IAS/RSX-11
I/0 Operations

Reference Manual
Order No. DEC-11-OI10RA-A-D

IAS/RSX-11
1/0 Operations

Reference Manual
Order No. DEC-11-OI0RA-A-D

IAS Version 1
RSX-11M Version 2
RSX-11lD Version 6A (Version 6.1)

digital equipment corporation - maynard. massachusetts

First Printing, December 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (::) 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM TYPESET-11

10/76-14

PREFACE

CHAPTER

CHAPTER

.
WN -

e el ol el T N ¥ - =)
o

SN WwN =

. . .
HH HwV©
NH O

HH O RPHRP
.

N

CONTENTS

MANUAL OBJECTIVES AND READER ASSUMPTIONS
STRUCTURE OF THE DOCUMENT
ASSOCIATED DOCUMENTS

FILE CONTROL SERVICES

FILE ACCESS METHODS
FILE STORAGE REGION (FSR)
DATA FORMATS FOR FILE~-STRUCTURED DEVICES
BLOCK I/O OPERATIONS
RECORD I/0 OPERATIONS
DATA TRANSFER MODES
Move Mode
Locate Mode
MULTIPLE BUFFERING FOR RECORD I/0O (IAS AND
RSX-11D ONLY)
SHARED ACCESS TO FILES
FILE DESCRIPTOR BLOCK (FDB)
DATASET DESCRIPTOR AND DEFAULT FILENAME
BLOCK
KEY TERMS USED THROUGHOUT THIS MANUAL
SYSTEM CHARACTERISTICS

PREPARING FOR I/O

.MCALL DIRECTIVE - LISTING NAMES OF REQUIRED
MACRO DEFINITIONS
FILE DESCRIPTOR BLOCK (FDB)
Assembly-Time FDB Initialization Macros
FDBDF$ - Allocate File Descriptor Block
(FDB)
FDATS$A - Initialize File Attribute Section
of FDB

FDRC$A - Initialize Record Access Section
of FDB

FDBKSA - Initialize Block Access Section
of FDB

FDOP$A - Initialize File Open Section of
FDB

FDBFSA - Initialize Block Buffer Section
of FDB
Run-Time FDB Initialization Macros
Run-Time FDB Macro Call Exceptions
Specifying the FDB Address in Run-Time
Macro Calls
GLOBAL VERSUS LOCAL DEFINITIONS FOR FDB
OFFSETS
Specifying Global Symbols in the Source
Coding

iii

'nzw»w
[{-NY =N V)

Page

ix

X e s
X M

0
[}

—~
U

1
acnonuuinwi

s
[eo BENEEN |

T
[l 0o
H

N
[}

CONTENTS (Cont.)

Page
2.3.2 Defining FDB Offsets and Bit Values
Locally 2-32
2.4 CREATING FILE SPECIFICATIONS WITHIN THE USER
PROGRAM 2-33
2.4.1 Dataset Descriptor 2-34
2.4.2 Default Filename Block - NMBLK$ Macro Call 2-37
2.4.3 Dynamic Processing of File Specifications 2-40
2.5 OPTIMIZING FILE ACCESS 2-41
2.5.1 Initializing the Filename Block as a
Function of OPENS$x 2-42
2.5.2 Initializing the Filename Block Manually 2-43
2.6 INITIALIZING THE FILE STORAGE REGION 2-45
2.6.1 FSRSZ$ - Initialize FSR at Assembly-Time 2-45
2.6.2 FINITS$ - Initialize FSR at Run-Time 2-47
2.7 INCREASING THE SIZE OF THE FILE STORAGE
REGION 2-48
2.7.1 FSR Extension Procedures for MACRO-11
Programs 2-48
2.7.2 FSR Extension Procedures for FORTRAN
Programs 2-49
2.8 COORDINATING I/0O OPERATIONS 2=-50
2.8.1 Event Flags 2-50
2.8.2 I/0 Status Block 2-51
2.8.3 AST Service Routine 2-53
CHAPTER 3 FILE-PROCESSING MACRO CALLS 3-1
3.1 OPENS$X - GENERALIZED OPEN MACRO CALL 3-2
3.1.1 Format of Generalized OPENS$x Macro Call 3-5
3.1.2 FDB Requirements for Generalized OPENSx
Macro Call 3-8
3.2 OPNS$x - OPEN FILE FOR SHARED ACCESS 3-12
3.3 OPNTS$SW - CREATE AND OPEN TEMPORARY FILE 3-12
3.4 OPNTSD - CREATE AND OPEN TEMPORARY FILE AND
MARK FOR DELETION 3-13
3.5 OFID - OPEN FILE BY FILE ID 3-14
3.6 OFNBS$ - OPEN FILE BY FILENAME BLOCK 3-15
3.6.1 Dataset Descriptor and/or Default Filename
Block 3-15
3.6.2 Default Filename Block Only 3-16
3.7 OPENS$ - GENERALIZED OPEN FOR SPECIFYING
FILE ACCESS 3-16
3.8 CLOSES$ - CLOSE SPECIFIED FILE 3-18
3.8.1 Format of CLOSE$ Macro Call 3-18
3.9 GET$ - READ LOGICAL RECORD 3-18
3.9.1 Format of GET$ Macro Call 3-19
3.9.2 FDB Mechanics Relevant to GET$ Operations 3-20
3.9.2.1 GETS$ Operations in Move Mode 3-21
3.9.2.2 GET$ Operations in Locate Mode 3-21
3.10 GET$R - READ LOGICAL RECORD IN RANDOM MODE 3-22
3.11 GET$S - READ LOGICAL RECORD IN SEQUENTIAL
MODE 3-23
3.12 PUT$ - WRITE LOGICAL RECORD 3-23
3.12.1 Format of PUT$ Macro Call 3-24
3.12.2 FDB Mechanics Relevant to PUT$ Operations 3-25
3.12.2.1 PUT$ Operations in Move Mode 3-25
3.12.2.2 PUTS$ Operations in Locate Mode 3-26
3.13 PUTSR -~ WRITE LOGICAL RECORD IN RANDOM MODE 3-27

iv

[F S N S S
« o @

« 2 e

w M=

>

=S T R S
.

CONTENTS (Cont.)

PUTS$S - WRITE LOGICAL RECORD IN SEQUENTIAL
MODE
READS$ - READ VIRTUAL BLOCK

Format of READ$ Macro Call

FDB Requirements for READS$ Macro Call
WRITES - WRITE VIRTUAL BLOCK

Format of WRITES$ Macro Call

FDB Requirements for WRITES Macro Call
DELETS - DELETE SPECIFIED FILE

Format of DELETS$ Macro Call

WAITS - WAIT FOR BLOCK I/0O COMPLETION
Format of WAIT$ Macro Call
FILE CONTROL ROUTINES
CALLING FILE CONTROL ROUTINES
DEFAULT DIRECTORY STRING ROUTINES
.RDFDR - Read SFSR2 Default Directory
String Descriptor
.WDFDR - Write New $$FSR2 Default Directory
String Descriptor
DEFAULT FILE PROTECTION WORD ROUTINES
.RDFFP - Read $SFSR2 Default File
Protection Word
.WDFFP - Write New $$FSR2 Default File
Protection Word
FILE OWNER WORD ROUTINES
.RFOWN - Read $$FSR2 File Owner Word
.WFOWN - Write New $$FSR2 File Owner Word
ASCII/BINARY UIC CONVERSION ROUTINES
.ASCPP - Convert ASCII Directory String to
Equivalent Binary UIC
.PPSAC - Convert UIC to ASCII Directory
String
FITLENAME BLOCK ROUTINES
.PARSE - Fill In All Filename Information
Device and Unit Information
Directory Identification Information
Filename, File Type or Extension, and
File Version Information
Other Filename Block Information
.PRSDV - Fill in Device and Unit Information
Only
.ASLUN - Assign Logical Unit Number
DIRECTORY ENTRY ROUTINES
.FIND - Locate Directory Entry
.ENTER - Insert Directory Entry
.REMOV - Delete Directory Entry
FILENAME BLOCK ROUTINES
.GTDIR - Insert Directory Information in
Filename Block
.GTDID - Insert Default Directory Informa-
tion in Filename Block
FILE POINTER ROUTINES
.POINT - Position File to Specified Byte
.POSRC - Position File to Specified Record
.MARK - Save Positional Context of File
.POSIT - Return Positional Information for
Specified Record

CHAPTER

CHAPTER

4.10
4.11
4.12
4.13
4.13.1
4.13.2
4.14

(&S O S,] wm
« o e

Y T
. . . L]
B W=

(S, O, S, O, O, N O, N, WO,
. L[] e o . . L) . . o 0
NN
. . e o @ L)

NNNNNNOA W

[e) W <)) [2)}
. o .

N e e N ol =

AN =)} ()< WAl <) WerWe) We)) [=)}
P

CONTENTS (Cont.)

QUEUE I/O FUNCTION ROUTINE (.XQIO)
RENAME FILE ROUTINE (.RENAM)
FILE EXTENSION ROUTINE (.EXTND)
FILE DELETION ROUTINES
.MRKDL - Mark Temporary File for Deletion
.DLFNB - Delete File by Filename Block
DEVICE CONTROL ROUTINE (.CTRL)

FILE STRUCTURES

DISK AND DECTAPE FILE STRUCTURE (FILES-11)
User File Structure
Directory Files
Index File
File Header Block
MAGNETIC TAPE FILE PROCESSING (IAS AND
RSX-11D ONLY)
Access to Magnetic Tape Volumes
Rewinding Volume Sets
Positioning to the Next File Position
Single File Operations
Multiple File Operations
Using .CTRL
Examples of Magnetic Tape Processing
Examples of OPENSW to Create a New File
Examples of OPENS$ to Read a File
Examples of CLOSES
Combined Examples of OPENS$ amd CLOSES
for Magnetic Tape

COMMAND LINE PROCESSING

GET COMMAND LINE (GCML)
GCMLBS$ - Allocate and Initialize GCML
Control Block
GCMLDS$ - Define GCML Control Block Offsets
and Bit Values
GCML Run-Time Macro Calls
GCMLS$ - Get Command Line
RCML$ - Reset Indirect Command File Scan
CCML$ - Close Current Command File
GCML Usage Considerations

COMMAND STRING INTERPRETER (CSI)
CSI$ - Define CSI Control Block Offsets
and Bit Values
CSI Control Block Offset and Bit Value
Definitions
CSI Run-Time Macro Calls
CSIS1 - Command Syntax Analyzer
CSI$2 - Command Semantic Parser
CSI Switch Definition Macro Calls
CSI$SW - Create Switch Descriptor Table
Entry
CSI$SV - Create Switch Value Descriptor
Table Entry
CSISND - Define End of Descriptor Table

vi

Page

4-18
4-19
4-19
4-21
4-21

L
[} |

NN

[\]

NN [

LHU'IU'IU1U1k:1U'IU1U1UIU'I
HYYVWVwWIOOAOLIUTWT

CONTENTS (Cont.)

Page

CHAPTER 7 SPOOLING 7-1
7.1 PRINTS MACRO CALL 7-1

7.2 .PRINT SUBROUTINE 7-3

7.3 ERROR HANDLING 7-3

APPENDIX A FILE DESCRIPTOR BLOCK A-1
APPENDIX B FILENAME BLOCK B-1
APPENDIX C SUMMARY OF I/O-RELATED SYSTEM DIRECTIVES c-1
APPENDIX D SAMPLE PROGRAMS D-1
APPENDIX E INDEX FILE FORMAT E-1
E.1l BOOTSTRAP BLOCK E-2

E.2 HOME BLOCK E-2

E.3 INDEX FILE BIT MAP E-2

E.4 PREDEFINED FILE HEADER BLOCKS E-3

APPENDIX F FILE HEADER BLOCK FORMAT F-1
F.l HEADER AREA F-4

F.2 IDENTIFICATION AREA F-5

F.3 MAP AREA F-6

APPENDIX G SUPPORT OF ANSI MAGNETIC TAPE STANDARD G-1
G.1l VOLUME AND FILE LABELS G-1

G.1l.1 Volume Label Format G-2

G.1l.1.1 Contents of Owner Identification Field G-2

G.1l.2 User Volume Labels G-4

G.1l.3 File Header Labels G-4

G.1.3.1 File Identifier Processing by Files-11 G-7

G.l.4 End-of-Volume Labels G-8

G.1.5 File Trailer Labels G-8

G.1l.6 User File Labels G-8

G.2 FILE STRUCTURES G-8

G.2.1 Single File Single Volume G-8

G.2.2 Single File Multi-Volume G-9

G.2.3 Multi-File Single Volume G-9

G.2.4 Multi-File Multi-Volume G-9

G.3 END OF TAPE HANDLING G-9

G.4 ANSI MAGNETIC TAPE FILE HEADER BLOCK (FCS

COMPATIBLE) G-9

APPENDIX H STATISTICS BLOCK H-1
APPENDIX I ERROR CODES I-1
APPENDIX J FIELD SIZE SYMBOLS J-1

INDEX INDEX-1

vii

CONTENTS (Cont.)

FIGURES
FIGURE 1-1 File Access Operation
1-2 Record I/0O Operations
1-3 Single Buffering Versus Multiple Buffering
5-1 Directory Structure for Single-User Volumes
5-2 Directory Structure for Multiple-User Volumes
6-1 Data Flow During Command Line Processing
6-2 Format of Switch Descriptor
6-3 Format of Switch Value Descriptor Table
Entry
B-1 Filename Block Format
G-1 ANSI Magnetic Tape File Header Block
(FCS Compatible)
H-1 Statistics Block Format
TABLES
TABLE 2-1 Macro Calls Generating FDB Information
3-1 File Access Privileges Resulting from OPENSX
Macro Call
4-1 R2 Control Bits for .EXTND Routine
A-1 FDB Offset Definitions
B-1 Filename Block Offset Definitions
B-2 Filename Block Status Word (N.STAT)
c-1 Summary of I/O-Related System Directives
E-1 Home Block Format
F-1 File Header Block
G-1 Volume Label Format
G-2 File Header Label (HDRI1)
G-3 File Header Format (HDR2)

viii

[LU T T I I T I |
o

QO EQE WY& W

AYUITRNN BN WWN &

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The purpose of this manual is to familiarize the users of an RSX-11D,
RSX-11M, or IAS operating system with the file management facilities
provided with the system. Since the file control services described
herein pertain to both MACRO-11 and FORTRAN programs, the reader is
assumed to be familiar with the manuals describing these program
development tools. Also, since the development of programs in an
RSX-11 or IAS environment necessarily involves the use of the Task
Builder, the reader 1is 1likewise assumed to be familiar with this
system program. Unless otherwise noted, the term RSX-11 refers to
both RSX-11D and RSX-11M.

0.2 STRUCTURE OF THE DOCUMENT

Chapter 1 briefly describes the file control services available for
IAS/RSX-11 users and defines some of the terminology that is pertinent
to discussions throughout the manual. This chapter is vital to
understanding the balance of the manual.

Chapter 2, perhaps the most important in the manual, describes the
actions the user must take at assembly-time to prepare adequately for
all intended file I/O processing. This chapter describes the data
structures and working storage areas that the user must define within
his program in order to use any of the file control services provided
by the systen. Unless the user is thoroughly familiar with the
content of this chapter, he 1is advised to defer a reading of
subsequent chapters, since all that follows is dependent upon a
complete working understanding of the material in Chapter 2.

Chapter 3 describes the run-time macro calls which allow the user to
manipulate files and to perform I/O operations.

Chapter 4 describes a set of run-time routines wused to perform
functions related to «controlling files, such as reading and writing
directory entries, renaming or extending files, etc.

Chapter 5 describes the structure of files supported by the IAS and

RSX-11 systems. In this context, the structure of files for disks,
DECtapes, and magnetic tapes are covered.

ix

Chapter 6 describes two collections of object library routines called
the Get Command Line Routine (GCML) and the Command String Interpreter
(CSI). These routines may be linked with the wuser task to perform
operatinns accociated with the dvnamic input ¢f command lines. Jucn

input consists of file specifications which identify and control the
files to be processed by the user program.

Chapter 7 describes the queuing of files for printing. This facility
is available at both the MACRO level and subroutine level.

Finally, a number of appendices are provided which supply detailed
information of further interest.

Appendix A and Appendix B outline in detail the file descriptor block
and the filename block, respectively, two structures forming a
significant part of the descriptive material in Chapter 2. Appendix C
summarizes a number of I/O-related system directives that form a part
of the total resource management capabilities of the RSX-11 or the IAS
Executive. Through simplified sample programs, Appendix D illustrates
the use of the macro calls that create and initialize the file
descriptor block. These sample programs also include some of the
macro calls that are used for processing files.

Appendix E illustrates the structure of index files, while Appendix F
describes in detail the format and content of a file header block.
The format and content of magnetic tape labels (not used in RSX-11M)
are similarly described in Appendix G. The format and content of the
statistics block are described in Appendix H.

The error codes returned by the system are listed in Appendix I and
field size symbols are listed in Appendix J.

0.3 ASSOCIATED DOCUMENTS

Other manuals closely allied to the purposes of this document are
described briefly in the IAS, RSX-11D, and RSX-11M/RSX-11S
Documentation Directories. The Documentation Directories define the
intended readership of each manual in the appropriate set and provide
a brief synopsis of each manual's contents. The directories and order
numbers are listed below:

IAS Documentation Directory, Order No. DEC-11-OIDDA-A-D

RSX-11D Documentation Directory, Order No. DEC~11-OXUGA-C-D

RSX-11M/RSX-11S Documentation Directory, Order No. DEC-11-OMUGA~B-D

CHAPTER 1

FILE CONTROL SERVICES

IAS and RSX-11 file control services (FCS) enable the user to perform
record-oriented and block-oriented I/O operations and to perform
additional functions required for file control, such as open, close,
wait, and delete operations. To invoke FCS functions, the user issues
macro calls to specify desired file control operations. The FCS
macros are called at assembly-time to generate code for specified
functions and operations. The macro calls provide the system-level
file control primitives with the necessary parameters to perform the
file access operations requested by the user (see Figure 1-1).

FCS is basically a set of routines that are 1linked with the user
program at task-build time from a system global area (IAS and RSX-11D)
or resident system library (RSX-11M); or a system object module
library. These routines, consisting of pure, position-independent
code, provide a user interface to the file system, enabling the user
to read and write files on file-structured devices and to process
files in terms of logical records.

Logical records are regarded by the user program as data units that
are structured in accordance with application requirements, rather
than existing merely as physical blocks of data on a particular
storage medium.

FCS provides the capability to write a collection of data (consisting
of distinct logical records) to a file in a way that enables the data
to be retrieved at will. Data can be retrieved from the file without
having to know the exact format in which it was written to the file.

FCS thus provides a sense of transparency to the user so that records
can be read or written in logical units that are consistent with his
application requirements.

FILE CONTROL SERVICES

[USER-ISSUED MACRO CALL j]

!

[FILE CONTROL SERVICES |

!

[FILE conTROL PRIMITIVES |

!

PERIPHERAL DEVICE HARDWARE
(e.g., disk, VTO0S5)

Figure 1-1
File Access Operation

FCS provides an extensive set of macros to simplify the user's
interface to the system's I/0 facilities. These macros create and
maintain certain data structures that are required in performing all
file I/0 operations. The required structures include the following:

1. A file descriptor block (FDB) that contains execution-time
information necessary for the processing of a file.

2. A dataset descriptor that is accessed by FCS to obtain ASCII
file information required in opening a specified file.

3. A default filename block that is accessed by FCS to obtain
default file information required in opening a specified
file. This structure 1is accessed when complete file
information is not specified in the dataset descriptor.

The file descriptor block is described in detail in Appendix A and

Appendix B. The dataset descriptor and the default filename block are
treated in detail in section 2.4.

1.1 FILE ACCESS METHODS

IAS and RSX-11 support both sequential and direct access to files.
The sequential access method is device-independent, i.e., sequential
access can be used for both record-oriented and file-structured

FILE CONTROL SERVICES

devices (e.g., card reader and disk, respectively). The direct access
method can be used only for file-structured devices.

1.2 FILE STORAGE REGION (FSR)

The file storage region (FSR) is an area allocated in the user program
as working storage for performing record I/0 operations (see section
1.5). The FSR consists of two program sections which are always
contiguous to each other. These program sections exist for the
following purposes:

$SFSR1 - This area of the FSR contains the block buffers and the
block buffer headers for record I/0 processing. The
user determines the size of this area at assembly-time
by 1issuing the FSRSZS$ macro call (see section 2.6.1).
The number of block buffers and associated headers is
based on the number of files that the user intends to
open simultaneously for record I/0O operations.

$SFSR2 - This area of the FSR contains impure data that is used
and maintained by FCS in performing record 1I/0
operations. Portions of this area are initialized at
task-build time, and other portions are maintained by
FCS.

The size of the FSR can be changed, if desired, at task-build time.
Section 2.7 presents the procedures which provide this flexibility to
the programmer.

The data flow during record I/O operations is depicted in Figure 1-2.
Note that blocks of data are transferred directly between the FSR
block buffer and the device containing the desired file. The blocking
and deblocking of records during input is accomplished in the FSR
block buffer, and the building of records is likewise accomplished in
the FSR block buffer during output. Note also that FCS serves as the
user interface to the FSR block buffer pool. All record 1I/0
operations,; which are initiated through GET$ and PUT$ macro calls, are
totally synchronized by FCS.

Record I/0 operations are described in greater detail in section 1.5.
I S

BLOCK
BUFFER
POOL

g

N

USER
FCs - RECORD
BUFFER

DEVICE -

T
%/B}?F/E/%

Figure 1-2
Record I/O Operations

SIDIAYIS TOYLNOD dTId

FlLbe CUONTRUL SBERVICED

1.3 DATA FORMATS FOR FILE-STRUCTURED DEVICES

Data is transferred between peripheral devices and memory in blocks.
A data file consists of virtual blocks, each of which may contain one
or more logical records. 1In FCS terms, a virtual block in a file
consists of 512(10) bytes.

Records in a virtual block can be either fixed or variable in length.
The term "fixed-length" refers to records which are equal and
non-varying in length; conversely, the term "variable length" refers
to records which are not equal in length. The first two bytes of a
variable-length record contain a value defining the 1length of that
record (in bytes), excluding the record length bytes.

Both fixed and variable length records are aligned on a word boundary.
Any extra byte that results from an odd-length record is simply
ignored. (The extra byte is not necessarily a 0 byte.)

Virtual blocks and 1logical records within a file are numbered
sequentially, each starting at one (l). A virtual block number is a
file relative value, while a logical block number is a volume relative
value.

1.4 BLOCK I/O OPERATIONS

The READ$S and WRITES macro calls (see sections 3.15 and 3.16,
respectively) allow the user to read and write virtual blocks of data
from and to a file without regard to logical records within the file.
Block I/O operations provide a very efficient means of processing file
data, since such operations do not involve the blocking and deblocking
of records within the file. Also, in block I/O operations, the user
may read or write files in an asynchronous manner, i.e., control may
be returned to the user program before the requested I/0 operation is
completed.

When block I/0 is wused, the number of the wvirtual block to be
processed 1is specified as a parameter in the appropriate READS$/WRITES
macro call; the virtual block so specified is processed directly in a
buffer reserved by the user in his own memory space.

As implied above, the user is responsible for synchronizing all block
I/0 operations. Such asynchronous operations may be coordinated
through an event flag (see section 2.8.1) specified in the
READS/WRITES macro call. The event flag is used by the system to
signal the completion of a specified block I/O transfer, enabling the
user to coordinate those block I/O operations which are dependent on
each other.

1.5 RECORD I/O OPERATIONS

The GET$ and PUT$ macro calls (see sections 3.9 and 3.12,
respectively) are provided for processing record-oriented files.
Using the FSR block buffers (see section 1.2), GET$ and PUTS
operations perform the necessary blocking and deblocking of records
within the virtual blocks of the file, allowing the user to read or
write individual records.

FILE CONTROL SERVICES

In preparing for record I/0 operations, the wuser must specify the
format of the records. For example, he must specify whether the
records are fixed or variable in length, or whether records that are
to be output to a carriage-control device are to contain
carriage-control information (either at the beginning of the record or
embedded within the record).

For sequential access files, I/O operations can be performed for both
fixed- and variable-length records. For direct access files, I/0
operations can be performed only for fixed-length records.

In contrast to block I/O operations, all record I/0 operations are
synchronous, i.e., control is returned to the user program only after
the requested I/0 operation is completed.

Because GETS$/PUTS$ operations process logical records within a virtual
block, only a limited number of GET$ or PUT$ operations result in an
actual I/O transfer, e.g., when the end of a data block is
encountered. Therefore, all GETS$/PUTS I/O0O requests will not
necessarily involve an actual physical transfer of data.

1.6 DATA TRANSFER MODES

When record I/0 is used, a program can gain access to a record in
either of two ways after the virtual block has been transferred into
the FSR from a file:

1. In move mode. By specifying that individual records are to
be moved from the FSR block buffer to a user-defined record
buffer (see Figure 1-2).

2. In locate mode. By referencing a location in the file
descriptor block (see section 1.9) which contains a pointer
to the desired record within the FSR block buffer.

1.6.1 Move Mode

Move mode requires that data be moved between the FSR block buffer and
a user~-defined record buffer. For input, data is first read into the
FSR block buffer from a peripheral device and then moved to the user
record buffer for processing. For output, the user program first
builds a record in the user record buffer; FCS then moves the record
to the FSR block buffer, from whence it is written to a peripheral
device when the entire block is filled.

Move mode simulates the reading of a record directly into a user
record buffer, thereby making the blocking and deblocking of records
transparent to the user.

1.6.2 Locate Mode

Locate mode enables the user to access records directly in the FSR
block buffer. Consequently, there 1is normally no need to transfer
data from the FSR block buffer to the user record buffer. To access
records directly in the FSR block buffer, the user refers to locations

FILE CONTROL SERVICES

in the file descriptor block (see section 1.9) which contain values
defining the 1length and the address of the desired record within the
FSR block buffer. These values are present in the file descriptor
block as a result of FCS macro calls issued by the user.

Program overhead is reduced in locate mode, since records can be
processed directly within the FSR block buffer. Moving data to the
user record buffer in locate mode 1is required only when the last
record of a virtual block crosses block boundaries.

1.7 MULTIPLE BUFFERING FOR RECORD I/0O (IAS AND RSX-11D ONLY)

By supporting multiple buffers for record I/0, FCS provides the
capability for IAS and RSX-11D users to read data into buffers in
anticipation of user program requirements and to write the contents of
buffers while the user program is building records for output. The
user can thus overlap the internal processing of data with file I/O
operations, as illustrated in Figure 1-3.

When read-ahead multiple buffering 1is wused, the file must be
sequentially accessed to derive full benefit from multiple buffering.
For write-behind multiple buffering, any file access method can be
used with full benefit.

When multiple buffering is used, sufficient space in the FSR must be
allocated for the total number of block buffers in use at any given
time. The FSRSZ$ macro call (see section 2.6.1) is used to accomplish
the allocation of space for FSR block buffers.

Time -

Single process record write record process record write record .e

Buffer

Multiple process record write record process record write record

Buffer process record write record process record °*
Figure 1-3

Single Buffering Versus Multiple Buffering

1.8 SHARED ACCESS TO FILES

FCS permits shared access to files according to established
conventions. Two macro calls, among several available in FCS for
opening files, may be issued to invoke these conventions. The OPNSS$x
macro call (see section 3.2) is used specifically to open a file for
shared access. The OPENSx macro call (see section 3.1), on the other
hand, 1invokes generalized open functions which have shared access

FILE CONTROL SERVICES

implications only in relation to other I/O requests then issued. Both
macro calls take an alphabetic suffix which specifies the type of
operation being requested for the file, as follows:

R - Read existing file.

W - Write (create) a new file.

M - Modify existing file without extending its length.

U - Update existing file and extend its length, if necessary.
A - Append data to end of existing file.

The suffix R applies to the reading of a file, while the suffixes W,
M, U, and A all apply to the writing of a file. These macro calls and
the shared access conditions which they invoke are summarized below.

The OPNS$x and OPENS$x macro calls may be used as follows for shared
access to files:

1. When the OPNS$R macro call is issued, read access to the file
is granted unconditionally, regardless of the presence of a
concurrent write-access request to the file. (The OPNSSR
macro call permits concurrent write access to the file while
it is being read.) A subsequent write-access request for this
same file will be honored, provided that only one such
request is active at any given time. Thus, several active
read-access requests and one write-access request may be
present for the same file.

Other concurrent OPNS$x macro calls are equivalent to their
OPEN$xX counterpart, since only one writer of a file is
permitted under any circumstances.

2. When the OPENSR macro call is issued, read access to the file
is granted, provided that no write-~access request for that
file is active. (The OPEN$R macro call does not permit
concurrent write access to the file while it is being read.)

Note from the above that there can be several concurrent readers of a
file, but only one writer of that same file. Readers of a shared file
should be aware that the file may yield inconsistent data from request
to request if that file is also being written.

Shared access during reading does not necessarily imply the presence

of read requests from several separate tasks. The same task, for
example, may open the same file using different logical unit numbers.

1.9 FILE DESCRIPTOR BLOCK (FDB)

The file descriptor block (FDB) contains information used by FCS in
opening and processing files. One FDB is required for each file that
is to be opened simultaneously by the wuser program. The user
initializes some portions of the FDB with assembly-time or run-time
macro calls, and FCS maintains other portions. Each FDB has five
sections that contain user or system-initialized information:

FILE CONTROL SERVICES

. File Attribute Section;
Record or Block Access Section;

. File-Open Section:

. Block Buffer Section; and the

. Filename Block Portion of the FDB.
The information stored in the FDB depends upon the characteristics of
the file to be processed. The FDB and the macro calls that cause
values to be stored in this structure are described in detail in

section 2.2. Appendix A describes the format and the content of the
FDB in detail.

1.10 DATASET DESCRIPTOR AND DEFAULT FILENAME BLOCK

Normally, either a dataset descriptor or a default filename block is
specified for each file that the user intends to open. These data
structures provide FCS with the file specifications required for
opening a file.

Although either one or the other is wusually defined, both <can be
specified for the same file. The dataset descriptor and the default
filename block are summarized below and described in detail in section
2.4.1 and 2.4.2, respectively.

When a file is being opened using information already present in the
filename block, neither the dataset descriptor nor the default
filename block is accessed by FCS for required file information. This
method of file access, which is termed "opening a file by file ID," is
a very efficient means of opening files. Section 2.5 describes this
process in detail.

1.11 KEY TERMS USED THROUGHOUT THIS MANUAL

Listed below are the terms used throughout this manual which have
specific meanings in the context of FCS operations.
FILE DESCRIPTOR BLOCK (FDB) -- The tabular data structure that

provides FCS with information needed to perform I/0 operations on
a file. The space for this data structure is allocated in the
user program by issuing the FDBDF$ macro call (see section
2.2.1.1). Each file to be opened simultaneously by the user
program must have an associated FDB. Portions of the FDB are
user-defined and others are maintained by FCS. Assembly-time or
run-time macro calls are provided for user initialization of the
FDB. The format and content of the FDB are detailed in Appendix
A,

FILENAME BLOCK -- The portion of the FDB that contains the various
elements of a file specification (i.e., directory, filename, file
type, file version number, device, and unit) for use by the FCS
file-processing routines. Initially, as a file 1s opened, FCS
fills in the filename block with user-specified information taken
from the dataset descriptor and/or the default filename block

FILE CONTROL SERVICES

(see below). The methods of <creating file specifications for
initializing the filename block are described in detail in
section 2.4; the format and content of the filename block itself
are described in Appendix B.

DEFAULT FILENAME BLOCK -- The default filename block, an area

allocated within the user program by issuing the NMBLKS$ macro
call (see section 2.4.2), contains the various elements of a file
specification. The default filename block 1is a user-created
structure, while the filename block within the FDB is maintained
by FCS. The user creates the default filename block to supply
file specifications to FCS that are not otherwise available
through the dataset descriptor (see below). In other words, from
information defined in the default filename block, FCS creates a
parallel structure in the FDB that serves as the execution-time
repository for information that FCS requires in opening and
operating on files.

Thus, the terms "default filename block" and "filename block"
refer to separate and distinct data structures. These
distinctions should be kept clearly in mind whenever these terms
appear in the manual. Though created and used differently, these
areas are structurally identical.

DATASET DESCRIPTOR -- The dataset descriptor is a 6-word block in the

user program containing the sizes and the addresses of ASCII data
strings that together <constitute a file specification (see
below) . This data structure, which is also created by the user,
is described in detail in section 2.4.1. Unless the filename
block in the FDB has been saved, dataset descriptor and/or
default filename block information must be provided to FCS before
the specified file can be opened.

DATASET DESCRIPTOR POINTER -- An address value that points to the

FILE

FILE

6-word dataset descriptor within the user program. This address
value is stored in the FDB, allowing FCS to access a user-created
file specification in the dataset descriptor.

SPECIFICATION -~ Any system or user program having a requirement
to refer to files does so through a file specification. Such
information names a file and allows it to be explicitly
referenced by any task. A file specification, whether for input
or output, contains specific information which must be made
available to FCS before that file can be opened. The term "file
specifier," 1is sometimes used as a synonym for "file
specification.”

STORAGE REGION (FSR) -- The file storage region (see section 1.2)
is an area of memory reserved by the user for use in record I/0
operations. This area is allocated by issuing the FSRSZ$ macro
call in the user program (see section 2.6.1).

FILE CONTROL SERVI

@]
<]
w0

1.12 SYSTEM CHARACTERISTICS

Listed below are the important characteristics of FCS that should be
borne in mind in order to use its I/0 facilities properly:

1.

READS$/WRITES operations are asynchronous; the user is
responsible for coordinating all block I/0 activity. 1In
contrast, GET$/PUTS operations are synchronized entirely by
FCS; control 1is not returned to the user program until the
requested GETS$/PUTS operation is completed.

FCS macro calls save and restore all registers, with the
following exceptions:

a. The file-processing macro calls (see Chapter 3) place the
FDB address in RO.

lon

Manv of the file-control routines (see Chapter 4) return
requested information in the general registers.

The FDBDFS$ macro call (see section 2.2.1.1) 1is issued to
allocate space for an FDB. Once the FDB is allocated,
necessary information can be placed in this data construct
through any 1logical combination of assembly-time and/or
run-time macro calls (see sections 2.2.1 and 2.2.2,
respectively). Certain information must be present in the
FDB before FCS can open and operate on a specified file.

For each assembly-time FDB initalization macro call, a
corresponding run-time macro call is provided that supplies
identical information. Although both sets of macro calls
(see Table 2-1) place the same information in the FDB, each
set does so in a different way. The assembly-time calls
generate .BYTE or .WORD directives which create specific
data, while the run-time calls generate MOV or MOVR
instructions which place desired information in the FDB
during program execution.

If an error condition is detected during any of the file
processing operations described in Chapter 3, or during the
execution of several of the file-control routines (see
section 4.1), the C-bit (carry condition code) in the
Processor Status Word is set, and an error indicator is
returned to FDB offset location F.ERR.

If the address of a user-coded error-handling routine is
specified as a parameter in any of the file-processing macro
calls, a JSR PC instruction to the error-handling routine |is
generated. The routine is then executed if the C-bit in the
Processor Status Word is set.

CHAPTER 2

PREPARING FOR I/O

The MACRO-11 programmer must establish the proper data base and
working storage areas within his program in order to perform
input/output operations. The following actions must be performed:

. A file descriptor block (FDB) must be defined for each file
that is to be opened simultaneously by the user program (see
section 2.2).

. A dataset descriptor and/or a default filename block (see
section 2.4.1 or 2.4.2, respectively) must also be defined if
the user intends to access these structures to provide required
file specifications to FCS.

. A file storage region (FSR) must be established within the
program 1if the user intends to employ record I/O in processing
files (see section 2.6). (The initialization procedures for
FORTRAN programs are described in detail in the FORTRAN-IV
User's Guide.)

This chapter describes the macro calls that must be invoked to provide
the necessary file processing information for the FDB. Such
information is placed in the FDB in one of three ways:

1. By the assembly-time FDB initialization macro calls (see
section 2.2.1).

2. By the run-time FDB initialization macro calls (see section
2.2.2).

3. By the file-processing macro calls (see Chapter 3).

Data supplied during the assembly of the source program establishes
the initial wvalues in the FDB. Data supplied at run-time can either
initialize additional portions of the FDB or change values established
at assembly~time. Likewise, the data supplied through the
file-processing macro calls can either initialize portions of the FDB
or change previously-initialized values.

Table 2-~1 lists the macro calls that generate FDB information.

PREPARING FOR I/O

Table 2-1
Macro Calls Generating FDB Information

Assembly-Time FDB Run-Time FDB File-Processing
Macro Calls Macro Calls Macro Calls
FDBDF$ (Required) FDATSR OPENS$ (All Variations)
FDATSA FDRCSR CLOSES
FDRCSA FDBKSR GETS$ (All Variations)
FDBKSA FDOPSR PUTS (All Variations)
FDOPSA FDBFSR READS
FDBFSA WRITES

DELETS

WAITS

2.1 .MCALL DIRECTIVE - LISTING NAMES OF REQUIRED MACRO DEFINITIONS

All the assembly-time, run~time, and file-processing macro calls (see
Table 2-1 above) that the user intends to issue in his program must
first be listed as arguments in an .MCALL directive. So doing allows
the required macro definitions to be read in from the system macro
library during assembly.

The .MCALL directive and associated arguments must appear in the
program prior to the issuance of any macro call in the execution code
of the program. If the list of macro names is lengthy, several .MCALL
directives, each appearing on a separate source 1line, must be
specified to accommodate the entire list of macro names. The number
of such names that may appear in any given .MCALL statement is limited
only by the availability of space within that 80-byte source line.

The .MCALL directive takes the following general form:
.MCALL argl,arg2,...,argn

where: arqgl, represents a list of symbolic names identifying
etc. the macro definitions required in the assembly of
the user program. If more than one source line is
required to list the names of all desired macros,
each additional 1line so required must begin with
an .MCALL directive.

For clarity of functional use, the assembly-time,
run-time, and file-processing macro names may be
listed 1in each of three separate .MCALL
statements. The macro names may also be listed
alphabetically for readability, or they may be
intermixed, irrespective of functional use. All
these options are matters of preference and have
no effect whatever on the retrieval of macro
definitions from the system macro library.

For those users planning to invoke the command
line processing capabilities of the Get Command
Line Routine (GCML) and the Command String
Interpreter (CSI), all the names of the associated

PREPARING FOR I/O

macros must also be 1listed as arguments in an
.MCALL directive. GCML and CSI, ordinarily

employed in system or application

programs for

convenience in dynamically processing file
specifications, are described in detail in Chapter

6.

The .MCALL directive is described in further detail in the IAS/RSX-11
MACRO-11 Reference Manual. The sample programs in Appendix D also

illustrate the wuse of the .MCALL directive. Note

that these

directives appear as the very first statements in the preparatory

coding of these programs.

The object routines described in Chapter 4 should not be
the macro definitions available from the system macro
file-control routines, constituting a body of object

linked into the user program at task-build time from the
library {SY¥:[1,11SYSLIBR.OLB). The reader should consult
for a description of these routines.

The following statements are representative of the use of
directive:

.MCALL FDBDF$,FDATSA,FDRCS$A,FDOPSA,NMBLKS ,FSRSZ$
.MCALL OPENS$R,OPENSW,GETS$,PUTS,CLOSES

confused with
library. The
modules, are
system object
section 4.1

the .MCALL

,FINITS

PREPARING FOR I/O

2.2 FILE DESCRIPTOR BLOCK (FDB)

The file descriptor block (FDB) is the data structure that provides
the information needed by FCS for all file I/0O operations. Two sets
of macro calls are available for FDB initialization: one set is used
for assembly-time initialization (see next section), and the other set
is used for run-time initialization (see section 2.2.2). Run-time
macros are used to supplement and/or override information specified
during assembly. Appendices A and B illustrate all the sections of
the FDB in detail.

2.2.1 Assembly-Time FDB Initialization Macros

Assembly-time initialization requires that the FDBDF$ macro call be
issued (see section 2.2.1.1) to allocate space for and to define the
beginning address of the FDB. Additional macro calls can then be
issued to establish other required information in this structure. The
assembly-time macros which accomplish these functions are described in
the following sections. These macro calls take the general form shown
below:

mcnam$A pl,p2,...,pn

where: mcham$A represents the symbolic name of the macro.
pl,p2, represents the string of initialization parameters
«e.,PN associated with the specified macro. A parameter

may be omitted from the string by leaving its
field between delimiting commas null. Assume, for
example, that a macro call may take the following
parameters:

FDOP$SA 2,DSPT,DFNB
Assume further that the second parameter field is
to be coded as a null specification. 1In this
case, the statement is coded as follows:

FDOPSA 2,,DFNB
Also, a trailing comma need not be inserted to
reflect the omission of a parameter beyond the
last explicit specification. For example, the
following macro call:

FDOPSA 2,DSPT,DFNB
need not be specified in the following manner

FDOPSA 2,DSPT,

if the last parameter (DFNB) is omitted. Rather,
such a macro call is specified as follows:

FDOPSA 2,DSPT

PREPARING FOR I/0

If any parameter is not specified, i.e., if any field in the macro
call contains a null specification, the corresponding cell in the FDB
is not initialized and thus remains zero (0).

Multiple values may be specified in a parameter field of certain macro
calls. Such values are indicated by placing an exclamation point (})
between the values, indicating a logical OR operation to the MACRO-11
assembler. The use of multiple values in this manner is pointed out
in the body of this manual where such specifications apply.

Throughout the descriptions of the assembly-time macros in the
following sections and elsewhere in this manual, symbols of the form
F.xxx or F.xxxx are referenced (e.g., F.RTYP). These symbols are
defined as offsets from the beginning address of the FDB, allowing
specific locations within the FDB to be referenced. Thus, the
programmer can reference or modify information within the FDB without
having to calculate word or byte offsets to specific locations.

Using such symbols in system/user software also has the additional
advantage of permitting the relative position of cells within the FDB
to be changed (in a subsequent release, for example) without affecting
the user's current programs or the coding style employed in developing
new programs.

PREPARING FOR I/0O

2.2.1.1 FDBDFS$ - Allocate File Descriptor Block (FDB) - The FDBDFS$
macro call is specified in a MACRO-11 program to allocate space within
the program for a file descriptor block (FDB). This macro <call must
be specified in the source program once for each input or output file
that is to be opened simultaneously by the user program in the course
of execution. Any associated assembly-time macro calls (see sections
2.2.1.2 through 2.2.1.6) must then be specified immediately following
the FDBDF$ macro if the user desires to accomplish the initialization
of certain portions of this FDB during assembly.

The FDB allocation macro takes the following form:
label: FDBDF$

where: label represents a user-specified symbol that names this
particular FDB and defines its beginning address.
This label has particular significance in all 1I/O
operations that require access to the data
structure allocated through this macro call. FCS
accesses the fields within the FDB relative to the
address represented by this symbol.

The following examples are representative of FDBDF$ macro calls as
they might appear in a source program:

FDBOUT: FDBDFS ;ALLOCATES SPACE FOR AN FDB NAMED
; "FDBOUT" AND ESTABLISHES THE
;BEGINNING ADDRESS OF THE FDB.

FDBIN: FDBDFS$;ALLOCATES SPACE FOR AN FDB NAMED
; "FDBIN" AND ESTABLISHES THE
;BEGINNING ADDRESS OF THE FDB.

As noted earlier, the source program must embody one FDBDF$ macro call
logically similar to those above for each file that is to be accessed
simultaneously by the user program. FDB's can be re-used for many
different files, as long as the file currently using the FDB is closed
before the next file is opened. The only requirement is that an FDB
must be defined for every file that is to be opened simultaneously.

PREPARING FOR I/0

2.2.1.2 FDATSA - Initialize File Attribute Section of FDB - The
FDATSA macro call is used to initialize the file attribute section of
the FDB when a new output file is to be created. If the file to be
processed already exists, the FDAT$SA initialization macro is not
required, since FCS obtains the necessary information from +the first
14 bytes of the user file attribute section of the specified file's
header block (see Appendix F). This macro call has the following
format:

FDATSA rtyp,ratt,rsiz,cntg,aloc

where: rtyp represents a symbolic value that defines the type
of records to be built as the new file is created.
Either one of two values must be specified, as
follows:

R.FIX - Indicates that fixed-length records are to
be written in creating the file.

R.VAR - Indicates that variable-length records are
to be written in creating the file.

This parameter initializes FDB offset location
F.RTYP. Since the symbols R.FIX and R.VAR
initialize the same location in the FDB, these
values are mutually exclusive. Either one or the
other, but not both, may be specified.

ratt represents symbolic values that may be specified
to define the attributes of the records as the new
file is created. The following symbolic values
may be specified, as appropriate, to define the
desired record attributes:

FD.FTN - Indicates that the <first byte 1in each
record 1is to contain a FORTRAN carriage-control
character.

FD.CR ~ Indicates that the record is to be
preceded by a <LF> character and followed by a
<CR> character when the record is written to a
carriage-control device, e.g., a line printer or a
terminal.

FD.BLK - Indicates that records are not allowed to
cross block boundaries.

These parameters initialize the record attribute
byte (offset 1location F.RATT) in the FDB. The
values FD.FTN and FD.CR are mutually exclusive and
must not be specified together. Apart from this
restriction, the combination (logical OR) of
multiple parameters specified in this field must
be separated by an exclamation point (e.g.,
FD.CR!FD.BLK) .

rsiz

cntg

aloc

PREPARING FOR I/O

represents a numeric value that defines the size
(in bytes) of fixed-length records to be written
to the file. This value, which initializes FDB
offset 1location F.RSIZ, need not be specified if
R.VAR has been specified as the record type
parameter above (for variable-length records). If
R.VAR is specified, FCS maintains a value in FDB
offset 1location F.RSIZ that defines the size (in
bytes) of the largest record currently written to
the file. Thus, whenever an existing file
containing variable-length records is opened, the
value in F.RSIZ defines the size of the largest
record within that file. By examining the wvalue
in this cell, a program can dynamically allocate
record buffers for its open files.

represents a signed numeric value that defines the
number of blocks that will be allocated for the
file as it is created. The signed values have the
following significance:

Positive Value - Indicates that the specified
number of Dblocks is to be allocated contiguously
at file-create time, and, further, that the file
is to be contiguous.

Negative Value - Indicates that the two's
complement of the specified number of blocks is to
be allocated at file-create time, not necessarily
contiguously, and, further, that the file is to be
noncontiguous.

This parameter, which has 15 bits of magnitude
(plus a sign bit), initializes FDB offset location
F.CNTG.

If the user has a firm idea as to the desired
length of the file, it 1is more efficient to
allocate the required number of blocks at
file-create time through this parameter, rather
than requiring FCS to extend the file, if
necessary, during the writing of the file (see
aloc parameter below).

If this parameter is not specified, then the file
is «created as an empty file, i.e., no space is
allocated within the file as it is created.

Issuing the CLOSES$ macro call at the completion of
file processing resets the value in F.CNTG to zero
(0). Thus, the usual procedure is to initialize
this 1location at run-time just before opening the
file. This action is especially necessary if the
FDB is to be re-used.

represents a signed numeric value that defines the
number of blocks by which the file will be
extended if FCS determines that file extension 1is
necessary during the writing of the file. When
the end of allocated space in the file is reached
during writing, the signed value provided through

PREPARING FOR I/0

this parameter causes file extension to occur, as
follows:

Positive Value - Indicates that the specified
number of blocks is to be allocated contiguously
as additional space within the file and, further,
that the file is to be noncontiguous.

Negative Value - Indicates that the two's
complement of the specified number of blocks is to
be allocated noncontiquously as additional space
within the file and, further, that the file is to
be noncontiguous.

This parameter, which also has 15 bits of
magnitude (plus a sign bit), initializes FDB
offset 1location F.ALOC. If this optional
parameter 1is not specified, file extension occurs
as follows:

1. If the number of virtual blocks yet to be
written 1is greater than one (1), the file is
extended by the -exact number of blocks
required to complete the writing of the file.

2. If only one additional block is required to
complete the writing of the file, the file is
extended in accordance with the volume's
default extend value.

In IAS, RSX-11D, and RSX-11M, the volume default extend size |is
established through the INITIALIZE, INITVOLUME, or MOUNT command
respectively. These initialization commands are described in the IAS
System Management Guide, the RSX-11D User's Guide, or the RSX-11M
Operator's Procedures Manual. The MOUNT command for IAS is described
in the IAS User's Guide. The volume default extend size cannot be
established at the FCS level; this value must be established when the

volume is initially mounted.

The following statement is representative of an FDAT$SA macro call.
This statement initializes the FDB in preparation for the creation of
a new file containing fixed-length, 80-byte records that will be
allowed to cross block boundaries.

FDATSA R.FIX,,80.

In the above example, the record attribute (ratt) parameter has been
omitted, as indicated by the second comma (,) in the parameter string.
Also, the cntg and aloc parameters have been omitted. Their omission,
however, occurs following the last explicit specification, and their
absence need not be indicated by trailing commas in the parameter
string. Since the aloc parameter has been omitted, file extension (if
it becomes necessary) will be accomplished in accordance with the
current default extend size in effect for the associated volume.

If more than one record attribute is specified in the ratt parameter
field, such specifications must be separated by an exclamation point
(1), as shown below:

FDAT$SA R.VAR,FD.CRI!FD.BLK

The above macro call will enable a file of variable-length records to
be created. The records will contain vertical formatting information

2-9

PREPARING FOR I/O

for carriage-control devices; the records will not be allowed to
cross block boundaries.

2.2.1.3 FDRCSA - Initialize Record Access Section of FDB - The FDRCSA
macro call is used to initialize the record access section of the FDB
and to indicate whether record or block I/O operations are to be used
in processing the associated file.

If record I/0 operations (GET$ and PUTS$ macro calls) are to be used,
the FDRCSA or the FDRCSR macro call (see section 2.2.2) establishes
the FDB information necessary for record-oriented I/0. If block I/0
operations (READ$ and WRITES macro calls) are to be used, however, the
FDBKSA macro call (see section 2.2.1.4) or the FDBKSR macro call (see
section 2.2.2) must also be specified in order to establish other
values in the FDB required for block I/O. 1In this case, portions of
the record access section of the FDB are physically overlaid with
parameters from the FDBKSA/FDBKSR macro call.

Prior to issuing the OPENS$x macro call to initiate file operations,
the FDB must be appropriately initialized to indicate whether record
or block I/O operations are to be used in processing the associated
file.

The FDRCS$A macro call takes the following format:
FDRCS$A racc,urba,urbs

where: racc represents symbolic values that specify how FCS is
to handle file data. This parameter initializes
the record access byte (offset location F.RACC) in
the FDB. The first value below applies only for
block I/0 (READS/WRITES) operations; all
remaining values are specific to record I/0O
(GET$/PUTS) operations:

FD.RWM - Indicates that READS$/WRITES (block 1I/0)
operations are to be used in processing the file.
If this value is not specified, GETS$/PUTS (record
I/0) operations are used by default.

