RSX-11M
Task Builder Reference Manual
Order No. DEC-11-OMTBA-A-D

RSX~11lM Version 1

11/74 - 17

Order additional coplies as directed on the Software
Information page at the back of this document.

digital equipment corporation - maynard. massachusetts

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Associated Manuals

Refer to the User's Guide to RSX-11M
Manuals, DEC-11-OMUGA-A-D.

Copyright <:) 1974 Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL

software users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAlo0 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC~-8 0s/8 RT-11
DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET 8

UNIBUS

ialid

RSX-11M TASK BUILDER

PREFACE

MANUAL OBJECTIVES
STRUCTURE OF THE DOCUMENT

N =

CHAPTER INTRODUCTION

CHAPTER COMMANDS

GENERAL COMMAND DISCUSSION
Task Command Line

Multiple Line Input

Options

Multiple Task Specification
Indirect Command File Facility
Comments

File Specification

o & o & ¢ o o o

¢ o o ¢ o o o
NO UL WN

EXAMPLE: - VERSION 1 OF CALC
1 Entering the Source Language
2 Compiling the FORTRAN Programs
3 Building the Task

NN N [SV O S Ol S SN N N | ad [=N)

NONN RHERRRRR

SUMMARY OF SYNTAX RULES
Syntax Rules

ww
L]
I

CHAPTER SWITCHES AND OPTIONS

SWITCHES

Task Builder Switches

AC (Ancillary Control Processor)
CC (Concatenated Object Modules)
CP (Checkpointable)

DA (Debugging Aid)

EA (Extended Arithmetic Element)
FP (Floating Point)

HD (Header)

LB (Library File)

MM (Memory Management)

MP (Overlay Description)

PI (Position Independent)

PR (Privileged)

SH (Short Map)

SQ (Sequential)

TR (Traceable)

XT:n (Exit on Diagnostic)
Examples

Override Conditions

L] L] L] L] L] e o . [} ®* o [] L] . [} L] L] L] L] L]

L] ¢ & o o o o o ¢ @& & o & o ¢ ¢ o o o

WN P e e
[] [] . L] * L] L[] * o [] [] * [] [] L] L]
HFHHRHREREOONOU S WN -
condwWNHO

OPTIONS
Control Option

ww WWWWWWWwWWwwwwwwwwwwwww w NN

DN R e s e b b e

*
=

iii

N
| I U I I | B |

DN NN
NN BRWWNE

111
o
NH RO

T
=

NN NN N

w

L
WORODODINIIANUVTI D W W e

WWWWWWWWw WWwWwWWwWwwwwwww

3.2.1.1 ABORT (Abort the Task Build) 3-12
3.2,2 Identification Options 3-12
3.2.2.1 TASK (Task Name) 3-13
3.2.2,2 UIC (User Identification Code) 3-14
3.2.,2.3 PRI (Priority) 3-14
3.2.2.4 PAR (Partition) 3-14
3.2.3 Allocation Options 3-15
3.2.3.1 ACTFIL (Number of Active Files) 3-15
3.2.3.2 MAXBUF (Maximum Record Buffer Size) 3-16
3.2.3.3 FMTBUF (Format Buffer Size) 3-16
3.2,3.4 EXTSCT (Program Section Extension) 3-16
3.2.3.5 STACK (Stack Size) 3-17
3.2.3.6 Examples of Allocation Options 3-17
3.2.4 Storage Sharing Options 3-18
3.2.4.1 COMMON (Resident Common Block) 3-18
3.2.4.2 LIBR (Resident Library) 3-18
3.2.4.3 Example of Storage Sharing Options 3-19
3.2.5 Device Specifying Options 3-19
3.2.5.1 UNITS (Logical Unit Usage) 3-19
3.2.5.2 ASG (Device Assignment) 3-20
3.2.5.3 Example of Device Specifying Options 3-20
3.2,6 Storage Altering Options 3-20
3.2.6.1 GBLDEF (Global Symbol Definition) 3~-20
3.2.6.2 ABSPAT (Absolute Patch) 3-21
3.2.6.3 GBLPAT (Global Relative Patch) 3-21
3.2.6.4 Example of Storage Altering Options 3-22
3.2.7 Synchronous Trap Options 3-22
3.2.7.1 ODTV (ODT SST Vector) 3-22
3.2.7.2 TSKV (Task SST Vector) 3-23
3.3 EXAMPLE: CALC;2 3-23
3.3.1 Correcting the Errors in Program Logic 3-23
3.3.2 Building the Task 3-24
CHAPTER 4 MEMORY ALLOCATION 4-1
4,1 TASK MEMORY 4-1
4.1.1 P-Sections 4-2
4,1.2 Allocation of P-sections 4-4
4,1.2.1 Sequential Allocation of P-sections 4-5
4,1.3 Resolution of Global Symbols 4-6
4.2 SYSTEM MEMORY 4-7
4,2.1 Mapped and Unmapped Systems 4-8
4.2,2 Privileged Tasks 4-8
4.3 TASK IMAGE FILE 4-9
4.3.1 Checkpoint Area 4-10
4.4 MEMORY ALLOCATION FILE 4-10
4.4.1 Structure of the Memory Allocation File 4-15
4.5 EXAMPLE: CALC;l MAP 4-18
4.5.1 Heading 4-18
4,5,2 Segment Description 4-18

iv

CHAPTER

CHAPTER

CHAPTER

(=)} =) [X W) A O [+)) (3, (8] o n cuumuuouuunnunum v

()} v
° o

[SC NS N, NS (8] > LN
® o o o o
o o o o

.

o o
W N s

o o o o
oW N =

N

U ddbWwWwWwww [%] NN

® & ¢ & o o & o o
® @ o o & o o° o o

NN HERHBPRERREE B e

e o o
W=

L]

)
> w

~ ~ ~
.
N L d

Program Section Allocation Synopsis
File Contents Description

EXAMPLE: CALC;2 MAP
OVERLAY CAPABILITY

OVERLAY DESCRIPTION

Overlay Structure

Overlay Tree

Loading Mechanism

Resolution of Global Symbols

in a Multi-segment Task
Resolution of P-sections

in a Multi-segment Task

Overlay Description Language (ODL)
+ROOT and .END Directives

+FCTR Directive '

.NAME Directive

+PSECT Directive

Multiple Tree Structures

Defining a Multiple Tree Structure
Multiple Tree Example

Overlay Core Image

EXAMPLE: CALC;3

Defining the ODL File

Building the Task

Memoxy Allocation File for CALC;3
EXAMPLE: CALC;4

SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE
LOADING MECHANISMS

AUTOLOAD

Autoload Indicator

Path-loading

Autoload Vectors

MANUAL LOAD :

Manual Load Calling Sequence

FORTRAN Subroutine for Manual Load Request
ERROR HANDLING

EXAMPLE: CALC;5S

SHARED REGIONS

USING AN EXISTING SHARED REGION

CREATING A SHARED REGION

(%)} >

111 1 U

> B N =N
[

(=3}
1
=

i
w [- [l WA U N
(=] o

~
1
w

CHAPTER

APPENDIX

APPENDIX

~

. .

