJECT. The object file may be named by default or given a name
specified after /OBJECT. See the command specification in Part 2 for
further details.

Users must specify /LIST to obtain a listing. The /LIST:filespec
qualifier allows the user to send the listing to a file; otherwise,
the listing file is printed at the line printer and then deleted.

The qualifier /SWITCHES is described in the next section.

10.2.3 Compiler Switches

The PDP-11 COBOL compiler provides switches to tailor compilation to
particular needs. The user specifies the switches by means of the
/SWITCHES qualifier to the COBOL command. For example:

$COB/SWITCHES: (/MAP) SOURCE.CBL

10-2

COBOL

The switch /MAP tells the compiler to produce a map listing.

The specified switches must be enclosed in parentheses. For example:

PDS> COBOL/SWITCHES (/ERR: 2/MAP/CVF) /LIS'l':ACCOONT. LST

FILE? ACCTS.CBL

When the user does not specify any switches, the compiler operates
according to defaults. The default switches are:

(/ERR:0/ACC:l/NOMAP)

The COBOL command specification in Part 2 oef ines all the possible
compiler switches.

10.2.4 Compiler Error Messages

The compiler generates error messages (diagnostic, warning and fatal)
whenever it detects an error in the source program. With some
exceptions, a source error detected by the compiler results in the
associated message being embedded within the source program listing.
That is, when an error is detected in the source program, the compiler
prints the error message either before or after the erroneous source
program statement.

See the PDP-11 COBOL User's Guide for a detailed description of error
messages.

10.3 LINKING OBJECT FILES

The user issues the LINK command to link COBOL object files to create
an executable task.

10.3.l The LINK Command

The LINK command invokes the IAS Task Builder to build an executable
task from object files generated by the COBOL command and from object
modules held in user-written and system library files (see Chapter 8,
Section 8.2). In particular the system object module libraries
COBLIB.OLB and RMSLIB.OLB must be specified.

The IAS Task Builder Reference Manual contains a complete description
of the Task Builder.

This section gives information to help the programmer use
command. The user modifies the action of the Task
specifying or defaulting various options.

the LINK
Builder by

To link one or more COBOL programs using
Builder switches and options, the user
followed by the list of object files to be
executable task.

10-3

the system default Task
issues the LINK command

linked together into an

COBOL

For examples:

LINK PRODUCTS STOCKS [l,l]COBLIB/LI [l,l]RMSLIB/LI

links together the COBOL object files PRODUCTS.OBJ and STOCKS.OBJ.

10.3.1.l Options - The qualifier /OPTIONS allows the user to specify
Task Builder options. In interactive mode the presence of the
qualifier /OPTIONS in the command qualifier list causes the Task
Builder to prompt OPTIONS? after the input files have been specified.
For example:

PDS> LINK/OPTIONS

FILE? PROG.OBJ,REPORT.OBJ, [l,l]COBLIB/LI, [l,l]RMSLIB/LI

OPTIONS?

The user then enters the options one line at a time. A slash (/) as
the first character in a line then terminates the option input and the
Task Builder resumes execution.

For example:

PDS> LINK/OPTIONS

FILE? MYCOB.OBJ, FROG.OBJ, [l,l]COBLIB/LI, [l,l]RMSLIB/LIB

OPTIONS? UNITS=9

OPTIONS? ASG=DT1:7:8:9

OPTIONS? /

In batch mode, the presence of the /OPTIONS qualifier in the command
qualifier list causes the Task Builder to expect one or more options
to be specified on one or more lines immediately following the command
string. A line containing a slash (/) in the first character position
terminates the list of options.

For example:

$LINK/OPTIONS PROG REPORT [l,l]COBLIB/L fl,l]RMSLIB/L

UNITS=9

ASG=DT1:7:8:9

I

The Task Builder options are summarized in a table in the LINK command
in Part 2.

10.3.l.2 Object Module Libraries The file qualifier /LIBRARY
specifies a library file that contains the user-written object modules
to be incorporated in the task. The Task Builder automatically
searches system object module libraries for referenced modules.

In addition, the supplied object module libraries COBLIB.OLB and
RMSLIB.OLB must always be specified when listing COBOL programs and
must be specified in that order.

10-4

COBOL

Example:

PDS> LINK CBLPROG [l,l]COBLIB/LI [l,l]RMSLIE/LI

If the .ODL file generated by the COBOL compiler or a user supplied
.ODL file is used for complex structured programs then the library
specifications for COBLIB and RMSLIB must be included in the .ODL
file. See the COBOL User's Guide for further details.

10.3.1.3 Output Files - The Task Builder does not generate any output
files, other than an executable task image, unless the user
specifically requests them by supplying the relevant qualifiers. The
possible output files and the associated qualifiers are:

Output File

Task image file

Memory allocation map file

Symbol definition file

Qualifier

/TASK [; f ilespec J

/MAP: f ilespec J

/SYMBOLS[:filespec]

10.3.1.4 Example - The following example links three object files.

PDS> LINK/TASK:WAGES/MAP:WAGES/OPTIONS

FILES? PAY, PEOPLE, MONTE, [l,lJCOBLIB/LI, {l,l]RMSLIB/LI

OPTIONS? UNITS = 5

OPTIONS? ASG=DT2:1:2,TI:3,MT:4:5

OPTIONS? /

PDS>

The LINK command links the three object files to create a task image
file named WAGES.TSK and a map file named WAGES.MAP.

10.4 RUNNING THE TASK

A COBOL programmer compiles and links a task in separate operations.
The RUN command is then used to execute the task image created by the
LINK command.

To run a linked COBOL task: issue the RUN command and specify the task
image file generated by the LINK command.

Examples:

1. PDS> RUN
FILE? WAGES

2. $RUN WAGES

Both examples instruct the system to run the task named CALC.TSK.

Hl-5

CHAPTER 11

FORTRAN

A FORTRAN programmer must complete four steps to transform a FORTRAN
source program into an executing task:

1. Create one or more source files;

2. Compile the source files;

3. Link the compiled source files, i.e. object files; and

4. Run the executable task.

This chapter describes how to use IAS commands to perfor~ these steps.

See Chapter 5 for a description of the SUBMIT command, which allows
the user to submit a file of IAS commands to a batch stream. A user
could create such a file to compile, link and run his task in a single
batch job.

Consult the following manuals for information about programming in
FORTRAN IV or FORTRAN IV-PLUS:

IAS/RSX-11 FORTRAN IV User's Guide
FORTRAN IV-PLUS User's Guide
PDP-11 FORTRAN Language Reference Manual

11.1 CREATING SOURCE FILES

Either the CREATE command or the EDIT command may be used to create
source files. See Chapter 8, Section 8.3. The EDIT command has the
advantage that it allows the user, immediate access to all its editing
facilities. To correct errors made while using the CREATE command,
however, the user must rely on keyboard facilities or close the file
and then issue the EDIT command.

11.2 THE.FORTRAN COMMAND

The basic function of the FORTRAN coromand is to compile one or more
FORTRAN source programs. Comroand qualifiers, including compiler
switches and options, determine the form of the output to be generated
by the compiler.

11-1

FOR'IHAN

11.2.l Compiling Source Files

Only one source file may be specified with each FORTRAN command. The
following command strings all compile the source file INVERT.FTN.

1. PDS> FORTRAN

FILE? INVER'l'

2. $FORTRAN INVERT

3. PDS> FORTRAN INVERT

Each of the command strings above instructs the system to compile the
source file specified and to produce compiler output as the defaults
dictate.

By default, the compiler:

1. Produces an object file which is given the name of the
source file and the OBJ as the filetype.

2. Compiles the source file according to the compiler's default
switches. (See the FORTRAN command specification in Part 2
for a description of the compiler switches.)

11.2.2 FORTRAN Command Qualifiers

Command qualifiers, each preceded by a slash (/), immediately follow
the command name •. For example:

PDS> FORTRAN/LIST/OBJECT/SWITCHES: (/CK) SOURCE.FTN

A programmer specifies command qualifiers in order to modify the
function of the FORTRAN command according to the needs of the program.
Qualifiers may also be specified merely to affirm default compiler
actions. For instance, the example above specifies /OBJECT even
though the FORTRAN command produces an object file by default. (See
Section 11.2.1 for a list of compiler defaults.)

Compiler switches are listed after the /SWITCHES: qualifier. The
list of switches must be enclosed in parentheses. The slash preceding
each switch separates one from the next within the list. For example:

$FORTRAN/SWITCHES: (/CK/C0=7/TR:LINES) PROGl.FTN

The possible switches depend on whether the programmer is using
FORTRAN IV or FORTRAN IV-PLUS. Both sets of switches are listed in
the specification of the FORTRAN command in Part 2.

11-2

FORTRAN

11.2.3 Examples

The following commands ail compile a FORTRAN source file:

1. $FORTRAN/OBJECT/LIST:PRINT RDIN

Compile the source program RDIN.FTN, create an object file
name RDIN.OBJ and create a listing file called PRINT.LST.

2. $FORTRAN/OBJECT/LIST:LPROC1 PROCl

Compile the source program PROCl.FTN, create an object file
named PROCl.OBJ and create a listing file called LPROCl.LST.

3. $FORTRAN RPRT.FTN

Compile the source program RPRT.FTN to create an object file
named RPRT.OBJ.

Note that the file specifications to the /LIST qualifier need not
include a filetype. In this case, the system assumes the filetype to
be LST.

11.3 LINKING OBJECT FILES

The user issues the LINK command to link FORTRAN object files to
create an executable task.

11.3.1 The LINK Command

The LINK command invokes the IAS 1ask Builder to build an executable
task from object files generated by the FORTRAN command and from
object modules held in user-written and system library files (see
Chapter 8, Section 8.2).

The IAS Task Builder Reference Manual contains a complete description
of the Task Builder.

This section gives information to help the programmer use
command. The user modifies the action of the Task
specifying or defaulting various options.

the LINK
Builder by

To link one or more FORTRAN programs using
Builder switches and options, the user
followed by the list of object files to be
executable task.

For examples:

LINK PERFECT NUMBER

the system default Task
issues the LINK command

linked together into an

links together the FORTRAN object files PERFECT.OBJ and NUMBER.OBJ.

11.3.1.1 Options - The qualifier /OPTIONS allows the user to specify
Task Builder options. In interactive mode the presence of the
qualifier /OPTIONS in the command qualifier list causes the Task
Builder to prompt OPTIONS? after the input files have been specified.

For example:

11-3

FOR'l'RAN

PDS> LINK/OPTIONS

FILE? PROG.OBJ,REPORT.OBJ

OPTIONS?

The user then enters the options one line at a time. A slash (/) as
the first character in a line then terminates the option input and the
Task Builder resumes execution.

For example:

PDS> LINK/OPTIONS

FILE? FORT.OBJ, FROG.OBJ

OPTIONS? ACTFIL=8

OPTIONS? MAXBUF=l60

OPTIONS? UNITS=9

OPTIONS? ASG=DT1:7:8:9

OPTIONS? /

In batch mode, the presence of the /OPTIONS qualifier in the command
qualifier list causes the Task Builder to expect one or more options
to be specified on one or more lines immediately following the command
string. A line containing a slash (/) in the first character position
terminates the list of options.

For example:

$LINK/OPTIONS

ACTFIL=8

MAXBUF=l60'

UNITS=9

ASG=DT1:7:8:9

I

PROG.OBJ, REPORT.OBJ

The Task Builder options are summarized in a table in the LINK command
in Part 2. The table indicates with an 'F' the options that are
relevant to FORTRAN programs.

11.3.1.2 Object Modules - The file qualifier /LIBRARY specifies a
library file that contains the user-written object modules to be
incorporated in the task. The Task Builder automatically searches
system object module libraries for referenced modules.

Example:

$LINK (FORT.LIB/LIBRARY: (MOD1,MOD2), FORTRAN.OBJ}

11.3.1.3
files,

Output Files - The Task Builder does not generate any output
other than an executable task image, unless the user

11-4

FORTRAN

specifically requests them by supplying the relevant aualifiers. The
possible output files and the associated qualifiers are:

Output File Qualifier

Task image file /TASK [:files pee]

Memory allocation map file /MAP: f ilespec]

Symbol definition file /SYMBOLS(:filespec]

11.3.1.4 Example - The following example links three object files.

PDS> LINK/TASK:CALC/MAP:CALC/OPTIONS

FILES? RDIN.OBJ, PROCl.OBJ, RPRT.OBJ

OPTIONS? UNITS = 5

OPTIONS? ASG=DT2:1:2,TI:3,MT:4:5

OPTIONS? /

PDS>

The LINK command links the three object files to create a task image
file named CALC.TSK and a map file named CALC.MAP.

11.4 RUNNING THE TASK

A FORTRAN programmer compiles and links a task in separate operations.
The RUN command is then used to execute the task image created by the
LINK command.

To run a linked FORTRAN task, issue the RUN command and specify the
task image file generated by the LINK command.

Examples:

1. PDS> RUN
FILE? CALC

2. $RUN CALC

Both examples instruct the system to run the task named CALC.TSK.

11-5

PDS > FORTRAN

COMPILER

FORTRAN

PDS>LINK

OBJECT
MODULE

TASK
BUILDER

Figure 11-1

TASK
IMAGE

Steps in Creating a FORTRAN Program

11-6

PDS> RUN

EXECUTING
TASK

CHAPTER 12

MACRO

A MACR0-11 programmer must complete four steps to transform a MACR0-11
program into an executing task:

1. Create one or more source files,

2. Assemble the source files,

3. Link the assembled, i.e. object, files, and

4. Run the executable task.

This chapter describes how to use IAS commands to perform these steps.
It also introduces the On-line Debugging Technique (ODT}, a system
program which aids in debugging assembled and linked object programs
(Section 12.5). Consult the IAS/RSX-11 MACR0-11 Reference Manual for
information about programming in MACR0-11.

See Chapter 5 for a description of the SUBMIT command. It allows the
user to submit a file of IAS commands to a batch processor. A user
could create such a file to compile, link and run his task in a single
batch job.

12.1 CREATING SOURCE FILES

Either the CREATE command or the EDIT command may be used to create
source files. See Chapter 8, Section 8.3. The EDIT command has the
advantage that it allows the user immediate access to all its editing
facilities. To correct errors made while using the CREATE command,
however, the user must rely on keyboard facilities or close the file
and then issue the EDIT command.

12.2 THE MACRO COMMAND

The MACRO command assembles one or mere ASCII source files containing
MACR0-11 statements into a single relocatable binary object file~
Command qualifiers, including assembler switches, determine the output
to be generated by the assembler.

12.2.1 Assembling Source Files

The following command string assembles the source files LOCATE.MAC
FIND.MAC:

12-1

MACRO

1. E.,Q§> MAC

FILES? LOCATE+FIND

2. $MACRO LOCATE+FIND

Each of the command strings above instructs the system to assemble the
source files specified and to produce assembler output as the defaults
dictate. Note that the MACRO command requires the source files to be
concatenated with a plus sign (+): the assembler does not accept the
more common list format, that is, a list enclosed in parentheses, with
list items separated by a comma, spaces or tabs. By default, the
assembler produces an object file which is given the name of the last
source file specified but with OBJ as the filetype.

12.2.2 Command and File Qualifiers

Command qualifiers, each preceded by a slash (/), immediately follow
the command name.

For example:

PDS> MACRO/LIST/OBJECT LCCATE+FIND

The programmer specifies file qualifiers immediately after the
relevant file specification. For example:

$MAC MACLIB.MLB/LIB+TEST

The LIBRARY qualifier instructs the assembler to treat MACLIB.MLB as a
macro library file. The /LIST qualifier requests a listing to be sent
to the line printer.

A programmer specifies command and file qualifiers in order to modify
the function of the MACRO command accordinq to the needs of the
program. Qualifiers may also be specified merely to affirm default
assembler actions. For instance, the first example above specifies
/LIST and /OBJECT even though the MACRO command produces an object
file by default. (See Section 12.2.l for a list of assembler
defaults.)

The specification of the MACRO command in Part 2 lists all the
possible command and file qualifiers. Programmers should consult the
IAS/RSX-11 MACR0-11 Reference Manual for a full description.

Example:

PDS> MACRO/OBJECT:FINAL

FILE? ROUT.MAC+MAIN.MAC

Assemble the source programs ROUT.MAC and MAIN.MAC to produce an
object file named FINAL.OBJ.

12-2

MACRO

12.3 LINKING OBJECT FILES

The user issues the LINK command to link MACR0-11 object files to
create an executable task. See Section 12.5 for information about
debugging linked object programs.

12.3.1 The LINK Command

The LINK command invokes the IAS Task Builder to build an executable
task from object files generated by the FORTRAN or MACRO command and
from object modules held in user-written and system library files (see
Section 12.3.1.3).

The IAS Task Builder Reference Manual contains a complete description
of the Task Builder. This section gives information to help the
programmer use the LINK command.

The user may modify the action of the Task Builder by specifying
various options. To link one or more MACR0-11 programs with the
system default Task Build~·r switches and options, the user issues the
LINK command followed by the list of object files to be linked
together into an executable task.

For example:

$LINK RE ALT I ME ADCONVERT

links together the object programs REALTIME.OBJ and ADCONVERT.OBJ.

12.3.1.l Options - The /OPTIO~S qualifier allows the user to specify
Task Builder options. In interactive mode the presence of the
gualif ier /OPTIONS in the command qualifier list causes the Task
Builder to prompt OPTIONS? after the input files have been specified.
For example:

PDS> LINK/OPTIONS

FILE? PROG.OBJ, REPORT.OBJ

OPTIONS?

The user then enters the options one line at a time. A slash (/} as
the first character in a line then terminates the list of options and
the Task Builder resumes executing.

For example:

PDS> LINK/OPTIONS

FILE? MAIN.OBJ, PROG.OBJ

OPTIONS? TASK=SYSMAN

OPTIONS? UIC={l,l]

OPTIONS? LIBR=SYSRES:RO

OPTIONS? /

12-3

MACkO

In batch mode, the presence of the /OPTIONS qualifier in the command
qualifier list causes the Task Builder to expect one or more options
to be specified on one or more lines immediately following the command
string. The user must specify a single option on each line. A card
or line containing a slash (/) in the first character position
terminates the list of options.

For example:

$LINK/OPTIONS FROG.OBJ, REPORT.OBJ

TASK=SYSMAN

UIC=[l,l]

LIBR=SYSRES:RO

I

The Task Builder options are summarized in the specification of the
LINK command in Part 2. The summary marks the options that are
relevant to MACRO programs with the letter M.

12.3.1.2 Object Modules The file gualifier /LIBRARY specifies the
library files that contain the user-written object modules to be
incorporated in the task. The Task Builder automatically searches
system object module libraries for referenced modules.

Example:

$LINK MACRO.LIB/LIBRARY: (MACl, MAC2) MACRO.OBJ

12.3.1.3 Output Files The Task Builder does not generate any
output files, other than an executable task image, unless the user
specifically requests them by supplying the relevant qualifiers. The
possible output files and the associated qualifiers are:

Output File

Task image file

Memory allocation map file

Symbol definition file

Qualifier

/TASK(:filespec]

/MAP[:filespec]

/SYMBOLS[:filespec]

12.3.1.4 Example The following example links three object files
to form a task named CALC.TSK.

PDS> LINK/TASK:CALC/MAP:CALC/DEBUG/OPTIONS

FILE? (SEGl.OBJ, SEG2.0BJ, MACRO.OBJ)

OPTIONS? UNITS = 5

OPTIONS? ASG=DT2:1:2,TI:3,MT:4:5

OPTIONS? /

PDS>

12-4

MACRO

The command string above links the three object files to create
image file named CALC.TSK and a map file named CALC.MAP. The
gualif ier instructs the Task Builder to include a debugging aid
the ODT program, see Section 12.5.1) and Task Builder options
logical unit numbers.

12.4 RUNNING THE TASK

a task
/DEBUG

{i.e.
assign

A MACR0-11 programmer assembles and links a task in separate
operations. The RUN command is then used to begin execution of the
task image created by the LINK command.

When used to execute a MACR0-11 task, the RUN command has no
oualifiers and only one parameter, the file specification of the task
to be run. The file containinq the executable task is the task image
file generated by LINK. ~

Examples:

1. PDS> RUN

FILE? CALC.TSK

2. $RUN CALC.TSK

Both examples instruct the system to run the task named CALC.TSK.

12.5 DEBUGGI~G

12.5.l The On-line Debugging Technique

IAS provides the On-line Debugging Technigue (ODT) to help programmers
debug linked and assembled object programs. To incorporate ODT in the
linked program, the programmer specifies the /DEBUG qualifier to the
LINK command (see Section 12.3.1.1).

For example:

$LINK/DEBUG MACRO~OBJ

The Task Builder then automatically includes ODT in the task image.

The IAS/RSX-11 ODT Reference Manual contains a complete description of
ODT. In brief, however, the proqramrner interacts with ODT and the
object program from an interactive terminal to:

1. Print the contents of any location for examination or
alteration.

2. Run all or any portion of the object program using the
breakpoint featuree

3. Search the object program for specific bit patterns.

4. Search the object program for words which reference a
specific word.

5. Calculate a block of words or bytes with a designated value.

6. Fill a block of words or bytes with a designated value.

12-5

The breakpoint is one of ODT'S
program, it is often desirable
to a predetermined point, at
registers or locations can
accomplish this, ODT acts as a

MACRO

most useful features. When debugging a
to allow the program to run normally up
which time the contents of various
be examined and possibly modified. To
monitor to the user program.

During a debugging session you should have the current assembly
listing and memory allocation map of the program to be debugged with
you at the terminal. Minor corrections to the program may be made
on-line during the debugging session. The program may then be run
under control of ODT to verify any changes made. Major corrections,
however, such as a missing subroutine, should be noted on the assembly
listing and incorporated in a subse9uent updated program assembly.

12.5.2 User-Written Debugging Aids

A programmer may also incorporate a user-written debugging aid in a
linked object program. The file containing the debugging aid is
specified with the /DEBUG qualifier.

For example:

PDS > LINK/DEBUG: [1, 1] DD'I'/READ _WRITE/SYMBOLS

FILES? MACRO.OBJ

12-6

CHAPTER 13

CORAL

A CORAL programmer must complete four steps to transform a CORAL
source program into an executing task:

1. Create one or more source files;

2. Compile the source files;

3. Link the compiled, i.e. object, files; and

4. Run the executable task.

This chapter describes how to use IAS commands to perform these steps.

See Chapter 5 for a description of the SUBMIT command, which allows
the user to submit a file of IAS commands to a batch stream. A user
could create such a file to compile, link and run his task in a single
batch job.

Consult the following manual for information about programming in
CORAL:

PDP-11 CORAL 66 (with FPP support) Language Reference Manual and
User's Guide.

13.1 CREATING SOURCE FILES

Either the CREATE command or the EDIT command may be used to create
source files. See Chapter 8, Section 8.3. The EDIT command has the
advantage that it allows the user, immediate access to all its editing
facilities. To correct errors made while using the CREATE command,
however, the user must rely on keyboard facilities or close the file
and then issue the EDIT command.

13.2 THE CORAL COMMAND

The basic function of the CORAL command is to compile one or more
CORAL source programs. Command qualifiers, including compiler
switches and options, determine the form of the output to be generated
by the compiler.

13-1

CORAL

13.2.1 Compiling Source Files

Only one source file may be specified with each CORAL command. The
following command strings all compile the source file INVERT.CCR.

1. PDS> CORAL

FILE? INVERT

2. $CORAL INVERT

3. PDS> CORAL INVERT

Each of the command strinos above instructs the system to compile the
source file specified and to produce compiler output as the defaults
dictate.

By default, the compiler:

1. Produces an object file which is given the name of the source
file and OBJ as the f iletype.

2. Compiles the source file according to the compiler's default
switches. (See the CORAL command specification in Part 2 for
a description of the compiler switches.)

13.2.2 CORAL Command Qualifiers

Command qualifiers, each preceded by a slash (/), immediately follow
the command name. For example:

PDS> CORAL/LIST/OBJECT/SWITCHES: (/BC) SOURCE.FTN

A programmer specifies command gualif iers in order to modify the
function of the CORAL command according to the needs of the program.
Qualifiers may also be specified merely to affirm default compiler
actions. For instance, the example above specifies /OBJECT even
though the CORAL command produces an object file by default. (See
Section 13.2.l for a list of compiler command defaults.)

Compiler switches are entered after the /SWITCHES: qualifier. The
list of switches must be enclosed in parentheses. The slash preceding
each switch separates one from the next within the list. For example:

$CORAL/SWITCHES: (/BC/OP:2/LP:3) PROGl.COR

The switches are listed in the specification of the CORAL command in
Part 2.

13-2

CORAL

13.2.3 Examples

The following commands ail compile a CORAl source file:

1. $CORAL/OBJECT/LIST:PRINT RDIN

Compile the source program RDIN.COR, create an object file
name RDIN.OBJ and create a listing file called PRINT.LST.

2. $CORAL/OBJECT/LIST:LPR0Cl PROCl

Compile the source program PROCl.COR, create an object file
named PROCl.OBJ and create a listing file called LPROCl.LST.

3. $CORAL/OBJECT/LIST:READ RPRT.COR

Compile the source program RPRT.COR, create an object file
named RPRT.OBJ and create a listing file called READ.LST.

Note that the file specifications to the /LIST qualifier need not
include a filetype. In this case, the system assumes the filetype to
be LST.

13.3 LINKING OBJECT FILES

The user issues the LINK command to link CORAL object files to create
an executable task.

13.3.1 The LINK Command

The LINK command invokes the IAS Task Builder to build an executable
task from object files generated by the CORAL command and from object
modules held in user-written and system library files (see Chapter 8,
Section 8.2).

The IAS Task Builder Reference Manual contains a complete description
of the Task Builder.

This section gives information to help the programmer use
command. The user modifies the action of the Task
specifying or defaulting various options.

the LINK
Builder by

To link one or more CORAL programs using
Builder switches and options, the user
followed by the list of object files to be
executable task.