Specifying FD.RWM necessitates issuing an FDBKS$A
or an FDBKSR macro call in the program to
initialize other offsets in the block access
section of the FDB. Note also that the READS or
WRITES macro call allows the complete
specification o©of all the parameters required for
block I/0 operations.

FD.RAN - Indicates that random access mode is to
be wused in processing the file. If this value is
not specified, sequential access mode is used by
default.

FD.PLC - Indicates that locate mode is to be used
in processing the file. If this value is not
specified, move mode is used by default.

FD.INS -~ This value, which applies only for
sequential files (and therefore cannot be
specified jointly with the FD.RAN parameter
above), 1indicates that a PUTS$ operation performed

PREPARING FOR I/O

within the body of the file shall not truncate the
file.

Should the user wish to perform a PUT$ operation
within the body of a file, the .PCINT routine
described in section 4.8.1 may be called. This
routine, which permits a limited degree of random
access to a file, positions the file to a
user-specified byte within a virtual block in
preparation for the PUTS$ operation.

If FD.INS 1is not specified, a PUT$ operation
within the file truncates the file at the point of
insertion, i.e., the PUT$ operation moves the
logical end-of-file (EOF) to a point just beyond
the inserted record. However, no deallocation of
blocks within the file occurs.

Regardless of the setting of the FD.INS bit, a
PUTS operation that is in fact beyond the current
logical end of the file will reset the logical end
of the file to a point just beyond the inserted
record.

urba represents the symbolic address of a user record
buffer that is to be used for GETS operations in
move and locate modes, and for PUTS$ operations 1in
locate mode. This parameter initializes FDB
offset location F.URBD+2.

urbs represents a numeric value that defines the size
(in bytes) of the user record buffer to be
employed for GET$ operations in move and locate
modes, and for PUTS operations in locate mode.
This parameter initializes FDB offset 1location
F.URBD.

The user allocates and labels a record buffer in his program through a
.BLKB or .BLKW directive. The address and the size of this area is
then passed to FCS as the urba and the urbs parameters above. For
example, a user record buffer may be defined through a statement that

PR R r o~ i
is logically equivalent tc that cshown below:

RECBUF: .BLKB 82.

where "RECBUF" is the address of the buffer and 82(10) is its size (in
bytes) .

2-11

PREPARING FOR I/O

Under certain conditions, the user need not allocate a record buffer
or specify the buffer descriptors (urba and urbs) for GET$ or PUTS$
operations. These conditions are described in detail in sections
3.9.2 and 3.12.2, respectively.

The following statement is representative of an FDRC$A macro call that
is issued for a file that may be accessed in random mode:

FDRCSA FD.RAN,BUF1,160.

The address of the user record buffer is specified through the symbol
BUF1l, and the size of the user record buffer (in bytes) is defined by
the numeric value 160(10).

If more than one value is specified in the record access (racc) field,
multiple values must be separated by an exclamation point (!), as
shown below:

FDRCSA FD.RAN!FD.PLC,BUF1,160.
In addition to the functions described for the first example, this
example specifies that 1locate mode is to be used in processing the

associated file. Note that the multiple parameters specified in the
first field are separated by an exclamation point (!).

2-12

PREPARING FOR I/0

2.2.1.4 FDBKSA - Initialize Block Access Section of FDB - The FDBKSA
macro call is used to initialize the block access section of the FDB
when block I/O operations (READS and WRITES macro calls) are to be
used for file processing. Initializing the FDB with this macro call
aliows the user to read or write virtual blocks of data within a file.

As noted in the preceding section, issuing the FDBKS$A macro call
implies that the FDRCSA macro call has also been specified, since it
is through the FD.RWM parameter of the FDRCSA macro call that the
initial declaration of block I/O operations is accomplished. Thus,
for block I/O operations, the FDRCS$A macro call must be specified, as
well as any one of the following ‘macro calls, to appropriately
initialize the block access section of the FDB: FDBKSA, FDBKSR,
READS, or WRITES.

Issuing the FDBKS$A macro call causes certain portions of the record
access section of the FDB to be overlaid with parameters necessary for
block I/0 gverations Thug, the terms "record access section" and

/v UpCracviViioe. Ll LeCeeld aClLea=2

"block access section" refer to a shared physical area of the FDB
which is functional for either record or block I/O operations.

When block I/O operations are desired, the FDB must be properly
initialized through the FDBKSA or the FDBKS$R macro call prior to
issuing a generalized OPEN$x macro call which references that FDB. If
record I/O operations are to be employed, the FDBKS$A or the FDBKSR
macro call must not be issued.

The FDBKSA macro call is specified in the following format:
FDBKSA Dbkda,bkds,bkvb,bkef,bkst,bkdn

where: bkda represents the symbolic address of an area in user
memory space that 1is to be employed as a buffer
for Dblock I/0 operations. This parameter
initializes FDB offset location F.BKDS+2.

bkds represents a numeric value that specifies the size
(in bytes) of the block to be read or written when
a block I/0 reguest (READS or WRITES macro call)
is issued. This parameter initializes FDB offset
location F.BKDS. The maximum block size that can
be specified through this parameter is equal to

one virtual block, i.e., 512(10) bytes.

bkvb represents a dummy parameter for compatibility
with the FDBKSR macro call. The bkvb parameter is
not specified in the FDBKSA macro <call for the
reasons stated in Item 4 of section 2.2.2.1. 1In
short, assembly-time initialization of FDB offset
locations F.BKVB+2 and F.BKVB with the virtual
block number is meaningless, since any version of
the generalized OPEN$x macro call resets the
virtual block number in these cells to one (1) as
the file is opened. Therefore, these cells can be
initialized only at run-time through either the
FDBKSR macro call (see section 2.2.2) or the
I/0-initiating READS$ and WRITES macro calls (see
sections 3.15 and 3.16, respectively).

bkef

bkst

bkdn

PREPARING FOR I/O

This dummy parameter need be reflected as a null
specification (with a comma) in the parameter
string only in the event that an explicit
parameter follows. This null specification is
required in order to maintain the proper
positionality of any remaining field(s) in the
parameter string.

represents a numeric value that specifies an event
flag to be used during READS$/WRITES operations to
indicate the completion of a block I/O transfer.
This parameter initializes FDB offset location
F.BKEF; 1if not specified, event flag 32(10) is
used by default.

The function of an event flag 1is described in
further detail in section 2.8.1.

represents the symbolic address of a 2-word I/O
status block in the user program. If specified,
this optional parameter 1initializes FDB offset
location F.BKST.

The I/0 status block, if it is to be used, must be
defined and appropriately labeled at
assembly-time. Then, if the bkst parameter is
specified, information 1is returned by the system
to the I/O status block at the completion of the
block I/0O transfer. This information reflects the
status of the requested operation. If this
parameter is not specified, no information is
returned to the I/0 status block.

If an error condition occurs during a READ$ or
WRITES operation that would normally be reported
as a negative value in the first byte of the I/0
status block, then this occurrence is not reported
unless an I/0 status block address 1is specified.
Thus, the user 1s advised to specify this
parameter to allow the return of block I/O status
information and to facilitate normal error
reporting.

The creation and function of the I/0 status block
are described in greater detail in section 2.8.2.

represents the symbolic address of an optional
user-coded AST service routine. If present, this
parameter causes the AST service routine to be
initiated at the specified address upon completion
of block I/0; if not specified, no AST trap
occurs. This parameter initializes FDB offset
location F.BKDN.

Considerations relevant to the wuse of an AST
service routine are presented in section 2.8.3.

PREPARING FOR I/O

The following example shows an FDBKSA macro call which wutilizes all
available parameter fields for initializing the block access section
of the FDB:

FDRKSA BKBUF,240.,,20..ISTAT,ASTADR

In this macro call, the symbol BKBUF identifies a block I/O buffer
reserved in the user program that will accommodate a 240(10)-byte
block. The virtual block number is null (for the reasons stated in
the description of this parameter above), and the event flag to be set
upon block I/O completion is 20(10). Finally, the symbol ISTAT
specifies the address of the I/O status block, and the symbol ASTADR
specifies the entry-point address of the AST service routine.

2-15

PREPARING FOR I/0

2.2.1.5 FDOPS$A - Initialize File Open Section of FDB - The FDOPS$SA
macro call is used to initialize the file-open section of the FDB. 1In
addition to a logical unit number, either a dataset descriptor pointer
and/or a default filename block address is normally specified for each
file that is to be opened. The latter two parameters provide FCS with
the 1linkage necessary to retrieve file specifications from these
user—created data structures in the program.

Although both a dataset descriptor pointer (dspt) and the address of a
default filename block (dfnb) may be specified for a given file, one
or the other must be present in the FDB before that file can be
opened. If, however, certain information is already present in the
filename block as the result of prior program action, neither the
dataset descriptor nor the default filename block is accessed by FCS,
and the file is opened through a process called "opening a file by
file 1ID." This process, which is a very efficient method of opening a
file, is described in detail in section 2.5.

The dspt and dfnb parameters represent address values which point to
user-defined data structures in the program. These data structures,
which are described in detail in section 2.4, provide file
specifications to the FCS file-processing routines.

The FDOP$A macro call takes the following form:
FDOPSA 1lun,dspt,dfnb,facc,actl (1)

where: lun represents a numeric value which specifies a
logical wunit number. This parameter initializes
FDB offset location F.LUN. All I/0 operations
performed 1in conjunction with this FDB are done
through the specified logical unit number (LUN).
Every active FDB must have a unique LUN.

The logical unit number specified through this
parameter may be any value from one (1) through
the largest value specified to the Task Builder
through the UNITS directive. This directive
specifies the number of logical units to be used
by the task (see the Task Builder Reference Manual
of the host operating system).

dspt represents the symbolic address of a 6-word block
in the user program containing the dataset
descriptor. This user-defined data structure
consists of a 2-word device descriptor, a 2-word
directory descriptor, and a 2-word filename
descriptor, as outlined in section 2.4.1.

The dspt parameter initializes FDB offset location
F.DSPT. This address value, called the dataset
descriptor pointer, is the linkage address through
which FCS accesses the fields in the dataset
descriptor.

(1) The actl parameter does not apply to RSX-11M.

dfnb

facc

PREPARING FOR I/O

When the Command String Interpreter (CSI) is wused
to process command string input, a file
specification is returned to the <calling program
in a format identical to that of the
manually-created dataset descriptor. The use of
CsI as a dynamic command 1line processor is
described in detail in section 6.2.

represents the symbolic address of the default
filename block. This structure 1is allocated
within the user program through the NMBLKS$ macro
call (see section 2.4.2). When specified, the
dfnb parameter initializes FDB offset location
F.DFNB, allowing FCS to access the fields of the
default filename block in building the £filename
block in the FDB.

Specifying the dfnb parameter in the FDOPSA (or
the FDOPS$R) macro call assumes that the NMBLKS
macro call has been 1issued in the program.
Furthermore, the symbol specified as the dfnb
parameter in the FDOPS$A (or the FDOPSR) macro call
must correspond exactly to the symbol specified in
the label field of the NMBLKS$ macro call.

represents any one or any appropriate combination
of the following symbolic values indicating how
the specified file is to be accessed:

FO.RD - Indicates that an existing file is to be
opened for reading only.

FO.WRT - Indicates that a new file 1is to be
created and opened for writing.

FO.APD - Indicates that an existing file is to be
opened for append.

FO.MFY - Indicates that an existing file is to be
opened for modification.

FO.UPD - Indicates that an existing file is to be
opened for update and, if necessary, extended.

FA.NSP - Indicates, in combination with FO.WRT,
above, that an o0ld file having the same file
specification is not be to superseded by the new
file.

FA.TMP - Indicates, 1in combination with FO.WRT
above, that the created file is to be a temporary
file.

FA.SHR - Indicates that the file is to be opened
for shared access. :

The facc parameter initializes FDB offset location
F.FACC. The symbolic values FO.xxx, described
above, represent the logical or of bits in FDB
location F.FACC.

actl

PREPARING FOR I/0

The information specified by this parameter can be
overridden by an OPENS$ macro call, as described in
Section 3.7. It is overridden by an OPENS$x macro
call.

applies only to IAS and RSX-11D and represents a
symbolic value that 1is wused to specify the
following control information in FDB 1location
F.ACTL:

1. Magnetic tape position,

2. Whether a disk file that is opened for write
is to be locked if it is not properly closed,
e.g., the task terminates abnormally,

3. Number of retrieval pointers to allocate for a’
disk file window.

Normallly, FCS supplies default values for F.ACTL.
However, if FA.ENB is specified in combination
with any of the symbolic values described below,
FCS uses the information in F.ACTL. FA.ENB must
be specified with the desired values to override
the defaults. The following are the defaults for
location F.ACTL.

For file creation, magnetic tapes are
positioned to the end of the volume set.

At file open and close, tapes are not rewound.

A disk file that is opened for write is locked
if it is not properly closed.

The volume default 1is wused for the file
window.

The values listed below can be used in conjunction
with FA.ENB.

FA.POS - Is meaningful only for output files and
is specified to <cause a magnetic tape to be
positioned just after the most recently closed
file for the «creation of a new file. Any files
that exist after that point are lost. If rewind
is specified, it takes precedence over FA,POS,
thus causing the tape to be positioned just after
the VOL1 1label for file creation. See Section
5.2.3.

FA.RWD - Is specified to cause a magnetic tape to
be rewound when the file is opened or closed.

Examples of the use of FA.ENB with FA.POS and
FA.RWD are provided in Section 5.2.8.

FA.DLK -~ Is specified to cause a disk file not to
be locked if it is not properly closed.

The number of retrieval pointers for a file window
can be specified in the low-order byte of F.ACTL.

PREPARING FOR I/C

The system normally provides 7 retrieval ©pointers
automatically. Retrieval pointers are wused to
point to contiguous blocks of the file on disk.
Access to fragmented files may be optimized by
increasing the number of retrieval pointers, i.e.,
by increasing _the size of the window. Likewise,
additional memory can be freed by reducing the
number of pointers for files with little or no
fragmentation, e.g., contiquous files.

As noted, if neither the dspt nor the dfnb parameter is specified,
corresponding offset locations F.DSPT and F.DFNB contain zero (0). In
this case, no file is currently associated with this FDB. Any attempt
to open a file with this FDB will result in an open failure. Either
offset 1location F.DSPT or F.DFNB must be initialized with an
appropriate address value before a file can be opened using this FDB.
Normally, these cells are initialized at assembly-time through the
FDOPS$A macre call; they may also be initialized at run-time through
the FDOPSR or the generalized OPENS$x macro call (see section 3.1).

The following examples are representative of the FDOPS$A macro call as
it might appear in the source program:

FDOP$SA 1, ,DFNB

FDOP$A 2,0FDSPT

FDOP$A 2,0FDSPT,DFNB

FDOP$A 1,CSIBLK+C.DSDS
FDOP$A 1,,DFNB,,FA.ENB!16. (1)

Note in the first example that the dataset descriptor pointer (dspt)
is null, requiring that FCS rely on the run-time specification of the
dataset descriptor pointer for the FDB or the use of the default
filename block for required file information.

In the second example, a dataset descriptor pointer (OFDSPT) has been
specified, allowing FCS to access the fields in the dataset descriptor
for required file information.

The third example specifies both a dataset descriptor pointer and a
default filename block address, causing FDB offset locations F.DSPT
and F.DFNB, respectively, to be initialized with the appropriate
values. In this case, FCS can access the dataset descriptor and/or
the default filename block for required file information. By
convention, FCS first seeks such information in the dataset
descriptor; if all the required information is not present in this
data structure, FCS attempts to obtain the missing information from
the default filename block.

The fourth example shows a macro call which takes as its second
parameter a symbolic value which causes FDB offset location F.DSPT to
be initialized with the address of the CSI dataset descriptor. This
structure 1is <created in the CSI control block through the invocation
of the CSIS$ macro call. All considerations relevant to the use of CSI
as a dynamic command line processor are presented in section 6.2.

(1) This example does not apply to RSX-11M.

PREPARING FOR I/O

The last example illustrates the use of the parameter actl to increase
the number of retrieval pointers in the file window to 16. FA.ENB is
specified to cause the contents of F.ACTL, rather than the defaults,
to be used.

In all the examples above, the value specified as the first parameter
supplies the 1logical wunit number to be used for all I/O operations
involving the associated file.

2-20

PREPARING FOR I,/0

2.2.1.6 FDBFS$SA - Initialize Block Buffer Section of FDB - The FDBFSA
macro call 1is used to initialize the block buffer section of the FDB
when record I/0 operations (GET$ and PUTS$ macro calls) are to be used
for file processing. Initializing the FDB with this macro call allows
FCS to control the necessary blocking and deblocking of individual
records within a virtual block as an integral function of processing
the file.

The FDBFS$A macro call takes the following format:

FDBFSA efn,ovbs,mbct,mbfg

where: efn represents a numeric value which specifies the
event flag to be wused by FCS in synchronizing
record I/O operations. This numeric value

initializes FDB offset location F.EFN. This event
flag is used internally by FCS; it must not be
set, cleared, or tested by the user.

If this parameter is not specified, event flag
32(10) 1is wused by default. A null specification
in this field is indicated by inserting a 1leading
comma in the parameter string.

ovbs represents a numeric value which specifies an FSR
block buffer size (in bytes) which overrides the
standard block size for the particular device
associated with the file. This parameter is
specified only when a non-standard block size is
desired. The numeric value so specified
initializes FDB offset location F.OVBS.

An override block size 1is allowed only for
record-oriented devices (such as line printers)
and sequential devices (such as magnetic tape
units). For block-oriented devices, the override
block size is ignored. 1In IAS and RSX-11D, for
spooled output to a record-oriented device, a
buffer less than 512(10) bytes in length must not
be allocated.

Issuing the CLOSES$ macro call (see section 3.8)
resets offset location F.OVBS in the associated
FDB to zero (0). Therefore, this location should
typically be initialized at run-time just before
opening the file, particularly if an OPENS$Sx/CLOSES$
sequence for the file is performed more than once.

The standard block size in effect for a particular
device may be obtained through an I/O-related
system directive called Get Lun Information
(GLUNS). This directive is described in detail in
the Executive Reference Manual of the host
operating system. The standard block size for a
device is established at system-generation time.

mbct represents a numeric value which specifies the
multiple buffer count, i.e., the number of buffers
to be used by FCS in processing the associated

mbfg

PREPARING FOR I/0

file. This parameter initializes FDB offset
location F.MBCT. If this value 1is greater than
one (1), multiple buffering 1is effectively
declared for file processing. In this case, FCS
will employ either read-ahead or write-behind
operations, depending on which of two symbolic
values is specified as the mbfg parameter (see
below) .

If the mbct parameter is specified as null or zero
(0), FCS wuses the default buffer count contained
in symbolic location .MBFCT in $$FSR2 (the program
section in the FSR containing impure data). This
cell normally contains a default buffer count of
one (l1). 1If desired, this value can be modified,
as noted in the discussion following the mbfg
parameter below.

If, in specifying the FSRSZ$ macro call (see
section 2.6.1), sufficient memory space has not
been allocated to accommodate the number of
buffers established by the mbct parameter, FCS
allocates as many buffers as will fit in the
available space. Insufficient space for at least
one buffer causes FCS to return an error code to
FDB offset location F.ERR.

The user can initialize the buffer count in F,MBCT
through either the FDBFSA or the FDBFSR macro
call. The buffer count so established 1is not
altered by FCS and, once set, need not be of
further concern to the user.

represents a symbolic value that specifies the
type of multiple buffering to be employed in
processing the file. Either of two values may be
specified to initialize FDB offset location
F.MBFG:

FD.RAH - Indicates that read-ahead operations are
to be used in processing the file.

FD.WBH - Indicates that write-behind operations
are to be used in processing the file.

These parameters are mutually exclusive, i.e., one
or the other, but not both, may be specified.

Specifying this parameter assumes that the buffer
count established in the mbct parameter above is
greater than one (l). If multiple buffering has
thus been declared,, the omission of the mbfg
parameter causes FCS to use read-ahead operations
by default for all files opened using the OPENSR
macro call; similarly, write-behind operations
are used by default for all files opened using
other forms of the OPEN$xXx macro call.

If these default buffering conventions are not
desired, the wuser can alter the wvalue in the
F.MBFG dynamically at run-time. This is done by

issuing the FDBF$R macro call, which takes as the
mbfg parameter the appropriate control flag
(FD.RAH or FD.WBH). This action must be taken,
however, before opening the file.

Offset location F.MBFG in the FDB is reset to zero
(0) each time the associated file is closed.
NOTE
For RSX-11M, the normally released

version of FCS uses single buffering and
simply ignores the multiple-buffering

parameters (mbct and mbfg) in the
FDBKSA/FDBKSR macro call. A
multiple-buffered version of FCS is
available in the library file
SY:[1,1]DBLBUFLIB.OLB. Thus, for

multiple buffering, the system must
contain the appropriate routines in a
resident library or the user must 1link
his program with the DBLBUFLIB object
library file.

For IAS and RSX-11D, resident and
nonresident libraries support the
multibuffered version of FCS.

As noted in the description of the mbct parameter above, the default
buffer count can be changed, if desired, by modifying a location in
$$FSR2, the second of two program sections comprising the FSR. A
location defined as .MBFCT in $$FSR2 normally contains a default
buffer count of one (i). This default wvalue may be changed; as
follows:

1. Apply a global patch to .MBFCT at task-build time to specify
the desired number of buffers.

2. For MACRO-11 programs, use the EXTSCT Task Builder directive
(see section 2.7.1) to allocate more space for the FSR block
buffers; for FORTRAN programs, use the ACTFIL Task Builder
directive (see section 2.7.2) to allocate more space for the
FSR block buffers.

PREPARING FOR I/0

Because the above procedure alters the default buffer count for all
files to be processed by the user program, it may be desirable to
force single buffering for any specific file(s) that would not benefit
from multiple buffering. In such a case, the buffer count in F.MBCT
for a specific file may be set to one (1) by issuing the following
macro call for the applicable FDB:

FDBF$A ,,1

The value "1" specifies the buffer count (mbct) for the desired file
and 1is entered into offset location F.MBCT in the applicable FDB.
Note in the example above that the event flag (efn) and the override
block buffer size (ovbs) parameters are null; these null values are
used for illustrative purposes only and should not be interpreted as
conditional specifications for establishing single-buffered
operations.

The following examples are representative of the FDBFS$A macro call as
it might appear in a program:

FDBFSA 25.,,1
FDBF$A 25.,,2,FD.RAH
FDBFSA ,,2,FD.WBH

The first example specifies that event flag 25(10) is to be wused 1in
synchronizing record I/O operations and that single buffering is to be
used in processing the file.

The second example also specifies event flag 25(10) for synchronizing
record I/O operations and, 1in addition, establishes "2" as the
multiple buffer count. The buffers so specified are to be used for
read-ahead operations, as indicated by the final parameter.

The last example allows event flag 32(10) to be used by default for
synchronizing record I/O operations, and the two buffers specified in
this case are to be used for write-behind operations.

Note in all three examples that the second parameter, 1i.e., the
override block size parameter (ovbs), is null; thus, the standard
block size in effect for the device in question will be used for all
file I/0 operations.

2.2.2

PREPARING FOR I/O

Run-Time FDB Initialization Macros

Although the FDB is allocated and can be initialized during program

assembly,

the contents of specific sections of the FDB can also be

initialized or changed at run time by issuing any of the following
macro calls:

FDATSR - Initializes or alters the file attribute section of
the FDB.

FDRCSR - Initializes or alters the record access section of
the FDB.

FDBKSR - Initializes or alters the block access section of the
FDB (see Item 4 below).

FDOPSR - Initializes or alters the file-open section of the
FDB.

FDBFS$R - Initializes or alters the block buffer section of the
FDB.

2.2.2.1 Run-Time FDB Macro Call Exceptions - The format and the

parameters of the run-time FDB initialization macros are identical to
the assembly-time macros described earlier, except as noted below:

1.

2.

An R must appear as the last character in the run-time
symbolic macro name, rather than an A.

The first parameter in all run-time macro calls must be the
address of the FDB associated with the file to be processed.
All other parameters in the run-time macro calls are
identical to those described in sections 2.2.1.2 through
2.2.1.6 for the assembly-time macro calls, except as noted in
Items 3 and 4 below.

The parameters in the run-time macro calls must be valid
MACRO-11 source operand expressions. These parameters may be
address values or literal values; they may also represent
the contents of registers or memory locations. In short, any
value that is a wvalid source operand in a MOV or MOVB
instruction may be specified in a run-time macro call. 1In
this regard, the following conventions apply:

a. If the parameter is an address value or a literal wvalue
that 1is to be placed in .the FDB, i.e., if the parameter
itself is to be taken as an argument, it must be preceded
by the number sign (#). This symbol is the immediate
expression indicator for MACRO-11 programs, causing the
associated argument to be taken literally in initializing
the appropriate cell in the FDB. Such literal values may
be specified as follows:

FDOPSR #FDBADR, #1, #DSPT, #DFNB

2-25

PREPARING FOR I/0

b. If the parameter is the address of a location containing
an argument that is to be placed 1in the FDB, the
parameter must not be preceded by the number sign (#).
Such a parameter may be specified, as follows:

ONE: .WORD 1

FDOP$SR #FDBADR,ONE, #DSPT, #DFNB

where "ONE" represents the symbolic address of a location
containing the desired initializing value.

c. Also, if the parameter is a register specifier (e.qg.,
RO), the parameter must not be preceded by the number

sign (#). Register specifiers are defined MACRO-11
symbels and are valid expressions in any context.

Thus, in contrast, parameters specified in assembly-time
macro calls are used as arguments in generating data in .WORD
or .BYTE directives, while parameters specified in run-time
macro calls are wused as arguments in MOV and MOVB machine
instructions.

As noted in the description of the FDBK$SA macro call in
section 2.2.1.4, assembly-time initialization of the FDB with
the virtual block number is meaningless, since 1issuing the
OPENSx macro call to prepare a file for processing
automatically resets the virtual block number in the FDB to
one (1). For this reason, the virtual block number can be
specified only at run—-time after the file has been opened.
This may be accomplished through either the FDBKSR macro call
or the I/O-initiating READS$/WRITES$ macro call. In all three
cases, the relevant field for defining the virtual block
number is the bkvb parameter. The READ$S and WRITES macro
calls are described in detail in sections 3.15 and 3.16,
respectively.

At assembly-time, the user must reserve and label a 2-word
block in the program which 1is to be used for temporarily
storing the virtual block number appropriate for intended
block I/0 operations. Since the user is free to manipulate
the contents of these two locations at will, any virtual
block number consistent with intended block I/0 operations
may be defined. By specifying the symbolic address (i.e.,
the 1label) of this field as the bkvb parameter in the
selected run-time macro call, the wvirtual block number 1is
made available to FCS.

In preparing for block I/O operations, the following general
procedures must be performed:

At assembly-time, reserve a 2-word block in the user
program through a statement that is logically equivalent
to the following:

VBNADR: .BLKW 2

The label "VBNADR" names this 2-word block and defines
its address. This symbol 1is used subsequently as the
bkvb parameter in the selected run-time macro call for
initializing the FDB.

At run-time, load this field with the desired virtual
block number. This operation may be accomplished through
statements logically equivalent to those shown below:

CLR VBNADR
MOV $10400,VBNADR+2

Note that the first word of the block is <cleared. The
MOV instruction then loads the second (low-order) word of
the block with a numeric value. This value constitutes
the 16 1least significant bits of the wvirtual block
number .

If the desired virtual block number cannot be completely
expressed within 16 bits, the remaining portion of the
virtual block number must be stored in the first
(high-order) word of the block. This may be accomplished
through statements logically equivalent to the following:

MOV #1,VBNADR
MOV #10400,VBNADR+2

As a result of these two instructions, 31 bits of value
are defined in this ~ 2-word block. The first word
contains the 15 most significant bits of the wvirtual
block number, and the second word contains the 16 least
significant bits. Thus, the virtual block number 1is an
unsigned value having 31 bits of magnitude. The user
must ensure that the sign bit in the high-order word is
not set.

Open the desired file for - processing by 1issuing the
appropriate version of the generalized OPENSx macro call
(see section 3.1).

Issue either the FDBKSR macro call or the READ$/WRITES
macro call, as appropriate, to initialize the relevant
FDB with the desired virtual block number.

PREPARING FOR I/0

If the FDBKS$R macro call is elected, the following is a
representative example:

FDBKSR #FDBIN,,,#VBNADR

Regardless of the particular macro call wused to supply
the wvirtual block number, the two words at VBNADR are
loaded into F.BKVB and F.BKVB+2. The first of these
words (F.BKVB) is zero (0) if 16 bits is sufficient to

express the desired virtual block number. The
I/O-initiating READS/WRITES macro call may then be
issued.

Should the user, however, choose to initialize the FDB
directly through either the READS$ or WRITES macro call,
the virtual block number may be made available to FCS
through a statement such as that shown below:

READS #FDBIN, # INBUF, #BUFSIZ, #VBNADR

where the symbol "VBNADR" represents the address of the
2-word block in the user program containing the virtual
block number.

2.2.2.2 Specifying the FDB Address in Run-Time Macro Calls - 1In
relation to Item 2 of the exceptions noted above, the address of the
FDB associated with the file to be processed corresponds to the
address value of the user-defined symbol appearing in the label field
of the FDBDF$ macro call (see section 2.2.1.1). For example, the
following statement:

FDBOUT: FDBDFS$

in addition to allocating space for an FDB at assembly time, binds the
label "FDBOUT" to the beginning address of the FDB associated with
this file. The address value so established can then be specified as
the initial parameter in a run-time macro call in any one of three
ways, as follows:

1. The address of the appropriate FDB may be specified as an
explicit parameter in a run-time macro call, as indicated in
the following statement:

FDATSR #FDBOUT, #R.VAR,#FD.CR

The argument "FDBOUT" is taken 1literally by FCS as the
address of an FDB; furthermore, this address value, by
convention, 1is stored in general register zZero (RO) .
Whenever this method of specifying the FDB address is
employed, the previous contents of R0 are overwritten (and
thus destroyed). Therefore, the user must exercise care in
issuing subseqguent run-time macro calls to ensure that the
present value of RO is suitable to current purposes.

PREPARING FOR I/O

2. The general register specifier "RO" may be used as the
initial parameter in a run-time macro call, as reflected in
the following statement:

FDATSR RO,#R.VAR;#FD.CR

In this case, the current contents of R0 are taken by FCS as
the address of the appropriate FDB. This method assumes that
the address of the FDB has been previously loaded into RO
through some overt action. Note, when using this method to
specify the FDB address, that the immediate expression
indicator (#) must not precede the register specifier (RO).

3. A null specification may also be used as the initial
parameter in a run-time macro call, as shown below:

FDATSR ,#R.VAR, #FD.CR

In this instance, the current contents of RO are taken by
default as the address of the associated FDB. As in method 2
above, RO is assumed to contain the address of the desired
FDB. Although the comma in this instance constitutes a valid
specification, the user is advised to employ methods 1 and 2
for consistency and clarity of purpose.

In relation to the foregoing, it should be understood that these three
methods of specifying the FDB address also apply to all the FCS
file-processing macro calls described in Chapter 3.

PREPARING FOR I/0

2.3 GLOBAL VERSUS LOCAL DEFINITIONS FOR FDB OFFSETS

Although the FDB offsets can be defined either locally or globally, it
was fully intended in the design of FCS that the user need not
necessarily be concerned with the definition of FDB offsets 1locally.
To some extent, this design consideration was based on the manner in
which MACRO-11 handles symbols,

Whenever a symbol appears in the source program, MACRO-11
automatically assumes that it is a global symbol if it is-not
presently defined within the current assembly. Such a symbol must be
defined further on in the program; otherwise, it will be treated by
MACRO-11 as a default global reference, requiring that it be resolved
by the Task Builder.

Thus, the question of global versus local symbols may simply be a
matter of the programmer not defining the FDB offsets and bit values
locally as he codes the program. Such undefined symbols thus become
global references which are reduced to absolute definitions at
task-build time.

Other considerations, however, also apply to the use of global or
local offsets and involve some trade-off analysis. For example, if
symbols are defined locally within the source program, sufficient
symbol table space may not be available at assembly-time. On the
other hand, if the programmer allows the symbols to become global by
default because they are not defined within the source program, the
available symbol table space may then be insufficient at task-build
time. (Task Builder symbol table overflow is unlikely. However,
defining the offsets globally will increase link time.) If, however,
sufficient symbol table space is available for both MACRO-11 and the
Task Builder, the burden of symbol table space will fall where
appropriate. In either case, the symbols are handled properly whether
they be local or global.

The only instance in which this question takes on operational
significance 1is when symbol table overflow problems are experienced
with either MACRO-11 or the Task Builder. 1In this case, program size
constraints dictate more <careful programming. Depending on whether
MACRO-11 or the Task Builder is experiencing the overflow problems,
FDB offsets and bit values may be allowed to become global by defut,

or they may be defined locally in the source program through the
invocation of the FDOFSL and FCSBTS$ macro calls (see section 2.3.2).

If the symbol table overflow problem is present at both assembly-time
and task-build time, the user must reduce the size of the source
modules so that they can be processed without difficulty.

It should be noted that global symbols may be used as operands and/or
macro call parameters anywhere 1in the source program coding, as
described in the following section.

PREPARING FOR I/O

/

2.3.1 Specifying Global Symbols in the Source Coding

Throughout the descriptions of the assembly-time macros (see sections
2.2.1.2 through 2.2.1.6), global symbols are specified as parameters
in the macro calls. As noted earlier, such symbols are treated by
MACRO-11 as default global references.

For example, the global symbol FD.RAN may be specified as the initial
parameter in the FDRCSA macro call (see section 2.2.1.3). At
task-build time, this parameter 1is reduced to an absolute symbol
definition, causing a prescribed bit to be set in the record access
byte (offset location F.RACC) of the FDB.

Global symbols may also be used as operands in user program
instructions to accomplish operations associated with FDB offset
locations. For example, global offsets such as F.RACC, F.RSIZ, and
F.RTYP may be specified as operands in the source coding. Assume, for
example, that an FDBDFS$ macro call (see section 2.2.1.1) has been
issued in the source program to allocate space for an FDB, as foliows:

FDBIN: FDBDFS$

The coéing sequence below may then appear in the source program,
illustrating the use of the global offset F.RACC:

MOV #FDBIN,RO
- MOVB #FD.RAN,F.RACC (RO)

Note that the beginning address of the FDB is first moved into general
register zero (R0O). However, if the desired value already exists in
RO as the result of previous action in the program, the user need
issue only the second MOV instruction (which appropriately references
RO) . As a consequence of this instruction, the value FD.RAN
initializes FDB offset location F.RACC.

An equivalent instruction is the following:
MOVB $FD.RAN,FDBIN+F.RACC
which likewise initializes offset location F.RACC in the FDB with the

value of FD.RAN. Global symbols may be used anywhere in the program
in this manner to effect the dynamic storage of values within the FDB.

PREPARING FOR I/0

2.3.2 Defining FDB Offsets and Bit Values Locally

Should the user wish to declare explicitly that all FDB offsets and
bit values are to be defined locally, he may do so by invoking two
macro calls in the source program. The first of these, FDOFS$L, causes
the offsets for FDB's to be defined within the user program.
Similarly, bit values for all FDB parameters may be defined locally by
invoking the FCSBT$ macro call. These macro calls may be invoked
anywhere in the user program.

When issued, the FDOFS$L and FCSBTS$ macro calls define symbols in a
manner that is roughly equivalent to that shown below:

F.RTYP = XxXXX
F.RACC = xxxX
F.RSIZ = xXxXXxX

where "xxxx" represents the value assigned to the corresponding
symbol.

In other words, the macros for defining FDB offsets and bit values
locally do not generate any code. Their function is simply to create
absolute symbol definitions within the program at assembly-time. The
symbols so defined, however, appear in the MACRO-11 symbol table,
rather than in the source program listing. Such 1local symbol
definitions are thereby made available to MACRO-11 during assembly,
rather than forcing them to be resolved by the Task Builder.

Whether or not the FDOFSL and FCSBTS$ macro calls are invoked should
not in any way affect the coding style or the manner in which the FDB
offsets and bit values are used.

Note, however, if the FDOFS$SL macro call is issued, that the NBOFSL
macro call for the local definition of the filename block need not be
issued (see section 2.4.2). The FDOFSL macro <call automatically

defines all FDB offsets 1locally, including those for the filename
block.

If any of the above named macro calls is to be issued in the user
program, it must first be listed as an argument in an .MCALL directive
(see section 2.1).

PREPARING FOR I/O

2.4 CREATING FILE SPECIFICATIONS WITHIN THE USER PROGRAM

Certain information describing the file must be present in the FDB
before the file can be opened. The file is located using a file
specification which contains the following:

1. A device name and unit number;

2. A directory string consisting of a group number and a member
number that specifies the user file directory (UFD) to be
used for the file. The term "UFD" is synonymous with the
term "file directory string" appearing throughout this
manual.

3. A filename;
4. A file type (RSX-11l) or file extension (IAS);
5. A file version number.

The term "file specifier" is sometimes used as a synonym for "file
specification.”

A file specification describing the file to be processed is
communicated to FCS through two user-created data structures:

1. The Dataset Descriptor. This tabular structure may be
created and 1initialized manually through the use of .WORD
directives. Section 2.4.1 describes this data structure in
detail.

2. The Default Filename Block. In contrast to the
manually-created dataset descriptor, the default filename
block is created by issuing the NMBLKS macro call. This
macro call allocates a block of storage in the user program
at assembly-time and initializes this structure with
parameters supplied in the call. This structure is described
in detail in section 2.4.2.

As noted in section 2.2.1.5, the FDOPSA or the FDOPSR macro call is
issued to initialize the FDB with the addresses of these data
structures. These address values are supplied to FCS through the
"dspt" and "dfnb" parameters of the selected macro call. FCS uses
these addresses to access the fields of the dataset descriptor and/or
the default filename block for the file specification required in
opening a specified file.

PREPARING FOR I/O

By convention, a required file specification is first sought by FCS in
the dataset descriptor. Any non-null data contained therein is
translated from ASCII to Radix-50 form and stored in the appropriate
offsets of the filename block. This area of the FDB then serves as
the execution-time repository for the information describing the file
to be opened and processed. If the dataset descriptor does not
contain the required information, FCS attempts to obtain the missing
information from the default filename block. If neither of these
structures contains the required information, an open failure occurs.

Note, however, that the device name and the unit number need not be
specified in either the dataset descriptor or the default filename
block, since these values are defaulted to those applicable to the
system device (SY0:) if not explicitly specified.

The FCS file-processing macro <calls used 1in opening files are
described in Chapter 3, beginning with the generalized OPENS$x macro
call in section 3.1.

For a detailed description of the format and content of the filename
block, the reader should refer to Appendix B.

2.4.1 Dataset Descriptor

The dataset descriptor is often oriented toward the use of a fixed
(built-in) filename in the user program. A given application program,
for example, may require access only to a limited and non-variable
number of files throughout its execution. By defining the names of
these files at assembly-time through the dataset descriptor mechanism,
such a program, once initiated, will execute to completion without
requiring additional file specifications.

This structure, a 6-word block of storage which may be «created
manually within the user program through the use of .WORD directives,
contains information describing a file that the user intends to open
during the course of program execution. In creating this structure,
any one or all of three possible string descriptors may be defined for
a particular file, as follows:

1. A 2-word descriptor for an ASCII device name string;

2. A 2-word descriptor for an ASCII file directory string;
and/or

3. A 2-word descriptor for an ASCII filename string.

2-34

EEO T TR TR TANT T S

PREPAKING FUK 1/0

This data structure is allocated in the user program in the following

format:

DEVICE NAME STRING DESCRIPTOR -

Word 1 -

Inrd
ACTC

o
|

Contains the length (in bytes) of the ASCII device
name string.

This string consists of a 2-character alphabetic
device name, followed by an optional 1- or 2-digit
octal unit number. These strings may be created
through statements such as those below:

DEVNM: .ASCII /DKO:/
DEVNM: .ASCII /TT10:/

.

ains th
ng.

0w O

ont
tri

DIRECTORY STRING DESCRIPTOR -

Word 3 -

Word 4 -

Contains the length (in bytes) of the ASCII file
directory string.

This string consists of a group number and a
member number, separated by a comma (,). The
entire string 1is enclosed in brackets. For
example, [200,200] 1is a directory string. A
directory string can be created through statements
such as those that follow:

DIRNM: .ASCII /[200,200]/
DIRNM: .ASCII /[40,100]/

If the user wishes to specify an explicit file
directory different from the UIC under which he is
currently running, the dataset descriptor
mechanism permits that flexibility.

Contains the address of the ASCII file directory

Luatvaoanis LA QUQQicss L LAC A

string.

FILENAME STRING DESCRIPTOR -

Word 5 -

Word 6 -

Contains the length (in bytes) of the ASCII
filename string.

This string consists of a filename up to nine
characters in length, an optional 3-character file
type designator, and an optional file version
number. The filename and file type must be
separated by a dot (.), and the file version
number must be preceded by a semicolon. A
filename string may be created as shown below:

FILNM: ,ASCII /PROG1l.0OBJ;7/

Only the characters A through Z and 0 through 9
may be used in composing an ASCII filename string.

Contains the address of the ASCII filename string.

PREPARING FOR I/O

A length specification of zero (0) in word 1, 3, or 5 of the dataset
descriptor indicates that the corresponding device name, directory, or
filename string is not present in the user program. For example, the
coding below creates a dataset descriptor containing only a 2-word
ASCII filename string descriptor:

FDBOUT: FDBDFS$;CREATES FDB. .
FDATSA R.VAR,FD.CR ;INITIALIZES FILE ATTRIBUTE SECTION.
FDRC$SA ,RECBUF,80. ;INITIALIZES RECORD ACCESS SECTION.

FDOPSA OUTLUN,OFDSPT ;INITIALIZES FILE-OPEN SECTION.

OFDSPT: .WORD 0,0 ;NULL DEVICE NAME DESCRIPTOR.

.WORD 0,0 ;NULL DIRECTORY DESCRIPTOR.

.WORD ONAMSZ ,ONAM ; FILENAME DESCRIPTOR.
ONAM: .ASCII /OUTPUT.DAT/ ;DEFINES FILENAME STRING.
ONAMSZ=.-ONAM ;DEFINES LENGTH OF FILENAME STRING.

.

Note first that an FDB labelled "FDBOUT" is created. Observe further
that the FDOPSA macro call takes as its second parameter the symbol
"OFDSPT". This symbol represents the address value that is stored in
FDB offset location F.DSPT. This value enables the .PARSE routine
(see section 4.6.1) to access the fields of the dataset descriptor in
building the filename block.

The symbol "OFDSPT" also appears in the label field of the first .WORD
directive, defining the address of the dataset descriptor for the
.PARSE routine. The .WORD directives each allocate two words of
storage for the device name descriptor, the file directory descriptor,
and the filename descriptor, respectively.

In the example above, however, note that the first two descriptor
fields are filled with =zeros, indicating null specifications. The
last .WORD directive allocates two words which contain the size and
the address of the filename string, respectively. The filename string
itself is explicitly defined in the .ASCII directive which follows.

PREPARING FOR I/0

Note that the statements defining the filename string need not be
physically contiguous with the dataset descriptor. For each such
ASCII string referenced 1in the dataset descriptor, however,
corresponding statements must appear elsewhere in the source program
to define the appropriate ASCII data string{s).

A dataset descriptor for each of several files to be accessed by the
user program may be defined in this manner.

2.4.2 Default Filename Block - NMBLKS$ Macro Call

As noted earlier, the user may also define a default filename block in
the program as a means of providing required file information to FCS.
For this purpose, the NMBLKS$ macro call may be issued in connection
with each FDB for which a default filename block is to be defined.
When this macro call is issued, space is allocated within the user
program for the default filename block, and the appropriate locations
within this data structure are initialized according to the parameters
supplied in the call.

Note in the parameter descriptions below that symbols of the form
N.xxxx are used to represent the offset locations within the filename
block. These symbols are differentiated from those that apply to the
other sections of the FDB by the beginning character "N". All
versions of the generalized OPENS$x macro call (see section 3.1) use
these symbols to identify offsets in storing file information in the
filename block.

The NMBLKS macro call is specified in the following format:
label: NMBLKS fnam,ftyp,fver,dvnm,unit

where: label represents a user-defined symbol that names the
default filename block and defines its address.
This label is the symbolic value that is normally
specified as the dfnb parameter when the FDOPSA or
the FDOPSR macro <call is issued, causing FDB
offset 1location F.DFNB to be initialized with the
address of the default filename block.

fnam represents the default filename. This parameter
may consist of up to nine ASCII characters. The
character string is stored as six bytes in
Radix-50 format, starting at offset 1location
N.FNAM of the default filename block.

ftyp represents the default file type. This parameter
may consist of up to three ASCII characters. The
character string is stored as two bytes in
Radix-50 format in offset location N.FTYP of the
default filename block.

PREPARING FOR I/O

fver represents the binary default file version number.
When specified, this binary value identifies a
particular version of a file. This value is
stored in offset 1location N.FVER of the default
filename block.

dvnm represents the default name of the device upon
which the volume containing the desired file is
mounted. This parameter consists of two ASCII
characters which are stored in offset location
N.DVNM of the default filename block.

unit represents a binary value identifying which unit
(among several like wunits) is to be used in
processing the file. If specified, this numeric
value 1is stored in offset location N.UNIT of the
default filename block.

Only the characters A through Z and 0 through 9 may be used in
composing the filename and file type strings above.

Although the file version number and the unit number above are binary
values, these numbers are normally represented in octal form when
printed, when input via a command string, or when supplied through a
dataset descriptor string.

As evident from the foregoing, all the default information supplied in
the NMBLKS macro call 1is stored in the default filename block at
offset locations which correspond to identical fields in the filename
block within the FDB. This default information is moved into the
corresponding offsets of the filename block when any version of the
generalized OPENS$x macro call is issued under any of the following
conditions:

1. All the file information required by FCS to open the file is
not present in the dataset descriptor. Missing information
is then sought in the default filename block by the .PARSE
routine (see section 4.6.1), which is automatically invoked
as a result of issuing any version of the generalized OPENSx
macro call.

2. A dataset descriptor has not been <created in the user
program.

3. A dataset descriptor is present in the user program, but the
address of this structure has not been made available to FCS
through any of the assembly-time or run-time macro calls
which initialize DB offset location F.DSPT.

PREPARING FOR I/O

The following coding illustrates the general method of specifying the
NMBLKS macro call:

FDBOUT: FDBDFS ;ALLOCATES SPACE FOR AN FDB.
FDATSA R.VAR,FD.CR ; INITIALIZES FILE ATTRIBUTE SECTION.
FDRC$A ,RECBUF,80. ;INITIALIZES RECORD ACCESS SECTION.
FDOP$SA OUTLUN,,OFNAM ;INITIALIZES FILE OPEN SECTION.

FDBIN: FDBDFS$;ALLOCATES SPACE FOR AN FDB.
FDRC$SA ,RECBUF,80. ; INITIALIZES RECORD ATTRIBUTE SECTION.
FDOP$A INLUN,,IFNAM ; INITIALIZES FILE OPEN SECTION.

OFNAM: NMBLK$ OUTPUT,DAT ;ESTABLISHES FILENAME AND FILE TYPE.

IFNAM: NMBLKS$ INPUT,DAT,,DT,1 ;ESTABLISHES FILENAME. FILE TYPE,
;DEVICE NAME, AND UNIT NUMBER.

The first NMBLKS$ macro call in the coding sequence above creates a
default filename block to establish default information for the FDB
named "FDBOUT". The label "OFNAM" in this macro defines the beginning
address of the default filename block allocated within the user
program. Note that this symbol is specified as the dfnb parameter in
the FDOP$SA macro call associated with this default filename block to
initialize the file-open section of the corresponding FDB. The
accompanying parameters in the first NMBLKS$ macro call define the
file 1ame and the file type, respectively, of the file to be opened;
all remaining parameter fields in this call are null.

The second NMBLKS macrce call accomplishes essentially the same
operations 1in connection with the FDB named "FDBIN". Note in this
macro call that the third parameter (the file version number) is null,
as reflected by the extra comma. This null specification indicates
that the latest version of the file is desired. All other parameter
fields contain explicit declarations defining default information for
the applicable FDB.

The offsets for a filename block can be defined locally in the user
program, if desired, by issuing the following macro call:

NBOFSL

This macro call does not generate any code. Its function is merely to
define the filename block offsets 1locally, presumably to conserv
symbol table space at task-build time. The NBOFS$SL macro call need not
be issued if the FDOFSL macro call has been invoked, since the
filename block offsets are defined locally as an automatic result of
issuing the FDOFS$L macro call.

2-39

PREPARING FOR I/O

If desired, the user may initialize fields in the default filename
block directly with appropriate values. This may be accomplished with
in-line statements in the program. For example, a specific offset in
the default filename block may be initialized through coding that is
logically equivalent to the following:

DFNB: NMBLK$ RSXLIB,0BJ

NUTYP: .RAD50 /DAT/

MOV NUTYP,DFNB+N.FTYP

where the symbol "NUTYP" in the MOV instruction above represents the
address of the newly-defined Radix-50 file type "DAT" which is to be
moved into destination offset N.FTYP of the default filename block
labeled "DFNB". Any of the offsets within the default filename block
may be manually initialized in this manner to establish desired values
or to override previously-initialized values.

2.4.3 Dynamic Processing of File Specifications

For users who wish to make use of a cecllection of routines available
from the system object library (SY:[1,1]SYSLIB.OLB) for processing
command 1line input dynamically, Chapter 6 should be consulted.
Chapter 6 describes the Get Command Line Routine (GCML) and the
Command String Interpreter (CSI), both of which may be linked with the
user program to provide all the 1logical capabilities required in
processing dynamic terminal input or indirect command file input.

PREPARING FOR I/0

2.5 OPTIMIZING FILE ACCESS

When certain information is present in the filename block of an FDB, a
file can be opened in a manner referred to throughout this manual as
"opening a file by file ID". This type of open requires a minimum of
system overhead, resulting in a significant increase in the speed of
preparing a file for access by the user program. If files are
frequently opened and closed during program execution, opening files
by file ID accomplishes substantial savings in overall execution time.

To open a file by file 1ID, the minimum information that must be
present in the filename block of the associated FDB consists of the
following:

1. File Identification Field. This 3-word field, beginning at
filename block offset location N.FID, contains a file number
in the first word and a file sequence number in the second
word; the third word is reserved for the implementation of
multi-volume/multi-header files. The file identification
field 1is maintained by the system and ordinarily need not be
of concern to the user.

