ACG~77-001-00-8

o - . . o . 2
Filss-11 On=-Disk Structure Spscifiicztion 8 NQV 77

Anarew C. GOLQSEELF
3/11 Software Development
S/E840 Ext. 5054

1§ Jun 1975 -
COMPANY CONFIDENTIAL

Revised 15 dJune 1577

-

E. E. Marison -- Addition of RMS structures

Document 130-958-032-02

Copyright (C) 1675, 1977
Digital Equipment Corporation, Maynard, Mass.

The materizl included in this functional specificztion,
includinz but not limited to instruction times and cperating
speeds, is for information purposses only. A1l such materizal
is subjeect <to change without notice. Consequently Digital
Zquipment Corporation makes no claim and shall not Dbe liable
for its accuracy.

Y
1]

Tnis software is furnisned under a license for use only on a
single computer system and may be copied only with the
inclusion of the above copyrizht notice. This software, cr
ny other copies thereof, may not be provxdnd or otherwis
made available to any otner person except for use on such
system and to one who agrees to these license teras. Title
to and ownership of the software shall at all times remain
in Digital Equipaent Corporation.

The information in this document is subject to change
without onaotice and should not be construed as a commitment
by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for
the use or reliability of its software on equipment which 1is
not supplisd by Digital Equipmsnt

mesn%t Corporzaticn,

FILES-11 ON-DISKX STRUCTUREZ PAGE 2

1.0 Scope

This document is a specificaticn of the cn-madi
Structure that 1s used by Files-11. Files-11 is a gener
purpose file structure which is intended to be the standa:
file structure for all amediunm to large PDP-11 systems.
Small systems such as RT-11 have beepn Specifically excludszd
Decause the complexity of Files-11 Wwould iapose too grezt a
burden on their sizmplicity and smdll size.

This document describes structure level 1 of Files-11,
also referred to as 0DS-1 (on-disk structure version 1).
This is the only version of Files-11 which is implemented on
any of the supporting operating systems. A proposed
structure level' 2 (0D3-2) exists but has not been
implemented anywhere. '

2.0 Medium

Files-11 is a structure which is inposed on 2 wedium.
That aedium must have certzin properties, which are
descrivbed in the following section. Generally speaking,

block addressable storage devices such as disks and Dectape
are suitable for Files-11; hence Files-11 ‘structured media
are generically referred to as disks. :

2.1 Volume

The basic medium that carries a Files=-11 structure 1is
referred to as a yolume. A volume (also often referred to
28s a unit) is defined as an crdered set of logic2l blocks.
A logical block is an array of 512 3-bit bytes. The logical
blocks in a volume are consecutively numbered from 0 to n-1,

where the volume contains n logical blocks. The number
assigned to a logical block is called its logzical block
number, or LBN. Files=-11 is theoretically capzable of

describing volumes up to 2%#%#32 blocks in size. In practice,
a volume should be at least 100 bloecks in size to be useful;
current implementations of Files-11 will handle volumes up
to 2%#224 plocks.

The logical blocks of a volume m@must be randomly
addressable. The volume must zlso allow transfers of any
lengtn up to 65k bytes, in multiples of four bytes. When 2
transfer is longer than 512 bytes, consecutively numbered
logical blocks azare transfered unti ths byte count is
satisfied. In other words, the volume can be viewed as a
partitioned array of bytes. It must allow reads and writes
of arrays of any length less than 65k bytes, provided that
they start on a logical bloeck soundary and that the length
is a multiple of four bytes. When only part of a bloek is

T}
3R]
(o
1)
Ui

3-11 Q!

]
[w]
H
n
¥
wn
+3
V]
[e
(@]
]
[oy
e v]
Lel
o
L
(%)
(]

[WN]

written, tne contsants of tns remainder of that logical block
will b2 undefined

2.2 Yolume Sets

4 volums set is a collsction of related units that are
norazlly treatea 2s one logical device in the usual
cperating system concept. Tach unit contains its cwn
Files-11 structure; however, files on the variocus units in

a volume set may be referenced with a pslative yolums
pumder, which uniquely determines which unit in the sst the
file is located on. OQther sections in this specification
will wm@make occasional reference to volume sets and relative
volume numbers waere hooks for tneir implementation exist.
Since volume sets have not been implemanted as yet, however,
no ccmplete specification is provided here.

3.0 Files

Any dzta in a volume or volume set £thsa is of =any
interest (i.e., all blocks not available for alloc tion) 1is
contained in 2 file. A file is an ordered set of xirtual
Dlocks, where a virtual ©block 1is an array of 512 8 bit
bytes. The virtual blocks of a file are <consscutively
numbsred from 1 to n, where n blocks have been allocated to
the file. The number assigned to a virtual block:.is called
(obviouslys its xirtusl block number, or VEN. Each virtual
bloeck is mapped to a unique logical bleock in the volume s=st
by Files=-11. Virtual blocks may be processed in ths same
manner as logical blocks. Any array of bytes less than 65k
in lengtn zay be read or written, provided that the transfer
starts on a virtual block boundary and that its length is
multiple of four. :

1))

3.1 File ID

Each file in a volume set is uniquely identified Dby =a
File ID. A File ID is a binary value consisting of 48 bits
(3 PDP-11 words). It is supplied by the file system -when
the f:ie is <created, and mwmust be supplied by the user
wnenever he wishes to reference a particular file.

The tnree words of the File .ID are used zs follows:

Word 1 File Number
Locates the file within a particular unit of the
volume set. File numbers must lie in the range 1
throughn 65535. The set of file numbers on a2 unit
is moderately (but not totally) dense; &t zany

FILZ3-11 ON-DISK STRUCTURE

U
x>
(2]
)
&=

instant in time 2 file number uniguely identifies
one file witnin that unit.

aord 2 file Sequence Number
Identifies the current usse of an individual file
number on a unig. File numbers are re-ussd; waen
a file 1is deleted its file number beccaes
available for future uss for scae other file,

Each time 2 file nuaber is re-us=2d, 2 different
file sequence number is assigned to distinguisnh
the uses of that file number. The file sequence
number is essential since it is perfectly legal
for users to remember and attempt to use a File ID
long after that file has been deleted.

Word 3 Relative Volume Number
Identifies which unit of a2 volume set tha file is
located on. Volume sets ars at pPresent , not
implemented; the only 1legal value for the
relative volume nuaber in any context is zero.
3.2 File Header
. » Each file on a Files-11 volume is deseribed by a ile
bazader. The <file header is a block that contains all the
information necessary to access the file. It is not part of
the file; rather, it 1is contained in the volume's index
file. (The index file is described in section 5.1). The

header block 1is organized into four arezs, of which the
first three are varizble in size.

3.2.1 Header Area

The information in the header - area permits the
file system to verify that this block is in fact a
file header and, in particular, is . the header
being sought by the user. It contains the file
number and file sequence number of the file, as
well as its ownership and protection codes. This
area also contains offsets to the other areas of
the file header, thus defining their size.
Finally, the header area contains a user attribute
area, which may be wused by the user to s:ore a
limited amount of data describing the file.

3.2.2 Ident Aresa

The ident area of a file header contains
identification and accounting datz about the file.
Stored here are the primary name of the file, its

FILES-11 ON-DISX STAUCTURE PAGE 5

ereation date and time, revision count, date, and
time, and expiration date.

L)

.2.3 Map Aresa

Tne map area describes the @apping of virtual
bloeks of the file to the logical locks of the
]

volume. The mzpping dzta consists of a list of
retrieval pointars. Each retrieval pointer
describes one logically contiguous segzent of <the
file. The @map area zlso contains the linkage %o
the next extension header ¢f the Tfile, if such
exists.

3.2.4 . End Checksum

The last two bytes of the file header contain a 198
bit additive <checksum of the remaining 255 words
of the file header. The checksum is used to help
verify that the block is in fact a file header.

3.3 Extension Headers

Sinca the "file header 1is of ~fixed size, it is
inevitable that for some files the mapping information will
not fit in the allccated space. 4 file with a large amount
of mapping data 1is therefore represented with a chain of

file neaders. Each neader maps 2 consecutive set of virtual
blocks; the extension 1linkage 1in the map area links the
headers together in order of ascending virtual block
numbers.

Multiple headers are also needed for files that span
units in a volume set. A header may only map logical blocks
located on its unit; . therefore a multi-volume file Is
represented by headers on all units that contain portions of
that file.

3.8 File Header - Detailed Description
This section describes in detail the items contained in

the file header. Each item is identified by 2 symbol which
represents the offset address of that item within its azarea

in the file header. Any item may be located in the file
header by locating the area to which it belongs and then
adding the value of its offset a2ddress. Users who concern

tnemselves witn thne contents of file hezders are strongly
urged to use tne offset symbols. The symbols may be defined
in assembly language programs by calling and invoking the
macro FHDOF$, which may be found in the macro library of any
system that supports Files-11. Alternatively, one may find

A

ilzs

S-11 CN-DISX STRUCTURE PAGE b

tas mzacro in the file F11MAC.MAC, which may de obtained from

the

byte

author.

o Header Aresa Description
The header arez of the file header always starts =zt
0. It <contains the basie information needesd for

checking the validity of accesses to ths file.

3.4.1.1 H.IDOF 1 Byte Ident Area QOffset

This byte contains the number of 16 bit words
between the start of the file hsader and the start
of the ident area. It defines tha location of the
ident 2rea and the size of the header arsa.

3.4.1.2 H.MPQOF 1 Byte Map Area Qffset
Tnis byte contains the number of 16 bit words
Detwsen the start of the fils neader and taes start
of the map area. It defines the location of the
map ares and, together with H.IDOF, the size of

the. ident ares.

3.4.1.3 H.FNUX 2 Bytes File Number

This word contains the file number of the file.

3.4.1.4 H.FSEQ 2 Bytes File Sequence Nuaber
This word contains the file 3equence numaber of thne
file.

3.4.1.8 H.FLEV 2 Bytes .| File Structure Level

The file structure 1level is used to identify
different versions of Files-11 as they affect the
structure of the file .header. This permits
upwards compatibility of file structures as
Files-11 evolves, in that the structure level word
identifies the version of Files-11 that created
this particular file. This document describes
version 1 of Files-11; the only legal contents
for H.FLEVY is 401 octal. '

3.4.1.6 H.FOWN 2 Bytes File Owner UIC

H.PROG = H.FOWN+Q0 Programmer (Member) Nuamabapr
H.PROJ = H.FOWN+1 Project (Group) Nuaber

This word contains the binary user identificatio
code (UIC) of the owner of the file. The file
owner is usually (but not necessarily) the creator

Ci-DISK STRAUCTURE PAGE 7
of the file. .

H.FPRO 2 EBytes File Protection Code

Tnis werd controls what access 2ll wusers 1in the
system may nave to the file. Accessors of a file
are categorized according to the relationsiaip
between the UIC of the zccessor and tas UIC of the
owner of the file. Each category is centrclled by
a four bit field in tne protection word. The

s

category of the accessor 4L

Systen

-Groupv

_WOrld

salected as follows:
Bits 0 - 3

The accessor 1is subject to systea
protection if the project number of the
UIC under whiech he is running 1is 10
octal or less.

Bits 4 - 7

The accessor 1is subject to ownesr
protection if the UIC under which he is
running exzactly matches the file owner
UIC.

Bits 8 - 11 .

The accessor is subject to group
protection if the project number of his
UIC matches the project number of the
file owner UIC.

Bits 12 - 15
The accessor 1is subject to world

protection 1if he does not fit into any
of thes above categories.

Four types of access intents are defined 1in
Files-11: read, write, extend, and delete. Ezach
four bit field in the protection word 1is ©bit

encoded to permit or deny any combination of the
four types of access to that category of
accessors. Setting 2 bit denies that type of

access to that category. The bits are defined as

follows

(these values apply to 2 right-justified

protection field):

FP.RDV
FP.WRYV
FP.EXT
FP.DEL

Deny read access
Deny wWwrite access
Deny extend zccess
Deny delete access

r)

ILES-11 Gii-DISK STRUCTURZ PA

(]
(]
[0 9]

Wnen a user attempts to access 3 file, prctection
cnecks are performsd in all tne categories to
which ne is eligible, in ths order system - own=er
- .gZroup - wWorld. The user is granted z2cczsss to
the file if any of the categoriass to wnich he is
elizible grants him access.

H.FCHA 2 Bytes File Characteristics
4.0CHA d.FCHA+Q User Controlled Cnar.
H.SCHA d.FCHA+1 System Controlled Char.

The user controlled characteristics byte contains
the following flag bits:

Uc.CON Set if the file is logicallw contiguous;
i.e., if for all virtual bloeks in the

file, virtual bloeck i maps to logical
bDlock k+i on one unit for some constant
k. This bit may b2 implicitly set or
cleared by file system operations that
allocate space to the file; the user
may only clear it explicitly.