Lo Y [w
e o o
W=

* o o

00 00 00 0 o 00 0o NN ~

N R
® & & o o o
SOV W N

® & o 6 0 & 0 o ¢ o & & 0

HFHREEFEFHEFOONOOUER WD

(3] o L T WS w
WO

POSITION INDEPENDENT AND ABSOLUTE

SHARED REGIONS

EXAMPLE: CALC;6 BUILDING AND USING A SHARED

REGION
Building the Shared Region

Modifying the Task to Use the Shared Region

Memory Allocation Files

HOST AND TARGET SYSTEMS

BUILDING THE TASK FOR THE TARGET SYSTEM

Example

EXAMPLE: CALC;7
Rebuilding the Shared Region

Rebuilding the Task for the Target System

The Memory Allocation Files
ERROR MESSAGES
TASK BUILDER DATA FORMATS

GLOBAL SYMBOL DIRECTORY (GSD)
Module Name '

Control Section Name

Internal Symbol Name

Transfer Address

Global Symbol Name

Program Section Name

Program Version Identification

END=-OF~GLOBAL~SYMBOL~DIRECTORY
TEXT INFORMATION

RELOCATION DIRECTORY

Internal Relocation

Global Relocation

Internal Displaced Relocation
Global Displaced Relocation
Global Additive Relocation

Global Additive Displaced Relocation

Location Counter Definition
Location Counter Modification
Program Limits

P-section Relocation

P-section Displaced Relocation
P-section Additive Relocation

P-section Additive Displaced Relocation

Complex Relocation
INTERNAL SYMBOL DIRECTORY

END OF MODULE

vi

Page

~
I
[N

WwNN Ll o [l Noy ot

Y
I
T

mwmti:c'uwww w
HWOYOIIN LW
o

o]
!
[
=

B-11

B-12
B-15
B-15
B-16
B-16
B-17
B-17
B-18
B-18
B-19
B-19
B-20
B-20
B-21
B-22

B~-24

B-24

o~

e

APPENDIX

APPENDIX
APPENDIX
APPENDIX

APPENDIX

Q@ "M B D O 0 0 0000000 Q00 00 0

.
=

e ¢ & o ° o o o e o o

(<)} wm > WWwWwwwwww NN b=

[] L]
N

e o o 0 o o o
NSO UTe WN -

TASK IMAGE FILE STRUCTURE

LABEL BLOCK GROUP
Label Block Details

HEADER
Low Core Context
Logical Unit Table Entry

SEGMENT TABLES

Status

Relative Disk Address
Load Address

Segment Length

Link Up

- Link Down

Link Next
AUTOLOAD VECTORS
ROOT SEGMENT
OVERLAY SEGMENTS

RESERVED SYMBOLS

TAILORING THE TASK BUILDER

INCLUDING A DEBUGGING AID

RSX-11M TASK BUILDER GLOSSARY

vii

Page
c-1

Cc-2
C-5

c-6
c-10
c-10
c-11
c-12
c-12
c-12
c-13
c-13
c-13
c-13
c-14
c-14
c-14
D-1

E~1

G-1

Number

W
N

Number

>
i |
(=)

O\U“I(.lnh‘h L
NS W [\

00 3 ~
i i
)

o
U

1
HEHEOVOIOAUIdWNDE N N

i
=

o

w???mwwtfwwmwwww
=
FNERE S

i
[
wn

B-16
B-17
B-18
B~19
B-20
B-21
B-22
B-23
B-24
Bf25
B~25A

TABLES

Task Builder Switches
Task Builder Options
P-Section Attributes

FIGURES

Memory Allocation File for IMG1.TSK on a
Mapped System

Memory Allocation File for IMGl.TSK on an

Unmapped System

Memory Allocation File for CALC;l1 (Mapped System)
Memory Allocation File for CALC;2 (Mapped System)
Memory Allocation File for CALC;3 (Mapped Systemn)
Memory Allocation File for CALC;4 (Mapped System)
Root Segment of Memory Allocation File for CALC;5

(Mapped Svstem)

Memory Allocation File for the Shared Region

DTA (Mapped System)

Memory Allocation File for CALC;6 (Mapped System)
The Memory Allocation File for the Shared Region

(Unmapped System)

The Memory Allocation File for CALC;7 (Unmapped

System)

General Object Module Format

GSD Record and Entry Format
Module Name Entry Format

Control Section Name Entry Format
Internal Symbol Name Entry Format
Transfer Address Entry Format
Global Symbol Name Entry Format
P-~Section Name Entry Format

Program Version Identification Entry Format

End of GSD Record Format

Text Information Record Format
Relocation Directory Record Format
Internal Relocation Command Format
Global Relocation

Internal Displaced Relocation

Global Displaced Relocation

Global Additive Relocation

Global Additive Displaced Relocation
Location Counter Definition

Location Counter Modification
Program Limits

P-Section Relocation

P~-Section Displaced Relocation
P-Section Additive Relocation
P-Section Additive Displaced Relocation
Complex Relocation

Internal Symbol Directory Record Format
End-of-Module Record Format

Task Image on Disk

Label Block Group

Task Header Fixed Part

Task Header Variable Part

Logical Unit Table Entry

Segment Descriptor

Autoload Vector Entry

viii

Page

3-11
4-3

N
i

[o0]
!

1
odJaaaunwu;m L O

wwwmclamwwoo

1
=
o

C-11
C-12
C-14

—

PREFACE

0.1 MANUAL OBJECTIVES

This manual is a tutorial, intended to introduce the user to the basic
concepts and capabilities of the RSX-11lM Task Builder.

Examples are used to introduce and describe features of the Task
Builder. These examples proceed from the simplest case to the most
complex. The reader may wish to try out some of the sequences to test
his understanding of the document.

The user should be familiar with the basic concepts of the RSX-11M
system described in Introduction to the RSX=-11M Executive
(DEC-11-OMIEA~A-D) and with basic operating procedures described in
RSX~11M Operator Procedures Manual (DEC-11-OMOGA-A-D) .

0.2 STRUCTURE OF THE DOCUMENT

The manual has eight chapters. The first four chapters describe the
basic capabilities of the Task Builder. The last four chapters
describe the advanced capabilities. The Appendices 1list erxor
messages and give detailed descriptions of the structures used by the
Task Builder.

Chapter 1 outlines the capabilities of the Task Builder,

Chapter 2 describes the command sequences used to interact with the
Task Builder.

Chapter 3 lists the switches and options.

Chapter 4 describes memory allocation for the task and for the system
and gives examples of the memory allocation file,

Chapter 5 describes the overlay capability and the language used to
define an overlay structure,

Chapter 6 gives the two methods that can be used for loading overlay
segments.