2. Device Name Field. This 1-word field at filename block
offset location N.DVNM contains the 2-character ASCII name of
the device on which the volume containing the desired file is
mounted.

3. Unit Number Field. This 1l-word field at filename block
offset location N.UNIT contains a binary value identifying
the particular unit (among several like units) on which the
volume containing the desired file is mounted.

These three fields are written into the filename block -in either of
two ways:

1. As a function of 1issuing any version of the generalized
OPENSx macro <call for a file associated with the FDB in
question; or

2. As a result of initializing the filename block manually using
the .PARSE routine (see section 4.6.1) and the .FIND routine
{see section 4.7.1).
These two methods of setting up the filename block in anticipation of
opening a file by file ID are described in detail in the following
sections.

2-41

PREPARING FOR I/0

2.5.1 1Initializing the Filename Block as a Function of OPENS$x

To understand how the process of opening a file by file 1ID is
effected, it should be noted that the initial issuance of the
generalized OPENS$x macro call (see section 3.1) for a given file first
invokes the .PARSE routine (see section 4.6.1). The .PARSE routine is
automatically linked into the user program along with the code for
OPENS$x. This routine first zeros the filename block and then fills it
in with information taken from the dataset descriptor and/or the
default filename block.

Thus, issuing the generalized OPENS$Sx macro call results 1in the
invocation of the .PARSE routine each time a file is opened. The
.PARSE function, however, can be bypassed altogether in subsequent
OPEN$x <calls by saving and restoring the filename block before
attempting to re-open that same file.

This is made possible because of the logic of the OPEN$x macro call.
Specifically, after the initial OPENS$x for a file has been completed,
the necessary context for re-opening that file exists within the
filename block. Therefore, before closing that file, the entire
filename block can be copied into user memory space and later restored
to the FDB at the desired point in program flow for use in re-opening
that same file.

The option to re-open files in this manner stems from the fact that
FCS 1is 'sensitive to the presence of any non-zero value in the first
word of the file identification field of the filename block. When the
OPEN$x function 1is invoked, FCS first examines offset location N.FID
of the filename block. If the first word of this field contains a
value other than =zero (0), FCS logically assumes that the remaining
context necessary for opening that file is present in the filename
block and, therefore, unconditionally opens that file by file ID.

To ensure that an undesired value does not remain in the first word of
the N.FID field from a previous OPENSx/CLOSES$ sequence, the first word
of this field is zeroed as the file is closed.

In opening files by file ID, the user need only ensure that the manual
saving and restoring of the filename block are accomplished with
in-line MOV instructions that are consistent with the desired segquence
of processing files. This process should, in general, proceed as
outlined below:

1. Open the file in the usual manner by issuing the OPEN$x macro
call.

2. Save the filename block by copying it into user memory space
with appropriate MOV instructions. The filename block begins
at offset location F.FNB.

The value of the symbol S.FNB is the size of the filename
block in bytes, and the value of the symbol S.FNBW is the
size of the filename block in words. If desired, the NBOFSL
macro call (see section 2.4.2) may be invoked in the user
program to define these symbols locally. These symbolic
values may be wused 1in appropriate MOV instructions to
accomplish the saving and restoring of the filename block.
It is the user's responsibility to reserve sufficient space
in the program for saving the filename block.

PREPARING FOR I/C

3. At the end of current file operations, close the file in the
usual manner by issuing the CLOSE$ macro call.

4. When, in the normal flow of program logic, that same file is
about to be re-opened, restore the filename block to the FDB
by doing the reverse of Step 2.

5. Re-open the file by 1issuing any one of the macro calls
available in FCS for opening an existing file. Since the
first word of offset location N.FID of the filename block now
contains a non-zero value, FCS unconditionally opens the file
by file ID, regardless of the specific type of open macro
call issued.

Although it is necessary to save only the file identification, device
name, and unit number fields of the filename block in anticipation of
re-opening a file by file ID, the user is advised to save the entire
filename block. The filename, file type, file version number, and
directory ID fields, etc., may also be relevant. For example, an
OPENS$x, save, CLOSES, restore, OPENSx, and DELETS sequence would
require saving and restoring the entire filename block. When the user
is logically finished with file processing and he wants to delete the
file, the delete operation will not work properly unless the entire
filename block has been saved and restored.

2,5.2 Initializing the Filename Block Manually

In addition to saving and restoring the filename block in anticipation
of re-opening a file by file 1ID, the filename block can also be
initialized manually. If the user chooses to do so, the .PARSE and
.FIND routines (see sections 4.6.1 and 4.7.1, respectively) may be
invoked at appropriate points to build the required fields of the
filename block. After the .PARSE and .FIND logic is completed, all
the information required for opening the file exists within the
filename block. When any one of the available FCS macro calls that
open existing files is then issued, FCS unconditionally opens that
file by file ID.

Occasionally, instances arise which make such manual operations
desirable, especially if the user program is operating in an overlaid
environment. In this case, it is highly desirable that the code for
opening a file be broken up into smaller segments in the interest of
conserving memory space. Since the body of code for the OPENS$x and
.PARSE functions 1is sizable, two other types of macro calls for
opening files are provided for use with overlaid programs. The OFIDS
and OFNBS$ macro calls (see sections 3.5 and 3.6, respectively) are
specifically designed for this purpose.

The structure recommended for an overlaid environment is to have
either the OFIDS$ or the OFNBS code on one branch c¢f the overlay and
the .PARSE and .FIND code on another branch. Then, if the user wishes
to open a file by file 1ID, the .PARSE and .FIND routines can be
invoked at will to insert required information in the filename block
before opening the file.

The OFIDS$ macro call can be issued only in connection with an existing
file. The OFNBS$ macro <call, on the other hand, may be used for
opening either an existing file or for «c¢reating and opening a new
file. In addition, the OFNBS$ macro call requires only the manual

2-43

PREPARING FOR I/0

invocation of the .PARSE routine to build the filename block before
opening the file.

If conservation of memory is an objective, and 1if the user program
will be opening both new and existing files, it is recommended that
only the OFNB$ routine be included in one branch of the overlay, since
including the OFIDS$ routine would needlessly consume memory space.

In all cases, however, it is important to note that all the macro
calls for opening existing files are sensitive to the presence of any
non-zero value in the first word (N.FID) of the filename block. If
this field contains any value other than =zero (0), the file is
unconditionally opened by file ID. This does not imply, however, that
only the file identification field (N.FID) is required to open the
file in this manner. The device name field (N.DVNM) and the unit
number field (N.UNIT) must also be appropriately initialized. The
logic of the FCS macro calls for opening existing files assumes that
these other required fields are present in the filename block if the
file identification field contains a non-zero value.

Because many programs continually re-use FDB's, the CLOSES$ function
(see section 3.8) zeros the file identification field (N.FID) of the
filename block. This action prevents the field (which pertains to a
previous operation) from being used mistakenly to open a file for a
current operation. Thus, if a user later intends to open a file by
file 1ID using information presently in the filename block, the entire
filename block (not just N.FID) must be saved before closing the file.
Then, at the appropriate point in program flow, the filename block may
be restored to open the desired file by file ID.

PREPARING FOR I/O

2.6 INITIALIZING THE FILE STORAGE REGION

The file storage region (FSR) is an area allocated in the user program
as a buffer pool to accommodate the program's block buffer
requirements in performing record I/0 (GET$ and PUTS) operations.
Although the FSR 1is not applicable to block I/0 (READS and WRITES)
operations, the FSRSZ$ macro must be issued once in every program that
uses FCS, regardless of the type of I/O to be performed.

The macro calls associated with the initialization of the FSR are
described below.

2.6.1 FSRSZ$ - Initialize FSR at Assembly-Time

The size of the FSR, as allocated in user memory space, is a function
of two variablies:

1. The number of files that may be open simultaneously for
record I1/0 operations; and

2. The combined sizes of the respective block buffers to be used
for such operations.

The MACRO-11 programmer establishes the size of the FSR at
assembly-time by issuing a macro call having the following format:

FSRSzS files,bufsiz

where: files represents a numeric value that is interpreted by
FCS according to the following conventions:

1. When a non-zero value |is specified, it
establishes the maximum number of files that
can be open simultaneously for record 1I/O
processing.

2. When zero (0) is specified, it constitutes an
implicit declaration that no record 1I/0
processing is to be done. Rather, it
indicates that an unspecified number of files
may be open simultaneously for block I/0
processing.

For example, if the user intends to access three
files for block I/O and two files for record 1/0,
the FSRSZ$ macro call is specified as follows:

FSRSZ$ 2

PREPARING FOR I/O

On the other hand, if the user intends to access
three (or any number of) files for block I/0
operations and no files for record I/O operations,
the FSRSZ$ macro call takes zero (0) as an
argument, as shown below:

FSRSZ$ O

Thus, the FSRSZ$ macro call must be issued once in
every program that uses FCS, regardless of the
type of I/0 to be performed.

bufsiz represents a numeric value defining the total
block buffer pool requirement (in bytes) when all
files are open simultaneously for record 1I/0
processing. The combined size of all the FSR
block buffers 1is calculated as described in
section 2.7.1. If this parameter is not
specified, FCS assumes a default size of 512(10)
bytes per block buffer required.

NOTE

An IAS or RSX-11D user must not allocate
an FSR block buffer less than 512(10)
bytes in length for spooled output to a
record-oriented device (such as a line
printer).

The FSRSZ$ macro call does not generate any executable code; it

merely defines and allocates space for the $$FSR1 program section
(i.e., the FSR block buffer pool).

The following statements are illustrative of FSRSZ$ macro calls as
they might appear in a user program:

FSRSZ$ O
FSRSZ$ 2,512.

The first statement declares that block I/0O operations are to be used
in processing files; nothing is implied regarding the number of such
files that may be open simultaneously £for ©processing. The last
statement explicitly declares that two files may be open
simultaneously for record I/0 processing; additionally, a maximum of
512(10) bytes will be available in the FSR for use as buffers for
these files.

PREPARING FOR I/0

2.6.2 FINITS - Initialize FSR at Run-Time

In addition to the FSRSZ$ macro call described in the preceding
section, the FINIT$S macro call must also be issued in a MACRO-11
program to call initialization coding to set up the FSR. This macro
call takes the following format:

label: FINITS

where: label represents an optional user-specified symbol that
allows control to be transferred to this location
during program execution. Other instructions in
the program may reference this label, as in the
case of a program that has been written so that it
can be restarted. Considerations relative to the
FINITS macro call in such a restartable program
are presented below.

The FINITS macro call should be issued in the program's initialization
code. Although the first FCS call issued for opening a file performs
the FSR initialization implicitly (if it has not already been
accomplished through an explicit invocation of the FINIT$ macro call),
it is necessary, in the case of a program that is written so that it
can be restarted, to issue the FINITS macro call in the program's
initialization code, as shown in the second example below. This
requirement derives from the fact that such a program performs all its
initialization at run-time, rather than at assembly-time. .

For example, a program that is not written so that it can be restarted
might accomplish the initialization of the FSR implicitly through the
following macro call:

START: OPENSR #FDBIN ; IMPLICITLY INITIALIZES THE FSR

;AND OPENS THE FILE.

In this case, although transparent to the user, the OPENSR macro call
automatically invokes the FINITS operation. The label "START" is the
transfer address of the program.

In contrast, a program that embodies the capability to be restarted
must issue the FINITS$ macro call explicitly at program initialization
in the manner shown below:

START: FINITS ;EXPLICITLY INITIALIZES THE FSR AND
OPENSR #FDBIN ;OPENS THE FILE.

In this case, the FINITS macro call <cannot be invoked arbitrarily
elsewhere in the program; it must be issued at ©program
initialization. Doing so forces the appropriate re-initialization of
the FSR, whether or not it has been done in a previous execution of
the program through an OPENS$x macro call.

Also important in the above context is the fact that calling any of
the file-control routines described in Chapter 4, such as .PARSE,
first requires the initialization of the FSR. However, the FINITS
operation must be performed only once per program execution. Note
also that FORTRAN programs issue a FINITS macro call at the beginning
of the program execution; therefore, MACRO-11 routines used with the
FORTRAN object time system must not issue a FINITS macro call.

PREPARING FOR I/O

2.7 INCREASING THE SIZE OF THE FILE STORAGE REGION

Procedures for increasing the size of the FSR for either MACRO-11 or
FORTRAN programs are presented in the following sections.

2.7.1 FSR Extension Procedures for MACRO-11l Programs

To increase the size of the FSR for a MACRO~1ll program, the user has
two options:

1. Modify the parameters in the FSRSZ$ macro call appropriately
to redefine the number of files that may be open
simultaneously for record I/O processing and to establish the
total buffer pool requirement for these files. Re-assemble
the program.

2. Use the EXTSCT (extend program section) command at task-build
time to define the new size of the FSR. To invoke this
option, the command is specified in the following form:

EXTSCT = $$FSRl:length

where "SFSR1" is the symbolic name of the program section
within the FSR that is reserved for use as the block buffer
pool, and "length" represents a numeric value defining the
total required size of the buffer pool in bytes.

The size of the FSR cannot be reduced at task-build time.
In calculating the total size of the block buffer pool, 1i.e., the
value of "length" in the EXTSCT command above, either of the formulas
below may be used:
FSR size = S.BFHD*files+bufsiz
FSR size = files*(S.BFHD+512.)
where: S.BFHD is a symbol which defines the number of bytes
required for each block buffer header. If
desired, this symbol may be defined locally in the
user program by issuing the following macro call:
BDOFF$ DEFS$L
files represents a numeric value defining the maximum

number of files that may be open simultaneously
for record I/0 processing.

bufsiz represents a numeric value defining the total
number of bytes required for all the FSR block
buffers.

The EXTSCT command is described in further detail in the Task Builder
Reference Manual of the host operating system.

PREPARING FOR I/O

2.7.2 FSR Extension Procedures for FORTRAN Programs

For a FORTRAN program, if an explicit ACTFIL statement is not issued
in the optional keyword input to the Task Builder, an ACTFIL statement
with a default value of four (4) 1is generated automatically during
task-build. To extend the size of the FSR at task-build time, the
user may issue the following command:

ACTFIL = files

where: files represents a decimal value defining the maximum
number of files that may be open simultaneously
for record I/0O processing.

This command, similar to the EXTSCT command above, causes program
section $$FSR1 to be extended by an amount sufficient to accommodate
the number of active files anticipated for simultaneous use by the
program.

The size of the FSR for a FORTRAN program can also be decreased at
task-build time. As noted above, for either IAS or RSX-11, the
default value for the ACTFIL command is 4. Thus, if 0, 1, 2, or 3 is
specified as the "files" parameter, the size of $$FSR1 (the FSR block
buffer pool) is reduced accordingly.

The ACTFIL command is described in greater detail in the Task Builder
Reference Manual of the host operating system.

PREPARING FOR I/0

2.8 COORDINATING I/O OPERATIONS

In the IAS/RSX-11 environment, user programs perform all I1/0
operations by issuing GETS$/PUT$ and READS/WRITES macro calls (see
Chapter 3). These calls do not access the physical devices 1in the
system directly. Rather, when any one of these calls is issued, an
I/0-related system directive <called QUEUE I/0 is invoked as the
interface between the FCS file-processing routines at the user level
and the system I/0 drivers at the device level. Device drivers are
included for all the standard I/0 devices supported by IAS and RSX-11
systems. Although transparent to the user, the QUEUE I/0 directive is
used for all FCS file access operations.

When invoked, the QUEUE I/0 directive instructs the system to place an
I/0 request for the associated physical device unit into a queue of
priority-ordered requests for that unit. This request 1is placed
according to the priority of the issuing task. As required system
resources become available, the requested I/O transfer takes place.

As implied above, two separate and distinct processes are involved in
accomplishing a specified I/0O transfer:

1. The successful queuing of the GETS$/PUTS$ or READS/WRITE$S I/0
request; and

2. The successful completion of the requested data transfer
operation.

These processes, both of which yield success/failure indications that
may be tested by the user program, must be performed successfully in
order for the specified I/0 operation to have been completed. It is
important to note that FCS totally synchronizes record I/O operations
for the user, even in the case of multiple-buffered operations. In
the case of block I/0 operations, the flexibility of FCS allows the
user to synchronize all block I/0 activities, thus enabling him to
satisfy logical processing dependencies within the program.

2.8.1 Event Flags

I/0 operations proceed concurrently with other system activity. After
an I/0 request has been queued, the system does not force an implied
wait for the issuing task until the requested operation is completed.
Rather, the operation proceeds in parallel with the execution of the
issuing task, and it is the task's responsibility to synchronize the
execution of I/0 requests. Tasks use event flags in synchronizing
these activities. With respect to event flags, the system merely
executes primitive operations that manipulate, test, and/or wait for
these indicators of internal task activity.

The completion of an I/O0 transfer, for example, is recognized by the
system as a significant event. If the user has specified a particular
event flag to be used by the task in coordinating I/O completion
processing, that event flag is set, causing the system to evaluate the
eligibility of other tasks to run. Any event flag from 1 through
32(10) may be defined for local use by the task. If the user has not
specified an event flag, FCS uses event flag 32(10) by default to
signal the completion of I/0O transfers.

PREPARING FOR I/O

Specific FDB-initialization and I/O-initiating macro calls in FCS
enable the user to specify event flags, if desired, that are unique to
his task and which are set and reset only as a result of that task's
operation.

For record I/O operations, such an event flag may be defined through
the efn parameter of the FDBFSA or the FDBFS$R macro call (see section
2.2.1.6 or 2.2.2, respectively).

For block I/0 operations, an event flag may be declared through the
bkef parameter of the FDBKSA or the FDBKSR macro call (see section
2.2.1.4 or 2.2.2, respectively); alternatively, a block event flag
may be declared through the corresponding parameter of the
I/0-initiating READS$ or WRITES$ macro call (see section 3.15 or 3.16,
respectively).

In both record and block I/O operations, the event flag 1is cleared
when the TI/0 request 1is queued and set when the I/O operation is
completed. In the case of record I/O operations, only FCS manipulates
the event flag. Additionally, the user is unaware of the event flag's
state and he has no need to know. Furthermore, the user must not
issue a WAITFOR system directive predicated on the event flag used for
coordinating record I/0O operations. A record I/O operation, for
example, may not even involve an I/0 transfer; rather, it may only
involve the blocking or deblocking of a record within the FSR block
buffer. On the other hand, the event flag defined for synchronizing
block I/O operations is totally under the user's control.

Through event-associated system directives, the user can clear event
flags, set event flags, test whether a specified event flag is set, or
cause a task to be suspended until a specified event flag 1is set.
These event-associated directives are described 1in detail in the
Executive Reference Manual of the host operating system. The setting
and checking of event flags allow tasks in a real-time system to
communicate with each other and thereby synchronize their execution.

Event flags and device-dependencies related thereto are described in
further detail in the IAS/RSX-11D Device Handlers Reference Manual or
the RSX-11M I/O Drivers Reference Manual.

Also, a code indicating the success or failure of the QUEUE 1I/O
request resulting from the READS/WRITES macro call is returned to the
Directive Status Word ($DSW). If desired, symbolic location $DSW may
be tested to determine the status of the I/0O request. The
success/failure codes for the QUEUE I/0 directive are 1listed in the
manuals referenced above.

2.8.2 I/0 Status Block

Because of the comparative complexity of block I/O operations, an
optional parameter is provided 1in the FDBKS$SA and the FDBKSR macro
calls, as well as the READS$S and WRITES macro calls, which enables the
system to return status information to the user task for block I/0O
operations. The I/O status block is not applicable to record 1I/O
(GETS or PUTS) operations.

This optional parameter, called the I/0O status block address, is made
available to FCS through any of the macro calls identified above.

PREPARING FOR I/O

When this parameter is supplied, the system returns status information
to a 2-word block reserved in the user program. Although the I/O
status block is used principally as a QUEUE I/O housekeeping mechanism
for containing certain device-dependent information, this area also
contains information of particular interest to the user.

Specifically, the second word of the I/0 status block is filled in
with the number of bytes transferred during a READ$ or WRITES
operation. When performing READS$ operations, it is good practice to
always wuse the value returned to the second word of the I/0 status
block as the number of bytes actually read, rather than assuming that
the requested number of bytes was transferred. Employing this
technique allows the program to properly read virtual blocks of
varying length from a device such as a magnetic tape unit, provided
that the requested byte count is at least as 1large as the 1largest
virtual block. (For magnetic tape units, almost all virtual blocks
are 512(10) bytes or less in length.) For WRITES$ operations, the
specified number of bytes are always transferred, otherwise an error
condition exists.

Also, the low-order byte of the first word of the 1I/0O status block
contains a code which reflects the final status of the READS/WRITES
operation. The codes returned to this byte may be tested to determine
the status of any given block I/0 transfer. The binary values of
these status codes always have the following significance:

Code Value Meaning
+ I/0 transfer completed.
0 I/0 transfer still pending.

- I/0 error condition exists.

The format of the I/O status block and the error codes returned to the
low-order byte of its first word are described in detail in the
IAS/RSX-11D Device Handlers Reference Manual or the RSX-11M I/0
Drivers Reference Manual.

If the address of the I/0 status block is not made available to FCS
(and hence to the QUEUE I/0 directive) through any of the macro calls
noted above, no status information 1is returned to the 1I/0 status
block. In this <case, the fact that an error condition may have
occurred during a READ$ or WRITES$ operation 1is simply 1lost. Thus,
supplying the address of the I/0 status block to the associated FDB is
highly desirable in order to facilitate normal error reporting.

An I/O status block may be defined in the user program at
assembly-time through any storage directive logically equivalent to
the following:

IOSTAT: .BLKW 2

where the label "IOSTAT" is a user-defined symbol naming the 1I/O
status block and defining its address. This symbolic value is
specified as the bkst parameter in the FDBKS$A or the FDBKSR macro call
to initialize FDB offset location F.BKST; it may also be specified as
the corresponding parameter in the READ$ or the WRITES macro call,
initializing this «cell in the FDB as an integral function of issuing
the desired I/O request.

PREPARING FOR I/OC

2.8.3 AST Service Routine

An asynchronous system trap (AST) is a software-generated interrupt
that causes the sequence of instructions currently being executed to
be interrupted and control to be transferred to another instruction
sequence elsewhere in the program. If desired, the user may specify
the address of an AST service routine that is to be entered upon
completion of a block I/O transfer. Since an AST is a trap action, it
constitutes an automatic indication of block I/0 completion.

The address of an AST service routine may be specified as an optional
parameter (bkdn) in the FDBKSA or the FDBKS$R macro call (see section
2.2.1.4 or 2.2.2, respectively); this parameter may also be specified
in the READ$ or the WRITES macro call, initializing the FDB at the
time the I/0 request 1is 1issued (see section 3.15 or 3.16,
respectively).

Usually, an AST address is specified to enable a running task to be
interrupted in order to execute special code upon completion of a
block I/0 request. If the address of an AST service routine is not
specified, the transfer of control does not occur, and normal task
execution continues.

The main purpose of an AST service routine is to inform the user
program that a block I/O operation has been completed, thus enabling
the program to continue immediately with some other desired (and
perhaps logically dependent) operation (e.g., another I/O transfer).

If an AST service routine is not provided by the wuser, some other
mechanism, such as event flags or the I/0 status block, must be used
as a means of determining block I/O completion. In the absence of
such a routine, for example, the user may test the low-order byte of
the first word in the I/O status block to determine if the block 1I/0
transfer has been completed. A WAITS$ macro call (see section 3.18)
may also be issued in connection with a READS or WRITES operation to
suspend task execution until a specified event flag is set to indicate
the completion of block I/O.

The implementation of an AST service routine in the wuser program is
application-dependent and must be coded specifically to meet
particular user I/0O processing requirements. A detailed discussion of
asynchronous system traps is beyond the scope of this document. The
reader is therefore referred to the Executive Reference Manual of the
host operating system for discussions of various trap-associated
system directives.

CHAPTER 3

FILE-PROCESSING MACRO CALLS

The user manipulates files through a set of file-processing macro

calls. These macro calls are invoked and expanded at assembly-time.

The resulting code is then executed at run-time to perform the

operations listed below:

OPENS - To open and prepare a file for processing;

OPNSS - To open and prepare a file for processing and to allow
shared access to that file (depending on the mode of
access);

OPNTS - To create and open a temporary file for processing;

OFID$ - To open an existing file wusing file identification

information in the filename block;

OFNBS - To open a file wusing filename information in the
filename block;

CLOSES - To terminate file processing in an orderly manner;

GETS - To read logical data records from a file;

GETSR - To read fixed-length records from a file in random
mode;

GETSS - To read reccrds from a file in sequential mode;

PUTS - To write logical data records to a file;

PUTSR - To write fixed-length records to a file in random mode;

PUTSS - To write records to a file in sequential mode;

READS - To read virtual data blocks from a file;

WRITES - To write virtual data blocks to a file;

DELET$ - To remove a named file from the associated volume
directory and to deallocate the space occupied by the
file; and

WAITS - To suspend program execution until a requested block

I/0 operation is completed.

FILE-PROCESSING MACRO CALLS

Most of the parameters associated with the file-processing macro calls
supply information to the FDB. Such parameters cause MOV or MOVB
instructions to be generated in the object code, resulting in the
initialization of specific locations within the FDB.

The final parameter in all file-processing macro calls is the symbolic
address of a user-coded error-handling routine. This routine is
entered upon detection of an error condition during the
file-processing operation. When this optional parameter is specified,
the following code is generated:

Code for macro

BCC nn$;s TESTS C~BIT IN PROCESSOR STATUS WORD.
JSR PC,ERRLOC ; INITIATES ERROR-HANDLING ROUTINE
;AT "ERRLOC" ADDRESS.
nns: ;CONTINUES NORMAL PROGRAM EXECUTION.
where "nn$" represents an automatically-generated 1local symbol. If

the operation 1is completed successfully, the C-bit (carry condition
code) in the Processor Status Word is not set, and FDB offset location
F.ERR contains a positive value. The BCC instruction then results in
a branch to the local symbol "nn$" and the continuation of normal
program execution.

If, however, an error condition is detected during the execution of
the file-processing routine, the C-bit in the Processor Status Word is
set, FDB offset location F.ERR contains a negative value (indicating
an error condition), and the branch to the local symbol "nn$" does not
occur. Instead, the JSR instruction is executed, loading the PC with
the symbolic address (ERRLOC) of the error-handling routine and
initiating its execution.

If this optional parameter is not specified, the error processing
routine 1is not called, and the user must explicitly test the C-bit in
the Processor Status Word to ascertain the status of the requested
operation.

Note that the execution of the FCS file-processing routines causes all
user program general registers to be saved, except RO, which, by
convention, is used by FCS to contain the address of the FDB
associated with the file being processed.

3.1 OPEN$x - GENERALIZED OPEN MACRO CALL

Before any file can be processed by the user (or system) program, it
must first be opened. The type of action that the user intends to
perform on a file 1is indicated to FCS by an alphabetic suffix
accompanying the macro name. For example, in issuing the generalized
macro call,

OPENSX

"x" represents any one of the following alphabetic suffixes, each of
which denotes a specific type of processing anticipated for the file:

FILE-PROCESSING MACRO CALLS

R - Read an existing file;

W - Write (create) a new file;

M -~ Modify an existing file without changing its length;

U - Update an existing file and extend its length, if necessary;
or

A - Append (add) data to the end of an existing file.

NOTE

The generalized OPEN$x macro call can be
issued without an alphabetic suffix. 1In
this case, the type of action to be
on the file is indicated to

L A

performed

FCS through an additional parameter in
the macro call. This value, called the
file-access (facc) parameter, causes
offset location F.FACC in the associated
FDB to be initialized. Section 3.7
describes this macro call in detail.

Depending on the alphabetic suffix supplied in the OPEN$x macro call,
certain other types of operations may or may not be allowed, as noted
below:

1. If R is specified (for reading an existing file), that file
cannot also be written, i.e., a PUTS$ or WRITES$ operation
cannot be performed on that file.

2. If Mor U is specified (for modifying or updating an existing
file), that file can be both read and written, i.e.,
concurrent GET$/PUTS or READS/WRITES operations may be
performed on that file.

3. If M is specified (for modifying an existing file), that file
cannot be extended.

4. If Wor A is specified (for creating a new file or appending
data to an existing file), that file may be read, written,
and/or extended. '

The program that 1is 1issuing the OPENSx macro call must have
appropriate access privileges for the action specified. Table 3-1
summarizes the access privileges for the various forms of the OPENS$x
macro call. This table also shows where the next record or block will
be read or written in the file after it is opened.

FILE-PROCESSING MACRO CALLS

Table 3-1

File Access Privileges Resulting from OPENS$x Macro Call
MACRO ACCESS PRIVILEGES POSITION OF FILE AFTER OPENSx
OPENSR Read First record of existing file.
OPENSW Read, write, extend First record of new file.
OPENSM Read, write First record of existing file.
OPENSU Read, write, extend First record of existing file.
OPENSA Read, write, extend End of existing file. (For

special PUTS$R considerations,
. see section 3.13.)

When any form of the OPENSx macro call is issued, FCS first fills in
the filename block with filename information retrieved from the
dataset descriptor (see section 2.4.1). FCS gains access to this data

structure through the address value stored in FDB offset location
F.DSPT.

If any required data has been omitted from the dataset descriptor, FCS
attempts to obtain the missing information from the default filename
block. This data structure, which may also contain user-specified
filename information, is created in the program by issuing the NMBLKS$
macro call (see section 2.4.2). FCS gains access to this structure
through the address value stored in FDB offset location F.DFNB.

The address values in offset locations F.DSPT and F.DFNB may be
supplied to FCS through the FDOP$A macro call, the FDOPS$R macro call,
or the OPENS$x macro call. FCS requires access to the dataset
descriptor and/or the default filename block in retrieving filename
information used in opening files.

If a new file is to be created, the OPENSW macro call is issued. FCS
then performs the following operations:

1. Creates a new file and obtains file identification
information for the file. File identification information is
maintained by FCS in offset location N.FID of the filename
block. The filename block in the FDB begins at offset
location F.FNB.

2. Initializes the file attribute section of the file header
block using information obtained from the FDB associated with
the file being created. Each file on a volume has an
associated file header block that describes the attributes of
that file. The format and content of the file header block
are presented in detail in Appendix F.

3. Places an entry for the file in the wuser file directory
(UFD) . If, however, an entry for a file having the same
name, type, and version number already exists in the UFD, the
old file 1is deleted. 1If a particular type of macro call is
issued explicitly specifying that the file not be superseded,
the old file is not deleted. This type of OPENS$ operation is
described in section 3.7.

3-4

4. Associates the assigned logical unit number (LUN) with the
file to be created.

5. Allocates a buffer for the file from the FSR block buffer
pool 1if record I/0 (GETS$/PUTS$) operations are to be used in
processing the file.

If an existing file is to be opened, any one of the following macro
calls may be issued: OPENSR, OPENSM, OPENS$SU, or OPENSA. FCS then
performs the following operations:

1. 1If file identification information 1is not present in the
filename block, FCS constructs the filename block from
information taken from the dataset descriptor and/or the
default filename block. FCS then searches the user file
directory (UFD) by filename to obtain the required file
identification information. When found, this information is

stored in the filename block, begin at offset 1location
N.FID.

2. Associates the assigned logical unit number (LUN) with the
file.

3. Reads the file header block and 1initializes the file
attribute section of the FDB associated with the file being
opened.

4, Allocates a buffer for the file from the FSR block buffer
pool if record I/0 (GETS/PUTS) operations are to be used in
processing the file.

NOTE

As described in section 2.6, the user
allocates buffers through the FSRSZ$
macro call. The number of buffers
allocated 1is dependent upon the number
of files that the user intends to open
simultaneously for record I/0
operations.

If block I/0 coperations are 4,
FDB offset 1location F.RACC must be
initialized with the FD.RWM parameter
via the FDRC$A, the FDRCSR, or the
generalized OPENS$x macro call. This
parameter inhibits the allocation of a
buffer when the file is opened.

+n he need
cC O¢E Se

3.1.1 Format of Generalized OPENS$x Macro Call

The generalized macro call for opening files takes the following form:
OPENS$x fdb,lun,dspt,racc,urba,urbs,err

where: X represents the alphabetic suffix specified as part
of the macro name, indicating the desired type of
operation to be performed on the file. The
possible values for this parameter are: R, W, M,
U, or A (see section 3.1).

fdb

lun

dspt

racc

FILE-PROCESSING MACRO CALLS

represents the symbolic address of the associated
FDB.

represents the logical unit number (LUN)
associated with the desired file. This parameter
identifies the device on which the volume
containing the desired file is mounted. Normally,
the logical unit number associated with the file
is specified through the corresponding parameter
of the FDOPSA or the FDOP$SR macro call. If so
specified, the 1lun parameter need not be present
in the OPENSx macro call. Each FDB must have a
unique LUN.

represents the symbolic address of the dataset
descriptor. Normally, this address value is
specified through the corresponding parameter of
the FDOPSA or the FDOPSR macro call. If so
specified, this parameter need not be present in
the OPENS$x macro call.

This parameter specifies the address of the
manually-created dataset descriptor (see section
2.4.1). 1If the Command String Interpreter (CSI)
is being used to interpret command lines
dynamically, this parameter is used to specify the
address of the dataset descriptor within the CSI
control block (see offset location C.DSDS in
section 6.2.2).

represents the record access byte. One or more
symbolic values may be specified in this field to
initialize the record access byte (F.RACC) in the
assocated FDB. Any combination of the following
parameters may be specified:

FD.RWM - Indicates that block I/0O (READS/WRITES)
operations are to be used in processing the file.
If this parameter is not specified, FCS assumes by
default that record I/0 (GETS/PUTS$) operations are
to be used in processing the file.

FD.RAN - Indicates that random access to the file
is to be used for record I/0 (GETS/PUTS)
operations. If this parameter is not specified,
FCS uses sequential access by default.

FD.PLC - Indicates that locate mode (see section
1.6.2) 1is to be used for record I/0 (GETS$/PUTS)
operations. If this parameter is not specified,
FCS uses move mode (see section 1.6.1) by default.

FD.INS - Indicates that a PUTS operation in
sequential mode in the body of a file shall not
truncate the file. Effectively, this parameter
prevents the 1logical end of the file from being
reset to a point just beyond the inserted record.
If this parameter is not specified, a PUTS
operation in sequential mode truncates the file to
a point just beyond the inserted record, but no
deallocation of file blocks occurs.

FILE-PROCESSING MACRO CALLS

The specification of this parameter allows a data
record 1in the body of the file to be overwritten.
Care must be exercised, however, to ensure that
the record being written is the same length as the

If the FD.RAN parameter above 1is specified, the
file 1is accessed in random mode. In this case, a
PUTS operation in the file, without exception,
does not truncate the file.

If the record access byte in the FDB has already
been initialized through the corresponding
parameters of the FDRCSA or the FDRCSR macro call,
the racc parameters need not be present in the
OPENS$x macro call.

urba represents the symbolic address of the user record
buffer. This parameter initializes FDB offset

location F.URBD+2.

If the user record buffer address has already been
supplied to the FDB through the corresponding
parameter of the FDRCSA or the FDRCSR macro call,
this parameter need not be present in the OPENS$x
macro call.

urbs represents a numeric value defining the size of
the user record buffer (in bytes). This parameter
initializes FDB offset location F.URBD.
If the size of the user record buffer has already
been supplied to the FDB through the corresponding
parameter of the FDRCS$SA or the FDRCSR macro call,
this parameter need not be present in the OPENS$x
macro call.

err represents the symbolic address of an optional
user-coded error-handling routine.

Specific FDB requirements for record I/0 operations (GET$ and PUTS
macro calls) are detailed in sections 3.9%9.2 and 3.12.2.

The following examples depict representative uses of the OPENS$Sx macro
call.

A macro call to open and modify an existing file, for example, might
take the following form:

OPEN$M RO, #INLUN,,#FD.RAN!FD.PLC

Note in this macro call that the FDB address is assumed to be present
in RO. The third parameter, i.e., the dataset descriptor pointer, is
not specified; this null specification (indicated by the extra comma)
assumes that FDB offset location F.DSPT (if required) has already been
initialized. The last parameter, consisting of two values separated
by an exclamation point, establishes random access and locate modes
for GET$/PUTS$ operations.

FILE-PROCESSING MACRO CALLS

The following macro call might be issued to update an existing file:
OPENSU RO, #INLUN,,,#RECBUF, $#80.

This macro call also assumes that the FDB address is in R0O. Note also
that the dspt and racc parameter fields are null, based on the premise
that the dataset descriptor pointer (F.DSPT) has been provided
previously to the FDB and that the record access byte (F.RACC) has
also been previously initialized. Finally, the last two parameters
establish the address and the size of the user record buffer,
respectively.

This last example shows a macro call that might be 1issued to allow
data to be appended to the end of a file:

OPENSA #OUTFDB

This macro call specifies the address of an FDB as the only parameter.
In this case, it is assumed that all other parameters required by FCS
in opening and operating on the file have been previously supplied to
the FDB through the appropriate assembly-time or run-time macro calls.

Note in all three examples above that the error parameter is not
specified, requiring that the user explicitly test the C-bit in the
Processor Status Word to ascertain the success of the specified
operation.

3.1.2 FDB Requirements for Generalized OPENS$x Macro Call

The information required for opening a file may be supplied to the FDB
through the following macro calls:

1. The assembly-time macro calls described in section 2.2.1.
2. The NMBLKS$ macro call described in section 2.4.2.
3. The run-time macro calls described in section 2.2.2.

4. The various macro calls described in this chapter for opening
files.

The particular combination of macro calls used to define and
initialize the FDB is a matter of choice, as indicated above. Of far
greater significance is the fact that certain information must be
present in the FDB before the associated file can be opened. In this
regard, the following rules apply for creating and opening new files,
for opening existing files, and for specifying desired file options:

l. To Create a New File. If a new file is to be created through
the OPENSW macro call, the following information must first
be supplied to the FDB. This information may be specified
through the FDAT$A macro call (see section 2.2.1.2) or the
FDATS$R macro call (see section 2.2.2):

a. The record type must be established for record 1I/0
operations. To accomplish this, byte offset location
F.RTYP must be initialized with either of the following
symbolic values:

3-8

FILE-PROCESSING MACRO CALLS

R.FIX - Indicates that fixed-length records are to be
written into the file.

R.VAR - Indicates that variable-length records are to be
written into the file.

b. The desired record attributes must be specified for
record I/0 operations. The record attributes are defined
by initializing byte offset 1location F.RATT with the
appropriate value(s), as follows:

FD.FTN - Indicates that the first byte of each record is
to contain a FORTRAN carriage-control character.

FD.CR - Indicates that a line-feed (<KLF>) character is to
precede each record and that a carriage-return (<CR>)
character is to follow the record when that record is
output to a device requiring carriage-control information
(e.g., to a terminal). The <LF> and <CR> characters are
not actually embedded within the record. Their presence
is merely implied through the file attribute FD.CR.

FD.BLK - Indicates that records are not allowed to <cross
block boundaries.

c. If fixed-length records are to be written to the file,
the record size (in bytes) must be specified for record
I/0 operations to appropriately initialize FDB offset
location F.RSIZ.

Items a. through c¢. above cannot be supplied to the FDB
through any of the various macros used to create and/or open
files (e.g., OPENSW, OPENSR, etc.). Furthermore, none of the
above information is required when opening an existing file,
since FCS obtains such information from the first 14 bytes of
the wuser file attribute section of the file's header block
(see Appendix F).

To Open Either a New File or an Existing File. Regardless of
whether the file being opened is yet to be created or already
exists, the following information must be present in the FDB
before that file can be opened:

a. The record access byte must be initialized for
record/block I/O operations. The symbolic values below
may be specified in the FDRCS$SA macro call (see section
2.2.1.3), the FDRCSR macro call (see section 2.2.2), or
the generalized OPEN$x macro call to initialize FDB
offset location F.RACC:

FD.RWM - Indicates that READS /WRITES (block 1/0)
operations are to be used in processing the file. If
this parameter is not specified, GETS$/PUTS$ (record I/0)
operations result by default.

FD.RAN - Indicates that random access mode (GETS/PUTS
record I/0) 1is to be used in processing the file. If
this parameter is not specified, sequential access mode
results by default.

FILE-PROCESSING MACRO CALLS

FD.PLC - Indicates that locate mode (GETS/PUTS record
I/0) is to be wused 1in processing the file. If this
parameter is not specified, move mode results by default.

FD.INS - Indicates that a PUT$ operation in sequential
mode in the body of a file shall not truncate the file.
If this parameter is not specified, such an operation
truncates the file. 1In this case, the logical end of the
file is reset to a point just beyond the inserted record,
but no deallocation of file blocks occurs.

b. The user record buffer descriptors, i.e., the urba and
urbs parameters, must be specified for record I/0
operations. To accomplish this, the FDRC$A, the FDRCSR,
or the generalized OPENS$x macro call may be used. The
selected macro call defines the address and the size of
the area reserved in the program for use as a buffer
during record I/0 operations. The urba and urbs
parameters initialize FDB offset locations F.URBD+2 and
F.URBD, respectively.

FDB requirements specific to GETS$ and PUTS$ operations in
move and locate mode are presented in detail in sections
3.9.2 and 3.12.2, respectively.

c. The logical unit number must be specified to initialize
FDB offset location F.LUN. The initialization of this
cell can be accomplished through the lun parameter of the
FDOP$A, the FDOPSR, or the generalized OPENS$x macro call.
Each FDB must have a unique logical unit number.

d. If file identification information is not already present
in the FDB, either the dataset descriptor pointer
(F.DSPT) or the default filename block address (F.DFNB)
must be specified to enable FCS to obtain required
filename information for use in opening the file. These
address values may be specified in either the FDOPSA
macro call (see section 2.1.1.5) or the FDOPS$SR macro call
(see section 2.2.,2). The generalized OPENS$xXx macro call
(see section 3.1) may also be used to specify the dataset
descriptor pointer.

e. If desired, an event flag number for synchronizing record
I/0 operations must be specified to initialize FDB offset
location F.EFN. This optional parameter may be specified
in either the FDBFS$A macro call (see section 2.2.1.6) or
the FDBF$R macro call (see section 2.2.2). If not
specified, FCS wuses event flag number 32(10) by default
in synchronizing all record I/O activity.

Specifying Desired File Options. If certain options are
desired for a given file, they must be specified before that
file is opened. Since this information is needed only in
opening the file, it is zeroed when the file is closed, thus
ensuring that the FDB 1is properly re~initialized for
subsequent use. The options that may be specified for a
given file are described below:

a. The override block size (ovbs parameter) must be
specified in either the FDBFSA or the FDBF$R macro call
to initialize FDB offset location F.OVBS. This parameter

need be specified only if the standard default block size
in effect for the associated device is to be overridden.
The override block size is specified only in connection
with record-oriented devices (such as line printers) and
sequential devices (such as magnetic tape units).

The multiple buffer count (mbct parameter) must be
specified in either the FDBFS$A or the FDBF$R macro call
to initialize FDB offset location F.MBCT. If
multiple-buffered record 1I/0 operations are to be used,
this parameter must be greater than one (1), and it must
agree with the desired number of buffers to be used.
This parameter is not overlaid, nor is it zeroed when the
file is closed.

If the multiple buffer count 1is not established as
described above, multiple buffered operations can still
be invoked by changing the default buffer count in the
FSR. A default buffer count of one (l) is stored in
symbolic location .MBFCT of $$FSR2. This default value
can be altered to reflect the number of buffers intended
for use during record I/0 operations. The procedure for
modifying this cell in $$FSR2 is described at the end of
section 2.2.1.6.

Also, if multiple buffering is to be employed, the
appropriate control flag must be specified as the mbfg
parameter in either the FDBFS$A or the FDBFSR macro call
to appropriately initialize FDB offset location F.MBFG.
Either of two symboiic values may be specified for this
purpose, as follows:

FD.RAH - Indicates that read-ahead operations are to be
used in processing the file.

FD.WBH - Indicates that write-behind operations are to be
used in processing the file.

Offset location F.MBFG need be initialized only if the
standard default buffering assumptions are inappropriate.
When a file is opened for reading (OPENSR), read-ahead
operations are assumed by default; for all other forms
of OPEN$x, write~-behind operations are assumed. It may
be useful, for example, to override the write-behind
default assumption for a file opened through the OPENSM
or the OPENSU macro call when that file is being used
basically for sequential read operations, but scattered
updating is also being performed.

To allocate required file space at the time a file is
created, the c¢ntg parameter must be specified in either
the FDATSA or the FDAT$SR macro call. This parameter
initializes FDB offset location F.CNTG. A positive value
so specified results in the allocation of a contiguous
file having the specified number of blocks; a negative
value, on the other hand, results in the allocation of a
noncontiguous file having the specified number of blocks.

The address of the 5-word statistics block in the user

program must be moved manually into FDB offset location
F.STBK. This address value specifies an area in the user

3-11

FILE-PROCESSING MACRO CALLS

program to which FCS returns certain statistical
information about a file when it 1is opened. If this
parameter is not specified, no return of such information
occurs.

The format and content of the statistics block are
presented in Appendix H. If the user elects to define
such an area in his program, he may do so with coding
logically equivalent to that shown below:

STBLK: .BLKW 5

Offset location F.STBK may then be manually initialized,
as follows:

MOV #STBLK,FDBADR+F.STBK
where "STBLK" is the user-defined symbolic address of the
statistics block, and the destination operand of this

instruction defines the appropriate offset location
within the desired FDB.

3.2 OPNS$x - OPEN FILE FOR SHARED ACCESS

The OPNS$x macro call is issued to open a file for shared access.
This macro call has the same format, i.e., takes the same alphabetic
suffixes and run-time parameters, as the generalized OPEN$xXx macro
call. The shared access conditions which result from the use of this
macro call are summarized in section 1.8.

3.3 OPNTS$SW - CREATE AND OPEN TEMPORARY FILE

The OPNT$W macro call is issued to create and open a temporary file
for some special purpose of limited duration. If a temporary file is
to be used only once, it is best created through the OPNT$D macro call
described in the following section.

The OPNT$W macro call creates a file but does not enter a filename for
that file into any associate user directory file. This macro call
simply enters appropriate file identification information into the
volume's index file and, in addition, maintains the file
identification field (offset location N.FID) in the associated
filename block. The 1index file 1is a file which consists of file
header blocks for user files (see Appendix E).

In using the OPNT$W macro call, the user bears the responsibility for
marking the temporary file for deletion, as described in the procedure
below. Then, after all operations associated with that £file are
completed, closing the file also results in its deallocation. All
space formerly occupied by the file is then returned to the pool of
available storage on the volume for reallocation.

Although the OPNT$W macro call takes the same parameters as the
generalized OPENSx macro call, the former executes faster because no
directory entries are made for a temporary file.

Creating a temporary file is usually done when a program requires a
file only for the duration of its execution (e.g., for use as a work
file). The general sequence of operations in such instances proceeds
as follows:

1. Open a temporary file by issuing the OPNT$SW macro call.
Perform any desired operations on that file. If the file is
to be used only for a single OPNTSW/CLOSE$ sequence, go to
Step 6; otherwise, continue with Step 2.

2., Before closing the file for processing, save the filename
block in the associated FDB. The general procedure for
saving (and restoring) the filename block 1is discussed in
section 2.5.1.

3. Close the file by issuing the CLOSE$ macro call (see section
3.8). Continue other processing in the program, as desired.

4. 1In anticipation of re-opening the temporary file, restore the
filename block to the FDB by accomplishing the reverse of
Step 2 above.

5. Re-open the file by issuing any of the FCS macro calls which
open existing files. Resume operations on the file; repeat
the save, CLOSES$, restore, open sequence any desired number
of times.

6. Before closing the file the 1last time, call the .MRKDL
routine, as shown below, to mark the file for deletion:

CALL .MRKDL
The .MRKDL routine is described in section 4.13.1.
7. Close the file by issuing the CLOSES$ macro call.

If the filename block is not saved, the file 1identification field
therein is destroyed, since this field is reset to zero (0) when the
file is closed.

Thus, not saving the filename block before closing a temporary file
results in a "lost" file, since no directory entry is made for a
temporary file. The usual procedure of listing the volume's directory
is therefore inapplicable. The only way such a file can be recovered
is to use the file structure verification wutility program (VFY) to
search the volume's index file. The VFY program has the capability to
compare the files listed in all the directories on the volume with
those 1listed in the index file. 1If a file appears in the index file,
but not in a directory, VFY identifies that file for the user. This
program is described in detail in the IAS System Management Guide,
RSX-11D Utility Programs Procedures Manual, or RSX-11M Utilities
Procedures Manual.

3.4 OPNTSD - CREATE AND OPEN TEMPORARY FILE AND MARK FOR DELETION

The OPNTSD macro call is issued to create and open a temporary file
and, in addition, to mark the file for deletion. File identification
information for such a file is entered into the volume's index file
and the filename block 1in the associated FDB (but not in any
associated volume directory). A file marked for deletion cannot be

3-13

FILE-PROCESSING MACRO CALLS

opened by another program. Furthermore, when the file is closed, it
is automatically deleted from the volume, returning its space to the
pool of available storage on the volume for reallocation.

The presumption in issuing the OPNTS$D macro call is that the file thus
created is to be used only once. This is a particularly desirable way
to open a temporary file, since the file will be deleted, even if the
program terminates abnormally without closing the file.

The OPNTS$D macro call takes the same format and parameters as the
generalized OPENS$x macro call.

3.5 OFID$ - OPEN FILE BY FILE ID

The OFIDS$ macro call is issued to open an existing file using
information stored in the file identification field (offset location
N.FID) of the filename block. Thus, issuing this macro <call invokes
an FCS routine which opens a file only by file ID (see section 2.5).
The OFID$S call, which has the same format and takes the same
parameters as the generalized OPENS$x macro call (see section 3.1), is
designed for use with overlaid programs.

In describing the functions of the OFID$ macro call, either one of two
assumptions may apply, as follows:

1. That the necessary context for opening the file has been
saved from a previous OPENS$x operation and restored to the
filename block in anticipation of opening that file by file
ID. The saving and restoring of the filename block are
discussed in detail in section 2.5.1.

2. That the desired file is to be opened for the first time. 1In
this case, the necessary context for opening the file must
first be stored in the filename block before the OFID$ macro
call can be issued.

In most cases, the latter assumption applies, requiring that the
following procedures be performed:

1. Call the .PARSE routine (see section 4.6.1). This routine
takes information from a specified dataset descriptor and/or
default filename block and 1initializes and f£fills in the
specified filename block.

2. Call the .FIND routine (see section 4.7.1). This routine
locates an appropriate directory entry for the file (by
filename) and stores the file identification information
therefrom in the 6-byte file identification field of the
filename block, starting at offset 1location N.FID. As a
result of Steps 1 and 2, the necessary context then exists in
the associated filename block for opening the file by file
ID.