UC.DLX Set 1if the file is deaccess-locksad.
This bit is used as a flag warning that
the file was not properly closed and may
contain inconsistent data: Access to
the file is denied if this bit is set.

The system controlled characteristics byte
contains the following flag bits:

SC.MDL Set if the file is wmarked for delete.
If this bit is set, further accesses to
the file are denied, and the file will
be physically deleted when no users are
accessing 1it.

SC.BAD Set if there is a bad data block in the
file. This bit is as yet unimplemented.
It is intended for dynamie bad bloeck
handling.

H.UFAT 32 Bytes User Attribute Area

This area is intended for the storage of a2 limited
quantity of "user file attributes", i.e., any datsa
the user deems useful for processing the file thnat
is not part of the file itself. An example of the
use of the user attribute area 1is presented in

-

Section 6.1 (FCS File Format).

-

FiLessS=-i1

3.4.1.10

3.4.2
The

indicated

- =~

S.HDHD 46 Bytes Size of Header Area

This symbol represents the total size of the
header area coantaining all of the above entries.

Ident Arez Description

ident arez of the file header begins =zt the word
by H.I10QF. It contains identification and
accounting data about the file.
I.FNAM 6 Bytes File Name

3

W)

w

o201

=
H¥]
n

These three words contain the name of the file,
packed three Radix-50 characters to the word.
This name usually, but not necessarily,
corresponds to the name of the file's primary
directory entry. .

I.FTYP 2 Bytes File Type

This word contains the type of the file in the
form of three Radix-50 characters.

I.FVER 2 Bytes Version Nuaber

Tnis word contains the version number of the file
in binary form. .

I.RVNOC 2 Bytes Revision Number

This word contazins the revision count of the file.
Thne revision count is the number of times the file
has been accessed for write.

I.RVDT 7 Bytes Revision Date

The revision date is the date con whichn the file
was last deaccessed after being accessed for
write. It is stored 1in ASCII 1in the form
"DDMMMYY", where DD is two digits representing the
day of the =month, MMM 1is three characters
representing the @month, and YY is the last two
digits of the year.

- I.RVTI & Bytes Revision Time

The revision time is the time of day con which the
file wazs last deaccessed after being accessed for
write. It is stored in ASCII in %the format
"HHMMSS™", wnhere HH is the hour, MM is the minute,
and SS is the second.

FILZS-11 ON-DISX STRUCTURE PAGE 10

I.CRDT 7 Bytes Creation Dat'e

wy
=
o
A

These seven bytes contain the date on whicn t
file was created. The format is the szmz as tn
of the revisiocn date abeva.

a
2
2

t

.4.2.8 I.CRTI 6 Bytes Creation Time

L)y

These six bytes contain the time of d2a2y at which
the file was creaztad. The format is the sazme as
that of the revision time above.

I.EXDT 7 Bytes Expiration Date

w
=
n
.
(Vo]

These seven bytes contain the date on which the
file Decomes eligible to be deleted. The format
is the same as that of the revision 2nd creztion
dates above.

(VY]

L4.2.10 - 1 Byte (unused)

This unused byte is present to round up “ne size
if the ident zrea to 2 word boundary.

3.4.2.11 S.IDHD U6 Bytes Size of Ident Area

This symbol represents the size of the ident Tarea
containing &4ll of the above entries.

3.4.3 Map Area Description

The map area of the file header starts at the word
indicated by H.MPOF. It contains the informatioen nacessary
to map the virtual bloeks of the file to the logical &btlocks
of the volume.

3.4.3.1 M.ESQN 1 Byte Extension Segment Number

This byte contains the value n, where this header
is the n+1th header of the file; i.e.,_headers of
a file are numbered sequentially starting with O.

3.4.3.2 M.ERVN 1 Byte Extension Relative Volume No.

This byte contains the relative volume number of
the wunit in the volume set that contains ths next
sequential extension hsader for this file. If
there 1is no extension header, or if the extension
header is located on the same unit as this header,
this byte contains 0.

- ==

3.4.3.9

(@)
[}
(W)
=
n
[
i
(=]
¥}
[e
(@]
5%
<
v}
£
V)
e ¥
(9]
(3]

M.EFNU 2 Bytes Extension File Number

This word contains the file nuambesr of the nsxt
sequential extension hesader for this file. I7
there is no extension nszder, this word contzins
Q.

M.EF3Q 2 Bytes gxtension File Sesquences Muaber

This word contains the file sequence numbdsr of ¢
next sequential extension headsr for this fil
If there is .no extension hneader, tais WO

‘contains O.

M.CTSZ 1 Byte Block Count Field Sizé

This byte contains a count of the number of Dbytes
used to represent the count field in the retrieval
pointers in the map area. The retrieval opocinter
format is described in section 3.4.3.9 below.

M.LBSZ 1 Byte LEN Field Size

Tnis byte contains s count of the number of Dbytes
used to represent the logical block number field
in the retrieval pointers in the - map area. The
contents of M.CTSZ and M.LBSZ must add up to zn
even number. -

1 Y

M.USE 1 Byte Map Words In Use

This byte contains a count of the number of words
in the map area that are presently occupied bdvy
retrieval pointers.

M.MAX 1 Byte Map Words Available

This byte <contains the total number of words
available for retrieval pointers in the map arez.

M.RTRV variable Retrieval Pointers

This area contains the retrieval pointers that
actually map the virtual blocks of the file to ths
logical blocks of the volume. Eaeh retrieval
pointer describes a2 consecutively numbered group
of logical blocks which is part of the file,. The
count field <c¢ontains the binary value n
represent a2 group of n+1 logiczl blocks.
logical block number field contzins the logi
block number of the first logical block in
group. Thus each retrievzl pointer mzaps virt
blocks j through j+n into logical blocks k thro

Y M IF cr
® = o 0

£ a0 A

[1 S]]
S

N

ON-DISX STRUCTURE PAGE 12

k+n, respectively, where j is the tctal nuad
plus one of virtual blocks represented by al
preceding ' retrieval ©pointers in this and =z
preceding headers of the file, n 1is the alu
contained 1in thae count field, and k is the value
contained in the logiczl block nuaber field.

Althougzh the data in the map area provides for
arbitrarily extensible retrisval pointer formats,
Files-11 nas defined only three. Qf these, only
the first is currently implemented; &ths other twe
‘are _presented- out of historical interest zand
Decause they may be resurrected in the future.

Format 1: M.CTSZ 1

M.LBSZ 3

The total retrieval pcinter langth is
four bytes. Byte 1 contazins the high
order bits of the 24 bit LBN. Byte 2

eontains the count field, and bytes 3
and 4 contain the low 18 bits of <¢he
LBN.

Count H High

Format 2: M.CTSZ
M.LBSZ

“"wn
[A\SIN\V]

The total retrieval pointer 1length is
four bytes. The first word contqln 2
16 bit count field and the second rd
contains a 16 bit LBN field.

1

]

H Count !

| mmmemmmcmcccmeeeeeee :

: LEBN H

]]

[ttt hadednd e pladndadad b |
Format 3: M.CTSZ = 2

M.LBSZ = 4

The total retrieval pointer 1lengtn 1is
six bytes. The first word ccntains z 196
bit count field and :2he second znd third
words ccntain a 22 bit LBN field.

i Count |
|mmmmmecccccccecccaee i
i High !
== LBN --
i Low |
] 1]
| - - e mooe .- ee-]
3.4.3.10 S.MPHD 10 Bytes Size of Map Arez

This symbol repressnts the size of the mz2p area,
not including the space wused for the retrieval
"pointers.

3.4.4. End Checksum Description
The neader check sum occupies the last two bytes of the
file hneader. It 1is verified every time a header is read,
and is rscomputed every tize a headsr is written.
3.4.4.1 H.CXSM 2 Bytes Block Checksum
This word is a simple additive checksum of all
othner words in the block. It is computzad by the

following PDP-11 routi?e or its equivalent:

MOV Header-address, RO

CLR R1

MQV #255.,R2
103: ADD (RO)+,R1

SOB R2,103

MQV R1, (RO)

FILES-11 CN-DISX STRUCTURZ

w
1=
*

H.MPCF

H.PROJ

H.SCHA

Ident Aresa

I1.RVTI

-

................... e cccccmmmmcmm——————

Map Area 0ffset | Ident Area Qffset

1}

D AR D D D D S S D D D D G D D WS D D D AP W W D AR W D D WD GD WS W D Gn D W D >

User Attribute Area

D D WD P WD WD A D S W D D D WD D D WD D D D G G D S WP U D W D D - G D D > - -

D P R WD AP D R R D Eh D D W R P D AT R D D G D W WP WD D A D A WD w W W G = =

D D > D D D D AR D G =D D D W WD D D D WD D WD G R WD D D D D En W D W W W =

‘ Revision Date
i

PAGE 14

ol
(o]
(w)
(@]
1)

e
5]
7
[any
<

]

S

[}

Q

H.

H.FLEV

| . H.FOuN

H.PROQOG
H.FPRO
H.FCHA
H.UCHA

H.UFAT

S.HDHD

I1.FNAM

I.CRDT

Map Areza

M.ERVN

M.LBSZ

-M.MAX

CN-DISK STRUCTURE

H

== Revision Time .

H

1 |

emcemcccccccee————— ! --

]]

] j

] 1

Lo e ccccccccccce————

]

]

]

[.-

i Creation Date

HE -

]

1

1

| e eeccccccccmcemceeeeeeeeeeeacece———eo

]

]

]

baa -

i Creation Time

bee -

)

]

! -

e e e cetcccccccemccmcecm . e o . -———————

3

'

1

[-

i Expiration Date

bea -

]

]

i 1

e mcccccccmm—————— , -

i (not used) i

e mm————— m———————— e cccccmccc———————
PEY

] 1

e cccccccmcccc———— e ccccmccc————————

' Extension RVN i Ext. Seg. Num

1]

| o = o= e ccccmmcc—em——————

i Extension File Number

]

e cccccmccca———————— e e ———————————

i Extension File Seq. Num

]]

leccmcccccc e ——————— eaccccmcccem———————

i LBN Field Size | Count Field Size

1]

l ------------------- ' -

i Map Words Avail. | Map Words in Use

- e wn

----- O w w n wn WD WS e | e G S e W W e e am -

Retrieval Pocinters

. R WD G B D WP D WP D WD WD D WD W WD W D WP D WD WP W WD D D VD W ww WD wm > W, - oo -

D AD G D WD S D S S WD WS W A W WD WD D WD D D A G D WD U WD A W > Ad W W ww o=

PAGE 15

I.CRTI

I.EXDT

S.IDHD

M.USE
S.MPHD
M.RTRV

H.CXSM

FILES-11 ON-DISX STRUCTURE PAGE 18

4.0 Directories

Files-11 provides directories to allow ths organization
of files in a meaningful way. While the File ID is
sufficient to locate a file uniquely on a voluame set, it is
hardly "mnemonic. Directories are files whose sole function
is to associate file name strings with File ID's.

4.1 Directory Heirarchies

Since directories are files with no special attributes,
directories may 1list files that are in turn directories.
Thus the wuser may construct directory heirarchies of
arbitrary depth and complexity to structure his files as he
pleases.

4.1.1 User File Directories

_ Current implementations of Files-11 all support =z two
level directory heirarchy which 1is tied in with the user
identification mechanism of the operating system. Each UIC
is associated with a yser file directory (UFD). References
to files that do not specify a directory are generally
defaulted to the UFD associated with the user's UIC. 4ll
UFD's are listed in the volume's MFD under a file name
constructed from the UIC. A UIC of (n,m] associates with a
directory name of "nnnmmm.DIR;1", where nnn 2nd =m@m are n
and m padded out to three digits each with leading zerces.
Note that all number conversions are done in octal.

Two points should be noted here. The UFD structure
described here is not intrinsically part of the Files-11
on-disk structure; rather, it is a convenient cataloging
system applied by various operating systems. Also, there is
no hard and fast relationship between the owner UIC of a
file and the UFD in which it is listed. Generally, they
will correspond, but not necessarily.

4.2 Directory Structure

A directory is a file consisting of 16 byte records.
It is structured as an FCS fixed length record file, with no
carriage control attributes (see section 6 for a2 description
of FCS files). Each record is a directory entry. The
entries are not required to be ordered, or densely packed,
nor de¢ they have any other relationship to ezch other,
except that no two entries in one directory may contain the
same name, type, and version. Eaeh entry contains the
following:

-

';l]

ILZS-11 CN-DISK STRUCTURE PAGE 17

)
P
...
[}
-
o

‘The three word binary File ID of the fils
this directcry entry represents. If th
nuader porticn of the File ID field is zero
this record is empty and may be ussd fo
directory entry.

tlame The name of tne file m2y bs up to § chara
It is stored as three words, each containing
Radix-50C packed characters.

Type The type of the file (a2lso historically referred
to as the - extension) may be wup to three
characters. It is stored 2s one word of Rzdix-50
packed characters.

Version The version number of the file is stored in binzry
in one word.

