
(

IAS/RSX-11
1/0 Operations

Reference Manual
Order No. DEC-11-01 ORA-A-D

IAS/RSX-11
1/0 Operations

Reference Manual
Order No. DEC-11-0IORA-A-D

IAS Version 1

RSX-llM Version 2

RSX-110 Version 6A (Version 6.1)

digital equipment corporation · maynard. massachusetts

First Printing, December 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright@ 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
CO MT EX
DDT
DECCOMM

DECsystem-lo
DECtape
DIBOL
EDU SYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8

10/76-14

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-10
TYPESET-11

PREFACE

CHAPTER

CHAPTER

0.1
0.2
0.3

1

1.1
1.2
1. 3
1.4
1.5
1. 6
1. 6 .1
1. 6. 2
1. 7

1. 8
1. 9
1.10

l.ll
1.12

2

2.1

2.2
2.2.1
2.2.1.1

2.2.1.2

2.2.1.3

2.2.1.4

2.2.1.5

2.2.1.6

2.2.2
2.2.2.1
2.2.2.2

2.3

2.3.1

CONTENTS

MANUAL OBJECTIVES AND READER ASSUMPTIONS
STRUCTURE OF THE DOCUMENT
ASSOCIATED DOCUMENTS

FILE CONTROL SERVICES

FILE ACCESS METHODS
FILE STORAGE REGION (FSR)
DATA FORMATS FOR FILE-STRUCTURED DEVICES
BLOCK I/O OPERATIONS
RECORD I/O OPERATIONS
DATA TRANSFER MODES

Move Mode
Locate Mode

MULTIPLE BUFFERING FOR RECORD I/O (IAS AND
RSX-llD ONLY)
SHARED ACCESS TO FILES
FILE DESCRIPTOR BLOCK (FOB)
DATASET DESCRIPTOR AND DEFAULT FILENAME
BLOCK
KEY TERMS USED THROUGHOUT THIS MANUAL
SYSTEM CHARACTERISTICS

PREPARING FOR I/O

.MCALL DIRECTIVE - LISTING NAMES OF REQUIRED
MACRO DEFINITIONS
FILE DESCRIPTOR BLOCK (FDB)

Assembly-Time FOB Initialization Macros
FDBDF$ - Allocate File Descriptor Block
(FOB}
FDAT$A - Initialize File Attribute Section
of FOB
FDRC$A - Initialize Record Access Section
of FOB
FDBK$A - Initialize Block Access Section
of FOB
FDOP$A - Initialize File Open Section of
FOB
FDBF$A - Initialize Block Buffer Section
of FOB
Run-Time FOB Initialization Macros
Run-Time FOB Macro Call Exceptions
Specifying the FOB Address in Run-Time
Macro Calls

GLOBAL VERSUS LOCAL DEFINITIONS FOR FOB
OFFSETS

Specifying Global Symbols in the Source
Coding

iii

Page

ix

ix
ix
x

1-1

1-2
1-3
1-5
1-5
1-5
1-6
1-6
1-6

1-7
1-7
1-8

1-9
1-9
1-ll

2-1

2-2
2-4
2-4

2-6

2-7

2-10

2-13

2-16

2-21
2-25
2-25

2-28

2-30

2-31

CHAPTER

2.3.2

2.4

2.4.1
2.4.2
2.4.3
2.5
2.5.1

2.5.2
2.6
2.6.1
2.6.2
2.7

2.7.1

2.7.2

2.8
2.8.1
2.8.2
2.8.3

3

3.1
3 .1.1
3 .1. 2

3.2
3.3
3.4

3.5
3.6
3.6.1

3.6.2
3.7

3.8
3.8.1
3.9
3.9.1
3.9.2
3.9.2.1
3.9.2.2
3.10
3 .11

3.12
3.12.1
3.12.2
3.12.2.1
3.12.2.2
3 .13

CONTENTS {Cont.)

Defining FDB Offsets and Bit Values
Locally

CREATING FILE SPECIFICATIONS WITHIN THE USER
PROGRAM

Dataset Descriptor
Default Filename Block - NMBLK$ Macro Call
Dynamic Processing of File Specifications

OPTIMIZING FILE ACCESS
Initializing the Filename Block as a
Function of OPEN$x
Initializing the Filename Block Manually

INITIALIZING THE FILE STORAGE REGION
FSRSZ$ - Initialize FSR at Assembly-Time
FINIT$ - Initialize FSR at Run-Time

INCREASING THE SIZE OF THE FILE STORAGE
REGION

FSR Extension Procedures for MACR0-11
Programs
FSR Extension Procedures for FORTRAN
Programs

COORDINATING I/O OPERATIONS
Event Flags
I/O Status Block
AST Service Routine

FILE-PROCESSING MACRO CALLS

OPEN$x - GENERALIZED OPEN MACRO CALL
Format of Generalized OPEN$x Macro Call
FOB Requirements for Generalized OPEN$x
Macro Call

OPNS$x - OPEN FILE FOR SHARED ACCESS
OPNT$W - CREATE AND OPEN TEMPORARY FILE
OPNT$D - CREATE AND OPEN TEMPORARY FILE AND
MARK FOR DELETION
OFID - OPEN FILE BY FILE ID
OFNB$ - OPEN FILE BY FILENAME BLOCK

Dataset Descriptor and/or Default Filename
Block
Default Filename Block Only

OPEN$ - GENERALIZED OPEN FOR SPECIFYING
FILE ACCESS
CLOSE$ - CLOSE SPECIFIED FILE

Format of CLOSE$ Macro Call
GET$ - READ LOGICAL RECORD

Format of GET$ Macro Call
FDB Mechanics Relevant to GET$ Operations
GET$ Operations in Move Mode
GET$ Operations in Locate Mode

GET$R - READ LOGICAL RECORD IN RANDOM MODE
GET$S - READ LOGICAL RECORD IN SEQUENTIAL
MODE
PUT$ - WRITE LOGICAL RECORD

Format of PUT$ Macro Call
FDB Mechanics Relevant to PUT$ Operations
PUT$ Operations in Move Mode
PUTS Operations in Locate Mode

PUT$R - WRITE LOGICAL RECORD IN RANDOM MODE

iv

Page

2-32

2-33
2-34
2-37
2-40
2-41

2-42
2-43
2-45
2-45
2-47

2-48

2-48

2-49
2-50
2-50
2-51
2-53

3-1

3-2
3-5

3-8
3-12
3-12

3-13
3-14
3-15

3-15
3-16

3-16
3-18
3-18
3-18
3-19
3-20
3-21
3-21
3-22

3-23
3-23
3-24
3-25
3-25
3-26
3-27

3.14

3.15
3.15.1
3.15.2
3.16
3.16.1
3.16.2
3.17
3.17.1
3.18
3.18.1

4.1
4.2
4.2.1

4.2.2

4.3
4.3.1

4.3.2

4.4
4.4.1
4.4.2
4.5
4.5.1

4.5.2

4.6
4.6.1
4.6.1.1

4.6.1.3

4.6.1.4
4.6.2

4.6.3
4.7
4.7.1
4.7.2
4.7.3
4.8
4.8.1

4.8.2

4.9
4.9.1
4.9.2
4.9.3
4.9.4

CONTENTS (Cont.)

PUT$S - WRITE LOGICAL RECORD IN SEQUENTIAL
MODE
READ$ - READ VIRTUAL BLOCK

Forinat of READ$ Macro Call
FDB Requirements for READ$ Macro Call

WRITE$ - WRITE VIRTUAL BLOCK
Format of WRITE$ Macro Call
FDB Requirements for WRITE$ Macro Call

DELET$ - DELETE SPECIFIED FILE
Format of DELET$ Macro Call

WAIT$ - WAIT FOR BLOCK I/O COMPLETION
Format of WAIT$ Macro Call

FILE CONTROL ROUTINES

CALLING FILE CONTROL ROUTINES
DEFAULT DIRECTORY STRING ROUTINES

.RDFDR - Read $$FSR2 Default Directory
String Descriptor
.WDFDR - Write New $$FSR2 Default Directory
String Descriptor

DEFAULT FILE PROTECTION WORD ROUTINES
.RDFFP - Read $$FSR2 Default File
Protection Word
.WDFFP - Write New $$FSR2 Default File
Protection Word

FILE OWNER WORD ROUTINES
.RFOWN - Read $$FSR2 File Owner Word
.WFOWN - Write New $$FSR2 File Owner Word

ASCII/BINARY UIC CONVERSION ROUTINES
.ASCPP - Convert ASCII Directory String to
Equivalent Binary UIC
.PPSAC - Convert UIC to ASCII Directory
String

FILENAME BLOCK ROUTINES
.PARSE - Fill In All Filename Information
Device and Unit Information
Directory Identification Information
Filename, File Type or Extension, and
File Version Information
Other Filename Block Information
.PRSDV - Fill in Device and Unit
Only

Information

.ASLUN - Assign Logical Unit Number
DIRECTORY ENTRY ROUTINES

.FIND - Locate Directory Entry

.ENTER - Insert Directory Entry

.REMOV - Delete Directory Entry
FILENAME BLOCK ROUTINES

.GTDIR - Insert Directory Information in
Filename Block
.GTDID - Insert Default Directory Informa­
tion in Filename Block

FILE POINTER ROUTINES
.POINT - Position File to Specified Byte
.POSRC - Position File to Specified Record
.MARK - Save Positional Context of File
.POSIT - Return Positional Information for
Specified Record

v

Page

3-29
3-29
3-29
3-32
3-32
3-33
3-33
3-33
3-34
3-34
3-35

4-1

4-2
4-3

4-3

4-3
4-4

4-4

4-5
4-5
4-5
4-6
4-6

4-6

4-6
4-7
4-7
4-8
4-9

4-10
4-11

4-11
4-11
4-12
4-12
4-14
4-14
4-15

4-15

4-15
4-16
4-16
4-17
4-17

4-18

CHAPTER

CHAPTER

4.10
4.11
4.12
4.13
4.13.1
4.13.2
4.14

5

5.1
5.1. l
5 .1. 2
5.1. 3
5 .1. 4
5.2

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.7.1
5.2.7.2
5.2.7.3
5.2.7.4

6

6.1
6 .1.1

6.1. 2

6.1. 3
6.1.3.1
6.1.3.2
6.1.3.3
6 .1. 4
6.2
6.2.1

6.2.2

6.2.3
6.2.3.1
6.2.3.2
6.2.4
6.2.4.1

6.2.4.2

6.2.4.3

CONTENTS (Cont.)

QUEUE I/O FUNCTION ROUTINE (.XQIO)
RENAME FILE ROUTINE (.RENAM)
FILE EXTENSION ROUTINE (.EXTND)
FILE DELETION ROUTINES

.MRKDL - Mark Temporary File for Deletion

.DLFNB - Delete File by Filename Block
DEVICE CONTROL ROUTINE (.CTRL)

FILE STRUCTURES

DISK AND DECTAPE FILE STRUCTURE (FILES-11)
User File Structure
Directory Files
Index File
File Header Block

MAGNETIC TAPE FILE PROCESSING (IAS AND
RSX-llD ONLY)

Access to Magnetic Tape Volumes
Rewinding Volume Sets
Positioning to the Next File Position
Single File Operations
Multiple File Operations
Using .CTRL
Examples of Magnetic Tape Processing
Examples of OPEN$W to Create a New File
Examples of OPEN$ to Read a File
Examples of CLOSE$
Combined Examples of OPEN$ amd CLOSE$
for Magnetic Tape

COMMAND LINE PROCESSING

GET COMMAND LINE (GCML)
GCMLB$ - Allocate and Initialize GCML
Control Block
GCMLD$ - Define GCML Control Block Off sets
and Bit Values
GCML Run-Time Macro Calls
GCML$ - Get Command Line
RCML$ - Reset Indirect Command File Scan
CCML$ - Close Current Command File
GCML Usage Considerations

COMMAND STRING INTERPRETER (CSI)
CSI$ - Define CSI Control Block Off sets
and Bit Values
CSI Control Block Off set and Bit Value
Definitions
CSI Run-Time Macro Calls
CSI$1 - Command Syntax Analyzer
CSI$2 - Command Semantic Parser
CSI Switch Definition Macro Calls
CSI$SW - Create Switch Descriptor Table
Entry
CSI$SV - Create Switch Value Descriptor
Table Entry
CSI$ND - Define End of Descriptor Table

vi

Page

4-18
4-19
4-19
4-21
4-21
4-21
4-22

5-1

5-1
5-2
5-2
5-4
5-4

5-5
5-5
5-5
5-6
5-6
5-6
5-7
5-9
5-9
5-9
5-10

5-11

6-1

6-3

6-3

6-6
6-9
6-10
6-12
6-12
6-13
6-14

6-14

6-16
6-19
6-19
6-21
6-23

6-23

6-28
6-30

CHAPTER 7

7.1
7.2
7.3

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

E.l
E.2
E.3
E.4

APPENDIX F

F.l
F.2
F.3

APPENDIX G

G.l
G.1.1
G.1.1.1
G.1.2 ,... , ')
\.3 • .J... • .J

G.1.3.1
G. l. 4
G. l. 5
G. l. 6
G.2
G.2.1
G.2.2
G.2.3
G.2.4
G.3
G.4

APPENDIX H

APPENDIX I

APPENDIX J

INDEX

CONTENTS (Cont.)

SPOOLING

PRINT$ MACRO CALL
.PRINT SUBROUTINE
ERROR HANDLING

FILE DESCRIPTOR BLOCK

FILENAME BLOCK

SUMMARY OF I/0-RELATED SYSTEM DIRECTIVES

SAMPLE PROGRAMS

INDEX FILE FORMAT

BOOTSTRAP BLOCK
HOME BLOCK
INDEX FILE BIT MAP
PREDEFINED FILE HEADER BLOCKS

FILE HEADER BLOCK FORMAT

HEADER AREA
IDENTIFICATION AREA
MAP AREA

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

VOLUME AND FILE LABELS
Volume Label Format
Contents of Owner Identification Field
User Volume Labels
File Header Labels
File Identifier Processing by Files-11
End-of-Volume Labels
File Trailer Labels
User File Labels

FILE STRUCTURES
Single File Single Volume
Single File Multi-Volume
Multi-File Single Volume
Multi-File Multi-Volume

END OF TAPE HANDLING
ANSI MAGNETIC TAPE FILE HEADER BLOCK (FCS
COMPATIBLE)

STATISTICS BLOCK

ERROR CODES

FIELD SIZE SYMBOLS

vii

Page

7-1

7-1
7-3
7-3

A-1

B-1

C-1

D-1

E-1

E-2
E-2
E-2
E-3

F-1

F-4
F-5
F-6

G-1

G-1
G-2
G-2
G-4
G-4
G-7
G-8
G-8
G-8
G-8
G-8
G-9
G-9
G-9
G-9

G-9

H-1

I-1

J-1

INDEX-1

FIGURE

TABLE

1-1
1-2
1-3
5-1
5-2
6-1
6-2
6-3

B-1
G-1

H-1

2-1
3-1

4-1
A-1
B-1
B-2
C-1
E-1
F-1
G-1
G-2
G-3

CONTENTS (Cont.)

FIGURES

File Access Operation
Record I/O Operations
Single Buffering Versus Multiple Buffering
Directory Structure for Single-User Volumes
Directory Structure for Multiple-User Volumes
Data Flow During Command Line Processing
Format of Switch Descriptor
Format of Switch Value Descriptor Table
Entry
Filename Block Format
ANSI Magnetic Tape File Header Block
(FCS Compatible)
Statistics Block Format

TABLES

Macro Calls Generating FDB Information
File Access Privileges Resulting from OPEN$x
Macro Call
R2 Control Bits for .EXTND Routine
FDB Offset Definitions
Filename Block Off set Definitions
Filename Block Status Word (N.STAT)
Summary of I/0-Related System Directives
Home Block Format
File Header Block
Volume Label Format
File Header Label (HDRl)
File Header Format (HDR2)

viii

1-2
1-4
1-7
5-3
5-3
6-2
6-27

6-30
B-2

G-10
H-1

2-2

3-4
4-20
A-3
B-3
B-4
C-2
E-4
F-2
G-2
G-5
G-6

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The purpose of this manual is to familiarize the users of an RSX-llD,
RSX-llM, or IAS operating system with the file management facilities
provided with the system. Since the file control services described
herein pertain to both MACR0-11 and FORTRAN programs, the reader is
assumed to be familiar with the manuals describing these program
development tools. Also, since the development of programs in an
RSX-11 or IAS environment necessarily involves the use of the Task
Builder, the reader is likewise assumed to be familiar with this
system program. Unless otherwise noted, the term RSX-11 refers to
both RSX-llD and RSX-llM.

0.2 STRUCTURE OF THE DOCUMENT

Chapter 1 briefly describes the file control services available for
IAS/RSX-11 users and defines some of the terminology that is pertinent
to discussions throughout the manual. This chapter is vital to
understanding the balance of the manual.

Chapter 2, perhaps the most important in the manual, describes the
actions the user must take at assembly-time to prepare adequately for
all intended file I/O processing. This chapter describes the data
structures and working storage areas that the user must define within
his program in order to use any of the file control services provided
by the system. Unless the user is thoroughly familiar with the
content of this chapter, he is advised to defer a reading of
subsequent chapters, since all that follows is dependent upon a
complete working understanding of the material in Chapter 2.

Chapter 3 describes the run-time macro calls which allow the user to
manipulate files and to perform I/O operations.

Chapter 4 describes a set of run-time routines used to perform
functions related to controlling files, such as reading and writing
directory entries, renaming or extending files, etc.

Chapter 5 describes the structure of files supported by the IAS and
RSX-11 systems. In this context, the structure of files for disks,
DECtapes, and magnetic tapes are covered.

ix

Chapter 6 describes two collections of object library routines called
the Get Command Line Routine (GCML) and the Command String Interpreter
(CSI). These routines may be linked with the user task to perform
npPr~tinnR ~Q~0~i~t~~ ~!th the ~y~~~i= i~p~t =f ~~~~~~~ !i~~~. C~ch

input consists of file specifications which identify and control the
files to be processed by the user program.

Chapter 7 describes the queuing of files for printing. This facility
is available at both the MACRO level and subroutine level.

Finally, a number of appendices are provided which supply detailed
information of further interest.

Appendix A and Appendix B outline in detail the file descriptor block
and the filename block, respectively, two structures forming a
significant part of the descriptive material in Chapter 2. Appendix C
summarizes a number of I/0-related system directives that form a part
of the total resource management capabilities of the RSX-11 or the IAS
Executive. Through simplified sample programs, Appendix D illustrates
the use of the macro calls that create and initialize the file
descriptor block. These sample programs also include some of the
macro calls that are used for processing files.

Appendix E illustrates the structure of index files, while Appendix F
describes in detail the format and content of a file header block.
The format and content of magnetic tape labels (not used in RSX-llM)
are similarly described in Appendix G. The format and content of the
statistics block are described in Appendix H.

The error codes returned by the system are listed in Appendix I and
field size symbols are listed in Appendix J.

0.3 ASSOCIATED DOCUMENTS

Other manuals closely allied to the purposes of this document are
described briefly in the IAS, RSX-llD, and RSX-llM/RSX-llS
Documentation Directories. The Documentation Directories define the
intended readership of each manual in the appropriate set and provide
a brief synopsis of each manual's contents. The directories and order
numbers are listed below:

IAS Documentation Directory, Order No. DEC-11-0IDDA-A-D

RSX-llD Documentation Directory, Order No. DEC-11-0XUGA-C-D

RSX-llM/RSX-llS Documentation Directory, Order No. DEC-11-0MUGA-B-D

x

CHAPTER 1

FILE CONTROL SERVICES

IAS and RSX-11 file control services (FCS) enable the user to perform
record-oriented and block-oriented I/O operations and to perform
additional functions required for file control, such as open, close,
wait, and delete operations. To invoke FCS functions, the user issues
macro calls to specify desired file control operations. The FCS
macros are called at assembly-time to generate code for specified
functions and operations. The macro calls provide the system-level
file control primitives with the necessary parameters to perform the
file access operations requested by the user (see Figure 1-1).

FCS is basically a set of routines that are linked with the user
program at task-build time from a system global area (IAS and RSX-llD)
or resident system library (RSX-llM); or a system object module
library. These routines, consisting of pure, position-independent
code, provide a user interface to the file system, enabling the user
to read and write files on file-structured devices and to process
files in terms of logical records.

Logical records are regarded by the user program as data units that
are structured in accordance with application requirements, rather
than existing merely as physical blocks of data on a particular
storage medium.

FCS provides the capability to write a collection of data (consisting
of distinct logical records) to a file in a way that enables the data
to be retrieved at will. Data can be retrieved from the file without
having to know the exact format in which it was written to the file.

FCS thus provides a sense of transparency to the user so that records
can be read or written in logical units that are consistent with his
application requirements.

1-1

FILE CONTROL SERVICES

USER-ISSUED MACRO CALL

FILE CONTROL SERVICES

FILE CONTROL PRIMITIVES

PERIPHERAL DEVICE HARDWARE
(e.g., disk, VTOS)

Figure 1-1
File Access Operation

FCS provides an extensive set of macros to simplify the user's
interface to the system's I/O facilities. These macros create and
maintain certain data structures that are required in performing all
file I/O operations. The required structures include the following:

1. A file descriptor block (FDB} that contains execution-time
information necessary for the processing of a file.

2. A dataset descriptor that is accessed by FCS to obtain ASCII
file information required in opening a specified file.

3. A default filename block that is accessed by FCS to obtain
default file information required in opening a specified
file. This structure is accessed when complete file
information is not specified in the dataset descriptor.

The file descriptor block is described in detail in Appendix A and
Appendix B. The dataset descriptor and the default filename block are
treated in detail in section 2.4.

1.1 FILE ACCESS METHODS

IAS and RSX-11 support both sequential and direct access to files.
The sequential access method is device-independent, i.e., sequential
access can be used for both record-oriented and file-structured

1-2

FILE CONTROL SERVICES

devices (e.g., card reader and disk, respectively). The direct access
method can be used only for file-structured devices.

1.2 FILE STORAGE REGION (FSR)

The file storage region (FSR) is an area allocated in the user program
as working storage for performing record I/O operations (see section
1.5). The FSR consists of two program sections which are always
contiguous to each other. These program sections exist for the
following purposes:

$$FSR1 - This area of the FSR contains the block buffers and the
block buffer headers for record I/O processing. The
user determines the size of this area at assembly-time
by issuing the FSRSZ$ macro call (see section 2.6.1).
The number of block buffers and associated headers is
based on the number of files that the user intends to
open simultaneously for record I/O operations.

$$FSR2 - This area of the FSR contains impure data that is used
and maintained by FCS in performing record I/O
operations. Portions of this area are initialized at
task-build time, and other portions are maintained by
FCS.

The size of the FSR can be changed, if desired, at task-build time.
Section 2.7 presents the procedures which provide this flexibility to
the programmer.

The data flow during record I/O operations is depicted in Figure 1-2.
Note that blocks of data are transferred directly between the FSR
block buffer and the device containing the desired file. The blocking
and deblocking of records during input is accomplished in the FSR
block buffer, and the building of records is likewise accomplished in
the FSR block buffer during output. Note also that FCS serves as the
user interface to the FSR block buffer pool. All record I/O
operations, which are initiated throuqh GET$ and PUT$ macro calls, are
totally synchronized by FCS. -

Record I/O operations are described in greater detail in section 1.5.

1-3

.......
I

.i::..

DEVICE

BLOCK
BUFFER
POOL

f _......__~~~~,

$$FSR2
IMPURE DATA

FCS

Figure 1-2
Record I/O Operations

USER
RECORD
BUFFER

t'rj
H
t"I
tt:I

()

0 z
1-3
~
0
t"I

(/'l

tt:I
~
<:
H
()

tt:I
(/'l

FILE CONTROL SERVICES

1.3 DATA FORMATS FOR FILE-STRUCTURED DEVICES

Data is transferred between peripheral devices and memory in blocks.
A data file consists of virtual blocks, each of which may contain one
or more logical records. In FCS terms, a virtual block in a file
consists of 512(10) bytes.

Records in a virtual block can be either fixed or variable in length.
The term "fixed-length" refers to records which are equal and
non-varying in length; conversely, the term "variable length" refers
to records which are not equal in length. The first two bytes of a
variable-length record contain a value defining the length of that
record (in bytes), excluding the record length bytes.

Both fixed and variable length records are aligned on a word boundary.
Any extra byte that results from an odd-length record is simply
ignored. (The extra byte is not necessarily a 0 byte.)

Virtual blocks and logical records within a file are numbered
sequentially, each starting at one (1). A virtual block number is a
file relative value, while a logical block number is a volume relative
value.

1.4 BLOCK I/0 OPERATIONS

The READ$ and WRITE$ macro calls (see sections 3.15 and 3.16,
respectively) allow the user to read and write virtual blocks of data
from and to a file without regard to logical records within the file.
Block I/0 operations provide a very efficient means of processing file
data, since such operations do not involve the blocking and deblocking
of records within the file. Also, in block I/O operations, the user
may read or write files in an asynchronous manner, i.e., control may
be returned to the user program before the requested I/O operation is
completed.

When block I/0 is used, the number of the virtual block to be
processed is specified as a parameter in the appropriate READ$/WRITE$
macro call; the virtual block so specified is processed directly in a
buffer reserved by the user in his own memory space.

As implied above, the user is responsible for synchronizing all block
I/O operations. Such asynchronous operations may be coordinated
through an event flag (see section 2.8.1) specified in the
READ$/WRITE$ macro call. The event flag is used by the system to
signal the completion of a specified block I/O transfer, enabling the
user to coordinate those block I/O operations which are dependent on
each other.

1.5 RECORD I/O OPERATIONS

The GET$ and PUT$ macro calls (see sections 3.9 and 3.12,
respectively) are provided for processing record-oriented files.
Using the FSR block buffers (see section 1.2), GET$ and PUT$
operations perform the necessary blocking and deblocking of records
within the virtual blocks of the file, allowing the user to read or
write individual records.

1-5

FILE CONTROL SERVICES

In preparing for record I/O operations, the user must specify the
format of the records. For example, he must specify whether the
records are fixed or variable in length, or whether records that are
to be output to a carriage-control device are to contain
carriage-control information (either at the beginning of the record or
embedded within the record).

For sequential access files, I/O operations can be performed for both
fixed- and variable-length records. For direct access files, I/O
operations can be performed only for fixed-length records.

In contrast to block I/O operations, all record I/O operations are
synchronous, i.e., control is returned to the user program only after
the requested I/O operation is completed.

Because GET$/PUT$ operations process logical records within a virtual
block, only a limited number of GET$ or PUT$ operations result in an
actual I/O transfer, e.g., when the end of a data block is
encountered. Therefore, all GET$/PUT$ I/O requests will not
necessarily involve an actual physical transfer of data.

1.6 DATA TRANSFER MODES

When record I/O is used, a program can gain access to a record in
either of two ways after the virtual block has been transferred into
the FSR from a file:

1. In move mode. By specifying that individual records are to
be moved from the FSR block buff er to a user-defined record
buffer (see Figure 1-2).

2. In locate mode. By referencing a location in the file
descriptor block (see section 1.9) which contains a pointer
to the desired record within the FSR block buffer.

1.6.1 Move Mode

Move mode requires that data be moved between the FSR block buffer and
a user-defined record buffer. For input, data is first read into the
FSR block buffer from a peripheral device and then moved to the user
record buffer for processing. For output, the user program first
builds a record in the user record buffer; FCS then moves the record
to the FSR block buffer, from whence it is written to a peripheral
device when the entire block is filled.

Move mode simulates the reading of a record directly into a user
record buffer, thereby making the blocking and deblocking of records
transparent to the user.

1.6.2 Locate Mode

Locate mode enables the user to access records directly in the FSR
block buffer. Consequently, there is normally no need to transfer
data from the FSR block buffer to the user record buffer. To access
records directly in the FSR block buffer, the user refers to locations

1-6

FILE CONTROL SERVICES

in the file descriptor block (see section 1.9) which contain values
defining the length and the address of the desired record within the
FSR block buffer. These values are present in the file descriptor
block as a result of FCS macro calls issued by the user.

Program overhead is reduced in locate mode, since records can be
processed directly within the FSR block buffer. Moving data to the
user record buffer in locate mode is required only when the last
record of a virtual block crosses block boundaries.

1.7 MULTIPLE BUFFERING FOR RECORD I/O (IAS AND RSX-llD ONLY)

By supporting multiple buffers for record I/O, FCS provides the
capability for IAS and RSX-llD users to read data into buffers in
anticipation of user program requirements and to write the contents of
buffers while the user program is building records for output. The
user can thus overlap the internal processing of data with file I/O
operations, as illustrated in Figure 1-3.

When read-ahead multiple buffering is used, the file must be
sequentially accessed to derive full benefit from multiple buffering.
For write-behind multiple buffering, any file access method can be
used with full benefit.

Wh;n multiple buffering is used, sufficient space in the FSR must be
allocated for the total number of block buffers in use at any given
time. The FSRSZ$ macro call (see section 2.6.i) is used to accomplish
the allocation of space for FSR block buffers.

Time

Single
Buff er

Multiple
Buffer

process record

process record

write record process record write record

write record process record write record
process record write record process record

Figure 1-3
Single Buffering Versus Multiple Buffering

1.8 SHARED ACCESS TO FILES

FCS permits shared access to files according to established
conventions. Two macro calls, among several available in FCS for
opening files, may be issued to invoke these conventions. The OPNS$x
macro call (see section 3.2) is used specifically to open a file for
shared access. The OPEN$x macro call (see section 3.1), on the other
hand, invokes generalized open functions which have shared access

1-7

FILE CONTROL SERVICES

implications only in relation to other I/O requests then issued. Both
macro calls take an alphabetic suffix which specifies the type of
operation being requested for the file, as follows:

R - Read existing file.

W - Write (create) a new file.

M - Modify existing file without extending its length.

U - Update existing file and extend its length, if necessary.

A - Append data to end of existing file.

The suffix R applies to the reading of a file, while the suffixes W,
M, U, and A all apply to the writing of a file. These macro calls and
the shared access conditions which they invoke are summarized below.

The OPNS$x and OPEN$x macro calls may be used as follows for shared
access to files:

1. When the OPNS$R macro call is issued, read access to the file
is granted unconditionally, regardless of the presence of a
concurrent write-access request to the file. (The OPNS$R
macro call permits concurrent write access to the file while
it is being read.) A subsequent write-access request for this
same file will be honored, provided that only one such
request is active at any given time. Thus, several active
read-access requests and one write-access request may be
present for the same file.

Other concurrent OPNS$x macro calls are equivalent to their
OPEN$x counterpart, since only one writer of a file is
permitted under any circumstances.

2. When the OPEN$R macro call is issued, read access to the file
is granted, provided that no write-access request for that
file is active. (The OPEN$R macro call does not permit
concurrent write access to the file while it is being read.)

Note from the above that there can be several concurrent readers of a
file, but only one writer of that same file. Readers of a shared file
should be aware that the file may yield inconsistent data from request
to request if that file is also being written.

Shared access during reading does not necessarily imply the presence
of read requests from several separate tasks. The same task, for
example, may open the same file using different logical unit numbers.

1.9 FILE DESCRIPTOR BLOCK (FDB)

The file descriptor block (FDB) contains information used by FCS in
opening and processing files. One FDB is required for each file that
is to be opened simultaneously by the user program. The user
initializes some portions of the FDB with assembly-time or run-time
macro calls, and FCS maintains other portions. Each FDB has five
sections that contain user or system-initialized information:

1-8

FILE CONTROL SERVICES

. File Attribute Section;

. Record or Block Access Section;

. File-Open Section;

. Block Buffer Section; and the

. Filename Block Portion of the FDB.

The information stored in the FDB depends upon the characteristics of
the file to be processed. The FDB and the macro calls that cause
values to be stored in this structure are described in detail in
section 2.2. Appendix A describes the format and the content of the
FDB in detail.

1.10 DATASET DESCRIPTOR AND DEFAULT FILENAME BLOCK

Normally, either a dataset descriptor or a default filename block is
specified for each file that the user intends to open. These data
structures provide FCS with the file specifications required for
opening a file.

Although either one or the other is usually defined, both can be
specified for the same file. The dataset descriptor and the default
filename block are summarized below and described in detail in section
2.4.l and 2.4.2 1 respectively.

When a file is being opened using information already present in the
filename block, neither the dataset descriptor nor the default
filename block is accessed by FCS for required file information. This
method of file access, which is termed "opening a file by file ID," is
a very efficient means of opening files. Section 2.5 describes this
process in detail.

1.11 KEY TERMS USED THROUGHOUT THIS MANUAL

Listed below are the terms used throughout this manual
specific meanings in the context of FCS operations.

have

FILE DESCRIPTOR BLOCK (FDB) The tabular data structure that
provides FCS with information needed to perform I/O operations on
a file. The space for this data structure is allocated in the
user program by issuing the FDBDF$ macro call (see section
2.2.1.1). Each file to be opened simultaneously by the user
program must have an associated FDB. Portions of the FDB are
user-defined and others are maintained by FCS. Assembly-time or
run-time macro calls are provided for user initialization of the
FDB. The format and content of the FDB are detailed in Appendix
A.

FILENAME BLOCK -- The portion of the FDB that contains the various
elements of a file specification (i.e., directory, filename, file
type, file version number, device, and unit) for use by the FCS
file-processing routines. Initially, as a file is opened, FCS
fills in the filename block with user-specified information taken
from the dataset descriptor and/or the default filename block

1-9

FILE CONTROL SERVICES

(see below). The methods of creating file specifications for
initializing the filename block are described in detail in
section 2.4; the format and content of the filename block itself
are described in Appendix B.

DEFAULT FILENAME BLOCK The default filename block, an area
allocated within the user program by issuing the NMBLK$ macro
call (see section 2.4.2), contains the various elements of a file
specification. The default filename block is a user-created
structure, while the filename block within the FDB is maintained
by FCS. The user creates the default filename block to supply
file specifications to FCS that are not otherwise available
through the dataset descriptor (see below). In other words, from
information defined in the default filename block, FCS creates a
parallel structure in the FDB that serves as the execution-time
repository for information that FCS requires in opening and
operating on files.

Thus, the terms 11 default filename block" and "filename
refer to separate and distinct data structures.
distinctions should be kept clearly in mind whenever these
appear in the manual. Though created and used differently,
areas are structurally identical.

block"
These
terms
these

DATASET DESCRIPTOR -- The dataset descriptor is a 6-word block in the
user program containing the sizes and the addresses of ASCII data
strings that together constitute a file specification (see
below). This data structure, which is also created by the user,
is described in detail in section 2.4.1. Unless the filename
block in the FDB has been saved, dataset descriptor and/or
default filename block information must be provided to FCS before
the specified file can be opened.

DATASET DESCRIPTOR POINTER -- An address value that points to the
6-word dataset descriptor within the user program. This address
value is stored in the FDB, allowing FCS to access a user-created
file specification in the dataset descriptor.

FILE SPECIFICATION -- Any system or user program having a requirement
to refer to files does so through a file specification. Such
information names a file and allows it to be explicitly
referenced by any task. A file specification, whether for input
or output, contains specific information which must be made
available to FCS before that file can be opened. The term "file
specifier," is sometimes used as a synonym for "file
specification."

FILE STORAGE REGION (FSR) -- The file storage region (see section 1.2)
is an area of memory reserved by the user for use in record I/O
operations. This area is allocated by issuing the FSRSZ$ macro
call in the user program (see section 2.6.1).

1-10

FILE CONTROL SERVICES

1.12 SYSTEM CHARACTERISTICS

Listed below are the important characteristics of FCS that should be
borne in mind in order to use its I/O facilities properly:

1. READ$/WRITE$ operations are asynchronous; the user is
responsible for coordinating all block I/O activity. In
contrast, GET$/PUT$ operations are synchronized entirely by
FCS; control is not returned to the user program until the
requested GET$/PUT$ operation is completed.

2. FCS macro calls save and restore all registers, with the
following exceptions:

a. The file-processing macro calls (see Chapter 3) place the
FDB address in RO.

b, Many of the file-control routines (see Chapter 4) return
requested information in the general registers.

3. The FDBDF$ macro call (see section 2.2.1.1) is issued to
allocate space for an FDB. Once the FDB is allocated,
necessary information can be placed in this data construct
through any logical combination of assembly-time and/or
run-time macro calls (see sections 2.2.l and 2.2.2,
respectively). Certain information must be present in the
FDB before FCS can open and operate on a specified file.

4. For each assembly-time FDB initalization macro ca11, a
corresponding run-time macro call is provided that supplies
identical information. Although both sets of macro calls
(see Table 2-1) place the same information in the FDB, each
set does so in a different way. The assembly-time calls
generate .BYTE or .WORD directives which create specific
data, while the run-time calls generate MOV or MOVB
instructions which place desired information in the FDB
during program execution.

5. If an error condition is detected during any of the file
processing operations described in Chapter 3, or during the
execution of several of the file-control routines (see
section 4.1), the C-bit (carry condition code) in the
Processor Status Word is set, and an error indicator is
returned to FDB offset location F.ERR.

If the address of a user-coded error-handling routine is
specified as a parameter in any of the file-processing macro
calls, a JSR PC instruction to the error-handling routine is
generated. The routine is then executed if the C-bit in the
Processor Status Word is set.

1-11

The MACR0-11 programmer
working storage areas
input/output operations.

CHAPTER 2

PREPARING FOR I/O

must establish the proper data base and
within his program in order to perform
The following actions must be performed:

. A file descriptor block (FDB) must be defined for each file
that is to be opened simultaneously by the user program (see
section 2.2) .

. A dataset descriptor and/or a default filename block (see
section 2.4.1 or 2.4.2, respectively) must also be defined if
the user intends to access these structures to provide required
file specifications to FCS.

A file storage region (FSR) must be established within the
program if the user intends to employ record I/O in processing
files (see section 2.6). (The initialization procedures for
FORTRAN programs are described in detail in the FORTRAN-IV
User's Guide.)

This chapter describes the macro calls that must be invoked to provide
the necessary file processing information for the FDB. Such
information is placed in the FDB in one of three ways:

1. By the assembly-time FDB initialization macro calls (see
section 2.2.1).

2~ By the run-time FDB initialization macro calls (see section
2.2.2).

3. By the file-processing macro calls (see Chapter 3).

Data supplied during the assembly of the source program establishes
the initial values in the FDB. Data supplied at run-time can either
initialize additional portions of the FDB or change values established
at assembly-time. Likewise, the data supplied through the
file-processing macro calls can either initialize portions of the FDB
or change previously-initialized values.

Table 2-1 lists the macro calls that generate FDB information.

2-1

PREPARING FOR I/O

Table 2-1
Macro Calls Generating FDB Information

Assembly-Time FDB Run-Time FDB File-Processing
Macro Calls Macro Calls Macro Calls

FDBDF$ (Required) FDAT$R OPEN$ (All Variations)
FDAT$A FDRC$R CLOSE$
FDRC$A FDBK$R GET$ (All Variations)
FDBK$A FDOP$R PUT$ (All Variations)
FDOP$A FDBF$R READ$
FDBF$A WRITE$

DELET$
WAIT$

2.1 .MCALL DIRECTIVE - LISTING NAMES OF REQUIRED MACRO DEFINITIONS

All the assembly-time, run-time, and file-processing macro calls (see
Table 2-1 above) that the user intends to issue in his program must
first be listed as arguments in an .MCALL directive. So doing allows
the required macro definitions to be read in from the system macro
library during assembly.

The .MCALL directive and associated arguments must appear in the
program prior to the issuance of any macro call in the execution code
of the program. If the list of macro names is lengthy, several .MCALL
directives, each appearing on a separate source line, must be
specified to accommodate the entire list of macro names. The number
of such names that may appear in any given .MCALL statement is limited
only by the availability of space within that 80-byte source line.

The .MCALL directive takes the following general form:

where:

.MCALL argl,arg2, ... ,argn

argl,
etc.

represents a list of symbolic names identifying
the macro definitions required in the assembly of
the user program. If more than one source line is
required to list the names of all desired macros,
each additional line so required must begin with
an .MCALL directive.

For clarity of functional use, the assembly-time,
run-time, and file-processing macro names may be
listed in each of three separate .MCALL
statements. The macro names may also be listed
alphabetically for readability, or they may be
intermixed, irrespective of functional use. All
these options are matters of preference and have
no effect whatever on the retrieval of macro
definitions from the system macro library.

For those users planning to invoke the command
line processing capabilities of the Get Command
Line Routine (GCML) and the Command String
Interpreter (CS!), all the names of the associated

2-2

PREPARING FOR I/0

macros must also be listed as arguments in an
.MCALL directive. GCML and CSI, ordinarily
employed in system or application programs for
convenience in dynamically processing file
specifications, ate described in detail in Chapter
6.

The .MCALL directive is described in further detail in the IAS/RSX-11
MACR0-11 Reference Manual. The sample programs in Appendix D also
illustrate the use of the .MCALL directive. Note that these
directives appear as the very first statements in the preparatory
coding of these programs.

The object routines described in Chapter 4 should not be
the macro definitions available from the system macro
file-control routines, constituting a body of object
linked into the user program at task-build time from the
library {SY: [l,l]SYSLIB.OLB). The reader should consult
for a description of these routines.

confused with
library. The
modules, are
system object
section 4.1

The following statements are representative of the use of the .MCALL
directive:

.MCALL FDBDF$,FDAT$A,FDRC$A,FDOP$A,NMBLK$,FSRSZ$,FINIT$

.MCALL OPEN$R,OPEN$W,GET$,PUT$,CLOSE$

2-3

PREPARING FOR I/O

2.2 FILE DESCRIPTOR BLOCK (FDB)

The file descriptor block (FDB) is the data structure that provides
the information needed by FCS for all file I/O operations. Two sets
of macro calls are available for FDB initialization: one set is used
for assembly-time initialization (see next section), and the other set
is used for run-time initialization (see section 2.2.2). Run-time
macros are used to supplement and/or override information specified
during assembly. Appendices A and B illustrate all the sections of
the FDB in detail.

2.2.1 Assembly-Time FDB Initialization Macros

Assembly-time initialization requires that the FDBDF$ macro call be
issued (see section 2.2.1.1) to allocate space for and to define the
beginning address of the FDB. Additional macro calls can then be
issued to establish other required information in this structure. The
assembly-time macros which accomplish these functions are described in
the following sections. These macro calls take the general form shown
below:

where:

mcnam$A pl,p2, ... ,pn

mcnam$A

pl,p2,
... ,pn

represents the symbolic name of the macro.

represents the string of initialization parameters
associated with the specified macro. A parameter
may be omitted from the string by leaving its
field between delimiting commas null. Assume, for
example, that a macro call may take the following
parameters:

FDOP$A 2,DSPT,DFNB

Assume further that the second parameter field is
to be coded as a null specification. In this
case, the statement is coded as follows:

FDOP$A 2,,DFNB

Also, a trailing comma need not be inserted to
reflect the omission of a parameter beyond the
last explicit specification. For example, the
following macro call:

FDOP$A 2,DSPT,DFNB

need not be specified in the following manner

FDOP$A 2,DSPT,

if the last parameter (DFNB) is omitted. Rather,
such a macro call is specified as follows:

FDOP$A 2,DSPT

2-4

PREPARING FOR I/0

If any parameter is not specified, i.e., if any field in the macro
call contains a null specification, the corresponding cell in the FDB
is not initialized and thus remains zero (0).

Multiple values may be specified in a parameter field of certain macro
calls. Such values are indicated by placing an exclamation point (!)
between the values, indicating a logical OR operation to the MACR0-11
assembler. The use of multiple values in this manner is pointed out
in the body of this manual where such specifications apply.

Throughout the descriptions of the assembly-time macros in the
following sections and elsewhere in this manual, symbols of the form
F.xxx or F.xxxx are referenced (e.g., F.RTYP). These symbols are
defined as offsets from the beginning address of the FDB, allowing
specific locations within the FDB to be referenced. Thus, the
programmer can reference or modify information within the FDB without
having to calculate word or byte offsets to specific locations.

Using such symbols in system/user software also has the additional
advantage of permitting the relative position of cells within the FDB
to be changed (in a subsequent release, for example) without affecting
the user's current programs or the coding style employed in developing
new programs.

2-5

PREPARING FOR I/O

2.2.1.1 FDBDF$ - Allocate File Descriptor Block (FOB) - The FDBDF$
macro call is specified in a MACR0-11 program to allocate space within
the program for a file descriptor block (FDB). This macro call must
be specified in the source program once for each input or output file
that is to be opened simultaneously by the user program in the course
of execution. Any associated assembly-time macro calls (see sections
2.2.1.2 through 2.2.1.6) must then be specified immediately following
the FDBDF$ macro if the user desires to accomplish the initialization
of certain portions of this FDB during assembly.

The FDB allocation macro takes the following form:

label: FDBDF$

where: label represents a user-specified symbol that names this
particular FDB and defines its beginning address.
This label has particular significance in all I/O
operations that require access to the data
structure allocated through this macro call. FCS
accesses the fields within the FDB relative to the
address represented by this symbol.

The following examples are representative of FDBDF$ macro calls as
they might appear in a source program:

FDBOUT: FDBDF$

FDBIN: FDBDF$

;ALLOCATES SPACE FOR AN FDB NAMED
;"FDBOUT" AND ESTABLISHES THE
;BEGINNING ADDRESS OF THE FDB.

;ALLOCATES SPACE FOR AN FDB NAMED
;"FDBIN" AND ESTABLISHES THE
;BEGINNING ADDRESS OF THE FDB.

As noted earlier, the source program must embody one FDBDF$ macro call
logically similar to those above for each file that is to be accessed
simultaneously by the user program.· FDB's can be re-used for many
different files, as long as the file currently using the FDB is closed
before the next file is opened. The only requirement is that an FDB
must be defined for every file that is to be opened simultaneously.

2-6

PREPARING FOR I/0

2.2.1.2 FDAT$A - Initialize File Attribute Section of FDB - The
FDAT$A macro call is used to initialize the file attribute section of
the FDB when a new output file is to be created. If the file to be
processed already exists, the FDAT$A initialization macro is not
required, since FCS obtains the necessary information from the first
14 bytes of the user file attribute section of the specified file's
header block (see Appendix F). This macro call has the following
format:

where:

FDAT$A rtyp,ratt,rsiz,cntg,aloc

rtyp represents a symbolic value that defines the type
of records to be built as the new file is created.
Either one of two values must be specified, as
follows:

R.FIX - Indicates that fixed-length records are to
be written in creating the file.

R.VAR - Indicates that variable-length records are
to be written in creating the file.

This parameter initializes FDB offset location
F.RTYP. Since the symbols R.FIX and R.VAR
initialize the same location in the FDB, these
values are mutually exclusive. Either one or the
other, but not both, may be specified.

ratt represents symbolic values that may be specified
to define the attributes of the records as the new
file is created. The following symbolic values
may be specified, as appropriate, to define the
desired record attributes:

FD.FTN - Indicates that tne r1rst byte in each
record is to contain a FORTRAN carriage-control
character.

FD.CR - Indicates that the record is to be
preceded by a <LF> character and followed by a
<CR> character when the record is written to a
carriage-control device: e.g.: a line printer or a
terminal.

FD.BLK - Indicates that records are not allowed to
cross block boundaries.

These parameters initialize the record attribute
byte (offset location F.RATT) in the FDB. The
values FD.FTN and FD.CR are mutually exclusive and
must not be specified together. Apart from this
restriction, the combination (logical OR) of
multiple parameters specified in this field must
be separated by an exclamation point (e.g.,
FD.CR!FD.BLK).

2-7

rsiz

cntg

PREPARING FOR I/O

represents a numeric value that defines the size
(in bytes) of fixed-length records to be written
to the file. This value, which initializes FDB
offset location F.RSIZ, need not be specified if
R.VAR has been specified as the record type
parameter above (for variable-length records). If
R.VAR is specified, FCS maintains a value in FDB
offset location F.RSIZ that defines the size (in
bytes) of the largest record currently written to
the file. Thus, whenever an existing file
containing variable-length records is opened, the
value in F.RSIZ defines the size of the larqest
record within that file. By examining the value
in this cell, a program can dynamically allocate
record buffers for its open files.

represents a signed numeric value that defines the
number of blocks that will be allocated for the
file as it is created. The signed values have the
following significance:

Positive Value - Indicates that the specified
number of blocks is to be allocated contiguously
at file-create time, and, further, that the file
is to be contiguous.

Negative Value - Indicates that the two's
complement of the specified number of blocks is to
be allocated at file-create time, not necessarily
contiguously, and, further, that the file is to be
noncontiguous.

This parameter, which has 15 bits of magnitude
(plus a sign bit), initializes FDB offset location
F.CNTG.

If the user has a firm idea as
length of the file, it is
allocate the required number
file-create time through this
than requiring FCS to extend
necessary, during the writing
aloe parameter below).

to the desired
more efficient to

of blocks at
parameter, rather

the file, if
of the file (see

If this parameter is not specified, then the file
is created as an empty file, i.e., no space is
allocated within the file as it is created.

Issuing the CLOSE$ macro call at the completion of
file processing resets the value in F.CNTG to zero
(0). Thus, the usual procedure is to initialize
this location at run-time just before opening the
file. This action is especially necessary if the
FDB is to be re-used.

aloe represents a signed numeric value that defines the
number of blocks by which the file will be
extended if FCS determines that file extension is
necessary during the writing of the file. When
the end of allocated space in the file is reached
during writing, the signed value provided through

2-8

PREPARING FOR I/0

this parameter causes file extension to occur, as
follows:

Positive Value - Indicates that the specified
number of blocks is to be allocated contiguously
as additional space within the file and, further,
that the file is to be noncontiguous.

Negative Value - Indicates that the
complement of the specified number of blocks
be allocated noncontiguously as additional
within the file and, further, that the file
be noncontiguous.

two's
is to
space
is to

This parameter, which also has 15 bits of
magnitude (plus a sign bit), initializes FDB
offset location F.ALOC. If this optional
parameter is not specified, file extension occurs
as follows:

1. If the number of virtual blocks yet to be
written is greater than one (1), the file is
extended by the exact number of blocks
required to complete the writing of the file.

2. If only one additional block is required to
complete the writing of the file, the file is
extended in accordance with the volume's
default extend value.

In !AS, RSX-llD, and RSX-llM, the volume default extend size is
established through the INITIALIZE, INITVOLUME, or MOUNT command
respectively. These initialization commands are described in the !AS
System Management Guide, the RSX-llD User's Guide, or the RSX-llM
Operator's Procedures Manual. The MOUNT command for IAS is described
in the !AS User's Guide. The volume default extend size cannot be
established at the FCS level; this value must be established when the
volume is initially mounted.

The following statement is representative of an FDAT$A macro call.
This statement initializes the FDB in preparation for the creation of
a new file containing fixed-length, 80-byte records that will be
allowed to cross block boundaries.

FDAT$A R.FIX,,80.

In the above example, the record attribute (ratt) parameter has been
omitted, as indicated by the second comma (,) in the parameter string.
Also, the cntg and aloe parameters have been omitted. Their omission,
however, occurs following the last explicit specification, and their
absence need not be indicated by trailing commas in the parameter
string. Since the aloe parameter has been omitted, file extension (if
it becomes necessary) will be accomplished in accordance with the
current default extend size in effect for the associated volume.

If more than one record attribute is specified in the ratt parameter
field, such specifications must be separated by an exclamation point
(!), as shown below:

FDAT$A R.VAR,FD.CR!FD.BLK

The above macro call will enable a file of variable-length records to
be created. The records will contain vertical formatting information

2-9

PREPARING FOR I/O

for carriage-control devices; the records will not be allowed to
cross block boundaries.

2.2.1.3 FDRC$A - Initialize Record Access Section of FOB - The FDRC$A
macro call is used to initialize the record access section of the FOB
and to indicate whether record or block I/O operations are to be used
in processing the associated file.

If record I/O operations (GET$ and PUT$ macro calls) are to be used,
the FDRC$A or the FDRC$R macro call (see section 2.2.2) establishes
the FOB information necessary for record-oriented I/O. If block I/O
operations (READ$ and WRITE$ macro calls) are to be used, however, the
FDBK$A macro call (see section 2.2.1.4) or the FDBK$R macro call (see
section 2.2.2) must also be specified in order to establish other
values in the FDB required for block I/O. In this case, portions of
the record access section of the FOB are physically overlaid with
parameters from the FDBK$A/FDBK$R macro call.

