Files-11 On-Disk Structure Specification

19-June-~1975
Revised 15-June-1977

Revised 15-April-1981

Copyright (C) 1975, 1977, 1981
Digital Equipment Corporation, Maynard, Mass.

The material included in this functional specification,
including but not limited to instruction times and operating
speeds, is for information purposes only. All such material
is subject to change without notice. Consequently Digital
Equipment Corporation makes no claim and shall not be liable
for its accuracy.

This software is furnished under a license for use only on a
single computer system and may be copied only with the
inclusion of the above copyright notice. This software, or
any other copies thereof, may not be provided or otherwise
made available to any other person except for use on such
system and to one who agrees to these license terms. Title
to and ownership of the software shall at all times remain
in Digital Equipment Corporation.

The information in this document is subject to change
without notice and should not be construed as a commitment
by Digital Equipment Corporation.

Digital FEquipment Corporation assumes no responsibility for
the use or reliability of its software on equipment which is
not supplied by Digital Equipment Corporation.

Files-11 On-Disk Structure Page 2

1.0 Scope

This document is a specification of the on-media
structure that 1is used by Files-11. Files-11l is a general
purpose file structure which is intended to be the standard
file structure for all medium to 1large PDP-11 systems.
Small systems such as RT-11 have been specifically excluded
because the complexity of Files-11l would impose too great a
burden on their simplicity and small size.

This document describes structure level 1 of Files-11,
also referred to as ODS-1 (on-disk structure version ‘1).
This has been implemented on the RSX-11 family, (RSX-11M,
RSX-11M-PLUS, IAS, and RSX-~11D) and on VMS. This document
describes the final 1level of functionality for ODS-1.
Structure level 2 (ODS-2) has been implemented on VMS and is
the basis for all new disk structure enhancements.

1.1 Summary of revisions made to this specification

1. Expanded File Characteristics to include most 0DS-2
options.

2. Corrected H.FPRO to H.DFPR.

3. Added new fields to home block for date and count of
" home block modifications.

4. Added Single Directory Support description and home
block field.

5. Added field in home block for pack serial number
(H.PKSR) .

6. Added description of modified storage control block
format to support large disks.

7. Restricted maximum number of blocks supported on a
volume to 1,044,480.

8. Restricted ODS-1 to one block "clusters".
9. Restricted ODS-1 to single volume structures.,

1#. Clarified and expanded references to operating system
support and relationship to 0ODS-2.

11. Removed RMS-11 definitions, to be provided 1in separate
specification common to ODS-1 and ODS-2.

Files-11 On-Disk Structure Page 3

2.4 Medium

Files-11 is a structure which is imposed on a medium.
That medium must have «certain properties, which are
described in the following section. Generally speaking,
block addressable storage devices such as disks and Dectape
are suitable for Files-11; hence Files-11 structured media
are generically referred to as disks.

2.1 Volume

The basic medium that carries a Files-1l1 structure is
referred to as a volume. A volume (also often referred to
as a unit) is defined as an ordered set of logical blocks.
A logical block is an array of 512 8-bit bytes. The logical
blocks in a volume are consecutively numbered from # to n-1,
where the volume contains n logical blocks. The number
assigned to a logical block is called its logical block
number, or LBN. Files-11 is theoretically capable of
describing volumes up to 232 blocks in size. In practice, a
volume should be at least 1A% blocks in size to be useful;
current implementations of Files-1l1 will handle volumes up
to 224 blocks.

The logical blocks of a volume must be randomly
addressable. The volume must also allow transfers of any
length up to A5k bytes, in multiples of four bytes. When a
transfer is longer than 512 bytes, consecutively numbered
logical bhlocks are transfered until the byte count is
satisfied. In other words, the volume can be viewed as a
partitioned array of bytes. It must allow reads and writes
of arrays of any length less than A5k bytes, provided that
they start on a logical block boundary and that the length
is a multiple of four bytes. When only part of a block is
written, the contents of the remainder of that logical block
will be undefined.

2.2 Volume Sets

This section is of historical interest only. 0ODS-1
does not and will not support volume sets. A volume set is
a collection of related units that are normally treated as
one logical device 1in the usual operating system concept.
Each unit contains its own Files-11 structure; however,
files on the various units in a volume set may be referenced
with a relative volume number, which wuniquely determines
which unit in the set the file 1is located on. Other

sections in this specification will make occasional
reference to volume sets and relative volume numbers where
hooks for their implementation exist. Since volume sets

have not been implemented as yet, however, no complete
specification is provided here.

Files-11 On-Disk Structure page 4

3.0 Files

Any data in a volume or volume set that is of any
interest (i.e., all blocks not available for allocation) is
contained in a file. A file is an ordered set of wvirtual
blocks, where a virtual block 1is an array of 512 8 bit
bytes. The virtual blocks of a file are consecutively
numbered from 1 to n, where n blocks have been allocated to
the file. The number assigned to a virtual block is called
(obviously) its virtual block number, or VBN. Each virtual
block is mapped to a unique logical block in the volume set
by Files-11. virtual blocks may be processed in the same
manner as logical blocks. Any array of bytes less than A5k
in length may be read or written, provided that the transfer
starts on a virtual block boundary and that its length is a
multiple of four.

3.1 File ID

Each file in a volume set is uniquely identified by a
File ID. A File ID is a binary value consisting of 48 bits
(3 PDP-11 words). It is supplied by the file system when
the file 1is created, and must be supplied by the user
whenever he wishes to reference a particular file.

The three words of the File ID are used as follows:
Word 1 File Number

Locates the file within a particular unit of the
volume set. File numbers must lie in the range 1
through 65535. The set of file numbers on a unit
is moderately (but not totally) dense; at any
instant in time a file number uniquely identifies
one file within that unit.

Word 2 File Sequence Number

Identifies the current use of an individual file
number on a unit. File numbers are re-used; when
a file is deleted its file number becomes
available for future wuse for some other file.
Each time a file number is re-used, a different
file sequence number 1is assigned to distinguish
the uses of that file number. The file sequence
number is essential since it is perfectly legal
for users to remember and attempt to use a File ID
long after that file has been deleted.

Word 3 Relative Volume Number

Identifies which unit of a volume set the file is
located on. Volume sets are at present not
implemented; the only legal value for the

e AR

Files-11 On-Disk Structure Page 5

relative volume number in any context is zero.