For examples:

LINK PERFECT NUMBER

the system default Task
issues the LINK command

linked together into an

links together the CORAL object files PERFECT.OBJ and NUMBER.OBJ.

13.3.1.l Options - The qualifier /OPTIONS allows the user to specify
Task Builder options. In interactive mode the presence of the
qualifier /OPTIONS in the command qualifier list causes the Task
Builder to prompt OPTIONS? after the input files have been specified.

13-3

CORAL

For example:

PDS> LINK/OPTIONS

FILE? PROG.OBJ,REPORT.OBJ

OPTIONS?

The user then enters the options one line at a time. A slash (/) as
the first character in a line then terminates the option input and the
Task Builder resumes execution.

For example:

PDS> LINK/OPTIONS

FILE? CORAL.OBJ, PROG.OBJ

OPTIONS? ACTFIL=8

OPTIONS? MAXBUF=280

OPTIONS? UNITS=9

OPTIONS? ASG=DT1:7:8:9

OPTIONS? /

In batch mode, the presence of the /OPTIONS qualifier in the command
qualifier list causes the Task Builder to expect one or more options
to be specified on one or more lines immediately following the command
string. A line containing a slash (/) in the first character position
terminates the list of options.

For example:

$LINK/OPTIONS PROG.OBJ, REPORT.OBJ

ACTFIL=8

MAXBUF=280

UNITS=9

ASG=DT1:7:8:9

I

The Task Builder options are summarized in a table in the LINK command
in Part 2. The table indicates with a 'C' those that are relevant to
CORAL programs. Note that the MAXBUF and FMTBUF options have a
special meaning when linking CORAL programs. For a full description
see the PDP-11 CORAL 66 manual, Chapter 7e

13.3.1.2 Object Modules - The file qualifier /LIBRARY specifies a
library file that contains the user-written object modules to be
incorporated in the task. The Task Builder automatically searches
system object module libraries for referenced modules.

Example:

13-4

CORAL

$LINK (COROTS.OLB/LIBRARY: (MOD1,MOD2), CORAL.OBJ)

13.3.1.3 Output Files - The Task Builder does not generate any output
files, other than an executable task image, unless the user
specifically requests them by supplying the relevant qualifiers. The
possible output files and the associated qualifiers are:

Output File

Task image file

Memory allocation map file

Symbol definition file

Qualifier

/TASK [: filespec]

/MAP: [filespec]

or

/MAP: (filespec/qualifier)

/SYMBOLS(:filespec]

The MAP filespec qualifiers can be /FILES, /FULL, /NARROW, /SHORT,
/WIDE.

13.3.1.4 Example - The following example links three object files.

PDS> LINK/TASK:CALC/MAP:CALC/OPTIONS

FILES? RDIN.OBJ, PROCl.OBJ, RPRT.OBJ

OPTIONS? UNITS = 5

OPTIONS? ASG=DT2:1:2,TI:3,MT:4:5

OPTIONS? /

PDS>

The LINK command links the three object files to create a task image
file named CALC.TSK and a map file named CALC.MAP.

13.4 RUNNING THE TASK

A CORAL programmer compiles and links a task in separate operations.
The RUN command is then used to execute the task image created by the
LINK command.

To run a linked CORAL task, issue the RUN command and specify the task
..;""'..,.,,."' .,:..:1~ ,.,,..,..~,..o@lli.._.....,A '""-•' .._""°" TTl\.111' ..,...""'ft"t!!t.PllA
.LUlQ':::J'I;: J...L.L'C ':::J'!;U'Cl.Q\.'l;;:U U:f \.U'!; 1.1.L&.'llU V .. UllllOI&&~•

Examples:

1. PDS> RUN
FILE? CALC

2. $RUN CALC

Both examples instruct the system to run the task named CALC.TSK.

13-5

APPENDIX A

OBJECT MODULE PATCH UTILITY (PAT)

A.l INTRODUCTION TO PAT

The object module patch utility PAT, allows you to patch, or update,
code in a relocatable binary object module.

PAT accepts a file containing corrections or additional instructions
and applies these to the original object module.

Correction input is prepared in source form and assembled by the
MACR0-11 assembler. PAT allows you to increase the size of object
modules because changes are applied before the module is linked by-the
Task Builder.

Input to PAT is two files, the original input file and a correction
file containing the corrections and additions to the input file. The
input file consists of one or more concatenated object modules. You
may correct only one of these object modules with a single execution
of the PAT utility. The correction file consists of object code that,
when linked by the Task Builder, either overlays or is added to the
original object module.

Output from PAT is the updated input file.

Figure A-1 shows how PAT updates a file (FILEl) consisting of three
object modules (MODI, MOD2, and MOD3) by appending a correction file
to MOD2. The updated module is then relinked with the rest of the
file by the Task Builder to produce an executable task.

Filel Fil el

MODULE MODULE
1 1

MODULE MODULE
2 2

PAT
MODULE UPDATE

3 2

MODULE
3

UPDATE
2

Figure A-1 Updating a Module Using PAT

A-1

OBJECT MODULE PATCH UTILITY (PAT)

There are several steps involved in using PAT to update a file.
First, create the correction file using a text editor. The correction
file must then be assembled to produce an object module. The input
file and the correction file in object module form are then submitted
to PAT for processing. Finally, the updated object module, along with
the object modules that comprise the rest of the file, can be
submitted to the Task Builder to resolve global symbols and create an
executable task. Figure A-2 shows the processing steps involved in
generating an updated task file using PAT.

1. Generate a correction file
using the Text Editor.

2. Execute the assembler (or
compiler) to generate an
object module version of
the file.

3. Execute PAT using as input
the correction file and
the module to be updated.

4. Execute the Task Builder
to resolve new addresses
and generate an executable
task.

Figure A-2 Processing Steps Required to Update a
Module Using PAT

A-2

OBJECT MODULE PATCH UTILITY (PAT)

A.2 SPECIFYING THE PAT COMMAND STRING

PAT is installed in the IAS system as a system library task ($$$PAT).
As such, you can invoke PAT by entering the three character command
"PAT•. The command line indicating what actions PAT is to perform is
entered either on the same line:

PDS> PAT command line

or by typing carriage return and allowing the utility to prompt for
its command line.

PDS> PAT <carriage return>

PAT> command line

Specify the PAT command line in the following form:

{outfileJ=infile(/CS[:number]J,correctfile[/CS[:number]]

where:

outf ile

inf ile

correctf ile

cs

number

is the file specification for the output file. If
you don't specify an output file, none is
generated.

is the file specification for the input file.
This file can contain one or more concatenated
object modules.

is the file specification for the correction file.
This file contains the updates being applied to a
single module in the input file.

specifies the Checksum switch, which directs PAT
to generate an octal value for the sum of all the
binary data comprising the module in the file to
which the switch is applied. (Refer to the
section •oetermining and Validating the Contents
of Files," for information on how to use /CS.)

specifies an octal value that directs PAT to
compare the checksum value it computes for a
module with the octal value you specify as number.

A.3 HOW PAT APPLIES UPDATES

PAT applies updates to a base input module using additions and
corrections supplied in a correction file~ This section describes the
PAT input and correction files, gives information on how to create the
correction file, and gives examples of how to use PAT.

A.3.1 The Input File

The input file is the file to be updated; it is the base for the
output filee The input file must be in object module format= When
PAT executes, the correction file module is applied to this file.

A-3

OBJECT MODULE PATCH UTILITY (PAT)

A.3.2 The Correction File

The correction file must also be in object module format. It is
usually created from a MACR0-11 source file in the following format:

.TITLE inputname

.!DENT updatenum
inputline
inputline

where:

inputname

updatenum

inputline

*

*

*

is the name of the module to be corrected by the
PAT update. That is, inputname must be the same
name as the name specified on the inout file
.TITLE directive for a single module in the input
file.

is any value acceptable to the MACR0-11 assembler.
Generally, this value reflects the update version
of the file being processed by PAT, as shown in
the examples below.

are lines of input to be used to correct and
update the input file.

During PAT execution, new global symbols defined in the correction
file are added to the module's symbol table. Duplicate global symbols
in the correction file supersede their counterparts in the input file,
provided both definitions are relocatable or absolute.

A duplicate PSECT or CSECT supersedes the previous PSECT or CSECT,
provided:

• Both have the same relocatability attribute (ABS or REL).
• Both are defined with the same directive (.PSECT or .CSECT}.

If PAT encounters duplicate PSECT names, the length attribute for the
PSECT is set to the length of the longer PSECT and a new PSECT is
appended to the module.

If a transfer address is specified, it supersedes that of the module
being patched.

A.3.3 Creating the Correction File

The first step is to generate the correction file. Use any editor to
generate source additions and corrections to your file.

The correction file must be translated into object module format
before it can be processed by PAT.

A-4

OBJECT MODULE PATCH UTILITY (PAT)

A.3.4 How PAT and the Task Builder Update Object Modules

The following examples show an input file and a correction fiie to be
processed by PAT and Task Builder, along with a source-like
representation of what the output file would look like once PAT and
Task Builder complete processing. Two techniques are described, one
for overlaying lines in a module and the other for appending a
subroutine to a module.

Overlaying Lines in a Module

The first example illustrates a technique for overlaying lines in a
module using a patch file. First, PAT appends the correction file to
the input file. The Task Builder is then executed to replace code
within the input file. The input file for this example is:

.TITLE ABC
• IDENT /01/

ABC::
MOV A,C
CALL XYZ
RETURN

.END

To add the instruction ADD A,B after the CALL instruction, include the
following patch source file:

.TITLE ABC
• !DENT /01. 01/

.=.+12
ADD A,B
RETURN
.END

The patch source is assembled using MACR0-11 and the resulting object
file is input to PAT along with the original object file. The result
of PAT processing would then appear as follows:

ABC::

.=ABC

.=.+12

.TITLE ABC
• !DENT /01. 01/

MOV A,C
CALL XYZ
RETURN

ADD A,B
CALL XYZ
RETURN
.. END

After Task Builder processes these files, the task image appears as
follows:

.TITLE ABC

.!DENT /01. 01/
ABC::

MOV A,C
CALL XYZ
ADD A,B

A-5

OBJECT MODULE PATCH UTILITY (PAT)

RETURN
.END

The Task Builder uses the .=.+12 in the program counter field to
determine where to begin overlaying instructions in the program. The
Task Builder overlays the RETURN instruction with the patch code:

ADD A,B
RETURN

Adding a Subroutine to a Module

The second example illustrates a technique for adding a subroutine to
an object module. In many cases, a patch requires that more than a
few lines be added to patch the file. A convenient technique for
adding new code is to append it to the end of the module in the form
of a subroutine. This way, you can insert a CALL instruction to the
subroutine at an appropriate location. The CALL directs the program
to branch to the new code, execute that code, and then return to
in-line processing. The input file for the example is:

.TITLE ABC

.!DENT /01/
ABC:: MOV A,B

CALL XYZ
MOV C,R0
RETURN
*
*
*

.END

The correction file for this example is as follows:

.TITLE ABC

.IDENT /01. 01/
CALL PATCH
NOP
.PSECT PATCH

PATCH:
MOV A,B
MOV D,R0
ASL R0
RETURN
.END

PAT appends the correction file to the input file, as in the previous
example. The Task Builder then processes the file and the following
output file is generated:

ABC::

.TITLE ABC
• !DENT /01. 01/

CALL PATCH
NOP
CALL XYZ
MOV C,R0
RETURN
*
*
*

A-6

OBJECT MODULE PATCH UTILITY (PAT)

.PSECT PATCH
PATCH:

MOV A,B
MOV D,R0
ASL R0
RETURN
.END

In this example, the CALL PATCH and NOP instructions overlay the
three-word MOV A,B instruction. (The NOP is included because this is
a case where a two-word instruction replaces a three-word instruction
and NOP is required to maintain alignment.) The Task Builder allocates
additional storage for PSECT PATCH, writes the specified code into
this program section, and binds the CALL instruction to the first
address in this section. Note that the MOV A,B instruction replaced
by the CALL PATCH is the first instruction executed by the PATCH
subroutine.

A-7

OBJECT MODULE PATCH UTILITY (PAT)

A.3.5 Determining and Validating the Contents of a File

use the Checksum switch (/CS) to determine or validate the contents of
a module. The Checksum switch directs PAT to compute the sum of all
binary data comprising a file. If specified in the form /CS:number,
/CS directs PAT to compute the checksum and compare that checksum to
the value specified as number.

To determine the checksum of a file, enter the PAT command line with
the /CS switch applied to the file whose checksum is being determined,
for example:

=INFILE/CS,INFILE.PAT

PAT responds to this command with the message:

INPUT MODULE CHECKSUM IS <checksum>

A similar message is generated when the checksum for the correction
file is requested.

To validate the size of a file, enter the Checksum switch in the form
/CS:number. PAT compares the value it computes for the checksum with
the value you specify as number. If the two values do not match, PAT
displays a message reporting the checksum error:

ERROR IN FILE <filename> CHECKSUM

Checksum processing always results in a nonzero value.

A.4 PATCH MESSAGES

PAT generates messages that state checksum values and messages that
describe error conditions. For checksum values and nonfatal error
messages, PAT prefixes messages with:

PAT -- *DIAG -

For error messages that describe errors that caused PAT to terminate,
PAT uses the pref ix:

PAT -- *FATAL -

The messages described below are grouped according to message type, as
follows:

• Information Messages.
• Command line errors.
• Input/Output errors.
• Errors in file contents or format.
• Internal software errors.
• Storage allocation errors.

A-8

OBJECT MODULE PATCH UTILITY (PAT)

A.4.1 Information Messages

The following messages describe results of checksum processing.

CORRECTION INPUT FILE CHECKSUM IS <checksum>

Description: <Checksum> is the module checksum printed in
response to the /CS switch appended to a correction input file
specification. The value is an octal quantity.

Suggested User Response: No response necessary.

INPUT MODULE CHECKSUM IS <checksum>

Description:
response to
specification.

<Checksum> is the module checksum
the /CS switch appended to an
The value is an octal quantity.

Suggested User Response: No response necessary.

A.4.2 Error Conditions

printed in
input file

The following errors result from failure to adhere to the command line
syntax rules.

COMMAND LINE ERROR <command line>

COMMAND SYNTAX ERROR <command line>
~

Description: The command line displayed contains an error.

Suggested User Response: Reenter the command line using the
correct syntax.

ILLEGAL INDIRECT FILE SPECIFICATION <command line>

Description: The printed command line contains an indirect file
specification that contains one of the following errors:

• A syntax error in the file specification.
• Specification of a non-existent indirect file.

Suggested User Response: Check for file specification syntax
errors. Ensure that the specified file is contained in the User
File Directory.

MAXIMUM INDIRECT FILE DEPTH EXCEEDED <command line>

Description: The command line displayed specifies an indirect
file that exceeds the nesting level permitted by the PAT Utility
(2).

Suggested User Response: Reorder your files so that they do not
exceed the PAT utility nesting limit (2).

A-9

OBJECT MODULE PATCH UTILITY (PAT)

A.4.3 File Specification Errors

The following messages are caused by errors in the specification of
input or output files or related file switches.

CORRECTION INPUT FILE MISSING <command line>

Description: The command line does not contain the mandatory
correction file input specification.

Suggested User Response: Reenter the command line specification
including the correction file.

ILLEGAL DEVICE/VOLUME SPECIFIED <device name>

Description: <device name> does not adhere to the syntax rule
for specifying device or volume.

Suggested User Response: Check the rules for specifying the
device and reenter the command line.

ILLEGAL DIRECTORY SPECIFICATION <directory name>

Description: The directory string displayed does not adhere to
the syntax rules for specifying directories.

Suggested User Response: Reenter the command line specifying the
directory string in the correct syntax.

ILLEGAL FILE SPECIFICATION <filename>

Description: The filename printed does not adhere to the syntax
rules for file specifications.

Suggested User Response: Reenter the command line using the
correct syntax for the filename.

ILLEGAL SWITCH SPECIFIED <filename>

Description: An unrecognized switch or switch value has been
appended to the filename displayed.

Suggested User Response: Check the rules for specifying the
switch and reenter the command line.

INVALID FILE SPECIFIED <filename>

Description: The filename displayed is associated with one of
the following error conditions:

• Nonexistent device.

• Nonexistent directory - filename is the name of the User File
Directory associated with the file to be processed.

Suggested User Response: Correct the device or
specification and reenter the command line.

A-10

directory

OBJECT MODULE PATCH UTILITY (PAT)

MULTIPLE OUTPUT FILES SPECIFIED <command line>

Description: Only one output file specification is accepted.

Suggested User Response: Reenter the command line with only one
output file specified.

REQUIRED INPUT FILE MISSING <command line>

Description: The command line does not contain the mandatory
input file specification.

Suggested User Response: Reenter the command line specifying the
input file.

TOO MANY INPUT FILES SPECIFIED <command line>

Description: The command line displayed contains too many input
file specifications. PAT only accepts the input and correction
file specifications.

Suggested User Response: Reenter the command line specifying the
correct files.

UNABLE TO FIND FILE <filename>

Description: The specified input or correction file could not be
located.

Suggested User Response: Ensure that the file exists.
the command line.

A.4.4 Input/Output Errors

Reenter

The error messages listed below are caused by faults detected while
performing I/O to the specified file.

ERROR DURING CLOSE: FILE: <filename>

Description: This error is most likely to occur while attempting
to write the rerna1n1ng data into the output file before
de-accessing it. The principal sources of error under these
circumstances are:

• Device full.
• Device write-locked.
e Hardware error.

Suggested User Response: Perform the appropriate corrective
action and reenter the command line. If the problem appears to
be a hardware problem rather than faulty media, contact your
DIGITAL Field Service Representative.

A-11

OBJECT MODULE PATCH UTILITY (PAT)

ERROR POSITIONING FILE <filename>

Description: An attempt has been made to position the file
beyond end-of-file.

Suggested User Response: submit a Software Performance Report
along with the related console dialogue and any other pertinent
information.

I/O ERROR ON INPUT FILE <filename>

Description: An error was detected while attempting to read the
specified input file. The principal cause is a device hardware
error.

Suggested User Response: Reenter the command. If the problem
persists, submit a Software Performance Report along with the
related console dialogue and any other pertinent information.

I/O ERROR ON OUTPUT FILE <filename>

Description: An error occurred while attempting to write into
the named output file. The most likely causes are:

• Device full.
• Device write-locked.
• Hardware error from device.

Suggested User Response: Perform the appropriate corrective
action and reenter the command~ If the problem appears to be a
hardware problem rather than faulty media, notify your DIGITAL
Field Service Representative.

A.4.5 Errors in File Contents or Format

The following errors represent inconsistencies detected by PAT in the
format or contents of t_he input or correction files.

ERROR IN FILE <filename> CHECKSUM

Description: Checksum computed by PAT for the named file does
not match that supplied by the user.

Suggested User Response: Ensure that the correct checksum was
specified. If the checksum was correct, an invalid version of
the file was specified on the command line. Rerun PAT specifying
the correct version of the file.

FILE <filename> HAS ILLEGAL FORMAT

Description: The format of the named file is not compatible with
the object files produced by the standard DIGITAL language
processors or accepted by the Task Builder. The principal causes
are:

• Truncated input file.
• Input file consists of text.

A-12

OBJECT MODULE PATCH UTILITY (PAT)

Suggested User Response: Ensure that the file is in the correct
format and resubmit it for PAT processing.

INCOMPATIBLE REFERENCE TO GLOBAL SYMBOL <symbol name>

Description: Correction input file contains a global symbol
whose attributes do not match one or more of the following input
file symbol attributes:

• Definition or Reference
• Relocatable or Absolute

Suggested User Response: Update the
modifying the symbol attributes.
resubmit it for PAT processing.

correction
Reassemble

input
the

INCOMPATIBLE REFERENCE TO PROGRAM SECTION <section name>

file by
file and

Description: Correction input file contains a section name whose
attributes do not match one or more of the following input file
section attributes:

• Relocatable or Absolute
e .PSECT or .CSECT

Suggested User Response: Update the correction file by modifying
the section attribute or changing the section type. Reassemble
the file and resubmit it to PAT for processing.

UNABLE TO LOCATE MODULE <module name>

Description:
file could
modules.

The module name specified in the correction input
not be found in the file of concatenated input

Suggested User Response: Update the input file specification to
include the missing module. Reenter the command line.

A.4.6 INTERNAL SOFTWARE ERROR

These errors reflect internal software error conditions.

ILLEGAL ERROR-SEVERITY CODE <error data>

Description: An error message call has been generated containing
an illegal parameter.

Suggested User Action: if th~v persist~ submit a Software
Performance Report along with the related console dialogue and
any other pertinent information.

A-13

OBJECT MODULE PATCH UTILITY (PAT)

A.4.7 STORAGE ALLOCATION ERROR

The following error message indicates that insufficient task memory
was available for storing global symbol and program section data.

NO DYNAMIC STORAGE AVAILABLE <storage-listhead>

Description: Insufficient contiguous task memory was available
to satisfy a ·request for the allocation of storage.

<Storage-listhead> is a display of the two-word - dynamic storage
listhead contents in octal.

Suggested User Response: If possible, PAT should be reinstalled
with a larger increment.

A-14

PART2

COMMAND SPECIFICATIONS

PART 2

COMMAND SPECIFICATIONS

COMMAND FORMAT

The general format of a command is:

[$]command-name [guali f iers] [parameter-!] [, .. ~ s, parameter-n J

The following rules apply:

1. Brackets - In the description of commands in this manual,
brackets ([and]) are used to surround optional values. For
example:

2.

3.

4.

5.

COPY [qualifiers]

indicates that the user does not need to supply any
qualifiers to issue a valid COPY command.

Dollar Sign ($) The dollar-sign ($) must appear in
position 1 of a command to be executed in batch mode. It may
optionally appear in a command executed in interactive mode.

Command-Names The command name describes the action the
command is to perform. With the exception of LOGIN, LOGOUT,
DEASSIGN and DEALLOCATE, which can be abbreviated to 4
letters, all commands can be abbreviated to 3 letters or
fewer. Additional letters are acceptable, for example,
LOGOUT, LOGOU and LOGO are all correct.

Parameters A parameter either describes a value that a
command is to use when executing or it further defines the
action a command is to take. Interactive users may supply
parameters 1n response to prompts {see Chapter
491)9 Otherwise; at least one space must separate
parameter from the command-name; parameters
separated from each other by one or more spaces
single comma (,).

A eoo,..+-; ,....,... -z, O'-"'-"" ._..,_,,,,,..,..,

the first
are then
and/or a

Parentheses and Ellipses Some commands permit the user to
replace a single parameter by a list of values. When this is
done the list may be surrounded by parentheses. Parentheses
are not required when the parameter being replaced is the
only or the last parameter in the command string.

P2-l

COMMAND SPECIFICATIONS

Examples:

a. DELETE (A.DAT;2, B.DAT;l, C.DAT;4}

The parentheses are optional

b. APPEND (A.DAT B.DAT C.DAT) D.DAT

The parentheses are required because the parameter being
replaced is not the last parameter. (This command specifies
that files A.DAT, B.DAT and C.DAT are to be added to the end
of file D.DAT).

In the description of a command's format, ellipses (three
dots " ••• ") indicate that a list of values of the same type
may replace a single value.

6. Qualifiers A qualifier is used to modify the default
action of a command. There are defaults for most
qualifiers. A qualifier always begins with a slash (/).
Both command names and parameters can be qualified.

Examples:

PRINT/DELETE MYFILE.DAT

CREATE DAT36.DAT/PROTECT: (WO:RWED)

Many qualifiers have associated qualifier values. The
qualifier is separated from the qualifier value by a colon
(:),e.g. KEEP:l. Whenever a qualifier requires a list of
values, that list must be enclosed in parentheses, e.g.

/BLOCKS: (m-n)

A qualifier may not contain any spaces.

7. Continuation Character (-) A hyphen (-), which may be
optionally followed by spaces and/or a comment, is used to
indicate that a command is to be continued on the next line.

Example:

PDS> COPY A.DAT -

>B.DAT

Note that following a continuation character, the system
reprompts with a prompt sign (>) on the following line.

8. Comment Character (!) An exclamation mark delimits the
start of a comment. Comments can occur only after the last
character of a command or after a hyphen. Comments are for
the user's information only and do not affect the processing
of the command.

P2-2

COMMAND SPECIFICATIONS

Examples:

PDS> COPY A.DAT B.DAT !FILE A TO FILE B.

PDS> MOUNT/DENSITY:800 MT: - MOUNT MY
> VOLID3 . TU10: TAPE ON ANY TU10

9. Concatenation Character (+) - A plus siqn (+) indicates
concatenation, that is, the records in the file specified on
the left of the plus sign are processed followed by the
records in the file specified on the right of the plus sign.

Example:

MACRO A+B

The MACR0-11 statements in file A.MAC followed by the
MACR0-11 statements in file B.MAC are read by the MACR0-11
assembler.

See Chapter 4 for further details on issuing PDS commands.

DICTIONARY OF PDS COMMANDS

The following PDS commands are specified in this section.

ABORT EDIT MERGE
ALLOCATE ENABLE MESSAGE
APPEND $EOD MOUNT
ASSIGN $EOJ

ON

BASIC FIX
FORTRAN PRINT

CANCEL GOTO QUEUE
COBOL
COMPARE HELP REMOVE
CONTINUE RENAME
COPY INITIALIZE RUN
CORAL INSTALL
CREATE SET

$JOB SHOW
DEALLOCATE SORT
DEASSIGN LIBRARIAN STOP
DELETE LINK SUBMIT
DIRECTORY LOGIN
DISABLE LOGOUT TYPE

DISMOUNT UNFIX
DUMP MACRO UNLOCK

P2-3

COMMAND SPECIFICATIONS

ABORT

The ABORT command can abort the execution
timesharing task. The timesharing task
suspended, for example by typing CTRL/C.

of the user's current
must previously have been

The user can also abort a real-time task that is running for either
the current terminal or a specified terminal.