. e e Bt e e e e vom e e e e ——

<t
®
"3
. (0]
[
o
o

4.3 ' Directory Protection

Since directories are files with no Special
characteristics, they may be accessed like all other files,
and are subject to the same protection mechanism. However,
implementations of Files-11 support three special functions
for the management of directories, namely FIND, REMOVE, and
ENTER. A user 9performing such a directory operation must
have the following privileges to be allowed the variocus
functiocns: '

FIND: READ
REMOVE: READ, WRITE
ENTER: READ, WRITE, EXTEND

)
[
.
]

£S-11 ON-DISX STRUCTURE PAGE 18

5.0 Known Files

Clearly any file system must maintain some d
structure on the madium waich is used to control the f
organization. In Files-11 this data is kept in five fil
Tnese files are:- created when 2 new volums is initializ
Tney are unique in that their File ID's are known constant

Tnese five files have the following uses:

File ID 1,1,0 is tne index file. The index file is the
rocot of the entire Files-11 structure. It contains the
volume's bootstrap block and the home block, which is wused
to identify the volume and locate the rest of the file
structure, The index file also contains all of the file
headers for the volume, and a bitmap to <control the
allocation of file neaders.

File ID 2,2,0 is the storage bitmao file. It is used
to control the allocation of lozical blocks on thne volums.

File ID 3,3,0 is the bad block file. It is a file
containing all of the known bad blocks on the voluma.

_ File ID 4,4,0 is the volume master file directorv (or
MED). It forms the root of the volume's directory
structure. The MFD lists the five known files, all first
level .user directories, and whatever other files the user

chooses to enter. . . ’
File ID 5,5,0 is the system gore imaze file. Its use
is operating system dependent; its basic purpose is to

provide a2 file of known File ID for the use of the operating
system.

5.1) Index File

The index file is File ID 1,1,0. It is listed 1in the
MFD as INDEXF.SYS;1. Tne index file is the root of the
Files-11 structure in that it provides the means for
identification and initial access to a Files-11 volume, and
contains the access data for all files on the volune
(inecluding itself).

5.1.1 Bootstrap Block

Virtual block 1 of the index file is the volume's Dcot
block. It is always mapped ¢to logical block 0 of the
volume. If the volume is the system device of an operating
system, the boot block <contains an operating system
dependent program which reads the operating system 1in%to
memory when the boot bleck 1s read zand executed by a

F

FilLzS-11 ON-DISX STRUCTURE) PAGE 19

Qachine's hardware bootstrap. If the volume is not 2 systen
device, the Doot block contains a small progrza that outputs
8 message on the system console to inform the operator to
that efrfect.
5.1.2 dome Block

Virtual block 2 of ths index file is the volume's homsa
bleck. The logical blcock containing the home block is the
first zood block on the volume out of the segquence 1, 254§,

512, 768, 1024, 1280, 255%n. The purpose of the home
block is to identify the volume as Files-11, establish the
specific identity of the volume, and serve as the ground
zere entry point into the_volume’s file structure. The haome
block 1is orecognized as a home block by the presence of
checksums in known places and by the presence of predictable
values in certain loczations.

Items contained in the home block are identified by
symbdolic offsets in the same manner a3 items in the file
header. The symbols may b= defined in assembly language
programs by calling and invoking the mzcro HMBOFS$, which nay
be found in the macro library of any system that supports
Files-11. Alternatively, one may find the macro in the file
F11MAC.MAC, which is available from the author.

5.1.2.1 H.IBSZ 2 Bytes Index File .Bitmap Size

This 1¢ bit word contains the nuamber of blocks
that make wup the index file bitmap. (The index
file bitmap is discussed in section 5.1.3.) This
values must be non-zero for a valid Home bloczk.

5.1.2.2 H.IBLB 4 Bytes Index File Bitmap LBN

This double word. contains the starting 1logical
block address of the index file bitmap. Once ths
home block of 2 volume has been found, it is this
value that provides access to the rest of the
index file and to the volume. The LBN is stored
with the high order in the first 16 bits, followed
By the low order portion. This value aust be
non-zero for a valid home block.

5.1.2.3 H.FMAX 2 éytes Maximum Number of Files

This word contains the maximum number of files
that may be present on the volumes at any tinme
This value must be non-zero for a valid home

block.

FILES=-11

ul
—_
[\N}
=

5.1.2.10

CN=-DISK STRUCTURE PAGE 20

- H.SBCL 2 Bytes Storage Bitmazp Cluster Factor

This word contains the cluster factor used in the
storage bitmap file. The cluster factor is the
number of blocks repressnted by each bit in the
storage bitmap. Volume clustering is not
implemented at present; the only legal valus for
this item is 1. -

H.DVTY 2 Bytes Disk Device Type

This word is an index identifying the type of disk
that contains this volume. It is currently not
used and always contains 0.

H.VLEV 2 Bytes Volume Structure Level

This word identifies the volume's struzture level.
Like the file sStructure level, this word
identifies the version of Files-11. which created
this volume and permits upwards compatibility of
mediz as Files-11 _evolves. The volums structure
level 1is affected by 211 portions of the Files-11

structure except ths contents of the file header.

This document describes Files-11 version 1; the
only legal value for the structure level is 401
octal. . ©

H.VNAM 12 Bytes Volume Name

This area contains the volume label as an ASCII
string. It is padded out to 12 bytes with nulls.
The volume label is used to identify individual
Files-11 volumes.

- 4L Bytes Not Used
H.VOWN 2 Bytes Velume Owner UIC

This word contains the binary UIC of the owner of
the volume. The format is the same as that of the
file owner UIC stored in the file header.

H.VPRO 2 Bytes Volume Protection Code

This word contains the protection <code for the
entire volume. Its contents are coded in the same
manner as the file protection code stored in the
file header, and it is interpreted 'in the sazme way
in conjunction with the volume owner UIC. All
operations on all ~files on the volume must pass
both the volume and the file protection check to
be permitted. (Refer to the discussion on file

]

5.1.2.15

CN=-DISK{ STRUCTURE PAGE

n

protecticn in section 3.4.1.7).
H.VCHA 2 Bytes Volume Characteristics

This word contains bits which provide additional
control over access tc tans volume. Ths fellowing
0Oits z2re defined:

t i 2vice control functicns zre not
raitted on tais volume. Device
control functions are those whieh o2zn
threaten the integrity of the volunme,
Ssuch as direct reading and writing of.
logical blocks, etc.

CH.NDC S
P

A
o
e

® m
T ey

CH.NAT Set if the volume may not be attached,
i.e., reserved for thz sole use by ons
task.

d.FPRQO 2 Bytes Default File Protection

This word contains the file protection that will
be assigned to all files created on this volume if
no file protection is specified by the user.

- 6 Bytes Not Used
H.WISZ 1 Byte - Default Window Size
This byte contazins the number of . retrieval

pecinters that will ©be used for the "window" (in
core file access data) when files are accessed on
the volume, if not otherwise specified by the
accessor.

H.FIEX 1 Byte - Default File Extend

This byte contains the number of blocks that will
be allocated to a file when 2 user extends the
file and asks for the system default value for
allocation.

H.LRUC 1 Byte Directory Pre-access Limit

This byte <contains a count of. the number of
directories to be stored in the file system's
directory access cache. More generally, it is
estimate of the number of concurrent users of th
volume and its use =may be generalized in ¢
future.

[&]
[I |

o3

5.1.2.19

5.1.2.22

5.1.2.23

5.1.2.24

CN-DISK STRUCTURE o PAGE 22
- 11 Bytes Not Used
d.CHK1 2 Bytes First Checksunm

This word is an additive checksum of all entries
preceding in the home block (i.e., =21l those
listed above). It 1s computed by the sames sort of
algorithm as the file header checksum (see section
3.4.4.1).

H.VDAT 14 Bytes Volume Creation Date

This area contains the date and time that the
volume was initialized. It is in the format
*DDMMMYYHHEMMSS", followed followed by a single
null. (The same format is used in the ident area
of the file header, section 3.4.2).

- 398 Bytes Not Used

Thnis area is reserved for the relative voluze
table for volume sets.

H.INDN 12 Bytes Volume Name

Tais area contains another copy of the -ASCII
volume label. It is padded out to 12 bytes with
spaces. It is placed here in accordance with the
proposed volume identification standard.

2.INDO 12 Bytes Volume OQwner

This area <contains an ASCII expansion of the
volume owner UIC in the form "[proj,progl". Eoth
numbers are expressed in decimal and are padded to
three digits with leading zerces. The area is
padded cut to 12 bytes with trailing spaces. It
is placed here 1in accordance with the proposed
-volume identification standard. ‘

H.INDF 12 Bytes Format Type

This field contains the ASCII string "DECFILE11A"
padded out to 12 bytes with spaces. It identifies
the volume as being of Files-11 format. It 1is
placed here in accordance with the proposed volunme
identification standard.

- 2 Bytes Not Used

(8 }]

CN-DIS{ STRUCTURE . PAGE 22

H.CHXZ2 2 Bytes Second Chscksum

This word is the last word of the home block. It
contains an additive checksum of tne preceding 255
words of tine nome block, computed according to the
algoritha listed in section 3.4.4.1,

FILES-11 ON-DISX STRUCTURE PAGZ 24

5.1.2.4 doae Block Layout
] [}
i mcccmccccccecceccccccamm—e——————————— !
i Index File Bitmap Size ' H.IBS:
]]
e memccccccccccccccceccccmceceene————o—- !
H Index File i H.IBLB
i 1
== ==
i Bitmap LBN t
] [}
e ceccacemcccccccccecccccccem————————— !
| Maximum Number of Files | H.FMAX
]]
e e e ccecccccccccccmccce—cce— e m—————————— !
1 Storage Bitmap Cluster Factor i~ H.SBCL
] - 1
[- - ——————————— !
4 Disk Device Type : B.DVTY
] -]
' --------------------------------------- .
t Volume Structure Level ! H.VLEV
] 1
e ccccc e e e c e e~ ——————————————— !
i | 3.VNAM
S --
' |
. --
; Volume Nane 1
R -
i i
R -t
i - . i
]]
| = -
[} . 1
]]
] [}
| e e ccmccccccccceeccmcmcmmememmm————————— !
] 1
]]
| == (not used) -—
H H
| e ccccmcccccccemccmcmmem—mm—mmm—————— !
i Volume Owner UIC ! H.VOWN
1 N 1
 emccceccccccccccacmcccc—mem———————————— !
i Volume Protection | H.VPRO
] - !
mcccccme—— cmm—mm—— oo ———— cememm———————— !
d ' Volume Characteristics 1 H.VCHA
]]
‘ D A A G WD D G D WD G WD WD W A . - D B WP W WD D WD R A WS WS D D wD W = ‘
. Default File Protection o H.FPRO
1 [}
" ;
] .]
]]
| - -
i (not used) |
== ‘ -
] 1
)]
 ecmecmmmcmmm——————— ecmceccccccc——————— !
H.FIEX i Def. File Extend | Def. Window Size | H.WISZ
]] 1
| e e e e e e e ——— [t e e i
| Direectory Limit | §.LRUC
]

un

]

STRUCTURE

ON-DISK

-—

2]
(12]

4
(r,

- — = o
N <t n ()
4] (a] = -
0. > -]
e 5] w o fa o]
' 1 | ' 1 [) ' ' ' ' ' 1 i 1 ' 1 '] ' ! ' 1
' ' ' 0 ' [' I 1 ' ' ' i ' 1 ' ! ' ' | ? 1 '
P I 1 ' [
') ¥ ' '
! ' ' i '
! ' i ' 1
i ' ' i '
' ' ' ' '
. |] ' i '
' ' [' '
' | (U] ' ' '
! I » ' ' '
') o 1 g '
[=} 0 ' 0 '
i T | ' 1 o ' £,
—~ v o o] — ? g ! 0}
(o] [| o ' gl i o [£
U} 1 O oy 1 0] y = 1 =
v) 1 o o 1 (7] 1 ! o
3 (=2 " '] 1] |
1O o ' ! H ' o
» ! [8 ' L) [fa] ! £]
o [IS I (&) [o ' ~ ! 3
o] [| 1 9] ' o] —
~ [] (] 1 ~ ' >) o
=] a 1 ' ' =
1o 0 3 | ' [
i] — ' ' '
! ' o] ' '
' ' = ! [1
1 ' (| 1 1
[! ' ['
' 1 { |]
' ' ' 1 1
' ' ! ['
' ') . ' . 1
’ 1 '] ! :
1 1 ! 1 [[! '] ' 1 ' ' 1] 1 | ' ! ' ' ' '
[1 ' ' ' ' 1 ' '] ' ! ' . ’ '] ' ' ' ' [) '

S mrm e s e e e T et e s e Gn e R e e meE A e M e M ee S Eh S M B emem cmm 4o em e A . Gema et oS GE et e eh SO e et N eE ceSn we s cman ameh = e men e em em.