3. Issue the OFIDS$ macro call.

The advantage in using the .PARSE and .FIND routines in conjunction
with the OFID$ macro call is that the user can overlay his program,
placing .PARSE and .FIND on one branch, and the code for OFIDS$ on
another branch. This overlay structure reduces the program's overall
memory regquirements.

3-14

FILE-PROCESSING MACRO CALLS

Unlike the other FCS macro calls for opening files, the OFID$ macro
call requires a non-zero value in the first word of the file
identification field (N.FID) in order to work properly. When this
field contains a non-zero value, FCS assumes that the remaining
context necessary for opening that file is present and, accordingly,
opens the file by file ID.

3.6 OFNBS - OPEN FILE BY FILENAME BLOCK

The OFNBS$ macro call is issued to open either an existing file or to
create and open a new file using filename information in the filename
block. Similar to the OFIDS$ macro call above, the OFNB$ call is
designed for use with overlaid programs. However, the OFNB$ macro
call differs in two important respects: it can be issued to create a
new file, and it can be issued to open a file by filename block.

In describing the functions of the OFNB$ macro call, the same
assumptions outlined above for OFID$ apply, viz., that the filename
block has been saved and restored in anticipation of issuing the OFNBS$
macro call, or that the file 1is being opened for the first time.
Since the procedures for saving and restoring the filename block are
detailed 1in section 2.5.1, the following discussion assumes that the
desired file is being opened for the first time. In this case, the
filename block in the FDB must be initialized, as described below.

To open a file by filename block, the following information must be
present in the filename block of the associated FDB:

A. The filename (offset location N.FNAM);
B. The file type or extension (offset location N.FTYP);
C. The file version number {cffset lccation N.FVER);
D. The directory ID (offset location N.DID);
E. The device name (offset location N.DVNM); and
F. The unit number (offset location N.UNIT).
In providing the information above to the filename block, either of

two general procedures may be used, as described in the following
sections.

3.6.1 Dataset Descriptor and/or Default Filename Block

If the dataset descriptor contains all the required information listed
above, perform the following procedures:

1. Call the .PARSE routine (see section 4.6.1). This routine
takes information from a specified dataset descriptor and/or
default filename block and fills in the appropriate offsets
of a specified filename block.

2. Issue the OFNBS macro call.

FILE-PROCESSING MACRO CALLS

3.6.2 Default Filename Block Only

If a default filename block is to be used in providing the required
information to FCS, perform the following procedures:

1. Issue the NMBLKS$ macro call (see section 2.4.2) to create and
initialize a default filename block. With the exception of
the directory ID, this structure provides all the requisite
information to FCS.

2. To provide the directory ID, call either of the following
routines: -

a. Call the .GTDIR routine (see section 4.8.1) to retrieve
the directory ID from the specified dataset descriptor
and to store the directory ID in the default filename
block; or

b. Call the .GTDID routine (see section 4.8.2) to retrieve
the default UIC from $$FSR2 and to store the directory ID
in the default filename block.

c. Move the entire default filename block manually into the
filename block associated with the file being opened.

3. Issue the OFNBS$ macro call.

Note that the coding for OFNB$ operations normally resides in an
overlay apart from that containing the other FCS routines identified
above.

The issuance of the OFNBS$ macro call is usually done under the premise
that the filename block contains the requisite information, as
described above. However, if the file identification field (offset
location N.FID) in the filename block contains a non-zero value when
the call to OFNBS$ is issued, the file 1is unconditionally opened by
file ID.

The OFNB$ macro call has the same format and takes the same parameters
as the generalized OPENS$x macro call (see section 3.1).

If the user expects to open both new and existing files, and memory
conservation 1is an objective, the OFNB$ macro call is most suitable
for opening such files. The OFID$ coding should not be included in
the same overlay with OFNBS, since OFID$ overlaps the function of
OFNBS$ and, therefore, needlessly consumes memory space.

3.7 OPEN$ - GENERALIZED OPEN FOR SPECIFYING FILE ACCESS

Usually, when the user wishes to create a file, the filename and the
file type are specified, and FCS is allowed to assign the next higher
file version number. However, if the OPENSW macro call is issued for
a file having an explicit filename, file type, and file version
number, and a file of that description already exists in the specified
user file directory (UFD), the o0ld file is superseded.

By issuing the OPENS$ macro call without an alphabetic suffix, and by

specifying two additional parameters, the wuser can inhibit the
automatic supersession of a file when a duplicate file specification

3-16

is encountered in the UFD. Rather than deleting the old version of
the file, an error indication (IE.DUP) is returned to offset location
F.ERR of the applicable FDB.

All parameters of this macro call are identical to those specified for
the generalized OPEN$x macro call (see section 3.1), with the
exception of the facc parameter and the dfnb parameter. These
additional parameters are described below.

To open a file without superseding an existing file having an
identical file specification, a macro call of the following form is
used:

OPENS fdb,facc,lun,dspt,dfnb,racc,urba,urbs,err

where: facc represents any one or an appropriate combination
of the following symbolic values indicating how
the specified file is to be accessed:

FO.RD - Indicates that an existing file is to be
opened for reading only.

FO.WRT - Indicates that a new file is to be
created and opened for writing.

FO.APD - Indicates that an existing file is to be
opened and appended.

FO.MFY - Indicates that an existing file is to be
opened and modified.

FO.UPD - Indicates that an existing file is to be
opened, updated, and, if necessary, extended.

FA.NSP - Indicates, in combination with FO.WRT
above, that the o0l1d file having the same file
specification is not to be superseded by the new
file.

FA.TMP - Indicates, in combination with FO.WRT
above, that the file is to be a temporary file.

FA.SHR - Indicates that the file is to be opened
for shared access.

dfnb represents the symbolic address of the default
filename block. This parameter is the same as
that described in connection with the

FDOPS$A/FDOPSR macro call.

The above parameters initialize FDB offset locations F.FACC and F.DFNB
with appropriate values.

Any logically consistent combination of the above file access symbols

is permissible. The particular combination required to create and

write a new file without superseding an existing file is shown below:
OPENS #OUTFDB, #FO.WRT!FA.NSP

The following macro call creates a temporary file for shared access:

OPENS #OUTFDB, #FO.WRT ! FA.TMP ! FA.SHR

3-17

~FILE-PROCESSING MACRO CALLS

3.8 CLOSE$ - CLOSE SPECIFIED FILE

When the processing of a file is completed, it must be <closed by
issuing the CLOSES$ macro call. The CLOSES operation performs the
following housekeeping functions:

1. Waits for all I/O operations in progress for the file to be
completed (multiple-buffered record I/0 only).

2. Ensures that the FSR block buffer containing data for an
output file 1is completely written if it is partially filled
(record 1/0 only).

3. De-accesses the file.

4, Releases the FSR block buffer(s) allocated for the file
(record I/0 only).

5. Prepares the FDB for subsequent use by clearing appropriate
FDB offset locations.

6. Calls an optional user-coded error-handling routine if an
error condition is detected during the CLOSES$ operation.

3.8.1 Format of CLOSES$ Macro Call

The CLOSE$ macro call takes the following format:

CLOSES fdb,err

where: fdb represents the symbolic address of the associated
FDB.
err represents the symbolic address of an optional

user-coded error-handling routine.

The following examples illustrate the use of the CLOSE$ macro call:

CLOSE$ #FDBIN,CLSERR

CLOSES ,CLSERR

CLOSES RO
The first example shows an explicit declaration for the relevant FDB
and the symbolic address of an error-handling routine to be entered if
the CLOSE$ operation is not completed successfully. The last two

examples assume that RO currently contains the address of the
appropriate FDB.

3.9 GET$ - READ LOGICAL RECORD

The GET$ macro call is used to read 1logical records from a file.
After a GETS$ operation, the next record buffer descriptors in the FDB
always identify the record just read, i.e., offset location F.NRBD+2
contains the address of the record just read, and offset location
F.NRBD contains the size of that record (in bytes). This is true of
GETS$ operations in both move and locate mode.

In move mode, a GET$ operation moves a record to the user record
buffer (as defined by the current contents of F.URBD+2 and F.URBD),
and the address and size of that record are then returned to the next
record buffer descriptors in the FDB (F.NRBD+2 and F.NRBD).

In locate mode, if the entire record resides within the FSR block
buffer, then the address and the size of the record just read are
returned to the next record buffer descriptors (F.NRBD+2 and F.NRBD).
If, on the other hand, the entire record does not reside within the
FSR block buffer, then that record is moved piecemeal into the wuser
record buffer, and the address of the user record buffer and the size
of the record are returned to offset locations F.NRBD+2 and F.NRBD,
respectively.

After returning from a GET$ operation in locate mode, whether or not
moving the record was necessary, F.NRBD+2 always contains the address
of the record just read, and F.NRBD always contains the size of that

JAE=2 0103 S0)

GETS$ operations are fully synchronous, i.e., record I/0 operations are
completed before control is returned to the user program.

Specific FDB requirements for GET$ operations are presented in section
3.9.2 below.

3.9.1 Format of GETS$ Macro Call

To read a logical record, the GETS$ macro <call 1is specified in the
following format:

GETS fdb,urba,urbs,err
where: fdb represents the symbolic address of the associated
FDB.
urba represents the symbolic address of a user record
buffer to be used for record I/O operations in
move or locate mode. When specified, this
parameter initializes FDB offset location

P _ITDRN.LYD
L e UNDL T Lo

urbs represents a numeric value defining the size (in
bytes) of the user record buffer. This parameter
determines the largest record that can be placed
in the user record buffer in move or locate mode.
When specified, this parameter initializes offset
location F.URBD in the associated FDB.

err represents the symbolic address of an optional
user-coded error-handling routine.

3-19

FILE-PROCESSING MACRO CALLS

If neither the urba nor the urbs parameter is specified in the GETS$
macro call, FCS assumes that these requisite values have been supplied
previously through the FDRCS$A, the FDRC$R, or the generalized OPENS$x
macro call. Any non-zero values 1in offset locations F.URBD+2 and
F.URBD resulting therefrom are used as the address and the length,
respectively, of the user record buffer.

If either of the following conditions occurs during record 1I/0
operations, FCS returns an error indication (IE.RBG) to offset
location F.ERR of the FDB, indicating an illegal record size:

1. In move mode, the record size exceeds the limit specified in
offset location F.URBD; or

2. In locate mode, the record size exceeds the 1limit specified
in offset location F.URBD, and the record must be moved
because it crosses block boundaries.

The following statements are representative of the GET$ macro call:

GETS RO, , ,ERROR
GETS$, #RECBUF, $25. ,ERROR
GETS #INFDB

In the first example, the address of the desired FDB is assumed to be
present in RO. Note that the next two parameters, i.e., the user
record buffer address (urba) and the user record buffer size (urbs),
are null. In this case, FCS assumes that the appropriate values for
FDB offset locations F.URBD+2 and F.URBD, respectively, have been
specified previously in the FDRCS$A, the FDRCSR, or the generalized
OPENS$x macro call. The final parameter in the string is the symbolic
address of a user-coded error-handling routine.

The second example also assumes that RO contains the address of the
desired FDB. Explicit parameters then define the address and the
size, respectively, of the user record buffer.

The last example shows a GET$ macro call in which only the address of
the FDB is specified.

3.9.2 FDB Mechanics Relevant to GET$ Operations

The following sections summarize the essential aspects of GETS$
operations in move and locate mode with respect to the associated FDB.

The discussions below focus mainly on whether or not a user record
buffer 1is required under certain conditions. 1In this regard, the
reader should recall that the user record buffer descriptors, i.e.,
the urba and the urbs parameters, may be specified in the FDRCSA, the
FDRC$R, or the generalized OPEN$x macro <call, as well as the 1I/0
initiating GETS macro call. These parameters need be present in the
GET$ macro call (to appropriately initialize the FDB) only if not
previously supplied through some other available means.

If operating in random mode, then the number of the record to be read
is maintained by FCS in offset locations F.RCNM and F.RCNM+2 of the
associated FDB. This value is incremented after each GET$ operation

FILE-PROCESSIN

1

=
>
(@]
)
o
[@)]
o
ol
[
n

to point to the next record in the FSR block buffer. Thus, unless a
different record number is explicitly specified before each issuance
of the GET$ macro call, the next record in sequence is read. The
specified user record buffer size (i.e., the urbs parameter) always
determines the 1largest record that can be read during a GETS
operation.

3.9.2.1 GETS$ Operations in Move Mode

With respect to GET$ operations in move mode, the following
generalizations apply:

1. If records are always moved to the same user record buffer,
the wurba and urbs parameters need be specified only in the
initial GETS$ macro call. Alternatively, these values may be
specified beforehand through any available means identified
above for initializing the wuser record buffer descriptor
cells in the FDB. In any case, offset locations F.URBD+2 and
F.URBD remain appropriately initialized for all subsequent
GETS$ operations in move mode which involve the same user
record buffer.

3.9.2.2 GETS$ Operations in Locate Mode

In performing GET$ Operations in locate mode, the wuser should take
into account the following:

1. 1If fixed-length records are to be processed, and if they fit
evenly within the FSR block buffer, the user record buffer
descriptors need not be present in the associated FDB.

2, 1If fixed-length records which do not fit evenly within the
FSR block buffer are to be processed, or if variable-length
records are to be processed, the user record buffer
descriptors need not be present in the FDB, provided that the
file being processed exhibits the attribute of records not
being allowed to cross block boundaries (FD.BLK).

The property of records not crossing block boundaries is
established as the file is created. Specifically, if offset
location F.RATT in the FDB is initialized with FD.BLK prior
to file create-time, then the records in the resulting file
will not be allowed to cross block boundaries.

For an existing file, the user file attribute section of the
file header block is read when the file is opened; thus, all
attributes of that file are made known to FCS, including
whether or not records within that file are allowed to cross
block boundaries.

The design of FCS requires the utilization of a wuser record
buffer only in the event that records (either fixed or
variable in length) cross block boundaries.

3. If a GETS$ operation is performed in 1locate mode, and the

record is contained entirely within the FSR block buffer, the
address of the record within the FSR block buffer and the

3-21

FILE-PROCESSING MACRO CALLS

size of that record are returned to offset locations F.NRBD+2
and F.NRBD, respectively, in the associated FDB. However, if
that record crosses block boundaries, it is moved to the user
record buffer. 1In this case, the address of the user record
buffer and the size of the record are returned to offset
locations F.NRBD+2 and F.NRBD, respectively.

In summary, if the potential exists for «crossing block boundaries
during GETS operations in 1locate mode, then the user record buffer
descriptors must be supplied through any available means to
appropriately initialize offset locations F.URBD+2 and F.URBD in the
associated FDB.

3.10 GET$R - READ LOGICAL RECORD IN RANDOM MODE

The GETSR macro call is used to read fixed-length records from a file
in random mode. Thus, by definition, issuing this macro call requires
that the user be intimately familiar with the structure of the file to
be read and, furthermore, that he be able to specify precisely the
number of the record to be read.

The GETS$ and GETSR macro calls are identical, except that GETS$R allows
the specification of the desired record number. If the desired record
number is already present in the FDB (at offset locations F.RCNM and
F.RCNM+2), then GET$ and GET$SR may be used interchangeably. If,
however, the record access byte in the FDB (offset location F.RACC)
has not been initialized for random-access operations with FD.RAN in
the FDRCS$A, the FDRCSR, or the generalized OPENS$x macro call, then
neither GETS$ nor GETSR will read the desired record.

The GETSR macro call takes two more parameters in addition to those
specified in the GETS$ macro call, as shown below:

GETS$SR fdb,urba,urbs,lrcnm,hrcnm,err

where: lrcnm represents a numeric value specifying the
low-order 16 bits of the number of the record to
be read. This value, which must be specified, is
stored in offset location F.RCNM+2 in the FDB.
The GETSR macro call seldom requires more than 16
bits to express the record number. A logical
record number up to 65,536(10) may be specified
through this parameter. If this parameter is not
sufficient to completely express the magnitude of
the record number, the following parameter must
also be specified.

hrcnm represents a numeric value specifying the
high-order 15 bits of the number of the record to
be read. This wvalue 1is stored in FDB offset
location F.RCNM. If specified, the combination of
this parameter and the 1lrcnm parameter above
determines the number of the desired record.
Thus, an unsigned value having a total of 31 bits
of magnitude may be used in defining the record
number .

If this parameter 1is not specified, offset
location F.RCNM retains its initialized value of
zero (0).

If F.RCNM is used to express a desired record
number for any given GETSR operation, this cell
must be cleared before issuing a subsequent GETSR
macro call that requires 16 bits or 1less to
express the desired record number; otherwise, any
residual wvalue in F.RCNM will yield an incorrect
record number.

If the lrcnm and hrcnm parameters are not specified in a subsequent
GETSR macro call, the next sequential record is read, since the record
number in offset 1locations F.RCNM+2 and F.RCNM is automatically
incremented with each GET$ operation. In the case of the first GETS$R
after opening the file, record number one is read, because the record
number has been initialized to zero by the OPEN. If other than the
next sequential record is to be read, the user must explicitly specify
the number of the desired record.

The following statements are representative of the use of the GET$R
macro call:

GETSR #INFDB, #RECBUF, #160.,#1040., ,ERROR
GETS$R #FDBADR, #RECBUF, #160. ,R3

Note in the first example that the number of the desired record to be
read, 1i.e., 1040(10), is expressed through the first of two available
fields for this purpose; the second field 1is not required and is
therefore reflected as a null specification.

The second example reflects the use of general register 3. in
specifying the 1logical record number. This register, or any other
location so used, must be preset with the desired record number before
issuing the GETS$R macro call.

3.11 GETS$S - READ LOGICAL RECORD IN SEQUENTIAL MODE

The GETS$S macro call is used to read logical records from a file in
sequential mode. Although the routine invoked by the GET$S macro call
requires less memory than that invoked by GET$ (see section 3.9),
GETS$S has the same format and takes the same parameters. The GETS$S
macro call is designed specifically for use in an overlaid environment
where the amount of memory available to the program is limited and
files are to be read in strictly sequential mode.

Note, if both GET$S and PUTS$S are to be used by the program, that the
savings in memory utilization over GETS and PUTS$ will be realized only
if GET$S and PUTSS are placed on different branches of the overlay
structure.

3.12 PUT$ - WRITE LOGICAL RECORD

The PUT$ macro call is used to write logical records to a file. For
PUTS operations, offset locations F.NRBD+2 and F.NRBD in the
associated FDB must contain the address and the size, respectively, of
the record to be written. The distinction between move mode and

FILE-PROCESSING MACRO CALLS

locate mode for PUT$ operations relates to the building or the
assembling of the data into a record. Specifically, in move mode, the
record is built in a buffer of the user's choice. This buffer is not
necessarily the user record buffer previously described in the context
of record I/0 operations. In other words, the user may build records
in an area of his program apart from that normally defined by the user
record buffer descriptors in the FDB (F.URBD+2 and F.URBD). In this
case, the address of the record buffer so used and the size of the
record are specified in the PUTS$ macro call, and the record thus built
is then moved into the FSR block buffer.

In locate mode, however, the record is built at the address specified
by the contents of offset location F.NRBD+2, and only the record size
need be specified in the PUTS$ macro call. Then, 1if the record so
built is not already in the FSR block buffer, it is moved therein as
the PUTS$ operation is performed.

PUT$ operations are fully synchronous, i.e., record I1/0 operations are
completed before control is returned to the user program.

A random PUTS$ operation in locate mode requires the use of the .POSRC
routine. This operation is described in detail in section 4.9.2.

Specific FDB requirements for PUT$ operations are presented in section
3.12.2 below.

3.12.1 Format of PUTS$ Macro Call

The PUT$ macro call takes the following format:

PUTS fdb,nrba,nrbs,err
where: fdb represents the symbolic address of the associated
FDB.
nrba represents the symbolic address of the next record

buffer, i.e., the address of the record to be
PUTS. This parameter initializes FDB offset
location F.NRBD+2.

nrbs represents a numeric value specifying the size of
the next record buffer, i.e., the length of the
record to be PUT$. This parameter initializes FDB
offset location F.NRBD.

err represents the symbolic address of an optional
user-coded error-handling routine.

The following examples are representative of the wuses of the PUTS
macro call:

PUTS #FDBADR, , , ERRRT
PUTS ,+#160.,ERRRT
PUTS RO

In the first example, note that the next record buffer address (nrba
parameter) and the next record buffer size (nrbs parameter) are null.

FILE-PROCESSING MACRO CALLS

These null specifications imply that the current values in offset
locations F.NRBD+2 and F.NRBD of the associated FDB are suitable to
the current operation. Note also that fixed-length records could also
be written in locate mode by issuing this macro call.

The second example contains null specifications in the first two
parameter fields, assuming that RO currently contains the address of
the associated FDB and that variable-length records are to be written
to the file.

Finally, the last example specifies only the address of the FDB; all
other parameter fields are null.

3.12.2 FDB Mechanics Relevant to PUTS$ Operations

The discussions below highlight those aspects of PUT$ operations in
move and locate mode which have a bearing on the associated FDB.

The conditions under which a user record buffer is or is not used are
summarized. As 1is the <case for GETS$ operations, if a user record
buffer is required for PUTS$ operations, the buffer descriptors (i.e.,
the wurba and urbs parameters) may be supplied to the associated FDB
through the FDRC$A, the FDRCSR, or the generalized OPENS$x macro call.
In any case, offset locations F.URBD+2 and F.URBD must be
appropriately initialized if PUTS$ operations require the utilization
of a user record buffer. Note, however, that PUT$ operations in move
mode never require a user record buffer.

If the user record buffer is required, the specified size of that
buffer (i.e., the urbs parameter) always determines the size of the
largest record that can be written to the specified file.

Whether in move or locate mode, a PUT$ operation uses the information
in offset locations F.NRBD+2 and F.NRBD, i.e., the next record buffer
descriptors, to determine whether the record must be moved into the
FSR block buffer. 1In the event that the record does have to be moved,
and the size of that record is such that it will not fit in the space
remaining therein, one of two possible operations is performed:

1. If records are allowed to cross block boundaries, then the
first part of the record is moved into the FSR block buffer,
thereby completing a virtual block. That block buffer is
then written out to the volume, and the remaining portion of
the record is moved into the beginning of the next FSR block
buffer. .

2. 1If records are not allowed to cross block boundaries (because
of the file attribute FD.BLK specified in the associated
FDB), then the FSR block buffer is written out to the volume
as 1is, and the entire record is moved into the beginning of
the next FSR block buffer.

3.12.2.1 PUTS Operations in Move Mode

A PUTS operation in move mode is basically driven by specifying in
each PUT$ macro call the address and the size of the record to be
written. Then, as the PUT$ operation is performed, FCS moves the
record into the appropriate area of the FSR block buffer.

FILE~-PROCESSING MACRO CALLS

In summary, the following generalizations apply for PUTS$ operations in
move mode:

1. The user record buffer descriptors need not be present in the
FDB because the programmer is dynamically specifying the
address and the length of the record to be written at each
issuance of a PUT$ macro «call. The values so specified
dynamically update offset locations F.NRBD+2 and F.NRBD in
the associated FDB.

2. If the file consists of the fixed-length records, then the
generalized OPENSx macro call (see section 3.1) will
initialize offset location F.NRBD with the appropriate record
size, as defined by the contents of offset location F.RSIZ.
Thus, the size of the record need not be specified as the
urbs parameter in any PUT$ macro call involving this file.

3. If variable-length records are being PUTS$, the size of each
record must be specified as the urbs parameter in each PUTS$
macro call involving this file, thus setting offset 1location
F.NRBD to the appropriate record size.

3.12.2.2 PUTS$ Operations in Locate Mode

Basically, a user record buffer is required for PUT$ operations in
locate mode only when the potential exists for records to cross block
boundaries. In other words, if there is insufficient space in the FSR
block buffer to accommodate the building of the next record, the user
must provide a buffer in his own memory space in order to build that
record.

When a file is initially opened for PUTS$ operations in locate mode,
FCS sets up offset location F.NRBD+2 to point to the area in the FSR
block buffer where the next record is to be built. Then, each PUTS$
operation thereafter in locate mode updates the address value in this
cell to point to the area in the FSR block buffer where the next
record 1is to be Dbuilt. Thus, after each PUT$ operation in locate
mode, F.NRBD+2 points to the area where the next record 1is to be
built. This logic dictates whether the user record buffer is required
in locate mode.

In this regard, the following generalizations apply:

1. If fixed-length records are being PUT$ and they fit evenly
within sthe FSR block buffer, a user record buffer is not
required.

2., If a fixed-length record crosses block boundaries, the user
record buffer descriptors must be present in offset locations
F.URBD+2 and F.URBD of the associated FDB. In this case,
after determining that the record will not fit in the FSR
block buffer, FCS sets offset location F.NRBD+2 to point to
the user record buffer. Then, when the record is PUTS, it is
moved from the user record buffer to the FSR block buffer.

3. If a variable-length record 1is being PUTS$, the potential
exists for crossing block boundaries. In this case, the user
record buffer descriptors must be present in offset locations
F.URBD+2 and F.URBD of the associated FDB. Moreover, the

FILE-PROCESSING MACRO CALLS

size of each variable-length record must be specified as the
nrbs parameter in each PUTS$ macro call.

The determination as to whether FCS will point offset
location F.NRBD+2 to the FSR block buffer for the PUTS
operation or to the user record buffer is based on whether
there 1is potentially enough room in the FSR block buffer to
accommodate the record.

Because the records are variable in 1length, it must be
assumed that the largest possible record will be PUTS$, as
defined by the size of the wuser record buffer (F.URBD).
Thus, 1if a record of this defined size will not fit in the
space remaining in the FSR block buffer, FCS sets offset
location F.NRBD+2 to point to the user record buffer.

Each PUTS$ operation in locate mode sets up the FDB for the next PUTS.

In other words, the specified record size is used by FCS as the worst

case condition in determining whether sufficient space exists in the
FSR to build the next record.

If variable-length records are being processed that are shorter than
the 1largest defined record size, FCS may move records unnecessarily
from the user record buffer to the FSR block buffer. For example,
assume that the user has allocated a 132-byte record buffer. Assume
further that the available remaining space in the FSR block buffer is
less than 132 bytes. In this case, FCS will continue to point the
user to his own record buffer for PUTS operations, even if he
continues to PUTS$ very short (10- or 20-byte) records. Thus, some
unavoidable movement of records takes place in locate mode.

If the largest record that the user intends to PUTS is 80 bytes, for
example, then the largest defined record size should not be specified
as 132 bytes (or any length larger than that intended to be PUTS).
‘Aside from having to allocate a smaller user record buffer, PUTS$
pperations in locate mode will be more efficient if this precaution is
observed. Exercising care in this regard reduces the tendency to move
records from the user record buffer to the FSR block buffer when they
might otherwise be built directly in the FSR block buffer.

3.13 PUTSR - WRITE LOGICAL RECORD IN RANDOM MODE

The PUTS$R macro call is used to write fixed-length records to a file
in random mode. As noted in section 3.10 in connection with the GETS$R
macro call, operations on random access files require the user to be
intimately familiar with the contents of such files. The PUT$R macro
call likewise relies entirely on the user for the specification of the
number of the record before a specified PUTS operation can be
performed. Since the usual purpose of a PUTSR operation is to update
known records in a file, it is assumed that the user also knows the
number of such records within the file.

The PUT$ and PUTSR macro calls are identical, except that PUTSR allows
the specification of the desired record number. If the desired record
number is already present in the FDB (at offset locations F.RCNM and
F.RCNM+2), then PUT$ and PUTSR may be used interchangeably. However,
if the record access byte in the FDB (offset location F.RACC) has not
been initialized for random-access operations with FD.RAN in the
FDRC$A, the FDRCS$R, or the generalized OPENS$x macro call, then neither
PUTS not PUTSR will write the desired record.

3-27

FILE-PROCESSING MACRO CALLS

The PUTS$R macro call takes two more parameters in addition to those
specified in the PUTS$ macro call, as shown below:

PUTSR fdb,nrba,nrbs,lrcnm,hrcnm,err

where: lrcnm represents a numeric value specifying the
low-order 16 bits of the number of the record to
be processed. This parameter serves the same
purpose as the corresponding parameter in the
GET$R macro call (see section 3.10), except that
it identifies the record to be written.

hrenm represents a numeric value specifying the
high-order 15 bits of the number of the record to
be processed. This parameter serves the same
purpose as the corresponding parameter 1in the
GETSR macro call, except that it identifies the
record to be written.

If this parameter is not specified, offset
location F.RCNM retains its initialized value of
zero (0).

If F.RCNM is used in expressing a desired record
number for any given PUTS$R operation, the user
must clear this cell before issuing a subsequent
PUT$R macro call that requires 16 bits or less in
expressing the desired record number; otherwise,
any residual value in F.RCNM results in an
incorrect record number.

The lrcnm and hrcnm parameters initialize offset locations F.RCNM+2
and F.RCNM, respectively, in the associated FDB. If these values are
not specified in a subsequent PUTS$R macro call, the next sequential
record 1is written, since FCS automatically increments the record
number in these cells with each PUT$ operation. 1In the case of the
first PUT$R after opening the file, record number one is written,
because the record number has been initialized to zero by the OPEN.
Note that this is true even if the file has been opened for an append
(OPENSA). If other than the next sequential record is to be written,
the user must explicitly specify the number of the desired record.

A representative example of the use of the PUTS$R macro call follows:
PUTSR #OUTFDB, #RECBUF, ,#12040., ,ERRLOC
PUTSR #FDBADR, #RECBUF, ,R4
PUTSR #FDBADR, #RECBUF, ,LRN

In the first example, the presence of "RECBUF" as the next record
buffer address (nrba) parameter merely indicates that the user is
specifying the address of the record. Although specifying this
address repeatedly 1is unnecessary, it is not invalid. Normally, a
buffer address is specified dynamically, since other PUT$ macro calls
may be referencing different areas in memory; thus, the address of
the record must be explicitly specified in each PUTS$ macro call. Note
also that the next record buffer size (nrbs) parameter is null, since
this parameter is required only in the case of writing variable-length
records. Also, the second of the two available parameters for
defining the record number is null.

Note in the second and third examples that R4 and a memory location
(LRN) are used to specify the 1logical record number. Such a

3-28

FILE-PROCESSING MACRO CALLS

specification assumes that the user has preset the desired record
number in the referenced location.

A random PUTS$ operation in locate mode
routine. This nopra+1nn is described

requires the use of the .POSRC
nd

i etail in section 4.9.2.

3.14 PUTS$S - WRITE LOGICAL RECORD IN SEQUENTIAL MODE

The PUTSS macro call is used to write logical records to a file in
sequential mode. Although the routine invoked by the PUTS$S macro call
requires less memory than that invoked by PUT$ (see section 3.12),
PUT$S has the same format and takes the same parameters. The PUTSS
macro call is designed specifically for use in an overlaid environment
Where the amount of memory available to the program is limited and
files are to be written in strictly sequential mode.

Note, if both GETS$S and PUTS$S are to be used by the program, that the
savings in memory utilization over GETS$ and PUTS$ will be realized only
if GETS$S and PUTSS are placed on different branches of the overlay
structure.

3.15 READ§ - READ VIRTUAL BLOCK

ADS macro call is igssued to read a virtual block of data from a
(e.g., a disk or DECtape). In addition, if certain optional
parameters are specified in the macro call, status information is
returned to the I/0 status block (see section 2.8.2), and/or the
program traps to a user-coded AST service routine at the completion of

block I/0 operations (see section 2.8.3).

In issuing the READS$ (or WRITES$) macro call, the user 1is responsible
for synchronizing all block I/O operations. For this reason, the
WAITS macro call is provided (see section 3.18), allowing the user to
suspend program execution until a specified READS$/WRITES operation has
been completed. When the WAITS macro call is issued in conjunction
with a READS (or WRITES) macro call, the user must ensure that the
event flag number and the I/0 status block address specified in both

mamra ~a11 -~

o hn aama
MidCru C4aiidb are¢ uile Sanic.

3.15.1 Format of READS Macro Call

From the format below, note that the parameters of the READ$ macro
call are identical to those of the FDBKS$A or the FDBKS$SR macro call,
with the exception of the fdb and err parameters. Certain FDB
parameters may be set at assembly-time (FDBK$A), initialized at
run-time (FDBKS$R), or set dynamically by the READS$ macro call. In any
case, certain information must be present in the FDB before the
specified READS (or WRITES$) operation can be performed. These
requirements are noted in section 3.15.2 below.

The READS macro call takes the following format:
READS fdb,bkda,bkds,bkvb,bkef,bkst,bkdn,err

where: fdb represents the symbolic address of the associated
FDB.

bkda

bkds

bkvb

bkef

FILE-PROCESSING MACRO CALLS

represents the symbolic address of the block 1I/0
buffer in the user program. This parameter need
not be specified if offset location F.BKDS+2 has
been previously initialized through either the
FDBKSA or the FDBKSR macro call.

represents a numeric value specifying the size (in
bytes) of the wvirtual block to be read. This
parameter need not be specified if offset location
F.BKDS has been previously initialized through
either the FDBKSA or the FDBKSR macro call. In
any case, the maximum block size that may be
specified for file~structured devices is 512(10)
bytes, i.e., the size of one virtual block.

represents the symbolic address of a 2-word block
in the user program containing the number of the
virtual block to be read. This parameter causes
offset locations F.BKVB and F.BKVB+2 to be
initialized with the virtual block number ;
F.BKVB+2 contains the low-order 16 bits of the
virtual block number, and F.BKVB contains the
high-order 15 bits.

As noted in connection with the FDBKSA macro call
described in section 2.2.1.4, assembly-time
initialization of the virtual block number in the
FDB is ineffective, since the generalized OPENSx
macro call sets the virtual block number in the
FDB to one (l). The virtual block number can be
made available to FCS only through the FDBKS$R
macro call or the I/O~initiating READ$ (or WRITES)
macro call after the file has been opened. The
virtual block number is created as described in
Item 4 of section 2.2.2.1.

The READS$ function checks the specified virtual
block number to ensure that it does not reference
a non-existent block, i.e., a block beyond the end
of the file. If the wvirtual block number
references non-existent data, an end-of-file
(IE.EOF) error indication is returned to the I/O
status block (see bkst parameter below) and to
offset 1location F.ERR of the associated FDB;
otherwise, the READS$ operation proceeds normally.

If the wvirtual block number 1is not specified
through any of the available means identified
above, automatic sequential operation results by
default, beginning with wvirtual block number 1.
The wvirtual block number is incremented by one (1)
automatically after each READS operation is
performed.

represents a numeric value specifying the event
flag number to be used for synchronizing block I/O
operations. This event flag number is used by FCS
to signal the completion of the specified block
I/0 operation. The event flag number, which may

3-30

bkst

bkdn

err

FILE-PROCESSING MACRO CALLS

also be specified in either the FDBKSA or the
FDBKSR macro call, initializes FDB offset location
F.BKEF; if so specified, this parameter need not
be included in the READS$ (or WRITES$) macro call.

If this optional parameter 1is not specified
through any available means, event flag 32(10) is
used by default.

The function of an event flag 1is discussed in
further detail in section 2.8.1.

represents the symbolic address of the I/0 status
block in the user program (see section 2.8.2).
This parameter, which initializes offset location
F.BKST, 1is optional. The I/0 status block is
filled in by the system when the requested block

1/0 transfer is completed, indicating = the

dils i LS CORpaiel LaaGica e

success/failure of the requested operation.

The address of the I/0 status block may also be
specified in either the FDBKS$A or the FDBKSR macro
call. If the address of this 2-word structure is
not supplied to FCS through any of the available
means, status information is not returned to the
I/0 status block. However, the event flag
specified through the bkef parameter above is set
to indicate block I/O completion, but the user
program must assume that the operation was
successful. An error indication cannot be
returned to the user program without an I/O status
block address.

represents the symbolic entry-point address of an
AST service routine (see section 2.8.3). If this
parameter 1is specified, a trap occurs upon
completion of the specified READS (or WRITES)
operation. This parameter, which is optional,
initializes offset location F.BKDN. This address
value may also be made available to FCS through
either the FDBKSA or the FDBKSR macro call, and,

if so specified, need not be present in the READS

(or WRITES$) macro call.

If the address of an AST service routine is not
specified through any available means, no AST trap
occurs at the completion of block I/O operations.

represents the symbolic address of an optional
user-coded error-handling routine.

The following examples are representative of READS macro calls that
may be issued to accomplish a variety of operations:

READS
READS
READS

READS

#INFDB,,,,,,,ERRLOC
RO, #INBUF, $BUFSIZ, , #22.,4#I0SADR, #ASTADR, ERRLOC

#INFDB, #INBUF, #BUFSIZ, #VBNADR

3-31

FILE-PROCESSING MACRO CALLS

The first example assumes that RO contains the address of the
associated FDB. Also, all other required FDB initialization has been
accomplished through either the FDBKSA or the FDBK$R macro call.

The second example shows an explicit declaration of the associated FDB
and includes the symbolic address of a user-coded error-handling
routine.

In the third example, RO again contains the address of the associated
FDB. The block buffer address and the size of the block are specified
next in symbolic form. The address of the 2-word block in the user
program containing the wvirtual block number is not specified, as
indicated by the additional comma in the parameter string. The event
flag number, the address of the I/O status block, and the address of
the AST service routine then follow in order. Finally, the symbolic
address of an optional error routine is specified.

The fourth example reflects, as the last parameter in the string, the

symbolic address of the 2-word block in the user program containing
the virtual block number.

3.15.2 FDB ﬁequirements for READS$ Macro Call

The READS macro call requires that the associated FDB be initialized
with certain values before it «can be issued. These values may be
specified through either the FDBKS$A or the FDBKSR macro call, or they
may be made available to the FDB through the various parameters of the
READS macro call. In any case, the following values must be present
in the FDB to enable READS$ operations to be performed:

1. The block buffer address (in offset location F.BKDS+2);
2. The block byte count (in offset location F.BKDS); and

3. The virtual block number (in offset locations F.BKVB+2 and
F.BKVB).

3.16 WRITE$ — WRITE VIRTUAL BLOCK

The WRITES macro call is issued to write a virtual block of data to a
block-oriented device (e.g., a disk or DECtape). Like the READ$ macro
call, if certain optional parameters are specified in the WRITES$ macro
call, status information is returned to the I/0 status block (see
section 2.8.2), and, at the completion of the I/0 transfer, the
program traps to an AST service routine that is supplied to coordinate
asynchronous block I/0 operations (see section 2.8.3).

Whether or not the address of an AST service routine and/or an event
flag number is supplied, the user is responsible for synchronizing all
block I/O processing. Again, as with READ$ operations, the WAITS
macro call can be issued in conjunction with the WRITES$ macro call to
suspend program execution until a program-dependent I/O transfer has
been completed. When the WAITS macro call is used for this purpose,
the event flag number and the I/0 status block address in both macro
calls must be the same.

3.16.1 Format of WRITES$ Macro Call

The WRITES$ macro call takes the same parameters as the READS macro
call, as shown below. However, the bkvb parameter, in this case,
represents the number of the virtual block tc be written. The virtual
block number is incremented by one (1) automatically after each WRITES
operation is performed.

The WRITES$ macro call has the following format:
WRITES £fdb,bkda,bkds,bkvb,bkef,bkst,bkdn,err

When this macro call is issued, the virtual block number (i.e., the
bkvb parameter) is checked to ensure that it references a block within
the file's allocated space; if it does, the block is written. If the
specified block is not within the file's allocated space, FCS attempts
to extend the file. If this attempt is successful, the block is
written: if not, an error code indicating the reason for the failure
of the extend operation is returned to the I/0 status block and to
offset location F.ERR of the associated FDB.

If FCS determines that the file must be extended, the actual extend
operation 1is performed synchronously. After the extend operation has
been successfully completed, the WRITES operation is gqueued, and only
then 1is control returned to the instruction immediately following the
WRITES macro call.

The following examples illustrate representative WRITES$ macro calls:
WRITES RO
WRITES #OUTFDB, #OUTBUF, #BUFSIZ, #VBNADR, #22.
WRITES RO,,,,#22.,#I0SADR,#ASTADR,ERRLOC

The first example specifies only the FDB address and assumes that all
other required values are present in the FDB. The second example
reflects explicit declarations for the FDB, the block buffer address,
the block buffer size, the virtual block number address, and the event
flag number for signaling block I/0O completion. The third example
shows null specifications for three parameter fields, then continues
with the event flag number, the address of the I/O status block, and

the address of the AST service routine. Finally, the address of a
user-coded error-handling routine is specified.

3.16.2 FDB Requirements for WRITES$ Macro Call

WRITES operations require the presence of the same information in the
FDB as READS operations (see section 3.15.2 above).

3.17 DELETS$ - DELETE SPECIFIED FILE

The DELETS macro call causes the directory information for the file
associated with the specified FDB to be deleted from the appropriate
user file directory (UFD). The space occupied by the file is then
deallocated and returned to the pool of available storage on the
volume for reallocation.

3-33

FILE-PROCESSING MACRO CALLS

This macro call can be issued for a file that 1is either open or
closed. If issued for an open file, that file is then closed and
deleted; 1if issued for a closed file, that file is deleted only if
the filename string specified in the associated dataset descriptor or
default filename block contains an explicit file version number.

Thus, if the file is not open, and the file version number 1is 0

(indicating the 1latest version), or if the file version number is -1
(indicating the oldest version), then the DELETS$ operation will fail.

3.17.1 Format of DELETS Macro Call

The DELETS macro call takes the following format:

DELETS fdb,err

where: fdb represents the symbolic address of the associated
FDB.
err represents the symbolic address of an optional

user—-coded error-handling routine.
The following statements are illustrative of DELET$ macro calls:
DELET$ RO
DELET$ #OUTFDB,ERRLOC

DELETS RO,ERRLOC

3.18 WAIT$ - WAIT FOR BLOCK I/O COMPLETION

The WAITS$ macro call, which is issued only in connection with READS
and WRITES operations, causes program execution to be suspended until
the requested block I/O transfer is completed. This macro call may be
used to synchronize a block I/0O operation which depends on the
successful completion of a previous block I/0 transfer.

As noted in section 3.15 in connection with the READS macro call, the
user may specify an event flag number through the bkef parameter.
This event flag number is used during READ$ operations to indicate the
completion of the requested transfer. If desired, the user may issue
a WAITS macro call (specifying the same event flag number and 1I/0
status block address) following the READ$ (or WRITES) macro call.

In this case, the READS operation is initiated in the wusual manner,
but the Executive of the host operating system suspends program
execution until the specified event flag is set, indicating that the
I/0 transfer has been completed. The system then returns information
to the I/0O status block, indicating the success/failure of the
operation. FCS then moves the I/0 status block success/failure
indicator into offset 1location F.ERR of the associated FDB, and
returns with the C-bit in the Processor Status Word cleared if the
operation is successful, or set if the operation 1is not successful.
Task execution then <continues with the instruction immediately
following the WAITS$ macro call.

The system returns the final status of the I/0 operation to the TI/O
status block (see section 2.8.2) upon completion of the requested

3-34

operation. A positive value (+) indicates successful completion, and
a negative value (-) indicates unsuccessful completion.

Event flags are discussed in further detail in section 2.8.1.

3.18.1 Format of WAITS$ Macro Call

The WAITS macro call is specified in the following format:

WAITS

where: fdb

bkef

bkst

err

fdb,bkef,bkst,err

represents the symbolic address of the associated
FDB.

represents a numeric value specifying the event
flag number to be used for synchronizing block I/0
operations. The WAITS macro causes task execution
to be suspended by invoking the WAITFOR system
directive. This parameter must agree with the
corresponding (bkef) parameter in the associated
READS/WRITES$ macro call.

If this parameter is not specified, either in the
WAITS macro call or the associated READS/WRITE
macro call, FDB offset location F.BKEF is assumed
to contain the desired event flag number, as
previously initialized through the bkef parameter
of the FDBKSA or the FDBKS$R macro call.

represents the symbolic address of the I/O status
block in the wuser program (see section 2.8.2).
Although this parameter is optional, if specified,
it must agree with the corresponding (bkst)
parameter in the associated READ$/WRITES macro
call.

If this parameter is not specified, either in the
WAITS macro call or the associated READ$/WRITES
macro call, FDB offset location F.BKST is assumed
to contain the address of the I/0 status block, as
previously initialized through the bkst parameter
of the FDBKSA or the FDBKSR macro call. If F.BKST
has not been initialized, no return of information
to the I/O status block occurs.

represents the symbolic address of an optional
user—-coded error-handling routine.

The following statements are representative of WAITS macro calls:

WAITS
WAITS
WAITS

WAITS

RO
#INFDB, #25.
RO, #25., #I0OSTAT

RO, ,#I0OSTAT,ERRLOC

3-35

FILE-PROCESSING MACRO CALLS

The first example assumes that RO contains the address of the
associated FDB; furthermore, since the event flag number (bkef
parameter) is not specified, offset location F.BKEF 1is assumed to
contain the desired event flag number. If this cell in the FDB
contains zero (0), event flag number 32(10) is used by default.

The second example shows an explicit specification of the FDB address
and also specifies 25(10) as the event flag number. Again, in this
example, the FDB is assumed to contain the address of the 1I/0 status
block. In contrast, the third example shows an explicit specification
for the address of the I/0 status block.

Finally, the fourth example contains a null specification for the
event flag number, and, in addition, specifies the address of a
user-coded error-handling routine.

It should be noted that the WAITS$ macro call associated with a given
READS$ or WRITES operation need not be issued immediately following the
macro call to which it applies. For example, the following sequence
is typical:

1. 1Issue the desired READS or WRITES macro call.

2. Perform other processing that 1is not dependent on the
completion of the requested block I/O transfer.

3. Issue the WAITS macro call.

4, Perform the processing that is dependent on the completion of
the requested block I/0 transfer.

When performing multiple asynchronous transfers in the same general
sequence as above, a separate buffer, I/O status block, and event flag
must be maintained for each operation. If the user intends to wait
for the completion of a given transfer, the appropriate event flag
number and I/0 status block address must be specified in the
associated WAITS macro call.

3-36

CHAPTER 4

FILE CONTROL ROUTINES

File control routines can be invoked in MACRO-11l programs to perform
the following functions:

Read or write default directory string descriptors in $$FSR2;
Read or write the default file protection word in $$FSR2;

Read or write the file owner word in $$FSR2;

Convert a directory string from ASCII to binary, or vice versa;
Find, insert, or delete a directory entry;

Set a pointer to a byte within a virtual block or to a record
within a file;

Mark a place in a file for a subsequent OPENS$x operation;
Issue an I/0 command and wait for its completion;

Rename a file;

Extend a file;

Mark a temporary file for deletion;

Delete a file by filename block;

Place directory information in a default filename block or a
filename block;

Perform device-specific control functions. (1)

(1) Does not apply to RSX-11M

FILE CONTROL ROUTINES

4.1 CALLING FILE CONTROL ROUTINES

The CALL macro 1is used to invoke file control routines. These
routines are included from the system object library
(SY:[1,1]SYSLIB.OLB) at task-~build time and incorporated into the user
task. The file control routines are called as shown below:

CALL .RDFDR
CALL .EXTND

Before the CALL macro is issued, certain file control routines require
that specific registers be preset with requisite information. These
requirements are identified in the respective descriptions of the
routines. Upon return, all registers are preserved, except those
explicitly specified as changed.

As a general rule, if an error is detected by a file control routine,
the C-bit (carry condition code) in the Processor Status Word is set,
and an error indication is returned to FDB offset 1location F.ERR.
However, certain file control routines do not return error indications
because of the specific nature of their functions. The following file
control routines are listed according to whether or not they return
error indications.

Normal Error Return

(C-bit and F.ERR) No Error Return
.ASCPP .RDFDR
.PARSE .WDFDR
. PRSDV .RDFFP
.ASLUN .WDFFP
.FIND .RFOWN
.ENTER .WFOWN
. REMOV . PPASC
.GTDIR .MARK
.GTDID
.POINT
. POSRC
.POSIT
. XQIO
. RENAM
.EXTND
.MRKDL
.DLFNB
.CTRL (1)

Appendix I lists the error indicators that are placed in FDB offset
location F.ERR by the routines identified above.

(1) Does not apply to RSX-11M

4.2 DEFAULT DIRECTORY STRING ROUTINES

The following routines are used to read and write directory string
descriptors. :

4.2.,1 .RDFDR - Read $$FSR2 Default Directory String Descriptor

The user calls the .RDFDR routine to read the default directory string
descriptor words from program section $$FSR2 of the FSR. These
descriptor words define the address and the length of an ASCII string
which contains the default directory string. This directory string
constitutes the default directory that is to be used by FCS when one
is not explicitly specified in a dataset descriptor.

Unless the user explicitly changes the default directory string
descriptor words in S$$FSR2 through the .WDFDR routine below, the

default directory for a task will always correspond to the UIC under
which the task is running.

When called, the .RDFDR routine returns the default directory string
descriptor words to the following registers:

Rl Contains the size (in bytes) of the default directory string
in $SFSR2.

R2 Contains the address of the default directory string in
S$SSFSR2.

4.2.2 .WDFDR - Write New $$FSR2 Default Directory String Descriptor

The .WDFDR routine is called to create new default directory string
descriptor words 1in $$FSR2. For example, if a user program is to
operate on files in the directory [220,220], regardless of the UIC the
program runs under, then the user may change the default directory
string descriptor cells in $$SFSR2 to point to the alternate directory
string [220,220] created elsewhere in the program. To do this, the
desired directory string is first created through an .ASCII directive.
Then, by <calling the .WDFDR routine, the default directory string
descriptor cells in $$FSR2 are modified to point to the new directory
string.

Assume that the task is currently running under default UIC [200,200].
By issuing a MACRO-11 directive similar to the following:

NEWDDS: .ASCII /[220,220]/

a new directory string is defined. Then, by calling the .WDFDR
routine, the user can modify the string descriptor cells in $$FSR2 to
point to the new directory string. Thus, the default directory string
in $$FSR2 remains intact; only the string descriptors within $$FSR2
are changed.

FILE CONTROL ROUTINES
The following registers must be preset before calling the .WDFDR
routine:
Rl Must contain the size (in bytes) of the new directory string.
R2 Must contain the address of the new directory string.
NOTE
Changing the default directory string
descriptor words in $$FSR2 does not

change the default UIC in $$FSR2 or the
task's privileges.

4.3 DEFAULT FILE PROTECTION WORD ROUTINES

The routines described below are used to read and write the default
file protection word in a location in program section $$FSR2 of the
file storage region (FSR). This word is used only at £file-creation
time (e.g., by the OPEN$W macro call) to establish the default file
protection values for the new file. Unless altered, this value
constitutes the default file protection word for that file. If the
value is minus one (-1), it indicates that the volume default file
protection value, as established through the INITIALIZE, INITVOLUME,
or MOUNT command, is to be used for the new file. The IAS User's
Guide, RSX-11D User's Guide, and RSX-11M Operator's Procedures Manual,
respectively, describe these initialization commands in detail.