FORMAT 1

PDS> ABORT

DESCRIPTION

This format aborts the timesharing task controlled from the user's
terminal and currentlv suspended~

EXAMPLE

CTRL/C
TASK SUSPENDED
PDS> ABORT
PDS>

FORMAT 2

where

PDS> ABORT/REALTIME
TASK? taskname
[TERMINAL? terminal]

taskname

terminal

is the installed name of the task to be aborted

is the terminal from which the task to be aborted
was activated. The default is the current
terminal.

EXAMPLES

PDS> ABORT/REALTIME RTTSK

PDS> ABORT/REALTIME MYTSK TT6

P2-4

COMMAND SPECIFICATIONS

ALLOCATE

The ALLOCATE command allocates a specified device to the user and
optionally associates a logical name with the device.

FORMAT

or

where

!:Q.§2 ALLOCATE

RESOURCE? DEVICE

DEVICE? device-name

LOGICAL NAME? logical-name

$ALLOCATE DEVICE device-name logical-name

device-name is the specification of the device to be allocated to
the user.

logical-name

DESCRIPTION

is a logical name to be associated with the device, of
the form XYn or XYmn. X, Y are alphabetic, m and n
octal digits. At least one digit must be specified,
even if 0.

The user has exclusive access to the device until either it is
explicitly deallocated or until the system deallocates it. The system
automatically deallocates when the user dismounts the device or
deassigns the last logical unit number to which the device is
assigned, unless the user modifies the DISMOUNT or DEASSIGN command
with the qualifier /KEEP.

The user may not explicity allocate a system device, that is, a device
allocated to all users by the system manager. If device-name does not
include a unit number, the system allocates any available device of
the specified type and, in interactive mode, prints at the user's
terminal the physical unit allocated. In this case, the batch user
must define a logical name in order to refer to that device in
subsequent commands.

P2-5

COMMAND SPECIFICATIONS

EXAMPLES

1. PDS> ALLOCATE

RESOURCE? DEVICE

DEVICE? MT: <ALT>

LOGICAL NAME? MY0:

PDS> MOUNT MY0:

VOLUME-ID? VOL75

PDS> DISMOUNT/KEEP

DEVICE? MY0

VOLUME-ID? VOL75

PDS> MOUNT MY0: VOL73

PDS> DISMOUNT

DEVICE? MY0

VOLUME-ID? VOL73

2. $ALLOCATE DEVICE MT:

3. ALLOCATE DEV DK0:

LM0

P2-6

COMMAND SPECIFICATIONS

APPEND

The APPEND command appends records from one or more input files, to
the end of an already existing SEQUENTIAL file. The input file list
can be either a list of SEQUENTIAL files, named explicitly or using
wildcards, or a single INDEXED or RELATIVE file whose name has been
supplied explicitly. When more than one input file is specified, the
files are appended in the order in which they appear in the commands.

FORMAT

PDS> APPEND

FILE? [(]infile-1[, ••• infile-n)] [/qualifier][)]

TO? outfile
or

$APPEND [(]inf ile-1 [, .•. inf ile-n)] [/qualifier] [)] outf ile

where

infile is an input file specification

outfile is the file specification to be updated

/qualifier is one of:

/SEQUENTIAL

input file is sequential (default)

/INDEXED[/KEY:NUMBER:n]

input file is an Indexed Sequential (ISAM) file. The
order in which records are appended can be specified by
the /KEY qualifier and key number.

Default: /KEY:NUMBER:l (the primary key).

/INDEXED may be omitted if /KEY:NUMBER:n is specified.

/RELATIVE

input file is RELATIVE structured.

DESCRIPTION

If one or more files in a list of input files is in error, the system
ignores the files in error and appends the rest to the output file.

All file specifications must include a filename and a filetype.

If a version number is not specified, the system assumes the highest
version number for the input file, and the highest version plus 1 for
the output file.

P2-7

COMMAND SPECIFICATIONS

If one of the specified files is to be input from the user's terminal
(TI:), the system transfers all that the user types in after the
completed command string. The transfer continues until the user types
CTRL/Z to terminate the input file. Such input from TI: is
sequential by nature.

EXAMPLES

1. PDS> APPEND (A.OBJ B.OBJ) C.OBJ

2. PDS> APPEND
FILE? (ABC. F'I·N DEF. FTN)
TO? XYZ.FTN

3. PDS> APPEND TWO.MAC, ONE.MAC

4. $APPEND (ABC.DAT,DEF.DAT), XYZ.DAT

5. PDS> APPEND ADDIT.DAT/KEY:NUM:3 OLDONE.DAT

Appends all records from the ISAM file ADDIT.DAT to
OLDONE.SAV in an order determined by key number 3 (the second
alternate key field).

6. PDS> APPEND FILE1.TXT+[200,40]*.TXT UPDATED.TXT

Appends text file FILEl and all .TXT files in [200,40] to
UPDATED.TXT in the current UFD.

P2-8

COMMAND SPECIFICATIONS

ASSIGN

The ASSIGN command assigns a device to a logical unit.

The assignment can only apply to the timesharing task(s) that will be
run from the terminal (FORMAT 1) or to a named installed task (FORMAT
2) •

Assignment does not affect any currently active version of a task.

To determine the current assignments of LONs for an installed task use
the command SHOW LONS taskname.

FORMAT 1 (timesharing)

PDS> ASSIGN

FILE? device-name

LON? lun

or

$ASSIGN device-name lun

where

device-name is the specification of the device to be assigned to
the logical unit.

lun

The device must be one allocated to the user by the
ALLOCATE or MOUNT command, or one to which all users
have access.

is a logical unit number.

EXAMPLES

1. $ASSIGN DP0: 7

2. PDS> ASSIGN

FILE? LP0:

LON? 6

3. PDS> ASSIGN DK2:

LON? 5

FORMAT 2 (ASSIGN/REALTIME)

PDS> ASSIGN/REALTIME
TASK? taskname
DEVICE? device-name
LON? lun

P2-9

where

task name

device-name

lun

COMMAND SPECIFICATIONS

is the installed name of the task for which the
installed LON assignment is to be changed

is the device for which the LON is to be assigned

is the LON to be associated with the specified
device

EXAMPLE

PDS> ASSIGN/REAL MART DK2: 3

For the installed task MART re-assign LUN3 to device DK2.

DESCRIPTION

Users may assign logical unit numbers at three points:

1. By means of the ASSIGN command before the user runs a task.

2. By means of a Task Builder option when a task is linked (see
the IAS Task Builder Reference Manual).

3. From within a program by means of the system directive ALON$
or OPEN$ or the FORTRAN subroutines ASSIGN and ASNLUN (see
the !AS Executive Reference Manual- Volume I).

If the ASSIGN command associates a device name with a logical unit
number, that assignment overrides any made for that logical unit
number by the Task Builder. And if an executing program assigns a
logical unit, that assignment overrides the action of any ASSIGN
command for that logical unit number. The system automatically
deassigns logical units when the associated volume is dismounted or
device deallocated. The user may also issue the DEASSIGN command to
deassign a device from a logical unit.

P2-10

COMMAND SPECIFICATIONS

BASIC

The BASIC command invokes a BASIC
either the BASIC-11 interpreter
BASIC-PLUS-2 compiler.

language processor which may be
or the BASIC-11 interpreter or the

FORMAT

BASIC [qualifier]

where

qualifier is one of the following command qualifiers:

Qualifier

/Bll

/BP2

Meaning

Invoke the BASIC-11 interpreter. Applicable to systems
that have both BASIC-11 and BASIC-PLUS-2. If omitted,
the system invokes the installation's default BASIC.

Invoke the BASIC-PLUS-2 compiler. Applicable to
systems that have both BASIC-11 and BASIC-PLUS-2. If
omitted, the system invokes the installation's default
BASIC.

The BASIC command has no parameters.

DESCRIPTION

The following description relates to the BASIC-11 interpreter only.
For details of BASIC-PLUS-2 see BASIC-PLUS-2 specific documents.

When the user issues the BASIC command, BASIC indicates that the
interpreter is ready to receive a command or program line by typing
"READY".

To terminate a BASIC session and return control to PDS, the user types
'BYE' on a new line. The system then prints information about the
session and prompts for further PDS commands. For example:

BYE

15:57:32 SIZE: 10K CPU: 3:09

PDS>

Effect of CTRL/C

When the BASIC interpreter is executing a program, CTRL/C causes the
system to stop execution after the current line. The terminal
displays the number of the last line executed and the user may then
issue further BASIC commands.

P2-ll

COMMAND SPECIFICATIONS

CTRL/C typed during the execution of a BASIC LIST or SAVE command or
an immediate mode statement stops the execution of those commands or
statements. It has no effect on the execution of other BASIC
commands.

P2-12

COMMAND SPECIFICATIONS

CANCEL

The CANCEL command allows the user to cancel periodic scheduling of
requests for a real-time task.

FORMAT

where

PDS> CANCEL
TASK? taskname
[TERMINAL? terminal]

task name

terminal

is the installed name of the task whose scheduled
requests are being cancelled

is the terminal from which the task to be
cancelled was activated. The default is the
user's terminal.

EXAMPLES

PDS> CANCEL XKE2

PDS> CAN MYTS 'l'T4

P2-13

COMMAND SPECIFICATIONS

COBOL

The COBOL command compiles a COBOL source program.

FORMAT

PDS> COBOL[gualifiers]

FILE? f ilespec

or

$COBOL[qualifiers] filespec

where

filespec is a specification of the file containing the COBOL source
program. The specification must contain a filename. If
the filetype is omitted, the system assumes it to be CBL.

qualifiers are one or more of the following:

Qualifier Meaning

/OBJECT[:filespec]

/NOOBJECT

/LIST [: f ilespec]

/NOLIST

Produce an object file, named according to
filespec if it is supplied (no wild-cards
allowed). The default filetype is OBJ. /OBJECT
is the default qualifier.

Do not produce an object file.

Produce a
f ilespec
allowed).

listing file named according to
if it is supplied (no wild-cards
The default filetype is .LST.

Do not produce a listing file (the default
condition for interactive mode).

/SWITCHES: (switches) Apply the specified COBOL compiler switches.
See the section called Compiler Switches below.

Defaults

Object File - If the qualifier /OBJECT is specified without a file
specification, the object file is given the name of the source file
.,,.,..,.,::i ~ho -Fi 1 o~nT"\o f"\tL,. 'J'lho eou~~om ~of=,,.111 ~ ; ~ /("\Q_,.~l""'J'I
Ul.lU W.&..&.'W .L...&...&.."-''-":f.f:'~ •'-'J..JVe .L..l..l'\;; l.J:ft.J'-'-"'.l.Ll ""''\,,;.L.YU.-L.\... ..L-? /'-'4JV.L.J&.e

Listing File If /LIST is supplied without a filespec the listing
file is sent to the line printer. /NOLIST is the system default.

P2-14

COMMAND SPECIFICATIONS

Compiler Switches

The COBOL command includes compiler switches that permit the user to
tailor the compilation listing to meet particular needs.

A list of switches and their meanings follow:

Switch

/HELP

/ERR:n

/ACC:n

/MAP

/NL

/CVF

/CREF

Meaning Default

Display on the user terminal information about
how to use the compiler switches.

Suppress the printing of diagnostics with a
severity number of less than n. The range of
n must be 0 through 2.

where:

0 Informational diagnostics
1 Warning diagnostics
2 Fatal diagnostics

The switch cannot suppress severity 2 (fatal)
diagnostics. (An entry of 2 suppresses the
printing of all severity numbers that are less
than 2.)

Produce an object program only if the source
program contains diagnostics with severities
egual to or less than n. The range of n must
be 0 through 2.

Produce special map listings of

Data Division
Procedure Map
External Subprograms Referenced
Data and Control PSECTs
OTS Routines Referenced
Segmentation Map

Instruct the compiler not to list the source
statements copied from a library file. The
resultant source listing contains only the
COPY statement.

The source program is in conventional format
(i.e., 80-character source lines with Area A
beginning in character position 8. The
default is that area A begins at position 1).

Include a cross-reference listinq as a part
of the listing file output. When /CREF is
specified, data-names, procedure-names, and
source line numbers are sorted into ascending
order and appended to the end of the
compilation listing. The symbol # is used to
indicate those lines that contain the lines
in which the reference name is defined.

P2-15

/ERR:0

/ACC:l

Switch

/CSEG:nnnn

/KER:kk

/OBJ

/ODL

/OV

/PFM:nn

/PLT

/RO

/SYM:n

COMMAND SPECIFICATIONS

Meaning

NOTE

The use of /CREF significantly
slows down the compilation of
large programs.

Allows you to specify the maximum size
procedural code PSECT to be produced by the
compiler where nnnn is the maximum size
procedural code PSECT, in decimal bytes. The
minimum value of nnnn is 100.

Instruct the compiler to generate PSECT names
using the two-character kernel specified by
kk to make them unique to this compilation,
where kk is a two character string that may
contain the numbers 0 through 9 and the
letters A through z.
Print the object location in which the code
for each verb of the program is located. The
information is listed on the linee proceeding
the source statement it describes.

Generate an ODL file (default condition). To
override the default condition, enter /-ODL.

procedural
Therefore,

contain

Make all
overlayable.
program will
statements.

PSECTs
the

no

(segments)
root or main

procedural

Define the maximum number of nested PERFORM
statements in the program being compiled. If
specified, the compiler generates a nested
PERFORM stack equal in depth to the decimal
number specified by nn. The default nested
perform size is 10. It is to your advantage
to use this switch to adjust the nested
PERFORM stack size to the exact number
required. This assures maximum utilization
of memory in that only the exact amount of
PERFORM stack space is generated.

Automatically pool literals to minimize the
memory required to store them (default
condition). Pooling of literals, however,
slows down compiler execution speed. To
bypass literal pooling for increased compiler
speed, enter /-PLT.

Generate read-only PSECTs for the Procedure
Division object modules.

Obtain more symbol table space for the
compilation. "n" (an integer in the range of
1 through 4) specifies the space required for
the maximum number of data-names and
procedure-names allowed in the compilation.
See Table P2-l for the correspondence between
the integer specified by n, and the number of
data-names and procedure-names assigned.

P2-16

Default

COMMAND SPECIFICATIONS

Table P2-l
/SYM:n Switch Values

n Maximum Data-Names Maximum Procedure-Names

1 761 761 (default)

2 1021 1021

3 1531 1531

4 2039 2039

EXAMPLES

1. PDS> COBOL COBPROG.CBL

2. PDS> COBOL/SWITCHES: (/MAP)

FILE? COBPROG.CBL

3. $COBOL BATCHCOB

P2-17

COMMAND SPECIFICATIONS

COMPARE

The COMPARE command is used to compare two files line by line with one
another and produce one of:

1. A listing of the differences found

2. A listing of one file with the differences flagged

3. A SLIFER file that converts one file to the other.

FORMAT

where

PDS> COMPARE/gualif iers oldf ile newf ile

qualifiers are any of the following:

/[NO]OUTPUT[:filespec]
to output all the differences found to the 11nepr1nter. If
a file specification is given the output will be directed to
the specified file. If /NOOUTPUT is specified, only the
number of differences found will be printed.

Default:/OUTPUT

/CHANGE BARS[:n]
n Ts the dee imal character code to be used. 'newf ile' is
printed with those lines which differ from 'oldfile', marked
by the specified character. For example, 124 for vertical
bar (octal 174).

Default: decimal code 33 for exclamation point (!)
(octal 41).

/[NO]COMMENT
to include all comments in the file comparison. If
/NOCOMMENT is specified, all comments will be ignored.

Default: /COMMENT

/[NO]FORM FEEDS
to include all form feeds in
/NOFORM FEEDS is specified,
formfeed will be ignored.

Default: /NOFORM_FEEDS

/LINES:n

the file comparison.
records containing only

If
a

to specify the number of lines that determine a match. This
match means that n successive lines in each input file have
been found identical. When a match is found, all
differences occurring before the match are output. In
addition, the first line of the current match is output
after the differences to aid in locating the place within
each file at which the differences occurred.

Default: 3 lines

P2-18

COMMAND SPECIFICATIONS

/[NO]MULTIPLE BLANKS
to include all multiple blanks (that is, spaces and tabs) in
the file comparison. If /NOMULTIPLE BLANKS is specified,
all multiple blanks will be ignored. -

Default: /MULTIPLE_BLANKS

/[NO]TRAILING BLANKS
to include all trailing blanks in the file comparison. If
/NOTRAILING BLANKS is specified, all trailing blanks will be
ignored. -

Default: /TRAILING_BLANKS

/SL I PER
Output a SLIPER file that converts oldfile to newfile.

Default: /NOSLIPER

/[NO]BLANK LINES
to include all blank
/NOBLANK LINES is
ignored.-

lines in
specified,

Default: /NOBLANK_LINES

the
all

file comparison.
blank lines will

oldf ile is the old file to be used in the file comparison.

newf ile is the new file to be compared with the old file.

EXAMPLE

1. PDS> COMPARE/NOOUTPUT/FORM_FEEDS/NOMULT

OLDFILE? MKX03.MAC;l

NEWFILE? MKX03.MAC

2. PDS> COMPARE/SLIPER BCPLIO.MAC;l

NEWFILE? BCPLIO.MAC;0

P2-19

If
be

COMMAND SPECIFICATIONS

CONTINUE

The CONTINUE command has four formats. In interactive timesharing the
CONTINUE command causes the currently suspended user task to resume
execution. See FORMAT 1.

In an indirect command or batch command file, CONTINUE has no effect
other than proceeding to the next command. It does not imply previous
suspension of a task. See FORMAT 2.

In real time, the CONTINUE command is used:

1. To continue the execution of a task after it has been
suspended using the 'suspend' form of message output
(CONTINUE/MESSAGE). See the IAS/RSX-llD Device Handlers
Reference Manual, Chapter 11. See FORMAT 3.

2. To resume execution of a previously suspended task, after
being suspended by the SUSPEND (SPND$) Directive
(CONTINUE/REALTIME). See FORMAT 4.

FORMAT 1

PDS> CONTINUE

DESCRIPTION

In interactive timesharing, the CONTINUE command may only be
after the user task has been suspended by typing CTRL/C.
CONTINUE reactivates the currently suspended task.

EXAMPLE

CTRL/C

TASK SUSPENDED

PDS> CONTINUE

FORMAT 2 (indirect or batch)

[$]CONTINUE

DESCRIPTION

issued
Typing

In an indirect command or batch command file, CONTINUE has no effect
other than proceeding to the next command. It does not imply previous
suspension of a task.

P2-20

COMMAND SPECIFICATIONS

FORMAT 3

where

PDS> CONTINUE/MESSAGE
TASK? taskname
[TERMINAL? terminal]

task name

terminal

is the installed name of the task to be continued
after being suspended by the 'suspend' form of
message output (that is, the MO message handler).

is the terminal from which the task to be resumed
was activated. The default is the user's
terminal.

FORMAT 4

where

PDS> CONTINUE/REALTIME
TASK? taskname
[TERMINAL? terminal]

task name

terminal

is the installed name of the task being "resumed"
after previously being suspended by the SUSPEND
directive.

is the terminal from which the task to be resumed
was activated. The default is the user's
terminal.

EXAMPLES

PDS> CONTINUE/MESSAGE MYTTSK

PDS> CONT/REALTIME XKEE3 TT2

P2-21

COMMAND SPECIFICATIONS

COPY

The COPY command copies:

1. one sequential file to another sequential file;

2. using wildcards, a group of sequential files to another group
of sequential files;

3. the concatenation of a number of sequential files to a single
sequential file.

4. records from a single INDEXED or RELATIVE file to a single
sequential file. For making a copy of an INDEXED or RELATIVE
file to a file of the same kind, see the MERGE command.

FORMAT

or

where

PDS> COPY[gualifiers]

FROM? infile[file-qualifier]

TO? outfile[file-gualifier]

$COPY[qualifiers] infile[file-gualifier], outfile[file-qualifier]

in file is an input file specification. Concatenated files are
linked by a plus sign (+).

outf ile

qualifiers

For example:

filespec+filespec+filespec+ ••••

is an output file specification.

are one or more of the following:

Qualifier Meaning

/ALLOCATION:n Allocate n blocks to the output file

/CONTIGUOUS Make the output file contiguous. Note
that this qualifier has no effect when
copying from magnetic tape.

/OWN Make the destination UFD the owner of
the copy or copies. Not applicable to
foreign files (see under file-qualifier,
below).

/REPLACE Replace the existing output file, if
any.

P2-22

COMMAND SPECIFICATIONS

Qualifier

/ASCII[:n]

Meaning

Formatted ASCII (for Foreign files)

The transfer is performed as formatted
ASCII. Formatted ASCII is defined as
ASCII data records terminated by a
carriage return or a form feed.

If n is specified, fixed length records
of size n are generated. Output records
will be padded with nulls, if necessary.

If n is not specified, then variable
length records are generated. The
output record size equals the input
record size~

NOTE

ASCII data is transferred as ?-bit
auantities. The eiqhth bit of each
byte is masked off before transfer.
CTRL/Z (ASCII 032(8)) is treated as
logical end of input file for
formatted ASCII transfers from
DOS-11 cassette to Files-11.

[NULLs (ASCII 000(8)), RUBOUTs
(ASCII 177(8)) and Vertical Tabs
(ASCII 013(8)) are ignored.]

/BINARY[:n] Formatted Binary (for Foreign files)

/IMAGE[:n]

/BLOCKSIZE:n

The output file is to be formatted
binary. If n is specified, n indicates
the fixed length size record in bytes
(512 bytes is the maximum). The command
pads records with nulls to create the
specified length. If n is not
specified, standard DOS and RT-11
formatted binary records are produced.

Image Mode (for Foreign files)

The output file is to be in image mode.
Image mode forces fixed length records.
n can be used to indicate the desired
record length (512 bytes is the maximum)
or if n is not specified, then 512 bytes
is assumed.

Specifies the block size for cassette
tape output.

n = the block size in bytes.

If /BLOCKSIZE is not specified, a block
size of 128 is assumed. /BLOCKSIZE is
valid only in a CT output file
specifier.

P2-23

Qualifier

/VERIFY

COMMAND SPECIFICATIONS

Meaning

/VERIFY is valid only with a CT output
file specifier. Verify after write -­
Causes each record written to the
cassette, to be read and verified.

/SEQUENTIAL (Input file only)
Input file is a sequential file.

/INDEXED[/KEY:NUMBER:n] (Input file only)

The single input file is an Indexed
Sequential (ISAM) file.

The records from the (implied /INDEXED)
input file are to be copied in the order
determined by key number n (n>0) to
create a new sequential file.

If /INDEXED is specified but not /KEY,
the records are copied in the order
determined by key number 1 (the primary
key).

/RELATIVE (Input file only)

The single input file has
organization.

RELATIVE

If none of the last four qualifiers is used, /SEQUENTIAL is assumed by
default.

f ile-gualifier modifies the specification of a foreign file
DIGITAL'S DOS or RT-11 format. The qualifiers are:

DESCRIPTION

/DOS
/RTll

in

If infile or outfile has a filename then it must also have a filetype.

If the version number is omitted from the input file then the highest
version number is used. If it is omitted from the output file then
the highest version number plus 1 is used.

Wild-cards are allowed whenever an input file specification does not
describe concatenated files. If any of the filename, filetype or
version fields of the output file contain a wild-card, all fields must
be wild; the version field, however, may be omitted. If one part of
the output file UFD is a wild-card, both parts must be wild.

If a 'wild' version number is specified in an output file
specification, the version numbers for that file will be preserved.
If a filename is not specified the system assumes wild-cards (that is,
.;*).

If /DOS or /RTll modifies either file specification, then the input
files may not be concatenated and the output filename and f iletype
must be wild (that is, foreign files may not be renamed).

P2-24

COMMAND SPECIFICATIONS

If the user enters infile from the user's terminal (TI:), the. sy$tem
transfers to the output file all that the user types in after the
completed command string. The transfer continues until the user types
CTRL/Z to terminate the input file.

If either infile or outfile is not in Files-11 format, its
specification must be modified by either /DOS or /RTll. The system
does not accept any other foreign formats.

Because of the unused space at the end of blocks, if a file is co~ied
from disk to magnetic tape it will occupy more blocks on the tape than
it did on the disk. Furthermore, when the file is copied from
magnetic tape back to disk, the resulting disk file is also longer
than the original disk file.

The COPY command is not the best method of making a replica of an
Indexed Sequential file. A preferable method, which will also tidy
the internal structure of the file, is to create a new, empty Indexed
Seguential file having the same structure as the original file (using
the CREATE command) and then merge the original file into the new
(empty) file (using the MERGE command).

EXAMPLES

1. PDS> COPY A.CBL B.CBL

2. $COPY E.TXT, F.TXT

3. PDS> COPY
FROM? E.TXT
TO? F.TXT

4. PDS> COPY/OWN DK0: [*,*]*.*
TO? DKl:[*,*]*.*

5. PDS> COPY DATA.DAT DT0:*.*

6. PDS> COPY/IMAGE:l00/VERIFY DT2:*.*/DOS SY:

7. PDS> COPY INDEXED.DAT/IND/KEY:NUM:2 SEQUEN.DAT

P2-25

COMMAND SPECIFICATIONS

CORAL

The CORAL command invokes the CORAL 66 compiler to compile one
CORAL 66 source file. Command qualifiers control output file options
and subsequent processing.

FORMAT

PDS> CORAL[gualifier(s)]

FILE? f ilespec

or

$CORAL[qualifier(s)] filespec

where

filespec is the specification of a source program file to be
compiled.

If the filetype is omitted, the system assumes it to be
COR. No wild-cards are allowed.

qualifier (s) are one or more of the following command qualifiers:

Qualifier

/LIST[:filespec]

/NOLI ST

/OBJECT[:filespec]

/NOOBJECT

Meaning

Produce a listing file; name as indicated.
If the filetype is omitted from filespec, the
system assumes it to be .LST.