Chapter 7 introduces shared regions, which can be used for
communication between tasks or to reduce the system's memory
requirements.

Chapter 8 describes the considerations for building a task on one
system to run on a system with a different hardware configuration.

A Glossary of terms is given in Appendix G.

ix

S,

CHAPTER 1

INTRODUCTION

This manual introduces the user to the Task Builder and defines the
role of the Task Builder in the Rsx-llM Systemn,

The fundamental executable unit in the RSX-11M System is the task. A
routine becomes an executable task image, as follows:

l. The routine is written in a supported source language.
2. The routine is entered as a text file, through the editor.

3. The routine is translated to an object module, using the
appropriate language translator,

4. The object module is converted to a task image using the Task
Builder.

5. Finally, the task. is run,

If errors are found in the routine as a result of executing the task,
the user edits the text file created in step 2 to correct the errors,
and then repeats steps 3 through 5.

If a single routine is to be executed, the use of the Task Builder is
appropriately simple. The user gives as input only the name of the
file that contains the object module produced from the translation of
the program and gives as output a name for the task image.

In typical applications, generally a collection of routines is run
rather than a single program, In this case the user names each of the
object module files and the Task Builder 1links the object modules,
resolves any references to the system library, and produces a single
task image, ready to be installed and executed.,

The Task Builder makes a set of assumptions (defaults) about the task
image based on typical usage and storage requirements. These
assumptions can be changed by including switches and options in the
task-building terminal sequence, thus directing the Task Builder to
build a task which more closely represents the input/output and
storage requirements of the task,

CHAPTER 1 INTRODUCTION

The Task Builder also produces, upon request, a memory allocation file
which gives information about how the task is mapped into memory. The
user can examine the memory allocation file to determine what support
routines and storage reservations are included in the task image.

If a reduction in the amount of memory required by the task is
necessary, the overlay capability can be used to divide the task into
overlay segments, Overlaying a task allows it to operate in a smaller
memory area and thus makes more space available to other tasks in the
system,

If the task is configured as an overlay structure, (that is, a
multi-segment task), the user becomes responsible for loading segments
into memory as they are needed. There are two methods provided for
loading overlay segments: autoload and manual,

The autoload method makes the loading of overlays transparent to the
user, No special calls are required to load the overlay segments of
the task. Loading of the overlay segments is accomplished
automatically by the Overlay Runtime System according to the structure
defined by the user at the time the task was built.

The manual load method requires that specific calls to the Overlay
Runtime System be included in the coding of the task, and gives the
user full control over the loading process.

If the task communicates with another task, or makes use of resident
subroutines to save memory, the Task Builder allows the user to link
to existing shared regions and to create new shared regions for future
reference.

To move a task from one system to another with different memory
management status, a special switch (/MM) is included in the Task
Builder. The use of this switch allows tasks to be built on one
system and to run on another.

The user can become familiar with the capabilities of the Task Builder
by degrees. Chapter 2 of this manual gives the basic information
about Task Builder commands. This information is sufficient to handle
many applications. The remaining chapters deal with special features
and capabilities for handling advanced applications and tailoring the
task image to suit the application. The appendices give detailed
information about the structure of the input and output files
processed by the Task Builder.

This manual describes the handling of an example application, CALC,
In the first treatment of CALC, the user builds a task using all the
default assumptions. Successive treatments illustrate the main points
of each chapter in a realistic manner. Switches and options are added
as they are required, an overlay structure is defined when the task
increases in size, the 1loading of overlays is optimized, a shared
region is added and finally the task is moved from a development
system to a system which does not have memory management,

The memory allocation files for the various stages of task development
are included. The effect of a change can be observed by examining the
map for the previous example and the map for the example in which the
change is made.

t

P

CHAPTER 2

COMMANDS

2,1 GENERAL COMMAND DISCUSSION

This chapter describes command sequences that can be used to build
tasks., Each command sequence .- is presented, by example, from the
simplest case to the most complex., All commands are then summarized
by a set of syntactic rules.

The first of a set of examples, designed to illustrate some of the
important features of the command language, concludes this chapter.
This example illustrates a simple task building sequence for a typical
application.

The convention of underlining system-generated text to distinguish it
from user type=-in is used in this manual. For example:

TKB>IMG1=IN1l

The underline in the dialogue indicates that the system printed 'TKB)'
and the user typed 'IMG1=INl',

Consider again the creation and execution of a task. Suppose a user
has written a FORTRAN program, He enters the program through a text
editor as the file PROG. Then he types the following commands in
response to the Monitor Console Routine's request for input:

2FOR CALC=PROG
>TKB IMG=CALC
SINS IMG
SRUN IMG

The first command (FOR) causes the FORTRAN compiler to translate the
source language of the file PROG.FTN into a relocatable object module
in the file CALC,OBJ. The second command (TKB) causes the Task
Builder to process the file CALC.OBJ to produce the task image file
IMG,TSK., The third command (INS) causes Install to add the task to
the directory of executable tasks. Finally, the fourth command (RUN)
causes the task to execute,

CHAPTER 2, COMMANDS

The example just given includes the command
2TKB IMG=CALC

This command illustrates the simplest use of the Task Builder. It
gives the name of a single file as output and the name of a single
file as input., This chapter describes, first by example and then by
syntactic definition, the complete facility for the specification of
input and output files to the Task Builder.

2,1.1 Task Command Line

The task=-command-line contains the output file specifications,
followed by the input file specifications, separated by an equal sign.
There can be up to three output files and any number of input files.

The output files must be given in a specific order: the first file
named is the task image file, the second is the memory allocation
file, and the third is the symbol definition file, The memory
allocation file contains information about the size and location of
components within the task. The symbol definition file contains the
global symbol definitions in the task and their virtual or relocatable
addresses in a format suitable for re-processing by the Task Builder.
The Task Builder combines the input files to create a single
executable task image,

Any of the output file specifications can be omitted, When all three
output files are given, the task~command line has the form:

task-image, map, symbol-definition = input, ...
Consider the following commands and the ways in which the output
filenames are interpreted,
- Command Output Files
>TKB IMG1l,MP1l,SFl=INl The task image file is IMGl.TSK, the

memory allocation file is MP1,MAP, and
the symbol definition file is SF1,.STB.

2TKB IMGl=IN1l The task image file is IMGl.TSK.

2>TKB ,MP1=IN1l The memory allocation file is MP1,.MAP,

2TKB ,,SF1=IN1 The symbol definition file is SF1,STB.

>TKB IMGl,,SFl=IN1 The task image file is IMG1l.TSK and the
symbol definition file is SF1,STB.