FILES-11 ON-DISX STRUCTURE PAGE 26

]

i
i i 4.INDF
. --
)]
i [}
i 1
| - bt |
i Format Type |
| == --
i]
1 $.
1 1
. -
]]
]]
]]
| - -
]]
1 -]
1 1
| e mccccccce—ccecememcemmm—m————————————— |
4 (not used) |
1 1
| cmeccccccmmccmcceemcmmemmmm—emmm———————— !
' Second Checksun : H.CHK?2

5.1.3 ~ Index File Bitmap

The jndex file bitmap is used to control the allocation
of file numbers (and nence file headers). It is simply 2
bit string of length n, where n is the maximum nuaber of
files permitted ¢n the volume (contained in offset H.FMAX in
the home block). The bitmap spans over as many bloecks as is
necessary to hold it, i.e., max number of files divided by
4090 and rounded up. The number of blocks in the bitmap 1is
contained in offset H.IBSZ of the home block. '

The bits in the index file bitmap are numbered
sequentially from 0 to n-1 in the obvious manner, i.e., from
right to left in each byte, and in order of increasing byte

address. Bit J 1is used to represent file number j+1: if
the bit is 1, then that file number is in use; if the bit
is 0, then that file number is not in use and may be

assigned to a newly created”™” file.

The index file bitmap starts at virtual block 3 of the
index file and <¢ontinues through VBN 2+m, where m is the
number of blocks in the bitmap. It 1s 1located a2t the
logical block indicated by offset H.IBLB in the home blceck.

5.1.4 File Headers

The rest of tne index file <contains all the file
headers for the volume. The first 16 file headers (for file

FILES-11 ON-DISX STRUCTURE PAGE 27

nuabers 1 to 18) are logically contiguous. with the index
file bitmap to facilitate thneir location; the rest may ba
allocated wnerever the file system sees fit. Thus the first
16 file hesaders may be located frcm data in ths home block
(H.1BSZ and H.IBLB) wnile ths rest must be located throughn
ths mapping data in the index file hzader. The file header
for file number n is loczted at virtuzl block 2+m3+n (wh2are =m
is the number of blocks in the. index file bitmap).

5.2 Storage Bitmap File

The storage bitmap file is File ID 2,2,0. It is listed
in the MFD as BITMAP.SYS;1. The storage bitmap is used to
control the available space on a unit. It consists of a
storaze control oDblock which contzins summzary information
about the unit, and the bitmap itself which 1lists the
availablilty of individual blocks.

5.2.1 Storage Control Block

Virtual block 1 of the storage bitmap 1is the storage
control Dblock. It contzins suammary information intended to
optimize allocation of space on the unit. The foll :wing
‘items are in ths storage control. block:

bytes) Not used (zero)

byte) Number of storage bitmap blocks

bytes) Humber of fre= bDlocks in 1st bitmap block
bytes) Free block pointer in 1st bitmap block

.

N SN N N
[AS I \ SRR Y |

(2 bytes) Nuaber of free blocks in nth bitmap block
(2 bytes) Free block peinter in nth bitmap block
(4 bytes) Size of the unit in logical blocks

Note: Current implementations of Files-11 do not <correctly
initialize the word pairs containing number of free blocks
and free block pointer for each bitmazp block, nor are these
values maintained as space 1is allocated and freed on the
unit. They are therefore best looked wupon as 2n garbage
words and saoculd not be used by future implementations of
Files-11 until the disk structure is formally updated.

5.2.2 Storage Bitmap

Virtual blocks 2 through n+1 are the storage bitmap
itself. It is ©Dbest viewed as a bit string of length m,
numbered from 0 te m-1, where m is the total number of
logical blocks on the unit rounded up to the next multiple

FILES-11 ON-DISKX STRUCTURE PAGE 28

of 4Q0%q. The bits are addressed in the usual manansr (packed
right to left in sequentially numbered bytes). Sinzes ezch
virtual block holds 4066 bits, n blocks, where n = m/40935,
are used to hcld the bitmap. Bit j of the bitmap repressnts
logical block j of the volums; if the bit is s=st, the block
is free; if <clear, "the block is allocated. Clearly %he
last kK bits of the bitmap are always clear, where k is the
difference between tne true size of the veolume and =, the
lengtn of the bitmap.

5.3 Bad Bloeck File:

The bad block file is File ID 3,3,0. It is 1listed 1in
the MFD as BADBLK.SYS;1. The bad block file is simply 2
file containing all of the known bad bloecks cn the velume.

5.3.1 Bad Block Descriptor

Virtual block 1 of the bad block file is the bad bdlock
descriptor for the veclume. It is always located ¢n the last
good block of the volume. This block may contazin 2 listing
of the bad blocks on the volume produced by a bad block scan
program or diagnostice. The format of the bad block data is
identical to the map area of 'a file header, except that the
first four entries (M.ESQN, M.ERVMN, M.EFNU, and M.EFSQ) are
not present. - The last word of the-.-block contains the usuzl ..
additive checksum. (See section 3.4.3 for 2z description of
the map area.) This block is included in the bad block file
to save the data it contains for future re-initialization of
the voluame. ‘

Bad Block Descriptor Layout
[adedahadadnd i adndnd i et | Bhadindindadhadbadiadbadd nfndadndndidh ol)

| ° LBN Field Size ! Count Field Size !

Map Words Avail. | Map Words in Use |

1
1
]
]
1
1
Retrieval Pointers H
'
]
]
i
1
]
1

)
-t
C

(]
w

]
o
o3
[}

(w]
[l
w
e

w
-3
[=¥]
[
)
-3
[
o
(&3]
0
>
(9]
[S3]
n
(Vo]

S.h& Master File Directory .

Tne master file dirsctory is File ID 4,4,0. It is
listed in the MFD (itself) as Q000Q000.DIR;1. The MFD is the
root of tne voluame's directory structure. It lists the five
«nown files, plus whatever ths user chooses to snter. In
tne two level UFD structure described in section 4.1.1, the

MFD contains entries for all usser file directories.

5.5 Core Image File

Tne core image file is File ID 5,5,0. It is listed 1in
the MFD as CORIMG.SYS;1. Its use 1s operating system
dependent. In general, it provides a file of known File 1ID
for the use of the operating system, for use as a sSwap arez,
for example, or as a monitor overlay area, etc.

6.0 FCS File Structure

File Control Servicss (ECS) is a user level interface
to Files-11. Its principal feature 1is-'a record control
facility that allows sequentizl ©processing of variable
length records and sequential and random access to fixed
lengtnh record files. FCS interfaces to the virtual block
facility provid®ed by tne basic Files-11 structure.

6.1 FCS File Attributes

FCS stores attribute informaztion about the file in the
file's wuser attribute area (H.UFAT - see section 3.4.1.9).
It uses only the first 7 words; the rest are 1ignored by
FCS, but are reserved by DEC (see Section 7.1 RMS FILE
ATTRIBUTES). The following items are contzinsd 1in the
attribute area; they are identified by the usual symbolic
offsets (relative to the start of the attribute area). The
offsets may be defined 1in assembly language programs by
calling and inveking the macro FDOFF$ DEFSL. Flag values
and Dits may be defined by calling and invoxing the macro
FCSBT$. These macros are in the system macro library of any
operating system that supports Files-11. Alternatively, all
tnese values are defined in the system object library of any
system that supports Files-11, and may be obtained at link
time. '

8.1.1 F.RTYP 1 Byte Record Type
This byte identifies whnich type of reccrds are

contained in this file. The following three
values are legal:

FILES-11

[e))

ON-DISX STRUCTURE PAGE 30
R.FIX Fixed lsngth records.

R.VAR Variable length records.

R.SEQ Sequenced Variable Length records

F.RATT 1 Byte Record Attributes

This byte <contains record attribute bits that
control the handling of records under various
contexts. The following flag bits are defined:

FD.FTN Use Fortran <c¢arriage <control if set.
The -first Dbyte of each record is to be
interpreted as a standard "Fortran

carriage control character when the
record is copied to a carriage control
device.

FD.CR Use implied <carriage control if set.
When the file 1is copied to a carriags
control device, each record i1is to Dbe
preceded Dby a line feed and followed by
a carriage return. Note that the FD.FTH
and FD.CR bits are mutuzlly exclusive.

FD.PRN Used to indicate. that _ the two Dbyte
. sequence number field for R.SEQ record
format is to be interpreted as print
control information (ses Section 6.2.3.1

for format of print inforamation).

FD.BLK Records do nat cross block boundaries if
set. Generzally, there will ©be dead
space at the end of each block; how

this is handled is explained 1in the
description of record formats in sectiocn
6.2. ’

F.RSIZ 2 Bytes Record Size

In a fixed length record file, this word contains
the size of the records in bytes. In a variable
or sequenced variable 1length record file, this
word contains the size in bytes of the longest
record in the file.

F.HIBK 4 Bytes Highest VBN Allocated

This 32 bit number is a count of the number of
virtual blocks allocated to the file. Since this
value is maintzined by FCS, it is usuzlly correct,
but it is not guaranteed since FCS is a user level
package.

FILES-11 QW-DISKX STRUCTURE PAGE 3

—a

6.1.5 F.ZFBX 4 Bytes End of File Block
This 32 bit nuzber is the VBN in wnich the end of
file is located. Both F.HIBKX =and F.EFBK z2re
stored with the high order half in the first two

bytes, followsd by the low order half.
8.1.0 F.FFBY 2 Bytes First Free Byte

Thnis word is a2 cocunt of the nuaber cf bytes in use
in the virtuzl block containing ths end of file;
i.e., it is the offset to the first byte of the
file available for appending. Note that an end of
file that falls on a2 block boundary may be
represented in either of two ways. If the file
contains precisely n blocks, F.EFBXK may contain n
and F.FFBY will contain 512, gor F.EFBK may contzin
n+?1 and F.FFBY will contain 0. :

8.1.7 S.FATT 14 Bytes Size of Attribute Block

This symbol represents the total number of Dbytes
in the FCS file attribute block.

6.1.4 FCS File Attributes Layout
[}] 1
[Bhdadnd i deindiadiad e Sttt [ittt ddn it g]
F.RATT i Record Attr. t Record Type f F.RTYP
4 | memmmmcm—emmeomea—a | memmmm= P |
: Record Size (Bytes) i F.RSIZ
i t
Rkt e Rl KRl e ittt i | .
i Highest VEN 4 F.HIEBX
i !
B . -
i Allocated '
1]
ke it ik St 1
i End of File H F.EFBX
)]
| - -1
i VBN |
g T |
' First Free Byte ' F.FFBY
T L L T Statatulai H S.FATT
6.2 Record Structure
This section describass how records are packed in the
virtual blocks of a disk file. 1In general, FCS trezts 2
disk file as a sequentially numbered array of Dbytes.

Records are numbered consecutively starting with 1.

FILES-11 ON-DISX STRUCTURE ’ PAGE 32
8.2.1 Fixed Lengtn Records

In a file <ccnsisting of fixed length records, the
records are simply packed end tc end with no z2dditionzl
ccntrol inforaation. If the . record length 1is odd, each

rscord is padded with 2 single byte. The content of thne pad
pbyte is undefined. For direct access, the address of a2
racord is ccmputed as follows:

Lst: n = record nuambder
k = record size (in bytes)
m = byte address of record in file
q = number of records per block
j = VBN containing the start of the record
i = byte offset within VEN j
then ((k+1)/2)*2 (rounded up record length)

(n=1)%*h
m/512+1 (truncated)
m mod 512

H G B
[T TR TR T}

The previous discussion assumes that records cross block
boundaries (that is, FD.BLK is not set). If records do not
ecross bloeck boundaries, they are limited toc 512 bytes, and
the following equations apply (the variables are defined as

above): '
h = ((x+1)/2)*2 (rounded up record length)
q = 512/% (truncated)
J = (n-1)/g+1 (truncated)
i = ((n=-1) mod q)*h

8.2.2 Variable Lengtn Records

In 2 file <consisting of variable 1length records,
records may be up to 32767 bytes in length. Each record is
preceded by a two byte binary count - of the Dbytes in the
record (the count does not include itself). For example, a
null record is represented by a single zerc word. The Dbyte
count is always word aligned; i.e., if a record ends on an
odd byte boundary, it is padded with a single byte. The
content of the pad byte is undefined.

If records do not cross block boundaries (FD.BLX is set),
they are limited to a size of 510 bytes. A byte count of -1
is used as a flag to signal that there are no more records
in a particular block. The remainder of that block is then
dead space and the next record in the file starts at the
beginning of the next block.

(5]
H
r
(3}
v

[}
O
]
o
..__
wn
o
wn
-3
fa d]
c
(@]
-3
[
)

m
v
=g
[®]
(O]

w)

w

©.2.3 Sequenced Varizble Length Records .