The default file protection word has the following format:

Bits 15 12 11 8 7 4 3 0

WORLD GROUP OWNER SYSTEM

Each of the four categories above has four bits; each bit has the
following meaning with respect to file access:

Bit 3 2 1 0

DELETE | EXTEND | WRITE | READ

A bit value of zero (0) indicates that the respective type of access
to the file is to be allowed; a bit value of one (1) indicates that
the respective type of access to the file is to be denied.

4.3.1 .RDFFP - Read SFSR2 Default File Protection Word

The user calls the .RDFFP routine to read the default file protection
word in program section $$FSR2 of the FSR. No registers need be set
before calling this routine.

When called, the .RDFFP routine returns the following information:

R1 Contains the default file protection word from SFSR2.

Fluk CUNTROL RKUUTINBED

4,3.2 .WDFFP — Write New $SFSR2 Default File Protection Word

The .WDFFP routine is used to write a new default file protection word
into $$FSR2.

The following register must be preset before calling this routine:

Rl Must contain the new default file protection word to be
written into S$$FSR2. If this register is set to minus one
(-1), the default file protection values established through
the INITIALIZE, INITVOLUME, or MOUNT command will be used in
creating all subsequent new files.

4.4 FILE OWNER WORD ROUTINES

is a

he file owner word, like the default file cti
ocation in program section $$FSR2 of the FSR. The file owner word is
used only at file-creation time (e.g., by the OPEN$W macro call) to

establish the owner of the new file.

on word above,;

=3

o
i

Normally, the file owner word contains the default UIC under which the
task is running. However, through the .WFOWN routine (see section
4.4.2 below), the file owner word can be changed, if desired, so that
any new files then created by the user program will have the desired
UIC.

The format of the file owner word is shown below:

15 8 7 0

GROUP MEMBER

The routines for reading and writing the file owner word are described
below.

NQOTE

The UIC and the file protection word for
the file (see section 4.3) must not be
set such that the UIC under which the
task 1is running does not have access to
the file. 1If this condition prevails, a
privilege violation will result.

4.,4,1 .RFOWN - Read SSFSR2 File Owner Word

The .RFOWN routine is used to read the file owner word from a location
in $$FSR2. No registers need be preset before calling this routine.

When called, the .RFOWN routine returns the following information:

Rl Contains the file owner word (UIC).

FILE CONTROL ROUTINES

4.4.2 .WFOWN - Write New $SFSR2 File Cwner Word

The .WFOWN routine is used to write a new file owner word into SFSR2.
The following register must be preset before calling this routine:

R1 Must contain the new file owner word to be written into
$SSFSR2,

4.5 ASCII/BINARY UIC CONVERSION ROUTINES

The following routines are called to convert a directory string from
ASCII to binary, or vice versa.

1 L.ASCPP - Convert ASCII Directory String to Equivalent Binary

4.5.
uIC.
The .ASCPP routine is called to convert an ASCII directory string to
its corresponding binary UIC.

The following registers must be preset before calling this routine:

R2 Must contain the address of the directory string descriptor
in the user program (see section 2.4.1) for the string to be
converted.

R3 Must contain the address of a word 1location in the user
program to which the binary UIC is to be returned. The
member number is stored in the low-order byte of the word,
and the group number is stored in the high-order byte.

4.5.2 .PPSAC - Convert UIC to ASCII directory string. The .PPASC
routine 1is <called to convert a binary UIC to its corresponding ASCII
directory string.

The following registers must be preset before calling this routine:

R2 Must contain the address of a storage area within the user
program into which the ASCII string is to be placed. The
resultant string can be up to 9 bytes in length, e.qg.,
[200,200].

R3 Must contain the binary UIC value to be converted. The
low-order byte of the register contains the member number,
and the high-order byte of the register contains the group
number .

R4 Must contain a control code. Bits 0 and 1 of this register
indicate the following:

Bit 0 is set to 0 to suppress leading =zeros (e.g., 001 is
returned as 1). Bit 0 is set to 1 to indicate that
leading zeros are not to be suppressed.

Bit 1 is set to 0 to place separators in the directory string
(e.g., [10,201]. Bit 1 1is set to 1 to suppress
separators (e.g., 1020).

FILE CONTROL ROUTINES

The .PPASC routine increments the contents of R2 to point to the byte
immediately following the last byte in the converted directory string.

NCTE
IAS and RSX-11D only: For a discussion

of UIC's and UFD's, see the 1IAS or
RSX-11D User's Guide.

4.6 FILENAME BLOCK ROUTINES

Two routines are available for performing functions related to a
specified filename block. These routines are described in the
following sections.

4.6.1 .PARSE - Fill In All Filename Information

When called, the .PARSE routine first zeros the filename block pointed
to by Rl and then stores the following information in the filename
block:

1. The ASCII device name (N.DVNM);
2. The binary unit number (N.UNIT);
3. The directory ID (N.DID);

4. The Radix-50 filename (N.FNAM);

5. The Radix-50 file type or extension (N.FTYP); and

6. The binary file version number (N.FVER).
The format of a filename block is shown in detail in Appendix B.

Before the .PARSE routine can be called, the FINIT$ macro call (see
section 2.6) must be invoked explicitly in the user program, or it
must be invoked implicitly through a prior OPENS$x macro call. Note,
however, that the FINIT$ call must be issued only once in the
initialization section of the program, i.e., the FINITS$ operation must
be performed only once per task execution. Furthermore, FORTRAN
programs issue a FINITS call at the beginning of task execution;
therefore, MACRO-11 routines used with the FORTRAN object time system
must not issue a FINITS$ macro call.

The following registers must be preset before calling the .PARSE
routine:

RO Must contain the address of the desired FDB.

FILE CONTROL ROUTINES

R1 Must contain the address of the filename block to be filled
in. This filename block is usually, but not necessarily, the
filename block within the FDB specified in RO (i.e., RO +
F.FNB) .

R2 If .PARSE is to access a dataset descriptor in building the
specified filename block, this register must contain the
address of the desired dataset descriptor. This structure is
usually, but not necessarily, the same as that associated
with the FDB specified in RO, i.e., the dataset descriptor
pointed to by the address value in F.DSPT.

If R2 contains zero (0), this value implies that a dataset
descriptor has not been defined; therefore, the dataset
descriptor logic of .PARSE is bypassed.

R3 If .PARSE is to access a default filename block in building
the specified filename block, this register must contain the
address of the desired default filename block. This
structure is usually, but not necessarily, the same as that
associated with the FDB specified in RO, i.e., the default
filename block pointed to by the address value in F.DFNB.

As above, if R3 contains zero (0), this value implies that a
default filename block has not been defined; therefore, the
default filename block logic of .PARSE is bypassed.

Thus, RO and R1 each must contain the address of the appropriate data
structure, while either R2 or R3 must contain the address of the
desired filename information. Both R2 and R3, however, may contain
address values 1if the referenced structures both contain information
required in building the specified filename block.

The .PARSE routine fills in the specified filename block in the order
described in the following sections.

4.6.1.1 Device and Unit Information

The .PARSE routine first attempts to fill in the filename block with
device (N.DVNM) and unit (N.UNIT) information. The following
operations are performed in sequence until the required information is
obtained from the specified data structures:

1. If the address of a dataset descriptor is specified in R2 and
this structure contains a device string, the device and unit
information therein is moved into the specified filename
block.

2. If Step 1 fails, and if the address of a default filename
block 1is specified in R3, and this structure contains a
non-zero value in the device name field, the device and unit
information therein 1is moved into the specified filename
block.

3. 1If Step 2 fails, .PARSE uses the device and unit currently

assigned to the logical unit number in offset location F.LUN
of the specified FDB in building the filename block.

4-8

This feature allows a program to use pre-assigned logical
units which are assigned through either the device assignment
(ASG) option of the Task Builder or one of the following
commands: the ASSIGN (under IAS) or the REASSIGN (under
RSX). 1In this case, the user simply avoids specifying the
device string in the dataset descriptor and the device name
in the default filename block.

4. If the logical unit number in F.LUN is currently unassigned,
.PARSE assigns this number to the system device (SY¥0:).

Once the device and unit are determined and the logical unit number is
assigned, .PARSE invokes the GLUNS$ directive to obtain necessary
device information. Requisite information 1is returned to the
following offsets in the filename block pointed to by Rl:

N.DVNM - Device Name Field. Contains the redirected device
name.

N.UNIT - Unit Number Field. Contains the redirected unit
number.

In addition, requisite information 1is returned to the following
offsets in the FDB pointed to by RO:

F.RCTL - Device Characteristics Byte. This cell contains
device-dependent information from the first byte of the
third word returned by the GLUN$ directive. The bit
definitions pertaining to the device characteristics
byte are described in detail in Table A-1. If desired,
the user can examine this cell in the FDB to determine
the characteristics of the device associated with the
assigned LOUN.

F.VBSZ - Device Buffer Size Word. This 1location contains the
information from the sixth word returned by the GLUNS
directive. The value in this cell defines the device
buffer size (in bytes) pertaining to the device
associated with the assigned LUN.

The GLUNS$ directive is described in detail in the Executive Reference
Manual of the host operating system.

4.6.1.2 Directory Identification Information

Following the operations described in the preceding section, .PARSE
attempts to. fill in the filename block with directory identification
information (N.DID), as follows:

1. If the address of a dataset descriptor is specified in R2 and
this structure contains a directory string, that directory
string is used to find the associated UFD in the MFD, and the
resulting file 1ID is then moved into the directory ID field
of the specified filename block.

2. 1If Step 1 fails, and if the address of a default filename
block is specified in R3, and this structure contains a
non-zero directory ID, it is moved into the specified
filename block.

4.6.1.3

FILE CONTROL ROUTINES

Since none of the parameters of the NMBLK$S macro call (see
section 2.4.2) initialize the three words starting at offset
location N.DID in the default filename block, these cells
must be initialized manually, or they must be initialized by
issuing a call to either the .GTDIR routine (see section
4.8.1) or the .GTDID routine (see section 4.8.2). Note that
these routines can also be used to initialize a specified
filename block directly with required directory information.

If neither Step 1 nor Step 2 yields the required directory
string, .PARSE uses the default directory string in $$FSR2 to
obtain the directory ID in the same manner as described in
Step 1 above. The default directory string is set initially
to correspond to the UIC under which the task is running.

Filename, File Type or Extension, and File Version
Information

Following the operations described in the preceding section, .PARSE

attempts

to obtain filename information (N.FNAM, N.FTYP, and N.FVER),

as follows:

1.

If the address of a dataset descriptor is specified in R2 and
this structure contains a filename string, the filename
information therein is moved into the specified filename
block.

If the address of a default filename block is specified 1in
R3, and one or more of the filename, file type or extension,
and file version number fields of the dataset descriptor
specified in R2 are null, then the corresponding fields of
the default filename block are used to fill in the specified
filename block.

If neither Step 1 nor Step 2 yields the requisite filename
information, any specific field(s) not available from either
source remain(s) null.

NOTE

If a dot (.) appears in the filename
string without an accompanying file type
designation (e.g., TEST. or TEST.;3),
the file type 1is interpreted as being
explicitly null. In this case, the
default file type is not used.
Similarly, if a semicolon (;) appears in
the filename string without an
accompanying file version number (e.g.,
TEST.DAT;), the file version number is
likewise interpreted as being explicitly
null; again, the default file version
number is not used in this case.

nTT O
Lo CON

4.6.1.4 Other Filename Block Information

Finally, after performing all the operations above, the .PARSE routine
also fills in the filename block status word (offset location N.STAT)
of the filename block specified in R1l. The bit definitions for this
word are presented in Table B-2. Note in this table that an
"explicit" directory, device, filename, file type, or file version
number specification pertains to ASCII data supplied through the
dataset descriptor pointed to by R2.

In addition, .PARSE explicitly zeros offset 1location N.NEXT in the

filename block pointed to by Rl. This action has implications for
wildcard operations, as described in section 4.7.1 below.

4.6.2 .PRSDV - Fill in Device and Unit Information Only

The .PRSDV routine is identical to the .PARSE routine above, except
that it performs only those operations associated with requisite
device and unit information (see section 4.6.1.1). This routine zeros
the filename block pointed to by R1l, performs a .PARSE operation on
the device and unit fields in the specified dataset descriptor and/or
default filename block, and assigns the logical unit number contained
in offset location F.LUN of the specified FDB.

4.6.3 L.ASLUN - Assign Logical Unit Number

The .ASLUN routine is called to assign a logical wunit number to a
specified device and unit and to return the device information to a
specified FDB and filename block.

The following registers must be preset before calling this routine:
RO Must contain the address of the desired FDB.

Rl Must contain the address of the filename block containing the
desired device and unit. This filename block is usually, but
_ not necessarily, the filename block within the FDB specified

in RO.

If the device name field (offset 1location N.DVNM) of the filename
block pointed to by Rl contains a non-zero value, the specified device
and unit are assigned to the logical unit number contained in offset
location F.LUN in the FDB pointed to by RO.

If N.DVNM in the filename block contains zero (0), then the device and
unit currently assigned to the specified 1logical unit number are
returned to the appropriate fields of the filename block.

Finally, if the specified logical unit number is not assigned to a
device, the .ASLUN routine assigns it to the system device (SY0:) by
default.

The information returned to the specified filename block and to the
specified FDB 1is identical to that returned by the device and unit
logic of the .PARSE routine (see section 4.6.1.1).

FILE CONTROL ROUTINES

4.7 DIRECTORY ENTRY ROUTINES

The following routines are used to find, insert, and delete directory
entries. The term "directory entry" encompasses entries in both the
master file directory (MFD) and the user file directory (UFD).

4.7.1 L.FIND - Locate Directory Entry

The .FIND routine is called to locate a directory entry by filename
and to fill in the file identification field (N.FID) of a specified
filename block.

The following registers must be preset before calling this routine:
RO Must contain the address of the desired FDB.

R1 Must contain the address of a filename block. This filename
block is usually, but not necessarily, the filename block
within the FDB specified in RO.

When invoked, the .FIND routine searches the directory file specified
by the directory ID field of the filename block. This file is
searched for an entry that matches the specified filename, file type,
and file version number. 1In this regard, two special file versions
are defined:

Version 0 is matched by the latest (largest) version number
encountered in the directory file.

Version -1 is matched by the oldest (smallest) version number
encountered in the directory file.

If either of these special versions 1is specified in the filename
block, the matching version number is returned to the filename block.
In this way, the actual version number 1is made available to the
program.

Certain wildcard operations require the use of the .FIND routine.
Three bits in the filename block status word (see N.STAT in Table B-2)
indicate whether a wildcard (*) was specified for a filename, a file
type, or a file version number field. If the wildcard bit in N.STAT
is set for a given field, any directory entry will match in that
corresponding field. Thus, if the filename and file version number
fields contain wildcard specifications (*), and the file type field is
specified as .OBJ (i.e., *.0BJ;*), the first directory entry
encountered that contains .OBJ in the file type field will match,
irrespective of the values present in the other two fields.

When a wildcard match is found, the complete filename, file type, and
file version number fields of the matching entry are returned to the
filename block, along with the file ID field (N.DID). Thus, the
program can determine the actual name of the file just found. Offset
location N.NEXT in the filename block is also set to indicate where
that directory entry was found in the directory file. This
information is used in subsequent .FIND operations to locate the next
matching entry in the directory file.

FILE CONTROL ROUTINES

For example, the .FIND routine is often used to open a series of files
when wildcard specifications are used. The following operations are

typical:

1.

Call the .PARSE routine. This routine zeros offset location
N.NEXT in the filename block in preparation for the iterative
.FIND operations described in Step 3 below.

Check for wildcard bits set by the .PARSE routine 1in the
filename block status word (see N.STAT in Table B-2). An
instruction sequence such as that shown below may be used to
test for the setting of wildcard bits in N.STAT:

BIT #NB.SVR!NB.STP!NB.SNM,N.STAT (R1)
BEQ NOWILD ;BRANCH IF NOT SET.
If wildcard specifications are present in the filename block

status word, repeat the following sequence until all the
desired wildcard files have been processed:

CALL .FIND

BCS DONE ;ERROR CODE IE.NSF INDICATES
;NORMAL TERMINATION.

OPENS$

Wildcard .FIND operations update offset 1location N.NEXT in
the filename block. In essence, the contents of this cell
provide the necessary information for continuing the search
of the directory file for a matching entry.

Perform the desired operations on the file.

NOTE

The above procedure applies only for the
following types of wildcard file
specifications:

TEST.DAT; *
TEST.*;*
* DAT;*

The procedure does not work for the
following types of wildcard file
specifications:

* .DAT
TEST.*

In summary, if a wildcard file
specification 1is present in either the
filename field or the file type field,
the file version number field must also
contain either an explicit wildcard
specification (*) or a specific file
version number (e.g., 2, 3, etc.). In
the latter <case, however, the version

4-13

FILE CONTROL ROUTINES

number cannot be zero (0), for the
latest version of the file, or minus one
(~=1), for the oldest version of the
file.

4.7.2 JENTER - Insert Directory Entry

The .ENTER routine is used to insert an entry by filename into a
directory.

The following registers must be preset before calling this routine:
RO Must contain the address of the desired FDB.

R1 Must contain the address of a filename block. This filename
block 1is usually, but not necessarily, the filename block
within the. FDB specified in RO.

If the file version number field of the filename block contains zero
(0), indicating a default version number, the .ENTER routine scans the
entire directory file to determine the current highest version number
for the file. 1If a version number for the file is found, this entry
is incremented to the next higher version number; otherwise, it is
set to one (1). The resulting version number is returned to the
filename block, making this number known to the program.

NOTE

Wildcard specifications cannot be used
in connection with .ENTER operations.

/
4.7.3 .REMOV - Delete Directory Entry

The .REMOV routine is called to delete an entry from a directory by
filename. This routine only deletes a specified directory entry; it
does not delete the associated file.

The following registers must be preset before calling this routine:
RO Must contain the address of the desired FDB.

R1 Must contain the address of a filename block. This filename
block 1is wusually, but not necessarily, the filename block
within the FDB specified in RO.

Wildcard specifications operate in the same manner as for the .FIND
routine described in section 4.7.1 above, except that the special file
version numbers zero (0) and minus one (-1) are illegal. The file
version number for .REMOV operations must be explicit or wildcard.
Each .REMOV operation deletes the next directory entry having the
specified filename, file type, and file version number.

4.8 FILENAME BLOCK ROUTINES

The following routines are used to insert directory information in a
specified filename block.

4.8.1 .GTDIR - Insert Directory Information in Filename Block

The .GTDIR routine is called to insert directory information taken
from a directory string descriptor into a specified filename block.

Before calling this routine, the following registers must be preset:
RO Must contain the address of the desired FDB.

R1 Must contain the address of a filename block in which the
directory information 1is to be placed. This filename block
is usually, but not necessarily, the filename block within
the FDB specified in RO.

R2 Must contain the address of the 2-word directory string
descriptor in the wuser program. This string descriptor
defines the size and the address of the desired directory
string.

This routine performs a .FIND operation for the specified user file
directory (UFD) in the master file directory (MFD) and returns the
resulting directory ID to the three words of the specified filename
block, starting at offset location N.DID. The .GTDIR routine
preserves the information in offset locations N.FNAM, N.FYTP, N.FVER,
N.DVNM, and N.UNIT of the filename block, but zeros (clears) the rest
of the filename block.

The .GTDIR routine can also be used in conjunction wi

macro call (see section 2.4.2) to insert directory information into
specified default filename block.

th the NMBLKS
to a

4,8.2 .GTDID - Insert Default Directory Information in Filename Block

The .GTDID routine provides an alternate means for inserting directory
information into a specified filename block. Instead of allowing the
specification of the directory string, as in the .GTDIR routine above,
this routine uses the UIC in the default file owner word in $$FSR2 as
the desired user file directory (UFD).

Before calling this routine, the following registers must be preset:
R0 Must contain the address of the desired FDB.

Rl Must contain the address of a filename block in which the
directory information 1is to be placed. This filename block
is usually, but not necessarily, the filename block within
the FDB specified in RO.

When called, the .GTDID routine takes the UIC from the default file
owner word in $$FSR2 and performs a .FIND operation for the associated
user file directory (UFD) in the master file directory (MFD). The
resulting directory ID is returned to the three words of the specified

FILE CONTROL ROUTINES

filename block, starting at offset location N.DID. As with the .GTDIR
routine, .GTDID preserves offset locations N.FNAM, N.FTYP, N.FVER,
N.DVNM, and N.UNIT in the filename block, but zeros the rest of the
filename block.

The .GTDID routine embodies considerably less code than the .GTDIR
routine, since it does not invoke the .PARSE logic; furthermore,
.GTDID is intended specifically for use in programs which open files
via the OFNB$ macro call (see section 3.6). Such a program does not
invoke the .PARSE logic because all required filename information is
provided to the program in filename block format.

As is true of the .GTDIR routine described in section 4.8.1 above,
.GTDID may also be used in conjunction with the NMBLK$ macro call (see
section 2.4.2) to insert directory information (N.DID) into a
specified default filename block. The user also has the option to
initialize offset location N.DID manually with required directory
information.

4.9 FILE POINTER ROUTINES

The following routines are used to point to a byte or a record within
a specified file.

4.9.1 .POINT - Position File to Specified Byte

The .POINT routine is called to position a file to a specified byte in
a specified virtual block. If locate mode is in effect for record I/0
operations, the .POINT routine also updates the value in offset
location F.NRBD+2 1in the associated FDB in preparation for a PUTS$
operation in locate mode.

The following registers must be preset before calling this routine:
RO Must contain the address of the desired FDB.
R1 Must contain the high-order bits of the virtual block number.
R2 Must contain the low-order bits of the virtual block number.

R3 Must contain the desired byte number within the specified
virtual block.

For a description of virtual block numbers and how these 2-word values
are formed, refer to Item 4 in section 2.2.2.1.

The .POINT routine is often used in conjunction with the .MARK routine
to achieve a 1limited degree of random access with variable-length
records. The .MARK routine saves the positional context of a file in
anticipation of temporarily closing that file and then re-opening it
later at the same position. For such purposes, the following
procedure applies:

1. Call the .MARK routine (see section 4.9.3 below) to save the
current positional context of the file.

2. Close the file.

4-16

FILE CONTROL ROUTINES

3. When desired, re-open the file.

4. Load the information returned by the .MARK routine into RI1,
R2, and R3, as required above, before calling the .POINT
routine.

5. Call the .POINT routine.

6. Resume processing of the file.

4.9,2 .POSRC - Position File to Specified Record

The .POSRC routine is called to position a file to a specified
fixed-length record within a file. If locate mode is in effect for
record I/0 operations, the .POSRC routine also updates the value in
offset 1location F.NRBD+2 in the associated FDB in preparation for a
PUTS$ operation in locate mode.

Before calling this routine, the wuser must set offset locations
F.RCNM+2 and F.RCNM in the FDB to the desired record number and ensure
that the correct record size is reflected in offset location F.RSIZ of
the FDB.

Also, the register below must be preset before calling the .POSRC
routine:

RO Must contain the address of the associated FDB.

The .POSRC routine is wused when performing random access PUTS
operations 1in 1locate mode. Normally, PUT$ operations in locate mode
are sequential; however, when random access mode 1is wused, the
following procedure must be performed to ensure that the record is

hiti3 1+ o+ +ha Acacire A la~a ar
Muliaro au LT Uc<ollLTU 2veaLivll

1. Set offset locations F.RCNM+2 and F.RCNM in the associated
FDB to the desired record number.

2. Call the .POSRC routine.

3. Build the new record at the address returned (by the .POSRC
call) in offset location F.NRBD+2 of the associated FDB.

4. Perform the PUTS$ operation.

4.9.3 .MARK - Save Positional Context of File

The .MARK routine allows the user to record the current positional
context of a file for later use. For example, the user may mark the
current position of the file, close that file, and later re-open the
file and return to the same position within the file. The .MARK
routine is also useful in altering records within a file. After
determining the record to be altered, the user may .MARK the file and
retrieve information elsewhere in the file for use in updating the
desired record. Then, by returning to the saved position of the file,
the desired record may be altered. This iterative sequence may be
repeated any number of times to update desired records in the file.

4-17

FILE CONTROL ROUTINES

The register below must be preset before calling this routine:
RO Must contain the address of the associated FDB.

When called, the .MARK routine returns information to the following
registers:

R1 Contains the high-order bits of the virtual block number.
R2 Contains the low-order bits of the virtual block number.

R3 Contains the number of the next byte within the virtual
block.

R3 points to the next byte in the block. For example, 1if four GETS

operations are performed, followed by a call to the .MARK routine, R3
points to the first byte in the fifth record in the file.

4.9.4 ,POSIT - Return Positional Information for Specified Record

The .POSIT routine calculates the virtual block number and the byte
number pertaining to the beginning of a specified record.

The following register must be preset before calling this routine:
RO Must contain the address of the associated FDB.

In addition, offset locations F.RCNM and F.RCNM+2 in the associated
FDB must contain the desired record number.

Unlike the .POSRC routine above, which positions the file to the
specified record, .POSIT simply calculates the positional information
for a specified record so that a .POINT operation can be later
performed to position to the desired record.

The register values returned by the .POSIT routine are identical to
those described above for the .MARK routine.

4.10 QUEUE I/O FUNCTION ROUTINE (.XQIO)

The .XQIO routine is called to execute a specified QUEUE I/O function
and to wait for its completion.

The following registers must be preset before calling this routine:
RO Must contain the address of the desired FDB.

R1 Must contain the desired QUEUE I/O function code. Refer to
the IAS/RSX-11D Device Handlers Reference Manual or the
RSX-11M I/0 Drivers Reference Manual for the desired QUEUE
I/0 directive function codes.

R2 Must contain the number of optional parameters to be included
in the QUEUE I/O directive, if any.

R3 Must contain the beginning address of the 1list of optional
QUEUE I/0O directive parameters, if R2 contains a non-zero
value.

FILE CONTROL ROUTINES

4,11 RENAME FILE ROUTINE (.RENAM)

The .RENAM routine is called to change the name of a file in its
associated directory. To rename a file, the user must specify the
address of an FDB containing filename information, a LUN, and an event
flag number to be used in connection with renaming the file. If the
file to be renamed is open when the call to .RENAM 1is 1issued, that
file is closed under 1its new name, provided that the renaming
operation is successful.

The following registers must be preset before calling this routine:

RO Must contain the address of the FDB associated with the
originally-named file.

R1 Must contain the address of the FDB containing the desired

filename information, LUN assignment, and event flag to be
asscociated with renaming the file.
If the renaming operation is successful, a new directory entry is
created, and the original entry is deleted. If the operation is not
successful, the file is <closed under 1its original name, and the
associated directory is not affected.

NOTE

The renaming process is merely a
directory operation which replaces an
old entry with a new entry. The
filename stored in the file's header
block is not altered.

4.12 FILE EXTENSION ROUTINE (.EXTND)

The .EXTND routine is called to extend either contiguous or
noncontiqguous files. The file to be extended can be either open or
closed.

The following registers must be preset before calling this

mus preset before calling this rou

RO Must contain the address of the associated FDB.

Rl Must contain a numeric value specifying the number of blocks
to be added to the file.

R2 Must contain the extension control bits, as appropriate. The
possible bit configqurations for controlling file extend
operations are detailed in Table 4-1. This table defines the
bits in the low-order byte of R2. The high-order 8 bits of
R2 (bits 8 through 15) are used in conjunction with the 16
bits of Rl to define the number of blocks to be added to the
file (see Note below).

NOTE

The contents of R1 and the high-order
byte of R2 (bits 8 through 15) are used

FILE CONTROL ROUTINES

by FCS in accomplishing the specified
.EXTND operation. Thus, 24 bits of
magnitude are available for specifying
the number of blocks by which the file
is to be extended.

Table 4-1
R2 Control Bits for .EXTND Routine

BIT SETTINGS -
Low-Order Byte of R2 BIT DEFINITIONS AND MEANING

6 5 4 3 2 1 0

EX.ENA - Bit 7 = 0

X X X x x x O EX.AC1 - BIT 0 = 0; indicates that
extend is to be noncontiguous.
X x x x x x 1 EX.AC1 - BIT 0 = 1; indicates that

extend 1is to be contiguous and that
file is to be contiguous.

EX.ENA - Bit 7 =1

X X X X x x 0 EX.AC1 - Bit 0 = 0; indicates that
noncontiguous area is to be added to
the file.

X X x x x x 1 EX.ACl1 - Bit 0 = 1; indicates that
contiguous area is to be added to the
file.

Xx x x x x 1 x EX.AC2 - Bit 1 = 1; indicates that

the 1largest available contiguous area
is to be added to the file if desired
extend space 1is not available. This
bit is set only if bit 0 in EX.ACl is
set to one (1).

X X x x 0 x «x EX.FCO - Bit 2 = 0; indicates that
the file is to be noncontiguous.
X x x x 1 x x EX.FCO - Bit 2 = 1; indicates that

the file is to be contiguous.

x x x 0 x x x EX.ADF - Bit 3 = 0; indicates that
the user intends to allocate the
number of blocks specified by Rl and
the high-order bits of R2 (see Note
above).

X x x 1 x x X EX.ADF - Bit 3 = 1; indicates that
file extension 1is to occur according
to the volume default extend value, as
established by the INITIALIZE,
INITVOLUME, or MOUNT command.

OL ROUTINES

4.13 FILE DELETION ROUTINES

The following routines are provided for deleting files.

4.13.1 .MRKDL - Mark Temporary File for Deletion

The .MRKDL routine is used in conjunction with a temporary file, i.e.,
a file created through the OPNTS$W macro call (see section 3.3). Such
a file has no associated directory entry.

A call to the .MRKDL routine is issued prior to <closing a temporary
file. The file so marked is then deleted automatically when the file
is closed.

Before calling the .MRKDL routine, the following register must be

vvvvvv

R0 Must contain the address of the associated FDB. This FDB 1is
assumed to contain the file identification, device name, and
unit information pertaining to the file to be deleted.

If the .MRKDL routine is invoked while the temporary file is open, as
is normally done, then the file is deleted unconditionally when it is
closed, even if the calling task terminates abnormally without closing
the file.

4.13.2 .DLFNB - Delete File by Filename Block

This routine is used to delete a file by filename block. The .DLFNB
routine assumes that the filename block is completely filled in, and,
when called, it closes the file, if necessary, and then deletes the
file.

Before calling this routine, the following register must be preset:
RO Must contain the address of the associated FDB.

The .DLFNB routine operates in the same manner as the routine invoked
by the DELETS macro call (see section 3.17), but .DLFNB does not
require any of the .PARSE logic and is thus considerably smaller (in
terms of memory requirements) than the normal DELET$ function.

Like the DELETS operation, however, if the file to be deleted 1is not
currently open, and if an explicit file version number is not present
in offset location N.FVER of the associated filename block, then the
.DLFNB operation will fail.

FILE CONTROL ROUTINES

4.14 DEVICE CONTROL ROUTINE (.CTRL)*

The .CTRL routine is called to perform device-specific control
functions. The following are examples of .CTRL device~specific
functions:

1. Rewind a magnetic tape volume set,

2. Position to the logical end of a magnetic tape volume set,

3. Close the current magnetic tape volume and continue file
operations on the next volume.

The following registers must be preset before <calling this
routine.

RO Must contain the address of the associated FDB.
Rl Must contain one of the following function codes.
FF.RWD to rewind a magnetic tape volume set

FF.POE to position to the logical end of a magnetic tape
volume set

FF.NV to <close the <current volume and continue file
operations on the next volume of a magnetic tape
volume set

R2 and R3 must contain zeros.

See Chapter 5 for an explanation of the use of .CTRL to accomplish
magnetic tape device-specific functions.

*This routine does not apply to RSX-11M.

CHAPTER 5

FILE STRUCTURES

IAS, RSX-11D, and RSX-11M support an identical file structure on disk
and DECtape. IAS and RSX-11D support also, a file structure on
magnetic tape.

RSX-11M supports a magnetic tape file structure only in conjunction
with the File Exchange Utility (FLX). This program is described in
detail in the RSX-11M Utilities Procedures Manual.

The disk and DECtape file structure 1is <called FILES-11; the
IAS/RSX-11D magnetic tape file structure is ANSI standard.

5.1 DISK AND DECTAPE FILE STRUCTURE (FILES-11)

Volumes contain both user files and system files. Disks and DECtapes
initialized through the INITIALIZE (IAS) or INITVOLUME (RSX) command
have the standard FILES-11 structure built for them automatically.
The standard system files created through these commands include the
following:

1. 1Index file;

2. Storage allocation file;

3. Bad block file;

4. Master file directory (MFD); and

5. Checkpoint file (not used by RSX-11M).
Each FILES-11 volume has a file of each type. A volume may have more
than one directory file; such files, created by the CREATE/DIRECTORY
command in IAS, and the UFD command in RSX-11 systems, are used by the
system to locate user files on the volume.
The INITVOLUME command is described in detail in the RSX-11D User's

Guide or the RSX-11M Operator's Procedures Manual; the INITIALIZE
command description can be found in the IAS User's Guide.

FILE STRUCTURES

5.1.1 User File Structure

User data files on disk and DECtape consist of ordered sets of virtual
blocks that constitute the virtual structure of the file as it appears
to the user. Virtual blocks can be read and written directly by
issuing READ$ and WRITE$ macro calls (see sections 3.15 and 3.16,
respectively). Virtual blocks are numbered in ascending sequence
relative to the first block in the file (which is virtual block 1).

The virtual blocks of a file are stored on the volume as 1logical
blocks. The 1logical block size of all volumes is 256 words; thus,
each virtual block is also 256 words. When access to a virtual block
is requested, the virtual block number is mapped into a logical block
number. The logical block number is then mapped to the physical
address on the associated volume.

5.1.2 Directory Files

A directory file contains directory entries. Each entry consists of a
filename and its associated file number and file sequence number. The
number of directory files required depends on the number of users of
the volume. For single-user volumes, only a master file directory
(MFD) is needed; for multiple-user volumes, a master file directory
(MFD) 1is required, and one user file directory (UFD) is required for
each user of the volume.

The master file directory contains a 1list of all the user file
directories on the volume, and each user file directory contains a
list of all that user's files. User file directories (UFD's) are
identified by wuser identification codes (UIC's). A user file
directory is created by the UFD command in RSX~1ll systems, and the
CREATE/DIRECTORY command in IAS. These commands are described in
detail in the RSX-11D User's Guide, the RSX-~11M Operator's Procedures
Manual, or the IAS System Management Guide.

Figures 5-1 and 5-2 illustrate the directory structure for single-user
and multiple-user volumes, respectively.

MFD

File A

File B

File C

Directory Structure for

Figure 5-1

Single-User Volumes

MFD
)
| 1
UFD UFD
100,100 200,200
[_________.I__I I
| | |
File A File B File A File B File C

Figqure 5-2

rigure

Directory Structure for Multiple-User Volumes

FILE STRUCTURES

5.1.3 Index File

The index file contains volume information and user file header
blocks, both of which are used by the file control primitives (FCP).
Because the file header blocks (see below) are stored in the index
file, they <can be 1located very quickly. Furthermore, since a file
header block is 256 words in length, it can be read into memory with a
single access.

The index file is created when a volume is initialized for use by the
host operating system. During initialization, the information
required by the system is placed in the index file. Appendix E
contains a detailed description of the format and content of an index
file.

5.1.4 File Header Block

Associated with each file 1is a file header block that contains
information describing the file. File header blocks are stored in the
index file. Each file header block 1is 256 words in length and
contains three areas: the header area, the identification area, and
the map area.

The header area identifies the block as a file header block. Each
file is uniquely identified by a file ID consisting of two words. The
first word of the file ID, i.e., the file number, is used to calculate
the wvirtual block number (VBN) of that file's header block in the
index file. (This calculation is done, as follows: VBN = the file
number + 3 + the number of index file bit map blocks.) The second
word, i.e., the file sequence number, 1is wused to verify that the
header block is in fact the header for the desired file.

When a request to access a file is issued, both the £file number and
the file sequence number are specified. The access request will be
denied if the file sequence number does not match the corresponding
field in the file header block associated with the specified file
number.

When a file is deleted, its file header block is made available for
the subsequent <creation of a new file, and when the new file is
created, a different file sequence number is stored in the file header
block. If a user attmpts to access a file that has been deleted
{e.g., by referencing an obsolete directory entry), this updated file
sequence number ensures the failure of the access request, even if the
same file header block is re-used for a different file.

The identification area specifies the creation name of the file and
identifies the file owner's UIC. This area also specifies the
creation date and time, the revision number, the date and time of the
last revision (i.e., the time and date on which the last modification
to the file occurred), and the expiration date.

The map area provides the information needed by the system to map
virtual block numbers to logical block numbers.

A checksum value is computed each time the file header block is read
from or written to the volume, thus ensuring that the file header
block was transferred correctly. Appendix F contains a detailed
description of the format and content of the file header block.

5-4

5.2 MAGNETIC TAPE FILE PROCESSING (IAS AND RSX-11D ONLY)

IAS and RSX-11D support the standard ANSI magnetic tape structure as
described in the June 19, 1974 proposed revision to "Magnetic Tape
Labels and File Structure for Information Interchange,”® ANSI
X.27-1969. Any of the following file/volume combinations can be used:

1. Single file on a single volume,

2. Single file on more than one volume,

3. Multiple files on a single volume,

4. Multiple files on more than one volume.
Items 2 and 4 above constitute a volume set.

The sequence in which volume and file labels are used and the format
n

~l
of each label type is defined in Appendix G.

5.2.1 Access to Magnetic Tape Volumes

Magnetic tape is a sequential access, single directory storage medium.
Only one user can have access to a given volume set at a time. No
more than one file in a volume set can be open at a time. Access
protection is performed on a volume set basis. On volumes produced by
DIGITAL systems, user access rights are determined by the contents of
the owner identification field as described in Section G.1.1.1.
Volumes produced by nonDIGITAL systems are restricted to read-only

access unless explicitly overridden at MOUNT time.

5.2.2 Rewinding Volume Sets

A magnetic tape volume set can be rewound either by using the FDOPSR

macro call before an OPENS or CLOSES or by using the .CTRL file

control subroutine. Regardless of the method used to rewind the

volume set, the following procedures are performed by the file control
FAm

System.
1. All mounted volumes are rewound to BOT,

2. If the first volume in the set is not mounted, the unit to be
used is placed offline,

3. 1If the volume is not already mounted and if the rewind was
requested by an OPEN$ macro call or by a .CTRL call, a
request to mount the first volume 1is printed on the
operator's console,

4. If the rewind was requested on a CLOSES$ macro call, no mount
message is issued until the next volume is needed.

FILE STRUCTURES

5.2.3 Positioning to the Next File Position

The FDOP$R macro call can be used to indicate that the file just
opened is to be written immediately after the end of file labels of
the most recently closed file. Any subsequent files in the volume set
are lost.

If the rewind option also is specified, the file is created after the
VOLl1 1label on the first wvolume of the set. All files that were
previously contained in the volume set are lost.

To create a file in the next file position, FA.POS must be set in FDB
location F.ACTL. The default value for this FDB position is 0 (not
FA.POS). The default indicates that the file system is to position at
the logical end of the volume set to create the file.

When the default is used, no check is made for the existence of a file
with the same name in the volume set. Therefore, a program written to
use magnetic tape normally should specify FA.POS.

The next file position option is ignored by directory device file
processors. However, programs written mainly for directory devices
cannot specify the next file position option in open commands for
output and, therefore, cause the position to end process to be used
automatically.

5.2.4 Single File Operations

Single file operations are performed by specifying the rewind option
before the open and before the close. Using this approach, scratch
tape operations can be performed as follows:

1. Open the first file with rewind specified,

2. Write the data records and close the file with rewind,

3. Open the first file again for input (rewind is optional),

4. Read and process the data,

5. Close the file with rewind,

6. Open the second file with rewind specified,

7. Write the data records,

8. Close the file with rewind and perform any additional
processing.

5.2.5 Multiple File Operations

A multiple file volume is <created by opening, writing, and then
closing a series of files without specifying a rewind. The sequential
processing of files on the volume can be accomplished by closing
without rewind and then opening the next file without rewind.

Opening a file for extend (OPENS) is legal only for the last file on
the volume set.

5-6

FILE STRUCTURES

The following tape operations are performed to create a multiple file
tape volume:

1. Open a file for output with rewind,

2. Write data records and close the file,

3. Open the next file with no rewind,

4, Write the data records and close the file,

5. Repeat for as many files as desired.
Files on tape can be opened in a nonsequential order, but increased

processing and tape positioning time is required. Nonsequential
access of files in a multiple volume set is not recommended.

5.2.6 Using .CTRL

The .CTRL file control routine can be called to override normal FCS
defaults for magnetic tape. Examples of its uses are:

1. Continue processing a file on the next volume of a volume set
before the end of the current volume is reached,

2. Position to the logical end of the volume set,
3. Rewind a volume at other than file open or close.

When .CTRL is used to continue processing a file on the next volume,
the first file section on the next volume is opened. File sections
occur when a file is written on more than one volume. The portion of
the file on each of the volumes constitutes a file section. For input
files, the following .CTRL processing occurs.

1. If the current vol

u
tk - T mA moavd A
nere is no nexct vo

me is the last volume in the set, 1i.e.,
lume, end of file is reported to the user.

2. If another file section exists, the current volume is rewound

and the next volume is mounted. A request to the operator is
printed if necessary.

3. The header label (HDR1) of the first file section is read and
checked.

4. 1If all required fields check, the operation continues.

5. 1If any check fails, the operator is requested to mount the
correct volume.

For output files, the following processing occurs.

1. The current file section is closed with EOV1 and EOV2 labels
and the volume is rewound.

2. The next volume is mounted.

3. A file with the same name and the next higher section number
is opened for write. The file set identifier is identical

FILE STRUCTURES

with the volume identifier of the first volume in the volume
set.

NOTE

I/0 buffers that are currently
in memory are written on the
next file section.

When .CTRL is used to position to the logical end of the volume set,
the file system positions between the two tape marks at the logical
end of last volume in the set.

5.2.7 Examples of Magnetic Tape Processing

The following pages contain examples of FCS statements used to process
magnetic tape. Macro parameters not related to magnetic tape handling
have been omitted from the statements so that the user need consider
only those matters directly related to magnetic tape.

5.2.7.1 Examples of OPENSW to Create a New File - All routines expect
RO to contain the FDB address.

OPRWDO:

OPEN WITH REWIND

~e weo we

FDOPSR RO,,,,#FA.ENB!FA.RWD ; SET REWIND AND ENABLE USE
BR OPNOUT . :0F F.ACTL
OPNXTO:

OPEN FOR NEXT FILE POSITION

~e o we

FDOPSR RO,,,,#FA.ENB!FA.POS ;SET POSITION TO NEXT
BR OPNOUT ;AND ENABLE USE OF F.ACTL
OPROYK:

OPEN FILE AT END OF VOLUME KEEPING CURRENT USER
ACCESS CONTROL BITS

e we wo e

BIC $FA.ENB,F.ACTL (RO) ;DISABLE USE OF F.ACTL
BR OPNOUT
OPROVO:

1
; OPEN FILE AT END OF VOLUME - SELECT SYSTEM DEFAULT FOR
; USER ACCESS CONTROL BITS
FDOPSR RO,,,,#0 ;DISABLE USE OF AND RESET
BR OPNOUT ;F.ACTL TO ZERO

OPEN FILE WITH CURRENT USER ACCESS CONTROL

" we ~e

OPOURO:

BIS #FA_ENB,F.ACTL (RO) ;ENABRLE USE OF F.ACTL
OPNOUT: OPENS$W RO ;OPEN FILE
RETURN

5.2.7.2 Examples of OPENS$ to Read a File - All routines expect RO to
contain the FDB address.

OPRWDI:

OPEN WITH REWIND

~e wo we

FDOPSR RO,,,,#FA.ENB!FA.RWD
BR OPNIN
OPCURI :

OPEN STARTING SEARCH AT CURRENT TAPE POSITION KEEPING USER
ACCESS CONTROL BITS

~e w8 wo ~o

5-9

FILE STRUCTURES

BIC $FA.ENB,F.ACTL (RO) ;DISABLE USE OF F.ACTL
BR OPNIN

OPNIN:

7

; OPEN USING USER ACCESS CONTROL

;

OPDFLI: BIS #FA.ENB,F.ACTL (RO) ;ENABLE USE OF F.ACTL
OPENSR RO
RETURN

5.2.7.3 Examples of CLOSE$ - All routines expect RO to contain the
FDB address.

CLSCUR:

CLOSE LEAVING TAPE AT CURRENT POSITION AND KEEPING
USER ACCESS CONTROL BITS

~e we wo we

BIC #FA.ENB,F,ACTL (RO) ;DISABLE USE OF F.ACTL
BR CLOSE ;DEFAULT IS LEAVING AT CURRENT
; POSITION

CLSRWD:

CLOSE REWINDING THE VOLUME

~e w0 we

FDOPSR RO,,,,#FA.ENB!FA.RWD ;SET REWIND AND ENABLE USE OF
BR CLOSE ;F.ACTL

CLOSE WITH USER ACCESS CONTROL BITS

o« ~o we

CLSDFL: BIS #FA.ENB,F.ACTL (RO) ;ENABLE USE OF F.ACTL
CLOSE: CLOSES$ RO
RETURN

5-10

L ZaNVUL VT

5.2.7.4 Combined Examples of OPEN$ and CLOSE$ for Magnetic Tape - The
following examples call routines in previous examples. By combining
various magnetic tape operations the user can process tape volumes in
the following ways.

OPEN FILE FOR READING WHEN FILE IS NEXT OR FURTHER UP THE VOLUME

’

;7 SCRATCH TAPE OPERATIONS--SINGLE FILE VOLUME--

SCROUT: MOV #FDBOUT, RO ;SELECT FDB AND OPEN
CALL OPRWDO ;OUTPUT FILE WITH REWIND
RETURN

SCRIN: MOV #FDBIN,RO ;SELECT FDB AND OPEN FOR
CALL OPRWDI ; INPUT WITH REWIND
RETURN

CLSCRO: MOV #FDBOUT, RO ;CLOSE SCRATCH FILE
BR CLSVOL ;REWINDING VOLUME

CLSCRI: MOV FDBIN,RO

CLSVOL: CALL CLSRWD
RETURN

1

; MULTI-FILE VOLUME OPERATIONS

14

OPNXTI:

7

14

r

MOV #$FDBIN, RO ;SELECT FDB
CALL OPCURI ;OPEN FILE
RETURN

OPENIN:

OPEN FILE FOR READING WHEN POSITIONED PAST IT

~o ~o =

MOV #FDBIN,RO ;SELECT FDB
CALL OPRWDI
RETURN

; MULTI-FILE OUTPUT OPERATIONS

OPNINT:

i

; START NEW VOLUME DESTROYING ALL PAST FILES ON IT

H
MOV #FDBOUT,RO ;SELECT OUTPUT FDB
CALL OPRWDO ;OPEN WITH REWIND
RETURN

OPNEXT:

OPEN OUTPUT FILE AT NEXT FILE POSITION DESTROYING ANY FILE
THAT MAY BE AT OR PAST THAT POSITION

Ne we Ne wo

MOV #FDBOUT, RO ;SELECT OUTPUT FDB
CALL OPNXTO
RETURN

OPENDT:

OPEN OUTPUT FILE AT CURRENT END OF VOLUME SET KEEPING USER
ACCESS CONTROL BITS

~e ws we we

FILE STRUCTURES

MOV #FDBOUT, RO ;SELECT OUTPUT FDB
CALL OPROVK
RETURN

OPNEQV:

OPEN OUTPUT FILE AT CURRENT END OF VOLUME AND MAKE THAT THE USER
ACCESS CONTROL

~o N N~

MOV #FDBOUT, RO ;SELECT OUTPUT FDB
CALL OPROVO
RETURN

NOT LAST FILE IN FILE SET CLOSE ROUTINE

o Neo ~o

’
CLSFLO: MOV #FDBOUT, RO ;SELECT OUTPUT FDB
BR CLSXX
CLSFLI: MOV #FDBIN,RO ;SELECT INPUT FDB
CLSXX: CALL CLSCUR
RETURN

TO APPEND TO LAST FILE

~e we wa

OPENSA #FDBOUT

5-12

CHAPTER 6

COMMAND LINE PROCESSING

As noted in section 2.4.3, a collection of routines available from the
system object library (SY:[1,1]SYSLIB.OLB) may be linked with the user
program to provide all the logical capabilites required to process
command lines dynamically. These system facilities include the
following routines:

1. Get Command Line (GCML). This routine accomplishes all the
logical functions associated with the entry of command lines
from a terminal, an indirect command file, or an on-line
storage medium. Using GCML relieves the user of the burden
of manually coding command line input operations.

2. Command String Interpreter (CSI). Normally, this routine
takes command 1lines from the GCML command line input buffer
and parses them into the appropriate dataset descriptors
required by FCS for opening files.

This body of routines is linked with the user program at task-build
time. GCML and CSI are often Jjointly incorporated in system or
application programs as a standardized interface for obtaining and
interpreting dynamic command 1line input. The flow of data during
command line processing is shown in Figure 6-1.

Although these routines are presented i of being used
together for processing ommand line input, each may be used
independently of the other. Doing so, however, means that the user
must manually code the functions otherwise performed by the missing
component. The joint use of these routines is assumed throughout this
chapter to be the "normal"” situation.

+aA n +ha ~Nn A
G i Tac CUIILTA

n
14
C

The invocation of GCML and CSI functions requires that certain
initialization operations be accomplished at assembly time. This
initialization sets up the GCML command line input buffer, defines and
initializes control blocks for both GCML and CSI, and establishes the
necessary working storage and communication areas for these routines.
Also, the appropriate macro calls which invoke GCML and CSI
execution-time functions must be included in the source coding at
desired 1logical points to effect the dynamic processing of command
lines.

GCML and CSI macro calls observe the same register conventions
applicable to FCS. BAll registers, except R0, are preserved exactly as
in all FCS macro calls. RO is used to contain the address of the GCML
control block or the CSI control block, as appropriate.

6-1

COMMAND LINE PROCESSING

As with all FCS macro calls, the GCML and CSI macro calls must also be
listed as an argument in an .MCALL directive (see section 2.1) before
being issued in the user program.

ASCII DATA

ON-LINE

PDS/MCR STORAGE

GCML

Csi

DEFAULT

DATASET FILENAME
DESCRIPTOR BLOCK

FCS
o (.PARSE)

A

—

FILENAME
BLOCK

Figure 6-1
Data Flow During Command Line Processing

COMMAND LINE PROCESSING

6.1 GET COMMAND LINE (GCML)

The Get Command Line routine (GCML) -embodies all the logical
capabilities required to enter 80-byte command lines dynamically
during program execution. GCML accepts input from a terminal or an
indirect command file which contains pre-defined command lines. Both
these functions require the creation and initialization of a GCML
control block. The macro call which accomplishes this function is
described in detail in the following section. The GCML run-time macro

calls that may be issued dynamically are described in section 6.1.3.