2TKB =IN1 This is a diagnostic run with no output
files,

TR

7 ™.,

CHAPTER 2., COMMANDS

2,1.2 Multiple Line Input

Although there can be a maximum of three output files, there can be
any number of input files, When several input files are used, a more
flexible format is sometimes necessary, one that consists of several
lines. This multi-line format is also necessary for the inclusion of
options, as discussed in the next section.,

If the user types 'TKB' alone, the Monitor Console Routine (MCR)
invokes the Task Builder., The Task Builder then prompts for input
until it receives a line consisting of only the terminating sequence

l'//‘”.

The sequence

>TKB
TKB>IMG1l,MP1=IN1l
TKB>IN2,IN3
TKB>//

produces the same result as the single line command:
>TKB IMG1,MP1=IN1,IN2,IN3

This sequence produces the task image file IMGl1.TSK and the menmory
allocation file MP1.MAP from the input files IN1l.0BJ, IN2.0BJ, and
IN3.0BJ,

The output file specifications and the separator '=' must appear on
the first TKB command line, Input file specifications can begin or
continue on subsequent lines. ’

The terminating symbol '//' directs the Task Builder to stop accepting
input, build the task, and return to the Monitor Console Routine

level.

2,1.3 Options

Options are used to specify the characteristics of the task being
built, If the user types a single slash '/', the Task Builder
requests option information by displaying 'ENTER OPTIONS:' and
prompting for input.

>TKB
TKB>IMG1,MP1=IN1
TKBYIN2,IN3

TKB>/

ENTER OPTIONS:
TKBYPRI=100
TKB>COMMON=JRNAL: RO
TKB>//

In this sequence the user entered the options PRI=100 and
COMMON=JRNAL:RO and then typed a double slash to end option input.
It also returned to MCR!!

CHAPTER 2. COMMANDS

The RSX-11M Task Builder provides 19 options. The syntax and
interpretation of each option are given in Chapter 3,

The general form of an option is a keyword followed by an equal sign
'=' followed by an argument list, The arguments in the list are
separated from one another by colons. In the example given, the first
option consists of the keyword 'PRI' and a single argument '100'
indicating that the task is to be assigned the priority 100. The
second option consists of the keyword 'COMMON' and an argument list
'JRNAL:RO', indicating that the task accesses a common region named
JRNAL and the access is read-only.

More than one option can be given on a line, The symbol exclamation
point '!' is used to separate options on a single line., For example:

TKB>PRI=100 ! COMMON=JRNAL:RO
is equivalent to the two lines

TKB>PRI=100
TKB>COMMON=JRNAL ¢ RO

Some options have argument lists that can be repeated. The symbol
comma ',' is used to separate the argument lists. For example:

TKB)>COMMON=JRNAL :RO,RFIL:RW
In this command, the first argument list indicates that the task has
requested read-only access to the shared region JRNAL, The second
argument list indicates that the task has requested read-write access
to the shared region RFIL.
The following three sequences are equivalent:
TKB>COMMON=JRNAL:RO,RFIL:RW
TKB)COMMON=JRNAL:RO | COMMON=RFIL:RW

TKB >COMMON=JRNAL :RO
TKB>COMMON=RFIL:RW

2.1.4 Multiple Task Specification

If more than one task is to be built, the terminating symbol, '/!
(slash), can be used to direct the Task Builder to stop accepting
input, build the task, and request information for the next task
build.

Consider the Sequence:

>TKB

TN

CHAPTER 2., COMMANDS

TKB>IMG1=IN1l

TKB>IN2,IN3

TKBY/

ENTER OPTIONS:
TRB>PRI=100
TKB>COMMON=JRNAL: RO
TKB>/
TKB>IMG2=SUBl
TKB>//

The Task Builder accepts the output and input file specifications and
the option input, then stops accepting input when it encounters the
'/' during option input., The Task Builder builds IMGl.TSK and returns
to accept more input for building IMG2.TSK.

2,1.5 Indirect Command File Facility

The sequence of commands to the Task Builder can be entered directly
or entered as a text file and later invoked through the indirect
command file facility. ‘

To use the indirect command file facility, the user first prepares a
file that contains the user command input for the desired interaction
with the Task Builder. He then invokes its contents by typing ‘'Aa'
followed by the file specification.

Suppose the text file AFIL is prepared, as follows:

IMG1l,MP1=IN1
IN2,IN3

/

PRI=100
COMMON=JRNAL : RO
//

Later, the user can type:
>TKB @AFIL

When the Task Builder encounters the symbol '@', it directs its search
for commands to the file specified following the '@' symbol, When the
Task Builder is accepting input from an indirect £file, it does not
display prompting messages on the terminal, The l-line command to
take commands from the indirect £file AFIL is equivalent to the
keyboard sequence:

>TKB
TKB>IMG1 ,MP1=IN1
TKB>IN2,IN3

TKB>/

ENTER OPTIONS 3
TKBYPRI=100

TKB Y COMMON=JRNAL : RO
TKB>//

CHAPTER 2. COMMANDS

When the Task Builder encounters a double-~slash in the indirect
file, it terminates indirect file processing, builds the task, and
exits to the monitor upon completion. '

However, if the Task Builder encounters an end-of-file in the indirect
file before a double slash, it returns its search for commands to the
terminal and prompts for input.

The Task Builder permits two levels of indirection in file references.
The dindirect file referenced in a terminal sequence can contain a
reference to another indirect file.

Suppose the file BFIL,CMD contains all the standard options that are
used by a particular group at an installation. That is every
programmer in the group uses the options in BFIL.CMD., To include
these standard options in his task building file, the user modifies
AFIL to include an indirect file reference to BFIL.CMD as a separate
line in the option sequence.

The contents of AFIL.CMD then are:

IMG1,MP1=IN1
IN2,IN3

/

PRI=100
COMMON=JRNAL :RO
@BFIL

//
Suppose the contents of BFIL.CMD are:

STACK=100
UNITS=5 ! ASG=DT1l:5

The terminal equivalent of the command
>TKB QAFIL
then is:

>TKB
TKB>IMGl,MP1=IN1
TKB>IN2,IN3

TRB>/

ENTER OPTIONS:
TKB>PRI=100
TKB>COMMON=JRNAL : RO
TKBYSTACK=100
TKBY>UNITS=5 ! ASG=DT1:5
TKB>//

The indirect file reference must appear as a separate line. For
example, if AFIL.CMD were modified by adding the '@BFIL' reference on
the same line as the 'COMMON=JRNAL:RO' option, the substitution would
not take place and an error would be reported.

CHAPTER 2. COMMANDS

2.1.6 Comments

Comment lines can be included at any point in the sequence. A comment
line begins with a semicolon ';' and is terminated by a carriage
return., All text on such a 1line is a comment. Comments can be
included in option lines. In this case, the text between the
senicolon and the carriage return is a comment.