Do not produce a listing file.

Produce an
specified.

object file;

Do not produce an object file.

re-name as

/SWITCHES: (/swl .•• /swn) Use specified CORAL switch options. For
further details, see below.

DEFAULTS:

1. By default, the compiler produces an object file with the
name of the source file and with OBJ as the filetype.

2. A listing file is sent
specified with no
qualifier.

to the line printer
filename. /NOLIST is

P2-26

if /LIST is
the default

CORAL 66 Switches

Switch Default

/LP:n /LP:l

/TT:n /TT:l

/BC /-BC

/IS:isv /IS: dis

/OP:n /OP:l

/OS:n /OS:0

COMMAND SPECIFICATIONS

Description

Specifies the listing options and
format.

n=0 Page headers, switch summary
diagnostics

n=l As n=0 plus source listing

n=2 As n=l plus CORAL macro expansions

n=3 As n=2 plus data and label maps

132-column

and error

As for
neither
/LP: 1.

/LP:n but with 80-column format. If
/LP nor /TT are specified the default is

If /TT is specified the default is /TT:l.

Check array, table and switch bounds

Specifies instruction set.

isv=EAE

isv=P45

isv=FIS

isv=FPP

dis=P45

dis=FPP

11/04 with Extended Arithmetic Element

11/45 instruction set or 11/40 with
Extended Instruction set.

11/40 with Extended Instruction Set and
Floating Instruction Set

11/45 with Floating Point Processor

CORAL 66

CORAL 66 with FPP support

Specifies optimization of type OP (see PDP-11
CORAL 66 manual)

n=0 no optimization of type OP

n=l two passes of OP optimization

n=2 iterative passes of OP optimization till no
further reduction

Specifies optimization of type OS (see PDP-11
CORAL 66 manual). Current logical registers are
retained on meeting:

n=l anonymous reference

n=2 data overlay

n=4 formal LOCATION parameter

P2-27

COMMAND SPECIFICATIONS

Switch Default Description

/SP /SP

/-SP /SP

With /OS, any combination of the values 1,2,4 can
be summed, for example

n=3 retain logical registers on meeting anonymous
reference or data overlay

Default value:

n=0 no optimization of type OS

Listing file is queued to the spooler and deleted
after print out.

No spooling, listing file is preserved on device
indicated by the listing file specification

/TE:n /TE:0 Compile declarations and statements prefixed by
'TEST'm provided n is greater than or equal to m.
n is a decimal integer constant and is positive or
zero. If /TE is omitted, 'TEST' declarations and
statements are ignored.

Switch default summary:

(/LP:l/BC/IS:P45/0P:l/OS:0/SP/TE:0)

FURTHER INFORMATION

For further information on the use of the CORAL 66 compiler refer to
the following document:

PDP-11 CORAL 66 (with FPP Support) Language Reference Manual and
User s Guide

EXAMPLES

1. PDS> CORAL NEWFILE

2. PDS> CORAL/SW: (/BC/OP:2) FILES.CCR

3. $CORAL/OBJ:YRFILE.OBJ MYFILE

P2-28

COMMAND SPECIFICATIONS

CREATE

The CREATE command creates a file, and (for a sequential file) copies
into it source lines following the command in a batch stream or input
entered from a terminal. (FORMAT 1)

CREATE can also create an empty file suitable for manipulation by the
RMS-11 file services and utilities. Such a file can be filled with
the aid of the PDS MERGE command or a user task. (FORMAT 1)

CREATE/DIRECTORY allows the user to create a directory on any volume
that is both mounted for him and to which he has write access.
(FORMAT 2)

FORMAT 1

or

PDS> CREATE [/gualifier.s-1] newfile [/qualifiers-2]

PDS> CREATE [/qualifiers-I]

FILE? newf ile [/gualif iers-2]

where /qualifiers-I can be

/DOLLARS

/OWN

gualifiers-2 can be

/ALLOCATION:n

/BUCKET_SIZE:n

/CONTIGUOUS

/FORMAT:type

Used only when creating a SEQUENTIAL file in BATCH
mode. All batch input up to the next $EOD is used
to fill the created file.

Causes the destination UFD to be also the owner of
the file.

[/INDEXED] /KEY: (parameters) [••. /KEY: (parameters)]

/PROTECTION: (code)

/RELATIVE

/SEQUENTIAL

where:

/ALLOCATION:n Forces the file to have n blocks of initial
allocation.

/BUCKET_SIZE:m This qualifier may only be used with INDEXED or
RELATIVE and specifies the unit of allocation of
this kind of file. m specifies the number of
blocks to be allocated to each bucket.

P2-29

/CONTIGUOUS

/FORMAT:type

/RELATIVE

/SEQUENTIAL

COMMAND SPECIFICATIONS

Forces the file created to be contiguous.

Specifies the record type of the file.
following types are available.

The

FIXED:n

VARIABLE [: n]

CONTROLLED [: n]

fixed length records, n must be
specified and is the length of
each record in bytes.

Variable length records; n may
optionally be used to specify the
length otherwise the default
length of 0 is assumed. If
RELATIVE is specified then n must
be specified.

Variable length records with a
fixed control field. n may be
optionally specified to eef ine
the length of a record, if not
then the default length of 0 is
assumed.

S9ecifies relative organisation.

Specifies sequential file organisation. If the
organisation is not specified, SEQUENTIAL is
assumed.

/PROTECTION: (code)
Create the file with the specified protection
access code. See Section 6.1.3.

[/INDEXED]/KEY Create an ISAM file. If INDEXED is specified then
NUMBER:l must appear in one of the key definitions
to specify the primary key field.

/KEY is used to specify a key field within the
records. /KEY has three mandatory parameters and
two optional. Parameters are separated either by
spaces, tabs or a comma. The parameter list is
written within round brackets.

NUMBER:i specifies the key field number. i is
1 for the primary key, 2 for first
alternate, and 3 for second alternate,
etc.

POSITION:j specifies the starting byte of the key
within the record. j=0 corresponds to
the starting byte (byte 0) of the
record.

SIZE:k determines the length of the
field.

key

Note that POSITION, SIZE and NUMBER are mandatory.

UPDATE

DUPLICATE

specifies that the keyfield may change
during an update process. NOUPDATE is
the converse.

specifies that duplicate keyfields may

P2-30

Key type

COMMAND SPECIFICATIONS

exist in a record. NODUPLICATE is the
converse of DUPLICATE.

Note that if UPDATE is specified then DUPLICATE is
implicit.

The following table shows the legal combinatons of
DUPLICATE and UPDATE.

Combination

UPDATE UPDATE
DUPLICATE NODUPLICATE

NOUPDATE
DUPLICATE

NO UPDATE
NODUPLICATE

Primary Error Error Allowed Default

Alternate Default Error Allowed Allowed

If no organisation is specified then SEQUENTIAL is assumed.

If SEQUENTIAL organisation is specified (or defaulted} the user may fill
the file with text from his terminal up to CTRL/Z. If in BATCH mode,
then /DOLLARS must be used and $EOD will terminate input. No other
qualifiers apart from DOLLARS, ALLOCATION:n or OWN may be used. The
iilespecifica~ion must always be fully defined.

The user can specify the BUCKET SIZE option only for relative and
indexed files. A bucket can obtain from 1 to 32 virtual blocks. The
default value is one virtual block per bucket. File processing is
usually improved if the number is increased.

The relationship between this option and the record size value
specified in the record format (/FORMAT) gualifier is important.
Since RMS-11 does not allow records to cross bucket boundaries, the
user must ensure that the number of virtual blocks per bucket conforms
to one of the following formulas:

1. Indexed files with FIXED length records:

Bnum=(l5+(Rlen+7)*Rnurn)/512

where

Bnum is the number of virtual blocks per bucket, ranging
from 1 to 32.

Rlen is the fixed record length.

Rnum is the number of records per bucket.

2. Indexed files with VARIABLE length records:

Bnum=(l5+(Rmax+9)*Rnum)/512

where

Bnum is the number of virtual blocks per bucket, ranging
from 1 to 32.

Rmax is the maximum size of any record in the file.

P2-31

COMMAND SPECIFICATIONS

Rnurn is the number of records per bucket.

3. Relative files with FIXED length records:

Bnum = ((Rlen+l)*Rnum)/512

where

Bnurn is the number of virtual blocks per block ranging
from 1 to 32

Rlen is the fixed record length.

Rnum is the number of records per bucket.

4. Relative files with VARIABLE length records:

Bnum = ((Rmax+3)*Rnum)/512

where

Bnum is the number of virtual blocks per bucket, ranging
from 1 to 32.

Rmax is the maximum size of any record in the file

Rnum is the number of records per bucket.

5. Relative files with controlled format records:

Bnum = (Rmax+Fsiz+3)*Rnum/512

where

Bnum is the number of virtual blocks per bucket, ranging
from 1 to 32

Rmax is the maximum size of the data portion of any
CONTROLLED record in the file.

Fsiz is the size of the fixed control area portion of the
CONTROLLED records.

Rnum is the number of records per
records in a relative file
Rrnax+Fsiz+3 bytes.

bucket. CONTROLLED
bucket always occupy

In all cases, if Bnum is not an integer, it must be rounded up to the
next integer value.

DESCRIPTION

Batch Mode

In batch mode the text to be placed in the new file follows the
command. Any $ command terminates the file unless the CREATE command

P2-32

COMMAND SPECIFICATIONS

string includes the qualifier /DOLLARS, which specifies that only the
command $EOD can terminate the file.

Interactive Mode

The CREATE command reads the input to the new file from the user's
terminal. Pressing CTRL/Z terminates the file.

For SEQUENTIAL files, the CREATE command has the same function as a
COPY command that specifies TI: as the device in the input file
specification.

EXAMPLES

1. PDS> CREATE

FILE? MYDATA.DAT;S

READY FOR INPUT

ABCD

EFGH

CTRL/Z

PDS> CREATE ANOTHER.DAT/PROTECTION: (OW:RW)

READY FOR INPUT

CTRL/Z

PDS>

2. $CREATE/DOLLARS DEBUG.MAC

$EOD

3. PDS> CREATE JOHN.DOE/KEY: (NUMBER:l,SIZE:l0,POSITION:0)

Creates JOHN.DOE as an Indexed Sequential (ISAM) file having
variable lenth records with one key of reference. The key is
10 (decimal) bytes long and appears in the first byte (byte
0) of each record.

P2-33

COMMAND SPECIFICATIONS

FORMAT 2

where

PDS> CREATE/DIRECTORY/ALLOCATION:n

DEVICE? dev:uic[/PROTECTION: (protection)]

n is the number of files for which room is initially
allowed in the directory. The file system will extend
the directory file as needed, if this value is
subsequently exceeded.

dev is the device on which the directory is to be created.

uic is the UIC to be given a UFO on the device.

protection is the file protection to be placed on the
directory. Protection is specified in the form:

(SYSTEM:RWED,OWNER:RWED,GROUP:RWED,WORLD:RWED)

Access protection is allocated for four groups:

SYSTEM - tasks running under a UIC with
group number 10 octal or less.

OWNER

GROUP

WORLD

- tasks running under the same UIC as
in the owner field of the file.

- tasks running under UICs with the
same group number as the owner.

- all tasks.

The access protection that can be
specified for each of the four
groups is:

R - Read access

W - Write access

E - Extend access

D - Delete access

Specifying an access for a group allocates the
access rights to the group. If a group is omitted
from the protection, the volume default position
for that group is allocated.

P2-34

COMMAND SPECIFICATIONS

EXAMPLES

1. PDS> CREATE/DIRECTORY DKl: [11,17]

This example will create a directory under [11,17] on DKl:.

2. PDS> CREATE/DIRECTORY/ALLOCATION:6 LB: [14,7]

This example will create a directory under [14,7] on LB:
initially allowed for 6 files.

with space

3. PDS> CREATE/DIR DP0: [200,200]/PRO: (SYSTEM:RWED,OWNER:RWED,WORLD:}

This example creates a directory of [200,200] on disk DP0. The access
protection is RWED for System, RWED for Owner ([200,200]), the volume
default Group protection for Group and no access for World.

4. PDS> CREATE/DIR [123,22]

This example will create a directory of [123,22] on the users current
default device.

P2-35

COMMAND SPECIFICATIONS

DEALLOCATE

The DEALLOCATE command deallocates a specified device.

FORMAT

or

PDS> DEALLOCATE

RESOURCE? DEVICE

DEVICE? device-name

$DEALLOCATE DEVICE device-name

where

device-name

DESCRIPTION

is the device specification or the logical name of the
device to be deallocated.

Normally the system automatically deallocates a device when the user
dismounts the volume on it or deassigns it from a logical unit number.
However, when the user has issued the ALLOCATE command to obtain
access to a non-mountable device that has not been assiqned to a
logical unit, the DEALLOCATE command must be used to release -it. It
may also be used after a DEASSIGN/KEEP or DISMOUNT/KEEP command.

EXAMPLES

1. ~ DEALLOCATE DEVICE DKl:

2. $DEALLOCATE DEVICE DD0:

P2-36

COMMAND SPECIFICATIONS

DEASSIGN

The DEASSIGN command dissociates a device from a logical unit.

FORMAT

PDS> DEASSIGN[/KEEP]

LON? lun

or
$DEASSIGN[/KEEP] lun

where

/KEEP inhibits any deallocation or dismounting of the associated
device.

lun is the logical unit number to be deassigned.

DESCRIPTION

If the specified logical unit number is the last to which a device is
assigned, the device is dismounted or deallocated unless the user
specifies the command qualifier /KEEP.

The command applies only to assignments made for timesharing user
tasks (i.e. not ASSIGN/REAL). See the ASSIGN command for
deassignment of REALTIME assignments.

EXAMPLES

1. PDS> DEASSIGN
LUN? 7

2. $DEASSIGN/KEEP 3

P2-37

COMMAND SPECIFICATIONS

DELETE

The DELETE command deletes one or more specified files.

FORMAT

PDS> DELETE[/KEEP:n]

FILE? filespec-l[file-qualifier] [, ••• filespec-n]

or

$DELETE[/KEEP:n] filespec-l[file-gualifier] [, ••• filespec-n]

where

KEEP [: n]

f ilespec

prevents the latest n versions of a specified file from
being deleted. It can only be used when the version
field in a file specification is omitted or wild. If n
is omitted, it is assumed to be 1.

NOTE

If a DELETE/KEEP is attempted
on files that are protected,
because of the directory
structure, the system will
attempt many times to delete
the file. The user should
press CTRL/O and wait or abort
the operation.

is the file specification of a file to be deleted.
Wild-cards are allowed. The version field MUST be
specified unless /KEEP is used or the file is foreign.

file-qualifier modifies the specification of a foreign file
DIGITAL'S DOS or RT-11 format. The qualifiers are:

in

DESCRIPTION

/DOS
/RTll

The user cannot recover a deleted file.

In order to delete a file in DOS or RTll format, the user must modify
the file specification with the /DOS or /RTll file gualifier.

P2-38

COMMAND SPECIFICATIONS

EXAMPLES

1. PDS> DELETE (A.EXT;l, B.EXT;l, DK0:C.*;*)

2. PDS> DELETE/KEEP:!
FILE? DK1:[200,200]*.XYZ

3. $DELETE/KEEP DK0: [200,200]*.LIS

4. PDS> DELETE DT0:TEST.MAC/DOS

P2-39

COMMAND SPECIFICATIONS

DIRECTORY

The DIRECTORY command lists details about a file or a group of files
at a specified output device or to a specified file. Command
qualifiers allow the user to request greater or less detail.

FORMAT

PDS> DIRECTORY[qualifier(s)]

FILE? filespec-1 [file-qualifier] [, •• filespec-n]]

or

$DIRECTORY filespec-l[file-qualifier] [, ••• filespec-n]

where

file spec

qualifier (s)

is a file specification that indicates the directory
entries to be listed. Wild-cards are allowed.

If no files are specified, the system lists information
about all the files in the user's default directory.

are one or more of the following:

Qualifier Meaning

/OUTPUT:outf ile List information in the specified
output file.

/SUMMARY Specify that only a summary line
of the following format is
required:

TOTAL OF nnnn./rnmmm.BLOCKS IN xxxx.FILES

/BRIEF

/FREE

where

nnnn
mmmm
xx xx

blocks used
blocks allocated
number of files

List only the name, type and
version of the file(s).

Show free space available on the
user's default device.

NOTE

If the volume concerned was
initialized under RSX-llD
V4A when the /FREE qualifier
is used, access will not be
permitted.

P2-40

file-qualifier

DESCRIPTION

COMMAND SPECIFICATIONS

/FULL

/PRINT

List all the
details:

following file

1. Name, filetype and version

2. File identification number in
the format: (file number, file
sequence number)

3. Number of blocks used or
allocated.

4. File code

null
c
L

non-contiguous
contiguous

= locked

5. Creation date and time

6. Owner UIC and file protection
in the format: [group,
owner] [system, owner, group,
world]

7. Date and time of
update and the
revisions.

the last
number of

Output the directory listing to
the line printer.

modifies a foreign file in DIGITAL'S DOS or RT-11
format. The qualifiers are:

/DOS
/RTll

By default, the DIRECTORY command lists at the user's terminal
(interactive mode) or in the user's output stream (batch mode) the
name, filetype, version, size, file code, and date and time of
creation of all the files in the directory which is the user's current
default.

The user may not examine the files in a directory for which he does
not have read access.

To interrogate the directories of DOS or RT-11 volumes, the user must
modify the file specification with the /DOS or /RT-11 file qualifier.

The directory listing of a DOS or RT-11 file corresponds to the
directory format of the foreign volume. The qualifiers /BRIEF and
/FULL are not valid when requesting foreign directory information.

When a directory listing of a Files-11 (ANSI) magnetic tape is
produced, the creation time for all files appears as 00:00. This is
because there is no place for the creation time of a file in the ANSI
file header label.

P2-41

EXAMPLES

1.

2.

COMMAND SPECIFICATIONS

PDS> DIRECTORY <ALT>

FILE? MATRIX.DAT/DOS

PDS> DIR/FULL/OUTPUT:DK0:DIR.DAT <ALT>

FILE? DKl: [200,200]*.LST

3. $DIR/BR FRED.*

4. $DIRECTORY DKl:*.*/RTll

P2-42

COMMAND SPECIFICATIONS

DISABLE

The DISABLE command allows the user with PDS Command Privilege PR.RTC
to inhibit task execution of an installed task without actually
removing the task from the system. Disabled tasks cannot be initiated
until they are enabled through the ENABLE command, (see the IAS
Executive Reference Manual, Volume II, Chapter 6) or the ENABLE
directive.

FORMAT

PDS> DISABLE

TASK? taskname

where

task name is the installed name of the task being disabled.

EXAMPLES

PDS> DISABLE XKE20

PDS> DISABLE MYJOB2

P2-43

COMMAND SPECIFICATIONS

DISMOUNT

The DISMOUNT command causes the volume on the specified device to be
dismounted.

FORMAT

PDS> DISMOUNT[/qualifier]

DEVICE? device-name

[VOLUME-ID? volume-identification]

or

$DISMOUNT device-name volume-identification

where

gualif ier is one of the following:

/KEEP

/GLOBAL

/REALTIME

device-name

instructs the system not to deallocate the device

instructs the system to dismount the globally mounted
device

instructs the system to dismount the device that was
mounted for exclusive access by real time tasks

is the physical or logical name of the device to be
dismounted.

volume-identification

DESCRIPTION

is an optional
identification of
MOUNT command).

parameter that specifies the
the volume to be dismounted (see the

If the user does not specify /KEEP, the system dismounts the volume on
the device, deallocates the device, and deassigns it from any logical
unit number.

If the qualifiers /GLOBAL or /REALTIME are omitted, the default action
of the DISMOUNT command is to dismount the volume for the timesharing
user who issues the command. In this case the system:

1. Dismounts the volume from the device for the user

2. Deallocates the device if it was previously allocated (unless
/KEEP is used).

3. Deassigns the device from any logical unit number(s) that the
user has assigned.

If the user is the last of several who are sharing the volume and

P2-44

COMMAND SPECIFICATIONS

the volume was globally mounted then a full/final dismount
occurs. The operator is then requested to unload the volume from
the device. If the volume is mounted globally then the
full/final dismount will not occur until an explicit
DISMOUNT/GLOBAL is issued.

Only if the device was allocated to a user (by means of the
ALLOCATE command) then the command qualifier /KEEP will prevent
the system from deallocating the device.

EXAMPLE

1. ~ DISMOUNT

DEVICE? MY0:

2. $DISMOUNT/KEEP TUl: ACCTS

P2-45

COMMAND SPECIFICATIONS

DUMP

The DUMP command produces a printed listing of the contents of a file.
DUMP ignores any print formatting characters that may appear in the
records. The listing is printed at the user's terminal by default,
but the user may specify a different output device.

FORMAT

PDS> DUMP[qualifier(s)J

Ill&.! filespec

or

$DUMP[qualifier(s)] filespec

where

f ilespec

qualifier (s)

Qualifier

/OUTPUT:filespec

/ASCII

/BLOCKS: (m-n)

is the spec if ica ti on of the file or device to be
dumped.

are one or more of the following command
qualifiers:

Meaning

Output the listing to the specified file or
device.

The /ASCII switch specifies that the data should
be listed in ASCII mode. The control characters
(0 - 37) are printed as A fo~lowed by the
alphabetic character corresponding to the
character code +100(octal). For example, bell
(code 7) is printed as AG (code 107). Lower case
characters (140 - 177) are printed as % followed
by the corresponding upper case character
(character code minus 40).

Specifies the first (m) through the last (n)
logical or virtual blocks to be listed, where m
and n are octal numbers. If either m or n is
greater than 16 bits (that is, greater than
177777) then the user must specify it as two
numbers as follows: (a,b) where a is the first
16 bits and b is the second 16 bits. If the
/BLOCKS: (m-n) sw i td. is spec if ied as /BLOCK: 0 in
file mode, no physical blocks will be listed.
This is useful when the user wishes to list only
the header portion of the file. (See the /HEADER
switch below) •

This qualifier is necessary in device mode; it
specifies the range of physical blocks to be
listed.

P2-46

Qualifier

/BYTE

/HEADER

/START

COMMAND SPECIFICATIONS

Meaning

The /BYTE qualifier specifies that the data
should be listed in byte octal format.

If specified, /HEADER causes the file header as
well as the specified portion of the file to be
listed.

If just the header portion of the file is
required, the user can specify /HEADEF/BLOCKS:0.

This qualifier gives the user only the starting
block number of the file and an indication of
whether or not it is contiguous.

Example:

DUMP/START DK0:RICKSFILE.DAT;3
STARTING BLOCK NUMBER = 0.135163 C

File RICKSFILE.DAT, version 3 is a contiguous
file starting at block no. 0,135163.
(See /BLOCKS: (m-n) for a description of block and
number format.)

/NUMBER[:n] This qualifier allows control of line numbers.
Line numbers are normally reset to zero whenever
a block boundary is crossed. The /NUMBER(:n]
qualifier allows lines to be numbered
seguentially for the full extent of the file;
i.e., the line numbers are not reset when block
boundaries are crossed. The optional value (:n)
allows the user to specify the value of the first
line number. The default is 0.

/PRINT Output the listing to the default printer.

DESCRIPTION

The DUMP command operates in either one of two modes:

1. File Mode

In file mode, the user specifies a file; all, or a specified
range (see(/BLOCKS: (m-n)) of blocks of the named file are
listed. The blocks are numbered from 1 through n, where the
first block is 1 and the last block in the file is numbered
n. The input volume must be mounted and it must contain
named files. Wild filenames are not permitted.

2. Device Mode

In device
specified
listed.

mode,
range

the user specifies a device; then a
(/BLOCKS: (m-n)) of physical blocks to be

a. The /BLOCKS: (m-n) qualifier is required.

P2-47

EXAMPLES

COMMAND SPECIFICATIONS

b. Physical blocks refer to the actual 512-byte blocks on
disk and DECtape, and physical records on magtape and
cassette. The DUMP command handles physical records up
to 2048 bytes in length.

c. Physical blocks are numbered from 0 to n, where n is the
last logical block on the device.

d. The volume to be listed must be mounted as FOREIGN.

1. PDS> DUMP MYFILE.DAT

2. PDS> DUMP/ASCII

FILE? MYDATA.DAT

3. $DUMP A.MAC;4

4. PDS> DUMP/BLOCK: (5-14) DK0:

P2-48

COMMAND SPECIFICATIONS

EDIT

The EDIT command invokes one of the following !AS text editors:

1. The Line Text Edi tor (EDI) , an editor
interactive use

primarily for

2. The Source Language Input Program and Editor (SLIPER), a
batch-oriented editor.

Chapter 7 describes how to use both editors.
Reference Manual specifies both in full.

The IAS Editing

FORMAT

PDS> EDIT[/editor] [qualifier(s)]

FILE? f ilespec

or

$EDIT [/editor] [qualifier (s)] filespec

where

/editor

qualifier (s)

f ilespec

is either:

/EDI which invokes the Line Text Editor, or

/SLIPER which invokes the batch editor SLIPER

The default is /EDI

are one or more command qualifiers that are only valid
if /SLIPER has been specified. The qualifiers are
described in detail in Chapter 7, Section 7.2.1. They
are:

Qualifier

/OUTPUT[:filespec]
/NOOUTPUT

/LIST [: filespec]
/NOLI ST

/AUDIT[: (params)J
POSITION:m
SIZE:n

/NOAUDIT

/BLANK
/NO BLANK

/DOUBLE
/NODOUBLE

Default

/OUTPUT

/LIST (batch mode)
/NOLIST (interactive mode)

/AUDIT

/BLANK

/NODOUBLE

is the specification of an existing file to be edited
or a new file to be created. A f iletype must be
included.

P2-49

COMMAND SPECIFICATIONS

The Line Text Editor (EDI)

The Line Text Editor is described in Chapter 7. A complete
specification is contained in the IAS Editing Utilities Reference
Manual. This section lists all the editor commands that can be issued
once the user has invoked the Line Text Editor.