6.1.1 GCMLBS - Allocate and Initialize GCML Control Block

Issuing the GCMLBS$ macro call accomplishes the following assembly~time
functions:

1. Reserves storage for and initializes a GCML control block
within the user program.

2. Creates and initializes an FDB in the forepart of the GCML
control block. This FDB 1is wused to open a command file.
Such a file, which may employ a terminal or a file-structured
device such as a disk, is opened and read by the user program
in the same manner as any other file. The initialization and
maintenance of this FDB, however, 1is under GCML and FCS
control and need not be of concern to the user.

3. Creates and initializes a default filename block within the
GCML control block. This default filename block pertains to
an indirect command file. If an explicit filename string is
not specified by the user for an indirect command file, the
values "SY:" for the device name and ".CMD" for the file type
are assumed by default. There is no default designation for
the filename.

4. Defines the symbolic offsets for the GCML control block and
initializes certain offsets to required values. These
offsets are described in detail in section 6.1.2.
The GCMLBS macro call is specified in the following format:
label: GCMLBS maxd,prmpt,ubuf,lun,pdl
where: label represents a symbol that names the GCML control

block and defines its address. This label permits
the GCML control block to be referenced directly
by all the GCML run-time routines which require
access to this structure (see section 6.1.3).

maxd represents a numeric value that specifies the
maximum nesting depth permitted for indirect
command files. This parameter determines the

number of nested indirect command files that GCML
will be allowed to access in obtaining command
line input.

An indirect command file, which often resides on
disk, contains well-defined, non-varying command
sequences which may be read directly by GCML to

prmpt

ubuf

lun

COMMAND LINE PROCESSING

control operations which are highly repetitive
(such as Task Builder activities). Significant
advantages 1in terms of convenience and faster
execution result from the use of an indirect
command file.

If this parameter 1is not specified, a nesting
level depth of 2zero (0) is defined by default,
effectively eliminating an indirect command file
as a source of command line input.

represents a user-specified, 3-character ASCII
prompting sequence. This parameter constitutes a
default prompt string that is typed out by GCML to
the user terminal to solicit command line input.

The ASCII prompting sequence is formulated into
the following 6-byte string:

A, A carriage return (<CR>) and a line-feed
(<LF>);

B. The three ASCII characters specified by the
user; and

C. A right angle bracket (>).

The above string initializes GCML control block
offset location G.DPRM (see section 6.1.2).

If this parameter 1is not specified, the right
angle bracket (>), preceded by three blanks, is
defined by default for use by GCML as the default
prompting sequence.

represents the address of a 4l1-word record buffer
that is to be wused by GCML for the temporary
storage of command line input. If this parameter
is not specified, a 4l1-word buffer is reserved by
default in the GCML control block for command line
input.

represents a logical wunit number. The device
assigned to this logical unit number is used by
GCML as the command input device. If this
parameter is not specified, a logical unit number
of one (1) is used by default.

6-4

COMMAND LINE PROCESSING

pdl represents the address of an area reserved in the
user program for use as a push-down list. This
area is reserved as working storage for wuse 1in
connection with indirect command files.

Normally, the pdl parameter is not specified; in
this case, sufficient storage for the push-down
list is added to the control block by default in
accordance with the algorithm described below.

The push-down list is created through statements
logically equivalent to the following:

.EVEN
label: .BLKB G.LPDL

The user-specified "label" names the push-down
list and defines 1its address; G.LPDL, which is
defined by the GCMLB$ macro, is the 1length (in
bytes) of the push-down list.

The length of the push-down list is a function of
the maximum number of nested indirect command
files that may be accessed by GCML in obtaining
command line input. The value of G.LPDL is
calculated according to the following algorithm:

1. Add one (1) to the maximum nesting level depth
declared through the maxd parameter (see
above) .

2. Multiply the sum of Step 1 by 16(10). The
appropriate number of bytes that must be
reserved for the push-down list.

For example, if the maxd parameter is specified as
"4", the 1length of the push-down list is derhted
as follows:

(4+41)*16. = 80. bytes

From the above, note that 16{(10) bytes of storage
are required for each indirect command file, plus
a total of 16(10) bytes for wuse as general
overhead.

The following examples are representative of a GCMLBS$ macro call as it
might appear in a user program:

GCLBLK: GCMLBS 4.,GCM,BUFADR,1.
GCLBLK: GCMLBS ,,BUFADR
GCLBLK: GCMLB$ DEPTH,GCM,BUFADR,CMILUN,PDLIST

COMMAND LINE PROCESSING

6.1.2 GCMLDS$ - Define GCML Control Block Offsets and Bit Values

The GCMLD$ macro, which is invoked automatically by the GCMLBS$ macro
call, 1locally defines the GCML control block offsets and bit values
within the current module. These offsets and associated bit values
are listed and described below.

OFFSET
NAME

G.ERR

FUNCTIONAL SIGNIFICANCE

Error Return Code Byte. This field 1initially
contains zero (0). If any one of the error
conditions recognized by GCML occurs during the
processing of a command line, an appropriate error
code is returned to offset location G.ERR in the
control block. These error codes are described
below:

GE.IOR - 1Indicates that an I/O error has occurred
during the input of a command line.

GE.OPR - Indicates that GCML is unable to open
the specified command file.

GE.BIF - Indicates that a syntax error has been
detected in the name of the indirect command file.

GE.MDE - Indicates that an attempt has been made
to exceed the maximum permissible nesting level
depth for an indirect command file (see the "maxd"
parameter in the GCMLB$ macro call above).

GE.EOF - Indicates that the end-of-file (EOF) on
the first (unnested) command file has been
detected.

This bit is set in connection with command file
input. When the first call is issued for input,
GCML attempts to retrieve an MCR/PDS command line.
The first line obtained, whether it be an MCR/PDS
command or a terminal command, is accomplished at
command 1level 0. If the name of an indirect
command file is then entered, the command input
level 1is incremented to one (l). Each indirect
filename entry thereafter increments the command
input level. When the end-of-file (EOF) is
encountered on any given indirect file, the
command input level 1is decremented by one (1),
restoring the count to the previous 1level and
re-~opening the associated command file. The next
command line from that file is then read.

If an MCR/PDS command has already been read at
level 0, entering another MCR/PDS command when
level 0 is again reached causes the error code
GE.EOF to be returned to offset location F.ERR of
the GCML control block. Hence, only one MCR/PDS
command 1line <can be read at level 0. If input
thus fails at MCR/PDS level 0, then GCML continues
to prompt for input until CTRL/Z is typed by the
user to indicate terminal end-of-file (EOF).

G.MODE

COMMAND LINE PROCESSING

In summary, the first line of input is always read
at level 0. This initial input may be an MCR/PDS
command; if the MCR/PDS command fails or is null,
the command input file (normally a terminal) is
then opened at level 0. Multiple inputs at level
0 are permissible only in the latter case, i.e.,
from the command input file.

Status and Mode Control Byte. This field 1is
initialized at assembly-time with the following
bit definitions to specify certain default actions
for GCML during the retrieval of a command line:

GE.COM - Indicates that a command 1line having a
leading semicolon (;) 1is to be treated as a
comment. Such 1lines are not returned to the
calling program. If, for any reason, the user
resets this bit to zero (0), a command 1line
containing a leading semicolon (;) will be
returned to the .calling program.

GE.IND - Indicates that a command line containing
a leading at sign (@) 1is to be treated as an
explicit indirect command file specifier. If, for
any reason, the user resets this bit to zero (0),
a command line containing a leading at sign (@)
will be returned to the calling program.

GE.CLO - Indicates that the command file currently
being read is to be closed after each issuance of
the GCMLS$ macro call. If the user resets this bit
to zero (0) for any reason, GCML keeps the current
command file open between calls for input. In
this case, the FSR (see section 2.6.1) must
include one additional 512(10)-byte buffer for
command line input. This requirement is additive
to the total FSR block buffer space normally
reserved for the maximum number of files that may
be open simultaneously for record I/0 processing.

Clearing the GE.CLO bit in the status and mode
control byte effectively renders 512(10) bytes of
FSR block buffer space wunavailable for other
purposes, since the command file remains open

between calls for command line input.

G.PSDS

G.CMLD

COMMAND LINE PROCESSING

As noted above, the user may reset any of the
status and mode control bits, if desired, by
issuing a Bit Clear Byte (BICB) instruction which
takes as the source operand the symbolic name of
the bit to be cleared. Bits other than those
defined above are used internally by GCML and must
not be manipulated by the user.

Prompt String Descriptor. This 2-word field is
initialized to =zero (0) at assembly-time through
the GCMLBS$ macro call (see section 6.1.1).

When the GCML$ macro call is 1issued to request
command 1line input (see section 6.1.3.1), the
address and the length of a prompting sequence is
usually not specified. 1In this case, the prompt
string descriptor words in the GCML control block
are cleared, causing GCML to type out the default
prompt string contained in offset location G.DPRM
(see below) to solicit command line input.

If, for any reason, the user wishes to define an
alternate prompt string elsewhere in his program,
he may do so through the .ASCII directive. The
address and length of this alternate prompt string
may then be specified as the "adpr" and "lnpr"
parameters in subsequent GCMLS$ macro calls. These
parameters cause offset locations G.PSDS+2 and
G.PSDS to be initialized with the address and the
length, respectively, of the alternate prompt
string. The alternate prompt string is then typed
out by GCML to solicit command line input, thereby
overriding the default prompt string previously
established through the GCMLB$ macro call (see
G.DPRM below).

If the "adpr" and "lnpr" parameters are not
specified in a subsequent GCML$ macro call, offset
location G.PSDS in the control block is
automatically reset to zero (0), causing GCML to
revert to the use of the default prompt string
contained in offset location G.DPRM.

Command Line Descriptor. This 2-word field 1is
initialized by GCML after retrieving a command
line. The address of the line just obtained is
returned to offset 1location G.CMLD+2, and the
length (in bytes) of the command line is returned
to offset location G.CMLD.

The contents of these word locations in the GCML
control block may be passed to CSI as the "buff"
and "len" parameters in the CSI$1 macro call (see
section 6.2.3.1). The combination of these
parameters constitutes the command line
descriptors which enable CSI to retrieve file
specifiers from the GCML command 1line input
buffer.

COMMAND LINE PROCESSING

G.ISIZ Impure Area Size Indicator. This symbol is
defined at assembly-time, indicating the size of
an impure area within the GCML control block to be
used as working storage for pointers, flags,
counters, etc., in connection with input from an
indirect command file. In usage terms, this
symbol need not be of concern to the user.

The space between the FDB and the default prompt
string (see G.DPRM below) constitutes the impure
area of the GCML control block. The size of the
FDB is defined by the value of the symbol S.FDB.
Thus, the size of the impure area 1is equal to
G.DPRM-S.FDB.

G.DPRM Default Prompt String. This 6-byte field 1is
initialized at assembly-time with the default
prompt string created through the "prmpt"

parameter of the GCMLBS$ macro call (see section
6.1.1). In the absence of the "adpr" and "lnpr"
parameters 1in the GCMLS macro call (see section
6.1.3.1), this default prompt string is typed out
by GCML to solicit terminal input.

If the user wants to reference the GCML control block offsets and bit
vaues in another module, the appropriate symbolic definitions may be
established within that module through one of the following
statements, as desired:

GCMLDS ;DEFAULT LOCAL DEFINITION.
GCMLDS$ DEFSL ; LOCAL DEFINIT ON.
GCMLDS DEFSG ;GLOBAL DEFINITION.

6.1.3 GCML Run-Time Macro Calls

Three run-time macro calls are provided in GCML to perform specific
functions, as described below:

GCMLS$ - To retrieve a command line.

RCMLS - To reset the indirect command file scan to the first
(unnested) level.

CCMLS - To close the current command file.

These routines are described separately in the following sections.

COMMAND LINE PROCESSING

6.1.3.1 GCMLS - Get Command Line

The GCML$ macro call serves as the user program interface for
retrieving command lines from a terminal or an indirect command file.
This macro call can be issued at any logical point in the program to
solicit command line input.

This macro call takes the following format:
GCMLS$ gclblk,adpr,inpr

where: gclblk represents the address of the GCML control block.
This symbol must be the same as that specified at
assembly-time in the label field of the GCMLBS$
macro call (see section 6.1.1). If this parameter
is not specified, RO is assumed to contain the
address of the GCML control block.

adpr represents the address of the user program
location containing an alternate prompt string.
When this optional parameter and the inpr
parameter below are present 1in the GCMLS$ macro
call, the alternate prompt string is typed out on
the user terminal to solicit command line input.
The normal default prompt string, as contained in
offset 1location G.DPRM of the GCML control block
(see section 6.1.2), is thereby overridden.

Inpr represents the length (in bytes) of the alternate
prompt string. This parameter is also optional;
if not specified, offset location G.PSDS in the
GCML control block (see section 6.1.2) is cleared.

If this parameter is specified, but the "adpr"
parameter above is not, an .ERROR directive is
generated during assembly which causes the error
message "PROMPT STRING MISSING" to be printed in
the assembly 1listing. This message is a
diagnostic announcement of an incomplete prompt
string descriptor in the GCML$ macro call.

If the "adpr" and "lnpr" parameters are not specified in a subsequent
GCMLS macro call, offset location G.PSDS in the GCML control block is
automatically reset to zero (0), causing GCML to revert to the use of
the default prompt string contained in offset location G.DPRM (see
section 6.1.2 above).

When the GCML$ macro call is issued, the following actions occur:

1. RO is loaded with the address of the GCML control block. If
the "gclblk" parameter is not specified, as described above,
RO is assumed to contain the address of the GCML control
block. If it does not, RO must first be initialized manually
with the address of the control block before the GCMLS$ macro
call is issued.

2. The address and the length of the alternate prompt string, if
specified, are stored in control block offset locations
G.PSDS+2 and G.PSDS, respectively. These two words
constitute the alternate prompt string descriptor.

6-10

COMMAND LINE PROCESSING

3. Code is generated which calls GCML to transfer an 80-byte
command line to the command line input buffer.

At the initial issuance of the GCML$ macro call, an attempt is made to
retrieve an MCR/PDS command line. If this attempt fails, or if the
MCR/PDS command line is null, the FDB within the GCML control block is
used to open a file for command line input. If the command input
device is a terminal, a prompt string is typed out to solicit input.

Any desired command input may then be entered.

If appropriate, the user may enter an at sign (@) as the first
character in the command 1line, followed by the name of an indirect
command file. This filename identifies an explicit indirect command
file from which input is to be read. GCML then opens this file and
retrieves the first command line therein. This file is read until one
of the following occurs:

1. The end-of-file (EOF) is detected on the current indirect
file. In this case, the current indirect file is closed, the
command input level count is decremented by one (1), and the
previous command file 1is re-opened. If the command input
level count is already zero (0) when EOF is detected, the
error code GE.EOF is returned to offset location G.ERR of the
GCML control block (see section 6.1.2).

2. An indirect file specifier is encountered in a command line.
In this case, the current indirect command file is closed (if
not already closed), and the new indirect file 1is opened.
The first command line therein is then read. -

3. An RCMLS$ macro call is issued in the program (see section
6.1.3.2 below). In this case, the current indirect command
file is closed, and the command input count reverts to level
zero (0), i.e., the top level command file is again used for
input.

The user may also enter a semicolon (;) as the first character in the
command line. Such a line is treated as a comment and is not returned
to the calling program.

Whether a command line is entered manually or retrieved from an
indirect command file, the address and the length of the command line
thus obtained are returned to GCML control block offset locations
G.CMLD+2 -and G.CMLD, respectively. Together, these two words
constitute the command line descriptors. These descriptors may be
specified as the "buff" and "len" parameters in the CSI$1 macro call
(see section 6.2.3.1).

Successful retrieval of a command 1line causes the C-bit in the
Processor Status Word to be cleared. Any error condition that occurs
during the retrieval of a command line, however, causes the C-bit to
be set. In addition, a negative error code is returned to offset
location G.ERR of the GCML control block. These error codes are
described in detail in section 6.1.2 above.
Representative examples of the GCMLS macro call follow:

GCMLS #GCLBLK

GCMLS

GCMLS$S #GCLBLK, #ADPR, #LNPR

6-11

COMMAND LINE PROCESSING

The first example specifies the symbolic address of the GCML control
block. The second example assumes that RO contains the address of the
GCML control block. Both these forms of the GCML$ macro call will
employ the default prompt string contained in offset location G.DPRM
of the control block to solicit command line input. The last example
specifies_ the address and the length of an alternate prompt string
that the user has defined within the program. This alternate prompt
string is used by GCML to prompt for terminal input, rather than using
the default prompt string contained in the GCML control block.

6.1.3.2 RCMLS - Reset Indirect Command File Scan

If, for any reason, the user finds that it is necessary or desirable
to close the current indirect command file and to return to the top
level file, i.e., to the first (unnested) file, he may do so by
issuing the RCML$ macro call.

The RCML$ macro call is specified in the following format:
RCMLS$ gclblk
where: gclblk represents the address of the GCML control block.
If this parameter is not specified, RO is assumed
to contain the address of the GCML control block.
When this macro call is issued, the current indirect command file is
closed, returning control to the top 1level (unnested) file. A
subsequent GCMLS$ macro call then retrieves the next command line from
the zero (0) level command file. Note, however, that a second MCR/PDS
command at level 0 cannot be read (see GE.EOF error code in offset
location G.ERR of GCML control block, section 6.1.2).
Examples of the RCMLS$ macro call follow:
RCMLS #GCLBLK
RCMLS RO

This macro call requires only the address of the GCML control block.

6.1.3.3 CCMLS$ - Close Current Command File

It is often desirable to close the current command file between calls
for input in order to free FSR block buffer space for some other use.
The command file is closed automatically after the retrieval of a
command line, provided that the GE.CLO bit in the status and mode
control byte remains appropriately initialized (see section 6.1.2).
This bit is set to one (1) at assembly-time. If the user resets this
bit to zero (0), the current command file remains open between calls
for input.

For a program which frequently reads command files, this may be a
desirable operational mode, since keeping the file open between calls
for input reduces total file access time. However, should it be
desirable to <close such a file to free FSR block buffer space, the
user may do so by issuing the CCMLS$ macro call.

COMMAND LINE PROCESSIN

n

The CCMLS$ macro call takes the following format:
CCMLS gclblk

where: gclblk represents the address of the GCML control block.
If this parameter is not specified, RO is assumed
to contain the address of the GCML control block.
Issuing this statement closes the current command file, effectively
releasing 512(10) bytes of FSR block buffer space for some other use
between calls for input. If the command file is already closed when
the CCML$ macro call 1is issued, control is merely returned to the
calling program. A subsequent GCML$ macro call then causes the

command file to be re-opened and the next command line in the file to
be returned to the calling program.

Representative forms of this macro call are shown below:
CCMLS$S #GCLBLK
CCMLS RO

As in the RCMLS$ macro call above, this macro <call takes a single
parameter, viz., the address of the GCML control block.

6.1.4 GCML Usage Considerations

As noted in section 6.1.1, the GCMLBS macro call creates an FDB in the

forepart of the GCML control block. Although this FDB ordinarily need

not be manipulated by the wuser (since it is wunder GCML and FCS

control), the following operations may be performed on this FDB:

1. 1In an irrecoverable error situation, the user may issue a
CLOSES macro call (see section 3.8) in connection with this

FDB before issuing the system EXITS$ macro call.

2. The wuser may test the FD.TTY bit in the device
characteristics byte (offset location F.RCTL) of the FDB to
determine if the command line just obtained was retrieved
from a terminal.

3. In the event that error code GE.IOR is returned to control
block offset location G.ERR (indicating that an I/0 error has
occurred during the retrieval of a command 1line), the user
may test offset location F.ERR of the associated FDB for more
complete error analysis. This cell in the FDB also contains
an error code which may be helpful in determining the nature
of the error condition.

Note, if the automatic file closure feature is in effect for
a command file, i.e., 1if the GE.CLO bit in the status and
mode control byte in the GCML control block is set (see
G.MODE offset in section 6.1.2), then F.ERR will very likely
contain a positive value (normally +1), indicating successful
completion of the close operation. A failure in closing the
command file is extremely unlikely.

COMMAND LINE PROCESSING

At task-build time, the Task Builder device assignment (ASG) directive
should be issued to assign the appropriate physical device unit to the
desired logical unit number. For example, to assign the logical unit
number (lun parameter) in the GCMLBS$ macro call (see section 6.1.1) to
a terminal, the following Task Builder directive should be issued:

ASG = TI:1

The designation TI: 1is a pseudo device name that is redirected to the
command input device. Note that the numeric value following the colon
(:) must agree with the numeric value specified as the 1lun parameter
in the GCMLBS$ macro call.

The ASG directive is described in further detail in the Task Builder
Reference Manual of the host operating system.

As discussed in section 2.6.1 on FSRSZ$, at any given time, there must
be an FSR block buffer available for each file currently open for
record I/0 operations. The block buffer requirements of the command
file must be considered when issuing the FSRSZ$ macro.

6.2 COMMAND STRING INTERPRETER (CSI)

The Command String Interpreter (CSI) analyzes command lines and parses
them into their component device name, directory, and filename
strings. The user should be aware that CSI processes command lines in
the following formats only:

1. dev:[g,m]output filename.type;version/switch

More than one such file specification can be specified by
separating them with commas.

2. dev:[g,m]output filename.type;version/switch,...= dev:[g,m]
input filename.type;version/switch,...

In addition, CSI maintains a dataset descriptor within the CSI control
block (see next section) which may be used by FCS in opening files.
The run-time routines which analyze and parse command 1lines for a
calling user program are described in section 6.2.3.

The use of CSI requires that the CSI control block offsets and bit
values be defined and that a control block be allocated within the
program. The macro described in the following section accomplishes
these requisite actions.

6.2.1 CSIS - Define CSI Control Block Offsets and Bit Values

The only initialization coding required for CSI at assembly-time is
that shown below:

CSIS ;DEFINES CSI CONTROL BLOCK OFFSETS
;AND BIT VALUES LOCALLY.
.EVEN ;WORD ALIGNS CSI CONTROL BLOCK.
CSIBLK: .BLKB C.SIZE ;NAMES CSI CONTROL BLOCK AND

. ;ALLOCATES REQUIRED STORAGE.

6-14

COMMAND LINE PROCESSING

The CSI$ macro is strictly definitional in nature and does not
generate any executable code. The CSI control block resulting from
the .BLKB directive serves as a means of communication between CSI and
the calling program. The length of the control block is specified by
the symbol "C.SIZE," which is defined during the expansion of the CSIS$
macro. Also, the -expansion of this macro results in the local
definition of the symbolic offsets and bit values within the CSI
control block.

If desired, the user may cause the control block offsets to be defined
globally within the current module. This 1is done by specifying
"DEFSG" as an argument in the CSI$ initialization macro call, as shown
below:

CSIs DEFS$G

COMMAND LINE PROCESSING

6.2.2 CSI Control Block Offset and Bit Value Definitions

The CSI$ macro call causes the following symbolic offsets and bit
values within the CSI control block to be defined locally:

OFFSET
NAME

C.TYPR

C.STAT

FUNCTIONAL SIGNIFICANCE

Command String Request Type. This byte field
indicates the type of file specifier being
requested. Depending on whether an input or
output file specifier is being requested (see the
"jo" parameter in the CSI$2 macro call, section
6.2.3.2), the corresponding bit in this byte is
set. The bit definitions for this byte are as
follows:

CS.INP - Indicates that an input file specifier is
being requested.

CS.0UT - Indicates that an output file specifier
is being requested.

Command String Request Status. This byte field
reflects the status of the current command line
request. The bits in this field are 1initialized
in accordance with the bit .definitions listed
below. The first bit is maintained by the routine
invoked through the CSI$1 macro call. All the
other bits in this field are maintained by the
routine invoked through the CSI$2 macro call.

CS.EQU - Indicates that an equal sign (=) has been
detected in the current command line, signifying
that the command line contains both output and
input file specifiers.

CS.NMF - Indicates that the current file specifier
contains a filename string. Accordingly, control
block offset locations C.FILD+2 and C.FILD (see
below) are initialized with the address and the
length (in bytes), respectively, of the command
line segment containing the filename string. If
no filename string is present, this bit 1is not
set, and the filename string descriptors in the
control block are cleared.

CS.DIF - Indicates that the current file specifier
contains a directory string. Thus, control block
offset locations C.DIRD+2 and C.DIRD (see below)
are initialized with the address and the length
(in bytes), respectively, of the command 1line
segment containing the directory string. If no
directory string is present, this bit is not set.
In this case, any residual non-zero values in the
directory string descriptor cells which pertain to
a previous command string request of like type
(see C.TYPR above) are used by default. Thus, the
last directory string encountered in a file
specifier is used.

6-16

C.CMLD

C.DSDS

COMMAND LINE PROCESSING

CS.DVF - Indicates that the current file specifier
contains a device name string. Similarly, control
block offset locations C.DEVD+2 and C.DEVD (see
below) are initialized with the address and the
length (in bytes), respectively, of the device
name string. If no device name string is present,
this bit is not set. Again, similar to CS.DIF
above, any residual non-zero values in the device
name descriptor cells which pertain to a previous
command string request of like type are used by
default. Thus, the 1last device name string
encountered in a file specifier is used.

CS.WLD - Indicates that the current file specifier
contains an asterisk (*), signalling the presence
of a wildcard specification.

CS.MOR - Indicates that the current file specifier
is terminated by a comma (,). The comma indicates
that more file specifiers are to follow. If this
bit 1is not set, it signifies that the end of the
input or output file specifiers has been reached.

Command Line Descriptor. This 2-word field is
initialized with the address and the length (in
bytes), respectively, of the compressed command
line. In other words, the wvalues returned to
these cells constitute the output of CSI after
scanning a file specifier and removing all
non-significant characters from the string (i.e.,
nulls, blanks, tabs, and RUBOUTS).

The values contained in these cells are used by
CSI as the descriptors of the compressed command
line to be parsed {see CSIS$2 macro call in section

6.2.3.2).

Dataset Descriptor Pointer. This offset defines
the address of the 6-word dataset descriptor in
the CSI control biock. This sStructure is
functionally identical to the manually-created
dataset descriptor detailed in section 2.4.1.

This symbol may be wused to initialize offset
location F.DSPT in the FDB associated with the
file to be processed. Thus, FCS 1is able to
retrieve requisite ASCII information from this
structure for use in opening files.

Assembly-time initialization of F.DSPT in the
associated FDB may be accomplished as follows:

FDOP$SA 1,CSIBLK+C.DSDS

where "CSIBLK" is the address of the CSI control
block, and "C.DSDS" represents the beginning
address of the descriptor strings in the CSI
control block (see C.DEVD, C.DIRD, and C.FILD
below) identifying the requisite ASCII filename
information.

6-17

C.DEVD

C.DIRD

C.FILD

C.SWAD

C.MKW1

C.MKW2

COMMAND LINE PROCESSING

Run-time initialization of F.DSPT in the
associated FDB may also be accomplished through
the dspt parameter of the FDOP$R macro call (see
section 2.2.2) or the generalized OPENS$x macro
call (see section 3.1).

Device Name String Descriptor. This 2-word field
contains the address (C.DEVD+2) and the length in
bytes (C.DEVD) of the most recent device name
string (of 1ike request type) encountered in a
file specifier.

Directory String Descriptor. This 2-word field
contains the address (C.DIRD+2) and the length in
bytes (C.DIRD) of the most recent directory string
(of 1like request type) encountered in a file
specifier.

Filename String Descriptor. This 2-word field
contains the address (C.FILD+2) and the length in
bytes (C.FILD) of the filename string in the
current file specifier.

If an error condition is detected by the command
syntax analyzer during the syntactical analysis of
a command line (see section 6.2.3.1 below), a
segment descriptor 1is returned to this field,
defining the address and the length of the command
line segment in error.

Current Switch Table Address. This word 1location
contains the address of the switch descriptor
table specified in the current CSI$2 macro call
(see section 6.2.3.2).

CSI Mask Word 1. This word indicates the
particular switch(es) present in the current file
specifier after each invocation of the CSIS$2 macro
call. The switch mask for each of the defined
switches encountered in a file specifier between
delimiting commas is OR'ed into this location.

The mask for a switch is specified in the CSIS$SW
macro call (see section 6.2.4.1). When a switch
is encountered in a file specifier for which a
defined mask exists, the corresponding bits in
C.MKW1l are set. By testing C.MKWl, the user can
determine the particular combination of defined
switches present in the current file specifier.

CSI Mask Word 2. This word provides a switch
polarity indication for the user.

When a switch is present in a file specifer and
that switch 1is not negated, the defined mask for
that switch is OR'ed into C.MKW2 in the same
manner as described above for C.MKWl. Conversely,
when a switch is present in a file specifer and
that switch is negated, the corresponding bits in
C.MKW2 are cleared. Thus, for each switch
indicated as being present by C.MKWl, the user can

6-18

COMMAND LINE PROCESSING

check the polarity of that switch by examining the
corresponding bits in C.MKW2.

C.SIZE Control Block Size Indicator. This symbol, which

is defined during the expansion ¢of the CSTIS macro

defined during the pansio
represents the size in bytes of the CSI control
block.

6.2.3 CSI Run-Time Macro Calls

Two run-time macro calls are provided in CSI to invoke routines which
perform the following functions:

CSISl - Initializes the CSI control block, analyzes the command
line (normally contained in the GCML command line input
buffer), removes non-significant characters from the
line, and checks it for syntactic validity. This macro
call also results in the initialization of certain cells
in the CSI control block with the address and the
length, respectively, of the wvalidated and compressed
command line.

CSI$2 - Parses a file specifier in the validated and compressed
command line into its component device name, directory,
and filename strings, and processes any associated
switches and accompanying switch values. Also, certain
cells in the CSI control block are initialized with the
appropriate string descriptors for subsequent use by FCS
in opening the specified file.

6.2.3.1 CSIS1 - Command Syntax Analyzer

The CSIS1 macro call results in the invocation of a routine called the
command syntax analyzer. This routine analyzes a command line (which
is normally read into the GCML command line input buffer) and checks
it for syntactic wvalidity. In addition, it compresses the file
specifiers 1in the command 1line by removing all non-significant
characters ({i.e., nulls, tabs, blanks, and RUBQUTs). Finally, the
command syntax analyzer initializes offset 1locations C.CMLD+2 and
C.CMLD in the CSI control block (see section 6.2.2) with the address
and the 1length (in bytes), respectively, of the wvalidated and
compressed command line. Each file specifier in the command line is
then parsed into its component device name, directory, and filename
strings during successive issuances of the CSI$2 macro call (see next
section).

The CSIS$1 macro call is issued in the following format:
Cs1s1l csiblk,buff,len

where: csiblk represents the address of the CSI control block.
If this parameter is not specified, RO is assumed
to contain the address of the CSI control block.

buff represents the address of a command 1line input
buffer. This parameter initializes CSI control
block offset location C.CMLD+2, enabling CSI to
retrieve the current command line from a command
line input buffer.

COMMAND LINE PROCESSING

If this parameter is not specified, the user must
manually initialize CSI control block offset
location C.CMLD+2 with the address of a command
line input buffer before issuing the CSI$1 macro
call. This may be accomplished through a
statement similar to the following:

MOV GCLBLK+G.CMLD+2 ,CSIBLK+C.CMLD+2

len represents the length of the command 1line input
buffer. Similarly, this parameter initializes CSI
control block offset location C.CMLD, thus
completing the 2-word descriptor which enables CSI
to retrieve the current command 1line from the
input buffer.

As with the "buff" parameter above, 1if this
parameter is not specified, the user must manually
initialize CSI control block offset location
C.CMLD with the length of the command line input
buffer before issuing the CSI$1 macro call. This
may be accomplished as follows:

MOV GCLBLK+G.CMLD,CSIBLK+C.CMLD

The combination of the buff and len parameters above enables CSI to
analyze the current command line. Following the analysis of the
command line, CSI updates offset location C.CMLD with the 1length of
the validated and compressed command line.

If a syntactic error is detected during the validation of the command
line, the C-bit in the Processor Status Word is set, and offset
locations C.FILD+2 and C.FILD in the CSI control block (see section
6.2.2) are set to values which define the address and the length,
respectively, of the command line segment in error.

Representative examples of the CSIS1 macro call follow:

CsIsl #CSIBLK, #BUFF, #LEN
CsIsl RO,GCLBLK+G.CMLD+2,GCLBLK+G.CMLD
CsIsl #CSIBLK

The first example shows symbols which represent the address and the
length of a command line to be analyzed (not necessarily the line
contained in the GCML command line input buffer).

The second example assumes that RO has been preset with the address of
the CSI control block; the next two parameters are direct references
to the command line descriptor words in the GCML control block.

Finally, the third example assumes that the required descriptor values

are already present in offset locations C.CMLD+2 and C.CMLD of the
control block (CSIBLK) as the result of prior action.

6-20

COMMAND LINE PROCESSING

6.2.3.2 CSI$2 - Command Semantic Parser

The CSI$2 macro call results in the invocation of the command semantic
parser. This routine wuses the wvalues in CSI control block offset
locations C.CMLD+2 and C.CMLD as the address and the length,
respectively, of the command line to be parsed. The referenced line
is then parsed into its component device name, directory, and filename
strings. In addition, 2-word descriptors for these strings are stored
in a 6-word dataset descriptor in the CSI control block, beginning at
offset location C.DSDS (see section 6.2.2). This field is'
functionally equivalent to the dataset descriptor created manually in
the user program (see section 2.4.1).

The command semantic parser also decodes any switches and associated
switch values present in a file specifier. If the user expects to
encounter switches in the current file specifier, the command semantic
parser decodes them, provided that the address of the appropriate
switch descriptor table has been specified in the CSI$2 macro call
(see Dbelow). The CSI switch definition macro calls are described in
detail in section 6.2.4.

The CSIS$2 macro call is specified in the following format:
CsIs2 csiblk,io,swtab

where: csiblk represents the address of the CSI control block.
If this parameter is not specified, RO is assumed
to contain the address of the CSI control block.

io represents a symbol which explicitly identifies
the type of file specifier to be parsed. Either
of two symbolic arguments may be specified in this
parameter field, as follows:

INPUT - Indicates that the next input file
specifier in the command line is to be parsed.

OUTPUT - Indicates that the next output file
specifier in the command line is to be parsed.

Offset location C.TYPR in the CSI control block
{see section 6.2.2) must be initialized, either
manually or through the CSI$2 macro call, with the
type of file specifier being requested. If other
than the symbolic arguments defined above are
specified in the (CSI$2 macro call, an .ERROR
directive 1is generated during assembly which
causes the error message "INCORRECT REQUEST TO
.CSI2" to be printed in the assembly 1listing.
This diagnostic message alerts the user to the

presence of an invalid "io" parameter in the CSI$2
macro call.
swtab represents the address of the associated switch

descriptor table for this particular issuance of
the CSI$2 macro call. This optional parameter
need be specified only when the user anticipates
the presence of a switch in the file specifier
that 1is to be decoded. Specifying this parameter
presumes that the user has previously created a
corresponding switch descriptor table in the
program through the CSI$SW macro call (see section
6.2.4.1). In addition, 1if the switch to be
decoded has any associated switch values, the user

6-21

COMMAND LINE PROCESSING

must also have created an associated switch value
descriptor table in the program through the CSI$SV
macro call (see section 6.2.4.2).

This parameter initializes offset location C.SWAD
in the CSI control block (see section 6.2.2); if
not specified, any residual non-zero value in this
cell 1is used by default as the address of the
switch descriptor table.

Offset location C.SWAD may also be initialized
manually prior to issuing the CSI$2 macro call, as
shown in the following statement:

MOV #SWTAB,CSIBLK+C.SWAD

where "SWTAB" is the symbolic address of the
associated switch descriptor table.

If an error condition occurs during the parsing of the file specifier,
the C-bit in the Processor Status Word is set, and control is returned
to the calling program. The possible error conditions that may occur
during command line parsing include the following:

1. The request type is invalid, i.e., offset location C.TYPR in
the Cs1I control block (see section 6.2.2) has been
incorrectly initialized.

2. A switch is present in a file specifier, but the address of
the switch descriptor table has not been specified in the
CSI$2 macro call, or the switch descriptor table does not
contain a corresponding entry for the switch.

3. An invalid switch value is present in the file specifier.

4. More values accompany a given switch in the file specifier
than there are corresponding entries in the switch value
descriptor table for decoding those values.

5. A negative switch is present in the file specifier, but the
corresponding entry in the switch descriptor table does not
allow the switch to be negated (see the nflag parameter of
the CSIS$SW macro call in the next section).

Examples of the CSIS$2 macro call are shown below:

Cs1s$2 #CSIBLK, INPUT, #SWTBL

CSIs2 RO ,OUTPUT, #SWTBL

CsIs2 #CSIBLK, INPUT
The first example shows a request to parse an input file specifier
which may include an associated switch. The second example, which
assumes that RO presently contains the address of the CSI control
block, will parse an output file specifier that likewise may include a

switch. Finally, the last example is a request to parse an input file
specifier and to disallow any accompanying switch(es).

6-22

COMMAND LINE PROCESSING

6.2.4 CSI Switch Definition Macro Calls

The following macro calls must be issued at assembly-time to <create
the requisite switch descriptor tables in the program for processing
switches that appear in a file specifier:

CSISSW - Creates an entry in the switch descriptor table for a
particular switch that the user expects to encounter in
a file specifier.

CSI$SV - Creates a matching entry in the switch value descriptor
table for the switch defined through the CSI$SW macro
call above.

CSISND - Terminates a switch descriptor table or a switch wvalue

descriptor table <created through the CSI$SW or the
CSIS$SV macro call, respectively.

These macro calls are described separately in the following sections.

6.2.4.1 CSI$SW - Create Switch Descriptor Table Entry

To process each switch that the user expects to encounter in a file
specifier, a matching entry in the switch descriptor table must be
defined. When the address of a switch descriptor table is specified
in any particular issuance of the CSI$2 macro call (see section
6.2.3.2), the following processing occurs:

1. For each switch encountered in a file specifier, CSI searches
the switch descriptor table for a matching entry. If the
switch descriptor table address is not specified, or a
matching entry is not found in the table for the switch, that
switch is considered to be invalid. As a result, the C-bit
in the Processor Status Word is set, any remaining switches
in the file specifier are bypassed, and control 1is returned
to the calling program.

2. If a matching entry is found in the switch descriptor table,
mask word 1 in the CSI control block is set according to the
defined mask for that switch (see C.MKWl, section 6.2.2).

3. The negation status of the switch is determined. If the
switch 1is not negated, the corresponding bits in mask word 2
(C.MKW2) in the CSI control block are set according to the
defined mask for that switch. If the switch is negated, and
negation is not allowed, then the switch is considered to be
invalid. In this case, the error sequence described in Step
1 above applies. However, if the switch 1is negated, and
negation 1is allowed, then the corresponding bits in C.MKW2
are cleared.

The negation flag for a switch 1is established through the
nflag parameter of the CSIS$SW macro call (see below).

4. If the address of the optional user mask word is not present
in the corresponding switch descriptor table entry, i.e., if
the mkw parameter has not been specified in the associated
CSISSW macro call (see below), switch processing continues
with Step 7. 1If, however, the address of the optional mask
word is specified, switch processing continues with Step 5.

6-23

COMMAND LINE PROCESSING

5. If "SET" has been specified as the clear/set flag in the
corresponding switch descriptor table entry, and the switch
is not negated, then the corresponding bits in the optional
mask word are set according to the defined mask for that
switch. If, however, the switch is negated, the
corresponding bits in the optional mask word are cleared.

The clear/set flag is specified as the csflg parameter in the
CSISSW macro call (see below).

6. If "CLEAR" has been specified as the clear/set flag in the
corresponding switch descriptor table entry, and the switch
is not negated, the corresponding bits in the optional mask
word are cleared. Conversely, if the switch is negated, the
corresponding bits in the optional mask word are set.

7. 1f a switch value accompanies a switch in a file specifier,
the associated switch value descriptor table created through
the CSI$SV macro call (see next section) is used to decode
the value. There must be at least as many entries in the
switch value descriptor table as there are such values
accompanying the switch in the file specifier. If the switch
value descriptor table is incomplete, if an invalid switch
value 1is encountered, or if the address of the switch value
descriptor table is not present in the associated switch
descriptor table, then the switch 1is considered to be
invalid, and the error sequence described in Step 1 again
applies.

The address of the switch descriptor value table is specified
as the vtab parameter in the CSI$SSW macro call (see below).

The CSIS$SW macro call is specified in the following format:
label: CSIS$SW sw,mk,mkw,csflg,nflg,vtab

where: label represents an optional symbol which names the
resulting switch descriptor table entry and
defines its address. 1In order to establish the
address of a switch descriptor table, the first
CSI$SW macro <call issued in the program must
include a label. This label allows the table to
be referenced by other instructions in the

program.

sw represents the 2-character alphabetic switch name
that is to be stored in the resulting switch
descriptor table entry. This parameter is

required. If not specified, an .ERROR directive
is generated during assembly which causes the
error message "MISSING SWITCH NAME" to be printed
in the assembly listing.

mk represents a user-defined mask for the switch
specified through the sw parameter above. To
enable CSI to indicate the presence of a given
switch in a file specifier, a mask value for the
switch must be defined, as shown below:

mkw

csflg

COMMAND LINE PROCESSING

ASMSK =1
NUMSK = 2
VWMSK = 40000
XYMSK = 100000

where the (octal) value assigned by the user to
each symbol defines a unique bit configuration
that is to be set in CSI mask word 1 (C.MKWl) of
the control block when a defined switch |is
encountered in a file specifier.

By specifying the appropriate symbol as the "mk"
parameter in the CSISSW macro call, the
corresponding mask value is stored in the
resulting switch descriptor table entry. Thus, a
mechanism is established through which the user
can determine the particular combination of
switches present in a file specifier. For every
matching entry found in the switch descriptor
table, the corresponding bits are set in C.MKWIl.

represents the address of an optional user mask
word. If specified, this parameter causes CSI to
set or clear bits in a word reserved in the user
program. This word provides additional
infermation to the user regarding the clear/set
flags in the switch descriptor table in relation
to the negation status of switches encountered in

a file specifier.

Such an optional word may be reserved through a
statement logically equivalent to that shown
below:

MASKX: .WORD 0

CSI then manipulates the bits in this word, as
described in the sequence of switch processing
t the beginning of this section.

operations a
represents a symbolic argument which specifies the
clear/set flag for a given switch. This parameter
is optional; if not specified, SET 1is assumed
(see below). Either one of two symbolic arguments
may be specified for this parameter, as follows:

COMMAND LINE PROCESSING

CLEAR -~ Indicates that the bits in the optional
user mask word corresponding to the switch mask,
are to be cleared provided that the switch is not
negated. (If the switch is negated, the bits are
set.)

SET - Indicates, conversely, that the bits in the
optional wuser mask word corresponding to the
switch mask are to be set provided that the switch
is not negated. (If the switch is negated, the
bits are cleared.)

If other than one of the above arguments is
specified, an .ERROR directive is generated during
assembly which causes the error message "INVALID
SET/CLEAR SPEC" to be printed in the assembly
listing.

nflg represents a symbolic argument which specifies an
optional negation flag for the switch. If this
parameter is specified, it indicates that the
switch is allowed to be negated, e.g., /-LI or
/NOLI.

If this parameter 1is specified as other than
"NEG," an .ERROR directive 1is generated during
assembly which causes the error message "INVALID
NEGATE SPEC" to be printed in the assembly
listing. If this parameter is not specified, the
default assumption is that switch negation is not
allowed.

vtab represents the address of the switch descriptor
table associated with this switch. This optional
parameter, if specified, allows CSI to decode any
switch values accompanying the switch, provided
that an associated switch value descriptor table
entry has been defined for that switch. The
switch value descriptor table is defined through
the CSI$SV macro call, as described in the next
section.

The format of the switch descriptor table entry that results from the
issuance of the CSISSW macro call is shown in Figure 6-2 below. One
such switch entry must be defined for each switch appearing 1in the
file specifier that the wuser intends to recognize. Each switch
descriptor table entry consists of four words. The low-order byte of
the first word contains the first character of the switch name; the
high-order byte of this word contains the second character of the
switch name. The second word contains the mask defined for the
switch. The third word contains the address of the optional user mask
word to receive the resultant value of switch processing. Finally,
the fourth word contains the address of the switch value descriptor
table associated with the switch.

6-26

ND LINE PROCESSING

16 0

SWITCH NAME SWITCH NAME
CHARACTER 2 CHARACTER 1

MASK WORD FOR THIS SWITCH

ADDRESS OF WORD TO BE MASKED *

ADDRESS OF SWITCH VALUE TABLE **

*If the low-order bit in this word is one
(1), it indicates that the optional user
mask word action is "CLEAR;" if it is
zero (0), it indicates that the action
is "SET."

**If the low-order bit in this word is one
(1), it indicates that the switch may be
negated.

Figure 6-2
Format of Switch Descriptor Table Entry

The following example shows a 2-entry switch descriptor table created
through successive CSI$SW macro calls:

ASSWT: CSISSW AS,ASMSK,MASKX,SET,,ASVTBL
CSI$SW NU,NUMSK,MASKX,CLEAR,NEG,NUVTBL
CSISND ;END OF SWITCH DESCRIPTOR TABLE.

The first statement results in the creation of an entry in the switch
descriptor table for the switch /AS. The second parameter is an
equated symbol which defines the switch mask, and the third parameter
(MASKX) 1is the address of an optional user mask word (see the mkw
parameter above). The fourth parameter indicates that the bits in
MASKX which correspond to the switch mask are to be set. The fifth
parameter (the negation flag) is null. Finally, the last parameter is
the address of the associated switch value descriptor table.

COMMAND LINE PROCESSING

The second statement results in the creation of a switch descriptor
table entry for the switch /NU. 1In contrast to the first statement,
the fourth parameter (CLEAR) indicates that the bits in the optional
user mask word (MASKX) which correspond to the switch mask are to be
cleared. The fifth parameter (NEG) allows the switch to be negated,
and the last parameter is the address of the value table associated
with this switch.

Note that the switch descriptor macros are terminated with the CSIS$ND
macro call (see section 6.2.4.3).

6.2.4.2 CSIS$SV - Create Switch Value Descriptor Table Entry

For every switch value that the user expects to encounter in
connection with a given switch in a file specifier, a corresponding
switch value descriptor table entry must be defined in the user
program in order to allow the switch value(s) to be decoded. The
CSI$SV macro call is provided for this purpose. When issued, this
macro call results in the creation of a 2-word entry in the switch
value descriptor table. The format of this table is shown in Figure
6-3 below.

The CSI$SV macro call is specified in the following format:
CSI$SV type,adr,len,vtab

where: type represents a symbolic argument which specifies the
conversion type for the switch value. Any one of
four symbolic values may be specified in this
parameter field to indicate the conversion type
for the accompanying switch value. The possible
conversion type arguments include the following:

ASCII - Indicates that the switch value is to be
treated as an ASCII string.

NUMERIC - Indicates that a numeric switch value is
to be converted to binary using octal as a default
conversion radix.

OCTAL - Indicates that a numeric switch value is
to be converted to binary using octal as a default
conversion radix.

DECIMAL - Indicates that a numeric switch value is
to be converted to binary using decimal as a
default conversion radix.

If any value other than those defined above is
specified, an .ERROR directive is generated during
assembly which causes the error message "INVALID
CONVERSION TYPE" to be printed in the assembly
listing. If none of the above parameters is
specified, ASCII is assumed by default.

adr represents the address of the user program
location which is to receive the resultant switch
value at the conclusion of switch processing.
This parameter is required; if not specified, an

6-28

.ERROR directive 1is generated during assembly
which causes the error message "VALUE ADDRESS
MISSING" to be printed in the assembly listing.

[
[{]

-
S

represents a numeric value which defines the
length (in bytes) of the area which is to receive
the switch value resulting from switch processing.
This parameter is also required; if not
specified, an .ERROR directive is also generated
during assembly which causes the error message
"LENGTH MISSING" to be printed in the assembly
listing.

vtab represents a symbol which names the switch value
descriptor table and defines its address. This
parameter is optional. The vtab parameter may
also be specified in the CSISSW macro call (see
section 6.2.4.1) when the user anticipates the
presence of a switch wvalue in a file specifier
that is to be decoded.

The format of a switch value descriptor table entry that results from
the CSIS$SV macro call is shown in Figure 6-3 below.

The low-order byte of the first word in the switch value descriptor
table indicates whether the conversion type is ASCII or numeric. Bit
0 in this byte is set if "ASCII" is specified, bit 1 1is set if
"NUMERIC" or "OCTAL" 1is specified, and bit 2 is set if "DECIMAL" is
specified. The high-order byte of this word indicates the maximum
allowable length (in bytes) of the switch value.

If the conversion type is "ASCII," the len parameter reflects the
maximum number of ASCII characters that can be deposited in the area
defined through the adr parameter. The high-order byte of the first
word in the switch value table then reflects the maximum length of the
ASCII string. If the number of characters in the switch value exceeds
the specified 1length, the extra characters are simply ignored. If,
however, the actual number of ASCII characters present in the switch
value falls short of the specified length, the remaining portion of
the area receiving the resultant value is null padded.

If the conversion type is "NUMERIC,"™ the resultant binary value is
assumed to be two bytes in length, and the area receiving the value is
assumed to be word-aligned. A numeric switch value 1is always
evaluated as a signed number; an overflow into the high order bit
(bit 16) results in an error condition.

On numeric conversions, the default conversion type specified for a
switch value can be overridden by means of a pound sign (#) or a dot
(.). A numeric value preceded by a pound sign (e.g., #10) forces the
conversion type to octal; a numeric value followed by a dot (e.g.,
10.) forces the conversion type to decimal. Note also that a numeric
switch value may be preceded by a plus sign (+) or a minus sign (-).
The plus sign is the default assumption. If an explicit octal switch
value 1is specified using the pound sign (#), as described above, the
arithmetic sign indicator (+ or -), if 1included, must precede the
pound sign (e.g., -#10).

COMMAND LINE PROCESSING

16 0

SWITCH VALUE CONVERSION
LENGTH TYPE

ADDRESS OF LOCATION
RECEIVING SWITCH RESULT

Figure 6-3
Format of Switch Value Descriptor Table Entry

Representative CSIS$SV macro calls are shown below:
ASVTBL: CSI$SV ASCII,ASVAL,3

CSI$SV ASCII,ASVAL+4,3

CSISND ;END OF SWITCH VALUE TABLE.
NUVTBL: CSIS$SV OCTAL,NUVAL,2

CSIS$SV DECIMAL,NUVAL+2,2

CSISND ;END OF SWITCH VALUE TABLE.
In all cases above, the first parameter in the CSI$SV macro call
defines the <conversion type. The next two parameters, in all cases,
define the address and the length of the wuser program location to

receive the resultant switch value.