Prior to issuing the OPEN$x macro call to initiate file operations,
the FDB must be appropriately initialized to indicate whether record
or block I/O operations are to be used in processing the associated
file.

The FDRC$A macro call takes the following format:

where:

FDRC$A racc,urba,urbs

race represents
to handle
the record
the FOB.
block I/O
remaining
(GET$/PUT$)

symbolic values that specify how FCS is
file data. This parameter initializes

access byte (offset location F.RACC) in
The first value below applies only for

(READ$/WRITE$) operations; all
values are specific to record I/O
operations:

FD.RWM - Indicates that READ$/WRITE$ (block I/O)
operations are to be used in processing the file.
If this value is not specified, GET$/PUT$ (record
I/O) operations are used by default.

Specifying FD.RWM necessitates issuing an FDBK$A
or an FDBK$R macro call in the program to
initialize other offsets in the block access
section of the FOB. Note also that the READ$ or
WRITE$ macro call allows the complete
specification of all the parameters required for
block I/O operations.

FD.RAN - Indicates that random access mode is to
be used in processing the file. If this value is
not specified, sequential access mode is used by
default.

FD.PLC - Indicates that locate mode is to be used
in processing the file. If this value is not
specified, move mode is used by default.

FD.INS - This value, which applies only for
sequential files (and therefore cannot be
specified jointly with the FD.RAN parameter
above), indicates that a PUT$ operation performed

2-10

urba

urbs

PREPARING FOR I/0

within the body of the file shall not truncate the
file.

Should the user wish to perform a PUT$ operation
within the body of a file, the .POINT routine
described in section 4.8.1 may be called. This
routine, which permits a limited degree of random
access to a file, positions the file to a
user-specified byte within a virtual block in
preparation for the PUT$ operation.

If FD.INS is not specified, a PUT$ operation
within the file truncates the file at the point of
insertion, i.e., the PUT$ operation moves the
logical end-of-file (EOF) to a point just beyond
the inserted record. However, no deallocation of
blocks within the file occurs.

Regardless of the setting of the FD.INS bit, a
PUT$ operation that is in fact beyond the current
logical end of the file will reset the logical end
of the file to a point just beyond the inserted
record.

represents the symbolic address of a user record
buffer that is to be used for GET$ operations in
move and locate modes, and for PUT$ operations in
locate mode. This parameter initializes FDB
offset location F.URBD+2.

represents a numeric value that defines the size
(in bytes) of the user record buffer to be
employed for GET$ operations in move and locate
modes, and for PUT$ operations in locate mode.
This parameter initializes FDB offset location
F.URBD.

The user allocates and labels a record buffer in his program through a
.BLKB or .BLKW directive. The address and the size of this area is
then passed to FCS as the urba and the urbs parameters above. For
example, a user record buffer may be defined through a statement that
is logically equivalent to that shown below:

RECBUF: .BLKB 82.

where "RECBUF" is the address of the buffer and 82(10) is its size (in
bytes).

2-11

PREPARING FOR I/O

Under certain conditions, the user need not allocate a record buffer
or specify the buffer descriptors (urba and urbs) for GET$ or PUT$
operations. These conditions are described in detail in sections
3.9.2 and 3.12.2, respectively.

The following statement is representative of an FDRC$A macro call that
is issued for a file that may be accessed in random mode:

FDRC$A FD.RAN,BUFl,160.

The address of the user record buffer is specified through the symbol
BUFl, and the size of the user record buffer (in bytes) is defined by
the numeric value 160(10).

If more than one value is specified in the record access (race) field,
multiple values must be separated by an exclamation point (!), as
shown below:

FDRC$A FD.RAN!FD.PLC,BUFl,160.

In addition to the functions described for the first example, this
example specifies that locate mode is to be used in processing the
associated file. Note that the multiple parameters specified in the
first field are separated by an exclamation point (!).

2-12

PREPARING FOR I/0

2.2.1.4 FDBK$A - Initialize Block Access Section of FDB - The FDBK$A
macro call is used to initialize the block access section of the FDB
when block I/O operations (READ$ and WRITE$ macro calls) are to be
used for file processing. Initializing the FDB with this macro call
allows the user to read or write virtual blocks of data within a file.

As noted in the preceding section, issuing the FDBK$A macro call
implies that the FDRC$A macro call has also been specified, since it
is through the FD.RWM parameter of the FDRC$A macro call that the
initial declaration of block I/O operations is accomplished. Thus,
for block I/O operations, the FDRC$A macro call must be specified, as
well as any one of the following ·macro calls, to appropriately
initialize the block access section of the FOB: FDBK$A, FDBK$R,
READ$, or WRITE$.

Issuing the FDBK$A macro call causes certain portions of the record
access section of the FOB to be overlaid with parameters necessary for
block I/O operations. Thus, the terms "record access section" and
"block access section" refer to a shared physical area of the FOB
which is functional for either record or block I/O operations.

When block I/O operations are desired, the FOB must be properly
initialized through the FDBK$A or the FDBK$R macro call prior to
issuing a generalized OPEN$x macro call which references that FOB. If
record I/O operations are to be employed, the FDBK$A or the FDBK$R
macro call must not be issued.

The FDBK$A macro call is specified in the following format:

where:

FDBK$A bkda,bkds,bkvb,bkef ,bkst,bkdn

bkda represents the symbolic address of an area in user
memory space that is to be employed as a buffer
for block I/O operations. This parameter
initializes FOB offset location F.BKDS+2.

bkds represents a numeric value that specifies the size
(in bytes) of the block to be read or written when
a block I/O request (READ$ or WRITE$ macro call)
is issued. This parameter initializes FOB offset
location F.BKDS. The maximum block size that can
be specified through this parameter is equal to
one virtual block, i.e., 512(10) bytes.

bk vb represents a dummy parameter for compatibility
with the FDBK$R macro call. The bkvb parameter is
not specified in the FDBK$A macro call for the
reasons stated in Item 4 of section 2.2.2.1. In
short, assembly-time initialization of FDB offset
locations F.BKVB+2 and F.BKVB with the virtual
block number is meaningless, since any version of
the generalized OPEN$x macro call resets the
virtual block number in these cells to one (1) as
the file is opened. Therefore, these cells can be
initialized only at run-time through either the
FDBK$R macro call (see section 2.2.2) or the
I/0-initiating READ$ and WRITE$ macro calls (see
sections 3.15 and 3.16, respectively).

2-13

bkef

bk st

bkdn

PREPARING FOR I/0

This dummy parameter need be reflected as a null
specification (with a comma) in the parameter
string only in the event that an explicit
parameter follows. This null specification is
required in order to maintain the proper
positionality of any remaining field(s) in the
parameter string.

represents a numeric value that specifies an event
flag to be used during READ$/WRITE$ operations to
indicate the completion of a block I/O transfer.
This parameter initializes FDB offset location
F.BKEF; if not specified, event flag 32(10) is
used by default.

The function of an event flag is described in
further detail in section 2.8.l.

represents the symbolic address of a 2-word I/O
status block in the user program. If specified,
this optional parameter initializes FDB offset
location F.BKST.

The I/O status block, if it is to be used, must be
defined and appropriately labeled at
assembly-time. Then, if the bkst parameter is
specified, information is returned by the system
to the I/O status block at the completion of the
block I/O transfer. This information reflects the
status of the requested operation. If this
parameter is not specified, no information is
returned to the I/O status block.

If an error condition occurs during a READ$ or
WRITE$ operation that would normally be reported
as a negative value in the first byte of the I/O
status block, then this occurrence is not reported
unless an I/O status block address is specified.
Thus, the user is advised to specify this
parameter to allow the return of block I/0 status
information and to facilitate normal error
reporting.

The creation and function of the I/O status block
are described in greater detail in section 2.8.2.

represents the symbolic address of an optional
user-coded AST service routine. If present, this
parameter causes the AST service routine to be
initiated at the specified address upon completion
of block I/O; if not specified, no AST trap
occurs. This parameter initializes FDB offset
location F.BKDN.

Considerations relevant to the use of an AST
service routine are presented in section 2.8.3.

2-14

PREPARING FOR I/O

The following example shows an FDBK$A macro call which utilizes all
available parameter fields for initializing the block access section
of the FDB:

FDBK$A BKBUF,240.,;20.;ISTAT,ASTADR

In this macro call, the symbol BKBUF identifies a block I/O buffer
reserved in the user program that will accommodate a 240(10)-byte
block. The virtual block number is null (for the reasons stated in
the description of this parameter above), and the event flag to be set
upon block I/O completion is 20(10). Finally, the symbol ISTAT
specifies the address of the I/O status block, and the symbol ASTADR
specifies the entry-point address of the AST service routine.

2-15

PREPARING FOR I/0

2.2.1.5 FDOP$A - Initialize File Open Section of FDB - The FDOP$A
macro call is used to initialize the file-open section of the FDB. In
addition to a logical unit number, either a dataset descriptor pointer
and/or a default filename block address is normally specified for each
file that is to be opened. The latter two parameters provide FCS with
the linkage necessary to retrieve file specifications from these
user-created data structures in the program.

Although both a dataset descriptor pointer (dspt) and the address of a
default filename block (dfnb) may be specified for a given file, one
or the other must be present in the FDB before that file can be
opened. If, however, certain information is already present in the
filename block as the result of prior program action, neither the
dataset descriptor nor the default filename block is accessed by FCS,
and the file is opened through a process called "opening a file by
file ID." This process, which is a very efficient method of opening a
file, is described in detail in section 2.5.

The dspt and dfnb parameters represent address values which point to
user-defined data structures in the program. These data structures,
which are described in detail in section 2.4, provide file
specifications to the FCS file-processing routines.

The FDOP$A macro call takes the following form:

where:

FDOP$A lun,dspt,dfnb,facc,actl(l)

lun

dspt

represents a numeric value which specifies a
logical unit number. This parameter initializes
FDB offset location F.LUN. All I/O operations
performed in conjunction with this FDB are done
through the specified logical unit number (LU~).
Every active FDB must have a unique LUN.

The logical unit number specified through this
parameter may be any value from one (1) through
the largest value specified to the Task Builder
through the UNITS directive. This directive
specifies the number of logical units to be used
by the task (see the Task Builder Reference Manual
of the host operating system).

represents the symbolic address of a 6-word block
in the user program containing the dataset
descriptor. This user-defined data structure
consists of a 2-word device descriptor, a 2-word
directory descriptor, and a 2-word filename
descriptor, as outlined in section 2.4.1.

The dspt parameter initializes FDB offset location
F.DSPT. This address value, called the dataset
descriptor pointer, is the linkage address through
which FCS accesses the fields in the dataset
descriptor.

(1) The actl parameter does not apply to RSX-llM.

2-16

dfnb

PREPARING FOR T~ ~/V

When the Command String Interpreter (CSI) is used
to process command string input, a file
specification is returned to the calling program
in a format identical to that of the
manually-created dataset descriptor. The use of
CSI as a dynamic command line processor is
described in detail in section 6.2.

represents the symbolic address of the default
filename block. This structure is allocated
within the user program through the NMBLK$ macro
call (see section 2.4.2). When specified, the
dfnb parameter initializes FDB offset location
F.DFNB, allowing FCS to access the fields of the
default filename block in building the filename
block in the FDB.

Specifying the dfnb parameter in the FDOP$A (or
the FDOP$R) macro call assumes that the NMBLK$
macro call has been issued in the program.
Furthermore, the symbol specified as the dfnb
parameter in the FDOP$A (or the FDOP$R) macro call
must correspond exactly to the symbol specified in
the label field of the NMBLK$ macro call.

face represents any one or any appropriate combination
of the following symbolic values indicating how
the specified file is to be accessed:

FO.RD - Indicates that an existing file is to be
opened for reading only.

FO.WRT - Indicates that a new file is to be
created and opened for writing.

FO.APD - Indicates that an existing file is to be
opened for append.

FO.MFY - Indicates that an existing file is to be
opened for modification.

FOeUPD - Indicates that an existing file is to be
opened for update and, if necessary, extended.

FA.NSF - Indicates, in combination with FO.WRT,
above, that an old file having the same file
specification is not be to superseded by the new
file.

FA.TMP - Indicates, in combination with FO.WRT
above, that the created file is to be a temporary
file.

FA.SHR - Indicates that the file is to be opened
for shared access.

The face parameter initializes FDB offset location
F.FACC. The symbolic values FO.xxx, described
above, represent the logical or of bits in FDB
location F.FACC.

2-17

actl

PREPARING FOR I/0

The information specified by this parameter can be
overridden by an OPEN$ macro call, as described in
Section 3.7. It is overridden by an OPEN$x macro
call.

applies only to IAS and RSX-llD and
symbolic value that is used to
following control information in
F.ACTL:

1. Magnetic tape position,

represents a
specify the

FDB location

2. Whether a disk file that is opened for write
is to be locked if it is not properly closed,
e.g., the task terminates abnormally,

3. Number of retrieval pointers to allocate for a ·
disk file window.

Normallly, FCS supplies default values for F.ACTL.
However, if FA.ENB is specified in combination
with any of the symbolic values described below,
FCS uses the information in F.ACTL. FA.ENB must
be specified with the desired values to override
the defaults. The following are the defaults for
location F.ACTL.

For file creation, magnetic tapes are
positioned to the end of the volume set.

At file open and close, tapes are not rewound.

A disk file that is opened for write is locked
if it is not properly closed.

The volume default is used for the file
window.

The values listed below can be used in conjunction
with FA.ENB.

FA.POS - Is meaningful only for output files and
is specified to cause a magnetic tape to be
positioned just after the most recently closed
file for the creation of a new file. Any files
that exist after that point are lost. If rewind
is specified, it takes precedence over FA.POS,
thus causing the tape to be positioned just after
the VOLl label for file creation. See Section
5.2.3.

FA.RWD - Is specified to cause a magnetic tape to
be rewound when the file is opened or closed.

Examples of the use of FA.ENB with FA.POS and
FA.RWD are provided in Section 5.2.8.

FA.DLK - Is specified to cause a disk file not to
be locked if it is not properly closed.

The number of retrieval pointers for a file window
can be specified in the low-order byte of F.ACTL.

2-18

PREPARING FOR I/0

The system normally provides 7 retrieval pointers
automatically. Retrieval pointers are used to
point to contiguous blocks of the file on disk.
Access to fragmented files may be optimized by
increasing the number of retrieval pointers, i.e.,
by increasing . the size of the window. Likewise,
additional memory can be freed by reducing the
number of pointers for files with little or no
fragmentation, e.g., contiguous files.

As noted, if neither the dspt nor the dfnb parameter is specified,
corresponding offset locations F.DSPT and F.DFNB contain zero (0). In
this case, no file is currently associated with this FDB. Any attempt
to open a file with this FDB will result in an open failure. Either
offset location F.DSPT or F.DFNB must be initialized with an
appropriate address value before a file can be opened using this FDB.
Normally, these cells are initialized at assembly-time through the
FDOP$A macro call; they may also be initialized at run-time through
the FDOP$R or the generalized OPEN$x macro call (see section 3.1).

The following examples are representative of the FDOP$A macro call as
it might appear in the source program:

FDOP$A l,,DFNB

FDOP$A 2,0FDSPT

FDOP$A 2,0FDSPT,DFNB

FDOP$A l,CSIBLK+C.DSDS

FDOP$A 1,, DFNB,, FA. ENB !16. (l)

Note in the first example that the dataset descriptor pointer (dspt)
is null, requiring that FCS rely on the run-time specification of the
dataset descriptor pointer for the FDB or the use of the default
filename block for required file information.

In the second example, a dataset descriptor pointer (OFDSPT) has been
specified, allowing FCS to access the fields in the dataset descriptor
for required file information.

The third example specifies both a dataset descriptor pointer and a
default filename block address, causing FDB offset locations F.DSPT
and F.DFNB, respectively, to be initialized with the appropriate
values. In this case, FCS can access the dataset descriptor and/or
the default filename block for required file information. By
convention, FCS first seeks such information in the dataset
descriptor; if all the required information is not present in this
data structure, FCS attempts to obtain the missing information from
the default filename block.

The fourth example shows a macro call which takes as its second
parameter a symbolic value which causes FDB offset location F.DSPT to
be initialized with the address of the CSI dataset descriptor. This
structure is created in the CSI control block through the invocation
of the CSI$ macro call. All considerations relevant to the use of CSI
as a dynamic command line processor are presented in section 6.2.

(1) This example does not apply to RSX-llM.

2-19

PREPARING FOR I/0

The last example illustrates the use of the parameter actl to increase
the number of retrieval pointers in the file window to 16. FA.ENB is
specified to cause the contents of F.ACTL, rather than the defaults,
to be used.

In all the examples above, the value specified as the first parameter
supplies the logical unit number to be used for all I/O operations
involving the associated file.

2-20

PREPARING FOR T /r"\
J./V

2.2.1.6 FDBF$A - Initialize Block Buffer Section of FDB - The FDBF$A
macro call is used to initialize the block buffer section of the FDB
when record I/O operations (GET$ and PUT$ macro calls) are to be used
for file processing. Initializing the FDB with this macro call allows
FCS to control the necessary blocking and deblocking of individual
records within a virtual block as an integral function of processing
the file.

The FDBF$A macro call takes the following format:

where:

FDBF$A efn,ovbs,mbct,mbfg

efn represents a numeric value which specifies the
event flag to be used by FCS in synchronizing
record I/O operations. This numeric value
initializes FDB offset location F.EFN. This event
flag is used internally by FCS; it must not be
set: cleared, or tested by the user.

If this parameter is not specified, event flag
32(10) is used by default. A null specification
in this field is indicated by inserting a leading
comma in the parameter string.

ovbs represents a numeric value which specifies an FSR
block buffer size (in bytes) which overrides the
standard block size for the particular device
associated with the file. This parameter is
specified only when a non-standard block size is
desired. The numeric value so specified
initializes FDB offset location F.OVBS.

mbct

An override block size is allowed only for
record-oriented devices (such as line printers)
and sequen~1a~ devices (such as magnetic tape
units). For block-oriented devices, the override
block size is ignored. In !AS and RSX-llD, for
spooled output to a record-oriented device, a
buffer less than 512(10) bytes in length must not
be allocated.

Issuing the CLOSE$ macro call {see section 3.8)
resets offset location F.OVBS in the associated
FDB to zero (0). Therefore, this location should
typically be initialized at run-time just before
opening the file, particularly if an OPEN$x/CLOSE$
sequence for the file is performed more than once.

The standard block size in effect for a particular
device may be obtained through an I/0-related
system directive called Get Lun Information
(GLUN$). This directive is described in detail in
the Executive Reference Manual of the host
operating system. The standard block size for a
device is established at system-generation time.

represents a numeric value which specifies the
multiple buffer count, i.e., the number of buffers
to be used by FCS in processing the associated

2-21

mbf g

PREPARING FOR I/O

file. This parameter initializes FDB offset
location F.MBCT. If this value is greater than
one (1), multiple buffering is effectively
declared for file processing. In this case, PCS
will employ either read-ahead or write-behind
operations, depending on which of two symbolic
values is specified as the mbfg parameter (see
below).

If the mbct parameter is specified as null or zero
(0), PCS uses the default buffer count contained
in symbolic location .MBFCT in $$FSR2 (the program
section in the FSR containing impure data). This
cell normally contains a default buffer count of
one (1). If desired, this value can be modified,
as noted in the discussion following the mbfg
parameter below.

If, in specifying the FSRSZ$ macro call (see
section 2.6.1), sufficient memory space has not
been allocated to accommodate the number of
buffers established by the mbct parameter, FCS
allocates as many buffers as will fit in the
available space. Insufficient space for at least
one buffer causes FCS to return an error code to
FDB offset location F.ERR.

The user can initialize the buffer count in F.MBCT
through either the FDBF$A or the FDBF$R macro
call. The buffer count so established is not
altered by FCS and, once set, need not be of
further concern to the user.

represents a symbolic value that specifies the
type of multiple buffering to be employed in
processing the file. Either of two values may be
specified to initialize FDB offset location
F.MBFG:

FD.RAH - Indicates that read-ahead operations are
to be used in processing the file.

FD.WBH - Indicates that write-behind operations
are to be used in processing the file.

These parameters are mutually exclusive, i.e., one
or the other, but not both, may be specified.

Specifying this parameter assumes that the buffer
count established in the mbct parameter above is
greater than one (1). If multiple buffering has
thus been declared,, the omission of the mbfg
parameter causes FCS to use read-ahead operations
by default for all files opened using the OPEN$R
macro call; similarly, write-behind operations
are used by default for all files opened using
other forms of the OPEN$x macro call.

If these default buffering conventions are not
desired, the user can alter the value in the
F.MBFG dynamically at run-time. This is done by

2-22

PREPARING FOR I/0

issuing the FDBF$R macro call, which takes as the
mbfg parameter the appropriate control flag
(FD.RAH or FD.WBH). This action must be taken,
however, before opening the file.

Offset location F.MBFG in the FDB is reset to zero
(0) each time the associated file is closed.

NOTE

For RSX-llM, the normally released
version of FCS uses single buffering and
simply ignores the multiple-buffering
parameters (mbct and mbfg) in the
FDBK$A/FDBK$R macro call. A
multiple-buffered version of FCS is
available in the library file
SY: [l,l]DBLBUFLIB.OLB. Thus, for
multiple buffering, the system must
contain the appropriate routines in a
resident library or the user must link
his program with the DBLBUFLIB object
library file.

For IAS and RSX-llD, resident and
nonresident libraries support the
multibuffered version of FCS.

mbct parameter above, the default
desired, by modifying a location in
sections compr1s1ng the FSR. A

As noted in the description of the
buffer count can be changed, if
$$FSR2, the second of two program
location defined as .MBFCT in
buffer count of one (1). This
follows:

$$FSR2 normally contains a default
default value may be changed; as

1. Apply a global patch to .MBFCT at task-build time to specify
the desired number of buffers.

2. For MACR0-11 programs, use the EXTSCT Task Builder directive
(see section 2.7.1) to allocate more space for the FSR block
buffers; for FORTRAN programs, use the ACTFIL Task Buiider
directive (see section 2.7.2) to allocate more space for the
FSR block buffers.

2-23

PREPARING FOR I/0

Because the above procedure alters the default buffer count for all
files to be processed by the user program, it may be desirable to
force single buffering for any specific file(s) that would not benefit
from multiple buffering. In such a case, the buffer count in F.MBCT
for a specific file may be set to one (1) by issuing the following
macro call for the applicable FDB:

FDBF$A ,,1

The value "l" specifies the buffer count (mbct) for the desired file
and is entered into offset location F.MBCT in the applicable FDB.
Note in the example above that the event flag (efn) and the override
block buffer size (ovbs) parameters are null; these null values are
used for illustrative purposes only and should not be interpreted as
conditional specifications for establishing single-buffered
operations.

The following examples are representative of the FDBF$A macro call as
it might appear in a program:

FDBF$A 25.,,1

FDBF$A 25.,,2,FD.RAH

FDBF$A ,,2,FD.WBH

The first example specifies that event flag 25(10) is to be used in
synchronizing record I/O operations and that single buffering is to be
used in processing the file.

The second example also specifies event flag 25(10) for synchronizing
record I/O operations and, in addition, establishes "2" as the
multiple buffer count. The buffers so specified are to be used for
read-ahead operations, as indicated by the final parameter.

The last example allows event flag 32(10) to be used by default for
synchronizing record I/O operations, and the two buffers specified in
this case are to be used for write-behind operations.

Note in all three examples that the second parameter, i.e., the
override block size parameter (ovbs), is null; thus, the standard
block size in effect for the device in question will be used for all
file I/O operations.

2-24

PREPARING FOR I/0

2.2.2 Run-Time FDB Initialization Macros

Although the FDB is allocated and can be initialized during program
assembly, the contents of specific sections of the FDB can also be
initialized or changed at run time by issuing any of the following
macro calls:

FDAT$R

FDRC$R

FDBK$R

FDOP$R

FDBF$R

- Initializes or alters the file attribute section of
the FDB.

- Initializes or alters the record access section of
the FDB.

- Initializes or alters the block access section of the
FDB (see Item 4 below).

- Initializes or alters the file-open section of the
FDB.

- Initializes or alters the block buffer section of the
FDB.

2.2.2.1 Run-Time FDB Macro Call Exceptions - The format and the
parameters of the run-time FDB initialization macros are identical to
the assembly-time macros described earlier, except as noted below:

1. An R must appear as the last character in the run-time
symbolic macro name, rather than an A.

2. The first parameter in all run-time macro calls must be the
address of the FDB associated with the file to be processed.
All other parameters in the run-time macro calls are
identical to those described in sections 2.2.1.2 through
2.2.1.6 for the assembly-time macro calls, except as noted in
Items 3 and 4 below.

3. The parameters in the run-time macro calls must be valid
MACR0-11 source operand expressions. These parameters may be
address values or literal values; they may also represent
the contents of registers or memory locations. In short, any
value that is a valid source operand in a MOV or MOVB
instruction may be specified in a run-time macro call. In
this regard, the following conventions apply:

a. If the parameter is an address value or a literal value
that is to be placed in.the FDB, i.e., if the parameter
itself is to be taken as an argument, it must be preceded
by the number sign (#). This symbol is the immediate
expression indicator for MACR0-11 programs, causing the
associated argument to be taken literally in initializing
the appropriate cell in the FDB. Such literal values may
be specified as follows:

FDOP$R #FDBADR,#1,#DSPT,#DFNB

2-25

PREPARING FOR I/0

b. If the parameter is the address of a location containing
an argument that is to be placed in the FOB, the
parameter must not be preceded by the number sign (#).
Such a parameter may be specified, as follows:

ONE: .WORD 1

FDOP$R #FDBADR,ONE,#DSPT,#DFNB

where "ONE" represents the symbolic address of a location
containing the desired initializing value.

c. Also, if the parameter is a register specifier (e.g.,
RO), the parameter must not be preceded by the number
sign (#). Register specifiers are defined MACR0-11
symbols and are valid expressions in any context.

Thus, in contrast, parameters specified in assembly-time
macro calls are used as arguments in generating data in .WORD
or .BYTE directives, while parameters specified in run-time
macro calls are used as arguments in MOV and MOVB machine
instructions.

4. As noted in the description of the FDBK$A macro call in
section 2.2.1.4, assembly-time initialization of the FOB with
the virtual block number is meaningless, since issuing the
OPEN$x macro call to prepare a file for processing
automatically resets the virtual block number in the FOB to
one (1). For this reason, the virtual block number can be
specified only at run-time after the file has been opened.
This may be accomplished through either the FDBK$R macro call
or the I/0-initiating READ$/WRITE$ macro call. In all three
cases, the relevant field for defining the virtual block
number is the bkvb parameter. The READ$ and WRITE$ macro
calls are described in detail in sections 3.15 and 3.16,
respectively.

At assembly-time, the user must reserve and label a 2-word
block in the program which is to be used for temporarily
storing the virtual block number appropriate for intended
block I/O operations. Since the user is free to manipulate
the contents of these two locations at will, any virtual
block number consistent with intended block I/O operations
may be defined. By specifying the symbolic address (i.e.,
the label) of this field as the bkvb parameter in the
selected run-time macro call, the virtual block number is
made available to FCS.

In preparing for block I/O operations, the following general
procedures must be performed:

2-26

PREPARING FOR I/0

a. At assembly-time, reserve a 2-word block in the user
program through a statement that is logically equivalent
to the following:

VBNADR: .BLKW 2

The label "VBNADR" name~ this 2-word block and defines
its address. This symbol is used subsequently as the
bkvb parameter in the selected run-time macro call for
initializing the FDB.

b. At run-time, load this field with the desired virtual
block number. This operation may be accomplished through
statements logically equivalent to those shown below:

CLR VBNADR
MOV #10400,VBNADR+2

Note that the first word of the block is cleared. The
MOV instruction then loads the second (low-order) word of
the block with a numeric value. This value constitutes
the 16 least significant bits of the virtual block
number.

If the desired virtual block number cannot be completely
expressed within 16 bits, the remaining portion of the
virtual block number must be stored in the first
(high-order) word of the block. This may be accomplished
through statements logically equivalent to the following:

MOV #1,VBNADR
MOV #10400,VBNADR+2

As a result of these two instructions, 31 bits of value
are defined in this - 2-word block. The first word
contains the 15 most significant bits of the virtual
block number, and the second word contains the 16 least
significant bits. Thus, the virtual block number is an
unsigned value having 31 bits of magnitude. The user
must ensure that the sign bit in the high-order word is
not set.

c. Open the desired file for processing by issuing the
appropriate version of the generalized OPEN$x macro call
(see section 3.1).

d. Issue either the FDBK$R macro call or the READ$/WRITE$
macro call, as appropriate, to initialize the relevant
FDB with the desired virtual block number.

2-27

PREPARING FOR I/O

If the FDBK$R macro call is elected, the following is a
representative example:

FDBK$R #FDBIN,,,#VBNADR

Regardless of the particular macro call used to supply
the virtual block number, the two words at VBNADR are
loaded into F.BKVB and F.BKVB+2. The first of these
words (F.BKVB) is zero (0) if 16 bits is sufficient to
express the desired virtual block number. The
I/O-initiating READ$/WRITE$ macro call may then be
issued.

Should the user, however, choose to initialize the FDB
directly through either the READ$ or WRITE$ macro call,
the virtual block number may be made available to FCS
through a statement such as that shown below:

READ$ #FDBIN,#INBUF,#BUFSIZ,#VBNADR

where the symbol "VBNADR" represents the address of the
2-word block in the user program containing the virtual
block number.

2.2.2.2 Specifying the FDB Address in Run-Time ·Macro Calls - In
relation to Item 2 of the exceptions noted above, the address of the
FDB associated with the file to be processed corresponds to the
address value of the user-defined symbol appearing in the label field
of the FDBDF$ macro call (see section 2.2.1.1). For example, the
following statement:

FDBOUT: FDBDF$

in addition to allocating space for an FDB at assembly time, binds the
label "FDBOUT" to the beginning address of the FDB associated with
this file. The address value so established can then be specified as
the initial parameter in a run-time macro call in any one of three
ways, as follows:

1. The address of the appropriate FDB may be specified as an
explicit parameter in a run-time macro call, as indicated in
the following statement:

FDAT$R #FDBOUT,#R.VAR,#FD.CR

The argument "FDBOUT" is taken literally by FCS as the
address of an FDB; furthermore, this address value, by
convention, is stored in general register zero (RO}.
Whenever this method of specifying the FDB address is
employed, the previous contents of RO are overwritten (and
thus destroyed}. Therefore, the user must exercise care in
issuing subsequent run-time macro calls to ensure that the
present value of RO is suitable to current purposes.

2-28

PREPARING FOR I/0

2. The general register specifier "RO" may be used as the
initial parameter in a run-time macro call, as reflected in
the following statement:

FDAT$R RO.#R.VAR;#FD~CR

In this case, the current contents of RO are taken by FCS as
the address of the appropriate FOB. This method assumes that
the address of the FOB has been previously loaded into RO
through some overt action. Note, when using this method to
specify the FOB address, that the immediate expression
indicator (#) must not precede the register specifier (RO).

3. A null specification may also be used as the initial
parameter in a run-time macro call, as shown below:

FOAT$R ,#R.VAR,#FO.CR

In this instance, the current contents of RO are taken by
default as the address of the associated FOB. As in method 2
above, RO is assumed to contain the address of the desired
FOB. Although the comma in this instance constitutes a valid
specification, the user is advised to employ methods 1 and 2
for consistency and clarity of purpose.

In relation to the foregoing, it should be understood that these three
methods of specifying the FOB address also apply to all the FCS
file-processing macro calls described in Chapter 3.

2-29

PREPARING FOR I/0

2.3 GLOBAL VERSUS LOCAL DEFINITIONS FOR FOB OFFSETS

Although the FDB offsets can be defined either locally or globally, it
was fully intended in the design of FCS that the user need not
necessarily be concerned with the definition of FOB offsets locally.
To some extent, this design consideration was based on the manner in
which MACR0-11 handles symbols,

Whenever a symbol appears in the source program, MACR0-11
automatically assumes that it is a global symbol if it is-not
presently defined within the current assembly. Such a symbol must be
defined further on in the program; otherwise, it will be treated by
MACR0-11 as a default global reference, requiring that it be resolved
by the Task Builder.

Thus, the question of global versus local symbols may simply be a
matter of the programmer not defining the FOB offsets and bit values
locally as he codes the program. Such undefined symbols thus become
global references which are reduced to absolute definitions at
task-build time.

Other considerations, however, also apply to the use of global or
local offsets and involve some trade-off analysis. For example, if
symbols are defined locally within the source program, sufficient
symbol table space may not be available at assembly-time. On the
other hand, if the programmer allows the symbols to become global by
default because they are not defined within the source program, the
available symbol table space may then be insufficient at task-build
time. (Task Builder symbol table overflow is unlikely. However,
defining the offsets globally will increase link time.) If, however,
sufficient symbol table space is available for both MACR0-11 and the
Task Builder, the burden of symbol table space will fall where
appropriate. In either case, the symbols are handled properly whether
they be local or global.

The only instance in which this question takes on operational
significance is when symbol table overflow problems are experienced
with either MACR0-11 or the Task Builder. In this case, program size
constraints dictate more careful programming. Depending on whether
MACR0-11 or the Task Builder is experiencing the overflow problems,
FOB offsets and bit values may be allowed to become global by defut,
or they may be defined locally in the source program through the
invocation of the FDOF$L and FCSBT$ macro calls (see section 2.3.2).

If the symbol table overflow problem is present at both assembly-time
and task-build time, the user must reduce the size of the source
modules so that they can be processed without difficulty.

It should be noted that global symbols may be used as operands and/or
macro call parameters anywhere in the source program coding, as
described in the following section.

2-30

PREPARING FOR I/O

2.3.1 Specifying Global Symbols in the Source Coding

Throughout the descriptions of the assembly-time macros (see sections
2.2.1.2 through 2.2.1.6), global symbols are specified as parameters
in the macro calls~ As noted earlier, such symbols are treated by
MACR0-11 as default global references.

For example, the global symbol FD.RAN may be specified as the initial
parameter in the FDRC$A macro call (see section 2.2.1.3). At
task-build time, this parameter is reduced to an absolute symbol
definition, causing a prescribed bit to be set in the record access
byte (offset location F.RACC) of the FDB.

Global symbols m~y also be used as operands in user program
instructions to accomplish operations associated with FDB offset
locations. For example, global offsets such as F.RACC, F.RSIZ, and
F.RTYP may be specified as operands in the source coding. Assume, for
example, that an FDBDF$ macro call (see section 2.2.1.1) has been
issued in the source program to allocate space for an FDB, as follows:

FDBIN: FDBDF$

The coding sequence below may then appear in the source program,
illustrating the use of the global offset F.RACC:

MOV
MOVB

#FDBIN,RO
#FD.RAN,F.RACC(RO)

Note that the beginning address of the FDB is first moved into general
register zero (RO). However, if the desired value already exists in
RO as the result of previous action in the program, the user need
issue only the second MOV instruction (which appropriately references
RO). As a consequence of this instruction, the value FD.RAN
initializes FDB offset location F.RACC.

An equivalent instruction is the following:

MOVB #FD.RAN,FDBIN+F.RACC

which likewise initializes offset location F.RACC in the FDB with the
value of FD.RAN. Global symbols may be used anywhere in the program
in this manner to effect the dynamic storage of values within the FDB.

2-31

PREPARING FOR I/O

2.3.2 Defining FDB Offsets and Bit Values Locally

Should the user wish to declare explicitly that all FDB offsets and
bit values are to be defined locally, he may do so by invoking two
macro calls in the source program. The first of these, FDOF$L, causes
the offsets for FDB's to be defined within the user program.
Similarly, bit values for all FDB parameters may be defined locally by
invoking the FCSBT$ macro call. These macro calls may be invoked
anywhere in the user program.

When issued, the FDOF$L and FCSBT$ macro calls define symbols in a
manner that is roughly equivalent to that shown below:

F.RTYP xxxx
F.RACC xxxx
F.RSIZ = xxxx

where "xxxx" represents the value assigned to the corresponding
symbol.

In other words, the macros for defining FDB offsets and bit values
locally do not generate any code. Their function is simply to create
absolute symbol definitions within the program at assembly-time. The
symbols so defined, however, appear in the MACR0-11 symbol table,
rather than in the source program listing. Such local symbol
definitions are thereby made available to MACR0-11 during assembly,
rather than forcing them to be resolved by the Task Builder.

Whether or not the FDOF$L and FCSBT$ macro calls are invoked should
not in any way affect the coding style or the manner in which the FOB
offsets and bit values are used.

Note, however, if the FDOF$L macro call is issued, that the NBOF$L
macro call for the local definition of the filename block need not be
issued (see section 2.4.2}. The FDOF$L macro call automatically
defines all FDB offsets locally, including those for the filename
block.

If any of the above named macro calls is to be issued in the user
program, it must first be listed as an argument in an .MCALL directive
(see section 2.1}.

2-32

PREPARING FOR I/0

2.4 CREATING FILE SPECIFICATIONS WITHIN THE USER PROGRAM

Certain information describing the file must be present in the FDB
before the file can be opened. The file is located using a file
specification which contains the following:

1. A device name and unit number;

2. A directory string consisting of a group number and a member
number that specifies the user file directory (UFD) to be
used for the file. The term "UFD" is synonymous with the
term "file directory string" appearing throughout this
manual.

3 e A filename;

4. A file type (RSX-11) or file extension (IAS);

5. A file version number.

The term "file specifier" is sometimes used as a synonym for "file
specification."

A file specification describing the file to be processed is
communicated to FCS through two user-created data structures:

1. The Dataset
created and
directives.
detail.

Descriptor. This tabular structure may be
initialized manually through the use of .WORD

Section 2.4.1 describes this data structure in

2. The Default Filename Block. In contrast to the
manually-created dataset descriptor, the default filename
block is created by issuing the NMBLK$ macro call. This
macro call allocates a block of storage in the user program
at assembly-time and initializes this structure with
parameters supplied in the call. This structure is described
in detail in section 2.4.2.

As noted in section 2.2.1.5, the FDOP$A or the FDOP$R macro call is
issued to initialize the FDB with the addresses of these data
structures. These address values are supplied to FCS through the
11 dspt 11 and 11 dfnb 11 parameters of the selected macro call. FCS uses
these addresses to access the fields of the dataset descriptor and/or
the default filename block for the file specification required in
opening a specified file.

2-33

PREPARING FOR I/O

By convention, a required file specification is first sought by FCS in
the dataset descriptor. Any non-null data contained therein is
translated from ASCII to Radix-50 form and stored in the appropriate
offsets of the filename block. This area of the FDB then serves as
the execution-time repository for the information describing the file
to be opened and processed. If the dataset descriptor does not
contain the required information, FCS attempts to obtain the missing
information from the default filename block. If neither of these
structures contains the required information, an open failure occurs.

Note, however, that the device name and the unit number need not be
specified in either the dataset descriptor or the default filename
block, since these values are defaulted to those applicable to the
system device (SYO:) if not explicitly specified.

The FCS file-processing macro calls used in opening files are
described in Chapter 3, beginning with the generalized OPEN$x macro
call in section 3.1.

For a detailed description of the format and content of the filename
block, the reader should refer to Appendix B.

2.4.1 Dataset Descriptor

The dataset descriptor is often oriented toward the use of a fixed
(built-in) filename in the user proqram. A given application program,
for example, may require access only to a limited and non-variable
number of files throughout its execution. By defining the names of
these files at assembly-time through the dataset descriptor mechanism,
such a program, once initiated, will execute to completion without
requiring additional file specifications.

This structure, a 6-word block of storage which may be created
manually within the user program through the use of .WORD directives,
contains information describing a file that the user intends to open
during the course of program execution. In creating this structure,
any one or all of three possible string descriptors may be defined for
a particular file, as follows:

1. A 2-word descriptor for an ASCII device name string;

2. A 2-word descriptor for an ASCII file directory string;
and/or

3. A 2-word descriptor for an ASCII filename string.

2-34

PREPARING FOR I/0

This data structure is allocated in the user program in the following
format:

DEVICE NAME STRING DESCRIPTOR -

Word 1 - Contains the length (in bytes) of the ASCII device
name string.

This string consists of a 2-character alphabetic
device name, followed by an optional 1- or 2-digit
octal unit number. These strings may be created
through statements such as those below:

DEVNM: .ASCII /DKO:/

DEVNM: .ASCII /TTlO:/

Word 2 - Contains the address of the ASCII device name
string.

DIRECTORY STRING DESCRIPTOR -

Word 3 - Contains the length (in bytes) of the ASCII file
directory string.

This string consists of a group number and a
member number, separated by a comma (,). The
entire string is enclosed in brackets. For
example, [200,200] is a directory string. A
directory string can be created through statements
such as those that follow:

DIRNM: .ASCII /[200,200]/

DIRNM: .ASCII /[40,100]/

If the user wishes to specify an explicit file
directory different from the DIC under which he is
currently runninq, the dataset descriptor
mechanism permits that flexibility.

Word 4 - Contains the address of the ASCII file directory
string.

FILENAME STRING DESCRIPTOR -

Word 5 - Contains the length (in bytes) of the ASCII
filename string.

This string consists of a filename up to nine
characters in length, an optional 3-character file
type designator, and an optional file version
number. The filename and file type must be
separated by a dot (.), and the file version
number must be preceded by a semicolon. A
filename string may be created as shown below:

FILNM: .ASCII /PR0Gl.OBJ;7/

Only the characters A through Z and 0 through 9
may be used in composing an ASCII filename string.

Word 6 - Contains the address of the ASCII filename string.

2-35

PREPARING FOR I/0

A length specification of zero (0) in word 1, 3, or 5 of
descriptor indicates that the corresponding device name,
filename string is not present in the user program. For
coding below creates a dataset descriptor containing
ASCII filename string descriptor:

the dataset
directory, or
example, the
only a 2-word

FDBOUT: FDBDF$
FDATSA
FDRC$A
FDOP$A

OFDSPT: .WORD
.WORD
• WORD

ONAM: .ASCII
ONAMSZ=.-ONAM

R.VAR,FD.CR
,RECBUF,80.
OUTLUN,OFDSPT

0,0
0,0
ONAMSZ,ONAM

/OUTPUT.DAT/

;CREATES FDB.
;INITIALIZES FILE ATTRIBUTE SECTION.
;INITIALIZES RECORD ACCESS SECTION.
;INITIALIZES FILE-OPEN SECTION.

;NULL DEVICE NAME DESCRIPTOR.
;NULL DIRECTORY DESCRIPTOR .
;FILENAME DESCRIPTOR.

;DEFINES FILENAME STRING.
;DEFINES LENGTH OF FILENAME STRING.

Note first that an FOB labelled "FDBOUT" is created. Observe further
that the FDOP$A macro call takes as its second parameter the symbol
"OFDSPT". This symbol represents the address value that is stored in
FDB offset location F.DSPT. This value enables the .PARSE routine
(see section 4.6.1) to access the fields of the dataset descriptor in
building the filename block.

The symbol "OFDSPT" also appears in the label field of the first .WORD
directive, defining the address of the dataset descriptor for the
.PARSE routine. The .WORD directives each allocate two words of
storage for the device name descriptor, the file directory descriptor,
and the filename descriptor, respectively.

In the example above, however, note that the first two descriptor
fields are filled with zeros, indicating null specifications. The
last .WORD directive allocates two words which contain the size and
the address of the filename string, respectively. The filename string
itself is explicitly defined in the .ASCII directive which follows.

2-36

PREPARING FOR I/0

Note that the statements defining the filename string need not be
physically contiguous with the dataset descriptor. For each such
ASCII string referenced in the dataset descriptor, however,
corresponding statements must appear elsewhere in the source program
to define the appropriate ASCII data string(s}.

A dataset descriptor for each of several files to be accessed by the
user program may be defined in this manner.

2.4.2 Default Filename Block - NMBLK$ Macro Call

As noted earlier, the user may also define a default filename block in
the program as a means of providing required file information to FCS.
For this purpose, the NMBLK$ macro call may be issued in connection
with each FDB for which a default filename block is to be defined.
When this macro call is issued: space is allocated within the user
program for the default filename block, and the appropriate locations
within this data structure are initialized according to the parameters
supplied in the call.

Note in the parameter descriptions below that symbols of the form
N.xxxx are used to represent the offset locations within the filename
block. These symbols are differentiated from those that apply to the
other sections of the FDB by the beginning character "N". All
versions of the generalized OPEN$x macro call (see section 3.1) use
these symbols to identify offsets in storing file information in the
filename block.

The NMBLK$ macro call is specified in the following format:

label: NMBLK$ fnam,ftyp,fver,dvnm,unit

where: label represents a user-defined symbol ~nat names the
default filename block and defines its address.
This label is the symbolic value that is normally
specified as the dfnb parameter when the FDOP$A or
the FDOP$R macro call is issued, causing FDB
offset location F.DFNB to be initialized with the
address of the default filename block.

f nam

f typ

represents the default filename. This parameter
may consist of up to nine ASCII characters. The
character string is stored as six bytes in
Radix-50 format, starting at offset location
N.FNAM of the default filename block.

represents the default file type. This parameter
may consist of up to three ASCII characters. The
character string is stored as two bytes in
Radix-50 format in offset location N.FTYP of the
default filename block.

2-37

fver

dvnm

unit

PREPARING FOR I/O

represents the binary default file version number.
When specified, this binary value identifies a
particular version of a file. This value is
stored in offset location N.FVER of the default
filename blor.k.

represents the default name of the device upon
which the volume containing the desired file is
mounted. This parameter consists of two ASCII
characters which are stored in offset location
N.DVNM of the default filename block.

represents a binary value identifying which unit
(among several like units) is to be used in
processing the file. If specified, this numeric
value is stored in offset location N.UNIT of the
default filename block.

Only the characters A through z and 0 through 9 may be used in
composing the filename and file type strings above.

Although the file version number and the unit number above are binary
values, these numbers are normally represented in octal form when
printed, when input via a command string, or when supplied through a
dataset descriptor string.

As evident from the foregoing, all the default information supplied in
the NMBLK$ macro call is stored in the default filename block at
off set locations which correspond to identical fields in the filename
block within the FDB. This default information is moved into the
corresponding offsets of the filename block when any version of the
generalized OPEN$x macro call is issued under any of the following
conditions:

1. All the file information required by FCS to open the file is
not present in the dataset descriptor. Missing information
is then sought in the default filename block by the .PARSE
routine (see section 4.6.1), which is automatically invoked
as a result of issuing any version of the generalized OPEN$x
macro call.

2. A dataset descriptor has not been created in the user
program.

3. A dataset descriptor is present in the user program, but the
address of this structure has not been made available to FCS
through any of the assembly-time or run-time macro calls
which initialize FDB offset location F.DSPT.

2-38

PREPARING FOR I/0

The following coding illustrates the general method of specifying the
NMBLK$ macro call:

FDBOUT: FDBDF$

FDBIN:

OFNAM:
IFNAM:

FDRC$A
FDOP$A

FDBDF$
FDRC$A
FDOP$A

NMBLK$
NMBLK$

R.VAR,FD.CR
,RECBUF,80.
OUTLUN,,OFNAM

,RECBUF,80.
INLUN,, IFNAM

;ALLOCATES SPACE FOR AN FDB.
;INITIALIZES FILE ATTRIBUTE SECTION.
;INITIALIZES RECORD ACCESS SECTION.
;INITIALIZES FILE OPEN SECTION.

;ALLOCATES SPACE FOR AN FDB.
;INITIALIZES RECORD ATTRIBUTE SECTION.
;INITIALIZES FILE OPEN SECTION.

OUTPUT,DAT ;ESTABLISHES FILENAME AND FILE TYPE.
INPUT,DAT,,DT,l ;ESTABLISHES FILENAME. FILE TYPE,

;DEVICE NAME, AND UNIT NUMBER.

The first NMBLK$ macro call in the coding sequence above creates a
default filename block to establish default information for the FDB
named "FDBOUT". The label "OFNAM" in this macro defines the beginning
address of the default filename block allocated within the user
program. Note that this symbol is specified as the dfnb parameter in
the FDOP$A macro call associated with this default filename block to
initialize the file-open section of the corresponding FDB. The
accompanying parameters in the first NMBLK$ macro call define the
fih iame and the file type, respectively, of the file to be opened;
all remaining parameter fields in this call are null.

The second NMBLK$ macro call accomplishes essentially the same
operations in connection with the FDB named "FDBIN". Note in this
macro call that the third parameter (the file version number) is null,
as reflected by the extra comma. This null specification indicates
that the latest version of the file is desired. All other parameter
fields contain explicit declarations defining default information for
the applicable FDB.

The offsets for a filename block can be defined locally in the user
program, if desired, by issuing the following macro call:

NBOF$L

This macro call does not generate any code. Its function is merely to
define -cue filename u.Lui;.;J<.. offsets locally, presumably to conserve
symbol table space at task-build time. The NBOF$L macro call need not
be issued if the FDOF$L macro call has been invoked, since the
filename block offsets are defined locally as an automatic result of
issuing the FDOF$L macro call.

2-39

PREPARING FOR I/0

If desired, the user may initialize fields in the default filename
block directly with appropriate values. This may be accomplished with
in-line statements in the program. For example, a specific offset in
the default filename block may be initialized through coding that is
logically equivalent to the following:

DFNB: NMBLK$ RSXLIB,OBJ

NUTYP: .RADSO /DAT/

MOV NUTYP,DFNB+N.FTYP

where the symbol "NUTYPh in the MOV instruction above represents the
address of the newly-defined Radix-SO file type "DAT" which is to be
moved into destination offset N.FTYP of the default filename block
labeled "DFNB". Any of the offsets within the default filename block
may be manually initialized in this manner to establish desired values
or to override previously-initialized values.

2.4.3 Dynamic Processing of File Specifications

For users who wish to make use of a collection of routines available
from the system object library (SY: [l,l]SYSLIB.OLB) for processing
command line input dynamically, Chapter 6 should be consulted.
Chapter 6 describes the Get Command Line Routine (GCML) and the
Command String Interpreter (CSI), both of which may be linked with the
user program to provide all the logical capabilities required in
processing dynamic terminal input or indirect command file input.

2-40

PREPARING FOR I/O

2.5 OPTIMIZING FILE ACCESS

When certain information is present in the filename block of an FDB, a
file can be opened in a manner referred to throughout this manual as
"opening a file by file ID". This type of open requires a minimum of
system overhead, resulting in a significant increase in the speed of
preparing a file for access by the user program. If files are
frequently opened and closed during program execution, opening files
by file ID accomplishes substantial savings in overall execution time.

To open a file by file ID, the minimum information that must be
present in the filename block of the associated FDB consists of the
following:

1. File Identification Field. This 3-word field, beginning at
filename block offset location N.FID, contains a file number
in the first word and a file sequence number in the second
word; the third word is reserved for the implementation of
multi-volume/multi-header files. The file identification
field is maintained by the system and ordinarily need not be
of concern to the user.

2. Device Name Field. This 1-word field at filename block
offset location N.DVNM contains the 2-character ASCII name of
the device on which the volume containing the desired file is
mounted.

3. Unit Number Field. This 1-word field at filename block
offset location NeUNIT contains a binary value identifying
the particular unit (among several like units) on which the
volume containing the desired file is mounted.

These three fields are written into the filename block ·in either of
two ways:

1. As a function of issuing
OPEN$x macro call for
question; or

any version of the generalized
a file associated with the FDB in

2. As a result of initializing the filename block manually using
the .PARSE routine (see section 4.6.1) and the .FIND routine
(see

These two methods of setting up the filename block in anticipation of
opening a file by file ID are described in detail in the following
sections.

2-41

PREPARING FOR I/O

2.5.1 Initializing the Filename Block as a Function of OPEN$x

To understand how the process of opening a file by file ID is
effected, it should be noted that the initial issuance of the
generalized OPEN$x macro call (see section 3.1) for a given file first
invokes the .PARSE routine (see section 4.6.1). The .PARSE routine is
automatically linked into the user program along with the code for
OPEN$x. This routine first zeros the filename block and then fills it
in with information taken from the dataset descriptor and/or the
default filename block.