File Header

Fach file on a Files-11 volume is described by a file
header.

The file header is a block that contains all the

information necessary to access the file. It is not part of

the
file.

header

rather, it is contained in the volume's index

(The index file is described in section 5.1). The
block is organized into four areas, of which the

first three are variable in size.

3.2.1

Header Area

The information in the header area permits the
file system to verify that this block is in fact a
file header and, 1in particular, is the header
being sought by the user. It contains the file
number and file sequence number of the file, as
well as its ownership and protection codes. This
area also contains offsets to the other areas of
the file header, thus defining their size.
Finally, the header area contains a user attribute
area, which may be wused by the user to store a
limited amount of data describing the file.

Ident Area

The ident area of a file header contains
identification and accounting data about the file.
Stored here are the primary name of the file, its
creation date and time, revision count, date, and
time, and expiration date.

Map Area

The map area describes the mapping of wvirtual
blocks of the file to the logical blocks of the
volume. The mapping data consists of a 1list of
retrieval pointers. Each retrieval pointer
describes one logically contiguous segment of the
file. The map area also contains the linkage to
the next extension header of the file, if such
exists.

End Checksum

The last two bytes of the file header contain a 16
bit additive checksum of the remaining 255 words
of the file header. The checksum is used to help
verify that the block is in fact a file header.

Files-11 On-Disk Structure Page 6
3.3 Extension Headers
Since the file header 1is of fixed size, it is

inevitable that for some files the mapping information will
not fit in the allocated space. A file with a large amount
of mapping data is therefore represented with a chain of
file headers. Fach header maps a consecutive set of virtual
blocks; the extension linkage 1in the map area links the
headers together in order of ascending wvirtual block
numbers.

Multiple headers are also needed for files that span
units in a volume set. A header may only map logical blocks
located on its unit; therefore a multi-volume file |is
represented by headers on all units that contain portions of
that file.

3.4 File Header -~ Detailed Description

This section describes in detail the items contained in
the file header. Each item is identified by a symbhol which
represents the offset address of that item within its area
in the file header. Any item may be located in the file
header by locating the area to which it belongs and then
adding the wvalue of its offset address. Users who concern
themselves with the contents of file headers are strongly
urged to use the offset symbols. The symbols may be defined
in assembly language programs by calling and invoking the
macro FHDOFS$, which may be found in the macro library of any
system that supports Files-11l. Alternatively, one may find
the macro in the file F11MAC.MAC, which may be obtained from
the author.

3.4.1 Header Area Description
The header area of the file header always starts at

byte a. It contains the basic information needed for

checking the validity of accesses to the file.

3.4.1.1 H. IDOF 1 Byte Ident Area Offset
This byte contains the number of 16 bit words
between the start of the file header and the start
of the ident area. It defines the location of the
ident area and the size of the header area.

3.4.1.2 H.MPOF 1 Byte Map Area Offset

This byte contains the number of 16 bit words
between the start of the file header and the start
of the map area. It defines the location of the
map area and, together with H.IDOF, the size of
the ident area.

Files-11 On-Disk Structure Page 7

3.4.1.3

3.4.1.4

3.4.1.5

3.4.1.6

3.4.1.7

H.FNUM 2 Bytes File Number
This word contains the file number of the file.
H.FSFO 2 Bytes File Sequence Number

This word contains the file sequence number of the
file.

H.FLEV 2 Bytes File Structure Level

The file structure level is wused to identify
different versions of Files-11 as they affect the
structure of the file header. This permits
upwards compatibility of file structures as
Files-11l evolves, in that the structure level word
identifies the version of Files-11 that created
this particular file. This document describes
version 1 of Files-11; the only legal contents
for H.FLEV is 441 octal.

H.FOWN 2 Bytes File Owner UIC
H.PROG = H.FOWN+# Programmer (Member) Number
H.PROJ = H.FOWN+1l Project (Group) Number

This word contains the binary user identification
code (UIC) of the owner of the file. The file
owner is usually (but not necessarily) the creator
of the file.

H.FPRO 2 Bytes File Protection Code

This word controls-what access all wusers in the
system may have to the file. Accessors of a file
are categorized according to the relationship
between the UIC of the accessor and the UIC of the
owner of the file. FEach category is controlled by
a four bit field in the protection word. The
category of the accessor is selected as follows:

System Bits # - 3

The accessor is subject to system
protection if the project number of the
UIC under which he is running 1is 10
octal or less.

Owner Bits 4 - 7

The accessor is subject to owner
protection if the UIC under which he is
running exactly matches the file owner
uUIC.

Files-1l On-Disk Structure Page R

3.4.1.8

Group Bits 8 - 11

The accessor is subject to group
protection if the project number of his
UIC matches the project number of the
file owner UIC.

World Bits 12 - 15

The accessor is subject to world
protection if he does not fit into any
of the above categories.

Four types of access intents are defined in
Files-11: read, write, extend, and delete. Each
four bit field in the protection word is bit
encoded to permit or deny any combination of the
four types of access to that category of
accessors. Setting a bit denies that type of
access to that category. The bits are defined as
follows (these values apply to a right-justified
protection field):

FP.RDV Deny read access
FP.WRV Deny write access
FP.EXT Deny extend access
FP.DEL Deny delete access

When a user attempts to access a file, protection
checks are performed in all the categories to
which he is eligible, in the order system - owner
- group = world. The user is granted access to
the file if any of the categories to which he |is
eligible grants him access.

H.FCHA 2 Bytes File Characteristics
H.UCHA H.FCHA+@ User Controlled Char.
H.SCHA H.FCHA+1 System Controlled Char.

The user controlled characteristics byte contains
the following flag bits:

- 1 Bit, Reserved.
UC.NID Set if incremental dump (backup) is to
be disabled for this file.
UC.WBC Set if the file 1is to be write-back
cached; i.e., if a cache is used for

the file data, data written by a user is
only written back to the disk when is it
removed from the cache. Clear for
write-through cache operation.

e e S R S

Files-11 On-Disk Structure Page 9

UC.RCK

UC.WCK

UC.CNB

UC.DLK

UC.CON

The

Set if the file is to be read-checked.

All read operations on the file,
including reads of the file header(s),
will be performed with a read,

read-compare to assure data integrity.