Thne format of a sequenced file is idsntical o =2
variable length record file except that 2 two byts ssquence
numader field is located immediately after the Dbyte count
field of each record. This field contains 2 binzry valus
wnicn is usually interpreted as tins line number of that
record (see Section 6.1.2 FD.PRAN and Sectiocn 6.2.3.1). Tne
Sequence number is not returned as part of the datz when 2

‘record is read, but is available separately. Note that the
reccerd byte ccunt field .counts the sequence number field as

well as the data of the record.

()]

6.2.3.1 Format of Two Byte Print Control Field in R.SEQ

Records

If the FD.PRAN bit is set in the record attiribute then
the two byte ‘"sequence number"™ field is used to contain
carriage control datza for the record. Byte O is print
control information to act upon before the record data is
output to a unit record device; byte 1 1s print control
information to =z2c¢t wupon after the record datz has been
output to a unit record device. : -

The format of each byte is as.follows:

Bit 7 Bits 6-0 Meaning

a 0 Ne carriage control

Q count(1-127) "count" new lines (CR/LF)

Bit 7 Bit &6 Bit 5 Bits 4-0 Meaning

1 Q Q ASCII €O SET ASCII CHAR TO
QUTPUT (CR,FF etec.)

1 0 1 ASCII C1 SET ASCII CHAR (8 EIT CODE)
TO OUTPUT

1 1 0 CODE (0-63) Device specifiec code

1 1 1 - Reserved

NOTE

The print control field is not <currently supported
by FC3S or RMS-11,

FILZS-117 ON-DISK STRUCTURE . ' -PAGE 34

.

7.0 RECORD MANAGEMENT SERVICES (8MS)

Record Management Services (RMS) 1is a user lavel
interrface to Files-11., It provides a flexible means of data
storage, retrieval, and modification throuzh 2 comdination
of file organization 2and record 2a2ccess anodes. File

orzanization is the structure of data within the virtual
dlocks o¢f a Files-11 file, and record access mode is the
manner in which storing znd retrieving tne data in the file
ocgurs.

RMS supports/defines three file organizations which are:

. Sequential - compatible with FCS fixed, variable,
and sequenced variable record files (sse Section 8)

. Relative - RMS only
. Indexed - RMS only

RS interfaces to the virtual bloek facility provided by the
Files=-11 structure.

-

7.0.% Dataz Formats and Representation

AMS supports file organizations which require a more
complex degree of structuring than that required by FCS.
RMS also stores binary values in a different manner in.
general than Files-11 defines. For these reasons the data
format and representations used by BRMS are ziven in the
following sections.

7.0.1.1 String Storage

All strings are stored left justified. The left most
cnaracter is in Dbyte N and the right most character is in
byte N+M-1 where M is the length of the string.

7.0.1.2 String Character Code Set

All string values are assumed to be in the 7-bit ASCII
code set.)

7.0.1.3 String Collating Saquence .

The collating sequence used is tn
where NUL 1s the 1lowest valued c¢ch
nizsnsest valued characcter.

NOTE

The internal representation of ASCII <charactsrs on
PDP-11 systems 1is.7-bit ASCII. The string coapare
routine of RMS-11 however, performs a full 8-bit
unsigned compare per character. EMS does not
perform any "clear bit 7" code on input or output
operations. This allows the support of ussr binary
byte strings, the KANA chazractfer set used in Japan,
and" in the future 8-bit ASCII when defined, without
RMS modifications since ths true colating sequence
is lowest cnaracter = 0 and highest character = 255,

7.0.1.4 Unsigned Binary Value Storzgse

All unsigned binary values are stdred witﬁ the Least
Significant BEKits (LSB) 1in byte N and the Most Significant
Bits (MSB) in byte N+M-1 where M is the length of thes binary
value.

EXAMPLE: 2 byte unsigned binary value

i LSB | N
]
| Edidiadh i |

: MSB I N+

- an @ W @ w» W w>

7.0.1.5 Signed Binary Value Storage

All signed binary values are stored as unsigned binary
values except that most significant bit (bit 7 of byte
N+M=1) of the value is interpreted zs thes sign of &

Negative numbsrs are storsd as the two's complexms
positive value.

ne
nt

FILES-11 ON-DISX STHRUCTURE PAG

m
(WS)
[e)Y

EXAMPLE: 2 Dbyte signed ocinary value

-3
o
-
o

Pointer Values

All pointers are stored as unsigned binary values.
Pointers are stored variable 1length. The 1length of a
pointer value is specified by the control bits =zassociated
with the pointer. The length requirement for a pointer is
aetermined by the range of VBN wvalues it falls 1in as
foellows:

2 bytes start VBN 1 - 85,535
3 bytes start VBN 65,536 - 16,777,215

L bytes start VBN 186,777,216 - 4,294,9567,295

7.0.1.7 Bucket Pointers ' -

A bucket pointer is a pointer wvalue which specifies the
start VEN of the bucket. The length of the bucket (number
of VBN's in bucket) is interpreted in the context of its
usage within the file, and is specified in the file's prolcg
data.

EXAMPLE: 2 byte bucket pointer

7.0.1.8 Récord Pointers

Record poianters are composed of two fields, 2 one Dyte
record ID field followed Dby a bucket pointer. The ID is
used as a unique record identifier ~for records within a2

oucket. The records are tagged with their ID'S when stored
in the bucket. ‘

FILZS-11 CN-DISX S
EXAMPLE:

| ID
!
.
i L3B
!
lemem
i MSB

7.0.1.9

Packed decimal strjings are from 1 to 16 bytes

lenztn. The forma

where:

d
value)

sign i

sign i

N is length of strings in bytes

i (N

of

1

d1l is
zero)

di is

RMS FILE

digit in the

(]
)
._\J

TRUCTUR

(3]

»

-
acer

byte record poi

i N RECCRD ID
i

i N+1 BUCKET POINTER

i A\ o)

i N+2

Packed Decimzl Strings

in
t is as follows:

4 sign } A+N-1

rang of 0 thru § (binary

s plus if value is 10, 12, 14, or 15

s minus if value is 11 or 13

=
"

-1)%2+1 and is an odd number in the "range

thru 31

most significant digit (may be a 1leading

least significant digit

ATTIRIBUTES

FILZIS-11 ON-DISK STRUCTURZ PAGE 38

file's wuser attribute area (H.UFAT - se

i1t uses tne first ten (10) words; the rest
RMS. Tne following items are contained in the a
area; they are ideatified by symbdolic offsets into
internal structure. The relative offset into the

RMS stores attribute information about the fi
e Section
st are r

]

)l
D cr

™ a =

i
area may be calculated by subtracting F3rFORG from th g
offset name/value. The offset definitions may be define
assemdly language programs by calling and invoking tha =m
IFA0F3 RMSS3L. Flag values and ©bits may Dbe defined by
calling and invoking the FAB$BET DFINSL macro. These wmacros
can be found in the RMSMAC.ML3 macro library on all PDP-11
Systems supporting RMS. '

7.1.1 F$FORG 1 Byte Reccrd Format and File Organization

This byte identifies the file's: organization and

which type of record format it contains. The
record format is contained in bits 0 - 3, and the
file's organization is «contained in bits 4 - 7.

The symbolic values are defined such that they aaj
be OR'ED to yield the contents of the F3FORG
field.

Record Formats:

. FB3UDF Undefined record format (Block I/O0 onaly
file)

FB3FIX Fixed length records
FB$VAR Variable length records

FB3VFC Variable with Fixed Control (VFC) records
(the FCS R.SEQ is a special case form of
the record format i.e., the fixed control
area 1s two bytes long and contains the
records sequence number)

FB$STH ASCII stream records. BRMS-11 wused only
as a means for RSTS/E ASCII data
interchange. Records are delimited by
vertical form effecter characters (LF,
VT, FF and CR/LF pairs).

File Organizations:

FBSSEQ Sequential File organization (FBS$SEQ =z 0
to maintain compatibility with FCS)

FBS$REL Relative File organization

viad=LLSAa Siiaulauns y Jals I

FB$IDX Index File organization

FBE3HSH Eashed File organizaticn (not implemsnted)

tr

F3RATT 1 Byte Record Attributes

This byte contains record attributes ©bits tha
control the handling o¢f records under variou
contexts. The following flag bits are defined:

0w cr

FESFTN See Section 6.1.2 FD..TN
FBS$SCR See Section 6.1.2 FD.CR

FB3PRN See Section 6.1.2 FD.PRN and 6.2.3.17

-~
>

FB$BLX Record do not 2rcss bloak bound=ri
the Sequentizl file organization
See Section 6.1.2 FD.BLX for aore

o o
.

P -

r
m ®

FSRSIZ 2 Bytes Record Size

In file containing fixed 1length format records
this word contazins the size of the records in
bytes. In Sequential files ¢ontaining varizble or
variable with fixed control formatted records this
field contains the size in bytes of the 1longest
record in the file. This field is undefined for
Relative and Indexed files containing variable or
variable with fixed control format records.

F$HVBEN 4 Bytes Highest VBN Allocated

RMS updates this field whenever the {ile is opened
for write access. For details on this field see
Section 6.1.4 F.HIBK.

FSHEQF U4 Bytes End of File Block

This 32 bit number is the VBN in which the end of
file is located for the Sequential file
organization. Both FSEVBN and FS$HEQOF ' are stored
with the high order half in the first two bytes,
followed by the low order hzlf. -The 1low order
half 1is symbolically referenced Dby FSLVBN and

FILES-11 ON-DISK STARUCTURE ‘ PAGE 40

FSLEOF respectively. These are the only two
places that BRMS stores block numbers in this
manner (see Section 7.0.1), and 1is done so to

maintain coapatipility with FCS. The Relative and
Index file does not use tnis field and its wvalue

is usually - (but nact guaranteed) either the
contents of F3HVEBN or the contents of F3HVBN plus
one.

7.1.6 F$FFBY 2 Bytes First Free Byte

This field is wused for the Ssquential file
organization® as a count of the number of bytes in
use in thes virtual bloex <c¢ontaining the end of

file. The Relative and Indexed file organization
do not use this field and its value will be either
0 or 512. For more details on this field see

Section 6.1.6 F.FFBY.

7.1.7 F$SBKSZ 1 Byte Bucket Size

This field contains the Dbucket size or maximum
bucket size for the Relative and Indexed file
organization respectively. The bucket size 1is
represented as the number of virtual blocks it
contains. Legal values are frem 1 - 32, For
compatibility with FCS a value of O is interpreted
as 1.

7.1.8 F3HDSZ 1 Byte Fixed Header Size

This field contains the number of bytes (1 - 255)
in ¢the fixed controcl area when the file contains

i Variable with Fixed Control format records. A
~value of 0 is interpreted a2s 2 so that
compatibility with FCS'S Sequenced Variable length
record format file (R.SEQ) is maintained.

e

7.1.9 F3SMRS 2 Bytes Maximum Record Size

This field <c¢ontains a user specified @aaximun
record size limit in Dbytes, tc be enforced on
output operaticns. Files contzining Fixed lengtn
format records have F3$MRS set equal to F3RSIZ.
For all other record formats F3MRS is set to the

(]

=4
]
[w)
’_.
v
o
u
3
to
[oy
(@]
-3
[
po V]
)
v}
3.
(@]
[3]
=
—

user specified wvalue given wpen the file was
created. A value of 0 1is 4interpreted as no
maxioum record size limit specified.

F3D2Q 2 Bytes default Extend Quantity

e

Tnis field contains 2 user specified default
extend quantity to be used whenever RIS need
extend the file. A value of 0 is interpreted
use the volumes default extend.

[Ve Y B
w O o

FILES-11 ON-DISK STRUCTURE PAGE 42

E Record Attr. i File Org./rec fat 3 F$FORG
| Record Size (byes) | FsasIz
o Hignest vey | Fsavan
g-- Allocated --g
o gnd oF £ile | FsuEor
;-- VBN --i
| === e et D e L TR i
E First Free Byte E F$FFBY
FEDSZ | Fixed Ctr. Size | Bucket Size | FsBxsz
| waximua Record Size Limtt FuRS
| Default Extend Quantity | F3pza

To calculate the offset into the User Attributes area in the
file nzader subtract FSFORG froam all symbolic offsets.

Prologue Blocks

.o
n

The RMS Relative and Indexed file organizations use the
first several virtual ©blocks of the file to <c¢ontain
additional file description data. This area of the file is
called the file prologue. - In the Relative file
organization, the prologue is exactly one blcek long; in
tne Indexed organization 1its length varies. The symbolic
offset names, and flag values and bits wused in the file
prologue blocks and record formats may bes obtained by
calling and invoking ¢the following macros from the
RMSMAC.MLB macro 1library on all PDP-11 systems supporting
RMS. .