Thus, issuing the generalized OPEN$x macro call results in the
invocation of the .PARSE routine each time a file is opened. The
.PARSE function, however, can be bypassed altoqether in subsequent
OPEN$x calls by saving and restoring the filename block before
attempting to re-open that same file.

This is made possible because of the logic of the OPEN$x macro call.
Specifically, after the initial OPEN$x for a file has been completed,
the necessary context for re-opening that file exists within the
filename block. Therefore, before closing that file, the entire
filename block can be copied into user memory space and later restored
to the FDB at the desired point in program flow for use in re-opening
that same file.

The option to re-open files in this manner stems from the fact that
FCS is ·sensitive to the presence of any non-zero value in the first
word of the file identification field of the filename block. When the
OPEN$x function is invoked, FCS first examines offset location N.FID
of the filename block. If the first word of this field contains a
value other than zero (0), FCS logically assumes that the remaining
context necessary for opening that file is present in the filename
block and, therefore, unconditionally opens that file by file ID.

To ensure that an undesired value does not remain in the first word of
the N.FID field from a previous OPEN$x/CLOSE$ sequence, the first word
of this field is zeroed as the file is closed.

In opening files by file ID, the user need only ensure that the manual
saving and restoring of the filename block are accomplished with
in-line MOV instructions that are consistent with the desired sequence
of processing files. This process should, in general, proceed as
outlined below:

1. Open the file in the usual manner by issuing the OPEN$x macro
call.

2. Save the filename block by copying it into user memory space
with appropriate MOV instructions. The filename block begins
at offset location F.FNB.

The value of the symbol S.FNB is the size of the filename
block in bytes, and the value of the symbol S.FNBW is the
size of the filename block in words. If desired, the NBOF$L
macro call (see section 2.4.2) may be invoked in the user
program to define these symbols locally. These symbolic
values may be used in appropriate MOV instructions to
accomplish the saving and restoring of the filename block.
It is the user's responsibility to reserve sufficient space
in the program for saving the filename block.

2-42

PREPARING FOR I/O

3. At the end of current file operations, close the file in the
usual manner by issuing the CLOSE$ macro call.

4. When, in the normal flow of program logic, that same file is
about to be re-opened, restore the filename block to the FDB
by doing the reverse of Step 2.

5. Re-open the file by issuing any one of the macro calls
available in FCS for opening an existing file. Since the
first word of offset location N.FID of the filename block now
contains a non-zero value, FCS unconditionally opens the file
by file ID, regardless of the specific type of open macro
call issued.

Although it is necessary to save only the file identification, device
name, and unit number fields of the filename block in anticipation of
re-opening a file by file ID, the user is advised to save the entire
filename block. The filename, file type, file version number, and
directory ID fields, etc., may also be relevant. For example, an
OPEN$x, save, CLOSE$, restore, OPEN$x, and DELET$ sequence would
require saving and restoring the entire filename block. When the user
is logically finished with file processing and he wants to delete the
file, the delete operation will not work properly unless the entire
filename block has been saved and restored.

2.5.2 Initializing the Fjlename Block Manually

In addition to saving and restoring the filename block in anticipation
of re-opening a file by file ID, the filename block can also be
initialized manually. If the user chooses to do so, the .PARSE and
.FIND routines (see sections 4.6.l and 4.7.1, respectively) may be
invoked at appropriate points to build the required fields of the
filename block. After the .PARSE and .FIND logic is completed, all
the information required for opening the file exists within the
filename block. When any one of the available FCS macro calls that
open existing files is then issued, FCS unconditionally opens that
file by file ID.

Occasionally, instances arise which make such manual operations
desirable: especially if the user program is operating in an overlaid
environment. In this case, it is highly desirable that the code for
opening a file be broken up into smaller segments in the interest of
conserving memory space. Since the body of code for the OPEN$x and
.PARSE functions is sizable, two other types of macro calls for
opening files are provided for use with overlaid programs. The OFID$
and OFNB$ macro calls (see sections 3.5 and 3.6, respectively) are
specifically designed for this purpose.

The structure recommended for an overlaid environment is to have
either the OFID$ or the OFNB$ code on one branch of the overlay and
the .PARSE and .FIND code on another branch. Then, if the user wishes
to open a file by file ID, the .PARSE and .FIND routines can be
invoked at will to insert required information in the filename block
before opening the file.

The 0FID$ macro call can be issued only in connection with an existing
file. The OFNB$ macro call, on the other hand, may be used for
opening either an existing file or for creating and opening a new
file. In addition, the OFNB$ macro call requires only the manual

2-43

PREPARING FOR I/0

invocation of the .PARSE routine to build the filename block before
opening the file.

If conservation of memory is an objective, and if the user program
will be opening both new and existing files, it is recommended that
only the OFNB$ routine be included in one branch of the overlay, since
including the OFID$ routine would needlessly consume memory space.

In all cases, however, it is important to note that all the macro
calls for opening existing files are sensitive to the presence of any
non-zero value in the first word (N.FID) of the filename block. If
this field contains any value other than zero (0), the file is
unconditionally opened by file ID. This does not imply, however, that
only the file identification field (N.FID) is required to open the
file in this manner. The device name field (N.DVNM) and the unit
number field (N.UNIT) must also be appropriately initialized. The
logic of the FCS macro calls for opening existing files assumes that
these other required fields are present in the filename block if the
file identification field contains a non-zero value.

Because many programs continually re-use FDB's, the CLOSE$ function
(see section 3.8) zeros the file identification field (N.FID) of the
filename block. This action prevents the field (which pertains to a
previous operation) from being used mistakenly to open a file for a
current operation. Thus, if a user later intends to open a file by
file ID using information presently in the filename block, the entire
filename block (not just N.FID) must be saved before closing the file.
Then, at the appropriate point in program flow, the filename block may
be restored to open the desired file by file ID.

2-44

PREPARING FOR I/O

2.6 INITIALIZING THE FILE STORAGE REGION

The file storage region (FSR) is an area allocated in the user program
as a buffer pool to accommodate the program's block buffer
requirements in performing record I/O (GET$ and PUT$) operations.
Although the FSR is not applicable to block I/O (READ$ and WRITE$)
operations, the FSRSZ$ macro must be issued once in every program that
uses FCS, regardless of the type of I/O to be performed.

The macro calls associated with the initialization of the FSR are
described below.

2.6.1 FSRSZ$ - Initialize FSR at Assembly-Time

The size of the FSR, as allocated in user memory space, is a function
of two variables:

1. The number of files that may be open simultaneously for
record I/0 operations; and

2. The combined sizes of the respective block buffers to be used
for such operations.

The MACR0-11 programmer establishes the size of the FSR at
assembly-time by issuing a macro call having the following format:

where:

FSRSZ$ files,bufsiz

files represents a numeric value that is interpreted by
FCS according to the following conventions:

1. When a non-zero value is specified, it
establishes the maximum number of files that
can be open simultaneously for record I/0
processing.

2. When zero (0) is specified, it
implicit declaration that
processing is to be done.
indicates that an unspecified
may be open simultaneously
processing.

constitutes an
no record I/O

Rather, it
number of files
for block I/0

For example, if the user intends to access three
files for block I/O and two files for record I/O,
the FSRSZ$ macro call is specified as follows:

FSRSZ$ 2

2-45

buf siz

PREPARING FOR I/O

On the other hand, if the user intends to access
three (or any number of) files for block I/0
operations and no files for record I/O operations,
the FSRSZ$ macro call takes zero (0) as an
argument, as shown below:

FSRSZ$ 0

Thus, the FSRSZ$ macro call must be issued once in
every program that uses FCS, regardless of the
type of I/O to be performed.

represents a numeric value defining the total
block buffer pool requirement (in bytes) when all
files are open simultaneously for record I/O
processing. The combined size of all the FSR
block buffers is calculated as described in
section 2.7.1. If this parameter is not
specified, FCS assumes a default size of 512(10)
bytes per block buffer required.

NOTE

An IAS or RSX-llD user must not allocate
an FSR block buffer less than 512(10)
bytes in length for spooled output to a
record-oriented device (such as a line
printer).

The FSRSZ$ macro call does not generate any executable code; it
merely defines and allocates space for the $$FSR1 program section
(i.e., the FSR block buffer pool).

The following statements are illustrative of FSRSZ$ macro calls as
they might appear in a user program:

FSRSZ$ 0

FSRSZ$ 2,512.

The first statement declares that block I/O operations are to be used
in processing files; nothing is implied regarding the number of such
files that may be open simultaneously for processing. The last
statement explicitly declares that two files may be open
simultaneously for record I/O processing; additionally, a maximum of
512(10) bytes will be available in the FSR fot use as buffers for
these files.

2-46

PREPARING FOR T /("\
J../V

2.6.2 FINIT$ - Initialize FSR at Run-Time

In addition to the FSRSZ$ macro call described in the preceding
section, the FINIT$ macro call must also be issued in a MACR0-11
program to call initialization coding to set up the FSR. This macro
call takes the following format:

label: FINIT$

where: label represents an optional user-specified symbol that
allows control to be transferred to this location
during program execution. Other instructions in
the program may reference this label, as in the
case of a program that has been written so that it
can be restarted. Considerations relative to the
FINIT$ macro call in such a restartable program
are presented below.

The FINIT$ macro call should be issued in the program's initialization
code. Although the first FCS call issued for opening a file performs
the FSR initialization implicitly (if it has not already been
accomplished through an explicit invocation of the FINIT$ macro call),
it is necessary, in the case of a program that is written so that it
can be restarted, to issue the FINIT$ macro call in the program's
initialization code, as shown in the second example below. This
requirement derives from the fact that such a program performs all its
initialization at run-time, rather than at assembly-time.

For example, a program that is not written so that it can be restarted
might accomplish the initialization of the FSR implicitly through the
following macro call:

START: OPEN$R #FDBIN ;IMPLICITLY INITIALIZES THE FSR
;AND OPENS mOQ

.L llJ.:J
C'TT "C'
L" ..L .U.LJ •

In this case, although transparent to the user, the OPEN$R macro call
automatically invokes the FINIT$ operation. The label "START" is the
transfer address of the program.

In contrast, a program that embodies the capability to be restarted
must issue the FINIT$ macro call explicitly at program initialization
in the manner shown below:

START: FIN IT$
OPEN$R #FDBIN

;EXPLICITLY INITIALIZES THE FSR AND
;OPENS THE FILE.

In this case, the FINIT$ macro call cannot be invoked arbitrarily
elsewhere in the program; it must be issued at program
initialization. Doing so forces the appropriate re-initialization of
the FSR, whether or not it has been done in a previous execution of
the program through an OPEN$x macro call.

Also important in the above context is the fact that calling any of
the file-control routines described in Chapter 4, such as .PARSE,
first requires the initialization of the FSR. However, the FINIT$
operation must be performed only once per program execution. Note
also that FORTRAN programs issue a FINIT$ macro call at the beginning
of the program execution; therefore, MACR0-11 routines used with the
FORTRAN object time system must not issue a FINIT$ macro call.

2-47

PREPARING FOR I/O

2.7 INCREASING THE SIZE OF THE FILE STORAGE REGION

Procedures for increasing the size of the FSR for either MACR0-11 or
FORTRAN programs are presented in the following sections.

2.7.1 FSR Extension Procedures for MACR0-11 Programs

To increase the size of the FSR for a MACR0-11 program, the user has
two options:

1. Modify the parameters in the FSRSZ$ macro call appropriately
to redefine the number of files that may be open
simultaneously for record I/O processing and to establish the
total buffer pool requirement for these files. Re-assemble
the program.

2. Use the EXTSCT {extend program section) command at task-build
time to define the new size of the FSR. To invoke this
option, the command is specified in the following form:

EXTSCT = $$FSRl:length

where "$$FSR1" is the symbolic name of the program section
within the FSR that is reserved for use as the block buffer
pool, and "length" represents a numeric value defining the
total required size of the buffer pool in bytes.

The size of the FSR cannot be reduced at task-build time.

In calculating the total size of the block buffer pool, i.e., the
value of "length" in the EXTSCT command above, either of the formulas
below may be used:

FSR size

FSR size

where: S.BFHD

files

buf siz

S.BFHD*files+bufsiz

files*{S.BFHD+512.)

is a symbol which defines the number of bytes
required for each block buffer header. If
desired, this symbol may be defined locally in the
user program by issuing the following macro call:

BDOFF$ DEF$L

represents a numeric value defining the maximum
number of files that may be open simultaneously
for record I/O processing.

represents a numeric value
number of bytes required
buffers.

defining the total
for all the FSR block

The EXTSCT command is described in further detail in the Task Builder
Reference Manual of the host operating system.

2-48

PREPARING FOR I/0

2.7.2 FSR Extension Procedures for FORTRAN Programs

For a FORTRAN program, if an explicit ACTFIL statement is not issued
in the optional keyword input to the Task Builder, an ACTFIL statement
with a default value of four (4) is generated automatically during
task-build. To extend the size of the FSR at task-build time, the
user may issue the following command:

ACTFIL = files

where: files represents a decimal value defining the maximum
number of files that may be open simultaneously
for record I/O processing.

This command, similar to the EXTSCT command above, causes program
section $$FSR1 to be extended by an amount sufficient to accommodate
the number of active files anticipated for simultaneous use by the
program.

The size of the FSR for a FORTRAN program can also be decreased at
task-build time. As noted above, for either IAS or RSX-11, the
default value for the ACTFIL command is 4. Thus, if O, 1, 2, or 3 is
specified as the "files" parameter, the size of $$FSR1 (the FSR block
buffer pool) is reduced accordingly.

The ACTFIL command is described in greater detail in the Task Builder
Reference Manual of the host operating system.

2-49

PREPARING FOR I/O

2.8 COORDINATING I/O OPERATIONS

In the IAS/RSX-11 environment, user programs perform all I/O
operations by issuing GET$/PUT$ and READ$/WRITE$ macro calls {see
Chapter 3). These calls do not access the physical devices in the
system directly. Rather, when any one of these calls is issued, an
I/0-related system directive called QUEUE I/O is invoked as the
interface between the FCS file-processing routines at the user level
and the system I/O drivers at the device level. Device drivers are
included for all the standard I/O devices supported by IAS and RSX-11
systems. Although transparent to the user, the QUEUE I/O directive is
used for all FCS file access operations.

When invoked, the QUEUE I/O directive instructs the system to place an
I/O request for the associated physical device unit into a queue of
priority-ordered requests for that unit. This request is placed
according to the priority of the issuing task. As required system
resources become available, the requested I/O transfer takes place.

As implied above, two separate and distinct processes are involved in
accomplishing a specified I/O transfer:

1. The successful queuing of the GET$/PUT$ or READ$/WRITE$ I/O
request; and

2. The successful completion of the requested data transfer
operation.

These processes, both of which yield success/failure indications that
may be tested by the user program, must be performed successfully in
order for the specified I/O operation to have been completed. It is
important to note that FCS totally synchronizes record I/O operations
for the user, even in the case of multiple-buffered operations. In
the case , of block I/O operations, the flexibility of FCS allows the
user to synchronize all block I/O activities, thus enabling him to
satisfy logical processing dependencies within the program.

2.8.1 Event Flags

I/O operations proceed concurrently with other system activity. After
an I/O request has been queued, the system does not force an implied
wait for the issuing task until the requested operation is completed.
Rather, the operation proceeds in parallel with the execution of the
issuing task, and it is the task's responsibility to synchronize the
execution of I/O requests. Tasks use event flags in synchronizing
these activities. With respect to event flags, the system merely
executes primitive operations that manipulate, test, and/or wait for
these indicators of internal task activity.

The completion of an I/O transfer, for example, is recognized by the
system as a significant event. If the user has specified a particular
event flag to be used by the task in coordinating I/O completion
processing, that event flag is set, causing the system to evaluate the
eligibility of other tasks to run. Any event flag from 1 through
32(10) may be defined for local use by the task. If the user has not
specified an event flag, FCS uses event flag 32(10) by default to
signal the completion of I/O transfers.

2-50

PREPARING I/0

Specific FOB-initialization and I/0-initiating macro calls in FCS
enable the user to specify event flags, if desired, that are unique to
his task and which are set and reset only as a result of that task's
operation.

For record I/O operations, such an event flag may be defined through
the efn parameter of the FDBF$A or the FDBF$R macro call (see section
2.2.1.6 or 2.2.2, respectively).

For block I/O operations, an event flag may be declared through the
bkef parameter of the FDBK$A or the FDBK$R macro call (see section
2.2.1.4 or 2.2.2, respectively); alternatively, a block event flag
may be declared through the corresponding parameter of the
I/0-initiating READ$ or WRITE$ macro call (see section 3.15 or 3.16,
respectively).

In both record and block I/O operations, the event flag is cleared
when the I/O request is queued and set when the I/0 operation is
completed. In the case of record I/O operations, only FCS manipulates
the event flag. Additionally, the user is unaware of the event flag's
state and he has no need to know. Furthermore, the user must not
issue a WAITFOR system directive predicated on the event flag used for
coordinating record I/O operations. A record I/O operation, for
example, may not even involve an I/O transfer; rather, it may only
involve the blocking or deblocking of a record within the FSR block
buffer. On the other hand, the event flag defined for synchronizing
block I/O operations is totally under the user's control.

Through event-associated system directives, the user can clear event
flags, set event flags, test whether a specified event flag is set, or
cause a task to be suspended until a specified event flag is set.
These event-associated directives are described in detail in the
Executive Reference Manual of the host operating system. The setting
and checking of event flags allow tasks in a real-time system to
communicate with each other and thereby synchronize their execution.

Event flags and device-dependencies related thereto are described in
further detail in the IAS/RSX-llD Device Handlers Reference Manual or
the RSX-llM I/O Drivers Reference Manual.

Also, a code indicating the success or failure of the QUEUE I/O
request resulting from the READ$/WRITE$ macro call is returned to the
Directive Status Word ($DSW). If desired, symbolic location $DSW may
be tested to determine the status of the I/O request. The
success/failure codes for the QUEUE I/O directive are listed in the
manuals referenced above.

2.8.2 I/O Status Block

Because of the comparative complexity of block I/O operations, an
optional parameter is provided in the FDBK$A and the FDBK$R macro
calls, as well as the READ$ and WRITE$ macro calls, which enables the
system to return status information to the user task for block I/O
operations. The I/O status block is not applicable to record I/O
(GET$ or PUT$) operations.

This optional parameter, called the I/O status block address, is made
available to FCS through any of the macro calls identified above.

2-51

PREPARING FOR I/O

When this parameter is supplied, the system returns status information
to a 2-word block reserved in the user program. Although the I/O
status block is used principally as a QUEUE I/O housekeeping mechanism
for containing certain device-dependent information, this area also
contains information of particular interest to the user.

Specifically, the second word of the I/O status block is filled in
with the number of bytes transferred during a READ$ or WRITE$
operation. When performing READ$ operations, it is good practice to
always use the value returned to the second word of the I/O status
block as the number of bytes actually read, rather than assuming that
the requested number of bytes was transferred. Employing this
technique allows the program to properly read virtual blocks of
varying length from a device such as a magnetic tape unit, provided
that the requested byte count is at least as large as the largest
virtual block. (For magnetic tape units, almost all virtual blocks
are 512(10) bytes or less in length.) For WRITE$ operations, the
specified number of bytes are always transferred, otherwise an error
condition exists.

Also, the low-order byte of the first word of the I/O status block
contains a code which reflects the final status of the READ$/WRITE$
operation. The codes returned to this byte may be tested to determine
the status of any given block I/O transfer. The binary values of
these status codes always have the following significance:

Code Value Meaning

+ I/O transfer completed.

0 I/O transfer still pending.

I/O error condition exists.

The format of the I/O status block and the error codes returned to the
low-order byte of its first word are described in detail in the
IAS/RSX-llD Device Handlers Reference Manual or the RSX-llM I/O
Drivers Reference Manual.

If the address of the I/O status block is not made available to FCS
(and hence to the QUEUE I/O directive) through any of the macro calls
noted above, no status information is returned to the I/O status
block. In this case, the fact that an error condition may have
occurred during a READ$ or WRITE$ operation is simply lost. Thus,
supplying the address of the I/O status block to the associated FDB is
highly desirable in order to facilitate normal error reporting.

An I/O status block
assembly-time through
the following:

may
any

IOSTAT: .BLKW 2

be defined in the user program at
storage directive logically equivalent to

where the label "IOSTAT" is a user-defined symbol naming the I/O
status block and defining its address. This symbolic value is
specified as the bkst parameter in the FDBK$A or the FDBK$R macro call
to initialize FDB offset location F.BKST; it may also be specified as
the corresponding parameter in the READ$ or the WRITE$ macro call,
initializing this cell in the FDB as an integral function of issuing
the desired I/O request.

2-52

PREPARING FOR I/0

2.8.3 AST Service Routine

An asynchronous system trap {AST) is a software-generated interrupt
that causes the sequence of instructions currently being executed to
be interrupted and control to be transferred to another instruction
sequence elsewhere in the program. If desired, the user may specify
the address of an AST service routine that is to be entered upon
completion of a block I/O transfer. Since an AST is a trap action, it
constitutes an automatic indication of block I/O completion.

The address of an AST service routine may be specified as an optional
parameter (bkdn) in the FDBK$A or the FDBK$R macro call (see section
2.2.1.4 or 2.2.2, respectively); this parameter may also be specified
in the READ$ or the WRITE$ macro call, initializing the FDB at the
time the I/O request is issued (see section 3.15 or 3.16,
respectively).

Usually! an AST address is
interrupted in order to
block I/O request. If the
specified, the transfer
execution continues.

specified to enable a running task to be
execute special code upon completion of a

address of an AST service routine is not
of control does not occur, and normal task

The main purpose of an AST service routine is to inform the user
program that a block I/O operation has been completed, thus enabling
the program to continue immediately with some other desired (and
perhaps logically dependent) operation (e.g., another I/O transfer).

If an AST service routine is not provided by the user, some other
mechanism, such as event flags or the I/O status block, must be used
as a means of determining block I/O completion. In the absence of
such a routine, for example, the user may test the low-order byte of
the first word in the I/O status block to determine if the block I/O
transfer has been completed. A WAIT$ macro call (see section 3.18)
may also be issued in connection with a READ$ or WRITE$ operation to
suspend task execution until a specified event flag is set to indicate
the completion of block I/O.

The implementation of an AST service routine in the user program is
application-dependent and must be coded specifically to meet
particular user I/O processing requirements. A detailed discussion of
asynchronous system traps is beyond the scope of this document. The
reader is therefore referred to the Executive Reference Manual of the
host operating system for discussions of various trap-associated
system directives.

2-53

CHAPTER 3

FILE-PROCESSING MACRO CALLS

The user manipulates files through a set of file-processing macro
calls. These macro calls are invoked and expanded at assembly-time.
The resulting code is then executed at run-time to perform the
operations listed below:

OPEN$

OPNS$

OPNT$

OFID$

OFNB$

- To open and prepare a file for processing;

- To open and prepare a file for processing and to allow
shared access to that file (depending on the mode of
access};

- To create and open a temporary file for processing;

- To open an existing file using file identification
information in the filename block;

- To open a file using filename information in the
filename block;

CLOSE$ - To terminate file processing in an orderly manner;

GET$ - To read logical data records from a file;

GET$R

GET$S

PUT$

PUT$R

PUT$S

- To read fixed-length records from a file in random
mode;

- To read records -Fr/"\m !:I Filo in corr11on t- i ;:i 1 m/"\rlo • •.a.. VJ.UL '- ~,'-':1-'-"'"'_..__..L .&U"'-'- f

- To write logical data records to a file;

- To write fixed-length records to a file in random mode;

- To write records to a file in sequential mode;

READ$ - To read virtual data blocks from a file;

WRITE$ - To write virtual data blocks to a file;

DELET$ - To remove a named file from the associated volume
directory and to deallocate the space occupied by the
file; and

WAIT$ - To suspend program execution until a requested block
I/O operation is completed.

3-1

FILE-PROCESSING MACRO CALLS

Most of the parameters associated with the file-processing macro calls
supply information to the FDB. Such parameters cause MOV or MOVB
instructions to be generated in the object code, resulting in the
initialization of specific locations within the FDB.

The final parameter in all file-processing macro calls is the symbolic
address of a user-coded error-handling routine. This routine is
entered upon detection of an error condition during the
file-processing operation. When this optional parameter is specified,
the following code is generated:

nn$:

Code for macro

BCC
JSR

nn$
PC,ERRLOC

;TESTS C-BIT IN PROCESSOR STATUS WORD.
;INITIATES ERROR-HANDLING ROUTINE
;AT "ERRLOC" ADDRESS.
;CONTINUES NORMAL PROGRAM EXECUTION.

where "nn$" represents an automatically-generated local symbol. If
the operation is completed successfully, the C-bit (carry condition
code) in the Processor Status Word is not set, and FDB offset location
F.ERR contains a positive value. The BCC instruction then results in
a branch to the local symbol "nn$" and the continuation of normal
program execution.

If, however, an error condition is detected during the execution of
the file-processing routine, the C-bit in the Processor Status Word is
set, FDB offset location F.ERR contains a negative value {indicating
an error condition), and the branch to the local symbol "nn$" does not
occur. Instead, the JSR instruction is executed, loading the PC with
the symbolic address (ERRLOC) of the error-handling routine and
initiating its execution.

If this optional parameter is not specified, the error processing
routine is not called, and the user must explicitly test the C-bit in
the Processor Status Word to ascertain the status of the requested
operation.

Note that the execution of the FCS file-processing routines causes all
user program general registers to be saved, except RO, which, by
convention, is used by FCS to contain the address of the FDB
associated with the file being processed.

3.1 OPEN$x - GENERALIZED OPEN MACRO CALL

Before any file can be processed by the user (or system) program, it
must first be opened. The type of action that the user intends to
perform on a file is indicated to FCS by an alphabetic suffix
accompanying the macro name. For example, in issuing the generalized
macro call,

OPEN$x

"x" represents any one of the following alphabetic suffixes, each of
which denotes a specific type of processing anticipated for the file:

3-2

FILE-PROCESSING MACRO CALLS

R - Read an existing file;

W - Write {create) a new file;

M - Modify an existing file without changing its length;

U - Update an existing file and extend its length, if necessary;
or

A - Append (add) data to the end of an existing file.

NOTE

The generalized OPEN$x macro call can be
issued without an alphabetic suffix. In
this case, the type of action to be
performed on the file is indicated to
FCS through an additional parameter in
the macro call. This value, called the
file-access (face) parameter, causes
offset location F.FACC in the associated
FDB to be initialized. Section 3.7
describes this macro call in detail.

Depending on the alphabetic suffix supplied in the OPEN$x macro call,
certain other types of operations may or may not be allowed, as noted
below:

1. If R is specified (for reading an existing file), that file
cannot also be written, i.e., a PUT$ or WRITE$ operation
cannot be performed on that file.

2. If M or U is specified (for modifying or updating an existing
file), that file can be both read and written, i.e.,
concurrent GET$/PUT$ or READ$/WRITE$ operations may be
performed on that file.

3. If M is specified {for modifying an existing file), that file
cannot be extended.

4. If W or A is specified (for creating a new file or appending
data to an existing file), that file may be read, written,
and/or extended.

The program that is issuing the OPEN$x macro call must have
appropriate access privileges for the action specified. Table 3-1
summarizes the access privileges for the various forms of the OPEN$x
macro call. This table also shows where the next record or block will
be read or written in the file after it is opened.

3-3

FILE-PROCESSING MACRO CALLS

Table 3-1
File Access Privileges Resulting from OPEN$x Macro Call

MACRO ACCESS PRIVILEGES POSITION OF FILE AFTER OPEN$x

OPEN$R Read First record of existing file.

OPEN$W Read, write, extend First record of new file.

OPEN$M Read, write First record of existing file.

OPEN$U Read, write, extend First record of existing file.

OPEN$A Read, write, extend End of existing file. (For
special PUT$R considerations,

. see section 3.13.)

When any form of the OPEN$x macro call is issued, FCS first fills in
the filename block with filename information retrieved from the
dataset descriptor (see section 2.4.1). FCS gains access to this data
structure through the address value stored in FDB offset location
F.DSPT.

If any required data has been omitted from the dataset descriptor, FCS
attempts to obtain the missing information from the default filename
block. This data structure, which may also contain user-specified
filename information, is created in the program by issuing the NMBLK$
macro call (see section 2.4.2). FCS gains access to this structure
through the address value stored in FDB offset location F.DFNB.

The address values in offset locations F.DSPT and F.DFNB may be
supplied to FCS through the FDOP$A macro call, the FDOP$R macro call,
or the OPEN$x macro call. FCS requires access to the dataset
descriptor and/or the default filename block in retrieving filename
information used in opening files.

If a new file is to be created, the OPEN$W macro call is issued. FCS
then performs the following operations:

1. Creates a new file and obtains file identification
information for the file. File identification information is
maintained by FCS in offset location N.FID of the filename
block. The filename block in the FDB begins at offset
location F.FNB.

2. Initializes the file attribute section of the file header
block using information obtained from the FDB associated with
the file being created. Each file on a volume has an
associated file header block that describes the attributes of
that file. The format and content of the file header block
are presented in detail in Appendix F.

3. Places an entry for the file in the user file directory
(UFD). If, however, an entry for a file having the same
name, type, and version number already exists in the UFD, the
old file is deleted. If a particular type of macro call is
issued explicitly specifying that the file not be superseded,
the old file is not deleted. This type of OPEN$ operation is
described in section 3.7.

3-4

FILE-PROCESSING MACRO CALLS

4. Associates the assigned logical unit number (LUN) with the
file to be created.

5. Allocates a buffer for the file from the FSR block buffer
pool if record I/O (GET$/PUT$) operations are to be used in
processing the file.

If an existing file is to be opened, any one of the following macro
calls may be issued: OPEN$R, OPEN$M, OPEN$U, or OPEN$A. FCS then
performs the following operations:

1. If file identification information is not present in the
filename block, FCS constructs the filename block from
information taken from the dataset descriptor and/or the
default filename block. FCS then searches the user file
directory (UFD) by filename to obtain the required file
identification information. When found, this information is
stored at off set location
N. FID.

2. Associates the assigned logical unit number (LUN) with the
file.

3. Reads the file header block and initializes the file
attribute section of the FDB associated with the file being
opened.

4. Allocates a buffer for the file from the FSR block buffer
pool if record I/O (GET$/PUT$) operations are to be used in
processing the file.

NOTE

As described in section 2.6, the user
allocates buffers through the FSRSZ$
macro call. The number of buffers
allocated is dependent upon the number
of files that the user intends to open
simultaneously for record I/O
operations.

operations are to be used,
FDB offset location F.RACC must be
initialized with the FD.RWM parameter
via the FDRC$A, the FDRC$R, or the
generalized OPEN$x macro call. This
parameter inhibits the allocation of a
buffer when the file is opened.

3.1.1 Format of Generalized OPEN$x Macro Call

The generalized macro call for opening files takes the following form:

where:

OPEN$x fdb,lun,dspt,racc,urba,urbs,err

x represents the alphabetic suffix specified as part
of the macro name, indicating the desired type of
operation to be performed on the file. The
possible values for this parameter are: R, W, M,
U, or A (see section 3.1).

3-5

FILE-PROCESSING MACRO CALLS

fdb represents the symbolic address of the associated
FDB.

lun

dspt

race

represents the logical unit number (LUN)
associated with the desired file. This parameter
identifies the device on which the volume
containing the desired file is mounted. Normally,
the logical unit number associated with the file
is specified through the corresponding parameter
of the FDOP$A or the FDOP$R macro call. If so
specified, the lun parameter need not be present
in the OPEN$x macro call. Each FDB must have a
unique LUN.

represents the symbolic address of the dataset
descriptor. Normally, this address value is
specified through the corresponding parameter of
the FDOP$A or the FDOP$R macro call. If so
specified, this parameter need not be present in
the OPEN$x macro call.

This parameter specifies the address of the
manually-created dataset descriptor (see section
2.4.1). If the Command String Interpreter (CSI)
is being used to interpret command lines
dynamically, this parameter is used to specify the
address of the dataset descriptor within the CSI
control block (see offset location C.DSDS in
section 6.2.2).

represents the record access byte. One or more
symbolic values may be specified in this field to
initialize the record access byte (F.RACC) in the
assocated FDB. Any combination of the following
parameters may be specified:

FD.RWM - Indicates that block I/O (READ$/WRITE$)
operations are to be used in processing the file.
If this parameter is not specified, FCS assumes by
default that record I/O (GET$/PUT$} operations are
to be used in processing the file.

FD.RAN - Indicates that random access to the file
is to be used for record I/O (GET$/PUT$)
operations. If this parameter is not specified,
FCS uses sequential access by default.

FD.PLC - Indicates that locate mode (see section
1.6.2) is to be used for record I/O (GET$/PUT$}
operations. If this parameter is not specified,
FCS uses move mode (see section 1.6.1) by default.

FD.INS - Indicates that a PUT$ operation in
sequential mode in the body of a file shall not
truncate the file. Effectively, this parameter
prevents the logical end of the file from being
reset to a point just beyond the inserted record.
If this parameter is not specified, a PUT$
operation in sequential mode truncates the file to
a point just beyond the inserted record, but no
deallocation of file blocks occurs.

3-6

•• -L. -
ULUQ

FILE-PROCESSING MACRO CALLS

The specification of this parameter allows a data
record in the body of the file to be overwritten.
Care must be exercised, however, to ensure that
the record being written is the same length as the
ro~nrn hoinn ronl~~on.
--~~-~ ~--··-::i --i:---~-~-

If the FD.RAN parameter above is specified, the
file is accessed in random mode. In this case, a
PUT$ operation in the file, without exception,
does not truncate the file.

If the record access byte in the FDB has already
been initialized through the corresponding
parameters of the FDRC$A or the FDRC$R macro call,
the race parameters need not be present in the
OPEN$x macro call.

represents the symbolic address of the
buffer. This parameter initializes
location F.URBD+2.

user
FDB off set

If the user record buffer address has already been
supplied to the FDB through the corresponding
parameter of the FDRC$A or the FDRC$R macro call,
this parameter need not be present in the OPEN$x
macro call.

urbs represents a numeric value defining the size of
the user record buffer (in bytes). This parameter
initializes FDB offset location F.URBD.

If the size of the user record buffer has already
been supplied to the FDB through the corresponding
oarameter of the FDRCSA or the FDRC$R macro call,
this parameter need.not be present in the OPEN$x
macro call.

err represents the symbolic address of an optional
user=coded error~handling routine.

Specific FDB requirements for record I/O operations (GET$ and PUT$
macro calls) are detailed in sections 3.9.2 and 3.12.2.

The following examples depict representative uses of the OPEN$x macro
call.

A macro call to open and modify an existing file, for example, might
take the following form:

OPEN$M RO,#INLUN,,#FD.RAN!FD.PLC

Note in this macro call that the FDB address is assumed to be present
in RO. The third parameter, i.e., the dataset descriptor pointer, is
not specified; this null specification (indicated by the extra comma)
assumes that FDB offset location F.DSPT (if required) has already been
initialized. The last parameter, consisting of two values separated
by an exclamation point, establishes random access and locate modes
for GET$/PUT$ operations.

3-7

FILE-PROCESSING MACRO CALLS

The following macro call might be issued to update an existing file:

OPEN$U RO,#INLUN,,,#RECBUF,#80.

This macro call also assumes that the FDB address is in RO. Note also
that the dspt and race parameter fields are null, based on the premise
that the dataset descriptor pointer (F.DSPT) has been provided
previously to the FDB and that the record access byte (F.RACC) has
also been previously initialized. Finally, the last two parameters
establish the address and the size of the user record buffer,
respectively.

This last example shows a macro call that might be issued to allow
data to be appended to the end of a file:

OPEN$A #OUTFDB

This macro call specifies the address of an FDB as the only parameter.
In this case, it is assumed that all other parameters required by FCS
in opening and operating on the file have been previously supplied to
the FDB through the appropriate assembly-time or run-time macro calls.

Note in all three examples above that the error parameter is not
specified, requiring that the user explicitly test the C-bit in the
Processor Status Word to ascertain the success of the specified
operation.

3.1.2 FDB Requirements for Generalized OPEN$x Macro Call

The information required for opening a file may be supplied to the FDB
through the following macro calls:

1. The assembly-time macro calls described in section 2.2.1.

2. The NMBLK$ macro call described in section 2.4.2.

3. The run-time macro calls described in section 2.2.2.

4. The various macro calls described in this chapter for opening
files.

The particular combination of macro calls used to define and
initialize the FDB is a matter of choice, as indicated above. Of far
greater significance is the fact that certain information must be
present in the FDB before the associated file can be opened. In this
regard, the following rules apply for creating and opening new files,
for opening existing files, and for specifying desired file options:

1. To Create a New File. If a new file is to be created through
the OPEN$W macro call, the following information must first
be supplied to the FDB. This information may be specified
through the FDAT$A macro call (see section 2.2.1.2) or the
FDAT$R macro call (see section 2.2.2):

a. The record type must be established for record I/O
operations. To accomplish this, byte offset location
F.RTYP must be initialized with either of the following
symbolic values:

3-8

FILE-PROCESSING MACRO 1"'1\ TT C
\,,,C"l.J..JJ..Jr.J

R.FIX - Indicates that fixed-length records are to be
written into the file.

R.VAR - Indicates that variable-length records are to be
written into the file.

b. The desired record attributes must be specified for
record I/O operations. The record attributes are defined
by initializing byte offset location F.RATT with the
appropriate value(s}, as follows:

FD.FTN - Indicates that the first byte of each record is
to contain a FORTRAN carriage-control character.

FD.CR - Indicates that a line-feed (<LF>} character is to
precede each record and that a carriage-return (<CR>}
character is to follow the record when that record is
outout to a device reouirinq carriaqe-control information
(e.g., to a terminal}: The- <LF> and <CR> characters are
not actually embedded within the record. Their presence
is merely implied through the file attribute FD.CR.

FD.BLK - Indicates that records are not allowed to cross
block boundaries.

c. If fixed-length records are to be written to the file,
the record size (in bytes} must be specified for record
I/O operations to appropriately initialize FDB offset
location F.RSIZ.

Items a. through c. above cannot be supplied to the FDB
through any of the various macros used to create and/or open
files (e.g., OPEN$W, OPEN$R, etc.}. Furthermore, none of the
above information is required when opening an existing file,
since PCS obtains such information from the first 14 bytes of
the user file attribute section of the file's header block
(see Appendix F}.

2. To Open Either a New File or an Existing File. Regardless of
whether the file being opened is yet to be created or already
exists, the following information must be present in the FDB
before that file can be opened:

a. The record access byte must be initialized for
record/block I/O operations. The symbolic values below
may be specified in the FDRC$A macro call (see section
2.2.1.3}, the FDRC$R macro call (see section 2.2.2}, or
the generalized OPEN$x macro call to initialize FDB
offset location F.RACC:

FD.RWM - Indicates that READ$/WRITE$ (block I/O)
operations are to be used in processing the file. If
this parameter is not specified, GET$/PUT$ (record I/O}
operations result by default.

FD.RAN - Indicates that random access mode (GET$/PUT$
record I/O} is to be used in processing the file. If
this parameter is not specified, sequential access mode
results by default.

3-9

FILE-PROCESSING MACRO CALLS

FD.PLC - Indicates that locate mode (GET$/PUT$ record
I/O) is to be used in processing the file. If this
parameter is not specified, move mode results by default.

FD.INS - Indicates that a PUT$ operation in sequential
mode in the body of a file shall not truncate the file.
If this parameter is not specified, such an operation
truncates the file. In this case, the logical end of the
file is reset to a point just beyond the inserted record,
but no deallocation of file blocks occurs.

b. The user record buffer descriptors, i.e., the urba and
urbs parameters, must be specified for record I/O
operations. To accomplish this, the FDRC$A, the FDRC$R,
or the generalized OPEN$x macro call may be used. The
selected macro call defines the address and the size of
the area reserved in the program for use as a buff er
during record I/0 operations. The urba and urbs
parameters initialize FOB offset locations F.URBD+2 and
F.URBD, respectively.

FOB requirements specific to GET$ and PUT$ operations in
move and locate mode are presented in detail in sections
3.9.2 and 3.12.2, respectively.

c. The logical unit number must be specified to initialize
FOB offset location F.LUN. The initialization of this
cell can be accomplished through the lun parameter of the
FDOP$A, the FDOP$R, or the generalized OPEN$x macro call.
Each FOB must have a unique logical unit number.

d. If file identification information is not already present
in the FOB, either the dataset descriptor pointer
(F.DSPT) or the default filename block address (F.DFNB)
must be specified to enable FCS to obtain required
filename information for use in opening the file. These
address values may be specified in either the FDOP$A
macro call (see section 2.1.1.5) or the FDOP$R macro call
(see section 2.2.2). The generalized OPEN$x macro call
(see section 3.1) may also be used to specify the dataset
descriptor pointer.

e. If desired, an event flag number for synchronizing record
I/O operations must be specified to initialize FOB offset
location F.EFN. This optional parameter may be specified
in either the FDBF$A macro call (see section 2.2.1.6) or
the FDBF$R macro call (see section 2.2.2). If not
specified, FCS uses event flag number 32(10) by default
in synchronizing all record I/O activity.

3. Specifying Desired File Options. If certain options are
desired for a given file, they must be specified before that
file is opened. Since this information is needed only in
opening the file, it is zeroed when the file is closed, thus
ensuring that the FDB is properly re-initialized for
subsequent use. The options that may be specified for a
given file are described below:

a. The override block size (ovbs parameter) must be
specified in either the FDBF$A or the FDBF$R macro call
to initialize FDB offset location F.OVBS. This parameter

3-10

FILE-PROCESSING MACRO CALLS

need be specified only if the standard default block size
in effect for the associated device is to be overridden.
The override block size is specified only in connection
with record-oriented devices (such as line printers) and
sequential devices (such as magnetic tape units).

b. The multiple buffer count (mbct parameter) must be
specified in either the FDBF$A or the FDBF$R macro call
to initialize FDB offset location F.MBCT. If
multiple-buffered record I/O operations are to be used,
this parameter must be greater than one (1), and it must
agree with the desired number of buffers to be used.
This parameter is not overlaid, nor is it zeroed when the
file is closed.

If the multiple buffer count is not established as
described above, multiple buffered operations can still
be invoked by changing the default buffer count in the
FSR. A default buffer count of one (1) is stored in
symbolic location .MBFCT of $$FSR2. This default value
can be altered to reflect the number of buffers intended
for use during record I/O operations. The procedure for
modifying this cell in $$FSR2 is described at the end of
section 2.2.1.6.

Also, if multiple buffering is to be employed, the
appropriate control flag must be specified as the mbfg
parameter in either the FDBF$A or the FDBF$R macro call
to appropriately initialize ~u~ offset location F.MBFG.
Either of two symbolic values may be specified for this
purpose, as follows:

FD.RAH - Indicates that read-ahead operations are to be
used in processing the file.

FD.WBH - Indicates that write-behind operations are to be
used in processing the file.

Offset location F.MBFG need be initialized only if the
standard default buffering assumptions are inappropriate.
When a file is opened for reading (OPEN$R), read-ahead
operations are assumed by default; for all other forms
of OPEN$x, write-behind operations are assumed. It may
be useful, for example, to override the write-behind
default assumption for a file opened through the OPEN$M
or the OPEN$U macro call when that file is being used
basically for sequential read operations, but scattered
updating is also being performed.

c. To allocate required file space at the time a file is
created, the cntg parameter must be specified in either
the FDAT$A or the FDAT$R macro call. This parameter
initializes FDB offset location F.CNTG. A positive value
so specified results in the allocation of a contiguous
file having the specified number of blocks; a negative
value, on the other hand, results in the allocation of a
noncontiguous file having the specified number of blocks.

d. The address of the 5-word statistics block in the user
program must be moved manually into FDB off set location
F.STBK. This address value specifies an area in the user

3-11

FILE-PROCESSING MACRO CALLS

program to which FCS returns certain statistical
information about a file when it is opened. If this
parameter is not specified, no return of such information
occurs.

The format and content of the statistics block are
presented in Appendix H. If the user elects to define
such an area in his program, he may do so with coding
logically equivalent to that shown below:

STBLK: .BLKW 5

Offset location F.STBK may then be manually initialized,
as follows:

MOV #STBLK,FDBADR+F.STBK

where "STBLK" is the user-defined symbolic address of the
statistics block, and the destination operand of this
instruction defines the appropriate offset location
within the desired FDB.

3.2 OPNS$x - OPEN FILE FOR SHARED ACCESS

The OPNS$x macro call is issued to open a file for shared access.
This macro call has the same format, i.e., takes the same alphabetic
suffixes and run-time parameters, as the generalized OPEN$x macro
call. The shared access conditions which result from the use of this
macro call are summarized in section 1.8.

3.3 OPNT$W - CREATE AND OPEN TEMPORARY FILE

The OPNT$W macro call is issued to create and open a temporary file
for some special purpose of limited duration. If a temporary file is
to be used only once, it is best created through the OPNT$D macro call
described in the following section.

The OPNT$W macro call creates a file but does not enter a filename for
that file into any associate user directory file. This macro call
simply enters appropriate file identification information into the
volume's index file and, in addition, maintains the file
identification field (offset location N.FID) in the associated
filename block. The index file is a file which consists of file
header blocks for user files (see Appendix E).

In using the OPNT$W macro call, the user bears the responsibility for
marking the temporary file for deletion, as described in the procedure
below. Then, after all operations associated with that file are
completed, closing the file also results in its deallocation. All
space formerly occupied by the file is then returned to the pool of
available storage on the volume for reallocation.

Although the OPNT$W macro call takes the same parameters as the
generalized OPEN$x macro call, the former executes faster because no
directory entries are made for a temporary file.

3-12

FILE-PROCESSING MACRO CALLS

Creating a temporary file is usually done when a program requires a
file only for the duration of its execution (e.g., for use as a work
file). The general sequence of operations in such instances proceeds
as follows:

1. Open a temporary file by issuing the OPNT$W macro call.
Perform any desired operations on that file. If the file is
to be used only for a single OPNT$W/CLOSE$ sequence, go to
Step 6; otherwise, continue with Step 2.

2. Before closing the file for processing, save the filename
block in the associated FOB. The general procedure for
saving (and restoring) the filename block is discussed in
section 2.5.1.

3. Close the file by issuing the CLOSE$ macro call (see section
3.8). Continue other processing in the program, as desired.

4. In anticipation of re-opening the temporary file, restore the
filename block to the FOB by accomplishing the reverse of
Step 2 above.

5. Re-open the file by issuing any of the FCS macro calls which
open existing files. Resume operations on the file; repeat
the save, CLOSE$, restore, open sequence any desired number
of times.

6. Before closing the file the last time, call the .MRKDL
routine, as shown below, to mark the file for deletion:

CALL .MRKDL

The .MRKDL routine is described in section 4.13.1.

7. Close the file by issuing the CLOSE$ macro call.

If the filename block is not saved, the file identification field
therein is destroyed, since this field is reset to zero (0) when the
file is closed.

Thus, not saving the filename block before closing a temporary file
results in a "lost" file, since no directory entry is made for a
temporary file. The usual procedure of listing the volume's directory
is therefore inapplicable. The only way such a file can be recovered
is to use the file structure verification utility program (VFY) to
search the volume's index file. The VFY program has the capability to
compare the files listed in all the directories on the volume with
those listed in the index file. If a file appears in the index file,
but not in a directory, VFY identifies that file for the user. This
program is described in detail in the IAS System Management Guide,
RSX-llD Utility Programs Procedures Manual, or RSX-llM Utilities
Procedures Manual.

3.4 OPNT$D - CREATE AND OPEN TEMPORARY FILE AND MARK FOR DELETION

The OPNT$D macro call is issued to create and open a temporary file
and, in addition, to mark the file for deletion. File identification
information for such a file is entered into the volume's index file
and the filename block in the associated FOB (but not in any
associated volume directory). A file marked for deletion cannot be

3-13

FILE-PROCESSING MACRO CALLS

opened by another program. Furthermore, when the file is closed, it
is automatically deleted from the volume, returning its space to the
pool of available storage on the volume for reallocation.

The presumption in issuing the OPNT$D macro call is that the file thus
created is to be used only once. This is a particularly desirable way
to open a temporary file, since the file will be deleted, even if the
program terminates abnormally without closing the file.

The OPNT$D macro call takes the same format and parameters as the
generalized OPEN$x macro call.

3.5 OFID$ - OPEN FILE BY FILE ID

The OFID$ macro call is issued to open an existing file using
information stored in the file identification field (offset location
N.FID) of the filename block. Thus, issuing this macro call invokes
an FCS routine which opens a file only by file ID (see section 2.5).
The OFID$ call, which has the same format and takes the same
parameters as the generalized OPEN$x macro call (see section 3.1), is
designed for use with overlaid programs.

In describing the functions of the OFID$ macro call, either one of two
assumptions may apply, as follows:

1. That the necessary context for opening the file has been
saved from a previous OPEN$x operation and restored to the
filename block in anticipation of opening that file by file
ID. The saving and restoring of the filename block are
discussed in detail in section 2.5.l.

2. That the desired file is to be opened for the first time. In
this case, the necessary context for opening the file must
first be stored in the filename block before the OFID$ macro
call can be issued.

In most cases, the latter assumption applies, requiring that the
following procedures be performed:

1. Call the .PARSE routine (see section 4.6.1). This routine
takes information from a specified dataset descriptor and/or
default filename block and initializes and fills in the
specified filename block.

2. Call the .FIND routine (see section 4.7.1). This routine
locates an appropriate directory entry for the file (by
filename) and stores the file identification information
therefrom in the 6-byte file identification field of the
filename block, starting at offset location N.FID. As a
result of Steps 1 and 2, the necessary context then exists in
the associated filename block for opening the file by file
ID.

3. Issue the OFID$ macro call.

The advantage in using the .PARSE and .FIND routines in conjunction
with the OFID$ macro call is that the user can overlay his program,
placing .P~RSE and .FIND on one branch, and the code for OFID$ on
another branch. This overlay structure reduces the program's overall
memory requirements.

3-14

FILE-PROCESSING MACRO CALLS

Unlike the other FCS macro calls for opening files, the OFID$ macro
call requires a non-zero value in the first word of the file
identification field (N.FID) in order to work properly. When this
field contains a non-zero value, FCS assumes that the remaining
context necessary for opening that file is present and, accordingly,
opens the file by file ID.

3.6 OFNB$ - OPEN FILE BY FILENAME BLOCK

The OFNB$ macro call is issued to open either an existing file or to
create and open a new file using filename information in the filename
block. Similar to the OFID$ macro call above, the OFNB$ call is
designed for use with overlaid programs. However, the OFNB$ macro
call differs in two important respects: it can be issued to create a
new file, and it can be issued to open a file by filename block.

In describing the functions of the OFNB$ macro call, the same
assumptions outlined above for OFID$ apply, viz., that the filename
block has been saved and restored in anticipation of issuing the OFNB$
macro call, or that the file is being opened for the first time.
Since the procedures for saving and restoring the filename block are
detailed in section 2.5.1, the following discussion assumes that the
desired file is being opened for the first time. In this case, the
filename block in the FDB must be initialized, as described below.

To open a file by filename block, the following information must be
present in the filename block of the associated FDB:

A. The filename (offset location N.FNAM);

B. The file type or extension (offset location N.FTYP);

C. The file version number (offset location N.FVER);

D. The directory ID (offset location N.DID);

E. The device name (offset location N.DVNM); and

F. The unit number (offset location N.UNIT).

In providing the information above to the filename block, either of
two general procedures may be used, as described in the following
sections.

3.6.l Dataset Descriptor and/or Default Filename Block

If the dataset descriptor contains all the required information listed
above, perform the following procedures:

1. Call the .PARSE routine (see section 4.6.1). This routine
takes information from a specified dataset descriptor and/or
default filename block and fills in the appropriate offsets
of a specified filename block.

2. Issue the OFNB$ macro call.

3-15

FILE-PROCESSING MACRO CALLS

3.6.2 Default Filename Block Only

If a default filename block is to be used in providing the required
information to FCS, perform the following procedures:

1. Issue the NMBLK$ macro call (see section 2.4.2) to create and
initialize a default filename block. With the exception of
the directory ID, this structure provides all the requisite
information to FCS.