Set if the file is to be write-checked.

All write operations on the file,
including modifications of the file
header(s), will be performed with a
write, read-compare to assure data

integrity.

Set if the file is allocated contiguous
best effort; i.e., as contiquous as
possible.

Set if the file 1is deaccess-locked.
This bit is used as a flag warning that
the file was not properly closed and may
contain inconsistent data. Access to
the file is denied if this bit is set.

Set if the file is logically contiguous;
i.e., if for all virtual blocks in the
file, virtual block i maps to logical
block k+i on one unit for some constant
k. This bit may be implicitly set or
cleared by file system operations that
allocate space to the file; the user
may only clear it explicitly.

system controlled characteristics byte

contains the following flag hits:

SC.SPL

SC.DIR

SC.BAD

SC.MDL

3 Bits, Reserved.
Reserved (Access Control List).

Set if the file is an intermediate file
for spooling.

Set if the file is a directory.

Set if there is a bad data block in the
file. This bit is as yet unimplemented.
It is intended for dynamic bad block
handling.

Set if the file is marked for delete.
If this bit is set, further accesses to
the file are denied, and the file will
be physically deleted when no users are
accessing it.

s S

Files-~11 On-Disk Structure Page 14

3.4.1.9

3.4.1.1@a

3.4.2

H.UFAT 32 Bytes User Attribute Area

This area is intended for the storage of a limited
quantity of "user file attributes", i.e., any data
the user deens useful for processing the file that
is not part of the file itself. An example of the
use of the user attribute area is presented in
section 6.1 (FCS File Format).

S.HDHD 46 Bytes Size of Header Area
This symbol represents the total size of the

header area containing all of the above entries.

Ident Area Description

The ident area of the file header begins at the word

indicated

by H. IDOF. It contains identification and

accounting data about the file.

3.4.2.1

3.4.2.2

3.4.2.3

3.4.2.4

3.4.2.5

I.FNAM 6 Bytes File Name

These three words contain the name of the file,
packed three Radix-5@ characters to the word.
This name usually, but not necessarily,
corresponds to the name of the file's primary
directory entry.

I.FTYP 2 Bytes File Type

This word contains the type of the file 1in the
form of three Radix-5@ characters.

I.FVER 2 Bytes Version Number

This word contains the version number of the file
in binary form.

I.RVNO 2 Bytes Revision Number

This word contains the revision count of the file.
The revision count is the number of times the file
has been accessed for write.

I.RVDT 7 Bytes Revision Date

The revision date is the date on which the file
was last deaccessed after being accessed for
write. It is stored in ASCII in the form
"DPMMMYY", where DD is two digits representing the
day of the month, MMM is three characters
representing the month, and YY is the last two
digits of the year.

Files-11 On-Disk Structure Page 11

3.4.2.6

3.4.2.7

3.4.2.8

3.4.2.9

3.4.2.1¢9

3.4.2.11

3.4.3

I.RVTI A Bytes Revision Time

The revision time is the time of day on which the
file was last deaccessed after being accessed for
write. It is stored in ASCII in the format
"HHMMSS", where HH is the hour, MM is the minute,
and SS is the second.

I1.CRDT 7 Bytes Creation Date

These seven bytes contain the date on which the
file was created. The format is the same as that
of the revision date above.

I1.CRTI 6 Bytes Creation Time

These six bytes contain the time of day at which
the file was created. The format is the same as
that of the revision time above.

I.EXDT 7 Bytes Expiration Date

These seven bytes contain the date on which the
file becomes eligible to be deleted. The format
is the same as that of the revision and creation
dates above.

- 1 Byte (unused)

This unused byte is present tc round up the size
if the ident area to a word boundary.

S.IDHD 46 Bytes Size of Ident Area
This symbol represents the size of the ident area

containing all of the above entries.

Map Area Description

The map area of the file header starts at the word

indicated

by H.MPOF. It contains the information necessary

to map the virtual blocks of the file to the logical blocks
of the volume.

3.4.3.1

3.4.3.2

M.ESON 1 Byte Extension Segment Number

This byte contains the value n, where this header
is the n+lth header of the file; 1i.e., headers of
a file are numbered sequentially starting with 4.

M.FERVN 1 Byte Extension Relative Volume No.

This byte contains the relative volume number of
the wunit in the volume set that contains the next

Files-11 On-Disk Structure Page 17?2

3.4.3.3

3.4.3.4

3.4.3.5

3.4.3.6

3.4.3.7

3.4.3.8

3.4.3.9

sequential extension header for this file. If
there is no extension header, or if the extension
header is located on the same unit as this header,
this byte contains #.

M. EFNU 2 Bytes Extension File Number

This word contains the file number of the next
sequential extension header for this file. TIf
there is no extension header, this word contains
.

M.EFSQ 2 Bytes Extension File Sequence Number

This word contains the file sequence number of the
next sequential extension header for this file.
If there is no extension header, this word
contains #.

M.CTSZ 1 Byte Block Count Field Size

This byte contains a count of the number of bytes
used to represent the count field in the retrieval
pointers in the map area. The retrieval pointer
format is described in section 3.4.3.9 below.

M.LBSZ 1 Byte LBN Field Size

This byte contains a count of the number of bytes
used to represent the logical block number field
in the retrieval pointers in the map area. The
contents of M.CTSZ and M.LBSZ must add up to an
even number.

M.USE 1 Byte Map Words In Use

This byte contains a count of the number of words
in the map area that are presently occupied by
retrieval pointers.

M.MAX 1 Byte Map Words Available

This byte contains the total number of words
available for retrieval pointers in the map area.

M.RTRV variable Retrieval Pointers

This area contains the retrieval pointers that
actually map the virtual blocks of the file to the
logical blocks of the wvolume. Each retrieval
pointer describes a consecutively numbered group
of logical blocks which is part of the file. The
count field contains the binary wvalue n to
represent a group of n+l1 logical blocks. The
logical block number field contains the logical

Files-11 On-Disk Structure Page 13

block number of the first 1logical block in the
group. Thus each retrieval pointer maps virtual
blocks j through j+n into logical blocks k through
k+n, respectively, where 3j is the total number
plus one of virtual blocks represented by all
preceding retrieval pointers in this and all
preceding headers of the file, n is the value
contained in the count field, and k is the value
contained in the logical block number field.