The required storage for the first switch value table above may be
reserved as follows:

ASVAL .BLKW 4 ;ASCII VALUE STORAGE.

The required storage for the second switch value table may be
similarly reserved through the following statement:

NUVAL: .BLKW 2 ;NUMERIC VALUE STORAGE.

Note again that switch value tables are terminated with the CSIS$ND
macro call.

6.2.4.3 CSISND - Define End of Descriptor Table

Switch descriptor tables and switch value descriptor tables must be
terminated with a 1l-word end-of-table entry. This word, which
contains zero (0), may be created through the CSI$ND macro call.
This macro call takes no arguments, as shown below:

CSISND

The examples near the end of the preceding section illustrate the use
of this macro call.

CHAPTER 7

SPOOLING

FCS provides facilities at both the macro and subroutine 1level to
queue files for subsequent printing.

7.1 PRINT$ MACRO CALL

A task issues the PRINTS$ macro call to queue a file for printing on a
specified device. The specified device must be a wunit-record,
carriage-controlled device such as a line printer or terminal. If the
device is not specified, LP: is used.

The file to be spooled must be open when the PRINTS$ macro is issued.
PRINTS closes the file. Error returns differ from normal FCS
conventions and are described in Section 7.3.

The PRINTS$ macro call has the following format:
PRINTS fdb,err,,dev, (l)unit, (1)pri, (1)forms, (1l)copies, (1l)presrv(l)
fdb represents the address of the associated FDB.

err represents the address of an optional user-coded error
handling routine. See Section 7.3.

The following parameters are not applicable to RSX-11M.

dev represents the 2-character device mnemonic of the
device on which the file is to be printed. If dev is
not specified, LP: 1is used by default.

unit represents the unit number of the device on which the
file 1is to be printed. If unit is not specified, unit
0 is used by default.

The following parameters are used only by the IAS and RSX-11D multiple
device despoolers. See the discussion below.

pri represents a number in the range 1 through 250 to
indicate the priority of the request. The priority is
used to determine the order in which spooled files are
dequeued for printing. If pri is omitted, the task's
priority is used by default.

(1) Does not apply to RSX-11M.

SPOOLING

forms represents the specific form type on which the file is

to be printed as indicated by a number in the range 0
through 6. This parameter must be specified as a
single integer without a preceding number sign (#).
The numbers 0 through 6 are associated with the various
forms for an installation by the system manager. If
forms is omitted, form type 0 is used by default.

copies represents a number in the range 1 through 32 to

indicate the number of copies of the file to be
produced. The number of copies must be specified as a
1- or 2-digit integer without a preceding number sign
(#). If copies is omitted, one copy is printed.

presrv should be specified if the file is not to be deleted

after it 1is printed. Any parameter value results in
the file's being preserved after printing.

The following points do not apply to RSX-11M.

1.

A blank parameter 1is present between err and unit thus
requiring an additional comma. This parameter exists to
provide compatibility between RSX-11D Version 4 and RSX-11D
Version 6.

The number of parameters that are meaningful for RSX-11D is
determined by whether the single device despooler or the
multiple device despooler is available in the system. The
difference between the two despoolers is described in the
RSX-11D User's Guide and the RSX-11D System Manager's Guide.
In IAS, only the multiple device despooler is supported.
This is described in the IAS System Management ~“Guide. The
following parameters are used by the multiple device
despooler and ignored by the single device despooler.

pri
forms
copies

presrv

7.2 PRINT SUBROUTINE

The .PRINT subroutine is called to queue a file for printing. The
file must be open when .PRINT is called. The .PRINT routine closes
the file.

RO must contain the address of the associated FDB.
The file is printed on LP:.

Section 7.3 describes error handling for the .PRINT file control
routine.

7.3 ERROR HANDLING

The error returns provided in conjunction with PRINT$ and .PRINT
differ from the standard FCS error returns in that error codes are
placed in F.ERR or in the directive status word depending on when the
failure occurred.

If the failure is FCS related, e.g., the PRINTS macro cannot close the
file, the C bit is set and F.ERR contains the error code.

If the failure is related to the SEND/REQUEST directive that queues
the file, the C bit is set and the directive status word contains an
error code.

Directive status word error codes are provided in the Executive
Reference Manual of the host operating system.

Normally, user-coded error routines, upon determining that the C bit
is set, should test F.ERR first and then test the directive status
word.

APPENDIX A

FILE DESCRIPTOR BLOCK

A file descriptor block contains file information that is used by FCS
and the file control primitives. The layout of an FDB is illustrated

on the following page; Table A-1 defines the offset locations within
the FDB.

The offset names in the file descriptor block may be defined either
locally or globally, as shown below:

FDOFS$L ;DEFINE OFFSETS LOCALLY.

FDOFF$ DEFSL ;DEFINE OFFSETS LOCALLY.

FDOFF$ DEFS$G ;DEFINE OFFSETS GLOBALLY.
NOTE

When referring to FDB locations, it 1is essential
to wuse the symbolic offset names, rather than the
actual address of such locations. The position of
information within the FDB may be subject to
change from release to release, while the offset
names themselves remain constant.

FILE DESCRIPTOR BLOCK

File Attribute Section F.RATT F.RTYP
F.RSIZ
F.HIBK
F.EFBK
Record or Block Access F.FFBY
Section
F.RCTL F.RACC

F.BKDS or F.URBD
F.NRBD or
F.BKST and F.BKDN
F.OVBS or F.NREC
F.EOBB
F.RCNM or
F.CNTG and F.STBK

File Open Section F.ALOC
F.FACC F.LUN
F.DSPT
F.DFNB
Block Buffer Section F.BKP1 F.EFN or F.BKEF
FERR+1 F.ERR
F.MBC1 F.MBCT
F.BGBC F.MBFG
F.VBSZ
F.BBFS
F.BKVB or F.VBN
F.BDB
F.SPDV
not used F.SPUN
F.ACTL (1)
F.CHR(1)

F.FNB

(1) Not used by RSX-11M.

FILE DESCRIPTOR BLOCK

Table A-1
FDB Offset Definitions

OFFSET SIZE CONTENTS
(in bytes) :
F.RTYP 1 Record type byte. This byte 1is set, as
follows, to indicate the type of records for
the file:

Bit 0 = 1 to indicate fixed-length records
(R.FIX).

Bit 1 =1 to indicate variable-length
records (R.VAR).

F.RATT 1 Record attribute byte. Bits 0 through 3 are
set to indicate record attributes, as
follows:

Bit 0 = 1 to indicate that the first byte of
a record is to contain a FORTRAN
carriage-control character (FD.FTN) ;
otherwise, it is 0.

Bit 1 = 1 to indicate for a carriage-control
device that a line feed is to be performed
before the line is printed and a carriage
return is to be performed after the line is
printed (FD.CR); otherwise, it is 0.

Bit 2 is not used.

Bit 3 = 1 to indicate that records cannot
cross block boundaries (FD.BLK); otherwise,
it is 0.

F.RSIZ 2 Record size word. This 1location contains
the size of fixed-length records or
indicates the size of the 1largest record
that currently exists in a file of
variable-length records.

F.HIBK 4 Indicates the highest virtual block number
allocated.

F.EFBK 4 Contains the end-of-file block number.

FILE DESCRIPTOR BLOCK

Table A-1 (Cont.)
FDB Offset Definitions

OFFSET SIZE CONTENTS
(in bytes)
F.FFBY 2 Indicates the first free byte in the last
block or the maximum block size for

magnetic tape.

F.RACC 1 Record access byte. Bits 0 through 3 of
this byte define the record access modes, as
follows:

Bit 0 =1 to indicate READS$/WRITES mode
(FD.RWM) ; otherwise, it is 0 to indicate
GETS/PUTS mode.

Bit 1 = 1 to indicate random access mode
(FD.RAN) for GETS$/PUTS record 1/0;
otherwise, it is 0 to indicate sequential
access mode.

Bit 2 = 1 to indicate locate mode (FD.PLC)
for GETS/PUTS record 1/0; otherwise, it is
0 to indicate move mode.

Bit 3 = 1 to indicate that PUT$ operation in
sequential mode does not truncate the file
(FD.INS); otherwise, it is 0 to indicate
that PUT$ operation 1in sequential mode
truncates the file.

F.RCTL 1 Device characteristics byte. Bits 0 through
5 define the characteristics of the device
associated with the file, as follows:

Bit 0 = 1 to indicate a record-oriented
device (FD.REC), e.g., a Teletype or line
printer; a value of 0 indicates a
block-oriented device, e.g., a disk or
DECtape.

Bit 1 = 1 to indicate a carriage control
device (FD.CCL); otherwise, it is 0.

Bit 2 = 1 to indicate a teleprinter device
(FD.TTY); otherwise, it is 0.

Bit 3 = 1 to indicate a directory device
(FD.DIR); otherwise, it is 0.

FILE DESCRIPTOR BLOCK

Table A-1 (Cont.)
FDB Offset Definitions

OFFSET SIZE CONTENTS
(in bytes)

F.RCTL Bit 4 = 1 to indicate a single directory
(cont.) device (FD.SDI). An MFD is used, but no
UFD's are present.

Bit 5 = 1 to indicate a block-oriented
device that 1is inherently sequential in
nature (FD.SQD). A record-oriented device
is assumed to be sequential in nature;
therefore, this bit is not set for such
devices.

F.BKDS 4 Contains the block I/0 buffer descriptor.

or
F.URBD Contains the user record buffer descriptor.
F.NRBD 4 Contains the next record buffer descriptor.
or
F.BKST 2 Contains the address of the I/0 status block
and for block I/O.

F.BKDN 2 Contains the address of the AST service
routine for block I/O.

F.OVBS 2 Override block buffer size. This field has

or meaning only before the file is opened.

F.NREC 2 Contains the number of the next record in
the block.

F.EOBB 2 Contains a value defining the end of the
block buffer.

F.RCNM 4 Contains the number of the record for random

or access operations.
F.CNTG 2 Contains a numeric value defining the number

of blocks to be allocated in creating a new
file. This cell has meaning only before the
file 1is opened. A value of 0 means leave
the file empty; a positive value means

FILE DESCRIPTOR BLOCK

Table A-1 (Cont.)
FDB Offset Definitions

OFFSET SIZE CONTENTS
(in bytes)
F.CNTG allocate the specified number of blocks as a
(cont.) contiguous area and make the file
and contiguous; a negative value means allocate

the specified number of blocks as a
noncontiguous area and make the file
noncontiguous.

F.STBK 2 Contains the address of the statistics block
in the user program.

F.ALOC 2 Number of blocks to be allocated when the
file must be extended. This cell has
meaning only before the file is opened. A
positive (+) value indicates contiguous
extend, and a negative (-) value indicates
noncontiguous extend.

F.LUN 1 Contains the logical unit number associated
with the FDB.

F.FACC 1 File access byte. This byte indicates the
access privileges for a file, as summarized
below:

Bit 0 = 1 if the file is accessed for read
only (FA.RD).

Bit 1 =1 if the file is accessed for
writing (FA.WRT).

Bit 2 =1 1if the file 1is accessed for
extending (FA.EXT).

Bit 3 =1 if a new file 1is being created
(FA.CRE) ; otherwise, it is zero (0) to
indicate an existing file.

Bit 4 = 1 if the file is a temporary file
(FA.TMP).

Bit 5 = 1 if the file is opened for shared
access (FA.SHR).

FILE DESCRIPTOR BLOCK

Table A-1 (Cont.)

FDB Offset Definitions

QFFSET SIZE CONTENTS
(in bytes)

F.FACC If Bit 3 above is zero (0):

(cont.)
Bit 6 = 1 if an existing file 1is being
appended (FA.APD).
If Bit 3 above is one (1):
Bit 6 = 1 if not superseding an existing
file at file-create time (FA.NSP).

F.DSPT 2 Contains the dataset descriptor pointer.

F.DFNB 2 Contains the default filename block pointer.

F.BKEF 1 Contains the block I/O event flag.

or

F.EFN Contains the record I/0 event flag.

F.BKP1 1 Contains bookkeeping bits for FCS internal
control.

F.ERR 1 Error return code byte. A negative value
indicates an error condition.

F.ERR+1 1 Used in conjunction with F.ERR above. If
F.ERR is negative, the following applies:
F.ERR+1 = 0 to indicate that error code is
an I/0 error code (see IOERRS error codes in
Appendix I).
F.ERR+1 = negative value to indicate that
error code is a Directive Status Word error
code (see DRERRS error codes in Appendix I).

F.MBCT 1 Indicates the number of buffers to be used

for multiple buffering.

FILE DESCRIPTOR BLOCK

Table A-1 (Cont.)
FDB Offset Definitions

OFFSET SIZE CONTENTS
(in bytes)
F.MBC1 1 Indicates the actual number of buffers

currently in use.

F.MBFG 1 Multiple buffering flag word. Contains
either one of the multiple buffering flags,
as follows:

Bit 0 = 1 to indicate read-ahead (FD.RAH).

Bit 1

1 to indicate write-behind (FD.WBH).

F.BGBC 1 Big buffer block count in number of blocks
(not implemented).

F.VBSZ 2 Device buffer size word. Contains the
virtual block size (in bytes).

F.BBFS 2 Indicates the block buffer size.

F.BKVB 4 Contains the address of the virtual block
or number in the user program for block I/O.

F.VBN Contains the virtual block number.

F.BDB 2 Contains the address of the block buffer

descriptor block. This 1location always
contains a non-zero value if the file Iis
open and zero (0) if the file is closed.

F.SPDV 2 Spooler output device designation (IAS and
RSX-11D only).

F.SPUN 1 Spooler output unit designation (IAS and
RSX-11D only).

Spare 1 Not used.

F.ACTL 2 The low order byte of this word indicates

the number of retrieval pointers to be used
for the file.

The control bits are in the high order byte
and are defined as follows.

FILE DESCRIPTOR BLOCK

Table A-1 (Cont.)
FDB Offset Definitions

OFFSET SIZE
(in bytes)

Bit 15 =1 to specify that control
information 1is to be taken from F.ACTL
(FA.ENB) .
Bit 12 = 0 to cause positioning to the
end of a magnetic tape volume set upon
open or close.
Bit 12 = 1 to cause positioning of a
magnetic tape volume set to just past
the most recently closed file when the
next file is opened (FA.POS).
Bit 11 = 1 to cause a magnetic tape
volume set to be rewound upon open or
close (FA.RWD).
Bit 9 = 1 to cause a file not to be
locked if it 1is not properly closed
when accessed for write (FA.DLK).

F.CHR 2 Reserved for system use.

F.FNB - Defines the beginning address of the

filename block portion of the FDB.

APPENDIX B
FILENAME BLOCK

£ £21 - puy 8 2 - 2
I a riiename p1LOCK 1S L
in the filename block ar

+3

W
Il

e lustrated in Figure B-1. The
ffs

u
described in Table B-1.

£ 1
e e

(o]

The offset names in a filename block may be defined either locally or
globally, as shown below:

NBOFS$L ;DEFINE OFFSETS LOCALLY.
NBOFFS$ DEFSL ;DEFINE OFFSETS LOCALLY.
NBOFFS$ DEFS$G ;DEFINE OFFSETS GLOBALLY.

NOTE

When referring to filename block
locations, it 1is essential to use the
symbolic offset names, rather than the
actual addresses of such locations. The
position of information within the
filename block may be subject to change
from release to release, while the
offset names themselves remain constant.

FILENAME BLOCK

N.FID

N.FNAM

N.FTYP

N.FVER

N.STAT

N.NEXT

N.DID

N.DVNM

N.UNIT

Filename Block Format

Figure B-1

10
i2
14
16
20
22
24
26
30
32

34

CUMULATIVE

LENGTH

IN

BYTES

(OCTAL)

FILENAME BLOCK

Table B-1

Filename Block Offset Definitions

OFFSET SIZE CONTENTS
(in bytes)

N.FID 6 File identification field.

N.FNAM 6 Filename field; specified as nine
characters which are stored in Radix=50
format.

N.FTYP 2 File type field; specified as three
characters which are stored in Radix-50
format.

N.FVER 2 File version number field (binary).

N.STAT 2 Filename block status word (see bit
definitions in Table B-2).

N.NEXT 2 Context for next .FIND operation.

N.DID 6 Directory identification field.

N.DVNM 2 ASCII device name field.

N.UNIT 2 Unit number field (binary).

FILENAME BLOCK

The bit definitions of the filename block status word (N.STAT) in the
FDB and their significance are described in Table B-2.

Those symbols marked with an asterisk (*) in Table B-2 indicate bits
that are set if the associated information is supplied through an
ASCII dataset descriptor.

Table B-2
Filename Block Status Word (N.STAT)

SYMBOL VALUE MEANING
(in octal)
NB.VER* 1 Set if explicit file version number is

specified.

NB.TYP* 2 Set if explicit file type is specified.
NB.NAM* 4 Set if explicit filename is specified.
NB.SVR 10 Set if wildcard file version number is

specified.

NB.STP 20 Set if wildcard file type is specified.
NB.SNM 40 Set if wildcard filename is specified.
NB.DIR* 100 Set if explicit directory string (UIC)

is specified.

NB.DEV* 200 Set if explicit device name string is
specified.

NB.SD1 400 Set if group portion of UIC contains
wildcard specification.

NB.SD2 1000 Set if owner portion of UIC contains
wildcard specification.

APPENDIX C

SUMMARY OF I/O-RELATED SYSTEM DIRECTIVES

Table C-1 contains a summary of the I/O-related system directives 1in
alphabetical order for ready reference. The parameters that may be
specified with a directive are also described in the order of their
appearance in the directive. These directives are described in detail

in the Executive Reference Manual of the host operating system.

SUMMARY OF I/O-RELATED SYSTEM DIRECTIVES

Table C-1
Summary of I/O-Related System Directives

DIRECTIVE FUNCTION AND PARAMETERS

ALUNS Assigns a logical unit number to a physical device:
lun = Logical unit number.
dev = Physical device name (2 ASCII characters).
unt = Physical device unit number.

GLUNS Fills a 6-word buffer with information about a physical
unit:
lun = Logical unit number.
buf = Address of a 6-word buffer in which the LUN

information is to be stored.

GMCRS Transfers an 80-byte MCR/PDS command 1line to the
issuing task. No parameters are required in this
directive.

QIOS Places an I/0 request in the device queue associated

with the specified logical unit number:

fnc = I/0 function code.

lun = Logical unit number.

efn = Event flag number.

pri = Priority of the request (IAS and RSX-11D only).
isb = Address of the I/0 status block.

ast = Entry point address of the AST service routine.

prl = Parameter list in the form <Pl,....,P6>.

OF I/0-RELATED SYSTEM DIRECTIVES

Table C-1 (Cont.)
Summary of I/O-Related System Directives

DIRECTIVE FUNCTION AND PARAMETERS
RCVDS$ Receives a 13-word data block that has been queued
(FIFO) by a send data directive (see SDATS$ and SDRQS$
below) .
tsk = Name of the sending task. This field is ignored
by RSX-11M. The tsk parameter is specified as a
null value (,) in RSX-11M for compatibility with
IAS and RSX-11D (see the description of the RCVDS$
directive 1in the RSX-11M Executive Reference
Manual).

buf = Address of the 15-word data buffer (2-word
sending task name and 13-word data block).

RCVSS Receives a 13-word data block, if queued by a send data
directive (see SDATS$ AND SDRQS below), or suspends task
if no data is queued:
tsk = Name of the sending task.
buf = Address of the 15-word data buffer (2-word

sending task name and 13-word data block).
This directive is not supported in RSX-11M.
RCVXS Receives a 13-word data block, if queued by a send data

directive (see SDATS and SDRQS below), or exits if data
is not gueued for the task:

tsk = Name of the sending task. This field is ignored
by RSX-11M. The tsk parameter is specified as a
null value (,) in RSX-11M for compatibility with
IAS and RSX-11D (see the description of the RCVXS$
directive 1in the RSX-11lM Executive Reference

Manual.

buf = Address of the 15-word data buffer (2-word
sending task name and 13-word data block).

SUMMARY OF I/O-RELATED SYSTEM DIRECTIVES

Table C-1 (Cont.)
Summary of I/O-Related System Directives

DIRECTIVE FUNCTION AND PARAMETERS
SDATS Queues (FIFO) a l13-word block of data for a task to
receive:
tsk = Name of the receiving task.
buf = Address of the 13-word data buffer.
efn = Event flag number.
SDRQS Queues (FIFO) a 13-word block of data for a task to

receive; also requests or resumes the execution of the

receiving task:

tsk = Name of the receiving task.

par = Partition name of the receiving task.
pri = Priority of the request.

ugc = UIC group code.

upc = UIC owner code.

buf = Address of the 13-word data buffer.

efn = Event flag number.

This directive is not supported in RSX-11M.

APPENDIX D

SAMPLE PROGRAMS

The sample programs that follow read records from an input device,
strip off any blanks to the right of the data portion of the record,
and write the data record on an output device. While the programs are

intended primarily for card reader input and printer output, device
independence is maintained.

The main program is CRCOPY; CRCOPA and CRCOPB are variations. CRCOPA
uses a dataset descriptor instead of the default filename block used
in CRCOPY. CRCOPB uses run-time initialization of the FDB.

STITLE
aMEALL
JMCALL
WMEALL
INLUNE]
CUTLUNRM
FSRE2®
FDBCUT: PDACPS
FOATSA
‘FORCSA
FDCPSA
FOBIN: FDRARKS
FORECSA
FPOPSA
RECPUFI ,BLKB
CENAME NMBLKS
IPNAME NMBLKS
STARTI FINITS
CPENSR
RCS
CPENSW
Becs
CTRECT GFTS
RCS
MAV
MOV
) ADD
108 CMPR
BNE
enp
$AT THIS POTNT,
FJRECORD 7O RF WR
}A 7ERQeFNETH R
FTRECT PUTSE
are
ERRCRy NCP
CKECF1 CMPR
BNE
CLOBES
RCS
cLoses
acs
EXITES
JENE

SAMPLE PROGRAMS

CRCCPY 1CARD REANRER COPY RCUTINE
FOBLFS,FDATSA,FNRLEA,FDOPSA,NMALKS ,FERETYS
CPENSR,CPENSK,GETS,PLTS,CIL.O8ES,EXTTSS
PINITS
JASSIGN CR OR PYLF REVICE
JASSIGN THA PUTPUT DFVICF

2

, JALLCCATE SPACE FOR OUTPLY FDR
R.VAR,FD,CR JINTIT PILF ATTRIRUTES
+sRECBLF,87, F1INIT RECORD ATTRYBLTES

QUTLUN, ,OFNAY JINIY FILF OPEN SFCTICA
JALLCCATE SPACE FCOR INFLY DB

+FECBLF,802, JINTT RECPRD ATTRTBUTES
INLUN, pTFNAM JINIT PILF PPEN BFCTICN
s, JRECCRD BLFFER
OLTPUT,DAT SCLUTPLT FTLENAME
INPLT.DAT JINPUT FILENAME

PINTT FILF STORAGF REGION
WFDRIN JCPEN THE INPUT FTLE
ERRER IRRANCK IF FRROR
WHEDROUT pOPEN THP QUTYPUY FILE
ERRCR JRRANCH IF PRRQR
WEPRIN JNCTE « LURBR TS ALL 8SFY LP
CKECF $FRRCR SHOULD BF FOF INDICATION
E.NREBR(RPEY 4Ry IP{sSTIZF AF RFCCRN REAL
#RECBLF,R? .
Rt,R2. JRZ=ADDRESS OF LAST BYTFe1
#ag.w(R2) JSTRIP TRAILTING RLANKS
PTREC
Ry,(R8

RY CONTAINS THE STRIPPED SIZE OF THE
ITTEN, IF THE CAFD 18 BLANK,
ECORD IS WRITTEN,
*FDROLT,,RY JRY 19 NEFDFD TO SPFCIFY
GTREC JTHE RECERD STZF'

\ sFRRCR COPMF GOFS WERFE
WYE.ECF,F,ERRCRP) SFEND NF FTLE?

ERROR JBRANEH IF ATHER FRROR
RO JCLESFE THF TINPUT FILE
ERRER
#FDROLY JCLCSE THF rUTPLT FYLE
ERRCR

PTISSLF EXTY DIRFPTIVE
STARY

FRRCUT

FDBINY

mm
0
m 1
-

~4 g
- -

mmn

IFpePTy

CNAMY

INAV g

BTARTY

GTREC!

1S

SAMPLE PROGRAMS

ATITLF CRCOPA JCARD REARER COPY RALTINE
LMEALL FPBBFS . FRATSA FRACEA FONPEA NNB L KE FERETE
pMCALL CPENSR,CPENSW,GFTE,PLUTS,CILOSES,EXTTSS
MCALL FINITS

INLUNSY PASSICN CR CR PILF REVICE
OUTLLNeE FASSIGN TN PUTPUY DEVICP
F8RE2E 2

PRBEFE

POATEA R,VAR,FD,CR

FDRCSA ,RECBLF,80,

FDOPSA CUTLUN,CPDSPY

FDBEFS

FDRCSA ,RECBLF,82,

FOOPSA INLUN,IFDSPY

pBLKB 82,

pHORE 2,0 JDEVICE DESCRIPTAR

JWORE 2,0 JPIRECTORY RESCIRPTOR
pHORD ONAMSZ,ONAM JFILENAME DFSCRIPYOR
JWORD 2,0 sCEVICE DESCRIPTCR

JWORD 2,2 JICIRECTORY RESCRIRTOR
sWOED INAMSY,TNANM JFILENAME DFSCRIPTOR
LASCIT |, /CUTPUT.DAT/

CNANEZm ONAV

JFVEN

LASCIY JINPUT DAY/

INAVSZR o INAM

+EVEN

FINTITS JINYT PILE RTORAGE REGIOAN
CPENSR WFDRIN 10FEN THE INPUT FILF

BCS ERRCR PREANCH IF ERROR

CPENSW WFDPOLY OPEN TWE CUTPUT FII P

BCS ERRCR FRRANCH IF PRROR

CETS #FDRIN INCTE o URBP TS ALL SFT LP
ges CKECF JFRRCR SHAULD BE FOF INRIFATICON
MOV F.NRBR(RE),RY JR{sSIZE AF RFCORD REAL
MOV #RECBLF,;R2

APD R1,R2 JREmADDRESS OF LAST PYTF4
cHpR #4g,=(R2) PETRIP TRATI ING BLANKSE
BNE PTREC

sep R{,108

BAT THIS POINT, RY CQSTAINs'THE STRIPPER SI7F OF THF
JRECORD TC PE WRITTEN, IF TWF CARC I8 BLANK,
)A JERQ=LENCGTH RECORD IS WRITTEN,

RYIRECY

ERRCR}
CKECF1

PUTS
Bec
NOP
evpe
BNE
CLOSES
BCS
CLCSES
BeCY
EXITSS
JEND

#FDBOLT,,RY JR1 IS NEEDFD TO SPFCIFY
GTREC)THE RECCRD STZE,

, , SERRCR CODE GOES WERE
WYE.ECF,FLERR(RP) JEND OF FILE?

ERROR IRRANCH IF CTHER FRROR
R $CLESE THF INPUT FILE

ERRCR

#FDROL'Y JCLOSE THF NAUTPLT FPYLF
ERRCR

$TSSLE EXYT DYRFCTIVE
STARY

SAMPLE PROGRAMS

LTITLE CcRCOPR SCARC RFAPRER COPY RAUTINE
,M:ALL FDBEFS,FDATSA,FNRCEA,FOOPSA,NMALKS ,FORETS
#MCALL COPENSR,CPENSK,GETS,PLTS,CI OSES,EXTTSS
MCLLL FINITS,FDATSFR

INLLNIS JASSIGN CR CR PILF REVICF
CLTLUNRM JASSIGN TP PUTPLY DEVICE
FSRe28 2

FCBCUTI FDBEFS
FREING FDBCFS ,
RECRUF1 ALKE ea.

CFDEPTI ,WORD ©,0 JEEVICE DFSCRIPTOR
JHORD 2,0)IDIRECTORY RESETRPTPR
LWORD ONAMSY,ONAM IFILENAMF DFSCRIPTOR

IFDERTy _wonn 2.0 JREVICE DFSCRIRTOR
JWORD 2,0 JEIRECTORY PESCRIPTAR
TWORD INANSZ,INAM JFILENAME DESCRIPTOR

CNAMY .AGCI! , /CUTRLT . DAT/
9NAH82l sONAM

pEVEN
INEVY ASE!! /INPUY, DAT/
1NANSZ!.-INAN
WEVEN
ETARTY FTN!TS JINYT RILP STORAGF REGICN

CPENSR WFDRIN,#INLUN,#IFESFT, ,4RFCRUF,¥e0,
} RUNTIME INITIALTZATTCN
BCS ERROR JBRANEK IF PRROR
FRATSR #FDBOLT,#R VAR, #FB,CR JRUNTIMF TNTTTALTIYATION
CPENSW RP,4OUTLUN,WCFCSPY, , #RECRI'F, 480,

BeS ERROR JRRANCM IF FRROR
GTRECT GFTS VEDRIN JINCTE = URBR T8 AlLL SFT LP
BCS CKECF JERROR SHALID RF FOF TARIFATICN
MDY F.NRER(R@),RY JRINSTIZE NF RECORE REAL
MoV WRECBLF,R2
ABD R1,R2. JRZEADDRESS OF LAST RYTF41
1981 cvPR v42,»(R2) JSTRIP TRAI{ ING RLANKS
BNE PTRFC
seB R, 10¢

JAT THIE POTNT, RY CONTAINS THE STRYIPPED SI7E OF THWF
JRECORD TO ME WRITTEN, IF ThE CARD I8 BLANK,
JA 2ERCwLENGTH RECORD 18 WRITTEN,

FTRECY FUTS ¥FDBOLT, R JRY 1& NEFDFD TO SPFCIFY
BEC GTRFC JTHE RECORD STZF'
ERRCRI NOP JIERRCR CONF GOES WERFE
CKECFY CMPR ‘WIEL,ECF,F,ERREROAY JEND NF FTLE?
BNE ERROR SRRANCN IF ATHER FRROR
CLOSES R JCLOSE THF TNPUT FILE
BES ERRCR
CLESES wFDBROLT 1CLOSE THF CUTPLYT FTLF
BCS PRROR
EXITSS JIE]LP EXTY DIRFETIVE

LEND S8TART

APPENDIX E

INDEX FILE FORMAT

ndex file consists of virtual blocks, starting with virtual block
e., the bootstrap block. Virtual block 2 is the home block. The
ture of a FILES-11 index file is shown below.
VIRTUAL BLOCK NUMBER INDEX FILE ELEMENT
1 Bootstrap block.
2 Home Block.
3 Index file bit map (n blocks);
the value of n is in the home
block.
3+n Index file header.
3+n+l Storage map header.
3+n+2 Bad-block file header.
3+n+3 Master file directory header.
3+n+4 Checkpoint file header (not used by
REX-11M).
3+n+5 User file header 1.
3+n+6 User file header 2.
. User file header n.

INDEX FILE FORMAT

E.1 BOOTSTRAP BLOCK

A disk that is structured for FILES-11 has a 256-word block, starting
at physical block 0. This block contains either a bootstrap routine
or a message to the operator stating that the volume does not contain
a bootstrappable system. The bootstrap routine brings a core image
into memory from a predefined 1location on the disk. In IAS and
RSX-11D, the core 1image is pointed to by a file header block in the
index file.

E.2 HOME BLOCK

The home block contains volume identification information that is
formatted as shown in Table E-1. This block is located either in
logical block 1 or at any even multiple of 256 blocks.

The offset names in the home block may be defined either 1locally or
globally, as shown below:

HMBOF$ DEFS$L ;DEFINES OFFSETS LOCALLY.

HMBOF$ DEFSG ;DEFINES OFFSETS GLOBALLY.

E.3 INDEX FILE BIT MAP

The index file bit map controls the use of file header blocks 1in the
index file. The bit map contains a bit for each file header block
contained in the index file. The bit for a file header block is
located by means of the file number of the file with which it is
associated. The values of the bit map are as follows:

0 - Indicates that the file header block is available. The file
control primitives can use this block to create a file.

1 - Indicates that the file header block is in use. This block
has already been used to create a file.

INDEX FILE FORMAT

E.4 PREDEFINED FILE HEADER BLOCKS

The first five file header blocks are described below.

FILE HEADER BLOCK

Index File Header

Storage Map File
Header

Bad Block File

Header

Master File Directory
Header

Checkpoint File Header

SIGNIFICANCE

This is the standard header associated
with the index file.

The storage map 1is a file that is wused to
control the assignment of disk blocks to
files.

is a file that consi
- e \ A bl A4
au DCTCLUL D) Uil Ll UL

ists of
s

hla W1 L

unusaoie O1L0CK

v

The bad block fil
i~ o~ s
5\

This header block 1is associated with the
master file directory for the disk. This
directory contains entries for the index
file, the storage map file, the - bad block
file, the master file directory (MFD), the
checkpoint file, and all user file
directories (UFD's).

This block,; which is used only by IAS and
RSX-11D, identifies the file that is used for
the checkpoint areas for all checkpointable

tasks.

The remainder of the index file consists of file header blocks for

user files, as shown

section.

in the illustration at the beginning of this

INDEX FILE FORMAT

Table E-1
Home Block Format

SIZE CONTENT OFFSET
(in bytes)
2 Index bit map size. H.IBSZ
4 Location of index bit H.IBLB
map.
2 Maximum files allowed. H.FMAX
2 Storage bit map cluster | H.SBCL
factor.
2 Disk device type. H.DVTY
2 Structure level. H.VLEV
12. Volume name (12 ASCII H.VNAM
characters).
4 Reserved.
2 Volume owner's UIC. H.VOWN
2 Volume protection code. | H.VPRO
2 Volume characteristics. | H.VCHA
2 Default file protection| H.FPRO
word.
2 Volume file sequence H.FVSQ
number (updated by the
DISMOUNT command).
2 Volume flags word. H.FLGS
1 Default number of H.WISZ
retrieval pointers
in a window.
1 Default number of H.FIEX
blocks to extend files.
14. Available space. --
2 Checksum of words 0-28. | H.CHK1
14. Creation date and time. | H.VDAT

INDEX FILE FORMAT

Table E-1 (Cont.)
Home Block Format

SIZE CONTENT OFFSET
(in bytes)
100. Volume header label (not -
used).
82. System specific infor- --

mation (not used).

254, Relative volume table -
(not used).

2 Checksum of home block H.CHK2
{(words 0 through 255).

APPENDIX F

FILE HEADER BLOCK FORMAT

Table F~1 shows the format of the file header block. The wvarious
areas within the file header block are described in detail in the
following sections. The offset names in the file header block may be
defined either locally or globally, as shown 1in the following
statements:

FHDOF$ DEFSL ;DEFINE OFFSETS LOCALLY.

FHDOF$ DEFS$G ;DEFINE OFFSETS GLOBALLY.

FILE HEADER BLOCK FORMAT

Table F-1

File Header Block

AREA SIZE CONTENT OFFSET
(in bytes)
HEADER AREA 1 Identification area offset H.IDOF
in words.
1 Map area offset in words. H.MPOF
2 File number. H.FNUM
2 File sequence number. H.FSEQ
2 Structure level and system H.FLEV
number.
- Offset to file owner H.FOWN
information, consisting of
member number and group
number.
1 Member number. H.PROG
1 Group number. H.PROJ
2 File protection code. H.FPRO
1 User-controlled file H.UCHA
characteristics.
1 System-controlled file H.SCHA
characteristics.
32. User file attributes. H.UFAT
- Size in bytes of header S.HDHD
area of file header block.
IDENTIFICATION 6 Filename (Radix-50). I.FNAM
AREA
2 File type (Radix-50). I.FTYP
2 File version number I.FVER
(binary).
2 Revision number. I.RVNO
7 Revision date. I.RVDT

FILE HEADER BLOCK FORMAT

Table F-1 (Cont.)
File Header Block

AREA SIZE CONTENT OFFSET
(in bytes)
IDENTIFICATION 6 Revision time. I.RVTI
AREA (cont.)
7 Creation date. I.CRDT
6 Creation time. I.CRTI
7 Expiration date. I.EXDT
1 To round up to word
boundary.
- Size (in bytes) of S.IDHD
identification area of
file header block.
MAP AREA 1 Extension segment number. M.ESQN
1 Extension relative volume M.ERVN
number (not implemented).
2 Extension file number. M.EFNU
2 Extension file sequence M.EFSQ
number.
1 Size (in bytes) of the M.CTSZ
block count field of a
retrieval pointer (1 or 2);
only 1 is used.
1 Size (in bytes) of the M.LBS%Z
logical block number field
of a retrieval pointer
(2, 3, or 4); only 3 is used|
1 Words of retrieval pointers M.USE
in use in the map area.
1 Maximum number of words M.MAX
of retrieval pointers
available in the map area.
- Start of retrieval pointers. |M.RTRV
- Size in bytes of map area S.MPHD

of file header block.

FILE HEADER BLOCK FORMAT

Table F-1 (Cont.)
File Header Block

AREA SIZE CONTENT OFFSET
(in bytes)
CHECKSUM WORD 2 Checksum of words 0 through H.CKSM
255,
NOTE

The checksum word is the last word

of

the file header block. Retrieval

pointers occupy the space from the
of the map area to the checksum word.

end

F.1 HEADER AREA

The information in the header area of the file header block consists

of the following:

IDENTIFICATION AREA Word 0, bits 0-7. This byte
OFFSET of the identification area

start of the file header block.

contains the number of words

locates the start

relative to

from the start

the header to the identification area.

MAP AREA OFFSET

Word 0, bits 8-15. This byte locates the start
of the map area relative to the start of the

file header block. This offset contains

number of words from the start of the header

area to the map area.

FILE NUMBER - The file number defines the position this

header block occupies in the index file, e.qg.,
the index file is number 1, the storage bit map

is file number 2, etc.

FILE SEQUENCE NUMBER

The file number and the file
constitute the file identification number used

sequence number

by the system. This number is different

time a header is re-used.

STRUCTURE LEVEL - This word identifies the system that created

the file and indicates the

value of [1,1] is associated with all current

FILES~11 volumes.

file structure.

This offset

FILE OWNER - This word contains the group number and owner

INFORMATION number constituting the user identification
code (UIC) for the file. Legal UIC's are
within the range [1,1] to [377,377]. UIC [1,1]
is reserved for the system.

FILE PROTECTION CODE - This word specifies the manner in which the
file can be used and who can use it. When
creating the file, the wuser specifies the
extent of protection desired for the file.

FILE CHARACTERISTICS - This word, consisting of two bytes, defines the
status of the file.

Byte 0 defines the user-controlled
characteristics, as follows:

UC.CON

200 - Logically contiguous file.
UC.DLK = 100 - File improperly closed.

Byte 1 defines system-controlled characteris-
tics, as follows:

SC.MDL = 200 - File marked for delete.

SC.BAD = 100 - Bad data block in file.
USER FILE - This area consists of 16 words. The first
ATTRIBUTES seven words of this area are a direct image of

the first seven words of the FDB when the file
is opened. The other nine words of the record
I/0 control area are not used.

F.2 IDENTIFICATION AREA

The information in the identification area of the file header block
consists of the following:

FILENAME - The file's creator specifies a filename of up
to nine Radix-50 characters in length. This
name is placed in the name field. The unused

portion of the field (if any) is zeroc-filled.

FILE TYPE - This word contains the file type in Radix-50
format.

FILE VERSION NUMBER - This word contains the file version number, in
binary, as specified by the creator of the
file.

REVISION NUMBER

REVISION DATE

REVISION TIME

CREATION DATE

CREATION TIME

EXPIRATION DATE

F.3 MAP AREA

FILE HEADER BLOCK FORMAT

This word is initialized to zero when the file
is created; it is incremented each time a file
is closed after being updated or modified.

Seven bytes are used to maintain the date on
which the file was last revised. The revision
date is kept in ASCII form in the format day,
month, year (2 bytes, 3 bytes, and 2 bytes,
respectively). This date is meaningful only if
the revision number is a non-zero value.

Six bytes are used to record the time at which
the file was last revised. This information is
recorded in ASCII form in the format hour,
minute, and second (2 bytes each).

The date on which the file was created is kept
in a 7-byte field having the same format as the
revision date (see above).

The time of the file's creation is maintained
in a 6-byte field having the same format as the
revision time (see above).

The date on which the file becomes eligible to
be deleted is kept in a 7-byte field having the
same format as the revision date (see above).
Use of expiration is not implemented.

The map area contains the information necessary to map virtual block
numbers to logical block numbers. This is done by means of pointers,
each of which points to an area of contiguous blocks. A pointer
consists of a count field and a number field. The count field defines
the number of blocks contained in the contiquous area pointed to, and
the 1logical block number (LBN) field defines the block number of the
first logical block in the area.

A value of "n" in the count field (see below) means that n+l blocks
are allocated, starting at the specified block number.

The retrieval pointer format used in the FILES-11 file structure is

shown below:

15 0

COUNT-1 HIGH LBN

31 16

LOW LBN

FILE HEADER BLOCK FORMAT

NOTE

The remaining paragraphs in this
appendix do not apply to RSX-11M.

The map area normally has space for 102 retrieval pointers. It can
map up to 102 discontiguous segments or up to 26112 blocks if the file
is contiguous. 1If more retrieval pointers are required because the
file 1is too large or consists of too many discontiguous segments,
extension headers are allocated to hold additional retrieval pointers.
Extension headers are allocated within the index file. They are
identified by a file number and a file sequence as are other file
headers; however, extension file headers do not appear 1in any
directory.

A nonzero value in the extension file number field of the map area
indicates that an extension header exists. The extension header is
identified by the extension file number and the extension file
sequence number. The extension segment number is used to number the
headers of the file sequentially starting with a zero for the first.

Extension headers of a file contain a header area and identification
area that are a copy of the first header as it appeared when the first
extension was created. Extension headers are not updated when the
first header of the file is modified.

Extension headers are created and handled by the file «control
primitives as needed; their use is transparent to the user.

APPENDIX G

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

This appendix defines the 1IAS and RSX-11D magnetic tape 1labeling
standard, which 1is a level three implementation of the June 19, 1974
Proposed Revision to the ANSI standard Magnetic Tape Labels and File
Structure for Information Interchange (X3.27-1969). The only
exception is that IAS and RSX-11D do not support spanned records.

G.1 VOLUME AND FILE LABELS

Tables G-~1, G-2, and G-3 present the format of volume labels and file
header labels.

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

G.1.1 Volume Label Format

Table G-1
Volume Label Format

CHARACTER LENGTH

POSITION | FIELD NAME IN BYTES CONTENTS

1-3 Label identifier 3 VOL

4 Label number 1 1

5-10 Volume identifier 6 Volume label. Any
alphanumeric or special
character in the center four
columns of the ASCII code
table.

11 Accessibility 1 Any alphanumeric or special
character in the center four
columns of the ASCII code
table. A space indicates no
restriction. All volumes
produced by IAS or RSX-1l1 have
a space in this position.

12-37 Reserved 26 Spaces

38-51 Owner identification 14 The contents of this field are
system—-dependent and are used
for volume protection
purposes. See Section G.1.1.1
below.

52-79 Reserved 28 Spaces

80 Label standard 1 1

version
G.l.1.1 Contents of Owner Identification Field - The owner

identification field is divided into the following three subfields and
a single pad character:

1. System identification (positions 38 through 40),
2. Volume protection code (positions 41 through 44),
3. UIC (positions 45 through 50),

4. Pad character of one space (position 51).

The system identification consists of the following character
sequence.

D%x

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

X is the machine code and can be one of the following.

- PDP-8
DECsystem-10
PDpP-11
PDP-15

r o 3> 0o
1

The D%x characters provide an identification method so that the
remaining data in the owner identification field can be interpreted.
In the case of tapes produced on PDP-11 systems, the system
identification is D%B and the volume protection code and UIC are
interpreted as described below.

The volume protection code in positions 41 through 44 defines access
protection for the volume for four classes of users. Each class of
user has access privileges specified in one of the four columns as
follows.

Position Class
41 System (UIC no greater than [8,255])
42 Owner (group and member numbers match)
43 Group (group number matches)
44 World (any user not in one of the above)

One of the following access codes can be specified for each character
position.

Code Privilege
0 No access
1 Read only
2 Extend (append) access
3 Read/extend access
4 Total access

The UIC is specified in character positions 45 through 50. The first
three characters are the group code in decimal. The next three are
the user code in decimal.

The last character in the owner identification field is a space.

The following is an example of the owner identification field.

Owner identifier - D%B1410051102 (indicates space)
1. The file was created on a PDP-11.
2. System and group have read access.

Owner has total access.

All others are denied access.

3. The UIC is [051,102].

G.1l.2

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

User Volume Labels

User volume labels never are written or passed back to the user. If
present, they are skipped.

G.1.3

File Header Labels

The following information should be kept in mind when creating file
header labels.

The Files-11 naming convention uses a subset (Radix-50) of
the available ANSI character set for file identifiers.

One character in the file identifier, the period (.), is
fixed by Files-11.

A maximum of 13 of the 17 bytes in the file identifier are
processed by Files-11.

It is strongly recommended that all file identifiers be
limited to the Radix-50 PDP-11 character set and that no
character other than the period (.) be used in the file type
delimiter position for data interchange between PDP-11 and
DECsystem-10 systems.

For data interchange between DIGITAL and nonDIGITAL systems,
the conventions listed above should be followed. 1If they are
not, refer to Section G.1l.3.1.

Tables G-2 and G-3 describe the HDR1 and HDR2 labels respectively.

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

Table G-2

File Header Label (HDRI1)

CHARACTER LENGTH
POSITION |FIELD NAME IN BYTES CONTENT
1-3 Label identifier 3 HDR
4 Label number 1 1
5-21 File identifier 17 Any alphanumeric or special
character in the center four
columns of the ASCII code
table.
22-27 File set identifier 6 Volume identifier of the first
volume in the set of volumes.
28-31 File section number 4 Numeric characters. This
field starts at 0001 and is
increased by 1 for each
additional wvolume used by the
file.
32-35 File sequence number 4 File number within the volume
set for this file. This
number starts at 0001.
36-39 Generation number 4 Numeric characters.
40-41 Generation version 2 Numeric characters.
42-47 Creation date 6 yyddd (indicates space)
or
00000 if no date.
48-53 Expiration date 6 Same format as creation date.
54 Accessibility 1 Space
55-60 Block count 6 000000
61-73 System code 13 The three letters DEC followed
by name of system that
produced the volume. See
Section G.l.1l.1.
Examples: DECFILEllA
DECSYSTEM10
Pad name with spaces.
74 Reserved 7

Spaces

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

Table G-3

File Header Format (HDR2)

CHARACTER LENGTH

POSITION |FIELD NAME IN BYTES CONTENT

1-3 Label identifier 3 HDR

4 Label number 1 2

5 Record format 1 F - fixed length
D - variable length
S - spanned
U - undefined

6-10 Block length 5 Numeric characters

11-15 Record length 5 Numeric characters

16-50 System-dependent 35 Positions 16 through 36 are

information spaces.

Position 37 defines carriage
control and can contain one of
the following:

A - first byte of record
contains FORTRAN
control characters,

space ~ line feed/carriage
return is to be
inserted between
records,

M - the record contains
all form control
information.

If DEC appears in positions 61
through 63 of HDR1l, position
37 must be as specified above.
Positions 38 through 50
contaln spaces.

51-52 Buffer offset 2 Numeric characters. 00 on
tapes produced by Files-11.
Not supported on input to
Files-11.

53-80 Reserved 28 Spaces

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

G.1.3.1 File Identifier Processing by Files-11 - The following
describe the processing of a file identifier by Files-~11.

1. The first nine characters at a maximum are processed by

steps

an

ASCII to Radix-50 converter. The filename results until one

of the following occurs:

A conversion failure,
9 characters are converted,
A period (.) is encountered.

2, 1If the period is encountered, the next three characters after

the period are converted and treated as the file type.

If a

failure occurs or all nine characters are converted, the next
character is examined for a period. If it is a period, it is

skipped and the next three characters are converted
treated as the file type.

3. The version number is derived from the generation number
the generation version number as follows.

(generation number - 1)*100 + generation version + 1
At file output, the file identifier is handled as follows.
1. The filename is placed in the first positions in the
identifier field. It can occupy up to nine positions.

followed by a period.

2. The file type of up to three characters is placed after
period. The remaining spaces are padded with spaces.

3. The version number is then placed in the generation
generation version number fields as described in
following formulas.

a. generation number = version # - 1 + 1
100
b. generation version # = version # - 1
Modulo 100
NOTE

In both <calculations, remainders are
ignored.

The following are examples.

FILES-11 VERSION # GENERATION # GENERATION VER #
1 1 0
50 1 49
100 1 99
101 2 0
1010 11 9

and

and

and
the

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

G.l1l.4 End-of-Volume Labels

End-of-volume labels are identical to the file header labels with the
following exceptions:

1. Character positions 1 through 4 contain EOV1 instead of HDRI,

2. The block count field contains the number of records in the
last file section on the volume.

G.1.5 File Trailer Labels

End-of~file labels (file trailer 1labels) are 1identical with file
header labels with the following exceptions:

1. Columns 1 through 4 contain EOF1l and EOF2 instead of HDR1l and
HDR2, respectively,

2. The block count contains the number of data blocks in the
file.

G.1l.6 User File Labels

User file labels never are written or passed back to the wuser. If
present, they are skipped.

G.2 FILE STRUCTURES

The file structures illustrated below are the types of file and volume
combinations that the file processor produces. Additional sequences
can be read and processed by the file processor.

If HDR2 is not present, the data type is assumed to be fixed (F) and
the block size and record size are assumed to be the default value for
the file processor. 512 decimal bytes is the default for both block
and record size.

The meaning of graphics used in the file structure illustrations is as

1. * indicates a tape mark,
2. BOT indicates beginning of tape,
3. EOT indicates end of tape,

4. , indicates the physical record delimiter.

G.2.1 Single File Single Volume

BOT,VOL1 ,HDR1 ,HDR2*---DATA~-~*EOF1 ,EQF 2**

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

G.2.2 Single File Multi-Volume

BOT,VOL1,HDR] ,HDR2*~--DATA-~--*EQV]1 ,EQV2**

BOT,VOL1,HDR]1 ,HDR2*-~-DATA-—-*EOF1,EOF2**

G.2.3 Multi-File Single Volume

BOT,VOL1,HDR]1 ,HDR2*~~~DATA-——-*EQF1, EOF2*HDR]1 ,HDR2-—-DATA--*EQOF1,EQF 2**

G.2.4 Multi-File Multi-Volume

BOT,VOL] ,HDR1 ,HDR2*--DATA--*EOF1,EOF2*HDR1, HDR2*--DATA--*EQOV1 ,EQOV2**

BOT,VOL1,HDR1 ,HDR2*--DATA--*EOF1,EOF2*HDR1,HDR2*--DATA--*EQOF1 ,EOF 2**

G.3 END OF TAPE HANDLING

End of tape is handled automatically by the magnetic tape file
processor. Files are continued on the next volume providing the
volume is already mounted or mounted upon request. A request for the
next volume is printed on CO.