2. To provide the directory ID, call either of the following
routines:

a. Call the .GTDIR routine (see section 4.8.1) to retrieve
the directory ID from the specified dataset descriptor
and to store the directory ID in the default filename
block; or

b. Call the .GTDID routine (see section 4.8.2) to retrieve
the default UIC from $$FSR2 and to store the directory ID
in the default filename block.

c. Move the entire default filename block manually into the
filename block associated with the file being opened.

3. Issue the OFNB$ macro call.

Note that the coding for OFNB$ operations normally resides in an
overlay apart from that containing the other FCS routines identified
above.

The issuance of the OFNB$ macro call is usually done under the premise
that the filename block contains the requisite information, as
described above. However, if the file identification field (offset
location N.FID) in the filename block contains a non-zero value when
the call to OFNB$ is issued, the file is unconditionally opened by
file ID.

The OFNB$ macro call has the same format and takes the same parameters
as the generalized OPEN$x macro call (see section 3.1).

If the user expects to open both new and existing files, and memory
conservation is an objective, the OFNB$ macro call is most suitable
for opening such files. The OFID$ coding should not be included in
the same overlay with OFNB$, since OFID$ overlaps the function of
OFNB$ and, therefore, needlessly consumes memory space.

3.7 OPEN$ - GENERALIZED OPEN FOR SPECIFYING FILE ACCESS

Usually, when the user wishes to create a file, the filename and the
file type are specified, and FCS is allowed to assign the next higher
file version number. However, if the OPEN$W macro call is issued for
a file having an explicit filename, file type, and file version
number, and a file of that description already exists in the specified
user file directory (UFD), the old file is superseded.

By issuing the OPEN$ macro call without an alphabetic suffix, and by
specifying two additional parameters, the user can inhibit the
automatic supersession of a file when a duplicate file specification

3-16

FILE-PROCESSING MACRO CALLS

is encountered in the UFD. Rather than deleting the old version of
the file, an error indication (IE.DUP) is returned to offset location
F.ERR of the applicable FDB.

All parameters of this macro call are identical to those specified for
the generalized OPEN$x macro call (see section 3.1), with the
exception of the face parameter and the dfnb parameter. These
additional parameters are described below.

To open a
identical
used:

file
file

OPEN$

where: f acc

dfnb

without superseding an existing file having an
specification, a macro call of the following form is

fdb,facc,lun,dspt,dfnb,racc,urba,urbs,err

represents any one or an appropriate combination
of the following symbolic values indicating how
the specified file is to be accessed:

FO.RD - Indicates that an existing file is to be
opened for reading only.

FO.WRT - Indicates that a new file is to be
created and opened for writing.

FO.APD - Indicates that an existing file is to be
opened and appended.

FO.MFY - Indicates that an existing file is to be
opened and modified.

FO.UPD - Indicates that an existing file is to be
opened, updated, and, if necessary, extended.

FA.NSP - Indicates, in combination with FO.WRT
above, that the old file having the same file
specification is not to be superseded by the new
file.

FA.TMP - Indicates, in combination with FO.WRT
above, that the file is to be a temporary file.

FA.SHR - Indicates that the file is to be opened
for shared access.

represents the symbolic address of the default
filename block. This parameter is the same as
that described in connection with the
FDOP$A/FDOP$R macro call.

The above parameters initialize FDB offset locations F.FACC and F.DFNB
with appropriate values.

Any logically consistent combination of the.above file access symbols
is permissible. The particular combination required to create and
write a new file without superseding an existing file is shown below:

OPEN$ #OUTFDB,#FO.WRT!FA.NSP

The following macro call creates a temporary file for shared access:

OPEN$ #OUTFDB,#FO.WRT!FA.TMP!FA.SHR

3-17

'FILE-PROCESSING MACRO CALLS

3.8 CLOSE$ - CLOSE SPECIFIED FILE

When the processing of a file is completed, it must be closed by
issuing the CLOSE$ macro call. The CLOSE$ operation performs the
following housekeeping functions:

1. Waits for all I/O operations in progress for the file to be
completed (multiple-buffered record I/O only).

2. Ensures that the FSR block buffer containing data for an
output file is completely written if it is partially filled
(record I/O only).

3. De-accesses the file.

4. Releases the FSR block buffer(s) allocated for the file
(record I/O only).

5. Prepares the FDB for subsequent use by clearing appropriate
FDB offset locations.

6. Calls an optional user-coded error-handling routine if an
error condition is detected during the CLOSE$ operation.

3.8.1 Format of CLOSE$ Macro Call

The CLOSE$ macro call takes the following format:

where:

CLOSE$ fdb,err

f db represents the symbolic address of the associated
FDB.

err represents the symbolic address of an optional
user-coded error-handling routine.

The following examples illustrate the use of the CLOSE$ macro call:

CLOSE$ #FDBIN,CLSERR

CLOSE$,CLSERR

CLOSE$ RO

The first example shows an explicit declaration for the relevant FDB
and the symbolic address of an error-handling routine to be entered if
the CLOSE$ operation is not completed successfully. The last two
examples assume that RO currently contains the address of the
appropriate FDB.

3.9 GET$ - READ LOGICAL RECORD

The GET$ macro call is used to read logical records from a file.
After a GET$ operation, the next record buffer descriptors in the FDB
always identify the record just read, i.e., offset location F.NRBD+2
contains the address of the record just read, and offset location
F.NRBD contains the size of that record (in bytes). This is true of
GET$ operations in both move and locate mode.

3-18

FILE-PROCESSING MACRO CALLS

In move mode, a GET$ operation moves a record to the user record
buffer (as defined by the current contents of F.URBD+2 and F.URBD},
and the address and size of that record are then returned to the next
record buffer descriptors in the FDB (F.NRBD+2 and F.NRBD}.

In locate mode, if the entire record resides within the FSR block
buffer, then the address and the size of the record just read are
returned to the next record buffer descriptors (F.NRBD+2 and F.NRBD}.
If, on the other hand, the entire record does not reside within the
FSR block buffer, then that record is moved piecemeal into the user
record buffer, and the address of the user record buffer and the size
of the record are returned to offset locations F.NRBD+2 and F.NRBD,
respectively.

After returning from a GET$ operation in locate mode, whether or not
moving the record was necessary, F.NRBD+2 always contains the address
of the record just read, and F.NRBD always contains the size of that
record.

GET$ operations are fully synchronous, i.e., record I/O operations are
completed before control is returned to the user program.

Specific FDB requirements for GET$ operations are presented in section
3.9.2 below.

3.9.1 Format of GET$ Macro Call

To read a logical record, the GET$ macro call is specified in the
following format:

where:

GET$

f db

urba

urbs

err

fdb,urba,urbs,err

represents the symbolic address of the associated
FDB.

represents the symbolic address of a user record
buffer to be used for record I/O operations in
move or locate mode. When specified, this
parameter initializes FDB offset location
~ TlDOn..L')
J.." e V.L'\..ULJ I L. e

represents a numeric value defining the size (in
bytes} of the user record buffer. This parameter
determines the largest record that can be placed
in the user record buffer in move or locate mode.
When specified, this parameter initializes offset
location F.URBD in the associated FDB.

represents the symbolic address of an optional
user-coded error-handling routine.

3-19

FILE-PROCESSING MACRO CALLS

If neither the urba nor the urbs parameter is specified in the GET$
macro call, FCS assumes that these requisite values have been supplied
previously through the FDRC$A, the FDRC$R, or the generalized OPEN$x
macro call. Any non-zero values in offset locations F.URBD+2 and
F.URBD resulting therefrom are used as the address and the length,
respectively, of the user record buffer.

If either of the following conditions occurs during record I/O
operations, FCS returns an error indication {IE.RBG) to offset
location F.ERR of the FDB, indicating an illegal record size:

1. In move mode, the record size exceeds the limit specified in
offset location F.URBD; or

2. In locate mode, the record size exceeds the limit specified
in offset location F.URBD, and the record must be moved
because it crosses block boundaries.

The following statements are representative of the GET$ macro call:

GET$

GET$

GET$

RO,,,ERROR

,#RECBUF,#25.,ERROR

#INFDB

In the first example, the address of the desired FDB is assumed to be
present in RO. Note that the next two parameters, i.e., the user
record buffer address {urba} and the user record buffer size {urbs),
are null. In this case, FCS assumes that the appropriate values for
FDB offset locations F.URBD+2 and F.URBD, respectively, have been
specified previously in the FDRC$A, the FDRC$R, or the generalized
OPEN$x macro call. The final parameter in the string is the symbolic
address of a user-coded error-handling routine.

The second example also assumes that RO contains the address of the
desired FDB. Explicit parameters then define the address and the
size, respectively, of the user record buffer.

The last example shows a GET$ macro call in which only the address of
the FDB is specified.

3.9.2 FDB Mechanics Relevant to GET$ Operations

The following sections summarize the essential aspects of GET$
operations in move and locate mode with respect to the associated FDB.

The discussions below focus mainly on whether or not a user record
buffer is required under certain conditions. In this regard, the
reader should recall that the user record buffer descriptors, i.e.,
the urba and the urbs parameters, may be specified in the FDRC$A, the
FDRC$R, or the generalized OPEN$x macro call, as well as the I/O
initiating GET$ macro call. These parameters need be present in the
GET$ macro call {to appropriately initialize the FDB) only if not
previously supplied through some other available means.

If operating in random mode, then the number of the record to be read
is maintained by FCS in offset locations F.RCNM and F.RCNM+2 of the
associated FDB. This value is incremented after each GET$ operation

3-20

FILE-PROCESSING MACRO CALLS

to point to the next record in the FSR block buffer. Thus, unless a
different record number is explicitly specified before each issuance
of the GET$ macro call, the next record in sequence is read. The
specified user record buffer size (i.e., the urbs parameter) always
determines the largest record that can be read during a GET$
operation.

3.9.2.1 GET$ Operations in Move Mode

With respect to GET$ operations in move mode,
generalizations apply:

the following

1. If records are always moved to the same user record buffer,
the urba and urbs parameters need be specified only in the
initial GET$ macro call. Alternatively, these values may be
specified beforehand through any available means identified
above for initializing the user record buffer descriptor
cells in the FDB. In any case, offset locations F.URBD+2 and
F.URBD remain appropriately initialized for all subsequent
GET$ operations in move mode which involve the same user
record buffer.

3.9.2.2 GET$ Operations in Locate Mode

In performing GET$ Operations in locate mode, the user should take
into account the following:

1. If fixed-length records are to be processed, and if they fit
evenly within the FSR block buffer, the user record buffer
descriptors need not be present in the associated FDB.

2. If fixed-length records which do not fit evenly within the
FSR block buffer are to be processed, or if variable-length
records are to be processed, the user record buffer
descriptors need not be present in the FDB, provided that the
file being processed exhibits the attribute of records not
being allowed to cross block boundaries (FD.BLK).

The property of records not crossing block boundaries is
established as the file is created. Specifically, if offset
location F.RATT in the FDB is initialized with FD.BLK prior
to file create-time, then the records in the resulting file
will not be allowed to cross block boundaries.

For an existing file, the user file attribute section of the
file header block is read when the file is opened; thus, all
attributes of that file are made known to FCS, including
whether or not records within that file are allowed to cross
block boundaries.

The design of FCS requires the utilization of a user record
buffer only in the event that records (either fixed or
variable in length) cross block boundaries.

3. If a GET$ operation is performed in locate mode, and the
record is contained entirely within the FSR block buffer, the
address of the record within the FSR block buffer and the

3-21

FILE-PROCESSING MACRO CALLS

size of that record are returned to offset locations F.NRBD+2
and F.NRBD, respectively, in the associated FDB. However, if
that record crosses block boundaries, it is moved to the user
record buffer. In this case, the address of the user record
buffer and the size of the record are returned to offset
locations F.NRBD+2 and F.NRBD, respectively.

In summary, if the potential exists for crossing block boundaries
during GET$ operations in locate mode, then the user record buffer
descriptors must be suppli~d through any available means to
appropriately initialize offset locations F.URBD+2 and F.URBD in the
associated FDB.

3.10 GET$R - READ LOGICAL RECORD IN RANDOM MODE

The GET$R macro call is used to read fixed-length records from a file
in random mode. Thus, by definition, issuing this macro call requires
that the user be intimately familiar with the structure of the file to
be read and, furthermore, that he be able to specify precisely the
number of the record to be read.

The GET$ and GET$R macro calls are identical, except that GET$R allows
the specification of the desired record number. If the desired record
number is already present in the FDB (at offset locations F.RCNM and
F.RCNM+2), then GET$ and GET$R may be used interchangeably. If,
however, the record access byte in the FDB (offset location F.RACC}
has not been initialized for random-access operations with FD.RAN in
the FDRC$A, the FDRC$R, or the generalized OPEN$x macro call, then
neither GET$ nor GET$R will read the desired record.

The GET$R macro call takes two more parameters in addition to those
specified in the GET$ macro call, as shown below:

GET$R

where: lrcnm

hrcnm

fdb,urba,urbs,lrcnm,hrcnm,err

represents a numeric value specifying the
low-order 16 bits of the number of the record to
be read. This value, which must be specified, is
stored in offset location F.RCNM+2 in the FDB.
The GET$R macro call seldom requires more than 16
bits to express the record number. A logical
record number up to 65,536(10} may be specified
through this parameter. If this parameter is not
sufficient to completely express the magnitude of
the record number, the following parameter must
also be specified.

represents a numeric value specifying the
high-order 15 bits of the number of the record to
be read. This value is stored in FDB offset
location F.RCNM. If specified, the combination of
this parameter and the lrcnm parameter above
determines the number of the desired record.
Thus, an unsigned value having a total of 31 bits
of magnitude may be used in defining the record
number.

3-22

FILE-PROCESSING MACRO CALLS

If this
location
zero (0).

parameter is not specified, offset
F.RCNM retains its initialized value of

If F.RCNM is used to express a desired record
number for any given GET$R operation, this cell
must be cleared before issuing a subsequent GET$R
macro call that requires 16 bits or less to
express the desired record number; otherwise, any
residual value in F.RCNM will yield an incorrect
record number.

If the lrcnm and hrcnm parameters are not specified in a subsequent
GET$R macro call, the next sequential record is read, since the record
number in offset locations F.RCNM+2 and F.RCNM is automatically
incremented with each GET$ operation. In the case of the first GET$R
after opening the file, record number one is read, because the record
number has been initialized to zero by the OPEN. If other than the
next sequential record is to be read, the user must explicitly specify
the number of the desired record.

The following statements are representative of the use of the GET$R
macro call:

GET$R #INFDB,#RECBUF,#160.,#1040.,,ERROR

GET$R #FDBADR,#RECBUF,#160.,R3

Note in the first example that the number of the desired record to be
read, i.e., 1040(10), is expressed through the first of two available
fields for this purpose; the second field is not required and is
therefore reflected as a null specification.

The second example reflects the use of general register 3 in
specifying the logical record number. This register, or any other
location so used, must be preset with the desired record number before
issuing the GET$R macro call.

3.11 GET$S - READ LOGICAL RECORD IN SEQUENTIAL MODE

The GET$S macro call is used to read logical records from a file in
sequential mode. Although the routine invoked by the GET$S macro call
requires less memory than that invoked by GET$ (see section 3.9),
GET$S has the same format and takes the same parameters. The GET$S
macro call is designed specifically for use in an overlaid environment
where the amount of memory available to the program is limited and
files are to be read in strictly sequential mode.

Note, if both GET$S and PUT$S are to be used by the program, that the
savings in memory utilization over GET$ and PUT$ will be realized only
if GET$S and PUT$S are placed on different branches of the overlay
structure.

3.12 PUT$ - WRITE LOGICAL RECORD

The PUT$ macro call is used to write logical records to a file. For
PUT$ operations, offset locations F.NRBD+2 and F.NRBD in the
associated FDB must contain the address and the size, respectively, of
the record to be written. The distinction between move mode and

3-23

FILE-PROCESSING MACRO CALLS

locate mode for PUT$ operations relates to the building or the
assembling of the data into a record. Specifically, in move mode, the
record is built in a buffer of the user's choice. This buffer is not
necessarily the user record buffer previously described in the context
of record I/O operations. In other words, the user may build records
in an area of his program apart from that normally defined by the user
record buffer descriptors in the FOB (F.URB0+2 and F.URBO). In this
case, the address of the record buffer so used and the size of the
record are specified in the PUT$ macro call, and the record thus built
is then moved into the FSR block buffer.

In locate mode, however, the record is built at the address specified
by the contents of offset location F.NRB0+2, and only the record size
need be specified in the PUT$ macro call. Then, if the record so
built is not already in the FSR block buffer, it is moved therein as
the PUT$ operation is performed.

PUT$ operations are fully synchronous, i.e., record I/O operations are
completed before control is returned to the user program.

A random PUT$ operation in locate mode requires the use of the .POSRC
routine. This operation is described in detail in section 4.9.2.

Specific FOB r~quirements for PUT$ operations are presented in section
3.12.2 below.

3.12.1 Format of PUT$ Macro Call

The PUT$ macro call takes the following format:

where:

PUT$

f db

nrba

nrbs

err

fdb,nrba,nrbs,err

represents the symbolic address of the associated
FOB.

represents the symbolic address of the next record
buffer, i.e., the address of the record to be
PUT$. This parameter initializes FOB offset
location F.NRB0+2.

represents a numeric value specifying the size of
the next record buffer, i.e., the length of the
record to be PUT$. This parameter initializes FOB
offset location F.NRBO.

represents the symbolic address of an optional
user-coded error-handling routine.

The following examples are representative of the uses of the PUT$
macro call:

PUT$

PUT$

PUT$

#FDBAOR,,,ERRRT

,,#160.,ERRRT

RO

In the first example, note that the next record buffer address (nrba
parameter) and the next record buffer size (nrbs parameter) are null.

3-24

These null specifications imply that the current values in offset
locations F.NRBD+2 and F.NRBD of the associated FDB are suitable to
the current operation. Note also that fixed-length records could also
be written in locate mode by issuing this macro call.

The second example contains null specifications in the first two
parameter fields, assuming that RO currently contains the address of
the associated FDB and that variable-length records are to be written
to the file.

Finally, the last example specifies only the address of the FDB; all
other parameter fields are null.

3.12.2 FDB Mechanics Relevant to PUT$ Operations

The discussions below highlight those aspects of PUT$ operations in
move and locate mode which have a bearing on the associated FDB.

The conditions under which a user record buffer is or is not used are
summarized. As is the case for GET$ operations, if a user record
buffer is required for PUT$ operations, the buffer descriptors (i.e.,
the urba and urbs parameters) may be supplied to the associated FDB
through the FDRC$A, the FDRC$R, or the generalized OPEN$x macro call.
In any case, offset locations F.URBD+2 and F.URBD must be
appropriately initialized if PUT$ operations require the utilization
of a user record buffer. Note, however, that PUT$ operations in move
mode never require a user record buffer.

If the user record buffer is required, the specified size of that
buffer (i.e., the urbs parameter) always determines the size of the
largest record that can be written to the specified file.

Whether in move or locate mode, a PUT$ operation uses the information
in offset locations F.NRBD+2 and F.NRBD, i.e., the next record buffer
descriptors, to determine whether the record must be moved into the
FSR block buffer. In the event that the record does have to be moved,
and the size of that record is such that it will not fit in the space
remaining therein, one of two possible operations is performed:

l. If records are allowed to cross block boundaries, then the
first part of the record is moved into the FSR block buffer,
thereby completing a virtual block. That block buffer is
then written out to the volume, and the remaining portion of
the record is moved into the beginning of the next FSR block
buffer.

2. If records are not allowed to cross block boundaries (because
of the file attribute FD.BLK specified in the associated
FDB), then the FSR block buffer is written out to the volume
as is, and the entire record is moved into the beginning of
the next FSR block buffer.

3.12.2.1 PUT$ Operations in Move Mode

A PUT$ operation in move mode is basically driven by specifying in
each PUT$ macro call the address and the size of the record to be
written. Then, as the PUT$ operation is performed, FCS moves the
record into the appropriate area of the FSR block buffer.

3-25

FILE-PROCESSING MACRO CALLS

In summary, the following generalizations apply for PUT$ operations in
move mode:

1. The user record buffer descriptors need not be present in the
FDB because the programmer is dynamically specifying the
address and the length of the record to be written at each
issuance of a PUT$ macro call. The values so specified
dynamically update offset locations F.NRBD+2 and F.NRBD in
the associated FDB.

2. If the file consists of the fixed-length records, then the
generalized OPEN$x macro call (see section 3.1) will
initialize offset location F.NRBD with the appropriate record
size, as defined by the contents of offset location F.RSIZ.
Thus, the size of the record need not be specified as the
urbs parameter in any PUT$ macro call involving this file.

3. If variable-length records are being PUT$, the size of each
record must be specified as the urbs parameter in each PUT$
macro call involving this file, thus setting offset location
F.NRBD to the appropriate record size.

3.12.2.2 PUT$ Operations in Locate Mode

Basically, a user record buffer is required for PUT$ operations in
locate mode only when the potential exists for records to cross block
boundaries. In other words, if there is insufficient space in the FSR
block buffer to accommodate the building of the next record, the user
must provide a buffer in his own memory space in order to build that
record.

When a file is initially opened for PUT$ operations in locate mode,
FCS sets up offset location F.NRBD+2 to point to the area in the FSR
block buffer where the next record is to be built. Then, each PUT$
operation thereafter in locate mode updates the address value in this
cell to point to the area in the FSR block buffer where the next
record is to be built. Thus, after each PUT$ operation in locate
mode, F.NRBD+2 points to the area where the next record is to be
built. This logic dictates whether the user record buffer is required
in locate mode.

In this regard, the following generalizations apply:

1. If fixed-length records are being PUT$ and they fit evenly
within .the FSR block buffer, a user record buffer is not
required.

2. If a fixed-length record crosses block boundaries, the user
record buffer descriptors must be present in offset locations
F.URBD+2 and F.URBD of the associated FDB. In this case,
after determining that the record will not fit in the FSR
block buffer, FCS sets offset location F.NRBD+2 to point to
the user record buffer. Then, when the record is PUT$, it is
moved from the user record buffer to the FSR block buffer.

3. If a variable-length record is being PUT$, the potential
exists for crossing block boundaries. In this case, the user
record buffer descriptors must be present in offset locations
F.URBD+2 and F.URBD of the associated FDB. Moreover, the

3-26

FILE-PROCESSING MACRO CALLS

size of each variable-length record must be specified as the
nrbs parameter in each PUT$ macro call.

The determination as to whether FCS will point off set
location F.NRBD+2 to the FSR block buffer for the PUT$
operation or to the user record buffer is based on whether
there is potentially enough room in the FSR block buffer to
accommodate the record.

Because the records are variable in length, it must be
assumed that the largest possible record will be PUT$, as
defined by the size of the user record buffer (F.URBD}.
Thus, if a record of this defined size will not fit in the
space remaining in the FSR block buffer, FCS sets offset
location F.NRBD+2 to point to the user record buffer.

Each PUT$ operation in locate mode sets up the FDB for the next PUT$.
In other words, the specified record size is used by FCS as the worst
case condition in determining whether sufficient space exists in the
FSR to build the next record.

If variable-length records are being processed that are shorter than
the largest defined record size, FCS may move records unnecessarily
from the user record buffer to the FSR block buffer. For example,
assume that the user has allocated a 132-byte record buffer. Assume
further that the available remaining space in the FSR block buffer is
less than 132 bytes. In this case, FCS will continue to point the
user to his own record buffer for PUT$ operations, even if he
continues to PUT$ very short (10- or 20-byte) records. Thus, some
unavoidable movement of records takes place in locate mode.

If the largest record that the user intends to PUT$ is 80 bytes, for
example, then the largest defined record size should not be specified
as 132 bytes (or any length larger than that intended to be PUT$).
~Aside from having to allocate a smaller user record buffer, PUT$
bperations in locate mode wfll be more efficient if this precaution is
observed. Exercising care in this regard reduces the tendency to move
records from the user record buffer to the FSR block buffer when they
might otherwise be built directly in the FSR block buffer.

3.13 PUT$R - WRITE LOGICAL RECORD IN RANDOM MODE

The PUT$R macro call is used to write fixed-length records to a file
in random mode. As noted in section 3.10 in connection with the GET$R
macro call, operations on random access files require the user to be
intimately familiar with the contents of such files. The PUT$R macro
call likewise relies entirely on the user for the specification of the
number of the record before a specified PUT$ operation can be
performed. Since the usual purpose of a PUT$R operation is to update
known records in a file, it is assumed that the user also knows the
number of such records within the file.

The PUT$ and PUT$R macro calls are identical, except that PUT$R allows
the specification of the desired record number. If the desired record
number is already present in the FDB (at offset locations F.RCNM and
F.RCNM+2), then PUT$ and PUT$R may be used interchangeably. However,
if the record access byte in the FDB (offset location F.RACC) has not
been initialized for random-access operations with FD.RAN in the
FDRC$A, the FDRC$R, or the generalized OPEN$x macro call, then neither
PUT$ not PUT$R will write the desired record.

3-27

•

FILE-PROCESSING MACRO CALLS

The PUT$R macro call takes two more parameters in addition to those
specified in the PUT$ macro call, as shown below:

PUT$R

where: lrcnm

hrcnm

fdb,nrba,nrbs,lrcnm,hrcnm,err

represents a numeric value specifying the
low-order 16 bits of the number of the record to
be processed. This parameter serves the same
purpose as the corresponding parameter in the
GET$R macro call (see section 3.10), except that
it identifies the record to be written.

represents a numeric value specifying the
high-order 15 bits of the number of the record to
be processed. This parameter serves the same
purpose as the corresponding parameter in the
GET$R macro call, except that it identifies the
record to be written.

If this
location
zero (0).

parameter is not specified, offset
F.RCNM retains its initialized value of

If F.RCNM is used in expressing a desired record
number for any given PUT$R operation, the user
must clear this cell before issuing a subsequent
PUT$R macro call that requires 16 bits or less in
expressing the desired record number; otherwise,
any residual value in F.RCNM results in an
incorrect record number.

The lrcnm and hrcnm parameters initialize offset locations F.RCNM+2
and F.RCNM, respectively, in the associated FOB. If these values are
not specified in a subsequent PUT$R macro call, the next sequential
record is written, since PCS automatically increments the record
number in these cells with each PUT$ operation. In the case of the
first PUT$R after opening the file, record number one is written,
because the record number has been initialized to zero by the OPEN.
Note that this is true even if the file has been opened for an append
(OPEN$A). If other than the next sequential record is to be written,
the user must explicitly specify the number of the desired record.

A representative example of the use of the PUT$R macro call follows:

PUT$R

PUT$R

PUT$R

#OUTFDB,#RECBUF,,#12040.,,ERRLOC

#FDBADR,#RECBUF,,R4

#FDBADR,#RECBUF,,LRN

In the first example, the presence of "RECBUF" as the next record
buffer address (nrba) parameter merely indicates that the user is
specifying the address of the record. Although specifying this
address repeatedly is unnecessary, it is not invalid. Normally, a
buffer address is specified dynamically, since other PUT$ macro calls
may be referencing different areas in memory; thus, the address of
the record must be explicitly specified in each PUT$ macro call. Note
also that the next record buffer size {nrbs) parameter is null, since
this parameter is required only in the case of writing variable-length
records. Also, the second of the two available parameters for
defining the record number is null.

Note in the second and third examples that R4 and a memory
(LRN) are used to specify the logical record number.

3-28

location
Such a

FILE-PROCESSING MACRO CALLS

specification assumes that the user has preset the desired record
number in the referenced location.

A random PUT$ operation in locate mode requires the use of the .POSRC
routine. This operation is described in detail in section 4.9.2.

3.14 PUT$S - WRITE LOGICAL RECORD IN SEQUENTIAL MODE

The PUT$S macro call is used to write logical records to a file in
sequential mode. Although the routine invoked by the PUT$S macro call
requires less memory than that invoked by PUT$ (see section 3.12),
PUT$S has the same format and takes the same parameters. The PUT$S
macro call is designed specifically for use in an overlaid environment
Where the amount of memory available to the program is limited and
files are to be written in strictly sequential mode.

Note, if both GET$S and PUT$S are to be used by the program, that the
savings in memory utilization over GET$ and PUT$ will be realized only
if GET$S and PUT$S are placed on different branches of the overlay
structure.

3.15 READ$ - READ VIRTUAL BLOCK

The READ$ macro call is issued to read a virtual block of data from a
device (e.g., a disk or DECtape). In addition, if certain optional
parameters are specified in the macro call, status information is
returned to the I/O status block (see section 2.8.2), and/or the
program traps to a user-coded AST service routine at the completion of
block I/O operations (see section 2.8.3).

In issuing the READ$ (or WRITE$) macro call, the user is responsible
for synchronizing all block I/O operations. For this reason, the
WAIT$ macro call is provided (see section 3.18), allowing the user to
suspend program execution until a specified READ$/WRITE$ operation has
been completed. When the WAIT$ macro call is issued in conjunction
with a READ$ (or WRITE$) macro call, the user must ensure that the
event flag number and the I/O status block address specified in both
macro __ ,,_ --- ~h- ----

~Q..L..Li:I QLO::: L.UC i:IQUlO:::e

3.15.1 Format of READ$ Macro Call

From the format below, note that the parameters of the READ$ macro
call are identical to those of the FDBK$A or the FDBK$R macro call,
with the exception of the fdb and err parameters. Certain FDB
parameters may be set at assembly-time (FDBK$A), initialized at
run-time (FDBK$R), or set dynamically by the READ$ macro call. In any
case, certain information must be present in the FDB before the
specified READ$ (or WRITE$) operation can be performed. These
requirements are noted in section 3.15.2 below.

The READ$ macro call takes the following format:

where:

READ$

f db

fdb,bkda,bkds,bkvb,bkef ,bkst,bkdn,err

represents the symbolic address of the associated
FDB.

3-29

bkda

bkds

bk vb

bkef

FILE-PROCESSING MACRO CALLS

represents the symbolic address of the block I/O
buffer in the user program. This parameter need
not be specified if offset location F.BKDS+2 has
been previously initialized through either the
FDBK$A or the FDBK$R macro call.

represents a numeric value specifying the size (in
bytes) of the virtual block to be read. This
parameter need not be specified if off set location
F.BKDS has been previously initialized through
either the FDBK$A or the FDBK$R macro call. In
any case, the maximum block size that may be
specified for file-structured devices is 512(10)
bytes, i.e., the size of one virtual block.

represents the symbolic address of a 2-word block
in the user program containing the number of the
virtual block to be read. This parameter causes
offset locations F.BKVB and F.BKVB+2 to be
initialized with the virtual block number;
F.BKVB+2 contains the low-order 16 bits of the
virtual block number, and F.BKVB contains the
high-order 15 bits.

As noted in connection with the FDBK$A macro call
described in section 2.2.1.4, assembly-time
initialization of the virtual block number in the
FDB is ineffective, since the generalized OPEN$x
macro call sets the virtual block number in the
FDB to one (1). The virtual block number can be
made available to FCS only through the FDBK$R
macro call or the I/0-initiating READ$ (or WRITE$)
macro call after the file has been opened. The
virtual block number is created as described in
Item 4 of section 2.2.2.1.

The READ$ function checks the specified virtual
block number to ensure that it do~s not reference
a non-existent block, i.e., a block beyond the end
of the file. If the virtual block number
references non-existent data, an end-of-file
(IE.EOF) error indication is returned to the I/O
status block (see bkst parameter below) and to
offset location F.ERR of the associated FDB;
otherwise, the READ$ operation proceeds normally.

If the virtual block number is not specified
through any of the available means identified
above, automatic sequential operation results by
default, beginning with virtual block number 1.
The virtual block number is incremented by one (1)
automatically after each READ$ operation is
performed.

represents a numeric value specifying the event
flag number to be used for synchronizing block I/O
operations. This event flag number is used by FCS
to signal the completion of the specified block
I/O operation. The event flag number, which may

3-30

bk st

bkdn

FILE-PROCESSING MACRO CALLS

also be specified in either the FDBK$A or the
FDBK$R macro call, initializes FDB offset location
F.BKEF; if so specified, this parameter need not
be included in the READ$ (or WRITE$) macro call.

If this optional parameter is not specified
through any available means, event flag 32(10} is
used by default.

The function of an event flag is discussed in
further detail in section 2.8.1.

represents the symbolic address of the I/O status
block in the user program (see section 2.8.2).
This parameter, which initializes offset location
F.BKST, is optional. The I/O status block is
filled in by the system when the requested block
I/O transfer is completed, indicating the
success/failure of the requested operation.

The address of the I/O status block may also be
specified in either the FDBK$A or the FDBK$R macro
call. If the address of this 2-word structure is
not supplied to FCS through any of the available
means, status information is not returned to the
I/O status block. However, the event flag
specified through the bkef parameter above is set
to indicate block I/O completion, but the user
program must assume that the operation was
successful. An error indication cannot be
returned to the user program without an I/O status
block address.

represents the symbolic entry-point address of an
AST service routine (see section 2.8.3). If this
parameter is specified, a trap occurs upon
completion of the specified READ$ (or WRITE$}
operation. This parameter, which is optional,
initializes offset location F.BKDN. This address
value may also be made available to FCS through
either the FDBK$A or the FDBK$R macro call, and,
if so specified, need not be present in the READ$
(or WRITE$} macro call.

If the address of an AST service routine is not
specified through any available means, no AST trap
occurs at the completion of block I/O operations.

err represents the symbolic address of an optional
user-coded error-handling routine.

The following examples are representative of READ$ macro calls that
may be issued to accomplish a variety of operations:

READ$

READ$

READ$

READ$

RO

#INFDB,,,,,,,ERRLOC

RO,#INBUF,#BUFSIZ,,#22.,#IOSADR,#ASTADR,ERRLOC

#INFDB,#INBUF,#BUFSIZ,#VBNADR

3-31

FILE-PROCESSING MACRO CALLS

The first example assumes that RO contains the address of the
associated FDB. Also, all other required FDB initialization has been
accomplished through either the FDBK$A or the FDBK$R macro call.

The second example shows an explicit declaration of the associated FDB
and includes the symbolic address of a user-coded error-handling
routine.

In the third example, RO again contains the address of the associated
FDB. The block buffer address and the size of the block are specified
next in symbolic form. The address of the 2-word block in the user
program containing the virtual block number is not specified, as
indicated by the additional comma in the parameter string. The event
flag number, the address of the I/O status block, and the address of
the AST service routine then follow in order. Finally, the symbolic
address of an optional error routine is specified.

The fourth example reflects, as the last parameter in the string, the
symbolic address of the 2-word block in the user program containing
the virtual block number.

3.15.2 FDB Requirements for READ$ Macro Call

The READ$ macro call requires that the associated FDB be initialized
with certain values before it can be issued. These values may be
specified through either the FDBK$A or the FDBK$R macro call, or they
may be made available to the FDB through the various parameters of the
READ$ macro call. In any case, the following values must be present
in the FDB to enable READ$ operations to be performed:

1. The block buffer address (in offset location F.BKDS+2);

2. The block byte count (in offset location F.BKDS); and

3. The virtual block number (in offset locations F.BKVB+2 and
F.BKVB).

3.16 WRITE$ - WRITE VIRTUAL BLOCK

The WRITE$ macro call is issued to write a virtual block of data to a
block-oriented device (e.g., a disk or DECtape}. Like the READ$ macro
call, if certain optional parameters are specified in the WRITE$ macro
call, status information is returned to the I/O status block (see
section 2.8.2), and, at the completion of the I/O transfer, the
program traps to an AST service routine that is supplied to coordinate
asynchronous block I/O operations (see section 2.8.3).

Whether or not the address of an AST service routine and/or an event
flag number is supplied, the user is responsible for synchronizing all
block I/O processing. Again, as with READ$ operations, the WAIT$
macro call can be issued in conjunction with the WRITE$ macro call to
suspend program execution until a program-dependent I/O transfer has
been completed. When the WAIT$ macro call is used for this purpose,
the event flag number and the I/O status block address in both macro
calls must be the same.

3-32

FILE-PROCESSING MACRO CALLS

3.16.1 Format of WRITE$ Macro Call

The WRITE$ macro call takes the same parameters as the READ$ macro
call, as shown below. However, the bkvb parameter, in this case,
represents the number of the virtual block to be written. The virtual
block number is incremented by one (1) automatically after each WRITE$
operation is performed.

The WRITE$ macro call has the following format:

WRITE$ fdb,bkda,bkds,bkvb,bkef ,bkst,bkdn,err

When this macro call is issued, the virtual block number (i.e., the
bkvb parameter) is checked to ensure that it references a block within
the file's allocated space; if it does, the block is written. If the
specified block is not within the file's allocated space, FCS attempts
to extend the file. If this attempt is successful, the block is
written; if not: an error code indicating the reason for the failure
of the extend operation is returned to the I/O status block and to
offset location F.ERR of the associated FDB.

If FCS determines that the file must be extended, the actual extend
operation is performed synchronously. After the extend operation has
been successfully completed, the WRITE$ operation is queued, and only
then is control returned to the instruction immediately following the
WRITE$ macro call.

The following examples illustrate representative WRITE$ macro calls:

WRITE$ RO

WRITE$ #OUTFDB,#OUTBUF,#BUFSIZ,#VBNADR,#22.

WRITE$ R0,,,,#22.,#IOSADR,#ASTADR,ERRLOC

The first example specifies only the FDB address and assumes that all
other required values are present in the FDB. The second example
reflects explicit declarations for the FDB, the block buffer address,
the block buffer size, the virtual block number address, and the event
flag number for signaling block I/O completion. The third example
shows null specifications for three parameter fields, then continues
with the event flag number, the address of the I/O status block, and
the address of the AST service routine. Finally, the address of a
user-coded error-handling toutine is specified.

3.16.2 FDB Requirements for WRITE$ Macro Call

WRITE$ operations require the presence of the same information in the
FDB as READ$ operations (see section 3.15.2 above).

3.17 DELET$ - DELETE SPECIFIED FILE

The DELET$ macro call causes the directory information for the file
associated with the specified FDB to be deleted from the appropriate
user file directory (UFD). The space occupied by the file is then
deallocated and returned to the pool of available storage on the
volume for reallocation.

3-33

FILE-PROCESSING MACRO CALLS

This macro call can be issued for a file that is either open or
closed. If issued for an open file, that file is then closed and
deleted; if issued for a closed file, that file is deleted only if
the filename string specified in the associated dataset descriptor or
default filename block contains an explicit file version number.

Thus, if the file is not open, and the file version number is 0
(indicating the latest version), or if the file version number is -1
(indicating the oldest version), then the DELET$ operation will fail.

3.17.1 Format of DELET$ Macro Call

The DELET$ macro call takes the following format:

where:

DELET$ fdb,err

f db represents the symbolic address of the associated
FDB.

err represents the symbolic address of an optional
user-coded error-handling routine.

The following statements are illustrative of DELET$ macro calls:

DELET$ RO

DELET$ #OUTFDB,ERRLOC

DELET$ RO,ERRLOC

3.18 WAIT$ - WAIT FOR BLOCK I/O COMPLETION

The WAIT$ macro call, which is issued only in connection with READ$
and WRITE$ operations, causes program execution to be suspended until
the requested block I/O transfer is completed. This macro call may be
used to synchronize a block I/O operation which depends on the
successful completion of a previous block I/O transfer.

As noted in section 3.15 in connection with the READ$ macro call, the
user may specify an event flag number through the bkef parameter.
This event flag number is used during READ$ operations to indicate the
completion of the requested transfer. If desired, the user may issue
a WAIT$ macro call (specifying the same event flag number and I/O
status block address) following the READ$ (or WRITE$) macro call.
In this case, the READ$ operation is initiated in the usual manner,
but the Executive of the host operating system suspends program
execution until the specified event flag is set, indicating that the
I/O transfer has been completed. The system then returns information
to the I/O status block, indicating the success/failure of the
operation. FCS then moves the I/O status block success/failure
indicator into offset location F.ERR of the associated FDB, and
returns with the C-bit in the Processor Status Word cleared if the
operation is successful, or set if the operation is not successful.
Task execution then continues with the instruction immediately
following the WAIT$ macro call.

The system returns the final status of the I/O operation to the I/O
status block (see section 2.8.2) upon completion of the requested

3-34

FILE-PROCESSING MACRO CALLS

operation. A positive value (+) indicates successful completion, and
a negative value (-) indicates unsuccessful completion.

Event flags are discussed in further detail in section 2.8.1.

3.18.l Format of WAIT$ Macro Call

The WAIT$ macro call is specified in the following format:

where:

WAIT$

f db

bkef

bk st

fdb,bkef ,bkst,err

represents the symbolic address of the associated
FDB.

represents a numeric value specifying the event
flag number to be used for synchronizing block I/O
operations. The WAIT$ macro causes task execution
to be suspended by invoking the WAITFOR system
directive. This parameter must agree with the
corresponding (bkef) parameter in the associated
READ$/WRITE$ macro call.

If this parameter is not specified, either in the
WAIT$ macro call or the associated READ$/WRITE
macro call, FDB offset location F.BKEF is assumed
to contain the desired event flag number, as
previously initialized through the bkef parameter
of the FDBK$A or the FDBK$R macro call.

represents the symbolic address of the I/O status
block in the user program (see section 2.8.2).
Although this parameter is optional, if specified,
it must agree with the corresponding (bkst)
parameter in the associated READ$/WRITE$ macro
call.

If this parameter is not specified, either in the
WAIT$ macro call or the associated READ$/WRITE$
macro call, FDB offset location F.BKST is assumed
to contain the address of the I/O status block, as
previously initialized through the bkst parameter
of the FDBK$A or the FDBK$R macro call. If F.BKST
has not been initialized, no return of information
to the I/O status block occurs.

err represents the symbolic address of an optional
user-coded error-handling routine.

The following statements are representative of WAIT$ macro calls:

WAIT$ RO

WAIT$ #INFDB,#25.

WAIT$ R0,#25.,#IOSTAT

WAIT$ RO,,#IOSTAT,ERRLOC

3-35

FILE-PROCESSING MACRO CALLS

The first example assumes that RO contains the address of the
associated FOB; furthermore, since the event flag number (bkef
parameter) is not specified, offset location F.BKEF is assumed to
contain the desired event flag number. If this cell in the FOB
contains zero (0), event flag number 32(10) is used by default.

The second example shows an explicit specification of the FOB address
and also specifies 25(10) as the event flag number. Again, in this
example, the FOB is assumed to contain the address of the I/O status
block. In contrast, the third example shows an explicit specification
for the address of the I/O status block.

Finally, the fourth example contains a null specification for the
event flag number, and, in addition, specifies the address of a
user-coded error-handling routine.

It should be noted that the WAIT$ macro call associated with a given
READ$ or WRITE$ operation need not be issued immediately following the
macro call to which it applies. For example, the following sequence
is typical:

1. Issue the desired READ$ or WRITE$ macro call.

2. Perform other processing that is not dependent on the
completion of the requested block I/O transfer.

3. Issue the WAIT$ macro call.

4. Perform the processing that is dependent on the completion of
the requested block I/O transfer.

When performing multiple asynchronous transfers in the same general
sequence as above, a separate buffer, I/O status block, and event flag
must be maintained for each operation. If the user intends to wait
for the completion of a given transfer, the appropriate event flag
number and I/O status block address must be specified in the
associated WAIT$ macro call.

3-36

CHAPTER 4

FILE CONTROL ROUTINES

File control routines can be invoked in MACR0-11 programs to perform
the following functions:

• Read or write default directory string descriptors in $$FSR2;

• Read or write the default file protection word in $$FSR2;

• Read or write the file owner word in $$FSR2;

• Convert a directory string from ASCII to binary, or vice versa;

• Find, insert, or delete a directory entry;

• Set a pointer to a byte within a virtual block or to a record
within a file;

Mark a place in a file for a subsequent OPEN$x operation;

. Issue an I/O command and wait for its completion;

• Rename a file;

. Extend a file;

• Mark a temporary file for deletion;

• Delete a file by filename block;

Place directory information in a default filename block or a
filename block;

• Perform device-specific control functions. (1)

(1) Does not apply to RSX-11~

4-J

FILE CONTROL ROUTINES

4.1 CALLING FILE CONTROL ROUTINES

The CALL macro is used to invoke file control routines. These
routines are included from the system object library
(SY: [l,l]SYSLIB.OLB) at task-build time and incorporated into the user
task. The file control routines are called as shown below:

CALL .RDFDR

CALL .EXTND

Before the CALL macro is issued, certain file control routines require
that specific registers be preset with requisite information. These
requirements are identified in the respective descriptions of the
routines. Upon return, all registers are preserved, except those
explicitly specified as changed.

As a general rule, if an error is detected by a file control routine,
the C-bit (carry condition code) in the Processor Status Word is set,
and an error indication is returned to FDB offset location F.ERR.
However, certain file control routines do not return error indications
because of the specific nature of their functions. The following file
control routines are listed according to whether or not they return
error indications.

Normal Error Return
(C-bit and F.ERR)

.ASCPP

.PARSE

.PRSDV

.ASLUN

.FIND

.ENTER

.REMOV

.GTDIR

.GTDID
• POINT
.POSRC
.POSIT
.XQIO
.RENAM
.EXTND
.MRKDL
.DLFNB
.CTRL(l)

No Error Return

.RDFDR

.WDFDR

.RDFFP

.WDFFP

.RFOWN

.WFOWN

.PPASC

.MARK

Appendix I lists the error indicators that are placed in FDB offset
location F.ERR by the routines identified above.

(1) Does not apply to RSX-llM

4-2

FILE CONTROL ROUTINES

4.2 DEFAULT DIRECTORY STRING ROUTINES

The following routines are used to read and write directory string
descriptors.

4.2.1 .RDFDR - Read $$FSR2 Default Directory String Descriptor

The user calls the .RDFDR routine to read the default directory string
descriptor words from program section $$FSR2 of the FSR. These
descriptor words define the address and the length of an ASCII string
which contains the default directory string. This directory string
constitutes the default directory that is to be used by FCS when one
is not explicitly specified in a dataset descriptor.

Unless the user explicitly changes the default directory string
descriptor words in $$FSR2 through the .WDFDR routine below, the
default directory for a task will always correspond to the UIC under
which the task is running.

When called, the .RDFDR routine returns the default directory string
descriptor words to the following registers:

Rl Contains the size (in bytes) of the default directory string
in $$FSR2.

R2 Contains the address of the default directory string in
$$FSR2.

4.2.2 .WDFDR - Write New $$FSR2 Default Directory String Descriptor

The .WDFDR routine is called to create new default directory string
descriptor words in $$FSR2. For example, if a user program is to
operate on files in the directory [220,220], regardless of the UIC the
program runs under, then the user may change the default directory
string descriptor cells in $$FSR2 to point to the alternate directory
string [220,220] created elsewhere in the program. To do this, the
desired directory string is first created through an .ASCII directive.
Then, by calling the .WDFDR routine, the default directory string
descriptor cells in $$FSR2 are modified to point to the new directory
string.

Assume that the task is currently running under default UIC [200,200].
By issuing a MACR0-11 directive similar to the following:

NEWDDS: .ASCII /[220,220]/

a new directory string is defined. Then, by calling the .WDFDR
routine, the user can modify the string descriptor cells in $$FSR2 to
point to the new directory string. Thus, the default directory string
in $$FSR2 remains intact; only the string descriptors within $$FSR2
are changed.

4-3

FILE CONTROL ROUTINES

The following registers must be preset before calling the .WDFDR
routine:

Rl Must contain the size (in bytes) of the new directory string.

R2 Must contain the address of the new directory string.

NOTE

Changing the default directory string
descriptor words in $$FSR2 does not
change the default UIC in $$FSR2 or the
task's privileges.

4.3 DEFAULT FILE PROTECTION WORD ROUTINES

The routines described below are used to read and write the default
file protection word in a location in program section $$FSR2 of the
file storage region (FSR). This word is used only at file-creation
time (e.g., by the OPEN$W macro call) to establish the default file
protection values for the new file. Unless altered, this value
constitutes the default file protection word for that file. If the
value is minus one (-1), it indicates that the volume default file
protection value, as established through the INITIALIZE, INITVOLUME,
or MOUNT command, is to be used for the new file. The !AS User's
Guide, RSX-llD User's Guide, and RSX-llM Operator's Procedures Manual,
respectively, describe these initialization commands in detail.

The default file protection word has the following format:

Bits 15 12 11 8 7 4 3

WORLD GROUP I OWNER

Each of the four categories above has four bits;
following meaning with respect to file access:

Bit 3 2 1 0

DELETE EXTEND! WRITE READ

0

SYSTEM

each bit has the

A bit value of zero (0) indicates that the respective type of access
to the file is to be allowed; a bit value of one (1) indicates that
the respective type of access to the file is to be denied.

4.3.1 .RDFFP - Read $$FSR2 Default File Protection Word

The user calls the .RDFFP routine to read the default file protection
word in program section $$FSR2 of the FSR. No registers need be set
before calling this routine.

When called, the .RDFFP routine returns the following information:

Rl Contains the default file protection word from $$FSR2.

4-4

FILE CONTROL ROUTINES

4.3.2 .WDFFP - Write New $$FSR2 Default File Protection Word

The .WDFFP routine is used to write a new default file protection word
into $$FSR2.

The following register must be preset before calling this routine:

Rl Must contain the new default file protection word to be
written into $$FSR2. If this register is set to minus one
(-1), the default file protection values established through
the INITIALIZE, INITVOLUME, or MOUNT command will be used in
creating all subsequent new files.

4.4 FILE OWNER WORD ROUTINES

The file owner word; like the default file protection word above; is a
location in program section $$FSR2 of the FSR. The file owner word is
used only at file-creation time (e.g., by the OPEN$W macro call) to
establish the owner of the new file.

Normally, the file owner word contains the default UIC under which the
task is running. However, through the .WFOWN routine (see section
4.4.2 below), the file owner word can be changed, if desired, so that
any new files then created by the user program will have the desired
UIC.

The format of the file owner word is shown below:

15 8 7 0

GROUP MEMBER

The routines for reading and writing the file owner word are described
below.

NOTE

The UIC and the file protection word for
the file (see section 4.3) must not be
set such that the UIC under which the
task is running does not have access to
the file. If this condition prevails, a
privilege violation will result.

4.4.1 .RFOWN - Read $$FSR2 File Owner Word

The .RFOWN routine is used to read the file owner word from a location
in $$FSR2. No registers need be preset before calling this routine.

When called, the .RFOWN routine returns the following information:

Rl Contains the file owner word (UIC).

4-5

FILE CONTROL ROUTINES

4.4.2 .WFOWN - Write New $$FSR2 File Gwner Word

The .WFOWN routine is used to write a new file owner word into $$FSR2.

The following register must be preset before calling this routine:

Rl Must contain the new file owner word to be written into
$$FSR2.

4.5 ASCII/BINARY UIC CONVERSION ROUTINES

The following routines are called to convert a directory string from
ASCII to binary, or vice versa.

4.5.1 .ASCPP - Convert ASCII Directory String to Equivalent Binary
UIC.

The .ASCPP routine is called to convert an ASCII directory string to
its corresponding binary UIC.

The following registers must be preset before calling this routine:

R2 Must contain the address of the directory string descriptor
in the user program (see section 2.4.1) for the string to be
converted.

R3 Must contain the address of a word location in the user
program to which the binary UIC is to be returned. The
member number is stored in the low-order byte of the word,
and the group number is stored in the high-order byte.

4.5.2 .PPSAC - Convert UIC to ASCII directory string. The .PPASC
routine is called to convert a binary UIC to its corresponding ASCII
directory string.

The following registers must be preset before calling this routine:

R2 Must contain the address of a storage area within the user
program into which the ASCII string is to be placed. The
resultant string can be up to 9 bytes in length, e.g.,
[200,200].

R3 Must contain the binary UIC value to be converted. The
low-order byte of the register contains the member number,
and the high-order byte of the register contains the group
number.

R4 Must contain a control code. Bits 0 and 1 of this register
indicate the following:

Bit 0 is set to 0 to suppress leading zeros (e.g., 001 is
returned as 1). Bit 0 is set to 1 to indicate that
leading zeros are not to be suppressed.

Bit 1 is set to 0 to place separators in the directory string
(e.g., [10,20]. Bit 1 is set to 1 to suppress
separators (e.g., 1020).

4-6

FILE CONTROL ROUTINES

The .PPASC routine increments the contents of R2 to point to the byte
immediately following the last byte in the converted directory string.

NOTE

!AS and RSX-llD only:
of UIC's and UFD's,
RSX-llD User's Guide.