Although the data in the map area provides for
arbitrarily extensible retrieval pointer formats,
Files-11 has defined only three. Of these, only
the first is currently implemented; the other two
are presented out of historical interest; they
will never be supported.

Format 1: M.CTSZ
M.LBSZ

1
3

The total retrieval pointer length |is
four bytes. Byte 1 contains the high
order bits of the 24 bit LBN. Byte 2
contains the «count field, and bytes 3
and 4 contain the low 16 bits of the
LBN.

Format 2: M.CTSZ
M.LBSZ

2
2

The total retrieval pointer length Iis
four bytes. The first word contains a
16 bit count field and the second word
contains a 16 bit LBN field.

| Count |

| Y |

| LBN |

e el ————————— !
Format 3: M.CTSZ = 2

M.LBSZ = 4

The total retrieval pointer length |is
six bytes. The first word contains a 16
bit count field and the second and third

Files-11 On-Disk Structure Page 14

3.4.3.10

3.4.4

words contain a 32 bit LBN field.

S.MPHD 18 Bytes Size of Map Area
This symbol represents the size of the map area,

not including the space used for the retrieval
pointers.

End Checksum Description

The header check sum occupies the last two bytes of the
file header. It is verified every time a header is read,
and is recomputed every time a header is written.

3.4.4.1

H.CKSM 2 Bytes Block Checksum

This word is a simple additive checksum of all
other words in the block. It is computed by the
following PDP-11 routine or its equivalent:

MoV Header-address,Rg
CLR R1
MOV #255.,R2
10S: ADD (RA)+,R1
SOB R2,10A$
MOV R1, (R#)

Files-11 On-Disk Structure
3.4.A File Header Layout

Header Area

IR A Ratatatele [iniaiaitetall |
H.MPOF | Map Area Offset | Ident Area Offset |

H.PROJ] File Owner UIC

fl. SCHA | System Char. | User Char.

:

|
User Attribute Area

|

|

|

Ident Area

[File Type

| =mmmmmma o mean ammmmmmnnn e |

| Version Number

I.RVTI

| == Revision Time -1

s

|
b
i
i
i
i3
i3
i

Page 15

H. IDOF
H.FNUM
H.FSEQ
H.FLEV
H.FOWN
H.PROG
H.FPRO
H.FCHA
H.UCHA

H.UFAT

S.HDHD

I.FNAM

I.FTYP
I.FVER
I.RVNO

I.RVDT

Files-11 On-Disk Structure

I.CRDT

Map Area

M.ERVN

M.LBSZ

M.MAX

R iaininiatet | -
| |

[t R ittt ettt
|

| —= —
| Creation Date

:-- -
'
|

| ~= _—
| Creation Time

|~ —
|

[et e
|

|~ ——
| Expiration Date

|~ -
|

R Rt | -
| (not used) |
[ttt el |ommm s mmmmm i n s e
IR tnintelatel R ihahataastatate et
| Extension RVN | Ext. Seg. Num.
[PESSSSISERSSRSSEY PSS —

| Extension File Seq. Num.

fremeecmnananannnna |=rrennrenr e e
| LBN Field Size Count Field Size

|
|
|
| Retrieval Pointers
|
|
|

Directories

Page 16

I.CRTI

I.EXDT

S.IDHD

M.ESON
M, EFNU
M.EFSQ
M.CTSZ
M.USE

S.MPHD
M.RTRV

H.CKSM

Files-11 On-Disk Structure - Page 17

Files-11 provides directories to allow the organization
of files in a meaningful way. While the File 1ID is
sufficient to locate a file uniquely on a volume set, it ‘is
hardly mnemonic. Directories are files whose sole function
is to associate file name strings with File ID's.

4.1 Directory Heirarchies

Since directories are files with no special attributes,
directories may 1list files that are in turn directories.
Thus the wuser may construct directory heirarchies of
arbitrary depth and complexity to structure his files as he
pleases.

4.1.1 User File Directories

Current implementations of Files-11 all support a two
level directory heirarchy which is tied in with the user
identification mechanism of the operating system. FEach UIC
is associated with a user file directory (UFD). References
to files that do not specify a directory are generally
defaulted to the UFD associated with the user's UIC. All
UFD's are listed in the volume's MFD under a file name
constructed from the UIC. A UIC of [n,m] associates with a
directory name of "nnnmmm.DIR;1", where nnn and mmm are n
and m padded out to three digits each with leading zeroes.
Note that all number conversions are done in octal.

Two points should be noted here. The UFD structure
described here 1is not intrinsically part of the Files-11
on-disk structure; rather, it is a convenient cataloging
system applied by various operating systems. Also, there is
no hard and fast relationship between the owner UIC of a
file and the UFD 1in which it is listed. Generally, they
will correspond, but not necessarily.

4.2 Directory Structure

A directory is a file consisting of 16 byte records.
It is structured as an FCS fixed length record file, with no
carriage control attributes (see section 6 for a description
of FCS files). Each record is a directory entry. The
entries are not required to be ordered, or densely packed,
nor do they have any other relationship to each other,
except that no two entries in one directory may contain the
same name, type, and version. Each entry contains the
following:

File ID The three word binary File ID of the file that
this directory entry represents. If the file
number portion of the File ID field is zero, then
this record 1is empty and may be used for a new

Files-11 On-Disk Structure

directory entry.

Name The name of the
It is stored as
Radix~50 packed

Type The type of the
to as the
characters. It

Page 18

file may be up to 9 characters.
three words, each containing three
characters.

file (also historically referred
extension) may be up to three
is stored as one word of Radix-5@

packed characters.

Version The version number of the file is stored in binary

in one word.

Type |

e da s c . a e |

Version |

4.3 Directory Protection

Since directories

are files with no special

characteristics, they may be accessed like all other files,

and are subject to the same protection mechanism.
implementations of Files=
for the management of directories, namely FIND, REMOVE,

However,
11 support three special functions
and

ENTER. A user performing such a directory operation must
have the following privileges to be allowed the various

functions:

Find: READ

Remove: READ, WRITE

Enter: READ, WRITE
Note that the same privilege is required for both enter and
remove. The recovery for an operation that involves a

remove at the beginning of the sequence is an enter.