Consider the annotation of the file just described; the user adds
comments to provide more information about the purpose and the status
of the task he is working on. - Specifically, he adds some identifying
lines, notes the function of his input files and shared region, and
concludes with a comment on the current status of the task., The
contents of the file are as follows:

TASK 33A

DATA FROM GROUP E-46 WEEKLY

i e wo wo wo we

MGl ,MPl=

: PROCESSING ROUTINES
f IN1

; STATISTICAL TABLES
’ IN2

; ADDITIONAL CONTROLS
' IN3"

/

PRI=100

éOMMON=JRNAL:R0’; RATE TABLES

; TASK STILL IN DEVELOPMENT

7/

2,1.7 File Specification

Thus far the interaction with the Task Builder has been illustrated in
terms of filenames. The Task Builder adheres to the standard RSX-11M
conventions for file-specification. For any file, the wuser can
specify the device, the user identification code, the filename, the
type, the version number, and any number of switches.,

Thus, the file specification has the form:

device: [group,owner]filename, type;version/sw...

CHAPTER 2. COMMANDS

Consider, once again, the commands:

>TKB
TKB>IMG1,MP1=IN1
TKBY>IN2,IN3
TKB>//

When the files are specified by name only, the default assumptions for
device, group, owner, type, version and switch settings are applied,
For example, if the default user identification code is [200,200], the
task image file specification of the example is assumed to be:

SY0:[{200,200] IMG1.TSK;1

That is, the task image file is produced on the system device (SY0)
under user identification code [200,200]. The default type for a task
image file is TSK and since the name IMGl.TSK is new, the version
number is 1. The default settings for all the task image switches
also apply. Switch defaults are described in full in Chapter 3,

Consider the following commands:

>TKB
TKB> [20,23] IMG1/CP/DA,LP :=IN1
TKB>IN2;3,IN3

TKB>//

This sequence of commands produces the task image file IMGl.TSK under
user identification code [20,23] on the system device. The task image
is checkpointable and contains the standard debugging aid. The memory
allocation map is produced on the line printer. The task is built
from the latest versions of IN1.0BJ and IN3.0BJ and an early version,
number 3, of IN2.0BJ. The input files are all found on the system
device.

For some files, a device specification is sufficient. In the above
example, the memory allocation file is fully specified by the device
LP, The memory allocation file is produced on the line printer, but
is not retained as a file. ' ‘

In this example, switches CP and DA are used. There are 16 Task

Builder switch settings. The code, syntax and meaning for each switch
are given in Chapter 3.

2,2 EXAMPLE: VERSION 1 OF CALC

An example task, CALC, is developed in this manual from the simple
case given here through successive refinements and increasing
complexity. The successive versions of CALC are designed to summarize
the major points of each chapter and to illustrate possible uses for
the facilities described.

CHAPTER 2. COMMANDS

As the first step in the development of the task CALC, three separate
FORTRAN routines are entered by means of a text editor, translated by .
the FORTRAN compiler, and built into a task by the Task Builder.

The routines are:

RDIN which reads and analyzes input data and selects a data
processing routine on the basis of the analysis.

PROC1 which processes the input according to a specified set
of rules; and

RPRT which outputs the results as a series of reports,

The three routines communicate with each other through a common block
named 'DTA'. ' "

o
|
(X

CHAPTER 2. COMMANDS

2.2.1 Entering the Source Language

The source for the FORTRAN programs of the example CALC is entered and
filed by means of the text editor EDI. The user invokes EDI and types
in the source for the FORTRAN programs. ' The relevant parts of the
programs are shown below:

>EDI
EDI>RDIN,FTN
[CREATING NEW FILE]
INPUT
c READ AND ANALYZE INPUT DATA,
C
C SELECT A PROCESSING ROUTINE
C
c ESTABLISH COMMON DATA BASE
C
COMMON /DTA/ A(200), I
c READ IN RAW DATA
READ (6,1) A
1 FORMAT (200F6.2)
C CALL DATA PROCESSING ROUTINE
CALL PROC1
c GENERATE REPORT
CALL RPRT
END
*CL
EDI>PROC1.FTN
[CREATING NEW FILE]
INPUT
c FIRST DATA PROCESSING ROUTINE
C COMMUNICATION REGION
COMMON /DTA A(200),I
RETURN
END
*CL
EDI>RPRT,FTN
[CREATING NEW FILE]
INPUT
c INTERIM REPORT PROGRAM
c COMMUNICATION REGION
COMMON /DTA/ A(200),I
RETURN
END
*EX
[EXIT]

2-10

CHAPTER 2, COMMANDS

2,2,2 Compiling the FORTRAN Programs

The FORTRAN programs are compiled by the following sequence:

>FOR
FORYRDIN, LRDIN=RDIN
FORYPROC1,LPROC1=PROCL
FOR)RPRT , LRPRT=RPRT

The first command invokes the FORTRAN compiler, The second command
directs the compiler to take source input from RDIN.FTN, place the
relocatable object code in RDIN,OBJ and write the 1listing in
LRDIN,LST, The remaining commands perform similar actions for the
source files PROCl and RPRT.

2.2.,3 Building the Task

The task for the three programs is built in the following way:

2TKB CALC;1,LP:=RDIN,PROC1l,RPRT
The task building command specifies the name of the task image file
(CALC,TSK;1l), .the device for the memory allocation file (LP) and the

names of the input files (RDIN.OBJ, PROCLl.O0BJ and RPRT,OBJ). The task
makes use of all the default assumptions for switches and options.

2.3 SUMMARY OF SYNTAX RULES

Syntactic rules for the interaction between the user and the Task
Builder are given here, These rules do not present any new
information; rather, they define, in a more formal and concise way,
the syntax of the commands already described in this chapter.

In the syntax rules, the symbol '...' indicates repetition. For
example,

input-spec, ...

means one or more input-spec items separated by commas; that is, one
of the following forms:

input-spec
input-spec, input=-spec
input-spec, input-spec, input-spec

cee etc.

CHAPTER 2. COMMANDS

As another example,

arg: .o
means one or more arg items separated by colons.
As a final example,

TKB>input-line

means one or more of the indicated 'TKB input=-line' items,

2,3.1 Syntax Rules
The syntax rules are as follows:

l. A task=-building-command can have one of several forms. The
first form is a single line:

2>TKB task-command-line

The second form has additional lines for input file names:

>TKB
TKB>task=-command-line
TKBinput-line

TKB)terminating-symbol
The third form allows the specification of options:

>TKB
TKB)task=-command=-line
TKB>/

ENTER OPTIONS:
TKB)option-line

TKB)terminating-symbol
The fourth form has both input lines and option lines:

>TKB
TKB)task=-command-line
TKBYinput—-line

TKB)/

ENTER OPTIONS:
TKB>option-line

TKB)terminating-symbol

The terminating symbol can be:

SN,

CHAPTER 2. COMMANDS

/ if more than one task is to be built, or
// if control is to return to the Monitor
Console Routine.
2. A task-command-line has one of the three forms:
output=£file~list = input-file, ...
= input-file, XX
@indirect-file

where indirect-file is a file-specification as defined in
Rule 7.