4.6 FILENAME BLOCK ROUTINES

For a discussion
see the IAS or

Two routines are available
specified filename block.
following sections.

for performing functions related to a
These routines are described in the

4.6.l .PARSE - Fill In All Filename Information

When called, the .PARSE routine first zeros the filename block pointed
to by Rl and then stores the following information in the filename
block:

1. The ASCII device name (N. DVNM) ;

2. The binary unit number (N. UNIT);

3. The directory ID (N.DID);

4. The Radix-SO filename (N.FNAM);

5. The Radix-50 file type or extension (N.FTYP); and

6. The binary file version number (N. FVER).

The format of a filename block is shown in detail in Appendix B.

Before the .PARSE routine can be called, the FINIT$ macro call (see
section 2.6) must be invoked explicitly in the user program1 or it
must be invoked implicitly through a prior OPEN$x macro call. Note,
however, that the FINIT$ call must be issued only once in the
initialization section of the program, i.e., the FINIT$ operation must
be performed only once per task execution. Furthermore, FORTRAN
programs issue a FINIT$ call at the beginning of task execution;
therefore, MACR0-11 routines used with the FORTRAN object time system
must not issue a FINIT$ macro call.

The following registers must be preset before calling the .PARSE
routine:

RO Must contain the address of the desired FDB.

4-7

FILE CONTROL ROUTINES

Rl Must contain the address of the filename block to be filled
in. This filename block is usually, but not necessarily, the
filename block within the FOB specified in RO (i.e., RO +
F. FNB) .

R2 If .PARSE is to access a dataset descriptor in building the
specified filename block, this register must contain the
address of the desired dataset descriptor. This structure is
usually, but not necessarily, the same as that associated
with the FOB specified in RO, i.e., the dataset descriptor
pointed to by the address value in F.DSPT.

If R2 contains zero (0), this value implies that a dataset
descriptor has not been defined; therefore, the dataset
descriptor logic of .PARSE is bypassed.

R3 If .PARSE is to access a default filename block in building
the specified filename block, this register must contain the
address of the desired default filename block. This
structure is usually, but not necessarily, the same as that
associated with the FDB specified in RO, i.e., the default
filename block pointed to by the address value in F.OFNB.

As above, if R3 contains zero (0), this value implies that a
default filename block has not been defined; therefore, the
default filename block logic of .PARSE is bypassed.

Thus, RO and Rl each must contain the address of the appropriate data
structure, while either R2 or R3 must contain the address of the
desired filename information. Both R2 and R3, however, may contain
address values if the referenced structures both contain information
required in building the specified filename block.

The .PARSE routine fills in the specified filename block in the order
described in the following sections.

4.6.1.1 Device and Unit Information

The .PARSE routine first attempts to fill in the filename block with
device (N.OVNM) and unit (N.UNIT) information. The following
operations are performed in sequence until the required information is
obtained from the specified data structures:

1. If the address of a dataset descriptor is specified in R2 and
this structure contains a device string, the device and unit
information therein is moved into the specified filename
block.

2. If Step 1 fails, and if the address of a default filename
block is specified in R3, and this structure contains a
non-zero value in the device name field, the device and unit
information therein is moved into the specified filename
block.

3. If Step 2 fails, .PARSE uses the device and unit currently
assigned to the logical unit number in offset location F.LUN
of the specified FOB in building the filename block.

4-8

FILE CONTROL ROUTINES

This feature allows a program to use pre-assigned logical
units which are assigned through either the device assignment
(ASG) option of the Task Builder or one of the following
commands: the ASSIGN (under !AS) or the REASSIGN (under
RSX). In this case, the user simply avoids specifying the
device string in the dataset descriptor and the device name
in the default filename block.

4. If the logical unit number in F.LUN is currently unassigned,
.PARSE assigns this number to the system device (SYO:).

Once the device and unit are determined and the logical unit number is
assigned, .PARSE invokes the GLUN$ directive to obtain necessary
device information. Requisite information is returned to the
following offsets in the filename block pointed to by Rl:

N.DVNM - Device Name Field.
name.

Contains the redirected device

N.UNIT - Unit Number Field.
number.

Contains the redirected unit

In addition, requisite information is returned to the following
offsets in the FDB pointed to by RO:

F.RCTL - Device Characteristics Byte. This cell contains
device-dependent information from the first byte of the
third word returned by the GLUN$ directive. The bit
definitions pertaining to the device characteristics
byte are described in detail in Table A-1. If desired,
the user can examine this cell in the FDB to determine
the characteristics of the device associated with the
assigned LUN.

F.VBSZ - Device Buffer ~ize Word. This location
information from the sixth word returned
directive. The value in this cell defines
buffer size (in bytes) pertaining to
associated with the assigned LUN.

contains the
by the GLUN$

the device
the device

The GLUN$ directive is described in detail in the Executive Reference
Manual of the host operating system.

4.6.1.2 Directory Identification Information

Following the operations described in the preceding section, .PARSE
attempts to. fill in the filename block with directory identification
information (N.DID), as follows:

1. If the address of a dataset descriptor is specified in R2 and
this structure contains a directory string, that directory
string is used to find the associated UFD in the MFD, and the
resulting file ID is then moved into the directory ID field
of the specified filename block.

2. If Step 1 fails, and if the address of a default filename
block is specified in R3, and this structure contains a
non-zero directory ID, it is moved into the specified
filename block.

4-9

FILE CONTROL ROUTINES

Since none of the parameters of the NMBLK$ macro call (see
section 2.4.2) initialize the three words starting at offset
location N.DID in the default filename block, these cells
must be initialized manually, or they must be initialized by
issuing a call to either the .GTDIR routine (see section
4.8.1) or the .GTDID routine {see section 4.8.2). Note that
these routines can also be used to initialize a specified
filename block directly with required directory information.

3. If neither Step 1 nor Step 2 yields the required directory
string, .PARSE uses the default directory string in $$FSR2 to
obtain the directory ID in the same manner as described in
Step 1 above. The default directory string is set initially
to correspond to the UIC under which the task is running.

4.6.1.3 Filename, File Type or Extension, and File Version
Information

Following the operations described in the preceding section, .PARSE
attempts to obtain filename information (N.FNAM, N.FTYP, and N.FVER),
as follows:

1. If the address of a dataset descriptor is specified in R2 and
this structure contains a filename string, the filename
information therein is moved into the specified filename
block.

2. If the address of a default filename block is specified in
R3, and one or more of the filename, file type or extension,
and file version number fields of the dataset descriptor
specified in R2 are null, then the corresponding fields of
the default filename block are used to· fill in the specified
filename block.

3. If neither Step 1 nor Step 2 yields the requisite filename
information, any specific field(s) not available from either
source remain(s) null.

NOTE

If a dot (.) appears in the filename
string without an accompanying file type
designation (e.g., TEST. or TEST.;3),
the file type is interpreted as being
explicitly null. In this case, the
default file type is not used.
Similarly, if a semicolon (;) appears in
the filename string without an
accompanying file version number (e.g.,
TEST.DAT;), the file version number is
likewise interpreted as being explicitly
null; again, the default file version
number is not used in this case.

4-10

FILE CONTROL ROUTINES

4.6.1.4 Other Filename Block Information

Finally, after performing all the operations above, the .PARSE routine
also fills in the filename block status word {offset location N.STAT)
of the filename block specified in Rl. The bit definitions for this
word are presented in Table B-2. Note in this table that an
"explicit" directory, device, filename, file type, or file version
number specification pertains to ASCII data supplied through the
dataset descriptor pointed to by R2.

In addition, .PARSE explicitly zeros offset location N.NEXT in the
filename block pointed to by Rl. This action has implications for
wildcard operations, as described in section 4.7.1 below.

4.6.2 .PRSDV - Fill in Device and Unit Information Only

The .PRSDV routine is identical to the .PARSE routine above, except
that it performs only those operations associated with requisite
device and unit information {see section 4.6.1.1). This routine zeros
the filename block pointed to by Rl, performs a .PARSE operation on
the device and unit fields in the specified dataset descriptor and/or
default filename block, and assigns the logical unit number contained
in offset location F.LUN of the specified FDB.

4.6.3 .ASLUN - Assign Logical Unit Number

The .ASLUN routine is called to assign a logical unit number to a
specified device and unit and to return the device information to a
specified FDB and filename block.

The following registers must be preset before calling this routine:

RO Must contain the address of the desired FDB.

Rl Must contain the address of the filename block containing the
desired device and unit. This filename block is usually, but
not necessarily, the filename block within the FDB specified
in RO.

If the device name field {offset location N.DVNM) of the filename
block pointed to by Rl contains a non-zero value, the specified device
and unit are assigned to the logical unit number contained in offset
location F.LUN in the FDB pointed to by RO.

If N.DVNM in the filename block contains zero {0), then the device and
unit currently assigned to the specified logical unit number are
returned to the appropriate fields of the filename block.

Finally, if the specified logical unit number is not assigned to a
device, the .ASLUN routine assigns it to the system device {SYO:) by
default.

The information returned to the specified filename block and to the
specified FDB is identical to that returned by the device and unit
logic of the .PARSE routine {see section 4.6.1.1).

4-11

FILE CONTROL ROUTINES

4.7 DIRECTORY ENTRY ROUTINES

The following routines are used to find, insert, and delete directory
entries. The term "directory entry" encompasses entries in both the
master file directory (MFD) and the user file directory (UFD).

4.7.1 .FIND - Locate Directory Entry

The .FIND routine is called to locate a directory entry by filename
and to fill in the file identification field (N.FID) of a specified
filename block.

The following registers must be preset before calling this routine:

RO Must contain the address of the desired FDB.

Rl Must contain the address of a filename block. This filename
block is usually, but not necessarily, the filename block
within the FDB specified in RO.

When invoked, the .FIND routine searches the directory file specified
by the directory ID field of the filename block. This file is
searched for an entry that matches the specified filename, file type,
and file version number. In this regard, two special file versions
are defined:

Version 0 is matched by the latest (largest) version number
encountered in the directory file.

Version -1 is matched by the oldest (smallest) version number
encountered in the directory file.

If either of these special versions is specified in the filename
block, the matching version number is returned to the filename block.
In this way, the actual version number is made available to the
program.

Certain wildcard operations require the use of the .FIND routine.
Three bits in the filename block status word (see N.STAT in Table B-2)
indicate whether a wildcard (*) was specified for a filename, a file
type, or a file version number field. If the wildcard bit in N.STAT
is set for a given field, any directory entry will match in that
corresponding field. Thus, if the filename and file version number
fields contain wildcard specifications (*), and the file type field is
specified as .OBJ (i.e., *.OBJ;*), the first directory entry
encountered that contains .OBJ in the file type field will match,
irrespective of the values present in the other two fields.

When a wildcard match is found, the complete filename, file type, and
file version number fields of the matching entry are returned to the
filename block, along with the file ID field (N.DID). Thus, the
program can determine the actual name of the file just found. Offset
location N.NEXT in the filename block is also set to indicate where
that directory entry was found in the directory file. This
information is used in subsequent .FIND operations to locate the next
matching entry in the directory file.

4-12

FILE CONTROL ROUTINES

For example, the .FIND routine is often used to open a series of files
when wildcard specifications are used. The following operations are
typical:

1. Call the .PARSE routine. This routine zeros offset location
N.NEXT in the filename block in preparation for the iterative
.FIND operations described in Step 3 below.

2. Check for wildcard bits set by the .PARSE routine in the
filename block status word (see N.STAT in Table B-2). An
instruction sequence such as that shown below may be used to
test for the setting of wildcard bits in N.STAT:

BIT #NB.SVR!NB.STP!NB.SNM,N.STAT(Rl)

BEQ NOWILD ;BRANCH IF NOT SET.

3. If wildcard specifications are present in the filename block
status word, repeat the following sequence until all the
desired wildcard files have been processed:

CALL

BCS

OPEN$

.FIND

DONE ;ERROR CODE IE.NSF INDICATES
;NORMAL TERMINATION.

Wildcard .FIND operations update offset location N.NEXT in
the filename block. In essence, the contents of this cell
provide the necessary information for continuing the search
of the directory file for a matching entry.

4. Perform the desired operations on the file.

NOTE

The above procedure applies only for the
following types of wildcard file
specifications:

TEST.DAT;*
TEST.*;*
.DAT;

The procedure does
following types
specifications:

*.DAT
TEST.*

not work for
of wildcard

the
file

In summary, if a wildcard file
specification is present in either the
filename field or the file type field,
the file version number field must also
contain either an explicit wildcard
specification (*) or a specific file
version number (e.g., 2, 3, etc.). In
the latter case, however, the version

4-13

FILE CONTROL ROUTINES

number cannot be zero (0), for the
latest version of the file, or minus one
(-1), for the oldest version of the
file.

4.7.2 .ENTER - Insert Directory Entry

The .ENTER routine is used to insert an entry by filename into a
directory.

The following registers must be preset before calling this routine:

RO Must contain the address of the desired FDB.

Rl Must contain the address of a filename block. This filename
block is usually, but not necessarily, the filename block
within the- FOB specified in RO.

If the file version number field of the filename block contains zero
(0), indicating a default version number, the .ENTER routine scans the
entire directory file to determine the current highest version number
for the file. If a version number for the file is found, this entry
is incremented to the next higher version number; otherwise, it is
set to one (1). The resulting version number is returned to the
filename block, making this number known to the program.

I

NOTE

Wildcard specifications cannot be used
in connection with .ENTER operations.

4.7.3 .REMOV - Delete Directory Entry

The .REMOV routine is called to delete an entry from a directory by
filename. This routine only deletes a specified directory entry; it
does not delete the associated file.

The following registers must be preset before calling this routine:

RO Must contain the address of the desired FDB.

Rl Must contain the address of a filename block. This filename
block is usually, but not necessarily, the filename block
within the FDB specified in RO.

Wildcard specifications operate in the same manner as for the .FIND
routine described in section 4.7.1 above, except that the special file
version numbers zero (0) and minus one (-1) are illegal. The file
version number for .REMOV operations must be explicit or wildcard.
Each .REMOV operation deletes the next directory entry having the
specified filename, file type, and file version number.

4-14

FILE CONTROL ROUTINES

4.8 FILENAME BLOCK ROUTINES

The following routines are used to insert directory information in a
specified filename block.

4.8.1 .GTDIR - Insert Directory Information in Filename Block

The .GTDIR routine is called to insert directory information taken
from a directory string descriptor into a specified filename block.

Before calling this routine, the following registers must be preset:

RO Must contain the address of the desired FDB.

Rl Must contain the address of a filename block in which the
directorv information is to be placed. This filename block
is usually, but not necessarily, the filename block within
the FDB specified in RO.

R2 Must contain the address of the
descriptor in the user program.
defines the size and the address of
string.

2-word
This
the

directory string
string descriptor

desired directory

This routine performs a .FIND operation for the specified user file
directory (UFD) in the master file directory (MFD) and returns the
resulting directory ID to the three words of the specified filename
block, starting at offset location N.DID. The .GTDIR routine
preserves the information in offset locations N.FNAM, N.FYTP, N.FVER,
N.DVNM, and N.UNIT of the filename block, but zeros (clears) the rest
of the filename block.

The .GTDIR routine can also be used in conjunction with the NMBLK$
macro call (see section 2.4.2) to insert directory information into a
specified default filename block.

4.8.2 .GTDID - Insert Default Directory Information in Filename Block

The .GTDID routine provides an alternate means for inserting directory
information into a specified filename block. Instead of allowing the
specification of the directory string, as in the .GTDIR routine above,
this routine uses the UIC in the default file owner word in $$FSR2 as
the desired user file directory (UFO).

Before calling this routine, the following registers must be preset:

RO Must contain the address of the desired FDB.

Rl Must contain the address of a filename block in which the
directory information is to be placed. This filename block
is usually, but not necessarily, the filename block within
the FDB specified in RO.

When called, the .GTDID routine takes the UIC from the default file
owner word in $$FSR2 and performs a .FIND operation for the associated
user file directory (UFD) in the master file directory (MFD). The
resulting directory ID is returned to the three words of the specified

4-15

FILE CONTROL ROUTINES

filename block, starting at offset location N.DID. As with the .GTDIR
routine, .GTDID preserves offset locations N.FNAM, N.FTYP, N.FVER,
N.DVNM, and N.UNIT in the filename block, but zeros the rest of the
filename block.

The .GTDID routine embodies considerably less code than the .GTDIR
routine, since it does not invoke the .PARSE logic; furthermore,
.GTDID is intended specifically for use in programs which open files
via the OFNB$ macro call (see section 3.6). Such a program does not
invoke the .PARSE logic because all required filename information is
provided to the program in filename block format.

As is true of the .GTDIR routine described in section 4.8.1 above,
.GTDID may also be used in conjunction with the NMBLK$ macro call (see
section 2.4.2) to insert directory information (N.DID) into a
specified default filename block. The user also has the option to
initialize offset location N.DID manually with required directory
information.

4.9 FILE POINTER ROUTINES

The following routines are used to point to a byte or a record within
a specified file.

4.9.1 .POINT - Position File to Specified Byte

The .POINT routine is called to position a file to a specified byte in
a specified virtual block. If locate mode is in effect for record I/O
operations, the .POINT routine also updates the value in offset
location F.NRBD+2 in the associated FDB in preparation for a PUT$
operation in locate mode.

The following registers must be preset before calling this routine:

RO Must contain the address of the desired FDB.

Rl Must contain the high-order bits of the virtual block number.

R2 Must contain the low-order bits of the virtual block number.

R3 Must contain the desired byte number within the specified
virtual block.

For a description of virtual block numbers and how these 2-word values
are formed, refer to Item 4 in section 2.2.2.1.

The .POINT routine is often used in conjunction with the .MARK routine
to achieve a limited degree of random access with variable-length
records. The .MARK routine saves the positional context of a file in
anticipation of temporarily closing that file and then re-opening it
later at the same position. For such purposes, the following
procedure applies:

1. Call the .MARK routine (see section 4.9.3 below) to save the
current positional context of the file.

2. Close the file.

4-16

FILE CONTROL ROUTINES

3. When desired, re-open the file.

4. Load the information returned by the .MARK routine into Rl,
R2, and R3, as required above, before calling the .POINT
routine.

5. Call the .POINT routine.

6. Resume processing of the file.

4.9.2 .POSRC - Position File to Specified Record

The .POSRC routine is called to position a file to a specified
fixed-length record within a file. If locate mode is in effect for
record I/O operations, the .POSRC routine also updates the value in
offset location F.NRBD+2 in the associated FDB in preparation for a
PUT$ operation in locate mode.

Before calling this routine, the user must set offset locations
F.RCNM+2 and F.RCNM in the FDB to the desired record number and ensure
that the correct record size is reflected in offset location F.RSIZ of
the FDB.

Also, the register below must be preset before calling the .POSRC
routine:

RO Must contain the address of the associated FDB.

The .POSRC routine is used when performing random access PUT$
operations in locate mode. Normally, PUT$ operations in locate mode
are sequential; however, when random access mode is used, the
following procedure must be performed to ensure that the record is
hn~l-1- _.._ -1-}...,,- ...:J--.:--~ , ___; __ _
UU..L..L'- Q'- '-llC UCi:>..L.1.CU .1.V\,,;0'-.1.VUe

1. Set offset locations F.RCNM+2 and F.RCNM in the associated
FDB to the desired record number.

2. Call the .POSRC routine.

3. Build the new record at the address returned (by the .POSRC
call) in offset location F.NRBD+2 of the associated FDB.

4. Perform the PUT$ operation.

4.9.3 .MARK - Save Positional Context of File

The .MARK routine allows the user to record the current positional
context of a file for later use. For example, the user may mark the
current position of the file, close that file, and later re-open the
file and return to the same position within the file. The .MARK
routine is also useful in altering records within a file. After
determining the record to be altered, the user may .MARK the file and
retrieve information elsewhere in the file for use in updating the
desired record. Then, by returning to the saved position of the file,
the desired record may be altered. This iterative sequence may be
repeated any number of times to update desired records in the file.

4-17

FILE CONTROL ROUTINES

The register below must be preset before calling this routine:

RO Must contain the address of the associated FDB.

When called, the .MARK routine returns information to the following
registers:

Rl Contains the high-order bits of the virtual block number.

R2 Contains the low-order bits of the virtual block number.

R3 Contains the number of the next byte within the virtual
block.

R3 points to the next byte in the block. For example, if four GET$
operations are performed, followed by a call to the .MARK routine, R3
points to the first byte in the fifth record in the file.

4.9.4 .POSIT - Return Positional Information for Specified Record

The .POSIT routine calculates the virtual block number and the byte
number pertaining to the beginning of a specified record.

The following register must be preset before calling this routine:

RO Must contain the address of the associated FDB.

In addition, offset locations F.RCNM and F.RCNM+2 in the associated
FDB must contain the desired record number.

Unlike the .POSRC routine above, which positions the file to the
specified record, .POSIT simply calculates the positional information
for a specified record so that a .POINT operation can be later
performed to position to the desired record.

The register values returned by the .POSIT routine are identical to
those described above for the .MARK routine.

4.10 QUEUE I/0 FUNCTION ROUTINE (.XQIO)

The .XQIO routine is called to execute a specified QUEUE I/O function
and to wait for its completion.

The following registers must be preset before calling this routine:

RO Must contain the address of the desired FDB.

Rl Must contain the desired QUEUE I/O function code. Refer to
the IAS/RSX-llD Device Handlers Reference Manual or the
RSX-llM I/O Drivers Reference Manual for the desired QUEUE
I/O directive function codes.

R2 Must contain the number of optional parameters to be included
in the QUEUE I/O directive, if any.

R3 Must contain the beginning address of the list of optional
QUEUE I/O directive parameters, if R2 contains a non-zero
value.

4-18

FILE CONTROL ROUTINES

4.11 RENAME FILE ROUTINE (.RENAM)

The .RENAM routine is called to change the name of a file in its
associated directory. To rename a file, the user must specify the
address of an FDB containing filename information, a LUN, and an event
flag number to be used in-connection with renaming the file. If the
file to be renamed is open when the call to .RENAM is issued, that
file is closed under its new name, provided that the renaming
operation is successful.

The following registers must be preset before calling this routine:

RO Must contain the address of the FDB associated with the
originally-named file.

Rl Must contain the address of the FDB containing the desired
filename information, LUN assignment, and event flag to be
associated with renaming the file.

If the renaming operation is successful, a new directory entry is
created, and the original entry is deleted. If the operation is not
successful, the file is closed under its original name, and the
associated directory is not affected.

NOTE

The renamino process is merely a
directory operation which replaces an
old entry with a new entry. The
filename stored in the file's header
block is not altered.

4.12 FILE EXTENSION ROUTINE (.EXTND)

The .EXTND routine
noncontiguous files.
closed.

is called to extend either contiguous or
The file to be extended can be either open or

The following registers must be preset before calling this routine:

RO Must contain the address of the associated FDB.

Rl Must contain a numeric value specifying the number of blocks
to be added to the file.

R2 Must contain the extension control bits, as appropriate. The
possible bit configurations for controlling file extend
operations are detailed in Table 4-1. This table defines the
bits in the low-order byte of R2. The high-order 8 bits of
R2 (bits 8 through 15) are used in conjunction with the 16
bits of Rl to define the number of blocks to be added to the
file (see Note below).

NOTE

The contents of Rl and the high-order
byte of R2 (bits 8 through 15) are used

4-19

7

0

0

I 1

1

I
1

1

1

1

1

FILE CONTROL ROUTINES

by FCS in accomplishing the specified
.EXTND operation. Thus, 24 bits of
magnitude are available for specifying
the number of blocks by which the file
is to be extended.

Table 4-1
R2 Control Bits for .EXTND Routine

BIT SETTINGS -
Low-Order Byte of R2 BIT DEFINITIONS AND MEANING

6 5 4 3 2 1 0

EX. ENA - Bit 7 = 0

x x x x x x 0 EX.ACl - BIT 0 = O; indicates that
extend is to be noncontiguous.

x x x x x x 1 EX.ACl - BIT 0 = l; indicates that
extend is to be contiguous and that
file is to be contiguous.

EX.ENA - Bit 7 = 1

x x x x x x 0 EX.ACl - Bit 0 = O; indicates that
noncontiguous area is to be added to
the file.

x x x x x x 1 EX.ACl - Bit 0 = l; indicates that
contiguous area is to be added to the
file.

x x x x x 1 x
I

EX.AC2 - Bit 1 = l; indicates that
the largest available contiguous area
is to be added to the file if desired
extend space is not available. This
bit is set only if bit 0 in EX.ACl is
set to one { 1) •

x x x x 0 x x EX.FCO Bit 2 O; indicates that
the file is to be noncontiguous.

x x x x 1 x x EX.FCO - Bit 2 = l; indicates that
the file is to be contiguous.

x x x 0 x x x EX.ADF - Bit 3 = 0; indicates that
the user intends to allocate the
numbe.r of blocks specified by Rl and
the high-order bits of R2 {see Note
above) •

x x x 1 x x x EX.ADF - Bit 3 = l; indicates that
file extension is to occur according
to the volume default extend value, as
established by the INITIALIZE,
INITVOLUME, or MOUNT command.

4-20

I

I

FILE CONTROL ROUTINES

4.13 FILE DELETION ROUTINES

The following routines are provided for deleting files.

4.13.1 .MRKDL - Mark Temporary File for Deletion

The .MRKDL routine is used in conjunction with a temporary file,
a file created through the OPNT$W macro call (see section 3.3).
a file has no associated directory entry.

i.e.,
Such

A call to the .MRKDL routine is issued prior to closing a temporary
file. The file so marked is then deleted automatically when the file
is closed.

Before calling the .MRKDL routine, the following register must be
preset:

RO Must contain the address of the associated FDB. This FDB is
assumed to contain the file identification, device name, and
unit information pertaining to the file to be deleted.

If the .MRKDL routine is invoked while the temporary file is open, as
is normally done, then the file is deleted unconditionally when it is
closed, even if the calling task terminates abnormally without closing
the file.

4.13.2 .DLFNB - Delete File by Filename Block

This routine is used to delete a file by filename block. The .DLFNB
routine assumes that the filename block is completely filled in, and,
when called, it closes the file, if necessary, and then deletes the
file.

Before calling this routine, the following register must be preset:

RO Must contain the address of the associated FDB.

The .DLFNB routine operates in the same manner as the routine invoked
by the DELET$ macro call (see section 3.17), but .DLFNB does not
require any of the .PARSE logic and is thus considerably smaller (in
terms of memory requirements) than the normal DELET$ function.

Like the DELET$ operation, however, if the file to be deleted is not
currently open, and if an explicit file version number is not present
in offset location N.FVER of the associated filename block, then the
.DLFNB operation will fail.

4-21

FILE CONTROL ROUTINES

4.14 DEVICE CONTROL ROUTINE (.CTRL)*

The .CTRL
functions.
functions:

routine is called
The following are

to perform device-specific control
examples of .CTRL device-specific

1. Rewind a magnetic tape volume set,

2. Position to the logical end of a magnetic tape volume set,

3. Close the current magnetic tape volume and continue file
operations on the next volume.

The following registers must be preset before calling this
routine.

RO Must contain the address of the associated FDB.

Rl Must contain one of the following function codes.

FF.RWD to rewind a magnetic tape volume set

FF.POE to position to the logical end of a magnetic tape
volume set

FF.NV to close
operations
volume set

the
on

current
the next

R2 and R3 must contain zeros.

volume
volume

and
of

continue file
a magnetic tape

See Chapter 5 for an explanation of the use of .CTRL to accomplish
magnetic tape device-specific functions.

*This routine does not apply to RSX-llM.

4-22

CHAPTER 5

FILE STRUCTURES

IAS, RSX-llD, and RSX-llM support an identical file structure on disk
and DECtape. IAS and RSX-llD support also, a file structure on
magnetic tape~

RSX-llM supports a magnetic tape file structure only in conjunction
with the File Exchange Utility (FLX). This program is described in
detail in the RSX-llM Utilities Procedures Manual.

The disk and DECtape file structure is called FILES-11; the
IAS/RSX-llD magnetic tape file structure is ANSI standard.

5.1 DISK AND DECTAPE FILE STRUCTURE (FILES-11)

Volumes contain both user files and system files. Disks and DECtapes
initialized through the INITIALIZE (IAS) or INITVOLUME (RSX) command
have the standard FILES-11 structure built for them automatically.
The standard system files created through these commands include the
following:

1. Index file;

2. Storage allocation file;

3. Bad block file;

4. Master file directory (MFD); and

5. Checkpoint file (not used by RSX-llM).

Each FILES-11 volume has a file of each type. A volume may have more
than one directory file; such files, created by the CREATE/DIRECTORY
command in IAS, and the UFD command in RSX-11 systems, are used by the
system to locate user files on the volume.

The INITVOLUME command is described in detail in the RSX-llD User's
Guide or the RSX-llM Operator's Procedures Manual; the INITIALIZE
command description can be found in the IAS User's Guide.

5-1

FILE STRUCTURES

5.1.1 User File Structure

User data files on disk and DECtape consist of ordered sets of virtual
blocks that constitute the virtual structure of the file as it appears
to the user. Virtual blocks can be read and written directly by
issuing READ$ and WRITE$ macro calls (see sections 3.15 and 3.16,
respectively). Virtual blocks are numbered in ascending sequence
relative to the first block in the file (which is virtual block 1).

The virtual blocks of a file are stored on the volume as logical
blocks. The logical block size of all volumes is 256 words; thus,
each virtual block is also 256 words. When access to a virtual block
is requested, the virtual block number is mapped into a logical block
number. The logical block number is then mapped to the physical
address on the associated volume.

5.1.2 Directory Files

A directory file contains directory entries. Each entry consists of a
filename and its associated file number and file sequence number. The
number of directory files required depends on the number of users of
the volume. For single-user volumes, only a master file directory
(MFD) is needed; for multiple-user volumes, a master file directory
(MFD) is required, and one user file directory (UFD) is required for
each user of the volume.

The master file directory contains a list of all the user file
directories on the volume, and each user file directory contains a
list of all that user's files. User file directories (UFD's) are
identified by user identification codes (UIC's). A user file
directory is created by the UFD command in RSX-11 systems, and the
CREATE/DIRECTORY command in !AS. These commands are described in
detail in the RSX-llD User's Guide, the RSX-llM Operator's Procedures
Manual, or the !AS System Management Guide.

Figures 5-1 and 5-2 illustrate the directory structure for single-user
and multiple-user volumes, respectively.

5-2

FILE

MFD

l
l j_ 1

File A File B File c

Figure 5-1
Directory Structure for Single-User Volumes

MFD

UFD UFD

100,100 200,200

File A File B

I I I

I File Al I File sl I File cl

Figure 5-2
Directory Structure for Multiple-User Volumes

5-3

FILE STRUCTURES

5.1.3 Index File

The index file contains volume information and user file
blocks, both of which are used by the file control primitives
Because the file header blocks (see below) are stored in the
file, they can be located very quickly. Furthermore, since
header block is 256 words in length, it can be read into memory
single access.

header
(FCP) •
index

a file
with a

The index file is created when a volume is initialized for use by the
host operating system. During initialization, the information
required by the system is placed in the index file. Appendix E
contains a detailed description of the format and content of an index
file.

5.1.4 File Header Block

Associated with each file is a file header block that contains
information describing the file. File header blocks are stored in the
index file. Each file header block is 256 words in length and
contains three areas: the header area, the identification area, and
the map area.

The header area identifies the block as a file header block. Each
file is uniquely identified by a file ID consisting of two words. The
first word of the file ID, i.e., the file number, is used to calculate
the virtual block number (VBN) of that file's header block in the
index file. {This calculation is done, as follows: VBN = the file
number + 3 + the number of index file bit map blocks.) The second
word, i.e., the file sequence number, is used to verify that the
header block is in fact the header for the desired file.

When a request to access a file is issued, both the file number and
the file sequence number are specified. The access request will be
denied if the file sequence number does not match the corresponding
field in the file header block associated with the specified file
number.

When a file is deleted, its file header block is made available for
the subsequent creation of a new file, and when the new file is
created, a different file sequence number is stored in the file header
block. If a user attmpts to access a file that has been deleted
(e.g., by referencing an obsolete directory entry), this updated file
sequence number ensures the failure of the access request, even if the
same file header block is re-used for a different file.

The identification area specifies the creation name of the file and
identifies the file owner's UIC. This area also specifies the
creation date and time, the revision number, the date and time of the
last revision (i.e., the time and date on which the last modification
to the file occurred), and the expiration date.

The map area provides the information needed by the system to map
virtual block numbers to logical block numbers.

A checksum value is computed each time the file header block is read
from or written to the volume, thus ensuring that the file header
block was transferred correctly. Appendix F contains a detailed
description of the format and content of the file header block.

5-4

FILE STRUCTURES

5.2 MAGNETIC TAPE FILE PROCESSING {IAS AND RSX-llD ONLY)

IAS and RSX-llD support the standard ANSI magnetic tape structure as
described in the June 19, 1974 proposed revision to "Magnetic Tape
Labels and File Structure for Information Interchange," ANSI
X.27-1969. Any of the following file/volume combinations can be used:

1. Single file on a single volume,

2. Single file on more than one volume,

3. Multiple files on a single volume,

4. Multiple files on more than one volume.

Items 2 and 4 above constitute a volume set.

The sequence in which volume and file labels are used and the format
of each label type is defined in Appendix G.

5.2.1 Access to Magnetic Tape Volumes

Magnetic tape is a sequential access, single directory storage medium.
Only one user can have access to a given volume set at a time. No
more than one file in a volume set can be open at a time. Access
protection is performed on a volume set basis. On volumes produced by
DIGITAL systems, user access rights are determined by the contents of
the owner identification field as described in Section G.1.1.1.
Volumes produced by nonDIGITAL systems are restricted to read-only
access unless explicitly overridden at MOUNT time.

5.2.2 Rewinding Volume Sets

A magnetic tape volume set can be rewound either by using the FDOP$R
macro call before an OPEN$ or CLOSE$ or by using the .CTRL file
control subroutine. Regardless of the method used to rewind the
volume set, the following procedures are performed by the file control

1. All mounted volumes are rewound to BOT,

2. If the first volume in the set is not mounted, the unit to be
used is placed offline,

3. If the volume is not already mounted and if the rewind was
requested by an OPEN$ macro call or by a .CTRL call, a
request to mount the first volume is printed on the
operator's console,

4. If the rewind was requested on a CLOSE$ macro call, no mount
message is issued until the next volume is needed.

5-5

FILE STRUCTURES

5.2.3 Positioning to the Next File Position

The FOOP$R macro call can be used to indicate that the file just
opened is to be written immediately after the end of file labels of
the most recently closed file. Any subsequent files in the volume set
are lost.

If the rewind option also is specified, the file is created after the
VOLl label on the first volume of the set. All files that were
previously contained in the volume set are lost.

To create a file in the next file position, FA.PCS must be set in FOB
location F.ACTL. The default value for this FOB position is 0 (not
FA.PCS). The default indicates that the file system is to position at
the logical end of the volume set to create the file.

When the default is used, no check is made for the existence of a file
with the same name in the volume set. Therefore, a program written to
use magnetic tape normally should specify FA.PCS.

The next file position option is ignored by directory device file
processors. However, programs written mainly for directory devices
cannot specify the next file position option in open commands for
output and, therefore, cause the position to end process to be used
automatically.

5.2.4 Single File Operations

Single file operations are performed by specifying the rewind option
before the open and before the close. Using this approach, scratch
tape operations can be performed as follows:

1. Open the first file with rewind specified,

2. Write the data records and close the file with rewind,

3. Open the first file again for input (rewind is optional},

4. Read and process the data,

5. Close the file with rewind,

6. Open the second file with rewind specified,

7. Write the data records,

8. Close the file with rewind and perform any additional
processing.

5.2.5 Multiple File Operations

A multiple file volume is created by opening, writing, and then
closing a series of files without specifying a rewind. The sequential
processing of files on the volume can be accomplished by closing
without rewind and then opening the next file without rewind.

Opening a file for extend (OPEN$} is legal only for the last file on
the volume set.

5-6

FILE STRUCTURES

The following tape operations are performed to create a multiple file
tape volume:

1. Open a file for output with rewind,

2. Write data records and close the file,

3. Open the next file with no rewind,

4. Write the data records and close the file,

5. Repeat for as many files as desired.

Files on tape can be opened in a nonsequential order, but increased
processing and tape positioning time is required. Nonsequential
access of files in a multiple volume set is not recommended.

5.2.6 Using .CTRL

The .CTRL file control routine can be called to override normal FCS
defaults for magnetic tape. Examples of its uses are:

1. Continue processing a file on the next volume of a volume set
before the end of the current volume is reached,

2. Position to the logical end of the volume set,

3. Rewind a volume at other than file open or close.

When .CTRL is used to continue processing a file on the next volume,
the first file section on the next volume is opened. File sections
occur when a file is written on more than one volume. The portion of
the file on each of the volumes constitutes a file section. For input
files, the following .CTRL processing occurs.

1. If the current volume is the last volume in the set, i.e.,
there is no next volume, end of file is reported to the user.

2. If another file section exists, the current volume is rewound
ana tne next volume is mounted. A request to the operator is
printed if necessary.

3. The header label (HDRl) of the first file section is read and
checked.

4. If all required fields check, the operation continues.

5. If any check fails, the operator is requested to mount the
correct volume.

For output files, the following processing occurs.

1. The current file section is closed with EOVl and EOV2 labels
and the volume is rewound.

2. The next volume is mounted.

3. A file with the same name and the next higher section number
is opened for write. The file set identifier is identical

5-7

FILE STRUCTURES

with the volume identifier of the first volume in the volume
set.

NOTE

I/O buffers that are currently
in memory are written on the
next file section.

When .CTRL is used to position to the logical end of the volume set,
the file system positions between the two tape marks at the logical
end of last volume in the set.

5-8

FILE STRUCTURES

5.2.7 Examples of Magnetic Tape Processing

The following pages contain examples of FCS statements used to process
magnetic tape. Macro parameters not related to magnetic tape handling
have been omitted from the statements so that the user need consider
only those matters directly related to magnetic tape.

5.2.7.1 Examples of OPEN$W to Create a New File - All routines expect
RO to contain the FDB address.

OPRWDO:

OPEN WITH REWIND

FDOP$R RO,,,,#FA.ENB!FA.RWD
BR OPNOUT

OPNXTO:

OPEN FOR NEXT FILE POSITION

FDOP$R RO,,,,#FA.ENB!FA.POS
BR OPNOUT

OPROYK:

;SET REWIND AND ENABLE USE
~OF F.ACTL

;SET POSITION TO NEXT
;AND ENABLE USE OF F.ACTL

OPEN FILE AT END OF VOLUME KEEPING CURRENT USER
ACCESS CONTROL BITS

OPROVO:

BIC
BR

#FA.ENB,F.ACTL(RO)
OPNOUT

;DISABLE USE OF F.ACTL

OPEN FILE AT END OF VOLUME - SELECT SYSTEM DEFAULT FOR
USER ACCESS CONTROL BITS

FDOP$R R0,,,,#0
BR OPNOUT

;DISABLE USE OF AND RESET
;F.ACTL TO ZERO

OPEN FILE WITH CURRENT USER ACCESS CONTROL
;
OPOURO:

BIS #FA.ENB;F.ACTL(RO)
OPNOUT: OPEN$W RO

RETURN

;ENABLE USE OF F.ACTL
;OPEN FILE

5.2.7.2 Examples of OPEN$ to Read a File - All routines expect RO to
contain the FDB address.

OPRWDI:

OPEN WITH REWIND

FDOP$R RO,,,,#FA.ENB!FA.RWD
BR OPNIN

OPCURI:

OPEN STARTING SEARCH AT CURRENT TAPE POSITION KEEPING USER
ACCESS CONTROL BITS

5-9

FILE STRUCTURES

OPNIN:
;

BIC
BR

#FA.ENB,F.ACTL(RO)
OPNIN

; OPEN USING USER ACCESS CONTROL
;
OPDFLI: BIS #FA.ENB,F.ACTL(RO)

OPEN$R RO
RETURN

;DISABLE USE OF F.ACTL

;ENABLE USE OF F.ACTL

5.2.7.3 Examples of CLOSE$ - All routines expect RO to contain the
FDB address.

CLSCUR:

CLOSE LEAVING TAPE AT CURRENT POSITION AND KEEPING
USER ACCESS CONTROL BITS

BIC
BR

#FA.ENB,F.ACTL(RO)
CLOSE

CLSRWD:

CLOSE REWINDING THE VOLUME

FDOP$R RO,,,,#FA.ENB!FA.RWD
BR CLOSE

CLOSE WITH USER ACCESS CONTROL BITS
;
CLSDFL: BIS #FA.ENB,F.ACTL(RO)
CLOSE: CLOSE$ RO

RETURN

5-10

;DISABLE USE OF F.ACTL
;DEFAULT IS LEAVING AT CURRENT
;POSITION

;SET REWIND AND ENABLE USE OF
;F.ACTL

;ENABLE USE OF F.ACTL

FILE STRUCTURES

5.2.7.4 Combined Examples of OPEN$ and CLOSE$ for Magnetic Tape - The
following examples call routines in previous examples. By combining
various magnetic tape operations the user can process tape volumes in
the following ways.

;
; SCRATCH TAPE OPERATIONS--SINGLE FILE VOLUME--
;
SCROUT: MOV #FDBOUT,RO ;SELECT FOB AND OPEN

CALL OPRWDO ;OUTPUT FILE WlTH REWIND
RETURN

SCRIN: MOV #FDBIN ,RO
CALL OPRWDI
RETURN

CLSCRO: MOV #FDBOUT,RO
BR CLSVOL

CLSCRI: MOV FDBIN,RO
CLSVOL: CALL CLSRWD

RETURN

MULTI-FILE VOLUME OPERATIONS
;
OPNXTI:

;SELECT FOB AND OPEN FOR
;INPUT WITH REWIND

;CLOSE SCRATCH FILE
;REWINDING VOLUME

OPEN FILE FOR READING WHEN FILE IS NEXT OR FURTHER UP THE VOLUME

MOV #FDBIN,RO
CALL OPCURI
RETURN

OPENIN:

;SELECT FOB
;OPEN FILE

OPEN FILE FOR READING WHEN POSITIONED PAST IT

MOV #FDBIN,RO
CALL OPRWDI
RETURN

MULTI-FILE OUTPUT OPERATIONS
;
OPNINT:

;SELECT FDB

START NEW VOLUME DESTROYING ALL PAST FILES ON IT

MOV #FDBOUT,RO
CALL OPRWDO
RETURN

OPNEXT:

;SELECT OUTPUT FOB
;OPEN WITH REWIND

OPEN OUTPUT FILE AT NEXT FILE POSITION DESTROYING ANY FILE
THAT MAY BE AT OR PAST THAT POSITION

MOV #FDBOUT,RO ;SELECT OUTPUT FOB
CALL OPNXTO
RETURN

OPENDT:

OPEN OUTPUT FILE AT CURRENT END OF VOLUME SET KEEPING USER
ACCESS CONTROL BITS

5-11

FILE STRUCTURES

MOV #FDBOUT,RO ;SELECT OUTPUT FOB
CALL OPROVK
RETURN

OPNEOV:

OPEN OUTPUT FILE AT CURRENT END OF VOLUME AND MAKE THAT THE USER
ACCESS CONTROL

MOV #FDBOUT,RO ;SELECT OUTPUT FOB
CALL OPROVO
RETURN

NOT LAST FILE IN FILE SET CLOSE ROUTINE
;
CLSFLO: MOV #FDBOUT,RO ;SELECT OUTPUT FOB

BR CLSXX
CLSFLI: MOV #FDBIN,RO ;SELECT INPUT FOB
CLSXX: CALL CLSCUR

RETURN

TO APPEND TO LAST FILE

OPEN$A #FDBOUT

5-12

CHAPTER 6

COMMAND LINE PROCESSING

As noted in section 2.4.3, a collection of routines available from the
system object library (SY: [l,l]SYSLIB.OLB) may be linked with the user
program to provide all the logical capabilites required to process
command lines dynamically. These system facilities include the
following routines:

1. Get Command Line (GCML). This routine accomplishes all the
logical functions associated with the entry of command lines
from a terminal, an indirect command file, or an on-line
storage medium. Using GCML relieves the user of the burden
of manually coding command line input operations.

2. Command String Interpreter (CSI). Normally, this routine
takes command lines from the GCML command line input buffer
and parses them into the appropriate dataset descriptors
required by FCS for opening files.

This body of routines is linked with the user program at task-build
time. GCML and CSI are often jointly incorporated in system or
application programs as a standardized interface for obtaining and
interpreting dynamic command line input. The flow of data during
command line processing is shown in Figure 6-1.

Although these routines are presented in the context of being used
together for processing command line input, each may be used
independently of the other. Doing so, however, means that the user
must manually code the functions otherwise performed by the missing
component. The joint use of these routines is assumed throughout this
chapter to be the "normal" situation.

The invocation of GCML and CSI functions requires that certain
initialization operations be accomplished at assembly time. This
initialization sets up the GCML command line input buffer, defines and
initializes control blocks for both GCML and CSI, and establishes the
necessary working storage and communication areas for these routines.
Also, the appropriate macro calls which invoke GCML and CSI
execution-time functions must be included in the source coding at
desired logical points to effect the dynamic processing of command
lines.

GCML and CSI macro calls observe the same register conventions
applicable to FCS. All registers, except RO, are preserved exactly as
in all FCS macro calls. RO is used to contain the address of the GCML
control block or the CSI control block, as appropriate.

6-1

COMMAND LINE PROCESSING

As with all FCS macro calls, the GCML and CSI macro calls must also be
listed as an argument in an .MCALL directive (see section 2.1) before
being issued in the user program.

DATASET
DESCRIPTOR

ASCII DATA

GCML

CSI

FCS
(.PARSE)

FILENAME
BLOCK

Figure 6-1

DEFAULT
FILENAME

BLOCK

Data Flow During Command Line Processing

6-2

COMMAND LINE PROCESSING

6.1 GET COMMAND LINE (GCML)

The Get Command Line routine (GCML) embodies all the logical
capabilities required to enter 80-byte command lines dynamically
during program execution. GCML accepts input from a terminal or an
indirect command file which contains pre-defined command lines. Both
these functions require the creation and initialization of a GCML
control block. The macro call which accomplishes this function is
described in detail in the following section. The GCML run-time macro
calls that may be issued dynamically are described in section 6.1.3.

6.1.1 GCMLB$ - Allocate and Initialize GCML Control Block

Issuing the GCMLB$ macro call accomplishes the following assembly-time
functions:

1. Reserves storage for and initializes a GCML control block
within the user program.

2. Creates and initializes an FDB in the forepart of the GCML
control block. This FDB is used to open a command file.
Such a file, which may employ a terminal or a file-structured
device such as a disk, is opened and read by the user program
in the same manner as any other file. The initialization and
maintenance of this FDB, however, is under GCML and FCS
control and need not be of concern to the user.

3. Creates and initializes a default filename block within the
GCML control block. This default filename block pertains to
an indirect command file. If an explicit filename string is
not specified by the user for an indirect command file, the
values "SY:" for the device name and ".CMD" for the file type
are assumed by default. There is no default designation for
the filename.

4. Defines the symbolic offsets for the GCML control block and
initializes certain offsets to required values. These
offsets are described in detail in section 6.1.2.

label: GCMLB$ maxd,prmpt,ubuf ,lun,pdl

where: label represents a symbol that names the GCML control
block and defines its address. This label permits
the GCML control block to be referenced directly
by all the GCML run-time routines which require
access to this structure (see section 6.1.3).

maxd represents a numeric value that specifies the
maximum nesting depth permitted for indirect
command files. This parameter determines the
number of nested indirect command files that GCML
will be allowed to access in obtaining command
line input.

An indirect command file, which often resides on
disk, contains well-defined, non-varying command
sequences which may be read directly by GCML to

6-3

prmpt

COMMAND LINE PROCESSING

control operations which are highly repetitive
(such as Task Builder activities). Significant
advantages in terms of convenience and faster
execution result from the use of an indirect
command file.

If this parameter is not specified, a nesting
level depth of zero (0) is defined by default,
effectively eliminating an indirect command file
as a source of command line input.

represents a user-specified, 3-character ASCII
prompting sequence. This parameter constitutes a
default prompt string that is typed out by GCML to
the user terminal to solicit command line input.

The ASCII prompting sequence is formulated into
the following 6-byte string:

A. A carriage return (<CR>} and a line-feed
(<LF>};

B. The three ASCII characters specified by the
user; and

C. A right angle bracket (>).

The above string initializes GCML control block
offset location G.DPRM (see section 6.1.2).

If this parameter is not specified, the right
angle bracket (>}, preceded by three blanks, is
defined by default for use by GCML as the default
prompting sequence.

ubuf represents the address of a 41-word record buffer
that is to be used by GCML for the temporary
storage of command line input. If this parameter
is not specified, a 41-word buffer is reserved by
default in the GCML control block for command line
input.

lun represents a
assigned to
GCML as the
parameter is
of one (1) is

logical unit number. The device
this logical unit number is used by

command input device. If this
not specified, a logical unit number
used by default.

6-4

pdl

COMMAND LINE PROCESSING

represents the address of an area reserved in
user program for use as a push-down list.
area is reserved as working storage for use
connection with indirect command files.

the
This

in

Normally, the pdl parameter is not specified; in
this case, sufficient storage for the push-down
list is added to the control block by default in
accordance with the algorithm described below.

The push-down list is created through statements
logically equivalent to the following:

.EVEN
label: .BLKB G.LPDL

The user-specified "label" names the push-down
list and defines its address; G.LPDL, which is
defined by the GCMLB$ macro, is the length (in
bytes) of the push-down list.

The length of the push-down list is a function of
the maximum number of nested indirect command
files that may be accessed by GCML in obtaining
command line input. The value of G.LPDL is
calculated according to the following algorithm:

1. Add one (1) to the maximum nesting level depth
declared through the maxd parameter {see
above).

2. Multiply the sum of Step 1 by 16(10).
appropriate number of bytes that must
reserved for the push-down list.

The
be

For example, if the maxd parameter is specified as
"4", the length of the push-down list is derhted
as follows:

(4+1)*16. 80. bytes

From the above, note that 16(10) bytes of storage
are required for each indirect command file, plus
a total of 16(10) bytes for use as general
overhead.

The following examples are representative of a GCMLB$ macro call as it
might appear in a user program:

GCLBLK: GCMLB$
GCLBLK: GCMLB$
GCLBLK: GCMLB$

4.,GCM,BUFADR,l.
,,BUFADR
DEPTH,GCM,BUFADR,CMILUN,PDLIST

6-5

COMMAND LINE PROCESSING

6.1.2 GCMLD$ - Define GCML Control Block Offsets and Bit Values

The GCMLD$ macro, which is invoked automatically by the GCMLB$ macro
call, locally defines the GCML control block offsets and bit values
within the current module. These offsets and associated bit values
are listed and described below.

OFFSET
NAME

G.ERR

FUNCTIONAL SIGNIFICANCE

Error Return Code Byte. This field initially
contains zero (0). If any one of the error
conditions recognized by GCML occurs during the
processing of a command line, an appropriate error
code is returned to offset location G.ERR in the
control block. These error codes are described
below:

GE.IOR - Indicates that an I/O error has occurred
during the input of a command line.

GE.OPR - Indicates that GCML is unable to open
the specified command file.

GE.BIF - Indicates that a syntax error has been
detected in the name of the indirect command file.

GE.MOE - Indicates that an attempt has been made
to exceed the maximum permissible nesting level
depth for an indirect command file (see the "maxd"
parameter in the GCMLB$ macro call above).

GE.EOF - Indicates that the end-of-file
the first (unnested) command file
detected.

(EOF) on
has been

This bit is set in connection with command file
input. When the first call is issued for input,
GCML attempts to retrieve an MCR/PDS command line.
The first line obtained, whether it be an MCR/PDS
command or a terminal command, is accomplished at
command level 0. If the name of an indirect
command file is then entered, the command input
level is incremented to one (1). Each indirect
filename entry thereafter increments the command
input level. When the end-of-file (EOF) is
encountered on any given indirect file, the
command input level is decremented by one (1),
restoring the count to the previous level and
re-opening the associated command file. The next
command line from that file is then read.