H
!
}
|
i
i
i

Files—11 On-Disk Structure Page 19

5.4 Known Files

Clearly any file system must maintain some data
structure on the medium which is used to control the file
organization. 1In Files-11 this data is kept in five files.
These files are created when a new volume is initialized.
They are unique in that their File ID's are known constants.
These five files have the following uses:

File ID 1,1,0 is the index file. The index file is the
root of the entire Files-11 structure. It contains the
volume's bootstrap block and the home block, which is wused
to identify the volume and locate the rest of the file
structure. The index file also contains all of the file
headers for the volume, and a bitmap to «control the
allocation of file headers.

File ID 2,2,@ is the storage bitmap file. It |is used
to control the allocation of logical blocks on the volume.

File ID 3,3,@ is the bad block file. It is a file
containing all of the known bad blocks on the volume.

File ID 4,4,# is the volume master file directory (or
MFD) . It forms the root of the volume's directory
structure. The MFD lists the five known files, all first
level user directories, and whatever other files the user
chooses to enter.

File ID 5,5, is the system core image file. Its use
is operating system dependent; its basic purpose is to
provide a file of known File ID for the use of the operating
system.

S.1 Index File

The index file is File ID 1,1,#. It is listed in the
MFD as INDEXF.SYS;l. The index file is the root of the
Files-11 structure in that it provides the nmeans for
identification and initial access to a Files-11 volume, and
contains the access data for all files on the wvolume
(including itself).

5.1.1 Bootstrap Block

Virtual block 1 of the index file is the volume's boot
block. It is always mapped to logical block @ of the
volume. If the volume is the system device of an operating
system, the boot block contains an operating system
dependent program which reads the operating system into
memory when the boot block is read and executed by a
machine's hardware bootstrap. If the volume is not a system
device, the boot block contains a small program that outputs

Files-11 On-Disk Structure Page 20

a message on the system console to inform the operator to
that effect.

5.1.2 Home Block

Virtual block 2 of the index file is the volume's home
block. The logical block containing the home block is the
first good block on the volume out of the sequence 1, 256,
512, 768, 124, 1288, 256n. The purpose of the home
block is to identify the volume as Files-11, establish the
specific identity of the volume, and serve as the ground
zero entry point into the volume's file structure. The home
block is recognized as a home block by the presence of
checksums in known places and by the presence of predictable
values in certain locations.

Items contained in the home block are identified by
symbolic offsets in the same manner as items in the file
header. The symbols may be defined in assembly language
programs by calling and invoking the macro HMBOFS, which may
be found in the macro library of any system that supports
Files-11. Alternatively, one may find the macro in the file
F11MAC.MAC, which is available from the author.

5.1.2.1 H.IBSZ 2 Bytes Index File Bitmap Size

This 16 bit word contains the number of blocks
that make up the index file bitmap. (The index
file bitmap is discussed in section 5.1.3.) This
value must be non-zero for a valid home block.

5.1.2.2 H.IBLB 4 Bytes Index File Bitmap LBN

This double word contains the starting logical
block address of the index file bitmap. Once the
home block of a volume has been found, it is this
value that provides access to the rest of the
index file and to the volume. The LBN is stored
with the high order in the first 16 bits, followed
by the low order portion. This value must be
non-zero for a valid home block.

5.1.2.3 H.FMAX 2 Bytes Maximum Number of Files

This word contains the maximum number of files
that may be present on the volume at any time.
This value must be non-zero for a valid home
block.

5.1.2.4 H.SBCL 2 Bytes Storage Bitmap Cluster Factor
This word contains the cluster factor used in the

storage bitmap file. The cluster factor is the
number of blocks represented by each bit in the

Files-11

5.1.2.5

5.1.2.A

5.1.2.7

5.1.2.8

5.1.2.9

5.1.72.10

On-Disk Structure Page 21

storage bitmap. Volume clustering can not
implemented in ODS-1; the only legal value for
this item is 1.
H.DVTY 2 Bytes Disk Device Type

This word is an index identifying the type of disk
that contains this volume. It is currently not
used and always contains @.

H.VLEV 2 Bytes Volume Structure Level

This word identifies the volume's structure level.
Like the file structure level, this word
identifies the version of Files-11 which created
this volume and permits upwards compatibility of
media as Files-11 evolves. The volume structure
level is affected by all portions of the Files-11
structure except the contents of the file header.
This document describes Files-~11 version 1; the
only legal values for the structure level are 401
and 462 octal. The former (4@1) is the standard
value for most volumes. The latter (4@2) is an
advisory that the volume contains a multiheader
index file. (A multiheader index file is required
to support more than about 26,000 files. The
index file may in fact be multiheader without the
volume having a structure level of 402).

H.VNAM 12 Bytes Volume Name

This area contains the volume label as an ASCII
string. It is padded out to 12 bytes with nulls.
The volume label is used to identify individual
Files-11 volumes.

- 4 Bytes Not Used

H.VOWN 2 Bytes Volume Owner UIC

This word contains the binary UIC of the owner of
the volume. The format is the same as that of the
file owner UIC stored in the file header.

H.VPRO 2 Bytes Volume Protection Code

This word contains the protection code for the
entire volume. Its contents are coded in the same
manner as the file protection code stored in the
file header, and it is interpreted in the same way
in conjunction with the wvolume owner uIC. All
operations on all files on the volume must pass
both the volume and the file protection check to
be permitted. (Refer to the discussion on file
protection in section 3.4.1.7).

Files-11 On-Disk Structure

5.1.2.11

5.1.2.12

5.1.2.13

5.1.2.14

5.1.2.15

5.1.2.16

Page 22

H.VCHA 2 Bytes Volume Characteristics

This word contains bits which provide additional
control over access to the volume. The following
bits are defined:

CH.NDC Obsolete, used by RSX=11D/IAS. Set if
device control functions are not
permitted on this volume. Device
control functions are those which can
threaten the integrity of the volume,
such as direct reading and writing of
logical blocks, etc.

CH.NAT Obsolete, used by RSX-11D/IAS. Set if
the volume may not bhe attached, i.e.,
reserved for the sole use by one task.

CH.SDI Set if the volume contains only a single
directory. If this bit 1is set, no
directories should be created on the
volume other than the MFD. The access
methods should also be informed of this
situation, e.qg. by setting the DV.SDI
bit in the device characteristics word.