3. An output-file-list has one of the three forms:
task—-file, map-file, symbol-=-£file »
task=file, map-£file
task-£file
where task-file is the file specification for the task image
file; map-file is the file specification for the memory
allocation file; and symbol-file is the file specification
for the symbol definition file. Any of the specifications
can be omitted, so that, for example, the form:
task=-file, ,symbol-file
is permitted.
4., An input-line has either of the forms:
input—file, P
@indirect-file
where input-file and indirect-file are file-specifications,
5. An option-line has either of the forms:
option ! ...
@indirect~file

where indirect-file is a file~specification.

CHAPTER 2. COMMANDS

6.

An option has the form:
keyword = argument-list, ...
where the argument-list is
arg: eee
The syntax for each of the 19 options is given in Chapter 3,

A file-specification conforms to standard RSX-11M
conventions. It has the form

device: [group,owner] £ilename,type;version/swe..

where everything is optional, The components are defined as
follows:

device is the name of the physical device on which the
volume containing the desired file is mounted,
The name consists of two ASCII characters
followed by an optional 1l- or 2-digit octal unit
number; for example, 'LP' or 'DT1‘.

group is the group number and is in the range 1
through 377 (octal).

owner is the owner number in the range 1 through 377
(octal).

filename is the name of the desired file. The file name
can be from 1 to 9 alphanumeric characters, for
example, CALC.

type is the 3-character type identification. Files
with the same name but a different function are
distinguished from one another by the file type;
for example, CALC.TSK and CALC,OBJ.

version is the octal version number of the file.
Various versions of the same file are
distinguished from each other by this number;
for example, CALC;1l and CALC;2,

swW is a switch specification. More than one switch
can be used, each separated from the previous
one by a '/'. The switch 1is a 2-character
alphabetic name which identifies the switch
option, The permissable switch options and
their syntax are given in Chapter 3,

P

CHAPTER 2, COMMANDS
The combination of the group number and the owner number is
called the user identification code (UIC).

The device, the user identification code, the type, the version, and
the switch specifications are all optional.

The following table of default assumptions applies to missing
components of a file-specification:

item default
device SY0, the system device *
group the system group number currently in effect *
owner the system owner number currently in effect *
type task image TSK

memory allocation MAP

symbol. definition STB

object module OBJ

object module library OLB
overlay description ODL
indirect command CMD

version for an input file, the highest~numbered existing
version.

for an output file, one greater than the
highest-numbered existing version,

switch (the default for each switch is given in Chapter
3.)

*If an explicit device or UIC is given, it becomes the default for
subsequent files separated by commas.

For example:

DT1:IMG1,MP1=IN1,DF:IN2,IN3

File Device
IMGl.TSK DT1
MP1l,MAP DT1
IN1.0BJ SYO
IN2.0BJ DF0
IN3.0BJ DFO0

inddodd hdiisid

o

PN
g 3

CHAPTER 3

SWITCHES AND OPTIONS

This chapter describes the ways in which additional directions can be
given to the Task Builder for the construction of a task image. Much
of the information in this chapter is quite specialized and refers to
topics that are described later in the manual, A quick reading of
this chapter will show the user the range of ways he can adjust the
task image he builds. Later, the chapter can be used as a reference
for practical applications with specific requirements.

3.1 SWITCHES
The syntax for a file specification, as given in Chapter 2, is:
dev: [group,owner] filename.type;version/sw-=1/sw=2,.,./sw~n

The file specification concludes with zero or more switches, sw-1l,
sSw=2, ..., SWw=-n, and these are described in what follows:

When a switch is not given by the user, the Task Builder establishes a
setting for the switch, called a default assumption.

A switch is designated by a 2-character switch code. The allowable
code values are defined by the processor which interprets the code.
The code is an indication that the switch applies or does not apply.
For example, if the switch code is CP (checkpointable), then the
switch settings recognized are:

/CP The task is checkpointable,
/-CpP The task is not checkpointable.
/NOCP The task is not checkpointable,

The switch codes allowed by the Task Builder are given in alphabetical
order in Table 3-1, After the alphabetical listing, a more detailed
description is given for each switch.

CHAPTER 3. SWITCHES AND OPTIONS

Table 3-1
Task Builder Switches
CODE MEANING APPLIES DEFAULT
TO FILE*
AC Task is an ancillary control T -AC
processor,
cc Input file consists of concatenated I cc
object modules.
CP Task is checkpointable T -CP
DA Task contains a debugging aid, T,I -DA
EA Task uses extended arithmetic T -EA
element.
FP Task uses the PDP-11/45 floating T ~FP
point processor.
HD Task image includes a header. 7,8 HD
LB Input file is a library file. I -1LB
MM System has memory management, T MM or -MM**
MP Input file contains an overlay I -MP
description,
PI Task is position independent. T,S -PI
PR Task has privileged access rights. T -PR
SH Short memory allocation file is '
requested, M -SH
SQ Task p~sections are allocated
sequentially, T -5Q
TR Task is to be traced. T -TR
XT:n Task Builder exits after n
diagnostics. T =XT
* T task image file
S symbol definition file
M memory allocation file
I input file

** The default for the memory management switch is MM if the host
system has memory management hardware and -MM if the host system
does not have memory management hardware. :

CHAPTER 3. SWITCHES AND OPTIONS

3.1.1 Task Builder Switches

The switches recognized by the Task Builder are described in this

section,
o
o

o

o

For each switch, the following information is given:
the switch mnemonic,
the file(s) to which the switch can be applied.

a description of the effect of the switch on the Task
Builder, and

the default assumption made if the switch is not present.

The switches are given in alphabetical order.

3.1.1.1
file:

meaning:

effect:

default:

3.1.1.2

file:

meaning:

effect:

default:

AC (Ancillary Control Processor)

task image

The task is an ancillary control processor, An ancillary
control processor is a privileged task that extends certain
Executive functions. For example, the system task 'F11ACP’
is an ancillary control processor that receives and
processes file related input and output requests.

The task is privileged. The Task Builder sets the AC
attribute flag and the privileged attribute flag in the task
label block flag word.

-AC

CC (Concatenated Object Modules)

input

The file contains more than one object module,

The Task Builder includes in the task image all the modules
in the file. If this switch is negated, the Task Builder
includes in the task image only the first module in the
file.

cC

CHAPTER 3. SWITCHES AND OPTIONS

3.1.1.3
file:
meaning:

effect:

default:

3.10104
file:
meaning:

effect:

default:

3.1.1.5
file:
meaning:

effect:
default:
3.1.1.6
file:

meaning:

effect:

default:

CP (Checkpointable)

task image

The task is checkpointable.

The Task Builder allocates in the task image a checkpoint
area equal to the size of the partition for which the task
is built, If the task is checkpointed, the entire partition
is recorded in this area. The checkpoint area is described
in connection with the task image in Chapter 4.