ADD
A[DD] string

ADD AND PRINT
AP string

BEGIN
B[EGIN]

BLOCK ON or OFF
BL[OCK] [ON] or [OFF]

BOTTOM
BO[TTOM]

CHANGE
[n]C[HANGE] /string-1/string-2

CLOSE
CL[OSE]

CLOSES
CLOSES

CLOSE AND DELETE
CDL

P2-50

Add the text specified
by "string" to the end
of the current line.

Sarne as ADD, except
the new current line
is printed out.

Sets the current line
pointer to the top of
the block buffer or
input file.

Switch editing modes.

Sets the current line
pointer to the bottom
of block buffer or
input file.

Search for string-I
and replace it with
the text specified in
string-2. n allows
the user to repeat the
command, thus allowing
string-2 to be sub­
stituted for string-I
n times within the
current line.

Transfer the remaining
lines in the block
buffer and the input
file into the output
file, then close both
the input file and the
output file.

Close secondary
file, and
selecting lines
the input file.

Sarne as the
command except
the input file
deleted.

i nn11t-
-· .. .c-'"--

begin
from

CLOSE
that

is

COMMAND SPECIFICATIONS

CONCATENATION CHARACTER
CC character

DELETE
D [ELETE] [n] or [-n]

DELETE AND PRINT
DP [n] or [-n]

END
E[ND]

ERASE
ERASE [n]

EXIT
EX[IT]

EXIT AND DELETE
EDX

FORM FEED
FF

FILE
FI[LE] filespec

FIND
[n]F[IND] string

INSERT
I [NSERT] [string]

P2-51

Change command concat­
enation character to
the actual specified
character (default is
&) •

Delete the current and
next n-1 lines, if n
is positive; delete n
lines preceding the
current line, but not
the current line, if n
is negative.

Same as DELETE except
that the new current
line is printed out.

Same as the
command.

BOTTOM

Erase the entire block
buffer, the current
liner and the next n
blocks.

Same as CLOSE command.

Exit from the editing
session, close the
output file, delete
the input file.

Insert form feed into
block buffer.

Transfer lines from
the input file to the
file specified by
filespec.

Find the line starting
with "string" or, if n
is specified the nth
line starting with
"string".

Insert "string" imme­
diately following the
current line. If
"string" is null, EDI
enters Input Mode.

COMMAND SPECIFICATIONS

KILL
KILL

LINE CHANGE
[n]LC /string-1/string-2

LIST ON TERMINAL
LI[ST]

LOCATE
[n]L[OCATE] string

MACRO
MA[CRO] x definition

MACRO CALL
MC[ALL]

MACRO EXECUTE
[n]Mx[a]

MACRO IMMEDIATE
[n]<definition>

NEXT
N[EXT] [n] or [-n]

NEXT PRINT
NP [n] or [-n]

OLD PAGE
OL[DPAGE] n

P2-52

Terminate this editing
session; close input
and output files;
delete the output
file.

Same as CHANGE except
that all occurrences
of string-I in the
current line are
changed to string-2.

Print on user terminal
all lines in block
buffer or all
rema1n1ng lines in
input file, starting
with current line.

Search the block
buffer for "string"
or, if n is specified
the nth occurrence of
"string".

Define macro x to be
"definition".

Retrieve macros from
the latest ~·crsion of
file MCAT.~. EML.

Execute Macro x for n
executions passing it
the numeric argument
a.

Immediate Macro - this
allows the user to
define and execute a
macro in one step.

Establish a new
current line + or - n
lines from the current
line.

Next Print; same as
Next command, but the
new current line is
printed out.

Back up to page n.

COMMAND SPECIFICATIONS

OPENS
OPENS f ilespec

OUTPUT ON or OFF
OU [TPUT] [ON] or [OFF]

OVERLAY
0 [VERLAY] [n]

PAGE
PAG [E] [n]

PAGE FIND
[n]PF[IND] string

PAGE LOCATE
[n]PL[OCATE]string

PASTE
PA[STE] /string-1/string-2

PRINT
P [RINT] [n]

READ
REA [D] [n]

RENEW
REN [EW] [n]

P2-53

Open secondary input
file.

Turn output on or off.

Delete the current
line and the next n-1
lines, and enter Input
Mode.

Enter block edit mode,
if not already in
block edit mode, and
read page n into the
block buffer.

Identical to FIND
command except that it
searches successive
pages until the nth
occurrence of "string"
is found.

Same as LOCATE
command, except that
successive pages are
searched for the value
specified by "string".

The same as the LINE
CHANGE command except
that all lines in the
remainder of the input
file or block buffer
are searched for
string-1. Wherever
found, string-1 is
replaced with
string-2.

Print out the next
line, and the next n-1
lines, on the
terminal.

Read the next n pages
into the block buffer.

Write the current
buffer, and read in
the next page.

COMMAND SPECIFICATIONS

RETYPE
R[ETYPE] [string]

SAVE
SA [VE] [n] [f ilespec]

SEARCH & CHANGE
SC /string-1/string-2

SELECT PRIMARY
SP

SELECT SECONDARY
SS

SIZE
SIZE n

TAB ON or OFF
TA [B] [ON] or [OFF]

TOP
T[PP]

TOP OF FILE
TOF

TYPE
TY [PE] [n]

UNSAVE
UNS [AVE] [f ilespec]

P2-54

Replace the current
iine with the text of
"string". If "string"
is null; the line is
deleted.

Save the current line,
and the next n-1
lines, in the file
specified by filespec.

Search for string-I,
in the block buffer or
input file starting
with the line follow­
ing the current line.
When string-I is
found, replace all
occurrences in line
with string-2.

Select primary input
file.

Select secondary input
file.

Specify maximum number
~f lines to be read
into the block buffer
on a single READ.

Turn automatic tabbing
on or off.

Sarne as BEGIN command.

Returns to the top of
the input file, in
block edit mode, and
saves all pages pre­
viously edited.

Sarne as PRINT command
except that the
current line pointer
does not change.

Retrieve the lines
which were previously
saved on f ilespec and
insert them

COMMAND SPECIFICATIONS

UPPER CASE ON or OFF
UC ON

UC OFF

VERIFY ON or OFF
V [ERIFY] [ON] or [OFF]

WRITE
W[RITE]

imm~diately following
the current line.

Convert all input
characters to upper
case (default state).
Accept all input
without case
conversion.

Allows user to
whether or
locative and
commands are
verified.

select
not

change
to be

Write the current
block to the output
file, and erase the
contents of the
buffer.

The Source Language Input Program and Editor (SLIPER)

The SLIPER edit control characters are as follows:

Character

/(slash)

@(at)

<(less than)

Function

The slash is placed in the first position of a line to
indicate that the editing of a file is completed.

The @ character is put in the first location of a line
to indicate that SLIPER is to seek input from an
indirect file. The user must specify the indirect file
immediately after the @ sign; for example:

@DK2:DKSFIL.CMD

instructs SLIPER to read input from the file DKSFIL.CMD
on physical device unit DK2:. Indirect files are more
fully described in Section 7.2.4.

The < character is used when entering a line that
begins with one of the special edit control characters.
It causes the line to be shifted one character to the
left, with the result that < is deleted, and the
desired control character becomes the first character
on the line.

P2-55

COMMAND SPECIFICATIONS

For an insertion:

-locationl [,/audit-trail J [;]

For a deletion:

Insert text following the line in the input file given
by locationl.

-locationl, location2 [,/audit-trail] [;]

Delete line(s) given by locationl through location2.

where:

locationl and location2 are

n n is a line number (decimal)

or

/string/[+n]

or

• [+n]

audit-trail

string is an ASCII string and may occur anywhere
in the line to be located. Within string, three
periods e•• can be used to represent omitted
characters. +n, if used, advances the location a
further n (decimal) lines.

current position [advanced in lines] •

is an ASCII string to be appended to each new line
of text if /AUDIT is in force. Default (if /AUDIT
is in force) is the immediately previous setting
of audit-trail.

Initial setting: ;**NEW**

remainder of line following is a comment.

P2-56

COMMAND SPECIFICATIONS

ENABLE

The ENABLE command reverses the effects of the DISABLE command.

FOR.MAT

where

PDS> ENABLE
TASK? taskname

task name is the installed name of the task being enabled.

EXAMPLES

PDS> ENABLE XKE20

PDS> ENABLE MYJOB2

P2-57

COMMAND SPECIFICATIONS

$EOD
The $EOD {End of Data) command terminates a data stream or the input
to a file created by a $CREATE/DOLLARS command.

FORMAT

$EOD

The command has no parameters.

EXAMPLE

$CREATE/DOLLARS PAYROLL.DAT
; PAYROLL UPDATE FOR 27-JAN
DOE JOHN
$476.32 $46.12 17 p
BLOGGS FRED
$316.41 $96.24 23 R
$EOD

This example uses $EOD to terminate a file of batch commands (an
indirect file). The /DOLLARS qualifier instructs the system to accept
the following lines of text as input to the file rather than batch
commands to be processed.

P2-58

COMMAND SPECIFICATIONS

$EOJ

The $EOJ (End of Job) command terminates a batch job, dismounting and
releasing any claimed devices.

FORMAT

$EOJ

The command has no parameters.

DESCRIPTION

THE $EOJ command must be the last command in a batch job command
stream.

EXAMPLE

$JOB WILSON TESTRUN 2

$MOUNT DK: TEST DD0:

$ASSIGN DD0: 7

$RUN TEST

$DISMOUNT DD0:

$EOJ

P2-59

COMMAND SPECIFICATIONS

FIX

The FIX command allows the user to fix a task in its installed
partition. The main benefit of fixing tasks is that there is no delay
while the task is loaded for the first time. Also, memory
fragmentation can be prevented by fixing tasks in a system-controlled
partition. The user can only "fix" a task if the task was built as a
fixable task (see the IAS Task Builder Reference Manual).

FORMAT

where

PDS> FIX
TASK? taskname
[TERMINAL? terminal]

task name

terminal

is the installed name of the task to be fixed in
memory.

is the terminal for which the task is to be fixed.
It is possible to fix the same task for more than
one terminal. Also, a task can be fixed for one
terminal and not fixed for another.

EXAMPLES

PDS> FIX MYTSK

PDS> FIX MART3 TT4

P2-60

COMMAND SPECIFICATIONS

FORTRAN

The FORTRAN command invokes a FORTRAN compiler to compile one
FORTRAN-IV or FORTRAN-IV PLUS source file. Command ~ualifiers control
output file options and subsequent processing.

FORMAT

~ FORTRAN[qualifier(s)]

FILE? f ilespec

or

$FORTRAN[qualifier(s)] filespec

where

f ilespec

qualifier (s)

Qualifier

/FOR

/F4P

is the specification of a source program file to be
compiled.

If the filetype is omitted, the system assumes it to be
FTN. No wild-cards allowed.

are one or more of the following command qualifiers:

Meaning

Invoke the FORTRAN-IV compiler. Applicable
to systems that have both FORTRAN IV and
FORTRAN IV PLUS compilers. If omitted, the
system invokes its default compiler.

Invoke the FORTRAN IV-PLUS compiler.
Applicable to systems that have both FORTRAN
IV and FORTRAN IV PLUS compilers. If
omitted, the system invokes its default
compiler.

/LIST [: f ilespec] Produce a listing file; name as indicated.
If the filetype is omitted from filespec, the
system assumes it to be .LST.

/NOLI ST

/OBJECT[:filespec]

Do not produce a listing file.

Produce an
specified.

object file;

/NOOBJECT Do not produce an object file.

re-name as

/SWITCHES: (/swl ••• /swn) Use specified FORTRAN IV or FORTRAN IV-PLUS
switch options. For further details, see
below.

P2-61

COMMAND SPECIFICATIONS

DEFAULTS:

1. By default, the compiler produces an object file with the
name of the source file and with OBJ as the filetype.

2. A listinq file is sent
specified with no
qualifier.

to the line printer
filename. /NOLIST is

if /LIST is
the default

FORTRAN-IV Switches

Switch Default

/LI:n /LI:3

/DE /NODE

/EX /NOEX

/ID /NOID

/OP /OP

/SN /SN

Description

Specifies the listing options.
is encoded as follows:

The argument n

/LI:0 or /NOLI list diagnostics only
/LI:l or /LI:SRC list source program and

diagnostics only
/LI:2 or /LI:MAP list storage map and

diagnostics only
/LI:4 or /LI:COD list generated code and

diagnostics only

Any combination of the above list options may be
specified by summing the numeric argument values
for the desired list options. For example:

/LI:7 or /LI:ALL

requests a source listing, a storage map listing,
and a generated code listing. If this switch is
omitted the default list option is /LI:3, source
and storage map.

Compile lines are with a D in column one. These
lines treated as comment lines by default.

Read a full 80 columns of each record in the
source file. Only the first 72 columns are read
by default.

Print FORTRAN identification and version number.
The default (/NOID) causes the identification and
version number not to be printed.

Enable the Common Subexpression Optimizer (CSE).
In general the CSE optimizer will make the program
run faster. However, the size of the program may
be different than with no optimization.

Include internal sequence numbers (ISN). The
option reduces storage requirements for generated
code and slightly increases execution speed but
disables line number information during Traceback.

P2-62

Switch Default

/I4 /NOI4

/VA /VA

/WR /WR

COMMAND SPECIFICATIONS

Description

Two word default allocation for integer variables.
Normally, single storage words will be the default
allocation for integer variables not given an
explicit length specification (i.e., Integer*2 or
integer*4). Only one word is used for
computation.

Enable vectoring of arrays (see Section 2.5 of the
FORTRAN IV User's Guide).

Enatle compiler warning diagnostics.

Switch default summary:

(/LI:3/NODE/NOEX/NOID/OP/SN/NOI4/VA/WR)

FORTRAN-IV Plus Switches

Switch Default

/CK /NOCK

/CO:n /CO:S

/DE /NODE

/ID /NOID

/I4 /NOI4

/LI:n /LI:2

Description

Code is generated to check that all array
references are within the array bounds specified
by the program. Individual subscripts are not
checked against dimensional specifications.

A maximum of n continuation lines is permitted in
the program, where n is from 0 through 99. The
default value is n=5. Note that n may be
expressed either in octal or decimal radix. If a
decimal point follows the number, it is
interpreted in decimal radix; otherwise, it is
interpreted in octal radix.

Compile lines with a D in column one. These lines
are treated as comment lines by the default /NODE
(see the FORTRAN Language Manual).

Print FORTRAN IV-PLUS identification and version
number.

Allocates two words for default length of Integer
and Logical variables. Normally, single storage
words will be the default allocation for all
Integer or Logical variables not given an explicit
length definition (i.e., INTEGER*2, LOGICAL*4).
See Section 3.3 of the FORTRAN IV-PLUS User's
Guide.

Specifies listing options; n is from 0 through
3. The argument is coded as follows:

n=0 minimal
messages
only

P2-63

listing file: diagnostic
and program section summary

COMMAND SPECIFICATIONS

n=l source listing and
summary

program section

n=2 (default) source listing, program
section summary and symbol table

n=3 source listing, assembly code, program
section summary, and symbol table

/TR:XXX /TR:BLOCKS The /TR switch controls the amount of extra code
included in the compiled output for use by the OTS
during error traceback. This code is used in
producing diagnostic information and in
identifying which statement in the FORTRAN source
program caused an error condition to be detected
at execution. /TR:XXX can have the following
forms:

/TR Sarne as TR:ALL

/TR:ALL Error traceback information is compiled for all
source statements, and function and subroutine
entries.

/TR:LINES Sarne as ALL option.

/TR:BLOCKS Traceback information is compiled for subroutine
and function entries and for selected source
statements. The source statements selected by
the compiler are initial statements in sequences
commonly called basic blocks. The compiler
treats such a sequence of statements as a unit
for performing certain types of optimization.
Basic blocks qenerally begin at each labelled
statement, each DO statement, and so on.

/TR:NAMES Traceback information is compiled
subroutine and function entries.

/TR:NONE

/NOTR

No traceback information is produced.

Same as NONE.

only for

The switch setting /TR is generally advisable during program
development and testing. The default setting /TR:BLOCKS is
generally advisable for most programs in regular use. The
setting /NOTR may be used for obtaining fast execution and
smallest code, but it provides no information to the OTS for
diagnostic message traceback.

Compiler switch default summary:

(/NOCK/C0:5/NODE/ID/NOI4/LI:l/TR:BLOCKS)

P2-64

COMMAND SPECIFICATIONS

FURTHER INFORMATION

For further information on the use of the FORTRAN sytems, refer to the
following documents:

PDP-11 FORTRAN Language Reference Manual

IAS/RSX-11 FORTRAN-IV User's Guide

FORTRAN IV-Plus User's Guide

EXAMPLES

1. PDS> FORTRAN NEWFILE

2. PDS> FORTRAN/SW: (/CK/C0:7) FILES.FTN

3. $FORTRAN/OBJ:YRFILE.OBJ MYFILE

P2-65

COMMAND SPECIFICATIONS

GOTO

The GOTO command is used only in an indirect command file or a batch
command file. GOTO transfers control to the next following occurence
of a command line prefixed by a specified label.

FORMAT

[$]GOTO label

where

label is an alphanumeric string and must also appear, together
with a colon, in front of a later command in the file.

DESCRIPTION

GOTO can be used by itself or as an action in an ON command. When
control is transferred, the system ignores all intervening commands,
in particular any intervening ON commands. If no matching label is
found, no further processing takes place within the command file or
batch job. GOTO cannot transfer control to an earlier labelled
command.

EXAMPLE

$JOB SYSTEM
$ON ERROR GOTO Ll0
$MACRO MYPROG
$LINK MYPROG
$RUN MYPROG
$GOTO L20
$Ll0: RUN OLDPROG
$L20: RUN TEST
$EOJ

P2-66

COMMAND SPECIFICATIONS

HELP

The HELP command displays information at an interactive terminal to
assist the user in issuing PDS commands.

FORMAT

PDS> HELP

DESCRIPTION

The precise information displayed depends on the user's current state.

Before the user is logged in, typing HELP causes a display of
information on how to log in.

When the user is logged in, the HELP command provides help at a number
of levels:

1. A HELP command with no parameters gives a listing on the terminal
of all PDS commands.

2. To obtain information on the format of a specific command, supply
the required command name as a parameter to the HELP command;
e.g.,

PDS> HELP LIBRARIAN

The format of the command (in this example the LIBRARIAN command)
and a list of the relevant qualifiers and parameters will be
listed.

Further information about qualifiers and parameters for the
command can be obtained by supplying the qualifier or parameter
name as an additional parameter to the HELP command; e.g.,

PDS> HELP LIBR EXTRACT

This command will provide full details of the EXTRACT feature of
the IAS Librarian.

Only those qualifiers and parameters which HELP flags by two
asterisks (**) can be supplied as the additional parameter.

Again, when the user has suspended a task, HELP can display the
options available.

P2-67

COMMAND SPECIFICATIONS

INITIALIZE

The INITIALIZE command is used to initialize a foreign (DOS and RTll)
volume. The device must first be allocated to the user mounted
/FOREIGN, then INITIALIZE can be used to zero the volume.

FORMAT 1

PDS> INITIALIZE/DOS device-spec

where

device-spec

FORMAT 2

is the device on which the DOS volume is to be
initialized.

PDS> INIT!ALIZE/R.Tll [: n] [/NUMBER:m] device-spec

where

:n

/NUMBER:m

device-spec

is the number of extra words required per
directory· entry. A directory segment consists of
2 disk blocks or 512 words. The directory header
uses 5 words, leaving 507 words for directory
entries. Normally, each directory entry is seven
words long and two directory segments are
allocated to the file system. Therefore, the
number of entries in each segment when no extra
words are specified is determined as follows:

Directory entries = (507 divided· by 7)-2
= 72-2=70 entries

When extra words are
entries, the number
determined as follows:

specified for directory
of directory entries is

Directory entries= (507 divided by (N+7))-2

is used to specify the number of directory
segments to allocate to the RTll volume. The
default is four directory segments.

is the device on which the RTll volume is to be
initialized.

P2-68

COMMAND SPECIFICATIONS

EXAMPLES

1. PDS> MOUNT/FOREIGN DK0: MYDOSDISK

PDS> INIT/DOS DK0:

2. PDS> MOUN/FOR OT RTllSOURCE RT

PDS> INIT/RT11:6/NUMBER:3 RT:

3. PDS> MOUNT/FOR/NOOPER DT0: DOSDECTAPE MY

PDS> INIT/DOS MY0:

P2-69

COMMAND SPECIFICATIONS

INSTALL

The INSTALL command causes the system to find and note
position of a task or Shareable Global Area (SGA) held
allows fast loading into memory. A task cannot be run
processing (see PDS> RUN) unless it has been installed.
task cannot be installed until all the SGAs which it uses
installed. The effect of INSTALL is reversed by the REMOVE

the physical
on disk. This

in realtime
Further, a
have been
command.

At installation the user can take the opportunity to override certain
task attributes set at link time and to specify non-owner access
rights to an SGA. These changes affect only the installed version,
not the task or SGA task image file.

FORMAT

where

The following command is used to install a task or an SGA:

PDS> INSTALL[/qualifierl[:newname]] [qualifiers2]

FILE? f ilespec

/qualifierl

newname

qualifiers2

is one of
/TASK
/COMMON to install a common SGA
/LIBRARY to install a library SGA

is a 1-
overr ides
time

to 6- character name and optionally
the name of the task or SGA set at link

is one or more of the following qualifier options:

/PARTITION:name
to install a task or SGA
specified partition.

in the

/POOL:number
to set the pool limit of the task to be
installed. The pool limit value can
range from 0 to 255 decimal and
represents the maximum number of 8-word
nodes that the task is allowed to use at
one time.

/PRIORITY:number
to set the execution
assigned to the task.
from 1 to 250.

/UIC:uic

priority to be
Priority ranges

to change the task's UIC or the owning
UIC of an SGA.

P2-70

COMMAND SPECIFICATIONS

Defaults for the above are the values as set
at link time. See the IAS Task Builder
Manual, Chapter 3.

/INCREASE:tasksize-increment
to override the EXTTSK option specified
in the LINK command. This oualifier
specifies the decimal number of words by
which the upper read/write area of the
task being installed is to be extended.
The value specified will be rounded up
to the next 32-word boundary.

/ACCESS:ACCESS
is the non-owner access permitted to the
SGA being installed:

RO - Read-Only
RW - Read/write
NA No access
(default)

by non-owners

The owner always has PW access.

filespec is the file specification of the task beinq
installed. If the file type is ommitted, a default
of TSK is assummed.

EXAMPLES

1. PDS> INSTALL [11,l]PIP

2. PDS> INSTALL/TASK:JK304/PRIORITY:200 DKl:COMMS.TSK;3

Install the task image held in file COMMS.TSK;3 on DKl. Give
it the installed name JK304 and priority 200.

3. PDS> INSTALL/COMMON:COMLOL/ACCESS:RO JK61.TSK;4

Install the SGA held in file JK61.TSK;4 on the users default
device. give it the installed name COMLOL and give Read-Only
access to non-owners of the SGA.

4. PDS> INSTALL/LIBRARY:SYSRON/ACCESS:RW DK2:JOHN4.MAC

Here a library SGA is (unusually) given Read-Write access for
non-owners.

5. PDS> INSTALL/TASK:$$$LOL/INCREASE:2048 LOL07.CBL;9

Here the amount of extra task virtual address space n, say,
specified at link time by EXTTSK=n, is replaced by an
allocation of 2048 words for this installed version.

P2-71

COMMAND SPECIFICATIONS

$JOB

The $JOB command initiates a batch job.

FORMAT

$JOB [/PASSWORD:password] username job-name time-limit

where

password

username

job-name

time-limit

DESCRIPTION

is an alphanumeric string 1 to 6 characters long
which is the user's batch password.

is an alphanumeric string 1 to 12 characters long
which is unioue to the user. The username must be
a valid user~name such as one used in LOGIN.

is an alphanumeric string 1 to 12 characters long
which identifies the job. The system prints the
job-name at the beginning and end of the job's
printed output.

is the time-limit (in integer format) in minutes
for which the batch job is to run. time-limit has
a maximum value of 1440, that is, 24 hours. If
this field is ommitted, the job will recieve the
installation default batch time limit usually
eight minutes.

The $JOB command must be the first command in a batch job command
stream.

PASSWORD must not be specified if there is no batch password
accociated with the account.

EXAMPLES

1. $JOB PIERCE JOBONE

2. $JOB/PASSWORD:SECRET SYSTEM ACCOUNTS 30

P2-72

COMMAND SPECIFICATIONS

LIBRARIAN

The LIBRARIAN command allows the user to create, delete and maintain
object module libraries and MACR0-11 macro libraries.

FORMAT

or

where

PDS> LIBRARIAN
OPERATION? operation[oualifiers]
LIBRARY? libspec <alt>
[librarian-prompt? text]

$LIBRARIAN operation[gualifiers] filespec [text]

operation

libspec

qualifiers
librarian-prompt
text

is the librarian operation to be performed.
The operations are:

COMPRESS
CREATE
DELETE
EXTRACT
INSERT
LIST
REPLACE

is a file specification of the library file on
which the operation is to be performed.

are all dependent on the operation specified
and are described accordingly
below

Library Types

There are two types of library:

those containing object modules (object module libraries}
and

those containing macros (macro libraries}.

Object module libraries are created with a default filetype of .OLB.
Each object module inserted into the library has its module name
(taken from the .TITLE statement) added to the module name table (MNT)
and its entry points (globals) added to the entry point table (EPT).

Macro libraries are created with a default filetype of .MLB. Each
macro inserted into the library has its module name (taken from the
.MACRO statement) added to the module name table (MNT}.

Restrictions

The following restrictions apply to the handling of object modules:

P2-73

COMMAND SPECIFICATIONS

1. The size of a module is limited to 65,536 words.

2& The size of the library file is limited to 65,536 words.