H.DFPR 2 Bytes Default File Protection

This word contains the file protection that will

be assigned to all files created on this volume if

no file protection is specified by the user. '

- 6 Bytes Not Used

H.WISZ 1 Byte Default Window Size

This byte contains the number of retrieval
pointers that will be used for the "window" (in
core file access data) when files are accessed on
the volume, 1if not otherwise specified by the
accessor.

H.FIEX 1 Byte Default File Extend

This byte contains the number of blocks that will
be allocated to a file when a user extends the
file and asks for the system default value for
allocation.
H.LRUC 1 Byte Directory Pre-access Limit
This byte contains a count of the number of
directories to be stored in the file system's
directory access cache. More generally, it is an
estimate of the number of concurrent users of the

Files-11

5.1.2.17

5.1.2.17

5.1.2.17

5.1.2.18

5.1.2.19

5.1.2.20

On-Disk Structure Page 23

volume and its use may be generalized 1in the
future.

H.REVD 7 Bytes Date of Last Home Block
Revision

This field i1l defined field is in the standard
ASCII date format and reflects the date of the
last modifications to fields in the home block.

H.REVC 2 Bytes Count of Home Block Revisions

This field reflects the number of above mentioned
modifications.

- 2 Bytes Not Used
H.CHK1 2 Bytes First Checksum

This word is an additive checksum of all entries
preceding in the home block (i.e., all those
listed above). It is computed by the same sort of
algorithm as the file header checksum (see section
3.4,4.1).

H.VDAT 14 Bytes Volume Creation Date

This area contains the date and time that the
volume was initialized. It is in the format
"DDMMMYYHHMMSS", followed followed by a single
null. (The same format is used in the ident area
of the file header, section 3.4.2).

- 382 Bytes‘Not Used

This area is reserved for the relative volume
table for wvolume sets. This field will not be
used, although some versions of DSC referenced
this area.

5.1.2.21 H.PKSR 4 Bytes Pack Serial Number

This area contains the manufacturer supplied
serial number for the physical volume. For last
track devices, the pack serial number is contained
on the volume in the manufacturer data. For other
devices the user must supply this information
manually. The serial number is contained in the
home block for convenience and consistency.

5.1.2.22 - 12 Bytes Not Used

Files-11 On-Disk Structure Page 24

5.1.2.23

5.1.2.24

5.1.2.25

5.1.2.26

5.1.2.27

H. INDN 12 Bytes Volume Name

This area contains another copy of the ASCII
volume label. It is padded out to 12 bytes with
spaces. It is placed here in accordance with the
volume identification standard (STD 1A7).

H.INDO 12 Bytes Volume Owner

This area contains an ASCII expansion of the
volume owner UIC in the form "[proj,prog]". Both
numbers are expressed in decimal and are padded to
three digits with leading 2zeroes. The area is
padded out to 12 bytes with trailing spaces. It
is placed here in accordance with the volume
identification standard (STD 1A/7).

H. INDF 12 Bytes Format Type

This field contains the ASCII string "DECFILE11A"
padded out to 12 bytes with spaces. It identifies
the volume as being of Files-11 format. It is
placed here in accordance with the volume
identification standard (STD 167).

- 2 Bytes Not Used
H.CHK2 2 Bytes Second Checksum
This word is the last word of the home block. It
contains an additive checksum of the preceding 255

words of the home block, computed according to the
algorithm listed in section 3.4.4.1.

I

o A AR i

G s e it P e R)
Files-11 On-Disk Structure Page 25 Files-11 On-Disk Structure page 26
5.1.2.A Home Block Layout == -
l r
| mmmmam I mman — A ST |
| Index File Bitmap Size | H.IBSZ | ---S-ume M°d1flcffigf-fount : H.REVC
[P, o o —— | TEmTm e
l Index File | H.IBLB ,' (not used) ~ }
(R il | Fi T
rst C k
! Bitmap LBN | | irst hec*ng “““““““““ { H.CHKL
[=mmae - e |]
| Maximum Number of Files | H.FMAX [‘-l H.VDAT
| e — ————— ———— |
| Storage Bitmap Cluster Factor | H.SBCL | == __:
[P SESSE o o —— e o o | |
| Disk Device Type | H.DVTY | = -‘:
oo s Temmmmmess s s e -=1 | Volume Creation Date
| Volume Structure Level | H.VLEV | ~=]
P, ——————— O R |
| | H.VNAM :‘- _‘:
| ~= | | |
| | | —= -
|~ = | |
| Volume Name | | mmmmmman . e ——— ————]
| == = |
-= ~=		
:—- **{	(not used)	
I . i		
-= (not used) ~=1		
i } T		
I satadededededetedetetatel s	H	
Volume Owner UIC	H.VOWN J~m Pack Serial Number l_, - PSR	
~ mmm e —===		
Volume Protection	H.VPRO	- et ot e
- e n -]	- ———— ———	
Volume Characteristics	H.VCHA	
[P, —————— o mm———— —	~ .	
Default File Protection	H.DFPR	
st B -————— ~-=		== -]
} :	(not used)	
_— — . .		
(not used)		:
f-= - [== -1		
		i
mmmmm e mm e DU	mmmmm e -=] . _	
H.FIEX	Def. File Extend	Def. Window Size
PSS P U, —————] [mmmmmmmm _ o		
H.REVD		Directory Limit
==	~mmmmmmmas Eiakaintabainbete	
1-= =1 [-- -		
Volume Modification Date		Volume Name

Files-11 On-Disk Structure Page 27

H.INDO

Volume Owner

|

|

|

|
| |
| | H. INDF
| -= =1
| |
| ~= =
| Format Type
|-= ~=1
| |
== -=~1
| |
|-= -=1
| |
| s s s s s s eSS S S S -]
| (not used)
| s s S e |
| Second Checksum | H.CHK?2
| ~mmmmmm e o ——

5.1.3 Index File Bitmap

The index file bitmap is used to control the allocation
of file numbers (and hence file headers). It is simply a
bit string of length n, where n is the maximum number of
files permitted on the volume (contained in offset H.FMAX in
the home block). The bitmap spans over as many blocks as is
necessary to hold it, i.e., max number of files divided by
4396 and rounded up. The number of blocks in the bitmap 1is
contained in offset H.IBSZ of the home block.