~CP

DA (Debugging Aid)

task image or input.

The task includes a debugging aid.

The Task Builder performs the special processing descfibed
in Appendix F. If this switch is applied to the task image
file, the Task Builder automatically includes the system
debugging aid SY:[1,1]0ODT.0OBJ in the task image.

=DA

EA (Extended Arithmetic Element)
task image
The task uses the KE~1lA Extended Arithmetic Element.

The Task Builder allocates three words in the task header
for the extended arithmetic element save area.

-EA

FP (Floating Point)
task image
The task uses the PDPll/45 Floating Point Processor.

The Task Builder allocates 25 words in the task header for
the floating point save area.

-FP

3-4

~~

CHAPTER 3. SWITCHES AND OPTIONS

3.1.1.7 HD (Header)
file: task image or symbol definition

meaning: A header is to be included in the task image. The negation
of this switch to produce a shared region is described in

Chapter 7.

effect: The Task Builder constructs a header in the task image. The
content of the header is described in Appendix C.

default: HD

3.1.1.8 LB (Library File)
This switch has two forms:

1. Without arguments: LB

2, With arguments: LB:mod~-1:mod-2, ., :mod-8
The interpretation of the switch depends upon the form,
file: input

méaning: 1. If the switch is applied without arguments, the input
file is assumed to be a library file of relocatable
object modules to be searched for the resolution of

undefined global references.

2. If the switch is applied with arguments, the input file
is assumed to be a library file of relocatable object
modules from which the modules named in the argument
list are to be taken for inclusion in the task image.

effect: 1. If no arguments are specified, the Task Builder searches
the file to resolve undefined global references and
extracts from the library for inclusion in the task
image any modules that contain definitions for such
references.,

2., If arguments are specified, the Task Builder includes
only the named modules in the task image. '

CHAPTER 3. SWITCHES AND OPTIONS

default:

3.1.1.9
file:

meaning:

effect:

defaﬁlt:

3.1.1.10
file:

meaning:

effect:

NOTE

If the user wants the Task Builder to
search a library file both to resolve
global references and to select named
modules for inclusion in the task image,
he must name the 1library file twice:
once, with the LB switch and no
arguments to direct the Task Builder to
search the file for undefined global
references, and a second time with the
desired modules to direct the Task
Builder to include those modules in the
task image being built.

MM (Memory Management)
task image

The system on which the task will run has memory management
hardware, Mapped and unmapped systems are described in
Chapter 4. The use of this switch to build a task to run on
another system with different mapping status is illustrated
in Chapter 8.

The Task Builder allocates memory for a mapped system
independent of the mapping status of the system on which the
task is being built. ‘

MM or ~-MM. The Task Builder allocates memory according to
the mapping status of the system on which the task is being
built,

MP (Overlay Description)
input

The input file describes an overlay structure for the task.
Overlay descriptions are discussed in Chapter 5.

The Task Builder receives all the input file specifications
from this file and allocates memory as directed by the
overlay description.

L
N

TN

CHAPTER 3.

default:

3.1.1.11

file:

meaning:

effect:

default:

3.1.1.,12
file:

meaning:

effect:

default:

3.1.1.13

file:

meaning:

effect:

default:

SWITCHES AND OPTIONS

NOTE
When an overlay description file is
specified as the input file for a task,
it must be the only input file

specified. The Task Builder does not
accept any other input files,

PI (Position Independent)

task image or symbol definition

The task contains only position independent code or data.
Position independent shared regions are described in Chapter
7.

The Task Builder sets the Position Independent Code (PIC)
attribute flag in the task label block flag word.

=PI

PR (Privileged)

task image

The task is privileged with respect to memory access rights,
The task can access the I/0O page, and the Executive in
addition to its own partition. Privileged tasks are
described in Chapter 4.

The Task Builder sets the Privileged Attribute flag in the
task label block flag word.

=PR

SH (Short Map)

memory allocation

The short version of the memory allocation file is produced.
Chapter 4 describes the memory allocation file and gives a
short and a long version of a memory allocation file,

The Task Builder does not produce the 'File Contents'
section of the memory allocation file,

-SH

3-7

CHAPTER 3,

3.1.1.14
file:

meaning:

effect:

default:

3.1.1.15
file:
meaning:

effect:

default:

3.,1.1.16

file:

meaning:

effect:

default:

SWITCHES AND OPTIONS

SQ (Sequential)

task image

The task image is constructed from the specified program
sections in the order in which they are input. Chapter 4
describes the allocation of the task image and gives an
example which shows the allocation performed under the
default assumption and the allocation performed when the SQ
switch is specified.

The Task Builder does not re-order the program sections
alphabetically.

-sQ

TR (Traceable)

task image

The task is traceable.

The Task Builder sets the T bit in the initial PS word of
the task. When the task is executed, a trace trap occurs on

the completion of each instruction.

-TR

XT:n (Exit on Diagnostic)
task image
More than n error diagnostics are not acceptable.
The Task Builder exits after n error diagnostics have been
produced. The number of diagnostics can be specified as a
decimal or octal number, using the convention:
n. means a decimal number (the decimal point must be
included) .
#n or n means an octal number.
If n is not specified, it is assumed to be 1.

-XT

3-8

i
RN

CHAPTER 3., SWITCHES AND OPTIONS

3.1.2 Examples

The following terminal sequences illustrate the use of switches in
file specifications and the resulting interpretation.

Terminal Segquence Interpretation
>TKB IMGl/CP/DA=IN1/-CC The task IMGl.TSK is checkpointable and
includes the debugging aid

sY:[(1,1]0DT.OBJ. The input file 1INl
contains only one object module.

>TKB The task IMG2,TSK is a privileged task.
TKB>IMG2/PR,MPl/SH= The short map MP1l.MAP is requested, The
TKB>IN2,RSX11M.STB inputs for the task are the file IN2,0BJ
TKB>// and the symbol definition -file

RSX11M.STB which 1links the task to the
subroutines and data base of the

Executive,
>TKB The task IMG3.TSK contains the input
TKB)>IMG3=IN3 file IN3,0BJ, the modules SUBl and SUB2
TKB>LB1/LB:SUB1 :SUB2 from the 1library file 1LB1l, and the
TKB>LBl1/LB,DBGl/DA debugging aid DBG1l.0BJ. The library
TKB>// file LB1.0LB is gpecified a second time

without arguments so that the Task
Builder will search the file for
undefined global references,

>TKB IMG4/XT:5=TREE/MP The Task IMG4.TSK is built from the
overlay description contained in the
file TREE.ODL, If more than five
diagnostics occur, the Task Builder
aborts the run.