3. Tables and contiguous space should be allocated the maximum
anticipated size. Expanding space allocations require the
COMPRESS operation to copy the entire file.

4. A fatal error results if an attempt is made to insert a
module into a library which contains a differently named
module with the same entry point.

COMPRESS

The COMPRESS operation physically deletes logically deleted (by the
DELETE operation) modules in the file specified and re-arranges the
file, putting all free space at the end of the file, where it is
available for new module inserts.

Format

or

where

PDS > LIBRARIAN
O'PE"RATION? COMPRESS[qualifiers]
LIBRARY? libspec
NEW LIBRARY? newlibspec

$LIBRARIAN COMPRESS[qualifiers] libspec newlibspec

libspec is a specification of the library file to ·be
com~ressed (no wild-cards allowed).

newlibspec is a specification of the compressed library file (no
wild-cards allowed).

The operation qualifiers are as follows:

Qualifier

/SIZE:n

/EPT:n

/MNT:n

Description

The size in 256-word blocks of the
compressed file.

The number of entries to allocate in
the entry point table (not greater
than 1024). A macro library has no
entry point table and then n is set
to 0 even if specifically defined.
n is rounded up to the nearest
multiple of 64.

The number of entries to allocate in
the module name table (not greater
than 1024). n is rounded up to
the nearest multiple of 64.

P2-74

Default

100

512 (object)
0 (macro)

256

COMMAND SPECIFICATIONS

Examples:

1. PDS> LIBRARIAN COMPRESS/SIZE:l50

LIBRARY? PEEK.OLE <alt>

NEW LIBRARY? PEEK2.0LB

The object library file PEEK.OLE is compressed to 150 blocks
with Sl2 EPT entries and 256 MNT entries by default. The
compressed file is called PEEK2.0LB.

2. $LIBRARIAN COMPRESS FREAN.MLB FREAN2.MLB

The macro library file FREAN.MLB is compressed to 100 blocks
with no EPT entries and 256 MNT entries by default. The
compressed file is called FREAN2.MLB

CREATE

The CREATE operation allocates a contiguous library file on a direct
access device (e.g. disk), and initializes the library header and
tables.

Format

PDS? LIBRARIAN
OPERATION? CREATE/[gualifiers]
LIBRARY? libspec
FILE? [infile-1, ••• infile-n]

or

$LIBRARIAN CREATE[qualifiers] libspec infile-1[, ••• infile-n]

where

libspec

inf ile

is a specification of the library file to be created
(no wild-cards allowed).

is a specification of a file to be input to the new
library file. If no infiles are supplied, an empty
library file is created as the qualifiers dictate.

The operation qualifiers are as follows:

Qualifier

/SIZE:n

/EPT:n

/MNT:n

Description

The size in 256-word blocks
of the library file to be
created.

allocate
(not

The number of entries to
in the entry point table
greater than 1024).
library has no entry

A macro
point table.
the nearest n is rounded up to

multiple of 64.

The number of entries to allocate
in the module name table (not

P2-75

Default

100

512(object)
0 (macro)

256

COMMAND SPECIFICATIONS

Qualifier Description Default

greater than 1024). n is
rounded up to the nearest
multiple of 64.

/TYPE:type The type of library being created.
type is either OBJECT or MACRO.

/SELECT The LINK command will use the file
to define required global symbols
at task build. (Object files only.)

/SQUEEZE Reduce the macro file by erasing
all trailing blanks and tabs, blank
lines and comments from the source
text. (Macro files only).

/NOENTRY_POINTS
Library modules will be stored in
the library omitting definitions of
the symbols that are entry points.

Examples:

1. PDS> LIBRARIAN
~RATION? CREATE/SI:200/EP:l024/MN:512/TYPE:OBJ
LIBRARY? MYLIB.OLB
FILE? ONE.OBJ, TWO.OBJ, THREE.OBJ

Create an object library file named MYLIB.OLB with a size of
200 blocks with 1024 EPT entries and with 512 MNT entries,
from three input files.

2. $LIBRARIAN CREATE/TYPE:MAC BATLIB.MAC INPUT.MAC

Create a macro library file named BATLIB.MAC from one input
file (INPUT.MAC).

DELETE

The DELETE operation performs two kinds of deletion:

1. It deletes modules, and all their associated entry points,
from the library file specified.

2. It deletes specified entries in the entry point table (EPT).

There is no restriction on the number of modules that can be deleted
in one DELETE operation. If no module of the specified name exists in
the library, DELETE has no effect on the library. A deleted module is
marked as deleted, but remains physically in the file until a COMPRESS
operation is performed.

Format

or

PDS>LIBRARIAN
OPERATION? DELETEqualifier
LIBRARY? libspec
ENTRIES? name-1[, •.. name-n]

$LIBRARIAN DELETEqualifier libspec name-1[, ... name-n]

P2-76

where

libspec

name

qualifier

Qualifier

/MODULES

/GLOBAL

COMMAND SPECIFICATIONS

is a specification of the library file that contains
the modules or entry points to be deleted.

is a module name or the name of an entry in the entry
point table.

is one of the following:

Description

Delete the
qualifier).

specified module

Delete the EPT entries specified.

(the default

Examples:

1. PDS> LIB DELETE/MODULES
LIBRARY? MYLIB.MLB
ENTRIES? NAMEA, NAMEB, NAMEC

Delete the macros NAMEA, NAMEB and NAMEC from the macro
library file MYLIB.MLB.

2. $LIBRARIAN DELETE/GLOBAL MACLIB.OLB NAMEX

EXTRACT

Delete the EPT entry named NAMEX contained in the library
file MACLIB.OLB.

The EXTRACT operation extracts modules from a library and generates a
new file which is the concatenation of the named modules. The
original library remains unaltered.

FORMAT

PDS> LIBRARIAN EXTRACT/OUTPUT:filespec library module-list

where

filespec is the filespecif ication of the file to be created.

Defaults: If the output file does not have an explicit
filetype, the filetype is assigned and is .MAC if the
modules are extracted from a MACRO library and .OBJ if
from an object library.

module-list
lists up to 8 modules to be extracted.

Example:

PDS> LIBR EXTR/OUT:AB MYLIB.MLB A B

This command causes the two modules A and B to be extracted from the
MACRO library MYLIB.MLB and placed in a single file called AB.MAC.

P2-77

COMMAND SPECIFICATIONS

INSERT

The INSERT operation inserts modules into the specified library file.
Any number of input files are allowed any of which may contain
concatenated object modules.

Format

or

PDS> LIBRARIAN
OPERATION? INSERT[qualifier]
LIBRARY? libspec
FILE? infile-1[, ••• infile-n]

$LIBRARIAN INSERT[qualifier] libspec infile-1[, ••• infile-n]

where

libspec is a specification of the library file into which
modules are to be inserted (no wild-cards allowed).

inf ile is the specification of a file to be inserted into
libspec.

qualifier is one of the following:

/SELECT The LINK command will use the file to define reauired
global symbols at task buld. (Object files only.)

/SQUEEZE Reduce the macro-file by eliminating all trailing
blanks and tabs, blank lines and comments from the
source text. (Macro files only).

/NOENTRY_POINTS

Examples:

Modules are inserted without the definitions of the
symbols that are entry points.

1. PDS> LIBRA
OPERATION? INSERT/SQUEEZE
LIBRARY? MACLIB.MLB
FILE? ONE.MAC, TWO.MAC

Insert the modules contained in the files ONE.MAC and TWO.MAC
into the library file name MACLIB.MLB, eliminating blanks and
comments.

2. $LIBRARIAN INSERT MYLIB.OLB MODULE.OBJ

Insert the modules contained in the file MODULE.OBJ into the
library file named MYLIB.OLB.

P2-78

COMMAND SPECIFICATIONS

LIST

The LIST operation causes a library file directory to be printed on
the user's terminal by default or to be sent to an output file. The
operation qualifier also determines the amount of detail contained in
the directory. By default, the directory lists all the modules in the
library.

FORMAT

PDS> LIBRARIAN
OPERATION? LIST[qualifier]
LIBRARY? libspec

or

$LIBRARIAN LIST[qualifier] libspec
where

lib spec

qua.lif ier

Qualifier

is the specification of the library file to be listed
(no wild-cards allowed).

is one of the following:

Description

/OUTPUT:outfile Send the output to the specified file.

/ENTRIES Produce a directory of all modules and list
entry points for each.

/FULL Produce a directory of all
full module descriptions:
insertion and version.

modules, giving
size, date of

/PRINT Send the output to the lineprinter •

.Examples:

1. PDS> LIBRARIAN LIST MYLIB.MLB

List at the user's terminal a directory of all the modules
contained in MYLIB.MLB.

2. $LIBRARIAN LIST/FULL/OUTPUT:LP0: MODLIB.OLB

List at the line printer a directory of all the modules and
their descriptions contained in the library file MODLIB.OLB.

P2-79

COMMAND SPECIFICATIONS

REPLACE

The REPLACE operation replaces old modules in the library with new
modules of the same name. That is, a new module that has the same
name as a module already contained in the library replaces the
existing module. The old module remains physically in the file until
compressed.

Format

or

PDS> LIBRARIAN
OPERATION? REPLACE[gualifier]
LIBRARY? libspec
FILE? infile-1[, .•. infile-n]

$LIBRARIAN REPLACE[gualifier] libspec infile-1[, ••• infile-n]

where

libspec is the specification of the library file containing
the modules to be replaced (no wild-cards allowed).

inf ile is the specification of a file containing the new
modules (no wild-cards allowed)

qualifier is one of the following:

/SELECT The LINK command will use the file to define required
global symbols at task build. (Object files only).

/SQUEEZE Reduce the macro file by eliminating all trailing
blanks and tabs, blank lines and comments from the
source text. (Macro files only.)

/NOENTRY_POINTS

Examples:

Replace modules, omitting definitions of symbols that
are entry points.

1. PDS> LIBRARIAN
OPERATION? REPLACE
LIBRARY? MODLIB.OLB
FILE? NEWMOD.OBJ

2.

Replace modules in the file MODLIB.OLB with modules of the
same name from the file NEWMOD.OBJ.

$LIBRARIAN REPLACE OLDLIB.OLB ONELIB.OBJ,TWOLIB.OBJ

Replace modules in the file OLDLIB.OLB with modules of the
same name in the files ONELIB.OBJ and TWOLIB.OBJ.

P2-80

COMMAND SPECIFICATIONS

LINK

The LINK command links object files (that is, compiled or assembled
modules) to form an executable task and produces output as directed by
command qualifiers.

The !AS Task Builder Reference Manual describes the Task Builder
procedures and options in full; anyone using Task Builder options
should first read the Task Builder manual.

FORMAT

PDS>LINK[gualifiers]

FILE? infile-1 [file-qualifier] [, ••• , infile-n]

or

$LINK[qualifiers] inf ile-1 [file-qualifier] [, •• ,inf ile-n]

where

in file

file-qualifier

qualifier (s)

is the specification of an input file.
section called Input Files below for
information.

Wild-cards are not allowed.

See the
further

The user must not include this parameter if the
command qualifier /OVERLAY has been specified (see
the section called Command Qualifiers below)

is one of the following file qualifiers. See the
section called File Qualifiers for a definition of
each qualifier.

/CONCATENATED

/LIBRARY

/LIBRARY: [(]mod-1[, .•• ,mod-n)]

/NOCONCATENATED

/SELECT

are one or more of the command
below. The section called
describes each one in detail.

P2-81

qualifiers listed
Command Qualifiers

COMMAND SPECIFICATIONS

Qualifier

/ABORT

/CHECKPOINT

/CROSS_REFERENCE

/DEBUG[:filespec]

/DEFAULT_LIBRARY

/DISABLE

/EXIT:n

/FIX

/FLOATING_POINT

/FULL_SEARCH

/HEADER

/LARGE_ SYMBOL_ TABLE

/MAP [: f ilespec]

/MAP: (filespec/qualifier)

/MULTIUSER

/OPTIONS

Default

/ABORT

/CHECKPOINT

/NOCROSS_REFERENCE

/NODE BUG

/NODEFAULT_LIBRARY

/DISABLE

/EXIT:l

/NO FIX

/FLOATING_POINT

/NOFULL_SEARCH

/HEADER

/NOLARGE_SYMBOL TABLE

/NO MAP

/MAP: (f ilespec/WIDE)

/NOMULTIUSER

/NOOPTIONS

/OVERLAY_DESCRIPTION:filespec /NOOVERLAY_DESCRIPTION

/POSITION_INDEPENDENT

/PRIVILEGED

/READ_WRITE

/SEQUENTIAL

/SYMBOLS[:filespec]

/TASK [: f ilespec]

/TRACE

Command Qualifiers

/NOPOSITION_INDEPENDENT

/NOPRIVILEGED

/NOREAD_WRITE

/NOSEQUENTIAL

/NOSYMBOLS

/TASK

/NOT RACE

All the command qualifiers described in this section may be negated by
the prefix NO. For example, the qualifier /TASK instructs the Task
Builder to keep a task file; whereas the qualifier /NOTASK requests
that a task image file should not be produced by the Task Builder.

/TASK[:filespec]

Default: /TASK

P2-82

COMMAND SPECIFICATIONS

Keep a task image file.

Unless f ilespec is given, the task file takes the name of the
first input file (or the name of the overlay descriptor file)
except that the filetype is TSK.

If filespec is given, the filetype field may be omitted; in
which case, the Task Builder assumes it to be TSK.

/MAP[:filespec] or /MAP[: (filespec/qualifier)]

Default: /NOMAP

Produce a memory allocation map.

If filespec is not specified after /MAP, the map file is sent to
the line printer.

If filespec is given, the filetype field may be omitted; in
which case, the Task Builder assumes it to be MAP.

The following qualifiers can be attached to the map filespec:

/FULL Include all modules in map

/FILES Include file-by-file breakdown

/NARROW Make map in 72-column format

/SHORT Make only summary of map

/WIDE Make map in 132-column format

Defaults: /NOFULL /NOFILES /WIDE

/SYMBOLS[:filespec]

Default: /NOSYMBOLS

Produce a symbol table file.

Unless f ilespec is given, the symbol table file takes the name of
the first input file, except that the filetype is STB.

If filespec is given, the filetype field may be omitted; in
which case, the Task Builder assumes it to be STB.

/OPTIONS

Default: /NOOPTIONS

Apply Task Builder options specified after the command string.

In interactive mode,
Builder to prompt
specified.

the /OPTIONS oualifier causes the Task
"OPTIONS?" after the input files have been

P2-83

COMMAND SPECIFICATIONS

For example:

PDS> LINK/OPTIONS

FILE? PROG REPORT

OPTIONS?

The user then enters the options which are described in the list
below. A slash (/) as the first character in a line then
terminates the list of options and the Task Builder begins
executing. Details of individual option syntax are contained in
the IAS Task Builder Reference Manual.

For example:

PDS> LINK/OPTIONS

FILES? MAIN.OBJ, FROG.OBJ

OPTIONS? ACTFIL=8

OPTIONS? MAXBUF=l60

OPTIONS? UNITS=9

OPTIONS? ASG=DT1:7:8:9

OPTIONS? /

In batch mode, the presence of the /OPTIONS qualifier in the
command qualifier list causes the Task Buildei to expect one or
more options to be specified on lines immediately following the
command string.

A line containing a slash (/) in the first character position
terminates the list of options.

The letters F and M in the list of Task Builder options below
indicate for which language, FORTRAN or MACRO, the option is
relevant. Those marked F apply also to CORAL, except where a C
(for CORAL) is shown explicitly.

Option Meaning

ABSPAT Declare absolute patch values. M

ACTFIL Declare number of files open simultaneously. FM

ASG Declare device assignment to logical units. FM

BASE Define lowest virtual address~ FM

COMMON Declare task's intention to access a (read/write)
shareable global area. FM

EXTSCT Declare extension of a program section. FM

P2-84

Option

EXTTSK

FMTBUF

GBLDEF

GBLPAT

LIBR

MAXBUF

ODTV

PAR

POOL

PRI

RES COM

RESLIB

STACK

SYMPAT

TASK

TOP

TSKV

UIC

UNITS

COMMAND SPECIFICATIONS

Meaning

Extend task memory allocation at install time.

In FORTRAN, declare extension to buffer
used for processing format strings at run-time.

In CORAL, set to blkmax*8, where blkmax is the
maximum number of LUNs used for concurrent

FM

F

asychronous block I/0 at any one time. C

Declare a global symbol definition. M

Declare a series of patch values relative to a
global symbol. M

Declare task's intention to access a (read-only)
shareable global area. FM

In FORTRAN, declare an extension to the FORTRAN
record buffer. F

In CORAL, set to strmax*l40 (decimal), where
strmax is the maximum number of LUNs
associated with stream I/O at any one time. C

Declare the address and size of the debugging
aid SST vector.

Declare partition name and dimensions.

Declare pool usage limit.

Declare priority.

Declare task's intention to access a shareable
global area held in the specified user file
directory.

Declare task's intention to access a shareable
global area held in the specified user file
directory.

Declare the size of the task's stack.

Declare a patch using task symbols.

Declare the default installed name of the task.

Define highest virtual address.

Declare the address of the task SST vector.

Declare the user identification code under
which the task runs.

Declare the maximum number of logical units.

P2-85

M

FM

FM

FM

FM

FM

FM

M

FM

FM

M

FM

FM

COMMAND SPECIFICATIONS

/OVERLAY_DESCRIPTION:filespec

Default: /NOOVERLAY_DESCRIPTION

Link the task according to the overlay structure defined in the
given file, the name of which must be included with the
/OVERLAY DESCRIPTOR qualifier. If the filetype field of filespec
is omitted, the Task ·Builder assumes it to be ODL.

The input files to LINK are specified within the overlay
description file; therefore they must not be specified in the
input file parameter list.

See the IAS Task Builder Reference Manual for details of ODL
files.

/DEBUG[:filespec]

Default: /NODEBUG

If filespec is not given, link the task with the system's
debugging aid. If -filespec is given, link the task with the
debugging aid contained in the specified filee The debugging aid
must be in object format.

/ABORT

Default: /ABORT

The task can be aborted.

/CHECKPOINT

Default: /CHECKPOINT

The task can be checkpointed.

/CROSS_REFERENCE

Default: /NOCROSS_REFERENCE

Append a global symbol cross-reference to the end of the memory
allocation map.

/DEFAULT_LIBRARY:file-spec

Default: /DEFAULT_LIBRARY:LB: [l,l]SYSLIB.OLB

Use the named object module library instead of current system
library file LB: [l,l]SYSLIB.OLB

P2-86

COMMAND SPECIFICATIONS

/DISABLE

Defauit: /DISABLE

The task can be disabled.

/EXIT:n

Default: /EXIT:l

Task Builder stops executing after n(decimal) errors.

/FIX

Default: /FIX

The task can be fixed in memory.

/FLOATING_POINT

Default: /FLOATING_POINT

The task uses the floating point processor.

/FULL_SEARCH

Default: /NOFULL_SEARCH

This controls symbol table searching in overlaid tasks having
co-trees.

/HEADER

Default: /HEADER

The task includes a header. /NOHEADER should be used when
producing a non-executable task image, for example a library or
common shareable global area.

/LARGE_SYMBOL_TABLE

Default: /NOLARGE_SYMBOL TABLE

Select a version of the Task Builder that has
symbol table. (Considerably slower than
Builder.)

P2-87

a large internal
the default Task

COMMAND SPECIFICATIONS

/MULTIUSER

Default: /NOMULTIUSER

The task is multiuser.

/POSITION_INDEPENDENT

Default: /NOPOSITION_INDEPENDENT

The task code is position independent.

/PRIVILEGED

Default: /NOPRIVILEGED

The task is 'executive privileged'.

/READ_WRITE

Default: /NOREAD_WRI'rn

Give Read/Write access to the Read-Only code.

/SEQUENTIAL

Default: /NOSEQUENTIAL

Program sections within the task are to be linked in the order in
which they first appear. Otherwise they are linked in
alphabetical order.

/TRACE

Default: /NOTRACE

The task is traceable.

P2-88

COMMAND SPECIFICATIONS

Input Files

Input files to the LINK command may be specified in one of two ways:

1. In a list of file specifications as a parameter to the
command.

2. From within an overlay description file by means of the
/OVERLAY command qualifier.

If the /OVERLAY qualifier has been used to specify the input files,
they must not also be specified as a command parameter (see item 1
above). The input files may consist of:

1. Single object modules

2. Concatenated object modules

3. Object module libraries

4. Symbol table files

File qualifiers must be used to identify concatenated module files and
library files (see the section called File Qualifiers below). In
addition, the /SELECT qualifier may modify symbol table files; the
Task Builder then uses the modified file only to resolve required
symbol definitions.

The Task Builder provides default filetypes in the following cases.
When specifying single or concatenated object modules, the user may
omit the filetype field. The Task Builder then assumes the filetype
to be .OBJ. The filetype field of a library file (a file modified by
the /LIBRARY qualifier) may also be omitted, in which case the Task
Builder assumes the filetype to be OLB.

Symbol table files, however, have no default filetype, so the filetype
field must be supplied.

Wild-cards are not allowed for any type of file specification supplied
with LINK.

P2-89

COMMAND SPECIFICATIONS

File Qualifiers - The following list defines all the available file
qualifiers.

File Qualifier

/CONCATENATED

/LIBRARY

/LIBRARY: [(] mod-1 [, ••• , mod-n)]

/NOCONCATENATED

/SELECT

EXAMPLES

Description

Identifies the file as a
concatenated object file.

Identifies the file as an object
module library file.

Identifies the file as an object
module library file where mod is
the name of an object module and
instructs the Task Builder to take
only the modules named.

Instructs the Task Builder to take
only the first module in the file.
If it is a concatenated object
module file, subsequent modules are
ignored.

Instructs the Task Builder to take
only required global symbol
definitions from the file. The
modified file may be any object
file, but it is normally a symbol
table file.

1. $LINK/OPTIONS/PRIVILEGE A.OBJ/CONCATENATED
UNITS=9
I

2. PDS> LINK/OVERLAY:STRUCTURE/MAP:ROUTE

The system does not prompt FILE?
specified.

3. PDS> LINK/DEFAULT_LIBR:DKl: [l,l]SYSLIB

FILE? A.OBJ, B.OBJ

P2-90

if /OVERLAY has been

COMMAND SPECIFICATIONS

LOGIN

The LOGIN command initiates an interactive session at a terminal.

FORMAT

PDS> LOGIN [/qualifiers]

USERID? username

PASSWORD? password

where

qualifiers are either of the following:

/NONOTICE to suppress the notice message that, if
previously set up, is automatically printed
at login.

/QUIET to suppress
information
information).

certain
(for

non-critical system
example, accounting

username is an alphanumeric character string 1 to 12 characters long
which is unique to the user.

password is an alphanumeric character string 1 to 6 characters long
associated with the user's username. As a security measure,
the system does not print the password when it is entered in
response to the PASSWORD? prompt.

The username and password are supplied to the user by the system
manager.

DESCRIPTION

The LOGIN command is usually the first command issued by the
interactive user (after the initial CTRL/C).

EXAMPLES

1. PDS> LOGI JOHNDOE

PASSWORD? secret

PDS>

P2-91

COMMAND SPECIFICATIONS

2. PDS> LOGIN

USERID? MONTY

PASSWORD? python

PDS>

3. ~ LOGI/NONOT MKEE

PASSWORD? carlsb

PDS>

P2-92

COMMAND SPECIFICATIONS

LOGOUT

The LOGOUT command terminates the user's interactive session and
releases any allocated devices and mounted volumes.

FORMAT

PDS> LOGOUT

The LOGOUT command has no parameters.

DESCRIPTION

The LOGOUT command causes the system to display the following
information if "QUIET" mode has not been set (see PDS> SET QUIET):

1. The volumes and devices deallocated and dismounted

2. The user's username, UIC, terminal number and Job-id.

3. The logout time

4. The connect time

5. CPU utilization

If PDS> SET PRINTING DEFERRED is in force, any spooled files generated
by tasks run from the user's terminal are printed when the user logs
out.

The message BYE then appears and indicates that the terminal is
inactive.

EXAMPLE

PDS> LOGOUT

BYE

P2-93

COMMAND SPECIFICATIONS

MACRO

The MACRO command assembles one or more ASCII source files containing
MACR0-11 statements into a single relocatable binary object file. The
output optionally consists of a binary object file, an assembly
listing, a cross-reference listing and the symbol table listing.

FORMAT

PDS> MACRO[qualifiers]

~ filespec[/LIBRARY] [+ .•• +filespec]

or

$MACRO[gualifiers] filespec[/LIBRARY] [+ ••• +filespec]

where

f ilespec

/LIBRARY

qualifiers

Qualifier

is the specification of a file that contains MACRO
source code. Multiple input file specifications must
be concatenated with a plus sign (+). No wild-cards
are allowed. Specifications must include a filename.
If the filetype is omitted, the system assumes it to be
MAC.

if present, indicates that the file is a macro library
file. A user macro library file must be specified in
the command line prior to the source files that
reference the library.

to the MACRO command are one or more of the following:

Meaning

/OBJECT[:filespec] Produce an object file (the default
condition), named accordingly if filespec (no
wild-cards) is supplied. Otherwise the file
is named by default (see Defaults below).

/NOOBJECT

/LIST[:filespec]

/NOLI ST

/CROSS=REFERENCE

/SWITCHES: (swlist)

Do not produce an object file.

Produce a listing file (the default is
/NOLIST), named accordingly if filespec is
supplied. Otherwise the file is named by
default (see Defaults below).

Do not produce a listing file.

Append to the assembly listing a
cross-reference of user symbols and macro
symbols referenced in the source files. For
further control, see MACRO SWITCHES below.
(Default: /NOCROSS)

Use the list of switches 'swlist' to control
the contents or format of the output files.
See MACRO SWITCHES, below. (Default:
/NOSWITCHES)

P2-94

COMMAND SPECIFICATIONS

Defaults

Object File - By default the assembler produces an object file with
the name of the last source file specified and .OBJ as the filetype.