If an MCR/PDS command has already been read at
level 0, entering another MCR/PDS command when
level 0 is again reached causes the error code
GE.EOF to be returned to offset location F.ERR of
the GCML control block. Hence, only one MCR/PDS
command line can be read at level 0. If input
thus fails at MCR/PDS level 0, then GCML continues
to prompt for input until CTRL/Z is typed by the
user to indicate terminal end-of-file (EOF}.

6-6

G.MODE

COMMAND LINE PROCESSING

In summary, the first line of input is always read
at level 0. This initial input may be an MCR/PDS
command; if the MCR/PDS command fails or is null,
the command input file (normally a terminal) is
then opened at level 0. Multiple inputs at level
0 are permissible only in the latter case, i.e.,
from the command input file.

Status and Mode Control Byte. This field is
initialized at assembly-time with the following
bit definitions to specify certain default actions
for GCML during the retrieval of a command line:

GE.COM - Indicates that a command line having a
leading semicolon (;} is to be treated as a
comment. Such lines are not returned to the
calling program. If, for any reason, the user
resets this bit to zero (0), a command line
containing a leading semicolon (;) will be
returned to the.calling program.

GE.IND - Indicates that a command line containing
a leading at sign (@} is to be treated as an
explicit indirect command file specifier. If, for
any reason, the user resets this bit to zero (0),
a command line containing a leading at sign (@)
will be returned to the calling program.

GE.CLO - Indicates that the command file currently
being read is to be closed after each issuance of
the GCML$ macro call. If the user resets this bit
to zero (0) for any reason, GCML keeps the current
command file open between calls for input. In
this case, the FSR (see section 2.6.1) must
include one additional 512(10)-byte buffer for
command line input. This requirement is additive
to the total FSR block buff er space normally
reserved for the maximum number of files that may
be open simultaneously for record I/O processing.

Clearing the GE.CLO bit in the status and mode
control byte effectively renders 512(10) bytes of
FSR block buffer space unavailable for other
purposes, since the command file remains open
between calls for command line input.

6-7

G.PSDS

G.CMLD

COMMAND LINE PROCESSING

As noted above, the user may reset any of the
status and mode control bits, if desired, by
issuing a Bit Clear Byte (BICB) instruction which
takes as the source operand the symbolic name of
the bit to be cleared. Bits other than those
defined above are used internally by GCML and must
not be manipulated by the user.

Prompt String Descriptor. This 2-word field is
initialized to zero (0) at assembly-time through
the GCMLB$ macro call (see section 6.1.1).

When the GCML$ macro call is issued to request
command line input (see section 6.1.3.1), the
address and the length of a prompting sequence is
usually not specified. In this case, the prompt
string descriptor words in the GCML control block
are cleared, causing GCML to type out the default
prompt string contained in offset location G.DPRM
(see below) to solicit command line input.

If, for any reason, the user wishes to define an
alternate prompt string elsewhere in his program,
he may do so through the .ASCII directive. The
address and length of this alternate prompt string
may then be specified as the "adpr" and "lnpr"
parameters in subsequent GCML$ macro calls. These
parameters cause offset locations G.PSDS+2 and
G.PSDS to be initialized with the address and the
length, respectively, of the alternate prompt
string. The alternate prompt string is then typed
out by GCML to solicit command line input, thereby
overriding the default prompt string previously
established through the GCMLB$ macro call (see
G.DPRM below).

If the "adpr" and "lnpr" parameters are not
specified in a subsequent GCML$ macro call, offset
location G.PSDS in the control block is
automatically reset to zero (0), causing GCML to
revert to the use of the default prompt string
contained in offset location G.DPRM.

Command Line Descriptor. This 2-word field is
initialized by GCML after retrieving a command
line. The address of the line just obtained is
returned to offset location G.CMLD+2, and the
length (in bytes) of the command line is returned
to offset location G.CMLD.

The contents of these word locations in the GCML
control block may be passed to CSI as the "buff"
and "len" parameters in the CSI$1 macro call (see
section 6.2.3.1). The combination of these
parameters constitutes the command line
descriptors which enable CSI to retrieve file
specifiers from the GCML command line input
buffer.

6-8

G.ISIZ

G.DPRM

COMMAND LINE

Impure Area Size Indicator. This symbol is
defined at assembly-time, indicating the size of
an impure area within the GCML control block to be
used as working storage for pointers, flags,
counters, etc., in connection with input from an
indirect command file. In usage terms, this
symbol need not be of concern to the user.

The space between the FDB and the default prompt
string (see G.DPRM below) constitutes the impure
area of the GCML control block. The size of the
FDB is defined by the value of the symbol S.FDB.
Thus, the size of the impure area is equal to
G.DPRM-S.FDB.

Default Prompt String. This 6-byte field is
initialized at assembly-time with the default
prompt string created throuah the "prmpt"
parameter of the GCMLB$ macro-call (see section
6.1.1). In the absence of the "adpr" and "lnpr"
parameters in the GCML$ macro call (see section
6.1.3.1), this default prompt string is typed out
by GCML to solicit terminal input.

If the user wants to reference the GCML control block offsets and bit
vaues in another module, the appropriate symbolic definitions may be
established within that module through one of the following
statements, as desired:

GCMLD$;DEFAULT LOCAL DEFINITION.

GCMLD$ DEF$L ;LOCAL DEFINI~-ON.

GCMLD$ DEF$G ;GLOBAL DEFINITION.

6.1.3 GCML Run-Time Macro Calls

Three run-time macro calls are provided in GCML to perform specific
functions, as described below:

GCML$

RCML$

CCML$

- To retrieve a command line.

- To reset the indirect command file scan to the first
(unnested) level.

- To close the current command file.

These routines are described separately in the following sections.

6-9

COMMAND LINE PROCESSING

6.1.3.l GCML$ - Get Command Line

The GCML$ macro call serves as the user program interface for
retrieving command lines from a terminal or an indirect command file.
This macro call can be issued at any logical point in the program to
solicit command line input.

This macro call takes the following format:

where:

GCML$

gclblk

gclblk,adpr,inpr

represents the address of the GCML control block.
This symbol must be the same as that specified at
assembly-time in the label field of the GCMLB$
macro call (see section 6.1.1}. If this parameter
is not specified, RO is assumed to contain the
address of the GCML control block.

adpr represents the address of the user program
location containing an alternate prompt string.
When this optional parameter and the inpr
parameter below are present in the GCML$ macro
call, the alternate prompt string is typed out on
the user terminal to solicit command line input.
The normal default prompt string, as contained in
offset location G.DPRM of the GCML control block
(see section 6.1.2), is thereby overridden.

lnpr represents the length (in bytes} of the alternate
prompt string. This parameter is also optional;
if not specified, offset location G.PSDS in the
GCML control block (see section 6.1.2) is cleared.

If this parameter is specified, but the "adpr"
parameter above is not, an .ERROR directive is
generated during assembly which causes the error
message "PROMPT STRING MISSING" to be printed in
the assembly listing. This message is a
diagnostic announcement of an incomplete prompt
string descriptor in the GCML$ macro call.

If the "adpr" and "lnpr" parameters are not specified in a subsequent
GCML$ macro call, offset location G.PSDS in the GCML control block is
automatically reset to zero (0), causing GCML to revert to the use of
the default prompt string contained in offset location G.DPRM (see
section 6.1.2 above).

When the GCML$ macro call is issued, the following actions occur:

1. RO is loaded with the address of the GCML control block. If
the "gclblk" parameter is not specified, as described above,
RO is assumed to contain the address of the GCML control
block. If it does not, RO must first be initialized manually
with the address of the control block before the GCML$ macro
call is issued.

2. The address and the length of the alternate prompt string, if
specified, are stored in control block offset locations
G.PSDS+2 and G.PSDS, respectively. These two words
constitute the alternate prompt string descriptor.

6-10

COMMAND LINE PROCESSING

3. Code is generated which calls GCML to transfer an 80-byte
command line to the command line input buffer.

At the initial issuance of the GCML$ macro call, an attempt is made to
retrieve an MCR/PDS command line. If this attempt fails, or if the
MCR/PDS command line is null, the FDB within the GCML control block is
used to open a file for command line input. If the command input
device is a terminal, a prompt string is typed out to solicit input.
Any desired command input may then be entered.

If appropriate, the user may enter an at sign (@) as the first
character in the command line, followed by the name of an indirect
command file. This filename identifies an explicit indirect command
file from which input is to be read. GCML then opens this file and
retrieves the first command line therein. This file is read until one
of the following occurs:

1. The end-of-file (EOF) is detected on the current indirect
file. In this case, the current indirect file is closed, the
command input level count is decremented by one (1), and the
previous command file is re-opened. If the command input
level count is already zero (0) when EOF is detected, the
error code GE.EOF is returned to offset location G.ERR of the
GCML control block (see section 6.1.2).

2. An indirect file specifier is encountered in a command line.
In this case, the current indirect command file is closed (if
not already closed), and the new indirect file is opened.
The first command line therein is then read.

3. An RCML$ macro call is issued in the program (see section
6.1.3.2 below). In this case, the current indirect command
file is closed, and the command input count reverts to level
zero (0), i.e., the top level command file is again used for
input.

The user may also enter a semicolon (;) as the first character in the
command line. Such a line is treated as a comment and is not returned
to the calling program.

Whether a command line is entered manually or retrieved from an
indirect command file, the address and the length of the command line
thus obtained are returned to GCML control block off set locations
G.CMLD+2 -and G.CMLD, respectively. Together, these two words
constitute the command line descriptors. These descriptors may be
specified as the "buff" and "len" parameters in the CSI$1 macro call
(see section 6.2.3.1).

Successful retrieval of a command line causes the C-bit in the
Processor Status Word to be cleared. Any error condition that occurs
during the retrieval of a command line, however, causes the C-bit to
be set. In addition, a negative error code is returned to offset
location G.ERR of the GCML control block. These error codes are
described in detail in section 6.1.2 above.

Representative examples of the GCML$ macro call follow:

GCML$

GCML$

GCML$

#GCLBLK

#GCLBLK,#ADPR,#LNPR

6-11

COMMAND LINE PROCESSING

The first example specifies the symbolic address of the GCML control
block. The second example assumes that RO contains the address of the
GCML control block. Both these forms of the GCML$ macro call will
employ the default prompt string contained in offset location G.DPRM
of the control block to solicit command line input. The last example
specifies the address and the length of an alternate prompt string
that the user has defined within the program. This alternate prompt
string is used by GCML to prompt for terminal input, rather than using
the default prompt string contained in the GCML control block.

6.1.3.2 RCML$ - Reset Indirect Command File Scan

If, for any reason, the user finds that it is necessary or desirable
to close the current indirect command file and to return to the top
level file, i.e., to the first (unnested) file, he may do so by
issuing the RCML$ macro call.

The RCML$ macro call is specified in the following format:

RCML$

where: gclblk

gclblk

represents the address of the GCML control block.
If this parameter is not specified, RO is assumed
to contain the address of the GCML control block.

When this macro call is issued, the current indirect command file is
closed, returning control to the top level (unnested) file. A
subsequent GCML$ macro call then retrieves the next command line from
the zero (0) level command file. Note, however, that a second MCR/PDS
command at level 0 cannot be read (see GE.EOF error code in offset
location G.ERR of GCML control block, section 6.1.2).

Examples of the RCML$ macro call follow:

RCML$

RCML$

#GCLBLK

RO

This macro call requires only the address of the GCML control block.

6.1.3.3 CCML$ - Close Current Command File

It is often desirable to close the current command file between calls
for input in order to free FSR block buffer space for some other use.
The command file is closed automatically after the retrieval of a
command line, provided that the GE.CLO bit in the status and mode
control byte remains appropriately initialized (see section 6.1.2).
This bit is set to one (1) at assembly-time. If the user resets this
bit to zero (0), the current command file remains open between calls
for input.

For a program which frequently reads command files, this may be a
desirable operational mode, since keeping the file open between calls
for input reduces total file access time. However, should it be
desirable to close such a file to free FSR block buffer space, the
user may do so by issuing the CCML$ macro call.

6-12

COMMAND LINE PROCESSING

The CCML$ macro call takes the following format:

CCML$

where: gclblk

gclblk

represents the address of the GCML control block.
If this parameter is not specified, RO is assumed
to contain the address of the GCML control block.

Issuing this statement closes the current command file, effectively
releasing 512(10) bytes of FSR block buffer space for some other use
between calls for input. If the command file is already closed when
the CCML$ macro call is issued, control is merely returned to the
calling program. A subsequent GCML$ macro call then causes the
command file to be re-opened and the next command line in the file to
be returned to the calling program.

Representative forms of this macro call are shown below:

CCML$

CCML$

#GCLBLK

RO

As in the RCML$ macro call above, this macro call takes a single
parameter, viz., the address of the GCML control block.

6.1.4 GCML Usage Considerations

As noted in section 6.1.1, the GCMLB$ macro call creates an FDB in the
forepart of the GCML control block. Although this FDB ordinarily need
not be manipulated by the user (since it is under GCML and FCS
control), the following operations may be performed on this FDB:

l. In an irrecoverable error situation, the user may issue a
CLOSE$ macro call (see section 3.8) in connection with this
FDB before issuing the system EXIT$ macro call.

2. The user may test the FD.TTY bit in the device
characteristics byte (offset location F.RCTL) of the FDB to
determine if the command line just obtained was retrieved
from a terminal.

3. In the event that error code GE.IOR is returned to control
block offset location G.ERR (indicating that an I/O error has
occurred during the retrieval of a command line), the user
may test offset location F.ERR of the associated FDB for more
complete error analysis. This cell in the FDB also contains
an error code which may be helpful in determining the nature
of the error condition.

Note, if the automatic file closure feature is in effect for
a command file, i.e., if the GE.CLO bit in the status and
mode control byte in the GCML control block is set (see
G.MODE offset in section 6.1.2), then F.ERR will very likely
contain a positive value (normally +l), indicating successful
completion of the close operation. A failure in closing the
command file is extremely unlikely.

6-13

COMMAND LINE PROCESSING

At task-build time, the Task Builder device assignment (ASG} directive
should be issued to assign the appropriate physical device unit to the
desired logical unit number. For example, to assign the logical unit
number (lun parameter} in the GCMLB$ macro call (see section 6.1.1) to
a terminal, the following Task Builder directive should be issued:

ASG = TI:l

The designation TI: is a pseudo device name that is redirected to the
command input device. Note that the numeric value following the colon
(:} must agree with the numeric value specified as the lun parameter
in the GCMLB$ macro call.

The ASG directive is described in further detail in the Task Builder
Reference Manual of the host operating system.

As discussed in section 2.6.l on FSRSZ$, at any given time, there must
be an FSR block buffer available for each file currently open for
record I/O operations. The block buffer requirements of the command
file must be considered when issuing the FSRSZ$ macro.

6.2 COMMAND STRING INTERPRETER (CSI}

The Command String Interpreter (CSI} analyzes command lines and parses
them into their component device name, directory, and filename
strings. The user should be aware that CSI processes command lines in
the following formats only:

1. dev: [g,m]output filename.type;version/switch

More than one such file specification can be specified by
separating them with commas.

2. dev: [g,m]output filename.type;version/switch, ••• = dev: [g,m]
input filename.type;version/switch, ••.

In addition, CSI maintains a dataset descriptor within the CSI control
block (see next section} which may be used by FCS in opening files.
The run-time routines which analyze and parse command lines for a
calling user program are described in section 6.2.3.

The use of CSI requires that the CSI control block offsets and bit
values be defined and that a control block be allocated within the
program. The macro described in the following section accomplishes
these requisite actions.

6.2.1 CSI$ - Define CSI Control Block Offsets and Bit Values

The only initialization coding required for CS! at assembly-time is
that shown below:

CSI$

. EVEN
CSIBLK: .BLKB C.SIZE

;DEFINES CS! CONTROL BLOCK OFFSETS
;AND BIT VALUES LOCALLY.
;WORD ALIGNS CS! CONTROL BLOCK .
;NAMES CS! CONTROL BLOCK AND
;ALLOCATES REQUIRED STORAGE.

6-14

COMMAND LINE PROCESSING

The CSI$ macro is strictly ·definitional in nature and does not
generate any executable code. The CSI control block resulting from
the .BLKB directive serves as a means of communication between CSI and
the calling program. The length of the control block is specified by
the symbol "C.SIZE," which is defined during the expansion of the CSI$
macro. Also, the expansion of this macro resui~s in the local
definition of the symbolic offsets and bit values within the CSI
control block.

If desired, the user may cause the control block offsets to be defined
globally within the current module. This is done by specifying
"DEF$G" as an argument in the CSI$ initialization macro call, as shown
below:

CSI$ DEF$G

6-15

COMMAND LINE PROCESSING

6.2.2 CS! Control Block Offset and Bit Value Definitions

The CS!$ macro call causes the following symbolic offsets and bit
values within the CS! control block to be defined locally:

OFFSET
NAME

C.TYPR

C.STAT

FUNCTIONAL SIGNIFICANCE

Command String Request Type. This byte field
indicates the type of file specifier being
requested. Depending on whether an input or
output file specifier is being requested (see the
"io" parameter in the CSI$2 macro call, section
6.2.3.2), the corresponding bit in this byte is
set. The bit definitions for this byte are as
follows:

CS.INP - Indicates that an input file specifier is
being requested.

CS.OUT - Indicates that an output file specifier
is being requested.

Command String Request Status. This byte field
reflects the status of the current command line
request. The bits in this field are initialized
in accordance with the bit . definitions listed
below. The first bit is maintained by the routine
invoked through the CSI$1 macro call. All the
other bits in this field are maintained by the
routine invoked through the CSI$2 macro call.

CS.EQU - I~dicates that an equal sign (=) has been
detected in the current command line, signifying
that the command line contains both output and
input file specifiers.

CS.NMF - Indicates that the current file specifier
contains a filename string. Accordingly, control
block offset locations C.FILD+2 and C.FILD (see
below) are initialized with the address and the
length (in bytes), respectively, of the command
line segment containing the filename string. If
no filename string is present, this bit is not
set, and the filename string descriptors in the
control block are cleared.

CS.DIF - Indicates that the current file specifier
contains a directory string. Thus, control block
offset locations C.DIRD+2 and C.DIRD (see below)
are initialized with the address and the length
{in bytes), respectively, of the command line
segment containing the directory string. If no
directory string is present, this bit is not set.
In this case, any residual non-zero values in the
directory string descriptor cells which pertain to
a previous command string request of like type
{see C.TYPR above) are used by default. Thus, the
last directory string encountered in a file
specifier is used.

6-16

C.CMLD

C.DSDS

COMMAND LINE PROCESSING

CS.DVF - Indicates that the current file specifier
contains a device name string. Similarly, control
block offset locations C.DEVD+2 and C.DEVD (see
below) are initialized with the address and the
length (in bytes), respectively, of the device
name string. If no device name string is present,
this bit is not set. Again, similar to CS.DIF
above, any residual non-zero values in the device
name descriptor cells which pertain to a previous
command string request of like type are used by
default. Thus, the last device name string
encountered in a file specifier is used.

CS.WLD - Indicates that the current file specifier
contains an asterisk (*), signalling the presence
of a wildcard specification.

CS.MOR - Indicates that the current file specifier
is terminated by a comma (,). The comma indicates
that more file specifiers are to follow. If this
bit is not set, it signifies that the end of the
input or output file specifiers has been reached.

Command Line Descriptor. This 2-word field is
initialized with the address and the length {in
bytes), respectively, of the compressed command
line. In other words, the values returned to
these cells constitute the output of CSI after
scanning a t11e specifier and removing all
non-significant characters from the string (i.e.,
nulls, blanks, tabs, and RUBOUTS).

The values contained in these cells are used by
CSI as the descriptors of the compressed command
line to be parsed (see CSI$2 macro call in section
6.2.3.2).

Dataset Descriptor Pointer. This offset defines
the address of the 6-word dataset descriptor in
the CSI control block. This structure is
functionally identical to the manually-created
dataset descriptor detailed in section 2.4.1.

This symbol may be used to initialize offset
location F.DSPT in the FDB associated with the
file to be processed. Thus, FCS is able to
retrieve requisite ASCII information from this
structure for use in opening files.

Assembly-time initialization of F.DSPT in the
associated FDB may be accomplished as follows:

FDOP$A l,CSIBLK+C.DSDS

where "CSIBLK" is the address of the CSI control
block, and "C.DSDS" represents the beginning
address of the descriptor strings in the CSI
control block (see C.DEVD, C.DIRD, and C.FILD
below) identifying the requisite ASCII filename
information.

6-17

C.DEVD

C.DIRD

C.FILD

C.SWAD

C.MKWl

C.MKW2

COMMAND LINE PROCESSING

Run-time initialization of F.DSPT in the
associated FDB may also be accomplished through
the dspt parameter of the FDOP$R macro call (see
section 2.2.2} or the generalized OPEN$x macro
call (see section 3.1).

Device Name String Descriptor. This 2-word field
contains the address (C.DEVD+2} and the length in
bytes (C.DEVD} of the most recent device name
string (of like request type} encountered in a
file specifier.

Directory String Descriptor. This 2-word field
contains the address (C.DIRD+2) and the length in
bytes (C.DIRD) of the most recent directory string
(of like request type} encountered in a file
specifier.

Filename String Descriptor. This 2-word field
contains the address (C.FILD+2} and the length in
bytes (C.FILD) of the filename string in the
current file specifier.

If an error condition is detected by the command
syntax analyzer during the syntactical analysis of
a command line (see section 6.2.3.l below}, a
segment descriptor is returned to this field,
defining the address and the length of the command
line segment in error.

Current Switch Table Address. This word location
contains the address of the switch descriptor
table specified in the current CSI$2 macro call
(see section 6.2.3.2).

CS! Mask Word 1. This word indicates the
particular switch(es} present in the current file
specifier after each invocation of the CSI$2 macro
call. The switch mask for each of the defined
switches encountered in a file specifier between
delimiting commas is OR'ed into this location.

The mask for a switch is specified in the CSI$SW
macro call (see section 6.2.4.1}. When a switch
is encountered in a file specifier for which a
defined mask exists, the corresponding bits in
C.MKWl are set. By testing C.MKWl, the user can
determine the particular combination of defined
switches present in the current file specifier.

CS! Mask Word 2. This word provides a switch
polarity indication for the user.

When a switch is present in a file specifer and
that switch is not negated, the defined mask for
that switch is OR'ed into C.MKW2 in the same
manner as described above for C.MKWl. Conversely,
when a switch is present in a file specifer and
that switch is negated, the corresponding bits in
C.MKW2 are cleared. Thus, for each switch
indicated as being present by C.MKWl, the user can

6-18

C.SIZE

COMMAND LINE PROCESSING

check the polarity of that switch by examining the
corresponding bits in C.MKW2.

Control Block Size Indicator. This symbol, which
is defined during the expansion of the CSI$
represents the size in bytes of the CSI control
block.

6.2.3 CSI Run-Time Macro Calls

Two run-time macro calls are provided in CSI to invoke routines which
perform the following functions:

CSI$1 - Initializes the CSI control block, analyzes the command
line (normally contained in the GCML command line input
burrerj, removes non-sign1r1cant characters from the
line, and checks it for syntactic validity. This macro
call also results in the initialization of certain cells
in the CSI control block with the address and the
length, respectively, of the validated and compressed
command line.

CSI$2 - Parses a file specifier in the validated and compressed
command line into its component device name, directory,
and filename strings, and processes any associated
switches and accompanying switch values. Also, certain
cells in the CSI control block are initialized with the
appropriate string descriptors for subsequent use by FCS
in opening the specified file.

6.2.3.1 CSI$1 - Command Syntax Analyzer

The CSI$1 macro call results in the invocation of a routine called the
command syntax analyzer. This routine analyzes a command line (which
is normally read into the GCML command line input buffer) and checks
it for syntactic validity. In addition, it compresses the file
specifiers in the command line by removing all non-significant
characters (i.e., nulls, tabs, blanks, and RUBOUTs). Finally, the
command syntax analyzer initializes offset locations C.CMLD+2 and
C.CMLD in the CSI control block (see section 6.2.2) with the address
and the length (in bytes), respectively, of the validated and
compressed command line. Each file specifier in the command line is
then parsed into its component device name, directory, and filename
strings during successive issuances of the CSI$2 macro call (see next
section) .

The CSI$1 macro call is issued in the following format:

CSI$1

where: csiblk

buff

csiblk,buff ,len

represents the address of the CSI control block.
If this parameter is not specified, RO is assumed
to contain the address of the CSI control block.

represents the address of a command line input
buffer. This parameter initializes CSI control
block offset location C.CMLD+2, enabling CSI to
retrieve the current command line from a command
line input buffer.

6-19

COMMAND LINE PROCESSING

If this parameter is not specified, the user must
manually initialize CSI control block offset
location C.CMLD+2 with the address of a command
line input buffer before issuing the CSI$1 macro
call. This may be accomplished through a
statement similar to the following:

MOV GCLBLK+G.CMLD+2,CSIBLK+C.CMLD+2

len represents the length of the command line input
buffer. Similarly, this parameter initializes CSI
control block offset location C.CMLD, thus
completing the 2-word descriptor which enables CSI
to retrieve the current command line from the
input buffer.

As with the "buff" parameter above, if this
parameter is not specified, the user must manually
initialize CSI control block offset location
C.CMLD with the length of the command line input
buffer before issuing the CSI$1 macro call. This
may be accomplished as follows:

MOV GCLBLK+G.CMLD,CSIBLK+C.CMLD

The combination of the buff and len parameters above enables CSI to
analyze the current command line. Following the analysis of the
command line, CSI updates offset location C.CMLD with the length of
the validated and compressed command line.

If a syntactic error is detected during the validation of the command
line, the C-bit in the Processor Status Word is set, and offset
locations C.FILD+2 and C.FILD in the CSI control block (see section
6.2.2) are set to values which define the address and the length,
respectively, of the command line segment in error.

Representative examples of the CSI$1 macro call follow:

CSI$1

CSI$1

CSI$1

#CSIBLK,#BUFF,#LEN

RO,GCLBLK+G.CMLD+2,GCLBLK+G.CMLD

#CSIBLK

The first example shows symbols which represent the address and the
length of a command line to be analyzed (not necessarily the line
contained in the GCML command line input buffer).

The second example assumes that RO has been preset with the address of
the CSI control block; the next two parameters are direct references
to the command line descriptor words in the GCML control block.

Finally, the third example assumes that the required descriptor values
are already present in offset locations C.CMLD+2 and C.CMLD of the
control block (CSIBLK) as the result of prior action.

6-20

COMMAND LINE PROCESSING

6.2.3.2 CSI$2 - Command Semantic Parser

The CSI$2 macro call results in the invocation of the command semantic
parser. This routine uses the values in CSI control block offset
locations C.CMLD+2 and C.CMLD as the address and the length,
respectively, of the command line to be parsed. The referenced line
is then parsed into its component device name, directory, and filename
strings. In addition, 2-word descriptors for these strings are stored
in a 6-word dataset descriptor in the CSI control block, beginning at
offset location C.DSDS (see section 6.2.2). This field is'
functionally equivalent to the dataset descriptor created manually in
the user program (see section 2.4.1).

The command semantic parser also decodes any switches and associated
switch values present in a file specifier. If the user expects to
encounter switches in the current file specifier, the command semantic
parser decodes them, provided that the address of the appropriate
switch descriptor table has been specified in the CSI$2 macro call
(see below). The CSI switch definition macro calls are described in
detail in section 6.2.4.

The CSI$2 macro call is specified in the following format:

CSI$2

where: csiblk

io

swtab

csiblk,io,swtab

represents the address of the CSI control block.
If this parameter is not specified, RO is assumed
to contain the address of the CSI control block.

represents a symbol which explicitly identifies
the type of file specifier to be parsed. Either
of two symbolic arguments may be specified in this
parameter field, as follows:

INPUT - Indicates that the next input file
specifier in the command line is to be parsed.

OUTPUT - Indicates that the next output file
specifier in the command line is to be parsed.

Off set location C.TYPR in the CSI control block
{see section 6.2.2) must be initializedl either
manually or through the CSI$2 macro call, with the
type of file specifier being requested. If other
than the symbolic arguments defined above are
specified in the CSI$2 macro call, an .ERROR
directive is generated during assembly which
causes the error message "INCORRECT REQUEST TO
.CSI2" to be printed in the assembly listing.
This diagnostic message alerts the user to the
presence of an invalid "io" parameter in the CSI$2
macro call.

represents the address of the associated switch
descriptor table for this particular issuance of
the CSI$2 macro call. This optional parameter
need be specified only when the user anticipates
the presence of a switch in the file specifier
that is to be decoded. Specifying this parameter
presumes that the user has previously created a
corresponding switch descriptor table in the
program through the CSI$SW macro call (see section
6.2.4.1). In addition, if the switch to be
decoded has any associated switch values, the user

6-21

COMMAND LINE PROCESSING

must also have created an associated switch value
descriptor table in the program through the CSI$SV
macro call (see section 6.2.4.2).

This parameter initializes offset location C.SWAD
in the CSI control block (see section 6.2.2); if
not specified, any residual non-zero value in this
cell is used by default as the address of the
switch descriptor table.

Offset location C.SWAD may also be initialized
manually prior to issuing the CSI$2 macro call, as
shown in the following statement:

MOV #SWTAB,CSIBLK+C.SWAD

where "SWTAB" is the symbolic address of the
associated switch descriptor table.

If an error condition occurs during the parsing of the file specifier,
the C-bit in the Processor Status Word is set, and control is returned
to the calling program. The possible error conditions that may occur
during command line parsing include the following:

1. The request type is invalid,
the CSI control block
incorrectly initialized.

i.e.,
(see

offset location C.TYPR
section 6.2.2) has

in
been

2. 'A switch is present in a file specifier, but the address of
the switch descriptor table has not been specified in the
CSI$2 macro call, or the switch descriptor table does not
contain a corresponding entry for the switch.

3. An invalid switch value is present in the file specifier.

4. More values accompany a given switch in the file specifier
than there are corresponding entries in the switch value
descriptor table for decoding those values.

5. A negative switch is present in the file specifier, but the
corresponding entry in the switch descriptor table does not
allow the switch to be negated (see the nflag parameter of
the CSI$SW macro call in the next section).

Examples of the CSI$2 macro call are shown below:

CSI$2

CSI$2

CSI$2

#CSIBLK,INPUT,#SWTBL

RO,OUTPUT,#SWTBL

#CSIBLK,INPUT

The first example shows a request to parse an input file specifier
which may include an associated switch. The second example, which
assumes that RO presently contains the address of the CSI control
block, will parse an output file specifier that likewise may include a
switch. Finally, the last example is a request to parse an input file
specifier and to disallow any accompanying switch(es).

6-22

COMMAND LINE PROCESSING

6.2.4 CSI Switch Definition Macro Calls

The following macro calls must be issued at assembly-time to create
the requisite switch descriptor tables in the program for processing
switches that appear in a file specifier:

CSI$SW - Creates an entry in the switch descriptor table for a
particular switch that the user expects to encounter in
a file specifier.

CSI$SV - Creates a matching entry in the switch value descriptor
table for the switch defined through the CSI$SW macro
call above.

CSI$ND - Terminates a switch descriptor table or a
descriptor table created through the
CSI$SV macro call, respectively.

switch
CSI$SW

value
or the

These macro calls are described separately in the following sections.

6.2.4.1 CSI$SW - Create Switch Descriptor Table Entry

To process each switch that the user expects to encounter in a file
specifier, a matching entry in the switch descriptor table must be
defined. When the address of a switch descriptor table is specified
in any particular issuance of the CSI$2 macro call (see section
6.2.3.2), the following processing occurs:

1. For each switch encountered in a file specifier, CSI searches
the switch descriptor table for a matching entry. If the
switch descriptor table address is not specified, or a
matching entry is not found in the table for the switch, that
switch is considered to be invalid. As a result, the C-bit
in the Processor Status Word is set, any remaining switches
in the file specifier are bypassed, and control is returned
to the calling program.

2. If a matching entry is found in the switch descriptor table,
mask word 1 in the CSI control block is set according to the
defined mask for that switch (see C.MKWl, section 6.2.2).

3. The negation status of the switch is determined. If the
switch is not negated, the corresponding bits in mask word 2
(C.MKW2) in the CSI control block are set according to the
defined mask for that switch. If the switch is negated, and
negation is not allowed, then the switch is considered to be
invalid. In this case, the error sequence described in Step
1 above applies. However, if the switch is negated, and
negation is allowed, then the corresponding bits in C.MKW2
are cleared.

The negation flag for a switch is established through the
nflag parameter of the CSI$SW macro call (see below).

4. If the address of the optional user mask word is not present
in the corresponding switch descriptor table entry, i.e., if
the mkw parameter has not been specified in the associated
CSI$SW macro call (see below), switch processing continues
with Step 7. If, however, the address of the optional mask
word is specified, switch processing continues with Step 5.

6-23

COMMAND LINE PROCESSING

5. If "SET" has been specified as the clear/set flag in the
corresponding switch descriptor table entry, and the switch
is not negated, then the corresponding bits in the optional
mask word are set according to the defined mask for that
switch. If, however, the switch is negated, the
corresponding bits in the optional mask word are cleared.

The clear/set flag is specified as the csflg parameter in the
CSI$SW macro call (see below).

6. If "CLEAR" has been specified as the clear/set flag in the
corresponding switch descriptor table entry, and the switch
is not negated, the corresponding bits in the optional mask
word are cleared. Conversely, if the switch is negated, the
corresponding bits in the optional mask word are set.

7. If a switch value accompanies a switch in a file specifier,
the associated switch value descriptor table created through
the CSI$SV macro call (see next section) is used to decode
the value. There must be at least as many entries in the
switch value descriptor table as there are such values
accompanying the switch in the file specifier. If the switch
value descriptor table is incomplete, if an invalid switch
value is encountered, or if the address of the switch value
descriptor table is not present in the associated switch
descriptor table, then the switch is considered to be
invalid, and the error sequence described in Step 1 again
applies.

The address of the switch descriptor value table is specified
as the vtab parameter in the CSI$SW macro call (see below).

The CSI$SW macro call is specified in the following format:

label: CSI$SW sw,mk,mkw,csflg,nflg,vtab

where: label represents an optional symbol which names the
resulting switch descriptor table entry and
defines its address. In order to establish the
address of a switch descriptor table, the first
CSI$SW macro call issued in the program must
include a label. This label allows the table to
be referenced by other instructions in the
program.

SW

mk

represents the 2-character alphabetic switch name
that is to be stored in the resulting switch
descriptor table entry. This parameter is
required. If not specified, an .ERROR directive
is generated during assembly which causes the
error message "MISSING SWITCH NAME" to be printed
in the assembly listing.

represents a user-defined mask for the switch
specified through the sw parameter above. To
enable CSI to indicate the presence of a given
switch in a file specifier, a mask value for the
switch must be defined, as shown below:

6-24

COMMAND LINE PROCESSING

ASMSK
NUMSK

VWMSK
XYMSK

1
2

40000
100000

where the (octal) value assigned by the user to
each symbol defines a unique bit configuration
that is to be set in CSI mask word 1 (C.MKWl) of
the control block when a defined switch is
encountered in a file specifier.

By specifying the appropriate symbol as the "mk"
parameter in the CSI$SW macro call, the
corresponding mask value is stored in the
resulting switch descriptor table entry. Thus, a
mechanism is established through which the user
can determine the particular combination of
switches present in a file specifier. For every
matching entry found in the switch descriptor
table, the corresponding bits are set in C.MKWl.

mkw represents the address of an optional user mask
word. If specified, this parameter causes CSI to
set or clear bits in a word reserved in the user
program. This word provides additional
information to the user regarding the clear/set
flags in the switch descriptor table in relation
to the negation status of switches encountered in
a file specifier.

csf lg

Such an optional word may be reserved
statement logically equivalent to
below:

MASKX: .WORD 0

through a
that shown

CSI then manipulates the bits in this word, as
described in the sequence of switch processing
operations at the beginning of this section.

represents a symbolic argument which specifies the
clear/set flag for a given switch. This parameter
is optional; if not specified, SET is assumed
(see below). Either one of two symbolic arguments

may be specified for this parameter, as follows:

6-25

nf lg

vtab

COMMAND LINE PROCESSING

CLEAR - Indicates that the bits in the optional
user mask word corresponding to the switch mask,
are to be cleared provided that the switch is not
negated. (If the switch is negated, the bits are
set.)

SET - Indicates, conversely, that the bits in the
optional user mask word corresponding to the
switch mask are to be set provided that the switch
is not negated. (If the switch is negated, the
bits are cleared.)

If other than one of the above arguments is
specified, an .ERROR directive is generated during
assembly which causes the error message "INVALID
SET/CLEAR SPEC" to be printed in the assembly
listing.

represents a symbolic argument which specifies an
optional negation flag for the switch. If this
parameter is specified, it indicates that the
switch is allowed to be negated, e.g., /-LI or
/NOLI.

If this parameter is specified as other than
"NEG," an .ERROR directive is generated during
assembly which causes the error message "INVALID
NEGATE SPEC" to be printed in the assembly
listing. If this parameter is not specified, the
default assumption is that switch negation is not
allowed.

represents the address of the switch descriptor
table associated with this switch. This optional
parameter, if specified, allows CSI to decode any
switch values accompanying the switch, provided
that an associated switch value descriptor table
entry has been defined for that switch. The
switch value descriptor table is defined through
the CSI$SV macro call, as described in the next
section.

The format of the switch descriptor table entry that results from the
issuance of the CSI$SW macro call is shown in Figure 6-2 below. One
such switch entry must be defined for each switch appearing in the
file specifier that the user intends to recognize. Each switch
descriptor table entry consists of four words. The low-order byte of
the first word contains the first character of the switch name; the
high-order byte of this word contains the second character of the
switch name. The second word contains the mask defined for the
switch. The third word contains the address of the optional user mask
word to receive the resultant value of switch processing. Finally,
the fourth word contains the address of the switch value descriptor
table associated with the switch.

6-26

16

COMMAND LINE

SWITCH NAME
CHARACTER 2

SWITCH NAME
CHARACTER 1

MASK WORD FOR THIS SWITCH

a

ADDRESS OF WORD TO BE MASKED *

ADDRESS OF SWITCH VALUE TABLE **

*If the low-order bit in this word is one
(1), it indicates that the optional user
mask word action is "CLEAR;" if it is
zero (0), it indicates that the action
is "SET."

**If the low-order bit in this word is one
(1), it indicates that the switch may be
negated.

Figure 6-2
Format of Switch Descriptor Table Entry

The following example shows a 2-entry switch descriptor table created
through successive CSI$SW macro calls:

ASSWT: CSI$SW AS,ASMSK,MASKX,SET,,ASVTBL

CSI$SW NU,NUMSK,MASKX,CLEAR,NEG,NUVTBL

CSI$ND ;END OF SWITCH DESCRIPTOR TABLE.

The first statement results in the creation of an entry in the switch
descriptor table for the switch /AS. The second parameter is an
equated symbol which defines the switch mask, and the third parameter
(MASKX) is the address of an optional user mask word (see the mkw
parameter above). The fourth parameter indicates that the bits in
MASKX which correspond to the switch mask are to be set. The fifth
parameter (the negation flag) is null. Finally, the last parameter is
the address of the associated switch value descriptor table.

6-27

COMMAND LINE PROCESSING

The second statement results in the creation of a switch descriptor
table entry for the switch /NU. In contrast to the first statement,
the fourth parameter (CLEAR) indicates that the bits in the optional
user mask word (MASKX) which correspond to the switch mask are to be
cleared. The fifth parameter (NEG) allows the switch to be negated,
and the last parameter is the address of the value table associated
with this switch.

Note that the switch descriptor macros are terminated with the CSI$ND
macro call (see section 6.2.4.3).

6.2.4.2 CSI$SV - Create Switch Value Descriptor Table Entry

For every switch value that the user expects to encounter in
connection with a given switch in a file specifier, a corresponding
switch value descriptor table entry must be defined in the user
program in order to allow the switch value(s) to be decoded. The
CSI$SV macro call is provided for this purpose. When issued, this
macro call results in the creation of a 2-word entry in the switch
value descriptor table. The format of this table is shown in Figure
6-3 below.

The CSI$SV macro call is specified in the following format:

where:

CSI$SV type,adr,len,vtab

type represents a symbolic argument which specifies the
conversion type for the switch value. Any one of
four symbolic values may be specified in this
parameter field to indicate the conversion type
for the accompanying switch value. The possible
conversion type arguments include the following:

ASCII - Indicates that the switch value is to be
treated as an ASCII string.

NUMERIC - Indicates that a numeric switch value is
to be converted to binary using octal as a default
conversion radix.

OCTAL - Indicates that a numeric switch value is
to be converted to binary using octal as a default
conversion radix.

DECIMAL - Indicates that a numeric switch value is
to be converted to binary using decimal as a
default conversion radix.

If any value other than those defined above is
specified, an .ERROR directive is generated during
assembly which causes the error message "INVALID
CONVERSION TYPE" to be printed in the assembly
listing. If none of the above parameters is
specified, ASCII is assumed by default.

adr represents the address of the user program
location which is to receive the resultant switch
value at the conclusion of switch processing.
This parameter is required; if not specified, an

6-28

len

vtab

COMMAND LINE PROCESSING

.ERROR directive is generated during assembly
which causes the error message "VALUE ADDRESS
MISSING" to be printed in the assembly listing.

represents a numeric value which defines the
length (in bytes) of the area which is to receive
the switch value resulting from switch processing.
This parameter is also required; if not
specified, an .ERROR directive is also generated
during assembly which causes the error message
"LENGTH MISSING" to be printed in the assembly
listing.

represents a symbol which names the switch value
descriptor table and defines its address. This
parameter is optional. The vtab parameter may
also be specified in the CSI$SW macro call (see
section 6.2.4.1) when the user anticipates the
presence of a switch value in a file specifier
that is to be decoded.

The format of a switch value descriptor table entry that results from
the CSI$SV macro call is shown in Figure 6-3 below.

The low-order byte of the first word in the switch value descriptor
table indicates whether the conversion type is ASCII or numeric. Bit
0 in this byte is set if "ASCII" is specified, bit 1 is set if
"NUMERIC" or "OCTAL" is specified, and bit 2 is set if "DECIMAL" is
specified. The high-order byte of this word indicates the maximum
allowable length (in bytes) of the switch value.

If the conversion type is "ASCII," the len parameter reflects the
maximum number of ASCII characters that can be deposited in the area
defined through the adr parameter. The high-order byte of the first
word in the switch value table then reflects the maximum leng~n or ~ne
ASCII string. If the number of characters in the switch value exceeds
the specified length, the extra characters are simply ignored. If,
however, the actual number of ASCII characters present in the switch
value falls short of the specified length, the remaining portion of
the area receiving the resultant value is null padded.

If the conversion tvoe is "NUMERIC," the resultant binarv value is
assumed to be two bytes in length,.and the area receiving the value is
assumed to be word-aligned. A numeric switch value is always
evaluated as a signed number; an overflow into the high order bit
(bit 16) results in an error condition.

On numeric conversions, the default conversion type specified for a
switch value can be overridden by means of a pound sign (#) or a dot
(.). A numeric value preceded by a pound sign (e.g., #10) forces the
conversion type to octal; a numeric value followed by a dot (e.g.,
10.) forces the conversion type to decimal. Note also that a numeric
switch value may be preceded by a plus sign (+) or a minus sign (-).
The plus sign is the default assumption. If an explicit octal switch
value is specified using the pound sign (#), as described above, the
arithmetic sign indicator (+ or -) , if included, must precede the
pound sign (e.g., -#10).

6-29

COMMAND LINE PROCESSING

16 0

SWITCH VALUE CONVERSION
LENGTH TYPE

ADDRESS OF LOCATION
RECEIVING SWITCH RESULT

Figure 6-3
Format of Switch Value Descriptor Table Entry

Representative CSI$SV macro calls are shown below:

ASVTBL: CSI$SV ASCII,ASVAL,3

CSI$SV ASCII,ASVAL+4,3

CSI$ND ;END OF SWITCH VALUE TABLE.

NUVTBL: CSI$SV OCTAL,NUVAL,2

CSI$SV DECIMAL,NUVAL+2,2

CSI$ND ;END OF SWITCH VALUE TABLE.

In all cases above, the first parameter in the CSI$SV macro call
defines the conversion type. The next two parameters, in all cases,
define the address and the length of the user program location to
receive the resultant switch value.

The required storage for the first switch value table above may be
reserved as follows:

AS VAL .BLKW 4 ;ASCII VALUE STORAGE.

The required storage for the second switch value table may be
similarly reserved through the fallowing statement:

NUVAL: .BLKW 2 ;NUMERIC VALUE STORAGE.

Note again that switch value tables are terminated with the CSI$ND
macro call.

6.2.4.3 CSI$ND - Define End of Descriptor Table

Switch descriptor tables and switch value descriptor tables must be
terminated with a 1-word end-of-table entry. This word, which
contains zero (0), may be created through the CSI$ND macro call.

This macro call takes no arguments, as shown below:

CSI$ND

The examples near the end of the preceding section illustrate the use
of this macro call.

6-30

CHAPTER 7

SPOOLING

FCS provides facilities at both the macro and subroutine level to
queue files for subsequent printing.

7.1 PRINT$ MACRO CALL

A task issues the PRINT$ macro call to queue a file for printing on a
specified device. The specified device must be a unit-record,
carriage-controlled device such as a line printer or terminal. If the
device is not specified, LP: is used.

The file to be spooled must be open when the PRINT$ macro is issued.
PRINT$ closes the file. Error returns differ from normal FCS
conventions and are described in Section 7.3.

The PRINT$ macro call has the following format:

PRINT$ fdb,err,,dev, (l)unit, (l)pri, (l)forms, (l)copies, (l)presrv(l)

fdb represents the address of the associated FDB.

err represents the address of an optional user-coded error
handling routine. See Section 7.3.

The following parameters are not applicable to RSX-llM.

dev

unit

represents the 2-character device mnemonic of the
device on which the file is to be printed. If dev is
not specified, LP: is used by default.

represents the unit number of the device on which the
file is to be printed. If unit is not specified, unit
0 is used by default.

The following parameters are used only by the IAS and RSX-llD multiple
device despoolers. See the discussion below.

pri represents a number in the range 1 through 250 to
indicate the priority of the request. The priority is
used to determine the order in which spooled files are
dequeued for printing. If pri is omitted, the task's
priority is used by default.

(1) Does not apply to RSX-llM.

7-1

forms

copies

presrv

SPOOLING

represents the specific form type on which the file is
to be printed as indicated by a number in the range 0
through 6. This parameter must be specified as a
single integer without a preceding number sign (#).
The numbers 0 through 6 are associated with the various
forms for an installation by the system manager. If
forms is omitted, form type 0 is used by default.

represents a number in the range 1 through 32 to
indicate the number of copies of the file to be
produced. The number of copies must be specified as a
1- or 2-digit integer without a preceding number sign
(#). If copies is omitted, one copy is printed.

should be specified if the file is not to be deleted
after it is printed. Any parameter value results in
the file's being preserved after printing.

The following points do not apply to RSX-llM.

1. A blank parameter is present between err and unit thus
requ1r1ng an additional comma. This parameter exists to
provide compatibility between RSX-llD Version 4 and RSX-llD
Version 6.

2. The number of parameters that are meaningful for RSX-llD is
determined by whether the single device despooler or the
multiple device despooler is available in the system. The
difference between the two despoolers is described in the
RSX-llD User's Guide and the RSX-llD System Manager's Guide.
In IAS, only the multiple device despooler is supported.
This is described in the IAS System Management 'Guide. The
following parameters are used by the multiple device
despooler and ignored by the single device despooler.

pri

forms

copies

presrv

7-2

7.2 .PRINT SUBROUTINE

The .PRINT subroutine is called to queue a
file must be open when .PRINT is called.
the file.

file for printing. The
The .PRINT routine closes

RO must contain the address of the associated FDB.

The file is printed on LP:.

Section 7.3 describes error handling for the .PRINT file control
routine.

7.3 ERROR HANDLING

The error returns provided in conjunction with PRINT$ and .PRINT
differ from the -standard FCS error returns in that error codes are
placed in F.ERR or in the directive status word depending on when the
failure occurred.

If the failure is FCS related, e.g., the PRINT$ macro cannot close the
file, the C bit is set and F.ERR contains the error code.

If the failure is related to the SEND/REQUEST directive that queues
the file, the C bit is set and the directive status word contains an
error code.

Directive status word error codes are provided in the Executive
Reference Manual of the host operating system.

Normally, user-coded error routines, upon determining that the C bit
is set, should test F.ERR first and then test the directive status
word.

7-3

APPENDIX A

FILE DESCRIPTOR BLOCK

A file descriptor block contains file information that is used by FCS
and the file control primitives. The layout of an FDB is illustrated
on the following page; Table A-1 defines the offset locations within
the FDB.

The off set names in the file descriptor block may be defined
locally or globally, as shown below:

FDOF$L ; DEFINE OFFSETS LOCALLY.

FDOFF$ DEF$L ;DEFINE OFFSETS LOCALLY.

FDOFF$ DEF$G ;DEFINE OFFSETS GLOBALLY.

NOTE

When referring to FDB locations, it is essential
to use the symbolic offset names, rather than the
actual address of such locations. The position of
information within the FDB may be subject to
change from release to release, while the offset
names themselves remain constant.

A-1

either

FILE DESCRIPTOR BLOCK

File Attribute Section

Record or Block Access
Section

File Open Section

Block Buffer Section

(1) Not used by RSX-llM.

A-2

F.RATT F.RTYP

F.RSIZ

F.HIBK

F.EFBK

F.FFBY

F.RCTL F.RACC

F.BKDS or F.URBD

F.NRBD or

F.BKST and F.BKDN

F.OVBS or F.NREC

F.EOBB

F.RCNM or

F.CNTG and F.STBK

F.ALOC

F.FACC F.LUN

F.DSPT

F.DFNB

F.BKPl F.EFN or F.BKEF

FERR+l F.ERR

F.MBCl F.MBCT

F.BGBC F.MBFG

F.VBSZ

F.BBFS

F.BKVB or F.VBN

F.BDB

F.SPDV

not used F.SPUN

F.ACTL(l)

F.CHR(l)

F.FNB

OFFSET

F.RTYP

F.RATT

I F.RSIZ

F. HIBK

F.EFBK

FILE DESCRIPTOR BLOCK

Table A-1
FDB Offset Definitions

SIZE CONTENTS
(in bytes)

1 Record type byte. This byte is set, as
follows, to indicate the type of records for
the file:

1

2

4

4

Bit 0 = 1 to indicate fixed-length records
(R. FIX) •
Bit 1 = 1 to indicate variable-length
records (R.VAR).

Record attribute byte. Bits 0 through 3 are
set to indicate record attributes, as
follows:

Bit 0 = 1 to indicate that the first byte of
a record is to contain a FORTRAN
carriage-control character (FD.FTN);
otherwise, it is 0.

Bit 1 = 1 to indicate for a carriage-control
device that a line feed is to be performed
before the line is printed and a carriage
return is to be performed after the line is
printed (FD.CR); otherwise, it is O.

Bit 2 is not used.

Bit 3 = 1 to indicate that records cannot
cross block boundaries (FD.BLK); otherwise,
it is O.

Record size word. This location contains
the size of fixed-length records or
indicates the size of the largest record
that currently exists in a file of
variable-length records.

Indicates the highest virtual block number
allocated.

Contains the end-of-file block number.

A-3

OFFSET

F.FFBY

F.RACC

F.RCTL

SIZE
(in bytes)

2

1

1

FILE DESCRIPTOR BLOCK

Table A-1 (Cont.)
FOB Offset Definitions

CONTENTS

Indicates the first free byte in the last
block or the maximum block size for
magnetic tape. I

Record access byte. Bits 0 through 3 of
this byte define the record access modes, as
follows:

Bit 0 = 1 to indicate READ$/WRITE$ mode
(FD.RWM); otherwise, it is 0 to indicate
GET$/PUT$ mode.

Bit 1 = 1 to indicate random access mode
(FD.RAN) for GET$/PUT$ record I/O;
otherwise, it is 0 to indicate sequential I
access mode.

Bit 2 = 1 to indicate locate mode (FD.PLC)
for GET$/PUT$ record I/O; otherwise, it is
0 to indicate move mode.