The bits in the index file bitmap are numbered
sequentially from @ to n-1 in the obvious manner, i.e., from
right to left in each byte, and in order of increasing byte
address. Bit j is used to represent file number j+l: if
the bit is 1, then that file number is in use; if the bit
is @, then that file number is not in use and may be
assigned to a newly created file.

Files-11 On-Disk Structure page 28

The index file bitmap starts at virtual block 3 of the
index file and continues through VBN 2+m, where m is the
number of blocks in the bitmap. It is located at the
logical block indicated by offset H.IBLB in the home block.

5.1.4 File Headers

The rest of the index file contains all the file
headers for the volume. The first 16 file headers (for file
numbers 1 to 16) are logically contiguous with the index
file bitmap to facilitate their location; the rest may be
allocated wherever the file system sees fit. Thus the first
16 file headers may be Jocated from data in the home block
(H.IBSZ and H.IBLB) while the rest must be located through
the mapping data in the index file header. The file header
for file number n is located at virtual block 2+m+n (where m
is the number of blocks in the index file bitmap).

5.2 Storage Bitmap File

The storage bitmap file is File ID 2,2,8. It is listed
in the MFD as BITMAP.SYS;1. The storage bitmap is used to
control the available space on a unit. 1t consists of a
storage control block which contains summary information
about the unit, and the bitmap itself which 1lists the
availablilty of individual blocks.

5.2.1 Storage Control Block

Virtual block 1 of the storage bitmap is the storage
control block. It contains summary information intended to
optimize allocation of space on the unit. The storage
control block has the following format for disks with less
than 4896126, (516,896 blocks) :

(3 bytes) Not used (zero)

(1 byte) Number of storage bitmap blocks (less than 127)
(2 bytes) Number of free blocks in lst bitmap block

(2 bytes) Free block pointer in lst bitmap block

(2 bytes) Number of Eree blocks in nth bitmap block
(2 bytes) Free block pointer in nth bitmap block
(4 bytes) Size of the unit in logical blocks

For larger disks the following format is used:
(3 bytes) Not used (zero)
(1 byte) Number of storage bitmap blocks (greater than 126)

(4 bytes) Size of the unit in logical blocks
(246 bytes) Not used (zero)

s SRR R

Files-11 On-Disk Structure Page 29

Note: Current implementations of Files-11 do not correctly
initialize the word pairs containing number of free blocks
and free block pointer for each bitmap block, nor are these
values maintained as space is allocated and freed on the
unit. They are therefore best looked wupon as 2n garbage
words and should not be used by future implementations of
Files-11 until the disk structure is formally updated.

5.2.2 Storage Bitmap

Virtual blocks 2 through n+l are the storage bitmap
itself. It is best viewed as a bit string of length m,
numbered from # to m-1, where m is the total number of
logical blocks on the unit rounded up to the next multiple
of 4996, The bits are addressed in the usual manner (packed
right to 1left in sequentially numbered bytes). Since each
virtual block holds 4496 bits, n blocks, where n = m/4096,
are used to hold the bitmap. Bit j of the bitmap represents
logical block j of the volume; if the bit is set, the block
is free; if clear, the block is allocated. Clearly the
last k bits of the bitmap are always clear, where k is the
difference between the true size of the volume and m, the
length of the bitmap.

The size of the bitmap is limited to 256 blocks. In
fact, due to existing implementations on all RSX systems,
the retrieval pointers must be in one of the following two
forms:

1. A single retrieval pointer mapping the entire BITMAP.SYS
file.

2. Two retrieval pointers, the first mapping the storage
control bhlock only, and the second mapping the entire
bitmap proper.

This restriction limits ODS-1 to a volume of 4796255 blocks
(1,444,480 blocks or about 504 megabytes).

5.3 Bad Block File

The bad block file is File ID 3,3,a. It is 1listed in
the MFD as BADBLK.SYS;l1. The bad block file is simply a
file containing all of the known bad blocks on the volume.

5.3.1 Bad Block Descriptor

Virtual block 1 of the bad block file is the bad block
descriptor for the volume. It is always located on the last
good block of the volume. This block may contain a 1listing
of the bad blocks on the volume produced by a bad block scan
program or diagnostic. The format of the bad block data is

Files-11 On-Disk Structure Page 304

identical to the map area of a file header, except that the
first four entries (M.ESQN, M.ERVN, M.EFNU, and M.EFSQ) are
not present. The last word of the block contains the usual
additive checksum. (See section 3.4.3 for a description of
the map area.) This block is included in the bad block file
to save the data it contains for future re-initialization of
the volume.

Bad Block Descriptor Layout

O e e |

| LBN Field Size

|
[

Map Words Avail. | Map Words in Use
|

Block Checksum

|
|
|
|
|
| Retrieval Pointers
|
|
|
|
|
|

5.4 Master File Directory

The master file directory is File ID 4,4,0. It is
listed in the MFD (itself) as @@A@A@A.DIR;1. The MFD is the
root of the volume's directory structure. It lists the five
known files, plus whatever the user chooses to enter. In
the two level UFD structure described in section 4.1.1, the
MFD contains entries for all user file directories.

5.5 Core Image File

The core image file is File ID 5,5,8. It is listed in
the MFD as CORIMG.SYS;1. Its use 1is operating system
dependent. In general, it provides a file of known File ID
for the use of the operating system, for use as a swap area,
for example, or as a monitor overlay area, etc.

6.0 FCS File Structure

File Control Services (FCS) is a user level interface
to Files-11. Its principal feature 1is a record control
facility that allows sequential processing of variable
length records and sequential and random access to fixed
length record files. FCS interfaces to the virtual block

Files-11 On-Disk Structure Page 31
facility provided by the basic Files-1ll structure.

Aol FCS File Attributes

FCS stores attribute information about the file in the
file's user attribute area (H.UFAT - see section 3.4.1.9).
It uses only the first 7 words; the rest are ignored by
FCS, but are reserved by DEC. (RMS uses an additional 3
words, 14 words in all, for relative and indexed file
attributes.) The following items are contained 1in the
attribute area; they are identified by the wusual symbolic
offsets (relative to the start of the attribute area). The
offsets may be defined in assembly language programs by
calling and invoking the macro FDOFF$ DEFSL. Flag values
and bits may be defined by calling and invoking the macro
FCSBTS$. These macros are in the system macro library of any
operating system that supports Files-1l. Alternatively, all
these values are defined in the system object library of any
system that supports Files-11, and may be obtained at 1link
time.