Listing File - A listing file is sent to the line printer if /LIST is
specified with no filename. If filespec is defined without a filetype
then .LST is assumed.

MACRO SWITCHES

Some MACRO switches are available via the /SWITCHES: (swlist)
qualifier. swlist can include one or more of /LI (list), /NL (do not
list), /CR (cross reference).

/LI and /NL can be followed by the following switch values, separated
from /LI or /NL and from each other by colons.

Value Default Items Listed (/LI) or Not Listed (/NL)

BEX
BIN
CND
COM
LD
LOC
MC
MD
ME
MEB
SEQ
SRC
SYM
TOC
TTM

list
list
list
list
no list
list
list
list
no list
list
list
list
list
list

binary extensions
generated binary code
unsatisfied conditional coding
comments
listing directives that alter the listing level
location counter
macro calls and repeat expansions
macro definitions and repeat expansions
all macro expansions
only macro expansions that generate binary code
sequence numbers of source lines
source lines
symbol table of assembled source program
table of contents during assembly pass 1
/LI:TTM 80-column output
/NL:TTM 132-column output
default: installation-dependent

count

/CR can be followed by the following switch values, separated from /CR
and from each other by colons.

Value Default Symbols Cross Referenced

SYM
MAC
PST
REG

list
list
no list
no list

user defined symbols
macro symbols
permanent symbols
register symbols

If one or more values are specified, only the corresponding types of
symbol are cross-referenced. The switch /CR cannot be used in
conjunction with the command qualifier /CROSS_REFERENCE.

COMMENTS

For further information on the use of MACR0-11, refer to the
IAS/RSX-11 MACR0-11 Reference Manual.

P2-95

COMMAND SPECIFICATIONS

EXAMPLES

i. PDS> MACRO
FILE? A.AMC+B.MAC;3

2. $MACRO/NOLIST FILEA.MAC

3. PDS> MAC/OBJ:C.OBJ D.MAC+E.MAC

4. PDS> MAC MYFILE.MAC

5. PDS> MAC/LIST MACLIB.MLB/LIB+MYFILE

6. PDS> MAC/NOOBJ/LI/SW: (/LI:ME/CR:SYM:MAC:REG) TEST.MAC

7. PDS> MAC/LI:FILE/SW: (/LI:TTM) TEST

P2-96

COMMAND SPECIFICATIONS

MERGE

The MERGE command takes records from a SEQUENTIAL, INDEXED or RELATIVE
file (the transaction file) and merges them with an INDEXED or
RELATIVE file (the target file).

FORMAT:

PDS> MERGE[/LOG[:filespec]] transactionfile[/guall] targetfile/gual2

where

/LOG

/quall

qual2

if specified sends an error log to filespec or by
default to the user's terminal. The log gives details
of records that could not be merged.

is one of:

/SEQUENTIAL
transaction file is sequential

/INDEXED [/KEY:NUMBER:n]
transaction file is an
(ISAM) file. The order
can be specified by the
key number.

Indexed Seauential
of record extraction
/KEY qualifier and

Default: /KEY:NUMBER:l (the primary key).

/INDEXED may be omitted if /KEY:NUMBER:n is
specified.

/RELATIVE specifies a relative structured file.

must be specified and is either

/INDEXED

or

/RELATIVE

P2-97

COMMAND SPECIFICATIONS

MESSAGE

The MESSAGE command sends a specified message to the operator's
reporting terminal.

FORMAT

PDS> MESSAGE

MESSAGE? message

or

$MESSAGE message

where

message is a string of 1- to 65-characters terminated by carriage
return in interactive mode, or

EXAMPLE

a string written on the same line as the $MESSAGE command in
batch.

$MESSAGE THIS JOB WILL REQUIRE 2 TAPE DRIVES

P2-98

COMMAND SPECIFICATIONS

MOUNT

The MOUNT command makes a volume available to the user and optionally
associates a logical name with the volume.

FORMAT

PDS> MOUNT[qualifier]

DEVICE? device-name

VOLUME-ID? volume-identification

[LOGICAL NAME? logical-name]

or

$MOUNT[qualifier(s)] device-name volume-id logical-name

where

qualifier(s)

device-name

is one or more qualifiers, most of which may
specified when a volume is initially mounted.
section Command Qualifiers below.

only be
See the

is the device or the logical name of the device on
which the volume is to be mounted. The device unit
number may be omitted, except when the /NOOPERATOR
qualifier is used or the device name is a logical name.

NOTE

The system will not
'logical-name' if the
mounted by the logical
was assigned to it by
command.

prompt for
device was
name that

an ALLOCATE

volume-identification

logical-name

DESCRIPTION

is the volume identification written in the volume's
header. If the volume is being mounted as 'FOREIGN',
or if the qualifier /OVERRIDE:volume is used, then the
name supplied here is that which identified the volume
for handling by the operator, such as a label written
on the volume container. For disk and DECtape the
volume identification is 1 to 12 characters long. For
ANSI labelled magnetic tape the identification (ANSI
label) is 1 to 6 characters long.

is the logical name to be associated with the physical
device.

The MOUNT command is normally used to make a specified volume

P2-99

COMMAND SPECIFICATIONS

available to a timesharing user. It may also be used to mount a
volume globally or for realtime purposes only. A globally mounted
volume is potentially available to all timesharing users and is only
fully dismounted when an explicit DISMOUNT/GLOBAL command is issued
(from any PDS terminal). A volume mounted for real-time allocates the
device for real-time purposes only and so cannot be accessed by
timesharing tasks until the owner issues an explicit DISMOUNT/REALTIME
command.

The user obtains exclusive access to magnetic tape volumes and to any
volumes mounted as foreign. Files-11 disk and DECtape volumes may be
shared; that is, once the volume has been mounted, other users may
also use it.

The unit number will normally be omitted from the device
specification. The system then selects the appropriate unit. The
MOUNT command may be qualified in the following circumstances:

1. When a specified Files-11 disk or DECtape volume is not
already mounted in the system.

2. When the user mounts a magnetic tape or foreign volume.

Command Qualifiers

The system ignores command qualifiers if the command is mountinq a
previously mounted Files-11 disk or DECtape.

* Qualifiers marked with an asterisk allow the first user to
override parameters set when the volume was initialized.

Qualifier

*/ACCESSED:n

Description

Number of preaccessed directories to be kept (Files-11
disk and DECtape only).

*/DENSITY:n Set magnetic tape density where
n = 800 or 1600

*/EXTENSION:n Set default file extension to n blocks.

*/FILE PROTECTION: (code)
- Override default protection code to be given to new

files. (See Chapter 6, Section 6.1.3)

/FOREIGN

/GLOBAL

/NOOPERATOR

/NOWRITE

Allocate the volume as foreiqn (that is, sinqle user).
The default is Files-11 format. This qualifier cannot
be specified with /GLOBAL (see below).

The volume is to be mounted globally.

Mount without operator intervention. The device unit
number is mandatory.

Write protected; that is, the volume may not be written
to. Default is write permitted.

/OVERRIDE: (items)
where items are one or more of the following.

P2-100

Qualifier

COMMAND SPECIFICATIONS

Parentheses
specified.

EXPIRATION

may be omitted if only one item is

allows the user to over-write
unexpired magnetic tape volume.

an

SET IDENTIFICATION
allows the user to process tapes with
inconsistent file set identifiers.

VOLUME IDENTIFICATION

Description

allows the user to override the volume
identification, thus allowing the user
to mount specifying any label that
identifies the volume (for example, a
label written on the volume container).

/PROTECTION: (code)

/REALTIME

/UNLOCKED

/NO SHARE

/DEVICES:n

Replace volume protection with code specified. (See
Chapter 6, Section 6.1.3)

Mount volume for access by realtime tasks only.

Leave index file unlocked (Files-11 disk and DECtape
only). Default is to leave index file locked.

Mount a Files-11 volume for exclusive use~

Allocate the stated number of device units for a
multi-volume magnetic tape unit set.

P2-101

COMMAND SPECIFICATIONS

/PROCESSOR:ACPtask
Specifies the Ancillary Control Processor (ACP) to be
used for processing file accesses to the volume. The
ACP specified by this qualifier will override the
default ACP.

EXAMPLES

1. PDS> MOUNT
DEVICE? D'I'2:
VOLUME-ID? RISE <CR>

2. $MOUNT/FOREIGN MT: TESTER CF0:

3. PDS> MOU DK:
VOLUME-ID? SAM ALl:

4. $MOUNT/DEN:800/NOOPER MT0: VOL163 TA0:

5. PDS> ALLOC DEVICE
DEVICE? DT <ALT>
LOGICALNAME? XX
PDS> MOU/FOR XX DOSVOL2

P2-102

COMMAND SPECIFICATIONS

ON

The ON command is used only in an Indirect Command File or Batch
Command File. ON controls the processing of such a file after the
completion of any command-line that returns an error status to PDS.

FORMAT

Where

[$]ON error-severity action

error-severity is one of

action

WARNING
ERROR
SEVERE ERROR

is one of

CONTINUE

GOTO label

STOP

label is an alphanumeric string and must
appear together with a colon in front of
a later command in the file.

any fully specified PDS command

An ON command must be entirely specified on one line.

DEFAULT

[$]ON ERROR STOP is assumed by default at the beginning of a
terminal session (LOGIN) or the beginning of a batch job ($JOB).
If an ON statement is found, on attempted execution, to be itself
faulty, PDS reverts to the default setting.

DESCRIPTION

ON takes effect only after completion of one or more subsequent
lines in the command file. An ON command remains in force until
the next ON command and is then superseded entirely. See this
manual, Sections 8.5 and 8.5.1 for a description of ON and
associated commands.

P2-103

COMMAND SPECIFICATIONS

EXAMPLES

1. $ON ERROR STOP
$MACRO MYPROG
$LINK MYPROG
$RUN MYPROG

Here $ON has no effect on the MACRO assembly itself. If the
assembly is completed with nothing worse than a warning, the
job proceeds to $LINK. If the linking is completed with
nothing worse than a warning, the job proceeds to $RUN.

2. $JOB ENGINE3
$ON WARNING GOTO ELSE
$LINK MYPROG
$RUN MYPROG
$STOP
$ELSE: LINK OLDPROG
$RUN OLDPROG
$EOJ

P2-104

COMMAND SPECIFICATIONS

PRINT

The PRINT command c~uses one or more specified files to be queued for
output on the line printer. The user may optionally delete the file
or files after they have been printed.

FORMAT

or

where

PDS> PRINT[/DELETE] [/FORMS:n] [/COPIES:n] [/PRIORITY:n]­
[/NOBANNERS] [/NOTRANSFER]

FILE? filespec-1[, ••• filespec-n]

$PRINT[/DELETE] [/FORMS:n] [/COPIES:n] [/PRIORITY:n] [/NOBANNERS]­
[/NOTRANSFER] filespec-1[, ••• filespec-n]

/DELETE instructs the system to delete the file or files after they
have been printed.

/FORMS:n (where n is a digit from 0 to 6) indicates the type of form
on which the specified files are to be printed. The
association of a value of n with a particular form is
installation dependent.

Default: /FORMS:0

/COPIES:n (where n is an integer from 1 to 32) determines the number
of file copies to be printed.

Default: /COPIES:!

/PRIORITY:n

/NOBANNERS

allows a user to request that a file be printed at a low
priority (for example, priority 1). n must be between 1 and
HJ0.

suppresses the printing of the file identification banner
pages.

/NOTRANSFER
inhibits the copying of the queued file(s) to the spooling
device. The file(s) will be printed direct from the volume
on which it resides. -

filespec is the specification of a file to be printed. Wild-cards
are allowed. The filetype is optional and is defaulted to
LST.

P2-105

COMMAND SPECIFICATIONS

DESCRIPTION

The specified file or files are submitted to the line printer and
subsequently deleted if the user has included the /DELETE qualifier.
If files are queued with more than one value of /FORMs, a message is
sent to the operator when a change of forms type becomes necessary so
that the remainder of the queues may be output.

EXAMPLES

1. ~ PRINT

FILE? MACLIST

2. $PRINT FREAN.MAC;3, PEEK.CAP;*

3. f..Q.[? PRI/DE B4.FAL

P2-106

COMMAND SPECIFICATIONS

QUEUE

The QUEUE command allows the user to access the queue in the following
ways:

1. To interrogate the queue (/LIST)

2. To remove an entry belonging to the
queue (/REMOVE)

3. To add to the queue (/ADD)

user from the

Note that the simpler commands PRINT and SUBMIT should be used to add
files to the line printer and batch gueues.

FORMAT

The format of the command depends on the queue operation to be
performed.

The default operation is /ADD.

LIST

PDS> QUEUE/LIST

Description

Display the status of the user's queue entries.

REMOVE

where

segno

PDS> QUEUE/REMOVE

SEQUENCE? segno

is the sequence number of a queue entry to be removed,
determined by issuing a QUEUE/LIST command.

Description

Remove the queue entry specified by a sequence number, which is
displayed via the QUE/LIST command described above.

P2-107

COMMAND SPECIFICATIONS

. ADD

PDS> QUEUE/ADD[/FORMS:n] [/COPIES:n] [/DELETE] [/PRIORITY:n]­
[/NOBANNERS] [/NOTRANSFER]

QUEUE? device-name

FILE? f ilespec

where

/FORMS:n

/COPIES:n

/DELETE

/PRIORITY:n

/NOBANNERS

/NOTRANSFER

device-name

f ilespec

Description

(where n is a digit from 0 to 6) indicates the type of
form on which the specified files are to be printed.
The association of a value of n with a particular form
type is installation dependant.

Default: /FORMS:0

(where n is an integer from l to 32) determines the
number of copies to be printed.

Default: /COPIES:l

requests the system to delete the specified files after
they have been processed.

allows a user to request that a file be gueued at a low
priority. n must be between 1 and 100.

suppresses the printing of the file identification
banner pages.

inhibits the copying of the queued file to the spooling
device. The file will be printed direct from the
volume on which it resides.

specifies the relevant queued device.

is the specification of a file to be added to the queue
specified. Only one filespec is allowed. It must
contain a filename and filetype. Wild-cards are
allowed. The f iletype is optional and is defaulted to
LST.

Add the specified file to the named queue and, optionally, modify the
resultant operation according to any specified qualifiers.

P2-108

COMMAND SPECIFICATIONS

EXAMPLES

1. PDS> QUEUE/LIST

2. PDS> QUEUE/REMOVE 2

3. PDS> QUEUE/ADD/COPIES:4/DELETE
QUEUE? LP0:
FILE? LIST.MAP;4

4. PDS> QUEUE/PRIO:l0 LP3 LISTFILE

5. $QUEUE/PRIORITY:40 LP3 ADD.MAC

P2-109

COMMAND SPECIFICATIONS

REMOVE

The REMOVE command allows the user to remove an installed task or a
Shareable Global Area from the system. Removing a task or SGA undoes
the effect of the INSTALL command. A task cannot be removed if that
task is active, fixed, or has nodes accounted to it. If there is any
outstandina data from SENL directives to the task it is returned to
the pool. J

A shareable global area cannot be removed until all tasks which map on
to it have been removed.

FORMAT

where

PDS> REMOVE[/qualifier]
TASK? name

/qualifier

name

is one of

/COMMON

/LIBRARY

is the installed name of the task, common area or
library being removed.

EXAMPLES

1. PDS> REMOVE MYLOL

Remove the task with installed task name MYLOL.

2. PDS> REM/COM SYST20

Remove the SGA with installed name SYST20.

P2-110

COMMAND SPECIFICATIONS

RENAME

The RENAME command ren3mes an existing file.

FORMAT

PDS> RENAME

OLD? oldspec

NEW? newspec

or

$RENAME oldspec, newspec

where

oldspec is the specification of an existinq file.

newsoec is the new name for oldspec.

DESCRIPTION

Both oldspec and newspec must contain a file name and filetype.
Wild-cards are allowed. The device field in both file specifications
must be the same because files cannot be renamed from one device to
another. If the version field is omitted, the normal defaults apply
{see Chapter 6, Section 6.2.1).

EXAMPLES

1 • PDS >-. RENAME

OLD? MYFILE.OBJ;l

NEW? BACKUP.OBJ;l

2. $RENAME MYFILE.OBJ;l,BACKUP.OBJ;l

3. PDS> RENAME

Q1.Q1 MYFILE.OBJ;l,BACKUP.OBJ;l

4. £Q§2 RENAME CAROL.*;*
NEW? FRED.CBL;*

P2-lll

COMMAND SPECIFICATIONS

RUN

The RUN command causes an executable task to execute.

RUN can be issued for a timesharing task (FORMAT 1) or for a realtime
task (FORMAT 2 through 6).

If a real time task is to be run, then:

1. It must already have been installed in the system (see the
INSTALL command).

2. The user can take the opportunity to reset the task's UIC,
partition and priority from those in force at installation.

3. The user can suppress the PDS prompt, for example to allow a
terminal dialoque with the task. CTRL/C will reactivate the
PDS prompt. Under /NOPROMPT PDS is still running and will
timeout in the usual way if CTRL/C is not typed.

NOTE

In general, in the command format for a
realtime task, taskname refers to the
installed taskname (see INSTALL). This
is not necessarily the same as the
filename of the task image file.

For real time applications, the RUN command has one of the following
basic formats:

Format 2 Request that a task be run as soon as memory is available and
optionally reschedule the task to be run Periodically
(/REALTIME).

Format 3 Run a task immediately (/MEMORY).

Format 4 Synchronize the running of a
optionally, reschedule the
(/SYNCHRONIZE).

task with a time unit and,
task after a specified interval

Format 5 Schedule the task for running at a
and, optionally, reschedule the
interval (/SCHEDULE).

specified
task after

future time,
a specified

Format 6 Delay the task for a specified period and, optionally,
reschedule the task to rerun periodically (/DELAY).

P2-112

COMMAND SPECIFICATIONS

FORMAT 1 (timesharing)

PDS> RUN

FILE? filespec

where

filespec is the specification of a file that contains an
executable task. The specification must include a file
name. If the filetype field is omitted, TSK is
assumed.

DESCRIPTION

This form of RUN causes an executable timesharinq task to execute.

To suspend an executing task run interactively, the user types CTRL/C.
The user may either type CONTINUE to resume task execution or ABORT to
abort the task.

Executing tasks that were submitted to the batch queue cannot be
suspended.

EXAMPLES

1. PDS> RUN [200,40]PASCAL.TSK;4

2. $RUN PASCAL

FORMAT 2

where

PDS> RUN/REALTIME[/INTERVAL:interval] [/options]
TASK? taskname

options

interval

of the following:

/UIC: [m,n] [m,n] is User Identification Code
/PARTITION:par par is partition name
/PRIORITY:pri pri is priority number (decimal)
/NOPROMPT suppresses PDS prompt

is the time interval at which the task is to be
periodically rerun, of the form:

where

xxt

xx is the number of hours, minutes, seconds
or ticks

t is one of the following:

P2-113

task name

COMMAND SPECIFICATIONS

H for hours
M for minutes
S for seconds
T for clock ticks

is the name of the task to be run as soon as
memory is available.

EXAMPLES

PDS> RUN/REALTIME/UIC: [30,11] SCAN2

PDS> RUN/REALT/PRI:l20 MART9

FORMAT 3

where

PDS> RUN/MEMORY[/options]
TASK? taskname

options

task name

are any one of
/UIC: [m, n]
/PARTITION:par
/PRIORITY:pri
/NOPROMPT

the following:
[m,n] is User Identification Code
par is partition name
pri is priority number (decimal)
suppresses PDS prompt

is the name of the task to be run immediately. If
sufficient memory to run the task is not available
an error message is returned.

EXAMPLES

PDS> RUN/MEMORY/PART:FILE JK03

PDS> RUN/MEM/UIC: [100,10] MART6

FORMAT 4

PDS> RUN/SYNCHRONIZE:unit[/DELAY:delay] [/INTERVAL: interval] [/options]

TASK? taskname

where

unit

delay

is the synchronization clock unit. as follows:

HOURS for hours
MINUTES for minutes
SECONDS for seconds
TICKS for clock ticks

is the delay period after synchronization, of the
form:

P2-114

interval

options

task name

COMMAND SPECIFICATIONS

xxt as in FORMAT 2

is the time interval at which the task is to be
periodically rerun, also of the form:

xxt as in FORMAT 2

are any of the following:

/UIC: [m,n] [m,n] is User Identification Code
/PARTITION:par par is partition name
/PRIORITY:pri pri is priority number (decimal)
/NOPROMPT suppresses PDS prompt

is the name of the task to be synchronized

EXAMPLES

1. PDS> RUN/SYNC:HOUR/DELAY:l0M/INTERVAL:30M CAROL

When the time is next an exact number of hours, wait ten minutes,
then run task CAROL every twenty-five minutes.

If the time is now 10.15, then task CAROL runs at 11.10, 11.35,
12.00, 12.25 and so on.

2. PDS> RUN/SYNCB:HOUR/DELAY:SM/PART:SYSTEM XK3

Run task XK3 at 5 minutes past the next hour in the SYSTEM
partition.

FORMAT 5

where

PDS> RUN/SCHEDULE:time [/IN'I'ERVAL: interval] [/options]
TASK? taskname

time

interval

options

task name

is the absolute time of day the task is to begin
execution. Time is expressed as hh:mrn:ss

is the time interval at which the task is to be
periodically rerun, also of the form:

xxt as in FORMAT 2

are any of the following:

/UIC: [m,n] [m,n] is User Identification Code
/PARTITION:par par is partition name
/PRIORITY:pri pri is priority number (decimal)
/NOPROMPT suppresses PDS orompt

is the name of the task to be scheduled

P2-115

COMMAND SPECIFICATIONS

EXAMPLES

1. PDS> RUN/SCHED:l0:23:00/INTER:30S MKLOL

Run task MKLOL at 10:23:00 and every 30 seconds thereafter.

2. PDS> RUN/SCHED:l0:30:00/PRI:l20 MYTSK

Run MYTSK at 10:30:00 at priority 120.

FORMAT 6

where

PDS> RUN/DELAY:delay[/INTERVAL:interval] [/options]
TASK? taskname · -

delay

interval

options

task name

is the delay period before the task is to be
periodically rerun, of the form

xxt as in FORMAT 2

is the time interval at which the task is to
after a delay, specified as

xxt as in FORMAT 2

are any of the following:

/UIC: [m,n] [m,n] is User Identification Code
/PARTITION:par par is partition name
/PRIORITY:pri pri is priority number (decimal)
/NOPROMPT suppresses PDS prompt

is the name of the task to be run after delay.

EXAMPLES

1. PDS> RUN/DELAY:30M/INTERVAL:20S/UIC: [30,2] MYTSK

Wait 30 minutes, then run [30,2]MYTSK every 20 seconds.

2. PDS> RUN/DELAY:2H/PART:GLOBZ XKEE9

Wait 2 hours, then run task XKEE9 in the partition GLOBZ.

P2-116

COMMAND SPECIFICATIONS

SET

The SET command is used for the following:

1. To suppress the output of certain information messages (SET
QUIET). See FORMAT 1.

2. To establish a new default device or
subsequent file soecif ications supplied
DEFAULT). See FORMAT 1. . -

UFD
by

or
the

both
user

for
(SET

3. To defer printing of spooled files (SET PRINTING DEFERRED).
See FORMAT 1.

4. To change the user's interactive password (SET PASSWORD).
See FORMAT 2.

5. To chanqe the user's batch password (SET PASSWORD/BATCH) See
FORMAT 3.

6. To change the characteristics of the user's terminal. Users
logged in under a username whose UIC is [1,1] can change the
characteristics of any terminals (SET TERMINAL). See FORMAT
4, FORMAT 5.

7. To change the protection code of a file (SET PROTECTION).
See FORMAT 6.

8. To reset the priority of an active task (SET PRIORITY). See
FORMAT 7.

FORMAT 1

PDS> SET

FUNCTION? parameter

or

$SET parameter

where

parameter is one of the following:

QUIET

or

Suppress or allow the output of
(usually accounting) messages.

informative

NOQUIET The system default is SET NOQUIET.

DEFAULT [device-name:] [ufd]
Change the user's default device and/or UFD to the
value or values specified. If both device-name
and ufd are omitted, the systern reestablishes the
user's initial default settings for both values.

PRINTING DEFERRED
Defer the printing of spooled files generated by
the timesharing tasks run from the user's

P2-ll 7

COMMAND SPECIFICATIONS

terminal. This holds oood until either the user
logs out (by choice or-timeout) or the user issues
PQS> SET PRINTING NODEFERRED

PRINTING NODEFERRED
This is the normal system default.

DESCRIPTION

Changing Defaults

The system manager allocates a default device to each user, which is
in effect when the user logs in. The initial default UFD is
equivalent to the user's UIC. The user must issue the SET DEFAULT
command to change either or both values for file specifications
included in subsequent commands. The command does not affect file
specifications written in programs. To reestablish the default
settings in effect at login, the user issues SET DEFAULT without any
other values.

EXAMPLES

1. PDS> SET QUIET

2. $SET DEFAULT [30,3)

3. PDS> SET DEFAULT DK0:

4. PDS> SET PRINTING DEFERRED

FORMAT 2 (SET PASSWORD)

PDS> SET PASSWORD

OLD PASSWORD? oldpassword

NEW PASSWORD? newpassword

where

oldpassword is the 1- to 6-character alphanumeric password currently
associated with the user's username.

newpassword is the 1- to 6-character alphanumeric password that
supersedes the old password.

DESCRIPTION

The system does not display either the old or the new password.
command is not permitted in batch mode.

P2-118

This

COMMAND SPECIFICATIONS

EXAMPLE

PDS> SET PASSWORD

OLD PASSWORD? glove

NEW PASSWORD? mitten

FORMAT 3 {SET PASSWORD/BATCH)

This command allows the user to re-define or define the batch
password to be associated with his account. Until this command
is issued, any user can submit a batch job that could run for and
be charge to the users account. This command is not permitted in
batch mode.