3.1.3 Override Conditions

In some cases, it is not reasonable to apply two particular switches
to a file. When such a conflict occurs, the Task Builder selects the
overriding switch according to the following table:

switch switch overriding switch
AC PR ac
EA FP FP
cc LB LB

For example, in the terminal sequence:
MCR)>TKB IMG5=IN6,IN5/LB/CC
The input file IN5 is assumed to be a 1library file that is to be

searched for undefined global references and not an input file with
several object modules.

3-9

CHAPTER 3. SWITCHES AND OPTIONS

3.2 OPTIONS

Nineteen options are available to the user of the RSX~11M Task
Builder, These options give the Task Builder information about the
characteristics of the task.

Some of these options are of interest to all users of the system, some
of interest only to the FORTRAN programmer, and some of interest only
to the MACRO~1ll programmer, The interest range is given with the
description of the option.

Options can be divided into seven categories. The identifying
mnemonics and a brief description for each category are listed below:

l. contr - Control options are used to affect Task Builder
execution. ABORT is the only member of this
category. The user can direct the Task Builder to
abort the task build by the use of the option
ABORT,

2, ident - Identification options are used to identify task
characteristics. The task name, priority, user
identification code, and partition can be
specified by the use of options in this category.

3. alloc - Allocation options are used to modify the task's
memory allocation, The size of stack,
program-sections in the task, and FORTRAN work
areas and buffers can be adjusted by the use of
options in this category.

4, share - Storage sharing options are used to indicate the
task's intention to access a shared region.

5. device - Device specifying options are used to specify the
number of units required by the task and the
assignment of physical devices to logical unit
numbers., :

6. alter - Content altering options are used to define a
global symbol and value or to introduce patches in
the task image.

7. synch - Synchronous trap options are used to define
synchronous trap vectors.

Table 3-2 lists all the options alphabetically. A brief description
of each option is given. The interest range of the option is
indicated by the following codes:

F option is of interest to FORTRAN programmers only.
M option is of interest to MACRO-1ll programmers only.
FM option is of interest to both,

The mnemonic for the category to which the option belongs is also
indicated in the table.

The options are then described in more detail by category.

3-10

Liilid:g

L /‘_‘\\\

CHAPTER 3., SWITCHES AND OPTIONS
Table 3-2
Task Builder Options

Option Meaning Interest Category

ABORT Direct TKB to terminate build. FM contr

ABSPAT Declare absolute patch values, M alter

ACTFIL Declare number of files open alloc
simultaneously.

ASG Declare device assignment to FM device
logical units.

COMMON Declare task's intention to access FM share
a memory resident shared region.

EXTSCT Declare extension of a program " FM alloc
section.

FMTBUF Declare extension of buffer used F alloc
for processing format strings
at run-time,

GBLDEF Declare a global symbol definition. M alter

GBLPAT Declare a series of patch values M alter
relative to a global symbol.

LIBR Declare task's intention to access FM share
a memory resident shared region.

MAXBUF Declare an extension to the FORTRAN F alloc
record buffer,

ODTV Declare the address and size of M synch
the debugging aid SST vector.

PAR Declare partition name and FM ident
dimensions.

PRI Declare priority. FM ident

STACK Declare the size of the stack. FM alloc

TASK Declare the name of the task. FM ident

TSKV Declare the address of the task M synch
SST vector.

UIC Declare the user identification code FM ident
under which the task runs.

UNITS Declare the maximum number of wits. FM device

3-11

CHAPTER 3. SWITCHES AND OPTIONS

3.2,1 Control Option

There is only one control option. This option is of interest to all
users of the system,

3.2,1,1 ABORT (Abort the Task Build) = The ABORT option directs the
Task Builder to abort the task build.

This option is used when it is discovered that an earlier error in the
terminal sequence will cause the Task Builder to produce an unusable

task image.

The task Builder, on recognizing the keyword ABORT, stops accepting
input and restarts for another task build.

An example of the use of the ABORT option is given in section 3.3.
syntax: ABORT = n
where n is an integer value. The integer is required to

satisfy the general form of an option; however,
the value is ignored in this case.

default: none

NOTE

The use of CTRL/Z causes the Task
Builder to stop accepting input and
build the task.

The ABORT option is the only proper way
to restart the Task Builder if an error
is discovered and the Task Builder
output is not desired.,

3.2.2 Identification Options

Four options are available for providing identifying information for
the task. These options are of interest to all users of the systemn,

The identification options specify the name of the task, the user
identification code, the priority, and the partition. The user
identification code can be specified when the task is run., If such a
specification is not made at run time, the user identification code
established when the task was built is used.

CHAPTER 3. SWITCHES AND OPTIONS

3.2.2.1 TASK (Task Name) - The TASK option specifies the name of the
task.

syntaxs TASK = task-name

where: task-name is a 1- to 6-character radix=-50 name identifying
the task.

default: The name of the task image file is used to identify the task
when the task is installed.

3-13

CHAPTER 3. SWITCHES AND OPTIONS

3.2.2.2 UIC (User Identification Code) -~ The UIC option declares the
User Identification Code (UIC) for the task if no UIC is specified
when execution is requested.

syntax: UIC =[group,owner]

where: group is an octal number in the range 1 - 377 which
specifies the group.

owner is an octal number in the range 1 - 377 which
specifies the owner.

default: The UIC of the terminal at request time.

3.2.2.3 PRI (Priority) - The PRI declares the priority at which the
task executes. If no priority is specified when the task is
installed, this priority is used.

syntax: PRI = priority-number
where: priority-number is a decimal integer in the range 1 - 250

default: (established by Install)

3.2.2,4 PAR (Partition) = The PAR option identifies the partition for
which the task is built,

In a mapped system, the partition can be specified at the time the
task is installed. The allocation made in the task image on the disk
for a checkpoint area is based on the size of the partition for which
the task is Dbuilt. Therefore, if the task is checkpointable, the
partition in which the task is installed must be no larger than the
partition for which the task was built,

In an unmapped system, the task is bound to physical memory and must
be installed in the partition for which it was built or in a partition
starting at the same memory address as that partition,

syntax: PAR = pname [:base:length]

where pnanme is the name of the partition

base is the octal byte address defining the start of
the partition,

length is the octal number of bytes contained in the
partition.

default: PAR = GEN

3-14

,/ﬂm\\

CHAPTER 3. SWITCHES AND OPTIONS

If the base and length are not specified, the Task Builder tries to
obtain that information from the system on which the task is being
built., If the partition named is resident in that system, the base
and length can be obtained.

The Task Builder binds the task to the virtual addresses defined by
the partition base and verifies that the task does not exceed the
length specification.

To determine the validity of the task the Task Builder must consider
two types of task images, runnable and non-runnable, and two types of
systems, mapped and unmapped. A runnable task image must have a
header and can be installed and run. A non-runnable image must not
have a header and can not be executed directly. The Task Builder,
therefore, enforces the address limits according to the type of image
and type of system, as follows: ‘ ,

'Runnable tasks Non-runnable images

mapped u