ARDOF3S$ RMSSL
BKTOF3$ - RMS$L
KDXQF3 RMSSL
KDX3$BT DFINSL
ZABSBT DFINSL
BKTS$BT DFIN3L

The last word of every prologue ©0block <contains thes
standard Files-11 check sum (see Section 3.4.5.1).

l"'
[B
r
()]
[97]
]
O
jod
]
(W]
L]
[#2]
s
w0
-
U
c
(@]
(23]
C
[3]
U
N>
(®]
t
=
(We)

7.2.1 . Prolcgue Block 1 (VBN 1)

Proleogus Block 1 contazins <common data for Gbotn the

Indexed and Relative files, and file organizaticn depsndent
dzta. Tne major Indexed file dependent data is the vprimary
Key definicion (the X3XXXX symbols). Tne major Relativs
file cependent data are the mzximum record numbar, tne
adaress of the first dazta bucket, znd the "rezl" End of File
Block (last initiaslized, =zerosd, VEY). The primzry %2y

cefinition offsets (X3X4{XX) are used for z2ll key definitions
within the prologue of the index file and are relative to
the start of each key descriptor. ’

The key definitions supply all the information needed
oy HRMS <to retrive, insert, update, and delete records for
tne Indexed file organization. The bzasiec data whiech are
contained in a key definiticn are as follows:

. Where the associated key field is positioned in ths
record, and how leng it is.

. The VBN address of the associated Root bucket.

. Various key field options

The key definitions are linked into & ch%in by the BN
address and Dbyte offset within the prologus block for the
next kKey definition. The Indexed file organization <can be
viewed as a multi-partitioned file. The first partition is
the prologue, the second partition is the index associated
witn the primary key definition, and the third partition is
the user data associated with the primary index. Every
indexed organized file contains these three partitions. 1In
addition wnen alternate keys are defined then two additicnal
partitiocns per &alternate key are created. The first
partition is the index associated with ¢tne alternate Kkey
definiticn, and the second partition is the RMS data
associated with the index. The RMS data contain pointers
into the wuser data partition for the records meeting the
various key values. The index is structured as an n'ary
tree where the nodes of the index are buckets. The index
structure is the same for all key definitions.

7.2.1.1 {SNLVB 4 Bytes VBN for Next Xey Descriptor

This field contains the virtual block =zddress in
which the next key descriptor may be found. This
field is only looked at. when the K$BNYT field

FILES-11

ON-DISX STRUCTURE PAGE 44

o
ct
oy
(L)
'.__l
1Y)
n
cr

contains a 0. When X$NLVB and {$NZYT =
key descripter has Dbeen found. The least
significant 10 bits of the VBN 2are storasd in
K$NLVB and the most significant 15 bits are storsd
in K$NLV3B+2 (X$NHVB).

KSNBYT 2 Bytes Byte Offset for Next Xey Descripter

This word field contzins the byte offsst relative
to the Dbeginning of the VBN contained in KSNLVB
for the next key descriptor in the <chain of key
descriptors. The first key descriptecr contained
in a2 VBN starts at byte offset 0, and . the chain
will thread through the current VBN before going
to the next VBN. This means that the V3N will
only change when K3NBYIT contains a 0.)

K3IAN 1 Byte Index Area Nuaber

This byte contains the number of the Allocation
Area to use for the index buckets associated with
this key starting at 1level 2 going wup to and
including thg Roote bucket.

XSLAN 1 Byte Lowest Level Index Area Number

. This byte contains the number of the A4llocation

Area to wuse for Level 1 of the index buckets
associated with this key (a2 value of 0 means use
tne contents of K3IAN). :

K3DAN 1 Byte Data Level Area Number

This field contains the number of the Allocation
Area to wuse for the data level (level 0) of the
index buckets associated with this key descriptor.

K$LVL 1 Byte Level of Root

This field contains the level number of the Root
Ducket associated with this key descriptor. This
field is not supported by RMS=-11 release one.

.10

K3IBXS 1 Byte Index Bucket Size ,

d=D13{ STAUCTURE PAGE L5

This field ccntains the pucket size in VBN'S for
all 1index level (level 1 througnh the root level)
buckets (1 - 32) for this key descriptor

£3DBXS 1 Byte Data ZBucket:t Size

This field contains the bucket size in VBN'S feor
all data level. (level 0) buckets (1 - 32) for this
kKey descriptor.

P$DBKS 1 Byte Data Bucket Size

Thais is 2 syabolic redefinition of K$DBKS for use

by the Relative file organization.

K3LVEN 4 Bytes Address of Roct Bucket

This field contains the bucket address of the Root

ducket for the index. associated with this key

descriptor. The 32 bit VBN is stored in
manner described in Section T7.2.1.1.

KSFLGS 1 Byte Key Descriptor Flags

the

This field contains a bit vector for the various

key options supported by RMS =23 fcllows:

XB$DUP Duplicate key values allowed

XB3$CHG - Key value mzy change on SUPDATE
operation

XB3SNUL Null key character enabled (K$NULL)

XB3INI Index must be initialized

When the XBSINI bit is set the K$LVEN
contains the following:

KSLVEN = C(X$DAN)
KSLVEBN+1 = C(X3IAaN)
K3LVBN+2 = C(XSLAN)

KSLVBN=+3 Q0 not used

field

FILES-11

ON-DISK STRUCTURE : PAGE 46

This information is used once only when the index
for this key definition 1is creatsd. Since the
area nuamber informatiocn is nct normally stored i
the in memory dazta base for an open indexed fi
the required area numbers to create ths index ar
stored in the root bucket field for %this once only
operation. The arez numbers are not nseded in the
in nemory data base since on future Dbucket
allocaticn the area nuamber stored in ths Doucket
which is "splitting” is used 2s the area numder to
allocats the new Dbucket from (see seaction
7.5.1.1.2).

P3FLGS 1 Byte Prologue Flags

This field is a symbolic redefinition of the
KS3FLGS field for wuse by the Relative file
organization. Bits defined for this field are:

PR$NEX Error encounted extending Relative file
no further extending is pecssible.

K$DTP 1 Byte,Data.Ty?e for Kay

This field contains the data type of the key field
within the wuser data records. The only legal
value currently for BRMS-11 1is XB3STG.. "The
following data types are defined.

XB$STG String data type (unsigned 8-bit bytes)
XB3IN2 Signed 15 bit integer (2-bytes)

XB3BN2 Unsigned 16 bit binary (2 bytes)

XB3INY Signed 31 bit integer (4-bytes)

XB$BN4 Unsigned 32 bit binary (U4-bytes)

XB$PAC Packed decimal (1-16 bytes)

KSNSEG 1 Byte Number c¢f Segments in Key

This field contains the number of segments (1 - 8)
that make up the definition of the logical key
field. The XB3IN2, XB$BN2, XB3IN4, XBS$BNY, and
XBSPAC key field data types may only contain one
(1) segment.