PDS> SET PASSWORD/BATCH

OLD PASSWORD? oldbatchpassword

NEW PASSWORD? newbatchpassword

where

oldbatchpassword is a 1- to 6-character alphanumeric string already
associated with the user's username. This reply is
ignored if a batch password did not already exist for
that user.

newbatchpassword is a 1- to 6-character alphanumeric string to replace
the original batch password.

EXAMPLE

PDS> SET PASSWORD/BATCH

OLD PASSWORD? sunday

NEW" PASSWORD? monclay

FORMAT 4 (SET TERMINAL)

The PDS> SET TERMINAL command allows the user to change the
characteristics of his own terminal. Terminal characteristics
revert to the system defaults when a dialup line is disconnected
or when the user logs out.

For details of the software facilities associated with
characteristics see the IAS/RSX-llD Device Handlers Reference
Manual. For the setting of characteristics at system generation
see the IAS System Generation Reference Manual.

FORMAT 4:

PDS> SET
'FUNCTION? TERMINAL
ATTRIBUTE? attribute

P2-119

COMMAND SPECIFICATIONS

where:
attribute is either

terminaltype[DS]

or optionlist

where:

terminal type

optionlist

is one of ASR33, KSR33, ASR35, LA30S, LA30P, LA36,
VT05, VT50, VT52, VT61.

SET TERMINAL terminaltype sets the characteristics
other than the speed(s) to the default values
listed in the IAS/RSX-llD Device Handlers
Reference Manual, Table 2-3.

If DS is appended, the speed also is set to the
default value.

is one or more of

[NO] option
option:value

separated by spaces.

Each option and any short form listed with it may be abbreviated so
long as it remains unique within the list of SET TERMINAL options.
Each acceptable form of an option without a value may be negated by
the prefix NO, e.g NOSCOPE.

An asterisk * marks the options which are likely to be most commonly
used.

option can be:

ALTMODE

BACKSPACE

BLOCKMODE

CARRIAGERETURN or CR

COMPATIBLE

CONTROLCFLUSH or CCF

* DEFAULT

is an old model Teletype which generates 175
or 176 (octal) when the ALT key is pressed.
Either of these characters will be treated in
the same way as ESCAPE.

Terminal responds to the Backspace character

Terminal is a VT61 and is to be used in Block
Mode

Lines exceeding the terminal width as set are
continued on the following line(s)

Terminal requires RSX-llM compatible Escape
sequence handling.

Flush type-ahead when CTRL/C is typed

Restore terminal characteristics to system
default values as existing at log-in time.

P2-120

*

*

ES CAPE SEQUENCE

FORMSMODE

HANGUP

COMMAND SPECIFICATIONS

Terminal requires Escape Sequence recognition

Terminal is a VT61 and is to be used in Forms
Mode.

Hang up dialup line. This cannot be negated.

HARDWAREFORMFEED or HFF

HARDWARETAB or HTAB

HOLD

KEYBOARD

LOCALCOPY

The characters Form Feed and Vertical Tab are
recognized and do not need software
simulation

The character horizontal tab is recognized

(VTSx and VT61 terminals only) used to enter
auto-hold mode. Output from the computer
will then be stopped automatically when the
screen becomes full with output and may be
resumed by pressing the SCROLL key to enable
a further line to be output. Pressing the
SHIFT and SCROLL keys simultaneously will
enable a further page to be output. For this
facility to work correctly the terminal must
transmit and receive at the same speed.

Terminal is capable of input.

Terminal echoes all characters as they are
typed

* LOWERCASEKEYBOARD or LCKEYBOARD

Lower case characters are accepted. If
CTRL/R type-ahead is used, characters will be
echoed as lower case, whether or not they are
2r_oqes$ed a$ low~r_cq_$_e.

LOWERCASEKEYBOARD can be consistently used
with NOLOWERCASEINPUT.

* LOWERCASEINPUT or LCINPUT

Lower Case characters are to be passed to a
program performing input even if program
(e.g. EDI) asks for case conversion

LOWERCASEOUTPUT or LCOUTPUT
or LOWERCASEPRINTER or LCPRINTER

LVF

NEWLINE

Terminal can print lower case characters

LA36-type vertical fill is required for form
feed and vertical tab (i.e. 66 nulls)

Terminal sends 'newline' when the carriage
return key is pressed

NONSTANDARDTAB or NSTAB

P2-121

NOP ARI TY

PRINTER

SCOPE

COMMAND SPECIFICATIONS

Terminal on rece1v1ng tab character does not
space to the next a-character boundary~

Do not generate parity bit on character
output.

Terminal is capable of Output.

Terminal is a Scope (VDU) and rubout
physically erases characters from the screen.

* SIMULATEFORMFEED or SFF

* TAPE

TWOSTOPBITS or TSB

Form feed and vertical tab are to be software
simulated to start a new page and skip to
next six-line boundary respectively.

Terminal has a low speed Paper Tape Reader
and interprets CTRL/B and CTRL/T accordingly.
See Table 3-2.

Terminal requires two stop bits as normally
required for mechanical printers e.g. ASR33.

VERTICALFILL or VFILL

Terminal requires VT05-type vertical fill

option:value can be:

FILL:n

LENGTH:n

NAME:name

n is fill required for carriage return

n = 7 supplies LA30S-type fill

n is page length in lines

name can b~ one of:

ASR33, KSR33, ASR35, LA30S, LA30P, LA36,
VT05, VT50, VT52, VT55, VT61.

This option is for use in 'deceiving' a
program as to the type of terminal under
which it is running, e.g. when mixed
characteristics are required. The option
sets only the location holding the name of
the terminal type (IAS/RSX-llD Device
Handlers Reference Manual, Table 2-3, column
1). To access this name from a program, see
tnat same manual, Table L-L, TC.TTP and
Sections 2.4.3.5 through 2.4.3.7.

NOTE

SET TERMINAL NAME:name
implicitly set the
characteristics.

P2-122

does NOT
corresponding

COMMAND SPECIFICATIONS

PARITY: type type is EVEN or ODD. Set
characters with parity.
not checked on input.

line to generate
Note that parity is

READAHEAD:type type is one of:

NONE No read-ahead allowed

DEFERREDPROCESSING or DP
read-ahead accepted but not
examined until a read which uses
it is processed

IMMEDIATEPROCESSING or IP
read ahead is processed as it is
typed but not echoed till it is
read

SPEED: (m: n) Set split-speed
(lower) speed.
(higher) speed

line. m is the keyboard
n is the printer or display

SPEED:n Set line speed. n can be one of:

speed in baud
134 (meaning 134.5 baud)
EXTA (DHll external speed A)
EXTB (DHll external speed B)

WIDTH:n n is the page width in columns

EXAMPLES:

1. PDS> SET TERMINAL WIDTH:50 LENGTH:30 CR

The width is set to 50 characters, the length to 30
Lines of more than 50 characters are continued
following 1 ines.

2. PDS> SET TERMINAL

ATTRIBUTE? SPEED: (150:9600)

lines.
on the

Terminal is to send at 150 baud and receive at 9600 baud.

3. PDS> SET

FUNCTION? TERMINAL

ATTRIBUTE? VT05 DS

Termina.l is a VT05 and is to run at the corresponding speed
(2400 baud).

4. ~ SET TERMINAL NAME:VT61

The terminal type is recorded as being VT61
characteristics are thereby changed.

FORMAT 5 (SET NAMED LIST)

P2-123

but no

COMMAND SPECIFICATIONS

This format is available to users logged in under a UIC of [1,1].

FORMAT 5:

PDS> SET

FUNCTION? TERMINAL:TTn

or

TERMINAL: (TTm, ••• ,TTn)

ATTRIBUTE? attribute

where:

m, ••• , n are the unit numbers of the terminals to be affected.

attribute is as in FORMAT 4.

DESCRIPTION

This format sets the characteristics of terminal TTn or of terminals
TTm, ••• ,TTn to the values specified in attribute.

EXAMPLES

1. PDS> SET TERMINAL:T'I'3 SPEED: (150:9600)

Terminal TT3 is to send at 150 baud and receive at 9600 baud.

2. PDS> SET TERMINAL: (TT3,TT5,TT6) SPEED:300

Terminals TT3, TT5 and TT6 are to send and receive at 300
baud.

FORMAT 6

or

where

/OWN

PDS> SET PROTECTION [/OWN]

FILE? f ilespec

PROTECTION? {code}

PROTECTION [/OWN] f ilespec (code)

if specified, changes the ownership UIC of the file to be
the same as the UFD under which the file is stored.

f ilespec is the specification of the file to which the protection
code is to be applied.

P2-124

(code)

COMMAND SPECIFICATIONS

is the protection code to be applied to filespec.
Chapter 6, Section 6.1.3.

User categories are:

SYSTEM:

OWNER:

GROUP:

WORLD:

Types of access are:

R read

W write

E extend

D delete

Example

(SY:R, O:RWED, GRO:RW)

See

System has read access only. Owner has all four types of
access. Group has read and write access only. world access
remains unchanged.

P2-125

COMMAND SPECIFICATIONS

EXAMPLES

1. PDS> SET PROTECTION/OWN CATHS.DAT

PROTECTION? (GRO:R, SY:R, WORLD:, O:RWDE)

2. $SET PROTECTION TONY.MAC (OW:RWED, SY:, GR:, W:)

3. PDS> SET PRO MYPROG.COB (SY:RWED, OW:RWDE, WO:DERW, GR:RWED)

FORMAT 7 (SET PRIORITY)

The SET PRIORITY command the user to alter the priority of an active
tasko

FORMAT

where

PDS> SET PRIORITY
TASK? taskname [terminal] priority

task name

terminal

priority

is the installed name of the task being altered

is the terminal from which the task to be altered
was activated. The default is the current
terminal.

is the new task priority (that is, a decimal
number ranging from 1 to 250)

EXAMPLES

1. PDS> SET PRIORITY SCAN TT4 120

Sets the priority of the installed task SCAN running from
terminal 4 to 120.

2. PDS> SET PRIORITY XYZ,,130

Sets the priority of the installed task XYZ to 140. XYZ was
invoked from this terminal.

P2-126

COMMAND SPECIFICATIONS

SHOW

The SHOW command causes the terminal to display specified information
at the user's terminal. The parameter to SHOW determines the type of
information displayed.

FORMAT

PDS> SHOW

ATTRIBUTE? parameter

where

parameter

Devices

CLI

specifies the type of information to be displayed. The
options are:

Display information
Interpreters (CLis)
system.

about the Command Language
currently running in the

DEFAULT Display the user's current default device and UFD

DEVICES Display information about all or selected devices
known to the system. See the section called
Devices below. With /PUD, displays also the PUD
address of the device unit(s).

DAYTIME Display the current time and date.

MEMORY Display the use of the system's memory.

STATUS Display information about the current status of the
user's job.

GLOBAL AREAS
Display information ab6ut resid~nt global areas.

LUNS Display current assignment of luns for an installed
task. PDS prompts for the task name.

The command SHOW DEVICES causes the system to display at the user's
terminal the symbolic names of the devices known to the system. The
user can choose to print information about one particular device (e.g.
DK0), all devices of that type (e.g. DK) or all devices. The
Physical Unit Directory (PUD) addresses of the units can also be
requested. Physical device names are followed by "**" if they are
currently available for use. System logical device names are followed
by the associated physical device names. The listing also includes
messages giving additional information about particular devices. The
messages and their meanings are:

P2-127

Message

GLOBAL

MOUNTED

REALTIME

T/S DEVICE

COMMAND SPECIFICATIONS

Meaning

The device has been mounted globally (see the MOUNT
command) •

The device is mounted.

The device is mounted for realtime activity.

The device is a timesharing device. If followed by an
'X' (see example) the device has been explicitly
allocated to a user.

T/S TERMINAL

SYSTEM

The terminal is a timesharing device.

The device is a system device.

SPOOLED:n The device is spooled. n is the current setting of the
forms type.

TIMESHARING:n n is the number of timesharing users accessing the
device.

Memory

The command PDS> SHOW MEMORY displays on a VDU terminal (VT05, VT50,
VT52, VT55,--vT61) the memory useage and task activity of the system
provided that the terminal handler was configured to support escape
sequences.

The display appears in two rows of columns (one row only on a VT50).
Each column refers to a portion of memory.

All types of task area within the occupied memory are displayed by
task name. Shareable global areas are displayed by name.

Fixed tasks are displayed as FIXED until the task becomes active.
Tasks listed down the right hand side of the screen are on the Memory
Required List (MRL). The number of nodes available and the largest
hole are included in the heading information at the top of the screen.
The name of the currently active task, and the terminal for which it
is running, are also displayed only if the SHOW MEMORY task (••. DEM)
is run as a high priority real time task.

On the display, at the bottom of each column,

<->
<=>
r= l l - J

<+>

indicates a task's read/write (impure) area
indicates a task's read/only (pure) area
indicates a shared global area (SGA)
indicates a fixed or non-checkpointable task

Once the memory diagram is displayed, the portion of memory being
displayed can be altered dynamically by one of the following commands.
Do NOT type CTRL/C or use the control key with these commands.

P2-128

COMMAND SPECIFICATIONS

FORMAT (no prompt) :

where

B[ASE] base

base is the beginning of the
activity is to be displayed.
in the form

area of memory whose
'base' is entered either

mK that is, mK words (m decimal)

or in the form

n that is, n octal blocks of 32 words or 100 (octal)
bytes

G[RAIN] grain

C [LEAR]

Reset the amount of memory
column of the display.
base.

ref erred to by a single
grain has the same syntax as

Clear the VDU screen and redisplay. Used, for example,
to clear an external message from the screen.

E[XTENT] nK
Change extent of display

E[XTENT] ALL
Display all memory (initial state)

I[NTERVAL] n
Update display every n seconds (initially n 1)

n = 0 gives continuous update.

x Exit to PDS.

P2-129

COMMAND SPECIFICATIONS

EXAMPLES

1. PDS> SHOW DAYTIME

10:53:41 l-JUN-77

2. - PDS> SHO DEV
TT0 ** TLS TERMINAL
CI0 TT0
C00 TT0
CL0 LP0
T00 TT6
SP0 SY0
PI0 **
M00 **
MM0 ** TLS DEVICE x MOUNTED TIMESHARING:l
DTl ** TLS DEVICE
DT0 ** TLS DEVICE
LP0 ** SYSTEM SPOOLED:0 TIMESHARING:8
TTll ** TLS TERMINAL
TT10 ** T f..S TERMINAL
TT7 ** TL'.S TERMINAL
TT6 ** TLS TERMINAL
TTS ** Tf..S TERMINAL
TT4 ** TLS TERMINAL
TT3 ** TLS TERMINAL
TT2 ** TLS TERMINAL
TTl ** Tf..S TERMINAL
DS0 ** MOUNTED GLOBAL
DBl ** Tf..S DEVICE x TIMESHARING:l
DB0 ** SYSTEM MOUNTED GLOBAL TIMESHARING:8
DKl **
DK0 ** T/..S DEVICE
SY0 DB0

3. PDS> SHOW DEV/PUD DB

DBl 152404 ** Tf..S DEVICE x TIMESHARING:l
DB0 152470 ** SYSTEM MOUNTED GLOBAL TIMESHARING:8

P2-130

COMMAND SPECIFICATIONS

SORT

The SORT command is used to sort files into a specified sequence.
Consult the PDP-11 SORT Reference Manual before using this command.

FORMAT

PDS> SORT/gualif iersl

FILE? in-f ilespec/gualif iers2

where

qualifiersl are any of the following:

/OUTPUT:outfilespec
Specifies the output file. The default filetype
is DAT. If /OUTPUT is omitted and the in-filespec
contains no version number, the output file is
assumed to be the same as the input file, with the
version number incremented. If /OUTPUT is omitted
but a full in-f ilespec is given, the output
f ilespec is assumed to be exactly the same as the
input filespec (that is, the version number not
incremented).

/ALLOCATION:n Specifies the initial space allocation for the
output file before the sort process begins. n is
the number (decimal) of bytes.

/BLOCK_SIZE:n For magtape files only, specifies a non-standard
tape block size. n is the number (decimal) of
bytes.

/BUCKET_SIZE:n Specifies the RMS bucket size of the output file.
n is the number (decimal) of bytes.

/CONTIGUOUS Specifies that the initial space allocation for
the output file to be contiguous.

/DEVICE:device or
/DEVICE: (/qualifiers) or
/DEVICE: (device:/oualifiers)

For special applications requ1r1ng control of the
SORT scratch files, specifies the scratch file
device.

/FILES:n

device is the scratch file device.

/aualif iers can be one or both of

/ALLOCATION:n
/CONTIGUOUS

For special applications, specifies the number of
scratch files to be used by SORT (n must be
between 3 and 8).

/FORMAT:format[:n]

P2-131

COMMAND SPECIFICATIONS

Specifies the record format of the output file.

format is one of

FIXED
VARIABLE
UNKNOWN

[n] is optional and specifies:

record length (with FIXED)

maximum record length (with
VARIABLE or UNKNOWN).

/KEYS: (abm. n: ••••••)
Defines the key fields to SORT where:

'a' defines how
character, zone,
character.

to treat
etc) •

the
The

data (i.e.
default is

'b' is the general sort order, where:
'N' is normal (ascending)
'O' is opposite

The default is 'N'.

'm' is the first position of key field. This
must be defined.

P2-132

/PROCESS:x

/SEQUENTIAL or
/RELATIVE

COMMAND SPECIFICATIONS

'n' is the length of key field.
defined.

This must be

A maximum of 10 keys can be specified. The major
key is the first in the string, and the minor key
is the last.

Defines the type of SORT process, where x is one
Of

RECORD (default)
TAG
ADDRESS ROUTING
INDEX

Specifies the
file.

file organization of the output

/SPECIFICATION: file-spec

in-f ilespec

gualifiers2

The control parameters for SORT are contained in
the specified file. The default filetype is SRT.

is the filespecif ication of the file to be sorted.

is the first or both of the following.

/FORMAT:format:n

/INDEXED:n

is mandatory and specifies the record format and
record length of the input file.

format is one of
FIXED
VARIABLE
UNKNOWN

n specifies record length for FIXED length records
and the maximum length of VARIABLE or UNKNOWN
structured records.

is mandatory for an input file with Indexed
Sequential organization, where n is the number of
keys.

See the PDP-11 SORT Reference Manual for further details.

P2-133

COMMAND SPECIFICATIONS

EXAMPLES

1. PDS> SOR'I'/KEY: Cl. 4

FILE? CAROL.DAT/FORMAT:UNKNOWN:l30

Sort the file CAROL.DAT accordina to the characters in the
key. The key is in position 1 of the record and is 4 bytes
long. Name the output (sorted) file as CAROL.DAT with
incremented version number.

2. PDS> SORT/SPEC:FRANK.SRT

FILE? MARTIN.DAT;3/FOR:FIXED:l24/INDEXED:5

Sort the file MARTIN.DAT:3 according to
held in FRANK.SRT. Name the output
MARTIN.DAT;3, to replace the input fil2.

3. PDS> SORT/KEYS: (BNl.6 C8.2)/REL

FILE? TELEPHONE.LST/FORMAT:FIXED:40

the specifications
(sorted) file as

4. PDS> SORT/SPEC:STOCK.CTL/DEV: (/ALL:l00/CO)

FILE? Pl2709.001/FORMAT:VAR:80

P2-134

COMMAND SPECIFICATIONS

STOP

The STOP command is used only in an indirect command file or a batcP
command file. STOP prevents all further processing within the file.

FORMAT

[$]STOP

DESCRIPTION

STOP can be used by itself or as the action in an ON command.

EXAMPLE

$JOB DEMO
$ON WARNING GOTO Ll0
$RUN JOBI
$GOTO L20
$Ll0: RUN TEST
$STOP
$L20: ON WARNING STOP
$RUN JOB2
$RUN JOB3
$EOJ

P2-135

COMMAND SPECIFICATIONS

SUBMIT

The SUBMIT command sends a file containing batch commands to the batch
processor.

FORMAT

where

PDS> SUBMIT [/PRIORITY:n] [/NOTRANSFER]

FI LE? f ilespec

n is the priority at which the file is to be submitted
(for example, priority 1). n must be between 1 and
100.

/NOTRANSFER
inhibits the copying of filespec to SP.

f ilespec is the specification of a file containing batch
commands. The specification must contain a filename.
The default filetype is .BIS.

DESCRIPTION

The system submits the filename of the file of batch commands filespec
to a queue of jobs for subsequent processing in batch mode.

Unless filespec exists on a system device (that is, available to all
timesharing users) or unless /NOTRANSFER is specified, f ilespec is
automatically copied to device SP. SUBMIT/NOTRANSFER can be used when
the device on which f ilespec exists will still be mounted when the job
is dequeued.

EXAMPLES

1. PDS> SUBMIT

FILE? BA'I'CHFILE. BIS

2. PDS> SUBMIT/PRIORITY:6
FILE? BA'ICHJOB

3. PDS> SUBMIT/NOTRANSFER DKl:MYJOB

4. $SUBMIT MYJOB

P2-136

COMMAND SPECIFICATIONS

TYPE

The TYPE command causes the contents of one or more specified files to
be printed at the user's terminal. In batch, the file is output
directly to the batch log.

FORMAT

PDS> TYPE

FILE? filespec-1[, ..• filespec-n]

where

filespec is the specification of a file. The specification must
contain a filename and f iletype. Wild-cards are allowed.

EXAMPLES

1. ~ TYPE

FILE? (BARLEY.CBL;2, GRAHAM.CBL;2)

2. PDS> TYPE APPLE.DAT

3. $TYPE MKEE6.CBL

P2-137

COMMAND SPECIFICATIONS

UNFIX

The UNFIX command allows the user with PDS Command Privilege PR.RTC to
free a fixed task from memory.

FORMAT

where

PDS> UNFIX
TASK? taskname
[TERMINAL? terminal]

task name is the installed
from memory.

terminal is the terminal
unfixed. This
terminal=

EXAMPLES

PDS> UNFIX JK03

PDS> UNF MKEE9 TT6

name Of the

at which
default is

P2-138

task to be unfixed

the task is to be
the current user's

COMMAND SPECIFICATIONS

UNLOCK

The UNLOCK command unlocks a file that was locked as a result of being
improperly closed.

FORMAT

PDS> UNLOCK

FILE? filespec-1[, ••• ,filespec-n]

or

$UNLOCK filespec-1[, ••• ,filespec-n]

where

filespec is the specification of the file to be unlocked. Wild-cards
are allowed.

DESCRIPTION

If a program using File Control Services (FCS) has a file open with
write access and exits without first closing the file, the file will
be locked against further access as a warning that it may not contain
proper information. Typically the following information would not
have been written to the file:

1. The current block buffer being altered.

2. The record attributes which contain the end
information.

of file

By using the UNLOCK command, the user can access the file and
-c aJ·r·--- a~-te-rm1 n:e· -- -the- --ext~-e-nt:-- -----of _____ ""Effe-----a-arffage-- -~fr1a--per1iap_s ____ fake-- -
appropriate corrective action.

EXAMPLE

PDS> UNLOCK
FILE? THAMES.MAC~?

P2-139

.
Q)
c

1:
I.~
r£
I e> c
I~
lo

1a
I G>

Ill
10

Q)

IQ:

IAS User's Guide
DEC-11-0IUGA-C-D

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement .

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer

0 Higher-level language programmer

0 Occasional programmer (experienced)

[] User with little programming experience
r--i LJ Student programmer

0 Non-progranuner interested in computer concepts and capabilities

Name Date-------------
Organization _______________________________ __

Street----------------------------------~

CitY------~~------State ________ Zip Code ________ ~
or

Country

----~---Fold IIere--

·--- Do Not Tear · Fold IIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

~nmnama
Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

Printed in U.S.A.

	000
	001
	002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	P2-0001
	P2-001
	P2-002
	P2-003
	P2-004
	P2-005
	P2-006
	P2-007
	P2-008
	P2-009
	P2-010
	P2-011
	P2-012
	P2-013
	P2-014
	P2-015
	P2-016
	P2-017
	P2-018
	P2-019
	P2-020
	P2-021
	P2-022
	P2-023
	P2-024
	P2-025
	P2-026
	P2-027
	P2-028
	P2-029
	P2-030
	P2-031
	P2-032
	P2-033
	P2-034
	P2-035
	P2-036
	P2-037
	P2-038
	P2-039
	P2-040
	P2-041
	P2-042
	P2-043
	P2-044
	P2-045
	P2-046
	P2-047
	P2-048
	P2-049
	P2-050
	P2-051
	P2-052
	P2-053
	P2-054
	P2-055
	P2-056
	P2-057
	P2-058
	P2-059
	P2-060
	P2-061
	P2-062
	P2-063
	P2-064
	P2-065
	P2-066
	P2-067
	P2-068
	P2-069
	P2-070
	P2-071
	P2-072
	P2-073
	P2-074
	P2-075
	P2-076
	P2-077
	P2-078
	P2-079
	P2-080
	P2-081
	P2-082
	P2-083
	P2-084
	P2-085
	P2-086
	P2-087
	P2-088
	P2-089
	P2-090
	P2-091
	P2-092
	P2-093
	P2-094
	P2-095
	P2-096
	P2-097
	P2-098
	P2-099
	P2-100
	P2-101
	P2-102
	P2-103
	P2-104
	P2-105
	P2-106
	P2-107
	P2-108
	P2-109
	P2-110
	P2-111
	P2-112
	P2-113
	P2-114
	P2-115
	P2-116
	P2-117
	P2-118
	P2-119
	P2-120
	P2-121
	P2-122
	P2-123
	P2-124
	P2-125
	P2-126
	P2-127
	P2-128
	P2-129
	P2-130
	P2-131
	P2-132
	P2-133
	P2-134
	P2-135
	P2-136
	P2-137
	P2-138
	P2-139
	replyA
	replyB
	xBack