G.4 ANSI MAGNETIC TAPE FILE HEADER BLOCK (FCS COMPATIBLE) -

Figure G-1 illustrates the format of a file header block that 1is
returned by the file header READ ATTRIBUTE command for ANSI magnetic
tape. The header block is constructed by the magnetic tape primitive
from data within the tape labels.

H.MPOF

HEADER
AREA

IDENT-
IFICATION
AREA

MAP
AREA

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

ANSI MAGTAPE FCS-COMPATIBLE FILE
HEADER BLOCK

MAP OFFSET IDENT OFFSET

FILE SEQUENCE NUMBER

FILE SECTION NUMBER

STRUCTURE LEVEL = 4@1(8)

UIC (FOR VOLUME)

PROTECTION CODE (FOR VOLUME)

RECORD ATTRIBUTES RECORD TYPE CODE

RECORD SIZE IN BYTES

(

N WORDS OF ZERO'S

FILE NAME RAD5f#

FILE TYPE RADSf#

FILE VERSION NUMBER

ZERO'S (REVISION DATE & TIME)

CREATION DATE & TIME (g@gggg)

EXPIRATION DATE

PAD BYTE OF §

COPY OF THE
HDR1 LABEL

COPY OF THE
HDR2 LABEL
(if byte 1 of label = #,
label is not present)

NULL MAP, I.E., ZERO'S
(14 BYTES LONG)

Figure G-1
ANSI Magnetic Tape File Header Block
(FCS Compatible)

G-10

H.IDOF
H.FNUM
H.FSEQ
H.FLEV
H.FOWN=H.PROG
H.FPRO

H.UFAT

X+I.FNAM
(IDENT OFFSET *2)=X
I.FTYP
X+I.FVER
X+I.RVNO
X+I.CRDT
X+I.EXDT

X+47.

X+58.

X+138.

X+219.=
(MAP OF OFFSET 2)

APPENDIX H

STATISTICS BLOCK

The format of the statistics block is shown in Figure H-1 below.

statistics

allocated manually in the wuser program

described in Item 3.d of section 3.1.2.

The

as

Word HIGH LOGICAL BLOCK NUMBER
(0 if file is noncontiguous)
Word LOW LOGICAL BLOCK NUMBER
(0 if file is noncontiguous)
Word SIZE (high)
Word SIZE (low)
Word LOCK COUNT ACCESS COUNT
Figure H-1

Statistics Block Format

APPENDIX I

ERROR CODES

This appendix lists the Directive Status Word error codes and the 1I/0
error codes returned by the system.

QI0MAC « QIOSYM MACRO DEFINITIO MACRO D@718 25«MAR=75 {43123 PAGE |

-
QO BN D W N

N N el
S OBNIALLWN

LI VELVIL SRV SR VI VN)
BDNIDPAD WY -~ Y

(750 8]
S O

[Z P V]
[P O B

34

26304

- e e e e e Ve

e %e e we e Tv % N e We Ve Ve Ve W Ve Be Ne e e

+TITLE GQGIOMAC = QIOSYM MACRO DEFINITION
ALTERED SUNDAY 24=N0V=74 {3100
ALTERED TUESDAY 28=JAN=75 13150100
ALTERED THURSDAY 06=-FEB=75 {5150
ALTERED MONDAY 24=FEB=75 15140300 BY ED MARISON
ALTERED TUE 25=-MAR=75 15130 EDIT » +0@81

wwkww ALWAYS UPDATE THE FOLLOWING TWO LINES TOGETHER
+IDENT /030B4/
QI,VER=Q3R4

COPYRIGHMT 1974,1975, DIGITAL EQUIPMENT CORP,, MAYNARD MASS,

THIS SOFTWARE IS FURNISHED TO PURCHASER UNDER A LICENSE FOR USE
ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITHW INCLUSION
OF DEC'S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT
AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC,

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT B8Y DIGITAL
EGUIPMENT CORPORATION,

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY
OF ITS SOFTWARE ON EQUIPMENY WHICH IS NOT SUPPLIED BY DEC,

PETER H, LIPMAN {«0CT=73

*

MACRO TO DEFINE STANDARD QUEUE I/0 DIRECTIVE FUNCTION' VALUES

AND 1088 RETURN VALUES, TO INVOKE AT ASSEMBLY TIME (wWITH LOCAL

DEFINITION) USEs
QIO8Y$ JOEFINE SYMBOLS

TO OBTAIN GLOBAL DEFINITION OF THESE SYMBOLS USE?!
QI0SY$ DEF$6 JSYMBOLS DEFINED GLOBALLY

THE MACRO CAN BE CALLED ONCE ONLY AND THEN

REDEFINES ITSELF AS NULL,

«MACRO QIl0SY$ $$SGBL,SSIMSG

W IIF IDN,<$8$8GBL>, <DEF$G>, «GLOBL QI,VER
o IF IDN, <388M36>,<DEF$S>

$SFMAX2Q

$$MSGay

SHJ0D ¥oyyd

48
49
1
51
52
53
54
55
56
57

QIOMAC - QIOSYM MACRO DEFINITIO MACRO D07(0

58
59
6@
61
62
63

+IFF

$3MSGa0

JENDC

+MCALL TOEKRS

JOERRS $$SGBL 3170 ERROR CODES FROM HANDLERS, FCP, FCS
+MCALL DRERRS

DRERRS S$SGBRL JDIRECTIVE STATUS WORD ERROR CODES

«IF DIF,<$8$3MSG>», <DEFS8S>

«MCALL FILIOS

FILIOS S$$8GBL JDEFINE GENERAL GI/0 FUNCTION CODES

25~MAR=75 14123 PAGE I~

«MCALL SPCIOS

SPCI08 $$8GBL SDEVICE DEPENDENT I/0 FUNCTION CODER
+MACRO (Q]08Y$ ARG,ARGY,ARG2 JRECLAIM MACRO STORAGE

+ENDM QIOSYS

+«ENDC

«ENDM QIOSY$

QIOMAC ~ QIOSYM MACRO DEFINITIO MACRO D@Y10@ 25=MAR=75 14123 PAGE 2

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
-1
81
82
83
84
85
86

i)
]

i
)

DEFINE THE ERROR CODES RETURNED BY DEVICE HANDLER AND FILE PRIMITIVES
IN THE FIRST WORD OF THE I[/0 STATUS BLOCK
THESE CODES ARE ALSO RETURNED BY FILE CONTROL SERVICES (FC8) IN THE
BYTE F,ERR IN THE FILE DESCRIPTOR BLOCK (FDB)
THE BYTE F,ERR¢1 IS @ IF F,ERR CONTAINS A HANDLER OR FCP ERROR CUODE,

+MACRO TOERRS S$S$$GBL
+MCALL L10ER,,DEFINS

oIF ION,<38$3GBL»,<DEFSG>
»ss6GBLEY

«IFF

+eoGBL=0

+ENDC

+IIF NDF , $8MSG, S6MSG=D

SYSTEM STANDARD CODES, USED BY ALL FUNCTIONS
.10ER, 1E,BAD,~@i,,<BAD PARAMETERS>

oI0ER, TE,IFC,=02,,<INVALID FUNCTION CODE>
«I0ER, IE,DNR,=03,,<DEVICE NOT READY>

SHAOD Yogdd

87
88
89
9
91
92
93
94
95
96
97
98
9Q
1pe
181
1082
103
104
195
146
107
128
189
110
111
112
113
114
115
116
117
118
119
120
121

. I0ER,
+10ER,
« I0ER,
«I0ER,
«I0ER,
«10ER,
+«10ER,
«10ER,
«I0ER,
«ICER,
«10ER,
IIOER.
«10ER,
+ I0ER,
«10ER,
«10ER,
« 1DER,
«10ER,
« I0ER,
«10ER,
« I0ER,
«10ER,
+I0ER,
«10ER,
«I10ER,

’

1€, VER, =04, ,<PARITY ERROR ON DEVICE>»
IE,ONP, =05, , <HARDWARE OPTION NOT PRESENT>
TE,SPC,=06,,<ILLEGAL USER BUFFER>
TE,ONA,=B7,,<DEVICE NOT ATTACHED>
IE.0AA,~28,,<DEVICE ALREADY ATTACHED>
IE,DUN,~09,,<DEVICE NOT ATTACHABLE>
IE.EQOF,=10,,<END OF FILE DETECTED>
IELEOV,=11,,<END QOF VOLUME DETECTED>

TE WLK,=12,,<WRITE ATTEMPTED TO LOCKED UNIT>
IE,DAO,~13,,<DATA OVERRUN>
IE,SRE,=14,,<SEND/RECEIVE FAILURE>
IE.ABO,=15,,<REQUEST TERMINATED>
IE.PR1,=16,,<PRIVILEGE VIOLATION>
IE.RSU,=17,,<SHARABLE RESOURCE IN USE>
IE,OVR,=18,,<1LLEGAL OVERLAY REQUEST>
IE.BYT,~19,,<0DD BYTE COUNT (OR VIRTUAL ADDRESS8)>
1E.BLK,=20,,<LOGICAL BLOCK NUMBER TOO LARGE>
IE.MOD,=214,<INVALID UDC MODULE #>
TE,CON,=22,,<UDC CONNECT ERROR>
IE.BBE,=56.,<BAD BLOCK ON DEVICE>
IE.STK,=56,,<NOT ENOUGH STACK SPACE (FCS OR FCP)>»
IE.FHE,=59,,<FATAL HARDWARE ERROR ON DEVICE>
IE.EOT,=62,,<END OF TAPE DETECTED>
1E,0FL,=65,,<DEVICE OFF LINE>
IE.BCC,=66,,<BLOCK CHECK OR CRC ERROR>

} FILE PRIMITIVE CODES
}

«10ER,
«I0ER,
«JOER,
« I10ER,

IE,NOD,=23,,<CALLER'S NODES EXHAUSTED>
IE,OFU,=24,,<DEVICE FULL>
IE,IFU,=28,,<INDEX FILE FULL>
TE.NSF,=26,4,<NO SUCH FILE>

SHJO0D ¥odyd

QIOMAC = QIOSYM MACRO DEFINITIO MACRO DB710 25=~MARe7S 14123 PAGE 2=

122 I0ER, 1E,LCK,=27,,<LOCKED FROM WRITE ACCESS»
123 «I10ER, 1E,HFU,=28,,<FILE WEADER FULL>

124 .I0ER, 1E,WAC,=29,,<ACCESSED FOR WRITE>

128 +10ER, 1E,CKS,=30,,<FILE HEADER CHECKSUM FAILURE>

126 L10ER, 1E,WAT,=»31,,<ATTRIBUTE CONTROL LIST FORMAT ERROR»

127 .I0ER, 1E.RER,=32,,<FILE PROCESSOR DEVICE READ ERROR»

128 +I0ER, 1E.WER,=33,,<FILE PROCESSOR DEVICE WRITE ERROR»

129 .I0ER, 1E,ALN,=34,,<FILE ALREADY ACCESSED ON LUN>

130 <IOER, TIE,SNC,=35,,<FILE ID, FILE NUMBER CHECK>

131 «I0ER, TE,.SOC,=36,,<FILE 1D, SEQUENCE NUMBER CHECK»>

132 JI0ER, TIE,NLN,=37,,<NO FILE ACCESSED ON LUN>

133 JIOER, TE,CLO,=3&,,<FILE WAS NOT PROPERLY CLOSED>

134 .I0ER, 1E,DUP,=57,,<ENTER « DUPLICATE ENTRY IN DIRECTORY>
135 LIDER, IE,BVR,=63,,<BAD VERSION NUMBER>

136 JI0ER, TE.BHD,=64,,<BAD FILE HEADER>

137 JI0ER, TE.EXP,=75,,<FILE EXPIRATION DATE NOT REACHED>

138 JI0ER, IE.BTF,~76,,<8AD TAPE FORMAT>

139

140 H

141 3 FILE CONTROL SERVICES CODES

142 H

143

144 JIDER, 1E,NBF,=39,,<OPEN = NO BUFFER SPACE AVAILABLE FOR FILE>
145 LJI0ER, TE,RBG,=40,,<ILLEGAL RECORD SIZE>

146 JIDER, TE,NBK,=d1,,<FILE EXCEEDS SPACE ALLOCATED, NO BLOCKS>
147 LI0ER, TE,ILL,=42,,<ILLEGAL OPERATION ON FILE DESCRIPTOR BLOCK>
148 JI0ER, IE.BTP,=43,,<BAD RECORD TYPE>

149 +I0ER, 1E,RAC,=d44,,<ILLEGAL RECORD ACCESS BITS SET>

150 JIDER, 1E.RAT,=45,,<ILLEGAL RECORD ATTRIBUTES BITS SET»

151 +JIOER, IE.RCN,=46,,<ILLEGAL RECORD NUMBER =~ 700 LARGE>

152 JIDER, 1E,MRK,«47,,<MULTIPLE BLOCK READ/WRITE = NOT IMPLEMENTED YET»
153 .J0ER, 1£,20v,=d48,,<RENAME = 2 DIFFERENT DEVICES>

154 LI0ER, TE,FEX,=49,,<RENAME = NEW FILE NAME ALREADY IN USE>
155 _ LI0ER, 1E,BDR,=50,,<BAD DIRECTORY FILE>

156 JINER, TE,RNM,e5],,<CANIT RENAME OLD FILE SYSTEM>

157 LI0ER, 1&,BD1,=52,,<8A0 DIRECTORY SYNTAX>

158 J10ER, TIE,FOP,=53,,<FILE ALREADY OPEN>

159 «ICER, TE.BNM,=54,,<8AD FILE NAME>

160 .I0ER, T1E,.BOV,=55,,<BAD DEVICE NAME>

161 «IDER, TE NF1,=60,,<FILE ID WAS NOT SPECIFIED>

162 CJIDER, TE,18G,=61,,<ILLEGAL SEGQUENTIAL OPERATION>

163 «I0ER, T1ELNNC,=77,,<NOT ANSI 1D!' FORMAT BYTE COUNT>

164 }

165 3 NETWORK ACP CODES

166 ;

167 +I0ER, IE,A8T,=67,,«NO AST SPECIFIED IN CONNECT>

SHAOD ¥yogy¥d

168
169
i7@
171
172
173
174
17%
176
177
178

LI0ER, IE.NNN,=68,,<N0 SUCH NODE>

JI0ER, TIE,NFW,=69,,<PATH LOST TO PARTNER> j+@@1 THIS CODE MUST BE 0DD
JIOER, 1IE.BLB,=7@,,<BAD LOGICAL BUFFER> j+081

JIOER, TIE.TMM,=71,,<T00 MANY OUTSTANDING MESSAGES»>

JIDER, TIEL.NDR,=72,,<NO DYNAMIC SPACE AVAILABLE>

JI0ER, TE.CNR,=73,,<CONNECTION REJECTED>

LIDER, TE,.TMO,=74,,<TIMEOUT ON REQUEST>

JIDER, TE,NNL,=78,,<NOT A NETWORK LUN» }+00@1

}
} SUCCESSFUL RETURN CODESw===

GIOMAC = GIOSYM MACRO DEFINITIO MACRO DRB71@ 25«MAR=75 143123 PAGE 2=2

179
180
1814
182
183
184
185
186
i87
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
263
2ud
208
206
207

o ve e ws we we

DEFINS IS,PND,+00. JOPERATION PENDING
DEFINS I8,8UC,+01., JOPERATION COMPLETE, SUCCESS
DEFINS 15,BV,+05, 10N A/D READ, AT LEAST ONE BAD VALUE

JWAS READ (REMAINDER MAY BE GOOD),
$BAD CHANNEL IS INDICATED BY A
INEGATIVE VALUE IN THE BUFFER,

TTY SUCCESS CODESs

DEFINS 1IS,CR,<i15+4p90+1> jJCARRIAGE RETURN WAS TERMINATOR
NDEFINS 1S,ESC,<33%4020+1> JESCAPE (ALTMODE) WAS TERMINATOR

L2232 AA)

THE NEXT AVAILABLE ERROR NUMBER IS8t =79,
ALL LOWER NUMBERS ARE IN uSEl!

LR 2 X2
o 1F EQ,$58MS6
+MACRO ICERRS A
«ENDM I0ERRS
+ENDC
«ENOM I0ERR®

SdJ00 ¥you¥d

QIOMAC = QIOSYM MACRO DEFINITIO MACRO D@71@ 25=MAR=75 14323 PAGE 3

209 H

2102 3 DEFINE THE DIRECTIVE ERROR CODES RETURNED IN THE DIRECTIVE STATUS WORD
211 H

212 ’ FILE CONTROL SERVICES (FCS) RETURNS THESE CODES IN THE BYTE F,ERR
213 3 OF THE FILE DESCRIPTOR BLOCK (FDB), TO DISYINGUISH THEM FROM THE
214 3 OVERLAPPING CODES FROM HANDLER AND FILE PRIMITIVES, THE BYTE

218 } F,ERR+! IN THE FDB WILL BE NEGATIVE FOR A DIRECTIVE ERROR CODE,
216 3

217 +MACRO DRERRS $3$8GBL

218 eMCALL LOI0E,,DEFINS

219 o IF IDN,<$8$$GBL», «DEF$G>

220 seeGBLEY

221 »1FF

222 »eoGBLEE

223 +ENDC

224 o IIF NDF ,$3M8G, $§MSG=Q

225 3

226 3 STANDARD ERROR CODES RETURNED BY DIRECTIVES IN THE DIRECTIVE STATUS WORD
227 H

228 +OI0E, IE,UPN,=01,,<INSUFFICIENT DYNAMIC STORAGE>»

229 «QT0E, TELINS,=02,,<SPECIFIED TASK NUT INSTALLED>»

230 «QIOE, TE ULN,=05,,<UN=ASSIGNED LUN>

231 «QT0E, TE HWR,=06,,<HANDLER TASK NOT RESIDENT>

232 «QT0E, IE,ACT,=07,,<TASK NOT ACTIVE>

233 +WIOE, YE,ITS,~08,,<DIRECTIVE INCONSISTENT WITH TASK STATE>
234 «QI0E, TIE.CKP,=10,,<ISSUING TASK NOT CHECKPOINTABLE>

238 H

236 H

237 H

238 «QI0E, TIE,AST,=BU,,<DIRECTIVE ISSUED/NOTY ISSUED FROM AST>»
239 JOIOE, TE,UNL,=90,,<LUN LOCKED IN USE>

240 +GTOE, IE,1DU,=92,,<INVALID DEVICE OR UNIT»

241t «QI0E, TE,ITI,=93,,<INVALID TIME PARAMETERS>»

242 «GI0E, TELIPR,=95,,«<INVALID PRIORITY (,6T7, 250,)>

243 ZOIO0E, JEL.ILU,=96,4,<INVALID LUN>

244 WOTO0E, TELIEF,=97,,<INVALID EVENT (,GT, 64,)>

248 +OJO0E, IE ADP,=98,,<PART OF DPB OUT OF USER'S SPACE>

248 «RBIVE, IELSDP,=99,,<DIC OR DPB SIZE INVALID>

247 H

248 } SUCCESS CODES FKOM DIRECTIVES = PLACED IN THE DOIRECTIVE STATUS wORD
249)

250 DEFINS 1I8,CLR,D JEVENT FLAG WAS C|EAR

251 JFROM CLEAR EVENT FLAG DIRECTIVE

252 DEFINS 1S,SET,2 JEVENT FLAG WAS SET

253 JFROM SET EVENT Fi,AG DIRECTIVE

254 DEFINS IS,8PD,2 JTASK WAS SUSPENDED

255 ’

SHA0D ¥OoIdLE

286
257
258
259
260
261

«IF
+MACRO
+ENDM
JENDC
+ENDM

EG,$8MSG
DRERRS A
DRERRS

DRERRS

QIOMAC = QIOSYM MACRO DEFINITIO MACRO D0718 25-MAR«?5 14123 PAGE 4

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
28¢
281
282
283
284
285
286
287
288
289
299
291
292
293
294
295
1296
297
298
299

3 DEFINE THE GENERAL QI/0 FUNCTION CODES = DEVICE INDEPENDENT

'
+MACRO
oMCALL
o IF

seeGBLEY

«IFF

eeeGBLuO

+ENDC

FILIOS SS$3GBL
«WORD,,DEF INS

IDN,<8GBL>, <DEF$G>

’
3} GENERAL QI/O0 QUALIFIER BYTE DEFINITIONS

+NORD,
«WORD,
i »WORD,
}
} EXPRESS QUEUE
!

«WORD,

+WORD,

s WORD,

+WORD,

+WORD,
H

1Q,Xx,0@1,000
10,0,002,000
16,,004,000

COMMANDS

I10,KIL,012,800
10,RDN, 022,000
I0,UNL,042,000
10,LTK, 250,600
I0,RTh, 060,200

3 GENERAL DEVICE mANDLER CODES

’
+WORD,
«WORD,
«WORD,
JWORD,
JWORD

10,wWLB, 000,00}
10.,RLB,000,002
10,L0vV,010,0202
I0,ATT,000,0083
10,DET, 000,004

3 DIRECTORY PRIMITIVE CODES

~WOKD,

I0.FNA, 000,011

JNCO ERROR RECOVERY
JQUEUE REQUEST IN EXPRESS QUEUE
JRESERVED

JKILL CURRENT REQUEST
J1/0 RUNDOWN

JUNLOAD I/0 HANDLER TASK
JLOAD A TASK IMAGE FILE
JRECORD A TASK IMAGE FILE

JWRITE LOGICAL BLOCK

JREAD LOGICAL BLOCK

1LOAD OVERLAY (DISK DRIVER)
JATTACH A DEVICE TO A TASK
JOETACH A DEVICE FROM A TASK

SFIND FILE NAME IN DIRECTORY

SdJ0D ¥ouud

ira «WORD, T0,RNA,0008,013 JIREMOVE FILE NAME FROM DIRECTORY

301 JWORD, I0,ENA,002,014 JENTER FILE NAME IN DIRECTORY
Je? ’

303 ?} FILE FRIMITIVE CODES

Jod ’

3@5 «WORD, I0,CLN,0Q0,287 JCLOSE QUT LUN

las +WORD, YO,ACR,000,215 JACCESS FOR READ

307 +WORD, 10,ACW,000,0216 JACCESS FOR WRITE

a8 +WORD, TI0,ACE,0R0,217 JACCESS FOR EXTEND

Jeso «WORD, 10,DAC,000,020 JDE~-ACCESS FILE

310 «WORD, 10,RVB,008,821 JREAD VIRITUAL BLOCK
It WWORD, IG,wVB,000,822 SWRITE VIRITUAL BLOCK
312 «WORD, I0,EXT,000,023 JEXTEND FILE

313 «WORD, I0,CRE,000,024 JCREATE FILE

314 «WORD, 10,DEL,000,825 JDELETE FILE

318 +WORD, I0,RAT,000,026 JREAD FILE ATTRIBUTES
316 JWORD, 10,WAT,0008,027 JHWRITE FILE ATTRIBUTES
317 JWORD, T0,APV,010,039 JPRIVILEGED ACP CONTROL
318 «WORD,. I0,APC,000,038 JACP CONTROL

319]

QIOMAC = QIOSYM MACRO DEFINITIO MACRO D@710 26=MAR=75 14123 PAGE 4=y

320 ’

Jat +MACRO FILIOS A
322 «ENDM FILIOS
323 +ENOM FILIOS

QIOMAC = QIOSYM MACRO DEFINITID MACRO DO710 25-MAR=75 143123 PAGE 5

3258)

326) DEFINE THE Q1/0 FUNCTION CODES THAT ARE SPECIFIC TO INDIVIDUAL DEVICES
327 H

328 +MACRO SPCIOS $8S$GBL

329 «MCALL (WORD,,DEFINS

339 oIF IDON,<$$3GBL>, <DEF$G>
331 eeoGBLEY

332 «IFF

333 eeeGBL2O

334 +ENDC

335 4

336 } QI/0 FUNCTION CODES FOR SPECIFIC DEVICE DEPENDENT FUNCTIONS

SHA0D ¥0¥yd

0T-I

337
338
339
340
3a1
342
343
Jad
345
346
347
348
349
3se
351
352
353
RLY
355
356
387
358
359
360
3t
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
3an
38t

.WORD,
«WORD,
JWORD,
+WORD,
+WORD,
+WORD,
+WORD,
+WORD,
«WORD,
+«WORD,
«WORD,
+WORD,
+ WORD,
JWOKD,
+WORD,
+WORD,
+WORD,
s WORD,
2WORD,
JWORD,
+WORD,
«WORD,
+ WORD,
»WORD,
JWORD,
+WORD,
+WORD,
+WORD,
+WORD,
» WORD,
+WORD,
+WORD,
+WORD,
+WORD,
+WORD,
+WORD,
«WORD,
+WORD,
+WORD,
WORD,
+WORD,
+WORD,
+WORD,
+WORD,

I0O,WLY,100,001
I10,WLS,010,001
T0,WNS,020,001
I0,RLYV, 100,002
I0,RNC, 048,002
10,RAL,010,002
10,RNE, Q020,002
I0,RDB, 200,002
10,RHD, 010,002
10,RNS, 020,002
10,CRC,040,002
I10,R1C,000,005
I0,INL, 000,005
I0,TRM, 010,005
10,KBC,000,006
10.,M00,400,006
I0,HDX,010,006
I0.,FDX,020,006
10,8SYN, 040,006
10,RTC,080,007
10,RWD, 000,005
10,SPB,020,005
10,SPF,0840,005
10,EOF ,000,0086
10,87C,100,005
10,S8EC, 120,005
I0,RWU,140,005
10,8M0,160,005
10,5A0,000,010
10.,580,020,011
10,M80,000,012
10,5L0,000,013
I0,MLO,002,014
10,LED,000,024
10.800,000,025
10,801,000,026
10,5CS,000,026
10,REL,000,027
10,MCS,000,027
10,AD5,000,030
10,CCl,000,030
10,MD]1,0@20,031
10,0C1,000,031%
10,XMT,000,031

JWRITE LOGICAL REVERSE (DECTAPE)

J (COMMUNICATIONS) WRITE PRECEDED BY SYNC TRAIN
) (COMMUNICATIONS) WRITE, NO SYNC TRAIN
JREAD REVERSE (DECTAPE)

JREAD = NO LOWER CASE CONVERT (TTY)
JREAD PASSING ALL CHARACTERS (TTY)

JREAD WITHOUT ECHO (TTY)

SJREAD BINARY MODE (CARD READER)

3} (COMMUNICATIONS) READ, STRIP SYNC

3} (COMMUNICATIONS) READ, DON!T STRIP SYNC
3} (COMMUNICATIONS) READ, DON'T CLEAR CRC
JREAD SINGLE CHANNEL (AFC, ADOY, uDC)

) (COMMUNICATIONS) INITIALIZATION FUNCTION
3 (COMMUNICATIONS) TERMINATION FUNCTION
JREAD MULTICHANNELS (BUFFER DEFINES CHANNELS)
3 (CUMMUNICATIONS) SETMODE FUNCTION FAMILY
) (COMMUNICATIONS) SET UNIT HALF DUPLEX

$ (COMMUNICATIONS) SET UNIT FULL DUPLEX

» CCOMMUNICATIONS) SPECIFY SYNC CHARACTER
JREAD CHANNEL = TIME BASED

JREWIND (MAGTAPE, DECTAPE)

IMAGTAPE, SPACE "N" BLOCKS

IMAGTAPE, SPACE "N"™ EOF MARKS

JMAGTAPE, WRITE EOF

JMAGTAPE, SET CHARACTERISTIC

JMAGTAPE, SENSE CHARACTERISTIC

JREWIND AND UNLOAD (MAGTAPE, DECTAPE)
JIMAGTAPE, MOUNT & SET CHARACTERISTICS
JUDC SINGLE CHANNEL ANALOG QUTPUY

JUDC SINGLE SHOT, SINGLE POINT

JUDC SINGLE SHOT, MULTI=POINT

JUDC LATCHING, SINGLE POINT

JUDC LATCHING, MULTI=POINT

JLPS1Y{ WRITE LED DISPLAY LIGHTS

JLPS11 WRITE DIGITAL OUTPUT REGISTER
JLPS11 READ DIGITAL INPUT REGISTER

JUDC CONTACT SENSE, SINGLE POINT

JLPS1! WRITE RELAY

JUDC CONTACT SENSE, MULTI=POINT

#LPS11 SYNCHRONQUS A/D SAMPLING

3UDC CONTACT INT = CONNECT

JLPS11 SYNCHRONOUS DIGITAL INPUT

JUDC CONTACT INT = OISCONNECT

$ (COMMUNICATIONS) TRANSMIT SPECIFIED BLOCK WITH ACK

SHA0D ¥o¥yd

11-I

QIOMAC = QI08SYM MACRO DEFINITIO MACRO D271¢ 28=MARe75

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
apo
401
4p?
403
404
485
4p6
407
4p8
4p9
410
411
a12
413
414
415
416
417
418
419
420
421
422
423
424

+WORD,
+WORD,
+WORD,
+WORD,
«WORD,
+WORD,
JHWORD,
WORD,
+WORD,
L WORD,
«WORD,
+WORD,
2+ WORD,
JWORD,
+WORD,
+WORD,
+WORD,
JWORD,
+JHWORD,
+WORD,
+ WORD,
+WORD,
JWORD,
+WORD,
JWORD,
+WORD,
JHORD,
«WORD,
WORD,
2 WORD,
+WORD,
« WORD,
+WORD,
JHORD,
2 WORD,
+WORD,
«WORD,
2WORD,

+MACRO
+ENDM
«ENDM

143123 PAGE 8=i

10,XNA,0810,031
10,H1S,000,032
10,RCI,0008,032
I0,RCv,000,032
10,MD0,000,833
10,C71,000,033
10,CON,000,033
10,CPR,0210,0833
10,CA8,020,033
10,CRJ,040,033
10,C80,410,033
10,CTR,210,033
10,GN1,010,035
10,6L1,020,035
10,6LC,030,035
I0,GRI,040,035
I0,GRC,050,035
10,GRN, 260,035
10.C8M,070,035
10,CIN, 100,038
10.CBN,110,035
10,CB0,3420,035
10,DT1,000,034
10,018,000,034
10,MDA,000,034
10,RTI,000,035
10,CTL,000,035
10,87P,000,035
10,171,000,036
10,WPB,040,001
10,RPB,040,002
10,8HT, 010,005
10,887,030,0056
I0,SEM,040,005
I0,SNM,050,005
10,CCT,060,005
10,0CT,070,085
10,E84,100,0056

SPCI0S A
SPCIOS
SPCI0$

$CCOMMUNICATIONS) TRANSMIT WITHQUT ACK

JLPS11 SYNCHRONOUS HISTOGRAM SAMPLING

JUDC CONTACT INT « READ

$ (COMMUNICATIONS) RECEIVE DATA IN BUFFER SPECIFIED
JLPSt1 SYNCHRONOUS DIGITAL QUTPUT

1UDC TIMER = CONNECT

7 (COMMUNICATIONS) COMMUNICATIONS CONNECY FUNCTION
J (COMMUNICATIONS) COMMUNICATIONS CONNECT NO TIMEOUTS
J (COMMUNICATIONS) COMMUNICATIONS CONNECT WITH AST
$ (COMMUNICATIONS) LOMMUNICATIONS CONNECT REJECT
14008 (COMMUNICATIONS) COMMUNICATIONS BOOT GCONNECT

34201 (COMMUNICATIONS) COMMUNICATIONS TRANSPARENT CONNECT

J (COMMUNICATIONS) COMMUNICATIONS GET NODE INFO
J(COMMUNICATIONS) COMMUNICATIONS GET LINK INFO
F(COMMUNICATIONS) GET LINK INFO CLEAR COUNTERS
3 (COMMUNICATIONS) GET REMOTE NODE INFO

1+0201 (COMMUNICATIONS) GEY REMOTE NOODE ERROR COUNTS
#4001 (COMMUN,) GET REMOTE NODE NAME

3+001 (COMMUNICATIONS) CHANGE SOLO MODE

34001 (COMMUN,) CHANGE CONNECTION INHWIBIT
$+@01 (COMMUNICATIONS) CIRCULAR BUFFER NCS
14001 (COMMUNICATIONS) CIRCULAR BUFFER DDCMP
3UDC TIMER = DISCONNECT

5 (COMMUNICATIONS) COMMUNICATIONS DISCONNECT FUNCTION
JLPS14 SYNCHRONOUS O/A QUTPUT

JUDC TIMER =~ READ

J (COMMUNICATIONS) NETWORK CONTROL FUNCTION
JLPS11 STOP IN PROGRESS FUNCTION

JUDC TIMER = INITIALIZE

J} RX@) « FLOPPY DISK WRITE PHYSICAL BLOCK

} RX@§ = FLOPPY DISK READ PHYSICAL BLOCK

$3SET HORIZONTAL TAB POSITIONS

JSET SPECIAL TERMINATOR CHARACTERS

JSET TERMINAL MODE (CHARACTERISTICS)

JSENSE TERMINAL MODE

JCONNECT TO REMOTE TERMINAL (AUTO DIALOUT)
JDISCONNECT FROM REMOTE TERMINAL (HANGUP)
JENABLE STATUS AST

SHdo0 Jogyud

¢I-I

QIOMAC = QIOSYM MACRO DEFINITIO MACRO D@712 25«MAR=75 143123 PAGE 6

426
427
428
429
431
434
432
433
434
43s
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

QIOMAC = GIOSYM MACRO DEFINITIO MACRO DO71e

1 @eooo0
2

goo0al

- we v v

-~ W we W we

HANDLER ERROR

CODES RETURNED IN I/0 STATUS BLOCK ARE DEFINED THROUGH THIS

MACRO WHICH THEN CONDITIONALLY INVOKES THE MESSAGE GENERATING MACRO
FOR THE QIOSYM,M8G FILE

+MACROD
DEFINS
oIF

«MCALL
« 10MG,
<ENDC
+ENDM

«JOER, SYM,LO0,MS86
SYM,LO

GT,$8MSG

« 10MG,
SYM, L0, <MSG>

+ IOER,

G170 ERROR CODES ARE DEFINED THOUGH THIS MACRO WHICH THEN INVOKES THE

ERROR MESSAGE

GENERATING MACRO, ERROR CODES =129 THROUGH =256

ARE USED IN THE QIOSYM,M8G FILE

+MACRO
DEFINS
o IF

oMCALL
«10MG,
«ENDC
+ENDM

CONDITIONALLY

+MACRO
+WORD
WASCIZ
+EVEN
WIIF
+ENDM

«QIOE, S8YM,LO,MS6
SYM,L0

GT,38MS86

«10MG, .

SYM, < .0=128,>,<MSG>

«Q10E,

GENERATE DATA FOR WRITING A MESSAGE FILE FOR MO
»I0MG, S8SYM,L0,MSG

=AQ<L 0>

AMSGA

LT,AO<SSSMAX+<.0>>,$8SMAXB=A0<L 0>
«I0MG,

DEFINE THE SYMBOL 8SYM WHERE LO IS IS THE LOW ORDER BYTE, HI 18 THE WIGH BYTE

+MACRO
DEFINS
«ENDM

QI08YS$
+END

+WORD, 8YM,LO,HI
SYM, <cAaD<H]Iv4@B+ 0>>
JWORD,

25=MAR=75 14123 PAGE 7

DEFSG

SHA0D ¥Youyd

€1-I

QIOMAC =« QI08YM MACRO DEFINITIO
SYMBOL TABLE

IE,ABOs
IE.ACTs
IE,ADPs
TE,ALNS
IE,ASTs
1E.BADs
1E,BBESs
IE.BCCs
1E,801s
1E,BDRs
1E,B8DV=
1E.BHDE
IE.BLB=
IE,BLKk=
IE.BN”.
IE.BTF=
IE'BTP'
IE,BVR=
IE.BYY=
IE.CKPs

"TEL.CKS=

IE,CLO=
TIE4CNRa
IE,CON?
IE.DAA®
1E.DAQ=
1E,DFus
IE,UNAS
I1E,DNRs
!E.DUN'
1E.DUPE
IELEOFs
IE+EOTS
IE,EOVSE
IE+EXP®
IE,FEXs
1EFHES
1IE,FOPs
IE.HFU.
TE . HWRs
1E,1DUs
IE.1EFs
IE,IFCs

» ABS,

177764
1777714
177636
177736
177660
177727
177710
177676
177714
177716
177711
177700
177672
177754
177712
177664
177725
17770}
177755
177766
177742
177732
177667
177752
127776
177763
177750
177774
177775
177767
1777@7
177766
177702
177765
177665
177717
177705
177713
177744
177772
177644
177637
177776

naroBo
nBRLAL

ERRORS DETECTED!

FREE CORF3
LPI®[156,133101I0MAC,TI:

5669,

O OO N NN NN @

200
001
']

WORDS

1E,IFUs
TE,ILL®
IE,ILUS
IE,INSs
1E,IPRs
1E,18Q=
IE,IT]s
IE,ITSs
IE,LCK=
TE.LNL®
TE ,MBK=
1E.,MOD=
1E.NBFa
TE ,NBK®
1E,NDRs
IENF1s
TE NFie
TE,NLN=
IE,NNCa»
IE,NNL®
TE.NNNs
1E,NOD®
TE,NSF®
IE,OF L=
TE,.ONPu
IE,OVRs
IE,PR]Is
TE.RACS

_TE,RATS

IE.RBG®
TE RCNE
1E ,RER®
1E (RNMs
1E,RSUs
TE,8DPs=
IE,SNC»
1E,SPCa
TE,SQCs=
IE.SRE®
IE,STKs
1€, TMMa
T1E,TMO=
IE,ULN®

MACRO D@718 25«MAR«75 14323

177747
177726
177640
177776
177644
177703
177643
177770
177745
177646
177724
177753
1777314
177727
177670
177704
177673
177733
177663
177662
177674
177754
177746
177677
177773
177766
177760
177724
177723
177730
177722
177740
177715
177787
177635
177735
177772
177734
177762
177706
1776714
177666
177773

OO N N NN O NN NN NONLDNONNOODDOOOD

JE,UPN=
1E,VER®
{E WAC»
IE,wATH
1E,WER®
TE,WLK®
IE,2Dyn
10,ACE=
10,ACRs
10,ACHus
10,AD8s
I0,APCs
I0,APYs
10,ATTs=
I10,CASs
10,CBDs=
I0,CBNs=
10,CBO=
I0,CCI=
10,CCT=
10,CINe
I0,CLN=
10,CON®
I0,CPRs
10,CRCs
10,CRE®
10,CRJs
10,C8Ms
10,CTIs=s
10,CTL»
I0,CTR=
I0,DAC=
10,0C1s
10,0CTs=
10.,DEL=
IQ.DET=
10,01I8s
10,0T]s
I0,ENAS
10,EOF=
10,ESA=
10,EXTs
10,FDXxs

177727
177774
177743
177744
177737
177764
177720
207400
206400
Pp7000
014000
214000
214010
2014020
015420
016520
016510
245510
214000
202460
216500
PN3400
215400
P15410
001040
212600
018440
D1647¢
215400
n16400
815610
210000
p14400
@02470
012400
002000
g16000
216000
206000
@23000
0P2500
211400
223020

PAGE 7=1%

N O N D O D O N NN NN OD

I0,FNAn
10,GLCe»
10,GLIs
I0,GNInm
10,GRC=
10,GRI=
I0,GRN»
10,HDXs
10,H18s
10,INL®
10,171
I10,KILs=
10,LEDs
10,L0Ve
I0LTKs
10,MCS=
I10,MDAs
10,MD1=
10,MD0s
I0,MLO=
I10,M00=
10,M80s
I0,RAL®
I0,RATs=
I0,RACH
I0,RCI=
I0,RCvVs
10,RDB=
I0,RDN=
I10,RELs®
I0,RHD=
10,RLB=
10,RLV=
I0,RNAs
I0O,RNCn
I0,RNEs=s
I0,RNS=
10,RPEs
I0,RTCs
I0,RTIa
I0,RTK=
I0,RVEnm
I0O,RWD=

004400
016430
816420
016410
016450
016440
016460
203010
@15000
202400
217200
ogo012
0312000
01010
000050
213400
016200
014400
215400
086000
003000
205000
001010
213000
203000
015000
15000
001200
000022
013400
001010
001000
001100
005400
PR1040
201020
201020
P01040
203400
016409
000060
212400
002400

D O D O O NN N NN N NN OO

10,RWU=
I0,RICn
10,8A0=
10,8C3s
10,8D]e
10,800=
10,8EC»
10,SEMe
10,8HTs
10,8L0=
10,8M0=
10,8NMs
10,8PBn»
10,SPFe
10,5380
10,587Ts
10,87Cs
10,37ps
10,8YNs
10, TRMe
10,UNLE
I0,WATS
10,WLBs
I0,WL8w
10, WLV
IO, WNSs
10,WPB®
IO, WVBs
IO, XMT®
I0.XNA®
10,0 =
Ia,Xx =
18,8V =
I8,CLRs
IS,CR =
18,ESCs=
IS.PNO®
18,8ETs
18,8PD»
I18,8UC»
QI,VER=
S3MSG =
1eeGBLE

ep2540
0p2400
004000
213000
013000
012400
202520
002440
002410
205400
202560
002450
802420
002449
24400
202430
202500
016400
203040
gp2410
200042
213400
200400
000410
P0R500
000420
200440
211000
014400
D14410
Boov0o2
LUL LT
200085
200000
206401
015401
000000
000002
pveen2
200004
Pve304
@o0e00
200001

O N O N NN NN RN LOLHONNNOOOON®

SHA0D you¥dE

Definitions

S.BFHD
S.FATT
S.FDB
S.FNAM
S.FNB

S.FNBW

S.FSR2
S.FTYP

S.NFEN

APPENDIX J

FIELD SIZE SYMBOLS

for these symbols are contained in the System Library.

- size
- size
- size
- size
- size
- size

- size

of
of
of
of
of
of

of

RAD-50)

- size
- size

- size
type,

of
of

of

FSR block buffer header in bytes
FDB file attribute area in bytes
FDB in bytes (including name block)
filename in bytes (stored in RAD-50)
filename block in bytes

filename block in words

filename and file type in words

FSR2 (basic impure area)
file type in bytes (in RAD-50)

a complete filename in bytes -- file

and version

(stored in

1D,

name,

INDEX

Access to magnetic tape veolumes,
5-5
ASCII/binary UIC conversion Rou-
tines, 4-6
«ASCPP
.PPASC

.ASCPP routine, 4-6

.ASLUN routine, 4-11

Assembly-time FDB initialization
macros, 2-4 - 2-5

AST service routines, 2-53

Block I/0 operations, 1-5
Bootstrap block, E-2
Buffering, multiple, 1-7

Calling file control routines, 4-2

CCML$ macro call, 6-12

Characteristics of system, 1-11

CLOSES$ macro call, 3-18

Command string interpreter (CSI),
6-14

CSI control block offset and bit
value definitions, 6-16

CSI run-time macro calls, 6-19

CSI$ macro call, 6-14

CSISND macro call, 6-30

CSI$SV macro call, 6-28

CSIS$SW macro call, 6-23

CSI switch definition macro calls,
6-23

CSI$1 macro call, 6-19

CSI$2 macro call, 6-21

.CTRL routine, 4-22

Data formats for Files-11 devices,
1-5
Dataset descriptor, 1-9, 1-10, 2-1,
2-33, 2-34
Dataset descriptor for OFNBS$, 3-15
Dataset descriptor pointer, 1-10
Data transfer modes, 1-6
Locate
Move
DECtape file structures, 5-1
Default directory string routines,

4-3
.RDFDR
.WDFDR
Default filename block, 1-9, 1-10,
2-33, 2-37 - 2-39
Default filename block for OFNBS,
3-15
Default file protection word rou-
tines, 4-4
.RDFFP

Default file protection word rou-
tines (cont.),
«WDFFP
Defining FDB offsets, 2-30
Defining FDB offsets locally, 2-32
DELETS$ macro call, 3-33, 3-34
Device control routine (.CTRL), 4-22
.DLFNB routine, 4-21
Directory entry routines, 4-12 - 4-14
.FIND
.ENTER
. REMOV
Directory files, 5-2
v

Pt £41 =
isk file structure,

wn
|
[

End-of-volume label,

.ENTER routine, 4-14

Error codes, I-1

Event flags, 2-50

Examples of magnetic
ing, 5-9

.EXTND routine, 4-19

tape process-

FDATSA macro call, 2-7
FDB, see file descriptor block
FDB address in run-time macro calls,
2-28, 2-29
FDBDFS$ macro call, 2-6
FDBFS$A macro call, 2-21
FDBKSA macro call, 2-13
FDB offset definitions, A-3
FDOPSA macro call, 2-16
FDRCSA macrc call, 2-10
FSRSZ$ macro call, 2-45,
File access methods, 1-2
sequential
direct
File access, optimization of, 2-41
File access, shared, 1-7
File control routines, calling, 4-2
File deletion routines, 4-21
.MRKDL
.DLFNB
File descriptor block, 1-8, 1-9,
2-1, 2-4, A-1
File extension routine (.EXTND),
4-19
File header block, 5-4, F-1
File header labels (magnetic tape),
G-4
Filename block, 1-9, B-1
Filename block format, B-2
Filename block, initialization manu-
ally, 2-43, 2-44
Filename block, initialization with

6-14

OPENSx, 2-42
Filename block offset definitions,
B-3

INDEX-1

Filename block status word
(N.STAT), B-4
Filename block routines, 4-7,
4-11
.PARSE
.PRSDV
.ASLUN
Filename
.GTDIR
.GTDID
File owner word routines,
. RFOWN
. WFOWN
FPile pointer routines, 4-16 - 4-18
.POINT
.POSRC
.MARK
.POSIT
.XQIO
File specification, 1-10
File specifications in user pro-
grams, 2-33
File storage region, 1-3, 1-10,
2-1
File storage region, initialization
of, 2-45
File storage region, increasing
the size of, 2-48
File trailer labels (magnetic
tape), G-8
.FIND routine, 4-12
FINITS macro call, 2-47
FSR, see file storage region
FSR extension procedures
for FORTRAN, 2-49
for MACRO-11l, 2-48
FSRSZ$ macro call, 2-45
$SFSR1, 1-3
$$FSR2, 1-3

block routines, 4-15

4-5, 4-6

GCML, see Get Command Line
GCMLBS$ macro call, 6-3
GCMLDS$ macro call, 6-6
GCML$ macro call, 6-10
GCML usage considerations, 6-13
Get Command Line, 6-3
Get Command Line run-time macro
calls, 6-9
GCMLS
RCMLS$
CCMLS$
GET$ in locate mode, 3-21
GETS in move mode, 3-21
GET$ (read logical record), 3-18 -
3-20
format of
FDB mechanics of
GETSR (random) macro call, 3-22
GETS$S (sequential) macro call,
3-23
Global definitions of FDB offsets,
2-30

.GTDID routine, 4-15
.GTDIR routine, 4-15

Header area, F-4
Home block, E-2
Home block format, E-4

Identification area, F-5
Increasing the size of the file
storage region, 2-48
Index file, 5-4
Index file bit map, E-2
Index file format, E-1
Initializing the filename block
manually, 2-43, 2-44
Initializing the file storage
region, 2-45
I/0 operations, 1-5
block
record
I1/0 operations, coordination of,
2-50
I/0 status block, 2-51, 2-52

Key terms of the manual, 1-9

Local definitions of FDB offsets,
2-30

Locate mode, 1-6

Logical records, 1-1

Macros, assembly-time FDB initiali-
zation, 2-4, 2-5

Magnetic tape file processing
(RSX-11D only), 5-5 - 5-15

Map area, F-6

-MARK routine, 4-17

.MCALL directive, 2~2, 2-3

Move mode, 1-6

.MRKDL routine, 4-21

Multiple buffering (RSX-11D only),
*1-7

NBOFS$IL macro call, 2-39, 2-40
NMBLKS$ macro call, 2-37 - 2-39

OFID$ macro call, 3-14

OFNB$ macro call, 3-15

OPEN$ (generalized open for speci-
fying file access), 3-16

OPEX$x macro call, 3-2 - 3-12

OPNS$x macro call, 3-12

OPNTS$ macro call, 3-13

OPNTS$X macro call, 3-12

Optimizing file access, 2-41

INDEX-2

.PARSE routine, 4-7
.POINT routine, 4-16
Positioning magnetic tape, 5-6
.POSIT routine, 4-18
.POSRC routine, 4-1i7
.PPASC routine, 4-6
Predefined file header blocks, E-3
PRINTS$ macro call, 7-1
.PRINT subroutine, 7-3
.PRSDV routine, 4-11
PUTS in locate mode, 3-26
PUTS$ in move mode, 3-25
PUTS$ macro call, 3-23 - 3-25
format of
FDB requirements of
PUTSR (random) macro call, 3-27,
3-28
PUTS$S (sequential), 3-29

RCMLS$ macro call, 6-12
.RDFDR routine, 4-3
.RDFFP routine, 4-4
READS macro call, 3-29 - 3-32
format of
FDB requirements
Record 1I/0 operations, 1-5
Rename file routine (.RENAM), 4-19
.RENAM routine, 4~19
.REMOV, 4-14
Rewinding magnetic tape volume
sets, 5-5
RFOWN routine, 4-5

: . .
as A T

P 4+~ 14 T
un-time initializaticon macres

(FDB) , 2-25 - 2~-28

e

Sample programs, D-1
Shared file access, 1-7
Specifying global symbols, 2-32
Spooling, 7-1
Spooling error handling, 7-3
Statistics block, H-1
String descriptions, 2-35
device name
directory
filename
System characteristics, 1-11

User file labels, G-8

User file structure (disk), 5-2

User volume label (magnetic tape),
G-4

Using .CTRL routine, 5-7

Volume and file labels, G-1
Volume label format, G-2

WAITS macro call, 3-34 - 3-36

.WDFDR routine, 4-3
.WDFFP routine, 4-5
.WFOWN routine, 4-6
WRITES macro call, 3-32 - 3-33

.XQI0 routine, 4-18

INDEX-3

IAS/RSX-11

I/0 Operations
Reference Manual
DEC-11-0IORA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

12

1=

1.2

1=

12

12

o]

5 Is there sufficient documentation on associated system programs
: required for use of the software described in this manual? If not,
a what material is missing and where should it be placed?

(3]

o

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you do not require a written reply, please check here. [j

000000

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

alilgliltiall

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

dlilgliltiall

digital equipment corporation

Printad in U.S.A

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	7-01
	7-02
	7-03
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	H-01
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	J-01
	index-1
	index-2
	index-3
	replyA
	replyB
	xback