KSNULL 1 Byte "NULL" Character

7.2.1.20

~~~~~~~~

Tnis field contains a2 user specified <character.
If the key field witnin the datz record asscciatsd
with this ey descriptor contzins only "null”
cnaracters the rescord will not be inssrted into
the associated Index. Tne "null" vwvalue for tne
XB3IN2, XB$BN2, XB3IN4, KXB3BN4, =znd XB3PAC key
field data types is defined as zero (0Q). Tai
field 1is enabled by the XBSNUL bit in the XK3FLG
and is only valid for alternzte kesys.

(/1))

X3KYSZ 1 Byte Total Key Size

This field contains the sum of 2all the key segment
sizes to yield the total size of the key field in
bytes (1 - 255).

K$3XEY 1 Byte Xey of Reference

This field contzins the key of reference number (0
- 254) for this key descriptor. Primary key = J0;
alternate keys = 1 - 254,

K$MINL 2 Byies Minimum Reccrd Lensth

This field contains the minimum length reccrd in
bytes to contain the complete key field.

K$IFIL 2 Bytes Index Fill Quantity

This field contains the number of bytes to use for
index level buckets (levels 1 - n) before a bucket
split is considered when the user requests RMS to
follow fill quantities.

K$DFIL 2 Bytes Data Fill Quantity

This field contains the nuamber of bytes to use for
user level buckets (level Q) before a bucket split
is considered when the user rsquests RMS to follow
£ill quantities.



FILES-11

7.2.1.24

ON-DISX STRUCTURE PAGE 148

X3P0S 16 Bytes Key Segmen:t Offset Positions

This is a set of weight (8) 2  obyte fields
(K$POS0-K$POST) wnich ¢ontain the relative offset
(0 - n) into the data record for each Key segment.

K3SIZ d Bytes Xey Segment Size

Tnis is a set of 8 1 byte fields (X3STZ0-X3SIZ27)
which contain. the size in bytes for the key
segment. :

£34{NM 32 Bytes Key Name

This is a 32 byte string supplied by the user when
the key was defined. If not supplied will contzin
NULLS. '

K3LDVB 4 Bytes First Data Bucket

This field contains tne ©bucket address " of the
fiirst = bucket at the ~ data level (level 0)
associated with this key descriptor. This ield
is not supported by RMS-11 release 1 and contains
a zero.

14 Spare ‘Bytes

PSAVBN 1 Byte VBN of First Area-Descriptor

This field contains the VBN (2 - 255) of the first
Allocation Area descriptor block. Allocation Area
descriptor blocks are virtually contiguous and are
directly accessed by area number. See Section
T.2.3.

P3AMAX 1 Byte Maximum Number of Areas

This field contains the maximum nuaber of defined
Allocation Area descriptors ( 1 - 255) for tnis
file. Eight (8) Allocaticn Area descriptor can




- . -
. o -

-
n
B

-

.
)
w

fit in a2 virtual block since each arsa descriptor
is 64 bytes long. The file address of any Area
descriptor may be calculated as follows:

Let: a = area nuamber (0 - 254)
v = VBN address for a
o = offset into v for a

Then: v = 2/8 (truncated) + c(P3AVEN)
e = (2 mod 8)%AY

P$3DVBN 4 Bytes Address of First Data Bucket

This field contains the 32 bit VBN of the first
data bucket in 2 Relative file.

PSLMAN 4 Bytes iHMaximum Record MNumber

This field contains the _user specified maximum
record nuaber which will ©be allowed on $2UT
operations to the Relzative file organization. If
the user specifies O then this field will contain
the maximum record nuamber possible (2%¥#31-1),

..
-

PSLEOF 4 Bytes EOF VBN
This field contains the last initialized (i.e.,

zeroed) VBN (i.e., the EOF VBN) for the Relative
file orgzanzation.

PSVERN 2 Bytes Prologue Version Number

This field contains a prologue version nubmer.
The only legal value at this time is one (1).

Reserved for Future Use 392 Bytes

Prologue Checksum 2 Bytes (see 7.2)



FILES-11

7.2.1

K$LAN
K3LvL

K$DBKS
P$DBLS

K3DTP

KSNULL

A

ON-DISK STRUCTURE

Prologue Blceck 1 Layout

VBN For Next Key

Descriptor

WD ED D D D CH D G D D D G D D D R TN AP WD W D U S D AN s W s wn W W .

Level 1 Area # | Index Area i

Root Level { Data Area #
Data Bkts H Index Bkts
Size ! Size

D D D D D WD WD D WD D D P G WD WD D W D D VS D D WP WD P W W W W WD W WD An WS >

D D D WD D G AP WD YD D D L D AR WD D W D WD R D S W D D W =D W WD WD W D > W D W W

"NULL" Character | # of key segments

Key Of Ref. i Total Key Size

DD D A D AP D WO WD G D ] D D D D D G G D A D D D G S W W WD W Gn - -

Minimum Record Length-

D ED GD Gn AR S W S WD R WD D D D D WD D D D D D D G YR D D WD D G G D Wy D -
DGR D S D wn b WD D D WD D D D D R WD D D D AP D D W W - D > D D W . - o -

D D D G D R D AP D D D D D D A D P D WD D D T D D E D D WS WD D GD > > -

Key Field Segment
Qffset Positions

(K$P0OSQ=-K$P0OST)

D G D T GO WD W D WS D WP D T WD D WS D WD W W WD D AP G D D D P W WS WP W GB W W e

. i
Key Field Segment Sizes
(K$3SIZ0-K$SIZT7)
1

Key Name String
(32 Bytes)

First Data Bucket

PAGE 50

K$NLVB

L3NBYT
K3IAN
K$DAN

K$IBXKS
KSLVEN

X3FLGS
P$FLGS

 K3NSEG

K$K¥sz
K$MINL
K$IFIL

K$DFIL

K3POS

K$sIz

K$SKNM

K$LDVB



(e
U
0
(@]
(O3]
J

5 Pointer E
;T Spars (14 Bytes) /
eemmemmmmmmmmmmmemmmnemmmmmmnnns i
PsaMax 5 Max Area i i VBN Of 1st Area §P$AVBN
§""QZQ;Z'GEQ';}‘?;E'B;EQ’E,;;;;E """ PSDVEY
g-- (relative file only) --g
L. Maximem Record | esLuay
g-- Number --i
"""" Relative File SOF VBN P3LEOF
E-- (Last Initialized VBN - Zeroed) --E
o Prologus Version Number | psvzay
Spare (392 Bytes)

D D D EP D W S D WD D W W R D D W G D DTS G W W U W D G - w o

Block CheckSum
Byte Q0ffset 510

D D D WD D P S WD D D ED D D WD D D D WP D D AL AN R D D W A D D D - -

—— e - ——— N ==
—————— e —— N = e

7.2.2 Alternate Key Prologue Blocks

Alternate kéy prologue blocks are chained tcgether
through the X$NLVB field of the key descriptors (see Section
7T.2.1.1). Five alternate key descriptors can fit in a VBN.

~

7.2.3 Area Descriptor Prologue Blocks

The Indexed file organization requires a amethod of
allocating the virtual blocks of the file to the various
usages within the file (e.g., 1Index ©buckets and Data
buckets). The structure which allows this virtual block
allocation management is the Area Descriptor. The Indexed
file supports zmultiple allocation areas to achieve thne
following user file design capabilities:

1. Different bucket sizes between the index buckets
and asscociated data buckets.

2. Different index and data bucket sizes on a2 per key



FILES-11

ON-DISX STF .CTURE . PAGE 52
basis.

3. Allocation plzcement control for the various
elements of the file.

Eight area descriptor can be contained in a2 virtual

block,

and all the area

descriptor prologue blocks zrs

virtually contiguous (see Sections 7.2.1.26 2nd 7.2.1.27 for
acres details).

7.2.3.1

7.2.3.4

Spare 1 Byte

ASFLG 1 byte Flazs (not used)

ASAID 1 Byte Area Number (0 - 2514)

This byte contains the Area's number and is usad
as a redundancy check since all area descriptors
are located at a fixed relative position *to the
start of the Area Descriptor prJlogue blocks.

A$BKZ 1 Byte Bucket Size for Area

bucket size 1in
granularity of

This field contains the areas's
bloecks (1 - 32) which 1is the
allocation.

ASVOL 2 Byte Relative Volume Number
This field contains the relative volume number for

the 1last file extend for this area when placement
control was requested.

ASALN 1 Byte Extend Allocation Alignment

This field contains the allocation alignment used
for the last file extend for this area.

Legal values for this field are:



T.2.

w)
.

Cii-DISK STRUCTURE PAGZ 53
C placement control not requested
XB3CYL cylinder alignment (not implemented)
XB3LBN lozical block zligznament
XB3VBN ~ virtuzl block alignment
AB$RFI allccate close to related file

by FID (not implemented)

AGACP 1 Byte Alignment Cptions

cr
o 3
o

This field contains option bits to qualify
ASALN field. Legal valuses are as follows:

XBSHRD Alignment is absolute and faill if not
available (note: illegal for XB3VBN or
XB3RFI aligament).

LBSCTG Allocation is to be contiguous.

ASAVL 4 Bytes Available (Returned) Bucksts

This field contains the 32 bit VEN of the first
availabcle Dbucket in 2 chain (linked through the

first 4 bytes of the bucket) - of Dbuckets. This
chain of buckets would be the result of returning
buckets back to the area. - The returning of

Duckets 1is not currently supported by RMS so that
the only legal value for this field is zero (9).

ASCVB 4 Bytes Start VBN for Current Extent

This field contains the 32 bit start VBN for the
current extent. The current extent is ths extent
from which buckets will be allocated.

ASCNB U4 Bytes Number of blocks in Current Extent

This field contains the number of blocks that were
allocated to this current extent. The combination
of A3CVB and ASCNB describes in wvirtuzl block
terms the result of the file extend operztion for
the current extent.

A3NUS 4 Bytes Number of blocks used



FILES-1)

7.2.3.13

7.2.3.%4

7.2.3.15

ON-DISX STRUCTURE PAGE 54

This field contains the number of blocks that nave
been allocated from the current extent.

AJNVE U4 Bytes Next VBN to Use

This field contzins th
start VBN of the ne
current extent.

32 it
o] 2

bi o use for the
uck Q

t ated freom the

® o

ASNXT 4 Bytes Start VBN for Next Extent

This field contains the 32 bit start VBN for the
next extent. When the curreant extent is used up
the next extent is made the current extent and the
next extent description is zeroed. The arez can
only be extended when the next extent description
is zero.

A$SXBY 4 Bytes Number of blocks in Next Extent

This field contains'the number of blocks that wer$§
allocated to- this next extent. Thie combination
of ASNXT and ASXBY describes in virtual block
terms the result of the file extend operation for
the next extent.

ASDEQ 2 Bytes Default Extend Quantity

This field contains the wuser specified default
file extend quantity to be used whenever the area
is to be extended by RMS. A value of 0 means use:

the file's DEQ. However, in no case will less
than one bucket size for this area be requested.

Reserved 2 Bytes

ASLOC 4 Bytes Start LBN on Volume

This field contains the start logical block number
for the last extent performed for this area.



7.2.3.17

7.2.3.19

ON=DISX STRUCTURE PA

(#]
O]
(1]
ul

ASRFI 0 Bytes Related File ID

This field contain the FID of a relzted file for
the XBSRFI allocation alignment (ASALN) (not
implemsnted)

Spares 12 Bytes

ASCRC 2 -Bytes Checksum

This field is a2 dummy field to pad out the area
decriptor to 64 Dbytes. This also allows the
standard Files-11 checksum to ©be stored in £he
last word of the Arez Descriptor Prologus block.



FILES-11 ON-DISK STRUCTURE

7.2.3.A Area Descriptor Layout

D A D D D D W D D D D D W T D WD D WD WD L WP D D A AP D W P W W P W WP S W AR S W W @ W

ASFLG H Flags i Spare
]

i Relative Volume Number i

]

i

A3AQP . Align QOptions i Alloc. Align. |
. i

H

i 1
] ]
H List '
1 B
] 1

i 'Start VBN For i
i Current Extent . '
| 1
1 ]

D D A D WP D ED D ND G D WD WD D WD WD D WP D U W WD W AW W W U D W WD W W W G D - -

| Number QOf VEN's In i
1 Current Extent '
] ]
e e m e ccccceece———————————————————————— !

Number Cf VBN's Used i
In Current Extent i

1

)

Next VBN To Use For H
Current Extent |

1
E ]
H Start VBN For - ) H
. i Next Extent .
] [}
] ]

D D R WD D W D D AR D WD D S WP D D WD D D D D D WD D G N WD WD D WD WP WD wP W W WD D w-

! Number Of VBN's In |
; Next Extend : 1
1] )

I

1
}
i Start LBN For Last |
i Extend For This Area d
[] ]
et bbbl e bl b el bl 1
i File ID For |
i Related File For ‘ i
] File Extends |
i

]

1
|
: '
] 1
1] 1
i Spares i
: (12 Bytes) f
i i
| i
1 t
| e e e e e . . e e e e e r e e e e s e e~ m e~ 1

D D D D D " D WD W D D D = D D D W T G TS G AR WS Gn A S w» e W em WD

PAGE 59

ASAVL

A3CVB

ASCNB

A3NUS

ASNVB-

ASNXT

A$XBY

ASDEQ



I]J
(2]
[—!
(O]
w
[}

-
O
]

w
=t
W
N
n
3
pa ¥
o
)
|
ek
)
(]
0
T
[®)]
[ O]
W
-3

7.3 Sequential File Foraat

Tne RMS Sequential f

i is compatible with ths FC
fixed and Variable 1leng t

le
th record files. Plezse refer
Secticn 6.2 tnrough 5.2.3 The RMS variable with
Ceoentrol resccerd format is generalizaticn of the Sesquen
Varialbe L2ngtn Records of FCS (Ssction 5.2. in that
fixed <control arez (alwzys 2 bytes for FC can bYe varie
bstween 1 to 235 bytes.

m .
cr O '3
ow

S 1
[ V(I @ W

-
3)
]
S)
<

7.4 Relative File Format

The Relative file currently uses. virtuzl block one (1)
for its prolozue, and starts its dzta bucketS at virtual
block 2. Records are stored in fixed 1length <¢ells within
unformated buckets (no overhezd bytes in bucket) starting =zt
oyte 0 and packed end to end (i.e., byte alignéd). The
virtual blocks within the relative file must be initialized
(zeroed) when they are zlloecated to tne file to support
deleted record control.

7.4.1 Relative File Record Formats

Records are stored in fixed length cells. _Ihe' first
byte of each cell is a record control byte used to provide
deleted recora control. The following bits are defined:

DCSDEL record has been deleted
DCSREC record exists

A value of 0 indicates the ¢ell has never contained =2
record.

. The relative file supports variable and variable with
fixed control length record up to the required user
specified Maximum Record Size (MRS). In these c¢cases the
record control byte is followed with a two byte binary count
of the bytes in the record (the count does not include
itself). If the cell size does not evenly divide the bucket
size then the remaining space in the bucket is dead’ space
and the next record in the file will be stored in the first
cell of the next bucket. In other words records never span
bucket boundaries.



FILES-11 ON-DISK STRUCTURE ’ PAGE 58

7.4.14 Fixed Length Records

- E” G W WD CE D Er G W WP S S W ED W D W W @ W W

- S DGR R G G T ED R D WD AP W GE WD G G D D WD D WD D G WS W WD WS W an W B

cell size = MRS+3

-

7.4.1.C Variable With Fixed Control Records

- - WP AP WD WD WD WD G GNP WP WD D WD D WD WD WS W WD WD WD A G WD MD WP WO WD WS GWD WD ED WD WD WP WD W WD WD WD W GH WD WD D MDD U W A W o - -

- D S WD WD WD WD WS S ED A D AP ED D WS W WP D W WS WS WD WD AP AR WD WS GD WP WD GH G W MR D WD T WO G WD WP W YD AP W MY W WD CH G D G D D - -

cell size = MRS+FIXED CTRL SIZEw3

7.5 Indexed File Format

The Indexed File uses virtual blocks 1, 2 and |if