A.l.1 F.RTYP 1 Byte Record Type
This byte identifies which type of records are

contained in this file. The following three
values are legal:

R.FIX Fixed length records.

R. VAR Variable length records.

R.SEQ Sequenced Variable Length records
6.1.2 F.RATT 1 Byte Record Attributes

This byte contains record attribute bits that
control the handling of records under various
contexts. The following flag bits are defined:

FD.FTN Use Fortran carriage control if set.
The first byte of each record is to be
interpreted as a standard Fortran
carriage control character when the
record is copied to a carriage control
device.

FD.CR Use implied carriage control if set.
when the file is copled to a carriage
control device, each record 1is to be
preceded by a line feed and followed by
a carriage return. Note that the FD.FTN
and FD.CR bits are mutually exclusive.

FD.PRN Used to 1indicate that the two byte
sequence number field for R.SEQ record
format is to be interpreted as print

Files-11 On-Disk Structure Page 32

control information (see Section 6.2.3.1
for format of print information).

FD.BLK Records do not cross block boundaries if
set. Generally, there will be dead
space at the end of each block; how

this 1is handled 1is explained in the
description of record formats in section
6.2.

F.RSIZ 2 Bytes Record Size

In a fixed length record file, this word contains
the size of the records in bytes. In a variable
or sequenced variable 1length record file, this
word contains the size 1in bytes of the longest
record in the file.

F.HIBK 4 Bytes Highest VBN Allocated

This 32 bit number is a count of the number of
virtual blocks allocated to the file. Since this
value is maintained by FCS, it is usually correct,
but it is not guaranteed since FCS is a user level
package.

F.EFBK 4 Bytes End of File Block

This 32 bit number is the VBN in which the end of
file 1is 1located. Both F.HIBK and F.EFBK are
stored with the high order half in the first two
bytes, followed by the low order half.

F.FFBY 2 Bytes First Free Byte

This word is a count of the number of bytes in use
in the wvirtual block containing the end of file;
i.e., it is the offset to the first byte of the
file available for appending. Note that an end of
file that falls on a block boundary may be
represented in either of two ways. If the file
contains precisely n blocks, F.EFBK may contain n
and F.FFBY will contain 512, or F.EFBK may contain
n+l and F.FFBY will contain a.

S.FATT 14 Bytes Size of Attribute Block
This symbol represents the total number of bytes
in the FCS file attribute block.

FCS File Attributes Layout

| ammmmmm e e e !

Files-11 On-Disk Structure Page 33
F.RATT | Record Attr. | Record Type | F.RTYP
[mmmrr s m s e [haiataiatate |
| Record Size (Bytes) | F.RSIZ

| s |

| Highest VBN | F.HIBK
== ==

| Allocated

R ahatabeiele ———————

| End of File | F.EFBK
| == =1

| VBN |

| mmmm e m s e ————————— ————— |

| First Free Byte | F.FFBY
T | S.FATT

.2 Record Structure

This section describes how records are packed in the
virtual blocks of a disk file. In general, FCS treats a
disk file as a sequentially numbered array of bytes.
Records are numbered consecutively starting with 1.

6.2.1 Fixed Length Records

In a file consisting of fixed length records, the
records are simply packed end to end with no additional
control information. If the record 1length 1is odd, each
record is padded with a single byte. The content of the pad
byte is undefined. For direct access, the address of a
record is computed as follows:

Let: n = record number
k = record size (in bytes)
m = byte address of record in file
q = number of records per block
j = VBN containing the start of the record
i = byte offset within VBN j
then h = ((k+1)/2)2 (rounded up record length)
m = (n-=1)h
j = m/512+1 (truncated)
i = m mod 512

The previous discussion assumes that records cross block
boundaries (that is, FD.BLK is not set). If records do not
cross block boundaries, they are limited to 512 bytes, and
the following equations apply (the variables are defined as
ahove) :

((k+1)/2)2 (rounded up record length)
512/k (truncated)

(n-1)/g+1 (truncated)

((n=1) mod q)h

e I
[T]

i S B S 4+ - U I A

Files-11 On-Disk Structure Page 34

6.2.2 variable Length Records

In a file consisting of wvariable 1length records,
records may be up to 32767 bytes in length. Each record is
preceded by a two byte binary count of the bytes in the
record (the count does not include itself). For example, a
null record is represented by a single zero word. The byte
count is always word aligned; i.e., if a record ends on an
odd byte boundary, it is padded with a single byte. The
content of the pad byte is undefined.

If records do not cross block boundaries (FD.BLK 1is set),
they are limited to a size of 514 bytes. A byte count of -1
is used as a flag to signal that there are no more records
in a particular block. The remainder of that block is then
dead space and the next record in the file starts at the
beginning of the next block.

6.2.3 Sequenced Variable Length Records

The format of a sequenced file is identical to a
variable length record file except that a two byte sequence
number field is located immediately after the byte count
field of each record. This field contains a binary value
which is usually interpreted as the line number of that
record (see Section A.1.2 FD.PRN and Section f.2.3.1). The
sequence number is not returned as part of the data when a
record 1is read, but is available separately. Note that the
record byte count field counts the sequence number field as
well as the data of the record.

5.2.3.1 Format of Two Byte Print Control Field in R.SEO
Records

If the FD.PRN bit is set in the record attribute then
the two byte "sequence number" field is used to contain
carriage control data for the record. Byte @ is print
control information to act upon bhefore the record data is
output to a unit record device; byte 1 1is print control
information to act upon after the record data has been
output to a unit record device.

The format of each byte is as follows:

Bit 7 Bits 6-0 Meaning

%) 4 No carriage control

[4 count (1-127) "count" new lines (CR/LF)
Bit 7 Bit A Bit 5 Bits 4-9 Meaning

Files-11 On-Disk Structure Page 35

1] [ASCII C@# set ASCII char to
output (CR,FF etc.)
1 [1 ASCII C1 set ASCII char (8 bit code)
to output
1 1 a CODE (#A=63) Device specific code
1 1 1 - Reserved
NOTE

The print control field is not currently supported
by FCS or RMS-11.