I

Bit 3 = 1 to indicate that PUT$ operation in
sequential mode does not truncate the file
(FD.INS); otherwise, it is 0 to indicate
that PUT$ operation in sequential mode I
truncates the file.

Device characteristics byte. Bits 0 through
5 define the characteristics of the device
associated with the file, as follows:

Bit 0 = 1 to indicate
device (FD.REC), e.g.,
printer; a value of
block-oriented device,
DECtape.

a record-oriented
a Teletype or line

0 indicates a
e.g., a disk or

Bit 1 = 1 to indicate a carriage control
device (FD.CCL); otherwise, it is 0.

Bit 2 = 1 to indicate a teleprinter device
(FD.TTY); otherwise, it is 0.

Bit 3 = 1 to indicate a directory device
(FD.DIR): otherwise, it is 0.

A-4

OFFSET

F.RCTL
(cont.)

F.BKDS
or

F.URBD

F.NRBD
or

F.BKST
and

F.BKDN

F.OVBS
or

F.NREC

F.EOBB

F.RCNM
or

F.CNTG

SIZE
(in bytes)

4

4

2

2

2

2

2

4

2

FILE DESCRIPTOR BLOCK

Table A-1 (Cont.)
FDB Offset Definitions

CONTENTS

Bit 4 = 1 to indicate a
device {FD.SDI). An MFD
UFD's are present.

single directory
is used, but no

Bit 5 1 to indicate a block-oriented
device that is inherently sequential in
nature (FD.SQD). A record-oriented device
is assumed to be sequential in nature;
therefore, this bit is not set for such
devices.

Contains the block I/O buffer descriptor.

Contains the user record buffer descriptor.

Contains the next record buffer descriptor.

Contains the address of the I/O status block
for block I/O.

Contains the address of the AST service
routine for block I/O.

Override block buffer size. This t1eld has
meaning only before the file is opened.

Contains the number of the next record in
the block.

Contains a value defining the end of the
block buffer.

Contains the number of the record for random
access operations.

Contains a numeric value defining the number
of blocks to be allocated in creating a new
file. This cell has meaning only before the
file is opened. A value of 0 means leave
the file empty; a positive value means

A-5

OFFSET

F.CNTG
{cont.)

and

F.STBK

F.ALOC

F.LUN

F.FACC

SIZE
{in bytes)

2

2

1

1

FILE DESCRIPTOR BLOCK

Table A-1 {Cont.)
FDB Offset Definitions

CONTENTS

allocate the specified number of blocks as a
contiguous area and make the file
contiguous; a negative value means allocate
the specified number of blocks as a
noncontiguous area and make the file
noncontiguous.

Contains the address of the statistics block
in the user program.

Number of blocks to be allocated
file must be extended. This
meaning only before the file is
positive {+) value indicates
extend, and a negative {-) value
noncontiguous extend.

Contains the logical unit number
with the FDB.

when the
cell has

opened. A
contiguous
indicates

associated

File access byte. This byte indicates the
access privileges for a file, as summarized
below:

Bit 0 = 1 if the file is accessed for read
only {FA.RD).

Bit 1 = 1 if the file is accessed for
writing {FA. WRT).

Bit 2 = 1 if the file is accessed for
extending {FA.EXT).

Bit 3 = 1 if a new file is being
(FA.CRE); otherwise, it is zero
indicate an existing file.

created
(O) to

Bit 4 = 1 if the file is a temporary file
(FA.TMP).

Bit 5 = 1 if the file is opened for shared
access (FA. SHR) .

A-6

OFFSET

F.FACC
(cont.)

F.DSPT

F.DFNB

F.BKEF
or

F.EFN

F.BKPl

F.ERR

I F.ERR+l

F.MBCT

SIZE
(in bytes)

2

2

1

1

1

l

1

FILE DESCRIPTOR BLOCK

Table A-1 (Cont.)
FDB Offset Definitions

CONTENTS

If Bit 3 above is zero (0):

Bit 6 = 1 if an existing file is being
appended (FA.APD).

If Bit 3 above is one (1):

Bit 6 = 1 if not superseding an existing
file at file-create time (FA.NSF).

Contains the dataset descriptor pointer.

Contains the default filename block pointer.

Contains the block I/O event flag.

Contains the record I/O event flag.

Contains bookkeeping bits for FCS internal
control.

Error return code byte. A negative value
indicates an error condition.

Used in conjunction with F.ERR above. If
F.ERR is negative, the following applies:

F.ERR+l = 0 to indicate that error code is
an I/O error code (see IOERR$ error codes in
Appendix I).

F.ERR+l = negative value to indicate that
error code is a Directive Status Word error
code (see DRERR$ error codes in Appendix I).

Indicates the number of buffers to be used
for multiple buffering.

A-7

I OFFSET

F.MBCl

F.MBFG

F.BGBC

I F.VBSZ

F.BBFS

F.BKVB
I or

F.VBN

F.BDB

F.SPDV

F.SPUN

Spare

F.ACTL

SIZE
(in bytes)

1

1

1

2

2

4

2

2

1

1

2

FILE DESCRIPTOR BLOCK

Table A-1 (Cont.)
FDB Offset Definitions

CONTENTS

Indicates the actual number of
currently in use.

buffers

Multiple buffering flag word. Contains
either one of the multiple buffering flags,
as follows:

Bit 0 = 1 to indicate read-ahead (FD.RAH).

Bit 1 = 1 to indicate write-behind (FD.WBH).

Big buffer block count in number of blocks
(not implemented).

Device buffer size word. Contains
virtual block size (in bytes).

Indicates the block buffer size.

the

Contains the address of the virtual block
number in the user program for block I/O.

Contains the virtual block number.

Contains the address of the block buffer
descriptor block. This location always
contains a non-zero value if the file is
open and zero (0) if the file is closed.

Spooler output device designation (!AS and
RSX-llD only).

Spooler output unit designation (!AS and
RSX-llD only).

Not used.

The low order byte of this word indicates
the number of retrieval pointers to be used
for the file.

The control bits are in the high order byte
and are defined as follows.

A-8

I

(in bytes)

F.CHR 2

F.FNB

FILE DESCRIPTOR BLOCK

Table A-1 (Cont.)
FDB Off set Definitions

CONTENTS

Bit 15 = 1
information
(FA.ENB).

to specify that control
is to be taken from F.ACTL

Bit 12 = 0 to cause positioning to the
end of a magnetic tape volume set upon
open or close.

Bit 12 = 1 to cause positioning of a
magnetic tape volume set to just past
the most recently closed file when the
next file is opened (FA.PCS).

Bit 11 = 1 to cause a magnetic tape
volume set to be rewound upon open or
close (FA.RWD).

Bit 9 = 1 to cause a file not to be
locked if it is not properly closed
when accessed for write (FA.OLK).

Reserved for system use.

Defines the beginning address of
filename block portion of the FOB.

A-9

the

APPENDIX B

FILENAME BLOCK

The format of a filename block is illustrated in Figure o-i. The
offsets within the filename block are described in Table B-1.

The offset names in a filename block may be defined either locally or
globally, as shown below:

NBOF$L ;DEFINE OFFSETS LOCALLY.

NBOFF$ DEF$L ;DEFINE OFFSETS LOCALLY.

NBOFF$ DEF$G ;DEFINE OFFSETS GLOBALLY.

NOTE

When referring to filename block
locations, it is essential to use the
symbolic offset names, rather than the
actual addresses of such locations. The
position of information within the
filename block may be subject to change
from release to release, while the
offset names themselves remain constant.

B-1

I

FILENAME BLOCK

N.FID

N.FNAM

N.FTYP

N.FVER

N.STAT

N.NEXT

N.DID

N.DVNM

N.UNIT

Figure B-1
Filename Block Format

B-2

0

2

4

6 CUMULATIVE

10

12 LENGTH

14

16 IN

20

22 BYTES

24

26 (OCTAL)

30

32

34

FILENAME BLOCK

Table B-1
Filename Block Offset Definitions

OFFSET SIZE CONTENTS
(in bytes}

N.FID

I

6 File identification field.

N.FNAM 6 Filename field; specified as nine
characters •• 1.....: -I... are

... ___ ...:J
in Radix=50 I WU.Ll,.;U i:>l...VJ.CU

I

format.

N.FTYP 2 File type field; specified as three
characters which are stored in Radix-SO
format.

I
N.FVER 2 File version number field (binary).

I
N.STAT 2 Filename block status word (see bit

definitions in Table B-2).

N.NEXT 2 Context for next .FIND operation.

N.DID 6 Directory identification field.

N.DVNM 2 ASCII device name field.

N.UNIT 2 Unit number field (binary).

B-3

FILENAME BLOCK

The bit definitions of the filename block status word (N.STAT) in the
FDB and their significance are described in Table B-2.

Those symbols marked with an asterisk (*) in Table B-2 indicate bits
that are set if the associated information is supplied through an
ASCII dataset descriptor.

Table B-2
Filename Block Status Word (N.STAT)

SYMBOL VALUE MEANING
(in octal)

NB.VER* 1 Set if explicit file version number is
specified.

NB.TYP* 2 Set if explicit file type is specified.

NB.NAM* 4 Set if explicit filename is specified.

NB.SVR 10 Set if wildcard file version number is
specified.

NB.STP 20 Set if wildcard file type is specified.

NB.SNM 40 Set if wildcard filename is specified.

NB.DIR* 100 Set if explicit directory string (UIC)
is specified.

NB.DEV* 200 Set if explicit device name string is
specified.

NB.SDI 400 Set if group portion of UIC contains
wildcard specification.

NB.SD2 1000 Set if owner portion of UIC contains
wildcard specification.

B-4

I

APPENDIX C

SUMMARY OF I/0-RELATED SYSTEM DIRECTIVES

Table C-1 contains a summary of the I/0-related system directives in
alphabetical order for ready reference. The parameters that may be
specified with a directive are also described in the order of their
appearance in the directive. These directives are described in detail
in the Executive Reference Manual of the host operating system.

C-1

DIRECTIVE

ALON$

GLUN$

GMCR$

QIO$

SUMMARY OF I/0-RELATED SYSTEM DIRECTIVES

Table C-1
Summary of I/0-Related System Directives

FUNCTION AND PARAMETERS

Assigns a logical unit number to a physical device:

lun = Logical unit number.

dev =Physical device name (2 ASCII characters).

unt = Physical device unit number.

Fills a 6-word buffer with information about a physical
unit:

lun = Logical unit number.

buf = Address of a 6-word buffer in which the LUN
information is to be stored.

Transfers an

I
issuing task.
directive.

80-byte MCR/PDS
No parameters

command line
are required

to the
in this I

Places an I/O request in the device queue associated
with the specified logical unit number:

f nc = I/O function code.

lun = Logical unit number.

efn = Event flag number.

pri = Priority of the request (IAS and RSX-llD only) .

isb = Address of the I/O status block.

ast = Entry point address of the AST service routine.

prl =Parameter list in the form <Pl, .•.. ,P6>.

C-2

DIRECTIVE

RCVD$

RCVS$

RCVX$

SUMMARY OF I/0-RELATED SYSTEM DIRECTIVES

Table C-1 (Cont.)
Summary of I/0-Related System Directives

FUNCTION AND PARAMETERS

Receives a 13-word data block that has been queued
(FIFO) by a send data directive (see SDAT$ and SDRQ$
below).

tsk = Name of the sending task. This field is ignored
by RSX-llM. The tsk parameter is specified as a
null value (,) in RSX-llM for compatibility with
IAS and RSX-llD (see the description of the RCVD$
directive in the RSX-llM Executive Reference
Manual).

buf Address of the 15-word data buffer (2-word
sending task name and 13-word data block).

Receives a 13-word data block, if queued by a send data
directive (see SDAT$ AND SDRQ$ below), or suspends task
if no data is queued:

tsk Name of the sending task.

buf Address of the 15-word data buffer (2-word
sending task name and 13-word data block).

This directive is not supported in RSX-llM.

Receives a 13-word data block, if queued by a send data
directive (see SDAT$ and SDRQ$ below), or exits if data
is not queued for the task:

I

tsk = ~;meR~i-i~=ose~~!nfs~a;~;am!~!~ ~!e!ge~~fi!~n~~e~ I

null value (,) in RSX-llM for compatibility with
!AS and RSX-llD (see the description of the RCVX$
directive in the RSX-llM Executive Reference
Manual.

buf Address of the 15-word data buffer (2-word
sending task name and 13-word data block).

C-3

SUMMARY OF I/0-RELATED SYSTEM DIRECTIVES

Table C-1 (Cont.)
Summary of I/0-Related System Directives

DIRECTIVE FUNCTION AND PARAMETERS

SDAT$ Queues (FIFO) a 13-word block of data for a task to
receive:

tsk = Name of the receiving task.

buf = Address of the 13-word data buffer.

efn = Event flag number.

SDRQ$ Queues (FIFO) a 13-word block of data for a task to
receive; also requests or resumes the execution of the
receiving task:

tsk = Name of the receiving task.

par = Partition name of the receiving task.

pri = Priority of the request.

I I ugc = UIC group code.

upc = UIC owner code.

buf = Address of the 13-word data buffer.

efn = Event flag number.

This directive is not supported in RSX-llM.

C-4

APPENDIX D

SAMPLE PROGRAMS

The sample programs that follow read records from an input device,
strip off any blanks to the right of the data portion of the record,
and write the data record on an output device. While the programs are
intended primarily for card reader input and printer output, device
independence is maintained.

The main program is CRCOPY; CRCOPA and CRCOPB are variations. CRCOPA
uses a dataset descriptor instead of the default filename block used
in CRCOPY. CRCOPB uses run-time initialization of the FDB.

D-1

SAMPLE PROGRAMS

,TfTL' C~COPV 1eARC AEAn~~ eoPv ReUTtN!
~~e•LL Feee,S,FDATS•,F~RCIA,FDOP,A,NM8L~'''e~!11
·.~·CALL OP!Nlf'10l'!Nh1GP'T!1P'~TS,CI O!E$,!~TTU
:~eHL fl!NtT!
!Nl..U~•3 JASetGN CP ~- PTLF n!Vte!
OUTU.~•A
r:~A~U 2

,OB~UTI Ff)l~,I
,OAYIA R~VAR,~e.eR
,o~es• ,REeBL~,e~.
FDO~IA OUTLU~,,O,NA~

,.OBHO '"ee,!
FJrHteu
Fl'Ol'U

IUCPUll't ~ellifB
C,N01t ~ti4BllCS
IPNAMI ~MBLI<!
suni F!NtTS

.~t:eBLF,e~.
t~~~N,,tFNA~

''· OUTPU'T,r:IAT
HPUT1DAT

O~Et\U ·#FO~I~
ees !RJteR_
OP!~IW ·#,D!OUT •O•!~
ees ERROR,

GTRfCI G~U ·•F08I~
ees C1t!eF
~n~ ,:NReec~e,,•t
~O'I ·*REC8LF1R'
A"O FH ,A2.
C~P~ •~e,•(R2) us I
B~E PT REC
!r'lB AJ,UU

JAl~tGN T~ euTPUT O,VTCF

••LLCeATE !PAe! ,~. OUTP~T FO~
JJ~fT FTLF ATTA!~VT~S
Jf~!T R~C,.,~n ATTRT!LT,!
lf~fT FTL, eP~N eFeTre~
JALLCeAT! !PAeE FrR !~FUT ~~e
Hf\'!T R~C:l'IRn ATTPTBCTP!
l!~JT PTL' ~,!N e~eTr~~
' "! e o"" e 1:1" FE' "'
H 1L:T!ll:T FYL!NAM!
J!~PUT '!LENA.,_!
,,~,, FTLF e10R•~~ R!~r~~
1ePF~ TM~ t~PUT ''L'
J!FlANeH tF ,RROR

T._,! Ol'TfllUT Fti.f
JPf'Ut-.eM n· ~R~OR
Jf\CT! • URen rs ALL en Lf'
JF~~CR 3MnULD Bf '"' r~~J~AT!r~
•Pi•!tZ' ~F R~e~R" Rf Ae

JP2•AOOR~~! 0~ LA~T !YTF•~
J~T~t~ TRAtl?~G BLA~K!

••T T~l~ POT~T, ~t eONTA?NS T~E STRtPPe~ ~!!E OF THF
JR£~0~0 T~ ~! ~~ITT~N~ !' T~! eA~C !~ ALA~W,
J~ 'f!~O•LFN~T~ ~!CO~C ?~ ~R?TTE~~
FT~FCI PUTf ~FC!OLT,,~1 IP! ?! N!F.OFC TO ~PF~TFV

ere GTRfC JT~f. REe~~o ~T!F.:
£~R~R• ~rp ff.~~e~ r.o~~ GnE! ~F.RF
CK£~,~ e~P~ •rE:reF,F:!R~(R~) ''~n nF_FTL!?

e~E !RROR JeRA~~M !' eTM!~ ~R~O~
CLO!!I ~, JrLe!~ T~F TNPUT F?l~
!!CS FPReR
Cl o~u ~FC"CLT
ee! E'RFH~R

f)ttUe
.~Ne !U~T

D-2

SAMPLE PROGRAMS

~T!TL' e~eCPA JCA-C R~A~f~ eoPV A~U,!Nf
.~e~LL FO!OFliFOAT!A,,~Ae!AiFOnP~AiN~eL~'''!•t~!
,~CALL O~!Nl-,eP£Nl~,GP'Tf1l'UT!.etO~!,,E,,,T!!
.MCHL nN!U
!Nl.U~•:!
ounLN•~
P'~RU! 2