necessary up toe and including 84 as a maximum for its
prologue. The current implementation on the PDP-11 will
result in a preclogue of the following forms:

Single Key

i PRIMARY KEY
VBN 1 i Description
) ]
E

------------ B R . L R R

| P$AMAX | P3AVBN [P

VBN 2
Area Descriptors



_ = -~

(Up To 8) For ;
single key 4 is all tnat i
can be usad |

i
i
I
]
i
i
-

VEN3=N e emmemeeemmmmmmmemmmmm——————-

g Index and Data
i Buckets
]
i

Multiple Key

Primary Key
Descriptor

VBN 1

i '
] ]
i I
] i
] i
i ¥
| e cce—ccecccccmcm—mmem—————
i PsAMAX | P3AVEBN i
| |
1} 1
H 1

D D D D D D W Ch DGR ED D G WD P WD D WD W WS WD WE AP AD D D @O WP W

VBN 2 : 1 lpmm
Up To 5 Xey
Descriptors

Key 5 Descriptor

'
1
1
)
1
1
|
i
]
i
1
]
]
]

If more than 5 alternate keys

- s D D G U G ED AL D W G D S WA D W W D D S Y En D

VBN 3 {m=m
KEY DESCRIPTORS

ETC

.
.

! Area Descriptors i
| 8 Per Block i
1 1
[} ]



FILES-11 ON-DISK STRUCTURE

index znd data bucket space starts at:

((P3SAMAX/3(TRUNCATED))+PS$AVEN)

Records are stored in formatted buckets
overiead oytes) and are packed end to
aligned). Ths Bucket format and the various
ars given in the following secticons.

‘g
o
(%]
(B}
On
o

(buckats have
end (i.e., byte
rscord formzts



CFLILZ3S-71 ON=DLiS& SiRyCTURZL faus ¢

7.5.0. Index Structure

Tne Index is structured as 2z valanced tree. The nodes
in the tree 2are Dbuckets, and tnhe nodes are serially
searched. T contains index records as

he Index node

specified in Secticn 7.5.2.1.

The bucket size is constant for index ncdes, but m

different than the Data buckets. The Dzta Dducket r
tae sams sizs=s.

Each level of the index is horizontzly linked via
Next bucketr pointers. The horizontal linking is circu
with the last bucket (noted by BC3LBX) pointing back to
first Dbucket. . Tne Data buckets for an Index may be vie
as the data level (set) of the index znd are linked 1in
same @manner as buckets in any other level of the Ind
Figure T7-2 shows the structure c¢f the Index.

o
s 1)

F o W T g\t
b A @

D
.

® cr ® cr v

The key valus 2ssociated with index records (see
Sectica 7.5.2.1) is the highest or highest possible key
value in the bucket pcinted to by the bucket pointer in the

record.

v

The basic search rule for_an index search is to follow
the first path for which the ssarch key is equal to or less
than the key value stored in the index record. e

o ~

7.5.0.1 Primary Key Index Structure

The primary key index for =a file is structured =s
stated 4in Section 7.5.0 above where the data level is
composed of buckets which contain the User's dataz records.
Tne data buckets may also contain RRV records. See Section
7.5.0.3 and 7.5.2.3 for details on RRV records.

7.5.0.2 Alternate Key Index Structure

An alternate key index for a file 1s structured =as
stated in Section 7.5.0 above where the data level is
composed of puckets which contain pointer array records as
specified in Section 7.5.2.4. Therefore the indices within
the Indexed File Organization have the same structure, where
only the interpretation of the records within the datz level
of an index is different.

7;5.0.3 Record Reference Vector (RRV)



FILES-11 ON-DISX STRUCTURE PAGE 62

when a record is inserted in an Indexed file the record
is assigned a2 reference vector address and tanis azddress is
stored in the data record in the record pointer field (s=e
Section 7.5.2.2). This =zddress is the initizl address of
tae record itself. Whenever the record is noved the
record's reference vector record is updated with its new
address. Tne record, in turn, points back to its reference
vector so that it can ©DbDe updated if the record is moved
again. Tioe reference vector record 1is c¢creazted when the
record 1is aoved for the first time. Using this technique
the worst case indirection for a record is kept at one, and
we can always find the record via its reference vector
address. ' '

The record pcinters wused within the Indexed file
organization, and the RFA (Record's File Address) returned
to the user in the RFA field of tiHe RAB are always the
record's refarence vector address.

The space required for RRV_pointers in the data records
of 2 file is required to insure RFA addressing and alternate
keys. The RRV records are stored at the end of tne data
records in tnhe wuser data Dbuckets. The use of RRV's and
seconaary indices is grapnically shown in Figure 7-3.



ILE3S-"% Cu-DI3K STAUCTUARE PAGE

[6)Y
L)

The Indexed orgznization uses 2 formatted buckest as its
primary wunit of seondary sforags. A bucket is composed ¢f
some nuaber of virtual blocks in the range of 1-32 and nas 2
neader starting zt byte cne c¢cf ths bucket,

Tne Bucket is composed © e
arsa, a Record storage arsaz and a Fre

Each of these arz2as will be described in tnes ssctiocns
that follow.

7.5.1.1 Header Area

Tne bucket header area 1s coaposad of a RAS dzta
section, a2 bSucket stcocrage control section, and 2
structure link ssction. The size of the Dbucket
header is 14 bytes (S§BHD).

7.5.1.1.1 BSCHK 1 Byte Check Byte
This-is a2 one byte check - character. Wnhenever a

"oucket is writtsn the valus in the check byte is
changed and copied inte the last byte of the
bucket. Wnenever a bucket is read the check byte
is compared to the copy for equality. By thnis
technique hardware failures during transfer zare
detectable (i.e., the BUS breaks etc.).

7.5.1.1.2 B3TAA 1 Byte This Allocationm Area

This field contains the allocation arez nuaber
that this bucket was allocated from.

7.5.1.1.3 B$ADR 2 Bytes Bucket Address Sample

This 1is a sazmple of the bucket's start VEN

address, and is composed of the low order 186 bits
¢f that zddress. This field is written upon
bucket formatting, =za2nd 1is checked whenever the

bucket is read intoc 2a3in memory.



FILES-11

-3
wn
.

-
—
o

7.5.1.1.7

7.5.

1.1.8

ON-DISX STRUCTURE PAGE 64

BENBY 2 Bytes Next Available Byte

Tnis field contzins the byte address r
tne start of tns bucket of the first §
the Free Stecrzge Area of the bucket.

BSANID 1 Byte Next Available ID

This field contains the ID number to use for tas
~next record placed in the bucket. '

B3LID 1 Byte Last Available ID

This field contains the ID nuzmber of the 1last ID.
in the contiguous range of ID's specified by the
contents of BENID zand B3LID. When the contents of
BSNID are greater than the contents of B8$LID or is
zero then there is no "next" available ID. When
this condition occurs the bucket is scanned to
find the largest contiguous range of wunused 1ID's
and B$SNID and B3LID are updated to describe that
range.

BESNBK 4 Bytes Next Bucket Pointer

This field contains the start VBN of the next
bucket at this 1level of the 1index or data
partition for the Indexed file organization. This
pointer always points to a Dbucket of the same
size. '

BSLEV 1 Byte Level Number for Bucket

This field contains the level number relative to
the data level for this bucket, in the index. The
Data level buckets contain a 0, the 1lowest- level
buckets of the index contain a 1, the next level
buckets going towards the root contain a2 2 etec.



NCTE

"Dataz bDuckets" refsr to the buckets

o
(V]

PAGE

which

contain the data records associated witn

the index. For the primary index

these

are the user data records, and for the

alternate 1index these are systen

records which ¢contzin zn z2rray of poi

Lo user datz records.

7.5.17.1.9 B3BCB 1 Byte Control Bits

This is a bit encoded byte field and 1is

datza

nters

used in

the processing of 2 bucket. The following bits
are defined for the indexed file organization:

BCSLBX - last buckest in level
BC3ROT - root bucket of index

7.5.1.2 Record Storage Area

The record storage area starts at the first byte
after ths bucket header area, and ends at the byte
address stored in B3NBY a@inus one. The record
structures in buckets vary with the use of the

bucket. Section 7.5.2 specifies the
record structures used.

7.5.1.3  Free Storage Area

The free storage area starts at ths Dbyte

various

address

stored in B3NBY and up to the check byte copy in
the bucket. Any and all free storage statistics

refer to this contiguous free storage area.
However it is possible due to "fast" record
deletions to have "free" space within the record
storage area of the bucket. The reclaiming of

this space is done on an as needed basis.

7.5.1.4 S$BHD 14 Bytes Size of Header.Area

This symbel represents the size of the bucket

header aresa.



FILES=11

7.5.

B3TAA

B3LID

BE3BCB

A

QN=-DISK STRUCTURE

Bucket Format Layout

] bucket Address Sampl

H next Bucket Pointer
i (Start VBN)
i .
]

1
]
1
i
i Area
i
[}
H

]

i

1

i

i Area -
: .

[}

‘

D WD D S D Ah D WD D WD WD D D D W W wn A em o wn

B3CHK

w
€5
s 23
(e
e v]

BSNBY
B3NID

B$NBK

B3LEV
S$BHD =

C(BS$NBY)

PAGE

14 Bytes

On

[0 )



-3

CN-DISY{ STRUCTURE PAGE

Aecord Structures .
Tne followinzg record structures z2pply to the
Ingexed file organization.

1dex dbuckebt record

IRCS PS

Bucket n Bytes
Pointer
Key Value a Eytes

—— e e . S e o —— —— e~ -

T - 13 T ~ Iad . 1 =< e s
IRCB contains Trnizx Razired Contedl 5173
ra o o N . ' ~ ' AW R] .. -
Lee PR :.‘;" DL o J O i y v{- VA
-
« )
N1 Sy = SR I4
ale (- N P ™
) PR b
PRI g /
- - - - 1
LG P i y T o . J . .

7 1l: zhe pointer size as follows:

2 byte bucket pointer
3 byte bucket pointer
4 pbyte bucket pointer
undefined

wnh -0
(L 1]



FILES—13\ON-DISK STRUCTURE PAGE 68

7.5.2.2 General Data Bucket Record

! DRCB | PS | 1 Byte

! 1

[ Badhnhadiadbadbadhndindb b ] .

i ID i1 Byte

]

. !

i  Record i N Bytes Optionzl

i Pointer ;

[} 1

lmcccccccmae=a !

i Size i No Size If Fixed Length Dats
------------- '

: ---esd

3 ]

] Data | Bytes

] i

1 ]

T X

= Size Qr Fixed Length If No Size

DRCB contains Data Record Control Bits

The following bits are defined in the DRCB byte:

DC$DEL Record deleted, or pointer to deleted
record. '

DCS$RRYV | Record reference vector record. .

DC3NPS - No pointer size field present (qualifies

. PS) ’

DC$KDL Pointer to record for this key nc longer
applies $UPDATE <changed the key, but
record exists; note ID will ©be zeroced

on all systems starting with Release 1
on RSX-11M V3.

DC3SNCP Do not compress this deleted record.

PS is tne pointer size for the Record pointer as
follows:

3 byte record pointer
4 byte record pointer
5 byte record pointer
undefined

wN -0
U onu



FLLES-1T QON-DI3K& STauvivan faus ]
7.5.2.3 RAV Records
Record Refersnce Veector (RAYV) rscords ars records which
pcint to tne record associated with the reference vactor.
Tney function as "forwarding addresses" f{or ths z2ctual
rscords wWhnen tney are moved.
Tne format is zs follows:
i DRCB | PS |
emce e ma== ]
f Id |
i ]
mmeenemme——-|
| Record i
! Pointer |
where the DC3RAV b5it is set in the DRCB field.
7.5.2.3.1 DEZLETED. RRV RECORDS . i
The RRV record for a2 deleted record can be zs small as
.the first two Dbytes of the RAV record. In this case thne
following DRCB bits are set: . . .
h 3 ..
DCSRRV - ° .
DC3NPS
DCS$DEL



FILES-11 ON-DISX STRUCTURE PAGE 70
7.5.2.4 Secondary (or zalternate) Index Data Record (SIDR)
for whicn duplicate keys azre allowed
The data records associated with an alternate index ars
pointer arrays to the users data records. The fcocrazt of ths
record is as feollows:
i DRCB i PS 1 Byte
Data Record | ID i 1 Byte
H Duplicate Count | 4 Bytes (DCSNPS=0)
Overhead : ~ Size i 2 Bytes
i Key Value i M Bytes
Data H SIDR Record i X Byte Pointer
on i Pointer #1 : Array
Record <cccccccccccccccccaaa-
i SIDR Record i Y Bytes record
i Pointer #2 :
Voo TTTTTTTTTTTTTTT oy
) . ]
] ]
] - - i
] ]
] . 4
............... - o w» w - w» -
] SIDR Record ! Z Bytes
' Pointer #X !
Fields within the pointer array record
PS This field contains the size of the
duplicate count field as follows
0 = 3 bytes
1 = 4 bytes ¥*#THIS IS THE QONLY VALUE
USED*#*
2 = 5 bytes
3 = undefined
DRCB Bits used for pointer array records
NC$NPS If this bit is set then there
is no duplicate count field.
This is wused for all array
continuations records, since

the count applies

array.

3 -
to the ctotel



(=]
ry
[N ()]
- &

7.5.2.9

The

Index Data Records is

Qverhead
Record
Pointer
3-5 bytes

DRCB bits

Cii=-DI3K 37a0CTl0aZ FAGZ T
Secondary (alternate) 1Index Data Record - No
s
datz rscords asscciated witn an alternats index for
plicate key wvalues are not =allowed is shown in
.5.2.4 except that thns duplicate ccunt [ield 1is
(DC3NPS=1) and there is only one SIDR <Rscord
Wwhen a record is dsleted the MNo Duplicatss SIDRE
s compressed out of the sscondzary indei's dzatsz
the time of the delete.
SIDR Record Pointers
format of the record pointers wused 1in Secondary
z2s follows:
i DRCB | PS | 1 Byte
i  Record i N Bytes
| Pointer |
i i .
used for SIDR record pointers
DCSKDL Pointer has been, deleted dus to key
change on a2 $UPDATE cperation. In this
case the ID porticn of the record
pointer will be zero.
DC3DEL Record associated with this pointer has

been deleted.



PAGE 72

re

STRUCTURE
Index Structu
Root

Figure T7=2

Cl-DISK

-t O
S5

—— i ——

e« o o o

L]

- - wd W m e s e ws a -
°

e

0

———— e

- W anwnwn enw w e w

LR R R R

- ean s s w ww wwn ww wm-
e e o »

- wd > w wn w> > s o > - -

- - -t

]
1
v

M

™ - M-

.a .

laccccwcce=
| lecececccccccnas

| .

i
i,
S

| oo - ——————
cnmmecen—--———

.

coema—-——————

eft to
LT

1.1

zontally from 1
.5.

-

Section 7

(=see

n a level are linked hor
bucket pointers

i

All buckets
right via next

NOTES:



W

(e

(@]
]

(W]
(X
(n
S
w
3
bo ]
C
O
3
[ e
w
¢
y
=N
(]
™m
-3
(a)

Record Hzs Never Moved

-==-- Pointer In Secondary Index
i Pointer Array

]

.................. !

i ID ! i
R i User Dztz Racerd

i Record Pointer |e-=---

i (RRVP) '

i Data i RRVP = Records Rsference
e T R Vector.Pointer

Record Has Moved

---- Pointer In Secondary Index

i Pointer Array

]

]

v .

i DRCB | PS |(Kecoaaaa Record Reference
e et P e Vector

D A s wnwaE awwnwn - o> -

| Record Pointer |----

- W wwww > w-ah - - - 1

AP D En an s wn w a wn A W ww "> -

: ID i

- an D wn > w WD W > ww>w-

| Record Pointer !|e-ceeca-ca-

i (RRVP) ] User Data Record

Figure 7-=3

RRV Uszagse