••••r~~ e• eR ,tL' e!vte~
JA9!!~N T~ ~UTPUT ~,V!e~

t'DBtUTI l'Olf"'I
Fri•jlA R:VAR,,~.eR
FORelA ·•Ee8LF,ee.
FOO,IA OVTLU~,e,~SPT

,iDB7N1 l'O!e'1!
POR~SA ~~EC!LF,ee •

.......... F~~~!A !~~UN.tFO!l"T
~~~~~r· r~~~c -~. 
C,O~PTI ~o~e e,e 

~WOf'O e,e 
~~c~o o~•~sr,rNAM 

riro~FT1 ~wo~e e,e 
.INORO e,! 
~wc~c !NAMS!,,NAM 
~Aseit .1euTPUT.OATI 
CN0!7• .•~NA~ 
~rV~f\ 
:•se!t l!NPUT,OATI 
!NA~!tll:•!NA~ 
~~VF~ 

IUPTt FtNiU 
CPHIR 
BC! 
C~H!w 
ees 

tnfl(~C 1 o~u 
ees 
~rw 

fi"OV 

fllt 
ADD 
Cfi'P~ 

llfp!OPH~ 

!RROR 
tlil'CeOl'.T Jr"P!:~ 
!~ReR 
tFO~t~ 
C1it!eF 
,:Nf!t!eCA0,,~1 
-~e:eeuF,R2 
~',Fil! 
u2,·r~,, 

!iNE FTR~C 
SN! RJ,jU 

1eevrei o~seRr'T~• 
Je!R!C:T~RV ~!Set~~T~R 
J'!L!N•M! O~SeRf PTO~ 
1e!~re! o,ee~rPTr~ 
1e!•EeT0Pv ri!ee~tPTr,A 
JF!LE~4Mf OFSeRtPTO~ 

Jt~!T 'TL~ ~T~RAGE ~!Gf~~ 
1ePE~ TM.f I~~UT FfL~ 
JPfU~eH IF ~R"OR 

Ttil! Cl'T~UT '!I !' 
1e~A~e~ '" f'RROF" 
•~CTE • u~e~ TS ALL ~fT L~ 
•~RRCR !HMUio BE FOF T~~I~A'!rN 
J~i•SIZE nF RfCOP~ ~EAe 

J~l•A~DR!~S OF LA~T !VT~~1 
J~T~fli' TRA II I~;r; Bt A~I<! 

i•T TM!! PO!~T, R1 eONTAfNS T~f ST~f~P~n ~I?~ OF TMF 
JRE~O~O TO ~E ~R!TT~N: rF T~F rA•e te eL~N~, 
·~ !!RO•LEN~T~ "EeORD r~ wRITTE~~ 
PTRfCI PUTf ~'D~OLT.,•t JR1 I! ~!~OFO TO ~P~er~v 

ere GTREC •T~F •ree~o 5!Zf: 
ERRe~· NOP JfRRC~ eo~! G~!e MFP~ 
~KEr,~ e~Pe •TE:reF.F:ERRtRP) IE~O OF ,iLt1 

!N! !~ReR •P~•~CM IF eT~~R ,R~~-
CLO!fl ~~ JeLO!F TH' ~N~UT ~!LE 
eee URCR 
c~eers #'OBOLT 1eLe8~ TMF ~UTP~T FTLF 
ees !~ReFi 
E~!TI! SIS~L~ ~XTT CTRfrTr~E 
'.F~r START 

D-3 



,l'BrUTI 
FDSiNt 
~EC~U'I 
CF·D!P.T1 

tFOU'f I 

SAMPLE PROGRAMS 

CRC~P~ seAPC ~'-•~!A eOPV AMUT!N! 
,~ee,!,FO•T!•,,n~eSA,FO~PIA,N~8L~~.F!R!!! 
OPEN!R,eP~N!~,G~T,,PLTl,eLO!!S,F~!T'! 
nNtT!,fl'OUO 

~TITLt 
i',._C•lL 
i9~CALL 
.~CALL 
tNLL'.P..U 
OUTL L!N•.t 
,~RUS I 

JAS!JC~ e~ eR FtLF ~EVfe~ 
JAS~IGN T~ ~UT~UT DF.V!CF. 

FOBel'I 
FOBCl'I 
:rn.~a u: 
~WO~D e,e 
,wo"'o e,e . 
• ~0"0 O~A~S!,ONAM 
·.lllOll'C e,0 
~WO•D e,0 
~wo~o I~A~ai,,NAM 
.•eerr /eUTPUT.DATI 
~NOet-.:•eNO 
,!V!N 
.•serr /JNPUT.~ATI 
!NU'Sh~efNA~ 
~~v~~ 

1e!v1e1 OFSeRT~To~ 
t~t~!eT~RV nE~er~~TrQ 
t'IL!NAMf D,SeA!PTOR 
1eE~tee o~eeRt•T~• 
1er~eeTORV ~ESe~!PT~R 
''tLE~4~E DF~eRtPTO~ 

nN!U 
OFE~I" 

•I~rT ,IL~ ~TORA~F ~e~t~~ 
~FOAI~,N!NLU~.•tfe!PT,,NRFCPUF,•e•~ 

t ~U~Tt~F I~ITIALTZATTC~ 
ers [RReR se~•~eM !F FRROR 
F"'''~ ·#FO~OLT·•~.VAR,~Fe~rA JRU~TTM~ TNTTTAL!,ATI~~ 
OPH' 0 ""~ "'-01: Tl u~, #CFC ~Ill T,. oree1·.,,. '-~!!!!' 
ers f~ROR J!~A~r.M !F FR~OR 

GTR~e· GfT! *'D~I~ ,~eTE • u~er rs ALL SFl L~ 

1:~! I 

er.I Cl<E"!J' H~~CR ~Mr'IUI [) Af' FOF Hd'IIf'IATH'~ 
~ov ,:NRBr,c~e,,Rt J~1•S!Z~ ~F R~eope REAC 
~~V •RECBLF1R2 
A~O ltt,R2 
c~~P t4e,•~R~' 
BN! PTRfl'C 
!OB llH ,tU 

JR2•AriOA!~$ O' L•~T PV,f•1 
J~T'"'?F' TRAti ING Pl 01<~ 

JAT T~Ie POT~T, "t eONT•r~s T~! !TRTPPE~ ~I'E OF 'HF 
J~ErOQO TO ~! ~~tTT~N~ !P T~F eA~C I~ eLjN~, 
,,. ·u~C·L"Nr;T~ ~EeOAD' u WR nn~. 
FT~FCt PUT' #FOAOLT,,P1 JRt !! ~EFDFe TM ~PFeTF~ 

eec GTR~e JT~E R!eO~D !f!F~ 
i~~~-· ~~p ·~RPCR eonf Goes ~ERE 
Cl<HFI C~Pf! ··UE

1

,Ee,,F •• EIQrHPlfl) J~t\n o,.- FTL~? 
BNE !~RO~ t~~A~C~ IF ~T~~~ PAPOR 
tLo~r' R~ JCL~!E T~~ TN~UT ~tLE 
ees !RRCH~ 
c~cns •FoeOLT 
ee~ !RROR 
!)tITU ·.n1e 

D-4 



APPENDIX E 

INDEX FILE FORMAT 

The index file consists of virtual blocks, starting with virtual block 
1, i.e., the bootstrap block. Virtual block 2 is the home block. The 
structure of a FILES-11 index file is shown below. 

VIRTUAL BLOCK NUMBER 

1 

2 

3 

3+n 

3+n+l 

3+n+2 

3+n+3 

3+n+4 

3+n+5 

3+n+6 

INDEX FILE ELEMENT 

Bootstrap block. 

Home Block. 

Index file bit map (n blocks); 
the value of n is in the home 
block. 

Index file header. 

Storage map header. 

Bad-block file header. 

Master file directory header. 

Checkpoint file header (not used by 
ncv_llM\ 
J.'-LIA •i.a.·.1.J e 

User file header 1. 

User file header 2. 

User file header n. 

E-1 



INDEX FILE FORMAT 

E.l BOOTSTRAP BLOCK 

A disk that is structured for FILES-11 has a 256-word block, starting 
at physical block O. This block contains either a bootstrap routine 
or a message to the operator stating that the volume does not contain 
a bootstrappable system. The bootstrap routine brings a core image 
into memory from a predefined location on the disk. In IAS and 
RSX-llD, the core image is pointed to by a file header block in the 
index file. 

E.2 HOME BLOCK 

The home block contains volume identification information that is 
formatted as shown in Table E-1. This block is located either in 
logical block 1 or at any even multiple of 256 blocks. 

The offset names in the home block may be defined either locally or 
globally, as shown below: 

HMBOF$ DEF$L 

HMBOF$ DEF$G 

E.3 INDEX FILE BIT MAP 

;DEFINES OFFSETS LOCALLY. 

;DEFINES OFFSETS GLOBALLY. 

The index file bit map controls the use of file header blocks in the 
index file. The bit map contains a bit for each file header block 
contained in the index file. The bit for a file header block is 
located by means of the file number of the file with which it is 
associated. The values of the bit map are as follows: 

0 - Indicates that the file header block is available. The file 
control primitives can use this block to create a file. 

1 - Indicates that the file header block is in use. 
has already been used to create a file. 

E-2 

This block 



INDEX FILE FORMAT 

E.4 PREDEFINED FILE HEADER BLOCKS 

The first five file header blocks are described below. 

FILE HEADER BLOCK 

Index File Header 

Storage Map File 
Header 

Bad Block File 
Header 

Master File Directory 
Header 

Checkpoint File Header 

SIGNIFICANCE 

This is the standard 
with the index file. 

header associated 

The storage map is a file 
control the assignment of 
files. 

that is used to 
disk blocks to 

The bad block file is a file that consists of 
unusable blocks (bad 

This header block is associated with the 
master file directory for the disk. This 
directory contains entries for the index 
file, the storage map file, the bad block 
file, the master file directory (MFD), the 
checkpoint file, and all user file 
directories (UFD's). 

This block; which is used only by !AS and 
RSX-llD, identifies the file that is used for 
the checkpoint areas for all checkpointable 
tasks. 

The remainder of the index file consists of file header blocks for 
user files, as shown in the illustration at the beginning of this 
section. 

E-3 



SIZE 
(in bytes) 

2 

4 

2 

2 

2 

2 

12. 

4 

2 

2 

2 

2 

2 

2 

1 

1 

14. 

2 

14. 

INDEX FILE FORMAT 

Table E-1 
Home Block Format 

CONTENT OFFSET 

Index bit map size. H.IBSZ 

Location of index bit H.IBLB 
map. 

Maximum files allowed. H.FMAX 

Storage bit map cluster H.SBCL 
factor. 

Disk device type. H.DVTY 

Structure level. H.VLEV 

Volume name (12 ASCII H.VNAM 
characters). 

Reserved. 

Volume owner's UIC. H.VOWN 

Volume protection code. H.VPRO 

Volume characteristics. H.VCHA 

Default file protection H.FPRO 
word. 

Volume file sequence H.FVSQ 
number {updated by the 
DISMOUNT command). 

Volume flags word. H.FLGS 

Default number of H.WISZ 
retrieval pointers 
in a window. 

Default number of H.FIEX 
blocks to extend files. 

Available space. --

Checksum of words 0-28. H.CHKl 

Creation date and time. H.VDAT 

E-4 



SIZE 
(in bytes) 

100. 

82. 

254. 

2 

INDEX FILE 

Table E-1 (Cont.) 
Home Block Format 

CONTENT 

Volume header label (not 
used). 

System specific infor­
mation (not used). 

Relative volume table 
(not used) • 

Checksum of home block 
(words 0 through 255). 

E-5 

I OFFSET 

H.CHK2 



APPENDIX F 

FILE HEADER BLOCK FORMAT 

Table F-1 shows the format of the file header block. The various 
areas within the file header block are described in detail in the 
following sections. The offset names in the file header block may be 
defined either locally or globally, as shown in the following 
statements: 

FHDOF$ DEF$L 

FHDOF$ DEF$G 

;DEFINE OFFSETS LOCALLY. 

;DEFINE OFFSETS GLOBALLY. 

F-1 



FILE HEADER BLOCK FORMAT 

Table F-1 
File Header Block 

AREA SIZE CONTENT OFFSET 
(in bytes) 

HEADER AREA 1 Identification area offset H. IDOF 
in words. 

1 Map area off set in words. H.MPOF 

2 File number. H.FNUM 

2 File sequence number. H.FSEQ 

2 Structure level and system H.FLEV 
number. 

- Off set to file owner H.FOWN 
information, consisting of 

I member number and group 
number. 

1 Member number. H.PROG 

I 1 Group number. H.PROJ I 
2 File protection code. H.FPRO 

1 User-controlled file H.UCHA 
characteristics. 

1 System-controlled file H.SCHA 
characteristics. 

32. User file attributes. H.UFAT 

- Size in bytes of header S.HDHD 
area of file header block. 

IDENTIFICATION 6 Filename (Radix-50). I.FNAM 
AREA 

2 File type (Radix-50). I.FTYP 

2 File version number I.FVER 

I 
(binary) . 

2 Revision number. I.RVNO 

7 Revision date. I.RVDT 

F-2 



AREA 

IDENTIFICATION 
AREA {cont.) 

MAP AREA 

(in 

I 

FILE HEADER BLOCK FORMAT 

Table F-1 (Cont.) 
File Header Block 

I 

SIZE CONTENT 
I 
'OFFSET 

bytes) 

6 

7 

6 

7 

l 

l 

l 

2 

2 

l 

i 

1 

1 

Revision time. 

Creation date. 

Creation time. 

Expiration date. 

To round up to word 
boundary. 

Size (in bytes) of 
identification area of 
file header block. 

Extension segment number. 

Extension relative volume 
number (not implemented). 

Extension file number. 

Extension file sequence 
number. 

Size (in bytes) of the 
block count field of a 
retrieval pointer (1 or 2); 
only l is used. 

I.RVTI 

I.CRDT 

I.CRTI 

I.EXDT 

S. IDHD 

M. ESQN 

M.ERVN 

I 
M.EFNU 

M.EFSQ 

M.CTSZ 

Size (in bytes) of the IM.LBSZ 
logical block number field 
of a retrieval pointer 
(2, 3, or 4); only 3 is used1 

Words of retrieval pointers M.USE 
in use in the map area. 

Maximum number of words 
of retrieval pointers 
available in the map area. 

M.MAX 

Start of retrieval pointers. M.RTRV 

Size in bytes of map area S.MPHD 
of file header block. 

F-3 



AREA 

CHECKSUM WORD 

FILE HEADER BLOCK FORMAT 

SIZE 

Table F-1 (Cont.) 
File Header Block 

CONTENT 
(in bytes) 

2 Checksum of words 0 through 
255. 

NOTE 

The checksum word is the last word of 
the file header block. Retrieval 
pointers occupy the space from the end 
of the map area to the checksum word. 

OFFSET 

H.CKSM 

F.l HEADER AREA 

The information in the header area of the file header block consists 
of the following: 

IDENTIFICATION AREA - Word O, bits 0-7. This byte locates the start 
OFFSET of the identification area relative to the 

start of the file header block. This offset 
contains the number of words from the start of 
the header to the identification area. 

MAP AREA OFFSET - Word 0, bits 8-15. This byte locates the start 
of the map area relative to the start of the 
file header block. This offset contains the 
number of words from the start of the header 
area to the map area. 

FILE NUMBER - The file number defines the position this file 
header block occupies in the index file, e.g., 
the index file is number 1, the storage bit map 
is file number 2, etc. 

FILE SEQUENCE NUMBER - The file number and the file sequence number 
constitute the file identification number used 
by the system. This number is different each 
time a header is re-used. 

STRUCTURE LEVEL - This word identifies the system that created 
the file and indicates the file structure. A 
value of [1,1] is associated with all current 
FILES-11 volumes. 

F-4 



FILE OWNER 
INFORMATION 

FILE HEADER BLOCK 

- This word contains the group number and owner 
number constituting the user identification 
code (UIC) for the file. Legal UIC 's are 
within the range [1,1] to [377,377]. UIC [1,1] 
is reserved for the system. 

FILE PROTECTION CODE - This word specifies the manner in which 
file can be used and who can use it. 
creating the file, the user specifies 
extent of protection desired for the file. 

the 
When 

the 

FILE CHARACTERISTICS - This word, consisting of two bytes, defines the 
status of the file. 

USER FILE 
ATTRIBUTES 

Byte 0 defines the user-controlled 
characteristics, as follows: 

UC.CON 200 - Logically contiguous file. 

UC.DLK 100 - File improperly closed. 

Byte 1 defines system-controlled characteris­
tics, as follows: 

SC.MDL 200 File marked for delete. 

SC.BAD 100 Bad data block in file. 

- This area consists of 16 words~ The first 
seven words of this area are a direct image of 
the first seven words of the FDB when the file 
is opened. The other nine words of the record 
I/O control area are not used. 

F.2 IDENTIFICATION AREA 

The information in the identification area of the file header block 
consists of the following: 

FILENAME 

FILE TYPE 

- The file's creator soecifies a filename of up 
to nine Radix-SO characters in length. This 
name is placed in the name field. The unused 
portion of the field (if any) is zero-filled. 

- This word contains the file type in Radix-SO 
format. 

FILE VERSION NUMBER - This word contains the file version number, in 
binary, as specified by the creator of the 
file. 

F-S 



REVISION NUMBER 

REVISION DATE 

REVISION TIME 

CREATION DATE 

CREATION TIME 

EXPIRATION DATE 

F.3 MAP AREA 

FILE HEADER BLOCK FORMAT 

- This word is initialized to zero when the file 
is created; it is incremented each time a file 
is closed after being updated or modified. 

- Seven bytes are used to maintain the date on 
which the file was last revised. The revision 
date is kept in ASCII form in the format day, 
month, year (2 bytes, 3 bytes, and 2 bytes, 
respectively). This date is meaningful only if 
the revision number is a non-zero value. 

- Six bytes are used to record the time at which 
the file was last revised. This information is 
recorded in ASCII form in the format hour, 
minute, and second (2 bytes each). 

- The date on which the file was created is kept 
in a 7-byte field having the same format as the 
revision date (see above). 

- The time of the file's creation is maintained 
in a 6-byte field having the same format as the 
revision time (see above). 

- The date on which the file becomes eligible to 
be deleted is kept in a 7-byte field having the 
same format as the revision date (see above). 
Use of expiration is not implemented. 

The map area contains the information necessary to map virtual block 
numbers to logical block numbers. This is done by means of pointers, 
each of which points to an area of contiguous blocks. A pointer 
consists of a count field and a number field. The count field defines 
the number of blocks contained in the contiguous area pointed to, and 
the logical block number (LBN) field defines the block number of the 
first logical block in the area. 

A value of "n" in the count field (see below) means that n+l blocks 
are allocated, starting at the specified block number. 

The retrieval pointer format used in the FILES-11 file structure is 
shown below: 

15 0 

I COUNT-1 HIGH LBN 

31 16 

I LOW LBN I 

F-6 



FILE HEADER BLOCK FORMAT 

NOTE 

The remaining paragraphs in this 
appendix do not apply to RSX-llM. 

The map area normally has space for 102 retrieval pointers. It can 
map up to 102 discontiguous segments or up to 26112 blocks if the file 
is contiguous. If more retrieval pointers are required because the 
file is too large or consists of too many discontiguous segments, 
extension headers are allocated to hold additional retrieval pointers. 
Extension headers are allocated within the index file. They are 
identified by a file number and a file sequence as are other file 
headers; however, extension file headers do not appear in any 
directory. 

A nonzero value in the extension file number field of the map area 
indicates that an extension header exists. The extension header is 
identified by the extension file number and the extension file 
sequence number. The extension segment number is used to number the 
headers of the file sequentially starting with a zero for the first. 

Extension headers of a file contain a header area and identification 
area that are a copy of the first header as it appeared when the first 
extension was created. Extension headers are not updated when the 
first header of the file is modified. 

Extension headers are created and handled by the file control 
primitives as needed; their use is transparent to the user. 

F-7 



APPENDIX G 

SUPPORT OF ANSI MAGNETIC TAPE STANDARD 

This appendix defines the IAS and RSX-llD magnetic tape iabeiing 
standard, which is a level three implementation of the June 19, 1974 
Proposed Revision to the ANSI standard Magnetic Tape Labels and File 
Structure for Information Interchange (X3.27-1969). The only 
exception is that IAS and RSX-llD do not support spanned records. 

G.l VOLUME AND FILE LABELS 

Tables u-~, G-2, and G-3 present the format of volume labels and file 
header labels. 

G-1 



I 

SUPPORT OF ANSI MAGNETIC TAPE STANDARD 

G.1.1 Volume Label Format 

Table G-1 
Volume Label Format 

CHARACTER LENGTH 
POSITION FIELD NAME IN BYTES CONTENTS 

1-3 Label identifier 3 VOL 

4 Label number 1 1 

5-10 Volume identifier 6 Volume label. Any 
alphanumeric or special 
character in the center four 
columns of the ASCII code 
table. 

11 Accessibility 1 Any alphanumeric or special 
character in the center four 
columns of the ASCII code 
table. A space indicates no 
restriction. All volumes 
produced by IAS or RSX-11 have 
a space in this position. 

12-37 Reserved 26 Spaces 

38-51 Owner identification! 14 The contents of this field are 
system-dependent and are used 
for volume protection 
purposes. See Section G.1.1.1 
below. 

52-79 Reserved 28 Spaces 

80 Label standard 1 1 
version 

G.1.1.1 Contents of Owner Identification Field - The owner 
identification field is divided into the following three subfields and 
a single pad character: 

1. System identification {positions 38 through 40), 

2. Volume protection code {positions 41 through 44}, 

3. UIC {positions 45 through 50), 

4. Pad character of one space {position 51). 

The system identification consists of the 
sequence. 

D%x 

G-2 

following character 

I 



SUPPORT OF ANSI MAGNETIC TAPE STANDARD 

x is the machine code and can be one of the following. 

8 - PDP-8 
A - DECsystem-10 
B - PDP-11 
F - PDP-15 

The D%x characters provide an identification method so that the 
remaining data in the owner identification field can be interpreted. 
In the case of tapes produced on PDP-11 systems, the system 
identification is D%B and the volume protection code and UIC are 
interpreted as described below. 

The volume protection code in positions 41 through 44 defines access 
protection for the volume for four classes of users. Each class of 
user has access privileges specified in one of the four columns as 
follows. 

Position Class 

41 System (UIC no greater than [8,255]) 
42 Owner (group and member numbers match) 
43 Group (group number matches) 
44 World (any user not in one of the above) 

One of the following access codes can be specified for each character 
position. 

Code 

0 
l 
2 
3 
4 

Privilege 

No access 
Read only 
Extend (append) access 
Read/extend access 
Total access 

The UIC is specified in character positions 45 through 50. The first 
three characters are the group code in decimal. The next three are 
the user code in decimal. 

The last character in the owner identification field is a space. 

The following is an example of the owner identification field. 

Owner identifier - D%Bl410051102 indicates space) 

1. The file was created on a PDP-11. 

2. System and group have read access. 
Owner has total access. 
All others are denied access. 

3. The UIC is [051,102]. 

G-3 



SUPPORT OF ANSI MAGNETIC TAPE STANDARD 

G.1.2 User Volume Labels 

User volume labels never are written or passed back to the user. If 
present, they are skipped. 

G.1.3 File Header Labels 

The following information should be kept in mind when creating file 
header labels. 

• The Files-11 naming convention uses a subset (Radix-50) of 
the available ANSI character set for file identifiers. 

• One character in the file identifier, the period (.), is 
fixed by Files-11. 

• A maximum of 13 of the 17 bytes in the file identifier are 
processed by Files-11. 

• It is strongly recommended that all file identifiers be 
limited to the Radix-50 PDP-11 character set and that no 
character other than the period (.) be used in the file type 
delimiter position for data interchange between PDP-11 and 
DECsystem-10 systems. 

• For data interchange between DIGITAL and nonDIGITAL systems, 
the conventions listed above should be followed. If they are 
not, refer to Section G.1.3.1. 

Tables G-2 and G-3 describe the HDRl and HDR2 labels respectively. 

G-4 



1 
CHARACTER 
POSITION 

1-3 

4 

5-21 

I 22-21 

28-31 

32-35 

36-39 

40-41 

42-47 

SUPPORT OF ANSI MAGNETIC TAPE STANDARD 

Table G-2 
File Header Label (HDRl) 

FIELD NAME 

Label identifier 

Label number 

File identifier 

File set identifier 

File section number 

File sequence number 

Generation number 

Generation version 

Creation date 

LENGTH 
IN BYTES 

3 

1 

17 

6 

4 

4 

CONTENT 

HDR 

1 

Any alphanumeric or special 
character in the center four 
columns of the ASCII code 
table. 

Volume identifier of the first 
volume in the set of volumes. 

Numeric characters. This 
field starts at 0001 and is 
increased by 1 for each 
additional volume used by the 
file. 

File number within the volume 
set for this file. This 
number starts at 0001. 

4 Numeric characters. 

2 Numeric characters. 

6 yyddd indicates space) 
or 

00000 if no date. 

48-53 I ~xpira~-i~~. date 

54 Access10111ty 

6 Same format as creation date. 

l Space 

55-60 Block count 

61-73 System code 

74 Reserved 

6 000000 

13 The three letters DEC followed 
by name of system that 
produced the volume. See 
Section G .1.1.1. 

Examples: DECFILEllA 
DECSYSTEMlO 

Pad name with spaces. 

7 Spaces 

G-5 



SUPPORT OF ANSI MAGNETIC TAPE STANDARD 

Table G-3 
File Header Format (HDR2) 

CHARACTER 
POSITION FIELD NAME 

1-3 Label identifier 

4 Label number 

5 Record format 

6-10 Block length 

11-15 Record length 

16-50 System-dependent 
information 

51-52 Buffer off set 

53-80 Reserved 

LENGTH 
IN BYTES CONTENT 

3 HDR 

1 2 

1 F - fixed length 
D - variable length 
S - spanned 
U - undefined 

5 Numeric characters 

5 Numeric characters 

35 Positions 16 through 36 are 
spaces. 

2 

28 

G-6 

Position 37 defines carriage 
control and can contain one of 
the following: 

A - f ir~t byte of record 
contains FORTRAN 
control characters, 

space - line feed/carriage 
return is to be 
inserted between 
records, 

M - the record contains 
all form control 
information. 

If DEC appears in positions 61 
through 63 of HDRl, position 
37 must be as specified above. 

Positions 38 through 50 
contain spaces. 

Numeric characters. 
tapes produced by 
Not supported on 
Files-11. 

Spaces 

00 on 
Files-11. 

input to 



SUPPORT OF ANSI MAGNETIC TAPE STANDARD 

G.1.3.1 File Identifier Processing by Files-11 - The following steps 
describe the processing of a file identifier by Files-11. 

1. The first nine characters at a maximum are processed by an 
ASCII to Radix-50 converter. The filename results until one 
of the following occurs: 

A conversion failure, 
9 characters are converted, 
A period (.) is encountered. 

2. If the period is encountered, the next three characters after 
the period are converted and treated as the file type. If a 
failure occurs or all nine characters are converted, the next 
character is examined for a period. If it is a period, it is 
skipped and the next three characters are converted and 
treated as the file type. 

3. The version number is derived from the generation number and 
the generation version number as follows. 

(generation number - 1)*100 +generation version + 1 

At file output, the file identifier is handled as follows. 

1. The filename is placed in the first positions in the file 
identifier field. It can occupy up to nine positions. It is 
followed by a period. 

2. The file type of up to three characters is placed after the 
period. The remaining spaces are padded with spaces. 

3. The version number is 
generation version 
following formulas. 

a. generation number 

b. generation version 

then placed in the generation 
number fields as described in 

version # - , + , 
i i 

100 

# version # = l 
Modulo 100 

NOTE 

In both calculations, remainders are 
ignored. 

The following are examples. 

FILES-11 VERSION # GENERATION # GENERATION VER # 

1 1 0 
50 1 49 
100 1 99 
101 2 0 
1010 11 9 

G-7 

and 
the 



SUPPORT OF ANSI MAGNETIC TAPE STANDARD 

G.1.4 End-of-Volume Labels 

End-of-volume labels are identical to the file header labels with the 
following exceptions: 

1. Character positions 1 through 4 contain EOVl instead of HDRl, 

2. The block count field contains the number of records in the 
last file section on the volume. 

G.1.5 File Trailer Labels 

End-of-file labels (file trailer labels) are identical with file 
header labels with the following exceptions: 

1. Columns 1 through 4 contain EOFl and EOF2 instead of HDRl and 
HDR2, respectively, 

2. The block count contains the number of data blocks in the 
file. 

G.1.6 User File Labels 

User file labels never are written or passed back to the user. If 
present, they are skipped. 

G.2 FILE STRUCTURES 

The file structures illustrated below are the types of file and volume 
combinations that the file processor produces. Additional sequences 
can be read and processed by the file processor. 

If HDR2 is not present, the data type is assumed to be fixed (F) and 
the block size and record size are assumed to be the default value for 
the file processor. 512 decimal bytes is the default for both block 
and record size. 

The meaning of graphics used in the file structure illustrations is as 
fellows. 

1. * indicates a tape mark, 

2. BOT indicates beginning of tape, 

3. EOT indicates end of tape, 

4. , indicates the physical record delimiter. 

G.2.1 Single File Single Volume 

BOT,VOL1,HDR1,HDR2*---DATA---*EOF1,EOF2** 

G-8 



OF ANSI TAPE STANDARD 

G.2.2 Single File Multi-Volume 

BOT,VOL1,HDR1,HDR2*---DATA---*EOV1,EOV2** 

BOT,VOL1,HDR1,HDR2*---DATA---*EOF1,EOF2** 

G.2.3 Multi-File Single Volume 

BOT,VOLl,HDRl,HDR2*---DATA---*EOFl,EOF2*HDRl,HDR2---DATA--*EOFl,EOF2** 

G.2.4 Multi-File Multi-Volume 

BOT;VOLl:HDRl:HDR2*--DATA--*EOFl,EOF2*HDRl,HDR2*--DATA--*EOVl,EOV2** 

BOT,VOLl,HDRl,HDR2*--DATA--*EOFl,EOF2*HDRl,HDR2*--DATA--*EOFl,EOF2** 

G.3 END OF TAPE HANDLING 

End of tape is handled automatically by the magnetic tape file 
processor. Files are continued on the next volume providing the 
volume is already mounted or mounted upon request. A request for the 
next volume is printed on CO. 

G.4 ANSI MAGNETIC TAPE FILE HEADER BLOCK (FCS COMPATIBLE) 

Figure G-1 illustrates the format of a file header block that is 
returned by the file header READ ATTRIBUTE command for ANSI magnetic 
tape. The header block is constructed by the magnetic tape primitive 
from data within the tape labels. 

G-9 



H.MPOF 

HEADER 
AREA 

IDENT­
IFICATION 
AREA 

MAP 
AREA { 

SUPPORT OF ANSI MAGNETIC TAPE STANDARD 

ANSI MAGTAPE FCS-COMPATIBLE FILE 
HEADER BLOCK 

MAP OFFSET l IDENT OFFSET 

FILE SEQUENCE NUMBER 

FILE SECTION NUMBER 

STRUCTURE LEVEL = 4,0'1 (8) 

UIC (FOR VOLUME) 

PROTECTION CODE {FOR VOLUME) 

RECORD ATTRIBUTES l RECORD TYPE CODE 

RECORD SIZE IN BYTES 

N WORDS OF ZERO'S 

FILE NAME RADS,0' 

FILE TYPE RADS,0' 

FILE VERSION NUMBER 

ZERO'S {REVISION DATE & TIME) 

CREATION DATE & TIME {,0' ,0' ,0' ,0',0' ,0') 

EXPIRATION DATE 

PAD BYTE OF ,0' 

COPY OF THE 
HDRl LABEL 

COPY OF THE 
HDR2 LABEL 

{if byte 1 of label = ,0', 
label is not present) 

NULL MAP, I.E., ZERO'S 
{1,0' BYTES LONG) 

Figure G-1 
ANSI Magnetic Tape File Header Block 

{FCS Compatible) 

G-10 

H. IDOF 

H.FNUM 

H.FSEQ 

H.FLEV 

H.FOWN=H.PROG 

H.FPRO 

H.UFAT 

X+I.FNAM 
{IDENT OFFSET *2}=X 

I.FTYP 

X+I.FVER 

X+I.RVNO 

X+I.CRDT 

X+I.EXDT 

X+47. 

X+S,0'. 

X+l3,0. 

X+21,0.= 
{MAP OF OFFSET 2) 



APPENDIX H 

STATISTICS BLOCK 

The format of the statistics block is shown in Figure H-1 below. The 
statistics block is allocated manually in the user program as 
described in Item 3.d of section 3.1.2. 

Word 0 

Word 1 

Word 2 

Word 3 

Word 4 

HIGH LOGICAL BLOCK NUMBER 
(0 if file is noncontiguous) 

LOW LOGICAL BLOCK NUMBER 
(0 if file is noncontiguous) 

SIZE (high) 

SIZE (low) 

LOCK COUNT ACCESS COUNT 

Figure H-1 
Statistics Block Format 

H-1 

I 



APPENDIX I 

ERROR CODES 

This appendix lists the Directive Status Word error codes and the I/O 
error codes returned by the system. 

I-1 



H 
I 

N 

QlOMAC • QIOSYM ~ACRO OEFINITIO MACRO 00710 25•MAR•75 14123 PAGE 

1 
2 
J 
4 
'5 
6 
1 
8 
9 

10 0003~4 

11 
12 
13 
14 
15 
16 
11 
18 
19 
2Pi 
2t 
2!:> 
23 
24 
25 
215 
27 
28 
29 
J0 
3, 
32 
3:3 
34 
35 
36 
37 
3R 
J9 
40 
41 
42 
4J 
44 
45 
46 
47 

,. 

,TITLE QIOMAC • QIOSYM MACRO DEFINITION 
ALTERED SUNDAY 24•NOV•74 13100 
ALTERED TUESDAY 28•JAN•75 13150100 
ALTERED THURSDAY 06•FEB•15 15150 
ALTERED MONDAY 24•FEB•75 15140100 BY ED MARISON 
ALTERED TUE 25•MAR•75 15130 EDIT • +001 

••••• ALWAYS UPDATE THE FOLLOWING TWO LINES TOGETHER 
.IDENT /0304/ 
QI,VER•0304 

COPYRIGHT 1974,1975 1 DIGITAL EQUIPMENT CORP,, MAYNAHD MASS, 

THIS SOFTWARE IS FURNISHED TO PURCHASER UNDER A LICENSE FOR USE 
ON A SINGLE COMPUTER SYSTEM ANO CAN BE COPIED CWITM INCLUSION 
OF DEC 1 S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT 
AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC, 

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT 
NOTICE ANO SHOULD NOT Bt CONSTRUED AS A COMMITMENT 6Y DIGITAL 
EQUIPMENT CORPORATION, 

DEC ASSUMtS NO RESPONSIBILITY FOR THE USE OR RELIABILITY 
OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUP~LIED SV DEC, 

PET~R H. LIP~AN t•OCT•7J 

S MACRO TO DEFINE ST~NOARD QUEU~ I/O DIRECTIVE FUNCTIOW VALUES 
J AND IOSd HETURN VALUES. TO INVOKE AT ASSEM6LY TIME (~ITH LOCAL 
I D~FINITION) USE1 , 

QIOSV$ I DEFINE SYMBOLS 

TO OBTAIN GLOBAL DEFINITION OF THESt SYMBOLS USEI 

QJOSYS DEf'SG 18YM80LS DEFINED GLOBALLV 

THE MACRO CAN BE CALLEO ONC~ ONLY AND THEN 
J RED~FINES ITSELF AS NULL, ,. 

.MACRO QIOSYS !SSGBL,5$$MSG 
,IIF IDN,<S$SGBL>,<DEFSG>, ,GLOBL QI,VER 
.IF ION,<$$$MSG>,<D~FSS> 
UiMAX•0 
!SMSG•l 



H 
I 

w 

48 
49 
51" 
01 
5:? 
o~ 

511 
55 
56 
57 

.IFF 
S$MSG•0 
.E.NOC 
.MCALL 
IOEio<RS 
.MCALL 
ORERRS 
.IF 
.MCALL 
FILI OS 

:[ OEkRS 
$$SGBL Jl/U ERROR CODES FROM HANDLERS, FCP, FCS 
[).,ERPS 
$SSGAL JD!RECTIVl STATUS WORD f.RROR CODES 
DlF,<SSSMSG>,<DEFSS> 
Flll0$ 
$$SGBL JDEFINE GlNERAL Ql/O FUNCTION COD~S 

QIOMAC • QIOSYM MACRO DEFINITIO MACRO 00710 2e•MAR•75 14123 PAGE 1•1 

58 
59 
60 
61 
62 
63 

.MCALL 
SPCIOS 
.MACRO 
,ENOM 
,E.NOC 
,f.NOM 

SPCIOS 
USGBL. 
QIOSYS 
QIOSYS 

QIOSVS 

JDEVlCE DEPENDENT I/O FUNCTION CODE~ 
ARG,AHG1,ARG2 JRECLAlM MACRO STORAGE 

QlOMAC • QIOSYM MACRO DEFINlYIO MACRO D0l'10 26•MAR•75 14123 PAGE 2 

65 
66 
67 
68 
69 
10 
71 
7'2 
73 
74 
75 
76 
77 
78 
79 
80 
81 
8~ 
83 
84 
85 
815 

OEFINE TME ERROR CODES RETURNED BY DEVICE MANDLER AND FILE PRIMITIVES 
IN THi FIRST WORD OF TME l/0 STATUS BLOCK 
THESE CODES ARE ALSO RETURNED BY FILE CONTROL SERVICES CFCS) IN THE 
BYTE F,ERR IN THE FILE DESCRIPTOR BLOCK (FOB) 

THE BYTE F,ERR+1 IS 0 IF F,ERR CONTAINS A HANDLER OR FCP ERROR CCJDE, 

,MACRO IOERRS SSSGBI.. 
,MCALL ,JOER,,OEFINS 
.IF ION,<iSSGBL>,<DEFSG> 
•• ,GBL•1 
.IFF 
• •, GBl..•0 
.ENDC 
.IIF NOF,SSMSGpS$MSG•0 

SYSTEM STANDARD eoo~s. USED BY ALL FUNCTIONS 

.IOER, 
,IOER, 
,IOER, 

IE,BA0,•01,,<BAD PARAMETERS> 
IE.lFC,•02,,<INVALIO FUNCTION CODE> 
IE,DNR,•03,,<0EVICE NOT READY> 



H 
I 

.i:::. 

87 
88 
89 
90 
91 
92 
93 
94 
95 
915 
91 
98 
99 

t '1CA 
'01 
102 
103 
104 
105 
t 0fi 
1 '1., 
10~ 

109 
11"' 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
12 t 

.IOER, 
,IOER, 
.IOER, 
,IOER, 
,IOER. 
,IOER. 
,IOER. 
.IOER, 
,IOER, 
,IOER, 
,lOER, 
,IOER, 
.IOE:.R, 
,IOER, 
.IOER, 
.lOt:R, 
,IOER, 
1 IOER, 
,IOER, 
,IOER, 
, I Ot::R, 
,IOER, 
,JOER, 
,IOE.R, 
.IOER, 

IE,VEM,•04,,<PARITY EHROR ON DEVICE> 
IE,ONP,•00 1 ,<HAROWARE OPTION NOT PRESENT> 
IE,SPC,•06,,<ILLEGAL USER BUFFER> 
IE,ONA,•07,,<DEVICE NOT ATTACHED> 
IE.,DAA,•08,,<0EVICE ALREADY ATTACHED> 
IE,OUN 1 •09, 1 <0EVICE NOT ATTACHABLE> 
IE,EOF,•10,,<ENO OF FILE DETECTED> 
IE,EOV,•11,,<ENO OF VOLUME DETECTED> 
IE,~LK~·12,,<~RITE ATTEMPTED TO LOCKED UNIT> 
IE,DA0,•13,,<D~TA OVERRUN> 
IE,SRt,•14,,<SENO/RECEIVE FAILUHE> 
IE,ABO,•to,,<REQUEST TEMMINATEO> 
IE,PRl,•16,,<PRIVILEGE VIOLATION> 
IE,RSU,•17,,<SHARABLE Rt::SOURCE IN USE> 
It,OVR,·t~,,<lLLEGAL OVERLAY REQUEST> 
IE,SYT,•19,,<0DO 8VTE COUNT (OR VIRTUAL ADDRESS)> 
IE,bLK,·2~ 1 ,<LOGICAL BLOCK NUMBER TOO LARGE> 
IE,MOU,•21,,<INVALIO UOC MODULE *> 
IE,CON,•22,,<UDC CONNECT ERROR> 
IE,BBE:.,•5b,,<8AO BLOCK ON DEVICE:.> 
IE.STK,•58,,<NOT tNOUGH STACK SPACE CFCS OR FCP)> 
IE,FHE:.,•59,,<FATAL HARDWARE ERROR ON DEVICE> 
IE.EOT,•62,,<END OF TAPE DETECTED> 
IE,OFL,•65,,<DEVICE OFF LINE> 
IE,BCC,•66,,<~LOC~ CHECK OR CRC ERROR> 

FILE PRIMITIVE CODES 

.IOER, 

.IOER. 
,IOER, 
.IOER, 

Ic,N00,•23,,<CALLER!S NODES EXHAUSTED> 
IE,OFU,•24,,<0EVICE FULL> 
tE,lFU,•25,,<INDEX FILE FULL> 
IE,NSF,•26 1 ,<NO SUCH FILE> 



H 
I 

01 

QlOMAt • QIOSY~ ~ACRO DEFINITIO MACRO D0710 25•MAR•75 14123 PAGE 2•1 

122 
123 
124 
12!5 
12~ 
127 
128 
129 
131'1 
1J1 
132 
133 
134 
13!5 
136 
137 
138 
SJQ 
140 
141 
14t' 
143 
144 
!45 
146 
147 
14R 
149 
15~ 

101 
15:.? 
153 
154 
155 
156 
157 
15B 
l~Q 

16~ 
161 
162 
163 
1b4 
16!'i 
16~ 
167 

.IOER, 
,,IOER, 
,IOER, 
,IOER, 
1,IOER, 
.IOER, 
,, I OE:.R, 
,,IOER, 
,,IOER, 
,IOER, 
,lOER, 
,IOER, 
,IOER, 
,IOER, 
,IOER, 
,IOE.R, 
,IOER, 

IE,LCK,•27,,<LOCKED FROM WRITE ACCfSS> 
IE,HFU,•28,,<FILE ~EADER FULL> 
IE.~AC,•29 1 ,<ACCESSED FOR WRITE> 
IE,CKS,•30,,<FlLE HEADER CHECKSUM FAILURE> 
IE.~AT,•31,,cATTRIBUTE CONTROL LIST FORMAT ERMOR> 
IE,RER,•32,,<FILE PROCESSOR DEVICE READ ERROR> 
IE,WER,•JJ,,cfILE PROCESSOR DEVICE WRITE ERROR> 
IE,ALN,•34,,<FILE ALREADY ACCE:.SSEO ON LUN> 
IE,SNC,•35,,<FILE ID, FILE NUMBER CHECK> 
IE,SQC,•36,,<FILE ID, SEQUENCE NUMBER CHECK> 
IE,NLN,•37,,<NO FILE ACCESSED ON LUN> 
IE,CL0,•38 1 ,cFILE WAS NOT PROPERLY CLOSED> 
IE,DUP,•!57 1 ,cENTER • DUPLICATt ENTRY IN DIRECTORY> 
IE,BVR,•63,,<8AO VERSION NUMBER> 
IE.BH0,•64.,<BAO FILE HEADER> 
IE,EXP,•75,,<FILE EXPIRATION DATE NOT REACHED> 
IE.STF,•76,,<BAO TAPE FORMAT> 

FILE CONTROL SERVICES CODES 

,IOER, 
,IOfR, 
,IOER, 
,IOER, 
,lOER, 
, IOE:.R, 
,IOER, 
,IOER, 
,IOER, 
,IOER, 
,IOER, 
,IOER, 
1 IOER 1 

,IOER, 
,IOER, 
,lOER, 
,IOER, 
,IOE.R, 
,IOER, 
.IOER, 

IE,NBF,•39,,<0PEN • NO BUFFER SPACf AVAILABLE FOR FILE> 
IE,RBG,•40,,<IL~EGAL RECORD SIZE> 
tE,NBK,••1,,<FILE EXCEEDS SPACE ALLOCATED, NO BLOCKS> 
IE,ILL,•42,,<ILLEGAL OPERATION ON FILE DESCRIPTOR BLOCK>. 
If,8TP,•4J,,<BAO RECORD TYPE> 
If,RAC,•44,,<ILLEGAL RECORD ACCESS BITS SET> 
lE,HAT,•45,,<ILLEGAL RECORD ATTRIBUTES BITS SET> 
IE,RCN,•46,,<ILLEGA~ RECORD NUMBER • TOO LARGE> 
IE,M~K,•41 1 ,<MULTIPLE BLOCK RE:.AD/~~ITt • NOT IMPLEMENTED 
IE,2Dv,•48,,cRENAME • 2 DIFFERENT DEVICES> 
lE,FEX,•49,,<REhAME • NEW FILE:. NAME ALREADY IN USE> 
IE,BOR,•50,,<BAD Ol~ECTORY FILE> 
tE,RNM,•51,,<CANIT RENAME OLD FlLt SYSTEM> 
IE 1 BDI,•52,,<BAO DIRECTORY SYNTAX> 
IE,FOP,•53,,<FILE ALREADY OPEN> 
IE,BNM,•54,,<8AO FILE NAME:.> 
IE,BOV,•56,,<BAO DEVICE NAME> 
IE 1 NFI,•60,,cFILE IO WAS NOT SPECIFIED> 
IE,ISQ 1 •61 11 <1LLEGAL SEQUENTIAL OPERATION> 
IE.NNC,•77,,<NOT ANSI IOI FORMAT SYTE COUNT> 

NETWOR~ ACP CODES 

,IOER~ IE,AST,•67 1 ,<NO AST SPECIFIED IN CONNE:.CT> 

YE'r> 



H 
I 

O'\ 

16~ 
1f>Q 
17"' 
171 
17'-
173 
174 
17!5 
176 
177 
178 

179 
181.'J 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
Ui/7 
198 
199 
20Cil 
201 
2k:!~ 
2~3 
2~4 

2~5 

2'-16 
207 

.lOER. 
,IOER, 
.IOER, 
,IOE.R, 
.IOER, 
,lOER, 
.IOER, 
,IDER, 

IE.,NNN,•68,,<NO sue" NOOE> 
IE,NFW,•69,,<PATH LOST TO PARTNER> '•001 THIS 
IE,SLB,•70,,<SAD LOGICA~ BUFFER> 1•~01 
IE,TMM,•71,,<TOO MANY OUTSTANDING MESSAGES> 
IE,NOR,•72,,<NO DYNAMIC SPACE AVAILABLE> 
IE,CNR,•73.,<CONNECTION REJECTED> 
IE.TM0,•74,,<TIMEOUT ON REQUEST> 
IE.,NNL 1 •78,,<NOT A NETWORK LUN> ,.0~1 

CODE MUST 8~ ODO 

SUCCESSFUL RETURN CODES••• 

DEF INS 
DEF INS 
DEF INS 

IS,PND,•00, 
IS,SUC,•01, 
IS,BV,•05, 

IOPERATION PENDING 
IOPERATION COMPLETE, SUCCESS 
ION AID READ, AT LEAST ONE BAO VALUE 
IWAS READ (REMAINDER MAY BE GOOD), 
IBAO CHANNEL IS INDICATED BY A 
JNEGATIVE VALUE IN THE BUFFER, 

TTY SUCCESS COOES1 

•••••• 

DEFINS IS,CR,<15•400•1> ICARRIAGE RETURN WAS TERMINATOR 
nEFINS IS,ESC 1 <33•400+1> IESCAPE CALTMODE) WAS TERMINATOH 

THE NEXT AVAILABLE ERROR NUMBER ISi •79, 
ALL LOWER NUMBERS ARE IN USE1i 

••••• 
.IF 
.MACRO 
.~NOM 

.ENDC 
,ENDM 

EQ,UMSG 
IOEF-iR$ A 
IOERRS 

IOERRS 



H 
I 

-...J 

QlOMAt • QIOSYM ~ACRO DEFINITIO MACRO 00710 25•MAR•75 14123 PAGE J 

209 
210 
211 
212 
213 
214 
215 
21~ 
217 
218 
219 
220 
221 
22:> 
223 
224 
225 
226 
221 
2~8 
229 
2J0 
231 
232 
233 
234 
235 
23l\ 
231 
23A 
23Q 
240 
24t 
242 
243 
244 
24!'.ll 
246 
247 
248 
249 
25t'J 
25t 
252 
253 
254 
255 

OEFINE THE DIRECTIVE ERROR CODES RETURNED IN THE DIRECTIVE STATUS WORD 

FILE CONTl~OL SERVICES CFCS> RETURNS THESE CODES IN THE BYTE F,ERR 
OF THE FILE DESCRIPTOR BLOCK CFDB), TO DISTINGUISH THEM FROM THE 
OVERLAPPING CODES FROM HANDLER AND FILE PRIMITIVES, THE BYTE 
F,ERR+l I~ THE FOB ~ILL BE NEGATIVE FOR A DIRECTIVE ERROR CODE, 

,MAC~O DRER~S SSSGBL 
,MCALL ,QtOE,,OEFINS 
,IF ION,<SSSGBL>,<OEFSG> 
.. , GBL• 1 
,IFF 
,,,GBL•0 
,E.NOC 
,IJF NOF,SSMSG 1 SSMSG•0 

$TANDARD ERROR CODES RETURNED BY DIRECTIVES IN THt DIRECTIVt STATUS WORD 

, CHOE, 
.QJOE, 
,QIOE, 
.QIOE, 
• IH OE, 
•""IOE, 
• c.u OE I 

• lHOE • 
,QIOE. 
.QIOE, 
.CilIOE, 
• fill OE• 
,QIOE, 
,QIOE, 
,!HOE, 
,QIOE, 

If,UPN,•01,,<lNSUFFICIENT DYNAMIC STOHAGE> 
IE,INS,•02,,<SPECIFIEO TASK NUT INSTALLED> 
I~,ULN,•05,,<UN•ASSIGNED LUN> 
IE,HWk,•06,,<HANOLER TASK NOT R~SXD~NT> 
IE,ACT,•07,,<TASK NOT ACTIVE> 
IE,ITS,•08,,<DlRECTIVE INCONSISTENT WITH TASK STATE> 
IE,CKP,•10,,<ISSUING TASK NOT CHECK~OINTASLE> 

IE,AST,•80,f<DIRECTIVE ISSUtO/NOT ISSUED FROM AST> 
I~ 1 LNL,•9~.,<LUN LOCKtO IN USE> 
IE,lOU,•92,,<lNVALID DEVICE OR UNIT> 
tE,lTI,•93.,<lNVALID TIME PARAMETERS> 
tE,IPR,•95,,<lNVALIO PRIORITY ( ,GT, 250,)> 
IE.lLU,•96 1 r<lNVALID LUN> 
IE.IEf ,•97,p<lNVALIO EVENT C ,GT, 64,)> 
IE,AOP,•98,,<PART OF OPB OUT OF USERIS SPACE> 
IE,SD~1•99,,<DIC OR DPB SIZE INVALID> 

SUCCESS CODES F~OM DIRECTIVES • PLACED IN THE DIRECTIVE STATUS ~a~o 

OEFINS IS,CLR,0 

DEFINS IS,SET,2 

OEFINi IS,SPD,2 

JtVENT FLAG WAS CLEAR 
JFROM CLEAR EVENT FLAG DIRECTIVE 
JEVENT FLAG WAS SET 
IFROM SET EVENT F~AG DIRECTIVE 
JTASK WAS SUSPENDED 



206 
25.7 .IF EQ, HMSG 
25B .MACRO DP ERR St A 

259 .ENOM DR ERPS 
:?60 .E.NDC 
26\ .ENOM DR ERRS 

QIOMAC • QIOSYM MACRO DEFINITIO MACRO 00710 25•MAR•75 t4123 PAGE 4 

263 
264 DEFINE THE GENERAL QI/O FUNCTION CODES • DEVICE lNDEPEND!NT 
265 
266 .MACRO FILI OS UIGBL 
267 .MCALL ,wORO,,OEFINS 
268 .IF ION,<SSSGBL>,<OEFSG> 
269 ••• GBL•1 
2i'A .IFF 
271 •• ,GBL•0 t:rJ 
2n ,t.NOC ~ 273 
274 GENERAL Ql/O QUALIFIER BYTE Off I NIT IONS ::tJ 

H 27!5 n I 
00 27~ ,WORD, IQ 1 x,0r111,000 INO ERROR RECOVERY 0 

2"17 ,WORD. IQ,Q,I002,rlll1J0 JQUEUE REQUEST IN EXP~ESS QUEUE 0 
t:rJ 

278 ,, ' ,wORD. IQ,,0'14,000 I RESERVED t/l 
27Q ' 280 ' EXPRESS QUEUE COMMANDS 
281 
262 
2H3 1 wORO • IO.KIL,0121000 JKILL CURRENT REQUEST 
284 1 1ti10~D • I0 1 HDl'll,0221000 Jl/O RUNDOWN 
28~ 1 w0Ro, IO,UNL.,042,000 JUNLOAO I/O HANDLER TASK 
286 .wOHO, IO,LTK,05V:l,000 IL.CAO A TASK IMAGE FILE 
287 1 wORO. IO,RTl'\ 1 0601000 JRECOHO A TASK IMAGE FILE 
288 
269 GENERAL DEVICE HANDLER CODES 
290! 
291 • WORD. IO,WLB,000,001 JwRITE LOGICAL BLOCK 
292 1 wORO, I0 1 RLB1000,002 JREAO LOGICAL BLOCK 
29] 1 wOHD, tO,LOv,010,002 JLOAD OVERLAY CDISK D~IVER) 
294 .wo~o. IO,ATT,000,003 JATTACM A DEVICE TO A TASK 
29!5 ,WORD. IO,OET,000,004 JDETACH A DEVIC~ FROM A TASK 
29fi 
21:}7 DlREClORY P~IMITIVE CODES 
298 
299 .WOkO, IO,fNA,0001011 Jf INO FILE NAME IN DIRECTORY 



H 
I 

i..o 

30ri' 
30 t 
30::> 
303 
304 
30!'i 
306 
307 
308 
309 
310 
31t 
31 ::> 
31~ 
314 
31~ 
31~ 

317 
318 
319 

,WORD, IO,RNA,0001013 
,WORD, IO,ENA,0001014 

FIL~ PRJMlTIV~ CODES 

,WORD, 
,WORD, 
,WORD, 
,~ORO, 
,WORD, 
, itlORO 1 

, ~IORD 1 

,WORD, 
,WORD, 
,WORD, 
,WORD, 
,WORD, 
,WOkO, 
,WORD, 

IO,CLN,000,00:7 
IO,ACR,000,01!5 
IO,ACW,000,0115 
IO,ACE,000,01:7 
IO,DAC,000,020 
IO,RVB,0001021 
Iu,~VB,{0001022 
IO,EXT,000,02.3 
IO,CRE,000,024 
I 0, OEL,, 000, 020 
IO,RAT,00010215 
10,w.r,000,02:7 
IO,APV,01010310 
IO,APC,000,030 

JREMOVE FILE NAME F~OM DIRECTORY 
JENTER FILE NAME IN DIRECTORY 

JCLOSE OUT I.UN 
JACCESS FOR READ 
JACCESS FOR WRITE 
IACCESS FOR EXTEND 
JOE .. ACCESS FILE 
JREAO VIRITUAI. BLOCK 
JWRITE VIRITUAL B~OCK 
JEXTEND FILE 
JCREATE FILE 
1 OEl.ETE FI LE 
JREAD FILE ATTRIBUTES 
JWRlTE Fll.E ATTH18UTES 
JPRIVILEGED ACP CONTROL 
IACP CONTROL. 

QIOMAC • QIOSYM MACRO DEFINITIO MACRO D07t0 25•MAR•7fS 14123 PAGE 

,MACRO 
,ENDM 
,ENOM 

FILIOI 
FI LI OS 
FILI OS 

QIOMAC • QIOSYM MACRO DEFINITIO MACRO D0710 25•MAR•75 14123 PAGE 5 

32!'i 
326 
327 
328 
329 
3JliJ 
331 
33' 
3JJ 
334 
335 
336 

DEFINE THE QI/O FUNCTION CODES THAT ARE SPECIFXC TO INDIVIDUAL. DEVICES 

,MACRO SPCIO$ SSSGBL. 
,MCALL .~o~o.,oEFIN$ 
,IF ION,<SSSGBL>,<DEFSG> 
, •, GBl.• 1 
,IFF 
,,,GBL•0 
.ENOC 

QI/O FUNCTION CODES FOR SPECIFIC DEVICE DEPENDENT FUNCTIONS 



H 
I 

....... 
0 

337 
338 
33q 
340 
341 
342 
343 
344 
345 
346 
347 
34~ 
349 
3oQI 
351 
352 
353 
354 
355 
3bfl 
3S7 
3b8 
359 
36111 
3b1 
362 
363 
364 
365 
366 
3o7 
368 
369 
370 
371 
372 
373 
374 
37~ 

376 
377 
37~ 

379 
380 
381 

•WORD, 
,WORD. 
.wORO, 
• wo~o, 
.~ORO. 
• WOHO, 
•WORD, 
.wo~o. 
.WORD, 
.wo~o. 
, WC'IRD, 
,WORD. 
,WORD, 
,WOkO, 
,WORD, 
.wOHO. 
, WOl10, 
,WORD, 
• WC'IRD, 
,WORD, 
, 1t10RD, 
,WORD, 
,WORD, 
,WORD, 
,wORD, 
,WORD, 
• ltitORO, 
,WORD, 
, ll!ORD I 

.~ORO, 

.~ORO, 
,WORD. 
,WORD, 
,WORD, 
,WORD, 
,WORD, 
,WORD, 
,WORD, 
,WORD, 
,WORD, 
,WORD, 
,WORD, 
,WORD, 
,WORD, 

l0 1 WLV1100,001 
IO,WLS,0101001 
IO,WNS1020100l 
IO,RLV, 1001002 
IO,RNC,04"',002 
IO,RAL,0101002 
IO,RNE.,0201002 
IO,RDB1200,002 
IO,RHD10101002 
IO,RNS,020,002 
IO,CRC,040,002 
10,R1C1011l0,005 
IO,INL,000,00b 
IO, TRM,010,005 
IO,RBC 1000,006 
IO,MOO,ii:j00,006 
IO,HDX,0101006 
IO,FDX10201006 
!O,SYN 104"',006 
IO,RTC,0001007 
IO,RWD1000,005 
IO,SPB,0201005 
IO, SPF-., 040, 005 
IO,EOF1000,006 
10,STC:, 1001005 
IO,SEC,12k!,005 
IO,RWU,140,005 
JO,SMO, HHD1005 
IO,SA0,000,010 
10,sso,000,011 
IO,MS0,000,012 
IO,SL0,000,013 
IO,ML0 1 000,IU4 
IO,LED,0001024 
10,soo,000,025 
IO,SDI,0001026 
10.scs,000,026 
IO,REL1000,027 
IO,MCS,0001027 
IO,AOS,0001030 
10,cc1,000,0:50 
IO,MDI,000,031 
IO,ocI,000,031 
IO.XMT,{1)00,031 

JWRITE LOGICAL REVERSE (DECTAPE) 
JCCOMMUNICATIONS) wRITE PRECEOED BY SYNC TRAIN 
JCCOMMUNICATIONS) WRITE, NO SYNC TRAIN 
JREAD REVERSE (DECTAPE) 
JREAD • NO LO~ER CASE CONVERT (TTY) 
JREAO PASSING ALL C~ARACTERS CTTY) 
JREAD WITHOUT ECHO CTTY) 
JREAO BINARY MODE CCARD READER) 
J(COMMUNICATIONS) READ, STRIP SYNC 
JCCOMMUNICATIONS) READ, OONIT STRIP SYNC 
JCCOMMUNICATIONS) READ, OONIT CLEAR CHC 
JREAD SINGLE CHANNEL (AFC, A001, UOC) 
J(COMMUNICATIONS) INITIALIZATION FUNCTION 
JCCOMMUNICATIONS) TERMINATION FUNCTION 
JREAD MULTICHANNELS (SUFFER DEFINES CHANNELS) 
JCCUMMUNICATIONS) SETMOOE FUNCTION FAMILY 
JCCOMMUNICATIONS) SE.T UNIT HALF DUPLEX 
J(COMMUNICATIONS) SET UNIT FULL DUPLEX 
JCCOMMUNICATIONS> SPECIFY SYNC CHARACTER 
JREAD CHANNEL • TIME BASED 
JREWIND (MAGTAPE1 DECTAPE) 
JMAGTAPE, SPACE "N" BLOCKS 
JMAGTAPE, SPACE "N" EOF MARKS 
JMAGTAPE, WRITE EOF 
JMAGTAPE, SET CHARACTERISTIC 
JMAGTAPE1 SENSE CHA~ACTERISTIC 
JREWIND AND UNLOAD tMAGTAPE, DECTAPE) 
JMAGTAPE, MOUNT & S~T CHARACTERISTICS 
JUOC SINGLE CHANNEL ANALOG OUTPUT 
JUOC SINGLE SHOT, SINGLE POINT 
JUOC SINGLE SHOT, MULTI•POINT 
JUOC LATCHING, SJNG~E POINT 
JUOC ~ATCHING, MULTI•POINT 
JLPS11 WRITE LED DISPLAY LIGHTS 
JLPS11 WRITE DIGITAL OUTPUT REGISTER 
1LPS11 READ DIGITAL INPUT REGlSTEH 
I UOC CONTACT SENSE, SINGLE PO I NT 
JLPS11 WRITE RELAY 
IUDC CONTACT SENSE, MULTI•POINT 
JLPS11 SYNCHRONOUS AIU SAMPLING 
IUDC CONTACT INT • CONNECT 
JLPS11 SYNCHRONOUS DIGITAL INPUT 
JUDC CONTACT INT • DISCONNECT 
l(COMMUNICATIONS) TRANSMIT SPECIFIED BLOCK ~ITH ACK 



QIOMAC • QIOSYM MACRO DE'INITIO MACRO 00110 2!5•MAR•7'5 

382 ,WORD, 
383 ,WORD, 
384 ,WORD, 
385 ,WORD, 
386 ,WORD, 
387 ,WORD, 
388 ,WORD, 
389 ,WORD, 
390 ,WORD, 
391 ,WORD, 
392 ,WORD, 
393 ,WORD, 
39.S ,WORD, 
395 ,WORD, 
396 ,WORD, 
397 ,WORD, 
398 ,WORD, 
399 ,WORD, 
•00 ,WORD, 
40t ,WORD, 
40~ ,WORD, 

H 401 ,WORD, I 
I-' 404 ,WORD, 
I-' 405 ,WOkO, 

4"76 ,WORD, 
407 ,WORD, 
40~ ,WORD, 
409 ,wORO, 
41~ ,WORD, 
411 ,WORD, 
412 ,WORD, 
'113 ,WORD, 
414 ,WORD, 
415 ,WORD, 
416 ,WORD, 
417 ,WORD, 
11118 .WORD, 
419 1 WORD, 
42A 
421 
422 ,MACRO 
•2J ,ENDM 
42.d. .ENDM 

1'4123 PAQE !5• 1 

IO,XNA,0101031 
IO,MIS,11!10,032 
IO,RCI,eee,e32 
IO,Rcv,000,032 
IO• MOO, 00111, 033 
IO,CTI,0001033 
IO,CON,0001033 
IO,CPR,010,033 
IO,CAS,0201033 
IO,CRJ,040,033 
to,ceo, 110,0JJ 
IO,CTR,2101033 
IO,GNI,0101035 
IO,GLI,020,035 
IO,GLC10301035 
IO,GRI,0401035 
IO,GRC,05ro111J35 
IO,GRN,060,035 
tO,CSM,0701035 
IO,CIN11001035 
IO,CBN, 110,035 
ro.ceo,120,0J!5 
IO,OTI,000,034 
IO,OIS,000.ril34 
IO,MOA,00K',034 
IO,RTI,000,035 
IO,CTL,0001035 
IO,STP,000,035 
IO,ITI,000,036 
IO,WPB,0401001 
IO,RP8,041d1002 
IO,SHT,01"'1005 
IO,SST1030,005 
IO,SEM,04010~5 
IO,SNM 10'50,005 
IO.CCT,060,005 
10.ocr,0101005 
IO,ESA, 1001005 

SPCIO$ A 
SPCIOS 
SPCIOS 

l(COMMUNICATION8) TRANSMIT WITHOUT ACK 
JLPS11 SYNCHRONOUS HISTOGRAM IAMPLING 
JUDC CONTACT lNT • READ 
ICCOMMUNICATIONS) RECEIVE DATA IN BUFFER ~P~Cl~IED 
ILPS11 SYNCHRONOUS DIGITAL OUTPUT 
IUDC TIMER • CONNECT 
J(COMMUNICATIONS) COMMUNICATIONS CONNECT FUNCTION 
ICCOMMUNICATIONS) COMMUNICATIONS CONNECT NO TIMEOUTS 
J(COMMUNICATIONS) COMMUNICATIONS CONNECT WITH AST -
l(COMMUNlCATlONS) COMMUNICATIONS CONNECT REJECT 
1•001 <COMMUNICATIONS) COMMUNICATIONS BOOT CONNECT 
1•001 (COMMUNICATIONS) COMMUNICATIONS TRANSPARENT CONNECT 
ICCOMMUNICATIONS) COMMUNICATIONS GET NODE INFO 
l(COMMUNICATIONS) COMMUNICATIONS GET LINK INFO 
ICCOMMUNICATIONS) GET LINK INFO CLEAR COUNTERS 
JCCOMMUNICATIONS) GET REMOTE NODE INFO 
1•001 (COMMUNICATIONS) GET REMOTE NOD~ ERHOR COUNTS 
1•001 (COMMUN,) GET REMOTE NODE NAME 
1•001 CCOMMUNICATIONS) CHANGE SOLO MODE 
1•001 (COMMUN,) CHANGE CONNECTION INHIBIT 
1•001 CCOMMUNICATIO~S) CIRCULAR BUFFER NCS 
1•001 (COMMUNICATIONS) CIRCULAR BUFFER ODCMP 
JUDC TIMER • DISCONNECT 
l(COMMUNICATIONS) COMMUNICATIONS DISCONNECT FUNCTION 
1LPS11 SYNCHRONOUS DIA OUTPUT 
IUDC TIMER ~ READ 
JCCOMMUNICATIONS) NET~ORK CONTROL FUNCTION 
JLP511 STOP IN PROGRESS FUNCTION 
JUOC TIMER • INITIALIZE 
I RX01 • FLOPPY DISK WRITE PHYSICAL BLOCK 
I RX01 • FLOPPY DISK READ PHYSICAL BLOCK 
ISET HORIZONTAL TAB POSITIONS 
ISET SPECIAL TERMINATOR CHARACTtRS 
ISET TERMINAL MODE (CHARACTERISTICS) 
JSENSE TERMINAL MODE 
JCONNECT TO REMOTE TERMINAL (AUTO DIALOUT) 
IDISCONNECT FROM REMOTE TERMINAL (HANGUP) 
JtNABLE STATUS AST 



QIOMAC • QIOSYM MACRO DEFINITIO ~ACRO oe110 25•MAR•75 1~123 PAGE e 

426 
427 
428 
429 
430 
431 
432 
433 
434 
43!5 
436 
437 
4J8 
439 
440 
441 
442 
443 
444 
44!5 
446 
447 
448 
449 
4!5(JI 

451 
452 
453 
454 
455 
456 
457 
'45B 
459 
460 
461 
462 
463 
464 

HANDLER ERROR CODES RETURNED IN I/O STATU8 BLOCK ARE Df,INED THMOUGH THIS 
MACRO WHICH THEN CONDITIONALLY INVOKES THE MESSAGE GENERATING MACRO 
FOR THE QIOSYM,MSG FILE 

,MACRO 
DEF INS 
,IF 
,MCALL 
1 IOMG 1 

,ENOC 
,ENDM 

1 IOER 1 SYM 1 L0 1 MSG 
SYM,LO 
GT, SSMSG 
,IOMG, 
SYM,L0 1 <MSG> 

Ql/O ERROR CODES ARE DEFINED THOUGH THIS MACRO WHICH THEN INVOKES THE 
ERROR MESSAGE GENERATING MACRO, ERROR CODES •129 THROUGH •258 
ARE USED IN THE QIOSYM,MSG FILE 

,MACRO 
DEF INS 
,IF 
,MCALL 
1 l0"1G. 
,ENDC 
,ENOM 

~QtOE, SYM 1 LO,MSG 
SYM 1 LO 
GT, SSMSG 
1 IOMG 1 

SYM,<LO•t28,>,cMSG> 

CONDITIONALLY GENERATE OATA FOR WRITING A M~SSAGE FILE FOR MO 

,MACRO 
1 l!rjORO 
I ASCIZ 
,E.Vi;.N 
I IIF 
,ENDM 

,IOMG, SYM,LO,MSG 
•AO<LO> 
A MSG A 

LT,,.OcSSSMAX•<LO>>,SSSMAX••AO<LO> 
,lOMG, 

DEFINE THE SYMBOL SYM WHERE LO IS IS THE LOW ORDER BYTE, HI IS THE HIGH BYTE 

,MACRO 
DEF INS 
,ENOM 

,WORD, SYM,LO,HI 
SYM,<A0<Hl•400•L0>> 
,wo~o. 

QlOMAC • QIOSYM MACRO DE,INITIO MACRO oe111 25•MAA•75 1'•23 PAGE , 

1 000000 
2 008001 

QIOSVS DEFSG 
,ENO 



QlOMAC • QIOSVM MACRO DEFINITlO MACRO 00710 25•MAR•75 14123 PAGE 7•1 
SYMBOL. TABLE 

lE,ABO• t 71161 G IE,IFU• 11'1141 G !E,UPN• 17"77 '17 G IO,FNh 0044H G 10,RWU• 002540 G 
IE.ACT• 177171 G IE,ILL.• 177126 G IE, VEFh 177774 G lO,GL.C• 016430 G IO,R1C• 0il241110 G 
!E,ADP• 177636 G IE,ILU• 177640 G IE,WAC• 1''7143 G 10,GLl• 016420 G 10,SAO• 01"4000 G 
lE,AL.N• 117136 G lE,lNS• 177176 G IE,WAT• 1"7741 G 10,GNl• 11116410 G 10,SCS• Rl13000 G 
If ,AST• 117660 G lE,IPR• 177641 G IE,WER• 1''7137 G 10,GRC• 016450 G IO,SDI• 013000 G 
lE 1 BAD• 111117 G IE,ISQ• 177703 G U,WLK• 117764 G lO,GRI• 016440 G 10,SDO• 012400 G 
IE,SBE• 1777.10 G tE,ITI• 177643 G IE,2DV• 171120 G IO,GRN• 016460 G I0 1SEC• 002620 G 
IE,BCC• 171616 G tE,ITS• 171710 G '.[0,ACE• 007400 G 10,HDX• 0030U G 10,SEM• 00240 G 
JE,BDl• 117714 G tE,L.CK• 171745 G '.[O, ACR• 006400 G IO,HIS• IU5000 G I0 1 Sl'4T• HU10 G 
IE,BOR• 177716 G IE,L.NL.• 171646 G JO, ACW• 007000 G IO,lNL.• 002400 G 10,SLO• 00511HH' G 
tE,BOV• 177711 G JE.,MAK• 171721 G '.[0,AOS• 014000 G IO,ITI• 017000 G 10,SMO• 002560 G 
If 1BHD• 171700 G IE,MOD• 177753 G tO,APC• 01.4000 G IO,KII.• 000012 G IO,SNM• 002450 G 
IE,BLB• 1776'2 G IE,NBF• 177731 G IO,APV• 014010 G IO.I.ED• 11112000 G 10,SPB• 002420 G 
IE,BLto t77754 G IE ,NBIO 177727 G IO,ATT• Hl400 G IO,LOV• 001010 G IO,SPF• 002440 G 
IE,BNM• t 77712 u tE,NDR• 177670 G IO,CAS• 0ll 5420 G I0,1.TK• 000050 G 10,SSO• 004400 G 
IE,BTf-• 1 77664 G IE,NFI• 177704 G 'IO,CBD• 016520 G lO,MCS• 013400 G IO,SST• 002430 G 
If1BTP• 177725 b IE,NFW• 17767J G IO,CBN• 0ll 6510 G 10,MDA• 016000 G IO,STC• 002500 G 
IE,BVR• 1777C'l1 G IE,NLN• 177733 G IO,C80• 0asf>10 G IO,MDI• 014400 G IO, STP• 016400 G 
IE,BVT• 1777~5 b IE,NNC• 177663 G IO, CCI• C1lll4000 G IO 1 MOO• 015400 G 10,SYN• 003040 G t:i:J IE,CKP• , 77766 G ?E,NNL• 177662 G IO,CCT• 002460 G IO,MLO• 006000 G IO, TRM• 002410 G ~ IE,CKS• 177742 G It:,NNN• 177b74 G IO,CIN• 016500 G IO,MOO• 003000 G IO,UNL.• 000042 G ~ IE,CLO• 177732 G IE,NOO• 177751 G IO,CLN• 003400 G 10,MSO• 005000 G IO,IOT• 013400 G ~ H IE,CNR• 1776Fi7 G ?E,NSF• 177746 Ii IO,CON• 015400 Cs IO,FUL.• 001010 G 10,WL.6• 000400 G 

I lE,CON• 177752 G IE,OFL• 177b11 G IO,CPR• 11115410 G 10,RAT• 013000 G 10,Wl.S• 000410 G () 
1--' IE,OAA• 17777r/J G IE,ONP• 17771J G 10,CRC• 00104(0 G 10,RBC• 003000 G 10,Wl.V• 0!00500 G 

0 w 0 
IE,OAO• t 77763 G IE,OVR• 177756 G IO,CRE• 012000 G IO,RCI• 015000 G IO,WNS• 000420 G t:i:J 
IE,DFU• 177750 G IE,PRI• 177760 G IO,CRJ• 015440 G IO,RCV• 015000 G IO,WPB• 011)0440 G m 
IE11UNA• 177771 G IE.RAC• 177724 G IO,CSM• 016470 G IO,RD0• 001200 (i IO, WVB• 011000 G 
IE~ONR• 171775 G . IE,RAT• 177723 G IO,CTI• 0U5400 G IO,RON• 000fd22 G IO,XMT• 014400 G 
IE,OUN• 177767 G IE,RBG• 177730 G IO,CTL• 016400 G IO,REL.• 013400 G IO,XNA• llJ144l0 G 
lE,OUP• 1777A7 G J~ 1 RCN• t 77722 G IO,CTR• 015610 G IO,"HD• 001010 G IQ,Q • 00111002 G 
IE,EOF• t777M G IE,RER• 177740 G IO,OAC• 010000 G IO• RL~• 001000 (i IQ, X • llJ00001 G 
If ,EOT• 177702 G IE,RNM• 171715 G IO,OCl• 014400 "' IO,RL.V• 001100 G lS,BV • 0011J005 G 
l:E,EOV• 177765 G IE,RSU• 177757 G IO,OCT• 00247fd G IO,RNAm 005411J0 G IS,Cl.R• 000000 G 
tE,EXP• 177665 G TE.SOP• 177635 G IO.DEL• 012400 G IO,RNC• 001040 G IS,CR • llJ06401 G 
IE,FEX• 177717 G IE,SNC• 1777 35 G IO.DET• 002000 G IO,RNE• 001020 G IS,ESC• 015401 G 
IE,FHE• 1777Pl5 G IE,SPC• 177772 G IO,DIS• llJ16000 G 10,RNS• 001020 G IS,PNO• 000H0 G 
IE,FOP• 117713 G !E,SQC• 177734 G IO,OTI• 016000 G IO, RPS• 001040 G lS,SET• 000002 G 
lf,HFU• 177744 G IE 1 SRE.• 177762 G IO.ENA• 00601110 G 10,fHC• llJ03400 G IS11SPO• llJ00011J2 G 
IE,HWFU 171712 G IE,STK• 171706 G IO,EOF• 003000 G 10,RTI• 016400 G IS,SUC• llJ00001 G 
IE,IOU• , 77644 G IE,TMM• 177671 G IO.ESA• 002500 G 10,RTK• 0011J060 G Ql,VER• 000304 G 
IE.IEF• 177637 G TE,TMO• 177666 G IO,EXT• 011400 G IO,RVth 010.400 G UMSG • 00eJ000 
IE,IFC• 177116 G IE,ULN• 177773 G IO,FOX• 003020 G IO, RWD• 002400 G , .. GBL.• 000001 

• •as. A00000 000 
00P000 001 

ERRORS DEHCTEOI 0 

FREE t:ORFI 5b69, WORDS 
,~P1•[t56,tJ3JQIOMAC,Tl1 



APPENDIX J 

FIELD SIZE SYMBOLS 

Definitions for these symbols are contained in the System Library. 

S.BFHD - size of FSR block buff er header in bytes 

S.FATT - size of FOB file attribute area in bytes 

S.FDB - size of FOB in bytes (including name block) 

S.FNAM - size of filename in bytes (stored in RAD-50) 

S.FNB - size of filename block in bytes 

S.FNBW - size of filename block in words 

S.FNTY - size of filename and file type in words (stored in 
RAD-50) 

S.FSR2 - size of FSR2 (basic impure area) 

S.FTYP - size of file type in bytes (in RAD-50) 

S.NFEN - size of a complete filename in bytes file ID, name, 
type, and version 

J-1 



INDEX 

Access to magnetic tape vol~~es, 
5-5 

ASCII/binary UIC conversion Rou­
tines, 4-6 

.ASCPP 

.PPASC 
.ASCPP routine, 4-6 
.ASLUN routine, 4-11 
Assembly-time FDB initialization 

macros, 2-4 - 2-5 
AST service routines, 2-53 

Block I/O operations, 1-5 
Bootstrap block, E-2 
Buffering, multiple, 1-7 

Calling file control routines, 4-2 
CCML$ macro call, 6-12 
Characteristics of system, 1-11 
CLOSE$ macro call, 3-18 
Command string interpreter (CSI), 

6=14 
CSI control block off set and bit 

value definitions, 6-16 
CSI run-time macro calls, 6-19 
CSI$ macro call, 6-14 
CSI$ND macro call, 6-30 
CSI$SV macro call, 6-28 
CSI$SW macro call, 6-23 
CSI switch definition macro calls, 

6-23 
CSI$1 macro call, 6-19 
CSI$2 macro call, 6-21 
.CTRL routine, 4-22 

Data formats for Files-11 devices, 
1-5 

Dataset descriptor, 1-9, 1-10, 2-1, 
2-33, 2-34 

Dataset descriptor for OFNB$, 3-15 
Dataset descriptor pointer, 1-10 
Data transfer modes, 1-6 

Locate 
Move 

DECtape file structures, 5-1 
Default directory string routines, 

4-3 
.RDFDR 
.WDFDR 

Default filename block, 1-9, 1-10, 
2-33, 2-37 - 2-39 

Default filename block for OFNB$, 
3-15 

Default file protection word rou­
tines, 4-4 

.RDFFP 

Default file protection word rou­
tines (cont.), 

·.WDFFP 
Defining FDB offsets, 2-30 
Defining FDB offsets locally, 2-32 
DELET$ macro call, 3-33, 3-34 
Device control routine (.CTRL), 4-22 
.DLFNB routine, 4-21 
Directory entry routines, 4-12 - 4-14 

.FIND 

.ENTER 

.REMOV 
Directory files, 5-2 
Disk file structure, 5=1 

End-of-volume label, G-8 
.ENTER routine, 4-14 
Error codes, I-1 
Event flags, 2-50 
Examples of magnetic tape process­

ing, 5-9 
.EXTND routine, 4-19 

FDAT$A macro call, 2-7 
FDB, see file descriptor block 
FDB address in run-time macro calls, 

2-28, 2-29 
FDBDF$ macro call, 2-6 
FDBF$A macro call, 2-21 
FDBK$A macro call, 2-13 
FDB offset definitions, A-3 
FDOP$A macro call, 2-16 
FDRC$A macro call, 2-10 
FSRSZ$ macro call, 2-45, 6-14 
File access methods, 1-2 

sequential 
direct 

File access, optimization of, 2-41 
File access, shared, 1-7 
File control routines, calling, 4-2 
File deletion routines, 4-21 

.MRKDL 

.DLFNB 
File descriptor block, 1-8, 1-9, 

2-1, 2-4, A-1 
File extension routine (.EXTND), 

4-19 
File header block, 5-4, F-1 
File header labels {magnetic tape) , 

G-4 
Filename block, 1-9, B-1 
Filename block format, B-2 
Filename block, initialization manu­

ally, 2-43, 2-44 
Filename block, initialization with 

OPEN$x, 2-42 
Filename block offset definitions, 

B-3 

INDEX-1 



Filename block status word 
(N.STAT), B-4 

Filename block routines, 4-7, 
4-11 

.PARSE 

.PRSDV 

.ASLUN 
Filename block routines, 4-15 

.GTDIR 

.GTDID 
File owner word routines, 4-5, 4-6 

.RFOWN 

.WFOWN 
File pointer routines, 4-16 - 4-18 

.POINT 

.POSRC 

.MARK 

.POSIT 

.XQIO 
File specification, 1-10 
File specifications in user pro­

grams, 2-33 
File storage region, 1-3, 1-10, 

2-1 

.GTDID routine, 4-15 

.GTDIR routine, 4-15 

Header area, F-4 
Home block, E-2 
Home block format, E-4 

Identification area, F-5 
Increasing the size of the file 

storage region, 2-48 
Index file, 5-4 
Index file bit map, E-2 
Index file format, E-1 
Initializing the filename block 

manually, 2-43, 2-44 
Initializing the file storage 

region, 2-45 
I/O operations, 1-5 

block 
record 

I/O operations, coordination of, 
2-50 

File storage 
of, 2-45 

region, initialization I/O status block, 2-51, 2-52 

File storage region, increasing 
the size of, 2-48 

File trailer labels (magnetic 
tape) , G-8 

.FIND routine, 4-12 
FINIT$ macro call, 2-47 
FSR, see file storage region 
FSR extension procedures 

for FORTRAN, 2-49 
for MACR0-11, 2-48 

FSRSZ$ macro call, 2-45 
$$FSR1, 1-3 
$$FSR2, 1-3 

GCML, see Get Conunand Line 
GCMLB$ macro call, 6-3 
GCMLD$ macro call, 6-6 
GCML$ macro call, 6-10 
GCML usage considerations, 6-13 
Get conunand Line, 6-3 
Get Conunand Line run-time macro 

calls, 6-9 
GCML$ 
RCML$ 
CCML$ 

GET$ in locate mode, 3-21 
GET$ in move mode, 3-21 
GET$ (read logical record) , 3-18 -

3-20 
format of 
FOB mechanics of 

GET$R (random) macro call, 3-22 
GET$S (sequential) macro call, 

3-23 
Global definitions of FOB offsets, 

2-30 

Key terms of the manual, 1-9 

Local definitions of FOB offsets, 
2-30 

Locate mode, 1-6 
Logical records, 1-1 

Macros, assembly-time FOB initiali­
zation, 2-4, 2-5 

Magnetic tape file processing 
(RSX-llD only) , 5-5 - 5-15 

Map area, F-6 
.MARK routine, 4-17 
.MCALL directive, 2-2, 2-3 
Move mode, 1-6 
.MRKDL routine, 4-21 
Multiple buffering (RSX-llD only) , 

'l-7 

NBOF$L macro call, 2-39, 2-40 
NMBLK$ macro call, 2-37 - 2-39 

OFID$ macro call, 3-14 
OFNB$ macro call, 3-15 
OPEN$ (generalized open for speci-

fying file access) , 3-16 
OPEX$x macro call, 3-2 - 3-12 
OPNS$x macro call, 3-12 
OPNT$ macro call, 3-13 
OPNT$X macro call, 3-12 
Optimizing file access, 2-41 

INDEX-2 



.PARSE routine, 4-7 

.POINT routine, 4-16 
Positioning magnetic tape, 5-6 
.POSIT routine, 4-18 
.POSRC routine, 4=17 
.PPASC routine, 4-6 
Predefined file header blocks, E-3 
PRINT$ macro call, 7-1 
.PRINT subroutine, 7-3 
.PRSOV routine, 4-11 
PUT$ in locate mode, 3-26 
PUT$ in move mode, 3-25 
PUT$ macro call, 3-23 - 3-25 

format of 
FOB requirements of 

PUT$R (random) macro call, 3-27, 
3-28 

PUT$S (sequential) , 3-29 

RCML$ macro call, 6-12 
.RDFOR routine, 4-3 
.ROFFP routine, 4-4 
READ$ macro call, 3-29 - 3-32 

format of 
FOB requirements 

Record I/O operations, 1-5 
Rename file routine (.RENAM), 4-19 
.RENAM routine, 4-19 
.REMOV, 4-14 
Rewinding magnetic tape volume 

sets, 5-5 
.RFOWN routine, 4-5 
Run-time initialization macros 

(FOB), 2-25 - 2-28 

Sample prqgrams, 0-1 
Shared file access, 1-7 
Specifying global symbols, 2-32 
Spooling, 7-1 
Spooling error handling, 7-3 
Statistics block, H-1 
String descriptions, 2-35 

device name 
directory 
filename 

System characteristics, 1-11 

User file labels, G-8 
User file structure (disk) , 5-2 
User volume label (magnetic tape) , 

G-4 
Using .CTRL routine, 5-7 

Volume and file labels, G-1 
Volume label format, G-2 

WAIT$ macro call, 3-34 - 3-36 

.WDFOR routine, 4-3 

.WDFFP routine, 4-5 

.WFOWN routine, 4-6 
WRITE$ macro call, 3-32 - 3-33 

.XQIO routine, 4-18 

INOEX-3 



PEADER'S co~_MENTS 

IAS/RSX-11 
I/O Operations 
Reference Manual 
DEC-11-0IORA-A-D 

NOTE: This form is for document comments only. Problems 
with software should be reported on a Software 
Problem Repcrt (SPR) form. 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs 
required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

(] Assembly language programmer 

(] Higher-level language programmer 

(] Occasional programmer (experienced) 

(] User with little programming experience 

(] Student programmer 

(] Non-programmer interested in computer concepts and capabilities 

CitY~~~~~~~~~~~~~~State~~~~~~-Zip Code~~~~~~~­
or 

Country 

If you do not require a written reply, please check here. [] 



------------------------------------------------------------Fold llere------------------------------------------------------------

·---------------------------------------------- Do Not Tear - Fold llere and Staple --------------,--------------------------------

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Software Communications 
P. 0. Box F 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD, MASS. 



digital equipment corporation 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	7-01
	7-02
	7-03
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	H-01
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	J-01
	index-1
	index-2
	index-3
	replyA
	replyB
	xback

